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Abbreviations 
 

Amino acids and nucleic acids are abbreviated as proposed by the IUPAC-IUB Joint 

Commission on Biochemical Nomenclature (JCBN).  

 

% (w/v) weight per volume 

% (v/v)  volume per volume 

aa  amino acid 

AdV  adenovirus 

AmpR  ampicillin resistance 

app.  approximately 

ATP  adenosinetriphosphate 

BAC  bacterial artificial chromosome 

BHV  bovine herpesvirus 

bla  β-lactamase (AmpR) 

bp  basepair(s) 

cat  chloramphenicol acetyl transferase (CmR) 

CFP  cyan fluorescent protein 

CmR  chloramphenicol resistance 

(H)CMV (human) cytomegalovirus 

CPE  cytopathic effect 

Da  Dalton 

dATP  desoxyadenosinetriphosphate 

dCTP  desoxycytidinetriphosphate 

dGTP  desoxyguanosinetriphosphate 

DIG  dioxygenin 

DMSO  dimethyl sulfoxide 

DNA   desoxyribonucleic acid 

DR  direct repeat 

dsDNA  double-stranded DNA 

dTTP  desoxythymidinetriphosphate 

e.g.  exempli gratia (for example) 

EBV  Epstein-Barr virus 

ER  endoplasmic reticulum 

FCS  fetal calf serum 

FITC  fluorescein thioisocyanate 

FP  fluorescent protein 
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GFP   green fluorescent protein 

gX   glycoprotein X 

HHV  human herpesvirus  

HIV  human immunodeficiency virus 

HSV  herpes simplex virus 

ICP  infected cell protein 

i.e.  id est (that is to say) 

KanR  kanamycin resistance 

kbp  kilobasepair(s) 

kDa  Kilodalton 

KSHV  Kaposi's sarcoma-associated herpesvirus 

LRSC  lissamine-rhodamine sulfonyl chloride 

Mbp  megabasepair(s) 

MOI  multiplicity of infection 

MT  microtubule(s) 

MTOC  microtubule organising centre 

MWapp  apparent molecular weight 

nt  nucleotide(s) 

ORF  open reading frame 

PCR  polymerase chain reaction 

pfu  plaque forming unit(s) 

p.i.  post infection 

PrV  pseudorabies virus 

(m)RFP (monomeric) red fluorescent protein 

RNA  ribonucleic acid 

RT  room temperature 

SmR  streptomycin resistance 

ssDNA  single-stranded DNA 

SV40  simian virus 40 

TetR  tetracyclin resistance 

Tm  melting temperature 

tk  thymidine kinase 

UL  unique long region 

US  unique short region 

VP  viral protein 

wt  wildtype 

YFP  yellow fluorescent protein 



Abstract 

 8

Abstract 

Herpes simplex virus type 1 (HSV1) is a human pathogen, infects oral and perioral epithelia 

and establishes a life-long latency in the enervating neurons. Reactivation leads to recurrent infections 

of skin or mucosa.  

In this study, the fully sequenced HSV1 strain 17+ was cloned as a bacterial artificial 

chromosome (BAC), providing a powerful tool to study virus-host interactions during the viral life cycle 

using HSV1 mutants constructed in E. coli by bacterial genetics. 

Genes for the replication in E. coli as well as a eukaryotic β-galactosidase expression cassette 

and a single loxP site were introduced into the thymidine kinase locus (UL23) by homologous 

recombination in mammalian cells. After transferring circular replication intermediates into E. coli the 

BAC pHSV1(17+)blue was isolated. Restriction analyses revealed the integrity of the cloned viral 

genomes. 

Next, a eukaryotic Cre recombinase expression cassette and a second loxP site were inserted 

into pHSV1(17+)blue in E. coli using the Red-recombination system of bacteriophage λ. After 

transfection of the resulting BAC pHSV1(17+)blueLox into eukaryotes, Cre excised the BAC 

sequences from the viral genome by site specific recombination. The efficiency of viral replication was 

reduced about fivefold in titer compared to HSV1(17+) wildtype. 

The small capsid protein VP26 was N-terminally tagged with a fluorescent protein. However, 

most fluorescence tagged HSV1 variants constructed in E. coli by BAC mutagenesis were severely 

attenuated in growth or not viable. Marker rescue experiments and sequencing revealed that in a 

previously constructed HSV1-K26GFP, the four N-terminal amino acids of VP26 had been deleted. 

Fluorescence tagged VP26 BAC-mutants that were subsequently constructed without these amino 

acids were infectious and only slightly attenuated. Moreover, in immunofluorescence microscopy the 

fluorescence signal strongly colocalised with capsids, and GFPVP26 and RFPVP26 viruses were 

efficiently targeted to the nuclei of infected cells.  

Furthermore the viral membrane protein gD was C-terminally labelled with a fluorescent 

protein, so the fate of capsids and the viral envelope during entry, assembly and egress of HSV1 can 

be monitored by fluorescence microscopy. The HSV1-BAC pHSV1(17+)blueLox will serve for the 

construction of specific HSV1 mutants for the study of virus-host interactions. 

 

Keywords: herpes simplex virus, BAC mutagenesis, fluorescent proteins 
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Zusammenfassung 

Das Humanpathogen Herpes-Simplex-Virus Typ 1 (HSV1) infiziert epitheliale Zellen der 

Mundschleimhaut oder der umgebenden Haut und ruft in den enervierenden Neuronen eine 

lebenslange latente Infektion hervor. Bei zeitweiser Reaktivierung kommt es zu erneuten 

Entzündungen der Mundgegend oder der Mundschleimhäute.  

Im Rahmen dieser Doktorarbeit wurde der vollständig sequenzierte HSV1 Stamm 17+ als 

künstliches Bakterienchromosom (bacterial artificial chromosome, BAC) kloniert. So können 

Virusmutanten durch Anwendung bakteriengenetischer Methoden in E. coli konstruiert werden, um 

Virus-Wirts-Interaktionen im viralen Lebenszyklus zu untersuchen. Die für die Replikation des BACs in 

E. coli notwendigen Gene, eine eukaryotische Expressionskassette für β-Galaktosidase und eine loxP 

Sequenz wurden in den Genlocus der viralen Thymidinkinase UL23 durch homologe Rekombination in 

Säugerzellen eingebracht. Nach Transfer eines zirkulären Replikationsintermediates in E. coli wurde 

das BAC pHSV1(17+)blue isoliert. Restriktionsanalysen zeigten, dass das HSV1 Genom fast fehlerfrei 

kloniert wurde.  

Eine eukaryotische Expressionskassette für die Rekombinase Cre und eine zweite loxP-

Sequenz wurden mittels des Red-Rekombinationssystems des Phagen λ in pHSV1(17+)blue insertiert. 

Nach Transfektion des resultierenden BACs pHSV1(17+)blueLox in Säugerzellen schnitt Cre die von 

loxP Sequenzen flankierten BAC-Bereiche aus dem Virusgenom. Verglichen mit dem HSV1(17+) 

Wildtyp, hat durch die BAC-Klonierung eine fünffache Reduktion des Titers stattgefunden.  

Das Kapsidprotein VP26 wurde N-terminal mit einem fluoreszierenden Protein fusioniert. 

Allerdings waren fast alle BAC-Mutanten mit dieser Modifikation nicht infektiös oder stark attenuiert. 

Durch marker rescue Experimente und Sequenzierung der schon existenten Mutante HSV1-K26GFP, 

wurde die Deletion der ersten vier N-terminalen Aminosäuren von VP26 festgestellt. Daraufhin 

konstruierte BAC-Viren mit einem GFPVP26 oder RFPVP26 Fusionsprotein ohne diese vier 

Aminosäuren waren infektiös und nur leicht attenuiert. Das Fluoreszenzsignal kolokalisierte mit einer 

Kapsidmarkierung, und die fluoreszenzmarkierten HSV1-Kapside wurden nach Zelleintritt effektiv zum 

Zellkern transportiert.  

Darüberhinaus wurde das virale Membranprotein gD C-terminal fluoreszenzmarkiert, um die 

Lokalisation der Kapside und der viralen Hüllproteine während Zelleintritt, Zusammenbau und 

Ausschleusung fluoreszenzmikroskopisch zu untersuchen. Das HSV1-BAC pHSV1(17+)blueLox kann 

als Grundlage der Konstruktion spezifischer HSV1 Mutanten zur Untersuchung von Virus-Wirts-

Interaktionen dienen. 

 

Schlagworte: Herpes-Simplex-Virus, BAC-Mutagenese, fluoreszierende Proteine 



Introduction 

 10

1. Introduction 

1.1. Herpesviruses 

Within the DNA viruses the Herpesviridae form a large family of more than 130 species 

(Cleator and Klapper, 2004b). Most were found in mammalian hosts, but also in reptiles, 

amphibia and fish herpesviruses have been discovered. The Ostreid herpesvirus 1 is the first 

herpesvirus isolated from an invertebrate, the Pacific oyster (Davison et al., 2005).  

Herpesviruses contain a double-stranded linear DNA genome ranging from 108 to 241 

kbp (Osterrieder et al., 2003) coding for up to 200 proteins, and are enveloped by a lipid 

bilayer membrane (Roizman and Knipe, 2001). Virion and genome size are amongst the 

largest of all viruses, together with the poxviruses. They are nevertheless exceeded by the 

1.2 Mbp genome of the 400 nm large Mimivirus of amoebae (La Scola et al., 2003; Raoult et 

al., 2004). All herpesviruses establish a life-long latent infection in their host and the majority 

of humans will harbour at least one of the so far eight known human herpesvirus species in a 

latent state (Table 1).  

The Herpesviridae are divided into the subfamilies of Alpha-, Beta- and 

Gammaherpesvirinae, according to their host range, tissue tropism and replication kinetics. 

The subfamiliy Alphaherpesvirinae is characterised by a variable host range, short 

reproductive cycles and rapid and efficient spread in cell culture, causing fulminant 

cytopathic effect (CPE; Cleator and Klapper, 2004b; Roizman and Knipe, 2001). The human 

alphaherpesviruses herpes simplex virus type 1 and 2 cause the well-known mouth and 

genital herpes, and varicella-zoster virus chickenpox and herpes zoster. Human 

Cytomegalovirus (HCMV), human herpesviruses 6A and 6B as well as human herpesvirus 7 

are the human betaherpesviruses. HCMV is the most common and a severe threat in 

immunocompromised patients, where it causes pneumonia, retinitis or hepatitis. Moreover, 

when acquired via a congenital route, neurological disorders of the newborn can occur. The 

human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated 

herpesvirus (KSHV) are associated with the induction of malignant neoplasia in 

immunocompromised patients, e.g. during the late phase of an human immunodeficiency 

virus 1 (HIV1) infection manifesting as the acquired immunodeficiency syndrome (AIDS). A 

primary infection with EBV causing infectious mononucleosis is prominent as “kissing 

disease” or “Pfeiffer’s syndrome”. 
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Common Name Abbreviation Systematic Name Subfamily 

Herpes simplex virus type 1 HSV1 Human Herpesvirus 1 α 

Herpes simplex virus type 2 HSV2 Human Herpesvirus 2 α 

Varicella-zoster virus VZV Human Herpesvirus 3 α 

Epstein-Barr virus EBV Human Herpesvirus 4 γ 

(Human) Cytomegalovirus (H)CMV Human Herpesvirus 5 β 

Human Herpesvirus 6A/6B HHV6A/6B Human Herpesvirus 6A/6B β 

Human Herpesvirus 7 HHV7 Human Herpesvirus 7 β 

Kaposi's sarcoma-associated herpesvirus KSHV Human Herpesvirus 8 γ 

Table 1: Systematics of human herpesviruses. Taken from Gärtner and Müller-Lantzsch (2002). The common 

names will be further used in this thesis.  

 

1.2. Herpes simplex virus type 1 

1.2.1. Pathology 

The alphaherpesvirus HSV1 leads in most cases to the infection of oral and perioral 

skin and mucosa. The seroprevalence of HSV1 in the German population was about 85% in 

the year 1998 (Hellenbrand et al., 2005). Primary infection usually occurs during childhood 

and can manifest as a gingivo-stomatitis, which is sometimes misinterpreted as “teething”. 

Virus replicates in keratinocytes and epithelial cells and then enters enervating sensory and 

autonomous neorons, in which the virus is then transported retrogradely to the cell nuclei in 

cranial ganglia, very often the trigeminal ganglion (Vrabec and Alford, 2004; Figure 1). There, 

a life-long latent infection is established and only a subset of genes is expressed (Bloom, 

2004). Upon stress or a weakened immunosurveillance, the virus escapes from latency, 

virions assemble and are transported anterogradely to the nerve termini from where a 

recurrent infection of the epithelium occurs. Primary and recurrent infection may be without 

symptoms, but often unpleasant lesions in the oral cavity or in the perioral region occur 

(Cleator and Klapper, 2004a; Wutzler, 2002).  

During the course of a recurrent infection, the virus is spread from host to host by smear 

infection. In immunocompetent individuals, an HSV1 reactivation is rather benign and short-

lasting. However, a systemic HSV1 infection in patients with a compromised immune system 

or HSV1 encephalitis are very severe threats with high mortalities. An infection of the eye 

can lead to keratoconjunctivitis, followed by a clouding of the cornea and ultimately, loss of 

eye sight. HSV1 infection is treated by the topic or systemic application of nucleoside 

analoga such as acyclovir, famcyclovir and valacyclovir. These prodrugs are phosphorylated 

by the viral thymidine kinase UL23 and then inhibit viral DNA replication catalysed by the 
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viral DNA-polymerase UL30. In thymidine kinase-negative HSV1 strains or in Aciclovir-

resistant UL23 mutants, the DNA-polymerase inhibitor Foscarnet can be applied (Cleator and 

Klapper, 2004a; Wutzler, 2002). 

Due to its neurotropism HSV1 is considered a promising vector for human gene therapy 

of neuronal disorders, e.g. Parkinson’s or Alzheimer’s disease as well as a selective agent 

for the treatment of brain tumors. 

 

Figure 1: HSV1 infection of the trigeminal nerve. Drawin

host mainly via the oral and perioral region and enters the

epithelium. After retrograde transport, HSV1 can establis

reactivation, virions are transported anterogradely to the

infection of the epithelium. 

lllaaattteeennncccyyy      

anterograde
rrreeetttrrrooogggrrraaadddeee
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g taken from (Gray, 1918; Fig. 778). HSV1 infects the 

 enervating sensory neurons after amplification in the 

h latency in cell nuclei of the cranial ganglia. Upon 

 initial site of infection, where they cause recurrent 
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1.2.2. Structure 

The HSV1 virion contains about 40 structural virus-encoded proteins, which are 

denominated either according to their molecular weight (e.g. VP1-3, MWapp=300 kDa; VP26, 

MWapp=12 kDa) or named after the position of their respective ORF on the HSV1 genome 

(e.g. UL37, US11; see chapter 1.2.3). Viral glycoproteins have a special nomenclature (e.g. 

gB, gC, gD), and several proteins are named after their function (e.g. vhs, virus-host-shutoff). 

HSV1, as all members of the Herpesviridae family, is an enveloped virus with a virion 

diameter of about 225 nm (Figure 2). The lipid bilayer contains viral glycoproteins 

responsible for host cell binding and entry as well as immunomodulatory functions; they also 

play a role during virion assembly and egress.  

The tegument is a layer of about 20 different proteins inside the virion; for many of 

these the functions are still unclear. Two of the best characterised are VP16 (UL48), a 

transactivator of immediate early viral transcription and UL41, the virus-host-shutoff factor 

(vhs), an RNase which degrades mRNAs and thus brings host protein synthesis to a halt in 

infected cells. Based on assembly studies, the tegument proteins were divided into an outer 

shell, to a major content consisting of VP11/12 (UL46), VP13/14 (UL47), and VP22 (UL49); 

and an inner shell with close contact to the capsid which encompasses VP1-3 (UL36), UL37 

and the protein kinase US3 (Mettenleiter, 2002; Mettenleiter, 2004). The outer tegument 

dissociates after release of the capsid into the cytosol, while inner tegument proteins remain 

attached to the capsid (Granzow et al., 2005; Luxton et al., 2005; Sodeik et al., 1997). The 

two populations of tegument proteins are also separated by detergent lysis of extracellular 

virions in the presence of different salt concentrations (Wolfstein et al., 2006). VP16 (UL48) 

is considered as an adaptor protein between the inner and outer tegument layers, since it 

interacts with members of both, and has an untypical behaviour in the biochemical 

fractionation (Vittone et al., 2005; Wolfstein et al., 2006). Besides from the rather abundant 

proteins mentioned above, many additional minor proteins have been identified in the 

tegument. 

The icosahedral viral capsid embedded in the tegument has a diameter of 125 nm. The 

30 edges and 20 planes of the icosahedron are each built from three hexamers (hexons) of 

the 155 kDa protein VP5 (UL19) (Schrag et al., 1989). 11 vertices are built from VP5 

pentamers (pentons). One vertex is thought to consist of a dodecamer of UL6 and is likely to 

be the portal for DNA packaging and uncoating (Newcomb et al., 2001; Trus et al., 2004). 

This “master portal” may be sealed by the UL25 protein, which is necessary to retain the viral 

DNA inside the capsid (McNab et al., 1998; Ogasawara et al., 2001). The capsomeres are 

linked by trimeric heterocomplexes of VP19c (UL38) and VP23 (UL18) (Trus et al., 1996). 

The small 12 kDa protein VP26 encoded by the UL35 gene decorates the hexons but not the 
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pentons with six copies each (Wingfield et al., 1997; Zhou et al., 1995). Cryo-electron 

microscopy revealed an eccentric position of the capsid inside the tegument (Grünewald et 

al., 2003; Figure 2). 

 

 

 

 

Figure 2: Cryo-Electron micrograph of HSV1. In this three-dimensional reconstruction, the viral envelope is 

depicted in red, the spikes can be assigned to as viral glycoproteins. The tegument (light green) shows an 

amorphous structure in which the capsid (dark green) is embedded in an eccentric position. The hexons and 

pentons, which are linked by the triplex complexes are clearly visible. Picture kindly provided by Kai Grünewald, 

Max-Planck-Institut für Biochemie, Martinsried, Germany (Grünewald et al., 2003). 
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igure 3: Genome arrangement of HSV1. The HSV1 genome contains unique seqences (UL and US) flanked 

y inverted repeats (b and c). The a-sequences are located at the termini and between the long and short region. 

uring genome replication, four isoforms occur with regard to the relative orientation of the UL and US region. 

epending on the enzyme used, these can differ in their restriction pattern (Roizman and Knipe, 2001). 

.2.3. Genome 

Of the several strains of HSV1, strain 17+ (Brown et al., 1973) was the first, whose DNA 

equence was fully sequenced and published (McGeoch et al., 1988; McGeoch et al., 1986; 

cGeoch et al., 1985; Perry and McGeoch, 1988; GenBank accession number X14112). The 

enome comprises 152,261 bp of a single, linear double-stranded DNA coding for more than 

0 open reading frames (Rajcani et al., 2004). The genome is composed of a long and a 

hort region, in which unique sequences (unique long, UL; unique short, US) are flanked by 

nverted repeats (Figure 3). During DNA replication, both genome parts isomerise, so that 

our equimolar isomeric viral DNAs can be isolated from virions (Roizman and Knipe, 2001). 

etween the long and short region and at the genome termini multiple copies of the 

-sequence are arranged, which contains signals for the packaging of viral DNA into capsids. 

nside the capsid the genome is packaged as a single linear molecule (Frenkel and Roizman, 

971), whereas during replication, circular-covalently-closed, concatemeric and even 

ranched species are possible (see 1.3.3). 
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Figure 4: Genomic map of HSV1(17+) Outer ring: ORFs; violet: capsid, black: tegument; yellow: glycoproteins; 

green: DNA-replication; light and dark blue: capsid-maturation and DNA packaging; red and pink: immediate early 

proteins; orange: VP16 (UL48), α-transactivator, virus host shutoff (UL41); Middle ring: transcripts; α: immediate 

early; β: early; γ: late; Inner ring: genome organisation; from the homepage of Dr. Edward Wagner, University of 

California, Irvine, CA, USA; http://www.dbc.uci.edu/~faculty/wagner/index.html. 

. 
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1.3. HSV1 replication 

1.3.1. Attachment and entry 

HSV1 infection commences with docking of the viral glycoproteins gB and gC to 

heparan sulfate moieties of cell surface proteoglycanes (Spear, 2004; Spear et al., 2000; 

Spear and Longnecker, 2003). This reversible attachment is followed by an interaction of the 

glycoprotein gD with a coreceptor. These include HVEM, a TNF-receptor related protein, 

HveC or Nectin-1, a cell-cell adhesion molecule with several Ig-folds involved in the 

formation of synapses and adherens junctions, or specific residues in heparan sulfate 

modified by specific 3-O-sulfotransferases. Recently another human type II membrane 

protein, called B5 was identified as a potential receptor of HSV1 entry (Perez et al., 2005; 

Perez-Romero and Fuller, 2005). While the essential glycoprotein gH can bind to αvβ3 

integrins, the role of this interaction is unclear, but it may trigger signalling events (Parry et 

al., 2005). In many cell types e.g. Vero or Hep-2 cells, the capsid together with the tegument 

enters the cytosol by fusion of the viral envelope with the host cell plasma membrane 

(Sodeik et al., 1997). The viral glycoproteins gB, gH and gL are essential for this process 

(Spear, 2004).  

In some cell types, a productive infection can also be initiated by fusion of the viral 

envelope with an endocytic membrane. Endocytosis of virions has been observed earlier, but 

has been assumed to represent a dead-end route to degradation (Wittels and Spear, 1991). 

HeLa cells and chinese hamster ovary (CHO) cells expressing HSV1 entry receptors are 

entered by HSV1 via an endocytic pathway, which requires acidification of the endosome for 

the release of capsid and tegument into the cytosol (Nicola et al., 2003; Nicola and Straus, 

2004), wheras in C10 murine melanoma cells fusion with the endocytic membrane is pH 

independent (Milne et al., 2005). Human keratinocytes, but not neurons are also productively 

infected by endocytosis (Nicola et al., 2005). 

 

1.3.2. Capsid transport to the nucleus 

To initiate replication, the HSV1 genome is delivered into the nucleus. Due to the high 

viscosity of the cytosol and the molecular crowding of vesicles, organelles and the 

cytoskeleton, mere diffusion cannot be the only means to reach the nucleus (Luby-Phelps, 

2000; Sodeik, 2000), especially in neuronal cells, where capsids overcome macroscopic 

distances from their site of entry to their destination (Enquist et al., 1998; Smith and Enquist, 

2002; Smith et al., 2001).  
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After entry, HSV1 capsids are transported to the cell centre along microtubules (Sodeik 

et al., 1997). In unpolarized cells, these polar filaments are arranged with their plus-ends in 

the cell periphery and their minus-ends attached to the microtubule-organising-centre 

(MTOC) near the nucleus; incoming capsids are transported by the motor protein dynein 

together with its cofactor dynactin (Döhner et al., 2002; Sodeik et al., 1997). Overexpression 

of dynamitin, a dynactin subunit, destroys the dynactin complex, and HSV1 nuclear targeting 

is diminished in dynamitin-overexpressing cells (Döhner et al., 2002). The viral proteins 

mediating the interaction with dynein are not identified, possible candidates are the inner 

tegument proteins VP1-3 (UL36) and UL37. After fusion with the plasma membrane, capsids 

lose parts of the tegument (Sodeik et al., 1997) and for the alphaherpesvirus pseudorabies 

virus it was shown using fluorescence-labelled mutants, that UL36 and UL37, but not VP16, 

VP13/14 and VP22 were bound to capsids during the retrograde transport in axons (Luxton 

et al., 2005) which was consistent with immunoelectron microscopic studies (Granzow et al., 

2005). In vitro, HSV1 capsids can pull down dynein and dynactin from cytosol preparations 

(Wolfstein et al., 2006). However, inner tegument proteins have to be present and accessible 

on the capsid surface, as tegument-free capsids do neither bind dynein nor dynactin and 

capsids containing the full set of inner and outer tegument proteins also show less dynein 

binding. The inner tegument also is a prerequsite for the ATP- and dynactin-dependent 

motility of purified HSV1-GFPVP26 capsids along microtubules in vitro (Wolfstein et al., 

2006). The dynein light chains DYNLT1 (Tctex1) and DYNLT3 (rp3; Pfister et al., 2005) can 

bind the small capsid protein VP26 in yeast-two hybrid and pull-down assays (Douglas et al., 

2004). An HSV1-∆VP26 mutant replicates to twofold reduced titers in cell culture, but is still 

able to induce infection and latency in a mouse infection model (Desai et al., 1998), for which 

retrograde long-distance transport is needed. Furthermore, capsids derived from this mutant 

bind dynein and dynactin subunits as efficiently as wildtype capsids in vitro (Wolfstein et al., 

2006), and HSV1-∆VP26 and HSV1-GFPVP26 capsids are efficiently transported to the 

nucleus in a microtubule and dynein-dependent manner (Döhner et al., 2006).  Having 

arrived at the MTOC the further transport of the capsids is unclear. A plus-end directed 

microtubule motor, such as most kinesins, could move the capsids away from the MTOC 

towards the nucleus (Sodeik, 2002; J. Janus, K. Döhner & B. Sodeik; unpublished 

observations).  
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Figure 5: The entry of HSV1. HSV1 binds to the cell surface (1). In many cell types capsid and tegument enter 

the cytosol by fusion at the plasma membrane (2). The capsids passage the actin cortex (3) and are transported 

along microtubules (MT, 4) towards the microtubule-organising centre (MTOC) utilizing the microtubule minus-end 

directed motor dynein with its cofactor dynactin (5). From the MTOC the capsids are transported further to the 

nucleus, where they bind to the nuclear pore complexes via importin β (6) and release their DNA into the 

nucleoplasm (7). In some cell types, the virus is taken up into the cell via endocytosis (8), and may then also be 

transported along MT inside endosomes (9) from which the capsids are released into the cytosol after fusion of 

the viral membrane with the endosomal membrane (10). (Diagram kindly provided by Katinka Döhner & Beate 

Sodeik, Institute of Virology, Hannover Medical School) 

 

Having arrived at the nucleus, the capsids bind to the nuclear pore complexes (NPCs) 

and only there they release their DNA into the nucleoplasm. Capsids were observed docking 

to NPCs via a penton (Granzow et al., 2005; Ojala et al., 2000; Sodeik et al., 1997), which 

suggests a release of viral DNA from the portal complex consisting of UL6. Importin β is 

necessary for the binding to the NPCs (Ojala et al., 2000). Based on atomic force microscopy 

experiments, it has been suggested that the HSV1-DNA is injected into the nucleus as a 

condensed rod-like structure about 130 nm x 30 nm (Shahin et al., 2006). However, this 

largely exceeds the diameter of the UL6 portal channel (Newcomb et al., 2001; Trus et al., 

2004). Moreover, after incubation of capsids with 0.5 M guanidinium chloride, which leads to 

the extraction of pentons, rather an expulsion of viral DNA as long filaments with a diameter 
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of 7 to 11 nm and a length of up to 500 nm was observed in electron micrographs (Newcomb 

and Brown, 1994). 

 

1.3.3. Gene expression, DNA-replication and latency 

After the viral DNA is released into the nucleus, viral gene expression commences. The 

tegument protein VP16 (UL48) which is released into the cytosol after viral entry binds to 

host transcription factors Oct-1 and HCF and transactivates the expression of the immediate 

early (α) genes ICP0, ICP4, ICP22, ICP27 and ICP47 by binding to TAATGARAT elements 

in their respective promoter (Weir, 2001). Concomitantly the virus-host-shutoff factor (vhs, 

UL41) which acts as an RNase, shuts down host protein synthesis (Roizman and Knipe, 

2001). The immediate early protein ICP4 and the viral genomes form intranuclear replication 

foci localise near PML nuclear bodies or ND10, while ICP0 induces the degradation of PML, 

a main component of these structures by its E3-ubiquitin-ligase activity (Everett et al., 2003). 

This interplay between nucleoprotein complexes, formed by immediate early transcription of 

incoming viral genomes, and ND10 structures finally results in the formation of intranuclear 

replication compartments, which are devoid of PML (Everett and Murray, 2005).  

HSV1 transcription is controlled in a cascade-like manner. The immediate early genes 

induce the expression of the early (β) genes which are largely responsible for the viral 

nucleotide metabolism and DNA-replication. Most of the late (γ) proteins, which are 

expressed concurrently with HSV1-DNA replication are structural proteins or mediate 

packaging of viral DNA into newly synthesised capsids (Rajcani et al., 2004; Roizman and 

Knipe, 2001; Weir, 2001; cf. Figure 4 for a map of the HSV1 genomic organisation).  

The linear viral genome possibly circularises in the nucleus to a covalently closed form 

either by direct end ligation or by recombination of the terminal a-sequences (Yao et al., 

1997). However, Jackson and DeLuca (2003) did not observe circularised genomes in cells 

lytically infected with HSV1 when ICP0 was present, and circular genomes may be restricted 

to latent infection in the absence of ICP0 expression. These observations were in turn 

challenged by Strang and Stow (2005), who provided evidence for end joining of incoming 

genomes by circularisation. In each case no terminal fragments of incoming HSV1 genomes 

were observed in the nucleus after uncoating. To initiate replication, the HSV1 origin-binding 

protein UL9 binds to one or more HSV1 replication origins and opens the double strand, then 

the HSV1 single-strand binding protein ICP8 (UL29) stabilises the single DNA strands. The 

helicase/primase complex of UL5, UL8 and UL52 mediates the formation of a replication fork 

and the viral DNA polymerase, consisting of the subunits UL30 and UL42 starts the synthesis 

of DNA daughter strands (Wilkinson and Weller, 2003). Originally, it was proposed that a 

circular viral genome is then replicated by a rolling circle mechanism, however, the rapid 
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increase in the number of genomes and the presence of branched DNA structures are not 

consistent with this model (Schildgen et al., 2005). Therefore, recombination may dominate 

at this stage of HSV1 DNA-replication. Cellular or viral factors may promote DNA-strand-

invasion or strand-annealing reactions. The viral single-strand binding protein ICP8 (UL29) 

and a viral 5’ to 3’ exonuclease, UL12, share functional and structural homology to the λ 

phage recombination enzymes Bet (redβ) and Exo (redα), respectively, and can mediate 

strand exchange in vitro (Reuven et al., 2003; Wilkinson and Weller, 2003). With this model, 

the occurrence of four isomeric HSV1 genome arrangements and the efficient recombination 

between two homologous coinfecting genomes can be described. Moreover, the observation 

that the origin-binding HSV1 protein UL9 is not required in later stages of DNA replication 

supports a two-stage model of HSV1 DNA-replication (Schildgen et al., 2005).  

In neurons, HSV1 establishes latent infections, in which no progeny virus is produced, 

and the circular genomes remain quiescent in an episomal state. No virions can be detected 

within latently infected cells. The expression of lytic genes is not detectable, whereas a set of 

latency-associated transcripts (LATs) is expressed quite abundantly. Upon physiological or 

psychological stress, UV-light or hyperthermia, HSV1 reactivates, switches to lytic replication 

and starts to assemble new virions. In neurons, latency is probably induced by a block or 

impairment of immediate early gene expression (Preston, 2000). Reactivation is also blocked 

by CD8+ T-cells (Decman et al., 2005a; Decman et al., 2005b), which recognize the 

expression of lytic HSV1 genes and suppress reactivation by gamma interferone.  

 

1.3.4. Assembly and egress 

Viral capsids are assembled in the nucleus of infected cells (Gibson and Roizman, 

1972). The capsid shell consisting of VP5 and the VP19c/VP23 complex is assembled 

around a UL26.5 scaffold, which is interacting with the portal complex of dodecameric UL6 

(Newcomb et al., 2003; Singer et al., 2005).  The viral protease UL26 cleaves itself into VP21 

and VP24 as well as UL26.5 to VP22a. The internal cleaved scaffold is then removed upon 

DNA packaging. From the nuclei of infected cells three types of capsids can be isolated 

(Gibson and Roizman, 1972; Perdue et al., 1975). The A-capsids contain the full protein set 

of mature capsids, but are devoid of DNA, and thus considered as products of a defective 

assembly route or intermediate structures. B-capsids contain the internal scaffolding 

structure of VP22a, but no DNA. C-capsids contain the viral DNA and are the mature capsids 

which are assembled into virions. During replication concatameric DNA is produced which is 

packaged into newly synthesised capsids via the UL6 portal complex at a capsid vertex (Trus 

et al., 2004). The terminase complex UL15/UL28 cleaves the concatamers into unit-length 

genomes which are packaged into the capsids using ATP hydrolysis to power this process 
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(White et al., 2003a). UL25 is involved in sealing and retaining the DNA inside the capsid 

(McNab et al., 1998; Ogasawara et al., 2001; Stow, 2001). 

After capsid assembly, the egress route of alphaherpesviruses involves several 

membrane budding and fusion events (Mettenleiter, 2002; Mettenleiter, 2004; Figure 6). 

Newly synthesised capsids bud through the inner nuclear membrane into the intermembrane 

space continuous with the lumen of the endoplasmic reticulum (ER). In this intermediate 

state the capsids have acquired a primary envelope containing UL34, and primary tegument 

containing UL31 and US3. The HSV1 tegument protein VP16 was observed bound to 

capsids in the perinuclear lumen (Naldinho-Souto et al., 2006). The primary envelope then 

fuses with the outer nuclear membrane, releasing the capsids into the cytosol. This model 

was recently challenged. It was proposed that progeny capsids either remain inside the ER 

lumen and are transported to the Golgi in vesicles, or that they leave the nucleus directly into 

the cytosol via impaired and dilated nuclear pores and then occasionally bud into the ER 

lumen (Leuzinger et al., 2005; Wild et al., 2005). However, these new ideas are very 

controversial since they do not fit to many previous electron microscopy studies (Mettenleiter 

and Minson, 2006). According to a current model the inner tegument proteins VP1-3 (UL36) 

and UL37 are attached to the capsids in the cytosol. In HSV1, deletion of either of this 

proteins leads to the accumulation of non-enveloped, non-tegumented capsids in the 

perinuclear cytosol as well as in the nucleus (Desai et al., 2001; Desai, 2000). The outer 

tegument proteins are assembled at cytosolic patches of trans-Golgi caverns or endosomes 

(Mettenleiter, 2004), where they are bound to the cytosolic domains of viral membrane 

proteins. During the secondary budding into the lumen of these organelles via an interaction 

of inner and outer tegument the virions become fully assembled and are then released into 

the extracellular space by fusion of virion-containing vesicles with the plasma membrane.  

In neurons, virions are not only released at the cell body but also at the axon terminal 

(Figure 6). There is debate, whether enveloped virions are anterogradely transported along 

the axon in vesicles or whether unenveloped capsids are transported separately from 

vesicles containing viral envelope proteins (Enquist et al., 2002; Lavail et al., 2005; Miranda-

Saksena et al., 2002). Tegument may be bound to the cytosolic face of these vesicles. 

Unenveloped capsids were observed in the distal axon and in growth cones and axon 

variscosities budding into vesicles with viral glycoproteins (Saksena et al., 2006). The mode 

of anterograde capsid transport along the axon is of importance regarding the interaction with 

anterograde motor proteins, which are likely to be kinesins. Either the virions take advantage 

of the cellular vesicle transport machinery, or the capsids must carry a receptor for a motor 

protein. Axonal capsids were observed to colocalise with kinesin-1 (Diefenbach et al., 2002) 



Introduction 

 23

 

Figure 6: The egress of HSV1. After assembly, newly synthesised capsids bud into the intermembrane space of 

the nuclear envelope (1). After fusion with the outer membrane, naked capsids are delivered into the cytosol (2). 

The capsids are transported to the sites of secondary envelopment (3A). In neurons, secondary envelopment may 

take place at the presynapse (5D), so cytosolic capsids may be anterogradely transported within the axon (3B). 

Viral glycoproteins are synthesised in the endoplasmatic reticulum (ER) and then processed via the secretory 

pathway (4).  Capsids are believed to bud into the trans-Golgi network (TGN) where outer tegument proteins are 

bound to the cytosolic domains of viral glycoproteins (5A). Budding may also occur at TGN-derived vesicles 

exposing tegument on a cytosolic patch (5B). Alternatively or additionally, these vesicles may be of endosomal 

origin (5C). The vesicles, which contain virions are transported towards the plasma membrane (6A, 6B) and are 

released into the extracellular space after fusion (7A, 7B) (Diagram kindly provided by K. Döhner & B. Sodeik, 

Institute of Virology, Hannover Medical School).  
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and the tegument protein US11 interacts in vitro with kinesin-1 (Diefenbach et al., 2002) as 

well as with the protein PAT in a region which shares homology with kinesin light chain 

(Benboudjema et al., 2003). Whether these interactions have a functional role during egress, 

is unclear as the C-terminal basic region of US11 which mediates binding to kinesin-1 and 

PAT also binds several other host molecules, like several RNAs and protein kinase R (Mohr, 

2004).  

 

1.4. Mutagenesis of herpesviruses 

1.4.1. Homologous recombination in eukaryotes 

The function of the manifold viral proteins can be approached by the analysis of virus 

mutants. Due to the large size of a herpesviral genome, these were initially created by the 

use of mutagenic chemicals or irradiation. If a phenotype was observed, the causing 

mutations were mapped by cotransfecting infected cells with different viral DNA fragments 

identifying genomic regions which reconstituted the wildtype phenotype by homologous 

recombination (marker rescue; Stow et al., 1978; Figure 7A). 

More specific mutations were generated by transfecting wildtype infected cells with a 

DNA construct, that is accompanied by a selection marker such as a fluorescent protein 

(GFP) or β-galactosidase (Desai and Person, 1998; Foster et al., 1998; Goldstein and 

Weller, 1988a; Goldstein and Weller, 1988b; Figure 7B). Also the viral thymidine kinase itself 

was used for selection of mutants (Mocarski et al., 1980; Post and Roizman, 1981). 

Occasionally, the mutant DNA together with the marker is incorporated into the viral genome 

by homologous recombination thereby replacing the wildtype counterpart. Recombinant virus 

is then purified against the wildtype virus background by plaque purification. Cells are 

inoculated with a diluted mixture of wildtype and recombinant virus under conditions, which 

restrict the free diffusion of secreted virions in the medium and only allow cell-to-cell spread, 

e.g. by overlaying the cells with agarose or neutralising antibodies. The infection of single 

cells results in a plaque in the cell lawn. By excision and passaging the infected cells of the 

plaques in which the selection marker is expressed, the recombinant virus is enriched and 

purified from contaminating wildtype virus.  

This method has several drawbacks. If the introduced mutation leads to an attenuation 

in cell culture, the wildtype virus has a growth advantage, and the recombinant virus may be 

very difficult to purify. Furthermore, the introduction of lethal mutations into essential virus 

genes requires the use of complementing cell lines stably expressing the wildtype gene in 

trans. Moreover, this method is further hampered for certain herpesviruses with slow 

replication kinetics or low titers. 
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Figure 7: Mutagenesis of herpesviruses. (A) After undirected mutagenesis, a mutation leading to a certain 

phenotype can be mapped by cotransfecting fragments derived from wildtype virus-DNA, which recombine into 

the mutant genome and restore the wildtype phenotype. (B) A specific mutation is introduced by homologous 

recombination following cotransfection of a DNA fragment carrying the mutation together with an eukaryotic 

selection marker, e.g. GFP or β-galactosidase in permissive cells. The resulting mixture of recombinant and 

wildtype virus is then plaque purified several times under selection for plaques exhibiting expression of the 

selection marker.  If an introduced mutation leads to an attenuation of the resulting virus, the wildtype growth 

advantage can hamper the purification of the mutant. (C) Cosmid based mutagenesis. The viral genome is cloned 

as a set of cosmids in E. coli, which reconstitute the complete virus genome after cotransfection into permissive 

cells. Thus, a mutation can be introduced by bacterial genetics. 
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1.4.2. Cosmids 

Cosmids are bacterial vectors based on the cos packaging sequences of the 

bacteriophage λ (Hohn et al., 1988). Genome sequences of up to 40 kbp which are flanked 

by cos sequences can be packaged in λ phage heads and thus transmitted to bacterial hosts 

like Escherichia coli, where they are maintained extrachromosomally if they encode an 

antibiotic resistance gene, which is selected for during cultivation of the bacteria. The HSV1 

genome was cloned as a set of cosmids in E. coli (Craig et al., 1990; Cunningham and 

Davison, 1993). Each of them contains overlapping viral sequences, so that after 

cotransfection of the cosmid set into permissive eukaryotic cells the complete viral genome 

reconstitutes by homologous recombination via the overlaps and progeny virus is produced 

(Cunningham and Davison, 1993; Figure 7C). Also HCMV (Kemble et al., 1996), VZV 

(Cohen and Seidel, 1993) and the simian varicella virus (Gray and Mahalingam, 2005) have 

been cloned as cosmids. This enabled the use of bacterial genetics to introduce mutations in 

viral genes without the need to purify mutants from wildtype virus. However, the 

reconstitution of a complete virus genome with a lethal mutation still required a 

complementing cell line. Moreover, the multiple recombination events requires after 

cotransfection are rare and can lead to unwanted alterations of the genome.   

 

1.4.3.  Bacterial artificial chromosomes (BAC) 

A vector capable of maintaining a complete herpesviral genome is the bacterial artificial 

chromosome (BAC). These are F-factor derived plasmids with a cloning capacity of up to 

1000 kbp, whose copy number and replication in E. coli is strictly controlled (O'Connor et al., 

1989). They have been used for the cloning of large genome sequences and the 

establishment of genomic libraries of large DNA fragments. Cloning is performed in E. coli 

strains such as DH10B (Grant et al., 1990) which allow the precise maintenance and 

replication of large DNA sequences, due to the lack of the recombination function recA. 

In 1997, the murine cytomegalovirus (MCMV) genome was cloned as a BAC (Messerle 

et al., 1997). For cloning a herpesviral genome as a BAC, the bacterial sequences required 

for maintenance and replication in E. coli are introduced together with a eukaryotic marker 

and a prokaryotic antibiotic resistance gene into the viral genome by classical homologous 

recombination in permissive host cells (Figure 8). Shortly after infection of eukaryotic cells 

with the purified recombinant virus, circular replication intermediates of the viral genome are 

isolated from the nuclei (Hirt, 1967) and used for the transformation of E. coli under selection 

for the provided resistance marker. Antibiotica resistant clones now carry the 
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Figure 8: Cloning and mutagenesis of a herpesviral genome as a BAC. (A, B) Bacterial genes required for 

replication, maintenance and copy number control (BAC genes) are inserted into the viral genome by classical 

recombination in eukaryotic cells. (C) Recombinant virus is enriched by plaque purification and eukaryotic cells 

are infected at high MOI. Shortly after infection, circular DNA-replication intermediates are isolated from the 

infected cell nuclei by Hirt extraction. (D) E. coli are then transformed with the extract and selected for the 

antibiotic resistance encoded by the BAC genes. The viral genome has now been cloned as BAC and can be 

mutagenised in bacteria. (E) BACs can be prepared from bacteria and after transfection of permissive cells, virus 

is recovered.  

 

complete viral genome as a BAC and the integrity of the genome can be confirmed by 

restriction analysis and Southern blotting. After preparation of the BAC-DNA and transfection 

of permissive eukaryotic cells, the virus is reconstituted.  

A large number of other herpesviruses has been cloned as a BAC (Table 2) allowing 

the introduction of almost any mutation by the use of bacterial genetics. The methods for 

BAC-mutagenesis are based on homologous recombination in E. coli making use of clonal 

selection (cf. chapter 1.4.4). Thereby no wildtype contaminating virus is present and also 
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lethal mutations can be introduced into the viral genome (Adler et al., 2003; Brune et al., 

2000; Wagner et al., 2002). Recently, the genome of the vaccinia virus, another DNA-virus 

with a very large genome was BAC-cloned and mutagenised (Domi and Moss, 2002; Domi 

and Moss, 2005). 

 

Species Strain Reference 
ALPHAHERPESVIRUSES 
Bovine Herpesvirus 1 V155 

Schonboken 
(Mahony et al., 2002) 
(Trapp et al., 2003) 

Canid Herpesvirus 1  (Arii et al., 2006) 
(Strive et al., 2005) 

Equid Herpesvirus 1 KyA 
racL11 

(Rudolph et al., 2002) 

Gallid Herpesvirus 2 
(Marek's Disease Virus Type 1) 

584Ap80c (Schumacher et al., 2000) 

17+ (Saeki et al., 1998) 
(Stavropoulos and Strathdee, 1998) 
(Suter et al., 1999) 

Herpes Simplex Virus Type 1 
(Human Herpesvirus 1) 
 

F (Tanaka et al., 2003) 
(Horsburgh et al., 1999) 

Herpes Simplex Virus Type 2 
(Human Herpesvirus 2) 

MS (Meseda et al., 2004) 

Varicella-Zoster-Virus 
(Human Herpesvirus 2) 

Oka (Nagaike et al., 2004) 

Pseudorabies virus 
(Suid Herpesvirus 1) 
 

Ka 
Becker 

(Fuchs et al., 2002) 
(Smith and Enquist, 2000) 
(Smith and Enquist, 1999) 

BETAHERPESVIRUSES 
Cercopithecine herpesvirus 8 
(Rhesus Cytomegalovirus) 

68-1 (Chang and Barry, 2003) 

Guinea Pig Cytomegalovirus  (McGregor and Schleiss, 2001) 
Human Cytomegalovirus 
(Human Herpesvirus 5) 
 

AD169 (Yu et al., 2002) 
(Borst et al., 1999) 

Mouse Cytomegalovirus  
(Murid herpesvirus 1) 

Smith (Messerle et al., 1997) 

GAMMAHERPESVIRUSES 
Bovine Herpesvirus 4 V. test (Gillet et al., 2005) 
Epstein-Barr Virus 
(Human Herpesvirus 4) 
 

AK 
B95.8 

(Kanda et al., 2004) 
(Delecluse et al., 1998) 

Kaposi-Sarcoma Associated Herpesvirus 
(Human Herpesvirus 8) 
 

 (Zhou et al., 2002) 
 

Murid herpesvirus 4 
(Murine Gammaherpesvirus 68) 

G2.4 (Adler et al., 2000) 

Saimiriine herpesvirus 2 
(Herpesvirus Saimirii) 

 (White et al., 2003b) 

Table 2: Established herpesviral BAC-clones. Taken from Osterrieder et al. (2003); modified and updated  
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1.4.4. BAC mutagenesis 

Mutagenesis of BAC-cloned herpesviral genomes is performed using recombination in 

E. coli under antibiotic selection. Due to the large size of the cloned genome, even rare-

cutting restriction endonucleases may have multiple recognition sites, so BAC-mutagenesis 

by cutting and insertion of modified DNA by ligation is not applicable in most cases. As in the 

E. coli BAC-cloning strains the recA recombination is inactive, the recombinogenic enzymes 

are provided by helper plasmids or are expressed upon induction if they are integrated in the 

bacterial genome. 

  

1.4.4.1. Red-recombination 

Red-recombination is based on bacteriophage λ proteins (Court et al., 2002; Datsenko 

and Wanner, 2000; Muyrers et al., 2000; Muyrers et al., 1999; Zhang et al., 1998; Figure 9); 

Exo (redα) is a 5'-3' exonuclease that creates single-stranded 3'-overhangs on linear dsDNA, 

Bet (redβ) binds and protects single stranded DNA (ssDNA) and mediates the annealing to a 

complementary ssDNA, thus being an essential protein for recombination. The degradation 

of linear dsDNA by bacterial nucleases like RecBCD is prevented by Gam (redγ). The 

method is also called "ET-cloning", named after the recombination proteins RecE and RecT 

of prophage rac, which have the same function as Exo and Bet, respectively. Interestingly, 

the HSV1 proteins UL12 and ICP8 (UL29) have structural and functional homology to Exo 

and Bet, respectively, and may play a role during recombination in HSV1 DNA replication 

(Reuven et al., 2003; Wilkinson and Weller, 2003; cf. chapter 1.3.3). 

For recombination, a linear dsDNA fragment, which encodes a positive selection 

marker flanked by sequences homologous to the target sequence on the BAC, is introduced 

into E. coli harbouring the BAC and expressing the Red enzymes (Figure 9), either from a 

helper plasmid (e.g. pKD46; Datsenko and Wanner, 2000) or from a defective prophage 

inserted into their genome (Lee et al., 2001). Exo cleaves off nucleotides from the DNA 

double-strand thereby exposing a single-stranded 3' end. The large 3' single-stranded 

overhangs are then bound by Bet and can now anneal to their complementary single-

stranded DNA, exposed in the DNA-replication fork, similar to a "large Okazaki fragment". 

Due to the noncomplementary region in the middle of the recombination fragment, the 

replication of the parental DNA strand stalls. A branched structure containing the parental 

wildtype-DNA strand and the strand with the positive selection marker insertion is formed, 

which is subsequently resolved, probably by RuvA or a topoisomerase. Bacteria containing 

the BAC with the inserted positive selection marker are able to grow under selection. 
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Since only short homology arms are needed, the recombination fragment can be 

synthesised by PCR using primers with 25-50 nt 5’-overhangs (Figure 10). Moreover, the 

positive selection marker can be flanked by frt sites allowing the subsequent removal of the 

resistance cassette by the recombinase Flp leaving only a short foreign sequence at the 

insertion site (Cherepanov and Wackernagel, 1995; Datsenko and Wanner, 2000; Wagner 

and Koszinowski, 2004). Red-recombination is used for knocking out viral genes or for the 

introduction of sequences, e.g. stop codons or epitope tags. Traceless mutations can be 

introduced by this method using a selection/counterselection cassette encoding a positive 

and a negative selection marker. This cassette is introduced by Red-recombination under 

positive selection as a “placeholder” at the mutation site and is then replaced in a second 

step with the mutant construct under negative selection (Figure 10).  

The major risk of this method is the temporary presence of recombination enzymes with 

the ability to mediate homologous recombination over short sequences. Especially in 

herpesviral genomes containing short direct repeats, this can cause unwanted 

rearrangements and deletions, which make a thorough analysis of the mutant BACs 

indispensable. Furthermore, negative selection can lead to unspecific alteration of the BAC, 

because non-specific recombination as well as inactivation of the negative selection marker 

result in false positive clones. 
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Figure 9: Red-recombination. (A) After induction of Exo (redα), Bet (redβ) and Gam (redγ), the bacteria are 

transformed with a linear double-stranded DNA encoding a postitive selection marker (psm). The ends are 

homologous to the target sequence on the BAC. The RecBCD protein of E. coli, which would otherwise digest the 

linear DNA fragment by its nuclease function, is inhibited by Gam. (B) Exo is a 5’→3’ exonuclease which starts 

removing nucleotides from the 5’ ends of the DNA fragment leaving large 3’ overhangs which are in turn bound 

and stabilized by Bet  (C). (D,E) Also mediated by Bet, the 3’ overhangs then anneal to their homologous single-

stranded DNA in the lagging strand of a replication fork on the BAC, similar to a “large Okazaki-fragment”. The 

parental DNA strands are depicted as dashed lines. No annealing occurs between non-complementary 

sequences. (E) The DNA strand with the parental sequence and the strand with the introduced selection marker 

are unwound by RuvA or a topoisomerase. (F) After recombination two BAC-copies are present, but under 

selection pressure only those BACs containing the selection marker will be propagated. Diagram modified after 

Court et al. (2002). 
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Figure 10: Applications for Red-recombination in BAC-mutagenesis. Using Red-recombination, different 

mutations can be introduced into a BAC. (A) For knocking out an ORF X, a positive selection marker (psm) is 

PCR-amplified with primers carrying 5’ overhangs homologous to the sequences upstream and downstream of 

the target. After Red-recombination and selection for the psm, ORF X is completely deleted (BAC-∆X). If flanked 

by frt sites, the psm can subsequently be removed from the BAC by Flp recombinase expression. (B) BAC-

encoded proteins can be C-terminally truncated by premature translation stop of the ORF, if the psm is amplified 

together with a stop codon. (C) If an ORF is deleted by insertion of a cassette encoding a positive (psm) and a 

negative (nsm) selection marker, the cassette can in turn be replaced by a mutated version of the ORF under 

selection for loss of the negative selection marker. 
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1.4.4.2. Shuttle-mutagenesis 

Another method for traceless allele replacement is a two-step recombination procedure, 

also called shuttle-mutagenesis, which is often used for the manipulation of BAC-clones and 

bacterial genomes (O'Connor et al., 1989; Posfai et al., 1997). The method was adapted for 

the targeted manipulation of BAC-cloned herpesviral genomes (Borst et al., 2004; Figure 11). 

The mutant allele is cloned into a shuttle vector together with 500-2000 bp of sequences 

flanking the mutation, which are homologous to the insertion site. If such a shuttle plasmid is 

introduced into bacteria harbouring the BAC, recA, which is non-functional in E. coli DH10B, 

but provided in trans on the shuttle plasmid, mediates a crossing-over event between a 

homologous sequences of the BAC and the shuttle plasmid, thus forming a cointegrate. 

Cointegrate formation is driven by selection for the antibiotic resistance encoded on the 

shuttle plasmid and growing the bacteria at a temperature which does not allow the 

replication of the non-integrated shuttle plasmid. The cointegrate spontaneously resolves by 

intramolecular recombination via a homologous sequence flanking the mutation site. 

Cointegrate resolution is driven by selection against a negative marker on the shuttle plasmid 

such as the sacB gene which codes for levansucrase, an enzyme converting sucrose into the 

toxic polysaccharide levan (Gay et al., 1983). Theoretically, this results in a mixture of 50% of 

both wildtype and mutant BAC, which can be differentiated by PCR or restriction screening of 

the obtained clones. However, the homologous sequences flanking the mutation may be 

differently prone to recombine, so in many cases, the formation of the cointegrate and 

resolution occured via the same sequence part. After shuttle mutagenesis a thorough 

analysis is also required, due to the presence of recA recombination and the negative 

selection pressure applied by sacB (see above). 
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Figure 11: BAC-mutagenesis with shuttle plasmids. The shuttle plasmid encodes the RecA protein and a 

sacB/KanR fusion protein, providing kanamycin resistance and sucrose sensitivity. It only replicates at 30°C due to 

a temperature-sensitive mode of replication (ori ts). The mutated allele of the target gene carries 0.5-2 kbp of 

sequences flanking the mutation (mut; yellow circle), which are homologous to the target sequences (wt) on the 

BAC. (A) If E. coli carrying the BAC are transformed with the shuttle plasmid, RecA will mediate a crossing over 

between the shuttle plasmid and the BAC via the homologous sequences on one side of the mutation. (B) When 

selected for chloramphenicol (CmR) and kanamycin (KanR) resistance at 43°C, only the bacteria will survive, 

which carry a cointegrate, since at temperatures higher than 30°C, the shuttle plasmid cannot be replicated. (C) In 

an intramolecular recombination step, RecA now mediates the resolution of the cointegrate via the homologous 

sequences. In the presence of chloramphenicol and sucrose, only those bacteria will survive, which have resolved 

the cointegrate and thus lost sacB encoded on the shuttle plasmid (C). Recombination can occur via either of the 

homologous sequences, so BAC-clones with either the wildtype or mutant allele are isolated. 
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1.4.4.3.  “En passant” mutagenesis 

The requirement for a negative selection marker to tracelessly introduce mutations is 

circumvented by a method called "en passant" mutagenesis, based on a a two step Red-

recombination (Tischer et al., 2006). The recombination fragment encodes a positive 

selection marker and also contains a recognition site for the homing endonuclease I-SceI, 

which has a rare recognition sequence of 18 bp (TAG GGA TAA CAG GGT AAT) (Figure 

12a). The target BAC must not contain this sequence. The sequences at the ends of the 

PCR-generated recombination fragment are again homologous to the target, e.g. for knock-

outs just up- and downstream of an ORF (Figure 12 a-d). In this method, however, the PCR-

primers are constructed in a way, that the 3' homology is also present directly downstream of 

the 5' homology on the linear DNA fragment, and the 5' homology is also inserted directly 

upstream of the 3' homology. After transformation of redαβγ-expressing E. coli the 

recombination fragment is inserted into the BAC, and thus for example knocks out a targeted 

ORF. The homing endonuclease I-SceI is then expressed in situ from a helper plasmid, and 

cuts at its recognition site introduced into the BAC. The juxtaposed 5' and 3' homologies can 

now recombine via Red-recombination, and the circular BAC is restored, without leaving any 

trace at the manipulation site. This step is driven by positive selection for the antibiotic 

resistance marker encoded on the BAC. By utilising two positive selection steps, this method 

is less prone to unwanted alterations in the BAC-cloned genome. 

The introduction of large sequences, e.g. for GFP-tagging of a certain protein can 

also be performed with "en-passant" mutagenesis (Figure 12 e-h). Here, the positive 

selection marker and the I-SceI site are inserted into the GFP sequence. During construction 

of this insertion the positive selection marker and the I-SceI site have to be flanked by a 

duplication of a part of the GFP sequence, which mediates the recombination after the I-SceI 

cut. This construct is then amplified with primers containing the appropiate 5' overhangs and 

inserted into the BAC, so that after I-SceI cutting and recombination the GFP will be inserted 

at the desired genome position.  
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Figure 12: The "en-passant" mutagenesis. (a) For a traceless removal of an ORF X, a positive selection 

marker (psm) together with an I-SceI site are PCR-amplified. The primers contain 5' overhangs with sequences 

homologous to the 5' (grey box) and 3' region (white box) of the sequence to be targeted. The corresponding 

homologous sequences are duplicated and juxtaposed on the recombination fragment. (b) The fragment is 

inserted into the BAC-wt via Red-recombination, removing  the original ORF. (c) After expression of I-SceI, the 

BAC is linearised. (d) Now the juxtaposed homologous sequences can recombine via a second Red-

recombination step, thus reconstituting the BAC-∆X with a traceless deletion. (e) For the introduction of foreign 

sequences, the positive selection marker and the I-SceI site are initially inserted into the additional sequence 

(ins), flanked by a duplication (dashed boxes). From this construct, the recombination fragment is PCR-amplified 

with primers containing 5' overhangs homologous to the 5' and 3' region of the insertion site, and introduced into 

the BAC via Red-recombination (f). After the I-SceI cut, the BAC-insORFX reconstitutes via the duplication (g) 

resulting in the traceless insertion of the foreign sequence into the BAC (h). Modified after Tischer et al. (2006). 
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1.4.5. HSV1-BACs 

HSV1 has also been cloned as a BAC. The first HSV1-BAC clones were constructed 

from a set of cosmids containing overlapping fragments of the HSV1, strain 17+ genome 

(Cunningham and Davison, 1993), which were deleted for the DNA-cleavage and packaging 

sequences (pac). These cosmids were cotransfected with a plasmid containing the E. coli F-

factor derived BAC-sequences, a homologous sequence for integration into the HSV1 

genome between UL46 and UL47 and a pac sequence, which was flanked by PacI sites 

(Saeki et al., 1998). After cotransfection progeny virus could be harvested from the cells. The 

recombinant viral DNA was isolated, digested with PacI to remove the pac sequences, 

circularised by ligation and eventually electroporated into E. coli. Analyses performed with 

several restriction enzymes showed the integrity of the cloned viral genome. However, due to 

the lack of pac sequences this HSV1 clone was not infectious, however after re-insertion the 

infectivity was restored (Saeki et al., 1998). In another approach the BAC-genes and a single 

pac sequence were inserted into the UL41 (virus-host shutoff) locus on an HSV1 cosmid 

(Stavropoulos and Strathdee, 1998). The whole HSV1 cosmid set, again with deleted pac 

sequences was then cotransfected and recombinant virus could be isolated. After self-

circularisation by ligation the DNA was electroporated into E. coli and BAC-clones were 

recovered, which turned out to be infectious. Also in this BAC, the pac sequence was 

subsequently removed.  

As these first HSV1-BAC clones were cloned with the aim to construct a helper-virus 

free amplicon system for the transduction of cells with transgenes (Suter et al., 1999), they 

are not suitable for the construction of virus mutants in the context of an infectious genome, 

as they contain deletions in the pac sequences or in the UL41 ORF. Nevertheless, these 

studies showed the stability of the viral genome as a BAC, even after multiple passages in 

bacteria. 

Horsburgh et al. (1999) inserted the BAC genes into the UL23 (thymidine kinase) locus 

of HSV1, strain F, by classical homologous recombination in eukaryotes. BAC clones were 

obtained by electroporating circular replication intermediates of the recombinant virus into E. 

coli. After transfection of the BAC, infection commenced and progeny virus was recovered. 

This HSV1-BAC was mutated using shuttle-mutagenesis (see 1.4.4.2). In the approach taken 

by Tanaka et al. (2003), the BAC genes were inserted into an intergenic region of HSV1, 

strain F, namely between UL3 and UL4. Thus, no viral gene was deleted in the resulting BAC 

clone. Furthermore the BAC genes were flanked with loxP sites, so that when cells were 

coinfected with the BAC-derived virus and a recombinant adenovirus expressing Cre 

recombinase, the BAC sequences were specifically excised from the viral genome. This BAC 
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has since been used for the construction and analysis of HSV1 mutants (Tanaka et al., 2003) 

(Liang and Baines, 2005; Liang et al., 2004; Melancon et al., 2005). 

The HSV1-BACs constructed by Horsburgh et al. (1999) and Tanaka et al. (2003) are 

based on HSV1, strain F, for which the full sequence is not available, thus the construction of 

mutants derived from these BACs requires the prior sequencing of the target genomic region, 

due to possible differences of the published HSV1(17+) sequence to the targeted HSV1(F) 

sequence. 

 

1.4.6. Fluorescence tagging of HSV1 proteins 

By classical mutagenesis, a number of HSV1 structural proteins have been tagged with 

a fluorescent protein, thus enabling the observation of the fate of a certain viral protein during 

the viral life-cycle by fluorescence light microscopy (Table 3). The green fluorescent protein 

(GFP) of the jellyfish Aequorea victoria is a 27 kDa protein with a β-barrel fold, in which three 

amino acid residues form a fluorophor by a covalent circularisation (Cody et al., 1993; Ormo 

et al., 1996; Prasher et al., 1992). By engineering the protein, the excitation and emission 

wave lengths were shifted to obtain, for example, a yellow (YFP) and a cyan (CFP) variant, 

furthermore the quantum yield was increased (Heim et al., 1994; Heim and Tsien, 1996). 

From the reef coral Discosoma sp. a red fluorescent protein (DsRed) was isolated, which 

forms a homotetramer. A variant was engineered, which exhibited fluorescence as a 

monomer (Campbell et al., 2002; mRFP1). This modification enabled the labelling of 

structural proteins with a red fluorescent tag without altering the function of the tagged 

protein by tetramerisation. 

Whenever working with fluorescence-tagged viruses, one has to investigate whether the 

tagged protein has the same localisation and function as its wild type counterpart (discussed 

in Döhner and Sodeik, 2004). A thorough analysis of the untagged and the tagged protein by 

immunomicroscopic and biochemical methods is therefore indispensable. For example, when 

adding a tag to a capsid protein, not only fully assembled capsids are visualised, but also 

capsid precursors, misassembled capsids and unassembled capsid proteins. Whether the 

resulting fluorescent signal obtained may represent a proteolytic fragment of the fusion 

protein, however, can be determined by biochemical analysis.   

If thoroughly analysed, herpesvirus mutants encoding structural proteins fused to 

fluorescent proteins tremendously helped to elucidate the function of several viral proteins 

during the viral life cycle. An HSV1 mutant encoding GFPVP26 (Desai and Person, 1998) 

showed the same intracellular behaviour upon entry as the corresponding wildtype 

HSV1(KOS) (Döhner et al., 2006) and was used in several other studies concerning 
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intracellular localisation of HSV1 capsids during assembly and egress (Desai et al., 2003; 

Desai et al., 2001; Desai, 2000). Using life-cell imaging and time-lapse microscopy the 

localisation and intracellular movements of fluorescence-labelled virion structures during 

entry and egress can be observed. Fluorescently labelled capsids are furthermore a valuable 

tool for microscopy based in vitro assays, such as for the reconstruction of microtubule 

transport of GFPVP26 labelled HSV capsids (Wolfstein et al., 2006).  

 

Protein (Gene) Tag Tag position Reference 

VP26 (UL35) GFP N (Desai and Person, 1998) 

VP22 (UL49) GFP N (Elliott and O'Hare, 1999) 

VP13/14 (UL47) YFP N (Donnelly and Elliott, 2001) 

VP26 (UL35) YFP C (Hutchinson et al., 2002) 

VP22 (UL49) CFP N (Hutchinson et al., 2002) 

VP11/12 (UL46) GFP C (Willard, 2002) 

gB (UL27) GFP N (Potel et al., 2002) 

VP16 (UL48) GFP N or C (La Boissiere et al., 2004) 

gD (US6) GFP C (Milne et al., 2005) 

Table 3: HSV1 mutants encoding fluorescence-tagged structural proteins. 
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1.5. Aim of the thesis 

The analysis of virus-host interaction in the context of infection requires the construction 

of viral mutants within the full viral genome. Thereby reverse or forward genetics may be 

applied. In the first case the gene of interest or the whole genome is subjected to random 

mutagenesis, i.e. by chemical mutagenic agents or transposons, which may lead to a 

phenotype which is then mapped to a certain region. Otherwise a gene of interest may be 

specifically modified followed by the analysis of the resulting phenotype. Herpesviral 

mutagenesis in eukaryotes is often hampered by rare or ineffective recombination events, 

moreover the introduction of attenuating mutations is difficult due to the growth advantage of 

the wildtype precursor, and compensatory mutations in other viral genome regions can 

occur. Cloning herpesviruses as bacterial artificial chromosomes allows the generation of 

mutants in a bacterial system, by homologous recombination or random transposon 

mutagenesis and clonal selection. Viral mutants are then analysed after transfection in 

permissive eukaryotic host cells. 

During this study the fully sequenced HSV1 strain 17+ is cloned as a bacterial artificial 

chromosome (BAC) with the ability to excise the loxP flanked BAC sequences from the viral 

genome by Cre-mediated site-specific recombination. The integrity of the cloned viral 

genome and the viral growth properties are determined. The targets for the construction of 

mutants will be viral proteins, involved in intracellular trafficking during entry and egress. As 

many assays used for studying intracellular transport are based on fluorescence microscopy 

in vivo and in vitro, the small capsid protein VP26 is tagged with a fluorescent protein by BAC 

mutagenesis, as done before in HSV1, strain KOS by classical mutagenesis (Desai and 

Person, 1998) or in other alphaherpesviruses as pseudorabies virus (del Rio et al., 2005; 

Smith et al., 2001) and bovine herpesvirus 1 (Wild et al., 2005). Moreover, the viral envelope 

protein gD is added a fluorescent protein label to obtain dual-coloured viruses with which the 

intracellular localisation of viral capsid and envelope proteins during entry, assembly and 

egress can be visualised. Fluorescence-tagged HSV1 mutants are characterised with regard 

to the integrity of the viral genome, growth properties and intracellular localisation of the 

tagged protein. The HSV1 strain 17+ BAC encoding fluorescence-tagged representative 

capsid and envelope proteins will be a basic construct for the further study of the life cycle of 

specific viral mutants. 
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2. Materials  

2.1. Laboratory equipment 
Acrylamide gel electrophoresis system Amersham, Little Chalfont, UK; Hoefer™ SE250 

Agarose gel electrophoresis chambers 

 

Peqlab, Erlangen, Germany;  

Perfect Blue™ Mini S, Mini L, Maxi S 

Bacteria incubators  Kendro, Rodenbach, Germany 

Cell culture centrifuge Eppendorf, Hamburg, Germany; 5810R 

Cell culture incubator   Kendro, Rodenbach, Germany; Hera Cell  

Cooling device    Biometra, Göttingen, Germany; KH3 

Electrophoresis power supplies Amersham, Little Chalfont, UK; EPS300, EPS301 

Electroporation unit Bio-Rad, Hercules, CA, USA; Gene Pulser Xcell 

Gel documentation system   Alpha Innotech Corporation, San Leandro, CA, USA 

Gradient mixer Biocomp, Fredericton, Canada;  

Gradient Master™ Model 106 

Heating block Omnilab, Gehrden, Germany; BT100  

Laminar air-flow bench for sterile work Kendro, Rodenbach, Germany; Heraeus Hera Safe  

Magnetic stirrers  Heidolph, Schwabach, Germany 

Microwave oven Sharp, Hamburg, Germany; R-330A  

PCR cycler  Perkin Elmer, Wellesley, MA, USA;  

GeneAmp® PCR System 2400  

Applied Biosystems, Foster City, CA, USA;  

GeneAmp® PCR System 9700 

Photometer Eppendorf, Hamburg, Germany; BioPhotometer  

Rocking platform   Biometra, Göttingen, Germany 

Superspeed centrifuge Beckman Coulter, Fullerton, CA, USA; J21-C 

Superspeed centrifuge rotors Beckman Coulter, Fullerton, CA, USA; JA-10, JA-20 

Table-top centrifuges Eppendorf, Hamburg, Germany;  5415C, 5417R 

Tank blotting system Amersham, Little Chalfont, UK; 

TE 22 Mini Tank Transfer Unit 

Ultracentrifuge Beckman Coulter, Fullerton, CA, USA; L8-70 

Ultracentrifuge rotors Beckman Coulter, Fullerton, CA, USA;  

Type19, SW28, SW40Ti, SW41Ti 

X-ray film processor Protec Medizintechnik GmbH, Oberstenfeld, Germany; 

OPTIMAX X-ray film processor 
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2.2. Microscopes 

For bright-field microscopy of cultured cells, an Eclipse TS microscope (Nikon, 

Düsseldorf, Germany) was used. Fluorescence microscopy of embedded cells was 

performed on an Axiovert 200M microscope (Zeiss, Oberkochen, Germany) using a 63x 

plan-achromatic objective (numeric aperture 1.4). To excite fluorescence, the samples were 

illuminated by galvanometrically monochromated light of a 150 W xenon lamp (Polychrome® 

IV, Till Photonics, Gräfeling, Germany).  

Filter sets (all from Till Photonics, Gräfeling, Germany): 

- DAPI: excitation SP 410, dichroic mirror LP 410, emisson LP 420. 

- GFP: excitation SP 510, dichroic mirror LP 490, emisson BP 525/50  

- Rhodamine: excitation SP 540 nm, dichroic mirror LP 565, emission LP 610/75  

- Dualband FITC/Rhodamine filter set 

- Dualband CFP/YFP filter set 

 Images were taken with a Till Imago® QE CCD camera and digitally acquired using 

the TillVision® Software, version 4.0 (Till Photonics, Gräfeling, Germany). Further image 

processing was performed with ImageJ 1.35j (Wayne Rasband; National Institute of Health,  

USA) and Adobe® Photoshop version 6 (Adobe Systems, San Jose, CA, USA).  

 

2.3. Consumables 
Blotting paper, Whatman® 3MM Whatman, Maldstone, UK 

Electroporation cuvettes Bio-Rad, Hercules, CA, USA 

Nitrocellulose membrane, BioTrace® NT Pall, Pensacola, FL, USA 

Nylon membrane, positively charged Roche, Mannheim, Germany 

Photometric cuvettes Eppendorf, Hamburg, Germany 

Ultracentrifuge tubes, Ultraclear™ Beckman, Palo Alto, CA, USA 

Consumables not listed here were purchased from the following companies: Eppendorf, 

Hamburg; Sarstedt, Nümbrecht; Omnilab, Gehrden; Roth, Karlsruhe; Greiner, 

Frickenhausen; Neolab, Heidelberg; Brand, Wertheim (all Germany). 

 

2.4. Kits 
GenElute™ Plasmid Midiprep Kit  Sigma-Aldrich, Steinheim, Germany 

MBS Mammalian Transfection Kit Stratagene, La Jolla, CA, USA 

NucleoBond™  BAC100 Kit Macherey&Nagel, Düren, Germany 

PCR DIG Probe Synthesis Kit Roche, Mannheim, Germany 

Qiaprep® DNA Miniprep Kit  Qiagen, Hilden, Germany 
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Qiaquick® Gel Extraction Kit  Qiagen, Hilden, Germany 

Qiaquick® PCR Purification Kit  Qiagen, Hilden, Germany 

 

2.5. Chemicals 
Acetic acid Baker, Deventer, Holland 

Acrylamide, 30%(w/v)/Bisacrylamide, 0.8%(w/v) Roth, Karlsruhe, Germany 

Agar agar Roth, Karlsruhe, Germany 

Agarose Roth, Karlsruhe, Germany 

Serva, Heidelberg, Germany 

Agarose, low-melting point, SeaPlaque® BioWhittaker, Rockland, ME, USA 

Ammonium chloride Roth, Karlsruhe, Germany 

Ammonium peroxodisulfate (APS) Roth, Karlsruhe, Germany 

Ampicillin, sodium salt Roth, Karlsruhe, Germany 

Antipain Sigma-Aldrich, Steinheim, Germany 

Aqua ad iniectabilia (H2O) B. Braun, Melsungen, Germany 

Aprotinin Sigma-Aldrich, Steinheim, Germany 

L-Arabinose Roth, Karlsruhe, Germany 

Bestatin Sigma-Aldrich, Steinheim, Germany 

Bicyclo(2,2,2)-1,4-diazaoctane (DABCO) Sigma-Aldrich, Steinheim, Germany 

Blocking reagent for Southern hybridisation  

(Cat. No. 1096176) 

Roche, Mannheim, Germany 

Boric acid Merck, Darmstadt, Germany 

Bovine serum albumine, fraction V (BSA) Roth, Karlsruhe, Germany 

5-Bromo-4-chloro-indolyl-3-phosphate (BCIP) Roth, Karlsruhe, Germany 

5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) Roth, Karlsruhe, Germany 

5-Bromo-3-indolyl-β-D-galactopyranoside (bluo-gal) Invitrogen, Karlsruhe, Germany 

Bromophenol blue Roth, Karlsruhe, Germany 

1-Butanol Fluka, Buchs, Switzerland 

Calcium chloride (CaCl2 · 2 H2O) Sigma-Aldrich, Steinheim, Germany 

Chloramphenicol Sigma-Aldrich, Steinheim, Germany 

Chloroform  Merck, Darmstadt, Germany 

CO2-independent Medium without L-glutamine  

(Cat. No. 18045-054) 

Gibco, Paisley, UK 

Coomassie Brilliant Blue G250  Serva, Heidelberg, Germany 

Coomassie Brilliant Blue R250 Roth, Karlsruhe, Germany 

Crystal Violet Serva, Heidelberg, Germany 

Cycloheximide Sigma-Aldrich, Steinheim, Germany 

p-Coumaric acid Fluka, Buchs, Switzerland 
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N-N’-Dimethylformamide Merck, Darmstadt, Germany 

Desoxynucleotides, 10 mM each (dNTPs) Peqlab, Erlangen, Germany 

Dimethylsulfoxide, mol. biol. grade Roth, Karlsruhe, Germany 

Dipotassium hydrogenphosphate (K2HPO4) Merck, Darmstadt, Germany 

Disodium hydrogenphosphate (Na2HPO4) Baker, Deventer, Netherlands 

E-64 Sigma-Aldrich, Steinheim, Germany 

Ethanol  Baker, Deventer, Netherlands 

Ethidium bromide Roth, Karlsruhe, Germany 

N,N,N',N'-Ethylenediaminetetraacetic acid (EDTA) Roth, Karlsruhe, Germany 

Fetal calf serum (FCS) Gibco, Paisley, UK 

Ficoll 400 Sigma-Aldrich, Steinheim, Germany 

Formaldehyde, min. 35%(w/v) Merck, Darmstadt, Germany 

Formamide, deionised Roth, Karlsruhe, Germany 

Glucose Merck, Darmstadt, Germany 

Glutamine, 200 mM Seromed Biochrom, Berlin, Germany 

Glycerol Roth, Karlsruhe, Germany 

Glycine Roth, Karlsruhe, Germany 

Glycogen for mol. biol, 20 mg/ml Fermentas, St. Leon.-Rot, Germany 

Hoechst 33258 Sigma, Steinheim, Germany 

Human IgGs, research grade (Cat. No. I-4506) Sigma, Steinheim, Germany 

Hydrochloric acid, 37%(w/v) (HCl) Riedel-de-Haën, Seelze, Germany 

Hydrogen peroxide, 30%(v/v) Fluka, Buchs, Switzerland 

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Roth, Karlsruhe, Germany 

Immersion oil Zeiss, Oberkochen, Germany 

Isopropanol Merck, Darmstadt, Germany 

Isopropylthiogalactoside (IPTG) Roth, Karlsruhe, Germany 

Kanamycin sulfate Gibco, Paisley, UK 

Leupeptin Sigma-Aldrich, Steinheim, Germany 

Low fat milk powder, Sucofin® TSI, Zeven, Germany 

Luminol (5-Amino-2,3-dihydro-1,4-phtalazinidione) Roth, Karlsruhe, Germany 

Magnesium chloride (MgCl2 · 6 H2O) Roth, Karlsruhe, Germany 

Maleic acid Roth, Karlsruhe, Germany 

2-Mercaptoethanol Roth, Karlsruhe, Germany 

Methanol Baker, Deventer, Netherlands 

Minimum Essential Medium (MEM) with Earle's Balanced Salt 

Solution, non-essential amino acids, L-glutamine and 2.2 g/l 

NaHCO3. (Cat. No. 04-08510) 

Cytogen, Sinn, Germany 

2-(N-Morpholino)ethanesulfonic acid (MES) Roth, Karlsruhe, Germany 

Mowiol 40-88 Sigma-Aldrich, Steinheim, Germany 
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Nitroblue tetrazolium salt (NBT) Roth, Karlsruhe, Germany 

o-Nitrophenyl-β-D-galactopyranoside (ONPG) Applichem, Darmstadt, Germany 

Nocodazole Sigma-Aldrich, Steinheim, Germany 

Nycodenz AG Axis Shield PoC, Oslo, Norway 

Paraformaldehyde Serva, Heidelberg, Germany 

Pepstatin Sigma-Aldrich, Steinheim, Germany 

Peptone Roth, Karlsruhe, Germany 

Phenol Roth, Karlsruhe, Germany 

Phenol/Chloroform/Isoamyl alcohol, volume ratio 25/24/1 Roth, Karlsruhe, Germany 

Phenylmethylsulfonylfluoride (PMSF) Roth, Karlsruhe, Germany 

Phosphate buffered saline (PBS) 10x Gibco, Paisley, UK 

Piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES) Roth, Karlsruhe, Germany 

Ponceau S Fluka, Buchs, Switzerland 

Polyethylen glycol 4000 50%(w/v) (PEG4000) Fermentas, St. Leon-Rot, Germany 

Polyvinylpyrrolidone K30 Sigma-Aldrich, Steinheim, Germany 

Potassium chloride (KCl) Roth, Karlsruhe, Germany 

Potassium dihydrogenphosphate (KH2PO4) Roth, Karlsruhe, Germany 

RPMI 1640 Medium with 25 mM HEPES,  L-glutamine and 

2 mg/ml NaHCO3 (Cat. No. 04-22500) 

Cytogen, Sinn, Germany 

Salmon sperm DNA, 10 mg/ml Fermentas, St. Leon-Rot, Germany 

Sodium acetate Serva, Heidelberg, Germany 

Sodium azide (NaN3) Roth, Karlsruhe, Germany 

Sodium chloride (NaCl) Merck, Darmstadt, Germany 

Sodium citrate Roth, Karlsruhe, Germany 

Sodium dihydrogenphosphate (NaH2PO4) Merck, Darmstadt, Germany 

Sodium dodecylsulfate (SDS) Roth, Karlsruhe, Germany 

Sodium hydroxide (NaOH) Merck, Darmstadt, Germany 

Streptomycin sulfate Sigma-Aldrich, Steinheim, Germany 

Sucrose Roth, Karlsruhe, Germany 

5-Sulfosalicylic acid Merck, Darmstadt, Germany 

Tetracycline Sigma-Aldrich, Steinheim, Germany 

N,N,N’,N’-Tetramethylethylendiamin (TEMED) Roth, Karlsruhe, Germany 

Trichloroacetic acid Roth, Karlsruhe, Germany 

tris-(Hydroxymethyl)aminomethane (Tris) Roth, Karlsruhe, Germany 

Triton X-100 Merck, Darmstadt, Germany 

Trypsin/EDTA Seromed Biochrom, Berlin, Germany 

Tween 20 Roth, Karlsruhe, Germany 

Xylencyanol ICN, Aurora, Ohio, USA 

Yeast extract Roth, Karlsruhe, Germany 



Materials 

 46

 

2.6. Electrophoresis standards 

2.6.1. DNA standards  

GeneRuler™ DNA Ladder Mix (Fermentas, St. Leon Roth, Germany) 
10000, 8000, 6000, 5000, 4000, 3500, 3000, 2500, 2000, 1500, 1200, 1031, 900, 800, 700, 

600, 500, 400, 300, 200, 100 (sizes in bp) 

 

Lambda Mix Marker 19 (Fermentas, St. Leon Roth, Germany) 
48502, 38416, 33498, 29946, 24508, 23994, 19397, 17053, 15004, 12220, 10086, 8614, 

8271, 1503 (sizes in bp) 

 

MassRuler™ DNA Ladder High Range (Fermentas, St. Leon Roth, Germany) 

10000 (10 ng/µl), 8000 (8 ng/µl), 6000 (6 ng/µl), 5000 (5 ng/µl), 4000 (4 ng/µl), 3000 (3 

ng/µl), 2500 (2.5 ng/µl), 2000 (2 ng/µl), 1500 (1.5 ng/µl) 

 

MassRuler™ DNA Ladder Low Range (Fermentas, St. Leon Roth, Deutschland)  

1031 (10 ng/µl), 900 (9 ng/µl), 800 (8 ng/µl), 700 (7 ng/µl), 600 (6 ng/µl), 500 (10 ng/µl), 400 

(4 ng/µl), 300 (3 ng/µl), 200 (2 ng/µl), 100 (1 ng/µl), 80 (0.8 ng/µl) bp 

 

2.6.2. Protein standards 

Kaleidoscope Prestained Protein Marker (BioRad, Hercules, CA, USA) 
250, 150, 100, 75, 50, 37, 25, 20, 15, 10 (sizes in kDa) 

 

2.7. Enzymes 

2.7.1. Restriction endonucleases 

AscI  GG'CGCGCC New England Biolabs, Ipswich, MA, USA 

BamHI G'GATCC Fermentas, St. Leon-Rot, Germany 

BglII A'GATCT Fermentas, St. Leon-Rot, Germany 

BspHI T'CATGA New England Biolabs, Ipswich, MA, USA 

BsrGI T'GTACA New England Biolabs, Ipswich, MA, USA 

BstBI TT'CGAA New England Biolabs, Ipswich, MA, USA 

Bsu15I (ClaI) AT'CGAT Fermentas, St. Leon-Rot, Germany 

DpnI GAm'TC New England Biolabs, Ipswich, MA, USA 

EaeI Y'GGCCR New England Biolabs, Ipswich, MA, USA 
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Eco321 (EcoRV) GAT'ATC Fermentas, St. Leon-Rot, Germany 

EcoRI G'AATTC Fermentas, St. Leon-Rot, Germany 

HindIII A'AGCTT Fermentas, St. Leon-Rot, Germany 

HpaI GTT'AAC New England Biolabs, Ipswich, MA, USA 

KpnI GGTAC'C Fermentas, St. Leon-Rot, Germany 

NcoI C'CATGG Fermentas, St. Leon-Rot, Germany 

NdeI CA'TATG Fermentas, St. Leon-Rot, Germany 

NheI G'CTAGC Fermentas, St. Leon-Rot, Germany 

NotI GC'GGCCGC Fermentas, St. Leon-Rot, Germany 

PacI TTAAT'TAA New England Biolabs, Ipswich, MA, USA 

SbfI CCTGCA'GG New England Biolabs, Ipswich, MA, USA 

SgrAI CR'CCGGYG New England Biolabs, Ipswich, MA, USA 

SmaI CCC'GGG Fermentas, St. Leon-Rot, Germany 

XbaI T'CTAGA Fermentas, St. Leon-Rot, Germany 

XhoI C'TCGAG Fermentas, St. Leon-Rot, Germany 

 

2.7.2. Other enzymes 

Calf intestine alkaline phosphatase (CIAP) Fermentas, St. Leon-Rot, Germany 

Klenow fragment Fermentas, St. Leon-Rot, Germany 

Pfu Polymerase Stratagene, La Jolla, CA, USA 

Pwo Polymerase Peqlab, Erlangen, Germany 

Ribonuclease A (RNase A) Fermentas, St. Leon-Rot, Germany 

T4 DNA Ligase Fermentas, St. Leon-Rot, Germany 

Taq Polymerase New England Biolabs, Ipswich, MA, USA 

 

2.8. Media and solutions 

If not otherwise noted, all solutions were prepared with double-destilled H2O. Solutions not 

mentioned are described in the methods part. 

 

BHK-21 cell medium 
MEM supplemented with 10%(v/v) fetal calf serum 
 
100x Denhardt's solution 
1%(w/v) Ficoll 400, 1%(w/v) Polyvinylpyrrolidone K30, 1%(w/v) BSA 
 
6x DNA loading solution 
30%(w/v) glycerol, 0.25%(w/v) bromophenol blue, 0.25%(w/v) xylencyanol 
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DNA resuspension buffer 
10 mM Tris-HCl, pH 8, 50 µg/ml RNase A 
 
Embedding solution (Mowiol) 
6 g glycerol, 2.4 g Mowiol, 6 ml H2O, 12 ml 0.2 M Tris-HCl pH 8.5. 
Prior to use add 25 mg/ml DABCO. 
 
LB Agar 
1.5%(w/v) agar-agar suspended in LB Medium, then autoclaved. 
 
LB Medium 
1%(w/v) pepton, 0.5%(w/v) yeast extract, 0.5%(w/v) NaCl, 1 mM NaOH; autoclave 
 
MNT buffer 
20 mM MES, 100 mM NaCl, 30 mM Tris-HCl, pH 7.2 
 
NTE buffer 
100 mM NaCl, 10 mM Tris-HCl, 1 mM EDTA, pH 7.4 
 
Protease inhibitor cocktails 
500x AEL:  1 mg/ml Aprotinin, 5 mg/ml E-64, 1 mg/ml Leupeptin in H2O 
500x ABP: 5 mg/ml Antipain, 1 mg/ml Bestatin, 1 mg/ml Pepstatin in methanol 
250x PMSF: 40 mg/ml PMSF in isopropanol 
 
PtK2 cell medium 
MEM supplemented with 10%(v/v) fetal calf serum 
 
RPMI/BSA 
0.1%(w/v) BSA in RPMI 1640 medium 
 
RSB buffer (resuspension buffer) 
10 mM Tris-HCl, 10 mM KCl, 1.5 mM MgCl2, pH 7.5 
 
6x SDS-PAGE sample buffer (Laemmli, 1970) 
30%(w/v) glycerol, 6%(w/v) SDS, 0.3 M Tris-HCl, pH 6.8, bromophenol blue 
Prior to use add 2-Mercaptoethanol up to 6%(v/v).  
 
20x SSC 
3 M NaCl, 0.3 M sodium citrate, pH 7 
 
SOC Medium 
2%(w/v) peptone, 0.5%(w/v) yeast extract, 8.6 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 20 mM 
glucose 
 
50x TAE 
2 M Tris, 2 M acetic acid, 50 mM EDTA 
 
5x TBE 
0.44 M Tris, 0.44 M boric acid, 10 mM EDTA 
 
TB Medium 
1.3%(w/v) peptone, 2.7%(w/v) yeast extract, 0.44%(v/v) glycerol; autoclave 
To 900 ml of this medium add 100 ml of a sterile solution of 0.17 M KH2PO4, 0.72 M K2HPO4. 
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TSM buffer 
100 mM Tris-HCl, 100 mM NaCl, 5 mM MgCl2, pH 9.5 
 
Vero cell medium 
MEM supplemented with 7.5%(v/v) fetal calf serum 

 

2.9. Antibodies 

2.9.1. Primary antibodies 

Name Antigen Description Source/Reference 
mAb LP12 VP5 monoclonal mouse antibody  

against HSV1-VP5 
(Phelan et al., 1997) 
kindly provided by T. Minson,  
University of Cambridge, UK 

α-NC1 VP5 polyclonal rabbit antibody 
against HSV1-VP5 

(Cohen et al., 1980) 
kindly provided by G. Cohen & R. Eisenberg,  
University of Pennsylvania, USA 

α-VP26(C) VP2695-112 polyclonal rabbit serum  
against C-terminus of VP26  
(aa 95-112) 

(Desai et al., 1998) 
kindly provided by P. Desai,  
Johns Hopkins University, Philadelphia, USA 

mAb DL6 
 

gD monoclonal mouse antibody 
against HSV1 glycoprotein D 

(Eisenberg et al., 1985) 
kindly provided by G. Cohen & R. Eisenberg,  
University of Pennsylvania, USA 

R45 gD polyclonal rabbit serum 
against HSV1-gD 

(Cohen et al., 1978) 
kindly provided by G. Cohen & R. Eisenberg,  
University of Pennsylvania, USA 

mAb JL-8 AcGFP1 
 

monoclonal mouse antibody  
against AcGFP, EGFP, ECFP, 
EYFP 

Clontech; Mountain View, CA, USA 
(Living Colors™ Cat. No. 632381) 

α-DIG-AP dioxygenin Fab fragment of an anti- 
dioxygenin IgG antibody from  
sheep, conjugated to alkaline  
phosphatase. 

Roche; Mannheim, Germany 
(Cat. No. 11093274910) 

 

2.9.2. Secondary antibodies  

Species and 
antigen 

Conjugate Source 

goat-α-mouse Lissamine-rhodamine sulfonyl chloride (LRSC) Dianova, Hamburg, Germany 
goat-α-mouse Fluorescein isothiocyanate (FITC) Dianova, Hamburg, Germany 
goat-α-rabbit alkaline phosphatase  Dianova, Hamburg, Germany 
goat-α-mouse horseraddish peroxidase  Dianova, Hamburg, Germany 

 

2.10. Oligonucleotides 

With the exception of CHN20, all oligonucleotides were purchased from MWG Biotech, 

Ebersberg, Germany and were “High Purity Salt Free” (HPSF®) purified after synthesis. 

Primer CHN20 was obtained from Operon, Huntsville, AL, USA. Bases not annealing are 

indicated in italics and restriction sites are underlined. Sequences are written in 5' to 3' 

direction. The loxP sites in oligos CHNLox1 and CHNLox2c are written in bold letters. 
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CHNLox1 AGC TGC GGC CGC ATA ACT TCG TAT AAT GTA TGC TAT ACG AAG TTA 
TTT AAT TAA TCT AGA GGG GCT AGC G 

CHNLox2c AAT TCG CTA GCC CCT CTA GAT TAA TTA AAT AAC TTC GTA TAG CAT 
ACA TTA TAC GAA GTT ATG CGG CCG C 

CHN01 CGT AGT CGA GCT AGT CGA TCG TAC GAT ACG TCA G 

CHN02 TCG ATC GCT AGT CGA TCT ACG TCG TAG ATG CTA C 

CHN03-500 NNN NNN CCT GCA GGA TGC CCG GCC GAT GAT GG 

CHN04 NNN NNN CCT GCA GGC TCG AGT GCG GGA CGG CCA TCG GGA CCG GAG G 

CHN05 NNN NNC TCG AGC CGC CCC AGC ACC GTT ACC ACC GAT AG 
CHN06-500 NNN NNN NGG TAC CCG CCG TGC TGA CCA GCC TAC 

CHN07N NNN NGC TAG CTG ATG TGC TTA AAA ACT TAC TCA 

CHN08N NNN NGC TAG CTG ATT CCC TTT GTC AAC AGC AAT 

CHNHomL-S GGC CGC TCG ACA GCG ACA CAC TTG CAT CGG ATG CAG CCC GGT TAA 
CGT GCC GGC ACT A 

CHNHomL-A GGC CTA GTG CCG GCA CGT TAA CCG GGC TGC ATC CGA TGC AAG TGT 
GTC GCT GTC GAG C 

CHNHomR-S CTA GAG GCC TGG GTA ACC AGG TAT TTT GTC CAC ATA ACC GTG CGC 
AAA ATG TTG TG 

CHNHomR-A CTA GCA CAA CAT TTT GCG CAC GGT TAT GTG GAC AAA ATA CCT GGT 
TAC CCA GGC CT 

CHN09 TCG ACC ATG GTG TAC AAC 

CHN10  TCG AGT TGT ACA CCA TGG 

CHN13 CGA CAC CCC CAT ATC GCT TCC CGA CCT CCG GTC CCG ATG GCC GTC 
CCG CAG GCC TGG TGA TGA TGG CGG GAT C 

CHN14 CGC GCA TGC CAA GCG CCC GGA CGC TAT CGG TGG TAA CGG TGC TGG 
GGC GGT CAG AAG AAC TCG TCA AGA AGG 

CHN17 CAA TAG GGA CTT TCC ATT G  

CHN20 TAA GGC AGT TAT TGG TGC C 

CHN21 ATG CCC GGC CGA TGA TGG 

CHN22 CGC CGT GCT GAC CAG CCT AC 

CHN33 CAG AGC GGA CCA ATG TG 

CHN34 GCG ACG CTA CGT GCA AC 

CHN43 CCT TCG CCC CAC ACA G 

CHN43A CGC TAT TTG GTG GGT GGT TG 

CHN49 GAA CCC TTT GGT GGG TTT ACG CGG GCA CGC ACG CTC CCA TCG CGG 
GCG CC G GCC TGG TGA TGA TGG CGG GAT C 

CHN50  TGG TGT GGT CTT TTA TTG ATT AAA ACA CCC CAG AAG GAA CTC CCC 
GGG CC T CAG AAG AAC TCG TCA AGA AGG 

CHN73 CCC ACA TCC GGG AAG ACG ACC AGC CGT CCT CGC ACC AGC CCT TGT 
TTT ACG TGA GCA AGG GCG AGG AG 

CHN74 CCC AAC CCC GCA GAC CTG ACC CCC CCG CAC CCA TTA AGG GGG GGT 
ATC TAC TTG TAC AGC TCG TCC ATG 

CHN77 TTC CGC TTC CGT TCC GCA T 

CHN78 CTT TCC GAT GCG ATC CCG A 

CHN79 GTC TCC CGA GCG TCA AAA TC 

CHN80 GCA AGG GCC TTG TTT GTC TG 
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2.11. Organisms and plasmids 

2.11.1. Eukaryotic cells 

BHK-21 (American Type Culture Collection, ATCC CCL-10) 

Kidney fibroblast cell line from Mesocricetus auratus (Syrian golden hamster) 

 

PtK2 (ATCC CCL-56) 

Epithelial kidney cell line from Potorous tridactylis (potoroo) 

 

Vero (ATCC CCL-81) 

Epithelial kidney cell line from Cercopithecus aethiops (African green monkey) 

 

2.11.2. Viruses 

Virus mutants constructed during the course of this work are described in the results section. 

 

HSV1-wildtype strain 17+ (Brown et al., 1973) 
kindly provided by J.H. Subak-Sharpe and M. Murphy, MRC Virology Unit, Glasgow, UK 

Fully sequenced HSV1 strain (McGeoch et al., 1988; McGeoch et al., 1986; McGeoch et al., 

1985; Perry and McGeoch, 1988), GenBank accession number X14112. 

 
HSV1-wildtype strain F (ATCC VR-733) 

 
HSV1-wildtype strain KOS (ATCC VR-1493, Smith, 1964) 
kindly provided by P. Spear, Northwestern University, Chicago, IL, USA 

 

HSV1(KOS)tk12 (Warner et al., 1998)  
kindly provided by P. Spear, Northwestern University, Chicago, IL, USA 

Derived from HSV1(KOS). This virus lacks the viral thymidine kinase gene (UL23) and 

encodes β-galactosidase under the control of the HSV1 immediate-early promoter of ICP4. 

 
HSV1-K∆26Z (Desai et al., 1998) 
kindly provided by P. Desai, Johns Hopkins University, Baltimore, MD, USA 

Derived from HSV1(KOS). The UL35 ORF is replaced by β-galactosidase, the virus has a 

∆VP26 phenotype. 
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HSV1-K26GFP (Desai and Person, 1998) 
kindly provided by P. Desai, Johns Hopkins University, Baltimore, MD, USA 

Derived from HSV1(KOS). The UL35 ORF is replaced by an N-terminal fusion of the EGFP 

ORF to UL35. The phenotype is a virus which carries GFPVP26 incorporated into the capsid. 

 

2.11.3. Bacteria 

All bacterial strains used are derivatives of Escherichia coli K12. 

 

E. coli DH5α (Ausubel et al., 1997) 

Genotype: F- Φ80dlacZ∆M15 ∆(lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rk-, mk+)  

phoA  supE44  thi-1  gyrA96  relA1 λ-. Used for cloning plasmids. 

 

E. coli DH10B (Grant et al., 1990) 
Genotype: F- Φ80dlacZ∆M15 mcrA ∆(mrr-hsdRMS-mcrBC) ∆lacX74 deoR recA1 endA1 

araD139 ∆(ara, leu) 7697 galU galK rpsL(SmR) nupG λ-. Used for maintaining and cloning of 

BACs. 

 

E. coli DY380 (Lee et al., 2001) 

Genotype: F- Φ80dlacZ∆M15 mcrA ∆(mrr-hsdRMS-mcrBC) ∆lacX74 deoR recA1 endA1 

araD139 ∆(ara, leu) 7649 galU galK rspL(SmR) nupG [λcI857 (cro-bioA) <> tet]. Used for 

maintaining and cloning of BACs. 

Derived from strain DH10B. E. coli DY380 contains a defective λ prophage inserted into the 

bacterial genome. The recombination genes redαβγ are expressed under control of the λPL 

promoter. This promoter is repressed by the temperature-sensitive repressor cI857 at 32°C 

and derepressed at 42°C. When bacteria containing this prophage are kept at 32°C, no 

recombination proteins are produced. However, after a brief heat-shock at 42°C, a sufficient 

amount of recombination proteins is produced.  

 

2.11.4. Plasmids 

Plasmids constructed during the course of this work are described in the results section. 

 

Cosmid set of HSV1 (Cunningham and Davison, 1993) 
kindly provided by C. Cunningham, MRC Virology Unit, Glasgow, UK 

The HSV1(17+) genome was cloned as a set of five overlapping cosmids.  

Nucleotide numbers are based on the published HSV1(17+) sequence; AmpR, KanR.  
cos 6: nt 141,221 – 29,733 



Materials 

 53

cos 28: nt 24,699 – 64,405 
cos14: nt 54,445 – 90,477 
cos56: nt 79,442 – 115,152 
cos48: nt 107,496 – 144,681 
 

pBAD-I-SceI (Tischer et al., 2006) 
kindly provided by K. Tischer & K. Osterrieder, Cornell University, Ithaca, NY, USA 

Plasmid containing an expression cassette for the homing endonuclease I-SceI (recognition 

sequence: TAGGGATAACAGGGTAAT) under the control of an L-arabinose inducible promoter; 

AmpR; Figure 13. 

 

 

 

Figure 13: Plasmid map of pBAD-I-SceI.  bla, β-lactamase (ampicillin resistance); PBAD, arabinose inducible 

BAD promoter. (kindly provided by K. Tischer & K. Osterrieder, Cornell University, Ithaca, NY, USA) 

 

pBlueLox (Smith and Enquist, 2000) 
kindly provided by G.A. Smith, Department of Molecular Biology, Princeton University, Princeton, NJ, USA. 

BAC-Vector based on pMBO131 (O'Connor et al., 1989) containing  the BAC genes and a 

BAC replication origin, as well as a single loxP site and a β-galactosidase expression 

cassette from pSVβlacZ (Clontech; San Jose, CA, USA) which expresses the gene under 

control of the SV40 early promoter. 

 
pBlueLox-HomTK (Dr. Tanja Strive, Institute of Virology, Hannover Medical School)  

This plasmid was constructed to insert the BAC sequences into the HSV1 genome by 

homologous recombination in cell culture (T. Strive, B. Sodeik & M. Messerle; personal 

communication; Figure 14). The kanamycin resistance gene from pEYFP-ER (Clontech, San 

Jose, CA, USA) was amplified with TAT AGC GGC CGC TAC AGG GCG CGT CAG GTG GC 
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and AGC ATC TAG ATT AAT TAA GTG ATG GCA GGT TGG GCG TCG CTT G, digested 

with NotI and XbaI and cloned into pUC18∆NdeIlinker (Strive et al., 2002) resulting in 

pUC18∆Ndelinker-Kan. DNA sequences homologous to 2 kbp upstream and downstream of 

the UL23 locus were amplifed from HSV1(17+) DNA. The 3’ homology (HomA: nt 44591-

46840) was amplified with GGT GGC TTG AGC CAG CGC GTC CAG and CTA GCT AGC 

GTC GAC ATG CAT GTC TTT ATC CTG GAT TAC GAC CAA TCG CC, digested with XbaI 

and NheI and ligated into XbaI and NdeI cut pUC18∆Ndelinker-Kan. The 5’ homology 

(HomB2: nt 47561-49773) was amplified with AAA CAT ATG TCG ACG TAG ACG ATA 

TCG TCG CGC GAA CCC AGG and AAG GGC CCT TAA TTA ACG TGG TGC ATC AGC 

GTG GCG ATC ACG ATG TGC, digested with Bsp120I and NdeI and ligated into the NotI 

and NdeI cut product of the previous ligation resulting in pHomTK. The homology cassette 

was cut out from pHomTK with SalI and cloned into the SalI site of pBlueLox, yielding 

pblueLox-HomTK. For the insertion of BAC sequences into HSV1(17+), virus DNA and 

linearised pblueLox-HomTK were cotransfected into Vero cells. After complete CPE, cells 

and supernatant were harvested. Recombinant virus was identified by bluo-gal staining of 

virus plaques to detect β-galactosidase activity (cf. chapter 3.2.5). 

 

 

 
 

Figure 14: Map of pBlueLox-HomTK. lacZ, β-Galactosidase; KanR, kanamycin resistance; cat, chloramphenicol 

resistance; parA/parB/repE/oriS, BAC genes and BAC replication origin; loxP, Cre recombinase recognition site; 

HomA and HomB2, 2 kbp sequences homologous to sequences up- and downstream of UL23 (T. Strive, B. 

Sodeik & M. Messerle; personal communication).  
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pCreIn (Smith and Enquist, 2000) 
kindly provided by G.A. Smith, Department of Molecular Biology, Princeton University, Princeton, NJ, USA 

Plasmid carrying Cre recombinase under the control of a CMV immediate early promoter. 

The Cre ORF carries an intron, so a functional recombinase is only synthesised in 

eukaryotes; KanR. 

 

pCP16-HL  
kindly provided by M. Messerle & E. Borst, Institute of Virology, Hannover Medical School 

modified from pCP16 (Cherepanov and Wackernagel, 1995) by Markus Wagner (Ludwig-

Maximilians-Universität München, Munich, Germany). Tetracylin resistance gene flanked by 

two frt sites; TetR. 

 

pEP-EGFP-in  
kindly provided by K. Tischer & K. Osterrieder, Cornell University, Ithaca, NY, USA 

Template plasmid for the introduction of the enhanced green fluorescent protein (GFP) 

sequence into a BAC via “en passant” mutagenesis (Tischer et al., 2006). The EGFP ORF is 

interrupted by a kanamycin resistance cassette in apposition to a recognition site for the 

homing endonuclease I-SceI. Flanking the resistance gene and restriction site, 72 bp of the 

GFP sequence are duplicated. During “en passant” mutagenesis the BAC recombines via 

this duplicate by homologous recombination; AmpR, KanR; Figure 15 
 

 

 

Figure 15: Plasmid map of pEP-EGFP-in. EGFP, enhanced green fluorescent protein ORF; KanR, kanamycin 

resistance; AmpR, ampicillin resistance. The duplicate GFP sequences for recombination are indicated by white 

boxes. 
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pECFP-N1 (Clontech, San Jose, CA, USA) 
Enhanced cyan fluorescent protein with N-terminal multiple cloning site; KanR. 

 

pEGFP-N1 (Clontech, San Jose, CA, USA) 
Enhanced green fluorescent protein with N-terminal multiple cloning site; KanR. 

 

pEYFP-N1 (Clontech, San Jose, CA, USA) 
Enhanced yellow fluorescent protein with N-terminal multiple cloning site; KanR. 

 
pK26GFP (Desai and Person, 1998; Figure 16) 
kindly provided by P. Desai, Johns Hopkins University, Baltimore, MD, USA 

A 2.7 kbp EcoRI/NotI fragment of HSV1, strain KOS encompassing UL35 (VP26) and the C-

terminal coding sequences of UL34 as well as of UL36, was cloned in pUC19 and the coding 

sequence of GFP was inserted into the 5' end of the UL35 ORF after codon 4, thus coding 

for a GFPVP26 fusion protein; AmpR. 

 
pKD46 (Datsenko and Wanner, 2000) 
kindly provided by M. Messerle & E. Borst, Institute of Virology, Hannover Medical School 

Plasmid carrying the recombination functions redαβγ from bacteriophage λ under the control 

of an L-arabinose induced promoter. It displays a temperature-sensitive mode of replication 

and replicates only at 30°C; AmpR, orits. 

 
 

 
Figure 16: Plasmid map of pK26GFP. An EcoRI/NotI fragment of HSV1(KOS) was cloned in pUC19 and GFP 

was inserted at the N-terminus of VP26; bla, ampicillin resistance. 
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pLoCMV-VP1/3 (Figure 17) 
This plasmid was constructed by Dr. Klaus Breiner in the laboratory of Prof. Ari Helenius 

(Swiss Federal Institute of Technology, Zürich, Switzerland; personal communication). A 12 

kbp HindIII/NheI fragment carrying UL33 to UL36 (VP1/3) of HSV1(17+) was cloned into 

pShuttle (Stratagene, La Jolla, CA, USA) behind a CMV promoter; KanR.  
 

 
 

Figure 17: Plasmid map of pLoCMV-VP1/3. The ORFs UL33-UL36 of HSV1 are cloned completely, the 3' end 

of the UL32 ORF is truncated. pCMV, cytomegalovirus immediate early promoter; KanR, kanamycin resistance. 

 
pRpsLneo (Gene Bridges, Dresden, Germany) 
Template plasmid carrying a selection/counterselection cassette coding for kanamycin 

resistance and the rpsL gene for gain of streptomycin sensitivity in E. coli with an rpsL 

mutation. It displays a temperature-sensitive mode of replication and replicates only at 30°C; 

KanR, orits. 
 
pRSETB-mRFP1 (Campbell et al., 2002) 
kindly provided by R. Y. Tsien, Department of Pharmacology. University of California, La Jolla, CA 

Bacterial expression plasmid carrying His6-tagged monomeric red fluorescent protein 

(mRFP1); AmpR.  

 

pST-SNR 
kindly provided by M. Messerle & E. Borst, Institute of Virology, Hannover Medical School 

Based on pST76-K (Posfai et al., 1997) and modified by Dr. Martin Messerle (Institute of 

Virology, Hannover Medical School; personal communication) this plasmid displays a 

temperature-sensitive mode of replication, replicates only at 30°C, and provides a fusion 
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protein coding for kanamycin resistance and levansucrase (sucrose sensitivity) as well as the 

recA gene; KanR, orits. 

 
pUC18 (Invitrogen, Leek, Netherlands) 
Cloning plasmid, AmpR. 

 

pYEbac102 (Tanaka et al., 2003) 
kindly provided by M. Messerle & E. Borst, Institute of Virology, Hannover Medical School 

Bacterial artificial chromosome containing the HSV1, strain F genome. For cloning, the BAC 

sequences were inserted between UL3 and UL4 and flanked by loxP sites, so they are 

excised after expression of Cre recombinase. 
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3. Methods 

3.1. Eukaryotic cell culture 

Eukaryotic cells were grown in 10 cm dishes in Minimum essential medium containing 

Earle’s balanced salt solution, non-essential amino acids and glutamine at 37°C and 5% 

CO2. Media for BHK-21 or PtK2 cells were supplemented with 10%(v/v) fetal calf serum 

(FCS), Vero cell medium contained 7.5%(v/v) FCS. The cells were passaged twice a week. 

After washing with PBS, 1 ml Trypsin/EDTA was added. Having detached, the cells were 

resuspended in medium and seeded into new culture vessels. The cells were cultured until 

passage 40 to 50. For long-term storage in liquid nitrogen, cells from a 10 cm dish were 

trypsinised, pelleted and resuspended in 2 ml of MEM with 20%(v/v) FCS and 10%(v/v) 

DMSO.  

 

3.2. Virological techniques 

3.2.1. Preparation of virus stocks 

Virus stocks were prepared as previously described (Döhner et al., 2006; Döhner et al., 

2002; Sodeik et al., 1997). All experiments were carried out with virus stocks of passage 2 or 

3. BHK-21 cells were grown in 175 cm² flasks to almost confluency (1 to 2 x 107 cells/flask). 

Prior to inoculation the cells were washed with 30 ml PBS, then 5 ml RPMI/BSA containing 

0.01 pfu/cell virus were added, and the virions were allowed to attach to the cells on a slow 

rocking platform at room temperature for 1 h. Then, 25 ml of BHK-21 growth medium were 

added, and the cells were further incubated at 37°C and 5% CO2. Dependent on the viral 

growth kinetics the virions were harvested from the medium when complete cytopathic effect 

had developed, usually within 2 to 3 days post infection.  

The infected cells were detached from their substrate by knocking, cells and medium 

were transferred to Beckman JA-10 centrifuge rotor beakers and centrifuged at 2,000 rpm 

(439 x g) for 10 min at 4°C. The cell pellets were resuspended in an equal volume of MNT 

buffer (section 2.8) and kept at 4°C for few days or were aliquoted, snap-frozen in liquid 

nitrogen and stored for up to 2 years at -80°C. The supernatants were transferred to 

Beckman Type 19 rotor beakers and centrifuged at 12,000 rpm (13,531 x g) for 1.5 h at 4°C. 

The pellets (referred to as medium pellets) were carefully resuspended in a small volume of 

MNT buffer and either aliquoted, snap-frozen in liquid nitrogen and stored at -80°C, or further 

purifed by density-gradient ultracentrifugation. For this purpose, the medium pellet 

suspensions were layered onto a linear 10-40%(w/v) gradient of Nycodenz in MNT buffer 

and centrifuged at 20,000 rpm (52,931 x g) for 105 min in a Beckman SW28 rotor at 4°C. 
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Virus was harvested as a light scattering band from the middle of the gradient, aliquoted, 

snap-frozen in liquid nitrogen and long-term stored at -80°C. 

 

3.2.2. Plaque titration 

The titers of viral preparations were determined as previously described (Döhner et al., 

2002). Vero cells were seeded in 6-well plates with about 3 to 5 x 105 cells per well and 

grown at 37°C and 5% CO2 for 20 h to almost confluency. The virus sample to be titered was 

diluted in a 10-fold dilution series in RPMI/BSA. Prior to inoculation, the cells were washed 

with 2 ml per well RPMI/BSA, then 500 µl per well of the virus dilution was added onto the 

cells in duplicates or triplicates and the cells were gently rocked at room temperature for 1 h.  

The inoculum was aspirated, and 2 ml per well Vero medium containing 20 µg/ml purified 

human IgGs were added. The amount of HSV1-antibodies in such a human IgG preparation 

is sufficient to neutralise virions, which have been released into the medium. Thus, viral 

spread can only occur from cell to cell, resulting in plaque formation derived from the 

infection of a single cell. After 3 days at 37°C and 5% CO2 when plaques were readily visible 

by eye, the medium was removed, and 1 ml per well 9.25%(w/v) formaldehyde in PBS were 

added for 10 min to fix the cells. Alternatively, the cells were fixed with 1 ml per well of –20°C 

absolute methanol for 2-3 min. The fixative was then removed and the cell lawn was stained 

with 0.1% crystal violet (stock solution: 5%[w/v] crystal violet in ethanol). Plaques were 

counted and the viral titer was calculated by multiplying the double mean plaque number of 

the duplicates or triplicates with the dilution factor. The infectivity is described as the number 

of plaque forming units (pfu) per ml.  

 

3.2.3. Real time detection PCR of viral genomes 

The amounts of viral genomes in HSV1 preparations were determined by a quantatitive 

real time detection PCR which was developed by Dr. D. Petzold (Institute of Virology, 

Hannover Medical School) and performed by Sabine Hübner (Institute of Virology, Hannover 

Medical School). (Döhner et al., 2006) 

 

3.2.4. Determination of viral growth kinetics 

Viral growth kinetics were determined on BHK-21 cells by a single-cycle approach 

(Harland and Brown, 1998). BHK-21 cells were plated in 10 cm dishes in a 1:2 dilution and 

grown to almost confluency which accounts to app. 6 to 8 x 106 cells per dish. The cells were 

washed with 10 ml PBS then 2 ml RPMI/BSA containing 5 pfu/cell of the virus to be assayed 
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were added and shaken at room temperature for 1 h. The incoculum was removed and 10 ml 

BHK-21 medium were added after washing the cells with 10 ml RPMI/BSA. In 3 h intervals 

up to 36 h p.i., 250 µl medium samples were taken and replaced by 250 µl of fresh medium. 

The medium samples were snap-frozen in liquid nitrogen and stored at -80°C until their titer 

was determined.  

 

3.2.5. Plaque purification 

Vero cells were seeded into 6-well plates with about 4 to 6 x 105 cells per well and 

grown at 37°C and 5% CO2 over night. When the cells were confluent, they were washed 

with 2 ml per well RPMI/BSA and inoculated with 1 ml per well of RPMI/BSA with a dilution of 

the virus sample to be purified. After 1 h at room temperature on a rocking platform, the 

inoculum was aspirated and replaced by 2 ml per well Vero medium with 20 µg/ml human 

IgG. After 2 to 3 days at 37°C, 5% CO2 plaques became visible. 

To identify plaques which expressed β-galactosidase, the cells were stained with bluo-

gal. 2%(w/v) low-melting-point agarose were dissolved by cooking, cooled down to 37°C and 

then mixed with an equal volume of 37°C warm 2x MEM with non-essential amino acids, 

penicillin/streptomycin, 15%(v/v) FCS, 4 mM glutamine and 0.6 mg/ml bluo-gal. The IgG-

containing Vero medium was sucked off the cells and replaced with 2 ml of substrate 

agarose. The agarose was left to harden at 4°C in the fridge, then overlaid with 1 ml of Vero 

medium with 20 µg/ml human IgG and returned to 37°C, 5% CO2 for 2 to 3 days. 

Cells infected with β-galactosidase harbouring virus were stained blue. Using a cut blue 

pipette tip, the plaque was punched out from the cell lawn and eluted overnight in 200 µl of 

Vero medium. In the next purification round, a dilution series was set up from the eluted cells 

of the plaque and the procedure was repeated, until the number of unstained plaques 

became less than 1%.  

 

3.2.6. Isolation of viral DNA 

Viral DNA was prepared from HSV1-infected BHK-21 cells, the by-product of a virus 

stock preparation. 3 ml of a cell suspension, usually containing 1 to 2 x 108 cells, were mixed 

with 3 ml 1%(v/v) Triton X-100 in RSB buffer, vortexed and incubated on ice for 10 min to 

lyse the cells. Nuclei were pelleted from the lysate in an Eppendorf 5810R centrifuge for 10 

min at 4,000 rpm and 4°C. The nuclei pellet was resuspended in 6 ml of 0.5% Triton X-100 in 

RSB and again centrifuged. The supernatants were pooled and capsids were pelleted from 

the cytoplasmic lysate in a Beckman SW40Ti rotor at 30,000 rpm (113,652 x g) for 90 min at 

4°C. The pellet was soaked overnight at 4°C in 800 µl of NTE buffer and then resuspended 
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to homogenicity. To solubilize the capsids and release the viral DNA, 200 µl of 5x SDS/EDTA 

solution (12.5%[w/v] SDS, 50 mM EDTA in NTE buffer) were added, carefully mixed by 

inversion and incubated at 37°C for 10 min. The lysate was extracted twice with 1 ml 

phenol/chloroform/isoamyl alcohol by inverting 50 times and centrifuging in a table-top 

centrifuge for 5 min at 14,000 rpm. The DNA was precipitated from the aqueous phase by 

adding 800 µl isopropanol and centrifuging 15 min at 14,000 rpm in a table-top centrifuge. 

The DNA pellet was washed with 1 ml 70%(v/v) ethanol, dried and resuspended in 100 µl 10 

mM Tris-HCl, pH 8, 50 µg/ml RNase A at 4°C overnight. Viral DNA preparations were stored 

at 4°C to prevent shearing by ice crystal formation. 

 

3.2.7. Isolation of small nuclear DNA ("Hirt-extraction") 

Following the protocol of Hirt (1967), small nuclear DNA was extracted from the nuclei 

of cells infected with HSV1, thus isolating viral DNA and DNA replication intermediates. Vero 

cells in a confluent 10 cm dish were washed with 10 ml PBS and then inoculated with 2 ml 

RPMI/BSA containing HSV1 with an MOI of 20 pfu/cell. After 1 h rocking at room 

temperature, 8 ml of Vero medium were added, and the cells were incubated for 1 h at 37°C, 

5% CO2. 

The cells were removed from their substrate by trypsinisation, resuspended with 9 ml 

Vero medium and pelleted at 300 x g for 5 min. The cell pellet was washed with 5 ml Vero 

medium, pelleted again, then washed with 5 ml PBS and pelleted. The cell pellet was 

carefully resuspended in 500 µl 20 mM EDTA, pH 8 and transferred to a 2 ml reaction tube. 

To lyse the cells and nuclei, 500 µl 1.2%(w/v) SDS were added and carefully mixed by 

inverting. 660 µl of 5 M NaCl were added and the mixture was incubated for 4 h at 4°C to 

precipitate the cellular DNA. The precipitate was pelleted at 14,000 rpm for 30 min at 4°C, 

and the supernatant was extracted with Phenol/Chloroform. The aqueous phase containing 

the viral DNA was transferred to a fresh 2 ml reaction tube, 20 µg glycogen were added as a 

carrier and the DNA was precipitated with 0.8 volumes of isopropanol. The pellet resulting 

after 20 min centrifugation at 14,000 rpm was washed with 1 ml 70%(w/v) ethanol overnight 

at room temperature and centrifuged at 13,000 rpm for 15 min the following day. After the 

ethanol had been removed, the pellet was dried and dissolved in 100 µl of warmed 10 mM 

Tris-Cl, 1 mM EDTA, pH 8.5. 
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3.2.8. Virus entry experiments 

3.2.8.1. Quantitative viral gene expression assay with β-Galactosidase  

HSV1 mutants encoding β-galactosidase under the control of an immediate early 

promoter provide a quantitative measure for the expression of nuclear-imported viral DNA, 

for which efficient nuclear targeting of capsids is a prerequisite (Mabit et al., 2002; Warner et 

al., 1998). Thus, the effect of reagents influencing viral or cellular functions during entry can 

be quantified biochemically. 

The day before, PtK2 cells were seeded in 24-well plates at a density of 5 x 104 cells per 

well and grown at 37°C, 5% CO2. By approximation, the cell density doubles over night. For 

each condition to be tested, 2 x 4 wells were seeded inparallel on two different plates to 

independently determine β-galactosidase expression with O-nitrophenyl-β-D-

galactopyranoside (ONPG), and the corresponding cell density with crystal violet. The 

experiments were performed on a 37°C water bath. When the influence of inhibitors was to 

be tested, the cells were incubated in CO2 independent medium with 0.2%(w/v) BSA 

containing the inhibitor for 1 h at 37°C. To prepare the cells for virus binding, they were 

washed with cold CO2 independent medium/0.2%(w/v) BSA and kept on ice for 15 min. Then 

0.2 ml of CO2 independent medium/0.2%(w/v) BSA containing a β-galactosidase-expressing 

virus at an MOI of 10-20 pfu/cell and the inhibitor were added, and the virus was allowed to 

bind to the cells by 2 h rocking on ice. The cells were washed three times with CO2 

independent medium/0.2%(w/v) BSA and then incubated at 37°C for 4 h. 

To monitor β-galactosidase expression, the cells were lysed and the conversion of 

ONPG to o-nitrophenol was measured photometrically. The cells were washed with PBS, 

then lysed with 0.5 ml per well of 1 mg/ml BSA, 0.5%(w/v) Triton X-100, protease inhibitors 

for 15 min at 37°C. To assay the amount of β-galactosidase expressed, 200 µl per well of 

ONPG-substrate solution were added to the lysates (Stock solution: 4 mg/ml ONPG in 0.1 M 

Na-phosphate buffer, pH 7.5; add 1/7 volume PBS before use). After 3 h incubation at room 

temperature the absorption of the solution in the wells was measured photometrically at a 

wavelength of 420 nm. 

The cell viability was measured by crystal violet staining. The cells were washed with 

PBS, then fixed for 20 min with 1 ml per well of 3%(w/v) paraformaldehyde in PBS. Then, the 

fixative was replaced with 0.5 ml per well PBS and 0.5 ml per well 0.025%(w/v) crystal violet 

in H2O (Stock solution 5%[w/v] crystal violet in ethanol) were added to stain the cells for 10 

min. After overnight drying, the crystal violet was dissolved in 0.5 ml per well of dried, 

absolute ethanol and the absorption of the wells was measured at 595 nm wavelength. 



Methods 

 64

3.2.8.2. Monitoring virus entry by fluorescence microscopy  

Fluorescence tagged HSV1 proteins were observed by fluorescence light microscopy. 

Additionally cellular and viral structures were labelled with specific primary antibodies and 

secondary antibodies carrying a fluorophor. Cells were plated on glass coverslips, infected 

and fixed. The day before 5 x 104 PtK2 cells per well were seeded on glass coverslips in 

24-well plates. Inoculation and inhibitor treatment was performed according to the β-

galactosidase expression based assay (cf. section 3.2.8.1). Usually, the inoculation was 

performed at an MOI of 20 pfu/cell. For description of microscopy, cf. section 3.6, page 73. 

 

3.3. Molecular biological techniques 

Unless otherwise stated, most molecular biological techniques were based on standard 

methods as described in Ausubel et al. (1997) and Mülhardt (2002). 

 

3.3.1. Growth and culture of bacteria 

E. coli were grown on LB-agar plates (section 2.8) or in liquid culture. The growth 

temperature depended on the bacterial strain and the type of plasmid. For plasmid and BAC 

preparations LB-medium (section 2.8) was used; for the generation of electrocompetent 

cells, bacteria were grown in TB-medium. When casting LB-agar plates containing 

antibiotics, the boiled liquid agar was cooled down to 45°C prior to adding the antibiotics. For 

blue/white screening of bacteria on plates, 60 µg/ml X-Gal and 0.1 mM IPTG were added to 

the agar. 

 

3.3.2. Preparation of plasmids and BACs 

Plasmid Mini preparations were prepared from 2-5 ml overnight cultures using the 

Qiaprep® Spin Miniprep Kit, Midi preparations from 50-100 ml overnight cultures using the 

GenElute™ HP Plasmid Midiprep Kit and Maxi preparations of BACs were prepared from 

500 ml overnight cultures with the NucleoBond™ BAC 100 Kit. BAC-DNA preparations were 

stored at 4°C to prevent shearing by ice crystals. In each case the preparations were based 

on an alkaline lysis approach and performed according to the manufacturer’s instructions. 

For screening large numbers of plasmids by Mini preparations and for all BAC Mini 

preparations, the bacterial lysates were not purified over silica columns, but the DNA was 

directly precipitated by isopropanol. The solutions S1, S2 and S3 were derived from the 

NucleoBond™ BAC 100 Kit. Overnight cultures of E. coli harbouring plasmids (2-5 ml) or 

BACs (10 ml) were centrifuged at 4,000 rpm for 15 min to pellet the bacteria. The bacterial 
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pellet was resuspended in 200 µl of solution S1 and transferred to a 2 ml tube. 300 µl of 

solution S2 were added, the solution was inverted six times and the cells were lysed for 5 

min at room temperature. Then 300 µl solution S3 were added, the solution was inverted six 

times and then further incubated on ice for 10 min. The precipitate was pelleted at 14,000 

rpm for 15 min, and the supernatant was transferred to a fresh 2 ml tube using a cut blue 

pipette tip. The DNA was precipitated with 900 µl isopropanol and pelleted at 14,000 rpm for 

15 min. The DNA pellet was washed with 1 ml 70%(v/v) ethanol, dried and resuspended in 

50 µl of DNA resuspension buffer (section 2.8). 

 

3.3.3. DNA sequencing 

Sequencing of plasmids and PCR products was carried out by Heidi Pommer from the  

Institute of Virology, Hannover Medical School, or by SEQLAB GmbH Göttingen, Germany. 

 

3.3.4. Gel extraction of DNA 

DNA was extracted from agarose gels using the Qiaquick® Gel Extraction Kit according 

to the manufacturer's instructions. 

 

3.3.5. Cleaning of DNA from enzymatic reactions 

After enzymatic reactions DNA was cleaned using the Qiaquick® PCR Purification Kit 

according to the manufacturer's instructions. 

 

3.3.6. Agarose gel electrophoresis of DNA 

For separation of DNA fragments in the PerfectBlue™ Mini S gel system 30 ml gels of 

1-2%(w/v) agarose in 1x TAE buffer were used. Electrophoresis was performed at a constant 

voltage of 180 V for 15-20 min. In the PerfectBlue™ Maxi S gel system 250 ml gels of 0.5-

0.8%(w/v) agarose in 0.5x TBE were run at a constant voltage of 70 V for 16 h or at 65 V for 

18 h. Ethidium bromide at a concentration of 0.5 µg/ml was added to the agarose prior to 

casting the gel. After electrophoresis, the gels were sometimes restained by soaking in 0.5 

µg/ml ethidium bromide for 30 min and destaining in H2O for 30 min. 

 

3.3.7. Polyacrylamide gel electrophoresis of DNA 

DNA fragments smaller than 200 bp were separated by acrylamide gel electrophoresis. 

For this purpose the Hoefer™ SE250 system was used.  Gels were cast in 0.5x TBE buffer 
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with a concentration of 20%(w/v) acrylamide and electrophoresis was performed at a 

constant current of 25 mA per gel under cooling for 45 to 60 min. After electrophoresis the 

gel was stained by soaking in 0.5 µg/ml ethidium bromide for 30 min and destaining in H2O 

for 30 min. 

 

3.3.8. Treatment of of BACs and viral DNA with restriction enzymes 

For restriction analyses of HSV1-BACs, BAC-DNA was prepared from 5 ml overnight 

culture per gel lane as described above. BAC-DNA in a volume of 25 µl was digested with 

20 U of restriction enzyme in a total volume of 30 µl for 4-5 h at 37°C. For digestions of viral 

DNA, 2 µg of DNA were diluted with H2O to 25 µl. The restriction fragments were separated 

on 0.5-0.8%(w/v) agarose in 0.5x TBE buffer using the Maxi S or Mini L gel electrophoresis 

system. 

 

3.3.9. Treatment of plasmids with restriction enzyme  

1-2 µg of plasmid DNA were digested in a total volume of 10-20 µl using 2-5 U of 

enzyme and the reaction buffer supplied by the manufacturer. The reaction was allowed to 

proceed for 1-2 h at the appropiate temperature. The DNA fragments were separated on 1 to 

2%(w/v) agarose in 1x TAE buffer using the Mini S gel electrophoresis system. 

 

3.3.10. Polymerase chain reaction (PCR) 

PCR was used for preparation of DNA fragments for cloning and directed mutagenesis 

as well as for diagnostic purposes. The reactions were carried out in thin-walled 200 µl 

round-capped reaction tubes in a temperature cycler. Each PCR reaction commenced with a 

5 min denaturation step at 95°C followed by 30 cycles of 1 min denaturation at 94°C, 1 min 

primer annealing at the appropiate temperature (see below) and 1-4 min (see below) at 72°C 

for elongation. After the cycles the polymerase reaction was completed at 72°C for 10 min.  

The annealing temperature in the PCR reaction depended on the melting temperature 

Tm of the annealing bases of the oligonucleotide primers, which was calculated to Tm[°C] = 

81.5 + 16.6x log10 [I+] + 0.4x(%G+C) - 600/N, with N being the number of annealing 

nucleotides and [I+] the molarity of monovalent cations in the reaction mixture (Müller, 2001). 

Both Tm values of the primers should not differ too much, ideally the appropiate annealing 

temperature in the PCR reaction should be 5°C below the Tm of both primers. The elongation 

time depended on the polymerase used and the length of the PCR product, and was 

arbitrarily set to 1 min per 1000 bp of product. Desoxynucleotides were added at a 
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concentration of 200 µM of each dATP, dCTP, dGTP and dTTP. Oligonucleotide primers had 

a concentration of 0.6-0.8 µM. 2.5 U of PCR polymerase were added. In the case of Pfu and 

Taq polymerase, the enzyme was added after the initial denaturation step, Pwo polymerase 

was added on ice prior to cycling. With sterile, double-distilled H2O or aqua ad iniectabilia the 

reaction mix was filled up to its final volume. The DNA polymerases were used in the buffer 

systems supplied by the manufacturers and the reactions were performed in a total volume 

of 50 or 100 µl. Due to the high GC-content of HSV1-DNA (68%) (McGeoch et al., 1988; 

McGeoch et al., 1986; McGeoch et al., 1985; Perry and McGeoch, 1988), dimethyl sulfoxide 

was added in concentrations up to 10%(v/v) to allow specific amplification. In some cases 

also the Mg2+ concentration had to be optimised.  

The nature of the template depended on the application of the PCR. For cloning 

purposes, purified viral or plasmid DNA was used at an amount of 5 ng (plasmids) to 100 ng 

(viral DNA) per reaction. BAC-containing bacterial colonies were screened for the presence 

of correct sequences by direct colony PCR. Colony material was resuspended in 10 µl of 

sterile H2O, boiled at 95°C for 5 min, then centrifuged at 14,000 rpm for 5 min. The 

supernatant was used as PCR template. 

 

3.3.11. Dephosphorylation of DNA 

The 5' ends of linear DNA were dephosphorylated with 0.5 U calf intestine alkaline 

phosphatase (CIAP) for 30 min at 37°C in the reaction buffer supplied by the manufacturer. 

The enzyme was inactivated by heating at 85°C for 10 min and the DNA was cleaned with a 

DNA purification kit. 

 

3.3.12. Filling of recessed DNA ends 

DNA with recessed 3' ends was filled using 5 U of the Klenow fragment of E. coli DNA 

Polymerase I in the presence of 50 µM of each dATP, dCTP, dGTP, dTTP. The reaction was 

carried out in the reaction buffer supplied by the manufacturer at 37°C for 30 min. The 

enzyme was inactivated by heating at 70°C for 10 min, and the DNA was cleaned with a 

DNA purification kit. 

 

3.3.13. Ligation 

3.3.13.1. Cloning of PCR products and DNA fragments 

DNA ligations were performed with T4 DNA Ligase in a total volume of 20 µl. Before the 

ligation of DNA into cloning vectors, the target plasmid and the insert DNA were either 
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digested with restriction enzymes that provided compatible ("sticky") ends, or the DNAs were 

ligated blunt-ended. In a "sticky-end" ligation 20 ng of vector DNA were incubated with a 3-

fold molar excess of insert DNA or with H2O as control in the presence of 5 U T4 DNA ligase, 

and the provided ligase buffer at room temperature for 1-2 h. In "blunt-end" ligations, the 

insert was present in up to 20-fold molar excess, 5%(w/v) Polyethylen glycol 4000 

(PEG4000) were added, and the reaction occured overnight at 16°C. The ligation reaction 

was inactivated by heating at 65°C for 10 min. In the case of "blunt-end" ligations, the 

PEG4000 was removed by extracting the mixture with chloroform. 

3.3.13.2. Linker ligation 

Single-stranded oligonucleotide linkers had to be annealed before they could be ligated 

into a vector. Therefore 10 µg of each oligonucleotide together with 10 mM MgCl2 were 

mixed with water to a total volume of 100 µl and boiled for 3 min at 100°C. The mixture 

cooled down very slowly by letting the reaction tube swim in a beaker with boiling water, 

which was placed in a 4°C cold room. The linker solution was diluted 10-fold and 100-fold 

and 1 µl of each dilution was used as insert in ligation reactions with 20 ng of cut, 

phosphorylated vector. 

 

3.3.14. Southern blotting 

DNA probes for Southern hybridisation were labelled with dioxygenin (DIG)-coupled 

desoxynucleotides in a PCR reaction according to the manufacturer's instructions. A PCR 

reaction was set up using primers specific for the DNA probe to be synthesised. DIG-labelled 

desoxynucleotides were contained in the reaction mixture and thus incorporated into the 

probe. Transfer of DNA to positively charged nylon membranes and detection of hybridised 

probes was carried out as recommended in the DIG Application Manual for Filter 

Hybridization (2003; Roche, Mannheim, Germany, pp.88-96/119-123) 

After separation of DNA fragments on agarose gels, the gel was soaked 30 min in 

0.25 M HCl to depurinate, and thus fragment the DNA. By this treatment, fragments formerly 

larger than 5 kbp migrate out of the gel more efficiently. Then the DNA was denatured by 

30 min soaking in 0.5 M NaOH, 1.5 M NaCl, and finally the gel was soaked in 0.5 M Tris-HCl, 

1.5 M NaCl, pH 7 for 30 min. The DNA was blotted overnight onto positively charged nylon 

membrane by capillary transfer with 20xSSC buffer. After transfer, the membrane was 

incubated for 30 min at 42°C in prehybridisation solution (5x SSC, 5x Denhardt's solution, 

1%[w/v] SDS, 50% [v/v] formamide, 0.1 mg/ml sheared single-stranded salmon sperm DNA). 

Then 5 µl of a denatured DIG-labelled DNA-probe were added, and the membrane was 

further incubated for 6 h at 42°C. The membrane was washed twice for 5 min with low 
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stringency buffer (2xSSC, 0.1%[w/v]SDS), then twice for 15 min with high stringency buffer 

(0.5xSSC, 0.1%[w/v] SDS) heated to 65°C. The membrane was dried between Whatman-

Paper sheets and stored at 4°C. 

For detection the membrane was washed for 2 min in washing buffer (0.15 M maleic 

acid, 0.1 M NaCl, pH 7.5, 0.3%[v/v] Tween 20) then incubated for 30 min in 1x blocking 

solution (Roche, Mannheim, Germany) in washing buffer. For 30 min the membrane was 

shaken with 20 ml of a 1:3000 dilution of an α-DIG antibody coupled to alkaline phosphatase 

in 1x blocking solution followed by 2x 15 min washing with washing buffer. The alkaline 

phosphatase was detected by a colour reaction with nitroblue tetrazolium salt (NBT) and 5-

Bromo-4-chloro-indolyl-3-phosphate (BCIP). The membrane with bound α-DIG antibodies 

was equilibrated 3 min with TSM buffer and stained in the dark with 0.165 µg/ml BCIP, 0.305 

µg/ml NBT in TSM. The colour reaction was stopped by washing with water. 

 

3.3.15. Transformation of bacteria 

E. coli were transformed by electroporation. For the preparation of electrocompetent 

cells, 2 ml of LB medium with or without antibiotics were inoculated with a fresh E. coli colony 

and shaken overnight at the appropriate temperature. The next day, 100 ml of TB medium 

(section 2.8) were inoculated with 100 µl of the overnight culture and shaken until the OD600 

reached 2. Then the bacterial suspensions were chilled on ice and pelleted at 4,000 rpm for 

15 min at 4°C. The bacterial pellets were resuspended in 50 ml of ice-cold sterile water and 

repelleted. After 3 to 4 washing steps, the pellet was resuspended in 15 ml of ice-cold sterile 

10%(v/v) glycerol and again pelleted. The last pellet was resuspended in an equal amount of 

ice-cold sterile 10%(v/v) glycerol, aliquoted on ice in 50 µl and either used immediately or 

snap frozen in liquid nitrogen and stored at -80°C. 

To reduce their salt content, the DNA solutions were microdialysed in some cases prior 

to transformation. 10-20 µl were pipetted onto a nitrocellulose filter disc of 47 mm diameter 

and 0.025 µm pore size floating on H2O and left standing for 20 min. The droplet was 

carefully pipetted from the filter disc and used for transformation. DNA to be transformed was 

mixed with 50 µl of electrocompetent bacteria, which had been thawed on ice. The 

suspension was pipetted into a pre-chilled electroporation cuvette with an electrode distance 

of 2 mm, and pulsed in an electroporation unit with 2.5 kV, 200 Ω, 25 µF. Immediately, 1 ml 

of SOC medium (section 2.8) were poured into the cuvette, and the bacterial suspension was 

shaken for 1 h at 37°C or 30°C. Depending on the efficiency of transformation and the origin 

of the transformed DNA, different amounts of the bacteria were then plated onto the 

appropiate agar plates and incubated. 
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3.4. BAC mutagenesis 

3.4.1. Red-Recombination 

The recombination enzymes redαβγ from bacteriophage λ allow the directed 

mutagenesis of BACs by homologous recombination of linear DNA fragments into the BAC 

using selection for an antibiotic resistance encoded on the DNA insert (Court et al., 2002; 

Datsenko and Wanner, 2000; Muyrers et al., 2000; Muyrers et al., 1999; Zhang et al., 1998). 

The homologous sequences are very short (25-50 bp), thus the recombination fragments can 

be generated by PCR with 5' overhangs encoding the homologous sequence. Either the 

recombination functions were encoded on the plasmid pKD46 (Datsenko and Wanner, 2000) 

and were induced by the addition of L-arabinose to the bacterial culture, or were available in 

the bacterial genome as a prophage and activated by heat shock (see 3.4.2). 

E. coli DH10B carrying the BAC to be modified were made electrocompetent and 

transformed with 2 ng pKD46. After 1 h recovery in SOC at 30°C, 50 µl were plated onto LB 

plates with 17 µg/ml chloramphenicol and 50 µg/ml ampicillin, and grown overnight at 30°C. 

On the next day, 2 ml of LB with antibiotics were inoculated with a colony and shaken at 

30°C overnight. The induction of redαβγ occured prior to the preparation of electrocompetent 

cells: 100 ml LB medium with appropriate antibiotics were inoculated with 100 µl of starter 

culture and shaken at 30°C. At an OD600 of 0.2 L-arabinose was added to a final 

concentration of 0.1% (w/v). The bacteria were harvested at an OD600 of 0.5-0.8 and made 

electrocompetent as described above. 

The recombination fragment was obtained as a restriction fragment, or was  constructed 

by PCR using primers that amplify an antibiotic resistance cassette from the template 

plasmid pRpsLneo (Gene Bridges GmbH, Dresden, Germany). The proof-reading 

polymerase Pwo was used for this purpose. After PCR, the reaction mixture was digested for 

1 h with 20 U of DpnI, thereby destroying the template plasmid, which was methylated by the 

bacterial host. E. coli DH10B carrying the BAC and pKD46 with induced redαβγ were 

transformed with up to 5 µg of the linear recombination fragment. The complete 

transformation mixture was plated onto LB agar plates containing 17 µg/ml chloramphenicol 

and the antibiotic to be selected for and incubated for 2 days. Clones were analysed by 

restriction analysis of BAC-DNA after mini preparation. 

When using the rpsLneo selection cassette, the recombinant clones were selected for 

kanamycin resistance with 30 µg/ml kanamycin. The rpsL gene encoded on the cassette was 

responsible for the antibiotic effect of streptomycin and mutated in E. coli DH10B thus 

conferring streptomycin resistance to this strain. Provided in trans, rpsL rendered the cells 
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streptomycin sensitive again, so with a second redαβγ recombination the rpsLneo cassette 

was replaced from the BAC with a sequence of choice, now selecting for the regaining of 

streptomycin resistance. For this second recombination step in E. coli DH10B carrying the 

BAC+rpsLneo, redαβγ from pKD46 was induced at an OD600 of 0.5-0.8 with 0.1%(w/v) L-

araboinose for only 15 min. Then the cells were harvested and made electrocompetent. After 

transformation with the recombination fragment to replace rpsLneo only 10-20 µl of the 

transformation mixture were plated on LB agar containing 17 µg/ml chloramphenicol and 50 

µg/ml streptomycin. A mock transformation with H2O served as control.  

 

3.4.2. "En-passant" mutagenesis 

The “en passant” method of BACs is based on a two step Red-recombination (Tischer 

et al., 2006). Here, the recombination functions are provided by a defective λ phage in E. coli 

DY380 (Lee et al., 2001) and are induced by heat shock.  

For the first recombination step, the cells were made electrocompetent and the 

recombination enzymes were induced. A 2 ml overnight culture of E. coli DY380 containing 

the BAC was grown at 32°C in the presence of 17 µg/ml chloramphenicol. The next day 5-

200 ml LB medium with 17 µg/ml chloramphenicol were inoculated 1:20 to 1:50 with the 

overnight culture and shaken at 32°C to an OD600 of 0.5-0.7. To induce redαβγ the culture 

was transferred to a 42°C water bath shaker and incubated for 15 min, then placed in an ice 

water bath and chilled for 20 min. Then the cells were made electrocompetent as described 

above. The recombination fragment was amplified from the template plasmid, digested with 

DpnI, and electroporated into the electrocompetent and induced bacteria. After the electric 

pulse the cells were incubated in 1 ml SOC medium at 32°C and then plated onto LB agar 

containing antibiotics selecting for the BAC (17 µg/ml chloramphenicol) and for the selection 

marker provided on the template plasmid (kanamycin, 30 µg/ml). Clones obtained after 24 h 

growth at 32°C were analysed by restriction analyses.  

Positive clones were transformed with 100 ng pBAD-I-SceI and grown on LB agar 

with 17 µg/ml chloramphenicol, 30 µg/ml kanamycin and 100 µg/ml ampicillin. A colony was 

picked and grown over night at 32°C in 2 ml of LB containing the appropiate antibiotics. The 

next day 2 ml of LB containing 17 µg/ml chloramphenicol and 100 µg/ml ampicillin (no 

kanamycin) were inoculated with 100 µl of overnight culture and shaken for 2-4 h at 32°C. 

Then 2 ml of 32°C warm LB containing 1%(w/v) arabinose, 17 µg/ml chloramphenicol and 

100 µg/ml ampicillin were added to induce the expression of I-SceI from pBAD-I-SceI, and 

the bacteria were further shaken for 1 h at 32°C. The culture was transferred to a 42°C water 

bath shaker, incubated for 30 min to induce redαβγ expression, and then returned to shaking 

at 32°C for another 1-4 h. 100 µl of the original culture as well as 1:10 and 1:100 dilutions 
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were plated on LB-agar plates with 17 µg/ml chloramphenicol, 100 µg/ml ampicillin and 1% 

arabinose and incubated at 32°C for 24-48 h. The clones were replica-picked to monitor the 

loss of the selection marker provided on the recombination fragment, and further analysed by 

restriction analyses. 

 

3.4.3. Shuttle mutagenesis 

Another method for the directed mutagenesis of BACs is a two-step method also called 

"shuttle mutagenesis". The mutated sequence is flanked by 500-2000 bp of sequences 

homologous to the target site on the BAC and cloned into the vector pST-SNR (based on 

pST76K (Posfai et al., 1997), modified by M. Messerle, personal communication) for the 

shuttle plasmid.  

E. coli DH10B carrying the BAC were transformed with the shuttle plasmid and grown on 

LB agar with 17 µg/ml chloramphenicol and 30 µg/ml kanamycin at 30°C. The BAC and the 

shuttle plasmid now grew in parallel in the cells. Occasionally, the recA encoded on the 

shuttle plasmid promoted a recombination event between the homologous sequences on the 

BAC and the shuttle plasmid, leading to the formation of a cointegrate. Cointegrates were 

selected for by streaking the colonies onto LB agar with 17 µg/ml chloramphenicol and 30 

µg/ml kanamycin and incubating at 43°C. The temperature-sensitive replication of the shuttle 

plasmid did not allow plasmid replication at this temperature, so the kanamycin resistance 

was only present in bacteria, which contained a cointegrate. The sacB gene on the shuttle 

plasmid encodes the enzyme levansucrase which converts sucrose into the toxic 

polysaccharide levan. The cointegrate-bearing bacteria were grown on 17 µg/ml 

chloramphenicol at 37°C. Occasionally, recA promoted an intramolecular recombination 

between homologous sequences of the BAC part and the shuttle plasmid sequences. 

Thereby the shuttle plasmid was excised from the cointegrate, and eventually lost from the 

bacteria due to the lacking selection pressure for kanamycin resistance. These clones were 

selected for by growing on LB agar with 17 µg/ml chloramphenicol and 5%(w/v) sucrose at 

30°C. Like for the rpsLneo replacement, unspecific recombination may also lead to sucrose 

resistance so a thorough restriction analysis was necessary.  

 

3.5. Transfection of eukaryotic cells 

Transfection of Vero cells with BAC-DNA was performed with the MBS Mammalian 

Transfection Kit based on a modified calcium phosphate transfection. Vero cells were 

seeded in 6 cm culture dishes the day before at a dilution of 1:5. 2 µg of BAC-DNA were 

dissolved in 450 µl sterile H2O in a 5-ml BD Falcon polystyrene round bottom tube (BD 
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Biosciences, Heidelberg, Germany; Cat. No. 352054). 50 µl of solution I  (2.5 M CaCl2) and 

500 µl of solution II (2x N,N-bis[2-hydroxyethyl]-2-aminoethane-sulfonic acid buffered saline, 

pH 6.95) were added, and the tube was flicked carefully for mixing. The transfection mixture 

was left standing for 20 min at room temperature. The cells were washed twice with PBS, 

then 5 ml MEM (without FCS) containing 6%(v/v) solution III (modified bovine serum) were 

added. After incubation, 500 µl of the transfection mixture were added dropwise onto the 

cells followed by incubation at 37°C, 5% CO2 for 3 h. The cells were then washed three times 

with PBS, overlaid with Vero medium and incubated for several days at 37°C, 5% CO2. 

 

3.6. Light microscopy 

PtK2 cells were grown on sterile clean glass coverslips in 24-well plates. If no 

immunofluorescent labelling was performed, permeabilisation was not necessary and the 

coverslips were mounted after fixation. For the PFA/Triton fixation, the cells were washed 

with PBS and then fixed for 20 min with 3%(w/v) paraformaldehyde (PFA) in PBS. After three 

washes with PBS, residual PFA was inactivated by a 10 min incubation with 50 mM NH4Cl in 

PBS. For immunolabelling, the cells were washed again three times with PBS and then 

permeabilized with 0.1%(v/v) Triton X-100 in PBS for 5 min. The coverslips were blocked 

with 0.5%(w/v) BSA in PBS for 30 min then washed for 5 min with PBS. The sequential 

incubation with primary and secondary antibodies occured for 30 min, each incubation 

followed by three 5 min washes with PBS. The nuclei were stained with 1 µg/ml Hoechst 

33258 for 2 min. The coverslips were briefly rinsed with H2O and embedded on microscope 

slides with Mowiol solution, containing 25 mg/ml DABCO. The microscope slides were stored 

at 4°C.  

 

3.7. SDS-PAGE and Western-blotting 

Proteins were separated on acrylamide gels by discontinuous SDS-PAGE (Laemmli, 

1970) in the Hoefer™ SE 260 gel system. The separation gels contained an acrylamide 

gradient of 10-20%(w/v) in 0.375 M Tris-HCl, pH 8.8 and 0.1%(w/v) SDS; the stacking gels 

contained 4%(w/v) acrylamide in 0.125 M Tris-HCl, pH 6.8 and 0.1%(w/v) SDS. The samples 

were boiled for 5 min at 95°C in 1x SDS-sample buffer, and then centrifuged at 14,000 rpm 

for 5 min. Electrophoresis was carried out in running buffer (25 mM Tris pH 8.3, 192 mM 

glycine, 0.1%[w/v] SDS) at a constant current of 25 mA per gel for 45-60 min under water 

cooling.  

 For Western-blotting, the gel was layered onto a sheet of wet nitrocellulose 

membrane and placed between two sheets of Whatman paper soaked in transfer buffer (48 
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mM Tris, 380 mM glycine, 0.1%[w/v] SDS, 10% methanol) on each side. Tank blotting 

occured in transfer buffer for 1.5 h at a constant current of 400 mA under cooling or at 40 mA 

for 16 h without cooling. The transferred proteins were stained for 10 min by shaking in 

Ponceau S staining solution (0.3%[w/v] trichloroacetic acid, 0.3%[w/v] 5-sulfosalicylic acid, 

0.2%[w/v] Ponceau S). For immunoassays the membrane was blocked by 1 h of shaking in 

blocking solution (5%[w/v] low-fat milk powder, 0.2%[v/v] Tween 20 in PBS). Then the 

primary antibody in blocking solution was added and incubated by shaking for 2 h. After three 

10 min washing steps with 0.1%(v/v) Tween 20 in PBS the membrane was incubated for 1 h 

with a dilution of a secondary antibody in blocking solution. For detection of alkaline 

phosphatase-labelled secondary antibodies, the membrane was washed three times for 10 

min with 0.2%(v/v) Tween 20 in PBS, equilibrated twice for 10 min with TSM and stained in 

the dark with 0.165 µg/ml BCIP, 0.305 µg/ml NBT in TSM. The colour reaction was stopped 

by washing with water. Chemiluminescence was performed when using horseraddish 

peroxidase-labelled secondary antibodies. The membrane was washed three times for 10 

min with 0.2%(v/v) Tween 20 in PBS, then fresh prepared substrate solution (1.25 mM 

luminol, 0.2 mM p-coumaric acid, 0.01%(v/v) H2O2, 100 mM Tris-HCl, pH 8.5) was pipetted 

onto the membrane and incubated for 5 min. The substrate was removed, the wet membrane 

was placed between plastic sheets and exposed to chemiluminescence film (Hyperfilm, 

Amersham, Buckinghamshire, UK) for different amounts of time. 
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4. Results 

Using homologous recombination in Vero cells, BAC genes were inserted into the UL23 

locus of HSV1(17+) and the circularised genome was transferred into E. coli for 

establishment of the BAC. This BAC was modified by the insertion of a Cre recombinase 

expression cassette to excise the loxP flanked BAC sequences from the virus genome upon 

transfection. After characterisation of the BAC, the viral capsid protein VP26 and the 

envelope protein gD were tagged with a fluorescent protein by mutagenesis of the HSV1-

BAC. 

 

4.1. Cloning of HSV1(17+) as a BAC 

4.1.1. Transfer of BAC genes into HSV1 

For the cloning of HSV1 as a bacterial artificial chromosome, the BAC sequences 

were inserted into the thymidine kinase (UL23) locus by homologous recombination in Vero 

cells (Figure 18). The resulting virus HSV1-BAC had a ∆UL23 phenotype; originally this 

strategy was chosen to allow acyclovir selection during the purification of the recombinant 

BAC-virus (Horsburgh et al., 1999; T. Strive, M. Messerle & B. Sodeik, personal 

communication). However, in the end HSV1-BAC plaques were identified by β-galactosidase 

expression. 

The BAC-sequences together with a eukaryotic β-galactosidase expression cassette 

and a single loxP site were provided on pblueLox (Smith and Enquist, 2000). Dr. Tanja Strive 

(Institute of Virology, Hannover Medical School) had flanked  these genes with 2 kbp of 

sequences homologous to the upstream and downstream regions of UL23 for the 

recombination plasmid  pblueLox-HomTK. The 5’ homology comprised nt 44591-46840 of 

the HSV1(17+) genome, and the 3’ homology nt 47561-49773. In previous attempts, no 

recombinants were obtained with homologous sequences of 0.5 kbp, or if the 2 kbp 

homologies were directly adjacent to each other, probably due to steric hindrance. After 

cotransfection of HSV1(17+) DNA and pblueLox-HomTK into Vero cells, some 

β-galactosidase-positive plaques were obtained (Cotransfection samples CT27, CT28, CT29, 

CT30.1 and CT30.2).  
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Figure 18: BAC-cloning strategy. Sequences spanning 2 kbp homologous to the UL23 gene locus and up- and 

downstream regions were cloned into pblueLox, resulting in pbluelox-HomTK which was linearised and 

cotransfected with HSV1(17+)-DNA into Vero cells. By homologous recombination, the BAC genes, a lacZ 

expression cassette and a loxP site were introduced into the viral genome. The recombinant HSV1-BAC was 

plaque purified and used to inoculate Vero cells for the isolation of circular replication intermediates. E.coli DH10B 

were transformed with the extracts and selected for chloramphenicol resistance. The BAC pHSV1(17+)blue was 

then isolated from the bacteria. cat, chloramphenicol resistance; HomA/HomB2, 5’ and 3’ homology of UL23; 

KanR, kanamycin resistance; lacZ, β-galactosidase; oriS, BAC origin of replication; repE, parA and parB, BAC 

replication and partitioning genes. (Strategy by T. Strive, M. Messerle & B. Sodeik; personal communication) 

  

I plaque purified the BAC-virus from the mixture of wild-type and recombinant BAC-

virus twice (Figure 19). Occasionally, some β-galactosidase-positive plaques exhibited a 

syncytial phenotpye, which is unusual for HSV1(17+) of lower passage number, so these 

were not further purified. After passage of plaque 30.1-21, 30.1-22 and 30.1-23, almost all 

plaques were positive for  β-galactosidase, so these three recombinants were amplified in 

BHK-21 cells. Recombinants 30.1-22 and 30.1-23 contained the BAC-encoded 

chloramphenicol resistance gene shown by PCR with primers CHN01 and CHN02 (Figure 

20). Vero cells were infected with clone 30.1-23 for the preparation of a Hirt extract (Hirt, 

1967). Three chloramphenicol resistant clones were obtained after electroporation of the 

extract into E. coli DH10B, and analysed by restriction digests with BglII and HindIII (Figure 

21). The restriction patterns were consistent with the calculated fragment sizes. The UL and 

US regions of the HSV1 genome were arranged antiparallel in the BAC clones 1 and 3, 

according to a 19.9 kbp HindIII fragment, wheras clone 2 had a parallel orientation. 
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Figure 19: Recombinant BAC-virus formed β-galactosidase-positive plaques. Recombinant BAC-virus was 

plaque-purified under selection for β-galactosidase. Vero cells in 6-well plates were inoculated with a dilution of a 

purified plaque or HSV1(KOS)tk12 as control (not shown). After 1 h virus binding in RPMI/BSA at RT the cells 

were grown at 37°C and 5% CO2 in Vero medium containing 20 µg/ml human IgG for 3 d. To stain the plaques, 

the medium was removed and replaced with 1% LMP-Agarose in Vero medium containing 0.3 mg/ml bluo-gal and 

the cells were incubated at 37°C and 5% CO2  for further 3 d. Cells expressing β-galactosidase were stained blue, 

as shown here at an 1:100 dilution of plaque 30.1-122 (Cotransfection 30.1, plaque purified three times). 
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ues 30.1-22 and 30.1-23 contained BAC-sequences. 1% Agarose gel with diagnostic 

r chloramphenicol acetyl transferase. To check for the presence of BAC-sequences in 

virus samples, a PCR with primers CHN01 and CHN02 was carried out. As template, 
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d product size: 583 bp 
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4.1.2. Analysis of the BAC-cloned HSV1 genome 

The BAC clones were named pHSV1(17+)blue (cf. Figure 18) and further characterised 

by restriction digestions with EcoRI, BamHI and NotI in comparison to purified HSV1(17+) 

DNA (Figure 22). After BAC insertion, a 2.4 kbp EcoRI fragment in HSV1(17+) was lost 

whereas in pHSV1(17+)blue novel EcoRI fragments at 7.1 and 4.7 kbp appeared. 

Furthermore, due to the circular topology of a BAC, the 3’ terminal EcoRI fragment of linear 

HSV1-DNA, which formed a diffuse band at app. 5.6 kbp, is not present anymore. However, 

the 17.9 kbp fragment formed by circularisation of viral DNA was not resolved from 

neighboring bands in the used gel system. A restriction fragment spanning the connection 

between long and short region will be referred to as "joint fragment" in further analyses.  

In BamHI digests, the BAC insertion was indicated by the loss of a 3.6 kbp fragment 

and the emergence of novel fragments at 12.0 and 1.1 kbp (Figure 22). According to the 

published sequence, a 8753 bp and a 3594 bp fragment should be obtained, however, a 

predicted BamHI site between the loxP site and the lacZ expression cassette was missing. In 

contrast to EcoRI, a novel joint fragment is detected at around 6 kbp. Interestingly, in the 

three pHSV1(17+)blue clones as well as in wild type HSV1(17+) DNA its fragment size was 

heterogeneous. This may reflect a heterogeneous number of the 400 bp a-sequences cloned 

in the respective BAC, as these occur in varying numbers of direct repeats in HSV1 DNA 

(Wadsworth et al., 1975; Wagner and Summers, 1978). Furthermore the a-sequence itself 

contains varying numbers of direct repeats (Mocarski et al., 1980; Mocarski and Roizman, 

1982), which might describe the weak diffuse bands at 6 kbp instead of a single discrete 

band in the HSV1(17+) lane (Figure 23). The 3’ terminal BamHI fragment of linear virus DNA 

at 3 kbp was not present in circular BAC-DNA. Two BamHI fragments of 2294 and 2291 bp 

were not resolved in HSV1(17+)-DNA, their common band intensity was higher than the 

2.1 kbp band below. However, in the three pHSV1(17+)blue clones, a double band at 2.1 kbp 

was clearly visible and the relative intensity of the former 2294/2291 bp doublet was reduced. 

One explanation could be the loss of the palindromic oriL HSV1 replication origin, which is 

part of the 2291 bp BamHI fragment. Upon BAC cloning of HSV1(17+), also a 1953 bp 

BamHI fragment was reduced in size (Figure 22). This contained one copy of oriS (Figure 

23), which also contains palindromic sequences. 
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 The BAC insertion was also analysed by NotI restriction digests (Figure 22). Novel 

fragments appeared at 3.8 kbp and 1.8 kbp, whereas a 15.7 kbp band vanished. Like for 

BamHI, a predicted NotI site was missing between the loxP site and the lacZ expression 

cassette, thus the expected fragments of 3474 bp and 582 bp were not observed. The loss of 

oriL was accompanied by a size reduction of a 4.5 kbp fragment near to a 4.4 kbp band. The 

genome termini of linear HSV1-DNA were not recovered as distinct bands, since they were 

either present in only 50% of the isolated genomes, due to genome isomerisation, or they 

overlapped with other bands of a similar size. The joint fragments in BAC-DNA had different 

sizes in the three clones (Figure 23). A predicted NotI restriction site between the 2918 bp 

joining fragment and a neighboring 339 bp fragment might be missing, as no 339 bp band 

can be observed after BAC or HSV1(17+) digestion (data not shown). Therefore the joint 

fragment containing a single a-sequence was assumes to have a size of 3.3 kbp, according 

to the published sequence. However, the varying number of a-sequences and the number of 

direct repeats within most likely caused the abberations detected after NotI and BamHI 

digestion. A NotI joint fragment carrying two adjacent a-sequences would also have a size of 

app. 3.3 kbp. During BAC cloning the variabililty of the number of a-sequences and their 

internal direct repeats is probably reduced. 

The oriL contains a 140 bp palindromic sequence, and the instability of this region in 

E. coli after cloning has been described previously (Weller et al., 1985). In E. coli strain 

SURE the palindrome sequences are stably maintained (Hardwicke and Schaffer, 1995). For 

a previously published BAC of HSV1 strain F (Tanaka et al., 2003) it was proposed that oriL 

was stably cloned after performing a PCR specific for this region. PCR products at the 

expected size of 550 bp for HSV1(F) DNA as well as after amplification of a virus derived 

from the HSV1(F)-BAC, pYEbac102 were obtained. However, the region of the gel for a 

possible PCR product of about 410 bp after deletion of oriL was not shown. A similar PCR 

with the same outcome was performed for oriS, which also contains palidromes and 

secondary structure elements (Tanaka et al., 2003). Here, these regions in pHSV1(17+)blue 

were amplified with primers CHN77 and CHN78 (Figure 24), which were also used by 

Tanaka et al. (2003). This revealed no changes in the oriS amplificate size between 

HSV1(17+) and the BAC pHSV1(17+)blueLox, a variant of pHSV1(17+)blue (Figure 28). Thus 

other subtle changes may have led to the reduction of the 1953 bp BamHI fragment. 

However, after PCR analysis of the oriL region with primers CHN79 and CHN80, a band at 

the expected size of 550 bp was neither observed in HSV1(17+) and pHSV1(17+)blueLox nor 

in HSV1(F) and pYEbac102 (Figure 24). A product of about 410-420 bp suggests that the 

palindromic sequence may have a secondary structure that could not be amplified with the 

reaction conditions used. The state of oriL could therefore not be assesed by PCR. 
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Figure 24: Characterisation of HSV1 replication origins. For analysing oriS and oriL in wildtype HSV1- DNA 

and BAC-DNA, DNA preparations were subjected to PCR amplification with primers specific for oriS (CHN77 and 

CHN78) or oriL (CHN79 and CHN80) and analysed by 2% agarose gel electrophoresis. F: HSV1(F), pYE: 

pYE102bac (strain F BAC), 17+: HSV1(17+), pBL: pHSV1(17+)blueLox (Figure 28). The expected amplificate sizes 

are 551 bp for oriS and 560 bp for oriL. Note that after amplification of pYE102bac and pHSV1(17+)blueLox as 

well as of HSV1(F)-DNA or HSV1(17+)-DNA, no oriL fragment of the expected size was obtained. No differences 

in oriS amplification were observed with all four templates. 

 

 DNA was prepared from HSV1(F) and of pYEbac102, the HSV1(F)-BAC. After 

restriction digestion with BamHI or KpnI several differences in the band patterns were 

observed between HSV1(F) and HSV1(17+) showing interstrain sequence polymorphisms 

(Figure 25A). However, both a 1.9 kbp KpnI as well as a 2.3 kbp BamHI fragment which are 

predicted to contain oriL according to the published HSV1(17+) sequence (Figure 25B), 

showed a size reduction of approximately 150 bp in their respective BAC clones. After 

Southern blotting, these fragments hybridised to a oriL specific probe, that was obtained by 

amplifying the oriL region in the presence of DIG-labelled oligonucleotides (Figure 25D).  

Altogether the data indicate, that the HSV1 genome was successfully cloned as a 

BAC, but that the 140 bp palindrome of oriL was deleted in E. coli during this process. The 

genome configuration is fixed in a BAC, so clones with a parallel or antiparallel orientation of 

the UL and US region were recovered. Moreover, due to topology reasons, instead of a 

single joint between the long and short region, this junction was present twice in a BAC. 

Restriction fragments spanning over the junctions were obtained in variable size after 

digestion of BACs, possibly reflecting the variable number of a-sequences and the repetitive 

sequences therein. For further experiments, clone pHSV1(17+)blue[1] was chosen. 

 

 



Results 

 

  

 B
A
 

Figure 25: Characterisation of oriL. To as

HSV1(17+) (lane 17+), pHSV1(17+)blueLox (

lane pYE). pHSV1(17+)blueLox is a variant 

or KpnI the fragments were separated over

containing oriL. (C) Magnification of insert 

BACs derived from strain 17+ (pBL) as we

restriction fragments were blotted onto pos

DIG-labelled probe specific for oriL, which wa

 

 

 

 

o

 

i

C

D

84
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4.1.3. Characterisation of the BAC-derived virus 

After transfection of pHSV1(17+)blue into Vero cells, plaques developed within 2-3 days 

and all cells developed full cytopathic effect within 2 further days. The resulting virus 

vHSV1(17+)blue was passaged twice in BHK-21 cells prior to the production of a working 

stock. Virus-DNA was isolated from infected cells and analysed by restriction digests with 

BglII, HindIII and EcoRV which revealed, that the insertion of BAC-sequences into the HSV1 

genome (Figure 26) was maintained during passaging. 
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The β-galactosidase expression cassette encoded by vHSV1(17+)blue, which was the 

marker for the enrichment of the recombinant BAC-virus is used to measure early viral gene 

expression (Mabit et al., 2002; Marozin et al., 2004). As efficient nuclear targeting is a 

prerequisite for genome release at the nuclear pore, this allows the biochemical study of the 

influence of reagents interfering with intracellular trafficking.  

 

 

Figure 27: Time course of β-galactosidase expression of vHSV1(17+)blue. PtK2 cells in 24 well plates 

preincubated for 1 h at 37°C with or without 20 µM nocodazole (noc) were inoculated with 10 pfu/cell 

HSV1(KOS)tk12 or vHSV1(17+)blue and incubated at 37°C with or without nocodazole for the time indicated on 

the x-axis.  (A) The amount of β-galactosidase was photometrically measured after substrate addition at 420 nm, 

as indicated on the y-axis. Each timepoint and condition was measured in four independent wells. (B) The cell 

density was quantified after crystal violet staining. 
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When the microtubule network was disrupted by the drug nocodazole, the 

β-galactosidase expression was significantly reduced in cells infected with HSV1(KOS)tk12 

(Warner et al., 1998) or vHSV1(17+)blue (Figure 27A). Five hours after infection, the amount 

of β-galactosidase produced was higher in cells infected with HSV1(KOS)tk12 than with 

vHSV1(17+)blue. This may reflect the reduced number of cells at this timepoint (see Figure 

27B). vHSV1(17+)blue expressed β-galactosidase under control of an SV40 early promoter, 

whereas in HSV1(KOS)tk12 expression was driven by the immediate early promoter of 

HSV1-ICP4. Thus, the difference in expression level could also reflect different promoter 

activity. 

 

4.1.4. Construction of a self-excisable BAC 

The insertion of BAC genes into herpesviruses can lead to their attenuation as 

observed for MCMV and PRV; therefore, herpesviral BACs were constructed which allow the 

removal of BAC sequences after transfection into eukaryotic cells (Wagner et al., 1999; 

Smith and Enquist, 2000). In the case of PRV, the BAC sequences were flanked by loxP 

sites and later excised by site-specific recombination catalysed by Cre recombinase (Smith 

and Enquist, 2000). By providing a eucaryotic Cre expression cassette on the BAC itself, the 

BAC-sequences are "self-excised" after transfection. 

 

 

Figure 28: Construction of pHSV1(17+)blueLox. A 5402 bp fragment encoding a loxP site (red), a CMV-

promoted Cre expression cassette carrying an intron (cre; red), and a tetracyclin resistance (TetR; yellow) were 

flanked with 50 bp of sequences homologous to the 5’ end of the BAC sequences on pHSV1(17+)blue (white 

boxes). By Red-recombination, the fragment was introduced into pHSV1(17+)blue under selection for tetracyclin 

resistance. After transfection of eukaryotic cells, Cre recombinase was transcribed and the intron was spliced out.  

The recombinase then excised the sequences flanked by the loxP sites, and the resulting vHSV1(17+)blueLox 

only contained a single loxP site and the β-galactosidase expression cassette (lacZ). 
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A single loxP site was provided on pHSV1(17+)blue downstream of the BAC 

sequences. The second loxP site and a Cre expression cassette were inserted into 

pHSV1(17+)blue upstream of the BAC-sequences by Red recombination of a linear DNA 

fragment under selection for tetracyclin resistance (Figure 28).  

The recombination fragment was constructed in a pUC18 vector (Figure 29). A 

double-stranded DNA-linker encoding a loxP site was obtained by annealing oligos CHN-

Lox1 and CHN-Lox2 and then cloned into EcoRI/HindIII digested pUC18 giving pUC18LoxP. 

An expression cassette for Cre under the control of a CMV immediate early promoter was 

provided on pCreIn. An intron was previously introduced into the Cre gene, so it is ensured 

that the recombinase is only translated in eukaryotes after mRNA splicing (Smith and 

Enquist, 2000). The cassette was cut from pCreIn (Smith and Enquist, 2000) with PacI, and 

cloned into the PacI site of pUC18LoxP resulting in pUC18LC. Sequences for the Red-

mediated insertion, which are homologous to the 5' end of the BAC-cassette on 

pHSV1(17+)blue were provided by 50 bp DNA-linkers, obtained by annealing the 

oligonucleotides CHNHomL-S and CHNHomL-A or CHNHomR-S and CHNHomR-A, 

respectively. The linkers were cloned into the NotI and NheI sites of pUC18LC for 

pUC18LCH. The insertion of the Cre cassette into pHSV1(17+)blue was selected for via a 

tetracyclin resistance provided on the recombination fragment. The resistance cassette was 

amplified from pCP16-HL (Cherepanov and Wackernagel, 1995) with oligos CHN07N and 

CHN08N, digested with NheI and cloned into the compatible XbaI site on pUC18LCH 

yielding pUC18LCTH.  

E. coli DH10B containing pHSV1(17+)blue were transformed with pKD46 (Datsenko 

and Wanner, 2000), and the expression of the Red enzymes was induced with L-arabinose. 

The recombination fragment was cut out from pUC18LCTH with NotI and NheI, gel purified 

and transferred into the prepared bacteria. Clones which exhibited chloramphenicol and 

tetracyclin resistance, but were sensitive to ampicillin, were screened by a MunI digest. Six 

out of ten clones had a correct MunI digestion pattern when compared to pHSV1(17+)blue 

(not shown) and were named pHSV1(17+)blueLox. Clone 1 was chosen for further 

experiments. 
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Figure 29: Construction of pUC18LCTH. Schematic representation. The targeting construct for the insertion of 

Cre recombinase and a second loxP site into pHSV1(17+)blue was constructed in pUC18. A loxP linker with NotI, 

PacI, XbaI and NheI restriction sites was cloned into pUC18. The Cre expression cassette (red) was cloned into 

the PacI site. For recombination, 50 bp of sequences homologous to the 5’ end of the BAC genes (white boxes) 

were inserted into the NotI and NheI sites, respectively, and finally, a tetracyclin selection marker (yellow) was 

cloned into the remaining XbaI site. The fragment was cut out of pUC18LCTH with NotI and NheI for Red-

recombination. 

 

Restriction analyses with EcoRI, BamHI, HindIII, NotI, EcoRV and BglII revealed, that 

the viral backbone was not changed during Red-recombination, with the exception of the Cre 

insertion (Figure 30). After transfection of pHSV1(17+)blueLox into Vero cells, plaques 

developed after 1 d, and the cells developed full cytopathic effects after three further days. 

vHSV1(17+)blueLox was passaged twice in BHK-21 cells and viral DNA was prepared from 

infected cells. When digested with BglII, no BAC derived restriction fragments were observed 

in vHSV1(17+)blueLox-DNA (Figure 31), indicating that Cre had removed the sequences 

between the loxP sites efficiently. The β-galactosidase cassette was maintained in 

vHSV1(17+)blueLox. Also by Southern blotting using a BAC-specific probe, the excision was 

monitored, as no signal was obtained after probing a membrane onto which separated BglII 

restriction fragments of vHSV1(17+)blueLox were transferred (Figure 32). 
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Figure 30: The insertion of Cre-recombinase into pHSV1(17+)blue did not alter the virus backbone.  

HSV1(17+) DNA (17+), pHSV1(17+)blue (pB) and pHSV1(17+)blueLox (pBL) were digested with EcoRI, BamHI, 

HindIII, NotI, EcoRV or BglII and separated over 0.6% agarose. Band pattern changes due to the 5.2 kbp 

insertion of Cre recombinase are indicated (*). 
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ation works. (A) HSV1(17+)-DNA (17+), pHSV1(17+)blue (pB) 

(17+)blueLox (pBL) and vHSV1(17+)blueLox-DNA (vBL) were digested 

e. (t) linear DNA genome termini; (*)fragments specific for the BAC and 

ion of the UL23 region of HSV1. The BglII restriction fragments are 
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Figure 32: Cre mediated recombination works. HSV1(17+) DNA (17+), pHSV1(17+)blueLox (pBL) and 

vHSV1(17+)blueLox DNA (vBL) were digested with BglII, separated over 0.6% agarose (gel to the left, ethidium 

bromide stain) and blotted onto positively charged nylon membrane. The membrane was probed with a DIG-

labelled probe specific for chloramphenicol acetyl transferase, which was generated by PCR using primers 

CHN01 and CHN02. After incubation with an Fab fragment of an anti-DIG antibody coupled to alkaline 

phosphatase bands were visualised with NBT and BCIP.  

 

4.1.5. Characterisation of BAC-derived viruses 

To compare the growth kinetics of the BAC-viruses with wildtype HSV1(17+), BHK-21 

cells were infected at an MOI of 5 pfu/cell for a single cycle growth kinetic. Samples were 

taken from the supernatant at different timepoints and their plaque titer was determined. 

Compared to wildtype, vHSV1(17+)blue produced a tenfold lower titer and the amplification 

was delayed for about six hours. The kinetic of vHSV1(17+)blueLox was comparable to 

wildtype and the titer was lower about fivefold (Figure 33). This trend was observed in three 

independent growth experiments (data not shown). So although vHSV1(17+)blueLox was 

attenuated compared to wildtype, the excision of BAC sequences by Cre recombination was 

beneficial. The HSV1 mutant HSV1(KOS)tk12 (Warner et al., 1998) contains a 

β-galactosidase expression cassette under the control of the HSV1 ICP4 immediate early 

promoter instead of UL23, making this mutant, which was derived from the wildtype strain 

KOS, thymidine kinase negative. However, when compared to HSV1(KOS), no significant 

growth defect was observed in tissue culture (Figure 34).  
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Figure 33: Growth curves of HSV1 (17+), vHSV1(17+)blue and vHSV1(17+)blueLox. BHK cells were infected at 

an MOI of 5 pfu/cell. Samples were taken from the supernatant at the indicated time points p.i. and plaque titrated 

in triplicates on Vero cells. Replication of vHSV1(17+)blue was delayed compared to wildtype and titers were 

reduced by a factor of ten. The excision of BAC-genes by Cre recombinase in vHSV1(17+)blueLox increased 

replication kinetics and titer. tk, thymidine kinase; lacZ, β-galactosidase 

 

 

Figure 34: Growth curves of HSV1(KOS) and the thymidine kinase negative mutant HSV1(KOS)tk12. BHK 

cells were infected at an MOI of 5 pfu/cell. Samples were taken from the supernatant at the indicated time points 

p.i. and plaque titrated in triplicates. Replication of HSV1(KOS)tk12 is virtually identical to its corresponding 

wildtype HSV1(KOS). tk, thymidine kinase; lacZ, β-galactosidase 
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Figure 35: Growth curve of a HSV1(17+)-BAC repaired for thymidine kinase. BHK cells were infected at an 

MOI of 5 pfu/cell. Samples were taken from the supernatant at the indicated time points p.i. and plaque titrated in 

triplicates. Replication of vHSV1(17+)Lox-Luc is improved compared to vHSV1(17+)blue, but reduced compared to 

wildtype.  tk, thymidine kinase; lacZ, β-galactosidase; luc, luciferase 

 

The deleted thymidine kinase locus in pHSV1(17+)blue was repaired, and the BAC 

sequences together with a Cre expression cassette were flanked with loxP sites in the BAC 

variant pHSV1(17+)Lox (N. Müther & M. Messerle; Institute of Virology, Hannover Medical 

School, personal communication). Thus after transfection of pHSV1(17+)Lox into permissive 

cells, the resulting vHSV1(17+)Lox was thymidine kinase positive (N. Müther & M. Messerle; 

Institute of Virology, Hannover Medical School, personal communication) and did not contain 

any additional sequences with the exception of a single loxP site. A luciferase expression 

cassette was inserted between UL55 and UL56 for pHSV1(17+)Lox-Luc (kindly provided by 

N. Müther & M. Messerle; Institute of Virology, Hannover Medical School). When compared 

to HSV1(17+) and vHSV1(17+)blue, vHSV1(17+)Lox-Luc showed an intermediate virus 

production with an increased titer and growth kinetics when compared to vHSV1(17+)blue. 

The slight growth defect compared to HSV1(17+) wildtype may be explained with the 

insertion of the luciferase transgene. 

Overall, a second loxP site together with an expression cassette for Cre recombinase 

were inserted by Red recombination. After transfection into eukaryotic cells, Cre 

recombinase efficiently excised the BAC and Cre sequences from the viral genome, resulting 

in a growth advantage of vHSV1(17+)blueLox compared to vHSV1(17+)blue. The remaining 

attenuation compared to HSV1(17+) was probably not solely caused by the deletion of 

thymidine kinase and the insertion of β-galactosidase, since the virus mutant 
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HSV1(KOS)tk12 which has a very similar genotype was not attenuated in cell culture 

compared to HSV1(KOS) (Figure 34). The BAC plasmid pHSV1(17+)blueLox is the basis for 

the construction of HSV1 mutants. 

 

4.2. Tagging of VP26 with a fluorescent protein  

The first target for a modification in pHSV1(17+)blueLox was the small capsid protein 

VP26 encoded by the UL35 open reading frame. It contains 112 amino acids and has an 

apparent molecular weight of about 12 kDa (Davison et al., 1992; McNabb and Courtney, 

1992). The hexons, but not the pentons of the HSV1 capsids are decorated with six copies of 

VP26 by an interaction with the N-terminus of the major capsid protein VP5 (Desai et al., 

2003; Zhou et al., 1995). In the HSV1 mutant HSV1-K26GFP, the green fluorescent protein 

(GFP) was inserted into the N-terminus of VP26 in HSV1, strain KOS (Desai and Person, 

1998). The tagged protein is incorporated into the virus particle making this virus a valuable 

tool for studying intracellular trafficking of HSV1 capsids in fixed samples or, the biggest 

advantage, in live cells by video or time-lapse microscopy. Other alphaherpesvirus were 

tagged at VP26 with GFP or the monomeric red fluorescent protein mRFP1 (del Rio et al., 

2005; Smith et al., 2001; Wild et al., 2005). GFPVP26-labelled HSV1 capsids were used for 

the reconstitution of capsid transport along microtubules in vitro (Wolfstein et al., 2006). For 

further analyses of the intracellular trafficking of GFP-tagged HSV1 capsids, further 

mutations can help elucidating the role of other HSV1 proteins. However, the described 

HSV1-K26GFP was constructed in HSV1, strain KOS, whose full sequence is not published.  

 

4.2.1. Fluorescence-tagged VP26 by Red recombination 

To allow the use of GFPVP26-tagged HSV1 for studying viral mutants generated by 

BAC-mutagenesis, the fluorescence label was reconstructed in pHSV1(17+)blueLox. The 

GFP derivatives cyan fluorescent protein (CFP; Heim et al., 1994) and yellow fluorescent 

protein (YFP; Ormo et al., 1996) as well as the Discosoma sp. DsRed derived monomeric 

red fluorescent protein (mRFP1; Campbell et al., 2002)) were chosen as alternative 

fluorescence tags. 
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HSV1(17+)  ATG GCC GTC CCG CAA TTT CAC CGC  
            M   A   V   P   Q   F   H   R   
 
                               XhoI 
pUL35      ATG GCC GTC CCG CAC TCG AGC CGC  
            M   A   V   P   H   S   S   R   
 
                                      NcoI   BsrGI    XhoI 
pUL35NB    ATG GCC GTC CCG CAC TCG ACC ATG GTG TAC AAC TCG AGC CGC 
            M   A   V   P   H   S   T   M   V   Y   N   S   S   R   
 
 
                                      NcoI                   BsrGI     XhoI 
pUL35GFP   ATG GCC GTC CCG CAC TCG ACC ATG GTG AGC ... GAG CTG TAC AAC TCG AGC CGC  
            M   A   V   P   H   S   T   M   V   S  ...  E   L   Y   N   S   S   R    
 
 
                                      NcoI                             XhoI 
pUL35RFP   ATG GCC GTC CCG CAC TCG ACC ATG GAT CCG ... ACC GGG TAC AAC TCG AGC CGC  
            M   A   V   P   H   S   T   M   D   P  ...  T   G   Y   N   S   S   R    

Figure 36: Construction of fluorescence tagged VP26. 554 bp upstream of the insertion site were amplified 

from HSV1(17+)-DNA and cloned into pUC18. Then, 533 bp downstream of the insertion site were amplified with 

primers CHN05 and CHN06-500 and cloned into the product of the previous ligation. The resulting plasmid pUL35 

contains the entire VP26 ORF. Due to the XhoI site insertion in pUL35, codons 4 to 6 of VP26 were changed from 

Gln-Phe-His to His-Ser-Ser. To insert the fluorescent protein sequences, a DNA linker providing a NcoI and a 

BsrGI site was inserted into the XhoI site of pUL35 for pUL35NB. For pUL35GFP, the GFP sequence was cut 

from pEGFP-N1 with NcoI and BsrGI and cloned into pUL35NB. The strategy was based on the construction of a 

GFPVP26 fusion protein described in Desai and Person (1998). 
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 A GFPVP26 fusion protein was constructed as descibed before (Desai and Person, 

1998; Figure 36). First, an XhoI site was inserted between codons 4 and 6 of VP26 by PCR. 

Therefore, 554 bp upstream of the insertion site were amplified from HSV1(17+)-DNA with 

primers CHN03-500 and CHN04, digested with SbfI and cloned into pUC18. Then, 533 bp 

downstream of the insertion site were amplified from HSV1(17+)-DNA with primers CHN05 

and CHN06-500, digested with KpnI and XhoI and cloned into the correctly oriented product 

of the previous ligation. The resulting plasmid pUL35 contained the complete VP26 ORF with 

adjacent UL34 and UL36 sequences. Due to the XhoI site insertion in pUL35, codons 4 to 6 

of VP26 were changed from Gln-Phe-His to His-Ser-Ser. To insert the sequences of CFP, 

GFP or YFP, a DNA linker providing a NcoI and a BsrGI site was obtained by annealing the 

oligonucleotides CHN09 and CHN10 and inserted into the XhoI site of pUL35 for pUL35NB. 

The fluorescent protein sequences were cut from pECFP-N1, pEGFP-N1 or pEYFP-N1 (all 

from Clontech, Mountain View, CA, USA) with NcoI and BsrGI and cloned into pUL35NB for 

pUL35CFP, pUL35GFP and pUL35YFP, respectively. In these constructs, the FP-tagged 

VP26 ORF starts with the first four original codons, followed by the additional codons derived 

from the XhoI site insertion, then the FP sequence which ends prior to codon eight of VP26 

(Figure 36). The FP insertion site was flanked on both sites with approximately 0.5 kbp. For 

pUL35RFP, the mRFP1 coding sequence was excised from pRESET-B-mRFP1 (Campbell 

et al., 2002) with BamHI and SgrAI, treated with Klenow polymerase and ligated blunt-ended 

into NcoI/BsrGI cut pUL35NB which was also Klenow-treated. 

To transfer the fluorescence-tagged VP26 constructs into pHSV1(17+)blueLox a two 

step Red-recombination procedure was used (Figure 37). In the first step, an rpsLneo 

selection/counterselection cassette was amplified from pRpsL-neo (Gene Bridges GmbH, 

Dresden, Germany) with primers CHN13 and CHN14, which carry 50 nt of 5' overhangs 

homologous to 50 bp upstream and downstream of the FP insertion site in VP26. The 

rpsLneo-cassette was introduced into pHSV1(17+)blueLox by Red-recombination induced 

from pKD46 under selection for the kanamycin resistance encoded on the cassette. 
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Figure 37: Transfer of fluorescence tagged VP26 into pHSV1(17+)blueLox. For the insertion of GFPVP26 into 

pHSV1(17+)blueLox an rpsLneo cassette was amplified with primers carrying 50 nt overhangs homologous to the 

sequences flanking the GFP insertion site and introduced into the BAC by Red-recombination under kanamycin 

selection. Thereby the VP26 (UL35) ORF was disrupted in the BAC pHSV1(17+)blueLox-∆VP26rpsLneo. The 

cassette was replaced by a second Red-recombination with a GFPVP26 construct with 500 bp of homologous 

sequences flanking the GFP, which was present on pUL35GFP. This recombination occured under streptomycin 

counterselection. 

 

Three clones of pHSV1(17+)blueLox-∆VP26rpsLneo were recovered. Clone 1 was 

analysed by restriction digestions, showing the expected bandshifts in the EcoRI, EcoRV, 

BamHI and NotI patterns due to the 1.3 kbp insertion, and a additional fragment after 

digestion with BspHI, due to an additional restriction site on the cassette. No changes were 

observed in other restriction fragments (Figure 38). The VP26 ORF was disrupted by the 

insertion and translation stopped after seven codons. Nevertheless, like for HSV1-K∆VP26Z 

(Desai et al., 1998), this BAC led to the recovery of viable virus after transfection into Vero 

cells. Plaques developed after two days and six days after transfection all cells were 

cytopathic and detached. After separation of capsid proteins of vHSV1(17+)blueLox-

∆VP26rpsLneo in SDS-polyacrylamide gel electrophoresis, no VP26 signal was detected by 

Western blotting (Figure 52, page 114).  
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Additional to the kanamycin resistance, the rpsL protein dominantly represses in trans 

the mutation in the ribosomal protein S12 (rpsL) of E. coli DH10B, which confers 

streptomycin resistance (Finken et al., 1993). Thus, E. coli DH10B harbouring 

pHSV1(17+)blueLox-∆VP26rpsLneo became streptomycin-sensitive.  

In the second step of reconstructing FP-tagged VP26 derivatives in the BAC, the 

rpsLneo cassette was replaced by Red-recombination with the FP-VP26 constructs 

described above, thereby restoring the streptomycin resistance of E. coli DH10B, which was 

selected for during this procedure. The recombination fragments for Red recombination into 

pHSV1(17+)blueLox-∆VP26rpsLneo were amplified from pUL35CFP, pUL35GFP or 

pUL35YFP with primers CHN21 and CHN22, and E. coli DH10B harbouring 

pHSV1(17+)blueLox-∆VP26rpsLneo were transformed with the PCR product. For this second 

Red recombination, the 500 bp of homologous sequences were preferred over 50 bp to 

ensure a more specific exchange of rpsLneo. Even after a mock transfection with water, 

many streptomycin-resistant colonies were obtained, indicating that the clones gained 

streptomycin-resistance by the loss of the rpsLneo cassette by unspecific recombination or 

by an inactivation of rpsL. Therefore, all clones were screened by colony PCR with primers 

CHN03-500 and CHN06-500 for the specific replacement of the rpsLneo cassette with the 

FP-VP26 construct. Clones with a positive PCR signal at 1.7 kbp were chosen for further 

restriction analysis. Surprisingly, of 9 clones transfected, only the clone pHSV1(17+)blueLox-

CFPVP26[7B] led to the development of plaques and a complete cytopathic effect after 

transfection into Vero cells, thereby exhibiting nuclear punctate fluorescence (not shown). On 

the other hand, all other clones which were positive for the FP insertion as detected by PCR 

were not infectious after transfection or strongly attenuated. However, they showed a 

punctate nuclear fluorescence pattern (Figure 39). A subsequent sequencing of the BAC-

clones GFPVP26[6A], CFPVP26[7B] and YFPVP26[9C] in the region preceding the FP 

insertion demonstrated, that the fluorescent proteins were inserted correctly (Figure 40). 

For analysis of the repetitive regions between the long and the short genome part, all 

FP-VP26 clones were digested with NotI (Figure 41). The NotI joint fragments at around 3.3 

kbp showed a strong heterogeneity. It is, however, unclear whether genomic alterations in 

this region were the sole cause for the complete loss of infectivity of some FP-VP26 BAC-

clones. The exceptional clone vHSV1(17+)blueLox-CFPVP26[7B] was infectious as stated 

above, showed a similar growth kinetic compared to vHSV1(17+)blueLox but reached 

reduced titers (Figure 42). Nevertheless, vHSV1(17+)blueLox-∆VP26rpsLneo was more 

attenuated, was amplified with slower kinetics and reached tenfold lower titers compared to 

vHSV1(17+)blueLox (Figure 42). 
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Figure 39: Attenuated phenotype of GFPVP26 clone 6A. 4 d after transfection of Vero cells with 

pHSV1(17+)blueLox-GFPVP26[6A], only small plaques had developed which did not increase in size during 

further incubation. In many cells, the GFP fluorescence was localised to nuclear puncta, comparable to infection 

with HSV1-K26GFP. 

 

 

Figure 40: Sequences of BAC clones GFPVP26[6A], CFPVP26[7B] and YFPVP26[9C]. Sequencing results 

obtained with primer CHN43. The sequences at the site of the FP insertion into VP26 were identical in all three 

clones and were consistent with the cloning strategy (cf. Figure 36). The start ATG of FP-VP26 (green box) and 

the NcoI site after which the fluorescent protein sequence was inserted (black box) are indicated. 
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for the insertion of a FP-VP26 were digested with NotI and separated over 
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Figure 42: Growth curve of CFPVP26 expressing HSV1. BHK cells were infected at an MOI of 5 pfu/cell. 

Samples were taken from the supernatant at the indicated time points p.i. and plaque titrated in triplicates. The 

replication of vHSV1(17+)blueLox-CFPVP26[7B] was attenuated in titer compared to vHSV1(17+)blueLox, but with 

faster kinetics and higher titer than of vHSV1(17+)blueLox-∆VP26rpsLneo. 

 

4.2.2. Construction of a HSV1-GFPVP26 virus by shuttle mutagenesis 

The Red-recombination probably had a deleterious effect on the terminal repeat 

sequences of HSV1. The GFPVP26 constructs were therefore cut from pUL35GFP and 

cloned into the SmaI site of pST-SNR for a mutagenesis approach based on RecA-mediated 

shuttle mutagenesis. After the formation and resolution of cointegrates, the sucrose-resistant 

clones were screened by digestion with NotI, and clones with correct restriction patterns 

were identified (not shown).  A more detailed restriction analysis with EcoRI, HindIII, BglII, 

NotI and AscI revealed that with the exception of the GFP insertion, no major changes had 

taken place in clone pHSV1(17+)blueLox-GFPVP26[20] (Figure 43). After transfection of 

GFPVP26[20] into Vero cells, fluorescent cells were observed after one day and small 

plaques developed after four days. Seven days after transfection the plaques were large, but 

most of the cell lawn was neither showing any cytopathic effect nor fluorescence. Clone 

GFPVP26[33], which was identified in a second screening round, had the same phenotype 

after transfection into Vero cells. After transfection of GFPVP26[33] into BHK-21 cells a more 

pronounced cytopathic effect was observed, but after harvesting the cells to determine the 

titer by plaque assay on Vero cells, only very small plaques developed after three days 

compared to HSV1-K26GFP. In summary, the phenotypes of the GFPVP26 BAC-clones 

obtained by shuttle mutagenesis were very similar to those constructed by Red 

recombination, with the exception of clone CFPVP26[7B].  
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4.2.3. Marker rescue of BAC-derived GFPVP26 viruses 

The cause for the complete loss of infectivity or the strong attenuation of the FP-VP26 

BACs was not revealed by restriction analysis or sequencing of FP-VP26 in the BAC context. 

With marker rescue experiments, the position of possible subtle mutations in FP-VP26 

modifed BACs was narrowed down. The set of the five HSV1(17+) cosmids (Cunningham 

and Davison, 1993) was linearised with PacI, and each of them was cotransfected together 

with pHSV1(17+)blueLox-GFPVP26[33] into BHK-21 cells; pHSV1(17+)blueLox-

CFPVP26(7B) served as control. Cos14 (HSV1 nucleotides 54445-90478) rescued the 

attenuation, however, most cytopathic cells were not fluorescent, most probably due to the 

wildtype VP26 present on Cos14, which was also transferred into the recombinant virus 

(Figure 44). Since the other cosmids did not rescue, potential lethal mutations in the terminal 

repeat sequences and other genome regions of HSV1 could be excluded. A 16.6 kbp 

NheI/PacI fragment of Cos14 spanning UL35 (VP26), UL36 (VP1-3) and UL37 and a 12 kbp 

NheI/HindIII fragment encoding UL33-UL36 also rescued the attenuation of GFPVP26[33]. 

Thus, the mutation with the highest impact for the attenuation of pHSV1(17+)blueLox-

GFPVP26[33] was mapped to the region of UL33-UL36 (Figure 44). 

 

 

Figure 44: Marker rescue of pHSV1(17+)blueLox-GFPVP26[33]. (A) Position of the VP26 ORF in the HSV1 

genome. The sequences spanned by a set of five HSV1 cosmids are depicted as boxes. Cosmid 14 (red box) 

rescued the attenuated phenotype of BAC clone GFPVP26[33] albeit with a loss of fluorescence. (B) Fragments 

of Cosmid 14 were used for rescue. A 16.6 kbp NheI and a 12 kbp NheI/HindIII fragment (red boxes) also rescued 

the attenuation. The numbers indicate the position on the HSV1 genome in kbp. 
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4.2.4. Construction of a GFPVP26 virus by complementation  

To force the insertion of a FP-tagged VP26 into the HSV1 genome, a deletion mutant 

for UL35 (VP26) and the adjacent essential membrane protein UL34 was constructed. UL34 

is required for budding of newly synthesised capsids through the inner nuclear membrane 

(Reynolds et al., 2001). This virus was then rescued with a DNA fragment encoding UL34 

and FP-VP26. After cotransfection into eukaryotes, replication-competent virus would only be 

recovered after rescue with the UL34/VP26 fragment. The rescue fragments were 

constructed in pLoCMV-VP1-3 which contains the 12 kbp NheI/HindIII fragment of HSV1 

encoding UL33-UL36 (Figure 45). The HpaI/BstBI fragment which encompasses the wildtype 

VP26 was replaced with the respective fragment from pUL35CFP, -GFP, -RFP or -YFP. The 

UL34/VP26 deletion was constructed in pHSV1(17+)blue, which does not excise the BAC 

sequences after transfection into eukaryotes, so that after successful introduction of FP-

VP26 in eukaryotes the virus could have been retransferred into E. coli. The ORFs UL34 and 

VP26 were deleted by Red recombination using the rpsLneo cassette which was amplified 

from pRpsL-neo with CHN49 and CHN50. The correct deletion in pHSV1(17+)blue-∆UL34/35 

was confirmed by restriction analysis with EcoRV, EcoRI, HindIII, BglII and NotI (Figure 46). 

After cotransfection with HindIII-linearised pLoCMV-VP1-3 derivatives, only wildtype-VP26 

and CFPVP26 gave rise to a cytopathic effect and, in case of CFPVP26, fluorescence, 

whereas GFPVP26 and YFPVP26 showed only little fluorescent plaques, which were barely 

growing over time. After rescue of ∆UL34/35 with RFPVP26 large red fluorescent plaques 

developed, however, after passaging a lysate of the infected cells, there was no longer 

fluorescence associated with cytopathic cells.  

 

Figure 45: Introduction of FP-VP26 into HSV1 by rescue of a lethal mutant. By deletion of UL34 and VP26 a 

non-infectious BAC clone was obtained. This was transfected together with a 12 kbp NheI/HindIII rescue 

fragment, in which the VP26 ORF was replaced by a GFPVP26 sequence, into eucaryotic cells. Homologous 

recombination could then lead to the reconstitution of an infectious genome, coding for the GFP fusion protein. 
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1(17+)blue-∆UL34/35. pHSV1(17+)blue-∆UL34/35 (lane ∆) was digested 

 or NotI comparison to  pHSV1(17+)blue (lane B). The samples were 

TBE. Changes in the fragment pattern resulting from the deletion of UL34 
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Taken together the results suggested that the FP-VP26 fusion constructs had an 

inhibitory effect on the growth of HSV1 mutants constructed to express these proteins 

instead of wildtype VP26 despite the fact that this protein is not essential for growth (Desai et 

al., 1998) and that the BAC-generated mutant pHSV1(17+)blueLox-∆VP26rpsLneo was 

infectious. 

 

4.2.5. Without four N-terminal VP26 residues, FP-VP26 is viable 

The GFPVP26 virus HSV1-K26GFP was originally obtained by homologous 

recombination in Vero cells infected with HSV1(KOS) after cotransfection of pK26GFP 

(Desai and Person, 1998). This plasmid contains the 2.7 kbp EcoRI/NotI fragment of 

HSV1(KOS) with the GFP sequence inserted at the N-terminus of VP26 as described above. 

However, sequencing of pK26GFP revealed, that in contrast to the published procedure the 

first 4 original codons (Met-Ala-Val-Pro) of VP26 were missing on pK26GFP (Figure 47).  In 

addition, 53 bases upstream of VP26 are missing. The deletion begun 49 base pairs after the 

stop codon of UL34 and ended at the start of the UL35 (VP26) ORF. These alterations were 

also observed after sequencing viral DNA of HSV1-K26GFP and were probably acquired 

during cloning of pK26GFP. Thus, the translation of the GFPVP26 fusion protein in HSV1-

K26GFP starts with the ATG provided by the GFP sequence, three additional upstream 

codons introduced by the cloning of the fusion protein (His-Ser-Thr, cf. Figure 36) are also 

not translated. Sequencing also revealed, that besides the abovementioned deletions no 

further differences in DNA sequence between HSV1(17+) and HSV1(KOS) were observed in 

the flanking regions of the genome.  

To test whether the fusion construct in pK26GFP lacking the four N-terminal amino 

acids of VP26 was functional after transfer into pHSV1(17+)blueLox, a fragment was 

amplified from this plasmid using primers CHN21 and CHN22 and used for the Red-

recombination mediated replacement of rpsLneo in pHSV1(17+)blueLox-∆VP26rpsLneo. 

Moreover, the GFP sequence was cut out from pK26GFP with NcoI and BsrGI and replaced 

by mRFP1 for pK26RFP as described above for pUL35RFP. After recombination of both 

GFPVP26 and RFPVP26 into the BAC, 18 streptomycin-resistant clones of each 

recombination were screened by NotI digestion (not shown). Clones GFPVP26(9) and 

RFPVP26(13) were further characterised by restriction digests with EcoRI, EcoRV, BamHI, 

HindIII, BglII and NotI (Figure 48 and Figure 49) showing no major alteration except the 

fluorescent protein sequence insertion. Indeed, after transfection of both 

pHSV1(17+)blueLox-GFPVP26[9] or -RFPVP26[13], fluorescent plaques developed, and the 

cells developed full cytopathic effects after six days. 
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                                      NcoI                   BsrGI     XhoI 
pUL35GFP   ATG GCC GTC CCG CAC TCG ACC ATG GTG AGC ... GAG CTG TAC AAC TCG AGC CGC  
            M   A   V   P   H   S   T   M   V   S  ...  E   L   Y   N   S   S   R    
                                      NcoI                   BsrGI     XhoI 
pK26GFP    ACG CCT TCG CCC CAC TCG ACC ATG GTG AGC ... GAG CTG TAC AAC TCG AGC CGC  
                                        M   V   S  ...  E   L   Y   N   S   S   R    
 

Figure 47: Sequences of pK26GFP and of HSV1-K26GFP. Sequencing results obtained with primer CHN33 

(pK26GFP) and CHN43A (HSV1-K26GFP). Compared to the published wildtype sequence which is also present 

on pUL35 (cf. Figure 36), 53 bp are missing in pK26GFP and HSV1-K26GFP 49 bp downstream of the stop 

codon of UL34 (red box; arrow at start of deletion). Four original N-terminal VP26 codons were deleted, so the 

GFPVP26 fusion protein starts directly with the ATG of the GFP sequence (green box). 
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4.2.6. Growth of HSV1 with GFP/RFP-labelled or deleted VP26 

The viruses were passaged twice from the infected cells and used for the preparation of 

virus stock. In single cycle growth experiments vHSV1(17+)blueLox-GFPVP26[9] as well as 

-RFPVP26[13] reached a fivefold reduced titer compared to vHSV1(17+)blueLox, however, 

the kinetics of vHSV1(17+)blueLox-GFPVP26[9] were delayed for about 6 six hours 

compared to -RFPVP26[13] (Figure 50). Both viruses grew to higher titers than 

vHSV1(17+)blueLox-∆VP26rpsLneo. Interestingly, for the vHSV1(17+)blueLox-GFPVP26[9] 

the drop of infectivity in the supernatant 6 h after inoculation was not as pronounced as for 

the other viruses analysed (Figure 50). These results were repeated in an independent  

experiment (not shown). The growth curves of the previously constructed HSV1-K∆26Z and 

HSV1-K26GFP (Desai et al., 1998; Desai and Person, 1998) were also assessed in a single 

cycle growth experiment (Figure 51). The introduction of GFPVP26 into HSV1(KOS) led to 

reduction of the titers which was comparable to the attenuation observed for 

vHSV1(17+)blueLox-GFPVP26[9]. The VP26 deletion mutant HSV1-K∆26Z grew to the same 

titers as HSV1-K26GFP with almost equal kinetics, which is in strong contrast to the 

attenuated phenotype of vHSV1(17+)blueLox-∆VP26rpsLneo.  

 

 

Figure 50: Growth curves of HSV1-BAC based VP26 mutants. BHK cells were infected at an MOI of 5 pfu/cell. 

Samples were taken from the supernatant at the indicated time points p.i. and plaque titrated in triplicates. The 

replication of vHSV1(17+)blueLox-GFPVP26[9] and -RFPVP26[13] was attenuated in titer compared to 

vHSV1(17+)blueLox, but with faster kinetics and higher titer than of vHSV1(17+)blueLox-∆VP26rpsLneo. 
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Figure 51: Growth kinetics of previous VP26 mutants. BHK cells were infected at an MOI of 5 pfu/cell. 

Samples were taken from the supernatant at the indicated time points p.i. and plaque titrated in triplicates. Viruses 

testes were a VP26 deletion mutant (HSV1-K∆26Z;  Desai et al., 1998) and a virus expressing GFPVP26 (HSV1-

K26GFP; Desai and Person, 1998) compared to HSV1(KOS) wildtype, on which the mutants were based. 

 

 

4.2.7. GFPVP26 and RFPVP26 viruses express only the fusion protein 

Virions were pelleted from the medium of cells infected with the BAC-derived VP26 

mutants and subjected to SDS-PAGE (Figure 52). In Western blots with a VP26-specific 

antiserum, a single band at about 14 kDa was observed for HSV1(17+), on the other hand 

there was no signal for vHSV1(17+)blueLox-∆VP26rpsLneo. The GFPVP26 and RFPVP26 

fusion constructs have a calculated molecular weight of 38.3 kDa and 37.4 kDa, respectively. 

Consistent with that, the bands at around 37 kDa in vHSV1(17+)blueLox-GFPVP26 and 

-RFPVP26 represented the fusion proteins (Figure 52). Smaller bands at lower molecular 

most likely indicate proteolytic degradation. The signal of the major capsid protein VP5 at 

app. 150 kDa served as loading control, the bands appearing at 100 kDa and 85 kDa were 

possible degradation products of VP5. When the same membrane was probed with a 

monoclonal antibody directed against GFP, a signal only appeared at the position of the 

GFPVP26 fusion protein around 37 kDa and thus no free GFP was present in the virions. 

The antibody did not cross-react with mRFP1. Due to a lack of an antibody this analysis was 

not repeated for mRFP1. 
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Figure 52: Western blot analysis of VP26 mutants. Virions were pelleted from the medium of cells infected with 

HSV1(17+) (wt), vHSV1(17+)blueLox-∆VP26rpsLneo (∆), vHSV1(17+)blueLox-GFPVP26 (GFP) and -RFPVP26 

(RFP) and solubilzed in SDS-PAGE sample buffer. After separation on a 10-20% gradient SDS-PAGE gel, the 

proteins were transferred to nitrocellulose and probed with antisera specific for VP5 and VP26. No VP26 signal 

was obtained with vHSV1(17+)blueLox-∆VP26rpsLneo wheras vHSV1(17+)blueLox-GFPVP26 (GFP) and -

RFPVP26 (RFP) express a FP-VP26 fusion protein with higher molecular weight. VP5 served as loading control. 

All GFP is incorporated as GFPVP26 fusion protein. The sizes of the marker bands are indicated in kDa.  
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4.2.8. Cell entry of vHSV1(17+)blueLox-GFPVP26 

In immunofluorescence experiments, the subcellular localisation of the fluorescently 

labelled VP26 during virus entry was examined. Vero cells were inoculated with gradient 

purified vHSV1(17+)blueLox-GFPVP26 in the presence of cycloheximide to inhibit protein 

synthesis and thus prevent the formation of progeny virions. The capsids were labelled with 

the monoclonal mouse antibody (mAb) LP12 which is specific for the major capsid protein 

VP5. 

15 min after infection (p.i.), a punctate GFPVP26 pattern was randomly distributed over 

the entire cell which often colocalised with VP5, suggesting that GFPVP26 remained 

associated with the capsids during cell entry (Figure 53). However, many GFPVP26 puncta 

did not colocalise with the mAb LP12 labelling. On the other hand, some capsids as detected 

by the VP5 antibody did not exhibit GFP fluorescence. A dissociation of GFPVP26 from the 

cytosolic capsids upon entry would result in its diffusion within the entire cytosol. Thus, it was 

unlikely that the puncta, which were not labelled by the VP5 antibody, represented free 

GFPVP26. 

Three hours p.i. most capsids were located at the nucleus and were labelled stronger 

ba the VP5 antibody than 15 min p.i. (Figure 54). Almost all capsids at the nucleus also 

contained GFPVP26. The labelling intensity of the VP5 antibody and the GFPVP26 

fluorescence were heterogeneous and sometimes reciprocal. This may be explained by a 

reduced accessibility of VP5 if the capsids were covered with GFPVP26. In the cell 

periphery, the VP5 antibody labelling efficiency was less pronounced than at the nucleus and 

similar to the labelling intensity at 15 min p.i., wheras the GFPVP26 signal intensity seemed 

independent of its subcellular localisation.  

Thus, capsids of vHSV1(17+)blueLox-GFPVP26 were efficiently transported to the 

nucleus, and GFPVP26 remained bound to the capsids during the cytosolic passage. 

Nevertheless, the VP5 epitope for mAb LP12 was more accessible on capsids located at the 

nucleus. The peripheral GFPVP26 structures that were not labelled by the VP5 antibody 

could reflect an assocoation of GFPVP26 to structures without capsids or capsids with 

masked LP12 epitopes.  

Infected cells showed a strong punctate labelling of a gD antibody which was randomly 

distributed over the entire cell at 15 min p.i. (Figure 55). The number of puncta positive for 

gD outnumbered the GFPVP26 signals, and colocalisation was rarely observed. 

Furthermore, clustered gD-labelled structures were also present. The low degree of 

colocalisation could be explained by a separation of viral envelope and capsid by fusion at 

the plasma membrane, an entry pathway, by which Vero cells are predominantly infected 

(Nicola and Straus, 2004; Sodeik et al., 1997). Nevertheless, the virus preparation contained 
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a large number of gD-positive particles without capsid, which could consist of defective viral 

particles, membrane vesicles containing viral glycoproteins and possibly tegument proteins 

(Döhner et al., 2006).  

After 3 h p.i., most gD was found in the cell periphery, where it appeared in clusters, 

wheras GFPVP26 mainly localised to the nucleus (Figure 56). Virtually no gD signal was 

detected on GFPVP26 structures at the nuclear envelope. In the periphery, GFPVP26 often 

colocalised with gD, suggesting that these structures represented endocytosed virions or 

virions bound to the plasma membrane.  

The efficiency of capsid transport to the nucleus during cell entry is strongly dependent 

on the quality of the virus preparation (Döhner et al., 2006). This has to be taken into 

account, because vHSV1(17+)blueLox-GFPVP26 was less efficiently replicated than 

wildtype, and possibly less efficiently assembled. The high number of gD-positive, but 

GFPVP26-negative structures early after inoculation as well as the peripheral gD clusters 

and the high amount of peripheral GFPVP26 at 3 h p.i. were an indication of a rather medium 

to poor quality of the inoculum used in these experiments. However, the genome/pfu ratio of 

the preparation which was used in these experiments was 25 genomes/pfu without prior 

DNase treatment of the virions. For HSV1-K26GFP a ratio in this range coincided with a low 

protein/pfu ratio and efficient nuclear targeting (Döhner et al., 2006). So the entry behaviour 

of vHSV1(17+)blueLox-GFPVP26 was not consistent with these previous observations. 

Nevertheless, the GFPVP26 fusion protein is an excellent marker to localise viral 

capsids (Desai and Person, 1998; Döhner et al., 2006; Wolfstein et al., 2006), and 

vHSV1(17+)blueLox-GFPVP26 had a similar behavior during entry (this thesis) as the 

HSV1(KOS) mutant HSV1-K26GFP (Desai and Person, 1998). 
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Figure 53: Subcellular  localisation of GFPVP26 and capsids 15 min after infection with 
vHSV1(17+)blueLox-GFPVP26. A bright punctate GFP signal was randomly distributed over the entire cell which 

in some cases colocalised with VP5 (white arrows). Colocalisation was identified as a close apposition of 

GFPVP26 and VP5 signal due to a constant optical offset. Many GFPVP26 structures were not labelled by the 

VP5 antibody LP12 (white arrowheads) and some capsids did not show GFP fluorescence (red arrowheads). 

Vero cells were infected at an MOI of 20 pfu/cell for 15 min in the presence of cycloheximide, fixed with 3% 

paraformaldehyde, permeabilized with 0.1% Triton X-100 and labelled with mAb LP12 followed by an LRSC goat 

α-mouse antibody. The nuclei were stained with Hoechst 33258. 
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Figure 54: Subcellular  localisation of GFPVP26 and capsids 3 h after infection with vHSV1(17+)blueLox-
GFPVP26. The incoming capsids were efficiently targeted to the nucleus. Most GFPVP26- and VP5-positive 

particleswere localised at the nucleus with a high degree of colocalisation (white arrows). Peripheral GFP signal 

also colocalised with VP5 in some cases (white arrowheads). Vero cells were infected at an MOI of 20 pfu/cell for 

3 h in the presence of cycloheximide, fixed with 3% paraformaldehyde, permeabilized with 0.1% Triton X-100 and 

labelled with mAb LP12 followed by an LRSC goat α-mouse antibody. The nuclei were stained with Hoechst 

33258. 
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Figure 55: Subcellular localisation of GFPVP26 and glycoprotein D 15 min after infection with 
vHSV1(17+)blueLox-GFPVP26. Most GFPVP26 signals did not colocalise with gD 15 min after infection. The 

glycoprotein labelling was distributed over the entire cell, sometimes forming clusters (red arrowheads). The 

number of gD labelled spots was higher than the amount of GFPVP26 signals. In some cases peripheral 

GFPVP26 colocalised with gD (white arrows). Vero cells were infected at an MOI of 20 pfu/cell for 15 min the 

presence of cycloheximide, fixed with 3% paraformaldehyde, permeabilized with 0.1% Triton X-100 and labelled 

with mAb DL6 followed by an LRSC goat α-mouse antibody. The nuclei were stained with Hoechst 33258. 
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Figure 56: Subcellular localisation of GFPVP26 and glycoprotein D 3 h after infection with 
vHSV1(17+)blueLox-GFPVP26. Most capsids were efficiently targeted to the nucleus, where they did not 

colocalise with gD, wheras the glycoprotein staining was relocalised to the cell margins and intracellular clusters 

(red arrowheads). In some cases peripheral GFPVP26 colocalised with gD (white arrows) Vero cells were 

infected at an MOI of 20 pfu/cell for 3 h the presence of cycloheximide, fixed with 3% paraformaldehyde, 

permeabilized with 0.1% Triton X-100 and labelled with mAb DL6 followed by an LRSC goat α-mouse antibody. 

The nuclei were stained with Hoechst 33258. 
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4.2.9.  Cell entry of vHSV1(17+)blueLox-RFPVP26 

When Vero cells were inoculated with gradient purified vHSV1(17+)blueLox-RFPVP26 

in the presence of cycloheximide, punctate RFPVP26 signals were randomly distributed over 

the entire cell at 15 min p.i. which sometimes colocalised with a VP5 antibody labelling 

(Figure 57). However, like for the GFPVP26 virus, many RFPVP26 positive particles were 

not labelled for VP5 and the overall VP5 labelling intensity was weak.  

At three hours p.i., particles labelled with a VP5 antibody were localised almost 

exclusively at the nucleus with a higher labelling intensity than at 15 min p.i. (Figure 58). In 

contrast, peripheral capsids were labelled to a lower extent. At the nucleus, almost all 

capsids exhibited RFPVP26 fluorescence, wheras not all nuclear RFPVP26 particles were 

labelled with the VP5 antibody. Peripheral RFPVP26 particles were mostly negative for VP5 

labelling. These structures could represent capsids in which the LP12 epitopes were masked 

by RFPVP26, or viral structures which contained RFPVP26, but no capsid. Thus, also for 

RFPVP26, the VP5 epitope of mAb LP12 was more accessible at nuclear located capsids. 

The punctate antibody labelling for glycoprotein D mostly colocalised with RFPVP26 

at 15 min p.i., but also RFPVP26-positive structures without a labelling with a gD antibody 

were observed (Figure 59). Similar to the GFPVP26 virus, the number of gD puncta was 

higher than of RFPVP26 particles, however, as more particles were positive for both 

RFPVP26 and gD, it must be assumed, that many virions were bound to the plasma 

membrane or were endocytosed.  

Nevertheless, the glycoprotein staining was clearly separate from the RFPVP26 

labelled capsids at 3 h p.i. (Figure 60) and gD aggregates accumulated in the cell periphery. 

Capsids at the nucleus did not contain glycoprotein, and only some peripheral capsids were 

gD-positive.  

 The preparation quality was not optimal, because the vHSV1(17+)blueLox-RFPVP26 

preparation contained a large amount of gD-containing particles and aggregates which were 

both RFPVP26 negative. The genome/pfu ratio of the preparation which was used in these 

experiments was 25 genomes/pfu without prior DNase treatment of the virions. So similar to 

vHSV1(17+)blueLox-GFPVP26, a coherence of genome/pfu ratio and entry efficiency 

(Döhner et al., 2006) was not observed for vHSV1(17+)blueLox-RFPVP26. 

In summary, RFPVP26, like GFPVP26, provided a useful marker to localise capsids. 

Like for vHSV1(17+)blueLox-GFPVP26, the impairment in growth compared to wildtype, 

requires special attention during growth and preparation of this virus mutant to obtain inocula 

of sufficient quality for efficient nuclear targeting after entry. 
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Figure 57: Subcellular  localisation of RFPVP26 and capsids 15 min after infection with 
vHSV1(17+)blueLox-RFPVP26. A bright dotted RFP signal was randomly distributed over the entire cell which in 

some cases colocalised with the VP5 signal (white arrows). Many RFPVP26 particles were not labelled by the 

VP5 antibody LP12 (white arrowheads) and some capsids did not show RFP fluorescence (red arrowheads). Vero 

cells were infected at an MOI of 20 pfu/cell for 15 min in the presence of cycloheximide, fixed with 3% 

paraformaldehyde, permeabilized with 0.1% Triton X-100 and labelled with mAb LP12 followed by an FITC goat 

α-mouse antibody. The nuclei were stained with Hoechst 33258. 
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Figure 58: Subcellular  localisation of RFPVP26 and capsids 3 h after infection with vHSV1(17+)blueLox-
RFPVP26. The incoming capsids were efficiently targeted to the nucleus, where most bright VP5 signals were 

localised with a high amount of colocalisation with RFP (white arrows). Some RFPVP26 particles at the nucleus 

was not labelled with a VP5 antibody (red arrows). Most of the peripheral RFP particles did not colocalise with 

VP5 antibody labelling (red arrowheads) and only weak peripheral VP5 signals colocalised with RFP (white 

arrowheads). Vero cells were infected at an MOI of 20 pfu/cell for 3 h in the presence of cycloheximide, fixed with 

3% paraformaldehyde, permeabilized with 0.1% Triton X-100 and labelled with mAb LP12 followed by an FITC 

goat α-mouse antibody. The nuclei were stained with Hoechst 33258. 
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Figure 59: Subcellular localisation of RFPVP26 and glycoprotein D 15 min after infection with 
vHSV1(17+)blueLox-RFPVP26. Many RFPVP26 particles still colocalised with gD 15 min after infection (white 

arrows). Predominantly, a widespread glycoprotein staining without RFP signal was distributed over the entire cell 

sometimes in aggregates (white arrowheads). Also RFPVP26 labelled structures without gD labelling (red 

arrowheads) were observed. Vero cells were infected at an MOI of 20 pfu/cell for 15 min in the presence of 

cycloheximide, fixed with 3% paraformaldehyde, permeabilized with 0.1% Triton X-100 and labelled with mAb 

DL6 followed by an FITC goat α-mouse antibody. The nuclei were stained with Hoechst 33258. 
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Figure 60: Subcellular localisation of RFPVP26 and glycoprotein D 3 h after infection with 
vHSV1(17+)blueLox-RFPVP26.  Large numbers of capsids were efficiently targeted to the nucleus, where they 

did not colocalise with gD, wheras the glycoprotein staining was relocalised to the cell margins and intracellular 

aggregates (white arrowheads) did not colocalise with gD 15 min after infection. Some RFP signals still 

colocalised with gD (red arrowheads), however nuclear localised RFPVP26 was not labelled for envelope. Vero 

cells were infected at an MOI of 20 pfu/cell for 3 h in the presence of cycloheximide, fixed with 3% 

paraformaldehyde, permeabilized with 0.1% Triton X-100 and labelled with mAb DL6 followed by an FITC goat α-

mouse antibody. The nuclei were stained with Hoechst 33258. 
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induction, so no helper plasmid such as pKD46 was required. The fragment was 

inserted efficiently; of 20 kanamycin-resistant clones analysed, 12 had the fragment inserted 

correctly as shown by HindIII digests (data not shown). Positive clones were transformed 

with pBAD-I-SceI (Tischer et al., 2006) which contains an arabinose-inducible expression 

cassette for the endonuclease I-SceI. I-SceI and redαβγ expression were induced by addition 

of L-arabinose and heat-shock, respectively. During the Red-mediated reconstitution of the 

BAC, the kanamycin resistance was excised from the GFP sequence, and the gD-GFP 

fusion was provided in frame (cf. Figure 61). Clones which grew in the presence of 

chloramphenicol, ampicillin and L-arabinose were replica-picked on kanamycin-containing 

plates. Of 20 clones analysed, clone pHSV1(17+)blueLox-RFPVP26-gDGFP[14.1] was 

kanamycin-sensitive and thus subjected to restriction digests (Figure 62), which 

demonstrated the insertion of GFP into gD. This clone had a 400 bp deletion in its terminal 

repeats as as shown by bandshifts in BamHI and NotI fragments spanning the joint regions 

of the HSV1 genome. Thus, an a-sequence was probably lost during mutagenesis. However, 

the resulting fragments were consistent with the presence of a single a-sequence in the 

joining region, so this clone was further characterised. 

 

4.3.2. Characterisation of vHSV1(17+)blueLox-RFPVP26-gDGFP 

After transfection into Vero cells, fluorescence and cytopathic effects were observed 

after two days. Thereby the RFPVP26 fluorescence was mostly nuclear and showed a 

punctate pattern in most cells, whereas the gDGFP fluorescence was cytoplasmic and 

excluded from the nuclei. Occasionally gDGFP was particularly present in the perinuclear 

region, possibly representing gDGFP located in the Golgi apparatus. Six days after 

transfection, the cells had developed full cytopathic effects and were harvested to prepare a 

virus stock.  

Western blotting of lysates of cells infected with vHSV1(17+)blueLox-RFPVP26-

gDGFP revealed that the molecular weight of gD, which was around 60 kDa in 

vHSV1(17+)blueLox and vHSV1(17+)blueLox-RFPVP26 infected cells, had shifted to higher 

molecular weight, consistent with the addition of GFP (27 kDa) (Figure 63). A faint band at 

the original gD position could indicate a fragment of gDGFP, or cross reactivity of the gD 

antibody with a cellular protein. When blotted against GFP, the bulk of the signal was at the 

same position as the gD signal. However, there appeared some weaker fragments with lower 

molecular weights, which most likely were proteolytic fragments derived from gDGFP. Like 

for vHSV1(17+)blueLox-RFPVP26, a VP26 antibody labelled a band consistent with the 

expected molecular weight of the RFPVP26 fusion protein at around 37 kDa, as well as a 
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proteolytic fragment (cf. also Figure 52). In summary, the envelope protein gD of HSV1 was 

specifically tagged with GFP at its C-terminus by BAC-mutagenesis. 

   

 

 

Figure 63: Protein characterisation of HSV1-RFPVP26-gDGFP. Cells infected with vHSV1(17+)blueLox (BAC), 

-RFPVP26 or -RFPVP26-gDGFP were lysed in SDS-PAGE sample buffer and subjected to 15% SDS-PAGE. The 

proteins were transferred to nitrocellulose and probed with antibodies specific for the envelope protein gD, the 

capsid protein VP26 or GFP. vHSV1(17+)blueLox-RFPVP26-gDGFP expressed a gDGFP fusion protein, 

however, also some GFP containing fragments were detected. The sizes of the marker bands are indicated in 

kDa on the left.  
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4.3.3. Subcellular localisation of RFPVP26 and gDGFP in an infected cell 

In a plaque assay on Vero cells, the plaque size of vHSV1(17+)blueLox-RFPVP26-

gDGFP[14.1] was comparable to vHSV1(17+)blueLox-RFPVP26 (not shown). In a developing 

plaque, the localisation of RFPVP26 changed as the infection progressed (Figure 64). In 

peripheral cells of the plaque, RFPVP26 showed a diffuse nuclear localisation, whereas 

towards the centre of a plaque, there was a concentrical zone in which the nuclei exhibited a 

punctate fluorescent pattern. In the middle of a plaque, i.e. where infection was most 

advanced, the RFPVP26 fluorescence was cytoplasmic. For gDGFP, a cytoplasmic 

localisation was similar throughout the entire plaque. However, the signal was strongest in 

the centre of the plaque, wheras in the plaque periphery, and in the middle of the plaque 

where infection was most advanced and the cells had probably already detached, the signal 

was reduced. 

To further analyse the subcellular localisation of RFPVP26 and gDGFP during 

infection, Vero cells were infected at an MOI of 0.5 pfu/cell, and fixed at different timepoints. 

Six hours p.i., the RFPVP26 fluorescence was almost exclusively nuclear in a dot-like pattern 

or in bright clusters (Figure 65). The small number of peripheral particles could have 

represented viral capsids from the inoculum or newly synthesised capsids which had 

egressed from the nucleus. The gDGFP fluorescence covered the entire cytoplasm, but the 

distribution was spotted rather than diffuse, and the signal was strongest in a perinuclear 

region which most likely represented the Golgi apparatus. In some cells the nuclear envelope 

was also labelled by gDGFP. There was virtually no colocalisation between RFPVP26 and 

gDGFP. 

Later in infection after 18 h, the cells started to round up, and developed long ribbon-

like or filamentous protrusions (Figure 66). The majority of RFPVP26 was present as 

intranuclear or perinuclear clusters. However, in the cell periphery and occasionally at the 

cell margins, a large number of individual RFPVP26 dots was detected, which sometimes 

colocalised with gDGFP. These structures most likely represented capsids which had left the 

nucleus, and in some cases underwent secondary envelopment. The overall signal intensity 

of gDGFP had increased and the perinuclear signal was very bright. In perinuclear regions, 

there was a strong overlap of RFPVP26 and gDGFP. 

Taken together, these results suggested, that after different fluorescent labelling of 

two HSV1 proteins representative for capsid or envelope, the subcellular localisation of 

different viral structures could be monitored during the course of infection. 
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Figure 64: HSV1 plaques expressing RFPVP26 and gDGFP. In infected Vero cells, the GFP-tagged gD 

localised to the cytoplasm, and was excluded from nuclei, whereas RFPVP26 showed a diffuse nuclear 

background with bright puncta. Vero cells were infected for 2 days with an extract of cells transfected with 

pHSV1(17+)blueLox-RFPVP26-gDGFP[14.1] and grown in the presence of 20 µg/ml human IgGs to allow plaque 

formation, but prevent viral spread. 

 

 

 

 

 

  

 



Results 

 132

 

Figure 65: Subcellular localisation of RFPVP26 and gDGFP 6 h p.i. gDGFP was cytoplasmic and more 

accumulated in a perinuclear region, most likely the Golgi apparatus. The nuclear envelope was also labelled 

(arrow). RFPVP26 was almost exclusively nuclear, the peripheral puncta most likely represented capsids from the 

inoculum. Vero cells were infected at an MOI of 0.5 pfu/cell for 6 h and fixed with 3% paraformaldehyde. The 

nuclei were stained with Hoechst 33258.  



Results 

 133

 

Figure 66: Subcellular localisation of RFPVP26 and gDGFP 18 h p.i. Late in infection, the cells had rounded 

up. The gDGFP signal accumulated in a perinuclear region. RFPVP26 formed intranuclear or perinuclar clusters. 

In the cell periphery, several puncta, possibly individual capsids, were observed. Many RFPVP26-positive 

structures colocalised with gDGFP and thus most likely represented complete virions (white arrows in insert) Vero 

cells were infected at an MOI of 0.5 pfu/cell for 18 h and fixed with 3% paraformaldehyde. The nuclei were stained 

with Hoechst 33258. The enlarged insert was image-processed differently.  
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5. Discussion 

The cloning of herpesviruses as bacterial artificial chromosomes in E. coli made the fast 

construction of virus mutants by clonal selection and amplification in prokaryotes feasible 

and, in contrast to methods based on recombination in eukaryotes, allowed the fast 

introduction of strongly attenuating or even lethal mutations without the need of a 

complementing cell line (Adler et al., 2003; Wagner et al., 2002). HSV1 has been cloned as a 

BAC before, however, the BAC-vectors were constructed in a way that made them 

replication-incompetent without a helpervirus or they were constructed using the HSV1 

strain F, whose sequence is not fully published (Horsburgh et al., 1999; Saeki et al., 1998; 

Stavropoulos and Strathdee, 1998; Tanaka et al., 2003). Therefore, the aim of this thesis 

was the cloning of the fully sequenced HSV1 strain 17+ (McGeoch et al., 1988; McGeoch et 

al., 1986; McGeoch et al., 1985; Perry and McGeoch, 1988) as a bacterial artificial 

chromosome, which is able to replicate without a helpervirus. Furthermore, fluorescent 

protein labels were added to viral proteins to allow the cell biological characterisation of the 

HSV1 life cycle in living cells as well as to study the kinetics of certain stages of the viral life 

cycle in biochemical assays. Moreover, the experiments of this thesis revealed the potential 

as well as pitfalls of HSV1 BAC-mutagenesis. 

 

5.1. BAC-Cloning of HSV1 

5.1.1. The need for HSV1 mutants 

The human herpesvirus HSV1 is a prominent pathogen, whose normally mild course of 

infection in healthy, immunocompetent individuals can turn into a life-threatening condition in 

immunocompromised patients or in the rare case of an HSV1 encephalitis. On the other 

hand, the natural neurotropism of HSV1 allows the usage of this virus for the treatment of 

diseases of the central nervous system, either by the specific destruction of malignant tissue 

or by expression of a beneficial transgene. In basic research, viruses such as HSV1 are an 

important tool to analyse of host functions by investigating the life cycle of the virus. As all 

viruses depend on the cell for replication and propagation, they exploit almost every cellular 

pathway. Thus, the study of virus-host interactions can lead to new insights into cellular 

functions, like gene expression control, intracellular trafficking or protein processing. 

Therefore, the construction of HSV1 mutants carrying mutations in viral proteins or gene 

sequences which are responsible for host interaction is an indispensable experimental 

approach in the analysis of viral as well as cellular functions.  
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5.1.2. Cloning  the genome of HSV1 

To clone HSV1 as a BAC, genes needed for the replication and maintenance of the 

genome in E. coli ("BAC-genes") had to be introduced into the viral genome. Preparatory 

works on this issue were carried out by Dr. Tanja Strive (laboratory of Beate Sodeik, Institute 

of Virology, Hannover Medical School). To the BAC-genes provided on the plasmid pblueLox 

(Smith and Enquist, 2000) a loxP site and a β-galactosidase expression cassette under the 

control of an SV40 early promoter were added. Dr. Strive flanked these genes with 2 kbp of 

sequences homologous to regions upstream and downstream of the viral thymidine kinase 

UL23, which was thereby destroyed during recombination (T. Strive, B. Sodeik & M. 

Messerle; personal communication). Thymidine kinase is a non-essential virus protein in cell 

culture (Roizman and Knipe, 2001), but essential for virus replication in differenciated, non-

dividing cells such as neurons, in which the virus cannot exploit the cellular nucleotide 

metabolism, because they do not longer replicate their chomosomal DNA. During screening 

for recombinants, the thymidine kinase deletion would have allowed the usage of acyclovir, 

which has to be converted by thymidine kinase into the viral DNA-polymerase inhibitor. 

However, by staining the cells infected by cotransfection with the β-galactosidase substrate 

bluo-gal, Dr. Strive obtained viral plaques which were positive for the insertion of BAC-genes 

(T. Strive, B. Sodeik & M. Messerle; personal communication).  

At this point I took over the project, and plaque purified the recombinant virus. After 

enrichment, the amount of plaques not expressing β-galactosidase was reduced to less than 

1%. Two of three purified virus clones were contained the BAC-genes as shown by PCR. 

The negative clone may have arisen from a loss of the BAC-genes during recombination or 

from a contamination with the β-galactosidase-positive virus mutant HSV1(KOS)tk12 

(Warner et al., 1998) which served as a positive control in the bluo-gal staining.  

Vero cells were then infected at a high MOI with the recombinant virus to isolate circular 

replication intermediates. These consist of covalently closed circular virus DNA and had thus 

already the topology of a BAC. The circular nuclear DNAs were isolated early after infection 

when the viral genomes have been injected into the nucleus of the inoculated cell. It is 

discussed controversially, whether incoming viral DNA becomes circular after disposal into 

the nucleus (cf. chapter 1.3.3). Nevertheless, after isolating small nuclear DNA molecules by 

a Hirt-Extract (Hirt, 1967) and transforming E. coli three chloramphenicol-resistant colonies 

were obtained which suggested, that at least a certain fraction of virus genomes had  

circularised. BAC-DNA was isolated from these clones and after digestion with restriction 

enzymes the presence of the HSV1 genome in these BAC-plasmids, which were named 

pHSV1(17+)blue, was confirmed.  
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5.1.3. Characterisation of the BAC pHSV1(17+)blue 

DNA replication of HSV1 in infected host cells involves several recombination events 

during which viral DNA strands recombine via the terminal repeat regions, so that branched 

structures apprear and genome regions undergo inversion (Wilkinson and Weller, 2003). 

This explains why in virions the linear viral genome occurs in four isomeric arrangements 

with regard to the relative orientation of the unique long (UL) and unique short (US) 

sequences. Therefore, DNA fragments of digests with some restriction endonucleases only 

occur in a half or a quarter of the isolated genomes, if their recognition sequences are at the 

termini of the UL and the US regions. In a BAC, the genome configuration is invariant during 

replication in E. coli; indeed, in two of the three obtained pHSV1(17+)blue clones the UL and 

US region were oriented antiparallel, and parallel in another. For topology reasons, only 

these two genome configurations can be distinguished in the circular form. 

Restriction enzyme digestions with several rare cutting enzymes revealed that the 

HSV1 genome was completely cloned in pHSV1(17+)blue, as they were almost no 

unexpected differences in the restriction fragment sizes between isolated HSV1(17+) wildtype 

DNA and pHSV1(17+)blue. The changes caused by the insertion of the BAC-genes were 

observed. However, the published sequence between the BAC-genes and the 

β-galactosidase expression cassette is apparently erroneous, as some restriction sites are 

missing and some obtained restriction fragments were app. 200 bp smaller than expected. 

Although this may not be critical with regard to virus function or BAC replication, it may 

require additional resequencing of this region to avoid misinterpreations in the future.. 

 

 

Figure 67: Topology of BAC-DNA and virus-DNA. Due to circularisation, BAC-DNA contains two joints 

between the long and short genome region. 
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Further differences in the restriction pattern between HSV1(17+) wildtype DNA and 

pHSV1(17+)blue were reflected by the fact that BAC-DNA is circular wheras viral DNA is 

linear. The long and short sequence in virus DNA are joined once whereas the joint occurs 

twice in the BAC when the viral genome has circularised over the genome termini. In 

restriction analyses the terminal genome fragments will be missing wheras the fragments 

spanning the joint are doubled in BAC-cloned virus herpesvirus genome (Figure 67). 

 

5.1.4. The terminal a-sequences in pHSV1(17+)blue 

During analysis of the joint region, restriction fragments of BamHI and NotI a 

heterogeneity was observed between the three pHSV1(17+)blue clones. These fragments 

contain the viral a-sequences, which in viral DNA are located at the genome termini and the 

joint between the long and short region. They occur as several direct repeats and contain 

internal direct repeats with changing number themselves (Roizman and Knipe, 2001). So 

terminal restriction fragments as well as joint restriction fragments after digestions of viral 

DNA exhibit a sometimes cloudy signal on agarose gels and no distinct band. In contrast, the 

number of a-sequences and the repeats therein are more stable when they are cloned in a 

BAC, and therefore the different size of restriction fragments containing a-sequences in the 

three pHSV1(17+)blue clones can almost be expected. However they were still subject to 

some bandshifts as observed in several NotI digests of BACs derived from pHSV1(17+)blue 

clone 1. So also in E. coli these highly repetitive sequences are not completely stable. Clone 

pHSV1(17+)blue[1] carries NotI joint fragments with a size consistent with the presence of 

two a-sequences, whereas in clones 2 and 3 a single a-sequence or deleted forms occured. 

Whether this leads to changes in viral pathogenesis has to be tested in animal infection 

models in teh future. The a-sequences contain the packaging signals for cleavage and 

encapsidation of concatemeric viral DNA (Deiss and Frenkel, 1986; Hodge and Stow, 2001), 

thus a complete loss of the a-sequences during BAC-cloning would have been lethal for the 

virus.  

 

5.1.5. The viral replication origins in pHSV1(17+)blue 

Replication of HSV1-DNA initiates with binding of the origin-binding-protein UL9 to one 

or more origins which results in opening of the DNA double strand and the installation of 

replication forks (Wilkinson and Weller, 2003). After digesting the three pHSV1(17+)blue 

clones with BamHI or NotI, the restriction fragments containing the viral replication origin oriL 

between the ORFs UL29 and UL30 were reduced by about 150 bp in size compared to the 

corresponding fragments of digested HSV1(17+) wildtype DNA. It has therefore to be 
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assumed that the 144 bp palindromic oriL sequence was lost during replication in E. coli. 

This sequence has been reported to be unstable in E. coli (Cunningham and Davison, 1993; 

Weller et al., 1985). Moreover, a BamHI fragment containing a copy of the duplicate origin 

oriS was reduced in size about 50 bp in all three pHSV1(17+)blue clones. This origin contains 

an imperfect 45 bp palindrome and is present twice in the genome on the c-sequences 

flanking the US region as inverted repeats. To assess the structure of the origins, a PCR 

specific for either oriL or oriS was performed with the same primers as used for the analysis 

of a HSV1-BAC of strain F (Tanaka et al., 2003). However, after amplification of wildtype 

HSV1(17+) and HSV1(F) DNA no oriL amplificate of the expected size was obtained, and for 

virus as well as BAC-DNA the oriL region was amplified without the palindrome resulting in a 

PCR product with a size of 150 bp reduced compared to the expected size. Probably due to 

the secondary structure of oriL, PCR is not the method of choice and in the analysis by 

Tanaka et al. (2003) the part of the gel, where an amplificate negative for oriL would appear, 

was not shown. In this thesis, Southern blotting confirmed the loss of the oriL sequence in 

BAC-cloned HSV1 genomes for the BACs derived from HSV1(17+) and HSV1(F).  

The oriS region was amplified from viral as well as from BAC-DNA of strains 17+ and F 

at the correct size, and no products appeared at positions reduced by 50 bp as deduced from 

the restriction bands. Therefore oriS seems to be unaltered after BAC cloning and the 

reduction of the 1953 bp BamHI fragment size had other reasons which have to be 

approached by sequencing this fragment. 

In other previously cloned HSV1-BACs, oriL was also deleted. The HSV1(F)-BAC of 

Horsburgh et al. (1999) did not carry an oriL as shown by Southern blotting, where only a 

band of reduced size was obtained, whereas probing a digest of Cosmid28 (Cunningham 

and Davison, 1993) led to hybridisation with a band of the same length and of a band which 

runs 100-200 bp higher, probably reflecting both the deleted and undeleted form of oriL. 

BamHI digests of the replication-incompetent HSV1(17+)-BAC by Stavropoulos and 

Strathdee (1998) revealed the same bandshift caused by the loss of oriL as was observed for 

pHSV1(17+)blue and the HSV1(F)-BAC by Tanaka et al. (2003). Surprisingly, in the 

replication-incompetent HSV1(17+)-BAC by Saeki et al. (1998) the KpnI fragment containg 

oriL was at the correct position. All HSV1-BACs described were prepared in E. coli strain 

DH10B. Perhaps Saeki et al. (1998) used a different substrain of E. coli DH10B. 

In a yeast vector, oriL was stably cloned (Weller et al., 1985) and in E. coli the stability 

of oriL in was strongly increased ifthe E. coli strain SURE (Hardwicke and Schaffer, 1995). 

Although oriL is not essential in vitro, viruses that carry point mutations in oriL that abrogate 

the DNA replication initiation function show reduced titers when isolated from corneally 

infected mice. Moreover, mortality and reactivation from latency were reduced (Balliet and 
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Schaffer, 2006). However, it is not possible to clone HSV1-BACs with complete oriL in E. coli 

SURE, because this strain already contains an F-plasmid. Moreover, E. coli SURE carries 

the Tn5 transposon which confers kanamycin-resistance, a selection marker on which most 

BAC-mutagenesis protocols are based. So in order to repair oriL in HSV1-BACs, it would be 

neccessary to cotransfect a viral DNA fragment with an intact oriL together with BAC-DNA 

into eukaryotic cells and isolate repaired clones. Nevertheless, this approach would have all 

the disadvantages of mutagenesis by recombination in eukaryotes. 

 

5.1.6. Reconstitution of virus from pHSV1(17+)blue  

After cloning or mutagenesis of a BAC, the virus was reconstituted after transfection of 

the BAC into permissive eukaryotic cells. Cytopathic effects arose 1-2 d after transfection, 

the cells rounded up and plaques were formed. The efficiency of reconstitution could be 

calculated by the number of transfected BACs per cell needed for plaque formation. Usually 

1 µg of BAC-DNA was used to transfect 2x106 cells. 1 µg BAC-DNA (app. 160 kbp) 

corresponds to 9.5 x 10-15 mol which corresponds to  5.7 x 109 BAC molecules. So app. 2800 

genomes were transfected per cell. In many cases the development of cytopathic effects 

started from 5-10 single plaques, so the reconstitution efficiency was very low. This could 

have been due to a low transfection efficiency caused by the large size of BACs or impurities 

in the DNA preparation. Nevertheless, this was an example of the much greater potency of a 

virion as a vehicle for the productive deposition of a viral genome into the host cell nucleus 

than any transfection protocol. 

The virus vHSV1(17+)blue was reconstituted from pHSV1(17+)blue. The BAC-genes 

were stably inserted as determined by isolation of viral DNA from the reconstituted virus and 

the subsequent restriction analysis. However same as other herpesviruses which have been 

cloned as a BAC (Messerle et al., 1997; Smith and Enquist, 1999), vHSV1(17+)blue was 

attenuated compared to its corresponding wildtype HSV1(17+). The titers obtained in a 

single-cycle growth curve were reduced and the time for reaching a saturated titer was 

enhanced. This attenuation could be have been the result of the deletion of the thymidine 

kinase gene, however, this gene is not essential in cell culture and no attenuation was 

associated with the thymidine kinase negative virus HSV1(KOS)tk12 (Warner et al., 1998; 

this thesis). The insertion of BAC genes and β-galactosidase enhances the size of the viral 

genome from 152 kbp to 162 kbp. Therefore it may be possible that packaging of the 

genome may not occur as efficient as in wild-type viruses due to steric hindrance, simply 

because the capsids become "jam-packed".  

The β-galactosidase cassette in pHSV1(17+)blue under the control of the SV40 early 

promoter (Schumperli et al., 1982; Wildeman, 1988), provides a tool for measuring the 
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successful delivery of the viral genome into the nucleoplasm. Comparable to 

HSV1(KOS)tk12 in which the β-galactosidase gene is expressed from the immediate-early 

promoter of HSV1-ICP4, vHSV1(17+)blue infection leads to an increase in β-galactosidase 

production in infected cells which was raising over time, but was reduced after 

depolymerisation of the microtubule network. This allows a rapid biochemical analysis of the 

efficiency of transport to the nucleus and DNA-release at the nuclear pore for mutants 

derived from this BAC or in the presence of pharmacological inhibitors (Mabit et al., 2002; 

Marozin et al., 2004). 

 

5.1.7. Construction of the self-excisable BAC pHSV1(17+)blueLox 

To decrease the size of the BAC-derived viral genome, the BAC genes in 

pHSV1(17+)blue were flanked with loxP sites, and furthermore, an expression cassette for 

Cre recombinase was introduced between them. A single loxP site was already contained on 

pHSV1(17+)blue and the introduction of the second site together with Cre recombinase was 

performed by Red recombination to obtain the extended BAC pHSV1(17+)blueLox. This 

mutagenesis step was closely monitored by restriction analyses which revealed no changes 

of the viral genome during exposure to the recombination enzymes Exo (redα), Bet (redβ) 

and Gam (redγ). Although Exo requires linear dsDNA as a substrate for its exonuclease 

activity, BACs with nicks or double-strand breaks could be targeted by the recombination 

system. After transfection into eukaryotes, Cre was expressed from pHSV1(17+)blueLox and 

catalysed a site-specific recombination between the two loxP sites resulting in excision of 

both the BAC and the Cre genes. The resulting vHSV1(17+)blueLox was slighty improved in 

titer and growth kinetics compared to vHSV1(17+)blue, but still grew less efficient than 

HSV1(KOS)tk12, in which thymidine kinase is also replaced by a β-galactosidase expression 

cassette. The genome size of vHSV1(17+)blueLox is 156 kbp, and thus only slightly larger 

than that ofwildtype. In HSV1(KOS)tk12 the β-galactosidase expression cassette was 

inserted into the thymidine kinase gene UL23 between a SacI and SphI site, so only 58 bp 

were removed (Warner et al., 1998). The increase in genome size by about 3.5 kbp, 

however, did not influence growth of this mutant.  

Recently, in pHSV1(17+)blue, the initial HSV1-BAC without a Cre/Lox self-excision 

system, the β-galactosidase cassette and the deleted thymidine kinase locus were repaired. 

Thereafter, the BAC regions were flanked with loxP sites and a Cre recombinase expression 

cassette was inserted (N. Müther & M.Messerle, Institute of Virology, Hannover Medical 

School; personal communcation). This BAC pHSV1(17+)Lox was added a luciferase 

expression cassette between UL55 and UL56. The resulting virus reached higher titers 

compared to vHSV1(17+)blue and grew similar to vHSV1(17+)blueLox. Thus, in this BAC the 
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Cre-mediated excision of BAC-sequences was also beneficial, although the maximal titers 

were not as high as for HSV1(17+) wildtype, either. Possibly, the insertion of the luciferase 

transgene led to this residual attenuation. Analysis of vHSV1(17+)Lox growth without a 

transgene and comparison to HSV1(17+) wildtype can reveal whether the BAC-cloning 

process per se impaired the virus at certain stages of its life cycle.  

 

5.1.8.  Conclusion 

HSV1(17+) has been cloned as the BAC pHSV1(17+)blue in E. coli DH10B. Thereby the 

HSV1 replication origin oriL was deleted due to a general instability of this region in E. coli. 

To overcome an attenuation of the viral replication efficiency by the introduction of BAC 

sequences, a Cre recombinase expression cassette was introduced and the BAC sequences 

were flanked with loxP sites so that both Cre and BAC sequences were excised from the 

genome after transfection into eukaryotes. The resulting BAC pHSV1(17+)blueLox grew more 

efficient than pHSV1(17+)blue, but possibly due to the introduction of β-galactosidase and the 

deletion of thymidine kinase titers are still reduced compared to wildtype HSV1(17+). Since 

the introduction of Cre-recombinase by Red-recombination was efficient and did not perturb 

the HSV1 genome, this method is very suitable for further mutageneses. 

 

5.2. HSV1 encoding a fluorescence-tagged VP26 

5.2.1. Adding a fluorescent tag to VP26 

By recombination in Vero cells (Desai and Person, 1998) generated a HSV1(KOS), 

mutant in which the small capsid protein VP26 was replaced by an N-terminal fusion of GFP 

to VP26 (HSV1-K26GFP). The fusion construct was described as having an insertion of the 

GFP coding sequence into the N-terminus of VP26 after codon 4. In HSV1-K26GFP, the 

GFPVP26 fusion protein remained associated with virus capsids during infection (Döhner et 

al., 2006). In contrast to wild-type VP26, GFPVP26 does not decorate all six VP5 copies per 

hexon, due to the size of the fusion protein, in which the GFP tag has the double size as the 

tagged protein (P. Desai, personal communication). VP26 and VP5 interact via amino acids 

50 to 112 of VP26 (Desai et al., 2003). This interaction may have an influence on the ATP-

dependent maturation of several VP5 hexon epitopes, as they are not recognised on capsids 

derived from HSV1-K∆26Z and HSV1-K26GFP by some monoclonal antibodies (Döhner et 

al., 2006, and references therein).  

In the HSV1-BAC generated in this thesis, VP26 was labelled with CFP, GFP and YFP 

via the detour of a VP26 deletion mutant. The VP26 ORF was disrupted by the insertion of 
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an rpsLneo selection/counterselection cassette by Red-recombination which served as 

placeholder for the fluorescent protein insertion. Translation stopped 10 residues after the 

original VP26 ATG and the rest of the protein was not produced. As VP26 is not essential for 

infection in cell culture,  vHSV1(17+)blueLox-∆VP26rpsLneo was infectious. However, HSV1-

K∆26Z, a deletion mutant of VP26 (Desai et al., 1998), only showed a minor attenuation in 

growth kinetics and titer compared to HSV1(KOS), wheras the titer of vHSV1(17+)blueLox-

∆VP26rpsLneo was reduced by more than the factor 10. HSV1-K∆26Z was generated by 

homologous recombination in Vero cells by replacing codons 10 to 102 of VP26 with a 

cassette coding for β-galactosidase (Desai et al., 1998). The minor attenuation observed for 

HSV1-K∆26Z compared to vHSV1(17+)blueLox-∆VP26rpsLneo could reflect compensatory 

mutations during recombination.  During plaque purification to enrich HSV1-K∆26Z these 

were probably selected due to their growth advantage. The BAC derived 

vHSV1(17+)blueLox-∆VP26rpsLneo is of clonal origin and the time to acquire mutations was 

probably not sufficient.  

In a second Red-recombination step, the rpsLneo cassette was replaced with the FP-

VP26 constructs. Although after transfection single fluorescent cells were obtained, only the 

CFPVP26 clone 7B developed plaques and full cytopathic effects within few days, whereas 

all other clones which were positive for the insertion of the fusion construct gave no rise to 

plaques after transfection or very slow plaque growth. The sequence of CFPVP26(7B) in the 

region upstream of the CFP insertion was the same as for GFPVP26(6A) and YFPVP26(9C), 

so either the nature of the fluorescent protein or mutations in other parts of the genome led to 

this attenuation.   

The terminal a-sequences were thought to be involved in the attenuation, as NotI joint 

restriction fragments were drastically changing in size between the different identified FP-

VP26 clones. But also after RecA-mediated recombination using shuttle plasmids, a 

GFPVP26-bearing virus exhibited the same phenotype, although there were no differences in 

the restriction patterns compared to pHSV1(17+)blueLox, except of the GFP insertion. A 

region of 12 kbp spanning the ORFs UL33 to UL36 was identified by marker rescue to carry 

the most influential mutation which led to attenuation, whereas DNA-fragments spanning the 

terminal repeat regions could not rescue the attenuation of a GFPVP26-BAC. Attempts to 

force the insertion of GFPVP26 by construction of a lethal UL34/VP26 double knockout and 

the rescue of this mutant with UL34/GFPVP26, UL34/RFPVP26 and UL34/YFPVP26 

constructs failed. However, UL34/CFPVP26 could rescue ∆UL34/VP26, as did wildtype 

UL34/VP26. Thus, the nature of the FP-VP26 fusion protein itself was detrimental to virus 

growth.  
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HSV1-K26GFP  is infectious and not strongly attenuated (Desai and Person, 1998). 

Sequencing of VP26 in this mutant as well as in the recombination plasmid pK26GFP used 

for transferring the fusion construct into HSV1(KOS) revealed that the codons for four N-

terminal residues of VP26 as well as several bases upstream of the VP26 ORF were deleted, 

so expression of GFPVP26 starts directly with the first methionine of GFP. This deletion, 

which was not described originally, was non-intentional and possibly occured duing cloning 

of pK26GFP. As the surrounding regions showed sequence similarity between HSV1(KOS) 

and HSV1(17+), pK26GFP was further modified to pK26RFP and both were used for 

replacement of the rpsLneo cassette in pHSV1(17+)blueLox-∆VP26rpsLneo. The resulting 

BACs with the GFPVP26 or RFPVP26 insertion were infectious and showed only a slight 

attenuation compared to the starting BAC pHSV1(17+)blueLox, which was similar to the 

attenuation of HSV1-K26GFP compared to the corresponding wildtype HSV1(KOS). So four 

N-terminal residues of VP26 have a strong inhibitory effect on virus growth, if they are 

present in an FP-VP26 fusion protein.  

The VP26 homologues of other alphaherpesviruses were tagged with GFP or mRFP1 

without major attenuation. For the construction of pseudorabies virus (PrV) GFPVP26 (Smith 

et al., 2001) and RFPVP26 (del Rio et al., 2005) the fluorescent protein was inserted 

between codons two and three of VP26. In bovine herpesvirus 1 (BHV1) GFPVP26 (Wild et 

al., 2005) the fusion protein starts directly with the GFP sequence. Between these three 

species VP26 shows strong homology only in the C-terminal half, whereas the N-termini are 

more divergent (Figure 68). There is no common N-terminal sequence with homology to the 

four HSV1-VP26 residues MAVP; in BHV1, the peptide MSAP has some similarity. 

 

CLUSTAL W (1.83) multiple sequence alignment 
 
HSV1-VP26       MAVP---QFHRPSTVTTDSVRALGMRGLVLATNNSQFIMDNNHPHPQGTQGAVREFLRGQ 57 
PrV-VP26        MS----FDPNNPRTITAQTLEGALPVDILLRLNRATGLQMDAAEAHAIVEDARRTLFIGT 56 
BHV1-VP26       MSAPAGIDPSAPATITPDTLRDLLPVQILHVLN-AAARPLQDGTTPEQVSAARRNLLVGT 59 
                *:     :   * *:*.:::.      ::   * :     :       .. * * :: *  
 
HSV1-VP26       AAALTDLGLAHANNTFTPQPMFAGDAPAAWLRPAFGLRRTYSPFVVREPSTPGTP----- 112 
PrV-VP26        SLALVNLRHAHDKHLVERQPMFATSDYSSWARPTVGLKRTFCPR----PPP--------- 103 
BHV1-VP26       SLAMVDLRRRHEKAVVPRVPMFATYDHAHWARPTIGLKRTFLPRVVQLPPEYEEDAGAAA 119 
                : *:.:*   * :  .   ****    : * **:.**:**: *     *.           
 
HSV1-VP26       ----- 
PrV-VP26        ----- 
BHV1-VP26       SAART 124 

Figure 68: Multiple sequence alignment of alphaherpesvirus VP26 homologues. The VP26 sequences of the 

alphaherpesviruses herpes simplex virus (HSV1), pseudorabies virus (PrV; Klupp et al., 2004) and bovine 

herpesvirus 1 (BHV1; Schwyzer et al., unpublished; GenBank accession number AJ004801) were aligned using 

the CLUSTAL W (1.83) software. A region spanning residues 77-100 has the highest grade of conservation 

between the three species.  
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In contrast to HSV1, the betaherpesvirus CMV VP26 homologue (small capsid 

protein, SCP) is essential as a knockout was not viable (Borst et al., 2001). A GFP fusion to 

the VP26 homologue of human or mouse CMV gave rise to fluorescent nuclear puncta, but 

was also not viable (Borst et al., 2001). For HCMV, the GFP was inserted after codon 8, for 

MCMV after codon 4. The N-terminal eight residues of HSV1 and CMV VP26 homologues 

are not conserved (Figure 69), so the inhibition by the N-terminal peptide may be non-

sequence-specific. 

 

CLUSTAL W (1.83) multiple sequence alignment 
 
HSV1-VP26       MAVPQFHRPSTVTTDSVRALGMRGLVLATNNSQFIMDNNHPHPQGTQGAVREFLRGQAAA 60 
HCMV-SCP        -MSNTAPGPTVANKRDEKHRHVVNVVLELPTE--ISEATHP-------VLATMLS-KYTR 49 
                        *:.... . :   : .:**   ..  * : .**       .:  :*  : :  
 
HSV1-VP26       LTDLGLAHANNTFTPQPMFAGDAPAAWLRPAFGLRRTYSPFVVREPSTPGTP 112 
HCMV-SCP        MSSL--------FNDKCAFK----LDLLR-MVAVSRTRR------------- 75 
                ::.*        *. :  *        **  ..: **                

Figure 69: Multiple sequence alignment of VP26 homologues of HSV1 and HCMV. The VP26 sequences of 

the alphaherpesviruses herpes simplex virus (HSV1), and of the homologous SCP of human cytomegalovirus 

(HCMV, Davison et al., 2003) were aligned using the CLUSTAL W (1.83) software.  

 

The nature of the inhibition is not clear. In HSV1, VP26 interacts with VP5 via the 62 C-

terminal residues 50-112 (Desai et al., 2003), which were not affected by the insertion of a 

fluorescent protein. Cells transfected with the attenuated BACs GFPVP26(6A) and 

YFPVP26(9C) exhibited nuclear fluorescent puncta, similar to cells transfected with 

CFPVP26(7B) or infected with HSV1-K26GFP. An interaction between VP5 and VP26 is 

sufficient for this nuclear localisation of VP26 (Desai et al., 2003). Although no or low 

cytopathic effects were associated with the attenuated BAC mutants, the interaction of the 

VP26 fusion proteins with VP5 was thus probably not impaired, so other steps during virus 

assembly or spread to neighboring cells were distorted. Transient overexpression of FP-

VP26 constructs with in eucaryotic cells prior to inoculation with HSV1 may reveal an 

inhibitory effect of the fusion protein on virus entry and establishment of infection. To 

elucidate the effect of the four-amino-acid-peptide of HSV1-VP26 one could N-terminally add 

these to GFP, transfect cells prior to inoculation with HSV1 and monitor the course of 

infection in the presence of the overexpressed peptide-GFP fusion. In another approach the 

effect could be assessed by the incorporation of a synthetic peptide into cells prior to 

infection. These experiments may even lead to the development of an antiviral peptide 

assembly inhibitor. 
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5.2.2. Characterisation of GFPVP26 and RFPVP26 tagged viruses  

As shown by SDS-PAGE and Western-blotting the fluorescent VP26 bearing viruses 

expressed only the fusion protein and no free GFP was associated with virions expressing 

GFPVP26. Due to a lack of an mRFP1 antibody, the presence of free mRFP1 could not be 

determined. To test whether this GFP- or RFP-tagged capsids were a suitable tool for the 

study of intracellular trafficking of HSV1, gradient purified virus stocks were prepared and 

analysed for their entry behaviour in Vero cells. Because several monoclonal antibodies 

against VP5 hexon epitopes did not detect capsids of HSV1-K26GFP or HSV1-K∆26Z in 

immunofluorescence microscopy (Döhner et al., 2006). VP26 is suggested to have a role in 

the formation of these epitopes. The mouse mAb LP12 against VP5 labelled capsids of 

HSV1-K26GFP and HSV1-K∆26Z and therefore it was used in this study for detecting 

incoming capsids of vHSV1(17+)blueLox-GFPVP26 and -RFPVP26.  

After entry, GFPVP26 and RFPVP26 colocalised with capsids in many cases. However, 

the labelling by the VP5 antibody mAb LP12 was stronger for nuclear localised capsids than 

for peripheral capsids. Therefore it can be assumed, that GFPVP26 or RFPVP26 interfered 

with binding to its epitopes and that capsids at the nucleus were detected more easily by the 

antibody due to a dissociation or a conformational change of GFPVP26 or RFPVP26 which 

also led to the decrease in autofluorescence. Nevertheless, most capsids of 

vHSV1(17+)blueLox-GFPVP26 and -RFPVP26 were efficiently transported to the nucleus 

within 3 h, and the fluorescence-labelled VP26 was a useful marker for capsid localisation as 

shown by the predominant colocalisation with a VP5 antibody. However, a significant amount 

of GFPVP26/RFPVP26 as well as of VP5 antibody labelling was still peripheral after three 

hours. 

Immunolabelling for the HSV1 membrane protein gD demonstrated, that a large amount 

of glycoprotein-containing subviral particles without capsid was contained in the virus 

preparations. However, during passage to the nucleus, glycoprotein and 

GFPVP26/RFPVP26 capsid signal have separated in both viruses and no glycoprotein was 

detected at nuclear capsids. 

The quality of a virus preparation is critical for the efficiency of transport of incoming 

capsids to the nucleus (Döhner et al., 2006). Virus preparations of a high grade are 

characterised by efficient capsid transport and low genome/pfu and protein/pfu ratios. In a 

virus preparation of high quality it was observed that the glycoprotein signal decreased three 

hours after inoculation (Döhner et al., 2006). The immunofluorescence data suggested, that 

the quality of the preparations of vHSV1(17+)blueLox-GFPVP26 and -RFPVP26 used in this 

experiment was not optimal. The genome/pfu ratios of these preparations were determined 

by quantitiative real time detection PCR of the inocula. The values which were obtained were 
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low and thus should indicate a good preparation quality (Döhner et al., 2006). However, the 

efficiencies of transport to the nucleus of the used vHSV1(17+)blueLox-GFPVP26 and 

-RFPVP26 preparations did not match to this parameters. So either the real time detection 

PCR protocol was not as quantitative for HSV1(17+) derived mutants as for HSV1(KOS) or 

HSV1(F). This is unlikely, because between the two wildtype strains HSV1(KOS) or HSV1(F) 

the coincidence between genome/pfu ratio to entry efficiency was almost equal.   

vHSV1(17+)blueLox-GFPVP26 and -RFPVP26 could secrete a higher proportion of particles 

without DNA, compared to the viruses tested in Döhner et al. (2006). A determination of the 

particle/pfu ratio by electron microscopy or protein analysis will provide more insight for the 

characterisation of the inocula. 

 

5.2.3. Conclusion 

The construction of FP-labelled VP26 mutants of pHSV1(17+)blueLox by BAC-

mutagenesis was technically accomplished by two strategies. The Red-recombnination 

mediated insertion and replacement of an rpsLneo selection/counterselection cassette via a 

∆VP26 intermediate as well as the recA recombination based construction of a GFPVP26-

BAC using a shuttle plasmid led to several BAC-clones which were positive for the correct 

insertion of the FP-VP26 fusion protein as revealed by restriction analysis and sequencing. 

However, the construction of the fusion protein as initially performed, resulted in a strong 

attenuation of the obtained mutants or a complete loss of infectivity. The previous 

assumption, that a perturbance of repetitive regions in the virus genome by the action of 

recombination enzymes was the reason for this unexpected phenotype was abandoned, 

when an intact HSV1 DNA fragment spanning the repetitive regions was not able to rescue 

an attenuated GFPVP26-BAC clone, wheras a DNA fragment containing the wildtype VP26 

sequence was able to do so. Surprisingly, the insertion of a CFPVP26 fusion either by Red-

recombination, or the rescue of a ∆UL34/VP26 BAC with a UL34/CFPVP26 construct by 

homologous recombination in Vero cells led to the production of an infectious fluorescent 

virus with only weak attenuation. The instrinsic properties of CFPVP26 itself may be the 

cause for the attenuation of its GFPVP26 and YFPVP26 derivatives. 

The previously constructed HSV1-K26GFP (Desai and Person, 1998) did not carry four 

original VP26 residues at the N-terminus of the GFPVP26 fusion protein and the insertion of 

FP-VP26 constructs without this peptide into the HSV1-BAC led to the recovery of viable 

virus, so at least for GFPVP26 and RFPVP26 this peptide might be the cause for the 

attenuation. Coherent with this, the BAC-derived GFPVP26 and RFPVP26 containing viruses 

without the N-terminal VP26 residues were growing with only a slight attenuation comparable 

to HSV1-K26GFP. They can be used for the analysis of HSV1 entry and provide a marker for 
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the localisation of capsids. The efficiency of nuclear targeting during entry could, 

nevertheless, benefit from a good quality of the virus preparation, which is dependent on a 

well-maintained cell culture, low MOI for inoculation, the time point of harvesting and 

thorough purification of the virions. 

 

5.3. Dual coloured HSV1 virions 

5.3.1. Adding a fluorescent tag to glycoprotein D 

For the study of entry and assembly in live cells the continuous monitoring of capsid 

and envelope structures can provide important information. For studying entry by live cell 

imaging of incoming virions, the localisation of the envelope relative to the capsid will be 

dependent on the mode of entry. When fusing with the plasma membrane, both structures 

separate early and the capsid alone is transported within the cell. After endocytosis, 

envelope and capsid colocalise in an endocytic vesicle during transport and both signals 

separate at a later timepoint after viral fusion with the endosomal membrane. During 

assembly and egress the simultanoeus visualisation of capsid and envelope can reveal the 

compartment of the cell where secondary budding occurs and which subviral species are 

transported inside the cell during egress. 

The viral envelope protein gD was added a GFP tag directly to the C-terminus, so the 

fluorophor was localised inside the virion or facing the cytosol, respectively. The construction 

of the BAC-mutant by "en passant" mutagenesis gave rise to the clone pHSV1(17+)blueLox-

RFPVP26-gDGFP expressing both RFPVP26 and gDGFP after transfection into eucaryotic 

cells as shown by Western-blotting. In a developing plaque both proteins localised to 

different compartments and the plaque size of the double-labelled mutant was not smaller 

compared to the single labelled RFPVP26 virus. Modification of the 30 amino acid cytosolic 

C-terminal tail of gD has no influence on fusion and entry capacity of gD (Browne et al., 

2003), so the GFP addition should not interfere with cell entry. During assembly of 

alphaherpesviruses, glycoproteins are preassembled with outer tegument at patches of the 

secondary budding organelle (Mettenleiter, 2004). However, among the herpesviruses the 

roles of the glycoproteins during assembly and entry are not conserved, so interactions of 

glycoproteins with host receptors or viral proteins are specific for each virus species. HSV1-

gH interacts with the tegument protein VP16 (Gross et al., 2003; Kamen et al., 2005), 

nevertheless it is not essential for egress (Browne et al., 1996; Forrester et al., 1992).  

HSV1-gE and gD have an essential, but redundant role during egress (Farnsworth et al., 

2003), and interacts via its cytosolic C-terminus with the tegument protein VP22 (Chi et al., 
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2005). As the gD-GFP virus was growing well, the addition of GFP directly to the C-terminus 

of gD had no major influence on virus egress.  

 

5.3.2. Intracellular localisation of RFPVP26 and gDGFP  

In a developing plaque, the localisation of gDGFP was strictly cytoplasmic, wheras to 

localisation of RFPVP26 was dependent on the progress of infection and changed from a 

nuclear to a cytoplasmic labelling. Early in infection, after six hours, RFPVP26 was only 

found in the nucleus in a dense punctate pattern or in aggregates. Both possibly represented 

areas of capsid assembly or single intranuclear capsids. Interestingly, no diffuse RFPVP26 

signal was observed, suggesting that the protein was targeted to the nucleus almost 

quantitatively, possibly after an interaction with VP5 in the cytosol, or the 39 kDa RFPVP26 

was sequestered in the nucleus after diffusion through the nuclear pores (discussed in 

(Desai et al., 2003)). However, the strict nuclear localisation of RFPVP26 early in infection 

contradicts a diffusion-controlled accumulation, as one would expect a stronger cytosolic 

RFPVP26 signal. These data support the assumption that RFPVP26 has an intracellular 

behaviour similar to wildtype VP26. 

The GFP-tagged glycoprotein D exhibited a strictly cytoplasmic localisation in infected 

cells which covered the whole cell area, and in some cells also the nuclear envelope was 

stained. Early in infection the signal was most pronounced in a perinuclear region, which 

most likely represented the Golgi apparatus. The bright perinuclear signal was irregularly 

scattered in most cells which is consistent with the observation that the Golgi apparatus 

becomes fragmented during HSV1 infection (Campadelli et al., 1993).  

16 h after infection the localisation of RFPVP26 has dramatically changed. The 

intranuclear signal was concentrated into large aggregates which were also observed in the 

perinuclear cytoplasm, moreover, the cytoplasm was filled with dotted RFPVP26 signals 

which were likely capsids during egress. Indeed, some colocalised with gDGFP in the cell 

periphery. RFPVP26 dots at the cell margins could represent virions in the process of 

release from the host cell. The localisation of gD was unchanged and very strong in a 

perinuclear region, thereby strongly colocalising with RFPVP26, so one could either assume 

that these perinuclear region comprises a major secondary budding region like the trans-

Golgi network (Granzow et al., 2001; Turcotte et al., 2005), or the large excess of viral 

protein produced during infection leads to the formation of aggregates which are degraded in 

proteasomes in the perinuclear region (Gordon, 2002). Additional immunofluorescence 

labelling with antibodies directed against specific cellular structures as well as ultrastructural 

analyses can help to determine, whether assembly and egress of vHSV1(17+)blueLox-

RFPVP26-gDGFP occur comparable to wildtype. 
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Capsid and envelope components of HSV1 can now be separately monitored also in live  

cells. A big potential of the dual-labelled vHSV1(17+)blueLox-RFPVP26-gDGFP lies in the 

study of axonal transport of progeny capsids by video or time-lapse microscopy of infected 

neurons. The differently labelled capsid and envelope structures allow the distinction 

between “naked” capsids, vesicles with viral glycoproteins, or virions in vesicles. But also in 

the analysis of entry, the dual-labelled virus can provide important information. A distinction 

between fusion at the plasma membrane and endocytosis in different cell types, would be 

possible; and most importantly, in live-cell-imaging the possibly different intracellular 

dynamics of cytosolic capsids or endocytic virions can be analysed.  

 

5.4. Outlook 

HSV1(17+) was successfully cloned as a BAC, and established protocols for 

mutagenesis were applied for insertion and modification of sequences in the viral genome 

(Table 4). For the study of virus-host interactions during infection and studies regarding the 

interactions in the large HSV1 proteome, pHSV1(17+)blueLox and its fluorescence-labelled 

derivatives provide powerful tools. However, for pathogenesis studies in animals or the 

analysis of the viral life-cycle in replication-incompetent cells, e.g. neurons, further 

modifications are necessary. The thymidine kinase locus was repaired in pHSV1(17+)Lox by 

mutagenesis of pHSV1(17+)blue (N. Müther & M. Messerle, Institute of Virology, Hannover 

Medical School; personal communication). The instability of oriL in E. coli has also to be 

considered. Unless no bacterial strains are available which allow the maintenance of BACs 

as well as of a stable HSV1-oriL, this sensitive region may be only repaired by recombination 

in eukaryotes.  

 
BAC Phenotype of the resulting virus 
pHSV1(17+)blue ∆UL23, BAC+, lacZ+; titer reduced 10 fold compared to HSV1(17+) 
pHSV1(17+)blueLox ∆UL23, BAC–, lacZ+; grows faster than vHSV1(17+)blue 
pHSV1(17+)blueLox-∆VP26rpsLneo ∆UL23, BAC–, lacZ+, ∆VP26; titer reduced 10-fold 
pHSV1(17+)blueLox-GFPVP26[6A] 
pHSV1(17+)blueLox-CFPVP26[7B] 
pHSV1(17+)blueLox-YFPVP26[9C] 
pHSV1(17+)blueLox-GFPVP26[20]/[33] 

∆UL23, BAC–, lacZ+, FP-VP26. Except clone CFPVP26[7B], the 
resulting viruses are not viable or strongly attenuated. The FP-
VP26 fusion proteins contain the first four original VP26 residues 
at the N-terminus. 

pHSV1(17+)blueLox-∆UL34/35 ∆UL23, BAC–, lacZ+, ∆VP26, ∆UL34; not viable due to deletion of 
the essential membrane protein UL34 

pHSV1(17+)blueLox-GFPVP26[9] 
pHSV1(17+)blueLox-RFPVP26[13] 

∆UL23, BAC–, lacZ+, FP-VP26; only slightly attenuated. Both 
viruses express an FP-VP26 fusion protein and incoming capsids 
are efficiently transported to the nucleus of infected cells, thereby 
retaining the fluorescent protein label. 

pHSV1(17+)blueLox-RFPVP26-gDGFP[14.1] ∆UL23, BAC–, lacZ+, RFPVP26, gDGFP. Dual coloured virus with 
fluorescence label at representative capsid and envelope protein. 

Table 4: Bacterial artificial chromosomes of HSV1 described in this thesis. 
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The behaviour of fluorescence-labelled VP26 and gD has to be further characterised to 

ensure that they preserved the function of their wildtype counterparts. The data obtained so 

far suggest, that both proteins are functional as FP-fusion proteins and that their modification 

only slightly attenuated HSV1. However, as was the case for FP-VP26, unexpected 

phenotypes and inconsistent properties of similar fluorescence tags, have to be taken into 

account. Some HSV1 mutants had a replication phenotype which was reflected in reduced 

titers and slower growth kinetics. Especially for entry experiments the quality of the inoculum 

is crucial and the preparation of virions from these mutants requests special care, not to 

misinterpret entry phenotypes with phenomena caused by inferior preparation quality. 

The usefulness of HSV1(17+)-BAC pHSV1(17+)blueLox and its derivatives will be shown 

in the construction and analysis of a large range of virus mutants which on one hand will 

elucidate the complex biology of this large DNA-virus and its interplay with the multitude of 

cellular pathways. Still, HSV1 is an important pathogen which provides a risk to patients in 

several clinical manifestations, so mutagenesis-based studies also may help in the treatment 

of the disease as well as in the development of vaccines. The conversion of the human 

pathogen HSV1 into a gene therapy vector or a selective agent for the destruction of 

malignant tissue is a promising field of medical research which will benefit from the insights 

obtained by basic research of HSV1-cell interaction based on specific virus mutants: a viral 

genome does not necessarily need to encode a threat. 
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