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Abstract

The focus of this thesis is on the management of dynamic inbound contact
centers with impatient customers and retrials. We consider contact centers
with both homogeneous and heterogenous customers and agents. The term
dynamic refers to the processes in a contact center in two ways. Firstly, these
processes are random and secondly they depend on the time of day and the
day of the week. The processes are the successive arrivals of customers to the
contact center, the consecutive services by agents, and the successive aban-
donments and retrials of customers. In order to consider both aspects in the
queueing model we use the so-called strong approximation which consists of a
fluid approach and a diffusion refinement. By means of the fluid approxima-
tion we are able to derive an initial value problem for the number of customers
in the system and the so-called orbits, which are virtual queues of recalling
customers. The diffusion refinement is used to deduce differential equations
for the variances and covariances of the queueing processes. From the solu-
tion of the initial value problem we analyse the performance measures of the
different contact center models.

Thereby an essential point of this thesis is the influence of the retrial be-
haviour of impatient customers on the performance and shift scheduling deci-
sion. For this purpose, time-dependent and aggregated technical and economic
performance measures are derived from the fluid approximation. Afterwards
the influence of the service, abandonment and retrial parameters of the con-
tact center model on the performance is shown. Furthermore, the results of
the approximated measures are compared to the results of a simulation. It is
shown how the fluid approximation can easily be extended to much more com-
plex models with multiple customers classes and agent groups. The variances
and covariances derived from the diffusion refinement are used to present the
stochastic effects which influence the processes. Furthermore, the impact of
the parameters on the variances and covariances is shown.

Based on the fluid approximation an integrative staff requirement planning
and shift scheduling approach for contact centers with impatient customers
and retrials is developed. This optimisation approach can easily be extended
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to even more complex models. In order to solve the optimisation problem an
initial procedure and a heuristic is used. It is shown that the initial algorithm
already leads to remarkably good results with respect to the profit and the
technical performance measures which are slightly improved by the heuristic
algorithm.

Key words: Contact Center Management, Retrial Queues, Strong Approxima-
tions



Zusammenfassung

Das Thema dieser Dissertation sind dynamische Contact Center mit unge-
duldigen Kunden, von denen ein Teil während des Wartens auflegt und nach
einer gewissen Zeit erneut anruft. Dabei betrachten wir sowohl homogene als
auch heterogene Kunden und Agenten. Contact Center sind in zweierlei Hin-
sicht dynamisch. Einerseits sind die Zeitspannen zwischen den Ankünfte der
Kunden, die Bediendauern und die Geduld der Kunden aus der Sicht des Con-
tact Center Managements zufällige Größen, andererseits hängen insbesondere
die Ankunftraten sehr stark von der Tageszeit ab.

Die Contact Center werden mit Hilfe von Warteschlangenmodellen mo-
delliert. Um dabei sowohl die stochastischen als auch die zeitabhängigen
Einflüsse berücksichtigen zu können, die durch den traditionellen stationären
Warteschlangenansatz nur schwer abgebildet werden können, wird in dieser
Arbeit die sogenannte Starke Approximation verwendet. Die Starke Appro-
ximation setzt sich aus einer Fluid Approximation und einer Diffusions-
erweiterung zusammen. Die Fluid Approximation führt auf ein Anfangswert-
problem für die Anzahl der Kunden im System und in den sogenannten Or-
bits, den imaginären Warteschlangen der Wahlwiederholer. Aus der Diffu-
sionserweiterung werden Differentialgleichungen für die Varianzen und Covar-
ianzen der Prozesse hergeleitet. Mit Hilfe der Lösung des Anfangswertprob-
lems berechnen wir die Leistung der Contact Center.

Dabei ist ein Schwerpunkt dieser Arbeit, den Einfluss des Wahlwieder-
holungsverhaltens der ungeduldigen Kunden auf die Leistungsfähigkeit und
Wirtschaftlichkeit sowie die Personaleinsatzplanung darzustellen. Daher wer-
den aus der Fluid Approximation zeitabhängige und aggregierte technische
und ökonomische Leistungskenngrößen für die Analyse und Bewertung des
Contact Centers hergeleitet. Anschließend wird mit Hilfe der Fluid Approx-
imation der Einfluss der verschiedenen Parameter auf diese Leistungsken-
ngrößen dargestellt und diese Ergebnisse mit jenen einer Simulation ver-
glichen. Es zeigt sich außerdem, dass sich die Fluid Modelle sehr einfach auf
sehr komplexe Modelle mit multiplen Kunden- und Agentengruppen erwei-
tern lassen. Mit den aus der Diffusionserweiterung hergeleiteten Varianzen
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und Covarianzen für die Prozesse der Anzahl Kunden im System und den so-
genannten Orbits werden die stochastischen Einflüsse dargestellt, die auf die
Prozesse einwirken. Ferner werden die Wirkungen der verschiedenen Parame-
ter auf die Varianzen und Covarianzen gezeigt.

Aufbauend auf der Fluid Approximation wird eine integrierte Personal-
bedarfs- und Schichteinsatzplanung für die verschiedenen Modelle mit he-
terogenen Kunden und Agenten und Wahlwiederholern entwickelt. Es zeigt
sich, dass auch der Optimierungsansatz sehr leicht auf weitaus komplexere
Modelle zu erweitern ist. Für das Optimierungsproblem wird ein zweigeteilter
Optimierungsansatz vorgestellt. Dieser setzt sich aus einem Startalgorithmus
und einer Verbesserungsheuristik zusammen. Dabei führt bereits der Startal-
gorithmus zu sehr guten Ergebnissen hinsichtlich des Gewinns und der technis-
chen Leistungskenngrößen, die durch die Heuristik nur noch leicht verbessert
werden können.

Schlagworte: Contact Center Management, Warteschlangentheorie, Fluid-
Approximation
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1

Introduction

The topic of this thesis are so-called contact centers. Contact centers deliver
tele-services to distant customers via internet communication, e-mail, fax,
phone, or other channels. Therefore, contact centers can be regarded as the
successors of call centers which offer their service solely via phone. The palette
of service of contact centers ranges from acquiring new customers to providing
general information. In general, contact centers belong to the tertiary service
sector. During recent years the number of contact and call centers has been
growing steadily, stressing the importance of this service industry.

Two operation methods of contact centers are distinguished according to
the direction of the contact. If the contact is initiated by a customer, the
contact is said to work in the inbound mode. If an agent, the person working
in a contact center, contacts the customers via any channel we speak of an
outbound contact center. If both methods are combined, the contact center is
called a blended or hybrid contact center.

Inbound contact centers are driven by the random contact arrivals of cus-
tomers and their service durations. These random events depend highly on
the time of day and the day of the week. Therefore, the arrival and the service
rate will vary over the day. If the number of agents cannot be perfectly ad-
justed to the varying demand of customers, this will lead to waiting by both
customers and agents.

In general, customers prefer to be served immediately or accept at most
very short waiting times. Therefore the waiting time of customers is a very
important performance measure of contact centers. Other technical perfor-
mance measures are, e.g., the utilisation of the agents, the percentage of cus-
tomers served or percentage of abandoning customers. These measures can
be improved if more seats, the workstations of agents, are equipped and more
agents are staffed by the management, but additional facilities and employ-
ees cause costs. The main part of all costs of a contact center are brought
about by wages. Hence, the management has to balance the technical and the
economical aspects of performance.
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By means of forecasts the expected time-dependent arrival and service
rates can be determined, which are needed for staffing and scheduling. Staffing
and scheduling is the process of determining the number of agents needed to
achieve predefined performance requirements and arrange the shifts associated
with the agents. The staffing and scheduling problem covers the main part of
the short-time operational planning in a contact center environment. A perfor-
mance analysis relates the different parameters, e.g., the time-dependent rates
or the schedule of agents, of a contact center to the technical and economical
performance measures.

Based on the performance analysis of dynamic contact center models with
retrials, we develop a staffing and scheduling approach. The term dynamic
summarises both the time-dependency of the processes, e.g. the arrivals, and
the randomness of the events, e.g. a service completion, in a contact center.
As the arrivals of customer requests are highly time-dependent and random,
this thesis utilises fluid and diffusion approximations of the contact center
models. Thereby an essential point of this thesis is the influence of the retrial
behaviour of customers on the performance and scheduling decision.

In the next chapter we introduce the characteristics of contact centers by
means of a first simple model. Beyond that, we explain the various aspects
of dynamics occurring in contact centers and their causes. In order to mea-
sure the performance of contact centers, technical performance measures are
explained as well as the basic decision problem appearing in contact centers.

Different queueing-theory approaches have been developed to deal with
these different kinds of dynamics. We introduce three different approaches
in the third chapter, however the last approach is more a refinement of the
second one than an independent approach. The stationary approach is widely
discussed in literature, but its ability to deal with time-dependencies is very
limited. Therefore, we explain the fluid approach and diffusion refinement on
the basis of a well known call center model, the so-called Erlang-A model.

The fourth chapter is dedicated to the analysis of contact center models
with impatient customers and retrials by means of the fluid and diffusion
approximation. There we distinguish contact center models with statistically
identical customers and agents from those with different kinds of agents and
customers. The number of customers in the contact center and waiting for a
retrial as well as other technical and economical performance measures are
determined. The results of the approximations are compared to simulation
results, and the influence of the different parameters of the contact centers on
the performance measures is presented.

Based on the fluid approximation of the dynamic contact center models, a
generic staffing and shift scheduling problem is formulated in the sixth chap-
ter. We investigate the objective function and adapt a heuristic optimisation
method to the requirements of the optimisation problem. The influence of the
parameters of the heuristic algorithm on the solution is shown. In the second
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part of the chapter we extend the optimisation approach to a more realistic
contact center with different kinds of agents and customers.

Finally, we summarise the results of this thesis and give some directions
for further research. In the appendix the differential equations of the contact
center models in the fourth chapter are derived in detail.





2

Functions and Structure of Contact Centers

2.1 Characteristics of a Contact Center

In this section we give an overview over the relevance, the functionality, and
the components of contact centers. Contact centers are service units which
deliver tele-services to distant customers via internet communication, e-mail,
fax, phone, or other channels1. Therefore, contact centers can be regarded
as the successors of call centers which offer their service solely via phone2.
Simultaneity of production and consumption characterises the service of call
centers, which is known as the uno actu principle3. However, in a contact
center the principle is weakened, since e-mails and faxes can be stored and
processed later, so that the communication works asynchronously.

Contact centers are used in both the private and public sectors to commu-
nicate with customers. Communication with customers can be regarded as a
special form of public relations management4 which includes after-sales sup-
port, accessory advertising, complaint handling, and other forms of activities
aiming to strengthen customer’s loyalty.

Emergency hotlines or public utilities are examples of contact centers in
the public sector. Contact centers in the private sector are found in banks,
insurance companies, mail order businesses, and many other industries. In
Germany, 58% of all call centers belong to insurance and banking services5.

In this thesis we focus on the private sector. Therefore, all kinds of re-
quests are associated with customers, whatever the form of the contact might
be. In this sector customer perception of the company is often driven by the
experience of the customers gained in communication with the agents work-

1 See, Sisselman and Whitt (2004) p. 2, Koole and Mandelbaum (2002) Section 1.1,
and Koole (2002), Chapter 6

2 See Hawkins et al. (2001).
3 See Gross and Badura (1977); Maas and Graf (2005).
4 See, e.g., Winer (2001).
5 See, Stockmann (2005).
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ing in contact centers6. Agents or (telephone) service representatives talk to
customers on the phone or communicate via the internet and answer e-mails
or faxes.

In February 2005 about 330,000 employees were working in about 5,500
contact centers in Germany7. By 2010 the number of employees in contact
centers is assumed to grow further, where 80% of all new jobs are assumed to
be part-time work.

Agents can be characterised according to their skills and contracts of em-
ployment. The set of skills summarises the number of tasks the agent is trained
for and her or his8 level of experience9. The contract of employment regulates
the availability, the duration of shifts, and the frequency of rest periods.

In Germany 50% of the call and contact centers are so-called inhouse call
centers, i.e., these contact centers belong to firms which use the contact cen-
ter for customer relationship management purposes10. If agents need special
knowledge of the products or services of the company, this form is considered
to be preferable.

Besides those inhouse contact centers, about 18% are operated by pure
contact center service providers. In these contact centers the processes are of-
ten standardised, such that the agents need less special knowledge. An exam-
ple of standardised service is the mail order service of big trading companies.
In these contact centers the information technology system has to guide the
agents through a predefined menu.

In call centers two forms of operating methods are distinguished according
to the initiator of the call. If customers call the call center, it is said to operate
in inbound mode, otherwise the operating method is outbound. If both forms
of communication are combined, the call center is called a blended or hybrid
call center11.

The durations and the times of the events are random. If an agent has
just received a call he will neither know how long the service will take nor
when he will receive the next call. The same holds true for e-mails and other
contacts12.

Besides the agents, the second most important component of a contact cen-
ter is the so-called computer telephony integration (CTI). CTI interconnects

6 See, e.g. Maas and Graf (2004), Borchardt et al. (2005), and Evenson et al.
(1999).

7 See, Stockmann (2005). For some facts about the call center industry in
the USA, see Wharton Business School (2002), Mandelbaum et al. (2000), and
Koole and Mandelbaum (2002).

8 From now on we use both the female and the male form for a customer or agent
equivalently.

9 See, e.g. Stolletz (2003) pp. 29–32.
10 See, e.g. Wharton Business School (2000), Lüde and Nerlich (2002), and

Witness Systems (2002a).
11 See, Gans et al. (2003) and references therein.
12 See, Koole (2005) and references therein.
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classical telecommunication and electronic data processing by an information
technology system. The CTI system is the major instrument of customer expe-
rience management (CEM)13. On the one hand it handles all sorts of incoming
and outgoing communication including phone calls, faxes, and e-mails. On the
other hand it reports and supervises the processes in the contact center via a
database system. In order to conduct the communication processes, the ma-
jor constituents of the CTI system are the number of trunks, the automatic
call distribution unit (ACD), the interactive voice response system (IVR), the
voice mail server (VMS), the predictive dialling unit, and the user interfaces
for the agents. The number of trunks limits the number of customers who are
able to enter the system by phone at the same time. In the case of e-mail
communication, the capacity of the contact center is limited by the amount
of memory, by the rate of transmission, and the bandwidth14 in the case of
internet communication.

In a call center the ACD routes incoming calls to available agents according
to the required skill (Skills-based routing (SBR)). Furthermore, the ACD is
used to record various data, e.g., the duration of the service process or the
number of arrivals frequently based on half-hour intervals.

In order to preselect the requests of different calling customers, often a
technology known as interactive voice response15 is used. This technology can
also be used to fulfil standard requests, e.g., bank account inquiries via speech
recognition16.

Predictive dialling is a tool for outbound communication17. A telephone
number of a customer is dialled just before an agent is going to be available
to talk to the customer. This mechanism is used to shorten dialling and query
times of the agents and thereby increase their productivity.

2.2 A Dynamic Contact Center Model

In Figure 2.1 a basic model of a contact center with a single type of contact
and impatient callers is presented. This model is called the Erlang-A model,
where the A stands for abandonment18. Besides the Erlang-A model, the
Erlang-B19 and Erlang-C20 model are distinguished.

13 See, Wharton Business School (2000), Schmitt (2003), and Witness Systems
(2002b).

14 See, e.g., Kelly and Williams (2004) and Kang et al. (2004).
15 See, e.g., International Engineering Consortium (2005) for a definition.
16 See, e.g., Helber and Stolletz (2003) Chapter 5.
17 See, e.g., Chamberlain (2001) for a definition.
18 See Garnett et al. (2002).
19 The B stands for balking, i.e. impatient customers renege on instance, if they are

not served immediately.
20 The C stands for the number of homogeneous agents serving a single class of

patient customers. This basic model was named after A.K. Erlang.
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Fig. 2.1. A basic call center model with impatient customers

Contact centers are highly stochastic systems, i.e., from a managerial point
of view events in a contact center happen accidentally21. An event is, e.g., the
arrival of an e-mail or the completion of a service.

Therefore, contact centers are modelled by means of stochastic processes
and queueing theory. Mathematically speaking, a stochastic process is a se-
quence of random variables defined on the same probability space, e.g., the
number of arrivals in a half-hour interval can be represented by a random vari-
able. If we consider a sequence of times between subsequent arrivals, we get
a realisation or sample path22 of a stochastic process describing the arrivals.

By means of many realisations, statements about the general behaviour
of the processes can be made. An extensive study on empirical data in a
call center of a bank was done by Brown et al. (2002). In addition to being
observed, realisations in a real system can be generated in a virtual system
via simulation23. However, simulations are often very time-consuming and
expensive.

In addition to empirical analysis, the theory of stochastic processes and
queueing is a powerful tool to analyse contact center models. It enables the
investigation of the influence of changes in various parameters, e.g., the num-
ber of agents or the duration of service, on the performance of the contact
center very quickly and accurately.

The three basic processes appearing in a contact center are the arrival
process, the service process and the abandonment process. The service and
abandonment process can also be summarised to a departure process.

Arrivals to a call center occur at random times. Usually, the arrival process
is assumed to be a Poisson process with mean rate λ, which means the times
between successive arrivals are exponentially distributed. This assumption

21 See also Jongbloed and Koole (2001).
22 See Whitt (2002a) Section 1.1 or Karlin and Taylor (1975).
23 See Oh (1999), Mehrotra and Fama (2003), Cezik and L’Ecuyer (2005) and ref-

erences therein.
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is justified as customers arrive independently of each other and stressed by
the results of Brown et al. (2002). They find that the arrival process is well
modelled by a non-homogeneous Poisson process24 with a rate function which
depends on the date, the time of day, the type and priority of the call, and
a variety of other facts. The exponential distribution has the so-called lack-
of-memory property. This means that the probability of observing the next
arrival within the next minute is always the same whether a call has just
arrived or some time has already passed by. This describes the actual arrival
of calls quite well as customers arrive independently of each other.

Beside the stochastic influence, the time-dependency of the arrival pro-
cesses and its rate is very important. The arrival rate varies drastically within
a day and over a week. In Figure 2.2 the number of call arrivals per half-hour
interval in a call center of the Telegate AG in October, 1998, is presented. On
Mondays the arrival rate is typically higher than on the other days. At the
weekend the arrival rate is much lower than on working days. However, the
shape of the arrival rate curve for each day looks similar. In the morning the
arrival rate rises quickly to a first maximum before lunch. During the lunch
break the arrivals decrease and increase afterwards. In the late afternoon a
second maximum is reached. In the evening the number of arrivals decreases
almost as fast as it rises in the morning25.

By means of trigonometric functions the typical arrival rate pattern of a
single day can be approximated. The sinusoidal form of the time-dependent
arrival rate in Figure 2.3 is a common assumption in modelling arrival rate
functions.26

If agents are available, arriving customers are served immediately. The du-
ration of an individual service is also a random variable. The duration depends
on the kind of request, the customer, and the agent. In the Erlang-A model
the service time of each customer is assumed to be exponentially distributed
with mean service time µ−1.
This assumption stands in contrast to the results of Brown et al. (2002) who
find that the service times are lognormally distributed. Brown et al. (2002)
estimate the service time distribution under the assumption of statistically
identical agents and requests. The phrase statistically identical means that
agents and requests have on average the same preferences, skill levels and
behaviour with respect to the service. Their analysis of the empirical data
stresses early proposals of Rahko (1991) and Bolotin (1994) that service times
are lognormally distributed27.
The lognormal distribution differs from the exponential distribution com-
monly assumed in particular with respect to the variability of the process.

24 See also Lariviere and Van Mieghem (2004) for a argument for the usefulness and
Koole and Talim (2000).

25 See also Haas Margolius (1999).
26 See, e.g., Jennings et al. (1996); Feldman et al. (2005).
27 See also Mandelbaum, Sakov, and Zeltyn (2000).
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Fig. 2.2. Number of arriving calls to a call center of the Telegate AG from Monday,
October 19th, 1998 to Sunday, October 25th, 1998 (See, Helber and Stolletz (2003),
p.5).
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Fig. 2.3. A sinusoidal arrival rate function of a single day

However, a carefully chosen Erlang-A model with exponentially distributed
service times often approximates the performance measures accurately28.
Additionally, Brown et al. (2002) find that the service times and arrivals are
positively correlated, i.e., the service times increase if more customers arrive.

If no agent is available upon an arrival, the customer has to wait. Each
customer has a finite waiting time limit which describes the maximum time
he is willing to wait. For each individual customer his waiting time limit is

28 See, e.g. Whitt (2005a).
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fixed, but it is unknown and random from the point of view of the contact
center.

Contrary to the service and arrival rate functions and their distributions,
the observation of the distribution of the waiting time limits is a serious
problem29. The reason for the difficulties is that the waiting time limits of
served customers cannot be measured directly. The waiting times of served
customers are lower bounds for their waiting time limits. For customers who
have abandoned, the waiting time limit can be recorded and evaluated. We
assume that the waiting time limits are exponentially distributed for each
customer with mean waiting time limit ν−1, i.e., each customer abandons
after a random amount of time with rate ν. If we assume that the customers
are patient, i.e. no customer abandons (ν = 0), this model turns into the
Erlang-C model.

Similar to the arrival rate, the other parameters of the model depend on the
time of day as well. However, their time-dependency is usually not as strong
as those of the arrival rates30, e.g., the agents might slow down during the day
if they become tired. Then the average service time will increase. Other agents
might become faster if they get used to their tasks. Furthermore, contrarily
to the arrival rate, the time-dependency of service and abandonment rate is
negligibly small. Therefore, we suppose that the mean service time and the
mean time to abandonment are constant.

λ

ν

γ

1− p

Orbit

p

123 N

µ

Fig. 2.4. A basic call center model with retrials of impatient customers

Besides these basic processes in Figure 2.1, the retrial process is considered
in Figure 2.4. The retrial process is directly linked to the patience of customers.
A customer who has abandoned might recall after a while. A fraction p of all

29 See Whitt (1999b), Brown et al. (2002), and Mandelbaum et al. (2000) for a de-
tailed discussion of the difficulties of reporting and analysis.

30 See Brown et al. (2002).
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customers having reneged is assumed to recall after a random time in the so-
called orbit. This process is a connection of the arrival and the abandonment
process. The abandonment process becomes the arrival process to the orbit.
However, Aguir et al. (2004) find that retrials are almost independent of the
mean waiting time limit, if it is exponentially distributed or deterministic.
Similar to the service and abandonment process, the time-dependency of the
retrial process is small.

The departure process of the orbit is an additional arrival process to the
contact center. Because of the assumptions about the arrival, service and
abandonment processes, the arrival process to the orbit is a Poisson process.
If the number of customers in the system constantly exceeds the number of
agents on duty, λ − µN is the rate by which unattended customers leave
the system because of the Poisson arrival see time average principle31. If a
fraction of p of these customers is willing to retry, this leads to an orbit arrival
rate of p(λ− µN).

The orbit is modelled as an infinite server queue, because each customer
can be regarded as his own server, as each customer can define his own per-
sonal sojourn time in orbit. If we assume that the durations of stay are also
exponentially distributed with mean sojourn time γ−1 and the number of cus-
tomers in the system stays above the number of agents on duty, the queueing
model becomes a Jackson network32. Equivalently, the return of successfully
served customers can be modelled by means of Jackson networks.

Other customers might not be willing to wait at all as shown in Figure
2.5, i.e., they leave the system as soon as they recognise that they are not
served immediately. Those customers are said to balk. The fraction of balking
customers is denoted by β. Some of these customer pβ may also recall and
the residual fraction 1− pβ of customers is assumed to be lost. Contrarily to
the abandonment, balking reduces the arrival rate to the contact center, if all
agents on duty are busy.

If we consider two types of requests, e.g. calls and e-mails as in Figure 2.5,
or two different types of customers, priority rules for the attendance of cus-
tomers must be established. If both types of customers are waiting and an
agent ends a service, the question arises which request should be served next.
In the case of e-mails and calls it might be reasonable to serve a call first as
the e-mails are more patient. If delaying the e-mails is expensive, it might
even be reasonable to serve the e-mails first. Another priority rule might put
the e-mail out of the service process whenever a call arrives, i.e., the calls
have preemptive priority. If the service of e-mails is finished before a new call

31 See, Wolff (1982) and Artalejo (1995).
32 See Gelenbe and Pujolle (1999, Chapter 2) and Asmussen (2003, pp. 117-122)

A Jackson network is a network of queueing systems, in which the customers
circulate, such that each customer enters another system with a certain, fixed
probability after leaving the previous system.
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Fig. 2.5. A contact center with two types of requests

is attended to, the priority is non-preemptive. The service discipline of each
queue is assumed to be first come first served (FCFS).

If different agent groups are considered, routing rules for routing the re-
quests to the free agents have to be established33. In general, we assume that
requests are first served by specialists for this type of contact and second by
generalists.

Unfortunately, beside the extensive papers by Mandelbaum et al. (2000)
and Brown et al. (2002), the number of studies on time-dependent rates is
very small. All these results are based on a fixed set of empirical data. In
a real-world contact center the determined distribution, mean values, and
other parameters are influenced by many facts and may change permanently.
Therefore, the empirically determined distributions and parameters should
be checked regularly. However, some of the effects of random or changing
parameters34 can be considered in a analysis of a contact center.

33 Stolletz (2003) gives an overview of different routing rules. Problems related to
routing are also considered, e.g., byKoole and Pot (2006), Armony and Maglaras
(2004), Gans and Zhou (2003), and Sisselman and Whitt (2004)

34 Stochastic arrival rates are considered, e.g., in Harrison and Zeevi (2004, 2005);
Bassamboo et al. (2005), and Whitt (2005b).
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2.3 Technical Performance Measures

In order to measure the service quality of a contact center, performance mea-
sures are needed. We distinguish between technical and economical perfor-
mance measures. Technical performance measures can take different perspec-
tives on the service process depending on the individual group involved. Eco-
nomical performance measures focus on the viewpoint of the management.

On the one hand such performance measures can be calculated based on
empirical data collected by the reporting unit of the contact center by means of
statistical methods. On the other hand performance measures can be derived
from contact center models as introduced in the previous section and the as-
sumption associated to these models. These performance measures correspond
to each other because the theoretic model is a mapping of the real-world con-
tact center. However, the statistical analysis can only be made if enough data
has already been collected, against which the performance measures of the
theoretic model can be calculated before any customer has called. Because of
this advantage, the theoretic model can be used to determine staffing levels
for different demand scenarios. These performance measures are functions of
the parameters and assumptions of the stochastic processes.

A performance measure very popular in practice is the so-called X/Y ser-
vice level35. It describes the percentage X of customers who wait at most Y
seconds. If Y is zero, this performance measure gives the percentage of cus-
tomers served immediately. This empirical performance measure corresponds
to the probability of a single customer being served within Y seconds. This
probability can be determined from the distribution of the waiting time W
which is derived from the distribution of the service times and waiting time
limits. Formally, the percentage of customers X whose service starts within
at most Y seconds and the probability of being served within Y seconds are
related as follows:

P (W ≤ Y ) · 100 = X. (2.1)

Therefore, the probability of delay is related to the percentage of customers
being served immediately and given by

P (delay) = 1− P (W = 0). (2.2)

If a customer has to wait longer than Y seconds, the actual duration of the
waiting time of this special customer does not influence the so-called service
level. Only waiting times within the limit of Y are considered in this perfor-
mance measure36.

A performance measure which takes into account the tail of the waiting
time distribution as well, i. e. long waiting times of customers, is the expected

35 See, Koole (2003).
36 For a discussion of the advantages and disadvantages of the service level see, e.g.,

Jackson (2002), Helber and Stolletz (2003), and Koole (2003).
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waiting time E[W ]. In the case of the mathematical model the mean waiting
time is derived from the waiting time distribution, while the empirical mean
waiting time is the average waiting time of all customers. In order to distin-
guish the waiting times of served customers and those who have abandoned,
these performance measures can be conditioned on the case of being served
and abandoning as presented in Table 2.1. In the mathematical model the
conditioned waiting time distribution has to be determined. In a real-world
contact center the waiting times of customers who have abandoned and those
who are served have to be collected separately.

Performance measure Description

P (W ≤ Y | served) Probability of waiting less than Y seconds given the
customer is served

P (W ≤ Y | abandon) Probability of waiting less than Y seconds given the
customer abandons

P (delay | served) Probability of delay given the customer is served

E[W | served] Expected waiting time of served customers, also
called average speed of answer (ASA)

E[W | abandon] Expected waiting time of abandoning customers.

Table 2.1. Conditional performance measures

Other interconnected empirical and theoretical performance measures re-
lated to waiting are the expected queue length E[L] and the expected number
of customers in the system E[Q].

From the manager’s point of view it is interesting how many out of all cus-
tomers are served at all. This empirical percentage of customers corresponds
to the probability of an individual customer being served P (served).
The individual probability of abandoning P (abandon) equals the long-term
percentage of customers who abandon. Besides these two measures, a certain
percentage of customers might balk. If the number of trunks is limited, some
customers might be blocked, i.e., the customer is not able to enter the system
because all telephone lines are occupied. These probabilities add up to one,
i.e.,

1 = P (blocked) + P (balk) + P (abandon) + P (served). (2.3)

Finally, from the point of view of both the agents and the management
the mean utilisation of the agents is important. Too high as well as too low
utilisation might lead to a bad performance in economic terms. The goal is to
slightly balance the utilisation of agents, because high utilisation may cause
stress whereas low utilisation is expensive and can result in boredom37. As

37 Compare, Wharton Business School (2004)
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the number of arriving requests and the duration of service are random, the
utilisation is a random variable U in the theoretic model. The utilisation is
the number of busy agents divided by the number of agents on duty, which
can be observed at each time in real-world systems. In order to take periods of
high utilisation as well as periods of low utilisation into account, the average
utilisation of the contact center can be calculated by dividing the expected
number of busy agents by the total number of agents on duty. This empiri-
cal and technical measure for the workload of agents is related to the mean
utilisation E[U ] calculated by means of the distribution of the utilisation.

All these performance measures just introduced are so-called stationary
measures because they average the performance of a given long time period.
But real-world contact centers are highly time-dependent systems, i.e., the
operating conditions change over time. Hence, these performance measures
should be considered only for small time intervals to get good estimates of
the dynamic performance of the contact center. However, these time inter-
vals are interdependent in the majority of cases, e.g., a service started in one
interval is continued in the subsequent interval. Therefore, each performance
measure has its time-dependent form which refers to the time t of observa-
tion. The time of a virtual arrival was chosen for calculating the performance
measures because the performance experienced by an arriving customer cor-
responds to the performance observed from an outsider38. The notation for
time-dependent performance measures is presented in Table 2.2.

Performance measure Description

E[W (t)] Expected waiting time of a customer entering the sys-
tem at time t

P (delay, t) Probability of delay for a customer entering the sys-
tem at time t

P (served, t) Probability of being served for a customer entering
the system at time t

E[U(t)] Expected utilisation of agents observed by an arrival
at time t.

Table 2.2. Time-dependent performance measures

If one wants to estimate the performance of a certain period consisting
of several subsequent time intervals, performance measures should be aggre-
gated. Periods of high load and periods of low load are considered differently
with respect to their importance for the contact center39. Therefore we must
weight the performance measure of each moment in time. If performance mea-

38 See, Wolff (1982) and Mandelbaum et al. (1999b).
39 See also Helber and Stolletz (2004), pp. 30-32.
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sures with respect to the point of view of customers are considered, the arrival
or the departure rates serve as weights. If the focus lies on the point of view
of agents, the performance measures are weighted by the number of agents on
duty.

In the case of constant arrival rates λi within each time interval i =
1, . . . ,J , the expected waiting time in the interval i is E[Wi]. Then the ag-
gregated mean waiting time is defined as

Eagg[W ] =

∑J
i=1 λiE[Wi]
∑J

i=1 λi

. (2.4)

If the arrival rates λ(t), t ∈ [0, T ] are continuous functions, the aggregated
waiting time can be calculated by

Eagg[W ] =

∫ T

0 λ(t)E[W (t)] dt
∫ T

0 λ(t)dt
. (2.5)

Other aggregated technical performance measures are described in Table 2.3.
These performance measures are derived equivalently to Equations (2.4) and
(2.5), respectively.

Performance measure Description

Pagg(W ≤ Y ) Aggregated probability that waiting time exceeds Y
seconds

Pagg(delay) Aggregated probability of delay

Pagg(served) Aggregated probability of being served

Eagg[U ] Aggregated mean utilisation.

Table 2.3. Aggregated performance measures

Thereby, in the case of the aggregated mean utilisation, the arrival rates
are substituted by the number of agents. If the number of agents Ni is constant
within the time interval i, i = 1, . . . ,J , the expected utilisation of agents in
this interval is E[Ui]. Alternatively, if the number of agents N(t) depends on
time, the expected utilisation at time t is E[U(t)]. Equivalently to Equations
(2.4) and (2.5), the aggregated mean utilisation is given by

Eagg[U ] =

∑J
i=1 NiE[Ui]
∑J

i=1 Ni

(2.6)

and by

Eagg[U ] =

∫ T

0
N(t)E[U(t)] dt
∫ T

0 N(t)dt
. (2.7)
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Obviously, many empirical performance measures of a real-world contact
center can be calculated by means of mathematical models as introduced in
the previous section. These models allow us to study the influence of the
various parameters of a contact center on the performance and give rise to
suggestions for improvement40.

2.4 Operational Decision Problems in Contact Center

Management

In a contact center various decisions have to be made41. These decisions are
mostly related to information technology, the number of agents to be hired
and scheduled, the number of seats and trunks, the training of agents, shift
types and timing of rests.

The decision on the information technology and telephone equipment in-
cluding the number of trunks and seats can be regarded as mid-term planning.
The determination of the number of agents to hire, the design of their contract
of employment, and the training belong to mid-term planning as well.

If these decisions have been made, shifts and breaks for rest and training
have to be scheduled and agents have to be assigned to shifts. These tasks
belong to the operational or short-term personnel planning42 in a contact
center. Figure 2.6 below presents a schematic view of the operational planning
process.

Forecasting is the foundation of the decision process. Based on forecasts
for the demand and empirical analysis of the arrival and service processes,
the staffing requirements have to be determined. For this purpose, in a con-
tact center various empirical data about arrivals, service times, abandonment,
and waiting times are collected and reported by means of the automatic call
distribution (ACD) unit and the voice mail server (VMS).

The recorded data represent realisations of unknown random processes and
can be used to determine the distributions of the processes and their param-
eters43. Unfortunately, the stored statistical data do not represent a single
process or effect in isolation but are a mixture of different events. Arrivals
to the contact center may be primary attempts or retrials 44. Furthermore,
the patience or waiting time limit of served customers cannot be recorded
exactly, because their waiting time is ended by service. Other processes may
be composed of two processes. For example, the service time includes the call
handling time and the after call work, which are reported separately. During

40 See, e.g., Stolletz (2003) and Gans et al. (2003).
41 See, e.g., Koole (2005) Section 3.2.
42 See, also, Stolletz (2003) Section 2.3 or Koole (2004).
43 See the description in Section 2.2.
44 Aguir et al. (2004) developed a method to distinguish primary contacts from re-

trials.
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Forecasting

Staff requirement planning

Shift scheduling

Rostering, agents assignment

Fig. 2.6. Phases of operational decision problems in a contact center

the after call work agents take notes or complete forms. Consequently, report-
ing on the different processes and influences is difficult. Often additional data
is needed to separate composed informations45.

Empirical analysis of this data aims to determine the distributions of the
different processes as well as mean values, variances, correlations and other
parameters. Especially the mean values are used for the theoretical analysis
of a contact center model. Furthermore, the calculated mean values play a
central role in forecasting future demand and determining the future staff
requirements46.

Usually, the number of arrivals in separate half-hour intervals is reported
and forecasted47. If the arrival rates, the mean service times for all types of
customers and agents, and the other parameters of a contact center have been
estimated, the staffing requirements can be determined. The determination
of personnel requirements can be regarded as the second phase in the oper-
ational planning process depicted schematically in Figure 2.6. In this phase
the minimum number of agents Ni needed in time interval i, i = 1, . . . ,J for
all intervals of the planning period subject to performance constraints has to
be determined. Commonly, the so-called X/Y service level (2.1) on Page 14 is
used as a performance constraint. But also all the other performance measures
presented in Section 2.3 may serve as constraints48.

45 See, e.g., Brown et al. (2002) and Koole (2005), Chapter 5.
46 See, e.g., Antipov and Meade (2002).
47 See, e.g., Helber and Stolletz (2004).
48 See, also, Koole (2003).
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If performance measure constraints are formulated and must be fulfilled
in each time interval separately, we call these constraints hard constraints . If
performance constraints are given by means of aggregated performance mea-
sures, such that intervals with high performance compensate intervals with
low performance, the constraints are called soft constraints49. Furthermore,
the number of agents may be limited and has to be non-negative and integer
valued.

Based on the solution of such decision problems, rules of thumb have been
developed which lead to quite accurate results50. The most famous is the
so-called square-root staffing rule, which relates the number of agents in a
time interval to the offered load and the probability of delay51. However, this
rule relies on quite restrictive assumptions about the contact center model: A
single group of agents and homogeneous customers are assumed who do not
recall.

In the traditional hierarchical planning process the determination of
staffing requirements is followed by the scheduling of shifts. A shift is a se-
quence of time intervals during which an agent is present in the contact center.
A shift contains both periods of service and rest breaks.

The scheduling of such shifts is the major task of the third phase presented
in Figure 2.6. The aim is to maximise a profit function or to minimise the costs
such that the staffing requirements in each period are fulfilled for a given set
of shifts. The solution of this decision problem leads to a schedule of shifts, so
that in each time interval at least as many agents are on duty as determined
in the previous phase of the planning process.

Finally, in the last operational planning phase, individual agents have to
be assigned to the shifts of a schedule. This has to be done over consecutive
days such that the conditions given by contracts of employments, personal
preferences of agents and labour law are met. This decision problem is also
called rostering.

In current literature52 mostly the third and fourth phase are solved to-
gether. In the pure shift assignment problem, the days off and the location of
shifts are fixed, but in the integrated decision problem the schedules of shifts,
days off and allocation of agents are determined simultaneously.

Contrarily, in this thesis the staff requirement planning and the shift
scheduling are integrated in one optimisation approach53, i.e., the second and
third phase in the planning process are combined as depicted in gray colour

49 See Koole and Van der Sluis (2003) and Koole (2002, pp. 85-87).
50 See, Jennings et al. (1996), Borst et al. (2002), Feldman et al. (2005) and refer-

ences therein.
51 See Garnett et al. (2002).
52 See Ernst et al. (2004) for an overview over scheduling and staffing literature and

Koole and Pot (2006) for an overview over staffing approaches related to contact
centers.

53 See also Ingolfsson et al. (2003), Cezik and L’Ecuyer (2005), and Bhulai et al.
(2006).
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in Figure 2.6. We assume that agents are available to work according to the
resulting schedule. The determined schedule becomes an input of the fourth
phase and cannot be changed during rostering.

In the integrative approach interdependencies of consecutive time inter-
vals are better addressed than in the isolated approaches. Furthermore, the
constraints concerning shift agreements are considered while determining the
staff requirements.

Solving the staff requirement planning problem first and shift schedul-
ing second might lead to suboptimal solutions. In the staffing requirement
planning problem fewer interdependencies of consecutive time intervals are
considered, because the number of agents needed in each time interval is in-
dependent of the other time intervals.

2.5 Literature related to Contact Center Management

The topic of call and contact center management is the object of many scien-
tific research disciplines and professional journals54. Even various firms publish
so-called white papers55 on their homepages. Each scientific research discipline
as well as all the other publications have their own point of view. Mandelbaum
(2004) gives an overview of literature with abstracts covering Mathematics,
Statistics, Operations Research, Industrial Engineering, Information Technol-
ogy, Human Resource Mangement, Psychology and Sociology.

In applied social studies and human resource research the focus is on
the behaviour and perceptions of agents and customers56. Another disci-
pline is marketing. In this discipline call centers are considered as an in-
strument of customer relationship management57. The publications about
contact center management related to mathematics and operations research
range from statistical analysis58 and forecasting59 to rostering60. Several as-
pects of mathematical and operational analysis are discussed in the pub-
lications by Helber and Stolletz (2003) and Koole (2005). Koole (2002),
Koole and Mandelbaum (2002), and Whitt (2002b) explain stochastic mod-
els and show how to use these models in contact center management. This
research is summarised and extended in the tutorial by Gans et al. (2003).

54 For example, Call Center News, Call Center Profi or Call Center Magazine.
55 See, e.g., Fukunaga et al. (2002) and Witness Systems (2002a).
56 See, e.g., Evenson et al. (1999), Lüde and Nerlich (2002), Witness Systems

(2004), and references therein.
57 See, e.g., Schmitt (2003), Borchardt et al. (2005) and references therein.
58 See, e.g., Mandelbaum et al. (2000), Brown et al. (2002), Zohar et al. (2002), and

Brown (2003).
59 See Daley and Servi (1997), Antipov and Meade (2002) and Helber and Stolletz

(2004).
60 See, e.g., Koole and Pot (2006) for an overview.
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The number of publications related to contact center management is enour-
mous. Therefore, the aspect of management should be specified carefully.



3

Queueing-Theoretic Approaches for Contact

Center Analysis

3.1 The Stationary Erlang-A Model

3.1.1 Motivation

The traditional stationary queueing-theoretic approach relies on the assump-
tion that the rates of the different processes, e.g. the arrival process, do not
change over quite a long time period. An important condition is that the ar-
rival rate must in the long run always be smaller than the maximum departure
rate, i.e. the number of agents multiplied by their service rate in an Erlang-C
model1. In a Erlang-A system with impatient customers the departure rate is
the sum of the service rate multiplied by the number of agents and the aban-
donment rate multiplied by the number of waiting customers. Consequently,
the arrival rate will always be smaller than the maximum departure rate in
theory.
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Fig. 3.1. Stabilisation of the average number of customers in the system as the
simulation progresses in an Erlang-A queueing model

1 See, e.g., Kleinrock (1975) or Karlin and Taylor (1975).



24 3. Queueing-Theoretic Approaches

Under these conditions the queueing process will stabilise, i.e., the average
number of customers in the system will converge to a constant after some time
as presented in Figure 3.1.

The state of the underlying contact center queueing model can be rep-
resented by the number of orders or requests in the system. In the special
case of a call center these requests are associated with the customers. In or-
der to determine various performance measures of the contact center, the
probability distribution of the number of requests in the system under stable
conditions has to be calculated. Stable conditions mean that the parameters
do not change for a sufficiently long time and the arrival rate is on the long
run smaller than the departure rate.

3.1.2 Modelling and Justification

N

µ

123
λ

ν

Fig. 3.2. A contact center model with impatient customers

We consider the so-called Erlang-A call center model presented in Fig-
ure 3.2. This model has already been described in Section 2.2. It has been
widely discussed in the literature2. This contact center model is an extension
of the so-called Erlang-C model commonly used in the call center industry.
If we assume patient customers who do not abandon, the Erlang-A model
reduces to the Erlang-C model, i.e., the arrow belonging to the abandonment
rate ν in Figure 3.2 is deleted. However, the Erlang-A model has been shown
to be a better model to analyse a call center3.

As the interarrival times, the service times and the waiting time limits
are assumed to be exponentially distributed, this model can be described by
a birth-death process4. In a birth-death process the state of the system can
only change from a state with n requests in the system to a neighbouring
state either with n− 1 or n + 1 customers in the system. Therefore, no state

2 See, e.g., Gans et al. (2003), Garnett et al. (2002), Koole and Mandelbaum
(2002), Stolletz (2003), and references therein.

3 See, Garnett et al. (2002), Borst et al. (2002), and Whitt (2005a).
4 See, e.g., Asmussen (2003, pp. 71-80), or Gross and Harris (1998, pp. 45-47).
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can be skipped. A transition from state n to state n + 1 is called a birth and
the intensity is denoted by βn depending on the number of customers in the
system. A transition from state n to state n−1 is called a death with intensity
δn.

The steady-state probability that n customers are in the system is denoted
by πn and given by5

πn =







(

1 +

∞∑

i=1

i∏

k=0

βk

δk+1

)−1

, n = 0

π0

n∏

i=0

βi

δi+1
, n ≥ 1.

(3.1)

In the case of the Erlang-A model presented in Figure 3.2 the birth rate
βn = λ is independent of the number of customers in the system, because
the waiting room is supposed to be unlimited and balking of customers is
excluded. The death rates of this model are given by

δn =

{
nµ, n ≤ N
Nµ + (n−N)ν, n > N

(3.2)

Hence, the stationary distribution of the number of requests in the Erlang-A
model considered is given by

πn =







(

1 +

N∑

i=1

λi

i!µi
+

∞∑

i=N+1

λi

N !µN ·∏i−N

k=0 (Nµ + kν)

)−1

, n = 0

λn

n!µn
π0, 0 < n ≤ N

λn

N !µN ·
∏i−N

k=0 (Nµ + kν)
π0, otherwise.

(3.3)
By means of these probabilities many performance measures for contact center
analysis can be determined as shown in the following section.

3.1.3 Performance Measures

The probability distribution (3.3) is used to calculate the technical perfor-
mance measures discussed in Section 2.3. First of all, the mean number of
customers in the system6 is derived by weighting the number of customers by
its steady-state probability, i.e.,

5 See Asmussen (2003, Corollary 2.5) on Page 74
6 See, e.g., Kleinrock (1975).
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E[QS ] =
∞∑

n=1

nπn (3.4)

If we subtract the mean number of customers in service, we get the mean
number of waiting customers, which is given by

E[QW ] =

∞∑

n=N+1

(n−N)πn (3.5)

A single waiting customer abandons with rate ν. Therefore the abandon-
ment rate of all waiting customers is derived by multiplying the mean number
of waiting customers E[QW ] by the individual abandonment rate. Therefore,
in a time interval of length ∆t the mean number of abandoning customers is
νE[QW ] ∆t. During the same time interval on average λ∆t customers arrive.
Consequently, the percentage of abandonments is given by the mean number
of customers abandoning divided by the mean number of customers who have
entered the system7, i.e.,

P (abandon) =
ν∆t

λ∆t
· E[QW ] =

ν

λ
E[QW ] . (3.6)

Each customer who has entered the system must leave somehow; the prob-
ability of being served is simply calculated by subtracting the probability of
abandoning from one, which is the probability that all customers are served.

P (served) = 1− P (abandon) = 1− ν

λ
E[QW ] . (3.7)

N

µ

123K
λ

νβ

Fig. 3.3. The Erlang-A model with finite waiting room and balking

An extension of the Erlang-A model presented in Figure 3.3 is a model
with a finite waiting room of size K and a certain fraction b of balking cus-
tomers, who tolerate no waiting at all8. Under these conditions also the prob-
ability of blocking and balking can be calculated. The probability of being

7 See, e.g., Mandelbaum and Shimkim (2000).
8 See, e.g., Whitt (1999a) and Stolletz (2003).
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blocked P (blocked) is given by the steady-state probability πK that exactly
K customers are in the system, because no additional customer can enter the
system. The probability of balking is given by the product of the fraction of
customers who balk, if they have to wait, and the probability that an arriving
customer will have to wait. This probability is the sum of the stationary prob-
abilities of the states with at least N customers in the system and at most
K − 1. Therefore we get

P (balk) = b
K−1∑

n=N

πn. (3.8)

For this model the probability of being served is

P (served) = 1− P (blocked)− P (balk)− P (abandon). (3.9)

Another important performance measure is the mean waiting time of cus-
tomers. In the case of an unlimited waiting room, this measure is calculated
according to Little’s law9 by dividing the number of waiting customers by the
arrival rate

E[W ] =
E[QW ]

λ
. (3.10)

The mean waiting time is the time both abandoning and served customers
have been waiting in the system. In order to distinguish the waiting time of
served customers from the waiting time of abandoning customers the con-
ditional mean waiting times should be calculated. The derivation of these
conditional mean waiting times is presented by Stolletz (2003, pp. 77-79).

Finally, the mean utilisation of agents should be considered, which is a
measure of the burden of work the agents undertake. The mean utilisation is
calculated by weighting the percentage of occupied agents in each state by
the respective steady-state probabilities, i.e.,

E[U ] =

N−1∑

i=0

i

N
πi +

∞∑

i=N

πi. (3.11)

For the analysis and comparison of approaches it often suffices to restrict
oneself to the mean number of customers in system, the mean waiting time,
the probability of being served, and the utilisation of agents, although fur-
ther performance measures could be calculated. This restriction is reasonable
because these performance measures can present all major dimensions of per-
formance of the call center.

However, for the sake of completeness we present the stationary waiting
time distribution, which is related to the empirical so-called X/Y service
level10 widely used in practice. By means of the stationary waiting time dis-
tribution, the probability that an arriving customer has to wait less than t

9 See, e.g., Kleinrock (1975).
10 See Section 2.3.



28 3. Queueing-Theoretic Approaches

seconds before being served can be calculated. The derivation of this waiting
time distribution in the case of an Erlang-A model with finite waiting room
and balking customers can be found in Stolletz (2003) and is given by

P (W ≤ t | served) (3.12)

=
1

P (served)

(
N−1∑

n=0

πn +

∞∑

n=N

∏n−N
i=0 (Nµ + iν)

(n−N)!

∫ t

0

(
1− e−ντ

ν

)(n−N)

e−τ(Nµ+ν)dτ

)

.

In this section we have presented several performance measures with vary-
ing usefulness for the analysis. In more complex contact centers the calculation
of performance measures becomes more and more difficult.

3.1.4 Applicability and Limitation for Contact Center Analysis

The stationary approach for call centers is quite popular in the literature11

as it allows us to calculate a variety of performance measures. Another ad-
vantage is the fact that this approach takes randomness of the arrival and
departure processes into account. However, only few probability distributions
for the service duration, mean time to abandonment and interarrival times
can be mathematically analysed. Therefore, restrictive assumptions on these
probability distributions have to be made.

As far as the arrival rates are concerned, the assumption of exponentially
distributed interarrival times seems to be quite reasonable12. However, sta-
tistical analysis has shown that the service times are more likely to be log-
normally distributed13. For the distribution of the abandonment times we are
not able to make any statements because of several difficulties in determining
the waiting time limits of served customers as mentioned in Section 2.214.

The assumption of constant rates is problematic, as in real-world call cen-
ter environments the arrival rates in particular change drastically15 over the
day. The other rates often vary very little.

A modification of the stationary approach which takes some time-depen-
dencies into account is the so-called SIPP approach16. The SIPP approach

11 See Gans et al. (2003) and references therein.
12 See Lariviere and Van Mieghem (2004) and Section 2.2.
13 See, e.g., Brown et al. (2002), Mandelbaum et al. (2000) and Section 2.2.
14 See also Brown et al. (2002).
15 See Figure 2.2 and the argumentation in Section 2.2 as well as Helber and Stolletz

(2003) and references therein for a discussion of the problem associated with time-
dependencies.

16 A description of the stationary independent period by period approach can be
found, e.g., in Green et al. (2001).
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approximates the call center as a stationary system in each period, wherein
the different periods are supposed to be independent of each other. In such a
short interval the arrival rates are supposed to be nearly constant.
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Fig. 3.4. The arrival rate functions for the simulation and the SIPP approach

A comparison of this approach to simulation results of a contact center
model with time-dependent arrival rates is given in Figure 3.5. The simulation
was done by a computer program in C++ designed by Feldman17. The gray
sinusoidal arrival rate depicted in Figure 3.4 was generated by the equation

λ(t) =







1
2m1 ·

(

1− cos
(

2π t−t0
t2−t0

))

for t0 ≤ t < t1

1
2m1 ·

(

1− cos
(

2π t−t0
t2−t0

))

+ 1
2m2 ·

(

1− cos
(

2π t−t1
t3−t1

))

for t1 ≤ t < t2

1
2m2 ·

(

1− cos
(

2π t−t1
t3−t1

))

for t2 ≤ t < t3

(3.13)

with the following parameters

m1 = 9500

m2 = 8000

t0 = 7 (for 7 am)

t1 = 12.5 (for 12:30 pm)

t2 = 16 (for 4 pm)

t3 = 20 (for 8 pm).
(3.14)

In order to apply the SIPP approach, the mean arrival rate for half-hour
intervals is calculated. Both arrival rate functions are presented in Figure 3.4.
The mean service time is assumed to be µ−1 = 1 minute. The mean waiting
time limit of customers is ν−1 = 30 seconds.

Besides the problems related to time-dependencies, if the structure of
the contact center becomes more complicated18, the generator matrix of the
Markov chain grows drastically and its structure becomes more complex.
Hence, more linear equations have to be generated and solved. If we con-
sider different server groups, customer classes or retrial, the linear equations
system is nearly unsolvable. Additionally, numerical instabilities19 occur with

17 Feldman (2004)
18 See, e.g., Figure 2.4 on Page 11.
19 See, e.g., Stewart (1994), Seneta (1967, 1968, 1980), Tweedie (1973), and

Van der Cruyssen (1979).
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Fig. 3.5. Comparison of the SIPP-approach to simulation results for a contact
center model with time-dependent arrival rates

the standard algorithms used for solving systems of linear equation. Therefore
different methods have been developed20.

To overcome some of these shortcomings we use the fluid approach and
the diffusion refinement described in the next section, which can deal with
time-dependencies and more complex structures.

3.2 A Non-Stationary Fluid Approach for the Erlang-A

Model

3.2.1 Motivation

In order to model and analyse contact center models with time-varying pa-
rameters as discussed in Section 2.2, other approaches than the stationary
approach are needed. A major argument21 against the stationary approach is
that in the case of time-varying parameters, no steady state is reached and
in reality the parameters change quickly. Another advantage of the fluid ap-
proach over the stationary approach in Section 3.1 is that the fluid approach
allows for interdependencies22 of periods in modelling.

The idea of the fluid approximation is to substitute the random, time-
dependent, and discrete processes by deterministic, time-dependent, and con-
tinuous processes23 which represent the mean of the original discrete random
processes. Then one is able to describe the change in the system by some
physical principles which are used to model liquids moved by pumps. The
underlying notion is to think of a continuous amount of customers which
runs around the system instead of discrete, individual customers. Then the
amount of customers is like some fluid, which flows into the system with some

20 See, e.g., Seneta (1980), Neuts (1981), Hanschke (1992, 1999), Schmidt (1997),
and references therein.

21 See Mandelbaum et al. (1998).
22 See, e.g., Mandelbaum and Massey (1995) or Jiménez and Koole (2004).
23 Jiménez and Koole (2004).
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arrival rate and is either processed by the pumps representing the servers or
the pumps representing the departure because of impatience. A description of
such a system will give rise to a system of differential equations which can be
solved efficiently by standard numerical methods.

Based on Mandelbaum et al. (1998), we show how the system of differen-
tial equations arises from a modelling of a stochastic contact center system
by applying the strong law of large numbers. The differential equations de-
scribe the mean number of customers in the contact center with time-varying
parameters.

3.2.2 Modelling and Justification

In order to illustrate the fluid approach, we consider the special contact center
model depicted in Figure 3.6 which has been analysed within this framework
by Mandelbaum et al. (1998). This model is a time-dependent form of the
Erlang-A model considered in the previous Section 3.1 in Figure 3.2 on Page
24.

N(t)

µ(t)

123
λ(t)

ν(t)

Fig. 3.6. A contact center model with impatient customers and time-dependent
rates

Statistically identical customers arrive according to a non-homogeneous
Poisson process with time-dependent rate λ(t) at time t. A single group of
N(t) homogeneous agents attends the customers with time-dependent rate
µ(t). If a customer arrives, she is either served immediately or she has to
wait until an agent becomes available or her waiting time limit is reached. On
average each customer abandons with rate ν(t).

In order to derive the fluid approximation, the random number of cus-
tomers in the system waiting or being served at time t is denoted by Q(t).
The stochastic process of the number of discrete customers in the system Q(t)
is a composed process. This process consists of three stochastic processes, so-
called counting processes24, which are assumed to be stochastically indepen-
dent. The counting processes are non-homogeneous Poisson processes with

24 See Karlin and Taylor (1975).
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time-dependent rates and describe the arrivals to and departure of customers
from the system.

Customers arrive with rate λ(t). Therefore the arrival process is given by25

A1





t∫

0

λ(s) ds



 , (3.15)

with A1(·) being a standard Poisson process26 with rate 1. The service

A2





t∫

0

µ(s)min{Q(s), N(s)} ds



 (3.16)

and the abandonment process

A3





t∫

0

ν(s){Q(s)−N(s)}+ ds



 (3.17)

are also Poisson processes which describe the departure of customers. By{X}+
the maximum of zero and X is denoted.

A departure of a customer decreases the number of customers in the sys-
tem. Therefore, the standard Poisson processes A2(·) and A3(·) both have a
negative sign in the Equation (3.18) for the composed stochastic process Q(t)
which describes the random number of customers in the system at time t, i.e.,

Q(t) = Q(0) + A1





t∫

0

λ(s) ds



 −A2





t∫

0

µ(s)min{Q(s), N(s)} ds





−A3





t∫

0

ν(s){Q(s)−N(s)}+ ds





(3.18)

All solutions of this stochastic equation define a unique set of the sample
paths27 or realisations of this process.

In order to derive an approximating fluid process for the stochastic process
of the number of customers in the system presented in Equation (3.18), we
follow the idea of Halfin and Whitt (1981)28. For this approach the arrival
rate and the number of servers is scaled by the same factor n. For Poisson

25 See Massey (2002), Mandelbaum et al. (1998), Mandelbaum et al. (1999a,b), and
references therein.

26 See Whitt (2002a)
27 See Whitt (2002a) and Haas Margolius (1999).
28 See, also Whitt (2003) and references therein.
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processes this proceeding is equivalent to multiplying the arrival rate as well
as the number of agents by n. Contrary to the classic fluid approach developed
by Newell in 197129, the service rate remains unchanged but time-dependent.
Therefore, the traffic intensity

ρ =
λ(t)

N(t)µ(t)
(3.19)

remains constant.
By means of this so-called Halfin-Whitt scaling, we get insights into the

behaviour of the stochastic system becoming large. If the arrival rate and the
number of servers increase, the number of customers in the system will in-
crease by the same factor. Therefore, this approach is sometimes also called
heavy-traffic but we prefer to call it strong approximation30 according to
Mandelbaum et al. (1998). In conventional heavy-traffic31 the traffic inten-
sity approaches one in contrast to the Halfin-Whitt scaling.

In order to illustrate the Halfin-Whitt scaling, Figure 3.7 presents some
simulation results for the scaled processes of the number of customers in the
system Qn(t) divided by the scaling parameter n. The simulation was done by
the same computer program in C++ designed by Feldman (2004) mentioned
in the previous section. Figure 3.7 shows a single realisation of the scaled
processes for n = 1, 10, 100, and 1000. For the simulation the arrival rate
function λ(t) had the sinusoidal form of Figure 2.3 on Page 10 and Equation
(3.13) on Page 29 with parameters

m
(1)
1 = 800 t

(1)
0 = 7 am t

(1)
2 = 4 pm

m
(1)
2 = 750 t

(1)
1 = 12:30 pm t

(1)
3 = 8 pm.

(3.20)

Furthermore, the mean service time µ−1 was assumed to be one minute and
the average waiting time limit ν−1 thirty seconds.

In Figure 3.7 the scaled processes stabilise around the mean, if the scaling
parameter grows32. A comparison of the simulation results of the scaled pro-
cess for n = 1000 and the fluid limit is given in Figure 3.8. The convergence
depicted in Figure 3.7 can be explained by the functional strong law of large
numbers33.

29 See Newell (1982) and Jiménez and Koole (2004) for a comparison of the two
approaches.

30 Mandelbaum, Massey, and Reiman (1998) introduce the term strong approxima-

tion for the fluid approach and the diffusion refinement discussed in Section 3.3.
They develop a whole theory of deriving fluid and diffusion approximations from
stochastic model.

31 See, Harrison and Zeevi (2004) for a comparison of the system behaviour in the
Halfin-Whitt regime and conventional heavy-traffic.

32 See also Whitt (2002a) for further results due to scaling.
33 See Asmussen (2003) and Whitt (2002a).
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Fig. 3.7. Convergence of the scaled process Qn(t)/n of the number of customers in
a contact center model to the mean
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Fig. 3.8. Comparison of the limiting fluid process QF (t) for the amount of customers
in the system to the scaled process Q1000(t)/1000

Formally, the random number of customers in a scaled system with scaling
parameter n is equivalent to the sum of n independent Poisson processes34

defined on the same probability space with the same mean. If Qn(0) is the
number of customers in the scaled system at the beginning of the considered
time period, e.g., a day or a week, the number of customers in the scaled sys-

34 See Whitt (2003) and Mandelbaum et al. (1998).



3.2. Fluid Models 35

tem at some time t > 0 is given by the number of customers at the beginning
Q(0) and the number of customers who have entered the system reduced by
the number of departures. In order to apply the functional strong law of large
numbers we divide the scaled process Qn(t) by the scaling parameter n. We
get35

Qn(t)

n
=

Qn(0)

n
+ A1





t∫

0

1

n
(nλ(s)) ds



 (3.21)

−A2





t∫

0

nµ(s)min

{
1

n
Qn(s), N(s)

}

ds





−A3





t∫

0

nν(s)

{
1

n
Qn(s)−N(s)

}+

ds



 .

If we pass n to infinity, we can apply the functional strong law of large
numbers which states that the term Qn(t)/n in Equation (3.21) almost surely
converges to a mean process E[Q(t)]. The result is a functional equation (3.22)
for the mean process which is a deterministic process. In other words, the
scaled number of customers in the system is a sum of n independent and
identically distributed random variables with the same mean. Therefore, the
sum divided by the number of summands n converges to the mean number of
customers in the system if n increases. Formally we get

E[Q(t)] = E[Q(0)] +

t∫

0

λ(s) ds −
t∫

0

µ(s)min{E[Q(s)] , N(s)} ds

−
t∫

0

ν(s){E[Q(s)]−N(s)}+ ds

(3.22)

The process of the number of customers in the system no longer depends
on either the growing number of agents or the increasing number of customer
arrivals according to the scaling parameter. The mean process describes very
well the average number of customers determined by statistical analysis of
simulation results, which can be confirmed by the comparison of the approx-
imation to simulation results in Figure 3.8.

Denoting the deterministic mean process E[Q(t)] by QF (t) and differen-
tiating (3.22) with respect to t gives rise to the differential equation (3.23),
which describes the change in a deterministic fluid system within an infinites-
imal time interval.

35 See Mandelbaum et al. (1998).
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d

dt
QF (t) = λ(t)− µ(t)min

{
QF (t), N(t)

}
− ν(t)

{
QF (t)−N(t)

}+
. (3.23)

In order to model small changes in the system, the fluid approach assumes
that the number of customers in the system becomes a continuous quantity
like the mean. Nevertheless, we continue to speak about numbers of customers
in general. Then the change in the amount of customers in the system is given
by the amount of customers entering the system per time unit reduced by the
amount of customers leaving. This gives rise to a more simple derivation of
the fluid approximation by describing the change in the amount of customers
by means of the rates.

Customers move into the system with a time-dependent arrival rate λ(t)
and depart after either being served or reaching their waiting time limit. The
amount of customers leaving the system per time unit after being served is the
service rate µ(t) multiplied by the minimum of the level of customers and the
number of servers. If the amount of customers exceeds the number of servers,
the leaving rate of waiting customers is the abandonment rate ν(t) multiplied
by the level of waiting customers in the system.

Contrary to the approach by Halfin and Whitt (1981) described earlier
and used in this thesis, the classic method of deriving fluid limits for such
systems was first developed by Newell in 197136. Newell averages the arrival
process over many realisations. For Poisson arrival and departure processes,
this is equivalent to scaling the arrival, the service rate, and the abandonment
rate by the same parameter n. A disadvantage of the classical approach is
that the scaling leads to identical limits for systems with a single server and
with many servers37. Furthermore, Altman et al. (2001) show that the fluid
limit derived by this classical method is a lower bound of the original system.

Contrarily, Garnett et al. (2002) show that the method of Halfin and Whitt
can be applied to multi-server queues with abandonment and lead to different
limits for single- and multi-server queues. Mandelbaum et al. (1998) illustrate
that the fluid limit derived by the method of Halfin and Whitt differs from
the limit derived by the classical method and has a higher value. However,
the fluid limit is still a lower bound38.

To show how accurate the fluid approach approximates the mean number
of customers in the system in Figure 3.9, the fluid results are compared to the
results of the simulation program of Feldman.

In this example the arrival function is given by Equation (3.13) with the
same parameters as for the stationary approach in Equation (3.14) on Page
29:

m1 = 9500 t0 = 7 am t2 = 4 pm

m2 = 8000 t1 = 12 : 30 pm t3 = 8 pm.
(3.24)

36 See Newell (1982).
37 This is shown by Mandelbaum et al. (1998).
38 See, Jiménez and Koole (2004).
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Fig. 3.9. Example for the accuracy of the fluid approximation for contact centers
with time-varying arrival rate and impatient customers

The arrival rate function is shown in Figure 3.4 on Page 29. The other param-
eters of the contact center model analysed in Figure 3.9 are given in Table 3.1.

Picture Service rate Abandonment rate Number of agents
µ(t) ν(t) N(t)

1 40 h−1 60 h−1 150
2 80 h−1 60 h−1 150
3 60 h−1 120 h−1 100

Table 3.1. Parameters of the contact center model analysed in Figure 3.9.

If the mean service time µ−1 is long, as shown in the first picture of Figure
3.9, more customers are on average in the system than in the other cases. The
approximation of the mean process calculated by means of 500 simulation
runs is very accurate. A comparison of the second and third picture shows
that a high abandonment reduces the number of customers further, although
fewer agents are on duty. The curve of the mean number of customers in the
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system follows the shape of the arrival rate function as depicted in Figure 2.3
on Page 10.

In this section we have shown how fluid approximations can be derived
by means of the strong law of large numbers. Furthermore, we have observed
that the fluid approach approximates the mean number of customers in the
system accurately.

3.2.3 Performance Measures

To evaluate the technical and economical performance of the presented con-
tact center, performance measures as described in Section 2.3 are needed.
Unfortunately, not all the performance measures illustrated in Section 2.3 can
be calculated by means of the fluid approach. However, most important tech-
nical measures from the point of view of both customers and agents can be
determined as well as a performance measure for the point of view of man-
agers.

3.2.3.1 Technical Performance Measures

First of all, the average number of customers in the system QF (t) and the
number of customers waiting max{0, QF (t) − N(t)} are directly derived by
numerically solving the initial value problem given by Equation (3.23) and
some initial condition for the number of customers,

QF (t0) = Q0. (3.25)

Therefore, these performances are not presented again.
As mentioned before, most customers are impatient and prefer short wait-

ing times. That is why the waiting time of a customer arriving at time t is an
important technical performance measure. It is given by dividing the mean
number of customers waiting max{0, QF (t)−N(t)} by the departure rate at
time t.

The departure rate d(t) is given by the amount of customers served per
time unit plus the amount of customers abandoning per time unit. If fewer
customers than agents are in the system, i.e., QF (t) ≤ N(t), the departure
rate is the product of the service rate and the number of customers in the
system. If the amount of customers QF (t) in the system exceeds the number
of available servers, the amount of customers served is the product of the
service rate µ(t) and the number of agents N(t). The amount of customers
leaving the system per time unit because of their impatience is the product
of the abandonment rate ν(t) and the amount of customers that exceeds the
number of agents on duty (QF (t) − N(t)). Formally, the departure rate is
given by

d(t) =







µ(t)QF (t), if QF (t) ≤ N(t)

µ(t)N(t) + ν(t)(QF (t)−N(t)), if QF (t) > N(t).
(3.26)
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As the waiting time of customers is zero, if fewer customers are in the system
than agents are on duty, the expected waiting time of a customer entering at
time t is given by

WF (t) =

{
QF (t)−N(t)

}+

µ(t)N(t) + ν(t)(QF (t)−N(t))
, (3.27)

where {X}+ again denotes the maximum of zero and X .
Formally, a similar equation for the virtual waiting time, which is the time

a customer arriving at time t has to wait for service under the condition
that this special customer does not abandon, is derived in Mandelbaum et al.
(1999b, 2002). They assume that at the beginning there are more customers in
the system than available servers as otherwise the virtual waiting time would
be zero. After the arrival of a chosen customer the arrival rate is supposed
to become zero, such that there are no further arrivals to the system. Under
these conditions the virtual waiting time is given by the time until the number
of customers in the system becomes equal to the number of servers on duty,
which is equivalent to the fact that the chosen customer starts his service.

For an analysis of the contact center it is useful to determine the aggre-
gated or mean waiting time of a certain period, e.g. a day. A possibility of
aggregation is averaged over the considered period. This is done by integrating
the waiting time function over the time horizon and dividing by the length of
the period:

WF
T =

1

T

∫ T

0

WF (t)dt (3.28)

However, this does not take into account the varying congestion and number of
customers in the system39. Consequently, the waiting time should be weighted
by a factor, which describes the congestion in the system, e.g., the departure
or arrival rate. Both describe how the congestion in the system increases
and decreases. For a customer entering the system the departure rate refers
to the events in front of him, against which the arrival rate characterises
the congestion behind the waiting customer. At each moment in time an
arriving customer will be more interested in the number of customers in front.
Therefore, we aggregate the waiting time by weighting by the departure rate.
This gives rise to

WF
agg(T ) =

∫ T

0
d(t)WF (t) dt
∫ T

0
d(t) dt

=

T∫

0

d(t)

{
QF (t)−N(t)

}+

d(t)
dt

∫ T

0 µ(t)N(t) + ν(t)(QF (t)−N(t)) dt

39 See Helber and Stolletz (2004), pp. 30-32, for a discussion, or Koole (2005) and
Section 2.3.
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=

∫ T

0

{
QF (t)−N(t)

}+
dt

∫ T

0
µ(t)N(t) + ν(t)(QF (t)−N(t)) dt

. (3.29)

A technical performance measure closely related to economic performance
measures is the probability P (served, t) that a customer is served at time t and
the probability P (abandon, t) that a customer abandons at time t. In a fluid
model the rate of customers being served at time t is given by the service
rate of the agents multiplied by the minimum of the amount of customers
in the system and the number of agents on duty, i.e., µ min{QF (t), N(t)}.
The probability that a customer is served is given by dividing the number
of customers served by the number of customers leaving the system d(t).
Similarly, the probability of abandoning in (3.31) is derived. This gives rise to

PF (served, t) =
µ(t)min

{
QF (t), N(t)

}

µ(t)min{QF (t), N(t)} + ν(t){QF (t)−N(t)}+
(3.30)

PF (abandon, t) =
ν(t)

{
QF (t)−N(t)

}+

µ(t)min{QF (t), N(t)} + ν(t){QF (t)−N(t)}+
. (3.31)

Both probabilities add to one, because a customer can either leave after being
served or abandon. If no customer is waiting in the system, the probability of
being served in (3.30) is one and the probability of abandoning is zero. Fur-
thermore, if the service rate and abandonment rate are constant, these prob-
abilities are both almost independent of the abandonment rate40, although
this result might not be obvious at once especially for the second probability.

If the aggregated probability of being served PF
agg(served, T ) in the time

interval starting at time t = 0 and ending at time t = T is derived by accumu-
lating the number of served customers µ(t)min

{
QF (t), N(t)

}
at each time t

and dividing by the accumulated departure rate, then we get the probability
of being served for all customers who have left the system in the considered
time interval. Formally, we get for the aggregated probability of being served

PF
agg(served, T ) =

∫ T

0
µ(t)min{Q(t), N(t)} dt

∫ T

0
d(t) dt

. (3.32)

Equivalently the aggregated probabilities of abandoning can be derived:

PF
agg(abandon, T ) =

∫ T

0
ν(t){Q(t)−N(t)}+ dt

∫ T

0 d(t) dt
. (3.33)

In addition to the aggregated probability of all customers who leave the
system in the time interval being served, we can determine the aggregated
probability PF

λ (served, T ) of all customers who have entered the system in
the time interval [0, T ] being served. This probability is derived by dividing

40 See Aguir et al. (2004).
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the number of served customers until time T by the accumulated number of

arrivals
∫ T

0 λ(t) dt, i.e.,

PF
λ (served, T ) =

T∫

0

µ(t)min{Q(t), N(t)} dt

∫ T

0 λ(t) dt
(3.34)

This probability differs from the first aggregated probability, if customers are
still served or waiting at the end of the considered time interval, i.e., the system
is not empty. Table 3.2 compares the different probabilities of being served for
different numbers of agents and different service rates. The abandonment rate
ν is 120 h−1 and the arrival rate function is as in the previous section. In order
to rule out equal probabilities for both cases because the call center is empty
at the beginning and the end of the considered time period, we aggregated the
probabilities from 7 am to 1:30 pm. Obviously, the aggregated probabilities
do not differ much. Therefore, the analyses can be restricted to one case.

µ N(t) P F
agg(served, T ) P F

λ (served, T )

10 50 0.0788 0.0786
10 100 0.1527 0.1521
10 150 0.2235 0.2224

30 50 0.2253 0.2247
30 100 0.4240 0.4226
30 150 0.6036 0.6010

60 50 0.4247 0.4239
60 100 0.7659 0.8764
60 150 0.9884 0.9856

Table 3.2. Comparison of the different aggregated probabilities of being served for
different service rates and numbers of servers

Finally, the perspective of the agents is chosen to measure the technical
performance of the system. As agents suffer on the one hand from stress if
the system is overloaded and on the other hand from boredom if the system
is underloaded, the utilisation of agents should be carefully balanced41. The
utilisation is given by the number of busy agents divided by the number of
agents on duty. The number of busy agents is the minimum number of agents
on duty and the number of customers in the system, which gives rise to

UF (t) =
min

{
QF (t), N(t)

}

N(t)
. (3.35)

In the course of the day agents will experience periods of high load and periods
of low load. As long as neither of these two outweigh the other to a high extent,
the system can be evaluated as balanced. To measure the balance it is again
useful to aggregate the utilisation for a day or another time interval [0, T ].

41 Compare, also Wharton Business School (2004).
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UF
agg(T ) =

T∫

0

N(t)
min

{
QF (t), N(t)

}

N(t)
dt

∫ t

0 N(t) dt

=

∫ T

0
min

{
QF (t), N(t)

}
dt

∫ T

0
N(t) dt

. (3.36)

Obviously, the utilisation of the agents in the fluid model is independent of
the abandonment rate as the utilisation will be one, whenever abandonment
occurs. The question arising from these observations is whether these inde-
pendencies are consistent with simulation results for this model.

3.2.3.2 Economical Performance Measures

Technical performance measures are strongly connected with economical per-
formance measures which estimate the profit or the cost. Each served customer
might lead to revenue. Furthermore, the contact center will have to pay for
salaries of the agents and for usage of telephone lines. The cost for agents of
the contact center can be calculated by summing up the product of hourly
wage w and the number of agents working over the considered time period,
e.g., a day. The costs for telephone trunks are given by the hourly payments
per occupied line ℓ multiplied by the aggregated number of customers present.
The sum of both components defines the costs of the contact center in the
time period [0, T ], i.e.,

cost(T ) =

∫ T

0

(
wN(t) + ℓQF (t)

)
dt. (3.37)

If a revenue of r monetary units42 is gained from each customer served,
the profit of the contact center for a period of length T is given by the revenue
minus the costs, i.e.,

profit(T ) =

∫ T

0

(
rµ(t)min

{
QF (t), N(t)

}
− ℓQF (t)− wN(t)

)
dt. (3.38)

The profit and the costs depend strongly on the number of agents N(t) staffed
at each moment in time. Furthermore, the profit function is closely connected
to the aggregated probability of being served. The aggregated probability of
being served is given by Equation (3.32). In Equation (3.38) the cumulative
revenue

r

∫ T

0

µ(t)min
{
QF (t), N(t)

}
dt (3.39)

is gained from served customers. The aggregated probability of being served
(3.32) is the number of customers served

42 Later on we will use the e as the monetary unit.
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∫ T

0

µ(t)min
{
QF (t), N(t)

}
(3.40)

divided by the cumulative number of departures. Therefore, we can substitute
the number of customers served in the profit function (3.38) by the aggregated
probability of being served multiplied by the cumulative number of departures.
We get

profit(T ) = rPF
agg(served, T )

∫ T

0

d(t) dt−
∫ T

0

(
ℓQF (t) + wN(t)

)
dt. (3.41)

Hence, the profit and the aggregated probability of being served correspond
to each other.

3.2.4 Numerical Solution and Results

The advantage of this model lies in the easiness of handling and interpreting
the equations. Furthermore, the model is easily extended to complicated mod-
els without loss of accuracy. If the rate functions are integrable, the differential
equation (3.23) can be solved analytically, otherwise they can efficiently be
solved by means of numerical methods.

However, most more complicated models suffer from interdependencies
of the equations such that numerical methods are needed. We used Euler
and fourth order Runge-Kutta methods43 to solve the differential equations.
Fortunately, the systems of differential equations considered in this thesis are
all ordinary first order non-linear differential equations and the numerical
solutions to the initial value problems

d

dt
QF (t) = λ(t) − µ(t)min

{
QF (t), N(t)

}
− ν(t)

{
QF (t)−N(t)

}+

QF (t0) = Q0

(3.42)

are very accurate.
In general we assume as an initial condition (3.25) an empty contact center

at the beginning of the working day. This is equivalent to the assumption that
all e-mails, calls, faxes and other contacts either have been processed the day
before or will never return and are lost. However, our approach also allows
us to treat initial conditions differing from zero. By means of the solution of
the initial value problem, we are able to calculate the technical performance
measures just introduced.

For the purpose of numerical illustrations we created time-varying arrival
rates as shown in Figure 3.10 using the function in Equation 3.13 on Page 29.
The function roughly reproduces the arrival rate function found in real-world
call centers with a peak before and after lunch time44.

43 see Abramowitz and Stegun (1974) pp. 896-897.
44 Compare also Figure 2.2 on Page 10.
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Fig. 3.10. A typical, sinusoidal arrival rate function

In the following examples the parameters of the arrival rate function were
chosen to be

m1 = 9500 t0 = 7 am t2 = 4 pm

m2 = 8000 t1 = 12:30 pm t3 = 8 pm.

By varying the other parameters, different workloads of the system can be
modelled without changing the arrival rate function.

First of all, the influence of the different parameters on the number of
customers in the system is investigated in Figure 3.11. The default parameters
of the following examples are given in Table 3.3.

Service rate Abandonment rate Number of agents
µ(t) ν(t) N(t)

variable 120 h−1 150
60 h−1 120 h−1 variable
60 h−1 variable 100

Table 3.3. Default parameters of the examples analysed in this section

Differing from Table 3.3 in the first picture, the mean time to abandon
ν−1 was assumed to be one minute, i.e., ν = 60 h−1, in order to make the
influence of the service rate more clearly. This is quite a long waiting time
limit. Later on an average patience of half a minute is assumed. In the second
picture the average service time µ−1 is one minute and in the last picture the
number of agents N(t) is fixed at 100 agents, which means that the system is
overloaded during lunch and in the late afternoon.

As the number of customers in the system has already been compared
in Figure 3.9 on Page 37 to simulation results, these results are not reported
once more. Obviously, all parameters have a major influence on the number of
customers in the system. If the service rate µ increases, fewer customers have
to wait. The same happens if the customers are more patient shown in the last
picture. The number of servers N(t) is important, depicted in the picture in
the middle, if some customers cannot be served immediately. If the arrival rate
λ(t) is smaller than the number of available servers multiplied by the service
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Fig. 3.11. Influence of parameters on the number of customers QF (time) in the
system calculated by the fluid approach

rate, i.e., λ(t) < µN(t), the congestion in the system is independent of the
number of servers. If the customers are very impatient, such that the mean
waiting time limit is smaller than the mean service time as in this example,
the number of customers in the system increases if more agents are on duty.
In this case a served customer stays longer in the system than an abandoning
customer. If the mean service time is smaller than the average patience, i.e.,
µ > ν, an increasing number of agents leads to less congestion.

3.2.4.1 The Waiting Times Calculated by the Approximation and
the Simulation

In Figure 3.12 the influence of the service rate on the waiting time of all
customers given by Equation (3.27) on Page 39 is analysed and the fluid results



46 3. Queueing-Theoretic Approaches

are compared to simulation results. For this purpose, we used the simulation
tool developed by Feldman (2004) mentioned before. We used the results of
500 independent repetitions to estimate the average number of customers in
the system at time t and the other time-dependent performance measures.
The parameters of the simulation are given in Table 3.3 on Page 44.

The fit of the approximation to the simulation is remarkably good. Fur-
thermore, the time-dependent waiting time depicted in Figure 3.12 is strongly
influenced by the service rate of the agents. In the fluid model, waiting oc-
curs whenever the system is overloaded, i.e., more customers arrive than can
be served by the agents. In other words the arrival rate is greater than the
product of the service rate and the number of servers. Consequently, a varying
arrival rate would have similar effects on the waiting times.

In the picture referring to µ = 70 h−1 in the fluid model, no-one has to
wait because

µN(t) = 10500 h−1 (3.43)

is always greater than the maximum arrival rate

λmax = max{λ(t)|t ∈ [7 am, 8 pm]} = 9500 h−1. (3.44)
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Fig. 3.12. Comparison of the time-dependent waiting times calculated by the fluid
approach and the simulation tool for different service rates µ
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The waiting times calculated by the simulation model are due to random
effects which do occur in reality but these waiting times are negligibly small.
In the graphs referring to µ = 50 h−1 and µ = 60 h−1 the effects of the
random processes are even stronger. Visibly, the fluid approximation is a lower
bound of the waiting time in the case of critical loading as pointed out by
Altman et al. (2001) and Jiménez and Koole (2004). Critical loading means
that the arrival rate and the number of agents multiplied by the service rate
are almost identical, such that all agents are very busy.
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Fig. 3.13. Comparison of the waiting times calculated by the fluid approach and
the simulation tool for different abandonment rates ν

Next the effects of varying abandonment rates are investigated in Fig-
ure 3.13. Comparing the simulation results and the fluid approach, the ap-
proximation seems to be accurate in the given example. Figure 3.13 shows
that the more impatient customers are, the shorter waiting times are. This
is reasonable as for customers who abandon the waiting time limit is reached
earlier, i.e., the time spent in the queue waiting is shorter. The served cus-
tomers do not influence the waiting time any longer, because their waiting
time limit is greater than the time they actually have waited. The deviation
of the simulation model at about 4 pm can be explained by the neglected
randomness in the fluid model.
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Fig. 3.14. Comparison of the waiting times calculated by the fluid approach and
the simulation tool for different numbers of agents N(time)

Finally, we investigate the influence of the number of working agents on
the waiting times in Figure 3.14. Again a comparison of the simulation and
fluid results stresses the accuracy of the fluid approach. If fewer agents are
staffed, the waiting time of the customers increases. However, a waiting time of
approximately 12 seconds in the case of 100 agents on duty is still very small.
During the time interval [1 pm, 5 pm] for values of 130 and 140 agents on duty,
the call center is critically loaded and the waiting time of the simulation model
is underestimated by the fluid approach. Contrarily, during time intervals of
very high load the fluid results overestimate the simulation result slightly.
In general the waiting time of customers decreases, if the number of agents
increases.

In addition to the time-dependent waiting times, we study the impact of
system parameters on the aggregated waiting times calculated by means of the
fluid approach and Equation (3.29) on Page 40. In Figure 3.15 the influence of
an increasing number of agents and a varying service rate on the aggregated
waiting times is shown. The number of agents is assumed to be constant for
the whole length of the considered period [7 am, 8 pm], i.e. T = 8 pm. If almost
no agent is staffed, the aggregated waiting time approaches the waiting time
limit of thirty seconds. In this case almost no customer is ever served. A
growing number of agents as well as a growing service rate lead to shorter
waiting times.
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agg(T ) for varying abandonment rates ν and

numbers of agents N(t)

The influence of varying abandonment rates and numbers of agents on the
aggregated waiting time is depicted in Figure 3.16. Obviously, abandonment
rates can only have an impact on the waiting time if the system is overloaded.

3.2.4.2 The Probability of Being Served Calculated by the
Approximation and the Simulation

A second very important performance measure is the probability of all cus-
tomers who have left the system being served given by Equation (3.30) on Page
40. As the probabilities of being served and abandoning are complementary in
the system considered in this section, i.e., the sum of the two probabilities is
one, the second probability is not presented. The simulation results are com-
pared to the fluid results and the influences of the different parameters on the
probability of being served are explained. The arrival rate is supposed to be
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sinusoidal as in Figure 3.10 on Page 44 and the other parameters are given in
Table 3.3 on Page 44.
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Fig. 3.17. Comparison of the probability of being served calculated by the fluid
approach and the simulation tool for different service rates µ

In Figure 3.17 the fluid and simulation results are compared for differ-
ent service rates. As before, the results of the fluid approach are very good.
The time-dependent probability of being served increases, if the service rate
increases.
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Fig. 3.18. Influence of different abandonment rates ν on the time-dependent prob-
ability of being served P (served, time) in the simulation model

Next we analyse the influence of the abandonment rate. As mentioned be-
fore45, Aguir et al. (2004) show analytically that the abandonment rate has
no impact on the probability of being served or abandoning in the fluid ap-
proach. The question arising is whether this is also true for original discrete
systems and its simulation model. Therefore, in Figure 3.18 the simulation re-
sults are reported. In this figure the different abandonment rates do not affect

45 See Page 40.
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the time-dependent probability of being served calculated by the simulation
tool. The varying probability of being served during the lunch hours is due to
stochastic effects but not due to the varying abandonment rate. Consequently,
the simulation results underline the accuracy of the fluid approach.
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Fig. 3.19. Comparison of the probability of being served with varying numbers of
agents N(time)

Finally, the influence of the number of staffed agents is depicted in Figure
3.19. The probability of being served depends on the number of servers as well
as on the service rates because the number of servers has a direct influence
on the load. If many agents are scheduled, the load of the system decreases
such that more customers are served and the probability of service approaches
one. Contrarily, if only few agents are scheduled, many customers have to wait
and consequently more abandon before they are attended to. Comparing the
Figures 3.17, 3.18, and 3.19 depicting the probability of being served, it can be
concluded that the approximation works fine except for the phases of critical
loading. In our example, these phases are diminishingly small time intervals
in most pictures.

In the previous subsection two different aggregated probabilities of being
served have been derived in Equation (3.34) and Equation (3.32) on Page 41.
In the examples of Table 3.2 on Page 41, it was shown that the aggregated
probabilities do not differ much for the system investigated in this section.
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Fig. 3.20. Influence of a varying service rate µ and number of agents N(t) on the
aggregated probability of being served P F

agg(served, T )

Therefore, only the probability of all customers who have left the system
being served calculated by Equation (3.32) is presented in Figures 3.20.

The aggregated probability of being served is independent of the abandon-
ment rates, because the time-dependent probabilities have been independent.
That is why no figure depicting the aggregated probability of being served as
a function of the abandonment rate is presented.

However, resulting from the strong influence of the service rate and the
number of agents on the time-dependent probabilities, the aggregated proba-
bility depends strongly on the number of agents and the service rate as well.
Comparing the time-dependent probabilities in Figures 3.17, 3.19 and the ag-
gregated probabilities in Figure 3.20 the averaging effect of aggregation can be
observed46. The aggregated probability of being served is still high although
the probability of being served is very low during some time intervals.

3.2.4.3 The Utilisation of the Agents Calculated by the
Approximation and the Simulation

The last performance measure that is calculated is the utilisation of the agents
at some time t given in Equation (3.35) on Page 41 or aggregated as in Equa-
tion (3.36) on Page 42. The parameters of the underlying model are the same
as in the previous examples and shown on Page 44. In Figure 3.21 the utilisa-
tion UF (t) for different service rates is presented. Similar to the probability
of being served and the waiting time the impact of the service rates is strong.
Growing service rates, i.e., short mean service times, lead to smaller utilisation
of the agents.

In order to show that the time-dependent utilisation is independent of
the abandonment rate in the simulation, the simulation results are presented

46 For the discussion about the averaging effect and its role as hard and soft con-
straints see Page 20.
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Fig. 3.21. Comparison of the utilisation of the agents calculated by the fluid ap-
proach and the simulation tool for different service rates µ

in Figure 3.22. This result is easily explained, because the time-dependent
utilisation is one, as long as more customers are in the system than agents on
duty. Only in this case do customers abandon. If the number of customers in
the system decreases, the utilisation decreases as well. In the second case the
utilisation of agents is given by the fraction of the number of busy agents and
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Fig. 3.22. Influence of the abandonment rate ν on the utilisation of agents U(time)
in the simulation model
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the number of agents staffed, which are both independent of the abandonment
rate.

Finally, the influence of the number of agents on the time-dependent util-
isation is depicted in Figure 3.23 and on the aggregated utilisation in Fig-
ure 3.24. While the time-dependent utilisation varies drastically over time,
the aggregated utilisation is more stable. Higher service rates and more agents
lead to lower utilisation. As the time-dependent utilisation is independent of
the abandonment rate, the aggregated utilisation will be independent as well.
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Therefore, no picture showing the aggregated utilisation as a function of the
abandonment rate is presented.

These investigations confirm that the service rate and the number of agents
working have a high impact on all performance measures. The abandonment
rate, however, has a very limited influence on the performance experienced
by a customer. Only the waiting times depend on the abandonment rate. The
probability of being served and of abandoning as well as the utilisation of
agents are not visibly influenced.

3.2.4.4 Influence of the Parameters on the Profit Function

After having studied the technical performance measures, the influence of the
service rate µ, the abandonment rate ν and the number of agents N(t) on the
profit function of the contact center given in Equation (3.38) on Page 42 are
investigated in Figures 3.25 and 3.26. The profit seems to be slightly dependent
on the service rate for a low number of staffed servers. If the number of servers
increases the influence of the service rate becomes stronger.
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Fig. 3.25. Influence of the service rate µ and the number of agents N(t) on the
profit

In Figure 3.26 the abandonment rate seems to have almost no impact
on the profit function. This result is in line with the strong links between
the aggregated probability of being served and the profit function shown in
Equation 3.41 on Page 43. Solely the case of patient customers, i.e. ν = 0,
leads to a slightly different profit value.

The numerical results of the fluid approach and the simulation results
for both the different technical and economical performance measures just
analysed show that the simulation model is well approximated by the solutions
of the fluid approach. Furthermore, the abandonment rate has no impact on
the probability of being served, on the utilisation of agents and on the profit of
the contact center excluding the case of patient customers. Last, the averaging
effect of aggregation has been shown by comparing the time-dependent and
aggregated technical performance measures.
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Fig. 3.26. Influence of the abandonment rate ν and the number of agents N(t) on
the profit

3.2.5 Applicability and Limitation for Contact Center Analysis

As mentioned before, the major advantage of the fluid modelling approach is
that the fluid models are easy to create and interpret. It does not matter how
many customer classes or agent groups have to be considered. Adding a new
customer class simply means appending another equation to the system of
differential equations, and adding a new agent group extends the differential
equation by another term which describes the routing and speed of operation
of these agents.

Another advantage of this approach with respect to the performance of
the contact center is pointed out by Garnett et al. (2002). They show that
the probability of delay is strictly smaller than one but greater than zero in
the scaling limit47. The probability of delay is the probability that an arriv-
ing customer will have to wait. Additionally, the probability of abandoning
becomes asymptotically negligible, i.e., in the limiting fluid model some cus-
tomers will have to wait but very few customers abandon and the agents are
busy nearly all the time. That is why this limiting regime has become known
as quality and efficiency driven. Garnett et al. (2002) show that in the effi-
ciency driven regime the probability of delay reaches one and the probability
of abandoning a limit strictly between zero and one, i.e., in this regime the
agents are high utilised and many customers have to wait. In the quality driven
regime both probabilities are negligible. In this case the utilisation of agents
is low and almost no customer has to wait at all48.

However, the fluid approach eliminates the randomness of the processes49

which can be regarded as an important reason for congestion in small systems.
This fact can be observed if the utilisation of the agents approaches one and
the system is almost stable. Then in real-world contact centers there is a

47 See, Garnett et al. (2002), Borst et al. (2002), and Whitt (2005c)
48 See also Whitt (2004, 2006b).
49 See Whitt (2005c).
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substantial abandonment whereas in the fluid model everyone is still served
and no-one has to wait. This is caused by the fact that in the fluid model the
amount of customers is supposed to be continuous such that every piece of
work can be done and the fact that the fluid processes are deterministic. The
more customers are in the system, the more the discrete nature of customers
can be neglected50.

Consequently, the fluid approach is a accurate approach for large con-
tact centers as long as the individual groups of customers and agents are big
enough. As long as the stationary queueing models are simple enough for
determining the stationary distribution, more detailed technical performance
measures can be calculated by the stationary approach, while in contact cen-
ters with a complex structure the fluid approximation appears to be superior.
Jiménez and Koole (2004) show that often the combination of a fluid and
a stationary model delivers a good approximation for a system with slowly
varying rates. They have proven that the fluid limits are lower bounds for the
number of customers in the real system and its convex performance measures.

In our models the arrival rate changes quite quickly, which means that we
do not have constant arrival rates for a quarter or half an hour even in the
moderately loaded system. In such a case the system is not able to become
stable and in consequence the stationary approach is less valuable.

3.3 Refinement to a Diffusion Model

3.3.1 Motivation

In this section we consider an extension of the fluid approach derived in the
previous section which is able to deal with the stochasticity of the system.
Similar to the fluid approach, the diffusion refinement is also based on the
heavy traffic scaling by Halfin and Whitt (1981) known as strong approxima-
tions. We follow the derivation of the differential equations for the variances
and covariance in Mandelbaum et al. (1998).

By means of the scaling, the Poisson processes described in Equations
(3.15)-(3.17) on Page 32f. can be approximated by normally distributed diffu-
sion processes with the same mean and variance51. The scaling is quite similar
to the fluid approach but in spite of applying the functional strong law of large
numbers we will apply the extended form of the functional central limit the-
orem52.

The notion of deriving heavy traffic approximations for queueing systems
based on the central limit theorem was first developed by Kingman in the

50 Compare, Borst et al. (2004) and Whitt (2003).
51 See, e.g., Feldman et al. (2005). For the connection between Poisson Processes

and normally distributed processes see, e.g., Schoenberg (2002), Ward and Glynn
(2003b), and Marchal (2003).

52 See Mandelbaum, Massey, and Reiman (1998).
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early 1960s53. The heavy traffic limits were derived by holding the number of
servers fixed and letting the service intensity approach one from below.

Another procedure was first used by Iglehart in 1965 and made famous by
Halfin and Whitt (1981) who let the number of servers and the arrival rate
approach infinity. Both procedures have in common that the discrete process
of the number of customers in systems is substituted by a continuous diffusion
process54. Afterwards this continuous process can be discretised to calculate
approximations for steady state distributions.

The underlying idea associated with this approach is the irregular move-
ment of pollen in water. It was first observed by the botanist Robert Brown
after whom the process was named Brownian motion55. The diffusion of the
pollen in water is driven by the collision of the water molecules.

We may think of the customers as pollen who fall on water with a little
drift towards drains which represent the processing by the agents and the
departure due to impatience. These pollen move around in the water until
they reach a drain and flow out after having stayed a random time moving
back and forth in the basin.

3.3.2 Modelling and Justification

In order to explain this approach we consider the model introduced in Fig-
ure 3.6 on Page 31. There we determined the scaled process of the number
of customers in a scaled system Qn(t), which means that the arrival rate
and number of servers were multiplied by a scaling parameter n. From Equa-
tion (3.21) on Page 35 we derived the functional Equation (3.22) for the lim-
iting mean process. Afterwards we differentiated the process with respect to
the time t and got the differential Equation (3.23) describing the fluid process.

In this section we aim to describe the process including the stochasticity
and time-varying behaviour by means of the variance of the process according
to Mandelbaum et al. (1998). Therefore, standard Brownian motions and a
stochastic differential equation of the process are needed. A standard Brow-
nian motion is a normally distributed stochastic process with mean zero and
variance t at time t56.

To determine the stochastic differential equations we use the central limit
theorem and some related results proven by Komlós et al. (1975)57 and Rao
(1973). The central limit theorem states that the sum of n independent and
identically distributed random variables converges in distribution to a nor-
mally distributed random variable with n-times the mean and n-times the
variance of the first random variable as n grows.

53 See Kingman (1962, 1965).
54 For a literature review of early developments see Halfin and Whitt (1981).
55 See Bauer (2001b).
56 See Whitt (2002a).
57 See also Kurtz (1978), Grama and Nussbaum (1997), and Brown (2002).
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Linked to the functional central limit theorem is a result by Komlós et al.
(1975), who show that an approximation of the sum of n Poisson processes
by a Brownian motion with n-times the mean and n-times the variance has
the remainder term of order log n, where log denotes the natural logarithm.

Rao (1973) proves an extension of the functional central limit theorem,
which is needed because the counting process Q(t) given in (3.18) on Page 32
is composed not only of different Poisson processes but also of functions of
these processes. This theorem states that if Yn denotes the sum of independent
and identically distributed random variables with finite mean and variance σ2

and f is a differentiable function in a neighbourhood of E[Y1], then f
(

Yn

n

)

converges to f(E[Y1]) almost surely according to the strong law of large num-
bers for n approaching infinity. Furthermore, the central limit theorem can
be applied on f

(
Yn

n

)
and the fraction converges in distribution to a standard

normally distributed random variable X multiplied by the derivative of the
considered function at the mean value of Y1. Formally, the theorem states58

lim
n→∞

√
n

σ

(

f

(
Yn

n

)

− f(E[Y1])

)

i.d.
= f ′(E[Y1])X. (3.45)

If the function f is continuous but not differentiable at the mean value E[Y1],
a similar convergence relation can be shown, which uses the limits from above
and below at the critical mean value E[Y1]. If f ′(E[Y1] +) denotes the limit
from above and f ′(E[Y1]−) from below, we get

lim
n→∞

√
n

σ

(

f

(
Yn

n

)

− f(E[Y1])

)

i.d.
= f ′(E[Y1] +){X}+− f ′(E[Y1]−){X}−,

(3.46)
where {X}− denotes the maximum of −X and zero.

By means of these results the stochastic differential equation can be de-
rived, which is needed to determine the variances and the covariances of the
different processes. The variances and covariances are used to measure the
randomness of the processes.

First of all, we determine the limiting stochastic differential equation for
the counting process Q(t) of the number of customers in the system. According
to Mandelbaum et al. (1998, pp. 153-155), the limiting process we require is
given by

lim
n→∞

Qn(t)− nQF (t)√
n

= lim
n→∞

Q
√

n(t)
i.d.
= QD(t) (3.47)

for all t ∈ R+
0 . In order to derive QD(t) the sample-path representation Qn(t)

in (3.47) is approximated59 by a Brownian motion according to the theorem
by Komlós et al. (1975). We substitute n-times the fluid process QF (t) by n-
times the left hand side of Equation (3.23) on Page 36 and dividing by square

58 See, Mandelbaum et al. (1998) p. 154.
59 For a proof of this strong approximation for growing n see Mandelbaum et al.

(1998) on Pages 156-157 and Section 2.
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root of n. Consequently, we get for the fraction in Equation 3.4760

Qn(t)− nQF (t)√
n

=
1√
n

(
Qn(0)− nQF (0)

)
(3.48a)
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If n approaches infinity and we apply the mentioned result by Rao, we expect
to get the stochastic differential equation for a centralised diffusion process.
However, the minimum and maximum functions are not continuously differen-
tiable, therefore Mandelbaum, Massey, and Reiman (1998) introduced a new
form of derivative which they call the scalable Lipschitz derivative to circum-
vent these difficulties.

As an example we consider the function f(x) = min{x, N} for fixed N
depicted in Figure 3.27. The Lipschitz derivative61 of f(x) at x for any real
value y is given as the positive part of y, if x < N , minus the negative part
of y, if x ≤ N , i.e.,

60 Compare Mandelbaum et al. (1998) p. 163 and Whitt (2002a) p. 360.
61 See Mandelbaum et al. (1998) in Sections 3 and 12 for further properties of this

derivative and the formal derivation.
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lim
y→0

min{x + y, N} −min{x, N}
|y|

= max{y, 0}1{x<N} −max{−y, 0}1{x≤N}

=:
d

dx
min{x, N}(y)

(3.49)
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Fig. 3.27. Scalable Lipschitz derivative

In order to show how this result can be applied to Equation 3.48, we
consider the term (3.48c). First of all, we transform the term, such that the
structure of the functional central limit theorem becomes more obvious, i.e.,

lim
n→∞
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(Eq. (3.48c))

= lim
n→∞
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Then we let n approach infinity and use Equations (3.46) and (3.49) to derive

lim
n→∞

√
n

(

min

{
Qn(s)

n
, N(s)

}

−min
{
QF (s), N(s)

}
)

=
{
QD(s)

}+1{QF (s)<N} −
{
QD(s)

}−1{QF (s)≤N}. (3.50)

Although an application of the results by Mandelbaum et al. (1998) and the
scalable Lipschitz derivative on the terms 3.48c and 3.48d in Equation 3.48
leads to an exact solution, the derived differential equations are neither easily
solvable nor concrete.
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Therefore, another assumption is made which gives rise to a much more
simple and practical equation. We assume that the set of critical times S is
supposed to have measure zero. The critical times are those times when the
call center is critically loaded, i.e., the number of servers equals the number
of customers in the system, i.e.,

S = {t|Q(t) = N(t), t ∈ [0, T ]} (3.51)

A set has measure zero if it is almost empty62. Therefore the set of critical
times has measure zero if the process QD(t) passes the state with equal num-
bers of agents and customers in the system very quickly. This assumption is
reasonable, as for a normally distributed process the measure of a single point
is zero.

Under this assumption the limit derived in Equation (3.50) reduces to

lim
n→∞

√
n

(

min

{
Qn(s)

n
, N(s)

}

−min
{
QF (s), N(s)

}
)

= QD(s)1{QF (s)≤N}. (3.52)

Similarly, the limits of the term (3.48d) related to the abandonment of cus-
tomers is derived. Under the assumption just mentioned, the term (3.48d)

converges to −
t∫

0

ν(s)1{QF (s)>N(s)}Q
D(s) ds. In other words, under the as-

sumption that the set of critical times is a null set, the limit processes includ-
ing maximum or minimum functions are given by the product of the rates, the
diffusion process QD(t), and an indicator function 1{}. The indicator func-
tion has value 1, if the associated Poisson process depends on the number of
customers in the system. In the case of the service process this means that
the number of customers is below the number of agents, and in the case of
the abandonment process, that the number of customers exceeds the number
of available agents.

The limit of the term (3.48a) is simply the diffusion process at 0, and term
(3.48b) dimishes. To derive the limits of the Brownian motions (3.48e) through
(3.48g), we use the so-called self-similarity scaling property63 of Brownian
motions to derive the limiting processes64, which leads to65

62 See, e.g., Bauer (2001a) and Billingsley (1999) for an introduction and further
information on measure theory.

63 See Whitt (2002a) p. 102.
64 For overview of central limit theorems associated with Brownian motion see Whitt

(2000).
65 See also Mandelbaum et al. (1998).



3.3. Diffusion Models 63

lim
n→∞

− 1√
n

B2





t∫

0

nµ(s)min

{
1

n
Qn(s), N(s)

}

ds





= lim
n→∞

−B2





t∫

0

µ(s)min

{
1

n
Qn(s), N(s)

}

ds





= −B2





t∫

0

µ(s)min
{
QF (s), N(s)

}
ds



 (3.53)

for the Brownian process (3.48f) in Equation (3.48). Similarly, the other limits
of the Brownian motions are calculated. Finally, we get the stochastic differ-
ential equation of the diffusion process by

QD(t) = QD(0)−
t∫

0

µ(s)1{QF (s)≤N(s)}Q
D(s) ds

−
t∫

0

ν(s)1{QF (s)>N(s)}Q
D(s) ds

(3.54a)

+ B1





t∫

0

λ(s) ds



+ B2





t∫

0

µ(s)min
{
QF (s), N(s)

}
ds





+ B3





t∫

0

ν(s)
{
QF (s)−N(s

}+
ds





(3.54b)

Formally, the limit in Equation (3.54) derived from the functional central
limit theorem in Equation (3.47) consists of two parts.
The first part (3.54a) of the limiting process describes the drift of the cus-
tomers in the system towards the exit. The system wants to get the customers
out of the system both by service and abandonment. This part results from
the terms (3.48b) through (3.48e) if n approaches infinity.
The second part (3.54b) of the stochastic functional equation describes the
variation by means of standard Brownian motions. This part results from the
terms (3.48f) and (3.48g) in Equation (3.48) if n reaches infinity. The number
of customers in the system varies around the mean value. This process can be
interpreted as the deviation from the mean throughput process.

The next step is to derive the differential equations for the variances and
covariances of the model. In this case of just one customer class we only
have to determine the variance. Therefore, we have to utilise some additional
properties of Brownian motions as well as the so-called chain rule of stochastic



64 3. Queueing-Theoretic Approaches

calculus commonly known as Ito’s formula66 to get the differential equation
for the variance. The variance of the process can be calculated by the mean
diffusion processes by

VAR
[
QD(t)

]
= E

[(
QD(t)

)2
]

−E
[
QD(t)

]2
. (3.55)

Beside the chain rule of stochastic calculus, we have to use the following
property of standard Brownian motions

dBi(t) · dBj(s) =

{
t, i = j
0, i 6= j

(3.56)

to derive the differential equation of the mean value of the squared process

E
[(

QD(t)
)2
]

. First of all, we determine an expression for the differential67

d
(
QD(t)

)2
= 2 · dQD(t) ·QD(t) + dQD(t) · dQD(t). (3.57)

Afterwards we apply the mean function on this expression. The differential
of QD(t) is simply derived from Equation 3.54 by means of the self-similarity
scaling property mentioned before. We get

dQD(t) = −
(
µ(t)1{QF (t)≤N(t)}Q

D(t) + ν(t)1{QF (t)>N(t)}Q
D(t)

)
dt (3.58)

+
√

λ(t)dB1(t)−
√

µ(t)min{QF (t), N(t)}dB2(t)

−
√

ν(t){QF (t)−N(t}+dB3(t).

With the help of this equation and the Properties (3.56) and E[Bi(t)] = 0,
the differential equation of the mean of the squared process is given by68

d

dt
E
[(

QD(t)
)2
]

= −2
(
µ(t)1{QF (t)≤N(t)} + ν(t)1{QF (t)>N(t)}

)
E
[(

QD(t)
)2
]

+ λ(t) + µ(t)min
{
QF (t), N(t)

}
+ ν(t)

{
QF (t)−N(t)

}+

(3.59)

The differential equation for the squared mean of the diffusion process

E
[
QD(t)

]2
is derived much more simply, by the mentioned properties of the

standard Brownian motions and Equation 3.58 and given by

d

dt
E
[
QD(t)

]2
= 2

(
µ(t)1{QF (t)≤N(t)} + ν(t)1{QF (t)>N(t)}

)
E
[
QD(t)

]2
.

(3.60)

66 See Karatzas and Shreve (1991, pp. 149-156) for a formal explanation of the chain
rule.

67 See Mandelbaum et al. (1998) Section 10.
68 See Mandelbaum et al. (1998) pp. 197–198.
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Subtracting Equation (3.60) from Equation (3.59) leads to69

d

dt
VAR

[
QD(t)

]
= −2

(
µ(t)1{QF (t)≤N(t)} + ν(t)1{QF (t)>N(t)}

)
VAR

[
QD(t)

]

+ λ(t) + µ(t)min
{
QF (t), N(t)

}
+ ν(t)

{
QF (t)−N(t)

}+
.

(3.61)

This differential equation again can be solved by standard numerical methods.
We used the fourth order Runge-Kutta method as the Euler method led to
instabilities in the excluded critical points, when the number of customers
equals the number of agents. It gives us an estimate of the variability of the
queueing process.

Additionally, the probability of delay as a performance measure similar to
the service level used in practice is determined by Garnett et al. (2002) from
the heavy traffic diffusion approximation by Halfin and Whitt. The prob-
ability of delay is the probability that the wait of an arriving customer is
greater than zero. This approximation is often used in both time-dependent
and stationary contact center models for setting the staffing level70, as this
approximation gives rise to the square-root safety-staffing rule. Feldman et al.
(2005) extended the method used by Jennings et al. (1996) to achieve time-
stable performance. Garnett et al. (2002) show that the probability of delay
α for the system described above can be approximated by

P (wait > 0) = α =

[

1 +

√
µ

ν

h
(
β
√

µ
ν

)

h(−β)

]−1

(3.62)

with h denoting the hazard rate function of the standard normal distribution
which is

h(x) =
φ(x)

1− Φ(x)

and a real-valued constant β which is determined by

β =
QD(t)− λ(t)

µ
√

λ(t)
µ

(3.63)

Further approximations of performance measure especially for the mean wait-
ing time and the probability of abandoning are given in Garnett et al. (2002)
depending on α, β and the other parameters of the model. More recently,
Whitt (2003) and Jelenkovic et al. (2004) determined performance measures
based on the diffusion process.

However, these performance measures are often limited to the case of ho-
mogeneous agents and customers, who do not retry. Therefore, we do not

69 See Mandelbaum et al. (1998) p. 199.
70 See, e.g., Jennings et al. (1996).
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investigate these approximations any further. Our concern is to show how the
variance just derived can be used for contact center analysis and how the
variance is influenced by the different parameters of the contact center. Fur-
thermore, we compare the approximated variance to simulation results in the
next subsection.

3.3.3 Comparison of Approximation and Simulation Results

The main question of this subsection is whether the resulting diffusion process
describes the variances of the queueing process accurately. If this is the case,
we are able to calculate confidence intervals around the fluid process within
which the realisation of the processes should be with a certain probability.

The simulation results for the variances were calculated over 500 repeti-
tions. We assume that in general the mean service time µ−1 is one minute and
the mean time to abandon ν−1 is thirty seconds. Furthermore, 150 agents are
scheduled for the whole day. The arrival rate is given by Equation (3.13) on
Page 29 with parameters

m1 = 9500 t0 = 7 am t2 = 4 pm

m2 = 8000 t1 = 12:30 pm t3 = 8 pm.

time
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Fig. 3.28. Comparison of variances with low load

In Figures 3.28 and 3.29 the time-dependent variances of the simulated
queueing process are compared to the variances of the limiting diffusion ap-
proximation. Contrary to the other examples, in the first figure we assumed
a lower arrival rate function with m1 = 8000 and m2 = 7000. In this case the
traffic intensity of the contact center is below one such that no customer aban-
dons in the fluid model. Figure 3.28 shows that the variance of the queueing
process is quite well approximated. The results of the simulation vary more
strongly than the results of the initial value problem given by the differential
equations for the fluid process (3.23) on Page 36, the variance process (3.61),



3.3. Diffusion Models 67

time
6 8 10 12 2 4 6 8

160

120

80

40

0

Simulation

Approximation

V
A

R
ˆ

Q
D

(t
im

e)
˜

Fig. 3.29. Comparison of variances with high load

and some initial values for these processes. As in the fluid approach, the initial
value problem was solved by fourth order Runge-Kutta methods.

In the second Figure 3.29 the contact center has a higher traffic intensity.
The contact center is temporarily overloaded. The abandonment rate differs
from the service rate. The differential equation reacts much more quickly on
the change in the rate than the true variance of the simulation model. That
is why the approximation differs from the variance of the queueing process in
this part of the graph.
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Fig. 3.30. Comparison of variances calculated by the approximation for varying
abandonment rates ν

To confirm this observation we vary the abandonment rate from high pa-
tience to low patience and compare the results of the differential equations
and the simulation model in Figures 3.31 and 3.30. If no customer has to wait,
the curves describing the approximated variance VAR

[
QD(time)

]
are identi-

cal for all abandonment rates, because no-one reneges. In the case of waiting
customers, a low abandonment rate ν = 40 h−1 leads to a higher variance in
Figure 3.31 and a high abandonment rate ν = 80 h−1 to a lower variance.

Comparing the solution of the differential equation in Figure 3.30 and
the simulation results in Figure 3.31, we recognise the same behaviour of the
variances in the differential equation solution and the simulation results. The
main difference is that the simulated variances need some time to increase
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Fig. 3.31. Comparison of variances calculated by the simulation tool for varying
abandonment rates ν

and decrease while the differential equations react instantaneously. The time
the simulation takes to get into the new variance state seems to be equivalent
to the time a system with constant rates needs to reach the steady state. It
would be worthwhile studying this phenomenon in detail which could lead to
a better understanding of the processes in contact centers.
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Fig. 3.32. Comparison of variances calculated by the approximation for varying
service rates

We now fix ν at 60 h−1 and vary the service rate from 40 to 70 by steps
of 10 customers per hour to study a call center under very different load
conditions. In the case of service rates below the abandonment rate, Figure
3.32 and 3.33 show that whenever the call center is overloaded, the variance
decreases rapidly and increases as fast if the traffic intensity becomes less than
one. If the abandonment rate equals the service rate, the variance does not
change so strongly, as the model with equal rates can be interpreted as an
infinity server queue and the customers leave by abandonment as fast as by
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Fig. 3.33. Comparison of variances calculated by the simulation tool for varying
service rates µ

service completion. In the last case with high service rates the product of the
number of servers and the service rate always stays above the arrival rate such
that no abandonment takes place. Consequently, the variance does not react
that strongly.

Summarising the results, we find that the parameters of the contact center
model have a high impact on the variance, especially when the process of the
number of customers in the system passes the critical level. Furthermore, by
means of the diffusion refinement we are able to make a good guess about
the variance in the system. The estimated variances can be used to compute
confidence intervals for the fluid approximation of the customers in the system.

3.3.4 Applicability and Limitation for Contact Center Analysis

The advantage of the diffusion model lies in the opportunity to model both
time-dependencies and randomness in contact centers. However, these equa-
tions are very difficult to derive and the applicability in a staffing and shift
scheduling procedure has not yet been examined.

The differential equations for the variances and covariance are linked to the
fluid results. Therefore, some disadvantages of the fluid approach are carried
over to the diffusion refinement. However, Mandelbaum et al. (1999a,b, 2002)
show that the variances can be used to calculate variance envelopes for the
fluid approach and the performance measures calculated by this approach. By
both the fluid approach and the diffusion refinement the stochastic processes
of the number of customers can very well be approximated.



70 3. Queueing-Theoretic Approaches

The diffusion approximation is tied to the fluid model as the fluid approach
is needed to determine the mean process. This means that the diffusion ap-
proach is a refinement or enlargement rather than a separate approach as
stressed by many authors71. The derivation of the diffusion equations and the
differential equations for the variances appears to be very complicated. If the
additional assumption with respect to the times of critical loading is fulfilled,
the equations become more simple.

Furthermore, in a staffing and scheduling approach the variances calcu-
lated by the diffusion refinement can be used to make staffing decisions more
robust with respect to the stochasticity of the contact center. In large contact
centers the results based on a fluid approximation will already be quite ro-
bust. Therefore the fluid approach will suffice. However, Feldman et al. (2005)
show that the diffusion limit can be used to stabilise the performance of the
contact center if staffing is done according to the square-root safety-staffing
rule which results from the approximation of the delay probability.

All these advantages make the fluid and the diffusion approach a worth-
while instrument of contact center analysis, which should be extended.

3.4 Literature related to the Fluid and Diffusion

Approach

The literature on the approximation of contact center models by means of
fluid and diffusion approaches is extensive. Especially since 2000 it has been
rapidly growing. Therefore, the overview given here cannot be all-embracing.
We aim to give some suggestions for further reading.

The literature on fluid approximation can be subdivided into the literature
based on the stochastic theory of deriving fluid limits for service systems
by Newell72 and the fluid approximations based on the scaling approach by
Halfin and Whitt (1981) which is used in this thesis. Therefore, the overview
is restricted to the recent literature based on this approach.

The growing interest in the development of fluid limits for contact center
models based on the scaling approach by Halfin and Whitt started in 1995
with a paper by Mandelbaum and Massey. They used the theory to anal-
yse a Markovian queueing system with time-dependent arrival rates and ser-
vice rate. In 1998 Mandelbaum, Massey, and Reiman extended this theory by
adding the fluid refinement to the theory of so-called strong approximations
of Markovian service networks. Furthermore, they showed that the fluid limit
derived by Halfin and Whitt ca n be more useful than the one by Newell and
differs significantly for multiserver queues. The paper by Mandelbaum et al.
(1998) covers many features found in real-world call centers such as abandon-
ment, retrials and skills-based routing.

71 See Whitt (2002a); Mandelbaum et al. (1998) and references therein.
72 See Newell (1982) and Jiménez and Koole (2004).
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Within the theoretical framework of strong approximations for Markovian
service networks Mandelbaum et al. (1999a,b), and Mandelbaum et al. (2002)
present an extensive analysis of a special fluid queue with retrials. Addition-
ally, they analyse and derive diffusion limits for the theoretical queue length
and virtual waiting time.

Altman, Jiménez, and Koole (2001) and Jiménez and Koole (2004) show
that the fluid limits are worthwhile if the system is partially overloaded.
Jiménez and Koole (2004) prove that the fluid limits are lower bounds for
the actual queue length.

More recently, the fluid approximation is used to analyse even more com-
plex contact center models, such as models with retrials or skills-based routing.
But not only for analysis but also for other concerns, e.g. staffing and control,
are these approximations used. Aguir et al. (2004) developed a model to sepa-
rate the retrials arriving in a call center from the primary calls of an empirical
arrival rate.

Feldman et al. (2005), Harrison and Zeevi (2004, 2005), Whitt (2006a),
and Hampshire and Massey (2005) developed methods and rules of thumb
for staffing call centers based on fluid approximation with different objec-
tive targets. In the paper by Feldman et al. (2005) the target is stabilising
the time-dependent performance, while Hampshire and Massey (2005) aim to
maximise a profit function. Furthermore, they present an extensive theoret-
ical analysis of the influences of the parameters on the profit function and
the optimal solution. Harrison and Zeevi (2004, 2005) investigate the conse-
quences of random arrival rate functions and Whitt (2006a) the influence of
so-called absenteeism, i.e., the random events that cause scheduled agents not
to appear for working.

An important sector in contact centers with heterogeneous structures,
where fluid models and diffusion refinement play a major role, is the con-
trol or routing of customers and agents to each other. Atar (2005a,b) obtains
asymptotically optimal routing policies for scheduling control and design of
contact centers with heterogeneous structures. The analysis is deepened and
extended in the papers by Atar et al. (2004a,b), Armony and Mandelbaum
(2004), and Gurvich et al. (2004), in which Armony and Mandelbaum (2004)
and Gurvich et al. (2004) consider the staffing problem as well. In contrast
to these authors, Chang et al. (2004) use a fluid model to develop routing
policies.

Besides a few examples of papers that deal with diffusion approximation
of contact centers with different customer and agent classes, in most papers
only single server systems are analysed. Mainly the diffusion approach is used
to circumvent the difficulties associated with other than exponential distribu-
tions of service and interarrival times, see Anisimov and Atadzhanov (1994);
Glynn and Whitt (1995); Mitzlaff (1997) for earlier results. In addition to the
these papers, Ward and Glynn (2003b, 2005) consider balking and reneging.
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This overview shows that the research on contact centers by means of
fluid and diffusion approaches is a huge and vivid research field with various
directions. Our main focus lies on the analysis and shift scheduling in contact
centers with retrials.



4

Analysis of Time-Dependent Contact Centers

with Retrials

4.1 Contact Centers with Homogeneous Customers and

Agents

4.1.1 Description of a Contact Center Model with Retrials

This chapter is dedicated to the analysis of contact center models with retrial
behaviour of impatient customers by means of the fluid approach and diffusion
refinement introduced in the previous chapter. We aim to show how retrials
of customers influence the time-dependent and aggregated performance of the
contact center as well as the profitability.

For the analysis of the model with retrials we use the framework of Marko-
vian Service Networks developed in Mandelbaum et al. (1998) and used in
Sections 3.2 and 3.3. We want to consider both the time-dependent behaviour
and the stochasticity of the queueing processes.

Figure 4.1 is a schematic presentation of the contact center considered
in this section. This model has been analysed by Mandelbaum et al. (1998)
before1. We assume homogeneous customers and agents where the number of
agents N(t) may vary over the day. We assume that customers arrive according
to a Poisson process with time-dependent rate λ(t).

If an agent is available, an arriving customer is served immediately, other-
wise the caller has to wait for service in an infinite waiting room. Because cus-
tomers are supposed to be impatient, this is not a very restrictive assumption
in a large service system as shown by Garnett et al. (2002) and Figure 3.11 on
Page 45. If a waiting customer in the queue is not willing to wait any longer,
i.e., he reaches his individual waiting time limit, this customer hangs up and
may call again later. On average customers abandon with rate ν(t), i.e., the
waiting time limits are exponentially distributed with parameter ν(t). The
percentage of callers who will retry after an exponentially distributed time in
the so-called orbit with rate γ(t), is denoted by p. The orbit is modeled as an

1 See, also Mandelbaum et al. (1999a,b), and Mandelbaum et al. (2002).
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γ(t)
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123 N(t)
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Fig. 4.1. A contact center model with a single class of customers, a single group of
agents, and retrials of impatient customers

infinite server queue as each customer in the orbit is his own server. Both the
times to abandonment and times to retrial are allowed to be time-dependent.
Furthermore, the agents serve customers with exponentially distributed ser-
vice times with time-varying parameter µ(t).

4.1.2 Determination of the Fluid Processes

To derive the two fluid processes, we describe the stochastic system by a
vector Q(t) = (QS(t), QO(t)). This vector consists of the processes QS(t) for
the number of customers in the system and QO(t) for the number of customers
in the orbit at some time t ∈ R+

0 .
As shown in Subsection 3.2.2 we can model these processes by a sum of

independent, non-homogeneous Poisson processes which describe the number
of customers moving into and out of the system and the orbit, respectively.
If we scale the processes according to the well-known heavy traffic scaling
presented in Halfin and Whitt (1981) with scaling parameter n, we arrive
at the so-called fluid limits justified by the functional strong law of large
numbers2.

To determine the system of differential equations of the fluid processes
approximating the stochastic processes, these stochastic processes QS(t) and
QO(t) are substituted by the deterministic processes QF

S (t) and QF
O(t). Then

the change in the amount of customers in the system and the orbit given by
the derivative of the processes can be explained by the rates of changes.

The change in the number of customers in the system dQF
S (t) during a

small time interval dt is given by the number of customers who enter the

2 Mandelbaum et al. (1998) determine the fluid differential equations analytically
as shown in Section 3.2.2. They also show a more general case with respect to the
time-dependent rates for the model investigated in this section.
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system (λ(t)+γ(t)QF
O(t))dt during the time interval minus the number of cus-

tomers who leave the system µ(t)min
{
QF

S (t), N(t)
}

dt+ν(t)
{
QF

S (t)−N(t)
}+

dt.
As in Equation (3.23) on Page 36, customers enter as primary calls with rate
λ(t) but additionally customers from the orbit retry with an individual rate
γ(t). The rate by which customers leave the contact center in the model with
retrials is equal to the rate in the model without retrials in Equation (3.23).

The number of customers in the orbit QF
O(t) increases by the customers

who have left the contact center because of impatience and are willing to call

again with rate pν(t)
{
QF

S (t)−N(t)
}+

. During a small time interval dt the
number in orbit decreases by the number of customers who retry γ(t)QF

O(t)dt.
Consequently, this gives rise to3

d

dt
QF

S (t) = λ(t) + γ(t)QF
O(t)− µ(t)min

{
QF

S (t), N(t)
}

− ν(t)
{
QF

S (t)−N(t)
}+

(4.1a)

d

dt
QF

O(t) = pν(t)
{
QF

S (t)−N(t)
}+− γ(t)QF

O(t) (4.1b)

for all t ∈ R+
0 . As mentioned in Section 3.2 we solved the initial value problems

linked to differential equations numerically by means of Euler and Runge-
Kutta methods. Afterwards the results are used to determine performance
measures for the underlying contact center model, so that the performance
can be analysed.

4.1.3 Refinement to a Diffusion Model

The scaled processes and the fluid limit just determined can now be utilised
to derive the diffusion limits4. Applying the functional central limit theorem
leads to stochastic functional equations for the diffusion processes which are
needed to determine the variances and covariances of the processes as de-
scribed in Section 3.3.

Therefore, we assume that the set of critical times has measure zero. Sim-
ilar to Section 3.3 on Page 62, the set of critical times S contains all moments
when the number of customers in the system equals the number of agents on
duty. Then the stochastic functional equations5 and their interpretation are
much more transparent.

Based on the stochastic functional equations the differential equations
of the variances and covariance are derived as described in Section 3.3 on

3 Compare, Mandelbaum et al. (1999a,b), and Mandelbaum et al. (2002). They de-
rive the fluid limits by means of the strong law of large number as presented in
the previous chapter.

4 See Mandelbaum et al. (1998) Section 5 or Mandelbaum et al. (1999a).
5 The stochastic functional equations with and without this assumption can also

be found, e.g., in Mandelbaum et al. (1999a) and Mandelbaum et al. (2002).



76 4. Time-Dependent Contact Centers with Retrials

Pages 64f. These differential equations for the variances and covariance are
given by6

d

dt
VAR

[
QD

S (t)
]

(4.2a)

= −2
(

ν(t)1{QF
S

(t)>N(t)} + µ(t)1{QF
S

(t)≤N(t)}
)

VAR
[
QD

S (t)
]

+ 2γ(t)COV
[
QD

S (t), QD
O(t)

]
+ λ(t) + γ(t)QF

O(t)

+ µ(t)min
{
QF

S (t), N(t)
}

+ ν(t)
{
QF

S (t)−N(t)
}+

d

dt
VAR

[
QD

O(t)
]

(4.2b)

= 2pν(t)1{QF
S

(t)>N(t)}COV
[
QD

S (t), QD
O(t)

]
− 2γ(t)VAR

[
QD

O(t)
]

+ pν(t)
{
QF

S (t)−N(t)
}+

+ γ(t)QF
O(t)

d

dt
COV

[
QD

S (t), QD
O(t)

]
(4.2c)

= −
(

ν(t)1{QF
S

(t)>N(t)} + µ(t)1{QF
S

(t)≤N(t)}
)

COV
[
QD

S (t), QD
O(t)

]

+ γ(t)
(
VAR

[
QD

O(t)
]
−COV

[
QD

S (t), QD
O(t)

])
+ pν(t)VAR

[
QD

S (t)
]

− pν(t)
{
QF

S (t)−N(t)
}+− γ(t)QF

O(t)

for all t ∈ R+
0 . The meaning of these equations as well as the influence of the

various parameters are explained by means of numerical examples in Subsec-
tion 4.1.5.

4.1.4 Performance Measures

Based on the fluid results we calculate some performance measures which
are quite similar to the performance measures derived for the simpler time-
dependent Erlang-A model discussed in Chapter 3. First, we have to distin-
guish between the waiting times in the queue and the times in the orbit.

The time-dependent waiting time WF
S (t) of a customer arriving in the

system is derived equivalently to the waiting time in a system without retrials
by dividing the number of waiting customers by the departure rate d(t) in
Equation (3.26) on Page 38. Therefore, the Equations (3.27) on Page 39 and
Equation (4.3) are the same. The time-dependent waiting time is given by

WF
S (t) =

max{0, QF (t)−N(t)}
µ(t)min

{
QF

S (t), N(t)
}

+ ν(t)
{
QF

S (t)−N(t)
}+. (4.3)

As the orbit is modelled as an infinite server queue, the time-dependent
waiting time WF

O (t) of customers in the orbit equals the average time the

6 For the derivation of the differential equations see Appendix A.1 and Section 5
of Mandelbaum et al. (1998).
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caller spends in the orbit, which is the mean time to redial γ(t)−1. The ag-
gregated waiting time of customers WF

S,agg(T ) in the system during the time
interval [0, T ] is derived as shown in Equation (3.29) on Page 40.

In this model the time-dependent probabilities of being served or aban-
doning are similar to the probabilities determined on Page 40. For a customer
entering the system at time t the probability of being served is given by the
fraction of customers that are served out of all customers who leave the sys-
tem. The number of customers leaving at time t is simply the departure rate
d(t) and the number of customers being served at time t is the service rate
multiplied by the number of agents, if the number of customers in the sys-
tem exceeds the number of agents on duty. Otherwise the probability of being
served would be one. Therefore, the probability of being served is given by

PF (served, t) =
µ(t)min

{
QF

S (t), N(t)
}

µ(t)min
{
QF

S (t), N(t)
}

+ ν(t)
{
QF

S (t)−N(t)
}+. (4.4)

Similarly, the time-dependent percentage of customers abandoning with-
out retrying can be determined by multiplying the probability of abandoning
derived in Equation 3.31 on Page 40 by the probability of not retrying (1−p),
i. e.,

PF (abandon, t) =
(1− p)ν(t)

{
QF (t)−N(t)

}+

µ(t)min
{
QF

S (t), N(t)
}

+ ν(t)
{
QF

S (t)−N(t)
}+. (4.5)

As the probability of being served, abandoning without retrial, and moving
into the orbit must add up to one, the probability of abandoning and mov-
ing into the orbit is given by the probability of abandoning determined in
Equation (3.31) weighted by the probability of retrial p, i.e.,

PF (into orbit, t) =
pν(t)

{
QF (t)−N(t)

}+

µ(t)min
{
QF

S (t), N(t)
}

+ ν(t)
{
QF

S (t)−N(t)
}+. (4.6)

In Section 3.2 on Page 40 two different aggregated probabilities of being
served were derived, which numerically do not differ much in the case of the
contact center considered there. However, for the contact center model in this
section, these probabilities can be used to determine on the one hand the
percentage of customers who have been served out of all primary calls during
the time interval [0, T ] PF

λ (served, T ) and on the other hand the percentage
of customers who have been served out of all departures PF

agg(served, T ). The
second probability does not distinguish between primary calls and retrials,
therefore it judges the actual performance of the contact center in the consid-
ered time interval more accurately. Furthermore, this performance measure is
associated with the empirical performance measure.

Although agents in the system do not know whether an arriving customer
calls for the first time or retries, the probability that an arriving customer is
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a recaller can be calculated by means of the retrial rate γ(t), the arrival rate
λ(t) and the process describing the number of customers in the orbit QO(t).
Customers from the orbit retry on average with rate γ(t), which leads to a
total arrival rate of recalls to the system of γ(t)QF

O(t). The sum of the primary
arrival rate and the retrial arrival rate is the total arrival rate in the system.
Consequently, the probability that a customer arriving at time t is a recaller
is given by the fraction of the retrial arrival rate and the total arrival rate in
the system, i.e.,

PF (recaller, t) =
γQF

O(t)

λ(t) + γQF
O(t)

. (4.7)

Equivalently, the probability that a customer is a primary caller is given by

PF (primary call, t) =
λ(t)

λ(t) + γQF
O(t)

. (4.8)

These probabilities can be used in an empirical analysis to separate the pri-
mary calls from the retrial, but they are of almost no benefit for a performance
analysis. Therefore, these probabilities are not investigated any further7.

Finally the utilisation of the agents at time t is derived by dividing the
number of busy agents by the number of agents scheduled:

UF (t) =
min

{
QF

S (t), N(t)
}

N(t)
. (4.9)

The aggregated utilisation UF
agg(T ) is given by Equation 3.36 on Page 42.

The formal similarity of all performance measures of this section and sec-
tion 3.2 could lead to the conclusion that the retrial behaviour of customers
does not influence the performance of the system. However, the number of cus-
tomers in the system calculated by solving the initial value problem defined
by Equation (4.1) and some initial conditions depends on the retrial param-
eters. Therefore, the retrial behaviour influences the performance measures
implicitly.

In addition to the technical performance measures, the profit gained in a
time period [0, T ] is a measure of the economic performance of the contact
center. It is derived in the same way as in Section 3.2.3.2 on Pages 42f. and
given there in Equation (3.38), i.e.,

profit(T ) =

∫ T

0

rµ(t)min
{
QF

S (t), N(t)
}
− ℓQF

S (t)− wN(t) dt. (4.10)

Equivalently to the technical performance measures, the profit is implicitly
influenced by the retrial parameters. Similar to the profit function (3.38) on
Page 42, the profit function is closely related to the aggregated probability of
being served PF

agg(T ).

7 See Aguir et al. (2004) and Aguir et al. (2005) for an application of these proba-
bilities in staffing.
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4.1.5 Numerical Analysis

4.1.5.1 The Number of Customers in the System and in the Orbit

In this section we investigate whether the numerical solution to the initial
value problem given by the Differential Equations (4.1) and and the initial
conditions

QS(t0) = 0 and QO(t0) = 0 (4.11)

approximates the simulation results accurately. To solve the initial value prob-
lem we use again the fourth order Runge-Kutta methods. We assume that all
processes start at zero, i.e., customers are neither in the system nor in the
orbit.

For the simulation results we have extended the simulation tool developed
by Feldman (2004), so that we can simulate retrials as well. We generate 500
repetitions and compare the average processes to the results of the initial value
problem.

The primary arrival rate is defined by Equation (3.13) on Page 29 with
parameters

m1 = 9500 t0 = 7 am t2 = 4 pm

m2 = 8000 t1 = 12:30 pm t3 = 8 pm.
(4.12)

In Figure 4.2 the graph of the arrival rate function is depicted. In Table 4.1
we summarise the parameters for the investigation.
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Fig. 4.2. Time-Dependent primary arrival rate function λ(t)

Figures µ(t) N(t) ν(t) γ(t) p

4.3, 4.4 variable 150 120 h−1 15 h−1 0.5
4.5, 4.6 60 h−1 variable 120 h−1 0.5 h−1 0.5
4.7, 4.8 60 h−1 150 variable 15 h−1 0.5
4.9, 4.10 60 h−1 100 120 h−1 variable 0.5
4.11, 4.12 60 h−1 100 120 h−1 15 h−1 variable

Table 4.1. Parameters for the numerical analysis

First of all, the approximation and simulation results are compared for
different service rates to show the influence of service rates on the number of
customers both in the system and the orbit.
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Fig. 4.3. Comparison of the results for the number of customers in system for
different service rates µ

We vary the service rate from 40 customers per hour to 70 customers per
hour. In Figure 4.3 the approximation fits the simulation remarkably well. The
service rate has a huge influence on the number of customers in the system.
Although the abandonment rate is high, a lot of customers have to wait in the
system with low service rate µ = 40 h−1 or µ = 50 h−1. A similar result had
already been observed for the Erlang-A model in Figures 3.11 on Page 45.

In Figure 4.4 the number of customers in the orbit calculated by the fluid
approach is compared to the simulation results. Similar to the approximation
of the number of customers in the system, the approximation of the number
of customers in the orbit works well and the influence of the service rate on
the number of customers in the orbit is quite strong. If the average service
times are short, i.e., µ = 70 h−1, no customer abandons. Consequently, the
orbit remains empty both in the simulation and in the fluid approximation
during the whole day. If the contact center is critically loaded or slightly
overloaded, the simulation predicts a few more customers in the orbit than
the fluid approximation. This result is due to the neglected randomness of
the fluid approach. In a real-world contact center and in the simulation some
customers will have to wait and already abandon, if the contact center is
nearly critically loaded, whereas in the fluid model all customers are still
served immediately.

In both Figures 4.3 and 4.4 the maximum numbers of customers in the
system and the orbit during the day are reached almost at the same time. If
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Fig. 4.4. Comparison of the results for the number of customers in orbit for different
service rates µ

the contact center is heavily loaded, a lot of customers will wait in the orbit
to recall as well. If the number of customers in the system falls below the
number of available servers, the number of customers in the orbit decreases
as retrying customers are served and no-one has to abandon.

Next the fluid approximation and simulation results for different numbers
of agents on duty are compared in Figure 4.5. For this example we use a
mean time to redial of two hours, i.e., γ = 0.5 h−1, to illustrate the shifting
of work during the day. In Figure 4.5 the results of the fluid approximation
and simulation are very similar. During the first half of the day a low number
of agents (e.g. N(t) = 80) on duty leads to fewer customers in the system
than a high number of agents (e.g. N(t) = 140). If few agents are staffed, a
lot of customers abandon because the abandonment rate is quite high. This
observation corresponds to the results of Figure 3.11 on Page 45 for the Erlang-
A model. In the late afternoon fewer working agents lead to more customers
in the system. These customers have abandoned during the day and return
on average two hours later, such that they arrive when the primary workload
has decreased.

The results depicted in Figure 4.6 stress that a lot of customers have to
wait in the orbit if only few agents are staffed. As the mean time to retrial γ−1

is assumed to be two hours, some customers who have abandoned during the
period of high load in the afternoon remain in the orbit at the end of the
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Fig. 4.5. Comparison of the results for the number of customers in the system with
different numbers of agents on duty N(t)
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Fig. 4.6. Comparison of the results for the number of customers in the orbit with
different numbers of agents on duty N(t)
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Fig. 4.7. Comparison of fluid approximation and the simulation results for the
number of customers in the system with different abandonment rates ν

day. Contrary to Figures 4.3 and 4.4 the times when the maximum number
of customers is reached differ for the orbit and the system.

In Figure 4.7 the fluid approximation for the number of customers in the
system is compared to simulation results for different abandonment rates ν.
The results almost equal the results for the Erlang-A model presented in
Figure 3.11 on Page 45. If customers are more patient, i.e., the abandonment
rate ν decreases, more customers have to wait in the system. Consequently,
the number of customers in the system increases.

Remarkably, in Figure 4.8 the abandonment rate has no influence on the
number of customers in the orbit in the approximation as well as in the sim-
ulation, as the curves are indistinguishable. This empirical observation is in
line with the result of Aguir et al. (2004) who show that the arrival rate of
retrials is independent of the abandonment rate.

To complete the comparison of fluid approximation and simulation results
the retrial behaviour of customers is investigated. Figures 4.9 and 4.10 present
the influence of the mean time to retry γ−1 on the number of customers in
the system and the orbit.
Contrary to the previous examples the number of agents N(t) is assumed
to be 100 in order to cause more abandonment so that the effect of retrial
is amplified. In Figure 4.8 we show that the abandonment rate ν does not
influence the number of customers in the orbit QO(t). Therefore, one would
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Fig. 4.8. Comparison of the results for the number of customers in the orbit with
different abandonment rates ν
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Fig. 4.9. Comparison of the results for the number of customers in the system with
different redialling rates γ
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assume that the redialling rate might not influence the number of customers
in the system QS(t) as well.

However, in Figure 4.9 the redialling rate has an effect on the number
of customers in the system. If the mean time to redial is low, e.g. γ−1 =
5 min, and the contact center is heavily loaded, more customers are in the
system, although a lot of customers abandon. If the load of the contact center
decreases, a short mean time to retrial leads to a quicker reduction of the
number of customers in the system, because the arrival rate from the orbit
decreases earlier. If the mean time to retrial γ−1 increases, the number of
customers in the system decreases, because customers wait in the orbit for a
longer time as depicted in Figure 4.10, i.e., low retrial rates cause a shifting of
work into later periods when the workload of the system is lower. In this case
more customers are stored in the orbit, because a retrial is done quite rarely.
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Fig. 4.10. Comparison of the results for the number of customers in the orbit with
different redialling rates γ

Consequently, low retrial rates, i.e., high mean times to retrial, help to
improve the service for each customer and high retrial rates make the service
worse and cause congestion. Similar to the previous example, the approxima-
tion works fine.

Finally, the results of the fluid approximation and the simulation for dif-
ferent redial probabilities should be compared. In Figure 4.11 the number of
customers in the system is depicted. Similar to the previous investigation of
the redialling rates the number of agents on duty is 100. The results of the
approximation and the simulations are again alike. Unlike the retrial rate the
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Fig. 4.11. Comparison of the results for the number of customers in the system
with different probabilities of retrial p

impact of the retrial probability on the number of customers in the system
and the orbit is much stronger. If a lot of customers are willing to retry, the
number of customers in the system increases drastically. Consequently, more
customers have to wait and abandon. If the probability of retrial decreases,
the model will become more and more like the Erlang-A model investigated
in the previous Chapter 3.

In Figure 4.12 on Page 87 the influence of the probability of retrial on the
number of customers in the orbit is similar to the influence on the number of
customers in the system. Hence, it is more important to estimate the prob-
ability of retrial correctly from empirical data than to determine the retrial
rate exactly.
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Fig. 4.12. Comparison of the results for the number of customers in the orbit with
different probabilities of retrial p

4.1.5.2 Influence of the Parameters on the Time-Dependent
Waiting Time

Next the influence of the parameters on time-dependent technical performance
measures is studied. We again compare the approximated performance mea-
sures with the results from the simulation model. As mentioned before we
averaged the results over 500 simulation runs to determine the performance
measures.

The arrival rate is time-dependent as shown in Figure 4.2 on Page 79. It is
defined by Equation (3.13) with parameters given in (4.12) on Page 79. The
other parameters do not depend on time. We assume the same configurations
as in the previous section given in Table 4.1 on Page 79 for the waiting time
and the probability of being served. When we analyse the influence of the
retrial parameters γ and p on the utilisation, we suppose that 150 agents are
on duty because otherwise all the agents would be busy nearly all the time.
Therefore, different retrial parameters would have almost no influence on the
time-dependent utilisation.

We start by studying the influence of the service rate on the time-
dependent waiting time in the system. The time-dependent waiting time is
given in Equation (4.3) on Page 76. The service rate µ is varied from 40 cus-
tomers per hour to 70 customers per hour. However, in Figure 4.13 only three
curves are visible in the picture referring to the fluid approximation. In the
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Fig. 4.13. Influence of the service rate µ on the time-dependent waiting time of
customers in the system

picture referring to the simulation results the curve associated with µ = 70 h−1

is nearly invisible, because the waiting time is almost zero. If the agents work
very fast, i.e. µ = 70 h−1, no customer has to wait in the fluid model. There-
fore, the waiting time is zero all the time. The comparison of the simulation
results and the fluid approximation for the other service rates shows that the
waiting times are well approximated by the fluid approach. Only if the waiting
time is almost zero, the waiting times calculated by the fluid approximation
differs somewhat from the waiting times in the simulation. The reason for this
difference is that the fluid approach neglects randomness.

In Figure 4.14 the fluid approximations of the waiting time of customers is
compared to the waiting times calculated by means of the simulation model
for different numbers of agents on duty. As for Figures 4.5 on Page 82 and
4.6 on Page 82, the mean time to redial was assumed to be two hours, i.e.,
γ = 0.5 h−1. The approximation is accurate except in the surrounding of
zero, i.e., if the workload of the contact center is approximately one. A direct
comparison of the simulation and approximation results would show that the
waiting time calculated by the approximation is a lower bound for the waiting
time in the simulation model. The more agents are staffed, the shorter the
waiting time becomes. As the mean time to abandonment is assumed to be 30
seconds, the waiting time in the fluid approach will never exceed 30 seconds,
even if no agents are staffed at all.

In order to point out the impact of varying abandonment rates ν, 100 agents
are assumed to be staffed. In Figure 4.15 the simulation results and the ap-
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Fig. 4.14. Influence of the number of agents N(t) on duty on the time-dependent
mean waiting time of customers in the system
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Fig. 4.15. Influence of the abandonment rate ν on the time-dependent waiting time
of customers in the system
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proximation are compared. The comparison emphasises previous observations.
The waiting times enlarge if the customers are more patient. The mean wait-
ing times are far below the waiting time limit, because a lot of customers
are served even if the contact center is heavily loaded. If customers are more
patient, e.g., ν = 40 h−1 or ν = 60 h−1, fewer customers abandon and more
customers remain in the system in order to wait for attendance. Therefore the
waiting time of all customers increases.
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Fig. 4.16. Influence of the mean time to redial γ−1 on time-dependent mean waiting
time of customers in the system

The influence of the mean time to redial on the time-dependent waiting
time is displayed in Figure 4.16. In order to amplify the effects of redialling, we
assume that 100 agents are on duty. The waiting time calculated by the fluid
approach approximates the waiting time in the simulation model well. If the
mean time to redial decreases from 60 minutes to 5 minutes and the contact
center is overloaded, the waiting time increases, because more customers retry
quickly such that more customers are in the system8. Long mean times to
redial lead to a shift of workload into later hours of the day, when the traffic
intensity is lower. Therefore, the waiting times increase, if the contact center is
underloaded during the early afternoon (2 pm) and the mean time to retrial
increases. If the mean times to redial are quite short, the difference in the
waiting times diminishes.

8 Compare Figures 4.9 on Page 84 and 4.10 on Page 85.
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Fig. 4.17. Influence of the probability of retrial p on the time-dependent waiting
time of customers in the system

Finally, the results of the fluid approximation for the time-dependent wait-
ing times calculated by Equation (4.3) on Page 76 and the simulation results
are compared for different probabilities of retrial p in Figure 4.17. As in the
previous example with different mean times to retrial, the number of agents
is assumed to be 100.

If the probability of retrial decreases, the waiting time of customers in the
system shortens, because more customers will never return and are lost. The
remaining customers can be attended to more quickly. If the probability of
retrial increases, the local minimum of the waiting time function during the
lunch time is shifted into later hours of the day. The reason for this shift is
that more customers wait in the orbit, such that some work is stored in the
orbit whenever the contact center is overloaded. This work has to be done
when the primary arrival rate decreases as shown in Figure 4.2 on Page 79.
Then the percentage of arrivals due to retrials P (recaller, t) given by Equation
(4.7) on Page 78 increases.

Therefore, with high probabilities of retrial the total arrival rate stays
high for a longer time before decreasing. This leads to the shift of the local
minimum of the number of customers in the system depicted in Figure 4.11 on
Page 86 and the minimum of the waiting time function shown in Figure 4.17.
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4.1.5.3 Influence of the Parameters on the Time-Dependent
Probability of Being Served

Next the probability of being served calculated in Equation (4.4) on Page 77
is investigated. As the sum of the probability of reneging (4.5) and the prob-
ability of moving into the orbit (4.6) is complementary to the probability of
being served, these probabilities are not presented.

Again we start by studying the influence of the service rates followed by
the influence of the number of agents. Afterwards we investigate the impact
of the retrial parameters. The probability of being served is independent of
the abandonment rate ν9. Therefore the influence of the abandonment rates
is not studied. We assume the parameters of Table 4.1 on Page 79.
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Fig. 4.18. Influence of the service rate µ on the time-dependent probability of being
served

In Figure 4.18 the probability of being served for different mean service
times µ−1 is depicted. If the service rate is high, i.e. µ = 70 h−1, all customers
are served. Therefore the probability of being served is one both in the simu-
lation and the approximation. Lower service rates lead to lower probabilities
of being served. Additionally, if a lot of customers retry after a short sojourn
time in the orbit, the probability of being served decreases.

The results of the approximation fit the simulation results well. Further-
more, the graphs of Figure 4.18 look very similar to the horizontally mirrored

9 See Figure 3.18 on Page 50.
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graphs of the time-dependent waiting time in Figure 4.13 on Page 88. There-
fore it might suffice to investigate just the waiting time to measure the perfor-
mance experienced by customers, if the influence of the other parameters on
the probability of being served is similar to the influence on the waiting time
or the parameters have no influence on the probability of being served. In the
first case the other graphs will also look like horizontally mirrored graphs of
the waiting time. Consequently, if the waiting times are low a lot of customers
are served and the probability of being served is high.
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Fig. 4.19. Influence of the number of active agents N(t) on the time-dependent
probability of being served

A comparison of the simulation and fluid results for a varying number
of agents in Figure 4.19 underlines that the approximation is accurate. The
number of agents is constant for the whole day. We compare the results for 140,
120, 100, and 80 agents on duty. The other parameters are given in Table 4.1
on Page 79.

If the probability of being served is almost one, e.g. at 2 pm with 120 agents
on duty, the approximation overestimates the probability of being served,
because the fluid approximation neglects randomness. This result is consistent
with the underestimation of the waiting time and number of customers in the
system, when the traffic intensity is almost one. The probability of being
served increases, if more agents are on duty, because fewer customers have to
wait at all.

Equivalent to the Figure 4.18 on Page 92, the graphs of Figure 4.19 seem
to be structurally equal to the horizontally mirrored graphs of Figure 4.14
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Fig. 4.20. Influence of the mean time to redial γ−1 on the probability of being
served
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Fig. 4.21. Influence of the mean time to redial γ−1 and the probability of retrial
on the probability of being served for different retrial probabilities p

on Page 89. This observation stresses the implications for the performance
analysis which were already formulated as the influence of the service rates
on the probability of being served has been investigated.

The influence of the mean time to recalling on the probability of being
served presented in Figures 4.20 and 4.21 is closely connected to the proba-
bility of redialling p. Therefore, two figures are presented. The legends of the
first figure and the second figure are the same.

If the probability of redialling approaches zero, the probability of being
served seems to be nearly independent of the mean time to redial as shown in
the first graph of Figure 4.21. If the probability of redialling approaches one
in the second graph of Figure 4.21 the influence becomes remarkably strong.
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The reason for this phenomenon is that with a redialling probability of one the
customers will circulate from system to orbit and back into the system until
they are finally served. Therefore, the faster the customers recall the more
customers are in the system. This causes more customers to abandon after
waiting a certain time. All customers who abandon will move into the orbit and
retry and so on and so forth. If the customers remain in the orbit for a longer
time, the congestion of the system will be spread into later periods of the
day. During these later periods of the working day, fewer primary customers
arrive, so that the workload decreases. Consequently, fewer customers leave
the system because of impatience, so that the fraction of customers who are
served later on from those who abandon increases.

As for the previous graphs, the graphs of the time-dependent probability
of being served in Figure 4.20 are similar to the horizontally mirrored graphs
in Figure 4.16. Therefore, the effects of different mean times to retrial can be
explained in an equivalent way.
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Fig. 4.22. Influence of the probabilities of retrial on the time-dependent of being
served

Finally, in Figure 4.22 the influence of the probability of retrial on the
probability of being served is presented. As in Figures 4.20 and 4.21 we assume
that 100 agents are working.

The influence of the probability of retrial on the probability of being served
is strong. This is in line with the observations of Figure 4.21. If the probability
of retrial increases and the system is temporarily overloaded the performance
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of the system may become worse10. Therefore, it is important to estimate the
retrial parameters, particularly the probability of retrial, from historical data
before staffing decisions are made.

4.1.5.4 Influence of the Parameters on the Time-Dependent
Utilisation

The time-dependent utilisation of the agents calculated by Equation (4.9) on
Page 78 leads to a different point of view on the system. If agents are utilised
too highly for long, this might lead to so-called burn-out syndromes, which
might cause inefficiencies and more agents slow down11.

Firstly, we study the influence of the service rate and the number of agents
on the utilisation. We assume the parameters mentioned in Table 4.1 on
Page 79. Because the utilisation of agents is independent of the abandon-
ment rate12, no pictures are presented. Finally, we analyse the impact of the
retrial parameters on the utilisation. Differing from Table 4.1 we assume 150
agents on duty to stress the effect of varying parameters, because otherwise
all agents would be fully utilised nearly all the time, i.e., the time-dependent
utilisation would be one.
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Fig. 4.23. Influence of the service rate µ on the utilisation of agents

10 See also Figure 4.17 on Page 91.
11 See Lüde and Nerlich (2002); Taylor et al. (2002); Witness Systems (2004), and

references therein.
12 See Figure 3.22 on Page 53.
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In Figure 4.23 the fluid approximation overestimates the utilisation of
agents if the workload approaches one, e.g., for µ = 60 h−1 during lunch
time. This observation is in line with earlier results. If the contact center is
over- or underloaded the approximation is accurate. Higher service rates give
rise to lower utilisation. Consequently, more customers are served and fewer
retry. The utilisation cannot exceed one. Therefore, a higher service rate than
µ = 40 h−1 would lead in this example to minor changes in the utilisation.
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Fig. 4.24. Influence of the number of active servers on the utilisation of agents

Similarly to the service rate, more working agents lead to lower utilisation
as shown in Figure 4.24. If the workload approaches one, the approximation
again overestimates the utilisation obtained by the simulation for the same
parameters of the system. The graphs underline earlier observations about the
impact of the number of agents on the performance.

Finally, the influence of the retrial parameter on the utilisation of agents is
analysed. Amazingly, the mean time to retrial seems to have no effect on the
utilisation of agents as shown in Figure 4.25. If the utilisation approaches one,
i.e., all agents are working, the observation is clear. If otherwise some agents
are not busy, all customers are served and no-one will abandon. Therefore, no
customer has to redial. Consequently, the mean time to retrial has almost no
influence on the utilisation.

A little effect of the mean time to retrial on the utilisation is observable, if
the contact center was overloaded for some time, such that a lot of customers
wait in the orbit in order to retry. If the mean time to retrial is quite long, e.g.,
γ−1 ≥ 60 min, some customers will retry when some agents are already free.
Then the utilisation increases a little. The same argumentation holds for the
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Fig. 4.25. Influence of the mean time to redialling γ−1 on the utilisation of agents

impact of the probability of retrial. That is why we do not present a picture
of the impact on the probability of retrial.

After having investigated all these performance measures it becomes clear
that only few of them are needed to analyse and evaluate a contact center
model. As the waiting times and the probabilities of being served have nearly
the same shape, it suffices to compare the effects of several parameters on the
waiting time. Apart from the effects of different abandonment and redialling
rates, the influence of the other parameters on the waiting times results in
an influence of the parameters on the other performance measures. The same
holds for the utilisation of agents. Consequently, in an optimisation of server
staffing, considering one performance measure will do. For this reason, in
Section 4.2 fewer performance measures will be compared.

4.1.5.5 Aggregated Technical Performance Measures

To complete the analysis of the fluid model, aggregated performance measures
should also be considered. The waiting time, the probability of being served
and the utilisation are aggregated over one working day starting at 7 am and
ending at 8 pm in the same manner as in Subsection 3.2.3 on Pages 40–42.

As the time-dependent performance measure except for the waiting time
have been insensitive of the abandonment rate, the abandonment rate will not
have any effect on the aggregated performance measures. Therefore, effects
due to changes in the abandonment rate on the probability of being served
and the utilisation are not considered. For the same reason no figures on the
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influence of the retrial parameters on the aggregated utilisation are presented.
The arrival rate is assumed as shown in Figure 4.2 with parameters given
in (4.12). Furthermore, the parameter combinations is given in Table 4.2.

µ(t) N(t) ν(t) γ(t) p

variable variable 120 h−1 0.5 h−1 0.5
60 h−1 variable variable 0.5 h−1 0.5
60 h−1 100 120 h−1 variable variable

Table 4.2. Parameters for the analysis of aggregated performance measures
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Fig. 4.26. Influence of the service rate µ and the number of active agents N(t) on
the aggregated waiting time W F

agg(T )

In Figure 4.26 the aggregated mean waiting time WF
agg(T ) as a function

of the number of agents N(t) staffed for the whole day and the service rate is
depicted. The more agents who are on duty and the faster these agents work,
the smaller the aggregated waiting time of customers is. Whenever few agents
are working many customers will abandon. Therefore, the aggregated waiting
time does not exceed thirty seconds. The influence of the number of agents
and service rate on the aggregated waiting time corresponds to the influence
on the time-dependent waiting time.

If we compare Figures 4.13 and 4.14 on Pages 88f. with Figure 4.26, we
observe that the aggregated waiting time averages the time-dependent waiting
times. Although the time-dependent waiting time is temporarily high, e.g.,
µ = 60 h−1 in Figure 4.13 and N(t) = 80 in Figure 4.14, the aggregated
waiting time is smaller than 20 seconds.

In Figure 4.27 the number of agents N(t) and the abandonment rate ν
are varied. If only few agents are staffed and the customers are very patient,
the waiting time is almost six minutes. If the abandonment rate ν grows, i.e.,
the customers are more impatient, the waiting time decreases very quickly.
The same holds for a growing number of agents N(t) on duty. These effects
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Fig. 4.27. Influence of the abandonment rate ν and the number of active agents
N(t) on the aggregated waiting time W F
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are in line with the effects on the time-dependent waiting time presented in
Figures 4.14 and 4.15 on Page 89. Although the aggregated waiting time is
quite long, if customers are very patient, the aggregated waiting time in the
fluid approach will never exceed the waiting time limit ν−1 equivalently to
the time-dependent waiting time WF

S (t).
The reason for this observation is that in the fluid model the amount of

waiting customers is processed by the pumps representing the abandonment of
customers. These pumps work with rate ν for each waiting customer. There-
fore, every amount of customers in the system will be pumped out at once,
if the waiting time limit ν is reached. In other words, in the fluid model the
waiting time limit determines the maximum waiting time.

The influence of the retrial parameters γ and p on the aggregated waiting
time is depicted in Figure 4.28. Obviously, higher probabilities of retrial p
lead to a stronger influence of the retrial rate γ on the aggregated waiting
time WF

agg(t). If the retrial rate increases from zero to four customers per
hour, i.e., the mean time in orbit decreases from infinity to fifteen minutes,
the aggregated waiting time increases in an almost concave manner.

Furthermore, the aggregated waiting time seems to be a convex function
of the probability of retrial, if the retrial rate is greater than one. This obser-
vation stresses earlier results, that the influence of the probability of retrial on
the performance of the contact center is much stronger13 than the influence
of the retrial rate. Therefore, the probability of retrial should be carefully
estimated from historical data. The influence of the retrial rate grows, if the
probability of retrial increases.

13 Compare the Figures 4.16 and 4.17 on Page 91.
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Fig. 4.28. Influence of the retrial rate γ and the probability of retrial p on the
aggregated waiting time W F
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Fig. 4.29. Influence of the service rate µ and the number of active agents N(t) on
the aggregated probability of being served P F

agg(served, T )

Next, the aggregated probability of being served PF
agg(served, T ), calcu-

lated by aggregating the time-dependent probabilities given by Equation (4.4),
is investigated. The time-dependent probabilities were aggregated according
to Equation (3.32) on Page 40. The parameters of the model are as before.

In Figure 4.29 the aggregated probability of being served for all customers
having left is shown as a function of the number of staffed agents N(t) and
the service rate µ. Equivalently to Figures 4.18 and 4.19 on Pages 92f. the
probability of being served increases if the service rate or the number of agents
on duty increases. The reaction on a change in the number of agents seems to
be stronger than the response on a growing service rate.
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Fig. 4.30. Influence of the retrial rate γ and the probability of retrial p on the
aggregated probability of being served P F

agg(served, T )

The impact of the retrial parameters on the probability of being served
for all customers entering the system is presented in Figure 4.30. If the prob-
ability of retrial p increases, the aggregated probability of being served of all
customers who have left decreases. This observation conforms to the observa-
tion of Figure 4.22 on Page 95. The reason for this decrease is that primary
calls and recalls cannot be distinguished after having entered the system. A
retrial increases the number of customers in the system. If the number of
customers in the system exceeds the number of the agents, some customers
will abandon. These customers are not served in the current attempt. For
this performance measure it does not matter whether the customer is finally
served in a later attempt. This aggregated probability of being served just
shows whether an arriving customer is served in his current attempt.
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Besides the probability of all customers leaving the system being served,
we have also derived a performance measure, which represents the percentage
of customers served finally PF

λ (T ), i.e., the probability of all primary attempts
being served independent of the number of retrials needed to get service. This
performance measure is given in Equation (3.34) on Page 41. In Figure 4.31
the probability of finally being served increases if the probability of retrial
increases, because customers who have abandoned can be served in a later
attempt.

This performance measure is useful if primary calls and recalls can be
distinguished. If we assume that customers get annoyed by their unavailing
attempts, the first aggregated probability of being served is more reasonable to
measure the performance of the system. For most contact centers the second
probability of finally being served is indeterminable, because mostly primary
calls and retrials cannot be distinguished by the ACD unit.

Amazingly, the minimum of the first probability corresponds to the max-
imum of the second probability, if the probability of retrial p is one and the
retrial rate γ increases. In this case all customers who have abandoned will
retry, i.e., all customers will be served at some time. Consequently the second
probability of finally being served will be one, if both the system and the orbit
become empty. Contrarily, the aggregated probability of being served is the
ratio of the number of customers being served and the sum of the arrival rates
from outside and the orbit. If all customers who abandon will retry after a
short sojourn time in the orbit, a lot of customers will recall when the pri-
mary arrival rate is also high. Therefore the congestion in the system rises,
more customers will abandon and fewer customers will be served. As long as
the primary arrival rate increases, the congestion will build up and it will be
carried on into later periods of the day. Therefore, the aggregated probability
of being served decreases because of the high number of useless attempts.

Finally, the impact of the number of agents N(t) and the service rate µ
on the aggregated utilisation UF

agg(t) is presented in Figure 4.32. The obser-
vations of this Figure underline earlier results in Figures 4.23 and 4.24 on
Pages 96f. Although the temporary utilisation might be high, e.g., N(t) = 80
in Figure 4.24 and µ(t) = 60 in Figure 4.23, the aggregated utilisation remains
acceptable below 90%. If the number of agents is increased by 20 agents the
utilisation reduces to 84%.

In this section we have observed the averaging effect of aggregation as well
as some special properties of the fluid approach with respect to the waiting
time and abandonment. Furthermore, in retrial queues a higher percentage of
customers might actually be served than might be predicted by the aggregated
probability of all customers who have left the system being served associated
with the X/Y service level performance measure which appears to be used
occasionally in reality.
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Fig. 4.32. Influence of the service rate µ and the number of active agents N(t) on
the aggregated utilisation UF
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4.1.5.6 Economical Performance Measures

After considering the technical performance measures, the economical aspect
should also be investigated. We study the impact of the parameters on the
profit function given in Equation (4.10) on Page 78. We assume the same ar-
rival rate function as in Figure 4.2 on Page 79. The parameters of the contact
center are given in Table 4.2 on Page 99. Furthermore, the hourly wage w of
an agent is 10e and the costs for an occupied trunk ℓ is 6e per hour. The
average revenue r gained by serving a customer is 0.50e.
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In Figure 4.33 the influence of the service rate µ and the number of staffed
agents N(t) is presented, where the number of agents is supposed to be con-
stant for the whole day. The profit of the contact center increases, if the
number of agents or the service rate grows until a maximum level is reached.
Afterwards the profit decreases again. The maximum profit can be achieved
for different combinations of the number of agents and the service rate.
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Fig. 4.34. Influence of the abandonment rate ν and the number of active agents N(t)
on the profit

In Figure 4.34 the profit is a function of the number of agents and the
abandonment rate. Because of the special revenue and cost parameters the
daily profit is quite small and even a loss is possible. Amazingly, the profit
function has a minimum if almost no agents are staffed and the customers
are very patient. If few agents are staffed and the mean abandonment rate is
low, many customers wait in the system for attendance. Each customer occu-
pies a telephone line. Consequently, the cost of occupied trunks will increase
and finally exceed the revenue gained by serving customers. The more agents
who are staffed and the more impatient customers become, the more money
is made out of service, because the costs for occupied trunks decrease more
quickly than the costs for staffed agents increase. If the abandonment increases
further, the profit becomes independent of the abandonment rate. This ob-
servation underlines the relationship between the aggregated probability of
being served and the profit function.

The retrial rate γ and the retrial probability p seem to have a minor
influence on the profit, as shown in Figure 4.35 with the parameters given
in Table 4.2 on Page 99. However, in the case of very high probabilities of
retrial and high retrial rates the profit decreases. Then a high percentage of
customers recalls after a very short time in orbit. This behaviour raises the
number of customers in the system14. Similar to the previous example about

14 See Figures 4.9 on Page 84 and 4.11 on Page 86.
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Fig. 4.35. Influence of the retrial rate γ and the probability of retrial p on the profit

the abandonment rate, the number of occupied trunks increases and so do the
costs for these trunks. Furthermore, some customers may even get lost after
starting several attempts, so that these customers caused a lot of costs but
no revenue.

If the probability of retrial decreases, more customers abandon and do not
retry. Then fewer trunks are occupied and the costs for these trunks decrease.
If the retrial rate decreases, customers stay in the orbit a longer time before
starting a new attempt. In this case some customers recall when the workload
of the contact center has already lessened, so that these retrials can be served
immediately. The number of customers in the system during periods of high
load decreases while the number of customers in the system during periods of
low load increases a little as depicted in Figure 4.9 on Page 84. Therefore the
revenue gained by served customers grows and the costs for occupied trunks
during periods of high load shrinks.

4.1.5.7 The Variance of the Number of Customers in the System

In this section we compare the variances of the diffusion approximation to
simulation results. Furthermore, we investigate the impact of the different
parameters on the variances of the diffusion processes. We assume that the
arrival rate is given as depicted in Figure 4.2 on Page 79 with parameters
(4.12). The other parameters for the model are given in Table 4.3.

The simulation results were generated by the extended simulation tool
mentioned before15. The simulated variances for the processes of the number of
customers in the system were calculated based on the results of 500 repetitions.

The analytical variances and covariances were determined by numerically
solving the extended initial value problem consisting of the initial value prob-

15 See Page 79
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Figures µ(t) N(t) ν(t) γ(t) p

4.36, 4.41 variable 150 120 h−1 15 h−1 0.5
4.37, 4.42 60 h−1 variable 120 h−1 0.5 h−1 0.5
4.38, 4.43 60 h−1 150 variable 15 h−1 0.5
4.39, 4.44 60 h−1 100 120 h−1 variable 0.5
4.40, 4.45 60 h−1 100 120 h−1 15 h−1 variable

Table 4.3. Parameters for the numerical analysis and comparison of the diffusion
approximation and simulation results
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Fig. 4.36. Comparison of the approximation (black line) for the variance of the
number of customers in the system to the simulation results (gray line) for different
service rates µ

lem of the fluid approach, the differential Equations 4.2 on Page 76 for the
variances and covariances and the initial conditions

VAR
[
QD

S (t0)
]

= 0, VAR
[
QD

O(t0)
]

= 0,

and COV
[
QD

S (t0), Q
D
O(t0)

]
= 0.

(4.13)

First of all, in Figure 4.36 the diffusion approximation of the variance of
the number of customers (black line) is compared to the simulation results of
these variances (gray line) for four different values of the service rate µ. The
variance changes drastically if the number of customers in the system exceeds
the capacity of the contact center, i.e., the number of available agents16. If

16 Compare Figure 4.3 on Page 80.



108 4. Time-Dependent Contact Centers with Retrials

the number of customers in the system remains below the maximum capacity
of the contact center in the fourth picture of Figure 4.36, such that all cus-
tomers are served and no-one has to abandon, the variance does not change
so drastically.

In the first picture the variance reduces from 150 to about 50 which is one
third. In the second picture the variance reduces from 150 to about 60, and
in the third from 150 to about 75. If the number of customers decreases, the
variance raises again. If the service rate is small, many customers abandon and
the number of customers in the system stays above the number of available
servers nearly all the time. Then the variance is mainly driven by the arrivals
and the abandonments. In this example customers are very impatient. Their
mean waiting time limit ν−1 is thirty seconds. Therefore, more customers
abandon during the same short time interval than are served. Furthermore,
half of all abandoning customers retry after a very short time, which increases
the total arrivals. The process of the number of customers in the system
becomes less variable. The variability is transferred to the orbit17. Amazingly,
the reduction of the variances always approximately equals the ratio of the
service and the abandonment rate µ

ν
.

If the contact center is underloaded, e.g. in the fourth picture, the variance
is governed by the primary arrival and the service process. The other processes
do not influence the variance. Hence, no jump discontinuities arise.

Next we study the influence of the number of active agents in Figure 4.37.
In Figure 4.37 the same phenomenon is visible as in the previous Figure 4.36.
Therefore, a higher number of agents leads to more variability, but if more
agents are staffed such that the number of customers does not cross the level
of staffed agents18, the smoother the curve is. Furthermore the simulation
results for the variances are well approximated by the numerical solution of the
differential equations for the variances generated by the diffusion approach.

In Figure 4.38 the effect observed in Figure 4.36 if the system becomes
overloaded is investigated more deeply. In Figure 4.36 the decrease in the
variance is approximately 1− µ

ν
. Therefore, the question arises whether this

can be considered as a rule or just a coincidence.
In the first picture the abandonment rate is less than the service rate. The

ratio µ
ν

is 1.5. If the number of customers exceeds one hundred, the variance
should increase instantaneously to 150, if the proposal holds. In the second
picture the abandonment rate and the service rate are equal. Therefore, the
variance should not change drastically at one hundred customers. In the third
and fourth picture the abandonment rate exceeds the service rate with µ

ν
being

3
4 and 3

5 , respectively. That is why the variance decreases after reaching the
number of agents. Obviously, the proposed rule applies to all four pictures.

17 See Figure 4.41 on Page 112.
18 Compare Figure 4.5 on Page 82.
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Fig. 4.37. Comparison of the approximation (black line) for the variances of the
number of customers in the system to the simulation results (gray line) for different
numbers of active agents N(t)

Hence, the variance depends on all parameters. The number of agents
determines the point where the variance may change drastically and the ratio
of the service and abandonment rate estimates the magnitude of the change.

In Figure 4.39 the influence of different mean times to redial γ−1 is de-
picted. Contrary to the other parameters, the mean time to redial has a very
small influence. If customers wait for a long time in the orbit the variance is
smaller than in the case of quickly recalling customers. The influence of the
retrial rate is limited to the period when the contact center is overloaded. The
approximation of the simulated variances is remarkably good.

Finally, the influence of the probability of retrial is shown in Figure 4.40.
Obviously, this probability has an enormous effect in the cases depicted19. If
10% of all customers are willing to recall, the graph almost equals the graph of
the previous Figures 4.39. If 90% of all customers redial, the variance increases
very strongly. Comparing the second picture of Figure 4.40 to the last picture
of Figure 4.39 and the picture referring to p = 0.1, the variance for p = 0.9
is about three to four times as high as the other variances. That means, in a
contact center with many redials, the stochasticity has a higher impact and
should be considered carefully.

19 Consider the different scalings in Figure 4.40.
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Fig. 4.38. Comparison of the approximation (black line) for the variance of the
number of customers in the system to the simulation results (gray line) for different
abandonment rates ν

4.1.5.8 The Variance of the Number of Customers in the Orbit

Next, the influence of the diverse parameters given in Table 4.3 on Page 107
on the variance of the process describing the amount of customers in the
orbit is investigated. As in the previous section we assume time-dependent
arrival rates and the initial conditions given in Equation (4.13) on Page 107.
We use the same order, i.e., we start with investigating the influence of the
service rates and end with studying the influence of the probabilities of retrial.

In Figure 4.41 the variance of the diffusion process describing the number
of customers in the orbit is presented. Unlike Figure 4.36, in Figure 4.41 the
variance of the number of customers in the orbit does not equal the average
number of customers in the orbit depicted in Figure 4.4 on Page 81.

The variance decreases as the service rate increases, because fewer cus-
tomers abandon and wait in the orbit to start another attempt. The diffusion
approximation is quite accurate in the case of low service rates, µ = 40 h−1,
in the first picture of Figure 4.41. If the service rate is µ = 60 h−1 in the third
picture, the variance of the simulation is overestimated by the numerical re-
sults of the diffusion approximation. If the service rate increases further, as
shown in the fourth picture, only the simulation determines a variance for the
number of customers in the system, although this variance is quite small.
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Fig. 4.39. Comparison of the approximation (black line) for the variance of the
number of customers in the system to simulation results (gray line) for different
mean times to redial γ−1
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Fig. 4.40. Comparison of the approximation (black) for the variances of the number
of customers in the system to the simulation results (gray) for different redialling
probabilities p

These two effects just mentioned are due to the fact that the diffusion
approximation is a refinement of the fluid model. In the fluid model we showed
in Figure 4.4 on Page 81 that in the case of a service rate of 70 h−1 no customer
abandons and moves into the orbit. Therefore, the variance of the diffusion
process becomes zero as well. However, some customers will abandon and
move into the orbit because of randomness in the underlying system. In the
case of a service rate of 60 h−1, few customers move into the orbit and the
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Fig. 4.41. Comparison of the approximation (black line) for the variance of the
number of customers in the orbit to the simulation results (gray line) for different
service rates µ

solution of the differential equation reacts much more strongly to changes in
the parameters than the simulations, as already observed in earlier figures.

In Figure 4.42 the influence of the number of agents is presented. Unlike
the previous Figure 4.41, the amplitude of the variance during the period of
maximum load of the contact center remains almost unchanged if the number
of agents on duty increases. In general, the simulation results for the vari-
ances are approximated accurately by the diffusion approach. The under- and
overestimation of the variance during some periods can be explained similar
to the varying service rates in the previous Figure 4.41.

As the abandonment rate has no influence on the number of customers in
the orbit, one would suspect that the abandonment rate has no impact on the
variance as well. This statement is confirmed in Figure 4.43. The approxima-
tion shows no influence of the abandonment rate. In the simulation results
the variances changes a little in the fourth picture. However, these changes
cannot be explained by the different abandonment rates but by the different
simulation runs.
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Fig. 4.42. Comparison of the approximation (black line) for the variance of the
number of customers in the orbit to the simulation results (gray line) for different
numbers of active agents N(t)
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Fig. 4.43. Comparison of the approximation (black line) for the variance of the
number of customers in the orbit to the simulation results (gray line) and the missing
influence of the abandonment rates ν
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Fig. 4.44. Comparison of the approximation (black line) for the variance of the
number of customers in the orbit to the simulation results (gray line) for different
mean times to redial γ−1

In Figure 4.44 the effects of different mean times to recall γ−1 are shown.
Obviously, the time the customers are willing to wait in the orbit has an enor-
mous effect on the variance of the process describing the number of customers
in the orbit. If the mean time to redial γ−1 is two hours on average, the vari-
ance is almost eight times as high as in the case of a mean time to redial of
ten minutes and almost 15 times as high as in the case of five minutes. The
variances of the simulation are approximated well.

In the first picture of Figure 4.44 the maximum of the variance is reached
during the late afternoon, while in the other three pictures the maximum is
located in the time interval, when the maximum arrival rate is achieved20.
The reason for this shift of the maximum is due to the shift of work into later
periods because of the long mean time to redial.

Finally, the influence of the probability of retrial is presented in Fig-
ure 4.45. This probability has a huge influence on the variance as well. High
retrial probabilities lead to extremely high variances. If the probability of re-
trial is very small, as depicted in the first picture of Figure 4.45, the variance is
several times smaller than in the case of high probabilities. The approximated
variance follows the simulated variance very well.

20 Compare Figure 4.2 on Page 79.
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Fig. 4.45. Comparison of the approximation (black line) for the variance of the
number of customers in the orbit to the simulation results (gray line) for different
redialling probabilities p

4.1.5.9 The Correlation between the Number of Customers in the
System and the Orbit

In order to understand the influence between the different queueing processes
in the orbit and the system we investigate the correlation of these two pro-
cesses. The correlation is a measure of the strength of the interdependencies
of processes. If it is greater than zero, both processes are said to be positively
correlated, i.e., an increase in the first process will lead to an increase in the
second process by a proportional amount given by the correlation. If otherwise
the correlation is smaller than zero, the processes are negatively correlated. In
this case an increase of the first process will lead to a decrease of the second
process. If the correlation is 1 or -1 the relationship between the processes is
linear. The correlation of the diffusion processes of the number of customers
in the system and the orbit is calculated by dividing the covariance by the
square root of the product of the variances, i.e.,

Corr
[
QD

S (t), QD
O(t)

]
=

COV
[
QD

S (t), QD
O(t)

]

√

VAR
[
QD

S (t)
]
VAR

[
QD

O(t)
] . (4.14)

As before, we analyse the influence of the different parameters on the corre-
lation of these two processes. The covariances are calculated by numerically
solving the initial value problem described on Page 107 for the variances con-
taining the differential equation systems in (4.2) on Page 76 and (4.1) on
Page 75 with the initial condition that all processes start at zero. For the
different examples presented in the next figures, we assume the arrival rate
function in Figure 4.2 on Page 79 and the parameters in Table 4.3 on Page 107.

At first glance Figures 4.46 through 4.50 may look a little strange. Es-
pecially the spikes at the beginning of each curve may cause astonishment.
These spikes are due to the fact that in the fluid model the number of cus-
tomers suddenly exceeds the number of available agents. At this time a small
amount of customers abandons instantaneously and moves to the orbit. This
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is an effect resulting from the fluid approach, which assumes that the cus-
tomers are infinitely divisible. Therefore, the number of customers increases
proportionally to the number of customers in the system and the correlation
of the number of customers in the system and the orbit is one.
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First of all, in Figure 4.46 the influence of the service rate on the corre-
lation of the orbit and system processes is depicted. If the agents work fast
enough to serve all arriving customers, the correlation is zero. Smaller service
rates, i.e. long average service times, lead to weaker correlations. Furthermore,
the correlation decreases if the number of customers in the system and in the
orbit increases. In other words, the more customers arrive in the overloaded
system, the more independent are the processes which describe the number
of customers in the system and the orbit. The reasons for this growing inde-
pendency are similar to the reasons for the independency of the number of
customers in the orbit from the abandonment parameter.

If the number of customers in the system exceeds the number of agents,
the arrival process to the orbit is a non-homogeneous Poisson process with
parameter p(λ(t) − µN(t))21. This process is independent of the process de-
scribing the number of customers in the system. The more customers try to
enter the system, the more customers are directly22 transferred to the orbit
not influencing the congestion in the system. Hence, the correlation decreases.
If the service rate decreases, the state where the number of customers in the
system exceeds the number of active servers is reached earlier and lasts longer.

Nearly the same statements on the correlation hold for a varying number
of agents as displayed in Figure 4.47. The correlation of the two processes
increases, if the number of agents on duty increases. Consequently, the more
agents are staffed, the stronger is the influence of the number of customers
in the system on the number of customers in the orbit and the other way

21 See the explanation on Page 12.
22 In the fluid model the customers are assumed to be like liquid, which is processed

by drains. Therefore, the liquid flows out of the basin immediately after entering
but is limited by the drains.
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round. If the system is underloaded and no customers remain in the orbit
the correlation of the processes is zero. Obviously, both processes are always
positively correlated, if the number of customers in the system exceeds the
number of agents, i.e., if the number of customers in the system grows, the
number of customers in the orbit increases as well and vice versa.

In Figure 4.48 the influence of the abandonment rate ν on the correla-
tion Corr

[
QD

S (t), QD
O(t)

]
of the two processes is presented. In Figures 4.8 on

Page 84 and 4.43 on Page 113 the abandonment rate had no impact on either
the number of customers in the orbit or on the variance of the number of
customers in the system. Therefore, the influence of the abandonment rate
on the correlation is based on the influence on the number of customers in
the system shown in Figure 4.7 on Page 83 and the variance of the number
of customers in the system shown in Figure 4.38 on Page 110. The impact on
the correlation is very small. The more impatient the customers become, the
more independent the processes are.

Finally, the influence of the mean times to retrial γ−1 and the probability
of retrial p are inspected in Figures 4.49 and 4.50. If the mean time to retrial
decreases, the correlation of the two processes of the number of customers in
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Fig. 4.49. Influence of the mean time to retrial γ−1 on the correlation
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of the processes of the number of customers in system in the
orbit

the system and in the orbit increases, i.e., the quicker customers start a new
attempt, the higher is the influence of the processes on each other. The longer
customers wait in the orbit, the more independent the queueing processes in
the system and the orbit become. Therefore, the performance of the system
is less influenced by retrials with long mean times to retrial, i.e, long sojourn
times of customers in the orbit.

Because many of the performance measures improve as well if the mean
time in orbit increases, it would be worthwhile asking customers to recall after
some time, e.g., an hour, if the contact center is currently overloaded. If the
service is not too urgent for the customers, this might be an alternative to
letting customers wait for a long time.
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Fig. 4.50. Influence of the probability of retrial p on the correlation
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of the processes of the number of customers in system and
in the orbit

However, if many customers are willing to retry after some time in the
orbit, the correlation of the processes is higher than if only few retry. This
effect is shown in Figure 4.50. This effect is reasonable, because the more cus-
tomers are willing to recall, the more the orbit becomes an additional waiting
room. If all customers are willing to retry the customers circulate between the
system and the orbit until they are finally served.
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In the sections about the variance and the correlation of the processes of
the number of customers in the system and the orbit, we have shown that
stochasticity has some impact on the contact center and how the processes
influence each other. By means of the variance we are able to calculate con-
fidence intervals around the mean number of customers in the system, such
that the variability of the processes can be considered in a staffing or schedul-
ing approach. In the next section we will see how these confidence intervals
improve the approximation of the simulation results.

4.2 Contact Centers with Heterogeneous Customers and

Agents

4.2.1 Description of the Model

The structure of the contact center considered in this section is depicted in
Figure 4.51. The contact center presented in Figure 2.5 on Page 13 and anal-
ysed in Mandelbaum et al. (1998) is a special case of this model. We assume
two types of customers who arrive at the contact center according to Pois-
son processes with rates λ1(t) and λ2(t) for type-1 and type-2 customers,
respectively. These rates are assumed to be time-dependent as in the previous
section. This model combines the problems associated with priority and with
retrial queues which have so far been considered solely in separation.

If no-one is waiting in each queue the arriving customer is served immedi-
ately. Customers of the first type, called type-1 customers, are either served
by a type-1 specialist with mean service time µ−1

1 or by a generalist with mean
service time µ1

−1, if all specialists are busy. Otherwise they have to wait.
A type-2 customer is served by a type-2 specialist with mean service time

µ−1
2 . If no specialist of type 2 is available and there are generalists who are

not attending type-1 customers, the type-2 customer is served by a generalist
with mean service time µ2

−1. If all servers are busy, arriving customers have to
wait. If customers of both types are waiting and a generalist finishes a service,
he serves a type-1 customer next. Otherwise he serves the next waiting type-2
customer. That means type-1 customers have non-preemptive priority.

We assume that the customers are impatient and abandon if an expo-
nentially distributed waiting time limit ν1 or ν2 depending on their type is
reached. Some of these customers leave the system and are supposed to never
call again. Such customers are lost. A fraction of p1 and p2 of all abandoning
customers is assumed to try again during the day. These customers move into
the orbits, which are distinguished according to the different kinds of cus-
tomers. After an exponentially distributed time type-1 customers retry with
mean rate γ1(t) and type-2 customers with mean rate γ2(t).

Like the customers who enter the system from outside, these retrying cus-
tomers either are served immediately or have to wait. The agents do not know
whether an arriving customers is a primary caller or a retrial.
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Fig. 4.51. A contact center model with two types of customer classes, three kinds
of agent groups and retrials of impatient customers

4.2.2 Determination of the Fluid Processes

Firstly, we want to develop and analyse a fluid approximation of this model.
Therefore, we denote by

(
Q(t)

)

t∈R+

0

= (Q1(t), Q2(t), QO1(t), QO2(t))t∈R+

0

(4.15)

the stochastic process which describes the number of customers in the different
queues, where Q1(t) represents the number of type-1 customers in the system
waiting or being served. Q2(t) denotes the number of type-2 customers who
are served or waiting for an available server. The third and fourth processes
describe the number of type-1 and type-2 customers in orbit 1 and 2 who are
going to retry. As we want to get insights into the time-dependent behaviour
of the queues, we will look at the change of the process at time t.
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The change of the amount of customers in the system or in the orbits in a
small time interval can be expressed according to Section 3.2 on Page 36 by
the derivative of the four processes of the vector

(
Q(t)

)

t∈R+

0

with respect to

the time. Therefore differential equations can be used to describe how many
customers enter and leave the system on average during a very small time
interval.

The differential equation (4.23a) for the first process describing the num-
ber of type-1 customers in the system QF

1 (t) is equivalently derived just as
the process QF

S (t) in Section 4.1.2 on Page 75 except for the terms contain-
ing the number of generalists NG(t). The generalists become important if the
number of type-1 customers is greater than the number of their specialists.
If the amount of type-1 customers exceeds N1(t) but remains below the sum
of the number of type-1 specialists and generalists N1(t) + NG(t), all type-1
customers not served by type-1 specialists can be served by generalists with
rate µ1. We denote the number of generalists serving type-1 customers in the
fluid model by BF

1 (t). Generalists give priority to type-1 customers. Therefore
the number of busy generalists serving type-1 customers is given by the min-
imum of the number of generalists on duty NG(t) and the number of type-1
customers that exceeds the number of their specialists, i.e.,

BF
1 (t) = min

{

NG(t),
{
QF

1 (t)−N1(t)
}+
}

. (4.16)

The departure rate of type-1 customers from the system being served by
their specialists is µ1N1(t) and the departure rate after being served by a
generalist is µ1B

F
1 (t). Therefore in this case the overall departure rate of

type-1 customers d1(t) is the sum of these two. If the amount of customers
exceeds N1(t)+NG(t), where NG(t) is the current number of generalists, type-
1 customers waiting for service may leave because of impatience. The number
of waiting type-1 customers LF

1 (t) in the fluid model is given by

LF
1 (t) =

{
QF

1 (t)−N1(t)−NG(t)
}+

. (4.17)

Each waiting customer abandons with rate ν1, such that the departure rate
d1(t) becomes µ1N1(t) + µ1NG(t) plus ν1L

F
1 (t). Consequently the total de-

parture rate is

d1(t) =







µ1Q
F
1 (t), QF

1 (t) ≤ N1(t)

µ1N1(t) + µ1(Q
F
1 (t)−N1(t)), N1(t) < QF

1 (t) ≤ N1(t) + NG(t)

µ1Q
F
1 (t) + µ1NG(t)

+ν1(Q
F
1 (t)−N1(t)−NG(t)), N1(t) + NG(t) < QF

1 (t).
(4.18)

Taking into account that abandonment does not occur until the number of
type-1 customers exceeds the sum of the number of their specialists and the
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generalists, the Differential Equation (4.23c) is similar to Equation (4.1b) on
Page 75.

Similar to the process of type-1 customers, the rate of change of type-2
customers is equal to the primary arrival rate λ2(t) plus the arrival rate from
the orbit, given by the product of the number of type-2 customers in the orbit
QF

O2(t) and the retrial rate γ2, minus the departure rate d2(t).
For the departure rate of type-2 customers in the system we have to keep

in mind that type-1 customers are prioritised by generalists. If the number of
type-2 customers is below the number of their specialists, the departure rate
is given by product of the service rate of specialists µ2 and the number of
type-2 customers in the system, i.e.

d2(t) = µ2Q
F
2 (t). (4.19a)

If the number of type-2 customers exceeds the number of specialists N2(t),
the number of type-1 customers in the system influences the departure rate
of type-2 customers. If more than N1(t) + NG(t) type-1 customers are in
the system, generalists serve only type-1 customers, i.e., the number of busy
generalists serving type-2 customers B2(t) is zero. Type-2 customers have to
wait and may abandon, i.e., the number of type-2 customers in the system
changes by the rate customers are served by specialists and by the rate the
waiting customers LF

2 (t) abandon.

d2(t) = µ2N2(t) + ν2L
F
2 (t). (4.19b)

In this case the number of waiting type-2 customers L2(t) is given by the
difference of the number of customers in the system and the number of type-2
specialists QF

2 (t) − N2(t). If the number of type-1 customers in the system
is between N1(t) and NG(t) and the number of type-2 customers is greater
than the number of type-2 specialists, generalists additionally serve type-2
customers with mean rate µ2, i.e., the number of generalists serving type-2
customers BF

2 (t) is the minimum of the number of type-2 customers who are
not served by specialists and the number of generalists not occupied by type-1
customers.

d2(t) = µ2N2(t) + µ2B
F
2 (t) + ν2L

F
2 (t), (4.19c)

Therefore, the number of busy generalists serving type-2 customers at time t
is

BF
2 (t) = min

{
{
QF

2 (t)−N2(t)
}+

,
{

NG(t)−
{
QF

1 (t)−N1(t)
}+
}+
}

. (4.20)

In this last case the departure rate is the sum of three different kinds of de-
parture rates (4.19) due to service by specialists, due to service by generalists,
and due to abandonment, i.e.,

d2(t) = µ2 min
{
QF

2 (t), N2(t)
}

+ µ2B
F
2 (t) + ν2L

F
2 (t), (4.21)



4.2. Heterogeneous Customers and Agents 123

where LF
2 (t) is the number of type-2 customers waiting given by

LF
2 (t) =

{

QF
2 (t)−N2(t)−

{

NG(t)−
{
QF

1 (t)−N1(t)
}+
}+
}+

. (4.22)

The priority rule23 has an influence on the term describing the abandonment
of customers in Equations (4.23b) and (4.23d), as well. Therefore, we get the
following system of differential equations.

d

dt
QF

1 (t) = λ1(t) + γ1Q
F
O1(t)− µ1 min

{
QF

1 (t), N1(t)
}

(4.23a)

− µ1B
F
1 (t)− ν1L

F
1 (t)

d

dt
QF

2 (t) = λ2(t) + γ2Q
F
O2(t)− µ2 min

{
QF

2 (t), N2(t)
}

(4.23b)

− µ2B
F
2 (t)− ν2L

F
2 (t)

d

dt
QF

O1(t) = p1ν1L
F
1 (t)− γ1Q

F
O1(t) (4.23c)

d

dt
QF

O2(t) = p2ν2L
F
2 (t)− γ2Q

F
O2(t), (4.23d)

for all t ∈ R+
0 . The initial value problem associated with these equations can

be solved easily by using standard numerical methods, e.g., by the fourth
order Runge-Kutta method, and give us a good approximation of the mean
amount of customers in both the system and the orbit as described before.

Next the differential equations for the variances and covariances have to
be derived in order to make statements on the variability of these processes.
Therefore the fluid model has to be refined to a diffusion model as done in
Section 3.3.

4.2.3 Refinement to a Diffusion Model

Now we derive the stochastic differential equations for the diffusion process

(
QD(t)

)

t∈R+

0

=
(
QD

1 (t), QD
2 (t), QD

O1(t), Q
D
O2(t)

)

t∈R+

0

(4.24)

as described in Section 3.3 on Pages 57 ff. Again, the sets of critical times24 are
supposed to have measure zero. These sets are defined by the turning points of
the minimum and maximum functions in the differential equations in (4.23).
Similar to the previous Section 3.2, two of the sets, S1 and S3, contain all

23 In the fluid approximation the priority rule changes from non-preemptive to pre-
emptive priority, i.e., whenever a type-1 customer arrives and has to be served
by a generalist, the service of a type-2 customer is disrupted. Consequently, in
the fluid model non-preemptive and preemptive priority rules are modelled in the
same way. See Mandelbaum et al. (1998) Section 7 and Ridley et al. (2004).

24 See Section 4.1 on Page 62 for the meaning of these sets.
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times when the numbers of customers equals the number of their specialists.
These sets are associated with the service of type-1 and type-2 specialists.
For the other two sets S2 and S4, the number of generalists working plays a
central role. The set S2 consists of all moments, when the number of type-1
customers equals the sum of the number of their specialists and the number of

generalists, i.e., the function min{NG(t),
{
QF

1 (t)−N1(t)
}+} specifies this set.

The last set S4 is determined by the turning points of the function BF
2 (t).

This set is most critical with respect to the null set assumption because it
depends on both processes. We get the following sets:

S1 = {t|Q1(t) = N1(t)} , (4.25a)

S2 = {t|Q1(t) = N1(t) + NG(t)} , (4.25b)

S3 = {t|Q2(t) = N2(t)} , (4.25c)

and

S4 = {t|Q1(t) + Q2(t) = N1(t) + N2(t) + NG(t)} . (4.25d)

If these sets are almost empty, the diffusion processes are Gaussian25 and
simpler functional equations can be derived than in case of non-Gaussian pro-
cesses as shown in Section 3.3. These sets do not have measure zero if the pro-
cesses QD

1 (t) and QD
2 (t) do not pass the level where the number of customers

equals the different numbers of agents quickly. Then the non-differentiability
of the maximum and minimum functions at these points become important,
such that we need the scalable Lipschitz derivative26 to calculate the func-
tional equations of the diffusion processes.

However, if the sets in (4.25) have measure zero, the stochastic functional
equations consist of three parts as described in Section 3.3. In order to make
the notation shorter and to present the results more clearly, we use matrix
forms27. The first part of the diffusion process is the row vector QD(t0) which
describes the number of customers in the considered system or orbit at the
beginning of the observation at time t0. The second part is an integral expres-
sion which represents the cumulative drift of the process beginning at time
t0 and ending at time t. This second part can be represented by integrating
the product of the row vector QD(s) and a quadratic matrix A(s), which
formally is the Jacobian matrix of the right hand side of the differential equa-
tions in (4.23) differentiated with respect to the fluid processes. The matrix
A(s) is given by

25 See Whitt (2000) and Ward and Glynn (2003b,a) for an explanation of the diffi-
culties.

26 See Mandelbaum et al. (1998) and Page 60 for an explanation.
27 The detailed functional equations of the diffusion processes are presented in Ap-

pendix A.2.
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α1 −ν21{c4} + µ21{c5} p1ν11{c3} p2ν21{c4}
0 α2 0 p2ν21{c7}
γ1 0 −γ1 0
0 γ2 0 −γ2







(4.26)

with

α1 = −µ11{c1} − µ11{c2} − ν11{c3},

α2 = −µ21{c6} − ν21{c7} − µ21{c8}

and the following conditions for the indicator functions

c1 : QF
1 (s) ≤ N1(s) (4.27a)

c2 : N1(s) < QF
1 (s) ≤ N1(s) + NG(s) (4.27b)

c3 : QF
1 (s) > N1(s) + NG(s) (4.27c)

c4 : N1(s) < QF
1 (s) ≤ N1(s) + NG(s),

QF
2 (s) > N1(s) + N2(s) + NG(s)−QF

1 (s)
(4.27d)

c5 : N1(s) < QF
1 (s) ≤ N1(s) + NG(s),

N2(s) < QF
2 (s) ≤ N1(s) + N2(s) + NG(s)−QF

1 (s)
(4.27e)

c6 : QF
2 (s) ≤ N2(s) (4.27f)

c7 : QF
2 (s) > N2(s) +

{

NG(s)−
{
QF

1 (s)−N1(s)
}+
}+

(4.27g)

c8 : N2(s) < QF
2 (s) ≤ N2(s) +

{

NG(s)−
{
QF

1 (s)−N1(s)
}+
}+

. (4.27h)

The first column contains the deviation of the first differential equation
in (4.23a) with respect to QF

1 (t) in the first line and with respect to QF
O1(t) in

the third line. As the process of the number of type-1 customers is indepen-
dent of the behaviour of type-2 customers the entries in the second and fourth
line of the first column are zero. The entries in other columns are equivalently
derived.

The last part of the functional equation is a row vector of Brownian mo-
tions B(t) = (B1(t), B2(t), B

O
1 (t), BO

2 (t)) where each entry of this vector is the
sum of different standard Brownian motions with mean zero. The Brownian
motions describe the deviation of the process from its average. The devia-
tion is also named drift and shows how far the diffusion process has moved
from his starting average. These notations give rise to the following stochastic
functional equation of the diffusion process:

QD(t) = QD(t0) +

∫ t

0

QD(s)A(s) ds + B(t). (4.28)

From the stochastic functional equations in (4.28) the differential equa-
tions for variances and covariances are deduced. The complete derivation of
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the differential equations for the variances and covariances is given in Ap-
pendix A.2. The differential equations for the covariances are presented in
matrix form as well. The covariance matrix COV

[
QD(t)

]
of the considered

diffusion process is a four-dimensional, quadratic, and symmetric matrix, i.e.,
the entry in row i and column j equals the entry in row j and column i for
i 6= j. The entries of the principal diagonal are the variances of each process
of the vector QD(t). Mandelbaum et al. (1998) showed that the differential
matrix equation for the covariance matrix of the diffusion processes for all
queueing models can be written as

d

dt
COV

[
QD(t)

]
= COV

[
QD(t)

]
A(t) + (A(t))T COV

[
QD(t)

]
+ B(t).

(4.29)
In this matrix equation the matrix A(t) is given by Equation (4.26).

The four-dimensional and symmetric matrix B(t) results from the Brown-
ian motions. The entries of this matrix are derived by applying the chain rule
of stochastic calculus and the property given in Equation (3.56) on Page 64
for standard Brownian motions as shown in Section 3.3 on Page 64. This
matrix has entries zero whenever the considered processes have no Brownian
motion in common. The entries of the matrix are negative, if the Brownian
motions in the functional equations have opposite signs, otherwise the entry is
positive. The matrix B(t) contains the following positive rate functions bi(t),
i = 1, 2, 3, 4, describing the change in the derivatives of the processes Q(t)
which are

b1(t) = λ1(t) + γ1(t)Q
F
O1(t) + µ1 min

{
QF

1 (t), N1(t)
}

(4.30a)

+ µ1B
F
1 (t) + ν1L

F
1 (t)

b2(t) = λ2(t) + γ2(t)Q
F
O2(t) + µ2 min

{
QF

2 (t), N2(t)
}

(4.30b)

+ µ2B
F
2 (t) + ν2L

F
2 (t)

b3(t) = γ1(t)Q
F
O1(t) + p1ν1L

F
1 (t) (4.30c)

b4(t) = γ2(t)Q
F
O2(t) + p2ν2L

F
2 (t). (4.30d)

Then the matrix B(t) is

B(t) =







b1(t) 0 −b3(t) 0
0 b2(t) 0 −b4(t)

−b3(t) 0 b3(t) 0
0 −b4(t) 0 b4(t)







. (4.31)

This system of differential equations resulting form the matrix equation in
(4.29) can again be solved numerically for any initial condition. In general, we
will assume that the variances and the covariances are zero at the beginning
of the observation, i.e.,
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VAR
[
QD

i (t0)
]

= 0 for i = 1, 2,O1,O2, (4.32)

COV
[
QD

i (t0), Q
D
j (t0)

]
= 0 for i, j = 1, 2,O1,O2 and i 6= j. (4.33)

The solution gives us a good approximation for the variances and covariances
of the processes28.

4.2.4 Performance Measures

Some new performance measures must be explained to compare the different
systems and to estimate their performance. These performance measures are
based on the results we get from numerically solving the initial value problem
given by the system of Differential Equations (4.23) on Page 123 and some
initial conditions for the processes of the number of customers in the system
and the orbit (QF (t))t∈R+

0

. In general, we will assume that the processes start

with zero customers in the system and the orbit.

First of all, the number of customers in the system is directly given by
the results for the fluid processes as described in Section 3.2.3 on Page 38
and 4.1.4 on Page 76. Subtracting the number of active agents gives rise to
the number of customers waiting LF

1 (t) and LF
2 (t) in each queue, which were

derived in Equations (4.17) and (4.22) on Pages 121f. Without the term NG(t)
in Equation (4.17) this equation would equal the queue length determined in
the previous sections.

Much more important is the waiting time of the customers at any time t.
If this waiting time becomes too long most customers will abandon and only
few of them will recall, if the probability of retrial is small. Especially the
influence of type-1 customer on type-2 customers in the system is interesting
and should be studied in detail.

The mean waiting time of type-1 customers is easily derived as these cus-
tomers have preemptive priority in the fluid approximation. Consequently, the
instantaneous waiting time of these customers is not influenced by the number
of customers in the second queue. The waiting time of a typical type-1 cus-
tomer WF

1 (t) at time t is given equivalently to the waiting time of customers
WF

S (t) derived in Equation (4.3) on Page 76 by the fraction of the number
of customers in front of this customer divided by the departure rate d1(t) in
Equation (4.18) of type-1 customers, i. e.,

WF
1 (t) =

{
QF

1 (t)−N1(t)−NG(t)
}+

µN1(t) + µ1NG(t) + ν1(QF
1 (t)−N1(t)−NG(t))

. (4.34)

Contrarily, the waiting time of type-2 customers depends on the number of
type-1 customers in the system because of the priority rule. Type-2-customers
have to wait until either a type-2 specialist becomes available or no type-
1 customers are waiting and a generalist becomes available. In general, the

28 See also Mandelbaum et al. (1999a,b), and Mandelbaum et al. (2002).
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mean waiting time is the number of type-2 customers waiting divided by the
departure rate d2(t) of type-2 customers.

Unfortunately, a customer of class 2 arriving at time t as well as an observer
from outside are not able to predict how the number of type-1 customers in
the system during the waiting time of the type-2 customer will change. If
this special type-2 customer arrives while no type-1 customer is waiting but
some are served by generalists, his waiting time might become shorter, if
no further type-1 customers arrive during his waiting time. However, if many
type-1 customers arrive during the waiting time, the waiting time of the type-2
customer might even become longer because of the preemptive priority of type-
1 customers. In this case type-1 customers expel type-2 customers from service
by generalists. These type-2 customers will be put to the front of the queue
until they are finally served. Therefore, assumptions on the development of the
queue length of type-1 customers, in particular, on the number of generalists
serving type-1 and type-2 customers, have to be made to estimate the waiting
time of an arriving type-2 customer.

We assume that the number of type-1 customers in the system stays on
average at the same level during the waiting time of type-2 customers. Under
this assumption we solely have to consider the departure rate d2(t) of type-
2 customers. If the number of type-1 customers increases during this time
period, the waiting time of type-2 customers will become longer, whereas the
waiting time decreases if the number of type-1 customers decreases.

The number of generalists currently serving type-2 customers

BF
2 (t) = min

{{
QF

2 (t)−N2(t)
}+

,
{
NG(t)−BF

1 (t)
}+
}

.

is the minimum of the amount of type-2 customers that exceeds the number
of type-2 specialists and the number of generalists not occupied by type-1
customers. This number BF

2 (t) has been determined in Equation (4.20) on
Page 122.

Using this notation the departure rate d2(t) of type-2 customers is the
combination of three terms (4.19) on Page 122 as shown in Equation (4.21).
By means of this departure rate and the fact that the waiting time is zero
if no number of type-2 customer waits, we get for the waiting time of type-2
customers in the system

WF
2 (t) =

LF
2 (t)

µ2N2(t) + µ2BF
2 (t) + ν2LF

2 (t)
. (4.35)

In this formula the waiting time is implicitely influenced by the number of
type-1 customers at the arrival time of the type-2 customers. Therefore, the
time-dependent and the aggregated waiting times of type-2 customers have to
be thoroughly investigated. Contrarily, the waiting time of type-1 customers
is not influenced by the other customers, so the results from the previous Sec-
tion 4.1 can directly be conferred.
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The probability of being served for an arriving type-1 customer is equiva-
lently derived as in the previous Section 4.1.4 despite the fact that the gener-
alists have to be considered as well, i.e.,

PF
1 (served, t) =

µ1 min
{
QF

1 (t), N(t)
}

+ µ1B
F
1 (t)

µ1 min
{
QF

1 (t), N(t)
}

+ µ1BF
1 (t) + ν1LF

1 (t)
. (4.36)

The probability of being served for type-2 customers depends on the number
of customers in queue one. The number of served customers is given by the
number served by type-2 specialists plus the number of customers served by
generalists if a generalist is available for serving type-2 customers. The amount
of type-2 customers leaving the system at time t is given by the amount served
as explained before plus the amount abandoning. Therefore the probability of
being served is

PF
2 (served, t) =

µ2 min
{
QF

2 (t), N2(t)
}

+ µ2B
F
2 (t)

µ2 min
{
QF

2 (t), N2(t)
}

+ µ2BF
2 (t) + ν2LF

2 (t)
. (4.37)

The probability of abandoning and the probability of moving into the orbit are
determined similarly to the derivation of the previous Section 4.1 on Page 40.

As mentioned before29, we can calculate two different aggregated proba-
bilities of being served. The first one is the aggregated probability of being
served

PF
agg(served, T ) =

∫ T

0
µ(t)min{Q(t), N(t)} dt

∫ T

0 d(t) dt
.

for all customers who have left the system either as primary calls or as recalls
in the time interval [0, T ], the other aggregated probability of being served is
the probability of being finally served

PF
λ (served, T ) =

T∫

0

µ(t)min{Q(t), N(t)} dt

∫ T

0 λ(t) dt

for all primary calls of the time interval [0, T ]. On Page 40 we have argued why
the first one is more useful for the purpose of analysis. The first aggregated
probability for both customer classes is derived equivalently to Equation (3.32)
on Page 40 by weighting the probabilities of being served by the departure
rates of the considered customer type and dividing by the aggregated depar-
tures. The second probability is determined as in Equation (3.34) on Page 41
by aggregating the number of served customers over the time horizon and
dividing by the aggregated number of arrivals.

29 See Pages 40f.
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Furthermore, the utilisation of the different agent groups has to be de-
termined to estimate the burden of work placed on the agents. Similarly to
Equation (4.9) on Page 78, we get

UF
1 (t) =

min
{
QF

1 (t), N1(t)
}

N1(t)
, (4.38)

UF
2 (t) =

min
{
QF

2 (t), N2(t)
}

N2(t)
, (4.39)

and

UF
G (t) =

BF
1 (t) + BF

2 (t)

NG(t)
(4.40)

for the utilisation of type-1 specialists, type-2 specialists and generalists,
respectively. The utilisation is aggregated according to Equation (3.36) on
Page 42.

Finally, the profit function for this complex model aggregates the eco-
nomical performance of the whole system for the period [0, T ]. While the
technical performance measures focus on special perspectives, the economi-
cal performance measures represent the position of the management, which is
interested in the revenue gained from served customers and in the costs for
paying agents and for occupied trunks. If we assume each served customer of
class 1 leads on average to a revenue of r1 and each served customer of class 2
to a revenue of r2, the revenue gained over the considered length of the time
period [0, T ] is

rev(T ) =

∫ T

0

r1µ1 min
{
QF

1 (t), N1(t)
}

+ r1µ1B
F
1 (t)dt

+

∫ T

0

r2µ2 min
{
QF

2 (t), N2(t)
}

+ r2µ2B
F
2 (t)dt.

(4.41)

If a type-1 specialist has a hourly wage w1, a type-2 specialist a hourly wage
of w2, and a generalist of wG, the costs for agents are

costAgents(T ) =

T∫

0

w1N1(t) + w2N2(t) + wGNG(t) dt. (4.42)

Furthermore, we assume that an occupied line costs ℓ1 or ℓ2 per hour in the
case of a call center30. Therefore the profit of the call center during a time
period of legnth T is given by

30 For e-mails and letters these parameters are zero. In this case the redialling and
abandonment parameters will be zero as well.
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profit(T ) = rev(T )−
∫ T

0

(
ℓ1Q

F
1 (t) + ℓ2Q

F
2 (t)

)
dt− costAgents(T ). (4.43)

Comparing Equations (4.10) on Page 78 and (4.43), we observe that the
structures of these equations are similar. This result holds for all performance
measures calculated in this section and underlines the advantage of the fluid
approach to be easily adaptable to more complex contact centers. Further-
more, in the model discussed here the type-1 customers are not influenced
by the behaviour of type-2 customers, therefore the performance measures
for type-1 customers and type-1 specialists are the same as in the previous
Section 4.1.

4.2.5 Numerical Results

4.2.5.1 The Influence of the Priority Rule on the Number of
Customers in the System and in the Orbit

Before we investigate the influence of the different parameters on the number
of customers and the performance measures, we will have a closer look at the
difference between preemptive and non-preemptive priority. For this purpose,
we simulate the contact center in consideration with preemptive and non-
preemptive priority of type-1 customers. By means of this investigation we
want to find out whether these priority rules have a high influence of the
number of customers in the system because in the fluid model the priority
rules make no difference. The fluid model always leads to a preemptive priority,
i.e., the prioritised customers disturb the service of the other customers by
generalists and displace them. Contrarily, non-preemptive priority means that
the prioritised customers have to wait until a current service is finished. In
order to show the influence of the priority rules we use the simulation and
compare the results of the number of customers of each type both in the
system and the orbit for the different rules.

Three different cases with respect to the arrival rate functions λ1(t) and
λ2(t) are distinguished. In all cases the arrival rate functions λ1(t) and λ2(t)
have a sinusoidal form and are given by the same Equation (3.13) on Page 29
with different parameters.

In the first case the arrival rate functions of type-1 and type-2 customers
shown in Figure 4.52 coincide, i.e., λ1(t) = λ2(t) for all times t. In this case
the parameters of the arrival rate function are given by

m1 = 9000

m2 = 7500

t0 = 7 am

t1 = 12:30 pm

t2 = 4 pm

t3 = 8 pm.
(4.44)

In the second case the maximum of the arrival rate function for type-1
customers λ1(t) is reached later than the one for type-2 customers λ2(t). In
the third case the arrival rate function of type-1 customers λ1(t) approaches its
maximum earlier. The second and the third cases are presented in Figure 4.53.



132 4. Time-Dependent Contact Centers with Retrials

time

a
rr

iv
a
ls
ˆ

h
−

1
˜

1000

3000

5000

7000

9000

10 12 2 4 66 88

Fig. 4.52. Equal arrival rate functions λ1(t) = λ2(t) for type-1 and type-2 customers
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Fig. 4.53. Arrival rate functions of type-1 and type-2 customers with different
positions of the maximum arrival rate

In the first picture of Figure 4.53 the parameters of the arrival rate function
for type-1 customers λ1(t) are

m
(1)
1 = 9500 t

(1)
0 = 7 am t

(1)
2 = 4 pm

m
(1)
2 = 8000 t

(1)
1 = 12:30 pm t

(1)
3 = 8 pm.

(4.45)

and for type-2 customers λ2(t)

m
(2)
1 = 9500 t

(2)
0 = 7 am t

(2)
2 = 1 pm

m
(2)
2 = 8000 t

(2)
1 = 10 am t

(2)
3 = 8 pm.

(4.46)

In the second picture the parameters of the arrival rate function of type-1
customers λ1(t) are the same while the parameters of the second arrival rate
function λ2(t) are

m
(2)
1 = 9500 t

(2)
0 = 7 am t

(2)
2 = 7 pm

m
(2)
2 = 7000 t

(2)
1 = 3 pm t

(2)
3 = 8 pm.

(4.47)

For the comparison of the results we assume the parameters given in Ta-
ble 4.4. We distinguish two cases with respect to the retrial rates γ1 and γ2

to study the influence of the retrial rate on the priority rule and the number
of type-2 customers in the system later on.
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Service rate Number of agents

µ1 µ2 µ1 µ2 N1(t) N2(t) NG(t)

60 h−1 60 h−1 40 h−1 40 h−1 100 100 50

Abandonment rate Retrial parameters

ν1 ν2 γ1 γ2 p1 p2

120 h−1 120 h−1 0.5 h−1 0.5 h−1 0.5 0.5

12 h−1 12 h−1

Table 4.4. Parameters of the contact center model with heterogeneous agents and
customers with retrials

The simulation results were produced by the simulation tool introduced
earlier. We carried out 500 repetitions and calculated the mean values for the
number of customers in the system and in the orbit. In order to compare the
influence of the two priority rules on the number of customers in the system,
we determine the differences ∆Q(t) between the simulation results. We sub-
tract the number of customers resulting from applying the non-preemptive
priority rule Qnon(t) from the number of customers resulting from applying
the preemptive priority rule Qpre(t), i.e.,

∆Q1(t) = Qpre
1 (t)−Qnon

1 (t) (4.48a)

∆Q2(t) = Qpre
2 (t)−Qnon

2 (t) (4.48b)

∆QO1(t) = Qpre
O1(t)−Qnon

O1 (t) (4.48c)

∆QO2(t) = Qpre
O2(t)−Qnon

O2 (t) (4.48d)

In the first Figure 4.54 the influence of the priority rule on the number
of customers for a low and a high retrial rate and equal arrival rates of both
customer classes is shown. The influence of the priority is small as the differ-
ence is at most six customers. If type-1 customers have preemptive priority,
i.e., they displace type-2 customers from service by generalists, the number of
type-1 customers is higher than in the case of non-preemptive priority. The
number of type-2 customers acts the other way. The reason for this behaviour
of the number of customers is due to the high abandonment rate in comparison
to the service rate. If type-1 customers have preemptive priority, more type-1
customers are served. These customers stay on average for a longer time in the
system than the customers who abandon. In the case of non-preemptive prior-
ity more type-1 customers have to wait. Consequently, more type-1 customers
abandon and leave the system more quickly. Therefore, fewer customers of
this type are in the system.

If the retrial rate increases, i.e., the mean sojourn time in orbit γ−1
i , i =

1, 2, decreases, the influence of the priority rule reduces. In general, the graph
of the difference in the number of type-2 customers is almost the mirror image
of the graph for type-1 customers. However, the influence on the number of
type-2 customers is slightly higher than on the number of type-1 customers. If
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Fig. 4.54. Deviation of the number of customers in the system for different retrial
rates and equal arrival rate functions

we compare the developement of the arrival rates in Figure 4.52 to the course
of the graphs in Figure 4.54, we observe that the priority rule has solely an
influence if the arrival rate for type-1 customers is below the serving capacity
of the type-1 specialists and generalists. If the arrival rate increases onward,
the difference in the number of customers decreases according to the amount.

Contrary to the difference in the number of customers in the system, the
graphs of the difference in the number of customers in the orbit behave as
shown in Figure 4.55. If type-1 customers have preemptive priority and dispose
type-2 customers from service by generalists, fewer type-1 customers are in
the orbit, because less type-1 customers abandon and have to retry. In this
case the number of type-2 customers in the orbit is for the same reasons higher
than in the case of a non-preemptive priority rule. Amazingly, the influence
of the priority rule on the number of customers in the orbit is much stronger
than the influence on the number of customers in the system. As observed in
Section 4.1.5.1, the number of customers in the orbit increases if the retrial rate
decreases, i.e., the customers stay for a longer time in the orbit. The impact
of the priority rule is proportional to the absolute number of customers in the
orbit, i.e., if more customers are in the orbit, the difference in the number
of customers between the two priority rules increases. Unlike the graphs for
the difference in the number of customers in the system, the graphs shown in
Figure 4.55 are no reflections of each other.
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Fig. 4.55. Deviation of the number of customers in the orbit for different retrial
rates and equal arrival rate functions
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Fig. 4.56. Deviation of the number of customers in the system for different retrial
rates and the arrival rate function in the first picture of Figure 4.53
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If the arrival rates of the two customer classes differ, such that more type-
2 customers arrive before type-1 customers the influence of the priority rule
changes slightly as depicted in Figure 4.56. As before, the influence of the
priority is quite small. If the retrial rate is very small in the first picture the
same conclusions as for the previous figure can be drawn. However, if the
retrial rate increases, i.e., the customers retry very quickly, the interaction
between the priority rule and the shifted arrival rate functions becomes more
obvious.
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Fig. 4.57. Deviation of the number of customers in the orbit for different retrial
rates and the arrival rate function in the first picture of Figure 4.53

From Figure 4.57 similar conclusions can be drawn as from Figure 4.55.
The graphs of the difference in the number of customers in the orbit take
course in the other direction than the graphs of the difference in the number
of customers in the system. The impact of the priority rule on the number of
customers in the orbit is much stronger than on the number of customers in
the system.

From the last Figure 4.58 the same conclusions with respect to the influ-
ence of the priority rule can be drawn. Therefore, the graphs of the difference
in the number of customers in the orbit are not shown. As observed in the
previous figures the influence decreases if the customers retry more quickly. If
the retrial rate is high the difference in the number of customers is linked to
the arrival rate function to a larger extent.
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Fig. 4.58. Deviation of the number of customers in the system for different retrial
rates and the arrival rate functions in the second picture of Figure 4.53

4.2.5.2 The Number of Type-2 Customers in the System and in
the Orbit

In this section we conpare the simulation results and the numerical results
of the fluid approximation. As the type-1 customers have preemptive priority
in the fluid approximation, they are not influenced by the type-2 customers.
Consequently, our main viewpoint is the change in the number of type-2 cus-
tomers both in the system and the orbit. As shown in the previous section,
the priority rule has at least a very small influence on the number of cus-
tomers in the system. Therefore, in the simulation a non-preemptive priority
was assumed as this priority rule is more reasonable for calls. The results from
Section 4.1.5 apply to the results of the fluid approximation for the number
of type-1 customers in this section.

In order to compare the simulation results to the numerical solution of the
initial value problem given by the system of Differential Equations (4.23) for
the fluid processes and the initial conditions

QF
1 (t0) = 0 (4.49a)

QF
2 (t0) = 0 (4.49b)

QF
O1(t0) = 0 (4.49c)

QF
O2(t0) = 0 (4.49d)
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Furthermore, we assume the parameters given in Table 4.4 and the different
arrival rates given on Pages 132f, i.e., we distinguish three cases according
to the arrival rate functions of type-2 customers. For each of these cases we
investigate two different retrial rates for both customer classes.

The confidence belt is calculated by means of the diffusion approxima-
tion. Therefore, we solve the extended initial value problem containing the
differential equations for the variances and covariance (4.29) on Page 126 and
the initial value problem for the fluid processes given by Equations (4.23) on
Page 123 and (4.49) numerically. We assume initial values of zero for all vari-
ances and covariances at time t0. Then the upper 95% confidence bound for
the number of customers in the system is given by

upper bound = QF
S (t) + 1.96

√

VAR
[
QD

S (t)
]

(4.50)

and the lower bound by

lower bound = QF
S (t)− 1.96

√

VAR
[
QD

S (t)
]
. (4.51)

The confidence belts for the number of type-2 customers in the orbit are
calculated equivalently.

In Figure 4.59 simulation results for the number of type-2 customers in
the system and in the orbit for the case of equal arrival rate functions for both
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Fig. 4.59. Comparison of the number of type-2 customers in the system Q2(t) and
in the orbit QO2(t) in case of identical arrival rate functions
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customers classes are compared to the numerical solution of the fluid approxi-
mation with an 95% confidence envelope. Obviously, the approximation works
well to estimate the number of type-2 customers in the system. The deviation
of the results from the simulation during the period from 12 pm to 6 pm
has various reasons. First of all, the deviation is due to the different priority
rules as shown in the previous section. During this time interval the set S4

described in Equation 4.25 on Page 124 is not a null set, i.e., the set might
not have a measure zero. Furthermore, the differential equations react much
faster to changes in the departure rate than the simulation. The simulation
results are slightly overestimated by the fluid approach, but the simulation
results are within the confidence belt of the diffusion approach.

During the same time interval the approximated number of type-2 cus-
tomers in the orbit differs from the simulation results. Contrary to the number
of customers in the system the number of customers in the orbit is underes-
timated, i.e., more customers might actually be waiting in the orbit. If we
consider Figure 4.55 on Page 135 the difference in the simulation and approx-
imation results can easily be explained by the different priority rules.
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Fig. 4.60. Comparison of the number of type-2 customers in the system Q2(t) and
the orbit QO2(t) in the case of the different arrival rate functions shown in the first
picture of Figure 4.53 on Page 132

In the case of different arrival rate functions the approximation works as
well as in the case of identical arrival rate functions. In Figure 4.60 the simu-
lation results and the fluid approximation for the number of type-2 customers
in the system and in the orbit are compared. The number of customers in
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the system is slightly overestimated during the time interval from 1 pm to
4 pm. During this interval the number of customers in the orbit is underesti-
mated. The deviation of the simulation and approximation results is stronger
for the number of customers in the orbit. This effect can be explained by
critical loading and the different priority rules used in the simulation and the
approximation. If we consider the first picture of Figure 4.57 on Page 136, we
observe that during the time period from 1 pm to 4 pm the difference in the
number of type-2 customers in the orbit rises quickly. The difference between
the graphs in the second picture of Figure 4.60 is about 200 customers which
corresponds to the results of the first picture of Figure 4.57.
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Fig. 4.61. Comparison of the number of type-2 customers in the system Q2(t) and
the orbit QO2(t) in the case of the different arrival rate functions shown in the
second picture of Figure 4.53 on Page 132

Contrary to the previous cases, the number of customers in the orbit is
overestimated during the time intervals from 1:30 pm to 2:30 pm and from
4 pm to 6 pm in Figure 4.61, i.e., the fluid approach predicts more customers
in the orbit than the simulation. In this case the priority rule has a minor
influence, because more type-2 customers arrive after the maximum arrival
rate of type-1 customers has been reached. Therefore, in the fluid approach the
service of fewer type-2 customers by generalists is disrupted as in the previous
cases. The generalists are already busy serving type-1 customers when most
type-2 customers arrive. Consequently, they queue at the end of the queue
like regular customers. Therefore, the number of customers in the orbit is
mainly influenced by the arrival and retrial rate. The time intervals in which
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Fig. 4.62. Comparison of the number of type-2 customers in the system Q2(t)and
the orbit QO2(t) with identical arrival rate functions shown in Figure 4.52 on Page
132 and short mean times to retrial γ−1

1 = γ−1
2 = 5 min

the simulation processes of the two different processes QF
2 (t) and QF

O2(t) are
overestimated no longer coincide. As the deviation from the simulation results
is small, the approximation can be judged as accurate.

Additionally, the simulation and approximation results for short mean
times to retrial should be compared. Therefore, the retrial rates are assumed
to be γ1 = γ2 = 12 h−1. This means that customers of both classes retry on
average after five minutes in the orbit. In this case similar statements on the
accuracy of the approximations can be made. The number of customers in the
system Q2(t) is approximated almost exactly while the approximation of the
number of customers in the orbit QO2(t) differs slightly from the simulation
results, as shown in Figure 4.62.

However, the simulation results almost always stay within the confidence
envelopes given by the diffusion refinement. During the time interval from
10 am to 12 pm the number of customers in the orbit is overestimated, while
it is underestimated during the interval from 3 pm to 4 pm in Figure 4.62.
The deviation again can be reasoned by the results of the previous section and
by critical loading. As the calculation of the variances and covariances relies
on the fluid approach, the variance of the process of the number of customers
in the orbit is zero if this process is zero itself. That is why no confidence
envelope is calculated during the interval from 1 pm to 3 pm.

The same effects are visible if the arrival rate functions differ. In Fig-
ure 4.63 the fluid approximation almost coincides with the simulation results
for the number of customers in the system Q2(t). The approximated num-
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Fig. 4.63. Comparison of the number of type-2 customers in the system Q2(t) and
the orbit QO2(t) in the case of different arrival rate functions shown in the first pic-
ture of Figure 4.53 on Page 132 and short mean times to retrial γ−1

1 = γ−1
2 = 5 min

ber of customers in the orbit QF
O2(t) is higher than the simulated number of

customers QO2(t) at the peak arrival rate and during the late afternoon from
3 pm to 5 pm. During the early afternoon the approximated number is smaller
than the simulated values. The reason for the deviation is that the system is
critically loaded.

In particular, in Figure 4.64 during the period from 1 pm to 3 pm the
violation of the set conditions becomes visible for the process of the number of
customers in the orbit QO2(t). During this time interval the simulated number
of customers in the orbit is underestimated by the fluid approach. The number
of customers in the system calculated by the fluid approach almost coincides
with the results of the simulation. This result stresses the minor influence of
the priority rule on the number of customers in the system.

Comparing the Figures 4.59, 4.60, and 4.61 on Pages 138-140 referring to
the small retrial rates γ1 = γ2 = 0.5 h−1 and the Figures 4.62, 4.63, and 4.64
on Pages 141-143 referring to the high retrial γ1 = γ2 = 12 h−1 rate, the main
difference can be seen in the number of customers in the orbit. In the case
of small retrial rates, the number is almost ten times as high as in the case
of high retrial rates. Amazingly, the number of customers in the system does
not seem to differ much. If the customers recall after a short mean time in
orbit the approximation of the number of customers in the system appears to
be more accurate because in this case the priority rule has a minor impact on
the number of customers in the system and the orbit
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Fig. 4.64. Comparison of the number of type-2 customers in the system Q2(t) and
the orbit QO2(t) in the case of different arrival rate functions shown in the second pic-
ture of Figure 4.53 on Page 132 and short mean times to retrial γ−1
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4.2.5.3 The Time-Dependent Waiting Time of Type-2 Customers

In addition to the comparison of the number of type-2 customers in the system
Q2(t) and the orbit QO2(t), we compare the result for the waiting time of type-
2 customers calculated by the fluid approach WF

2 (t) and by the simulation tool
W2(t). For this purpose, we use the three different arrival functions presented
in Figures 4.52 and 4.53 on Page 132 and the parameters given in Table 4.4
on Page 133. The fluid approximation of the time-dependent waiting time of
type-2 customers was calculated by means of Equation (4.35) on Page 128.
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Fig. 4.65. Comparison of approximated time-dependent waiting time of type-2
customers (black line) to simulation results (gray line) with different retrial rates
and identical arrival rate functions
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Fig. 4.66. Comparison of approximated time-dependent waiting time of type-2
customers (black line) to simulation results (gray line) with different retrial rates
and different arrival rate functions shown in the first picture of Figure 4.53 on
Page 132

In Figure 4.65 the waiting time of type-2 customers W2(t) calculated by
the simulation tool is overestimated during the time interval from 10:30 am
to 1 pm. During this time interval the maximum arrival rate of both customer
classes is reached. The number of type-1 customers exceeds the number of
type-1 specialists and generalists. Consequently, type-2 customers are served
by their specialists only. The overestimation is due to the different priority
rules. During the afternoon the simulated waiting time is underestimated by
the numerical results. This underestimation is caused by the fact that the
customers in the simulation model are discrete, while they are assumed to be
infinitely divisible in the fluid model. However, the approximation is not far
away from the simulation results. In the case of small retrial rates γ = 0.5 h−1,
i.e. long mean times to retrial, the deviation is slightly higher than in the case
of high retrial rates.

If the arrival rate functions of type-1 and type-2 customers differ as shown
in the first picture of Figure 4.53 on Page 132 the curve of the waiting time of
type-2 customers has a different shape. In Figure 4.66 the curve of the waiting
time has sharp bends at 10 am and in the case of small retrial rates γ1 = γ2 =
0.5 h−1 additionally at 4 pm. These sharp bends result from the influence
of type-1 customers on type-2 customers. The number of type-1 customers
exceeds the number of type-1 specialists and generalists, such that type-2
customers are crowded out of the service by generalists. As the customers
are assumed to be fluid in the approximation, the waiting time of type-2
customers increases instantaneously. During the time interval from 12:30 pm
to about 4 pm the waiting time of type-2 customers is underestimated, because
customers are assumed to be a continuous fluid and the traffic intensity is
almost one.

Finally, in Figure 4.67 the approximated waiting times of type-2 cus-
tomers WF

2 (t) are compared to the simulation results W2(t), if the arrival
rate functions are given according to the second picture of Figure 4.53 on
Page 132. As in the previous figure some sharp bends in the curve of the
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Fig. 4.67. Comparison of approximated time-dependent waiting time of type-2
customers (black line) to simulation results (gray line) with different retrial rates
and the different arrival rate function shown in the second picture of Figure 4.53 on
Page 132

approximated waiting time appear. But unlike the previous figure, the wait-
ing time of type-2 customers decreases instantaneously at these bends. The
reasons for the drastic change in the waiting time are due to the assumed
continuity as mentioned before.

4.2.5.4 Aggregated Technical Performance Measures

The numerical investigation of the influence of the different parameters focuses
on the aggregated waiting time of type-2 customers31 and the aggregated util-
isation of type-2 specialists and of generalists32. The performance measures
of type-1 customers are not influenced by the behaviour of type-2 customers.
As the influence of the other parameters on the technical performance mea-
sures of type-1 customers has been studied in the previous Section 4.1, these
performance measures are not reported again33.

We assume that the arrival rate functions are given by Figures 4.52
and 4.53 on Page 132. The default parameters of the different examples are
given in Table 4.4 on Page 133, whereas we consider solely the small retrial
rates γ1 = γ2 = 0.5 h−1. The performance measures are aggregated over the
time interval from 7 am to T = 8 pm.

We start to investigate the impact of the service rate of type-2 special-
ists µ2 and the number of these specialists N2(t) on the aggregated waiting
time of type-2 customers WF

2,agg(T ) in Figures 4.68 and 4.69. In the first Fig-
ure 4.68 both customer types have the same arrival rate function presented in
Figure 4.52 on Page 132. In the second Figure 4.69 the arrival rate functions
differ according to Figure 4.53 on Page 132.

31 The aggregated waiting time is calculated by aggregating the time-dependent
waiting time given in Equation (4.35) on Page 128 according to Equation (3.29)
on Page 40.

32 The aggregated utilisation is calculated by applying Equation (3.36) on Page 3.36
to Equations (4.39) and (4.40) on Page 130.

33 See Pages 87 through 103.
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Fig. 4.68. Influence of the service rate µ2 and the number of type-2 specialists N2(t)
on the aggregated waiting time of type-2 customers W F

2,agg(T ) with equal arrival rate
functions
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Fig. 4.69. Influence of the service rate µ2 and the number of type-2 specialists N2(t)
on the aggregated waiting time of type-2 customers W F

2,agg(T ) with different arrival
rate functions

Comparing Figure 4.69 and the pictures in Figure 4.68 the curves for the
aggregated waiting time for type-2 customers are almost identical. The waiting
times have been aggregated by weighting the time-dependent waiting time by
the departure rate as presented in Subsection 3.2.3 in Equation (3.29) on Page
40. The influence of these parameters is similar to the impact of the service
rate µ1 and the number of type-1 specialists N1(t) on the aggregated waiting
times of type-1 customers presented in Figure 4.26 in the case of homogeneous
customers and agents.

More interesting is the influence of the service rate µ1 and the number
of type-1 specialists N1(t) on the aggregated waiting time of type-2 cus-
tomers WF

2,agg(T ) presented in Figures 4.70 and 4.71. In Figure 4.70 the arrival
rate functions are identical, while in Figure 4.71 the arrival rate functions dif-
fer. Similar to the previous example the different arrival rate functions seem
to have a minor influence on the aggregated waiting time of type-2 customers.
If the maximum arrival rate of type-2 customers is reached before the max-
imum arrival rate of type-1 customers, as presented in the first picture of
Figure 4.53 on Page 132, the aggregated waiting time of type-2 customers is
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Fig. 4.70. Influence of the service rate µ1 and the number of type-1 specialists N1(t)
on the aggregated waiting time of type-2 customers W F
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functions
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Fig. 4.71. Influence of the service rate µ1 and the number of type-1 specialists N1(t)
on the aggregated waiting time of type-2 customers W F

2,agg(T ) with different arrival
rate functions

a little shorter than the aggregated waiting time if the maximum arrival rate
of type-2 customers is reached afterwards.

The shorter aggregated waiting time in the case of few type-1 specialists on
duty and small service rates result from the fact that a lot of type-2 customers
arrive before most type-1 customers arrive. These type-2 customers are partly
served by generalists and leave the system before the maximum arrival rate
of type-1 customers is reached. These type-1 customers displace many type-2
customers from service by generalists. Therefore, the waiting time of type-
2 customers increases. However, many type-2 customers already have been
served in the first case presented in the first picture. If most type-2 customers
arrive at a later time than most type-1 customers, the generalists are already
occupied by type-1 customers. Therefore, most type-2 customers are attended
to solely by their specialists and will have to wait for a longer time as depicted
in the second picture of Figure 4.71. If more type-1 specialists are scheduled or
they work much faster, generalists serve both kinds of customers. Therefore,
the waiting time of type-2 customers decreases.



148 4. Time-Dependent Contact Centers with Retrials

160 120
80 80

60
40

40

20

20

20

10
10

0

0

0W
F 2
,a

g
g
(8

p
m

)
[s
ec

]

service
rate

µ
2 [ h −

1
]

generalists

Fig. 4.72. Influence of the service rate for type-2 customers µ2 and the number
of generalists NG(t) on the aggregated waiting time of type-2 customers W F

2,agg(T )
with equal arrival rate functions
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Fig. 4.73. Influence of the service rate µ2 for type-2 customers and the number
of generalists NG(t) on the aggregated waiting time of type-2 customers W F

2,agg(T )
with different arrival rate functions

The graph of the aggregated waiting time depending on the number of
generalists NG(t) and the service rate µ2 in Figures 4.72 and 4.73 of the
generalists for type-2 customers does not differ much from the graph for the
aggregated waiting time as the function of the number of specialists and their
service rate in Figures 4.68 and 4.69 on Page 146. In these three examples the
number of type-2 specialists was assumed to be 50 in order to visualise the
influence of the number of generalists and their service rate more clearly.

In Figure 4.72 equal arrival rate functions for both kinds of customer
classes were assumed. The graphs in Figure 4.73 refer to the arrival rate
functions in Figure 4.53 on Page 132. Figure 4.73 underlines the observations
of Figures 4.69 and 4.71 that the different arrival rate functions have a minor
effect on the aggregated waiting time of type-2 customers.

An investigation of the other aggregated performance measures would lead
to similar results. Different arrival rate functions have a big impact on the
time-dependent performance measures but the influence on the aggregated
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Fig. 4.74. Influence of the abandonment rates ν1 and ν2 on the aggregated waiting
time of type-2 customers W F

2,agg(T ) with equal arrival rate functions

performance measures is very small. Therefore, we assume equal arrival rate
functions as depicted in Figure 4.52 on Page 132 for the following examples
and do not report the results of the aggregated performance measures with
different arrival rate functions.

In Figure 4.74 the aggregated waiting time is a function of the abandon-
ment rates of type-1 ν1 and type-2 customers ν2. If the type-2 customers
become more impatient, i.e., the abandonment rate increases, the aggregated
waiting time of type-2 customers WF

2,agg(T ) decreases until no customer has
to wait at all. Contrary to the service rate µ1 and the number of type-1 spe-
cialists N1(t), the abandonment rate ν1 of type-1 customers seems to have no
influence on the aggregated waiting time of type-2 customers although more
patient customers of type 1 mean more customers in the system. Therefore,
fewer customers of the second type can be served by generalists, so that they
have to wait longer for an available agents. Only if type-1 customers are so
patient that no type-1 customer abandons at all, the aggregated waiting time
of type-2 customers increases slightly.

In Figure 4.75 the aggregated waiting time of type-2 customers WF
2,agg(T )

is presented as a function of the retrial parameters, γ2 and p2, of this customer
class. The only difference between Figure 4.75 and Figure 4.28 on Page 101
is that the waiting time in Figure 4.28 is a little longer. This is due to the
fact that in the homogeneous case 100 agents have been scheduled, while in
Figure 4.75 100 type-2 specialists plus 50 generalists have been working. The
aggregated waiting time increases if a higher percentage of customers retries
and the retrial rate grows, i.e., the mean time to retrial shortens.

In order to intensify the effects of changing retrial rates γ1 and probabili-
ties p1 of type-1 customers on the aggregated waiting time of type-2 customers
WF

2,agg(T ), the number of type-1 specialists N(t) is assumed to be 80 in Fig-
ure 4.76. Although in this case many type-1 customers abandon, the influence
of the retrial parameter on the aggregated waiting time is almost negligible.
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Fig. 4.76. Influence of the retrial rate γ1 and retrial probability p1 of type-1 cus-
tomers on the aggregated waiting time of type-2 customers W F
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If the retrial probability and the retrial rate increase, the aggregated waiting
time increases by tenths of a second. Amazingly, the waiting time increases
if the retrial rate increases from zero to 0.5 h−1. Thereafter the aggregated
waiting time decreases again. The reason for this decrease might be that less
work related to type-1 customers is shifted into periods of low load, because
type-1 customers recall already when many primary arrivals occur.

As the influence of the different parameters on the number of type-2 cus-
tomers and their aggregated waiting times is almost the same as the effects
presented and explained in the previous Section 4.1, the graphs depicting the
impact of these parameters on the probability of being served are not pre-
sented. Next the aggregated utilisation of the type-2 specialists as a function
of the service rate and number of type-1 specialists and the number of gen-
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Fig. 4.78. Influence of the service rate for type-1 customers µ1 and the number of
generalists NG(t) on the aggregated utilisation of type-2 specialists UF

2,agg(T )

eralists and their service rate for both kinds of customer classes is studied.
Afterwards the aggregated utilisation of generalists is considered.

In Figure 4.77 the aggregated utilisation of type-2 specialists UF
2,agg(T ) is

a function of the number of type-1 specialists N1(t) on duty and their service
rate µ1. As argued on Page 149 we use for the calculation of the aggregated
utilisation identical arrival rate functions for both customer classes as depicted
in Figure 4.52 on Page 132. The parameters seem to have a minor influence
on the aggregated utilisation of type-2 specialists. If few type-1 specialists are
serving customers slowly, type-1 customers replace customers of the second
type from the generalists. If enough type-1 specialists are scheduled or the
service rate increases, the aggregated utilisation of type-2 specialists reduces,
because more type-2 customers are served by generalists. However, the reduc-
tion of the utilisation is 2%, which is diminishingly small, because customers
are served by a specialist first if a specialist is available.

A similar conclusion with respect to the influence of the other agents
groups and their service rates can be drawn from Figure 4.78. This figure
depicts the aggregated utilisation of type-2 specialists UF

2,agg(T ) as a function
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Fig. 4.80. Influence of the service rate µ1 and the number of type-1 specialists N1(t)
on the aggregated utilisation of generalists UF

G,agg

of the number of generalists NG(t) and their service rate for type-1 customers
µ1. If the service rate and the number of generalists increase, the utilisation
of type-2 specialists decreases slightly by about 2%, because more generalists
can serve type-2 customers. Consequently, less type-2 customers have to wait
and type-2 specialists have to serve fewer customers.

Finally, in Figure 4.79 the number of generalists NG(t) and the service
rate for type-2 customers µ2 have a higher impact on the utilisation of type-2
specialists. If more generalists are on duty, the utilisation decreases, because
more type-2 customers are attended to by generalists and less customers have
to wait. If the service rate of generalists for type-2 customers increases, the
relief of type-2 specialists becomes even stronger.

As shown in Figure 4.25 on Page 98 the retrial rate does not influence the
utilisation of agents. This is also true in the case of heterogeneous customers
and agents. Therefore, we do not present figures showing the aggregated util-
isation of type-2 specialist and generalists as functions of the retrial rate and
the probability of retrial.
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Fig. 4.81. Influence of the service rate µ2 and the number of type-2 specialists N2(t)
on the aggregated utilisation of generalists UF
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We continue the investigation of the influence of the different parameters
of the contact center model on the performance measures with the study of
the aggregated utilisation of generalists UF

G,agg(T ).
Figure 4.80 and Figure 4.81 are quite similar. They present the influence

of the numbers of the different kinds of specialists N1(t) and N2(t) and their
service rates µ1 and µ2 on the aggregated utilisation of generalists UF

G,agg(T ).
An increasing number of specialists and increasing service rates lead in both
cases to an enormous reduction of the utilisation of generalists. The utilisa-
tion never falls below 0.3 because some generalists are needed to serve the
customers of the other class. The strong impact of the number of specialists
and their service rates is due to the fact that customers prefer to be served by
the specialists. Therefore, the customers will be served by a specialist as soon
as a specialist becomes available. In the fluid model this effect is intensified,
because the customers are assumed to be a continuous fluid. In the fluid model
every amount of customers that can be processed by specialists is served by
specialists. The remainder is served by generalists, waits or abandons.
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Fig. 4.82. Influence of the service rate for type-1 customers µ1 and number of
generalists NG(t) on the aggregated utilisation of generalists UF
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Fig. 4.83. Influence of the service rate for type-2 customers µ2 and number of
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Equivalently, the service rates of generalists for the different customer
classes have similar effects on the aggregated utilisation of the generalists
UF

G,agg(T ) as shown in Figure 4.82 and 4.83. Contrary to the other investiga-
tions, we assume a constant number of 50 type-1 specialists in Figure 4.82 and
a constant number of 50 type-2 specialists in Figure 4.83 to stress the effects
of a changing number of generalists. A growing number of generalists leads to
a decrease of the aggregated utilisation as well as growing service rates.

In this section we have observed that the influence of parameters referring
to type-1 agents and customers on the aggregated waiting time of type-2
customers and the aggregated utilisation of type-2 specialists is very limited
as long as most type-2 customers are served by their specialists. However, the
influence of service rates and the number of specialists of both types on the
utilisation of generalists is strong. This observation can be explained by the
preference of customers for service by specialists.

4.2.5.5 Economical Performance Measures

In this section the profit function (4.43) on Page 131 is investigated with
respect to the number of agents and their service rates. Therefore, we assume
the revenue and cost parameters given in Table 4.5.

Revenue for served type-1 customers r1 = 0.5e

Revenue for served type-2 customers r1 = 0.5e

Hourly costs for occupied trunks ℓ = 6.0e

Hourly wages of type-1 specialists w1 = 10.0e

Hourly wages of type-2 specialists w2 = 10.0e

Hourly wages of generalists wG = 11e

Table 4.5. Cost and revenue parameters for the investigation of the profit function
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Fig. 4.84. Influence of the service rate µ1 and number of type-1 specialists N1(t)
on the daily profit with equal arrival rate functions
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Fig. 4.85. Influence of the service rate µ1 and number of type-1 specialists N1(t)
on the daily profit with different arrival rate functions

We consider the profit for one working day starting at 7 am and ending
at 8 pm and for the three arrival rate functions λ1(t) and λ2(t) presented in
Figures 4.52 and 4.53 on Page 132. The parameters of the arrival rate functions
are given in Equations (4.44) through (4.47). The other parameters of the
examples are given in Table 4.4 on Page 133 with retrial rate γ1 = γ2 = 0.5 h−1

for both customer classes.
In Figures 4.84 and 4.85 the impact of the number of type-1 specialists

N1(t) and their service rate µ1 is depicted. The three pictures are almost
identical with respect to the shape of the curves. Similar to the aggregated
performance measures, the shape of the arrival rate functions and their loca-
tion to each other seem to have a minor influence on the profit of one day.
This effect may be due to the constant number of agents staffed for one day,
as assumed here. If the number of agents can be adjusted to the demand, the
influence of the different arrival rates may become visible. However, we show
the profit function for all cases to have a closer look at the shape of the profit
function.
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The maximum values of the different profit functions in Figures 4.84
and 4.85 are similar. In the first Figure 4.84 the arrival rate functions of
both customer classes are the same, while in Figure 4.85 the arrival rate func-
tions differ. The first graph refers to the arrival rate function presented in the
first picture of Figure 4.53 on Page 132 and the second graph to the second
picture of Figure 4.53. If the arrival rate functions differ, the daily profit is
slightly higher, because fewer agents are needed to serve customers. Further-
more, fewer customers have to wait. These two facts give rise to lower costs
for paying agents and occupied lines.

The faster the agents work, i.e., the higher the service rate is, the fewer
agents are needed to reach the maximum of the profit function associated
with this service rate. If, e.g., the service rate is 90 h−1, about 80 agents of
type 1 suffice to reach the maximum. If more agents are scheduled, the profit
decreases again. Contrarily, in the case of a small service rate more than 160
agents are needed to approach the optimum profit.
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Fig. 4.86. Influence of the service rate µ2 and number of type-2 specialists N2(t)
on the daily profit with equal arrival rate functions
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Fig. 4.87. Influence of the service rate µ2 and number of type-2 specialists N2(t)
on the daily profit with different arrival rate functions
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Similar conclusions with respect to the impact of the number of type-2
specialists N2(t) and their service rate µ2 can be drawn from Figures 4.86
and 4.87 as for the number of type-1 specialists and their service rate. For the
first Figure 4.86, which represents the case of equal arrival rate functions for
both kinds of customers, another perspective on the curve was chosen for a
closer look at the profit curve around the maximum value. As in Figure 4.84
the graph of the profit function seems to be smooth and concave. The graphs
in the second figure underline that the arrival rate functions have a minor
influence on the profit. If the service rate increases fewer type-2 specialists are
needed to reach the maximum of the profit function.
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Fig. 4.88. Influence of the service rate µ2 for type-2 customers and number of
generalists NG(t) on the daily profit with equal arrival rate functions
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Fig. 4.89. Influence of the service rate µ2 for type-2 customers and number of
generalists NG(t) on the daily profit with different arrival rate functions

In Figures 4.88 and 4.89 the number of generalists NG(t) and their service
rate µ2 for type-2 customers is varied. In this case we assumed 50 type-1
specialists and 50 type-2 specialists to intensify the effects of a varying number
of generalists. For low service rates an increase of the number of generalists
leads to a smaller profit. In this case it is counterproductive to staff any
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additional generalist. If the agents work very quickly, the profit increases firstly
in an almost convex manner for a growing number of generalists. If more than
50 generalists are staff the curve becomes concave.

4.3 Literature on Retrial Queues

Already in 1957 Cohen (1957) studied the influence of repeated calls in tele-
phone traffic. Since 1957 a lot of work has been done on investigating single as
well as multiserver retrial systems. A detailed overview on models investigated
up to 1997 can be found in Falin (1990) and Falin and Templeton (1997).

Most models were examined with respect to deriving ergodicity condi-
tions34 and stationary distributions for performance analysis. As the calcula-
tion of stationary distributions is often difficult and sometimes even impossible
because of the multi-dimensionality of the state space, numerical algorithms
as well as approximations of the stationary distribution have been developed.
Ramalhoto and Gómez-Corral (1998) develop a decomposition formula for the
steady state distribution of a multiserver system with impatient customers
and an infinite number of sources. As the generator is a matrix of matri-
ces, Hanschke (1999) deploys matrix continued fractions, Diamond and Alfa
(1995, 1999) and Anisimov and Artalejo (2001) utilise the matrix-geometric
method developed by Neuts (1981).

Other numerical exact and approximative algorithms where developed
by Falin and Artalejo (1995), Artalejo (1995), Dudin and Klimenok (1999),
Artalejo and Pozo (2002), Chakravarthy and Dudin (2002), and Almási et al.
(2004).

Although some authors, e.g., Rodrigo et al. (1998) use the time-dependent
modelling of the retrial system to develop steady state approximations, the be-
haviour of these time-dependent models is not studied. Only few authors con-
sidered time-dependent queueing systems with repeated attempts. Grier et al.
(1997) investigate a multiserver retrial system without extra waiting places,
a so-called Erlang-loss system. They approximate the time-dependent mean
number of customers in the system and the times of peak blocking. Further-
more, they compare their approximation results to simulation results. The
time-dependent blocking probabilities are used to predict the number of lines
required to fulfil given blocking limits.

Mandelbaum et al. (1999a,b, 2002) investigate a multiserver-retrial sys-
tem with homogeneous agents serving impatient customers as described in
Section 4.1. By means of fluid and diffusion approximations they analyse the
queue and the virtual waiting time process of a single customer class. An ad-

34 see, e.g., Afanas (1994); Dudin and Klimenok (1999); Artalejo and Lopez-Herrero
(2000); Falin and Gomez-Corral (2000); Breuer et al. (2002)
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vantage of these methods is that the transient behaviour under high loads can
be modeled as well35.

Besides the papers analysing retrial queues, some effort has been put into
estimating the retrial parameters from call center data by Hoffman and Harris
(1986) and Aguir et al. (2004). Hoffman and Harris (1986) use a stationary
approach to evaluate the percentage of blocked or abandoning customers who
recall. In an empirical study about the usage of a taxpayer telephone informa-
tion service they find that the average daily percentage of retrials is almost
stable with a value of about 69%.

Aguir et al. (2004, 2005) deploy stationary analysis and the fluid approach
to estimate the retrial rate. They show that the retrial rate of the fluid model
is independent of the abandoning parameter. Furthermore, the retrial rate
of the stochastic analysis converges to the retrial rate of the fluid model if
the primary arrival rate increases. In the second paper Aguir et al. (2005)
investigate the influence of retrials of blocked calls on the performance and
the staffing decision.

To consider retrials, different assumptions with respect to the reasons
for retrials of customers and the mean time to retrial are made. Some au-
thors assume that a recall may occur if a customer is blocked. These authors
mainly suppose that there is no extra waiting space, e.g. Grier et al. (1997)
and Aguir et al. (2005). Other authors36 assume that the customers are im-
patient and balk or renege. The third reason for retrial is a so-called return
of a customer who has been served completely or partly as investigated by
de Véricourt and Zhou (2005). All these papers have in common that a single
class of calls or customer types is studied.

Contrarily, Kalyanaraman and Srinivasan (2003) investigate a single server
system with two types of customers. Customers of the first type have priority
over the other customers. If the server is busy customers of the first type wait
in an infinite capacity queue, while customers of the second type are blocked
and have to retry. The joint stationary distribution is obtained. Heterogeneous
sources are considered by Almási et al. (2004) as well. They study a computer
network with a finite number of sources by means of stationary analysis.

As retrials are a very complex problem in the contact center and telecom-
munication industry, a lot of work has been done on this topic in order to
estimate the amplitude of the retrial parameters and to model the impact of
these parameters on the performance. Most papers focus on a stationary anal-
ysis of the underlying queueing models. However, retrials often lead to strong
interdependencies of subsequent periods, which are addressed in the papers
using fluid and diffusion models. The analysis of the two queueing systems
with retrials done in this chapter belongs to these papers.

35 See also Anisimov and Atadzhanov (1994)
36 See, e.g., Artalejo and Lopez-Herrero (2000); Fayolle and Brun (1988);

Mandelbaum et al. (2002).





5

Personnel Staffing and Shift Scheduling based

on Fluid Models

5.1 Formulation of a Basic Staffing and Shift Scheduling

Problem

In the previous chapter we utilised the fluid approach and the diffusion refine-
ment to analyse different kinds of contact centers with impatient customers
and retrials. This type of analysis of a contact center is needed to determine
the performance of a contact center and to detect room for improvement.
Most parameters like the arrival rate, the service rate, the abandonment rate,
or the retrial rate are hardly influenceable by the management. However, the
number of agents staffed at each moment in time is a decision variable. The
staffing of agents and scheduling of shifts associated with agents belongs to
the operational planning process presented in Figure 2.6 on Page 19.

We will utilise the fluid approach to solve an integrated staffing and shift
scheduling problem linked to the second and third phases of the operational
planning process. In other words, we formulate a mathematical problem, which
includes the initial value problem of the fluid approximation as an additional
constraint in order to determine the optimal number of shifts needed. In this
model the staffing of agents in isolated time intervals appears to be a special
case of the more general scheduling of shifts which was defined by Ernst et al.
(2004) as the problem of ”selecting a set of the best shifts from a (large)
pool of candidate shifts on a single day”. In general, this problem itself is
NP-complete1.

We consider profit-orientated problems with a revenue r per served cus-
tomer. The aggregated probability of being served is considered implicitly in
the objective function as shown in Equation (3.41) on Page 432.

1 Musliu (2001), Musliu et al. (2004) and Fukunaga et al. (2002).
2 Other formulations of the staffing problems with respect to time-dependent

revenues or costs can be found, e.g., in Helber and Stolletz (2004, pp. 46-55),
Koole and Pot (2005), or Hampshire and Massey (2005) and references therein.
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As in the previous chapter, we investigate the staffing and shift scheduling
problem of the contact center with homogeneous agents and customers first.
Then we analyse the problem for heterogeneous agents and customers. Cus-
tomers are assumed to be impatient and some of them retry after waiting in
the orbit.

For each occupied phone line the contact center has to pay an amount of ℓ
per hour. Furthermore, the hourly salaries of agents are denoted by w. For
the staffing and shift scheduling problem the time horizon is divided into a set
of time intervals j = 1, . . . ,J of equal length δ. A typical length of the time
interval in practice is thirty minutes3. During these time intervals the number
of agents is fixed, i.e., the number of agents in subsequent intervals can be
changed only at the beginning of each time interval. The j-th time interval is
the time interval which starts at time tj−1 and ends at time tj .

Each agent works according to a specific shift. A shift is a sequence of
subsequent time intervals during which an agent is assumed to be present.
It contains both working and resting time intervals. A shift of type k, k =
1, . . . , K, is represented by a J -dimensional, boolean vector

sk = (sk,1, . . . , sk,J ). (5.1)

Each entry sk,j in this shift vector equals 1, i.e. true, if an agent of shift type
k is on duty during the time interval j (j = 1, . . . ,J ). Equivalently, each shift
is represented by an indicator function sk(t). The indicator function is one or
true when an agent is on duty at time t, and zero, i.e. false, otherwise. In
Figure 5.1 and Equation (5.2) a long shift starting at 7 am and ending at 3 pm
with a break from 10:30 am to 11 am and a short shift starting at 3:30 pm
and ending at 7:30 pm without a break are shown.

time
6 8 10 12 2 4 6 8

1

0

Long shift

Short shift

Fig. 5.1. Representation of a long shift including a rest and short shift without a
rest

slong = (1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

sshort = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0)
(5.2)

The indicator function is related to the shift vector by

sk(t) = sk,j for tj−1 ≤ t ≤ tj and k = 1, . . . , K. (5.3)

3 See Gans et al. (2003) or Koole and Pot (2006).
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We aim to determine a shift schedule, such that the profit of the contact center
is maximised. A schedule is defined as a set of different shifts and the number
of agents working according to each shift. We assume that for each chosen
shift out of the set of possible shiftsS = {s1, s2, . . . , sK} (5.4)

an agent is available to work according to this shift, i.e., we do not consider
the problem of assigning agents with difference preferences to the shifts. We
denote a schedule by a vector

x = (x1, x2, . . . , xK) ∈ ZK (5.5)

with xk representing the number of agents working according to shift type k.
The number of agents on duty N(x, t) at time t is a function of the sched-

ule, i.e, is the sum of all agents whose shifts cover the considered time. For-
mally, we have

N(x, t) =
K∑

k=1

sk(t)xk for all t ∈ R+
0 . (5.6)

As the number of agents is discrete and the shift function can only take
values zero or one in each time interval [tj−1, tj] for j = 1, . . . ,J , it follows
that N(x, t) is an integer valued step function. An example of the function of
the number of agents at each time t is given in Figure 5.2.
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Fig. 5.2. Example of the step function N(x, t) representing the number of agents
at each moment t during the working day

Each shift causes costs ck for the wages of the agents working according
to the shift type k. The hourly wage of an agent is w, which is assumed to
identical for all shift types. However, we can easily extend the calculation to
the case of different wages for each shift type. Therefore, the cost associated
with shift type k is given by the time δ the agent is on duty in hours multiplied
by the hourly wage, i.e,

ck =
J∑

j=1

wδsk,j for all k = 1, . . . , K. (5.7)
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Under these assumptions and the notation of Section 4.1, the profit func-
tion for a contact center with one customer class and a single group of homo-
geneous agents is the cumulative number of served customers minus the costs
for occupied trunks and salaries4, i.e.,

profit(x, T ) =

∫ T

0

rµ min
{
QF(x, t), N(x, t)

}
− ℓQF(x, t) dt−

K∑

k=1

ckxk. (5.8)

Other authors5 also consider penalties for abandonment, blocking, or waiting
of customers. From a management accounting perspective this is extremely
problematic as these are non-observable quantities.

The number of customers in the system as well as the number of customers
served is determined by means of the initial value problem given by the differ-
ential equations in Equation (4.1) on Page 75 of the fluid approach and some
initial conditions

QF
S (x, t0) = QS,0 and QF

O(x, t0) = QO,0. (5.9)

In general, we assume that the orbit and the system are empty at the beginning
of the observation.

In real world call centers the total number of agents who can be staffed
is usually limited. Therefore, we introduce another condition which limits the
total number of agents by some fixed number M. As each entry in the schedule
vector represents the number of agents scheduled for a special shift type, the
total number of agents is the sum of all entries, i.e.

K∑

k=1

xk ≤M. (5.10)

As mentioned before, the number of agents for shift type k must be non-
negative and integer valued, i.e.,

xk ≥ 0, xk ∈ N0 for all k = 1, . . . , K (5.11)

By means of Equations (5.6) through (5.11) we can now formulate the
integrative staffing and shift scheduling problem for the contact center with
retrials of impatient customers and homogeneous customers and agents. In
this thesis we aim to determine a shift schedule x which maximises the daily
profit subject to the initial value problem and the constraints on the number of
applicable shifts and staffable agents. If we assume, that the revenue gained
from each served customer is zero, our formulation also encloses the cost
minimisation problem. In this case additional service orientated restriction
are needed. Our approach can be extended to the case of maximising weekly

4 Compare Equation (4.10) on Page 78.
5 See Hampshire and Massey (2005), Whitt (2006a) and references therein.
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or monthly profit by extending the considered time period. The optimisation
problem is given by

max
x

profit(x, T ) (5.12a)

subject to

d

dt
QF

S (x, t) = λ(t) − µ(t)min
{
QF

S (x, t), N(x, t)
}

− ν(t)
{
QF

S (x, t)−N(x, t)
}+

+ γ(t)QF
O(x, t)

d

dt
QF

O(x, t) = pν(t)
{
QF

S (x, t)−N(x, t)
}+− γ(t)QF

O(x, t)

(5.12b)

QF
S (x, t0) = 0

QF
O(x, t0) = 0

(5.12c)

N(x, t) =
K∑

k=1

sk(t)xk for t ∈ [tj−1, tj ], j = 1, . . .J (5.12d)

K∑

k=1

xk ≤M (5.12e)

xk ∈ N0 for all k = 1, . . . , K (5.12f)

If we assume that the shift lasts just one time interval of length δ, each
shift type k is related to a specific time interval j, i.e., K and J coincide.
Then the number of agents N(t) in each time interval t ∈ [tj − 1, tj) and the
number of agents per shift xj are identical. The costs per shift are given by
the product of the length of the time interval and the hourly wage. In this case
the optimisation program (5.12) becomes the more simple personnel staffing
problem6.

The optimisation problem in (5.12) is non-linear and dynamic. The de-
cision variables are integer valued. We are not aware of an exact algorithm
to solve this type of problem to optimality. Therefore, we use heuristics to
solve the problem. The optimisation procedure iterates between calculating
the profit function and solving the initial value problem until no improvement
of the objective function can be found. In order to develop an effective op-
timisation procedure, we have to analyse the structure of the profit function
with respect to the decision variable x, the number of shifts scheduled. This
is done in the next section.

6 The personnel staffing problem is considered e.g. in Whitt (1999c),
Helber and Stolletz (2003, 2004), Koole and Pot (2005), Feldman et al. (2005),
Green et al. (2005), Hampshire and Massey (2005), Harrison and Zeevi (2005),
and the references therein. See also Section 5.6 for further literature about staffing
and shift scheduling problems.
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5.2 Numerical Analysis of the Profit Function

In this section we investigate the profit function of the optimisation problem
formulated in the previous section with respect to changes in the number
of agents for each shift type scheduled. For many scheduling heuristics the
concavity of the objective function is important to solve the problem7. A
function f : RJ → R is called concave, if for all vectors y, z ∈ RJ and
scalars α ∈ [0, 1] the inequality

αf(y) + (1− α)f(z) ≤ f(αy + (1− α)z) (5.13)

holds. Koole and Pot (2005) are able to show that some profit functions used
in contact center analysis and staffing are not concave in the number of agents.
In the case of concavity, a simple heuristic like progression in direction of the
steepest increase can be utilised. If the profit function is not concave, more
sophisticated heuristics have to be used to leave local optima.

In order to get some first impressions of the profit function we use the
parameters given in Table 5.1, the arrival rate function shown in Figure 4.2
on Page 79, and the shift types sk given in Table 5.2 to calculate the profit
for different schedules x.

Service rate: µ = 60 h−1

Abandonment rate: ν = 120 h−1

Retrial rate: γ = 12 h−1

Probability of retry: p = 0.5

Revenue per served customer: r = 0.5e

Hourly cost per occupied line: ℓ = 6e/h

Hourly wage: w = 10e/h

Length of a time interval δ = 0.5 h

Table 5.1. Parameters of the optimisation problem for the investigation of the
profit function

The contact center opens at 7 am and closes at 8 pm. Therefore we consider
J = 26 half-hour intervals. If agents work according to a long shift, they are
present for 7.5 hours and have a rest break of half an hour after 3.5 hours. If
agents work according to a short shift they are on duty for 4 hours. Therefore
we get 31 different shift types as shown in Table 5.2. For the analysis we
assume the following initial schedule

7 See, e.g., Koole and Van der Sluis (2003), Atlason et al. (2004), and
Koole and Pot (2006).
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Type IntervalS 1 5 6 10 11 15 16 20 21 26
7:00 - 9:30 9:30-12:00 12:00-2:30 2:30 - 5:00 5:00 - 8:00

s1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
s2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
...

. . .
. . .

. . .
. . .

. . .

s11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
s12 1 1 1 1 1 1 1 1 1 1 1 1 1 1

s13 1 1 1 1 1 1 1 1
s14 1 1 1 1 1 1 1 1
...

. . .
. . .

. . .
. . .

. . .

s30 1 1 1 1 1 1 1 1
s31 1 1 1 1 1 1 1 1

Table 5.2. Schematic presentation of the basic shift types of the set S for the
investigation of the profit function and the scheduling problem

x0 = (

long shift types
︷ ︸︸ ︷

1, 8, 7, 10, 16, 23, 24, 25, 20, 9, 0, 0,

3, 6, 9, 10, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 13
︸ ︷︷ ︸

short shift types

)
(5.14)

with an initial profit of 15 962.40e and 203 agents staffed.
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Fig. 5.3. Profit function with varying number of agents for shifts s2 and s9

In Figure 5.3 the number of agents working according to shift types s2

and s9 are varied. Both types of shifts are long shifts with one rest break
in the middle. Agents with shift type 2 start their work at 7:30 am and rest
between 11:00 and 11:30 am. At 3:00 pm they leave their seats. Agents with
shift type 9 start at 11 am, rest from 2:30 to 3:00 pm and quit at 6:30 pm.
If the initial schedule x0 is fixed in all other shift types, the maximum profit
of 15 972.90e is reached for x9 = 20 and x2 = 7. The profit function seems
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Fig. 5.4. Profit function with varying number of agents in the first and fourth time
interval of the working day

to be monotonically increasing in the number of shifts until the optimum is
reached. Furthermore, the shape appears to be quite regular and concave.

In Figure 5.4 the numbers of agents x5 and x16 for a long shift s5 and a
short shift s16 are varied. As in the previous figure the profit function seems
to be concave and monotonically increasing to the optimum. The maximum
profit of 16072.60e is generated if 10 agents of shift type s5 and 16 agents of
shift type s16 are working.
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Fig. 5.5. Profit function with varying number of agents in the first and fourth time
interval of the working day

Similar conclusions with respect to the profit function can be drawn from
the final Figure 5.5. In this figure the number of shift type s14 and s30 are
varied. These shifts are both short shifts. In the previous examples only few
of these shifts were scheduled. For x14 = 7 and x30 = 12 the maximum profit
of 16 010.70e is reached.

From these three figures we are not able to make any conclusions with
respect to the concavity of the profit function. As the differential equations
for the number of customers in the system can only be solved numerically, the
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profit function can only be calculated numerically. The profit function consists
of different parts for the cost and the revenue. The costs for the agents are
linear in the number of agents. Therefore it depends on the integral term
in Equation (5.8) on Page 164 whether the profit function is concave in the
number of agents.

We tested the profit function numerically and found some rare examples
for non-concavity of the profit function. However, the difference between the
value of αprofit(y) + (1 − α)profit(z) and profit(αy + (1 − α)z) for differ-
ent values of α and schedules y and z were very small. They might be due
to numerical instabilities. They cannot be presented graphically. We show a
numerical example. In order to calculate Equation (5.13) in the example the
numbers of agents have to be a continuous quantities as well. The parameter
α was chosen to be 0.5. Furthermore, for all three examples the vector y is

(

long shift types
︷ ︸︸ ︷

2, 10, 5, 9, 16, 22, 23, 22, 28, 3, 1, 1,

1, 1, 12, 12, 9, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 22
︸ ︷︷ ︸

short shift types

).
(5.15)

This leads to a profit of 15 656.70e. The vector z is chosen by changing two
positions of the vector y. We add in each of these positions one agent for the
shift. Then we get the results of Table 5.3 which conflict with Equation (5.13)
on Page 166.

Changes in y profit(z) αprofit(y) profit(αy

first second +(1− α)profit(z) +(1− α)z)
position position [e] [e] [e]

12 26 15 639.90 15 648.30 15 647.90
14 20 15 630.00 15 643.35 15 643.00
14 26 15 637.40 15 647.05 15 646.60

Table 5.3. Counter example

Other investigations of objective functions can be found, e.g., in Atlason et al.
(2004) and Cezik and L’Ecuyer (2005). Atlason et al. (2004) develop another
algorithm to test the concavity of their objective function almost everywhere,
as this property is needed in the cutting plane method. Cezik and L’Ecuyer
(2005) assumed an S-shaped objective function. Koole and Van der Sluis (2003)
constructed a concave objective function to apply a local search based on a
mathematical concept named multimodularity for the scheduling and staffing
problem.
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5.3 Outline of the Heuristic Optimisation Procedure

5.3.1 Opening Procedure

As we can not be sure whether the profit function is concave everywhere,
we should take this into consideration for our optimisation procedure. The
heuristic procedure should on the one hand search in the direction of increasing
profit, on the other hand it should have the ability to leave a local optimum
in search of a better solution.

In order to accelerate the search we use an opening procedure, which gener-
ates a good schedule based on the suggestion made by Feldman et al. (2005).
To solve the optimisation problem presented above, a simulated annealing
algorithm is used.

A starting solution is determined by taking the arrival rate and the ser-
vice rate as well as the revenue and cost into consideration. As argued by
Feldman et al. (2005) the maximum profit is almost reached by staffing ac-
cording to the workload of the contact center which is the arrival rate divided
by the service rate.

The initial procedure presented in Algorithm 1 below starts with an empty
schedule x = 0 and determines the average arrival rates λi in each time
interval j = 1, . . . ,J , i.e.,

λi = (tj − tj−1)
−1

∫ tj

tj−1

λ(t)dt for all j = 1, . . . ,J . (5.16)

This leads to a vector λ of the average arrival rates which is used to estimate
relative profit margins marg(λ, sk) for each applicable shift sk, k = 1, . . . , K.
The relative profit margin of shift sk is the relative increase in profit per time
interval on duty if another shift of type k is staffed. These margins of the
shifts are compared and the shift sκ with the highest positive profit margin
is scheduled.

If the highest relative profit margin is not unique, i.e., several shifts have
the same highest relative profit margin, these shifts are compared with respect
to the amount of work that has to be done during the intervals covered by
each shift. Then the shift with the maximum amount of accumulated work
cum work(λ, sk) is staffed. In this case the algorithm prefers long shifts. Af-
terwards the vector of the average arrival rates is reduced by the number of
customers who can be served by the additional shift. Then the relative profit
margins are recalculated and the margins are compared again. This procedure
is repeated until the margins of all shifts are negative, i.e.,

marg(λ, sk) < 0 for all k = 1, . . . , K (5.17)

or the total number of shifts reached the maximum number of applicable
shifts, i.e.
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Algorithm 1 Determination of an Initial Solution

Require: x = 0
1: for j = 1, . . . ,J do ⊲ Estimation of the average

2: λj =
1

tj − tj−1

Z tj

tj−1

λ(t) dt ⊲ arrival rates per interval

3: end for
4: repeat
5: for k = 1, . . . , K do ⊲ Calculation of the relative profit margins

6: marg(λ, sk) =
1

|sk|

J
X

j=0

 

r min
˘

λj , µ
¯

− ℓ
min

˘

λj , µ
¯

µ
− w

!

δsk,j

7: end for
8: Determine: K = {κ|marg(λ, sκ) = max{marg(λ, sk), k = 1, . . . , K}}
9: if κ is not unique, i.e., |K| > 1 then

10: for k ∈ K do ⊲ Calculation of the accumulated work

11: cum work(λ, sk) =

J
X

j=1

λj

µ
sk,j

12: end for
13: Determine: κ = k ∈ K|cum work(λ, sκ) = max{cum work(λ, sk)}
14: end if
15: xκ ← xκ + 1
16: for j = 1, . . . ,J do ⊲ Calculation of the
17: λj ← max{0, λj − µsκ,j} ⊲ residual arrival rate
18: end for
19: until marg(λ, sk) < 0 for all k = 1, . . . K or

PK

k=1 xk ≥M
20: Calculate: profit(xinitial)

K∑

k=1

xk ≥M. (5.18)

The relative profit margins are approximated by accumulating the max-
imum revenue achievable and the costs of each shift. In order to make the
profit margins of short and long shifts comparable we divide the result by the
length of the shift |sk| in consideration, i.e.,

marg(λ, sk) =
1

|sk|

J∑

j=0

(

r min
{
λj , µ

}
− ℓ

min
{
λj , µ

}

µ
− w

)

δsk,j (5.19)

for all k = 1, . . . , K. Here the length of the shift is defined as the sum of the
entries of the shift vector, i.e.,

|sk| =
J∑

j=1

sk,j for all k = 1, . . . , K. (5.20)

This calculation is an approximation because we do not use the profit function
defined in Equation (5.8) on Page 164 but the estimated or forecasted offered
work of the contact center.
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If the arrival rates λj j = 1, . . . ,J are greater than the service rates µ, a
single agent can at most serve δµ customers in the time interval j. Therefore,
the maximum revenue gained from a served customer by a single agent in the
time interval is δrµ. If the residual arrival rate λj is smaller than the service
rate, an additional agent can at most serve δλj customers. Consequently, the
maximum revenue is δrλj . The same argument is used in the second term for
the costs of occupied lines.

If more than one shift is associated with the highest profit margin, the
accumulated work is calculated for the shifts with the highest margin by

adding up the average offered load
λj

µ
, j = 1, . . . ,J during the working time

of the shift, i.e.,

cum work(λ, sk) =
J∑

j=1

λj

µ
sk,j for k = 1, . . . , K. (5.21)

Finally, for this initial schedule xinitial the profit function in (5.8) on
Page 164 is calculated, i.e., we solve the initial value problem for this schedule
and use the results to compute the inital profit value.

5.3.2 The Improvement Algorithm

To solve the maximisation problem and cope with the occasional non-concavity
of the profit function, a simulated annealing algorithm8 has been imple-
mented. This algorithm reduces the possibility of getting trapped in a poor
local optimum by allowing moves to a neighbouring but inferior solution
xnew ∈ Xcurrent withXcurrent = {x|x is neighbour of xcurrent} , (5.22)

where a neighbour has to be defined according to the problem. The algorithm
was first published in 19539 and called simulated annealing because it simu-
lates the cooling of material in a heat bath. An inferior solution is accepted
if the simulated annealing condition

U(0, 1) < exp

(
∆profit

temp

)

is fulfilled, where temp is a control parameter, U(0, 1) is a uniformly dis-
tributed random number on [0, 1], and ∆profit is the change in the profit
value, i.e.,

∆profit = profit(xnew)− profit(xcurrent). (5.23)

Algorithm 2 provides a pseudocode of the simulated annealing algorithm ad-
justed to the optimisation problem in (5.12) on Page 165.

8 See, e.g., Reeves (1996) and Thompson (1996).
9 See Reeves (1996).
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Algorithm 2 Adjusted Simulated Annealing Algorithm
1: temp← temp0

2: xcurrent ← xinitial

3: repeat
4: Choose a feasible schedule xnew ∈ Xcurrent randomly
5: Solve the initial value problem of Equations (5.12b) and (5.12c) on Page 165
6: Calculate: profit(xnew)
7: if profit(xnew) > profit(xcurrent) then
8: xcurrent ← xnew

9: profit(xcurrent)← profit(xnew)

10: else if U(0,1)≤ exp
“

∆profit
temp

”

then

11: xcurrent ← xnew

12: profit(xcurrent)← profit(xnew)
13: end if
14: temp← fmultemp

15: until temp ≤ tempfinal

The parameter temp can be interpreted as the temperature of the bath
which is reduced by some cooling scheme. The initial temperature temp0 has
to be chosen high in order to allow many inferior moves to be accepted in
the early phases of the search. It is slowly reduced until almost all inferior
solutions are rejected. The initial and final temperature as well as the cooling
scheme depend on the problem itself and are important for the effectiveness
and efficiency of the algorithm. For the cooling scheme a homogeneous and
an inhomogeneous type are distinguished10. We use the inhomogeneous type,
in which the temperature temp is reduced after every move by a very small
amount.

For the shape of the cooling curves two methods are popular. In a geomet-
ric scheme the new temperature is generated by multiplying the temperature
by a constant fmul ∈ (0, 1) close to 1. The second method reduces the tem-
perature by dividing the temperature temp by the sum of 1 and the product
of a positive constant fdiv ∈ (0, 1) close to zero and temp, i.e.

temp← fmultemp or temp← temp

1 + fdivtemp
.

The final temperature tempfinal has to be sufficiently small and depends
on the parameters of the profit function (5.8) on Page 164. We use the first
method, because the parameter temp stays high for more iterations such that
more inferior moves are allowed. The initial and final temperatures as well as
the factor fmul determine the number of iterations of the algorithm by11

no. of iterations =

⌈
log(tempfinal)− log(temp0)

log(fmul)

⌉

(5.24)

10 See Reeves (1996).
11 See Reeves (1996).
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The Algorithm 2 starts with the initial schedule generated by the opening
procedure Algorithm 1 on Page 171 and tries to improve the profit repeatedly
by choosing a feasible schedule from the neighbourhood Xcurrent randomly.
The neighbourhood of the schedule is defined as the set of all schedules which
fulfil one of the following conditions:� The schedule contains one additional shift.� The schedule is reduced by one shift.� A shift of the schedule is exchanged by another shift.

For this schedule the initial value problem in Equations (5.12b) and (5.12c) on
Page 165 is solved and the profit is calculated. If the profit of the neighbour-
ing schedule xnew is higher than the profit of the current schedule xcurrent,
the new schedule is accepted. Otherwise the simulated annealing condition
is checked. If the simulated annealing condition is fulfilled the new schedule
is also accepted. Then the temperature is reduced and the algorithm starts
again until a final cooling temperature tempfinal is reached.

We consider three possible operations to generate neighbouring schedules
of the current schedule. Algorithm 3 presents how a feasible schedule from
the neighbourhood Xcurrent is chosen without generating the whole neigh-
bourhood of the current schedule xcurrent. Three possible operations are dis-
tinguished to change the current schedule which are:� The first operation is adding a shift s ∈ S if the total number of staffed

agents remains below the maximum number of applicable agents M . This
leads to K possible changes of the schedule, because we have K shift types.� The second operation is removing a shift already scheduled. If the current
schedule xcurrent contains at least one shift of each type this again leads
to K possible changes or possible neighbours.� Finally, the last operation is an exchange of a shift, i.e., an existing shift is
removed and another shift s ∈ S is scheduled, if such a change is feasible.
This leads to at most K2 applicable operations including exchanges of the
same shift type.

Therefore, we get (K+2)K possible operations to determine the new schedule
from the current schedule.

In order to choose the next operation, the algorithm determines a uni-
formly distributed integer n on the interval [0, (K + 2)K), where K is the
number of shift types in S. From this random number n we determine two
integers i, j ≥ 0, to choose one of the three operations. The integer j deter-
mines the operation to generate the new schedule and is given by the greatest
integer smaller than the fraction of the random number n and K, i.e.,

j =
⌊ n

K

⌋

. (5.25)

If j has value zero, a shift is added. In this case the integer i indicates the
number of the additional shift. For this purpose, the integer i is given by the
remainder of integer division of n by K, i.e.,
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i = n mod K. (5.26)

Therefore, i is an integer from the interval [0, K−1]. As the shifts are numbered
from 1 to K, the integer i refers to shift si+1. If j has value one a shift is
removed. In this case the integer i again determines the shift si+1 ∈ S which
is removed. Finally, if the value of j is any integer from the interval [2, K + 1]
two shifts are exchanged. In this last case j is also needed to indicate the shift
which should be removed. As j is an integer between 2 and K + 1, j refers
to shift sj−1 ∈ S. The integer i identifies the additional shift si+1 ∈ S.
This algorithm effects that mainly different shifts are exchanged during the
simulated annealing algorithm.

Algorithm 3 Choose a Feasible Schedule xnew

Require: i, j, n ≥ 0 as integer
1: K ← |S|
2: repeat ⊲ random selection of the
3: n← ⌊U(0, (K + 2)K)⌋ ⊲ neighbourhood operation
4: i← n mod K ⊲ remainder after division
5: j ← n div K ⊲

¨

n
K

˝

6: until operation applicable(i, j, xcurrent)
7: if j = 0 then
8: Add one agent of shift type i + 1
9: else if j = 1 then

10: Remove one agent of shift type i + 1
11: else
12: Add one agent of shift type i + 1
13: Remove one agent of shift type j − 1
14: end if

15: function operation applicable(i,j,xcurrent)
16: if j = 0 and

PK

k=1 xk < M then ⊲ Condition (5.12e) on Page 165
17: return true
18: else if j = 1 and xi+1 > 0 then ⊲ Condition (5.12f) on Page 165
19: return true
20: else if j ≥ 2 and

PK

k=1 xk ≤M and xj−1 > 0 and i 6= j − 1 then
21: ⊲ Conditions (5.12f) and (5.12e)
22: return true
23: else
24: return false
25: end if
26: end function

The boolean function operation applicable(i, j, xcurrent) in Algo-
rithm 3 determines whether the chosen operation can be executed. If the new
schedule xnew violates at least one of the conditions presented in Equations
(5.12e) or (5.12f) on Page 165 then the function returns the boolean value
false. If the parameter j is greater than one and i equals j − 2, the function
returns false as well, because in this case a shift would be substituted by



176 5. Staffing and Scheduling

itself. This would lead to xnew = xcurrent. If the operation is not applicable,
another operation and shifts have to be chosen, i.e., n, i, and j are calculated
afresh, until the new schedule is valid.

The advantage of this heuristic is that it can deal with profit functions
which are not concave and might have multiple local optima, as argued by
Jiménez and Koole (2004) and others. A simpler heuristic like hill climbing
might end in a local maximum and progression in the direction of the steep-
est increase give rise to difficulties with respect to the non-concavity. Fur-
thermore, this last algorithm is very time consuming because, contrary to the
simulated annealing algorithm, the initial value problem has to be solved for
all neighbours of the current solution, which needs a lot of time.

5.4 Numerical Results

5.4.1 An Unlimited Total Number of Agents

In this section we analyse the performance of the algorithm and the structure
of the solution for a contact center with homogeneous agents and customers
as described in Section 4.1. We assume that the arrival rate function is given
by Equation (3.13) on Page 29 and Figure 4.2 on Page 79 with parameters
according to (4.12) on page 79. The other parameters are given in Table 5.1
on Page 166.

We first investigate the influence of the cooling factor fmul and the initial
and final temperatures, if the number of agents who can be staffed is not
limited, i.e., M = ∞. To solve the initial value problem we used the Runge-
Kutta method, although the algorithms works on average four times as fast
with the Euler method but less accurately.

The algorithm was tested on a notebook with a Pentium IVm processor
with 2 GHz and 1024 MB RAM.

The initial schedule x0 found by the opening procedure in the case of an
infinite total number of available shifts is given by

x0 = (1, 8, 7, 10, 16, 23, 24, 23, 19, 5, 0, 1, 2, 3, 9, 13, 8,

3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 22)
(5.27)

with an initial profit of 16 078.50e and 207 agents staffed who work altogether
1239 hours.

As shown in Table 5.4 the cooling factor fmul has a major influence on the
performance with respect to the number of iterations and the running time of
the heuristic solution algorithm. If the cooling factor reaches one, the number
of iterations and the running time including the computing time of the initial
schedule approaches infinity. However, the best solution found improves as
well. Obviously, the initial solution found by the opening procedure is already
very accurate. If the cooling factor is very small, the simulated annealing
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schedule fmul iterations time profit agents
xi [sec] [e] rel. increase number hours

x1 0.9 51 1 16 054.50 -0.15% 207 1 239
x2 0.99 528 4 16 166.00 0.54% 211 1 243
x3 0.999 5 296 42 16 425.30 2.15% 263 1 232
x4 0.9999 52 981 426 16 466.20 2.41% 268 1 228
x5 0.99999 529 830 4 655 16 466.30 2.41% 277 1 228

Table 5.4. Influence of the cooling factor on the performance of the algorithm with
temp0 = 200 and tempfinal = 1

algorithm is not able to find a better solution. The profit reduces by 0.15%.
The major increase in profit occurs if the cooling factor rises from 0.99 to 0.999.
In this case the profit increases by 1.61% from 16 166.00e to 16 425.30e. In
Table 5.4 the relative increases of the profit with respect to the initial solution
are shown. The number of agents staffed grows from 207 to 277 but the total
number of working hours reduces from 1 239 to 1 228. As we assumed no limit
for the total number of agents M who can be staffed, the algorithm tends to
schedule more agents with short shifts, because these shifts are more flexible.

Table 5.5 and Figure 5.6 present the effect that the algorithm substitutes
long shifts by short shifts, if the number of iteration increases. A higher cool-
ing factor reduces the temperature parameter more slowly, i.e., more iterations
are needed. Consequently, the temperature stays high for more iterations such
that more negative moves are allowed. Therefore, more long shifts are ex-
changed for short shifts.

shifts schedules

si ∈ S x0 x1 x2 x3 x4 x5

s1 1 2 2 0 1 1
s2 8 8 5 1 0 0
s3 7 7 11 3 2 2
s4 10 10 10 7 4 2
s5 16 16 12 7 3 1

s6 23 23 21 12 2 2
s7 24 24 21 13 5 2
s8 23 23 23 13 7 6
s9 19 19 17 15 8 7
s10 5 5 7 13 11 11

s11 0 0 1 10 8 5
s12 1 0 3 2 1 1
s13 2 2 1 2 1 0
s14 3 3 3 11 9 11
s15 9 9 7 13 15 15

shifts schedules

si ∈ S x0 x1 x2 x3 x4 x5

s16 13 13 15 18 19 21
s17 8 8 12 13 26 26
s18 3 3 4 15 23 28
s19 0 0 1 15 20 18
s20 0 0 0 3 12 14

s21 0 0 0 0 2 1
s22 0 0 0 0 0 3
s23 0 0 0 0 0 1
s24 0 0 0 0 2 4
s25 0 0 0 3 12 13

s26 0 0 1 9 18 21
s27 0 0 1 14 21 21
s28 0 0 2 11 17 20
s29 1 1 1 5 13 10
s30 2 9 9 6 5 8

s31 22 22 21 2 1 2

Table 5.5. Comparison of schedules of Table 5.4
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Fig. 5.6. The number of agents per shift type and the influence of the cooling factor
fmul on the performance of the heuristic algorithm

Substituting a long shift by a short shift means reducing the number of
agents N(t), tj−1 ≤ t < tj . In some intervals j, j = 1, . . . ,J . On the one hand
this might reduce the revenue, because some customers might not be served.
On the other hand the costs for salaries of agents are reduced. Therefore an
exchange of a long and short kind of shift might lead to either a lower or a
higher profit.

In general, if too few agents are scheduled, such a substitution leads to
lower profit, therefore inferior moves are needed to escape from the region of
local optima with many long shifts scheduled.
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Fig. 5.7. The number of agents in each time interval and the influence of the cooling
factor fmul on the performance of the heuristic algorithm

In Figure 5.7 the number of agents on duty in each half-hour time interval
is shown. Obviously, the different schedules do not lead to major differences
with respect to the number of agents in each time interval.

Figure 5.8 compares the number of agents on duty and the number of
customers in the system for the best schedule x5. The fit of both curves
is remarkably good. At the beginning of each time interval the number of
customers is smaller than the number of agents, and at the end the number of
customers exceeds the number of agents if the arrival rate increases. Otherwise
the number of customers is greater at the beginning of the time interval and
smaller than the number of agents at the end. As the number of customers
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Fig. 5.8. Example for the number of agents N(time) and the number of customers
in the system QF

S (time) in the contact center with schedule x5

fmul W F
agg(T )[sec] P F

agg(served, T ) UF
agg(T )

0.9 1.039 0.965 0.961
0.99 0.818 0.973 0.962
0.999 0.578 0.981 0.975
0.9999 0.576 0.981 0.978
0.99999 0.573 0.981 0.978

Table 5.6. Aggregated performance measures of the contact center configuration
for different cooling factors

and the number of agents almost coincide, few customers have to wait and
almost no customer abandons. This leads to a high quality of service.

Table 5.6 stresses the high quality of service for all schedules. It presents
the aggregated performance measures for the contact center configuration
given in Table 5.1 on Page 166 and the schedules calculated by the algorithm
for different cooling factors. For the best schedule found, the aggregated wait-
ing time is half as long as the aggregated waiting time for the worst schedule.
However, in all cases the waiting time is very small. The difference in the ag-
gregated probability of being served and the aggregated utilisation of agents
is even smaller. The aggregated waiting time and the probability of being
served improve if the profit increases, but the agents are even more utilised.
Even in the model with the lowest profit the performance of the contact center
is more than acceptable. The waiting times are extremely small and almost
all customers are served. The aggregated utilisation of agents is very high.
However, the agents might suffer from the heavy workload.

In order to show that not only the aggregated performance of the dif-
ferent systems but also the time-dependent performance is amazingly good,
we compare the fluid results for the time-dependent waiting time WF

S (t),
the probability of being served PF (served, t), and utilisation UF (t) of agents
for the schedule x5 to simulation results. The simulation results are based
on 500 simulation runs for the contact center staffed according to the same
schedule.

At the beginning of each time interval, whenever the number of agents
changes, the time-dependent performance measures change drastically. In the
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Fig. 5.9. Comparison of the time-dependent performance measures for the schedule
x5

morning and after the lunch break12 the waiting time and the utilisation
decreases, because more agents are available than needed for attending to
customers. The probability of being served is one. At the end of these intervals
the waiting time and utilisation increases, while the probability of being served
decreases, because more customers enter the system than can be served by
the agents on duty.

12 See Figure 3.10 on Page 44.
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The fluid and simulation results almost coincide. Solely during the period
of critically loading and the local minimum of the arrival rate function at
about 2 pm does the fluid approach slightly underestimate the waiting time
and overestimate the probability of being served and the utilisation.

Before the lunch break and in the evening the performance is poor at
the beginning of each time interval and becomes better at the end, because
the arrival rate function decreases during these periods. Consequently, the
number of customers entering the system is higher at the beginning of each
time interval than at the end13.

At the beginning and the end of the working day the performance fluctu-
ates much more strongly than during the periods of a high arrival rate. This
effect can be explained in a similar way to the higher stochasticity of small
system. If only few agents are on duty and the number of arrivals is small, an
arriving customer who finds all agents busy will have to wait relatively longer
until an agent finishes its service.

time

6 8 10 12 2 4 6 8

160

120

80

40

0

QS(time)

QO(time)

QF
S (time)

QF
O(time)

n
u
m

b
er

o
f
cu

st
o
m

er
s

Fig. 5.10. The number of customers in the system and the orbit for the schedule
x5

In addition to the performance measures we compare the results for the
number of customers in the system and the orbit calculated by the simulation,
i.e., QS(t) and QO(t), and the fluid approximation, i.e., QF

S (t) and QF
O(t), in

Figure 5.10. While the curves for the number of customers in the system are
almost indistinguishable, the number of customers in the orbit calculated by
the simulation differs from the number calculated by the fluid approximation.
In the simulation more customers are at any time in the orbit. However, the
number of customers in the orbit is small. The different results for the number
of customers in the orbit is caused by the neglected randomness in the fluid
approach. This is in line with the worse time-dependent performance mea-
sures during these time periods.

13 Similar results of the time dependent performance can be found in Green et al.
(2001) and Ingolfsson et al. (2003).
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schedule temp0 iterations time profit agents
xi [sec] [e] rel. increase number hours

x6 2 693 7 16 254.50 1.09% 213 1 239
x7 20 2 995 24 16 392.10 1.95% 226 1 228
x8 200 5 296 42 16 425.30 2.15% 263 1 232
x9 2 000 7 598 60 16 409.40 2.05% 237 1 230
x10 20 000 9 899 78 16 376.40 1.85% 235 1 234

Table 5.7. Influence of the cooling factor on the performance of the algorithm with
fmul = 0.999 and tempfinal = 1

Next we investigate the influence of the initial temperature on the heuris-
tic scheduling algorithm in Table 5.7. In contrast to the cooling factor the
influence of the initial temperature on the running time is smaller. If we in-
crease the initial temperature by multiplying by a factor of 10, the number
of iterations and the computing time increase by a fixed amount. A higher
temperature does not imply a better solution of the heuristic. The best result
was generated with an initial temperature of 200. Higher initial temperatures
allow too large inferior moves. While the temperature decreases in the course
of the calculation, the algorithm becomes unable to leave the inferior region
again. In the best schedule the most agents are scheduled. The number of
working hours is almost stable for all schedules. This implies that the best
schedule contains more short shifts than the other schedules.

shifts schedules

si ∈ S x0 x6 x7 x8 x9 x10

s1 1 0 0 0 1 1
s2 8 8 3 1 5 8
s3 7 11 7 3 7 11
s4 10 12 9 7 8 5
s5 16 11 7 7 7 8

s6 23 17 15 12 10 12
s7 24 20 14 13 14 13
s8 19 21 17 13 13 15
s9 5 20 16 15 14 16
s10 0 7 12 13 10 7

s11 1 2 8 10 5 2
s12 2 0 0 2 0 0
s13 3 1 2 2 0 1
s14 9 2 7 11 7 3
s15 13 10 13 13 11 9

shifts schedules

si ∈ S x0 x6 x7 x8 x9 x10

s16 8 15 16 18 14 20
s17 3 10 11 13 20 14
s18 0 6 14 15 12 12
s19 0 2 9 15 14 11
s20 0 0 2 3 5 4

s21 0 0 0 0 0 3
s22 0 0 0 0 0 0
s23 0 0 0 0 0 0
s24 0 0 0 0 0 0
s25 0 0 2 3 3 3

s26 0 2 5 9 11 7
s27 0 2 12 14 11 12
s28 0 3 5 11 11 9
s29 1 3 6 5 9 11
s30 9 12 10 6 11 13

s31 22 16 4 2 4 5

Table 5.8. Comparison of schedules of Table 5.7

Table 5.8 and Figure 5.11 present the associated schedules generated by
the heuristic optimisation algorithm. The schedules as well as the number of
agents staffed do not differ much. The maximum profit calculated for all initial
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Fig. 5.11. The number of agents per shift type and the influence of the initial
temperature temp0 on the performance of the heuristic algorithm

temp0 W F
agg(T )[sec] P F

agg(served, T ) UF
agg(T )

2 0.737 0.975 0.966
20 0.695 0.977 0.976
200 0.578 0.981 0.975

2 000 0.635 0.979 0.975
20 000 0.619 0.979 0.972

Table 5.9. Aggregated performance measures of the contact center configuration
for different initial temperatures

temperatures are again almost the same. Therefore, an initial temperature of
about 200 should be chosen.

Table 5.9 reports the performance of the contact center with the sched-
ule generated with the different initial temperatures. The waiting time in the
contact center is negligible and the probability of being served is almost one.
From the point of view of customers and managers the performance of the
contact center is very good. The agents might suffer from the high utilisation.
Although the profits of the different runs differ, the aggregated waiting time,
the aggregated probability of being served, and the aggregated utilisation are
almost identical.

schedule tempfinal iterations time profit agents
xi [sec] [e] rel. increase number hours

x11 100 693 6 16 054.50 -0.15% 207 1 239
x12 10 2 995 23 16 208.40 0.96% 226 1 243
x13 1 5 296 42 16 425.30 1.34% 263 1 232
x14 0.1 7 590 61 16 435.90 0.06% 237 1 230
x15 0.01 9 899 78 16 440.40 0.03% 237 1 230

Table 5.10. Influence of the cooling factor on the performance of the algorithm
with fmul = 0.999 and temp0 = 200
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Finally the influence of the final temperature is analysed for the contact
center with an unlimited number of agents who can be staffed. Table 5.10
reports the results from the heuristic optimisation procedure. High final tem-
peratures let the algorithm stop too early. If the final temperature is decreased
by multiplying by 0.1, the number of iterations and the running time increase
by a fixed amount. The influence of the final temperature on the number of
iterations and the running time is similar to the influence of the initial tem-
perature, which can also be derived from Equation (5.24) on Page 173 for the
number of iterations of the simulated annealing algorithm. The best solution
is found for a final temperature of 0.01. However, the increase of the profit
from a final temperature of 0.1 to a final temperature of 0.01 is very small.

shifts schedules

si ∈ S x0 x11 x12 x13 x14 x15

s1 1 2 2 0 0 0
s2 8 8 1 1 1 1
s3 7 7 4 3 3 3
s4 10 10 4 7 8 8
s5 16 16 15 7 7 7

s6 23 23 16 12 10 11
s7 19 24 18 13 13 12
s8 5 23 16 13 13 13
s9 0 19 15 15 15 15
s10 1 5 11 13 14 14

s11 2 0 11 10 9 9
s12 3 0 0 2 1 1
s13 9 2 4 2 2 2
s14 13 3 4 11 11 12
s15 8 9 23 13 13 12

shifts schedules

si ∈ S x0 x11 x12 x13 x14 x15

s16 3 13 13 18 17 17
s17 0 8 10 13 16 15
s18 0 3 5 15 14 16
s19 0 0 12 15 15 14
s20 0 0 1 3 3 3

s21 0 0 0 0 0 0
s22 0 0 0 0 0 0
s23 0 0 0 0 0 0
s24 0 0 0 0 0 0
s25 0 0 0 3 4 4

s26 0 0 6 9 10 10
s27 0 0 6 14 14 14
s28 0 0 6 11 8 9
s29 1 1 6 5 8 7
s30 9 9 6 6 5 5

s31 22 22 9 2 3 3

Table 5.11. Comparison of schedules of Table 5.10
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Fig. 5.12. The number of agents per shift type and the influence of the final tem-
perature tempfinal on the performance of the heuristic algorithm
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In Table 5.11 and Figure 5.12 the schedules of the different solutions are
shown. The schedule for tempfinal = 0.1 and tempfinal = 0.01 are almost
identical. If the final temperature is high, almost no changes happen. Then a
lot of long kinds of shifts are staffed. If the final temperature is smaller several
long shifts are substituted by short shifts, which are more flexible. However,
more agents are needed.

tempfinal W F
agg(T )[sec] P F

agg(served, T ) UF
agg(T )

100 1.039 0.965 0.961
10 0.744 0.975 0.963
1 0.578 0.981 0.975

0.1 0.592 0.981 0.976
0.01 0.582 0.981 0.976

Table 5.12. Aggregated performance measures of the contact center configuration
for different final temperatures

The aggregated performance measures in Table 5.12 stress the high quality
of service of the contact center. As before, the waiting times are negligible and
almost all customers are served. The agents are very highly utilised.

5.4.2 A Limited Total Number of Agents

Next we investigate the influence of the algorithm parameters on the perfor-
mance of the solution and the algorithm, when the total number of agents M
to be staffed is limited. We assume a maximum number M of 200 agents.
As in the previous section we assume that the arrival rate function is given
by Equation (3.13) on Page 29 and Figure 4.2 on Page 79 with parameters
according to (4.12) on page 79. The other parameters are given in Table 5.1
on Page 166. Then the initial schedule x0 found by the initial procedure is
given by

x0 = (1, 8, 7, 10, 16, 23, 24, 23, 19, 5, 0,0,

2, 3, 9,11, 8,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9,19).
(5.28)

The bold numbers indicate the differences from the initial schedule (5.27) on
Page 176. The profit gained by this schedule is 15 948.20e and the 200 agents
work altogether 1 208 hours, i.e., the profit reduces by 130.30e and the num-
ber of working hours by 31.

In Table 5.13 the cooling factor is varied. The influence of the cooling
factor on the performance of the algorithm and the solution is similar. The
closer the cooling factor is to one the more iterations have to be done and
the more slowly the temperature reduces. The best solution was found for the
highest cooling factor. Except for schedule x17, all schedules lead to a total
number of working hours of 1 208 hours. In schedule x17 the 200 agents work
1 211 hours in total. The increase of the profit function is even smaller than
in the case of an unlimited total number of agents.
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schedule xi fmul iterations time [sec] profit [e] agents

x16 0.9 73 < 1 15 956.10 200
x17 0.99 757 5 16 019.50 200
x18 0.999 7 598 44 16 131.50 200
x19 0.9999 76 006 427 16 143.50 200
x20 0.99999 760 087 4625 16 147.50 200

Table 5.13. Influence of the cooling factor on the performance of the algorithm
with temp0 = 200 and tempfinal = 0.1
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Fig. 5.13. The number of shifts of the schedules calculated by the heuristic algo-
rithm with the different cooling factors

fmul W F
agg(T )[sec] P F

agg(served, T ) UF
agg(T )

0.9 1.582 0.947 0.974
0.99 1.492 0.950 0.978
0.999 1.400 0.953 0.980
0.9999 1.400 0.953 0.980
0.99999 1.398 0.953 0.980

Table 5.14. Aggregated performance measures of the contact center configuration
for different cooling factors and a limited total number of agents

Figure 5.13 compares the different schedules calculated by the algorithm
and Table 5.14 reports the aggregated performance measures. Obviously, the
different schedules in Figure 5.13 do not differ much, if the total number of
agents is limited. Furthermore, more shifts of the long kind are scheduled, be-
cause those shifts cover more time intervals. Although the number of agents
is limited, the performance of the system is still very good as shown in Ta-
ble 5.14. Almost all customers are served and the waiting time is diminishingly
small. The only disadvantage is that the agents might suffer as the aggregated
utilisation is almost one.

Therefore, it might be more useful to add an constraint to the schedul-
ing problem, which limits the aggregated utilisation or fixes a minimum total
number of agents, so that the agents do not suffer so much.

The influence of the initial and final temperature on the performance of
the algorithm for the case of a limited total number of agents is equal to the
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schedule xi tempfinal iterations time [sec] profit [e] agents

x21 2 6905 6 16 102.10 200
x22 20 8512 24 16 138.70 200
x23 200 8003 44 16 131.50 200
x24 2 000 8290 64 16 140.50 200
x25 20 000 8513 78 16 119.80 200

Table 5.15. Influence of the cooling factor on the performance of the algorithm
with fmul = 0.999 and tempfinal = 0.1

case of an unlimited number. Therefore, solely the results of the algorithm
and for the aggregated performance measures are presented.

In Table 5.15 the results for different initial temperatures are shown. Amaz-
ingly, the profit is higher if the initial temperature temp0 is 20 or 2 000. How-
ever, the difference between the schedules and the gained profit is very small.
In the three cases x22, x23, and x24 with the highest profit, 200 agents work
1 208 hours in total whereas in the other two cases they work 1211 hours.

temp0 W F
agg(T )[sec] P F

agg(served, T ) UF
agg(T )

2 1.422 0.953 0.977
20 1.408 0.953 0.980
200 1.423 0.953 0.979

2 000 1.406 0.953 0.980
20 000 1.395 0.954 0.977

Table 5.16. Aggregated performance measures of the contact center configuration
for different cooling factors and a limited total number of agents

Table 5.16 reports the aggregated waiting time, the aggregated probabil-
ity of being served, and the aggregated utilisation of agents. The waiting time
measured in seconds is negligible. The utilisation of agents is almost one and
95.3% of all entering customers are served. The number of customers entering
the system consists of both retrials and primary calls, wherein the number of
recalls is very low.

schedule xi tempfinal iterations time [sec] profit [e] agents

x26 100 7598 6 15 956.10 200
x27 10 5989 24 15 959.30 200
x28 1 5296 44 16 131.50 200
x29 0.1 4891 60 16 141.10 200
x30 0.01 4603 78 16 141.10 200

Table 5.17. Influence of the cooling factor on the performance of the algorithm
with fmul = 0.999 and temp0 = 200

In Table 5.17 the results of the optimisation heuristic for different final
temperatures are presented. Similar to Table 5.10 on Page 183 we chose fi-
nal temperatures between 0.01 and 100. The results for final temperatures
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tempfinal of 0.01 and 0.1 are identical, i.e., a smaller final temperature does
not lead to any improvement. If the final temperature is very low, only few
inferior moves are allowed such that the algorithm may be trapped in a local
optimum. The best solutions were found for the lowest and second to lowest
final temperature. In these and the other cases except for schedule x27, the
200 agents again work 1 208 hours in total. In schedule x27 1202 hours are
distributed over the agents.

tempfinal W F
agg(T )[sec] P F

agg(served, T ) UF
agg(T )

100 1.681 0.944 0.975
10 1.780 0.941 0.978
1 1.423 0.953 0.979

0.1 1.405 0.953 0.980
0.01 1.405 0.953 0.980

Table 5.18. Aggregated performance measures of the contact center configuration
for different final temperatures and a limited total number of agents

The aggregated performance measures are reported in Table 5.18. As ex-
plained before, the performance of the contact centers is amazingly good.
Nearly all customers are served and the waiting time is again negligibly small.

In this section we have shown that the heuristic optimisation algorithm
works well. The initial schedule determined by the initial procedure is already
a good solution to the optimisation problem. If the total number of agents
is limited, the determined schedules are quite similar. The initial and final
temperature as well as the cooling factor should be carefully adjusted. A high
cooling factor leads to better solution but also to a very long running time
of the algorithm. The influence of the initial and final temperature is less
important. A too high initial temperature allows for too many inferior moves,
so that the heuristic algorithm may become trapped in a local optimum. A too
low final temperature increases the running time, but leads to no significant
improvements of the solution. The time the algorithm needs for optimisation
is independent of the dimension of the contact center. If the contact center is
very small, the optimisation should be done more carefully, as the performance
is much more sensitive to changes in the parameters.

5.5 Shift Scheduling for a Contact Center with

Heterogeneous Customers and Agents

5.5.1 Formulation of a Generic Shift Scheduling Problem

In this section we aim to formulate the simultaneous staffing and shift schedul-
ing problem for the contact center model depicted in Figure 4.51 on Page 120
and analysed in Section 4.2. In this case with three different types of agent
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groups, the row vector x representing the schedule consists of three row vec-

tors x(1) = (x
(1)
1 , . . . , x

(1)
K1

), x(2) = (x
(2)
1 , . . . , x

(2)
K2

), and x(G) = (x
(G)
1 , . . . , x

(G)
KG

)
with K = K1 + K2 + KG, i.e.,

x = (x(1), x(2), x(G)). (5.29)

The first vector x(1) describes the number of type-1 specialists working ac-
cording to the shift types, the second vector x(2) contains the numbers of
type-2 specialists and the third x(G) the number of generalists assigned to the
respective shift type.

If different shifts for each agent type are considered, the set of all possible
shifts S may consist of three subsetsS1 =

{

s
(1)
1 , . . . , s

(1)
K1

}

, (5.30a)S2 =
{

s
(2)
1 , . . . , s

(2)
K2

}

, (5.30b)

and SG =
{

s
(G)
1 , . . . , s

(G)
KG

}

(5.30c)

for each type of agents. Otherwise K1, K2, and KG are identical and S reduces
to S1. In the optimisation procedure we order the shift types equivalently to
the schedule vector, i.e., the shift vectors of type-1 specialists have number 1
to K1, the shift vectors of type-2 specialists have number K1 + 1 to K1 + K2

and the shift vectors of generalists have number K1 + K2 + 1 to K. Type-1-
specialists earn an hourly wage w(1), type-2 specialists w(2), and generalists
w(G). By means of the hourly wages of each agent group we are able to calcu-

late the costs c
(i)
k , i = 1, 2, G, for each shift type k, k = 1, . . . , Ki, according

to Equation (5.7) on Page 163.
Two different customer classes are considered in this contact center model

shown in Figure 4.51 on Page 120, which leads to different revenues for served
customers. Served customers of the first type lead to a revenue of r1 and served
customers of type 2 yield a revenue of r2. Both customer classes cause costs
for occupied lines which are assumed to be equal without loss of generality
for both customer classes, because the customers in the system cannot be
distinguished from outside by the telephone provider. If different telephone
numbers for the two customer classes are assumed, the costs for the occupied
lines could differ as well. The other parameters of the contact center are as
described on Page 120.

By means of these parameters and the notation used in Section 4.2 on
Pages 119ff. we are able to formulate the profit function of the contact center
with two customer classes and three kinds of agents. As explained on Page 164
for the contact center with homogeneous agents and customers the profit
function is given by
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profit(x, T ) =

T∫

t0

r1µ1 min{QF
1 (x, t), N1(x, t)}+ r1µ1B

F
1 (t) (5.31)

+ r2µ2 min{QF
2 (x, t), N2(x, t)}+ r2µ2B

F
2 (t)

− ℓ
(
QF

1 (x, t) + QF
2 (x, t)

)
dt

−
K1∑

k=1

c
(1)
k x

(1)
k −

K2∑

k=0

c
(2)
k x

(2)
k −

KG∑

k=0

c
(G)
k x

(G)
k .

The constraints of the optimisation problem are similar to those illustrated
in Section 5.1. The only difference between this and the optimisation problem
formulated in (5.12) on Page 165 is that here the different classes of customers
and agents lead to additional constraints.

First of all, the initial value problem in Equation (5.12b) and (5.12c) is
enlarged to the problem analysed in Subsection 4.2.5 on Pages 131ff, i.e., we
have four instead of two differential equations and initial value conditions. For
each agent group the number of available agents may be limited. We assume
that the maximum number of agents of each type is limited by M1, M2, and
MG, respectively. The number of agents of each type in the different time
intervals are calculated according to Equation (5.6) on Page 163. Further-
more, the number of staffed shifts in the schedule x must be non-negative
and integer-valued.

In order to make notation shorter in the formulation of the staffing and
shift scheduling problem we use the departure rate d1(t) and d2(t) given in
Equations (4.18) and (4.21) on Pages 121f. as well as the number of waiting
customers LF

1 (t) and LF
2 (t) given by Equations (4.17) and (4.22) on Page 123f.

Consequently, the staffing and shift scheduling optimisation problem in the
case of the contact center discussed in Section 4.1 on Pages 73ff. can be for-
mulated as follows:

max
x

profit(x, T ) (5.32a)

subject to

d

dt
QF

1 (x, t) = λ1(t) + γ1Q
F
O1(x, t)− d1(t)

d

dt
QF

2 (x, t) = λ2(t) + γ2Q
F
O2(x, t)− d2(t)

d

dt
QF

O1(x, t) = p1ν1L
F
1 (t)− γ1Q

F
O1(x, t)

d

dt
QF

O2(x, t) = p2ν2L
F
2 (t)− γ2Q

F
O2(x, t),

(5.32b)

QF
1 (t0) = 0, QF

2 (t0) = 0, QF
O1(t0) = 0, QF

O2(t0) = 0 (5.32c)
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Ni(x, t) =

Ki∑

k=0

s
(i)
k (t)x

(i)
k for all t ∈ [t0, T ] and i = 1, 2, G, (5.32d)

Ki∑

k=0

x
(i)
k ≤Mi for i = 1, 2, G, (5.32e)

x
(i)
k ∈ N0 for all k = 1, . . . , K and i = 1, 2, G. (5.32f)

This optimisation problem leads to the same problems with respect to
solving as the simpler model discussed before. The occasional non-concavity
of the profit function14 becomes even more obvious as well as the non-linearity
of the problem.

5.5.2 Modification of the Heuristic Optimisation Procedures

In this part we briefly describe how we adjusted the opening procedure of
Subsection 5.3.1 and the parameters of the problem, so that we can easily
apply the simulated annealing algorithm explained in Subsection 5.3.2.

Similar to the homogeneous case the algorithm determines the average
arrival rates for type-1 λ1,j and type-2 customers λ2,j in each time interval
j = 1, . . . ,J according to Equation (5.16) on Page 170 first. Additionally,
three vectors λG, θ1, and θ2 are introduced which have the same dimension
as λ1 and λ2. The entries of the vector λG are the sum of the average arrival
rates of type-1 and type-2 customers, i.e.,

λG,j = λ1,j + λ2,j for all j = 1, . . . ,J . (5.33)

The other two vectors are needed to consider the priority rule. The entries
of the first vector θ1 have value one, if the generalists serve only type-1 cus-
tomers. Otherwise the entries give the fraction of generalists who could serve
type-1 customers, i.e.,

θ1,j =







1, λ1,j ≥ δµ1

λ1,j

λG,j

, otherwise
for all j = 1, . . . ,J . (5.34)

Contrarily, the vector θ2 is defined to have entries zero if θ1,j is one. Otherwise
the entry denotes the fraction of generalists who could serve type-2 customers.
These vectors are needed to calculated the relative profit margins of the shifts
associated with generalists and to update the average residual arrival rate if
a generalist is staffed in the opening procedure. Therefore θ1 and θ2 have to
be recalculated in each iteration.

Next the relative profit margins marg
(

λi, s
(i)
k

)

for k = 1, . . . , Ki and i =

1, 2, G are determined. For the shifts associated with the specialists these

14 Compare the Figures 4.84-4.88 on Pages 155-157.
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margins are calculated according to Equation (5.19) on Page 171. In order
to compute the profit margins of the shifts associated with generalists, the
different arrival and service rates as well as the different revenues for type-1
and type-2 customers have to be considered. For this purpose we need the
vectors θ1 and θ2. By means of these vectors an average service rate

µG,j = θ1,jµ1 + θ2,jµ2 for all intervals j = 1, . . . ,J (5.35)

is estimated, which is compared to the average total arrival rate λG,j in each
interval. If the average service rate is smaller than or equal to the average
total arrival rate, i.e., µG,j ≤ λG,j, the profit margin in interval j, j = 1, . . .J
is given by

marg
(

λG,j , s
(G)
k,j

)

=
(

r1θ1,jµ1 + r2θ2,jµ2 − ℓ− w(G)
)

δs
(G)
k,j (5.36)

for all k = 1, . . . , K. Otherwise the profit margin is computed according to

marg
(

λG,j , s
(G)
k,j

)

=

(

r1θ1,jλ1,j + r2θ2,jλ2,j − ℓ
λG,j

µG,j

− w(G)

)

δs
(G)
k,j (5.37)

for all k = 1, . . . , K. The profit margin for a generalist working according to

shift s
(G)
k , k = 1, . . . , KG is the sum of these partial margins divided by the

length of the shift, i.e.

marg
(

λG, s
(G)
k

)

=
1

|s(G)
k |

J∑

j=1

marg
(

λG,j, s
(G)
k,j

)

. (5.38)

If the total numbers of agents M1, M2, and MG are limited and the number
of staffed agents of one class has reached the respective number, the margins
are set to be −1. Consequently, no agents of this class are staffed any more.

Similar to the opening procedure for the homogeneous case, the profit

margins are compared and the shift with the highest margin marg
(

λi, s
(i)
k

)

is staffed if the maximum is unique. If the maximum is not unique, then the setK of pairs (κ, ι) identifying the maximum profit margins contains more than
one element where κ refers to the shift type and ι to the agent type. In this
case the accumulated work for the shift and agent type pairs (k, i) from the
set K with the highest margin is determined by means of Equation (5.21) on
Page 172. In the case of generalists the average total arrival rates λG,j and the
average service rates µG,j are chosen for the calculation. Then the shift and
agent type with the highest cumulative work is staffed. Finally, the residual
average arrival rates have to be updated. Algorithm 4 shows the adjusted
initial procedure.

For the Algorithm 2 on Page 173 in Subsection 5.3.2 only the function
operation applicable described in Algorithm 3 on Page 175 in lines 15-26
has to be adjusted with respect to the maximum number of agents of each
type M1, M2, and MG. Therefore, we have to distinguish whether the indices
i and j are between 1 and K1 for type-1 specialists, between K1 + 1 and
K1 +K2 for type-2 specialists, or between K1 +K2 +1 and K for generalists.
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Algorithm 4 Modified Initial Procedure

Require: x = 0
1: for j = 1, . . . ,J do ⊲ Estimation of the average arrival rates
2: Determine λ1,j and λ2,j according to (5.16)
3: end for

4: repeat
5: for j = 1, . . . ,J do
6: λG,j = λ1,j + λ2,j ⊲ Calculation of the total arrival rates
7: if λ1,j ≥ µ1 then ⊲ Calculation of θ1 and θ2

8: θ1,j = 1, θ2,j = 0
9: else

10: θ1,j = λ1,j/λG,j , θ2,j = λ2,j/λG,j

11: end if
12: µG,J = θ1,jµ1 + θ2,jµ2 ⊲ Calculation of the average service rates
13: end for

14: for k = 1, . . . , K1 do ⊲ Calculation of the relative profit margins
15: if

PK1

k=1 x
(1)
k ≤M1 then

16: Determine marg
“

λ1, s
(1)
k

”

according to (5.19)

17: else
18: marg

“

λ1, s
(1)
k

”

= −1

19: end if
20: end for

21: for k = 1, . . . , K2 do
22: if

PK2

k=1 x
(2)
k ≤M2 then

23: Determine marg
“

λ2, s
(2)
k

”

according to (5.19)

24: else
25: marg

“

λ2, s
(2)
k

”

= −1

26: end if
27: end for

28: for k = 1, . . . , KG do
29: if

PKG
k=1 x

(G)
k ≤MG then

30: Determine marg
“

λG, s
(G)
k

”

according to (5.36), (5.37), and (5.38)

31: else
32: marg

“

λG, s
(G)
k

”

= −1

33: end if
34: end for

35: K =



(κ, ι)

˛

˛

˛

˛

marg
“

λι, s
(ι)
κ

”

= max



marg
“

λi, s
(i)
k

”

˛

˛

˛

˛

k = 1, . . . , Ki,
i = 1, 2, G

ffff

Continued on the next page
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Algorithm 4 Modified Initial Procedure – continued

36: if (κ, ι) is not unique, i.e., |K| > 1 then
37: for (k, i) ∈ K do ⊲ Calculation of the accumulated work
38: if i = 1 or i = 2 then

39: cum work
“

λi, s
(i)
k

”

=

J
X

j=1

λi,j

µi

s
(i)
k,j

40: else

41: cum work
“

λG, s
(G)
k

”

=

J
X

j=1

λG,j

µG,j

s
(G)
k,j

42: end if
43: end for
44: (κ, ι) = (k, i) ∈ K ˛˛˛cum work

“

λι, s
(ι)
κ

”

= max
n

cum work
“

λi, s
(i)
k

”o

45: end if

46: x(ι)
κ ← x(ι)

κ + 1

47: for j = 1, . . . ,J do ⊲ Calculation of the residual arrival rate
48: if ι = 1 or ι = 2 then
49: λι,j ← max

n

0, λι,j − µιs
(ι)
κ,j

o

50: else
51: λ1,j ← max

n

0, λ1,j − µ1θ1,js
(ι)
κ,j

o

52: λ2,j ← max
n

0, λ2,j − µ2θ2,js
(ι)
κ,j

o

53: end if
54: end for

55: until

8

>

<

>

:

marg
“

λi, s
(i)
k

”

< 0 for all k = 1, . . . Ki, i = 1, 2, G

or
PKi

k=1 x
(i)
k ≥Mi for all i = 1, 2, G

9

>

=

>

;

56: Calculate: profit(xcurrent)

5.5.3 Numerical Results

In this subsection we present some results for the contact center with hetero-
geneous structures. We concentrate on the influence of the retrial and service
rates linked to the wages, in order to show that the opening procedure as well
as the main improvement algorithm work fine.

For this purpose, we assume the 31 shift vectors shown in Table 5.2 on
Page 167 for each agent group, i.e., the sets of shifts S1. S2, and SG are equal.
As we assume that the contact center opens at 7 am and closes at 8 pm, the
shift vectors are 26-dimensional. The schedule x is a 93-dimensional vector,
because three types of agent are assumed who can be staffed according to
31 different shifts. The different time-dependent arrival rate functions of type-
1 and type-2 customers are given by the three cases discussed in Section 4.2
on Pages 132f.15.

15 See Equations (4.44) through (4.47) and Figures 4.52 and 4.53 on Page 132.
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Service rate

µ1 µ2 µ1 µ2

60 h−1 60 h−1 50 h−1 50 h−1

60 h−1 60 h−1

Abandonment and retrial parameters

ν1 ν2 γ1 γ2 p1 p2

120 h−1 120 h−1 0.5 h−1 0.5 h−1 0.5 0.5

12 h−1 12 h−1

Revenue and costs

r1 r2 ℓ w(1) w(2) w(G)

0.5e 0.5e 6e/h 10e/h 10e/h 12e/h

11e/h 11e/h 10e/h

Table 5.19. Parameters of the contact centers in the shift scheduling problem

The parameters of the contact center model are given in Table 5.19. The
values in the first line below the parameters are the default values of the
contact center model, while the values in the second line are alternative values.
These values were used in the investigation of the influence of the parameters
on the performance of the contact center.

For the heuristic optimisation algorithm we use an initial temperature of
temp0 = 200, final temperature of tempfinal = 0.1 and a cooling factor of
fmul = 0.99999, although this leads to long computing times. As shown in
Section 5.4, good solutions can already be calculated with a cooling factor
of fmul = 0.999, which leads to a running time of less than 1 minute on the
notebook computer used for calculation.

First of all the total numbers of agents M1, M2, and MG are assumed to
be big enough, such that they can be judged as unlimited. Afterwards we
suppose that the maximum total numbers of type-1 and type-2 specialists are
200 and the maximum number of generalists is 50. For the initial solution the
retrial rates γ1 and γ2 do not matter much because they are not considered
in the initial procedure. However, the information is needed to calculate the
profit of the initial schedule at the end of the opening procedure.

schedule xinitial,1

γi profit [e] W F
i,agg(T ) P F

i,agg(s, T )
PKi

k=1 x
(i)
k UF

i,agg(T )

1 0.5 30471.60 0.623 sec 0.979 198 0.958

2 0.5 0.623 sec 0.979 198 0.958

G 0 0.000

1 12.0 30321.50 0.841 sec 0.972 198 0.956

2 12.0 0.841 sec 0.972 198 0.956

G 0 0.000

Table 5.20. Solutions of the initial procedure for a contact center with equal arrival
rate functions for both customer classes and different retrial rates
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If both types of customers have identical arrival rate functions, the ini-
tial solution calculated by the initial procedure is already very good. The
retrial rate has a significant influence on the quality of the initial solution as
shown in Table 5.20. If the retrial rates are higher, i.e., the sojourn times in
orbit are shorter, the profit, probability of being served, and the utilisation
decrease, while the waiting time increases. In the case of the identical arrival
rate functions considered here, fewer than 200 specialists of each type are
needed. Therefore the initial solutions for limited and unlimited total num-
bers of agents are identical.

The performance of the contact center with the initial schedules is very
high. Almost all customers are served and the aggregated waiting times are
negligible. The utilisation of agents is high. In both cases no generalists are
staffed, because the specialists work faster and are cheaper. Therefore, the
estimated relative profit margins of the shifts associated with generalists
are always smaller than the relative profit margins of the other shifts. Af-
ter 198 shifts with specialists of each type are staffed, all the relative profit
margins are negative and the opening procedure is stopped.

Schedule γi profit W F
i,agg(T ) P F

i,agg(s, T )
PKi

k=1 x
(i)
k UF

i,agg(T )

xn [ h−1] [e] [sec]

1 0.5 31 082.20 0.461 0.985 257 0.977

x1 2 0.5 0.466 0.985 251 0.977

G 0 0.000

1 12 31 070.00 0.578 0.981 252 0.978

x2 2 12 0.543 0.982 254 0.977

G 0 0.000

1 0.5 31 079.30 0.481 0.984 262 0.978

x3 2 12 0.540 0.982 251 0.977

G 0 0.00

Table 5.21. Solutions of the optimisation heuristic for a contact center with equal
arrival rate functions for both customer classes, unlimited total number of agents
and different retrial rates

Compared to the initial solution all performance measures have improved
and more shifts of specialists have been scheduled, because a lot of long shifts
have been substituted by short shifts. Therefore more shifts are needed. The
profit increases by 2% in the case of low retrial rates and by 2.5% in the case
of high retrial rates. The optimum profit for all retrial rates are almost equal,
i.e., the influence of the retrial rate decreases if the schedule is optimised.
Furthermore, no generalists have been staffed, i.e., the contact center with
equal arrival rates can be planned like two isolated contact centers.

Table 5.22 presents the resulting schedules referring to the contact center
performance values in Table 5.21. As no shifts for generalists are staffed,
the vector x(G) is not shown. These schedules are similar to the schedules
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Shift schedule xinitial,1 schedule x1 schedule x2 schedule x3

sk ∈ S x
(1)
initial x

(2)
initial x

(1)
1 x

(2)
1 x

(1)
2 x

(2)
2 x

(1)
3 x

(2)
3

s1 1 1 0 0 0 0 1 1
s2 8 8 0 3 0 0 1 1
s3 5 5 1 5 3 1 3 2
s4 9 9 3 4 3 5 1 5
s5 16 16 1 3 3 2 1 2

s6 21 21 3 4 3 3 2 3
s7 23 23 4 5 4 4 3 5
s8 22 22 5 7 7 5 4 7
s9 18 18 9 9 9 9 7 8
s10 4 4 10 8 11 11 8 11

s11 1 1 7 4 6 8 5 7
s12 1 1 1 0 1 0 1 0
s13 2 2 1 1 1 1 0 0
s14 4 4 10 6 9 10 7 9
s15 10 10 15 13 14 14 16 14

s16 11 11 21 18 18 19 20 19
s17 8 8 23 21 24 23 25 23
s18 4 4 23 24 23 23 24 22
s19 0 0 21 17 18 20 21 18
s20 0 0 9 10 10 10 12 11

s21 0 0 2 4 1 1 3 0
s22 0 0 1 0 2 0 1 0
s23 0 0 1 0 0 2 1 1
s24 0 0 4 1 2 2 4 2
s25 0 0 12 10 11 11 13 11

s26 0 0 17 18 17 17 18 17
s27 0 0 21 18 19 20 21 18
s28 0 0 16 15 16 17 19 17
s29 0 0 9 12 9 9 11 10
s30 8 8 5 7 6 4 7 4

s31 22 22 2 4 2 3 2 3

Table 5.22. Schedules calculated by the optimisation heuristic for the contact center
with equal arrival rate functions, unlimited total number of agents and different
retrial rates

calculated in the Section 5.4 shown in Tables 5.5, 5.8, and 5.11 on Page 177f.
for the contact center with a single class of customers and homogeneous agents.
The improvement algorithm substitutes a lot of long shifts by short shifts so
that more agents are staffed.

If we limit the total number of agents of each type such that at most
200 specialists of each type and 50 generalists can be scheduled, no general-
ists are staffed in the resulting schedules either. The difference of the profit
calculated from the initial schedule and the final schedule of the optimisation
heuristic has become smaller. Similar to the unlimited case the profit and the
utilisation of the different agent groups have increased as well as the aggre-
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Schedule γi profit W F
i,agg(T ) P F

i,agg(s, T )
PKi

k=1 x
(i)
k UF

i,agg(T )

xn [ h−1] [e] [sec]

1 0.5 30 919.30 0.692 0.977 200 0.978

x4 2 0.5 0.692 0.977 200 0.978

G 0 0.000

1 12 30 787.70 0.831 0.972 200 0.975

x5 2 12 0.829 0.972 200 0.975

G 0 0.000

Table 5.23. Solutions of the optimisation heuristic for equal arrival rate functions
for both customer classes, limited total numbers of agents and different retrial rates

gated waiting time. The probability of being served has slightly decreased.
However, the performance of the solution remains remarkably good as shown
in Table 5.23. The difference between the case of unlimited numbers of agents
and limited numbers of agents is very small.

The influence of the retrial rate is very small, because almost all customers
are served at their first attempt. The statements made on the influence of the
retrial parameters in Sections16 4.1 and 4.2 are confirmed by the results shown
here.

Next we compare the different initial solutions with respect to the profit for
different arrival rate functions, limited and unlimited total numbers of agents,
service rates of generalists, and wages of all agents in Tables 5.24 and 5.25.
As the retrial rates do not influence the schedule of the initial solution, we
assume identical retrial rates of both customer classes γ1 = γ2 = 0.5 h−1. The
other parameters are given in Table 4.4 on Page 133.

Schedule Agents Wages service rates Profit

xinitial 1 (M1) 2 (M2) G (MG) 1 2 G µ1 µ2 e

2 191 (∞) 206 (∞) 20 (∞) 10 10 12 50 50 30 633.40

3 190 (200) 200 (200) 21 (50) 10 10 12 50 50 30 623.30

4 0 (∞) 5 (∞) 397 (∞) 10 10 10 60 60 31 134.70

5 0 (∞) 0 (∞) 483 (∞) 11 11 10 50 50 23 613.50

Table 5.24. Comparison of the initial solutions with respect to the profit for differ-
ent arrival rate functions presented in the first picture of Figure 4.53 on Page 132

If the arrival rate functions of the customer classes differ, in the opening
procedure additional generalists are staffed, even if the number of agents is
unlimited and the generalists are more expensive. The cheaper and the faster
generalists are compared to the specialists, the more generalists are staffed.

16 See Pages 83-86, 90-91, 94-96, 96-98, 100, 101, and 105 for the influence of the
retrial parameters of type-1 customers and Pages 138-150 for the influence of the
retrial parameters of type-2 customers.
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Schedule Agents Wages Service rates Profit
xinitial 1 (M1) 2 (M2) G (MG) 1 2 G µ1 µ2 e

6 192 (∞) 200 (∞) 20 (∞) 10 10 12 50 50 32 162.80
6 192 (200) 200 (200) 20 (50) 10 10 12 50 50 32 162.80
7 0 (∞) 7 (∞) 401 (∞) 10 10 10 60 60 32 583.50
8 0 (∞) 0 (∞) 501 (∞) 11 11 10 50 50 24 532.30

Table 5.25. Comparison of the initial solutions with respect to the profit for differ-
ent arrival rate functions presented in the second picture of Figure 4.53 on Page 132

The advantage of generalists is their ability to serve both customer classes.
This advantage plays a major role if the arrival rate functions of the customers
classes differ, i.e,, the minimum and maximum arrival rates are reached at
different times of the day.

Based on these initial solutions the improvement algorithm searches for a
better solution. The results of the optimisation heuristic for the initial sched-
ules in Table 5.24 are given in Tables 5.26, 5.27, 5.28, and 5.29.

Schedule Mi profit W F
i,agg(T ) P F

i,agg(s, T )
PKi

k=1 x
(i)
k UF

i,agg(T )

xn [e] [sec]

1 ∞ 31 666.40 0.439 0.985 274 0.981

x6 2 ∞ 0.808 0.971 244 0.964

G ∞ 4 0.808

1 200 31 193.90 0.756 0.975 200 0.982

x7 2 200 0.765 0.939 200 0.972

G 50 6 0.835

Table 5.26. Solutions of the optimisation heuristic for a contact center with differ-
ent arrival rate functions presented in the first picture of Figure 4.53 on Page 132
and retrial rate γ1 = γ2 = 0.5 h−1

In Table 5.26 the solution for limited and unlimited total numbers of agents
are compared. Even in the case of unlimited numbers of agents some shifts
for generalists are scheduled, although they work more slowly and are more
expensive than the specialists. However, the major part of all customers is
served by the specialists of their class. The performance of the contact center
is high and the profit is only slightly higher in the case of unlimited total
numbers of agents. If the number of agents is limited again, more long shifts
are scheduled. The profit increases by 3.4% and by 1.9% compared to the
initial solution, i.e., the initial solution is already very accurate.

In order to show that not only the aggregated performance measures but
also the time-dependent performance measures in the case of a limited number
of agents are very accurate, we show the time-dependent waiting time and
probability of being served for type-2 customers for the final schedule x7 in
Figure 5.14. The results for type-1 customers are similar to those presented
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Fig. 5.14. Comparison of the approximation and simulation results for the time-
dependence performance measures of type-2 customers for schedule x7

in Figure 5.9 on Page 180. If the contact center is staffed according to this
schedule, it operates almost all the time at critical load. The waiting time
and the probability of being served are approximated quite accurately. At the
beginning and the end of the working day, when only a few customers call
and few agents are on duty, the performance becomes worse. However, the
customers have to wait only for few seconds and almost all customers are
served during the day. The spikes in the curves are due to the fact that the
numbers of agents can only be changed at the beginning of each time interval.

In addition to the time-dependent performance measures for type-2 cus-
tomers we show the time-dependent utilisation of type-2 specialists and of
generalists in Figure 5.15. While the utilisation of type-2 specialists is quite
well approximated by the fluid approach, the results of the approximation
and the simulation for the time-dependent utilisation of generalists differ ex-
tremely. This can be explained by the fluid assumption. In the simulation the
customers are discrete so they remain with the generalists if their service has
started. Therefore, the utilisation of the generalists is more constant. In the
fluid approximation the customers are assumed to be continuous so that every
part of a customer can be served. Consequently, one part might be served by
a generalist while the other part is served by a specialist. As customers prefer
to be attended to by a specialist, the generalists become available more often.

Comparing Tables 5.26 and 5.27 shows that the situation of type-2 cus-
tomers improves with respect to the waiting time, if more calls of type-2
customers arrive later than the majority of the prioritised type-1 customers.
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Fig. 5.15. Comparison of the approximation and simulation results for the time-
dependence utilisation of type-2 specialists and generalists

Schedule Mi profit W F
i,agg(T ) P F

i,agg(s, T )
PKi

k=1 x
(i)
k UF

i,agg(T )

xn [e] [sec]

1 ∞ 33 175.40 0.449 0.985 280 0.979

x8 2 ∞ 0.625 0.978 248 0.970

G ∞ 2 0.835

1 200 32 730.50 0.877 0.971 200 0.982

x9 2 200 1.177 0.960 200 0.969

G 50 3 0.784

Table 5.27. Solutions of the optimisation heuristic for a contact center with differ-
ent arrival rate functions presented in the second picture of Figure 4.53 on Page 132
and retrial rate γ1 = γ2 = 0.5 h−1

The reason for this result is that type-1 customers displace type-2 customers
from the generalists. Then the value of the profit function increases as well,
while the probability of being served and the utilisation stays almost the same.

Finally, we vary the service rate of generalists and the wages of agents
to compare the influence of these parameters on the performance when the
arrival rates of the two customer classes differ. For this purpose, we assume
that the maximum number of agents is practically unlimited. Table 5.28 and
Table 5.29 report the performance of the contact center with the resulting
schedules.
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Schedule wi µi, µi profit W F
i,agg(T ) P F

i,agg(s, T )
PKi

k=1 x
(i)
k UF

i,agg(T )

xn [e] [ h−1] [e] [sec]

1 10 60 31 972.80 0.006 0.999 179 0.997

x10 2 10 60 0.980 0.736 143 0.998

G 10 60 200 0.946

60

1 11 60 29 395.00 0.318 0.989 272 0.987

x11 2 11 60 0.818 0.956 237 0.973

G 10 50 19 0.853

50

Table 5.28. Solutions of the optimisation heuristic for a contact center with differ-
ent arrival rate functions presented in the first picture of Figure 4.53 on Page 132
and retrial rate γ1 = γ2 = 0.5 h−1

If the generalists work as fast as the specialists and are as expensive, all
types of agents are staffed. The total number of agents of each type are almost
the same. Especially for type-1 customers the situation with respect to the
waiting time and the probability of being served improves, while the situation
of type-2 customers worsens, because some type-2 specialists are substituted
by generalists. In the first case, with equal wages and service rates, the profit
calculated based on the final schedule is by 2.7% better than the profit of the
initial schedule. However, the number of agents staffed differs much. While in
the initial solution almost no shifts for specialists are scheduled, the number
of agents of each type are nearly the same in the final solution.The difference
between the initial and final solution is enormous if the wages for generalists
are lower than the wages for specialists but the generalists work a little more
slowly. In this case the opening procedure seems to be less accurate. The profit
increases by about 24.5%. In the initial schedule no shifts for specialists are
scheduled, while in the final schedule the number of shifts for generalists is
very small and the number of specialists has increased.

Similar conclusions can be drawn from Table 5.29 which presents the per-
formance measures and profit gained by the final schedule in the case of the
arrival rate function in the second picture of Figure 4.53 on Page 132. The
profit and the utilisation increase if all agents serve the customers with equal
mean time and equal hourly wage. The utilisation of specialists is almost one,
because all customers prefer to be served by their specialists. Therefore, in
the fluid model only the fraction of customers that exceeds the number of
specialists in each moment, is served by generalists.

If the generalists serve customers more slowly than the specialists and
the hourly wages of generalists are lower than the wages of specialists, only
few generalists are staffed. However, more generalists and fewer specialists are
staffed than in the cases of higher wages of generalists as shown in Tables 5.26
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Schedule wi µi, µi profit W F
i,agg(T ) P F

i,agg(s, T )
PKi

k=1 x
(i)
k UF

i,agg(T )

xn [e] [ h−1] [e] [sec]

1 10 60 33 389.90 0.057 0.998 170 0.997

x12 2 10 60 0.886 0.733 180 0.996

G 10 60 174 0.948

60

1 11 60 30 773.00 0.326 0.989 267 0.987

x13 2 11 60 0.718 0.964 238 0.981

G 10 50 13 0.804

50

Table 5.29. Solutions of the optimisation heuristic for a contact center with differ-
ent arrival rate functions according to the second picture of Figure 4.53 on Page 4.53
and retrial rate γ1 = γ2 = 0.5 h−1

and 5.27. Therefore, the utilisation of specialists and the waiting time of type-2
customers increase.

The examples of this section show that the heuristic optimisation deter-
mines good schedules. Even the schedule created by the opening procedure
leads to the high performance of the contact center. The utilisation of agents
is often very high, such that agents might suffer from stress. Almost all cus-
tomers are served and the waiting times are short.

5.6 Overview of Current Literature on Contact Center

Staffing and Scheduling

During the last ten years the amount of literature on staffing and shift schedul-
ing in call and contact center has increased, caused by the growing importance
of call and contact centers in the service sector and the fact that 60%-70% of
the costs in contact centers are personnel related. Koole and Pot (2006) give
an overview of algorithms and problems related to routing and staffing in con-
tact centers. In most staffing and shift scheduling tools for contact centers the
simple Erlang-C queueing model is implemented17, although a lot of work has
already been done to develop better approaches and rules of thumb18 based
on more realistic models.

The literature can be roughly subdivided into three categories accord-
ing to the phases of the operational planning process depicted in Figure 2.6
on Page 19. The first category is dedicated to the long-term and mid-term
planning of call and contact centers. This category includes papers on hiring

17 See Gans et al. (2003).
18 For example, the well known square-root staffing rule for the Erlang-A model

analysed by Garnett et al. (2002).
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and firing employees, as described by Gans and Zhou (2002). Furthermore,
the so-called call center outsourcing analysed in Gans and Zhou (2004) and
Ren and Zhou (2004) falls into this category.

The second and largest category contains the staffing of agents in isolated
or interrelated time intervals, where in this category the staffing goals give rise
to a further differentiation. On the one hand economic staffing objectives are
considered, e.g., in Helber and Stolletz (2003, 2004), Koole and Pot (2005),
and Hampshire and Massey (2005). On the other hand most authors19 aim
to meet certain service level constraints. However, the border between these
groups sometime blurs.

Based on the stationary approach for a call center with impatient cus-
tomers and different cost and revenue structures found in german call centers,
Helber and Stolletz aim to maximise the profit or to minimise the cost of the
call center subject to aggregated performance measures. Koole and Pot in-
vestigate the profit function of this staffing optimisation further. Contrarily,
Hampshire and Massey (2005) use a fluid approach for the profit function with
a penalty for abandonment and blocking. In their optimisation approach the
number of agents Nj and the number of telephone lines Kj in each period are
determined. For this model they are able to show that the number of agents
Nj and the number of additional telephone lines Kj −Nj are complementary,
i.e., either Nj = 0 or Kj −Nj = 0.

The staffing according to certain performance goals in telephone traffic has
a longer tradition. In 1984 Sze described a queueing model with abandonment
and time-dependent arrival rates for telephone operator staffing by means of
simulation and approximation. A widely used rule of thumb is the so-called
square-root staffing principle based on the Erlang-C model, which dates back
to a study by A. K. Erlang20. If ρ = λ

µ
is the offered load of the systems

measured in Erlangs the number of agents needed is given by

N∗ = ρ + β
√

ρ. (5.39)

Borst et al. (2004) determine the parameter β such that the costs of staffing
and queueing is slightly balanced. Garnett et al. (2002) extended the princi-
ple to the Erlang-A model. Based on these results Aguir et al. (2005) showed
that disregarding retrials can lead to under- and overstaffing and incorpo-
rated the retrial parameters into the square-root staffing rule. Jennings et al.
(1996) adjusted this principle to a model with time-dependent arrival and
service rates via an infinite server model as presented in Sections 3.2 and 3.3.
Feldman et al. (2005) are able to extended the approach by Jennings et al.
further, such that not only a target for the probability of delay is met but
also time-stable performance is achieved.

19 Whitt (1999c), Chen and Henderson (2001), and Feldman et al. (2005)
20 See Gans et al. (2003).
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Besides these papers focussing on a homogeneous group of agents and
statistically identical customer requests, the square-root staffing rule was also
involved in staffing of multiclass21 contact centers and skill-based routing22 as
a basic guess for the number of agents needed, where the staffing-rule proposed
in Gurvich et al. (2004) is closely related to the control of a contact center 23,
i.e., the assignment of customers to agents.

Other approaches for staffing of call centers which incorporated time-
dependent and/or stochastic demand are based on fluid approximations24,
the so-called SIPP approach25, or a numerical approximation by the Erlang-
A model26.

The last category mainly deals with shift scheduling for a given demand.
The literature related to shift scheduling in call and contact centers dates back
to the operator scheduling at telephone traffic switchboards. Segal (1974) de-
termines the number of agents assigned to shifts at optimal costs based on a
network-flow formulation. Henderson and Berry (1976) consider the problem
of determining shifts as well as constructing a schedule. They use heuristic
methods to solve the cost minimisation problem under the assumption of a pre-
defined demand. More recently, Fukunaga et al. (2002) describe a staffing and
shift scheduling software system which uses artificial intelligence search meth-
ods to solve a tour scheduling problem for a given demand. A tour scheduling
problem integrates day off planning and shift scheduling27. This software is
based on an Erlang-C model and aims to fulfil predefined technical perfor-
mance targets.

Ingolfsson et al. (2002) use a genetic algorithm to search for good schedules
of predefined shifts. They incorporate time-dependent and stochastic demand
by solving the Chapman-Kolmogorov equations for a Erlang-C model and
compare their results to the traditional SIPP28 and an integer programming
approach. In another paper Ingolfsson et al. (2003) improve this approach by
involving the determination of employee requirements. The method iterates
between the evaluation of a schedule and the generation of a new schedule by
an integer programming approach until a feasible schedule is found. Similarly,
Bhulai et al. (2006) use linear programming to solve the shift scheduling prob-
lem after having determined the staffing levels for the considered sequence of
time intervals so that the service level is reached in each time interval. They
extend their method to a multi-skill environment.

21 See, e.g., Gurvich et al. (2004) and Harrison and Zeevi (2004).
22 See Wallace and Whitt (2004)
23 See, for example, Atar (2005a,b) and references therein
24 See, Harrison and Zeevi (2005) and Whitt (2006a).
25 See, Green et al. (2001) and Green et al. (2005).
26 See Whitt (2006a).
27 See Ernst et al. (2004) for a differentiation of these problem and further literature.
28 See Section 3.1 and Green et al. (2001).
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More theoretically orientated is the paper by Koole and Van der Sluis
(2003), who introduce a local search algorithm which relies on the multimod-
ularity of the objective function. In their approach the demand is given as in
most other papers to shift scheduling29. Another more technical approach by
Atlason et al. (2004) related to call center staffing is based on the concavity of
the service level function30. They use simulation and cutting plane methods
and show how the concavity of the objective function can be verified. Further-
more, they present some convergence results. Likewise, Cezik and L’Ecuyer
(2005) use simulation and the cutting plane method on an integer program-
ming approach to determine a schedule for a multi-skill call center.

Besides those call and contact center related papers, shift and tour schedul-
ing problems are strongly linked to health care31 and airline crew scheduling32.

This review shows that the staffing and shift scheduling in contact cen-
ters is a widely discussed and ongoing research problem. Different methods
have been used to determine the number of needed agents, i.e., the staff re-
quirements, and to solve the shift scheduling problem for a given demand and
service level. However, despite the papers by Ingolfsson et al. (2003) the deter-
mination of the staffing requirements and the shift scheduling problem were
solved separately, whereby most authors stop when a feasible schedule was
found. Furthermore, the staffing and shift scheduling approaches mainly rely
on the either the stationary or the time-dependent Erlang-C model without
abandonment and retrials.

29 See, e.g., Bechtold and Jacobs (1996), Thompson (1996), Aykin (1998, 2000),
Musliu (2001), Eveborn and Rönnqvist (2004), Eitzen et al. (2004), and the ref-
erences therein.

30 See also Koole and Pot (2006) for a brief discussion of this problem.
31 See, e.g., Dowsland and Thompson (2000), Isken (2004), Moz and Vaz Pato

(2004), Aickelin and White (2004), and especially the overview given in
Burke et al. (2004).

32 See, Kohl and Karisch (2004), Ernst et al. (2004) and the references therein.



6

Conclusions and Suggestions for Future

Research

In this thesis dynamic inbound contact centers with heterogeneous agents and
retrials of impatient customers were analysed. The term dynamic characterises
the processes of inbound contact centers in two ways. On the one hand the
processes of a real-world contact center are time-dependent and on the other
they are random. The interarrival times, service durations and abandonment
behaviour depend on the time of the day and the day of the week. Furthermore,
customers contact the center at random times and the service durations and
waiting time limits are random as well.

In order to model and analyse both aspects of dynamics, we used the so-
called strong approximations which contain a fluid approximation and a dif-
fusion refinement. By means of the fluid approach we showed how retrials and
time-dependent parameters influence technical and economical performance
measures. Furthermore, we used a diffusion refinement of the fluid approach
to investigate the impact of the parameters on the variability of the queueing
processes.

Finally, we developed an algorithm for integratively solving a staff require-
ment planning and shift scheduling problem which emerges in contact centers
with time-dependent processes and retrials. This algorithm relies on the fluid
approximation.

Besides heterogeneous and impatient customers, differently skilled agent
groups, time dependencies and randomness, in many real-world contact cen-
ters the arrivals often consist of primary attempts and retrials of impatient
customers. These retrials influence the performance of the contact center and
can lead to under- or overestimation of the demand. In order to investigate
the various impacts on the performance we use models with different kinds of
customer requests and differently skilled agents. The customers are assumed
to be impatient and a certain percentage of customers retries after having
abandoned. Furthermore, the arrival rates strongly depend on time of the
day.
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In the traditional stationary queueing approach mainly used in practise
just one aspect of dynamics can be considered. In this approach mainly the
randomness of the arrivals, service completions and abandonments is ad-
dressed. This aspect has an enormous influence in very small contact cen-
ters, e.g., for emergency calls, while in big contact centers analysed in this
thesis its influence diminishes. In the traditional approach the modelling of
heterogeneous customers and agents as well as retrials is another serious prob-
lem because the stochastic processes become processes of higher dimensions.
Consequently, the generator becomes a matrix of matrices and the stationary
distibution becomes nearly uncomputable as argued in Section 3.1.4.

Therefore, we use the fluid approach. By means of this approach the in-
fluence of the time-dependencies can be shown and is stressed. Furthermore,
the distribution of the random events becomes negligible, i.e., it does not
matter whether the service times are exponentially, lognormally or normally
distributed. We show, that the retrials can easily be modelled and even dif-
ferent customer classes and various groups of agents can be imbedded in this
approach because the fluid approach leads to a simple first order und numeri-
cally stable initial value problem. This initial value problem can be solved by
simple methods like the Euler method. Each customer class leads to two dif-
ferential equations of the initial value problem: one to determine the number
of customers in the system and one to determine the number of customers in
the orbit waiting to recall. Additional agent groups lead to additional terms
in the differential equations which describe the supplemental non-preemptive
priority rule. The modelling by the fluid approach gives rise to a preemptive
priority rule. Numerical examples show that the error due to the change is
very small. Unfortunately, not as many performance measures are calculable
as for the stationary approach, e.g., the well-known X/Y service level can-
not be calculated. For this performance measure we need the distribution of
the waiting time. However, we showed that only few performance measures
are needed to analyse and benchmark the performance of a contact center.
We derive the average waiting time, the probability of being served and the
utilisation as technical performance measures. These measures are used to
calculate the profit as an economical performance measure.

We investigate the influence of the service rate, the abandonment rate,
number of agents, the mean time to retrial and the probability of retrial on
the performance measures. Thereby we focus on the influence of the retrial
parameter. Additionally, we compare the results to simulation results to show
that the approximation is very accurate. Higher service rates and a greater
number of agents lead to smaller waiting times, a higher probability of be-
ing served and less utilisation. The abandonment rates solely influence the
waiting time such that higher rates leads to smaller waiting times. We show
that the probability of being served and the utilisation are not effected. The
influence of the mean time to retrial is shown to be smaller than the influence
of the probability of retrial. The shorter mean times to retrial lead to a little
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longer waiting times in the case of high load. The influence on the probability
of beeing served is similar. Higher probabilities of retrial give rise to higher
waiting times and smaller probabilites of being served. Furthermore, we show
that the retrial parameter do not influence the utilisation because retrial are
solely caused, if the contact center is temporarily overloaded.

The diffusion refinement is based on the fluid approach. It considers the
randomness of the processes. All random processes are approximated by nor-
mally distributed processes with a mean given by the fluid approach. That
is why, some shortcomings of the fluid approach especially for the times of
critical loading apply to the diffusion approximation as well. The diffusion
refinement is needed to extend the initial value problem of the fluid approach
for the variances and covariances of the processes describing the number of
customers.

These differential equation for the variances and covariances are difficult
to derive. In order to solve the extended initial value problem we had to use a
Runge-Kutta-Method because the differential equations of the variances and
covariances are quite sensitiv to the service and abandonment rates. If the ser-
vice rate and the abandonment rate differ a lot, the variances and covariances
change drastically. It was shown that the calculated variances and covari-
ances are useful for the analysis of interdependencies of different customers
processes. They might be of value to get more robust schedules of agents in a
future optimisation approach. However, for a staff requirement planning and
shift scheduling approach we do not need the diffusion refinement. This can
be done solely by means of the fluid approximation.

We have modelled contact centers with retrials and time-dependent pro-
cesses by means of fluid approximation and its diffusion refinement. Thereby
we included the heterogeneity of customer requests as well as the different
groups of agents. We restrict the model to the case of two customer classes
and three agent groups. However, we showed that this model can easily be
derived from the simple model and more complex models can be deduced as
easily. We show that the number of customers in the system and the orbit
are positive correlated. The correlation reduces if the contact center becomes
more and more overloaded, i.e., the processes of the number of customers in
the system and the number of customers waiting to retry become more and
more independent.

The simulation we used is based on the traditional contact center model
which assumes exponentially distributed interarrival and service times as well
as waiting time limits and times to retrial. The advantages and disadvantages
of this assumptions were discussed in Section 2.2. Therefore, other distribu-
tions for the service times, waiting time limits, and times to retrial should be
simulated and the results should be compared to the approximation. Further-
more, in the simulation each priority rule can easily be simulated while the
fluid approximations leads to a preemptive priority rule. We showed that the
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error due to this change in the priority rule is negligible small.

In addition the results of the approximation should be compared to the
data of a real-world contact center. In order to collect and evaluate statis-
tical significant retrial data it is necessary to mark a big number of calling
and abandoning customer such that one can identify recalls. However, many
customers may call several times from different telephones or locations. There-
fore, it is difficult to identify a recall such that it is hard to get good data.

For the short-term economic optimisation and operational planning, the
allocation of shifts and the agents associated with these shifts is a major prob-
lem. We have shown how the fluid approach can be incorporated in an optimi-
sation problem to solve the staff requirement planning and a shift scheduling
problem simultaneously. For this purpose, we have derived a general profit
function for the contact center model which is maximised.

We showed that the structure of the profit function is quite regular and
concave almost everywhere. Only few regions of the profit function seem to be
non-concave. However, this discrepency might be due to numerical instabilities
in the computation.

We used an initial procedure and simulated annealling to solve the op-
timisation problem. This simulated annealling heuristic is very simple and
questionable because it does not converge to the optimal solution for sure.
The parameters of the simulated annealling algorithm must be chosen very
carefully and depend on the problem itself. Therefore, the implementation of
other algorithms should be a fruitful task for future research.

The initial procedure is based on the relative profit margin of an addi-
tional shift. The profit margins are calculated from the arrival rates and the
service rates of the different agents weighted by the revenues and costs. We
have shown that this procedure of the staffing algorithm already leads to a
very accurate solution, i.e. high performance and profit. As the simulated an-
nealling heuristic starts with this solution we get almost optimal results.

We have shown that the optimisation problem can be easily extended.
Even more general problems with various customer classes and more agent
groups as discussed in Section 5.5 can be solved. A further customer class
leads to at least two additional differential equations in the fluid approach
and additional terms in the profit function which all have the same structure.
One differential equation is needed to describe the number of customers in
the system and one for the number of customers in the orbit. All differential
equations have the same structure as well. With the fluid approach we are
also able to model customers, who change their customer class. An example
of such a change is a customer who first tries to phone and afterwards writes
an e-mail.

If another agent group is added, we have to decide which customer class is
served first and which second. Furthermore, the order by which customers are
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referred to the agent groups has to be determined. This leads to another term
or a change in the terms of the differential equations. The number of differen-
tial equations remains constant and the new terms have a similar structure as
the terms, which describe the service by agents and the priority of customers.

However, it will be necessary to improve the scheduling algorithm. Other
optimisation algorithms may lead to even better results or find them more
quickly. Furthermore, we used a fixed set of predefined shifts with fixed rest
breaks where in practise more flexibility may be needed. Therefore, one should
include more flexible rest breaks and shifts, e.g., one could consider time win-
dows for rest breaks. In our model we assumed that agents are available to
work according to each scheduled shift. However, in real-world contact cen-
ters the contracts of employment and the preferrences of the agents lead to
additional constraints. Therefore, it would be worthwhile to enlarge the shift
scheduling to a tour scheduling problem which includes day-off scheduling.

Finally, another extension could involve the results of the diffusion refine-
ment in order to make the staffing and scheduling decision more robust with
respect to the variability of the processes. However, this seems to be not as
worthwhile in practise, because the diffusion approximation is difficult to de-
rive and the benefits are small in a big contact center. The reason is that the
effects of randomness become more and more negligible in big contact centers.
Therefore the major focus should lie on improving the staffing and scheduling
algorithm. By means of the methods presented in this thesis and improved
staffing and shift scheduling algorithms the calculation of shift scheduling be-
comes much quicker and easier. That is why an integration of the methods
into a software tool will be worthwhile for the management of call and contact
centers.





A

Derivation of the Differential Equations for the

Variances and Covariances in Contact Centers

with Retrials

A.1 Contact Centers with Homogeneous Customers and

Agents

In this section we derive the stochastic functional equation for the diffusion
processes of the contact center model analysed in Section 4.11. Based on the
diffusion processes we determine the differential equations for the variances
and covariances of these processes. These diffusion processes result from an
application of the functional central limit theorem and its extension proven by
Rao (1973). Furthermore, we use the approximation of the scaled stochastic
processes describing the number of customers in the system and the orbit
derived in Komlós et al. (1975).

The stochastic processes for the number of customers in the system and
the orbit are given by the sum of Poisson Processes describing the arrival and
departure of customers, i.e.,

QS(t) = QS(0) + A1





t∫

0

λ(s) ds



+ A2





t∫

0

γ(s)QO(s) ds





−A3





t∫

0

µ(s)min{QS(s), N(s)} ds





−A4





t∫

0

ν(s){QS(s)−N(s)}+ ds





(A.1a)

1 These equations were already derived by Mandelbaum et al. (1998). They derive
the equations also in a more general way.
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QO(t) = QO(0) + AO





t∫

0

pν(s){QS(s)−N(s)}+ ds





−A2





t∫

0

γ(s)QO(s) ds



 .

(A.1b)

As explained in Chapter 3 on Page 32, Ai(), (i = 1, 2, 3, 4) are standard
Poisson Processes with mean 1. QS(0) and QO(0) represent the number of
customers in the system and the orbit at the beginning of the observation.

We scale the arrival rate and the number of agents according to Halfin and Whitt
(1981). Furthermore, we divide the abandonment process into two indepen-
dent processes, which describe the number of customers moving into the orbit
A4O() and the number of lost customers A4L(). If we approximate the scaled
processes by means of Brownian motions, we get

Qn
S(t) = Qn

S(0) +

t∫

0

nλ(s) ds +

t∫

0

nγ(s)
Qn

O(s)

n
ds (A.2a)

−
t∫

0

nµ(s)min

{
Qn

S(s)

n
, N(s)

}

ds−
t∫

0

pν(s)

{
Qn

S(s)

n
−N(s)

}+

ds

+ B1





t∫

0

nλ(s) ds



+ B2





t∫

0

nγ(s)
Qn

O(s)

n
ds





−B3





t∫

0

nµ(s)min

{
Qn

S(s)

n
, N(s)

}

ds





−B4O





t∫

0

npν(s)

{
Qn

S(s)

n
−N(s)

}+

ds





−B4L





t∫

0

(1− p)nν(s)

{
Qn

S(s)

n
−N(s)

}+

ds



+ o(log n)

Qn
O(t) = Qn

O(0) +

t∫

0

npν(s)

{
Qn

S(s)

n
−N(s)

}+

ds−
t∫

0

nγ(s)
Qn

O(s)

n
ds (A.2b)

+ B4O





t∫

0

npν(s)

{
Qn

S(s)

n
−N(s)

}+

ds



−B2





t∫

0

nγ(s)
Qn

O(s)

n
ds





+ o(log n) ,
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where Bi() (i = 1, 2, 3, 4O, 4L) are standard Brownian Motions with mean 0
and variance t at time t.

We assume that the set S = {t|Q(t) = N(t)} has measure zero to circum-
vent the difficulties discussed on Page 602. Then we can derive the functional
equations for the diffusion processes by applying the modified functional cen-
tral limit theorem by Rao from

lim
n→∞

Qn
S(t)− nQF

S (t)√
n

= QD
S (t) (A.3)

lim
n→∞

Qn
O(t)− nQF

O(t)√
n

= QD
O(t) (A.4)

with QF
S (t) and QF

O(t) given in (4.1) on Page 75. Passing n to infinity gives
rise to the stochastic functional equations for the diffusion processes, which
are

QD
S (t) = QD

S (0) +

t∫

0

λ(s) ds +

t∫

0

γ(s)QD
O(s) ds (A.5a)

−
t∫

0

µ(s)QD
S (t)1{QF

S
(s)≤N(s)} ds−

t∫

0

ν(s)QD
S (t)1{QF

S
(s)>N(s)} ds

+ B1





t∫
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λ(s) ds



−B3
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µ(s)min
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QF

S (s), N(s)
}

ds
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γ(s)QF
O(s) ds
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pν(s)
{
QF

S (s)−N(s)
}+

ds





−B4L
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QF
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Qn
O(t) = QD

O(0) +

t∫

0

pν(s)QD
S (t)1{QF

S
(s)>N(s)} ds−

t∫

0

γ(s)QD
O(s) ds (A.5b)

+ B4O





t∫

0

pν(s)
{
QF

S (s)−N(s)
}+

ds



−B2





t∫

0

γ(s)QF
O(s) ds



 .

In order to derive the differential equations for the variances and covari-
ances we use some properties of the Brownian Motions3 and the chain rule

2 Mandelbaum et al. (1998) and Mandelbaum et al. (1999a, 2002) consider both
cases, i.e., with and without the assumption of measure zero.

3 See Page 64.
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of stochastic calculus4. As the variances and covariances of the processes are
given by

VAR
[
QD

S (t)
]

= E
[(

QD
S (t)

)2
]

−E
[
QD

S (t)
]2

(A.6a)

VAR
[
QD

O(t)
]

= E
[(

QD
O(t)

)2
]

−E
[
QD

O(t)
]2

(A.6b)

COV
[
QD

S (t), QD
O(t)

]
= E

[
QD

S (t)QD
O(t)

]
−E

[
QD

S (t)
]
E
[
QD

O(t)
]

(A.6c)

we determine

d

dt
E
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QD
S (t)

)2
]

,
d
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E
[
QD

S (t)
]
,

d

dt
E
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QD
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)2
]

,
d

dt
E
[
QD

O(t)
]
,

and

d

dt
E
[
QD

S (t)QD
O(t)

]
.

We start with differential equations for the mean values and get

d
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E
[
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S (t)
]

= γ(t)E
[
QD

O(t)
]
− µ(t)E

[
QD

S (t)
]1{QF

S
(t)≤N(t)} (A.7a)
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(A.7b)

because the Brownian Motions have mean zero. By means of the chain rule
of stochastic calculus we determine

d

dt
E
[(

QD
S (t)

)2
]

(A.7c)

= −2
(

µ(t)1{QF
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E
[
QD

S (t)QD
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4 See Karatzas and Shreve (1991), pp. 149-159.
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+ γ(t)E
[
QD
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for i, j = S,O the differential equations for the variances and covariance are
given by Equations (4.2) on Page 76.

A.2 Contact Centers with Heterogeneous Customers

and Agents

In this section we derive the functional equations for the diffusion process and
the differential equations for the covariances of the contact center model anal-
ysed in Section 4.2. To the best of our knowledge such a model has not been
analysed. However, special cases of this model are the contact center model
in the previous section and the priority queue analysed by Mandelbaum et al.
(1998). Equivalently to the previous Section A.1 we start from the stochastic
processes for the number of customers in the system and the orbits as sums of
standard Poisson Processes with rate 1. Thereby we use the following notation
to arrange the equation more clearly und shortly. The random number of busy
generalists serving customers of type i = 1, 2 at time t is denoted BG

I (t), i.e,

BG
1 (t) = min

{

NG(t),{Q1(t)−N1(t)}+
}

(A.8)

BG
2 (t) = min

{

{Q2(t)−N2(t)}+,
{

NG(t)−{Q1(t)−N1(t)}+
}+
}

. (A.9)

This notation is in line with the number of busy generalists in the fluid model
defined on Page 121. Furthermore we denote by Li(t) the time-dependent and
stochastic number of customers of type i = 1, 2 waiting to be served, i.e.,

L1(t) ={Q1(t)−N1(t)−NG(t)}+ (A.10)

L2(t) =

{

Q2(t)−N2(t)−
{

NG(t)−{Q1(t)−N1(t)}+
}+
}+

. (A.11)

With this notation the four stochastic processes of the vector (Q(t))
t∈R+

0

introduced in (4.15) on Page 120 are given by
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Q1(t) = Q1(0) + Aλ
1

0

@

t
Z

0

λ1(s) ds

1

A+ AO1

0

@

t
Z

0

γ1QO1(s) ds

1

A (A.12a)

− Aµ
1

0

@

t
Z

0

µ1(s) min{Q1(s), N1(s)} ds

1

A− Aµ
1

0

@

t
Z

0

µ1(s)B
G
1 (s) ds

1

A

− A1O

0

@

t
Z

0

p1ν1(s)L1(s) ds

1

A− Aν
1

0

@

t
Z

0

(1− p1)ν1(s)L1(s) ds

1

A

Q2(t) = Q2(0) + Aλ
2

0

@

t
Z

0

λ2(s) ds

1

A+ AO2

0

@

t
Z

0

γ2QO2(s) ds

1

A (A.12b)

− Aµ
2

0

@

t
Z

0

µ1(s) min{Q2(s), N2(s)} ds

1

A− Aµ
2

0

@

t
Z

0

µ2(s)B
G
2 (s) ds

1

A

− A2O

0

@

t
Z

0

p2ν2(s)L2(s) ds

1

A− Aν
2

0

@

t
Z

0

(1− p2)ν2(s)L2(t) ds

1

A

QO1(t) = QO1(0)− A1O

0

@

t
Z

0

γ1(s)QO1(s) ds

1

A+ AO1

0

@

t
Z

0

p1ν1(s)L1(s) ds

1

A (A.12c)

QO2(t) = QO2(0)− A2O

0

@

t
Z

0

γ2(s)QO2(s) ds

1

A+ AO2

0

@

t
Z

0

p2ν2(s)L2(s) ds

1

A. (A.12d)

Next we scale these stochastic processes according to Halfin and Whitt and
approximate the scaled stochastic processes by means of standard Brownian
Motion with mean zero and variance t at time t as in the previous Section A.1.
For the number of busy generalists and the number of customers waiting this
leads to

BGn
1 (t) = min

{

NG(t),

{
Qn

1 (t)

n
−N1(t)

}+
}

(A.13)

BGn
2 (t) = min







{
Qn

2 (t)

n
−N2(t)

}+

,

{

NG(t)−
{

Qn
1 (t)

n
−N1(t)

}+
}+





(A.14)

Ln
1 (t) =

{
Qn

1 (t)

n
−N1(t)−NG(t)

}+

(A.15)

and

Ln
2 (t) =







Qn
2 (t)

n
−N2(t)−

{

NG(t)−
{

Qn
1 (t)

n
−N1(t)

}+
}+






+

. (A.16)
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By means of these terms we can denote the scaled processes by

Qn
1 (t) = Qn

1 (0) +

t
Z

0

nλ1(s) ds +

t
Z

0

nγ1
Qn

O1(s)

n
ds (A.17a)

−

t
Z

0

nµ1 min



Qn
1 (s)

n
, N1(s)

ff

ds−

t
Z

0

nµ1B
Gn
1 (s) ds−

t
Z

0

nν1L
n
1 (s) ds

+ Bλ
1

0

@

t
Z

0

nλ1(s) ds

1

A+ BO1

0

@

t
Z

0

nγ1
Qn

O1(s)

n
ds

1

A

−Bµ
1

0

@

t
Z

0

nµ1 min



Qn
1 (s)

n
, N1(s)

ff

ds

1

A−Bµ
1

0

@

t
Z

0

nµ1B
Gn
1 (s) ds

1

A

−B1O

0

@

t
Z

0

np1ν1L
n
1 (s) ds

1

A−Bν
1

0

@

t
Z

0

n(1− p1)ν1L
n
1 (s) ds

1

A+ o(log n)

Qn
2 (t) = Qn

2 (0) +

t
Z

0

nλ2(s) ds +

t
Z

0

nγ2
Qn

O2(s)

n
ds (A.17b)

−

t
Z

0

nµ2 min



Qn
2 (s)

n
, N2(s)

ff

ds−

t
Z

0

nµ2B
Gn
2 ds−

t
Z

0

p2ν2(s)L
n
2 (s) ds

+ Bλ
2

0

@

t
Z

0

nλ2(s) ds

1

A+ BO2

0

@

t
Z

0

nγ2
Qn

O2(s)

n
ds

1

A

−Bµ
2

0

@

t
Z

0

nµ1 min



Qn
2 (s)

n
, N2(s)

ff

ds

1

A−Bµ
2

0

@

t
Z

0

nµ2B
Gn
2 (s) ds

1

A

−B2O

0

@

t
Z

0

np2ν2L
n
2 (s) ds

1

A−Bν
2

0

@

t
Z

0

n(1− p2)ν2L
n
2 (s) ds

1

A+ o(log n)

Qn
O1(t) = Qn

O1(0) +

t
Z

0

np1ν1L
n
1 (s) ds−

t
Z

0

nγ1
Qn

O1(s)

n
ds (A.17c)

+ BO1

0

@

t
Z

0

np1ν1L
n
1 (s) ds

1

A−B1O

0

@

t
Z

0

nγ1
Qn

O1(s)

n
ds

1

A+ o(log n)

Qn
O2(t) = Qn

O2(0)−

t
Z

0

nγ2
Qn

O2(s)

n
ds +

t
Z

0

np2ν2L
n
2 (s) ds (A.17d)

+ BO2

0

@

t
Z

0

np2ν2L
n
2 (s) ds

1

A−B2O

0

@

t
Z

0

nγ2
Qn

O2(s)

n
ds

1

A+ o(log n) .
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We apply the functional central limit theorem and its extension by Rao
(1973) to the scaled and approximated processes (Qn(t))

t∈R+
0

. If the sets

of critical times S1, S2, S3 and S4 given in Equation (4.25) on Page 124
have measure zero, we get the stochastic functional equations of the diffusion
processes

(
QD(t)

)

t∈R+
0

. These processes are given by5

QD
1 (t) = QD

1 (0) +

t
Z

0

γ1Q
D
O1(s) ds−

t
Z

0

µ1Q
D
1 (s)1{QF

1
≤N1} ds (A.18a)

−

t
Z

0

µ1Q
D
1 (s)1{N1<QF

1
≤N1+NG} ds−

t
Z

0

ν1Q
D
1 (s)1{QF

1
>N1+NG} ds

+ Bλ
1

0

@

t
Z

0

λ1(s) ds

1

A+ BO1

0

@

t
Z

0

γ1Q
F
O1(s) ds

1

A

−Bµ
1

0

@

t
Z

0

µ1 min
n

QF
1 (s), N1(s)

o

ds

1

A−Bµ
1

0

@

t
Z

0

µ1B
F
1 (t) ds

1

A

−B1O

0

@

t
Z

0

p1ν1L
F
1 (s) ds

1

A−Bν
1

0

@

t
Z

0

(1− p1)ν1L
F
1 (s) ds

1

A

QD
2 (t) = QD

2 (0) +

t
Z

0

γ2Q
D
O2(s) ds−

t
Z

0

µ1Q
D
2 (s)1{QF

2
≤N2} ds (A.18b)

−

t
Z

0

µ2Q
D
2 (s)1

N2<QF
2
≤N2+

n

NG−{QF
1
−N1}

+
o

+
ff ds

+

t
Z

0

µ2Q
D
1 (s)1{N1<QF

1
≤N1+NG, N2<QF

2
≤N2+NG+N1−QF

1 }
ds

−

t
Z

0

ν2Q
D
2 (s)1

QF
2

>N2+
n

NG−{QF
1
−N1}

+
o

+
ff ds

−

t
Z

0

ν2Q
D
1 (s)1{N1<QF

1
≤NG+N1, QF

2
>N2+NG+N1−QF

1 }
ds

+ Bλ
2

0

@

t
Z

0

λ2(s) ds

1

A+ BO2

0

@

t
Z

0

γ2Q
F
O2(s) ds

1

A

5 For reasons of space we omit the time argument s in the indicator function 1{},i.e.,
we write QF

i and Nj instead of QF
i (s) and Nj(s) for i = 1, 2,O1,O2 and j =

1, 2, G.
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−Bµ
2

0

@

t
Z

0

µ1 min
n

QF
2 (s), N2(s)

o

ds

1

A−Bµ
2

0

@

t
Z

0

µ2B
F
2 (s) ds

1

A

−B2O

0

@

t
Z

0

p2ν2L
F
2 (s) ds

1

A−Bν
2

0

@

t
Z

0

(1− p2)ν2L
F
2 (s) ds

1

A

QD
O1(t) = QD

O1(0) +

t
Z

0

p1ν1Q
D
O1(s)1{QF

1
>N1+NG} ds−

t
Z

0

γ1Q
D
O1(s) ds (A.18c)

+ BO1

0

@

t
Z

0

p1ν1L
F
1 (s) ds

1

A−B1O

0

@

t
Z

0

γ1Q
F
O1(s) ds

1

A

QD
O2(t) = QD

O2(0)−

t
Z

0

γ2Q
D
O2(s) ds (A.18d)

+

t
Z

0

p2ν2Q
D
2 (s)1

QF
2

>N2+
n

NG−{QF
1
−N1}

+
o

+
ff ds

+

t
Z

0

p2ν2Q
D
1 (s)1{N1<QF

1
≤N1+NG, QF

2
>N2+NG+N1−QF

1 }
ds

+ BO2

0

@

t
Z

0

p2ν2L
F
2 (s) ds

1

A−B2O

0

@

t
Z

0

γ2Q
F
O2(s) ds

1

A .

Thereby BF
i (t) and LF

i (t) (i = 1, 2) are defined according to Equations 4.16,
4.20, 4.17, and 4.22 on Pages 121ff.

From the function equations for the diffusion processes we determine the
differential equations for the mean values of the diffusion processes and the
differential equations of the products of the processes, i.e., we have to derive

d

dt
E
[
QD

1 (t)
]
,

d

dt
E
[
QD

2 (t)
]
,

d

dt
E
[
QD

O1(t)
]
,

d

dt
E
[
QD

O2(t)
]

and

d

dt
E
[
QD

i (t)QD
j (t)

]
for i, j = 1, 2,O1,O2.

For this purpose we use the following notation for the conditions of the
indicator function 1{} which were already introduced in Equation (4.27) on
Page 125:
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c1 : QF
1 (t)≤ N1(t)

c2 : N1(t)< QF
1 (t) ≤ N1(t) + NG(t)

c3 : QF
1 (t)> N1(t)+NG(t)

c4 : N1(t)< QF
1 (t) ≤ N1(t)+NG(t), QF

2 (t)> N1(t)+N2(t)+NG(t)−QF
1 (t)

c5 : N1(t)< QF
1 (t) ≤ N1(t)+NG(t), N2(t)< QF

2 (t) ≤ N1(t)+N2(t)+NG(t)−QF
1 (t)

c6 : QF
2 (t)≤ N2(t)

c7 : QF
2 (t)> N2(t) +



NG(t)−
n

QF
1 (t)−N1(t)

o+
ff+

c8 : N2(t)< QF
2 (t) ≤ N2(t) +



NG(t)−
n

QF
1 (t)−N1(t)

o+
ff+

.

As the means of the Brownian Motions are zero, we get for the mean values
of the diffusion processes

d

dt
E
h

QD
1 (t)

i

= γ1E
h

QD
O1(t)

i

− µ1E
h

QD
1 (t)

i1{c1} − µ1E
h

QD
1 (t)

i1{c2} (A.19a)

− ν1E
h

QD
1 (t)

i1{c3}

d

dt
E
h

QD
2 (t)

i

= γ2E
h

QD
O2(t)

i

− µ1E
h

QD
2 (t)

i1{c6} − µ2E
h

QD
2 (t)

i1{c8} (A.19b)

+ µ2E
h

QD
1 (t)

i1{c5} − ν2E
h

QD
2 (t)

i1{c7} − ν2E
h

QD
1 (t)

i1{c4}

d

dt
E
h

QD
O1(t)

i

= +p1ν1E
h

QD
O1(t)

i1{c3} − γ1E
h

QD
O1(t)

i

(A.19c)

d

dt
E
h

QD
O2(t)

i

= −γ2E
h

QD
O2(t)

i

+ p2ν2E
h

QD
2 (t)

i1{c7} (A.19d)

+ p2ν2E
h

QD
1 (t)

i1{c4}.

To derive the means of the products we again need the chain rule of
stochastic calculus and some properties of the Brownian Motion described
on Page 64. Furthermore we use the the functions b1(t) through b4(t) intro-
duced in Equation 4.30 on Page 126 which are

b1(t) = λ1(t) + γ1(t)Q
F
O1(t) + µ1 min

{
QF

1 (t), N1(t)
}

+ ν1L
F
1 (t) + µ1B

F
1 (t)

b2(t) = λ2(t) + γ2(t)Q
F
O2(t) + µ2 min

{
QF

2 (t), N2(t)
}

+ µ2B
F
2 (t) + ν2L

F
2 (t)

b3(t) = γ1(t)Q
F
O1(t) + pν1L

F
1 (t)

b4(t) = γ2(t)Q
F
O2(t) + pν2L

F
2 (t).

This gives rise to
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d

dt
E

»

“

QD
1 (t)

”2
–

= 2γ1E
h

QD
1 (t)QD

O1(t)
i

− 2µ1E

»

“

QD
1 (t)

”2
–1{c1} (A.19e)

− 2
`

µ11{c2} + ν11{c3}

´

E

»

“

QD
1 (t)

”2
–

+ b1(t)

d

dt
E

»

“

QD
2 (t)

”2
–

= 2γ2E
h

QD
2 (t)QD

O2(t)
i

− 2µ2E

»

“

QD
2 (t)

”2
–1{c6} (A.19f)

− 2µ2E

»

“

QD
2 (t)

”2
–1{c8} + 2µ2E

h

QD
1 (t)QD

2 (t)
i1{c5}

− 2ν2E

»

“

QD
2 (t)

”2
–1{c7} − 2ν2E

h

QD
1 (t)QD

2 (t)
i1{c4} + b2(t)

d

dt
E

»

“

QD
O1(t)

”2
–

= 2p1ν1E
h

QD
1 (t)QD

O1(t)
i1{c3} − 2γ1E

»

“

QD
O1(t)

”2
–

(A.19g)

+ b3(t)

d

dt
E

»

“

QD
O2(t)

”2
–

= 2p2ν2E
h

QD
2 (t)QD

O2(t)
i1{c7} − 2γ2E

»

“

QD
O2(t)

”2
–

(A.19h)

+ 2p2ν2E
h

QD
1 (t)QD

O2(t)
i1{c4} + b4(t).

The means of the products of the diffusion processes are given by

d

dt
E
h

QD
1 (t)QD

2 (t)
i

= γ1E
h

QD
2 (t)QD

O1(t)
i

+ γ2E
h

QD
1 (t)QD

O2(t)
i

(A.19i)

−
`

µ11{c1} + µ11{c2} + ν11{c3}

´

E
h

QD
1 (t)QD

2 (t)
i

−
`

µ21{c6} + µ21{c8} + ν21{c7}

´

E
h

QD
1 (t)QD

2 (t)
i

+ µ2E

»

“

QD
1 (t)

”2
–1{c5} − ν2E

»

“

QD
1 (t)

”2
–1{c4}

d

dt
E
h

QD
1 (t)QD

O1

i

= γ1E

»

“

QD
O1(t)

”2
–

+ p1ν1E

»

“

QD
1 (t)

”2
–1{c3} (A.19j)

−
`

µ11{c1} + µ11{c2} + ν11{c3} + γ1

´

E
h

QD
1 (t)QD

O1(t)
i

− b3(t)

d

dt
E
h

QD
1 (t)QD

O2(t)
i

= γ1E
h

QD
O1(t)Q

D
O2(t)

i

− γ2E
h

QD
1 (t)QD

O2(t)
i

(A.19k)

−
`

µ11{c1} + µ11{c2} + ν11{c3}

´

E
h

QD
1 (t)QD

O2(t)
i

+ p2ν2E
h

QD
1 (t)QD

2 (t)
i1{c7} + p2ν2E

»

“

QD
1 (t)

”2
–1{c4}
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d

dt
E
h

QD
2 (t)QD

O1(t)
i

= γ2E
h

QD
O1(t)Q

D
O2(t)

i

− γ1E
h

QD
2 (t)QD

O1(t)
i

(A.19l)

−
`

µ21{c6} + µ21{c8} + ν21{c7}

´

E
h

QD
2 (t)QD

O1(t)
i

+
`

µ21{c5} − ν21{c4}

´

E
h

QD
1 (t)QD

O1(t)
i

+ p1ν1E
h

QD
1 (t)QD

2 (t)
i1{c3}

d

dt
E
h

QD
2 (t)QD

O2(t)
i

= γ2E

»

“

QD
O2(t)

”2
–

− γ2E
h

QD
2 (t)QD

O2(t)
i

(A.19m)

−
`

µ21{c6} + µ21{c8} + ν21{c7}

´

E
h

QD
2 (t)QD

O2(t)
i

+
`

µ21{c5} − ν21{c4}

´

E
h

QD
1 (t)QD

O2(t)
i

+ 2p2ν2E

»

“

QD
2 (t)

”2
–1{c7} + 2p2ν2E

h

QF
1 (t)QD

2 (t)
i1{c4} − b4(t).

d

dt
E
h

QD
O1(t)Q

D
O2(t)

i

= −(γ2 + γ1)E
h

QD
O1(t)Q

D
O2(t)

i

(A.19n)

+ p1ν11{c3}E
h

QD
1 (t)QD

O2(t)
i

+ p2ν2E
h

QD
2 (t)QD

O1(t)
i1{c7} + p2ν2E

h

QD
1 (t)QD

O1(t)
i1{c4}.

Based on Equations (A.19) we are able to generate the differential equa-
tions of the variances and covariances in Equation (4.29) on Page 126. In order
to make notations shorter, we introduce the four-dimensional quadratic and

symmetric matrix E2(t) := E
[(

QD(t)
)2
]

which6 consists of the means of the

product of the processes, i.e.,

E
2(t) =

0

B

B

B

B

B

B
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and the four-dimensional row vector

e(t) := E
h

Q
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. (A.21)

By means of this matrix and the matrices A(t) and B(t) introduced in Equa-
tions (4.26) and (4.31) on Pages 125f, respectively, we can rewrite the differ-
ential equations given in Equations (A.19e) through (A.19n) by the matrix
equation

d

dt
E2(t) =

(
E2(t)A(t)

)T
+ E2(t)A(t) + B(t). (A.22)

6 For reasons of space we omit the time argument t in the matrix and the following
vectors, i.e., QD

i (t) is denoted by QD
i for i = 1, 2,O1,O2.
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Furthermore the Equations (A.19a) through (A.19d) are given by

d

dt
e(t) = e(t)A(t). (A.23)

Then the derivative of the four-dimensional quadratic and symmetric matrix
of the covariances7
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is given by

d

dt
COV

[
QD(t)

]
=

d

dt
E2(t)−

(
d

dt
e(t)

)T

e(t)− (e(t))
T d

dt
e (A.24)

=
(
E2(t)A(t)

)T
+ E2(t)A(t) + B(t) − (e(t)A(t))

T
e(t)− (e(t))

T
e(t)A(t)

This leads to Equations (4.29) on Page 126.

7 As in the previous matrix we omit the time argument t.
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SetsR set of all real numbersR+
0 set of all positive real numbers and zeroZ set of all integersN0 set of all natural numbers and zeroNm
0 set of all integer valued vectors of dimension m with

entries equal to or greater than zero
S set of times with critical loading in the diffusion ap-

proximation (See Pages 62 and 124)S set of all shift types which can be scheduled
(See Page 163)K set of shifts with maximum relative profit margin in
opening procedure of the shift scheduling algorithm
(See Pages 171 and 193)

Parameters of the contact center models
λi(t) time-dependent arrival rates of customer class i =

1, 2 (See Page 29)

m
(i)
j , t

(i)
j parameters of the sinusoidal arrival rate function of

customer class i = 1, 2 (See Page 29)
µi(t), µi time-dependent service rate of specialists and gener-

alists for customer class i = 1, 2
νi(t) abandonment rate of customer class i = 1, 2
γi(t) time-dependent retrial rate of customer class i = 1, 2
pi probability of retrial of customer class i = 1, 2
Ni(t) time-dependent number of homogeneous servers of

type i = 1, 2, G
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Functions

{X}+ maximum of 0 and X1{c} indicator function equals 1 if the condition c is ful-
filled, otherwise it is 0

Stochastic and deterministic processes
Q(t) row vector describing the stochastic process of the

numbers of customers in the treated model
Qi(t), QOi(t) stochastic processes in vector Q(t) describing the

number of customers of class i = 1, 2 in the system
and the orbit

A

(
t∫

0

· ds

)

Standard Poisson process with mean 1 (See
Pages 32f.)

B

(
t∫

0

· ds

)

Standard Brownian motion with mean 0 and stan-
dard deviation 1 (See Pages 60ff.)

QF (t) =
(
QF

i (t), . . . , QF
Oi, . . .

)
row vector describing the

fluid processes of the numbers of customers in the
treated model

QD(t) =
(
QD

i (t), . . . , QD
Oi, . . .

)
row vector describing the

diffusion processes of the number of customers in the
treated model

E
[
QD(t)

]
mean row vector of the diffusion processes

COV
[
QD(t)

]
covariance matrix of the diffusion processes

COV
[
QD

i (t), QD
j (t)

]
covariance of the diffusion processes modelling the
number customers in the system or the orbit i, j ∈
{S,O, 1, 2,O1,O2}

VAR
[
QD

i (t)
]

variance of the diffusion process describing the num-
ber of customers in the system or the orbit

Performance measures in the fluid model
WF

i (t) time-dependent waiting time of customers of type
i = 1, 2 (See Pages 39, 76 and 127f.)

WF
agg,i(T ) aggregated waiting time over the interval [0, T ] of

customers of type i = 1, 2 (See Page 40)
PF

i (served, t) time-dependent probability of being served for cus-
tomers of type i = 1, 2 (See Pages 40, 77, and 129)

PF
agg,i(served, T ) aggregated probability of being served over the inter-

val [0, T ] for customers of type i = 1, 2 (See Page 40)
UF

i (t) time-dependent utilisation of agents of type i =
1, 2, G (See Pages 41, 78, and 130)

UF
agg,i(t) aggregated utilisation over the interval [0, T ] of

agents of type i = 1, 2, G (See Page 42)
LF

i (t) time-dependent queue length of customers of type
i = 1, 2 (See Page 121f.)
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BF
i (t) time-dependent number of busy generalists serving

customers of type i = 1, 2 (See Page 121f.)
di(t) time-dependent departure rate of customers of type

i = 1, 2 (See Pages 38 and 121f.)

Profit and cost parameters
ri revenue gained from serving customers of type i =

1, 2
wi hourly wages of agents of type i = 1, 2, G
ℓ hourly costs for occupied telephone lines
cost(T ) cost function of the fluid model (See Page 130)
profit(T ) profit function of the fluid model (See Pages 78

and 131)

Parameters of the staffing and shift scheduling problem
δ length of the considered time intervals
0 vector of 0s
x shift schedule, vector of the number of shifts sched-

uled

x
(i)
k number of shifts of type k = 1, . . . , Ki for agents of

type i = 1, 2, G
J number of time intervals j for the shift scheduling

problem
sk shift of type k = 1, . . . , K, i.e., a boolean vector of

length J
c
(i)
k costs for agents of type i = 1, 2, G working according

to shift type k = 1, . . . , Ki

profit(x, T ) profit gained from staffing according to schedule x

(See Pages 164 and 190)
Mi maximum total number of agents of type i = 1, 2G

who can be staffed
Ni(x, t) function of the time-dependent number of agents of

type i = 1, 2, G staffed according to shift x

Parameters and functions for the optimisation heuristic

λi J -dimensional vector of the average arrival rates to
agents of type i = 1, 2, G in the time intervals j =
1, . . . ,J (See Page 170)

marg(λi, sk) relative profit margin of shift type i = 1, . . . , K for
agents of type i = 1, 2, G (See Page 171)

cum work(λi, sk) cumulated work of shift type i = 1, . . . , K for agents
of type i = 1, 2, G (See Page 172)
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tact Center. URL: http://www.witness-systems.de/international/ger-
many/Produkte%20%26%20Service/whitepapers/docs, July 2002a. Execu-
tive whitepaper. 10, 55

Witness Systems. Kosten senken – Kunden halten: Return on Invest-
ment im Call Center. URL: http://www.witness-systems.de/inter-
national/germany/Produkte%20%26%20Service/whitepapers/docs,
November 2002b. Executive whitepaper. 13



References 257

Witness Systems. Momentaufnahme: Wie steht es um die Mo-
tivation, Training und Entwicklung in deutschen Call Cen-
tern. URL: http://www.witness-systems.de/international/ger-
many/Produkte%20%26%20Service/whitepapers/docs, August 2004.
executive whitepaper. 56, 11

R.W. Wolff. Poisson arrivals see time averages. Operations Research, 30(2),
1982. 31, 38

E. Zohar, A. Mandelbaum, and N. Shimkin. Adaptive behavior of impatient
customers in tele-queues: Theory and empirical support. Management Sci-
ence, 48(4):566–583, 2002. 58


	Introduction
	Functions and Structure of Contact Centers 
	Characteristics of a Contact Center 
	A Dynamic Contact Center Model 
	Technical Performance Measures 
	Operational Decision Problems in Contact Center Management 
	Literature related to Contact Center Management 

	Queueing-Theoretic Approaches for Contact Center Analysis
	The Stationary Erlang-A Model 
	Motivation 
	Modelling and Justification 
	Performance Measures 
	Applicability and Limitation for Contact Center Analysis 

	A Non-Stationary Fluid Approach for the Erlang-A Model 
	Motivation 
	Modelling and Justification 
	Performance Measures 
	Technical Performance Measures
	Economical Performance Measures 

	Numerical Solution and Results 
	The Waiting Times Calculated by the Approximation and the Simulation
	The Probability of Being Served Calculated by the Approximation and the Simulation
	The Utilisation of the Agents Calculated by the Approximation and the Simulation
	Influence of the Parameters on the Profit Function

	Applicability and Limitation for Contact Center Analysis 

	Refinement to a Diffusion Model 
	Motivation 
	Modelling and Justification 
	Comparison of Approximation and Simulation Results 
	Applicability and Limitation for Contact Center Analysis 

	Literature related to the Fluid and Diffusion Approach 

	Analysis of Time-Dependent Contact Centers with Retrials
	Contact Centers with Homogeneous Customers and Agents 
	Description of a Contact Center Model with Retrials 
	Determination of the Fluid Processes 
	Refinement to a Diffusion Model 
	Performance Measures 
	Numerical Analysis 
	The Number of Customers in the System and in the Orbit 
	Influence of the Parameters on the Time-Dependent Waiting Time
	Influence of the Parameters on the Time-Dependent Probability of Being Served 
	Influence of the Parameters on the Time-Dependent Utilisation 
	Aggregated Technical Performance Measures 
	Economical Performance Measures 
	The Variance of the Number of Customers in the System
	The Variance of the Number of Customers in the Orbit
	The Correlation between the Number of Customers in the System and the Orbit


	Contact Centers with Heterogeneous Customers and Agents 
	Description of the Model 
	Determination of the Fluid Processes 
	Refinement to a Diffusion Model 
	Performance Measures 
	Numerical Results 
	The Influence of the Priority Rule on the Number of Customers in the System and in the Orbit
	The Number of Type-2 Customers in the System and in the Orbit
	The Time-Dependent Waiting Time of Type-2 Customers
	Aggregated Technical Performance Measures
	Economical Performance Measures


	Literature on Retrial Queues 

	Personnel Staffing and Shift Scheduling based on Fluid Models
	Formulation of a Basic Staffing and Shift Scheduling Problem 
	Numerical Analysis of the Profit Function
	Outline of the Heuristic Optimisation Procedure 
	Opening Procedure
	The Improvement Algorithm 

	Numerical Results
	An Unlimited Total Number of Agents
	A Limited Total Number of Agents

	Shift Scheduling for a Contact Center with Heterogeneous Customers and Agents 
	Formulation of a Generic Shift Scheduling Problem 
	Modification of the Heuristic Optimisation Procedures
	Numerical Results 

	Overview of Current Literature on Contact Center Staffing and Scheduling 

	Conclusions and Suggestions for Future Research 
	Derivation of the Differential Equations for the Variances and Covariances in Contact Centers with Retrials 
	Contact Centers with Homogeneous Customers and Agents 
	Contact Centers with Heterogeneous Customers and Agents

	Glossary of Notation
	List of Figures
	List of Table
	References

