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Abstract 
 

To investigate the effect of water on phase relations and compositions in a basaltic system, 

crystallization experiments in internally heated pressure vessels at pressures of 100, 200 and 

500 MPa in a temperature range of 940 to 1220°C were performed. In the experiments, the 

water content of the system was varied from “nominally dry” to water-saturated conditions. 

Depending on the water activity, the oxygen fugacity varied between 1 and 4 log units above 

the quartz-magnetite-fayalite buffer (QFM+1 to QFM+4). To investigate the influence of 

oxygen fugacity and the interplay between redox conditions and water activity on the phase 

equilibria of the system, two additional sets of experiments with different nominal oxygen 

fugacities (QFM-1 to QFM+2 and QFM-3 to QFM) at a pressure of 200 MPa were performed. 

Thus, the whole investigated range in oxygen fugacity covers ~ 7 log units. The oxygen 

fugacity of the experiments was measured using the H2-membrane technique. 

Addition of water to the dry system shifts the solidus > 250°C to lower temperatures and 

increases the amount of melt drastically. For instance, at 1100°C and 200 MPa, the melt 

fraction increases from 12.5 wt% at a water content of 1.6 wt% to 96.3 % at a water content 

of 5 wt% in the melt. The compositions of the experimental phases also show a strong effect 

of water. Plagioclase is shifted to higher anorthite contents by the addition of water. Olivine 

and clinopyroxene show generally higher MgO/FeO ratios with added water, which is mainly 

related to the increasing in melt fraction with water. The addition of water could also change 

the crystallization sequence in a basaltic system. At 100 MPa, plagioclase crystallizes before 

clinopyroxene at all water contents. At pressures > 100 MPa, plagioclase crystallizes before 

clinopyroxene at low water contents (e.g. < 3 wt%), but after clinopyroxene at H2O in the 

melt > 3 wt%. Moreover, water affects the partitioning of certain elements between minerals 

and melts, e.g., the Ca partitioning between olivine and melt. 



Beside the effect of water, systematic effects of the oxygen fugacity on the stability and 

composition of the mafic silicate phases, Cr-spinel and Fe-Ti oxides under varying water 

contents were recorded. The Mg# of the melt, and therefore also the Mg# of olivine and 

clinopyroxene changes systematically as a function of oxygen fugacity. An example for the 

interplay between oxygen fugacity and water activity is the change in the crystallization 

sequence (olivine and Cr-spinel) due to a change in the oxygen fugacity caused by an increase 

in the water activity. The stability of magnetite is restricted to highly oxidizing conditions. 

The absence of magnetite in most of the experiments allows determining differentiation trends 

as a function of oxygen fugacity and water content demonstrating that in an oxide-free 

crystallization sequence water systematically affects the differentiation trend, while oxygen 

fugacity seems to have a negligible effect. 

The characteristic change in the order of crystallization with water 

(plagioclase/clinopyroxene) may help to explain the formation of wehrlites intruding the 

lower oceanic crust (e.g., in Oman, Macquarie Island). This change in crystallization order 

indicates that a paragenesis typical for wehrlites (olivine - clinopyroxene - without 

plagioclase) is stabilized at low pressures typical of the oceanic crust only at high water 

contents. This opens the possibility that typical wehrlites in the oceanic crust can be formed 

by the fractionation and accumulation of olivine and clinopyroxene at 1060 °C and > 100 

MPa in a primitive tholeiitic basaltic system containing more than 3 wt% water. 

The comparison of the experimental results with evolution trends calculated by the 

thermodynamic models “MELTS” and “Comagmat” shows that neither model predicts the 

experimental phase relations with sufficient accuracy. 

Keywords: Tholeiitic basalt, water, oxygen fugacity, equilibrium crystallization, phase 

equilibria   



Zusammenfassung 

 

In dieser Arbeit wurde der Einfluss von Wasser und Sauerstofffugazität (fO2) auf die 

Phasenbeziehungen und die Phasenchemie eines tholeiitischen Basalts experimentell 

untersucht. Zur Bestimmung des Einflusses von Wasser wurden Kristallisationsexperimente 

in einer intern beheizten Gasdruckanlage bei Drücken von 100, 200 und 500 MPa in einem 

Temperaturbereich von 940-1220°C durchgeführt. Für jede untersuchte Temperatur wurden 

Wassergehalte von nominell trocken bis wassergesättigt eingestellt. Die fO2 in diesen 

Experimenten variiert, in Abhängigkeit von der eingestellten Wasseraktivität, zwischen 1 und 

4 log Einheiten oberhalb des Quarz-Magnetit-Fayalit Puffers (QFM+1 bis QFM+4). Zur 

Untersuchung des Einflusses verschiedener fO2 und der Wechselwirkungen zwischen Redox-

Bedingungen und Wasseraktivität auf die Phasengleichgewichte wurden zwei weitere 

experimentelle Reihen bei unterschiedlichen fO2 (QFM-1 bis QFM+2 und QFM-3 bis QFM) 

und einem Druck von 200 MPa durchgeführt. Damit umfasst der untersuchte Redox-Bereich 

7 log Einheiten. 

Die Zugabe von Wasser zu einem trockenen tholeiitischen Basalt senkt dessen Solidus um 

mehr als 250°C ab und erhöht den Schmelzanteil bei einer gegebenen Temperatur drastisch. 

Bei 1100°C und 200 MPa zum Beispiel steigt der Schmelzanteil von 12,5% bei einem 

Wassergehalt von 1,6 Gew% auf 96,3% bei einem Wassergehalt von 5 Gew% in der 

Schmelze. Zusätzlich zu dem Einfluss auf den Schmelzpunkt und den Schmelzanteil des 

Systems werden auch die Stabilität und die Zusammensetzungen der experimentellen Phasen 

sowie die Kristallisationsreihenfolge stark vom Wassergehalt beeinflusst. Plagioklas zeigt 

grundsätzlich höhere Anorthit-Gehalte mit Wasser im System. Olivin sowie Klinopyroxen 

und Orthopyroxen zeigen höhere MgO/FeO Verhältnisse bei einer gegebenen Temperatur, 

was jedoch hauptsächlich durch den höheren Schmelzanteil, sowie durch die Änderung der 



fO2 mit Wasser im System erklärt werden kann. Eine Änderung in der 

Kristallisationsreihenfolge von Plagioklas und Klinopyroxen kann beim Vergleich zwischen 

niedrigen und hohen Wassergehalten beobachtet werden. Während Plagioklas bei einem 

Druck von 100 MPa (maximale Wasserlöslichkeit 3 Gew%)  sowie bei Wassergehalten unter 

3 Gew% bei höheren Temperaturen als Klinopyroxen kristallisiert, ist es bei höheren 

Wassergehalten umgekehrt. Weiterhin wurde auch ein Effekt von Wasser auf 

Verteilungskoeffizienten, wie zum Beispiel der Verteilung von Calcium zwischen Olivin und 

der umgebenden Schmelze, nachgewiesen.  

Neben dem Einfluss von Wasser konnten auch systematische Effekte, basierend auf einer 

Änderung der fO2 sowie Wechselwirkungen zwischen den Redox-Bedingungen und der 

Wasseraktivität, auf die Stabilität und die Zusammensetzung mafischer Mineralphasen, Cr-

Spinelle und Fe-Ti Oxide bestimmt werden. Die fO2 beeinflusst die Mg# (molar, 

MgO/(MgO+FeO) × 100) der Schmelze und damit auch die Mg# von Olivin sowie 

Klinopyroxen und Orthopyroxen, die im Gleichgewicht mit ihr stehen. Die fO2 verändert 

somit ihre Zusammensetzung. Die Wechselwirkungen zwischen Redox-Bedingungen und der 

Wasseraktivität führen hingegen zu einer Änderung in der Kristallisationsreihenfolge von 

Olivin und Cr-Spinell, hervorgerufen durch eine Änderung in der fO2 durch eine Erhöhung der 

Wasseraktivität. Magnetit tritt in dem untersuchten tholeiitischen System als einzige Fe-Oxid 

Phase auf und ist nur unter oxidierenden Bedingungen stabil. Das Fehlen von Magnetit in 

einem Großteil der Experimente ermöglicht die Bestimmung von Differenzierungstrends in 

Abhängigkeit vom Wassergehalt und der fO2 in einer Oxid-freien Kristallisationsabfolge. Die 

Experimente zeigen einen deutlichen Einfluss des eingestellten Wassergehalts auf den 

Differenzierungstrend. Ein Effekt durch die eingestellte fO2 auf den Differenzierungstrend 

konnte nicht beobachtet werden.  



Die charakteristische Änderung in der Kristallisationsreihenfolge von Plagioklas und 

Klinopyroxen durch Wasser im System könnte helfen, die Bildung von Wehrlit-Intrusionen in 

der ozeanischen Kruste zu erklären (z.B. im Oman oder Macquarie Island). Der Wechsel in 

der Kristallisationsreihenfolge zeigt, dass die Wehrlit-Paragenese (Olivin und Klinopyroxen 

ohne Plagioklas) unter Drücken, die typisch für die Bildung der ozeanischen Kruste sind (bis 

zu 500 MPa), nur bei hohen Wassergehalten möglich ist. Die Experimente zeigen, das 

typische Wehrlit-Intrusionen durch Akkumulation und Fraktionierung von Olivin und 

Klinopyroxen bei ~ 1060°C und einem Druck von mehr als 100 MPa von einem primitiven 

tholeiitischen Basalt, der mehr als 3 Gew% Wasser enthält, gebildet werden können. Ein 

Vergleich der experimentell bestimmten Phasengleichgewichte mit Entwicklungstrend, die 

mit Hilfe der thermodynamischen Modelle „MELTS“ und „Comagmat“ berechnet wurden, 

zeigen, dass keines der beiden Modelle die bestimmten Phasengleichgewichte mit 

ausreichender Genauigkeit vorhersagen kann. 

Schlagworte: Tholeiitischer Basalt, Wasser, Sauerstofffugazität, Gleichgewichtskristallisation, 

Phasengleichgewichte 
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Effect of water on tholeiitic basalt phase equilibria – Introduction 

 

* Originally published as: Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic 
basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral 
Petrol 152:611-638 © Springer-Verlag 2006 

1. Effect of water on tholeiitic basalt phase equilibria – an 
experimental study under oxidizing conditions* 

 

1.1. Introduction 

 

Water plays an important role in several aspects of seafloor magmatic processes. For a long 

time, it was considered that crystallization at mid-ocean ridges takes place under nearly “dry” 

conditions. During the last decade, improvements in analytical techniques have made it 

possible to determine small amounts of water in quenched MORB glasses (e.g., Kovalenko et 

al. 2000), in glass inclusions (e.g., Danyushevsky et al. 2000; Saal et al. 2002; Sobolev and 

Chaussidon 1996) and even in nominally dry minerals of the upper mantle (e.g., Bell and 

Rossman 1992; Hirschmann et al. 2005). Small amounts of water (< 1 wt %) may have a 

significant effect on MORB petrogenesis (Danyushevsky 2001), from partial melting of the 

mantle to fractionation (Asimow and Langmuir 2003). Moreover, it is well-known that water 

plays a significant role in late-stage magmatic processes during ocean crust formation, since 

water can be enriched during differentiation resulting in the formation of typical interstitial 

amphiboles (e.g., Coogan et al. 2001; Tribuzio et al. 2000). Finally, recent papers show that 

very high temperature (1200°C) hydrothermal activity triggers hydrous melting processes 

(Boudier et al. 2005; Koepke et al. 2005c; Koepke et al. 2004; Nicolas et al. 2003). Therefore, 

it is important to quantify the role of water both on the phase equilibria and on the mineral 

and melt compositions in MORB-type systems.  

In this study, we present new crystallization experiments on a tholeiitic basalt composition 

from the Southwest Indian Ridge (SWIR). We systematically varied the water content and the 

pressure from near-surface conditions to those expected in the upper mantle at a slow-

spreading ridge (e.g. shipboard scientific party, 2004).  
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The experiments vary in oxygen fugacity (fO2) between QFM+1 to QFM+4 (QFM: quartz-

magnetite-fayalite buffer), which is in general more oxidized compared to typical mid-ocean 

ridge conditions. The oxygen fugacity of erupted primitive MORB melts vary between QFM 

+1 to QFM -2 (Bezos and Humler 2005; Christie et al. 1986). Thus, direct comparison 

between these results and cogenetic MORB suites is not straightforward. However it is true 

that in drilled cumulate sections, the abundance of oxide gabbros (e.g. Natland and Dick 

2002; Natland et al. 1991) suggests that more oxidizing conditions may characterize the 

middle crust than the mantle sources. This experimental investigation shows for the first time 

the systematic effect on the water and shallow pressure dependence of phase equilibria in a 

primitive tholeiitic basaltic system under fO2 conditions, corresponding to the upper level of 

redox conditions known from nature. A second phase equilibria study in the same system 

under more reducing conditions QFM+2 (QFM+2 to -1, depending on the water activity) and 

QFM (QFM+0 to -3, depending on the water activity) is in progress. 

 

1.1.1. Previous experimental work 
 

Most of the experiments in tholeiitic basaltic systems thus far were performed at 1 atm (e.g. 

Grove and Baker 1984; Grove and Bryan 1983; Juster et al. 1989; Sano et al. 2001; Thy et al. 

1998; Thy et al. 1999), revealing the well-known crystallization sequence of MORB. Further 

experiments were performed in gas mixture furnaces at 1 atm to identify the effect of different 

redox conditions on the chemistry of the experimental products (e. g., Snyder et al. 1993; 

Toplis and Carroll 1995). These experiments show that mainly the stability and the 

composition of iron-bearing phases (e. g., olivine, clinopyroxene and magnetite) are affected 

by the oxygen fugacity. 

On the other hand, experiments in water-bearing systems under shallow pressures are limited 

in number. The first water-bearing phase equilibria experiments on tholeiitic basalts under 
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pressures below 500 MPa showed that the formation of quench-crystals during cooling was 

almost unavoidable (e.g. Eggler and Burnham 1973; Hamilton et al. 1964; Helz 1973; Helz 

1976; Holloway and Burnham 1972). Such experiments do not allow adequate analyses of the 

glass phase, and it is very difficult to distinguish between quench- and equilibrium-

crystallization. To reach higher quenching rates, a rapid quench system was developed for 

internally heated pressure vessels (Berndt et al. 2002; Holloway et al. 1992; Roux and Lefevre 

1992), which allowed the experimental melts to be quenched to homogeneous glasses.  

Most experiments on water-bearing tholeiitic basalts are typically carried out at water-

saturated conditions. Sisson and Grove (1993a; 1993b) conducted experiments in a calc-

alkaline system under water-saturated conditions at 200 MPa. Spulber and Rutherford (1983) 

performed experiments in a MORB system from the Galapagos Spreading Center. There are 

also experiments at reduced water activities like Holloway and Burnham (1972) who studied a 

tholeiitic basalt from the Kilauea volcano and Kawamoto (1996) who performed experiments 

in a calc-alkaline system at a water activity < 1. All these authors observed a strong effect of 

water on phase relations in the system. Aside from general effects like the stability of water-

bearing phases (e.g. amphibole), effects on element partitioning were observed as well (Sisson 

and Grove 1993a; Sisson and Grove 1993b). Gaetani et al. (1993; 1994) investigated 

experimentally a basaltic andesite system under dry and water-saturated conditions (200 

MPa). They found that the crystallization order in a dry system is olivine – plagioclase – 

clinopyroxene, while it is changed in a water-saturated system to olivine – clinopyroxene – 

plagioclase. 

Due to the fixed water content in most of the studies mentioned above, systematic effects of 

water on the phase equilibria and phase compositions could not be determined. The only 

experimental study where the water content was varied systematically under crustal pressure 

was conducted by Berndt et al. (2005). In their study, they added different amounts of water 

to a synthetic glass corresponding to a primitive MORB and constructed phase diagrams for 
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the system at 200 MPa. With decreasing temperature the water content in the melt increases 

dramatically, due to ongoing crystallization. At low temperatures all experiments were water-

saturated. They observed a strong effect of the water activity and the water content of the 

system on the phase relations, phase chemistry and on the element partitioning. Furthermore, 

they showed that water has the ability to control differentiation trends. 

 

1.2. Experimental techniques 

 

As capsule material, gold (at temperatures <1060°C) and Au80Pd20 (at higher temperatures) 

were used. XH2O [molar H2O/(H2O+CO2)] of the fluid phase was varied. In each 

experimental run, four different XH2O were applied: 0.0 (nominally dry), 0.2, 0.6, and 1.0 

(water-saturated). All experiments except the nominally dry were fluid-saturated. XH2O of 0.2 

and 0.6 are fixed via mixtures of water and silver oxalate (Ag2C2O4). We assume that CO2 

does not play an important role as chemical component in this system. For each run 10 to 40 

mg of starting glass powder (pre-dried), and the desired amounts of water (using a micro 

syringe) and silver oxalate were transferred into the capsule. For the “nominally dry” runs, 

only glass powder was inserted into the capsule. These filled capsules were dried at 500°C for 

ten minutes. 

All experiments were performed in a vertically mounted internally heated pressure vessel 

(IHPV), equipped with a rapid quench system to prevent the formation of quench-crystals 

(Berndt et al. 2002; Holloway et al. 1992; Roux and Lefevre 1992), using pure argon as 

pressure medium. A detailed description of the apparatus is given by Berndt et al. (2002). All 

experiments were performed at an oxygen fugacity corresponding to the MnO-Mn3O4 buffer. 

Depending on aH2O, the fO2 of the experiments varies between ~ QFM+1 and QFM+4.2, 

which is in the upper level of the redox conditions known from nature (Bezos and Humler 
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2005; Christie et al. 1986). To apply this study to magma chamber processes of mid-ocean 

ridges, pressure conditions of 100, 200 and, taking into account the thick lithosphere at slow 

spreading ridges, 500 MPa were selected in the study. Additionally, the experiments at three 

different pressures also allow determining the effect of water as a function of pressure. To 

construct phase diagrams, experiments in the temperature range 940 - 1220 °C were 

performed. The temperature was measured with four S-type thermocouples, showing a 

gradient of less than 4°C along the sample and an uncertainty less than ±10°C. The 

experimental conditions for each run are listed in Table 1.1.  

After quenching, each capsule was weighed to check for leaks and then, punctured and 

immediately weighed again to check if CO2 was present in the capsule. To check if water was 

present, the punctured capsule was dried at 130 °C and weighed again.  
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1.2.1. Starting material 
 

As a starting material for the experiments, we used a microgabbro from the Southwest Indian 

Ridge (SWIR). Microgabbros occur as small dikes with medium to fine-grained equigranular 

textures within the drilled gabbro section of the Southwest Indian Ridge. According to Dick et 

al. (2000) these microgabbros represent melt transport channels through crystallizing 

intrusions. We used the microgabbro "R6a" (ODP designation: 176-735B-178R-6:132-138; 

Snow, 2002), recovered from a depth of 1219 mbsf (meters below sea floor) on ODP Leg 

176. This rock exhibits a fine-grained (< 0.5 mm), equigranular texture consisting of 

plagioclase (55 mol% anorthite; ~65 vol% in the mode), olivine (71 mol% forsterite; ~15 

vol% in the mode), clinopyroxene (Mg# = 79 (molar 100×MgO/(MgO+FeO)); ~ 15 vol% in 

the mode) and interstitial phases (pargasitic amphibole, orthopyroxene, ilmenite, Cr-rich 

magnetite, and pyrite; ~ 5 vol% in the mode in total). The chemical composition of the gabbro 

is close to a primitive tholeiitic basalt (Table 1.2), but K2O, TiO2, and P2O5 are nonetheless 

somewhat low for such a composition. Therefore, we believe that this rock also includes a 

certain cumulate character.  

The starting glass was prepared by crushing the sample and regrinding it in a rotary mortar. 

The rock was totally fused at 1600°C in a platinum crucible and quenched with water. The 

homogeneity of the glass was confirmed by electron microprobe analyses. For the 

experimental runs, this glass was crushed to a grain size of <150µm and filled into noble 

metal capsules (10 to 40 mg for each run). 

 

1.2.2. Loss of Iron 
 

To avoid iron loss during the experiment Au was used as capsule material at temperatures ≤ 

1020°C. At temperatures > 1020 °C Au80Pd20 was used instead of platinum due to its lower 
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Fe-solubility (Kawamoto and Hirose 1994). After the experiment, iron loss to the capsule was 

checked by electron microprobe and found to be negligible, in agreement with previous 

studies under relatively oxidizing conditions (e.g., Berndt et al. 2005). This conclusion is 

further supported by the compositions of the iron-bearing phases of the experimental runs. 

Olivine, for example, systematically increases in forsterite content with temperature and water 

in the coexisting melt. If iron loss had occurred, an increase in the forsterite content of olivine 

in runs with low water activities would be expected, which was not observed. Experiments 

with low water activity and thus low oxygen fugacity could have lost some iron. Mass balance 

calculations predict iron loss of up to 1.6 wt %, which does not significantly affect the results.  

 

1.2.3. Calculation of Water activity and oxygen fugacity 
 

With the help of the estimated water contents of the melts (see below), water activities for 

each run were calculated according to the model of Burnham (1979). This model works well 

up to 200 MPa (e.g., Berndt et al. 2005), but is not correct for higher pressures. A correction 

term was introduced for calculating those water activities for 500 MPa, assuming that the 

model calculates the relative values for different water contents correctly. Based on this 

assumption, the water-saturated experiments were defined as aH2O=1 and the relative 

deviation, calculated by the model, was subtracted from the experiments performed at the 

same conditions but with reduced water activity. 

The experimental runs were conducted under "intrinsic" fO2 condition of the IHPV, which 

was measured by Berndt et al. (2002) at four temperatures using solid redox sensor and 

corresponds to QFM +4.2 (4.2 log units above the quartz-fayalite-magnetite oxygen buffer) 

for water-saturation. Since the fO2 in a given run is strongly affected by the water activity 

(aH2O; e.g., Berndt et al. 2005; Scaillet et al. 1995) the fO2 of our experiments varied between 

~ QFM +1.0 for “nominally dry” runs (near liquidus) and QFM +4.2 for water-saturated runs.  
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The prevailing oxygen fugacity for each experiment with reduced aH2O was calculated 

according the procedure outlined by Scaillet et al. (1995). The water fugacity was calculated 

from aH2O using the equation of Pitzer and Sterner (1994) with a KW of Robie et al. (1978). 

Finally, the oxygen fugacity was determined after Chou (1987) using the values of Schwab 

and Küstner (1981) and Huebner and Sato (1970) and a fH2 after Shaw and Wones (1964) 

which is imposed by the vessel and corresponds to QFM +4.2 (Berndt et al. 2002).  

 

1.2.4. Difficulties reaching "dry" conditions in our experiments 
 

In our “dry” experiments, the capsules were dried (as described above) and immediately 

welded shut. However, Fourier transform infrared (FTIR) measurements of quenched glasses 

from near-liquidus experiments revealed a water content of these capsules of 0.52 wt%. 

Experiments with silver oxalate (without added water) also did not reach perfectly "dry" 

conditions. Moreover, these experiments resulted in even higher water contents compared to 

the procedure described above. We assume that absorbed water due to the hygroscopic 

character of the silver oxalate is responsible for increasing the water content of the system. 

We consider two possible origins of the water in these capsules. First, there is always a certain 

amount of air in the capsule. The experiments were conducted as a “closed system” with the 

exception of hydrogen (which controls the oxygen fugacity). Hydrogen diffuses through the 

capsule wall and produces water inside the capsule. Second, the prevailing oxygen fugacity 

during the experiments is lower compared to the syntheses of the starting material. If so, some 

of the Fe3+ is reduced to Fe2+ and the released oxygen forms water with the hydrogen of the 

buffer. 

These “nominally dry” experiments (0.52 wt% H2O) change their water content with the 

degree of crystallization and can reach water-saturation depending on pressure and 

temperature. In accordance with Berndt et al. (2005), these experiments show a distinct 
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difference to the experiments which are water-saturated from beginning on. Berndt et al. 

(2005) explained this effect by the different amount and composition of crystals and melt. Our 

experiments fit well with the observation that the bulk water has a significant control. Even at 

low temperatures, the systematic effect of water on the phase compositions is present (see 

chapter “phase chemistry”).  

  

1.2.5. Analytical methods 
 

The products of the experiments were analyzed with a “Cameca SX100” electron microprobe 

equipped with an operating system "Peak sight" based on Microsoft Windows. All data were 

obtained using 15 kV acceleration potential, a static (fixed) beam, Ka emission from all 

elements, and a matrix correction according to Pouchou and Pichoir (1991). The minerals 

were analyzed with a focused beam, 15 nA beam current and counting times of 5 s for Na and 

K, 30 s for Ni and Cr and 10 s for all other elements. The coexisting glass was measured with 

a 5µm defocused beam at 15kV, 4nA beam current and counting times of 4 s for Na and K, 30 

s for Ni, Cr and P, and 8 s for all other elements. For small glass pools, a beam diameter of 2 - 

5 µm was used. Potential sodium loss was checked by mass balance calculations and found to 

be negligible.  

The water content of the experimental glasses was estimated by the "by-difference" method 

(e.g., Devine et al. 1995). For this, standard glasses of MORB composition with known water 

contents (published in Berndt et al. 2002) were also analysed during each analytical session. 

“Nominally dry” near liquidus experiments were analysed with an FTIR-spectrometer to 

determine the minimum water content that was reached in the experiments. For the 

measurements, sample plates with thicknesses of 175-200 µm (each sample ± 2µm) were 

prepared and polished from both sides. Crystal-free glass was located with an optical 

microscope and analysed with a spot size of ~ 100 x 100 µm (50 scans, 2 cm-1 resolution). 
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The measurements were performed in the mid-infrared with a Bruker IFS 88 coupled with an 

IR-Scope II microscope. The setup of the spectrometer contains an InSb-MCT sandwich 

narrow range detector, a KBr beamsplitter and a “globar” light source. Spectra in the range of 

500 – 5000 cm-1 were recorded and the absorption bands at ~ 3570 cm-1 (attributed to the 

fundamental OH- stretching vibration) was used to determine the water content (Leschik et al. 

2004; Mandeville et al. 2002) with a density of 2808 g/l (ρ = - 20.8*cwater + 2819; after 

Ohlhorst et al. 2001) and an absorption coefficient of 70 (Scholze 1959). We determined a 

minimum water content for the “nominally dry” experiments of ~ 0.52 wt%. 

 

1.3. Results 

 

1.3.1. Achievement of equilibrium 
 

Previous studies under similar conditions and compositions using the same IHPV (e.g., 

Berndt et al. 2005) show that chemical equilibrium is reached after 2 - 5 hours at temperatures 

> 1000°C and 5 - 10 hours at temperatures of 950 - 1000°C and water-bearing conditions. The 

durations of our experiments were 20 to 91 hours (depending on temperature) The following 

observations suggest that equilibrium was obtained: (1) The newly formed crystals are 

chemically homogeneous and generally euhedral (Figs. 1.1 and 1.2). (2) Glasses are also 

homogeneous (within the counting statistics of the microprobe analyses), irrespective of 

location within the sample. (3) Glass and crystals are homogeneously distributed along the 

capsule. (4) Phase compositions vary systematically with intensive variables (e.g., 

temperature). (5) Mineral-melt and mineral-mineral element partitioning relations are 

generally in good agreement with published data from other studies (see below). (6) Most 
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mass balance calculations for individual runs result in ΣR2 < 1 (ΣR2 = sum of residual 

squares, e.g., Albarède and Provost 1977; see also Tab. 1.1). 

 

Fig. 1.1: Back-scattered electron (BSE) images of the experimental products (P = 200 MPa, log 
fO2=QFM+4.2 and water-saturated conditions). Shown is the effect of temperature on the phase 
relations. Abbreviations: Ol - olivine; Cr-Sp - chromium-rich spinel; Cpx - clinopyroxene; Plag - 
plagioclase; Mag - magnetite; Amph – amphibole; mlt – melt 

 

 

Fig. 1.2: BSE images of the experimental products (P = 200 MPa, log fO2=QFM+1 - QFM+4.2 and a 
temperature of 1160°C). Shown is the effect of water content on the phase relations. Abbreviations as 
in Fig. 1.1. 
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1.3.2. Phase relations 
 

The water content has a large effect on the stabilities of phases in a basaltic system. The 

addition of water to the dry system shifts the solidus about 250°C to lower temperatures, 

increases the amount of melt drastically (compare run #1 with #5; 12.5 % glass and 96.3 % 

glass respectively) and affects the order of mineral crystallization significantly. The phase 

relations obtained for 100, 200 and 500 MPa are shown in T-H2O diagrams (Fig. 1.3a-c). 

Experimental conditions and phase proportions are listed in Table 1.1. At all pressures and 

water contents, a chrome-rich spinel is the primary liquidus phase, followed by olivine. At 

lower temperatures, plagioclase and clinopyroxene follow. Their relative order of appearance 

depends on both pressure and water content. At 100 MPa plagioclase crystallizes before 

clinopyroxene at all water contents. At pressures above 100 MPa, plagioclase crystallizes 

before clinopyroxene at low melt water contents (less than ~ 3 wt%), but after clinopyroxene 

at high water contents, which is in agreement with Gaetani et al. (1993, 1994). The 

clinopyroxene-saturation curve more or less parallels the olivine-saturation curve at lower 

temperatures at all pressures and water contents, and the changing of the crystallization order 

at pressures above 100 MPa is due to a drastic shift of the plagioclase-saturation curve to 

lower temperatures with increasing water contents (Fig. 1.3a-c).  

Chrome-rich spinel disappears generally after the crystallization of clinopyroxene, suggesting 

that the Cr content in the melt is lowered by the incorporation of Cr into the clinopyroxene. 

After a gap of 30 to 100°C, magnetite becomes stable, which reflects the oxidizing conditions 

in our experiments. At relatively low temperatures, orthopyroxene crystallizes, showing a 

stability field that depends strongly on the prevailing pressure (see discussion below). 

Amphibole crystallizes only at temperatures < 1020°C. 
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In Figure 1.4 we present the phase relations only for the water-saturated conditions, in order 

to allow comparison with those experimental studies in basaltic systems which were 

performed exclusively under water-saturated conditions. For example, our 200 MPa water-

saturated experiments are in good agreement with the results of Gaetani et al. (1994) for a 

basaltic andesite at the same pressure.  

Figure 1.4 also illustrates the pressure effect on the liquidus temperatures of the mineral 

phases. A negligible pressure effect under water-saturated conditions is observed for 

clinopyroxene and amphibole. Olivine and chromium-rich spinel show a slight decrease in 

liquidus temperature with increasing pressure, whereas plagioclase, magnetite and 

orthopyroxene show a strong decrease in liquidus temperature with increasing pressure. 

 

 

Fig. 1.4: Liquidus temperatures of the occurring mineral phases as a function of pressure under 
water-saturated conditions. The symbols represent the experimentally investigated conditions. 
Abbreviations: Ol - olivine; Cr-sp - chromium-rich spinel; Cpx - clinopyroxene; Opx - orthopyroxene; 
Plag - plagioclase; Mag - magnetite; Amph - amphibole. 
 



Effect of water on tholeiitic basalt phase equilibria – Results 
 

28 
 

1.3.3. Phase chemistry 
 

1.3.3.1. Olivine 
 

Olivine (ol) compositions are listed in Table 1.2. Figure 1.5 shows a dramatic increase of 

forsterite (Fo) component in olivine with increasing water in the system. For instance, at 

T=1100°C the increase of Fo content between “nominally dry” and water-saturated runs is 

~12 mol% (at 200 MPa). This effect can partly be ascribed to the increase in melt fraction due 

to water, and partly to the increase of oxygen fugacity, which is a direct consequence of 

increasing water activities in a H2-buffered system. The oxygen fugacity controls the Fe2+ 

content and therefore, the Fe2+/Mg ratio of the melt (e.g., Berndt et al. 2005; Toplis and 

Carroll 1995). For the example from above, the increase in fO2 correspond to ~ 1.4 log units 

(Table 1.1). In Figure 1.5 it can be observed that the Fo content tends to rise again at low 

temperatures, which is due to the crystallization of magnetite extracting FeO from the melt. 

The same effect was reported in the experiments in a primitive MORB system from Berndt et 

al. (2005) and is a characteristic of oxidizing conditions.  

 

Fig. 1.5: Forsterite content of olivine 
as a function of temperature for 
different water contents at 200 MPa. 
The signature of the symbols is 
described in Fig. 1.3 
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The element partitioning coefficient MeltOl
MgFeD

−
−K according to Roeder and Emslie (1970) was 

calculated using equation 1. 

molein  MeltOl
Mg-FeD Ol

MgO

Melt
MgO

Melt
FeO

Ol
FeO

X
X

X
X

K =−         (1) 

The Fe2+/Fe3+ ratio of the glass was calculated after Kress and Carmichael (1991). The 

MeltOl
MgFeD

−
−K  values obtained for our experiments vary between 0.3 - 0.47 (Tab. 1.1), deviating 

systematically from the canonical value of Roeder and Emslie (1970) of ~ 0.3 with the 

amount of water in the system. Toplis (2005) showed that deviations from this value can be 

expected, mainly due to the influence of melt composition, but also due to water. Values 

calculated with the model of Toplis (2005) produce MeltOl
MgFeD

−
−K  values of 0.3 ±0.01, 

independent of the prevailing water content.  

 

1.3.3.2. Plagioclase 
 

Plagioclase compositions are listed in Table 1.2. Figure 1.6 shows the strong influence of 

water on the anorthite content (An) in plagioclase. For instance, at a given temperature of 

1020°C the increase of An between a run with a moderate bulk water content of 2.8 wt% and 

a water-saturated run is ~ 25 mol% (at 200 MPa). This dramatic increase of An contents due 

to a higher water content is in full agreement with previous studies (e.g., Berndt et al. 2005; 

Koepke et al. 2004; Martel et al. 1998; Panjasawatwong et al. 1995).  
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Fig. 1.6: Anorthite content of 
plagioclase as a function of 
temperature for different water 
contents at 200 MPa. The signature of 
the symbols is described in Fig. 1.3. 

1.3.3.3. Clinopyroxene 
 

The clinopyroxene (cpx) compositions are listed in Table 1.2. Water shifts the Mg# to higher 

values, as described above for the forsterite content of olivine, and for the same reasons. An 

effect of water itself on the composition of the pyroxenes cannot be distinguished from the 

effects mentioned before. In the pyroxene quadrilateral (Fig. 1.7) the experimental low Ca- 

and high Ca-pyroxene pairs plot on parallel tie-lines suggesting equilibrium conditions 

(Lindsley, 1983). As a consequence of the effect of water described above, the experiments 

show a systematic shift to lower ferrosilite component with increasing water activity.  

 

Fig. 1.7: Pyroxene quadrilateral and the 
experimental low Ca- and high Ca-
pyroxene pairs. Coexisting pyroxenes are 
connected with tie-lines. The signature of 
the symbols is described in Fig. 1.3 
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Fig. 1.8: Mg# and selected components of the clinopyroxenes of the experiments with the lowest water 
content for the three different pressures as a function of temperature. The signature of the symbols is 
shown in Fig. 1.3 
 

In Figure 1.8 only clinopyroxenes of those runs with the lowest aH2O for the three different 

pressures are plotted, displaying well-developed trends for Mg# and some minor components 

against temperature. It should be mentioned that the water contents of the nominally dry 

experiments used are not constant, causing some variations within individual trends. As 

expected, temperatures correlate positively with Mg#, but negatively with TiO2 and Na2O, 

apparently reflecting compositional effects due to higher activities of these components in the 

melt with decreasing temperature. Figure 1.8b shows the well-known pressure dependence of 

Al2O3 in clinopyroxene at more or less constant temperatures. The observed trends confirm 

the potential of clinopyroxene composition for thermobarometry (e.g., Putirka et al. 1996; 

Putirka et al. 2003) in dry systems. 

The well-developed trends for low water contents displayed in Figure 1.8 are destroyed when 

experimental data obtained at higher water contents are included. For clarity, these data points 
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are left out of Figure 1.8. This has consequences for applying thermobarometry to 

clinopyroxene compositional data of hydrous systems. For instance, Putirka et al. (2003) 

provided a commonly used model to calculate pressures and temperatures using the melt and 

clinopyroxene composition. We applied their model to our experiments and were able to 

reproduce the experimental pressures for those runs with low aH2O well (± 130 MPa) at least 

for temperatures ≥ 1100°C, but failed for those runs with high aH2O (Fig. 1.9). The 

temperature dependence shows a systematic deviation from the experimental values to higher 

temperatures with increasing water activity (Fig. 1.10).  

 

 

Fig. 1.9: Thermobarometer of 
pyroxenes from Putirka et al. (2003) 
was used to calculate the pressures of 
the experiments. At high temperatures 
the calculated pressures reproduce the 
experimental pressures within the error 
of the model, at temperatures <1100°C 
the error increases rapidly. 

Fig. 1.10: Thermobarometer of 
pyroxenes from Putirka et al. (2003) 
was used to calculate the temperature 
of the experiments. All pyroxene-
bearing experiments show a systematic 
deviation from the 1:1-line to higher 
temperatures with increasing water 
activity in the system. 
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1.3.3.4. Orthopyroxene 
 

The orthopyroxene (opx) compositions are listed in Table 1.2. In contrast to clinopyroxene, 

orthopyroxene is very sensitive both to total pressure and aH2O. From 100 to 500 MPa, its 

saturation curve is shifted by ~ 100°C to higher temperatures at low aH2O. Due to the limited 

experiments containing orthopyroxene, clear systematic trends for low and high aH2O cannot 

be obtained. Since the Mg# of orthopyroxene correlates well with the Mg# of the associated 

clinopyroxene (within ~ 5 mol%; see also Fig. 1.7) both for high and low aH2O, we infer that 

increasing melt fraction and fO2 caused by increasing aH2O, leads to a shift of Mg# to higher 

values, analogous to clinopyroxene and olivine. The orthopyroxene with the highest Mg# 

(88.6) is derived from a run performed under water-saturation at a remarkably low 

temperature of 980°C (#58).  

 

1.3.3.5. Fe-Ti-Cr-Al Oxides 
 

We observed both chromite and magnetite as spinel phases in our experiments, forming tiny 

crystals often too small for reliable electron microprobe analysis (compositions are presented 

in the electronic supplementary material only). Chromite typically crystallized at high 

temperatures and magnetite is the only stable oxide phase at low temperatures. The 

experimental chromites show compositions typical for those in MORB´s and oceanic gabbros 

(e.g., Rollinson et al. 2002), ranging in composition between Cr#31-56 [Cr# = Cr / (Cr + Al)] 

and Mg#72-83. At 200 and 500 MPa for high aH2O chromite and magnetite obviously form 

solid solutions. For low aH2O at these pressures and at 100 MPa for all water contents both 

spinels show distinct stability fields separated by a temperature gap. However, due to the 

close relationship between water activity and oxygen fugacity in our experiments, it is not 

possible to trace back the observed compositional trends affected by water to either aH2O or 
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fO2. Ilmenite was not observed in our experiments, probably due to the low TiO2 content of 

the system. Due to the oxidizing conditions in our experiments, the ulvöspinel component of 

magnetite is high, ranging between 1.3 and 15.4 mole% (calculated after Stormer 1983). 

 

1.3.3.6. Amphibole 
 

The amphiboles are pargasite-hastingsite solid solutions (classification after Leake et al., 

1997; compositions are presented in the electronic supplementary material only) and are 

stable at all three pressures at temperatures below 1020°C. Due to the limited experimental 

products containing amphibole, systematic trends cannot be obtained. At 200 MPa amphibole 

crystallized at 980°C show higher tetrahedral Al and Na on the A-site as an amphibole formed 

at 940°C, which is in agreement with previous experimental studies (Blundy and Holland 

1990; Ernst and Liu 1998; Koepke et al. 2004; Sisson and Grove 1993a). When applying the 

experimental amphibole compositions to the hornblende-plagioclase geothermometer of 

Blundy and Holland (1990), the experimental temperatures can be reproduced well 

(experiment #31 and #32 within 20°C; #58 and #83 within 40 °C). 

 

1.3.3.7. Glass compositions 
 

The effect of water on the evolution of the residual melts (compositions in Table 1.2) is 

complex due to the interplay of different effects. First, with increasing pressure we observe a 

strong depression of the plagioclase-saturation temperatures, caused by the water content 

affecting the plagioclase component in the melt. Second, since our experiments are performed 

under H2-buffered conditions, water shifts the oxygen fugacity drastically to higher values, 

affecting mainly the MgO/FeO ratio in the melt and the stability of magnetite and mafic 

minerals and their compositions. This leads in general to significantly lower FeO contents in 
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water-rich melts in comparison to dry melts at a given temperature. One consequence of this 

is that water can change the differentiation trend from "tholeiitic" to "calc-alkaline" as shown 

by Berndt et al. (2005) for a primitive MORB system. Third, water not only delays the 

crystallization of the minerals, it affects also their compositions and consequently the 

composition of the coexisting liquids. The effect of water on the liquid lines of descent 

obtained from our experiments performed at 200 MPa is shown in Figure 1.11 where the 

concentration of selected elements in the melt is plotted versus melt fraction. We did this 

because water shifts the crystal-saturation curves to significantly lower temperatures. This 

increases the melt fraction considerably, which affects in turn the melt composition, 

preventing the adequate evaluation of the effect of water on melt compositions in 

temperature–related plots.  

 

Fig. 1.11: Selected components of the experimental melts as a function of the melt fraction, calculated 
by mass balance, for different water contents at 200 MPa. Abbreviations: Mag - magnetite; Amph – 
amphibole 
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From Figure 1.11a it can be inferred that water forces the melt to higher silica contents. The 

residual melt compositions range from “primitive” basaltic to evolved melts approaching the 

composition of tonalites. Such silicic melts were only observed in water-saturated 

experimental runs. MgO contents of the residual glasses decrease rapidly with decreasing 

glass fraction, due to the crystallization of spinel and olivine at high temperatures (Fig. 

1.11b). Because of the delayed plagioclase crystallization and the increased forsterite contents 

in olivine due to the higher oxygen fugacity, water shifts the MgO content of the melt to 

lower values. The FeOtot content of the melt is shown in Figure 1.11c. In an early evolution 

state, the iron content remains more or less constant and is thus not significantly affected by 

the crystallization of spinel and olivine. FeOtot content in the melt starts to increase with the 

crystallization of plagioclase. In the low temperature experiments at high water contents, 

significant amounts of magnetite crystallize resulting in a downward trend. High iron contents 

in the melts were only reached at reduced water activities. During early crystallization CaO 

increases in the residual melts (Fig. 1.11d) due to the negligible CaO contents in the liquidus 

minerals spinel and olivine. When plagioclase and clinopyroxene starts to crystallize, CaO in 

the melt decreases rapidly. Due to the strong effect of water on the plagioclase composition, 

the CaO content of the melt shows a characteristic shift in the trends for the different water 

contents to lower CaO values. 

 

1.4. Discussion 

 

1.4.1. The stability of orthopyroxene in oceanic gabbros 
 

Knowledge of the stability of orthopyroxene in experimental MORB systems is important, 

since the genesis of oceanic plutonic rocks containing primary orthopyroxene is still under 
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debate (e.g. gabbronorites in the Oman ophiolite or at the Mid-Atlantic Ridge, Boudier et al. 

2000; Nonnotte et al. 2005; Shipboard Scientific Party 2004). From experimental studies it is 

well known that the stability field of orthopyroxene is increased by (1) higher silica activities 

and (2) by higher pressures of crystallization.  

(1) Our experiments show that the silica activity at crustal pressures of our primitive tholeiitic 

basalt is probably not high enough to produce near liquidus orthopyroxene under dry 

conditions. In the experiments, orthopyroxene always crystallizes late, at relatively low 

temperatures (Fig. 1.3). Even at 500 MPa, where the stability of orthopyroxene is enlarged 

(under nominally dry conditions), the system has to crystallize more than 66 wt%, before the 

first orthopyroxene is formed. This implies that the formation of typical gabbronoritic 

cumulates by simple crystal fractionation seems unlikely. At least one or two fractionation 

steps are necessary to increase the silica activity in the residual melt (see also Berndt et al., 

2005). This is in accord with observations in natural gabbros from the Oman ophiolite where 

Boudier et al. (2000) found that in a given crustal section typical gabbronorites do not differ 

chemically from olivine gabbros, except a characteristic SiO2 enrichment in the former.  

(2) The experiments show that the stability of orthopyroxene is significantly affected by the 

crystallization pressure (Fig. 1.12). Under nominally dry conditions the orthopyroxene-

saturation curve is significantly shifted to higher temperatures (~100°C for a pressure shift 

from 100 to 500 MPa), whereas under water-saturated conditions, the opposite trend is 

observed. Thus, pressure enhances the orthopyroxene stability significantly, but only under 

dry conditions. This is in accord with studies of gabbronorites from the Mid-Atlantic Ridge 

where pressures up to 800 MPa were considered necessary for the intrusion of gabbroic 

plutons into the mantle beneath the crust (Shipboard Scientific Party 2004).   

The phase diagram in Figure 1.12 clearly shows that higher water contents in the melts 

destabilizes orthopyroxene which could be either the result of a change in melt composition as 

a function of pressure, water as a chemical component or due the rise in oxygen fugacity with 
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increasing water content. Since it is well-known that higher oxygen fugacities stabilize 

orthopyroxene (e.g., Berndt et al. 2005; Boudier et al. 2000; Grove and Baker 1984; Grove 

and Juster 1989) it seems clear that water itself or the change in melt composition destabilizes 

orthopyroxene in our experiments. The experiments do not allow to distinguish between these 

effects. However, the melt composition is strongly effected by the water-sensitivity of the 

stability of plagioclase, which is a key parameter for silica enrichment under water-saturated 

conditions. Increasing pressure shifts the crystallization temperature of plagioclase to lower 

temperatures and therefore delays the silica enrichment in the melt and the precipitation of 

orthopyroxene. This is in accord with the experimental findings of Gaetani et al. (1993, 1994) 

for a basaltic andesite. Thus, our study supports a model that orthopyroxene-rich rocks can be 

generated by simple hydration of a tholeiitic basaltic system (e.g. Boudier et al. 2000) only 

under low pressures, where the oxidizing effect of the hydrations is dominating. Under higher 

pressures, however, the delay in plagioclase crystallization caused by water resulting in a 

lower silica activity of the melt becomes more important preventing orthopyroxene 

crystallization. 

 

Fig. 1.12: Stability field of 
orthopyroxene at different pressures. 
At low water contents the liquidus 
temperature is shifted to significantly 
higher temperatures, whereas water-
saturated conditions shift the stability 
of orthopyroxene to lower 
temperatures. 
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1.4.2. Effect of H2O on element partitioning 
 

1.4.2.1. Ca partitioning between olivine and melt 
 

The amount of calcium in olivine has been the object of many studies (Jurewicz and Watson 

1988; Libourel 1999; Longhi et al. 1978; Roeder 1974; Watson 1979). The melt and olivine 

compositions have the major control on the CaO content, whereas the effects of temperature, 

pressure and oxygen fugacity are negligible. Libourel (1999) developed a model to calculate 

the calcium partition coefficient between olivine and melt based on their compositions. The 

model provides good predictions for dry magmatic systems. In a water-bearing system Berndt 

et al. (2005) observed a deviation from the predicted values and supposed that water affects 

the partition coefficient. Our results correlate well with the effects described by Berndt et al. 

(2005). While the dry experiments, independent of pressure, correspond with the model of 

Libourel (1999), our water-bearing experiments show a systematic deviation from the 

calculated values (Fig. 1.13). This deviation is a function of water in the coexisting melt, 

which is controlled by the adjusted water activity and by the prevailing pressure. But besides 

the effect of water, temperature also influences the deviation. At lower temperatures the 

deviation is smaller.  

Fig. 1.13: The influence of the water 
content of the melt on the Ca-
partitioning in olivine. The dotted line 
in the plot belongs to the equilibrium 
study of (Libourel 1999). The solid 
lines show the water-content of the 
melt of the performed experiments. It 
is noticeable that their is a significant 
influence of water on the Ca-
partitioning in olivine. With increasing 
water-content, the lnD* ol-melt/CaO 
value is depressed to lower values. 
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To separate the effect of temperature from the water effect, we included the forsterite content 

of olivine into the calcium partitioning calculations. This allows the calcium partitioning to be 

plotted as a function of temperature (Fig. 1.14). The effect of water is expressed by a strong 

increase of calcium partitioning into olivine with decreasing water content. This increase 

mainly reflects the lower calcium content of olivine in water-bearing systems. In a water 

diffusion study, Behrens and Schulze (2000) observed a strong bonding of hydrous species on 

Ca-complexes in the melt. This effect could result in a reduced calcium activity in the melt 

and thus decreases the calcium content in olivine. However, further experiments at different 

oxygen fugacities are necessary to determine a systematic effect of the redox-conditions on 

the calcium partitioning. With the help of an extended database, the calcium partitioning 

between olivine and melt has the potential to be used as a “geohygrometer”. A possible 

application could be the determination of the initial water content of a degassed olivine basalt. 

 

Fig. 1.14: Molar ratios of Ca/Fo 
in olivine and Ca/Mg# in the melt 
are used to illustrate the Ca-
partitioning between olivine and 
melt as a function of 
temperature. The calculated Ca-
partitioning varies systematically 
with water in the system 
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1.4.2.2. Ca/Na partitioning between plagioclase and melt 
 

Sisson and Grove (1993a) showed with melting experiments on a high-alumina basalt that the 

MeltPlag
NaCaD
−

−K (calculated using equation 2) is very water sensitive, with higher MeltPlag
NaCaD
−

−K  values 

with increasing amount of water in the melt. 

( )
( ) molein  

/
/MeltPlag

NaCaD
Melt

plag

NaCa
NaCa

K =−
−         (2) 

They determined a MeltPlag
NaCaD
−

−K = 5.5 at 200 MPa (~6 wt% H2O in the melt) and a MeltPlag
NaCaD
−

−K = 

3.4 at 100 MPa (~4 wt% H2O in the melt). Further experiments under dry conditions and 

pressures between 800 and 1200 MPa produced MeltPlag
NaCaD
−

−K  values below 2.0, which infers that 

the increase in MeltPlag
NaCaD
−

−K  in their water-bearing experiments is related to water. 

To better understand the effect of bulk composition on the element partitioning, we collected 

plagioclase-glass pairs from a number of experimental studies showing a wide range in mafic 

compositions. All were water-saturated (except for 1 atm experiments), and as the pressure 

mainly controls the water content, an effect of the composition on the water solubility is 

negligible compared to the scattering of the experiments. At the same pressure (same water 

content) all compositions have similar MeltPlag
NaCaD
−

−K  values (Fig. 1.15). 
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Fig. 1.15: Effect of water on Ca/Na pairs of plagioclase and the coexisting melt. The different 
pressures marked in the diagram control the water solubility in the melt. In this diagram they are used 
to compare the effect of different water contents on the KD value. The effect of pressure itself is 
negligible. The big symbols correspond to our experimental study (see Fig. 3 for the signature). The 
small symbols correspond to a number of experimental studies with a huge variety of different 
compositions (basalts, andesitic basalts, andesites, high alumina basalts, komatites, alkaline basalts). 
The different compositions deviate only slightly in water solubility and thus plot on the same line. 
Water shifts the KD value from ~1 (dry conditions) to ~3.5 under water-saturated conditions at 100 
MPa (~3.2 wt% water) and to ~5 under water-saturated conditions at 200 MPa (~5 wt% water), 
respectively. 
 

In agreement with the study of Berndt et al. (2005), we conclude that the effect of total 

pressure is negligible. Our “nominally dry” experiments should confirm this, as they were 

prepared with the same procedure and should have the same water content. In these 

experiments, the determined MeltPlag
NaCaD
−

−K  values for the three different pressures are 

indistinguishable from each other (Fig. 1.15). To determine the pressure effect it is necessary 

to perform experiments in a system that is really dry. But as discussed above, iron-bearing 

systems always contain a certain amount of water.  
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However, the MeltPlag
NaCaD
−

−K determined from our experiments fit well with the values from others 

(Fig. 1.15) indicating that equilibrium was approached in our experiments. 

 

1.4.3. Comparison of the experimental results with thermodynamic models 
 

The experimental results that we provide about the detailed effect of water in the phase 

proportions and compositions of mafic systems could be incorporated in thermodynamic 

models. Below we discuss how our results differ from those calculated with currently 

available thermodynamic calibrations and highlight the problems that one might encounter 

when applying them to water-rich systems.  

Thermodynamic models are often used to calculate phase relations and compositions of 

magmatic systems. They are used to describe the magmatic evolution including the 

differentiation paths. Two of the most commonly used models are “MELTS” (Ghiorso and 

Sack 1995) and “Comagmat” (Ariskin 1999). “MELTS” is a thermodynamic model which 

performs Gibbs free energy minimization with the use of regular solutions models for both 

minerals and melt. “Comagmat” is a semi-empirical model where the task of equilibrium is 

solved iteratively for the system of non-linear equilibrium equations and the mass action law 

using dependencies of equilibrium constants for each mineral–melt reaction on temperature 

and composition (Ariskin 1999). The lack of a sufficient number of experiments in hydrous 

mafic systems introduces a large uncertainty in the phase equilibria results of both models 

(Fig. 1.16). To compare the calculations of the models with our experimental results, we used 

the same conditions as in the experiments (fO2, P, H2O and equilibrium mode).  

“MELTS” for example slightly overestimates the liquidus temperature for olivine independent 

of the prevailing water content. In the calculations, the stability of olivine at low temperatures 

is strongly related to the stability of orthopyroxene. With the strong increase of orthopyroxene 
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stability with pressure the “olivine-out” boundary is shifted to much higher temperatures than 

we have observed. 

 

 

The phase boundaries of clinopyroxene and plagioclase form the stability field for wehrlites 

(cumulate rocks consisting of olivine, clinopyroxene ± spinel without plagioclase) shown in 

Figure 1.16. This field is produced by a shift of the stability of plagioclase to lower 

temperatures due to water. In the experiments, the wehrlitic paragenesis was only observed at 

pressures >100 MPa and high water contents. “MELTS” overestimates the stability of 

Fig. 1.16: Phase relations of our system compared with two of the most commonly used models - 
MELTS (a) and Comagmat (b). The thin lines are calculated phase boundaries, the thick lines 
correspond to our observations. It should be noted that MELTS is only able to predict phase equilibria 
for redox conditions ≤ QFM+3. Since those experiments with very high water-activity were conducted 
at higher oxygen fugacities, the corresponding phase equilibria calculated by MELTS was 
extrapolated. 
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wehrlites in our system and produces wehrlites even at pressures of 100 MPa and at nearly 

dry conditions (Fig. 1.16a). 

 “Comagmat” calculates the stability field of olivine well. Even at high water contents, the 

calculated liquidus depression is in agreement with the experiments. Due to the limitation of 

the numerical model to ~80% crystal fraction, no orthopyroxene was observed. Compared to 

the experiments and in contrast to “MELTS”, “Comagmat” underestimates the stability field 

of wehrlites and produces wehrlites only at pressures > 200 MPa (Fig. 1.16b).  

 

1.4.4. Evolution trends for different bulk water contents 
 

Since our experiments show that water may significantly influence the phase relations, it is of 

interest to know how water would affect potential differentiation trends in a primitive 

tholeiitic basaltic system. Figure 1.17 shows the estimated evolution trends for a melt with 

different bulk water contents at a pressure of 200 MPa based on the phase equilibria obtained 

from our experiments in combination with mass balance calculations. The evolution lines 

terminate at those conditions where the residual melt fraction is expected to be less than ~ 10 

wt%. 

At the lowest bulk water content of 0.2 wt%, the estimated evolution trend is practically 

indistinguishable from the case of completely dry crystallization. Thus, the 

fractionation/accumulation of crystallized minerals would produce typical troctolitic or 

gabbroic cumulate rocks as a function of temperature. However, due to the increased water 

content, both plagioclase and olivine/clinopyroxene would show increased An contents and 

Mg#, respectively, compared to the dry system. 
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With a water content of 0.4 wt%, the evolution line is more or less parallel to the above trend, 

at slightly higher water contents. Fractionation/accumulation of crystallized minerals at 

temperatures > 1100°C would produce similar cumulate rocks as before, but with slightly 

higher An and Mg# in plagioclase and olivine/clinopyroxene, respectively. At temperatures 

below 1060°C orthopyroxene crystallizes. At lower temperatures the residual melt has the 

potential for significant water enrichment reaching the stability field of amphibole at 

temperatures below ~ 1000°C. Thus the probability for forming gabbroic cumulates including 

interstitial orthopyroxene and/or amphibole is increased.  

Starting with a high bulk water content of 4 wt% results in a completely different evolution 

trend, as illustrated in Figure 1.17. The main effect is that the plagioclase-saturation curve is 

significantly depressed, resulting in a change in the crystallization order and in the co-

precipitation of olivine and clinopyroxene without plagioclase. Thus, a potential cumulate 

rock formed by crystal accumulation at temperatures of ~ 1100°C would result in typical 

wehrlite. This aspect is discussed in detail in the next section.  

Fig. 1.17: Determined phase 
relations at 200 MPa (similar to Fig. 
1.3b), with estimated evolution trends 
of the system for different water 
contents of the starting material (0.2 
wt %, 0.4 wt % and 4 wt %; 
represented by arrows). The shape 
of the evolution lines is estimated 
from the mass balance calculations 
of the performed experiments (Tab. 
1.1). 
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1.4.5. Implications for the origin of wehrlites within the lower oceanic crust 
 

Many ophiolites contain wehrlitic rocks, characteristically intruding the deeper parts of the 

magmatic section (for details see Nicolas (1989) and references therein). For instance, in the 

Oman ophiolite, wehrlite bodies were found at different crustal levels from the sheeted dikes 

down to the Moho transition zone (e.g., Adachi and Miyashita 2001; Juteau et al. 1988). The 

Mg# of the olivines and clinopyroxene of these rocks are characteristically quite high, often > 

90 (Juteau et al. 1988; Koepke et al. 2005a). However, such rocks are rare in drilled or 

dredged samples of mid-ocean ridges.  

In the ophiolite of Macquarie Island, crustal wehrlites are observed as intrusions up to the 

sheeted dyke level (Jeff Karson, personal communication). This would seem to indicate a 

water-rich magma in the crustal section, based on our results. The mantle section at 

Macquarie also shows geochemical characteristics typical of ophiolitic mantle sections, and 

atypical of mid-oceanic ridge mantle sections (Wertz et al. 2004) and caused by hydrous re-

melting and metasomatism of the mantle. Thus, although Macquarie Island appears to be a 

nearly in-situ slice of mid-ocean ridge, it appears to have had a more hydrous origin than is 

typical of MORB. This may be related to the highly oblique nature of the plate boundary at 

that time, though this point is by no means settled.   

The origin of wehrlite intrusions within the oceanic crust is not clear. Current models explain 

the wehrlite bodies as impregnated mantle peridotites (Benn et al. 1988), as cumulates from 

subduction zone-related tholeiitic basaltic melts (Kelemen et al. 1997), or from picritic melts 

(Juteau et al. 1988). Studies of Koga et al. (2001) and Koepke et al. (2005a) showed that the 

clinopyroxenes of the crustal wehrlites from the Oman ophiolite could be in chemical 

equilibrium with typical MORB and suggest that models involving mantle impregnation or 

picritic melts are probably not important here.   



Effect of water on tholeiitic basalt phase equilibria – Discussion 
 

48 
 

Since these crustal wehrlites show typical cumulate structures, it is likely that these rocks 

“intruded” as mushes of accumulated crystals in a MORB-type system. To form the critical 

wehrlite paragenesis of olivine + clinopyroxene ± spinel (without plagioclase) by crystal 

accumulation in a dry MORB at shallow pressures is nearly impossible, since in “dry” MORB 

melts, plagioclase crystallizes together with olivine, distinctly before the precipitation of 

clinopyroxene (see previous section). Our experiments show that at pressures > 100 MPa, 

water changes the crystallization order and forms a field where the wehrlite paragenesis is 

stable (as shown in Fig. 1.3). The corresponding olivines and clinopyroxenes typically show 

high Mg# (up to ~ 93 mole % Fo in olivine). This agrees with the phase compositions of 

natural wehrlites from the Oman ophiolite (Koepke et al. 2005a; Koga et al. 2001). Thus, the 

experiments suggest that typical crustal wehrlites present in many ophiolites could be 

interpreted as cumulates of very water-rich tholeiitic melts, formed at pressures > 100 MPa, 

temperature ~ 1060°C and water contents of more than 3 wt%.  

For this model, special requirements are necessary, since it is well-known that typical MORB 

is more or less dry with water contents significantly below the 3 wt% mentioned above. There 

are two possible origins for the water-enrichment in MORB melts under the ridges. First, high 

water-contents can be achieved in MORB melts generated above subduction zones, which in 

principle can be related to spreading systems from fore-arc or marginal basin settings (e.g., 

Ishikawa et al. 2002; Lachize et al. 1996; Miyashiro 1974; Nicolas 1989; Pearce et al. 1984). 

Second, there is more and more evidence supporting a model that aqueous fluids derived from 

seawater may penetrate into magma chambers beneath ridges (Benoit et al. 1999; Bosch et al. 

2004; Boudier et al. 2005; Koepke et al. 2005c; Koepke et al. 2005b; Koga et al. 2001; 

Nicolas and Mainprice 2005; Nicolas et al. 2003; Nonnotte et al. 2005).  For these reasons, 

further investigation of water-bearing MORB systems, particularly at lower fO2, is likely to 

prove fruitful for understanding the magmatic evolution of mid-ocean ridges.  
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1.5. Conclusions 

 

Water dramatically influences the phase equilibria of a tholeiitic basaltic system, and 

therefore magmatic processes at mid-ocean ridges and marginal basins in general. The results 

of this study support many of the well-known effects with water, like depression of liquidus 

and solidus, increasing melt fraction at a given temperature, depressing the saturation of 

plagioclase, changing of the liquid lines of descent, and influencing the element partitioning 

between crystals and melt.  

This study defines clearly the shifting of phase boundaries and mineral compositions as a 

systematic function of water content between “dry” conditions and water saturation. These 

conditions correspond somewhat indirectly to the conditions of actual MORB formation, as 

the oxygen fugacity studied here was higher than those thought to be characteristic of MORB. 

However these results delineate the general trends of petrogenesis in hydrous basaltic 

systems.  

One interesting result of our investigation is a re-investigation of the term “dry”. We realized 

that the melt compositions of even nominally dry runs still contained up to half a percent of 

water. In many previous experiments conducted under “dry” conditions, the content of water 

was never actually measured, but simply assumed to be zero. For example, nominally 

anhydrous high pressure experiments performed in Piston Cylinder apparatus are often not 

absolutely water-free (Hirschmann et al. 1998; Holtz et al. 2001; Kagi et al. 2005). This may 

result in a considerable amount of water-induced fluctuation in the current experimental 

literature that should be investigated more fully.   

The genesis of wehrlites in the ocean crust is more than just academic in nature. Wehrlites are 

a component of most ophiolites, but are extremely rare to nonexistent in samples dredged and 

drilled from modern ocean crust in situ. This has led many researchers to assert that wehrlites 
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are present even in dry mid-ocean ridge systems, but are simply not dredgeable or drillable 

because of their location in the mid-segment lower crust. Our results suggest that this 

difference between ophiolites and ocean crust is a critical one, since a high water content is 

truly required for the generation of wehrlites. This is not to suggest that wehrlite formation at 

mid-ocean ridges is impossible, but it seems unlikely that large volumes of it are hiding 

somewhere beneath most mid-ocean ridges. Macquarie Island seems to be an exception to this 

(Wertz et al. 2004).  

Another result of this work is the effect of water on Ca partitioning into olivine. In principle, 

with further work, it should be possible to calibrate a “geohygrometer” based on this effect 

that should be of great use in determining the water content of subaerial basalts and those 

oceanic basalts which reach water saturation during eruption and degas. A surprising number 

of MORB samples, even form relatively deep water show large scale vesicle formation. If the 

water content of erupted basalts could be measured post hoc, then the vesicularity and residual 

water content of ocean floor basalts might well be useful in determining the eruption history.  

The results from this study show significant departures of the temperatures of crystallization 

and the compositions of phases crystallized to those predicted by hybrid 

thermodynamic/empirical and purely empirical models such as “MELTS” and “Comagmat”. 

This is to be expected, since the lack of observations in this region of pressure-temerature-

composition space were one of the motivating factors of this study. One benefit of this study 

is that these data represent an internally consistent data set for a primitive tholeiitic basaltic 

system in terms of temperature, water content, and pressure. Thus, these data should serve to 

improve future models. The next critical step in the exploration of tholeiitic systems will be a 

parallel set of water-bearing experiments in the same system at lower fO2 under otherwise 

similar conditions. This study covering a redox range from QFM-3 to QFM+2 is in progress. 

 

  



Effect of oxygen fugacity on phase equilibria of a hydrous tholeiitic basalt – Introduction 
 

51 
 

2. Effect of oxygen fugacity on phase equilibria of a 
hydrous tholeiitic basalt 

 

2.1. Introduction 

 

The prevailing oxygen fugacity (fO2) of a magmatic system strongly affects the magma 

evolution from partial melting to volcanic eruption. Most striking is the effect of different 

redox conditions on the crystallization processes within a magma chamber. Generally, the 

oxygen fugacity controls the Fe2+/Fe3+ ratio in the melt and therefore affects the relative phase 

stabilities of iron-bearing mineral phases and oxides, their compositions and their proportions 

in a crystallizing magmatic system (e.g., Berndt et al., 2005; Toplis and Carroll, 1995). 

Consequently, the prevailing oxygen fugacity also has a significant effect on melt 

differentiation trends (e.g., Berndt et al., 2005; Koepke et al., 2007; Osborn, 1959; Snyder et 

al., 1993; Toplis and Carroll, 1995). Whereas the calc-alkaline differentiation trend is 

characterized by a significant increase of silica content under relatively constant Fe/Mg ratios, 

the tholeiitic differentiation trend is characterized by a continuous iron enrichment of the melt 

(e.g., Grove and Kinzler, 1986; Sisson and Grove, 1993a; Toplis and Carroll, 1995; Wager 

and Deer, 1939). All these observations make the oxygen fugacity an important parameter for 

the understanding and the characterization of magmatic processes and of natural magmatic 

systems in general.  

Fundamental for the application of the parameter “oxygen fugacity” on magmatic systems is a 

accurate measurement of the Fe2+/Fe3+ ratio in the melt (e.g., Fialin et al., 2004; Mysen et al., 

1985; Wilke, 2005). Based on experimental studies (see next chapter), the prevailing oxygen 

fugacity was correlated with the Fe2+/Fe3+ ratio of the melt, and empiric and thermodynamic 

models were calibrated to predict prevailing redox conditions (e.g., Kilinc et al., 1983; Kress 

and Carmichael, 1991; Moretti, 2005; Sack et al., 1980). However, the effect of redox 
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conditions and especially the interplay between water activity and prevailing oxygen fugacity 

of natural tholeiitic basaltic systems is poorly understood. This study is aimed to get a better 

understanding of details of these complex relationships and is strongly linked with chapter 1 

(Feig et al., 2006). The chemical system, the investigated temperature interval and the used 

equipment of both studies is identical. While chapter 1 focused on the effect of water and 

pressure on the phase equilibria, this study aims on the effect of variable oxygen fugacities in 

a hydrous, primitive tholeiitic basaltic system. We present here new crystallization 

experiments (about 44 runs) in which oxygen fugacity and water content was varied (from 

“nominally dry” to water-saturation) to investigate the interplay between redox conditions and 

an aqueous phase. The whole investigated experimental range in oxygen fugacity covers 

about 7 log units including those typical redox conditions known for basaltic magmatism 

(Bezos and Humler, 2005; Christie et al., 1986; Johnson et al., 1994). Together with the study 

of results of chapter 1 (Feig et al., 2006), we present here a consistent experimental data base 

in a primitive tholeiitic system which is well-constrained in terms of temperature (940-

1220°C), pressure  (100 to 500 MPa), water content (nominal dry to water-saturation), and 

oxygen fugacity (7 log units).  

 

2.1.1. Previous experimental work 
 

The effect of redox conditions on the phase equilibria and differentiations trends in basaltic 

systems has been the object of many experimental studies. Most of recent experimental 

studies were related to the stability of iron-titanium oxides (e.g. Snyder et al., 1993; Thy and 

Lofgren, 1994; Toplis and Carroll, 1995), or were aimed on the composition of mafic phases 

as a function of oxygen fugacity (e.g. McCanta et al., 2004; Mysen, 2006; Snyder and 

Carmichael, 1992). All of these experimental studies were conducted in gas mixing furnaces 

at 1 atm with accurate control on the prevailing oxygen fugacity. The disadvantage of 1 atm 
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experiments is that they are limited to dry conditions and do not allow predictions about the 

interplay between fluids and redox conditions in the system.  

Investigating the effect of oxygen fugacity under elevated pressures is more complicated. 

Generally, experiments at a given pressure were performed in noble metal capsules 

representing a closed system with the exception of hydrogen. The hydrogen in turn controls 

the prevailing oxygen fugacity in the capsule. There are two different approaches to 

controlling the hydrogen in the system, the double capsule technique (Eugster, 1957) and the 

hydrogen membrane (Berndt et al., 2002; Scaillet et al., 1992; Schmidt et al., 1995; Shaw, 

1963). In double capsule experiments, the capsule containing the charge is surrounded by a 

second capsule filled with a solid buffer (e.g. Ni-NiO) + H2O, which fixes the hydrogen 

pressure. This approach is mainly used in piston cylinder setups (e.g. Gaetani and Grove, 

1998; Kagi et al., 2005; Muntener et al., 2001). The second approach (which was used in this 

study) is restricted to gas pressure vessels and is based on different argon-hydrogen mixtures 

of the pressure medium. The hydrogen membrane allows determining the oxygen fugacity by 

measuring the hydrogen pressure within the membrane (e.g. Berndt et al., 2005; Botcharnikov 

et al., 2005; Martel et al., 1999). 

Double capsule experiments and the hydrogen membrane technique were used to investigate 

the effect of oxygen fugacity on the phase relations, phase chemistry, element partitioning and 

differentiation trends of basic systems at elevated pressures. However, their are only a few 

experimental studies under controlled water activity and oxygen fugacity under crustal 

pressures and their influence on the phase equilibria of basaltic systems cannot be estimated 

accurately. Sisson and Grove (1993a) performed experiments under water-saturated 

conditions using a high-alumina basalt. They showed that beside oxygen fugacity also water 

could change the differentiation trend from tholeiitic to calc-alkaline. Berndt et al. (2005) 

conducted crystallization experiments at two different oxygen fugacities in a MORB system 

at 200 MPa. Under both oxygen fugacities, four different bulk water contents were applied to 
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investigate the effect fO2 and H2O on the phase equilibria. Close to the QFM-buffer the 

obtained liquid lines of descent shows a tholeiitic differentiation trend, while at oxidizing 

conditions close to QFM+4 a calc-alkaline differentiation trend was observed. Botcharnikov 

et al. (2005) investigated the effect of water activity on the oxidation state of iron in a 

ferrobasaltic system. The experiments show that the oxygen fugacity of the system is directly 

related to the applied water activity.   

 

2.2. Experimental and analytical methods 

 

2.2.1. Experimental strategy 
 

Two sets of experiments with different nominal fO2 were performed at a pressure of 200 MPa, 

corresponding at water-saturation (aH2O = 1; aH2O: water activity) to ~QFM (quartz-

magnetite-fayalite buffer) and ~QFM+2, respectively. As a third experimental data set for 

highly oxidizing conditions we used the experimental results presented in chapter 1 (Feig et 

al., 2006) performed at a nominal fO2 corresponding to QFM+4.2 (at water-saturation) in the 

same chemical system at the same pressure of 200 MPa. For convenience we name these three 

sets of different redox conditions in the following “reducing” (QFM), “intermediate” 

(QFM+2), and “oxidizing” (QFM+4.2). Since the redox conditions in our experiments are 

controlled by hydrogen buffering, each experimental set is characterized by a distinct 

hydrogen partial pressures, which is high at reducing and low at oxidizing conditions.   

For each experimental set we applied 4 different water activities resulting in experimental 

runs ranging from nominally dry to water-saturation. Decreasing aH2O decreases the fO2 for 

individual runs, since the prevailing oxygen fugacity is strongly affected by the water activity 

(e.g. Berndt et al., 2005; Botcharnikov et al., 2005; Feig et al., 2006; Scaillet et al., 1995).  
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Thus, the nominal fO2 was only reached in those experiments under water saturation, while all 

experiments performed under aH2O < 1 showed fO2 below the nominal value. Since aH2O in 

each experimental series varies from a very small value to 1, the corresponding fO2 range 

covers about three orders of magnitude for each of the three experimental sets. Thus, the 

variations in water activity for all three experimental series resulted in redox conditions 

corresponding to a range of fO2 from QFM-3 up to QFM+4.2. On the one hand, this feature 

opens interesting possibilities to investigate phase equilibria for a very broad range of redox 

conditions with fO2 covering more than 7 orders of magnitude. On the other hand, the phase 

equilibria are always the function of the combined effects of fO2 and aH2O, and it is very 

difficult to evaluate the individual effects of either aH2O or fO2 from this type of experiment.  

 

2.2.2. Experimental technique 
 

Most of the experimental techniques, including capsule preparation, starting material, 

analytical methods and the calculation of water activity and oxygen fugacity are identical to 

those described in chapter 1 and by Feig et al. (2006) and are therefore presented here only 

briefly. As capsule materials, gold (at temperatures ≤1020°C) and Au80Pd20 (at higher 

temperatures) were used. To minimize iron loss, all Au80Pd20 capsules were pre-saturated with 

iron. For the pre-saturation process, a glass was synthesized with the same composition as the 

starting material of the experiments. The glass was crushed and filled into corundum 

containers together with the Au80Pd20 tubes. The containers were held for three days in a gas 

mixing furnace (H2-H2O) at 1300°C above the liquidus of the system, at an oxygen fugacity 

corresponding to that of the experimental runs. Only tubes that were completely surrounded 

by glass were used for the experiments. In the final step of the pre-saturation procedure, the 

glass surrounding the tubes was dissolved with hydrofluoric acid. 
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In each experimental run, four different XH2O (molar H2O/(H2O+CO2)) were applied: 0.0 

(nominally dry), 0.2, 0.6, and 1.0 (water-saturated). All experiments except the nominally dry 

ones were fluid-saturated. XH2O of 0.2 and 0.6 are fixed via mixtures of water and silver 

oxalate (Ag2C2O4). For each run 10 to 40 mg of starting glass powder (pre-dried), and the 

desired amounts of water (using a micro syringe) and silver oxalate were transferred into the 

capsule. For the “nominally dry” runs, only glass powder was inserted into the capsule and 

dried at 500°C for ten minutes. 

The experiments were performed in an internally heated pressure vessel (IHPV), equipped 

with a rapid quench system to prevent the formation of quench-crystals (Berndt et al., 2002; 

Holloway et al., 1992; Roux and Lefevre, 1992) and with a hydrogen membrane to measure 

the prevailing hydrogen pressure during the experiment (Shaw, 1963). Methodical details on 

the used IHPV can be found in Berndt et al. (2002). To apply different oxygen fugacities, the 

vessel was filled with different mixtures of argon and hydrogen. The desired amounts of 

hydrogen for the experimental conditions (temperature and pressure under water-saturation) 

were calculated according to the procedure outlined by Scaillet et al. (1995), using data of 

Shaw and Wones (1964) for the prevailing hydrogen fugacity, Pitzer and Sterner (1994) for 

the water fugacity, a KW of Robie et al. (1978) and the equation of Chou (1987) for the 

oxygen fugacity using values of Schwab and Küstner (1981) and Huebner and Sato (1970). 

All experiments were performed at a pressure of 200 MPa in the temperature range 940 - 

1220 °C. The temperature was measured with four S-type thermocouples, showing a gradient 

of ≤4°C along the sample and an uncertainty less than ±10°C.  

After a certain run duration, the capsules were quenched by melting a platinum wire fixing the 

capsule in the hot zone of the furnace during the experiment. In order to reach osmotic 

equilibrium between hydrogen membrane and the gas volume of the vessel, pressure and 

temperature conditions prevailing in the vessel were maintained after quenching the capsules 

until pressure increase in the membrane has stopped (for details see Berndt et al., 2002). The 
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measured hydrogen pressure in the membrane was used to calculate the prevailing oxygen 

fugacity of the experiment (see Table 2.1). 

 

2.2.3. Starting material 
 

A micrograbbro from the Southwest Indian Ridge (SWIR) drilled by ODP (Ocean Drilling 

Program; ODP designation: 176-735B-178R-6:132-138; Snow, 2002) was used as starting 

material for the crystallization experiments. A detailed description of the sample is given in 

chapter 1. The chemical composition of the sample is close to a primitive tholeiitic basalt, but 

it contains also a certain cumulate character. 

For the crystallization experiments, the sample was crushed and ground in a rotary mortar. 

The rock powder was fused at 1600°C in an iron pre-saturated platinum crucible and 

quenched with water. The homogeneity of the glass was confirmed by electron microprobe 

analyses. In contrast to the procedure described in chapter 1 and by Feig et al. (2006), the 

sample was crushed again and refused in a corundum crucible at 1300°C for 3 h in a gas 

mixing furnace at an oxygen fugacity corresponding to the QFM-buffer. After quenching with 

water, a cylinder was drilled from the glass of the centre of the crucible to avoid alumina 

contamination of the charge. The composition of the starting material was confirmed again by 

electron microprobe analyses. Finally, the glass was crushed and ground to a powder with a 

grain size of <150µm.  
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2.2.4. Iron loss 
 

To minimize iron loss to the sample container Au was used as capsule material at 

temperatures ≤ 1020°C. In these runs, mass balance calculations and element partitioning 

coefficients infer that iron loss is negligible (Table 2.1). At temperatures >1020°C Au80Pd20 

was used as capsule material. With decreasing oxygen fugacity, an increase of iron diffusion 

into the Au80Pd20 capsule was observed. To minimize iron loss, we used iron pre-saturated 

Au80Pd20 capsules for the experiments. Additionally, we applied short run durations, 

maximized the sample powder within a each capsule, and focused the analyses of the phases 

to the center of the capsule. Mass balance calculations of the run products confirmed that no 

significant iron loss occurred (Table 2.1). This assumption is supported by the compositions 

of the iron-bearing phases, which show typical trends as a function of temperature, water 

content and oxygen fugacity. 

 

2.2.5. Analytical methods 
 

The run products were analyzed with a “Cameca SX100” electron microprobe equipped with 

the operating system "Peak sight" based on Microsoft Windows. The analytical conditions 

were identical to those listed in chapter 1.2.5. The water content of the experimental glasses 

was estimated using the "by-difference" method (e.g., Devine et al., 1995). For this approach, 

standard glasses of MORB composition with known water contents (published in Berndt et 

al., 2002) were analysed during each analytical session to calibrate the method. 
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2.2.6. Calculation of aH2O and fO2 
 

The calculations of the water activity and oxygen fugacity were done in the same way as 

described in chapter 1.2.3. and by Feig et al. (2006) and is only discussed briefly. Based on 

the determined water contents of each experiment, the individual water activities were 

calculated using the model of Burnham (1979) and are presented in Table 2.1. The prevailing 

oxygen fugacity of the water-saturated experiments were calculated according the procedure 

outlined by Scaillet et al. (1995), using values of Shaw and Wones (1964) for the prevailing 

hydrogen fugacity, Pitzer and Sterner (1994) for the water fugacity, a KW of Robie et al. 

(1978) and the equation of Chou (1987), using values of Schwab and Küstner (1981) and 

Huebner and Sato (1970), for the oxygen fugacity. To determine the prevailing oxygen 

fugacity of the experiments with reduced aH2O, the water fugacities were multiplied with the 

calculated water activity. An overview of the prevailing oxygen fugacities of the experimental 

runs is given in Table 2.1. Figure 2.1 shows the effect of water addition on the fO2 of the 

system. In all the water-saturated experiments, the measured oxygen fugacity tracks the 

intended buffer perfectly, while with decreasing water content, the effective oxygen fugacity 

is lowered. 

 

Fig. 2.1: Oxygen fugacity of the performed experiments as a function of temperature. The oxygen 
buffer curves are calculated after Chou (1987) with values of Schwab and Küstner (1981; QFM and 
NNO) and Huebner and Sato (1970; MnO-Mn3O4). The calculated values are shown in Table 2.1. 
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2.3. Results 

 

2.3.1. Achievement of equilibrium 
 

Experimental studies performed in the same IHPV in similar, tholeiitic systems, under similar 

conditions (e.g., Almeev et al., 2007; Berndt et al., 2005; Freise et al., 2007) reached chemical 

equilibrium after 5–10 hours at temperatures <1000°C, and after 2-5 hours at temperatures 

>1000°C, respectively. According to these observations, we applied short run durations (2-5 

hours) to our high temperature experiments (>1020°C) to minimize iron loss to the sample 

container and longer run durations to our low temperature experiments (≤1020°C) to reach 

larger grain sizes. The following observations suggest that equilibrium was obtained: (1) 

Glass and crystals are homogeneously distributed along the capsule. (2) The newly formed 

crystals are chemically homogeneous (Tab. 2.1) and generally euhedral. (3) Measured glasses 

vary within the counting statistics of the microprobe analyses (Tab. 2.1). (4) The determined 

phase compositions vary systematically with intensive variables (e.g., water content, 

temperature). (5) Mineral-melt and mineral-mineral element partitioning relations are 

generally in good agreement with published data from other studies (e.g., MeltOl
MgFeD

−
−K calculated 

after Toplis, 2005). (6) Most mass balance calculations for individual runs result in ΣR2 < 1 

(ΣR2 = sum of residual squares, e.g., Albarède and Provost, 1977; see also Tab. 2.1). 

 

2.3.2. Phase relations 
 

The phase relations were obtained from the presence/absence of mineral phases in the 

experimental runs. Based on these observations, saturation temperatures for the individual 

phases were plotted into T-H2O diagrams. To simplify the discussion of the effect of oxygen 
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fugacity, we have subdivided the experiments into “oxidizing”, “intermediate” and “reducing” 

(Fig. 2.2a-c), based on the three experimental series performed at nominal QFM+4.2 

(“intrinsic” redox conditions; data from Feig et al., 2006), QFM+2 and QFM under water-

saturated conditions. Most striking is the effect of oxygen fugacity on the stabilities of mafic 

minerals, whereas iron-free minerals show only minor changes. 

A chrome-rich spinel is the first mineral phase precipitating under oxidizing conditions and at 

high water-contents under an intermediate oxygen fugacity, followed by olivine. Under 

intermediate conditions and low water-contents and under reducing conditions respectively, 

chrome-rich spinel crystallizes after olivine. At lower temperatures clinopyroxene (Cpx) and 

plagioclase start to crystallize. Independent of the prevailing oxygen fugacity, clinopyroxene 

crystallizes before plagioclase at high water-contents (> ~3 wt%), but after plagioclase at low 

water contents. Generally, the chrome-rich spinel disappears with the crystallization of 

clinopyroxene. Under oxidizing conditions the crystallization of plagioclase and 

clinopyroxene is followed by magnetite, while under intermediate and reducing conditions 

magnetite was not observed. A further decrease of temperature results in the precipitation of 

orthopyroxene (Opx) and amphibole near to the solidus of the system. Under oxidizing 

conditions, we observe a shift of the saturation temperature of orthopyroxene to slightly 

higher temperatures compared to more reducing conditions.  

It is a characteristic feature of hydrogen-buffered experiments used in this study that water 

activity directly affects fO2. This effect is expressed in Fig. 2.2 by presenting values for 

ΔQFM directly correlated with the melt water content in each phase diagram. Therefore, the 

phase relations presented in Fig. 2.2 are always controlled by the combined effect of water as 

a chemical component and of fO2 controlled by aH2O. A typical effect of water as a chemical 

component is the well-known enhanced shift of the plagioclase saturation curve to lower 

temperatures compared to other mineral phases (e.g., clinopyroxene). On the other hand, a 
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typical effect related to the increase in fO2 due to increasing water contents is the stabilization 

of magnetite. 

Fig. 2.3 shows the pure effect of water on the phase relations at two constant fO2 conditions 

excluding the oxidizing effect of water. For these diagrams, only selected experiments from 

Fig. 2.2 were used. In Fig. 2.3a for a redox condition corresponding to QFM+2, the saturation 

curves for the individual phases were constructed using the water-saturated experiments at 

intermediate redox conditions (obtained from Fig. 2.2b) and those experiments from oxidizing 

conditions with melt water content of ~1 wt% corresponding also to an fO2 of ~ QFM+2 

(obtained from Fig. 2.2a). In a similar manner the phase diagram for QFM conditions (Fig. 

2.3b) was constructed. Most striking in these diagrams is that the change in the crystallization 

sequence of olivine and chrome-rich spinel with water observed under “intermediate” oxygen 

fugacities (Fig. 2.2b), has disappeared, showing that the relative increase of saturation 

temperature of chrome-rich spinel in Fig. 2.2b is due to an increase of fO2 with water. 

Furthermore, magnetite is also present at a constant fO2 corresponding to QFM+2 at low 

water-contents, while it is absent in Fig. 2.2b. Increasing water-content seems to destabilize 

magnetite in our basaltic tholeiitic system.  

 

Fig. 2.3: Phase relations as a function of water in the melt for two constant fO2 conditions (QFM+2 
and QFM) excluding the oxidizing effect of water. For details see text. Abbreviations as in Fig. 2.2 
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Another possibility to decouple the effects of fO2 and aH2O is to consider only water-

saturated experiments since here the prevailing fO2 of the run corresponds to the nominal one.  

Fig. 2.4 shows the saturation temperatures of the solid phases as a function of pure oxygen 

fugacity. Interestingly, for the chrome-rich spinel the highest crystallization temperature was 

observed under “intermediate” redox-conditions. This observation coincides also with the 

shape of the saturations curves of Fig. 2.2. The stability of olivine slightly decreases with 

increasing oxygen fugacity. Magnetite is present only under oxidizing conditions. Finally, a 

slight increase of the saturation temperature of amphibole and orthopyroxene was recorded 

with increasing oxygen fugacity. For clinopyroxene and plagioclase, no significant changes in 

the saturation temperature as a function of oxygen fugacity were observed. 

 

 

Fig. 2.4: Saturation temperatures of the mineral phases as a function of pure oxygen fugacity. The 
oxidizing effect of water is excluded by considering only experiments under water-saturated 
conditions. Abbreviations as in Fig. 2.2 
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2.3.3. Phase chemistry 
 

2.3.3.1. Olivine 
 

The olivine compositions of the performed experiments are listed in Table 2.2. The element 

partitioning coefficient MeltOl
MgFeD

−
−K according to Toplis (2005) was calculated to confirm 

equilibrium conditions between olivine and coexisting melt. The MeltOl
MgFeD

−
−K  values obtained for 

our experiments have an average of 0.3 ± 0.005 (Tab. 2.1), which is in accord with previous 

studies (e.g., Roeder and Emslie, 1970). At a given temperature, the olivines show an increase 

in forsterite content (Fo) as a function of water activity, which is in agreement with other 

studies (e.g., Berndt et al., 2005; Feig et al., 2006). In principle, this can be the result of the 

water as a chemical component, of the increase in melt fraction as a function of water-activity 

or of the increase in oxygen fugacity due to water. In Figure 2.5, only olivines from 

experiments performed under water-saturated conditions are considered. This diagram shows 

the pure effect of fO2 on the forsterite content, since water as a chemical component is 

cancelled out, and the melt fractions in the experiments at fixed temperatures are similar. The 

highest forsterite contents were observed for the experiments under “oxidizing” conditions. 

With decreasing oxygen fugacity, the forsterite content decreases, but not linear. Between 

QFM+4 and QFM+2, the shift to lower forsterite contents is much more pronounced (~4 

mol%) than between QFM+2 and QFM (~1 mol%). This is a direct consequence of the 

change in the Fe2+/Fe3+ ratio in the melt as a function of fO2, which is more pronounced at 

high oxygen fugacities. The high Fe3+ content under oxidizing conditions is also expressed by 

the crystallization of magnetite at low temperatures. The resulting decrease of the Fe2+ and 

Fe3+ content of the melt produces olivines with elevated forsterite contents at low 

temperatures (Fig. 2.5). 
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Fig. 2.5: Pure effect of oxygen 
fugacity on the forsterite 
content of olivine at 200 MPa 
and water-saturated 
conditions. Symbols as in Fig. 
2.2. 

 

2.3.3.2. Plagioclase 
 

The Plagioclase compositions are listed in Table 2.2. In accord with previous studies (e.g. 

Berndt et al., 2005; Feig et al., 2006; Koepke et al., 2004; Panjasawatwong et al., 1995), the 

anorthite content of plagioclase (An) increases gradually as a function of water in the 

coexisting melt. In contrast to Fo in olivine, this increase is exclusively controlled by the 

water content and the increases in melt fraction due to water. It is independent of the 

prevailing oxygen fugacity, since none of the major plagioclase components are affected by 

changes in the redox state of the system. Therefore, also the saturation temperature of 

plagioclase is insensitive to the prevailing oxygen fugacity (Fig. 2.2 and 2.4), which is in 

agreement with other experimental studies (e.g., Toplis and Carroll, 1995). 

Plagioclase shows a systematic increase in iron content with increasing oxygen fugacity (Fig. 

2.6). This reflects a higher Fe3+ solubility in plagioclase compared to Fe2+, which is in accord 

with previous experimental studies (e.g. Lundgaard and Tegner, 2004; Sugawara, 2001; 

Tegner, 1997; Wilke and Behrens, 1999).  
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Fig. 2.6: Effect of oxygen 
fugacity on FeOtot-content of 
plagioclase at 200 MPa and 
water-saturated conditions. 
Symbols as in Fig. 2.2 

 

2.3.3.3. Pyroxenes 
 

The compositions of the experimental high and low Ca-pyroxenes (cpx and opx, respectively) 

are listed in Table 2.2. To determine the pure effect of oxygen fugacity on the Mg# of 

clinopyroxene (100 × MgO/(MgO+FeOtot), molar), we considered only clinopyroxenes of 

water-saturated experiments performed at different oxygen fugacities. In contrast to the 

observed increase in forsterite content of olivine (Fig. 2.5) with fO2, the corresponding 

clinopyroxene Mg# versus temperature plots for different fO2 do not show distinct trends, 

when treating total iron as FeO. However, when considering only the Fe2+ values obtained 

stoichiometrically by formula calculation, then, well-defined trends for the Mg# of 

clinopyroxene are observed (Fig. 2.7). Similar to the increase in forsterite content of olivine, 

the increase of Mg# of clinopyroxene is more pronounced at high fO2, which is a direct 

consequence of the nonlinear change in the Fe2+/Fe3+ ratio in the melt as a function of oxygen 

fugacity. Due to the limited amount of experiments containing orthopyroxene, clear 

systematic trends controlled by the oxygen fugacity could not be determined. 
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Fig. 2.7: Effect of oxygen 
fugacity on the Mg# of 
clinopyroxene at 200 MPa and 
water-saturated conditions. 
The Fe2+-content of the 
clinopyroxenes were obtained 
stoichiometrically by formula 
calculation. Symbols as in Fig. 
2.2. 

 

2.3.3.4. Spinel 
 

Cr-rich spinel was observed only in high temperature runs, crystallizing before or 

immediately after olivine as a function of fO2. To lower temperature Cr-spinel disappears, 

when clinopyroxene joins the crystallizing assemblage, implying that the clinopyroxene 

incorporates significant amounts of Cr which destabilizes the Cr-spinel (Fig. 2.2). Since the 

spinel structure allows the incorporation of both Fe2+ and Fe3+, the stability of Cr-spinel is 

strongly affected by the prevailing oxygen fugacity. It can be clearly obtained from Fig. 2.2 

that under reducing condtions, increasing fO2 stabilizes Cr-spinel, whereas under oxidizing 

conditions decreasing fO2 stabilizes the Cr-spinel. This observation infers that the 

crystallization temperature of Cr-spinel does not continuously increase with fO2, but show a 

maximum at ~QFM+2 (Fig. 2.4). 

  

The ratio of Fe2+# (molar 100×Fe2+/(Fe2++Mg)) and Cr# (molar 100×Cr/(Cr+Al)) of Cr-

spinels is an often used parameter for the petrogenesis of primitive basaltic magmas (e.g., 

Barnes and Roeder, 2001). When plotting the experimental Cr-spinels into the Fe2+# versus 
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Cr# diagram, no apparent trends are visible (Fig. 2.8a). Compared to Cr-spinels from typical 

MORB, all Cr-spinels crystallized under reducing and intermediate redox conditions plot into 

the MORB field in Fig. 2.8a, while those crystallized under oxidizing conditions tend to plot 

also outside the MORB filed, due to too low Fe2+ values (Fe2+/Fe3+ content of spinels were 

calculated stoichiometrically).  

 

 

Fig. 2.8: Effect of oxygen fugacity and temperature on Cr# vs Fe2+# and Fe3+# vs Fe2+# of the 
experimental chrome-rich spinels. The cation values were obtained by stoichiometric formula 
calculation. Included are compositions of natural chrome-rich spinels of mid-ocean ridge basalts after 
Barnes and Roeder (2001). 
 

The effect of oxygen fugacity on Cr-spinel composition is more apperent in a plot considering 

explicitely the Fe3+ component which was calculated stoichiometrically. As expected, in a 

Fe3+# (molar 100×Fe3+/(Fe3++Al+Cr)) versus Fe2+# plot, the Cr-spinels show a distinct trend 

to higher Fe3+# with increasing fO2 at a given temperature (Fig. 2.8b). Moreover, Cr-spinels 

from experiments performed at the same oxygen fugacity show also a systematic trend to 

higher Fe3+# with decreasing temperature. This trend is most pronounced under oxidizing 
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conditions - the only oxygen fugacity where solid solution with magnetite is observed. 

Compared to MORB, only Cr-spinels crystallized under reducing and intermediate conditions 

plot into the MORB field, while those from oxidizing conditions fall outside the field to 

higher Fe3+ values.  

 

2.3.3.5. Glass compositions 
 

The melt compositions of the performed experiments are listed in Table 2.2. It is shown above 

that the prevailing oxygen fugacity affects the composition and stability of the minerals 

precipitating from the melt which in turn controls the melt composition and the liquid line of 

descent of the system. In Figure 2.9, the effect of oxygen fugacity on selected components as 

a function of melt fraction is shown. We used the melt fraction instead of temperature in this 

diagram, mainly for comparison with the results of chapter 1. In order to rule out the 

oxidizing effect of water, we only used experiments under water-saturated conditions. Fig. 

2.9a shows that silica enrichment with decreasing melt fraction occurs for all three redox 

conditions. The effect is most pronounced under oxidizing conditions where magnetite is 

among the crystallizing phases. That magnetite crystallization enhances the silica enrichment 

in the residual melt is well-known from other experimental studies (e.g., Berndt et al., 2005; 

Toplis, 2005). A less pronounced, but still strong silica enrichment is also observed under 

intermediate and reducing redox condition where magnetite is absent.  

The Mg# (with Fe2+ content calculated according to Kress and Carmichael, 1991) of the melt 

versus melt fraction is shown in Fig. 2.9b. It correlates well with the corresponding trends 

observed for the forsterite content in olivine and for the Mg# of clinopyroxene. An increase in 

oxygen fugacity reduces the Fe2+ content of the melt and produces a higher Mg# both in the 

melt and in the mafic phases (Fig. 2.5, 2.7). Moreover, the spacing between individual 

experiments is much larger between QFM+4.2 and QFM+2 compared to the lower fO2 pair 
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(QFM+2 and QFM) at a given temperature. This again demonstrates the non-linear change in 

the Fe2+/Fe3+ ratio as a function of fO2 which is more pronounced at high oxygen fugacity 

(Botcharnikov et al., 2005). An effect of the redox-conditions on melt evolution is also 

observed for sodium, although this element is not sensitive to the prevailing oxygen fugacity 

(Fig. 2.9c). Here, the sodium content of the melt content is controlled by the saturation 

temperatures of plagioclase and amphibole and their modal proportions. The precipitation of 

fO2-sensitive mineral phases affects these parameters and therefore the Na2O component of 

the melt. Only few elements in the residual melt seem not to be affected by changing redox-

conditions of the system, like calcium (Fig. 2.9d). 

 

 

Fig. 2.9: Selected components of the experimental melts as a function of the melt fraction for different 
oxygen fugacities at 200 MPa. Abbreviations: Mag – magnetite 
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2.4. Discussion 

 

2.4.1. Melt differentiation trend 
 

Observations on natural rocks revealed that basaltic suites follow characteristic evolution 

trends, i.e. the tholeiitic and calc-alkaline differentiation trend (e.g., Irvine and Baragar, 1971; 

Miyashiro, 1974; Wager and Deer, 1939). The calc-alkaline differentiation trend is 

characterized by a significant enrichment in silica and alkalis during differentiation at rather 

constant FeOtot/MgO ratios. Such a trend is the result of the crystallization of small amounts 

of calcic plagioclase and comparatively large amounts of ferromagnesian silicates at an early 

stage of crystallization followed by magnetite (e.g., Grove and Kinzler, 1986; Sisson and 

Grove, 1993a). The tholeiitic differentiation trend is characterized by considerable iron 

enrichment due to the lack of iron oxides in the crystallization sequence and the 

crystallization of high proportions of plagioclase. The evolution of a primitive basaltic system 

with progressive crystallization depends on the crystallization sequence and on the 

composition of the crystallizing mineral phases. For instance, Grove and Kinzler (1986) 

identified effects of pressure, oxygen fugacity and water content on the differentiation trend. 

Sisson and Grove (1993a) showed that water could cause an evolution following a calc-

alkaline trend using a high-alumina basalt. Berndt et al. (2005) showed in a primitive and 

evolved hydrous MORB system that increasing fO2 may change a differentiation trend from 

tholeiitic to calc-alkaline.  

 

Our experiments are well-suited to study the early stage of basalt differentiation, since our 

starting system is quite primitive and most residual melts are not saturated with magnetite, 

except a few equilibrated at highly oxidizing conditions (≥ QFM+2). We applied our 
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experimental results to the AFM diagram (classification after Irvine and Baragar, 1971) to 

evaluate the role of oxygen fugacity and water-content during early differentiation (Fig. 2.10).  

 

 

Generally, all experiments plot into the field for calc-alkaline rocks, independently of fO2 and 

water content. However, distinct trends can be observed for high and low water contents: 

Experiments with high water contents show only slight iron enrichment followed by a 

significant increase in the alkaline content, which is typical for the calc-alkaline 

differentiation trend (Fig. 2.10a). On the other hand, experiments performed with low water 

contents show a gradual increase in iron content without significant enrichment in alkalis, 

which is characteristic for the tholeiitic differentiation trend (Fig. 2.10b). No significant effect 

of oxygen fugacity on the melt evolution was observed in this diagram. Therefore, Figure 

2.10 implies that water may change the differentiation trend from tholeiitic to calc-alkaline in 

 

Fig. 2.10: Experimental melts obtained at 3 
different oxygen fugacities projected in the AFM 
plot according to Irvine and Baragar (1971). The 
line separates calc-alkaline (CA) from tholeiitic 
(TH) trend. Melts containing high (a) and low (b) 
water contents show different crystallization 
trends 
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a primitive MORB-type system. This is in agreement with experimental results of Sisson and 

Grove (1993a) for a hydrous high-alumina basalt. 

 

The main effect of water in a basaltic system (besides the oxidizing effect under H2-buffered 

conditions) is the change in the crystallization sequence compared to dry conditions (Fig. 2.2), 

favouring the crystallization of ferromagnesian silicates compared to plagioclase (Fig. 2.11). 

This, in turn, influences the composition of the residual melt which results in characteristic 

differentiation trends as shown in Fig. 2.10. The oxygen fugacity seems to have only minor 

effects on the differentiation trend, at least at that low FeOtot/MgO ratio of our chemical 

system, which does not allow the crystallization of significant amounts of iron oxides.  

 

Fig. 2.11: Plagioclase/Mg-Fe- 
phase ratio as a function of 
melt fraction for different 
water contents. 
 

 

2.4.2. Comparison with gabbroic rocks from the Southwest Indian Ridge 
 

Gabbroic rocks of ODP Hole 735B (Legs 118 and 176) from the ultra-slow-spreading 

Southwest Indian Ridge represent the longest continuous section of in-situ lower oceanic crust 

ever drilled (total length of the profile ~ 1500m; Dick et al., 2000). Detailed petrological and 
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geochemical investigations performed by members of the scientific parties (Natland et al., 

2002; Von Herzen et al., 1991) provides an excellent data base for an application of our 

experimental results (e.g., about 20,000 phase analyses presented in Dick et al., 2002). These 

studies show that most gabbros are of cumulate origin with very low residual melt porosities. 

Thus, these gabbros consist of MORB-derived pure mixtures of fractionated minerals which 

can principally be compared with the mineral phases of our crystallization experiments 

performed in a primitive MORB-type tholeiitic system.  

 

By including the results of pressure-dependent experiments performed in the same 

experimental system presented in chapter 1 and published by Feig et al. (2006), the whole 

experimental data set allows to determine "reference" differentiation trends based on selected 

parameters (dry vs. hydrous, low-pressure vs. high-pressure, oxidizing vs. reducing 

conditions), as illustrated in mineral-mineral trends shown in Figs. 2.12-2.14. While our 

experiments cover only a relatively small range in the corresponding diagrams (Fig. 2.12-

2.14), the natural gabbros show a broad compositional spectrum and a marked trend towards 

lower Mg# and An, respectively, which is clearly the effect of compositional evolution due to 

fractionated crystallization.  

In the Fo content of olivine versus An content of plagioclase plot, the experiments correlate 

well with the more primitive natural samples of ODP Hole 735B (Fig. 2.12a). Most 

pronounced is the effect of water. Increasing water content shifts the compositions to higher 

anorthite and lower forsterite contents (Fig. 2.12b). Increasing oxygen fugacity affects only 

the olivines shifting the composition to higher forsterite contents. Since the anorthite content 

of plagioclase is not affected by the prevailing oxygen fugacity, the shift is a direct 

consequence of decreasing Fe2+ content in the system. Finally, a slight pressure effect can also 

be observed, expressed by slightly higher forsterite contents and lower anorthite contents in 

olivine and plagioclase, respectively. 
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Fig. 2.12: Effect of oxygen fugacity, water 
content and pressure (data from chapter 1 
published in Feig et al., 2006) in a forsterite 
content of olivine vs anorthite content of 
plagioclase plot. (a) Experimental runs and 
natural samples from SWIR (gabbros, olivine 
gabbros, troctolitic gabbros and troctolites; Dick 
et al., 2002). (b) Shown are effects of the 
individual parameters determined by the 
experimental results. 
 

Fig. 2.13: Effect of oxygen fugacity, water 
content and pressure (data from chapter 1 
published in Feig et al., 2006) in a forsterite 
content of olivine vs Mg# of clinopyroxene plot.  
(a) Experimental runs and natural samples from 
SWIR (for details see Fig. 2.12). (b)  Shown are 
effects of the individual parameters determined 
by the experimental results. 
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Fig. 2.14: Effect of oxygen fugacity, water 
content and pressure (data from chapter 1 
published in Feig et al., 2006) in a Mg# of 
clinopyroxene vs anorthite content of plagioclase 
plot. (a) Experimental runs and natural samples 
from SWIR (for details see Fig. 2.12). (b)  Shown 
are effects of the individual parameters 
determined by the experimental results. 
Evolution trends of gabbros from the Troodos 
ophiolite and the Lesser Antilles are from 
Kvassnes et al. (2004). 

 

In the forsterite content of olivine versus Mg# of clinopyroxene plot, a systematic deviation of 

the experimental from the natural trends can be observed (Fig. 2.13). Only experiments 

performed under low oxygen fugacities (<QFM) plot into the natural range. The diagram 

shows opposite effects for increasing fO2 and increasing water (Fig. 2.13b). An increase in the 

prevailing oxygen fugacity affects the Fe2+/Fe3+ ratio of the melt shifting the Mg# of olivine 

and clinopyroxene to higher values (Fig. 2.5 and 2.7). Thus, it is to expect that olivine and 

clinopyroxene should be strongly correlated in this diagram, which is not the case. The Mg# 

of the clinopyroxenes in Fig. 2.13 were calculated based on FeO as FeOtot, in order to 

compare with the natural clinopyroxenes taken from the data base of Dick et al. (2002) where 

the Mg# was calculated with FeO = FeOtot. We assume that the expected correlation is 

blurred due to the fact that the incorporation of Fe3+ into the experimental clinopyroxene 

structure is not considered, but which cannot be neglected at high fO2. Finally a distinct 
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pressure effect can be observed, expressed by a shift to lower Mg# of clinopyroxene and 

higher Fo contents of olivine, respectively, with increasing pressure (Fig. 2.13).  

 

In Fig. 2.14, the Mg# of clinopyroxene versus An content in plagioclase is plotted. As noted 

above, the Mg# of experimental clinopyroxene under oxidizing conditions are only minimum 

values, since the incorporation of Fe3+ into the structure is not considered. Most pronounced 

in this diagram is the effect of water, while effects of fO2 and pressure are comparatively 

small. This is mainly due to the well-known fact that the Ca/Na partitioning between 

plagioclase and melt is strongly affected by water. The pressure dependence of the trends is 

negligible, at least under dry conditions as demonstrated in Fig. 2.14. In hydrous systems, 

however, strong effects of pressure on the An content of plagioclase are expected, since the 

water solubility in a basaltic melt dramatically changes in the observed pressure interval 

which in turn affects significantly the Ca/Na partitioning (see discussion in chapter 1.4.2.2.).  

 

Included in Fig. 2.14 are the evolution trends for those gabbros assumed to be generated by 

"wet" differentiation in spreading centres above a subduction zone, e.g., Troodos ophiolite, 

Lesser Antilles (for details see Kvassnes et al., 2004). These evolution trends plot far away 

from those "wet" trends obtained by our experiments in a primitive tholeiite system. The 

results of our study imply, that the simple addition of water to a primitive tholeiitic basalt is 

by far not sufficient to produce such trends as observed from Troodos or Lesser Antilles. This 

implies that special compositional constraints are necessary for the evolution of such trends, 

e.g., the presence of boninitic parental melts. 

 

In summary, the relations between An content of plagioclase, Fo content of olivine and Mg# 

of clinopyroxene show that from the parameters varied in our experiments, pressure, water 

content, and fO2, the effect of water is most pronounced with the potential to change 
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differentiation trends. The comparison with gabbroic rocks from SWIR confirms that these 

were formed under low water contents and under reducing conditions, which is in accord with 

latest models of oceanic crust formation at mid-ocean ridges away from subduction zones 

(e.g., Bezos and Humler, 2005; Kovalenko et al., 2000). It is obvious that our experimental 

determined "reference" trends are completely overlapped by the natural samples, which is in a 

first order due to compositional effects. Thus, our results do not allow evaluating specific 

parameters of gabbroic evolution at SWIR, e.g., the role of small amounts of water, or small 

changing in redox conditions. 

 

2.5. Conclusions 

 

When including the experimental results of chapter 1 published in Feig et al. (2006) we 

present here an extensive experimental phase equilibria data base containing more than 100 

single experiments for constraining the effect of fO2, water content and shallow pressure in 

primitive MORB-type system. These experiments allow predicting both the compositional 

effect of these parameters on individual phases of the system as well as evolution trends based 

on fractional crystallization during a very early stage of MORB magma evolution.   

In comparison to fO2 and pressure, water has the strongest effect on phase stabilities and 

phase compositions with the potential to change differentiation trends from tholeiitic to calc-

alkaline in a very early stage where iron oxides are not present. Our experiments allow 

determining "reference" differentiation trends as a function of pressure, water content and fO2 

of the system. But these trends also reveal that natural tholeiitic basaltic systems are highly 

diverse in composition, e.g. the compositional scattering of gabbros from SWIR (Fig. 2.12-

2.14), or differentiation trends observed from Troodos ophiolite or Lesser Antilles (Fig. 2.14), 
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which are clearly related to compositional effects rather than to the external parameters 

controlling the conditions of crystallization.  

The present study (together with the study of Feig et al., 2006) in a hydrous primitive 

tholeiitic basaltic system, and the phase equilibria studies performed in hydrous MORB 

(Berndt et al., 2005) and in a hydrous ferrobasaltic tholeiitic system (Botcharnikov et al., 

2007), are strongly related to each other. First, all studies were performed in the same IHPV 

of the experimental lab of Hannover equipped with H2-membrane, thus well-constrained in 

terms of fO2 and water content, cancelling out problems due to the use of different 

experimental labs or techniques. Second, the chemical systems of all studies are tholeiitic 

basalts covering different compositional evolution stages from primitive to evolved. Thus, all 

these data provide an internally consistent database (containing now about 300 experimental 

runs), well-suited to evaluate especially the role of water and fO2 during magma evolution in 

typical tholeiite systems at shallow pressures, like the MOR-basalts at oceanic spreading 

centres. Finally, these data may help to improve thermodynamic or empiric models like 

MELTS (Ghiorso and Sack, 1995) and COMAGMAT (Ariskin, 1999) which are up to now 

not able to predict accurately phase equilibria or liquid lines of descent in tholeiite systems, 

when water is included as shown in chapter 1. 
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