Magnetochemische Untersuchungen an neuen dimeren Carboxylaten des Gadoliniums

Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades einer

Doktorin der Naturwissenschaften

– Dr. rer. nat. –

genehmigte Dissertation von

Dipl.-Chem. Daniela John geboren am 22. September 1980 in München

 $\boldsymbol{2007}$

Referent: Prof. Dr. Werner Urland Korreferent: Prof. Dr. Michael Binnewies Tag der Promotion: 22.05.2007

Danksagung

Diese Arbeit wurde im Zeitraum Februar 2005 bis März 2007 im Institut für Anorganische Chemie (ACI) der Universität Hannover unter der Leitung von Herrn Prof. Dr. Werner Urland angefertigt.

Herrn Prof. Dr. Werner Urland danke ich besonders für die interessante Aufgabenstellung sowie die persönliche und stets sehr freundliche Betreuung bei der Durchführung dieser Arbeit.

Herrn Prof. Dr. Michael Binnewies danke ich für die Übernahme des Korreferats.

Ich möchte mich für die schöne Zeit und die familiäre Atmosphäre im Arbeitskreis bei Alexander Rohde, Dagmar Grüne und Herrn Prof. Dr. Werner Urland bedanken. Sie waren stets bereit für anregende und aufschlussreiche Diskussionen und gaben hilfreiche Vorschläge.

Außerdem möchte ich Herrn Prof. Dr. Michael Binnewies sowie seinem gesamten Arbeitskreis herzlich danken, dass ich dort immer willkommen geheißen wurde, jede erdenkliche Hilfe bekam und dazu gehören durfte.

Desweiteren danke ich Herrn Prof. Dr. Dieter Fenske, der sich bereit erklärte, einige Einkristalldatensätze aufzunehmen.

Herrn Dr. Helmut Schilder und Herrn Prof. Dr. Heiko Lueken danke ich für eine Einführung in das Programm *CONDON*.

Anett Körn, Katrina und Melanie Neubacher danke ich sehr für das Korrekturlesen dieser Arbeit.

Sonja Locmelis möchte ich für die großzügig überlassene Messzeit am Pulverdiffraktometer danken.

Meinen zahlreichen HiWis (Ulrike Schimrosczyk, Julia Stötzner, Thomas Schmidt, Monika Vogt, Clarissa Baumanis und Nina Eggers) danke ich für die über 1000 Reaktionsansätze, die sie für mich angefertigt haben. Kai Köhler danke ich sehr für die Hilfe bei all meinen Linuxproblemen sowie für die Mitbenutzung seines Computers, um die Rechnungen mit dem Programm *CON-DON* durchführen zu können.

Lena Müller, Hendrik Roth, Jörn Mühlenfeld und Kai Köhler danke ich für ihre stete Diskussionsbereitschaft, auch bei außerfachlichen Problemstellungen als sehr gute Freunde und für die überaus lustige Zeit.

Abschließend möchte ich mich von Herzen bei Kevin Klipsch und meinen Eltern Erika und Roland John für ihr Verständnis, für ihre bedingungslose Unterstützung in allen Lebenslagen, ihre Geduld, ihren Zuspruch und ihr Vertrauen in mich bedanken.

Zusammenfassung

Durch Reaktionen von halogenhaltigen Gadolinium carboxylaten sowie Gadolinium carboxylaten sowie Gadolinium cetat mit den stickstoffhaltigen Liganden 4(1*H*)-Pyridon (hypy) oder 2,2'-Bipyridin (bipy) in Lösungen aus gleichen Teilen Ethanol und Wasser bei Raumtemperatur wurden die neuen Gadolinium verbindungen $Gd_2(F_3CCOO)_6(hypy)_4$, $Gd_2(ClF_2CCOO)_6(hypy)_4$, $Gd_2(F_2HCCOO)_6(hypy)_4$, $Gd_2(Cl_2HCCOO)_6(H_2O)_2(hypy)_2$, $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O$,

 $\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2, \operatorname{Gd}_2(\operatorname{Cl}_2\operatorname{HCCOO})_6(\operatorname{C}_2\operatorname{H}_5\operatorname{OH})_2(\operatorname{bipy})_2,$

$$\begin{split} & \operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2\cdot\operatorname{C}_2\operatorname{H}_5\operatorname{OH} \ \text{und} \ \operatorname{Gd}_2(\operatorname{ClH}_2\operatorname{CCOO})_6(\operatorname{bipy})_2 \ \text{synthetisiert.} \\ & \operatorname{Um} \ \text{erstmals} \ \text{das} \ \text{Benzoat} \ \operatorname{Gd}_2(\operatorname{C}_6\operatorname{H}_5\operatorname{COO})_6(\operatorname{bipy})_2 \ \text{zu} \ \text{erhalten}, \ \text{wurde} \ \text{Gadoliniumchlorid-Hexahydrat} \ \text{mit} \ \text{Benzoesäure} \ \text{und} \ 2,2'\text{-Bipyridin} \ \text{in} \ \text{reinem} \ \text{Ethanol} \ \text{umgesetzt}. \end{split}$$

Die Kristallstrukturen wurden anhand von röntgenographischen Einkristalldaten bestimmt. In allen Verbindungen liegen Gd^{3+} -Ionen vor, die über Sauerstoffatome zu isolierten dimeren Gd^{3+} - Gd^{3+} -Einheiten mit dem Gd-O-Abstand r verbrückt sind.

Das magnetische Verhalten der Verbindungen wurde mit einem SQUID-Magnetometer untersucht. Bei allen untersuchten Verbindungen wurde eine antiferromagnetische Wechselwirkung beobachtet. Die effektive BOHR-Magnetonenzahl μ_{eff} wurde temperaturabhängig bestimmt. Die Interpretation von μ_{eff} erfolgte unter Berücksichtigung der Spin-Spin-Austauschkopplung in einer dinuklearen Gd³⁺–Gd³⁺-Einheit, wobei für jede Verbindung der Austauschparameter J_{ex} ermittelt wurde.

Für dimere Gadoliniumcarboxylate konnte zwischen dem Austauschparameter $J_{\rm ex}$ für die antiferromagnetische Wechselwirkung und dem Gd–O-Abstand r eine Abhängigkeit von $J_{\rm ex} \sim r^{-4,61}$ gefunden werden. Somit ist erstmals allein durch Kenntnis dieses Abstandes eine Voraussage über die Größe des Austauschparameters und damit über die Stärke der antiferromagnetischen Wechselwirkung möglich. Wegen der Abhängigkeit des Austauschparameters, die bei r^{-5} liegt, muss angenommen werden, dass die Austauschwechselwirkung über die d-Orbitale und nicht über die f-Orbitale des Gadoliniums erfolgt, da sonst eine Abhängigkeit um r^{-7} bestehen würde.

Stichworte: Gadoliniumverbindung, Kristallstruktur, Magnetismus

Abstract

By reactions of different gadolinium carboxylates with the nitrogen containing ligands 4-(1*H*)-pyridone (hypy) or 2,2'-bipyridyl (bipy) in solutions of ethanol and water (1:1) at room temperature the new gadolinium compounds $Gd_2(F_3CCOO)_6(hypy)_4$, $Gd_2(ClF_2CCOO)_6(hypy)_4$, $Gd_2(F_2HCCOO)_6(hypy)_4$, $Gd_2(Cl_2HCCOO)_6(H_2O)_2(hypy)_2$, $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O$, $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2$, $Gd_2(Cl_2HCCOO)_6(C_2H_5OH)_2(bipy)_2$, $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH$ and $Gd_2(ClH_2CCOO)_6(bipy)_2$ have been synthesised. Benzoate $Gd_2(C_6H_5COO)_6(bipy)_2$ was obtained by the reaction of benzoic acid and 2,2'-bipyridyl in pure ethanol.

The crystal structures were determined using X-ray diffractometry on single crystals. In all compounds there are Gd^{3+} ions existent, which are bridged by oxygen atoms to isolated dimeric Gd^{3+} – Gd^{3+} units with the Gd–O distance r.

The magnetic behaviour of the compounds has been investigated with a SQUID magnetometer. In each case antiferromagnetic interaction was observed. The effective BOHR magneton number $\mu_{\rm eff}$ was measured dependent on temperature. The interpretation of $\mu_{\rm eff}$ took place through spin-spin-interaction within the dimeric $\mathrm{Gd}^{3+}-\mathrm{Gd}^{3+}$ unit, whereupon the magnetic exchange parameter $J_{\rm ex}$ was determined for every compound.

For dimeric gadolinium arboxylates a dependency on $J_{\rm ex} \sim r^{-4,61}$ was found between the exchange parameter $J_{\rm ex}$ for the antiferromagnetic interaction and the Gd–O distance r. Thus for the first time, simply via knowledge of this distance, a prediction to the value of the exchange parameter and thereby to the intensity of the antiferromagnetic interaction can be made. Because of this dependency near r^{-5} for the exchange parameter, it has to be supposed that the interaction occurs via the d-orbitals and not via the f-orbitals of the gadolinium, as otherwise a dependency about r^{-7} would exist.

Keywords: gadolinium compound, crystal structure, magnetism

Inhaltsverzeichnis

1	Ein	leitung	1
	1.1	Zur Chemie und Physik der Lanthanide und ihrer Verbindungen $\ .$.	1
	1.2	Ziel der Arbeit	5
2	Kri	stallstrukturanalyse mittels Röntgenbeugung	7
	2.1	Grundlagen der Röntgenbeugung	7
	2.2	Pulverdiffraktometrie	8
	2.3	Einkristallverfahren	8
		2.3.1 Einkristall diffraktometrie mit einem IPDS \ldots \ldots \ldots \ldots	9
	2.4	Rechenverfahren zur Kristallstrukturanalyse	9
		2.4.1 PATTERSON-Synthese	11
		2.4.2 Direkte Methoden	11
		2.4.3 Korrekturen	12
		2.4.4 Gütefaktoren der Strukturbestimmung	14
	2.5	Rechenprogramme	17
3	Ma	gnetische Eigenschaften	19
	3.1	Grundbegriffe	19
	3.2	Magnetische Eigenschaften der Materie	21
		3.2.1 Diamagnetismus	21
		3.2.2 Paramagnetismus	21

		3.2.3	Ferromagnetismus, Ferrimagnetismus und Antiferromagne-	
			tismus \ldots	22
	3.3	Interp	retation der magnetischen Suszeptibilitätsmessungen $\ . \ . \ .$	24
		3.3.1	Ligandenfeldeffekte	24
		3.3.2	Kooperative magnetische Effekte	25
			3.3.2.1 Austauschwechselwirkung in polynuklearen Einheiten	25
			3.3.2.1.1 Dinukleare Gd^{3+} -Einheit	27
		3.3.3	Sättigungseffekte bei Gd ³⁺ -Verbindungen	28
			3.3.3.1 Ohne Austauschwechselwirkung	28
			3.3.3.2 Mit Austauschwechselwirkung bei dimeren Einheiten	30
	3.4	Das K	orrekturprogramm DANSY	32
	Ð	0011		
4	Das	SQUI	D-Magnetometer	33
	4.1	Messpi	rinzip	33
	4.2	Probei	nvorbereitung	35
	4.3	Justier	rung und Messung	36
	4.4	Datena	ausgabe	36
5	Präj	parativ	ver Teil	37
6	Röntgenographische Untersuchungen		graphische Untersuchungen	41
	6.1	Vorber	nerkungen	41
		6.1.1	Nummerierungskonzept der Atome in den synthetisierten	
			Verbindungen	41
		6.1.2	Bestimmung der Kristallstrukturen	42
	6.2	$\mathrm{Gd}_2(\mathrm{F})$	$_{3}$ CCOO) ₆ (hypy) ₄	44
		6.2.1	Einkristallstrukturanalyse	44
		6.2.2	Strukturbeschreibung	46
	6.3	$\mathrm{Gd}_2(\mathrm{C}$	$lF_2CCOO)_6(hypy)_4$	50
		6.3.1	Einkristallstrukturanalyse	50
		6.3.2	Strukturbeschreibung	52

6.4	$\mathrm{Gd}_{2}(\mathrm{F}_{2}\mathrm{HCCOO})_{6}(\mathrm{hypy})_{4}\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	55	
	6.4.1 Einkristallstrukturanalyse	55	
	6.4.2 Strukturbeschreibung	57	
6.5	$\mathrm{Gd}_{2}(\mathrm{Cl}_{2}\mathrm{HCCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2}$	61	
	6.5.1 Einkristallstrukturanalyse	61	
	6.5.2 Strukturbeschreibung	<u> </u>	
6.6	$\mathrm{Gd}_{2}(\mathrm{H}_{3}\mathrm{CCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2} \cdot 2 \mathrm{H}_{2}\mathrm{O}$	<u> 3</u> 5	
	6.6.1 Einkristallstrukturanalyse	<u> 3</u> 5	
	6.6.2 Strukturbeschreibung	37	
6.7	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2\ldots$	70	
	6.7.1 Einkristallstrukturanalyse	70	
	6.7.2 Strukturbeschreibung	72	
6.8	$\operatorname{Gd}_2(\operatorname{Cl}_2\operatorname{HCCOO})_6(\operatorname{C}_2\operatorname{H}_5\operatorname{OH})_2(\operatorname{bipy})_2$	75	
	6.8.1 Einkristallstrukturanalyse	75	
	6.8.2 Strukturbeschreibung	77	
6.9	$\mathrm{Gd}_{2}(\mathrm{ClF}_{2}\mathrm{CCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{bipy})_{2}\cdot\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH}\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	30	
	6.9.1 Einkristallstrukturanalyse	30	
	6.9.2 Strukturbeschreibung	32	
6.10	$\operatorname{Gd}_2(\operatorname{ClH}_2\operatorname{CCOO})_6(\operatorname{bipy})_2\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	36	
	6.10.1 Einkristallstrukturanalyse	36	
	6.10.2 Strukturbeschreibung	38	
6.11	$\operatorname{Gd}_2(\operatorname{C}_6\operatorname{H}_5\operatorname{COO})_6(\operatorname{bipy})_2$	92	
	6.11.1 Einkristallstrukturanalyse	92	
	6.11.2 Strukturbeschreibung	94	
Magnetische Untersuchungen 97			
7.1	Magnetische Messungen an den synthetisierten dimeren Gadolinium-		
	verbindungen	97	

 $\mathbf{7}$

8	\mathbf{Disl}	cussion der Ergebnisse	105	
	8.1	Zusammenhang zwischen magnetischen und strukturellen Eigen-		
		schaften	105	
9	Zus	ammenfassung	111	
\mathbf{A}	Pul	verdiffraktogramme	113	
	A.1	$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4$	113	
	A.2	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{hypy})_4$	114	
	A.3	$\operatorname{Gd}_2(\operatorname{F}_2\operatorname{HCCOO})_6(\operatorname{hypy})_4$	115	
	A.4	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$	116	
	A.5	$Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O \dots \dots \dots \dots \dots \dots \dots$	117	
	A.6	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2\ldots$	118	
	A.7	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$	119	
	A.8	$Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH \dots \dots \dots \dots \dots \dots$	120	
	A.9	$\operatorname{Gd}_2(\operatorname{ClH}_2\operatorname{CCOO})_6(\operatorname{bipy})_2\ldots$	121	
	A.10	$\operatorname{Gd}_2(\operatorname{C}_6\operatorname{H}_5\operatorname{COO})_6(\operatorname{bipy})_2$	122	
в	Lageparameter, äquivalente isotrope und anisotrope Auslenkungs-			
	parameter		123	
	B.1	$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4\ldots$	124	
	B.2	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{hypy})_4$	126	
	B.3	$\operatorname{Gd}_2(\operatorname{F}_2\operatorname{HCCOO})_6(\operatorname{hypy})_4 \ldots \ldots$	128	
	B.4	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$	130	
	B.5	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$	132	
	B.6	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2 \ldots \ldots$	134	
	B.7	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$	136	
	B.8	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2 \cdot \operatorname{C}_2\operatorname{H}_5\operatorname{OH} \ldots \ldots \ldots \ldots \ldots \ldots$	138	
	B.9	$\operatorname{Gd}_2(\operatorname{ClH}_2\operatorname{CCOO})_6(\operatorname{bipy})_2\ldots$	142	
	B.10	$\operatorname{Gd}_2(\operatorname{C}_6\operatorname{H}_5\operatorname{COO})_6(\operatorname{bipy})_2$	144	

C Abkürzungsverzeichnis	149
D Archivierungsnummern	151
E Publikationen	153
Literaturverzeichnis	167

Inhaltsverzeichnis

1 Einleitung

1.1 Zur Chemie und Physik der Lanthanide und ihrer Verbindungen

Bei den Lanthaniden (Ln) handelt es sich um die Elemente von Lanthan bis Lutetium. Diese wurden im 19. und 20. Jahrhundert entdeckt [1] und sind für Naturwissenschaftler verschiedenster Fachrichtungen interessant, da diese Elemente periodische und aperiodische physikalische und chemische Eigenschaften haben. Die Sonderstellung im Periodensystem der Lanthanide beruht auf ihrer Elektronenkonfiguration, da bei voll besetzten äußeren Unterschalen (5s², 5p⁶, 6s²) vom Lanthan ([Xe] 4f⁰ 5d¹ 6s²) bis zum Lutetium ([Xe] 4f¹⁴ 5d¹ 6s²) sukzessive die kernnahen 4f-Orbitale mit Elektronen besetzt werden.

Das chemisch ähnliche Verhalten aller Lanthanidmetalle ist durch die annähernd gleiche Besetzung der äußeren Elektronenschalen bedingt. Die 4f-Elektronen spielen für die chemische Bindung nur eine untergeordnete Rolle. Die Lanthanide liegen in ihren Verbindungen überwiegend dreiwertig, seltener zwei- oder vierwertig positiv geladen vor. Bei Neodym, Samarium, Europium, Dysprosium, Thulium und Ytterbium tritt die Valenz +2 auf und bei Cer, Praseodym, Neodym, Terbium und Dysprosium findet man die Valenz +4. In wässriger Lösung sind nur Eu²⁺ und Ce⁴⁺ beständig, wobei die anderen Wertigkeiten, die von der Valenz +3 abweichen, vor allem in Festkörpern anzutreffen sind. Mit zunehmender Ordnungszahl wächst die effektive Kernladung, die einen starken Einfluss auf die kernnahen 4f-Orbitale hat,

wodurch diese trotz steigender Elektronenzahl kontrahieren. Daraus resultiert die Lanthanidenkontraktion - die wohl wichtigste aperiodische Eigenschaft der Lanthanide. Für die Koordinationszahl (KZ) 6 sinken die Ionenradien von La³⁺ (r = 103,2 pm) bis zu Lu³⁺ (r = 86,1 pm) um fast 20 % [2]. Die unterschiedlichen Ionengrößen haben direkten Einfluss auf die Koordinationszahlen und die Koordinationsgeometrie und bestimmen deshalb entscheidend die Strukturchemie der Verbindungen der Lanthanide.

Für die physikalischen Eigenschaften sind die nach außen abgeschirmten 4f-Elektronen von großer Bedeutung. Optische Spektren der Lanthanide (f-f-Übergänge) und ihrer Verbindungen weisen selbst im Festkörper eine hohe Linienschärfe auf und auch das magnetische Verhalten wird von den 4f-Elektronen bestimmt. Der Beginn der Magnetochemie der Lanthanide ist in den Arbeiten von KLEMM [3] begründet, welche es ermöglichen mit der von VAN VLECK [4] entwickelten Theorie des Paramagnetismus z. B. die Valenzen des Lanthanidions in den Verbindungen CeS_2 und CeO_2 zu bestimmen. Die Lanthanidionen weisen mit Ausnahme der diamagnetischen Ionen La³⁺, Ce⁴⁺, Yb²⁺ und Lu³⁺ paramagnetisches Verhalten auf. Die magnetischen Suszeptibilitäten der meisten Lanthanidionen folgen näherungsweise dem CURIE-Gesetz, nur die von Sm³⁺ und Eu³⁺ weichen deutlich davon ab. Der Beitrag des temperaturunabhängigen Paramagnetismus (VAN VLECKscher Paramagnetismus) zum gesamten magnetischen Moment ist hierbei relativ groß. Da die f-Elektronen einer starken Abschirmung unterliegen, tritt der Einfluss des Kristallfeldes auf die magnetischen Eigenschaften der Lanthanidionen in der Regel erst unterhalb von 80 K in Erscheinung.

Die Chemie der Lanthanide geht über das Interesse der Grundlagenforschung hinaus, was die mittlerweile vielfältigen technischen Anwendungen zeigen. Hier sollen nur einige wenige davon aufgezählt werden: Als Permanentmagnete mit besonders hoher Koerzitivkraft dienen Nd-Fe-B-haltige Magnete [5] oder SmCo₅ [6]. Als Feststofflaser, wie z. B. der Nd-YAG-Laser (Y^{3+} in $Y_3Al_5O_{12}$ wird durch Nd³⁺ ersetzt),

Abbildung 1.1: Stickstoffhaltige aromatische Liganden: a) 1,10-Phenanthrolin, b) 2,2'-Bipyridin und c) 2,2':6',2"-Terpyridin.

kommen Lanthanidverbindungen zum Einsatz [1]. Weitere Anwendungsgebiete finden sich z.B. in der Photo-Optik [7] und in der Katalysatortechnik für Automobile [8]. Auch in der enantiomerenreinen organischen Synthese finden Lanthanidverbindungen immer mehr Anwendungen [9]. Hervorzuheben sind auch die wichtigen Anwendungen in der Medizin z.B. die in der Augenheilkunde und Zahnmedizin verwendeten Ho- oder Er-YAG-Laser [10]. Außerdem kommen bei der Kernspintomographie (MRI, *magnetic resonance imaging*) gut verträgliche Gd³⁺-haltige Kontrastmittel [11] immer dann zum Einsatz, wenn eine Abgrenzung verschiedener Gewebearten nicht ohne weiteres möglich ist. Auf diese Art und Weise können genauere Aussagen über die betreffende Körperregion gemacht werden.

Carboxylate der Lanthanide mit stickstoffhaltigen Aromaten z. B. 1,10-Phenanthrolin (phen), 2,2'-Bipyridin (bipy) oder 2,2':6',2"-Terpyridin (terpy) (siehe Abbildung 1.1 a-c) mit der Zusammensetzung

 $Ln(CH_3COO)_3(phen)$ mit Ln = La-Nd und Sm-Lu [12], $Ln(CH_3COO)_3(bipy)$ mit Ln = Pr, Nd, Yb [13] und $Ln(CCl_xH_{3-x}COO)_3(terpy)$ mit x = 1-3 und Ln = Nd,

Abbildung 1.2: Weitere Beispiele für stickstoffhaltige aromatische Liganden: a) 8-Hydroxychinolin, b) Chinolin, c) Pyridin-2-Carbonsäure und d) 4,4'-Bipyridin.

Eu, Er [14] sind schon länger bekannt. Seit dieser Zeit sind zahlreiche weitere Verbindungen mit stickstoffhaltigen Liganden dieser Art, z. B. 8-Hydroxychinolin, Chinolin, Pyridin-2-Carbonsäure oder 4,4'-Bipyridin (siehe Abbildung 1.2 a-d), synthetisiert worden [15–18]. Lanthanidcarboxylate sind wegen des verbrückenden Charakters der Carboxylatgruppe als molekularmagnetische Materialien von Interesse. So sind z. B. einige Verbindungen bekannt, die antiferromagnetische Eigenschaften zeigen [19–25]. Es wurde aber auch ferromagnetisches Verhalten bei den Carboxylaten [Gd(L)₃(H₂O)]₂ (HL = Salicylsäure) [26] und Gd(CH₃COO)₃(H₂O)₂·2H₂O [27] beobachtet.

1.2 Ziel der Arbeit

In dieser Arbeit sollen neue Carboxylate des Gadoliniums mit den stickstoffhaltigen Aromaten 4-Hydroxypyridin oder 2,2'-Bipyridin dargestellt werden. Die Kristallstrukturen der so synthetisierten Verbindungen sollen anhand von röntgenographischen Einkristalldaten bestimmt und Aussagen über die Austauschwechselwirkung bei dreiwertigen Gadoliniumverbindungen mit Hilfe von magnetischen Untersuchungen getroffen werden. Von besonderem Interesse ist die Synthese von Verbindungen mit ausschließlich isolierten dimeren Baueinheiten, da hierfür ein einfaches Modell existiert, bei dem sich die Stärke der Austauschwechselwirkung in Form eines Austauschparameters J_{ex} bestimmen lässt, welcher nicht durch Wechselwirkungen mit anderen Baueinheiten verfälscht werden kann. Da bislang nur reine Carboxylate zur Untersuchung der Austauschwechselwirkung herangezogen wurden, soll in dieser Arbeit, durch Einführung zusätzlicher stickstoffhaltiger Liganden, die Vielfalt von Gd³⁺-Dimeren erweitert werden.

Letztendliches Ziel der Arbeit ist, aus den strukturellen und magnetischen Ergebnissen eine einfache Voraussage über die Stärke der Austauschwechselwirkung bei dimeren Gd³⁺-Carboxylaten treffen zu können, ähnlich den GOODENOUGH– KANAMORI-Regeln [28–31], welche für die d-Elemente gelten. 1 Einleitung

2 Kristallstrukturanalyse mittels Röntgenbeugung

Die in dieser Arbeit erhaltenen Produkte wurden mit Hilfe der Röntgenstrukturanalyse charakterisiert. Die Methoden dieser Analysetechnik beruhen auf der Beugung von Röntgenstrahlen an den Atomen der jeweiligen Proben und erlauben so eine Aufklärung des strukturellen Aufbaus. Je nach Güte des erhaltenen Produkts kann die Untersuchung an einer Vielzahl von Kristalliten (Pulvermethoden [32]) oder an einem Einkristall (Einkristallmethoden [33, 34]) vorgenommen werden.

2.1 Grundlagen der Röntgenbeugung

Wenn Röntgenstrahlen auf ein Objekt treffen, werden sie gemäß ihrer Wellennatur gebeugt. Physikalisch beruht diese Beugung auf einer Streuung der elektromagnetischen Röntgenwellen an den in dem Objekt enthaltenen Elektronen. Diese führen im magnetischen Wechselfeld der Röntgenwellen erzwungene Schwingungen aus und werden so zum Ausgangspunkt kohärenter Sekundärwellen. Sind die Streuzentren dreidimensional periodisch angeordnet, findet eine Überlagerung der von jedem Punkt des Gitters ausgehenden kugelförmigen Streuwellen statt, und es kommt zu sowohl positiver als auch negativer Interferenz.

Die physikalisch falsche, aber als Modell sinnvolle Betrachtungsweise - die Reflexion von Röntgenstrahlen an den Netzebenenscharen (hkl) - führt zu einer einfachen mathematischen Beziehung, der BRAGGschen Gleichung:

$$n\lambda = 2d_{\rm hkl}sin\theta \tag{2.1}$$

 $d_{\rm hkl}$ = Abstand der Netzebenen (*hkl*) θ = Einfallswinkel n = Beugungsordnung λ = Wellenlänge der Röntgenstrahlen

Nur wenn Gleichung (2.1) erfüllt ist, tritt positive Interferenz ein und das Beugungsbild kann beobachtet werden.

2.2 Pulverdiffraktometrie

Die in der vorliegenden Arbeit zur Überprüfung der Reinheit der Produkte angefertigten Pulverdiffraktogramme wurden mit einem Transmissionsdiffraktometer (Transmissionsdiffraktometer-System STADIP, *Fa. STOE & CIE GmbH*, Darmstadt) angefertigt. Der Aufbau des Gerätes entspricht dem des DEBYE-SCHERRER-Verfahrens [35]. Der monochromatische Röntgenstrahl wird auf den Goniometerkreis fokussiert. In der Mitte des Goniometerkreises befindet sich die Substanz auf einem Flachbrettträger. Bei der Vermessung wird der Primärstrahl mit Hilfe eines Kollimators auf den Durchmesser des Flachbrettträgers eingegrenzt, wodurch man eine Minimierung der Untergrundstreuung erreicht. Die Intensitätsmessung der Reflexe erfolgt mit Hilfe eines ortsempfindlichen Proportionaldetektors (*position sensitive detector*, PSD). Die vom PSD gesammelten Daten werden digital erfasst und mit dem Programm *Win* X^{POW} [36] (*Fa. STOE & CIE GmbH*, Darmstadt) ausgewertet.

2.3 Einkristallverfahren

Zur röntgenographischen Charakterisierung von Einkristallen gibt es verschiedene Methoden, die sich bezüglich der Gerätegeometrie und des Informationsgehaltes der Ergebnisse stark unterscheiden. Die Kristalle sollten im Allgemeinen eine Kantenlänge zwischen 0,03 mm und 1,00 mm haben und während der Aufnahme eine definierte Orientierung zum Röntgenstrahl einnehmen. Durch Messung der Reflexlagen und -intensitäten eines Einkristalls wird eine Strukturlösung ermöglicht, die zu einem Strukturmodell führt. Die anschließende Verfeinerung nach der Methode der kleinsten Fehlerquadrate (*least-sqares*-Methode) liefert schließlich ein optimiertes Strukturmodell - die Kristallstruktur.

2.3.1 Einkristalldiffraktometrie mit einem IPDS

Bei dem verwendeten einkreisigen Imaging-Plate-Diffraction-System (IPDS, Fa. STOE, Darmstadt) handelt es sich um einen Röntgen-Flächendetektor. Während bei der Eulerwiegengeometrie die Reflexe einzeln in Reflektionsstellung gefahren und vermessen werden, ähnelt die Aufnahmetechnik beim IPDS den Drehkristall-Aufnahmetechniken. Alle im eingestellten ω -Winkelbereich erfassten Röntgenquanten werden gleichzeitig auf der *"imaging plate"*, einer mit Europium(II) dotierten BaClF-Schicht, gespeichert. Das Auslesen der Reflexe und ihrer Intensität erfolgt durch Laserabtastung der vorher aktivierten Farbzentren. Der Rohdatensatz kann dann einer numerischen Absorptionskorrektur unterzogen werden.

2.4 Rechenverfahren zur Kristallstrukturanalyse

Zur Bestimmung der Atomanordnung innerhalb der Elementarzelle ist die Kenntnis des komplexen Strukturfaktors F_{hkl} notwendig:

$$F_{\rm hkl} = \sum_{j=1}^{n} f_{\rm j} e^{2\pi i (hx_{\rm j} + ky_{\rm j} + lz_{\rm j})} = |F_{\rm hkl}| e^{i\phi} = F_{\rm ber}$$
(2.2)

$$f_j$$
 = Atomfaktor des j-ten Atoms
 hkl = MILLERsche Indizes
 x_j, y_j, z_j = Koordinaten des j-ten Atoms
 ϕ = Phasenwinkel
 F_{ber} = berechneter F_{hkl}

Die Intensität der gebeugten Strahlung aber ist gemäß

$$I \sim |F_{\rm hkl}|^2 \tag{2.3}$$

dem Quadrat des Strukturfaktors proportional. Infolgedessen gibt das Experiment keine Auskunft über die Phasen der gestreuten Wellen (so genanntes "fundamentales Phasenproblem der Röntgenstrukturanalyse").

Unter Berücksichtigung der periodischen Anordnung der Atome im Kristallgitter lässt sich der Strukturfaktor über eine Elektronendichtefunktion beschreiben:

$$F_{\rm hkl} = \int_{V} \rho(x, y, z) e^{2\pi i (hx + ky + lz)} dx dy dz = F_{\rm beob}$$
(2.4)

$$V = \text{Elementarzellenvolumen}$$

$$\rho(x, y, z) = \text{Elektronendichte am Ort xyz}$$

$$dx dy dz = \text{Volumenelement}$$

$$F_{\rm beob} = \text{beobachteter } F_{\rm hkl}$$

Durch FOURIER-Transformation lässt sich Gleichung (2.4) nach der Elektronendichteverteilung, deren Maxima den gesuchten Atomlagen entsprechen, auflösen [37]:

$$\rho(xyz) = \frac{1}{V} \sum_{h=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} F_{hkl} e^{-2\pi i (hx+ky+lz)}$$
(2.5)

Durch Einsetzen der beobachteten F_{hkl} als FOURIER-Koeffizienten kann die Elektronendichte an jedem beliebigen Punkt berechnet werden. Da die Reihe der Summanden in Gleichung (2.5) unendlich ist, aber nur eine begrenzte Anzahl von Reflexen erfasst wird und so für die Rechnung zur Verfügung steht, bricht die Summation im endlichen Bereich ab. Hieraus resultieren so genannte Abbrucheffekte, die sich in Form zusätzlicher Maxima in der Elektronendichteverteilung bemerkbar machen.

Bei Kenntnis erster Atomlagen können weitere Atomlagen durch Differenz-FOURIER-Synthesen bestimmt werden. Als FOURIER-Koeffizienten werden die Differenzen aus gefundenen (F_{beob}) und berechneten (F_{ber}) F_{hkl} eingesetzt. Auf diese Weise kann nach und nach die komplette Struktur ermittelt werden.

Für eine FOURIER-Synthese müssten jedoch die F_{hkl} -Werte mit Phasenwinkeln (s. Gl. (2.2)) zur Verfügung stehen. Das Experiment lässt aber keine Bestimmung der Phasenwinkel zu und daher ist die Lösung von Gleichung (2.5) nicht unmittelbar möglich. Wege zur Lösung dieses Problems sollen im Folgenden aufgezeigt werden.

2.4.1 PATTERSON-Synthese

Mit Hilfe einer PATTERSON-Synthese gelingt es, ohne Kenntnis der Phasen der $F_{\rm hkl}$ -Werte, Aussagen über eine Kristallstruktur zu treffen. Nach PATTERSON [38] und HARKER [39] ist eine FOURIER-Reihe (Gl. (2.5)) definiert, in der die aus der Messung zugänglichen Quadrate der Strukturamplituden $|F_{\rm hkl}|$ als FOURIER-Koeffizienten eingesetzt werden. Die PATTERSON-Funktion zeigt Maxima an den Endpunkten von Abstandsvektoren zwischen Atomschwerpunkten, aus denen in vielen Fällen die Lagen schwerer Atome bestimmt werden können.

2.4.2 Direkte Methoden

Das Prinzip der Direkten Methoden beruht auf vorwiegend statistischen Überlegungen, die von bestimmten Beziehungen zwischen den Phasenwinkeln der Strukturamplituden ausgehen. Zur Lösung des Phasenproblems wird eine Beziehung nach SAYRE [40] verwendet, die für eine zentrosymmetrische Struktur die Phasen dreier Reflexe ausreichend hoher Intensität miteinander verknüpft:

$$S_{\rm hkl} = S_{\rm h'k'l'} S_{\rm h-h'k-k'l-l'}$$

$$S = \text{Vorzeichen von } F_{\rm hkl}$$

$$(2.6)$$

Ausgehend von vorgegebenen Startphasen sind anhand der "SAYRE-Beziehung" die Phasen weiterer Strukturfaktoren berechenbar. Man erhält mehrere Lösungsvorschläge, von denen der wahrscheinlichste einer FOURIER-Synthese unterworfen wird, aus deren Maxima auf die ungefähren Atomlagen geschlossen werden kann.

2.4.3 Korrekturen

Für die Intensität gebeugter Röntgenstrahlen sind neben der Besetzung der reflektierenden Netzebenen eine Reihe weiterer Faktoren ursächlich.

Polarisations faktor:

Die Beugung an einer Netzebene führt zu einer partiellen Polarisierung und damit zu einem Intensitätsverlust der Röntgenstrahlung. Der Grad der Abschwächung ist abhängig vom Beugungswinkel θ und wird als Polarisationsfaktor P bezeichnet. Da bereits die Monochromatisierung der Strahlung mit einem Kristall erfolgt, muss auch dessen Polarisationseffekt berücksichtigt werden.

LORENZ-Faktor:

Während der Drehung des Kristalls kommt es zu unterschiedlichen Verweilzeiten der Netzebenen in Reflektionsstellung, was zu Abstufungen in den verschiedenen Reflexintensitäten führt. Diese werden mit Hilfe des LORENZ-Faktors korrigiert, dessen Form von der Art des verwendeten Messverfahrens abhängt.

Absorption:

Sowohl der Primär- als auch der gebeugte Röntgenstrahl erfahren auf dem Weg durch den Kristall aufgrund von Ionisationsprozessen und COMPTON-Streuung einen Intensitätsverlust. Für die Abhängigkeit der Intensität I_s von der Weglänge s gilt:

$$I_{\rm s} = I_0 e^{-\mu \cdot s} \tag{2.7}$$

Der als linearer Absorptionskoeffizient μ bezeichnete Abschwächungsfaktor ist bei bekannter chemischer Zusammensetzung für jede Substanz berechenbar und ergibt sich bei bekannter Materialdichte ρ aus der Summe der Massenabsorptionskoeffizienten μ/ρ . Hierbei stellt $(\mu/\rho)_i$ einen für jede Atomsorte *i* spezifischen, wellenlängenabhängigen Wert dar [41]:

$$\mu = \rho \sum_{i} x_{i} \left(\frac{\mu}{\rho}\right)_{i} \tag{2.8}$$

 $x_i = Molenbruch der Atomsorte i$

Temperaturfaktor:

Die Schwingungsellipsoide der Atome sollten eine physikalisch sinnvolle Form besitzen. Die beobachteten Reflexintensitäten werden durch die thermischen Schwingungen der Atome um ihre Ruhelage beeinflusst und müssen dementsprechend bei Berechnung des Strukturfaktors F_{ber} (Gl. (2.2)) berücksichtigt werden. Nach DE-BYE [42] und WALLER [43] werden daher die Atomfaktoren f mit einem Exponentialterm, dem Temperaturfaktor T, multipliziert. Hierbei wird T_{iso} zur Beschreibung isotroper bzw. T_{aniso} zur Beschreibung anisotroper Schwingungen verwendet. Die in diesen Faktoren enthaltenen Koeffizienten werden auch Auslenkungsparameter genannt. Im Fall isotroper Schwingungen resultiert der folgende Ausdruck für den effektiven Atomformfaktor f':

$$f' = fT_{\rm iso} = fe^{-B\frac{\sin^2\theta}{\lambda^2}} \tag{2.9}$$

Diese Gleichung ist jedoch nur für isotrope Auslenkungen der Atome gültig und wird lediglich im Anfangsstadium der Strukturrechnungen in Form isotroper Auslenkungsparameter U_{iso} verwendet, die mit *B* in folgender Weise verknüpft sind:

$$U_{\rm iso} = \frac{B}{8\pi^2} \tag{2.10}$$

Gegen Ende der Strukturverfeinerung können anisotrope Temperaturfaktoren T_{aniso} mit den anisotropen Auslenkungsparametern U_{ij} eingesetzt werden, die die tatsächlichen Schwingungsverhältnisse der Atome besser beschreiben:

$$T_{\text{aniso}} = e^{-2\pi^2 (U_{11}h^2 a^* a^* + U_{22}k^2 b^* b^* + U_{33}l^2 c^* c^* + 2U_{23}klb^* c^* + 2U_{13}hla^* c^* + 2U_{12}hka^* b^*)}$$
(2.11)

Die Koeffizienten U_{ij} des anisotropen Temperaturfaktors T_{aniso} sind Komponenten eines symmetrischen Tensors zweiter Stufe, der die Orientierung und Auslenkung der sich ergebenden Schwingungsellipsoide beschreibt.

Neben den isotropen und anisotropen Auslenkungsparametern U_{iso} bzw. U_{ij} werden häufig äquivalente isotrope Auslenkungsparameter U_{aq} verwendet, die aus den anisotropen Parametern berechnet werden und im Allgemeinen wie folgt definiert sind [44]:

$$U_{\ddot{a}q} = \frac{1}{3} \Big[U_{11} (aa^*)^2 + U_{22} (bb^*)^2 + U_{33} (cc^*)^2 + 2U_{12} aba^* b^* \cos \gamma + 2U_{13} aca^* c^* \cos \beta + 2U_{23} bcb^* c^* \cos \alpha \Big]$$
(2.12)

Typische Werte von U_{ij} liegen bei Raumtemperatur in anorganischen Festkörperstrukturen bei 50 bis 200 pm² für schwere Atome bzw. bei 1000 bis 2000 pm² für leichte Atome.

2.4.4 Gütefaktoren der Strukturbestimmung

Die Übereinstimmung beobachteter und berechneter Strukturfaktoren ist ein Maß für die Güte einer Strukturbestimmung. Neben den Standardabweichungen, die möglichst klein sein sollten, sind so genannte *R*-Werte ("residuals" oder Zuverlässigkeitsfaktoren) definiert [45]. Je kleiner die *R*-Werte, desto größer ist die Übereinstimmung zwischen Modell und Realstruktur. Der konventionelle *R*-Wert R_1 gibt die mittlere Abweichung zwischen beobachteten ($|F_{\text{beob}}|$) und berechneten ($|F_{\text{ber}}|$) Strukturamplituden an [33]:

$$R_1 = \frac{\sum_{hkl} ||F_{\text{beob}}| - |F_{\text{ber}}||}{\sum_{hkl} |F_{\text{beob}}|}$$
(2.13)

In jüngerer Zeit, insbesondere seit der Einführung des Programmsystems *SHELXL-*93 [46] zur Lösung von Kristallstrukturen, hat sich jedoch die Verfeinerung an F_{beob}^2 -Daten, also den direkt gemessenen Intensitäten, durchgesetzt. Der Vorteil dieser Verfeinerungsmethode besteht in der Möglichkeit, alle gemessenen Daten, einschließlich negativer Intensitätswerte, zur Verfeinerung heranzuziehen, ohne einen systematischen Fehler in den Datensatz einzubringen, z. B. durch Ersetzen der negativen F_{beob}^2 -Daten durch kleine positive Werte oder Unterdrückung der negativen Reflexe durch Einführung einer σ -Schranke. Ein entsprechender *R*-Wert, der die Abweichung von beobachteten und berechneten F^2 -Werten beschreibt, ist durch die Ziffer 2 gekennzeichnet (R_2). In der Regel wird jedoch der so genannte gewichtete *R*-Wert wR_2 angegeben, bei dem direkt die bei der Verfeinerung minimalisierten Fehlerquadratsummen eingehen:

$$wR_{2} = \sqrt{\frac{\sum_{hkl} w(F_{beob}^{2} - F_{ber}^{2})^{2}}{\sum_{hkl} w(F_{beob}^{2})^{2}}}$$
(2.14)

Die Wichtungsfunktion w ist dabei im Programmsystem *SHELXL-97* wie folgt definiert [33, 39]:

$$w = \frac{1}{\sigma^2 (F_{\text{beob}}^2) + (aP)^2 + bP}$$
(2.15)

mit

$$P = \frac{2F_{\rm ber}^2 + Max(0, F_{\rm beob}^2)}{3}$$
(2.16)

Die Parameter *a* und *b* werden so angepasst, dass möglichst eine Gleichverteilung der Varianzen (gewichtete Fehlerquadrate) über die verschiedenen Beugungswinkel und Intensitätsbereiche erreicht wird. Im Vergleich zum ungewichteten *R*-Wert ist wR_2 der wichtigere Zuverlässigkeitsfaktor, da er empfindlicher auf kleine Fehler im Strukturmodell reagiert. Aus seinen Bewegungen während eines Verfeinerungszyklus kann entschieden werden, ob eine Änderung im Strukturmodell sinnvoll ist. Bei einem guten Datensatz und einer unproblematischen Struktur sollten wR_2 -Werte von unter 15 % und R_1 -Werte von unter 5 % erreicht werden. Ein weiterer Gütefaktor ist der allein auf F^2 -Daten basierende so genannte *Goodness of Fit* (GooF). Bei richtiger Struktur und korrekter Wichtung sollte er Werte um 1 annehmen.

$$GooF = S = \sqrt{\frac{\sum_{hkl} w(F_{beob}^2 - F_{ber}^2)^2}{n - p}}$$
 (2.17)

n = Zahl der Reflexe p = Zahl der verfeinerten Parameter

Neben den Gütefaktoren sind noch einige weitere Dinge bei der Strukturverfeinerung wichtig:

- Die Verfeinerung sollte konvergieren, d.h. die Differenz eines Parameterwertes

 (Δ) zwischen zwei Iterationszyklen sollte gegen Null gehen. Die absolute Differenz wird im Allgemeinen durch die Standardabweichung σ geteilt(|Δ|/σ).
- Die Standardabweichung der Atomlagen sollte möglichst klein sein.
- In einer abschließenden Differenzfouriersynthese sollten keine signifikanten Restelektronendichten mehr auftreten. In Leichtatomstrukturen betragen Maxima und Minima dann höchstens noch $\pm (0,2 - 0,3) \cdot 10^{-6} \text{ e/pm}^3$. Bei schweren Atomen findet man erfahrungsgemäß noch Restmaxima bis ca. 10 % ihrer Elektronenzahl im Abstand von 60 bis 120 pm.
- Die Schwingungsellipsoide der Atome sollten eine physikalisch sinnvolle Form haben.

2.5 Rechenprogramme

Zur röntgenographischen Charakterisierung der hergestellten Produkte werden die folgenden Computerprogramme verwendet:

- Win X^{POW} 1.08 [36] Windows[®]-Programmpaket zur Steuerung des Pulverdiffraktometers STADIP (Fa. STOE & CIE GmbH, Darmstadt), sowie zur Indizierung und Simulation von Pulverdiffraktogrammen.
- Win GX 1.64 [47] Programmpaket mit MS Windows[®]-Programmen zur Lösung, Verfeinerung und Analyse von röntgenographischen Einkristalldaten.
- SHELXS-97 [48] Programmsystem zur Lösung von Kristallstrukturen mit Hilfe Direkter Methoden und PATTERSON-Synthese.
- SHELXL-97 [49] Programmsystem zur Lösung von Kristallstrukturen mit Full-Matrix-Least-Squares-Verfeinerung, FOURIERbzw. Differenzfouriersynthesen.
- DIAMOND 3.0c [50] Programm zur graphischen Darstellung von Kristallstrukturen aus Strukturdaten.
- X-SHAPE 1.01 [51] Programm zur numerischen Absorptionskorrektur.
- X-RED 1.08 [52] Programm zur Erzeugung von Eingabedateien für X-SHAPE.
- MULTISCAN [53] Programm zur semiempirischen Absorptionskorrektur.
- *Platon 1.081* [54] Programm zur Analyse von Kristallstrukturen.

 $2\ {\it Kristall strukturanalyse\ mittels\ R\"ontgenbeugung}$
3 Magnetische Eigenschaften

Die magnetischen Eigenschaften eines Stoffes stellen ein direktes Abbild seines elektronischen Grundzustandes dar. Das magnetische Verhalten des Stoffes wird dabei durch die magnetische Suszeptibilität charakterisiert. Zur Klärung chemischer Strukturfragen [31, 55], z. B. bei der Bestimmung der Valenz von Elementen in gemischtvalenten Verbindungen [3] sowie bei der Interpretation von Phasenübergängen in Festkörpern [56], erlangen magnetische Suszeptibilitätsmessungen und deren Interpretation zunehmend an Bedeutung.

3.1 Grundbegriffe

Die magnetischen Eigenschaften der in dieser Arbeit diskutierten Verbindungen werden unter Verwendung des nichtrationalen CGS-emu-Systems (*centimètre gramme seconde; electromagnetic unit*) beschrieben [57]. Tabelle 3.1 gibt die wichtigsten magnetischen Größen, ihre Symbole und Einheiten wieder.

Wenn eine Probe einem äußeren Magnetfeld $\boldsymbol{H}^{(ir)}$ ausgesetzt wird, so ergibt sich die magnetische Induktion \boldsymbol{B} in der Probe aus $\boldsymbol{H}^{(ir)}$ und einem Beitrag $4\pi \boldsymbol{M}$, der von der Probe selbst herrührt:

$$\boldsymbol{B} = \boldsymbol{H}^{(\mathrm{ir})} + 4\pi\boldsymbol{M} \tag{3.1}$$

M stellt dabei die Magnetisierung dar.

Über das Verhältnis von magnetischer Flussdichte und Feldstärke (magnetische Permeabilität) wird die magnetische Volumensuszeptibilität $\chi^{(ir)}$ betragsmäßig

Größe	Symbol	CGS-Einheit
Magnetische Feldstärke	$H^{ m (ir)}$	Oe (Oersted)
Magnetische Flussdichte (magnetische Induktion)	B	G (Gauß)
Magnetisierung	M	G
magnetisches Diplomoment	m	$G \cdot cm^3$
Volumensuszeptibilität	$\chi^{(\mathrm{ir})}$	dimensionslos
Molsuszeptibilität	$\chi^{(\mathrm{ir})}_{\mathrm{m}}$	${\rm cm}^3 \cdot {\rm mol}^{-1}$
effektive BOHR-Magnetonzahl	$\mu_{ ext{eff}}$	dimensionslos

Tabelle 3.1: Magnetische Größen mit ihren CGS-Einheiten

folgendermaßen definiert:

$$\frac{|\mathbf{B}|}{|\mathbf{H}^{(\text{ir})}|} = 1 + 4\pi \left(\frac{|\mathbf{M}|}{|\mathbf{H}^{(\text{ir})}|}\right) = 1 + 4\pi \chi^{(\text{ir})}$$
(3.2)

Die magnetische Suszeptibilität eines Stoffes wird in der Regel nicht bezüglich seines Volumens, sondern seiner molekularen Masse angegeben. Die so genannte Molsuszeptibilität ist dann wie folgt definiert:

$$\chi_{\rm m}^{\rm (ir)} = \frac{\chi^{\rm (ir)} \cdot M}{\rho} \tag{3.3}$$

M entspricht der molekularen Masse $[g \cdot mol^{-1}]$ und ρ der Dichte $[g \cdot cm^{-3}]$ der betreffenden Verbindung. Die auf Kraftwirkungen beruhenden Messmethoden zur Bestimmung der magnetischen Suszeptibilität fanden breite Anwendung. Zu nennen seien hier die Methoden nach GOUY [58], QUINKE [59, 60] und FARADAY-CURIE [61–64]. Bei diesen wird mit einer Waage die Kraft gemessen, mit der die zu untersuchende Probe in ein Magnetfeld hineingezogen bzw. herausgedrückt wird. Weiter seien die Induktionsmethoden nach BROERSMA [65] und FONER [66] erwähnt. Für die in dieser Arbeit durchgeführten Messungen wurde ein SQUID-Magnetometer [67, 68] verwendet.

3.2 Magnetische Eigenschaften der Materie

Die magnetischen Eigenschaften der Materie lassen sich aufgrund der Temperaturund Magnetfeldstärkeabhängigkeit der magnetischen Suszeptibiliät $\chi^{(ir)}$ in verschiedene Gruppen einteilen.

3.2.1 Diamagnetismus

$\chi^{(\mathrm{ir})}$ ist weder von der Temperatur noch von der Magnetfeldstärke abhängig.

Der Diamagnetismus ist eine allgemeine Eigenschaft der Materie. Er tritt bei allen Stoffen in Erscheinung, bei denen sich die magnetischen Felder der permanenten atomaren Kreisströme innerhalb jedes Atoms gegenseitig aufheben (Elektronenpaarung). Zusätzliche atomare Ringströme werden durch Induktion beim Einschalten des Magnetfeldes hervorgerufen. Die Richtung des induzierten Magnetfeldes ist der Stromrichtung in der Spule entgegengesetzt (LENZsche Regel). Der Wert für $\chi^{(ir)}$ ist daher negativ ($\chi^{(ir)} < 0$). In inhomogenen Magnetfeldern erfahren diamagnetische Stoffe Kräfte in Richtung abnehmender Feldstärke.

3.2.2 Paramagnetismus

$\chi^{(\mathrm{ir})}$ ist temperaturabhängig und nahezu unabhängig von der Magnetfeldstärke.

Die permanenten magnetischen Momente erfahren im Magnetfeld eine Ausrichtung derart, dass ihre Richtung mit der des felderzeugenden Spulenstroms übereinstimmt. Diese Ausrichtung erzeugt eine zusätzliche magnetische Induktion parallel zum angelegten Magnetfeld; der Wert für die Suszeptibilität $\chi^{(ir)}$ ist daher positiv $(\chi^{(ir)}>0)$. Paramagnetische Stoffe erfahren in inhomogenen Magnetfeldern Kräfte in Richtung wachsender Feldstärke. Häufig kann die Temperaturabhängigkeit der magnetischen Suszeptibilität durch das CURIE-Gesetz beschrieben werden:

$$\chi^{(\rm ir)} = \frac{C}{T} \tag{3.4}$$

C = CURIE-KonstanteT = absolute Temperatur

Paramagnetisches Verhalten kann auf ungepaarte Elektronen zurückgeführt werden. Bei Lanthanidverbindungen kann oftmals die Anzahl der ungepaarten 4f-Elektronen aus der gemessenen magnetischen Suszeptibilität über das im Folgenden beschriebene Verfahren ermittelt werden.

Experimentell wird die so genannte effektive BOHR-Magnetonenzahl $\mu_{\rm eff}$ bestimmt:

$$\mu_{\rm eff,exp} = 2,828 \sqrt{\chi_{\rm m}^{\rm (ir)} T} \tag{3.5}$$

Ist der RUSSEL-SAUNDERS-Term ${}^{2S+1}L_J$ für den Grundzustand des entsprechenden Lanthanidions bekannt, so kann μ_{eff} unter Verwendung der Quantenzahlen S, L und J mit der HUNDschen Formel

$$\mu_{\rm eff,theo} = g_{\rm J} \sqrt{J(J+1)} \tag{3.6}$$

bei bekanntem LANDÉ-Faktor $g_{\rm J}$

$$g_{\rm J} = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$$
(3.7)

berechnet werden.

3.2.3 Ferromagnetismus, Ferrimagnetismus und Antiferromagnetismus

$\chi^{(\mathrm{ir})}$ ist temperatur- und feldstärkeabhängig.

Dies ist immer der Fall, wenn die Wechselwirkung zwischen den magnetischen Momenten dominierend ist. Diese Wechselwirkung hat unterhalb einer Ordnungstemperatur eine spontane Ausrichtung aller Momente entweder parallel (Ferromagnetismus) oder antiparallel zueinander (Ferri- und Antiferromagnetismus) zur Folge. Komplizierte Spinstrukturen seien hier nicht erwähnt.

Ferromagnetismus:

Unterhalb einer bestimmten Temperatur $T_{\rm C}$, der ferromagnetischen CURIE-Temperatur, sind alle permanenten magnetischen Momente weitgehend parallel ausgerichtet. Oberhalb von $T_{\rm C}$ folgt die Suszeptibilität der Beziehung

$$\chi = \frac{C}{T - \Theta_{\rm C}} \tag{3.8}$$

 $\Theta_{\rm C}$ = paramagnetische Curie-Temperatur

und zeigt paramagnetisches Verhalten an. Eisen, Cobalt und Nickel sind klassische Beispiele für ferromagnetische Stoffe.

Ferrimagnetismus:

Die permanenten magnetischen Momente sind paarweise entgegengesetzt ausgerichtet und von verschiedener Größe. Es verbleibt eine resultierende spontane Magnetisierung. Einige Beispiele für ferrimagnetische Stoffe sind: Ferrite (MFe₂O₄, $M = Fe^{2+}$, Ni²⁺, etc.), Lanthanid-Eisen-Granate (Ln₃Fe₅O₁₂) sowie Lanthanid-Perowskite (LnMO₃, M = dreiwertige Metallkationen). Die starke Temperaturund Feldstärkeabhängigkeit ähnelt der des Ferromagnetismus.

Antiferromagnetismus:

Die permanenten magnetischen Momente unterliegen unterhalb einer bestimmten Temperatur T_N , der antiferromagnetischen NÉEL-Temperatur, einer antiparallelen Ausrichtung. MnO und MnF₂ sind Beispiele für antiferromagnetische Stoffe. Oberhalb von T_N gehorcht die Suszeptibilität der folgenden Beziehung:

$$\chi = \frac{C}{T - \Theta_{\rm N}} \tag{3.9}$$

 $\Theta_N = paramagnetische N \pm EL-Temperatur$

Sie zeigt paramagnetisches Verhalten an. Unterhalb von T_N sinkt der Wert für $\chi^{(ir)}$ mit fallender Temperatur.

3.3 Interpretation der magnetischen Suszeptibilitätsmessungen

Die Temperaturabhängigkeit der paramagnetischen Suszeptibilität lässt sich im einfachsten Falle durch das CURIE-Gesetz (vgl. Gleichung (3.4)) beschreiben. Wäre dieses Gesetz streng gültig, so müsste die effektive BOHR-Magnetonzahl μ_{eff} temperaturunabhängig sein. Im allgemeinen Fall ist μ_{eff} aber temperaturabhängig, d. h. das CURIEsche Gesetz ist nur eine Näherung für das temperaturabhängige magnetische Verhalten von paramagnetischen Stoffen. Es gibt mehrere physikalische Phänomene, die die Abweichung von dem CURIEschen Gesetz begründen können. Diese werden im Folgenden kurz angesprochen.

3.3.1 Ligandenfeldeffekte

Die Liganden eines Komplexes beeinflussen den energetischen Grundzustand des Zentralions. Die Symmetrie des Ligandenfeldes führt dabei zu einer Energieaufspaltung, deren Größe durch Art und Anzahl der Liganden, dem Abstand von Liganden zum Zentralteilchen und der Art des Zentralteilchens bestimmt wird. Während der Symmetrieaspekt durch die Kristallfeldtheorie von BETHE [69] vollständig verstanden ist, stellt die Vorhersage der durch das Ligandenfeld bewirkten Energieaufspaltung bei Vorgabe eines bestimmten Metall-Liganden-Systems auch heute noch ein großes Problem dar [70]. In der vorliegenden Arbeit brauchen Einflüsse des Ligandenfeldes nicht berücksichtigt zu werden, da das untersuchte Metallkation Gd^{3+} einen kugelsymmetrischen S-Grundzustand hat. Neben Gd^{3+} haben z. B. auch Eu^{2+} , Fe^{3+} und Mn^{2+} einen elektronischen S-Grundzustand. Im Falle der Lanthanide mit reinem Spinparamagnetismus wird Gleichung 3.6 (vgl. Kapitel 3.2.2) zu:

$$\mu_{\rm eff,theo} = g\sqrt{S(S+1)} \tag{3.10}$$

mit g = 2.

3.3.2 Kooperative magnetische Effekte

Die Wechselwirkungen zwischen zwei paramagnetischen Zentren beruhen sowohl auf magnetischen Dipol-Dipol-Wechselwirkungen (MDD) [71] als auch auf Austauschwechselwirkungen [72] elektronischer Natur.

Die MDD-Wechselwirkung wird durch das auf einen Dipol wirkende Magnetfeld eines anderen hervorgerufen. Die Austauschwechselwirkung ist vergleichbar mit der Wechselwirkung zwischen Elektronen in einem Atom (vergleichbar mit der RUSSELL-SAUNDERS-Aufspaltung).

Die Austauschwechselwirkung ist im Allgemeinen stärker als die MDD-Wechselwirkung. Beide Wechselwirkungen sind aber von dem Abstand der interagierenden Zentren abhängig, wobei die Austauschwechselwirkung mit zunehmenden Abstand stärker abnimmt als die MDD-Wechselwirkung. Da zur Parametrisierung der kooperativen magnetischen Effekte keine einheitliche Theorie existiert, ist man auf Modellvorstellungen angewiesen, die in der Regel nur auf spezielle Situationen anwendbar sind. Nachfolgend werden die in der vorliegenden Arbeit verwandten Modelle der Austauschwechselwirkung (Spin-Spin-Austauschkopplung) vorgestellt.

3.3.2.1 Austauschwechselwirkung in polynuklearen Einheiten

Ausgangspunkt stellt hierbei zumeist das HEISENBERG-Modell [73–75] dar, das sich direkt vom HEITLER-LONDON-Modell [76] des H₂-Moleküls ableitet. Die Behandlung des betrachteten Problems erfolgt analog: Zunächst wird die Differenz zwischen der Gesamtenergie des Systems und der Energie zweier isolierter H-Atome im Grundzustand definiert. Unter Voraussetzung isotroper Wechselwirkung und der Beschreibung der Elektronenfunktionen als 1s-Funktionen ergeben sich für das Molekül zwei Eigenfunktionen, die sich bezüglich der Vertauschungssymmetrie der Elektronen voneinander unterscheiden. Die Zweielektronenlösungen lassen sich als Produkt von Spinkoordinaten und Bahnkonfigurationen beschreiben, wobei aus der symmetrischen Eigenfunktion ein Singulett (S = 0), aus den antisymmetrischen Eigenfunktionen ein Triplett-Zustand (S = 1) resultiert. Diese Korrelation von Orbitalsymmetrie und Spinausrichtung ist im HEISENBERG-Modell äquivalent zu einer effektiven Spin-Spin-Kopplung der Orbitale der beiden paramagnetischen Zentren. Die effektive Spin-Spin-Austauschkopplung wird durch den Term $-2J_{ex,12}\hat{s}_1 \cdot \hat{s}_2$ repräsentiert. $J_{ex,12}$ steht hierbei für den Austauschparameter zwischen den Teilchen 1 und 2, die der Hälfte der Energiedifferenz zwischen Singulett- und Triplettzustand entspricht.

Der Austauschoperator (HEISENBERG-Operator) \hat{H}_{ex} nimmt in seiner allgemeinen Form folgende Gestalt an:

$$\hat{H}_{\text{ex}} = -2\sum_{i < j} J_{\text{ex}, \text{ij}} \hat{\boldsymbol{S}}_{\text{i}} \cdot \hat{\boldsymbol{S}}_{\text{j}}$$
(3.11)

Hierbei gilt $\hat{S} = \sum \hat{s}$ und es wird vorausgesetzt, dass alle Elektronen dasselbe Wechselwirkungspotential erfahren. Gleichung 3.11 vereinfacht sich zu Gleichung 3.12, wenn alle magnetisch aktiven Zentren äquivalent sind und nur die Wechselwirkung zwischen einer Sorte von Nachbarn berücksichtigt wird:

$$\hat{H}_{\rm ex} = -2J_{\rm ex} \sum_{i < j} \hat{\boldsymbol{S}}_{\rm i} \cdot \hat{\boldsymbol{S}}_{\rm j}$$
(3.12)

Im allgemeinen Fall einer polynuklearen Einheit aus n äquivalenten Zentren ergibt sich für die Molsuszeptibilität [77]:

$$\chi_{\rm m}^{\rm (ir)} = \frac{N_{\rm A}\mu_{\rm B}^2}{3k_{\rm B}T} \frac{g^2}{n} \frac{\sum_{S'} S'(S'+1)(2S'+1)\Omega(S')e^{-\frac{E(S')}{k_{\rm B}T}}}{\sum_{S'} (2S'+1)\Omega(S')e^{-\frac{E(S')}{k_{\rm B}T}}}$$
(3.13)

 mit

$$\begin{split} E(S') &= -\frac{zJ_{\text{ex}}}{n-1} \left[S'(S'+1) - nS(S+1) \right] \quad \text{und} \quad \Omega(S') = \omega(S') - \omega(S'+1) \\ S' &= \text{Spinquantenzahl der gekoppelten Zustände} \\ n &= \text{Anzahl der in Wechselwirkung stehenden Zentren} \\ z &= \text{Zahl der nächsten Nachbarn eines Zentrums} \\ J_{\text{ex}} &= \text{Austauschparameter (Hälfte der Energiedifferenz zwischen} \\ & \text{Singulett- und Triplettzustand}) \\ \Omega(S') &= \text{Häufigkeit, mit der ein Zustand S' vorkommt} \\ \omega(S') &= \text{Koeffizient von } X^{S'} \text{ in der Entwicklung } (x^S + x^{S-1} + \ldots + x^{-S})^n \end{split}$$

Da in dieser Arbeit dimere Komplexverbindungen mit Gd^{3+} untersucht werden, soll Gleichung 3.13 auf eine dinukleare Gd^{3+} -Einheit angewandt werden.

3.3.2.1.1 Dinukleare Gd³⁺-Einheit

Die magnetische Suszeptibilität einer dinuklaren Gd^{3+} -Einheit mit $S_1 = S_2 = 7/2$ lässt sich nach Gleichung 3.13 wie folgt beschreiben:

$$\chi_{\rm m}^{\rm (ir)} = \frac{N_{\rm A}\mu_{\rm B}^2 g^2}{k_{\rm B}T} \frac{e^{2x} + 5e^{6x} + 14e^{12x} + 30e^{20x} + 55e^{30x} + 91e^{42x} + 140e^{56x}}{1 + 3e^{2x} + 5e^{6x} + 7e^{12x} + 9e^{20x} + 11e^{30x} + 13e^{42x} + 15e^{56x}}$$
(3.14)

 mit

$$x = \frac{J_{\rm ex}}{k_{\rm B}T}$$

Der HEISENBERG-Operator lautet für diesen Fall:

$$\hat{H}_{\text{ex}} = -2J_{\text{ex}}\hat{\boldsymbol{S}}_1 \cdot \hat{\boldsymbol{S}}_2 \tag{3.15}$$

Das Vorzeichen von $J_{\rm ex}$ gibt hierbei die Art der Wechselwirkung an. Bei $J_{\rm ex} > 0 \, {\rm cm}^{-1}$ handelt es sich um eine ferromagnetische, bei $J_{\rm ex} < 0 \, {\rm cm}^{-1}$ um eine antiferromagnetische Wechselwirkung. Für ausgewählte Austauschparameter $J_{\rm ex}$ (vgl. Abbildung 3.1) ergeben sich Temperaturabhängigkeiten für $\mu_{\rm eff}$ nach den Gleichungen 3.14 und 3.5, die in Abbildung 3.1 gezeigt sind. Bei tiefen Temperaturen wird für ein ferromagnetisches Verhalten ein Ansteigen, für ein antiferromagnetisches Verhalten ein Abfallen der $\mu_{\rm eff}$ -*T*-Kurven beobachtet.

Abbildung 3.1: Typische Kurvenverläufe für ferro- und antiferromagnetisches Verhalten im Vergleich zum Einzelionenverhalten $(J_{\text{ex}} = 0 \text{ cm}^{-1}).$

3.3.3 Sättigungseffekte bei Gd³⁺-Verbindungen

3.3.3.1 Ohne Austauschwechselwirkung

Wenn bei Messungen im Tieftemperaturbereich die Stärke des äußeren Magnetfeldes in der Größenordnung der thermischen Energie liegt, stellt man fest, dass die Suszeptibilitätswerte mit steigendem Feld kleiner werden. In dem einfachen Fall, dass das magnetische Verhalten allein durch das Grundmultiplett bestimmt wird, lässt sich der Verlauf der molaren Magnetisierung mit $H^{(ir)}$ parallel zur z-Achse des Komplexes durch die BRILLOUIN-Funktion [77] beschreiben:

$$M_{\rm m} = M_{\rm m}^{\infty} \cdot B_{\rm J}(\alpha) \tag{3.16}$$

 $M_{\rm m}$ = Molmagnetisierung $M_{\rm m}^{\infty}$ = maximal mögliche Molmagnetisierung

 mit

$$B_{\rm J}(\alpha) = \frac{2J+1}{2J} \coth\left[\left(\frac{2J+1}{2J}\right)\alpha\right] - \frac{1}{2J} \coth\left(\frac{\alpha}{2J}\right) \tag{3.17}$$

wobei

$$\alpha = \frac{Jg_{\rm J}B\mu_{\rm B}}{k_{\rm B}T}, \qquad \mu_{\rm B} = \frac{eh}{4\pi m_{\rm e}} \qquad \text{und} \qquad M_{\rm m}^{\infty} = N_{\rm A}Jg_{\rm J}\mu_{\rm B} \qquad \text{sind.}$$

$$N_{\rm A} = \text{Avogadro-Konstante}$$

$$k_{\rm B} = \text{Bolzmann-Konstante}$$

$$J = \text{Gesamtdrehimpulsquantenzahl}$$

$$\mu_{\rm B} = \text{Bohr-Magneton}$$

$$e = \text{Elementarladung}$$

$$m_{\rm e} = \text{Elektronenmasse}$$

$$h = \text{PLANCK Wirkungsquantum}$$

Für Gd^{3+} ergibt sich nach den Gleichungen 3.17, 3.2 und 3.5 eine Temperaturabhängigkeit der μ_{eff} -Werte bei verschiedenen magnetischen Feldstärken, die in Abbildung 3.2 dargestellt sind.

Abbildung 3.2: Berechnete μ_{eff} -*T*-Kurven von Gd^{3+} für verschiedene Feldstärken ohne Austauschwechselwirkung.

Dieses durch hohe Feldstärke bedingte Sättigungsverhalten unterscheidet sich drastisch vom Einzelionenverhalten der Abbildung 3.1 im Niedertemperaturbereich. Hier wird antiferromagnetisches Verhalten vorgetäuscht.

3.3.3.2 Mit Austauschwechselwirkung bei dimeren Einheiten

Die Austauschwechselwirkung bei Gd^{3+} -Verbindungen kann für die magnetische Suszeptibilität nach Gleichung 3.14 beschrieben werden. Dies setzt jedoch voraus, dass die Suszeptibilität feldstärkeunabhängig ist. Wie in Abbildung 3.2 gezeigt, wird für das Einzelionenverhalten ($J_{\mathrm{ex}} = 0 \,\mathrm{cm}^{-1}$) aufgrund von Sättigungseffekten im Tieftemperaturbereich eine Feldabhängigkeit vorhergesagt. Daher sollten auch bei Vorliegen von anti- oder ferromagnetischer Wechselwirkung die Sättigungseffekte berücksichtigt werden. Zur Berechnung der BOHR-Magnetonenzahl μ_{eff} wurde das Programm *CONDON* [78] von SCHILDER und LUEKEN herangezogen. Für eine dimere Gd³⁺-Verbindung soll bei einem realistischen Austauschparameter J_{ex} (errechnet aus erhaltenen Messwerten (vgl. Kapitel 7)) die Magnetfeldstärke variiert werden. MDD-Wechselwirkungen (vgl. Kapitel 3.3.2) wurden nicht berücksichtigt. Betrachtet man ein antiferromagnetisches Dimer mit einem Austauschparameter von $J_{\mathrm{ex}} = -0,03 \,\mathrm{cm}^{-1}$, so wird bis 1000 Oe keine Feldabhängigkeit der BOHR-Magnetonenzahl beobachtet (Abbildung 3.3).

Eine signifikante Abweichung tritt erst ab einer Feldstärke von 10000 Oe auf. Diese ist so groß, dass im Tieftemperaturbereich eine deutliche Abweichung von den durch das Feld nicht beeinflussten Kurven zu beobachten ist. Durch Sättigungseffekte wird ein mit der Feldstärke stärker werdendes antiferromagnetisches Verhalten vorgetäuscht (vgl. 3.2). Im Fall eines ferromagnetischen Dimers mit einem Austauschparameter von $J_{ex} = 0.02 \text{ cm}^{-1}$ kann bei allen Feldern eine Abhängigkeit der BOHR-Magnetonenzahl beobachtet werden (Abbildung 3.4). Bis 1000 Oe beschränkt sich diese Feldabhängigkeit auf sehr kleine Temperaturen (<1.7 K). Erhöht man die Feldstärke auf 10000 Oe und mehr, so bricht die ferromagnetische Wechselwirkung sogar ganz zusammen und der Kurvenverlauf gleicht dem eines

Abbildung 3.3: Berechnetes μ_{eff} -*T*-Verhalten bei einem Austauschparameter $J_{\text{ex}} = -0.03 \text{ cm}^{-1}$ für eine antiferromagnetische dimere Gd^{3+} -Verbindung.

antiferromagnetischen Dimers (vgl. Abbildung 3.3). Mit steigender Feldstärke wird durch Sättigungseffekte das ferromagnetische zu einem scheinbaren antiferromagnetischen Verhalten.

Die Abbildungen 3.3 und 3.4 zeigen, dass bei magnetischen Untersuchungen von dimeren Gd³⁺-Verbindungen ein Temperaturbereich und magnetische Feldstärken gewählt werden sollten, die eine Feldstärkeunabhängigkeit der magnetischen Daten erwarten lassen. Somit kann Gleichung 3.14 für die Deutung der magnetischen Suszeptibilität verwendet werden, woraus sich die Austauschparameter für die Austauschwechselwirkung errechnen lassen.

Abbildung 3.4: Berechnetes μ_{eff} -*T*-Verhalten bei einem Austauschparameter $J_{\text{ex}} = 0.02 \text{ cm}^{-1}$ für eine ferromagnetische dimere Gd³⁺-Verbindung.

3.4 Das Korrekturprogramm DANSY

Bei der Messung mit dem SQUID-Magnetometer wird das magnetische Dipolmoment m einer Probe erfasst. Die Berechnung korrigierter Suszeptibilitätsdaten $\chi_{\rm g}^{(\rm ir)}$ und $\chi_{\rm m}^{(\rm ir)}$ sowie der effektiven BOHR-Magnetonzahl $\mu_{\rm eff}$ in Einheiten des nichtrationalen CGS-emu-Systems (vgl. Tabelle 3.1) erfolgt mit dem Programm DANSY [79]. Dieses Programm ermöglicht eine diamagnetische Korrektur des Leerköchers durch Anwendung einer allgemein gültigen, empirisch ermittelten Korrekturfunktion. Der diamagnetische Beitrag, der die Verbindung aufbauenden Ionen, wird durch tabellierte Werte nach HABERDITZL [80] berücksichtigt.

4 Das SQUID-Magnetometer

Die magnetischen Untersuchungen an den in dieser Arbeit dargestellten Gd^{3+} -Verbindungen wurden mit einem SQUID-Magnetometer (*Superconducting Quantum Interference Device*; Gerät: MPMS 5, *Fa. Quantum Design*, San Diego, USA) vorgenommen. Mit diesem Gerät ist es möglich, magnetische Messungen im Temperaturintervall von etwa 1,75 K bis 300 K und bei magnetischen Feldstärken $(H^{(ir)})$ von 500 Oe bis 55000 Oe durchzuführen.

4.1 Messprinzip

Die Detektorspulen (Flusstransformator) werden zum Zeitpunkt der Messpunktaufnahme von einem homogenen äußeren Magnetfeld durchsetzt. Das angelegte Magnetfeld induziert im Flusstransformator einen Abschirmstrom, der entsprechend der LENZschen Regel so gerichtet ist, dass er das ursprüngliche Feld kompensiert. Das durch die supraleitende Magnetspule (Solenoid) erzeugte Magnetfeld hat weiterhin eine Magnetisierung der Probe zur Folge. Das Feld der Probe ist entweder parallel (paramagnetische Probe) oder antiparallel (diamagnetische Probe) zum äußeren Feld gerichtet. Im sensiblen Bereich des Flusstransformators werden infolge des Störfeldes der Probe durch das Eindringen von magnetischem Fluss in einem bestimmten Bereich der Spule zusätzliche Abschirmströme induziert, die je nach Richtung des Störfeldes den ursprünglichen Induktionsstrom verstärken oder abschwächen. Da der Gesamtfluss in der supraleitenden Schleife konstant bleiben muss, treten in anderen Regionen der Spule entsprechende Flussvariationen auf. Die Kombination von zwei entgegengesetzt gewickelten Detektorspulen (Abbildung 4.1) erlaubt mit dem Flusstransformator die Bestimmung des Magnetfeldgradienten. Insofern wird die beschriebene Anordnung auch als Gradiometer bezeichnet.

Abbildung 4.1: Schematischer Aufbau der supraleitenden Detektorspulen, Sensoren und Signalübertragungselemente im SQUID-Magnetometer.

Der Isolationstransformator ermöglicht eine Trennung zwischen den abgegriffenen Spannungssignalen in den Detektorspulen und dem Stromkreislauf im eigentlichen SQUID-System. Nach jedem Messvorgang erfolgt durch Temperaturerhöhung oberhalb der kritischen Temperatur T_C des Supraleiters ein erneuter Nullabgleich. Die gemessene Spannung ist ein Maß für die Feldänderung in dem Flusstransformator und wird auf die Signalspule des SQUID-Sensors übertragen. Der Sensor ist aus einem supraleitenden Ring mit einem Bereich schwacher Kopplung ("weak link") aufgebaut, der durch zwei parallele JOSEPHSON-Kontake (Isolierschicht aus z. B. Al₂O₃ J_{ges} J_a J_b Isolator *b*

oder normalleitendem NbO) realisiert ist [81] (vgl. Abbildung 4.2).

Abbildung 4.2: Schematischer Aufbau des SQUID-Sensors.

4.2 Probenvorbereitung

Die Kristalle werden in einem Achatmörser zerrieben. Dieses Pulver wird danach in eine Gelatinekapsel (4 mm Durchmesser, 10 mm Höhe) eingewogen. Die Fixierung des Pulvers kommt durch Anpressen mit einer weiteren kleinen Kapsel zustande. Während der gesamten Präparation ist darauf zu achten, dass die Probe nur mit Aluminium-, Glas-, oder Kunststoffspateln in Kontakt kommt, um die Messung nicht durch Verunreinigungen mit para- oder ferromagnetischen Substanzen zu verfälschen.

Die Fixierung der Kapsel in einem konventionellen Kunststoffhalm erfolgt mit zwei Baumwollfäden. Der Halm wird am unteren Ende des Probenstabes mit $tesafilm^{(\mathbb{R})}$ befestigt und durch eine mehrmals evakuierte und mit Helium gespülte Schleuse in den Probenraum des Magnetometers eingeführt.

4.3 Justierung und Messung

Zur Feinjustierung der Probe in der Mitte des Detektors wird der Probenstab mehrere Male durch die Detektorspule gezogen und die abgegriffene Spannung in Abhängigkeit vom Ort gemessen. Die Probe ist in den Spulen ideal positioniert, wenn sich das Maximum der detektierten Spannung im Ordinatenursprung befindet. Ist die Probe nicht optimal justiert, kann die Differenz des Maximums zum Ursprung abgeschätzt und mittels Schrittmotor korrigiert werden.

Die Steuerung der Messung erfolgt nach Eingabe einer Messsequenz automatisch über den angeschlossenen Computer (*HP-Vectra*-Computer).

4.4 Datenausgabe

Die Ausgabe der Rohdaten erfolgt in Einheiten von *emu* und muss bezüglich der Matrix aus Kunststoffhalm, Baumwollfaden und Gelatinekapsel korrigiert werden. Das Moment der Matrix wird in Form von Leermessungen bestimmt. Die Aufarbeitung dieser Rohdaten erfolgt mit dem Programm *DANSY* [79] (vgl. Kapitel 3.4). Als Ergebnis liefert *DANSY* die korrigierten Werte für μ_{eff} , $\chi_{\text{g}}^{(\text{ir})}$, $\chi_{\text{m}}^{(\text{ir})}$ und $1/\chi_{\text{m}}^{(\text{ir})}$ in Einheiten des nichtrationalen CGS-emu-Systems.

5 Präparativer Teil

Ziel der präparativen Arbeiten war die einkristalline Darstellung von neuen dimeren Gadoliniumcarboxylaten mit 4-Hydroxypyridin bzw. 2,2'-Bipyridin als stickstoffhaltigem aromatischen Liganden. In den dargestellten Verbindungen liegt 4-Hydroxypyridin tautomerisiert als 4(1*H*)-Pyridon vor (vgl. Kapitel 6). In den Formeln der Verbindungen wird im Folgenden 4(1*H*)-Pyridon (vgl. Abb. 5.1a; Summenformel C_5H_5NO) als hypy und 2,2'-Bipyridin (vgl. Abb. 5.1b; Summenformel $C_{10}H_8N_2$) als bipy abgekürzt.

Abbildung 5.1: Stickstoffhaltige aromatische Liganden: a) 4(1*H*)-Pyridon und b) 2,2'-Bipyridin.

Zur Synthese der Verbindungen des Typs

 $Gd_2(XCOO)_6(S)_p(L)_q \cdot rS$ (X = H₃C, C₆H₅, F₂HC, F₃C, ClH₂C, Cl₂HC, ClF₂C; S (Solvens) = C₂H₅OH, H₂O; L (stickstoffhaltiger Ligand) = hypy, bipy; p = 2,0; q = 2,4; r = 2,1,0) wurde das entsprechende Gadoliniumcarboxylat mit dem jeweiligen stickstoffhaltigen Liganden in Lösungen aus gleichen Teilen Ethanol und Wasser bei Raumtemperatur umgesetzt. Im Falle der Benzoesäureverbindung wurde Gadoliniumchlorid-Hexahydrat mit Benzoesäure und 2,2'-Bipyridin in reinem Ethanol umgesetzt. Zur Durchführung der Synthesen wurden die in Tabelle 5.1 aufgeführten, handelsüblichen Chemikalien verwendet.

Substanz	Hersteller	Reinheit
Gadoliniumsesquioxid	Strem Chemicals, Newbury-Port	99,99 %
Gadoliniumacetat-Tetrahydrat	Sigma-Aldrich, Steinheim	99,9~%
Gadoliniumchlorid-Hexahydrat	Sigma-Aldrich, Steinheim	99~%
Benzoesäure	Fluka, Steinheim	99,5~%
Difluoressigsäure	Sigma-Aldrich, Steinheim	98~%
Trifluoressigsäure	Fluka, Steinheim	98~%
Chloressigsäure	Fluka, Steinheim	99~%
Dichloressigsäure	Fluka, Steinheim	$98{,}5~\%$
Chlordifluoressigsäure	Sigma-Aldrich, Steinheim	98~%
Ethanol	Sigma-Aldrich, Seelze	99,8~%
4-Hydroxypyridin	Fluka, Steinheim	95~%
2,2'-Bipyridin	<i>Fluka</i> , Steinheim	98~%

 Tabelle 5.1:
 Verwendete Ausgangssubstanzen

Die genauen Mengenangaben der Reaktionsansätze sind Tabelle 5.2 zu entnehmen. Aus den Reaktionslösungen fielen die Produkte durch langsame Verdunstung der Lösungsmittel bei Raumtemperatur nach wenigen Tagen in Form von klaren, farblosen Kristallen aus. Das jeweilige Pulverdiffraktogramm des so synthetisierten Carboxylats ist in Anhang A wiedergegeben. Die zugehörigen berechneten Diffraktogramme basieren auf den röntgenographischen Einkristalldaten der Verbindungen (Kapitel 6). Der zusätzlich beobachtete Reflex im niederen Thetabereich ist auf die Verwendung von $tesafilm^{(R)}$ bei der Probenpräparation zurückzuführen. Zur Darstellung der eingesetzten halogenhaltigen Gadoliniumcarboxylate wurde entsprechend einer Vorschrift von ROHDE [82] Gadoliniumsesquioxid (Gd₂O₃) (2 mmol) zu einer wässrigen Lösung der jeweiligen Halogenessigsäure (6 mmol in 5 mL H₂O) gegeben. Die dabei entstandenen Suspensionen wurden in einem Wasserbad bei etwa 80 °C bis zur Auflösung des Feststoffes erhitzt. Aus den Lösungen wurden nach etwa zwei bis drei Wochen klare, farblose Kristalle des jeweiligen Gadoliniumcarboxylates erhalten [82–86]. Das Gadoliniumacetathydrat wurde käuflich erworben.

Es wurden folgende dimere Gadoliniumcarboxylate synthetisiert: neue $\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4,$ $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4,$ $Gd_2(F_2HCCOO)_6(hypy)_4,$ $\mathrm{Gd}_{2}(\mathrm{Cl}_{2}\mathrm{HCCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2},$ $\mathrm{Gd}_{2}(\mathrm{H}_{3}\mathrm{CCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2}\cdot 2\,\mathrm{H}_{2}\mathrm{O},$ $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2,$ $\mathrm{Gd}_{2}(\mathrm{Cl}_{2}\mathrm{HCCOO})_{6}(\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH})_{2}(\mathrm{bipy})_{2},$ $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH,$ $\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$ und $\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2.$

Gd ³⁺ -Ausgangsverbindung	n [mmol]	m [g]	Ligand	n [mmol]	m [g]	Lösungsmittel	[mL]	Produkt
$Gd(F_3CCOO)_3(H_2O)_3$	2	1,100	hypy	1	0,095	Ethanol/Wasser 1:1	თ	$\mathrm{Gd}_{2}(\mathrm{F}_{3}\mathrm{CCOO})_{6}(\mathrm{hypy})_{4}$
$\mathrm{Gd}(\mathrm{ClF}_2\mathrm{CCOO})_3(\mathrm{H}_2\mathrm{O})_3$	2	$1,\!199$	hypy	1	0,095	Ethanol/Wasser 1:1	υī	$\mathrm{Gd}_2(\mathrm{CIF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4$
$\mathrm{Gd}(\mathrm{F}_{2}\mathrm{HCCOO})_{3}(\mathrm{H}_{2}\mathrm{O})_{2}\cdot\mathrm{H}_{2}\mathrm{O}$	1	$0,\!496$	hypy	2	$0,\!190$	Ethanol/Wasser 1:1	υī	$\mathrm{Gd}_{2}(\mathrm{F}_{2}\mathrm{HCCOO})_{6}(\mathrm{hypy})_{4}$
$\mathrm{Gd}(\mathrm{Cl}_{2}\mathrm{HCCOO})_{3}(\mathrm{H}_{2}\mathrm{O})_{2}$	2	$1,\!150$	hypy	1	0,095	E thanol/Wasser 1:1	сı	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$
$\mathrm{Gd}(\mathrm{H}_{3}\mathrm{CCOO})_{3}(\mathrm{H}_{2}\mathrm{O})_{2}\cdot 2\mathrm{H}_{2}\mathrm{O}$	2	$0,\!813$	hypy	1	0,095	Ethanol/Wasser 1:1	сī	$\mathrm{Gd}_2(\mathrm{H}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2\cdot 2\mathrm{H}_2\mathrm{O}$
$\mathrm{Gd}(\mathrm{ClF}_2\mathrm{CCOO})_3(\mathrm{H}_2\mathrm{O})_3$	1	0,600	bipy	1	$0,\!156$	Ethanol/Wasser 1:1	υī	$\mathrm{Gd}_2(\mathrm{ClF}_2\operatorname{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2$
$\mathrm{Gd}(\mathrm{Cl}_{2}\mathrm{HCCOO})_{3}(\mathrm{H}_{2}\mathrm{O})_{2}$	2	$1,\!150$	bipy	1	$0,\!156$	Ethanol/Wasser 1:1	10	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$
$\mathrm{Gd}(\mathrm{ClF}_2\mathrm{CCOO})_3(\mathrm{H}_2\mathrm{O})_3$	4	2,399	bipy	1	$0,\!156$	Ethanol/Wasser 1:1	10	$\mathrm{Gd}_2(\mathrm{ClF}_2\operatorname{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2\cdot\mathrm{C}_2\mathrm{H}_5\mathrm{OH}$
$\mathrm{Gd}(\mathrm{ClH}_{2}\mathrm{CCOO})_{3}\mathrm{(H}_{2}\mathrm{O})_{5/3}$	2	0,935	bipy	1	$0,\!156$	Ethanol/Wasser 1:1	сл	$\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$
$\mathrm{GdCl}_3\cdot 6\mathrm{H_2O}$	1	0,372	bipy/	1/	0,156/	Ethanol	10	$\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$
			Benzoesäure	ω	0,366			

Tabelle	
5.2:	
Reaktionsansätze	

6 Röntgenographische Untersuchungen

6.1 Vorbemerkungen

6.1.1 Nummerierungskonzept der Atome in den synthetisierten Verbindungen

Im Folgenden soll die in dieser Arbeit verwandte Nummerierung der Atome in den synthetisierten Verbindungen kurz am Beispiel des Carboxylats $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2$ erläutert werden (siehe Abbildung 6.1).

- Die Gd³⁺-Ionen werden aufwärts gezählt; bei nur einer Atomlage wird nicht nummeriert.
- Die Sauerstoffatome einer Carboxylatgruppe werden jeweils On1 und On2 mit n = 1, 2, ... durchnummeriert. n gibt dabei die Nummer der zu benennenden Gruppe an.
- Analog zu den Sauerstoffatomen werden in den Carboxylatverbindungen die Kohlenstoffatome benannt, wobei das Kohlenstoffatom, welches an die Sauerstoffatome gebunden ist, immer Cn1 ist.
- Gibt es Halogenatome an dem zweiten Kohlenstoffatom der Carboxylatverbindungen, werden sie mit Xn1, Xn2, ... durchnummeriert.

- Die Sauerstoffatome der Wassermoleküle werden mit O1W, O2W, ... bezeichnet. Analog dazu werden Atome in einem Ethanolmolekül mit dem Buchstaben E gekennzeichnet.
- Ein organischer Ligand wird in der Form N1A, N2A, C1A, ..., C12A durchnummeriert, wobei im Falle von mehreren organischen Liganden alphabetisch fortgefahren wird.

Abbildung 6.1: Nummerierungskonzept der Atome am Beispiel der Verbindung $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2.$

6.1.2 Bestimmung der Kristallstrukturen

Alle Kristallstrukturen wurden anhand von röntgenographischen Einkristalldaten bestimmt. Dazu wurden zunächst Kristalle des jeweiligen Reaktionsproduktes aus der Lösung auf einen Objektträger überführt. Unter einem Mikroskop mit Polarisationsfilter wurde ein gut ausgebildeter, optisch klarer Einkristall auf einen Glasfaden geklebt und auf einem Goniometerkopf befestigt. Die Messungen der Reflexintensitäten wurden anschließend bei Raumtemperatur mit einem IPDS durchgeführt (siehe Kapitel 2.3.1).

Die Strukturbestimmungen erfolgten mit Hilfe von PATTERSON-Methoden (Gd) und sukzessiven Differenzfourieranalysen (O, C, N, Cl und F). Die Positionen der Wasserstoffatome wurden in der Regel unter Vorgabe idealisierter Abstände und Winkel festgelegt. Tests zur Ermittlung weiterer Symmetrieelemente [54] verliefen negativ. Weitere Informationen zu den Strukturbestimmungen sind jeweils im Unterkapitel *Einkristallstrukturanalyse* der einzelnen Verbindungen wiedergegeben. Die Atomlagen, äquivalenten isotropen Auslenkungsparameter $U_{äq}$ bzw. isotropen Auslenkungsparameter U_{iso} für Wasserstoffatome und anisotropen Auslenkungsparameter U_{ij} sind in Anhang B wiedergegeben.

Weitere Details zur Kristallstrukturuntersuchung können beim Cambridge Crystallographic Data Centre unter der in Anhang D genannten Archivierungsnummer angefordert werden.

$6.2 \ \mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4$

6.2.1 Einkristallstrukturanalyse

Unter der Voraussetzung, dass die Verbindung in der zentrosymmetrischen Raumgruppe $P\bar{1}$ kristallisiert, wurden 16568 gemessene zu 4243 symmetrieunabhängigen Reflexen gemittelt und für die anschließende Strukturrechnung verwendet.

Die gewählte zentrosymmetrische Raumgruppe $P\bar{1}$ erwies sich im Laufe der Strukturverfeinerung als richtig. Der interne *R*-Wert R_{int} , der die Güte der Datensätze beschreibt, betrug 9,12 %.

Die Verfeinerung in der Raumgruppe $P\bar{1}$ führte unter Berücksichtigung anisotroper Auslenkungsparameter zu $R_1 = 5,93$ % und $wR_2 = 15,45$ %. Detaillierte Informationen zu der Strukturbestimmung sind in Tabelle 6.1 zu finden.

Tabelle 6.1:	Kristalldaten	und Angabe	n zur Stru	ukturbestimr	nung v	von
	$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})$	$O)_6(hypy)_4.$				

$Gd_2(F_3CCOO)_6(hypy)_4$			
Kristallsystem	triklin		
Raumgruppe	PĪ		
Gitterparameter	$ m a=972,4(4)~pm,~lpha=94,23(5)^{\circ}$		
	${ m b}=1053,5(5)~{ m pm},eta=110,21(5)^\circ$		
	c = 1252,4(6) pm, $\gamma = 104,84(5)^{\circ}$		
Volumen der Elementarzelle	$1145,1(9) \cdot 10^{-6} \text{ pm}^3$		
Formeleinheiten Z pro Elementarzelle	2		
röntgenographische Dichte	$1,991 \text{ g} \cdot \text{cm}^{-3}$		
Absorptionskoeffizient μ	$3,013 \text{ mm}^{-1}$		
F(000)	658		
Kristallabmessungen	0,407 mm \times 0,333 mm \times 0,2405 mm		
Temperatur	293(2) K		
Wellenlänge	$\text{Mo-K}_{\alpha} \; (\lambda = 71,\!073 \; \text{pm})$		
Winkelbereich der Datensammlung	$2,34^{\circ}$ bis $26,23^{\circ}$		
hkl-Bereich	$-11 \le h \le 11; -13 \le k \le 13; -15 \le l \le 15$		
Zahl der gemessenen Reflexe	16568		
Zahl der symmetrieunabhängigen Reflexe	4243		
be obachtete Reflexe mit F $> 2\sigma$	3876		
Interner R-Wert	0,0912		
verwendete Rechenprogramme	SHELXS-97 [48], SHELXL-97 [49]		
	Win GX [47]		
Absorptionskorrektur	keine		
Verfeinerungsmethode	Volle Matrix an F^2 , kleinste Fehlerquadrate		
Zahl der verfeinerten Parameter	327		
GooF a	1,122		
$R ext{-Werte} \left[\mathrm{I} > 2\sigma(\mathrm{I}) ight]{}^{a}$	$R_1 = 0,0559; \ wR_2 = 0,1445$		
R-Werte (alle Daten) ^a	$R_1 = 0,0593; \ wR_2 = 0,1545$		
Restelektronendichten min. / max.	$-0.551 \cdot 10^{-6} \ { m e} \cdot { m pm}^{-3} \ / \ 0.622 \cdot 10^{-6} \ { m e} \cdot { m pm}^{-3}$		

 a Definition der Gütefaktoren $R_1, \, wR_2$ und GooF nach [49].

6.2.2 Strukturbeschreibung

Aus den Verfeinerungsrechnungen für die Verbindung $Gd_2(F_3CCOO)_6(hypy)_4$ resultiert ein Strukturmodell, das nachfolgend beschrieben wird. Ein Ausschnitt aus der Kristallstruktur ist in Abbildung 6.2 dargestellt.

Abbildung 6.2: Ausschnitt aus der Kristallstruktur von $Gd_2(F_3CCOO)_6(hypy)_4$; die Elementarzelle ist eingezeichnet.

Das Gd^{3+} -Ion ist neunfach in Form eines einfach überkappten, verzerrten quadratischen Antiprismas von Sauerstoffatomen koordiniert (Abb. 6.3); wobei hierbei sechs Sauerstoffatome von Carboxylatgruppen (Gd³⁺–O-Abstände zwischen 240,3 pm

Abbildung 6.3: Koordination um Gd^{3+} in $Gd_2(F_3CCOO)_6(hypy)_4$.

und 267,2 pm) und drei von 4(1H)-Pyridonmolekülen (Gd³⁺–O-Abstände zwischen 224,8 pm und 247,3 pm) stammen (vgl. Tab. 6.2).

Bei dem strukturbestimmenden Element handelt es sich um isolierte dimere Einheiten von Gd^{3+} –Ionen (vgl. Abbildung 6.4), die über zwei Carboxylatgruppen und zwei 4(1*H*)-Pyridonmolekülen verbrückt sind (Gd³⁺–Gd³⁺-Abstand 387,7 pm; vgl. Tabelle 6.2). Zwei Carboxylatgruppen und ein 4(1*H*)-Pyridonmolekül wirken nicht verbrückend, sondern sind nur an ein Gd³⁺-Ion gebunden.

Tabelle 6.2: Ausgewählte interatomare Abstände in pm mit Standardabweichungen für $Gd_2(F_3CCOO)_6(hypy)_4.$

	Abstand		Abstand
$\mathrm{Gd} ext{-}\mathrm{Gd}^a$	387,7(3)	Gd-O22	250,4(6)
Gd-O(1A)	224,8(6)	Gd-O12	253,4(6)
Gd-O(1B)	234,6(5)	Gd-O21	266, 3(7)
Gd-O31	240,3(5)	Gd-O11	267, 2(7)
Gd-O32	240,8(6)	$O(1B)$ - Gd^a	247,2(5)
$Gd-O(1B)^a$	247,3(5)		

Symmetrie
transformation zur Erzeugung der äquivalenten Atome:
 a –x+1, –y+1, –z+1

Abbildung 6.4: Dimere Einheit in $Gd_2(F_3CCOO)_6(hypy)_4$. Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.

Durch π - π -Wechselwirkungen wird ein nur durch die organische Teilstruktur gebildetes Packungsmotiv, ein so genanntes " π -stacking" [87,88], realisiert (siehe Abbildung 6.5). Der kleinste orthogonale Abstand zwischen zwei Ebenen, die durch je einen aromatischen Ring definiert sind, beträgt 331,1 pm.

Abbildung 6.5: Ausschnitt aus der Packung der 4(1*H*)-Pyridonmoleküle in ${\rm Gd}_2({\rm F}_3{\rm CCOO})_6({\rm hypy})_4.$

6.3 $Gd_2(ClF_2CCOO)_6(hypy)_4$

6.3.1 Einkristallstrukturanalyse

Unter der Voraussetzung, dass die Verbindung in der zentrosymmetrischen Raumgruppe $P\bar{1}$ kristallisiert, wurden 17685 gemessene zu 4519 symmetrieunabhängigen Reflexen gemittelt und für die anschließende Strukturrechnung verwendet.

Die gewählte zentrosymmetrische Raumgruppe P $\overline{1}$ erwies sich im Laufe der Strukturverfeinerung als richtig. Der interne *R*-Wert R_{int} , der die Güte der Datensätze beschreibt, betrug nach semiempirischer Absorptionskorrektur (multi-scan) 6,97 %. Die Verfeinerung in der Raumgruppe P $\overline{1}$ führte unter Berücksichtigung anisotroper Auslenkungsparameter zu $R_1 = 4,82$ % und $wR_2 = 12,41$ %. Detaillierte Informationen zu der Strukturbestimmung sind in Tabelle 6.3 zu finden.

Tabelle 6.3:	Kristalldaten und	l Angaben zur	Strukturbestimmung v	ron
	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})$	$_{6}(hypy)_{4}.$		

$Gd_2(ClF_2C)$	$COO)_6(hypy)_4$
Kristallsystem	triklin
Raumgruppe	ΡĪ
Gitterparameter	a = 999,8(4) pm, α = 91,23(5)°
	b = 1061,8(5) pm, β = 111,29(5)°
	$ m c = 1283, 6(6) ~ pm, ~ \gamma = 105, 27(5)^{\circ}$
Volumen der Elementarzelle	$1214,4(9)\cdot 10^{-6} \text{ pm}^3$
Formeleinheiten Z pro Elementarzelle	2
röntgenographische Dichte	$2,012 \text{ g} \cdot \text{cm}^{-3}$
Absorptionskoeffizient μ	$3,151 \text{ mm}^{-1}$
F(000)	706
Kristallabmessungen	0,333 mm \times 0,222 mm \times 0,222 mm
Temperatur	293(2) K
Wellenlänge	Mo-K $_{\alpha}~(\lambda=71,073~{\rm pm})$
Winkelbereich der Datensammlung	$2,29^\circ$ bis $26,25^\circ$
hkl-Bereich	$-12 \le h \le 12; -13 \le k \le 13; -15 \le l \le 15$
Zahl der gemessenen Reflexe	17685
Zahl der symmetrieunabhängigen Reflexe	4519
be obachtete Reflexe mit F $>2\sigma$	4139
Interner R-Wert	0,0697
verwendete Rechenprogramme	SHELXS-97 [48], SHELXL-97 [49]
	Win GX [47], MULTISCAN [53]
Absorptionskorrektur	semiempirisch
Verfeinerungsmethode	Volle Matrix an F^2 , kleinste Fehlerquadrate
Zahl der verfeinerten Parameter	325
GooF ^a	1,095
$R ext{-Werte} \left[\mathrm{I} > 2\sigma(\mathrm{I}) ight]{}^{a}$	$R_1=0,\!0446;\ wR_2=0,\!1187$
R-Werte (alle Daten) ^a	$R_1=0,0482;\ wR_2=0,1241$
Restelektron endichten min. / max.	$-1,758 \cdot 10^{-6} \ \mathrm{e} \cdot \mathrm{pm}^{-3} \ / \ 1,431 \cdot 10^{-6} \ \mathrm{e} \cdot \mathrm{pm}^{-3}$

 a Definition der Gütefaktoren $R_1, \, wR_2$ und GooF nach [49].

6.3.2 Strukturbeschreibung

Das Carboxylat $Gd_2(ClF_2CCOO)_6(hypy)_4$ kristallisiert triklin in der Raumgruppe P1 (Nr. 2, Z = 2). Abbildung 6.6 zeigt einen Ausschnitt aus der Kristallstruktur.

Abbildung 6.6: Ausschnitt aus der Kristallstruktur von $Gd_2(ClF_2CCOO)_6(hypy)_4$; die Elementarzelle ist eingezeichnet.

Das Gadoliniumkation ist in Form eines dreifach überkappten, verzerrten trigonalen Prismas von neun Sauerstoffatomen koordiniert (Abb. 6.7). Sechs dieser Sauerstoffatome stammen von Carboxylatgruppen (Gd³⁺–O-Abstände zwischen 240,2 pm und 268,3 pm) und drei von 4(1*H*)-Pyridonmolekülen (Gd³⁺–O-Abstände zwischen 226,4 pm und 246,6 pm)(vgl. Tab. 6.4).

Die $\mathrm{Gd}^{3+}\text{-}\mathrm{Ionen\ sind},$ wie in Abbildung 6.8 zu sehen, über zwei Carboxylat
gruppen

Abbildung 6.7: Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4$.

und zwei 4(1H)-Pyridonmoleküle zu isolierten Gd³⁺-Dimeren verbrückt. Der Gd³⁺-Gd³⁺-Abstand beträgt 386,6 pm (vgl. Tabelle 6.4). Zwei Carboxylatgruppen und ein 4(1H)-Pyridonmolekül sind nur an ein Gd³⁺-Ion gebunden und wirken nicht verbrückend (Abb. 6.8).

Tabelle 6.4: Ausgewählte interatomare Abstände in pm mit Standardabweichungen für $Gd_2(ClF_2CCOO)_6(hypy)_4.$

	Abstand		Abstand
$\mathrm{Gd} ext{-}\mathrm{Gd}^a$	386, 6(3)	$Gd-O(1A)^a$	246,6(4)
Gd-O(1B)	226,4(4)	Gd-O21	248,6(5)
Gd-O(1A)	235,7(4)	Gd-O12	253,2(6)
Gd-O32	240,2(5)	Gd-O11	267,4(6)
Gd-O31	241,7(5)	Gd-O22	268,3(6)

Symmetrietransformation zur Erzeugung der äquivalenten Atome: ^a -x+1, -y+1, -z+1

Durch π - π -Wechselwirkungen wird ein nur durch die organische Teilstruktur gebildetes Packungsmotiv (siehe Abbildung 6.9), ein so genanntes " π -stacking" [87,88], realisiert. Der kleinste orthogonale Abstand zwischen zwei Ebenen, die durch je einen aromatischen Ring definiert sind, beträgt 325,4 pm.

Abbildung 6.8: Dimere Einheit in $\text{Gd}_2(\text{ClF}_2\text{CCOO})_6(\text{hypy})_4$. Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.

Abbildung 6.9: Ausschnitt aus der Packung der 4(1*H*)-Pyridonmoleküle in $Gd_2(ClF_2CCOO)_6(hypy)_4.$
$6.4 \ \mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4$

6.4.1 Einkristallstrukturanalyse

Unter der Voraussetzung, dass die Verbindung in der zentrosymmetrischen Raumgruppe $P\bar{1}$ kristallisiert, wurden 15712 gemessene zu 4007 symmetrieunabhängigen Reflexen gemittelt und für die anschließende Strukturrechnung verwendet.

Die gewählte zentrosymmetrische Raumgruppe $P\bar{1}$ erwies sich im Laufe der Strukturverfeinerung als richtig. Der interne *R*-Wert R_{int} , der die Güte der Datensätze beschreibt, betrug nach semiempirischer Absorptionskorrektur (multi-scan) 8,58 %. Die Verfeinerung in der Raumgruppe $P\bar{1}$ führte unter Berücksichtigung anisotroper Auslenkungsparameter zu $R_1 = 5,68$ % und $wR_2 = 13,84$ %. Detaillierte Informationen zu der Strukturbestimmung sind in Tabelle 6.5 aufgeführt.

$Gd_2(F_2HCCOO)_6(hypy)_4$		
Kristallsystem	triklin	
Raumgruppe	ΡĪ	
Gitterparameter	$ m a = 883, 3(4) ~ pm, ~ lpha = 100, 46(5)^{\circ}$	
	${ m b}=1051,\!3(4)~{ m pm},eta=109,\!87(5)^{\circ}$	
	c = 1284,9(6) pm, $\gamma = 97,43(5)^{\circ}$	
Volumen der Elementarzelle	$1079,7(8) \cdot 10^{-6} \text{ pm}^3$	
Formeleinheiten Z pro Elementarzelle	2	
röntgenographische Dichte	$1,946 \text{ g} \cdot \text{cm}^{-3}$	
Absorptionskoeffizient μ	$3,168 \text{ mm}^{-1}$	
F(000)	610	
Kristallabmessungen	0,222 mm \times 0,992 mm \times 0,407 mm	
Temperatur	293(2) K	
Wellenlänge	Mo-K _{$lpha$} (λ = 71,073 pm)	
Winkelbereich der Datensammlung	$2,32^\circ$ bis 26,24°	
hkl-Bereich	$-10 \le h \le 10; -12 \le k \le 12; -15 \le l \le 15$	
Zahl der gemessenen Reflexe	15712	
Zahl der symmetrieunabhängigen Reflexe	4007	
be obachtete Reflexe mit F $> 2\sigma$	3527	
Interner R-Wert	0,0858	
verwendete Rechenprogramme	SHELXS-97 [48], SHELXL-97 [49]	
	Win GX [47], MULTISCAN [53]	
Absorptionskorrektur	semiempirisch	
Verfeinerungsmethode	Volle Matrix an F^2 , kleinste Fehlerquadrate	
Zahl der verfeinerten Parameter	298	
GooF a	1,078	
R-Werte $[{ m I}>2\sigma({ m I})]~^a$	$R_1=0,0506; \ wR_2=0,1329$	
R-Werte (alle Daten) ^a	$R_1=0,0568; \ wR_2=0,1384$	
Restelektron endichten min. / max.	$-2,\!691\!\cdot\!10^{-6}~{\rm e}\!\cdot\!{\rm pm}^{-3}~/~1,\!319\!\cdot\!10^{-6}~{\rm e}\!\cdot\!{\rm pm}^{-3}$	

Tabelle 6.5: Kristalldaten und Angaben zur Strukturbestimmung von ${\rm Gd}_2({\rm F}_2{\rm HCCOO})_6({\rm hypy})_4.$

 a Definition der Gütefaktoren $R_1, \ wR_2$ und GooF nach [49].

6.4.2 Strukturbeschreibung

Für die Verbindung $Gd_2(F_2HCCOO)_6(hypy)_4$ resultiert aus den Verfeinerungsrechnungen ein Strukturmodell, das nachfolgend beschrieben wird. Ein Ausschnitt aus der Kristallstruktur von $Gd_2(F_2HCCOO)_6(hypy)_4$ ist in Abbildung 6.10 dargestellt.

Das Gd^{3+} -Ion wird neunfach von Sauerstoffatomen in Form eines einfach überkappten, verzerrten quadratischen Antiprismas koordiniert (Abb. 6.11). Sechs dieser Sauerstoffatome stammen von Carboxylatgruppen (Gd³⁺–O-Abstände zwischen 241,1 pm und 268,0 pm) und drei von 4(1*H*)-Pyridonmolekülen (Gd³⁺–O-Abstände zwischen 228,1 pm und 249,6 pm)(vgl. Tab. 6.6).

Abbildung 6.11: Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4$.

Die Gd^{3+} -Ionen sind über zwei Carboxylatgruppen und zwei 4(1*H*)-Pyridonmoleküle zu isolierten Gd^{3+} -Dimeren verbrückt (vgl. Abbildung 6.12). Der Gd^{3+} - Gd^{3+} -Abstand beträgt 388,0 pm (vgl. Tabelle 6.6). Zwei Carboxylatgruppen und ein 4(1*H*)-Pyridonmolekül sind nur an ein Gd^{3+} -Ion gebunden und wirken nicht verbrückend (Abb. 6.12).

Tabelle 6.6: Ausgewählte interatomare Abstände in pm mit Standardabweichungen für $Gd_2(F_2HCCOO)_6(hypy)_4.$

	Abstand		Abstand
$\mathrm{Gd} ext{-}\mathrm{Gd}^a$	388,0(3)	$Gd-O(1B)^a$	249,6(6)
Gd-O(1A)	228,1(5)	Gd-O11	257,8(7)
Gd-O(1B)	233,7(5)	Gd-O12	259,2(8)
Gd-O31	241,1(6)	Gd-O21	268,0(7)
Gd-O32	242,8(6)	Gd-C21	292,8(9)
Gd-O22	247,1(7)	Gd-C11	293,4(10)

Symmetrietransformation zur Erzeugung der äquivalenten Atome: ^a -x+1, -y+1, -z+1

Abbildung 6.12: Dimere Einheit in $\text{Gd}_2(\text{F}_2\text{HCCOO})_6(\text{hypy})_4$. Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.

Durch π - π -Wechselwirkungen wird ein nur durch die organische Teilstruktur gebildetes Packungsmotiv (siehe Abbildung 6.13), ein so genanntes " π -stacking" [87,88], realisiert. Der kleinste orthogonale Abstand zwischen zwei Ebenen, die durch je einen aromatischen Ring definiert sind, beträgt 325,6 pm.

Abbildung 6.13: Ausschnitt aus der Packung der 4(1*H*)-Pyridonmoleküle in ${\rm Gd}_2({\rm F}_2{\rm HCCOO})_6({\rm hypy})_4.$

$6.5 \ \mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$

6.5.1 Einkristallstrukturanalyse

Unter der Voraussetzung, dass die Verbindung in der zentrosymmetrischen Raumgruppe $P\bar{1}$ kristallisiert, wurden 15064 gemessene zu 3849 symmetrieunabhängigen Reflexen gemittelt und für die anschließende Strukturrechnung verwendet.

Die gewählte zentrosymmetrische Raumgruppe $P\bar{1}$ erwies sich im Laufe der Strukturverfeinerung als richtig. Der interne *R*-Wert R_{int} , der die Güte der Datensätze beschreibt, betrug nach semiempirischer Absorptionskorrektur (multi-scan) 7,05 %. Die Verfeinerung in der Raumgruppe $P\bar{1}$ führte unter Berücksichtigung anisotroper Auslenkungsparameter zu $R_1 = 4,04$ % und $wR_2 = 10,45$ %. Detaillierte Informationen zu der Strukturbestimmung sind in Tabelle 6.7 aufgeführt.

$Gd_2(Cl_2HCCOO)_6(H_2O)_2(hypy)_2$		
Kristallsystem	triklin	
Raumgruppe	PĪ	
Gitterparameter	a = 913,7(4) pm, α = 93,41(5)°	
	b = 1079,0(5) pm, $\beta = 109,36(5)^{\circ}$	
	c = 1137,5(5) pm, $\gamma = 99,53(5)^{\circ}$	
Volumen der Elementarzelle	$1035,4(8) \cdot 10^{-6} \text{ pm}^3$	
Formeleinheiten Z pro Elementarzelle	2	
röntgenographische Dichte	$2,098 \text{ g} \cdot \text{cm}^{-3}$	
Absorptionskoeffizient μ	$4,014 \text{ mm}^{-1}$	
F(000)	626	
Kristallabmessungen	0,481 mm \times 0,666 mm \times 0,148 mm	
Temperatur	293(2) K	
Wellenlänge	Mo-K $_{lpha}~(\lambda=71,073~{ m pm})$	
Winkelbereich der Datensammlung	2,41° bis 26,20°	
hkl-Bereich	$-11 \le h \le 11; -13 \le k \le 13; -14 \le l \le 14$	
Zahl der gemessenen Reflexe	15064	
Zahl der symmetrieunabhängigen Reflexe	3849	
be obachtete Reflexe mit F $> 2\sigma$	3647	
Interner R-Wert	0,0705	
verwendete Rechenprogramme	SHELXS-97 [48], SHELXL-97 [49]	
	Win GX [47], MULTISCAN [53]	
Absorptionskorrektur	semiempirisch	
Verfeinerungsmethode	Volle Matrix an F^2 , kleinste Fehlerquadrate	
Zahl der verfeinerten Parameter	252	
GooF a	1,094	
R-Werte $[\mathrm{I}>2\sigma(\mathrm{I})]~^a$	$R_1=0,0386; \ wR_2=0,1013$	
R-Werte (alle Daten) ^a	$R_1=0,0404;\ wR_2=0,1045$	
Restelektron endichten min. / max.	$-2,012{\cdot}10^{-6}~{\rm e}{\cdot}{\rm pm}^{-3}~/~1,684{\cdot}10^{-6}~{\rm e}{\cdot}{\rm pm}^{-3}$	

Tabelle 6.7: Kristalldaten und Angaben zur Strukturbestimmung von $Gd_2(Cl_2HCCOO)_6(H_2O)_2(hypy)_2.$

 a Definition der Gütefaktoren $R_1, \ wR_2$ und GooF nach [49].

6.5.2 Strukturbeschreibung

Das Carboxylat $Gd_2(Cl_2HCCOO)_6(H_2O)_2(hypy)_2$ kristallisiert triklin in der Raumgruppe PĪ (Nr. 2, Z = 2). Abbildung 6.14 zeigt einen Ausschnitt aus der Kristallstruktur.

Das Gadoliniumkation ist in Form eines verzerrt quadratischen Antiprismas von acht Sauerstoffatomen koordiniert (Abb. 6.15). Sechs dieser Sauerstoffatome stammen von Carboxylatgruppen und jeweils eines von einem 4(1H)-Pyridon- und einem Wassermolekül (Gd³⁺–O-Abstände zwischen 224,6 pm und 263,8 pm)(vgl. Tab. 6.8).

Die Gd^{3+} -Ionen sind über vier Carboxylatgruppen zu isolierten Gd^{3+} -Dimeren

Abbildung 6.15: Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$.

	Abstand		Abstand
$\mathrm{Gd} ext{-}\mathrm{Gd}^a$	405,1(2)	Gd-O(1W)	239,3(4)
Gd-O(1A)	224,6(4)	Gd-O21	239,8(4)
Gd-011	230,4(4)	Gd-O32	250,3(4)
Gd-O31	237,8(3)	$Gd-O31^a$	263,8(4)
Gd-O22	239,0(4)		

Tabelle 6.8: Ausgewählte interatomare Abstände in pm mit Standardabweichungen für $Gd_2(Cl_2HCCOO)_6(H_2O)_2(hypy)_2.$

Symmetrie
transformation zur Erzeugung der äquivalenten Atome:
 a –x+1, –y+1, –z+2

verbrückt (vgl. Abbildung 6.16). Der Gd^{3+} - Gd^{3+} -Abstand beträgt 405,1 pm (vgl. Tabelle 6.8). Eine Carboxylatgruppe, ein 4(1*H*)-Pyridon- und ein Wassermolekül sind nur an ein Gd^{3+} -Ion gebunden und wirken nicht verbrückend (Abb. 6.16).

Abbildung 6.16: Dimere Einheit in $Gd_2(Cl_2HCCOO)_6(H_2O)_2(hypy)_2$. Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.

$6.6 \ {\rm Gd}_2({\rm H}_3{\rm CCOO})_6({\rm H}_2{\rm O})_2({\rm hypy})_2{\cdot}2\,{\rm H}_2{\rm O}$

6.6.1 Einkristallstrukturanalyse

Unter der Voraussetzung, dass die Verbindung in der zentrosymmetrischen Raumgruppe P2₁/c kristallisiert, wurden 22821 gemessene zu 3148 symmetrieunabhängigen Reflexen gemittelt und für die anschließende Strukturrechnung verwendet. Die gewählte zentrosymmetrische Raumgruppe P2₁/c erwies sich im Laufe der Strukturverfeinerung als richtig. Der interne *R*-Wert R_{int} , der die Güte der Datensätze beschreibt, betrug nach semiempirischer Absorptionskorrektur (multi-scan) 18,32 %.

Die Verfeinerung in der Raumgruppe $P2_1/c$ führte unter Berücksichtigung anisotroper Auslenkungsparameter zu $R_1 = 8,34$ % und $wR_2 = 10,07$ %. Detaillierte Informationen zu der Strukturbestimmung sind in Tabelle 6.9 aufgeführt.

$\underline{\mathrm{Gd}_{2}(\mathrm{H}_{3}\mathrm{CCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2}}{\cdot}2\mathrm{H}_{2}\mathrm{O}$		
Kristallsystem	monoklin	
Raumgruppe	$P2_1/c$	
Gitterparameter	a = 841,3(3) pm, $\alpha = 90^{\circ}$	
	b = 829,1(4) pm, β = 96,11(5)°	
	$ m c = 2327, 0(10) \ pm, \ \gamma = 90^{\circ}$	
Volumen der Elementarzelle	$1613,9(12)\cdot 10^{-6} \text{ pm}^3$	
Formeleinheiten Z pro Elementarzelle	2	
röntgenographische Dichte	$1,916 \text{ g} \cdot \text{cm}^{-3}$	
Absorptionskoeffizient μ	$4,151 \text{ mm}^{-1}$	
F(000)	908	
Kristallabmessungen	0,222 mm \times 0,148 mm \times 0,259 mm	
Temperatur	293(2) K	
Wellenlänge	$\text{Mo-K}_{\alpha} \; (\lambda = 71{,}073 \; \text{pm})$	
Winkelbereich der Datensammlung	2,43° bis 26,14°	
hkl-Bereich	$-10 \le h \le 10; -10 \le k \le 10; -28 \le l \le 28$	
Zahl der gemessenen Reflexe	22821	
Zahl der symmetrieunabhängigen Reflexe	3148	
be obachtete Reflexe mit F $> 2\sigma$	1919	
Interner R-Wert	0,1832	
verwendete Rechenprogramme	SHELXS-97 [48], SHELXL-97 [49]	
	Win GX [47], MULTISCAN [53]	
Absorptionskorrektur	semiempirisch	
Verfeinerungsmethode	Volle Matrix an F^2 , kleinste Fehlerquadrate	
Zahl der verfeinerten Parameter	217	
GooF a	0,834	
$R\text{-}W\!erte\;[\mathrm{I}>2\sigma(\mathrm{I})]^{-a}$	$R_1=0,0478; \ wR_2=0,0929$	
R-Werte (alle Daten) ^a	$R_1=0,0834; \ wR_2=0,1007$	
Restelektron endichten min. / max.	$-0.223{\cdot}10^{-6}~{\rm e}{\cdot}{\rm pm}^{-3}~/~0.162{\cdot}10^{-6}~{\rm e}{\cdot}{\rm pm}^{-3}$	

Tabelle 6.9: Kristalldaten und Angaben zur Strukturbestimmung von $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2 H_2O.$

 a Definition der Gütefaktoren $R_1, \ wR_2$ und GooF nach [49].

6.6.2 Strukturbeschreibung

Für die Verbindung $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O$ resultiert aus den Verfeinerungsrechnungen ein Strukturmodell, das nachfolgend beschrieben wird. Ein Ausschnitt aus der Kristallstruktur von $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O$ ist in Abbildung 6.17 dargestellt.

Abbildung 6.17: Ausschnitt aus der Kristallstruktur von $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O;$ die Elementarzelle ist eingezeichnet.

Das Gadoliniumkation ist in Form eines dreifach überkappten, verzerrten trigonalen Prismas von neun Sauerstoffatomen koordiniert (Abb. 6.18). Sieben dieser Sauerstoffatome stammen von Carboxylatgruppen und jeweils eines von einem 4(1H)-Pyridon- und einem Wassermolekül (Gd³⁺–O-Abstände zwischen 226,2 pm und 261,5 pm)(vgl. Tab. 6.10).

 $\textbf{Abbildung 6.18:} \text{ Koordination um } \mathrm{Gd}^{3+} \text{ in } \mathrm{Gd}_2(\mathrm{H}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2 \cdot 2\,\mathrm{H}_2\mathrm{O}.$

Die Gd³⁺–Ionen sind über zwei Carboxylatgruppen zu isolierten Gd³⁺-Dimeren verbrückt (vgl. Abbildung 6.19). Der Gd³⁺–Gd³⁺-Abstand beträgt 420,8 pm (vgl. Tabelle 6.10). Zwei Carboxylatgruppen, ein 4(1H)-Pyridon- und ein Wassermolekül sind nur an ein Gd³⁺-Ion gebunden und wirken nicht verbrückend (Abb. 6.19).

Tabelle 6.10: Ausgewählte interatomare Abstände in pm mit Standardabweichungen für $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O.$

	Abstand		Abstand
Gd-O(1A)	226,2(7)	Gd-O121	247,2(6)
Gd-O11	241,8(6)	Gd-O31	255,1(6)
Gd-O32	242,7(6)	Gd-O21	259,0(6)
Gd-O(1W)	242,8(6)	Gd-0111	261,5(6)
Gd-O22	246,9(7)		

Symmetrie
transformation zur Erzeugung der äquivalenten Atome:
 a –x, –y, –z

 $6.6 \ Gd_2(H_3CCOO)_6(H_2O)_2(\mathrm{hypy})_2 \cdot 2\,H_2O$

Abbildung 6.19: Dimere Einheit in $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O$. Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.

$6.7 \ \mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2$

6.7.1 Einkristallstrukturanalyse

Unter der Voraussetzung, dass die Verbindung in der zentrosymmetrischen Raumgruppe $P\bar{1}$ kristallisiert, wurden 17848 gemessene zu 4567 symmetrieunabhängigen Reflexen gemittelt und für die anschließende Strukturrechnung verwendet.

Die gewählte zentrosymmetrische Raumgruppe $P\bar{1}$ erwies sich im Laufe der Strukturverfeinerung als richtig. Der interne *R*-Wert R_{int} , der die Güte der Datensätze beschreibt, betrug 6,53 %.

Die Verfeinerung in der Raumgruppe P/=1 führte unter Berücksichtigung anisotroper Auslenkungsparameter zu $R_1 = 6,49$ % und $wR_2 = 14,15$ %. Detaillierte Informationen zu der Strukturbestimmung sind in Tabelle 6.11 aufgeführt.

$Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2$		
Kristallsystem	triklin	
Raumgruppe	PĪ	
Gitterparameter	a = 1005,0(5) pm, α = 98,79(5)°	
	b = 1175,7(5) pm, β = 109,84(5)°	
	c = 1181,5(5) pm, $\gamma = 105,61(5)^{\circ}$	
Volumen der Elementarzelle	$1217,9(9) \cdot 10^{-6} \text{ pm}^3$	
Formeleinheiten Z pro Elementarzelle	2	
röntgenographische Dichte	$1,963 \text{ g} \cdot \text{cm}^{-3}$	
Absorptionskoeffizient μ	$3,136 \text{ mm}^{-1}$	
F(000)	690	
Kristallabmessungen	0,2405 mm \times 0,222 mm \times 0,259 mm	
Temperatur	293(2) K	
Wellenlänge	Mo-K $_{lpha}~(\lambda=71,\!073~{ m pm})$	
Winkelbereich der Datensammlung	$2,28^\circ$ bis 26,26°	
hkl-Bereich	$-12 \le h \le 12; -14 \le k \le 14; -14 \le l \le 14$	
Zahl der gemessenen Reflexe	17848	
Zahl der symmetrieunabhängigen Reflexe	4567	
be obachtete Reflexe mit F $> 2\sigma$	3595	
Interner R-Wert	0,0653	
verwendete Rechenprogramme	SHELXS-97 [48], SHELXL-97 [49]	
	Win GX [47]	
Absorptionskorrektur	keine	
Verfeinerungsmethode	Volle Matrix an F^2 , kleinste Fehlerquadrate	
Zahl der verfeinerten Parameter	319	
GooF ^a	0,967	
$R ext{-Werte} \left[\mathrm{I} > 2\sigma(\mathrm{I}) ight]{}^{a}$	$R_1=0,0514; \ wR_2=0,1332$	
R-Werte (alle Daten) ^a	$R_1=0,0649; \ wR_2=0,1415$	
Restelektron endichten min. / max.	$-1,220 \cdot 10^{-6} \ \mathrm{e} \cdot \mathrm{pm}^{-3} \ / \ 1,278 \cdot 10^{-6} \ \mathrm{e} \cdot \mathrm{pm}^{-3}$	

Tabelle 6.11: Kristalldaten und Angaben zur Strukturbestimmung von $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2.$

 a Definition der Gütefaktoren $R_1, \, wR_2$ und GooF nach [49].

6.7.2 Strukturbeschreibung

Die Verbindung $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2$ kristallisiert triklin in der Raumgruppe $P\bar{1}$ (Nr. 2, Z = 2). Abbildung 6.20 zeigt einen Ausschnitt aus der Kristallstruktur.

Abbildung 6.20: Ausschnitt aus der Kristallstruktur von $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2$; die Elementarzelle ist eingezeichnet.

In dieser Struktur wird das Gd^{3+} -Ion von sechs Sauerstoff- und zwei Stickstoffatomen (Gd^{3+} -O-Abstände zwischen 233,3 pm und 240,2 pm; Gd^{3+} -N-Abstände bei 254,3 pm und 257,9 pm)(vgl. Tab. 6.12) in Form eines verzerrten quadratischen Antiprismas koordiniert (Abb. 6.21). Fünf dieser Sauerstoffatome stammen von

Abbildung 6.21: Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2$.

Carboxylatgruppen und eins von einem Wassermolekül. Die Stickstoffatome gehören zu einem 2,2'-Bipyridinmolekül.

Die Gd^{3+} -Ionen sind über vier Carboxylatgruppen zu isolierten Gd^{3+} -Dimeren verbrückt (vgl. Abbildung 6.22). Der Gd^{3+} - Gd^{3+} -Abstand beträgt 455,1 pm (vgl. Tabelle 6.12). Eine Carboxylatgruppe sowie ein 2,2'-Bipyridin- und ein Wassermolekül sind nur an ein Gd^{3+} -Ion gebunden und wirken nicht verbrückend (Abb. 6.22).

Tabelle 6.12: Ausgewählte interatomare Abstände in pm mit Standardabweichungen für $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2.$

	Abstand		Abstand
$\mathrm{Gd} ext{-}\mathrm{Gd}^a$	455,1(1)	Gd-O31	238,3(6)
Gd-O32	233,3(6)	Gd-O(1W)	240,2(6)
Gd-O12	235,5(7)	Gd-N(1A)	254,3(7)
Gd-O21	237,8(6)	Gd-N(2A)	257,9(7)
Gd-O11	238,2(5)		

Symmetrie
transformation zur Erzeugung der äquivalenten Atome:
 a –x+1, –y+1, –z+1

Durch π - π -Wechselwirkungen wird ein nur durch die organische Teilstruktur gebildetes Packungsmotiv (siehe Abbildung 6.23), ein so genanntes " π -stacking" [87,88], realisiert. Der kleinste orthogonale Abstand zwischen zwei Ebenen, die durch je einen aromatischen Ring definiert sind, beträgt 366,5 pm.

Abbildung 6.22: Dimere Einheit in $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2$. Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.

Abbildung 6.23: Ausschnitt aus der Packung der 2,2'-Bipyridinmoleküle in $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2.$

$6.8 \ \mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$

6.8.1 Einkristallstrukturanalyse

Unter der Voraussetzung, dass die Verbindung in der zentrosymmetrischen Raumgruppe P2₁/c kristallisiert, wurden 10438 gemessene zu 6508 symmetrieunabhängigen Reflexen gemittelt und für die anschließende Strukturrechnung verwendet. Die gewählte zentrosymmetrische Raumgruppe P2₁/c erwies sich im Laufe der Strukturverfeinerung als richtig. Der interne *R*-Wert R_{int} , der die Güte der Datensätze beschreibt, betrug nach semiempirischer Absorptionskorrektur (multi-scan) 3,89 %.

Die Verfeinerung in der Raumgruppe $P2_1/c$ führte unter Berücksichtigung anisotroper Auslenkungsparameter zu $R_1 = 6,92$ % und $wR_2 = 17,61$ %. Detaillierte Informationen zu der Strukturbestimmung sind in Tabelle 6.13 aufgeführt.

$Gd_2(Cl_2HCCOO)_6(C_2H_5OH)_2(bipy)_2$		
Kristallsystem	monoklin	
Raumgruppe	$P2_1/c$	
Gitterparameter	a = 1241,0(4) pm, $\alpha = 90^{\circ}$	
	b = 1573,3(6) pm, β = 109,84(5)°	
	c = 1739,3(7) pm, $\gamma = 90^{\circ}$	
Volumen der Elementarzelle	$2497,7(16)\cdot 10^{-6} \text{ pm}^3$	
Formeleinheiten Z pro Elementarzelle	2	
röntgenographische Dichte	$1,974 \text{ g} \cdot \text{cm}^{-3}$	
Absorptionskoeffizient μ	$3,339 \text{ mm}^{-1}$	
F(000)	1440	
Kristallabmessungen	0,365 mm \times 0,333 mm \times 0,3811 mm	
Temperatur	293(2) K	
Wellenlänge	$\text{Mo-K}_{\alpha} \; (\lambda = 71,\!073 \; \text{pm})$	
Winkelbereich der Datensammlung	$2,05^\circ$ bis 29,37°	
hkl-Bereich	$-15 \le h \le 17; -21 \le k \le 18; -23 \le l \le 17$	
Zahl der gemessenen Reflexe	10438	
Zahl der symmetrieunabhängigen Reflexe	6508	
be obachtete Reflexe mit F $> 2\sigma$	5483	
Interner R-Wert	0,0389	
verwendete Rechenprogramme	SHELXS-97 [48], SHELXL-97 [49]	
	Win GX [47], MULTISCAN [53]	
Absorptionskorrektur	semiempirisch	
Verfeinerungsmethode	Volle Matrix an F^2 , kleinste Fehlerquadrate	
Zahl der verfeinerten Parameter	307	
GooF ^a	1,067	
<i>R</i> -Werte $[\mathrm{I} > 2\sigma(\mathrm{I})]^{-a}$	$R_1=0,0618; \ wR_2=0,1673$	
R-Werte (alle Daten) ^a	$R_1=0,0692; \ wR_2=0,1761$	
Restelektron endichten min. / max.	$-4{,}563{\cdot}10^{-6}~{\rm e}{\cdot}{\rm pm}^{-3}~/~2{,}404{\cdot}10^{-6}~{\rm e}{\cdot}{\rm pm}^{-3}$	

Tabelle 6.13: Kristalldaten und Angaben zur Strukturbestimmung von $Gd_2(Cl_2HCCOO)_6(C_2H_5OH)_2(bipy)_2.$

 a Definition der Gütefaktoren $R_1, \ wR_2$ und GooF nach [49].

6.8.2 Strukturbeschreibung

Aus den Verfeinerungsrechnungen für die Verbindung $Gd_2(Cl_2HCCOO)_6(C_2H_5OH)_2(bipy)_2$ resultiert ein Strukturmodell, das nachfolgend beschrieben wird. Ein Ausschnitt aus der Kristallstruktur ist in Abbildung 6.24 dargestellt.

Abbildung 6.24: Ausschnitt aus der Elementarzelle der Kristallstruktur von $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2.$

Das Gd^{3+} -Ion in $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2$ ist in Form eines verzerrten quadratischen Antiprismas (Abb. 6.25) von sechs Sauerstoff- und zwei Stickstoffatomen (Gd^{3+} –O-Abstände zwischen 232,2 pm und 247,5 pm; Gd^{3+} –N-Abstände bei 255,0 pm und 258,0 pm)(vgl. Tab. 6.14) koordiniert. Fünf dieser Sauerstoffatome stammen von Carboxylatgruppen und eins von einem Ethanolmolekül. Die Stickstoffatome gehören zu einem 2,2'-Bipyridinmolekül.

Abbildung 6.25: Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$.

Bei dem strukturbestimmenden Element handelt es sich um isolierte Gd^{3+} -Dimere, in welchen die Gd^{3+} -Ionen über vier Carboxylatgruppen verbrückt sind (vgl. Abbildung 6.26). Der Gd^{3+} - Gd^{3+} -Abstand beträgt 450,3 pm (vgl. Tabelle 6.14). Eine Carboxylatgruppe sowie ein 2,2'-Bipyridin- und ein Ethanolmolekül sind jeweils nur an ein Gd^{3+} -Ion gebunden und wirken nicht verbrückend (Abb. 6.26).

Tabelle 6.14: Ausgewählte interatomare Abstände in pm mit Standardabweichungen für $Gd_2(Cl_2HCCOO)_6(C_2H_5OH)_2(bipy)_2.$

	Abstand		Abstand
$\mathrm{Gd} ext{-}\mathrm{Gd}^a$	450,3(1)	Gd-O21	238,8(4)
Gd-O22	232,2(4)	Gd-O(1E)	247,5(4)
Gd-O32	236,1(4)	Gd-N(2A)	255,0(6)
Gd-O11	236,4(4)	Gd-N(1A)	258,0(5)
Gd-O12	236,7(5)		

Symmetrietransformation zur Erzeugung der äquivalenten Atome: ^a -x, 1-y, -z

Durch π - π -Wechselwirkungen wird ein nur durch die organische Teilstruktur gebildetes Packungsmotiv, ein so genanntes " π -stacking" [87,88], realisiert (siehe Abbildung 6.27). Der kleinste orthogonale Abstand zwischen zwei Ebenen, die durch je einen aromatischen Ring definiert sind, beträgt 341,8 pm. $6.8 \ Gd_2(Cl_2HCCOO)_6(C_2H_5OH)_2(bipy)_2$

Abbildung 6.26: Dimere Einheit in $Gd_2(Cl_2HCCOO)_6(C_2H_5OH)_2(bipy)_2$. Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.

Abbildung 6.27: Ausschnitt aus der Packung der 2,2'-Bipyridinmoleküle in ${\rm Gd}_2({\rm Cl}_2{\rm HCCOO})_6({\rm C}_2{\rm H}_5{\rm OH})_2({\rm bipy})_2.$

6.9 $\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2 \cdot \operatorname{C}_2\operatorname{H}_5\operatorname{OH}$

6.9.1 Einkristallstrukturanalyse

Unter der Voraussetzung, dass die Verbindung in der zentrosymmetrischen Raumgruppe $P\bar{1}$ kristallisiert, wurden 14480 gemessene zu 10809 symmetrieunabhängigen Reflexen gemittelt und für die anschließende Strukturrechnung verwendet.

Die gewählte zentrosymmetrische Raumgruppe $P\bar{1}$ erwies sich im Laufe der Strukturverfeinerung als richtig. Der interne *R*-Wert R_{int} , der die Güte der Datensätze beschreibt, betrug 7,87 %.

Die Verfeinerung in der Raumgruppe $P\bar{1}$ führte unter Berücksichtigung anisotroper Auslenkungsparameter zu $R_1 = 5,88$ % und $wR_2 = 13,74$ %. Detaillierte Informationen zu der Strukturbestimmung sind in Tabelle 6.15 aufgeführt.

Tabelle 6.15:	Kristalldaten und	Angaben zur	Strukturbestimmung von	
	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6$	$_{3}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{bipy})$	$)_2 \cdot C_2 H_5 OH.$	

$Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH$		
Kristallsystem	triklin	
Raumgruppe	ΡĪ	
Gitterparameter	$ m a = 1201, 6(2) \ pm, \ lpha = 96, 29(2)^{\circ}$	
	${ m b}=1241,1(3)~{ m pm},eta=104,\!85(2)^\circ$	
	c = 1990,4(3) pm, $\gamma = 116,70(2)^{\circ}$	
Volumen der Elementarzelle	$2474,9(9)\cdot 10^{-6} \text{ pm}^3$	
Formeleinheiten Z pro Elementarzelle	2	
röntgenographische Dichte	$1,991 \text{ g} \cdot \text{cm}^{-3}$	
Absorptionskoeffizient μ	$3,092 \text{ mm}^{-1}$	
F(000)	1428	
Kristallabmessungen	0,315 mm \times 0,259 mm \times 0,962 mm	
Temperatur	293(2) K	
Wellenlänge	Mo-K $_{lpha}~(\lambda=71,\!073~{ m pm})$	
Winkelbereich der Datensammlung	$1,94^\circ$ bis 29,29°	
hkl-Bereich	$-16 \le h \le 16; -11 \le k \le 17; -25 \le l \le 26$	
Zahl der gemessenen Reflexe	14480	
Zahl der symmetrieunabhängigen Reflexe	10809	
be obachtete Reflexe mit F $> 2\sigma$	9368	
Interner R-Wert	0,0787	
verwendete Rechenprogramme	SHELXS-97 [48], SHELXL-97 [49]	
	Win GX [47]	
Absorptionskorrektur	keine	
Verfeinerungsmethode	Volle Matrix an F^2 , kleinste Fehlerquadrate	
Zahl der verfeinerten Parameter	666	
GooF a	1,067	
<i>R</i> -Werte $[\mathrm{I} > 2\sigma(\mathrm{I})]^{a}$	$R_1=0,0519; \ wR_2=0,1279$	
R-Werte (alle Daten) ^a	$R_1=0,0588; \ wR_2=0,1374$	
Restelektronendichten min. / max.	$-1,542 \cdot 10^{-6} \text{ e} \cdot \text{pm}^{-3} / 2,340 \cdot 10^{-6} \text{ e} \cdot \text{pm}^{-3}$	

 a Definition der Gütefaktoren $R_1, \, wR_2$ und GooF nach [49].

6.9.2 Strukturbeschreibung

In der Kristallstruktur (siehe Abbildung 6.28) des Carboxylats

 $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH$ liegen zwei kristallographisch unterschiedliche, dimere Gd^{3+} - Gd^{3+} -Einheiten vor (Gd^{3+} - Gd^{3+} -Abstände 451,8 pm und 458,9 pm; vgl. Tab. 6.16 und Abbildung 6.30).

Abbildung 6.28: Ausschnitt aus der Kristallstruktur von $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH$; die Elementarzelle ist eingezeichnet.

Die Gd³⁺-Ionen in Gd₂(ClF₂CCOO)₆(H₂O)₂(bipy)₂·C₂H₅OH sind von sechs Sauerstoff- und zwei Stickstoffatomen in Form eines verzerrten quadratischen Antiprismas bzw. eines zweifach überkappten, verzerrten trigonalen Prismas koordiniert (Abb. 6.29 a und b). Fünf Sauerstoffatome stammen hierbei jeweils von Carboxylatgruppen und ein Sauerstoffatom von einem koordinierten Wassermolekül. Die Stick-

Abbildung 6.29: Koordinationen um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2\cdot\mathrm{C}_2\mathrm{H}_5\mathrm{OH}$.

stoffatome gehören zu einem 2,2'-Bipyridinmolekül. Außerdem liegt in der Kristallstruktur ein nicht koordiniertes Ethanolmolekül vor. Die Gd–O-Abstände liegen zwischen 231,9 pm und 243,2 pm, die Gd–N-Abstände der 2,2'-Bipyridinmoleküle zwischen 253,7 pm und 256,7 pm (vgl. Tab. 6.16).

Tabelle 6.16: Ausgewählte interatomare Abstände in pm mit Standardabweichungen für $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH.$

	Abstand		Abstand
$\mathrm{Gd1} ext{-}\mathrm{Gd1}^b$	451,8(2)	Gd2-O61	237,2(4)
$\mathrm{Gd}2 ext{-}\mathrm{Gd}2^a$	458,9(3)	Gd1-O22	239,1(4)
$\mathrm{Gd}2\text{-}\mathrm{O}52^a$	231,9(4)	Gd1-O(2W)	240,1(4)
Gd1-O21	234,3(4)	Gd2-O51	241,1(4)
Gd2-O41	235,7(4)	Gd2-O(1W)	243,2(4)
Gd1-O31	235,8(4)	Gd1-N(1A)	253,7(5)
$Gd2-O42^a$	236,1(3)	Gd2-N(2B)	254,5(5)
Gd1-O12	237,0(4)	Gd1-N(2A)	255,1(5)
Gd1-O11	237,1(4)	Gd2-N(1B)	256,7(5)

Symmetrietransformationen zur Erzeugung der äquivalenten Atome:

^a -x+1, -y+1, -z+1; ^b -x, -y+1, -z

Abbildung 6.30: Dimere Gd^{3+} -Einheiten in $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH$. Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.

Bei dem strukturbestimmenden Element handelt es sich um zwei verschiedene isolierte Gd^{3+} -Dimere, in welchen die Gd^{3+} -Ionen über vier Carboxylatgruppen verbrückt sind. Je eine Carboxylatgruppe, ein 2,2'-Bipyridin- und ein Wassermolekül sind nur an ein Gd^{3+} -Ion gebunden und wirken nicht verbrückend (Abb. 6.30). Durch π - π -Wechselwirkungen der organischen Teilstruktur liegt ein so genanntes " π -stacking" [87,88] vor (siehe Abbildung 6.31). Der kleinste orthogonale Abstand zwischen zwei Ebenen, die durch je einen aromatischen Ring definiert sind, beträgt 350,6 pm. $6.9 \ Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH$

Abbildung 6.31: Ausschnitt aus der Packung der 2,2'-Bipyridinmoleküle in $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2\cdot\mathrm{C}_2\mathrm{H}_5\mathrm{OH}.$

6.10 $Gd_2(ClH_2CCOO)_6(bipy)_2$

6.10.1 Einkristallstrukturanalyse

Unter der Voraussetzung, dass die Verbindung in der zentrosymmetrischen Raumgruppe $P\bar{1}$ kristallisiert, wurden 14707 gemessene zu 3771 symmetrieunabhängigen Reflexen gemittelt und für die anschließende Strukturrechnung verwendet.

Die gewählte zentrosymmetrische Raumgruppe $P\bar{1}$ erwies sich im Laufe der Strukturverfeinerung als richtig. Der interne *R*-Wert R_{int} , der die Güte der Datensätze beschreibt, betrug 11,61 %.

Die Verfeinerung in der Raumgruppe $P\bar{1}$ führte unter Berücksichtigung anisotroper Auslenkungsparameter zu $R_1 = 4,46$ % und $wR_2 = 9,33$ %. Detaillierte Informationen zu der Strukturbestimmung sind in Tabelle 6.17 aufgeführt.

Tabelle 6.17:	Kristalldaten	und Ang	gaben zur	${\it Strukturbestimmung}$	von
	$\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CC})$	OO) ₆ (bij	$py)_2.$		

$Gd_2(ClH_2CCOO)_6(bipy)_2$				
Kristallsystem	triklin			
Raumgruppe	ΡĪ			
Gitterparameter	$a = 959,5(3) \text{ pm}, \alpha = 68,67(3)^{\circ}$			
	${ m b}=980{,}9(3)~{ m pm},eta=84{,}82(4)^{\circ}$			
	$ m c = 1163, 9(4) \ m pm, \ \gamma = 82, 47(4)^{\circ}$			
Volumen der Elementarzelle	$1010,5(5)\cdot 10^{-6} \text{ pm}^3$			
Formeleinheiten Z pro Elementarzelle	2			
röntgenographische Dichte	$1,952 \text{ g}\cdot\text{cm}^{-3}$			
Absorptionskoeffizient μ	$3,713 \text{ mm}^{-1}$			
F(000)	574			
Kristallabmessungen	0,481 mm \times 0,1184 mm \times 0,592 mm			
Temperatur	293(2) K			
Wellenlänge	$\text{Mo-K}_{\alpha}~(\lambda=71{,}073~\text{pm})$			
Winkelbereich der Datensammlung	$2,14^{\circ}$ bis $26,17^{\circ}$			
hkl-Bereich	$-11 \le h \le 11; -12 \le k \le 12; -14 \le l \le 14$			
Zahl der gemessenen Reflexe	14707			
Zahl der symmetrieunabhängigen Reflexe	3771			
be obachtete Reflexe mit F $> 2\sigma$	3253			
Interner R-Wert	0,1161			
verwendete Rechenprogramme	SHELXS-97 [48], SHELXL-97 [49]			
	Win GX [47]			
Absorptionskorrektur	keine			
Verfeinerungsmethode	Volle Matrix an F^2 , kleinste Fehlerquadrate			
Zahl der verfeinerten Parameter	248			
GooF ^a	1,117			
$R ext{-Werte} \left[\mathrm{I} > 2\sigma(\mathrm{I}) ight] {}^{a}$	$R_1=0,\!0357; \ wR_2=0,\!0835$			
R-Werte (alle Daten) ^a	$R_1=0,0446;\ wR_2=0,0933$			
Restelektronendichten min. / max.	$-1,\!198{\cdot}10^{-6}~{\rm e}{\cdot}{\rm pm}^{-3}~/~1,\!050{\cdot}10^{-6}~{\rm e}{\cdot}{\rm pm}^{-3}$			

 a Definition der Gütefaktoren $R_1, \, wR_2$ und GooF nach [49].

6.10.2 Strukturbeschreibung

Aus den Verfeinerungsrechnungen für das Carboxylat $Gd_2(ClH_2CCOO)_6(bipy)_2$ resultiert ein Strukturmodell, das nachfolgend beschrieben wird. Ein Ausschnitt aus der Kristallstruktur ist in Abbildung 6.32 dargestellt.

Abbildung 6.32: Ausschnitt aus der Kristallstruktur von $\text{Gd}_2(\text{ClH}_2\text{CCOO})_6(\text{bipy})_2$; die Elementarzelle ist eingezeichnet.

Das Gd^{3+} -Ion ist neunfach in Form eines dreifach überkappten, verzerrten trigonalen Prismas (Abb. 6.33) von sieben Sauerstoffatomen von Carboxylatgruppen

Abbildung 6.33: Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$.

und zwei Stickstoffatomen, welche von einem 2,2'-Bipyridinmolekül stammen, koordiniert (Gd³⁺–O-Abstände zwischen 236,3 pm und 260,3 pm; Gd³⁺–N-Abstände 255,1 pm und 258,5 pm; vgl. Tab. 6.18).

Bei dem strukturbestimmenden Element handelt es sich um isolierte dimere Einheiten von Gd^{3+} -Ionen (vgl. Abbildung 6.34), die über vier Carboxylatgruppen verbrückt sind (Gd^{3+} - Gd^{3+} -Abstand 399,0 pm; vgl. Tabelle 6.18). Eine Carboxylatgruppe und ein 2,2'-Bipyridinmolekül wirken nicht verbrückend, sondern sind jeweils nur an ein Gd^{3+} -Ion gebunden (Abb. 6.34).

Tabelle 6.18: Ausgewählte interatomare Abstände in pm mit Standardabweichungen für $Gd_2(ClH_2CCOO)_6(bipy)_2.$

	Abstand		Abstand
$\mathrm{Gd}\text{-}\mathrm{Gd}^a$	399,0(2)	Gd-O22	250,0(4)
Gd-O12	236,3(4)	Gd-O31	250,1(4)
Gd-O32	237,2(4)	Gd-N(2A)	255,1(5)
Gd-011	237,6(4)	Gd-N(1A)	258,5(5)
Gd-O21	243,5(4)	$Gd-O32^a$	260, 2(4)

Symmetrietransformation zur Erzeugung der äquivalenten Atome: ^a -x+1, -y+1, -z+2

Abbildung 6.34: Dimere Gd^{3+} -Einheit in $\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$. Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.

Durch π - π -Wechselwirkungen wird ein nur durch die organische Teilstruktur gebildetes Packungsmotiv, ein so genanntes " π -stacking" [87,88], realisiert (siehe Abbildung 6.35). Der kleinste orthogonale Abstand zwischen zwei Ebenen, die durch je einen aromatischen Ring definiert sind, beträgt 345,0 pm.
$6.10 \ Gd_2(ClH_2CCOO)_6(bipy)_2$

Abbildung 6.35: Ausschnitt aus der Packung der 2,2'-Bipyridinmoleküle in ${\rm Gd}_2({\rm ClH}_2{\rm CCOO})_6({\rm bipy})_2.$

$6.11 \operatorname{Gd}_2(\operatorname{C}_6\operatorname{H}_5\operatorname{COO})_6(\operatorname{bipy})_2$

6.11.1 Einkristallstrukturanalyse

Unter der Voraussetzung, dass die Verbindung in der zentrosymmetrischen Raumgruppe P2₁/n kristallisiert, wurden 79232 gemessene zu 10935 symmetrieunabhängigen Reflexen gemittelt und für die anschließende Strukturrechnung verwendet. Die gewählte zentrosymmetrische Raumgruppe P2₁/n erwies sich im Laufe der Strukturverfeinerung als richtig. Der interne *R*-Wert R_{int} , der die Güte der Datensätze beschreibt, betrug 6,41 %.

Die Verfeinerung in der Raumgruppe P2₁/n führte unter Berücksichtigung anisotroper Auslenkungsparameter zu $R_1 = 2,99$ % und $wR_2 = 6,25$ %. Detaillierte Informationen zu der Strukturbestimmung sind in Tabelle 6.19 aufgeführt.

Tabelle 6.19:	Kristalldaten	und Angaben	zur Strukturbesti	mmung von
	$\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{CO}$	$OO)_6(bipy)_2.$		

$\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$				
Kristallsystem	monoklin			
Raumgruppe	$P2_1/n$			
Gitterparameter	a = 1417,0(5) pm, $\alpha = 90^{\circ}$			
	b = 1545,2(5) pm, β = 76,62(4)°			
	c = 2603,3(9) pm, $\gamma = 90^{\circ}$			
Volumen der Elementarzelle	$5545,3(3)\cdot 10^{-6} \text{ pm}^3$			
Formeleinheiten Z pro Elementarzelle	4			
röntgenographische Dichte	$1,621 \text{ g}\cdot\text{cm}^{-3}$			
Absorptionskoeffizient μ	$2,439 \text{ mm}^{-1}$			
F(000)	2680			
Kristallabmessungen	0,444 mm \times 0,370 mm \times 0,555 mm			
Temperatur	293(2) K			
Wellenlänge	Mo-K $_{\alpha}~(\lambda=71,\!073~{\rm pm})$			
Winkelbereich der Datensammlung	$2,08^\circ$ bis 26,13°			
hkl-Bereich	$-17 \leq h \leq 17; -19 \leq k \leq 19; -32 \leq l \leq 32$			
Zahl der gemessenen Reflexe	79232			
Zahl der symmetrieunabhängigen Reflexe	10935			
be obachtete Reflexe mit F $>2\sigma$	9384			
Interner R-Wert	0,0641			
verwendete Rechenprogramme	SHELXS-97 [48], SHELXL-97 [49]			
	Win GX [47]			
Absorptionskorrektur	keine			
Verfeinerungsmethode	Volle Matrix an ${\rm F}^2,$ kleinste Fehlerquadrate			
Zahl der verfeinerten Parameter	721			
GooF ^a	0,973			
$R ext{-Werte} \left[\mathrm{I} > 2\sigma(\mathrm{I}) ight]{}^{a}$	$R_1=0,0245;\ wR_2=0,0610$			
R-Werte (alle Daten) ^a	$R_1=0,0299; \ wR_2=0,0625$			
Restelektron endichten min. / max.	$-1,185{\cdot}10^{-6}~{\rm e}{\cdot}{\rm pm}^{-3}~/~0,940{\cdot}10^{-6}~{\rm e}{\cdot}{\rm pm}^{-3}$			

 a Definition der Gütefaktoren $R_1, \ wR_2$ und GooF nach [49].

6.11.2 Strukturbeschreibung

Die Verbindung $Gd_2(C_6H_5COO)_6(bipy)_2$ kristallisiert monoklin in der Raumgruppe $P2_1/n$. Abbildung 6.36 zeigt einen Ausschnitt aus der Kristallstruktur. Es liegen zwei kristallographisch unterschiedliche Gd^{3+} -Atomlagen vor.

Abbildung 6.36: Ausschnitt aus der Kristallstruktur von $Gd_2(C_6H_5COO)_6(bipy)_2$; die Elementarzelle ist eingezeichnet.

Jedes Gadoliniumkation ist in Form eines zweifach überkappten, verzerrten trigonalen Prismas von sechs Sauerstoffatomen und zwei Stickstoffatomen koordiniert (Abb. 6.37 a und b). Die Sauerstoffatome stammen von Carboxylatgruppen und die Stickstoffatome von einem 2,2'-Bipyridinmolekül (Gd³⁺–O-Abstände zwischen 231,1 pm und 247,8 pm; Gd³⁺–N-Abstände zwischen 257,0 pm und 264,2 pm)(vgl. Tab. 6.20).

Abbildung 6.37: Koordinationen um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$.

Bei dem strukturbestimmenden Element handelt es sich um isolierte dimere Einheiten von Gd^{3+} -Ionen (vgl. Abbildung 6.38), welche über vier Carboxylatgruppen verbrückt sind (Gd^{3+} - Gd^{3+} -Abstand 435,6 pm; vgl. Tabelle 6.20). Ein 2,2'-Bipyridinmolekül und eine Carboxylatgruppe wirken nicht verbrückend, sondern sind jeweils nur an ein Gd^{3+} -Ion gebunden (Abb. 6.38).

Tabelle 6.20: Ausgewählte interatomare Abstände in pm mit Standardabweichungen für $Gd_2(C_6H_5COO)_6(bipy)_2.$

	Abstand		Abstand
Gd1-Gd2	435,6(3)	Gd1-O51	240,3(2)
Gd1-011	231,1(2)	Gd2-O62	244,6(2)
Gd1-O22	231,5(2)	Gd2-O61	247,0(2)
Gd2-O31	233,2(2)	Gd1-O52	247,8(2)
Gd2-O41	233,5(2)	Gd2-N(2B)	257,0(2)
Gd1-O32	234,7(2)	Gd1-N(2A)	259,6(3)
Gd2-O12	234,9(2)	Gd2-N(1B)	263,0(2)
Gd2-O21	237,3(2)	Gd1-N(1A)	264, 2(3)
Gd1-O42	237,7(2)		

Abbildung 6.38: Dimere Gd^{3+} -Einheit in $Gd_2(C_6H_5COO)_6(bipy)_2$. Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.

7 Magnetische Untersuchungen

Vor der Untersuchung des magnetischen Verhaltens der in Kapitel 2 vorgestellten dimeren Gadoliniumverbindungen mit Hilfe eines SQUID-Magnetometers (vgl. Kapitel 4) wurde die Reinheit der Proben mit Hilfe der Röntgenpulverdiffraktometrie untersucht (vgl. Anhang A). Es ergaben sich keine Hinweise auf Verunreinigungen. Für die magnetischen Messungen wurden polykristalline Proben der verschiedenen Verbindungen im Temperaturbereich von 1,76 K bis 300 K bei magnetischen Feldstärken ($|\mathbf{H}^{(ir)}| = H^{(ir)}$) von 0,5 kOe und 1 kOe vermessen. Die gemessenen Suszeptibilitätswerte sind feldstärkeunabhängig und somit können Sättigungseffekte vernachlässigt werden. Aus diesem Grund werden die Abweichungen der Suszeptibilitätswerte vom CURIE-Verhalten durch kooperative magnetische Effekte interpretiert (vgl. Kapitel 3.3.2).

7.1 Magnetische Messungen an den synthetisierten dimeren Gadoliniumverbindungen

An den in Kapitel 6 vorgestellten dimeren Verbindungen wurden magnetische Suszeptibilitätsmessungen vorgenommen. Mit Hilfe von Gleichung 3.14 (vgl. Kapitel 3.3.2.1.1) wurden die Messdaten unter Berücksichtigung einer Spin-Spin-Austauschkopplung in einer dinuklearen Gd³⁺–Gd³⁺-Einheit interpretiert.

Durch Anpassungsrechnungen erhält man erwartungsgemäß für alle Verbindungen den LANDÉ-Faktor g = 2 (vgl. Gleichung 3.10) und außerdem die in Tabelle 7.1 wiedergegebenen Werte für den Austauschparameter J_{ex} .

Verbindung	$J_{\rm ex} [{\rm cm}^{-1}]$
$Gd_2(F_3CCOO)_6(hypy)_4$	-0,034
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4$	-0,019
$\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4$	-0,064
$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$	-0,011
$\mathrm{Gd}_2(\mathrm{H}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2{\cdot}2\mathrm{H}_2\mathrm{O}$	-0,013
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2$	-0,003
$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$	-0,006
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2{\cdot}\mathrm{C}_2\mathrm{H}_5\mathrm{OH}^*$	-0,004
$\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$	-0,020
$\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6\mathrm{(bipy)}_2$	-0,005

Tabelle 7.1: Austauschparameter J_{ex} der magnetisch untersuchten dimeren Verbindungen.

* Bei der Interpretation wurden die in der Struktur auftretenden, in den Atomabständen fast übereinstimmenden, zwei verschiedenen dimeren Einheiten durch ein J_{ex} charakterisiert.

Das negative Vorzeichen der Austauschparameter lässt auf antiferromagnetische Wechselwirkungen schließen.

Die Abbildungen 7.1 bis 7.10 zeigen die jeweils sehr gute Übereinstimmung der experimentellen (\triangle und \Box) und berechneten (–) Werte für die effektive BOHR-Magnetonenzahl μ_{eff} in Abhängigkeit von der Temperatur *T*. Die Berechnung erfolgte mit Hilfe der Gleichungen 3.14 und 3.5.

In Tabelle 7.2 sind neben den in dieser Arbeit magnetisch untersuchten Verbindungen auch die aus der Literatur bekannten dimeren Gadoliniumverbindungen aufgeführt, die entsprechend den IUPAC-Empfehlungen [57] vermessen wurden und antiferromagnetisches Verhalten zeigen. J_{ex} liegt bei allen in Tabelle 7.2 genannten Verbindungen in der gleichen Größenordnung.

Abbildung 7.1: Vergleich der berechneten (–) und beobachteten ($H^{(ir)} = 0.5$ kOe (\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für $\text{Gd}_2(\text{F}_3\text{CCOO})_6(\text{hypy})_4.$

Abbildung 7.2: Vergleich der berechneten (–) und beobachteten ($H^{(ir)} = 0,5$ kOe (\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für $\text{Gd}_2(\text{ClF}_2\text{CCOO})_6(\text{hypy})_4.$

Abbildung 7.3: Vergleich der berechneten (-) und beobachteten ($H^{(ir)} = 0.5$ kOe (\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für $\text{Gd}_2(\text{F}_2\text{HCCOO})_6(\text{hypy})_4.$

Abbildung 7.4: Vergleich der berechneten (-) und beobachteten ($H^{(ir)} = 0.5$ kOe (\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für $\text{Gd}_2(\text{Cl}_2\text{HCCOO})_6(\text{H}_2\text{O})_2(\text{hypy})_2.$

7.1 Magnetische Messungen an den synthetisierten dimeren Gadoliniumverbindungen

Abbildung 7.5: Vergleich der berechneten (–) und beobachteten ($H^{(ir)} = 0,5$ kOe (\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für $\text{Gd}_2(\text{H}_3\text{CCOO})_6(\text{H}_2\text{O})_2(\text{hypy})_2.$

Abbildung 7.6: Vergleich der berechneten (-) und beobachteten ($H^{(ir)} = 0.5$ kOe (\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für $\text{Gd}_2(\text{ClF}_2\text{CCOO})_6(\text{H}_2\text{O})_2(\text{bipy})_2.$

Abbildung 7.7: Vergleich der berechneten (-) und beobachteten ($H^{(ir)} = 0.5$ kOe (\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für $\text{Gd}_2(\text{Cl}_2\text{HCCOO})_6(\text{C}_2\text{H}_5\text{OH})_2(\text{bipy})_2.$

Abbildung 7.8: Vergleich der berechneten (-) und beobachteten ($H^{(ir)} = 0.5$ kOe (\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für $\text{Gd}_2(\text{ClF}_2\text{CCOO})_6(\text{H}_2\text{O})_2(\text{bipy})_2.$

Abbildung 7.9: Vergleich der berechneten (-) und beobachteten ($H^{(ir)} = 0.5$ kOe (\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für $\text{Gd}_2(\text{ClH}_2\text{CCOO})_6(\text{bipy})_2.$

Abbildung 7.10: Vergleich der berechneten (–) und beobachteten ($H^{(ir)} = 0,5$ kOe (\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für $\text{Gd}_2(\text{C}_6\text{H}_5\text{COO})_6(\text{bipy})_2.$

Verbindung	$J_{\rm ex} [{\rm cm}^{-1}]$	Ref.
$Gd_2(F_2HCCOO)_6(hypy)_4$	-0,064	diese Arbeit
${ m Gd}_2({ m tmhd})_6{}^a$	-0,041	[23, 89]
$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4$	-0,034	diese Arbeit
$\mathrm{Gd}_2(\mathrm{EBz})_6(\mathrm{DMF})_2(\mathrm{H}_2\mathrm{O})_2{}^b$	-0,034	[90]
$\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$	-0,020	diese Arbeit
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4$	-0,019	diese Arbeit
$\mathrm{Gd}_{2}(\mathrm{F}_{2}\mathrm{HCCOO})_{6}(\mathrm{phen})_{2}{}^{c}$	-0,016	[91]
$\mathrm{Gd}_2(\mathrm{H}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2{\cdot}2\mathrm{H}_2\mathrm{O}$	-0,013	diese Arbeit
$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$	-0,011	diese Arbeit
$(\mathrm{CH}_3\mathrm{NH}_3)_2[\mathrm{Gd}_2(\mathrm{Cl}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_6](\mathrm{Cl}_3\mathrm{CCOO})_2\cdot 2\mathrm{Cl}_3\mathrm{CCOOH}$	-0,011	[92]
$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_6$	-0,007	[93]
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_6$	-0,006	[84]
$(\mathrm{CH}_3\mathrm{NH}_3)_2[\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CF}_2\mathrm{CCOO})_8(\mathrm{H}_2\mathrm{O})_2]$	-0,006	[94]
$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_6$	-0,006	[83]
$(\mathrm{CH}_3\mathrm{CH}_2\mathrm{NH}_3)_2[\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CF}_2\mathrm{CCOO})_8(\mathrm{H}_2\mathrm{O})_2]$	-0,006	[94]
$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$	-0,006	diese Arbeit
$\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$	-0,005	diese Arbeit
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2{\cdot}\mathrm{C}_2\mathrm{H}_5\mathrm{OH}$	-0,004	diese Arbeit
$\mathrm{Gd}_2(\mathrm{Cl}_3\mathrm{CCOO})_6(\mathrm{bipy})_2(\mathrm{H}_2\mathrm{O})_2\cdot 4\mathrm{bipy}$	-0,004	[92]
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2$	-0,003	diese Arbeit

Tabelle 7.2: Vergleich des Austauschparameters J_{ex} der hier untersuchten und anderer
dimerer Gadoliniumverbindungen.

 a Htmhd = 2,2,6,6-Tetramethylheptan-3,5-dion (Dipivaloylmethan); b HEBz = 4-Ethoxybenzoesäure, DMF = Dimethylformamid; c phen = 1,10-Phenanthrolin

8 Diskussion der Ergebnisse

8.1 Zusammenhang zwischen magnetischen und strukturellen Eigenschaften

Anhand der im Rahmen dieser Arbeit magnetisch untersuchten Verbindungen, die ausschließlich antiferromagnetische Wechselwirkungen zeigen, können im Folgenden nähere Zusammenhänge zwischen magnetischen und strukturellen Eigenschaften hergestellt werden. Dazu werden zusätzlich alle weiteren bislang aus der Literatur bekannten Gd^{3+} -Verbindungen herangezogen, in denen die Gd^{3+} -Ionen über Sauerstoffatome zu isolierten dimeren Einheiten verbrückt sind, die entsprechend den IUPAC-Empfehlungen [57] vermessen wurden und antiferromagnetisches Verhalten zeigen (vgl. Tab. 8.1).

In allen in Tabelle 8.1 aufgeführten Verbindungen liegt praktisch der in Abbildung 8.1 dargestellte Aufbau vor.

Mit Hilfe eines Modells können durch Kombination von Superaustauschtheorie [95] und Angular-Overlap-Modell [96–98] Aussagen zur Stärke der antiferromagnetischen Austauschwechselwirkung gemacht werden:

Ist der Austauschparameter J_{ex} durch den HEISENBERG-Operator (vgl. Gleichung 3.15, Kapitel 3.3.2.1.1) für eine dinukleare Gd³⁺-Gd³⁺-Verbindung gegeben, so ist nach der Theorie des Superaustauschs bei einem verbrückten f⁷-f⁷-Dimer mit einer Verbrückung wie in Abbildung 8.1 der Parameter J_{ex} im Wesentlichen durch die

Abbildung 8.1: Schematischer Aufbau von sauerstoffverbrückten Gd³⁺-Dimeren.

kinetische Austauschwechselwirkung gegeben [31,99]:

$$J_{\rm ex} \approx J_{\rm kin} = -\frac{2}{49U} \sum_{ij} b_{ij}^2 \tag{8.1}$$

U ist hierbei die elektrostatische Abstoßungsenergie und b_{ij} sind die Transferintegrale, die nach dem Angular-Overlap-Modell durch die Parameter e_{λ} ($\lambda = \sigma, \pi$) ausgedrückt werden können [100].

Mit Hilfe des Ausdrucks $e_{\lambda} = e_{\lambda}^0 f(r)$ ergibt sich [98, 101]:

$$J_{\rm ex} \approx J_{\rm kin} = -\frac{2}{49U} \Big(e_{\sigma}^{0^2} g_1^2(\varphi) + e_{\pi}^{0^2} (1 + g_2^2(\varphi)) + e_{\sigma}^0 e_{\pi}^0 g_3^2(\varphi) \Big) f(r_1) f(r_2)$$
(8.2)

Danach kann $J_{\rm kin}$ als Funktion von Winkel- $g_n(\varphi)$ und Radialfunktionen $f(r_n)$ dargestellt werden. Die hier angegebene Beziehung für Komplexe der f-Elemente (vgl. Gleichung 8.2) stimmt mit denen für d-Elemente überein, wobei die Winkelfunktionen $g_n(\varphi)$ für die zugrunde liegende Geometrie angegeben [102] bzw. errechnet wurden [99].

Betrachtet man die in Tabelle 8.1 aufgeführten Werte genauer, so fällt auf, dass φ und r_1 näherungsweise als konstant angenommen werden können ($\varphi = 103,4^{\circ}$

 $\pm 10,0^{\circ}, r_1 = 236,5 \text{ pm} \pm 5,2 \text{ pm}$), wohingegen r_2 eine große Varianz aufweist ($r_2 = 315,1 \text{ pm} \pm 70,4 \text{ pm}$). Somit ergibt sich aus Gleichung 8.2 die einfache Beziehung $J_{\text{ex}} \approx J_{\text{kin}} \sim f(r_2)$. Wie in Abbildung 8.2, die die Änderung des Austauschparameters $|J_{\text{ex}}|$ in Abhängigkeit des Gd–O-Abstands r_2 im doppeltlogarithmischen Maßstab wiedergibt, zu sehen ist, besteht ein linearer Zusammenhang zwischen $|J_{\text{ex}}|$ und r_2 für die Verbindungen der Tabelle 8.1. Dies führt zu der Beziehung $J_{\text{ex}} \sim r_2^{-4,61}$.

Abbildung 8.2: Abhängigkeit des Austauschparameters $|J_{ex}|$ vom Gd–O-Abstand r_2 im doppeltlogarithmischen Maßstab. Rote Vierecke kennzeichnen die in dieser Arbeit vorgestellten Verbindungen; graue Vierecke geben die Werte der anderen aus der Literatur bekannten Verbindungen wieder.

Bei der Beteiligung von f-Orbitalen an der Überlappung von Gadolinium- mit Sauerstoff-p-Valenzfunktionen müsste wegen $f(r) = r^{-7}$ [98] eine Abstandsabhängigkeit des Austauschparameters gefunden werden, die bei r_2^{-7} liegt. Es wird jedoch eine Abhängigkeit des Austauschparameters von $r_2^{-4,61}$ beobachtet. Dies spricht für eine ausschließliche Beteiligung von d-Orbitalen ($f(r) = r^{-5}$ [103]) an der Austauschwechselwirkung.

Auf Grund dieses Zusammenhangs kann nun erstmals allein durch Kenntnis des r_2 -Abstands eine Vorhersage über die Größe des antiferromagnetischen Austauschparameters und somit über die Stärke der antiferromagnetischen Wechselwirkung getroffen werden.

Verbindung	$ J_{\rm ex} $	φ	r_1	r_2	Ref.
	$[\mathrm{cm}^{-1}]$	[°]	[pm]	[pm]	
$\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4$	0,064	106,8	233,7	$249,\!6$	diese Arbeit
$\operatorname{Gd}_2(\operatorname{tmhd})_6{}^a$	0,041	109,4	$238,\! 6$	244,7	[23, 89]
$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4$	0,034	107,3	234,1	247,0	diese Arbeit
$\mathrm{Gd}_2(\mathrm{EBz})_6(\mathrm{DMF})_2(\mathrm{H}_2\mathrm{O})_2{}^b$	0,034	109,5	233,0	310,7	[90]
$\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$	0,020	$106,\! 6$	237,2	260,2	diese Arbeit
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6\mathrm{(hypy)}_4$	0,019	106,5	235,7	$246,\! 6$	diese Arbeit
$\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{phen})_2{}^c$	0,016	106, 9	$235,\!4$	266,2	[91]
$\mathrm{Gd}_2(\mathrm{H}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2{\cdot}2\mathrm{H}_2\mathrm{O}$	0,013	$113,\!4$	241,7	261,5	diese Arbeit
$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$	0,011	$107,\! 6$	$237,\!8$	$263,\!8$	diese Arbeit
$\begin{array}{l} (\mathrm{CH}_{3}\mathrm{NH}_{3})_{2}[\mathrm{Gd}_{2}(\mathrm{Cl}_{3}\mathrm{CCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{6}] \\ (\mathrm{Cl}_{3}\mathrm{CCOO})_{2} \cdot 2 \mathrm{Cl}_{3}\mathrm{CCOOH} \end{array}$	0,011	104,4	239,5	290,9	[92]
$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_6$	0,007	101,9	235,2	335,5	[93]
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_6$	0,006	103,8	234,5	329,3	[84]
$(\mathrm{CH}_3\mathrm{NH}_3)_2[\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CF}_2\mathrm{CCOO})_8(\mathrm{H}_2\mathrm{O})_2]$	0,006	96,2	233,8	361,9	[94]
$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_6$	0,006	100,5	237,0	345,2	[83]
$(\mathrm{CH}_3\mathrm{CH}_2\mathrm{NH}_3)_2[\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CF}_2\mathrm{CCOO})_8(\mathrm{H}_2\mathrm{O})_2]$	0,006	$97,\!5$	232,2	358,5	[94]
$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$	0,006	100,16	232,1	347	diese Arbeit
$\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2{}^*$	0,005	$94,\!1$	$231,\!3$	353,1	diese Arbeit
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2{\cdot}\mathrm{C}_2\mathrm{H}_5\mathrm{OH}^*$	0,004	97,1	233,1	363,4	diese Arbeit
$\mathrm{Gd}_2(\mathrm{Cl}_3\mathrm{CCOO})_6(\mathrm{bipy})_2(\mathrm{H}_2\mathrm{O})_2\cdot 4\mathrm{bipy}$	0,004	$93,\!4$	234,4	385,5	[92]
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2$	0,003	$96,\!4$	233,3	365,8	diese Arbeit

Tabelle 8.1: Vergleich des Austauschparameters $|J_{ex}|$, des Winkels φ sowie der Abstände r_1 und r_2 von dimeren Gadoliniumverbindungen.

^{*a*}Htmhd = 2,2,6,6-Tetramethylheptan-3,5-dion (Dipivaloylmethan); ^{*b*}HEBz = 4-Ethoxybenzoesäure, DMF = Dimethylformamid; ^{*c*}phen = 1,10-Phenanthrolin; * gemittelte Werte für φ , r_1 und r_2

8 Diskussion der Ergebnisse

9 Zusammenfassung

Durch Reaktionen von halogenhaltigen Gadoliniumcarboxylaten sowie Gadoliniumacetat mit den stickstoffhaltigen Liganden 4(1H)-Pyridon (hypy) oder 2,2'-Bipyridin (bipy) in Lösungen aus gleichen Teilen Ethanol und Wasser bei Raumtemperatur wurden die neuen Gadoliniumverbindungen $Gd_2(F_3CCOO)_6(hypy)_4$, $Gd_2(ClF_2CCOO)_6(hypy)_4$, $Gd_2(F_2HCCOO)_6(hypy)_4$, $Gd_2(Cl_2HCCOO)_6(H_2O)_2(hypy)_2$, $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O$, $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2$, $Gd_2(Cl_2HCCOO)_6(C_2H_5OH)_2(bipy)_2$, $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH$ und $Gd_2(ClH_2CCOO)_6(bipy)_2$ synthetisiert. Um erstmals das Benzoat $Gd_2(C_6H_5COO)_6(bipy)_2$ zu erhalten, wurde Gadoliniumchlorid-Hexahydrat mit Benzoesäure und 2,2'-Bipyridin in reinem Ethanol umgesetzt.

Die Kristallstrukturen wurden anhand von röntgenographischen Einkristalldaten bestimmt. In allen Verbindungen liegen Gd^{3+} -Ionen vor, die über Sauerstoffatome zu isolierten dimeren Gd^{3+} - Gd^{3+} -Einheiten mit dem Gd–O-Abstand r verbrückt sind.

Das magnetische Verhalten der Verbindungen wurde mit einem SQUID-Magnetometer untersucht. Bei allen untersuchten Verbindungen wurde eine antiferromagnetische Wechselwirkung beobachtet. Die effektive BOHR-Magnetonenzahl μ_{eff} wurde temperaturabhängig bestimmt. Die Interpretation von μ_{eff} erfolgte unter Berücksichtigung der Spin-Spin-Austauschkopplung in einer dinuklearen Gd³⁺– Gd³⁺-Einheit, wobei für jede Verbindung der Austauschparameter J_{ex} ermittelt wurde. Für dimere Gadolinium carboxylate konnte zwischen dem Austauschparameter $J_{\rm ex}$ für die antiferromagnetische Wechselwirkung und dem Gd–O-Abstand r eine Abhängigkeit von $J_{\rm ex} \sim r^{-4,61}$ gefunden werden. Somit ist erstmals allein durch Kenntnis dieses Abstandes eine Voraussage über die Größe des Austauschparameters und damit über die Stärke der antiferromagnetischen Wechselwirkung möglich. Wegen der Abhängigkeit des Austauschparameters, die bei r^{-5} liegt, muss angenommen werden, dass die Austauschwechselwirkung über die d-Orbitale und nicht über die f-Orbitale des Gadoliniums erfolgt, da sonst eine Abhängigkeit um r^{-7} bestehen würde.

A Pulverdiffraktogramme

A.1 $Gd_2(F_3CCOO)_6(hypy)_4$

Abbildung A.1: Berechnetes a) und gemessenes b) Pulver
diffraktogramm von ${\rm Gd}_2({\rm F}_3{\rm CCOO})_6({\rm hypy})_4.$

A.2 $Gd_2(ClF_2CCOO)_6(hypy)_4$

Abbildung A.2: Berechnetes a) und gemessenes b) Pulverdiffraktogramm vo
n ${\rm Gd}_2({\rm ClF}_2{\rm CCOO})_6({\rm hypy})_4.$

A.3 $Gd_2(F_2HCCOO)_6(hypy)_4$

Abbildung A.3: Berechnetes a) und gemessenes b) Pulver
diffraktogramm von ${\rm Gd}_2({\rm F}_2{\rm HCCOO})_6({\rm hypy})_4.$

A.4 $\mathrm{Gd}_{2}(\mathrm{Cl}_{2}\mathrm{HCCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2}$

Abbildung A.4: Berechnetes a) und gemessenes b) Pulverdiffraktogramm vo
n ${\rm Gd}_2({\rm Cl}_2{\rm HCCOO})_6({\rm H}_2{\rm O})_2({\rm hypy})_2.$

A.5 $\operatorname{Gd}_2(\operatorname{H}_3\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{hypy})_2 \cdot 2\operatorname{H}_2\operatorname{O}$

Abbildung A.5: Berechnetes a) und gemessenes b) Pulverdiffraktogramm vo
n ${\rm Gd}_2({\rm H}_3{\rm CCOO})_6({\rm H}_2{\rm O})_2({\rm hypy})_2\cdot 2\,{\rm H}_2{\rm O}.$

A.6 $\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2$

Abbildung A.6: Berechnetes a) und gemessenes b) Pulverdiffraktogramm von ${\rm Gd}_2({\rm ClF}_2{\rm CCOO})_6({\rm H}_2{\rm O})_2({\rm bipy})_2.$

Abbildung A.7: Berechnetes a) und gemessenes b) Pulverdiffraktogramm von ${\rm Gd}_2({\rm Cl}_2{\rm HCCOO})_6({\rm C}_2{\rm H}_5{\rm OH})_2({\rm bipy})_2.$

A.8 $\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2 \cdot \operatorname{C}_2\operatorname{H}_5\operatorname{OH}$

Abbildung A.8: Berechnetes a) und gemessenes b) Pulverdiffraktogramm von $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2\cdot\mathrm{C}_2\mathrm{H}_5\mathrm{OH}.$

Abbildung A.9: Berechnetes a) und gemessenes b) Pulver
diffraktogramm von ${\rm Gd}_2({\rm ClH}_2{\rm CCOO})_6({\rm bipy})_2.$

A.10 $\operatorname{Gd}_2(\operatorname{C}_6\operatorname{H}_5\operatorname{COO})_6(\operatorname{bipy})_2$

Abbildung A.10: Berechnetes a) und gemessenes b) Pulver
diffraktogramm von ${\rm Gd}_2({\rm C}_6{\rm H}_5{\rm COO})_6({\rm bipy})_2.$

B Lageparameter, äquivalenteisotrope und anisotropeAuslenkungsparameter

B.1 $Gd_2(F_3CCOO)_6(hypy)_4$

Tabelle B.1: Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslenkungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm²] mit
Standardabweichungen für $\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4$.

Atom	Lage	x/a	y/b	z/c	Uäq / Uiso
Gd	2i	0,6597(1)	0,6011(1)	0,6448(1)	560(6)
O11	2i	0,8077(7)	0,8405(6)	0,6184(6)	867(16)
O12	2i	0,9412(7)	0,7353(6)	0,7368(5)	838(17)
C11	2i	0,9292(9)	0,8275(7)	0,6825(6)	685(17)
C12	2i	1,0779(14)	0,9307(14)	0,6926(11)	1120(40)
F11	2i	1,1965(9)	0,9278(12)	0,7784(9)	1520(40)
F12	2i	1,0733(16)	1,0500(10)	0,715(2)	2540(100)
F13	2i	1,0991(17)	0,923(3)	0,6007(11)	2930(140)
O21	2i	0,5862(9)	0,8058(6)	0,7234(5)	857(17)
O22	2i	0,7093(8)	0,7000(6)	0,8476(5)	881(17)
C21	2i	0,6441(10)	0,7867(7)	0,8224(6)	708(17)
C22	2i	0,643(2)	0,8775(12)	0,9197(11)	1120(40)
F21	2i	0,748(3)	0,9811(16)	0,949(2)	3580(180)
F22	2i	0,534(4)	0,922(3)	0,8945(16)	3400(190)
F23	2i	0,641(2)	0,8256(13)	1,0081(8)	1920(60)
O31	2i	0,4225(6)	0,5159(5)	0,6722(4)	$721(13)^{2}$
O32	2i	0,7684(6)	0,5775(6)	0,5011(5)	733(14)
C31	2i	0,2888(9)	0,4605(7)	0,6050(7)	705(17)
C32	2i	0,1705(16)	0,4357(15)	0,6639(11)	1150(40)
F31	2i	0,2247(15)	0,4013(19)	0,7634(10)	2060(70)
F32	2i	0,0465(12)	0,3515(19)	0,6056(11)	2510(100)
F33	2i	0,151(2)	0,5399(17)	0,6987(18)	2460(90)
O(1A)	2i	0,7594(7)	0,4613(5)	0,7528(4)	732(14)
C(1A)	2i	0,7931(10)	0,4058(7)	0,8420(6)	660(17)
C(2A)	2i	0,9176(10)	0,3558(8)	0,8752(8)	760(20)
H2A	2i	0,9724	0,3527	0,8277	0,091
C(3A)	2i	0,9603(14)	0,3102(10)	0,9802(10)	1000(40)
H3A	2i	104,810	0,283	100,580	0,12
N(1A)	2i	0,8749(14)	0,3061(9)	1,0430(7)	1100(40)
H1A	2i	0,8998	0,2751	$110,\!630$	0,132
C(4A)	2i	0,7078(12)	0,3973(11)	0,9140(8)	890(30)
H4A	2i	0,6207	0,4258	0,8938	0,107
C(5A)	21	0,7527(16)	0,3482(13)	1,0112(9)	1100(40)
H5A	21	0,6959	0,3435	105,800	0,132
O(IB)	21	0,4746(6)	0,6243(4)	0,4744(4)	606(11)
C(IB)	21	0,4396(8)	0,7307(6)	0,4379(5)	614(15)
C(2B)	21	0,3213(10)	0,7682(7)	0,4539(7)	724(18)
H2B	21	0,2641	0,7184	0,491	0,087
U(3B)	21	0,2881(12)	0,8798(8)	0,4148(8) 0,4262	810(20)
N(1D)	21	0,2080	0,9047	0,4203 0.2610(6)	0,098
II(ID)	21	0,5000(10)	0,9313(0)	0,3019(0)	840(20)
C(AB)	21	0,0000	0,1001	0,3719	753(10)
U(4D) H1B	21 2i	0.3242(11) 0.3497	102.060	0,3029(7) 0.3389	0 101
C(5B)	21	0.4815(13)	0.9184(8)	0.3441(8)	880(30)
H5B	2i	0.5342	0.97	0.3051	0 106

		**	T T	**		
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U ₁₂
Gd	580(6)	525(6)	517(6)	94,9(16)	119(2)	192(2)
O11	740(40)	800(30)	940(40)	120(30)	110(30)	330(30)
O12	850(40)	730(30)	700(30)	190(20)	100(30)	110(30)
C11	700(40)	640(30)	650(30)	100(30)	210(30)	150(30)
C12	890(70)	1130(80)	1000(70)	330(60)	150(60)	0(60)
F11	760(40)	1730(80)	1640(80)	350(60)	120(40)	110(50)
F12	1590(100)	870(50)	4300(300)	590(90)	380(130)	-30(60)
F13	1750(110)	4500(300)	1460(90)	350(130)	770(90)	-1030(160)
O21	1120(50)	670(30)	720(30)	170(20)	250(30)	290(30)
O22	910(40)	870(40)	740(30)	-10(30)	80(30)	420(30)
C21	730(40)	690(40)	660(40)	70(30)	230(30)	210(30)
C22	1740(140)	900(60)	980(70)	170(50)	620(80)	660(80)
F21	4800(400)	1630(110)	3700(300)	-1640(150)	3000(300)	-1250(170)
F22	5500(500)	4600(400)	1870(140)	620(180)	1600(200)	4300(400)
F23	3360(190)	1860(100)	980(50)	300(60)	1070(90)	1140(110)
O31	720(30)	730(30)	650(30)	50(20)	260(20)	140(20)
O32	620(30)	780(30)	740(30)	40(20)	220(20)	180(20)
C31	720(40)	660(30)	740(40)	80(30)	290(30)	200(30)
C32	1060(80)	1390(90)	950(70)	-90(60)	570(60)	$60(\dot{7}0)$
F31	1570(90)	3430(190)	1510(80)	1030(100)	1000(70)	580(110)
F32	1150(60)	3900(200)	1770(90)	-580(120)	940(70)	-700(100)
F33	3000(200)	2400(150)	3100(200)	130(140)	2400(200)	1040(140)
O(1A)	870(40)	630(30)	600(30)	130(19)	140(20)	250(20)
C(1A)	680(40)	610(30)	540(30)	110(30)	80(30)	150(30)
C(2A)	690(40)	760(40)	790(50)	200(30)	120(30)	340(30)
C(3A)	920(60)	740(50)	940(60)	180(40)	-130(50)	240(40)
N(1A)	1260(80)	900(50)	660(40)	270(40)	40(40)	-70(50)
C(4A)	790(50)	1010(60)	760(50)	140(40)	250(40)	150(50)
C(5A)	1160(90)	1190(80)	800(60)	250(50)	360(60)	70(70)
O(1B)	$660(30)^{-1}$	$540(20)^{\prime}$	580(20)	110(16)	121(18)	262(18)
C(1B)	650(40)	520(30)	540(30)	60(20)	90(20)	170(30)
C(2B)	740(50)	680(40)	790(40)	180(30)	260(30)	310(30)
C(3B)	800(̀50)́	670(40)	940(50)	$80(\dot{4}0)'$	170(40)	400(40)
N(1B)	950(50)	570(30)	810(40)	120(30)	$40(\dot{4}0)'$	290(30)
C(4B)	760(50)	720(40)	780(40)	210(30)	250(40)	250(30)
C(5B)	1020(70)	620(40)	830(50)	270(30)	190(40)	140(40)

Tabelle B.2: Anisotrope Auslenkungsparameter U_{ij} [pm²] mit Standardabweichungen für $Gd_2(F_3CCOO)_6(hypy)_4$.

B.2 $Gd_2(ClF_2CCOO)_6(hypy)_4$

Tabelle B.3: Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslenkungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm²] mit
Standardabweichungen für $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4$.

Atom	Lage	x/a	y/b	z/c	Uäa / Uiso	
	0.	'	•/	/		
Gd	2i	0,6562(1)	0,5950(1)	0,6398(1)	228(1)	
O11	2i	0,8002(6)	0,8391(6)	0,6214(5)	573(16)	
O12	2i	0,9311(6)	0,7239(5)	0,7308(4)	471(13)	
C11	2i	0,9177(8)	0,8240(7)	0,6843(6)	396(15)	
C12	2i	1,0610(12)	0,9371(12)	0,7114(12)	980(50)	
F11	2i	1,1111(14)	0,9610(15)	0,6133(8)	2200(90)	
F12	2i	1,0530(15)	1,0577(8)	0,7515(15)	2320(90)	
Cl11	2i	1,1836(11)	0,9187(12)	0,7935(13)	3830(110)	
O21	2i	0,7082(7)	$0,\!6890(6)$	0,8344(4)	551(16)	
O22	2i	0,5714(8)	0,7896(6)	0,7102(5)	586(16)	
C21	2i	0,6346(9)	0,7686(7)	0,8076(6)	399(16)	
C22	2i	0,627(2)	0,8519(13)	0,9029(10)	1070(60)	
F21	21	0,4947(18)	0,8818(17)	0,8747(12)	1950(70)	
F22	21	0,6378(14)	0,7875(10)	1,0008(6)	1320(40)	
CI21	21	0,7412(15)	0,9936(6)	0,9271(6)	2890(70)	
031	21	0,7591(5)	0,5876(5)	0,4968(4)	382(10)	
O32 C21	21	0,4292(5) 0,7025(7)	1/2(5)	0,6701(4)	375(10)	
C31 C22	21	0,7020(7) 0.8162(10)	0,5538(0) 0.5824(0)	0,3948(0) 0.2250(7)	530(13) 515(10)	
C32 E21	21	0,8102(10) 0.7542(8)	0,3824(9)	0,3330(7)	1010(19)	
F31 F32	21	0,7342(8) 0.0320(8)	0,0099(9) 0.6887(8)	0,2272(0) 0.3801(7)	1010(20) 1070(30)	
C131	21	0,9529(8) 0.8904(5)	0,0337(3) 0.4543(4)	0,3351(7)	1070(30) 1024(12)	
O(1A)	2i	0,8304(5) 0.4675(5)	0,4545(4) 0,6230(4)	0,3551(3) 0.4748(3)	275(9)	
C(1A)	2i	0.4328(7)	0,0285(6)	0,4410(5)	286(13)	
C(2A)	2i	0.5133(9)	0.8159(7)	0.3899(6)	443(17)	
H2A	2i	0.59480	0.79900	0.37980	0.0530	
C(3A)	2i	0.3110(9)	0.7600(7)	0,4534(7)	445(17)	
HÌA Í	2i	0,25290	0,7044Ò	0,48590	$0,0530^{-1}$	
C(4A)	2i	0,2783(10)	0,8731(8)	0,4175(8)	570(20)	
H4A	2i	0,19860	0,89410	0,42720	0,0680	
C(5A)	2i	0,4731(11)	0,9260(8)	0,3546(7)	570(20)	
H5A	2i	0,52680	0,98280	0,32000	0,0690	
N(1A)	2i	0,3573(9)	0,9527(6)	0,3696(6)	580(20)	
HIA O(1D)	21	0,33400	102,280	0,34760	0,0700	
O(1B)	21	0,7570(6)	0,4520(4)	0,7479(4)	375(11)	
C(1B)	21	0,7947(8) 0.7165(11)	0,4028(6)	0,8398(5)	346(14)	
U(2B)	21	0,7100(11)	0,3935(9)	0,9125(7)	0.0600	
C(2D)	21	0,02000	0,41620 0.2566(8)	0,89080	500(20)	
H3B	21 2i	0,9233(9)	0,35330	0,8703(7) 0.82910	0.0610	
C(4B)	21 2i	0.9713(12)	0.3173(9)	0.9802(9)	740(40)	
H4B	2i	105.870	0.29170	100.560	0.0890	
C(5B)	2i	0.7672(14)	0.3495(12)	1.0126(8)	800(30)	
H5B	2i	0,71340	0.34310	105,910	0.0960	
N(1B)	2i	0,8938(13)	0,3151(8)	1,0461(7)	820(30)	
HÌBÍ	2i	0.92640	0.29070	111.190	0.0990	
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
---------------------	-----------	-----------	-----------	--------------------	------------	--------------------------
Gd	225,4(17)	251,1(17)	209,4(16)	88,5(10)	70,0(12)	86,3(11)
O11	440(30)	520(30)	640(30)	70(30)	20(30)	220(30)
O12	430(30)	410(30)	390(20)	170(20)	30(20)	10(20)
C11	320(30)	350(30)	480(40)	90(30)	150(30)	40(30)
C12	450(60)	800(70)	1120(90)	450(70)	-70(60)	-240(50)
F11	1710(110)	3010(160)	960(60)	-180(80)	940(70)	-1390(110)
F12	1800(110)	380(40)	3500(200)	70(70)	-370(120)	270(50)
Cl11	1650(70)	2650(110)	4570(190)	1500(120)	-1110(100)	-440(70)
O21	590(30)	650(30)	380(30)	-30(20)	10(20)	380(30)
O22	830(40)	480(30)	430(30)	180(20)	210(30)	200(30)
C21	570(40)	340(30)	360(30)	80(30)	230(30)	160(30)
C22	2220(180)	870(80)	640(60)	240(60)	780(90)	940(110)
F21	2520(160)	2750(170)	2000(120)	950(120)	1450(120)	2140(150)
F'22	2150(110)	1360(70)	620(40)	0(40)	590(50)	700(80)
Cl21	5220(180)	1120(40)	1580(60)	-500(40)	1370(80)	-320(70)
O31	310(20)	500(30)	360(20)	70(20)	180(20)	70(20)
032	350(30)	500(30)	330(20)	120(20)	210(20)	110(20)
C31	300(30)	350(30)	420(30)	120(30)	200(30)	120(30)
C32	450(40)	680(50)	510(40)	200(40)	320(40)	120(40)
F31	820(40)	1820(80)	790(40)	640(50)	630(40)	550(50)
F32	670(40)	1160(60)	1330(60)	30(50)	690(50)	-230(40)
CI31	1200(30)	1400(30)	1080(20)	350(20)	800(20)	840(30)
O(1A)	320(20)	273(19)	242(18)	113(15)	62(17)	156(17)
C(1A)	290(30)	240(30)	300(30)	90(20)	80(20)	80(20)
C(2A)	480(40)	420(40)	480(40)	210(30)	220(30)	150(30)
C(3A)	450(40)	380(30)	560(40)	120(30)	210(30)	190(30)
C(4A)	570(50)	490(40)	670(50)	110(40)	160(40)	330(40)
C(5A)	720(60)	370(40)	520(40)	250(30)	170(40)	60(40)
N(IA)	700(50)	300(30)	550(40)	90(30)	-50(40)	230(30)
O(1B)	490(30)	330(20)	290(20)	170(18)	80(20)	190(20)
C(1B)	320(30)	340(30)	280(30)	100(20)	20(30)	60(30)
C(2B)	380(50)	070(50)	490(40)	200(40)	250(40)	120(40) 170(20)
C(3B)	410(40)	470(40)	540(40)	120(30)	40(40)	170(30)
C(4B)	640(60)	490(50)	(10(60))	220(40) 270(50)	-220(50)	$\frac{220(40)}{50(60)}$
O(5B)	800(80)	920(80)	470(50)	270(50)	200(00)	-50(60)
N(IB)	1020(80)	640(50)	400(40)	300(40)	-30(50)	0(50)

Tabelle B.4: Anisotrope Auslenkungsparameter U_{ij} [pm²] mit Standardabweichungen
für $Gd_2(CLF_2CCOO)_6(hypy)_4$.

B.3 $Gd_2(F_2HCCOO)_6(hypy)_4$

Tabelle B.5: Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslenkungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm²] mit
Standardabweichungen für $\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4$.

Atom	Lage	x/a	y/b	z/c	Uäq / Uiso
	0.	0.0045(1)	0.0000(1)	0.0110(1)	240(2)
Gd	21	0,6645(1)	0,6023(1)	0,6449(1)	248(2)
011	21	0,8193(8)	0,8213(7) 0.7100(7)	0,6332(6)	494(17)
O12 C11	21	0,9742(9)	0,7120(7)	0,7427(6)	542(18)
CII	21	0,9571(11)	0,8059(10)	0,6955(8)	410(20) 1000(100)
U12 U11	21	1,110(2) 110,000	0,901(2)	0,711(2) 0.70200	1280(100) 0.1540
	21	119,090	0,04070	0,70390 0.702(2)	0,1340 7000(600)
F11 F19	21	1,101(0) 1,0070(17)	0,903(0)	0,793(3)	2010(000)
C21	21	1,0970(17) 0.5626(11)	0,9700(18) 0.8101(7)	0,0433(10) 0.7178(6)	2010(90) 540(10)
021 022	21	0,3030(11) 0.7004(0)	0,0191(7) 0.7207(8)	0,7170(0) 0.8410(6)	549(19) 541(10)
C21	21	0,7094(9) 0,6205(12)	0,7207(8)	0,8410(0)	341(19) 410(20)
C_{22}	21	0,0303(12) 0.617(3)	0,0000(10)	0,0170(0)	1300(20)
H21	21	0,017(3) 0.52110	0,904(2) 0.86280	0,9150(12) 0.92610	0.1560
F91	21	0,02110 0.710(6)	0.00200	0,02010 0.002(2)	5800(500)
F21	21 2i	0.719(0) 0.589(3)	1,0116(15)	0,332(2) 0.8919(13)	2060(100)
031	21 2i	0,000(0)	0.5375(6)	0,6663(5)	383(13)
032	21 2i	0,4000(7) 0,7921(7)	0.5473(7)	0,0000(0) 0.5071(5)	375(13)
C31	2i	0.2659(11)	0.4845(9)	0,6000(7)	354(18)
C32	2i	0.1420(13)	0.4456(13)	0.6534(9)	540(30)
H31	2i	0.05010	0.49080	0.63060	0.0650
F31	2i	0.0860(13)	0.3112(10)	0.6178(11)	1140(40)
F32	2i	0.2111(10)	0.4716(14)	0.7659(6)	1240(40)
O(1A)	2i	0.7768(8)	0.4612(6)	3/4(5)	381(14)
$\dot{C}(1A)$	2i	0.7950(12)	0.4141(9)	0.8365(7)	390(20)
C(2A)	2i	0.9277(12)	0.3489(10)	0.8779(8)	460(20)
HÌA Í	2i	0,99610	0,3326Ò ´	0,83780	$0,0550^{-1}$
C(3A)	2i	0,6863(13)	0,4207(11)	0,8954(8)	500(20)
HÌA	2i	0,59260	0,45490	0,86720	0,0590
C(4A)	2i	0,7169(17)	0,3777(13)	0,9931(9)	640(30)
H4A	2i	0,64530	0,38400	103,180	0,0770
C(5A)	2i	0,9521(14)	0,3110(11)	0,9781(10)	590(30)
H5A	2i	104,240	0,27370	100,800	0,0710
N(1A)	2i	0,8515(13)	0,3259(10)	1,0335(7)	620(30)
H1A	2i	0,87200	0,30220	109,670	0,0740
O(IB)	21	0,4759(7)	0,6256(5)	0,4742(4)	289(11)
C(1B)	2i	0,4371(10)	0,7309(8)	0,4406(6)	292(16)
C(2B)	21	0,3046(12)	0,7817(10)	0,4536(8)	450(20)
H2B	21	0,24290	0,74150	0,48910	0,0550
C(3B)	21	0,5286(12)	0,7971(10) 0.76770	0,3871(8)	440(20)
H3B C(4D)	21	0,01900	0,70770	0,37700	0,0530
U(4B) H4B	∠1 2;	0,4809(16)	0,9038(11)	0,3495(9)	0.0680
C(5D)	21	0,00920	0,94920	0,31300	570(20)
H5B	21 2i	0,2040(14) 0.17550	0,0905(10)	0,4144(10) 0.42280	0.0680
N(1B)	21 2i	0.3543(14)	0.92000	0.3638(8)	640(30)
HIB	ži	0.32820	101.760	0.33990	0.0770

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U ₁₂
Gd	322(2)	200(2)	161(2)	73,8(15)	-6,0(14)	66,8(15)
011	460(40)	340(40)	540(40)	130(30)	-20(30)	130(30)
O12	620(40)	470(40)	390(40)	230(40)	-40(30)	50(30)
C11	440(50)	380(50)	370(50)	150(40)	90(40)	60(40)
C12	770(100)	900(130)	1450(180)	650(140)	-460(110)	-410(90)
F11	6600(800)	8500(1000)	2300(300)	-1400(400)	1800(400)	-6700(800)
F12	1210(90)	1990(160)	3000(200)	1800(170)	530(120)	-180(100)
O21	920(50)	360(40)	300(30)	110(30)	130(30)	140(40)
O22	640(40)	490(50)	340(30)	20(30)	-30(30)	300(40)
C21	500(50)	370(50)	320(40)	80(40)	110(40)	120(40)
C22	2400(200)	1110(150)	340(60)	30(80)	160(100)	1250(180)
F21	7700(800)	6100(700)	1700(200)	-1800(300)	-700(300)	5300(700)
F22	4100(300)	1130(110)	1270(100)	200(90)	1170(150)	1370(160)
O31	390(30)	410(40)	270(30)	30(30)	60(20)	20(30)
O32	390(30)	440(40)	220(30)	70(30)	50(20)	50(30)
C31	390(40)	380(50)	340(40)	150(40)	130(40)	180(40)
C32	490(50)	780(80)	430(50)	170(60)	230(40)	200(60)
F31	1150(70)	830(70)	1740(110)	410(70)	950(80)	-40(60)
F32	740(50)	2470(140)	430(40)	370(60)	240(40)	-30(70)
O(1A)	540(40)	250(30)	280(30)	150(30)	10(30)	110(30)
C(1A)	500(50)	260(50)	210(40)	50(40)	-70(30)	50(40)
C(2A)	430(50)	410(60)	430(50)	220(50)	-60(40)	90(40)
C(3A)	530(50)	580(70)	360(50)	140(50)	120(40)	140(50)
C(4A)	870(80)	590(80)	400(50)	130(60)	190(60)	0(70)
C(5A)	620(60)	390(60)	490(60)	240(50)	-170(50)	60(50)
N(1A)	820(70)	520(60)	320(40)	240(40)	-20(40)	-80(50)
O(1B)	380(30)	230(30)	180(20)	100(20)	-30(20)	120(20)
C(1B)	370(40)	220(40)	210(30)	70(30)	0(30)	80(30)
C(2B)	430(50)	390(60)	460(50)	100(50)	20(40)	210(40)
C(3B)	550(50)	400(60)	350(50)	190(40)	120(40)	40(40)
C(4B)	790(70)	390(60)	460(60)	260(50)	90(50)	90(60)
C(5B)	590(60)	260(50)	600(60)	20(50)	-110(50)	220(50)
N(1B)	910(70)	250(50)	450(50)	140(40)	-150(50)	130(50)

Tabelle B.6: Anisotrope Auslenkungsparameter U_{ij} [pm²] mit Standardabweichungen
für $Gd_2(F_2HCCOO)_6(hypy)_4$.

B.4 $Gd_2(Cl_2HCCOO)_6(H_2O)_2(hypy)_2$

Tabelle B.7: Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslenkungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm²] mit
Standardabweichungen für $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2.$

Atom	Lage	x/a	y/b	z/c	Uäq / Uiso
Gd	2i	0,6639(1)	0,5522(1)	0,9191(1)	198(1)
O11	2i	0,7690(5)	0,4787(4)	0,7767(5)	414(10)
O12	2i	0,8927(5)	0,3239(4)	0,7537(4)	436(10)
C11	2i	0,7956(7)	0,3906(5)	0,7157(6)	315(12)
C12	2i	0,6834(9)	0,3671(7)	0,5751(7)	493(17)
H11	2i	0,57490	0,36060	0,57470	0,0590
Cl11	2i	0,6913(3)	0,2250(2)	0,4957(2)	537(4)
Cl12	2i	0,7224(4)	0,4970(3)	0,4963(2)	943(9)
O21	2i	0,6991(4)	0,6992(4)	1,0974(4)	334(9)
O22	2i	0,4887(5)	0,3565(4)	0,8179(4)	347(9)
C21	2i	0,6282(6)	0,7134(5)	1,1721(5)	286(11)
C22	2i	0,7017(7)	0,8361(6)	1,2645(6)	357(13)
H21	2i	0,74300	0,90130	122,090	0,0430
Cl21	2i	0,8624(2)	0,8049(2)	1,3902(2)	626(5)
Cl22	2i	0,5644(2)	0,8934(2)	1,3215(2)	567(5)
O31	2i	0,4044(4)	0,5726(4)	0,9073(4)	290(8)
O32	2i	0,8082(5)	0,4036(5)	1,0523(5)	410(11)
C31	2i	0,7118(6)	0,3740(5)	1,1065(5)	268(11)
C32	2i	0,7265(8)	0,2696(7)	1,1895(7)	433(16)
H31	2i	0,67440	0,28260	125,060	0,0520
Cl31	2i	0,9230(3)	0,2594(4)	1,2677(3)	1164(14)
Cl32	2i	5/8(4)	0,1264(2)	1,0858(4)	975(10)
O(1A)	2i	0,6373(5)	0,7143(4)	0,8037(4)	365(9)
C(1A)	2i	0,7080(6)	0,8224(5)	0,7911(6)	304(12)
C(2A)	2i	0,7267(8)	0,8470(6)	$0,\!6757(6)$	388(13)
H2A	2i	0,69320	0,78250	0,60910	0,0470
C(3A)	2i	0,7695(9)	0,9236(7)	$0,\!8885(7)$	466(16)
H3A	2i	0,76660	0,91050	0,96780	0,0560
C(4A)	2i	0,8327(10)	1,0398(8)	0,8692(8)	553(18)
H4A	2i	0,86830	110,630	0,93400	0,0660
C(5A)	2i	0,7939(8)	0,9657(6)	$0,\!6623(7)$	435(15)
H5A	2i	0,80480	0,98130	0,58580	0,0520
N(1A)	2i	0,8444(7)	1,0596(5)	0,7564(6)	426(13)
HIA	21	0,88480	113,380	0,74510	0,0510
O(1W)	21	0,9352(4)	0,6586(4)	0,9999(4)	313(9)
H1W	2i	1,007(8)	0,636(8)	0,958(6)	0,07(3)
H2W	2i	0,998(8)	0,667(9)	1,090(2)	0,07(3)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Gd	190,7(15)	194,1(16)	228,4(17)	-6,9(12)	102,8(10)	36,8(10)
O11	470(20)	400(20)	480(30)	-80(20)	350(20)	58(19)
O12	510(30)	370(20)	350(20)	-40(20)	50(20)	120(20)
C11	380(30)	270(30)	320(30)	30(30)	170(20)	10(20)
C12	580(40)	460(40)	410(40)	0(40)	120(30)	160(30)
Cl11	762(12)	502(10)	301(8)	-62(8)	118(8)	177(9)
Cl12	1580(30)	622(14)	567(14)	238(13)	262(15)	222(16)
O21	319(19)	330(20)	330(20)	-150(20)	173(17)	-49(16)
O22	350(20)	300(20)	390(20)	-100(20)	208(18)	-54(16)
C21	260(20)	320(30)	290(30)	-10(30)	110(20)	80(20)
C22	390(30)	330(30)	360(30)	-40(30)	190(30)	10(20)
Cl21	442(9)	846(15)	442(10)	-175(11)	13(8)	103(9)
Cl22	573(10)	537(10)	614(12)	-192(10)	257(9)	155(8)
O31	221(16)	300(20)	370(20)	0(18)	117(15)	79(14)
O32	320(20)	560(30)	520(30)	280(20)	272(19)	220(19)
C31	230(20)	300(30)	260(30)	20(20)	70(20)	60(20)
C32	400(30)	550(40)	510(40)	270(40)	270(30)	210(30)
Cl31	558(12)	2010(40)	1190(20)	1100(30)	307(14)	651(18)
Cl32	1370(20)	355(10)	1340(30)	147(15)	650(20)	184(13)
O(1A)	390(20)	280(20)	410(20)	130(20)	123(18)	60(17)
C(1A)	260(20)	320(30)	360(30)	110(30)	110(20)	90(20)
C(2A)	460(30)	330(30)	350(30)	-20(30)	130(30)	50(30)
C(3A)	620(40)	420(40)	360(40)	30(30)	230(30)	10(30)
C(4A)	730(50)	440(40)	470(40)	-30(40)	230(40)	60(40)
C(5A)	580(40)	350(30)	370(40)	50(30)	200(30)	30(30)
N(1A)	520(30)	280(30)	470(30)	50(30)	200(30)	-20(20)
O(1W)	204(16)	380(20)	330(20)	-57(19)	89(15)	18(15)

Tabelle B.8: Anisotrope Auslenkungsparameter U_{ij} [pm²] mit Standardabweichungen
für $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2.$

B.5 $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$

Tabelle B.9: Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslenkungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm²] mit
Standardabweichungen für $\mathrm{Gd}_{2}(\mathrm{H}_{3}\mathrm{CCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2} \cdot 2 \,\mathrm{H}_{2}\mathrm{O}.$

Atom	Lage	x/a	y/b	z/c	Uäq / Uiso
	4	0.1000(1)	0.0004/1)	0.0000(1)	(22)(())
Gd	4e	0,1822(1)	0,0234(1)	0,0688(1)	638(6)
011	4e	0,0471(7)	0,1519(6)	-0,0160(3)	683(16)
012	4e	-0,0773(9)	0,2410(7)	-0,0963(3)	806(19)
CII	4e	0,0250(13)	0,2600(10)	-0,0546(4)	710(20)
C12	4e	0,1248(15)	0,4109(12)	-0,0493(5)	920(30)
H11	4e	0,1971	0,4062	-0,0146	0,139
HI2	4e	0,0563	0,5031	-0,048	0,139
H13	4e	0,1846	0,4196	-0,0821	0,139
021	4e	0,0950(8)	0,0649(7)	0,1712(3)	751(17)
O22	4e	-0,0733(9)	0,1317(8)	0,0955(3)	824(19)
C21	4e	-0,0324(12)	0,1312(10)	0,1492(5)	720(20)
C22	4e	-0,1442(17)	0,2120(14)	0,1882(5)	980(40)
H21	4e	-0,0996	0,2029	0,2278	0,148
H22	4e	-0,2467	0,1599	0,1833	0,148
H23	4e	-0,1565	0,3238	0,178	0,148
O31	4e	0,4055(9)	0,1997(8)	0,0370(3)	820(20)
O32	4e	0,2651(10)	0,2888(7)	0,1043(3)	840(20)
C31	4e	0,3779(14)	0,3049(11)	0,0738(5)	780(30)
C32	4e	0,4821(17)	0,4500(15)	0,0832(6)	1140(40)
H31	4e	0,4445	0,5163	0,1128	0,171
H32	4e	0,479	0,5104	0,0479	0,171
H33	4e	0,59	0,4167	0,095	0,171
O(1A)	4e	0,4042(9)	-0,0658(8)	0,1228(3)	873(19)
C(1A)	4e	0,5033(13)	-0,1410(10)	0,1596(5)	760(30)
C(2A)	4e	0,6647(14)	-0,1622(12)	0,1507(5)	840(30)
HÌA	4e	0,7029	-0,1224	0,1174	0,101
C(3A)	4e	0,7636(15)	-0,2401(13)	0,1905(6)	940(30)
HÌA Í	4e	0,8699`	-0,2541	0,184	0,113
C(4A)	4e	0,5618(18)	-0,2797(14)	0,2497(6)	960(30)
HÌA	4e	0,5289	-0,3209	0,2836	0,115
C(5A)	4e	0,4557(15)	-0,2033(12)	0,2124(5)	870(30)
HÀA É	4e	0,3508	-0,1907	0,2208	0,105
N(1A)	4e	0,7142(13)	-0,2983(10)	0,2393(4)	900(30)
HÌA ´	4e	0,7804	-0,3477`	0,264	0,108
O(1W)	4e	0,2929(9)	-0,1425(8)	-0,0032(3)	789(18)
HÌ1W	4e	$0,211(\dot{7})$	-0,166(13)	-0,035(3)	0,10(4)
H12W	4e	0.396(5)	-0.155(9)	-0,019(3)	0.07(3)
O(2W)	4e	-0.1426(12)	0.4856(9)	-0.1812(3)	1080(30)
H21W	4e	-0.139(11)	0.400(8)	-0.151(3)	0.07(3)
H22W	4e	-0,10(4)	0,430(15)	-0,215(5)	0,30(14)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Gd	602(6)	622(6)	669(6)	-7(2)	-20,0(17)	-20(2)
O11	580(40)	690(30)	760(40)	50(30)	-30(30)	-40(20)
O12	910(50)	680(30)	790(40)	90(30)	-100(40)	-140(30)
C11	780(70)	630(40)	720(60)	-30(40)	60(50)	-50(40)
C12	910(80)	830(60)	990(80)	10(50)	-80(7Ó)	-240(50)
O21	750(40)	820(40)	670(30)	-10(30)	-10(30)	-40(30)
O22	720(50)	1090(50)	640(40)	-60(30)	-60(40)	-20(30)
C21	630(60)	700(50)	850(70)	-80(40)	100(60)	-80(40)
C22	1030(100)	1100(80)	850(70)	-70(60)	210(70)	-50(60)
O31	610(40)	880(40)	970(50)	-50(40)	110(40)	-90(30)
O32	800(50)	750(40)	960(50)	-220(30)	0(40)	-150(30)
C31	720(70)	720(50)	860(70)	0(50)	-60(60)	-140(40)
C32	1090(100)	1120(80)	1220(100)	-170(70)	180(80)	-440(70)
O(1A)	760(50)	940(40)	860(40)	120(30)	-150(40)	90(3Ò)
C(1A)	770(70)	630(40)	850(60)	-80(40)	-10(60)	$0(\dot{4}0)$
C(2A)	800(80)	910(60)	820(70)	120(50)	110(60)	50(50)
C(3A)	710(70)	930(70)	1150(100)	80(60)	-50(70)	150(60)
C(4A)	980(100)	990(70)	860(70)	210(60)	-120(80)	-60(60)
C(5A)	790(70)	930(60)	910(70)	70(50)	160(60)	20(50)
N(1A)	890(80)	880(50)	850(60)	140(40)	-240(60)	20(50)
O(1W)	620(40)	960(40)	780(40)	-170(30)	20(40)	40(30)
O(2W)	1510(80)	830(40)	890(50)	50(40)	130(50)	60(50)

Tabelle B.10: Anisotrope Auslenkungsparameter U_{ij} [pm²] mit Standardabweichungen
für $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O.$

B.6 $\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2$

Tabelle B.11: Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslenkungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm²] mit
Standardabweichungen für $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2$.

Atom	Lage	x/a	y/b	z/c	$U_{\ddot{a}q} \ / \ U_{iso}$
	0.	0.6000(1)	0.5000(1)	0.5054(1)	400(0)
Gd	21	0,6233(1)	0,5223(1)	0,7074(1)	480(2)
N(IA)	21	0,9070(8)	0,5752(7)	0,8134(7)	608(16)
N(2A)	2i	0,7170(9)	0,3508(6)	0,7778(7)	677(19)
C(1A)	2i	0,9991(10)	$0,\!6897(9)$	0,8375(9)	710(20)
H1A	2i	0,9579	0,7512	0,8261	0,085
C(2A)	2i	1,1550(11)	0,7201(12)	0,8794(10)	840(30)
H2A	2i	121,580	0,8	0,892	0,101
C(3A)	2i	1,2167(13)	0,6344(13)	0,9015(14)	1020(40)
H3A	2i	132,070	0,6541	0,9319	0,122
C(4A)	2i	1,1212(12)	0,5129(13)	0,8777(11)	910(30)
H4A	21	116,120	0,4511	0,8917	0,11
C(5A)	2i	0,9673(11)	0,4874(9)	0,8332(9)	670(20)
C(6A)	2i	0,8617(11)	0,3635(9)	0,8110(8)	660(20)
C(7A)	2i	0,9119(15)	0,2660(11)	0,8281(12)	900(30)
H7A	2i	101,360	0,2766	0,8526	0,108
C(8A)	2i	0,8057(17)	0,1508(11)	0,8077(13)	1070(40)
H8A	2i	0,8361	0,0834	0,8165	0,128
C(9A)	2i	0,6610(17)	0,1391(10)	0,7754(12)	1030(40)
H9A	2i	0,5896	0,0638	0,7627	0,123
C(10A)	2i	0,6175(13)	0,2421(10)	0,7608(11)	830(30)
H10A	2i	0,5166	0,2339	0,7388	0,1
O11	2i	0,7102(7)	$0,\!6838(5)$	0,6220(5)	662(15)
O12	2i	0,4050(7)	0,3509(6)	0,5847(6)	735(16)
C11	2i	0,6915(9)	0,7053(7)	0,5212(9)	582(19)
C12	2i	0,8057(15)	0,8253(11)	0,5255(13)	1090(50)
Cl11	2i	0,7541(10)	0,9316(6)	0,5163(11)	2640(50)
F11	2i	0,8568(13)	0,8148(11)	0,4183(11)	1800(50)
F12	2i	0,9399(11)	0,8550(12)	0,6121(12)	2260(80)
O21	2i	0.7148(7)	0.6946(5)	0.8826(6)	637(14)
O22	2i	0.6269(12)	0.6742(7)	1.0274(9)	$108\dot{0}(30)$
C21	2i	0.6853(10)	0.7339(7)	0.9711(8)	$588(19)^{\prime}$
C22	2i	0.7278(16)	0.8737(10)	1.0143(15)	1050(40)
Cl21	2i	0.6007(10)	0.9139(7)	0.9975(15)	3280(80)
F21	2i	0.8276(14)	0.9294(8)	1.1503(11)	1940(60)
F22	2i	0.828(2)	0.9362(8)	0.9826(19)	2440(90)
031	2i	0.4308(8)	0.6112(7)	0.6614(7)	799(18)
032	2i	0,1000(0) 0,6742(9)	0,0112(7) 0,4321(7)	0.5442(7)	880(20)
C31	2i	0.3479(11)	0.6192(8)	0.5621(9)	630(20)
C32	2i	0.2549(19)	0.7001(16)	0.5678(12)	1160(50)
Cl31	21	0.324(2)	0.8219(13)	0.5333(12)	3940(110)
F31	21	0.2844(19)	0.7643(16)	0.6774(11)	2440(90)
F32	21	0.0947(16)	0.6317(10)	0.514(2)	3460(150)
O(1W)	21	0.5106(9)	0.4634(6)	0.8488(6)	803(19)
H1W	21 2i	0.467(10)	0.393(6)	0.876(9)	0.08(3)
H2W	2i	0.58(5)	0.44(2)	0.81(5)	0.8(5)

A +	TT	17	17	TT	17	17
Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U_{13}	U ₁₂
C I	F (0)(0)	100(0)	800(2)	150 0(10)		150 0(15)
Gd	562(2)	469(2)	380(2)	150,0(16)	157,0(17)	156,3(15)
N(1A)	600(40)	630(40)	560(50)	160(30)	170(40)	220(30)
N(2A)	830(50)	540(40)	520(40)	220(30)	120(40)	170(40)
C(1A)	630(50)	680(50)	660(60)	130(50)	180(50)	110(40)
C(2A)	640(50)	1000(70)	710(70)	190(60)	200(50)	110(50)
C(3A)	650(60)	1120(90)	1230(110)	450(80)	270(70)	260(60)
C(4A)	740(60)	1250(100)	920(90)	390(80)	320(60)	580(70)
C(5A)	750(60)	800(60)	550(60)	310(50)	230(50)	350(50)
C(6A)	790(60)	720(50)	480(50)	220(50)	140(40)	360(50)
C(7A)	1060(80)	800(70)	870(80)	350(60)	250(70)	480(60)
C(8A)	1370(110)	830(80)	1030(100)	410(70)	200(80)	690(80)
C(9A)	1440(110)	540(50)	790(80)	270(60)	100(70)	250(60)
O11	820(40)	620(30)	460(30)	220(30)	210(30)	140(30)
O12	780(40)	600(30)	550(40)	140(30)	70(30)	60(30)
C11	600(40)	510(40)	560(60)	180(40)	190(40)	110(40)
C12	1070(90)	730(70)	970(100)	440(70)	110(70)	-180(60)
Cl11	2670(90)	1110(40)	3890(140)	890(60)	940(90)	650(50)
F11	1770(90)	1860(90)	1780(100)	400(80)	1340(90)	-120(70)
F12	1210(70)	2020(110)	1960(120)	1060(100)	-420(70)	-800(70)
O21	700(30)	630(30)	490(40)	50(30)	260(30)	130(30)
O22	1750(90)	670(40)	980(60)	190(40)	960(70)	150(50)
C21	690(50)	550(40)	580(50)	240(40)	300(40)	180(40)
C22	1270(100)	590(60)	1540(140)	180(70)	890(110)	330(60)
Cl21	2120(70)	1480(50)	6300(200)	890(90)	1440(110)	1060(50)
F21	2050(100)	960(60)	1250(90)	-560(60)	-660(80)	340(60)
F22	3560(190)	790(50)	4400(200)	1010(100)	3100(200)	720(80)
O31	800(40)	940(50)	740(50)	310(40)	230(40)	480(40)
O32	1260(60)	810(40)	760(50)	180(40)	630(50)	370(40)
C31	750(50)	660(50)	660(60)	280(50)	380(50)	330(40)
C32	1690(140)	1710(140)	870(90)	660(100)	680(100)	1360(130)
Cl31	7900(300)	3720(160)	3120(140)	2240(130)	3190(190)	4400(200)
F31	3500(200)	3800(200)	1440(100)	670(120)	1420(130)	2910(190)
F32	1500(100)	3400(200)	3900(300)	-1100(200)	-550(130)	1870(130)
O(1W)	1040(50)	720(40)	650(40)	240(30)	470(40)	100(40)

Tabelle B.12: Anisotrope Auslenkungsparameter U_{ij} [pm²] mit Standardabweichungen
für $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2.$

B.7 $Gd_2(Cl_2HCCOO)_6(C_2H_5OH)_2(bipy)_2$

Tabelle B.13: Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslenkungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm²] mit
Standardabweichungen für $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccc} C(4A) & 4e & 0,6433(7) & 0,5389(3) & 0,1958(5) & 277(11) \\ H4A & 4e & 0,694 & 0,5776 & 0,1898 & 0,033 \\ C(5A) & 4e & 0,4935(6) & 0,5248(3) & 0,1119(5) & 233(10) \\ C(6A) & 4e & 0,4088(6) & 0,5741(3) & 0,0121(5) & 240(10) \\ C(7A) & 4e & 0,4755(7) & 0,6347(3) & -0,0028(5) & 279(11) \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccc} C(5A) & 4e & 0.4935(6) & 0.5248(3) & 0.1119(5) & 233(10) \\ C(6A) & 4e & 0.4088(6) & 0.5741(3) & 0.0121(5) & 240(10) \\ C(7A) & 4e & 0.4755(7) & 0.6347(3) & -0.0028(5) & 279(11) \\ \end{array}$
C(6A) 4e 0,4088(6) 0,5741(3) 0,0121(5) 240(10) C(7A) 4e 0,4755(7) 0,6347(3) -0.0028(5) 279(11)
C(7A) 4e $0.4755(7)$ $0.6347(3)$ $-0.0028(5)$ $279(11)$
H5A 4e 0,5762 0,6434 0,0481 0,033
C(8A) 4e 0,3907(8) 0,6814(4) -0,0938(6) 342(13)
H6A 4e 0,4334 0,7219 -0,1049 0,041
C(9A) 4e 0,2412(7) 0,6675(4) -0,1683(5) 316(12)
H7A $4e 0,1817 0,6993 -0,2295 0,038$
C(10A) 4e 0,1815(7) 0,6050(4) -0,1499(5) 280(11)
H8A 4e 0,0812 0,595 -0,2008 0,034
O(1E) 4e 0,0829(5) 0,3982(3) -0,1873(4) 319(9)
C(1E) 4e -0.0185(10) 0.4184(5) -0.2968(6) 494(17)
HILE $4e = 0.0156 = 0.3933 = -0.328 = 0.059$
HIZE $4e = -0.0217 = 0.4795 = -0.3052 = 0.059$
U(2E) 4e -0.1647(12) 0.3876(6) -0.3510(8) 600(20)
H_{21E} 4e -0.2292 0.4027 -0.4236 0.091 H_{22E} 4c 0.1004 0.4127 0.2208 0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Gd	226,6(18)	233,6(17)	242,1(17)	-1,9(8)	193,4(15)	0,7(8)
O11	330(20)	340(20)	280(20)	-3(16)	260(20)	-6(16)
O12	320(20)	309(18)	340(20)	-24(16)	260(20)	12(16)
C11	250(30)	270(20)	210(20)	19(19)	180(20)	-24(18)
C12	300(30)	360(30)	290(30)	20(20)	230(30)	40(20)
Cl11	319(9)	908(14)	291(8)	-17(9)	182(8)	-57(9)
Cl12	889(15)	407(8)	621(12)	215(8)	622(13)	301(9)
O21	290(20)	350(20)	320(20)	-18(16)	250(20)	-6(16)
O22	310(20)	281(18)	320(20)	-38(16)	230(20)	0(16)
C21	250(30)	280(20)	280(30)	-30(20)	200(20)	-23(19)
C22	480(40)	420(30)	780(60)	-250(40)	540(50)	-130(30)
Cl21	1880(30)	473(10)	2130(40)	-589(16)	1940(30)	-560(15)
Cl22	255(10)	984(19)	920(20)	-592(17)	109(12)	36(10)
O31	400(20)	310(20)	290(20)	2(16)	260(20)	18(17)
O32	300(20)	277(18)	310(20)	-33(16)	227(19)	-22(15)
C31	240(30)	270(20)	310(30)	-10(20)	190(20)	$13(19)^{'}$
C32	260(30)	320(30)	310(30)	-40(20)	200(30)	-20(20)
Cl31	$345(9)^{'}$	634(11)	645(13)	248(10)	314(10)	-2(8)
Cl32	877(15)	343(8)	489(10)	$79(\hat{7})$	517(11)	200(8)
N(1A)	250(20)	310(20)	250(20)	19(17)	200(20)	31(16)
N(2A)	350(30)	243(19)	340(30)	-19(18)	300(20)	-5(18)
C(1A)	260(30)	270(20)	290(30)	$20(20)^{'}$	210(30)	17(19)
C(2A)	360(30)	320(20)	340(30)	10(20)	280(30)	20(20)
C(3A)	230(30)	360(30)	250(30)	-30(20)	150(20)	-30(20)
C(4A)	260(30)	300(20)	340(30)	10(20)	230(30)	-14(19)
C(5A)	270(30)	230(20)	290(30)	-30(20)	230(30)	-8(19)
C(6A)	310(30)	240(20)	310(30)	-10(20)	270(30)	$0(20)^{'}$
C(7A)	320(30)	270(20)	340(30)	-30(20)	260(30)	-30(20)
C(8A)	430(40)	330(30)	470(40)	20(30)	390(40)	-10(20)
C(9A)	370(30)	330(30)	360(30)	80(20)	290(30)	$60(20)^{\prime}$
C(10Á)	260(30)	390(30)	270(30)	20(20)	210(30)	$0(20)^{'}$
O(1E)	420(30)	310(20)	360(20)	-5(17)	320(20)	-15(17)
C(1E)	550(̀50)́	510(40)	330(40)	30(30)	260(40)	-10(30)
$\dot{C(2E)}$	670(60)́	640(50)	530(50)	30(40)	410(50)	-40(40)

Tabelle B.14: Anisotrope Auslenkungsparameter U_{ij} [pm²] mit Standardabweichungen
für $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2.$

B.8 $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH$

Tabelle B.15: Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslenkungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm²] mit
Standardabweichungen für $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2\cdot\mathrm{C}_2\mathrm{H}_5\mathrm{OH}.$

Atom	Lage	x/a	y/b	z/c	$U_{\ddot{a}q} \ / \ U_{iso}$
Gd1	2;	0.1016(1)	0.4918(1)	0.0432(1)	232(1)
Cd2	21	0,1310(1) 0.5346(1)	0,4310(1) 0.6803(1)	0,0452(1) 0.4704(1)	232(1) 231(1)
011	21	0.9178(4)	0,0000(1) 0.6031(4)	0,4704(1) 0,0441(2)	231(1) 318(8)
012	21	-0.0235(4)	0.3167(4)	0,0441(2) 0.0115(2)	367(0)
C11	21	-0,0233(4) 0.1462(5)	0,3107(4) 0.2630(5)	0,0113(2) 0.0178(3)	307(9) 374(0)
C12	21	-0,1402(3) 0.2212(6)	0,2030(3) 0.1225(6)	-0,0178(3)	492(14)
E11	21	-0,2213(0)	0,1220(0)	-0,0237(4)	423(14)
F11 F19	21	-0,3200(7)	0,0855(8)	0,0010(9)	1740(60)
Г12 Cl11	21	-0,1000(7)	0,0000(0)	0,0107(7)	1740(00) 1150(15)
021	21	-0,2309(3)	0,0303(3) 0,4742(5)	-0,1050(3)	1130(13) 202(10)
021	21	0,0782(4)	0,4743(3)	-0,0759(2)	393(10)
022 C01	21	0,1110(3)	0,0352(4)	0,1303(2)	330(8)
C21 C22	21	0,0094(5)	0,5391(5)	0,1309(3)	201(9)
C22	21	-0,0138(6)	0,5660(8)	0,2014(3)	434(15)
F21	21	0,0925(5)	0,6005(6)	0,2595(2)	640(15)
F22	21	-0,0381(6)	0,6623(7)	0,2048(3)	788(19)
CI21	21	-0,1495(2)	0,4348(4)	0,2067(2)	980(12)
031	21	0,2221(4)	0,3676(4)	0,1196(2)	303(7)
032	21	0,3352(4)	0,4849(4)	0,2339(2)	405(10)
C31	21	0,2564(5)	0,3863(5)	0,1864(3)	288(10)
C32	2i	0,1898(5)	0,2678(6)	0,2120(3)	342(11)
F31	2i	0,2412(4)	0,2875(4)	0,2834(2)	437(9)
F32	2i	0,2033(4)	0,1636(5)	0,1763(2)	691(17)
Cl31	2i	0,0193(2)	0,2207(2)	0,1913(1)	640(5)
N(1A)	2i	0,2176(4)	0,3319(5)	-0,0323(2)	282(8)
N(2A)	2i	0,3691(4)	0,5773(5)	-0,0149(3)	292(9)
C(1A)	2i	0,1401(5)	0,2095(5)	-0,0387(3)	333(11)
H1A	2i	0,0945	0,1871	-0,0067	0,04
C(2A)	2i	1/8(6)	0,1157(6)	-0,0908(3)	394(13)
H2A	2i	0,0696	0,0321	-0,0943	0,047
C(3A)	2i	0,1939(6)	0,1495(7)	-0,1368(4)	449(15)
H3A	2i	0,1849	0,0884	-0,1727	0,054
C(4A)	2i	0,2764(6)	0,2733(7)	-0,1304(4)	421(14)
H4A	21	0,3251	0,2966	-0,161	0,051
C(5A)	21	0,2862(5)	0,3645(6)	-0,0770(3)	315(11)
C(6A)	2i	0,3723(5)	0,5006(6)	-0,0672(3)	306(10)
C(7A)	2i	0,4519(6)	0,5456(7)	-0,1086(4)	390(13)
H5A	21	0,4529	0,4912	-0,1441	0,047
C(8A)	2i	0,5310(6)	0,6759(7)	-0,0951(4)	417(14)
H6A	21	0,5847	0,7095	-0,1222	0,05
C(9A)	21	0,5276(5)	0,7525(6)	-0,0416(4)	380(13)
H(A	21	0,5795	0,8388	-0,0314	0,046
C(10A)	21	0,4460(5)	0,6998(6)	-0,0031(4)	363(12)
H8A	21	0,4446	0,7528	0,0332	0,044
041	21	0,3233(4)	0,4997(4)	0,4231(2)	338(8)
042	21	0,2763(3)	0,3237(4)	0,4603(2)	310(8)
C41	21	0,2489(4)	0,3953(5)	0,4296(3)	259(9)
C42	21	0,0986(5)	0,3480(6)	0,3954(4)	379(13)
F'41	21	0,0736(4)	0,3977(4)	0,3409(3)	550(12)
F42	21	0,0302(3)	0,2239(4)	0,3687(3)	532(11)
CI41	21	0,0410(2)	0,3899(3)	0,4604(1)	671(6)
O51	21	0,5698(4)	0,5503(4)	0,3888(2)	339(8)
O52	2i	0,5180(4)	0,3812(5)	0,4308(2)	373(9)
C51	2i	0,5527(4)	0,4442(5)	0,3880(3)	274(10)
C52	2i	0,5816(6)	0,3825(6)	0,3289(3)	361(11)
F51	2i	0,5856(5)	0,4362(6)	0,2748(2)	612(12)

		Tabelle I	3.15 – Fortset	zung	
Atom	Lage	x/a	y/b	z/c	U _{äq} / U _{iso}
F52	2i	0.4867(5)	0.2610(5)	0.3002(3)	651(13)
C151	2i	0,7345(2)	0.3869(2)	0.3648(1)	618(5)
061	21 2i	0,7035(3)	0.8291(4)	0,3040(1) 0.4358(2)	290(7)
062	21	0,7000(0) 0.6347(4)	0.8516(5)	0.3258(2)	418(10)
C61	21	0,0347(4) 0.7160(5)	0,8310(5)	0,3230(2) 0.2777(2)	915(10)
C61	21	0,7100(3) 0.8407(5)	0,8493(3) 0.8754(6)	0,3777(3)	310(10) 399(19)
C02 E61	21	0,0497(3)	0,8754(0)	0,3067(3)	505(15)
F01	21	0,0700(4)	0,9490(5)	0,3241(3)	$\frac{360(12)}{700(20)}$
F62	21	0,9502(4)	0,9332(7)	0,4306(3)	790(20)
C161	21	0,8374(2)	0,7335(2)	0,3305(1)	577(5)
N(1B)	2i	0,6427(4)	0,8817(5)	0,5709(2)	282(8)
N(2B)	2i	0,3899(4)	0,7754(5)	0,4828(3)	325(10)
C(1B)	2i	0,7677(5)	0,9298(6)	0,6153(3)	352(12)
H1B	2i	0,8197	0,8994	0,6029	0,042
C(2B)	2i	0,8235(6)	1,0222(6)	0,6785(4)	406(13)
H2B	2i	0,9104	105.230	0,7083	0,049
C(3B)	2i	0,7473(6)	1,0687(7)	0,6965(4)	467(15)
HÌBÍ	2i	0,7822	113.120	0,7386	0,056
C(4B)	2i	0,6186(6)	1,0214(7)	0.6511(4)	423(14)
H4B ´	2i	0,5659	105.190	0,6624	0,051
C(5B)	2i	0.5682(5)	0.9278(5)	0.5885(3)	297(10)
C(6B)	2i	0.4302(5)	0.8718(5)	0.5386(3)	299(10)
C(7B)	2i	0.3483(6)	0.9200(7)	0.5493(4)	404(13)
H5B	2i	0.3789	0.9877	0.5877	0.048
C(8B)	2i	0.2187(6)	0.8616(7)	0.4996(4)	432(14)
H6B	2i	0.1611	0.89	0.5051	0.052
C(9B)	2i	0.1763(6)	0.7619(7)	0.4423(4)	395(13)
H7B	2i	0,0908	0 7233	0,4089	0.047
C(10B)	2i	0.2639(5)	0.7201(6)	0,1000 0,4354(3)	334(11)
H8B	2i	0.2352	0.6524	0 3974	0.04
O(1E)	2i	0.5748(5)	0.8788(5)	0.1898(3)	489(12)
H1E	21	0,5740(5) 0.5747	0.8673	0,1030(3)	0.073
C(1F)	21	0,5141 0,5834(10)	0,0015 0.0046(12)	0,2230 0.1873(0)	1470(00)
	21	0,3634(19) 0.5852	100.3940(12)	0,1373(9) 0.1307	1470(90) 0.177
H12F	21	0,0002	0.0844	0,1397	0,177 0.177
C(2E)	21	0,4300	1,0094(17)	0,100 0.0007(10)	0,177 0100(150)
	21	0,008(3)	1,0964(17)	0,2207(12) 0.2154	2120(100)
121E 122E	21	0,0407	110.020	0,2104	0,317
П22Е ЦээЕ	21	0,7554	111.910	0,2200 0.2771	0,317
(123E)	∠1 0:	0,0701	109.000	0,2111	0,017
O(1W)	21	0,4214(4)	0,6784(4)	0,3496(2)	33U(8)
O(2W)	21	0,3938(3)	0,6304(4)	0,1415(2)	309(8)
HIIW	21	0,351(9)	0,618(9)	0,304(3)	0,12(5)
H12W	2i	0,481(6)	0,745(6)	0,332(4)	0,05(2)

Tabelle B.15 – Fortsetzung

Tabelle B.16: Anisotrope Auslenkungsparameter	$U_{ij} \ [\mathrm{pm}^2$] mit	Standardabw	eichungen
für $Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)$	$)_2 \cdot C_2 H_5 O$	H.		

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Gd1	224 9(11)	263 3(13)	225.4(13)	66 6(8)	58 3(8)	145 4(8)
Gd2	224.3(11) 224.2(11)	281.0(13)	236.5(13)	84.4(9)	88.0(8)	156.0(9)
011	328(16)	275(19)	380(20)	106(15)	90(15)	185(14)
012	275(16)	340(20)	440(20)	48(17)	84(15)	143(14)
C11	270(20)	280(20)	270(20)	88(18)	95(17)	143(17)
C12	420(30)	300(30)	560(40)	150(30)	120(30)	200(20)
F11	1080(50)	240(30)	5700(200)	600(60)	2270(100)	250(30)
F12	1010(50)	710(50)	2660(130)	1010(70)	-470(60)	200(40)
Cl11	$958(19)^{-1}$	474(15)	1770(40)	-257(18)	$680(20)^{\prime}$	164(12)
O21	460(20)	470(30)	$281(19)^{-1}$	87(17)	31(16)	311(19)
O22	305(16)	390(20)	350(20)	39(16)	140(15)	199(15)
C21	290(20)	320(30)	220(20)	108(18)	102(17)	168(17)
C22	470(30)	730(50)	270(30)	110(30)	110(20)	440(30)
F21	650(20)	1100(50)	240(17)	40(20)	17(18)	600(30)
F22	1030(40)	1140(50)	520(30)	-10(30)	140(30)	930(40)
Cl21	601(11)	1740(30)	990(20)	980(20)	555(13)	617(16)
031	347(16)	316(19)	258(17)	74(14)	69(14)	194(14)
O32	420(20)	380(20)	261(19)	44(16)	36(16)	128(16)
C31 C22	300(20)	330(30)	280(20)	79(19)	(9(18)) (120(20))	200(18) 100(20)
C32 F31	400(20) 560(20)	560(30) 560(30)	230(20) 243(16)	90(20) 207(16)	150(20) 160(15)	190(20) 200(17)
F32	520(20)	710(30)	420(20)	207(10) 380(20)	37(10)	$_{-10(20)}$
Cl31	520(20) 593(10)	579(12)	573(11)	117(9)	223(9)	144(8)
N(1A)	323(18)	350(20)	260(20)	130(17)	128(16)	218(17)
N(2A)	275(17)	360(20)	300(20)	139(17)	122(16)	180(16)
C(1A)	350(20)	320(30)	360(30)	90(20)	80(20)	210(20)
$\tilde{C}(2A)$	420(30)	310(30)	440(30)	50(20)	60(20)	230(20)
$\dot{C}(3A)$	490(30)	520(40)	380(30)	-10(30)	100(30)	350(30)
C(4A)	440(30)́	480(40)	390(30)	$50(30)^{-1}$	120(20)	290(30)
C(5A)	320(20)	400(30)	290(20)	100(20)	$62(19)^{'}$	250(20)
C(6A)	310(20)	440(30)	290(20)	130(20)	89(19)	280(20)
C(7A)	460(30)	550(40)	410(30)	220(30)	250(30)	370(30)
C(8A)	450(30)	590(40)	460(30)	290(30)	310(30)	340(30)
C(9A)	340(20)	450(30)	480(40)	250(30)	260(20)	210(20)
C(10A)	300(20)	350(30)	440(30)	120(20)	110(20)	160(20)
041	301(16)	340(20)	400(20)	101(16) 142(16)	137(15) 190(14)	172(14)
042 C41	281(10) 221(18)	420(20) 250(20)	323(19) 240(20)	143(10)	120(14) 82(16)	233(13) 168(17)
C41 C42	221(10) 230(20)	360(30)	240(20) 500(30)	$\frac{98(18)}{130(20)}$	40(20)	108(17) 157(10)
E41	417(18)	560(30)	590(30)	240(20)	-27(17)	253(17)
F42	327(16)	370(20)	670(30)	84(18)	4(16)	89(14)
Cl41	446(8)	910(17)	854(15)	244(12)	361(9)	420(9)
O51	378(18)	360(20)	360(20)	110(16)	152(16)	230(16)
O52	360(18)	500(30)	360(20)	233(19)	203(16)	229(17)
C51	242(18)	310(20)	270(20)	$43(18)^{'}$	$80(17)^{\prime}$	150(17)
C52	430(30)	420(30)	280(30)	80(20)	160(20)	230(20)
F51	950(30)	850(40)	360(20)	240(20)	360(20)	630(30)
F52	620(30)	430(30)	750(30)	-100(20)	230(20)	197(19)
Cl51	579(9)	892(16)	670(12)	192(11)	322(9)	543(10)
O61	296(15)	330(20)	250(17)	78(14)	118(13)	150(13)
062	382(19)	530(30)	340(20)	181(19)	120(17)	211(18)
C61 C62	310(20)	300(30)	320(30)	60(20)	129(19)	128(18) 140(20)
002 F61	540(20) 660(20)	400(30) 500(20)	320(30) 720(20)	10(20) 310(20)	190(20) 530(20)	140(20) 200(20)
F62	305(20)	1240(50)	140(30)	310(20) 190(20)	110(17)	290(20)
Cl61	505(17) 546(0)	575(11)	777(13)	-120(30) 165(9)	354(0)	348(8)
N(1R)	286(18)	330(20)	290(20)	97(17)	129(16)	177(16)
N(2B)	309(19)	420(30)	330(20)	150(20)	111(17)	238(18)
C(1B)	310(20)	380(30)	370(30)	80(20)	110(20)	180(20)
$\tilde{C}(2B)$	340(20)	360(30)	420(30)	70(20)	80(20)	120(20)
C(3B)	460(30)	440(40)	380(30)	-10(30)	$12\dot{0}(3\dot{0})$	170(30)

 $\frac{440(40)}{\text{Fortsetzung auf der nächsten Seite}} \frac{440(30)}{-10(30)}$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tabelle $B.16 - Fortsetzung$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2						
$\begin{array}{cccccccc} C(4B) & 470(30) & 400(30) & 430(30) & 40(30) & 170(30) & 24\\ C(5B) & 370(20) & 280(30) & 330(30) & 110(20) & 190(20) & 19\\ C(6B) & 350(20) & 320(30) & 360(30) & 130(20) & 190(20) & 23\\ C(7B) & 420(30) & 400(30) & 580(40) & 180(30) & 300(30) & 28\\ C(8B) & 420(30) & 470(40) & 610(40) & 190(30) & 260(30) & 33\\ \end{array}$							
$\begin{array}{ccccccc} C(5B) & 370(20) & 280(30) & 330(30) & 110(20) & 190(20) & 19\\ C(6B) & 350(20) & 320(30) & 360(30) & 130(20) & 190(20) & 23\\ C(7B) & 420(30) & 400(30) & 580(40) & 180(30) & 300(30) & 28\\ C(8B) & 420(30) & 470(40) & 610(40) & 190(30) & 260(30) & 33\\ \end{array}$	0(20)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6(19)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(20)						
C(8B) 420(30) 470(40) 610(40) 190(30) 260(30) 33	0(20)						
	0(30)						
C(9B) 350(20) 470(30) 500(30) 200(30) 190(20) 27	0(20)						
$C(10\dot{B}) = 290(20) = 340(30) = 430(30) = 130(20) = 120(20) = 20$	0(19)						
O(1E) 560(30) 400(30) 390(20) 132(19) 120(20) 14	8(19)						
C(1E) 1970(150) 500(70) 1220(110) 20(70) -570(110) 66	0(90)						
C(2E) 4100(400) 390(80) 1550(160) 180(90) 1100(200) 83	0(160)						
O(1W) = 298(16) = 330(20) = 330(20) = 80(15) = 68(15) = 15	$4(14)^{\prime}$						
O(2W) = 276(15) = 340(20) = 293(18) = 82(14) = 82(13) = 14	6(13)						

B.9 $Gd_2(ClH_2CCOO)_6(bipy)_2$

Tabelle B.17: Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslenkungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm²] mit
Standardabweichungen für $\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$.

Atom	Lage	x/a	y/b	z/c	$U_{\ddot{a}q} / U_{iso}$
Gd	2i	0.5963(1)	0.6695(1)	0.8844(1)	296(1)
N(1A)	2i	0.5243(5)	0.9454(5)	0,0044(1) 0,7646(4)	372(11)
N(2A)	2i	0,0210(0) 0.7126(5)	0.7826(6)	0.6700(4)	399(11)
C(1A)	2i	0.4241(7)	1.0253(8)	0.8088(6)	526(16)
HIA	2i	0.3855	0.9804	0.888	0.063
C(2A)	2i	0.3752(9)	1.1689(9)	0.7446(8)	710(20)
HÌA Í	2i	0.3077	122,070	0,7801	0.086
C(3A)	2i	0.4288(10)	1,2329(10)	0.6271(8)	750(20)
HÌA Í	2i	0,3957	132,890	0,58	0,09
C(4A)	2i	0,5308(8)	1,1559(8)	0,5790(6)	543(17)
HÀA É	2i	0,5681	119,950	0,4992	0,065
C(5A)	2i	0,5777(6)	1,0152(7)	0,6481(5)	381(13)
C(6A)	2i	0,6895(6)	0,9237(7)	0,6012(5)	409(13)
C(7A)	2i	0,7648(9)	0,9864(9)	0,4910(6)	670(20)
H5A	2i	0,7482	108,600	0,4445	0,079
C(8A)	2i	0,8653(9)	0,8971(11)	0,4520(7)	770(30)
H6A	2i	0,9192	0,9365	0,3797	0,093
C(9A)	2i	0,8856(8)	0,7502(11)	0,5191(6)	730(30)
H7A	2i	0,9497	0,6878	0,4914	0,089
C(10A)	2i	0,8096(7)	0,6968(9)	0,6287(6)	549(18)
H8A	2i	0,8247	0,5971	0,6757	0,064
011	2i	0,6607(4)	0,4537(5)	0,8358(3)	404(9)
012	2i	0,4349(4)	0,7384(5)	1,0245(4)	414(9)
C11	2i	0,6456(6)	0,3204(7)	0,8846(5)	351(13)
C12	2i	0,7269(7)	0,2102(8)	0,8331(6)	485(15)
HII	21	0,6603	0,1662	0,803	0,058
H12	21	0,7749	0,1322	0,8999	0,058
CIII	21	0,8516(2)	0,2828(3)	0,7133(2)	816(7)
021	21	0,7431(5)	0,7959(6)	0,9646(5)	576(13)
022	21	0,8573(5)	0,6253(6)	0,9029(4)	506(11)
C21	21	0,8540(7)	0,7209(8)	0,9492(5)	454(15)
C22	21	0,9898(8)	0,7480(10)	0,9941(7)	640(20)
H21 1199	21	105,100	0,0000	102,310	0,077
H22 Cl91	21	0,9073 1.0754(2)	0,7825 0.8779(4)	100,200	0,077 1949(19)
021	21	1,0734(3)	0,0112(4)	0,0700(3)	1242(13)
031	∠1 2;	0,4099(4)	0,0910(0)	0,1391(4) 1.0779(2)	401(10) 202(0)
032 C21	∠1 2;	0,0233(4) 0.2425(6)	0,4740(3) 0.5021(7)	1,0772(3)	092(9) 262(12)
C32	∠1 2;	0,3433(0)	0,3931(7) 0.5445(10)	0,0117(0) 0.7737(6)	502(15) 610(20)
03≰ H31	21 2i	0,2100(0)	0,5445(10) 0 59/1	0,1131(0)	0.074
H32	21 2i	0.2168	0.4396	0.8179	0.074
Cl31	2i	0.2173(2)	0.5788(3)	0.6163(2)	731(6)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C 4	200.0(15)	212 1(10)	999 E(14)	47.9(19)	(1, 7(0))	51.7(10)
M(1A)	300,0(13)	310,1(19) 330(30)	222,3(14) 350(20)	-47,8(12) 70(20)	41,7(9) 35(10)	-51,7(10)
N(2A)	350(20)	420(30)	300(20)	-10(20) 10(20)	68(10)	-90(20) 10(20)
C(1A)	50(20)	420(30) 440(40)	300(20)	-10(20) 140(30)	130(30)	-10(20) 50(20)
C(1A)	800(60)	440(40) 420(50)	600(50)	-140(30) 160(40)	130(30) 120(40)	-50(50) 160(40)
C(2A)	040(60)	450(50)	640(50)	-100(40)	120(40)	100(40) 120(40)
C(3A)	940(00)	450(50)	400(30)	-40(40)	30(40)	130(40)
C(4A)	280(20)	400(00)	400(30)	0(30)	30(30)	-90(30)
C(3A)	380(30)	400(40)	300(30)	-40(30)	-30(20)	-70(20)
C(0A)	440(30)	400(40)	300(30)	-30(30)	40(20)	-50(30)
C(7A)	840(60)	470(50)	430(40)	80(40)	250(40)	-80(40)
C(8A)	700(50)	860(70)	450(40)	40(40)	340(40)	-80(40)
C(9A)	540(40)	940(70)	450(40)	-80(40)	240(30)	160(40)
C(10A)	450(40)	640(50)	380(30)	-50(30)	110(30)	90(30)
011	480(20)	390(30)	315(19)	-120(20)	134(17)	-76(18)
012	420(20)	390(30)	380(20)	-120(20)	163(17)	-49(18)
CII	330(30)	460(40)	280(30)	-160(30)	10(20)	-50(20)
C12	500(40)	500(40)	460(30)	-220(30)	100(30)	-30(30)
CIII	933(15)	796(16)	627(11)	-276(12)	444(11)	-28(12)
021	440(30)	680(40)	700(30)	-340(30)	-80(20)	-70(20)
022	440(20)	610(30)	460(20)	-170(20)	-53(19)	-40(20)
C21	460(40)	510(50)	300(30)	0(30)	-20(20)	-160(30)
C22	530(40)	760(60)	610(40)	-130(40)	-110(30)	-220(40)
Cl21	995(19)	1500(30)	943(17)	170(18)	-139(15)	-840(20)
O31	510(30)	460(30)	320(20)	-10(20)	-47(18)	-120(20)
O32	410(20)	450(30)	241(18)	-51(18)	-7(15)	-20(18)
C31	380(30)	420(40)	240(20)	-60(30)	-20(20)	-20(20)
C32	590(40)	880(60)	440(40)	-240(40)	-20(30)	-320(40)
Cl31	857(14)	854(16)	548(10)	-279(11)	-240(10)	-96(11)

Tabelle B.18: Anisotrope Auslenkungsparameter U_{ij} [pm²] mit Standardabweichungen für Gd₂(ClH₂CCOO)₆(bipy)₂.

B.10 $Gd_2(C_6H_5COO)_6(bipy)_2$

Tabelle B.19: Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslenkungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm²] mit
Standardabweichungen für $\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$.

Atom	Lage	x/a	y/b	z/c	$U_{\ddot{a}q} \ / \ U_{iso}$
Gd1	40	0.2601(1)	0.2668(1)	0.3350(1)	333(1)
Cd2	40	0,2001(1) 0.2564(1)	0,2008(1) 0.2906(1)	0,5039(1) 0.5031(1)	305(1)
011	40 4e	0,2304(1) 0.1281(2)	0,2300(1) 0.2691(1)	0,3031(1) 0.4072(1)	506(5)
012	40 4e	0.0968(1)	0.2675(1)	0,4072(1) 0,4946(1)	489(5)
C11	4e	0.0819(2)	0.2421(2)	0,4514(1)	405(6)
C12	4e	0.0055(2)	0.1745(2)	0.4523(1)	407(6)
C13	4e	-0.0215(2)	0.1511(2)	0.4067(1)	565(8)
H11	4e	0,0058	0,1789	0.3751	0.068
C14	4e	-0,0899(3)	0,0857(3)	0,4079(2)	722(11)
H12	4e	-0,108	0,0702	0,377	0,087
C15	4e	-0,1299(3)	0,0448(3)	0,4536(2)	827(13)
H13	4e	-0,1754	0,0012	0,4541	0,099
C16	4e	-0,1038(3)	0,0673(3)	0,4988(2)	959(16)
H14	4e	-0,1314	0,0388	0,5302	0,115
C17	4e	-0,0359(3)	0,1327(3)	0,4987(1)	668(10)
H15	4e	-0,0187	0,148	0,5299	0,08
021	4e	0,4166(1)	0,2803(1)	0,4502(1)	463(5)
022 C21	4e	0,3990(2)	0,2787(2)	0,3079(1)	308(3)
C21 C22	4e 4e	0,4488(2) 0.5566(2)	0,2743(2) 0.2614(2)	0,4010(1) 0.2817(1)	300(0) 264(5)
C22	4e 4o	0,5500(2) 0.6136(2)	0,2014(2) 0.2405(2)	0,3617(1) 0.4165(1)	304(3) 475(7)
U23 H91	40	0,0130(2) 0.5855	0,2403(2) 0.234	0,4103(1) 0.4523	473(7)
C24	40	0,3333 0.7131(2)	0,234 0.2202(2)	0,4525 0.3070(2)	615(9)
H22	40 4e	0.7516	0,2232(2) 0.2146	0,3373(2) 0.421	0.074
C25	4e	0.7546(2)	0.2400(3)	0.3444(2)	688(11)
H23	4e	0.8211	0.2329	0.3319	0.083
C26	4e	0,6992(3)	0,2606(3)	0,3111(2)	671(10)
H24	4e	0,7279	0,268	0,2755	0,081
C27	4e	0,5993(2)	0,2711(2)	0,3286(1)	522(7)
H25	4e	0,5617	0,2845	0,3048	0,063
O31	4e	0,2610(1)	0,4085(1)	0,4466(1)	444(4)
O32	4e	0,2590(2)	0,4125(1)	0,3615(1)	500(5)
C31	4e	0,2544(2)	0,4477(2)	0,4054(1)	365(5)
C32	4e	0,2391(2)	0,5442(2)	0,4081(1)	373(5)
C33	4e	0,2110(3)	0,5851(2)	0,4563(1)	554(8)
H31 C24	4e	0,2047	0,5532	0,4872	0,007
U34 H32	4e 4o	0,1921(3) 0.1715	0,0754(2)	0,4591(2) 0.4018	0.086
C35	40	0,1715 0.2035(3)	0,7 0.7210(2)	0,4310 0.4142(2)	725(11)
H33	4e	0.1921	0.7803	0.4142(2)	0.087
C36	4e	0.2320(3)	0.6811(2)	0.3654(2)	724(10)
H34	4e	0.2392	0.7135	0.3346	0.087
C37	4e	0.2495(2)	0.5935(2)	0.3626(1)	561(8)
H35	4e	0,2687	0,567	0,3298	$0,067^{'}$
O41	4e	0,2603(2)	0,1596(1)	0,4579(1)	449(4)
O42	4e	0,2681(1)	0,1279(1)	0,3739(1)	432(4)
C41	4e	0,2824(2)	0,1105(2)	0,4187(1)	337(5)
C42	4e	0,3293(2)	0,0252(2)	0,4258(1)	347(5)
C43	4e	0,3664(2)	0,0120(2)	0,4698(1)	477(7)
H41	4e	0,3616	0,0554	0,4951	0,057
C44	4e	0,4109(3)	-0,0660(2)	0,4763(2)	646(9) 0.079
H42 C45	4e	0,4357	-0,0749	0,506	0,078
040 H42	4e 4e	0,4164(3)	-0,1298(2)	0,4392(2) 0.4497	004(9)
C46	4e	0,3819(2)	-0,1178(2)	0.3954(1)	579(8)

		Tabelle E	3.19 - Fortset	zung	
Atom	Lage	x/a	y/b	z/c	$U_{\ddot{a}q} / U_{iso}$
H44	$4\mathrm{e}$	0,3866	-0,1617	0,3705	0,07
C47	4e	0,3378(2)	-0,0399(2)	0,3883(1)	444(6)
H45	4e	0,3139	-0,0313	0,3583	$0,053^{'}$
O51	4e	0,1726(2)	0,1861(1)	0,2830(1)	512(5)
O52	4e	0,1253(2)	0,3213(1)	0,2988(1)	573(6)
C51	4e	0,1167(2)	0,2484(2)	0,2787(1)	433(6)
C52	4e	0,0395(2)	0,2354(2)	0,2488(1)	458(7)
C53	4e	0,0209(3)	0,1541(3)	0,2316(1)	648(9)
ПЭ1 С54	4e 4o	0,055 0.0401(3)	0,1003 0.1442(4)	0,2394 0.2024(2)	0,078 865(14)
H52	4e	-0.0627	0,1442(4) 0.0896	0,2024(2) 0 191	0.104
C55	4e	-0.0986(3)	0.2157(4)	0.1904(2)	858(15)
H53	4e	-0,1438	0,2091	0,1699	0,103
C56	4e	-0,0817(3)	0,2957(4)	0,2084(2)	820(14)
H54	4e	-0,1163	0,3433	0,2008`́	0,098
C57	4e	-0,0132(2)	0,3059(3)	0,2378(1)	600(9)
H55	4e	-0,0021	0,3605	0,2504	0,072
O61	4e	0,3403(1)	0,1938(1)	0,5536(1)	456(5)
O62	4e	0,1877(2)	0,2237(2)	0,5887(1)	540(5)
C61	4e	0,2641(2)	0,1802(2)	0,5884(1)	394(6)
C62	4e	0,2619(2)	0,1110(2)	0,6289(1)	426(6)
C63	4e	0,3340(3)	0,0485(2)	0,6208(1)	536(7)
П01 С64	4e 4e	0,3644 0.2206(2)	0,0303 0.0168(2)	0,3907 0.6578(2)	0,004
U04 H62	4e 4e	0,3300(3) 0.3778	-0.0108(2)	0,0578(2) 0.652	0.084
C65	4e	0.2579(4)	-0.0181(3)	0.7027(2)	811(12)
H63	4e	0.2566	-0.0616	0.7276	0.097
C66	4e	0.1872(3)	0.0441(3)	0.7113(2)	785(12)
H64	4e	0,1381	0,043	0,742	0,094
C67	4e	0,1891(2)	0,1084(2)	0,6744(1)	587(8)
H65	4e	0,1409	0,1504	0,6802	0,07
N(1A)	4e	0,3996(2)	0,1884(2)	0,2666(1)	438(5)
N(2A)	4e	0,3386(2)	0,3474(2)	0,2490(1)	492(6)
C(1A)	4e	0,4347(3)	0,1126(2)	0,2785(1)	579(8)
HIA	4e 4e	0,4025 0.5154(2)	0,085 0.0726(2)	0,3094 0.2480(1)	0,07 702(10)
H_{2A}	4e 4e	0,5154(3) 0.5374	0,0720(2) 0.02	0,2480(1) 0.258	0.02(10)
C(3A)	4e	0.5623(3)	0.1135(3)	0.2023(2)	788(12)
H3A	4e	0.6174	0.0888	0.1807	0.095
C(4A)	4e	0,5274(3)	0,1903(3)	0,1887(1)	675(10)
HÀA Í	4e	0,558	0,218	0,1576	0,081
C(5A)	4e	0,4458(2)	0,2272(2)	0,2217(1)	441(6)
C(6A)	4e	0,4077(2)	0,3130(2)	0,2104(1)	462(7)
C(7A)	4e	0,4429(3)	0,3555(3)	0,1627(1)	639(9)
H5A G(aA)	4e	0,4897	0,3295	0,1363	0,077
C(8A)	4e	0,4078(3)	0,4358(3)	0,1551(2)	752(12)
C(0A)	4e 4o	0,4303 0.3388(3)	0,400 0.4728(2)	0,1234 0.1040(2)	0,09 721(12)
H7A	4e 4e	0,3366(3) 0.3156	0,4728(2) 0.5281	0,1949(2) 0.191	0.087
C(10A)	40 4e	0,3130 0,3039(3)	0.4259(2)	0.2412(1)	618(9)
H8A	4e	0.2551	0.4499	0.2412(1) 0.2675	0.074
N(1B)	4e	0.1629(2)	0.4178(2)	0.5602(1)	399(5)
N(2B)	4e	0.3536(2)	0.3927(2)	0.5494(1)	421(5)
C(1B)	4e	0,0678(2)	0,4298(2)	0,5642(1)	591(9)
HÌBÍ	4e	0,0337`́	0,3874	0,5508	$0,071^{-1}$
C(2B)	4e	0,0178(2)	0,5021(3)	0,5874(2)	755(12)
H2B	4e	-0,0481	0,5081	0,5889	0,091
C(3B)	4e	0,0664(3)	0,5645(3)	0,6078(2)	708(10)
H3B	4e	0,0343	0,6135	0,6238	0,085
U(4B) H4P	4e 4e	0,1038(2) 0.1085	0,5533(2)	0,6043(1)	0068 0068
П4Ď С(5D)	4e 4e	0,1960	0,090	0,018	0,000
C(0D)	40 40	0,2100(2) 0.3163(2)	0,4193(2)	0,3603(1) 0.5748(1)	403(0) 305(6)
C(7B)	4e	0.3742(2)	0, 4047(2) 0.5222(2)	0.5950(2)	599(8)
H5B	4e	0.3471	0.5716	0.613	0.072
C(8B)	4e	0,4719(3)	0,5054(3)	0,5882(2)	691(10)
H6B	4e	0,5115	0,544	0,6009	0,083
C(9B)	4e	0,5097(2)	0,4320(3)	0,5628(2)	614(9)
ΗŻΒ΄	4e	0.5754	0.4194	0.5579	0.074^{\prime}

Atom	Lage	x/a	y/b	z/c	U _{äq} / U _{iso}
C(10B)	4e	0.4486(2)	0.3766(2)	0.5443(1)	527(7)
H8B	4e	0,4743	0,3258	0,5275	0.063

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
Cd1	375 0(7)	204.6(7)	3/3 0(7)	0.7(5)	111 4(5)	24 5(5)
Cda	373,0(7) 381.6(7)	294,0(7)	343,0(7) 3015(7)	-0, (0)	-111,4(0)	24,3(3)
Gu2 ∩11	201,0(7) 406(11)	321,0(7)	560(19)	-29,0(4)	-40,1(0)	$\frac{0,2(3)}{4(0)}$
011	400(11) 331(10)	499(13) 574(13)	560(13) 560(12)	$\frac{2(10)}{182(10)}$	0(9)	-4(9) 18(0)
C11	268(12)	411(15)	533(17)	-86(12)	-36(3)	-10(9) -28(11)
C12	200(12) 272(12)	411(10) 425(15)	500(17)	-30(12) 131(12)	-50(12) 55(11)	$\frac{20(11)}{42(11)}$
C12 C13	$\frac{212(12)}{467(16)}$	423(13)	509(13) 583(18)	-131(12) 141(16)	-33(11) 160(14)	42(11) 0(15)
C14	500(10)	800(20)	920(30)	-390(20)	-277(19)	7(10)
C15	520(20)	760(30)	1130(30)	-300(20)	-40(20)	-260(20)
C16	830(30)	1040(30)	880(30)	-20(30)	40(20)	-550(30)
C17	630(20)	770(30)	555(19)	-79(17)	-32(16)	-255(19)
021	332(10)	580(13)	424(11)	-21(9)	18(8)	39(9)
022	405(11)	636(14)	508(12)	-68(10)	-157(9)	30(10)
$\tilde{C}21$	339(13)	315(14)	432(14)	-23(10)	-61(11)	-27(10)
C22	322(13)	313(13)	430(14)	-32(11)	-32(10)	-21(10)
C23	421(15)	478(17)	518(17)	-31(13)	-89(13)	66(13)
C24	440(17)	600(20)	850(30)	-95(18)	-242(17)	125(15)
C25	346(16)	630(20)	990(30)	-150(20)	46(18)	-2(15)
C26	484(19)	760(30)	630(20)	-62(18)	156(16)	-32(18)
C27	448(16)	600(20)	475(16)	-26(14)	-26(13)	-4(14)
O31	501(11)	352(10)	477(11)	52(8)	-109(9)	35(9)
032	714(14)	331(11)	473(11)	-43(9)	-173(10)	-1(10)
C31	312(12)	330(14)	448(14)	4(11)	-75(10)	-16(10)
C32	308(12)	309(13)	506(15)	18(11)	-103(11)	-20(10)
C33 C24	710(20)	410(17)	541(18)	-34(14)	-150(15)	80(15)
C34 C25	940(30) 850(20)	420(20) 205(18)	770(20)	-103(17) 15(17)	-160(20)	133(19) 04(17)
C36	800(30)	$\frac{303(18)}{440(20)}$	790(30) 790(20)	168(18)	-90(20)	$\frac{94(17)}{40(10)}$
C37	660(20)	406(17)	582(18)	9(14)	-72(15)	18(15)
041	533(11)	356(11)	461(10)	-125(8)	-122(9)	66(9)
042	555(11)	354(10)	387(10)	45(8)	-107(8)	33(9)
C41	309(12)	313(13)	376(13)	21(10)	-55(10)	-40(10)
C42	345(12)	315(13)	356(12)	31(10)	-33(10)	-30(10)
C43	536(16)	452(17)	472(15)	17(13)	$-17\dot{4}(13)$	$26(14)^{\prime}$
C44	760(20)	560(20)	680(20)	118(17)	-294(18)	96(18)
C45	720(20)	421(19)	860(30)	84(17)	-202(19)	167(17)
C46	670(20)	345(16)	680(20)	-71(14)	-53(16)	60(15)
C47	490(16)	394(16)	422(14)	-26(11)	-53(12)	19(12)
O51	605(13)	447(12)	564(12)	-80(10)	-302(10)	107(10)
O52	634(13)	427(12)	750(15)	-61(11)	-351(12)	115(11)
C51 C52	439(15) 406(15)	4(1(1))	408(14) 207(12)	$\frac{22(12)}{55(12)}$	-133(12)	$\frac{30(13)}{16(12)}$
C52	400(10)	760(20)	527(15) 500(20)	112(18)	-69(11) -260(17)	10(13) 10(18)
C54	770(30)	1200(30)	700(20)	-112(10) -180(30)	-209(17) -320(20)	-160(30)
C55	520(20)	1560(50)	560(20)	150(30)	-272(18)	-120(30)
C56	530(20)	1220(40)	780(30)	400(30)	-300(20)	-50(20)
C57	508(17)	730(20)	606(19)	194(17)	-211(15)	10(17)
O61	412(10)	542(12)	410(10)	56(9)	-84(8)	$14(9)^{'}$
O62	511(12)	639(15)	410(11)́	94(10)	$18(9)^{'}$	130(10)
C61	452(14)	416(15)	325(12)	-30(11)	-113(11)	-11(12)
C62	524(16)	401(15)	380(14)	0(11)	-161(12)	-75(13)
C63	660(20)	486(18)	490(16)	-23(14)	-201(15)	17(16)
C64	980(30)	490(20)	670(20)	36(17)	-290(20)	90(20)
C65	1170(40)	600(20)	690(20)	240(20)	-270(20)	-110(20)
000	890(30)	810(30)	000(20)	270(20) 101(15)	-70(20)	-150(20)
N(1A)	509(19)	420(20)	494(17) 360(11)	$\frac{101(10)}{42(10)}$	-((14))	-40(17) 19(11)
N(2A)	726(17)	341(13)	440(13)	42(10) 47(10)	-33(10)	-23(12)
C(1A)	680(20)	465(19)	495(17)	64(14)	75(15)	106(16)
$\tilde{C}(2A)$	800(20)	540(20)	650(20)	-44(17)	75(18)	196(19)
$\widetilde{C}(3A)$	840(30)	690(30)	640(20)	-77(19)	210(20)	170(20)

Tabelle B.20: Anisotrope Auslenkungsparameter U_{ij} [pm²] mit Standardabweichungen
für $Gd_2(C_6H_5COO)_6(bipy)_2$.

Tabelle B.20 – Fortsetzung						
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C(4A)	790(20)	650(20)	439(17)	-4(16)	155(16)	-74(19)
C(5A)	551(17)	433(16)	331(13)	$4(11)^{'}$	-85(12)	-104(13)
C(6A)	573(17)	456(16)	392(14)	59(12)	-182(13)	-148(14)
C(7A)	700(20)	730(20)	490(17)	206(17)	-155(16)	-184(19)
C(8A)	890(30)	760(30)	660(20)	370(20)	-280(20)	-280(20)
C(9A)	1080(30)	436(19)	820(30)	245(18)	-570(30)	-190(20)
C(10A)	950(30)	401(18)	586(19)	52(14)	-353(19)	18(17)
N(1B)	342(11)	443(13)	394(11)	-76(10)	-47(9)	-15(10)
N(2B)	348(11)	468(14)	452(12)	-77(10)	-101(9)	2(10)
C(1B)	372(15)	660(20)	720(20)	-222(17)	-86(14)	9(15)
C(2B)	395(17)	830(30)	1020(30)	-350(20)	-115(18)	151(18)
C(3B)	580(20)	600(20)	900(30)	-270(20)	-86(18)	195(18)
C(4B)	575(19)	444(18)	650(20)	-186(15)	-91(15)	32(15)
C(5B)	416(14)	399(15)	385(14)	-28(11)	-74(11)	-26(12)
C(6B)	428(14)	373(15)	387(13)	-2(11)	-98(11)	-53(11)
C(7B)	590(19)	400(17)	860(20)	-90(16)	-286(18)	-52(15)
C(8B)	600(20)	610(20)	960(30)	-20(20)	-375(19)	-195(18)
C(9B)	388(16)	720(20)	780(20)	13(19)	-239(15)	-72(16)
$C(10\dot{B})$	372(14)	630(20)	606(18)	-123(15)	-159(13)	46(14)

C Abkürzungsverzeichnis

aniso	anisotrop	hypy	4(1H)-Pyridon
Aufl.	Auflage	Inc.	incorporated
Bd.	Band	IPDS	Imaging-Plate-Diffraction-System
beob	beobachtet	iso	isotrop
ber	berechnet	IUPAC	International Union of Pure and
bipy	2,2'-Bipyridin		Applied Chemistry
bzw.	beziehungsweise	$J_{\rm ex}$	Autauschparameter
CGS	centimètre gramme seconde	Κ	Kelvin
cm	Zentimeter	ΚZ	Koordinationszahl
d.h.	das heißt	lambda	Wellenlänge
DMF	Dimethylformamid	Ln	Lanthanide
e	Elementarladung;	$\mathbf{m}\mathbf{m}$	Millimeter
	Basis der natürlichen Logarithmen	MRI	magnetic resonance imaging
eff	effektiv	Oe	Oersted
emu	electromagnetic unit	phen	1,10-Phenanthrolin
etc.	et cetera	$_{\rm pm}$	Picometer
\exp	experimentell	PSD	position sensitive detector
Fa.	Firma	R-Wert	Zuverlässigkeitsfaktor
G	Gauß		$(\mathrm{R}=\mathrm{residuals})$
g	Gramm	s.	siehe
Gl.	Gleichung	sog.	sogenannte
GmbH	Gesellschaft mit beschränkter	SQUID	Superconducting Quantum
	Haftung		Interference Device
GooF	Goodness of Fit	terpy	2,2':6',2"-Terpyridin
HEBz	4-Ethoxybenzoesäure	theo	theoretisch
hkl	Millersche Indices	vgl.	vergleiche
Hrsg.	Herausgeber	YAG	Yttrium Aluminium Granat
Htmhd	2,2,6,6-Tetramethylheptan- $3,5$ -dion	Ζ	Zahl der Formeleinheiten
	(Dipivaloylmethan)	z.B.	zum Beispiel

C Abkürzungsverzeichnis

D Archivierungsnummern

Weitere Details zu den Kristallstrukturen sind im Cambridge Crystallographic Data Centre (CCDC) hinterlegt¹. In der Tabelle D.1 sind die zugehörigen CCDC-Archivierungsnummern der in dieser Arbeit beschriebenen Verbindungen aufgeführt.

Tabelle D.1: CCDC-Nummern der in dieser Arbeit beschriebenen Verbindungen.

Verbindung	CCDC-Nummer
$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4$	604200
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4$	604198
$\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4$	604199
$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$	604197
$\mathrm{Gd}_2(\mathrm{H}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2{\cdot}2\mathrm{H}_2\mathrm{O}$	629312
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2$	294503
$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$	629311
$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2{\cdot}\mathrm{C}_2\mathrm{H}_5\mathrm{OH}$	285943
$\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$	280805
$\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$	629313

¹Die zugehörigen Dateien im cif-Format können kostenfrei beim Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/conts/retrieving.html) bezogen werden.

D Archivierungsnummern

E Publikationen

- A. ROHDE, D. JOHN, W. URLAND, Z. Kristallogr. 220 (2005) 177.
- D. JOHN, W. URLAND, Z. Anorg. Allg. Chem. 631 (2005) 2635.
- D. JOHN, W. URLAND, Eur. J. Inorg. Chem. (2005) 4486.
- D. JOHN, A. ROHDE, W. URLAND, Z. Naturforsch. 61b (2006) 699.
- D. JOHN, W. URLAND, Z. Anorg. Allg. Chem. 632 (2006) 1768.
- D. JOHN, W. URLAND, Eur. J. Inorg. Chem. (2006) 3503.
- D. JOHN, W. URLAND, Z. Anorg. Allg. Chem. 632 (2006) 1966.

E Publikationen

Tabellenverzeichnis

3.1	Magnetische Größen mit ihren CGS-Einheiten	20
5.1	Verwendete Ausgangssubstanzen	38
6.1	Kristalldaten und Angaben zur Strukturbestimmung von	
	$\mathrm{Gd}_{2}(\mathrm{F}_{3}\mathrm{CCOO})_{6}(\mathrm{hypy})_{4}$.	45
6.2	Ausgewählte interatomare Abstände in pm mit Standardabweichun-	
	gen für	
	$\mathrm{Gd}_{2}(\mathrm{F}_{3}\mathrm{CCOO})_{6}(\mathrm{hypy})_{4}$.	47
6.3	Kristalldaten und Angaben zur Strukturbestimmung von	
	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4.$	51
6.4	Ausgewählte interatomare Abstände in pm mit Standardabweichun-	
	gen für	
	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4.$	53
6.5	Kristalldaten und Angaben zur Strukturbestimmung von	
	$\mathrm{Gd}_{2}(\mathrm{F}_{2}\mathrm{HCCOO})_{6}(\mathrm{hypy})_{4}$.	56
6.6	Ausgewählte interatomare Abstände in pm mit Standardabweichun-	
	gen für	
	$\operatorname{Gd}_2(\operatorname{F}_2\operatorname{HCCOO})_6(\operatorname{hypy})_4$	58
6.7	Kristalldaten und Angaben zur Strukturbestimmung von	
	$\mathrm{Gd}_{2}(\mathrm{Cl}_{2}\mathrm{HCCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2}.$	62

6.8	Ausgewählte interatomare Abstände in pm mit Standardabweichun-	
	gen für	
	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2.$	64
6.9	Kristalldaten und Angaben zur Strukturbestimmung von	
	$\mathrm{Gd}_2(\mathrm{H}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2 \cdot 2\mathrm{H}_2\mathrm{O}. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	66
6.10	Ausgewählte interatomare Abstände in pm mit Standardabweichun-	
	gen fur	
	$\operatorname{Gd}_2(\operatorname{H}_3\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{hypy})_2 \cdot 2\operatorname{H}_2\operatorname{O}.$	68
6.11	Kristalldaten und Angaben zur Strukturbestimmung von	
	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2$	71
6.12	Ausgewählte interatomare Abstände in pm mit Standardabweichun-	
	gen für	
	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2$.	73
6.13	Kristalldaten und Angaben zur Strukturbestimmung von	
	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2.$	76
6.14	Ausgewählte interatomare Abstände in pm mit Standardabweichun-	
	gen für $\operatorname{Gd}_2(\operatorname{Cl}_2\operatorname{HCCOO})_6(\operatorname{C}_2\operatorname{H}_5\operatorname{OH})_2(\operatorname{bipy})_2$	78
6.15	Kristalldaten und Angaben zur Strukturbestimmung von	
	$Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH.$	81
6.16	Ausgewählte interatomare Abstände in pm mit Standardabweichun-	
	gen für $\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2 \cdot \operatorname{C}_2\operatorname{H}_5\operatorname{OH}.$	83
6.17	Kristalldaten und Angaben zur Strukturbestimmung von	
	$\operatorname{Gd}_2(\operatorname{ClH}_2\operatorname{CCOO})_6(\operatorname{bipy})_2$	87
6.18	Ausgewählte interatomare Abstände in pm mit Standardabweichun-	
	gen für $\operatorname{Gd}_2(\operatorname{ClH}_2\operatorname{CCOO})_6(\operatorname{bipy})_2$.	89
6.19	Kristalldaten und Angaben zur Strukturbestimmung von	
	$\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$.	93
6.20	Ausgewählte interatomare Abstände in pm mit Standardabweichun-	
	gen für $\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$.	95

7.1	Austauschparameter J_{ex} der magnetisch untersuchten dimeren Verbindungen.	98
7.2	Vergleich des Austauschparameters J_{ex} der hier untersuchten und anderer dimerer Gadoliniumverbindungen	104
8.1	Vergleich des Austauschparameters $ J_{ex} $, des Winkels φ sowie der Abstände r_1 und r_2 von dimeren Gadoliniumverbindungen	109
B.1	Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslen- kungsparameter $(U_{\ddot{a}q})$ (isotrope Auslenkungsparameter für H (U_{iso})) $[pm^2]$ mit Standardabweichungen für $Gd_2(F_3CCOO)_6(hypy)_4$	124
B.2	Anisotrope Auslenkungsparameter U_{ij} [pm ²] mit Standardabwei- chungen für $\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4$.	125
B.3	Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslen- kungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso})) [pm ²] mit Standardabweichungen für Gd ₂ (ClF ₂ CCOO) ₆ (hypy) ₄	126
B.4	Anisotrope Auslenkungsparameter U_{ij} [pm ²] mit Standardabwei- chungen für $\mathrm{Gd}_2(\mathrm{CLF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4$	127
B.5	Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslen- kungsparameter $(U_{\ddot{a}q})$ (isotrope Auslenkungsparameter für H (U_{iso})) [pm ²] mit Standardabweichungen für Gd ₂ (F ₂ HCCOO) ₆ (hypy) ₄	128
B.6	Anisotrope Auslenkungsparameter U_{ij} [pm ²] mit Standardabwei- chungen für $\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4$.	129
B.7	Wyckoff-Symbole, Lageparameter und äquivalente isotro- pe Auslenkungsparameter $(U_{\ddot{a}q})$ (isotrope Auslenkungspa- rameter für H (U_{iso})) [pm ²] mit Standardabweichungen für Gd ₂ (Cl ₂ HCCOO) ₆ (H ₂ O) ₂ (hypy) ₂	130
B.8	Anisotrope Auslenkungsparameter U_{ij} [pm ²] mit Standardabwei-	101
	chungen tür $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$.	131

B.9 Wyckoff-Symbole, Lageparameter und äquivalente isotro-
pe Auslenkungsparameter $(U_{\ddot{a}q})$ (isotrope Auslenkungspa-
rameter für H (U_{iso}) [pm ²] mit Standardabweichungen für
$\operatorname{Gd}_2(\operatorname{H}_3\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{hypy})_2 \cdot 2\operatorname{H}_2\operatorname{O}.\ldots$
B.10 Anisotrope Auslenkungsparameter U_{ij} [pm ²] mit Standardabwei-
chungen für $Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O$ 133
B.11 Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslen-
kungsparameter $(U_{\ddot{a}q})$ (isotrope Auslenkungsparameter für H (U_{iso}))
$\rm [pm^2]$ mit Standardabweichungen für $\rm Gd_2(\rm ClF_2\rm CCOO)_6(\rm H_2O)_2(\rm bipy)_2.134$
B.12 Anisotrope Auslenkungsparameter U_{ij} [pm ²] mit Standardabwei-
chungen für $\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2$
B.13 Wyckoff-Symbole, Lageparameter und äquivalente isotro-
pe Auslenkungsparameter $(U_{\ddot{a}q})$ (isotrope Auslenkungspa-
rameter für H (U_{iso}) [pm ²] mit Standardabweichungen für
$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$
B.14 Anisotrope Auslenkungsparameter U_{ij} [pm ²] mit Standardabwei-
chungen für $Gd_2(Cl_2HCCOO)_6(C_2H_5OH)_2(bipy)_2$
B.15 Wyckoff-Symbole, Lageparameter und äquivalente isotro-
pe Auslenkungsparameter $(U_{\ddot{a}q})$ (isotrope Auslenkungspa-
rameter für H (U_{iso}) [pm ²] mit Standardabweichungen für
$Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2 \cdot C_2H_5OH. \dots \dots$
B.16 Anisotrope Auslenkungsparameter U_{ij} [pm ²] mit Standardabwei-
chungen für $\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2\cdot\operatorname{C}_2\operatorname{H}_5\operatorname{OH}.$ 140
B.17 Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslen-
kungsparameter $(U_{\ddot{a}q})$ (isotrope Auslenkungsparameter für H (U_{iso}))
$\rm [pm^2]$ mit Standardabweichungen für $\rm Gd_2(\rm ClH_2\rm CCOO)_6(\rm bipy)_2.~.~.~142$
B.18 Anisotrope Auslenkungsparameter U_{ij} [pm ²] mit Standardabwei-
chungen für $\operatorname{Gd}_2(\operatorname{ClH}_2\operatorname{CCOO})_6(\operatorname{bipy})_2$

B.19	Wyckoff-Symbole, Lageparameter und äquivalente isotrope Auslen-	
	kungsparameter ($U_{\ddot{a}q}$) (isotrope Auslenkungsparameter für H (U_{iso}))	
	$\rm [pm^2]$ mit Standardabweichungen für $\rm Gd_2(C_6H_5COO)_6(bipy)_2.$	144
B.20	Anisotrope Auslenkungsparameter U_{ij} [pm ²] mit Standardabwei-	
	chungen für $\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$.	147
D.1	CCDC-Nummern der in dieser Arbeit beschriebenen Verbindungen.	151

Tabellenverzeichnis

Abbildungsverzeichnis

1.1	Stickstoffhaltige aromatische Liganden: a) 1,10-Phenanthrolin, b)	
	2,2'-Bipyridin und c) 2,2':6',2"-Terpyridin	3
1.2	Weitere Beispiele für stickstoffhaltige aromatische Liganden: a) 8-	
	Hydroxychinolin, b) Chinolin, c) Pyridin-2-Carbonsäure und d) 4,4'-	
	Bipyridin	4
3.1	Typische Kurvenverläufe für ferro- und antiferromagnetisches Ver-	
	halten im Vergleich zum Einzelionenverhalten $(J_{ m ex} = 0~{ m cm}^{-1})$	28
3.2	Berechnete $\mu_{\text{eff}}\text{-}T\text{-}\mathrm{Kurven}$ von Gd^{3+} für verschiedene Feldstärken oh-	
	ne Austauschwechselwirkung.	29
3.3	Berechnetes μ_{eff} - <i>T</i> -Verhalten bei einem Austauschparameter	
	$J_{\rm ex}~=~-0,03~{\rm cm}^{-1}$ für eine antiferromagnetische dimere ${\rm Gd}^{3+}$ -	
	Verbindung	31
3.4	Berechnetes μ_{eff} - <i>T</i> -Verhalten bei einem Austauschparameter	
	$J_{\rm ex} = 0.02 \ {\rm cm}^{-1}$ für eine ferromagnetische dimere Gd ³⁺ -Verbindung.	32
4.1	Schematischer Aufbau der supraleitenden Detektorspulen, Sensoren	
	und Signalübertragungselemente im SQUID-Magnetometer	34
4.2	Schematischer Aufbau des SQUID-Sensors	35
5.1	Stickstoffhaltige aromatische Liganden: a) $4(1H)$ -Pyridon und b)	
	2,2'-Bipyridin	37

6.1	Nummerierungskonzept der Atome am Beispiel der Verbindung	
	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2$	42
6.2	Ausschnitt aus der Kristallstruktur von $\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4;$ die	
	Elementarzelle ist eingezeichnet	46
6.3	Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4.$	47
6.4	Dimere Einheit in $\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4$. Zur besseren Übersicht	
	sind die Wasserstoffatome nicht wiedergegeben. \ldots . \ldots . \ldots .	48
6.5	Ausschnitt aus der Packung der $4(1H)$ -Pyridonmoleküle in	
	$\mathrm{Gd}_2(\mathrm{F}_3\mathrm{CCOO})_6(\mathrm{hypy})_4.$	49
6.6	Ausschnitt aus der Kristallstruktur von $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4;$	
	die Elementarzelle ist eingezeichnet	52
6.7	Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4$	53
6.8	Dimere Einheit in $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4$. Zur besseren Übersicht	
	sind die Wasserstoffatome nicht wiedergegeben. \ldots . \ldots . \ldots .	54
6.9	Ausschnitt aus der Packung der $4(1H)$ -Pyridonmoleküle in	
	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{hypy})_4.$	54
6.10	Ausschnitt aus der Kristallstruktur von $\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4;$	
	die Elementarzelle ist eingezeichnet	57
6.11	Ko ordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4.$	58
6.12	Dimere Einheit in $\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4$. Zur besseren Übersicht	
	sind die Wasserstoffatome nicht wiedergegeben. \ldots . \ldots . \ldots .	59
6.13	Ausschnitt aus der Packung der $4(1H)$ -Pyridonmoleküle in	
	$\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4.$	60
6.14	Ausschnitt aus der Kristallstruktur von	
	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2;$ die Elementarzelle ist eingezeichnet.	63
6.15	Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$	63
6.16	Dimere Einheit in $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2$. Zur besseren	
	Übersicht sind die Wasserstoffatome nicht wiedergegeben	64
6.17	Ausschnitt aus der Kristallstruktur von	
------	--	----
	$\mathrm{Gd}_2(\mathrm{H}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2\cdot 2\mathrm{H}_2\mathrm{O};$ die Elementarzelle ist einge-	
	zeichnet	67
6.18	Koordination um Gd^{3+} in Gd_2(H_3CCOO)_6(H_2O)_2(hypy)_2 \cdot 2H_2O	68
6.19	Dimere Einheit in $\mathrm{Gd}_2(\mathrm{H}_3\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{hypy})_2\cdot 2\mathrm{H}_2\mathrm{O}.$ Zur besse-	
	ren Übersicht sind die Wasserstoffatome nicht wiedergegeben. $\ $. $\ $.	69
6.20	Ausschnitt aus der Kristallstruktur von	
	$Gd_2(ClF_2CCOO)_6(H_2O)_2(bipy)_2;$ die Elementarzelle ist eingezeichnet.	72
6.21	Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2.$	73
6.22	Dimere Einheit in $\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2$. Zur besseren	
	Übersicht sind die Wasserstoffatome nicht wiedergegeben	74
6.23	Ausschnitt aus der Packung der 2,2'-Bipyridinmoleküle in	
	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2$	74
6.24	Ausschnitt aus der Elementarzelle der Kristallstruktur von	
	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2$	77
6.25	Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$	78
6.26	Dimere Einheit in $\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$. Zur besse-	
	ren Übersicht sind die Wasserstoffatome nicht wiedergegeben. $\ $. $\ $.	79
6.27	Ausschnitt aus der Packung der 2,2'-Bipyridinmoleküle in	
	$\operatorname{Gd}_2(\operatorname{Cl}_2\operatorname{HCCOO})_6(\operatorname{C}_2\operatorname{H}_5\operatorname{OH})_2(\operatorname{bipy})_2$	79
6.28	Ausschnitt aus der Kristallstruktur von	
	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2\cdot\mathrm{C}_2\mathrm{H}_5\mathrm{OH};\ \mathrm{die}\ \mathrm{Elementarzelle}\ \mathrm{ist}$	
	eingezeichnet.	82
6.29	$\label{eq:condition} {\rm Koordinationen} \ {\rm um} \ {\rm Gd}^{3+} \ {\rm in} \ {\rm Gd}_2({\rm ClF}_2{\rm CCOO})_6({\rm H}_2{\rm O})_2({\rm bipy})_2 \cdot {\rm C}_2{\rm H}_5{\rm OH}.$	83
6.30	$\label{eq:constraint} \text{Dimere } \mathrm{Gd}^{3+}\text{-}\mathrm{Einheiten} \ \mathrm{in} \ \mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2\cdot\mathrm{C}_2\mathrm{H}_5\mathrm{OH}.$	
	Zur besseren Übersicht sind die Wasserstoffatome nicht wiedergegeben.	84
6.31	Ausschnitt aus der Packung der 2,2'-Bipyridinmoleküle in	
	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{H}_2\operatorname{O})_2(\operatorname{bipy})_2 \cdot \operatorname{C}_2\operatorname{H}_5\operatorname{OH}.$	85
6.32	Ausschnitt aus der Kristallstruktur von $\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2;$	
	die Elementarzelle ist eingezeichnet	88

6.33	Koordination um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$	89
6.34	Dimere Gd^{3+} -Einheit in $\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$. Zur besseren "	
	Ubersicht sind die Wasserstoffatome nicht wiedergegeben	90
6.35	Ausschnitt aus der Packung der 2,2'-Bipyridinmoleküle in	
	$\operatorname{Gd}_2(\operatorname{ClH}_2\operatorname{CCOO})_6(\operatorname{bipy})_2$.	91
6.36	Ausschnitt aus der Kristallstruktur von $\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2;$ die	
	Elementarzelle ist eingezeichnet	94
6.37	Koordinationen um Gd^{3+} in $\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$	95
6.38	Dimere Gd^{3+} -Einheit in $\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$. Zur besseren	
	Übersicht sind die Wasserstoffatome nicht wiedergegeben	96
71	Vergleich der berechneten () und beschechteten $(H^{(ir)} - 0.5 k\Omega)$	
1.1	(\triangle) und 1 kOa (\Box)) effektiven BOUR Magnetopenzahl μ - für	
	(Δ) and T KOC (Δ) checkerven Donne-Magnetonenzan μ_{eff} for $Gd_{2}(F_{2}CCOO)_{2}(\text{hypy})$.	99
79	Vergleich der berechneten (-) und beschechteten $(H^{(ir)} = 0.5 \text{ kOe})$	00
1.2	(\wedge) und 1 kOe (\square)) effektiven BOHR-Magnetonenzahl μ_{σ} für	
	$Gd_2(CIF_2CCOO)_c(hvpv)_4$,, $u = 1$, $u = 1$	99
7.3	Vergleich der berechneten (-) und beobachteten ($H^{(ir)} = 0.5$ kOe	
1.0	(\wedge) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für	
	$\operatorname{Gd}_2(\operatorname{F}_2\operatorname{HCCOO})_6(\operatorname{hypy})_4$	100
7.4	Vergleich der berechneten (-) und beobachteten ($H^{(ir)} = 0.5$ kOe	
	(\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für	
	$\mathrm{Gd}_{2}(\mathrm{Cl}_{2}\mathrm{HCCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2}$	100
7.5	Vergleich der berechneten (–) und beobachteten ($H^{(ir)} = 0.5$ kOe	
	(\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für	
	$\mathrm{Gd}_{2}(\mathrm{H}_{3}\mathrm{CCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2}.$	101
7.6	Vergleich der berechneten (–) und beobachteten ($H^{(\mathrm{ir})} = 0.5$ kOe	
	(\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl μ_{eff} für	
	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2.$	101

7.7	Vergleich der berechneten (–) und beobachteten ($H^{(ir)} = 0.5$ kOe	
	(\bigtriangleup) und 1 kOe ()) effektiven BOHR-Magnetonenzahl $\mu_{\rm eff}$ für	
	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2.$	102
7.8	Vergleich der berechneten (–) und beobachteten ($H^{(\mathrm{ir})} = 0,5$ kOe	
	($\bigtriangleup)$ und 1 kO e ($\Box)) effektiven Bohr-Magnetonenzahl\mu_{\rm eff} für$	
	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2.$	102
7.9	Vergleich der berechneten (–) und beobachteten ($H^{(\mathrm{ir})} = 0,5$ kOe	
	(\bigtriangleup) und 1 kOe ()) effektiven BOHR-Magnetonenzahl $\mu_{\rm eff}$ für	
	$\mathrm{Gd}_2(\mathrm{ClH}_2\mathrm{CCOO})_6(\mathrm{bipy})_2$	103
7.10	Vergleich der berechneten (–) und beobachteten ($H^{(\mathrm{ir})} = 0,5$ kOe	
	(\triangle) und 1 kOe (\Box)) effektiven BOHR-Magnetonenzahl $\mu_{\rm eff}$ für	
	$\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$	103
8.1	Schematischer Aufbau von sauerstoffverbrückten Gd ³⁺ -Dimeren.	106
8.2	Abhängigkeit des Austauschnarameters $ I $ vom Gd-Q-Abstand r_{0}	
0.2	im doppeltlogarithmischen Maßstab. Bote Vierecke kennzeichnen die	
	in dieser Arbeit vorgestellten Verbindungen: graue Vierecke geben	
	die Werte der anderen aus der Literatur bekannten Verbindungen	
	wieder	107
A.1	Berechnetes a) und gemessenes b) Pulverdiffraktogramm von	
	$\operatorname{Gd}_2(\operatorname{F}_3\operatorname{CCOO})_6(\operatorname{hypy})_4$.	113
A.2	Berechnetes a) und gemessenes b) Pulverdiffraktogramm von	
	$\operatorname{Gd}_2(\operatorname{ClF}_2\operatorname{CCOO})_6(\operatorname{hypy})_4$	114
A.3	Berechnetes a) und gemessenes b) Pulverdiffraktogramm von	
	$\mathrm{Gd}_2(\mathrm{F}_2\mathrm{HCCOO})_6(\mathrm{hypy})_4.$	115
A.4	Berechnetes a) und gemessenes b) Pulverdiffraktogramm von	
	$\mathrm{Gd}_{2}(\mathrm{Cl}_{2}\mathrm{HCCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2}.$	116
A.5	Berechnetes a) und gemessenes b) Pulverdiffraktogramm von	
	$\mathrm{Gd}_{2}(\mathrm{H}_{3}\mathrm{CCOO})_{6}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{hypy})_{2}\cdot 2\mathrm{H}_{2}\mathrm{O}.\ldots$	117

A.6	Berechnetes a) und gemessenes b) Pulverdiffraktogramm von	
	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2.$	118
A.7	Berechnetes a) und gemessenes b) Pulverdiffraktogramm von	
	$\mathrm{Gd}_2(\mathrm{Cl}_2\mathrm{HCCOO})_6(\mathrm{C}_2\mathrm{H}_5\mathrm{OH})_2(\mathrm{bipy})_2$.	119
A.8	Berechnetes a) und gemessenes b) Pulverdiffraktogramm von	
	$\mathrm{Gd}_2(\mathrm{ClF}_2\mathrm{CCOO})_6(\mathrm{H}_2\mathrm{O})_2(\mathrm{bipy})_2\cdot\mathrm{C}_2\mathrm{H}_5\mathrm{OH}.$	120
A.9	Berechnetes a) und gemessenes b) Pulverdiffraktogramm von	
	$\operatorname{Gd}_2(\operatorname{ClH}_2\operatorname{CCOO})_6(\operatorname{bipy})_2$.	121
A.10) Berechnetes a) und gemessenes b) Pulverdiffraktogramm von	
	$\mathrm{Gd}_2(\mathrm{C}_6\mathrm{H}_5\mathrm{COO})_6(\mathrm{bipy})_2$.	122

Literaturverzeichnis

- A. F. HOLLEMAN, E. WIBERG, N. WIBERG, Lehrbuch der Anorganischen Chemie, Walter de Gruyter, Berlin, 101. Auflage, 1995.
- [2] R. D. SHANNON, Acta Crystallogr., Sect. A: Found. Crystallogr. 32 (1976) 751.
- [3] W. KLEMM, *Magnetochemie*, Akademischer Verlag, Leipzig, **1936**.
- [4] H. VAN VLECK, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, London, 1932.
- [5] M. SAGAWA, S. FUJIMURA, N. TOGAWA, H. YAMAMOTO, Y. MATSUURA, J. Appl. Phys. 55 (1984) 2083.
- [6] U. MÜLLER, Anorganische Strukturchemie, Teubner, Stuttgart, 1992.
- [7] H. YAMAMOTO, Rare Earths '04 Nara (Japan), Abstract Book (2004) FI01.
- [8] H. SHINJOH, Rare Earths '04 Nara (Japan), Abstract Book (2004) HI01.
- [9] K. MIKAMI, M. TERADA, H. MATSUZAWA, Angew. Chem. 114 (2002) 3704.
- [10] J. BILLE, W. SCHLEGEL, Medizinische Physik 3, Medizinische Laserphysik, Springer, Berlin, Heidelberg, 2005.
- [11] C. F. G. C. GERALDES, Rare Earths '04 Nara (Japan), Abstract Book (2004) CO02.

- [12] F. A. HART, F. P. LAMING, J. Inorg. Nucl. Chem. 27 (1965) 1605.
- [13] F. A. HART, F. P. LAMING, J. Inorg. Nucl. Chem. 27 (1965) 1825.
- [14] P. SPACU, E. ANTONESCU, Rev. Roumaine Chim. 16 (1971) 373.
- [15] E. SILINA, Y. BANKOVSKY, V. BELSKY, J. LEJEJS, L. PECH, Latvian J. Chem. 89 (1997) 4.
- [16] Y. CUI, F. ZHENG, Y. QIAN, J. HUANG, Inorg. Chim. Acta 315 (2001) 220.
- [17] P. STARYNOWICZ, Acta Crystallogr. C 49 (1993) 1895.
- [18] X. LI, Y.-Q. ZOU, H.-B. SONG, Acta Crystallogr. C 60 (2004) m110.
- [19] S. LUI, L. GELMINI, S. J. RETTIG, J. Am. Chem. Soc 114 (1992) 6081.
- [20] W. PLASS, G. FRIES, Z. Anorg. Allg. Chem. 623 (1997) 1205.
- [21] A. PANAGIOTOPOULOS, T. F. ZIFIROPOULOS, S. P. PERLEPES, E. BAKAL-BASSIS, I. MASSON-RAMADE, O. KAHN, A. TERZIS, C. P. RAPTOPOULOU, *Inorg. Chem.* 34 (1995) 4918.
- [22] A. ROHDE, Dissertation, Universität Hannover (2005).
- [23] J. P. COSTES, A. DUPUIS, J. P. LAURENT, Inorg. Chim. Acta. 268 (1998) 125.
- [24] J. P. COSTES, A. DUPUIS, F. DAHAN, S. LAGRAVE, L. J. P., *Inorg. Chem.* 37 (1998) 153.
- [25] F. AVECILLA, C. PLATAS-IGLESIAS, R. RODRIGUEZ-CORTINAS, G. GUIL-LEMOT, J. C. G. BÜNZLI, C. D. BRONDINO, C. F. G. C. GERALDES, A. DE BLAS, T. RODRIGUEZ-BLAS, J. Chem. Soc., Dalton Trans. (2002) 4658.
- [26] J.-P. COSTES, J. M. CLEMENTE-JUAN, F. DAHAN, F. NICODEME, M. VER-ELST, Angew. Chem. 114 (2002) 333.

- [27] S. T. HATSCHER, W. URLAND, Angew. Chem. 115 (2003) 2969.
- [28] J. B. GOODENOUGH, Phys. Rev. 100 (1955) 564.
- [29] J. B. GOODENOUGH, J. Phys. Chem. Solids 6 (1958) 287.
- [30] J. KANAMORI, J. Phys. Chem. Solids 10 (1959) 87.
- [31] J. B. GOODENOUGH, Magnetism and the chemical bond, Interscience Publishers, New York, London, Sydney, 1966.
- [32] H. KRISCHNER, B. KOPPELHUBER-BITSCHNAU, *Röntgenstrukturanalyse* und Rietveldmethode, Vieweg Verlag, Braunschweig, 5. Auflage, **1994**.
- [33] W. MASSA, Kristallstrukturbestimmung, B. G. Teubner, Stuttgart, 3. Auflage, 2002.
- [34] E. R. WÖLFEL, Theorie und Praxis der Röntgenstrukturanalyse, Vieweg Verlag, Braunschweig, 3. Auflage, 1987.
- [35] W. KLEBER, Einführung in die Kristallographie, Verlag Technik, Berlin, 18. Auflage, 1998.
- [36] STOE & Cie GmbH, STOE Win X^{POW} Powder Diffraction Software, Version 1.08, 2000.
- [37] R. C. WEAST, CRC Handbook of Chemistry and Physics, Band A 73, CRC Press Inc., Boca Raton, Florida, 67. Auflage, 1987.
- [38] A. L. PATTERSON, Phys. Rev. 46 (1934) 372.
- [39] D. HARKER, J. Chem. Phys. 4 (1936) 381.
- [40] D. SAYRE, Acta Crystallogr. 5 (1952) 60.
- [41] T. HAHN, Hg., International Tables for X-ray Crystallography, Kynoch Press, Birmingham, 3. Auflage, 1974.

- [42] P. DEBYE, Ann. Phys. 43 (1914) 49.
- [43] I. WALLER, Ann. Phys. 83 (1927) 153.
- [44] R. X. FISCHER, E. TILLMANNS, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 44 (1988) 775.
- [45] INTERNATIONAL UNION OF CRYSTALLOGRAPHY, Acta Crystallogr., Sect. B: Struct. Sci. 38 (1982) 699.
- [46] G. M. SHELDRICK, SHELXL-93, Program for Crystal Structure Refinement, Göttingen, 1993.
- [47] L. J. FARRUGIA, J. Appl. Crystallogr. 32 (1999) 837.
- [48] G. M. SHELDRICK, SHELXS-97, Program for Crystal Structure Solution, Göttingen, 1997.
- [49] G. M. SHELDRICK, SHELXL-97, Program for Crystal Structure Refinement, Göttingen, 1997.
- [50] K. BERGERHOFF, Diamond Program for Exploration and Drawing of Crystal Structures, Version 3.0c, Crystal Impact GbR, Bonn, 2005.
- [51] STOE & Cie GmbH, Darmstadt, X-Shape, Crystal Optimation for Numerical Absorption Correction, Version 1.01, 1996.
- [52] STOE & Cie GmbH, Darmstadt, X-Red, Data Reduction Program, Version 1.08, 1996.
- [53] R. H. BLESSING, Acta Crystallogr., Sect. A: Found. Crystallogr. 51 (1995) 33.
- [54] A. L. SPEK, Acta Crystallogr., Sect. A: Found. Crystallogr. 46 (1990) C 34.
- [55] W. URLAND, Angew. Chem. 93 (1981) 205.

170

- [56] P. GÜTLICH, Angew. Chem. 106 (1994) 109.
- [57] S. T. HATSCHER, H. SCHILDER, H. LUEKEN, W. URLAND, Pure Appl. Chem. 77 (2005) 497; H. LUEKEN, Angew. Chem. 118 (2006) 8233.
- [58] M. GOUY, C. R. Acad. Sci. Paris 109 (1889) 935.
- [59] G. QUINCKE, Ann. Phys. 24 (1885) 347.
- [60] G. QUINCKE, Ann. Phys. **34** (1888) 401.
- [61] M. FARADAY, Pogg. Ann. 67 (1844) 400.
- [62] M. FARADAY, Pogg. Ann. 69 (1846) 289.
- [63] M. FARADAY, Pogg. Ann. 70 (1847) 283.
- [64] M. FARADAY, Pogg. Ann. Erg. Bd. 3 (1852) 73.
- [65] S. BROERSMA, Rev. Sci. Instr. 20 (1949) 660.
- [66] S. FONER, *Rev. Sci. Instr.* **30** (1959) 548.
- [67] R. L. FAGALY, Sci. Prog., Oxford 71 (1987) 181.
- [68] J. C. GALLOP, SQUIDs, the Josephson effects and superconducting electronics, Adam Hilger, Bristol, Philadelphia, New York, 1991.
- [69] H. A. BETHE, Ann. Phys. 5 (1929) 133.
- [70] B. N. FIGGIS, *Ligand Field Theory*, Comprehensive Coordination Chemirsty, Vol. 1, Theory and Background. Pergamon, Oxford, **1987**.
- [71] K. H. HELLWEGE, *Einführung in die Festkörperphysik*, Springer, Berlin, 3. Auflage, **1988**.
- [72] W. NOLTING, Quantentheorie des Magnetismus, Bd. 1 und 2, Teubner, Stuttgart, 1986.

- [73] W. HEISENBERG, Z. Phys. 38 (1926) 411.
- [74] W. HEISENBERG, Z. Phys. 49 (1928) 619.
- [75] R. L. MARTIN, E. A. V. EBSWORTH, A. G. MADDOCK, A. G. SHAR-PE, Hg., New Pathways in Inorganic Chemistry, Cambridge University Press, Cambridge, 1968.
- [76] P. W. ATKINS, *Physikalische Chemie*, VCH, Weinheim, 2. Auflage, **1996**.
- [77] H. LUEKEN, Magnetochemie, B. G. Teubner, Stuttgart, 1. Auflage, 1999.
- [78] H. SCHLIDER, H. LUEKEN, CONDON, Computer program to calculate paramagnetic susceptibilities, Aachen, 2002.
- [79] A. HEINRICH, Zur Chemie und Physik von supraleitenden Oxobismutaten mit Alkali- und Erdalkalimetallen, Dissertation, Universität Hannover, 1993.
- [80] W. HABERDITZL, Angew. Chem. 78 (1966) 277.
- [81] W. BUCKEL, Supraleitung, VCH Verlagsgesellschaft, Weinheim, 5. Auflage, 1993.
- [82] A. ROHDE, W. URLAND, Z. Anorg. Allg. Chem. 629 (2003) 2069.
- [83] A. ROHDE, W. URLAND, Z. Anorg. Allg. Chem. 632 (2006) 1141.
- [84] A. ROHDE, W. URLAND, Z. Anorg. Allg. Chem. 630 (2004) 2434.
- [85] A. ROHDE, S. T. HATSCHER, W. URLAND, J. Alloys Compd. 374 (2004) 137.
- [86] G. MEYER, J. Alloys Compd. 300-301 (2000) 113.
- [87] C. JANIAK, J. Chem. Soc., Dalton Trans. (2000) 3885.
- [88] M. D. CURTIS, J. CAO, J. W. KAMPF, J. Am. Chem. Soc. **126** (2004) 4318.

- [89] I. BAXTER, S. R. DRAKE, H. B. HURSTHOUSE, K. M. ABDUL MALIK, J. MCALEESE, D. J. OTWAY, J. PLAKATOURAS, *Inorg. Chem.* 34 (1995) 1384.
- [90] A. W.-H. LAM, W.-T. WONG, S. GAO, G. WEN, X.-X. ZHANG, Eur. J. Inorg. Chem. (2003) 149.
- [91] D. JOHN, W. URLAND, Z. Anorg. Allg. Chem. 631 (2005) 2635.
- [92] A. ROHDE, W. URLAND, Dalton Trans. (2006) 2974.
- [93] D. JOHN, A. ROHDE, W. URLAND, Z. Naturforsch. 61b (2006) 699.
- [94] A. ROHDE, W. URLAND, Inorg. Chim. Acta **359** (2006) 2448.
- [95] P. W. ANDERSON, Solid State Phys. 14 (1963) 99.
- [96] C. K. JØRGENSEN, R. PAPPALARDO, H.-H. SCHMIDTKE, J. Chem. Phys. 39 (1963) 1442.
- [97] C. E. SCHÄFER, Structure and Bonding 5 (1968) 68.
- [98] W. URLAND, Chem. Phys. 14 (1976) 393.
- [99] M. ATANASOV, S. ANGELOV, Chem. Phys. 150 (1991) 383.
- [100] M. A. ATANASOV, H.-H. SCHMIDTKE, Chem. Phys. **124** (1988) 205.
- [101] W. URLAND, Chem. Phys. Lett. 83 (1981) 116.
- [102] H. WEIHE, H. U. GÜDEL, J. Am. Chem. Soc. 119 (1997) 6539.
- [103] H. G. DRICKAMER, C. W. FRANK, Electronic Transitions and the High Pressure Chemistry and Physics of Solids, Chapman-Hall.

Lebenslauf

Persönliche Angaben

Name	Daniela John
Geburtstag und -ort	22. September 1980 in München
Familienstand	ledig

Studium

seit $02/2005$	Promotion zum Thema "Magnetochemische Untersuchungen an neuen
	dimeren Carboxylaten des Gadoliniums"; Prof. Dr. W. Urland, Institut
	für Anorganische Chemie, Universität Hannover
09/2004 - 01/2005	Diplomarbeit zum Thema "Synthese und Charakterisierung von Car-
	boxylaten der Lanthanide mit stickstoffhaltigen Aromaten"; Prof. Dr.
	W. Urland, Universität Hannover
09/2004	mündliche Diplomprüfungen an der Universität Hannover
09/2002	Vordiplom an der Universität Hannover
10/2000 - 01/2005	Chemiestudium an der Universität Hannover

Schulbildung

09/1993 - 07/2000	Gymnasium Leibnizschule Hannover, Abschluss: Abitur
09/1991 - 07/1993	Orientierungsstufe Schulzentrum Röntgenstraße Hannover
09/1987 - 07/1991	Grundschule Mengendamm Hannover

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst und nur die angegebenen Hilfsmittel verwendet habe.

Hannover, 01. März 2007