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Kurzzusammenfassung 

Toxin A (TcdA) und Toxin B (TcdB) aus Clostridium difficile sind Mono-

Glucosyltransferasen, die RhoA, Rac1 und Cdc42 inaktivieren. Die Inaktivierung hat 

einen Zusammenbruch des Aktinzytoskeletts (“Zytopathischer Effekt”) und die Apoptose 

von Zellen (“Zytotoxischer Effekt”) zur Folge. Die Inaktivierung von RhoA wird dabei für 

den zytotoxischen Effekt verantwortlich gemacht. Bei Behandlung kultivierter Zellen mit 

TcdA wurde zudem eine Hochregulation von RhoB beobachtet. Die vorliegende Arbeit 

widmet sich den Mechanismen der Toxin-abhängigen RhoB Hochregulation und ihrer 

funktionellen Auswirkungen.  

Nach Behandlung von Fibroblasten mit TcdB wurde eine Zeit- und Konzentrations-

abhängige RhoB Hochregulation gemessen. Sowohl Actinomycin D als auch 

Cycloheximid blockierten die Hochregulation. Demnach waren mRNA und Protein de 

novo Synthese unbedingt erforderlich.  Toxine, welche durch direkte Wirkung am 

Aktinzytoskelett dessen Zusammenbruch herbeiführen, wie das C2 Toxin aus 

Clostridium botulinum oder Latrunculin B, verursachten keine RhoB Hochregulation. 

Tatsächlich war die Inaktivierung von Rho die Ursache der Hochregulation, da sie 

ebenfalls nach Behandlung von Zellen mit dem RhoA/B/C inaktivierenden Exoenzym C3 

aus Clostridium limosum auftrat. Das letale Toxin aus Clostridium sordellii (TcsL), 

welches Rac1 und H/K/N/R-Ras inaktiviert, verursachte ebenfalls eine RhoB 

Hochregulation. Im Gegensatz dazu wurde mit dem varianten Toxin B aus dem  

Clostridium difficile Stamm 1470 (TcdBF), welches Rac1 und R-Ras inaktiviert, keine 

RhoB Hochregulation beobachtet. Die Inaktivierung von H/K/N-Ras war somit ursächlich 

für die Hochregulation durch TcsL.  

In p38 MAP Kinase defizienten Zellen wurde RhoB zwar nach Behandlung mit TcdB oder 

TcsL hochreguliert, jedoch in geringerem Ausmaß. Die p38 MAP Kinase scheint ein 

Verstärker der RhoB Hochregulation zu sein. Der RhoB Spiegel wurde durch 

proteasomale und Caspase-abhängige Degradation reguliert. Sowohl TcdB als auch 

TcsL verursachten somit eine Aktivierung der zellulären Caspasen. In mit TcsL 

behandelten Zellen konnte eine deutliche Steigerung der RhoB Aktivität festgestellt 

werden. Diese stieg zwar ebenfalls in mit TcdB behandelten, jedoch weniger deutlich. C3 

war im Gegensatz dazu in der Lage, RhoB vollständig zu inaktivieren. Durch Inhibition 

der RhoB Hochregulation wurde der zytopathische Effekt der Toxine nicht beeinflusst. In 

synchronisierten S-Phase Fibroblasten verursachte TcdB einen Caspase-abhängigen 

zytotoxischen Effekt. Dieser Effekt konnte durch C3 blockiert werden. Somit wurde 

aktives RhoB für den zytotoxischen Effekt von TcdB benötigt. 

Schlagworte: große clostridiäre Zytotoxine; Apoptose; Rho/Ras GTP bindende Proteine 
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Abstract 

Clostridium difficile toxins A (TcdA) and B (TcdB) are mono-glucosyltransferases that 

inactivate RhoA, Rac1, and Cdc42. By these means, the toxins cause actin re-

organisation (“cytopathic effect”) and apoptosis (“cytotoxic effect”). The cytotoxic 

effect has generally been attributed to the inactivation of RhoA. Treatment of cultured 

cells with Clostridium difficile toxin A (TcdA) also causes RhoB up-regulation. This 

study focuses on the up-regulation of RhoB and its functional consequences in toxin-

treated cells.  

RhoB was up-regulated in response to treatment of fibroblasts with TcdB in a time- 

and concentration dependent manner. The up-regulation was abrogated by 

actinomycin D and cycloheximide, thus it was due to mRNA and protein de novo 

synthesis. When actin re-organisation was induced by toxins directly affecting the 

actin cytoskeleton, such as Clostridium botulinum C2 toxin or latrunculin B, no RhoB 

up-regulation was observed. Up-regulation of RhoB was due to inactivation of Rho, 

as it was also observed in cells treated with exoenzyme C3 from Clostridium limosum 

that specifically ADP-ribosylates RhoA/B/C but not Rac1 or Cdc42. RhoB was also 

up-regulated in cells treated with Clostridium sordellii lethal toxin (TcsL), which 

inactivates Rac1 and H/K/N/R-Ras. The up-regulation was based on the inactivation 

of H/K/N-Ras, as the variant Clostridium difficile toxin B from strain 1470 (TcdBF), 

which inactivates Rac1 and R-Ras, failed to do so.  

In p38 MAP kinase knockout fibroblasts, RhoB was up-regulated to a minor extent 

compared to wild type cells after treatment with either TcdB or TcsL. This finding 

indicated that p38 MAP kinase was an enhancer of the RhoB response. The 

intracellular level of RhoB was regulated by proteasome- and caspase-dependent 

degradation in TcsL- as well as in TcdB-treated cells, indicating that both toxins 

caused an activation of caspases. RhoB was strongly activated in TcsL- and to a 

minor extent in TcdB-treated cells, most probably due to its glucosylation by TcdB. In 

contrast, RhoB was inactive in C3-treated cells, confirming the notion that C3 is an 

efficient inhibitor of RhoA/B/C. Inhibition of RhoB up-regulation did not affect actin re-

organisation, indicating that RhoB did not regulate the cytopathic effect of the toxins. 

Synchronized fibroblasts were susceptible to the cytotoxic effect of TcdB as analysed 

in terms of annexin V staining. The cytotoxic effect was responsive to inhibition by 

either a pan-caspase inhibitor or exoenzyme C3, suggesting that active RhoB is 

required for the cytotoxic effect of TcdB. 

Keywords: large clostridial Cytotoxins; apoptosis; Rho/Ras GTP-binding proteins 
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1. Introduction 
 

 

1. Introduction 

1.1 Large clostridial cytotoxins 

Clostridium difficile causes antibiotic associated diarrhoea and pseudomembranous 

colitis (Just et al., 2001;Kelly and LaMont, 1998). After treatment with broad spectrum 

antibiotics, C. difficile overgrows the physiological flora of the gut. The bacteria then 

produce their main pathogenicity factors, toxin A (TcdA) and toxin B (TcdB). TcdA 

and TcdB belong to the family of large clostridial cytotoxins, which further comprises 

the lethal (TcsL) and hemorrhagic (TcsH) toxin from C. sordellii as well as the α-toxin 

(Tcnα) from C. novyi. The toxins are single chained proteins ranging from 250-308 

kDa in size. They catalyze a glycosyltransferase reaction, by which means they 

inactivate their substrates, small GTP binding proteins of the Rho- and the Ras-

family. These GTP binding proteins are the master regulators of the actin 

cytoskeleton (Boquet et al., 1998;Mackay and Hall, 1998). On cultured cell lines, the 

toxins cause an actin re-organisation resulting in rounding of cells (“cytopathic effect”)  

(Chaves-Olarte et al., 1997). Furthermore, the toxins induce apoptosis (“cytotoxic 

effect”). 

The less common clostridial pathogen Clostridium sordellii causes endocarditis, 

arthritis, peritonitis, myonecrosis, and toxic shock syndrome (Gredlein et al., 

2000;Lewis and Naylor, 1998;Sinave et al., 2002). Clostridium sordellii produces two 

main pathogenicity factors, the hemorrhagic toxin (TcsH) and the lethal toxin (TcsL), 

which are homologue to TcdA and TcdB, respectively (Just and Gerhard, 2004). 
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1.2 Structure of the toxins 

TcdB and TcsL are single chain protein toxins (270 kDa). The toxins are homologous 

and have 76 % identical amino acids. Furthermore, they exhibit a three domain 

structure (Von Eichel-Streiber et al., 1994). The C-terminal harbours the receptor 

binding domain. Its binding to unknown receptors results in receptor-mediated 

endocytosis. A role for cellular surface sugars has been described (Frisch et al., 

2003;Ho et al., 2005). The putative transmembrane domain is located in the central 

part of the toxins. This hydrophobous domain may be involved in the pore formation 

to enable the passage of the toxin from the endosome to the cytosol. The 

acidification of the endosomes during their processing is essential for the 

translocation into the cytosol (Qa'Dan et al., 2000). Only the N-terminal domain, 

which harbours the catalytic activity of the toxins, reaches the cytosol (Figure I.) 

(Pfeifer et al., 2003;Rupnik et al., 2005). 

 

Figure I.: Proposed mechanism of toxin uptake 
After binding of the receptor-binding domain (RBD) (1.), receptor mediated endocytosis takes place 

(2.), by which means an endosome is formed (3.). Subsequently, the endosome is acidified by an H+-

ATPase (4.). The acidification induces a conformational change of the toxin, allowing the 

transmembrane domain (TMD) to insert into the endosomal membrane and subsequently form a pore 

(5.) (Barth et al., 2001). The catalytical domain (cat) is cleaved from the toxin and released into the 

cytosol (6.), where it modifies its substrates, e.g. Rho GTP binding proteins (7.). 

 - 2 - 



1. Introduction 
 

 

1.3 Enzymatic activity of TcdB and TcsL 

TcdB and TcsL are glucosyltransferases that transfer a glucose moiety from their co-

substrate, UDP-glucose, onto their protein substrates. A further factor required for the 

catalytic activity is Mn2+ or Mg2+. Their substrates are small monomeric GTP binding 

proteins of the Rho- and the Ras-family (Figure II.).  

Figure II.: Substrate glucosylation of large clostridial cytotoxins 
TcdB, TcdBF, and TcsL transfer a glucose moiety onto their substrates, small monomeric GTP binding 

proteins of the Rho- and the Ras-family. Rho is modified at threonine 37, whereas Rac and Ras are 

modified at threonine 35. 

 

The glucose is covalently linked to a pivotal threonine residue, in the case of RhoA at 

threonine 37 (Just et al., 1995b), in the case of Rac1 and Ras at threonine 35 (Just et 

al., 1996;Popoff et al., 1996). This threonine residue is located within the effecter 

binding region of the Rho/Ras GTP binding proteins.  

In contrast to their protein substrate specificity, TcdB and TcsL are highly specific 

regarding their co-substrate. The toxins exclusively recognize UDP-glucose as co-

substrate. Supposedly, the toxins form a ternary complex with the UDP-glucose and 

their protein substrate to transfer the glucose moiety onto the threonine residue (Just 

and Boquet, 2000). 
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1.4 C3-like ADP-ribosyltransferases 

The C3-like exoenzymes are single-chain proteins with a molecular mass of about 25 

kDa. C3 specifically catalyzes the transfer of an ADP-ribose moiety from the co-

substrate NAD+ to asparagine 41 of RhoA/B/C (Sekine et al., 1989). This modification 

increases the affinity of the GTP binding proteins to their GDIs (Genth et al., 2003) 

and blocks the GEF mediated nucleotide exchange (Sehr et al., 1998). In 

consequence, C3 causes functional inactivation of the Rho GTP binding proteins. 

Further effects described for C3 treatment are alteration of e.g. epithelial and 

endothelial barrier functions (Nusrat et al., 1995;Stamatovic et al., 2003), the 

signaling of immune cells including phagocytosis (Caron and Hall, 1998), the 

production of cytokines (Chen et al., 2002),  and adhesion (Laudanna et al., 1996). 

The family of C3-like transferases encompasses exoenzymes from C. botulinum 

(Popoff et al., 1990), C. limosum (Just et al., 1992), B. cereus (Just et al., 1995a), 

and S. aureus (Inoue et al., 1991). C3 was classified as exoenzyme because it lacks 

a membrane binding and translocation domain. To allow efficient cell entry of C3, 

chimera toxins have been constructed, exploiting e.g. the cell entry domains of other 

toxins such as the C. botulinum C2 toxin (receptor mediated endocytosis) (Barth et 

al., 1998). This chimera toxin has been applied in this study.  

Table 1 lists the applied toxins as well as their respective catalyzed reactions and 

protein substrates (below). 

 
Table 1: Substrate specificity and catalyzed reaction of the applied toxins  

 
RhoA/B/CADP-ribosylationC3

R-RasH/K/N-RasRac1glucosylationTcsL
R-RasRac1glucosylationTcdBF

Cdc42Rac1RhoA/B/CglucosylationTcdA/TcdB
protein substratecatalyzed reactionToxin

RhoA/B/CADP-ribosylationC3
R-RasH/K/N-RasRac1glucosylationTcsL
R-RasRac1glucosylationTcdBF

Cdc42Rac1RhoA/B/CglucosylationTcdA/TcdB
protein substratecatalyzed reactionToxin
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1.5 Small monomeric GTP binding proteins 

The Rho- and the Ras-family are distinct subfamilies of GTP binding proteins within 

the Ras-superfamily as determined by homology (Hall, 1998). These small GTP 

binding proteins (molecular weight: 18-26 kDa) are nucleotide driven molecular 

switches, e.g. they are activated by binding to GTP. In their active, GTP-bound form, 

they interact with effecter proteins for signal transmission. Their state of activity is 

regulated by three groups of proteins (Figure III.): 

I. Guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GDP 

for GTP and positively regulate the activity of the GTP binding protein. 

II. GTPase activating proteins (GAPs), which stimulate the intrinsic GTPase activity 

and negatively regulate their activity. 

III. Guanine nucleotide dissociation inhibitors (GDIs), which stabilize the inactive 

GDP-bound form of the GTP binding protein in the cytosol, thereby inhibiting its 

translocation to the membranes. 

The GTP binding proteins are thus regulated by the GDP/GTP-cycle (Fig. III.) and by 

a spatial cycle between membrane (active conformation) and cytosol (inactive 

conformation) (by GDIs). 

GEF

signal input

Rho
-GDP

Rho-
GTP

GAP

signal
outputRho GDI

 
Figure III.: The activity of Rho/Ras-GTPases is regulated by GEFs, GAPs, and GDIs 
The GTP binding proteins cycle between a GDP-bound, inactive, and a GTP-bound, active, 

conformation. Their activity is regulated by nucleotide exchange factors (GEF, activating), GTPase 

activating proteins (GAP, inactivating), and GDP-bound form stabilizing factors (GDI, inactivating). 
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A common feature of Rho- and Ras GTP binding proteins is their post-translational 

isoprenylation at the C-terminal, required for membrane binding. Furthermore, they 

feature two important functional domains, namely switch 1 and switch 2. These 

domains alter their three-dimensional structure upon exchange of GDP against GTP 

and vice versa (Wittinghofer and Pai, 1991). The GDP-bound inactive form does not 

interact with the respective effecter proteins. The conformational change upon 

nucleotide exchange to GTP enables this interaction, allowing signal transduction. 

Most effecter proteins are kinases that amplify and execute the Rho/Ras-signal. 

The best characterized members of the Rho-family are RhoA, Rac1, and Cdc42 that 

regulate the actin cytoskeleton. They influence the morphology, motility, polarization, 

endocytosis, and vesicle trafficking (Etienne-Manneville and Hall, 2002). The 

formation of actin stress fibres is associated with RhoA (Ridley, 1997), whereas Rac1 

induces membrane ruffling and Cdc42 the formation of filopodia (Nobes and Hall, 

1995). The three GTP binding proteins further contribute to progression from G1 to S-

phase, e.g. by up-regulation of cyclin D1 (Olson et al., 1995). For regulation of gene 

transcription of e.g. cyclin D1 and inflammatory proteins as interleukin 2, the GTP 

binding proteins activate distinct signaling pathways (especially those regulated by 

Jun-kinase, p38 MAP kinase, NFκB). Furthermore, they regulate apoptotic and 

inflammatory processes (Esteve et al., 1998; Jaffe and Hall, 2005; Van Aelst and 

D'Souza-Schorey, 1997).  

Ras GTP binding proteins are associated with functions distinct from the Rho GTP 

binding proteins. Ras GTP binding proteins transmit signals from growth factor 

receptors via the Raf proto-oncogene to the nucleus that result in alterations of cell 

cycle proteins and transcription factors (Boguski and McCormick, 1993). Mutations of 

Ras GTP binding proteins are associated with ~30 % of all forms of cancer, making 

them potent proto-oncogenes themselves. 
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1.6 RhoB 

RhoB is homologous to RhoA, both exhibit an identity of 86 % at the amino acid level 

and have therefore been suggested to have similar biological activities: They govern 

the dynamics of the actin cytoskeleton and both promote transactivation of the serum 

response element of the c-fos promoter and potentate the transforming activity of 

oncogenic Ras (Prendergast et al., 1995;Wennerberg and Der, 2004). Still, RhoB 

differs from RhoA in two important aspects. 1. While RhoA is constitutively 

expressed, RhoB is transcriptionally regulated in most cell lines, meaning that its 

basal level is low. It is up-regulated physiologically during S-phase (Zalcman et al., 

1995). Due to its low half life period (mRNA: 20 minutes, protein: 2 hours), up-

regulated RhoB is quickly degraded and its signaling terminated (Fritz et al., 

1995;Lebowitz et al., 1995). Active RhoA and Ras GTP binding proteins regulate the 

RhoB level by suppression of rhoB promoter activity (Fritz and Kaina, 1997;Jiang et 

al., 2004b;Jiang et al., 2004a). 2. Due to differences in their respective C-terminals, 

RhoB can be either farnesylated or geranyl-geranylated, while RhoA is exclusively 

geranyl-geranylated (Adamson et al., 1992a). RhoA cycles between the plasma 

membrane and the cytosol, while RhoB has been found to be permanently localized 

to endosomes and lysosomes (Adamson et al., 1992b;Michaelson et al., 2001). 

Distinct functions of RhoB are partially based on this distinct localization (Wang and 

Sebti, 2005). RhoB regulates the trafficking of early endosomes (Rojas et al., 2004). 

Furthermore, alteration of RhoB signaling results in apoptosis induced by anti-cancer 

drugs (Fritz and Kaina, 2000;Liu et al., 2001). RhoB further suppresses NFκB and the 

survival kinase Akt in a PRK/PDK1-dependent manner, which may further contribute 

to the initiation of apoptosis (Fritz and Kaina, 2001;Jiang et al., 2004a). Finally, a 

direct interaction of RhoB with caspase-2 has been suggested (Kong and Rabkin, 

2005).
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1.7 Functional consequences GTP binding protein glucosylation 

 The receptor amino acid for glucosylation, threonine 37 (RhoA/RhoB) and threonine 

35 (Rac/Cdc42/Ras) respectively, is located within the switch 1 region of the GTP 

binding proteins. The efficiency of glucosylation depends on the nucleotide bound. 

The threonine residue is easily accessible in the GDP-bound conformation. In the 

GTP-bound conformation, the threonine is hidden inside the molecule due to its 

interaction with a phosphate, and therefore it is hardly glucosylated (Just et al., 

1995b).  

signal outputRhoGDI

GEF

signal input

Rho
-GDP

Rho-
GTP

GAP
 

Figure IV.: Inhibition of Rho/Ras signal transduction by their glucosylation 
Upon glucosylation, the Rho/Ras GTP binding proteins can no longer interact with GDI and their 

effecters.  
 

The glucosylation freezes the Rho/Ras GTP binding proteins in their inactive state 

(Figure IV.). In consequence, the Rho/Ras-dependent signal transduction is blocked 

(Vetter et al., 2000). Except for this effect on the protein-effecter interaction, the 

glucosylation blocks the interaction with GDI. In consequence, glucosylated Rho 

accumulates at the plasma membrane (Genth et al., 1999). Inactivation of Rho 

causes actin re-organisation in cultured cells. The actin re-organisation may be the 

cause of the toxin-induced loss of barrier function of intestinal (TcdA/TcdB) and 

endothelial tissues (TcsL). The inactivation of the GTP binding proteins by 

glucosylating toxins further induces caspase-dependent apoptosis (Fiorentini et al., 
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1998;Hippenstiel et al., 2002;Qa'Dan et al., 2002). Apoptosis of intestinal cells may 

play a role in the occurrence of the pseudomembranous colitis.  
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2. Aims of this project 

Treatment of various cultured cell lines with TcdA causes an up-regulation of RhoB. 

This up-regulation was hypothesized to be based on the inactivation of Rac1 and the 

subsequent actin re-organisation (Gerhard et al., 2005). However, no function for 

RhoB has been described in cells exposed to the large clostridial cytotoxins.  

The aim of this thesis is  

1. to reveal molecular mechanisms governing the up-regulation of RhoB 

 Æ actin re-organisation by agents that manipulate actin dynamics 

 Æ inactivation of Rho/Ras GTP binding proteins by bacterial protein toxins  

with distinct substrate specificities 

 

2. to analyse the posttranslational regulation of RhoB 

 Æ state of activity by effecter pulldown assay 

 Æ regulation of intracellular stability by inhibition of proteasomal and caspase- 

               dependent degradation  

 

3. to check on the function of up-regulated RhoB in the toxin-treated cell 

 Æ regulation of actin re-organisation by inhibition of RhoB up-regulation 

 Æ regulation of apoptosis by inhibition of RhoB 
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3.1 Materials 

The GST-C21 vector construct was a kind gift of Dr. John Collard (Amsterdam). 

Commercially obtained reagents: latrunculin B, actinomycin D, caspase inhibitor I. (Z-

VAD(OMe)-FMK), MG132, nocodazole (Calbiochem); cycloheximide (Sigma), 

antibodies: RhoB (BL927, Bethyl Laboratories); beta actin (AC-40, Sigma); 

horseradish peroxidase conjugated secondary antibodies mouse/rabbit (Rockland). 

 

3.2 Toxin purification 

TcdA, TcdB, TcdBF, and TcsL were purified from the respective C. difficile strains 

VPI 10463 and 1470 or the C. sordellii strain 6018 (Genth et al., 2000). A dialysis bag 

containing 900 ml of 0.9% NaCl in a total volume of 4 l brain heart infusion medium 

(Difco) was inoculated with 100 ml of an overnight culture of C. difficile (or C. 

sordellii) and grown under microaerophilic conditions at 37°C for 72 h. Proteins were 

precipitated from the culture supernatant by ammonium sulfate at 70% saturation. 

The precipitates were dialyzed against Tris-HCl buffer, pH 7.5, overnight, and loaded 

onto a MonoQ column (Amersham Biosciences). The toxins were subsequently 

eluted with Tris-HCl buffer, pH 7.5, containing 500 mM NaCl. C. botulinum C2 toxin, 

and C3 fusion-toxin were expressed in E. coli using the pGEX-2T vector system and 

purified with GSH Sepharose beads (AP Biotech) as described (Barth et al., 1998).  

 

3.3 Cell culture 

Fibroblast cell lines are widely used to study the function of Rho proteins. 

Furthermore, these cell lines are sensitive to the clostridial glucosylating toxins. 

Fibroblasts were cultivated in Dulbecco’s modified essential medium (Biochrom, 
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+10% FCS, 100 µg/ml penicillin, 100 U/ml streptomycin and 1 mM sodium pyruvate) 

at 37 °C and 5% CO2. Upon confluence (2 days), cells were washed twice with 

phosphate buffered saline. Cells were then treated with 2 ml of trypsin solution (2’) 

and after addition of 5 ml full growth medium centrifuged (5’, 800 rpm). Pellets were 

re-suspended in 10 ml full growth medium. The following volumes of the suspension 

were used: 

 Table 2: Volumes of cell suspension used for different formats of culture vessels 

 Size of culture vessel 
(total volume) 

 75 cm2

(25 ml) 
3,5 cm2

(2 ml) 
24-well 
(24 ml) 

NIH3T3 2 ml 0,3 ml 1 ml 
MEF WT 3 ml 0,3 ml 1 ml 

MEF p38α-/- 3 ml 0,3 ml 1 ml 
 

3.4 Synchronization of cells 

The thymidine double block technique was applied to synchronize NIH3T3 

fibroblasts. Exponentially growing cells were exposed to 2 mM of 2’deoxy-thymidine 

in full growth medium at 37 °C and 5% CO2
 for 15 h. The medium was then removed 

and replaced by medium without thymidine. After 9 h, this medium was replaced by 

full growth medium containing 2 mM of 2’deoxy-thymidine for the second block. Cells 

were incubated for 15 h. Subsequently, the medium was replaced by thymidine free 

full growth medium for 1 h. Cells were then synchronized in S-phase as determined 

by FACS. 

 

3.5 Treatment of cells 

Fibroblasts were treated with TcdB, TcdBF, TcsL, C2 toxin, or cell permeable C3. 

The toxins were directly applied to sub-confluent cells to the growth medium. The 

following drugs were applied: MG132 (20 µM), a reversible and cell permeable 
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proteasome inhibitor; caspase inhibitor I (20 µM), a cell permeable pan-caspase 

inhibitor; cycloheximide (1 mM), a protein synthesis inhibitor; actinomycin D (5 µM), 

an inhibitor of transcription; latrunculin B, a toxin that disrupts the actin cytoskeleton 

by inhibition of actin polymerisation (2,5 µM); cytochalasin D, a toxin that disrupts the 

actin cytoskeleton (10 µM); nocodazole, a toxin that disrupts the microtubule system 

(20 µM). 

 

3.6 Cytopathic effect of the toxins 

Clostridial glucosylating toxins cause a re-organisation of the actin cytoskeleton due 

to the inactivation of Rho proteins. This re-organisation is reflected by rounding of the 

cultured cells. Sub-confluent fibroblasts were exposed to the toxins as indicated. 

Cells were then incubated for 4 h. Analysis was performed by a Zeiss Axiovert 200 

M. The typical morphology (“cell rounding”) was recorded. Cell rounding was 

determined by counting and was given as the ratio of rounded per total cells in %. 

 

3.7 Analysis of apoptosis 

Membrane heterogeneity is a marker of viable cells. It is lost early during apoptotic 

processes. The membrane component phosphatidylserine is localized to the inner 

leaflet of the membrane in viable cells. When the heterogeneity gets lost, 

phosphatidylserine also distributes among the outer leaflet of the membrane and 

becomes accessible from the outside. Annexin V binds specifically to 

phosphatidylserine exposed at the outer leaflet of the membrane. Phosphatidylserine 

exposure is visualized by Annexin V labeled with Alexa Fluor 488 (Cambrex) added 

directly into the medium (1:50). Cells were analyzed by fluorescence microscopy 

using a Zeiss Axiovert 200 M (annexin V Alexa Fluor 488: excitation: 470 nm; 

emission: 515 nm). 
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3.8 Cell lysis 

Cells were washed once with phosphate buffered saline. They were then scraped 

into Laemmli sample buffer (200 µl). The obtained suspension was incubated for 10’ 

at 37 °C and 1400 rpm in a thermo shaker and subsequently sonified on ice. The 

lysate was then incubated for 10’ at 95°C and submitted to SDS PAGE.  

 

3.9 Western blot analysis 

Lysate proteins were separated using SDS-PAGE and subsequently transferred onto 

nitrocellulose membranes (Schleicher and Schuell, Germany) by a tank blot system 

(120 V, 120’). The membranes were blocked with 5 % (w/v) non-fat dried milk in TRIS 

buffered saline supplemented with Tween 20 (50 mM TRIS, pH7,4, 150 mM NaCl, 

0,05 % (w/v) Tween 20) for 60 minutes; incubation with the primary antibody was 

conducted over night at 4 °C, treatment with the secondary antibody for 2 h (22°C). 

For the chemoluminescence reaction, ECL Femto (Pierce) was used. All signals were 

analyzed densitometrically using the KODAK 1D software and normalized to beta 

actin signals.  

 

3.10 RNA purification and RT-reaction 

Total RNA was purified from fibroblasts using the RNeasy Mini Kit (Qiagen) 

according to the manufacturer’s instructions. Shortly, cells were lysed in lysis buffer. 

The RNA was extracted and bound to silica membranes after addition of ethanol. 

Contaminating DNA was cleaved by DNase I digestion and bound RNA washed with 

the supplied buffer. Total cellular RNA was then eluted with RNase free water. 2 µg 

of RNA were then used as template in the RT-reaction, which was performed with the 

Omniscript RT-Kit (Qiagen) according to the manufacturer’s instructions.  
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3.11 Semi-quantitative real-time PCR 

Real time PCR is a specialized PCR protocol to detect changes of mRNA levels. It is 

based on a standard PCR protocol to amplify the sequence of interest. To detect the 

synthesized PCR product, a dsDNA specific, fluorescent dye (SYBR green) is added 

to the reaction mixture. By these means, an increase of synthesized product evokes 

an increase of fluorescence intensity which can be measured after each individual 

cycle. For quantification, a threshold value for the fluorescence intensity is set. The 

number of PCR cycles required to reach this threshold (crossing point) is used to 

compare treated samples to control samples, which are set to 1.0. The real-time PCR 

was conducted using the QuantiTect SYBR Green PCR Kit (Qiagen) and a 

LightCycler (Roche). The cDNA obtained from the RT-reaction was diluted (1:1000) 

to avoid overloading. Primers (3 µM) used were: β-actin: 5’– CCT GCT TGC TGA 

TCC ACA TC– 3’ and 5’–GCA TTG CTG ACA GGA TGC AG–3’, RhoB: 5’–CCG 

AGG TAA AGC ACT TCT GC–3’ and 5’–CCG AGC ACT CGA GGT AGT CA–3’.  

 

3.12 RhoB activity assay 

Only GTP-bound and thus active RhoB interacts with its effecter proteins. Thus, a 

pulldown applying the Rho effecter Rhotekin is used to determine the activity state of 

RhoB (Gampel and Mellor, 2002). The Rho-binding domain of Rhotekin, C21, was 

expressed as GST-fusion protein in E. coli. After their lysis using French Press, the 

soluble fraction was obtained by centrifugation (20.000 rpm, 20’). It was incubated 

with glutathione-sepharose for 30’ at 4°C and subsequently washed. 3T3 fibroblasts 

treated with either TcdB, or TcsL, or C3 as indicated were lysed in lysis buffer (50 

mM Tris pH 7.2, 150 mM NaCl, 5 mM MgCl2, 1 % NP-40, 1 mM PMSF, 5 mM DTT, 

Complete –EDTA). The soluble fraction was obtained by centrifugation (10.000 x g, 

5’). It was then added to the glutathione-bound GST-C21 for 1 h (4°C). After washing 

 - 15 - 



3. Materials and Methods  
 

 

of the beads, RhoB was eluted by incubation with Laemmli sample buffer at 95°C 

(10’). Samples were submitted to SDS-PAGE and Western blotting. 

 

3.13 Glucosylation reaction 

The glucosylation reaction was performed in the presence of radio labelled UDP-

[14C]-glucose. Recombinant GTP binding proteins (1 µM) were incubated with TcdB 

or TcsL (20 nM) in glucosylation buffer (50 mM TRIS pH 7.2, 150 mM NaCl, 100 mM 

KCl, 1 mM MnCl2, 5 mM MgCl2, 100 µg/ml BSA, 10 µM UDP-[14C]glucose, 10 µM 

UDP-glucose) at 37 °C for the indicated periods. The reaction was terminated by 

addition of Laemmli sample buffer. Proteins were separated by SDS-PAGE and the 

gels dried onto Whatman paper. Radio-sensitive phosphorimaging films were 

exposed to the dry gels over night. The films were analyzed by phosphorImaging 

(Cyclone, Packard).  

 

 

 - 16 - 



4. Results 
 

 

4. Results 

4.1 TcdB, TcdBF, and TcsL cause actin re-organisation in fibroblasts 
TcdB, TcdBF, and TcsL are glucosyltransferases that modify distinct subsets of Rho 

and Ras proteins. Thereby, the toxins cause a re-organisation of the actin 

cytoskeleton, resulting in rounding of cells (“cytopathic effect”). NIH3T3 fibroblasts 

were exposed to increasing concentrations of the toxins. After 4 h, the cells were 

analyzed by phase contrast microscopy (Fig. 1B) and the cytopathic effect was 

quantified in terms of rounded per total cells. TcdB, TcdBF, and TcsL exhibited 

sigmoid toxin concentration – cytopathic effect curves (Fig. 1A). TcdB was one order 

of magnitude more potent than TcdBF and three orders of magnitude more potent 

than TcsL (Fig. 1A). 
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 Fig. 1A: Cytopathic effect of TcdB, TcdBF, and TcsL 
Fibroblasts were exposed to the indicated concentrations of TcdB (■), TcdBF (▼), or TcsL (●) for 4 h. 

The cells were analyzed by phase contrast microscopy and cell rounding determined by counting. 

Results displayed are the mean of three independent experiments.  
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Fig. 1B: TcdB, TcdBF, and TcsL induce cell rounding in a concentration dependent manner 
Fibroblasts were exposed to increasing concentration of the toxins as indicated for 4 h. Cells were 

then analyzed by phase contrast microscopy. 
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4.2 Up-regulation of RhoB by TcdB 

Exposure of various cell lines to TcdA causes an increase of the RhoB level (Gerhard 

et al., 2005). This increase may be based on the inactivation of Rho GTP binding 

proteins. Both TcdA and TcdB glucosylate Rho, Rac, and Cdc42; therefore, TcdB 

likely causes an increase of RhoB, as well. To challenge this notion, fibroblasts were 

exposed to increasing concentrations of TcdB. The RhoB protein level increased in a 

concentration dependent manner up to 15-fold compared to untreated cells (Fig. 2A).  

To quantify the RhoB signals, beta actin was chosen as internal standard, as its level 

was not altered by TcdB-treatment (Fig. 2A). 
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Fig. 2A: TcdB concentration dependent increase of the RhoB level 
Fibroblasts were exposed to the indicated concentrations of TcdB for 4 h. Western Blot analysis of the 

lysates was performed with the indicated antibodies. Signals were analyzed densitometrically. RhoB 

signals were normalized to beta actin signals. The control level was set 1.0. 
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Next, the increase of the RhoB level was assessed in a time-course experiment. After 

exposure to TcdB, the RhoB level increased in a time dependent manner (Fig. 2B). 

After 5 h, the level of RhoB did not increase further. The steady state level persisted 

for at least 20 h (Fig. 2B).  

 

0 5 10 15 20 25
0

2

4

6

8

10

12

14

R
el

. R
ho

B
 le

ve
l

t [h]

RhoB

beta actin

h0    1     3    5    7   10  12  24
Fig. 2B: TcdB exposure time dependent increase of the RhoB level  
Fibroblasts were exposed to TcdB (1 ng/ml) for the indicated periods. Western Blot analysis of the 

lysates was performed with the indicated antibodies. Signals were analyzed densitometrically. RhoB 

signals were normalized to beta actin signals. The control level was set 1.0. 

 

To test, if the observed increase of the RhoB level required protein de novo 

synthesis, fibroblasts were treated with cycloheximide (CHX) prior to toxin exposure. 

CHX pre-treatment completely inhibited up-regulation of RhoB indicating that the 

increase was due to protein de novo synthesis (Fig. 2C). 
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Fig. 2C: TcdB dependent increase of the RhoB level requires protein de novo synthesis 
Fibroblasts were treated with cycloheximide (1 mM) (♦) or left untreated (■) for 1 h. TcdB (1 ng/ml) was 

then added and incubation continued for the indicated periods. Western Blot analysis of the lysates 

was performed with the indicated antibodies. Signals were analyzed densitometrically. RhoB signals 

were normalized to beta actin signals. The control level was set 1.0. 

 

 

To check, whether the up-regulation of RhoB protein was accompanied by an 

increase of rhoB mRNA, semi-quantitative real-time RT-PCR was applied. As internal 

standard, beta actin mRNA was used. RhoB mRNA levels increased in a 

concentration dependent manner up to 30-fold (Fig. 2D). The increase was blocked 

by actinomycin D. Pre-incubation of fibroblasts with actinomycin D accordingly 

inhibited the TcdB-induced RhoB up-regulation (Fig. 2E). 

To summarize, RhoB protein was up-regulated by treatment of fibroblasts with TcdB. 

The up-regulation was due to transcriptional activation and required therefore mRNA 

and protein de novo synthesis. 
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Fig. 2D: TcdB concentration dependent increase of the rhoB mRNA level 
Fibroblasts were treated with actinomycin D (5 µM) or left untreated for 1 h. The indicated 

concentrations of TcdB were then added and incubation continued for 4 h. Total mRNA was prepared 

from treated cells and submitted to real-time RT-PCR. rhoB signals were normalized to beta actin 

signals. The control level was set 1.0. After every run, a melting curve was recorded to ensure the 

specificity of the reaction. Results displayed are the mean + S.D. of three independent experiments.  
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Fig. 2E: Inhibition of TcdB-induced RhoB up-regulation by actinomycin D 
Fibroblasts were treated with actinomycin D (5 µM) or left untreated for 1 h. TcdB (1 ng/ml) was then 

added and incubation continued for the indicated periods. Western Blot analysis of the lysates was 

performed with the indicated antibodies. 
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4.3 Up-regulation of RhoB by C3 and TcdBF 
To pinpoint Rho proteins responsible for RhoB up-regulation, the more specific cell 

permeable C3, inactivating exclusively Rho A/B/C, and the variant toxin B TcdBF, 

inactivating Rac1 and R-Ras, were applied. Fibroblasts were exposed to increasing 

concentrations of either C3 or TcdBF (equipotent regarding CPE). The RhoB level 

increased in a concentration dependent manner in both cases (Fig. 3A). C3 was at 

least as efficient as TcdB regarding RhoB up-regulation (> 13-fold). In contrast, 

TcdBF failed to induce strong RhoB up-regulation (< 5-fold). 
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Fig. 3A: Up-regulation of RhoB by C3 is more efficient than by TcdBF 
Fibroblasts were exposed to the indicated concentrations of C3 (1 µg/ml = 0,66 µg/ml C2I + 0,33 µg/ml 

C3FT) or TcdBF for 4 h. Western Blot analysis of the lysates was performed with the indicated 

antibodies. Signals were analyzed densitometrically. RhoB signals were normalized to beta actin 

signals. The control level was set 1.0. 

 

The lower efficiency of TcdBF was then confirmed in a time-course experiment. In 

fibroblasts exposed to TcdBF, the RhoB level slightly increased to about three fold 

(Fig. 3B). This elevated level persisted for at least 17 h. In contrast, C3 caused an 

up-regulation of the RhoB level by 10-fold, which lasted for at least 14 h (Fig. 3B). 
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Fig. 3B: Time dependent increase of the RhoB level after C3- or TcdBF-treatment 
Fibroblasts were exposed to C3 (1 µg/ml) or TcdBF (10 ng/ml) for the indicated periods. Western Blot 

analysis of the lysates was performed with the indicated antibodies. Signals were analyzed 

densitometrically. RhoB signals were normalized to beta actin signals. The control level was set 1.0. 

 

The requirement of protein de novo synthesis for C3-induced RhoB up-regulation 

was confirmed by pre-treating fibroblasts with cycloheximide. The C3 dependent 

RhoB up-regulation was completely inhibited (Fig. 3C).  

TcdB and C3 were both strong inducers of RhoB up-regulation, while TcdBF proved 

to be a poor inducer. RhoB up-regulation was mainly governed by inactivation of 

RhoA/B/C. A direct comparison of TcdB- and TcdBF-induced RhoB up-regulation 

emphasizes this notion (Fig. 3D).  
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Fig. 3C: C3 dependent increase of the RhoB level requires protein de novo synthesis 

Fibroblasts were treated with cycloheximide (1 mM) (♦) or left untreated (▲) for 1 h. The indicated 

concentrations of C3 were then added and incubation continued for 4 h. Western Blot analysis of the 

lysates was performed with the indicated antibodies. Signals were analyzed densitometrically. RhoB 

signals were normalized to beta actin signals. The control level was set 1.0. 
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Fig. 3D: TcdB is a more powerful inducer of RhoB protein than TcdBF 
Fibroblasts were exposed to the indicated toxin concentrations for 4 h. Western Blot analysis of the 

lysates were performed with RhoB and beta actin antibodies. Signals were analyzed densitometrically. 

RhoB signals were normalized to beta actin signals. The control level was set 1.0. Results displayed 

are the mean + S.D. of three independent experiments.  
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4.4 Up-regulation of RhoB by TcsL 

H/K/N-Ras suppresses rhoB promoter activity (Jiang et al., 2004a). Inactivation of 

H/K/N-Ras may therefore result in “de-suppression” and activation of the rhoB 

promoter. To check this notion, Clostridium sordellii lethal toxin (TcsL) which 

glucosylates Rac1, R-Ras, and H/K/N-Ras, was applied. Fibroblasts were exposed to 

increasing concentrations of TcsL. The RhoB level increased in a concentration 

dependent manner to the 12-fold level compared to untreated cells (Fig. 4A). The 

observed increase was more pronounced than in TcdBF-treated fibroblasts (Fig. 4A). 
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Fig. 4A: TcsL and TcdBF concentration dependent increase of the RhoB level 
Fibroblasts were exposed to the indicated concentrations of TcsL or TcdBF for 4 h. Western Blot 

analysis of the lysates was performed with the indicated antibodies. Signals were analyzed 

densitometrically. RhoB signals were normalized to beta actin signals. The control level was set 1.0. 

 

The increase of the RhoB level was also observed in time-course experiments. The 

RhoB level in TcsL-treated fibroblasts increased in a time dependent manner for 

about 12 h (Fig. 4B). The steady state level of RhoB persisted for another 12 h. 
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Fig. 4B: Up-regulation of RhoB in a time dependent manner by TcsL- or TcdBF-treatment 
Fibroblasts were exposed to TcsL (1 µg/ml) or TcdBF (10 ng/ml) for the indicated periods. Western 

Blot analysis of the lysates was performed with the indicated antibodies. Signals were analyzed 

densitometrically. RhoB signals were normalized to beta actin signals. The control level was set 1.0. 

 

TcsL-induced RhoB up-regulation required protein de novo synthesis, as pre-

treatment of fibroblasts with cycloheximide abolished it (Fig. 4C). Furthermore, rhoB 

mRNA levels after TcsL-treatment were determined by real-time RT-PCR. The rhoB 

mRNA level increased in a concentration dependent manner. Pre-treatment with 

actinomycin D inhibited the increase of rhoB mRNA as well as RhoB protein, 

indicating that RhoB was transcriptionally regulated (Fig. 4D+E). The minor RhoB up-

regulation by TcdBF may also be based on the inactivation of H/K/N-Ras. At high 

concentrations, TcdBF glucosylated N-Ras (exemplarily) in a recombinant system, 

however to a lower extent compared to TcsL (Fig. 4F). 

Application of TcsL thus proved the existence of a second, Ras-dependent pathway 

to induce RhoB up-regulation by transcriptional activation.  
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Fig. 4C: TcsL dependent increase of the RhoB level requires protein de novo synthesis 
Fibroblasts were treated with cycloheximide (1 mM) (♦) or left untreated (●) for 1 h. TcsL (1 µg/ml) was 

then added and incubation continued for the indicated periods. Western Blot analysis of the lysates 

was performed with the indicated antibodies. Signals were analyzed densitometrically. RhoB signals 

were normalized to beta actin signals. The control level was set 1.0. 
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Fig. 4D: TcsL concentration dependent increase of the RhoB mRNA level 
Fibroblasts were treated with actinomycin D (5 µM) or left untreated for 1 h. The indicated 

concentrations of TcdB were then added and incubation continued for 4 h. Subsequently, total mRNA 

was prepared from treated cells and submitted to real-time RT-PCR. rhoB signals were normalized to 

beta actin signals. The control level was set 1.0. After every run, a melting curve was recorded to 

ensure the specificity of the reaction. Results displayed are the mean + S.D. of three independent 

experiments.  
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Fig. 4E: Inhibition of TcdB-induced RhoB up-regulation by actinomycin D 
Fibroblasts were treated with actinomycin D (5 µM) or left untreated for 1 h. TcsL (1 µg/ml) was then 

added and incubation continued for the indicated periods. Western Blot analysis of the lysates was 

performed with the indicated antibodies. 
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Fig. 4F: TcdBF glucosylates N-Ras at high concentrations of the toxin 
Recombinant N-Ras (1 µM) was incubated with TcdBF or TcsL as indicated in the presence of UDP-

[14C]-glucose at 37 °C for 30 minutes. Protein glucosylation was detected by phosphorImager 

analysis. 
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4.5 p38 MAPK is an enhancer of RhoB up-regulation 

In TcdA-treated cells, RhoB up-regulation is p38 MAP kinase-dependent (Gerhard et 

al., 2005). Therefore, a regulating role of the p38 MAP kinase was checked in TcdB- 

and TcsL-treated fibroblasts. To this end, a p38α-/- mouse embryological fibroblasts 

(MEF) cell line was compared with wild type (WT) MEFs. WT and p38α-/- fibroblasts 

were exposed to increasing concentrations of TcdB or TcsL. The cytopathic effect of 

TcdB and TcsL on WT and p38α-/- MEFs was determined (Fig. 5A). Both WT and 

p38α-/- fibroblasts were equally sensitive. Furthermore, the cytopathic effects of TcdB 

and TcsL on ME fibroblasts were comparable to their respective CPEs on NIH3T3 

fibroblasts. 
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Fig. 5A: Cytopathic effect of TcdB and TcsL on mouse embryological fibroblasts 
WT or p38α-/- fibroblasts were exposed to the indicated concentrations of either TcdB (WT = ■; p38α-/- 

= ◄), or TcsL (WT = ●; p38α-/- = ►) for 4 h. The cells were analyzed by phase contrast microscopy 

and cell rounding determined by counting. Results displayed are the mean of three independent 

experiments. 
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Next, the RhoB level in WT and p38α-/- fibroblasts after treatment with TcdB was 

assessed. RhoB was up-regulated in WT as well as in p38α-/- MEFs. The maximal 

relative RhoB level, however, was lower in p38α-/- cells; thus, the efficacy of TcdB to 

up-regulate RhoB was reduced. The same results were found in TcsL-treated 

fibroblasts (Fig. 5B). These findings showed that the p38 MAP kinase pathway was 

not required for RhoB up-regulation. Instead of an essential regulator, the p38 MAP 

kinase pathway appeared to be a non-essential enhancer of RhoB up-regulation, 

whose absence resulted in a reduced RhoB up-regulation. 
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Fig. 5B: Reduced efficacy of TcdB and TcsL to up-regulate RhoB in p38α MAPK -/- fibroblasts 
WT (filled bars) or p38α MAP kinase -/- (blank bars) fibroblasts were exposed to the indicated 

concentrations of TcdB or TcsL for 4 h. Western Blot analysis of the lysates was performed with the 

indicated antibodies. Signals were analyzed densitometrically. RhoB signals were normalized to beta 

actin signals. 
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4.6 RhoB is degraded by caspases and the proteasome  
The RhoB protein level is not only governed by transcriptional activation, but also by 

degradation. RhoB exhibits a short half life period of 2 h (Lebowitz et al., 1995). The 

more stable homologue RhoA is degraded in a proteasome-dependent manner 

(Lanning et al., 2004). To determine the degradation of up-regulated RhoB, 

fibroblasts were treated with TcsL for 4 h (Fig. 6A). Cycloheximide was then applied 

and the RhoB level monitored during the next 4 h. After addition of CHX, up-

regulated RhoB was rapidly degraded. The half life period was estimated to ~ 1 h. To 

check, if RhoB was proteasomally degraded, fibroblasts were treated with the 

proteasome inhibitor MG132 prior to toxin exposure (Fig. 6A). After addition of CHX, 

the RhoB protein level still dropped but slower, indicating that RhoB was indeed 

proteasomally degraded.  

Caspases are activated by treatment of cells with TcsL (Petit et al., 2003). To find 

out, if RhoB was degraded by caspases, fibroblasts were treated with a pan-caspase 

inhibitor (Zhu et al., 1995) prior to toxin treatment. Note that the inhibitor did not 

prevent RhoB up-regulation. The pan-caspase inhibitor stabilized RhoB to a similar 

extent as the proteasome inhibitor, indicating that RhoB was degraded in a caspase-

dependent manner. Next, fibroblasts were treated with proteasome plus pan-caspase 

inhibitor prior to toxin exposure (Fig. 6A). After addition of CHX, the RhoB level 

remained constant, showing that the RhoB level was regulated by proteasome- and 

caspase-dependent degradation. Furthermore, this finding indicated that TcsL-

treatment caused an activation of caspases in fibroblasts. 
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Fig. 6A: RhoB is degraded by caspases and the proteasome in fibroblasts exposed to TcsL 
Fibroblasts were treated with either MG132 (20 µM), caspase inhibitor I (20 µM) or MG132 plus 

caspase inhibitor I (20 µM each) or left untreated for 1 h. TcsL (1 µg/ml) was then added and 

incubation continued for 4 h. Subsequently, cycloheximide (1 mM) was added or not and incubation 

continued for the periods indicated. Western Blot analysis of the lysates was performed with the 

indicated antibodies. Signals were analyzed densitometrically. RhoB signals were normalized to beta 

actin signals. RhoB signal intensity at t = 0 was set 1.0. 
 

The same set of experiments was performed applying TcdB instead of TcsL. The 

results were alike; RhoB was partially stabilized by treatment with either the 

proteasome (Fig. 6B) or the pan-caspase inhibitor (data not shown). Treatment with 

proteasome plus pan-caspase inhibitor completely stabilized RhoB (Fig. 6B). 
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Fig. 6B: RhoB is degraded by caspases and the proteasome in fibroblasts exposed to TcdB 
Fibroblasts were treated with either MG132 (20 µM) or MG132 plus caspase inhibitor I (20 µM each) 

or left untreated for 1 h. TcdB (1 ng/ml) was then added and incubation continued for 4 h. 

Subsequently, cycloheximide (1 mM) was added or not and incubation continued for the periods 

indicated. Western Blot analysis of the lysates was performed with the indicated antibodies. Signals 

were analyzed densitometrically. RhoB signals were normalized to beta actin signals. RhoB signal 

intensity at t = 0 was set 1.0. 
 

In conclusion, the RhoB level was regulated by proteasome- and caspase-dependent 

degradation in fibroblasts treated with either TcdB or TcsL. The observed caspase 

activity is in line with reports on TcdB- and TcsL-induced caspase-dependent 

apoptosis (Fiorentini et al., 1998;Hippenstiel et al., 2002;Petit et al., 2003). 
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4.7 Activation state of RhoB in toxin-treated fibroblasts 

RhoB signaling does not only require an increase of the protein itself, but its active, 

GTP-bound form. Therefore, the Rhotekin pulldown was performed. The pulldown 

exploits that only GTP-bound RhoB binds to its effecter Rhotekin. To this end, 

fibroblasts were treated with increasing concentrations of either TcdB or TcsL to 

cause RhoB up-regulation. The lysates were used for the pulldown. 

TcdB induced an up-regulation as well as an activation of RhoB compared to 

untreated cells (Fig. 7A). The activation was about 7-fold. Interestingly, the increase 

of RhoB activity (7-fold) was less than the increase of RhoB protein (15-fold; Fig. 2A) 

induced by TcdB. 

TcsL also induced RhoB protein and activity (Fig. 7A). Regarding RhoB activity, 

however, it was a more potent inducer than TcdB, activating RhoB by > 20-fold.  
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Fig. 7A: Increase of RhoB activity in Fibroblasts exposed to either TcdB or TcsL 
Fibroblasts were exposed to the indicated concentrations of either TcdB or TcsL for 4 h. Cells were 

then lysed and the lysates used for the pulldown assay using GSH-sepharose bound GST-Rhotekin-

C21 fusion protein. Total and precipitated RhoB was detected by Western Blot with the RhoB 

antibody. As negative reference, GST bound to GSH-sepharose was applied. 
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RhoB is a substrate of TcdA (Gerhard et al., 2005). Therefore, it was likely to be also 

glucosylated by TcdB. This notion would explain the lower activity of RhoB in TcdB-

treated cells. To address this matter, recombinant RhoA, RhoB, and Rac1 were 

submitted to [14C]-glucosylation by TcdB and TcsL (Fig. 7B). RhoA and RhoB were 

substrates of TcdB but not of TcsL. Glucosylation of Rac1 by either toxin proved 

comparable catalytic activity. This finding indicated that the lower activity of RhoB in 

cells exposed to TcdB was probably due to its partial modification.  
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Fig. 7B: RhoB is a substrate of TcdB but not of TcsL 
Recombinant RhoA, RhoB, or Rac1 (1 µM) was incubated with TcdB or TcsL (20 nM) in the presence 

of UDP-[14C]-glucose at 37 °C for the indicated periods. Protein glucosylation was detected by 

phosphorImager analysis. 
 

RhoB is also a substrate of C3. To check, whether RhoB was active in C3-treated 

fibroblasts, the Rhotekin pulldown was applied. Even though RhoB was up-regulated 

by C3-treatment of fibroblasts, no active RhoB could be precipitated (Fig. 7C, lower 

panel). In the Western blot from the lysates, a shift of the RhoB band to an apparent 

higher molecular weight indicated its ADP-ribosylation (Fig. 7C, upper panel). Thus, 

up-regulated RhoB was completely modified and inactive. 
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Fig. 7C: RhoB is inactive in fibroblasts exposed to C3 
Fibroblasts were exposed to the indicated concentrations of C3 for 4 h. Cells were then lysed and the 

lysates submitted to the pulldown assay using GSH-sepharose bound GST-Rhotekin-C21 fusion 

protein. Total and precipitated RhoB was detected by Western blot with the RhoB antibody. As 

negative reference, GST bound to GSH-sepharose was applied. A shift to an apparent higher 

molecular weight of RhoB is indicated by the arrows. 
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4.8 Up-regulated RhoB does not influence the cytopathic effect 

RhoB was up-regulated and its activity increased in response to treatment of cells 

with TcdB or TcsL. A distinct effect of TcdB and TcsL is the cytopathic effect. A 

comparison between RhoB up-regulation and actin re-organisation revealed similar 

kinetics of both effects (Fig. 8A), indicating that both were governed by the 

inactivation of Rho GTP binding proteins.   
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Fig. 8A: Combination of Fig. 1A, 2A, and 4A 
Displayed are RhoB up-regulation by TcdB (■) and TcsL (●) as well as cell rounding induced by TcdB 

(◄) and TcsL (►).  

 

Actin re-organisation, however, might also be a regulator of RhoB up-regulation. To 

challenge the notion that actin re-organisation was a trigger of RhoB up-regulation, 

the cell permeable C2 toxin was applied; it causes actin re-organisation by ADP-

ribosylation of actin monomers. Fibroblasts were exposed to increasing 

concentrations of C2 and actin re-organisation and the RhoB level were analyzed 

(Fig. 8B). Furthermore, cells were incubated with agents affecting actin (latrunculin B, 

cytochalasin D) or microtubule (nocodazole) dynamics (Fig. 8C). Neither C2 nor any 

of these agents caused an up-regulation of RhoB, indicating that mere actin re-

organisation was not sufficient.  
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Fig. 8B: RhoB is not up-regulated after GTP binding protein independent actin re-organisation 
Fibroblasts were exposed to the indicated concentrations of C2 toxin (1 µg = 0,66 µg C2I + 0,33 µg 

C2II) for 4 h. Cells were then analyzed by microscopy (●). Western Blot analysis of the lysates was 

performed with the indicated antibodies. Signals were analyzed densitometrically. RhoB signals (♦) 

were normalized to beta actin signals. 
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Fig. 8C: RhoB is not up-regulated in response to changes of actin or microtubule dynamics 
Fibroblasts were exposed to TcdB (1 ng/ml), latrunculin B (2,5 mM), cytochalasin D (2 mM), or 

nocodazole (20 µM) for 4 h. Western Blot analysis of the lysates was performed with the indicated 

antibodies.  

 

 - 39 - 



4. Results 
 

 

RhoB is a regulator of the actin cytoskeleton as shown before (Aspenström et al., 

2004); therefore, it was likely to regulate actin re-organisation. To check, if active 

RhoB was a regulator of actin re-organisation, cell rounding was analyzed in 

fibroblasts treated with cycloheximide prior to exposure to TcdB. RhoB protein up-

regulation was abolished (Fig. 8D+2C); cell rounding, however, occurred similar to 

cells exposed to TcdB only and was thus not influenced by cycloheximide (Fig. 8D).  
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Fig. 8D: Inhibition of RhoB up-regulation by cycloheximide does not alter actin re-organisation 
Fibroblasts were incubated with cycloheximide (1 mM) or left untreated for 1 h. Cells were then 

exposed to TcdB (1 ng/ml) for the indicated time periods. Cells were anaylzed microscopically and cell 

rounding determined by counting (no CHX = ■; CHX added = ♦). Western Blot analysis of the lysates 

was performed with the indicated antibodies. Signals were analyzed densitometrically. RhoB signals 

were normalized to beta actin signals. 
 

These findings showed that RhoB up-regulation was not a consequence of actin re-

organisation and cell rounding. Up-regulated RhoB appeared not to be involved in 

cell rounding. The similar kinetics of cell rounding and RhoB up-regulation indicated 

that both effects were regulated by the inactivation of Rho or Ras GTP binding 

proteins. 
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4.9 RhoB regulates the cytotoxic effect of TcdB 
TcdB and TcsL have been reported to induce apoptosis in cultured cell lines 

(Fiorentini et al., 1998;Hippenstiel et al., 2002;Petit et al., 2003). This “cytotoxic 

effect” of TcdB and TcsL has been attributed to the inactivation of Rho- or Ras GTP 

binding proteins. A role of RhoB in the cytotoxic effect has not been evaluated, yet. 

To assess the cytotoxic effect of TcdB, synchronized S-phase fibroblasts were 

exposed to increasing concentrations of the toxin for 12 h. TcdB-treatment induced 

complete rounding of the cells. The ratio of annexin V positive cells versus total cells 

increased in a concentration dependent manner to ~ 70 % (Fig. 9A). This increase 

was completely blocked by application of Z-VAD(OMe)-FMK, a pan-caspase inhibitor 

(Fig. 9A). These results indicated that TcdB was a potent inducer of caspase-

dependent apoptosis in fibroblasts. This finding, however, did not provide evidence 

on a possible role of RhoB in the cytotoxic effect of TcdB.  

TcdB and C3 both inactivate RhoA. In contrast, RhoB is active in TcdB- but not in C3-

treated cells. To check, if active RhoB was required for the cytotoxic effect, 

synchronized S-phase fibroblasts were exposed to C3 and its cytotoxic effect 

determined by annexin V staining. C3 did not cause an increase in annexin V positive 

cells (Fig. 9B). 
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Fig. 9A: TcdB concentration dependent increase of annexin V positive fibroblasts 
Synchronized S-phase fibroblasts were treated with Z-VAD(OMe)-FMK for 1 h or left untreated. They 

were then exposed to the concentrations of TcdB as indicated for 12 h. Then, Annexin V conjugated 

with Alexa Fluor 488 (1:50) was added directly to the medium. Cells were analyzed by phase contrast 

and fluorescence microscopy. 

 

C3 was then used in a co-treatment experiment, applying both C3 and TcdB. Cells 

that were co-treated with both toxins did not exhibit an increase of the ratio of 

annexin V positive cells, indicating that C3 inhibited the cytotoxic effect of TcdB (Fig. 

9C). This result was independent of the order of application of the toxins, indicating 

that it was not due to interference with the respective up-take mechanisms. 

To summarize, TcdB induced caspase-dependent apoptosis in fibroblasts. This effect 

was inhibited when fibroblasts were co-treated to C3. C3 in turn was shown to 

completely inhibit RhoB activity. Its impact on the cytotoxic effect of TcdB is most 

likely based on the inactivation of RhoB.  
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Fig. 9B: TcdB-induced apoptosis is inhibited by C3 
Synchronized S-phase fibroblasts were treated with C3 (3 µg/ml) or TcdB (0,3 µg/ml) for 1 h. Cells 

exposed to TcdB were then exposed to C3 (3 µg/ml) and vice versa. Further samples were left with 

one toxin. Incubation was continued at 37°C and 5 % CO2 for 11 h. Then, Annexin V conjugated with 

Alexa Fluor 488 (1:50) was added directly to the medium. Cells were analyzed by phase contrast and 

fluorescence microscopy. 
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5. Discussion 

5.1 Up-regulation of RhoB 
RhoB is a small GTP binding protein of the Rho family, exhibiting 86 % identity at the 

amino acid level with RhoA (Chardin et al., 1988). The immediate early gene product 

RhoB is short-lived and transcriptionally regulated, while RhoA is constitutively 

expressed (Jahner and Hunter, 1991). RhoB is up-regulated in response to distinct 

triggers: 1. cellular stress, e.g. by growth factors (Jahner and Hunter, 1991); 2. 

genotoxic stress, e.g. by DNA alkylating agents (Fritz et al., 1995); 3. inhibition of 

Rho/Ras signaling, e.g. by statins (Holstein et al., 2002), farnesyltransferase- and 

geranylgeranyl-transferase inhibitors (Delarue et al., 2007), Clostridium difficile toxin 

A (Gerhard et al., 2005). Up-regulation caused by TcdA has been attributed to actin 

re-organisation caused by the toxin, as latrunculin B has been suggested to induce 

up-regulation of RhoB.  

rhoB belongs to the family of immediate early genes, some of which (e.g. connective 

tissue growth factor, CTGF) are up-regulated in response to changes in actin 

dynamics (Chowdhury and Chaqour, 2004;Ott et al., 2003). Our findings showed that 

RhoB up-regulation and actin re-organisation exhibited comparable kinetics in TcdB- 

and C3-treated cells. rhoB, however, was not responsive to changes of actin 

dynamics. Neither actin de-polymerisation by the C2 toxin (Fig. 7B), nor latrunculin B, 

cytochalasin D, nor disruption of microtubules by nocodazole (Fig. 7C) caused an up-

regulation of RhoB. Thus, RhoB up-regulation is only temporally correlated but not a 

consequence of actin re-organisation.  

RhoB up-regulation might, like actin re-organisation, be a consequence of the 

inactivation of Rho proteins. TcdA and TcdB both glucosylate the same Rho proteins, 

namely Rho, Rac, and Cdc42 (Table 1) (Boquet and Lemichez, 2003;Just et al., 

1995b; Just and Gerhard, 2005). We found that RhoB was up-regulated in a time- 
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and concentration dependent manner by TcdB-treatment (Fig. 2A+B), indicating that 

RhoB up-regulation was a consequence of the inactivation of Rho proteins by TcdB 

(Fig. V). The up-regulation of RhoB was also observed at the mRNA level (Fig. 2D). 

Inhibition of rhoB transcription did not only abolish the increase of the mRNA but also 

the protein level (Fig. 2D/E). Furthermore, protein de novo synthesis was required for 

RhoB up-regulation (Fig. 2C). Taken together, these results indicate that RhoB was 

up-regulated due to transcriptional activation by treatment of fibroblasts with TcdB.  

Gerhard et al. further suggested that the inactivation of Rac1 by TcdA triggers the up-

regulation of RhoB. This suggestion was based on the notion that Rac1 is a part of 

the PI3 kinase/Akt signalosome (Fukuhara et al., 1999). Interrupting this pathway has 

been shown to increase RhoB expression (Jiang et al., 2004b). To challenge this 

notion, the variant toxin B, named TcdBF, which glucosylates Rac1 and R-Ras but 

not RhoA/B/C (Table 1) (Chaves-Olarte et al., 1999), was applied. The up-regulation 

of RhoB caused by TcdBF was marginal compared to TcdB (Fig. 3D). Previously, a 

report from Fritz and Kaina stated that Rac1 was indeed an activator of the rhoB 

promoter, as its activity increased in cells that ectopically expressed Rac1 (Fritz and 

Kaina, 1997). Thus, activation rather than inactivation of Rac1 causes RhoB up-

regulation. In this line, the Rac activating cytotoxic necrotizing factor 1 (CNF1) from 

Escherichia coli causes RhoB up-regulation (S. Dreger, unpublished observation). 

We found that C3-treatment of cells caused pronounced RhoB up-regulation in a 

time- and concentration dependent manner (Fig. 3A+B). The up-regulation was as 

efficient as TcdB-induced RhoB up-regulation, indicating that inactivation of 

RhoA/B/C was sufficient. This view is supported by Fritz et al. who found that ectopic 

expression of GDI1, a negative regulator of the activity of RhoA, Rac1, and Cdc42, 

activates the rhoB promoter (Fritz and Kaina, 1997). Jiang et al. suggested that 

active RhoA suppressed the rhoB promoter activity (Jiang et al., 2004a). Thus, we 
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suggest that inactivation of RhoA lifts the suppression of the rhoB promoter, which 

results in up-regulation of RhoB.  

TcsL that does not inactivate RhoA/B/C also induced up-regulation of RhoB in a time- 

and concentration-dependent manner (Fig. 4A+B). mRNA and protein de novo 

synthesis were required for the up-regulation (Fig. 4C/E); accordingly, an increase of 

rhoB mRNA was observed, as well (Fig. 4D). In comparison to TcdBF, TcsL was 

more efficient regarding RhoB up-regulation, equalling TcdB. This effect is most likely 

based on the inactivation of H/K/N-Ras by TcsL (Just et al., 1996:Popoff, 1996). In 

this line, ectopic expression of constitutively active Ras GTP binding proteins 

suppresses the rhoB promoter activity (Jiang et al., 2004b). Thus, RhoB is up-

regulated by distinct pathways, dependent on the inactivation of either RhoA or 

H/K/N-Ras, but independent of changes in actin dynamics (Fig. V). The marginal 

RhoB up-regulation by TcdBF may be based on the finding that TcdBF glucosylates 

other Ras GTP binding proteins than R-Ras at high concentrations of the toxin.  

 

Table 1: Substrate specificity and catalyzed reaction of the applied toxins 

 
RhoA/B/CADP-ribosylationC3

R-RasH/K/N-RasRac1glucosylationTcsL
R-RasRac1glucosylationTcdBF

Cdc42Rac1RhoA/B/CglucosylationTcdA/TcdB
protein substratecatalyzed reactionToxin

RhoA/B/CADP-ribosylationC3
R-RasH/K/N-RasRac1glucosylationTcsL
R-RasRac1glucosylationTcdBF

Cdc42Rac1RhoA/B/CglucosylationTcdA/TcdB
protein substratecatalyzed reactionToxin
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Fig. V: Model of RhoB up-regulation 

RhoB is up-regulated after inactivation of either Rho or Ras GTP binding proteins. Both RhoB up-

regulation and actin re-organisation are parallel downstream effects the inactivation of Rho proteins.  
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5.2 Regulation of RhoB by the p38 MAP kinase  

The p38 MAP kinase is positively regulated by Rac1 and Cdc42 (Kyriakis and 

Avruch, 2001). One must therefore expect that p38 MAPK is inactivated in TcdB-

treated cells. The opposite is true. p38 MAP kinase phosphorylation increased in 

TcdA-treated cells (Gerhard et al., 2005). This increase was probably based on 

changes in actin dynamics (Nemeth et al., 2004), as it correlated with the toxin-

induced actin re-organization. We found that the RhoB level was reduced by ~30 % 

in TcdB- and TcsL-treated p38 -/- MEF compared to WT MEF. Thus, p38 MAP kinase 

is an enhancer of – but not essential for – RhoB up-regulation. Most probably, p38 

MAP kinase increases either rhoB promoter activity or rhoB mRNA stability. The 

mechanism of this regulation is the topic of further investigation currently conducted 

in our lab. 

 

5.3 Posttranslational regulation of RhoB 

The level of RhoA and RhoB is suggested to be regulated by degradation by the 26S 

proteasome (Engel et al., 1998;Lanning et al., 2004). The RhoB protein half life 

period was re-analyzed in toxin-treated cells applying cycloheximide and t1/2 was 

determined. It was 1-2 h and ~1 h in TcdB- and TcsL-treated cells, respectively (Fig. 

5A/B). These findings are in line with former reports on the RhoB half life period of 

2 h (Lebowitz et al., 1995).The half life period increased when cells were incubated 

with an inhibitor of the 26S proteasome prior to toxin treatment. Surprisingly, the 

inhibitor failed to completely block degradation of RhoB, indicating the existence of 

proteasome-independent degradation. TcdB and TcsL both cause an activation of 

caspases in cultured cell lines (Hippenstiel et al., 2002;Petit et al., 2003). Caspases 

are proteases (Black et al., 1989) whose activation mediates apoptotic processes 

(Jacobson and Evan, 1994). Application of a pan caspase inhibitor increased the 
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RhoB half-life period to a similar extent as the proteasome inhibitor (Fig. 5A). Co-

application of both proteasome and caspase inhibitor completely blocked degradation 

of RhoB in TcsL- as well as in TcdB-treated cells (Fig. 5A/B). This is the first 

evidence that RhoB is a substrate of caspases.  

 

5.4 Activation state of RhoB 

RhoB up-regulation was associated with an increase of RhoB activity in TcdB- and 

TcsL treated cells (Fig. 6A). Even though both toxins caused comparable RhoB up-

regulation, the increase of RhoB activity was more pronounced in TcsL-treated 

fibroblasts. This difference originated from the distinct substrate specificities of the 

toxins. TcdB was found to modify RhoB as described before (Wilde et al., 2003), 

while TcsL did not (Fig. 6B). The observed increase of RhoB activity in TcdB-treated 

cells, however, indicated that RhoB was only partially modified. Even though TcdB 

has been characterized as Rho inactivating, it caused an activation of RhoB. 

Molecular effects of TcdB so far attributed to the inactivation of Rho may thus be 

based on the activation of RhoB instead. In line with these findings, an increase of 

RhoB activity has been reported on TcdA-treated cells (Gerhard et al., 2005). In 

contrast, no active RhoB was found in C3-treated cells in spite of the profound RhoB 

up-regulation. This finding further supported former notions that C3 is an efficient 

inhibitor of RhoB (Just et al., 1992). The difference between TcdB and C3 regarding 

the activity state of RhoB may originate from their distinct intracellular localization. 

TcdB most likely localizes to the cytoplasma membrane, as it has been described for 

TcsL (Mesmin et al., 2004). In contrast, C3 imported as chimeric protein localizes to 

endosomes (C. Mühlenstädt, unpublished observation). RhoB is permanently 

localized to endosomes. Therefore, RhoB may be accessible to C3, while it escapes 
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its modification by TcdB. Furthermore, RhoB has recently been shown to be a poor 

substrate of TcdB compared to e.g. RhoA (Huelsenbeck et al., 2007b).  

Thus, the cellular RhoB protein level was regulated at three distinct stages: 1. by 

transcriptional activation, allowing a rapid increase of the protein level; 2. by 

degradation, either proteasome- or caspase-dependent, allowing a rapid decrease of 

the protein level; 3. by nucleotide exchange, allowing regulation of the activity of the 

present protein. This very subtle regulation of RhoB control suggests that its correct 

function is crucial for cellular survival. A comparable set of regulation is found e.g. for 

cyclins that are regulated by transcriptional activation, degradation, localization, and 

phosphorylation (Diehl, 2002). Cyclins are essential for cell cycle progression. Even 

though RhoB is reportedly up-regulated during S-phase, no role for RhoB has been 

described in cell cycle progression. Instead, it appears to be important for regulating 

cellular sensitivity to cellular damage during replication and to induce apoptotic cell 

death, when necessary. Obviously, a protein that comprises the activity to regulate 

apoptosis needs to be closely regulated. An excess of its activity could contribute to 

unnecessary cell death, whereas a lack of activity may result in unchallenged growth 

of cells, as observed in the cancer field (Mazieres et al., 2004). 
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5.5 Involvement of RhoB in the cytotoxic effect of TcdB 

Apoptotic stimuli are classified into two groups. Perturbations of homeostasis, e.g. by 

growth factor withdrawal or DNA damage, cause apoptosis on a large time scale 

within the range of days rather than hours. In contrast, direct stimulators of apoptotic 

pathways such as the Fas ligand or tumor necrosis factor induce apoptosis within 

minutes or hours (Ashkenazi and Dixit, 1998)(Evan and Littlewood, 1998). We 

observed the cytotoxic effect of TcdB as early as three hours after toxin-treatment in 

RBL cells (Huelsenbeck et al., 2007), suggesting that it was due to direct stimulation 

of an apoptotic pathway. We applied S-phase synchronized cells, as RhoB is 

physiologically up-regulated during S-phase (Zalcman et al., 1995), indicating its 

importance during this phase. TcdB exhibited a cytotoxic effect in a concentration 

dependent manner in synchronized fibroblasts (Fig. 9A), which was responsive to a 

pan caspase inhbitor (Z-VAD(OMe)-FMK), a finding in line with the reported caspase 

activation by TcdB (Hippenstiel et al., 2002;Qa'Dan et al., 2002). In contrast, C3 

failed to cause apoptosis in synchronized fibroblasts (Fig. 9B). The cytotoxic effect of 

TcdB has been attributed to the inactivation of RhoA. RhoA, however, was inactive in 

C3-treated cells. In contrast, RhoB was active in TcdB- but inactive in C3-treated 

cells (Fig. 7A+C). Inactivation of RhoB by C3 abrogated the cytotoxic effect of TcdB 

(Fig. 9B), suggesting that active RhoB is required for the cytotoxic effect of TcdB. 

TcsL causes detachment of fibroblasts from the surface, blocking the microscopic 

approach and making the differentiation between apoptosis and anoikis impossible 

(Gilmore, 2005). 

The cytotoxic effect of TcdB was characterized by an early onset of apoptosis and 

the requirement of active RhoB and caspases. Findings from RhoB knockout cells 

indicate that RhoB may play a role in the physiological arrest- and repair-mechanism 

after genotoxic stimuli such as UV-light or chemotherapeutic agents. RhoB is 
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required to induce apoptosis after DNA damage in Ras transformed cells 

(Prendergast, 2001). In contrast, RhoB protects fibroblasts from radiation induced 

mitotic cell death. In irradiated cells, RhoB aggravates the G2 arrest and inhibits 

centrosome overduplication (Milia et al., 2005). These reports suggest a regulatory 

role of RhoB in apoptosis. RhoB appears to be involved in the decision of the cell to 

undergo DNA-repair or apoptosis upon DNA damage (Fritz and Kaina, 2000). 

Alterations of RhoB signaling are therefore fatal in two ways: A loss of RhoB 

signaling leads to uncontrolled growth (Liu et al. 2001), excess activation of RhoB 

causes profound apoptosis across a population of cells (this study). Our finding that 

fibroblasts as well as RBL cells (Huelsenbeck et al., 2007a) are most sensitive to 

TcdB during S-phase implicate that RhoB may also be a sensor for cellular damage 

during replication. RhoB may further influence susceptibility to proapoptotic stimuli by 

regulating how signaling molecules are trafficked under stressful conditions 

(Kamasani et al., 2004). RhoB knockout cells or RhoB siRNA are useful tools to 

identify those RhoB-dependent pathways leading either to cellular survival or 

apoptosis. 
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6. Non-standard abbreviations 

C21   Rho-binding domain of Rhotekin 

cat   catalytic domain 

CHX   cycloheximide 

CNF1   Escherichia coli cytotoxic necrotizing factor 1 

CPE   cytopathic effect (round cells/total cells) 

FT   GST-fusion toxin 

GAP   GTP binding protein activating protein 

GDI   guanine nucleotide dissociation inhibitor 

GEF   guanine nucleotide exchange factor 

MEF   mouse embryonic fibroblast 

RBD   receptor binding domain 

TcdA   Clostridium difficile toxin A  

TcdB   Clostridium difficile toxin B  

TcdBF   variant Clostridium difficile toxin B  

TcsH   Clostridium sordellii hemorrhagic toxin 

TcsL   Clostridium sordellii lethal toxin 

TMD   trans membrane domain 
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