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Zusammenfassung. Inhalt dieser Dissertation ist die Untersuhung von Sin-gularitäten des mittleren Krümmungs�uÿes einer equivarianten LagrangeshenUntermannigfaltigkeit. Sei hierzu L eine kompakte orientierbare Mannigfaltigkeit.Wir sagen, daÿ eine Ein-Parameter Familie von glatten Immersionen Ft : L→Mden mittleren Krümmungs�uÿ erfüllt, falls gilt
d

dt
F =

−→
H,

F (·, 0) = F0,
(1)hierbei ist −→

H der mittlere Krümmungsvektor der Immersion, und F0 : L → Mdie Anfangsimmersion. Gleihung (1) ist ein quasi-lineares parabolishes System.Daher existiert ein maximales Zeitintervall [0, Tsing) in dem eine glatte Lösung von(1) existiert. Es ist aber zu erwarten, daÿ der Fluÿ Singularitäten ausbildet. Mankann zeigen, daÿ das genau dann der Fall ist, falls die zweite Fundamentalformexplodiert.Shwerpunkt der Arbeit ist die Analyse des singulären Verhaltens von (1) in derKlasse der equivarianten Lagrangeshen Untermannigfaltigkeiten. Sei z0 : S1 →
C\{0} eine geshlossene immersierte Kurve mit z0 = u0 + ıv0, und sei ferner
G : Sn−1 → R

n die Standardeinbettung der Sphäre mit Radius Eins. Eine equiv-ariante Lagrangeshe Untermannigfaltigkeit F0 : S1 × Sn−1 → Cn ist gegebendurh
F0(φ, x) =

(
u0(φ)G(x), v0(φ)G(x)

)
.Da der mittlere Krümmungs�uÿ isotrop ist, ist das Verhalten der equivariantenLagrangeshen Untermannigfaltigkeiten unter dem Fluÿ determiniert durh denFluÿ der Pro�lkurve. Hierbei muÿ man zwei Fälle untersheiden: Entweder en-thält z0 den Ursprung oder niht. Die vorliegende Arbeit konzentriert sih aufden zweiten Fall. Unsere Hauptresultate lauten:Theorem A. Sei F0 eine equivariante Lagrangeshe Immersion von L := Sn−1×

S1 in Cn. Falls die Anfangskurve z0 : S1 → C\{0} geshlossen und eingebettet ist,niht den Ursprung enthält, und F > 0 erfüllt, dann konvergiert Ft(S1 × Sn−1)zur Sphäre ‖p0‖Sn−1 für t → Tsing. Desweiteren ist die singuläre Zeit gegebendurh die eingeshlossene Flähe A0 der Anfangskurve z0, es gilt Tsing = A0

2π
.Theorem B. Sei F0 eine equivariante Lagrangeshe Immersion von L in Cn.Falls die Anfangskurve z0 : S1 → C\{0} geshlossen und eingebettet ist, niht denUrsprung enthält, F > 0 erfüllt und alle Pro�lkurven z(·, t) konvex sind, dannist die Singularität vom Typ-I. Nah Reskalierung und Auswahl einer Teilfolgekonvergiert Ft zu dem Zylinder Sn−1 × R glatt auf kompakten Teilmengen von

Cn. 3



Theorem C. Sei F0 eine equivariante Lagrangeshe Immersion von L in Cn.Falls die Anfangskurve z0 : S1 → C\{0} geshlossen und eingebettet ist, den Ur-sprung niht enthält, und folgende Ungleihung erfüllt
Fmin(0) ≥ n− 1 +

√
(n− 1)2 + n− 1

rmin(0)
,dann erfüllt z0 die Voraussetzungen von Theorem B.An dieser Stelle möhte ih meinem Betreuer Prof. Dr. K. Smozyk für seineUnterstützung während der Promotionszeit und das gestellte Thema danken.Desweitern möhte ih dem Institut für Di�erentialgeometrie und dem Max-Plak Institut für Mathematik in den Naturwissenshaften in Leipzig für dieangenehmen Arbeitsatmosphären danken. Weiterer Dank geht an Dr. L. Haber-mann und Prof. Dr. Guofang Wang.
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Abstrat. In this paper we study the singular behavior of the mean urvature�ow of an equivariant lagrangian submanifold. To that end let L be a losed,oriented manifold. We say that a one-parameter family of immersion Ft : L →
(M, g), Ft = F (·, t) satis�es the mean urvature �ow equation if

d

dt
F =

−→
H,

F (·, 0) = F0,
(2)where −→

H is the mean urvature vetor and F0 : L → (M, g) is the initial immer-sion. We reall that H is the trae of the seond fundamental form A = ∇dF .Equation (2) is a quasi-linear paraboli system. Therefore, there exists a maximaltime interval [0, Tsing) in whih a smooth solution of (2) exists.The present paper gives a detailed analysis of the singular behavior of (2) in thease of equivariant lagrangian submanifolds. Suppose that z0 : S1 → C\{0} is alosed immersed urve with z0 = u0+ ıv0, and G : Sn−1 → Rn is the standard em-bedding of the sphere of radius one. Then the equivariant lagrangian submanifold
F0 : S1 × Sn−1 → C

n is given by
F0(φ, x) =

(
u0(φ)G(x), v0(φ)G(x)

)
.One has to distinguish two di�erent ases, namely whether z0 enloses the originor not. We will fous on the latter ase, although some insight to existing resultsof the former ase is given.Sine the mean urvature �ow is isotropi, it will be determined by the �ow ofthe orresponding pro�le urves. Our main results are the following theorems:Theorem A. Let F0 be an equivariant lagrangian immersion of L in Cn. If theinitial pro�le urve is losed, embedded, satis�es F > 0, and does not ontainthe origin, then Ft(S

1 × Sn−1) onverges to a sphere ‖p0‖Sn−1 as time goes to
Tsing. Moreover, the singular time is determined by the area A0 enlosed by theinitial urve. That is Tsing = A0

2π
.Theorem B. Let F0 be an equivariant lagrangian immersion of L in Cn. Ifthe initial pro�le urve is losed, embedded, satis�es F > 0, does not ontainthe origin, and all pro�le urves remain onvex, then the singularity is of type-I.After resaling and possibly hoosing a subsequene Ft onverges to the ylinder

Sn−1 ×R smoothly on ompat subsets of Cn.
5



Theorem C. Let F0 be an equivariant lagrangian immersion of L in Cn. If theinitial pro�le urve is losed, embedded, satis�es
Fmin(0) ≥ n− 1 +

√
(n− 1)2 + n− 1

rmin(0)
,and does not ontain the origin, then the assumptions of Theorem B are ful�lled.Shlagworte. Mittlerer Krümmungs�uÿ, Lagrangeshe Untermannigfaltigkeit,singuläres Verhalten, mean uravture �ow, lagrangian submanifold, singular be-havior.
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Introdution

Let L be a losed, oriented manifold. We say that a one-parameter family ofimmersion Ft : L→ (M, g), Ft = F (·, t) satis�es the mean urvature �ow equationif
d

dt
F =

−→
H,

F (·, 0) = F0,
(3)where −→

H is the mean urvature vetor and F0 : L → (M, g) is the initial immer-sion. We reall that H is the trae of the seond fundamental form A = ∇dF .Equation (3) is a quasi-linear paraboli system. Therefore, there exists a maximaltime interval [0, Tsing) in whih a smooth solution of (3) exists.The study of mean urvature �ows was initiated by Brakke [11℄. He was mainlyinterested in this �ow beause it is a model for the motion of grain boundariesin an annealing metal. Consequently the onvenient setting is that of varifoldsand geometri measure theory. An easier to read introdution to Brakke's �owhas been given by Ilmanen [41℄.Some time later Gage and Hamilton [27℄ studied the so alled urve shortening�ow in the plane using the lassial theory of partial di�erential equations. Theirmain result is: Embedded, losed, onvex urves in the plane beome asymp-totially spherial as they disappear, that is they shrink to a point, and afterresaling they onverge smoothly to the unit irle. This result was extendedby Grayson [30℄ who proved that embedded, losed, urves beome onvex. Twodi�erent proofs of the Grayson onvexity theorem were given by Hamilton [33℄and Huisken [37℄. The urve shortening �ow initiated the study of urve �owswith di�erent speed funtions, we only refer to [16℄ for a reent exposition. Theurve shortening �ow has also been studied on surfaes, ompare [31℄, [47℄ andmany others. Let us also mention the work of Angenent who introdued Stur-mian osillation theory to the urve shortening �ow, ompare [5℄, [7℄, as well assome deliate singular analysis, see [6℄, [8℄.7



Huisken [35℄ investigated the motion of onvex hyper-surfaes in riemannian man-ifolds by the mean urvature �ow. His main result is that they beome asymp-totially spherial. In his paper [36℄ he lassi�ed the singular behavior. Thislead to many other papers onerning the singular behavior of the �ow, see forexample [9℄, [39℄, and [38℄. Comprehensive estimates for graphs whih evolve bytheir mean urvature has appeared in [18℄.Let us further note that Allen and Cahn [3℄ onjetured mean urvature motionas the singular limit of a reation-di�usion (phase-�eld) equation. This idea hasbeen developed by de Mottoni and Shatzman [43℄, [44℄, [45℄, Bronsard-Kohn [12℄.Chen-Giga-Goto [15℄ and Evans-Spruk , [20℄,[21℄,[22℄,[23℄ introdued the level-set-�ow, in whih the moving surfae is the zero-set of a funtion, all of whoselevel-sets move by mean urvature. The phase-�eld and level-set approahes arereoniled in the paper of Evans-Soner-Souganidis [19℄, and uni�ed with Brakke'swork in Ilmanen's paper [40℄.An immersion F0 : L→M in a Kähler manifold (M2n, ω, J, g) is alled lagrangianif the dimension of L is n and F ∗ω = 0. From now on we assume that this isthe ase. It was shown by Smozyk [55℄ that the lagrangian ondition is pre-served under the mean urvature �ow if we assume that the ambient spae isKähler-Einstein. Moreover, Wang [58℄, Chen and Tian [14℄ proved that sym-pleti surfaes in Kähler-Einstein manifolds remain sympleti along the meanurvature �ow.Theorem. Let us assume that for any t ∈ [0, T0) we are given a one-parameterfamily of lagrangian immersions Ft(L) in a Kähler-Einstein manifold M2n whihevolves by its mean urvature. Suppose further all ambient urvatures quantitiesare bounded and that limt→T0
| A | 2 is bounded. Then there exists an ǫ > 0suh that the mean urvature �ow admits a smooth solution on the extended timeinterval [0, T0 + ǫ).For a proof, see [56℄. If the ambient spae is R2n, then all ambient urvaturequantities are zero. Thus, if Tsing is �nite, then the seond fundamental formhas to blow up. This gives: If the initial initial submanifold is ompat, andthe ambient spae is eulidian, then the singular time is �nite. This follows forexample from Brakke's sphere barrier to internal varifolds. Another way to seethis is to look at the evolution equation of |F | 2. It reads

d

dt
|F | 2 = ∆ |F | 2 − 2n.The paraboli maximum priniple yields that the funtion |F | 2 +2nt is boundedfrom above by a onstant. This gives a ontradition for Tsing = ∞. So, ompatlagrangian immersions in R2n will develop �nite time singularities.8



A point p ∈ R2n is alled blow-up point if there exists a point x ∈ L suh that
limt→Tsing

F (x, t) = p and limt→Tsing
|A | 2(x) = ∞. It holds

const1

Tsing − t
≤ max

Lt

|A | 2,where const1 > 0, this an be shown with evolution equation of |A | 2 and themaximum priniple. We will all the singularity to be of type-I if there existsanother onstant const2 suh that
max
Lt

|A | 2 ≤ const2

Tsing − t
.The prime example is the sphere whih shrinks self-similarly to a point. Otherwisethe singularity is alled of type-II. For an example piture an immersed onvexurve with two loops. It is intuitively lear that it will develop a kink, for a proofsee [8℄.Let us de�ne for y ∈ R2n

ρ(y, t) :=
{ 1

4π(Tsing − t)

}n
2

exp
{
− | y | 2

4(Tsing − t)

}
.Theorem. If Lt is a family of losed lagrangian immersions in R2n whihevolves by its mean urvature, then we have

d

dt

∫

Lt

ρ
(
F (x, t), t

)
dµt = −

∫

Lt

∣∣∣
−→
H +

1

2(Tsing − t)
F⊥

∣∣∣
2

ρ
(
F (x, t), t

)
dµt. (4)For a proof see Huisken [36℄. Equation (4) is alled monotoniity formula. Thisformula is analogous to the monotoniity formula for minimal surfaes, ompare�5.4.3 of [25℄, the monotoniity formula of Giga and Kohn, [29℄, the mean valueproperty for harmoni funtions, and for the Yang-Mills �ow, [48℄. A similarformula also holds for the Brakke �ow, ompare [41℄.Now we desribe the resaling proedure. For simpliity we assume that the originis a blow-up point. We de�ne the resaled lagrangian immersions by

F̃ (x, s) :=
1√

2
(
Tsing − t

)F (x, t),

s(t) := −1

2
ln

(
Tsing − t

)
.Then the submanifolds L̃s := F̃ (L, s) are de�ned for s ∈ [−1

2
lnTsing,∞), andsatisfy the equation

d

ds
F̃ (x, s) =

−→̃
H (x, s) + F̃ (x, s).Note that a resaled lagrangian submanifold is again a lagrangian submanifold.It holds: 9



Theorem. Let us suppose that Ft : L→ R2n is a smooth one-parameter familyof oriented, lagrangian immersions whih moves by the mean urvature. Let usfurther assume that the origin is a blow-up point of type-I. Then for eah sequene
sj → ∞, there exists a subsequene again denoted by sj suh that the resaledlagrangian immersions L̃sj

onverge to a limiting immersions L̃∞ smoothly onompat subsets. Moreover, the limit immersion satis�es the identity
Hi = −〈F,Ni〉 . (5)We remark that any immersion whih satis�es the above identity (5) is alledself-similar. This terminology is due to the fat that a self-similar submanifoldshrinks homothetially under the mean urvature �ow. A similar result holds forthe Brakke �ow, see [42℄. The main di�ulty here is that of regularity.Let us note some geometrially interesting properties of the mean urvature �ow.As noted above it was shown by Smozyk [55℄ that it preserves the lagrangianondition. Moreover in [56℄ it was shown: If Lt is a family of losed, oriented,lagrangian submanifolds evolving by the mean urvature �ow in a Calabi-Yaumanifold, then the ohomology lass of the one-form H is �xed.Wang [58℄ proved that no type-I singularities an our under the lagrangianmean urvature �ow if on the initial lagrangian immersion we have cos(α) ≥ 0.Here α is the lagrangian angle. In partiular, this ondition implies [H ] = 0 forthe ohomology lass of the mean urvature form H . Neves [46℄ on the otherhand showed that [H ] = 0 implies that no type-I singularity form. Finally, Liand Chen proved that type-II singularities of the lagrangian mean urvature �owin C2 onsists of a �nite union of more than one lagrangian two-plane.Let us now desribe the ontent of our thesis. The present paper gives a detailedanalysis of the singular behavior of (3) in the ase of equivariant lagrangiansubmanifolds. Suppose that z0 : S1 → C\{0} is a losed immersed urve with

z0 = u0 + ıv0, and G : Sn−1 → Rn is the standard embedding of the sphere ofradius one. Then the equivariant lagrangian submanifold F0 : S1 × Sn−1 → Cn isgiven by
F0(φ, x) =

(
u0(φ)G(x), v0(φ)G(x)

)
.One has to distinguish two di�erent ases, namely whether z0 enloses the originor not. We will fous on the latter ase, although some insight to existing resultsof the former ase is given.Sine the mean urvature �ow is isotropi, it will be determined by the �ow of theorresponding pro�le urves. Thus, to solve equation (3) in the equivariant setting10



desribed above we have to �nd a smooth family of urves z : S1 × [0, Tsing) → Cfor whih
d

dt
z = FN :=

{
k − (n− 1)

〈er, N〉
r

}
N,

z(·, 0) = z0,
(6)where k denotes the urvature of the urve, N the inward pointing unit normal,

er := z
r
, r := |z|, and n the dimension of L. The derivation of equation (6) wasgiven by H. Aniaux [4℄ who also lassi�ed all self-similar solutions of this �ow.These urves show that unlike in the urve shortening �ow the urves do notneessarily beome onvex. Moreover, as shown in [32℄ an initial onvex urvean also beome non-onvex and develop a type-II singularity.Our main results are the following theorems:Theorem A. Let F0 be an equivariant lagrangian immersion of L in Cn. If theinitial pro�le urve is losed, embedded, satis�es F > 0, and does not ontainthe origin, then Ft(S

1 × Sn−1) onverges to a sphere ‖p0‖Sn−1 as time goes to
Tsing. Moreover, the singular time is determined by the enlosed area A0 of theinitial urve. That is Tsing = A0

2π
.Let us note that F = | −→H | . Thus, F > 0 implies that −→H never vanishes.Theorem B. Let F0 be an equivariant lagrangian immersion of L in C

n. Ifthe initial pro�le urve is losed, embedded, satis�es F > 0, does not ontainthe origin, and all pro�le urves remain onvex, then the singularity is of type-I.After resaling and possibly hoosing a subsequene Ft onverge to the ylinder
Sn−1 ×R smoothly on ompat subsets of Cn.This is an example of a monotone lagrangian submanifold in Cn whih developsa type-I singularity under the mean urvature �ow.Theorem C. Let F0 be an equivariant lagrangian immersion of L in Cn. If theinitial pro�le urve is losed, embedded, satis�es

Fmin(0) ≥ n− 1 +
√

(n− 1)2 + n− 1

rmin(0)
,and does not ontain the origin, then the assumptions of Theorem B are ful�lled.The present paper onsists of three hapters and three appendies.Chapter 1 takes a look at the urve shortening �ow that is the ase where n = 1.It realls onvex sets. Then we introdue tamed sets whih are generalized onvex11



sets. Finally some omments on the general planar urve �ow problem are given.Chapter 2 provides the proofs of Theorem A and C.Theorem A is proved analogously as in the urve shortening ase. But we haveto replae onvex urves, whih are haraterized by k > 0 with tamed urves,whih are haraterized by F > 0. It is shown that tamed urves enjoy mostproperties of onvex sets, this result is established in Chapter 1. The remaningparts of the theorem is proved in Chapter 2.Chapter 3 onsits of four setions: The �rst setion explains the blow-up proe-dure. The seond setion establishes the asymptoti behavior of several geometriquantities. The key observation is that rp ∼ exp(t). The third setion proves aBernstein-type estimate as well as a Harnak-type inequality. Finally, in thefourth setion we �nish the proof of Theorem B.The struture of the proof is as follows: We use Gage's inequality to bound thelength of the resaled urves. This is the only time where we make us of theonvexity assumption. Then it is shown that G → −〈z,N〉 in L2(S1). This isdone with a monotoniity-type argument. Moreover, we show that the entropyof the urves remains bounded. Together with the Harnak-type inequality andthe Arzela-Asoli theorem the result is obtained.In the appendies we have olleted several omputations whih would have dis-trated the �ow of reading.One should keep in mind that we are onsidering two pairs of �ow. The �rstpair is the equivariant urve shortening �ow and its reparametrized ounterpart.The seond pair is the resaled equivariant urve shortening �ow and again itsreparametrized ounterpart. Another �ow is also mentioned; the weighted urve�ow.
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Chapter 1Reparametrization

This hapter prepares the proof of Theorem A. We begin with an expositorySetion 1.1 on the urve shortening �ow equation. We inluded this paragraphbeause the proof of Theorem A has a similar struture at a oneptual level.The main ingredients are a reparametrization of the urves with respet to thenormal angle and the notion of the support funtion. The setion is followed byan elementary disussion of onvex sets and their properties. In the third Setion1.3 we introdue what we all tamed sets whih play a similar role as onvex setsplay in the urve shortening �ow. Furthermore, we reparametrize the urves withrespet to an new angle, and introdue a generalized support funtion.1.1 On the urve shortening �owThe disussion of this setion is of expository harater and may be skipped.If the dimension is n = 1, then (6) is just the urve shortening �ow equation,onsidered by Gage and Hamilton [27℄ and many others. In this setion we reallthe de�nition of the support funtion for a stritly onvex plane urve along withbasi properties of it. Then we reall one possible proof of Gage and Hamilton'slassial result that embedded, losed, stritly onvex plane urves shrink to apoint in �nite time. The hapter loses with some general omments on the urve�ow problem.1.1.1. The urve shortening �ow equation reads; given z0 : S1 → C �nd asmooth family z : S1 × [0, Tsing) → C with
d

dt
z = kN, and

z(·, 0) = z0.
(1.1)Here k denotes the urvature of the urve, andN the inward pointing unit normal.The �rst key observation is that onvexity of z0 is preserved along the �ow.15



Indeed, we have
d

dt
k = ∆k + k3;the laim follows with the maximum priniple. Let us reall that a stritly onvexurve z : S1 → C admits a reparametrization ϑ : S1 → S1 as follows

ϑ(p) =

∫ p

0

k dµ.This is possible beause ∫
S1 k dµ = 2π, and k > 0. Beause the �ow preservesstrit onvexity, we may reparametrize S1 as above for every t ∈ [0, Tsing). When-ever we do this we say that we reparametrize the �ow. Let us now give a geometriinterpretation for the parameter ϑ. We note that by de�nition

∂

∂ϑ
µ =

1

k
.This gives with the Frenet formulas that

∂

∂ϑ
T = N and ∂

∂ϑ
N = −T.In partiular, we have ∂2

∂ϑ2N = −N . Therefore, we may hoose the parametriza-tion suh that the inward pointing unit normal is given by
N(ϑ) = −

(
cosϑ

sin ϑ

)
.With this hoie the unit irle ful�lls z(ϑ) = −N(ϑ). This is the reason whyone alls ϑ the normal angle. Let us reall the de�nition of the support funtion

h(ϑ) := −r 〈er, N〉 = x(ϑ) cosϑ+ y(ϑ) sinϑ.The support funtion measures the signed distane of the supporting hyperplaneto the origin. Let us denote di�erentiation with respet to ϑ by a prime. Observethat
h′ = r 〈er, T 〉 .The urve as a funtion of ϑ is given by
z(ϑ) = −r 〈er, N〉N + r 〈er, T 〉T =

{
h+ ıh′

}
N =

{
h+ ih′

}
exp(ıϑ).Here we have identi�ed C and R2. Note that z(0) orresponds to the point on γwhih has normal vetor (

−1
0

). 16



Suppose that A,B are both stritly onvex subsets of the plane with orrespond-ing support funtions hA and hB. Then A ⊂ B if and only if hA ≤ hB. Finally,let us reall that the area of γ may be omputed by
A(γ) =

1

2

∫

S1

h2 − h′2 dϑ,and the length by
L(γ) =

∫

S1

hdϑ,ompare [10℄.1.1.2. Now we want to express the evolution equation of the urvature in termsof the new parameter ϑ. Let us denote by τ the new time parameter then weuse ϑ as the other oordinate. Thus we hange variables form (p, t) to (ϑ, τ). Wewant to point out that ∂
∂t

6= ∂
∂τ
. We ompute

d

dt
ϑ =

d

dt

∫ p

0

k dµ =

∫ p

0

∂2

∂µ2
k + k3 − k3 dµ =

∂

∂µ
k = k

∂

∂ϑ
k.Therefore,

∂

∂τ
k =

d

dt
k − ∂

∂ϑ
k
d

dt
ϑ =

∂2

∂µ2
k − k

{ ∂

∂ϑ
k
}2

+ k3

=
∂2

∂µ2
k − k

{ ∂

∂ϑ
k
}2

+ k3 = k2 ∂
2

∂ϑ2
+ k3.In the same spirit the other evolution equations may be derived. We observe

∂

∂τ
z =

d

dt
z − ∂

∂ϑ
z
d

dt
ϑ = kN − k

∂

∂ϑ
z
∂

∂ϑ
k = kN − ∂

∂ϑ
kT. (1.2)Note that the original �ow equation (1.1) and the reparametrized equation (1.2)di�er only by a tangential term. Thus, they desribe the same geometri �ow.The tangential ontribution just makes ϑ and τ independent.1.1.3. We laim that the enlosed area at singular time must vanish. If thisis not the ase, then there exists a small ball enlosed by all urves z(·, τ) for τlosed to Tsing. That is to say that h − hball ≥ ǫ > 0. The maximum prinipleapplied to the evolution equation of the funtion

f =
k

h− hball 17



will give a ontradition. We introdue
m =

1

h− hball
.Then, there exist onstants const1, const2 > 0 suh that

const1 ≤ m ≤ const2. (1.3)We note that
m′ = m2

{
− 〈z, T 〉 + h′ball

}
,and

m′′ = 2m3
{
− 〈z, T 〉 + h′ball

}2

+m2
{
− 1

k
− 〈z,N〉 + h′′ball

}
.Here, the prime denoted di�erentiation with respet to ϑ. This yields

f ′ = mk′ +m2
{
− 〈z, T 〉 + h′ball

}
k.Therefore,

mk′ = f ′ −m2
{
− 〈z, T 〉 + h′ball

}
k.Moreover,

f ′′ = mk′′ + 2m2
{
− 〈z, T 〉 + h′ball

}
k′

+
{

2m3
{
− 〈z, T 〉 + h′ball

}2
+m2

{
− 〈z,N〉 + h′′ball

}}
k −m2.Combined with the last equality we get

f ′′ = mk′′ + 2m
{
− 〈z, T 〉 + h′ball

}
f ′ +m2

{
− 〈z,N〉 + h′′ball

}
k −m2.Now we an derive the evolution equation of f . We ompute with the help of�A.3 that

d

dτ
f = mk2k′′ +mk3 +m2k2,whih gives

d

dτ
f = k2f ′′ + 2mk2

{
〈z, T 〉 − h′ball

}
f ′

+ 2m2k2 +
{
m2

(
〈z,N〉 − h′′ball

)
+m

}
k3.

(1.4)18



Let us reall that the support funtion of a ball entered at p = (p0, p1), withradius ρ is given by
hball(ϑ) = ρ+ p0 cosϑ+ p1 sinϑ.This implies that h′′ball = ρ− hball. Therefore
m2

(
〈z,N〉 − h′′ball

)
+m = m2

(
〈z,N〉 + hball − ρ

)
+m

= m2
(
− 1

m
− ρ

)
+m = −ρm2.Inserting this in equation (1.4) yields

d

dτ
f = k2f ′′ + 2mk2

{
〈z, T 〉 − h′ball

}
f ′ + 2m2k2 − ρm2k3.It holds ρ > 0 beause of our assumption. Invoking Inequality (1.3) we see that

f is bounded from above by the maximum priniple. But this is a ontraditionas the urvature k has to blow up at Tsing and therefore also f . This proves thelaim.1.1.4. We are left with two ases; either the limit urve is a point or a segment.But it an not be the latter beause, k is bounded away from zero again by themaximum priniple. Thus we have shown onvergene of support funtions, orequivalently (in the set of ompat onvex bodies) onvergene in the Hausdor�metri, ompare Shneider [52℄ and also the next setion. All we have to do isarry over this proof to the ase n ≥ 1.Notes for Setion 1.11. As noted earlier, the starting point for the urve shortening �ow is the paper ofGage and Hamilton [27℄, in whih they prove that simple, stritly onvex urves onvergesmoothly to a round point. The given proof follows ideas of Tso [57℄.2. What we know about the urve shortening �ow goes way beyond what we haveskethed in this setion. Gage and Hamilton further showed in their paper that theurves beome asymptotially round. Grayson [31℄ proved that any embedded urve inthe plane beomes onvex before it develops a singularity. For further development werefer to the literature, see for example [16℄ and the referene therein.3. The notion of the support funtion of a losed onvex urve an already be foundin Blashke's lassial book [10℄. In fat, every weak*-losed onvex subset A ⊂ E′ ofthe dual of a real Banah spae E admits a support funtion
σ(x) = sup

x′∈A

〈
x′, x

〉
. 19



Moreover, it is uniquely determined by its support funtion by Hörmander's theorem,ompare [2℄.1.2 On onvex sets1.2.1. Let (X, d) be a metri spae. For any subset A in X, and ǫ > 0 we de�nethe ǫ-thikening of A by
[A]ǫ := {x ∈ X | d(x,A) ≤ ǫ} .Let X denote the olletion of ompat subsets of X. Given E and F in X, wede�ne their Hausdor� distane by
δ(E,F ) := inf {ǫ > 0 |E ⊂ [F ]ǫ, F ⊂ [E]ǫ} .One an hek that (E,F ) 7→ δ(E,F ) satis�es the axioms of a metri. Wehave the following theorem: Assume that (X, d) has the property that losedand bounded subsets are ompat, then (X, δ), the spae of ompat subsets of Xwith Hausdor� metri δ, is omplete. Furthermore, if X is ompat, then X isompat. As a onsequene: From eah bounded sequene of onvex bodies onean selet a subsequene onverging to a onvex body. This is Blashke famousseletion theorem.1.2.2. Suppose that A and B are subsets of the plane. Let us reall that ahyperplane is determined by a vetor N ∈ R2 and a real number α ∈ R as follows

H(N,α) =
{
y ∈ R2 | 〈y,N〉 = α

}. In our ase H(N,α) is just a straight line. Wesay that H(N,α) separates A and B if A ⊂ H(N,α)− :=
{
y ∈ R2 | 〈y,N〉 ≤ α

}and B ⊂ H(N,α)+ :=
{
y ∈ R2 | 〈y,N〉 ≥ α

}, or vie versa. We say that Aand B are strongly separated by H(N,α) if there exists ǫ suh that A and B areseparated by ⊂ H(N,α− ǫ)− and H(N,α+ ǫ)+.The following separation theorem holds true: If A and B are nonempty onvexsubsets of the plane with A ∩ B = ∅, then A and B an be separated. If A isompat and B is losed, then A and B an be strongly separated.Notes for Setion 1.21. The treatment of the Hausdor� metri, and Blashke's seletion theorem is takenfrom [13℄. Blashke's seletion theorem an be found on page 62 of [10℄.
20



2. Paragraph 1.2.2 relies on Setion 1.3 of Shneider's book [52℄. The standard refer-ene to onvex analysis is of ourse Rokafellar's book [49℄. The main diretion of thisbook is optimization theory.1.3 Tamed urvesThis setion prepares the proof of Theorem A. The �ow equation we are lookingat is
d

dt
z = FN :=

{
k − (n− 1)

〈er, N〉
r

}
N,

z(·, 0) = z0.
(1.5)The theorem was proved in Setion 1.1 in the ase n = 1. The �rst step is: Finda suitable notion of onvex urves in the general ase. This will be urves whihsatisfy F > 0. We refer to suh urves as being tamed.1.3.1. A standard alulation yields the evolution equation of F . We observefrom Appendix A.4 that

d

dt
F =

d

dt
k − (n− 1)

d

dt

〈er, N〉
r

= ∆F + k2
F

− (n− 1)
{
− 〈er,∇F 〉

r
+

{ 1

r2
− 〈er, N〉2

r2

}
F

}
+ (n− 1)

〈er, N〉2
r2

F .Note that,
k2 =

{
F + (n− 1)

〈er, N〉
r

}2

= F
2 + 2(n− 1)

〈er, N〉
r

F + (n− 1)2 〈er, N〉2
r2

.Hene,
d

dt
F = ∆F + (n− 1)

〈er,∇F 〉
r

+ (n− 1)
{

(n+ 1)
〈er, N〉2
r2

− 1

r2

}
F

+ 2(n− 1)
〈er, N〉
r

F
2 + F

3.

(1.6)This implies that F > 0 is preserved along the �ow by the maximum priniple.From now on we assume that z : S1 → C satis�es F > 0. Whenever this is thease we say that z is tamed. Let us introdue the following funtions:
Φ = (n− 1)

{
(n+ 1)

〈er, N〉2
r2

− 1

r2

}

Ψ = 2(n− 1)
〈er, N〉
r 21



Sometimes it is useful to make use of the following evolution equation
d

dt
F =

∂2

∂µ2
F + (n− 1)

〈er, T 〉
r

∂

∂µ
F + ΦF + ΨF

2 + F
3. (1.7)That Equation (1.6) and Equation (1.7) are equivalent is shown with the help ofAppendix A.4.1.3.2. Moreover, we note that

∫

S1

F dµ =

∫

S1

k − (n− 1)
〈er, N〉
r

dµ = 2π
{

rot(z) − (n− 1) wind(z)
}

=: 2πκ,where rot(z) denotes the rotation number of the urve, and wind(z) its windingnumber with respet to the origin. It follows that
η(p) :=

∫ p

0

F dµ (1.8)is a map of η : S1 → S1(κ). Here S1(κ) := R/2πκZ. Thus z ◦ η−1 : S1(κ) → Cis a reparametrization of our urve. Similar to the urve shortening ase weperform this reparametrization for all t ∈ [0, Tsing). This works beause F > 0 ispreserved during the �ow as shown in the previous paragraph. Let us now hangethe parameters from (p, t) to (η, τ). In order to make η independent of the timeparameter τ we have to add a tangential term to equation (6). We note that
d

dt
η(p) =

d

dt

∫ p

0

F dµ

=

∫ p

0

∂2

∂µ2
F + (n− 1)

〈er, T 〉
r

∂

∂µ
F + (n− 1)

{
(n + 1)

〈er, N〉2
r2

− 1

r2

}
F

+ 2(n− 1)
〈er, N〉
r

F
2 + F

3 − F
2k dµ

=

∫ p

0

∂2

∂µ2
F + (n− 1)

〈er, T 〉
r

∂

∂µ
F

+ (n− 1)
{

(n+ 1)
〈er, N〉2
r2

− 1

r2

}
F + (n− 1)

〈er, N〉
r

F
2 dµ.Here we refer to Appendix A.2 and equation (1.7). We note that

∫ p

0

〈er, T 〉
r

∂

∂µ
F dµ =

〈er, T 〉
r

F −
∫ p

0

{ 1

r2
+

〈er, N〉
r

k − 2
〈er, T 〉2
r2

}
F dµ

=
〈er, T 〉
r

F −
∫ p

0

{ 1

r2
+

〈er, N〉
r

F + (n− 1)
〈er, N〉2
r2

− 2
〈er, T 〉2
r2

}
F dµ

=
〈er, T 〉
r

F +

∫ p

0

F

r2
− 〈er, N〉

r
F

2 − (n + 1)
〈er, N〉2
r2

F dµ.22



This and the previous equation yield
d

dt
η(p) =

{ ∂

∂µ
F + (n− 1)

〈er, T 〉
r

F

}
= F

{ ∂

∂η
F + (n− 1)

〈er, T 〉
r

}
.With this equation at hand we an ompute the evolution equation of F in newoordinates (η, τ). But �rst let us observe that

∂

∂η
z =

1

F

∂

∂µ
z =

1

F
T.This yields, ombined with the previous equation, that

∂

∂τ
z =

d

dt
z − ∂

∂η
z
d

dt
z = FN −

{ ∂

∂η
F + (n− 1)

〈er, T 〉
r

}
T.Therefore the reparametrized �ow equation reads

d

dτ
z = FN −

{ d

dη
F + (n− 1)

〈er, T 〉
r

}
T. (1.9)The tangential ontribution of equation (1.9) does not alter the geometri be-havior of the �ow, it just makes τ and η independent. Let us now derive theevolution equation of F . First of all reall that

∂

∂µ
F = F

∂

∂η
F ,and

∂2

∂µ2
F = F

2 ∂
2

∂η2
F + F

{ ∂

∂η
F

}2

.We have
∂

∂τ
F =

d

dt
F − ∂

∂η
F
∂η

∂t

=
∂2

∂µ2
F + (n− 1)

〈er, T 〉
r

∂

∂µ
F + ΦF + ΨF

2 + F
3

− F

{ ∂

∂η
F + (n− 1)

〈er, T 〉
r

} ∂

∂η
F

= F
2 ∂

2

∂η2
F + F

{ ∂

∂η
F

}2

+ (n− 1)
〈er, T 〉
r

F
∂

∂η
F

+ ΦF + ΨF
2 + F

3 − F

{ ∂

∂η
F

}2

− (n− 1)
〈er, T 〉
r

F
∂

∂η
F .Hene,

d

dτ
F = F

2 d
2

dη2
F + ΦF + ΨF

2 + F
3. (1.10)For the readers onveniene we have olleted more alulations for the reparam-etrized �ow in Appendix B.1. 23



1.3.3. A geometri haraterization of η is not so easy to explain. In some senseit is also a kind of normal angle. If we look at onvex urves, then
N = −

(
cos ϑ

sinϑ

)was the normal vetor of the urve at z(ϑ), and N was also normal to the sup-porting hyperplane going through z(ϑ). A hyperplane has the property that itsurvature is equal to zero. As a �rst step we want to replae these hyperplanesby supporting hyperurves haraterized by the property that F = 0. The orre-sponding equivariant submanifold are the so alled lagrangian atenoids desribedby Harvey and Lawson in [34℄.We laim that: Let η0 ∈ [0, 2π], and h ∈ R\{0}. The impliitly de�ned urvegiven by
f(x, y) := ℜzn cos η0 + ℑzn sin η0 − h = 0,is a stationary solution of equation (1.9), where z = x+ ıy and the motion of theurve is taken in diretion of the vetor (fy,−fx)T . The proof of this assertionan be found in Appendix B.2. Let us list these urves for n = 1, . . . , 6:
h1 = x cos η + y sin η

h2 = (x2 − y2) cos η + 2xy sin η

h3 = (x3 − 3xy2) cos η + (−y3 + 3x2y) sin η

h4 = (x4 − 6x2y2 + y4) cos η + (−4xy3 + 4x3y) sin η

h5 = (x5 − 10x3y2 + 5xy4) cos η + (y5 − 10x2y3 + 5x4y) sin η

h6 = (x6 − 15x4y2 + 5x2y4 − y6) cos η + (6x5y − 20x3y3 + 6xy5) sin ηMoreover, the normal vetor is given by
Nhyp =

1

rn−1

( ℜzn−1 cos η + ℑzn−1 sin η

−ℑzn−1 cos η + ℜzn−1 sin η

)
,whih implies that

h = rn 〈er, Nhyp〉 .Let us now suppose that z : S1(κ) → C is a tamed urve, whih is parametrizedby η(p) :=
∫ p

0
F dµ. Then to every point z(η) there is assoiated a real number

h(η) := −rn 〈er, Ncurve〉, whih measures the distane of the supporting hyper-urve going through z(η) with normal angle −Ncurve at z(η). That this heuristipiture is indeed true will be revealed in the next paragraphs �1.3.4 - �1.3.5.Moreover, we will see that tamed set enjoy most properties of onvex sets.24



1.3.4. The previous paragraph motivated to de�ne the generalized support fun-tion of a tamed, reparametrized urve z : S1(κ) → C by
h(η) = −rn 〈er, N〉 .This de�nition needs some justi�ation. We know from �B.1.1 that
h′ = rn 〈er, T 〉 , and h′′ = n

rn−1

F
− h.Here ′ denotes di�erentiation with respet to η. These two equations imply severalthings. First of all we have

r2n = h2 + h′2, and F

rn−1
=

n

h + h′′
. (1.11)Therefore, we an reover F from the support funtion as follows

F = n

{
h2 + h′2

}n−1
2n

h + h′′
. (1.12)With a little e�ort one an also show that

zn =
{
h + ıh′

}
exp{ıη}. (1.13)Let us derive equation (1.13). We know from the previous paragraph that thesupport funtion h an also be written as

h(η) = ℜzn cos η + ℑzn sin η.We reall from Appendix B.2 that
Thyp =

1

rn−1

(−ℑzn−1 cos η + ℜzn−1 sin η

−ℜzn−1 cos η − ℑzn−1 sin η

)
.This implies that

h′(η) = rn 〈er, Tcurve〉 = −rn−1 〈z, Thyp〉
=

{
xℑzn−1 cos η − yℜzn−1 sin η + yℜzn−1 cos η + yℑzn−1 sin η

}

=
{{
xℑzn−1 + yℜzn−1

}
cos η +

{
− yℜzn−1 + yℑzn−1

}
sin η

}

= ℑzn cos η − ℜzn sin η.Therefore,
{
h+ ıh′

}
exp{ıη}

=
{
ℜzn cos η + ℑzn sin η + ı

{
ℑzn cos η − ℜzn sin η

}}
exp{ıη}

= ℜzn cos2 η + ℑzn sin η cos η + ıℑzn cos2 η − ıℜzn sin η cos η

+ ıℜzn cos η sin η + ıℑzn sin2 η − ℑzn cos η sin η + ℜzn sin2 η

= ℜzn + ıℑzn = zn, 25



whih shows the equation. Thus, a tamed urve is determined by its generalizedsupport funtion. But more important is the following observation: A urve
z : S1(κ) → C is tamed if and only if h + h′′ > 0. Let us reall that a 2πκ-periodi funtion desribes a onvex urve in the plane if and only if h+ h′′ > 0,onvex meaning here that k > 0. Thus, there exists a one-to-one orrespondenebetween tamed urves and onvex urves.1.3.5. Let us suppose that z : S1(κ) → C is an embedded, ompat, tamedurve. The last paragraph showed that the generalized support funtion de�nedby h := −rn 〈er, N〉, satis�es h+h′′ > 0. Thus, h also determines a onvex urvein the plane. A little thought shows that the relation is given by the transform
∧ := {z 7→ zn} : C → C. Indeed,

ẑ =
{
h + ıh′

}
exp{ıη} = zn.Let us ompute the urvature of ẑ in terms of z

k̂ =
1

h+ h′′
=

1

n

F

rn−1
,by equation (1.11). Similarly, we may ompute the �ow equation of ẑ. We observewith �B.1.2 and equation (1.11) that

d

dτ
h = −nrn−1

F = −nr2n−2 F

rn−1
= −n2

(
h2 + h′2

)n−1
n

h+ h′′
= −n2r̂

2n−2
n k̂.Therefore, we ould also study the weighted urve �ow. It reads in supportfuntions

d

dτ
h = −n2

{
h2 + h′2

} 2n−2
2n

h+ h′′
,or more geometrially

d

dτ
z = n2r

2n−2
n kN. (1.14)But as it turns out the asymptoti analysis of this �ow is more ompliated thanthe original version. This is due to the fat that the latter has a linear areaderease - a property the former �ow does not satisfy. Nevertheless this �owgives some insight on the geometri behaviour of our �ow equation (6). We willdisuss some previously obtained results in the next paragraph.

26



1.3.6. Equation (1.14) and equation (6) are equivalent. This implies that atamed urve z : S1(κ) → C\{0} whih enloses the origin and does not shrink toa point at singular time an be smoothly reparametrized. Beause, ẑ is onvexas seen above. It is easy to see that ẑ remains onvex under the weighted urve�ow, and ontinues to �ow until it touhes the origin. At this time ẑ admits asupporting hyperplane through the the origin. If we take the nth-root to get theevolution of z we see that a kink of at least π
n
degree has to our, and thereforealso a singularity for n ≥ 2. But the nth-root admits n di�erent urves, whihall appear - z beomes n-times point symmetri, whih in turn implies that onean reparametrize z to a smooth immersed urve. Moreover, the urvature ofthe immersed urve is zero at the origin. Beause the normal diretion hangesits diretion by π through the origin. A detailed study of the asymptoti of theweighted urve �ow remains an open problem.1.3.7. With the result obtained so far it is lear why tamed set and onvex setsare almost equivalent. Whenever we want to use a result of onvex geometry weapply the ∧-transform to the tamed urve, obtain a onvex set, for whih theresult may be applied and then we go bak by taking the nth-root of the set asa funtion of the omplex plane to the omplex plane. The assumptions of ourtheorems imply that this is a one-to-one orrespondene. If one onsiders urveswhih ontain the origin, then one has to be a little bit more areful.With this we have: Suppose that A and B are two tamed sets whih do notinterset, then there exists a stationary solution separating both sets. This followsbeause we an separate the onvex sets Â and B̂. This implies: Let us supposethat z : S1(κ) → C is a tamed urve whih moves under the equivariant urve�ow, then z(·, t1) will be ontained in z(·, t2) for t1 ≤ t2. In partiular, if z0 doesnot ontain the origin, then rmin ≥ const > 0 for all t ∈ [0, Tsing). Also wheneverwe speak of onvergene to a point we mean onvergene of support funtions,whih is onvergene with respet to a tamed version of the Hausdor� metri. Letus reall that onvergene in the spae of onvex, ompat bodies with respetto the Hausdor� metri is equivalent to the onvergene of the orrespondingsupport funtions, ompare [52℄, [2℄.1.3.8. Let us give an example. The support funtion of a tamed ball is de�nedby

hball := R+ ℜpn0 cos η + ℑpn0 sin η.This funtion has the property that
n
rn−1

F
= h′′ball + hball = R = const.27



We remark that: Any tamed urve whose area is not zero, ontains a tamed ball.Moreover, there exists ǫ > 0 suh that h − hball > ǫ. This holds beause thesupport funtion of a tamed ball is also the support funtion of a onvex ballafter taking the ∧-transform.1.3.9. To put tamed set into ontext, observe that we an look at them asgeneralized losed onvex sets. Reall that a losed onvex set is the intersetionof its supporting hyperplanes. Ky Fan [24℄ initiated the study of so alled Φ-onvex sets, where Φ is a family of funtion on a set S. A set is alled Φ-onvexif it is either S or the intersetion of sets of the form {
x ∈ S | f(x) ≤ α

}, for
α ∈ R and f ∈ Φ. The study of suh sets falls in the theory of abstrat onvexityand optimization. For tamed set this family are the lagrangian atenoids. It ispossible to dedue all needed properties without the ∧-transform. The hardestpart is to prove the separation property.Notes for Setion 1.31. It is not hard to prove that onvex urves stay onvex under the weighted urve�ow, and urves whih do not ontain the origin and are stritly onvex will shrink toa point in �nite time. But as noted above the asymptoti analysis seems to be not easyaessible.2. For the theory of abstrat onvex sets we refer to [53℄ and [50℄.1.4 Some omments on the general urve shortening equationHere we ollet some well known fats about planar urves and the general urve�ow equation

d

dt
z = A (z, k, θ)N,

z(·, 0) = z0.
(1.15)Where A : R2×R×S1 → R is alled (normal-) speed funtion, and z0 : S1 → R2is alled initial urve. We will identify R

2 with the omplex numbers C. Letus also refer to Appendix A whih is devoted to several omputations and anexplanation of notation an be found. Our main referene for this setion hasbeen [16℄.Planar urves
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1.4.1. An immersed C1-urve is a ontinuous di�erentiable map z : I → R2,from a losed onneted subset I of the sphere S1 to the plane, with nonzerotangent z′ := zp := d
dp
z. We will denote di�erentiation with respet to theparameter p by a prime. If I equals S1, then we say that z is losed. We allthe urve embedded if it is one-to-one. Given a urve z(p) = (x(p), y(p)), its unittangent is de�ned by T = z′/ | z′ | , its unit normal is given by N := Jz, where

J denotes the omplex struture, that is J(x, y) = (−y, x). In oordinates wehave T = (x′2 + y′2)1/2(x′, y′) and N = (x′2 + y′2)1/2(−y′, x′). With this de�nitionthe unit normal is inward pointing for ounterlokwise traed urves. We willidentify the map z with its image γ in R2.Let z : I → R2 be an immersed C1-urve. Its metri tensor is given by
g(p) := 〈z′(p), z′(p)〉 = |z′(p)|2.The one-dimensional surfae measure on z is
L(z) :=

∫

I

√
det g dσ =

∫

I

|z′(p)|dp.We all L(z) the ar-length of z. One an show that the ar-length is independentof the parametrization of z.CurvatureThe urvature k of a urve z : I → R2 at p ∈ I is de�ned by the formula
k(p) :=

〈z′′(p), N(p)〉
| z′(p) | 2

.One an show the following Frenet formulas
∂

∂µ
T = kN, and ∂

∂µ
N = −kT,where dµ = | zp | dp denotes the ar-length element. In oordinate funtions wehave

k =
x′y′′ − y′x′′

(x′2 + y′2)3/2
.If the urve is a graph of a funtion f : R → R, then the urvature satis�es

k =
f ′′

(1 + f ′2)3/2
.Tangent angle 29



Let z : I → R2 be an immersed urve, p ∈ I. The angle θ(p) between the tangent
T (p) at z(p) and the positive x-axis is alled the tangent angle. It is de�nedmodulo 2π. With this de�nition we have the equations T (p) = (cos θ, sin θ) and
N = (− sin θ, cos θ). While omparing with the literature, one should arefullyhek whatever θ means, it is used both as tangent and as normal angle, some-times at the same time. We always denote the normal angle by ϑ. Also, it isimportant to hek, whether N is the inward pointing normal as in our ase, orthe outward pointing normal.On the urve �ow problem1.4.2. A lassial solution of (1.15) is a map z : S1 × (0, Tsing) → C whihsatis�es; (i) it is ontinuously di�erentiable in t and twie di�erentiable in p, (ii)for eah t the map p 7→ z(p) is a urve, and (iii) z satis�es (1.15) and z → z0 as
t→ 0.We also assume that A is smooth in all of its argument. We say that A isparaboli if

∂

∂q
A (x, y, q, θ) > 0.We all A stritly paraboli if there are two positive real numbers λ1, λ2 > 0 suhthat

λ1 ≤
∂

∂q
A ≤ λ2.Furthermore, we say that A is symmetri provided that

A (x, y, θ + π,−q) = −A (x, y, θ, q)Let us reall that a reparametrization of a urve z is another urve z̃ := z(ϕ(p))where ϕ is a di�eomorphism.1.4.3. Consider the �ow equation
d

dt
z = A (z, k, θ)N + B(z, k, θ)T

z(·, 0) = z0,
(1.16)where A and B are smooth and 2π-periodi in θ. Let z be a solution of (1.16)in C∞(S1 × [0, Tsing)). There exists ϕ : S1 × [0, Tsing) → S1 satisfying ϕ′ > 0 and

ϕ(p, 0) = p suh that z̃(p, t) := z(ϕ(p, t), t) solves (1.15). Thus, the tangentialontribution B does not alter the geometri behavior of the �ow. It is justresponsible for an di�eomorphism on the parameter spae. The geometry of the�ow only depends on A . 30



1.4.4. Let us suppose that A is smooth and paraboli, and z0 ∈ C2,α(S1) forsome α ∈ (0, 1). Then there exists a solution z ∈ C2,α(S1 × [0, Tsing)) satisfying(1.15). Moreover, z is smooth in (0, Tsing). If Tsing is �nite the urvature beomesunbounded as t→ Tsing, and if z0 depends smoothly on a parameter, so does z.1.4.5. Let z1, z2 : S1 → C be two solutions of (1.15) in C0,1(S1 × [0, Tsing)), (i.e.
z1, z2 are ), where A is paraboli. If z1(·, 0) = z2(·, 0) in some parametrization,then z1(·, t) = z2(·, t) for all t ∈ [0, Tsing).1.4.6. Consider (1.15) where A is paraboli and symmetri. Then any solution
z(·, t) in C0,1(S1 × [0, Tsing)) is embedded if z0 is embedded.1.4.7. Consider (1.15) where A is paraboli and symmetri. Let us denote thenumber of intersetion points of z1(·, t) and z2(·, t) by Z(t). Suppose further that
z1 and z2 do not oinide. Then Z(t) is �nite for all t in (0, Tsing), and dropsexatly at those instants t̃ when z1(·, t̃) and z2(·, t̃) touh tangentially at somepoint. Moreover, all these instants form a disrete subset of (0, Tsing).Notes for Setion 1.41. The basi geometry of urves an be found for example in [51℄.2. As noted above all results of this setion and their proof an be found in [16℄. Letus give the preise referene. The result of �1.4.3 is Proposition 1.1. The loal existenetheorem �1.4.4 is Proposition 1.2. The uniqueness result �1.4.5 is Proposition 1.4. Theembeddedness theorem �1.4.6 is Proposition 1.5. The Sturmian osillation-type theorem�1.4.7 is Proposition 1.7.3. The long history of the Sturmian osillation theorem is surveyed in [28℄. Appliationto the general urve shortening �ow have been given in Angenent papers [5℄ and [7℄
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Chapter 2Proof of Theorems A and C

We onsider a smooth family of urves z : S1 × [0, Tsing) → C for whih
d

dt
z = FN :=

{
k − (n− 1)

〈er, N〉
r

}
N,

z(·, 0) = z0,
(2.1)where k denotes the urvature of the urve, N the inward pointing unit normal,

er := z
r
, r := |z|, and n the dimension of L.This hapter ontains two setions. In the �rst setion we will �nish the proof ofTheorem A. In the seond setion we will prove Theorem C.2.1 Proof of Theorem AThis setion ompletes the proof of Theorem A whih laims: Let F0 be an equiv-ariant lagrangian immersion of L in Cn. If the initial pro�le urve is losed,embedded, satis�es F > 0, and does not ontain the origin, then Ft onverges toa sphere ‖p0‖Sn−1 as time goes to Tsing. Moreover, the singular time is determinedby the enlosed area of the initial urve. That is Tsing = A0

2π
.2.1.1. Here we assume that the initial pro�le urve z0 : S1 → C is simple, losed,tamed, and does not ontain the origin. We only have to show that the pro�leurves onverge to a point p0 ∈ C\{0}. The result follows from the equivariantstruture of the submanifold.Beause, z0 is tamed, simple, and does not ontain the origin there exists alagrangian atenoid separating z0 and the origin. Therefore, z(·, t) is boundedaway from the origin by rmin(0) by the maximum priniple. In fat, z(·, t) isontained in z0 for all t. Moreover, κ = 1.32



2.1.2. Let us denote the area of a urve by A(z0). Reall that
d

dt
A = −

∫

S1

F dµ = 2π.Therefore the area deays aording to
A(t) = A(0) − 2πt.This gives an upper bound for the singular time. Let us suppose that the areaof z(·, Tsing) is not zero. Then there exist ǫ > 0 and a tamed ball with supportfuntion hball inside of all urves z(·, t) for t lose to Tsing. That is, h− hball > ǫ.Let us ompute the evolution equation of
f :=

F

−rn 〈er, N〉 − hball
.To get a feeling how to do this the omputation will be detailed. The �rst stepis to ompute the laplaian of f . To this end we de�ne

m :=
1

−rn 〈er, N〉 − hball
.Then

d

dη
m =

{
h′ball − rn 〈er, T 〉

}
m2,and

d2

dη2
m = 2

{
h′ball − rn 〈er, T 〉

}2

m3 +
{
h′′ball − rn 〈er, N〉 − n

rn−1

F

}
m2.This gives

d

dη
f = m

d

dη
F +

{
h′ball − rn 〈er, T 〉

}
m2

F ,and
d2

dη2
f = m

d2

dη2
F + 2

{
h′ball − rn 〈er, T 〉

}
m
d

dη
f

− nrn−1m2 +
{
h′′ball − rn 〈er, N〉

}
m2

F .Now it is time to ompute the time derivative of f . It holds
d

dτ
m = m2nrn−1

F . 33



This and equation (1.7) give
d

dτ
f = mF

2 d
2

dη2
F + (n− 1)

{
(n + 1)

〈er, N〉2
r2

− 1

r2

}
mF

+
{

2(n− 1)
〈er, N〉
r

m+m2nrn−1
}
F

2 +mF
3.In the �nal step we replae m d2

dη2
F by d2

dη2
f . This yields

d

dτ
f = F

2 d
2

dη2
f − 2

{
h′ball − rn 〈er, T 〉

}
mF

2 d

dη
f

+
{

(n2 − 1)
〈er, N〉2
r2

− n− 1

r2

}
mF

+ 2
{

(n− 1)
〈er, N〉
r

+mnrn−1
}
mF

2

+
{
m−

{
h′′ball − rn 〈er, N〉

}
m2

}
F

3.Let us analyze the leading order term. We know that f → ∞ as t approahes
Tsing. This is only possible if {. . .} is positive, or tends to zero. By our assumptionwe know that h − hball ≥ ǫ > 0, whih implies that m is bounded from below.Moreover, m is also bounded from above, beause z0 is ompat. Thus,

0 < const1 ≤ m ≤ const2.Let us take a look bak to �1.3.8. It implies that h′′ball = −hball +R. Therefore,
m−

{
h′′ball − rn 〈er, N〉

}
m2 = m−

{
h− hball +R

}
m2 = −Rm2.This together with the lower bounds for m show that the leading is negative, anddoes not tend to zero. Therefore f is bounded by the maximum priniple. Thisis a ontradition.2.1.3. By the Blashke seletion theorem, see for example [52℄, there exists asubsequene z(·, tn) whih onverges to a tamed limit urve with respet to thetamed Hausdor� metri, ompare �1.3.7. As the area of this urve is zero we areleft with two possibilities, either the limit urve is a tamed segment, or it is apoint as laimed. To exlude the former let us reall the evolution equation of

F , ompare equation (1.6). It yields the following lower estimate
d

dt
Fmin ≥

{
(n2 − 1)

〈er, N〉2
r2

− n− 1

r2

}
Fmin + 2(n− 1)

〈er, N〉
r

F
2
min + F

3
min

≥ −constFmin. 34



This shows that Fmin an only derease exponentially fast to zero. Beause z0 isompat, the singular time is �nite. Therefore there exists ǫ > 0 with
F ≥ ǫ > 0.If the limit urve would be a segment, then there would exist a sequene of pointswith F → 0, this gives a ontradition. Another way to see this is to reall thatthe support funtion of a point is smooth, whereas the �rst derivative of thesupport funtion of a tamed segment jumps. The lower bounds on F and r showthat h′limit is ontinuous. This proves the theorem. q.e.d.Notes for Setion 2.11. As notes earlier, our proof is inspired by the one given in [59℄ whih dates bak to[57℄.2.2 Proof of Theorem CIn this setion we give a proof of Theorem C, whih states: Let F0 be an equiv-ariant lagrangian immersion of L in Cn. If the initial pro�le urve is losed,embedded, satis�es
Fmin(0) ≥ n− 1 +

√
(n− 1)2 + n− 1

rmin(0)
,and does not ontain the origin, then the assumptions of Theorem B are ful�lled.Thus, we need to show that F > 0, whih is obvious, and that k > 0.2.2.1. Let us suppose that

rmin(t)Fmin(t) ≥ (n− 1), (2.2)then the following holds
k = F + (n− 1)

〈er, N〉
r

≥ F − n− 1

r
≥ 0.Thus, γ is a onvex urve. We already know that r(t) ≥ rmin(0); remember that

γ(t) is ontained in γ(0) by the maximum priniple. To prove equation (2.2) itthus su�es to show that F (t) ≥ Fmin(0). Note that
d

dt
F = ∆F + (n− 1)

〈er,∇F 〉
r

+ (n− 1)
{

(n+ 1)
〈er, N〉2
r2

− 1

r2

}
F

+ 2(n− 1)
〈er, N〉
r

F
2 + F

3

≥
{

(n− 1)
{

(n+ 1)
〈er, N〉2
r2

− 1

r2

}
+ 2(n− 1)

〈er, N〉
r

F + F
2
}
F35



Reall that rmin(0) ≤ r(t). Thus,
d

dt
F ≥

{
− n− 1

rmin(0)2
− 2(n− 1)

rmin(0)
F + F

2
}
FThe the largest zero of the term in the brakets {. . .} as a funtion of F is givenby

n− 1

rmin(0)
+

√
(n− 1)2

rmin(0)2
+

n− 1

rmin(0)2
=
n− 1 +

√
(n− 1)2 + n− 1

rmin(0)This proves the theorem. q.e.d.
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Chapter 3Proof of Theorem B

This hapter gives a proof of Theorem B, whih states that: Let F0 be an equiv-ariant lagrangian immersion of L in Cn. If the initial pro�le urve is losed,embedded, satis�es F > 0, does not ontain the origin, and suppose further thatall pro�le urves remain onvex, then the singularity is of type-I. After resal-ing und possibly hoosing a subsequene Ft onverges to the ylinder Sn−1 × Rsmoothly on ompat subsets of Cn.The �rst setion explains the blow-up proedure. The problem is redued to thefollowing urve �ow equation
d

dt
z =

{
k − (n− 1)

〈ep, N〉
rp

+ 〈z,N〉
}
N,

z(·, 0) =

√
π

A0

{
z0 − p0

}
.

(3.1)The seond setion establishes the asymptoti behavior of several geometri quan-tities. The key observation is that rp ∼ exp(t). The third setion proves aBernstein-type estimate as well as a Harnak-type inequality. Finally, in thefourth setion we �nish the proof of Theorem B.3.1 On the resaled �ow equationHere we introdue the notion of a blow-up point, the di�erent types of singularitiesdue to Huisken, and derive the resaled �ow equation.3.1.1. We say that a point p ∈ Cn is a blow-up point if there exists x ∈ Lwith F (x, t) → p and |A|(x, t) → ∞ as t approahes Tsing. If the singular timeis �nite, then the evolution equation of the seond fundamental form yields anlower bound
const1

Tsing − t
≤ sup

Lt

|A|2. 37



Here const1 > 0 is a positive onstant. If the seond fundamental form admitsthe upper bound
sup
Lt

|A|2 ≤ const1

Tsing − t
,then we say that the singularity is of type-I, otherwise it is of type-II. We re-mark that this terminology dates bak to Huisken [36℄. Let us also refer to theintrodution of this paper.3.1.2. By Theorem A we know that Lt onverges to ‖p0‖Sn−1 as t approahesthe singular time. Let us suppose that p0 ∈ Cn is the north-pole of ‖p0‖Sn−1. Ifwe onsider the mean urvature �ow of F −p0, then the origin beomes a blow-uppoint. We resale the �ow as follows

F̃ (x, s) =

√
π

A0 − 2πt(s)

{
F (x, t(s)) − p0

}
,

s(t) = −1

2
ln

{A0 − 2πt

π

}
.Then L̃s := F̃ (L, s) is de�ned for s ∈ [−1

2
ln A0

π
,∞), and is again a lagrangiansubmanifold of Cn. The resaled �ow satis�es:

d

ds
F̃ (x, s) =

−→̃
H (x, s) + F̃ (x, s)

F̃ (·,−1
2
ln A0

π
) =

√
π

A0

{
F0 − p0

} (3.2)Let us introdue
ψ(t) :=

√
π

A0 − 2πκt
=

√
π

A(t)
.Equation (3.2) is determined by the �ow of the pro�le urve. Indeed we have

F̃ (φ, x, s) =
(
u0(φ, s)

(
ψ(t(s))G(x)

)
, v0(φ, s)

(
ψ(t(s))G(x)

))
−ψ(t(s))p0. (3.3)Thus it su�es to study the following urve �ow problem

d

ds
z̃ =

{
k̃ − (n− 1)

〈
z̃ + p0

√
π
A0

exp(t), Ñ
〉

|z̃ + p0

√
π
A0

exp(t)|2
+

〈
z̃, Ñ

〉}
Ñ ,

z̃(·,−1
2
ln A0

π
) =

√
π

A0

{
z0 − p0

}
. 38



Let us return to equation (3.3). It follows that
F̃ (φ, x, s) = ψ(t(s))F (φ, x, s) − ψ(t(s))p0 = exp{s}F (φ, x, s)− exp{s}p0.Let us introdue
G̃ = k̃ − (n− 1)

〈
z̃ + p0

√
π
A0

exp(t), Ñ
〉

|z̃ + p0

√
π
A0

exp(t)|2
.We lose this paragraph with the following observation

z̃(t) = ψ(t)z(t) − p0

√
π

A0
exp{t}. (3.4)The last equation implies that A(z̃(t)) = π.3.1.3. The previous paragraph redued the blow-up analysis to a urve �owproblem again

d

dt
z =

{
k − (n− 1)

〈ep, N〉
rp

+ 〈z,N〉
}
N,

z(·, 0) =

√
π

A0

{
z0 − p0

}
.

(3.5)Where ep := z+p
rp
, rp := |z + p|, and p =

√
π
A0

exp(t)p0. We have seen in theprevious paragraph that this �ow keeps the area of z onstant to π. Let usintrodue
G := k − (n− 1)

〈ep, N〉
rp

.It further followed that G plays the same role as F in �1.3. So F > 0 for theoriginal urve if and only if G > 0 for the resaled urve. We say that a urve istamed if it satis�es G > 0.3.1.4. Let us now ompute the evolution equation of G . We refer to �C.1.2.We start with urvature. Observe that
∇H = ∇G + ∇〈z,N〉 = ∇G − G r∇r − (n− 1)

〈ep, N〉
rp

r∇r,
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and
∆H = ∆G − r 〈∇G ,∇r〉

+
{
− 1 − 2(n− 1)

〈z,N〉 〈ep, N〉
rp

+ (n− 1)
r

rp
〈∇r,∇rp〉

}
G

− 〈z,N〉G
2 − (n− 1)

〈ep, N〉
rp

− (n− 1)2 〈z,N〉 〈ep, N〉2
r2
p

+ (n2 − 1)
〈ep, N〉
r2
p

r 〈∇r,∇rp〉 .Thus,
d

dt
k = ∆G − r 〈∇G ,∇r〉

+
{
− 1 + (n− 1)

r

rp
〈∇r,∇rp〉 + (n− 1)2 〈ep, N〉2

r2
p

}
G

+ 2(n− 1)
〈ep, N〉
rp

G
2

+ G
3

− (n− 1)
〈ep, N〉
rp

+ (n2 − 1)
〈ep, N〉
r2
p

r 〈∇r,∇rp〉 .Therefore, the evolution of G reads
d

dt
G = ∆G − r 〈∇G ,∇r〉

+
{
− 1 + (n− 1)

r

rp
〈∇r,∇rp〉 + (n− 1)2 〈ep, N〉2

r2
p

}
G

+ 2(n− 1)
〈ep, N〉
rp

G
2

+ G
3

− (n− 1)
〈ep, N〉
rp

+ (n2 − 1)
〈ep, N〉
r2
p

r 〈∇r,∇rp〉

+ (n− 1)
〈ep,∇G 〉

rp
+

{
− (n− 1)

1

r2
p

+ (n− 1)
〈ep, N〉2
r2
p

− (n− 1)
r 〈ep,∇r〉

rp

}
G

− (n− 1)
〈ep, N〉
rp

+ (n− 1)
〈z,N〉 〈ep, N〉2

r2
p

+ (n− 1)
〈ep, N〉 〈ep, p〉

r2
p

− (n− 1)2 r 〈ep, N〉 〈ep,∇r〉
r2
p

+ (n− 1)
〈ep, N〉 〈ep, N〉

r2
p

G + (n− 1)
〈ep, N〉2 〈z,N〉

r2
p

+ (n− 1)
〈ep, N〉 〈ep, p〉

r2
p

.40



Rearranging terms yields
d

dt
G = ∆G − r 〈∇G ,∇r〉 + (n− 1)

〈ep,∇G 〉
rp

+
{
− 1 + (n− 1)

r

rp
〈∇r,∇rp〉 + (n2 − 1)

〈ep, N〉2
r2
p

− (n− 1)
1

r2
p

− (n− 1)
r 〈ep,∇r〉

rp

}
G

+ 2(n− 1)
〈ep, N〉
rp

G
2

+ G
3

+ (n− 1)

{
− 2 + (n+ 1)

r

rp
〈∇r,∇rp〉 + 2

〈z,N〉 〈ep, N〉
rp

+ 2
〈ep, p〉
rp

− (n− 1)
r 〈ep,∇r〉

rp

}〈ep, N〉
rp

.Note that 〈∇r,∇rp〉 = 〈ep,∇r〉. Therefore,
(n+ 1)

r

rp
〈∇r,∇rp〉 + 2

〈z,N〉 〈ep, N〉
rp

+ 2
〈ep, p〉
rp

− (n− 1)
r 〈ep,∇r〉

rp
= 2,and

d

dt
G = ∆G − r 〈∇G ,∇r〉 + (n− 1)

〈ep,∇G 〉
rp

+
{

(n2 − 1)
〈ep, N〉2
r2
p

− n− 1

r2
p

− 1
}
G + 2(n− 1)

〈ep, N〉
rp

G
2 + G

3.

(3.6)This shows: G > 0 is indeed preserved during the �ow. This is of ourse obviousif we reall �3.1.2. Let us set
Φ = (n2 − 1)

〈ep, N〉2
r2
p

− n− 1

r2
p

,

Ψ = 2(n− 1)
〈ep, N〉
rp

.Again we note that
d

dt
G =

∂2

∂µ2
G +

{
(n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
} ∂

∂µ
G +

{
Φ − 1

}
G + ΨG

2 + G
3.
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3.1.5. This paragraph should be ompared with �1.3.2 as all ideas are similar,and most alulations almost oinide. We begin with the obvious observationthat
∫

S1

G dµ = 2π
{

rot(z) − (n− 1) wind(z)
}

= 2πκ.Analogously to the ited paragraph we introdue
η(a) :=

∫ a

0

G dµ.Thus, η : S1 → S1(κ), and therefore z ◦ η−1 : S1(κ) → C is a reparametrizationof our urve. We laim that
d

dt
η =

{ ∂

∂η
G + (n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
}

G . (3.7)This follows beause,
d

dt
η(a) =

d

dt

∫ a

0

G dµ

=

∫ a

0

∂2

∂µ2
G +

{
(n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
} ∂

∂µ
G

+
{
− 1 + (n2 − 1)

〈ep, N〉2
r2
p

− (n− 1)
1

r2
p

}
G

+ 2(n− 1)
〈ep, N〉
rp

G
2 + G

3 − kG H dµ

=

∫ a

0

∂2

∂µ2
G +

{
(n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
} ∂

∂µ
G

+
{
− 1 + (n2 − 1)

〈ep, N〉2
r2
p

− n− 1

r2
p

− (n− 1)
〈ep, N〉
rp

〈z,N〉
}
G

+
{

(n− 1)
〈ep, N〉
rp

− 〈z,N〉
}

G
2 dµ.Now,

∫ a

0

{
(n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
} ∂

∂µ
G

=
{

(n− 1)
〈ep, T 〉
rp

− 〈z, T 〉
}
G −

∫ a

0

{
(n− 1)

〈ep, N〉
rp

− 〈z,N〉
}

G
2

+
{

(n− 1)
〈ep, N〉
rp

〈z,N〉 − (n− 1)
〈ep, T 〉2
r2
p

+ n(n− 1)
〈ep, N〉2
r2
p

− 1
}
G dµ.42



Here we refer to �C.1.1. It follows
d

dt
η(a) =

∂

∂µ
G +

{
(n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
}

G ,and hene the laim. As one might guess we now want to derive the evolutionequation of G in new oordinates (η, τ). It holds
∂

∂η
z =

1

G

∂

∂µ
z =

1

G
T.This yields, ombined with the previous equation, that

∂

∂τ
z =

d

dt
z − ∂

∂η
z
d

dt
z = H N −

{ ∂

∂η
G + (n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
}
T.Therefore the reparametrized �ow equation reads

d

dτ
z =

{
G + 〈z,N〉

}
N −

{ d

dη
G + (n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
}
T. (3.8)The tangential ontribution of equation (3.8) does not alter the geometri be-havior of the �ow, it just makes τ and η independent. Let us now derive theevolution equation of G . First of all reall that

∂

∂µ
G = G

∂

∂η
G and ∂2

∂µ2
G = G

2 ∂
2

∂η2
G + G

{ ∂

∂η
G

}2

.We have
∂

∂τ
G =

d

dt
G − ∂

∂η
G
∂η

∂t

= G
2 ∂

2

∂η2
G +

{
− 1 + (n2 − 1)

〈ep, N〉2
r2
p

− (n− 1)
1

r2
p

}
G

+ 2(n− 1)
〈ep, N〉
rp

G
2 + G

3.For the readers onveniene we have olleted more alulations for the reparam-etrized �ow in Appendix C.1.3.2 Asymptoti behaviour of geometri quantitiesWe ontinue our investigation of the resaled �ow equation
d

dt
z =

{
k − (n− 1)

〈ep, N〉
rp

+ 〈z,N〉
}
N,

z(·, 0) = z0.

(3.9)43



We adopt the notation of the previous paragraphs and set G := k− (n−1) 〈ep,N〉
rp

.Throughout this paragraph we only assume that G > 0. The program onsistsof: At �rst we show that rp ∼ exp(t), whih is the key observation, then weprove that G → 0 at most exponentially, we show that r and L an only inreaseexponentially fast to in�nity, �nally we will see that rpG is bounded from below.Let us reall that we assume that the initial z0 : S1 → C\{0} is tamed, losed,embedded, ompat and does not ontain the origin. As usual we abbreviatethese assumption by saying that z0 satis�es (A).3.2.1. We preede with rp. Let us suppose for the moment that we resaled by
z̆ := ψ(t)z. Then learly F̆ = 1

ψ
F . This implies that an lagrangian atenoidremains an lagrangian atenoid under this resaling. Suppose that p̆ ∈ C is thepoint on the lagrangian atenoid whih minimizes distane to the origin. Beause

z̆ = ψz it follows that p̆(t) = exp(t)p. Thus, if we are given a tamed ompatlosed urve whih does not ontain the origin, then we may bound it away fromthe origin by omparing it with lagrangian atenoids. It follows by the maximumpriniple that r̆ ∼ exp(t). Here rp ∼ exp(t) means that 0 < const1 exp(t) ≤
r̆(t) ≤ const2 exp(t). Note that z̆ = z̃ + po

√
π
A0

exp(t). Thus, r̃p = r̆. The laimfollows. We remark that we dropped the tilde in our notation. For this paragraphwe refer to �3.1.2The behavior of rp has some immediate onsequenes. For example it shows that
G → k exponentially fast, beause

G = k − (n− 1)
〈ep, N〉
rp

.Moreover,
G

(1) = k(1) + (n− 1)
{

(n+ 1)
〈ep, N〉
rpG

+ 1
}〈ep, T 〉

rp
.As will be seen in the next paragraph, G tends to zero at most exponentially fast.This implies that rpG is bounded from below, and hene we have G (1) → k(1).But we do not know if G (2) → k(2). This is of ourse not true if the urves ontainthe origin, as in this ase the blow-up point is the origin and we do not have anyontrol over rp in this ase.3.2.2. Let us proeed with G . By equation (3.6) we know that

d

dt
G = ∆G − r 〈∇G ,∇r〉 + (n− 1)

〈ep,∇G 〉
rp

+
{

(n2 − 1)
〈ep, N〉2
r2
p

− n− 1

r2
p

− 1
}
G + 2(n− 1)

〈ep, N〉
rp

G
2 + G

3.44



Let us rearrange terms. This yields
d

dt
G = ∆G − r 〈∇G ,∇r〉 + (n− 1)

〈ep,∇G 〉
rp

+

{{
2(n− 1)

〈ep, N〉2
r2
p

− n− 1

r2
p

− 1
}

+
{

(n− 1)
〈ep, N〉
rp

+ G

}2
}

G .Therefore,
d

dt
Gmin ≥ −

{n− 1

r2
p

+ 1
}
Gmin.Reall that from the previous Paragraph 3.2.1 it holds rp ∼ exp(t), and

f ′ = −
{
c exp{−2t} + 1

}
fadmits the solution

f(t) = f0 exp
{
− c

2
+
c

2
exp{−2t} − t

}
.This shows that: G an derease at most exponentially fast to zero. Similarlyto the urve shortening ase we obtain a lower bound for the maximum of G asfollows. First of all let us reall the evolution equation of F - it reads

{ d

dt
− ∆

}
F = (n− 1)

〈er,∇F 〉
r

+
{

(n2 − 1)
〈er, N〉
r2

− n− 1

r2

}
F

+ 2(n− 1)
〈er, N〉
r

F
2 + F

3.We already know that F ≥ const > 0, provided that F > 0 for the initial urve.Thus there exists another onstant, again denoted by const > 0, suh that
d

dt
Fmax ≤ constF

3
max.We dedue

d

dt

1

F 2
max

= −2
1

F 3
max

d

dt
Fmax ≥ −2const.Therefore,

Fmax ≥ 1√
2const(Tsing − t)

.Reall that G =
√

2(Tsing − 1)F . Hene,
Gmax =

√
2(Tsing − t)Fmax ≥ 1√

const
.Thus: If the initial urve is tamed, then there exits a lower bound for Gmax.45



3.2.3. Here we disuss the evolution of r. Reall that
{ d

dt
− ∆

}
r = −r |∇r | 2 + r − 〈er, N〉2

r
− (n− 1)

〈er, N〉 〈ep, N〉
rp

.Thus,
d

dt
rmax ≤ rmax + const exp{−t},whih yields

rmax ≤
{
const

2

{
1 − exp{−2t}

}
+ rmax(0)

}
exp{t}.This shows: r inreases at most exponentially fast to in�nity. This is atuallyobvious: Note that the urves are bounded for the original �ow equation. Whihimplies the result for the resaled urves.3.2.4. Let us now take a loser look at the length of the urve. As usually weassume that γ is tamed. It holds

d

dt
L = −

∫

S1

kH dµ

= −
∫

S1

k2 dµ+ (n− 1)

∫

S1

k
〈ep, N〉
rp

dµ−
∫

S1

k 〈z,N〉 dµ

≤ (n− 1)

∫

S1

G
〈ep, N〉
rp

dµ+ (n− 1)2

∫

S1

〈ep, N〉2
r2
p

dµ+ L

≤ L+ (n− 1)

∫

S1

〈ep, N〉
rp

dη + const exp{−2t}L

≤ L+ const exp{−t} + const exp{−2t}L.Reall that
d

dt
f(t) = f(t) + A exp{−2t}f(t) +B exp{−t},
f(0) = C,admits the solution

f(t) =

{
− B

A
+

{
C +

B

A

}
exp

{A
2

{
1 − exp{−2t}

}}}
exp{t}.This shows, If γ is tamed urve whih evolves under the resaled �ow (3.1), thenthe length of γ inreases at most exponentially. Again this also follows from a46



areful analysis of the blow-up proedure. The length of our urves under theoriginal �ow equation is bounded, in fat it tends monotonially to zero.3.3 Classial estimatesHere we will establish a Harnak-type inequality, and give a Bernstein-type esti-mate.3.3.1. Let us set S := cG 2 + G ′2. We laim that for any c > 1 the followingBernstein-type estimate holds true
sup

S1×[0,τ ]

{
cG 2 + G

(1)2
}
≤ const + c sup

S1×[0,τ ]

G
2. (3.10)We may assume that G (1) 6= 0 at the maximum of S . Observe that

d

dη
rip = i

〈ep, T 〉
rp

rip
G
,

d

dη
〈ep, N〉 = −〈ep, T 〉 − n

〈ep, T 〉 〈ep, N〉
rp

1

G
, and

d

dη
rip 〈ep, N〉j = (i− nj)

〈ep, T 〉 〈ep, N〉j
rp

rip
G

− j 〈ep, T 〉 〈ep, N〉j−1 rip.Here we refer to Appendix C.1.4. Let us reall that we introdued
Φ = (n2 − 1)

〈ep, N〉2
r2
p

− n− 1

r2
p

, and Ψ = 2(n− 1)
〈ep, N〉
rp

.This implies
Φ(1) = 2(n− 1)

{
1 − (n + 1)2 〈ep, N〉2

}〈ep, T 〉
r3
p

1

G

− 2(n2 − 1)
〈ep, T 〉 〈ep, N〉

r2
p

,and
Ψ(1) = −2(n− 1)

{
(n+ 1)

〈ep, N〉
rp

1

G
+ 1

}〈ep, T 〉
rp

.A routine alulation gives the evolution equation of S . We reall that
d

dτ
G = G

2 d
2

dη2
G +

{
Φ − 1

}
G + ΨG

2 + G
3.47



Suppose that f is an arbitrary funtion. It holds
Dηf

2 = 2fDηf, and Dηηf
2 = 2fDηηf + 2

{
Dηf

}2

.This yields
d

dτ
G

2 = G
2DηηG

2 − 2G 2
G

(1)2 + 2G 4 + 2ΨG
3 + 2ΦG

2 − 2G 2.Now,
d

dτ
G

(1) = G
2DηηG

(1) + 2G G
(1)DηηG

+ 3G 2
G

(1) + Ψ(1)
G

2 + 2ΨG G
(1) + Φ(1)

G + ΦG
(1) − G

(1).Therefore,
d

dτ
G

(1)2 = G
2DηηG

(1)2 − 1

2

G 2

G (1)2

{
DηG

(1)2
}2

+ 2G G
(1)DηG

(1)2

+ 6G 2
G

(1)2 + 2Ψ(1)
G

2
G

(1) + 4ΨG G
(1)2

+ 2Φ(1)
G G

(1) + 2ΦG
(1)2 − 2G (1)2.Then

d

dτ
S = G

2DηηS − 1

2

G 2

G (1)2

{
DηS

}2
+ 2c

G 3

G (1)2
DηS + 2G G

(1)DηS

+ 2(1 − c)cG 4 + 6(1 − c)G 2
G

(1)2

+ 2cΨG
3 + 2cΦG

2

+ 2Ψ(1)
G

2
G

(1) + 4ΨGG
(1)2 + 2Φ(1)

G G
(1) + 2ΦG

(1)2 − 2S .We laim that S must be bounded. To see this we introdue the notation o[rip],whih means that a funtion is bounded from above by const rip. For example
Φ(1) ≤ o[r−3

p ] 1
G

+ o[r−2
p ]. Therefore,

d

dτ
Smax ≤ 2(1 − c)cG 4 + 6(1 − c)G 2

G
(1)2 + o[r−1

p ]G 3 + o[r−2
p ]G 2

+
{
o[r−2

p ]
1

G
+ o[r−1

p ]
}
G

2
G

(1) + o[r−1
p ]G G

(1)2

+
{
o[r−3

p ]
1

G
+ o[r−2

p ]
}
G G

(1) + o[r−2
p ]G (1)2 − 2cG 2 − 2G (1)2.Rearranging terms gives

d

dτ
Smax ≤ 2(1 − c)cG 4 + 6(1 − c)G 2

G
(1)2 + o[r−1

p ]G 3 + o[r−2
p ]G 2

+ o[r−2
p ]G G

(1) + o[r−1
p ]G 2

G
(1) + o[r−1

p ]G G
(1)2

+ o[r−3
p ]G (1) + o[r−2

p ]G (1)2 − 2cG 2 − 2G (1)2.48



Suppose to the ontrary that S is unbounded. If G is bounded, then G ′ has toblow up. Therefore,
d

dτ
Smax ≤ const + 6(1 − c)G 2

G
(1)2 − 2G (1)2 + o[r−2

p ]G (1) + o[r−1
p ]G (1)2.This gives a ontradition for c ≥ 1. Therefore, G has to blow up. If also G ′beomes unbounded, then we arrive again at a ontradition if we hoose c > 1.We are left with the ase that G ′ is bounded. But then

d

dτ
Smax ≤ const + 2(1 − c)cG 4 + 6(1 − c)G 2

G
(1)2 + o[r−1

p ]G 3 + o[r−1
p ]G 2

+ o[r−2
p ]G + o[r−2

p ]G 2 + o[r−1
p ]G − 2cG 2,whih again yields a ontradition if c > 1. Thus, S is bounded if G (1) 6= 0. Thisproves the laim.3.3.2. Let us denote Gmax(τ) := maxη∈S1 G (η, τ). We hoose a time τ for whih

Gmax(τ) ≥ Gmax(τ
′) for all τ ′ ∈ [0, τ ]. Let us denote the angle at whih themaximum is attained by η0. Note that η0 is not neessarily unique. The meanvalue theorem and equation (3.10) give

Gmax(τ) − G (η0, τ) ≤ | η0 − η | sup
η∈S1

|G (1)(η, τ) |

≤ | η0 − η |
{
const + cGmax(τ)

}
,where const > 0, and c > 1 denote new onstants. This yields

{
1 − c | η0 − η |

}
Gmax(τ) ≤ | η0 − η | const + G (η0, τ).We obtain the following Harnak-type estimate for | η0 − η | ≤ 1

3
, where we havehosen c = 3

2
:

Gmax(τ) ≤ const + 2G (η0, τ), (3.11)where again const > 0 denotes yet another onstant.3.3.3. Let us assume that G(k) is bounded from above for k = 0, . . . , n− 1, and
G is bounded from below by a positive onstant. We laim that Ψ(n) and Φ(n)tend to zero exponentially fast. We only show the result for Ψ(n), the remainingpart is similar. Reall that

∂

∂η
Ψ = −2(n− 1)

{
(n+ 1)

〈ep, N〉
rpG

+ 1
}〈ep, T 〉

rp
.With this we see that Ψ(n) only depends on terms up to order G (n−1). Notefurther that 1

G
is also bounded. Therefore,

∂

∂η
Ψ(n) =

{
bounded terms

}〈ep, T 〉
rp

.The laim follows. 49



3.3.4. Here we brie�y disuss; if G is bounded from below by a positive onstant,and we also have bounds for G (k) for all k = 0, . . . , n then we also have boundson G (n+1). The idea is similar to Paragraph 3.3.1. We de�ne
U := cG (n)2 + G

(n+1)2.First of all reall that
d

dτ
G = G

2 d
2

dη2
G +

{
Φ − 1

}
G + ΨG

2 + G
3.This gives

d

dτ
G

(k) = G
2D2

G
(k) +

(
k

1

){
G

2
}(1)

DG
(k)

+

(
k

2

){
G

2
}(2)

G
(k) + 2G G

(2)
G

(k)

+ ΦG
(k) + 2ΨG G

(k) + 3G 2
G

(k) − G
(k)

+ lower order terms.Note that some terms do not appear for k = 0, 1. Moreover, note that Φ(k)and Φ(k) are bounded by the onsiderations of the previous Paragraph 3.3.3.Therefore,
d

dτ

{
G

(k)
}2

= G
2D2

{
G

(k)
}2

− G 2

2
{
G (k)

}2

{
D

{
G

(k)
}2}2

+

(
k

1

){
G

2
}(1)

D
{

G
(k)

}2

+ 2

(
k

2

){
G

2
}(2){

G
(k)

}2

+ 4G G
(2)

{
G

(k)
}2

+ 2Φ
{

G
(k)

}2

+ 4ΨG

{
G

(k)
}2

+ 6G 2
{

G
(k)

}2

− 2
{
G

(k)
}2

+
{
lower order terms

}
G

(k).Observe,
− G 2

2
{

G (k)
}2

{
D

{
G

(k)
}2}2

= −2G 2
{
DG

(k)
}2

.

50



This implies
d

dτ
U = G

2D2
U − G 2

2
{

G (k+1)
}2

{
D

{
G

(k+1)
}2}2

+ (n+ 1)
{

G
2
}(1)

DU

− 2cG 2
{

G
(n+1)

}2

− c
{

G
2
}(1)

D
{
G

(n)
}2

+ 2

(
n+ 1

2

){
G

2
}(2){

G
(n+1)

}2

+ 4G G
(2)

{
G

(n+1)
}2

+ 2Φ
{
G

(n+1)
}2

+ 4ΨG

{
G

(n+1)
}2

+ 6G 2
{
G

(n+1)
}2

− 2
{
G

(n+1)
}2

+ 2c

(
n

2

){
G

2
}(2){

G
(n)

}2

+ 4cG G
(2)

{
G

(n)
}2

+ 2cΦ
{
G

(n)
}2

+ 4cΨG

{
G

(n)
}2

+ 6cG 2
{

G
(n)

}2

− 2c
{
G

(n)
}2

+
{
lower order terms

}
G

(n) +
{
lower order terms

}
G

(n+1).The rest of the argument is lear. We may hoose the onstant c big enough toshow that
sup

S1×[0,τ ]

{
c
{
G

(n)
}2

+
{

G
(n+1)

}2}
≤ const + c sup

S1×[0,τ ]

{
G

(n)
}2

.The laim follows. Notes for Setion 3.31. The basi idea of the above proof to the Bernstein-type estimate is lassi. We referto [16℄ and [59℄ for an approah in urve shortening �ows. Our soure of inspiration forthe proof of the Harnak inequality have also been the above ited books.2. Harnak-type estimates and Bernstein-type estimates for the lassial urve short-ening �ow an also be found in Angenent [6℄. Basially this proof ompares the givensolution with a spei� one a so alled shrinking spiral. Whih is nothing but a travel-ing wave solution of the lassial urve �ow equation. If we were able to obtain suh asolution in our ase we would expet the proof also to work here.3. For the readers onveniene we ompare the argument with the normalized urveshortening �ow equation, that is n = 1, with onstant area π. The evolution equationof the urvature reads
d

dτ
k = k2D2k + k3 − k, 51



and therefore
d

dτ
k2 = k2D2k2 − 2k2k(1)2 + 2k4 − 2k2.Di�erentiation of the �rst equation yields

d

dτ
k(1) = k2D2k(1) + 2kk(1)D2k + 3k2k(1) − k(1).Hene,

d

dτ
k(1)2 = k2D2k(1)2 − 1

2

k2

k(1)2

{
Dk(1)2

}2
+ 2kk(1)Dk(1)2 + 6k2k(1)2 − 2k(1)2.We de�ne

S = ck2 + k(1)2.Then
DS = 2ckk(1) + Dk(1)2, and

{
DS

}2
= 4c2k2k(1)2 +

{
Dk(1)

}2
+ 4ckk(1)Dk(1)2.Therefore,

−1

2

k2

k(1)2

{
Dk(1)

}2
= −1

2

k2

k(1)2

{
DS

}2
+ 2c2k4 + 2c

k3

k(1)
Dk(1)2

= −1

2

k2

k(1)2

{
DS

}2
+ 2c

k3

k(1)2
DS − 2c2k4, and ,

2kk(1)Dk(1)2 = 2kk(1)DS − 4ck2k(1)2.This gives
d

dτ
S = k2D2

S − 1

2

k2

k(1)2

{
Dk(1)2

}2
+ 2kk(1)Dk(1)2

− 2ck2k(1)2 + 2ck4 − 2ck2 + 6k2k(1)2 − 2k(1)2

= k2D2
S − 1

2

k2

k(1)2

{
DS

}2
+ 2c

k3

k(1)2
DS + 2kk(1)DS

+ 2(1 − c)
{

3k(1)2 + ck2
}

k2 − 2S .Here D denotes di�erentiation with respet to the normal angle. In the this ase, wemay hoose c = 1. This shows: If k(1) is not zero at the maximum of S , then S isbounded by maxS (0). Thus, S (τ) ≤ max S (0)+maxτ k2. Let us note that Angenentobtain a Bernstein-type estimate for the urve shortening �ow by a omplete di�erentapproah, ompare [6℄.3.4 Proof of Theorem B 52



This setion �nished the proof the Theorem B. We use Gage's inequality tobound the length of the resaled urves. This is the only time where we make usof the onvexity assumption. Then we show that G → −〈z,N〉 in L2(S1). Thisis done with a monotoniity type argument. Moreover, we show that the entropyof the urves remains bounded. Together with the Harnak-type inequality andthe Arzela-Asoli theorem we obtain the result.3.4.1. Let us bound the length of z for the resaled urve equation. It is theonly time that we need the onvexity. First of all note that the length an tend toin�nity at most exponentially fast. We reall Gage's inequality [26℄, whih holdsfor any stritly onvex simple C2-urve in the plane it reads
π
L

A
≤

∫
k2 dµ.We bound the time derivative of L as follows

d

dt
L = −

∫

S1

G k + 〈z,N〉 k dµ

= L−
∫

S1

k2 dµ+ (n− 1)

∫

S1

G
〈ep, N〉
rp

dµ+ (n− 1)2

∫

S1

〈ep, N〉2
r2
p

dµ

≤ (n− 1)

∫

S1

〈ep, N〉
rp

dη + (n− 1)2

∫

S1

〈ep, N〉2
r2
p

dµ

≤ const1 exp(−t) + const2 exp(−2t)L ≤ const exp(−t).This shows that L is bounded from above, and therefore also r. Let us remarkthat the result of the theorem would follow if we had a Gage-type inequality foralmost onvex urves, meaning that k > − exp(−t). Alternatively it would su�eto show that z is bounded under the �ow, whih also implies that L is bounded.3.4.2. Let us de�ne the Gauÿ-kernel and the energy by
ρ := exp

{
− r2

2

} and M :=

∫

S1

ρ dµ.It follows that M is bounded from above by L. We introdue
D := −

{ d

dη
G + (n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
}
.We note with Appendix C.1.6 that

d

dτ
r2 = −2 〈z, T 〉 d

dη
G + 2 〈z,N〉G + 2r2 − 2(n− 1)

〈z, T 〉 〈ep, T 〉
rp

,53



and
d

dτ
ρ =

{
〈z, T 〉 d

dη
G − 〈z,N〉G − r2 + (n− 1)

〈z, T 〉 〈ep, T 〉
rp

}
ρ

=
{
− 〈z, T 〉D − 〈z,N〉G − 〈z,N〉2

}
ρ.Moreover,

d

dτ
dµ =

{
− G k − 〈z,N〉 k +

∂

∂µ
D

}
dµ

=
{
− G

2 − 〈z,N〉G − (n− 1)
〈ep, N〉
rp

G

− (n− 1)
〈z,N〉 〈ep, N〉

rp
+

∂

∂µ
D

}
dµ.We want to point out that

∂

∂µ
ρ = −〈z, T 〉 ρ.This yields

Mτ = −
∫

S1

{
〈z, T 〉D + 〈z,N〉 G + 〈z,N〉2

+ G
2 + 〈z,N〉 G + (n− 1)

〈ep, N〉
rp

G

+ (n− 1)
〈z,N〉 〈ep, N〉

rp
− ∂

∂µ
D

}
dµ

= −
∫

S1

{
〈z,N〉 G + 〈z,N〉2

+ G
2 + 〈z,N〉 G + (n− 1)

〈ep, N〉
rp

G

+ (n− 1)
〈z,N〉 〈ep, N〉

rp

}
dµ.This gives

Mτ = −
∫

S1

{(
G + 〈z,N〉

)2
+ (n− 1)

〈ep, N〉
rp

(
G + 〈z,N〉

)}
ρ dµ.Observe,

∫

S1

〈ep, N〉
rp

(
G + 〈z,N〉

)
ρ dµ =

∫

S1

〈ep, N〉
rp

ρ dη +

∫

S1

〈ep, N〉
rp

〈z,N〉 ρ dµ

≤ const exp{−τ}.54



Note that M is bounded from above by L, whih is bounded by �3.4.1. Thus,
−

∫ ∞

0

∫

S1

{(
G + 〈z,N〉

)2
+ (n− 1)

〈ep, N〉
rp

(
G + 〈z,N〉

)}
ρ dµdτ <∞.We ompute

d

dτ
M = −

∫

S1

{{
G + 〈z,N〉

}2

+ (n− 1)
〈ep, N〉
rp

{
G + 〈z,N〉

}}
ρ dµ.We observe that

∫

S1

〈ep, N〉
rp

{
G + 〈z,N〉

}
ρ dµ =

∫

S1

〈ep, N〉
rp

ρ dη +

∫

S1

〈ep, N〉
rp

〈z,N〉 ρ dµ

≤ const1 exp(−t),beause z is bounded. Therefore,
∫ τ0

0

∫

S1

{
G + 〈z,N〉

}2

ρ dµ dτ ≤ const2.Therefore we an selet a sequene τn → ∞ suh that
∫

S1

{
G + 〈z,N〉

}2

dµ→ 0.Note that ρ ≥ ǫ > 0, beause z is bounded.3.4.3. We de�ne the entropy by
E (γ) :=

∫

S1

ln G dη.It follows from �3.4.2 that
E (γ) =

∫

S1

G ln G dµ ≤
∫

S1

G
2dµ ≤ const.3.4.4. We laim that G must be bounded. If this is not the ase we an selet asubsequene τj → ∞ suh that Gmax(τj) ≥ Gmax(τ

′) for all τ ′ ∈ [0, τj ]. Therefore,
const ≥

∫

S1

ln G (η, τj) dη

≥
∫

| η−η0 | ≤ 1
3

ln G (η, τj) dη +

∫

G<1

G ln G (η, τj) dµ

≥
∫

| η−η0 | ≤ 1
3

ln
{1

2
{Gmax(τj) − const}

}
dη − exp{−1}L

≥ 2

3

{
ln

{1

2
{Gmax(τj) − const}

}}
− exp{−1}L,55



beause G ln G ≥ − exp{−1}, and the Harnak-type estimate (3.11). But thisgives a ontradition for large Gmax. Therefore G must be bounded. An arefulanalysis of the evolution of S and an indutive argument gives bounds for G (n)as well, ompare �3.3.1.3.4.5. By �3.4.2 we know that G → 〈z,N〉 in L2. The bounds on G (n) and theArzela-Asoli theorem imply that we atually have smooth onvergene. More-over, it follows that G → k smoothly, 1ompare �3.3.3. This gives that the limiturve has to satisfy
k = −〈z,N〉 .The only embedded onvex solution of this equation is the standard irle. Thisproves the theorem. q.e.d.Notes for Setion 3.41. That we only embedded onvex urve whih satis�es
k = −〈z,N〉is the unit irle was proven by Abresh and Langer [1℄
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Appendix AEvolving Curves

In this appendix we derive several equations whih are frequently used. ParagraphA.1 ontains some basis of planar urves. In �A.2 we onsider urves whihsatisfy the following equation
d

dt
z = A (z, k, θ)N + B(z, k, θ)T, (A.1)where A ,B : R2×R×S1 → R, and T , N denote the tangent respetive the nor-mal vetor. We refer to equation (A.1) as the general urve shortening problem.A.1 PreliminariesA.1.1. We start with

∂

∂µ
r =

1

µ

d

dp

(
x2 + y2

).5
=

1

µ

(
x2 + y2

)−.5 〈z, z′〉 = 〈er, T 〉 .Therefore,
∂

∂µ
ri = i

〈er, T 〉
r

ri.We have
∂

∂µ
〈er, T 〉 = k 〈er, N〉 +

1

r
− 〈er, T 〉2

r
= k 〈er, N〉 +

〈er, N〉2
r

,

∂

∂µ
〈er, N〉 = −k 〈er, T 〉 −

〈er, T 〉 〈er, N〉
r

.From whih we dedue
∂

∂µ
〈er, T 〉 ri = k 〈er, N〉 ri + 〈er, N〉2

r
ri + i

〈er, T 〉2
r

ri

∂

∂µ
〈er, N〉 ri = −k 〈er, T 〉 ri + (i− 1)

〈er, T 〉 〈er, N〉
r

ri.57



As speial ases
∂

∂µ
〈z, T 〉 = k 〈z,N〉 + 1 and ∂

∂µ
〈z,N〉 = −k 〈z, T 〉 .Finally we ompute

∂

∂µ
〈er, T 〉j 〈er, N〉l ri

=

{{
j 〈er, N〉2 − l 〈er, T 〉2

}
k

+
{
j 〈er, N〉2 + (i− l) 〈er, T 〉2

}〈er, N〉
r

}
ri 〈er, T 〉j−1 〈er, N〉l−1 .A.2 Time derivatives for the general urve �owIn this paragraph we ompute several time derivatives for the general urve �owequation. That is, we onsider for given A ,B : R2 ×R× S1 → R the equation

d

dt
z = A (z, k, θ)N + B(z, k, θ)T. (A.2)Let us refer to A respetive B as the normal respetive tangential speed funtion.Given this equation we may ompute several evolution equations for geometriquantities. If we write d

dt
, then p is assumed to be �xed, analogously we assumefor d

dp
that t is �xed.A.2.1. Let us reall that ∂

∂µ
= 1

|z′|
d
dp
. This implies for the Frenet formulas

∂

∂µ
T = kN, and ∂

∂µ
N = −kT. (A.3)We laim that the time derivative of µ equals

d

dt
µ = (−A k +

∂

∂µ
B)µ. (A.4)To see this, reall that µ = |z′|. Therefore

d

dt
|z′|2 =

d

dt

〈
dz

dp
,
dz

dp

〉
= 2

〈
dz

dp
,
d

dp

d

dt
z

〉
= 2

〈
dz

dp
,
d

dp
(AN + BT )

〉

= 2

〈
dz

dp
,A

d

dp
N + (

d

dp
B)T

〉
= −2(A k +

∂

∂µ
B)µ2,58



and the laim follows. In the next step we ompute a rule for interhanging d
dtand ∂

∂µ
. The operators do not ommute, as µ is not independent of t. We have
d

dt

∂

∂µ
=

∂

∂µ

d

dt
+ (A k − ∂

∂µ
B)

∂

∂µ
. (A.5)For a proof ompute

d

dt

∂

∂µ
=

d

dt

(
µ−1 d

dp

)
=

d

dt

(
µ−1

)
+ µ−1 d

dt

d

dp

= −µ−2(−A k +
∂

∂µ
B)µ

d

dp
+ µ−1 d

dp

d

dt
= (A k − ∂

∂µ
B)

∂

∂µ
+

∂

∂µ

d

dt
.A.2.2. Here we derive the time derivative of T , N , and the normal angle θ. Welaim that time derivation of T gives

d

dt
T =

{ ∂

∂µ
A + kB

}
N. (A.6)The proof is straight forward. In fat,

d

dt
T =

d

dt

∂

∂µ
z =(A.5) ∂

∂µ

d

dt
z +

{
A k − ∂

∂µ
B

} ∂

∂µ
z

=
∂

∂µ

{
AN + BT

}
+

{
A k − ∂

∂µ
B

}
T

=
{ ∂

∂µ
A

}
N + A

∂

∂µ
N +

{ ∂

∂µ
B

}
T + B

∂

∂µ
T +

{
A k − ∂

∂µ
B

}
T

=(A.3) { ∂

∂µ
A

}
N − kA T + kBN + A kT =

{ ∂

∂µ
A + kB

}
N.Similarly,

d

dt
N = −

{ ∂

∂µ
A + kB

}
T. (A.7)To see this onsider

0 =
d

dt
〈N, T 〉 =

〈
d

dt
N, T

〉
+

〈
N,

d

dt
T

〉
.Now,

〈
d

dt
N, T

〉
= −

〈
N,

d

dt
T

〉

=(A.6) −〈
N,

{ ∂

∂µ
A + kB

}
N

〉
= −

〈
T,

{ ∂

∂µ
A + kB

}
T

〉
,59



and the laim follows. For the tangent angle we have
d

dt
θ =

∂

∂µ
A + Bk. (A.8)For a proof reall that the unit tangent equals T = (cos θ, sin θ). Thus,

d

dt
T =

d

dt
N.This gives, together with (A.6), the assertion.A.2.3. It holds

d

dt
ri = i

〈er, T 〉
r

riB + i
〈er, N〉
r

riA .We ompute
d

dt
r =

d

dt
〈z, z〉

1
2 =

〈er, T 〉
r

B +
〈er, N〉
r

A .The result follows from the hain rule. With this at hand we are able to derive
d

dt
〈er, T 〉 =

d

dt

〈z, T 〉
r

= −〈er, T 〉2
r

B − 〈er, T 〉 〈er, N〉
r

A +
{ ∂

∂µ
A + kB

}
〈er, N〉 +

B

r

=
{ ∂

∂µ
A − 〈er, T 〉

r
A +

〈er, N〉
r

B + kB
}
〈er, N〉 .Analogously we derive

d

dt
〈er, N〉 =

{
− ∂

∂µ
A +

〈er, T 〉
r

A − kB − 〈er, N〉
r

B

}
〈er, T 〉 .We add to our list

d

dt
〈er, T 〉 ri = 〈er, N〉 ri ∂

∂µ
A + 〈er, N〉 rikB

+
{
i
〈er, T 〉2

r
+

〈er, N〉2
r

}
riB + (i− 1)

〈er, T 〉 〈er, N〉
r

riA ,

d

dt
〈er, N〉 ri = −〈er, T 〉 ri

∂

∂µ
A − 〈er, T 〉 rikB

+
{〈er, T 〉2

r
+ i

〈er, N〉2
r

}
riA + (i− 1)

〈er, T 〉 〈er, N〉
r

riB.60



Finally we have
d

dt
〈er, T 〉j 〈er, N〉l ri

=

{{
j 〈er, N〉2 − l 〈er, T 〉2

} ∂

∂µ
A

+
{

(i− j) 〈er, N〉2 + l 〈er, T 〉2
}〈er, T 〉

r
A

+
{
j 〈er, N〉2 1

r
B + (i− l) 〈er, T 〉2

}〈er, N〉
r

B

+
{
j 〈er, N〉2 − l 〈er, T 〉2

}
kB

}
〈er, T 〉j−1 〈er, N〉l−1 ri.A.2.4. Let us now look at the urvature. We have

k =
∂

∂µ
θ (A.9)Beause,

k

(− sin θ

cos θ

)
= kN =

∂

∂µ
T =

∂

∂µ

(
cos θ

sin θ

)
=

(− sin θ

cos θ

)
∂

∂µ
θ,where we have used the Frenet formulas. We laim that

d

dt
k =

d2

dµ2
A +

(
∂

∂µ
k

)
B + k2

A . (A.10)To see this ompute
d

dt
k =

d

dt

∂

∂µ
θ =

∂

∂µ

d

dt
θ + (A k

∂

∂µ
B)

∂

∂µ
θ

=
∂

∂µ

(
∂

∂µ
A + kB

)
+

(
A k − ∂

∂µ
B

)
k

=
∂2

∂µ2
A + (

∂

∂µ
k)B + k

∂

∂µ
B + k2

A − k
∂

∂µ
B.A.2.5. We lose this setion while omputing the time derivative of the length

L and the area A. It holds
d

dt
L(t) = −

∫

γ

A k dµ. (A.11)61



Sine the length is given by
L(t) =

∫

S1

dµ =

∫

S1

|z′(p)| dp.This yields
d

dt
L(t) =

∫

S1

d

dt
|z′(p)| dp = −

∫

γ

(
−kA +

∂

∂µ
B

)
dµ = −

∫

γ

kA dµand hene the laim. For an embedded urve we have
d

dt
A(t) = −

∫

γ

A dµ. (A.12)We ompute
d

dt
A(t) = − d

dt

1

2

∫

γ

〈z,N〉dµ

= −1

2

∫

γ

〈
d

dt
z,N

〉
dµ− 1

2

∫

γ

〈
z,
d

dt
N

〉
dµ− 1

2

∫

γ

〈z,N〉 d
dt
dµ

= −1

2

∫

γ

A dµ− 1

2

∫

γ

〈z, d
dt
N〉dµ− 1

2

∫

γ

〈z,N〉 d
dt
dµ.The seond integrand yields

−1

2

∫

γ

〈
z,
d

dt
N

〉
dµ =

1

2

∫

γ

〈z, T 〉 ∂

∂µ
A dµ = −1

2

∫

γ

(
1 + k 〈z,N〉

)
A dµ.The third �nally gives

−1

2

∫

γ

〈z,N〉 d
dt
dµ =

1

2

∫

γ

〈z,N〉A kdµ.Whih shows the equation. Notes for Setion A.21. The equations derived in this paragraph are all either well known fats or diretonsequenes of suh. We have relied mostly on [27℄ whih onsiders the urve shorten-ing ase and on [16℄, where the general urve shortening problem is disussed.62



2. The evolution equation of ar-length element, tangent angle, normal angle, urva-ture, length, and area of the general urve shortening problem an be found in �1.3 of[16℄. Lemma is taken from [27℄, Lemma 3.1.5.A.3 The onvex aseThroughout this appendix it is assumed that the evolving urves are onvex.Thus, it is possible to parametrize the urves with respet to the normal angle.The resulting time derivatives are given.A.3.1. We onsider for given A ,B : R2 ×R× S1 → R the equation
d

dt
z = A (z, k, θ)N + B(z, k, θ)T,

z(·, 0) = z0. (A.13)In this appendix we make the big assumption that z0 is a onvex urve, andthat z(·, t) is also onvex for all t ∈ [0, ζ). This has to be heked for eah �owindividually. Reall that we have introdued r := | z | , er := z
r
, and N is theinward pointing unit normal.A.3.2. As z is onvex at all times it is onvenient to reparametrize (A.13) withrespet to the normal angle. We denote the new variables by (ϑ, τ). It holds

∂
∂µ
θ = k, ompare �A.2.4. But we want to parametrize the urve with respet tothe normal angle (ϑ, τ). Beause, ϑ = θ + π

2
, we also have ∂

∂µ
ϑ = k. This yields

∂

∂ϑ
z =

1

k
T,

∂

∂ϑ
ri = i

〈er, T 〉
r

ri
1

k
,

∂

∂ϑ
〈er, T 〉 = 〈er, N〉 +

〈er, N〉2
r

1

k
,

∂

∂ϑ
〈er, N〉 = −〈er, T 〉 −

〈er, T 〉 〈er, N〉
r

1

k
,as speial ases

∂

∂ϑ
〈z, T 〉 =

1

k
+ 〈z,N〉 ,

∂

∂ϑ
〈z,N〉 = −〈z, T 〉 ,and

∂

∂ϑ
〈er, T 〉 ri = 〈er, N〉 ri + i

〈er, T 2〉
r

ri

k
+

〈er, N〉2
r

ri

k
,

∂

∂ϑ
〈er, N〉 ri = −〈er, T 〉 ri + (i− 1)

〈er, T 〉 〈er, N〉
r

ri

k
.63



A.3.3. Let us reall that for an arbitrary funtion f it holds
∂

∂ϑ
f =

1

k

∂

∂µ
f,

d

dτ
f =

d

dt
f − ∂

∂ϑ
f
d

dt
ϑ =

d

dt
f − k

∂

∂ϑ
f
{ ∂

∂ϑ
A + B

}

=
d

dt
f − ∂

∂µ
f
{ ∂

∂ϑ
A + B

}
.Together with the omputations of �A.2 one obtains:

d

dτ
z = AN + B −

{ ∂

∂ϑ
A + B

}
T = AN −

{ ∂

∂ϑ
A

}
T

d

dτ
ri = i

〈er, T 〉
r

riB + i
〈er, N〉
r

βriA −
{ ∂

∂ϑ
A + B

}
i
〈er, T 〉
r

ri

= i
〈er, N〉
r

riA − i
〈er, T 〉
r

ri
{ ∂

∂ϑ
A

}

d

dτ
T =

{ ∂

∂µ
A + kB

}
N − k

{ ∂

∂ϑ
A + B

}
N = 0

d

dτ
N = 0This implies:

d

dτ
〈z, T 〉 = − ∂

∂ϑ
A

d

dτ
〈z,N〉 = A .Finally, let us ompute the evolution of the urvature. We have

d

dτ
k =

∂2

∂µ2
A +

∂

∂µ
kB + k2

A − ∂

∂µ
k
{ ∂

∂ϑ
A + B

}

=
∂2

∂µ2
A + k2

A − ∂

∂µ
k
{ ∂

∂ϑ
A

}
= k2 ∂

2

∂ϑ2
A + k2

A .A.4 No oordinatesA.4.1. This paragraph is taken from Eker's book [17℄, Appendix A. To thatend, let Ω ⊂ Rn be an open set. We will onsider smooth embeddings F : Ω →
Rn+1, where M := F (Ω) is ontained in some open set U ⊂ Rn+1. The tangent64



spae TxM at x = F (p) is spanned by the vetors Fi := ∂
∂pi
F (p), i ∈ {1, . . . n}.The metri on M is given by

gij = 〈Fi, Fj〉 ,where i, j ∈ {1, . . . n}, the inverse metri by
gij =

(
gij

)−1
,and the area element of M by

√
g =

√
det gij.The tangential gradient of a funtion h : M → R is de�ned by

∇h = gij∂jhFi.For a smooth tangent vetor �eld X = X iFi we de�ne the ovariant derivativetensor by
∇iX

j =
∂

∂pi
Xj + ΓjikX

k = gjl
{ ∂

∂pi
Xl − ΓkilXk

}
,where the Christo�el symbols are given by

Γkij =
1

2
gkl

{
gjl,i + gil,j − gij,l

}
.For a smooth tangential vetor �eld X : M → Rn+1, the tangential divergene isde�ned by

divX = ∇iX
i = gij∇iXj ,and the Laplae-Beltrami operator of h : M → R on M is de�ned by

∆h = div∇h = gij
(
∂j∂ih− Γkij∂kh

)
.A.4.2. A planar urve z : S1 → C is a one dimensional hypersurfae in R2.Thus, its metri reads g11 = | z′ | 2, the inverse of the metri is g11 = | z′ |−2, thearea-element equals g = | z′ | = µ, and Γ1

11 = 〈z′,z′′〉
| z′ | 2 . Moreover, F1 = z′. Supposewe are given a funtion h : γ → R, then the previous paragraph yields

∇h =
1

| z′ | h
′T, and ∆h =

1

| z′ | 2

{
h′′ − 〈z′, z′′〉

| z′ | 2
h′

}
.This yields ∇h =

{
∂
∂µ
h
}
T , and ∆h = ∂2

∂2µ
h. Hene

∇ri = i
〈er, T 〉
r

riT.The Laplae-Beltrami of r will be derived below.65



A.4.3. Here we ollet some basi rules for ovariant derivation for planarurves. Let us note that
1 = |∇r | 2 + 〈er, N〉2 ,

∇〈er, N〉 = −
{〈er, N〉

r
+ k

}
∇r,

∇〈z,N〉 = −rk∇r = −1

2
k∇r2.This yields the laplaian of r

∆r =
{〈er, N〉

r
+ k

}
〈er, N〉 ,

∆ri = iri−1 〈er, N〉 k − i(i− 1)ri−2 〈er, N〉 + i(i− 1)ri−2 + i 〈er, N〉2 ri−2.Let us also reall Gauÿ' equation
∆z = kN.A.4.4. Again we look at the equation
d

dt
z = A (z, k, θ)N, (A.14)where A : R2 × R × S1 → R is the normal speed funtion of the �ow. Let usreall the following abbreviations r := |z|, er := z

|z|
. Let us set F (p, t) := z(p, t).We make use of the following abbreviations Fi := ∂
∂xi
F . Let us reall that themetri and the seond fundamental form are given by

gij := gαβF
α
i F

β
j , and hij := gαβF

α
ijN

β .Of ourse in the our ase i, j = 1, and α and β run from 1 to 2. As a start weompute the evolution equation of the metri
d

dt
gij =

d

dt

{
gαβF

α
i F

β
j

}
= 2gαβF

α
i

∂

∂xj

d

dt
F β = 2A gαβF

α
i N

β
j = −2A hij .
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Moreover,
d

dt
N = −∇A ,

d

dt
k = ∆A + A k2,

d

dt
dµ = −kA dµ,

d

dt
〈z,N〉 = A − 〈z,∇A 〉 ,

d

dt
〈er, N〉 = −〈er,∇A 〉 +

{1

r
− 〈er, N〉2

r

}
A ,

d

dt
r = 〈er, N〉A .

Notes for Setion A.4The omputations follow diretly from the hypersurfae ase, as a urve in R2 an alsobe seen as a hypersurfae. We refer to [54℄.
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Appendix BCalulations for the original �ow equation

Here we derive several useful equations for the equivariant urve �ow: Find
z : S1 × [0, Tsing) → C for whih

d

dt
z = FN :=

{
k − (n− 1)

〈er, N〉
r

}
N,

z(·, 0) = z0,
(B.1)where k denotes the urvature of the urve, N the inward pointing unit normal,

er := z
r
, r := |z|, and n the dimension of L.B.1 CalulationIn this setion we assume that z0 : S1(κ) → C is tamed, i.e. F > 0, 2πκ-periodifuntion whih evolves by equation (1.9):
d

dτ
z = FN −

{ d

dη
F + (n− 1)

〈er, T 〉
r

}
T,

z(0, ·) = z0.This �ow is just a reparametrized version of the Flow (B.1). It has the propertythat τ and η, de�ned by η :=
∫ a

0
F dµ are independed, as shown in �1.3.2. Oursope is to provide several alulation assoiated to this �ow.B.1.1. Let us reall from �1.3.2 that

∂

∂µ
η =

1

F
.With this equation at hand we easily derive the next equations from �A.1

∂

∂η
z =

∂

∂µ
z
∂η

∂µ
=

1

F
T, and

∂

∂η
ri = i

1

F

〈er, T 〉
r

ri. 68



Moreover,
∂

∂η
T =

{
1 +

n− 1

F

〈er, N〉
r

}
N, and ∂

∂η
N = −

{
1 +

n− 1

F

〈er, N〉
r

}
T.This yields

∂

∂η
〈er, T 〉 =

1

F

1

r
− 1

F

〈er, T 〉2
r

+
{

1 +
n− 1

F

〈er, N〉
r

}
〈er, N〉

= 〈er, N〉 +
n

F

〈er, N〉2
r

,and
∂

∂η
〈er, N〉 = −〈er, T 〉 − n

1

F

〈er, T 〉 〈er, N〉
r

.We will also need
∂

∂η
〈er, T 〉 ri = 〈er, N〉 ri + n

1

F
〈er, N〉2 ri−1 + i

1

F
〈er, T 〉2 ri−1,

∂

∂η
〈er, N〉 ri = −〈er, T 〉 ri + (i− n)

1

F
〈er, T 〉 〈er, N〉 ri−1,and

∂

∂η
〈er, T 〉 〈er, N〉 ri =

{
〈er, N〉2 − 〈er, T 〉2

}
ri

+
1

F

{
n 〈er, N〉2 + (i− n) 〈er, T 〉2

}
〈er, N〉 ri−1.B.1.2. We rely on Setion A.2 for the next omputations. Let us reall that

∂
∂µ

= F
∂
∂η
. Note further that η and τ are independent parameters. We have

d

dτ
ri = i

〈er, N〉
r

riF − i
{ d

dη
F + (n− 1)

〈er, T 〉
r

}〈er, T 〉
r

ri

= −i〈er, T 〉
r

ri
d

dη
F + i

〈er, N〉
r

riF − i(n− 1)
〈er, T 〉2
r2

ri.It holds
d

dτ
T =

{
F

d

dη
F − k

d

dη
F − (n− 1)

〈er, T 〉
r

}
N

= −
{

(n− 1)
〈er, N〉
r

d

dη
F + (n− 1)

〈er, T 〉
r

}
N.69



and analogously
d

dτ
N =

{
(n− 1)

〈er, N〉
r

d

dη
F + (n− 1)

〈er, T 〉
r

}
T.Moreover,

d

dτ
〈er, T 〉 = 〈er, N〉F

d

dη
F − 〈er, T 〉 〈er, N〉

r
F

−
{ d

dη
F + (n− 1)

〈er, T 〉
r

}
〈er, N〉 k

−
{ d

dη
F + (n− 1)

〈er, T 〉
r

}〈er, N〉2
r

= 〈er, N〉F
d

dη
F − 〈er, T 〉 〈er, N〉

r
F

−
{ d

dη
F + (n− 1)

〈er, T 〉
r

}
〈er, N〉F

− (n− 1)
{ d

dη
F + (n− 1)

〈er, T 〉
r

}〈er, N〉2
r

−
{ d

dη
F + (n− 1)

〈er, T 〉
r

}〈er, N〉2
r

= −n〈er, N〉2
r

d

dη
F − n

〈er, T 〉 〈er, N〉
r

F

− n(n− 1)
〈er, T 〉 〈er, N〉2

r2
.Similarly we obtain

d

dτ
〈er, N〉 = n

〈er, T 〉 〈er, N〉
r

d

dη
F + n

〈er, T 〉2
r

F

+ n(n− 1)
〈er, T 〉2 〈er, N〉

r2
.This gives

d

dτ
〈er, T 〉 ri = −

{
n 〈er, N〉2 + i 〈er, T 〉2

}
ri−1 d

dη
F

+ (i− n) 〈er, T 〉 〈er, N〉 ri−1
F

− (n− 1)
{
n 〈er, N〉2 + i 〈er, T 〉

}
〈er, T 〉 ri−2,and

d

dτ
〈er, N〉 ri = (n− i)

〈er, T 〉 〈er, N〉
r1−i

d

dη
F +

n 〈er, T 〉2 + i 〈er, N〉2
r1−i

F

+ (n− i)(n− 1) 〈er, T 〉2 〈er, N〉 ri−2.70



B.2 Stationary solutionsHere we identify those urves whih are stationary under the �ow equation (1.9).Thus whih satisfy F = 0. We laimed in 1.3.3 that: Let η0 ∈ [0, 2π], and
h ∈ R\{0}. The impliitly de�ned urve given by

f(x, y) := ℜzn cos η0 + ℑzn sin η0 − h = 0,is a stationary solution of equation (1.9), where z = x+ ıy and the motion of theurve is taken in diretion of the vetor (fy,−fx)T . This laim will be justi�edin this setion.B.2.1. Before we prove the assertion let us reall some basi equations whihwill be frequently used. We have
(
ℜzn

)2
+

(
ℑzn

)2
= r2nand

zn = [xℜzn−1 − yℑzn−1] + ı[yℜzn−1 + xℑzn−1],

ızn = −[yℜzn−1 + xℑzn−1] + ı[xℜzn−1 − yℑzn−1].Whih imply
ℜzn = ℑızn and ℑzn = −ℜızn.The normal vetor at a point (x, y) of an impliitly de�ned urve is given by
N =

1√
f 2
x + f 2

y

(
fx
fy

)
.Let us note that

fx = n
(
ℜzn−1 cos η + ℑzn−1 sin η

)and
fy = n

(
ℜızn−1 cos η + ℑızn−1 sin η

)

= n
(
− ℑzn−1 cos η + ℜzn−1 sin η

)
.Observe that

xfx + yfy = n
((
xℜzn−1 − yℑzn−1

)
cos η +

(
yℜzn−1 + xℑzn−1

)
sin η

)

= n
(
ℜzn cos η + ℑzn sin η

)

= nh, 71



and
f 2
x + f 2

y = n2
[(
ℜzn−1

)2
+

(
ℑzn−1

)2]

= n2 | z | 2n−2.This yields
(n− 1)

〈z,N〉
| z | 2

=
(n− 1)

| z | 2
√
f 2
x + f 2

y

〈(
x

y

)
,

(
fx
fy

)〉
=

(n− 1)h

| z | n+1
.Let us ompute the urvature of the urve. It is given by

k = −
f 2
y fxx − 2fxfyfxy + f 2

xfyy

(f 2
x + f 2

y )
1.5

.The minus sign is due to the motion of the urve. We observe:
fxx = n(n− 1)

(
ℜzn−2 cos η + ℑzn−2 sin η

)

fyy = −n(n− 1)
(
ℜzn−2 cos η + ℑzn−2 sin η

)

fxy = n(n− 1)
(
− ℑzn−2 cos η + ℜzn−2 sin η

)Let us abbreviate
ℜ := ℜzn−2 and ℑ := ℑzn−2.Moreover, we set c := cos η and s := sin η. We have
f 2
y fxx − fxfyfxy

= n3(n− 1)
[(

(−yℜ− xℑ) c +(xℜ− yℑ) s
)2(ℜ c +ℑ s

)]

−
(
(xℜ − yℑ) c+(yℜ + xℑ) s

)(
(−yℜ− xℑ) c +(xℜ− yℑ) s

)(
−ℑ c +ℜ s

)]

= n3(n− 1)
[
c3

(
(yℜ + xℑ)2ℜ + (xℜ− yℑ)(−yℜ− xℑ)ℑ

)

+ c2 s
(
(yℜ + xℑ)2ℑ− 2(yℜ + xℑ)(xℜ − yℑ)ℜ + (xℜ − yℑ)(yℜ+ xℑ)ℜ

+ (xℜ − yℑ)2ℑ− (yℜ + xℑ)2ℑ
)

+ c s2
(
(xℜ − yℑ)2ℜ− 2(yℜ+ xℑ)(xℜ − yℑ)ℑ + (yℜ + xℑ)(xℜ − yℑ)ℑ

− (xℜ− yℑ)2ℜ + (yℜ + xℑ)2ℜ
)

+ s3
(
(xℜ − yℑ)2ℑ− (yℜ + xℑ)(xℜ − yℑ)ℜ

)]

= n3(n− 1)
[
c3

(
(yℜ + xℑ)2ℜ− (xℜ − yℑ)(yℜ + xℑ)ℑ

)

+ c2 s
(
(xℜ − yℑ)2ℑ− (yℜ + xℑ)(xℜ − yℑ)ℜ

)

+ c s2
(
(yℜ + xℑ)2ℜ− (yℜ + xℑ)(xℜ − yℑ)ℑ

)

+ s3
(
(xℜ − yℑ)2ℑ− (yℜ + xℑ)(xℜ − yℑ)ℜ

)]72



= n3(n− 1)
[
c
(
(yℜ + xℑ)2ℜ− (xℜ− yℑ)(yℜ+ xℑ)ℑ

)

+ s
(
(xℜ− yℑ)2ℑ − (yℜ + xℑ)(xℜ − yℑ)ℜ

)]

= n3(n− 1)
[
c(yℜ + xℑ)

(
(yℜ + xℑ)ℜ − (xℜ − yℑ)ℑ

)

+ s(xℜ− yℑ)
(
(xℜ − yℑ)ℑ− (yℜ + xℑ)ℜ

)]

= n3(n− 1)(ℜ2 + ℑ2)
[
c(yℜ + xℑ) + s(−xℜ + yℑ)

]
y.Analogously we obtain

f 2
xfyy − fxfyfxy

= −n3(n− 1)n3(n− 1)(ℜ2 + ℑ2)
[
c(xℜ − yℑ) + s(yℜ + xℑ)

]
x.This yields

f 2
xfyy − 2fxfyfxy + f 2

y fxx

= −n3(n− 1)(ℜ2 + ℑ2)
(
((x2 − y2)ℜ− 2xyℑ) c+(2xyℜ + (x2 − y2)ℑ) s

)
.Let us note that

(x2 − y2)ℜzn−2 − 2xyℑzn−2 = ℜznand
2xyℜzn−2 + (x2 − y2)ℑzn−2 = ℑzn.Altogether
k = −n

3(n− 1)((ℜzn−2)2 + (ℑzn−2)2)(ℜzn cos η + ℑzn sin η)

(n2 | z | 2n−2)1.5

= −(n− 1) | z | 2n−4h

| z | 3n−3

= −(n− 1)h

| z | n+1
.This proves the laim.Remark. Let us point out that

N =
1

| z | n−1

( ℜzn−1 cos η + ℑzn−1 sin η

−ℑzn−1 cos η + ℜzn−1 sin η

) and
T =

1

| z | n−1

(−ℑzn−1 cos η + ℜzn−1 sin η

−ℜzn−1 cos η −ℑzn−1 sin η

)
.The notation is a bit sloppy as Nh depends on z and η.73



Appendix CCalulation for the resaled �ow equation

Here we derive several equations for the resaled �ow equation
d

dt
z =

{
k − (n− 1)

〈ep, N〉
rp

+ 〈z,N〉
}
N,

z(·, 0) =

√
π

A0

{
z0 − p0

}
.

(C.1)Where ep := z+p
rp
, rp := |z + p|, and p =

√
π
A0

exp(t)p0. We also introdue
H =

{
k − (n− 1)

〈ep, N〉
rp

+ 〈z,N〉
}
.C.1 The resaled equationC.1.1. Let us start with the laim 1 = 〈ep, T 〉2 + 〈ep, N〉2. Indeed,

r2
p = 〈z + p, z + p〉

= z2 + p2 + 2 〈z,N〉 〈p,N〉 + 2 〈z, T 〉 〈p, T 〉
= 〈z + p, T 〉2 + 〈z + p,N〉2 .Alternatively,

r2
p = 〈z + p,N〉 〈z,N〉 + 〈z, p〉 + p2 + 〈z + p, T 〉 〈z, T 〉 .Furthermore, let us reall G := k− (n−1) 〈ep,N〉

rp
, and H := G + 〈z,N〉. We have

∂

∂µ
rip = i

〈ep, T 〉
rp

rip,

∂

∂µ
〈ep, T 〉 = k 〈ep, N〉 − 〈ep, T 〉2

rp
+

1

rp
= 〈ep, N〉G + n

〈ep, N〉2
rp

,

∂

∂µ
〈ep, N〉 = −〈ep, T 〉 k −

〈ep, T 〉 〈ep, N〉
rp

= −〈ep, T 〉G − n
〈ep, T 〉 〈ep, N〉

rp
.74



Moreover,
∂

∂µ
〈ep, T 〉 rip = 〈ep, N〉 ripG +

{
i
〈ep, T 〉2
rp

+ n
〈ep, N〉2
rp

}
rip,

∂

∂µ
〈ep, N〉 rip = −〈ep, T 〉 ripG + (i− n)

〈ep, T 〉 〈ep, N〉
rp

rip.This list should be ompared with �A.1.1C.1.2. Here we derive several time derivatives. We refer to Appendix A.4.Reall that H = G + 〈z,N〉. First of all we need
d

dt
rp = 〈ep, N〉H + 〈ep, p〉 ,

d

dt
〈ep, N〉 = −〈ep,∇H 〉 +

{ 1

rp
− 〈ep, N〉2

rp

}
H − 〈ep, N〉 〈ep, p〉

rp
+

〈p,N〉
rp

,

d

dt
k = ∆H + k2

H .Let us now replae H by G . Then
d

dt
rp = 〈ep, N〉G + 〈ep, N〉 〈z,N〉 + 〈ep, p〉 ,

d

dt
〈ep, N〉 = −〈ep,∇G 〉 +

{ 1

rp
− 〈ep, N〉2

rp

}
H − 〈ep, N〉 〈ep, p〉

rp
+

〈p,N〉
rp

+ r 〈ep,∇r〉G + (n− 1)
r 〈ep, N〉 〈ep,∇r〉

rp

= −〈ep,∇G 〉 +
{ 1

rp
− 〈ep, N〉2

rp
+ r 〈ep,∇r〉

}
G + n

r 〈ep, N〉 〈ep,∇r〉
rp

.Here we made use of the fat that
〈z,N〉 〈ep, N〉 + 〈ep, p〉 + 〈z, T 〉 〈ep, T 〉

= 〈z,N〉 〈ep, N〉 + 〈ep, N〉 〈p,N〉 + 〈ep, T 〉 〈p, T 〉 + 〈z, T 〉 〈ep, T 〉 = rp.C.1.3. Here we basially derive the same equations as in previous paragraph.But this time we make use of ∂
∂µ
. We start with

d

dt
T =

∂

∂µ
H N, and d

dt
N = − ∂

∂µ
H T.This gives

d

dt
T =

{ ∂

∂µ
G − 〈z, T 〉G − (n− 1)

〈ep, N〉 〈z, T 〉
rp

}
N, and

d

dt
N =

{
− ∂

∂µ
G + 〈z, T 〉G + (n− 1)

〈ep, N〉 〈z, T 〉
rp

}
T.75



d

dt
rp = 〈ep, N〉G + 〈ep, N〉 〈z,N〉 + 〈ep, p〉 ,

d

dt
〈ep, N〉 = −〈ep, T 〉

∂

∂µ
G +

{〈ep, T 〉2
rp

+ 〈ep, T 〉 〈z, T 〉
}
G

+ n
〈ep, T 〉 〈ep, N〉 〈z, T 〉

rp
.We also ompute

d

dt
〈ep, T 〉 = 〈ep, N〉 ∂

∂µ
G −

{
〈ep, N〉 〈z, T 〉 +

〈ep, T 〉 〈ep, N〉
rp

}
G

− (n− 1)
〈ep, N〉2 〈z, T 〉

rp
+

〈p, T 〉
rp

− 〈ep, T 〉 〈ep, N〉 〈z,N〉
rp

− 〈ep, T 〉 〈ep, p〉
rp

= 〈ep, N〉 ∂

∂µ
G −

{
〈z, T 〉 〈ep, N〉 +

〈ep, T 〉 〈ep, N〉
rp

}
G

− n
〈ep, N〉2 〈z, T 〉

rp
.Another way to see this is to note that

D 〈ep, T 〉 = D

√
1 − 〈ep, N〉2 = −〈ep, N〉

〈ep, T 〉
D 〈ep, N〉 .Here D denotes any di�erential operator.C.1.4. Here we provide several alulation for the resaled �ow equation. Thatis we assume that z0 : S1(κ) → C is tamed, i.e. G > 0 and evolves by

d

dτ
z =

{
G + 〈z,N〉

}
N −

{ d

dη
G + (n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
}
T,

z(0, ·) = z0.This �ow has the property that τ and η, de�ned by η :=
∫ a

0
G dµ are independed,as shown in �3.1.5. To begin with let us note that ∂

∂µ
= G

∂
∂η
. The previousParagraph B.1.1 gives

∂

∂η
rip = i

〈ep, T 〉
rp

rip
G
,

∂

∂η
〈ep, T 〉 = 〈ep, N〉 + n

〈ep, N〉2
rp

1

G
,

∂

∂η
〈ep, N〉 = −〈ep, T 〉−n

〈ep, T 〉 〈ep, N〉
rp

1

G
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and
∂

∂η
〈ep, T 〉 rip = 〈ep, N〉 rip +

{
i
〈ep, T 〉2
rp

+ n
〈ep, N〉2
rp

}rip
G
,

∂

∂η
〈ep, N〉 rip = −〈ep, T 〉 rip + (i− n)

〈ep, T 〉 〈ep, N〉
rp

rip
G
.Moreover, by Paragraph A.1.1 we have

∂

∂η
ri = i

〈er, T 〉
r

ri

G
,

∂

∂η
〈er, T 〉 = 〈er, N〉 + (n− 1)

〈ep, N〉
rp

〈er, N〉
G

+
〈er, N〉2

r

1

G
,

∂

∂η
〈er, N〉 = −〈er, T 〉 − (n− 1)

〈ep, N〉
rp

〈er, T 〉
G

− 〈er, T 〉 〈er, N〉
r

1

G
.From whih we dedue

∂

∂η
〈er, T 〉 ri

= 〈er, N〉 ri + (n− 1)
〈ep, N〉
rp

〈er, N〉 ri
G

+
〈er, N〉2

r

ri

G
+ i

〈er, T 〉2
r

ri

G
,

∂

∂η
〈er, N〉 ri

= −〈er, T 〉 ri − (n− 1)
〈ep, N〉
rp

〈er, T 〉
ri

G
+ (i− 1)

〈er, T 〉 〈er, N〉
r

ri

G
.Finally we ompute

∂

∂η
〈er, T 〉j 〈er, N〉l ri

=

{{
j 〈er, N〉2 − l 〈er, T 〉2

}
+ (n− 1)

{
j 〈er, N〉2 − l 〈er, T 〉2

}〈ep, N〉
rp

1

G

+
{
j 〈er, N〉2 + (i− l) 〈er, T 〉2

}〈er, N〉
r

1

G

}
ri 〈er, T 〉j−1 〈er, N〉l−1 .C.1.5. We ontinue the observation of the last paragraph. We rely on �C.1.3.In priniple there are at least two ways to derive the time derivatives in newoordinates (η, τ). We make use of the following fats

∂

∂τ
f =

d

dt
f − ∂

∂η
f
∂η

∂t
, 77



and
∂

∂t
η =

{ ∂

∂η
G + (n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
}

G .Note that ∂
∂µ

= G
∂
∂η
. This gives

d

dτ
rp = −〈ep, T 〉

d

dη
G + 〈ep, N〉G

+ 〈ep, N〉 〈z,N〉 + 〈ep, p〉 + 〈ep, T 〉 〈z, T 〉 − (n− 1)
〈ep, T 〉2
rp

= −〈ep, T 〉
d

dη
G + 〈ep, N〉G + rp − (n− 1)

〈ep, T 〉2
rp

.Here we made use of the fat that
〈z,N〉 〈ep, N〉 + 〈ep, p〉 + 〈z, T 〉 〈ep, T 〉

= 〈z,N〉 〈ep, N〉 + 〈ep, N〉 〈p,N〉 + 〈ep, T 〉 〈p, T 〉 + 〈z, T 〉 〈ep, T 〉 = rp.We easily obtain
d

dτ
rip = −i〈ep, T 〉

rp
rip
d

dη
G + i

〈ep, N〉
rp

ripG + irip − i(n− 1)
〈ep, T 〉2
r2
p

rip.Moreover,
d

dτ
ep =

{ 1

rp
G +

〈z,N〉
rp

}
N −

{ 1

rp

d

dη
G + (n− 1)

〈ep, T 〉
r2
p

− 〈z, T 〉
rp

}
T +

p

rp

+
〈ep, T 〉
rp

ep
d

dη
G − 〈ep, N〉

rp
epG − ep + (n− 1)

〈ep, T 〉2
r2
p

ep.It holds by �A.2.2 that
d

dτ
N = (n− 1)

{〈ep, N〉
rp

d

dη
G +

〈ep, T 〉
rp

G + (n− 1)
〈ep, T 〉 〈ep, N〉

r2
p

}
T.This gives

d

dτ
〈ep, N〉 = n

〈ep, T 〉 〈ep, N〉
rp

d

dη
G + n

〈ep, T 〉2
rp

G + n(n− 1)
〈ep, T 〉2 〈ep, N〉

r2
p

.
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C.1.6. Here we provide further time derivatives for the reparametrized resaled�ow equation
d

dτ
z =

{
G + 〈z,N〉

}
N −

{ d

dη
G + (n− 1)

〈ep, T 〉
rp

− 〈z, T 〉
}
T,

z(0, ·) = z0.It holds
d

dτ
ri = −i〈er, T 〉

r
ri
d

dη
G + i

〈er, N〉
r

riG + iri − i(n− 1)
〈er, T 〉
r

〈ep, T 〉
rp

ri,and
d

dτ
µ =

{
− G

2 − (n− 1)
〈ep, N〉
rp

G − 〈z,N〉 G − (n− 1)
〈z,N〉 〈ep, N〉

rp

− G
d2

dη2
G − (n− 1)G

d

dη

〈ep, T 〉
rp

+ G
d

dη
〈z, T 〉

}
dµ.Let us reall that

∂

∂η

〈ep, T 〉
rp

=
〈ep, N〉
rp

+
{
n
〈ep, N〉2
r2
p

− 〈ep, T 〉2
r2
p

} 1

G
,and

∂

∂η
〈z, T 〉 = 〈er, N〉 r + (n− 1)

〈ep, N〉
rp

〈z,N〉
G

+
1

G
.Finally,

d

dτ
µ =

{
− G

d2

dη2
G − G

2 − 2(n− 1)
〈ep, N〉
rp

G

+ (n− 1)
{〈ep, T 〉2

r2
p

− n
〈ep, N〉2
r2
p

}
+ 1

}
µ.
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