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Abstract 

 
Perovskites are well-studied materials for mixed ionic and electronic conducting 

membranes (MIECM) with selective oxygen transport. Usually, the perovskite powder is 

pressed into a disc geometry. Because of the disadvantages of the disc geometry for 

industrial applications, hollow fibers of the perovskite BaCoxFeyZrzO3-δ (BCFZ) were 

prepared by a spinning process and the oxygen separation and the partial oxidation 

properties of these hollow fibers were evaluated. 

In a high-temperature permeator the separation of oxygen and the production of oxygen-

enriched air were studied. The desired (i) oxygen concentration in the oxygen-enriched air 

and (ii) production rate of oxygen-enriched air for different industry processes can be 

adjusted by controlling the operational temperatures, the oxygen partial pressure 

difference between feed and permeate side, and the flow rates of the air used as feed and 

sweep gas. The highest oxygen flux so far reported for perovskite membranes was found. 

The BCFZ hollow fibers were used as well in a membrane reactor in the catalytic partial 

oxidation of methane (POM) to syngas (CO + H2). The best location of the Ni-based 

steam reforming (SR) catalyst was found to be behind the fiber in the direction of the 

reactor outlet without direct contact between fiber and catalyst.  Mechanistic studies 

showed that the so called partial oxidation of methane to syngas is a 2-step reaction of first 

total methane oxidation followed by reforming. The oxygen permeation flux of the hollow 

fiber membrane under POM reaction conditions was even higher compared to the case 

using an inert sweep gas.  

Comparing the oxidative dehydrogenation of ethane on the BCFZ disc and hollow fiber 

membrane reactors, the ethylene selectivity on the disc membrane reactor was found to be 

higher. Disc membrane reactor performs more selectively compared to the hollow fiber 

due to a shorter residence time in the former reactor. In the case of the hollow fiber 

membrane the deeper oxidation of ethylene to CO and CO2 could not be avoided. 

 

Keywords: hollow fiber membranes, oxygen permeation, partial oxidation of methane. 

  

 

 



  

Zusammenfassung 
 

Perowskite sind gut untersuchte Gemischtleiter (mixed ionic and electronic conducting 

membranes, MIECM) mit selektivem Sauerstofftransport. Üblicherweise werden die 

Perowskitpulver zu einer Scheibengeometrie verformt. Da diese aber 

anwendungstechnische Nachteile mit sich bringt, wurden durch Spinnen hergestellte 

Hohlfasern des Perowskiten BaCoxFeyZrzO3-δ (BCFZ) für die Sauerstoffabtrennung und 

Partialoxidation evaluiert. 

In einem Hochtemperaturpermeator wurden die Abtrennung von Sauerstoff und die 

Erzeugung sauerstoffangereicherter Luft untersucht. Die gewünschte 

Sauerstoffkonzentration in der sauerstoffangereicherten Luft und die erwünschte Menge 

an sauerstoffangereicherter Luft können durch Einstellen der Permeationsparameter 

Temperatur, Sauerstoffpartialdruckdifferenz sowie Gasgeschwindigkeiten erhalten 

werden. Es wurden die höchsten bislang für Perowskite gefundenen Sauerstoff-Flüsse 

gemessen.  

Die BCFZ-Hohlfasern wurden auch als Membranreaktor in der katalytischen 

Partialoxidation von Methan (partial oxidation of methane, POM) zu Synthesegas (CO, 

H2) eingesetzt. Als die beste Katalysatorposition erwies sich eine Anordnung des Ni-

basierten steam reforming (SR) Katalysators nach der BCFZ-Hohlfaser in Richtung 

Reaktorausgang ohne direkten Kontakt der Faser mit dem Katalysator. Mechanistische 

Untersuchungen zeigten, dass die sogen. Partialoxidation des Methans zu Synthesegas 

eine 2-stufige Reaktion aus Totaloxidation und folgendem Reforming ist. Durch 

Vergrößerung der Sauerstoffpartialdruckunterschiede in der POM-Reaktion verglichen mit 

dem Einsatz eines Spülgases, steigen die ohnehin schon hohen Sauerstoff-Flüsse der 

BCFZ-Faser im POM-Reaktorbetrieb weiter an.  

In der oxidativen Dehydrierung des Ethans zu Ethylen wurde gefunden, dass die 

Ethylenselektivität im Membranreaktor in Scheibengeometrie viel höher als im 

Hohlfaserreaktor ist, da die Scheibengeometrie nur einen kurzen Kontakt der E-

duktmoleküle mit der Membranoberfläche erlaubt. Wiederholte Kontakte erfolgen 

hingegen in der Hohlfaser, so dass dort die tiefe Oxidation zu CO/CO2 stattfindet. 

 

Schlagwörter: Hohlfasermembranen, Sauerstoffpermeation, Partialoxidation von Methan. 
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1 Mixed oxygen ion and electron conducting membranes 

(MIECM) 
 

Mixed ion and electron conducting membranes (MIECM) have attracted much interest in 

the last decades due to their applications in pure oxygen separation [1, 2] and in the field 

of chemical processing, including partial oxidation of natural gas to syngas [3–6], 

oxidative coupling of methane to value-added products such as ethane/ethane [7-11], 

selective oxidation of hydrocarbons [12-14] waste reduction and recovery [15]. Among 

the mixed-conducting ceramic membranes, perovskite-type (ABO3) ceramic membranes 

exhibit the highest oxygen permeability due to their high ionic and electronic conductivity. 

Teraoka et al. [16, 17] were the first to report high oxygen permeation flux through several 

La1-xSrxCo1-yFeyO3-δ perovskite membranes. The aim of the material synthesis is to 

substitute the lattice positions A and/or B of the perovskite ABO3 structure by cations of 

similar size but lower charge to create an oxygen transporting material with both ionic and 

electronic conductivity and sufficient chemical and mechanical stability.  

For practical applications, a dense oxygen separation membrane should possess the 

following properties: (1) the materials must be stable for long-term operation under 

strongly reducting atmosphere, such as the mixture of carbon monoxide and hydrogen, at 

elevated temperatures (> 700 oC); (2) the materials must have considerable high oxygen 

permeability under the operation conditions; (3) the materials must have enough 

mechanical strength for constructing the membrane reactor; (4) the oxygen permeability of 

the membrane materials should avoid a decline with time; (5) the materials should be 

cheap enough for large-scale industrial applications.  
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1.1 A special mineral: the perovskite 
 

The parent mineral was first described from samples found in the Ural Mountains in 1839 

by the geologist Gustav Rose, who named it after the famous Russian mineralogist Count 

Lev Aleksevich von Perovski. It is nowadays regarded as the most abundant solid phase 

(70-80 %) of the lower earth mantel (670 to 2900 km depth). 

The general structure of the perovskite mineral is ABX3 where A and B are cations and X 

oxygen anions. One way to visualize the structure is to place the smaller B cation in an 

oxygen octahedral environment on the corner of a cube which center would be occupied 

by the larger A cation, as seen on Fig. 1.1. In such a cubic structure, the coordination 

numbers of the A and B cations are 12 and 6, respectively. The A cation is generally an 

alkali earth metal or a transition metal. The B cation is a transition metal or a rare earth 

metal but can also be found in the family (Al, Ga, Pb, Bi, Ti, etc). 

 

 
Figure 1.1  Ideal perovskite structure of CaTiO3. 

 

The relative size difference between the two types of cations can lead to the tilting of the 

BO6 octahedra, the structure therefore becoming orthorhombic. Goldschmidt introduced a 
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so-called tolerance factor [18] being in essence a measure of the “cubic-ness” of the 

perovskite structure. The definition of this factor is:  

)(2 OB

BA

rr
rrt
+

+
=                     (1.1) 

where rA; rB and rO are the ionic radii of the A-site cation, the B-site cation and the oxygen 

anion, respectively. When t equals unity, the structure is cubic. Lower values of t 

correspond to lower symmetry. 

Perovskite materials are classified as ceramics and can be doped, i.e. a fraction of the A-

site and/or the B-site cations can be replaced by another metal. It is therefore possible to 

tune the properties of these ceramics for a very wide range of applications.  

Materials with the perovskite structure can also be mixed ionic and electronic conductors 

(MIEC). Their use as membrane for oxygen separation will be the core of this thesis.  

 

1.2 Theory of oxygen transport 
 

Fig. 1.2 illustrates the oxygen permeation through a dense oxygen permeable membrane 

driven by an oxygen partial pressure gradient across it. The oxygen permeation involves 

three steps. At first, oxygen molecules adsorb and become reduced to oxygen ions at the 

membrane surface exposed to the high oxygen partial pressure, '
2OP . Driven by the 

chemical potential gradient, oxygen ions and electrons counter diffuse through the bulk of 

the membrane. Finally, oxygen molecules were formed by recombining oxygen ions at the 

membrane surface exposed to the low oxygen partial pressure, ''
2OP and release to gas 

phase. Local charge neutrality is maintained by the joint diffusion of oxygen vacancies 

and electrons or electron holes. The net flux is determined by the species with the smallest 

conductivity. 



1 Mixed oxygen ion and electron conducting membranes (MIECM) 

 8

 
Figure 1.2  Fluxes in mixed conducting membrane under a partial pressure gradient. 

'
2OP  is the higher oxygen partial pressure, ''

2OP is the lower oxygen partial 

pressure. 

 

The oxygen permeation flux through the perovskite membranes is essentially controlled 

by two factors, by (i) the rate of the oxygen ion ( −2O ) / oxygen vacancy ( ••
OV ) diffusion 

and/or the simultaneous counter flux of the charge balancing electrons ( −e ) / electron 

holes ( oh ) within the bulk membrane and by (ii) the interfacial oxygen exchange on either 

side of the membrane, as shown in Fig. 1.3. Considering oxygen exchange between the 

gas phase and the oxide surface, one may distinguish many steps, like adsorption, 

dissociation, surface diffusion, charge transfer and incorporation in the surface layer, and 

reversed steps, each of these steps may impede interfacial transfer of oxygen. If the 

oxygen permeation is limited by the surface exchange, the oxygen permeation flux can be 

given: 

( )2
1

2

2
1

22

'
,

'
00 SOOO PPckj −×=                    (1.2) 

or 

  

ohOeVO Oads 22 2 +⇔++ −−••

)(
2
1

2 gO

ohOeVO Oads 22 2 +⇔++ −−••

)(
2
1

2 gO

'
2OP

''
2OP
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( )2
1

2

2
1

22

''''
,00 OSOO PPckj −×=                    (1.3) 

where 0k is the surface exchange coefficient, 0c  is the density of oxygen ions on the 

surface. 

 

Figure 1.3  Oxygen transport through both interfaces and bulk. '
,2 SOP  and ''

,2 SOP   are the 

virtual oxygen pressure on the interfaces of feed side and permeate side. 

 

For a thick membrane the rate of the overall oxygen permeation is usually determined by 

the lattice diffusion of oxygen or the transport of electronic charge carriers through the 

bulk oxide. The gradient 
2Oµ∇ of the chemical potential of the oxygen on the two sides of 

the membrane is regarded as the driving force for the oxygen ion transport. Assuming ion 

diffusion in the bulk of the solid electrolyte as rate limiting, the oxygen potential gradient 

depends at a given temperature T and a membrane thickness d only on the oxygen partial 

pressures on the feed (air) and permeate side of the membrane, '
,2 SOP   and ''

,2 SOP  , 

respectively [19] 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−
=∇ '

,

''
,

'''

2

222

2
ln

SO

SOOO
O P

P
d

RT
d

µµ
µ                      (1.4) 

'
2OP

'
,2 SOP

''
2OP

''
,2 SOP

Surface exchange

Bulk diffusion 
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When the bulk diffusion is the limiting step of oxygen transport, it means that the surface 

reaction is so fast that a fast equilibration of the oxide surface with the imposed gas 

atmosphere would imply that '
,2 SOP = '

2OP and ''
,2 SOP = ''

2OP . Eq. (1.4) can be changed to: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−
=∇ '

'''''

2

222

2
ln

O

OOO
O P

P
d

RT
d

µµ
µ                   (1.5) 

For charge neutrality reasons, oxygen ion transport in one direction is accompanied by 

electron transport in the opposite direction. Considering the ionic and electronic 

conductivities iσ and eσ we obtain for the oxygen flux 
2Oj through the membrane with F 

as Faraday constant: 

22 224
1

O
ei

ei
O F

j µ
σσ
σσ

∇⋅
+
⋅

−=                    (1.6)  

If the oxygen ion transport occurs via oxygen vacancies ( ••
OV ) and the electron transport 

via electron holes ( •h ), we have the case of the counter diffusion of   ••
OV   and 2 •h . 

Integration of Eq. (1.6) across the membrane thickness d using the relationship  

x
PRT O

O ∂

∂
=∇ 2

2

ln
µ  yields the Wagner equation in the usual form which has general 

validity for mixed conductors [20] 

2

2

2

2
ln

4

ln

ln
22 O

p

p ei

ei
O Pd

dF
RTj

P
O

F
O

⋅
+
⋅

−= ∫ σσ
σσ

                 (1.7) 

In order to understand the roles of the surface exchange and bulk diffusion during the 

oxygen transport through the perovskite membrane, a surface exchange fluxes model was 

introduced. The exchange flux ii at the perovskite membrane – gas interfaces at the inlet 

and outlet sides is given by [21, 22]:  

)( /2/
0,

RTnRTn
iii eeCki g µµ −=                   (1.8)  

where 0,ik is the surface exchange coefficient, iC  is the density of oxygen ions, n is the 

reaction order at the interfaces, µ is the chemical potential of the oxygen ions at the two 

interfaces, and gµ is the chemical potential of the gas 
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)/ln( 0PPRTg =µ                      (1.9) 

where P is the gas pressure and the subscript 0 indicates the standard pressure of 1.0 atm. 

At the interfaces, the following reaction occurs:   

 

Thus the reaction order, n , at the interfaces is n = ½. The exchange oxygen fluxes 1i  and 

2i  at the perovskite membrane – gas interfaces at the inlet and outlet sides are given by: 

)( /2/
0,1

11 RTRT
ii eeCki g µµ −=                    (1.11) 

)( 2//
0,2

22 RTRT
ii

geeCki µµ −=                   (1.12) 

On the other hand, the flux density is determined by the charge, conductivity and the 

gradient of the electrochemical potential. Therefore, the oxygen ionic flux ii can be also 

described by [23]: 

φ
µσ

d
d

F
i i
i 2

−=                      (1.13) 

where φ  is the diameter of the membrane tube, iσ is the oxygen ion conductivity. 

The oxygen ion conductivity is also determined by the oxygen ion diffusion coefficient 

iD  and the oxygen ion concentration iC in the perovskites [23] 

i
i

i CF
RT
D 24=σ                      (1.14) 

By combining Eqs. (1.13) and (1.14) it gives the oxygen permeation flux
2Oj , 

φ
µ

φ
µσ

d
d

RT
CD

d
d

FF
i

j iiii
O −=−== 2422

                  (1.15) 

The normalized oxygen permeation flux
2Oj can be expressed as: 

L
FjO πφ=

2
                     (1.16) 

where L is the length of the membrane tube, Lπφ is the membrane surface, F is the total 

oxygen flux through the membrane. 

By combining Eqs. (1.15) and (1.16) it gives: 

••+ OVO22
1 •− + hO 22

(1.10) 
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L
F

d
d

RT
CD ii

πφφ
µ

=−                     (1.17) 

Continuity of ion flux requires that the surface exchange fluxes and the oxygen 

permeation flux 
2Oj at the two interfaces match: 

)( /2/
0,

1

11 RTRT
ii eeCkL

F g µµ

πφ −=                   (1.18) 

)( 2//
0,

2

22 RTRT
ii

geeCkL
F µµ

πφ −=                   (1.19) 

Integrating of Eq. (1.17) yields: 

)/ln( 1212 φφ
π

µµ
LDc

RTF

ii

=−                   (1.20) 

where 1φ  and 2φ  are the inner and outer diameters of the membrane tube 

The following relation can be obtained by eliminating 1µ and 2µ  in Eqs. (1.18) – (1.20) 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

−
=

0,10
''

0,20
'

12
//

//
ln)/ln(

2

2

iiO

iiO

ii kLCFPP

kLCFPP

LDc
F

πφ

πφ
φφ

π
               (1.21) 

If the oxygen transport is limited by the surface exchange, 21 µµ → , so Eq. (1.21) reduces 

to: 

( )0
''

0
'

21

0,21 //
22

PPPP
kLc

F OO
ii −

+
=

φφ
φπφ

                 (1.22) 

On the other hand, if the oxygen transport is limited by the bulk diffusion 2/1,1 gµµ →  

and 2/2,2 gµµ → , so Eq. (1.21) changes to: 

)/ln(
)/ln(2

'''

12
22 OO

ii PPDLcF
φφ

π
=                    (1.23) 

The total oxygen flux can be expressed by: 

SJF O ×=
2

                    (1.24) 

where
2OJ is the oxygen permeation flux measured in the experiment and S is the effective 

area of the membrane tube. If the oxygen transport is limited by the surface exchange at 

the interfaces, Eq. (1.22) gives: 
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( )0
''

0
'

21

21 //
)( 222

PPPP
S

kLCJ OO
ioi

O −
+

=
φφ

φπφ
                 (1.25) 

Eq. (1.25) predicts that the oxygen permeation flux (
2OJ , mol/cm2.s) should be 

proportional to the pressure term ( )0
''

0
' //

22
PPPP OO −  if only the surface exchange is 

the limiting step of the oxygen transport.  

On the other hand, if the oxygen transport is only limited by the bulk diffusion through the 

membrane, the oxygen permeation flux is given by the following formula: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ''

'

12 2

2

2
ln

)ln(2 O

Oii
O P

P
S

DLC
J

φφ
π

                  (1.26) 

Now the oxygen permeation flux,
2OJ , is proportional to ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
''

'

2

2ln
O

O

P
P

if the limiting step is the 

bulk diffusion.  

 

1.3 Applications of MIECM in oxygen permeable membrane 

separators and membrane reactors 
 

1.3.1 Production of pure O2 and O2-enriched air 
 

Mixed-conducting oxides with high electron and oxygen ion conductivities are applied as 

ceramic membranes to separate oxygen from other gases by selective permeation [22, 24, 

25]. At elevated temperature, this membrane can selectively permeate oxygen rather than 

other gases such as nitrogen from oxygen-containing gas. The separation of oxygen 

through the MIECM is schematically shown in Fig. 1.2.  

There is a large potential application of O2-enriched air in order to perform enhanced 

combustion. Oxygen enrichment of up to 30 % has been demonstrated to provide benefits 

in combustion efficiency and pollution reduction [30]. O2-enriched air with 30 – 50 % O2 

is also used in a number of industrial processes, for example in ammonia synthesis, the 

Claus process and the Fluidized Catalytic Cracking (FCC) catalyst regeneration [26, 27]. 
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Another application field of O2-enriched air is the most efficient utilization of methane in 

high-temperature furnaces or cement kilns [27].   

There are different existing technologies for the production of O2-enriched air. Mainly 

mixing air with pure O2 is applied. Such system usually requires pure oxygen supply 

equipment, a control skid and a sparger which is used to mix the pure oxygen and air well. 

The current commercial pure oxygen supply equipment is based on cryogenic 

fractionation technology or pressure swing adsorption (PSA). However, these techniques 

require high capital and operational costs. Membrane separations have drawn great 

attention in air separation. Polymeric membranes that have high selectivity to oxygen and 

high flux are intensively studied for oxygen enrichment. However, since normal polymeric 

membranes generally have a low separation factor at a considerable permeability, a single-

stage polymeric membrane is limited to produce oxygen purity up to 40 %. Although high 

oxygen purity and permeability can be achieved by increasing the feed flow rate, reducing 

the membrane thickness or by increasing the pressure difference, all of these actions 

increase the separation cost [28]. Furthermore, a high pressure difference of about 9 bar 

(10 bar at feed side and 1 bar on the permeate side) is needed for polymeric membranes to 

get reasonable oxygen fluxes, leading to high costs for the air compression. Another 

problem is that polymeric membranes can not be used for the recovery of heat from 

exhaust gas, which prevents their use in high temperature reactions or processes 

applications. Polymeric membranes also transport noble or inert gases like Ar or CO2, 

which can be disadvantageous depending on the processes design. 

Membrane development represents a frontier research area in chemical engineering, 

materials science and materials chemistry. The breakthrough in the wide application of 

organic polymer membranes in dialysis, natural gas treatment and treatment of refinery 

gas streams became possible through the availability of hollow fiber membranes. 

Consequently, increasing activities can be observed in the preparation of oxygen ion 

conducting membranes in a hollow fiber geometry. Examples are the pioneering papers 

from the groups of Li [29-33] and Galavas  [34, 35] as well as the papers by Schiestel et al 

[36], Trunec [37], Luyten et al. [38] showing that thin walled ceramic fibers can be 

prepared by phase inversion spinning followed by sintering. The development of 
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perovskite hollow fiber membranes is expected to trigger a similar development like it was 

observed in the field of hollow fiber organic polymer membranes. 

The principle of O2-enriched air by using a MIEC perovskite membrane is shown in Fig. 

1.4. At elevated temperatures, under a slight difference in air pressure (1 – 2 bar) O2 can 

be transported through a MIEC perovskite membrane in the form of oxygen ions from the 

side of high air pressure to the side of low air pressure. Simultaneously, electrons are 

transported in the opposite direction to maintain electric neutrality. The permeated O2 

increases the O2 concentration to typically 30 – 50 vol % in the sweep air that forms the 

O2-enriched air on the low-pressure side. Therefore, the perovskite membrane combines 

the in situ O2 supply with permeated O2 and air in one unit thus simplifying the process of 

O2 enrichment and reducing the operational and capital costs. 

 
Figure 1.4  Scheme of the O2-enrichment using perovskite mixed conducting 

membranes [39]. 

 

The obvious advantage of perovskite membranes is their 100 % selectivity for O2. 

Moreover, compared with organic polymer hollow fiber membranes, the perovskite 

hollow fiber membrane requires a lower pressure difference (1 - 2 bar) across the 

membrane and can work at elevated temperatures thus allowing high temperature heat 

exchange. O2-enriched air is used mostly in high-temperature oxidation processes such as 

in the generation of synthesis gas for ammonia production in which O2-enriched air is 
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used to run a secondary reformer typically operated at 1000 oC to 1100 oC. Therefore, in 

this process the temperature required to operate the perovskite hollow fiber is already 

available and can be used by heat exchange. Furthermore, the heat used for the O2 

enrichment is not consumed, for example, in an endothermic reaction and can be regained 

by heat exchange with the product streams that leave the O2-permeation-membrane 

module. A similar setup may also apply to other applications for O2 enrichment with 

perovskite membranes, for example, the temperature increase of firing systems in power 

plants or industrial furnaces. It is noteworthy that there is no correlation between 

permeability and selectivity for perovskite membranes, as it is the case for polymer 

membranes. Increasing the pressure difference leads to an increase of oxygen permeation 

flux while the selectivity remains stable (100 %). 

 

1.3.2 Partial oxidation of methane (POM) to synthesis gas 
 

An attractive route for the utilization of the large reserves of natural gas is their conversion 

to syngas (CO + H2), from which a wide variety of valuable hydrocarbons and oxygenates 

can be synthesized. Up to now, steam reforming (SR): CH4 + H2O → CO + 3 H2, ∆RHo = 

+ 206 kJ/mol at pressures between 15 - 30 bar and temperatures between 850 - 900 oC is 

the dominant process for producing syngas. The endothermic nature of the SR reaction, 

however, makes the process energy intensive. Moreover, the reaction produces syngas 

with a high H2/CO ratio of 3.0, unsuitable for methanol or Fischer – Tropsch (F – T) 

synthesis. The slightly exothermic POM to syngas: CH4 + ½ O2 → CO + 2 H2, ∆RHo = - 

36 kJ/mol has captured much attention. In comparison with SR, the catalytic POM is 

estimated to offer costs reductions of about 30 % [40]. A further advantage is its H2/CO 

ratio of about 2, which makes POM ideal for the production of syngas for the methanol or 

F - T synthesis. Although the POM with air as the oxygen source is a potential alternative 

to the SR process, the downstream requirements usually cannot tolerate the presence of 

nitrogen.  Therefore, pure oxygen is required, and a significant part of the costs associated 

with conventional POM to syngas are those of the oxygen separation plant.  



1 Mixed oxygen ion and electron conducting membranes (MIECM) 

 17

An alternative route that seems very promising is to use the MIEC membranes for the 

oxygen separation, and to combine the catalytic partial oxidation reaction and oxygen 

separation into a catalytic membrane reactor, as shown in Fig. 1.5. The principle of this 

MIECM reactor for the POM reaction is shown in Fig. 1.5. On the reaction side, methane 

is oxidized by surface O2- and the surface oxygen is depleted; bulk O2- diffuse from 

oxygen rich side to fill in the oxygen vacancies. On the oxygen rich side, gaseous O2 is 

first reduced to O2-, which diffuses towards the reaction side. The driving force is the 

oxygen partial pressure gradient across the membrane. The dense ceramic membrane 

inhibits the direct contact between the reactant and oxygen, and introduces oxygen not in 

the gaseous but in atomic form to the reaction chamber. This allows the complete control 

over the contact mode of reactants with each other, and with the catalytically active 

surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5  Schematic diagram of the MIECM reactor for partial oxidation of methane 

to syngas. 
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Balachandran et al [24, 41, 42] investigated POM to syngas in a La0.2Sr0.8Co0.2Fe0.8O3-δ 

and SrCo0.8Fe0.2O3-δ tubular membranes. They found that the membranes had broken into 

several pieces in a few minutes after the methane was introduced to the core side of the 

membrane at 850 oC. They attributed this to the stress induced by the expansion of the 

inside surface of the membrane tube exposed to methane, because there is higher oxygen 

vacancy concentration in the reducing atmosphere. 

High oxygen fluxes in syngas membrane experiments with membranes of nominal 

composition SrFe0.5Co0.5Ox have been reported. The material with this composition has 

been found to be a multi-phase system consisting of the phases Sr4(Fe1-xCox)6O13+δ, SrFe1-

xCoxO3+δ and CoO [43]. Neither of these phases is stable under reducing conditions. In 

several papers it is demonstrated that SrFeCo0.5Ox shows extremely high oxygen 

conductivity but instability [44].  

The perovskite SrCo0.8Fe0.2O3-δ [45] exhibits a relatively high oxygen permeation rate 

under air/He conditions. Two types of cracks were found when the membrane made of 

SrCo0.8Fe0.2O3-δ was exposed to the syngas. The first type occurred shortly after the 

reaction started (about 1 h) and the membrane tube in the hot reaction zone often broke 

into many small pieces. The second type often occurred days after the reaction, and a large 

crack formed parallel to the axis of the tube. They also found the first fracture was the 

consequence of oxygen gradient in the membrane from the reaction side to the air side, 

which caused a little mismatch inside the membrane, leading to the fracture. The second 

type of fracture was the result of a chemical decomposition. 

Tsai et al [3] reported that La0.2Ba0.8Co0.2Fe0.8O3-δ shows higher oxygen permeation flux 

and would be much more stable than La0.2Sr0.8Co0.2Fe0.8O3-δ. The authors successfully 

used membranes of the latter composition in syngas generation experiments for 850 h at 

850 oC, albeit that XRD, EDXS and SEM analysis after the experiments revealed 

morphological and compositional changes of the membrane surfaces. Also it is noteworthy 

that a five fold increase in the oxygen permeation flux. The maximum value of 4.3 

mL/cm2.min was observed when the 5 % Ni/Al2O3 catalyst was packed on the membrane 

surface at the reaction side. This observation demonstrates that the catalyst is critical to 

deplete oxygen at the immediate membrane surface in order to accomplish a high oxygen 
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potential gradient for oxygen transport. 

H. Dong et al. [46] successfully operated a reactor for conversion of methane to syngas in 

the membrane reactor made of Ba0.5Sr0.5Co0.8Fe0.2O3-δ for more than 500 h. A stable 

oxygen flux of 11.5 mL/cm².min was observed. Though TPR experiments demonstrated 

that the material is not stable under the syngas atmosphere, facile kinetics of phase 

changes in this material prevented the membrane forming fracturing.  

The membrane reactor based on BaCoxFeyZrzO3-δ [5] was used for partial oxidation of 

methane to syngas successfully. Not only was a short induction period of 2 h obtained, but 

also a high catalytic performance of 96 - 98 % CH4 conversion, 98 - 99 % CO selectivity 

and an oxygen permeation flux of 5.4 - 5.8 mL/min.cm2 were achieved at 850 oC. Above 

all, the membrane reactor can be steadily operated for more than 2200 h. After the 

reaction, XRD, XPS and EDS showed that no interaction between the membrane material 

and catalyst took place. 

 

1.3.3 Oxidative coupling of methane (OCM) 
 

Oxidative coupling of methane is a promising process for direct conversion of natural gas 

into more useful products such as C2 hydrocarbons (ethylene and ethane). Using different 

catalysts [47, 48] in a temperature region 700 – 900 oC mainly three reactor concepts have 

been evaluated: co-feeding of CH4 and O2, periodic reactor operation and reactor with 

MIEC membrane. The major challenge for the commercialization of OCM process is that 

C2 yield is still not high enough. High C2 yield can be realized by either increasing 

methane conversion, C2 selectivity or both of them. However, higher methane conversion 

often leads to lower C2 selectivity. In the classical co-feed mode the C2 yields are less than 

20 - 30 % because of undesired gas-phase combustion reaction.  

The C2 selectivity of OCM in membrane reactor is found significantly higher than that 

obtained in conventional co-feed reactors [49-51]. However, the reported yields are still 

low, generally below 20 %. OCM reaction was investigated in a tubular dense membrane 

reactor with Bi1.5Y0.3Sm0.2O3-δ MIEC membrane [52] and a high C2 yield of 35 % at a C2 

selectivity of 54 % was achieved. Other examples for MIEC membranes used in the OCM 
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reaction are LaSrCoFeO3-δ [53], LaBaCoFeO3-δ [54], BaSrCoFeO3-δ [55] of different 

chemical compositions. The C2 selectivity is around 70 - 90 % when CH4 conversion is 

lower than 10 %.   

The mechanism proposed for the OCM reaction using MIEC perovskites as oxygen 

transporting is shown in Fig. 1.6. First the reaction of methane with lattice oxygen and 

electron holes gives the CH3 radicals, water and an oxygen vacancy: 
••++⋅→++ Oads

ox
O VOHCHhOCH 2)(34 222 . The two CH3⋅ radicals form ethane which 

can react again with lattice oxygen and electron holes giving ethylene, water and oxygen 

vacancy: ••++→++ O
ox

O VOHHChOHC 24262 2 . Deeper oxidation of the C1 and C2 to 

COx can be achieved when the lattice oxygen is not completely consumed: 
••+→+ Ogass

ox
O VOhO 242 )( . Therefore the methane conversion is increased but the C2 

selectivity decreases when the oxygen transport through the membrane is too high. 

 

 
Figure 1.7  Possible mechanism of the OCM in a perovskite membrane reactor [56]. 

 

In conclusion the MIEC membrane reactor could improve the C2 selectivity of OCM 

reaction. However, there is a long way to go for the MIEC membrane used in the 

commercial OCM process. The challenge is to develop the membrane material, which 

possesses both excellent OCM catalytic performance and sufficient oxygen permeation at 

the reaction temperature. 
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1.3.4 Oxidative dehydrogenation of light alkanes to olefins 
 

Ethylene and propylene are currently produced by the thermal cracking of ethane, ethane-

propane mixture, or naphtha [57], which is a highly endothermic and energy consumption 

intensive process with extensive coke formation. To overcome these problems, oxidation 

activation of alkanes such as the oxidative dehydrogenation of ethane to ethylene (ODE) is 

considered as an attractive alternative to the current thermal steam cracking process [58, 

59]. In addition to the fall away of any thermodynamic limitation of the conversion, lower 

operating temperatures and less coke formation are expected. Unfortunately, the yields 

attained so far in conventional co-feed reactors still remain too low for industrial 

application because ethane reaction with oxygen results in the thermodynamically favored 

formation of carbon oxides. In order to increase the selectivity for ethylene at a given 

conversion, a controlling of the contact mode of reactants is necessary.  

Dense mixed oxygen ion and electron conducting membranes offer a beneficial contact 

medium for the oxidative dehydrogenation. The advantage of the dense ceramic 

membrane reactor is that oxygen (air) is not co-fed with ethane, which avoids the 

formation of carbon oxides due to direct reactions between ethane and oxygen, thus higher 

ethylene selectivities can be expected. H. Wang et al. reported the ODE using planar and 

tubular oxygen permeable mixed ion and electron conducting membranes made of 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) [12, 13]. The ethylene selectivity of 80 % for an ethane 

conversion of 84 % was achieved at 800 oC. Rebeilleau et al. [60, 61] also investigated the 

ODE in the BSCF catalytic membrane reactor. At 807 oC, an ethylene yield of 66 % was 

obtained in the membrane reactor. After Pd cluster deposition, the ethylene yield reached 

76 % at 777 oC. However, Ni cluster deposition led to a decrease of ethane conversion 

compared to the bare membrane without changing ethylene selectivity. Akin and Lin 

found that per pass ethylene yield of 56 % with an ethylene selectivity of 80 % was 

achieved in a dense tubular ceramic membrane reactor made of Bi1.5Y0.3SmO3 (BYS) at 

875 oC [14]. 

Compared with the ODE in MIEC membrane reactors, there are only a few papers on the 

oxidative dehydrogenation of propane (ODP). Using a Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite 
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and a diluted feed (90 % inert, 10 % propane), propylene selectivites of 44.2 % were 

found which was much higher than the selectivities in corresponding co-feed reactor 

experiments at similar propane conversions (23 - 27 %) [62]. At low propane conversions 

(5 %), the propylene selectivity was found to be 52 %. These results show that in contrast 

to the ODE, the ODP on MIEC membrane supported dehydrogenation of propane are 

below those in the co-feed reactor. 

The catalyst may be either the membrane surfaces itself or another material deposited on 

the top of the membrane. The promising feature of perovskite membranes is that the 

oxygen permeation flux may alter the relative presence of different oxygen species on the 

membrane surface [63], thereby providing especially lattice oxygen species that may be 

more selective for partial oxidation reactions than gas phase oxygen. The principle of a 

dense oxygen-permeable membrane for the selective oxidation of hydrocarbons is shown 

in Fig. 1.7. Under an oxygen partial pressure gradient across the membrane, oxygen is 

driven from the air side to the reaction side (hydrocarbon) as lattice oxygen (O2-). Local 

charge neutrality is maintained by the counter-current diffusion of oxygen ions (or oxygen 

vacancies) and electrons (or electron holes). Since lattice oxygen converted from O2 by the 

oxygen permeation membrane is continuously supplied to the reaction side, the selectivity 

of the oxidation reaction can be controlled by fine tuning of the oxygen and hydrocarbon 

fluxes to a high level.  
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Figure 1.7 Mechanistic scheme of selective oxidation of hydrocarbons in a dense 

oxygen permeable membrane reactor. 

 

1.3 Aim of the thesis 
 

In order to develop the ceramic membrane system for industrial applications, it is essential 

to improve both the oxygen permeation flux and the membrane configuration such as flat 

sheet [64], tubular [2] or hollow fiber [30, 35, 36]. So far, mainly disk-shaped membranes 

with a limited membrane area (< 5 cm2) were employed because they can be easily 

fabricated by a conventional pressing method. Although a multiple planar stack can be 

adopted to enlarge the membrane area to an industry plan scale, many problems such as 

high temperature sealing, the connection and the pressure resistance have to be faced [64]. 

Tubular membranes were developed to reduce the engineering difficulties, especially the 

problems associated with the high temperature sealing [4], but their small surface area to 

volume ratio and their relative thick wall leading to a low oxygen permeation flux, make 

them unfavorable in practice. 

Hollow fiber membranes with an asymmetric cross section can solve the problems 

mentioned above. Such hollow fiber membranes possess much larger membrane area per 

unit volume for oxygen permeation (per m3 permeator of the order of 5,000 m2) [30, 35, 
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36]. Furthermore, the resistance of the membrane to oxygen permeation is very much 

reduced due to the thinner wall and the asymmetric structure which increases the 

membrane surface area for oxygen surface exchange. Therefore, it is expected that 

asymmetric hollow fiber membranes can give higher permeation fluxes than other 

membrane geometries. By adopting a long hollow fiber and keeping the two sealing ends 

away from the high temperature zone, the problem of high temperature sealing no longer 

exists.  

The purpose of this thesis is to develop the perovskite hollow fibre membrane reactor for 

production of O2-enriched air, POM to syngas and ODE reaction. Therefore the hollow 

fibre membrane based on BaCoxFeyZrzO3-δ (BCFZ) material will be used to construct a 

reactor for selective oxidation of CH4 and C2H6. Chapter 2 describes the experimental 

method for the preparation and characterization of the disc and hollow fiber perovskite 

membranes and construction of the hollow fiber membrane reactor for partial oxidation of 

methane to syngas and oxidative dehydrogenation of ethane to ethylene. Chapter 3 

presents a study of the oxygen permeation flux through BCFZ hollow fiber membrane and 

a comparison of the oxygen permeation flux of the hollow fiber membrane to the oxygen 

permeation flux of the disc membrane prepared form the same material. In chapter 4, 

further investigation on the same material for production of O2-enriched air is achieved. In 

chapter 5, a hollow fiber membrane reactor for partial oxidation of methane to syngas 

using Ni-based steam reforming (SR) catalyst is developed. Chapter 6 presents the 

selective oxidation of C2H6 and CH4 over a mixed ionic and electronic conducting 

perovskite membrane. 
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2 Experimental 
 

2.1 Membranes preparation 
 

Usually, the procedure for preparing perovskite-type membranes consists of three steps: 

powder synthesis, shaping and sintering. Powder synthesis, as the first step, plays an 

important role in determining the particle size of the powder, and consequently has an 

influence on the microstructure of the membrane. There are many routes to synthesize 

powders, such as conventional solid-state reaction method (designed as SS method) and a 

wet chemical process that includes thermal decomposition of cyanide, metal-EDTA, 

chemical co-precipitation and the sol-gel process [1]. The sintering parameters (atmosphere, 

heating/cooling rate, highest sintering temperature and dwelling time) can obviously affect 

the membrane microstructure [2, 3]. The shaping process is also a very important factor.  

 

2.1.1 Preparation of the disc membranes 
 

The synthesis of the BaCoxFeyZrzO3-δ
* (BCFZ) perovskite powder was carried out by an 

adapted variant of the so-called citrates method [4, 5] employing EDTA and citric acid in 

parallel as complex formation agents [6, 7]. Briefly, the required amounts of cation 

precursors were introduced as Ba(NO3)2, Co(NO3)3, Fe(NO3)3 and Zr(NO3)2 (purity > 99.5 

%). The calculated amounts of the starting materials were dissolved in EDTA-NH3.H2O 

solution followed by addition of citric acid. The solution was kept under heating and stirring 

until a gel was formed. The gel was dried at 150 oC for 10 h and then calcined at 950 oC for 

5 h to obtain powder with the final composition. The resulting powder was pressed into a 

disc under 11 MPa for 5 minutes. Green disc was then sintered at 1300 oC for 10 h air with a 

heating and cooling rate of 2 oC/min (Fig. 2.1). The SrCo0.8Fe0.2O3-δ (SCF) and 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) oxides were synthesized using the same method. 

                                                 
* Because of several pending WO Patents, the exact composition of the BCFZ fiber can not be given. 
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Figure 2.1  Scheme of the preparation of the BCFZ perovskite disc membrane. 
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2.1.2 Preparation of the hollow fiber membranes 
 

Dense hollow fiber perovskite membranes were manufactured at Fraunhofer Institute for 

Interfacial Engineering and Biotechnology (IGB), Stuttgart by a phase inversion process. 

The BCFZ hollow fiber membrane was fabricated by a phase inversion spinning followed 

by sintering (Fig. 2.2). A homogeneous slurry of a polymer solution and the BCFZ powder 

was obtained by ball milling up to 24 hours with a solid content of 50 - 60 mass %. The 

slurry was spun through a spinneret and the obtained infinite green hollow fiber was cut into 

0.5 m long pieces before sintering the fibers in a hanging geometry. During the calcination 

above 1300 °C the length and diameter of the green fiber reduced from 50 cm in length and 

1mm in diameter to ~ 32 cm in length and around ~ 0.80 mm in the outer diameter [8, 9].  

 

 
Figure 2.2  Scheme of the preparation of the perovskite hollow fiber membranes.  

 

 

 

 

Perovskite Polymer Solution  

Slurry 

Spinning through spinneret 

Green Fibers  

Sintering  

Hollow Fibers 



2 Experimental 

 32

2.2 Structure and microstructure of the dense membranes 
 

2.2.1 X-ray diffraction 
 

X-ray diffraction is an extremely important technique in the field of material 

characterization to obtain the constitutional and structural information from crystalline 

materials. Single-crystal X-ray diffraction requires single crystals of appropriate size (at 

least 10 - 100 µm in length) and is easier to solve structures of crystals than powder 

technique. However, the latter one can determine the constituents of a mixture of crystalline 

solid phases. 

The crystal structure and lattice parameters of the perovskite materials were characterized 

by in situ high-temperature X-ray diffraction (PHILIPS-PW1710) using Cu Kα radiation. 

The sample was tested in a high temperature cell (Bühler HDK 2.4 with REP 2000) with a 

heated Pt sample holder up to 1000 oC under different atmospheres (air, 2 % O2 in Ar and 

pure Ar). The heating and cooling rates amounted to 5 oC/min. The total flow rate of gases 

through the cell was 100 mL/min. At each temperature step, the temperature was hold for 70 

min. Data were collected in continuous scan mode in the range of 20 – 90o with interval 

0.05o. The peaks of Pt were used as internal standard to calculate the lattice parameters of 

the perovskite-type oxides. 

The crystal structures of the BCFZ powder, disc and hollow fiber membrane before and 

after operation were characterized by X-ray diffraction (XRD, PHILIPS-PW1710) using Cu 

Kα radiation (Voltage = 40 kV, Current Intensity = 40 mA). 

 

2.2.2 Electron microscopy 
 

For characterization of materials, electron beam methods are indispensable analytic tools. In 

this study, two types of methods have been involved: scanning electron microscopy (SEM) 

and transmission electron microscopy (TEM). X-ray microanalysis of thin specimens in the 

Transmission Electron Microscope offers nano-scale information on the chemistry of 

materials. However, the complexity of TEM designs means that the application of energy 
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dispersive X-ray spectrometers to the TEM is a serious technical challenge. TEM is a 

powerful and unique technique to reveal the internal microstructure of materials at the 

nanometer level. 

The TEM micrographs are made by Dr. A. Feldhoff at the Institute of Physical Chemistry 

and Electrochemistry, University of Hanover. The microstructure of the perovskite 

membranes was investigated at different length scales. Secondary electron micrographs 

were taken on a field-emission scanning electron microscope (FE-SEM) of the type Jeol 

JSM-6700F at low voltages. High-resolution transmission electron microscopy (HRTEM), 

bright-field (BF) and dark-field (DF) imaging as well as selected area electron diffraction 

(SAED) was performed at 200 kV in a Jeol JEM-2100F-UHR that yields a point resolution 

better than 0.19 nm. An Oxford Instruments INCA-200-TEM system with an ultra-thin 

window was attached to the microscope that allowed for elemental analysis by energy-

dispersive X-ray spectroscopy (EDXS). Prior to TEM investigations sintered powder was 

crushed in a mortar, ultrasonically dispersed in ethanol, and fished up with a 300 mesh 

copper supported holey carbon foil. 

 

2.3 Oxygen permeation through perovskite membrane 
 

The O2-permeation of the BCFZ disc and hollow fiber perovskite membrane was tested in a 

high-temperature gas permeation cell at (i) different temperatures between 650 °C and 950 

°C, (ii) different flow rates of air and sweep gas as well as (iii) different O2-partial 

pressures. At the shell side air or synthetic air of different ratios of nitrogen and oxygen 

were used as the feed with a flow rate from 20 mL/min to 150 mL/min. Pure He (99.995 %) 

and Ne (>99.995 %) as internal standardization gas (constant F = 0.46 mL/min) flowed on 

the core side of the membrane at a flow rate varying from 10 mL/min to 100 mL/min. The 

inlet gas flow rates were controlled by mass flow controllers (Bronkhorst). 
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2.3.1 The hollow fiber membrane reactor 
 

In the oxygen permeation measurements, two sealing techniques for the BCFZ fibers were 

applied: cold sealing of the fibers by silicon rubber rings outside the oven and fibers coated 

with an Au paste in the hot zone of the oven as shown in Fig. 2.3. The ends of the hollow 

fiber were coated with Au paste, after sintering at 950 oC a dense Au film was obtained. 

Therefore such Au-coated hollow fiber can be sealed at room temperature and the uncoated 

part can be kept in the middle of the oven ensuring isothermal conditions. The gases were 

pre-heated to 180 oC before they were fed to the permeator and all gas lines to the gas 

chromatograph (GC) were heated to 180 oC. The gases at the exit of the permeator were 

analyzed by a GC (Agilent 6890) equipped with the Carboxen 1000 column (Supelco).  

The permeated O2 concentration was determined by calibration. The total flow rate of the 

components in the effluent gas has been calculated from the change in the Ne concentrations 

before and after the permeator. Nitrogen can be also found in the effluents by gas 

chromatography due to slight imperfections of the sealing. The leakage of oxygen was 

subtracted when the oxygen permeation flux was calculated. Assuming that leakage of 

nitrogen and oxygen through pores or cracks is in accordance with Knudsen diffusion, the 

fluxes of leaked N2 and O2 are related by 02.4
21.0
79.0

28
32:

22
=×=Leak

O
Leak
N JJ . The oxygen 

permeation flux was then calculated as follows:  

S
FC

CcmmLJ N
OO ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

02.4
min)./( 2

22

2                  (2.1) 

where 
2OC , 

2NC are the oxygen and nitrogen concentrations calculated from GC calibration, 

F is the total flow rate of the outlet on the core side, which can be calculated from the 

change of the Ne concentrations before and after passing the permeator. S is the hollow fiber 

membrane area. The leakage percentage is less than 2 %. 
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Figure 2.3  Schematic diagram of the high temperature oxygen permeation cell for a 

dense hollow fiber perovskite membrane: a) sealed by silicon rubber ring 

outside the oven and b) coated fiber with an Au paste in the hot zone of the 

oven. 
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sealed with the gold pasta, the whole fiber was in the isothermal zone of the oven and the 

effective length L for permeation is identical with the real length of the fiber. However, 

when 30 cm long hollow fibers in a 24 cm long oven were studied, only 16 cm were 

assumed as the effective fiber length L since from measuring the temperature profile of the 

oven it is known that only the inner 16 cm of the oven have a temperature > 600 °C. 

 

2.3.2 The disc membrane reactor 
 

Oxygen permeation experiments using disc membrane were realized in a vertical high 

temperature cell (Fig. 2.4). To seal the disc into a quartz tube a ceramic glass powder was 

used. The temperature was increased to 1040 oC and held for 10 minutes. The permeation 

experiments were performed within the temperature range of 650 – 950 oC.   

During the permeation experiments, the shell side of the membranes was exposed to 

different air/O2-N2 mixtures flow rate, to pressure gradient and the sweep side was exposed 

to helium gas. Nitrogen was also determined in the effluents by the gas chromatograph 

because of the slight imperfections of the sealing, and the leakage of oxygen was subtracted 

in the calculation of the oxygen permeation flux. The relative leakage of O2 was found to be 

less than 2 %. 
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Figure 2.4  Schematic diagram of the disc membrane reactor for oxygen permeation at 

high temperature. 

 

2.4 Production of O2-enriched air  
 

An O2-enrichment was studied in a high temperature permeator, as shown in Fig. 2.5. The 
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mL/min preheated air was fed to the shell side and different air pressures were obtained by 

adjusting the needle valve on the outlet of air. The air pressures on the shell side varied 

Oven

Vent 

GC

Valve system

He + Ne

Air

O2-depleted air

Thermocouple 

Sealant 

Quartz tube 

He + Ne + O2

GC
He + Ne

Sample 

  
Air

O2

He + Ne + O2 



2 Experimental 

 38

between 1.5 bar and 4.0 bar. 10 - 40 mL/min preheated air was fed to the core side and the 

air pressure was fixed at 1.0 bar. Due to the air pressure difference between the shell side 

and the core side, the O2 on the shell side permeates through the hollow fiber membrane to 

the core side and mixes with air to form O2-enriched air. The O2 permeation rate, 
2OJ can be 

calculated as 

)100(
)(

,

,,,

2

22

2

outletO

inletOoutletOinletair
O CS

CCF
J

−×

−×
=                         (2.2) 

where inletairF ,  is the air flow rate at the inlet on the core side; inletOC ,2
 is the fed oxygen 

concentration in air, outletOC ,2
 is the O2 concentration at the outlet of the core side; and S  is 

the effective membrane surface area of the hollow fiber for the O2 permeation. 

The O2-enriched air production rate, OEAR , is defined as 

outletOC

outlet
OEA S

FR
,2

=                with outletOC ,2
   >   inletOC ,2

                                 (2.3) 

where outletF  is the flow rate at the outlet of the core side, which can be measured by soap 

film meter. 

 

Figure 2.5  Permeator for the O2-enrichment at high temperatures. 
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2.5 POM in a hollow fiber membrane reactor 
 

Fig. 2.6 shows a schematic diagram of the membrane reactor used to perform the POM to 

syngas. Different types of catalyst arrangements were studied. The detailed diagrams of the 

membrane reactors are shown in Chapter 5. At first the hollow fiber membrane without 

catalyst was used. Then the modified hollow fiber membrane was used for POM to syngas. 

For the preparation of the slurry, the powder BCFZ (20 %), Ni-based SR catalyst (60 %) and 

poli-vinyl alcohol (80 % hydrolyzed) (20 %) were ball-milled for 24 h in ethanol. The 

hollow fiber membrane sintered at 1300 oC was coated with the slurry for 5 h, every 30 

minutes and dried in air. When the the two ends of the hollow fiber were coated by Au 

paste, after sintering at 950 oC a dense Au film was obtained. Therefore such Au-coated 

hollow fiber can be sealed at room temperature and the uncoated part can be kept in the 

middle of the oven ensuring isothermal conditions. In the last configurations, a commercial 

Ni-based SR catalyst (Süd-Chemie) was packed either only around the hollow fiber 

membrane or around and behind the hollow fiber membrane. POM was performed at 

different temperatures between 800 – 950 oC, different air and methane flow rate and 

different methane concentration. 150 mL/min air was fed to the core side and a mixture of 

CH4 and He was fed to the shell side. The gas composition at the outlet of the shell side was 

determined by GC (Agilent 6890 equipped with two auto valves) with a Carboxen 1000 

column (Supelco). The H2O amount was accounted based on the hydrogen atom balance. 

CH4 conversion (
4CHX ) and products selectivities ( iS ) were defined respectively as the 

followings: 

%100100
4

4

4
×−= inlet

CH

outlet
CH

CH F
F

X                    (2.4) 

%100
44

×
−

= outlet
CH

inlet
CH

ii
i FF

Fn
S                    (2.5) 

where in  is the number of carbon atoms in the molecules of carbon-containing products i, 

iF  is the flow rate of species i in mL/min.  
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Figure 2.6  Schematic diagram of the hollow fiber membrane reactor for POM reaction. 

 

2.6 Selective oxidations of C2H6 and CH4 
 

2.6.1 Transient experiments in the temporal analysis of products (TAP) 
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Transient analysis of C2H6 and CH4 interactions with a perovskite BCFZ formula was 

performed in the TAP-2 reactor of the Institute for Applied Chemistry in Berlin-Adlershof 

by Dr. E. Kontratenko. The TAP-2 reactor system has been described in detail elsewhere 

[10-12]. The pressed perovskite powder (ca. 140 mg, dp = 250 - 355 µm) was packed 

between two layers of quartz of the same particle size in the micro reactor (Øin ≈ 6 mm) 

made of quartz. Before transient experiments the catalyst was pre-treated at ambient 

pressure in an O2 flow (30 mL/min) at 875 °C for 1h. After the oxidative pre-treatment, 

the pre-treated catalyst was exposed to vacuum (ca. 10-5 Pa) and pulse experiments were 

carried out. Strong desorption of oxygen was observed upon catalyst exposure to vacuum. 

Multipulse experiments with C2H6 and CH4 were performed at 875 °C and 800 °C, 

respectively. In these experiments, a mixture of CH4:Ne = 1:1 or C2H6:Ne = 1:1 was 

repetitively (ca. 900 pulses) pulsed over the pre-oxidized catalyst. Pulse size of Ne was ca. 
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1·1016 molecules. The following atomic mass units (AMUs) were used for mass-

spectroscopic identification of different compounds: 60 (CH3COOH), 45 (CH3COOH, 

C2H5OH), 44 (CH3CHO, CO2), 43 (CH3COOH), 31 (C2H5OH, CH3OH), 30 (C2H6), 29 

(C3H8, C2H5OH, CH3CHO, C2H6), 28 (C3H8, C2H6, C2H4, CO2, CO), 27 (C3H8, C3H6, 

C2H6, C2H4), 26 (C2H6, C2H4), 20 (Ne), 18 (H2O) and 2 (H2). The individual AMU’s were 

recorded without averaging. Quantification of the results, i.e. calculation of conversion 

(Eq. 2.6) and selectivity (Eq. 2.7 and Eq. 2.8) values was performed for each pulse using 

relative sensitivities, which arise from the different ionisation probabilities of individual 

compounds. The relative sensitivities ( r
iS ) were determined as a ratio of the areas under 

the response signals of each compound related to the area under the response signal of 

inert gas. The respective areas were corrected accordingly the contribution of 

fragmentation pattern of different compounds to the measured AMU signal. 
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r
iSexp,  is the relative sensitivity observed over the catalytic material under study, r

icalS ,  - the 

relative sensitivity determined separately for the same reactant mixture in the reactor filled 

with inert material of the same particle size, inertk  - molar fraction of inert gas in this 

mixture, 0
eductk  - molar fraction of reactant at the reactor inlet, out

eductk  - molar fraction of 

reactant in a pulse at the reactor outlet. 

Carbon balance was calculated according to Eq. 2.9. 
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where outlet
iC  and inlet

iC  are concentrations of gas-phase carbon-containing species at the 

reactor outlet and inlet, respectively in  means the number of C atoms in the detected 

carbon-containing molecules. 

 

2.6.2 Oxidation in membrane reactors 
 

The BCFZ perovskite hollow fiber membrane, which has been successfully used for 

oxygen separation [8, 9, 13] has been applied for the POM reaction to syngas (CO and H2) 

and the ODE reation to ethylene. Hydrocarbons (methane or ethane) diluted with helium 

were fed (40 – 80 mL/min) to the sweep side, while air with a flow rate of 150 mL/min 

were fed to the shell side. The reaction temperature was varied from 700 oC to 925 oC.  

For the ODE, ethane diluted with helium was fed to the core side, while air was fed to the 

shell side, as shown in Fig. 2.7. The products were analyzed by an online GC (Agilent 

6890 equipped two auto valves) with Carboxen 1000 column (Supelco) which was used to 

separate C2H6, C2H4, CH4, CO, CO2, H2, N2 and O2. Concentrations of these species were 

determined by calibrating against the standard gases of all the product species. The 

quantity of H2O was accounted based on hydrogen atom balance. The oxygen permeation 

flux was calculated from oxygen atoms of all the oxygen-containing products. The 

conversion of C2H6, selectivities of C2H4, CH4, CO2, CO and the oxygen permeation flux 

in the ODE were defined as follows: 
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CO2 selectivity = 
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where Fi is the flow rate of species i in mL/min, the membrane surface area S is 3.52 cm2 in 

this study. 

 
Figure 2.7  Schematic diagram of the hollow fiber membrane reactor for oxygen 

permeation and the ODE. 
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3 High oxygen permeation through MIEC hollow fiber 

perovskite membranes 
 

In this chapter the manufacture, the microstructure and the oxygen permeability of the 

BaCoxFeyZrzO3-δ (BCFZ) hollow fiber membranes have been investigated. The oxygen 

permeation flux through disc and hollow fiber membranes are compared.  

 

3.1 Membrane morphology  

 

Fig. 3.1 shows SEM micrographs of the BCFZ hollow fiber precusor and the hollow fiber 

sintered above 1300 oC for 5 h. The outer diameter and the inner diameter of the hollow 

fiber precursor prepared are 1764 µm and 1145 µm, respectively. The cross section of the 

green hollow fiber shows an asymmetric columnar structure (Fig. 3.1a and Fig. 3.1e). A 

porous structure in the middle and denser structures at the outer surfaces were found. This 

asymmetric structure results from the diffusion and phase separation phenomena occurring 

during the spinning process. Fig. 3.1c shows the outer surface of the hollow fiber 

precursor. It can be seen that the BCFZ particles are well-dispersed and connected to each 

other by the polymer binder. After sintering, the asymmetric structure is still remained, as 

shown in Fig. 3.1b and Fig. 3.1f and a significant shrinkage of the hollow fiber was 

observed. After sintering, the geometry of the fibers was as follows: outer diameter = 800 

- 900 µm, inner diameter = 500 - 600 µm, length = 30 cm (Fig. 3.2). Such shrinkage is due 

to the removal of the polymeric binders and the sintering of the BCFZ particles. Fig. 3.1d 

shows the outer surface of the sintered hollow fiber, from which it can be seen that the 

BCFZ particles are closely connected to each other after the removal of the organic 

binders.  

 

 

 

b 
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Figure 3.1  SEM micrographs of the BCFZ hollow fiber precursor (a, c, e) and the 

BCFZ hollow fiber after sintering (b, d, f). 
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Figure 3.2 The hollow fiber perovskite membranes after sintering.  

 

The magnification of the outer surface of the hollow fiber proved that the BCFZ 

membrane consists of grains of different size in the µm-region with clear grain boundaries 

(Fig. 3.3). Before the hollow fiber membrane was used for the oxygen permeation, the gas 

tightness was tested at room temperature. No nitrogen was found in the permeate side 

even when the nitrogen pressure on the feed side reached 5.0 bar, which proves that our 

hollow fiber membranes are gas tight. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3  SEM of the outer surface of the sintered hollow fiber (magnification of Fig. 

3.1d). 
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In order to increase the oxygen permeation flux, many efforts have been made to develop 

a thin film deposition on a porous support [1]. However, the supported thin films often 

suffer from compatibility problems such as the different thermal expansion coefficients of 

the layer and the support as well as from the solid state reaction between the two materials 

by diffusion processes at the operation temperature between 800 °C and 900 °C. The 

asymmetric hollow fiber membrane with dense perovskite layers and a porous bulk of the 

same materials has solved this problem. Simultaneously, the asymmetric structure can 

improve the mechanical strength of the hollow fiber membrane like a porous support. By 

measuring the three-point bending strength values a relative high value of ca. 150 MPa 

was found. The results show that hollow fiber membranes with an asymmetric structure 

not only possess an excellent oxygen permeation flux [2] but also a high mechanic 

strength. 

 

3.2 Micro- and ultrastructure of grain boundaries in perovskite 

ceramics by transmission electron microscopy 

 

To elucidate the real structure of membrane materials from the micrometer down to the 

sub-nanometer scale TEM is an indispensable tool. The usefulness of which is illustrated 

in the case of two model perovskite materials of practical importance. 

Fig. 3.4 shows TEM investigations on the microstructure of a low-quality BCFZ ceramic 

sintered in disc geometry above 1200 °C. The TEM micrographs are made by Dr. A. 

Feldhoff at the Institute of Physical Chemistry and Electrochemistry, University of 

Hanover. The bright-field and dark-field micrographs in Fig. 3.4a,b reveal the size of the 

BCFZ grains to be of the order of 500 nm. The DF shows no indication of intergranular 

glass what would be clearly visible by continuous bright lines along the grain boundaries. 

Instead, the grain boundaries are decorated by smaller crystallites with sizes less than 100 

nm that were find by SAED and EDXS to be most probably a BCFZ perovskite with a 

high Zr content or BaZrO2. The diffraction pattern in Fig. 3.4c was taken of a circular 

region of 1.2 µm in diameter that contained perovskite grains as well as grain boundaries. 
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The relatively small and randomLy oriented grain boundary crystals give rise to the 

appearance of Debye-Scherrer rings. The diameters of the best developed ones correspond 

to lattice plane distances of 0.3 nm and 0.18 nm that match well to the (111) and (220) 

planes of BCFZ perovskite with a high Zr content or BaZrO2, respectively. EDX spectra 

of the perovskite grains showed Ba, Co, Fe, Zr, and O (Fig. 3.4d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  Microstructure of a BCFZ ceramic: a) TEM bright-field, b) TEM dark-field, 

c) selected area electron diffraction, d) EDXS of perovskite grain, e) EDXS 

of grain boundary region. The asterisk indicates Zr-L lines [3]. 

 

In the spectra from the grain boundary regions the Zr-L lines at around 2 keV (marked by 

asterisk) show up with much higher intensity, even if strong contributions of adjacent 

perovskite grains are still present (Fig. 3.4e). In this example even the starting BCFZ 

powder used for the disc preparation contained ZrO2 as a foreign phase. Obviously, some 

synthesis skill is required to bring the relative large Zr4+ cation on the B position in the 
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ABO3 perovskite structure. The two-phase characteristic of the starting powder remained 

after sintering the ceramic above 1200 °C. 

 

3.3 Selection of an optimum material for the hollow fiber 

membranes 
 

Structure and stability of the mixed ionic and electronic conducting perovskite-type oxides 

can be studied very effectively by in situ high-temperature X-ray diffraction. It is a fast 

method to estimate the reversible stability of new mixed ionic and electronic conducting 

perovskite-type oxides by determining by-phases, lattice constants and thermal expansion 

coefficients.  

The purpose is to develop an effective way for choosing and estimating mixed ionic and 

electronic conducting perovskite-type materials for preparation of the hollow fiber 

membranes. Three typical perovskite membranes, SrCo0.8Fe0.2O3-δ (SCF) [4], 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) [5] and BaCoxFeyZrzO3-δ (BCFZ) [6] were chosen because 

they are widely studied and have similar compositions but different properties. SCF disc 

membrane has the highest reported oxygen permeation flux of 3.1 mL/cm2.min at 850 oC, 

but its stability is poor. BSCF disc shows a high oxygen permeation flux (1.4 mL/cm2.min 

at 950 oC) and good stability (1000 h stable operation under air/He). BCFZ disc possesses 

a medium oxygen permeation flux (0.9 mL/cm2.min at 950 oC) but the best stability 

reported so far.  

With increasing temperature, oxygen releases from the lattice. Accordingly, the metal ions 

could be reduced from a higher valence state to a lower one, and the oxygen vacancies 

were simultaneously formed. These effects may lead to phase transition. In situ high 

temperature X-ray diffraction technique provides an effective and direct way to trace the 

phase structure during the increasing and decreasing temperatures. Fig. 3.5 shows the 

XRD patterns of BSCF, SCF and BCFZ powders under air as the temperature was varied 

from 30 oC to 1000 oC. Under air, the XRD patterns of BSCF, SCF and BCFZ oxides at 

different temperatures showed that these materials remained in their perovskite structure 

during the temperature range studied. This behavior is reversible since the XRD patterns 
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during increasing and decreasing temperature, respectively, are almost the same. This 

means that the three perovskites exhibit good phase reversibility and structure stability 

under air.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 30 40 50 60 70 80

0

500

1000

1500

2000

2500

3000

3500

4000

2θ / degree

PPPPP
PPP

P

P

 In
te

ns
ity

 / 
a.

u.

30 oC

200 oC

400 oC

600 oC

800 oC

900 oC

1000 oC

900 oC

800 oC

600 oC

400 oC

200 oC
30 oC

D
ec

re
as

in
g 

te
m

pe
ra

tu
re

 
In

cr
ea

si
ng

 
te

m
pe

ra
tu

re
 

(a) 

20 30 40 50 60 70 80

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2θ / degree

P
P

P
P

P

P

P
P

P

P

30 oC

200 oC
400 oC
600 oC
800 oC
900 oC
1000 oC

900 oC

800 oC
600 oC
400 oC
200 oC

30 oC

 In
te

ns
ity

 / 
a.

u.

D
ec

re
as

in
g 

te
m

pe
ra

tu
re

 
In

cr
ea

si
ng

 
te

m
pe

ra
tu

re
 

(b) 



3 Oxygen permeation through MIEC membranes 

 52

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5  XRD patterns of the three perovskites under study during increasing and 

decreasing temperatures. Heating rate and cooling rate: 5 oC/ min, 

equilibration time at each temperature: 70 min, (a): BSCF, (b) SCF, (c) 

BCFZ.  P: perovskite. 

 

During the oxygen permeation operation, one side of the membrane is exposed to air (high 

oxygen partial pressure side); the other side of the membrane is exposed to Ar or He (low 

oxygen partial pressure side). Thus the phase stability of the perovskite oxides under air 

alone is not enough to reflect the actual stability when they are selected as candidates for 

oxygen separation membranes. Therefore, it is necessary to study the high temperature 

phase stability of the mixed ionic and electronic conducting perovskite-type oxides under 

low oxygen partial pressures, e.g. 2 % O2 in Ar and pure Ar. Fig. 3.6 shows the XRD 

patterns of BSCF, SCF and BCFZ powders at 900 oC under different atmospheres (2 % O2 

in Ar, pure Ar and air). New XRD peaks appeared in the XRD patterns of SCF when the 

atmosphere was 2 % O2 in Ar or pure Ar. Further analysis showed that a part of the 

perovskite has been decomposed to SrO, CoO and Fe2O3, as shown in Fig. 3.6a. This 

means that SCF exhibits poor phase stability at low oxygen partial pressures although it 
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has good phase stability under air. It was found that the perovskite structure of SCF is 

thermodynamically stable only at higher oxygen pressures (> 0.1 atm) and this material 

has very limited chemical and structure stability at low oxygen partial pressures [7]. Pei et 

al. [7] found that the membrane reactor made from SCF broke into pieces when methane 

was fed to the reactor. These results are in accordance with these XRD results. 
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Figure 3.6  XRD patterns of the three perovskites under study in different atmospheres 

at 900 oC. Equilibration time: 70 min, (a) SCF, (b) BSCF, (c) BCFZ. P: 

perovskite. 

 

However, BSCF and BCFZ oxides can remain their perovskite structure under both air 

and 2 % O2 in Ar, and even under a pure Ar atmosphere with oxygen partial pressure ≤ 

1×10-5 atm (shown in Fig. 3.6b and Fig. 3.6c). These results indicate that BSCF and BCFZ 

possess good phase stability at high temperatures not only under air but also under low 

oxygen partial pressures, e.g. pure Ar. By oxygen temperature-programmed desorption 

technique (O2 – TPD) Shao et al. [5] found that the substitution of strontium ions in SCF 

by larger barium ions could effectively suppress the oxidation of Co3+ and Fe3+ to Co4+ 

and Fe4+ in the lattice and stabilize the perovskite structure under low oxygen partial 

pressures, e.g. pure Ar. Consequently, it is reasonably understood that BSCF and BCFZ 

membranes can be steadily operated for a long time as reported in Refs. [5, 6].  

Fig. 3.7 shows the lattice parameters of BSCF, SCF and BCFZ perovskites at various 

temperatures calculated based on the XRD data under air. Koster and Mertins [8] had 

reported X-ray powder diffraction data for BSCF. The Rietveld refined unit cell parameter 
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is 3.9830 Å at room temperature which is similar to our value of 3.9793 Å as shown in 

Fig. 3.7. This means our calculation method and measurement is believable. Among the 

three perovskites, the lattice parameter of BCFZ is the largest while that of SCF is the 

smallest. The lattice parameter of BSCF is larger than that of SCF because Ba2+ is larger 

than Sr2+.  For the same reason, substitution of Co4+ by the larger Zr4+ should lead to an 

increase in the lattice parameter of BCFZ. From Fig. 3.7 it can be seen that the lattice 

parameters of the perovskites increase linearly with temperatures. Within the examined 

temperature range, the variation percents of BSCF, SCF and BCFZ were 1.1 %, 1.7 % and 

1.0 %, respectively. The thermal expansion coefficients (TEC) was calculated following 

the definition 
dT

aad )/( 0∆
(a: lattice constant, a0: lattice constant at room temperature). By 

analyzing their lattice parameters as shown in Fig. 4.7, the TECs of BSCF, SCF and BCFZ 

are obtained to be 11.5×10-6 K-1, 17.9 ×10-6 K-1 and 10.3 ×10-6 K-1, respectively.  

 

 

 

 

 

 

 

 

 
 
 

 

 

Figure 3.7  Temperature dependence of the lattice parameters for BCFZ, BSCF and 

SCF. 

 

The highest TEC is found for SCF (17.9 ×10-6 K-1), i.e. the material with the highest Co 

and the lowest Ba content. The high TEC of SCF was caused by the high concentration of 
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cobalt and iron which can easily change their valences in this composition. It can be 

assumed that the higher the TEC of the perovskite is, the more easily the B-side ions can 

change their valences. The relationship between reducibility and the TEC is also validated 

by comparing the BSCF and BCFZ materials. It is found that doping the B-site of 

perovskites with metal cations exhibiting a constant oxidation state, such as Zr4+, can 

suppress oxygen nonstoichiometry variations and lattice expansion induced by changes in 

temperatures or oxygen chemical potentials and increase the phase structure stability [9]. 

It was found that the TEC of BCFZ (10.3 ×10-6 K-1) is slightly lower than that of BSCF 

(11.5×10-6 K-1). This finding is in agreement with the fact that the membrane reactor made 

of BCFZ is more stable during the POM reaction than that made of BSCF. Thus it can be 

understood that a high reducibility of metal ions in the perovskite leads to a high TEC 

which results in poor operation stability when it was used as membrane material for 

oxygen separation and membrane reactors for POM at high temperatures. 

 

3.4 Oxygen permeation flux through BaCoxFeyZrzO3-δ (BCFZ) 

disc and hollow fiber membranes 
 

For comparison, the disc-type membrane of the same perovskite composition was 

prepared and the oxygen permeation was tested under the same conditions. Table 3.1 

shows the O2-permeation data for hollow fiber and disc geometries. In comparison to the 

disc-shaped membrane a lower Fair saturation flow rate is obtained for the hollow fiber 

perovskite membrane. Due to the different wall thickness, higher oxygen flux for the 

hollow fiber geometry in comparison to disc membrane is obtained.  
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Table 3.1  Comparison of the oxygen permeation data for different geometries of 

perovskite membranes: hollow fiber and disc membranes. 

 

 
Hollow fiber Disc  

Fair / mL/min 150 (shell side) 150 

FHe / mL/min 30  (core side) 30 

T / °C 850  850 

Membrane surface / cm2 4.08 1.00 

Membrane thickness / 

mm 

0.16  1 

JO2 / mL/cm2.min 1.05 0.30 

JN2

defect
 / JO2 

0.003 -- 

 

Fig. 3.8 shows the variation of the air flow rate between 20 mL/min and 150 mL/min at 

850 °C, while the helium flow rate on the sweep side was kept at 30 mL/min. It was found 

that the oxygen permeation flux through hollow fiber increased with air flow rate until the 

air flow rate was higher than 80 mL/min. Further increase of the air flow rate did not lead 

to a further increase of the oxygen flux. These results indicate that air should be 

sufficiently delivered to use the separation capacity of the hollow fiber perovskite 

membrane properly.  It can be concluded that for air flow rates higher than 80 mL/min a 

further increase of the air flow would not change the shell side concentration profile, being 

already flat at the level of the inlet concentration. In order to eliminate the effect of air 
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flow rate on the oxygen permeation flux, it was chosen a constant air flow rate of 150 

mL/min in the subsequent studies. 

 

20 40 60 80 100 120 140 160
0.2

0.4

0.6

0.8

1.0

1.2

 hollow fiber membrane
 disc membrane

J O
2 / 

m
L/

cm
2 .m

in

Fair / mL/min
 

Figure 3.8  Oxygen permeation flux through the BCFZ perovskite membranes as a 

function of air flow rate. Permeation conditions: air flow rate on the shell 

side: 20 - 150 mL/min, helium flow rate on the sweep side: 30 mL/min, T = 

850 °C. 

 

In comparison to disc membrane much higher oxygen permeation flux through hollow 

fiber membrane are obtained because of the different wall thickness. It can be assumed 

that the limiting step is different for disc and hollow fiber membranes. The oxygen 

permeation flux through hollow fiber membrane is not as high as expected. From the 

thickness dependence between disc membrane (1 mm) and hollow fiber membrane (0.16 

mm) it is expected to have a factor of 6.3 instead of 3.3. Another possible explanation 

would be that the oxygen concentration on the sweep side for hollow fiber membrane is 

much higher (11 %) than the disc membrane (1 %) when the helium flow rate on the 

sweep side is 30 mL/min and air flow rate on the shell side is 150 mL/min at the 

temperature of 850 oC. When the oxygen concentration on the sweep side is higher, the 

oxygen partial pressure is higher, the driving force is lower and oxygen permeation 
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through the membrane is lower. Thus the factor of 3.8 was obtained for oxygen 

permeation flux.  

The dependence of the oxygen permeation flux of the disc and hollow fiber perovskite 

membrane on the He flow rates on the sweep side at 850 °C is shown in Fig. 3.9. During 

this experiment, the He flow rate was varied from 10 mL/min to 100 mL/min and the air 

flow rate was kept constant at 150 mL/min. As observed for the variation of the air flow 

rate, the oxygen permeation flux was found to increase with increasing helium flow rate. 

However, no saturation of the oxygen permeation flux was observed when the helium flow 

rate increased from 10 mL/min to 100 mL/min because the increase of the helium flow 

rate reduces the oxygen partial pressure (P2 on the sweep side, and thus a higher oxygen 

permeation flux is obtained.  
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Figure 3.9  Oxygen permeation flux through the BCFZ perovskite membranes as a 

function of helium flow rate. Permeation conditions: air flow rate on the 

shell side: 150 mL/min, helium flow rate on the sweep side: 10 - 100 

mL/min, T = 850 °C. 

 

In comparison to hollow fiber membrane, the oxygen permeation flux through disc 

membrane is approximately constant and much lower than the hollow fiber. In conclusion 
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the oxygen permeation flux through disc membrane is not sensitive to the variation of the 

air flow rate on the shell side when the helium flow rate is constant or to the variation of 

the helium flow rate on the sweep side when the air flow rate is constant. 

Fig. 3.10 shows oxygen permeation flux through disc and hollow fiber membranes at 

different temperatures. As shown in Fig. 3.10, the oxygen flux became substantial above a 

critical temperature of 650 oC. Higher oxygen permeation flux through hollow fiber 

membrane is obtained. Oxygen permeation flux through both membranes was found to 

increase with temperature. The tendency of increase in oxygen flux with temperature can 

be attributed to the promotion of the oxygen diffusion and the oxygen surface reaction 

rates. The increase of the oxygen flux through disc membrane is slow.  
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Figure 3.10  Temperature dependence of the oxygen permeation flux through BCFZ 

membranes. Conditions: air flow rate on the shell side: 150 mL/min; helium 

flow rate on the sweep side: 30 mL/min, T = 650 – 850 °C. 

 

The XRD patterns of the hollow fiber membrane, disc membrane and powder are shown 

in Fig. 3.11. The hollow fiber membrane does not have a pure perovskite structure; a ZrO2 

by-phase can be observed. The by-phase is supposed to be formed during the preparation 

of the hollow fiber. In contrast, both the powder and disc membrane have a pure 
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perovskite structure. The structure for hollow fiber membrane is supported by the 

preparation method, the spinning additives which are not needed for pressing a disc 

membrane 
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Figure 3.11  XRD patterns of BCFZ materials (a) powder; (b) disc membrane and (c) 

hollow fiber membrane at room temperature. 

 

Phase stability is very important for an industrial perovskite application.  XRD was used 

to characterize the perovskite structure of the hollow fiber membrane before and after 

operation. The XRD patterns of the perovskite membrane after sintering for 6 hours at 

1300 oC in air and after oxygen permeation for 5 days at temperatures between 650 oC and 

950 oC are shown in Fig. 3.12. In the fresh membrane, in addition to the cubic perovskite 

structure an unidentified by-phase was found. The concentration of this by-phase was 

unchanged after 5 days of operation. In contrast, the starting perovskite powder for 

spinning showed a pure perovskite structure. It is supposed, therefore, that this by-phase is 

formed during sintering. However, no difference between the fresh and spent membrane 

was observed. Thus, X-ray analysis of the material before and after the experiment 

confirmed that the material is phase stable.   
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Figure 3.12  XRD patterns of the fresh and spent perovskite hollow fiber membranes. 

(a): fresh membrane; (b): membrane after oxygen permeation 

measurements for 5 days between 650 - 950 oC. 

 

3.5 Oxygen permeation flux through hollow fiber membranes 

coated with Au paste  
 

The temperature profile for the oven is shown in Fig. 3.13. For every oven temperature, 

there are only 8 cm isotherm zone. For example, when the oven temperature is 850 oC, 

there are only 8 cm zone really at 850 oC, the temperatures at the two endings are much 

lower than 850 oC. For all experiments the effective length of the hollow fiber used in the 

reactor was 24 cm. This means that only one third hollow fiber is at 850 oC and two third 

of hollow fiber is at the temperatures below 850 oC. As it is well known, the temperatures 

have great effect on the oxygen permeation flux. And the oxygen permeation fluxes as a 

lower limit in all experiments were calculated assuming that the total hollow fiber is at 

850 oC.  

20 30 40 50 60 70 80 90
0

200

400

600

800

1000

In
te

ns
ity

 / 
a.

u.

2θ / degree

(b)

(a)
 

2θ / degree 



3 Oxygen permeation through MIEC membranes 

 63

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

200

400

600

800

1000

8 cm
 550 oC
 600 oC
 650 oC
 700 oC
 750 oC
 800 oC
 850 oC
 900 oC
 950 oC

A
ct

ua
l t

em
pe

ra
tu

re
 / 

o C

Position in oven / cm
 

Figure 3.13  Temperature profile of the oven for oxygen permeation and POM reaction. 

 

However, in Fig. 2.3b, the effective length of the hollow fiber is 2 cm. This remarkable 

experimental progress could be achieved by using Au paste to coat the ends of the hollow 

fiber membrane. After sintering at 950 oC a dense Au film was obtained. This means that 

the total hollow fiber is at 850 oC when the oven temperature is 850 oC. Therefore the 

temperature profile causes the difference of the oxygen permeation flux between the two 

types of hollow fiber membrane reactor. The high data from this section are correct. 

The oxygen permeation through the gas tight hollow fiber membrane was measured in the 

high temperature permeation cell shown in Fig. 2.3b. Fig. 3.14 shows the influence of the 

air flow rate on the oxygen permeation flux through the hollow fiber membrane under 

different temperatures while the helium flow rate on the core side was kept constant at 30 

mL/min. The oxygen permeation flux increased with raising air flow rate until the air flow 

rate was higher than 250 mL/min. Further increase of the air flow rate led to no further 

increase of the oxygen permeation flux, as shown in Fig. 3.14. The oxygen permeation 

flux through the hollow fiber membrane is determined by the gradient of the oxygen 
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concentrations across the membrane, i.e. the oxygen concentrations on the shell side and 

the core side. 
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Figure 3.14  Oxygen permeation flux through short BCFZ hollow fiber as a function of 

air flow rates on the shell side. Membrane surface area: 0.43 cm2, He flow 

rate on the core side: 30 mL/min. 

 

Fig. 3.15 shows the oxygen permeation flux as a function of the He flow rate on the core 

side. During this experiment the He flow rates were varied from 25 mL/min to 150 

mL/min and the air flow rate was kept constant at 150 mL/min. A sharp increase of the 

oxygen permeation flux was observed when the He flow rate increased from 25 mL/min to 

100 mL/min. However, the increase of the oxygen permeation flux becomes slow if the He 

flow rate on the core side is higher than 100 mL/min.  
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Figure 3.15  Oxygen permeation flux through BCFZ hollow fiber membrane as a 

function of He flow rates on the core side. Membrane surface area: 0.43 

cm2, air flow rate on the shell side: 150 mL/min. 

 

Figure 3.16 shows the oxygen permeation through the short hollow fiber membrane as a 

function of temperature when air flow rate is 150 mL/min and He flow rate is 30 mL/min. 

For comparison the oxygen permeation through the hollow fiber was measured from 600 
oC to 950 oC and then from 950 oC to 650 oC. The oxygen permeation flux through the 

hollow fiber was much higher when the measurements were performed from higher to 

lower temperature. It can be assumed that at 950 oC, the activation of the hollow fiber 

perovskite membrane has occurred. For both experiments the oxygen permeation flux is 

increasing with the temperature which is attributed to the promotion of the oxygen 

diffusion and the oxygen surface reaction rates. A low oxygen permeation flux is obtained 

when the temperature is below 700 oC for the experiment performed from 600 oC to 950 
oC. 
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Figure 3.16  Oxygen permeation flux through BCFZ hollow fiber membrane as a 

function of temperature. Membrane surface area: 0.43 cm2, air flow rate on 

the shell side: 150 mL/min, He flow rate on the core side: 30 mL/min. 

 

Another factor for evaluating the oxygen permeability is the activation energy for oxygen 

permeation. The activation energy for oxygen permeation of the short hollow fiber 

membrane is shown in Fig. 3.17.  In the corresponding Arrhenius plot a straight line is 

found for short BCFZ hollow fiber membrane which gives an apparent activation energy 

of 53 kJ/mol. The apparent activation energy has a close value to the activation energy for 

disc membrane (56 kJ/mol) with the same composition and 1.0 mm thickness.  
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Figure 3.17  Arrhenius plot of the oxygen permeation flux of the dense hollow fiber 

perovskite membrane after activation at 950 oC. Permeation conditions: air 

flow rate on the shell side: 150 mL/min, helium flow rate on the core side: 

30 mL/min, T = 600 – 950 °C. 

 

The short hollow fiber membrane after operating for more than 100 h in the range of 600 
oC to 950 oC with different air and helium flow rates was subjected to SEM-EDXS 

characterization and the SEM images are shown in Fig. 3.18. It is interesting to find that 

the membrane after oxygen permeation is becoming denser. A possible explanation for the 

closed pores can be the high temperature. Quantitative analysis of the SEM - EDXS 

element maps of the spent hollow fiber after 100 hours operation (Fig. 3.19) shows that no 

significant element segregation was observed on the both membrane surfaces and the bulk. 

This analysis of the hollow fiber membrane before and after the experiment confirmed that 

the perovskite hollow fiber membrane is stable.  
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Figure 3.18  SEM pictures of the hollow fiber membrane after O2-permeation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19  SEM - EDXS element maps for the spent fiber after 100 hours. 
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Quantitative measurements of the cations composition are shown in Table 3.2. Within the 

analytical precision, the compositions of the spent hollow fiber membrane surface exposed 

to helium, to air and the bulk are identical with the fresh membrane. This comparison 

between the fresh and spent hollow fiber membrane showed that the perovskite hollow 

fiber membrane is stable.   

 

Table 3.2  Cation composition of the fresh and spent hollow fibers. 

Sample Ba 

(atom %) 

Co 

(atom %) 

Fe 

(atom %) 

Zr 

(atom %) 

Fresh membrane 54.2 18.4 17.6 9.8 

Air side∗ 53.6 17.8 18.5 10.1 

Bulk∗ 55.3 18.2 17.3 9.2 

He side∗ 52.0 17.8 17.7 12.5 
∗ the spent hollow fiber 

 

3.6 Conclusions 
 

Dense hollow fiber perovskite membranes of the composition BaCoxFeyZrzO3-δ were 

prepared by a phase inversion process. After sintering fibers with an outer diameter 800 - 

900 µm, inner diameter 500 - 600 µm and a length of 30 cm were obtained. From an XRD 

phase study it was found that the dense hollow fiber membrane after sintering at 1300 oC 

was not a pure perovskite though the starting powder was a pure perovskite. 

The O2-permeation rate was stable at 850 oC during 5 days which confirms the stable 

phase structure of the hollow fiber membranes. No signs of degradation of the perovskite 

material after O2-permeation measurements are observed from XRD. A high oxygen flux 

of 1.05 mL/cm2.min was achieved for the long hollow fiber membrane at 850 °C when air 

flow rate on the shell side is 150 mL/min and helium flow rate on the core side is 30 

mL/min.  

A high oxygen permeation flux of 5.5 mL/cm2.min through the short hollow fiber 

membrane was obtained under the air/He gradient (P1 = 0.21 bar, P2 = 0.065 bar) at 900 
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oC, which is the highest oxygen permeation flux through a short hollow fiber membrane 

reported in the open literatures so far. The high oxygen flux renders the hollow fiber 

geometry for MIEC membranes as possible candidates for industrial POM reactors.  
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4 Experimental and modeling study of dense perovskite 

hollow fiber membranes for the production of O2-

enriched air 
 

The perovskite composition BaCoxFeyZrzO3-δ (BCFZ), which is a novel O2-permeable 

membrane material with high O2 permeation fluxes and excellent thermal and mechanical 

stability [1, 2], was applied in a modified composition in a hollow fiber configuration to 

prove the possibility of the production of O2-enriched air in a perovskite membrane 

permeator [3]. A comprehensive analysis was conducted to investigate the effects of 

various factors on the performance of the permeator. The O2-enriched air productivity of 

the BCFZ hollow fiber membrane was studied experimentally under different operating 

conditions. A model for the production of O2-enriched air was developed by Dipl. Chem. 

C. Hamel [4] at the Max Planck Institute for Dynamics of Complex Technical Systems, 

University of Magdeburg and the data were compared to the experimentally results 

performed at the Institute of Physical Chemistry and Electrochemistry, University of 

Hanover. The structure and the stability of the BCFZ fiber in the O2-enriched air 

production were investigated. This work intends to develop a more in-depth understanding 

of the O2-enriched air process with BCFZ hollow fiber membranes in order to provide a 

guidance regarding the design of a hollow fiber membrane module for the oxygen 

enrichment under industrial conditions. 

 

4.1 Model development for the production of O2-enriched air 
 

A gradient in the chemical potential of oxygen, forming the essential driving force for the 

mass transfer of oxygen in the considered material BCFZ, can be generated e.g. by: 

1. Decreasing the oxygen partial pressure at one side of the hollow fiber by 

consumption of oxygen in a chemical reaction. 
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2. Decreasing the oxygen partial pressure at one side of the hollow fiber by application 

of non-reactive sweep gases. 

3. Application of a significant difference in the total air pressure on both sides of the 

hollow fiber which provides different oxygen partial pressures. 

 

For the mathematical quantification of the oxygen mass transfer from the shell to the core 

side through the hollow fiber (Fig. 4.1) a one dimensional, isothermal Plug Flow Tubular 

Reactor (PFTR) model was used. The derived model allows also the consideration and 

calculation of oxygen transport for using of reactive sweep gases and a coupling e.g. with 

selective oxidation reactions, respectively. Here, air is used as a non reactive sweep gas, i.e. 

the reaction rate, r , is zero. 

Figure 4.1  Schematic illustration of the simulated configuration. 

 

Under the following assumptions, simplified mass balances can be formulated: 

1. steady state conditions 

2. isothermal    

3. ideal gas behaviour 

4. negligible axial and radial dispersion  

Component and total mass balances on the shell side (ss) r2 < r < R:  
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Oxygen flux through perovskite membranes [5, 6] r1 < r < r2:  
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Ji of all other components is zero. 
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with i = 1, N; j = 1,M.  

The equations are coupled by the following boundary conditions: 
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The n& i and/or the Ji are specified for internal concentration profiles and finally the outlet 

concentration, calculated by numerical integration of the system of ordinary difference 

equations given by Eqs. 1-7 using standard techniques. This integration can be performed 

conveniently using MATLAB® [7]. 
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4.2 Estimation of mass transfer parameters 
 

In preliminary experiments the oxygen permeation of the hollow fiber perovskite 

membrane using He as the sweep gas was tested in a high-temperature gas permeation cell 

at (i) different O2-partial pressures which were obtained by mixing different ratios of 

nitrogen and oxygen, (ii) different temperatures between 650 °C and 950 °C. Air or 

synthetic air of different ratios of nitrogen and oxygen were fed to the shell side and pure 

He (99.995 %) flowed on the core side of the membrane. The estimation and validation of 

mass transfer parameters for the characterization and the mathematical description of the 

hollow fiber properties are based on the performed experiments and the achieved data, 

respectively. The transport of oxygen ions in MIEC oxides is documented in manifold 

empirical as well as physically founded approaches [8]. One approach based on 

thermodynamical mechanisms is the theory of Wagner [5, 6] assuming the gradient of the 

chemical potential of oxygen as the driving force for mass transfer. Thus, the Wagner 

approach was used to describe the transfer of oxygen ions through the BCFZ perovskite 

hollow fiber under study. Assuming that the oxygen ionic conductivity is much lower than 

the electronic one, the oxygen permeation flux through the MIEC membrane can be well 

expressed by Eq. (4.3) with an Arrhenius approach describing the temperature dependence 

of effD according to Eq. (4.10):   

AE
R T

effD D e
−

⋅
∞= ⋅                                (4.10) 

 

Figure 4.2 shows the temperature influence and the dependency of the oxygen partial 

pressure on the oxygen permeation flux through the hollow fiber membrane using He as 

sweep gas. The comparison between the experimental data und the calculations using 

equations (4.10) and (4.11) and the experimentally derived mass transfer parameters: n = 

0.39, effD  = 1.647.10-3 m²/h.barn, ∞D  = 327.4 m²/h.barn, EA = 113.9 kJ/mol reveals a 

sufficient agreement [9, 10] and forms the basis for further simulation studies.  
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Figure 4.2  Comparison of the experimental and simulated data using He as the sweep 

gas. Air flow rate on the shell side: 150 mL/min, He flow rate on the core 

side: 30 mL/min, membrane surface area: 3.50 cm2.  
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The parameters of the BCFZ hollow fiber membrane for O2-enriched air production and 

the operating condition, listed in Table 4.1, were employed in the simulation and 

experiments. 

 

Table 4.1  Parameters used in the simulation and experiments of the O2-enriched air 

production using the BCFZ perovskite hollow fiber membrane. 

Membrane area / cm2 S = 3.5 

Outer radius / mm r2 = 0.42 

Inner radius / mm r1 = 0.26 

Thickness / mm t = 0.16 

Effective membrane length / mm L = 160 

Operation temperature / oC T = 650 - 950 

Air flow rate on the shell side / mL/min 10 - 150 

Air flow rate on the core side / mL/min 100 

Air pressure difference / bar P∆  = 0.5 - 10 

Air pressure on the core side / bar cs
totP  = 1 

Effective diffusion coefficient / m²/h.barn effD  = 1.647.10-3 

Preexponential factor / m²/h.barn ∞D  = 327.4 

Exponent in Eq. (4.3) n = 0.39 

Activation energy in Eq. (4.10) / kJ/mol EA = 113.9 

 

4.3 O2-enriched air production results 
 

The performance of perovskite membranes for the O2-enrichment can be characterized by 

the oxygen permeation rate (JO2), the production rate of O2-enriched air (ROEA) and the 

oxygen concentration at the outlet on the core side (CO2, outlet). As mentioned above, the 

driving force for oxygen transport through perovskite membranes is the gradient of the 

chemical potential, i.e. the difference of the oxygen partial pressure across perovskite 

membranes. Instead of the already known oxygen separation by inert sweep gases, it is 
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also possible to get O2-enriched air by using air as sweep gas applying an air pressure 

difference as a driving force. Fig. 4.3 shows experimental and modeling results under 

variable air pressure differences. Both the experimental and modeling results show the 

same trend, i.e., the oxygen permeation flux increases with enhancing the air pressure 

difference, thus promoting an increased driving force for oxygen permeation. 

Experimentally, when the air pressure difference increases from 0.5 bar to 3.0 bar, the O2 

concentration on the permeate side almost doubles from 30 % to 55 % and the O2 

permeation rates rise from 0.5 mL/cm2.min to 2.2 mL/cm2.min.  
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Figure 4.3  O2 permeation rate, O2-enriched air production rate and O2 concentration 

versus the pressure difference between the two sides of a BCFZ membrane 

at 950 oC. Air flow rate: feed side = 100 mL/min; permeate side = 10 

mL/min, membrane surface area = 3.50 cm2.  

 

Accordingly, the production rate of O2-enriched air increases from 3.3 mL/cm2.min to 5.0 

mL/cm2.min. The developed simple reduced 1D-model and the derived mass transfer 
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parameters for the hollow fiber agree very well with the experimental data set for the 

investigated parameter range of the given pressure difference. It should be pointed out that 

silicone rubber as the most often commercially used polymeric membrane with 25 µm 

thickness shows an O2 permeation flux of ~0.11 mL/cm2.min.bar with an O2 concentration 

of 35 % under the pressure difference of 9.0 bar [11]. However, the perovskite hollow 

fiber membrane with the thickness of around 180 µm can give an O2 concentration higher 

than 38 % with a production rate of 3.7 mL/cm2.min applying only a pressure difference 

of 1.0 bar. 

In Fig. 4.4 the axial oxygen concentration profiles for the O2-enriched air on the core side 

are illustrated as a function of the hollow fiber length for three selected pressure 

differences. As an example it demonstrates the approach of modeling. The tubular 

permeation set-up constitutes an open system of multiple molar fluxes (shell and core 

side) coupled over the oxygen flux through the membrane. Thus, the oxygen flux, Jo2, 

depends on the oxygen concentration and/or oxygen partial pressures on the sweep and 

shell sides, and this on each axial position. Based on the boundary conditions the oxygen 

flux, Jo2, and the next corresponding oxygen concentrations are calculated, which result in 

the new oxygen flux. Thus, the given axial profiles were obtained. The estimated outlet 

concentrations as integral values correspond with the experimental data given in Fig. 4.3. 

As shown in Figure 4.4, an increasing pressure on the shell side (pressurized air) results in 

a higher driving force for the mass transfer and in an increasing slope of the axial 

concentration profile of oxygen. After half length of the hollow fiber the change or the 

increase of the concentration of oxygen is negligible. Thus, for the given pressure 

differences, the membrane can be shortened to achieve the same outlet concentrations. On 

the other hand, the length of 16 cm is also suitable to work at higher pressure differences 

to increase the oxygen concentration on the permeate side (core side). The latter aspect is 

investigated in more detail in chapter “Evaluation of permeation performance in a broader 

range of operation parameters”. 
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Figure 4.4  Axial profiles of the calculated O2 concentration versus hollow fiber length 

for three selected pressure differences at 950 oC. The following conditions 

were assumed: air flow rate: feed side = 100 mL/min; permeate side = 10 

mL/min, membrane surface area = 3.50 cm2 [4]. 

 

Fig. 4.5 shows the experimental and simulated oxygen permeation rate, O2-enriched air 

production rate and oxygen concentration versus temperature under a fixed pressure 

difference of 1.5 bar. As expected, the oxygen permeation rate increases with increasing 

temperature, which lead to the increase of the production rate of O2-enriched air and 

oxygen concentration on the permeate side. In the temperature range studied, the oxygen 

concentration always maintains at a relative high level (> 30 %). The simulated results 

predict the same trend as the experiments, though the discrepancy between the simulated 

and experimental results is slightly higher at low temperatures. This discrepancy, also 

obtained in Fig. 4.2, may be attributed to the assumption that oxygen permeation flux is 

only determined by the diffusion in the membrane bulk. In fact, the surface exchange of 

oxygen on the membrane surface may play an important role on the oxygen permeation at 
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lower temperatures. Nevertheless, the simulated results are in good accordance with the 

experimental results. 
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Figure 4.5  O2 permeation rate, O2-enriched air production rate and O2 concentration 

versus temperatures under a fixed pressure difference of 1.5 bar. Air flow 

rate: feed side = 100 mL/min; permeate side = 10 mL/min, membrane 

surface area = 3.50 cm2.  

 

Fig. 4.6 shows the O2 permeation rate, O2-enriched air production rate and O2 

concentration as a function of air flow rate on the permeate side under an air pressure 

difference of 1.5 bar at 875 oC. It was previously found that the O2 permeation rate 

increases with increasing flow rate of He used on the permeate side as a sweep gas [12]. 

The reason is that the oxygen partial pressure (or oxygen concentration) on the permeate 

side decreases with increasing the He flow rate. As shown in Fig. 4.6, the oxygen 

concentration decreases significantly with increasing the air flow rate on permeate side. 

This leads to an increase of the O2 permeation rate with increasing the air flow rate on the 

permeate side. Accordingly, the O2-enriched air production rate increases. From the 
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simulated result it can be seen that when the air flow rate is ~25 mL/min on the permeate 

side there is a good compromise where the oxygen concentration reaches ~35% with the 

O2-enriched air production rate of ~9.0 mL/cm2.min. From Fig. 4.6, it was also found that 

various oxygen concentrations required for the different industry processes can be 

obtained by adjusting the air flow rate on the permeate side. The experimental data could 

be sufficiently described also for various air flow rates. 
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Figure 4.6  O2 permeation rate, O2-enriched air production rate and O2 concentration 

versus air flow rate on the permeate side under a fixed pressure difference 

of 1.5 bar at 875 oC. Air flow rate: feed side = 100 mL/min, membrane 

surface area = 3.50 cm2.  
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4.4 Stability 
 

20 years after the pioneering paper of Teraoka et al. [13] who first reported the oxygen 

permeation through a perovskite membrane based on La1-xAxCo1-yFeyO3-δ,  still no 

industrial applications exist although the perovskite membranes are promising to apply in 

the field of chemical processing, including partial oxidation of natural gas to syngas [14-

17], oxidative coupling of methane to value-added products such as ethane/ethylene [18-

21], selective oxidation of hydrocarbons [22-24] and power generation [25, 26]. This lack 

of applicability is mainly due to the long-time stability problems of perovskites, especially 

at low oxygen partial pressure such as under the syngas atmospheres [27-29]. A further 

problem is the poor operational safety of such systems. E.g. in POM reaction, in case of a 

membrane leak air and methane/syngas mix at 800 °C which obviously causes serious 

trouble if not handled properly. However, these stability and operational safety problems 

are not relevant in the proposed O2-enrichement process because both sides of the 

perovskite membranes are exposed to an oxidizing atmosphere (air). As expected, the 

perovskite membranes exhibit an excellent stability as shown in Fig. 4.7. The perovskite 

membrane was operated steadily for more than 800 hours at 875 oC under a constant 

pressure difference of 1.5 bar. During the long-time operation, the O2 concentration in the 

O2-enriched air reaches around 42 % with an O2 permeation rate of ~ 1.0 mL/cm2.min and 

an O2-enriched air production rate of ~ 4.0 mL/cm2.min. It should be pointed out that we 

voluntarily stopped the long-term testing although the perovskite membrane was still 

working after 800 hours.  
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Figure 4.7  Long-time stability of perovskite hollow fiber for the production of O2-

enriched air. Air flow rate: feed side = 100 mL/min; permeate side = 10 

mL/min, membrane surface area = 3.50 cm2, pressure difference = 1.5 bar, 

T = 875 oC. 

 

XRD was used to characterize the perovskite structure of the hollow fiber membrane 

before and after 800 hours operation, as shown in Fig. 4.8. No difference between the 

fresh and spent membrane and no carbonate were observed. This means that the structure 

is stable during the long time operation. Quantitative analysis of the SEM - EDXS element 

maps of the spent hollow fiber after 800 hours operation (Fig. 4.9) shows that no 

significant element segregation was observed on the both membrane surfaces and the bulk. 

This analysis of the hollow fiber membrane before and after the experiment confirmed that 

the perovskite hollow fiber membrane is stable. 
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Figure 4.8  XRD patterns of the fresh and spent perovskite hollow fiber membranes. 

(a): fresh membrane; (b): spent membrane after 800 hours. 
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Figure 4.9  SEM-EDXS element maps for the spent fiber after 800 hours. 
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4.5 Conclusions 
 

Gastight BCFZ hollow fiber membranes have been prepared at the IGB in Stuttgart by 

phase inversion spinning followed by sintering. The prepared BCFZ hollow fiber 

membranes were employed for high temperature O2-enrichment. The O2 concentration 

reached in the experiments was approximately 36 %. The O2-enriched air production rate 

was 8.0 mL/min.cm2 at 875 oC using a moderate total pressure difference of 1.5 bar. 

Higher O2 concentrations in the O2-enriched air and production rates required for different 

industrial processes appear to be achievable by controlling the operational parameters such 

as temperature, total pressure difference and gas flow rates. A mathematical model was 

developed by C. Hamel at the University of Magdeburg to simulate the oxygen 

enrichment achievable using hollow fiber membranes. The modelling results are in good 

agreement with experimental data. Based on the validated model of the air separation 

process, the mass transfer properties of the membrane were calculated in a broad 

parameter range. The highest achievable amount of oxygen enrichment of ca. 68 % was 

estimated for a temperature of 950 °C, a pressure difference of 10 bar and a flow rate of 10 

mL/min and 150 mL/min on the permeate and retentat sides, respectively. The BCFZ 

perovskite hollow fiber membrane was steadily operated for more than 800 h for oxygen 

enrichment without any fracture. XRD and SEM-EDXS element maps of the spent hollow 

fiber membrane show that no structure change and no significant element segregation 

were observed. The long-time stability found in our experiments indicates that the 

perovskite membrane of the type investigated has the potential to replace the current O2-

enrichment system for high temperature applications. 

 

4.6 Notation 
 

outletOC ,2
   oxygen concentration at the outlet on the core side, % 

inletOC ,2
   fed oxygen concentration in air, % 

Deff    effective diffusion coefficient, m²/h.barn 
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D∝                 preexponential factor, m²/h.barn  

EA    activation energy, kJ/mol 

Fair, inlet   fed air flow rate on the shell side, mL/min 

Foutlet  O2-enriched air flow rate of the outlet on the shell side, mL/min 

i   component index 

j   reaction index 

2OJ    oxygen permeation flux, mL/cm2.min 

iJ    flux of component i through hollow fiber, mol/m2.s 

L    effective membrane length, m 

catm    mass catalyst, kg 

M   number of reactions 
ss
in     molar flow rate of component i on the shell side, mol/s 

ss
totn    total molar flow rate of component i on the shell side, mol/s 

cs
in    molar flow rate of component i on the core side, mol/s 

cs
totn    total molar flow rate of component i on the core side, mol/s 

N   number of components 
cs

OP
2

    oxygen partial pressure on the core side, bar 

cs
totP     total pressure on the core side, bar  

ss
OP

2
    oxygen partial pressure on the shell side, bar 

ss
totP     total pressure on the shell side, bar 

r   radial coordinate, m 

r1    inner radius of the hollow fiber membrane, mm 

r2    outer radius of the hollow fiber membrane, mm 

r    reaction rate, mol/kg.s  

R    radius of the ceramic tube as the shell, cm  

ROEA    O2-enriched air production rate, mL/ cm2.min 

S     effective membrane surface area, cm2 
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t    the thickness of the hollow fiber, mm 

Bulkρ    density of catalyst bed, kg/m³ 

z   axial coordinate, m 
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5 POM in a perovskite hollow fiber membrane reactor 
 

The perovskite mixed conducting membrane made from the composition BaCoxFeyZrzO3-δ 

(BCFZ) in a hollow fiber geometry was used to construct a membrane reactor for the 

POM to syngas (CO + H2) and possible reaction pathways in the hollow fiber membrane 

reactor were deduced. In the membrane reactor without catalyst filling, the product gas 

contained mainly unreacted CH4 and O2 together with a few percent of CO2. After packing 

sufficient Ni-based catalyst around and behind the hollow fiber membrane, almost 

exclusively syngas (CO + H2) was observed as product.  

Fig. 5.1 shows a schematic diagram of the membrane reactor used in this study. The two 

ends of the hollow fiber were coated by Au paste, and after sintering at 950 oC a dense Au 

film was obtained. Therefore, such Au-coated hollow fibers can be sealed at room 

temperature and the uncoated part can be kept in the middle of the oven ensuring 

isothermal conditions. As standard condition, 150 mL/min air was fed to the core side and 

a mixture of CH4 and He was fed to the shell side of the fiber. Different catalyst 

arrangements were studied (Fig. 5.1). In the configuration A, no catalyst was used. In the 

configuration B, a commercial Ni-based steam reforming (SR) catalyst* (Süd-Chemie) 

was coated on the outer surface of the hollow fiber perovskite membrane, in the 

configuration C the catalyst was packed only around the hollow fiber membrane and in the 

configuration D, the Ni-based SR catalyst was packed around and behind the hollow fiber 

membrane.  

 

 

 

 

 

 

 
                                                 
* Because of several pending WO Patents the composition of the SR catalyst can not be given. 
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Configuration A Configuration B 

 
Configuration C Configuration D 

 
 

Figure 5.1  Schematic diagram of different types of catalyst arrangements in BCFZ 

hollow fiber membrane reactors for POM. 
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5.1 POM reaction in a hollow fiber membrane reactor without 

catalyst 

 

The BCFZ hollow fiber membrane was adopted for the construction of a membrane 

reactor for studying the POM reaction, since it had the highest so far known steady-state 

oxygen permeation rate at high temperatures. Fig. 5.2 shows that only CO2 rather than 

other carbon-containing products (CO and C2-hydrocarbons) were observed when the 

BCFZ perovskite hollow fiber membrane is used for methane conversion without catalyst 

at 875 °C (Configuration A).  
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Figure 5.2  Catalytic performance of the POM in the BCFZ hollow fiber membrane 

reactor without reforming catalyst. Air flow rate on the shell side: 150 

mL/min, the total flow rate on the core side: 30 mL/min, CH4 

concentration: 10 – 50 vol. %, membrane surface area: 3.3 cm2, T = 875 oC. 

 

Under standard experimental conditions, a large amount of un-reacted gaseous oxygen 

was observed at the outlet of the membrane reactor besides non-consumed methane. For 

elongated contact times, this CH4/O2 mixture would react in a gas phase combustion to 
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CO2 and H2O. Therefore, it is reasonably to use a suitable catalyst, which will catalyse the 

methane oxidation by gas-phase oxygen. 

Similar results were reported by Balachandran et al. who found that in an SrFeCo0.5Ox 

tubular membrane reactor (membrane surface area 8 cm2) in the absence of a reforming 

catalyst, the permeated oxygen reacted with methane, yielding CO2 and H2O [1]. The 

presence of CO2, H2O, CH4, and O2 were also reported by Tsai et al. in the effluent of a 

La0.2Ba0.8Fe0.8Co0.2O3-δ disc-shaped membrane reactor (membrane surface area 0.28 cm2) 

without catalyst [2]. 

 

5.2 POM reaction in a modified hollow fiber membrane reactor 

with reforming catalyst layer 
 

The Ni-based SR catalyst was coated on the outer surface of the hollow fiber perovskite 

membrane (Configuration B in Fig. 5.1). The modified hollow fiber membrane was 

characterized by field emission scanning electron microscopy and the micrographs are 

shown in Fig. 5.3. From the examination of the cross-section, a uniform and very thin 

catalyst layer is coated on the surface of the hollow fiber membrane. The micrograph of 

the coated hollow fiber membrane shows a catalyst layer of about 1 - 2 µm thickness.   
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Figure 5.3  SEM images of the modified hollow fiber membrane with reforming 

catalyst layer 

 

Fig. 5.4 shows the methane conversion, CO and CO2 selectivity as well as the oxygen 

permeation flux as a function of the methane flux on the shell side when the air flow rate 

on the core side was 150 mL/min, and the total flow rate on the shell side was varied from 

10 mL/min to 50 mL/min. A higher oxygen flux through the hollow fiber membrane 

compared to the uncoated fiber is obtained. It is clear that the oxygen permeation rate 

increased dramatically by changing from He to CH4 on the permeating side due to the 

gradient of the oxygen partial pressure. The CH4 conversion is much higher than that in 

the absence of the catalyst. However, the CO selectivity is very low which indicates that 

the methane reforming with the produced CO2 and H2O was not complete. More catalyst 

is needed and in the following section a certain amount of catalyst will be packed around 

the un-coated fiber for CH4 reforming with the produced CO2 and H2O. 

Catalyst Hollow fiber 
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Figure 5.4  Catalytic performance of the POM in the modified BCFZ hollow fiber 

membrane reactor with reforming catalyst according the configuration B in 

Fig. 6.1. Air flow rate on the core side: 150 mL/min, the total flow rate of 

50 vol. % methane on the shell side: 10 - 50 mL/min, T = 875 oC.  

 

The BCFZ hollow fiber membrane survived only 5 hours when operated as a reactor for 

the POM reaction at 875 oC. It is well known that the BCFZ material is not stable in the 

CO2 atmosphere [3]. Therefore it can be assumed that the structure of the hollow fiber 

membrane was destroyed by BaCO3 formation because of the high amount of the CO2.  

 

 

 

 

 



5 Partial oxidation of methane to syngas 

 96

5.3 POM reaction in a hollow fiber membrane reactor with 

reforming catalyst 
 

The Ni-based SR catalyst was applied as a packed bed (~0.16 – 0.4 µm particle size) 

around the perovskite fiber (shell side) (Configuration C in Fig. 5.1). In Fig. 5.5 it can be 

seen that the oxygen permeation flux in configuration C is much higher than that without 

Ni-catalyst. Consequently, the CH4 conversion is considerably higher than that in the 

absence of the catalyst (Fig. 5.2). However, the CO selectivity is lower than 82 % and 

decreases with increasing temperature and considerable amounts of un-reacted methane 

were also found. At 925 oC, both CO2 and CO selectivities reach 50 % with only 70 % 

CH4 conversion. This experimental finding indicates that the methane reforming with the 

produced CO2 and H2O was not complete. It seems that an additional amount of catalyst 

should be packed behind the un-coated fiber where the CH4 reforming with produced CO2 

and H2O can take place. 
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Figure 5.5  Catalytic performance of the POM in the BCFZ hollow fiber membrane 

reactor with reforming catalyst according the configuration C in Fig. 5.1. 

Air flow rate on the core side: 150 mL/min, the total flow rate of 50 vol. % 

methane on the shell side: 20 mL/min, T = 825 – 925 oC.  
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Fig. 5.6 shows the catalytic performance of the POM in the BCFZ perovskite hollow fiber 

membrane reactor with Ni-based SR catalyst around and behind the fiber (configuration 

D). A considerable improvement can be stated and CO and H2 became the main reaction 

products (Fig. 5.6). At 925 oC, the CO selectivity is above 97 % with about 96 % CH4 

conversion and the H2/CO ratio is around 2.0 as expected for the POM. The temperature 

increase in the CH4 conversion is ascribed to the temperature-accelerated oxygen 

permeation flux. The changes in the catalytic performance of the membrane reactor in the 

presence of the Ni-based SR catalyst can be explained as follows. The perovskite 

membrane permeates oxygen from the air side to the hydrocarbon side. Since the 

membrane has very low intrinsic activity for methane oxidation (Fig. 5.2), methane 

conversion to syngas is concluded to occur exclusively over the Ni-based SR catalyst. 
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Figure 5.6  Catalytic performance of the POM in the BCFZ hollow fiber membrane 

reactor with reforming catalyst according the configuration D in Fig. 5.1. 

Air flow rate on the core side: 150 mL/min, the total flow rate of 50 vol. % 

methane on the shell side: 20 mL/min, T = 825 – 925 oC.  
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5.4 Possible pathways of reactions for the POM to syngas in a 

hollow fiber membrane reactor with reforming catalyst 

 

Dissanayake et al. [4] studied a Ni-based catalyst for the POM in the conventional packed 

bed reactor. They found that the catalyst bed consists of three different regions. The first 

of these, contacting the initial CH4/O2/He feed mixture, is NiAl2O4, which has only 

moderate activity for complete oxidation of methane to CO2 and H2O. The second region 

is NiO + Al2O3, over which complete oxidation of methane to CO2 occurs, resulting in a 

strong temperature increase in this section of the bed. As a result of complete consumption 

of O2 in the second region, the third portion of the catalyst bed consists of a reduced 

Ni/Al2O3 phase. Formation of the CO and H2 products, corresponding to the 

thermodynamic equilibrium at the catalyst bed temperature, occurs in this final region, via 

reforming reactions of CH4 with the CO2 and H2O produced during the complete oxidation 

reaction over the NiO/Al2O3 phase. Taking into account the recently reviewed data on 

syngas production over various catalytic materials [5], CO and H2 are suggested to be 

formed via indirect methane oxidation, i.e. the total methane oxidation to CO2 and H2O 

followed by steam and dry reforming of methane. 

According to the reaction mechanism for the POM using the Ni-based catalyst obtained in 

the conventional packed bed reactor [4, 5], Fig. 5.7 summarizes possible reaction 

pathways for the POM to syngas in the hollow fiber membrane reactor. In the case of no 

catalyst, i.e., reaction zone 1 in Fig. 5.7, to some extend the combustion of methane takes 

place. 

24 2OCH + → OHCO 22 2+                             (5.1) 

In the reaction zone 2 in Fig. 6.6, a part of methane reacts with oxygen that diffused or 

spilt over the catalyst from the membrane surface to form CO2 and H2O as reaction (1). 

The produced CO2 and H2O in reaction zones 1 and 2 will be converted with CH4 to give 

CO and H2 by dry reforming and steam reforming, respectively. 

224 22 HCOCOCH +→+                               (5.2) 

224 3HCOOHCH +→+                               (5.3) 
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Some of the CO and H2 formed by the reforming reactions (6.2) and (6.3) are oxidized 

with oxygen on the membrane surface to produce CO2 and H2O possibly by the following 

reactions, resulting in the decrease of the CO selectivity as found in Fig. 5.5 and resulting 

in an increase of the oxygen permeation flux [6]: 
−− +→+ eCOOCO 22

2                               (5.4) 
−− +→+ eOHOH 22

2
2                               (5.5) 

After packing further catalyst behind the permeation zone of the fiber, the reforming of the 

un-reacted CH4 with CO2 and H2O produced by reactions (5.4) and (5.5) takes place to 

give CO and H2 following the reactions (5.2) and (5.3) in reaction zone 3. Therefore, high 

CO selectivity with high CH4 conversion was obtained when the configuration D was 

used. These experiments show that the so-called partial oxidation of methane to syngas in 

the dense perovskite membrane reactor is possibly first a total oxidation followed by 

reforming steps. H2O and CO2 become reduced by un-reacted CH4 by SR and dry 

reforming giving CO and H2 using especially the established Ni-based SR catalysts. 

Consequently, the synthesis gas formation from methane in a mixed conducting perovskite 

membrane reactor is called an “oxidation-reforming process” [7]. 
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Figure 5.7  Possible reaction pathways in the BCFZ perovskite hollow fiber membrane 

reactor.   

 

5.5 Stability of the hollow fiber membrane during the POM 

reaction 
 

Ideal materials for the membrane reactor must have sufficient mechanical strength and 

maintain chemical stability at the desired oxygen permeation flux under the reductive 

reaction condition. Although recent reports have described various perovskite-type 

materials that could be used as ceramic membrane reactors for POM, only a few materials 

can be operated steadily for a long time under the syngas reaction condition. Balachandran 

et al [1, 8, 9] investigated POM to produce syngas by using tubular La0.2Sr0.8Co0.2Fe0.8O3-δ 

(LSCF) and SrCo0.8Fe0.2O3-δ (SCF) membrane reactors. They found that the membranes 
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broke into several pieces within a few minutes after methane was introduced to the 

membrane reactor at 850 oC. Pei et al. [10] studied the failure mechanism of ceramic 

membrane reactors on POM to syngas. They observed two types of fractures occurring on 

the SCF membrane reactor. The first type occurred shortly after the reaction started and 

the second type often occurred days after the reaction. They also found the first fracture 

was the consequence of oxygen gradient across the membrane from reaction side to the air 

side, which causes a little mismatch inside the membrane, leading to fracture; the second 

type of fracture was the result of a chemical decomposition in the reductive atmosphere. 

No fractures occurred for the Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) membrane reactor during the 

POM reaction [11]. BSCF membrane exhibits better phase stability than the SCF because 

proper substitution of strontium ion in SCF with barium ion with a larger radium can 

increase the tolerate factor (near to 1) [12].  

The perovskite BaCoxFeyZrzO3-δ [13] is an excellent oxygen permeable membrane 

material. This material possesses the following properties: (1) a high oxygen permeation 

flux; (2) a stable lattice structure under high concentrations of hydrogen, carbon monoxide 

and carbon dioxide; (3) lower steady operation temperature. In order to apply successfully 

these materials in the fabrication of MIECM reactors for POM reaction, the structural 

stability of BCFZ materials under reducing atmospheres was also investigated [13].   

The long-term stability of the BCFZ disc membrane reactor for the partial oxidation of 

methane shows that during more than 2200 h running, the oxygen permeation flux was 

stable, similar to the stable reaction performance of CH4 conversion, CO selectivity and 

the ratio of H2 to CO. This long-term stable operation showed that the BCFZ membrane 

reactor was more stable than any other mixed conducting membrane reactors for the POM 

reaction published so far, except for that constructed from Sr1.7La0.3Ga0.6Fe1.4O5.15 (SLGF) 

[14]. But it was well known that not only the gallium element was more expensive but 

also its oxygen permeation flux was too low to be suitable for practical application. These 

two shortcomings made SLGF not suitable for constructing a reactor for the POM 

reaction, when compared with the new material of BCFZ developed by J. Tong et al. [15]. 

For stability measurements two catalyst arrangements were studied. Fig. 5.8 shows a 

schematic diagram of the membrane reactor used in this study. 150 mL/min air was fed to 
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the core side and a mixture of CH4 and He was fed to the shell side. The two ends of the 

hollow fiber were coated by Au paste and sintered at 950 oC with obtaining of a dense Au 

film. Thus the uncoated part of the hollow fiber membrane is kept in the middle of the 

oven where the temperature is constant. In the configuration D, the Ni-based SR catalyst 

was packed around and behind the hollow fiber membrane. In the configuration E, the 

catalyst was packed only behind the hollow fiber membrane.  

D E 

 
 

Figure 5.8  Schematic diagram of different types of catalyst arrangement for stability 

of BCFZ hollow fiber membrane during POM. Case D: catalyst around and 

behind fiber, case E: catalyst behind fiber. 

 

Fig. 5.9 shows the stability measurements for the POM reaction in the hollow fiber 

membrane reactor for both configurations at 875 oC. CO and H2 became the main reaction 

products. A very high CH4 conversion and CO selectivity are obtained and the H2/CO 

ratio is 2.0 as expected for the POM reaction. For both cases the hollow fiber membranes 

are broken after 9 h and 35 h, respectively. It is important to note that the fractures 

occurred on the BCFZ hollow fiber membrane reactor during the POM reaction process, 
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after few hours in comparison to BCFZ disc membrane reactor, which is very stable for a 

long time [15]. 

 

Case A 

 

 

 

 

 

 

 

 

 

Case B 

 

 

 

 

 

 

 

 

 

Figure 5.9  Stability of the fiber during POM reaction according the configurations in 

Fig. 5.8. Air flow rate on the core side: 150 mL/min, the total flow rate of 

50 vol. % methane on the shell side: 20 mL/min, membrane area: 0.43 cm2, 

T = 875 oC, Ni-based SR catalyst = 0.6 g (Case D) and Ni-based SR 

catalyst = 0.4 g (Case E). 
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The hollow fiber membranes used for the POM reaction with packed Ni-based SR catalyst 

are broken after few hours. Fig. 5.10 shows where the membranes are broken during the 

POM reaction. As it can be seen from the Fig. 5.10 that in case D the hollow fiber 

membrane was broken in the middle, where the membrane contacted with the Ni-based SR 

catalyst. In the case E the dense Au film was destroyed and the catalyst contacted with the 

membrane which resulted in a fiber destruction.  

 
Figure 5.10  Schematic diagrams of destroyed BCFZ hollow fiber membrane reactors 

with different catalyst arrangement. Case D: catalyst around and behind 

fiber, case E: catalyst behind fiber.  

 

The destroyed hollow fiber membrane after POM reaction was studied by SEM and EDXS 

analysis. Fig. 5.11 shows the micrographs of the spent hollow fiber perovskite membranes 

used for partial oxidation of methane to syngas. As it is shown in the Fig. 5.11 the fiber 

was broken in the middle. The fiber contacted with the Ni-based SR catalyst became 

amorphous and porous, especially on its outer surface. From the whole wall thickness of 

D EBroke here
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the hollow fiber membrane, only 40 µm remained dense, the rest of the wall became 

porous.  

 

 
 

Figure 5.11  SEM micrographs of the cross section of the spent membrane. Case D: 

catalyst around and behind the fiber. 

 

Consequently, the spent hollow fiber membrane was examined by EDXS analysis. As it 

can be seen from the Fig. 5.12 the spectrum of the outer and middle parts of the cross 

section of the porous fiber contains Al. The Al diffusion into the wall of the perovskite 

fiber may be a reason that the fiber is broken in this case. No Al content in the spectrum of 

the inner intact part (40 µm) of the hollow fiber membrane was observed. 

 

110 µm 

40 µm 

D 
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Figure 5.12  EDXS spectra of the cross section of the spent membrane. Case D: the 

catalyst around and behind the fiber. 

 

Avoiding the catalyst contacting with the fiber can improve the stability of the membrane 

for the POM reaction (Fig. 5.13). Therefore in case E the catalyst was positioned behind 

the oxygen permeation zone and in this catalyst region the fiber was coated with Au. The 

uncoated fiber was found to be dense after the POM reaction, but the part of fiber coated 

with Au paste contacting the Ni-based SR catalyst was unexpectedly destroyed. The 

protect Au film was destroyed and the catalyst contacted and reacted directly with the 

fiber. The fiber became porous after reacting with the Ni-based SR catalyst as in the case 

D. It is concluded that perfect protecting layers are necessary. 

 

Al
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Figure 5.13  SEM micrographs of the cross section of the spent membrane. Case E: 

catalyst behind the fiber. 

 

5.6 Conclusions 
 

The POM to syngas was investigated at 825 – 925 oC using a BCFZ hollow fiber 

perovskite membrane reactor with/without Ni-based SR catalyst. Possible reaction 

pathways for POM were proposed. It was implied that CO and H2 were formed by 

reforming reactions of methane with CO2 and H2O in the hollow fiber membrane reactor 

on the catalyst bed. Additional catalyst was needed packed behind the hollow fiber 

membrane to ensure that the reforming reactions take place completely. A suitable 

location of the Ni-based steam reforming (SR) catalyst seems to be behind the fiber. 

Avoiding catalyst contacting with fiber can improve the stability. The Ni-based SR 

E 
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catalyst is capable of exhibiting good activity towards the oxidation of methane to 

synthesis gas.  

The oxygen permeation flux of the hollow fiber membrane in POM reaction was very high 

compared to helium as sweep gas (He/Air). The BCFZ material is not stable in CO2 

atmosphere and the decomposition of the perovskite material due to BaCO3 formation is 

believed as failure mechanism of the membrane reactor after 35 h of measurements. 

Another failure mechanism is the destruction of the perovskite by Al from the catalyst.  

 

5.7 Bibliography 
 

[1] U. Balachandran, J. T. Dusek, P. S. Maiya, B. Ma, R. L. Mieville, M. S. Kleefisch, 

C. A. Udovich, Catal. Today 36 (1997) 265. 

[2] C. Y. Tsai, A. G. Dixon, Y. H. Ma, W. R. Moser, M. R. Pascucci, J. Am. Ceram. 

Soc. 81 (1998) 1437. 

[3] J. Tong, W. Yang, B. Zhu, R. Cai, J. Membr. Sci. 203 (2002) 175. 

[4] D. Dissanayake, M. P. Rosynek, K. C. C. Kharas, J. H. Lunsford, J. Catal. 132 

(1991) 117. 

[5] E. V. Kondratenko, M. Baerns, Encyclopedia of Catalysis, I. Horvyth (Ed.), John 

Wiley and Sons, 6 (2003) 424. 

[6] M. Ikeguchi, T. Mimura, Y. Sekine, E. Kikuchi, M. Matsukata, Appl. Catal. Gen. 

A 290 (2005) 212. 

[7] C. S. Chen, S. J. Feng, S. Ran, D. C. Zhu, W. Liu, H. J. M. Bouwmeester, Angew. 

Chem. Int. Ed. 42 (2003) 5196. 

[8] U. Balachandran, J. T. Dusek, S. M. Sweeney, R. B. Poeppel, R. L. Mieville, P. S. 

Maiya, M. S. Kleefisch, S. Pei, T. P. Kobylinski, C. A. Udovich and A. C. Bose, 

Am. Ceram. Soc. Bull. 74 (1995) 71. 

[9] U. Balachandran, J. T. Dusek, R. L. Mieville, R. B. Poeppel, M. S. Kleefisch, S. 

Pei, T. P. Kobylinski, C. A. Udovich and A. C. Bose, Appl. Catal. A 133 (1995) 

19. 

[10] S. Pei, M. S. Kleefisch, T. P. Kobylinski, J. Faber, C. A. Udovich, V. Zhang-



5 Partial oxidation of methane to syngas 

 109

McCoy, B. Dabrowski and U. Balachandran, Catal. Lett. 30 (1995) 201. 

[11] H. Wang, Y. Cong, W. Yang, Cat. Today 82 (2003) 157. 

[12] Z. P. Shao, H. Dong, G. X. Xiong, Y. Cong, W. S. Yang, J. Membr. Sci. 172 

(2001) 177. 

[13] J. H. Tong, W. S. Yang, B. C. Zhu, R. Cai, J. Membr. Sci. 203 (2002) 175. 

[14] M. Schwartz, J. H. White, A. F. Sammells, Int. Patent, WO 99/21649 (1999). 

[15] J. H. Tong, W. S. Yang, R. Cai, B. C. Zhu, L. W. Lin, Catal. Lett. 78 (1-4) (2002) 

129. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 Selective oxidation of ethane 

 110

 

6 Selective oxidations of C2H6 over a MIECM perovskite 

─ a TAP and membrane reactors study 

 

The objective of this chapter is to study the oxidative activation of light hydrocarbons, 

especially the oxidative dehydrogenation of ethane to ethylene (ODE), and the partial 

oxidation of methane to syngas (POM), in a perovskite MIEC membrane reactor. The first 

results of the ODE in the BCFZ perovskite hollow fiber membrane reactor are included. 

The temporal analysis of products (TAP) technique [1] was employed to understand the 

possible reaction mechanisms on the membrane surface. As described in Section 2.6.1 the 

TAP measurements were made by Dr. E. Kondratenko. The perovskite MIEC membrane 

as well as the catalyst used in the TAP were made from BaCoxFeyZrzO3-δ (BCFZ). The 

BCFZ membrane was used in a hollow fiber geometry, which was developed in the 

CaMeRa (Catalytic Membrane Reactor) project under the auspices of ConNeCat 

(Competence Network Catalysis) of the German BMBF. 

Although the principle of the catalytic membrane reactor for the ODE is easily understood, 

in practice the concept is much more complex. Three aspects of membrane reactors and 

their relationship to each other have to be taken into account: (1) Oxygen permeation rates 

through the hollow fiber with respect to the feed gas and sweep gas; (2) the intrinsic 

catalytic activity for the ODE of the membrane material; (3) the process parameters, which 

have a huge effect on the ODE performance and thus determine the ethane conversion, 

and ethylene selectivity. The relationships between the reaction rate, the flow rate, and the 

permeation rate through the hollow fiber membrane are very important in optimizing the 

process conditions. 

 

 

 

 

 



6 Selective oxidation of ethane 

 111

6.1 Test of the catalytic activity of BCFZ in the ODE  
 

For a catalytic membrane reactor, the membrane material should not only possess 

sufficient oxygen permeability but also necessary catalytic activity for the ODE. 

Therefore, the catalytic activity of BCFZ for the ODE was investigated using pelletized 

BCFZ powder in a co-feed packed bed reactor. A quartz tube (Φ = 6 mm) was employed 

as the reactor. 0.6 g 30-60 meshes BCFZ particles were packed in the quartz reactor as the 

catalyst. Ethane and air were co-fed to the reactor. The mole ratio of ethane to air is 2:5, 

i.e. the mole ratio of ethane to oxygen is 2:1, which is the stoichiometric ratio of the ODE. 

The total flow rate of ethane and air is 40 mL/min. All the oxygen was consumed in the 

ODE. Ethane conversion and ethylene selectivity as a function of temperature are shown 

in Fig. 6.1. When the reaction temperature increased from 700 oC to 850 oC, ethane 

conversion increases from 55 % to 98 % and ethylene selectivity decreases from 54 % to 

24 %. With increasing temperature, CO becomes the main product. These results 

demonstrate that the BCFZ shows moderate catalytic activity in the ODE reaction at lower 

temperatures.  

The BCFZ catalytic activity of the ODE under a reducing environment was also tested in a 

quartz reactor (Φ = 6 mm) with 0.6 g 30 - 60 meshes BCFZ particles in the periodically 

operated mode. Air was introduced to oxidize the BCFZ for 30 minutes, then helium 

instead of air swept the reactor until no nitrogen was detected; finally, a mixture of 10 % 

ethane and 90 % helium with the flow rate of 40 mL/min was introduced into the reactor. 

At 700 oC, the ethylene selectivity remained unchanged at around 88 %, although the 

ethane conversion is low (~3 %) and decreases with time. Compared to a reducing 

environment, lower ethylene selectivity was achieved in the present of O2 in the co-feed 

packed bed reactor, which was due to the reaction between the gaseous oxygen and the 

produced ethylene. 
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Figure 6.1  Catalytic activity of BCFZ for the oxidative dehydrogenation of ethane to 

ethylene in a co-feed packed bed reactor. 

 

6.2 C2H6 and CH4 oxidation over oxidized BCFZ catalyst under 

transient vacuum conditions in the TAP reactor 
 

Transient analysis of C2H6 and CH4 interactions with a perovskite BCFZ formula was 

performed in the TAP-2 reactor [2, 3]. CO2 and C2H6 were detected at the reactor outlet 

upon pulsing a CH4:Ne = 1:1 mixture over the pre-oxidized BCFZ perovskite at 875 °C. 

The formation of other possible products (C3H8, C3H6, CO, H2CO, CH3OH, C2H4 and 

C2H2, H2) in significant amounts is unlikely. CO2 was the main carbon-containing product. 

The presence of C2H6 in the reaction products indicates that the pre-oxidized BCFZ 

perovskite catalyses the oxidative coupling of methane (OCM). For this reaction, it is well 

accepted that C2H6 is formed via coupling of two methyl radicals [4]. It has to be 

particularly stressed that all the reaction products were formed by CH4 oxidation with 

lattice oxygen of the perovskite, because gas-phase oxygen was not present in the CH4 

pulse. 
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CO2 was also the main carbon-containing reaction product detected at the reactor outlet, 

when a C2H6:Ne = 1:1 mixture was pulsed over the pre-oxidized BCFZ perovskite at 800 

°C. Additionally to CO2, C2H4 was observed in the gas phase, however, as a minor 

product. Again as in the case of CH4 oxidation, lattice oxygen of the pre-oxidized 

perovskite is responsible for C2H6 oxidation and respective products formation. In order to 

derive mechanistic insights into CH4 and C2H6 oxidation, transient responses of the 

reaction products and the feed components were normalized by their height. Such 

normalization enables to better compare the shape and the appearance order of the feed 

components and the respective products. These parameters contain information on 

chemical and transport phenomena occurring in the reactor [1]. Figs. 6.2a and 6.2b 

exemplify the height-normalized transient responses of C2H6 and CH4 pulsing over the 

pre-oxidized BCFZ perovskite, respectively. 

The transient response of C2H6 is shifted to longer times and slightly broader than that of 

CH4, because C2H6 is a product of CH4 oxidation (Fig. 6.2a). The transient response of 

CH4 obtained in the CH4 pulse experiments has the sharpest shape, which indicates CH4 

oxidation. In contrast to the transient responses of both hydrocarbons, the transient 

response of CO2 is very broad and shifted to considerably longer times. Based on the 

appearance order of these transient responses, their shapes and the high ratio of CO2/C2H6, 

it is concluded that CH4 is primary converted to C2H6 followed by consecutive oxidation 

of C2H6 to CO2. This conclusion agrees with the well-accepted mechanistic concept of the 

OCM reaction over various oxide catalytic materials [4]. However, from the present data it 

not possible to unambiguously exclude CO2 formation via direct CH4 oxidation (e.g. 

oxidation of methyl radicals), since shifting of the CO2 transient and its very broad shape 

as compared to that of C2H6 is also attributed to the strong adsorption of CO2 over BaO 

followed by its slow desorption. Taking into account the results in Fig. 6.4, CO2 formation 

via C2H6 oxidation at high degrees of CH4 conversion should prevail over that from CH4. 

The formation of BaCO3 may explain the poor (ca. 70 %) carbon balance in the CH4 pulse 

experiments. Coke deposition cannot be also excluded. Similar to the experiments with 

CH4, the results of C2H6 pulse experiments shown in Fig. 6.2b can be interpreted in the 

following way. C2H6 is oxidatively dehydrogenated by lattice oxygen of the oxidized 
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BCFZ perovskite yielding C2H4 as primary product. CO2 is formed via consecutive 

oxidation of C2H4. 
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Figure 6.2  Height-normalized transient responses of C2H6, CH4 and CO2 obtained 

during pulsing of a CH4/Ne = 1 mixture (a) and height-normalized transient 

responses of C2H6, C2H4 and CO2 obtained during pulsing of a C2H6/Ne = 1 

mixture (b) over the oxidized BCFZ perovskite (m = 0.140 g) at 800 °C (for 

C2H6) and 875 oC (for CH4) in the TAP reactor.  

 

Fig. 6.3 shows changes of C2H6 and CH4 conversion upon increasing in the amount of 

lattice oxygen removed by hydrocarbons from the catalyst. The C2H6 conversion decreases 

stronger than the CH4 conversion. This may be due to the fact that more lattice oxygen 

species are needed for the formation of CO2 from C2H6 as compared to CH4. Not only 

hydrocarbon conversions but also product distribution are changed with progressive 

hydrocarbon pulsing.  
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Figure 6.3  C2H6 and CH4 conversions vs. amount of removed oxygen (pulsing of a 

C2H6/Ne = 1 mixture at 800 oC and pulsing of a CH4/Ne = 1 mixture at 875 
oC). 

 

As shown in Fig. 6.4 the ratios of S(C2H4)/S(CO2) in the C2H6 interactions and 

S(C2H6)/S(CO2) in the CH4 interactions increase with an increase in the amount of oxygen 

removed. With other words, selective reactions (oxidative ethane dehydrogenation to 

ethylene or oxidative coupling of methane) are favored by increased degree of catalyst 

reduction. This can be easily understood by taking into consideration the difference in the 

stoichiomentry of selective and non-selective reaction pathways of C2H6 and CH4 

oxidations. Only one lattice oxygen is need for C2H6 oxidation to C2H4 or for CH4 

oxidation to C2H6, while four or seven lattice oxygen species are required for CO2 

formation from C2H6 or CH4, respectively. The low initial S(C2H4)/S(CO2) and 

S(C2H6)/S(CO2) ratios are due to very high concentration of lattice oxygen in comparison 

to the amount of hydrocarbon (C2H6 or CH4) pulsed. With increasing number of the 

hydrocarbon pulsed the concentration of lattice oxygen decreases due to its removal via 

interactions with ethane or methane. Therefore, active lattice oxygen species are expected 
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to become more isolated on the catalyst surface. In turn the non-selective secondary 

oxidation of hydrocarbon to CO2 is inhibited, because for CO2 formation more than one 

neighboring lattice oxygen is needed. 
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Figure 6.4  Ratios of S(C2H4)/S(CO2) and S(C2H6)/S(CO2) vs. the amount of removed 

oxygen during pulsing of a CH4/Ne = 1 mixture at 875 oC and a C2H6/Ne = 

1 mixture at 800 oC, respectively. 

 

6.3 Ethane and methane oxidative transformations in the BCFZ 

membrane reactor 
 

In order to avoid the gaseous oxygen contacting directly with hydorcarbons, the BCFZ 

membrane was employed as the reactor for the oxidative transformations. In this way, the 

hydrocarbon and the oxygen were separately fed to the reactor, so the CO and ethylene 

selectivity could be increased. Furthermore, the oxygen can be continuously supplied 

through the membrane in the form of oxygen ions, so higher hydrocarbon conversion can 
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be expected as it was demonstrated in the previous papers using BSCF disc and tubular 

membrane reactors [5-8].  

Only CO2 rather than the other carbon-containing products (CO and C2-hydrocarbons) was 

observed when the BCFZ membrane is used for methane oxidation at 875 °C (Fig. 5.2). 

This finding is in agreement with the results presented in section 6.2. However, in contrast 

to the transient experiments, methane conversion was very low (< 3.0 %) in the membrane 

reactor. This is due to the low surface area of the hollow fibre membrane and due to the 

higher ratio of fed methane to the amount of catalyst as compared to the transient 

experiments in section 6.2. A large amount of un-reacted gaseous oxygen was found at the 

outlet of the membrane reactor besides the non-consumed methane. Therefore, it is 

reasonably to use a suitable catalyst, which will selectively catalyse methane oxidation 

with gas-phase oxygen. In the present study, the classical Ni-based steam reforming (SR) 

catalyst was packed on the membrane surface of the core side. Fig. 5.6 shows the catalytic 

performance of the BCFZ hollow fiber membrane reactor in the presence of the Ni-based 

catalyst at different temperatures. The degree of methane conversion is considerably 

higher than that in the absence of the catalyst (Fig. 5.2). Moreover, CO and H2 became the 

main reaction products (Fig. 5.6). The CO selectivity is above 95 % and the H2/CO ratio is 

around 2.0 as expected for the POM reaction. The temperature increase in methane 

conversion is ascribed to the temperature-accelerated oxygen permeation flux. The 

changes in catalytic performance of the membrane reactor in the presence of the Ni-based 

catalyst can be explained as follows. The perovskite membrane permeates oxygen from 

the air side to the hydrocarbon side. Since the membrane has very low intrinsic activity for 

methane oxidation (Fig. 5.2), methane conversion to syngas is concluded to occur over the 

Ni-based catalyst. The present results do not provide mechanistic insights into syngas 

formation. However, taking into account the recently reviewed data on syngas production 

over various catalytic materials [9], CO and H2 are suggested to be formed via indirect 

methane oxidation, i.e. total methane oxidation to CO2 and H2O followed by steam and 

dry reforming of methane. 

From the transient experiments described in section 6.2, it can be concluded that the 

formation of ethylene from ethane occurs via oxidative dehydrogenation of ethane by 
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lattice oxygen of the BCFZ perovskite. Carbon dioxide is preferentially formed via 

consecutive ethylene oxidation. Besides, Fig. 5.6 demonstrates that the ratio of 

S(C2H4)/S(CO2) increases strongly with an increase in the amount of removed lattice 

oxygen. This means, that the higher the ratio of ethane to oxygen available for C2H6 

dehydrogenation, the higher C2H4 selectivity can be expected. 

Consequently, for a high ethylene selectivity the ratio of the fed ethane to the permeated 

oxygen should not be too low. Fig. 6.5 compares catalytic performance of the BCFZ 

perovskite in the ODE at different temperatures. When reaction temperature increases 

from 700 oC to 800 oC, ethane conversion and ethylene selectivity increases from 21 % to 

63 % and from 59 % to 64 %, respectively. This is unusual for the ODE reaction, since 

ethylene selectivity typically decreases with an increase in ethane conversion. Taking into 

account these facts, it can be concluded that ethylene selectivity depends stronger on 

temperature than on ethane conversion. This may be due to higher activation energy of 

ethylene formation as compared to that of its further oxidation to CO2. However, the 

ethylene selectivity decreases sharply from 60 % to 40 % but the ethane conversion 

increases from 60 % to 90 % with further increase in temperature from 800 °C to 850 °C 

(Fig. 6.5). This strong decrease may be explained as follows. Upon increasing the degree 

of ethane conversion from 60 % to 90 %, ethane concentration decreases 4 times. The 

unreacted ethane decreases from 1.6 mL/min to 0.4 mL/min. Since ethane and ethylene 

compete for lattice oxygen of the perovskite membrane, ethylene combustion starts to 

overcome over ethylene formation from ethane due to a strong decrease in the ethane 

concentration. In addition, the negative influence of oxygen partial pressure on ethylene 

selectivity cannot be excluded.  
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Figure 6.5  The effect of temperature on the ethane conversion and product selectivity 

of the ODE in the BCFZ hollow fiber membrane reactor. 40 mL/min a 

mixture of 10 % ethane and 90 % He on the sweep side, air flow rate on the 

shell side: 300 mL/min, membrane surface area: 3.52 cm2. 

 

As discussed in section 6.2, CO2 formation in the ODE reaction is suggested to occur via 

consecutive oxidation of primarily formed C2H4. Therefore, in order to achieve high 

ethylene selectivities, short contact times of ethane with the perovskite surface are 

recommended. Fig. 6.6 shows the effect of the flow rate of a mixture of 90% He diluted 

ethane on the ethane conversion and product selectivities of the ODE in the BCFZ hollow 

fiber membrane reactor at 800 oC. As expected, ethylene selectivity increases from 64 % 

to 68 % with increasing the total flow rate of He and ethane from 40 mL/min to 80 

mL/min, i.e. decreasing the contact time from 0.078 s to 0.039 s. This means that the 

contact time influences the ethylene selectivity; a shorter contact time gives higher 

ethylene selectivity. The concept of short contact times is in accordance with recent 

literatures on the oxidative dehydrogenation of ethane [9-11]. Ethylene yields up to 56 % 

at 71 % selectivity were achieved in autothermal oxidative dehydrogenations at short 

contact times of ca. 45 ms using catalysts as ignitors [10]. Schmidt and co-workers [11, 

12] have also used the concept of very short contact times in the ms-range on noble metal 

coated monoliths at 920 °C to obtain ethylene yields of 53 - 57 % with selectivities 

ranging from 66 % to 70 %. 
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Figure 6.6  The effect of flow rate of a mixture of 90 % He diluted ethane on the ethane 

conversion and product selectivity of the ODE in the BCFZ perowskite 

hollow fiber membrane reactor at 800 oC. Membrane surface area: 3.52 

cm2, air flow rate on the shell side: 300 mL/min. 

 

The idea of short contact times was also proven in the present study by performing the 

ODE reaction in reactors of different membrane geometries: i) the BCFZ disc (Fig. 6.7a) 

and ii) hollow fiber membrane reactors (Fig. 6.7b). As shown in Fig. 6.7, in the disc 

membrane reactor, the ethane reacted with lattice oxygen to form ethylene, and then the 

produced ethylene can leave the reactor in time. Therefore, the deep oxidation of ethylene 

can be largely avoided in the disc membrane reactor. However, for the hollow fiber 

membrane reactor, once ethylene was formed, it would react again with lattice oxygen or 

gaseous oxygen molecular to form COx. In the hollow fiber membrane reactor the contact 

time is 0.078 s, however, in the disk membrane reactor the contact time is 0.0023 s 

assuming 1 mm thickness above the membrane as the reaction zone. This means that the 

contact time in the disk membrane is much shorter than that in the hollow fiber reactor, 

which results in the higher ethylene selectivity in the disk membrane reactor. 
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Figure 6.7  Comparison of the ODE in the disc membrane reactor (a) and in the hollow 

fiber membrane reactor (b). 

 

For comparable degrees of ethane conversion (ca. 90 %), the ethylene selectivity in the 

disc membrane reactor was ca. 80 % as compared to 40 % only in the hollow fibre 

membrane (Table 6.1). More CO2 was produced in the hollow fiber membrane reactor 

than in the disc membrane reactor. This means that the deeper oxidation of 

ethane/ethylene can not be avoided in the hollow fiber membrane reactor. High ethylene 

yield and selectivity obtained in the disc membrane reactor are comparable with those 

reported in literature. Wang et al. [5, 6] reported an ethylene selectivity of 80 % at an 

ethane conversion of 84 % at 800 °C using planar and tubular oxygen permeable mixed 

ion and electron-conducting membranes made of Ba0.5Sr0.5Co0.8Fe0.2O3-δ. On the same 

material an ethylene yield of 66 % was obtained at 807 oC and could be improved up to 76 

% after Pd deposition [7, 8]. An ethylene yield of 56 % with an ethylene selectivity of 80 

% was achieved in a dense tubular ceramic membrane reactor made of Bi1.5Y0.3SmO3 at 

875 oC [13]. 
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Table 6.1  Catalytic performance of BCFZ disc membrane reactor and BCFZ hollow 

fiber membrane reactor at 850 oC 

 
Product Selectivity, % 

Reactor Types C2H6 
Conversion, % C2H4 CH4 CO CO2 

Disc membrane 
reactor 85.2 79.1 10.7 5.4 4.8 

Hollow fiber 
membrane reactor 89.6 39.9 12.1 15.4 32.6 

Membrane surface area of disc membrane and hollow fiber are 0.90 cm2 and 3.52 cm2. 
Feed: 40 mL/min 90 % He diluted ethane on the sweep side, air flow rate on the shell side: 
300 mL/min.  
 

6.4 Mechanistic aspects of hydrocarbon conversion over BCFZ 

perovskite 
 

At temperatures above 650 oC, the thermal dehydrogenation of ethane (TDE) to 

ethylene, 24262 HHCHC +⇔ , is thermodynamically favored. Since the operation 

temperature is up to 850 oC, the ethane conversion through the TDE was of concern. 

However, the ethane conversion is determined by the reaction kinetics and reactor 

conditions. Akin and Lin [13] had estimated the TDE at 850 oC with residence time of 

0.07 – 0.1 s would result in less than 0.2 % ethane conversion based on the available 

kinetic data (reaction order and rate constant) and plug flow reactor model [14]. In the 

hollow fiber membrane reactor presented here, the residence time is changed from 0.04 s 

to 0.1 s, thus the TDE is not significant in the experiments. Actually from the 

experimental finding, it was found ≤ 1 vol. % hydrogen in the product gases. Therefore the 

TDE is not discussed in the following. 

Taking into account the present (sections 6.2 and 6.3) and previous results [15], the 

following mechanistic concept of oxidation of light alkanes (CH4 and C2H6) in the BCFZ 

membrane reactor can be suggested. The hydrocarbons are first in contact with the 

membrane surface where they react with lattice oxygen (O2-) to form the respective 
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radicals (Eq. 6.2). The later reaction can occur either on the catalyst surface (Eq. 6.3) or in 

the gas phase (Eq. 6.4). 

surfg HCHC )()( 6262 ⇔                           (6.1) 

oooo
Osurfsurf

x
Osurf VOHHChOHC 2

1
5262 )()()( ++⇒++                  (6.2) 

OHHCOHHC gsurfsurf 24252 )()()( +⇒+o                                       (6.3) 

HHCHC gsurf +⇒ )()( 4252
o                                                    (6.4) 

where oo
OV  are oxygen vacancies and oh is electron holes. 

It is well accepted that the alkane activation (Eq. 6.2) is the rate limiting reaction step, 

which determines product formation. Since reactions (6.3) and (6.4) are a fast irreversible 

reaction, ethylene production rate is determined by reactions (6.1) and (6.2). If the reaction 

(6.2) can not consume all of the lattice oxygen (Oo
x) completely or the reaction rate of 

Reaction (6.2) is not fast enough to consume the lattice oxygen in time, the formation of 

gaseous oxygen can occur: 
ooo

O
x

O VOhO 242 2 +⇒+                               (6.5) 

Therefore, the lattice oxygen (Oo
x) on the membrane surface exposed to the hydrocarbons 

is competitively consumed by two reactions: hydrocarbon activation (Eq. 6.2) and the 

recombination of oxygen ions (Eq. 6.5). Since the activation energy of the latter reaction is 

higher than that of the other reactions, the formation of gas-phase oxygen is accelerated by 

temperature. Therefore, non-selective hydrocarbon oxidation to CO2 is expected to 

increase with temperature due to increased contribution of gas-phase reactions between O2 

and methyl or ethyl radicals. In this case selectivity to high value products drops as shown 

in Fig. 6.6 and previously reported by some of the authors [13]. Taking into account this 

discussion, it is easily to understand complete CH4 oxidation to CO2 in the BCFZ 

membrane reactor (Fig. 5.2). Due to the strong C-H bond in CH4 molecule, CH4 oxidation 

is performed at temperatures above 850 °C, where formation of gas-phase oxygen takes 

place and, therefore, non-selective oxidation is preferential. The contribution of gas-phase 

reactions to the CH4 conversion is minimised under transient conditions of the TAP 

reactor due to high vacuum and low pulse size. As result, C2H6 formation from CH4 was 

observed in transient experiments (Figs. 6.2a and 6.4). In the case of ethane because the 
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gaseous oxygen produced in reaction 5 could further react with ethylene or ethane to form 

COx, thus decreasing the ethylene selectivity. So the ethylene selectivity is determined by 

the competition between reactions 6.1 and 6.5. As shown in Fig. 6.6, the ethylene 

selectivity increased with raising the temperature when it is lower than 800 oC. However, 

when the temperature is higher than 800 oC, the ethylene selectivity decreased with 

increasing temperature. This result indicates that the recombination rate of lattice oxygen 

(reaction 6.5) increases faster than the ethane activation (reaction 6.1) at temperatures 

higher than 800 oC.  

It is worthy to note that the oxygen permeation flux through the hollow fiber membrane 

during the ODE increases from 0.6 mL/cm2.min to 1.8 mL/cm2.min when the 

temperatures increase from 700  oC to 850 oC and no gaseous oxygen was found 

downstream corresponding to a total consumption of oxygen across the hollow fiber 

membrane. However, the oxygen permeation flux improved only slightly compared with 

that using pure helium as sweep gas. This finding is similar to the previous results of the 

ODE on disc and tubular membranes made of BSCF [5, 6] but different from the results of 

the partial oxidation of methane to syngas (POM). The oxygen permeation flux through 

the membrane during the POM is 5 – 10 times larger of that using pure helium as sweep 

gas [16, 17]. The reason is that the POM is so fast that the lattice oxygen (Oo
x) can be 

consumed by reaction with methane once methane reaches the surface of the membrane in 

the present of a POM catalyst. As a result, the oxygen partial pressure on the membrane 

surface decreased sharply to a very low value (10-17 bar) and leads to a large enhancement 

of the oxygen permeation flux. From the comparison of the oxygen permeation flux in the 

ODE and POM, it follows that the ODE reaction rate is not fast enough to consume the 

lattice oxygen (Oo
x) so that it could be recombined to gaseous oxygen and released to gas 

phase.  

 

6.6 Conclusions 
 

From mechanistic transient experiments in the TAP reactor, it is concluded that lattice 

oxygen of the BCFZ perovskite is responsible for the activation of methane and ethane 
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yielding C2H6, CO2 and C2H4. C2H6 and C2H4 are the primary products of CH4 and C2H6 

oxidation, respectively. CO2 is formed via consecutive oxidation of these primary 

products. Direct oxidation of alkanes (CH4 and C2H6) cannot be completely excluded. This 

reaction pathway may dominate at low conversions of fed alkanes.  

The degree of catalyst reduction in the CH4 or C2H6 pulse experiments was found to 

influence the reaction selectivity. The lower the degree of catalyst reduction (oxidized 

sample), the higher is the formation of CO2. Consequently, for the selective oxidation of 

methane and ethane in the BCFZ perovskite membrane reactor the ratio of the permeated 

oxygen to the fed alkane should be fine-tuned. In contrast to ethane oxidation, methane 

oxidation in the BCFZ perovskite membrane reactor results in CO2 formation only. This is 

ascribed to the fact that due to high stability of methane molecule, methane oxidation is 

carried out at high temperatures, where the ratio of methane to oxygen is too low for 

selective methane oxidation. Methane could be selectively converted to syngas (H2 and 

CO) in the BCFZ perovskite membrane reactor in the presence of additional Ni-based 

catalyst. 

Ethane oxidation in the BCFZ perovskite membrane reactor yields ethylene. The ODE 

catalytic activity of BCFZ was first tested both in the conventional co-feed packed bed 

reactor and the periodically operated shifted reactor, which shows that the BCFZ 

possesses good catalytic activity for ODE. The first results of the ODE using the BCFZ 

hollow fiber membrane are reported giving ethylene yields ≤ 40 % at 800 oC. To get 

higher ethylene yields on the hollow fiber geometry, the reaction conditions of the ODE 

have to be optimized. Comparing the ODE using the BCFZ disc and hollow fiber 

membrane reactors, the ethylene selectivity on the disc membrane reactor was found to be 

≤ 80 % whereas using the hollow fiber membrane ethylene selectivity ≤ 68 % was found. 

The ethylene selectivity is influenced by the reactor geometry. Disc membrane reactor 

transforms the ethane more selectively as compared to the hollow fiber. This is due to a 

shorter residence time in the former reactor. Obviously, in the case of the hollow fiber 

membrane the deeper oxidation of ethylene to CO and CO2 could not be avoided. 
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7 Conclusions and outlook 
 

Dense ceramic membranes with high oxygen ionic and electronic conductivities are of 

increasing interest as economical, clean and efficient membrane material to produce 

oxygen or oxygen-enriched air by separating oxygen from air or other oxygen containing 

gases. Furthermore, these oxygen transporting materials are worldwide intensively tested 

in catalytic membrane reactors for partial oxidations. Different membrane geometries are 

used but it is shown in this Ph.D work that the hollow fiber geometry can provide the 

highest oxygen permeation flux so far reported as well as the largest membrane area per 

unit packing volume when assembled to a membrane permeator or membrane reactor. The 

successful development of perovskite hollow fibers is considered a remarkable step 

towards the industrial application of oxygen transporting membranes in air separation and 

catalytic membrane reactors for the partial oxidation of methane to syngas or for the 

oxidative dehydrogenation of light alkanes to the corresponding olefins. This PhD work 

shows that the hollow fiber membranes are possible candidates for an industrial 

applications. 

First, the BaCoxFeyZrzO3-δ (BCFZ) hollow fibers prepared at the Fraunhofer Institute for 

Interfacial Engineering and Biotechnology (IGB), Stuttgart were used to construct a 

membrane permeator for oxygen separation. The green and the sintered hollow fiber 

perovskite membranes showed an asymmetric structure due to shearing forces in the 

spinning process. Because of the structured walls, not the whole wall thickness represents 

the permeation length and very high oxygen permeabilities through the hollow fiber 

membranes compared to a disc membrane of the same thickness were obtained. A 

significant shrinkage of the sintered hollow fiber due to the removal of the polymeric 

binders and the sintering of the BCFZ particles was observed. A very high oxygen flux 

was obtained under the air/He gradient which is the highest oxygen permeation flux 

reported in the open literatures so far. The oxygen permeation flux through the hollow 

fiber membrane is stable under the air/He gradient.  
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The novel O2-permeable membrane material with high O2 permeation fluxes and excellent 

thermal and mechanical stability was successfully applied in a hollow fiber configuration 

to prove the possibility of the production of O2-enriched air in a perovskite membrane 

permeator. O2-enriched air with 30 – 60 vol. % oxygen can be used in several industrial 

processes, for example in the ammonia synthesis, the Claus process and the Fluid 

Catalytic Cracking catalyst regeneration, the efficient utilization of methane in high-

temperature furnaces or cement kilns. Different degrees of O2–enrichment in air and 

different production rates could be achieved by controlling the operational parameters 

such as temperature, oxygen partial pressure difference and gas flow rates. As an example, 

for more than 820 h oxygen-enriched air with 41.5 vol. % O2 could be produced. 

The high oxygen flux renders the BCFZ material in hollow fiber geometry for mixed ionic 

and electronic conducting membranes in corresponding membrane reactors for the 

industrial oxidative activation of light hydrocarbons, especially the partial oxidation of 

methane to syngas (POM), and the oxidative dehydrogenation of ethane to ethylene 

(ODE) in a perovskite MIEC membrane reactor. The BCFZ hollow fiber perovskite 

membrane used for the POM showed that in the membrane reactor without catalyst filling 

the product gas contained mainly unreacted CH4 and O2 and a few percent of CO2. 

Therefore, a commercial Ni-based steam reforming (SR) catalyst was used. To obtain 

ideal conditions for the POM reaction in the membrane reactor, different catalyst locations 

were tried. When the SR catalyst is packed around and behind the hollow fiber membrane, 

a very high CO selectivity was observed. It is supposed that CO and H2 were formed by 

reforming reactions of methane with CO2 and H2O. The oxygen permeation flux of the 

hollow fiber membrane in the POM reaction was very high compared to helium as sweep 

gas since methane can reduce the oxygen concentration deeper than a sweep gas can do it. 

A problem is that the BCFZ material is not stable in a CO2 containing atmosphere and as a 

result the material decomposes due to BaCO3 formation after a few hours of the POM 

reaction. Another failure mechanism is the destruction of the perovskite by Al from the 

catalyst which enters the perovskite via a solid state diffusion. Avoiding catalyst 

contacting the fiber and finding a suitable catalyst location could improve the POM 

performance and stability. It was found that the catalyst location should be behind the 
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fiber. The Ni-based SR catalyst exhibits good activity towards the transformation of 

methane to synthesis gas.  

The results of the ODE in the BCFZ perovskite hollow fiber membrane reactor were 

compared with those of a BCFZ disc membrane. The ethylene selectivity on the disc 

membrane reactor was found to be higher than that on the hollow fiber membrane. The 

ethylene selectivity is influenced by the reactor geometry. The disc membrane reactor 

transforms the ethane more selectively due to a shorter residence time as compared to the 

hollow fiber. In the case of the hollow fiber membrane the deeper oxidation of ethylene to 

CO and CO2 could not be avoided due to repeated contacts with the inner wall of the 

hollow fiber. The hollow fiber membrane can not be successfully used for high ODE 

performances.  

This Ph.D work shows that the hollow fiber perovskite membranes can not only be used 

for simple oxygen separation, oxygen-enriched air production, but also for delivering 

oxygen for partial oxidation of methane to syngas. In the future the stability of the hollow 

fiber membrane should be studied under POM conditions. For fundamental studies under 

lab-scale conditions, at first the fiber coated by an Au-paste can be surrounded by an 

alumina tube to avoid the contact between the Au layer and the Ni-based steam reforming 

catalyst.  

However, before an industrial application, several problems have to be solved. One of the 

major problems is the construction of an industrial modul with some m2 of membrane 

surface. The materials challenge is the gas-tight and long-term stable junction of the 

ceramic perowskite hollow fibers with a stainless steel housing.  
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