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Zusammenfassung. Inhalt dieser Dissertation ist die Untersuchung von Sin-
gularitdten des mittleren Kriimmungsflufses einer equivarianten Lagrangeschen
Untermannigfaltigkeit. Sei hierzu L eine kompakte orientierbare Mannigfaltigkeit.
Wir sagen, dak eine Ein-Parameter Familie von glatten Immersionen F;: L — M
den mittleren Krimmungsfluf$ erfiillt, falls gilt

e H
dt (1)
F(-,0) = F,

hierbei ist H der mittlere Kriimmungsvektor der Immersion, und Fy: L — M
die Anfangsimmersion. Gleichung (1) ist ein quasi-lineares parabolisches System.
Dabher existiert ein maximales Zeitintervall [0, Tyng) in dem eine glatte Losung von
(1) existiert. Es ist aber zu erwarten, daf der Fluf Singularititen ausbildet. Man
kann zeigen, dak das genau dann der Fall ist, falls die zweite Fundamentalform
explodiert.

Schwerpunkt der Arbeit ist die Analyse des singuldren Verhaltens von (1) in der
Klasse der equivarianten Lagrangeschen Untermannigfaltigkeiten. Sei zy: S* —
C\{0} eine geschlossene immersierte Kurve mit zy = ug + g, und sei ferner
G: S"! — R” die Standardeinbettung der Sphiire mit Radius Eins. Eine equiv-
ariante Lagrangesche Untermannigfaltigkeit Fy: S x S"~1 — C™ ist gegeben
durch

Fo(¢,2) = (uo(9)G(), v0()G (@)

Da der mittlere Kriimmungsfluls isotrop ist, ist das Verhalten der equivarianten
Lagrangeschen Untermannigfaltigkeiten unter dem Fluf determiniert durch den
Fluf der Profilkurve. Hierbei muf man zwei Fille unterscheiden: Entweder en-
thélt zp den Ursprung oder nicht. Die vorliegende Arbeit konzentriert sich auf
den zweiten Fall. Unsere Hauptresultate lauten:

Theorem A. Sei Iy eine equivariante Lagrangesche Immersion von L := S™" 1 x
St in C™. Falls die Anfangskurve zy: S — C\{0} geschlossen und eingebettet ist,
nicht den Ursprung enthdlt, und F > 0 erfiillt, dann konvergiert Fy(S* x S"~1)
zur Sphire ||po]|S™™t fiir t — Tung. Desweiteren ist die singulire Zeit gegeben

durch die eingeschlossene Fliche Ay der Anfangskurve zy, es gilt Tyng = %.

Theorem B. Sei Iy eine equivariante Lagrangesche Immersion von L in C™.
Falls die Anfangskurve zy: ST — C\{0} geschlossen und eingebettet ist, nicht den
Ursprung enthdlt, F > 0 erfillt und alle Profilkurven z(-,t) konvez sind, dann
st die Singularitat vom Typ-1. Nach Reskalierung und Auswahl einer Teilfolge
konvergiert F, zu dem Zylinder S™' x R glatt auf kompakten Teilmengen von

Ccr.



Theorem C. Sei Fy eine equivariante Lagrangesche Immersion von L in C™.
Falls die Anfangskurve zy: ST — C\{0} geschlossen und eingebettet ist, den Ur-
sprung nicht enthdlt, und folgende Ungleichung erfillt

n—1++y(n—12+n-1
Tmin(o) ’

dann erfillt zo die Voraussetzungen von Theorem B.

An dieser Stelle mochte ich meinem Betreuer Prof. Dr. K. Smoczyk fiir seine
Unterstiitzung wihrend der Promotionszeit und das gestellte Thema danken.
Desweitern mochte ich dem Institut fiir Differentialgeometrie und dem Max-
Plack Institut fiir Mathematik in den Naturwissenschaften in Leipzig fiir die
angenehmen Arbeitsatmosphiren danken. Weiterer Dank geht an Dr. L. Haber-
mann und Prof. Dr. Guofang Wang.



Abstract. In this paper we study the singular behavior of the mean curvature
flow of an equivariant lagrangian submanifold. To that end let L be a closed,
oriented manifold. We say that a one-parameter family of immersion F;: L —
(M, g), Fy = F(-,t) satisfies the mean curvature flow equation if

d —s
“F=H,
dt (2)

F(-,0) = F,

where H is the mean curvature vector and Fy: L — (M, g) is the initial immer-
ston. We recall that H is the trace of the second fundamental form A = VdF.
Equation (2) is a quasi-linear parabolic system. Therefore, there exists a maximal
time interval [0, Tyne) in which a smooth solution of (2) exists.

The present paper gives a detailed analysis of the singular behavior of (2) in the
case of equivariant lagrangian submanifolds. Suppose that zo: S' — C\{0} is a
closed immersed curve with 2y = ug+12vy, and G: S»! — R" is the standard em-
bedding of the sphere of radius one. Then the equivariant lagrangian submanifold

Fy: S x S"~1 — €™ is given by

Fo(, ) = (uo(0)G (), v0(0)G(x)).

One has to distinguish two different cases, namely whether zy encloses the origin
or not. We will focus on the latter case, although some insight to existing results
of the former case is given.

Since the mean curvature flow is isotropic, it will be determined by the flow of
the corresponding profile curves. Our main results are the following theorems:

Theorem A. Let Fy be an equivariant lagrangian immersion of L in C™. If the
initial profile curve is closed, embedded, satisfies # > 0, and does not contain
the origin, then Fy(S* x S™™1) converges to a sphere ||po||S™™! as time goes to
Tsing- Moreover, the singular time is determined by the area Ay enclosed by the

inatial curve. That is Tyng = %.

Theorem B. Let Fy be an equivariant lagrangian immersion of L in C". If
the initial profile curve is closed, embedded, satisfies F > 0, does not contain
the origin, and all profile curves remain convex, then the singularity is of type-1.
After rescaling and possibly choosing a subsequence F; converges to the cylinder
S™=1 x R smoothly on compact subsets of C".



Theorem C. Let Fy be an equivariant lagrangian immersion of L in C™. If the
wnitial profile curve is closed, embedded, satisfies

n—1++/(n—12+n-1

gmin O Z )
( ) Tmin(o)

and does not contain the origin, then the assumptions of Theorem B are fulfilled.

Schlagworte. Mittlerer Kriimmungsfluf, Lagrangesche Untermannigfaltigkeit,
singuldres Verhalten, mean curavture flow, lagrangian submanifold, singular be-
havior.



Introduction

Let L be a closed, oriented manifold. We say that a one-parameter family of

immersion Fy: L — (M, g), Fy = F(-,t) satisfies the mean curvature flow equation
if

d —

—F =H,
dt

F(-,0) = F,

(3)

where H is the mean curvature vector and Fy: L — (M, g) is the initial immer-
ston. We recall that H is the trace of the second fundamental form A = VdF.
Equation (3) is a quasi-linear parabolic system. Therefore, there exists a maximal
time interval [0, Tyne) in which a smooth solution of (3) exists.

The study of mean curvature flows was initiated by Brakke [11]. He was mainly
interested in this flow because it is a model for the motion of grain boundaries
in an annealing metal. Consequently the convenient setting is that of varifolds
and geometric measure theory. An easier to read introduction to Brakke’s flow
has been given by Ilmanen [41].

Some time later Gage and Hamilton [27| studied the so called curve shortening
flow in the plane using the classical theory of partial differential equations. Their
main result is: Embedded, closed, convex curves in the plane become asymp-
totically spherical as they disappear, that is they shrink to a point, and after
rescaling they converge smoothly to the unit circle. This result was extended
by Grayson [30| who proved that embedded, closed, curves become convex. Two
different proofs of the Grayson convexity theorem were given by Hamilton [33]
and Huisken [37]. The curve shortening flow initiated the study of curve flows
with different speed functions, we only refer to [16] for a recent exposition. The
curve shortening flow has also been studied on surfaces, compare [31], [47] and
many others. Let us also mention the work of Angenent who introduced Stur-
mian oscillation theory to the curve shortening flow, compare [5], [7], as well as
some delicate singular analysis, see [6], [8].



Huisken [35] investigated the motion of convex hyper-surfaces in riemannian man-
ifolds by the mean curvature flow. His main result is that they become asymp-
totically spherical. In his paper [36] he classified the singular behavior. This
lead to many other papers concerning the singular behavior of the flow, see for
example [9], [39], and |38]. Comprehensive estimates for graphs which evolve by
their mean curvature has appeared in [18].

Let us further note that Allen and Cahn [3| conjectured mean curvature motion
as the singular limit of a reaction-diffusion (phase-field) equation. This idea has
been developed by de Mottoni and Schatzman [43], [44], [45], Bronsard-Kohn [12].
Chen-Giga-Goto |15] and Evans-Spruck , [20],|21],|22],|23| introduced the [evel-
set-flow, in which the moving surface is the zero-set of a function, all of whose
level-sets move by mean curvature. The phase-field and level-set approaches are
reconciled in the paper of Evans-Soner-Souganidis [19], and unified with Brakke’s
work in Ilmanen’s paper [40].

An immersion Fy: L — M in a Kéhler manifold (M?",w, J, g) is called lagrangian
if the dimension of L is n and F*w = 0. From now on we assume that this is
the case. It was shown by Smoczyk |55| that the lagrangian condition is pre-
served under the mean curvature flow if we assume that the ambient space is
Kéhler-Einstein. Moreover, Wang [58]|, Chen and Tian [14] proved that sym-
plectic surfaces in Kéahler-Einstein manifolds remain symplectic along the mean
curvature flow.

Theorem. Let us assume that for any t € [0,Ty) we are given a one-parameter
family of lagrangian immersions Fy(L) in a Kdhler-Einstein manifold M*" which
evolves by its mean curvature. Suppose further all ambient curvatures quantities
are bounded and that lim,_g, | A|? is bounded. Then there exists an ¢ > 0
such that the mean curvature flow admits a smooth solution on the extended time
interval [0, Ty + €).

For a proof, see [56]. If the ambient space is R?", then all ambient curvature
quantities are zero. Thus, if Ty, is finite, then the second fundamental form
has to blow up. This gives: If the initial initial submanifold is compact, and
the ambient space is euclidian, then the singular time is finite. This follows for
example from Brakke’s sphere barrier to internal varifolds. Another way to see
this is to look at the evolution equation of | F'|2. It reads

d
— |F|?=A|F|*-2n.
CIF|?=A|F| - 2n
The parabolic maximum principle yields that the function | F'|?+ 2nt is bounded

from above by a constant. This gives a contradiction for Ty,, = 00. So, compact
lagrangian immersions in R?" will develop finite time singularities.



A point p € R?" is called blow-up point if there exists a point x € L such that

limy g, F(x,t) = pand lim;_q, | A|*(z) = oo. It holds
comst _ ax A2,
Tsing —t Lt

where const; > 0, this can be shown with evolution equation of | A|? and the
maximum principle. We will call the singularity to be of type-I if there exists
another constant const, such that
const
max |A|? < —2
Lt ﬂing —t
The prime example is the sphere which shrinks self-similarly to a point. Otherwise
the singularity is called of type-II. For an example picture an immersed convex

curve with two loops. It is intuitively clear that it will develop a kink, for a proof
see [8].

Let us define for y € R*"

ply.t) = {m}%em{ - %T‘fig‘—t)}

Theorem. If L, is a family of closed lagrangian immersions in R*" which
evolves by its mean curvature, then we have

% Ltp(F(ZL',t),t) d,ut = _Lt )ﬁ + mFl‘zp(F(l',t),t) d,ut (4)

For a proof see Huisken [36]. Equation (4) is called monotonicity formula. This
formula is analogous to the monotonicity formula for minimal surfaces, compare
§5.4.3 of [25], the monotonicity formula of Giga and Kohn, [29], the mean value
property for harmonic functions, and for the Yang-Mills flow, [48]. A similar
formula also holds for the Brakke flow, compare [41].

Now we describe the rescaling procedure. For simplicity we assume that the origin
is a blow-up point. We define the rescaled lagrangian immersions by

Fla,s) = — Fat),

Then the submanifolds Es = F(L,s) are defined for s € [—%ln Tiing, 00), and
satisfy the equation
d ~ - -
d—F(x, s) = H(x,s)+ F(z,s).
s
Note that a rescaled lagrangian submanifold is again a lagrangian submanifold.
It holds:



Theorem. Let us suppose that F,: L — R*™ is a smooth one-parameter family
of oriented, lagrangian immersions which moves by the mean curvature. Let us
further assume that the origin is a blow-up point of type-1. Then for each sequence
s; — 00, there exists a subsequence again denoted by s; such that the rescaled
lagrangian immersions Esj converge to a limiting immersions Zoo smoothly on
compact subsets. Moreover, the limit immersion satisfies the identity

H; = — (F, N}). (5)

We remark that any immersion which satisfies the above identity (5) is called
self-similar. This terminology is due to the fact that a self-similar submanifold
shrinks homothetically under the mean curvature flow. A similar result holds for
the Brakke flow, see [42]. The main difficulty here is that of regularity.

Let us note some geometrically interesting properties of the mean curvature flow.
As noted above it was shown by Smoczyk [55] that it preserves the lagrangian
condition. Moreover in [56] it was shown: If L, is a family of closed, oriented,
lagrangian submanifolds evolving by the mean curvature flow in a Calabi- Yau
manifold, then the cohomology class of the one-form H is fized.

Wang [58] proved that no type-I singularities can occur under the lagrangian
mean curvature flow if on the initial lagrangian immersion we have cos(a) > 0.
Here « is the lagrangian angle. In particular, this condition implies [H] = 0 for
the cohomology class of the mean curvature form H. Neves [46] on the other
hand showed that [H] = 0 implies that no type-I singularity form. Finally, Li
and Chen proved that type-II singularities of the lagrangian mean curvature flow
in C? consists of a finite union of more than one lagrangian two-plane.

Let us now describe the content of our thesis. The present paper gives a detailed
analysis of the singular behavior of (3) in the case of equivariant lagrangian
submanifolds. Suppose that zp: S' — C\{0} is a closed immersed curve with
2 = U + 1wy, and G: S"! — R" is the standard embedding of the sphere of
radius one. Then the equivariant lagrangian submanifold Fy: S* x S"1 — C" is
given by

Fo(¢, ) = (uo(9)G(x),v0(¢)G(x)).

One has to distinguish two different cases, namely whether zy encloses the origin
or not. We will focus on the latter case, although some insight to existing results
of the former case is given.

Since the mean curvature flow is isotropic, it will be determined by the flow of the
corresponding profile curves. Thus, to solve equation (3) in the equivariant setting
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described above we have to find a smooth family of curves z: S' x 0, Tying) — C
for which

d <€T7N>
EZI?N = {k—(n_l) r }N’ (6)
2(+,0) = z,

where k denotes the curvature of the curve, N the inward pointing unit normal,
e, = %, 1 := |z|, and n the dimension of L. The derivation of equation (6) was
given by H. Anciaux [4] who also classified all self-similar solutions of this flow.
These curves show that unlike in the curve shortening flow the curves do not
necessarily become convex. Moreover, as shown in [32] an initial convex curve

can also become non-convex and develop a type-II singularity.

Our main results are the following theorems:

Theorem A. Let Fy be an equivariant lagrangian immersion of L in C™. If the
initial profile curve is closed, embedded, satisfies F > 0, and does not contain
the origin, then Fy(S' x S™™1) converges to a sphere ||po||S™™" as time goes to
Tsing. Moreover, the singular time is determined by the enclosed area Ay of the

initial curve. That 18 Tgng = %.

— —
Let us note that .# = | H |. Thus, .# > 0 implies that H never vanishes.

Theorem B. Let Fy be an equivariant lagrangian immersion of L in C". If
the initial profile curve is closed, embedded, satisfies F > 0, does not contain
the origin, and all profile curves remain convex, then the singularity is of type-1.
After rescaling and possibly choosing a subsequence F; converge to the cylinder
S™=1 x R smoothly on compact subsets of C".

This is an example of a monotone lagrangian submanifold in C* which develops
a type-I singularity under the mean curvature flow.

Theorem C. Let Fy be an equivariant lagrangian immersion of L in C™. If the
initial profile curve is closed, embedded, satisfies

n—1++y(n—12+n-1
Tmin(o) ’

and does not contain the origin, then the assumptions of Theorem B are fulfilled.

ymin(o) Z

The present paper consists of three chapters and three appendices.

Chapter 1 takes a look at the curve shortening flow that is the case where n = 1.
It recalls convex sets. Then we introduce tamed sets which are generalized convex

11



sets. Finally some comments on the general planar curve flow problem are given.
Chapter 2 provides the proofs of Theorem A and C.

Theorem A is proved analogously as in the curve shortening case. But we have
to replace convex curves, which are characterized by £ > 0 with tamed curves,
which are characterized by % > 0. It is shown that tamed curves enjoy most
properties of convex sets, this result is established in Chapter 1. The remaning
parts of the theorem is proved in Chapter 2.

Chapter 3 consits of four sections: The first section explains the blow-up proce-
dure. The second section establishes the asymptotic behavior of several geometric
quantities. The key observation is that r, ~ exp(t). The third section proves a
Bernstein-type estimate as well as a Harnack-type inequality. Finally, in the
fourth section we finish the proof of Theorem B.

The structure of the proof is as follows: We use Gage’s inequality to bound the
length of the rescaled curves. This is the only time where we make us of the
convexity assumption. Then it is shown that 4 — — (2, N) in L?(S'). This is
done with a monotonicity-type argument. Moreover, we show that the entropy
of the curves remains bounded. Together with the Harnack-type inequality and
the Arzela-Ascoli theorem the result is obtained.

In the appendices we have collected several computations which would have dis-
tracted the flow of reading.

One should keep in mind that we are considering two pairs of flow. The first
pair is the equivariant curve shortening flow and its reparametrized counterpart.
The second pair is the rescaled equivariant curve shortening flow and again its
reparametrized counterpart. Another flow is also mentioned; the weighted curve

flow.

12
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CHAPTER 1

Reparametrization

This chapter prepares the proof of Theorem A. We begin with an expository
Section 1.1 on the curve shortening flow equation. We included this paragraph
because the proof of Theorem A has a similar structure at a conceptual level.
The main ingredients are a reparametrization of the curves with respect to the
normal angle and the notion of the support function. The section is followed by
an elementary discussion of convex sets and their properties. In the third Section
1.3 we introduce what we call tamed sets which play a similar role as convex sets
play in the curve shortening flow. Furthermore, we reparametrize the curves with
respect to an new angle, and introduce a generalized support function.

1.1 On the curve shortening flow

The discussion of this section is of expository character and may be skipped.
If the dimension is n = 1, then (6) is just the curve shortening flow equation,
considered by Gage and Hamilton [27] and many others. In this section we recall
the definition of the support function for a strictly convex plane curve along with
basic properties of it. Then we recall one possible proof of Gage and Hamilton’s
classical result that embedded, closed, strictly convex plane curves shrink to a
point in finite time. The chapter closes with some general comments on the curve
flow problem.

1.1.1. The curve shortening flow equation reads; given z: S' — C find a
smooth family z: S' x [0, Tyg) — C with

d
YTl EN, and (1.1)
Z(',O) = 20-

Here £ denotes the curvature of the curve, and N the inward pointing unit normal.
The first key observation is that convexity of zy is preserved along the flow.
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Indeed, we have

d
D= Ak 1k
at TR

the claim follows with the maximum principle. Let us recall that a strictly convex
curve z: S — C admits a reparametrization 9: S' — St as follows

J(p) = /Opkdu-

This is possible because f51 kdp = 27, and k > 0. Because the flow preserves
strict convexity, we may reparametrize S* as above for every t € [0, Tiig). When-
ever we do this we say that we reparametrize the flow. Let us now give a geometric
interpretation for the parameter ¥). We note that by definition

g 1
" Tk
This gives with the Frenet formulas that
0 0
—T =N and —N = -T.
0 9w
In particular, we have 86—;2]\7 = —N. Therefore, we may choose the parametriza-

tion such that the inward pointing unit normal is given by

cos ¥
N) = — .
(?) (sinﬁ)
With this choice the unit circle fulfills z2(¢) = —N(¢). This is the reason why
one calls ¥ the normal angle. Let us recall the definition of the support function

h(¥) := —r{e., N) = x(¥) cos ¥ + y() sin¥.

The support function measures the signed distance of the supporting hyperplane
to the origin. Let us denote differentiation with respect to 9 by a prime. Observe
that

' =r{e,T).
The curve as a function of 9 is given by
2(0) = =1 {ep, NYN +7(e,, T)T = {h + ' }N = {h + i’} exp(®)).

Here we have identified C and R?. Note that z(0) corresponds to the point on v
which has normal vector (_01).
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Suppose that A, B are both strictly convex subsets of the plane with correspond-
ing support functions hy and hg. Then A C B if and only if hy < hg. Finally,
let us recall that the area of v may be computed by

1 2 12
2/Slh h'* dd,

and the length by

Liy) = /Slh‘w’

compare [10].

Aly) =

1.1.2. Now we want to express the evolution equation of the curvature in terms
of the new parameter 1J. Let us denote by 7 the new time parameter then we
use ¥ as the other Coordinate Thus we change variables form (p, ) to (¢, 7). We
want to point out that 2 7& 5-- We compute

d 3 13 g, 0
Therefore,
0 d 0, d 0? 0 3
o = i gt = gt Hagt)
0? 0 0?
=——k—k k k= kK — + k.
o {819 } + o0

In the same spirit the other evolution equations may be derived. We observe

0 d 0 d o 0 3}

—z2=—z——z—0=kN —k—z—k=kN — —kT. 1.2

or° " dat” o0 dt 99" 09 0 (1.2)
Note that the original flow equation (1.1) and the reparametrized equation (1.2)
differ only by a tangential term. Thus, they describe the same geometric flow.
The tangential contribution just makes ¥ and 7 independent.

1.1.3. We claim that the enclosed area at singular time must vanish. If this
is not the case, then there exists a small ball enclosed by all curves z(-, 7) for 7
closed to Tyne. That is to say that A — hpay > € > 0. The maximum principle
applied to the evolution equation of the function

k

f= h — hpan

17



will give a contradiction. We introduce

1

m=-——.
h — hpan

Then, there exist constants const, const, > 0 such that

const; < m < const,. (1.3)
We note that

m' =m*{ — (2,T) + h },

and

2 1

m// = 2m3{ - <Z7T> + h’{JaH} + m2{ - % - <Zv N> + hgall}'
Here, the prime denoted differentiation with respect to /. This yields

fr=mk +m*{ = (z,T) + hy } k.
Therefore,

mk' = f —m*{ — (2, T) + hi } k-
Moreover,

fr=mk" +2m*{ — (2, T) + hi } K

+ {2m3{ — (2, > + ball} +m*{ — (2, N) + gall}}k

Combined with the last equality we get

1=k 2 (T B} (5 N) + Wb —

Now we can derive the evolution equation of f. We compute with the help of
§A.3 that

d
d—f = mk*k" + mk® + m?k?,
.
which gives

%f — k2f// + 2mk2{ <Z,T> - {Jall}f/
+2m°k? + {m?( (2, N) = hijy) + m}k>.

(1.4)

18



Let us recall that the support function of a ball centered at p = (pg,p1), with
radius p is given by

hball(ﬁ) =p+Ppo cos v + P1 sin 9.
This implies that A, = p — hpan. Therefore

m?({z,N) — hiy) +m =m*((z, N) + hpan — p) + m

:m2(—i—p)+m:—pm2.
m

Inserting this in equation (1.4) yields
d
—f= K2 f" 4 2mk*{ (2, T) — iy }f + 2m2K* — pm?K>.

It holds p > 0 because of our assumption. Invoking Inequality (1.3) we see that
f is bounded from above by the maximum principle. But this is a contradiction
as the curvature k£ has to blow up at Tg,, and therefore also f. This proves the
claim.

1.1.4. We are left with two cases; either the limit curve is a point or a segment.
But it can not be the latter because, k is bounded away from zero again by the
maximum principle. Thus we have shown convergence of support functions, or
equivalently (in the set of compact convex bodies) convergence in the Hausdorff
metric, compare Schneider [52] and also the next section. All we have to do is
carry over this proof to the case n > 1.

Notes for Section 1.1

1. As noted earlier, the starting point for the curve shortening flow is the paper of
Gage and Hamilton [27], in which they prove that simple, strictly convex curves converge
smoothly to a round point. The given proof follows ideas of Tso [57].

2. What we know about the curve shortening flow goes way beyond what we have
sketched in this section. Gage and Hamilton further showed in their paper that the
curves become asymptotically round. Grayson [31] proved that any embedded curve in
the plane becomes convex before it develops a singularity. For further development we
refer to the literature, see for example [16] and the reference therein.

3. The notion of the support function of a closed convex curve can already be found
in Blaschke’s classical book [10]. In fact, every weak*-closed convex subset A C E' of
the dual of a real Banach space E admits a support function

o(z) = sup (a', ).
z'eA

19



Moreover, it is uniquely determined by its support function by Hérmander’s theorem,
compare |2].

1.2 On convex sets

1.2.1. Let (X, d) be a metric space. For any subset A in X, and € > 0 we define
the e-thickening of A by

[A]le :=={z € X |d(z,A) <¢€}.

Let X denote the collection of compact subsets of X. Given E and F' in X, we
define their Hausdorff distance by

3(E,F):=inf{e>0|EC[F].,F C[E].}.

One can check that (E,F) — §(FE, F) satisfies the axioms of a metric. We
have the following theorem: Assume that (X,d) has the property that closed
and bounded subsets are compact, then (X,9), the space of compact subsets of X
with Hausdorff metric 0, is complete. Furthermore, if X is compact, then X is
compact. As a consequence: From each bounded sequence of convex bodies one
can select a subsequence converging to a convexr body. This is Blaschke famous
selection theorem.

1.2.2. Suppose that A and B are subsets of the plane. Let us recall that a
hyperplane is determined by a vector N € R? and a real number o € R as follows
H(N,a) ={y € R?| (y,N) = a}. In our case H(N, ) is just a straight line. We
say that H(N,«) separates A and B if A C H(N, o)™ := {y € R?| (y, N) < o}
and B C H(N,a)" := {y € R?*| (y,N) > a}, or vice versa. We say that A
and B are strongly separated by H (N, «) if there exists € such that A and B are
separated by C H(N,«a —¢)” and H(N,«a+¢€)™.

The following separation theorem holds true: If A and B are nonempty convex
subsets of the plane with AN B = &, then A and B can be separated. If A is
compact and B is closed, then A and B can be strongly separated.

Notes for Section 1.2

1. The treatment of the Hausdorff metric, and Blaschke’s selection theorem is taken
from [13]. Blaschke’s selection theorem can be found on page 62 of [10].
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2. Paragraph 1.2.2 relies on Section 1.3 of Schneider’s book [52]. The standard refer-
ence to convex analysis is of course Rockafellar’s book [49]. The main direction of this
book is optimization theory.

1.3 Tamed curves

This section prepares the proof of Theorem A. The flow equation we are looking
at is

d <€7“7N>
Ce=oN={k- -1 MN (1.5
2(-,0) = 2.

The theorem was proved in Section 1.1 in the case n = 1. The first step is: Find
a suitable notion of convex curves in the general case. This will be curves which
satisfy .# > 0. We refer to such curves as being tamed.

1.3.1. A standard calculation yields the evolution equation of .. We observe
from Appendix A.4 that

d . _d (e i<€r>N>
@’ ~at Vg
= AN +F
(ey, V.F) 1 (e, NY’Y {er, NY* _
B AL e
Note that,
2 __ _ <6T>N> 2_ a2 _ <6T>N> _ 2<6T>N>2
l{;_{?Jr(n D }—J +2(n = 1)L o (0 1)
Hence,
d 5 _ _penVF) (e N)* 1
=T = AF + (- 1) (n 1){(n+1) = TQ},? e

+2n — 1)@?2 + 7.

This implies that .%# > 0 is preserved along the flow by the maximum principle.
From now on we assume that z: S — C satisfies . # > 0. Whenever this is the
case we say that z is tamed. Let us introduce the following functions:

(e, N)* 1 }

r2 r2

@:(n—1){(n+1)

(er, N)

U =2n-1) .
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Sometimes it is useful to make use of the following evolution equation

2
ij‘—a_d&_F( 1)@3

F+OF +VF* + 7. 1.7
dt ou? r Ou + * * (1.7)

That Equation (1.6) and Equation (1.7) are equivalent is shown with the help of
Appendix A 4.

1.3.2. Moreover, we note that

/ﬁdu:/ l{:—(n—l)(er; >d,u—27r{rot — (n—1) wind(2)} =: 27x,
st st

where rot(z) denotes the rotation number of the curve, and wind(z) its winding
number with respect to the origin. It follows that

n(p) == /Op T du (1.8)

is a map of n: S' — S(k). Here S'(k) := R/27kZ. Thus zon~': S'(k) — C
is a reparametrization of our curve. Similar to the curve shortening case we
perform this reparametrization for all ¢t € [0, Tyng). This works because .# > 0 is
preserved during the flow as shown in the previous paragraph. Let us now change
the parameters from (p,t) to (n,7). In order to make 7 independent of the time
parameter 7 we have to add a tangential term to equation (6). We note that

/ —J +(n— 1)<6T’T>ﬁf 7+ (n— 1){(n+l)M — i}ﬁ

r2 r2

+2(n — 1)<6’“; >92 + 73— F?kdu

- <6T’7T>ﬁg~
/ 57+ ( 1)—T ém,f

+n-{n+1) <er;év>2 - %}9 iy 1)<6T;N>3ﬂ du

Here we refer to Appendix A.2 and equation (1.7). We note that

D 2
/ <6T;T>a(19d ) 7 / Ll oD sy,
0
(e, T (er, e, N)? (e, T)"
/ >§+(n—1)< 7~2> ! T2> }9@
2
ter, T / ter, N §2—(n+1)<6r;iv> F dy.
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This and the previous equation yield

) = {7 + - piet]

0 e, T
%’}:%’{—a@jt(n—l)( >}.

on r
With this equation at hand we can compute the evolution equation of .% in new
coordinates (n, 7). But first let us observe that

0 1 9 1

an F O F
This yields, combined with the previous equation, that

o d 0 d J {er,T)

Therefore the reparametrized flow equation reads

d d (e, T)

— zﬁN—{—? -1 —}T 1.9
dr” dn tn-1) r (1.9)
The tangential contribution of equation (1.9) does not alter the geometric be-
havior of the flow, it just makes 7 and 7 independent. Let us now derive the

evolution equation of .%. First of all recall that

80-\_0'\80-\
5” =T 5
and
* 0? 0 2
T =TT+ F{—F
op? n? * {877 }
We have
o_ d_ 0 _0n
Tf_dt!f 87]?815
2 {e,,T) 0
_ - g -1 ™ g O.F \115*2 a3
537 T 7 HOF VT4 S
3} (e, TY)y 0 .
—?{8—7794-(71—1) - }877,f
0? 0 2 (., T) 0
_ g2 g i _ L gz
— 7 8n2,f+9{8n9} Rl
3} 2 (e,, T) O
aT a2 a3 _ gl Y g o N T a ¥ o
+OF + VT2 + F J{an‘%} (n— 1)~ F o
Hence,
d o d? 2, o3
—F =F"—=F+0F +V.F7"+.7". (1.10)
dr dn?

For the readers convenience we have collected more calculations for the reparam-
etrized flow in Appendix B.1.



1.3.3. A geometric characterization of 7 is not so easy to explain. In some sense
it is also a kind of normal angle. If we look at convex curves, then

N (C?S 19)
sin v
was the normal vector of the curve at z(¢), and N was also normal to the sup-
porting hyperplane going through z(d). A hyperplane has the property that its
curvature is equal to zero. As a first step we want to replace these hyperplanes
by supporting hypercurves characterized by the property that .# = 0. The corre-

sponding equivariant submanifold are the so called lagrangian catenoids described
by Harvey and Lawson in [34].

We claim that: Let ny € [0,27], and h € R\{0}. The implicitly defined curve
given by

f(z,y) = Rz"cosny + F2"sinny — h =0,

is a stationary solution of equation (1.9), where z = x +1y and the motion of the
curve is taken in direction of the vector (f,, —f:)T. The proof of this assertion
can be found in Appendix B.2. Let us list these curves forn =1,...,6:

hi = xcosn+ysinny
hy = (2* — y?) cosn + 2y sinn
2® — 3xy?) cosn + (—y* + 32%y) sinn

Moreover, the normal vector is given by

1 [ Rz"tcosn+ Iz Lsing
Niyp = )

=l \ —=Qzn = cosn + Rz"~Lsing
which implies that
h=1r"(er, Nnyp) -

Let us now suppose that z: S'(k) — C is a tamed curve, which is parametrized
by n(p) := [ F du. Then to every point z(1) there is associated a real number
h(n) :== —r"{e,, Neurve), Which measures the distance of the supporting hyper-
curve going through z(n) with normal angle — N,y at z(n). That this heuristic
picture is indeed true will be revealed in the next paragraphs §1.3.4 - §1.3.5.
Moreover, we will see that tamed set enjoy most properties of convex sets.
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1.3.4. 'The previous paragraph motivated to define the generalized support func-
tion of a tamed, reparametrized curve z: S*(x) — C by
h(n) = —r" (e, N) .
This definition needs some justification. We know from §B.1.1 that
n—1

F

Here ’ denotes differentiation with respect to . These two equations imply several
things. First of all we have

K=" (e, T), and h" = n'— — h.

F n

2n 2 2
=h*"+h d = . 1.11
r + h'*, an e el AN ( )
Therefore, we can recover .% from the support function as follows
n—1
{n*+n?}
Fo=p 1.12
TR (1.12)
With a little effort one can also show that
2" = {h+zh’}exp{m}. (1.13)

Let us derive equation (1.13). We know from the previous paragraph that the
support function h can also be written as

h(n) = Rz" cosn + F2" sinn.
We recall from Appendix B.2 that

1 (—%z"‘l cosn + RNz""Lsin 7])

Thyp = —
Pl \ Rz cosn — Jznlsing

This implies that
W) = 1" (er, Teurve) = =" {2, Thyp)
= {:B%Z"_l cosn — yRz"sing + yR2" "' cosn + yIz" ! sin n}
= {{x%zn_l + y?Rz"_l} cosn + { —yR" 4 y%z"‘l} sin 7]}
$2" cosn — R2" sin.
Therefore,
{h + Zh’} exp{m}
= {éRz" cosn + 2" sinn + Z{SZ" cosn — Rz" sin n}} exp{n}
= R2" cos? 1 + 2" sinn cosn + 132" cos® ) — Rz sinn cos 7
+ 1R2" cospsin g + 132" sin? 1 — F2" cosnsinn + Rz" sin 7y

= RZ" +132" = 2",
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which shows the equation. Thus, a tamed curve is determined by its generalized
support function. But more important is the following observation: A curve
z: SY(k) — C is tamed if and only if h + h” > 0. Let us recall that a 27k-
periodic function describes a convex curve in the plane if and only if h + h” > 0,
convex meaning here that £ > 0. Thus, there exists a one-to-one correspondence
between tamed curves and convex curves.

1.3.5. Let us suppose that z: S'(k) — C is an embedded, compact, tamed
curve. The last paragraph showed that the generalized support function defined
by h:= —r" (e,, N), satisfies h+h” > 0. Thus, h also determines a convex curve
in the plane. A little thought shows that the relation is given by the transform
N :={z+ 2"}: C — C. Indeed,

2= {h + Zh’} exp{m} = z".
Let us compute the curvature of 2 in terms of z

i1 17
 h+h" U

by equation (1.11). Similarly, we may compute the flow equation of 2. We observe
with §B.1.2 and equation (1.11) that

n—1
d n—1 2n—2 Z 2 (h2 + h/z) B 2,2n=27
Eh:—nr 3-;:—77,7’ m:—nwz—nrnk

Therefore, we could also study the weighted curve flow. It reads in support
functions

2n—2
d h2 h/2 “2n
—h = _n2 { + } ,
dr h+ B

or more geometrically

%z:n2r2nn2k]\7. (1.14)

But as it turns out the asymptotic analysis of this flow is more complicated than
the original version. This is due to the fact that the latter has a linear area
decrease - a property the former flow does not satisfy. Nevertheless this flow
gives some insight on the geometric behaviour of our flow equation (6). We will
discuss some previously obtained results in the next paragraph.
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1.3.6. Equation (1.14) and equation (6) are equivalent. This implies that a
tamed curve z: S*(x) — C\{0} which encloses the origin and does not shrink to
a point at singular time can be smoothly reparametrized. Because, Z is convex
as seen above. It is easy to see that Z remains convex under the weighted curve
flow, and continues to flow until it touches the origin. At this time Z admits a
supporting hyperplane through the the origin. If we take the nth-root to get the
evolution of 2z we see that a kink of at least 7 degree has to occur, and therefore
also a singularity for n > 2. But the nth-root admits n different curves, which
all appear - z becomes n-times point symmetric, which in turn implies that one
can reparametrize z to a smooth immersed curve. Moreover, the curvature of
the immersed curve is zero at the origin. Because the normal direction changes
its direction by 7 through the origin. A detailed study of the asymptotic of the
weighted curve flow remains an open problem.

1.3.7. With the result obtained so far it is clear why tamed set and convex sets
are almost equivalent. Whenever we want to use a result of convexr geometry we
apply the A-transform to the tamed curve, obtain a convex set, for which the
result may be applied and then we go back by tacking the nth-root of the set as
a function of the complex plane to the complex plane. The assumptions of our
theorems imply that this is a one-to-one correspondence. If one considers curves
which contain the origin, then one has to be a little bit more careful.

With this we have: Suppose that A and B are two tamed sets which do not
intersect, then there exists a stationary solution separating both sets. This follows
because we can separate the convex sets A and B. This implies: Let us suppose
that z: S'(k) — C is a tamed curve which moves under the equivariant curve
flow, then z(-,t1) will be contained in z(-,t3) for t; < ts. In particular, if zo does
not contain the origin, then ryy, > const > 0 for allt € [0, Ty,). Also whenever
we speak of convergence to a point we mean convergence of support functions,
which is convergence with respect to a tamed version of the Hausdorff metric. Let
us recall that convergence in the space of convex, compact bodies with respect
to the Hausdorff metric is equivalent to the convergence of the corresponding
support functions, compare [52], [2].

1.3.8. Let us give an example. The support function of a tamed ball is defined
by

han := R + Rpy cosn + Spg sing.
This function has the property that

Tn—l

n Z hiy + hpan = R = const.
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We remark that: Any tamed curve whose area is not zero, contains a tamed ball.
Moreover, there exists € > 0 such that h — hy,; > €. This holds because the
support function of a tamed ball is also the support function of a convex ball
after taking the A-transform.

1.3.9. To put tamed set into context, observe that we can look at them as
generalized closed convex sets. Recall that a closed convex set is the intersection
of its supporting hyperplanes. Ky Fan [24]| initiated the study of so called ®-
convex sets, where ® is a family of function on a set S. A set is called ®-convex
if it is either S or the intersection of sets of the form {z € S| f(z) < a}, for
a € R and f € . The study of such sets falls in the theory of abstract convexity
and optimization. For tamed set this family are the lagrangian catenoids. It is
possible to deduce all needed properties without the A-transform. The hardest
part is to prove the separation property.

Notes for Section 1.3

1. It is not hard to prove that convex curves stay convex under the weighted curve
flow, and curves which do not contain the origin and are strictly convex will shrink to
a point in finite time. But as noted above the asymptotic analysis seems to be not easy
accessible.

2. For the theory of abstract convex sets we refer to [53] and [50].

1.4 Some comments on the general curve shortening equation

Here we collect some well known facts about planar curves and the general curve
flow equation

d
—z =4 N
dtz (z,k,0)N,

2(+,0) = z.

(1.15)

Where & : R2x R x S' — R is called (normal-) speed function, and zy: S* — R?
is called initial curve. We will identify R? with the complex numbers C. Let
us also refer to Appendix A which is devoted to several computations and an

explanation of notation can be found. Our main reference for this section has
been [16].

Planar curves
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1.4.1. An immersed C'-curve is a continuous differentiable map z: I — R?,
from a closed connected subset I of the sphere S' to the plane, with nonzero
tangent 2 = z, = dipz. We will denote differentiation with respect to the
parameter p by a prime. If I equals S', then we say that z is closed. We call
the curve embedded if it is one-to-one. Given a curve z(p) = (z(p),y(p)), its unit
tangent is defined by T = 2'/ | 2|, its unit normal is given by N := Jz, where
J denotes the complex structure, that is J(z,y) = (—y,x). In coordinates we
have T = (2”2 +y/*)2(2',y/) and N = (2”2 +y'*)1/2(—y', 2'). With this definition
the unit normal is inward pointing for counterclockwise traced curves. We will
identify the map z with its image v in R2.

Let z: I — R? be an immersed C'-curve. Its metric tensor is given by

The one-dimensional surface measure on z is
L(z) := /\/detgda = /|z'(p)|dp.
I I

We call L(z) the arc-length of z. One can show that the arc-length is independent
of the parametrization of z.

Curvature

The curvature k of a curve z: I — R? at p € I is defined by the formula

("(p), N(p))

k(p) :=
AR ETIE
One can show the following Frenet formulas
0 0
—T = kN, and —N = —kT,
ol ol
where dp = | 2, | dp denotes the arc-length element. In coordinate functions we

have
_ x’y” _ y’x”
(272 +y/2)3/2'

If the curve is a graph of a function f: R — R, then the curvature satisfies

f//
(1 +f/2)3/2'

Tangent angle
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Let z: I — R? be an immersed curve, p € I. The angle §(p) between the tangent
T(p) at z(p) and the positive z-axis is called the tangent angle. Tt is defined
modulo 27. With this definition we have the equations 7'(p) = (cos#,sinf) and
N = (—sin#,cos ). While comparing with the literature, one should carefully
check whatever # means, it is used both as tangent and as normal angle, some-
times at the same time. We always denote the normal angle by 9. Also, it is
important to check, whether N is the inward pointing normal as in our case, or
the outward pointing normal.

On the curve flow problem

1.4.2. A classical solution of (1.15) is a map z: S' x (0, Thyg) — C which
satisfies; (i) it is continuously differentiable in ¢ and twice differentiable in p, (ii)
for each t the map p — z(p) is a curve, and (iii) z satisfies (1.15) and z — z, as
t— 0.

We also assume that .7 is smooth in all of its argument. We say that o/ is
parabolic if

0
—af .
a0 (z,9,9,0) >0

We call &7 strictly parabolic if there are two positive real numbers \;, Ao > 0 such
that

<L <n,
dq

Furthermore, we say that 7 is symmetric provided that
M(%Z/ﬁ"‘ﬂ _q> = _@7(5572/797@

Let us recall that a reparametrization of a curve z is another curve Z := z(p(p))
where ¢ is a diffeomorphism.

1.4.3. Consider the flow equation

%z = (2,k,0)N + B(z,k,0)T

Z(', O) = 20,

(1.16)

where &7 and % are smooth and 27-periodic in 6. Let z be a solution of (1.16)
in C®(S* X [0, Tyng))- There exists @: S* x [0, Tyng) — S* satisfying ¢’ > 0 and
©(p,0) = p such that Z(p,t) = z(¢(p,t),t) solves (1.15). Thus, the tangential
contribution % does not alter the geometric behavior of the flow. It is just
responsible for an diffeomorphism on the parameter space. The geometry of the
flow only depends on <.
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1.4.4. Let us suppose that &/ is smooth and parabolic, and 2, € C?*(S!) for
some a € (0,1). Then there exists a solution z € C**(S* x [0, Tyng)) satisfying
(1.15). Moreover, z is smooth in (0, Tyng). If Ty is finite the curvature becomes
unbounded as t — T, and if zy depends smoothly on a parameter, so does z.

1.4.5. Let z1,29: ST — C be two solutions of (1.15) in C%1(S! x [0, Tyng)), (i.e.
21, 29 are ), where &7 is parabolic. If z;(-,0) = z5(-,0) in some parametrization,
then 2 (-,t) = 2o(-,t) for all t € [0, Tying)-

1.4.6. Consider (1.15) where &7 is parabolic and symmetric. Then any solution
2(+,t) in C%(S? X [0, Tiing)) is embedded if zq is embedded.

1.4.7. Consider (1.15) where &7 is parabolic and symmetric. Let us denote the
number of intersection points of z;(-,¢) and 2o(+,t) by Z(t). Suppose further that
z; and zp do not coincide. Then Z(t) is finite for all ¢ in (0, Tye), and drops
exactly at those instants ¢ when z(-,#) and 2(-,f) touch tangentially at some
point. Moreover, all these instants form a discrete subset of (0, Typg)-

Notes for Section 1.4
1. The basic geometry of curves can be found for example in [51].

2. As noted above all results of this section and their proof can be found in [16]. Let
us give the precise reference. The result of §1.4.3 is Proposition 1.1. The local existence
theorem §1.4.4 is Proposition 1.2. The uniqueness result §1.4.5 is Proposition 1.4. The
embeddedness theorem §1.4.6 is Proposition 1.5. The Sturmian oscillation-type theorem
§1.4.7 is Proposition 1.7.

3. Thelong history of the Sturmian oscillation theorem is surveyed in |28]. Application
to the general curve shortening flow have been given in Angenent papers [5| and [7]
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CHAPTER 2

Proof of Theorems A and C

We consider a smooth family of curves z: S* x [0, Tiing) — C for which

d (er, N)
Co=N =l My (2.1)
z(+,0) = zo,

where k denotes the curvature of the curve, N the inward pointing unit normal,
e, := 2, r:= |z|, and n the dimension of L.

This chapter contains two sections. In the first section we will finish the proof of
Theorem A. In the second section we will prove Theorem C.

2.1 Proof of Theorem A

This section completes the proof of Theorem A which claims: Let Fy be an equiv-
ariant lagrangian immersion of L in C". If the initial profile curve is closed,
embedded, satisfies # > 0, and does not contain the origin, then Fy converges to
a sphere ||po||S™! as time goes to Tyng. Moreover, the singular time is determined

by the enclosed area of the initial curve. That is Tgng = %.

2.1.1. Here we assume that the initial profile curve z5: S* — C is simple, closed,
tamed, and does not contain the origin. We only have to show that the profile
curves converge to a point pg € C\{0}. The result follows from the equivariant
structure of the submanifold.

Because, z; is tamed, simple, and does not contain the origin there exists a
lagrangian catenoid separating zy and the origin. Therefore, z(-,¢) is bounded
away from the origin by 7,;,(0) by the maximum principle. In fact, z(- %) is
contained in zy for all t. Moreover, xk = 1.
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2.1.2. Let us denote the area of a curve by A(zp). Recall that

d
Ca—— | Fau=2n
dt P

Therefore the area decays according to
A(t) = A(0) — 2xt.

This gives an upper bound for the singular time. Let us suppose that the area
of z(-, Tying) is not zero. Then there exist € > 0 and a tamed ball with support
function hp,y inside of all curves z(-,t) for ¢ close to Tyng. That is, h — hpa > €.
Let us compute the evolution equation of

F
—r" (e, N) — hpan

fi=

To get a feeling how to do this the computation will be detailed. The first step
is to compute the laplacian of f. To this end we define

1
m = .
—r" {€;, N) — Rpan

Then

d / n 2

d_nm —_— {hball T <€7«7 T> }m P
and

d2 ! n 2 3 " n Tn_l 2

d—n2m 2{ ball — T <eT,T>} m +{ bt — 7" (er, N) =10 F }m
This gives

d d o / n 2 o

d_nf = md—nf + {hban —1r"{e,,T) }m F,
and

d? d? n d

d—n2f = md—’rﬁy + Q{h{oall —Tr <€7‘7 T> }md—nf

— ™ im? + { by — 1" ey, N) }mzﬁ.
Now it is time to compute the time derivative of f. It holds

d
—m = m*nur" L.
dr
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This and equation (1.7) give

2
if = mﬁﬂd—Zﬁ—l— (n — 1){(n—|— 1)@ — l}mﬁ
dr

dn? r2 r2
(e,, N)

+{2(n—1) m+m2nr”_1}§2+m§3.
T

In the final step we replace m%gf by %f. This yields

d _ g2 d2 / n o'~2d
= d—ngf_2{ banr — 7" (er, T) }mJ d_ﬁf
5 (er,N)z_n—l o
+ {2 -1) S TQ}mJ

+ 2{(n —1) <6T’TN> + mm‘"_l}m?2
+ {m — { v — 1" (e, N) }mz}ﬁ?’.

Let us analyze the leading order term. We know that f — oo as t approaches
Tiing- This is only possible if {...} is positive, or tends to zero. By our assumption
we know that h — hpay > € > 0, which implies that m is bounded from below.
Moreover, m is also bounded from above, because zy is compact. Thus,

0 < consty < m < const,.

Let us take a look back to §1.3.8. It implies that A, = —hpan + R. Therefore,
m— { gall —r" <€T7 N> }m2 =m— {h — hpan + R}m2 = —Rm?.

This together with the lower bounds for m show that the leading is negative, and
does not tend to zero. Therefore f is bounded by the maximum principle. This
is a contradiction.

2.1.3. By the Blaschke selection theorem, see for example |52|, there exists a
subsequence z(+,t,) which converges to a tamed limit curve with respect to the
tamed Hausdorff metric, compare §1.3.7. As the area of this curve is zero we are
left with two possibilities, either the limit curve is a tamed segment, or it is a
point as claimed. To exclude the former let us recall the evolution equation of
Z , compare equation (1.6). It yields the following lower estimate

d (e,, NV n—1 (e, N)
—3%m>{ 2 _ )oY }ﬁ@n on — 1N g2y g3
dt - (n ) r2 r2 + (n ) r min + min

> —const.Z .
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This shows that .#,.;, can only decrease exponentially fast to zero. Because zj is
compact, the singular time is finite. Therefore there exists ¢ > 0 with

F >e>0.

If the limit curve would be a segment, then there would exist a sequence of points
with .# — 0, this gives a contradiction. Another way to see this is to recall that
the support function of a point is smooth, whereas the first derivative of the
support function of a tamed segment jumps. The lower bounds on .% and r show
that Ay, is continuous. This proves the theorem. q.e.d.

Notes for Section 2.1

1. As notes earlier, our proof is inspired by the one given in [59] which dates back to

[57].

2.2 Proof of Theorem C

In this section we give a proof of Theorem C, which states: Let Fy be an equiv-
ariant lagrangian immersion of L in C". If the initial profile curve is closed,
embedded, satisfies

n—1++y(n—12+n-1
Tmin(o) ’

and does not contain the origin, then the assumptions of Theorem B are fulfilled.
Thus, we need to show that .#% > 0, which is obvious, and that & > 0.

gmin(o) Z

2.2.1. Let us suppose that

Tmin(t)ymin(t) Z (n — 1)7 (22)
then the following holds
T N —1
ke gim-)ieMs g =l
r r

Thus, 7 is a convex curve. We already know that r(¢) > 7i,(0); remember that
v(t) is contained in v(0) by the maximum principle. To prove equation (2.2) it
thus suffices to show that .#(t) > .Z,in(0). Note that

d _ (e,,V.F) (e,, NY 1
7 —Afg—i-(n—l)f—l—(n—l){(n—kl)T_ﬁ}y
+on—1) <6T;N> 724 P




Recall that rp,(0) < r(£). Thus,

n—1 2(n—1)
- F %}9
Tmin(0)2 rmin(o) *

e

The the largest zero of the term in the brackets {...} as a function of .% is given
by

n—1 +\/(n—1)2 n—1 n—1+y/n—12+n—-1

Tmin (0) Tmin (0)? " Tmin(0)? B Tmin(0)

This proves the theorem. q.e.d.
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CHAPTER 3

Proof of Theorem B

This chapter gives a proof of Theorem B, which states that: Let Fy be an equiv-
ariant lagrangian immersion of L in C". If the initial profile curve is closed,
embedded, satisfies F# > 0, does not contain the origin, and suppose further that
all profile curves remain convex, then the singularity is of type-1. After rescal-
ing und possibly choosing a subsequence F, converges to the cylinder S™ ' x R
smoothly on compact subsets of C".

The first section explains the blow-up procedure. The problem is reduced to the
following curve flow equation

4, {k— -1 NNy }N,

dt Tp
2(.0) = \/Af{ .Y

The second section establishes the asymptotic behavior of several geometric quan-
tities. The key observation is that 7, ~ exp(t). The third section proves a
Bernstein-type estimate as well as a Harnack-type inequality. Finally, in the
fourth section we finish the proof of Theorem B.

(3.1)

3.1 On the rescaled flow equation

Here we introduce the notion of a blow-up point, the different types of singularities
due to Huisken, and derive the rescaled flow equation.

3.1.1. We say that a point p € C" is a blow-up point if there exists x € L
with F(z,t) — p and |A|(x,t) — oo as t approaches Ty, If the singular time
is finite, then the evolution equation of the second fundamental form yields an
lower bound

consty

< sup |A]%
ﬂing_t_ Ltp‘ |
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Here const; > 0 is a positive constant. If the second fundamental form admits
the upper bound

9 const,
sup [A|” < —,
Ly ‘ | ﬂing -1
then we say that the singularity is of type-I, otherwise it is of type-1I. We re-

mark that this terminology dates back to Huisken |36]. Let us also refer to the
introduction of this paper.

3.1.2. By Theorem A we know that L; converges to ||po||S™~! as ¢ approaches
the singular time. Let us suppose that p, € C" is the north-pole of ||po|S™~!. If
we consider the mean curvature flow of F'—p,, then the origin becomes a blow-up
point. We rescale the flow as follows

F(e.9) = | iy L F @ 16) = Pojy

s(t) = —%m{w}.

Then L, := F(L,s) is defined for s € [~1In4e o), and is again a lagrangian
submanifold of C™. The rescaled flow satisfies:

%ﬁ(m,s) = E(%S) + F(x,5)

) - 32)
P~y = [ (R -n)}

Let us introduce

v(t) = \/ﬁ - ¢£

Equation (3.2) is determined by the flow of the profile curve. Indeed we have

F(g,,5) = (uo(6,5) (0(H(5))G(2) v0(6,5) ($((5))Gw) ) v (t(5))py. (3:3)
Thus it suffices to study the following curve flow problem
i - E+mfFev®m.N)
G EENYESTTI (2 0) 1
Z(-,—3In %) = \/AEO{ZO —Po}-
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Let us return to equation (3.3). It follows that

ﬁ(¢7 €, S) = ¢(t(5>>F(¢7 z, 5) - w(t(s))l_?o = exp{s}F(¢, z, S) - eXp{S}]_QO'

Let us introduce

7 7{;_(n_1)<,z*—|—po\/7exp(t) ]V>

i 2+ oy [ expln) P

We close this paragraph with the following observation

() = (t)=() — p \/Z exp{t}. (3.4)

The last equation implies that A(Z(t)) = 7.

3.1.3. The previous paragraph reduced the blow-up analysis to a curve flow
problem again

iz—{ (n—1)<€p’N> 4 (2 N) }N,

0) = /520~ m}

Where ¢, := %”, rp = |z +p|, and p = 1/Aloexp(t)p0. We have seen in the

(3.5)

previous paragraph that this flow keeps the area of z constant to w. Let us
introduce

<ep>N>‘

Tp

G =k—(n—1)

It further followed that ¢ plays the same role as .% in §1.3. So . > 0 for the
original curve if and only if ¢4 > 0 for the rescaled curve. We say that a curve is
tamed if it satisfies 4 > 0.

3.1.4. Let us now compute the evolution equation of 4. We refer to §C.1.2.
We start with curvature. Observe that
(ep, N)

Tp

VA =NVNY+V{(z,Ny=VY —-4rVr—(n—1)——=rVr,
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and

A = NG — 1 (NG, Vr)

12BN ) o) e
— (2, N)9* — (n — 1)<6p7:7N> —(n— 1)2<Z, N):EP’N>2
+(n* 1) <€p7j2N> r(Vr, Vr,) .
Thus,
dk:—Ag VY.V
i = —r(v9.91) |
- { — 14+ (- 1); (Vr,Vr,) + (n — 1) <6P;*27V> }g
+2(n — 1)<6P7:N>g2
+9°
- (n - 1)% + (n2 _ 1) <6p7:2N>7‘ <V7”, VTp> .

Therefore, the evolution of ¢ reads

%g =AY — 1 (VG,Vr)

+ { — 1+ (n— 1) (Vr, V) + (n — 1)? e 1 }g

+2(n—1) <6”7j N g2

+9°

—(n—1) <6p7ipN> +(n* —1) <€p7:2N>r (Vr,Vr,)

+(n— 1)<6P’§g> + { —(n— 1)% +(n— 1)<€pTN> —(n—1)
(n—1) <6;z: N) t(n-1) (2 N):zepu N>2 +(n—1) (€p, N22<€p p)

— (n _ 1)2T <€p> Ni2<ep> VT>

t(n—1) Zfﬁ’ \g 1 (n— 1)\ fo’ N )



Rearranging terms yields

%g — NG — 1 (V4,Vr) + (n — 1)7@”77%>
+ { —1+(n— 1)1 (Vr,Vr,) + (n* — 1)<6‘1”7£\7>2

Tp Tp

—(n— 1)i ~(n— 1)M}g

7“12) T'p
+ 2(71 o 1) <€p7 N>g2
Tp
+ 9
+(n— 1){ ot (1) (v vy 42BN N (D)
Tp Tp T'p
T (e V)
Tp T,

Note that (Vr, Vr,) = (e,, Vr). Therefore,

(z, N) (€p, N)

r

(n+ 1)7",, (Vr,Vr,) + 2 . + 2 . " =2,
and
Ly g — (N9, Vr) + (n — 1)V
dt Tp
(e,, NV n—1 (ep, N) (3:6)
e -nferl S g o - 1) 2y g
Tp ’r’p Tp

This shows: & > 0 is indeed preserved during the flow. This is of course obvious
if we recall §3.1.2. Let us set

N)? —1
@:(n2—1)<€”’2> -
Tp ’f’p
N
= o(n — 1))
Tp

Again we note that

d 0?

(ep, T)

Tp

— (2,T) }%%+ (& -1} + V9 + 4,

41



3.1.5. This paragraph should be compared with §1.3.2 as all ideas are similar,
and most calculations almost coincide. We begin with the obvious observation
that

. & dp = 27 {rot(z) — (n — 1) wind(2) } = 27k.

Analogously to the cited paragraph we introduce

:/ 9 du.
0

Thus, n: S* — S!(k), and therefore z o n~': S'(k) — C is a reparametrization
of our curve. We claim that

d 9 (€, T)
o {a G+ (0= 1) = (T }g. (3.7)
This follows because,
dt dt/ 7
_ - <€p7T> _ g
- | au o {( SN () }aug
e,, N 2 1
+{—1—|—(n2—1)< 2 ) —(n—1)ﬁ}g
P P

+2(n — 1)M5¢2 + 9% — kG A du

Tp

- %E%L{( 1)@%?—<Z7T>}%g
+{_1+<n2_1><€p;£v>2 B n;l
(- 1)<€p7:N> (2, N) o
+{("—1)®pr’7lfv>_<z’N> yo* d.
Now,
/Oa{( _1)<€;;jp >_< ,T>}%g
:{(n_l)@p%)_@,cr) }g—/oa{(n—l)@—@,m b2

<6pa N>2 _

- nie ™ Ny — i e o

2
P "p

1}% dp.



Here we refer to §C.1.1. It follows

d (ep, T)

—(a) = %g +{m-1) (= T) 1.

and hence the claim. As one might guess we now want to derive the evolution
equation of ¢4 in new coordinates (1, 7). It holds

This yields, combined with the previous equation, that

g d g d 0 (ep, T
5.2 = 3* 0_772%2_%]\[ {8n€4+(n 1) " (z,T)}T.

Therefore the reparametrized flow equation reads

d d (ep, T)
4, Ny v - {2 ~ 1) T 3.8
—z={g+(zN) 57 (= DI ) (3.8)
The tangential contribution of equation (3.8) does not alter the geometric be-
havior of the flow, it just makes 7 and 7 independent. Let us now derive the
evolution equation of 4. First of all recall that
0 0 0> 0> 0 2
S =G and G =G G+ GG}
o oy A g ap” *
We have
0 d o _,0n
—G =—9G - —94—
or dt on ot

on

0? (e,, N)? 1
_ 2 7 _ 2 A\ tY, _ -
_gan2g+{ L (= DEE — o 1)@,}%
+2(n — 1)@%2 + @3,
p

For the readers convenience we have collected more calculations for the reparam-
etrized flow in Appendix C.1.

3.2 Asymptotic behaviour of geometric quantities

We continue our investigation of the rescaled flow equation

d {ep, V)
EZ_{k—(n—l)T"i_(Zv]\w}N’ (39)

2(+,0) = 2.
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We adopt the notation of the previous paragraphs and set 4 := k— (n — 1)<e’;—pN>
Throughout this paragraph we only assume that ¢ > 0. The program consists
of: At first we show that r, ~ exp(t), which is the key observation, then we
prove that ¢ — 0 at most exponentially, we show that r and L can only increase
exponentially fast to infinity, finally we will see that r,% is bounded from below.
Let us recall that we assume that the initial zy: S' — C\{0} is tamed, closed,
embedded, compact and does not contain the origin. As usual we abbreviate
these assumption by saying that z, satisfies (A).

3.2.1. We precede with r,. Let us suppose for the moment that we rescaled by
Z := ¢(t)z. Then clearly F = iﬁf This implies that an lagrangian catenoid
remains an lagrangian catenoid under this rescaling. Suppose that p € C is the
point on the lagrangian catenoid which minimizes distance to the origin. Because
z = vz it follows that p(t) = exp(¢)p. Thus, if we are given a tamed compact
closed curve which does not contain the origin, then we may bound it away from
the origin by comparing it with lagrangian catenoids. It follows by the maximum
principle that 7 ~ exp(t). Here r, ~ exp(t) means that 0 < const; exp(t) <

() < constyexp(t). Note that 2 = 2+ p,, /- exp(t). Thus, 7, = . The claim

follows. We remark that we dropped the tilde in our notation. For this paragraph
we refer to §3.1.2

The behavior of r, has some immediate consequences. For example it shows that
¢ — k exponentially fast, because

<€paN>.

Tp

G =k—(n—1)

Moreover,

g = D 4 (n — 1){(n+ 1) (e:,g> + 1} <€’;’T>.

As will be seen in the next paragraph, ¢ tends to zero at most exponentially fast.
This implies that 7,% is bounded from below, and hence we have @) — ),
But we do not know if ¥ — k). This is of course not true if the curves contain

the origin, as in this case the blow-up point is the origin and we do not have any
control over r, in this case.

3.2.2. Let us proceed with ¢. By equation (3.6) we know that

%gz NG —r (V9,1 + (n— 1) YE)

Tp

2
+{(n2—1)<ep";v> S —1}%+2(n—1)7<6”’N>%2+£¢3.
Tp Tp Tp
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Let us rearrange terms. This yields

ig =AY —r (VY ,Vr)+ (n— 1)M
dt Tp
<ep>N>2 n—1 <€p’N> 2
—I—{{Q(n—l) R —1}+{(n—1)T+g} .
Therefore,
d n—1
2@ . > _ .
dtgmln - { ’]"S + 1}gm1n

Recall that from the previous Paragraph 3.2.1 it holds r, ~ exp(t), and

= —{cexp{—Qt} + 1}f
admits the solution
c c
f(t) = fo exp{ — 3 + 3 exp{—2t} — t}.

This shows that: & can decrease at most exponentially fast to zero. Similarly
to the curve shortening case we obtain a lower bound for the maximum of ¢ as
follows. First of all let us recall the evolution equation of .% - it reads

[ A}ﬁz(n—l)w+{(n2—l)<er’]\[> Y

dt r 72 r2

)<er>N>

r

+2(n—1 F:+ TP

We already know that .#% > const > 0, provided that .# > 0 for the initial curve.
Thus there exists another constant, again denoted by const > 0, such that

d
— Fax < const.F3

dt —_ max*
We deduce

d 1 1 d _

Eg%ax = —2§r§lax£,/max > —2const.
Therefore,

T > !

\/2const(Tsing — t)'

Recall that &4 = /2(T4ne — 1).-#. Hence,
1

\/const'

gmax = 2<ﬂing - t)ymax >
Thus: If the initial curve is tamed, then there exits a lower bound for Gmpax-
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3.2.3. Here we discuss the evolution of r. Recall that

N)? N) (e, N
{i —A}r: —r | Vr|2 47— LT’ ) — (n—1)<6r’ ) {ep, >
dt r Tp
Thus,
d
g "max < Fmax + const exp{—t},

which yields

const

2

P < { 220 {1 = exp{=2t}} + rnae(0) } exp{t}.

This shows: r increases at most exponentially fast to infinity. This is actually
obvious: Note that the curves are bounded for the original flow equation. Which
implies the result for the rescaled curves.

3.2.4. Let us now take a closer look at the length of the curve. As usually we
assume that v is tamed. It holds

d
Bl SR
dt /Slk‘%ﬂd“
N
:—/ kzdu+(n—1)/ k‘mdu—/ k{z,N) du
S1 St Tp 51
N N)?
<(n-1) %Mdujt(n—lf/ @dujLL
g1 Tp g1 Tp
<L+ (n- 1)/ <6PT’7N> dn + const exp{—2t}L
st Tp

< L + const exp{—t} + const exp{—2¢}L.

Recall that

© 1) = £(1) + Aexp{~20} /(1) + Bexp{~1},

admits the solution

f(t) = { - g + {C+ %}exp {§{1 . exp{—Qt}}}} exp{t}.

This shows, If v is tamed curve which evolves under the rescaled flow (3.1), then
the length of v increases at most exponentially. Again this also follows from a
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careful analysis of the blow-up procedure. The length of our curves under the
original flow equation is bounded, in fact it tends monotonically to zero.

3.3 Classical estimates

Here we will establish a Harnack-type inequality, and give a Bernstein-type esti-
mate.

3.3.1. Let us set . := ¢¢? + 4"?. We claim that for any ¢ > 1 the following
Bernstein-type estimate holds true

sup {Cg2 + g(1)2} < const +c¢ sup %% (3.10)
S1x[0,7] Stx0,7]

We may assume that ¢ £ 0 at the maximum of .. Observe that

iri :Z'<ep’T>@’
dn ? r, 9
d (e,, T) (ep, N) 1
d—n<€p,N> = —<€p,T> —n%?, and
) j . . <67T><€7N>jri . —1 4
d_T]Tp <ep>N>] :(Z_n]) £ Tpp é_]<ep>T> <€PaN>j Tp.

N)? —1 N
@:(n2—1)<€p’2 S _n —. and U = 2(n — 1)S2 M)
Tp Tp Tp

This implies

oW =2(n — 1){1 —(n+1)* ey, N>2 }

(ep, T') (ep, N)

—2(n?—1) =
p

Y

and

v = _9(p — 1){(n+ 1)@% + 1} <€1;j D

p

A routine calculation gives the evolution equation of .. We recall that

d _ 2d2 2 3
4= d—qﬂg+{q>—1}g+w g3,
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Suppose that f is an arbitrary function. It holds

2
Dyf* =2fDyf, and Dy, f* = 2f Dy, f + Q{D"f} '
This yields
d

4 = 9D, 9" ~ 2529 V? 4 29t + 2093 + 2097 — 247,

Now,
d
E%m =9°D,, 9" +294YD, 4
+39°90 4+ g2 4 20y + dWg + gt — W),
Therefore,

d 2
%%m =9°D,, 9" —

2 1 @2
2¢(1)
16929 4 2pW@2g0) | 4pgg0)?

+20Wgg) 1 2pgM? _ 9g)?,

{D 7 } + 299 M D, g M)*

Then

i&” g2D 0 — 1 4
dr

2
2{DQS”} +2c; D, +249Y D,

+2(1 - c)cg4 +6(1 — c)g2€4
+ 2cU93 + 2c0G>
+ 2002 | 4pgy®)? L 20pWyyW) 4 2pgV)? _9v

We claim that . must be bounded. To see this we introduce the notation ofr7],
which means that a function is bounded from above by const rli,. For example

oW < o[r 3L + o[r,?]. Therefore,
%5’ wax € 2(1 = )" +6(1 = )9V + ol )9 + 0[7"_2]%2
1 ) .
+ {0l + ol 1929 + o g
e a3

Rearranging terms gives

d

%Ymax <2(1 —c)cg* +6(1 — c)%zg(1)2 + 0[7’_1]%3 +o[r;

[ »

2}((42
+olr, 2199 +olr, ]%%(1 + o[r *]W
+o[r, Sl +0[r;2]§¢( — 2% — 29
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Suppose to the contrary that . is unbounded. If ¢ is bounded, then ¥’ has to
blow up. Therefore,

d 2 2 _ _ 2
%Ymax < const + 6(1 — )29V — 2" 1 o[r, g 4 o[r, g7,
This gives a contradiction for ¢ > 1. Therefore, ¢ has to blow up. If also ¥’
becomes unbounded, then we arrive again at a contradiction if we choose ¢ > 1.
We are left with the case that ¢’ is bounded. But then

d 2 _ _
%Ymax < const + 2(1 — ¢)c@* + 6(1 — )9*9V” 4 olr, 19° + olr, '14?

+ o[r, %19 + olr, *19? + olr, |19 — 2¢47,

which again yields a contradiction if ¢ > 1. Thus, .7 is bounded if () = 0. This
proves the claim.

3.3.2. Let us denote ¥4, (7) := max,cs1 4(n, 7). We choose a time 7 for which
Ginax(T) = Gmax(7') for all 7 € [0,7]. Let us denote the angle at which the
maximum is attained by 1. Note that 7y is not necessarily unique. The mean
value theorem and equation (3.10) give

gmax(T) - g(n& T) S ‘ Mo — 77‘ sup |g(1) (7]7 T) ‘

nest
< |no—n| {const + CgmaX(T)},
where const > 0, and ¢ > 1 denote new constants. This yields

{1=c|no—1n|}%max(T) < |10 — 1| const + % (no, 7).

We obtain the following Harnack-type estimate for |no —n| <

chosen ¢ = %:

Gnax(T) < const + 29 (no, 7), (3.11)

where again const > 0 denotes yet another constant.

1

5, where we have

3.3.3. Let us assume that G*® is bounded from above for k =0,...,n —1, and
¢ is bounded from below by a positive constant. We claim that ¥ and &
tend to zero exponentially fast. We only show the result for U(™ the remaining
part is similar. Recall that

0 (€p, N)
Ty= 9 —1{ 1) 1}
o (n—1)3(n+1) 7 +
With this we see that U™ only depends on terms up to order 4=V, Note
further that é is also bounded. Therefore,
T

Q\If(") = {bounded terms}@.

on Tp

The claim follows.

(ep, T) _

Tp
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3.3.4. Here we briefly discuss; if 4 is bounded from below by a positive constant,
and we also have bounds for 4® for all k = 0,...,n then we also have bounds
on 4™+ The idea is similar to Paragraph 3.3.1. We define

Y = g™ 4 gn)?,

First of all recall that

Eg g2_g + { - 1}% + UG+ G,

This gives

d k (1)
®) _ @2 p2ag(k) 2 (k)
9V =4 D’y +<1){%} DY

( ){g } B 4+ 99y ®)

+ d9®) 4+ opgy®) 4 39%g k) _ k)

+ lower order terms.

Note that some terms do not appear for & = 0,1. Moreover, note that ®®*)
and ®*) are bounded by the considerations of the previous Paragraph 3.3.3.
Therefore,

O R R L]

z{gw)
(D))" ofoey
T z(g) {22} a0} L agg (g0}
+ 2@{%0@}2 + 4@%{%@)}2 + 6%2{%“}2 - 2{g<k>}2
+ {1ower order terms}g(k).

Observe,

20



This implies
2
i% =9G°D*qyY — Lz
dr Q{g(k—i—l)}

— 2c4* {%(”H) }2

— c{%}“)p{%(")}Q

+2 <” N 1) {92} {00} s agg (g

[D{ae VY e 1){542}(”002/

2
+ 2@{54@“)}2 + 4wy {0y }2 + 6{42{g<"+1>}2 —2{gtD }2

+2 (Z) {%2}(2) {9 }2 + g9 {g }2

2 2 2 2
+ 2cc1>{g<">} v 4cw{f¢<">} + 60%2{%(")} _ QC{%M}
+ {lower order terms}g(") + {lower order terms}%(”“).

The rest of the argument is clear. We may choose the constant ¢ big enough to
show that

2 2 2
sup {c{%( )} - {g( H)} } < const + ¢ sup }{g( )} .

51%[0,7] S1x[0,7

The claim follows.

Notes for Section 3.3

1. The basic idea of the above proof to the Bernstein-type estimate is classic. We refer
to [16] and [59] for an approach in curve shortening flows. Our source of inspiration for
the proof of the Harnack inequality have also been the above cited books.

2. Harnack-type estimates and Bernstein-type estimates for the classical curve short-
ening flow can also be found in Angenent [6]. Basically this proof compares the given
solution with a specific one a so called shrinking spiral. Which is nothing but a travel-
ing wave solution of the classical curve flow equation. If we were able to obtain such a
solution in our case we would expect the proof also to work here.

3. For the readers convenience we compare the argument with the normalized curve
shortening flow equation, that is n = 1, with constant area w. The evolution equation
of the curvature reads

d

—k=k’D%k + K> — k,
dr

ol



and therefore
d

K = KD — 212k (M? 4 9kt — 942,
-

Differentiation of the first equation yields

dik“) = k2D%kW 4 2kkM D2k 4 3K2K0) — (.
=
Hence,
2
LR = 2 p2R®” - 2 DRy gk DR 4 gr2k 0 ok
dr 2 1(1)2
We define

= ck? + KV,
Then
D = 2ck:k(1) + Dk:(l)Q nd
(DAY = 422k + {DEDV? + 4ckk® DED?,
Therefore,

1 k2

2_ 1 2 4 90 R pp1)?
2k(12{ D= 5 — (DS} + 2k + 2¢—— Dk
1
2

k(1)

3
2{ } + QC%DCV — 2%k, and

k2
k(D)
2
(1)
)D.7 — 4ck*kW?,

k
2%k prE1? = 2%
This gives

d 2 2 M pr®)?
7 =kD 5/—5 (12{D/<; 12 4 26k Dk

— 2ek2kM? 4 2ekt — 20k? + 61267 — 2kM?

1k2

3
— K2D%.y 2 D7} +2cki)2Dy+2kk<1>Dy

+2(1— ){ 3L +ck2}k2—2y.

Here D denotes differentiation with respect to the normal angle. In the this case, we
may choose ¢ = 1. This shows: If kU is not zero at the mazimum of ., then . is
bounded by max.#(0). Thus, .7 (1) < max.#(0) +max, k. Let us note that Angenent
obtain a Bernstein-type estimate for the curve shortening flow by a complete different
approach, compare [6].

3.4 Proof of Theorem B
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This section finished the proof the Theorem B. We use Gage’s inequality to
bound the length of the rescaled curves. This is the only time where we make us
of the convexity assumption. Then we show that 4 — — (z, N} in L?(S'). This
is done with a monotonicity type argument. Moreover, we show that the entropy
of the curves remains bounded. Together with the Harnack-type inequality and
the Arzela-Ascoli theorem we obtain the result.

3.4.1. Let us bound the length of z for the rescaled curve equation. It is the
only time that we need the convexity. First of all note that the length can tend to
infinity at most exponentially fast. We recall Gage’s inequality |26], which holds
for any strictly convex simple C?-curve in the plane it reads

L
=< | K*dyu.
7TA _/ 1
We bound the time derivative of L as follows
d
—L=— | 9k+(z,N)kdu
dt g1
N N)?
:L—/ K dp+ (n—1) %Md,u%—(n—lf/ (ep,2> du
S1 S1 Tp S1 ’f’p
N N)?
S(n—l)/ Mdnﬂn—w/ Ny,
S1 Tp g1 ’f’p

< const; exp(—t) 4 const, exp(—2t)L < const exp(—t).

This shows that L is bounded from above, and therefore also r. Let us remark
that the result of the theorem would follow if we had a Gage-type inequality for
almost convex curves, meaning that & > — exp(—t). Alternatively it would suffice
to show that z is bounded under the flow, which also implies that L is bounded.

3.4.2. Let us define the Gaufi-kernel and the energy by
r2
p::exp{——} and M := pdp.
2 g1

It follows that M is bounded from above by L. We introduce

€p, T>

9 - —{d%gﬂn—l)( ).

Tp
We note with Appendix C.1.6 that

q
dr

2= 22 T) d%g+2<z,zv>g+2r2 o - e

Tp

23



and

d%,oz{@,T) di%— <Z,N)%—r2+(n_1)w}p

n Tp

:{_<Z,T>9—<Z,N>g—<z,N>2}p.

Moreover,
d )
—dy = { — Gk — (2, N) k + %.@}du
- { G (2 NVG — (n—l)@i’jﬂg

p

(2, N) (e, N) 0
—(n— 1)T + @.@}du.

We want to point out that

0

This yields

MT:—/SI{(z,T)@—i—(z,N)%—i—(z,N)z

+£¢2+<z,N>S¢+(n—1)<6’;7N>%
(z,N) (e,, N) 0
+ (= 1) @_@}du
:—/Sl{<z,N>§¢+<z,N)2
+£¢2+<z,N>S¢+(n—1)<€p;7N>%
oo pE ey
This gives
_ 5 2 n— <€p’N> 5
M, = /Sl{(%+< N +(n—1) . (¢ + ( ,N>)}pd,u.
Observe,
/7<6P’N>(g+<zaf\f>)pdu=/ 7<6”’N>pdn+/ {9, ) (z,N) pdp
S1 Tp S1 Tp g1 Tp

< const exp{—7}.
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Note that M is bounded from above by L, which is bounded by §3.4.1. Thus,

[T [ @+ -0t @ ) bodudr < o

Tp

We compute

dilTM = _/51 {{ng (z,N) }2+ (n— 1)<6p7ipN> {54+ (z,N) }}pdu-

We observe that

/Slw{g—l—(z,l\w }pdu:/gl <€1”7N>pal77+/51<€”7:7PN><Z’]\]>paglu

Tp Tp

< const, exp(—t),

because z is bounded. Therefore,

T0 2
/ / {g—l—(z,N>} pdpdr < const,.
0o Jas

Therefore we can select a sequence 7,, — 0o such that

/sl {g—l—(z,N> }2du—>0.

Note that p > € > 0, because z is bounded.
3.4.3. We define the entropy by
E(v) = / In¥dn.
Sl
It follows from §3.4.2 that
E)= [ 9YInGdu< | 4*du < const.

St St

3.4.4. We claim that ¢4 must be bounded. If this is not the case we can select a
subsequence 7; — 00 such that @ax(7j) > Gmax(7') for all 7/ € [0, 7;]. Therefore,

const > / In¥(n, ;) dn
S1
Z/ In%(n,7;) dn + GInd(n,7;)dp
| n—mno | <

g<1

In {%{gmaX(Tj) — const}} dn — exp{—1}L

)



because ¥ 1In¥ > —exp{—1}, and the Harnack-type estimate (3.11). But this
gives a contradiction for large ¢4,,... Therefore ¢4 must be bounded. An careful
analysis of the evolution of .7 and an inductive argument gives bounds for ¥
as well, compare §3.3.1.

3.4.5. By §3.4.2 we know that 4 — (z, N) in L?. The bounds on 4™ and the
Arzela-Ascoli theorem imply that we actually have smooth convergence. More-
over, it follows that ¢ — k smoothly, lcompare §3.3.3. This gives that the limit
curve has to satisfy

k=—{(z,N).

The only embedded convex solution of this equation is the standard circle. This
proves the theorem. q.e.d.

Notes for Section 3.4

1. That we only embedded convex curve which satisfies
k=—(z, N)

is the unit circle was proven by Abresch and Langer |[1]
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APPENDIX A

Evolving Curves

In this appendix we derive several equations which are frequently used. Paragraph
A.1 contains some basics of planar curves. In §A.2 we consider curves which

satisfy the following equation
d
priie A (2, k, )N + B(z,k, 0T, (A.1)

where &7, %: R2x Rx S!' — R, and T, N denote the tangent respective the nor-
mal vector. We refer to equation (A.1) as the general curve shortening problem.

A.1 Preliminaries

A.1.1. We start with

—r=——(2"+ = —(z°+ 2,2y = (e, T).
op udp( v) M( y') Tz 2) = (e T)
Therefore,
%ri = Z<6T;T>7’i.
We have
9 _ 1 e, T) _ (e, N2
o (e, T) =k (er, N) + =) e, N) o+ L
0 _ {er, T) {er, N)
g (er N} = = {en T) = et
From which we deduce
0 i ) <€T,N>2 i .<€7«,T>2 i
S en T)17 = ke, Ny pi 4 St
% (er, N)1r' = —k (e, T)r' + (i — 1) <6T’T>T<€T>N>



As special cases

0 0
@(z,T) =k(z,N)+1and @<Z7N> =—k{(z,T).

Finally we compute

9 J L i
o (e, TY (e, N)'r

_ {{] (e, NY? — ey, T)* J

A.2 Time derivatives for the general curve flow

In this paragraph we compute several time derivatives for the general curve flow
equation. That is, we consider for given o7, Z: R? x R x S' — R the equation

d

priie o (2, k,0)N + B(z,k,0)T. (A.2)
Let us refer to &7 respective A as the normal respective tangential speed function.
Given this equation we may compute several evolution equations for geometric

d then p is assumed to be fixed, analogously we assume

quantities. If we write i

for di that t is fixed.
p

A.2.1. Let us recall that 8% = ‘Z—l,‘dip. This implies for the Frenet formulas

0 0
—T =kN d —N = —kT. A.
o kN, an o k (A.3)

We claim that the time derivative of p equals

d )
=kt g B (A.4)

To see this, recall that y = |2/|. Therefore

d ,o d /dz dz dz d d dz d
dtz| dt<dp’dp> <dp’dpdtz> <dp’dp( 7 )>
dz d d 0
=2( =, —N+(—BT ) = -2k + —B))?
<dp, p. +(dp)> ( o ),
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and the claim follows. In the next step we compute a rule for interchanging 2 i
and a . The operators do not commute, as y is not independent of £. We have

d o 0 d 3} 3}
@ Tk — A5
dt 8,u 8,u dt + (T o P on o’ (A.5)

For a proof compute
Ao d( _,d\ d, . _dd
%%‘%(“ dp>_dt(“ )t G
d o o0 od

0 d d
= -k + = — e — = (k- — :
el bt Ou%)udp i dp dt (k 8,u<@)8,u Opdt

A.2.2. Here we derive the time derivative of T\, N, and the normal angle . We
claim that time derivation of T gives

%T {iy/ + k,%’}N (A.6)
The proof is straight forward. In fact,
%T iai ;uc;lt H”k_ag%}ai
8(1{42/]\7 + %T} {m; - %@}
{8igf}N+daiN+ {ai@}T+ @%T+ {m{; _ %%}T
{ai”}N kT + kBN + A KT = {%% + k%}N
Similarly,
%N - {(,iﬁ + kBT, (A7)

To see this consider



and the claim follows. For the tangent angle we have

d 9,
dy_ 9 _ A.
dte aﬂ%—l—%k (A.8)

For a proof recall that the unit tangent equals 7' = (cos @, sin #). Thus,
d d
Sr_ 2
dt dt

This gives, together with (A.6), the assertion.

A.2.3. It holds

iri = i<6r’ T>7’i% +i<6r’ N) rie .
dt r r
We compute
d d 1 (e, T) (er, N)
Er—ﬁ(z,z) = B+ " .

The result follows from the chain rule. With this at hand we are able to derive

d _d (2,T)
at (e, T) = a r
2
_ e gy lenDlenN) {Qﬂm,@} e Ny + 2
r r o r
T N
_ {ﬁd_ (er, >¢+ ter, >@+k@} {e,, N .
ou r r
Analogously we derive
d B 0 (e, T) (e, N)
= (er, ) _{ 5 e k= %} (e, T).
We add to our list
L er Ty = (er, Ny 1 + (e, N) 5B
dt 67“7 - 61“7 T@/J e?“a
T)? N, T) (e,, N) ,
+ {Z_(er, ) + ter, N) }TZ%_‘_ (1 — 1)<6T’ ) ter. >7’Z$2f,
r r r
d i i 0 i
o (er, NYT' = —{e,, T)r %%— (e,, TYTr'kAB
2 2
+ { ter, T) +i<6r’ N) }ri% +(i—1) (e, T) {er, N) A,
r r r



Finally we have

d J U
o7 (e, TY (e, N)'r
~{ {1ty
i) e N 11 Yy
1

A.2.4. Let us now look at the curvature. We have

)
- A.
k= 8u9 (A.9)

Because,

i —sin 6 :k;N:QTzi C?SQ _ —sinf 297
cosf ol O \ sin 0 cosf ) ou
where we have used the Frenet formulas. We claim that

2
ik—d_gu(a
op

2ot . Al
prid k;)@wc (A.10)

To see this compute

d d 0 0 d 0 0

:£<8ﬂ+k@) (%k—gﬁ)k
op

o \ O
o 9, 9, 5 0
W,Q/jL(a—k)%ij%%ij o — k@%

A.2.5. We close this section while computing the time derivative of the [ength
L and the area A. It holds

—/%kdu. (A11)
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Since the length is given by
= [ du= | Zwldp
s1 s1
This yields

d d,, - 0 B
%L(t)—/y%k(pﬂdp— [y( I{IW—I—%%) du = [{kddu

and hence the claim. For an embedded curve we have
d
—A(t) = —/@%du. (A.12)
dt .

We compute

d d1
%A(t) = —£§£<27N>dﬂ

1 d 1 d 1 d

= —= —z, N — = —N — = N) —
2[Y<dtz’ >d“ 2[Y<Z dt >d“ 2[Y<Z’ )
1 1 d 1 d

=— [ Adu— - —N)dy — = N) —dpu.

The second integrand yields

1 d 1 o 1
_§/V<Z,EN>CW—§A<Z,T>@,Q/d,u——5/(1+k<z,]\7>),@{dﬂ,

y

The third finally gives

1 d 1

Which shows the equation.

Notes for Section A.2

1. The equations derived in this paragraph are all either well known facts or direct
consequences of such. We have relied mostly on |27] which considers the curve shorten-
ing case and on [16], where the general curve shortening problem is discussed.
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2. The evolution equation of arc-length element, tangent angle, normal angle, curva-
ture, length, and area of the general curve shortening problem can be found in §1.3 of
[16]. Lemma is taken from [27]|, Lemma 3.1.5.

A.3 The convex case

Throughout this appendix it is assumed that the evolving curves are convex.
Thus, it is possible to parametrize the curves with respect to the normal angle.
The resulting time derivatives are given.

A.3.1. We consider for given o7, Z: R? x R x S* — R the equation

%z = o (2,k,0)N + B(z,k,0)T,

2(+,0) = 2. (A.13)

In this appendix we make the big assumption that 2, is a convex curve, and
that z(-, %) is also convex for all ¢t € [0,¢). This has to be checked for each flow
individually. Recall that we have introduced r := |z |, e, := %, and N is the

inward pointing unit normal.

A.3.2. As zis convex at all times it is convenient to reparametrize (A.13) with
respect to the normal angle. We denote the new variables by (¢, 7). It holds
6%9 = k, compare §A.2.4. But we want to parametrize the curve with respect to

the normal angle (0, 7). Because, ¥ = 6 4+ 7, we also have %19 = k. This yields

0 1
20" "k
3 i __ <6T7T> zl
819r - T " E’
0 B (er,N>21
8_'19 <€7«,T> <€T7N> + r Ev
0 (e,,T) (e, N) 1
8’19 <€T’aN> <6T’aT> r E>
as special cases
0 1
8_Q9<Z’T> _E+<ZaN>>
0
— {2z, Ny =—{z2,T
{5 N) = = (2,T),
and
d i i -<6r>T2>7°i <€T’aN>2Ti
8—19<6T,T>7’ = (e, N)r'+i . E+ T
0 {e,, T) ey, N)r'

8_’19<€T7N>T :—<€r,T>7’ +(Z—1)fg
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A.3.3. Let us recall that for an arbitrary function f it holds

0 10
8—19]?—%@]?,
d d 0 .d d 0 0
p R b Sl P )
d 0 0
_%f—%f{%d+<@}.

Together with the computations of §A.2 one obtains:

%ZZ¢N+@—{%¢+@}T:¢N—{%¢}T

d i_-<€T’aT>i -<6TaN> 7 a ~<6T’aT>i

ET—ZTT%HLZ " ﬁrﬂ—{a—ﬁ%jtﬁ}z pa—
_~<6T’aN>i -<6T>T>i a
=1 . r'e —i " r{%d}

d 0 0

ET_{%%ij%}N—k{a—ﬁdJn@}N—O

d

N =

dr 0

This implies:

d 0

%<Z>T>——8—Q9527

d

—{(z,N) = .

d7_<z7 >

Finally, let us compute the evolution of the curvature. We have

d & ) o (0
Tk Lo+ kB KA — k|t + B
o Tt o {819 + )
o2 , 0 (0 , O ,
__W%mﬂ—@k{%%}_k—&92%%%

A.4 No coordinates

A.4.1. This paragraph is taken from Ecker’s book [17|, Appendix A. To that
end, let 2 C R" be an open set. We will consider smooth embeddings F': ) —
R™! where M := F(2) is contained in some open set U C R"™'. The tangent
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space T,M at x = F(p) is spanned by the vectors F; := %F(p), ie{l,...n}.
The metric on M is given by

9 = (Fi, Fj)
where 7,5 € {1,...n}, the inverse metric by
ij -1
g] = (g2j> )

and the area element of M by
\/g = v/ det Gij-
The tangential gradient of a function h: M — R is defined by

For a smooth tangent vector field X = X'F; we define the covariant derivative
tensor by

e D
VX = 0 4 T X = gﬂ{a—le - FZXk},

Di
where the Christoffel symbols are given by
1
F?j = §gkl{gjl,i + ity — gij,z}-

For a smooth tangential vector field X: M — R, the tangential divergence is
defined by

divX =V, X' = gV, X,
and the Laplace-Beltrami operator of h: M — R on M is defined by

Ah = divVh = g7 (0;0;h — T'},0h).

A.4.2. A planar curve z: S' — C is a one dimensional hypersurface in R2.
Thus, its metric reads gi; = |2’ |2, the inverse of the metric is g"' = | 2’| 72, the
area-element equals g = |2'| = p, and I'}; = ﬂzz’,z‘ ) Moreover, F; = 2. Suppose

we are given a function h: v — R, then the previous paragraph yields

/ !
Vh= — T, and Ab = — {h”—<z’z>h’}.
| 2| | 2| | 2|

This yields Vh = {%h}T, and Ah = %h. Hence

(e, T)

Vrt =i rT.

,
The Laplace-Beltrami of r will be derived below.
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A.4.3. Here we collect some basic rules for covariant derivation for planar
curves. Let us note that

1= |Vr\2+(er,N>2,
V (e, N) = _{<€T7N>

+k}or,
1
V{z,N) = —rkVr = —ierz.

This yields the laplacian of r

Ar = {<€T’N> +k‘} (er, N),

r
Ar' = ir' ™ (e, Ny k —i(i — 1)r' (e,, N) +i(i — 1)r' 2 + i (e, N)* 12

Let us also recall Gauf$’ equation

Az = kN.

A.4.4. Again we look at the equation

d
prii o (z,k,0)N, (A.14)
where &7 R? x R x S' — R is the normal speed function of the flow. Let us

recall the following abbreviations r := |z|, e, := - Let us set F(p,t) .= z(p, ).

We make use of the following abbreviations F; := %F. Let us recall that the
metric and the second fundamental form are given by

gij = gaﬁﬂaFf, and h;; = gaﬁEjNﬁ.

Of course in the our case 7,7 = 1, and « and ( run from 1 to 2. As a start we
compute the evolution equation of the metric

d d 0 d
g = —1 g F.aF.ﬁ} = 20,5 F*———FP =20/ q,3F*N® = —2.a/h;.
dtg] dt{g B4 L Gopl' 8.’1;’j dt Gapl'; J J
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Moreover,

d
7 = -V,
d 2
%k—A%v&dk,
id = —kad
dtlLL— /’l’7
d
%<27N>_’Q{_<27V'Q%>7
d o 1 <€T’>N>2
(e N) = = (e, V) {; - }gf,
%r (er, N) o

Notes for Section A.4

The computations follow directly from the hypersurface case, as a curve in R? can also

be seen as a hypersurface. We refer to [54].
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APPENDIX B

Calculations for the original flow equation

Here we derive several useful equations for the equivariant curve flow: Find
z: S % [0, Thing) — C for which

d (er, N)
- :,%N::{k— — 1) }N,
dt- (n=1)= (B.1)
z(+,0) = 2o,
where k denotes the curvature of the curve, N the inward pointing unit normal,
er := 2, 7 := |2], and n the dimension of L.

B.1 Calculation

In this section we assume that zo: S'(k) — C is tamed, i.e. .# > 0, 2mk-periodic
function which evolves by equation (1.9):

d o~ d (e.,T)
LN L7t (n-1 T
dTZ 7 {dnd&_l—(n ) r }’
Z(O,'):ZQ.

This flow is just a reparametrized version of the Flow (B.1). It has the property
that 7 and 7, defined by n := foafdp are independed, as shown in §1.3.2. Our
scope is to provide several calculation associated to this flow.

B.1.1. Let us recall from §1.3.2 that
0 1
o'~ F
With this equation at hand we easily derive the next equations from §A.1

o 9 on 1

—z2=—z2— = =T, and
817Z auzau 71, an
ﬁri _ Zi (e, T) ;

oy F r
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Moreover,

Op {1+n_1<6“’N>}N, and QN:—{Hn_l(e“M}T.

8_77 N 7 r on F T
This yields
0 11 1 (e,T)? n—1 (e, N)
a T’aT = =" — —= ’ {1 ’ } r;N
on ter, T) Fr F or YT 7 ” (e )
n <eT,N)2
pr— N -
{er ) + F r
and
4 1 {e,,T) {e,, N)
an (e,, NYy = —{e,, T) — L a—
We will also need
g ' . ; 1 .
a5 <6T’ T> rt= <e7“7 N> Tt +n <e7“a N>2 Tl_l + 1 <67’a T>2rl_la

F

an F
0 i—1
(e, T) (€., N)r* ™",

9 e Ny = — (en, T) 1 + (i — 1)~

on T
and

0 i 2 2 i

g (e, TY{e,,N)r* = { (e,, N)* — (e, T) }7’

Ui

1
+ i{n (er, NY? + (i —n) {e,, T)* } (e, N) r'™!
B.1.2. We rely on Section A.2 for the next computations. Let us recall that
% = ﬁa%. Note further that n and 7 are independent parameters. We have
. N . T T) .
irl = iLr’ >7’29 — Z{iﬁ +(n—1) ter. >} ter, >7"Z
dr r dn r r
nT) ;d n N nT)?
S (er, >r’—ﬁ—|—z<e’ >r’ﬁ—i(n—1)<e ) "
r dn r r?

It holds

d d d (e.,T)

Cr={2l7 kT - (n-1) }N

dr { dn dn (n=1) r

rN) d o T
- (n—1)<e >—9‘+(n—1)<6 >}N
r n r
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and analogously

2y {n-pleet Lz yylend)
dTN_{(n 1 r dnf/+(n 1) r }T
Moreover,
a - 74 5 (e, T) (e,, N)
dr <67"7T>—<€T7N>,/’d77y - 7
B {ig +(n—1) 1) } (e, N) k
dn .,
d ar <€T,T> <6r,N>2
_{d—nf+(n—1) . } T
e gyl D N) 5
dn ,
Ly

d TN (er, N)
L oy )
n r r
_ <6T’N>2ig _ A{enT)(er, N)
r dn r
(e, T) <6T7N>2
—n(n—1) o
Similarly we obtain
d 1) (e, N) d 1)’
Dyl D e Ny d e T
dr r dn r
T (e, N
—l—n(n—1)<67 >2<6 )
,
This gives
d

dr

and

| .
ler, T)r' = —{n (er, NY? +i (e, T)? }w—l F

dn
+ (i —n) (e, T) (e, N)r''F

—(n— 1){n (e, N)2 +ile,,T) } {e,, T) 2

(e, N) 1" = (n — 1) Ly

Tl_i dn 711—7,

+ (n—1d)(n—1) (e, T) (e, Ny "2,
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B.2 Stationary solutions

Here we identify those curves which are stationary under the flow equation (1.9).
Thus which satisfy .# = 0. We claimed in 1.3.3 that: Let ny € [0,2n], and
h € R\{0}. The implicitly defined curve given by

f(z,y) :=Rz"cosng + 2" sinny — h =0,

is a stationary solution of equation (1.9), where z = x +1y and the motion of the
curve is taken in direction of the vector (f,, —f.)*. This claim will be justified
in this section.

B.2.1. Before we prove the assertion let us recall some basic equations which
will be frequently used. We have

(éRz")2 + (Sz")2 = 2"
and

2= R = yS2 T HafyRe T 4 2SR,

12" = —[yRz"H + 232" FafaRe T — S .
Which imply
R2" = " and $2" = —Re".

The normal vector at a point (z,y) of an implicitly defined curve is given by

1 x
No L (f )
VIZ+ 2 \Uy
Let us note that
fo =n(Rz"""cosn + I2" ' sinn)
and

(?Rzz”_l cosn + 22" ! sin 7])

fy=n
=n(— 32" cosn+ R="" siny).
Observe that
ofe+yfy = (@R = yS2") cosy + (R + 2S5 sing)
= n(

R=" cosn + I2" sin n)
= nh,
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and

f;? n fy2 _ n2[(§Rzn_1)2 n (gzn—1)2:|

:n2‘z|2n—2.

This yields

o s () 6) -t

Let us compute the curvature of the curve. It is given by

_fifmc - Qfxfyfmy + fm2fyy
RN

The minus sign is due to the motion of the curve. We observe:

k:

fow =n(n—1)(R2""?cosn + Sz"?sinn)
fyy = —n(n — 1)(Rz""2cosn + I2"? sinn)
foy =n(n—1)( = Sz" 2 cosn + R""?sinn)

Let us abbreviate
N :=RN""2 and § = "2
Moreover, we set ¢ := cosn and s := sinn. We have

f;fmm - fncfyfgcy
=n*(n — D[((—yR - 23) c+ (@R — y3)s)* (Re +S5)]
— (@R —y¥) c+ YR+ 23)s) (—yR — 23) c+(@R — y)s) (— Sc+Rs)]

=n’(n—1)[c® ((yR + 23)*R + (2R — yI)(—yR — 2I)3)
+ s (YR + 29)°S — 2(yR + 23) (@R — y)R + (@R — yI) (YR + 23R
+ (2R — yI)°S — (yR + 29)°9)
+cs” ((aR — yS)*R — 2(yR + 23) (2R — yS)S + (YR + 23) (2R — y9)S
— (2R — yI)°R + (yR + 23)*R)
+5° ((2R — y9)’S — (YR + 29) (2R — yI)R) ]

=n’(n—1)[c* ((yR + 23)°R — (2R — yI) (YR + 29)9)
+ s ((aR — y9)*S — (YR + 29)(
+es” (YR +29)*R — (YR +29) (2R -y
+5° ((aR — ¥9)’S — (YR + 29) (2R — yI)R) ]|

xR —y
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=n’(n—1)[c((yR+ 23)°R — (aR — yS) (yR + 2I)T)
+5 (@R — y9)°S — (YR + 29) (aR — yS)R) |

=n’(n—1)[c(yR + 23) (YR + 23R — (2R — yI)S)
+5(2R — yS) (2R — y)S — (YR + 29)R) |

=n’(n—1)(R* + 3% [c(yR + 29) + s(—2R + y)] .
Analogously we obtain

fafow = fofofey
= —n’(n—Dn’(n — 1)(R* + %) [ c(aR — yS) + s(yR + 29)]z.

This yields

fgjby_'Qj}j?f%y4‘f5j}x

=-—n’(n—1)(R° +3%)(((z® — y*)R — 22yQ) c +(2zyR + (2* — y*)I) s).
Let us note that

(2% — )R — 20y % = R"
and

2ryR2" 4 (27 — y?) I = S
Altogether

n?(n —1)((R2""2)* + (32"72)?)(R2" cos n + Jz" sinn)

k=-— (n2] z|2n—2)L5

(n—1)]2]>"h

‘Z|3n—3
__(n—1h
|Z|n+1'

This proves the claim.

Remark. Let us point out that

N 1 ( Rz cosn + Sz Lsing ) and
| 2|1\ =827~ cosn + Rzn—Lsing

T 1 (—%z"‘l cosn + RNz""Lsin n)
| z| PP \=Rz""tcosn — Jzn~Lsing )

The notation is a bit sloppy as IV, depends on z and 7.
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APPENDIX C

Calculation for the rescaled flow equation

Here we derive several equations for the rescaled flow equation

iz: {k—(n—l)w—l—(z,N> }N,

dt
& (C.1)
[T
z(+,0) = A—O{Zo —Po}-
Where e, := %, rp = |z +p|, and p =, /- exp(t)po. We also introduce
N
H = {k—(n—l)mj%z,]\f)}.
Tp
C.1 The rescaled equation
C.1.1. Let us start with the claim 1 = (e,, T)* + (e,, N)*. Indeed,
rp=(z+pz+p)
= 2" +p" +2(2,N) {p, N) +2(2,T) (p, T)
= (z+p.T) + (z+p, N)*.
Alternatively,
rp={e+p. N} {5 N) + (z0) +9* + (4 p.T) (2,T).
Furthermore, let us recall 4 := k — (n — 1)<6’;—’pN>, and =% + (z, N). We have
o . .
— = Z»<6P’T> 27
o ? r, °F
d (e,, T 1 (e,, N)?
— (e, T) = Ny — 2 — = N)¥ P
By {ep, T') (€p, N) r _'_Tp (ep, N) ¥ + r,
0 T N T N
8_ <6P,N> <6P,T> k — <€p7 > <eil77 > — <6P,T> g _ <€p7 > <€p7 >
1% Tp Tp



Moreover,

9 i Z- {en, T)° | (e N)P
o (ep, T) 1) = (ep, N) 1,9 + {z S }Tw
L <€va>7”; =—(ep, T) 1Y + (i _n)w i
ol .

This list should be compared with §A.1.1

C.1.2. Here we derive several time derivatives. We refer to Appendix A.4.
Recall that .7 = ¢ + (z, N). First of all we need

d
%TP = <ep>N> I+ <€p’p> )
d _ 1 <€p7N>2 <€p7N> <ep7p> <p7 N>
dt (e, N) = <ep’vjf>+{rp Tp }% rp + ry
d, 2
%k = A+ k.
Let us now replace 5 by ¢. Then
d
= {en M) + (e, N) (2, N) + ey )
d _ ]' <6P’N>2 <€paN> <ep>p> <p7 N>
= (e N) = = {6, V) + {Tp - },%ﬂ - + 2
+r (e, Vr)¥ + (n — 1)T <ep,NZ e, V1)
p
1 N)? N
= — (&, V¥) + {— _ e V) + 1 {ep, V1) }g+nr<€p’ >(ep,Vr>.
Tp Tp T

Here we made use of the fact that

(2, N) {ep, N) + {ep, ) + (2, T) (e, T)
= (2, N) {ep, N) + (e, N) {p, N) + (e, T) (p, T) + (2, T) (ep, T) = 1.

C.1.3. Here we basically derive the same equations as in previous paragraph.
But this time we make use of %. We start with

d 0 d 0
This gives
d 9 (ep, N) (2, T)

77 =g DI - -y
%N:{_%g+<ij>g+(n_1)W}T.

}N, and
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irp:(ep,N>%+<ep,N> (2, N) + (ep, P)

dt
O e N) = (e, T) %g + {% + e, T) (,T) }9
(ep: T) (ep, N) (2, 1)

We also compute

d 0
E <6107T> = <6107N> Y

op Tp
2
_ (n _ 1) <€p7N> <Z7T> + <p7T>
Tp Tp
(ep, T) (ep, N) (2, N) _ (€, T) (ep, P)
Tp Tp
. 0 (ep, T') (ep, N)
= (e N) 50— { (T e N) + 22022 g
(e N) (2, T)
T '
Another way to see this is to note that
N)
DienT) = DJ1— (e, N2 = SN0 b ny
< P > < P > <€p,T> < P >

Here D denotes any differential operator.

C.1.4. Here we provide several calculation for the rescaled flow equation. That
is we assume that z9: S'(k) — C is tamed, i.e. ¢ > 0 and evolves by

%Z: {g+ (z, N) }N_ {d%gﬂn— 1)(6;;;T> — (2, T) }T,
2(0,-) = 2.

This flow has the property that 7 and 7, defined by n := foa ¢ du are independed,
as shown in §3.1.5. To begin with let us note that % = ga%' The previous
Paragraph B.1.1 gives

9 -<ep>T>T;J
e, G

) (ep, N)* 1

n (€, T) = (ep, N) r—

8 <6107T> <€p7 N> 1
an (€p, N) (ep, T) " 7



and

0 i i »<€p=T>2 <6p,N>2 Tzir
8—n<ep,T)rp— <ep,N)7“p+{z - +n " }?7
8 ) 7 . <€7T><€7N>ri
8—n<ep,]\f)rp:—<ep,T>rp+(z—n)—p rpp é’.

Moreover, by Paragraph A.1.1 we have

gri _ -<6T7T>T_i
oy r b
) B (ep, N) (e,, N)Y (e, N)* 1
877 <6T”T> - <€T’aN> _I— (n 1) Tp g _I— r g>
0 B (ep, N) (e, T) (e, T) (e, N) 1
o (e,, N) = —{(e,,T) — (n—1) - 7 " 7
From which we deduce
9 i
8_77 (e,,Tyr
_ i _ (ep, N) (€r, N) 1" <6raN>2T_Z ~<eraT>2r_Z
={(e,,N)r'+(n—1) " 7 + . g“ E—
d i
8_7] (e, N)r
_ i - <ep>N> TZ s <6T’T> <6T>N> TZ
=— (e, T)r'—(n—1) - (e,,T) 7 +(i—1) . 7
Finally we compute
9 J [
o (e,,T) {e,,N) r
_ 2 2 _ . 2 <€p7N>l
- {{] (er, N)? = Ler, 1) } + (0 = D{j (er, N)* = e, T)* } o

C.1.5. We continue the observation of the last paragraph. We rely on §C.1.3.
In principle there are at least two ways to derive the time derivatives in new
coordinates (n, 7). We make use of the following facts

o, d, 9.0
ol =@l “ el

7



and

%n = {(%% + (n— 1)@%? —{z,T) }%

Note that 8% = ga%' This gives

d d
Erp = - <€p’ T> d_ng + <€p> N> g
- {eps NY (2, N) + (e, ) + (s T) (. T) — (n — 1)%

2
= —<€paT> ig—‘— <€p,N>g—|—fr’p_ (n_ I)M
dn "

Here we made use of the fact that

{2, N) {ep, N) + {ep, p) + (2, T) (e, T)
= (2, N) {ep, N) + (e, N) {p, N) + (e, T) (p, T) + (2, T) (ep, T) = 7.

We easily obtain

d i ~<6PaT> ) d ~<6PaN> ) -1 . <ep>T>2 %
= " Tpd_ng_l_z " 9 +ir, —i(n —1) ” T
Moreover,
4 (1, (5N 1 d enT)  (T)\ . p
Lo ={= N-{2% 1 - T+ 2
'’ {rpg_l_ T } {rpdng+(n ) r2 T } +7°p
(e,, T) d (ey, N) {e,, T)”
+ I;Tepd—ng — Iir’Tepg —€p + ( - 1) p’r‘g €p-
It holds by §A.2.2 that
d . <ep>N> d <6paT> <6paT> <ep>N>
N = (n 1){ gt (- ) - }T.
This gives
2 2
i (ey, N :n<ep>T> {ep, N) ig+n<epaT> G +n(n—1) (€p, T) <6paN>.
dr T dn p T2
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C.1.6. Here we provide further time derivatives for the reparametrized rescaled
flow equation

Lo lg iz N - {d%gﬂn— neeDh o py b

dr T
Z(O> ) = 20
It holds
iri = —q <€T7T>T1ig + Z<6T7N> ,rig + ’é’l“i _ Z(?’L _ 1) <6T7T> <€p7T>,r,i’
dr r dn r r Tp
and
N N N
L { Y TPt PR N G EA G TR
dr Tp Tp

e d (e, T)

Let us recall that

2 2

£<6p7T> _ (ep, N) _'_{n<€p=N> _ (ep, T) }i’

on 1 Tp T T g
and

0 (ep, N) (z,N) 1

5 (2, Ty =(e,, NYyr+(n—1) . 7 +g¢
Finally,

d _ d2 2 <ep>N>

<ep>T>2 <ep>N>2
+(n—1){ - E b1
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