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Abstract 

Dipeptidyl peptidase 4 (DP4/CD26) is a multifunctional serine exopeptidase. As dipeptidyl 

peptidase, DP4 modulates the functions of its substrates by specific truncation especially of 

Xaa-Pro dipeptides from the N-terminus. Neuropeptide Y (NPY) is of special interest as it 

represents one of the best substrates for DP4, and as it is involved in various physiological, 

psychological, and immune functions. Here, the NPY-DP4-axis was studied on three different 

levels: (1) cleavage of NPY by DP4/DP4-like peptidases, (2) its role in a newly developed 

congenic animal model of DP4 deficiency, and (3) within central processing of pain 

perception. 

Firstly, enzyme activity studies on DP4-like peptidases, with respect to their potential to 

truncate NPY, revealed that peripheral NPY is mainly truncated by serum and endothelial DP4 

whereas the intracellular dipeptidyl peptidase 8 and 9 possibly cleave NPY within the central 

nervous system (CNS). Initial co-transfection studies of DP4 and NPY in Cos-1 cells provided 

however no evidence for a vesicular co-localization of the peptidase and its substrate – thereby 

“opposing” the possibility of an intracellular cleavage of NPY by DP4.  

Secondly, in-depth characterization of congenic DP4 deficient DA rats revealed a number of 

beneficial metabolic effects including improved glucose tolerance – associated with increased 

levels of glucagons-like peptide 1 – and reduced diet-induced body weight gain. Furthermore, 

DP4 deficient rats exhibited diminished anxiety and stress-like responses in behavioural and 

endocrinal tests, probably due to a reduced N-terminal truncation of NPY (see third approach). 

In contrast to these “beneficial” effects, however, several immune alterations, e.g. differential 

leukocyte subset composition at baseline, blunted NK-cell and T-cell functions, were observed. 

These considerable consequences of DP4 deficiency point to potential adverse effects and 

question the concept of chronic use of DP4 inhibitors in a clinical setting, such as treatment of 

diabetes type II. Thirdly, the DP4-NPY axis was investigated with regard to its potential role in 

stress-induced analgesia. We showed that, depending on the contextual stress (habituated vs 

non-habitiuated), DP4 deficiency ameliorates stress-induced analgesia, thereby providing 

direct evidence for its stress-protective action within the CNS. 

In conclusion these studies illustrate that DP4 functions are highly important in various 

processes and that it will be hard to separate one aspect as a therapeutic target without taking 

others into account. Due to multiple actions of further DP4-like peptidases at various levels 

and sites, the upcoming DP4 inhibitors will have to act short-term, highly target- and site-

specific in order to minimize the risk of unwanted side effects. 
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Kurzzusammenfassung 

Die Serin-Exopeptidase Dipeptidyl Peptidase 4 (DP4/CD26) ist in zahlreichen biologischen 

Prozessen durch spezifische N-terminale Trunkierung von Substraten, speziell von Xaa-Pro 

Dipeptiden, involviert. Neuropeptid Y (NPY) ist als eines der besten Substrate von DP4 

aufgrund seiner umfangreichen Funktionen von besonderem Interesse. Die NPY-DP4-Achse 

wurde hier hinsichtlich dreier Aspekte untersucht: (1) Spaltung durch DP4-ähnliche 

Peptidasen, (2) Rolle im kongenen DP4-defizienten Tiermodell und (3) Rolle während der 

zentralen Verarbeitung von Schmerz. 

Zunächst zeigten Enzymaktivitätsstudien mit DP4-ähnlichen Peptidasen in Bezug auf deren 

Potential, NPY zu trunkieren, dass peripheres NPY hauptsächlich durch Serum- und 

endotheliale DP4 gespalten wird, während die intrazellulären Dipeptidyl Peptidasen 8 und 9 

von größerer Bedeutung bei der NPY-Spaltung im zentralen Nervensystem (ZNS) sind. Es 

ergaben sich jedoch in Kotransfektionsstudien keine Hinweise für eine intrazelluläre Spaltung 

von NPY durch DP4. Im zweiten Ansatz zeigte der DP4-defiziente kongene DA Ratten-

Substamm DA.F344-Dpp4m/SvH verbesserte metabolische Effekte, unter anderem verbesserte 

Glukosetoleranz im Zusammenhang mit erhöhten Spiegeln an Glucagon-ähnliches Peptid 1, 

sowie eine reduzierte diätinduzierte Gewichtszunahme. Interessanterweise zeigten 

Verhaltenstests und endokrine Untersuchungen reduzierte Angst und stressprotektive Effekte, 

die vermutlich durch die reduzierte N-terminale NPY-Trunkierung in DP4-defizienten Ratten 

verursacht wurden. Neben diesen scheinbar positiven Effekten der DP4-Defizienz wurden 

jedoch auch verschiedene Alterationen im Immunsystem, wie z.B. ein verändertes 

Leukozytenblutbild und eingeschränkte NK- und T-Zell-Funktionen festgestellt. Mit diesen 

Beobachtungen verweisen wir auf Nebeneffekte, welche wiederum das Konzept des 

chronischen Einsatzes von DP4-Inhibitoren in der Klinik in Frage stellen. In einem dritten 

Ansatz wurde die DP4-NPY-Achse im Hinblick auf ihre Rolle bei stressinduzierter Analgesie 

untersucht. Dabei konnten wir zeigen, dass DP4-Defizienz in Abhängigkeit vom Test-Stress-

Niveau (habituiert vs. non-habituiert), eine stressprotektive Wirkung im ZNS aufweist. 

Zusammenfassend zeigen die drei Publikationen, dass DP4 an einer Vielzahl wichtiger 

Prozesse beteiligt ist. Die Phänotypisierungsergebnisse der DA.F344-Dpp4m/SvH-Ratten 

machen deutlich, dass einzelne Aspekte der DP4 nicht isoliert betrachtet werden sollten, 

verweisen jedoch auch gleichzeitig auf neue therapeutische Ansatzpunkte wie z.B. Angst, 

Ernährung und Schmerz. Aufgrund der multiplen Aktionen weiterer DP4-ähnlicher Peptidasen 

müssen DP4-Inhibitoren höchst spezifisch und reversibel wirken, um das Risiko von 

ungewollten Nebenwirkungen zu minimieren. 
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1. Introduction 

Dipeptidyl peptidase 4 (DP4, EC 3.4.14.5) is a multifunctional serine exopeptidase that is also 

known as leukocyte differentiation marker CD26 [1, 2]. DP4 has been referred to in the 

literature by a wide variety of abbreviations including DPP IV, DP-IV, and DPP4. We chose 

the abbreviation DP4 in analogy to the more recently cloned dipeptidyl peptidases 8 and 9, 

which were abbreviated by DP8 and DP9. The membrane-bound form of DP4 is a type II 

transmembrane glycoprotein [3]. Due to the secondary structure of its catalytic domain, DP4 is 

classified as alpha/beta-hydrolase fold enzyme. According to its sequence homology around 

the seryl residue in the active site, the arrangement of the catalytic triad and the homologic 

structure in the C-terminus, DP4 is classified together amongst others with prolyl 

oligopeptidase (POP, EC 3.4.21.26) and acylaminoacyl peptidase (EC 3.4.19.1) into the family 

of prolyl oligopeptidases (S9) [4]. DP4 was discovered in rat liver homogenates by Hopsu-

Havu and Glenner in 1966 [5]. 

1.1. Structure and structural properties of DP4 

The cDNA of rat DP4 codes for a sequence of 767 amino acids (aa) that can be divided into 

five structural regions (Fig. 1). The highly conserved N-terminal cytosolic region, composed of 

six aa, is followed by a hydrophobic region of 22 aa – the transmembrane domain – which 

serves as signal peptide and membrane anchor [3]. The extracellular part of DP4 consists of 

739 aa and can further be divided into three regions. These are the glycosylated region, 

containing five of eight potential N-glycosylation sites of the extracellular region [6, 7], the 

cysteine-rich region, expressing ten of twelve cysteine residues [8], and the C-terminal 

catalytic region. The C-terminus harbors the active site of this enzyme, which comprises a triad 

of the catalytically active amino acids Ser631, Asp709 and His741 [9, 10]. The active Ser631 

of DP4 is situated in a so called ”nucleophile elbow“ in the sequence Gly-Trp-Ser-Tyr-Gly 

which is in agreement with the conserved sequence Gly-X-Ser-X-Gly for the /  hydrolase 

family. 

There is a homology of 84,5% between human and rat DP4 cDNA [11]. Human DP4 is a 766 

aa sized molecule, has an additional N-glycosylation site on N281 (according to human 

numbering) [12] and the amino acids of the catalytic triad are in positions 630, 708 and 740. In 

contrast to rat DP4, human DP4 is able to bind adenosine deaminase (ADA) [12, 13]. 

Oligosaccharide side chains are reported to modulate biophysical and biological properties of 

glycoproteins such as protein folding, stability, translocation and cell adhesion processes. 
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However, the precise role of the glycosylations of DP4 is unknown. Fan et al. [14] 

demonstrated that N-glycans are essential for folding and biological stability of this molecule. 

O-glycosylation has been controversially discussed. Whereas no O-glycosylation could be 

detected in membrane-bound DP4 from rat liver [15-17], Naim et al. and Matter et al. reported 

on O-glycosylation of DP4 on human intestinal brush-border cells and Caco-2 cells (human 

adenocarcinoma cells of colorectal origin), suggesting that O-glycans were important for apical 

targeting [18, 19]. Glycosylation is not a prerequisite for catalytic activity or dimerization [12]. 

However, the stability of the cysteine-rich region of DP4 is proposed to be of importance for 

dimer formation [8]. 

 

 
 

Figure 1: Schematic representation of wild type rat DP4 deduced from its primary structure.  

Modified after Fan et al. [14]; Y-shaped structures represent N-glycans; SH, cysteine residue; catalytic 

triad: Ser, Asp, His; numbers represent the amino acid position; magenta, cytoplasmic tail; pink, 

transmembrane domain 

 

In humans, the cysteine-rich domain is involved in ADA binding [20]. Moreover, Dobers et al. 

[8] showed via cysteine point mutations in rat DP4 that the cysteine residues 326, 337, 445, 

448, 455, 473, and 552 are essential for correct folding and intracellular trafficking of DP4. 

Two non-covalently connected independent monomers form the functional DP4 homodimer, in 

which again the active sites of both monomers are connected via electrostatic interactions [21]. 

Homodimerization is essential for the enzyme activity of DP4, whereas the monomeric form 

on its own has no enzyme activity [22-26]. The molecular weight of the DP4 monomer 

depends on the species, the origin/type of tissue, and the level of glycosylation. It differs 

around 110 kDa to 150 kDa in mammals [27-29]. There is an initially synthesized precursor 

form with a molecular weight of 103 kDa in rat hepatocytes that is further processed to the 

mature form of 109 kDa during the intracellular transport [30].  
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While the extracellular part of DP4 has been approximately divided into the three regions on 

basis of the amino acid sequence (Fig. 1), cryo-transmission electron microscopy and crystal 

structures revealed a new three-dimensional (3D) structure for human DP4. This 3D structure 

gives precise details about the amino acids that compose functionally different domains. Thus, 

analysis of the crystal structure of DP4 revealed that the extracellular part of each DP4 

monomer consists of two domains (Fig. 2), the catalytically active / -hydrolase domain 

(amino acids 39-51 and 506-766) – that is located closest to the membrane – and an eight-

bladed -propeller domain (55-497) [31, 32]. The catalytic site is located in a large cavity 

formed between the / -hydrolase domain and the propeller domain. Both domains are 

reported to participate in inhibitor binding [32].  

1.2. Distribution of DP4 

DP4 is highly conserved among different species [31] and DP4 expression in rat tissues does 

not significantly differ from expression in humans. The membrane-bound form of DP4 is 

ubiquitously expressed with different levels in tissues like kidney, lung, adrenal gland, 

intestine, liver, spleen, testis, and brain. Endothelial and epithelial DP4 is localized on the 

apical cell membrane [33]. The abundant expression on endothelial cells, especially in blood 

vessels and capillaries [34], enables a close contact to hormones, chemokines, and cytokines 

that are circulating in the blood. There is a soluble form of DP4 that lacks the transmembrane 

domain [35, 36] and which can be found in plasma and at low levels in the cerebrospinal fluid 

(CSF) [35], urine, and seminal fluid [37, 38]. The origin of soluble DP4 so far is unknown. 

However, shedding of the membrane-bound form via other proteases is a proposed mechanism. 

Furthermore, DPPIV/CD26 is expressed on cells of the immune system and here, especially on 

activated T-helper cells and B lymphocytes [39-41], activated NK cells [42], and subsets of 

macrophages [43]. In the adult central nervous system (CNS) DP4 has contact with 

neuropeptides mainly in the CSF but also via the blood-brain barrier (BBB). DP4 is primarily 

found in the circumventricular organs (CVOs) and on leptomeningeal cells, in brain capillaries 

and ependymal cells [44, 45]. DP4 positive neurons are only found in the fetal brain; they 

decrease during development [44, 46-49]. In the peripheral nervous system (PNS), DP4 is 

located in the perineurium and Schwann-cells [50].  

The overall presence of DP4 enables the peptidase to act on substrates and immune cells in 

body fluids underlining its relevance in physiological, psychological and immunological 

processes [51]. Aberrant DP4 levels have been reported as clinically relevant for various 

diseases [24, 52-54]. For example, patients with major depression [55] or schizophrenia [56] 
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show a decrease in serum DP4-like activity, whereas an increase in DP4-like serum activity 

was reported in patients with hyporectic eating disorders like anorexia and bulimia nervosa 

[54, 57]. Furthermore, altered DP4 levels are reported in autoimmune diseases like rheumatoid 

arthritis [58-60] or HIV/AIDS [61] as well as in allograft rejection [62] or pregnancy [63].  

1.3. Functional role of DP4  

– enzymatic activity, extracellular matrix binding, and T cell activation 

The importance of DP4 is derived from various biological processes and the multifunctional 

role in mammalian organisms is not only a result of enzymatic activity but also of cell adhesion 

and T cell activation processes (Fig. 2).  

Independently from its enzymatic activity, DP4 shows high affinity for the matrix proteins 

collagen and fibronectin. It could be shown that DP4 initiates the adhesion of rat hepatocytes 

on a collagen matrix [64, 65]. Furthermore, interactions of rat DP4 with fibronectin could be 

demonstrated [66]. The cysteine-rich domain of DP4 is reported to interact with collagen and 

fibronectin of the extracellular matrix (ECM) and two separate binding sites for collagen and 

fibronectin were proven in this domain [2, 67, 68].  

DP4 acts as costimulatory surface molecule, influences T cell activity, and modulates 

chemotaxis [69]. Due to its enhanced expression on activated lymphocytes, DP4/CD26 is 

originally described as a T cell activation marker, but is now regarded as a general marker of 

cellular activation. DP4/CD26 is considered to play a role in T cell activation [20, 70, 71] and 

proliferation via costimulation [72-76]. Maximal T cell activation requires an antigen-specific 

stimulation of the TCR/CD3 complex, provided by a MHC/peptide complex, and a 

costimulatory signal. In this context, caveolin-1 is actually discussed to act as costimulatory 

ligand for DP4/CD26. Ligation of CD26 by caveolin-1 induces upregulation of CD86 – the 

ligand of CD28 – via NF- B activation. CD28 then mediates costimulation and potentiation of 

T cell proliferation in a TCR/CD3-dependent manner [77, 78]. 

DP4 disposes of major influence in body functions via its protease activity. As serine 

exopeptidase, DP4 regulates various physiological processes by cleaving Xaa-Pro dipeptides 

from the N-terminus of oligo- and polypeptides. According to Schechter and Berger [79], 

residues in a peptide substrate are called P1, P2, P3.... Pn counting from the scissile bond toward 

the N-terminus and P1’, P2’, P3’... Pn’ counting toward the C-terminus. Originally, DP4 was 

considered to cleave specifically after proline, or with less efficiency after alanine, at P1 

position. Meanwhile, the substrate spectrum has been enlarged, thus, other amino acids like 
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valine, glycine, and serine for example are accepted in penultimate (here, P1’) position – 

however, with strongly reduced catalytic efficiency [80, 81]. Numerous biologically active 

peptides like neuropeptides, peptide hormones and chemokines possess evolutionary conserved 

proline-rich regions in their sequences [82, 83]. These proline residues serve as proteolytic 

processing regulatory element and prevent from unspecific proteolysis.  

 

 

Figure 2: Schematic representation of the structure of the DP4 homodimer with respect to its 3D 

composition and to its main functional role: /  hydrolase domain and the eight-bladed -propeller 

domain with corresponding numbering of amino acids (aa) (according to human DP4); yellow, plasma 

membrane; red, functions of DP4; Xaa, variable amino acid  

 

As sole natural imino acid, proline connotatively influences secondary and tertiary structures of 

peptides and thus controls their biological activity [84]. Regulation of this activity can take 
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place via proline specific peptidases. In case of many regulatory peptides, it could be shown 

that they are substrates of DP4 [2, 51, 69]. Cleavage of N-terminal dipeptides leads to 

activation or inactivation of the substrates and thus prevents the binding at specific receptors 

and enables the regulatory intervention in biological cascades. Furthermore, cleavage by DP4 

also makes substrates accessible for further or for total degradation by other peptidases (Fig. 

2). 

1.4. Structural and functional homologues of DP4 

For many years DP4 was believed to be a unique cell membrane protease cleaving Xaa-Pro 

dipeptides from the N-terminal end of peptides. Subsequently, other “DP4 activity and/or 

structure homologues” termed DASH have been discovered. These proteins are grouped on the 

basis of having an associated DP4-like enzymatic activity with or without much structural 

homology, or they reveal structural similarity but are enzymatically inactive (dipeptidyl 

peptidase 6 (DP6) and 10 (DP10)). The DASH protein family comprises, for example, 

fibroblast activation protein  (FAP- ) alias seprase, quiescent cell proline dipeptidase (QPP) 

alias dipeptidyl peptidase 2 (DP2), dipeptidyl peptidase 8 (DP8), dipeptidyl peptidase (DP9), 

attractin, N-acetylated -linked acidic dipeptidases (NAALADases) and thymus-specific serine 

protease [85, 86]. These peptidases should be taken into account when conducting tests based 

on DP4-like activity and inhibitor studies. 

1.5. Substrates of DP4 and their physiological impact 

Whereas former experiments concentrated on the question which peptide hormones, 

chemokines, and neuropeptides are cleaved by DP4, later experiments focused on its biological 

function in vivo. Therefore, DP4 specific inhibitors and DP4 negative animal models were 

useful. Exogenously administered inhibitors of DP4 prolong the biological half-life of DP4 

substrates, with several of them being highly important clinical and pharmaceutical targets for 

drug development. 

In vivo and in vitro experiments demonstrated the truncation of many substrates by DP4. N-

terminal cleavage of the peptide hormones glucose dependent insulinotropic polypeptide (GIP), 

glucagon like peptide 1 and 2 (GLP-1, GLP-2) leads to their inactivation. GIP and the active 

form of GLP-1 – GLP-1(7-36) – stimulate, in response to blood glucose increment, the release 

of insulin from pancreatic beta-cells. Inhibition of DP4 increases the amount of intact incretins 

like GLP-1 and GIP, improves their insulinotropic effect, and has been proposed as being a 
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valid therapeutic approach for lowering glucose levels in type 2 diabetes or other disorders 

involving glucose intolerance [51]. Treatment of diabetes type 2 is of major interest and a 

present field of research. Actually, new pharmaceuticals acting as DP4 inhibitors are 

introduced to the market. 

Endomorphin-2 is an endogenous opioid that is abundantly present in the cortex of the human 

brain. It has a high affinity for the  (morphine) opioid receptors that produce analgesia. The in 

vivo inactivation of endomorphin-2 by DP4 was demonstrated in rats and central inhibition of 

DP4 leads to enhanced analgesic actions of exogenous endomorphin-2 [87]. Another substrate 

is -casomorphin (BCM), which is derived from the milk protein casein from mammals. It is 

converted by DP4 into further -casomorphin fragments [88-91]. -casomorphins have potent 

opioid activity and therefore are referred to as exorphins or formones (food hormones). 

Casomorphins can influence the digestion and intestinal absorption processes. They extend the 

storage period of food in the gastrointestinal tract and influence the postprandial metabolism 

via stimulation of insulin and somatostatin secretion [92].  

Substance P (SP) is a widespread neuropeptide that originates from spinal ganglia. This peptide 

has a well-established role in immunity and induces the release of inflammatory mediators 

from mast cells and causes an increase in vascular permeability. SP is – together with other 

tachykinins – responsible for nociceptive transmission from the peripheral to the central 

nervous system [93, 94]. Additionally, DP4 is supposed to enhance nociception by processing 

SP to a more potent derivate (SP3-11; SP5-11) [95] in combination with inactivating potent 

analgesic μ-opiate receptor agonists and other DP4 substrates [53]. Another substrate is the gut 

hormone peptide YY (PYY) [96, 97] which is secreted from the endocrine L cells of the gut 

[98]. It is found at low levels in the small intestine with concentrations increasing distally 

throughout the gut to reach maximum concentration in the rectum. Circulating PYY levels are 

low in the fasting state and rapidly increase postprandially. N-terminal truncation of PYY1-36 by 

DP4 results in PYY3-36 which is a potent physiological regulator of satiety. 

1.6. NPY – a DP4 substrate of high relevance 

NPY was discovered and isolated in 1982 by Tatemoto [99]. Together with the pancreatic 

polypeptide (PP) and PYY, NPY belongs to the pancreatic polypeptide (PP-fold) family. 

Common characteristics of this family are a tyrosine-rich sequence of 36 aa and a C-terminal 

tyrosineamide residue that is essential for biological activity. The name of NPY and PYY is 

due to the presence of a large number of tyrosine residues – abbreviated by the letter Y in the 

single letter amino acid code – including both ends of the molecule. 
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The evolutionary high conservation of NPY (the sequence of human and rat NPY is identical) 

supports the idea of being a key mediator in the regulation of physiological processes. As 

neuropeptide, NPY acts in the CNS and PNS and displays a large array of functions [100-102]. 

NPY is the most abundant neuropeptide in the brain [103] and it is preferentially expressed in 

interneurons [104, 105]. Particularly high levels of NPY-like immunoreactive material are 

found in the hypothalamus, the septum, the nucleus accumbens, the periaqueductal gray, and 

the locus coeruleus [103, 105, 106] whereas moderate levels can be detected in the amygdala, 

the hippocampus, cerebral cortex, basal ganglia, and the thalamus [103, 107]. Furthermore, 

NPY is broadly distributed via NPY-containing cell bodies and is found in fibres of organs like 

pancreas, intestinal tract, heart, thyroids, kidney, lung, and gonads [103]. The localization of 

nerve terminals and cell bodies suggests a wide-ranging role for NPY in behaviour and 

physiology.  

NPY influences feeding behaviour and thus the body weight regulation [108, 109]. The 

influence of NPY on the inhibition of adipolysis and on increased lipoproteinase activity leads 

to an increased storage of fat [110]. Based on this, an important role in pathophysiology of 

obesity and diabetes is attributed to NPY. 

1.6.1. NPY and NPY receptor subtypes 

In rat, the peptides of the PP family activate a heterogeneous population of at least four G 

protein-coupled receptors (GPRs; Y1, Y2, Y4, and Y5) that differ in selectivity [111-113]. NPY 

and PYY are both processed by DP4 via N-terminal dipeptide cleavage from a molecule of 36 

aa length (NPY1-36/PYY1-36) to NPY3-36 /PYY3-36 and thus exhibit changed receptor specificity. 

The (3-36) derivates show a reduction in Y1 receptor affinity, whereas their affinities are not or 

scarcely reduced at the Y2 and Y5 receptors which makes them selective for Y2 and Y5 

receptors relative to Y1 receptors [114]. The different NPY receptors that are involved in 

activating processes in rat and human are presented in table 1.  

Further discovered and discussed receptor subtypes are the Y3 receptor – which is 

pharmacological detectable, however, not yet cloned – the Y6 receptor that is non-existent in 

rats and non-functional in humans and other primates, and the Y7 receptor which is not found 

in mammals. A very recently discovered potential NPY receptor is the G protein-coupled 

receptor (GPR)83 [115].  

Originally, the subdivision of NPY receptors comes from the observation that C-terminal 

fragments of NPY or PYY, e.g. NPY 13-36, can mimic some NPY responses while some others 
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cannot [116]. This has led to the proposal that receptors that are only activated by the 

holopeptides are designated Y1, whereas those that are activated by the holopeptides and the C-

terminal fragments are designated Y2. Despite the synthesis of numerous C-terminal fragments, 

the (3-36), (13-36), and (18-36) fragments of NPY and PYY are most frequently used without 

apparent advantages between them [113]. C-terminal NPY fragments are still useful to 

discriminate Y1 and Y2 receptors, but they are not selective for Y2 receptors since they can also 

activate Y5 receptors at similar concentrations [114]. Therefore, synthesized forms of NPY and 

PYY exist in which different amino acids are substituted (e.g. [Pro34]NPY).  

Table 1: Functional NPY receptor subtypes in rat/human 

Receptor Y1 Y2 Y4 Y5 GPR83/GIR 

Major 

occurence 

periphery 

hypothalamus 

brain 

hippocampus 

intestine 

colon 

hypothalamus brain, thymus; 

selectively up-

regulated surface 

molecule by 

Treg cells 

Related 

action 

anxiolysis,  

food intake, 

vasoconstriction, 

nociception 

memory, 

epilepsy,  

secretion,  

food intake? 

gastro-

intestinal 

regulation 

food intake?,  

epilepsy? 

orphan G 

protein-coupled 

receptor 

Agonist 

order of 

potency 

NPY  PYY >> PP NPY  PYY 

>> PP 

PP > NPY = 

PYY 

NPY  PYY  

PP 

NPY  PYY >> 

PP 

Selective 

agonists 

[Leu31, Pro34]NPYa, 

[Pro34]NPYa, 

[Leu31, Pro34]PYYa, 

[Pro34]PYYa 

NPY3-36
b,  

PYY3-36
b,  

NPY13-36
b, 

PYY13-36
b 

PP [Ala31, 

Aib32]NPY 

NPY3-36
 b, PYY3-

36
 b 

 

a selective relative to Y2 receptors 
b selective relative to Y1 receptors 

modified after Cabrele et al., 2000 [111], and Alexander et al. 2007 [117]; Treg cells, regulatory T cells 

 

NPY is involved in various physiological and behavioural processes that are mediated via DP4 

cleavage [1, 51, 118]. Activation of the Y1 receptor induces a long-lasting vasoconstriction and 

enhances the effects of vasoconstrictive substances like angiotensin II or noradrenaline – 

influenced by NPY [119-121]. Anxiolysis and sedation are mediated within the CNS and are 

modulated via the Y1 receptor [112, 122-124]. In this context, NPY has a sedative [124-126] 

and an anxiolytic effect [112, 127, 128]. Furthermore, mainly the Y1 receptor seems to be 

involved in regulation of food up-take, although the Y5 receptor is discussed as appetite 
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receptor [114, 129-131]. The Y2 receptor has also been focussed in regard to its food intake 

regulation [132-134]. NPY has an antinociceptive effect that is mediated via Y1 receptors. 

Various effects that are mediated via the Y2 receptor are based on the inhibition of the release 

of neurotransmitters. Thus, NPY inhibits the release of glutamate in the CNS as well as the 

release of noradrenaline and acetylcholine in the PNS via presynaptical activation of the Y2 

receptor. NPY enhances the memory retention by activation of the Y2 receptor [135-137] and 

regulates the circadian rhythm of rodents [138-143]. 

1.6.2. Role and sources of N-terminally truncated NPY3-36 and PYY3-36 

peptides 

The power of DP4, to act as modulator of important regulatory processes via N-terminal 

truncation, gives rise to think about the precise localization where these actions may take place. 

Different factors that determine these regulatory processes are amongst others the amount and 

localization of the corresponding substrate receptors, substrate concentration, kinetic 

parameters, and the consequence of action (e.g. activation, inactivation, or degradation). In line 

with this, sources of N-terminally truncated NPY, PYY, and further substrates are of highest 

interest. An important role for N-terminally truncated PYY has been suggested when 

Batterham et al. [144] reported on the potent feeding regulatory effects of PYY3-36. However, 

controversies arose when a number of laboratories could not repeat the core observation that 

PYY3-36 suppressed food intake in rodents.  

Although the detailed comparison of methodologies and protocols has led to several 

hypotheses, the reasons for these discrepancies are unknown. Nonetheless, publications of 

positive and negative results on pharmacological effects and endogenous roles of PYY in 

energy balance have triggered new studies with increased attention to these details and 

experimental conditions [145]. Unfortunately, the source of this truncated peptide remained 

unknown. Despite the reported release of PYY1-36 into the circulation, it seems to be unlikely 

that such important effects that are ascribed to PYY3-36, are primarily due to „non-specif“ 

cleavage in the plasma. We therefore hypothetized that PYY1-36 and also NPY1-36 are truncated 

intracellularly by DP4 and investigated this in co-transfection experiments. 

1.7. Animal models of DP4 deficiency 

The overall importance of the ubiquitously distributed DP4 is not only due to its involvement 

in various diseases and immune functions but is reflected by its broad range of substrates – 
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each being individually involved in biological cascades. Animal models serve for a better 

understanding of the role and function of D4. Therefore, former investigations concentrated on 

the charaterization of the DP4 deficient model of F344 rats – including the two DP4 deficient 

substrains F344/DuCrjSvH-Dpp4m and F344/Crl(Wiga)SvH-Dpp4m, previously named 

F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) – that were compared to wild type rats 

F344/Crl(USA) or F344/Ztm [146-148].  

It has been shown that in rat Dpp4 is located on rat chromosome 3 (RNO3) and is inherited in a 

semi-domant mode [146]. Furthermore, these rats are DP4 deficient due to a point mutation in 

the Dpp4 gene – a transition from G to A at nucleotide 1897 that leads to substitution from Gly 

to Arg in the catalytic center of the enzyme at amino acid position 633 [30]. While normal 

levels of DP4 mRNA are produced [149], the mutation causes a conformational change, 

leading to a rapid degradation in the endoplasmic reticulum [30] and thus, leading to a total 

loss of DP4 activity [30]. DP4 deficiency leads to a prolonged half-life of DP4 substrates.  

Consequently, animals of the former model were phenotyped by our group mainly with respect 

to behavioural and physiological aspects that were attributed to differential degradation 

processes of various substrates. Although both DP4 deficient F344 substrains bear the identical 

mutation, they differ in some results of phenotyping [146, 147]. Due to this fact and the point 

that the different rat substrains were originally obtained from different Charles River facilities, 

it is very likely that differences in the genetic background might have an influence on those 

differential outcome measures in F344/DuCrjSvH-Dpp4m and F344/Crl(Wiga)SvH-Dpp4m rats. 

In addition, microsatellite analysis revealed differences in the genetic background between the 

mutant and the various non-deficient F344 substrains apart from Dpp4 (unpublished data). To 

yield a homogenous genetic background for precise investigation and to enhance behavioural 

and physiological differences that were found between the DP4 deficient F344 substrains and 

the F344 wild type substrain, the new DP4 deficient congenic DA substrain DA.F344-

Dpp4m/SvH was developed. Thereby, the mutation of the F344/Crl(Wiga)SvH-Dpp4m substrain 

was transferred onto the genetic background of DA/Ztm rats. The development was speeded-up 

with help of marker-assisted selection. Wild type DA/Ztm rats show a nearly two-fold 

expression of DP4-like activity in comparison to wild type F344/Crl(USA) rats. Thus, we 

expect differences between DP4 deficient and DP4 wild type rats to be more distinct.  

A further aspect that requires and justifies this new congenic animal model next to the above 

mentioned advantages of high DP4-like activity and the homogenous genetic background, is 

for example, the possibility of testing the specificity of DP4 inhibitors – wherefore the 

homogenous genetic background is essential. In addition, the species-specific contribution of 
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Rattus norvegicus can back-up findings of the existing Dpp4tm1Nwa mouse model (CD26 

knockout (KO)) but importantly, it can also reveal discrepancies. Interestingly in this context 

are also studies with NPY transgenic rats [150, 151] that over-express prepro NPY mRNA or 

NPY KO mice. The latter revealed contradictory results to effects that were ascribed to NPY 

[152-154]. However, as these “classical” KO mice represent germ-line KO mice, a life-long 

compensation for the lack of NPY might explain why the phenotype is less pronounced. This 

suggests that there is a need for inducible NPY and NPY receptor KO mice. Furthermore, this 

clearly demonstrates that any kind of approach gives its own answer and reminds that various 

approaches help to clarify regulatory functions and networks. 

1.8. Aims of the present thesis 

The aim of the present study is to further investigate and understand the role of DP4 in vitro 

and in vivo with special emphasis on its interaction with NPY. Therefore, we focused in a first 

attempt on the intracellular transport of DP4 and its substrate NPY to search for possibilities of 

fine-tuning mechanisms in intracellular regulation of NPY1-36/NPY3-36 levels, caused by DP4. 

Additionally, the involvement of structural and functional homologues of DP4 was discussed 

with respect to their potency to control endogenous NPY levels [155].  

A second step was the investigation of DP4 deficiency in a new animal model on the 

homogeneous genetic background of DA rats. We conducted a comprehensive phenotyping 

strategy based on endocrine and immunological as well as on behavioural and physiological 

aspects. We focused on the latter, since behaviour and physiology are likely to be regulated by 

DP4 substrates, especially by NPY. These studies were made to detect fields of impact and to 

appraise possible consequences of the nowadays actually discussed DP4 inhibitors. 

Furthermore, our data serve to support theories and hypotheses of the function of DP4 from 

findings in the previously used animal model of DP4 deficient F344 rats and will be helpful for 

the further use of the novel animal model for DP4 deficiency.  

The last field of our studies focused on the differential pain perception/processing in DP4 

deficient and wild type F344 and DA substrains, which relates to the differential stress-

responsiveness in DP4 deficient animals. These variable findings in stress responsiveness 

result in the phenomenon of differential stress-induced analgesia. Here, DP4 deficient congenic 

DA rats were compared with spontaneous mutant DP4 deficient F344 rats in a genetically and 

pharmacological based approach. The modulation of stress-induced analgesia in DP4 deficient 

animals was compared with effects resulting from pharmacological inhibition of DP4. This 

additional pharmacological approach comprises the analysis of DP4 deficient and wild type 
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F344 rat substrains after i.c.v. application of either NPY or the DP4 inhibitor isoleucyl-

thiazolidide (Ile-Thia). 
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Abstract 

N-terminal truncation of NPY has important physiological consequences, because the truncated 

peptides lose their capability to activate the Y1-receptor. The sources of N-terminally truncated 

NPY and related peptides are unknown and several proline specific peptidases may be 

involved. First, we therefore provide an overview on the peptidases, belonging to structural and 

functional homologues of dipeptidyl peptidase 4 (DP4) as well as aminopeptidase P (APP) and 

thus, represent potential candidates of NPY cleavage in vivo. Second, applying selective 

inhibitors against DP4, DP8/9 and DP2, respectively, the enzymatic distribution was analyzed 

in brain extracts from wild type and DP4 deficient F344 rat substrains and human plasma 

samples in activity studies as well as by matrix assisted laser desorption/ionisation-time of 

flight (MALDI-TOF)-mass spectrometry. Third, co-transfection of Cos-1 cells with Dpp4 and 

Npy followed by confocal lasermicroscopy illustrated that hNPY-dsRed1-N1 was transported 

in large dense core vesicles towards the membrane while rDP4-GFP-C1 was transported 

primarily in different vesicles thereby providing no clear evidence for co-localization of NPY 

and DP4. Nevertheless, the review and experimental results of activity and mass spectrometry 

studies support the notion that at least five peptidases (DP4, DP8, DP9, XPNPEP1, XPNPEP2) 

are potentially involved in NPY cleavage while the serine protease DP4 (CD26) could be the 

principal peptidase involved in the N-terminal truncation of NPY. However, DP8 and DP9 are 

also capable of cleaving NPY, whereas no cleavage could be demonstrated for DP2. 
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2.1. Introduction 

N-terminally truncated derivates of NPY and PYY are involved in several physiological 

functions. In contrast to the full-length peptide, truncated forms starting at position 2 or 3 lose 

their efficacy at the Y1-receptor but they are active especially at the Y2-receptor. For a better 

understanding of this differential regulation detailed knowledge on the sources as well as on 

the local and systemic regulation of NPY3-36 and PYY3-36 levels is indispensable. In fact, NPY3-

36 and PYY3-36 have been shown to play a role in energy metabolism via inhibition of exocrine 

pancreas function [32] or other feeding associated processes [36, 58, 74] and probably are 

involved in several other as yet to be discovered physiological functions. These regulatory 

processes are closely dependent on the expression and function of DP4-like peptidases due to 

their capability in hydrolyzing the post-proline bond between position 2 and 3 of NPY and 

PYY. 

In a series of studies we characterized F344 rat substrains, which are deficient for DP4 and 

which exhibit improved glucose tolerance, differential weight gain, as well as differential 

immune functions [46]. In addition, these DP4 deficient substrains exhibit a phenotype of 

reduced stress-responsiveness and anxiety [49], and were used to demonstrate that central 

application of NPY results in more potent anxiolytic-like and sedative-like effects when 

injected intracerebroventricularly (i.c.v.) in deficient animals [48]. Recently, we also found an 

increased potency of i.c.v. NPY with regard to pain perception in DP4 deficient substrains 

[47]. These findings are most likely mediated by prolonged activation of central NPY Y1-

receptors, which is the predominant anxiolytic-like acting receptor type of NPY [50].  

DP4 (CD26) is presumably the peptidase most frequently involved in N-terminal truncation of 

NPY [64]. From a theoretical point of view, however, other DP4-like peptidases may also be 

involved in NPY cleavage. In this review we summarize recent developments in the field of 

DP4 functional homologues and – in addition – present initial data investigating intracellular 

localization of DP4 and NPY using confocal analysis of Npy/Pyy and Dpp4 co-transfected 

COS-1 cells as well as cleavage of NPY by functional homologues of DP4. 
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2.2. Review on DP4-like structural and functional homologues 

2.2.1. Classification of peptidases  

Enzymes in general are classified into six enzyme classes due to their catalytic reaction by the 

code system IUPAC and IUBMB. Peptidases are also named peptide hydrolases, based on their 

capability to hydrolyse peptide bonds and belong to the subclass 3.4, which is further sub-

divided into 14 sub-subclasses, depending on the type of active site of the enzymes and/or the 

kind of the preferred substrate. Furthermore, a new structure-based classification system, called 

MEROPS, was introduced by Neil D. Rawlings and Alan J. Barett in 1993, assigning 

peptidases with statistically significant similarities in amino acids to a family, whereas 

homologous families are grouped together into a clan [78].  

In the following, we especially focus on the potential NPY degrading aminopeptidases, the 

members of the Dpp4 gene family, the functional homologues of DP4, DP2 and the X-prolyl 

aminopeptidases. The classification of these enzymes within the different systems, their 

expression, and potential physiological role is summarized in table 1. 

Dipeptidyl peptidase 4 (DP4) as representative member of the DP4 gene family is the best 

understood proteinase with the rare capability of hydrolysing post-proline bonds [29]. DP4 

comprises 766 amino acids and is a type II transmembrane glycoprotein that has also a soluble 

shedded form [65]. The multifunctional peptidase has a molecular weight of 110 kDa and is 

active as a homodimer. It is known to cleave peptide hormones such as GLP-1, GLP-2, GIP, 

glucagons; neuropeptides including NPY, substance P, endomorphin 1 and 2 as well as various 

chemokines. Thus it is involved in glucose homeostasis, food up-take, anxiety, stress, 

cardiovascular, nociception and chemotaxis. Furthermore, it functions as an extracellular 

adhesion molecule by binding to collagen, fibronectin and plasminogen. In addition, it is 

implicated in various immune responses via its interaction with several immunological 

molecules such as ADA or CD45 and acts as a marker for activated T cells [11, 39, 53]. It is 

ubiquitously distributed with the highest expression in kidney, lung, liver and small intestine 

whereas low expression is found in brain, heart and skeletal muscle. According to kinetic 

analysis, DP4 has the highest selectivity for NPY and PYY [9, 30, 37, 40]. The human gene 

location of DP4 is 2q24.2.  

Fibroblast activation protein  (FAP ) alias seprase is a type II transmembrane protein. It 

consists of 760 amino acids and forms a 170 kDa homodimer [27]. Like DP4, the monomeric, 

N-glycosylated 97 kDa subunits are proteolytically inactive, thus their proteolytic activities are 
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dependent upon subunit association [75]. Furthermore, FAP  can form a heterodimeric 

membrane-bound proteinase complex with DP4 [83]. In comparison to DP4, FAP  displays 

only a hundredth of post-proline dipeptidyl aminopeptidase activity [25]. However, in addition 

to its DP4-like activity, it exhibits also post-proline endoproteolytic activity specific for …Xaa-

Gly-Pro-Yaa… sequences [24]. Thus, it has been described as a gelatinase and collagenase type 

I, involved in wound healing and metastasis. Unlike DP4, protein expression of FAP  is found 

on pathological tissue such as epithelial cancer, wounds and stellate cells in liver cirrhosis [28]. 

A soluble form has recently been found in serum where it was shown to cleave alpha2-

antiplasmin [55, 56]. So far, there have been no reports on the cleavage of NPY by FAP , 

though its post-proline dipeptidyl aminopeptidase activity is expected to be minor and no 

endoproteolytic hydrolysis should occur. The human gene localization is 2q23, close to the 

Dpp4 gene and therefore gene duplication has been suggested [1]. 

Dipeptidyl peptidase 8 (DP8) consists of 882 amino acids and has a molecular weight of 100 

kDa. Although DP8 has previously been reported to be monomeric, recent data gave strong 

evidence for a dimeric structure with a suggested molecular weight above 200 kDa [9]. So far, 

it has been suggested to be located in the cytoplasm as a soluble protein and up to now, there 

has been no evidence for any secretion [2, 15]. Using several chromogenic substrates, [77] DP8 

was shown to display post-proline dipeptidyl aminopeptidase activity similar to that of DP4. 

The well-known natural substrates of DP4, NPY and PYY, are both also cleaved by DP8, 

however with lower efficiency compared to DP4. In fact, while NPY was demonstrated to be 

the best substrate for DP8, PYY had a very long half life [9].This would imply that the 

specificity is extended to P´1, which differ in serine and isoleucine for NPY and PYY, 

respectively. DP8 is distributed ubiquitously with its highest expression in testis and brain. 

Furthermore, it is up regulated in activated lymphocytes [2]. However, its physiological 

function is presently unknown and still awaits further studies. The human gene localization is 

15q22.  

Dipeptidyl peptidase 9 (DP9) has previously been reported to be active as a cytosolic 

monomer comprised of 863 amino acids with a molecular weight of approximately 100 kDa 

[4]. Further ORFs of 2913 bp [28] and 3006 bp [4] have been described. Recently, a new DP9 

variant with another start site in a prolonged ORF leading to an enzymatically active protein of 

892 amino acids has been published by Bjelke et al. [9]. This variant was shown to be active as 

homodimer with an estimated molecular weight above 200 kDa, whereas no activity could be 

detected for the 863 amino acid variant [9]. Using several chromogenic substrates, Qi et al. 

(2003) and Ajami et al. (2004) illustrated post-proline dipeptidyl aminopeptidase activity for 
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DP9 similar to that of DP4. Like DP8, DP9 is able to cleave NPY and PYY, though with a 

lower efficiency compared to DP4. Likewise, NPY, was shown to be the best natural substrate 

for DP9, whereas PYY exhibited the longest half life of the investigated substrates [9]. DP9 is 

ubiquitously distributed, with its highest expression in liver, heart and skeletal muscle [4, 68, 

77]. Its physiogical function is not known so far. The localization of the human gene is 

19p13.3. Due to their shortest gene size, lowest number of exons and the active site being 

located on one exon in comparison to DP4 and FAP , DP8 and DP9 have been suggested to be 

the most ancient DP4-like enzymes [1, 2]. It should be mentioned that side effects obtained 

during the course of toxicological studies of a non-selective inhibitor were due the inhibition of 

DP8 and/or DP9 [54].   

The two other members of the DP4 gene family are not involved in NPY processing, because 

they lack any DP4 activity due to the absence of the catalytic serine and are therefore 

designated with dipeptidyl peptidase like protein 1 (DPL1) and 2 (DPL2). Both of them are 

type II membrane-bound glycoproteins, suggested to interact with the voltage-gated potassium 

channel Kv4. While DPL1 is exclusively expressed in the brain, DPL2 is found in brain, 

pancreas and adrenal gland [1, 14, 15, 28, 77, 86, 91].  

Dipeptidyl peptidase II (DP2) alias quiescent cell proline dipeptidase (QPP), belongs to the 

family S28. The soluble serine protease possesses a proform and has a length of 492 amino 

acids [16, 87] with a molecular weight of 58 kDa. Dimerization is required for the catalytic 

activity and occurs via a leucine zipper motif, which is novel for proteases. The homodimer is 

located in cellular vesicles that are distinct from lysosomes [57]. Using chromogenic 

substrates, DP2 displays post-proline dipeptidyl aminopeptidase activity similar to DP4, 

however with an acidic pH optimum of 5.5 [59]. Hydrolysis of peptides is highly restricted to 

size. While DP2 readily hydrolyses tripeptides, its activity decreases rapidly with increasing 

chain length of peptide. Thus, it was shown to cleave only fragments of substance P1-4, 

bradykinin1-3 or bradykinin1-5 [13, 67]. DP2 is ubiquitously distributed with high expression in 

kidney, brain, testis and heart [21, 31]. Since it was previously thought to be a lysosomal 

enzyme, its physiological function to date is unknown. The human gene localization is 9q34.3.  

Four enzymes have previously been acclaimed to exhibit DP4-like activity, including attractin 

(DPPT-L) and N-acetylated alpha-linked acidic dipeptidases I, II and L (NAALADase I, II 

and L) [20-22] [71, 84]. However, this is controversially discussed and there are also several 

hints from a thorough analysis of serum DP4 activity for attractin [23] and kinetics of purified 

recombinant NAALADase II, respectively [7] that these proteins exibit no DP4-like activity. 
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Furthermore, NPY is also truncated to NPY2-36 by prolyl aminopeptidases, belonging to 

family M24 [43, 60, 62, 63]. There are two X-prolyl aminopeptidases, located on different 

genes. 

X-prolyl aminopeptidase 1 (XPNPEP1) is a soluble cytosolic protein, lacking the 

hydrophobic signal sequence at the N-terminus and the GPI-anchor at the C-terminus [17]. It is 

a homodimer, comprised of 623 amino acids with a molecular weight of 71 kDa per subunit 

[88]. The enzyme contains a putative proton shuttle 5 and divalent metal ligands [85]. Due to 

its proline specificity, it is suggested to hydrolyse peptide hormones, neuropeptides and 

tachykinins. Unlike DP4, it is able to hydrolyse peptides containing two consecutive prolines 

in penultimative N-terminal position (Xaa-Pro-Pro-Yaa…), such as bradykinin [33, 34, 60]. 

XPNPEP1 is ubiquitously distributed, with its highest expression in pancreas, followed by 

heart and muscle. Only XPNPEP1 but not XPNPEP2 is found in the brain [88]. The human 

gene location is 10q25.3.  

X-prolyl-aminopeptidase 2 (XPNPEP2) is a GPI-anchored membrane-bound aminopeptidase 

encoding for 673 amino acids with a molecular mass of 75.5 kDa. XPNPEP2 is expressed in 

kidney, lung, heart, placenta, liver, small intestine, and colon, but not in brain, skeletal muscle, 

pancreas, spleen, thymus, prostate, testis, ovary, or leukocytes [89]. It hydrolyses NPY and 

bradykinin [69, 70] and is suggested to be involved in cardiovascular diseases [3, 10]. The 

human gene localization is Xq25.  

Based on this compelling theoretical evidence, and the fact that vesicular localization of 

soluble DP4 has already been observed in -cells of islets of Langerhans [35, 76], we started to 

investigate a possible co-localization of DP4 and NPY/PYY intracellularly. 
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2.3. Materials and methods 

Animals 

While the F344/Crl(Por/98), also named F344/Crl(USA), and F344/Ztm rat substrains exhibit a 

DP4 wild type-like phenotype, the substrain F344/Crl(Wiga)SvH-Dpp4m is deficient for DP4. 

F344/Crl(Por/98) and F344/Crl(Wiga)SvH-Dpp4m substrains were originally obtained from 

Charles River in 1998 and are now further inbred. 

Tissue extraction 

Brains, obtained from F344/Crl(Por/98) and F344/Crl(Wiga)SvH-Dpp4m rats, were extracted 

with 20 mM Tris(hydroxymethyl)aminomethane (Tris)/HCl, pH 7.6 by homogenisation, 

sonification and subsequent centrifugation at 13,000 g. The extracts were further fractionated 

into cytosolic and membrane by ultra-centrifugation at 100,000 g for 1 h. The resulting pellet 

was resupended with equal volumes of 20 mM Tris-HCl, pH 7.6, containing 0.1% -

octylglucopyranoside. Human EDTA plasma was obtained from healthy volunteers. 

Cloning and purification of DP2 

The DP2 gene was cloned into the plasmid pcDNA3.1(+) and COS-7 cells were transiently 

transfected with the plasmid. Expression was examined by Western blot analysis. The cells 

were lysed and the soluble fraction was applied to an affinity resin nickel-nitrilotriacetic acid 

(Ni-NTA) (Pharmacia, Uppsala, Sweden). Active fractions were eluted by 0.3 M imidazole and 

pooled fractions were subsequently applied onto a size exclusion chromatography. The active 

fractions were pooled and used for kinetic investigations. 

Activity and inhibition studies 

Activity was determined with 0.125 mM alanyl-prolyl-7-amido-4-methylcoumarin (Ala-Pro-

AMC) in 40 mM N-2-Hydroxyethylpiperazine-N’-ethane-sulfonic acid (HEPES), pH 7.6 and 

0.25 mM Ala-Pro-AMC in 74 mM NaAcetate, pH 5.5 for DP4-like and DP2 activity, 

respectively. Activity was measured at excitation 380 nm and emission 470 nm with 

microplate reader Fluorostar Optima (BMG LabTech GmbH, Offenburg, Germany). Protein 

concentration was determined by Bradford method, using BSA as standard [12]. The selective 

inhibitors UG 92, UG 93 and DAB were used against DP4, DP8/9 and DP2, respectively. 

P32/98 was a non-selective inhibitor which inhibits all DP4-like enzymes. Inhibitor mix was 

composed of all the selective inhibitors. Except for L-2,4-Diaminobutyrylpiperidinamide 
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(DAB) (Merck Bioscience, Darmstadt, Germany), all inhibitors were synthesized by 

probiodrug.  

MALDI-TOF-Mass Spectrometry 

25 μM NPY (probiodrug AG, Halle, Germany) was incubated with 30 mU of recombinant 

enzyme or tissue extract in absence/presence of selective and non-selective inhibitors. Analysis 

of DP4-like enzymes in tissue extracts was performed in 20 mM Tris/HCl, pH 7.6, while DP2 

was assayed 10 mM 2-(N-Morpholino)-ethanesulfonic acid (MES), pH 5.5. Several aliquots 

were taken between 2 min and 24 h and the reaction was stopped with equal amounts of 0.1 % 

Trifluoroacetic acid (TFA). Afterwards, samples were purified with ZipTip C18 (Millipore 

GmbH, Schalbach, Germany) according to the instructor’s manual, mixed with the matrix 

sinapinic acid at a ratio 1:1, and analysed with MALDI-TOF mass spectrometry (Voyager-DE 

Pro Biospectrometry workstation from Applied Biosystem). For blood analysis, 100 μM NPY 

was applied in the same assay system described above. 

Cell culture  

COS-1 cells (American Type Culture Collection; Rockeville, USA) were grown in Dulbecco’s 

modified Eagle’s medium (DMEM) with 10% fetal calf serum (BioWest, Essen, Germany) at 

37°C. Plasmid transfection of COS-1 cells was performed with diethylaminoethyl (DEAE) 

dextran [5]. 

Confocal fluorescence microscopy 

Confocal images of living cells were acquired on a Leica TCS SP2 microscope using a 63 

water planachromat lens (Leica Microsystems) essentially as described before [44]. 

Construction of cDNA clones 

DP4 cDNA — mRNA was isolated from the prepared small intestine of F344/Crl(Por/98) rats 

with Qiagen tissue kit. cDNA was synthesized with the First Strand cDNA Synthesis Kit 

(Amersham Pharmacia Biotech, Uppsala, Sweden). PCR reactions were performed with 

primers (MWG-Biotech GmbH) designed after the published mRNA sequence of Rattus 

norvegicus dipeptidyl peptidase 4 [gi:6978772]. For further cloning the chosen sense-primer 

5’-AAAAAAGCTTT GAAGACACCGTGGAAGGTT-3’ introduced a HindIII site (bold) and 

the antisense-primer 5’-AAAGGATCCGAGAGCCTTGCCATGCTA-3’ a BamHI site (bold) 

into the PCR product. rDpp4 was cloned into pEGFP-C1 (Invitrogen/Clontech Laboratories, 
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Inc., Heidelberg, Germany). Constructs were restriction-mapped and sequenced to verify 

correctness of the fragments. 

NPY cDNA — hNPY(-CPON)eGFP-N1 was kindly provided by Richard E. Mains 

(Department of Neuroscience; The University of Connecticut Health Center). GFP was 

replaced by dsRed1 from pcdsRed1-N1 (Invitrogen/Clontech Laboratories, Inc., Heidelberg, 

Germany) by vector digestion with NotI and BamHI (MBI Fermentas, St. Leon-Rot, 

Germany). 

PYY cDNA — rat PYY fragment cloned into pGEM3 encoding a portion of the C-terminal 

extension were kindly provided by Dr. Greeley (University of Texas Medical Branch) [92]. 

The PYY fragment was purified and completed by PCR choosing the following primers: 

thereby the sense-primer 5’-AGAATTCATGGTGGCGGTACGCAGGCCTTGGCCCG 

TTATGGTC-3’ introduced an EcoRI site and the anti-sense primer 5’-TTTGGATCCG 

CCCCACTGGTCCACACCTTC-3’ a BamHI restriction site at the end of the construct. The 

purified PCR product was cloned into the BamHI and EcoRI restriction sites of pcdsRed1-N1. 
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2.4. Results 

Figure 1 clearly depicts that most of the DP4-like activity in brain extracts, determined with the 

chromogenic substrate Ala-Pro-AMC and selective inhibitors, was contributed by DP2, 

followed by DP8/9, whereas only low levels of DP4 could be detected. Interestingly, there 

seemed to be no compensation by the other DP4-like enzymes in DP4 deficient 

F344/Crl(Wiga)SvH-Dpp4m rat substrain (Fig. 1). However, using recombinant human DP2, no 

hydrolysis of NPY could be observed (Fig. 2) in contrast to human recombinant DP4 that 

degraded NPY completely after 30 min (data not shown). Furthermore, MALDI-TOF-mass 

spectrometry of NPY hydrolysis by brain extract from F344/Crl(Por/98) rats in 

presence/absence of selective inhibitors of DP4-like enzymes showed the existence of DP4 and 

DP8/9 as illustrated in Figure 3A-D. On the contrary, NPY hydrolysis of human plasma 

revealed a major contribution by DP4, and a minor one by DP8/9 (Fig. 3E-H). In addition, 

longer incubation of NPY and cytosolic fraction of brain extract confirmed its cleavage to 

NPY2-36 by cytosolic prolyl-aminopeptidase. A dominant fragment of NPY found in all assays 

with brain extracts, was NPY1-30 (Fig. 3 and 4). 

Figures 5A-C show the expression of NPY-dsRed1-N1 and DP4-GFP-C1 in the same 

transfected Cos-1 cell being screened at different wavelengths, thereby measuring emission of 

DP4-GFP-C1 (Fig. 5A) and NPY-dsRed1-N1 (Fig. 5B) fluorescent constructs that are 

transformed to a single image (Fig. 5C) (overlay). The Golgi apparatus, in Figure 5A-C located 

approximately in the center of the picture, is detectable by transported NPY-dsRed1-N1 and 

DP4-GFP-C1 constructs. NPY-dsRed1-N1 containing vesicles leave the trans-Golgi network 

(TGN) and are further transported along cytoskeleton tracks that are clearly indicated in Figure 

5B and 5C. These span over the nucleus, visible below the Golgi apparatus. DP4-GFP-C1 

associated vesicles, are transported through the cytoplasm towards the cell membrane as well, 

where vesicle fusion and integration of DP4-GFP-C1 takes place. Fusion and integration at the 

cell membrane are indicated by non-vesicular appearance of DP4-GFP-C1. Furthermore, 

transport of DP4-GFP-C1 containing vesicles along the cell membrane could be observed. The 

overlay in Figure 5C suggests that DP4-GFP-C1 and NPY-dsRed1-N1 are transported in 

distinct vesicles although sometimes seeming to co-localize in the Golgi apparatus or in the 

cytoplasm due to an overlap or slack flow of different vesicles. Further observations were 

made in Cos-1 cells, transfected with PYY-dsRed1-N1 and DP4-GFP-C1 (data not shown), 

where also no clear evidence for a co-localization of DP4-GFP-C1 and PYY-dsRed1-N1 could 

be demonstrated so far. 
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2.5. Discussion 

In the present paper, the members of the DP4 gene family as well as structural and functional 

homologues are discussed as candidates for N-terminal NPY hydrolysis. While FAP  may 

cleave dipeptides from the N-terminus [25], though at a much lower rate, it is highly unlikely 

to hydrolyse NPY endoproteolytically due to its lack of the -Gly-Pro- sequence in -P2-P1-

position [24]. Furthermore, as FAP , is exclusively found in pathogenic tissue [1, 19, 26, 28, 

52, 72] except for serum [55, 56], it can be ruled out as a NPY cleaving enzyme. Although, 

DP2 was shown to be the most dominant DP4-like enzyme in rat brain (Figure 1), it was 

unable to cleave NPY due to its peptide length (Fig. 2) [66, 67]. This is in agreement with 

recent findings of Brandt et al. that investigated the hydrolysis of several potential natural 

substrates by DP2, thereby obtaining no cleavage [13].  

Thus, the remaining DP4-like enzymes potentially cleaving NPY are DP4, DP8 and DP9. 

Using chromogenic substrate and selective inhibitors, higher levels of DP8/DP9 than DP4 

could be clearly demonstrated in the brain as illustrated in Figure 1. Nonetheless, MALDI-

TOF-mass spectrometry showed similar cleavage of NPY by DP4 and DP8/9 respectively, 

confirming the higher catalytic efficiency of DP4 on the one hand [9] and larger representation 

of DP8/9 on the other hand. In addtition, analysis by MALDI-TOF-mass spectrometry could 

also detect NPY2-36 truncation by soluble prolyl aminopeptidase (Fig. 4) [61, 62, 66].  

Preliminary results of enzymatic histochemistry revealed that DP4 is found predominantly in 

the meninges and blood vessels, whereas DP8/9 seemed to be more ubiquitously distributed in 

the brain (data not shown). Conversely, NPY is mainly hydrolyzed by DP4 in human plasma 

and only partially by DP8/9. As there is already strong evidence that serum NPY crosses the 

blood brain border (BBB), one can conclude that peripheral NPY is primarily truncated by 

soluble serum DP4 or during crossing of the BBB by membrane-bound DP4 at the meninges 

and/or blood vessels [51]. Alternatively, NPY from neurons in the brain [6] may most likely be 

cleaved by DP8/9. Thus, neither the histology nor the cytology of NPY cleavage are 

sufficiently understood at this time.  

Peptides of the NPY family are synthesized as large precursor molecules in the endoplasmic 

reticulum. Following post-translational modification, precursor molecules are translocated to 

the Golgi apparatus, sorted in the trans-Golgi network, and guided in vesicles towards the 

secretory pathway. After exocytotic release of NPY-like peptides, their local action relies on 

various circumstances such as their concentration, receptor selectivity and expression of 

Y receptors. However, their half lives and receptor selectivity is strongly modulated by specific 
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peptidases such as the DP4-like enzymes and prolyl-aminopeptidase [61, 62, 66]. Therefore, 

the action of NPY and NPY-like peptides is also influenced by the local distribution and 

concentration of its degrading peptidases either intracellularly or extracellularly [90]. Confocal 

microscopy of COS-7 cells transfected with DP8 or DP9 have shown cytosolic localization 

close to the Golgi apparatus [2, 4]. Analysis by electron microscopy in turn, demonstrated 

granular localization of soluble DP4 in –cells of porcine islets of Langerhans [35, 76]. 

Furthermore, there has been a number of reports on internalization of DP4, partially depending 

on post-translational modification [8, 38, 41, 42, 73, 81, 82].  

Hence, while it is very likely that extracellular peptidases with DP4-like functional homology 

cleave NPY and PYY, there also might be intracellular cleavage resulting in release of N-

terminally truncated peptides. For this reason we performed transfection and confocal 

lasermicroscopy studies in Cos-1 cells and investigated whether DP4 and NPY get into contact 

in the cell and co-localize within vesicles thus enabling a more fine-tuning mechanism via a 

possible cleavage within a vesicle. The possibility of a shared transport path from the trans-

Golgi network in collective transport vesicles or via internalization of DP4 into the cell and 

thus the theoretical ability to modify NPY could not clearly be demonstrated and confirmed by 

the present confocal approach. The techniques used so far do neither exclude nor undoubtedly 

illustrate a co-localization and challenge further studies. 

Although these results provide no direct evidence for an intracellular N-terminal truncation of 

NPY by DP4, in general, an intracellular cleavage cannot be excluded. If NPY is not 

hydrolyzed by DP4 within the cell several other proteases such as DP8 or DP9 remain potential 

candidates for peptide cleavage intra- and extracellular. On the basis of this summary, we can 

conclude that at least up to five enzymatically active peptidases (DP4, DP8, DP9, XPNPEP1, 

XPNPEP2) as shown in Table 1, are potentially involved in NPY cleavage. 

Although DP4 still shows the highest selectivity, each single role of these peptidases should be 

thoroughly investigated in the future. The intracellular and extracellular cleavage of NPY by 

peptidases distinct from DP4 is not only an additional mechanism in the regulation of this 

neuropeptide. It also requires taking the hydrolyzing activities of those peptidases into 

consideration when analyzing DP4 enzyme activities and their associated functions 

downstream in physiology and immunity. Thus, many functions previously ascribed to DP4 

and its inhibition may actually be derived from the activity and inhibition of DP8, DP9, and 

other peptidases that are listed in Table 1. Furthermore, some of the peptidases might be able to 

compensate functions of DP4 after chronic inhibition by selective DP4 inhibitors. 
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Table 1: Structural and functional homologues of NPY cleaving peptidases 

DP4 = dipeptidyl peptidase IV; AAS = amino acid sequence
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Figure 1: Activity and inhibition studies of crude brain extracts, obtained from 

F344/Crl(Por/98) (dark columns) and F344/Crl(Wiga)SvH-Dpp4 (bright columns) rats, 

applying selective inhibitors against DP4-like enzymes. (A) Brain extract assayed with 0.125 

mM Ala-Pro-AMC, pH 7.6 at 37°C; (B) brain extract assayed 0.25 mM Ala-Pro-AMC, pH 5.5 

at 37°C., UG92, DP4 selective; UG93, DP8/DP9 selective; DAB, DP2 selective; mix, UG92 + 

UG93 + DAB; P32/98, non-selective inhibitor. 
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Figure 2: MALDI-TOF-MS analysis of NPY cleavage by recombinant human dipeptidyl 

peptidase 2 (rh-DP 2), showing no cleavage after 6 h incubation at 37°C. 30 mUnits rhDP 2 

were incubated with 25 mM NPY in 10 mM MES buffer, pH 5.5 for 6 h at 37°C. Afterwards, 

the reaction was stopped with 0.1% TFA, samples were purified with ZipTip (Millipore 

GmbH, Germany), mixed with the matrix sinapinic acid at a ratio 1:1 and analysed with 

MALDI-TOF-MS (Voyager-DE Pro Biospectrometry workstation from Applied Biosystems). 
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Figure 3: NPY hydrolysis in crude brain extract from F344/Crl(Por/98) rats or in EDTA-

Plasma determined by MALDI-TOF-MS after 30 min incubation at 37°C in absence or 

presence of different inhibitors. The reaction was stopped with 0.1% TFA, samples were 
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purified with ZipTip (Millipore GmbH, Germany), mixed with the matrix sinapinic acid at a 

ratio 1:1 and analysed with MALDI-TOF-MS (Voyager-DE Pro Biospectrometry workstation 

from Applied Biosystems). (A-D) crude brain extract. (A) without inhibitor; (B) with non-

selective inhibitor P32/98; (C) with DP4 selective inhibitor UG 92; (D) with DP-8/9 selective 

inhibitor UG 93. (E-H) EDTA-plasma. (E) without inhibitor; (F) with non-selective inhibitor 

P32/98; (G) with DP4 selective inhibitor UG 92; (H) with DP8/9 selective inhibitor UG 93. 
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Figure 4: MALDI-TOF MS analysis of NPY hydrolysis by cytosolic brain fraction from 

F344/Ztm rats after 30 min incubation at 37°C. The reaction was stopped with 0.1% TFA, 

samples were purified with ZipTip (Millipore GmbH, Germany), mixed with the matrix 

sinapinic acid at a ratio 1:1 and analysed with MALDI-TOF-MS (Voyager-DE Pro 

Biospectrometry workstation from Applied Biosystems). 
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Figure 5: Confocal analysis of NPY and DP4 in transiently transfected COS-1 cells. Live cell 

image of Cos-1 cell transfected with (A) DP4-GFP-C1 and (B) NPY-dsRed1-N1 48 hours 

post-transfection. (C) Overlay image of DP4-GFP-C1 and NPY-dsRed1-N1. Yellow 

arrowheads indicate DP4-GFP-C1 containing vesicles (A) that do not co-localize with NPY-

dsRed1-N1 (C). Scale bars, 10 μm; n, nucleus; g, Golgi apparatus. 
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Abstract 

Objective. Treatment of diabetes type 2 using chronic pharmacological inhibition of dipeptidyl 

peptidase 4 (DP4) still requires an in-depth analysis of models for chronic DP4 deficiency, 

because adverse reactions induced by some DP4 inhibitors were recently described.  

Research Design and Methods. In the present study, a novel congenic rat model of DP4 

deficiency on a “DP4-high” DA rat genetic background was generated (DA.F344-Dpp4m/SvH 

rats) and comprehensively phenotyped by a combination of different neurobehavioral, 

endocrine, hematological, metabolic, and immune assays.  

Results. Similar to chronic pharmacological inhibition of DP4, DP4 deficient rats exhibited a 

phenotype involving reduced diet-induced body weight gain and improved glucose tolerance 

associated with increased levels of GLP-1 and bound leptin as well as decreased 

aminotransferases and triglycerides. Additionally, DA.F344-Dpp4m/SvH rats showed 

anxiolytic-like and reduced stress-like responses, a phenomenon presently not targeted by DP4 

inhibitors. Whereas all these aspects in the phenotype of this novel model of DP4 deficiency 

may be considered as “beneficial”, several immune alterations such as differential leukocyte 

subset composition (eosinophils, NK cells, B cells) at baseline, blunted NK cell and T cell 

functions, and altered cytokine levels were observed, which may be problematic if appearing 

under conditions of chronic pharmacological inhibition of DP4.  

Conclusions. While this animal model confirms a critical role of DP4 in GLP-1-dependent 

glucose regulation, genetically induced chronic DP4 deficiency apparently also affects stress-

regulatory and immune-regulatory systems, indicating that the use of chronic DP4 inhibitors 

might have the potential to interfere with CNS and immune functions in vivo. 
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3.1. Introduction 

Inhibition of the serine protease dipeptidyl peptidase 4 (DP4) reduces the N-terminal cleavage 

of dipeptides of the insulinotropic peptide-hormone glucagon-like peptide-1 (GLP-1) and 

opens new alternatives for the treatment of diabetes type 2 (1). Within the clinical trials 

performed, these compounds have been demonstrated to be safe and efficacious. However, 

clinical trials including phase III have certain limitations and sometimes, adverse reactions are 

only observed after market introduction. As DP4 is not specific for insulinotropic hormones, 

having also modulating effects on a broad range of other substrates, unwanted effects cannot be 

excluded at this stage. In line with this assumption, recently two compounds were put on hold 

in phase III, in one case for undisclosed toxicity issues and in the other case due to adverse skin 

reactions (www.novartis.com/downloads_new/investors/2006.11.13%20Galvus%20US%20N 

DA%20Review.pdf). Obviously, further preclinical research on potential adverse effects 

caused by chronic inhibition of DP4 is needed. 

We therefore generated a novel congenic DP4 deficient animal model on a defined Dark 

Agouti (DA) rat genetic background with pronounced differences in DP4 activity between 

congenic and wild type animals and studied the effects of this genetically induced DP4 

deficiency in a comprehensive phenotyping approach, following the general rules and 

modifications for rats as previously described (2; 3). For the development of congenic 

DA.F344-Dpp4m/SvH rats, the previously characterized spontaneous point mutation in the 

Dpp4 gene of the F344 rat substrains (F344/DuCrjSvH-Dpp4m and F344/Crl(Wiga)SvH-

Dpp4m) (2; 4-7) was used. This strategy resulted in DP4 deficient animals, being comparable to 

Dpp4tm1Nwa mice (CD26 knockout mice) (8), but providing the advantages of the species Rattus 

norvegicus, being in metabolism, toxicology, and neurobiology more comparable to humans 

(9-12). DP4 is ubiquitously expressed on leukocytes, epithelia and endothelia of most 

vertebrate tissues and is involved in T cell activation and cell adhesion processes as well as in 

the degradation of hormones, chemokines and neuropeptides. Known substrates for DP4 are 

for example substance P (SP), neuropeptide Y (NPY), peptide YY, growth-hormone-releasing-

factor, GLP-1, enterostatin or -casomorphins (13). Relevant substrates in immune reactions 

are for example chemokines (eotaxin, RANTES) (14; 15). These facts strongly suggest that 

new animal models of DP4 deficiency and their comprehensive phenotyping are necessary, as 

DP4 activity modulates numerous psychological and physiological processes affecting 

nervous, endocrine, and immune functions. A priori, no prediction of the resulting effects can 

be made thereof.  
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Here, we characterized this new DP4 deficient congenic DA strain and report on a reduced 

body weight gain, both under standard rat chow and high-calorie diet, on improved glucose 

tolerance being associated with increased GLP-1 and bound leptin levels as well as decreased 

aminotransferases and triglycerides. While these findings basically represent the targets of 

pharmacotherapy using DP4 inhibitors, in addition, a reduction in stress-hormone levels 

(ACTH and corticosterone) of the HPA axis associated with anxiolytic-like responses in 

several behavioral assays were observed, which also can be considered beneficial. The 

probably most important findings of this screen were blunted immune functions of natural 

killer (NK) and T cells, altered interleukin-6 (IL-6) and interleukin-10 (IL-10) levels and 

differential leukocyte subset compositions, thus pointing to potential adverse effects as a result 

of a chronic blockade of DP4. We therefore propose to use this mosaic of observations to more 

closely monitor patients, who are presently receiving gliptins (16) as a novel therapy inducing 

chronic DP4 inhibition. 
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3.2 Research Design and Methods 

Animals 

DA/Ztm and DA.F344-Dpp4m/SvH rats were housed and bred at the Central Animal Facility of 

the Hannover Medical School (Ztm) under conditions as described previously (4). All research 

and animal care procedures were approved by the Review Board for the Care of Animal 

Subjects of the district government, Hannover, Germany, and performed according to 

international guidelines for the use of laboratory animals. 

Development of congenic animals 

Development of the congenic strain was started with an initial cross between 

F344/Crl(Wiga)SvH-Dpp4
m
 females, homozygous for the loss-of-function-mutation in the 

Dpp4 gene on RNO3 (4) and a DA/Ztm wild type male rat, to fix the Y chromosome of the DA 

background. Male F1 rats were then backcrossed to DA/Ztm females. Heterozygosity of the 

Dpp4 locus of the resulting N2 males was tested via (a) DP4 expression on T cells using 

Fluorescene activated cell sorting (FACS) analysis of T cell receptor (mAb R73) and DP4 

(mAb Ox61) immunopositive events and via (b) Dpp4 genotyping by means of two gene 

specific microsatellite markers. D3cd26-7 (forward: GGAACTGTTGAATTAGCTCTCTGC; 

reverse: CTCTGGACTGCCATCTCCTACTTC) is localized within Dpp4 and D3cd26-10 

(forward: GCAATCTGGCGCAGAGTAATTAC; reverse: GTCATCTGTCTCCGCTCCCAT) 

is closely linked to Dpp4 on RNO3. The genetic background of N2 DA.F344-Dpp4
m
/SvH 

males, heterozygous for both Dpp4 alleles, was genotyped using 100 polymorphic 

microsatellite markers with an intermarker distance of about 20 cM covering all chromosomes. 

The N2 male with the highest proportion of DA background was selected for the next cross. 

This scheme was used at each generation until N5. A N5 male and a N5 female, homozygous 

for the DA background, were then intermated to produce DA.F344-Dpp4
m
/SvH founders. The 

DP4 deficient congenic DA strain is maintained via brother  sister mating. We used several 

age and sex matched sets of DA.F344-Dpp4
m
/SvH N5F2 rats for the experiments. 

Experimental sets of animals 

To avoid major influences from the high number of different test paradigms applied to the 

animals on the one hand and to confirm certain test results on the other hand, several 

independent sets of age-matched male DA rats – DA/Ztm and DA.F344-Dpp4m/SvH – were 

used for the behavioral studies following rules as previously described (2). 
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Spontaneous feeding behavior, gliadin feeding, high fat diet and body weight gain 

For studying feeding behavior on standard diet (Altromin Standard diet 1320: Altromin GmbH, 

Lage, Germany), the animals were housed either in or kept singly in a cage and the observation 

periods lasted 72 h each (2). For examination of body weight gain under high calorie diet 

animals were fed with a high calorie diet (Altromin, 157p/c1057) and weighed once a week. 

Furthermore, the calorie up-take was determined. For analysis of body weight gain under 

gliadin-rich diet – providing insight into the metabolism with respect to DP4 activity (17) – 

DP4 deficient and wild type DA rats were fed a modified rat diet (modified Altromin Standard 

Diet 1320) for a three week period whereas control rats were fed with non-modified standard 

chow. The modified diet contained gliadin (20%) as single protein source and is high in proline 

compounds. Starting at an age of six weeks, animals were weighed at least once a week 

routinely or as experiments required. 

Oral glucose tolerance test (OGTT) and determination of DP4-like enzymatic activity 

Male DA.F344-Dpp4m/SvH and DA/Ztm animals (21 ± 0.5 weeks of age) were used for these 

experiments being repeated at least three times. Additionally, some animals heterogeneous for 

the mutant Dpp4 gene were included – coded DA.F344-Dpp4m/SvH(-/+). Following an overnight 

fast (12 h) 1 h after the onset of the light phase, animals’ basal blood glucose levels were 

determined (see below). If the glucose concentration was < 7.8 mmol/l (< 140 mg/dl), the 

animals were shortly anesthetized with ether and glucose (2.5 g glucose/kg animal) was orally 

given via a feeding tube. Blood samples (10 μl) were collected from the tail vein of conscious 

rats at 30, 60, 90, and 120 min following the oral glucose load and the glucose level was 

measured by a glucometer (Bayer, Leverkusen, Germany) using criteria as previously 

described (4). For determination of DP4 enzymatic activity, EDTA-plasma samples from 

experimentally naïve animals were kept at -80°C until being assayed using a microplate based 

chromogenic assay. The release of 4-nitroaniline (pNA) from the substrate glycyl-prolyl-4-

nitroaniline (Gly-Pro-pNA) was monitored at 405 nm and 37°C using the PowerWaveXS 

Universal Microplate Spectrophotometer (BioTek Instruments, Bad Friedrichshall, Germany). 

The assay is selective for DP4-like activities, however, due to the alkaline pH it neglects the 

contribution by dipeptidyl peptidase 2. One unit is defined as the amount enzyme necessary to 

hydrolyze 1 μmol substrate (18). 
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Insulin, GLP-1, bound/free leptin 

Insulin levels were determined using an Insulin-RIA-Kit (Biotrend, Chemikalien GmbH, Köln) 

according to the manufacturers instructions. Plasma samples were taken 15, 30, 45 min after 

oral glucose challenge under the condition described in the glucose tolerance test, respectively. 

For determination of active GLP-1(7-36) via ELISA kit (Linco; Glucagon Like Peptide-1 

(Active)) EDTA-plasma samples were conditioned with 10-5 M of isoleucyl-thiazolidide and 

handled according to the manufacturer’s instructions. Plasma samples were taken 30 min after 

oral glucose challenge. Bound leptin was measured using a specific radioimmunoassay (RIA) 

developed at the Department of Gastroenterology, Hepatology and Endocrinology, Hannover 

Medical School (19), while total leptin was measured using a RIA from Linco (Linco St. 

Charles, Missouri, USA). 

Clinical chemistry 

The auto-analyzer ADVIA 1650 (Siemens Medical Solutions Diagnostics GmbH, formerly: 

Bayer Vital GmbH), installed and validated at Clinical Pathology, Institute of Toxicology, 

Merck KGaA, Germany was used to determine various electrolytes and enzymes in 300-500 μl 

serum per animal derived from retro orbital blood samples. The data were generated according 

to standardized procedures and valid methods including internal controls (Duotrol Normal Lot 

No 5066, and Duotrol Abnormal Lot No 5077, BIOMED) resulting in scientifically reliable 

data. 

Histology of pancreas, liver, and hypothalamus 

Pancreas and liver samples were collected from either paraformaldehyde (PFA) fixed animals 

or HOPE fixation of samples was used. HOPE fixiation was conducted as recently described 

(20). Samples were transferred either into paraffin (HOPE) or kept frozen in cryoprotectant 

(PFA), sectioned (liver: 3-4 μm; pancreas: 6-7 μm; brain: 15 μm) and stained. Detection of 

free leptin (Ob-A20; Santa Cruz Biotechnology Inc., Santa Cruz, CA; 1:500 overnight at 4°C) 

in liver was conducted as previously described (21). Pancreatic beta cells were detected by 

insulin immunostaining with a polyclonal guinea-pig antibody (Insulin A 565, dil. 1:4000; 

DAKO, Hamburg, Germany). For double labeling of hypothalamus, animals were perfused 

using 4% PFA, brains removed, postfixed (12 h), cryoprotected (sucrose solution) and then cut 

coronally in a cryostat at 40 μm thickness. Free floating sections were processed for 

immunohistochemistry using a combination of the avidin-biotin-peroxidase complex (ABC) 

and the alkaline phosphatase-anti-alkaline phosphatase (APAAP) methods (7) by incubating 
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overnight at 4°C with rabbit anti-human/ratNPY polyclonal antibody (1:4000; affinity purified; 

Biotrend, Köln, Germany; # NA1233, Batch Z02052) and anti-rat DP4/CD26 monoclonal 

antibody (mAb) (clone 5E8, 1:500, Cell Science Inc., Canton, MA 02021). The dilutions of the 

antisera were made with Tris HCL containing 0.3% Triton X-100, and 5% normal goat serum. 

For ABC staining, the sections were first incubated for 1 h at RT with the biotinylated 

secondary anti-rabbit antibody (1:200 in 5% normal goat serum and 0.3% Triton X-100) and 

subsequently exposed to ABC complex (1:100; ABC Kit elite, Vector Labs, Burlingam, CA). 

After visualization of the APAAP reaction by Fast Blue reaction product (22), the reaction 

product of the ABC stain was visualized with 0.1% DAB. Control sections were included, in 

which one or both primary antibodies were omitted. Sections from the level of the 

hypothalamus, arcuate nucleus, and median eminence were evaluated using microscope. 

General health and neurological examination  

Gross abnormalities that would interfere with further behavioral testing such as general health, 

sensory abilities, and neurological reflexes were controlled and compared between the DA 

congenic and DA wild type rats as described previously for mice and rats (2; 3). 

Determination of motor functions (Accelerod test) and circadian activity (Home cage 

activity) 

An Ugo Basile accelerating rotarod (model 7750) for rats, supplied by Technical & Scientific 

Equipment GmbH (TSE GmbH), Bad Homburg, Germany, was used and training as well as 

experiments were conducted as previously described (11). For monitoring home cage activity, 

an infrared sensor controlled recording system (model No. E61-01/08; Coulbourn Instruments, 

Allentown, PA, USA) was used as previously described (23). This test is based on infrared 

detection of number and time of movements and it is useful to screen for differences in 

circadian rhythm. Activity peaks are defined as “small” and “large movements”, indicating 

when activity/movements took place within a duration being shorter or longer than 3 s, 

respectively. As a representative readout, the “time spent in large movements per time interval” 

was chosen as an indicator for circadian activity pattern. 

Evaluation of stress-induced hyperthermia, anxiety and exploratory behavior 

For determination of stress-induced hyperthermia, body temperature was repeatedly 

determined before and after a brief stressor (transport stress) according to Kask and colleagues 

(24). The elevated plus maze (EPM), social interaction (SI), and the holeboard assay were used 

to evaluate anxiety-like and exploratory-like behaviors, respectively. An EPM apparatus (TSE 
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GmbH) (23), a SI (24), and a self-made holeboard (23) were validated and used as previously 

described. 

Two-way active avoidance shuttle box learning and test of prepulse inhibition (PPI) 

Shuttle box conditioning was used as a test of associative learning and was conducted using a 

TSE Shuttle box system (TSE-Systems GmbH) following the protocol as previously described 

(11). PPI of a startle response is the phenomenon, in which a weak prepulse suppresses the 

response to a startling stimulus. Deficits in prepulse inhibition are common in schizophrenic 

patients. An automated startle system (TSE GmbH) was used as previously described (2).  

Determination of corticosterone, ACTH, IL-6 and IL-10 levels 

Corticosterone (AA-13F1, Lot 37170; IDS, Boldon, UK) levels were detected in EDTA-

plasma samples via RIA (obtained via IBL, Hamburg, Germany). Detection was conducted in 

duplicates according to the manufacturer’s guidelines. For corticosterone, the calculated 

sensitivity was 0.39 ng/ml and the intra- and interassay coefficients of variation were 5 and 

9%, respectively. ACTH, IL-6, and IL-10 were measured by means of ELISA using previously 

described standard techniques for hormones and cytokines according to Straub et al. (25). 

Quantification of NK cell cytotoxicity in spleens of DA substrains 

NK cytotoxicity was measured in classical 51Cr-release assays using splenocytes and YAC-1 

target cells, which were derived from standard cell culture conditions, as previously described 

(22). The specific cytotoxicity was calculated by means of the following formula: 

[(experimental release) – (spontaneous release)] / [(maximal release) – (spontaneous release)] 

 100. In addition, the percentage of CD3-CD161+ NK cells in each spleen was determined by 

FACS analysis as previously described (7; 26) and lytic units (LU) were calculated according 

to the method of Bryant et al. (27). Since mononuclear cells were used as effector cells, LU 

were further mathematically adjusted to NK cell numbers present in the respective assays by 

forming the quotient LU/NK cells (%). 

Haematology 

Two validated Bayer Diagnostics automated hematology systems (ADVIA 120) including 

species-specific software settings were used. EDTA blood samples (200 μl) were collected by 

retrobulbar venipuncture and analyzed using standard methods and controls. 
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FACS analysis 

Leukocytes were counted using a Coulter counter and then further processed for flow 

cytometry using three colour stainings as previously described (26) with the following details 

being modified. Briefly, about 1 106 cells per well were incubated with mouse anti-rat mAb 

for 20 min at 4°C using the following marker for granulocytes (FSC/SSC/mAb HIS48), 

monocytes (mAb ED9/mAb W3/25), B lymphocytes (mAb OX12), CD4+ T cells and CD8+ T 

cells (mAb R73/mAb W3/25/mAb OX8), and NKbright cells (mAb 10/78). Dendritic cells were 

defined using the mAbs OX62 and OX6. All antibodies were purchased from serotec 

(Germany). 

T cell proliferation assay 

Rat peripheral blood mononuclear cells (PBMC) were isolated from fresh, arterial EDTA blood 

via centrifugation on Ficoll gradient (Ficoll Paque TMPlus, Amersham, Sweden). PBMC 

number and viability was determined by cell counting using trypan blue staining. Cells were 

washed and the proliferation assays were conducted in 96 well flat-bottom plates. Therefore, 

2 105 cells per well were cultured in the presence of 0.2 μg  TCR antibody (plate bound). 

Cells stimulated with 1 μg Concanavalin A served as positive controls. After 5 days of 

incubation the proliferation rate was quantified by BrdU incorporation and detected with a 

specific colorimetric BrdU Cell proliferation ELISA (Roche Molecular Biochemicals, 

Mannheim, Germany) according to the manufacturers instructions. BrdU incorporation was 

measured using an ELISA reader (PowerWaveXS Universal Microplate Spectrophotometer; 

BioTek Instruments, Inc., Winooski, U.S.A.) at 370 nm and 492 nm as reference wavelengths. 

Results were expressed as absorbance rates (A370nm-A492nm). 

Statistical analysis 

Analysis of the various behavioral and physiological data was assessed either by applying 

repeated measures analysis of variance (ANOVA) on successive measurements or by one-way 

ANOVA. In repeated measures ANOVA the nominal independent variable “substrain” was 

used as the “between factors” and different continuous response variables within successive 

measurements were used as the “within-factors” (e.g. body weight over time). In case of 

significant differences in regard to the “between factor” or significant interactions of 

“between” and “within-factors”, this was followed by one-way ANOVAs (factor: “substrain”); 

split by the dimension of the continuous response variable (e.g. split by the different time-

points of body weight determination). One-way ANOVAs were followed by the Fisher-PLSD-
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test for post hoc comparison to evaluate pair wise differences among levels of main effects. 

The “between-subject effects” from ANOVAs are presented within the text in the results 

section by providing the degrees of freedom (for the “between factor” and for the “within 

subject error”), F-values, and p-values, while in figures and tables the p-values of the results 

obtained by the corresponding post hoc tests are provided, if appropriate. Differences were 

regarded as statistically significant if p was below .05. The number of animals per substrain (n) 

was at least 10. Presenting the degrees of freedom indicates exceptions from this. Significant 

post hoc effects versus the control animals of the DA/Ztm substrain are indicated by asterisks 

(*p < .05; **p < .01; ***p < .001). All data are presented as means ± standard error of the 

mean (SEM). 
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3.3. Results 

DP4 deficiency reduces body weight, protects from high-fat diet induced obesity, 

improves glucose tolerance, increases GLP-1 and leptin, and lowers aminotransferases as 

well as triglycerides. Reduction of DP4 enzymatic activity became a widely accepted target 

that has been proven beneficial in the treatment of type 2 diabetes. Consequently, we studied 

parameters related to glucose metabolisms and body weight homeostasis in the DA.F344-

Dpp4m/SvH rats. Figures 1 and 2 illustrate these findings and clearly demonstrate various 

levels of beneficial effects in a genetically induced status of DP4 deficiency. While the genetic 

background of male DA wild type rats is characterized by high levels of DP4-like activity, DP4 

deficient DA.F344-Dpp4m/SvH rats exhibited negligible low, and heterozygous DA.F344-

Dpp4m/SvH(+/-) rats intermediate DP4-like activity (F(2, 86) = 876.5, p < 0.0001; Fig. 1A). 

Similar findings were observed in female animals ((-/-) 1.88±0.1 [mU/ml]; (+/+): 36.1±1.2 

[mU/ml]; (+/-) 15.3±0.9 [mU/ml]). In support of DP4 being the key regulator in glucose 

homeostasis, testing glucose tolerance in the OGTT revealed a significantly improved response 

towards glucose load in DP4 deficient rats (F(2, 20) = 10.04, p = 0.001; Fig. 1B), being 

comparable to pharmacologically induced DP4 deficiency in mice (28; 29). Interestingly, 

heterozygous animals exhibited an intermediate phenotype, clearly illustrating an association 

between “gene dosis”, DP4 activity, and glucose tolerance. 

Furthermore, these findings were associated with significantly elevated levels of active GLP-

1(7-36) (F(1, 6) = 8.8, p = 0.02; Fig. 1C) in DA.F344-Dpp4m/SvH rats being detectable at 30 

min after oral glucose challenge. In addition, a trend toward elevated insulin levels (mean over 

three measurements at 15, 30, and 45 min: 0.4 ng/ml in DA.F344-Dpp4m/SvH vs. 0.3 ng/ml in 

wild type; Fig. 1D) was found. Similar to Dpp4tm1Nwa mice, interestingly, ß-islet size was 

reduced in the DA.F344-Dpp4m/SvH rats (Fig. 1E), potentially suggesting an increase of 

insulin storage. 

Screening of body weight gain (Fig. 1F) revealed a significantly reduced increase in DP4 

deficient animals (F(1,19) = 12.1, p < 0.001), which parallels gain in body weight of wild type 

animals until about one year of age, when these differences became more apparent. Also, high-

calorie diet induced weight-gain was significantly blunted in animals being about one year of 

age (Fig. 1F; small insert), although calorie up-take did not differ. Apart from this, no other 

obvious differences in general health, reflexes and sensory abilities were observed at any time. 

Furthermore, no significant differences for food or water consumption were observed at the 

age of 3, 6, and 9 months (data not shown). 
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Beneficial effects of DP4 deficiency in glucose metabolism (30; 31) may also be reflected in 

lipid metabolism (1,13). Actually, our findings provide evidences that DP4 deficiency 

facilitates leptin signaling (32; 33). This notion is reflected by histological evaluation of free 

leptin in liver tissue that illustrates increased levels in wild type animals (Fig. 2A) and by high 

levels of bound leptin in DA.F344-Dpp4m/SvH rats (F(1, 6) = 5.6, p = 0.04; Fig. 2B). Levels of 

total leptin were not significantly altered in plasma (data not shown). As leptin is expressed 

predominantly by adipocytes, which represents to some extend the total mass of fat in the 

body, we also measured triglyceride levels (TG) and found a reduction in DA.F344-

Dpp4m/SvH rats (F(1, 17) = 20.09, p < 0.001). This is probably also sufficient to explain the 

observed statistical significant but albeit minor decreases in amino transferases (alanine 

aminotransferases (ALAT), (F(1, 17) = 15.3, p = 0.001), aspartate aminotransferases (ASAT), 

(F(1, 17) = 7.08, p = 0.01)) and alkaline phosphatase (AP), (F(1, 17) = 8, p = 0.01) (Fig. 2C). 

Table 1 illustrates that no other differences were found in parameters such as electrolytes 

except for minor increases of urea and inorganic phosphate in DA.F344-Dpp4m/SvH animals. 

Thus, the DP4 deficient congenic rats also exhibit improved liver metabolism, which further 

hints to beneficial metabolic situation in DP4 deficient animals. 

Having these findings on glucose and lipid metabolism along with corresponding GLP-1/leptin 

signaling in mind, it remained open to investigate the potential interaction of DP4 with proteins 

(e.g. gliadin, and proline-rich proteins) and protein metabolism especially in the intestine, as 

DP4 is highly expressed in the ileum and jejunum. In particular, the role of DP4 in the small 

intestine and the kidney is dipeptide re-absorption after cleavage of proline containing peptides 

and oligopeptides (17; 34; 35). This gives rise of problems that might occur as a possible 

consequence of chronic treatment using long acting DP4 inhibitors in diabetes type 2. Notably, 

it has already been shown that gliadin-based diet being rich of proline (17; 36) causes 

malabsorption of such proteins. Consequently, wild type and DA.F344-Dpp4m/SvH rats 

received a modified gliadin-rich and otherwise non-modified diet. As expected, results (Fig. 

2D) of three factorial ANOVA for repeated measures revealed full interaction of the between-

subject factors "genotype", "diet composition", and the within subject-factor "delta body 

weight" in DP4 deficient rats showing a significant body weight loss (F(4, 80) = 7.1, p < 

0.0001), and illustrating an impaired ability of protein utilization. Overall, these findings 

already confirmed that this new rat model of DP4 deficiency exhibit many if not all of the key 

features being targeted by DP4 inhibitor treatment. Nonetheless, as many of the substrates of 

DP4 (NPY, SP, endomorphin, etc) play a significant role in the central nervous system (CNS) 
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and peripheral nervous system (PNS), we then characterized the behavioral phenotype and the 

stress-response of these animals in-depth. 

Multi-tired behavioral analysis of DP4 deficient DA.F344-Dpp4m/SvH rats reveals a stress 

protective and anxiolytic-like phenotype. Multi-tired behavioral phenotyping compromises 

repeated tests for various behavioral domains being additionally complemented by tests of 

neurological reflexes and sensory abilities. Every behavioral domain (e.g. motorfunction, 

anxiety, cognition, etc.) should be screened repeatedly and confirmed by at least two different 

tests challenging similar adaptational responses (2; 3). In the case of genetically and 

pharmacologically induced DP4 deficiency, we have already shown that DP4 deficient F344 

rats exhibit a phenotype of reduced stress-responsiveness and anxiety (2; 5). In the current 

study, we characterized a new animal model of DP4 deficiency (congenic DA.F344-

Dpp4m/SvH rats) that - in contrast to the previously used DP4 deficient F344 rat substrains - 

reveals a homogeneous genetic background and that exhibits higher DP4-enzymatic activity 

levels in wild type DA/Ztm rats. A priori, this difference should also cause a more pronounced 

anxiolytic and stress-protective like phenotype. 

Results show that under home-cage conditions there are no differences in diurnal activity (Fig. 

3A; p > 0.05 n.s.). Furthermore, testing of motor functions on the rotarod and of startle-

response along with prepulse inhibition (PPI) (tested e.g. in repeated accelerod and PPI tests, 

data not shown), cognitive performance in associative learning task of the two way active 

avoidance shuttle box paradigm (Fig. 3B; p > 0.05 n.s.), as well as pain perception under 

habituated conditions (data not shown) revealed no differences between wild type DA/Ztm and 

DA.F344-Dpp4m/SvH rats. In contrast, DP4 deficient congenic animals responded to all tests 

related to stress and anxiety in a very different way. Namely, stress-induced rise of body 

temperature (stress-induced hyperthermia, Fig. 3C) was significantly blunted (F(1, 18) = 8.5; p 

= 0.009), illustrating a reduced response to stress, probably mediated by decreased SNS 

activity (24). In support of this, reduced levels of ACTH (Fig. 3D) and corticosterone (Fig. 3E) 

were detected in plasma from DP4 deficient rats, thus underlining that the endocrine stress 

response corresponded to the behavioral phenotype. Furthermore, analysis of the social 

interaction test of anxiety revealed an increased total social interaction time for DP4 deficient 

DA.F344-Dpp4m/SvH rats (F(1,23) = 25.5, p < 0.0001; Fig. 3F) being indicative for anxiolysis. 

Similarly, using the EPM test, DA.F344-Dpp4m/SvH rats show higher values for percent of 

open arm entries (F(1,14) = 4.5, p = 0.04; Fig. 3G) and for percent of time spent in open arms 

(F(1,14) = 4.9, p = 0.04; data not shown). Concerning motor activity in this test (number of 

closed and total arm entries), no significant differences were found (data not shown). 
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Investigation of explorative behavior and locomotor activity in the holeboard test revealed that 

DP4 deficient DA.F344-Dpp4m/SvH rats made significantly more head dips than DA/Ztm 

animals (F(1,16) = 6.9, p = 0.02; Fig. 3H). Additionally, DA.F344-Dpp4m/SvH rats spent 

significantly more time in the center of the board (F(1,16) = 5.3, p = 0.03; data not shown). 

Again, no differences in motor activity - measured by the distance covered by entering 

different squares – were found (data not shown). Double immunohistochemistry of DP4 (blue 

APAAP staining) and NPY (dark brown vesicular precipitate) in the hypothalamus (section at 

the level of bregma -3.12 mm according to Paxinos and Watson, 2007; Fig. 3I) illustrates that 

at least NPY in the arcuate hypothalamic nucleus (ARC) as a anxiolytic- and stress-protective-

like acting substrate of DP4, is expressed in the close vicinity of the corresponding DP4 

enzyme. The latter is expressed in blood vessels of the MEE (blue staining, arrow heads) of 

DA wild type (Fig. 3I) but not in DA.F344-Dpp4m/SvH rats (Fig. 3I, insert in upper right 

corner; lack of blue staining, arrows).  

Differential immune cell distribution, blunted immune cell function and altered cytokine 

levels as consequence of DP4 deficiency in DA.F344SvHDpp4 rats. To complete the 

comprehensive phenotyping, we screened for immunological parameters that might be affected 

by DP4 deficiency (at experimentally naïve conditions or after in vitro stimulation of T and 

NK cells) and that possibly might indicate where adverse reactions of chronic DP4 inhibitor 

treatment may occur.  

As DP4 deficiency as well as inhibitor treatment have been shown to affect hematopoiesis and 

the behavior of bone marrow stem cells, e.g. via modulation of the chemokine, stromal cell 

derived factor-1 (SDF-1/CXCL12) (37), we first screened hematological parameters. The 

hemogram showed significantly reduced absolute cell numbers in DA.F344-Dpp4m/SvH rats 

for lymphocytes (F(1, 18) = 5.5, p = 0.03) and eosinophils (F(1, 18) = 5.02, p = 0.04) (Fig. 

4A), which may demonstrate specific changes at local chemokine action at e.g. the level of 

bone marrow and thymus. In the case of eosinophils for example, we have recently shown 

regulatory effects of DP4 for the recruitment of eosinophils in vivo via prolonged action of the 

CCR3 ligand CCL11/eotaxin (Forssmann et al., 2007, unpublished), which may also explain 

reduced levels of eosinophils at baseline in this study. In addition, determination of blood 

leukocyte subsets by FACS analysis (Fig. 4B) revealed a significant increase of NK cells (F(1, 

7) =11.06, p = 0.007), B cells (F(1, 7) = 6.2, p = 0.03) and CD5 positive B1-like cells (F(1, 7) 

= 8.6, p = 0.03) in DP4 deficient rats. In previous studies we have shown that especially these 

leukocyte subpopulations are mobilized by NPY infusions (38), suggesting that apart from 

altered local chemokine metabolism also DP4 mediated N-terminal truncation of the 
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noradrenergic co-transmitter NPY at the local level of sympathetic innervated immune organs 

such as the spleen might be involved in this phenomenon. A similar mechanism may also lead 

to a NPY potentiated noradrenalin-mediated increase of the splenic IL-6 outflow (25) (Fig. 

4G). Table 2 demonstrates that granulocytes, monocytes, dendritic cells and CD4+ and CD8+ T 

cells were not significantly affected. Surprisingly, similar to the blood pool, also the percentage 

of NK cells in the spleen was significantly increased in DA.F344-Dpp4m/SvH rats – a finding 

which also has been observed in Dpp4tm1Nwa mice (39) – suggesting that an overall increase of 

NK cells in these animals is evident. The determination of lytic units (LU20/107, Fig. 4C) 

revealed that in comparison to DA/Ztm rats, an increased number of effector cells is needed in 

DA.F344-Dpp4m/SvH rats to lyse 20% of the target cells. Due to the above mentioned higher 

percentage of NK cells in the spleen of DA.F344-Dpp4m/SvH rats (F(1, 6) =24.7; p = 0.003; 

Fig. 3D) the ratio of LU to percent of NK cells reveals a significantly reduced cytotoxicity per 

NK cell of DP4 deficient DA rats (F(1, 6) =6.1, p < 0.05; Fig. 4E). Thus, the absolute capacity 

of a single NK cell to lyse tumor targets is reduced in DA.F344-Dpp4m/SvH rats. 

Besides differences in NK cell numbers and cytotoxicity, also a significantly blunted T cell 

proliferative response was observed. In comparison to NK cells, a priori it was more likely to 

find differences in this lymphocyte subpopulation, as T cell functions might be affected at very 

different regulatory levels including but not limited to antigen presenting cell (APC)-T cell 

interaction, T cell costimulation, and memory function (40), TGF-ß signaling (41; 42), T 

memory cell to regulatory T cell (Treg) switch, or chemokine metabolisms (14; 15). Here we 

found in DP4 deficient animals a five-fold reduced proliferation rate upon stimulation with 

anti- -TCR mab (F(1, 5) =32.9, p = 0.001 Fig. 4F). Furthermore, IL-6 levels are significantly 

reduced in DA.F344-Dpp4m/SvH rats (F(1, 7) = 7.6, p = 0.02), whereas no significant 

differences were found in the determination of IL-10 (Fig. 4G). 
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3.4. Discussion 

The recent introduction of sitagliptin (Januvia(R)) to the market as well as the fact that 

vildagliptin (Galvus(R)) has put on hold by the FDA both challenge an in-depth analysis of 

potential effects of chronic DP4-inhibition, other than improved glucose homeostasis (16). A 

priori, all studies investigating a status of long lasting DP4 deficiency in experimental animals, 

either achieved pharmacologically or genetically, are complementary to each other and 

relevant at this point. Here, we decided to take the advantage of the genetically induced chronic 

DP4 deficiency in the rat, and generated a novel DP4 deficient congenic model in order to 

facilitate an in-depth characterization of potential effects aside from the enteroinsular axis and 

to make use of the advantages of the species Rattus norvegicus e.g. with regard to behavioral 

alterations. Consequently, a comprehensive phenotyping approach was conducted, which not 

only was focused on endocrine but also on neurobehavioral and immune alterations as all these 

might result in side effects during chronic treatment of diabetes. 

In the current study, we report that a comprehensive phenotyping of neurobehavioral, 

endocrine, hematological, metabolic, and immune parameters in DA.F344-Dpp4m/SvH rats 

reveals DP4 dependent changes on at least three levels: (a) beneficial effects on the 

enteroinsular axis, glucose homeostasis, and body weight regulation not only via GLP-1 but 

also via leptin and liver dependent processes, (b) potent anxiolytic-like and stress-protective 

like effects, and (c) considerable changes in immune cell distribution and NK cell and T cell 

functions. While the metabolic effects largely cover the therapeutic targets of current drug 

development, the behavioral changes may represent a novel field of application for DP4 

inhibitors, whereas the immune changes probably point to an area, where most likely unwanted 

effects might appear. Thus, the current results highly suggest tight supervision of 

immunological parameters in patients currently receiving DP4 inhibitors for the treatment of 

diabetes to detect any potential side-effects. 

More specifically, the improved metabolic status of this novel DA.F344-Dpp4m/SvH rat model 

largely reflects findings in Dpp4tm1Nwa mice (8; 31), DP4 deficient F344 rats (2; 4) and in rats 

and mice receiving chronic DP4 inhibitor treatment (28; 29; 43), strongly supporting this 

concept for lowering blood glucose levels. In addition, our study reveals that the DP4 deficient 

phenotype of DA rats is characterized by reduced body weight gain as well as resistance to 

high calorie diet induced obesity suggesting that inhibition of DP4 may also be used for 

treatment of obesity without manifest diabetes type 2. Lower body weight may be a result from 

increased levels of bound leptin, but this is in contrast to an unaltered food intake, which was 
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observed in our study as well as in DP4 deficient F344 rats (2) and KO mice (31), which 

together hints to effects mediated either via higher metabolic rates or malabsorption. In this 

study, no differences in home cage activity were observed, thus, excluding that differential 

physical activity levels are responsible for the lower body weight in free feeding DA.F344-

Dpp4m/SvH rats. Although no differences in baseline body temperature were found in DA rats, 

leptin is reported to increase energy expenditure (44; 45) which might have contributed to 

differences in body weight. Interestingly, malabsortion of gliadin leads to a reduction of body 

weight (17) (Fig. 2D). Although, the latter represents an artificial model being unlikely to be 

observed in patients receiving DP4 inhibitors, the consequences resulting from reduced DP4 

activity are non-negligible. Thus, malabsorption of other proline-rich diets as well as breast-

feeding of children by mothers receiving DP4 inhibitors in conjunction with malabsorption of 

-casomorphin, may both lead to loss of body weight or failure to thrive. In the latter case, a 

connection between DP4 activity and -casomorphin in atopic dermatitis and potentially other 

immune disorders was suggested (46).  

While the changes in body weight regulation and glucose homeostasis mentioned above, 

strongly support current drug developmental strategies, importantly, the stress-protective and 

anxiolytic-like phenotype observed in the present study as well as in our previous reports in 

DP4 deficient F344 rats (2; 5) may represent a novel target for drug development. We 

demonstrate here that DA.F344-Dpp4m/SvH rats additionally show increased exploratory 

behaviors and reduced stress-like as well as anxiolytic-like behavioral responses that were also 

reflected on the endocrine level. While more frequent visits on open arms of the EPM and of 

social encounters in novel environment represent classical behavioral indicators of reduced 

anxiety in rodents (3) reduced corticosterone, ACTH, and stress-induced hyperthermia indicate 

that also the hypothalamic-pituitary-adrenal axis as well as the sympathetic response to stress 

are blunted. Our leading hypothesis is that DP4 deficiency in mutant F344 rats (2; 5) as well as 

congenic DA.F344-Dpp4m/SvH rats prolongs the half-life of endogenous NPY(1-36), which binds 

with high affinity the NPY Y1 receptor. This receptor is mainly responsible for NPY mediated 

anxiolysis and stress-protection (47; 48). N-terminal cleavage of NPY by DP4, leading to 

NPY(3-36) results in a much lower Y1 receptor affinity by this truncated peptide, thereby 

abrogating anxiolytic-like action of NPY. To this end, the interaction of NPY and DP4 takes 

place at the level of the hypothalamus, where high expression of NPY and DP4 in blood 

vessels is apparent (Fig. 3I) but other limbic areas and Y1 receptor expression sites may be 

involved as well. Last but not least, this concept of DP4 mediated modulation of NPY Y1 

receptor mediated may also account for the peripheral action of NPY in the PNS and immune 
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system as for example suggested by the increased levels of IL-6 (25). Concerning the CNS 

effects, presently, it remains open whether current DP4 inhibitors on the market will cross the 

blood-brain-barrier at a significant level thereby allowing interaction of CNS neuropeptide-

substrates and DP4. Furthermore, little distinctive anxiolytic-like and stress-protective effects 

may have not been discovered in phase 2 and phase 3 studies, even when considering that such 

effects only become apparent after stress. 

Whereas the “beneficial” metabolic as well as the appreciable anxiolytic/stress-protective-like 

actions, induced by DP4 deficiency, together represent a fascinating perspective for the 

application of DP4 inhibitors, probably, problems will appear in the area of immune regulation. 

Thus, already the present rat model exhibits several immune alterations at baseline or non-

challenged conditions, which consist in differential leukocyte subset composition (eosinophils, 

NK cells, B cells), blunted NK cell and T cell functions, and altered cytokine levels.  The most 

likely mechanisms for this plethora of effects probably have to be searched in different 

regulatory loops affected by DP4 deficiency. These are changes in T cell co-stimulation (40) 

and in chemokine metabolism (15), obviously also affecting hematopoetic stem cells (49). 

With regard to an altered chemokine metabolism it should be noted that at least several CCR3 

ligands (eotaxin, RANTES), as well as the CXCR4 ligand CXCL12 (SDF-1; stromal derived 

factor 1) and all CXCR3 ligands all represent substrates of DP4. While in healthy, non-

challenged conditions, i.e. phase 1 studies or genetically deficient animal models, modulatory 

effects induced by a prolonged half-life of these mediators may only be weakly expressed (i.e. 

alterations in blood and spleen leukocyte pools, as observed for eosinophils, B cells, and NK 

cells in the present study), at infectious or allergic states these processes might become crucial 

in patients (6; 50). As such conditions are not tested during phase 3 studies, their relevance for 

human patients remains open and probably will become overt during the introduction of DP4 

inhibitor into clinics. Similarly, a modulated CD26 dependent T cell co-stimulation via 

caveolin-1 mediated, APC-dependent upregulation of CD86, the principle ligand of CD28, or 

CD26-mediated co-stimulation via intracellular signaling via Carma-1 (40) may represent 

another problem, which becomes relevant after introduction of CD26-inhibitors into clinics. 

Namely, the response to recall-antigens on T cell as well as B cell levels may be blunted (40). 

Last but not least, since also tumor cell adhesion (7) and – as shown here – NK cell 

distribution/function are modulated by DP4, it cannot be excluded at this stage that also NK 

dependent responses such as defenses against viral infections and tumors are modulated under 

chronic DP4 inhibition. 
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In conclusion, the present comprehensive characterization of DA.F344-Dpp4m/SvH rats reveals 

a phenotype being composed of at least three major dimensions: (1) improvements in glucose 

and lipid metabolism being associated with a caveat of malabsorption of proline-rich diets, (2) 

surprising and very promising anxiolytic/stress-protective like effects, which need to be 

explored with regard to their clinical applicability, and (3) critical immune changes at baseline 

as well as after in vitro challenge, which hint to this area as the major impact regarding 

potential side-effects. Based on this plethora of findings in our novel model of DP4 deficiency, 

more specific DP4 inhibitors (i.e. organ specific) and more specific pharmacodynamics (i.e. 

short lasting compounds), appear to be necessary. 
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3.7. Tables and figures 

Table 1: Clinical chemistry in DP4 deficient DA rats 

Parameter in serum DA/Ztm DA.F344-Dpp4m/SvH 

Inorganic posphate [mmol/l] 1.2 ± 0.0 1.4 ± 0.1* 

Urea [mmol/l] 4.9 ± 0.1 5.7 ± 0.2** 

Natrium [mmol/l] 142.1 ± 0.3 141.5 ± 1.3 

Potassium [mmol/l] 3.5 ± 0.1 3.6 ± 0.2 

Calcium [mmol/l] 2.5 ± 0.0 2.5 ± 0.0 

Chloride [mmol/l] 100.8 ± 0.6 100.4 ± 1.0 

Glucose [mmol/l] 9.2 ± 0.3 9.04 ± 0.4 

Creatine [μmol/l] 37.2 ± 1.3 35.7 ± 1.4 

Total bilirubin [μmol/l] 1.8 ± 0.1 1.8 ± 0.1 

Cholesterol [mmol/l] 2.6 ± 0.1 2.5 ± 0.1 

Total protein [g/l] 66.0 ± 0.5 65.03 ± 0.9 

Albumin [g/l] 40.3 ± 0.4 39.8 ± 0.5 
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Table 2: Leukocyte subsets in DP4 deficient DA rats 

 DA/Ztm DA.F344Dpp4m/SvH 

Leukocytes [n x 103] 7170 ± 411 7284 ± 179 

% of abs. leukocytes 

Mononuclear cells 86.22 ± 1.2 86.76 ± 1.3 

Granulocytes 13.78 ± 1.3 13.24 ± 1.3 

IgMpos B cells 18.98 ± 1.1 21.96 ± 1.1 

IgMpos CD5pos B cells 0.96 ± 0.2 1.20 ± 0.2 

DC (MHC-IIpos E integrinepos) 0.64 ± 0.1 0.62 ± 0.1 

Monocytes (CD4pos CD172apos) 6.68 ± 0.5 7.20 ± 0.5 

NK (CD161pos) 3.26 ± 0.2 4.28 ± 0.3 

T cells ( /  TCRpos) 46.82 ± 3.1 43.86 ± 4.9 

CD4pos T cells 35.27 ± 1.9 33.25 ± 3.4 

CD8pos T cells 11.74 ± 0.6 11.04 ± 0.5 
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Figure 1: Glucose homeostasis and body weight related parameters in DP4 deficient 

(DP4neg) DA.F344-Dpp4m/SvH and wild type (DP4pos) DA/Ztm rats: DP4-like activity in 

DA/Ztm (+/+), DA.F344-Dpp4m/SvH (-/-) and additionally heterozygous DA animals (+/-) (A). 

Glucose tolerance 30-120 min following oral glucose challenge (OGC; indicated by arrow) in 

DA/Ztm (+/+), DA.F344-Dpp4m/SvH (-/-) as well as DA congenics that are heterozygous for 

DP4 (+/-). Significant effects, indicated by asterisks, only refer to DA.F344-Dpp4m/SvH vs 

DA/Ztm wildtype (B). GLP-1(7-36) levelsin DP4pos and DP4neg rats 30 min post oral glucose 

challenge (C). Insulin levels in DP4pos and DP4neg rats 15, 30, and 45 min post oral glucose 

challenge (D). Insulin staining of pancreatic islets in DP4pos and DP4neg rats. A representative of 

the maximal islets size shown in the beta cell area is illustrated, scale bar = 100 μm (E). Body 

weight of the different substrains between 6 and 90 weeks of age; bottom: body weight gain 

under high calorie diet (HCD), BL, baseline, w1-w4, week 1-4 of HCD (F). Data represent 

means ± SEM. Significant group difference derived from post-hoc analysis are indicated by 

asterisks (*p < .05; **p < .0 1; ***p < .0 01 vs DA/Ztm wild type). 
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Figure 2: Metabolic changes, and clinical chemistry in DP4 deficient (DP4neg) DA.F344-

Dpp4m/SvH and wild type (DP4pos) DA/Ztm rats: Immunohistological detection of free leptin 

in hepatocytes in DP4pos and DP4neg rats, scale bar = 100 μm. Strong immunoreactivity is 

represented by intensity of cytosolic red colour (A). Bound leptin levelsDP4pos and DP4neg rats 

(B). Clinical chemistry findings on alanine aminotransferase (ALAT), aspartate 

aminotransferase (ASAT) and alkaline phosphatase (AP) [U/l], and triglycerides (TG) [mmol/l] 

in serum samples (C). Impact of gliadin-rich, modified food on weight gain. Animals were fed 

with modified and non-modified food over a three-week period (D). Data represent means ± 

SEM. Significant group difference derived from post-hoc analysis are indicated by asterisks 

(*p < .05; **p < .0 1; ***p < .0 01 vs DA/Ztm wild type). 
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Fig. 3: Stress-protective and anxiolytic-like phenotype in DP4 deficient congenic DA rats: 

Diurnal home cage activity pattern. Activity of DA/Ztm (DP4pos) and DA.F344-Dpp4m/SvH 

(DP4neg) rats was recorded over a period of three days. The diagram represents activity during a 

22 h recording interval and displays the time spent in large movements (movements longer 
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than 3 s) being collapsed into sums 15 min total activity (A). Associative learning across 8 

days in the two-way active avoidance shuttle box paradigm (B). Stress-induced hyperthermia. 

The rectal temperature was determined in non-stressed, experimentally naïve rats (t0) as well as 

at two time points after a brief stressor (tStr1 and tStr2) (C). in DP4pos and DP4neg rats (D). in 

DP4pos and DP4neg rats (E). Time spent in active social interaction as parameter for anxiety-like 

behaviors in the social interaction test; pairs of non-familiar either DP4pos or DP4neg rats were 

exposed to an open field 1h after onset of dark phase for 10 min and sum of time of their active 

“sociopositive” behaviors was recorded (F). Anxiety-like behaviors in the EPM test are 

reflected by the percentage of open arm entries. Animals were tested in the elevated plus maze 

1 h after onset of dark phase (G). Exploratory behavior in the holeboard test. The number of 

head dips was recorded during a 10 min session (H). Hypothalamic co-expression of DP4 

(blue) and NPY (brown vesicular staining) expression sites (I). Arrow heads indicate blue 

staining for DP4 in blood vessels the eminentia mediana, external layer, in DP4pos rats, while 

no such immunoreactivity was seen in DP4neg rats (arrows in the small insert, upper right of I); 

VMH = ventromedial hypothalamic nucleus, ArcD = arcuate hypothalamic nucleus, dorsal 

part, ArcM = arcuate hypothalamic nucleus, medial part, ArcL = arcuate hypothalamic nucleus, 

lateral part, V3 = 3rd ventricle, MEE = medial eminence, external layer, MEI = medial 

eminence, internal layer (I). Data represent means ± SEM. Significant effects are indicated by 

asterisks (*p < .05; ***p < .0 01 vs DA/Ztm wild type). 
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Figure 4: Immunological differences in DA congenics lacking DP4 activity (DA.F344-

Dpp4m/SvH) and in DA wild type (DA/Ztm) rats: Differential blood cell distribution  of 

DP4pos and DP4neg rats; white blood cells (WBC), red blood cells (RBC), platelets (PLT) (A, 

left and right). Differential leukocyte subsets determined via FACS (B, left and right). Specific 

cytotoxity (spec. cytotox.) against and YAC-1 target cells (C). Splenic NK cells in % (D). LU 

per 1 % NK cells (E). T cell proliferation was assayed in PBMCs from DP4pos and DP4neg rats 

(F). Cytokine levels of IL-6 and IL-10 (G). Data represent means ± SEM. Significant effects 

made are indicated by asterisks (*p < .05; **p < .0 1 vs DA/Ztm wild type). 
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Abstract 

Dipeptidyl-peptidase IV (DP4) is involved in several physiological functions, some of which 

are dependent on DP4’s ability to N-terminally truncate dipeptides of the neurotransmitter 

neuropeptide Y (NPY1-36). The remaining C-terminal fragment NPY3-36 has a relatively lower 

affinity for the NPY receptor subtype Y1. The Y1 receptor is involved in stress-protective, 

anxiolytic-like and analgetic-like effects of NPY. In a genetic study, we tested stress-induced 

analgesia SIA in two spontaneously mutated DP4 deficient F344 rat substrains and in a DP4 

deficient congenic DA rat strain. We also investigated whether intracerebroventricular (i.c.v.) 

administration of NPY (vehicle, 0.2, or 1.0 nmol) or the DP4 inhibitor isoleucyl-thiazolidide 

(Ile-Thia) (vehicle, 0.5, or 5.0 nmol) modulates the pain threshold in DP4 deficient F344 rat 

substrains compared to wild type-like F344 control animals. All three animal models for DP4 

deficiency exhibited a blunted stress-dependent increase of the nociceptive threshold in the 

non-habituated hot plate paradigm illustrating a process of reduced SIA. This difference was 

lost after habituation to the hot plate paradigm. Centrally administered NPY decreased pain 

sensitivity of DP4 deficient F344 substrains in the non-habituated and habituated hot plate, 

whereas pharmacological inhibition of DP4 resulted in an increased pain threshold in wild 

type-like animals, which was similar to DP4 deficient animals. Immunohistology of the 

hypothalamus revealed expression of DP4 in the close vicinity of NPY positive neurons of the 

paraventricular nucleus. The study demonstrates that stress-induced analgesia depends on DP4 

expression and suggests a mechanism via N-terminal truncation of NPY, subsequently 

resulting in reduced Y1 receptor-like tone and associate loss of stress-protective/anxiolytic-like 

effects. 
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4.1. Introduction 

The enzyme and binding protein dipeptidyl peptidase 4 (DP4; CD26) belongs to the class of 

membrane-associated peptidases (De Meester et al., 1999). Due to its unique ability to liberate 

Xaa-Pro and Xaa-Ala dipeptides from the N-terminus of regulatory peptides, substrates for 

DP4 include neuropeptides such as neuropeptide Y (NPY), endomorphin, and substance P (De 

Meester et al., 2000; Hildebrandt et al., 2000; Mentlein, 1999). These have been shown to exert 

analgetic-like effects, with NPY undergoing the highest relative cleavage rate and thus being a 

highly affine substrate (Bjelke et al., 2006; Mentlein, 1999). 

We have previously investigated the role of loss of DP4 enzymatic activity on behavioural and 

physiological processes in two mutant F344 rat models for DP4 deficiency (i.e. 

F344/DuCrjSvH-Dpp4m and F344/Crl(Wiga)SvH-Dpp4m) – for details see Karl et al. (Karl et 

al., 2003a; Karl et al., 2003b; Karl et al., 2003c). In a systematical behavioural and 

physiological characterization, we observed reduced anxiety-like behaviours and an associated 

reduction in stress-induced analgesia in both DP4 deficient F344 rat substrains compared to 

wild type-like F344 rats (Karl et al., 2003c). Namely, we observed that under non-habituated 

conditions of the hot-plate assays, both DP4 deficient substrains exhibited a reduced threshold 

in showing aversive responses. This phenomenon was lost after habituation to the potentially 

stressful context of the hot plate assay (Karl et al., 2003c), thus being strongly suggestive for a 

status of blunted stress-induced analgesia under a condition of genetic DP4 deficiency and for 

a stress-protective effect of this deficiency.  

NPY affects anxiety and nociception (Kask et al., 2002; Naveilhan et al., 2001; Wettstein et al., 

1995) and an involvement of the Y1 receptor subtype has been documented. Importantly, the 

described anxiolytic-like phenotype of the mutant substrains – giving rise to their reduced 

stress-induced analgesia (Wolf et al., 2007) – is very likely associated with differential 

degradation and utilization of NPY, strongly suggesting that a more potent NPY Y1 receptor-

like tone in these rats causes this behavioural effect (Karl et al., 2003b). However, the direct 

effect of NPY on nociceptive responses remains controversial: some studies describe an 

analgetic effect of exogenous NPY (Hua et al., 1991; Merlo Pich et al., 1990) and an 

involvement of the Y1 receptor (Gibbs et al., 2004; Gibbs et al., 2006), others discuss a 

nociception-increasing effect (Broqua et al., 1996; von Horsten et al., 1998) or did not find any 

effect of NPY on pain threshold (Heilig et al., 1993; Jolicoeur et al., 1991).  

As NPY represents one of the best substrates for DP4 (Bjelke et al., 2006), we considered here 

increased levels of this endogenous mediator first as being responsible for the stress-protective-
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like phenotype of DP4 deficient F344 rats during their response to novelty (i.e. the non-

habituated hot plate assay) and for the associated modulation of central pain processing (i.e. the 

blunted stress-induced analgesia).  

In a first step we wanted to exclude any impact of reported variations in the genetic 

background of the F344 substrains (Karl et al., 2003a) on the nociceptive phenotype. Thus, we 

generated a DP4 deficient congenic strain on the Dark Agouti (DA) rat genetic background. 

For this, we transferred the mutant Dpp4 allele of the F344/Crl(Wiga)SvH-Dpp4m substrain 

onto a DA/Ztm background and tested these animals for SIA in the hot plate paradigm. In a 

second step, we characterized the phenomenon of SIA in mutant F344 substrains 

(F344/DuCrjSvH-Dpp4m, F344/Crl(Wiga)SvH-Dpp4m). We also investigated, whether identical 

doses of intracerebroventricular (i.c.v.) administered NPY in control and mutant F344 rats 

would lead to a differential nociceptive response in the hot plate design. Finally, we analysed 

whether pharmacological inhibition of DP4 (i.c.v. treatment with isoleucyl-thiazolidide) has a 

similar effect on pain sensitivity of wild type-like control F344 rats as caused by the genetic 

depletion of DP4 in the two mutant F344 substrains. This series of experiments was completed 

by immunohistological studies seeking for expression of NPY and DP4 in brain areas involved 

in the modulation of stress. 
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4.2. Materials and methods 

Animals 

F344 substrains obtained in 1998 from breeding colonies of Charles River Laboratories (Crl) in 

Sulzfeld, Germany (Thompson et al., 1991), and Atsugi, Japan (Tiruppathi et al., 1993; 

Watanabe et al., 1987), almost completely lack DP4-like activity and protein expression. This 

DP4 deficiency cannot be detected in wild type-like F344 rats from Crl breeding colonies in 

Portage, USA or Hannover (Ztm), Germany (Karl et al., 2003a). In our previous reports (Karl 

et al., 2003a; Karl et al., 2003b; Karl et al., 2003c) F344 rat substrains derived from breeding 

colonies of CR in Atsugi, Japan were named F344/DuCrj(DPPIV-), animals from breeding 

colonies in Sulzfeld, Germany, F344/Crl(Ger/DPPIV-), and wild type-like rats obtained from 

colonies in Portage, USA, F344/Crl(Por). Since we have further inbred these mutant lines for 

more than 10 generations, and since some of them are not commercially available from CR 

anymore, we code them nowadays F344/DuCrjSvH-Dpp4m for the Japanese and 

F344/Crl(Wiga)SvH-Dpp4m for the German DP4 deficient line as well as F344/Crl(USA) for 

the wild type-like control rats, respectively.  

All adult, male test animals (F344/DuCrjSvH-Dpp4m, F344/Crl(Wiga)SvH-Dpp4m, 

F344/Crl(USA), DA.F344-Dpp4m/SvH and DA/Ztm) were housed and bred at the Central 

Animal Facility of the Medical School Hannover. Animals were maintained in a separated 

minimal barrier sustained facility and kept in macrolon type III cages with standard bedding 

(Altromin GmbH, Lage, Germany). Food (Altromin Standard diet 1320: Altromin GmbH, 

Lage, Germany) and water were available ad libitum. Environmental temperature was 

automatically regulated at 21 ± 1°C and relative humidity was 60% with an air change rate of 

15 times per hour. The animal rooms were operated with a positive pressure of 0.6 Pa. Rats 

were maintained under a 12:12 h light regime. They underwent routine cage maintenance once 

a week. Routine microbiologic monitoring according to FELASA recommendations 

(Rehbinder et al., 2000) did not reveal any evidence of infection with common murine 

pathogens except for Pasteurella pneumotropica and Staphylococcus aureus. All research and 

animal care procedures were approved by the Review Board for the Care of Animal Subjects of 

the district government, Hannover, Germany, and performed according to international 

guidelines for the use of laboratory animals. 
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Generation of congenic DP4 deficient DA strain 

Development of the congenic strain was started with an initial cross between 

F344/Crl(Wiga)SvH-Dpp4m females, bearing the loss-of-function-mutation in the Dpp4 gene 

and male DA/Ztm rats. The DA rat strain was selected as a recipient strain due to its high 

endogenous DP4-like enzymatic activity, ensuring that congenics on DA background exhibit 

pronounced differences compared to the wild type-like strain (Karl et al., 2003c). Male F1 rats 

were then backcrossed to DA females. Heterozygosity of the Dpp4 locus of N2 males was 

tested by analysing DP4 expression on T-cells using FACS analysis of T cell receptor (mAb 

R73) and DP4 (mAb OX61) immunopositive events and by genotyping the Dpp4 using two 

informative microsatellite markers (D3cd26-7 and D3cd26-7). 

The genetic background of heterozygous N2 DA.F344/Crl(Wiga)SvH-Dpp4m males were 

genotyped using informative microsatellite markers with an intermarker distance of about 

20 cM spanning the whole genome/chromosomes. The N2 male with the highest proportion of 

DA background was selected for the next cross. This scheme was used at each generation until 

N5. A N5 male and a N5 female, homozygous for the DA background, were then mated to 

produce DA.F344-Dpp4m/SvH founders. The DP4 deficient congenic DA strain is maintained 

through brother x sister mating. We used DA.F344-Dpp4m/SvH N5F2 rats for the experiments 

(DA/Ztm rats used as controls).  

Determination of DP4-like enzymatic activity 

All test animals were characterized for their DP4-like enzymatic activity as described 

previously (Karl et al., 2003a). For determination of plasma activity of F344 and congenic rats 

a microplate based chromogenic assay was used. EDTA-plasma samples were kept at –80°C 

until use. DP4 enzyme activity of the different rat substrains was determined by monitoring the 

release of 7-amino-4-methylcoumarin (AMC) from the substrate Gly-Pro-AMC at 360/480 nm 

(Ex/Em) and 30°C using the Novostar fluorescence microplate reader (BMG, Offenburg, 

Germany). The assay consists of 20 μl plasma sample, 100 μl H2O and 100 μl HEPES buffer 

pH 7.6 and 50 μl Gly-Pro-AMC. Activity was calculated from the linear slope using a factor of 

3.116x10-4 μmol/l calculated from an AMC standard curve and the sample dilution. One unit is 

defined as the enzyme activity, which cleaves 1 μmol Gly-Pro-AMC per minute. The assay is 

selective for DP4-like activities, however, due to the alkaline pH it neglects the contribution by 

dipeptidyl peptidase 2. Importantly, the chromophores are not released by other proline-

specific peptidases, such as prolidase, prolyl endopeptidase or aminopeptidase P. 
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Surgery (I.c.v. cannulation) 

For surgery F344 rats were anaesthetized with an intramuscular (i.m.) mix of ketamine 

hydrochloride (0.1 ml/100 g body weight; Albrecht, Aulendorf, Germany) and dormitor 

(0.01 ml/100 g body weight; Pfizer GmbH, Karlsruhe, Germany). The i.c.v. cannulation 

technique was identical to a previous report (von Horsten et al., 1998). After placement of the 

rat in a Kopf stereotactic apparatus (Model 900: David Kopf Instruments, Tujunga, USA), the 

incisor bar was adjusted on position zero and the ear bars were adjusted to equal positions so 

that the rat’s head was fixed in the apparatus. The eyes were protected against drying with eye-

salve (Bepanthen Augen- und Nasensalbe: Hoffmann-La Roche AG, Grenzach-Wyhlen, 

Germany). The skull was exposed by a midline incision, the periost was removed, the bone 

surface was dried, and the position of the bregma was identified. Three stainless steel anchor 

screws (Breitfeld & Schliekert, Karben, Germany) were secured to the skull and a stainless 

steel guide cannula (Plastics one, Roanoke, USA) was implanted in the right lateral ventricle 

and cemented in place with dental cement (Durelon Maxicap: Espe Dental AG, Seefeld, 

Germany). The coordinates for the lateral ventricle were 0.7 mm caudal and 1.6 mm lateral to 

the bregma, with the guide cannula (Plastics one) extending 3.4 mm ventral to the skull 

surface.  

Flow of small amounts of 0.9% saline (Braun Melsungen AG, Melsungen, Germany) through 

the protracted injection (internal) cannula (Plastics one, Roanoke, Germany) was used to verify 

that the guide cannula was positioned just above the ventricular system. The guide cannula was 

fitted with a dummy cannula (Plastics one, Roanoke, USA) of the same length to prevent 

leakage of cerebrospinal fluid. Animals were housed individually after surgery. The anatomical 

position of the cannulation was verified by post mortem i.c.v. dye application (Berlin blue) and 

inspection of third ventricular staining in randomly chosen rats. The animals of the three F344 

substrains F344/DuCrjSvH-Dpp4m, F344/Crl(Wiga)SvH-Dpp4m and F344/Crl(USA) were 

operated at the age of 95 (± 5) days. After a recovery phase of 10 days we commenced 

observation of the animals’ behaviour in the hot plate task. 

Drug dosages and i.c.v. application procedure 

A stock solution of human/rat NPY (2 mol; Polypeptide GmbH, Wolfenbüttel, Germany) was 

adjusted under sterile conditions to final concentrations (0.2 nmol/5 μl and 1.0 nmol/5 μl) 

using 0.9% saline. The final concentrations were made 24 h before testing. Animals were 

habituated to experimental i.c.v. injections daily for seven days prior to the start of the first 

experiment. For i.c.v. administration, animals were taken out of the home cage and the dummy 
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cannula was replaced by the internal cannula. Peptide or 0.9% saline were injected i.c.v. at a 

volume of 5 μl over 20 s through the internal cannula extending 4.4 mm ventral to the skull 

surface. The internal cannula was attached to a microsyringe (Hamilton Bonaduz AG, 

Bonaduz, Switzerland) with approximately 30 cm of polyethylene tubing (Plastics one, 

Roanoke, USA), which allowed the animal to move freely during the i.c.v. injection. Before 

the rat was placed back into the home cage the dummy cannula was re-attached. Experiments 

started 15 min after administration. During the habituation phase the handling procedure was 

exactly the same but no compound was administered. Two different doses of NPY were used 

for this study and a 3 (substrain)  3 (treatment) experimental design was set up. Thus, F344 

rats of each substrain were subdivided into three treatment groups each, which were treated 

with either 0.9% saline (vehicle: 0.0 nmol/5 μl), 0.2 nmol/5 μl or 1.0 nmol/5 μl NPY. Seven 

days later animals were treated either with 0.9% saline (vehicle: 0.0 nmol/5 μl), 0.5 nmol/5 μl 

or 5.0 nmol/5 μl of the DP4 inhibitor isoleucyl-thiazolidide (Ile-Thia: Probiodrug AG, Halle, 

Germany).  

Nociception (Hot plate) 

A 30 x 30 cm hot plate analgesia meter (Columbus Instruments, Columbus, USA) was used for 

this experiment, which was carried out during the light phase of the light cycle. The experiment 

was performed as previously described (Karl et al., 2003c). The rat was placed on the surface 

of the apparatus, which was maintained at 52.5°C. The latency to respond (lick or raise a 

hindpaw) was recorded. To prevent any damage to the animals, rats were removed from the hot 

plate if they did not respond within 20 s (Naveilhan et al., 2001; von Horsten et al., 1998). 

F344/DuCrjSvH-Dpp4m, F344/Crl(Wiga)SvH-Dpp4m and F344/Crl(USA) rats’ nociceptive 

response was tested 15 min after treatment with different dosages of either NPY (or saline) or 

Ile-Thia (or saline - seven days after NPY treatment). The recently generated DA.F344-

Dpp4m/SvH rats and their DA/Ztm controls were tested twice for nociception: 1) non-

habituated (day 1) and 2) seven days later after being habituated to the test apparatus 

(habituation on the inactivated hot plate for 1 min per day on days two, four, and six).  

Double immunoflourescence of hypothalamic immunoreactivity for NPY and DP4 

Animals were perfused as previously described (Kask et al., 2001). 30 mm coronal 

cryosections of the rat hypothalamus that were defined by the anatomical atlas were cut on a 

cryostat (Paxinos and Watson, 1989). All sections were collected in 0.1 M PBS and processed 

after the free-floating method. After initial washing steps, sections were placed in a pre-

incubation solution containing 10 % NDS, 0.3% Triton X-100 in 0.1 M PBS (1 h, RT). 
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Sections were incubated with the anti-rat DPPIV/CD26 monoclonal antibody (clone 5E8, 

1:500, Cell Science Inc., Canton, MA 02021) for 48 h at 40C on a horizontal shaker. 

Subsequently, sections were washed and incubated with an anti-mouse-Cyanin 2 conjugated 

antibody (1:1500, diluted in 0.1M PBS) for 45 min. Finally, sections were washed extensively 

in 0.1 M PBS and further processing were performed in the dark. For double 

immunoflourescence staining, sections were incubated at 4°C with rabbit anti-human/ratNPY 

polyclonal antibody (1:200; affinity purified; Biotrend, Köln, Germany; # NA1233, Batch 

Z02052). Following subsequent washes, sections were labeled using Cyanin-3-coupled anti-

rabbit antibody (1:1500, 2 hr, RT), diluted in 0.1 N PBS. In some cases, DAPI nuclear staining 

was applied according to standard procedures. Control sections were included, in which one or 

both primary antibodies were omitted. All sections were analyzed using a Nikon light 

microscope (Eclipse 80i; Nikon, Tokyo, Japan), Nikon objectives (Plan Apo, VC 2 , NA = 

1.0; Plan Apo VC 40 , NA = 1.1), motorized specimen stage for automatic sampling 

(Märzhäuser, Wetzlar, Germany), electronic microcator (Heidenhain, Traunreut, Germany), a 

dedicated Nikon HiSN fluorescence system, a Nikon cooled DS-5Mc camera, and imaging 

software (Stereo Investigator, MicroBrightField, Williston, VT). 

Statistical analysis 

The behavioural data were analysed using a two-way analysis of variance (ANOVA; factor: 

"strain"  "treatment") and/or one-way ANOVA (factor: "strain" or "treatment" - split by the 

corresponding factor) followed by the Fisher-PLSD-test for posthoc comparison, if 

appropriate. Differences were regarded as statistically significant if p < .05. Results present the 

degrees of freedom, F-values, and p-values of the ANOVAs, while in figures and tables the p-

values of the corresponding posthoc tests (Fisher-PLSD-test) are provided. The number of 

animals per strain/treatment group was n = 8, with exceptions indicated by the degrees of 

freedom. Significant posthoc effects for the factor "strain" versus the control animals of the 

F344/Crl(USA) substrain or the DA/Ztm strain are indicated by asterisks (*p < .05; **p < .01; 

***p < .001). All data are presented as means ± standard error of the mean (SEM). 
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4.3. Results  

DP4-like enzymatic activity 

One-way ANOVA of the DP4-like activity of the congenic DA.F344-Dpp4m/SvH rats revealed 

a significantly decreased level of activity for the congenic rats compared to the wild type-like 

DA/Ztm control strain [F(1;7) = 416.4; p < .0001; Fig. 1A]. Screening of the different F344 

substrains confirmed a near complete lack of enzymatic DP4-like activity for F344/DuCrjSvH-

Dpp4m and F344/Crl(Wiga)SvH-Dpp4m animals and a wild type-like pattern of DP4-like 

activity for the F344/Crl(USA) control substrain [F(2;61) = 400.4; p < .0001; Fig. 1B].  

Nociception (Hot plate) 

Non-habituated, vehicle-treated DP4 deficient F344 rats of both substrains exhibited a 

significantly increased nociception (two-way ANOVA for latency to lick/raise a hindpaw – 

factor "strain": F(2;55) = 10.1; p < .0001 – one-way ANOVA for "vehicle": F(2;19) = 6.9; p < 

.01; Fig. 2A) compared to control animals (F344/Crl(USA)). Importantly, i.c.v. NPY increased 

dose-dependently the pain threshold of mutant but not wild type-like F344 rats so that initially 

observed nociceptive differences disappeared (one-way ANOVA for "0.2 nmol": F(2;189) = 

4.2; p < .05; for "1.0 nmol": non significant; Fig. 2A). Due to the reported lack of response to 

NPY treatment in F344 control rats, two-way ANOVA revealed only a trend (two-way 

ANOVA: F(2;55) = 2.3; p = .08) for i.c.v. NPY to increase the pain threshold. 

Analysing the effects of DP4 inhibition on nociception in these F344 substrains confirmed 

once more the decreased pain threshold for vehicle-treated mutant F344 substrains "at 

baseline" (two-way ANOVA; factor "strain": F(2;44) = 4.9; p = .01; one-way ANOVA for 

"vehicle": F(2;18) = 3.6; p < .05; Fig. 2B). I.c.v. injections of 0.5 nmol or 5.0 nmol Ile-Thia 

attenuated the differences in nociception between the different substrains by increasing the 

pain sensitivity of the control F344/Crl(USA) substrain but not DP4 deficient rats (Fig. 2B). 

Transferring the genetics for DP4 deficiency onto a DA background (DA.F344-Dpp4m/SvH 

rats) resulted in a phenotype similar to mutant F344 substrains. The newly generated congenic 

DP4 deficient rats exhibited increased pain sensitivity in the non-habituated hot plate task 

(one-way ANOVA: F (1; 15) = 22.7; p < .001; Fig. 3). Similarly, the significant decrease in the 

latency to raise or lick a hindpaw disappeared after habituation  (one-way ANOVA: F (1; 15) 

= 1.6; non significant; Fig. 3). 
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Histological findings 

Figure 4 illustrates representative photomicrographs at the level of the third ventricle (3V) and 

the paraventricular hypothalamic nucleus (PVN) in lower (upper row) and higher 

magnification (lower row) of DP4 (A, D; green flourescence) and NPY (B, E; red 

flourescence) in wild type-like F344 rat brain (F344/Crl(USA)). Panels C and F represent 

overlays of A and B as well as D and E, respectively.  

In general, strong DP4-like immunoreactivity (ir) was found at meninges, blood vessels, and 

the circumventricular organs such as the median eminence (data not shown). No evidence for 

neuronal expression of DP4-like protein was found in wild type-like and mutant brains. NPYir 

was present at multiple areas of the CNS including substantia gelatinosa of the dorsal horn of 

the spinal cord, several hypothalamic nuclei such as the paraventricular nucleus and the arcuate 

nucleus. Consistently, no obvious difference in the distribution pattern of NPYir fibres and cell 

bodies were found between the various F344 substrains. Although there was an overlap in the 

distribution pattern of DP4ir and NPYir within the before-mentioned brain areas, under a 

higher magnification, no clear co-localization of DP4ir and NPYir was observed at a cellular 

level (Fig. 4C and F). However, NPY positive neurons were found in close proximity to DP4-

positive structures such as blood vessels or in the circumventricular organs (i.e. the median 

eminence on the level of the arcuate nucleus). Furthermore, DP4-like ir was found in the 

subependymal layer of the third ventricle close to the PVN of the hypothalamus (arrows). In 

addition, processes of NPYir neurons were closely associated with blood vessels. 
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4. 4. Discussion 

We report here that mutant F344 as well as congenic DA substrains – all lacking endogenous 

DP4 enzymatic activity – show increased pain perception, interpreted as reduced stress-

induced analgesia, in a non-habituated hot plate paradigm. I.c.v. administration of NPY 

reverses this increase in pain sensitivity in the DP4 deficient F344 substrains dose-

dependently. In the same line, central inhibition of DP4 by the DP4 inhibitor Ile-Thia resulted 

in reduced stress-induced analgesia in wild type-like control F344 rats.  

These effects show parallels to DP4 deficient congenic DA rats and to the previously reported 

mutant F344 substrains in the non-habituated hot plate test. Consequently, we conclude that 

central DP4-like enzymatic activity exerts an important modulatory effect on central pain 

processing. Furthermore, the data suggest that the DP4 substrate NPY is implicated in this 

process. In line with this, we hypothesize the involvement of NPY in nociception via two 

different levels/pathways: a) NPY’s influence on stress-induced analgesia by mediating the 

amplitude of stress via the antinociceptive and stress-reducing action of its Y1 receptor - with 

the endogenous NPY tonus being under control of DP4, and b) the antinociceptive effect of 

i.c.v. NPY, which produces analgesia/antinociception by activation of its Y1 receptors. 

So far, neither the interaction of NPY and DP4 nor the potential of NPY in reducing stress and 

thus controlling the dimension of stress-induced analgesia have been considered in pain 

perception. In two recent publications we described an anxiolytic-like and nociceptive 

phenotype for DP4 deficient F344/DuCrjSvH-Dpp4m and F344/Crl(Wiga)SvH-Dpp4m rats 

(Karl et al., 2003b; Karl et al., 2003c). The reduced behavioural stress response of mutant F344 

rats is very likely based on differential NPY catabolism leading to an increased Y1 receptor-

like tone. The Y1 receptor is the main mediator of NPY’s well-described anxiolytic-like effects 

(Heilig, 2004; Kask et al., 2001). We also showed that the nociceptive phenotype of DP4 

deficient F344 rats was associated with a reduced stress protection in these animals. This 

implies an impact of stress-induced analgesia (Kelley, 1986; Kelly, 1982) and endogenous 

NPY release (Heilig, 2004) on this nociceptive phenotype (for details see: Karl et al., 2003b).  

Importantly, a similar increase in nociception was found for the newly generated congenic rats 

(DA.F344-Dpp4m/SvH) that are also characterized by reduced stress and anxiolysis. Thus, we 

have excluded influences of the genetic background of the F344 substrains on their phenotype 

and confirmed that in fact differential expression and function of DP4 modulates pain 

perception in the non-habituated hot plate task.  
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In early experiments of acute stress (Akil et al., 1976; Madden et al., 1977), stress-induced 

analgesia was reversed by habituation to an experimental setting. In addition, stress-induced 

analgesia was accompanied by an increase in brain endogenous opioids (Madden et al., 1977). 

This phenomenon could be antagonized by non-specific centrally acting opioid antagonists and 

was found to be partially reversible by the opioid antagonist naloxone (Akil et al., 1976). 

Moreover, pain or any kind of stress – psychological, infectious or traumatic – activates 

corticotropin-releasing hormone (CRH) neurons (Chrousos and Gold, 1992; Crofford et al., 1994). 

Furthermore, stress-induced activation of the hypothalamic-pituitary axis has been shown to 

produce analgesia (Amit and Galina, 1986). 

As NPY is a key mediator of stress-protective effects (Heilig, 2004; Kask et al., 2001), which 

could also be observed in the DP4 deficient rat substrains, the neuropeptide may very likely 

modulate stress-induced analgesia. In DP4 deficient rats, NPY may reduce stress levels via an 

increased activation of the Y1 receptor. This increased Y1 receptor-like tone would alter 

baseline arousal of these substrains in the non-habituated hot plate test. Attenuated stress levels 

would lead to a reduced release of opioids. In addition, it has to be mentioned that pronounced 

reduction of endogenous DP4 activity also affects DP4 substrate metabolism other than NPY 

and some of its substrates are powerful modulators of pain perception as well. 

DP4 inhibition via i.c.v. Ile-Thia had no effect on hot plate latencies in mutant F344 substrains. 

However, control rats exhibited increased pain sensitivity after pharmacological DP4 

inhibition, which was identical to the nociceptive phenotype of our genetic animal model for 

DP4 deficiency. Similar effects were found in another study for wild type-like but not DP4 

deficient knockout mice (Guieu et al., 2006). 

Histological findings indicate clear expression of DP4 immunoreactivity at sites of the blood-

brain-barrier [i.e. blood vessels, circumventricular organs (CVOs) and meninges] but little or 

no evidence for DP4 expression/activity at distinct brain areas or even neurons. A close 

association of both proteins was found at the CVOs and ventricle walls at the level of the 

hypothalamus. The expression of DP4 at CVOs offers interesting possibilities for DP4-

mediated alteration of endogenous stress modulating peptides such as NPY, the neuropeptide 

pituitary adenylate cyclase-activating polypeptide, and SP. As all of these peptides represent 

not only substrates of DP4 but also key players in adaptive/stress responses. Their local N-

terminal truncation at the level of the hypothalamus (i.e. median eminence) might offer a novel 

and interesting avenue for the regulation of stress responsiveness.  
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Whereas NPY exerts a rather stress-modulatory role in the non-habituated hot plate task – 

resulting in a nociceptive response of DP4 deficient rats – i.c.v. NPY shows an antinociceptive 

effect, thus potentiating the analgesic action of NPY. NPY’s function within pain perception is 

controversially discussed but its presence in areas involved in pain modulation such as the 

periaqueductal gray, locus coeruleus, thalamus or in the dorsal horn of the spinal cord suggests 

an important role for NPY as a putative regulator of pain transmission and perception (Broqua 

et al., 1996). Although some studies describe pronociceptive (Lin et al., 2004; Ossipov et al., 

2002; Son et al., 2007; Tracey et al., 1995; White, 1997) or bilateral effects of NPY (Gibbs et 

al., 2007; Xu et al., 1999), the majority describes antinociceptive role of NPY (Hua et al., 

1991; Naveilhan et al., 2001; Taiwo and Taylor, 2002). For example, intranasal NPY 

application in humans significantly reduced capsaicin-evoked pain by 34% (Lacroix et al., 

1996). Using different animal models, NPY induces powerful antinociceptive effects in the 

acetic acid-induced writhing test and after thermal stimulation, which are probably mediated 

via the Y1 receptor (Broqua et al., 1996; Gibbs et al., 2007; Taiwo and Taylor, 2002; Wang et 

al., 2001; Xu et al., 1999). However, the analgetic-like effects of exogenously applied NPY 

seem to be dependent on the route of administration, the application dosage, and the intensity 

and modality of the painful stimulus (Broqua et al., 1996; Mellado et al., 1996). So, apart from 

species-specific effects, variations of these parameters have very likely led to divergent results 

for the role of NPY in pain  

In the current study, i.c.v. administration of NPY was found to have a more potent analgetic-

like effect on mutant F344 substrains than on control rats. Differential degradation of NPY, 

caused by DP4 deficiency, could lead to an increased Y1 receptor-like tone in mutant rats 

potentiating the dose-dependent analgesic/antinociceptive actions of NPY. The exclusive 

importance of the Y1 receptor for the antinociceptive-like potential of centrally applied NPY is 

described in genetic and pharmacological studies using Y1 receptor knockout mice (Naveilhan 

et al., 2001; Taiwo and Taylor, 2002). I.c.v. NPY had no further analgetic-like impact on 

control F344 rats as it is likely that these animals – caused by being tested in a non-habituated 

hot plate paradigm, which activates the rats’ stress response and therefore NPY release and 

stress-induced analgesia – exhibit a pain threshold at its maximum. 

Overall, these data provide further substantial evidence for the involvement of NPY-DP4-axis in 

stress-induced analgesia. 
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4.7. Figures 

 

 

Fig. 1A (above) + B (below): DP4-like activity: DP4-like activity [mU/ml] of A) the newly 

generated congenic rat strain DA.F344-Dpp4m/SvH and of B) three different F344 rat 

substrains (F344/DuCrlSvH-Dpp4m, F344/Crl(Wiga)SvH-Dpp4m, F344/Crl(USA)) was 

analysed using blood taken from the tail vein. Data represent means ± SEM. Asterisks (***p < 

.001) reflect significant posthoc differences versus wild type-like rats of the A) DA/Ztm strain 

or B) F344/Crl(USA) substrain. 
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Fig. 2A (above) + B (below): Nociception: pain sensitivity was analysed in the non-habituated 

hot plate task - rats of the three different F344 substrains were tested after receiving an i.c.v. 

injection of vehicle or A) NPY (0.2 nmol/1 nmol) or B) Ile-Thia (0.5 nmol/5.0 nmol). The 

latency to respond (lick or raise a hindpaw) was recorded. Data represent means ± 

SEM.Asterisks (*p < .05; **p < .01) reflect significant posthoc differences versus 

F344/Crl(USA) rats. 
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Fig. 3: Nociception: pain sensitivity was analysed in the non-habituated hot plate task and 

again seven days later in the habituated hot plate task - rats of a wild type-like DA/Ztm and of 

a DP4 deficient congenic DA.F344-Dpp4m/SvH strain were tested. The latency to respond (lick 

or raise hindpaws) was recorded. Data represent means ± SEM. Asterisks (*p < .05; ***p < 

.001) reflect significant posthoc differences versus DA/Ztm rats. 
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Fig. 4A-F: Immunofluorescence photomicrographs of double labelled sections of rat 

hypothalamus immunostained for DP4-like immunoreactivity (ir) (artificial green, A, D) and 

NPYir (artificial red, B, E) as well as overlays (green, red, and blue DAPI stain; C, F). 

Representative cryosections derived from a DP4 positive F344 rat brain. Under a low 

magnification (x10), DP4ir material bordering the third ventricle and blood vessels could be 

detected. On the same bregma level, NPYir cell bodies could be detected within the PVN and 

the periventricular nucleus of the hypothalamus (B). Overlay of the photomicrographs (C) 

show a co-distribution of both proteins within the region of interest, which lack clear co-

expression. Under a higher magnification (x63), cells of the subependymal layer harbouring 

the third ventricle that show DP4ir cells are in direct contact with NPY neurophil. 

Abbreviations: 3V, third ventricle. Scale bar G, 100 mm; H, 10 mm. 
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5. Discussion 

The neuropeptide NPY is involved in various physiological processes. Due to its size of 36 aa 

and the N-terminal structure, NPY is one of the best in vivo substrates for DP4 and vice versa, 

DP4 is the best peptidase for N-terminal dipeptide truncation of NPY – demonstrated by 

catalytic turnover rates [97, 156, 157]. Since this interaction is of exceptional significance, but 

not fully understood, we studied the NPY-DP4-axis at three levels of potential regulatory 

importance: (1) cleavage of NPY by DP4/DP4-like peptidases, (2) in a congenic animal model 

of DP4 deficiency, and (3) within central processing of pain perception. 

Initially, we had to question which other peptidases are involved in the modulation of NPY 

receptor specificity. Another important aspect is the search for sources of N-terminally 

truncated NPY and related peptides (e.g. PYY). Thus, our first approach was the examination 

of DP4-NPY interactions on the molecular and cellular level combined with the potential 

cleavage of other DP4-like peptidases. Therefore, DP4 – isolated from wild type 

F344/Crl(USA) rats – and NPY were each cloned into fluorescence transport vectors. A simple 

transfection system was chosen to look for leadoff signs of possible shared transport processes 

in which intracellular cleavage of NPY by DP4 could occur. Internalization of DP4 is a 

reported mechanism in recycling of cell surface glycoproteins [158] or in association with T 

cell activation [159] that might offer the possibility of a co-localization with NPY and thus 

could potentiate intracellular truncation. Furthermore, co-localization of DP4 and NPY is 

suggested by Zukowska et al. who reported on a non-neuronal depot of NPY in endothelial 

cells [160]. So far, analysis of our model of co-transfected Cos-1 cells revealed that NPY and 

DP4 are not co-localized in transport vesicles. The process of co-localization could enable N-

terminal cleavage of NPY and thus precise and quick intracellular degradation of NPY1-36 to 

NPY3-36. This possibility could provide a tool for controlling activation of different NPY 

receptor subtypes and thus presents a fine-tuning mechanism in body functions. This idea is in 

contrast to the so far observed extracellular degradation of DP4 substrates which is based on 

circulating NPY and other substrates that get into contact with DP4. From this point of view, 

intracellular degradation seems to be a more efficient and economic way. 

Several peptidases named “structural and functional homologues of DP4” (DASH) represent 

potential candidates for cleavage of NPY, however with different levels of specificity and 

activity. Little was known about the degradation of natural substrates by these DASH and their 

physiological role at the time when phenotyping and characterization of the previously used 

animal model of F344 rats started [146]. While former research distinguished between DP4 
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and DP2 activity and thus, mainly focused on DP4, the use of DASH specific inhibitors just 

became a standard in preclinical research [161-163]. So for example, Lankas et al. reported on 

studies with broad-specificity DASH inhibitors and highly selective inhibitors of DP4, DP2, 

and DP8/9 for the assessment of preclinical safety and tolerability in a study in 2005 [164]. 

To examine the potential involvement of different peptidases in NPY cleavage, selective 

inhibitors were applied against DP4, DP8/9 and DP2, and enzymatic distribution and activity 

studies associated with MALDI-TOF analyses were conducted. Using the chromogenic 

substrate Ala-Pro-AMC and selective inhibitors, examination of peptidase activity of brain 

extracts from wild type and DP4 deficient F344 rat substrains revealed highest distribution for 

DP2 followed by DP8/DP9 and finally DP4. However, DP2 was unable to hydrolyze human 

recombinant NPY and thus could be excluded. Although DP8/DP9 are presented in higher 

levels in the brain than DP4, MALDI-TOF-mass spectrometry showed similar cleavage of 

NPY by DP4 and DP8/DP9, confirming the higher catalytic efficiency of DP4 [156]. In 

contrast, analysis of human plasma showed highest degradation of NPY by DP4 and partial 

degradation by DP8/DP9. In addition, we report on the potency of APP from brain extracts on 

N-terminal cleavage of NPY resulting in NPY2-36 (detected via MALDI-TOF). 

Preliminary results obtained by histochemistry on DASH specific enzymatic reactions suggest 

a dominant presence of DP4 at the meninges, CVOs and vessels and a dominant ubiquitously 

distribution of DP8/DP9 in the brain. Taken together, these findings support the idea that 

peripheral NPY is preliminarily truncated by soluble serum DP4, endothelial DP4 (blood 

vessels), or when crossing the blood-brain barrier by membrane-bound DP4 at the meninges, 

whereas NPY released from neurons in the brain also seems to be degraded to a large extent by 

DP8/DP9. Neither the histology nor the cytology of NPY cleavage are sufficiently understood 

at this time and demand further in-depth studies. Interestingly, there is no compensation of the 

loss of DP4 activity in DP4 deficient F344 rats by DP8 or DP9, which is in correspondence 

with the below mentioned differential NPY levels, which might influence behavioural 

responses. 

 

In a second step we generated a novel DP4 deficient congenic animal model on a defined DA 

rat genetic background with pronounced differences in DP4 activity between congenic and 

wild type strains and studied the effects of this genetically induced DP4 deficiency in a 

comprehensive phenotyping approach. For generation of congenic DA.F344-Dpp4
m
/SvH rats, 

the previously characterized spontaneous point mutation in the Dpp4 gene of the F344 rat 

substrains F344/DuCrjSvH-Dpp4
m
 and F344/Crl(Wiga)SvH-Dpp4

m
 was transferred onto the 
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genetic background of DA/Ztm rats. These DP4 deficient animals are comparable to gene 

knockouts and provide a basis for learning more about the consequences of chronic DP4 

deficiency, which is presently introduced into clinics as a treatment of diabetes type 2 via 

chronic pharmacological inhibition of DP4 [162, 165]. Whereas the previous model of DP4 

deficient F344 rats mainly focused on behavioural tests to elucidate the role of DP4, our 

comprehensive phenotyping also comprised – next to neurobehavioural parameters – 

endocrine, hematological, metabolic, and immune parameters for better evaluation of effects 

that might be affected by DP4 deficiency.  

First we studied parameters related to glucose metabolisms and body weight homeostasis in the 

DA.F344-Dpp4m/SvH rats. Thus, we found that glucose tolerance seems to be inversely related 

to DP4-like activity levels because heterogenous animals – according to the characteristic 

semi-dominant mode of inheritance, expressing half of the DP4-like activity – show a rather 

intermediate development of glucose lowering in blood. The improved glucose tolerance in 

DA.F344-Dpp4m/SvH rats is associated with increased levels of GLP-1 and higher amounts of 

circulating insulin which were additionally detected. GLP-1 is a substrate of DP4 that 

stimulates insulin gene expression, increases glucose-stimulated insulin secretion [166, 167], 

and inhibits glucagon secretion – all of which contribute to normalize elevated blood glucose 

levels [168]. DP4 deficiency leads due to missing protease activity to a prolonged half-life of 

GLP-1. Similar effects are achieved by use of DP4 inhibitors [166, 169, 170]. For example, the 

DP4 inhibitor Ile-Thia (isoleucine thiazolidide; P32/98) is reported to decrease circulating DP4 

activity and to improve glucose tolerance in Zucker fatty rats [170], and the DP4 inhibitor 

NVP-Dpp728 is said to increase levels of intact GLP-1, to improve glucose tolerance, and to 

increase glucose-stimulated insulin secretion [171]. 

Although glucagon-like peptide-1(7-36)amide (GLP-1) and also the DP4 substrate glucose-

dependent insulinotropic polypeptide (GIP) are involved in the regulation of postprandial 

nutrient homeostasis [172], no significant effects of these peptides on food intake are assumed 

in our congenic animal model. Interestingly, reduced body weight gain on standard but also on 

high fat diet was observed in DP4 deficient rats while food-intake was not significantly altered. 

These findings of reduced body weight gain combined with non-altered food intake are 

supported by data from Zucker fatty rats, where long-term treatment with Ile-Thia (P32/98) 

decreased body weight gain without affecting food intake [173]. Conarello et al. observed a 

significantly increased weight gain in wild type (C57BL/6) mice with restricted high calorie 

diet food intake in comparison to Dpp4tm1Nwa mice, also suggesting that other factors than food 

intake contributed to reduced weight gain and to resistance in obesity [174]. Even though NPY 
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is known to stimulate the feeding behaviour [175-180] and to act as appetite transducer [108], 

food-intake was obviously not affected by endogenous NPY levels. In agreement with this, 

mice deficient for NPY were reported to have normal food intake and body weight, and 

become hyperphagic following food deprivation [154]. 

Interestingly, Hildebrandt et al. [181] suggest that there exists an interaction between DP4 and 

leptin, i.e. leptin deficiency. Leptin is reported to affect energy expenditure in rodens and 

humans [182, 183]. Activation of central leptin receptors (ObRbs) stimulates energy 

expenditure in adipose tissue [184]. Furthermore, the arcuate nucleus in the hypothalamus 

[113], a high expression site of ObRbs [185, 186], is a major site of leptin sensing [187-190]. 

Peripheral leptin is transported across the blood-brain barrier to reach areas distal to CVOs 

[191]. In this context it is of interest that the ARH contains at least two key populations of 

leptin-responsive neurons – one of them expresses the orexigenic peptide NPY and agouti-

related peptide (AgRP) [192]. However, it has been shown that NPY deficient mice decrease 

their food intake and lose weight, initially to a greater extent than controls, when treated with 

recombinant leptin [154]. This leads to the suggestion that more complex systems are involved 

in body weight regulation than simple degradation of DP4 substrates that enhance or reduce 

stimulation of appetite. Moreover, differential effects resulting from various protein and 

peptides could possibly abrogate each other. So, the above mentioned findings suggest an 

interaction between DP4 and leptin and thus, it is very likely that increased levels of bound 

leptin and reduced levels of free leptin – that were observed in DA.F344-Dpp4m/SvH rats – are 

cohesive with a reduction in body weight and are associated with DP4 activity or deficiency, 

respectively.  

Additionally, reduced levels of triglycerides – also reported from studies of Ahren et al. [193] 

– and alanine aminotransferases as well as aspartate aminotransferases were observed, 

supporting the idea of an improved lipid metabolism. However, these coherences have to be 

studied in more detail. So far, the phenotype of DP4 deficient DA rats goes along with various 

levels of “beneficial” effects amongst others improved glucose tolerance and reduced body 

weight and obviously protects from high-fat diet induced obesity. The latter could also be 

observed in Dpp4tm1Nwa mice, which are proposed to resist hepatic lipid accumulation when fed 

a high-fat diet [174]. Additionally, these mice are reported to show increased energy 

expenditure, which fits well with the abovementioned influence of leptin on energy 

expenditure. 

Importantly, the influence of DP4 activity on digestion of gliadin-rich food could be 

demonstrated in our DA rats and is reflected by weight loss. Gliadin is a proline-rich 
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compound of gluten and causes, as a well-known allergen, the histamin reaction in celiac 

disease. DP4 is highly expressed in the ileum and jejunum. Since the role of DP4 in the small 

intestine is dipeptide re-absorption after cleavage of proline containing peptides and 

oligopeptides [149, 194], DP4 deficiency leads to an impaired intestinal absorption of certain 

proline-rich peptides [149] such as gliadin, as observed in F344 rats by Tiruppathi [194]. The 

small intestine has effective carrier transport systems for amino acids, di- and tripeptides, while 

peptides with longer chain length, e.g. tetrapeptides, require hydrolysis prior to absorption. In 

this context it was shown, that prolyl tetrapeptides such as Leu-Pro-Gly-Gly and Gly-Pro-Gly-

Gly require hydrolysis by DP4 [195]. In addition, it has to be noted that DP4 is highly 

expressed in kidney and there – similar to the intestine – is involved in dipeptide re-absorption 

[196-199]. Thus, studies in DP4 deficient F344 rats have shown that DP4 deficient rats were 

unable to hydrolize and absorb urinary prolyl peptides, which are excreted in high amounts by 

these animals [199]. 

Furthermore, we suggest a connoting relevance of DP4 in regard to the processing of the 

casein-derived -casomorphin that can be affected by application of DP4 inhibitors. In 

comparison to human -casomorphin-7 (BCM-7; NH2-Tyr-Pro-Phe-Val-Glu-Pro-Ile-CO2H), 

bovine BCM-7 (NH2-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-CO2H) reveals an additional cleavage site 

for DP4. While the function of human BCM is rather restricted to the lactation period, bovine 

BCM-7 displays high relevance in human nutrition when consuming milk products. Although 

human BMC-7 shows high immune reactive (allergy-inducing) potency, the bovine BMC-7 

and its derivates are reported to be much more reactive. Thus for example, regardless of the 

comparative physiological function between human and bovine derived casomorphins, human 

beta-casomorphin-5 (Tyr-Pro-Phe-Val-Glu) is about ten times less potent than bovine beta-

casomorphin-5 (Tyr-Pro-Phe-Pro-Gly) [200]. To demonstrate the power of casomorphin, it can 

be noted that in that study approximately ten times more naloxone was required in rats to 

antagonize the beta-casomorphin-5 effect than that of morphine. Importantly, a potential 

connexion of bovine BMC-7 with schizophrenia is discussed. Since exorphins like 

casomorphin may be implicated in disorders such as autism and schizophrenia, attention should 

be paid to this aspect when targeting DP4 in vivo. Additionally, an association between casein-

rich and casein-free nurishment and regulation of opiate receptor expression was observed in 

postnatal rats [201]. 

In this context, websites can be found in the Internet, selling or giving information on DP4-

containing pharmaceuticals as alternative for a gluten-free, casein-free (GFCF) diet. These 

approaches are in contrast to the idea of a DP4 inhibitor and thus on the one hand, question the 
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effects of inhibitors on digestion but on the other hand, the so far observed effects – resulting 

from DP4 deficiency and inhibition – question these DP4-containing pharmaceuticals. This 

strongly requires to consider all consequences and functions of DP4 activity and inhibition and 

not to observe single aspects in a closed regulatory loop. The comprehensive phenotyping of 

novel animal models of DP4 deficiency represents an important approach to fulfill these 

rationals. 

Thus, a comprehensive phenotyping is absolutely necessary for the appraisal of the influence 

of DP4 on neurobehavioural aspects in DP4 deficient DA.F344-Dpp4m/SvH rats. Our analyses 

focused on behavioural domains related to anxiety, stress responsiveness, exploration, 

motorfunction, and cognition.  

Testing of cognition or of schizophrenic-like responses (PPI) revealed no significant 

differences in our DP4 deficient model. Thus, the two-way active avoidance test reflected that 

both DA rat strains – DP4 deficient as well as wild type DA/Ztm rats – were able to learn and 

that none of the substrains differed significantly. This is also supported by findings in one-

year-old transgenic NPY-overexpressing rats that showed no significant differences in spatial 

and non-spatial memory (Morris water maze and object recognition test) [150]. The PPI test 

showed that all animals clearly responded to the startle signaling in a similar manner – 

indicating healthy and equal hearing abilities. From this point of view and in addition to basic 

health control, we were able to state that no rat strain was advantaged or disadvantaged in the 

conduction of behavioural tests. 

No significant differences in motorfunctions and behavioural activity were observed between 

wild type and DP4 deficient DA rats in the accelerod test, the holeboard test, and in the 

homecage activity test. Non-altered levels of activity and motorfunctions are important for the 

evaluation of further behavioural assays and have also been reported from NPY-overexpressing 

transgenic rats in another locomotor test [151]. Thus, the observed behavioural differences are 

not affected by altered levels of activity and motorfunctions. Furthermore, it can be excluded 

that differential activity levels have led to the reduced gain in body weight in DA.F344-

Dpp4m/SvH rats.  

DP4 deficient DA.F344-Dpp4m/SvH rats revealed significantly increased exploratory 

behaviour in the holeboard tests and significantly reduced anxiety-like behaviour in the 

classical and pharmacological validated EPM and SI test. In support of this, transgenic NPY-

overexpressing rats were shown to be resistant to acute physical restraint stress – measured by 

the EPM – and showed anxiolytic-like activity in an open field test [150]. Stress-induced 
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hyperthermia revealed significantly reduced body temperature values in DP4 deficient rats, 

indicating that the appraisal of a novel environment is percepted less stressful in a status of 

DP4 deficiency. Moreover, reduced levels of ACTH and corticosterone were detected in blood 

plasma. This indicates that the hypothalamic-pituitary-axis as well as the sympathetic response 

to stress are blunted in a status of DP4 deficiency. 

This finding of a reduced stress response in DP4 deficient rats probably also relates to the 

central processing of pain perception in our third approach concerning the NPY-DP4-axis. In 

this study, the nociceptive response in the DP4 deficient rat substrains F344/DuCrjSvH-Dpp4m, 

F344/Crl(Wiga)SvH-Dpp4m, and DA.F344-Dpp4m/SvH was determined using the hot plate test 

for different approaches. 

In comparison to wild type DA/Ztm rats DP4 deficient DA rats showed a significant earlier 

response towards the painful stimulus in the non-habituated hot plate test. Thus, previous 

findings from DP4 deficient F344 substrains [147] could be replicated – even with an earlier 

reaction in DA rats in comparison to F344 rats that might be influenced by two-fold higher 

endogenous DP4 activity levels. Significant response differences of the non-habituated hot 

plate tests were reversed after habituation – obviously resulting from a pronounced reduction 

in stress in wild type controls. These findings suggest a mechanism of reduced stress-induced 

analgesia in DP4 deficient rats, which might be caused by reduced release of endogenous 

opioids or other mediators due to the lowered stress-response at baseline conditions. 

This phenomenon of stress-induced analgesia appears to present an adaptational response of 

the organism to stress, which also could be demonstrated in early experiments of acute stress 

preceeding the test of hot plate paradigm [202-204]. Here, stress-induced analgesia was 

reversed by habituation. Furthermore, stress-induced analgesia was accompanied by an 

increase in brain endogenous opioids [203]. This phenomenon can be antagonized by non-

specific centrally acting opiod antagonists such as naloxone for example [202]. A further 

aspect is that pain, and any kind of stress – whether psychological, infectious or traumatic – 

activates corticotropin-releasing hormone (CRH) neurons [205, 206]. Stress-induced activation 

of the hypothalamic-pituitary axis has been shown to produce analgesia [207] and it was 

demonstrated that CRH can act at all levels of the neuronal axis to produce analgesia 

independent of the release of -endorphin [208].  

Furthermore, i.c.v. application of either NPY or the DP4 inhibitor Ile-Thia (P32/89), previously 

conducted in DP4 deficient F344 substrains, revealed an antinociceptive effect of NPY on the 

one hand, and a reduced treshold in pain perception caused by the DP4 inhibitor on the other 
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hand. While the latter approach supported the abovementioned observations of the genetic 

model (reduction in stress-induced analgesia), the role of NPY in pain perception and 

processing is controversially discussed. A survey of the literature on NPY in pain [209] has 

revealed that 52% of these studies describe an antinociceptive role [210-213], around 29% a 

pronociceptive action [214-219] and 19% reported on bilateral effects [220, 221]. A reason for 

divergent results might be derived from the experimental setting (e.g. study objects, way of 

application/local effect, pain stimulus), which again influences the activation of different 

receptors. 

NPY is assumed to exert antinociceptive actions amongst others by inhibiting the release of SP 

and other “pain neurotransmitters” in the spinal cord dorsal horn. Studies in Y1 receptor KO 

mice suggest the involvement of the Y1 receptor in central physiological and pharmacological 

NPY-induced analgesia [212]. In agreement with this, Gibbs et al. suggest that the 

antinociceptive effects of NPY are likely due to activation of the Y1 receptor, and could be 

mediated – at least in part – by inhibition of exocytosis of neuropeptides from the spinal cord 

[210, 222]. In addition, pain transmission through nociceptive sensory neurons expressing 

several types of NPY receptors might be modulated in different ways [209]. For example, 

seven distinct Y1 receptor neuron populations have been identified in the rat lumbar spinal cord 

– all being located at different lamina layers [223]. Next to the Y1 receptor, the Y2 receptor is 

also taken into account in the role of pain transmission [209] dependent on local site of 

activation.  

As nociceptive information is modulated on every level of the CNS via different receptor 

systems and mediators, this study is a first step in understanding the complex network of pain 

perception and processing and its endogenous modulation in response to challenge. However, 

this phenomenon clearly illustrates the stress-protective effects of DP4 deficiency.  

Our novel animal model impressively exhibits a stress protective and anxiolytic-like phenotype 

that – following our hypothesis – is substantially caused by the prolonged half-life of 

endogenous NPY1-36 which binds with high affinity the NPY Y1 receptor. This receptor is 

mainly responsible for NPY mediated anxiolysis and stress-protection [112, 151]. In wild type 

DA/Ztm rats N-terminal cleavage of NPY by DP4 leads to NPY3-36, which again has a much 

lower Y1 receptor affinity, thereby abrogating anxiolytic-like action of NPY and thus 

explaining the observed behavioural differences between DA/Ztm and DA.F344-Dpp4m/SvH 

rats. We assume that these stress-reduced and anxiolytic-like responses are mediated via the 

interaction between DP4 and NPY at the level of the hypothalamus, where high expression of 

NPY and DP4 in blood vessels is apparent (Frerker et al., 2007 submitted). 
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Examination of the immunological status of DP4 deficient DA rats revealed a differential 

leukocyte subset composition, blunted immune cell functions and altered Il-6 levels. 

Accordingly, this first immunological approach questions – next to the abovementioned 

considerable impaired absorption and degradation processes – the so far declared “healthy 

phenotype” of our DP4 deficient animal models of F344 and congenic DA rats as well as of 

DP4 knockout in general. 

The differential distribution of eosinophils and B cells might result from indirect effects of 

DP4 via cleavage of chemokines that might either affect hematopoetic stem cells or cell and 

progenitor cell mobilization. Concerning blunted T cell proliferation, this is very likely due to 

the direct role of DP4 as surface marker in T cell activation and co-stimulation as it could be 

shown that DP4 interacts with caveolin-1 and thus mediates the co-stimulatory and 

proliferation cascade [77, 78]. Thus, T cell functions might be affected at very different 

regulatory levels including but not limited to antigen presenting cell/T cell interaction, T cell 

co-stimulation, and memory function [77]. Furthermore, the switch of T memory cells to 

regulatory T cells [224] might be affected and, importantly, also the chemokine metabolism 

[225, 226]. With respect to the latter, affected chemokines themselves act again on the immune 

cells. Thus, chemokines such as RANTES have been shown to act as regulators of T cell 

differentiation [227] and have been associated with a T helper cell 1 response [228], which 

strongly underlines the importance of DP4 in chemokine cleavage and stresses the potential  

resulting effects of DP4 deficiency/inhibition on the immune system. 

In this context, it could be shown that inhibition of enzymatic DP4 activity leads to increased 

release of the immuno-suppressive cytokine TGF-ß1 from T cells, which in turn leads to a 

suppression of the proliferation of these cells and to an inhibition of the production of immune-

stimmulating cytokines (IL-2, IL-12, IFN- ) [229, 230].  

As previously reported from F344 rats [146], we confirmed blunted NK cell mediated 

cytotoxicity against tumor cell targets. However, in addition we also supply percentage and 

numbers, respectively, from splenic and peripheral blood NK cells and thus were able to 

specify this observation. Due to the higher number of NK cells in DP4 deficient DA.F344-

Dpp4m/SvH rats the over-all cytotoxicity (per rat) was not significantly altered in comparison 

to wild type DA/Ztm rats but taken the single NK cell, cytotoxicity is significantly reduced. 

Previous works showed that specific DP4 inhibitors had no effect on NK cell 

function/cytotoxicity but instead suppressed DNA synthesis and cell cycle progression of NK 

cells [42, 231] cells. They interpreted these findings with DP4 being involved in the regulation 

of NK cell proliferation whereas they suggested an independent regulation for natural 
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cytotoxicity. This is in contrast to our findings of increased NK cell levels in DP4 deficient 

rats, thus, disproving a suppression of DNA synthesis, and in addition, cytotoxic abilities per 

NK cell were affected – namely reduced. Probably these differential findings are derived from 

different experimental approaches or even might result as artefact from the DP4 inhibitors 

used. Nonetheless, our data suggest a role of DP4 in NK cell mediated tumor lysis and in NK 

cell distribution. 

 

In summary, the key findings of this DP4 deficient congenic model are improved glucose 

tolerance, reduced body weight, improved leptin and liver metabolism, and an anxiolytic and 

stress-reduced phenotype, all of them presenting actual or potential fields of pharmaceutical 

application (e.g. diabetes, obesity, psychiatric disorders). However, further key aspects are 

mal-utilization of proline-rich proteins (intestine, kidney) and importantly, immune alterations. 

By virtue of the restriction in a rats’ or mice’s life-span our observations are limited but might 

have severe effects in aging humans. In addition, effects of DP4 deficiency/inhibition might be 

clearly pronounced at infectious states. Due to the pleiotropic role of DP4, our animal model is 

pointing out that on the long run chronic DP4 inhibitors have the potential to interfere with 

CNS, immune, and physiological functions in vivo. Thus, we advise against side effects of the 

newly introduced anti-diabetic pharmaceuticals that might occur, if not tested appropriately. 

Furthermore, more specific inhibitors should be taken into account, for example DP4-resistant 

agonists on GLP-1 basis. A number of different GLP-1 analogues – so called “incretin 

mimetics” – with more favorable pharmacokinetic profiles have been generated and are 

currently studied in clinical trials. 

Last but not least it has to be mentioned that specificity of DP4 inhibitors must not only be 

restricted to the target action but also to the inhibitor itself. This means that applied DP4 

inhibitors have to be highly specific for DP4 and any kind of interference with the 

abovementioned functional homologues of DP4 or further peptidases has to be avoided. To 

give an example, a number of DP4 and DP4-like inhibitors have recently been tested for 

selectivity to DP4, DP8, DP9, and DP2 and their potential toxicity and tolerability was 

evaluated. The DP8/9-selective inhibitor produced thrombocytopenia, reticulocytopenia, 

alopecia, multiorgan histopathological changes, enlarged spleen, and mortality in rats. In dogs, 

this inhibitor produced gastrointestinal toxicity. Furthermore, the DP2-selective inhibitor 

produced reticulocytopenia in rats. Toxic effects of isomeric forms of the DP4 inhibitor Ile-

Thia were observed at very high doses of administration and include thrombocytopenia, ataxia, 

seizures, convulsions, tremor, diarrhoea, and adverse effects on the lungs after four weeks’ 
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treatment [164]. These findings were explained by off-target inhibition, which all in all again 

underlines the importance of highly selective inhibitors against DP4 itself. 

Overall, these studies unequivocally demonstrate that DP4 represents indeed a multifunctional 

enzyme and remains the main dipeptidyl peptidase in modulation of the neuropeptide’s 

receptor specificity. DP4 deficiency was shown to affect several adaptational responses many 

of them being under control of NPY.  

As the “beneficial phenotype” of DP4 deficient rats is accompanied by considerable changes in 

immune functions, these findings are of particular interest for the further design and use of 

DP4-specific inhibitors that are presently available for treatment of diabetes type II and which 

– in the future – may also target immune and CNS functions.  

 



References  125 

 

6. References 

1. De Meester, I., et al., Natural substrates of dipeptidyl peptidase IV. Adv Exp Med Biol, 

2000. 477: p. 67-87. 

2. De Meester, I., et al., CD26, let it cut or cut it down. Immunol Today, 1999. 20(8): p. 

367-75. 

3. Hong, W.J. and D. Doyle, Molecular dissection of the NH2-terminal signal/anchor 

sequence of rat dipeptidyl peptidase IV. J Cell Biol, 1990. 111(2): p. 323-8. 

4. Rawlings, N.D., D.P. Tolle, and A.J. Barrett, MEROPS: the peptidase database. 

Nucleic Acids Res, 2004. 32(Database issue): p. D160-4. 

5. Hopsu-Havu, V.K. and G.G. Glenner, A new dipeptide naphthylamidase hydrolyzing 

glycyl-prolyl-beta-naphthylamide. Histochemie, 1966. 7(3): p. 197-201. 

6. Hong, W. and D. Doyle, cDNA cloning for a bile canaliculus domain-specific 

membrane glycoprotein of rat hepatocytes. Proc Natl Acad Sci U S A, 1987. 84(22): p. 

7962-6. 

7. Ogata, S., Y. Misumi, and Y. Ikehara, Primary structure of rat liver dipeptidyl 

peptidase IV deduced from its cDNA and identification of the NH2-terminal signal 

sequence as the membrane-anchoring domain. J Biol Chem, 1989. 264(6): p. 3596-601. 

8. Dobers, J., et al., Roles of cysteines in rat dipeptidyl peptidase IV/CD26 in processing 

and proteolytic activity. Eur J Biochem, 2000. 267(16): p. 5093-100. 

9. David, F., et al., Identification of serine 624, aspartic acid 702, and histidine 734 as the 

catalytic triad residues of mouse dipeptidyl-peptidase IV (CD26). A member of a novel 

family of nonclassical serine hydrolases. J Biol Chem, 1993. 268(23): p. 17247-52. 

10. Ogata, S., et al., Identification of the active site residues in dipeptidyl peptidase IV by 

affinity labeling and site-directed mutagenesis. Biochemistry, 1992. 31(9): p. 2582-7. 

11. Misumi, Y., et al., Molecular cloning and sequence analysis of human dipeptidyl 

peptidase IV, a serine proteinase on the cell surface. Biochim Biophys Acta, 1992. 

1131(3): p. 333-6. 

12. Aertgeerts, K., et al., N-linked glycosylation of dipeptidyl peptidase IV (CD26): effects 

on enzyme activity, homodimer formation, and adenosine deaminase binding. Protein 

Sci, 2004. 13(1): p. 145-54. 

13. Iwaki-Egawa, S., Y. Watanabe, and Y. Fujimoto, CD26/dipeptidyl peptidase IV does 

not work as an adenosine deaminase-binding protein in rat cells. Cell Immunol, 1997. 

178(2): p. 180-6. 



References  126 

 

14. Fan, H., et al., Domain-specific N-glycosylation of the membrane glycoprotein 

dipeptidylpeptidase IV (CD26) influences its subcellular trafficking, biological 

stability, enzyme activity and protein folding. Eur J Biochem, 1997. 246(1): p. 243-51. 

15. Bartles, J.R., L.T. Braiterman, and A.L. Hubbard, Biochemical characterization of 

domain-specific glycoproteins of the rat hepatocyte plasma membrane. J Biol Chem, 

1985. 260(23): p. 12792-802. 

16. Petell, J.K., et al., Isolation and characterization of a Mr = 110,000 glycoprotein 

localized to the hepatocyte bile canaliculus. J Biol Chem, 1987. 262(30): p. 14753-9. 

17. Stehling, P., et al., In vivo modulation of the acidic N-glycans from rat liver dipeptidyl 

peptidase IV by N-propanoyl-D-mannosamine. Biochem Biophys Res Commun, 1999. 

263(1): p. 76-80. 

18. Matter, K., et al., Asynchronous transport to the cell surface of intestinal brush border 

hydrolases is not due to differential trimming of N-linked oligosaccharides. J Biol 

Chem, 1989. 264(22): p. 13131-9. 

19. Naim, H.Y., et al., Temporal association of the N- and O-linked glycosylation events 

and their implication in the polarized sorting of intestinal brush border sucrase-

isomaltase, aminopeptidase N, and dipeptidyl peptidase IV. J Biol Chem, 1999. 

274(25): p. 17961-7. 

20. Morimoto, C. and S.F. Schlossman, The structure and function of CD26 in the T-cell 

immune response. Immunol Rev, 1998. 161: p. 55-70. 

21. Kullertz, G., G. Fischer, and A. Barth, [Catalytic mechanism of dipeptidyl-peptidase 

IV]. Acta Biol Med Ger, 1978. 37(4): p. 559-67. 

22. Bednarczyk, J.L., et al., Triggering of the proteinase dipeptidyl peptidase IV (CD26) 

amplifies human T lymphocyte proliferation. J Cell Biochem, 1991. 46(3): p. 206-18. 

23. De Meester, I., et al., Characterization of dipeptidyl peptidase IV (CD26) from human 

lymphocytes. Clin Chim Acta, 1992. 210(1-2): p. 23-34. 

24. Gorrell, M.D., V. Gysbers, and G.W. McCaughan, CD26: a multifunctional integral 

membrane and secreted protein of activated lymphocytes. Scand J Immunol, 2001. 

54(3): p. 249-64. 

25. Puschel, G., R. Mentlein, and E. Heymann, Isolation and characterization of dipeptidyl 

peptidase IV from human placenta. Eur J Biochem, 1982. 126(2): p. 359-65. 

26. Walborg, E.F., Jr., et al., Identification of dipeptidyl peptidase IV as a protein shared by 

the plasma membrane of hepatocytes and liver biomatrix. Exp Cell Res, 1985. 158(2): 

p. 509-18. 



References  127 

 

27. Ikehara, Y., S. Ogata, and Y. Misumi, Dipeptidyl-peptidase IV from rat liver. Methods 

Enzymol, 1994. 244: p. 215-27. 

28. Kahne, T., et al., Alterations in structure and cellular localization of molecular forms of 

DP IV/CD26 during T cell activation. Cell Immunol, 1996. 170(1): p. 63-70. 

29. Wolf, B., G. Fischer, and A. Barth, [Kinetics of dipeptidyl-peptidase IV]. Acta Biol 

Med Ger, 1978. 37(3): p. 409-20. 

30. Tsuji, E., et al., An active-site mutation (Gly633-->Arg) of dipeptidyl peptidase IV 

causes its retention and rapid degradation in the endoplasmic reticulum. Biochemistry, 

1992. 31(47): p. 11921-7. 

31. Ludwig, K., et al., The 3D structure of rat DPPIV/CD26 as obtained by cryo-TEM and 

single particle analysis. Biochem Biophys Res Commun, 2003. 304(1): p. 73-7. 

32. Rasmussen, H.B., et al., Crystal structure of human dipeptidyl peptidase IV/CD26 in 

complex with a substrate analog. Nat Struct Biol, 2003. 10(1): p. 19-25. 

33. Fukasawa, K.M., et al., Immunohistochemical localization of dipeptidyl aminopeptidase 

IV in rat kidney, liver, and salivary glands. J Histochem Cytochem, 1981. 29(3): p. 

337-43. 

34. Lojda, Z., Studies on dipeptidyl(amino)peptidase IV (glycyl-proline naphthylamidase). 

II. Blood vessels. Histochemistry, 1979. 59(3): p. 153-66. 

35. Iwaki-Egawa, S., et al., Dipeptidyl peptidase IV from human serum: purification, 

characterization, and N-terminal amino acid sequence. J Biochem (Tokyo), 1998. 

124(2): p. 428-33. 

36. McCaughan, G.W., et al., Identification of the bile canalicular cell surface molecule 

GP110 as the ectopeptidase dipeptidyl peptidase IV: an analysis by tissue distribution, 

purification and N-terminal amino acid sequence. Hepatology, 1990. 11(4): p. 534-44. 

37. Fleischer, B., CD26: a surface protease involved in T-cell activation. Immunol Today, 

1994. 15(4): p. 180-4. 

38. Wilson, M.J., et al., Prostate specific origin of dipeptidylpeptidase IV (CD-26) in 

human seminal plasma. J Urol, 1998. 160(5): p. 1905-9. 

39. Buhling, F., et al., Functional role of CD26 on human B lymphocytes. Immunol Lett, 

1995. 45(1-2): p. 47-51. 

40. Gorrell, M.D., J. Wickson, and G.W. McCaughan, Expression of the rat CD26 antigen 

(dipeptidyl peptidase IV) on subpopulations of rat lymphocytes. Cell Immunol, 1991. 

134(1): p. 205-15. 

41. Mentlein, R., et al., Dipeptidyl peptidase IV as a new surface marker for a 

subpopulation of human T-lymphocytes. Cell Immunol, 1984. 89(1): p. 11-9. 



References  128 

 

42. Buhling, F., et al., Expression and functional role of dipeptidyl peptidase IV (CD26) on 

human natural killer cells. Nat Immun, 1994. 13(5): p. 270-9. 

43. Jackman, H.L., et al., Plasma membrane-bound and lysosomal peptidases in human 

alveolar macrophages. Am J Respir Cell Mol Biol, 1995. 13(2): p. 196-204. 

44. Bernstein, H.G., et al., Immunolocalization of dipeptidyl aminopeptidase (DAP IV) in 

the developing human brain. Int J Dev Neurosci, 1987. 5(3): p. 237-42. 

45. Mitro, A. and Z. Lojda, Histochemistry of proteases in ependyma, choroid plexus and 

leptomeninges. Histochemistry, 1988. 88(3-6): p. 645-6. 

46. Gallegos, M.E., et al., The activities of six exo-and endopeptidases in the substantia 

nigra, neostriatum, and cortex of the rat brain. Neurochem Res, 1999. 24(12): p. 1557-

61. 

47. Kato, T., et al., Comparison of X-prolyl dipeptidyl-aminopeptidase activity in human 

cerebrospinal fluid with that in serum. Experientia, 1979. 35(1): p. 20-1. 

48. Mentzel, S., et al., Organ distribution of aminopeptidase A and dipeptidyl peptidase IV 

in normal mice. J Histochem Cytochem, 1996. 44(5): p. 445-61. 

49. Nagy, J.I., et al., Adenosine deaminase in rodent median eminence: detection by 

antibody to the mouse enzyme and co-localization with adenosine deaminase-

complexing protein (CD26). Neuroscience, 1996. 73(2): p. 459-71. 

50. Haninec, P. and M. Grim, Localization of dipeptidylpeptidase IV and alkaline 

phosphatase in developing spinal cord meninges and peripheral nerve coverings of the 

rat. Int J Dev Neurosci, 1990. 8(2): p. 175-85. 

51. Mentlein, R., Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory 

peptides. Regul Pept, 1999. 85(1): p. 9-24. 

52. Hanski, C., et al., Increased activity of dipeptidyl peptidase IV in serum of hepatoma-

bearing rats coincides with the loss of the enzyme from the hepatoma plasma 

membrane. Experientia, 1986. 42(7): p. 826-8. 

53. Hildebrandt, M., et al., A guardian angel: the involvement of dipeptidyl peptidase IV in 

psychoneuroendocrine function, nutrition and immune defence. Clin Sci (Lond), 2000. 

99(2): p. 93-104. 

54. van West, D., et al., Lowered serum dipeptidyl peptidase IV activity in patients with 

anorexia and bulimia nervosa. Eur Arch Psychiatry Clin Neurosci, 2000. 250(2): p. 86-

92. 

55. Maes, M., et al., Decreased serum dipeptidyl peptidase IV activity in major depression. 

Biol Psychiatry, 1991. 30(6): p. 577-86. 



References  129 

 

56. Maes, M., et al., Alterations in plasma dipeptidyl peptidase IV enzyme activity in 

depression and schizophrenia: effects of antidepressants and antipsychotic drugs. Acta 

Psychiatr Scand, 1996. 93(1): p. 1-8. 

57. Hildebrandt, M., et al., Alterations in expression and in serum activity of dipeptidyl 

peptidase IV (DPP IV, CD26) in patients with hyporectic eating disorders. Scand J 

Immunol, 1999. 50(5): p. 536-41. 

58. Cordero, O.J., et al., Serum interleukin-12, interleukin-15, soluble CD26, and 

adenosine deaminase in patients with rheumatoid arthritis. Rheumatol Int, 2001. 21(2): 

p. 69-74. 

59. Cuchacovich, M., et al., Characterization of human serum dipeptidyl peptidase IV 

(CD26) and analysis of its autoantibodies in patients with rheumatoid arthritis and 

other autoimmune diseases. Clin Exp Rheumatol, 2001. 19(6): p. 673-80. 

60. Williams, Y.N., et al., Dipeptidyl peptidase IV on activated T cells as a target molecule 

for therapy of rheumatoid arthritis. Clin Exp Immunol, 2003. 131(1): p. 68-74. 

61. Vanham, G., et al., Decreased expression of the memory marker CD26 on both CD4+ 

and CD8+ T lymphocytes of HIV-infected subjects. J Acquir Immune Defic Syndr, 

1993. 6(7): p. 749-57. 

62. Korom, S., et al., Inhibition of CD26/dipeptidyl peptidase IV activity in vivo prolongs 

cardiac allograft survival in rat recipients. Transplantation, 1997. 63(10): p. 1495-500. 

63. Hildebrandt, M., et al., Inhibition of dipeptidyl peptidase IV (DP IV, CD26) activity 

abrogates stress-induced, cytokine-mediated murine abortions. Scand J Immunol, 

2001. 53(5): p. 449-54. 

64. Hanski, C., et al., Direct evidence for the binding of rat liver DPP IV to collagen in 

vitro. Exp Cell Res, 1988. 178(1): p. 64-72. 

65. Hanski, C., T. Huhle, and W. Reutter, Involvement of plasma membrane dipeptidyl 

peptidase IV in fibronectin-mediated adhesion of cells on collagen. Biol Chem Hoppe 

Seyler, 1985. 366(12): p. 1169-76. 

66. Piazza, G.A., et al., Evidence for a role of dipeptidyl peptidase IV in fibronectin-

mediated interactions of hepatocytes with extracellular matrix. Biochem J, 1989. 

262(1): p. 327-34. 

67. Antczak, C., I. De Meester, and B. Bauvois, Ectopeptidases in pathophysiology. 

Bioessays, 2001. 23(3): p. 251-60. 

68. Goding, J.W., Ecto-enzymes: physiology meets pathology. J Leukoc Biol, 2000. 67(3): 

p. 285-311. 



References  130 

 

69. Lambeir, A.M., et al., Dipeptidyl-peptidase IV from bench to bedside: an update on 

structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev 

Clin Lab Sci, 2003. 40(3): p. 209-94. 

70. Iwata, S., et al., CD26/dipeptidyl peptidase IV differentially regulates the chemotaxis of 

T cells and monocytes toward RANTES: possible mechanism for the switch from innate 

to acquired immune response. Int Immunol, 1999. 11(3): p. 417-26. 

71. Kahne, T., et al., Early phosphorylation events induced by DPIV/CD26-specific 

inhibitors. Cell Immunol, 1998. 189(1): p. 60-6. 

72. Dang, N.H., et al., Comitogenic effect of solid-phase immobilized anti-1F7 on human 

CD4 T cell activation via CD3 and CD2 pathways. J Immunol, 1990. 144(11): p. 4092-

100. 

73. Dang, N.H., et al., 1F7 (CD26): a marker of thymic maturation involved in the 

differential regulation of the CD3 and CD2 pathways of human thymocyte activation. J 

Immunol, 1991. 147(9): p. 2825-32. 

74. Hegen, M., et al., Cross-linking of CD26 by antibody induces tyrosine phosphorylation 

and activation of mitogen-activated protein kinase. Immunology, 1997. 90(2): p. 257-

64. 

75. Tanaka, T., et al., The costimulatory activity of the CD26 antigen requires dipeptidyl 

peptidase IV enzymatic activity. Proc Natl Acad Sci U S A, 1993. 90(10): p. 4586-90. 

76. Torimoto, Y., et al., Coassociation of CD26 (dipeptidyl peptidase IV) with CD45 on the 

surface of human T lymphocytes. J Immunol, 1991. 147(8): p. 2514-7. 

77. Ohnuma, K., et al., Caveolin-1 triggers T-cell activation via CD26 in association with 

CARMA1. J Biol Chem, 2007. 

78. Ohnuma, K., et al., CD26 up-regulates expression of CD86 on antigen-presenting cells 

by means of caveolin-1. Proc Natl Acad Sci U S A, 2004. 101(39): p. 14186-91. 

79. Schechter, I. and A. Berger, On the size of the active site in proteases. I. Papain. 

Biochem Biophys Res Commun, 1967. 27(2): p. 157-62. 

80. Bongers, J., et al., Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-

releasing factor and analogs. Biochim Biophys Acta, 1992. 1122(2): p. 147-53. 

81. Heins, J., et al., Mechanism of proline-specific proteinases: (I) Substrate specificity of 

dipeptidyl peptidase IV from pig kidney and proline-specific endopeptidase from 

Flavobacterium meningosepticum. Biochim Biophys Acta, 1988. 954(2): p. 161-9. 

82. Mentlein, R., Proline residues in the maturation and degradation of peptide hormones 

and neuropeptides. FEBS Lett, 1988. 234(2): p. 251-6. 



References  131 

 

83. Vanhoof, G., et al., Proline motifs in peptides and their biological processing. Faseb J, 

1995. 9(9): p. 736-44. 

84. Yaron, A. and F. Naider, Proline-dependent structural and biological properties of 

peptides and proteins. Crit Rev Biochem Mol Biol, 1993. 28(1): p. 31-81. 

85. Qi, S.Y., et al., Cloning and characterization of dipeptidyl peptidase 10, a new member 

of an emerging subgroup of serine proteases. Biochem J, 2003. 373(Pt 1): p. 179-89. 

86. Sedo, A. and R. Malik, Dipeptidyl peptidase IV-like molecules: homologous proteins or 

homologous activities? Biochim Biophys Acta, 2001. 1550(2): p. 107-16. 

87. Shane, R., S. Wilk, and R.J. Bodnar, Modulation of endomorphin-2-induced analgesia 

by dipeptidyl peptidase IV. Brain Res, 1999. 815(2): p. 278-86. 

88. Hartrodt, B., et al., Degradation of beta-casomorphin-5 by proline-specific-

endopeptidase (PSE) and post-proline- cleaving-enzyme (PPCE). Comparative studies 

of the beta-casomorphin-5 cleavage by dipeptidyl-peptidase IV. Pharmazie, 1982. 

37(1): p. 72-3. 

89. Kikuchi, M., K. Fukuyama, and W.L. Epstein, Soluble dipeptidyl peptidase IV from 

terminal differentiated rat epidermal cells: purification and its activity on synthetic and 

natural peptides. Arch Biochem Biophys, 1988. 266(2): p. 369-76. 

90. Kreil, G., et al., Studies on the enzymatic degradation of beta-casomorphins. Life Sci, 

1983. 33 Suppl 1: p. 137-40. 

91. Nausch, I., R. Mentlein, and E. Heymann, The degradation of bioactive peptides and 

proteins by dipeptidyl peptidase IV from human placenta. Biol Chem Hoppe Seyler, 

1990. 371(11): p. 1113-8. 

92. Schlimme, E. and H. Meisel, Bioactive peptides derived from milk proteins. Structural, 

physiological and analytical aspects. Nahrung, 1995. 39(1): p. 1-20. 

93. Iversen, L.L., Substance P. Br Med Bull, 1982. 38(3): p. 277-82. 

94. Zubrzycka, M. and A. Janecka, Substance P: transmitter of nociception (Minireview). 

Endocr Regul, 2000. 34(4): p. 195-201. 

95. Teichberg, V.I. and S. Blumberg, Substance P and analogues: biological activity and 

degradation. Prog Biochem Pharmacol, 1980. 16: p. 84-94. 

96. Medeiros, M.D. and A.J. Turner, Processing and metabolism of peptide-YY: pivotal 

roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. 

Endocrinology, 1994. 134(5): p. 2088-94. 

97. Mentlein, R., et al., Proteolytic processing of neuropeptide Y and peptide YY by 

dipeptidyl peptidase IV. Regul Pept, 1993. 49(2): p. 133-44. 



References  132 

 

98. Lundberg, J.M., et al., Localization of peptide YY (PYY) in gastrointestinal endocrine 

cells and effects on intestinal blood flow and motility. Proc Natl Acad Sci U S A, 1982. 

79(14): p. 4471-5. 

99. Tatemoto, K., M. Carlquist, and V. Mutt, Neuropeptide Y--a novel brain peptide with 

structural similarities to peptide YY and pancreatic polypeptide. Nature, 1982. 

296(5858): p. 659-60. 

100. Zukowska-Grojec, Z., Neuropeptide Y: implications in vascular remodeling and novel 

therapeutics., in Dipeptidyl. 1997, Springer US. 

101. Zukowska-Grojec, Z., et al., Stress-induced mesenteric vasoconstriction in rats is 

mediated by neuropeptide Y Y1 receptors. Am J Physiol, 1996. 270(2 Pt 2): p. H796-

800. 

102. Zukowska-Grojec, Z., et al., Neuropeptide Y: a novel angiogenic factor from the 

sympathetic nerves and endothelium. Circ Res, 1998. 83(2): p. 187-95. 

103. Allen, Y.S., et al., Neuropeptide Y distribution in the rat brain. Science, 1983. 

221(4613): p. 877-9. 

104. Chronwall, B.M., Anatomy and physiology of the neuroendocrine arcuate nucleus. 

Peptides, 1985. 6 Suppl 2: p. 1-11. 

105. de Quidt, M.E. and P.C. Emson, Distribution of neuropeptide Y-like immunoreactivity 

in the rat central nervous system--I. Radioimmunoassay and chromatographic 

characterisation. Neuroscience, 1986. 18(3): p. 527-43. 

106. Adrian, T.E., et al., Neuropeptide Y distribution in human brain. Nature, 1983. 

306(5943): p. 584-6. 

107. de Quidt, M.E. and P.C. Emson, Distribution of neuropeptide Y-like immunoreactivity 

in the rat central nervous system--II. Immunohistochemical analysis. Neuroscience, 

1986. 18(3): p. 545-618. 

108. Kalra, S.P., et al., Interacting appetite-regulating pathways in the hypothalamic 

regulation of body weight. Endocr Rev, 1999. 20(1): p. 68-100. 

109. Loftus, T.M., et al., Reduced food intake and body weight in mice treated with fatty 

acid synthase inhibitors. Science, 2000. 288(5475): p. 2379-81. 

110. Ingenhoven, N. and A.G. Beck-Sickinger, Molecular characterization of the ligand-

receptor interaction of neuropeptide Y. Curr Med Chem, 1999. 6(11): p. 1055-66. 

111. Cabrele, C. and A.G. Beck-Sickinger, Molecular characterization of the ligand-

receptor interaction of the neuropeptide Y family. J Pept Sci, 2000. 6(3): p. 97-122. 

112. Kask, A., et al., The neurocircuitry and receptor subtypes mediating anxiolytic-like 

effects of neuropeptide Y. Neurosci Biobehav Rev, 2002. 26(3): p. 259-83. 



References  133 

 

113. Michel, M.C., et al., XVI. International Union of Pharmacology recommendations for 

the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. 

Pharmacol Rev, 1998. 50(1): p. 143-50. 

114. Gerald, C., et al., A receptor subtype involved in neuropeptide-Y-induced food intake. 

Nature, 1996. 382(6587): p. 168-71. 

115. Hansen, W., et al., G protein-coupled receptor 83 overexpression in naive CD4+CD25- 

T cells leads to the induction of Foxp3+ regulatory T cells in vivo. J Immunol, 2006. 

177(1): p. 209-15. 

116. Wahlestedt, C., N. Yanaihara, and R. Hakanson, Evidence for different pre-and post-

junctional receptors for neuropeptide Y and related peptides. Regul Pept, 1986. 13(3-

4): p. 307-18. 

117. Alexander, S.P., A. Mathie, and J.A. Peters, Guide to Receptors and Channels, 2nd 

edition (2007 Revision). Br J Pharmacol, 2007. 150 Suppl 1: p. S1. 

118. Wettstein, J.G., B. Earley, and J.L. Junien, Central nervous system pharmacology of 

neuropeptide Y. Pharmacol Ther, 1995. 65(3): p. 397-414. 

119. Lundberg, J.M., et al., Neuropeptide Y and noradrenaline mechanisms in relation to 

reserpine induced impairment of sympathetic neurotransmission in the cat spleen. Acta 

Physiol Scand, 1987. 131(1): p. 1-10. 

120. Maturi, M.F., et al., Neuropeptide-Y. A peptide found in human coronary arteries 

constricts primarily small coronary arteries to produce myocardial ischemia in dogs. J 

Clin Invest, 1989. 83(4): p. 1217-24. 

121. Wahlestedt, C. and R. Hakanson, Effects of neuropeptide Y (NPY) at the sympathetic 

neuroeffector junction. Can pre- and postjunctional receptors be distinguished? Med 

Biol, 1986. 64(2-3): p. 85-8. 

122. Heilig, M., et al., Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in 

amygdala, and dissociation from food intake effects. Neuropsychopharmacology, 1993. 

8(4): p. 357-63. 

123. Kask, A., et al., Neuropeptide Y Y1 receptor-mediated anxiolysis in the dorsocaudal 

lateral septum: functional antagonism of corticotropin-releasing hormone-induced 

anxiety. Neuroscience, 2001. 104(3): p. 799-806. 

124. von Horsten, S., et al., Brain NPY Y1 receptors rapidly mediate the behavioral 

response to novelty and a compartment-specific modulation of granulocyte function in 

blood and spleen. Brain Res, 1998. 806(2): p. 282-6. 

125. Heilig, M. and R. Murison, Intracerebroventricular neuropeptide Y suppresses open 

field and home cage activity in the rat. Regul Pept, 1987. 19(3-4): p. 221-31. 



References  134 

 

126. Heilig, M., C. Wahlestedt, and E. Widerlov, Neuropeptide Y (NPY)-induced 

suppression of activity in the rat: evidence for NPY receptor heterogeneity and for 

interaction with alpha-adrenoceptors. Eur J Pharmacol, 1988. 157(2-3): p. 205-13. 

127. Broqua, P., et al., Behavioral effects of neuropeptide Y receptor agonists in the elevated 

plus-maze and fear-potentiated startle procedures. Behav Pharmacol, 1995. 6(3): p. 

215-222. 

128. Heilig, M., et al., Centrally administered neuropeptide Y (NPY) produces anxiolytic-

like effects in animal anxiety models. Psychopharmacology (Berl), 1989. 98(4): p. 524-

9. 

129. Bischoff, A. and M.C. Michel, Emerging functions for neuropeptide Y5 receptors. 

Trends Pharmacol Sci, 1999. 20(3): p. 104-6. 

130. Inui, A., Neuropeptide Y feeding receptors: are multiple subtypes involved? Trends 

Pharmacol Sci, 1999. 20(2): p. 43-6. 

131. Marsh, D.J., et al., Role of the Y5 neuropeptide Y receptor in feeding and obesity. Nat 

Med, 1998. 4(6): p. 718-21. 

132. Inui, A., Transgenic approach to the study of body weight regulation. Pharmacol Rev, 

2000. 52(1): p. 35-61. 

133. Kaga, T., M. Fujimiya, and A. Inui, Emerging functions of neuropeptide Y Y(2) 

receptors in the brain. Peptides, 2001. 22(3): p. 501-6. 

134. Naveilhan, P., et al., Normal feeding behavior, body weight and leptin response require 

the neuropeptide Y Y2 receptor. Nat Med, 1999. 5(10): p. 1188-93. 

135. Cleary, J., M. Semotuk, and A.S. Levine, Effects of neuropeptide Y on short-term 

memory. Brain Res, 1994. 653(1-2): p. 210-4. 

136. Flood, J.F., et al., Modulation of memory processing by neuropeptide Y varies with 

brain injection site. Brain Res, 1989. 503(1): p. 73-82. 

137. Morley, J.E. and J.F. Flood, Neuropeptide Y and memory processing. Ann N Y Acad 

Sci, 1990. 611: p. 226-31. 

138. Biello, S.M., Enhanced photic phase shifting after treatment with antiserum to 

neuropeptide Y. Brain Res, 1995. 673(1): p. 25-9. 

139. Biello, S.M., D. Janik, and N. Mrosovsky, Neuropeptide Y and behaviorally induced 

phase shifts. Neuroscience, 1994. 62(1): p. 273-9. 

140. Biello, S.M. and N. Mrosovsky, Blocking the phase-shifting effect of neuropeptide Y 

with light. Proc Biol Sci, 1995. 259(1355): p. 179-87. 

141. Calza, L., et al., Daily changes of neuropeptide Y-like immunoreactivity in the 

suprachiasmatic nucleus of the rat. Regul Pept, 1990. 27(1): p. 127-37. 



References  135 

 

142. Golombek, D.A., et al., Neuropeptide Y phase shifts the circadian clock in vitro via a 

Y2 receptor. Neuroreport, 1996. 7(7): p. 1315-9. 

143. Hall, A.C., G. Earle-Cruikshanks, and M.E. Harrington, Role of membrane 

conductances and protein synthesis in subjective day phase advances of the hamster 

circadian clock by neuropeptide Y. Eur J Neurosci, 1999. 11(10): p. 3424-32. 

144. Batterham, R.L., et al., Gut hormone PYY(3-36) physiologically inhibits food intake. 

Nature, 2002. 418(6898): p. 650-4. 

145. Benoit, S.C. and M.H. Tschop, PYY3-36 "monkeys around" with energy balance. Am J 

Physiol Regul Integr Comp Physiol, 2005. 288(2): p. R358-9. 

146. Karl, T., et al., Localization, transmission, spontaneous mutations, and variation of 

function of the Dpp4 (Dipeptidyl-peptidase IV; CD26) gene in rats. Regul Pept, 2003. 

115(2): p. 81-90. 

147. Karl, T., et al., Extreme reduction of dipeptidyl peptidase IV activity in F344 rat 

substrains is associated with various behavioral differences. Physiol Behav, 2003. 

80(1): p. 123-34. 

148. Karl, T., et al., Behavioral effects of neuropeptide Y in F344 rat substrains with a 

reduced dipeptidyl-peptidase IV activity. Pharmacol Biochem Behav, 2003. 75(4): p. 

869-79. 

149. Erickson, R.H., et al., Biosynthesis and degradation of altered immature forms of 

intestinal dipeptidyl peptidase IV in a rat strain lacking the enzyme. J Biol Chem, 1992. 

267(30): p. 21623-9. 

150. Carvajal, C.C., et al., Aged neuropeptide Y transgenic rats are resistant to acute stress 

but maintain spatial and non-spatial learning. Behav Brain Res, 2004. 153(2): p. 471-

80. 

151. Thorsell, A., et al., Behavioral insensitivity to restraint stress, absent fear suppression 

of behavior and impaired spatial learning in transgenic rats with hippocampal 

neuropeptide Y overexpression. Proc Natl Acad Sci U S A, 2000. 97(23): p. 12852-7. 

152. Bannon, A.W., et al., Behavioral characterization of neuropeptide Y knockout mice. 

Brain Res, 2000. 868(1): p. 79-87. 

153. Erickson, J.C., et al., Endocrine function of neuropeptide Y knockout mice. Regul Pept, 

1997. 70(2-3): p. 199-202. 

154. Erickson, J.C., K.E. Clegg, and R.D. Palmiter, Sensitivity to leptin and susceptibility to 

seizures of mice lacking neuropeptide Y. Nature, 1996. 381(6581): p. 415-21. 

155. Frerker, N., et al., Neuropeptide Y (NPY) cleaving enzymes: Structural and functional 

homologues of dipeptidyl peptidase 4. Peptides, 2007. 28(2): p. 257-68. 



References  136 

 

156. Bjelke, J.R., et al., Dipeptidyl peptidases 8 and 9: specificity and molecular 

characterization compared with dipeptidyl peptidase IV. Biochem J, 2006. 396(2): p. 

391-9. 

157. Lambeir, A.M., et al., Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 

of neuropeptides involved in pancreatic insulin secretion. FEBS Lett, 2001. 507(3): p. 

327-30. 

158. Volz, B., et al., Selective reentry of recycling cell surface glycoproteins to the 

biosynthetic pathway in human hepatocarcinoma HepG2 cells. J Cell Biol, 1995. 

130(3): p. 537-51. 

159. Ikushima, H., et al., Internalization of CD26 by mannose 6-phosphate/insulin-like 

growth factor II receptor contributes to T cell activation. Proc Natl Acad Sci U S A, 

2000. 97(15): p. 8439-44. 

160. Ghersi, G., et al., Critical role of dipeptidyl peptidase IV in neuropeptide Y-mediated 

endothelial cell migration in response to wounding. Peptides, 2001. 22(3): p. 453-8. 

161. Barnett, A., DPP-4 inhibitors and their potential role in the management of type 2 

diabetes. Int J Clin Pract, 2006. 60(11): p. 1454-70. 

162. Green, B.D., P.R. Flatt, and C.J. Bailey, Dipeptidyl peptidase IV (DPP IV) inhibitors: A 

newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc Dis Res, 

2006. 3(3): p. 159-65. 

163. Lindsay, J.R., et al., Inhibition of dipeptidyl peptidase IV activity by oral metformin in 

Type 2 diabetes. Diabet Med, 2005. 22(5): p. 654-7. 

164. Lankas, G.R., et al., Dipeptidyl peptidase IV inhibition for the treatment of type 2 

diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. 

Diabetes, 2005. 54(10): p. 2988-94. 

165. Nathan, D.M., Finding new treatments for diabetes--how many, how fast... how good? 

N Engl J Med, 2007. 356(5): p. 437-40. 

166. Ahren, B., et al., Improved glucose tolerance and insulin secretion by inhibition of 

dipeptidyl peptidase IV in mice. Eur J Pharmacol, 2000. 404(1-2): p. 239-45. 

167. Balkan, B., et al., Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases 

plasma GLP-1 (7-36 amide) concentrations and improves oral glucose tolerance in 

obese Zucker rats. Diabetologia, 1999. 42(11): p. 1324-31. 

168. Holst, J.J. and C.F. Deacon, Inhibition of the activity of dipeptidyl-peptidase IV as a 

treatment for type 2 diabetes. Diabetes, 1998. 47(11): p. 1663-70. 

169. Pauly, R.P., et al., Improved glucose tolerance in rats treated with the dipeptidyl 

peptidase IV (CD26) inhibitor Ile-thiazolidide. Metabolism, 1999. 48(3): p. 385-9. 



References  137 

 

170. Pederson, R.A., et al., Improved glucose tolerance in Zucker fatty rats by oral 

administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes, 

1998. 47(8): p. 1253-8. 

171. Pospisilik, J.A., et al., Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell 

survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes, 2003. 

52(3): p. 741-50. 

172. Green, B.D., et al., Structurally modified analogues of glucagon-like peptide-1 (GLP-1) 

and glucose-dependent insulinotropic polypeptide (GIP) as future antidiabetic agents. 

Curr Pharm Des, 2004. 10(29): p. 3651-62. 

173. Pospisilik, J.A., et al., Long-term treatment with the dipeptidyl peptidase IV inhibitor 

P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, 

hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats. 

Diabetes, 2002. 51(4): p. 943-50. 

174. Conarello, S.L., et al., Mice lacking dipeptidyl peptidase IV are protected against 

obesity and insulin resistance. Proc Natl Acad Sci U S A, 2003. 100(11): p. 6825-30. 

175. Brief, D.J., A.J. Sipols, and S.C. Woods, Intraventricular neuropeptide Y injections 

stimulate food intake in lean, but not obese Zucker rats. Physiol Behav, 1992. 51(6): p. 

1105-10. 

176. Jolicoeur, F.B., et al., Neurobehavioral profile of neuropeptide Y. Brain Res Bull, 1991. 

26(2): p. 265-8. 

177. Levine, A.S. and J.E. Morley, Neuropeptide Y: a potent inducer of consummatory 

behavior in rats. Peptides, 1984. 5(6): p. 1025-9. 

178. Pich, E.M., et al., Feeding and drinking responses to neuropeptide Y injections in the 

paraventricular hypothalamic nucleus of aged rats. Brain Res, 1992. 575(2): p. 265-71. 

179. Schwartz, M.W., et al., Central nervous system control of food intake. Nature, 2000. 

404(6778): p. 661-71. 

180. Stanley, B.G., et al., Neuropeptide Y chronically injected into the hypothalamus: a 

powerful neurochemical inducer of hyperphagia and obesity. Peptides, 1986. 7(6): p. 

1189-92. 

181. Ruter, J., et al., Evidence for an interaction between leptin, T cell costimulatory 

antigens CD28, CTLA-4 and CD26 (dipeptidyl peptidase IV) in BCG-induced immune 

responses of leptin- and leptin receptor-deficient mice. Biol Chem, 2004. 385(6): p. 

537-41. 

182. Halaas, J.L., et al., Weight-reducing effects of the plasma protein encoded by the obese 

gene. Science, 1995. 269(5223): p. 543-6. 



References  138 

 

183. Rosenbaum, M., et al., Low-dose leptin reverses skeletal muscle, autonomic, and 

neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest, 2005. 

115(12): p. 3579-86. 

184. Commins, S.P., et al., Norepinephrine is required for leptin effects on gene expression 

in brown and white adipose tissue. Endocrinology, 1999. 140(10): p. 4772-8. 

185. Elmquist, J.K., et al., Distributions of leptin receptor mRNA isoforms in the rat brain. J 

Comp Neurol, 1998. 395(4): p. 535-47. 

186. Schwartz, M.W., et al., Identification of targets of leptin action in rat hypothalamus. J 

Clin Invest, 1996. 98(5): p. 1101-6. 

187. Balthasar, N., et al., Leptin receptor signaling in POMC neurons is required for normal 

body weight homeostasis. Neuron, 2004. 42(6): p. 983-91. 

188. Coppari, R., et al., The hypothalamic arcuate nucleus: a key site for mediating leptin's 

effects on glucose homeostasis and locomotor activity. Cell Metab, 2005. 1(1): p. 63-

72. 

189. Cowley, M.A., et al., Leptin activates anorexigenic POMC neurons through a neural 

network in the arcuate nucleus. Nature, 2001. 411(6836): p. 480-4. 

190. van den Top, M., et al., Orexigen-sensitive NPY/AgRP pacemaker neurons in the 

hypothalamic arcuate nucleus. Nat Neurosci, 2004. 7(5): p. 493-4. 

191. Banks, W.A., Is obesity a disease of the blood-brain barrier? Physiological, 

pathological, and evolutionary considerations. Curr Pharm Des, 2003. 9(10): p. 801-9. 

192. Cone, R.D., Anatomy and regulation of the central melanocortin system. Nat Neurosci, 

2005. 8(5): p. 571-8. 

193. Ahren, B., et al., Inhibition of dipeptidyl peptidase IV improves metabolic control over 

a 4-week study period in type 2 diabetes. Diabetes Care, 2002. 25(5): p. 869-75. 

194. Tiruppathi, C., et al., Genetic evidence for role of DPP IV in intestinal hydrolysis and 

assimilation of prolyl peptides. Am J Physiol, 1993. 265(1 Pt 1): p. G81-9. 

195. Morita, A., et al., Intestinal assimilation of a proline-containing tetrapeptide. Role of a 

brush border membrane postproline dipeptidyl aminopeptidase IV. J Clin Invest, 1983. 

72(2): p. 610-6. 

196. Girardi, A.C., et al., Association of Na(+)-H(+) exchanger isoform NHE3 and 

dipeptidyl peptidase IV in the renal proximal tubule. J Biol Chem, 2001. 276(49): p. 

46671-7. 

197. Girardi, A.C., et al., Role of dipeptidyl peptidase IV in regulating activity of Na+/H+ 

exchanger isoform NHE3 in proximal tubule cells. Am J Physiol Cell Physiol, 2004. 

287(5): p. C1238-45. 



References  139 

 

198. Tiruppathi, C., V. Ganapathy, and F.H. Leibach, Evidence for tripeptide-proton 

symport in renal brush border membrane vesicles. Studies in a novel rat strain with a 

genetic absence of dipeptidyl peptidase IV. J Biol Chem, 1990. 265(4): p. 2048-53. 

199. Tiruppathi, C., et al., Hydrolysis and transport of proline-containing peptides in renal 

brush-border membrane vesicles from dipeptidyl peptidase IV-positive and dipeptidyl 

peptidase IV-negative rat strains. J Biol Chem, 1990. 265(3): p. 1476-83. 

200. Herrera-Marschitz, M., et al., Rotational behaviour produced by intranigral injections 

of bovine and human beta-casomorphins in rats. Psychopharmacology (Berl), 1989. 

99(3): p. 357-61. 

201. Goody, R.J. and I. Kitchen, Influence of maternal milk on functional activation of delta-

opioid receptors in postnatal rats. J Pharmacol Exp Ther, 2001. 296(3): p. 744-8. 

202. Akil, H., et al., Stress-induced increase in endogenous opiate peptides: Concurrent 

analgesia and its partial reversal by naloxone, in Opiates and Endogenous Opioid 

Peptides, H.W. Kosterlits, Editor. 1976, Elsevier: Amsterdam. p. 63-70. 

203. Madden, J.t., et al., Stress-induced parallel changes in central opioid levels and pain 

responsiveness in the rat. Nature, 1977. 265(5592): p. 358-60. 

204. Wolf, G., et al., Interleukin-1 signaling modulates stress-induced analgesia. Brain 

Behav Immun, 2007. 21(5): p. 652-9. 

205. Chrousos, G.P. and P.W. Gold, The concepts of stress and stress system disorders. 

Overview of physical and behavioral homeostasis. Jama, 1992. 267(9): p. 1244-52. 

206. Crofford, L.J., et al., Hypothalamic-pituitary-adrenal axis perturbations in patients 

with fibromyalgia. Arthritis Rheum, 1994. 37(11): p. 1583-92. 

207. Amit, Z. and Z.H. Galina, Stress-induced analgesia: adaptive pain suppression. Physiol 

Rev, 1986. 66(4): p. 1091-120. 

208. Lariviere, W.R. and R. Melzack, The role of corticotropin-releasing factor in pain and 

analgesia. Pain, 2000. 84(1): p. 1-12. 

209. Brumovsky, P., et al., Neuropeptide tyrosine and pain. Trends Pharmacol Sci, 2007. 

28(2): p. 93-102. 

210. Gibbs, J., C.M. Flores, and K.M. Hargreaves, Neuropeptide Y inhibits capsaicin-

sensitive nociceptors via a Y1-receptor-mediated mechanism. Neuroscience, 2004. 

125(3): p. 703-9. 

211. Hua, X.Y., et al., The antinociceptive effects of spinally administered neuropeptide Y in 

the rat: systematic studies on structure-activity relationship. J Pharmacol Exp Ther, 

1991. 258(1): p. 243-8. 



References  140 

 

212. Naveilhan, P., et al., Reduced antinociception and plasma extravasation in mice lacking 

a neuropeptide Y receptor. Nature, 2001. 409(6819): p. 513-7. 

213. Taiwo, O.B. and B.K. Taylor, Antihyperalgesic effects of intrathecal neuropeptide Y 

during inflammation are mediated by Y1 receptors. Pain, 2002. 96(3): p. 353-63. 

214. Lin, Q., et al., Involvement of peripheral neuropeptide Y receptors in sympathetic 

modulation of acute cutaneous flare induced by intradermal capsaicin. Neuroscience, 

2004. 123(2): p. 337-47. 

215. Ossipov, M.H., et al., Selective mediation of nerve injury-induced tactile 

hypersensitivity by neuropeptide Y. J Neurosci, 2002. 22(22): p. 9858-67. 

216. Son, S.J., et al., Activation of transcription factor c-jun in dorsal root ganglia induces 

VIP and NPY upregulation and contributes to the pathogenesis of neuropathic pain. 

Exp Neurol, 2007. 204(1): p. 467-72. 

217. Tracey, D.J., M.A. Romm, and N.N. Yao, Peripheral hyperalgesia in experimental 

neuropathy: exacerbation by neuropeptide Y. Brain Res, 1995. 669(2): p. 245-54. 

218. von Horsten, S., et al., Centrally applied NPY mimics immunoactivation induced by 

non-analgesic doses of met-enkephalin. Neuroreport, 1998. 9(17): p. 3881-5. 

219. White, D.M., Intrathecal neuropeptide Y exacerbates nerve injury-induced mechanical 

hyperalgesia. Brain Res, 1997. 750(1-2): p. 141-6. 

220. Gibbs, J.L., A. Diogenes, and K.M. Hargreaves, Neuropeptide Y modulates effects of 

bradykinin and prostaglandin E2 on trigeminal nociceptors via activation of the Y1 and 

Y2 receptors. Br J Pharmacol, 2007. 150(1): p. 72-9. 

221. Xu, I.S., et al., The effect of intrathecal selective agonists of Y1 and Y2 neuropeptide Y 

receptors on the flexor reflex in normal and axotomized rats. Brain Res, 1999. 833(2): 

p. 251-7. 

222. Gibbs, J.L., C.M. Flores, and K.M. Hargreaves, Attenuation of capsaicin-evoked 

mechanical allodynia by peripheral neuropeptide Y Y(1) receptors. Pain, 2006. 

223. Brumovsky, P., et al., The neuropeptide tyrosine Y1R is expressed in interneurons and 

projection neurons in the dorsal horn and area X of the rat spinal cord. Neuroscience, 

2006. 138(4): p. 1361-76. 

224. Vukmanovic-Stejic, M., et al., Human CD4+ CD25hi Foxp3+ regulatory T cells are 

derived by rapid turnover of memory populations in vivo. J Clin Invest, 2006. 116(9): p. 

2423-33. 

225. Moser, B., et al., Chemokines: multiple levels of leukocyte migration control. Trends 

Immunol, 2004. 25(2): p. 75-84. 



References  141 

 

226. Narducci, M.G., et al., Skin homing of Sezary cells involves SDF-1-CXCR4 signaling 

and down-regulation of CD26/dipeptidylpeptidase IV. Blood, 2006. 107(3): p. 1108-15. 

227. Daugherty, B.L., et al., Cloning, expression, and characterization of the human 

eosinophil eotaxin receptor. J Exp Med, 1996. 183(5): p. 2349-54. 

228. Ganzalo, J.A., et al., Mouse Eotaxin expression parallels eosinophil accumulation 

during lung allergic inflammation but it is not restricted to a Th2-type response. 

Immunity, 1996. 4(1): p. 1-14. 

229. Reinhold, D., et al., Inhibitors of dipeptidyl peptidase IV induce secretion of 

transforming growth factor-beta 1 in PWM-stimulated PBMC and T cells. 

Immunology, 1997. 91(3): p. 354-60. 

230. Steinbrecher, A., et al., Targeting dipeptidyl peptidase IV (CD26) suppresses 

autoimmune encephalomyelitis and up-regulates TGF-beta 1 secretion in vivo. J 

Immunol, 2001. 166(3): p. 2041-8. 

231. Shingu, K., et al., CD26 expression determines lung metastasis in mutant F344 rats: 

involvement of NK cell function and soluble CD26. Cancer Immunol Immunother, 

2003. 52(9): p. 546-54. 

 



Curriculum vitae  142 

 

7. Curriculum Vitae 

 
 
Personal data   

   
Name  Nadine Frerker 
Email  n.frerker@gmx.net 
Birth  28 November 1977 

Place of birth  Walsrode 

   

Education and work experience 

   

2004 - 2007  PhD thesis  

  • Title: ”Functional and genetic analyses of dipeptidyl 

peptidase 4 (Dpp4/Cd26) deficiency in a rat model” 
• Department of Functional and Applied Anatomy, 

Hannover Medical School, Germany                   

Supervisor: Prof. Dr. Stephan von Hörsten 

• PhD Student of Research Training Group (GRK 705) 
• Stipendiary of the German Research Foundation (DFG) 

 

2005 - 2007  Co-operation with Probiodrug AG, Halle/Saale 

 
03/2004  Scientific employee  

  • Department of Physiological Chemistry,               
University of Veterinary Medicine Hannover                
Prof. Dr. Hassan Y. Naim 

 
1998-2004  Studies of Biology  

University of Hannover  

01/2004  • Graduation with Diploma 
• Diploma thesis: ”Investigation of the association of 

specific proteins components with apical transport 
vesicles“ 

• Department of Physiological Chemistry                 
University of Veterinary Medicine Hannover               
Prof. Dr. Ralf Jacob                                                                 

   

1997 - 1998  Stay abroad, Ramsgate, England  
Churchill House, School of English Language,  

  • Participant in English courses and office work 

• Qualification: Cambridge Advanced Certificate  
   

1990 - 1997  Upper-track Secondary School, Gymnasium Walsrode  
  Graduation with “Abitur“ 

 
 
 
 



Curriculum vitae  143 

 

 
Conferences/Workshops 
   
March 4 -5/2007  The 6th Meeting of the German-Endocrine-Brain-Immune-

Network 
Educational Short Course 

   
April 22 – 26/2006  8th NPY Meeting, St. Petersburg, Forida, U.S.A. 
  • Poster 
   
April 13 – 15/2005  2nd International Conference on Dipeptidyl Aminopeptidases, 

Magdeburg, Germany 
• Poster 

   
March 16 – 19/2005  Annual meeting of the German Society for Cell Biology, 

Heidelberg, Germany 
• Talk 
• Poster 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Publication list  144 

 

8. Publication list 

Original publications 

Jacob R, Heine M, Eikemeyer J, Frerker N, Zimmer KP, Rescher U, Gerke V, Naim HY: 

Annexin II is required for apical transport in polarized epithelial cells. J Biol Chem 279:3680-

3684, 2004 

 

Frerker N, Wagner L, Wolf R, Heiser U, Hoffmann T, Rahfeld JU, Schade J, Karl T, Naim 

HY, Alfalah M, Demuth HU, von Hörsten S: Neuropeptide Y (NPY) cleaving enzymes: 

structural and functional homologues of dipeptidyl peptidase 4. Peptides 28:257-268, 2007 

 

Frerker N, Bode F, Nave H, Pabst R, Stephan M, Schade J, Brabant G, Wedekind D, Jacobs R, 

Jorns A, Forssmann U, von Hörsten S: Protection against obesity in speed congenic DA rats 

lacking dipeptidyl peptidase 4 is associated with behavioral and immune alterations. Diabetes, 

2007, submitted 

 

Karl T, Frerker N, Hoffmann T, Wedekind D, Appl T, von Hörsten S: Loss of stress-induced 

analgesia in rat models of dipeptidyl peptidase 4 deficiency: Evidence for mediation via stress-

protective effects of NPY. Pharmacol Biochem Behav, 2007, submitted 

 

Contributions to books 

von Hörsten S, Krahn M, Frerker N, Gemeinhardt A, Schwab D, Slesiona S, Naim HY, Alfalah 

M: Intestinal Apical Protein Transport in Health and Disease. In Proteases in Gastrointestinal 

Tissues Hooper ULaNM, Ed., Springer Netherlands, 2006, p. 315-338 

 

Abstract publication 

Frerker N, von Hörsten S, Raber KA, Krahn M, Naim HY, Alfalah M.: A single mutation at 

amino acid 359 of dipeptidyl peptidase IV (CD26) causes a transport block in the 

endoplasmatic reticulum and cis-golgi compartment. In: Deutsche Gesellschaft für 

Zellbiologie; European journal of cell biology 84 (Suppl. 55); Jahrestagung der Deutschen 

Gesellschaft für Zellbiologie, Heidelberg, 16.-19.03.2005; Jena: Elsevier, 2005, S. 123; ISSN 

0171-9335 



Erklärung  145 

 

9. Erklärung 

 

Hiermit erkläre ich, Nadine Frerker, dass die hier vorliegende Dissertation von mir selbst-

ständig verfasst wurde, alle benutzten Hilfsmittel und Quellen sowie die zur Hilfeleistung 

herangezogenen Institutionen vollständig angeben worden sind, und dass die Dissertation nicht 

schon als Diplomarbeit oder ähnliche Prüfungsarbeit verwendet worden ist. 

 

 

 

 

 

 

Hannover, den 20.06.2007 

 

 



Danksagung  146 

 

10. Danksagung 

Mein besonderer Dank gilt meinem Betreuer Prof. Dr. Stephan von Hörsten für die 

Überlassung dieses spannenden Themas meiner Doktorarbeit. Vielen Dank für die Betreuung 

und ganz besonders dafür, dass ich die Möglichkeit hatte, in den Studien meinen eigenen 

Interessen nachgehen zu können. Danke auch für Gespräche und Rat außerhalb der Reichweite 

von Dipeptidyl Peptidase 4 und außerdem für vielseitige Exkursionen in die Welt der Mac-

Programme. 

Des Weiteren danke ich Dr. Marwan Alfalah, der mich zu Beginn meiner Doktorarbeit im 

Bereich der Molekularbiologie und Proteinbiochemie betreut hat und bis heute mit Rat und 

Hilfe zur Seite steht. 

Ganz besonders danke ich Prof. Dr. Hans-Jürgen Hedrich für die Aufnahme in das 

Graduiertenkolleg (GRK 705), und somit für die Möglichkeit dieser hervorragenden 

Ausbildung. 

Ich danke meinem Ko-Betreuer Dr. Dirk Wedekind für die Koordination von Versuchen und 

für die Arbeit im genetischen Bereich. 

Ganz besonders herzlicher Dank gilt Frau Dr. Marie-Luise Enss für die außerordentliche 

Betreuung im Rahmen des Graduiertenkollegs und der guten Unterstützung in meiner 

Doktorarbeit. 

Weiterhin danke ich meinen lieben GRK-Kollegen für den tollen Beistand und für die schöne 

gemeinsame Zeit. Bergkirchen, Nienburg, Skate by Night und die vielen meetings – “won’t 

forget these days“. 

Vielen Dank Prof. Dr. Reinhard Pabst und Prof. Dr. Hassan Y. Naim für die Möglichkeit, in 

deren Abteilungen meine Doktorarbeit anfertigen zu können. 

Weiteren Dank widme ich Dr. Heike Nave für die gute Kooperation im Leptin-Bereich und für 

die dadurch ermöglichte Zusammenarbeit mit Rüdiger Horn. Außerdem vielen Dank für die 

nette Auskunft. 

Danken möchte ich der Firma Probiodrug (Halle/Saale) für die gute Kooperation, hier, 

insbesondere, Dr. Torsten Hoffmann und Leona Wagner. Ihr danke ich ganz besonders für die 

umfangreiche Einführung in die Welt der Peptidasen, für gute gemeinsame Arbeit im Bereich 

der Aktivitätsstudien und für den beeindruckenden Wissensaustausch.  

Vielen Dank auch meine weiteren Kollegen Dr. Kerstin Raber, Dr. Michael Stephan und Prof. 

Dr. Andreas Schmiedl aus der Anatomie II für die Zusammenarbeit und die gemeinsame Zeit. 

An dieser Stelle möchte ich mich besonders bei Susanne Fassbender, Susanne Kuhlmann und 

Andrea Herden, sowie Gabriele Wetzel und Jürgen Eickemeyer für die tolle Arbeitsatmosphäre 



Danksagung  147 

 

und für die Begleitung durch meinen Doktoranden-Alltag bedanken. Von Rattengeburt über 

OP, von Histo-Einbettungen, Kaffeekannen über das Leid an der „bench“ bis zum Kampf mit 

den Zentrifugen – wie gut, dass Ihr da seid.  

Vielen Dank auch an Felix Bode, Nikolaus Kernig, Christian Klemann, Hoa Nguyen für 

Auskünfte und Hilfe und insbesondere Tim Karl für den „last minute support“. 

Ich danke ganz herzlich der besten Doktorandin der Welt – Jutta Schade. Vielen Dank, für die 

Unterstützung – privat, fachlich und ganz besonders musikalisch. Wir haben doch so einiges 

erlebt – Hannover-Erkundung, Aceton und PFA, die lieben Peptidasen, Rattenspektakel, Faust 

& Co – Langeweile gibt es nicht.  

Vielen Dank auch meinen vielen lieben Freunden, die immer für mich da waren und für ihr 

Verständnis, dass ich die letzten drei Jahre nicht ganz so viel Zeit hatte. 

Zum Schluss danke ich ganz besonders meinem Freund Sebastian Kalka, der mich die ganze 

Zeit begleitet und mich in meiner Doktorarbeit unterstützt hat. Vielen Dank für die guten 

Ideen, Vorschläge und Diskussionen zur Erweiterung meines Horizontes. 

 

 

 

 

 

“Thanks, DA rats!“  



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


