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Zusammenfassung

Derzeit beginnt die Datenaufnahme eines internationalen Netzwerkes von grofien, laserinterferome-
trischen Gravitationswellendetektoren. Dies ist der Auftakt zu einer neuen Form der Astronomie,
der Gravitationswellenastronomie. Der britisch-deutsche Gravitationswellendetektor GEO 600 ist
der einzige des Netzwerkes, der zur Erhchung seiner Sensitivitdt mit dem sogenannten Signal-
Recycling (SR) ausgestattet ist. Diese Technik erlaubt es, die Sensitivitét fiir Gravitationswellen in
einem bestimmten Frequenzband auf Kosten der umliegenden Frequenzen zu erhchen. Dafiir wer-
den mit Hilfe eines Spiegels im Ausgang eines Michelson-Interferometers, dem Signal-Recycling-
Spiegel (SR-Spiegel), die Gravitationswellensignale in einem wihlbaren Frequenzbereich resonant
iiberhoht. Bei GEO 600 bestimmt die Reflektivitat des SR-Spiegels die Breite des Bandes, seine
mikroskopische Position die Mittenfrequenz. Die Mittenfrequenz wird im aktuellen Betrieb von
GEO 600 bereits iiber einen weiten Frequenzbereich von derzeit 2 kHz gezielt und flexibel einge-
stellt. Mit dem Einsatz eines Etalons statt eines herkémmlichen Spiegels mochte man in Zukunft
auch die Reflektivitdat, und damit die Bandbreite des Detektors regeln.

Grundvoraussetzung fiir einen verlédsslichen Langzeitbetrieb dieser Observatorien ist die ste-
te Regelung aller Freiheitsgrade. Dafiir werden Regelsignale mit Hilfe von Modulations-
Demodulationstechniken von Licht gewonnen. Diese Signale héngen jedoch in einem hochkom-
plexen optischen System wie GEO 600 von vielen Freiheitsgraden gleichzeitig ab. Verédndert man
z.B. die Position oder die Reflektivitat des SR-Spiegels im Betrieb, werden auch die Regelsignale
anderer Freiheitsgrade unmittelbar beeinflusst.

Im Rahmen der vorliegenden Arbeit wurden diese Regelsignale und die dazu gehdrenden Licht-
felder mit Hilfe des Programmes FINESSE untersucht. Um mit dem Experiment iibereinstim-
mende Arbeitspunkte zu erzeugen, wurden die Lingen der Resonatoren und der Michelson-
Armléngenunterschied auf mindestens 1 mm genau bestimmt. Dariiberhinaus ist eine Kalibration
der SR- und Michelson-Demodulationsphasen mit einer Genauigkeit von £2° gelungen. Mit die-
sen Eingangsparametern kann der Verlauf der Signaliiberh6hung von GEO 600 in einem Bereich
von 2kHz um die jeweilige Mittenfrequenz mit einer Genauigkeit von besser als 5% vorherge-
sagt werden. Auflerdem konnte mit Hilfe von Simulationen eine Matrix erstellt werden, die die
einzustellenden Demodulationsphasen und Verstédrkungen der SR~ und Michelson-Regelungen fiir
verschiedene SR-Verstimmungen enthélt. Die Simulation vermag den Verschiebungsprozess des
Frequenzbandes maximaler Sensitivitidt schneller und gezielter zu optimieren, als das im Experi-
ment moglich ist.

Ein weiterer Teil dieser Arbeit ist der Verbesserung der Empfindlichkeit von GEO 600 gewid-
met. Zum einen wurde mit Hilfe des Phasorenbildes die Abhéngigkeit der Sensitivitdt von den
Resonanzbedingungen der Michelson-Regelseitenbénder untersucht. Allein durch eine Erhohung
der aktuell verwendeten Seitenbandfrequenz um 33 Hz kann die Sensitivitdt global fiir niedrige
Signalfrequenzen um bis zu 30% verbessert werden.

Zum anderen wurde die Identifizierung technischer Rauschquellen, die die Empfindlichkeit be-
grenzen, durch die Analyse von Kopplungsmechanismen unterstiitzt. Fiir das Laseramplituden-
rauschen spielen z.B. die Resonanzen der Rauschseitenbénder eine entscheidende Rolle. Diese Er-
kenntnis verhalf dazu, eine weitere Rauschquelle mit #hnlichen Kopplungseigenschaften zu finden,
das Modulationsindexrauschen.

Tritt ein Etalon an die Stelle des SR-Spiegels, verdndern sich die Regelsignale im Vergleich zum
herkémmlichen Spiegel. Simulationen zeigen jedoch, dass der Betrieb des Detektors nicht gefdhr-
det ist. Stellt man die Reflektivitdt des Etalons ein, sollte bei der aktuellen Konfiguration von
GEO 600 aus regelungstechnischen Griinden eine Vergroerung des mikroskopischen Abstands der
Etalonoberflichen gewéhlt werden.



Stichworte: Gravitationswellendetektor, Simulation, Phasorenbild, Sensitivitéit, gekoppelte Re-
sonatoren, Fehlersignal, Laseramplitudenrauschen, Etalon, FINESSE
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Summary

Currently, the data acquisition of an international network of large, laser-interferometric
gravitational-wave detectors is about to begin. This preludes a new form of astronomy;
gravitational-wave astronomy. The British-German gravitational-wave detector GEO 600 is the
only detector of this network featuring signal recycling (SR), an optical technique that allows
for increasing the sensitivity in a particular frequency band, at the expense of other, surround-
ing frequencies. This is achieved by resonantly enhancing the gravitational-wave signals of an
arbitrary frequency region inside the so-called signal-recycling cavity, formed by a Michelson in-
terferometer (MI), and a SR mirror at the MI output port. The reflectivity of the SR mirror
determines the bandwidth of the enhanced region, the microscopic position, the mid-frequency.
The mid-frequency, or detector tuning, of GEO 600 can already systematically be set during the
operation within a range of 2kHz. In future, the detector bandwidth may also be customised,
replacing the conventional SR mirror by an etalon whose reflectivity is adjustable.

A basic requirement for a reliable long-term operation of these observatories is a permanent control
of all degrees of freedom. The respective control signals are gained by modulation/demodulation
techniques applied to light. In an advanced optical system like GEO 600, however, these control
signals depend on several degrees of freedom at the same time. Altering, for example, the position
or reflectivity of the SR mirror during detector operation instantaneously changes the properties
of the control signals of other degrees of freedom.

Within the scope of this thesis, the control signals of GEO 600 and the corresponding light fields
were investigated using the program FINESSE. In order to yield operating points that agree with
the experiment, the differential MI armlength, and the resonator lengths were determined with
an accuracy of at least =1 mm. Beyond, we managed to calibrate the SR and MI demodulation
phases with +2° precision. Using these input parameters, the shape of the signal enhancement
of GEO600 can be predicted with a deviation of less than 5% from the experiment, within a
region of 2kHz around the respective tuning frequency. Furthermore, a matrix was generated
by simulation that contains demodulation phase and gain settings for the SR and MI control
loops, enabling a quasi-continuous tuning of the detector. In comparison to an experimental
parameter determination, the simulation allows for a more targeted and faster optimisation of the
loop parameters.

Another part of this thesis is dedicated to the improvement of the sensitivity of GEO 600. On
the one hand, employing the phasor picture allowed for a global examination of the sensitivity
dependency on the resonance conditions of the MI control sidebands. Increasing the currently
used sideband frequency, by 33 Hz only, can globally enhance the sensitivity for low gravitational-
wave frequencies by up to 30%.

On the other hand, analysing the coupling mechanisms of noise sources into the detector output
supported the identification of particular sources that limited the detector sensitivity. For the
laser-amplitude noise coupling, for example, the noise-sideband resonances play a decisive role.
This insight helped to find another source exhibiting similar coupling features, namely modulation-
index noise.

With an etalon taking the place of the SR mirror, the control signal features change in comparison
with the conventional-mirror configuration. However, simulations indicate that these changes do
not compromise the detector operation nor the process of tuning. When adjusting the reflectivity
of the etalon in a GEO 600 configuration similar to the current, the distance between the etalon
surfaces should, due to control reasons, be increased rather than decreased.
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Glossary

Mathematical and physical constants

i

Ve

1] imaginary unit

[
c =~ 209792458  [ms™!]  speed of light
T = 3.14159265  [1] circular constant
e = exp(1) =~ 2.71828183  [1] base of natural logarithm
Mathematical symbols
* complex conjugate
® particular product of complex numbers equivalent to the scalar product
of their vector representatives
T matrix transposition
a, B arbitrary phases
o angle of misalignment
A macroscopic deviation
) microscopic deviation
ox mirror displacement in units of degrees, 360° - dx /g
10} demodulation phase or constant phase of a light field
® (variable) phase of a light field
A wavelength
w angular frequency
T modulation period 1/ f
a light field amplitude impinging on an optical system
b light field amplitude at the output of an optical system
C complex numbers
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Glossary

E (space- and) time-dependent electric field

Ey constant electric field amplitude

FSR free spectral range

f frequency

g transfer-function gain or amplitude ratio

H transfer function

h strain

1 photo current

R imaginary part

Jj(m) Bessel functions
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Chapter 1.

Optical detection via the
modulation/demodulation technique

In view of detecting gravitational waves, the first generation of km-scale laser-
interferometric gravitational-wave detectors is ready for worldwide network operation
and about to reach the design sensitivity. Albert Einstein predicted gravitational waves
already in 1916 in his General Relativity as ripples of space-time that occur when masses
are accelerated. These space-time deformations are wavelike solutions of the linearised
Einstein’s field equations and travel at the speed of light changing the distances between
free falling test masses [Mizuno95, Hewitson04a, Hild03, Kotter04]. The “stiffness” of
space-time, however, causes the interaction with masses to be very faint such that even
gravitational waves carrying enormous energies have small amplitudes!. Therefore only
astrophysical events including the acceleration of huge masses lead to appreciable, mea-
surable gravitational-wave amplitudes.

The faintness of gravitational waves is challenging, but at the same time bears a very ap-
pealing potentiality for a new astrophysical device. Present astrophysical measurements
are mainly based on neutrino detection or electro-magnetic radiation. These methods pro-
hibit the view of all non-radiating members of the universe, and complicate the detection
of any promissing candidate behind an absorbing object. The weak coupling of grav-
itational waves, though, facilitates almost unattenuated information about accelerated,
huge masses, in particular about distant parts or the birth of our universe.

For the first detection of gravitational waves, and its astrophysical application, a world-
wide network of gravitational-wave detectors is needed. GEO 600, a detector of 600 m
armlength close to Hannover, is a British-German contribution to the interferomet-
ric gravitational wave community which currently comprises six large-scale detectors
[GEO, Hewitson05, LIGO, Sigg05, TAMA, Ando05, VIRGO, Acernese05|. Being in its
final state of commissioning, GEO 600 takes part in the current science run S5 that has
started in winter 2005/2006. At the time of writing this thesis, GEO 600 is only a small
factor away from its design sensitivity.

The search for gravitational waves requires a stable operation of the detectors over long
time periods of several months or years. This presumes constant states of longitudinal
and alignment degrees of freedom of the mirrors. For isolation from seismic events, all

'The ratio of energy density and space-time curvature amounts to ~ 10%* N,
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mirrors of GEO 600 are suspended as double or triple pendulums. Still, there is residual
motion of the hanging masses that needs to be controlled.

For such a control, adequate error-signals have to be found. An error-signal gives a
measure for the deviation of a (sub-)system state from the targeted one. After some
processing of such an error-signal, the feedback signal is passed over to one or several
actuators to compensate for the effect that causes the deviation. Ideally, each error-
signal should depend on only one degree of freedom. However, as the current and future
gravitational-wave detectors become more and more complex, an orthogonalisation of the
error-signals becomes increasingly difficult.

Microscopic movements of mirrors change the amount of accumulated phase of a reflected
beam at a given point. Thus, the light phase carries the relevant information about a
mirror’s position. This physical quantity, though, is not directly accessible and has to be
made detectable by, for example, interference with another light beam as a reference and
evaluating the beat signal.

If the two beams have the same frequency, the detection is called homodyne, otherwise
heterodyne. In most cases it is sensible to use the same optical path for both beams. In
that case, for a comparison of the two beam phases, it is necessary that the reference
depends on the device’s states in a way differing from the main beam. The heterodyne
detection can be adjusted to obey this criterion.

GEO 600 uses heterodyne detection for all degrees of freedom of the dual-recycled Michel-
son interferometer. The shape and dependencies of an error-signal amplitude varies with
the configuration used. Following [Freise03al, a configuration is defined as a certain setup

of a control scheme within an optical system, comprising in particular the utilised light
fields.

This chapter gives an introduction to the generation of error-signals in optical systems via
light field modulation, and demodulation of a photodiode signals. Treating light fields in a
so-called phasor picture enables an intuitive explanation of crucial error-signal properties,
even for advanced configurations.

After a short definition of the light-field convention used throughout this work, the
reader will be introduced to the phasor picture. This phasor picture is then applied to
illustrate the light field relations for all kinds of modulations. The generation of error
signals with the modulation/demodulation technique will be deduced mathematically and
then translated into the phasor picture. At the end of this chapter, the phasor picture
will be applied to explain the error-signals associated with a simple two-mirror cavity.

1.1. Modulation of light fields

An unmodulated laser light field will in the following be represented by a scalar, electrical
field with real amplitude Fy and positive angular frequency wg = 27 fo. Without loss of
generality (w.l.o.g.), the light is assumed to travel from left to right. Defining the axis of
propagation to be the x-axis of the usual right-hand coordinate system, the light phase
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Figure 1.1.: Phasor representing the scalar light field of Equation 1.1. The coordinate
system in the left is fixed, such that the phasor rotates anti-clockwise with time with
period 7y, whereas the coordinate system in the right rotates with the phasor, allowing
for a static display of the electric field vector. Without loss of generality (w.l.o.g.), the
phase between the two rotations is chosen to be 0°. The coordinate axes are rearranged
such that the real axis points upwards.

decreases with increasing x, proportional to the wavevector kg = wg/c, with ¢ being the
speed of light. As the absolute phase offset of the light is anyway only measurable in
comparison with another light field, it can be set to zero. This gives

E(t, ) = Eye'wot—kor), (1.1)

In reality, there is a complex conjugate as second summand that is omitted for simplicity.
This does not change any of the following results 2. In calculations where the longitudinal
dependence is not relevant, i.e. accounting only for light effects at one arbitrary loca-
tion along the axis of propagation without the necessity of comparing different traversed
distances, x will, w.l.o.g., be set to 0.

1.1.1. Phasor diagrams

A complex scalar light field, as in Equation 1.1, can be displayed in a complex plane as a
vector with length Fjy and phase wyt. If the coordinate system is rigid, this vector, with
time, rotates anti-clockwise around the origin with frequency fy. To ease the display, the
coordinate system can be chosen to rotate with that same frequency such that we get a
stationary picture. Furthermore, the real and imaginary axes are displayed such that the
real axis points upwards (the benefit of this choice will become clear later). This kind of
visualisation of field amplitude properties is called a phasor diagram.

Figure 1.1 shows the phasor in a fixed (left) and in a rotating (right) coordinate system.

Phasors can be added by concatenating them together (as usually done with vectors) to
get the resulting sum phasor. Multiplication, though, takes place by multiplying their

2The complex number and its conjugate describe parts of one light field that propagate in opposite
directions. In sum, they ensure that E(t) is a real number, i.e. a physical quantity.
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amplitudes and adding their phases. In the latter case, the individual rotation frequencies
add up to the rotation frequency of the resulting phasor. In a coordinate system co-
rotating with fy, phasors with different frequency f # fo keep a residual rotation with
the corresponding frequency offset for = f — fo. If fog > OHz, the rotation is anti-
clockwise, else clockwise.

1.1.2. Amplitude modulation

A small sinusoidal amplitude modulation, with an initial phase of 90°, of the light field
from Equation 1.1 with a so-called modulation index m and angular frequency wy,,

Eam(t) = Ege™° (1 + m cos wpt) = Fpe™?! <1 + %ei“mt + %e"w“‘t> , (1.2)

can be interpreted as a sum of three light fields at different frequencies, fo and fy & fi.
In the context of modulation, fields with these frequency properties are called carrier,
and upper (4), and lower (=) sideband, respectively.

With respect to the carrier, the sidebands have a residual frequency of =+ f;,, referred to as
modulation frequency, which is visible particularly on the right hand side of Equation 1.2.
This modulation is taken into account in a phasor diagram by “snapshots” of different
moments, related to the modulation period 7, = 1/f, as depicted in Figure 1.2. It
consists of four pictures with particular phases, 0, 5, 7, and 37”, of the sidebands (cyan)
with respect to the carrier (magenta). The left-hand side shows each field amplitude
separately (individual display), the right hand side the sum of all fields (red vector at the
very right) as required by the superposition principle (summed display). The sidebands
rotate with fi, in directions set by the sign of their frequency. + and — correspond to
anti-clockwise and clockwise, respectively. On the left, the coordinate systems of each
subfield are arranged on a third axis of frequency?.

Summing up those three individual light fields obviously results in a periodic amplitude
modulation of the carrier light (which is not really surprising considering Equation 1.2).
In turn, one can say that such sidebands in general have an influence on the light field
power detected by a photodiode, allowing a measurement of the sidebands.

1.1.3. Phase modulation

A periodic modulation of the phase of the light field of Equation 1.1, again with an angular
modulation frequency wy, and modulation index m, can mathematically be described as

*From Section 1.2 on, the frequency axis and the imaginary axis coincide anti-parallely to ease the view
of phasors pointing to the back of the picture and for an easier transfer from the individual display to
that of the sum. However, the author finds the kind of visualisation introduced here more suitable to
understand the basic concept.
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Figure 1.2.: Amplitude modulation for different times within one modulation period 7.
The left-hand side shows an individual display of each light field of the right-hand side
of Equation 1.2 in terms of phasors. The two sidebands (cyan) rotate at frequency
fm with opposite directions around their origin. Their imaginary and real coordinate
axes are affixed to a frequency axis. The right-hand side shows a sum display of all
light fields corresponding more closely to the mathematical description on the left-hand
side of Equation 1.2. In sum (red phasor on the very right), the sidebands cause the
amplitude of the light to alter periodically without changing its phase.
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Epm(t) _ Eoei(woter Cos wmt)
— EO eiwoteim COS Wmt
. 0 . .. ..
= Eoe™ | Jo(m) + Y il J;(m) (eemt 4 emiemt) (1.3)
j=1

= Eye™ot [Jo(m) + iJy (m)e™mt 4 iJ) (m)e“mt 4 O(mQ)]

~  Eoe™ (1 4+ im coswmt) .

Here, the Jj(m) represent the Bessel functions of the first kind, of order j,

o~ (1P myar m?
Jj(m) :;W <§> , giving  Jo(m) = 1-— T+O(m4)
m  m?
M) = 2T ot ()
Tom) = "+ O(m),

As can be seen in Equation 1.3, a phase modulation is equivalent to a comb of side-
bands at frequencies +jfm,, j € N4, around the carrier?. For small modulation indices
(m < 1), only the first-order sidebands (j = 1) are relevant. In the following sections,
only these sidebands will be considered. Their amplitudes, im/2, are phase shifted by
i = exp(im/2) = 90°. Besides, they are the same as the sidebands of the amplitude
modulation. It is, though, important to note that the field described in Equation 1.3 has,
in contrast to amplitude modulation, a time-independent absolute value of Ej. This is,
however, no longer true with the approximation made in the last line of Equation 1.3: for
certain times, the absolute value reaches Egv/1 +m?. This is a consequence of the fact
that the higher-order sidebands, compensating effects of elongation due to the first order
sidebands, have been neglected.

The phasor diagram in Figure 1.3 might help to understand more easily why a simple
phase shift of sidebands (by +90° with respect to the amplitude modulation sidebands)
can change the overall amplitude characteristics, making the sidebands “invisible” on a
photodetector. The sidebands (cyan) add up constructively in the quadrature perpen-
dicular to the carrier (magenta) and cancel each other when they become parallel. This
makes the overall sum vector (red) oscillate periodically around its original vertical posi-
tion, but leaves the amplitude (almost) constant.

1.1.4. Frequency modulation

A frequency wg modulated with wy, by an amplitude Aw can be described as

wo + Aw sin(wpt), (1.5)

4N denotes non-negative integer numbers.
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Figure 1.3.: Phase modulation in the phasor picture for different times within one mod-
ulation period 7y,. The left-hand side shows the individual display of the carrier and
the first-order sidebands’ fields of Equation 1.3. The right-hand side shows the sum of
these fields. The two sidebands cause the sum vector mainly to oscillate periodically
about its original vertical position. In this display, the amplitude of the sum vector
changes by a small amount, but only for the sake of a proper view, which requires to
a) omit higher-order sidebands and b) give the first-order sidebands a sufficient length.
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leading to a total light phase of

o(t) = / [wo + Aw sin(wpyt)] dt. (1.6)

As the light frequency is the first derivative of the phase, in the case of a time-dependent
frequency, an integration is needed to correctly deduce the phase. This yields

Eoezkp(t) _ Eoeif[woJrAw sin(wmt)]dt _ Eoei (wot— f—;}’ cos(wmt)> . (17)

Thus, a frequency modulation appears as a phase modulation at that same frequency
with a scaling modulation index® Aw /wy,.

1.1.5. Phase modulation of phase modulation

In an experimental setup, phase modulation is realised (e.g.) with electro-optic modula-
tors (EOMs) that receive a frequency dependent electrical signal generated by oscillators.
These oscillators are also subject to noise. More explicitely, the oscillator frequency can
vary with time as presumed with the laser frequency in Equation 1.6. In order to in-
vestigate this modulation further, one needs to distinguish between the primary phase
modulation, with m and wy,, and the modulation happening to the oscillator, with the
angular frequency wese and an amplitude of +Aw. Furthermore, the expressions upper
and lower sidebands will be reserved for the primary phase modulation.

Inserting this into Equation 1.6 and Equation 1.3, we get
E(t) _ Eoei(wot-l—m cos pm(t))
_ Eoei [wot-l—m cos (wmt— % cos(wosct)>] . (18)

The exponential function with the nested cosine can be expanded similarly to Equa-
tion 1.3:

£ cos(wmt+mosc cos(wosct)) _|_ Z i J 17 (Wmt+Mose cos(wosct))
= Jo(m) +.
+iJq (m) twmt zmosc cos(wosct) +.
+iJp (m) —iwmt —zmosc cos(wosct) + O( 2) (1.9)
~ olm) +
+ZJ1 (m)ewmt (1 44 ;SC Zu}osct 4 Z%eiiwosct)) + ...
+iJ1 (m)e”mt < z%ei%“t — z’%gl’%seﬂ)

5This modulation index can sometimes be quite high, even exceed 1, such that higher-order sidebands
need to be taken into account. This case is known as wide-band frequency modulation and discussed
further in [Razavi].
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assuming mese = —Aw/wese < 1. Thus, new sidebands are created around the primary
upper and lower sidebands with a frequency offset of 4 fos. around +f,, and a phase
shift of 90°. Around the upper sideband, this phase shift is clockwise (remember, msc
has negative sign), around the lower it is anti-clockwise. This can be understood if
one imagines a slight decrease of the frequency of the primary phase modulation: the
sidebands’ phases will then evolve more slowly, but in opposite directions due to their
different signs. In a phasor picture, this can only be achieved with the pairs of additional
sidebands having a phase shift of 180° with respect to each other. Figure 1.4 shows the
phasor diagram of this state.

R

—fm—Ffosc —Ffm+fosc ] Fm—Fose Fm+fosc

yd vy . T ¥
R

Figure 1.4.: Individual phasor display of phase modulated phase modulation, for ¢ = 0.
The carrier (magenta) and the first-order sidebands (cyan) of Figure 1.3 are joined
by four additional sidebands (red) appearing at =+ fos. around the primary sidebands.
Around the upper sideband, the phase shift of 90° is clockwise, around the lower it is
anti-clockwise.

1.1.6. Amplitude modulation of phase modulation

A second possible noise source of oscillators, a time-varying modulation index m, has not
yet been accounted for.

Inserting an oscillating modulation index of m(1 + Mmgsc COSwWesct) into the first line of
Equation 1.3 yields

E(t) _ EO ei (wot+m (1+mosc COS Wosct) COS wmt)

EO ei wotei m cos wmtei MMosc COS Wosct COS wmt

Using the identity

cos acos 3 = % [cos(a + () + cos(a — ()]



Chapter 1. Optical detection via the modulation/demodulation technique

and neglecting terms of the order O((mmesc)?), one gets

E(t) = Fpe''. ... (1.10)
{om) I (FDE) iy (m) I (T
+iJo(m) Jo <mmosc> J <mmosc> 2 [cos(wm — Wose)t + €oS(wWm + Wose)t] + . ...

i (25 () .

oo n 2 [2€08 Woget + €0S(2w — Wose )t + €0S(2wi, + Wosc )t ] } .

) -2coSwpt+ ...

The result becomes clearer when the field phasors get sorted as in Figure 1.5. The
second line of Equation 1.10 contains the light fields expected for ideal phase modulation
(displayed in magenta for the carrier and cyan for the upper and lower phase modulation
sidebands), though slightly attenuated by J& (m mesc/2). These sidebands will be called
primary sidebands for convenience. The next line contains additional first-generation
sidebands generated at = fi, £ fose around the carrier® (green phasors around upper and
lower sidebands). With the sidebands’ phase shift to the carrier of 90°, modulation index
variations not surprisingly act like an additional phase modulation of the carrier at these
frequencies. Originating from the carrier, these sidebands are relatively strong compared
to the second-generation sidebands or sidebands of primary sidebands (last two lines of
Equation 1.10), which are generated by phase modulating the primary sidebands with
+fm £ fosc (green phasors around carrier and at the edge of the frequency axis). Thus,
these second-generation sidebands are anti-parallel to the carrier phasor. Those around
the carrier are doubled because both upper and lower primary sidebands contribute with
their noise sidebands. Although weak, they can still contribute to the noise performance
of the detector and must therefore not be neglected.

1.2. Generation of error-signals

In most interferometric experiments, one is interested in the preparation of particular
states of optical systems with respect to a certain light field, in the majority of cases to
the carrier. Examples are (anti-)resonances of optical cavities, and the dark (or bright)
fringe state of a Michelson interferometer. Measuring light powers in these particular
cases yields unipolar signals, only reporting on whether the experiment is in the desired
state, called operating point, or not. Visualising light phase shifts could in general give
information on the direction of the aberration. This information is required to find
suitable error-signals to be fed back into the system, in order to maintain the desired
operating point.

5The generation of a sideband in this work relates to the carrier being the field that is modulated. If

a sideband originates from a direct modulation of the carrier, it is called first-generation, if a first-
generation sideband is modulated, the resulting sidebands are second-generation, and so forth, similar
to a family tree.

10
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Figure 1.5.: Individual phasor display of a amplitude modulation of phase modulation
for ¢ = 0. The carrier (magenta) and the first order sidebands (cyan) of Figure 1.3 are
joined by twelve additional sidebands (green) appearing at + fos. around the carrier, the
primary sidebands, and the second-order sidebands (which are not shown). All first-
generation sidebands have a phase shift of 90° to the carrier, the second-generation
sidebands have a phase shift of 90° to the primary sidebands, in total 180° to the
carrier. The second-generation sidebands around the carrier are doubled due to the
contribution from each primary sideband.

Thus, what we are looking for is a signal revealing the phase shift of some light field
which in turn reveals (the change of) an optical system’s state. According to subsections
1.1.2 and 1.1.3, amplitude modulation is visible on a photo diode; pure phase modulation
is not. The only reason for this is the particular phase shift of the associated sidebands
with respect to the carrier. If we allow for continuous phase offsets of the sidebands from
the carrier for times ¢t = 0, the amount of amplitude modulation appearing on the photo
diode increases, the closer the sidebands’ phases” are to 0° (modulo 180°). Thus, the
amplitude of the photo diode current is a measure of this phase offset.

However, this method is only applicable as a phase measurement of, for example, the
carrier, if the sideband phases change differently from the carrier phase. In general, light
fields of different frequencies evolve differently in an optical system. The reflection at
a cavity, for example, gives the light components involved a frequency dependent and
cavity-state dependent phase and amplitude.

The phase and amplitude relationship between light fields of the same frequency at differ-
ent points of a general optical system S is called transfer function Hg of S. Depending on
the exact points of interest in S, one system may yield various transfer functions®. As the
corresponding field’s relationship is about phase and amplitude?, it may mathematically
be expressed as a phasor (or vector) multiplication, shifting a light field’s phase, and at
the same time changing its amplitude:

bo(t) = Hs(w)-aw(t), (1.11)
Hs(w) = gs(w)e#s@ eC, (1.12)

"Please note that in the examples from above, for t = 0, the pairs of sidebands belonging together have
no phase difference from each other.

8 Again using a cavity as example, there are already three main transfer functions from the entering light
field to the reflected, the intra-cavity and the transmitted field.

9We are neglecting transversal field dependencies.

11
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where a,(t) and b,(t) are the time-dependent fields of the same frequency w, at the
two measurement points to be compared. The transfer function Hg(w) consists of the
light frequency dependent amplitude ratio gs(w) € R and phase difference!® ps(w) € R
between a and b.

The quality of an error-signal depends on the properties of the contributing light fields in
combination with the transfer function of the optical system. Investigating the respective
photodiode signal with generalised light fields enables us to deduce requirements for the
involved fields to obtain a sensible error-signal.

To start with the easiest general case, let us consider modulated laser light a consisting
of a carrier ag and a pair of sidebands a4 as in Equation 1.2 or 1.3. To ease the formulas,
common factors, as Epexp(iwpt), are omitted:

a=ag+ ape“mt 4 a_e"mt, (1.13)

Let a enter an arbitrary interferometer. The field components will change individually
corresponding to their frequencies and the system transfer function. The field b to be
detected can mathematically be described by
b = by+bpetmt fp_etomt (1.14)
= Hg(wo)ag + Hs(wp + wm)aye' ™t + Hg(wy — wy)a_e t“mt (1.15)
— gsoaoei@so + gs+a+ei(wmt+%@s+) + gs_a_e*i(wmt*‘PS—)
with Hs(wp) = gg0e’?s0, Hg(wotwnm) = gs+e'¥s%, denoting the gain and the accumulated

phase of the carrier and the upper and lower sideband, respectively, associated with the
optical system.

The corresponding light power that represents the physical quantity detected by a photo-
diode, will be proportional to the photodiode current. This photo current I can, except
for a constant factor, be written as
I=b? = (bo+bpe™ +b_e ") (by + bype' ™ + b e "mt)"
= Inc + 2R {1, ™"} + 2R { o, e '} (1.16)
= Ipc+2R{L,,} coswnt — 23 {1, }sinwmt + ...
o4 2R {1y, } cos 2wt — 23 {1y, } sin 2wt

containing components at DC, wy, and 2wy, respectively, represented by

Inc = [bo]* + [o+|* +[b-|?
Ly, = byby +bobZ = gspao (gs+a+€i(¢s+_¢80) + QS—a’iei(SOSO_SOS’)) (1.17)
Iy = bib® =gsigs_apa’e¥se¢s-)

where the asterisk “*” denotes the complex conjugate. (Please note that ay € C, as the
kind of modulation was not specified in the beginning, whereas ag € R). The real and

R and C denote real and complex numbers, respectively.

12



1.2. Generation of error-signals

imaginary parts of I, are called in-phase and in-quadrature components of the signal,
respectively, as they occur in I with the same phase as the original modulation and shifted
by 90°, respectively!!.

The frequency component of interest is extracted by so-called demodulation at a mizer.
In this chapter, an ideal mixer will be assumed that multiplies I with the original local
oscillator signal (or higher harmonics) shifting all components at that frequency to DC.
In addition, a low-pass filter after the mixer suppresses all but these DC components.
The demodulation, used henceforth, comprises both, a mixer and low-pass filtering.

In general, a local oscillator and the respective frequency component of I will have a
phase difference ®, the demodulation phase, that needs to be taken into account in the
multiplication:

<ei(lwmt+<1>) _|_efi(lwmt+<1>))

)

N | =

I-cos (lwt + @) = | Ipc + Z [ijmeijwmt + I]ﬁkwmefz‘jwmt]
j=1,2

where [ = 1,2 for the harmonics. Neglecting the AC parts of the multiplied signal above
yields

1

oot = & (a4 1, )
= R{I, e} (1.18)
= R{l,,}cos® + I{[},, }sin® (1.19)
cos ® ;
= R0 30 (g ) = T =12 20

As before with the phasor representation of light fields, there is a one-to-one equivalence
of a complex number to a two dimensional vector, which is applied in the equation above.
Thus, the numbers and vectors will henceforth be used synonymously for the respective
demodulation-phase or photo-current.

Although I, and the demodulation phase are, strictly speaking, not phasors but
vectors without oscillating phase, the illustration of them as vectors will nonetheless be
included in the term “phasor picture”.

Displaying both the demodulation phase and I;,,  as vectors in a complex plane, ® defines
a normalised or unit vector ¢’® on which the signal I, is projected during the demod-
ulation process. This projection is equivalent to the scalar product of vectors, yielding
the parallel component of one vector with respect to the other, the projection vector,
multiplied by the projection vector amplitude (which in this case is 1). Thus, a projec-
tion is commutative and associative. The operator symbol for a scalar product between
*?. Not to confuse this operator with the simple product of scalar numbers,
‘®’ shall define the operation equivalent to a scalar product, applied to complex numbers
representing the respective vectors.
Considering the projection of I, on e’

vectors is

® makes it clear that for all possible states

" Remember, the modulation was assumed to be a cosine function, see Equation 1.2 and Equation 1.3.
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Chapter 1. Optical detection via the modulation/demodulation technique

and combinations of light fields, there is always a certain ® for which Igemeq Will be
zero, while rotated by 90° one gets a maximal absolute value (unless [j,,, = 0). & = 0°
yields R{I;,_}, the pure in-phase component of the signal, while & = 90° yields the
in-quadrature {1l }'2.

Most experimental length controls employ so-called control sidebands by phase modulation
of light and demodulation of photocurrent at wy,. The expanded form of Equation 1.19,

Lo demod = Jo(m)J1(m)gso(cos  [gsy sin(pso — @s+) + gs—sin(pso — ps—)] + ...
-+ +sin @ [gg4 cos(pso — ps+) — gs— cos(pso — ws—)]),  (1.21)

shows the complexity of such a signal, in particular when attempting to intuitively under-
stand relevant features: even with constant @, the signal shape depends on a combination
of many parameters, the phase differences between the carrier and the sidebands, in com-
bination with the sideband amplitudes, and scales with the carrier amplitude.

Therefore, the author prefers an argumentation with the phasor picture, mathematically
close to Equation 1.20. As the demodulation phase only determines which projection
of the error-signal will experimentally be seen, the vector expression that needs to be
investigated is

L. = bibl+bob™ (1.22)

< R{L,} ) bo ® by + by @ b_ (1.23)
S{Lo } bo® (e773by) + by ® (eTiEb_) ) '

where ® again denotes the operator for complex numbers equivalent to the scalar mul-
tiplication of their vector representatives'®. Using a phasor diagram for Equation 1.22
means that for each phasor product of the carrier and the sidebands, the lengths are
multiplied and the phases are added, considering the complex conjugate where indicated;
the phasor products’ sum represents the total signal. This approach will be referred
to as multiplication method. The version in Equation 1.23, however, might be slightly
more illustrating in practice as every component of the signal I, contains the sum of
the projections of the sidebands on the carrier'® — scaled by the carrier’s absolute value
(or vice versa). The first and second component (again corresponding to in-phase and
in-quadrature) respectively, use sidebands for two different instances of the modulation
phase evolution, t = 0 and t = —7y,, /4. The sideband phasors representing these times will

I

2The in-phase and in-quadrature angles do not necessarily coincide with the two extremal projections of
I, -
13Equation 1.23 can be obtained by using the identities
Ribobsh = R{bi}R{bo} + S{bs}S{bo} = (R{bs 1, S{bs DR{bo}, S{bo )T = bo @by

S{byby} = R{b+bg e ™%} = R{(b+e™"™?) - b5} =bo® (e "Fby)
for both addends of each component. The commutativity of the scalar product for the two vectors
makes the projection of the sidebands onto the carrier equivalent to the projection of the carrier onto
the sidebands.
M This carrier /sideband projection makes all non-parallel components cancel out. This, again, corresponds
to the results of sections 1.1.2 and 1.1.3 as only amplitude modulation (i.e. sideband parts parallel to
the carrier) contributes to a photodiode signal.
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1.2. Generation of error-signals

be called P and @) phasors, respectively. Henceforth, this latter approach to determine
1, will be called a projection picture.

For illustration, the application of the multiplication method and projection picture to
obtain the signal vector I, will be explained with the examples of phase and amplitude
modulation:

Figure 1.6 is organised in four columns and two rows. The upper and lower rows show
the situation for phase and amplitude modulation, respectively. The inner two columns
are phasor diagrams of the carrier (cyan) and the modulation sidebands (magenta). The
sideband phasors are presented as P and Q sidebands in the left and right diagram, re-
spectively.

The first and last columns illustrate the vector deduction of I, in analogy to Equa-
tion 1.22 (multiplication method) and 1.23 (projection picture), respectively. The con-
tributions associated with the lower and upper sidebands are displayed as dashed and
dashed-dotted green vectors, respectively, the sum of both, I, , as a solid red vector. In
order to distinguish these coordinate axes from the phasor diagrams, they are grey.

The phasor diagrams of phase and amplitude modulation in P and Q are equivalent
to the phasor representation Figure 1.3 and 1.2 at the times ¢ = 0 and t = 37,/4,
respectively. For a better view of angles, however, in Figure 1.6 the phasor plane of each
frequency component is rotated clockwise around the real axis (compare with Figure 1.2
for example) such that the imaginary axis overlaps anti-parallelly with the frequency
axis. This keeps the rotation direction for upper and lower sidebands anti-clockwise and
clockwise, respectively!®.

To start with the multiplication method (first column of Figure 1.6), one has to consider
the phasor diagram with the P sidebands only. The two summands of Equation 1.22 are
evaluated separately.

First, phase modulation will be investigated. For the summand b,.bj, the carrier stays
the same as it is purely real. The multiplication of the carrier phasor with b, however,
yields a vector with phase 90° and an absolute length corresponding to the product of
the absolute length of the carrier and sideband amplitudes. For the second summand in
Equation 1.22, bpb* , the lower sideband phasor flips sign at the multiplication, leading
to a phase of the phasor of —90°. Thus, the multiplication results in a vector of the same
length as the other (the sideband amplitudes are equal), but with opposite direction. In
sum, the photodiode signal fraction oscillating with wy,, I,,,, is zero.

For amplitude modulation, all phasors in the P phasor diagram are purely real, thus
stay uneffected by complex conjugation. Another consequence is that each product vector
is real as well. As the two sidebands point in the same direction, their respective product
vectors this time constructively add up to the vector of photodiode signal oscillation at
Win -

For the procedure underlying the projection picture (last column of Figure 1.6), both
sideband quadratures need to be considered. The P and Q quadrature sidebands con-
tribute to the real and imaginary component of I, , respectively. Each projection can,

m?

15Please note that for the sake of visibility, purely imaginary phasors lie above the imaginary axis.
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Chapter 1. Optical detection via the modulation/demodulation technique

I, (eq. 1.22) P Q I, (eq. 1.23)
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Figure 1.6.: Deduction of I, with the multiplication method (first column) and the pro-
jection picture (last column) applied on phase (upper pictures) and amplitude (lower
pictures) modulated laser light. The dashed and dashed-dotted green vectors represent
the contributions to I, (solid red vector) associated with the lower and upper side-
band, respectively. The second and third columns display the phasor diagrams of the
carrier (cyan), and the P and @ sidebands (magenta), respectively.

thus, be assigned to one of the axes. For illustration, the projection results are displayed
as purely real or imaginary vectors.

Again starting with phase modulation, the P sidebands are perpendicular to the carrier.
Therefore, each projection yields zero for the real part of I, . The projection of the Q
phasors onto the carrier (or vice-versa), however, is non-zero but has opposite signs for
the upper and lower sideband, as indicated by the green vectors on the imaginary axis,
pointing to the right and the left, respectively. Thus, the sum gives zero.

With amplitude modulation, the P phasors are parallel to the carrier and to each other.
Thus, the projections yield the highest possible absolute values with the same sign for the
real part of I, . In Q, the sideband phasors are not only anti-parallely oriented, but also
perpendicular to the carrier. Thus, there is no projection contribution for the imaginary
part of I

m *

m *

To display I, in a vector plane is not only sensible for illustrating the multiplication
method. At the demodulation, where we read out [, from the overall photo-current,
and obtain the targeted physical (error) signal (current), a demodulation phase needs to
be set. Although Figure 1.6 shows that there is a photodiode signal component at wy,, it
becomes invisible with a demodulation phase of +£90°. The corresponding unit vector is
perfectly perpendicular to I, , pointing like in Figure 1.6.

For complicated optical systems, the dependency of I, on the targeted degree of
freedom may be quite complex. Displaying I, in the vector space enables us to intuitively
determine an appropriate demodulation phase for a useful control signal. The benefit

m
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1.2. Generation of error-signals

of this illustration becomes fully clear in the (sub)sections below, and at the latest in
Section 1.2.2.

In the following subsections some examples will be discussed, intuitively deducing error-
signal shapes and criteria for the choice of the sideband type and frequency. In the
first example both the projection picture and the direct multiplication will be used for
comparison. Afterwards only the projection picture will be employed.

1.2.1. Conventions

For the following sections about how to generate a suitable error-signal for some selected
optical systems, some more conventions than utilised in the previous sections need to be
specified. This subsection contains all conventions used throughout this work to provide
the reader with a single place with all necessary information in a condensed form.

A summary of conventions already utilised in the chapters above:

e The phase evolution of the laser light is represented by only one exponential function
containing a positive frequency. The complex conjugate is omitted.

e In the phasor picture, the coordinate system rotates with the laser light fre-
quency. W.l.o.g., the direction of the phasor representing the light coming directly
from the laser coincides with the real axis.

e Phasors of light fields with frequencies larger than the laser frequency evolve
anti-clockwise with time.

e All modulations are assumed to be cosine. Thus, cosine signals are called in-
phase. To yield in-quadrature (equivalent to sine), the signal needs to evolve
backwards with time by a quarter period.

e When investigating an error-signal, the complete signal, i.e. in two perpendicu-
lar quadratures, will be deduced. Throughout this work, the projection picture
will be used!S.

Dealing with transfer functions of optical systems requires the specification of phase
changes of light fields at mirror surfaces. There are two conventions that fulfill the
condition of power conservation at a beamsplitter. In the first, light keeps its phase at
every transmission, and reflection at an optically denser medium, whereas it collects 180°
with every reflection at an optically thinner medium.

The second convention provides a phase jump of 90° at every mirror surface transmission
and no change at reflection (see [Riidiger98]). As this convention is symmetric and easier
to handle, it will be used throughout this work. Thus:

e Reflections maintain a light field’s phase.

5 There is just one exception in the first error-signal example in the following subsection.
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Chapter 1. Optical detection via the modulation/demodulation technique

e At every mirror surface transmission, light fields experience a phase jump of
90° (thus anti-clockwise, regardless of the fields’ frequency).

Contrary to other authors,

e in principle both mirror surfaces will be considered, ensuring a perfect agree-
ment of both mirror conventions.

e phase jumps at surface transitions will only be considered for later interfering light
beams if the number of substrate transitions is different. Phase shifts common
to all participating fields are neglected.

This treatment still conserves the energy as in the considerations made in [Riidiger98].
Some more comments on optical systems and the projection picture:

e The phasor’s coordinate system rotates with wy. However, the carrier can obtain
different phases from 0° even in that frame, if

— some “sudden” phase shifts occur (like in mirror transmission).
— two carrier phasors from different paths need to be considered.

e Transfer functions contain amplitude and phase information regardless of the
initial field’s phasor direction or length. This means that they look the same e.g.
for amplitude and phase modulation sidebands (as long as the sidebands have the
same frequency).

e Macroscopic lengths are distinguished from microscopic. Microscopic lengths are
in the order of the laser wavelength, determining the exact light field phase. In
agreement to FINESSE, macroscopic lengths are assumed to fit the laser wavelength,
by default 1064 nm. The terms tuning or detuning of a space (or cavity) both
refer to the microscopic length of that space (or cavity). In most cases, the
(de)tuning is equivalent to the offset of spaces (or cavities) from integer multiples
of the laser wavelength. Depending on the context, this tuning is given in units of
meters, Hertz or degrees.

The units of Hertz refer to a light field’s necessary offset from laser frequency in
order to yield an integer multiple of its wavelength fitting the respective space (or
cavity round-trip length). The units of degrees account for the laser light phase
evolution along a microscopic length. A shift by one complete wavelength matches
360°.

e A positive space (or cavity) detuning is defined as a space (or cavity) elon-
gated with respect to an integer multiple of the carrier’s wavelength. The light
phase decreases with increasing distance traversed (see Equation 1.1). The sign of
the phase evolution is also negative when using a constant distance and increasing
the light frequency.

e The definition of parallel (||) or perpendicular (L) components of phasors, necessary
for the deduction of error-signals in the projection picture, refers to the orientation
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1.2. Generation of error-signals

of the control sidebands in P. (In case signal sidebands are involved instead of one
carrier phasor, please consult Figure 2.5 and the explanation below Equation 2.6.)

e If the optical system and light frequencies allow, spaces will, w.l.o.g., be assumed to
be a multiple integer of the wavelengths of all light fields of interest. Alternatively,
the light fields’ phases will be evolved in time as long as necessary to get a convenient
pointing. As the coordinate system common to all phasors anyway rotates with the
carrier, this convention affects in particular sidebands, and further simplifies the
approach to phasor diagrams.

Please note that a phase evolvement in time is equivalent to introducing a certain offset
to the absolute demodulation phase, or rotating the orthonormal basis of the photodiode
signal vector space. Nonetheless, the newly generated orthogonal quadratures will still
be named P and Q, although they do not necessarily relate any more, like 0° and —90°,
respectively, to the absolute phase of the local oscillator.

1.2.2. Cavity control signal in reflection

GEO 600 has one slave laser, two mode cleaner and two main interferometer cavities (the
power and the signal-recycling cavity) to be controlled. The most important control task
is to sense and adjust the length of these cavities with respect to the desired resonant
state of a light field. Therefore, error-signals representing cavity lengths are of paramount
importance and are all generated by a modulation/demodulation method as described
above. FError-signals are usually plotted as a signal amplitude versus the parameter to
be controlled, which in most cases is the microscopic length or tuning of the cavity, dx.
As the signal amplitude should give a measure of how far the optical system is deviating
from the intended operating point, it should be zero for the desired tuning and monotonic
in a surrounding interval, yielding a bipolar signal.

With the exception of the signal-recycling cavity, all cavity error-signals of GEO 600
are detected in reflection. Figure 1.7 depicts the light field phase shift (lower curves)
and gain (upper curves) expected in reflection of an over-coupled cavity'”. Shown are
three cavity resonance structures, separated by a fixed multiple of the free spectral range
ESR = 2¢/Lcay, with ¢ being the speed of light and Lc,, the macroscopic cavity length.
These structures are functions of the microscopic tuning dx of the cavity or of the fre-
quency offset of of the carrier from (the middle) resonance, indicated by 0 Hz.

Three incoming light phasors, one carrier and two arbitrary modulation sidebands, are
positioned such that the carrier is ideally resonant inside the cavity. In this situation, the
carrier experiences the largest possible attenuation in reflection (with the given amount
of overcoupling), and a phase shift of 180°, whereas the sidebands’ amplitude and phase
hardly change. If the carrier alters its frequency (indicated by the black arrow pointing
to the right-hand side), the sidebands move along the frequency axis by the same amount
against the rigid resonance structures. Alternatively, the tuning of the cavity could vary.

"For the cavity transfer functions please look up the derivations made in [Heinzel95]. Figure 1.7, though,
uses the sign of phase evolution given in Equation 1.1.
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Chapter 1. Optical detection via the modulation/demodulation technique

With respect to the frequency axis, this moves the resonance structures to the left/right
for a decreasing/increasing cavity length. If, for example, the cavity gets elongated by
dxm with respect to carrier resonance, the patterns move to the left by the corresponding
frequency amount of df,,, and the lower sideband gets resonant.
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Figure 1.7.: Example of three light phasors, one carrier (magenta) and two arbitrary
modulation sidebands (cyan), being back-reflected by an over-coupled cavity. All fields
see resonance structures at different multiples of the cavity’s FSR, leading to the curves
of the gain and phase shift for the reflected light fields. The position of the phasors
within the respective pattern indicates the de facto expected amplitude and phase
change of the phasor. A frequency shift of the carrier (indicated by the black arrow)
at the same time moves the sidebands against the rigid comb of resonance structures.
If the carrier coincides with +dfy,, one of the sidebands becomes resonant.

Operating-point carrier resonance

In most cases, the resonance of the carrier inside the cavity is intended, occurring when
the carrier frequency matches the dashed vertical line in Figure 1.7 at 0 Hz or Om. An
example within GEO 600, where this is the desired state of the optical system, is the
power-recycling cavity.

At this operating point, the carrier phasor is, in general, purely real, and both sidebands
have the same amplitude, but (with only a few exceptions) anti-symmetrically shifted
phases.
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1.2. Generation of error-signals

One requirement for the error-signal, represented by Equation 1.22, is that it should be
zero at the operating point. With by € R for resonance, Equation 1.22 results in

L, =bolby +b") =0 <=> by = —b" <=> R{by} = —R{b_JASI{by} = I{b_}.
(1.24)

With the cavity transfer function shown in Figure 1.7, this condition can never be ful-
filled with simple amplitude modulation. A pair of amplitude sidebands, symmetrically
distributed around the carrier, will always have the same real part and opposite signs in
the imaginary part.

Symmetric phase modulation sidebands accomplish this requirement regardless of their
frequency. However, there are other criteria constraining their offset from the carrier,
ideally to half of the FSR'®, placing them in the anti-resonant condition:

e The amplitude of the sidebands can be maximised at anti-resonance.

e The phase should develop differently from the carrier for small detunings around
the operating point. At anti-resonance, for example, the sideband phase is almost
the same over a wide range of frequencies or detunings, yielding a definite signal
dependence on the carrier phase shift only.

Such a configuration is called Pound-Drever-Hall scheme [Drever83]. (An illustrating
approach of the Pound-Drever-Hall error-signal, different from below, can be found in
[Bongs95].)

The shape of the error-signal according to Equation 1.22 and 1.23 is qualitatively ex-
plained with the phasor diagram shown in Figure 1.8. Again, and in the following, for a
better view of angles the phasor plane of each frequency component is rotated clockwise
around the real axis.

Figure 1.8 is organised in four columns and three rows. Each row represents a particu-
lar (de-)tuning of the cavity with respect to the carrier resonance, dzy (corresponding to
Om in Figure 1.7). From top to bottom: a distinctly shorter, a resonant, and a slightly
elongated cavity. All tunings shall belong to the same resonance structure.

In agreement with Figure 1.6, the outer columns display the photo-current part oscil-
lating with wy,, 1, , in the two-dimensional vector plane; the last refers to the projection
picture introduced by Equation 1.23, the first is based on the multiplication method as
indicated in Equation 1.22. The dashed-dotted and dotted green vectors represent the
contributions to I, _, associated with the upper and lower sideband, respectively, whereas
the solid red vector is the sum of all, the total I, . In the two middle columns of Fig-
ure 1.8, the carrier (magenta) and the phase modulation sideband phasors (cyan) are
mapped qualitatively for the respective dx, applying the amplitude and phase changes
indicated by Figure 1.7. The left of the middle columns displays the cosine phase mod-
ulation sidebands for ¢ = 0, thus the in-phase situation, the right shows them a quarter
period earlier, thus Q. For all cavity tunings, the sidebands’ amplitudes and phases are
roughly constant. This is the case if the finesse of the cavity is high enough, such that

8Modulo multiples of the FSR.
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Figure 1.8.: Phasors and [, , belonging to the Pound-Drever-Hall signal around carrier
resonance dxg. The three rows from top to bottom: the situation of a distinctly shorter,
a resonant, and a slightly elongated cavity. The corresponding phasors are displayed
in the inner two columns, with the left and right representing the P- and Q-sidebands,
respectively. The first and last column depict I, with the different deductions in-
troduced by Equation 1.22 and 1.23, which is complex multiplication and projection
picture, respectively.

the sidebands are roughly anti-resonant as long as the carrier frequency moves within the
resonance structure.

To compare both approaches to I, the case of slight off-resonance, dz > dxg, will be
explained in more detail. In that case, the carrier amplitude is still noticeably attenuated
and the phase shift is smaller than 180°.

To start with the approach of the first column, illustrating Equation 1.22, the summand
b4 b{ is composed by phase shifting the complex conjugate of by by 90° (i.e. anti-clockwise)
and scaling it by the sideband’s length. The resulting vector is mapped dashed-dotted.
b* by yields the dotted vector, shifting by by —90°, the phase of the lower sideband’s
complex conjugate. The sum of both vectors points to the positive real axis (solid red
vector).

For the right-hand side, the contribution of each projection to the respective error-
signal component is mapped as a separate vector on the corresponding axis. The carrier
projection on the P-phasors gives two non-zero contributions for the real component of
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1.2. Generation of error-signals

1, ; each projection on the Q-phasors is indeed larger, but in opposite directions such
that they cancel the imaginary component (the results of the projection on the upper and
lower sideband are again dashed-dotted and dotted, respectively). As a consequence, the
resulting signal I, is identical to that on the left.

The projection picture makes obvious that no matter what kind of phasor is projected onto
the Q-phasors, the result always vanishes due to their anti-parallel nature. Projections on
the P-phasors, however, add up maximally. Demodulating with a phase ® = 90°, which is
equivalent to projecting the red error-signal vector onto a unit vector pointing to the left
(see Equation 1.18 to 1.20), would therefore yield zero for all detunings around the carrier
resonance (which is highly unsuitable as an error-signal). For all 0z, a demodulation-phase
vector parallel to the real axis yields the largest absolute signal amplitude, in this case
highest sensitivity for detunings from the operating point. The slope of such an error-
signal as an equivalence to sensitivity is called optical gain. Figure 1.11 contains the
in-phase and in-quadrature error-signal amplitude for continuously varying microscopic
cavity tuning dx. The particular tunings discussed in Figure 1.8 are marked on the graph
by the dashed lines around dxg.

Control of a detuned cavity

The modulation sidebands being (anti-)parallel for a wide range of cavity tunings like
in the subsection above is only a special case due to the assumed high cavity finesse in
combination with anti-resonance. In general, the sideband phase changes with changing
carrier frequency such that P and Q do not necessarily agree with a maximal or minimal
signal, respectively.

This becomes obvious already in the example of light fields in cavity reflection, if the
comb of resonance structures in Figure 1.7 moves so far away from the carrier resonance
that one of the sidebands resonates inside the cavity. For the lower sideband located
within a resonance structure, Figure 1.9 intuitively explains 1, with the help of the pro-
jection picture that will exclusively be used from now on. The figure is similarly organised
as Figure 1.8, but without the first column. The rows represent different cavity tunings
- this time around the lower sideband resonance, dzy, - , the first two columns show the
respective phasors in P and Q, and the last column displays I, .

For simplicity, the upper sideband in this example remains (nearly) anti-resonant
through all considered cavity tunings'®. As the anti-resonant sideband is perpendicu-
lar in P to the carrier, it does not contribute to the real part of the error signal. The
resulting 1, (in red) is not restricted any more to the real or imaginary axis but rotates
anti-clockwise with increasing dz. To obtain a maximal projection of I, on the unit
vector of the demodulation phase, one needs to adjust ® for every single tuning. Oth-
erwise, for each tuning there exists exactly one demodulation phase, ®3, modulo 180°,
that generates a zero. This fact includes that there is no outstanding point like in the

19This assumption is realistic for high-finesse cavities in combination with sidebands being a few band-
widths away from exact resonance and anti-resonance. (If the sidebands were too close to anti-resonance,
the cavity resonance structure would influence both sidebands.)
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carrier resonance case, where [, is zero for all demodulation phases. Nonetheless, one
gets a reasonably bipolar error-signal for a whole interval of ®s, but with different points
of zero crossings. The respective zero crossing would play the role of the operating point,
putting the cavity in a state with a certain detuning from the carrier resonance. Within
GEO 600, this principle is applied for the state of the signal-recycling cavity, which is
currently only operated in a detuned state.

The variety of possible demodulation phases for each modulation frequency can be ex-
perimentally quite challenging, since it not only fine-tunes the cavity but also determines
the complete shape of the error-signal, like for example the region for which the error-
signal is close to linear, or the optical gain. In particular the range of the linear region
is important for the stability and performance of the respective control loop (see section
2.3.3 of [Grote03b]). Figure 1.10 shows the error-signal amplitude in cavity reflection with
respect to the cavity detuning dz around one sideband resonance and shows the effect of
different demodulation phases.

Coming back to the carrier resonance as the intended operating point, ® would be ad-
justed to give maximal sensitivity, which is non-ambiguous apart from sign?’. A maximal
optical gain is achieved with ® = 0° (see Figure 1.8). Please note that this phase also
generates a bipolar structure around the sideband resonance with zero crossing exactly
at the resonance (see Figure 1.9 and 1.10). This error-signal structure would in principle
compete with the carrier resonance, if there was not the opposite sign. If, for exam-
ple, a positive error-signal value was interpreted as a negative detuning at the feedback,
the detector would still find its real operating point?!. Figure 1.11 shows the in-phase
and in-quadrature error-signal, depending on the detector detuning dx, comprising the
resonances of the upper and lower sidebands as well.

1.2.3. Cavity signals in transmission

In some experimental cases, a detection in reflection might be impossible or disadvan-
tageous, enforcing the use of alternative control signals. One possibility is to use an
accessible beam being a weak reflection from inside the cavity originating from any ex-
isting surface. If this is not an option, a plate-glass, artificially placed inside the cavity,
could be used to release some intra-cavity light onto a photodiode. More easily acces-
sible, however, is the light transmitted by the cavity. This, above all, does not degrade
the cavity performance like the plate-glass may do. As the light fields coupled-out from
inside the cavity and transmitted by the cavity differ only in the amount of attenuation of
the intra-cavity light, their Airy-functions should exactly agree in phase and deviate only
by a constant factor in gain. Thus, the error-signal should exhibit similar characteristics.
The exact amplitudes and optimal demodulation phases, though, depend highly on the
particular configuration.

20Tf ® was 180° instead of 0°, the sign of the values would simply flip. The sign of the signal is of
importance for the sign of the control loop, but does not change the quality of the signal.
21The correspondence of error-signal sign and detuning side needs to be determined in the experiment.
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Figure 1.9.: Phasors and I, , belonging to the Pound-Drever-Hall signal for a cavity
tuned around the resonance of the lower sideband, dx,,. The three rows from top to
bottom: the situation of a distinctly shorter, a resonant, and a slightly elongated cavity.
The corresponding phasors are displayed in the first and second column, representing
the P- and Q-sidebands, respectively. In agreement with Figure 1.7, only the lower
sideband sees different resonance conditions. In the last column, I, is displayed
utilising the projection picture of Equation 1.23. The contribution of each phasor
projection is represented by a green vector, the resulting vector corresponding to I,
is given in red.

To achieve any error-signal in transmission requires that the sidebands pass through the
cavity if the carrier is resonant. This is satisfied only close to a sideband resonance as
Figure 1.12 suggests. Similar to Figure 1.7, a frequency comb of light fields meets a
comb of resonance structures. But here, the highest sideband amplitudes are located
around multiples of the FSR. The sideband phases of Figure 1.12 stand for an even
integer n. (With an odd multiple?? of the FSR, the phase shifts would have an offset of
+180°. For the exact phase offset remember that common phase shifts are neglected (see
Section 1.2.1).)

22Free spectral ranges in frequency correspond to half of the laser wavelength. Light with a frequency of
an even multiple of the FSR fits into the cavity with an integer number of the complete wavelengths.
Assuming this for the carrier, sidebands with a frequency offset of an even multiple of the FSR should
do so as well and preserve the former phase difference to the carrier. With odd multiples, +180° are
accumulated inside the cavity in half a round-trip.
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Figure 1.10.: Pound-Drever-Hall error-signal around the resonance of the lower sideband,
0xm, for different demodulation phases ®. Controlling the complete shape of the error-
signal, this phase not only determines the exact position of the zero crossing, but also
the optical gain and the region of linearity around the zero crossing.

An exact resonance of the sidebands, however, will make the signal insensitive to small
deviations dx from carrier resonance as the phase differences remain constant for all .
Therefore, the sideband amplitude needs to be balanced against the phase evolution. An
offset of the sideband frequencies from a multiple of the FSR as for example indicated in
Figure 1.12 provides an appreciable amplitude with a still relatively plain phase slope?.

The error-signal according to this constellation of frequency components is shown in
Figure 1.13. The demodulation phase was optimised to give maximal optical gain at
carrier resonance. Although Figure 1.13 shows a normalised error-signal, it is important
to notice that the signal amplitudes are 80 dB smaller than those of the signal in reflection.
Utilising it as a feedback signal requires a very low noise performance of electronics, the
local oscillator and the laser beam, and the ultimate shot noise limited performance is
poorer. Similar to the Pound-Drever-Hall error-signal, the signal has a bipolar structure
not only at the cavity but also at the sideband resonance. The zero crossing around the
sideband resonance, though, is no longer exactly at the resonant tuning, as the carrier
and the other sideband are no longer perfectly real and imaginary, respectively.

This type of error-signal in transmission was successfully utilised at the Glasgow prototype
for a signal-recycled Michelson interferometer with arm cavities [Barr03].

Z3The necessary requirement of a zero crossing at the carrier resonance is in any case fulfilled. This
follows from the symmetric configuration and cavity transfer function, as explained in Section 1.2.2.
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Figure 1.11.: Pound-Drever-Hall error-signal in P (® = 0°) and Q (® = 90°), comprising
the complete tuning region of light field resonances. The dashed lines indicate the three
distinct tunings investigated with the phasor picture in figures 1.8 and 1.9. The zero
crossings in P occur exactly at the light fields’ resonances.

1.2.4. Control of a Michelson interferometer

The heart of the current generation of interferometric gravitational-wave detectors is a
Michelson interferometer. Due to the quadrupole nature of gravitational waves, a light
field, traveling within a plane perpendicular to the propagation of the gravitational wave,
experiences different travel times along nearly all perpendicular directions. This prop-
erty is exploited by a Michelson interferometer, splitting a beam into two perpendicular
beams, which travel along the arms of the Michelson interferometer. The travel time of
both beams is compared by back-reflecting and combining them again at the beamsplit-
ter. The interference of the beams appears as brightness or darkness, depending on their
phase difference and the port of observation. Figure 1.14 shows a simple Michelson inter-
ferometer. The four ports of the beamsplitter BS are associated with the cardinal points.
Throughout this work, the laser light will always be assumed to enter the interferometer
from the west, unifying the terms west and input port, whereas south port is used as a
synonym for output port. Accordingly, the Michelson arms are called the east and north
arm.

A gravitational-wave will, except for very unfavourable polarisation, differentially
change the travel time in both arms and therefore the amount of light appearing at
the south and west port of the instrument.
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Figure 1.12.: Phasor position within a cavity resonance structure in transmission or inside
a cavity. This time, as a trade-off of obtaining a decent sideband amplitude and at the
same time a roughly steady phase, for small carrier frequency deviations from cavity
resonance, the sideband frequencies need to be placed closer to an integer multiple
of the FSR than in the case of cavity reflection, though still well outside the cavity
bandwidth. Again, an increasing carrier frequency or increasing cavity tuning in the
same way moves the phasor positions against the resonance structures.

The light powers at the west and south ports of a Michelson interferometer are most
sensitive to phase differences of the interfering light beams from the arms if the detector
is operated at the so-called mid-fringe. This refers to the mid amplitude of the sinusoidally
shaped intensity signal, where the slope of the sine is highest. Although yielding the best
optical gain and a bipolar error-signal, this kind of detector reference-state has a few
drawbacks. The main is the dependency of the reference value on power fluctuations
caused by a technically limited laser-power stability.

To minimise the sensitivity to power fluctuations, the Michelson arms can, for example,
be adjusted such that the light fields interfere destructively at the south, returning all
light to the laser. This interferometer state is called dark fringe and would entail a
detection at the south port only. (The bright port is again sensitive to technical laser
power fluctuations.) Besides shot noise, there are some other favourable features of this
operating point.

The Michelson interferometer at a dark fringe acts like a perfect mirror for all common
attributes of the laser light. Differential effects will, however, show up in the south.
An ideal dark fringe therefore completely separates the gravitational-wave signal from
the noise sidebands on the laser light. Further, it enables the elaborate interferometric
techniques of signal and power recycling (see Section 2.2).
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Figure 1.13.: Demodulated error-signal in transmission. The demodulation phases were
optimised to give maximal (® = 14°) and minimal (® = 104°) sensitivity for carrier
resonance. The signal has a bipolar structure not only at the cavity but also at the
sideband resonance. The normalised amplitude is, however, misleading as the signal is
80 dB smaller than the Pound-Drever-Hall signal generated in reflection (Figure 1.11).

With the operating point at the minimum of the light power, the power itself lacks
bipolarity, alike in the cavity examples of the previous section. Again, a modula-
tion/demodulation technique can be applied to solve this problem. To explain the proper-
ties of such an error-signal with the phasor projection-picture let us assume a dark fringe,
phase modulation of the injected light and an ideally symmetric Michelson interferometer:
the beamsplitter has 50% transmission and reflection and no losses at the rear surface,
and the losses in both arms are same.

In Figure 1.15, the case of identical armlengths is considered — a so-called white-light
interferometer. Light fields at the west port are displayed left, those of the south port at
the right; the upper two rows of diagrams address the operating point, the dark fringe
state, the last two a small microscopic offset. For each state, the first and second row
account for P and Q control sidebands, respectively. The interfering partial beams at each
port, coming from the north and east arm, are marked as dotted and dashed-dotted lines,
respectively. The sum of both is represented by phasors with continuous lines. Sideband
and carrier phasors (and the respective sum phasors) are displayed in cyan and magenta,
respectively.

The carrier light returning to the west port from the north experiences reflections only.
Without any particular arm length tuning (upper part of Figure 1.15), the carrier phasor
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Figure 1.14.: Layout of a simple Michelson interferometer. The laser light enters from the
left, called west port associated with the cardinal point. After passing the beamsplitter
BS, the parts of the beam enter the east and north arm of the Michelson, where they
get back-reflected by the far mirrors MFe and MFn, and interfere at the BS.

is (still) purely real in a coordinate system likewise rotating with wg (see the conventions
for optical systems specified in Section 1.2.1). The phasor originating from the east arm
undergoes a total of four transmissions (two at each beamsplitter surface), adding up to
a phase shift of 360°. Thus, both beams interfere constructively.

In the south port, the carrier originating from the north experiences two transmissions,
rotating the phasor by 180°, whereas that from the east arm again passes 4 surfaces on
the way to the output, yielding 360°. As the beamsplitter is perfectly symmetric, as are
the losses in the arms, both phasors cancel exactly and we get a perfect dark fringe, the
intended operating point.

The phasors of the sidebands rotate along the Michelson arms with 4wy, offset from the
carrier, such that their phases, the pointing directions of their phasors, depend on their
overall pathlengths. We can, however, w.l.o.g., for simplicity assume that the overall op-
tical path in the Michelson arms is an integer multiple of the sidebands’ wavelength?* (see
again Section 1.2.1). This is done with the dark-fringe sideband phasors in Figure 1.15.
The first and the third rows display the sidebands of a cosine phase modulation, for a
dark fringe state and a small offset, respectively. The second and last rows deal with
the same detector situation but a quarter modulation period earlier, thus with sinusoidal
modulation sidebands.

24 Alternatively, we could wait at any spot and picture the next moment of integer multiple of the
modulation period 7. “Waiting” is, by the way, equivalent to the choice of the demodulation phase ®.
Rewriting Equation 1.18 assures mathematically:

Tone ™" = (byb + bob™ )e ™' = (bye )by + bo(b_e'*)* (1.25)
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Figure 1.15.: Carrier and sideband phasors at in- and output port of a Michelson inter-
ferometer for two states: a perfect dark fringe and a slight offset from the dark fringe.
The figure is split into four quadrants. The quadrants on the left display the light field
phasors at the input or west port, the right side those from the output or south port.
The dark fringe state is depicted in the upper half of the figure, the lower part shows a
state with a small offset from the dark fringe. Each quadrant contains two diagrams,
accounting for P (upper) and Q (lower) control sidebands. The carrier and sideband
phasors are displayed in magenta and cyan, respectively. Light fields originating from
the north arm are dotted, those from the east arm dashed-dotted. The respective sum
phasor, where necessary, is a solide line and correspondingly coloured.
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With the Michelson interferometer at the dark fringe, all modulation sidebands at the west
port are, with respect to the incoming phase, unchanged, since they undergo zero or four
transmissions. They add up to phasors keeping the condition of pure phase modulation.
In the south, however, the sidebands interfere destructively as with the carrier.

Therefore, the error-signals at both ports yield a zero for the dark fringe, for every
demodulation phase.

If the Michelson interferometer is detuned from the dark fringe by a small amount +dL (see
the lower pictures of Figure 1.15), say the north arm is stretched and the east squeezed by
0L, such that the optical pathlength difference between both arms amounts to 4L, the
phasors of the different arms will rotate to opposite sides for each frequency component,
diminishing some of the light at the west port and instead rerouting it to the south.

In these off-dark-fringe pictures, two carrier phasors from different optical paths need to
be compared. Thus, the real axis of the coordinate system agrees with a carrier traveling
along the average pathlength of both arms. This reference is equivalent to the carrier
phasor in the dark-fringe situation. With this reference, the phase fronts of the carrier
coming from the north arm (+dL) fall behind in comparison with the dark-fringe carrier
phasor. Thus, the phasor diagram sees the phase of the carrier, coming from the north-
arm, shifted by —20L/\ - 27r. The same consideration holds for the sidebands.

Still, at the west port, the phasor sums of all frequency components point in the same
direction keeping a perfect phase modulation, therefore zero for the demodulated error-
signal. In the south, however, with the initial dark fringe condition of the P sidebands
equally appearing on the imaginary axis, the resulting phasor-sums at the upper and
lower frequency will always point to the opposite direction and perfectly cancel®® (as
they have same lengths). A quarter period later, however, they not only add up but are
also completely parallel to the residual carrier, giving an error-signal bigger than zero:

Tgemod = 2E2.Jo(m).J1(m) sin <M> sin (25L wO) . (1.26)

C C

Although at first glance this appears as the desired error-signal, there are two drawbacks
putting this impression into perspective. Close to a dark fringe, the absolute light field
amplitudes increase linearly. For deviations smaller than 1072 x ), like those originating
from gravitational waves?S, the error-signal amplitude will be too faint as it scales with
the product of carrier and sideband amplitude at the south, thus 10716 - E2.Jo(m).J; (m),
almost quadratically with one of their phases?”. The phasor rotations in Figure 1.15 are

ZWith the same argumentation, the error-signal gained with amplitude modulation of the light field,
entering the Michelson, would yield a constant zero at the south port. The signal at the west port
would not be suitable with amplitude modulation because it has a non-vanishing value for the operating
point.

26 A supernova in our galaxy would cause a strain h = 26L/L ~ 107*®, introducing a mirror displacement
of 6L ~ 107 ¥ m=a 1077 x Ao.

2TClose to a dark fringe, the carrier and sideband phase shifts are almost identical. With wy, = 2715 MHz,
for example, the difference of phase shift between the carrier and the sidebands for 6L = 1072 - A will,
at the beamsplitter, amount to

_ 20 @6 1071 rad & 4° - 101,
C

dep
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exaggerated for the sake of clarity.

The second aspect is the error-signal not being bipolar. If the armlengths deviate from
the dark fringe to the other direction (north arm is squeezed and east stretched), all
phasors flip at the same time, leading to the same sign in projection.

All things considered, with this technique it is impossible to generate a suitable error-
signal for a Michelson interferometer with equal armlengths, neither at the west nor at
the south port.

However, the fallacy introduced by too big phasor rotations in Figure 1.15 leads im-
mediately to the key for an error-signal improvement. Some macroscopic armlength
difference, ALgchnupp, generating an optical pathlength difference between both arms of
2A Lschnupp, could provide the sidebands with a sufficiently high phase offset for a de-
cent, bipolar error-signal. For an overall pathlength difference of 2 ALgehnypp = 10cm
and wy, = 27 x 15 MHz, both values in the order of GEO 600 parameters, the absolute
sideband phase shift in each arm amounts to

Ap = BlsdmepEn o 0251,

c

improving the signal strength by 6 orders of magnitude®®. The second benefit of the
macroscopic armlength difference is that any microscopic armlength difference will hardly
influence the sideband phasors. Thus, if dL changes sign, only the carrier phasor will flip,
ensuring the necessary bipolarity.

Among various other possible configurations, applying phase modulation for the phase
read-out of the carrier at a Michelson interferometer (for an overview, please view section
1.3 in [Heinzel99]), this scheme explained above, called the Schnupp modulation after
Lise Schnupp [Schnupp88], was selected for the operation of all actual gravitational-wave
detectors. The armlength difference ALgchnupp is accordingly called the Schnupp length.

Accounting for ALgchnupp, the error-signal in Q (and thus the overall signal) changes to

AL chnu m . 20L
Tgemod = 2E3Jo(m)J1 (m) sin (M) sin ( w0> , (1.27)

C &

which agrees with the derivation made by [Heinzel99] (equation 1.44). (Note that the
sign matches as well if the tuning directions conform.)

The overall phase shift is 47 - 107° rad ~ 8° - 107 7.

28This armlength difference will of course increase the light power and shot-noise level on the photodiode.
However, the shot noise and the signal both scale with the sideband amplitude and therefore cancel in
the shot noise limited signal-to-noise ratio (see Section 2.2). The benefit of increasing both is that the
shot noise can be dominated by the sidebands.
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Chapter 2.

The optical response of GEO 600

2.1. Introduction

The derivation of the differential Michelson error-signal yielded by the Schnupp modu-
lation technique (Section 1.2.4) makes it clear that the signal amplitude generated by a
gravitational wave in a simple Michelson interferometer will be very faint. To enhance
this amplitude with the given detection technique, various optical detector designs were
developed and compared (see for example [Mizuno95]) and there are continuously new
ideas developing [Mizuno97, Harms03, Freise03a]. But even with a certain given opti-
cal configuration, it is important to know the crucial criteria to globally optimise the
sensitivity of the final setup.

In general, there are mainly two contributions to the sensitivity: the optical gain of
the output signal and the noise sources contaminating the detection. The optical gain
is equivalent to the slope of the targeted error-signal that determines how visible some
gravitational wave signal may become in principle.

The ability, though, to see nothing but a real gravitational wave, depends on whether
the overall noise shows up in the output at a comparable level. Possible sources are:

e Seismic noise: The ground vibrates, always. Causes can be human-made, like
traffic, machines, experimentalists or animals running around, but there is also
natural ground motion due to earth tides, earthquakes or the surf of the sea. This
motion causes an uncorrelated displacement of the test masses which produces a
spurious signal at the detector output.

e Thermal noise: All optical components and their suspensions (or mounts) are
subject to thermal fluctuations. The Brownian motion, associated with the tem-
perature of the mirrors or suspensions (or mounts), excites motions of mirror sur-
faces or the mirrors themselves. The dissipation channels are internal friction, and
thermal expansion in combination with thermal conduction. These motions affect
the light phases similarly to gravitational waves.

e Thermo-refractive noise: The refractive index of optical components is tem-
perature dependent. Temperature fluctuations will thus cause a varying optical
pathlength of the light, impinging on mirror surfaces, or passing substrates, like
that of the beamsplitter.
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e Shot noise: The detection process of light power is equivalent to counting photons.
Their arrival time is Poisson distributed. These power fluctuations, apparent at
every photodiode, are indistinguishable from gravitational-wave signals.

e Photon pressure noise: Every photon reflected by a mirror at the same time
exchanges momenta with the mirror mass. The laser power inside the Michelson
arms generates on average a constant radiation pressure force on the mirrors that
slightly changes their equilibrium position. However, photons that appear at the
dark port due to vacuum fluctuations, enter the Michelson, and differentially beat
with the carrier originating from the bright port. These beats cause differential
power fluctuations in the two arms, thus a differential motion of the respective
mirrors. This, like seismic mirror motion, competes with gravitational waves.

All non-optical noise sources change the effective pathlength of the light inside the Michel-
son interferometer!. Their characteristic frequency regime depends rather on mirror and
suspension properties, and only partially on the optical setup itself. Figure 2.1 relates
the respective pathlength change of some particular noise sources®. to the correspond-
ing differential test mass displacement in GEO 600. The linear spectral density of the
displacement is already related to the length of the Michelson arms, and thus given in
[1/v/Hz|, corresponding to the dimensionless space-time strain, h = 26L/L, caused by a
gravitational wave.

The specific optical setup of the detector sets not only the optical noise level (omitted in
Figure 2.1), but also determines the transfer of gravitational-wave signals to the output
photodiode. This transfer may well be frequency dependent such that gravitational waves
of same amplitude but different frequencies yield different photo-current amplitudes. In
relating the white shot noise appearing at the photodiode, back to the equivalent gravita-
tional wave amplitude or strain, one needs to account and compensate for the frequency
dependent signal enhancement of the optical system. The ratio of the expected shot noise
to the optical signal transfer sets the shot-noise-limited sensitivity. In order not to waste
any of the possible sensitivity, the optical setup should ideally enhance the signal as much
as necessary for the shot-noise-limited sensitivity to follow the total noise curve given by
the other sources. For GEO 600, this corresponds to the dashed line in Figure 2.1.

With the currently available laser power and the technically limited size of a plain Michel-
son interferometer, the shot-noise-limited sensitivity is orders of magnitude away from the
target. However, there exist various optical techniques to improve the shot-noise-limited
sensitivity.

At the beginning of this chapter, the optical techniques, incorporated in GEO 600,
will be motivated and explained. The expected characteristics of the differential output
signal of GEO 600 will then be discussed applying the phasor picture. This will stress
the role of the demodulation phase on the sensitivity and the connection between detec-
tor tuning and the real peak sensitivity of the optical instrument. Special attention will

1So does the radiation pressure noise, but it shall not be accounted for in the following.

2For the estimation of the substrate thermal noise shown in Figure 2.1, a mechanical quality factor of
5% 10° is assumed for the fused silica mirrors and the beamsplitter. Recent research, however, indicates
that this value may be more than an order of magnitude higher [Ageev04, Penn].
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Figure 2.1.: Theoretical noise budget of GEO 600, accounting for non-optical noise
sources. The anticipated pathlength change is given as amplitude spectral density
of the equivalent strain.

be given to possibilities of globally optimising the signal yield in the shot noise limited
SNR, dependent on the control sidebands’ resonance condition inside the interferometer.
Radiation-pressure effects are not accounted for.

2.2. Techniques to enhance the sensitivity

The error-signal received at the south port gives a measure for the Michelson deviation
from the perfect dark fringe state, thus a measure for the strength of the gravitational
wave (see Section 1.2.4). The question to discuss is how this signal amplitude can be
enhanced to yield a higher sensitivity for the weak ripples of space-time.

A passing gravitational wave will alter the phases of the carrier as shown in Figure 1.15,
with a given frequency waw = 27 fgw. This phase modulation can therefore be pictured
in the form of sidebands around the carrier with a frequency offset wgw. These sidebands
associated with the gravitational wave will henceforth be called signal sidebands. As
obvious from the derivation made with Figure 1.15, the error-signal amplitude scales
with the gravitational wave strength, i.e., the signal sideband amplitude /Paw, and
with the control sideband amplitude, /P,

L. % \/Paw Pr. (2.1)
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For the sensitivity to gravitational waves, however, the SINR is crucial, as the real gravi-
tational wave signal in contaminated by the different noise sources present at the detector
output. For the following estimations of SNR, only shot noise will be considered as this
is the relevant noise source when optimising the signal yield with respect to the control
sideband properties. It is proportional to the square-root of the whole amount of light at
the photodiode. This light covers not only all sidebands® but also some waste light Pyaste,
coming from imperfections of the optical system like asymmetries at the beamsplitter or
from losses of the different Michelson arms. Altogether this gives

VPow Py

SNR x ——————
Pm + Pwaste

~ v/ Pow for Py > Pyaste- (2.2)

If a certain amplitude of control sidebands is at disposal, only the signal sidebands’
amplitude matters. There are two possibilities to enhance these signal sidebands:

e Directly increase the signal sidebands by placing a mirror at the south port which
reflects the light back into the Michelson interferometer. This technique is called
signal recycling. The signal sideband amplitudes can, when on resonance, construc-
tively accumulate inside this so-called signal-recycling cavity, built by the Michelson
interferometer and the signal-recycling mirror (MSR).

e The larger the carrier the stronger the sidebands. There are two ways to enhance
the carrier power:

— As with a dark fringe, the carrier is completely reflected back to the west
port, a mirror at the input port, building the power-recycling cavity together
with the Michelson interferometer, can resonantly enhance the carrier power.
Consistently, this technique is called power recycling and the mirror is called
power-recycling mirror (MPR).

— The generation of control sidebands attenuates the carrier power. Minimising
the modulation index helps to conserve as much of the carrier as possible.
Nonetheless, a method to have a decent sideband amplitude for the error-
signal is to choose an appropriate frequency to resonate in one of the cavities.
As the signal-recycling cavity properties, like detuning and finesse, are geared
to special gravitational wave sources and might change during operation, the
frequency offset of the Michelson control sidebands from the carrier is chosen
to be about a multiple of the FSR of the power-recycling cavity.

Up to now, GEO 600 is the only large-scale gravitational-wave detector worldwide em-
ploying both interferometric techniques. In combination, they are called dual-recycling.
The dual-recycled Michelson interferometer setup of GEO 600 is shown in Figure 2.2.

3The signal sidebands can, however, be neglected due to their anticipated small amplitude.

38



2.2. Techniques to enhance the sensitivity

MFn

MCn

MPR MPFe

Figure 2.2.: The setup of the dual-recycled Michelson interferometer of GEO 600. The
Michelson arms are folded once to double the optical path lengths. A control system
(not shown) ensures a dark-fringe condition of the Michelson. At the west port, the
power-recycling mirror (MPR) forms a cavity with the Michelson to enhance the car-
rier power. At the south port, the signal-recycling mirror (MSR) reflects the signal
sidebands back into the interferometer, resonantly enhancing them inside this signal-
recycling cavity.

Signal recycling with different tunings

Different types of sources of gravitational waves radiate with various frequencies and wave-
forms. A supernova explosion generates broadband waves whereas pulsars, for example,
excite the space-time with one very particular frequency. With the current gravitational-
wave detectors it is impossible to consider all sources equally at one time with the best
sensitivity.

The signal-recycling cavity will, for example, only enhance gravitational wave frequen-
cies in a certain band around the respective resonance. Targeting different gravitational
wave sources requires, therefore, different resonant frequencies (wide bandwidths will
again attenuate the maximally possible sensitivity [Mizuno95]). This is achieved by tun-
ing the microscopic signal-recycling cavity length, for example with the microscopic po-
sition of MSR. If the signal-recycling cavity is resonant with the carrier frequency, the
detector is called tuned, otherwise it is called detuned.

4Nonetheless, if, for example, the signal-recycling cavity is detuned to resonate with signals of particular
frequency fres, the idiomatic expression of the detector being “tuned to fres” will be used.
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Figure 2.3.: Amplitude spectral density of the shot noise limited sensitivity for particular
detunings of the signal-recycling cavity. Whereas the shot noise is constant for all
frequencies, the signal sidebands get enhanced inside the cavity. Thus, relating the
noise to detectable strain h, one obtains inverted Airy-function curves. All graphs
were calculated for ~ 1.3kW at BS, and MSR reflectivity of 98.14%. However, the
best sensitivity value of the tuned and 200 Hz detuned cases are superior to the other
tunings.

Figure 2.3 shows the theoretical shot noise limited sensitivity of the actual dual-recycled
GEO 600 setup, with the signal-recycling cavity being resonant with the carrier frequency,
and with four tuning offsets from carrier resonance, maximising the signal sidebands at
audio frequencies of 200 Hz, 500 Hz, 1kHz and 5kHz. As the shot noise is constant for
all frequencies but gets related to the equivalent strain of a possible gravitational-wave
signal, the sensitivity curves progress like inverse Airy-functions®. Although the mirror
setup does not change, the best sensitivity value improves the smaller the detuning. At
detunings higher than the signal-recycling cavity bandwidth, effectively only one signal
sideband gets enhanced; the amplification of the other sideband increases with decreasing
detector tuning.

®The humps above 1kHz appear because of carrier beats with the signal sidebands around the control
sidebands (see also the explanations on Page 72 about Figure 2.21, and Section 4.4).
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2.3. GEO 600 response in terms of phasors

2.3.1. Sideband resonances for different detector tunings

The examples of error-signal generation in Section 1.2 ff. mainly dealt with symmetric
constellations concerning the phase and amplitude evolutions of light components. With
a detuned detector, however, this symmetry is broken, giving rise to special parameters
of light fields that need to be considered for all error-signals and especially the detector
sensitivity.

To investigate the properties of all frequency components contributing to the Michelson
error-signal, the expected phases and amplitudes will be derived starting from the phasor
relations of a simple Michelson interferometer around a dark fringe, as shown in Fig-
ure 1.15. There is only one difference that needs to be kept in mind:

Figure 1.15 represents a white light interferometer. GEO 600, however, has a macro-
scopic armlength difference of ALgehnupp = 50.5 mm, yielding an overall optical path-
length difference between both arms of 2 ALgehnupp = 101 mm. Therefore, the control
sideband phasors will qualitatively always look the same as in the off-dark-fringe state,
even if the Michelson has a dark fringe for the carrier.

Applying power-recycling at the west port will, in the ideal case of carrier resonance, not
change any qualitative phase feature of neither the carrier nor the control sidebands at
any Michelson port.

As the light fields enter the cavity through MPR, their phases will commonly be shifted
by 180°. Thus, this phase shift can be neglected (see Section 1.2.1). Because of the cavity
resonance, the fields interfere constructively. This enforces the phases of the sum phasors
to be the same as of all partial beams, w.l.o.g. to that of Figure 1.15. The amplitudes
are enhanced by the maximal gain factor of the cavity®. These phase and amplitude
considerations hold for all Michelson ports.

The detuning of the signal-recycling cavity can be adjusted to match a targeted signal
frequency. Therefore, the particular resonance condition of each field inside this cavity
needs to be considered when evaluating the fields at the south port behind MSR. To
obtain the power build-up and transmission phase shift for each contributing field com-
ponent, the position of the respective frequency on the frequency axis, with respect to the
signal-recycling cavity resonance structure, needs to be known. Figure 2.4 shows the qual-
itative, frequency-dependent amplitude and phase change of a light field that passes the
signal-recycling cavity. The figure covers three different cavity tunings. In all cases, the
carrier and the control sidebands are assumed to be resonant inside the power-recycling
cavity.

SWith the current FINESSE script representing GEO 600, given in Appendix B.1.1, the power-recycling
gain is roughly one order of magnitude higher for the carrier than for the sidebands, ~ 800 versus ~ 110,
respectively, as for the sidebands the dark fringe condition of the Michelson is not ideal. The Schnupp
length and losses inside the Michelson lead to a Michelson reflectivity of 99.855 % and a transmission
of 280 ppm for the Michelson control sidebands, whereas it is 99.884 % and 8 x 10~ ppm, respectively,
for the carrier.
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Chapter 2. The optical response of GEO 600

The first row represents a tuned signal-recycling cavity. The second and third demon-
strate a positively detuned signal-recycling cavity (see Section 1.2.1). The 1kHz and
5kHz detunings are distinct examples for one or no control sideband being resonant in-
side the signal-recycling cavity, respectively. In the case of GEO 600, the FSR of the
signal-recycling cavity is chosen to be smaller than that of the power-recycling cavity
by roughly 10Hz, and the frequency offset of the control sideband from the carrier is
+119FSRpR, indicated by the magenta, dashed-dotted vertical lines at +119FSRpRr on
the frequency axis. 0 Hz (black, dashed vertical line) stands for the carrier frequency.

The phases and amplitudes evolve, depending on the MSR. tuning, qualitatively like in
Figure 1.12. Due to the particular phase conventions summarised in Section 1.2.1, the
phase transfer from the cavity input to the transmitted output is, except for bandwidth,
exactly the same as from the light at the south of the beamsplitter, without MSR, to the
light behind MSR, with an existing signal-recycling cavity.

In the case of the carrier and the control sidebands being on resonance, the partial
phasors of each will again add up most ideally, sustaining the phasors’ phases inside the
signal-recycling cavity (i.e. 0° phase shift). The additional 180° by passing through MSR
to the photodiode, is common and may again be neglected.

Please note that the signal-recycling cavity bandwidth is wider for the control sidebands
than for the signal sidebands.

Due to the macroscopic armlength difference ALgchnupp, the Michelson is partially
transmitting for the control sidebands when it is at the dark fringe condition for the
carrier. With the resonance condition inside the power-recycling cavity, the amount of
control sidebands in the south will be enhanced as well. Because of energy conservation,
the effective reflectivity of the resonant power-recycled Michelson interferometer — being
the compound input mirror to the signal-recycling cavity — is less than that of the pure
Michelson.

This is different for the signal sidebands. The (almost) perfect reflection of the pure
Michelson interferometer for the signal sidebands rules out any effect of the power-
recycling cavity.

2.3.2. The Michelson error-signal with signal sidebands

As already mentioned in Section 2.2, the carrier appearing in the south due to the grav-
itational wave of frequency fgw can be expressed by two sidebands with an offset of
+ fow from the carrier frequency. To get [, as in Equation 1.23, by will be split into the
sum of bfw and b%W | necessitating four summands per component which are the scalar
product of each control sideband with each signal sideband.

m

In order not to loose any information about I, , regarding the control sidebands, two
linearly independent sidebands, P and @, needed to be considered. It is the same for the
signal sidebands: the sensitivity estimate is only complete if two perpendicular compo-
nents are considered, i.e., a sinusoidal carrier phase modulation with an initial phase of
90° as well as 0°. To distinguish these orthogonal signal sideband situations from the
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Figure 2.4.: The resonance conditions of the Michelson control sidebands inside the signal-
recycling cavity for three different tunings, 0 Hz, 1kHz and 5kHz. The control side-
bands are assumed to be located around the carrier at the £119th multiple of FSRpR;
the carrier and sideband frequencies are indicated by the dash-dotted vertical lines. For
each tuning, the upper blue graphs represent the qualitative amplitude enhancement
due to the signal-recycling resonance condition, the lower curves the dispersive phase
shift. FSRggr is smaller than FSRpr by approximately 10 Hz. Thus, the resonance
structure in the tuned detector is for both sidebands symmetrically shifted towards
the carrier frequency. Detuning the detector moves the rigid comb of resonance struc-
tures (blue solid curves) against the fixed comb of light frequencies (black dashed, and
magenta dashed-dotted lines). For a detuning of roughly 1kHz, the lower control side-
band resonates inside the signal-recycling cavity. The bandwidth of the signal-recycling
cavity differs for the carrier (and signal sidebands closely around) and the control side-
bands due to the different reflectivities of the compound (input) mirror formed by the
power-recycled Michelson.
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control sidebands, the cosine and sine signal sidebands will henceforth be called C and
S sidebands, respectively. This yields a vector for each component of I, , (Irc, Ips)’

for the in-phase component regarding the control sidebands, and (Igc, IQS)T for the
corresponding in-quadrature component:
(&)
Ips

Iwm —~ (IP >:<IPC+.i].IPS >£ - (23)
Q Qc T igs < Ioc )
IQS
< bW @ (by +b_) + bWV @ (by +b_)
(

e 20SEWVY @ (by +b_) + (€20SV) @ (by +b) .
) 2.4
< SV @ (e75b, +e'Bb_) + 5OV @ (e 15by + €'ED_)
(

e 'z W) ® (e7"2by + €' 2b_) + (e20SWV) @ (e7"2by 4+ €'2b_)

P and @ in Equation 2.3 refer to in-phase and in-quadrature control sidebands, respec-
tively, C and S to in-phase and in-quadrature signal sidebands, respectively. In the term
2.4, ® is again the operation between complex numbers equivalent to the scalar prod-
uct of their phasor representatives. Ip and Iq will equivalently be used for the complex
numbers as well as for their respective vectorial counterpart.

Focussing on the transfer function from signal sidebands to 1, , demodulated with a
particular demodulation phase ®, the operation

Iwme_m = Ipcos® + Igsin ®

(equivalent to Equation 1.18) maintains amplitude and phase information for the signal
throughput. In judging the sensitivity, the absolute value of this transfer function will be
crucial. Therefore, each component Ip and I can be represented by its absolute value

or vector length 4 /IPZ,C + IPZ,S and , /Iéc + —%S’ respectively”.

The way to go is to combine and project all four sideband components separately, each
in-phase and in-quadrature for both, control and signal sidebands. Determining Ip and
Iq sets the two components of I, . With this vector, principal characteristics and de-
pendencies of the sensitivity can be investigated.

The procedure will be layed out in the following chapters, discussing the particular
examples of detector tunings from Figure 2.4 in more detail.

"As in FINESSE the shot noise is equal in all quadratures, a quadratic summation of two quadratures is
in principle equivalent to a frequency-dependent choice of a demodulation phase achieving a maximum
error-signal. Instead of yielding the complete I, vector length as in the two-dimensional projection
pictures applied before, however, the procedure is here applied separately to each P and (Q component
of I,,.

A quadratical summation of the (remaining) P and Q quadratures (or, in the end, of all four quadra-
ture components of I, ), though, might not achieve the best SNR in the experiment: some noise sources
appear differently in the P and Q quadratures, particularly in phase. With an appropriate choice of
demodulation phase, the noise may ideally cancel at particular frequencies (see Section 4.4). Currently,
the shot noise is accounted for in the experimental weighting of P and Q for h(t) (see [Hewitson04b]).

44



2.3. GEO 600 response in terms of phasors

2.3.3. Tuned detector

Figure 2.5 qualitatively shows the phasors of all light fields contributing to the differential
Michelson error-signal. The phasor diagrams comprise three different gravitational wave
signal frequency regions, indicated on the left. The particular quadrants of the figure,
separated by the dashed black lines, account for the different quadratures of the signal and
control sidebands. The pictures are arranged as follows: on the left, the signal sidebands
for a cosine gravitational wave are shown (C), on the right for a sinusoidal gravitational
wave (S). The upper three rows stand for resonant, slightly off-resonant and largely off-
resonant signal sidebands beating with the in-phase control sidebands (P). In the lower
three the same signal sidebands beat with the in-quadrature control sidebands (Q).

To comprehend the phasors, the upper left figures will be explained in detail while for
the others only relevant new features, necessary for the understanding, will be accounted
for.

Starting points are the resulting P phasors at the south port of the Michelson interfer-
ometer, as shown in the lower right corner of Figure 1.15. Figure 2.4 instructs how to
alter these initial phasors: the control sidebands are symmetrically off-resonant from the
signal-recycling cavity, therefore the lower sideband phase rotates clockwise by a certain
amount, the upper, anti-clockwise by that same value.

To obtain more convenient control sideband phasor angles, the “snapshot” may be made
even earlier in time to conceive an overall lower and upper P sideband rotation of —90°
and 490°, respectively, of the phasors shown in Figure 1.15 in Section 1.2.4 (see the
conventions summarised in Section 1.2.1): as a sideband phasor evolvement in time is
equivalent to a rotation of the coordinate axes of the photo-current vector space, this will
only introduce an offset in the pointing of I, within this ortho-normal basis, or an offset
in the demodulation phase (see in particular Equation 1.25). The (equal) amplitudes of
the two control sidebands, and of I, remain untouched by this time evolution.

The signal sidebands may have arbitrary frequencies. Depending on the particular fre-
quency value, their amplitudes and phases get changed by the signal-recycling cavity as
indicated by the blue graphs centered around or close to 0- FISRpgr in Figure 2.4. For the
tuned detector case, the upper most graphs need to be considered.

To deal with the resonant case of the signal sidebands, let us assume a very low frequency,
but not exactly 0 Hz. (Their position on the frequency axis of Figure 2.5 is only of symbolic
substance.) The resonant sidebands are equally enhanced and remain unrotated in the
C quadrature such that they become anti-parallel to the control sidebands. Beating each
control with each signal sideband produces a “double-in-phase” contribution to the overall
signal

IPC,res =—4 ‘bgw‘ : ’b+‘7
s b ] = [b_|, and 5G] = b9V

Off-resonant signal phasors are, in the tuned signal-recycling cavity case, symmetrically
arranged around the resonant carrier frequency.
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Chapter 2. The optical response of GEO 600

Slightly off-resonant (fgw > 0Hz), the signal sidebands are less amplified compared
to the resonant case above. The upper signal sideband phase decreases while the lower
increases by the same amount. This rotation, together with the weaker amplitude en-
hancement, reduces the amount of signal detected in the south port to

Ipcon =4+ (b5 @by ) = —4bSW - [by] (2.5)

with the index || indicating the absolute value of bgw component parallel to b,.

In the largely off-resonant case (fagw > 0Hz), the signal sidebands are very much atten-
uated. In addition, they are anti-parallel to each other and perpendicular to the control
sidebands giving no signal at all after demodulation.

In the figure quadrant below, the signal sidebands are the same, but the control sidebands
are evolved by a quarter period making them anti-parallel to each other such that they
constantly cancel any beat.

On the upper right, the signal sidebands represent a situation a quarter of the gravita-
tional wave period earlier. In case of resonance, the S sidebands are maximally increased,
but point to opposite directions on the imaginary axis such that they cancel each other.
The control sidebands are in-phase, so parallel to each other, but perpendicular to the
signal sidebands. (So even if the signal sidebands did not cancel, there would be no error-
signal contribution.)

Slightly off-resonant, the sideband amplitudes are less enhanced, but inversely rotated.
This enables us to sense the other component of each sideband, with respect to the
situation on the left (as the sidebands are rotated by +£90°) giving

Ipg o = 4+ [ (e_ig bgw) ® b+} = 462}}1 by (2.6)

1 indicates, alike the index ||, the absolute value of the C phasor component with respect
to the P phasors, as represented on the upper left of Figure 2.5 (see also Section 1.2.1).

This means, bSE'VJV_ and bg\ﬁ] are fixed, orthogonal components of the particular sideband

bgw (perpendicular and parallel, respectively). The scalar numbers stay the same even
if the sideband quadrature changes (i.e., they rotate with the signal phasor). Thus, in
the PC quadrant of Figure 2.5, the signal-sideband component referring to the control

sidebands amounts to bg\ﬂ], whereas in the PS quadrant it is bEVX which is the part of that

signal sideband currently parallel to the control sidebands. In particular, , /bﬁ +b2 = |b|.
Largely off-resonant, the control and the signal sidebands become parallel, perfectly de-
tecting the complete signal amplitude. This is, however, very much attenuated such that
the resulting error-signal is small.

The figures below show the same signal sidebands with the Q control sidebands who
again permanently cancel every possibly occurring beat.
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Figure 2.5.: Phasors at the south port of a tuned dual-recycled Michelson interferometer:
the figure is split into four parts, combining the contributing phasors in all possi-
ble quadratures with each other. The figure quadrants are captioned with the corre-
sponding quadrature combination. Each quadrant is again subdivided into three rows,
accounting for different frequency regions of the signal sidebands. The result of all
projections is displayed as the green vectors and the corresponding terms in the middle

of the figure.
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Putting everything together, the best obtainable SNR can be determined separately for
every frequency region by evaluating |1, | as given in Equation 2.4, and normalising with
the occurring shot noise, 1/|b4|? + [b_|2. It will for all frequency regions amount to

410§V - [ |
V21by |

yielding the complete signal amplitude. Thus, the sensitivity decreases by the same
amount as the Airy-function for the signal sideband amplitude. Due to the phase sym-
metry of the control sidebands, the signal for all frequencies fully appears in one control
sideband quadrature only, but the signal content moves from the C quadrature to the S
quadrature for increasing fgw. This highlights once again the necessity of considering
both signal quadratures for the detector sensitivity.

SNR o =2v2p¢V|,  Vfew (2.7)

2.3.4. Detuned signal recycling at 5 kHz

For the phasor picture explaining the detector response with 5kHz detuning, again the
amplitudes and phases of the phasors of Figure 1.15 should be combined with the gain
and dispersion curves given in Figure 2.4. For the situation of 5kHz detuning, both
control sidebands are on the positive frequency side of the resonance. Therefore, their
relative amplitudes and phases will roughly remain the same, causing the P sidebands to
be the one who cancel and the Q sidebands to remain parallel with same amplitude. This
is displayed in Figure 2.6, which is arranged in the same way as Figure 2.5: the upper
half is dedicated to P, the lower to Q control sidebands, the left figures deal with cosine
gravitational waves, the right with sine waves. Unlike Figure 2.5, the three gravitational-
wave signal frequency regions cover low frequencies, resonance and high frequencies.

As the upper projections all obtain roughly zero because of the canceling control side-
bands, only the lower ones will be commented on. The cosine signal sidebands on the
left-hand side are, at low frequencies, both parallel to each other and the @Q control
sidebands, as all of them are positively detuned from cavity resonance. Passing the res-
onance corresponds for the lower and upper signal sideband to a decrease and increase
of frequency, respectively. The properties of the upper signal sideband thus don’t change
significantly as it moves on the “wing” of the resonance curve. The lower sideband changes
lengths and phase with respect to the cavity transfer function. What becomes obvious
is that for low frequencies, all signal is gathered from the cosine signal form, while for
resonance the sinusoidal signal is crucial. First neglecting the contribution of the up-
per sideband because of its faint amplitude, the initial cavity bandwidth and resonance
frequency are conserved in the SNR,

2[EW] - [by |
V21by |

However, accounting for the upper sideband, the response shape gets distorted towards
lower frequencies. This distortion also changes the frequency position of maximum sen-
sitivity to lower frequencies.

SNR,aw o =v2105Y,  Vaw. (2.8)
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Figure 2.6.: Phasors at the south port of a dual-recycled Michelson interferometer, de-
tuned by 5kHz: the four sub-figures again combine the contributing phasors in all
possible quadratures with each other. This time, the three rows of each quadrant dis-
play the frequency regions of the signal sidebands of low, resonant, and high frequency.
Obviously, the signal is completely contained in Q. The yield of the signal is optimal
at low frequencies. At high frequencies, though, the detector’s sensitivity is very poor.

For the sake of view, all projection results are vertically oriented, although in a two-
dimensional coordinate system, the projections in Q yield imaginary, thus, “horizontal”

components of I,

m *
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Figure 2.7.: Phasors belonging to Iq around the signal sideband resonance inside the
signal-recycling cavity. The upper row shows the exact resonance, whereas in the lower
row the signal sideband frequency is slightly below resonance. bﬁjﬁ and b(_;}fv again
denote the components of the C signal phasor and refer to the control sidebands in P.
(This is equivalent to referring S signal phasors to control sidebands in Q.)

This gets plain with the following comparison of exact signal sideband resonance inside
the signal-recycling cavity, with slight off-resonance towards lower frequencies. These two
situations are depicted in Figure 2.7. The SNR occurring on the photodiode will be made
up of the components Iqc and Iqs, at resonance amounting to

V@IBEY ] 1o )2 + (2[EW] - b )2
V2 [bi ]

Slightly off-resonant, the amplitude of the lower signal sideband, [bSW|, is roughly con-
stant, while the phase changes rapidly. Therefore, bW will be made up of two com-
ponents, b(_;\ﬂl and bS’VX Like in Section 2.3.3, || and L define the absolute value of

the C signaf sideband 7component parallel and perpendicular to the P control sidebands,
respectively, as displayed in the first quadrant of Figure 2.6. The SNR will be

SNRor o /2 /(69 + [pFW))2 + 5O 2 = V2, OV + bW ]2 + 259 - [pGW]
(2.10)

SNR, s o = V2§V 2 4 pSW 2. (2.9)

This is bigger than SNRyes if [b$YV| # 0 and the lower sideband amplitude, [bSWV|, is not
too much attenuated compared to resonance.

As a consequence, when determining the exact tuning of the signal-recycling cavity (e.g.
to compare simulation with experiment), the maximal SNR only indicates the rough
MSR position. The necessary deviation for an exact match of sensitivity depends on the
detector tuning and the particular control sideband frequency. In this example, though,
the peak is only shifted by ~ 1 Hz.
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2.3.5. Detuned signal recycling at 1 kHz

With this last example of tuning, a new peculiarity appears: one of the control sidebands
becomes resonant inside the signal-recycling cavity (see the middle row of Figure 2.4),
whereas the other is off resonance, but still close to the bandwidth of ~ 1kHz. Due to
this, neither of the P and Q sidebands are negligible nor do they cancel being ideally
anti-parallel. Figure 2.8 shows the in-phase and in-quadrature phasors of the control and
signal sidebands similarly to Figure 2.6, i.e., for three signal frequency regions. They
are again deduced by applying the resonance condition indicated in the middle row of
Figure 2.4 to the phasors of Figure 1.15.

All sidebands except for the upper control sideband are purely real or imaginary. This
time, the signal sidebands will, for convenience, serve as the reference projection phasors
for the control sidebands in the sense that the components of the upper control sideband,
b, and by are defined based on the low frequency (DC) phasors of the gravitational
wave signal in C. Thus, these components coincide with the real and imaginary parts of
the P phasor:

by = - [bJr ® bg\gc] /‘bg\gc —R{by}
and (2.11)

bei= [ (e 0s) @bEW] /S| = Sl

The SNR, again determined as |1, | divided by shot noise, yields after simple algebraic
transformations (assuming [b$"| ~ [bSW| for low and high faw),

VABSYE (b4 + -2 = 2[b| b, )

\/\b+\2 +[b-?

= 2pGW o] by 2.12
| ’\/ BT 212

SNR(fGW < fres) X

for low frequencies,

b_| b
SNR(faw > fres) o 2|bGW|\/1+2|b b1 (2.13)

2+ b

for high frequencies, and

(1BF™* + DGV ) ([ [* + [b-[?) + 4 DGV - [BEW] - [b_| - by s

SNR ~ res 2 —
(fGW f X \/ ’b+‘2+‘b_’2

[
2 |bGW|2 + [EV]2 + 4 [pGWV] - pEW m (2.14)

for resonance.
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Figure 2.8.: Phasors at the south port of a dual-recycled Michelson interferometer, de-
tuned by 1kHz. The figure is composed equivalently to Figure 2.6. Apparently, the
signal is almost equally distributed between P and Q, and there exist no frequency
regions where the detector is blind for signals.
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The cavity resonance shape is again conserved if accounting for only the lower signal
sideband and the SNR is the same as in Equation 2.8. Here, the second signal side-
band, however, enhances high and resonant frequency values and beats destructively at
low frequencies. This will also slightly shift the frequency of peak sensitivity to higher

frequencies®.

The experimental demodulation phase

Up to the detuning example of 1kHz, the signal I, was contained in only one control
sideband quadrature. This was due to the fact that the control sideband amplitudes were
assumed to be equal. Thus, there existed always one demodulation phase where the con-
trol sidebands could cancel regardless of the signal frequency. Applying an arbitrary pair
of perpendicular demodulation phases on the resulting I, still yields a constant ratio,
for all fgw, of the signal components regarding these two quadratures. The absolute
value of the projection of I, on a particular demodulation phase vector can be regarded
as the signal content in that respective quadrature.

As in this example the sideband amplitudes differ, the condition for a complete can-
cellation can never be fulfilled: with a constant demodulation phase one can only ensure
a minimal or maximal signal for a certain frequency (regime). Thus, the ratio of the
signal contents referring to any orthonormal basis of demodulation phases must change
dependent on the gravitational-wave frequency.

This dependency of the signal content in perpendicular quadratures on detuning was seen
in the GEO 600 experiment. Up to June 2005 the detector was operated mainly at 1 kHz
detuning, in autumn 2005 at a detuning of roughly 300 Hz.

Figure 2.9 displays fits to optical transfer function measurements of GEO 600, from the
differential Michelson end mirror displacement (thus referring to twice the displacement
of one end mirror) to the error-signal output, where the photodiode signal is demodulated
with two perpendicular demodulation phases. For the detector tuned to roughly 1kHz
and 250 Hz, the solid blue and cyan lines show the signal transfer into P, whereas the
dashed red and dashed-dotted magenta lines show the signal content in Q, respectively.

For a tuning of 1kHz, the signal content in the two quadratures obviously exhibits
a strong dependency on the signal frequency. At the detuning of 250 Hz, the ratio of
signal content of the quadratures is roughly constant over the complete frequency range.

8This can be prooved considering two extremal cases of the by pointing.
If by 1 = |by]|, the yield of SNR for low and high frequencies is the same, namely

2BV + eV 2) = 2085V,

whereas it is maximal at resonance. Thus, the resonance frequency embodies also the maximal sensi-
tivity.

If, however, by | = |by|, we have the same situation as in the case of 5kHz detuning, just with the
control sidebands being rotated by 90°. Evaluating the projection terms ensures the peak sensitivity
to be at higher frequencies than the cavity resonance.

As the SNR is continuous, the peak sensitivity should be located somewhere in between if |by| >
b+7L, b‘hH .
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Figure 2.9.: Fits to optical transfer function measurements of GEO 600, from the differen-
tial Michelson end mirrors’ displacement to the error-signal output, where the photodi-
ode signal is demodulated with two perpendicular demodulation phases, marked in the
legend with P and Q. The detector is tuned to roughly 1kHz and 250 Hz. The absolute
scaling of the graphs belonging to different detector tunings cannot be compared as the
error-signal is repeatedly rescaled to fit the dynamic range of the loop electronics.

Please note that the absolute scaling of the graphs for different detector tunings cannot
be compared as the error-signal output is repeatedly rescaled for considerations of the
dynamic range of the loop electronics.

For the error-signals utilised in the experiment, the demodulation phase is usually opti-
mised to yield largest signal content at low frequencies. This is crucial for the feedback
to the actuator(s), since it improves the SNR.

Thus, in the GEO 600 experiment, the term in-phase or P (in-quadrature or @) signal
in the majority of cases refers to an error-signal, with the demodulation phase adjusted for
maximum (minimum) sensitivity for low frequency deviations from the operating point®.

In the phasor picture, the demodulation phase situation according to a corresponding Q
can easily be derived by evolving the control sideband phasors of Figure 2.8 as long as
the components parallel to the low frequency cosine signal sidebands cancel each other.
This is displayed on the lower part of Figure 2.10. Equivalently, a quarter modulation

“However, the on-line calibration process of the h(t) channel which agrees with the error-signal for the
differential Michelson, requires a further alteration of P and Q. In order to being able to reliably fit the
detector transfer function to a model of a complex pole and a real zero, the demodulation phase for Q
needs to be ~ 20° off from the ideal value. This, at the same time, determines P.
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Figure 2.10.: Phasor diagram of the light fields at the south port of GEO 600, with
a detuning of 1kHz. The difference to Figure 2.8 are the control phasor pointings:
alike in the real experiment, they are chosen such that for low signal frequencies the
output vanishes in Q. Although, with this choice, the signal is for all frequencies mainly
contained in P, the content in Q increases the higher the signal frequency becomes.
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Figure 2.11.: Theoretical sensitivity of GEO 600 with the demodulation phase optimised
to yield P and Q (dashed green and dashed-dotted red line, respectively) as displayed in
Figure 2.10. Combining the signal content of both quadratures to generate the complete
1, , one can choose new demodulation phases, optimised for each signal frequency. The
solid blue curve shows such an optimised sensitivity: up to almost 1kHz, the optimum
agrees very well with P. Only at higher frequencies, the importance of Q becomes
evident.

period later, at the in-phase signal, these same components of equal lengths appear on
the perpendicular axis and add up (see upper part).

Although P and Q both contain some signal at resonant and high frequencies, P dominates
the complete frequency range'. Determining the maximally possible shot-noise limited
sensitivity, by dividing the shot noise by |1, | for all fgyw, yields of course exactly the same
result as before. For comparison, all three sensitivity graphs are displayed in Figure 2.11.
They were directly generated by FINESSE using the current script describing GEO 600
(see Appendix B.1.1 for the optical parameters). Obviously, the content of sensitivity in
Q becomes relevant only at frequencies higher than 2 kHz which confirms the qualitative
result of the projection picture.

0This might, however, be different for arbitrary Michelson control sideband frequencies (that are not
constrained to the current power-recycling resonance).
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2.4. The importance of the control sidebands for the sensitivity
shape

Comparing the results for the SNR for all three tunings, it becomes obvious that the
signal-recycling cavity resonance condition for the control sidebands matters for the sen-
sitivity to gravitational waves, and that it is impossible to optimise the signal read-out
or sensitivity in all frequency regions at once.

The crop of signal is best for the tuned case as for all frequency regions the amplitude
of both signal sidebands gets projected completely onto both control sidebands (even
though various signal quadratures are needed).

Comparing the signal yield for detuned states, for f = f.es and high frequencies, the
yield of the signal is better for a 1kHz detuning than for the 5kHz case. However, the
low frequency region falls behind in comparison with 5kHz detuning. This gives raise to
the general question: which frequency regions are worth optimising for SNR, and what
kind of detector setup could fulfill these requirements.

In this subsection, the derivations made with the simple projection picture will be em-
ployed to find a best, GEO 600-like, detector setup concerning the control sideband prop-
erties.

To get a feeling for the relevant dependencies, first, three dual-recycled setups for one
detuning will be compared. They are chosen to yield exposed conditions for the control
sidebands, based on the knowledge above.

Then, the dependency of the sensitivity shape on the control sideband properties will
be investigated for a wide range of detunings. This enables, on the one hand, a targeted
optimisation of the detector setup. On the other hand, only this deep understanding
qualifies to compare a dual-recycled detector, featuring a simple signal-recycling mirror,
with one exhibiting an etalon instead (see Section 3.7).

For most of the following results, the field properties used to calculate the sensitivities
based on the projection picture method, will numerically be given by FINESSE. Unless
otherwise stated, the parameters of the most accurate detector setup of GEO 600 will be
used. A FINESSE file of this setup can be found in Appendix B.1.1.

2.4.1. Comparison of three dual-recycled detector setups
To assure the comparability of different detector setups, the same signal sidebands need
to be provided:

e The carrier power inside the Michelson arms needs to be the same to ensure the
same signal sideband amplitude.

e The signal-recycling cavity bandwidth and tuning for the signal sidebands need to
be preserved: This is necessary to obtain the same signal sideband amplitude and
phase progression in the frequency interval of interest.
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Chapter 2. The optical response of GEO 600

This is easily achievable by keeping all mirrors and tunings for the carrier in all the setups.
The detuning of 5kHz may well serve as an example tuning. The phasor situation of
Figure 2.8 can be generalised to any pair of control sidebands regardless of the resonance
condition of the lower sideband:

e According to the choice of demodulation phase, any pair of control sidebands can
be evolved in phase until the lower sideband is purely real. To compare the sensi-
tivities, anyway |I,,, | will be evaluated such that the absolute demodulation phase
is arbitrary.

m

e In equations 2.11 to 2.14, |b_|, by, and by | remained general. The only constraint
for the validity of these equations is that the “frame of reference”, i.e., the signal
sideband phasors, are qualitatively the same as in Figure 2.8. Thus, the crucial
requirement is that the detuning is larger than the signal-recycling cavity bandwidth
for the signal sidebands. For lower detunings, the two signal sidebands will exhibit
significantly different pointings for the specified frequency regimes of gravitational-
wave signals such that the projection terms differ from those utilised in equations
2.11 to 2.14.

However, the closer the tuning to 0Hz, the less extraordinary the particular
control sideband properties, as one draws near the tuned case. There, for all control
sideband frequencies, the amplitudes are equal, and the phases are shifted by the
same amount, but to opposite directions which is equivalent to a time evolution not
altering the amplitude or phase modulation content of the carrier.

e In the current GEO 600 setup, the Michelson sideband frequencies are off-set from
the power-recycling cavity resonance. This deviation anti-/symmetrically changes
the phases/amplitudes of the sidebands entering the south arm. Assuming, for
simplicity, the ideal case of no waste light appearing in the output, the amplitude
change does not matter for the shot-noise limited sensitivity. The phase shift, how-
ever, changes the signal-recycling resonance condition of the control sidebands: the
upper sideband resonates inside the signal-recycling cavity for a tuning of ~ 650 Hz
(see Figure 2.16 and the explanations on page 129). For a signal-recycling tuning
of 5kHz, though, the phase and amplitude relations are roughly the same for both
control sidebands, and Figure 2.4 may be consulted.

Equations 2.12 to 2.14 suggest constructing setups that generate control sidebands with
roughly parallel, perpendicular, and anti-parallel P phasors. The parallel and anti-parallel
situations support the detection of low and high signal frequencies, respectively, the per-
pendicular should level both extreme regions, enhancing the sensitivity at resonance.

However, the perfectly parallel and anti-parallel control sidebands produce similar pro-
jection terms in their respective sensitive frequency region. In order to get three very
different situations, the perfectly perpendicular and anti-parallel setups will be joined by
one situation where the sideband phasor pointings are “in-between” being perpendicular
and parallel. This last example agrees with GEO 600.

Such a (relative) phasor rotation is accessible by a change in the resonance conditions
of the control sidebands inside the signal-recycling cavity. A “simple” variation of modu-
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2.4. The importance of the control sidebands for the sensitivity shape

lation frequency, however, changes the resonance condition of the control sidebands not
only inside the signal-recycling cavity, but also inside the power-recycling cavity, and in
addition alters the coupling of the two cavities through the Michelson interferometer. In
general, the resulting phases are intuitively hard to comprehend.

Instead, the signal-recycling cavity length will be changed. Elongating (or shortening)
the signal-recycling cavity decreases (or increases) the FSRggr, reducing (or increasing)
the distances of the signal-recycling resonance structures of Figure 2.4.

upper sideband

oy o A SR A lower sideband

*
_I'____W_ 'é__l___I____l___T___*__-
2 3 4 5

ALSRC [m]

Figure 2.12.: Amplitudes and phases of the control sidebands behind the MSR of a
GEO 600-like detector, but with various signal-recycling cavity lengths. Om corre-
sponds to the default length of GEO 600. For all lengths, the detector is detuned to
5kHz, and the sideband phases are evolved to yield a real lower sideband. The stars,
diamonds and triangles indicate cavity lengths suitable for a comparison of sensitivities.
The lengths generate anti-parallel, perpendicular, and GEO 600-like phasors.

Figure 2.12 shows the control sidebands’ amplitudes and phases at the output photodiode
of a GEO 600-like detector detuned to 5kHz, but with varying signal-recycling cavity
length. O0m corresponds to the GEO 600 setup. Both fields’ phases are for all lengths
evolved to yield a real lower sideband.
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The amplitudes” maxima indicate signal-recycling cavity lengths where the respective
sideband is resonant inside the cavity, detuned by 5kHz. The upper sideband’s phase has
two dispersive structures, around the upper and lower sidebands’ resonances. Before it
could reach 0°, though, the next resonance forces it back to 180°. With a higher detuning,
the resonances were further away from each other allowing for parallelism of the phasors.

The stars, diamonds and triangles indicate the field properties for signal-recycling cavity
lengths providing anti-parallel, perpendicular and GEO 600 phasor pointings, respectively.
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Figure 2.13.: Strain sensitivity for three detectors with different signal-recycling cavity
lengths, tuned to 5kHz. As expected, the sensitivity at low frequencies is best for the
GEO 600-like setup, whereas at high frequencies anti-parallel sideband phases yield the
best signal read-out. The picture on the right shows the zoomed-in sensitivity at the
resonance. The peak sensitivities slightly differ, and the peak position matches the
signal-recycling resonance frequency only for perpendicular control sideband phasors.

Figure 2.13 shows the detector sensitivities for these three different control sideband
phasor situations of Figure 2.12. The anticipated sensitivity differences in the particular
frequency regions are all well displayed:

e At high frequencies, the sensitivity is best for anti-parallel and worst for GEO 600-
like control sidebands. In the low frequency region it is the opposite. The ratio
of the “best-sensitivity” curve in the respective region to the perpendicular case of
sideband phasor pointing is roughly v/2. The differences of the “worst-sensitivity”
curves for the respective frequency regions to the dashed one are much higher.
The phasor picture explains it (together with the equations 2.12 and 2.13): the
perpendicular control sidebands always enable some signal read-out with at least
one sideband, creating non-zero components Ipc and Iqc, or Ips and Iqgs, for low or
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high frequencies, respectively. The other control sideband constellations are either
anti-parallel to each other or perpendicular to the signal phasors at the respective
low sensitivity frequency region, obtaining no signal. In the opposite frequency
region, one of the components yields the best possible read-out. Thus, compared to
the perpendicular sideband situation, the possible sensitivity improvement is v/2,
whereas the ratio at the other frequency end is continuously increasing.

e At resonance, the perpendicular control sidebands are better than the anti-parallel
ones, because there are no destructive projection terms. At first glance, it might
seem astonishing that the GEO 600 sideband constellation yields the best sensitiv-
ity. Careful interpretation of Equation 2.14, though, makes it clear that the term
containing the sidebands’ projection, [b_| - by 1 /(|b+]* + |b—|?), does not only de-
pend on the control sideband phasors’ relative pointing but also on their relative
amplitudes. As both have to obey the signal-recycling cavity transfer function at
the same time, they cannot be optimised independently of each other. Thus, the
projection-term depends on the phasors’ position inside the resonance structure.

As visible in Figure 2.12, the sideband amplitudes differ most in the perpendic-
ular case and are of similar size at the signal-recycling cavity length of GEO 600.
Thus, if the cancellation of control sidebands in one quadrature is not guaranteed
(like in the parallel and anti-parallel case), chances are good that the sensitivity at
resonance is better than in the perpendicular case, although not the complete |b4 |
contributes to the projection.

e The peak positions of the three curves are shifted against each other. In the per-
pendicular case, it agrees with the resonance frequency of the lower signal sideband.
In case of GEO 600, the peak frequency is slightly shifted towards DC, whereas for
180° the peak sits at higher frequencies. This is exactly what was derived in the
subsections before (see 2.3.4 and 2.3.5).

With Figure 2.7 and the derived Equation 2.10, it could be shown for the example of 0°
that the real maximum SNR is shifted from signal-recycling cavity resonance depending on
the exact signal sideband properties. The same formula is valid for anti-parallel sideband
phasors, with bgVX = —R{bSWV}. Comparing the phasor pictures of Figure 2.7 with
Figure 2.8, both extremal control sideband situations should yield a maximal peak shift.

To get an upper limit for the peak deviation from signal-recycling cavity resonance,
Equation 2.10 is worth closer investigation. It shows in particular that the possible shift
of the peak SNR is larger, the larger |b$w|, and this depends on the detuning.

Figure 2.14 displays the peak shift, based on an evaluation of Equation 2.10 around the
resonance, as a function of detuning. The signal sidebands, used for the calculation, obey
the Airy-function of the signal-recycling cavity that was availed for the detector examples
above, with a bandwidth of roughly 400 Hz. Thus, as Equation 2.10 requires the detuning
to be above the bandwidth, the display of the graph is limited to lower frequencies by
400 Hz.

Clearly, the peak shift decreases for increasing detuning. It amounts to maximally ~
40 Hz. This has consequences especially for the parameter estimations for the simulation
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Figure 2.14.: Frequency shift of peak sensitivity dependent on the detector tuning, in
case of anti-parallel control sideband phasors. To determine the offset, Equation 2.10
was evaluated assuming a signal-recycling cavity bandwidth of 400 Hz, as it appears at
the GEO 600 detector.

script representation of GEO600. It means that the position of the peak sensitivity
only contains rough information on the real tuning of the detector, i.e. the microscopic
MSR position. Any parameter adjustment utilising experimental results, needs a careful
estimation of the required accuracy of the tuning.

2.4.2. Consequence: the optimal GEO 600

The sections above led to the result that the sensitivity shape not only depends on the
specific signal-recycling cavity properties, like tuning, macroscopic length and mirrors,
but also on the resonance condition of the Michelson control sidebands inside this cavity.
The (resonant) power-recycling cavity only matters in terms of forming the compound
input mirror to the signal-recycling cavity, together with the Michelson interferometer.
Thus, the signal-recycling cavity bandwidth, and amount of sideband light occurring at
the output photodiode, are influenced!!.

Another finding was that the SNR cannot be optimised for the complete frequency
band of the detector at once. This immediately leads to two questions:

e Which frequency regions are of greatest interest?

HThe last two properties should not be underestimated for neither the simulation nor the experiment.
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e As the control sidebands are supposed to be fixed for all detector tunings and have
to obey the resonance condition in this varying signal-recycling cavity: Is there any
possibility or tool to optimise the signal yield globally for all tunings?

The aim of any dual-recycled detector is to specialize for a specific frequency. Thus, this
frequency, and a certain band around it, remain the target to optimise for. Secondly,
low frequencies are preferable to high frequencies, especially for the first generation of
earth-bound gravitational-wave detectors. In the low frequency region, the strongest
gravitational-wave signals inside the detectable band are expected to occur, and the
source numbers are much more promising.

In particular, GEO 600 was, with its elaborate pendulum suspensions for the interfer-
ometer mirrors, especially designed to give good sensitivities at low frequencies.

To answer the second question, it is advisable to first shelve the targeted frequency
regions and find a global answer. An evaluation of the terms by | - |b_|/(|b4|> + [b—|?)
and by j-[b—|/([b+ 124|b_|?), from Equation 2.12 to 2.14, for all imaginable combinations of
resonance conditions for both sidebands independently from each other, should cover the
answer for any kind of dual-recycled detector setup'?. In this plane of possible resonance
conditions, the embedded, realistic combinations of resonance conditions can then be
shown.

The left and right pictures of Figure 2.15 display the targeted terms, associated with
Equation 2.14, and Equation 2.12 and 2.13, respectively. The parameter plane assigns
the resonance condition of each control sideband within the frequency-dependent transfer
function of the signal-recycling cavity. In order to be as general as possible, the sideband’s
resonance condition is expressed as a deviation from resonance in units of signal-recycling
cavity bandwidths for the control sidebands'®. A positive sign of deviation means a
sideband frequency or detector tuning higher than the resonant. (A comparison with
Figure 2.4 might help to illustrate the resonance conditions.) The equipotential lines are
colour coded but also accompanied by their respective numerical values. They indicate the
range for both terms to be within [—0.5, 0.5]. The meaning of the grey bars is explained
further below, in the second item of Page 65.

The symmetry of these pictures is eye-catching. There are two axes of symmetry which
are both crossing the origin of the resonance-condition plane, one with slope 1, the other
with slope —1. They will be called positive and negative diagonal, respectively. The
positive diagonal mirrors the values belonging to the lower right half of the plane to the
upper left in both pictures. The negative diagonal is likewise a symmetry axis for the
upper right and the lower left half of the planes. However, in the left picture, the term
values are anti-symmetric. Both diagonals hold some kind of sensible combination of
resonance conditions for both control sidebands:

12For the control sidebands, the only assumption required is that the sidebands still represent a perfect
phase modulation when they exit the power-recycled Michelson to the south. This is always the case
inside a GEO 600-like detector.

13Please keep in mind that this bandwidth might differ depending not only on the reflectivity of MSR, but
also on the sideband’s resonance condition inside the power-recycling cavity, and the power-recycling
cavity properties.
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Figure 2.15.: The two pictures display the terms by | - [b_|/(|b4|* 4 [b—|*) and b, | -
1b_|/(Jbs|? + |b_]?) of equations 2.14, and 2.12 and 2.13. The terms are evaluated for
varying resonance conditions of the upper and lower control sideband inside the signal-
recycling cavity. The dashed magenta lines with slope 1 represent the conditions for the
sidebands of the previously used detector setups, for different detector tunings. The
triangle and diamond again mark GEO 600 and the optical setup with perpendicular
sideband phasors at 1kHz detuning, respectively (compare with Figure 2.12). Please
note that the plane units are given in bandwidth of the signal-recycling cavity for the
control sidebands. This does not only depend on the mirror properties, as for the signal
sidebands, but also on the complete particular configuration.

e The negative diagonal joins all sidebands that are anti-symmetrically arranged
inside a resonance structure. This is always the case, if a detector is tuned to 0 Hz
(please compare with Figure 2.4).

Thus, this diagonal in general represents tuned detectors with different FSRs
or signal-recycling cavity lengths.

e The positive diagonal comprises sidebands symmetrically disposed inside a reso-
nance structure.

In particular, the origin can be associated with a tuned detector whose signal-
recycling cavity also resonates with the control sidebands. For the upper most
picture of Figure 2.4 this would mean that the dashed-dotted lines, marking the
+119th FSRpR, sit exactly at the maximal enhancement of the signal-recycling
cavity. Starting from there and tuning the detector upwards, both sidebands have
exactly the same deviation from resonance. The same is true for any negative de-
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tuning, only with negative sign of the deviation.

Thus, the positive diagonal stands for all possible tunings of the particular
detector that resonates with the Michelson control sidebands if it is tuned to carrier
resonance.

Expanding this insight to the rest of the plane, as a logical consequence, all lines parallel
to the positive diagonal stand for various tunings of one explicit detector.

In the same way, all lines parallel to the negative diagonal represent particular tunings
of detectors with different FSRs.

The magenta coloured, dashed lines with slope 1 stand for two of the previously used
detector examples. As in Figure 2.12, the GEO 600 detector is marked by a triangle,
the perpendicular phasor case by a diamond. Both marks are on the lines at a position
corresponding to 1kHz tuning!'4.

Before discussing optimal detector configurations, two properties of the terms need to be
commented:

e The lower left half of the left picture shows negative values for the respective term.
This is correct for the numerical evaluation of the term, but in reality all values
should be positive. This is because for negative tunings, the signal C phasors for low
frequencies in Figure 2.8 would point just to the opposite side. Thus, in this case
the correct definition of the phasor projection component would be b, || = R{b+}
instead of —R{b4 }.

e Studying the phasor diagrams for the tuned detector case assured that the signal
yield is optimal for all frequencies. The values along the negative diagonals of the
pictures of Figure 2.15, however, indicate worst sensitivity for all gravitational-wave
frequencies for tuned detectors. Please keep in mind, that the terms are only valid
for detunings larger than the signal-recycling cavity bandwidth for signal sidebands
(see page 58). For the example detectors, this is 400 Hz, corresponding to position
offsets of +0.2 around the negative diagonals. The invalid region for this case is
marked in both graphs by the grey bar. However, as the size of the invalid region
varies depending on the signal-recycling cavity bandwidth ratio for the signal and
the control sidebands, these bars, in opposition to the values of the mathematical
expressions, cannot be generalised.

Looking for the best possible resonance conditions to enhance the signal crop of low
and resonant frequencies, Figure 2.15 suggests exactly the detector represented by the
positive diagonal: investigating each tuning separately, one needs to compare the values
on each line parallel to the negative diagonal. Doing this, the left arrangement shows
for all tunings a maximum value at the positive diagonal, and the right a minimum,
indicating maximal possible signal read-out at resonant and low frequencies, respectively.

“The signal-recycling cavity bandwidth for the control sidebands was = 1.9 kHz. The upper sideband’s
resonance in the GEO 600 case is at around ~ +650Hz tuning, in the perpendicular case it is at
~ —5kHz. Thus, the corresponding detector lines should cross the negative diagonal at ~ —0.34 and
~ 2.8 with respect to the upper sideband axis.
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Creating such a setup means that the control sidebands should be resonant inside the
tuned signal-recycling cavity.

The signal yield for low gravitational-wave frequencies is enhanced more, the smaller
the signal-recycling cavity bandwidth for the control sidebands: this makes the negative
term values in the right graph already available at lower tuning frequencies. According
to Equation 2.12; the smaller this term, the better the SNR for low gravitational-wave
frequencies.

With a small signal-recycling cavity bandwidth, the best signal read-out for resonant
signal frequencies occures at low detector detunings. Then, the highest values of the
respective mathematical expression appear already at small frequency deviations from a
resonant position inside the resonance structure of the signal-recycling cavity.

To construct a setup that fulfills this requirement, either the mirror properties of the
detector, like location and reflectivities, need to be altered, or the control sideband fre-
quency has to be adjusted.

Varying the mirror properties and positions enables the most exact shaping of the res-
onance structure of the signal-recycling cavity for the control sidebands. Developing a
new detector, this knowledge should be incorporated. However, a too close assimilation
of the FSRs of the power-recycling and signal-recycling cavity should be avoided. This
could complicate the control of the signal-recycling cavity close to tuned detector states
(see Section 3).

The control sideband frequency is very easily accessible. However, in a given setup, a
“simple” change of frequency not only changes the conditions inside the signal-recycling
cavity, but also inside the power-recycling cavity'®. Changing the control sideband fre-
quency around the power-recycling resonance, for example, not only alters the effective
reflectivity of the power-recycled Michelson, but also changes the phase of the reflected
light, in particular of the light approaching from the south, being back-reflected from
MSR. Thus, the frequency position of the control sideband resonance inside a signal-
recycling cavity with fixed mirrors will counter-intuitively shift while tuning the sideband
frequency. Due to this feature, there might be several frequency solutions (within one
FESR) fulfilling the requirement of being resonant inside a tuned signal-recycling cavity.

As mentioned above, a small bandwidth of the signal-recycling cavity supports the sen-
sitivity for low gravitational-wave frequencies already for low detector detunings. The
bandwidth automatically decreases when the sideband frequency leaves power-recycling
resonance. Considering a power-recycled Michelson only, the intra-cavity power is highest
at the power-recycling resonance, yielding the highest possible power in transmission for
injected light from the south as well as from the west. Away from the resonance, the
transmitted power is less. In this case, the input compound mirror gets a higher effective
reflectivity.

The good signal read-out at low frequencies has, however, to be traded against the
overall control sideband power at the output port which determines not only the SNR

B For small frequency changes, we can safely assume constant properties of the compound mirror built
by the Michelson.

66



2.4. The importance of the control sidebands for the sensitivity shape

upper MISB amplitude [a.u.] lower MISB amplitude [a.u.]
N ]
o =)
2 :
N
Z.
o 200F b AN N S
E
g [ ‘
= R R B A R &Y Y /]
+ | /
& :
o |
+ |
O ook )b Nverd ) [
Q |
+~ |
d"’ S
<
....... SRt
0
o
100 -100 -50 0 50 100

Control-sideband frequency offset [Hz]

Figure 2.16.: Amplitude of the control sidebands, for the differential Michelson error-
signal, (MISBs) appearing behind MSR.. The amplitude is normalised to yield 1 for the
maximum. It is displayed above the plane of detector tuning and sideband frequency.
0Hz on the z-axis denotes the experimentally used value that is also adopted in the
simulations as a default value, unless otherwise stated.

but also the ability to lock the Michelson. A small signal-recycling cavity bandwidth
and, for example, a control sideband resonance at 0 Hz MSR tuning leads to a very
much attenuated sideband power at high detunings. In the control loop, this needs to
be compensated by a higher electronic gain and might impose a limit on the experiment.
Regarding sensitivity, if the sideband power becomes comparable to the waste light, the
SNR decreases for all frequencies.

Simulations of the current setup of GEO 600, show a bandwidth of the signal-recycling
cavity, for the control sidebands being resonant inside the power-recycling cavity, of
~ 10kHz. The power-recycling cavity end mirror reflectivities differ for the Michel-
son sidebands by 500 ppm only such that the reflectivity of the resonant power-recycled
Michelson is around 80 %. With such a low reflectivity of the input mirror to the signal-
recycling cavity, both, the sideband power occurring behind MSR as well as the signal-
recycling cavity bandwidth, can be improved by detuning the sideband frequency by a

certain amount from power-recycling resonance!®.

SFor this reason, the experimentally used sideband frequency differs from the 119th FSRpgr by 52 Hz.
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Figure 2.17.: Deviation of the sensitivity of the detector setup with optimised control
sideband frequency from that of GEO 600, for special detector tunings. The sensitiv-
ity curves were obtained utilising the projection picture with the sideband properties
provided by FINESSE. As expected, the sensitivity for low and resonant frequencies
is better than in the GEO 600 case, where at high frequencies the GEO 600 setup is
preferable.

The left and right pictures of Figure 2.16 display the amplitudes of the upper and lower
control sidebands, respectively, at the output photodiode for a varying sideband frequency
and detector tuning. The sideband frequency is shown as a deviation from the actual,
experimentally used value. (Unless explicitely stated otherwise, this frequency is also
utilised in simulations.)

The horizontal line in Figure 2.16, crossing the origin, represents detector configurations
with a signal-recycling cavity resonant for the carrier and different Michelson sideband
frequencies. Tracing the amplitude values on each vertical line yields the Airy-function
for the particular Michelson sideband frequency depending on the signal-recycling cavity
tuning. As a consequence of Figure 2.15, we are aiming for sideband frequencies that
resonate in a tuned signal-recycling cavity. Translated to Figure 2.16, this is equivalent
to searching for a vertical line for which the maximal amplitude sits somewhere on this
horizontal line crossing the origin. This is clearly the case around +33 Hz detuning and
should also be true close to —50Hz. Accounting for the preferred small bandwidth and
high sideband amplitude, the higher frequency is chosen to, in the following, compare the
theoretical shot-noise limited sensitivity with the actual experimental setup.

Figure 2.17 displays the sensitivity deviation of the detector setup with optimised side-
band frequency from current GEO 600, for different tunings. For the sensitivity compari-
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son, the absolute values of the respective error-signal vectors were used which is identical
to applying the optimal demodulation phase for each gravitational-wave frequency. The
computation, based on the projection picture, utilised sideband properties provided by
FiNESSE. That includes the consideration of shot noise that is only caused by the control
sidebands.

A negative deviation value indicates a sensitivity worse compared to the actual
GEO 600. Thus, with the exception of tuned detectors, the optimised detector setup
supports, as anticipated, frequencies below the resonance at the expense of higher fre-
quencies. The gain and losses in the respective frequency regions are roughly the same,
for example +30 %, for a detuning of 500 Hz. In the tuning examples above 500 Hz, the
higher the detuning, the less the sensitivity gain at low signal frequencies and the more
the loss at high signal frequencies, and vice versa for lower tunings. Thus, the optimised
setup is preferable, in particular for low detunings. Nonetheless, an improvement of low
frequencies by more than 10 % should justify a possibly high sensitivity loss on the other
side of the resonance.

The signal yield improvement at the resonance depends on the tuning. Assuming, one
could in Equation 2.14 achieve the highest value for by | - |b_|/(|bL|* + [b—|?) for all
tunings, the maximum possible improvement of the SNR would have to account for the
transfer function of the signal-recycling cavity. The ratio of the best and worst SNRs,

SNRbest ‘bgw‘ + ‘bgw’

SNRworst \/‘b%W‘Q + ’b(EW’Q

is displayed in Figure 2.18 as a function of signal-recycling cavity detuning, in units of
signal-recycling cavity bandwidth for the signal sidebands. As Equation 2.14 is valid only
for detector tuning frequencies larger than the signal-recycling cavity bandwidth (see
Page 58), Figure 2.18 can only be trusted for tuning values above 1. The invalid tuning
interval is denoted by the grey shading. This validation limit yields a maximum possible
improvement of ~ 1.2. In addition, the worst case assumption is far too pessimistic about
the signal yield of a real, fixed detector setup. In a comparison of realistic detector setups,
the improvement at resonance will, thus, appear much weaker. Consequently, any kind
of detector optimisation should rather act in accordance with the demands for high or

low signal frequencies!”.

" Theoretically, for a detuning larger than the signal-recycling cavity bandwidth for the signal sidebands,
the best possible signal read-out at fres could be achieved by adjusting the signal-recycling cavity
bandwidth for the control sidebands to be twice the particular detuning fres. Then, the maximum of
the left picture in Figure 2.15, at ~ (0.5,0.5), would occur at the respective tuning frequency. In a real
experiment, though, this is hard to achieve for two reasons: the condition that the control sidebands
are resonant in the tuned detector should always be fulfilled, and the sideband power has permanently
to exceed the waste light power at the output.
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Figure 2.18.: Ratio of the best and worst possible SNRs at the resonant frequency, versus
detuning. The detector tuning is displayed as signal-recycling cavity bandwidth for
the signal sidebands. In the GEO 600 case of 400 Hz, the tuning axis comprises the
frequency interval of [0 Hz, 5 kHz].

2.5. Projection picture versus FINESSE

In order to comprehend and use the projection picture, the field phases were deduced
applying as many simplifications as possible. In the evaluation of the results following
from the simple picture, however, the “real” field properties, provided by FINESSE, were
utilised. These properties still gave the expected answer, verifying the simplifications
about the fields.

The results following from Equation 2.12 to 2.14, however, are still to be verified as
for them only the “real” field properties of the control sidebands were considered. The
sidebands’ pointing was very much simplified and fixed.

The simulation tool FINESSE lends itself to testing the projection picture results. How-
ever, it is much more powerful and realistic in computing sensitivities, transfer functions
and error-signals, than the simple projection picture. It accounts, for example, also for
signal sidebands occurring around the control sidebands, for higher-order sidebands or
higher-order modes in case of mode-mismatch.

This offers two kinds of testing. One would be an equal comparison of results, consid-
ering only first-order sidebands and neglecting mode-mismatch. With this, the validity of
predictions, regarding field simplifications only, can be determined. Using FINESSE with
all integrated tools rather allows the investigation of the importance of mode-mismatch
or higher-order sidebands.
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In general, forming an opinion about the projection picture is much more sophisticated
if the results hold out against FINESSE, neglecting extra effects or not.

Before considering the weight of effects that are not accounted for with the projection
picture, let us first check with FINESSE how the quantitative predictions following from
the formulas 2.12 to 2.14 look if the signal sidebands’ pointing is realistic. In that case, the
extra effects FINESSE is able to account for need to be switched off to ensure comparability.
Whereas there exist commands to disable higher-order modes and sidebands, the effect
of signal sidebands around control sidebands can only be attenuated by disposing of the
carrier at the output and reducing the control sidebands’ modulation index as much as
possible. However, this contribution will not vanish completely.

Thus, for the following direct comparisons between the projection picture and FINESSE,
the most actual detector setup of GEO 600 is utilised, with the exception that the loss in
both Michelson arms is symmetrised, and the modulation index for the control sidebands
is ~1072. To obtain the same carrier power inside the Michelson as before, the laser
power is accordingly reduced. Higher-order modes and sidebands were disabled.

Figure 2.19 compares the results of FINESSE for the shift of the peak sensitivity from
the signal-recycling cavity resonance for the lower signal sideband, (solid line) with the
analytical result in Equation 2.10 following from the projection picture, as displayed in
in Figure 2.14 (dashed-dotted line). To yield comparable detector setup conditions, i.e.,
anti-parallel control sideband phasors for all detector tunings, the signal-recycling cavity
length of GEO 600 needed to be elongated by roughly 5m for the respective FINESSE
simulation.

The FINESSE and projection picture results agree very well for high detunings. The
lower the detector tuning, the larger the difference, at most 8 Hz for 400 Hz detuning. As
Equation 2.10 is only valid for high tunings, this feature was expected. The lower limit
to the detector tuning for the validity of all deduced equations between Equation 2.9 and
2.14 was led by qualitatively assessing the signal phasors’ phases in the phasor diagrams
of Figure 2.6 to 2.8. With this approach, the limit was estimated to be approximately
the signal-recycling cavity bandwidth (please follow the detailed argumentation on Page

58).

Whereas Equation 2.10 was analytically deduced by phasor diagrams assuming particu-
lar signal sideband field properties, all sensitivity curves in this thesis derived with the
projection picture, utilise the full information on field amplitudes and phases provided by
FINESSE. Thus, the agreement of the projection-picture sensitivity curves with FINESSE
should not depend explicitely on the tuning, but rather on the importance of effects that
FINESSE is able to account for'®.

Consequently, the sensitivity deviation of a detector setup with optimised control side-
band frequency from the configuration of GEO 600 should agree well for the projection
picture and FINESSE. Figure 2.20 compares this sensitivity deviation for the two ap-
proaches, for different detector tunings, supposing the best demodulation phase for each
gravitational-wave frequency of the particular sensitivity curve. The solid lines display
the results of FINESSE. The corresponding projection picture outcome from Figure 2.17

8The impact of these effects can, of course, differ for various detector tunings.
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Figure 2.19.: Frequency shift of the peak sensitivity dependent on the detector tuning.
The solid and dashed-dotted lines represent FINESSE and projection picture results,
respectively. The dashed-dotted line is the same as in 2.14. The agreement for high
detunings is very good and gets worse, the closer the detuning to the signal-recycling
cavity bandwidth, as anticipated with the validity regime of the phasor diagram of
Figure 2.8.

is, for each tuning, represented by a dashed-dotted line of the respective colour. The
agreement for low detunings is very good and deviates more for higher tunings, mainly
around the resonance. As all extra effects of FINESSE were disabled, the only source for
disagreement are the signal sidebands around the control sidebands in combination with
the carrier appearing at the south port due to asymmetries of the Michelson arms (see
also Figure 4.6 and Section 4.4).

In the real experiment, all occurring sideband beats, and higher order modes and side-
bands contribute to the shot-noise limited sensitivity, and need to be accounted for. Thus,
to predict an improvement of an optical setup in sensitivity, a powerful simulation tool
like FINESSE should be used. However, the FINESSE input file, representing GEO 600, is
not perfect. Depending on the targeted function to be simulated, the inaccuracies more
or less contaminate the results. Figure 2.21 shows the same comparison as Figure 2.20,
but includes higher order modes and sidebands, differential losses and modulation indices
corresponding to measurements.

Although at first glance the figures 2.20 and 2.21 differ a lot, in fact the shape of the
curves are roughly the same, except for a hump occurring at different frequencies above
1kHz. These humps are the consequence of the DC carrier beating with the signal side-
bands around the control sidebands (see Section 4.4 for these sidebands’ transfer function
to the detector output).

72



2.5. Projection picture versus FINESSE

§ 30 .

n 20

2

=

4

g 0

Q

@ —10f 2

S N

S o0k ... - — T N R\ T S SR i

%20 0 Hz \._ Ll

s 20y {5 N

- - - P - \‘

g_40 ....... 500HZ e e -.\,\ .............. -

'-5 1kHz |- - = - o: : : o

S S5kHz |7 i i R SRS

@ Dol : S

A -60 = .
10° 10 10

Frequency [Hz]

Figure 2.20.: Comparison of the results of the projection picture (dashed-dotted) and
FINESSE (solid) for the deviation of the sensitivity of the optimised sideband frequency
setup, with that of GEO 600. The lower the tuning, the better the agreement. For
detector tunings higher than 1kHz, FINESSE predicts a larger sensitivity improvement
than the projection picture.

The different absolute values of the deviation curves show that the sensitivity depends
on the control sidebands’ effective amplification. This is already visible with the blue
curve comparing the tuned detector-setups. As Figure 2.16 indicates, the sideband am-
plitude for tuned detectors is in the optimised case roughly 20 % higher than the default
amplitude. The improvement in sensitivity is of the same order. At 500 Hz, the ampli-
tudes are nearly the same. For all higher detunings, the sideband amplitude of the default
setup is higher than for the optimised sideband frequency.

The sensitivity gain being roughly proportional to the sideband amplitude indicates
very high carrier waste at the south. Indeed, shortly before this work was written, a new
MPR was installed with a low transmission of ~ 900 ppm. This highlighted losses inside
the power-recycling cavity due to the Michelson interferometer that are not yet under-
stood. In the simulation, one part of these losses was guessed to be differential Michelson
arm losses, another part to be caused by mode-mismatch due to the far end mirrors.
Some power measurements, made at the south port, indicate less waste light than the
simulation finds. However, as the observations made so far do not consistently explain
the losses seen, the nature of the loss channel remaines unknown. As many features of the
experiment, like transfer functions, are well described by the actual script, it is currently
the best available representation of the experiment.
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Figure 2.21.: FINESSE result for the sensitivity deviation of the optimised and original
GEO 600 setup, for particular detunings. This simulation accounts for asymmetries in
the Michelson arms and higher order modes and sidebands. The curve shapes are very
similar to Figure 2.20, except for a detuning dependent offset and a hump above 1 kHz.

Assuming that the simulated output powers of GEO 600 were like in the experiment, the
modulation index would need to be increased until the sideband power exceeds the waste
light. A frequency optimisation of the control sidebands in such a setup will exhibit the
same sensitivity deviation levels as predicted in Figure 2.21, though including a hump
above ~ 1kHz.

2.6. Conclusion

In this chapter, phasor diagrams were applied to determine the differential detector out-
put, containing the strain, h(t), of gravitational waves. Via the simple and illustrative
projection picture, that only considers first order signal and control sidebands, the main
characteristics of sensitivity curves can be predicted and explained.

Considering not only two signal sidebands for the Michelson error-signal, but also the two
possible quadratures of gravitational waves, leads to a four-dimensional error-signal vector
that is able to reproduce the optical gain of the dual-recycled Michelson interferometer, in
magnitude and phase. The presented mathematical frame-work also enables us to relate
this vector to optical transfer functions employing particular demodulation phases (see
Section 2.3.2).
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The projection picture shows that the sensitivity shape only roughly follows the Airy-
function for the resonant signal sideband. Depending on the control sidebands’ properties,
the non-resonant signal sideband more or less distorts the resonance structure and moves
the frequency of maximum sensitivity (see Section 2.3.3 to 2.3.4, and in particular Fig-
ure 2.13 and 2.14 in Section 2.4.1).

The control sideband properties at the output photodiode are influenced by all mirrors
and macroscopic and microscopic lengths occurring in the dual-recycled Michelson inter-
ferometer. One practical consequence of the control sidebands’ influence on the shape of
the sensitivity curve is that, without detailed knowledge about the detector, the frequency
of peak sensitivity only gives a rough approximation to the real signal-recycling cavity
tuning. This becomes important, for example, when trying to compare experimental sen-
sitivity curves with simulations, or for (further) predictions about (other) error-signals
related to the experiment.

With the projection picture it could generally be shown that the amount of signal con-
tained in a demodulated error-signal depends not only on the demodulation phase, but
also on the control sideband amplitude (see Figure 2.9 and comments on Page 53).

With equal sideband amplitudes, there exists one demodulation phase such that the
respective error-signal contains the entire gravitational-wave signal for the complete de-
tection bandwidth. Moreover, for arbitrary pairs of perpendicular demodulation phases,
the ratio of signal content is constant for all frequencies (see figures 2.5 and 2.6).

If, however, one control sideband amplitude significantly exceeds the other (which is the
case if the resonance conditions for both sidebands differ inside the dual-recycled Michel-
son) the signal content is exchanged between error signals of arbitrary perpendicular
demodulation phases over the detection bandwidth (see Figure 2.8).

The parameter space responsible for the shape of sensitivity curves of a dual-recycled
Michelson interferometer is huge. Without an illustrating picture of the error-signal,
tremendous simulational effort is necessary to make any global qualitative statement
about coupling mechanisms from features of the optical setup or signal transfer to par-
ticular sensitivity characteristics.

The projection picture enables, with only a few simplifications, to circumvent blind
searches by analytical calculations for a global, dual-recycled-detector-setup comparison
regarding the differential-signal yield, for a wide range of detunings (see equations 2.12
to 2.14). Numerically evaluating the analytical expressions indicates that for all signal-
recycling cavity tunings the best sensitivity for low and resonant gravitational-wave fre-
quencies can be achieved if both control sidebands resonate in a tuned signal-recycling
cavity. Particularly for low frequencies, the smaller the signal-recycling cavity bandwidth
for the control sidebands the better. Resonant frequencies are hardly worth an optimi-
sation, as the best possible improvement, comparing to a very pessimistic worst case, is
limited to 1.2. The larger the difference between the control sideband frequency and the
next integer multiple of the signal-recycling free spectral range, the better the sensitivity
for high gravitational-wave frequencies at the expense of low and resonant frequencies.
These predictions are, due to the initial simplifications, limited to detunings larger than
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the signal-recycling cavity bandwidth for the signal sidebands (see Section 2.4.2 and Page
58).

In order to meet the requirements for the control sidebands for any kind of optimisa-
tion, the optical configuration needs to be altered systematically. As the installation of
GEO 600 is already finished, the only parameter accessible for a change is the modula-
tion frequency of the control sideband. Consulting FINESSE simulations with the current
optical setup of GEO 600 for an optimisation of the sensitivity for low signal frequen-
cies, there exist two control sideband frequencies close to the 119th signal-recycling free
spectral range that resonate in a tuned signal-recycling cavity, but only one has a de-
cent amplitude and an acceptable signal-recycling cavity bandwidth (see Figure 2.16).
Comparing the current GEO 600 setup with this best possible optimisation in situ, an
improvement of up to 30 % at 100 Hz should be obtainable (see figures 2.17, 2.20, and
2.21).

The predictions still hold qualitatively, if signal sidebands around control sidebands,
or higher order modes and sidebands are accounted for'?, as done by FINESSE (see Sec-
tion 2.5).

9Please note that throughout this chapter the transfer of technical noise sources, associated with optics,
was not considered. To compare sensitivity curves, the best possible signal read-out was assumed, and
the shot noise appearing at the output photodiode was simply divided by the optical transfer function.
A noise transfer that possibly differs for various configurations, could, in principle, lead to a different
optimal setup.
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Chapter 3.

Tuning process of a dual-recycled Michelson
interferometer

3.1. Introduction

GEO 600 is presently the only large-scale gravitational-wave detector of the worldwide
network that incorporates dual recycling (please consult Section 2.2 for an explanation
of this interferometric technique). A respective upgrade of the other gravitational-wave
detectors is planned for the second generation. The commissioning of such a dual-recycled
detector requires an adequate control of all degrees of freedom, including not only longi-
tudinal but also alignment of the involved mirrors. Particularly with regard to operating
as an observatory, an automation of the startup (or lock acquisition), and of successive
changes of the detector peak sensitivity or bandwidth, to match a special gravitational-
wave source, are indispensable. (The peak sensitivity and bandwidth depend on the
microscopic position and the reflectivity of the signal-recycling mirror, respectively.) For
this an extended knowledge of the signals needed for control, especially their dependen-
cies on various degrees of freedom, is necessary. This huge parameter space is accessible
only via simulations, which in the past have contributed heavily to the understanding of
the detector.

To date, trading off the bandwidth and frequency of maximum sensitivity at GEO 600,
and considering the sensitivity of the other first-generation gravitational-wave detectors,
we aim for a final detuning in the order of ~ 100 Hz. However, simulations show that
locking the detector directly in that state is very difficult. The lock probability is much
higher in a largely detuned state [Grote03a, Grote03b]. Moreover, an auxiliary error-
signal (2f signal) for the signal-recycling cavity length degree of freedom is necessary
for the acquisition of lock. The current strategy is to first catch and lock the mirrors
of the detector to a position corresponding to a detuning of roughly 2.4kHz. Then,
after switching to a less noisy signal-recycling error-signal (sideband signal), the detuning
is shifted down to the desired value, without interrupting the lock. The technique to
shift the frequency of peak sensitivity in situ was first investigated at the Garching 30 m
prototype [Heinzel99].

To implement such a transition without loss of lock, error-signal characteristics for each
signal-recycling state need to be tracked within a very large parameter space. Once the
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detector is locked, it can be regarded as being in a quasi-static state. Predictions for a
slow continuous movement of the signal-recycling mirror MISR without the loss of lock
can therefore be made with a frequency domain simulation program like FINESSE (see
[FINESSE] for download and further information).

This chapter deals with the process of continuous tuning of the frequency of peak sen-
sitivity for a dual-recycled detector with an optical setup similar to GEO 600. Before
analysing the error-signals for the relevant degrees of freedom, first the generation of
these error-signals and the respective control loops will be described. However, the ex-
planations here will focus on features relevant for the tuning process. Subsequently, the
phasor picture is used to illustrate the properties of the signal-recycling and Michelson
error-signals to be expected, and to relate these properties to detector attributes. This
knowledge is then used to qualitatively predict the evolution of parameters relevant for
the signal-recycling and Michelson control loops. In order to quantitatively determine
the control-loop parameters, various optimisation criteria for the error-signals will be dis-
cussed and the respective simulation results presented and evaluated. In the end, the
same parameters are presented for a detector utilising an etalon instead of a conventional
signal-recycling mirror.

3.2. The longitudinal control of GEO 600

For the operation of the dual-recycled Michelson of GEO 600, three degrees of freedom
need to be controlled: the differential armlength of the Michelson interferometer, the
signal-recycling cavity length, and the lengths of the power-recycling cavity or, alterna-
tively, the laser frequency. Although at GEO 600, in the frequency bandwidth of the
detector, the laser frequency is stabilised against the power-recycling cavity length, the
associated control is called power-recycling control. Figure 3.1 shows an overview of
the dual-recycled Michelson of GEO 600 surrounded by the respective control loops, and
includes one of the two mode-cleaners. The paths for the Michelson, and the power-
and signal-recycling cavity are marked solid blue, dotted magenta and dashed green,
respectively. The dashed-dotted cyan path represents the so-called 2f signal path that
contributes to the Michelson and signal-recycling lock acquisition. The following subsec-
tions describe each of the controls, focussing mainly on the facts necessary to allow for
the development of a successful strategy for a continuous tuning.

The power-recycling control is not critical for the tuning process. It is nonetheless
briefly explained. For the sake of completeness the lock acquisition is outlined as well.

3.2.1. Laser frequency stabilisation and power-recycling cavity lock

The light source of GEO 600 is an injection locked master-slave laser system with an
output power of 14 W. This laser light successively passes two mode-cleaner systems that
filter out beam geometry fluctuations and reduce the amplitude and frequency noise. The
amplitude and frequency noise of a light beam passing a cavity is filtered out for Fourier
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Figure 3.1.: Overview over the longitudinal control loops relevant for the lock of the dual-
recycled Michelson interferometer of GEO 600: the control paths for power and signal
recycling, and the differential Michelson are marked with dotted magenta, dashed green,
and solid blue lines, respectively. The path for the so-called 2f signal, contributing to
both the differential Michelson and the signal-recycling error-signals, is displayed by
dashed-dotted cyan lines.
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frequencies above the cavity pole which is equivalent to half of its bandwidth. Thus, the
longer the cavity and the larger the finesse, the smaller the bandwidth, and the better the
filtering effect. In addition, the relative length noise of the cavity, § L/L, improves with
increasing length, as the absolute mirror motions are independent of the cavity length.
The first and second mode-cleaners are triangular ring cavities of ~ 8 m round-trip length
and a with finesses of 2700 and 1900, respectively. The bandwidths are of the order of
10 kHz.

To acquire a stabilisation or lock of the mode-cleaners and the laser, the master-laser
crystal is locked to the length of the first mode-cleaner. The length of the first mode-
cleaner is then stabilised to the length of the second mode-cleaner (MC2). At frequencies
lower than 10 Hz MC2 is locked to the pathlength inside the master laser. This lock is
also called DC-lock'. More details on the laser and mode-cleaner systems can be found
in [Brozek0Oa, Brozek00b, Zawischa02, Willke00, Willke0O, Freise03a] and [Freise03a,
GoBler02, GoBler03, Grote04], respectively.

With this chain of control, the rms length change of MC2, together with the open loop
gain of the control, determines the residual frequency noise in front of MPR.

The frequency stabilisation has, in general, two main purposes: one is to facilitate the
acquisition of resonance of the laser light inside the power-recycling cavity, i.e., the lock
acquisition. The main purpose is, however, the reduction of laser frequency noise that
couples into the output of the Michelson: as explained in Section 1.2.4 and 2.2, the error-
signal generation for the differential Michelson necessitates a macroscopic armlength dif-
ference: the so-called Schnupp length. Due to this asymmetry, the Michelson is sensitive
to frequency fluctuations of the incoming light. The light leaking out of MC2 has a
residual rms frequency deviation of 30 mHz/ vHz at 100 Hz. Early and more recent cal-
culations [Brozek99, Freise03b], however, indicate a requirement of ~ 5 to 100 uHz/v/Hz
at 100 Hz (depending on the exact optical configuration of GEO 600, as for example the
deviation from the dark fringe or the amount of detuning), in order to not contaminate
the output signal.

To nonetheless meet the requirements, above 50 Hz the length of MC2, and thus the laser
frequency, is locked to the power-recycling cavity length. With an effective length of
~ 1.2km and a Finesse of roughly 6600 and 460 for the new and old MPR?, respectively,
the bandwidth is 2 or even 3 orders of magnitude lower than for the mode-cleaners, and the
relative length stability is improved by factor 300, assuming the same rms mirror motion.
The mirrors of the signal-recycled Michelson interferometer, and MPR. are suspended
as triple, and double pendulums, respectively. Having one pendulum stage less than the
interferometer mirrors, MPR dominates the frequency stability of the power-recycling
cavity in the detection band of 50 Hz to 5 kHz. The double-pendulum attenuation of the

!The DC-lock is particularly necessary for the power-recycling lock acquisition (see the Locking sequence
in Section 3.2.4). The mode-cleaner mirrors are suspended as double-pendulums with resonance fre-
quencies around 1Hz. Depending on the seismic conditions, the rms movement of the mode-cleaner
mirrors below 10 Hz may amount to 1 pm. The associated frequency change of the carrier leads to fringe
rates at the unlocked power-recycling cavity of ~ 100/s.

2Before May 2005, when the new, high-reflective MPR (with Tyvpr = 900 ppm) was installed, GEO 600
was operated with a lower-reflective mirror, with Typr = 1.35%.
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3.2. The longitudinal control of GEO 600

seismic noise yields a frequency stability of ~ 0.2 uHz/v/Hz at 50 Hz (neglecting coupling
effects from vertical to longitudinal mirror movements, see page 3 in [Grote03b]). Thus,
at 100 Hz the power-recycling cavity is better than the requirements by a factor of 100 to
2000, depending on the optical configuration (see paragraph above).

The power-recycling error-signal is generated by the Pound-Drever-Hall technique (see
Section 1.2.2), phase modulating the laser light impinging on MC2 with fpr ~ 37.16 MHz
at EOM33, and detecting with PDPR in reflection of MPR. (see dotted magenta paths
in Figure 3.1). Up to 1kHz, the error-signal is fed back to the length of MC2. For higher
frequencies, the actuation takes place at EOM4, just in front of MPR. The particular
open loop gains and phases for the two actuator paths, and for the combined loop are
displayed in Figure 3.2. The unconditional stability?, i.e., the phase of the sum exceeding
—180° plus a certain phase margin, makes the loop very robust during the time of lock
acquisition of the Michelson®.

Once the Michelson interferometer is locked to the dark fringe, the power-recycling cavity
should be very insensitive to the tuning of the signal-recycling cavity. As with a dark
fringe, ideally no carrier light is exchanged between the power and the signal-recycling
cavity (of course, except for gravitational-wave sidebands), the carrier amplitude and
phase is completely determined by the tuning of the power-recycling cavity only. Thus,
the power-recycling loop does not require any further considerations when tuning the
signal-recycling cavity.

3.2.2. Longitudinal control of differential Michelson arms

The Michelson interferometer is the basic optical system for the detection of differential
length changes, and thus, of gravitational waves. Its intended operating point, the dark
fringe, makes sure that all light incident on the Michelson is reflected back, enabling
power-recycling and signal recycling. As deviations from the dark fringe increase, the
coupling of amplitude and frequency noise into the Michelson output signal, the respective
control loop and, in particular, the actuator performances, are of vital importance to
achieve design sensitivivity.

Actuators

The Michelson error-signal, being the targeted output containing the gravitational-wave
signal, requires a low-noise actuator in order not to introduce additional noise when
feeding back to the Michelson end mirrors. The coil-magnet system used for actuation

3The modulation frequency is set to resonate inside MC2. With 37.16 MHz, the frequency lies approx-
imately in the middle of the 296th and the 297th multiple of FSRpr. Thus, it very well satisfies the
requirement deduced in Section 1.2.2 for the generation of the Pound-Drever-Hall error-signal.

4The difference of the cavity transfer function with two differing MPRs is irrelevant as it only moves
the pole frequency (by roughly one order of magnitude).

5After lock acquisition of the Michelson, the unconditional stability is relinquished for the sake of in-
creased loop gain below 2kHz, adding two integrator stages.
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Figure 3.2.: Overall open loop gain (upper graph) and phase (lower graph) of the power-
recycling control loop. The slow path (dashed green line), controlling the position of
one mirror of MC2, and the fast path (dashed-dotted red line), feeding back to EOM4,
have a cross-over frequency of ~ 1kHz. The phase of the combination of the two
(solid cyan line) ensures unconditional stability of the loop which is useful in the lock
acquisition process.

of the other mirrors of the detector requires magnets to be fixed on the mirror to be
controlled. This has two disadvantages: on the one hand magnets are sensitive to time-
dependent magnetic field gradients that may exert unwanted forces on the mirror; on the
other hand, having the magnets stuck directly on the mirror could degrade the very high
quality factors® of the mirrors and increase the associated thermal noise.

GEO 600 is the first large-scale gravitational-wave detector actuating on the Michelson
end mirror displacement with an electrostatic drive (ESD). An ESD moves the mirror
by a strong electric field that acts on the dielectric mirror substrate. For this, four
pairs of thin gold electrodes are coated in comb-like, interlocked structures onto a fused
silica substrate, the so-called reaction mass, that has same size as the end mirrors. Each

®The quality factor is important for the thermal noise level of the mirror (see [GoBler04] for a detailed
explanation). GEO 600 is the first large-scale gravitational-wave detector utilising a monolithical silica
pendulum as the lowest stage of the triple pendulum suspension to increase the quality factor Q.
Depending on the pendulum mode, the measured Q varies between 10° and 107 [Smith04a].
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3.2. The longitudinal control of GEO 600

electrode pair is arranged in one of four quadrants allowing for alignment forces as well.
The comb fingers are separated by 5.5mm. The range of the resulting electric field is
sufficient for a mirror distance between 1 to 3mm from the ESD.

As mentioned above, the main interferometer mirrors are suspended as triple pendulums
to more effectively filter seismic noise. In order to bring the mirror and reaction mass close
together without degrading the seismic noise isolation, the reaction mass is suspended
next to the mirrors with an identical pendulum system. Figure 3.3 shows the arrangement
of the two triple pendulums. The suspension in the front holds the mirror, the one in
the back holds the reaction mass. There are three different mass stages, the upper, the
intermediate, and the lower level where either M Ce or M Cn are located.

The electric field of the ESDs is only able to apply pulling forces on the dielectric mirror.
Hence, in order to obtain a bipolar actuation, a bias of the field is required. This is
accomplished by applying a constant, high voltage to one electrode, while the feedback
signal is applied to the other. Another difference from the commonly used coil-magnet
actuators is that the electric force is proportional to the square of the field amplitude,
hence, to the square of the voltage applied: on the one hand, the electric field induces a
dipole to the dielectric proportional to the field, on the other hand, the force applied to
the polarised dielectric is proportional to the field from the ESD. Using an analog control,
this is accounted for by a square-root (sqrt) circuit in the path of the drive voltage. (For
digital controls it can be done digitally.) The resulting maximum applicable force of
500 uN is, in combination with the Michelson error-signal, sufficient for lock acquisition.

However, the sqrt-circuit introduces additional noise. Once the Michelson is locked, the
mirrors have a comparably small rms motion. If the symmetric signal is significantly
smaller than the bias voltage, the force gets approximately linear to the signal voltage,
and the sqrt-circuit can simply be bypassed. (More details on the ESD actuator can be
found in section 1.3 of [Grote03b].)

With this operation method, though, the maximal possible displacement shrinks to
< 100nm. This necessitates another actuator in lock for the expected large mirror move-
ments at frequencies close to the pendulum resonances. The low-frequency actuation is
achieved with three coil-magnet actuators situated at the intermediate level, between the
reaction and intermediate masses (IM). Due to the transfer function of the lowest pen-
dulum, the applicable force from the intermediate level on the end mirror decreases with
1/f2, but at low frequencies the force enables a displacement of up to 0.1 mm.

The far Michelson mirrors, suspended 600 m from the beamsplitter, are controlled only
in the very low frequency region (< 0.1Hz) to compensate motions below pendulum
resonances.

Control loop
The Michelson control loop is represented in Figure 3.1 by the solid blue path. As already

mentioned in Section 1.2.4, the error-signal is generated with the Schnupp (or frontal)
modulation technique. The respective modulation (or Schnupp) frequency is applied on
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Figure 3.3.: Triple pendulum suspension of one Michelson end mirror (front suspension)
and its corresponding reaction mass (back suspension). Whereas the coils of the local
control of the upper mass are visible, the coil-magnet actuators of the intermediate-mass
stage are hidden between the reaction and the intermediate masses (IM).
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3.2. The longitudinal control of GEO 600

EOMS5 in front of MPR. Accounting for Equation 1.27, the Schnupp frequency is cur-
rently chosen to be 14.904927 MHz, yielding maximum amplitude at the output photodi-
ode PDO, the place of the error-signal detection, for a detector detuning of ~ 1kHz. The
frequency is close to the 119th multiple of the FSR of the power-recycling cavity”, being
125.251 kHz. After demodulation of the PDO signal at the mixer, the error-signal gets
split and processed. One path differentially applies the low-frequency part of the error-
signal to the IMs, the other forwards the high-frequency content to the ESDs by passing
the high-voltage amplifier (HV). The sqrt-circuit is only applied for lock acquisition, as
explained above.

6
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Figure 3.4.: Overall open loop gain (upper graph) and phase (lower graph) of the Michel-
son control loop. The slow path (dashed green line), applying to the IMs, and the fast
path (dashed-dotted red line), feeding back to the ESDs, have a cross-over frequency
at ~ 7Hz. The phase of the combination of the two (solid cyan line) indicates a con-
ditional loop stability for unity-gain frequencies between 30 Hz and 120 Hz. With the
nominal unity gain frequency of ~ 80 Hz, the gain may only vary by a factor of 0.275
to 1.64.

"Due to the coupling of the two recycling cavities, the exact power-recycling resonance does not neces-
sarily yield the largest sideband power at the output. An exact resonance rather degrades the reflec-
tivity of the power-recycled Michelson being the compound input mirror to the signal-recycling cavity.
Figure 2.16 shows the Michelson sideband amplitude behind MSR depending on the frequency and
signal-recycling cavity tuning.
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Figure 3.4 displays the open loop gain (upper) and phase (lower) of the slow (dashed
green lines) and fast path (dash-dotted red lines), and of the combination of the two
(solid cyan lines). For lock acquisition, the fast path alone is valid (acquisition mode),
in lock the sum of the two paths is applied (run mode). The cross-over between the fast
and slow paths happens to be at ~ 7Hz. The phase dependency of both the acquisition
and run mode yields a conditionally stable loop. A phase margin of 30° is for both modes
guaranteed for unity gain frequencies between 30 Hz and 120 Hz. With the nominal unity
gain frequency of ~ 80 Hz, the correspondingly tolerable gain deviation lies between 0.275
and 1.64.

After the power-recycling cavity is locked, the signal-recycling and differential Michelson
tuning are still uncontrolled. Influencing the modulation sideband amplitudes appearing
at PDO, the signal-recycling cavity tuning can make a difference of more than an order
of magnitude to the optical gain of the Michelson. In order to stay within the tolerable
gain interval during the lock acquisition process, the error-signal needs to get normalised
with respect to the modulation sideband amplitudes. Referring to Equation 1.17, the
photodiode signal demodulated with twice the modulation frequency (hence the name 2f
signal) is proportional to the product of the sideband amplitudes, giving a measure of
their height. Thus, this signal is suitable and used for real-time normalisation® during
the lock acquisition process, also called automatic gain control (AGC). The respective
path leading to the AGC box inside the Michelson loop is marked dashed-dotted cyan in
Figure 3.1.

As the Michelson error-signal slope depends not only on the sidebands but also on the
resonance of the carrier inside the signal-recycling cavity (in case of deviations from
the perfect dark fringe, the carrier enters the signal-recycling cavity), the modulation
sidebands’ product only roughly matches the optical gain. Figure 3.5 enables a direct
comparison of the Michelson error-signal slope (solid blue line) with the 2f signal evolution
(dashed-dotted magenta line) depending on the signal-recycling cavity tuning. The two
graphs agree very well in a wide range of detunings. For tunings below ~ 1kHz, however,
they split up”. At 350 Hz they already differ by a factor of 2. Thus, for an operation
of the detector over a large frequency range, in particular for low detunings, a different,
deliberate compensation of the optical gain deviations is necessary. As soon as the lock
is fully acquired, the detector is in a well-defined state allowing for a determined gain
control instead of the normalisation by the 2f signal.

8In the experiment, the 2f signal is generated by demodulating the PDO signal not exactly at twice fur,
but 30kHz away. The resulting, oscillating signal is then rectified and low-pass filtered. This is done
to yield a signal independent of the demodulation phase. Mathematically, the additional frequency of
30kHz can be attributed to the “constant” demodulation phase, alternating it with time. By rectifying
and low-pass filtering, the signal at 2 fur is averaged over all demodulation phases. Thus, for all signal-
recycling cavity tunings, the same kind of weighing of the demodulation phases is done, and the signal
has consequently a constant proportional factor to the sideband amplitudes’ product.

9The range of agreement of the two graphs is even wider than shown, namely up to ~ +20 kHz, neglecting
absolute detunings below ~ 1kHz. The larger range is not shown in order to focus on the maximum
intended lock acquisition and tuning range of the detector.
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Figure 3.5.: Comparison of the Michelson error-signal slope evolution, depending on the
signal-recycling cavity tuning, with the corresponding 2f signal. The two signals are
normalised to match in the largest possible frequency interval. Still, below ~ 1kHz
they differ significantly. A difference of factor 2 is reached at 350 Hz detuning.

3.2.3. Longitudinal control of the signal-recycling cavity

The tuning of the signal-recycling cavity determines the resonance frequency for the
gravitational-wave signal-sidebands, and thus the frequency of peak sensitivity. In tar-
geting particular gravitational-wave sources of well-defined frequency, it may be advan-
tageous to tune the signal-recycling cavity to resonate with this frequency. These cases
require holding the signal-recycling cavity at a particular tuning with a decent offset from
the carrier resonance. Beyond, it is desirable to switch between different frequencies of
peak sensitivity during detector operation.

Section 1.2.2 explains how to obtain a Pound-Drever-Hall error-signal in cavity reflection
that is suitable to hold that cavity at a constant tuning away from carrier resonance.
The basic idea is to address a zero crossing appearing around one of the control side-
bands’ resonances which is adopted for the GEO 600 detector. The flexibility to obtain
different signal-recycling cavity tunings can be achieved by correspondingly changing the
modulation frequency.

This technique can, however, not be copied exactly one-to-one for GEO 600, as the tar-
geted signal-recycling cavity is combined with the power-recycling cavity and the Michel-
son interferometer. The power-recycled Michelson, being the compound input mirror to
the signal-recycling cavity, has for example different reflectivities and transmissions for
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Chapter 3. Tuning process of a dual-recycled Michelson interferometer

different light frequencies. Considering arbitrary modulation sideband frequencies for
signal recycling and the very high finesse of the power-recycling cavity, the sidebands
will for most frequencies be anti-resonant inside the power-recycling cavity. With the
current setup, the transmission of the power-recycled Michelson (prMI) for a (close to)
anti-resonant modulation frequency around 9MHz is ~ 1ppm, and Ry = 99.993%.
Thus, with Rysg = 98.15%, the signal-recycling cavity is a highly undercoupled cavity
for most of the applicable modulation frequencies, and the sideband amplitude leaking out
of the optical system through MPR is too weak to yield a decent error-signal amplitude
in comparison with the large shot noise.

Targeting beats with the carrier, it is no alternative to switch to the output port in the
south in order to avoid shot noise, and to gain modulation sideband amplitude: there
is almost no carrier if, under perfect mode-matching and alignment, the Michelson is
successfully operated at dark fringe. The Michelson arms are the only places where the
carrier and the modulation sidebands both are present. This suggests three points for
detection: either in transmission of one of the end or far end mirrors, or in reflection of
the anti-reflective coating of the beamsplitter (BSAR\). For historical reasons'?, the light
reflected from BSAR is used!!.

The respective control loop path is displayed dashed green in Figure 3.1. A modulation
frequency around the 72nd FSR of the signal-recycling cavity (FSRsg = 125.2416kHz) is
applied on EOM4. The error-signal is detected with PDBSs in reflection of BSAR, and
is fed back, after demodulation and some electronic processing, to coil/magnet actuators
at the lowest triple pendulum level of the MSR /reaction-mass suspension system!?2.

For the lock acquisition it is important to decelerate MSR. within the monotonic region of
the error-signal around the targeted zero crossing. Guided by the error-signal deduction
in Section 1.2.2 (or to anticipate, in Section 3.3.2), the width of the complete error-
signal structure is expected to be in the order of the signal-recycling bandwidth. This
corresponds to a limit of the one-sided monotonic region of ~ 200 Hz, or equivalently of
~ 1nm only. Beyond, with the strong error-signal shape dependency on small dark fringe
offsets and Michelson mirror misalignments (see Figures 2.9 and 2.11 in [Grote03b]), this
sideband signal experimentally turned out to be infeasible for lock acquisition. Instead,
the monotonic 2f signal of Figure 3.5 is used to capture MSR. In Figure 3.1, the dashed-
dotted cyan path, leading to MSR, displays the corresponding control path: the same
signal used for the AGC of the Michelson control is commuted to a suitable, bipolar

100riginally, the transmission of all Michelson mirrors and the reflection of BSAR. were specified to
50 ppm such that none of them promised an improved SNR. The far end mirrors were unattractive
due to their distance from the point of actuation. A detection at the end mirrors, located close beside
MSR, is for space reasons inconvenient.

HThe enhanced modulation sideband amplitude at the south port can, however, be exploited with a
read-out of the beat of the two control sidebands, demodulating the PDO signal with ~ 6 MHz. This
is planned to be implemented in the near future. Recent simulations indicate that the signal-to-noise
ratio of the corresponding error-signal is larger by a factor of roughly 6 with respect to the currently
used signal-recycling error-signal.

2The suspension looks similar to Figure 3.3 but without the intermediate level. The coils are embedded
in the reaction mass, and the magnets are glued onto the rear mirror surface opposite to the coils.
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Figure 3.6.: Overall open loop gain (upper graph) and phase (lower graph) of the signal-
recycling control loop. The acquisition mode (dashed green lines) uses the 2f signal,
whereas the run mode applies the error-signal generated with the signal-recycling con-
trol sidebands.

error-signal by applying an offset. The amount of offset adjusts the exact signal-recycling
operating point. Currently, it is set to yield a detector tuning of ~ 2.4 kHz.

Figure 3.6 shows the overall open loop gains (upper graph) and phases (lower graph) of
the control loops using the 2f signal (dashed green lines, labelled “acquisition mode”),
and the sideband signal (solid red lines, labelled “run mode”). As for the lock acquisition
a large peak force is necessary, the acquisition bandwidth is roughly twice the run-mode
bandwidth. In return, the run mode has a higher DC gain together with a steeper gain
shape allowing for an improved loop performance and lower noise at high frequencies,
once MSR is locked.

Each of the two loops yield a conditionally stable control servo. In the run mode, even
if only a 20° phase margin is required, a stable loop is only probable for unity gain
frequencies between 24 Hz and 69 Hz. Assuming a targeted unity gain frequency of roughly
40 Hz, the gain margin is limited to [0.5, 2]. Hence, when investigating the sideband error-
signal for tuning purposes, the gain limits need to be accounted for.

89



Chapter 3. Tuning process of a dual-recycled Michelson interferometer

The gain margin of the acquisition mode, comprising almost 2 orders of magnitude, is no
problem in combination with the 2f signal. The 2f signal slope varies by [0.4, 1] within
the frequency range of [1kHz, 5kHz].

3.2.4. Lock automation, and the transition to a tunable detector
Control management

The acquisition of dual-recycling lock is a complex process with three degrees of freedom,
and all error-signals (more or less) depending on all of them. The requirements on the
control loops are different for free oscillating mirrors of the dual-recycled detector, as is
the case before lock acquisition, and successfully caught mirrors. Hence, (at least) two
different control modes exist, that need to be supervised separately, and the transition
between them requires some coordination.

All main longitudinal controls, for lock acquisition and the tuning process, have analog
circuits'®. However, each electronic rack features a digital bus system that allows the
possibility of supervising and setting particular circuit parameters with a LabView based
computer controlled system.

Several LabView user programs (so-called VIs), monitor parameters of particular control
subsystems and rule actions that are necessary for an automated lock acquisition or
operation. For the global management of these parameters, an interface called data
socket server connects the computers running the VIs with the computers connected to
the digital bus system.

The response time of LabView for writing parameters to the digital bus amounts, however,
to ~ 100 ms, and the data sampling rates vary. Furthermore, the writing of more than
one parameter at the same time is unreliable. Thus, for the process of lock acquisition a
micro-controller stage is implemented providing reaction times of 1 ms and a sampling of
several analog inputs with a rate of 1kHz.

Locking sequence

The locking sequence described here assumes the mode-cleaners are already locked. Before
the controlled operation of the dual-recycled detector, all respective mirrors move freely,
excited from seismic noise.

The locking sequence starts with power-recycling. With the DC-lock applied to the
second mode-cleaner (see Section 3.2.1) which sets the laser frequency, the fringe rate
of the power-recycling error-signal is still larger than, but of the same order as that
of the Michelson error-signal'*. The chances to traverse a carrier resonance while the
Michelson mirrors are close to a dark fringe are high. A dark fringe maximises the carrier

3Exceptions are the longitudinal drift control, and the active seismic isolation.
MWithout DC-lock, the fringe rates are ~ 100/s, and 2 to 3/s, respectively.
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contribution to the error-signal, thus, the respective optical gain which enhances the
probability of success when a lock seems possible. As the loop is unconditionally stable,
though, the lock is very robust under various Michelson tunings.

The power-recycling loop can hold the lock until the Michelson traverses its operating
point. Then, the micro-controller activates the fast path of the Michelson loop (see
Figures 3.1 and 3.4), applying the sqrt-circuit for the feedback to the ESDs. 200 ms after
the lock succeeds, the slow path to the intermediate mass is turned on to extend the low

frequency suppression.
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Figure 3.7.: Tllustration of the crossover between the 2f signal (upper graph) and the side-
band error-signal (lower graph). After lock acquisition, MSR is for ~ 200 ms locked to
the position of the zero crossing of the 2f signal (upper end of the double arrow). During
that time, LabView successively increases the signal-recycling modulation frequency,
changing the sideband error-signal amplitude appearing for that current MISR. tuning
(see black stars on the particular curves). For fu cross, the zero crossings of the two
error-signals agree, and the MISR. control is taken over by the sideband error-signal.

If the Michelson interferometer is locked to the dark fringe, the signal-recycling loop
attempts locking as soon as the 2f signal traverses a zero crossing, set by the offset
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introduced in the loop. Currently, the operating point is set to a detuning of ~ 2.4 kHz.
Please consult [Grote03a, Grote03b] for further details about the lock acquisition process.

The tunable detector

For the quasi-continuous tuning process, the signal-recycling control needs to switch from
the 2f to the sideband signal. This process is illustrated in Figure 3.7 showing the 2f signal
in the upper graph, and various sideband error-signals in the lower. The 2f signal is
negatively shifted to yield a zero crossing at the desired MSR tuning for lock acquisition,
~ 2.4kHz. While MSR is locked to the position of the zero crossing of the 2f signal
(upper end of the double arrow), LabView successively increases the signal-recycling
modulation frequency'®, changing the sideband error-signal amplitude appearing for that
current MSR tuning (see black stars on the particular curves). If the operating point
of the sideband error-signal, defined by the zero crossing of the error-signal, crosses the
current MISR. position, the micro-controller switches between the two error-signals, as
indicated by the double arrow.

With the help of a look-up table'®, and using the sideband error-signal, the LabView-
based tuning process continously transfers the detector to the desired tuning'” which is
currently 330 Hz.

3.3. Signal-recycling error-signal

If all of the interferometer control systems are operating, apart from that for the signal
recycling mirror MSR, the remaining uncontrolled degree of freedom is essentially equiv-
alent to the position of MSR. The operating point is then defined by a zero crossing
of the signal-recycling error-signal with respect to the mirror position. For the Pound-
Drever-Hall error-signal (see Figure 1.11 in Section 1.2.2) it could be shown with the
phasor picture that there potentially exist two more zero crossings on top of that at the
carrier resonance, each around one control sideband resonance. Led by this picture, it is
plausible that the signal-recycling cavity error-signal should exhibit similar features: the
modulation frequency determines the crude position of the respective zero crossings of
the error-signal and therefore some of the possible locations to which the mirror can be
locked [Freise00]. This will be investigated in the following section.

5For that large signal-recycling cavity tunings the control loop properties hardly change, such that
varying other parameters is, in principle, unnecessary.

15This look-up table is the tuning script to be generated by simulation (see Section 3.5).

7Currently, at the final detuning the signal-recycling analog filters are replaced by digital filters with
steeper decay in frequency. In order to further increase the SNR, the sideband error-signal is then gained
at the south port, evaluating the beat between the two modulation sidebands at ~ 6 MHz instead of
the carrier and the signal-recycling sideband. To improve the noise performance of the Michelson error-
signal at this targeted detuning, the error-signal is detected with a high-power photodiode instead of a
quadrant photodiode.
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Figure 3.8 shows the magnitude of the error-signal for the signal-recycling feedback loop as
a function of MISR. position and modulation frequency: every horizontal cut corresponds
to the more common, two dimensional error signal magnitude with respect to the MISR
position for a fixed modulation frequency, alike Figure 1.11. The displacement dx of
MSR from the tuned point, is expressed as the angle

dx = 360° - dx /N, (3.1)

with 1064 nm being the laser wavelength Ag. The modulation frequency axis is expressed
as detuning df,, from the modulation frequency 72 x FSRsr which is close to that yielding
a tuned detector'®. The demodulation phase is adjusted to give a symmetric error-signal
shape of highest possible slope at the origin of Figure 3.8'%; this demodulation phase is
kept constant throughout the complete figure. The error-signal has been mapped linearly
to an almost grey-scale-like density to give the clearest qualitative representation of the
data: At the bright parts the error-signal is positive, at the dark regions negative. Each
region has an additional shading to distinguish high from low absolute values. Therefore,
transitions between bright and dark regions with high contrast in general mark zero
crossings. These withdraw for example in the diagonal, horizontal and vertical lines.
Shifting Jfy, slowly from —10kHz to 0 Hz while locking on a zero crossing of one of the
diagonal lines, allows for a continuous sweep of the MISR. position from a large detuning
(0xm = £15°~ £ 10kHz) to the tuned state. The diagonals indicate an almost linear
relation between Jfy, and dxy, with

SXm = £180°/FSRs - 0fm, (3.2)

with FSRgr = 125.2416 kHz being the free spectral range of the signal-recycling cavity.
Equation 3.2 will in the following be used to determine the detector tuning associated
with the MSSR position?® dx,,. In this case, the detector tuning is represented by the
value of Jfy,. Using Equation 3.1 and Equation 3.2, the MISR position will, throughout
this work, be given in meters, Hertz or degrees, depending on the context.

With respect to the dy = 0° axis, the diagonals are symmetric. Moreover, the optical
gain for one constant Jf, is exactly the same on both sides, leaving the sign of MSR
detuning ambiguous?®!.

The direction of the modulation frequency detuning is important. Along the diagonal

8Without power-recycling, a tuned detector would be achieved with any modulation frequency being
exactly any multiple of F'SRsr. The power-recycling cavity resonance, however, shifts this resonance
(see below).

9The slope refers to dx as argument, hence, to the horizontal direction in the displayed parameter plane.

20As shown in Section 2, in particular Equation 2.10, the frequency of detector peak sensitivity does not
necessarily agree with the resonance frequency of the signal-recycling cavity.

2In the classical approach, the sign of the signal-recycling cavity detuning does not change the shape of
the detector’s sensitivity: In a detuned state, the detector enhances only the one signal sideband with
the fitting sign as it does for the control sidebands (Figure 3.11). As both signal sidebands are originally
generated with equal amplitude, it is indistinguishable which one is resonant. Considering quantum-
noise effects, however, the sign of detector detuning becomes apparent in the sensitivity. Positive
signal-recycling cavity tunings only, i.e. dx > 0°, introduce a second, opto-mechanical resonance in the
sensitivity at low frequencies.
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Figure 3.8.: Error-signal magnitude for the signal-recycling feedback loop in the plane
of the MSR position and the modulation frequency, given in detuning Jfy,, from the
72nd multiple of FSRgg. (The demodulation phase is kept constant for all fy,.) The
displacement dx of MSR is given in degrees from the tuned case. The locations of the
zero crossings of the error-signal are at the borders between bright and dark regions.
Continuously transferring the detector from a detuned to tuned state without loosing
lock means to trace one of the diagonal lines towards the origin by slowly sweeping the
modulation frequency.

lines, one has to face a change of error-signal slope sign around df,, ~ +700 Hz, abruptly
pushing the mirror away in an experimental tuning process. This does not necessarily
have to be critical, but complicates the down-tuning process further and should thus be
avoided.

If the sign of the feedback signal is well defined, the ability of the servo-system to hold
the mirror at the operating point is determined by two features of the error-signal: the
absolute value of the slope of the error-signal at the operating point, together with the
given electronic feedback loop gain, sets the unity gain frequency of the control loop, and
thus decides on stability. The range of mirror displacement for which there is a restoring
force on the mirror yields the maximally tolerable rms movement. These properties are
called optical gain and capture range, respectively (see a more detailed definition of the
capture range below).

For each fixed modulation frequency, the only variable left to optimize the error-signal
is the demodulation phase. This phase influences all attributes of the demodulated signal:
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3.3. Signal-recycling error-signal

the exact position of the zero crossing and the capture range of the subsequent feedback
loop, but particularly the slope at the zero crossing.

Figure 3.9 shows the characteristics of some signal-recycling error-signals for the detuned
detector with various demodulation phases. With feedback operating, the error-signal
amplitude corresponds to the force acting on the mirror at the specific mirror position.
The slope of the line that directly connects the respective, local error-signal point with the
zero crossing, determines the overall feedback loop gain in sign and (roughly?? in) ampli-
tude (for a given electronic gain). The allowable gain variation, restricted by the varying
phase margin crucial for loop stability (see Section 3.2.3), determines the valid interval of
capture range. However, to ease the following investigations and keep consistency with
earlier Ph.D.thesis [Grote03b], the capture range will additionally be restricted to the
monotonic region around the respective zero crossing. (For most error-signals, with this
definition, the capture range is equivalent to the monotonic region.)

Even if locked, a certain symmetric rms movement of MSR. around the detuned oper-
ating point will still remain. To hold the mirror at one particular operating point, it is
enough if the rms movement is slightly smaller than the capture range of the error-signal.
In a tuning process, however, the mirror could easily exceed the capture range of the
subsequent error-signal pattern when the shift of this pattern along the MSR position
axis was too large or too fast. This will finally limit the maximum allowed speed of
the signal-recycling cavity tuning. In respect of gain and capture range optimisation,
the error-signal in Figure 3.9, achieved with a demodulation phase of 144°, exhibits the
most promising shape: it is not only the most symmetric signal around the zero crossing,
balancing the capture ranges to both sides of the operating point, but also yields the
steepest slope at the zero crossing.

In the following subsection, the error-signal characteristics will be explained with the
help of phasor diagrams. This will not only allow for a profound understanding of the
signal but also enable the prediction of the progression of signal parameters, crucial for a
successful feedback when tuning the signal-recycling cavity of an operating, dual-recycled
detector.

22The exact gain definition, especially with respect to loop stability, is connected to the definition of
transfer functions, and in principle only holds for the strictly linear region of the error-signal around a
zero crossing. (For the consideration of loop (in-)stabilities, an operating point is in any case necessary,
as the option of being on the wrong side of the error-signal is crucial.) However, in order to sensibly
expand the validity of a transfer function to non-linear regions, one could consider, for example, a
mirror movement with certain excitation frequency fexc and an amplitude excessing the linear region
of the error signal. This will yield a time-dependent feedback signal with main periodicity of fexc, but
containing higher frequency components as well. With Fourier-transformation, one would still be able
to determine the amplitude and phase shift contained in the output signal for this particular frequency.
This amplitude, divided by the excitation amplitude of the mirror movement, would represent the gain.
The slope of a line, as characterised above, should give a good approximation for that gain.

This approach is supported by experimental observations: Some large seismic excitations do not
terminate a mirror lock immediately, but first introduce an up-ringing oscillation lasting for some
seconds. This could be explained by a mirror position so far away from the zero crossing that it still
sees the restoring force of the error-signal, but the gain, associated with the oscillation frequency as
explained above, is too low to provide stability.

95



Chapter 3. Tuning process of a dual-recycled Michelson interferometer

1 T T < T
— — —dem. phase of 184° /.’ '\,\ :
dem. phase of 144° / ~. .
05H — —- dem. phase of 104° .

o

PR -

-1 | 1 Z 1 1

I
o
o

Demodulated signal amplitude [a.u.]

3.5 4 4.5 5
MSR tuning 6x [°]

Figure 3.9.: Characteristics of the error-signal magnitude for a signal-recycling control
sideband frequency dfy, around 3 kHz. The only parameter that differs is the demodu-
lation phase changing the main characteristics as for example the position of the zero
crossing and the corresponding slope.

3.3.1. Sideband properties in the coupled cavities

Looking at the signal-recycling error-signal vector, the carrier’s, and sidebands’ phasors
need to be deduced for various MSR tunings. To do so, the position of the fields’ frequen-
cies within both cavities’ resonance structures needs to be known. Moreover, we would
like to relate the resonances to the signal sidebands. Figure 3.10 displays the frequency
relations of carrier (vertical dashed black line), signal-recycling control sidebands (vertical
solid green lines) and signal-recycling cavity resonance structures (gain and phase curves
in blue) for three signal-recycling cavity tunings. From top to bottom, MISR is positively
detuned, tuned and negatively detuned. In these examples, the modulation frequencies,
being < 72 x FSRgr due to the considerations from above on Figure 3.8, are set such that
at least one of the sidebands is resonant inside the signal-recycling cavity.

With the restriction of §f, being negative, the power-recycling cavity resonance will,
for a start, be neglected. (To provide a complete figure, though, the power-recycling
resonance frequency is marked by the vertical, dash-triple-dotted lines.) Ignoring the
power-recycling cavity, the bandwidths of all signal-recycling resonance structures are
the same.

The targeted detunings are in these examples presupposed to have the same absolute
value. In combination with Jf,, < 0Hz for the sideband frequencies, this requires dfy, to
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3.3. Signal-recycling error-signal

be the same for both detuned cases. The only difference is that for positive detuning, the
upper sideband is resonant inside the signal-recycling cavity, and vice versa.

The resonance frequencies of the tuned signal-recycling and power-recycling cavities are
easily determined by multiples of their free spectral ranges, n FSRsg and m FSRpr
(m,n € Z), respectively. These values, however, do not automatically yield the frequen-
cies of maximal sideband enhancement inside one of these cavities. Due to the cavities’
coupling through the Michelson, the sideband amplitudes depend very much on both
cavity states.

For the process of down-tuning, the power-recycling cavity is constantly resonant for
the carrier light, while the operating point of the signal-recycling loop moves successively.
Figure 3.11 shows the amplitudes of the upper and lower signal-recycling control side-
bands, SBy sr and SB_ sRr, respectively, inside the signal-recycling cavity. In agreement
with Figure 3.8, the modulation frequency varies within an interval of £10kHz around
the aimed 72nd FSRgr multiple, and the MSR is tuned between +15°. Dark regions
indicate a high sideband amplitude.

According to the horizontal line at df,, &~ 700 Hz of Figure 3.8, there emerges one con-
stant frequency of resonance of that same value. As this enhancement is hardly influenced
by the MSR tuning, it must be connected to the power-recycling cavity resonance.

The second frequency of (locally) maximal enhancement varies (almost) linearly with
changing signal-recycling tuning. The maxima roughly obey the expression

fx,sr = fo £ (72 — 6x/180°) - FSRgR, (3.3)

agreeing with the positions of the zero crossings on the diagonals in Figure 3.8. This
again confirms the correlation of sideband resonances and zero crossings.

Please note that for almost all dy, SB+ sr have two enhanced frequency regions. For
the tuned case, dxy = 0°, the frequencies are separated by ~ 700 Hz. The amplitudes
originating from the power-recycling resonance are increased compared to the signal-
recycling resonance. Due to the logarithmic colour scaling of Figure 3.11, this gets only
visible for large absolute values of §y. The amount of enhancement depends on the finesse
of the cavities, and is, with the current setup of GEO 600, higher for power-recycling??.

The influence of the cavity resonances on each other becomes noticeable only if fgg is close
to both cavities’ resonances. The purely power-recycled and signal-recycled Michelson
represent the compound input and output mirror, respectively, to the signal-recycling
and power-recycling cavity, respectively. Thus, if fggr is far from one compound mirror’s
(CM) resonance, the light coming from the opposing recycling mirror and impinging on
the CM will get no phase shift in reflection, and see a high power reflectivity.

As soon as fsg approaches, for example, the power-recycling resonance, the reflection
of the power-recycled Michelson decreases, and the light gets phase shifted at reflection.

23In the commissioning phase of the dual-recycling experiment, the frequency resonant inside the power-
recycling cavity was first misregarded as the sideband frequency generating an error-signal for tuned
signal recycling. The real detuning of the detector, however, was different from the expected, applying
Equation 3.2, by several hundred Hz. This inconsistency was solved and explained by simulations.
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Figure 3.10.: The resonance conditions of the signal-recycling control sidebands inside
the signal-recycling cavity for negative, 0 Hz and positive detector tunings, from top to
bottom. The control sidebands, marked by the green solid lines, are located around the
carrier at roughly the +72nd multiple of FSRgR; the exact frequency depends on the
tuning. The carrier resonance and FSRs of the signal-recycling and power-recycling
cavity are indicated by the dashed, dashed-dotted, and dashed-double-dotted verti-
cal lines, respectively. FSRgr is smaller than FSRpr by approximately 10 Hz. Thus,
+72FSRsr are symmetrically shifted from +72FSRpr towards the carrier frequency.
For each tuning, the upper blue graphs represent the qualitative amplitude enhance-
ment due to the signal-recycling resonance condition, the lower curves the dispersive
phase shift. Fine-tuning the signal-recycling cavity moves the rigid comb of resonances
against the fixed comb of light frequencies: to the right for negative tunings, to the left
for positive.
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Figure 3.11.: Upper and lower signal-recycling sideband amplitudes inside the signal-
recycling cavity, in the plane of MSR tuning and modulation frequency. As in Fig-
ure 3.8, the modulation frequency is given as an offset dfy, from the frequency being
resonant in the tuned signal-recycling cavity, the displacement dx of MSR is given in
degrees from the tuned case, with 180° corresponding to a detuning of half a wave-
length (\g/2 = 532nm) or 125kHz in terms of frequency of peak detector sensitivity.
For the sake of visibility, the fields’ amplitude is logarithmically color scaled. Red (or
dark) regions (in contrast to the bright yellow) stand for a high amplitude. The strong
enhancement at constant frequency (Jfn, ~ 700 Hz) corresponds to the power-recycling
resonance, the other to signal-recycling. For each detuning away from the tuned case,
only one sideband with particular frequency is resonant in the signal-recycling cavity.

The decrease of reflectivity is the reason for the increase of the sidebands’ enhancement
inside the signal-recycling cavity (compare horizontal cuts of the plots). The phase shift
distorts the ideal linearity of the diagonal close to ~ (£1°,700Hz). The same is valid
vice versa if the signal-recycling cavity gets resonant with fsr (compare vertical slices of
the plots). More on the topic of coupled cavities can be found in Section 3.7.

In summary, two main results are obtained with Figure 3.8 and 3.11: (i) Generally, there
is at least a rough coincidence between the MSR tuning yielding a control sideband
resonance inside the signal-recycling cavity, and the zero crossing of the signal-recycling
error-signal generated with that same sideband??. Thus, the relevant error-signal shape
will be located around that resonance. (ii) There exists a sideband frequency region
around Ofy, &~ 700Hz, where the error-signal exhibits extraordinary features, including
a change of gain sign. Thus, targeting a continuous MSR tuning over a wide range,
GEO 600 only uses negative Jfy,.

24The correlation is even exact, the further away from the power-recycling resonance.
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3.3.2. Signal-recycling error-signal explanation with phasor diagrams

In order to explain the properties of the signal-recycling error-signal with phasor dia-
grams, the contributing field phasors appearing at the antireflective coating of the BS
need to be known. Again, the conventions summarised in Section 1.2.1 are to be applied.

Figure 3.12 displays the power-recycled Michelson of GEO 600, with phasors quali-
tatively representing the expected carrier (magenta) and control sideband (cyan) field
properties. The signal-recycling control sidebands enter the optical setup as phase mod-
ulation sidebands. In transmission of a simple MPR. or beamsplitter, all fields remain
unchanged. In contrast to the carrier and Michelson control sidebands, though, these
sideband frequencies are in general, with avoidable exceptions, well outside the resonance
structure of the power-recycling cavity. Thus, they will, inside the power-recycling cav-
ity, experience an anti-symmetric phase shift of almost — and +90° for the lower and
upper sideband, respectively. In the south, the carrier cancels whereas the sidebands get
transmitted with equal amplitude and a common resulting phase?® of —90°. The reason
is the Schnupp asymmetry of the Michelson arms (please compare with Figure 1.15 in
Section 1.2.4).

To yield the phasors at the antireflective beamsplitter coating (BSAR), where the signal-
recycling error-signal for a dual-recycled detector is generated (see Figure 3.1), the res-
onance conditions of the sidebands inside the signal-recycling cavity need to be applied
to all phasors of Figure 3.12. Particularly, the phasors inside the Michelson arms are the
result of the superposition of the phasors coming from west and south. However, the
sideband phasors originating from the west can, for the signal-recycling error-signal, be
neglected:

e They always represent a perfect phase modulation. Any signal-recycling cavity
tuning introduces only an anti-symmetric phase shift and identical reflectivities of
the signal-recycled Michelson. In addition, due to the ideal dark fringe condition,
the carrier at the BSAR is not influenced by the signal-recycling cavity tuning.

e The mathematical operation of vector projection is associative. Thus, the addends
of the superposition can be evaluated separately.

As a consequence, the control sideband phasors from the west give no contribution to the
error-signal phasor, and only those from the south need to be considered.

In case of a tuned detector, displayed in the middle row of Figure 3.10, both sidebands
exactly resonate inside the signal-recycling cavity. Thus, the cavity being at the operating
point, maintains the two phasors’ phases and enhances them equally in amplitude. If
the cavity is slightly shorter, thus negatively detuned, the curves in the middle row of
Figure 3.10 move to the right, to higher frequencies, providing the sidebands with positive
phase shifts, and vice versa.

25 As before (in Section 1.2.4), inside the Michelson all transitions at the beamsplitter, even the common,
are taken into account (different from the introduced convention to neglect common transitions).
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Figure 3.12.: Phasors representing the carrier (magenta) and signal-recycling control
sidebands (cyan) at different points of the power-recycled Michelson interferometer of
GEO 600. The far and end mirrors of the Michelson are omitted for clarity. The thick,
dashed black arrows indicate the propagation direction of the phasors.

Figure 3.13 derives the error-signal vector in case of a tuned-detector configuration, for
five different signal-recycling cavity tunings dz, separately accounted for in five rows. The
three columns from left to right display the P and Q control sideband phasors®® and the
error-signal vector with its real and imaginary component contribution from the single
beats.

Similarly to the Pound-Drever-Hall error signal around carrier resonance, the signal is
completely contained in one quadrature, here P, and absolutely symmetric. The optimal
demodulation phase for best sensitivity is obviously 0°, modulo 180°. For all demod-
ulation phases, the highest error-signal amplitude can be expected around the cavity
linewidth, where the trade-off of sideband amplitude and projection angle to the carrier
phasor (£45°) is best. The error-signal extrema limit the monotonic area around the zero
crossing, and thus each mark an upper limit for the upper and lower capture range.

26Please note that the carrier from west and the sidebands from south, all experience two surface transi-
tions at the BS which in this case are again, consequently, commonly neglected.
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Figure 3.13.: Signal-recycling error-signal vector derivation for a tuned-detector configu-
ration. The five rows contain phasor constellations for different cavity tunings dx, each
indicated at the left. As marked at the top, the three columns from left to right display
the P and Q control sideband phasors (cyan), together with the carrier (magenta), and
the error-signal vector (red), respectively. For a better comprehension, the single beat
contributions to the error-signal’s real and imaginary components originating from P
and Q are represented by dotted and dashed-dotted green vectors, respectively. Tuning
MSR, both control sidebands obey the same resonance condition. The carrier remains
the same as the Michelson is set to the dark fringe condition, keeping out any effect
from the signal-recycling cavity.
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For a positively, far detuned configuration, the phasors for different cavity tunings around
the operating point are comprised in Figure 3.14. The field phasors can be derived
by applying the resonance conditions of the sidebands, covered by the lowest row of
Figure 3.10, to the phasors in the south of Figure 3.12: whereas the lower sideband is
constantly phase shifted by —90°, the upper sideband’s phase goes through a shift from
+90° to —90° as the signal-recycling cavity resonance, while elongating the cavity, passes
the sideband frequency.

The composition of Figure 3.14 is the same as of Figure 3.13. In contrast to before, the
error-signal vector rotates in the complex plane for varying cavity tunings and does not
vanish automatically at sideband resonance, but only for large negative tuning offsets (i.e.
when the cavity gets closer to carrier resonance).

As in the case of Pound-Drever-Hall lock on the sideband (see Section 1.2.2), all error
signal properties, like the gain, the position of the zero crossing (deciding on the exact
detector tuning), and signal shape, completely depend on the choice of the demodulation
phase (as the sideband frequency is fixed). Aiming for an error-signal with high gain and
a zero crossing near the sideband resonance tuning, a demodulation phase of ® ~ (0° is a
good choice.

For very far detunings, the lower sideband’s amplitude is so small that it may be neglected.
Then, & = 0° yields a zero crossing exactly at the tuning of sideband resonance and a
most symmetric error-signal with highest gain. The maximum demodulated error-signal
amplitude will again, like in the tuned case, occur close to the cavity linewidth, where
the upper sideband’s amplitude is attenuated by v/2, and the projection angle is +45°,
reducing the parallel projection by factor v/2. With different ®, the range before reaching
maximum (or minimum) error-signal improves on one side, but simultaneously gets worse
on the other. As the rms motion of a mirror is symmetric around its mean position,
the capture ranges to both directions are equally important. A symmetric error-signal
accounts for both at the same time. More on criteria for error-signal optimisation can be
found in Section 3.5.1.

The closer the intended signal-recycling cavity’s operating point, dz,, to the tuned state,
0°, i.e., the carrier resonance, the bigger the influence of the lower sideband. In particular,
the error-signal vector is longer for dz > dxy, and shorter for dz < dxy, (compared to
configurations with larger dz,,). To keep the zero crossing close to the sideband resonance
and ensure a decent gain within the given possibilities, the demodulation phase would need
to follow and rotate clockwise. Another effect of the increasing power of the lower sideband
is that the error-signal looses symmetry, reducing the capture range towards lower MSR.
tunings for the benefit of the upper capture range. If aiming for highest symmetry, at least
close around the zero crossing, the position of the zero crossing will be shifted with respect
to the sideband resonance to the opposite side from tuned. Thus, the sideband frequency
offset 0fy, from carrier resonance does not necessarily agree with the detector tuning, even
if the demodulation phase was optimised for best error-signal symmetry or highest gain
(which are both well accessible in the experiment; a technique to determine the signal-
recycling error-signal shape in a closed loop, together with simulations, is discussed in
Section 3.6.2).
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Figure 3.14.: Signal-recycling error-signal vector deduction for a far positively detuned
detector configuration. The figure structure is the same as in Figure 3.13. While the
MSR position increases, however, only the upper control sideband passes the signal-
recycling resonance; the lower remains constant. Consequently, the error-signal vector

rotates clockwise in the complex plane.
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Figure 3.15.: Deduction of the signal-recycling error-signal vector for far negative MSR
tunings. The figure is organised the same as the previous two. Here, the upper control
sideband stays constant while the lower goes through a resonance when the MSR
tuning increases. Again, the error-signal vector rotates downwards, but on the positive
imaginary half of the complex plane.
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The signal-recycling error-signal for far negative detunings is deduced in Figure 3.15,
which is organised the same as Figure 3.14. The role of the sideband phasors are, this
time, switched: whereas the upper sideband from the south of Figure 3.12 is attenuated
and constantly rotated by +90° for all dx, the lower sideband goes through a resonance,
rotating from 4+90° to —90°, as the signal-recycling cavity is elongated (compare with
first row of Figure 3.10).

Accounting again first for the lower sideband only, the error signal phasor is exactly the
same as for positive detuning, but mirrored by the real axis to the positive imaginary
side of the complex plane. Thus, again a demodulation phase of ® = 0° (modulo 180°) is
best, and for this @ all other error-signal characteristics from above, like symmetry, zero
crossing position, gain and capture ranges, are transferable.

In contrast to the positive detuning example, however, the upper sideband cancels the
lower sideband for high MSR detuning, which is, again, the side closer to carrier reso-
nance. With respect to the MISR position offset from the tuned state, the error-signals for
the positive and negative tuning side are anti-symmetric and exhibit, for all demodulation
phases, the same main observable properties:

e The zero crossings are symmetrically separated from the tuned MSR position.
Thus, the sensitivity curves are (classically) indistinguishable.

e The gains have same size and sign. Thus, the feedback loops will work equally well
for both tuning signs.

e All symmetry aspects, especially the capture ranges, are the same, but with
6xr = O0Hz as “mirror” axis. Thus, observing the error signal symmetry exper-
imentally, by tuning either the sideband frequency or the signal-recycling cavity,
will give the same answer for both tuning sides.

All three features are visible in the overview plot of the signal-recycling error-signal,
Figure 3.8, featuring a demodulation phase of 0°. In agreement to the phasor picture, the
closer df, to O Hz, the larger the offset of the zero crossings from an ideal, linear diagonal,
towards oy = 0°.

With the understanding, gained by the phasor picture, the qualitative progression of rele-
vant parameters of the signal-recycling error-signal, while tuning MISR,, can be predicted.
The tuning side is not relevant for this.

The best demodulation phases for very far detunings and the tuned detector, for ex-
ample, are expected to be the same. While down-tuning, however, The power of the
non-resonant sideband enhances and gains influence on the error signal phasor. As one
consequence, the demodulation phase will monotonically rotate, by up to £90°, to main-
tain a symmetric error-signal and high gain®’. A second effect is an elongation of the
error-signal vector length, which in general results in an increase of the optical gain.

The capture range is, in principle, limited by the bandwidth of the signal-recycling cav-
ity. It is the same to both sides of the zero crossing, for far detunings and a demodulation

2TThe experimental direction of rotation, however, could be opposite depending on the phase shifter.
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phase yielding a symmetric error-signal. The lower the tuning, the smaller the capture
range in carrier-resonance direction and the larger to the other side.

These features of the signal-recycling error-signal need to be considered during the devel-
opment of a lock-acquisition and tuning procedure for the detector.

3.4. Michelson error-signal

To get an idea of how the Michelson error-signal vector will evolve when tuning the signal-
recycling cavity, we can again consult the phasor picture to obtain qualitative answers.

Let us for simplicity, like in Section 2, assume a perfectly symmetric Michelson, except
for the Schnupp asymmetry, and that the Michelson control sidebands are resonant inside
the power-recycling cavity. Furthermore, the Michelson is locked to the dark fringe and
remains at that operating point for any signal-recycling cavity tuning. Thus, only small
deviations from the dark fringe need to be considered to determine the change of relative
length and orientation of the error-signal vector.

Both simplifications mean, we can presume phasors like in the lower right quadrant of
Figure 1.15 at the south port of the beamsplitter: with very small deviations from the
dark fringe, some carrier light will appear in the south, and the control sidebands’ phase
and amplitude will negligibly change.

On these phasors, the resonance conditions as indicated in Figure 2.4 have to be applied.
To determine the orientation of the error-signal vector, it is sufficient to trace the con-
trol sidebands’ “snapshot” where the respective projections on the carrier annihilate. In
Figure 1.15, this corresponds to the upper phasors in the lower right quadrant.

Figure 3.16 qualitatively displays the phasors of all light fields contributing to the Michel-
son error-signal, for several non-negative signal-recycling cavity tunings, increasing from
top to bottom. The particular tuning is indicated on the very left. The left set of phasors
represents the light fields at the south port of the beamsplitter with the signal-recycling
resonance condition applied. In the set on the right, the control sidebands’ phasors are
evolved in time such that their projection terms regarding the carrier cancel. The phasors’
rotation is indicated by the dashed black arrows.

In the case of a tuned detector, the lower and upper control sideband gets a positive and
a negative phase shift, respectively, due to the signal-recycling cavity transfer function;
their amplitudes are equal. To achieve an annihilation of the projection terms onto the
carrier, both control sidebands have to evolve forward in time, to reach the position
shown on the right of the first line. To progress in time is, however, equivalent to a
negative demodulation phase (see footnote 24 on Page 30). The demodulation phase is
equal to the phase shift of the lower sideband. With the given initial sideband pointings,
it corresponds to the particular phase shift introduced by the signal-recycling cavity to
the upper sideband.
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Figure 3.16.: Deduction of the Michelson error-signal vector characteristics for several
non-negative MISR. tunings. The figure applies the resonance conditions, contained in
Figure 2.4, to the phasors of the upper picture situated in the lower right quadrant
of Figure 1.15. Figure 3.16 is organised as follows: From top to bottom, four signal-
recycling cavity tunings are accounted for, labelled on the very left. The left set of pha-
sors qualitatively displays the phasors expected in the south due to the signal-recycling
resonance conditions. In the right set, the control sideband phasors are evolved such
that the projection terms cancel. The dashed black arrows indicate the rotation. Their
lengths and orientations relate to the amount and sign of the associated demodulation
phase, respectively.
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3.4. Michelson error-signal

If the signal-recycling cavity is detuned, three effects occur that compete in terms of
demodulation phase evolution (please consult Figure 2.4).

e Michelson sideband phases With increasing signal-recycling cavity detuning,
both the phases of the two control sidebands and the difference of the sidebands’
phase shift decrease monotonically. For very low (< 200Hz) and very large (>
3kHz) MSR tunings, the gradient of this difference is negligible, but in between,
the lower sideband’s phase shift decreases much faster than for the upper. Around
the resonance of the lower sideband, the gradient of the phase shift difference is
maximal.

Assuming equal sideband amplitudes of anti-parallel phasors, for simplicity, the
demodulation phase has to be half of that phase shift difference to make them
cancel again®®. This means, the absolute demodulation phase should decrease with
the same characteristics as the phase shift difference, very slightly for low and high
detunings, and fastest around the lower sideband resonance.

e Michelson sideband amplitudes With increasing signal-recycling cavity detun-
ing, the ratio of the lower and upper sideband amplitudes increases up to roughly the
lower sideband resonance, then again decreases to 1. In a particular low-detuning
region (here, roughly < 500Hz), the increase is almost linear.

Acting on the assumption that the sidebands already evolved to be anti-parallel
(with the considerations from the item above), we see that they do not cancel any
more with differing amplitudes. The sum of their components regarding the carrier
only vanishes if the carrier in this constellation is perpendicular. Else, the absolute
value of the component, regarding the carrier, of the lower sideband exceeds that of
the upper. Depending on whether the carrier phasor pointing is closer to the upper
or the lower sideband phasor, the sidebands need to evolve from this anti-parallel
state backwards in time or with time, respectively, to yield vanishing projection
terms. With a fixed carrier phasor pointing, the larger the amplitude ratio, the
larger the required time evolution on top of that necessary for anti-parallelism.

e Carrier phase The phase of the carrier decreases with increasing detuning. Dif-
ferent from the lower sideband, however, the slope of the dispersion is maximal for
a tuned detector and decreases monotonically for increasing detuning. Thus, the
absolute phase shift of the carrier is, for low detunings, much larger than each of
the two sidebands.

Due to this carrier phasor rotation, the pointing will for all detunings be closer
to the lower control sideband phasor (see the phasor pictures in the second column
of Figure 3.16). This, considering the item above, requires a progression of the
sidebands in time, thus, an additional decrease of the demodulation phase. How-
ever, the higher the detuning, the fainter this effect will become as the two control
sideband phasors’ phase shifts sooner or later approach —90° (as well as for the
carrier).

28Tf parallel phasors are rotated by different amounts, during (positive or negative) time evolution both
need to cover an equal rotation of half of their phase difference to again reach parallelism, even though
they will not end up with the same absolute pointing. The same holds for anti-parallel sidebands.
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Combining all three aspects, the demodulation phase yielding maximal (or minimal)
optical gain for the Michelson will start with a negative value, then qualitatively first
decrease, and then increase until it asymptotically converges to 0°. The decrease takes
place as long as the carrier sideband-phasor pitch towards the lower sideband phasor,
and the increase of amplitude ratio of the sideband phasors dominate the decrease of the
absolute phase shift difference discussed in the first item.

The “crossover” detuning frequency for which the dominating effects change, delicately
depends on the exact resonance conditions of all light fields. For the sake of clarity,
Figure 3.16 only qualitatively follows these conditions. However, the example detunings
very well illustrate the considerations made above.

If the signal-recycling cavity detuning is roughly around half the cavity bandwidth for
the carrier (phasor diagrams in the second row of Figure 3.16), the carrier gets rotated by
~ —45°. As the sideband phases only slightly decrease compared to the tuned case, by
roughly the same amount, and already recognizably differ in amplitude, this necessitates
a larger anti-clockwise rotation of the upper control sideband, compared with the tuned
case, thus, a positive time evolution. As the demodulation phase value is just opposite
to the direction of the upper sideband’s phasor rotation, it consequently decreases.

Once the carrier phase shift of ~ —90° is achieved, like at higher tunings, the appropriate
demodulation phase depends on the combination of the control sideband phase shifts
and their relative amplitudes. Around the lower sideband resonance (phasor diagrams
in the third row of Figure 3.16), its phase shifts linearly with highest slope, whereas the
amplitude ratio with the upper sideband is already at its turning point. Thus, the effect
supporting an increase in demodulation phase steadily takes over.

The higher the detector detuning, the clearer the demodulation phase evolution. The
phasor diagrams in the last row of Figure 3.16 illustrate that the demodulation phase
increases asymptotically to 0°.

For low detunings, the length of the error-signal vector (and with it the optical gain) is
expected to be dominated by the carrier amplitude. However, when the lower control
sideband reaches signal-recycling resonance, the carrier amplitude is already significantly
reduced. Thus, the optical gain change is at high detunings mainly influenced by the
sidebands’ resonance conditions.

In addition to the fact that the phasor diagrams only qualitatively display the resonance
conditions inside the signal-recycling cavity, there are two further aspects to keep in mind.

The direction of demodulation phase evolution depends on whether the upper or the
lower sideband gets resonant when tuning the signal-recycling cavity positively. Here, we
assumed GEO 600-like lengths and resonance of the control sidebands inside the power-
recycling cavity. The resonance condition inside the signal-recycling cavity may differ for
either different lengths or different control sideband frequencies.

The statement that the demodulation phase for the tuned detector is negative and
equivalent to the phase shift introduced to the upper sideband by the signal-recycling
cavity is only correct with respect to the initial sideband phasors’ orientation yielding
maximum (or minimum) optical gain in the simple-Michelson case. In general, the de-
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modulation phase offset around which the evolution, described above, takes place depends
on the exact traversed optical pathlengths modulo the sideband wavelength.

3.5. Tuning script generation

When considering a tuning script, we presume a detector that is already locked. That
means, all relevant degrees of freedom are stabilised by a control loop using a characteristic
error-signal. In particular, the signal-recycling mirror (MSR) is captured at, and fixed to
a certain tuning. In order to change this tuning, the idea is to shift the error-signal such
that the zero crossing is off-set by a certain amount.
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Figure 3.17.: Signal-recycling error-signal amplitudes for different tuning steps. The
error-signals are generated with control sideband frequencies differing by 50 Hz. The
demodulation phases are set to yield the most symmetrical shape around the zero
crossing, and are in this case the same. The solid, green line describes the theoretical
error-signal shape with which MSR is currently locked. Thus, the mirror is expected
to be located on average at the respective zero crossing. This MSR position is in
addition marked by the dashed-dotted, magenta vertical line. Switching abruptly to
the other sideband frequency, the new error-signal, indicated by the dashed, red line,
comes across the mirror shifted from the new operating point. As this MSR position is
still within the monotonic region of the new error-signal, the feedback signal will drive
the mirror towards the new zero crossing with a force proportional to the particular
error-signal amplitude. This movement is indicated by the black arrows.

Figure 3.17 exhibits an example of two theoretical error-signal amplitudes, depending
on the MSR tuning, for different tuning steps. The presumed current error-signal, de-
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termining the present mirror tuning, is represented by the solid, green line. It pins the
MSR position to its zero crossing, which is indicated by the dashed-dotted, vertical ma-
genta line. The dashed curve exhibits the error-signal amplitude yielded with a control
sideband frequency offset of 50 Hz and the same demodulation phase. If the error signal
abruptly switches to the dashed curve, MSR has a sudden offset from the new zero cross-
ing, the newly set operating point. As the mirror is well within the monotonic region of
the dashed graph, the control loop should be able to drive the mirror from the current
to the desired position. Neglecting the frequency dependency of the electronic filters of
the control loop, the applied force is proportional to the particular error-signal amplitude
for each temporary MSR. position. Thus, the overall energy transferred to the mirror
on its way to towards it new equilibrium position is proportional to the integral of the
error-signal between the current and the future mean mirror position. The associated
movement is indicated by the black arrows.

A new zero crossing position can in principle be obtained by altering either the demodula-
tion phase or the control sideband frequency generating the signal-recycling error-signal.
The deduction of the error-signal with the projection picture makes, however, clear that
a change of only one parameter will also deform the error-signal shape. This may, beyond
a certain tuning interval, result in a signal that leads to an unstable control loop, either
because of a too big alteration of the optical gain or a (one-sided) reduction of the capture
range.

Thus, to enable an MSR. tuning over a wide range and from any arbitrary initial position,
for every signal-recycling sideband frequency (i) a demodulation phase should be set, to
ensure a satisfying error-signal shape, and (ii) any gain change should be compensated, to
maintain control loop stability. The optimal parameter values that are distributed to the
phase shifter and the electronic gain, respectively, need to be determined by simulation.

In case of a successful MSR tuning, the resonance conditions of the Michelson control
sidebands change as a consequence (a detailed discussion on this can be found in Sec-
tion 2). This will also alter the properties of the respective error-signal. Thus, for every
single signal-recycling cavity tuning, the demodulation phase and gain of the Michelson
control loop need also to be determined?®’.

In the following subsections, the criteria for an ideal error-signal will separately be intro-
duced for the signal-recycling and the differential Michelson control loop. Subsequently,
the simulation results for the parameters, characterising the optimised error-signals, are
presented.

The power-recycling feedback is hardly influenced by the signal-recycling cavity tuning. Thus, the
respective error-signal parameters can remain the same.
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3.5.1. Signal-recycling control-loop parameters
Optimisation criteria

As explained above, a tuning process switches the signal-recycling error-signal amplitude
from one shape to a different, off-set one. The signal-recycling mirror thus has to be
moved towards and held at the new operating point. For this, one requirement for the
subsequent error-signal is to comprise the current MSR position within its capture range,
as plausible from Figure 3.17. The rms motion of MSR does not limit the maximum
possible step size:

e As the detector is already locked, all mirrors are, except for the limited open loop
gain, at rest. The free hanging MSR has a remaining rms motion of ~ 400 nm.
Figure 3.18 shows the linear spectral density of the experimental feedback signal
to MSR, calibrated to the mirror displacement. The motion is dominated by the
peak around 0.25 mHz caused by feedback noise. This rms value is suppressed by
the factor of the open loop gain of the control loop, ~ 10* and 10° for the acquisition
and run mode, respectively (see Figure 3.6). For MSR, this means a residual rms
motion at equilibrium of ~ 40 pm and 0.4 pm, corresponding to 10 Hz and 0.1 Hz,
respectively. This is negligible compared with the signal-recycling cavity linewidth
of 400 Hz that determines the extent of the monotonic error-signal region around
the zero crossing.

e During the process of switching between error-signal parameters, for a short time
in the order of maximally ~ 100ms, the gain parameter might not match the
corresponding modulation frequency. For the demodulation phase the response
time is even longer, ~ 1s (due to an integrator). However, if the tuning steps
are small enough, the gain and demodulation phase of neighbouring modulation
frequencies should not limit the performance. The probability for the mirror to
extend its movement during the switching process is, thus, fairly low.

Whereas the capture range only limits the tuning step size, the control loop stability,
depending on the optical gain, is an imperative requirement.

Unattached from that, the error-signal shape can change if one or more of the other de-
grees of freedom alter due to a limited gain of the respective control. If the signal-recycling
gain or capture range are affected too much, a lock loss can occur either due to instability
or because of an unfavourable position of the MSR within this altered error-signal. In
a worst case scenario, even the zero crossing may vanish completely. To guarantee a
fairly predictable error-signal, its dependency on other degrees of freedom needs to be
investigated and minimised, if possible. First simulations (see 2.3.3 in [Grote03b]) for
selected examples of signal-recycling demodulation phases identified the differential mis-
alignment of the Michelson, the offset of the Michelson from a perfect dark fringe, and
the offset of the power-recycling cavity from carrier resonance, to be of relevance for the
signal-recycling error-signal shape. Thus, besides making the control loop as high-gain
as possible, the goal is to find demodulation phases for which the influences are minimal

113



Chapter 3. Tuning process of a dual-recycled Michelson interferometer

Hz|

MSR displacement [m/

~14

10

10" 10’ 10
Frequency [Hz|

Figure 3.18.: Signal-recycling feedback calibrated to MSR displacement.

or at least uncritical. The intersection of these demodulation phases yields the allowed
range applicable for a tuning script. In addition to the degrees of freedom mentioned
above, the signal-recycling error-signal under the misalignment of MISR. is observed.

Such an investigation is quite extensive to be carried out for each particular signal-
recycling modulation frequency. In contrast, it is fairly easy to determine demodulation
phases that specify particular error-signal properties. Thus, the error-signal susceptibility
to other degrees of freedom is evaluated for selected frequencies only. The result is used
to correlate the demodulation phases, yielding particular error-signal characteristics, to
the error-signal susceptibility to other degrees of freedom?°.

Categories of error-signal properties are gain, capture range, energy transfer3! and sym-
metry. The relevance of these properties for a success of a tuning step decide on the way
of optimisation:

e In the experiment, the overall feedback gain is set to yield a unity gain frequency at
~ 40 Hz. Thus, it may only vary by a factor of [0.5, 2] to ensure a phase margin of
the loop greater than 20°, and guarantee a stable control (compare with Figure 3.6).
In principle, if the optical gain change between two tuning steps is known, the
electrical counterpart can be set to the opposite direction to compensate for it.
However, the larger the optical gain, the better the signal-to-noise ratio of the

30This approach is legitimate, as a change of a particular property of, for example, a symmetric error-
signal can be anticipated to be less essential for a good feedback performance than the same change
applied to an already very asymmetric error-signal.

31The difference between gain and energy transfer becomes clear below.
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error-signal?.
In the simulation, this criterion is met by simply identifying the error-signal with

the highest slope at the zero crossing.

e A large capture range enables large tuning steps and thus a fast tuning3. A fast
tuning is desirable for several reasons: the detector is less stable during the tuning
process than in the final state, as the auto alignment loop of MSR . is only switched
on at the targeted tuning. Secondly, large seismic events may interrupt the detector
lock during data taking. Re-acquiring the intended sensitivity shape in a short time
minimises the effect on the duty cycle of the detector.

The capture range is, in agreement with [Grote03b], defined as the monotonic
region around the considered zero crossing. Thus, the local minima and maxima
around the zero crossing are equivalent to the limits of the capture range. The
region of the capture range with smaller tunings with respect to the zero crossing
will henceforth be called negative or lower (one-sided) capture range, whereas the
upper or positive (one-sided) capture range is situated on the positive tuning side.

The intended, continuous tuning in both directions equally adds weight to both
capture-range sides. Thus, to prevent an optimisation of one side at the expense of
the other, the smaller one-sided capture ranges of the error-signals need to be com-
pared. The largest among them points, in this respect, to the optimal demodulation
phase.

e The maximally possible energy transfer on one side of the zero crossing is pro-
portional to the absolute integral of the error-signal amplitude between the zero
crossing and the respective capture range limit, summing up the force applied on
a mirror during a movement. Applying a new tuning step, the ideally resting mir-
ror is dragged from its current position by providing it with the according kinetic
energy. If the kinetic energy gained on the one side of the error-signal exceeds the
one that is withdrawn on the other, the mirror may leave the capture range of the
error-signal and be lost. Thus, the tuning step is limited to the range within which
the energy transfer of the steeper side of the error-signal does not exceed the max-
imally possible transfer of the other side.

To yield maximum tuning steps, again, the smaller integrals of each error-signal
are compared among each other to find the maximum, indicating the appropriate
demodulation phase.

e As the tuning should work equally well to both directions, a certain symmetry of
the error-signal shape will be required (see Figure 3.17 for illustration).

Perfect point-symmetry of a function f(z) around z¢ is defined as f(xg + a) —
f(zo) = =(f(x0 —a) — f(zg)), Ya. Thus, the deviation of each pair of amplitude,
with same position offset from the zero crossing, needs to be evaluated. As only the
symmetry within the capture ranges is of interest, the contributing pairs of ampli-

32With the new, high-reflective MPR, the control sidebands at the BSAR are very weak. The cor-
responding, decreased SNR of the signal-recycling error-signal was discovered to limit the detector
sensitivity.

33The switching time between tuning steps has a lower limit of ~ 100ms at GEO 600.
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tudes have to sit closer around the zero crossing than the smaller one-sided capture
range. The error-signal possessing the smallest mean deviation is the targeted one.

The exact knowledge of the MISR. position yielded by the specific combination of side-
band frequency and demodulation phase, is meaningless regarding the success of a tuning
step. However, it gets important when choosing a particular frequency of peak sensitiv-
ity. Then, the modulation-frequency/demodulation-phase/gain parameter combination
should be fine-tuned to obtain the intended MSR. position. Consequently, the MSR
position, corresponding to the particular parameters, is also recorded.

Simulation methods

This subsection describes how the signal-recycling error-signals were generated and eval-
uated with respect to the properties listed above, for every single signal-recycling control
sideband frequency. The approach to the susceptibility to imperfect other degrees of
freedom is explained afterwards.

For the investigation and optimisation of particular error-signal properties, all degrees of
freedom (except for the signal-recycling tuning) are assumed to be perfect.

One consequence of Equation 1.20 in Section 1.2 is that the complete information on
the error-signal amplitude is gathered by knowing both error-signal-vector components
in an arbitrary ortho-normal basis. The fixed coordinate system only defines a constant
demodulation phase offset. Thus, in order to save memory and calculation time, it is
enough to generate two simulated error-signal data streams for one sideband frequency,
demodulated with any pair of demodulation phases separated by 90°. This was done with
FINESSE.

To ease the subsequent analysis of the error-signal, the MSR tuning interval and steps
were uniquely set for all targeted detector tunings. Hence, as these tunings comprise a
large range of roughly 5 kHz, the MSR. tuning requires at least the interval of [0 Hz, 5 kHz|,
including a margin not to miss any possible error-signal feature at the detector tuning
edges.

To cover all targeted detector tunings, the modulation frequency is varied in a second
axis. The FINESSE script for this specific simulation can be found in Appendix B.1.1.

For each MSR tuning, the signal value obtained with the lower demodulation phase can
be regarded as the real part of I, , the other as the imaginary part. The error-signal
amplitude for the particular mirror tuning for any arbitrary demodulation phase ® can be
acquired from I, by any of the equivalent operations given between Equation 1.18 and
1.20. The demodulation phase variation, and any of the following parameter optimisations
were done with MATLAB. The respective MATLAB script is given in Appendix B.2.2.

The tuning steps for the control sideband frequency Jf,, were set to 25 Hz, and to 1.44 -
1073°=1Hz for the MSR position dx (see Appendix B.1.1). The increments for the
demodulation phase ® were 1° (see Appendix B.2.2). The step sizes are justified as
follows:
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e Guided by the capture ranges of ~ +200 Hz, indicated in Figure 3.19 (see explana-
tion of the figure at the end of this paragraph), and the negligible rms movement
remaining (see subsection above), a modulation frequency tuning step of less than
25 Hz was not regarded to be necessary to guarantee a successful tuning process. As
the peak sensitivity of the current GEO 600 detector gets worse by 10 % only +90 Hz
away from the peak frequency, an increment for the adjustability of the MSR. po-
sition of 25 Hz seems justifiable with respect to targeting a particular gravitational
wave source.

e For the mirror position step size used in the FINESSE simulation, the crucial require-
ment is to be able to well determine the relevant error-signal properties like zero
crossing, gain and capture range. The structure of the error-signal extends to the
bandwidth of the signal-recycling cavity. Thus, the step size of 1 Hz being 1/400 of
this bandwidth should resolve the error-signal accurately enough.

e To determine the necessary resolution of the demodulation phases, the correspond-
ing deviations of the error-signal parameters gain and capture range need to be
known. Coarse quantitative investigations made obvious that the amount of pa-
rameter change depends very much on the demodulation phase itself. The focus
was set to demodulation phases yielding error-signals with decent symmetry. For
most symmetric error-signals, the gain varies by far less than 1%, and the cap-
ture ranges by not more than 11 Hz if the demodulation phase changes by 1°. The
left and right pictures of Figure 3.19 display the error-signal for Jf,, = 4kHz and
Ofm = 300 Hz, respectively. Each demodulation phase @ is determined to yield high-
est error-signal symmetry close around the zero crossing. Also shown are the curves
demodulated with a demodulation phase deviation of +1°. The signals are hardly
distinguishable from each other by eye, even for small Jf,,. The blue crosses mark
the capture range limits. Please note that although the units of the error-signal
amplitudes are arbitrary, the relative differences of the error-signals for varying f,
and ® should agree with the experiment.

The MATLAB script successively evaluates the error-signals for each control sideband
frequency. An overview over the single steps can be gathered from the content at the top
of the script. The error-signals are evaluated and optimised corresponding to the consid-
erations above, on Page 114 and the following. More explanations on the mathematical
implementation can be found in the comments below the respective MATLAB script in
Appendix B.2.2.

The optimal demodulation phases and corresponding parameters are used for further
evaluation regarding the susceptibility to other degrees of freedom. An accommodation
to the experiment is still necessary (see below).

The influence of other degrees of freedom on the signal-recycling error-signal shape is
investigated separately for each degree. The FINESSE output file from above serves
as reference for the comparison with the other detector setups, where particular de-
grees of freedom have an offset from the ideal states of Appendix B.1.1. Ten detector
configurations with different modulation frequencies, equally spread in the interval of
Ofm € [0kHz, 4kHz|, are considered.
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Figure 3.19.: Signal-recycling error-signal for a Jf,, = 4kHz (left) and df,, = 300Hz
detector configuration (right). The demodulation phase ® for each configuration yields
the most symmetric curve around the zero crossing, within a region limited by the
smaller capture range. Besides, each picture also displays the error-signal with a de-
modulation phase deviation of +1°. The blue crosses mark the respective capture range
limits around the (positive) zero crossing. (Negative tunings exhibit exactly the same
features and are, thus, neglected.)

The introduced offsets are larger than the expected rms offsets of the operating detector
(at least slightly). The differential misalignment of the Michelson end mirrors M Ce and
MChn, defined according to [Grote03b] as a differential tilt or an anti-clockwise rotation
of both mirrors at the same time, is set to 100 nrad, the same as the rotation of MPR.
As the MSR misalignment is not controlled during tuning, the simulation uses 1 urad.
The differential longitudinal rms motion of the Michelson end mirrors is assumed to be
100 pm each. As previous simulations already showed a difference in the error-signal shape
depending on the sign of the differential offset, two separate simulations, accounting for
different offset signs, are performed. The offset of the power-recycling cavity from carrier
resonance is set to 10pm. A detailed justification for the chosen values is given in the
comments below the MATLAB script in Appendix B.2.1 that evaluates and compares the
relevant error-signal properties.

Similarly to Appendix B.2.2, for each of the ten modulation frequencies the zero crossings,
gains and capture ranges of each complex error-signal, projected onto different demod-
ulation phases, are determined. If all parameters are calculated, the gain ratios to the
reference, and the upper and lower capture range deviations from the reference are com-
pared. For each kind of altered degree of freedom, the demodulation phases, yielding best
agreement with the reference error-signal, are collected. The most extreme demodulation
phases among them span the interval of demodulation phases yielding least susceptible
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error-signals. More details on the evaluation can be found in the comments regarding
Appendix B.2.1.

Simulation results

In the following, first some particular examples of the simulation results for the signal-
recycling error-signal susceptibility to other degrees of freedom will be presented. The
demodulation phases optimising for particular error-signal properties are afterwards di-
rectly related to these results.

Figure 3.20 presents the susceptibility of the error-signal gain and capture range depend-
ing on the demodulation phase, for a detuning of ~ 3kHz. The upper and lower picture
display the gain and capture range deviations, respectively, from the error-signal with
perfectly controlled degrees of freedom. (The shown demodulation phase interval is de-
termined to generate a zero crossing within +£250 Hz around dx,y,, for all examined degrees
of freedom.)

For the gain ratio, the gains are normalised by the gain of the error-signal of a perfect
detector, where the same demodulation phase is applied. Each curve represents the
alteration of one particular degree of freedom. In the lower picture, the solid and dashed
lines display the deviation of the lower and upper capture range limits, respectively. The
reference capture range limits are subtracted from the other, corresponding limit positions
such that positive values for the upper capture range, and negative values for the lower
capture range represent an enlargement of the respective, one-sided capture ranges.

The capture range changes due to offsets of the various degrees of freedom are obviously
uncritical. The offsets from perfect dark fringe, and power-recycling cavity misalignments
are the only degrees of freedom that reduce the lower one-sided capture range, but only
by a few Hertz. In all other cases, the one-sided capture ranges are rather enlarged. The
minimal capture range changes occur around 150°.

With the exception of the power-recycling cavity longitudinal offset, the gain ratios are
within the interval required for stability for all considered demodulation phases. The

least varying gains®* are achieved around 135°.

None of the demodulation phases yielding either a minimal gain or capture range devi-
ation, lies in the critical gain ratio region of longitudinal power-recycling cavity offset.
Thus, the demodulation phase interval between the maximum and minimum of these
phases should yield an uncritical error-signal in terms of control stability.

For the other considered modulation frequencies targeting a particular detuning, the
graphs look qualitatively the same with the exception that the demodulation phase with
the least change of capture range may lie in a region which is forbidden by the gain change

34Please note that MSR misalignment hardly influences the error-signal gain, and rather enhances the
capture range. However, misaligning MSR on purpose in order to improve the error-signal for the
tuning process seems no real option. Recently we see unexplained power fluctuations if MISR is not
well enough aligned during downtuning.
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Figure 3.20.: Susceptibility of the signal-recycling error-signal, apparent with Jf,, =~ 4 kHz,
to the deviations of various degrees of freedom from their nominal operating points.
The upper and lower pictures display the gain ratios and capture range deviations,
respectively, regarding the reference error-signal utilising the same demodulation phase
but perfect other degrees of freedom. In the lower picture, the solid and dashed lines
display the deviation of the lower and upper capture range limits, respectively. Shown
are only the results for the demodulation phases that create a zero crossing of the
error-signal within an interval of £250 Hz surrounding dxy,.
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due to the power-recycling cavity longitudinal offset. The only modulation frequency
where the deviations exhibit significantly different features is the one used for a tuned
detector. Figure 3.21 displays the respective simulation results. Here, the capture ranges
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Figure 3.21.: Susceptibility of the signal-recycling error-signal, targeting a detector tuned
to 0Hz, to the deviations of various degrees of freedom from their nominal operating
points. Alike Figure 3.20, the upper and lower picture show the gain ratio and capture
range deviation referring to the error signal with perfect other degrees of freedom. Due
to the symmetry of the resonance conditions of the contributing light fields, the interval
of uncritical demodulation phases is quite large.

and gains are so insensitive, as the error-signal structure around the carrier resonance is
observed, where the upper and lower control sideband equally beat with the carrier, and
the phase and amplitude relations are almost ideally symmetric.

The demodulation phase intervals determined for each of the ten modulation frequencies
will in the following help to decide which particular error-signal shapes stay most identical
under a change of other degrees of freedom.

Before, however, let us glance at the kind of error-signals that are chosen by the property
optimisation procedure. Figure 3.22 illustrates selected error-signal amplitudes for a
modulation frequency of df,, = —400Hz. The property criteria that are satisfied best
by the solid, dashed, and dashed-dotted lines are capture range, energy transfer, and
symmetry, respectively. The blue crosses on the graphs mark the capture range limits.
In order to put the capture ranges and zero crossings in perspective, the MSR tuning is
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given as frequency. The shapes of the error-signals make already by eye plausible that
they, indeed, are the best representations for the respective criterion. The capture range
condition is the clearest of all.
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Figure 3.22.: Comparison of signal-recycling error-signal amplitudes optimised for the
criteria of largest capture range, highest energy transfer and highest symmetry for
0fm = —400Hz. The edges of the capture ranges are marked by the blue crosses.
The MSR tuning is given as frequency facilitating to put the capture ranges and zero
crossings in perspective. The shape of the graphs in connection with the capture ranges
makes plausible how they meet the different property criteria.

Turning now to different modulation frequencies, the corresponding tuning script param-
eters and error-signal properties will be displayed with respect to the particular control
sideband frequency, not the apparent detector tuning. The modulation frequency refer-
ence is set to dfief = 72 X FSRsg = 9017397 Hz. Due to the cross-coupling of the two
recycling cavities, however, this reference deviates by +56 Hz from the frequency yield-
ing exact sideband resonance in the tuned dual-recycled detector (see Section 3.7 for the
effect of coupled cavities). Thus, the tuned modulation frequency, dfiuneq does not agree
with Jfy,, = OHz.

The tuning script parameters featuring different error-signal shapes, are shown in Fig-
ure 3.23. The upper graph exhibits the demodulation phases, the lower graph the optical
gain. All gains are normalised by the highest value of all. The vertical black lines, lim-
ited by the crosses, mark the demodulation phase intervals for the particular modulation
frequencies, where the error-signal is least susceptible to other degrees of freedom.
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Figure 3.23.: Demodulation phases and gains of signal-recycling error-signals optimised
for one particular property at a time (highest gain, largest capture range, highest energy
transfer, and symmetry). The parameters are displayed for various control sideband
frequencies. The modulation frequencies are given as an offset from 72 x FSRgr. The
vertical black lines in the upper graph indicate demodulation phase intervals prefer-
able for a continuous tuning process, as the corresponding error-signals show minimal
susceptibility to deviations of other degrees of freedom from their operating points.

As predicted by the phasor picture, the demodulation phases decrease with increasing
modulation frequency, indicating an increasing influence of the lower sideband. The pro-
jection picture predicted that the demodulation phases, yielding highest gain, agree for
very high absolute frequency offsets, and Jfiuned- In the FINESSE result, the tuned-case
demodulation phase is slightly lower. The reason is the influence of the power-recycling
cavity resonance whose impact gets stronger the higher the modulation frequency. Adding
the phase dispersion of the power-recycling cavity to the middle and lowest row of Fig-
ure 3.10, illustrates that the presence of the power-recycling cavity lowers the upper
sideband’s phase and elevates the lower sideband’s phase. To yield the same phasors’
pointing as without power-recycling, the sidebands need to progress longer in time. Thus,
the demodulation phase needs to be smaller.

The gain first increases with increasing sideband frequency due to the second sideband
arising in amplitude the closer the signal-recycling cavity gets to a tuning in the region
of the cavity bandwidth. There, the signal-recycling cavity significantly rotates the lower
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Figure 3.24.: Lower (left picture) and upper (right picture) capture ranges of the error-
signals corresponding to the demodulation phases shown in Figure 3.23. The capture
ranges vary between 80 Hz and 415 Hz.

sideband anti-clockwise. Figure 3.14 makes clear that this rotation direction reduces both
error-signal vector components.

As the capture range is larger the larger the zero crossing offset from dz, (see Figure 3.22),
the respective demodulation phases depend on the limit set for the allowed deviation of
the error-signal zero crossing from dzy,.

Including the consideration of error-signal susceptibility to other degrees of freedom, error-
signals with highest symmetry are safest. The demodulation phases optimising gain, and
energy transfer, however, also (just) lie inside the allowed demodulation phase range for
the investigated modulation frequencies.

Beyond the parameters necessary for the tuning script, the error-signal properties like
zero crossing positions and capture ranges are also of interest. Figure 3.24 exhibits the
absolute values of the lower (left picture) and upper (right picture) one-sided capture
ranges of the error-signals featuring the demodulation phases shown in Figure 3.23. Up
to a modulation frequency offset of roughly —1kHz, the capture ranges to both sides
amount to ~ 200 Hz, except for the error signal with largest capture range where the
upper and lower capture ranges lie between 300 Hz and 400 Hz. For smaller detunings
down to 20Hz (i.e., fym ~ —100Hz), the lower capture range decreases while the upper
increases. Again, the graphs representing the capture range criterion are the exception.
However, the dominating tendency of the graphs is understandable, as the symmetry
of the error-signal vectors’ distribution in Figure 3.14 and 3.15 gets distorted for lower
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detunings due to the increasing influence of the lower control sideband. In case of a tuned
detector configuration, all capture ranges are at least 200 Hz.

With the capture ranges shown in Figure 3.24, the tuning step size is absolutely limited to
80 Hz. To tune safely within the complete accessible region, a unique tuning step should,
however, not exceed 50 Hz.

For very low detunings, already the additional zero crossing at the tuned point necessarily
limits the lower capture range. Given the tuning steps for the modulation frequency of
25 Hz, and guided by the expected MISR position dxy,, associated with this frequency, it
is at first sight rather astonishing that the lower capture range does not fall below 50 Hz.
This gets plausible, though, with Figure 3.25. It displays the zero crossing position of the
error-signals generated with the demodulation phases of Figure 3.23. For all of them, the
position of the zero crossings, and thus of MSR, never falls below 150 Hz, except for the
modulation frequency featuring a tuned detector.

Moreover, in Figure 3.25, besides the simulation results, a black, diagonal line indicating
dxm, the position associated with the modulation frequency offset dfy,, is also shown. To
remind the reader, df,, was defined as the modulation frequency offset from the 72nd
multiple of FSRgr. With the power-recycling cavity present, this reference frequency,
however, does not (necessarily) resonate in the signal-recycling cavity tuned to carrier
resonance.

Likewise due to power-recycling, the agreement of the MISR. position with the simplified
linear assumption decreases, even for the error-signals with largest optical gain, or sym-
metry, namely up to —25Hz, or —12 Hz, respectively, for the frequency offset interval of
~ [-3kHz, —600 Hz| (not completely shown in Figure 3.25). The power-recycling cavity
shifts all original signal-recycling cavity resonances depending on the modulation fre-
quency’s resonance condition inside the power-recycling cavity (an illustrating discussion
on resonances of coupled cavities can be found in Section 3.7). The further the modula-
tion frequency from power-recycling resonance, the fainter its influence and, consequently,
the shift.

Above ~ —600Hz, the impact of the lower signal-recycling sideband, pushing the zero
crossing towards higher MSR tunings (see Section 3.3.2), starts dominating the power-
recycling shift. At a frequency offset of ~ —370 Hz and ~ —220 Hz for highest symmetry
and gain, respectively, both the power-recycling cavity and the lower sideband effects
match.

The MSR positions of the error-signals with largest capture ranges deviate by 250 Hz
from the black linear line. This is exactly the limit of the allowed zero crossing deviation
from dx,, set inside the MATLAB script to reduce the demodulation-phase parameter
space. Without any limit set, the respective zero crossings would sit at the outer most
possible edge.
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Figure 3.25.: Position of the zero crossings of the signal-recycling error-signals generated
with the demodulation phases of Figure 3.23. The black line indicates the position
associated with the modulation frequency resonance inside the purely signal-recycled
Michelson. All positions are given in units of frequency.

3.5.2. Michelson control-loop parameters
Optimisation criteria

To determine sensible optimisation criteria for the Michelson error-signal, again the ex-
pected residual differential rms movement of the Michelson end mirrors needs to be com-
pared with the error-signal structure.

The Michelson error-signal detected with a photodiode in transmission of MISR depends
on the carrier and Michelson control sideband properties at this detection point. Unlike
for a pure Michelson, to predict the error-signal shape of a dual-recycled detector requires
the consideration of the influence of all cavities on the light fields.

Assuming for simplicity a perfectly symmetric, power-recycled Michelson interferometer
only, a differential length change of the Michelson does not alter the power-recycling
cavity length, but the reflectivity of the output mirror formed by the Michelson. Thus,
the enhancement of the carrier and the control sidebands alters. In the south port,
the increasing transmission of the carrier competes with its power decrease inside the
power-recycling cavity, regardless of the direction of differential end mirror displacement.
Folding both effects yields a symmetric amplitude and phase relationship regarding the
operating point.
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These competing effects occur similarly for the control sidebands. The difference is that
the targeted operating point is, due to the Schnupp length, only a dark fringe condition
for the carrier. However, depending on the sign of differential end mirror displacement,
the Michelson in one direction fulfills a dark fringe condition for one of the two sidebands,
for a particular amount of displacement. Folded with the enhancement inside the power-
recycling cavity, the field properties exhibit a symmetry similar to the carrier, but with
a symmetry axis off-set from the targeted operating point.

Needless to say, a precise, depictive prediction of the error-signal shape is difficult, if in
addition Michelson asymmetries, higher order modes or higher order sidebands need to
be accounted for.

In a power-recycled Michelson, i.e., without signal recycling, the error-signal structure
depends only on the demodulation phase. The signal-recycling cavity, however, introduces
further asymmetries which differ for particular cavity tunings.

Former simulations (see Figure 2.5 in [Grote03b]) indicate the narrowest error-signal
structure at a tuned signal-recycling cavity®®. Thus, investigating the capture range of
the Michelson error-signal for a tuned detector should yield a lower limit for all capture
ranges to be expected while tuning the signal-recycling cavity. Figure 3.26 shows the
error-signal for the Michelson for a signal-recycling cavity resonant with the carrier. The
overall capture range amounts to 460 pm. The free-running differential rms movement
of the Michelson end mirrors amounts, even including the micro-seismic peak at 0.15 Hz,
to less than 10 um (see Figure 1.14 in [Grote03b]). With an open loop gain of of the
respective control loop of more than 120dB, the residual rms will be less than 10 pm.
Thus, the capture range should not limit the tuning performance.

Consequently, the only two error-signal properties that lend themselves as optimisation
criteria are the gain maximisation, and a zero crossing position exactly at the origin.
The position of the zero crossing, however, depends on the one hand on the assumed
mode-mismatch inside the dual-recycled Michelson, as higher order modes have different
Gouy phases and may give a non-zero error-signal contribution even if the detector is at a
perfect dark fringe for the TEMgg mode. On the other hand, the asymmetric losses in the
Michelson arms lead to carrier power leaking to the south port, and to slightly rotated
sideband phasors, in comparison with Figure 1.15. This can yield a non-zero projection
term at the “darkest possible” fringe.

35For a plausible explanation, let us for simplicity compare the effect of a far detuned, and a tuned
signal-recycling cavity on the Michelson error-signal. The output mirror of the power-recycling cavity
from above needs to be expanded by the signal-recycling cavity, altogether yielding the signal-recycled
Michelson as compound mirror. A far detuned signal-recycling cavity increases the reflectivity of a
simple Michelson for all differential end mirror displacements, whereas the tuned reduces the reflectivity
of the signal-recycled Michelson for the carrier. The effect of the signal-recycling cavity on the carrier,
however, makes no appearance until the Michelson leaves the dark fringe, and the impact is larger the
larger the dark-fringe offset. Thus, with increasing differential Michelson end-mirror displacement, the
enhancement of the power-recycling cavity drops much faster for the carrier with a tuned than with a
far-detuned signal-recycled Michelson. As a consequence, the amplitude of the differential Michelson
error-signal of a tuned detector is expected to fall off more rapidly than that of a far detuned detector.
Thus, the error-signal structure is narrower.

127



Chapter 3. Tuning process of a dual-recycled Michelson interferometer

Error-signal amplitude [a.u.]

-4 -3 -2 -1 0 1 2 3 4
MCe displacement dx [nm)]

Figure 3.26.: Error-signal amplitude for the differential Michelson end mirrors’ tuning
for a tuned detector. For each MCe displacement dx, given in nanometers, MCn is
detuned by the same amount but with opposite sign. The demodulation phase is set to
yield maximum gain at the origin. The crosses at the global maximum and minimum
indicate the capture range limits.

In order not to depend on asymmetry assumptions for the tuning parameters, the demod-
ulation phases for the Michelson control loop are determined to yield a maximum gain
at the zero crossing.

Simulation methods

Besides the demodulation phase yielding the maximum gain at the error-signal zero cross-
ing around the origin, and the gain itself, the deviation of the zero crossing from the
perfect dark fringe is important in the experiment, though not relevant for successful
tuning. As the amount of deviation depends on the exact mode-mismatch and Michelson
asymmetries incorporated in the model, it can potentially be used to validate these by
comparison with the experimentally-seen off-sets.

The position of the zero crossing necessitates a simulation of the full Michelson error-signal
with FINESSE, similarly for the case of signal recycling. However, as the capture ranges
are not important, the maximal displacement of the end mirrors can be limited by the
amount of expected deviation from dark fringe. Led by experimental observations that
the Michelson error-signal offset from perfect dark fringe is dominated by the residual rms
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movement, the mirrors’ displacement limit is set to +10 pm, and the step size is 0.2 pm.
The corresponding FINESSE command lines can be found at the end of Appendix B.1.1,
with “MI-EP” as headline.

The MATLAB script in Appendix B.2.3 evaluates the FINESSE output file. The code
is a very much simplified version of Appendix B.2.2, but utilising the same basic con-
cept. (Thus, for explanations please consult the subsection “Simulation methods” in
Section 3.5.1.) The evaluation results like demodulation phase, gain, position of the zero
crossing, given as index and in degrees, are together with the respective MSR tuning
written to a file for further processing.

Simulation results

As in the case of signal recycling, first the results of the script representing the most
actual optical setup of GEO 600 will be presented, followed by those for the old and new
scripts containing the low reflecting MPR.

Figure 3.27 displays the demodulation phases yielding highest gain (upper graph) and the
respective, normalised error-signal slope at the zero crossing (lower graph), depending on
the signal-recycling cavity tuning, given in units of kHz.

As expected, the optical gain increases the closer the signal-recycling cavity to carrier
resonance (see Section 3.4), as the carrier gets additionally enhanced. However, the gain
shape slightly deviates from an Airy-function in the tuning region between 0.5kHz and
1.5kHz. The slightly widend flank can be assigned to the control sideband resonance.

The demodulation phases increase towards lower detunings from —57° to —16°, above
~ 500 Hz, then again decrease to —27°, for a perfectly tuned detector.

The demodulation phase procession is, prima facie, counter-intuitive considering Fig-
ure 3.16 and the resonance conditions of the carrier and the Michelson control sidebands
as shown in Figure 2.4. Starting from a tuned signal-recycling cavity, one would expect
a decrease of the demodulation phase for low tunings, as long as the lower sideband goes
through a signal-recycling resonance. However, as already explained in Section 3.4, the
evolution is opposite if the sideband’s role is flipped. Section 3.4 considered sidebands
resonant inside the power-recycling cavity. In the current script of GEO 600, however,
the modulation frequency is off-set from power-recycling resonance by +52 Hz. From the
south port as view-point, the power-recycled Michelson is, even with the high reflective
MPR, an under-coupled cavity for the control sidebands, as the Michelson transmission
is roughly 280 ppm. The phase shift of light, reflected by this cavity and being 452 Hz
away from resonance, is 5.3°. Such a phasor rotation shifts the resonance frequencies
of the signal-recycling cavity by ~ +1.8kHz. As FSRsg ~ FSRpr — 10Hz, the upper
control sideband is resonant for a signal-recycling cavity detuning of ~ 600 Hz instead of
~ —1.2kHz (see Figure 2.4). The same holds for the lower sideband, with switched sign.
Thus, for this choice of Michelson sideband frequency, indeed the upper sideband goes
through a resonance for positive signal-recycling cavity detuning.
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Figure 3.27.: Demodulation phases (upper graph) yielding highest Michelson error-
signal gain, and the respective, normalised error-signal slope at the zero crossing
(lower graph), for different signal-recycling cavity tunings. The position of MSR,
dx = FSRgR - x/180°, is given in units of kHz.

The zero crossing positions of the respective Michelson error-signal are displayed in Fig-
ure 3.28. The four graphs were generated including different aspects in the preceding
computation. As expected, for a beamsplitter with asymmetric reflectivity and transmis-
sion, but neither losses nor reflection at the rear surface, the Michelson end mirrors are
locked to an ideal dark fringe (solid magenta line). Including asymmetric beamsplitter
losses causes a large deviation from the intended operating point (dashed-dotted green
line) of up to almost 8 pm. The maximum offset is achieved around 400 Hz detuning.
Accounting in addition for higher order sidebands does not alter the result significantly
(dashed red line). Higher order modes, however, obviously have an increasing effect on
the zero crossing deviation, with increasing MSR tuning, of opposite sign (solid blue
curve): together with the asymmetric losses at the beamsplitter, the offset vanishes at
2kHz detuning. For higher detunings, the deviation increases again but with opposite
sign.

The deviation from dark fringe does not exceed the experimentally observed rms dif-
ferential lengths change of the Michelson armlengths. For low detunings around 400 Hz,
however, it is comparable.
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Figure 3.28.: Position of the zero crossings of the differential Michelson error-signals,
generated with the demodulation phases from Figure 3.27, versus MSR. tuning, given
in kHz. The deviation from the intended operating point, the dark fringe, occurring at
0 pm, depends on the beamsplitter asymmetries and the field properties accounted for.
The beamsplitter asymmetry included in the solid magenta line result refers to unequal
transmission and reflectivity. Losses or reflections at the rear beamsplitter surface are
ignored for this curve.

3.6. Experimental tuning

The phasor picture and the supporting simulation results enabled us to understand and
predict what is happening inside the optical system of GEO 600 when tuning MSR.
However, to apply the parameters obtained by simulation to the experiment, they have
to be adapted to the experimental environment.

This section relates the theoretical results from above to the experiment. At the begin-
ning measurements are presented that, with the knowledge gained about the resonance
conditions of control sidebands, approve a positive detuning of the detector. The main
topic is, however, the description of the calibration method of the simulated tuning pa-
rameters for the experiment. This will be followed by an estimation of the accuracies of
optical lengths necessary to obtain a successful tuning script. This section ends with two
suggestions to acquire a tuned detector.
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3.6.1. Positive, or negative tuning side: this is the question. ..

The error-signal deductions with the phasor picture showed that the tuning parameters
should not depend on the tuning side. However, this symmetry could be broken if higher-
order modes become important. Moreover, the knowledge about the tuning side simplifies
all discussions about resonance conditions of the occurring sidebands.

Further, the tuning direction is crucial for the existence of the optical spring effect
[Buonanno02a, Buonanno02b]. It occurs only if the signal-recycling cavity is positively
detuned. In this case, the signal sidebands, entering the Michelson from the south, differ-
entially beat with the carrier inside the Michelson such that the differential displacement
of the Michelson mirrors enhances at that frequency. The underlying cause is an oscillat-
ing amount of photon pressure on these mirrors. With negative detuning, the associated
spring constant is negative.

To decide the tuning direction, the power of the signal-recycling control sidebands, con-
tained in the light beam at the south port of the detector, needs to be known. For
a detuned detector, only one of these sidebands should be resonant inside the signal-
recycling cavity and appear behind the MISR.. Figure 3.10 illustrates that, for example,
the upper control sideband is resonant in a positively detuned signal-recycling cavity if
the modulation frequency lies below 119 x FSRgR, as it is the case at GEO 600, and vice
versa.

To achieve a separation of the frequency components of the light, a Fabry-Perot in-
terferometer was set up, and the light power was measured while scanning this cavity.
Figure 3.29 shows two measurements done with the scanning Fabry-Perot cavity, and a
detector setup of GEO 600 with a low-reflective MPR (Typr = 1.35%), the so-called old
setup®0. The detector tuning is 1kHz. The upper and the lower graphs display the light
powers occurring in reflection of MPR and in transmission of MSR,, respectively, versus
the Fabry-Perot cavity tuning, given as offset from carrier resonance in MHz.

As expected, the carrier dominates the power at the power-recycling mirror, but hardly
appears at the south port. The carrier at MPR is, regarding the frequency axis, sur-
rounded by the control sidebands. The frequency values of the particular local maxima
indicate that we deal with the upper Michelson and both signal-recycling sidebands. The
lower Michelson sideband is not apparent.

Contrary to the west port, the lower Michelson sideband exhibits the highest power
of all sidebands at the south port. The lower signal-recycling sideband is missing. The
power difference of the upper signal-recycling and Michelson sidebands is slightly smaller
in the south than in the west.

With the considerations above, the upper signal-recycling sideband showing up at the
south port unambiguously indicates that the current tuning direction of GEO 600 is pos-
itive.

36The script describing the old setup is obtained by Appendix B.1.1, un-commenting the lines indicated
by “old MPR”.
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Figure 3.29.: Measurement of light power, passing a scanning Fabry-Perot cavity, in
reflection of MPR (upper graph) and in transmission of MSR (lower graph). The
measurement was performed with the old, low-reflective MPR (Typr = 1.35%) im-
plemented in GEO 600. The power is displayed depending on the Fabry-Perot cavity
tuning which is given in MHz, as an offset from carrier resonance. For the measure-
ments, the signal-recycling cavity was detuned to resonate with signal sidebands at
1kHz. The absolute power values of the two measurements are arbitrary and not
related to each other.

The measurements in addition prove the resonance of the lower Michelson sideband inside
the signal-recycling cavity detuned to 1kHz, as anticipated in Figure 2.4. In the old setup,
the Michelson modulation frequency is, like the current, not exactly resonant inside the
power-recycling cavity. But the deviation is only 26 Hz. The power-recycled Michelson is,
from the signal-recycling cavity point of view, much more under-coupled in the old setup
than with the high-reflective MPR. The phase shift occurring at reflection is more than
an order of magnitude smaller than in the setup above, such that the shift of the signal-
recycling cavity resonance is of the order of a few hundred Hertz only. This is negligible
compared to the expected resonance offset of ~ 4+1kHz for a sideband frequency resonant
inside the power-recycling cavity (compare again with Figure 2.4), such that the lower
control sideband still traverses the resonance when elongating the signal-recycling cavity.
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The upper signal-recycling sideband does not disappear in the west port as it is nearly
anti-resonant inside the power-recycling cavity. This is also one reason for the reduced
difference of the upper control sideband powers compared to the west port. The upper
Michelson is indeed not resonant inside the signal-recycling cavity, but it is, on the one
hand, already enhanced by power-recycling when it enters the signal-recycling cavity. On
the other hand, the bandwidth of the signal-recycling cavity for the Michelson sidebands
is &~ 2kHz (due to the high transmissive power-recycled Michelson; please note that the
bandwidth is larger as the modulation frequency is closer to resonance than in the current
setup) such that the signal-recycling cavity does not attenuate the Michelson sideband
as much as the power-recycling cavity attenuates the signal-recycling sideband. The
simulation predicts a ratio of the Michelson sideband powers of 0.17, the measurement
supplies 0.20.

3.6.2. Calibration of simulated parameters

In the simulation, the optical gain has the dimension of Watts per degree, or per meter,
or per frequency, depending on the choice of expressing the microscopic deviation from
the operating point.

The absolute demodulation phase value depends on the underlying ortho-normal basis.
One could argue that if the optical system was sufficiently well-established, the ortho-
normal frame should naturally be one-to-one. However, the simulation is only capable of
optical effects.

In the experiment, the overall gain has unit 1. With the optical gain given by the output
of the mixer (after the photodiode), the electronic gain of the control loop is set to provide
stability of the control.

The photodiode signal and the local oscillator each traverse a cable of arbitrary length
before they get multiplied with each other at the mixer. Apart from that, the phase
shifter, the experimental place to apply the demodulation phase, converts voltage into a
phase delay, with arbitrary sign, and is situated in either of the two signal paths. However,
the phase difference of the two signals, and the sign of the phase delay appearing at the
mixer can in principle be measured, allowing to calibrate the phase shifter. (This was
done at GEO 600. The absolute value of the phase delay, though, changes regularly due
to commissioning work on the detector.)

The parameters of the Michelson and signal-recycling electronic circuits are supervised
and set with the computer control system based on LabView. The tune- VI, a user program
created for the tuning process, converts particular parameter input values into digital
numbers that are fed via DA converters into the control electronics. The simulated
parameters need to be adapted to the equivalent input values for the tune-VI.

In the following, the applied calibration of the control loop parameters for the signal-
recycling and Michelson loop will be described. The starting point is the signal-recycling
demodulation phase, as this determines the exact signal-recycling cavity tuning and op-
tical gain of the respective error-signal. The signal-recycling cavity tuning, in turn, is the
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crucial condition for the Michelson loop parameters, first the demodulation phase, and
subsequently the gain. Naturally, this sets the order of parameter calibration.

Parameters for signal recycling

The demodulation phase increments of LabView correspond to degrees. Increasing values
yield increasing delay in the signal path. Thus, the sign of the input value change agrees
with the definition of the demodulation phase in Equations 1.18 to 1.20 that is also used
for FINESSE.

The calibration of the signal-recycling demodulation phase was done in one coarse and
one fine measurement. For the coarse calibration, the signal-recycling error-signal was ob-
served while MISR was locked on the 2f signal. With the fixed MSR, the signal-recycling
modulation frequency was swept. The equivalence of both the tuning of MSR and of
the modulation frequency can be motivated with the phasor picture3”. The target was to
determine the demodulation phase yielding the most symmetric error signal. The accu-
racy was limited due to variations of the 2f signal associated with fluctuations of mirror
alignments, and due to the necessary setting of both the mean modulation frequency of
the sweep, and the demodulation phase.

For the fine calibration, the signal-recycling error-signal was switched from the 2f signal
to the sideband signal, applying the demodulation phase previously determined. Then,
the demodulation phase was varied by +10°. For all three demodulation phases the
transfer function, from differential Michelson end mirrors’ deviation from dark fringe to
the Michelson error-signal gained at PDO (see Figure 3.1), was measured. This transfer
function is also referred to as optical transfer function of the detector. The shift of the
peak frequency of the respective optical transfer functions’ amplitude was identified with
the relative MISR movement, caused by the shift of the signal-recycling error-signal op-
erating point. Since the zero crossing position of the signal-recycling error-signal depends
non-linearly on the demodulation phase, the demodulation phase in the middle can be

determined by matching the measured peak-frequency shifts with the simulation3®.

Figure 3.30 shows the dependency of the signal-recycling error-signal zero crossing on
the demodulation phase according to FINESSE, for a detector detuning of ~ 2kHz. The
MSR tuning offset refers to dxy,, the position associated with the modulation frequency.
The demodulation phase axis already refers to the tune-VI input. Decreasing the de-
modulation phase in the experiment from 165° by 10° increased? the frequency of the

3TFor the error-signal derivation with Figure 3.14, only the upper control sideband changed pointing
and amplitude as passing the resonance of the signal-recycling cavity. The same is achieved with a
change of modulation frequency: the carrier remains the same, and, with high detuning, the upper
sideband passes the signal-recycling resonance, while the lower stays nearly untouched from it. Thus,
the error-signal vectors for MSR tunings, and the corresponding modulation frequency tunings should
approximately agree.

38The gain exhibits a quadratical dependency on the demodulation phase, and may be used for a demod-
ulation phase calibration, as well.

39The direction of the peak shift, depending on the demodulation phase alteration, is one-to-one given
the error-signal derivation in Figure 3.14. The phasor picture, together with this transfer-function
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transfer-function peak by 86 Hz. Increasing the demodulation phase by the same amount
lead to a peak-frequency decrease of 55 Hz. With these values, the simulated demodu-
lation phase corresponding to 165° (red star in Figure 3.30) could be assigned with an
accuracy?? of £2°. The applied phase obviously deviates from that, generating the most
symmetric error-signal (red diamond), by —41°.

500 T T T 1 1 1 1

shifted signal

400 %  experiment .

¢  highest symmetry

300F

200 -i .

100

MSR tuning offset dx g [Hz|

-100 L L L
150 160 170 180 190 200 210 220
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Figure 3.30.: Dependency of the signal-recycling error-signal zero crossing on the de-
modulation phase, for a detector tuning of ~ 2kHz. The zero crossing deviation refers
to 0z, the demodulation phase axis is calibrated to the experimental input values of
the tune-VI. The non-linear shape of the curve allows to match the simulated to the
experimental demodulation phase (red star) by measuring the shift of the peak of the
differential Michelson transfer function for different demodulation phases applied. The
red diamond marks the demodulation phase yielding highest error-signal symmetry,
and the associated MISR position.

The gain parameter input for the tune-VI is directly proportional to the optical gain of
the signal-recycling error-signal. The experimental value was determined by setting the

measurement, helped to identify a sign bug in FINESSE respecting the location-dependent light phase

evolution.
40 Appendix A exemplifies this calibration method to be of comparably low susceptibility to errors of

optical parameters of the FINESSE input script if accomplished at high signal-recycling cavity tunings.
Thus, the calibration accuracy is limited by the ability to determine the difference of the respective

peak frequencies.
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unity gain frequency of the control loop to 40 Hz, applying the demodulation phase for
the highest error-signal symmetry for one particular modulation frequency.

Parameters for the differential Michelson

The demodulation phase input to the tune-VI, yielding maximal gain, was experimentally
determined by maximising the open loop gain of the control loop. Then, with the gain
input, the unity-gain frequency was set to roughly 90Hz. (In contrast to the signal-
recycling gain, though, the gain script-values for the Michelson control loop are anti-
proportional to the optical gain of the error-signal.)

To relate the simulated parameters to the experiment, besides the particular tune-VI
inputs also the current MSR. tuning needs to be known. Considering the signal-recycling
modulation frequency and demodulation phase, the mirror position was determined by
the zero crossing of the error-signal in the simulation. The simulation results for this
particular MISR position were then equated to the tune-VI input values.

Tuning script

Beyond the parameter calibration, for the tuning script generation there are some more
aspects that require consideration. The corresponding MATLAB script, converting the
simulated signal-recycling and Michelson error-signal parameters to input values for the
tune-VI, can be found in Appendix B.2.4.

The GEO 600 control system using LabView has difficulties in addressing several digital
busses at once. In particular, experimentally it turned out to be advantageous to change
parameter values only as often as necessary. Thus, guided by experimental experience,
all parameter values of the tuning script are rounded to differ by increments of 5.

One of the required parameters for the tuning script is the gain for Michelson auto
alignment. So far, the FINESSE script for GEO 600 does not seem to be accurate enough
to yield applicable results. Thus, the auto alignment gain needed to be adjusted by
experiment. Consequently, generating the current tuning script, this parameter was set
to a default value of 12 for all tunings and altered afterwards. The numerical value of 12
is experimentally motivated, yielding a stable loop performance at high detunings.

Figure 3.31 displays the resulting demodulation phases (upper graph) and gains (lower
graph) applied for the signal-recycling (solid blue lines) and the Michelson (dashed ma-
genta lines) control at GEO 600.

3.6.3. Necessary accuracy of the FINESSE script and of the calibration with
respect to the tuning process

To successfully tune the detector, the parameters of the tuning script predominantly
need to yield stable Michelson and signal-recycling control loops. Guided by the overall
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Figure 3.31.: Tuning script parameters of the signal-recycling (solid blue lines), and the
Michelson control loop (dashed magenta lines), after calibration of the simulational
results. The signal-recycling modulation frequency is related to the 72nd multiple
of FSRgr. The upper and lower graphs display the demodulation phases and gains,
respectively. The increments are large in order to decrease the number of parameter
changes by LabView.

open loop gains of the respective controls, the gain for the signal-recycling loop may
vary by a factor 2 to both sides, whereas the gain margin for the Michelson is slightly
asymmetric, [0.275, 1.64], with the targeted unity gain frequency. Thus, the optical gains
of the respective error-signals need to be determined (at least) to this accuracy. As the
output parameters of FINESSE get calibrated for one particular fy,, the necessary accuracy
relates to the relative gain evolution with signal-recycling modulation frequency.

The exact Schnupp and cavity lengths (and mirror properties) influence the resonance
conditions of the control sidebands for particular detector configurations. Thus, to de-
termine them is essential. The length of the power-recycling cavity could be specified
experimentally with an accuracy of ~ 0.1mm. This was achieved by minimising an
intentionally introduced laser frequency noise peak in the spectrum of the differential
Michelson output of the power-recycled Michelson. (More on this power-recycling cav-
ity length measurement can be found in [Freise03a].) Thus, in the following accuracy
investigations the power-recycling cavity length is fixed.
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A method to specify the Schnupp and the signal-recycling cavity lengths in an operating,
dual-recycled detector was developed during this work (see Section 4.2 and 4.3.1, respec-
tively). With the earlier estimations being off by +17 mm and +9 mm, respectively, these
length specifications were, besides the accuracy of the demodulation phase calibration,
crucial for the successful prediction of the control loop parameters for tuning. This will
become clear when investigating the accuracy requirement of the two lengths. The ac-
curacy investigations below, considering each length separately, use the “right” value for
the respective other length.

There are mainly two issues that principally require consideration when estimating gain
errors for the signal-recycling and Michelson loops:

e The prediction of the optical gains will vary for different macroscopic lengths.

A difference in signal-recycling cavity length (not the tuning!), for example, shifts
the gain shapes in the lower graph of Figure 3.31 sideways. For particularly low
detunings a small change already ends up in large relative gain changes for the
signal-recycling loop.

The Schnupp and power-recycling cavity lengths in particular determine the re-
flection of the power-recycled Michelson for the Michelson control sidebands. If the
used Schnupp length differs from the real one, the signal-recycling linewidth for
the Michelson sideband will be different, yielding a different optical gain for the
Michelson loop. This is particularly relevant as the impact of the control sidebands
on the optical gain varies for different regions of detuning. Thus, the gain relations
between high and low frequencies alter.

e The prediction of demodulation phases alters for particular lengths.

Any deviation of the experimentally applied demodulation phase (from the tar-
geted) varies the appearing optical gain. The signal-recycling demodulation phase
in addition alters the exact tuning of the signal-recycling cavity which consequently
shifts the Michelson loop parameters, depending on fy,, sideways.

For illustration, Figure 3.32 presents the effect of a wrongly shortened signal-recycling
cavity in FINESSE, on the signal-recycling control loop parameters. As before, the upper
and lower pictures show the demodulation phase and gain, respectively, of the resulting
tuning script. The solid curves represent the parameter evolution for the correct script,
the dashed curves for the wrong script. The shorter signal-recycling cavity presumingly
shifts the 72nd FSRsgr about +50Hz. As the calibration of the demodulation phases
and gains takes place for large detector tunings, a shift of such a small amount yields
the same calibration offsets and factors, respectively (see Figure 3.31). In addition, we
assume for simplicity that the reduction of the difference between the power-recycling and
signal-recycling FSR hardly changes the demodulation phase and gain shape. Thus, the
wrong FINESSE script yields the same gain and demodulation phase values for the tuning
script, but occurring at higher modulation frequencies (the reference of 9.017397 MHz is
common to all curves of Figure 3.32).

At —100Hz the gains deviate by more than factor 2. The wrong script would in the
experiment lead to a, by factor 2, too low electronic gain (to compensate for the wrongly
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Figure 3.32.: Tuning script parameters for signal recycling, for a FINESSE input script
with the signal-recycling cavity length agreeing to the experiment (solid blue lines), and
being shorter by ~ 7mm (dashed magenta lines). The two parameters of the shortened
cavity are shifted with respect to the default by ~ +50 Hz.

assumed, relatively high optical gain). On top of all this, the demodulation phases were
determined to yield most symmetric error-signal which are very close to those with highest
gain (see Figure 3.23). Thus, the demodulation phase deviating by ~ 20° further reduces
the optical gain of the error-signal.

Figure 3.33 displays the impact of the signal-recycling demodulation phase on the opti-
cal gain of the signal-recycling error-signal, for three different modulation frequencies*!
The demodulation phase refers to the one yielding maximum gain, and the gains are
normalised to yield a maximum of 1. The curves for the higher modulation frequencies
abort for high phase offsets as the error-signal exhibits no zero crossing any more. (For
positive demodulation phase offsets, the zero crossing moves towards lower MSR. tunings
until it reaches the structure around the carrier resonance (compare with the overview in

Figure 3.8 or the figure below).)

“1Please note that the detector tuning does not necessarily coincide with 6fwm, but simultaneously changes
with the demodulation phase (see also Figure 3.34 below). Thus, §fm should not be mistaken as synonym
for the detector tuning.
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Figure 3.33.: Optical-gain dependency of the signal-recycling error-signal on the demod-
ulation phase. The phase is displayed as offset from the demodulation phase yielding
highest gain. The gains are normalised to allow a direct metering and judgement of the
fall-off. Shown are the gains for three different modulation frequencies Jfy,. The closer
0fm to the integer FSRsRr, the more sensitive is the optical gain on the demodulation
phase.

The closer to the 72nd FSRgR, the larger the demodulation phase influence on the optical
gain. For Jf,, = —80Hz, the gain is attenuated to 0.5 already for a demodulation phase
deviation of —6° or +3°, whereas for the lower frequencies the tolerance is roughly +22°
and +35°. Given the example from Figure 3.32, the effect of the demodulation phase
on the gain will presumably be limiting, when estimating the necessary accuracy of the
signal-recycling cavity length targeting for stability for all modulation frequencies.

As mentioned above, the signal-recycling demodulation phase sets the exact MISR. posi-
tion, and thus additionally moves the Michelson parameters on the signal-recycling mod-
ulation frequency axis. Figure 3.34 shows the position of the signal-recycling error-signal
zero crossings when off-setting the demodulation phases from those yielding highest gain,
again for three different modulation frequencies. To comprise all zero crossing positions
in one graph, they are displayed as offsets from the respective dx,s.

Again, the larger dfy,, the larger the demodulation phase impact. With the range of
demodulation phase shifts expected, however, the MISR position will hardly exceed an
offset of £200 Hz from dx,,. Consulting the Michelson parameters given in Figure 3.27, a
shift of 200 Hz sideways should not alter the Michelson gain by more than [0.6, 1.64] for
any particular frequency, unless the resulting Michelson demodulation phase offset itself
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Figure 3.34.: MSR position dependency on the signal-recycling demodulation phase.
The modulation frequencies and the demodulation phase interval are the same as in
Figure 3.33. The mirror tuning is referred to the respective dxy,. The closer Jfy, to the
integer FSRsr, the more sensitive is the MISR position on the demodulation phase.
Particularly for f,, = —80Hz, the error-signal zero crossing vanishes for too large
demodulation phase offsets to both sides.

attenuates the Michelson gain too much (which is not the case). Thus, the effect of the
MSR position deviation may safely be neglected.

The same is true considering the Michelson demodulation phase dependency on the signal-
recycling cavity length (for fixed MSR position): the signal-recycling cavity linewidth
for the Michelson sidebands is ~ 1 kHz, while a signal-recycling cavity length deviation of
~ 10Hz at 72 x FSRggr corresponds to ~ 17Hz at 119 x FSRggr. Thus, the signal-recycling
resonance condition may safely be assumed to stay the same.

The decisive aspect to be accounted for regarding the signal-recycling cavity length is
obviously the shift of the signal-recycling demodulation phase with modulation frequency,
because of the demodulation phase impact on the gain. This yields an allowable signal-
recycling cavity length deviation of —1 mm and +2 mm (shifting the curves of Figure 3.31
by +7Hz and —14 Hz, respectively). However, it should be noted that the accuracy
requirement gets very loose as soon as the modulation frequency, up to which the tuning
should work, is decreased. Targeting for f,, = —200Hz, for example, already yields
a tolerable length margin > | £ 10 mm)| if the other lengths and the tuning parameter
calibration are correct.
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The Schnupp length affects mainly the Michelson control: as the signal-recycling side-
bands are, for the complete tuning process, comparably far away from power-recycling
resonance (the respective linewidth for these sidebands is ~ 40Hz), the power-recycled
Michelson is simply a very high reflective input mirror to the signal-recycling cavity
(the losses, including transmission amount to Lpvr = 66 ppm). If the Schnupp length
increases, the main change would be the increased influence of the power-recycling res-
onance as its linewidth would increase. This, however, would only affect (very) low
tunings.

The Michelson sidebands, though, are close to being resonant inside the power-recycling
cavity, making the reflectivity of the prMI very low (Rpmar = 84% for the currently used
modulation frequency, being off-resonant by 52Hz). If the Schnupp length increases,
Rprwmr increases, and with it the sideband enhancement inside the signal-recycling cavity.
At the same time, the signal-recycling bandwidth decreases. The opposite is true for a
decrease of the Schnupp length.

The two margin sides of the Schnupp length will act slightly differently to the control
loop parameters. As the Ry is already very low, a further reduction, for example, will
of course reduce the sidebands’ amplitude and thus the optical gain of the error-signal,
but the impact on the relative gain change with tuning is expected to be lower than for
an increase of Rpnur.

Consulting Figure 3.16 for the expectable change of demodulation phase, a further de-
crease of Ryvr should hardly alter the demodulation phase evolution with tuning: the
influence of the sideband phase on the demodulation phase just further decreases, and the
development at high tunings stays roughly the same. The impact of an increase of Ryt
is larger. For example, if the signal-recycling linewidth for the sideband decreases, and
the sidebands’ amplitude difference is larger at signal-recycling resonance, the phasors of
Figure 3.16 will need to evolve longer at ~ 1kHz to yield perfectly canceling beats with
the carrier. Consequently, the phase difference between signal-recycling cavity resonance
and large cavity tuning will be larger. For lower tunings, however, the “back-evolution”
should still take place, as then the relation to the carrier is more relevant.

Figure 3.35 shows the demodulation phase and gain parameter evolutions for the Michel-
son control loop, for two different Schnupp lengths, labelled by their deviations A Lgchnupp
from the default Lgchnupp = 54 mm (used in Appendix B.1.1). The calibration was done
for of, = —3kHz.

As expected, the signal-recycling linewidth is reduced for the larger Schnupp length
(dashed magenta lines), and the demodulation phase peak sits at higher cavity tunings.
The calibration point, however, reduces the appearing demodulation phase difference at
large detector tunings (in the visible modulation frequency range) to 10° maximum. The
maximal difference of 45° occurs around df,, = —500 Hz.

Applying the parameters of the dashed lines to a detector that requires the parameters
of the solid lines, the electronic gain of the Michelson control loop is in the interval of
—1.9kHz to —500 Hz by factor > 1.64 larger than necessary. The only chance of balancing
is the indeed reduced optical gain due to the false demodulation phase. The effect of the
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Figure 3.35.: Tuning script parameters for the Michelson control, for a FINESSE input
script with the Schnupp length agreeing to the experiment (solid blue lines), and being
longer by 16.6 mm (dashed magenta lines). The parameters are calibrated at Jfy, =
—3kHz.

demodulation phase on the optical gain is, however, much weaker than for the signal-
recycling error-signal.

Figure 3.36 shows the optical gain reduction depending on the deviation of the demod-
ulation phase from the value yielding highest gain. The curve is almost the same for all
detector tunings. Clearly, only an offset of £60° reduces the gain by factor 2. Thus,
the wrong demodulation phase might balance the too high electronic gain at very low
tunings, but at ~ —1.8kHz the Michelson loop would already loose lock when tuning the
detector down.

With the detuning frequency for which the parameter calibration is applied, the Michelson
loop stability is obviously already affected at relatively high detector tunings. However,
this instability is caused by the gain parameter. As, in addition, the demodulation phase
impact on the open loop stability is, in general, fairly low, the demodulation phases are
neglected when determining the allowable margin for the Schnupp length.

Investigations of the optical gains of the Michelson error-signal lead to the result, that the
Schnupp length may vary by —20mm or +8 mm, with respect to the currently assumed
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Figure 3.36.: Optical-gain dependency of the Michelson error-signal on the demodulation
phase. The phase is displayed as offset from the demodulation phase yielding highest
gain. The gains are normalised to allow a direct metering and judgement of the fall-
off. They are obviously much less sensitive to demodulation phase offsets than in the
signal-recycling case.

value*?. Figure 3.37 displays the optical gains dependent on the detector tuning, for
the reference, and the two Schnupp length deviations that just produce a tuning script
yielding stable control if the calibration is done at —3kHz. The one for ALgchnupp =
+8mm leads to instabilities at least at 600 Hz, the other at 500 Hz.

In summary, the signal-recycling length influences mainly the simulation results for the
signal-recycling control parameters. The tolerances with respect to the current length are
—1mm and +2mm if targeting for a continuous tuning in modulation frequency steps
of 25Hz. For high tunings, though, the allowed length margin is huge (> | + 1cm]|).
Thus, the old presumed signal-recycling cavity length (ALgg = +9mm) alone would not
have limited the tuning performance of the detector in the interval used up to date. The
current length accuracy of +2mm is enough to guarantee a stable loop over a tuning
range of 10 kHz.

The Schnupp length mainly vitiates the Michelson control loop. The margin for A Lgchnupp
is —20mm or +8mm. Thus, the old FINESSE script (ALgchnupp) ~ 18 mm) required a
new determination of the Schnupp length for the generation of a successful tuning script.
The current Schnupp length is determined with an accuracy better than 43 mm, allowing
for a stable tuning in the complete, targeted sensitivity bandwidth.

42The margin differs depending on the reference length.
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Figure 3.37.: Maximum optical gain of the Michelson error-signal versus MSR. tuning.
Shown are the trends for FINESSE input scripts with three different Schnupp lenghts,
with the default length (solid green line) agreeing with the experiment, and the others
exhibiting gains that deviate from the default by just enough to yield control instabil-
ities at particular tunings. In order to compare the gains with each other in view of
the tuning-script, they are normalised to yield 1 at 3kHz.

In the past, two further things turned out to be important: the calibration accuracy, and
the direction of the phase evolution.

e Sequentially, two bugs were discovered in FINESSE that influence the definition of
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phase directions. The phasor picture called attention to a wrong definition of the
demodulation phase direction. Later, experiments evaluating the shift direction of
MSR with the signal-recycling demodulation phase discovered, with the help of
the phasor picture, that the sign of the location-dependent light-phase evolution
was wrong (i.e., the phase increased traversing a longer distance, in contradiction
to Equation 1.1).

During commissioning of the dual-recycled detector with the new, high-reflective
power-recycling mirror, the parameters were calibrated for a modulation frequency
of f,n = —3.4kHz. By chance, around this MISR. tuning, the signal-recycling error-
signal exhibits a structure independent of the choice of modulation frequency. (The
origin of this false signal is still not clear.) Thus, the signal-recycling demodulation
phase was accommodated to a wrong error-signal structure by symmetrising that
shape with the modulation-frequency-sweep technique (see Section 3.6.2). Due to
this false calibration, the signal-recycling loop was stable down to a detuning of
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~ 1kHz, despite the wrong demodulation phase evolution direction. The instability
at lower tunings, however, necessitated the closer investigation.

To date, the signal-recycling demodulation phase can be calibrated with an accuracy of
+2°, and the electronic gain with an accuracy of 1%. The Michelson gain and demodu-
lation phase are known to 1% and +1°, respectively.

3.6.4. Towards a tuned detector

Currently, the lowest achieved detector tuning at GEO600 is ~ 330Hz. Targeting
gravitational-wave sources in the band between 50 and 250 Hz, however, the tuned
GEO 600 detector improves the shot-noise limited sensitivity in this band by a factor
of up to 2.5.

The simulation results in Section 3.5.1 indicate that there is a tuning gap for MSR of
~ 150Hz around the carrier-resonance position. However, with the upper and lower
capture range of the signal-recycling error-signal being 200 Hz for carrier resonance, a
tuning step of 150 Hz should, in principle, be possible.

In case the probability to lock MSR to the tuned state with such a huge tuning step turns
out to be experimentally unfeasable, there are at least two further approaches possible:

e The MSR positions in Figure 3.25 do not fall below ~ 150 Hz, unless tuned, because
of the respective demodulation phases being optimised to yield most symmetric
error-signals. It is indeed possible to achieve lower MISR tunings, but with different
demodulation phases, and only at the expense of optical gain and symmetry. (Please
note that the demodulation phases yielding highest symmetry are, for all modulation
frequencies, very close to those yielding highest gain). The way to go is to alter the
demodulation phase, and accordingly the electrical gain (see below).

e Instead of a permanently working signal-recycling control, an artificial lock-
acquisition situation can be created by releasing MSR, locked at ~ 150 Hz, until
the free mirror swings through the carrier resonance. Then, a switch closes, and
lock acquisition is attempted.

The advantage of the latter compared to the “simple” tuning step from above is that
the mirror does not get accelerated by the error-signal when approaching the carrier
resonance from the former position. Additionally, locked at ~ 150 Hz before, the mirror’s
kinetic energy is presumably still low when crossing the carrier resonance. This gets
particularly important considering the situation before the very first lock acquisition,
where the experimental experience showed that the sideband error-signal capture range
is too small to reliably lock the seismically excited MSR, with acceptable probability.

The feedback signal indicates the current MISR movement. Thus, the mirror can system-
atically be released when it is already approaching the carrier resonance. Nonetheless,
the moment of release bears a considerable risk to loose the mirror’s control completely.
Thus, the author prefers a controlled mirror transfer to lower tunings via an increase of
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the demodulation phase and of the electronic gain, if necessary, using the last but one
signal-recycling modulation frequency.
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Figure 3.38.: Zoom of the gain and MSR position dependency on the signal-recycling
demodulation phase for the curves belonging to df,, = —80Hz in Figures 3.33 and
3.34. A successive change of the demodulation phase using this modulation frequency
transfers the MISR closer to carrier resonance. Starting point is the demodulation
phase offset of —1°, yielding the most symmetric error-signal. A gain compensation is
only necessary for demodulation phase offsets larger than 3°.

The upper and lower graphs of Figure 3.38 display a zoom of the dashed magenta
curves of figures 3.33 and 3.34, respectively. Hence, the applied modulation frequency
is 0f;m, = —80Hz, and the demodulation phase is referred to the one yielding highest
optical gain. The position of MSR, however, is shown as absolute value, not with respect
t0 0xyy.

The demodulation phase of —1° is the one yielding a most symmetric error-signal, and
marks the original state of the detector. With the signal-recycling gain margin of factor
2, increasing the signal-recycling demodulation phase successively to 2°, or even to 3°,
should be possible without any gain modification. The respective MSR. deviation from
carrier resonance could then be reduced down to ~ 80Hz. If even that turns out be
insufficient, one more demodulation phase step is possible with the current control loop
management of LabView that limits the lower end of the signal-recycling-gain parameter.
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However, a demodulation phase higher than 4° should not be necessary as tuning steps
of 50 Hz have already proved successful.

One last thing to be considered when switching to a tuned detector is the change of the
Michelson open loop gain due to the signal-recycling cavity pole occurring at ~ 200 Hz.
For the continously controlled MSR . steps, this change of effective transfer function can
be accounted for by inserting an differentiator of 200 Hz corner frequency already at the
currently lowest tuning of ~ 330 Hz. The associated increase of noise above unity-gain
frequency can be avoided differentiating only in a small band, for example from 200 Hz
to 400 Hz.

3.7. Tuning process alterations replacing MSR by an etalon

So far, signal-recycling mirrors with tuneable position but fixed reflectivity and trans-
mission were considered. However, the frequency range occupied by gravitational waves
varies for different types of sources: whereas a pulsar radiates at one very particular fre-
quency, the signal originating from a supernova, for example, is expected to embrace a
wide range of frequencies. In order to accommodate to targeted sources of gravitational
waves, a variation of mirror reflectivity is desirable. This would allow for an optimal
exploitation of the available light power by adjusting the detector bandwidth?3.

With conventional mirrors in the optical detector setup, for each intended detector band-
width a separate signal-recycling mirror of adequate reflectivity needs to be installed.
With the mirrors of advanced gravitational-wave detectors being suspended as complex
cascaded pendulums in ultra-high vacuum tanks, every mirror exchange entails long de-
tector down-times. To allow for a tunable signal-recycling cavity bandwidth in situ, the
signal-recycling mirror can be exchanged by a compound mirror. The replacement of the
signal-recycling mirror by a Michelson interferometer, and by a thermally tunable etalon
was already successfully demonstrated ([Vine02, Kawabe], respectively).

The concept of the etalon, however, is regarded to be more suitable and easy to implement
in GEO 600: the etalon’s dimensions and material can be matched to the current MSR,
allowing to retain the current suspension, and furthermore the longitudinal and alignment
control. [Hild03] reports on two concepts for thermal actuation of the etalon tuning, a
ring heater and a segmented heater. Currently, the homogeneity of the optical length of
the etalon over a diameter of 18 mm (which is the beam size at MISR) is limited to 20 nm.
Depending on the gradient of the Airy-function shaped transmission and reflection of the
etalon, this sets a limit on the accuracy of these etalon properties. Reversed, the accuracy
requirements for the reflectivity and transmission of the etalon will, with the achievable

43 According to the sensitivity theorem [Mizuno95], the achievable integral sensitivity for a wide fre-
quency range is determined only by the energy of light stored inside the detector. As in the current
gravitational-wave detectors the amount of energy is fixed by the laser power, the Michelson armlengths,
and power-recycling factor of the optical setup, the bandwidth of the detector can only be increased
at the expense of the peak sensitivity. Both have to be traded according to the requirements of the
targeted gravitational-wave source.
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coating side | reflectivity loss
front 0.994 50 ppm
back 0.5 0 ppm

Table 3.1.: Coating properties of the etalon applied in the presented FINESSE simulations.
The front coating points towards the beamsplitter.

homogeneity of etalon thickness, set a limit on the maximal gradient of the Airy function,
and thus determine the coating properties of the etalon (more about the choice of suitable
etalon properties can be found in [Malec]).

3.7.1. Etalon characterisation

For the following investigations about the impact of an etalon on the tuning process of the
signal-recycling cavity, however, a laterally perfectly homogeneous etalon is assumed. The
etalon utilised in the FINESSE simulations is close to the etalon studied in [Hild03]. The
properties assigned to the front and the back coatings are shown in table 3.1. The etalon
losses are intentionally chosen to be small in order to focus on effects that are related to
the tunability of the compound mirror reflectivity itself. The coatings are assumed to be
affixed on a silicon substrate of refractive index of 1.45 and 7.5 cm thickness.

With the coatings of table 3.1 and the optical pathlength of ~ 109 mm, the etalon rep-
resents an under-coupled cavity with a free spectral range of 1.38 GHz, a finesse of 8.9
and a bandwidth of 155 MHz. The upper and lower graphs of Figure 3.39 display the
normalised power and the phase shift, respectively, of light reflected by the etalon. The
two graphs are given as functions of the light frequency offset from etalon resonance. The
etalon reflectivity varies within [96.58 %, 99.89 %], shifting the light phase by maximally
+0.5°.

The frequency dependence of the reflected field amplitude and phase has in principle two
distinct consequences if installing the etalon as one cavity mirror**: The etalon reflec-
tivity provides fields of different frequencies (within one FSR) with different maximum
enhancement factors inside the cavity. Thus, the respective cavity also exhibits different
bandwidths. The phase dispersion of the etalon, however, in general shifts the reso-
nance structure of the cavity for light fields of particular, different frequencies to different
resonance frequency values, while the mirror positions are fixed.

Assuming, for example, a light field resonating inside the etalon, the back-reflected light
from the front surface of the etalon will have no phase shift as if it was reflected by a
high-reflective coating of a conventional mirror at that same position. A snapshot of a
light field approaching (solid line) and being reflected (dashed line) from a resonant etalon

4 To prevent ambiguities in this section regarding the terms “cavity” and “etalon”, the term “cavity”
will be exclusively be reserved for the optical system comprising either two conventional mirrors, or
one conventional and one compound mirror. The term “etalon” will in the following be used for the
Fabry-Perot cavity built by two reflecting surfaces of one substrate.
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-600 -400 -200 0 200 400 600
Frequency offset from resonance [MHz]

Figure 3.39.: Normalised power (upper graph) and light phase shift (lower graph) ap-
pearing in reflection of the etalon from table 3.1, for different light frequency offsets
from etalon resonance.

is displayed in the left picture of Figure 3.40. The front surface of the etalon (thicker
cyan line) can be regarded as the high-reflective front surface of a conventional mirror
of reflectivity of 96.58 %. The position of this conventional mirror surface is indicated
with the vertical dashed black line and overlaps with the front surface of the etalon. The
tuning of a cavity containing this etalon is then equivalent to the microscopic optical path
length between the high-reflective surfaces of the (compound) mirrors.

Assuming light with a frequency shifted by 75 MHz from etalon resonance, its phase will,
at reflection, be provided with a phase shift of roughly 0.5°. An equivalent situation is
shown in the right column of Figure 3.40. For the sake of clarity, the phase shift*> is very
much exaggerated to 90°. In that case, the etalon effects the reflected light in the same
way as a conventional mirror of 98.2% reflectivity, with a position of the front surface

4Due to the phase convention, the light phase decreases for increasing z, i.e., for the “positions of mea-
surement” following the direction of light propagation. Thus, if the light obtains a positive phase shift
5" at the etalon surface, its time-constant phase corresponds to the light phase appearing backwards
with respect to the propagation direction.
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Etalon resonance Offset from etalon resonance
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Figure 3.40.: Reflection from an etalon with fixed tuning for light fields with different
frequencies. The left picture displays a light frequency resonant inside the etalon, the
other an off-resonant, higher frequency. The reflected light field (dashed sine) gets no
and 90° phase shift at the high-reflective surface of the etalon, compared to the im-
pinging light (solid sine), respectively. This corresponds to a position of a conventional
mirror (vertical dashed black line) agreeing with the front surface of the etalon and
away from it by one eighth of the respective wavelength, respectively.

shifted to the left (or towards the light source) by an eighth of the wavelength from
the front surface of the etalon. The corresponding position of the conventional mirror
coating is indicated by the dashed black line. In the following, the conventional-mirror
representation of the etalon will be called imaginary mirror.

Using this particular etalon/light-frequency configuration within a cavity, the effective
tuning of the cavity is determined by the optical pathlength between the imaginary and
the opposing, facing mirror. Thus, in order to obtain resonance, the etalon front surface
needs to have a further (optical) distance from the other high-reflective mirror surface
than an integer multiple of the respective wavelength, namely by

51_61: . ™ 5gpet

1800 2k

(3.4)

Here, dz°* denotes the position of the etalon front surface with respect to the high-
reflective (other cavity-) mirror surface, modulo the wavelength of the light, d¢° is the
particular phase shift of the light leaving the etalon front surface, given in degrees, and
k =w/c=2m/\ is the wavenumber of the light field.

In order to distinguish the position of the etalon front coating with respect to the other
mirror, and the rear etalon coating, they will be called etalon position and etalon tuning,
respectively. Dealing with an etalon as a compound mirror, the position of its correspond-
ing imaginary mirror is relevant (besides its optical properties, of course). In combination
with one further mirror, for example, this imaginary-mirror position leads to the effective
tuning of the cavity. The position of the imaginary mirror depends on both the etalon
tuning, with respect to a light field of particular frequency, and the etalon position. Fig-
ure 3.41 illustrates all positions with a configuration corresponding to the left picture of
Figure 3.40.
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etalon position

~—

imaginary-mirror position — etalon tuning

Figure 3.41.: Definition of the three tunings associated with an etalon being one com-
pound mirror. The distance between the two etalon surfaces is the etalon tuning. If
this is fixed, there is one remaining degree of freedom which is the position of the
etalon. Here, it is defined as the position of the front or high-reflective etalon surface.
A conventional mirror surface representation of the etalon (called imaginary mirror)
has a position that depends on the phase shift the etalon introduces to a reflected light
field. This position is called imaginary-mirror position.

Applying this etalon for the signal-recycling cavity of GEO 600, the consequences for the
involved sidebands differ. The signal sidebands, for example, cover a frequency range
of £10kHz which is negligible compared to the etalon bandwidth of 155 MHz. Thus,
for particular etalon tunings, the etalon position will appear shifted with respect to the
position of the imaginary mirror. The effective cavity tuning, and the imaginary-mirror
reflection is, though, with good approximation the same as for the carrier, for all signal
sidebands.

This is different for the control sidebands with their modulation frequencies of roughly
9MHz and 15MHz. In general, their phase shift differs significantly not only from
the carrier but also from each other. However, the consequences of the etalon for the
signal-recycling and Michelson error-signal will be different, not only because of the dis-
tinct modulation frequency values but also because the Michelson sidebands are close
to power-recycling cavity resonance for all signal-recycling cavity tunings, whereas the
signal-recycling sidebands need to be resonant inside the signal-recycling cavity for each
tuning.

3.7.2. Sideband resonance alterations in the signal-recycling cavity

The target is to predict parameters for the signal-recycling and Michelson control loops
when tuning the signal-recycling cavity. Thus, as for the respective error-signals the
resonance conditions of the carrier and the sidebands inside the signal-recycling cavity
are crucial, we need to investigate these as, for example, done in Figure 3.11.

To apply, as much as possible, the knowledge gathered via the investigation of a dual-
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recycled Michelson with a conventional MISR, the examination of the control sideband
resonances for different signal-recycling cavity tunings will be made with particular, fixed
etalon tunings. In order to reduce the parameter space for the etalon tuning, determined
tunings representing extreme situations will be investigated. This way, one can get an
estimate of how critical the etalon impact may become at all. In the following, the effect of
a light phase shift, at etalon reflection, on the resonance features of the control sidebands
will be discussed in more detail. As the signal-recycling sidebands are of particular
importance for the ability to tune, special attention will be drawn to the consequences of
these sideband properties’ alterations for the tuning process. This will lead to particular,
exceptional phase shift conditions (depending on the particular etalon tunings) that can
be critical and are thus worth a closer investigation.

As the targeted signal-recycling cavity tuning is maximally 10 kHz, the maximal modu-
lation frequency range necessary for the examination is presumably again in the order of
+10kHz. Thus, the etalon reflectivity and associated phase shift may well be assumed
to be constant for each particular sideband. A further simplification can be made for
the wavenumbers k of all control sidebands: as 15MHz is only 5 x 1078 of the carrier
frequency, k is the same for all light fields.

If we for a start assume a positive phase shift in reflection of the etalon of the same size
for all involved light fields, the imaginary mirror position will shorten the signal-recycling
cavity with respect to the etalon position (see Figure 3.40, with a power-recycled Michel-
son added at the left). Thus, any light field resonance will appear at an etalon position
offset of §2°, according to Equation 3.4, from the tuning of a conventional MSR.. Imagine
the etalon position as the x-axis parameter of Figure 3.11, the two diagonal lines should
move to the right. Overlaying them, their point of common maximal sideband enhance-
ment (intersection point) will remain at the same modulation frequency (of,, = 0Hz),
but occur at a position §y larger than 0°. If the carrier would still be resonant at 0°,
a continuous tuning of the signal-recycling cavity in the positive tuning region would
be impossible. One reason is that at the intersection point the lock could in principle
switch from one to the other sideband, moving the etalon back to the same region of po-
sitions. Another reason is the result of Figure 3.25 showing that MSR. cannot be tuned
lower than 80 Hz. Around the intersection point, the influence of the two sidebands on
the error-signal becomes comparable, prohibiting a continuous tuning of the (compound)
mirror. For a conventional mirror, the point of intersection always occurs with a tuned
signal-recycling cavity. Considering a configuration with an etalon having similar reflec-
tivity as the MSR used for Figure 3.25, the carrier resonance could well disagree with
the point of intersection. This would make it impossible to achieve a perfectly tuned
detector.

However, in this thought experiment we assumed the same phase shift for all involved light
fields, thus, also for the carrier. With respect of the resonance for the carrier, the locations
of the sideband maxima in the plane of modulation frequency and signal-recycling cavity
tuning are the same as in Figure 3.11. From the point of resonance positions or resonance
frequencies (thus, neglecting the effect of different power reflectivities of the etalon for
the sidebands), this constellation is indistinguishable from a conventional mirror.
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This situation of equal phase shifts for all involved fields is roughly achieved for an etalon
tuning around the maximum possible phase shift, appearing at 75 MHz in Figure 3.39
and involving a power reflection around 98.2%. A simulation of the signal-recycling and
Michelson sideband resonances inside the signal-recycling cavity for the corresponding
etalon tuning is shown in the lower left and right pictures of Figure 3.42, respectively.
They are similar to Figure 3.11, where the sideband amplitudes of the upper and lower
signal-recycling sidebands are displayed in the plane of modulation frequency and MSR
tuning. For Figure 3.42, however, the etalon position yielding the maximal sideband am-
plitude was determined for each modulation frequency, and the results for the upper and
lower sideband are comprised in one graph (solid blue lines). For comparison, the same
results for a convetional MSR. are displayed as well (dashed magenta lines). To enable
the comparison, the horizontal direction of the parameter plane represents the position
of the high-reflective coating of either the etalon or the conventional mirror. The axis
is given in kHz, relating the microscopic position via the carrier wavelength to FSRsr
(according to Equation 3.2 and 3.1). The etalon position for which the carrier is resonant
is marked by the green vertical line, labelled “tuned”. (For the conventional mirror, the
carrier is by FINESSE definition resonant at 0 Hz.)

Please note that for signal recycling and Michelson different tuning ranges are displayed:
the right picture shows tunings in a region of 4kHz around the Michelson sideband fre-
quency currently used at GEO 600 (i.e., close to power-recycling resonance), whereas for
the signal-recycling sidebands a smaller region of 400 Hz around the frequency resonant
in the “conventional” signal-recycling cavity, tuned to carrier resonance, is shown. This
illustrates the resonances according to their relevance for the particular control loop.
Zooming out of the region in the left graph, the picture looks very similar to the right
one.

Figure 3.42 approves the considerations from above: the locations of the sideband reso-
nances, in the plane of modulation frequency and etalon position, are, together with the
carrier resonance, shifted to the right. This maintains the relationships between sideband
frequencies and effective signal-recycling cavity tuning for the carrier. Thus, assuming
the same etalon reflectivity for all fields, the control-loop parameters should be the same
as for a conventional mirror.

The next step is to consider different phase offsets for the light fields. Then, the diagonals
in Figure 3.11 are shifted by different amounts, and the point of intersection will appear
at 6zt = (62 + 62°%)/2, where 02" and 62°" are shifts of the diagonals?® belonging to
the upper and lower control sidebands, respectively, along the horizontal axis. At the
same time, the modulation frequency of the intersection point will be shifted by

F ) et ) et E ) et 5 et
5fre; _ SRsr 0z T _ SRSC,)R 0Py L . (3.5)
A/2 2 180 4

46Please note that with the definition given in Equation 3.4, §z$, 5z, and §z°° have dimensions of
meters. To convert these values to frequencies, the conversion factor FSRsr/(A/2) is necessary.
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Figure 3.42.: Positions of the signal-recycling (right) and the Michelson control sideband
resonances (left) inside the signal-recycling cavity, applying an etalon as compound
output mirror of the cavity instead of the conventional MISR. The upper and lower
pictures show the cases of etalon reflectivities of 97.0% and 98.2%, respectively, for

For comparison, the resonances appearing for a conventional MSR. of

same reflectivity are displayed as well (dashed magenta lines). To enable the com-

parison, the horizontal direction of the parameter plane represents the position of the
high-reflective coating of either the etalon or the conventional mirror (in kHz). The
signal-recycling and Michelson modulation frequencies are displayed with respect to

72 x FSRsg = 9.017397MHz and 119 x FSRpr = 14.904875 MHz, respectively.

(Please note the frequency range differences.) The etalon position for which the carrier
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In case the slope of the phase dispersion is linear, the carrier’s phase shift will be exactly
the mean of 5gpit and 6 which are the phase shifts of the upper and lower sideband,
respectively, at etalon reflection. Thus, the carrier resonance inside the signal-recycling
cavity will appear at the same etalon position 6z’ = dz% where the intersection point
of the diagonals occurs. In that case, the signal-recycling modulation frequencies to
obtain particular signal-recycling cavity tunings are all shifted by §f* compared to before.
Besides, the resonance relationships are almost the same as with a conventional mirror,
with one exception: the power-recycling resonance occurs at a different frequency distance
for particular signal-recycling cavity tunings which can, in principle, influence both the
sidebands’ amplitude and phase. Please note that the etalon reflectivity is, in general,
different for the two sidebands. Thus, the heights of the sidebands’ amplitude maxima
differ.

Perfect linearity of the phase dispersion is, however, rather the exception?”. With the
present etalon, though, the carrier resonance will deviate from the intersection point by
maximally +3.5 Hz and 10 Hz for the signal-recycling and Michelson control sidebands,
respectively. These asymmetries are negligible.

For illustration, the upper left and right pictures of Figure 3.42 display the locations of the
sideband amplitude maxima in the plane of etalon position and modulation frequency for
signal-recycling and Michelson sidebands, respectively, for an etalon tuning corresponding
to 30 MHz in Figure 3.39. (At this tuning, the difference of the light phase shifts is close
to maximum.) The associated etalon reflectivity is around 97%. Whereas the intersection
points are recognisably shifted to positive modulation frequencies, the carrier resonance
offset from this intersection point is small.

3.7.3. Tuning parameter alterations

With respect to the sideband resonance positions discussed in the section above, the
signal-recycling and Michelson control loops are in principle able to operate with an
etalon, as specified in table 3.1, instead of a conventional mirror. The expected absolute
shift of the signal-recycling modulation frequencies to obtain particular signal-recycling
cavity tunings is for all etalon tunings below 20 Hz.

As the signal-recycling cavity bandwidth (for the carrier and the signal-recycling side-
bands) varies with different etalon tunings within ~[20Hz, 700Hz], the impact of the
etalon reflectivity on the tuning parameters can be expected to be more significant than

“7Generally, depending on the asymmetry of the phase shift differences between the carrier and the two
sidebands, the carrier resonance occurs at an etalon position of

df + 0z (69 — 3ph ) — (9" — 0pT)

Szit = —
2 180° 4k ’

with dp being the phase shift of the carrier at etalon reflection.
Thus, the carrier resonance is potentially different from the intersection point of the sidebands’
resonances. The possible consequences were already explained on Page 154.
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the phase dispersion. How the bandwidth in principle influences the tuning parameters
can be deduced by the discussion in sections 3.3.2 and 3.4.

Let us, for a start, assume the same reflectivity for all involved light fields. The wider
the signal-recycling bandwidth the larger is the non-resonant sideband already for high
detector tunings, and the larger is its impact on the signal-recycling error-signal vector
pointing (see Figure 3.14). In that case, the length of the vector is, at large, reduced.
According to the bandwidth, the non-resonant sideband broadens the error-signal gain
shape.

For the Michelson error-signal, rather the signal-recycling bandwidth for the carrier is
important. The control sideband properties get dominant only at larger signal-recycling
cavity tunings. The absolute demodulation phase values, however, should in principle
be smaller for all detunings, the wider the signal-recycling cavity bandwidth: a large
bandwidth globally reduces the phase shift difference of the control sidebands. The effect,
though, becomes negligible for high detunings, where both control sideband phasors are
rotated by —90°. Both the demodulation phase and gain evolutions should broaden
according to the signal-recycling bandwidth.

In order to highlight the peculiarities of the etalon in comparison to a conventional mirror,
rather the effect of having (slightly) different reflectivities, for the light fields contributing
to one error-signal, are of interest. The situation of R =~ 98.2%, where the sideband
resonance positions relative to the carrier resonance agree to those with a conventional
MSR with Rysgp = 98.2% (see Figure 3.42), is very well suited for a control-loop-
parameter comparison between the two optical configurations: it allows to focus on the
effect of the different etalon reflectivities for the light fields involved in the error-signal
generation (whereas the reflectivities of a conventional MSR . are always the same for all
fields). The example of Ry =~ 97%, however, is interesting to investigate as the reflectivity
gradient is close to maximum, and it includes also a shift of the modulation frequency
resonances for particular signal-recycling cavity tunings.

Signal-recycling parameters

The values of signal-recycling demodulation phase and gain for these two etalon reflec-
tivities for the carrier are displayed in the upper and lower pictures of Figure 3.43, re-
spectively. The results for the etalon reflectivities of 97 % and 98.2 % are represented by
blue and red lines, respectively. Positive and negative etalon tunings (yielding same re-
flectivities) are distinguished by dashed and dashed-dotted line styles, respectively. This
distinction is, however, only necessary for the Re;+ = 98.2% case (that ideally brings
out the effect of different reflectivities for the control sidebands, s.a.). For comparison,
the respective parameters for a detector, with a conventional mirror of 97 % (solid cyan
line) and 98.2 % reflectivity (solid magenta line), are shown.

Please note that the horizontal axis represents the signal-recycling modulation fre-
quency as an offset from the frequency yielding a tuned detector being equivalent to the
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Figure 3.43.: Demodulation phases (upper) and gains (lower) of the most symmetric
signal-recycling error-signals. Compared are detector configurations with a conven-
tional mirror (solid lines) and an etalon with correspondingly same carrier reflectivity.
Positive (dashed) and negative (dashed-dotted) etalon tuning sides are distinguished.
For all curves, the horizontal axis displays the signal-recycling modulation frequency
as an offset from the one being resonant inside a tuned detector. If the reference was
constant, the curves representing a (compound) mirror reflectivity of 97% would be
shifted towards higher values by ~ 20 Hz.

frequency value of the intersection point in Figure 3.42. Thus, if the reference frequency
was constant, the etalon result for Re+ = 97 % would be shifted by +20 Hz.

The demodulation phase range for the positively detuned etalon configurations is (for
both reflectivities) less than for the detector configurations with the conventional mirror.
At the same time, the range is larger for a negatively detuned etalon. This gets very
plain with the phasor picture in Figure 3.14: without the non-resonant control sideband,
the demodulation phase would remain constant. The non-resonant, lower signal-recycling
sideband rotates the error-signal vector the more, the lower the signal-recycling cavity
detuning, and the larger the lower sideband’s amplitude. With the etalon positively
detuned, its reflectivity for the lower sideband is less compared to the upper. Thus, the
lower sideband’s influence is weaker and the demodulation phase evolves more smoothed.
The opposite is the case for a negatively detuned etalon, where the signal-recycling cavity
enhancement of the lower control sideband is larger than that of the upper.

159
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For the same reason, the optical gain of the error-signal is largest with a positively detuned
etalon: the error-signal vector-length is mainly determined by the carrier and upper
sideband amplitude. Thus, it reflects the different signal-recycling cavity enhancements
of the upper sideband.

Consequently, the optical gain differences are slightly larger for Rysr /et = 97 %, as
the reflectivity gradient is there close to maximum. The respective demodulation phases,
however, are slightly closer, because for the amount of error-signal vector rotation the
ratio between the signal-recycling cavity enhancements of the two sidebands is relevant.

However, relating the demodulation phases in the Ryisgr /et + = 97 % case to each other
with respect to the absolute modulation frequency values, the differences will further
increase as the line representing the etalon results gets shifted by +20 Hz.
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o
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Figure 3.44.: Offsets of the signal-recycling error-signal zero crossings from carrier reso-
nance, for the detector configurations, the modulation frequencies, and demodulation
phases from Figure 3.43.

The effective signal-recycling cavity tunings, applying the demodulation phases from Fig-
ure 3.43, are shown in Figure 3.44, again depending on the signal-recycling modulation
frequency as an offset from the frequency yielding a tuned detector. The colour and
line-style coding is the same as in Figure 3.43. Obviously, for both reflectivity cases, with
the conventional mirror the signal-recycling cavity is less continuously tunable around
the carrier resonance than with the respective, positively detuned etalon. This is also
explainable with the different etalon reflectivities for the sidebands, together with the
phasor picture of Figure 3.14. As already stated above, the larger the non-resonant side-
band amplitude, the larger the rotation of the error-signal vector, and the larger the
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3.7. Tuning process alterations replacing MSR. by an etalon

vector length for higher signal-recycling cavity detunings. If optimising for highest gain
or symmetry, the (almost) largest error-signal vector is perpendicular to the demodula-
tion phase vector. Thus, the resulting zero crossing of the error-signal will appear at
tunings dx > dxy,, with dxy, being the MSR tuning for which one of the control side-
bands resonates inside the signal-recycling cavity. In the positive etalon tuning cases, the
non-resonant, lower sideband amplitude is weaker than with the conventional mirror, and
even more weak compared to a negatively detuned etalon. Consequently, the impact of
the lower sideband on the error-signal is less, and the signal-recycling cavity tuning will
be closer to the upper control sideband resonance for all modulation frequencies*®. Close
to the carrier resonance, the lower sideband influence is largest. Thus, the attenuation
effect gets more significant, and the effective signal-recycling cavity tuning is more linear.

Summarising the effect of the etalon on the signal-recycling cavity tuning, in general, a
positively detuned etalon improves all signal-recycling error-signal characteristics, com-
pared to a negative detuning: the demodulation phase evolves smoother which is prefer-
able with the current LabView performance®®, the optical gain is larger supporting higher
signal-to-noise ratios, and the signal-recycling cavity tuning can be adjusted more con-
tinuously around carrier resonance, facilitating the transition to a tuned detector.

Michelson parameters

The resulting tuning parameters of the Michelson error-signal, the demodulation phase
and optical gain, are comprised in the upper and lower picture of Figure 3.45, respectively.
The colour and line-style codings are the same as in Figure 3.43. To enable a sensible
comparison between the etalon position and the MSR tuning, the horizontal axis displays
the position and tuning with respect to the position and tuning corresponding to carrier
resonance, respectively. This is equivalent to the effective signal-recycling cavity tuning.

As expected, for lower reflectivities the curve shapes of the gain and the demodulation
phases are broader, as the signal-recycling cavity bandwidth is larger. Furthermore, with
MSR, the demodulation phases for the broader bandwidth are lower than for the smaller
bandwidth, and they meet for high detunings.

Applying an etalon, the optical gain is, in general, smaller than applying a conventional
mirror, but one looses less than 4% of optical gain with an etalon that is positively
detuned. In the negatively detuned case, however, the optical gain is, within the displayed
frequency region, by up to 40% smaller with respect to the detector with the conventional
MSR, and it gets even lower for higher detunings.

The demodulation phases with a positively detuned etalon evolve the same as with the
plain MSR, but are negatively shifted. The shift is larger for the Ryisg jet,+ = 97 % case.

48 This is also the reason why the signal-recycling cavity detuning is larger for the lower signal-recycling
(compound) mirror reflectivity, for all modulation frequencies: with the larger signal-recycling band-
width, the influence of the lower sideband is enhanced.

“LabView has difficulties to alter two parameters at once. Thus, it is preferable to change parameter
values as rarely as possible.
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Figure 3.45.: Demodulation phases (upper) and gains (lower) of the Michelson error-
signals with highest gain. Compared are the same detector configurations as in Fig-
ure 3.43. The horizontal axis displays the (imaginary) mirror position as an offset from
the one yielding carrier resonance, ensuring the comparability of the curves.

For the negatively detuned etalon, the demodulation phase is closer to the MISR. results
and does not follow the same shape.

The shift of the demodulation phases is related to the phase shift associated with the
etalon in transmission. (For the signal-recycling sidebands this is not relevant, as the
detection takes place at the BSAR.) This phase shift amounts to ~ £11° and ~ £8° for
Ret =~ 97% and Rey ~ 98.2 %, respectively, with respect to the carrier phase shift.

As already mentioned in Section 3.4, the shape of the demodulation phase evolution
depends delicately on the exact amplitude ratios and phase shift differences of the control
sidebands. Thus, the dependencies are too difficult to comprehend intuitively and to
discuss with the phasor picture.

However, the results suggest that with a positive etalon detuning the control loop parame-
ters qualitatively are the same as those using a conventional mirror. It should, though, be
kept in mind that the Michelson modulation frequency, applied at GEO 600 and in these
simulations, is slightly off-resonant regarding the power-recycling cavity. Only due to this,
the upper control sideband resonates inside the positively detuned signal-recycling cavity
during the tuning process. With the sidebands being resonant inside the power-recycling
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cavity, or off-resonant to the other direction, the lower sideband is the one resonating
inside the signal-recycling cavity (see Figure 2.4). In that case, the optical gain for high
signal-recycling cavity tunings is expected to be smaller with a positively detuned etalon.

3.8. Conclusion

This chapter describes the current control of the dual-recycled GEO 600 detector, and
in particular the tuning process, i.e., the controlled microscopic movement of the signal-
recycling mirror. Furthermore, it gives an outlook not only on how to yield a tuned
detector, but also on the possible impact of an etalon (replacing the signal-recycling mirror
at the output port) onto the error-signals of the signal-recycling, and the differential
Michelson control.

Starting with an overview of the lock strategy applied at GEO 600 (see Figure 3.1), the
techniques used for error-signal generation, and the open loop gains of the relevant control
loops are introduced. These comprise the laser frequency, the signal-recycling, and the
differential Michelson control (see sections 3.2.1 to 3.2.3). The laser-frequency loop is
almost independent of the signal-recycling cavity tuning.

In the rest of this chapter, the tuning process of the signal-recycling cavity is investigated
for the fully operated detector. To guarantee control loop stability during the tuning pro-
cess, the open loop gains of the Michelson and signal-recycling loops demand the optical
gains of the respective error-signals to remain within a margin of 0.275 to 1.64 and 0.5
to 2, respectively. These margins are valid for original unity-gain frequencys of ~ 80 Hz
and ~ 40 Hz, respectively (see Figure 3.4 and 3.6, respectively).

Beyond, the success of shifting the position of MSR by a certain microscopic distance
depends on the properties of the signal-recycling error-signal. In particular, the error-
signal shape around the zero crossing is important.The error-signal symmetry reduces the
susceptibility of the error-signal to fluctuations in other degrees of freedom (see Figures
3.20, 3.21, and 3.23). The capture range, being the monotonic region around the zero
crossing, limits the maximally achievable step size in the tuning process (see Figure 3.17).
The signal-recycling error-signal shape, and in particular the zero crossing position, de-
pends on the combination of the modulation frequency and the demodulation phase (see
Figure 3.8 and 3.22).

For the Michelson error-signal, the only property to supervise is the optical gain which
depends not only on the MSR. position but also on the Michelson demodulation phase.
In addition to adjusting the electronic gain, the demodulation phase yielding maximum
gain is retraced during the tuning process (see Figure 2.4 and 3.16).

In the experiment, the demodulation phases and electrical gains of the Michelson and
signal-recycling control loops are set by an automated computer control system (see Sec-
tion 3.2.4). The distributed parameters are looked-up in a tuning script (see Section 3.5.1,
3.5.2, and 3.6.2) that was created with FINESSE simulations ([FINESSE]). Today, the de-
tector may be tuned down to ~ 330 Hz.
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Tuning further down to carrier resonance is, in principle, possible, though not yet imple-
mented. Two suggestions to yield a tuned detector without the loss of lock are presented
(see Section 3.6.4): one features a short switch-off of the signal-recycling control, to let
the free mirror swing through carrier resonance, and there to again acquire lock. The
other retains the tuning procedure, successively changing the signal-recycling error-signal
parameters to move the signal-recycling mirror in a controlled way (see Figure 3.38). The
tuned detector in any case requires an additional differentiator stage for the Michelson
control loop to compensate for the appearing signal-recycling cavity pole with ~ 200 Hz
corner-frequency.

In general, to successfully implement a parameter script for the tuning process in the
experiment two aspects turned out to be important. One is the accuracy of the FINESSE
input file describing the optical system of the detector, the other is the matching of the
resulting control loop parameters to the experiment. For both, the stability of the control
loops, determined by their respective open loop gain functions, is the limiting factor.

The optical gains and the determined demodulation phases alter for different signal-
recycling and Schnupp lengths (see Figures 3.32 and 3.35, respectively). Whereas a
difference of the Schnupp length of +4 mm already leads to instabilities around 1.5 kHz
(see Figure 3.37), a signal-recycling cavity length deviation of more than —1 mm or +2 mm
only disrupts at very low detunings (see Figure 3.33, in combination with Figure 3.32).

For the calibration accuracy of the control loop parameters, the impact of the signal-
recycling demodulation phase on the optical gain is crucial (see Figure 3.33). In the past,
this demodulation phase estimation prevented from successful tuning, partly because a
FINESSE bug flipped the demodulation phase sign. With the current way of parameter
calibration (see Section 3.6.2), however, not only the FINESSE bug was discovered, but
also an accuracy of the signal-recycling demodulation phase of +2° could be achieved.
The Michelson demodulation phase yielding highest gain can be measured to +1°. The
calibration accuracy for both gains is 1%.

The investigations of the tuning process were guided by the phasor picture, and in par-
ticular by the projection picture, illustrating qualitatively the expected signal-recycling
error-signal (see Section 3.3.2, and particularly Figures 3.13 to 3.15). The understanding
gained with the phasor picture allowed the prediction of the parameter evolutions nec-
essary for both the signal-recycling and the Michelson control (see Section 3.3 and 3.4,
respectively), and gave confidence in the FINESSE results (after detecting two FINESSE
bugs). Understanding the fundamental mechanisms, also the relation between the exact
signal-recycling mirror tuning and the control loop parameters could be explained (see
Figure 3.25). Identifying the signal-recycling error-signal features on the two possible
tuning sides to be identical (see Figures 3.8, 3.10, 3.14, and 3.15), the tuning side was
determined with sideband resonances inside the detector (see Figure 3.29). In addition,
it made clear that, in principle, the detector tuning on both tuning sides is possible.

However, the main profit of the phasor picture during the tuning investigations was that
it enabled to identify relevant regions in the huge parameter space influencing the error-
signals. It helped, for example, to find one demodulation phase enabling an overview of
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the signal-recycling error-signal over a large interval of modulation frequency and signal-
recycling cavity tuning. Compared with preceding simulations (see Figures 3.16 and 3.17
in [Freise03a]) this result is very instructive. (The plot is displayed in Figure 3.8, the
corresponding phasor pictures are shown in Figure 3.13 to 3.15). The phasor picture was
also very effective in yielding the necessary accuracy of the FINESSE input script, leading
to the question of changes of control sideband resonance conditions.

For the impact of an etalon, as compound signal-recycling mirror at the output port,
on the tuning parameters the insights yielded by the phasor picture enabled a fast and
elegant, targeted investigation. Generally crucial etalon features are worked out. For
example, the linear relation between the signal-recycling cavity tuning and the applied
modulation frequency is not off-set, with respect to a conventional mirror, by the phase
shift of the signal-recycling control sidebands yielded in etalon reflection, but depending
on the difference of the particular phase shifts (see Equation 3.5, and Figure 3.39 and
3.42).

With the examined etalon (see table 3.1), in principle, a continuous tuning within the
complete detection bandwidth of ~ 10kHz is possible. For the accessible etalon reflec-
tivity margin, the shift of the 72nd multiple of FSRsgr, associated with the phase shift
appearing at etalon reflection, is limited to ~ 20 Hz. The different etalon reflectivities for
the involved light fields are crucial for the gain and demodulation phase evolutions of the
control parameters. In the comparison of positive and negative etalon tunings, of same
carrier reflectivity, a positive etalon tuning significantly improves all relevant features of
the two error-signals (see Figures 3.43 to 3.45): the optical gains are larger, the demodu-
lation phases alter less, and the signal-recycling cavity tuning is closer to a linear relation
to the signal-recycling modulation frequency. The only premise is that for each control
loop the respective upper control sideband is resonant inside the signal-recycling cavity.
In comparison with a conventional mirror, the optical gain of the Michelson error-signal is
slightly less, by ~ 4%. This is, though, together with the small shift of the signal-recycling
resonance frequency of 35Hz (in comparison to the signal-recycling cavity linewidth for
the Michelson control sidebands of ~ 1kHz), negligible for the detector sensitivivity.
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Chapter 4.

Detector characterisation utilising
simulations

4.1. Introduction

For the successful development and comissioning of a gravitational-wave detector, simula-
tions of transfer functions, resonances and error-signals are indispensable. The accuracy
to which particular parameters need to be known depends on the detector type, and on
the feature under investigation.

To determine control-loop parameters for a successful tuning of the GEO 600 detector
without the loss of lock, for example, the tolerable length deviation of the simulation
from the experiment can amount to up to several centimeters. This, however, presupposes
the calibration method described in Section 3.6.2 for the Michelson and signal-recycling
demodulation phases and gains, and restricts the targeted detector tunings to lie in the
kHz region.

The prediction of the tuning of GEO 600, and at the same time of the shot-noise limited
detector sensitivity requires more precise optical parameter specifications: a deviation of
the power-recycling and signal-recycling cavity lengths of +1 mm shifts the resonances of
the 72nd and 119th multiple of the two FSRs by roughly +8 Hz and +12 Hz, respectively.
A shift of the resonance condition for the signal-recycling control sidebands linearly affects
the position of the peak sensitivity. A change of the Michelson control sidebands alters
the shape of the shot-noise limited sensitivity curve (see Figure 2.13). Due to the coupling
of the two cavities, the precise signal-recycling resonance condition of the two sorts of
control sidebands depend on both cavities! at the same time. As differential Michelson
arm-length deviations determine the coupling level of the two cavities, the macroscopic
difference in the length of the Michelson arms as well influences both the peak position
and shape of the sensitivity curve.

!This holds also for the signal-recycling control sidebands, even though the power-recycling influence
is weak due to the respective anti-resonance: investigations of the signal-recycling error-signal showed
that the optimum demodulation phase gets slightly shifted for lower signal-recycling cavity tunings by
several degrees (see the explanations concerning Figure 3.23) due to the power-recycling cavity impact.
According to Figure 3.34, depending on the tuning and on the region of demodulation phase a deviation
from the targeted demodulation phase by ~ 10° may change the detector tuning by ~ 100 Hz.
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To understand and reproduce the coupling of noise to the detector output signal or
the error-signal for misalignments, for example, an even more detailed knowledge about
the optical system is necessary. Beyond the overall cavity and differential Michelson
armlengths, the beamsplitter and far end mirror positions and specifications change the
exact phases of all light fields and modes at the photodiode.

Cavity lengths can be determined during operation of the corresponding control by look-
ing for the resonance of another control sideband inside that cavity. If resonant, fre-
quency noise peaks get attenuated in the spectrum of the respective error-signal (gener-
ated in either the reflection or transmission of the cavity). In the current configuration
of GEO 600, the length of the (compound) power-recycling cavity is determined with
this method by evaluating the Michelson error-signal under MSR misalignment (see
[Freise03a], page 71, and [Grote03b], pages 20 — 21). The precision of this measurement
is better than +1Hz = 4 0.1 mm. Thus, the power-recycling cavity length was assumed
to be known for all simulations.

For other degrees of freedom or script parameters, new measurements were necessary.
The amplitude of the differential Michelson error-signal, demodulated at twice the mod-
ulation frequency (2f signal), for example, depends strongly on the control sidebands’
enhancement inside the power-recycling cavity. The signal-recycled Michelson (srMI) is
the compound output mirror of this cavity. Thus, sweeping the modulation frequency, the
shape of the 2f-signal amplitude depends on particular properties of both the Michelson
and the signal-recycling cavity, like lengths and losses.

The transfer function shape of differential end mirrors’ movements to the output signal
of the dual-recycled Michelson (optical transfer function), contains further information on
several degrees of freedom of GEO 600: the reflectivity of MSR can, for example, directly
be extracted from the bandwidth. The shape also depends on the signal-recycling cavity
tuning and length, and on the Schnupp length. The optical transfer function is not only
used for parameter adjustments, but also to confirm the determined degrees of freedom
at different detector tunings.

The term detector characterisation does not only apply to the determination of degrees of
freedom by fitting measurements. Section 4.4 examines the laser amplitude noise coupling
to the differential Michelson output, joining both FINESSE simulations, and the phasor or
projection picture. The appearance of notch-like patterns in the measured noise transfer-
function is qualitatively explained. The illustration of the coupling mechanisms reveals
modulation-index variations as an alternative noise source with similar characteristics in
the strain signal.

4.2. 2f signal

The 2f signal is generated by demodulating the photodiode signal of PDO with twice the
Michelson modulation frequency (see the dashed-dotted lines in Figure 3.1). Considering
Equation 1.17, the 2f signal is a measure of the two Michelson control sidebands’ am-
plitudes appearing at the output. In the configuration of GEO 600 these sidebands have
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a constant frequency chosen to be roughly resonant inside the power-recycling cavity.
Hence, we expect an Airy-like dependency of the 2f signal under modulation frequency
variations, mainly determined by the detuning from power-recycling resonance?, and the
properties of the input and output mirrors.

The output mirror comprises the Michelson and the signal-recycling mirror, together
called the signal-recycled Michelson (stMI). With Rysr = 98.14% and Ry ~ 99.85%,
the srMI is undercoupled from the power-recycling cavity point of view. Whereas Rysr
is an intrinsic property of MSR (although to be determined), Ryyr changes with Schnupp
length, interferometer losses and misalignment, and is different for different light frequen-
cies. Furthermore, due to the asymmetric losses in the two Michelson arms the phase
shift at reflection of the (isolated) Michelson gets sensitive to the amount of Schnupp
length. Thus, the Schnupp length’s impact on the light phase shift at reflection of the
srMI is twofold: through the phase shift by the Michelson, and the phase shift originating
from the undercoupled signal-recycling cavity, having different input mirrors.

The dependency of the 2f signal on the Michelson modulation frequency should be suitable
for the determination of the combination of Schnupp and signal-recycling cavity lengths,
and interferometer losses. Figure 4.1 shows a measurement of the 2f signal with the
detector being detuned to ~ 1kHz. The Michelson modulation frequency was varied
around the mid frequency of fiiq = 14.904927 MHz by +80 Hz in steps of 10 Hz, forward
and back.

Figure 4.2 comprises the 2f signal dependency on the modulation frequency in the exper-
iment (solid blue line with error bars?), and the output from the original FINESSE script
(dashed magenta line) describing GEO 600 (i.e., the optical system comprised in Ap-
pendix B.1.2). In the following, this script will be called default script and the correspond-
ing parameters default parameters. The default detector tuning is set to 1.419° =990 Hz,
according to the zero crossing of the signal-recycling error-signal, applying the experimen-
tally used signal-recycling modulation frequency and demodulation phase. Obviously, the
simulation result is shifted by approximately 30 Hz, and the shape is narrower compared
to the experiment. There is also a slight asymmetry that does not agree with the mea-
surement.

Before optimising the FINESSE input file to yield a simulated 2f signal that matches
the experimental data, the impact of some promising parameters on the 2f signal were
investigated separately. The examined parameters were signal-recycling cavity length and
tuning, Schnupp length, misalignment, common Michelson losses, and MSR. properties.
The influence of the signal-recycling cavity tuning, of MSR, and of misalignment turned
out to be negligible. The three parameters left to be accounted for are the Schnupp and

2For illustration, Figure 2.16 on page 67 shows the amplitude dependency on the modulation frequency
in combination with the MSR tuning.

3The points of the curve were gained from the measurement shown in Figure 4.1. The error bars were
determined by the standard deviation from the mean value. However, as the measurement times for
each modulation frequency were indeed short, it is assumed that the largest of all error bars in principle
holds for all measurements (except for fmid), even if the standard deviation is, by chance, small for
some measured frequency periods. In particular the boundaries legitimate this approach.
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Figure 4.1.: Measurement of the 2f signal while varying the Michelson modulation fre-
quency around the mid frequency of fiq = 14.904927 MHz by £80Hz in steps of
10 Hz, forward and back. The duration of the shifted frequency values was limited by
the Michelson auto alignment performance.

signal-recycling cavity lengths (Lgchnupp and Lggr, respectively), and the common losses
in the Michelson. Whereas the common Michelson losses only vary the width of 2f signal
curve, the Schnupp and signal-recycling cavity alter all curve properties at the same
time. However, the signal-recycling cavity length predominantly changes the symmetry,
the Schnupp length in the first instance shits the curve with respect to the frequency axis
(see Appendix C for the respective graphs and further explanations).

To fit the simulational curve to the measurement, the 2f signal was computed in this
3-dimensional parameter space. The curves for each parameter triple were compared to
the measurement with the least-square method (LSQ), seeking the minimum of

17

lsq = Z (ymeas(fi) - ysim(fi))2 . (4'1)

i=1

fi are the particular Michelson modulation frequencies applied in the measurement,
Ymeas(fi) are the experimental 2f signal values for the respective fi, and ygm(fi) are
the corresponding simulational signal values (i =1, ..., 17).

From left to right, the three subplots of Figure 4.3 show the LSQ for an offset, A Lschnupp,
from the default Lschnupp of —16 mm, —18 mm, and —20mm, in the plane of common
Michelson losses and ALgr. The Isq values vary most with ALgchnupp. Whereas the
minima in all three subplots indicate the common losses to amount to roughly 700 ppm,
the supposed optimum ALgg shifts by more than 2 cm.
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Figure 4.2.: Experimental 2f signal of the detector detuned to ~ 1kHz, depending on the
Michelson control sideband frequency, in comparison with simulation. The simulation
was done with the FINESSE default input script of Appendix B.1.2. The modulation
frequency is given as offset from the one yielding maximum signal value in the experi-

ment.
ALSchnupp = —16mm AI/Schnupp = —18 mm A-LSchmupp = —20mm
900

g
o
& 800 :
)] X
Q .
n .
n .
9 700 B
= : ;
g © / :
E 600 4 /QD‘; .......... A 'Q(o("/
g /059?’ SR
O / O oot

500

=20

ALSR [mm]

-10

Figure 4.3.: [sq for a ALgchnupp of —16 mm (left), —18 mm (middle), and —20 mm (right),
in the plane of common Michelson losses and ALggr. Please note the different [sq values
of the contour lines comparing the subplots.
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Considering the errors of the measurement, the associated accuracy of the signal-recycling
cavity length is too poor, even for a reliable prediction of tuning parameters (see Sec-
tion 3.6.3). As a consequence, the signal-recycling cavity length is determined differently
(see the following section). The result for the signal-recycling cavity retrospectively fine-
tunes the Schnupp length and common losses, with respect to the LSQ results.

4.3. Optical transfer function

One of the most important signals of GEO 600 to be modelled is the gravitational-wave-
signal transfer function of the detector: the so-called optical transfer function. It is
equivalent to the transfer of differential Michelson armlength variations to the output
signal at the south port.

Besides its significance for the shot-noise limited detector sensitivity the measured transfer
function yields suitable information on detector characteristics. The measurement of the
2f signal, for example, is not sensible if targeting the reflectity of the signal-recycling
mirror. Neither is it accurate enough for the signal-recycling cavity length. With the
optical transfer function, Rysg can be adjusted such that the simulation fits the detector
bandwidth, whereas the signal-recycling cavity length influences the frequency position
of the peak amplitude transfer.

4.3.1. Determining the signal-recycling cavity length

The signal-recycling cavity’s impact on the optical transfer function shape acts through
the MSR tuning which is determined by the zero crossing of the signal-recycling
error-signal (see Section 3.3). For large detunings on the tuning side opposite to the
72nd FSRpR, this zero crossing roughly coincides with the MSR tuning, for which one
of the signal-recycling control sideband resonates (see Figure 3.10 and 3.25). A variation
of the signal-recycling cavity length alters fi, tuned = 72 X FISRsr, and consequently the
resonance condition of any signal-recycling control sideband.

However, the error-signal zero crossings depend also on the demodulation phase (see
Figure 3.22). Assuming the demodulation phase is known, the signal-recycling cavity
length offset from the experiment would directly show up as an offset of the peaks of
the optical transfer functions: +1 mm length offset shifts the 72nd FSRsg by ~ —7.5 Hz.
However, in order to minimise the error, the accuracy of the demodulation phase has to
be considered.

In section 3.6.2 the non-linear zero crossing dependency on the demodulation phase was
used to calibrate the phase. This calibration was done for a detuning of ~ 2kHz (see
Figure 3.30 and the corresponding explanations), with an accuracy of +2°.

This demodulation phase uncertainty can, with Figure 3.30, be directly translated into
the maximum achievable accuracy for the signal-recycling cavity length when comparing
the measured optical transfer functions with simulation. Given the slope of the curve,
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4.3. Optical transfer function

applying the highest demodulation phase should yield the least uncertainty for the MSR
tuning in the simulation. There, +2° yields a tuning deviation of £10Hz (compared to
+20 Hz for the lowest demodulation phase of 155°).

fit to measurement
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Figure 4.4.: Comparison between a fit of the measured optical transfer-function ampli-
tude, and three simulations that use different signal-recycling cavity lengths. In order
not to be sensitive to the Michelson demodulation phase, two perpendicular quadra-
tures are quadratically added. To ease the comparison of the peak frequencies, the
simulated transfer functions are normalised to fit with the maximum of the measured
transfer function.

Figure 4.4 displays the fit of the measured optical transfer function applying 175° as
demodulation phase (solid green line), together with three simulated curves, with the same
demodulation phase, and different signal-recycling cavity lengths. To be independent
of the experimentally used (uncalibrated) Michelson demodulation phase, the transfer
functions’ amplitudes are maximised for each frequency by quadratically adding the two
measured perpendicular quadratures (which is equivalent to optimising the Michelson
demodulation phase for each frequency). The simulations are normalised to yield the
same maximal amplitude value as the experiment. The peak of the transfer function with
the default length (dashed dotted cyan line) is —36 Hz away from the measurement, the
one with —12mm offset (dotted blue line) is 50 Hz too high. Although the middle of them
is still off by +7Hz, it is the length that satisfies both the transfer function, and the 2f
signal measurements best within the given accuracy limits.

Going back to Figure 4.3, the LSQ for a signal-recycling cavity length offset of ~ —6 mm
rather suggests a Schnupp length of —16mm. For validation, Figure 4.5 compares
the 2f signal for the FINESSE input file, with the final parameters, with the measure-
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Figure 4.5.: Comparison of the measured and simulated 2f signal. The simulation ap-
plies the common Michelson losses, Schnupp length and signal-recycling cavity length,
commonly determined by the optical transfer function and the results of the LSQ of
the 2f signal. The parameters obviously satisfy the 2f signal measurement within the
respective errors.

ment. The common losses, fitting the 2f signal best with the given length parameters
(ALgchnupp = —16mm, and ALsg = —6mm), are 650 ppm.

4.3.2. Anticipating the optical transfer function of GEO 600

Ideally, inserting a particular signal-recycling modulation frequency and demodulation
phase of the experiment into the simulation yields the right MSR tuning if it generates
an optical transfer function whose peak amplitude position agrees with the measurement.
Beyond Ryisgr setting the signal-recycling cavity linewidth, the shape of the transfer func-
tion is further determined by the resonance condition of the Michelson control sidebands
inside the dual-recycled detector (see chapter 2), and the Michelson demodulation phase.

The optical transfer function measurements at ~ 2kHz allow (fine-)adjustments of the
Schnupp and signal-recycling cavity length, the common Michelson losses, and the MISR
reflectity. Moreover, the signal-recycling and Michelson demodulation phases could be
calibrated.

The new input script, together with the calibration, can be best tested by predicting
the optical transfer function for different, experimentally used combinations of signal-
recycling modulation frequency and demodulation phase. The optical transfer functions,
shown in Figure 4.6, feature a signal-recycling cavity tuning of ~ 1kHz. In the simulation,
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Figure 4.6.: Comparison of measured and simulated optical transfer functions of GEO 600.
The detector is detuned to ~ 1kHz. For the simulation, MISR is tuned to the signal-
recycling error-signal zero crossing, applying the experimental tuning script parameters
and the signal-recycling and Michelson demodulation phase calibrations determined at
a different detuning.

the MISR is tuned to the zero crossing of the signal-recycling error-signal that is generated
with the tuning script parameters used for the present measurement. The blue and red
solid lines in the upper and lower graphs of Figure 4.6 respectively display the measured
optical transfer functions in amplitude and phase, in two perpendicular quadratures P and
Q. The dashed magenta and cyan lines are the respective FINESSE predictions, normalised
to the experimental peak amplitude value. For this simulation no further parameter
adjustment nor calibration was done.

The agreement of the presented amplitude curves is for both quadratures better than
5% within the interval of ~ [250 Hz, 2150 Hz|. A similarly excellent agreement is achieved
predicting the optical transfer function for detector tunings of ~ 2kHz and ~ 330 Hz. The
disagreement in Figure 4.6 between simulation and experiment at lower signal frequencies
is most likely caused by errors in the model of the Michelson control loop filters that were
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accounted for: the DC values of the optical transfer functions are very sensitive to the
assumed open loop gain. The accuracy at high frequencies is mainly limited by the bump
occurring around 2.3 kHz. Amasingly enough, though, it is — at least roughly — predicted
by the simulation. It originates from the beat of the carrier, appearing at the dark port
due to asymmetric losses in the Michelson arms, with the signal sidebands generated
around the Michelson control sidebands (see also Section 4.4).

4.4. Laser amplitude noise

Nowadays, the construction of all interferometric, large-scale gravitational-wave detectors
of the current, first generation network, is completed. The effort is now to improve, on
the one hand, the robustness of operation, i.e., of the acquisition and duration of locks
or of the tuning process, and, on the other hand, to reduce technical noise sources that
prevent the detectors from reaching their design sensitivities. To identify and eliminate
technical noise sources is often referred to with the term noise hunting.

A technique to facilitate noise hunting is the so-called noise projection. This method
is very much used at GEO 600. It allows estimations of coupling levels of noise sources
into the differential output signal containing the gravitational-wave signal, h(¢) [Smith06].
The basic procedure of noise projection is:

e Find a recordable signal, N (t), that is a good measure for a particular noise source,

n(t).

e Build the transfer function from N (t) to h(t), TFx_y}. For this, the noise appearing
in N(t) has to be dominated® by n(t).

e Measure the amplitude spectral density (ASD) of the signal N(t), and multiply it
with TFyn_y. This yields the coupling level of N(t) showing up in h(t).

The noise projection method is a very useful tool to systematically determine noise sources
limiting the current sensitivity and track their propagation through the detector (in-
vestigating various output signals). Especially where intuition fails, noise projection is
invaluable.

If the projection indicates the considered noise to be dominating, either the source itself
can be improved, or the coupling reduced. For a coupling reduction, however, the mech-
anism has to be established. Some coupling mechanisms are, though, difficult to access.
Simulations may help to enlighten the subject.

The following section shows the adoption of simulations in combination with the phasor
picture to explain the coupling of laser amplitude noise (LAN) to h(t).

4This may require the introduction of some extra noise at the particular source.
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4.4.1. Experimental laser-amplitude-noise coupling into A(?)

One of the reasons to operate the Michelson interferometer of the dual-recycled detector
with a perfect dark south port, is to decouple h(t) from laser-power noise. In case of
differential losses in the interferometer arms, mode-mismatch or small offsets from a
perfect dark fringe, however, a particular amount of carrier appears in the south port,
making it susceptible to variations of the laser amplitude.

Figure 4.7 shows the gain and phase of the transfer function of the LAN that was injected
into the interferometer, to the gravitational-wave channel output. The DC output of
PDPR (see Figure 3.1) was used as a measure of the LAN®. The detector tuning was
~ 1kHz for this measurement which was made in May 2005. During this time, the
low-reflective MPR was installed.

The gains exhibit 3 to 4 dips. The respective phase shapes differ in characteristics, point-
ing to different relations between competing processes. At 700 Hz, the phase evolution
of TFpppRy—P, together with the smoothness of the dip, could originate from a “sim-
ple” crossoverS between two competing contributions. The two transfer function gain and
phase shapes around 2 kHz, in contrast, clearly point to a crossover between contributions
having an incidental phase difference of 180°, in both P and Q. Such a gain collapse will
henceforth be referred to as notch. Just above 3 kHz, a notch-like structure occurs in the
experimental Q quadrature only. The respective phase drops steeply in contrast to the
notches at 2 kHz.

4.4.2. Coupling mechanism

It is impossible to explain the complexity of the two measured transfer functions by the
noise sidebands around the carrier only (see Section 2.3). We need to look for light fields
that exhibit a significantly different phase evolution from the carrier sidebands.

One possibility are the amplitude modulation sidebands, appearing around the control
sidebands as a consequence of laser amplitude variations. Figure 4.8 displays the beam
configuration of the light entering the dual-recycled detector, with LAN. Only the first-
generation (at fan, ), and Michelson phase-modulation sidebands (at fu, ) around the
carrier (at 0), and the second-generation amplitude-noise sidebands around the Michelson
control sidebands (at fy,, an,) are considered. In the following, all sidebands appearing
due to amplitude noise will denoted as AN sidebands. As the resonance condition for the
control sidebands is so different from the carrier, the respective AN sidebands will evolve
differently in amplitude and phase.

5Please note that TFpppPrpo—P denotes the transfer of LAN, in general, to the P quadrature of h(t).
PDPRpc in the index is (only) used for the correct reference to the measurement shown in Figure 4.7.
Same holds for the transfer of LAN to the Q quadrature.

5The term “simple” distinguishes this case of crossovers between competing contributions, without any
particular phase relation at the crossover frequency, from others, having a phase difference of 180°.

177



Chapter 4. Detector characterisation utilising simulations

10°
5
~
2
10
)
= PDPRpc — Q |- 4 2 L S\
o) | = — = PDPRpc — P | i Wi e Ay
g ol : : :
< 10°F EEERRRE
1|\;,. : N :
| “ ) ) P I ™ )
AAY R R R N R
qllll \'\.“ S S \'\. :
— 90} - l|,|.| .............. "4,"“ R N Lo
20 T N
| N 1 R I R
) R _W.‘ i S -
=) %I: : ”‘.’\\*: Do Yoo
0 .............................. .. T DI W Voo
) ] 1l T o \
: b (e ‘A
= | i \
A OO ——— e - \I .....................
| | | : i.' 1
el N
e N
10° 10’

Frequency [Hz]

Figure 4.7.: Transfer function of laser amplitude noise to the HP output in P and Q, for
a detector detuned by ~ 1kHz. The LAN was measured with the DC output of PDPR
(see Figure 3.1). The transfer function gain is contained in the upper figure, the phase
in the lower. The combination of gains and phases indicate a notch at ~ 2kHz, and a
crossover of competing contributions at 700 Hz in TFpppry—p-
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Figure 4.8.: Change of light beam composition due to laser amplitude noise. The noise
creates two amplitude-modulation sidebands around each primarily existing light field,
i.e., around the carrier (0), and the upper (M) and lower(M_) control sidebands. The
lower and upper amplitude-noise sidebands are marked by the indices AN_ and AN,
respectively.
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Figure 4.9.: Amplitude (upper graph) and phase (lower graph) of the AN sidebands
appearing behind MSR, for a Michelson with an offset from dark fringe of 5 pm, and
differential losses in the arms of 300 ppm. The upper and lower sidebands (SB) are
distinguished by solid and dashed lines, respectively. The SB indices agree with those
used for the respective frequencies in Figure 4.8.

The upper and lower pictures of Figure 4.9 illustrate the AN sidebands’ amplitudes and
phases, respectively, appearing behind MSR.. As expected for a positive detector tuning
of ~ 1kHz (see Figure 2.4), SBan_ is resonant inside the signal-recycling cavity being
~ 1kHz off from the carrier, and the resonances for the AN sidebands around the Michel-
son sidebands differ extremely from each other. Both SBy— an, and SBy— an_ have
resonance peaks close to each other”. The lower AN sideband around SByr gets resonant
inside the signal-recycling cavity for a frequency offset of ~ —2kHz from fyr..

With the overall three sideband resonances, a transfer-function shape as shown in Fig-
ure 4.7 is, in principle, imaginable. To yield the notches around 2kHz, however, both

"Please remember the Michelson sidebands not being exactly resonant inside the power-recycling cavity.
Besides, the resonance condition inside each cavity influence the resonance frequency of each other.
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Figure 4.10.: Sidebands of Figure 4.8, appearing at the south port of a plain Michelson
interferometer, having a small offset from the dark fringe. Please compare with the
upper phasor picture of the lower right quadrant of Figure 1.15. The phasors projected
onto each other for the respective error-signal are connected with the thin black arrows
on the top and the bottom: the DC carrier beats with all four AN sidebands around the
control sidebands, and each control sideband beats with the two AN sidebands around
the carrier.
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the phase difference and the amplitudes of the resulting error-signal contributions need
to match.

In a Michelson interferometer there exist, in principle, two possible coupling mechanisms
for LAN. One coupling mechanism acts through the offset from dark fringe, the other
comprises asymmetries regarding the amplitudes of the interfering light fields coming
from the two Michelson arms®. That the beats differ in phase and amplitude becomes
plausible with the respective phasor pictures. Figure 4.10 shows the phasors of Figure 4.8,
appearing in transmission of a simple Michelson interferometer, slightly off-set from per-
fect dark fringe. The chosen phasor pointings refer to the upper phasor picture of the
lower quadrant of Figure 1.15. The relevant beats are connected via the thin black arrows
on the top and the bottom of Figure 4.10. The beats of the DC carrier add up to the
beats of the control sidebands with the same quadrature.

With the same phasors impinging on a plain Michelson operated at a perfect dark fringe,
but with asymmetric losses in the two arms, the phasors look very different at the south
port. The situation of larger losses in one arm is displayed in Figure 4.11. As all phasors
from the north are longer, the carrier is real and negative, whereas the lower and upper
control sidebands are rotated clockwise and anti-clockwise, respectively (i.e., they both
get a negative imaginary component). The respective AN sidebands behave the same.
Due to the symmetry of the sidebands’ rotation, the phasors still represent a perfect phase
modulation considering the Michelson (de-)modulation frequency.

8Possible sources for the latter are asymmetric losses or mode mismatch (the thermal lens, for example,
only influences the light in the east arm).
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Figure 4.11.: Sidebands of Figure 4.8, appearing at the south port of a plain Michelson
interferometer, operated at perfect dark fringe, but having asymmetric losses in the
two arms. The phasor rotations of the outer sidebands are the consequence of larger
losses in the east arm, applied to the phasors of the upper phasor picture of the lower
right quadrant of Figure 1.15. The thin black arrows again connect the phasors that
are projected onto each other for the respective error-signal.

4.4.3. FINESSE results for the amplitude-noise transfer function

As the appearance of a notch not only depends very delicately on the phase and amplitude
relations of the competing carrier and control-sideband contributions, but also on the
considered demodulation phase of the error-signal, it is quite challenging to find the right
amount of dark fringe offset and asymmetric loss by observing the complete transfer
function. It is rather favorable to be able to compare the phase and gains of the different
transfer-function contributions. This allows for a targeted adjustment of the phase and
gain of the complete transfer function by altering the losses and dark fringe offset. With
parameters yielding promising properties, the transfer function can be investigated under
diverse demodulation phases.

To get an idea of the carrier and control sideband beat contributions to the transfer
function for each mechanism separately, Figure 4.12 shows the gains and phases of the
carrier and control sideband beats, referring to the control sidebands as a cosine (P) and
sine (Q) phase modulation (before entering the dual-recycled detector). The beats were
calculated with MATLAB, using the light fields’” amplitudes and phases of the TEMjgg
modes at MSR, provided by FINESSE. Figure 4.12 is organised as follows: the left
and right columns display the amplitudes and phases, respectively, whereas the three
rows represent different detector situations. The middle assumes a perfect dark fringe
and equal losses in both Michelson arms, though accounting for mode-mismatch. The
upper row includes an increased loss in the east Michelson arm of 300 ppm, the lower
a differential end mirrors’ offset from dark fringe of +5pm. The graphs are labeled
correspondingly. In each graph, P and Q are distinguished by solid and dashed lines,
respectively. The legends are valid for all six graphs. The (dark) blue lines indicate the
four beats of the carrier (see lower arrows in Figure 4.10 and 4.11), and the magenta lines
the sum of all control sideband beats (see upper arrows in Figure 4.10 and 4.11). In the
middle row, the sideband beats are, in fact, smaller by 10 orders of magnitude. For the
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sake of visibility, however, the respective amplitudes are scaled up, and they are displayed
in cyan to make the difference to the magenta curves obvious. In general, the amplitudes
have arbitrary units, but the relative values agree to enable a comparison between the
three different cases.

The upper two situations are noticeably similar, particularly the amplitude and phase
shapes of Pear and Qear. With a perfect dark fringe tuning and same loss in the two
Michelson arms, there is still the asymmetry due to mode-mismatch of the interfering
beams that can cause a small amount of carrier to appear at the south port. As the ther-
mal lens applies to the east arm only, more power is transferred from TEMgg to higher
order modes, yielding the same carrier orientation in the south as the exaggerated east
arm losses in the first row (compare with Figure 4.11).

The amplitude peaks and dips appearing in P, and Qca, become plausible with Fig-
ure 4.9, particularly considering the carrier beats with SBy_ an, and SByi, an_.

The AN sidebands around the carrier evolve differently in the two cases, and consequently,
so do the control-sideband beats. In a perfectly symmetric, dark Michelson interferometer,
the power-recycled Michelson is a perfect mirror, especially for the AN sidebands being
non-resonant. Thus, the amplitude is enhanced only by the signal-recycling cavity and
falls off towards 100 Hz. So do the respective beats. If the losses in the east are further
increased, the Michelson couples the power-recycling and signal-recycling cavity, and the
power-recycling cavity resonance becomes visible.

To construct a notch in the sum of these transfer functions, we need a phase difference of
180° between carrier and control sideband beats. In P, two frequencies come into question,
close above 1kHz and again close above 2 kHz, whereas in Q the phase dispersion of Qcar
supports a notch only slightly above 2kHz. The amplitudes are, however, too different
to really yield notches.

The amplitude and phase characteristics look very different in the lowest row. However,
the peaks of P/Qcar clearly exceed both Py and Qyy, like with asymmetric losses. The
only phase difference of 180° appears in the Q contributions around 6 kHz.

With the considerations made above, a notch at 2kHz seems impossible with the current
virtual detector configuration: both mechanisms yield a much stronger P/Qc, transfer
function compared to the P/Qu transfer function. Still, the notch just above 3kHz is
worth further examination. A coarse investigation into the parameter plane of differential
dark fringe-offset/asymmetric losses yields notches for higher losses in the east arm by
roughly 300 ppm, and for differential offsets of the end mirrors between +5 pm and +8 pm.
Best results are obtained with +5pm. According to the simulational results about the
Michelson error-signal zero crossing offset from perfect dark fringe for various detector
tunings, shown in Figure 3.25 in Section 3.5.2, this is the expected dark fringe offset for
a detector detuning of 1kHz.

Figure 4.13 displays the simulated transfer functions of the LAN to h, for a detector
configuration of 1kHz detuning, +5pm dark fringe offset, and 300 ppm larger losses in
the east Michelson arm. The shown demodulation phases vary in steps of 15° between 90°
and 180°. ®q = 90° is the demodulation phase corresponding to the control sidebands of
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Figure 4.12.: Amplitudes (right column) and phases (left column) of the carrier and
control sideband beats. The beats refer to an initial cosine (P) and sine (Q) Schnupp
modulation of the carrier. From top to bottom, the simulation assumes a perfect dark
fringe with 300 ppm more loss in the east than in the north Michelson arm, a perfect
dark fringe and equal losses, and a differential end mirrors’ offset from dark fringe of
+5pm with equal losses. (All cases account for mode-mismatch.) The legends apply
for all six subplots: whereas the (dark) blue lines represent the beats of the carrier, the
control-sideband-beat curves are magenta. Those in the middle row are distinguished
by the cyan colour, because they are scaled up by 10 orders of magnitude. Beside of
this scaling, the amplitudes of the three cases can be related to each other.
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the simulation being in the Q quadrature. The graphs outside the shown demodulation
phase interval do not exhibit any notch-like structure (except for those, again, between
270° and 360°, of course).
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Figure 4.13.: FINESSE simulation of the transfer function of LAN to h. The detector
is tuned to 1kHz, has 300 ppm larger losses in the east than in the north Michelson
arm, and a differential end mirrors’ offset from dark fringe of 5pm. Shown are the
amplitudes (upper graph) and phases (lower graph) for 7 demodulation phases, in an
interval of 90°, framing the curve with ®q+45°, exhibiting the clearest notch. ®q is the
demodulation phase corresponding to the control sidebands being in the QQ quadrature.

Comparing the simulated curves with the measurement in Figure 4.7, the amplitude and
even the phase evolution for ®q + 45° agrees qualitatively around the sharp notch above
3kHz with TFpppry.—q. However, the simulation seems to principally miss one effect
at 2kHz that might also influence the amplitudes and phases around. Besides, the dip
at 7T00Hz is for all demodulation phases much smaller than that of TFpppry,—p in
Figure 4.7. Instead, for ®q + 15° and ®q + 30°, some notch-like structures show up
around 300 Hz and 200 Hz, respectively.

Similar structures are obtained in the experiment using different demodulation phases.
Figure 4.14 shows some transfer functions of the same measurement exhibited in Fig-
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ure 4.7, with different demodulation phases applied and only for frequencies below 1 kHz.
The demodulation phase offsets from the one used at GEO 600 for Q, are noted as argu-
ments of TFpppry,—q. For 10° and 15°, the phase shapes occurring at the amplitude
dips are comparable to ®q and ®q + 15° in Figure 4.13. The deepest dip and largest
phase dispersion are yielded for 5°, corresponding best to the properties of the curve
belonging to ®q + 30° in Figure 4.13.

Frequency [Hz]

Figure 4.14.: Same measurement as shown in Figure 4.7, but with different demodulation
phases. TFpppry.—q(0°) labels the same curves as PDPRpc —Q in Figure 4.7. The
phase in the argument of TFpppr,,,—q indicates the applied demodulation phase with
respect to the one used in the experiment for Q.

Despite the quantitative disagreements of the simulations to the measurement, the qual-
itative agreement shows the AN sidebands generated by the laser amplitude noise to be
the main cause for the transfer functions obtained. Thus, considering which other noise
source could exhibit similar noise-projection features, those come into question that lead
to similar impinging light fields. Comparing Figure 1.5 with Figure 4.8, the sidebands
appearing due to modulation index variations clearly suggest these as an alternative to
LAN. (This suggestion was confirmed during GEO 600 comissioning,.)
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A better quantitative agreement between simulation and experiment could be aimed for
by further investigations of the LAN transfer function by varying particular parameters
that were not optimised yet.

e For the simulations so far, some global optical lengths were required. Determining
the Schnupp, or the power-recycling and signal-recycling cavity length, for example,
never required the exact position of the beamsplitter or of the far end mirrors.
With the positions of notches being so delicately dependent on phase differences,
the absolute Michelson armlengths gain importance.

e The nature of the losses appearing in the detector is unknown. Measurements of
the interferometer mirrors’ properties do not explain the losses getting obvious by
the power-recycling performance. One of the considered options is a beam cut-off
within the vacuum tubes. Up to now, the common losses were mainly inferred in
the Michelson end mirrors, the asymmetric losses in the BSAR. If the beam cut-off
happens between MPR and BS, and would correspondingly be accounted for in
the simulation, the signal-recycling cavity could exhibit slightly different features
for the control sidebands?, and for the AN sidebands of these.

e Although the notches measured in the two quadratures cannot be generated with
the optical features accounted so far, the SBps, an_ resonating around 2 kHz make
an association very likely. Thus, either some further optical effect occurs, or some
non-optical feature interacts. As the measurement was done in-loop, using the
Michelson error-signal in P as a differential feed-back for the end mirrors, an elec-
tronic disturbance of the measurement, for example, cannot be excluded. However,
the open loop gain at 2kHz is already very low (see Figure 3.4).

A different idea is a possible coupling of the LAN with the modulation index
noise: the AN sidebands around the carrier have opposite directions in Figure 1.5
and Figure 4.8. If the coupling was in-phase, Py and Qu would further decrease
with respect to Peyy and Qear (see Figure 4.12), for all frequencies. Assuming anti-
phasing, though, the peaks appearing in Py and Qu could just be attenuated
enough to yield a notch.

4.5. Conclusion

This section is devoted to the application of simulations to gain a better understanding of
the GEO 600 experiment. Partly, this includes the adjustment or calibration of particular
parameters of the simulation input file describing the optical system, in order to fit special,
sensitive measurements. The main goal is, however, the prediction of other, measurable
features without any further accommodation.

9As the signal-recycling cavity linewidth for the gravitational-wave signal-sidebands is adjustable by the
bandwidth of the optical transfer function measured at GEO 600, the signal-recycling features should
not change for the AN sidebands around the carrier.
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The frequency dependency of the differential Michelson error-signal, demodulated at twice
the modulation frequency (2f signal), is used to determine common Michelson losses, the
Schnupp length difference between the Michelson arms, and, very coarsely, the signal-
recycling cavity length. The 2f signal turns out to be comparably insensitive to misalign-
ments, and even less sensitive on the MSR tuning or reflectivity.

To facilitate the search for the common losses, and signal-recycling cavity and Schnupp
lengths in a three-dimensional parameter space, the particular simulations are compared
with the measurement via the least-square method. Due to the errors of the measurement,
various parameter combinations are possible.

The range of possible solutions is narrowed by fitting the optical transfer function, i.e.,
the transfer from the Michelson end mirrors’ movement to the differential output behind
MSR, for a detector detuned by ~ 2kHz. This allows determination of the MSR
reflectity, and the signal-recycling cavity length. Moreover, the transfer function enables
the calibration not only of the simulational signal-recycling demodulation phase, but also
of the demodulation phase of the Michelson error-signal.

With the signal-recycling cavity length gained from the transfer-function measurement,
with an accuracy of +£1 mm, the least-square fit results allow determination of the Schnupp
length with at least the same accuracy, and the common losses with an error limited to
+50ppm. The MSR reflectity could be determined by the optical transfer-function
bandwidth to up to ~ 100 ppm accuracy.

Applying the experimentally used control-loop parameters to the improved FINESSE in-
put script (using the signal-recycling demodulation phase calibration), any experimental
signal-recycling cavity tuning can be predicted with a precision better than ~ 10Hz
(see Section 4.3.1). This is shown by comparing the measured optical transfer functions
for several signal-recycling modulation frequencies and demodulation phases. With the
Michelson demodulation phase calibrated for the detector being tuned to 2 kHz, the simu-
lated transfer functions for other detunings agree simultaneously with each experimental
quadrature with an accuracy better than 15% in the complete detector bandwidth of
5 kHz.

The presented transfer-function example shows that the accuracy is limited mainly due
to the frequency region below 200 Hz, and due to “bumps” occurring in Q at particular,
higher frequencies that depend on the exact detector tuning. The low-frequency deviation
originates from inaccuracies accounting the Michelson control loop for this closed-loop
transfer-function measurement. The measured bump occurs also in the simulation, but
it is slightly higher in the simulation. The reason for the bump are beats of the DC
carrier, appearing at the output port due to asymmetric losses in the Michelson arms,
with AN sidebands generated around the control sidebands. In the frequency interval of
[250 Hz, 2150 Hz] the accuracy of the transfer function prediction is better than 5%.

Another example of FINESSE simulations being able to explain and gain insights into
experimental features is presented by investigating laser amplitude couplings into the
differential Michelson error-signal. Based on the phasor picture, the diverse resonance
characteristics of the noise sidebands appearing around both the carrier and the control
sidebands could qualitatively be correlated with the shape of the noise transfer to the
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output. Discovering the diverse AN sidebands as being responsible for the particular cou-
pling, variations of the Michelson modulation index could be identified exhibiting similar
coupling characteristics. The experimental sensitivity improvements, after successively
reducing both the laser and the modulation index noise, confirm the considerations.

Quantitatively, the notch appearing in the experimental noise transfer function above
3kHz is obtainable with the simulation. The agreement in the frequency region below
1kHz can presumably be improved with a better adjustment of some remaining optical
parameters, like for example the absolute Michelson arm-lengths. The notch around
2kHz that appears in the experiment in both quadratures, however, does not seem to be
achievable in the simulation with the assumptions made so far, although the AN sideband
resonances very much offer themselves to be the reason for the notch. A correlation of
the laser amplitude noise to another effect is necessary, generating the same sidebands
but with different phases. One option is the modulation index noise, flipping the sign of
either the AN sidebands around the carrier or around the control sidebands. This could
be subject to further investigations. In addition, further measurements with different
detector tunings and varying modulation index and laser amplitude noise levels could
yield additional information on the correlations of the two, or even hint to a completely
different effect causing the 2 kHz-notch, as for example electronic radio-frequency pick-up.
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Appendix A.

Signal-recycling demodulation phase
calibration

The signal-recycling demodulation phase calibration described in Section 3.6.2 exploits
the non-linear relation of the signal-recycling error-signal zero crossing position and the
demodulation phase. The susceptibility of the curve shape of Figure 3.30 to particular
degrees of freedom of the detector, though, were not discussed. With the help of the
phasor picture it gets plain that the curve shape depends mainly on two aspects: the
amplitude of the lower control sideband, and the linewidth of the signal-recycling cavity
for the signal-recycling sidebands.

Figure A.1 shows the signal-recycling error-signal vectors for three situations. The upper
and middle pictures assume different signal-recycling cavity linewidths, and a very large,
positive detuning such that only one control sideband contributes to the error-signal. The
detector in the lowest picture exhibits the same signal-recycling cavity linewidth as the
middle, but a smaller detuning such that both control sidebands need to be accounted
for the error-signal.

Each of the red or magenta arrows represents the error-signal vector for one particular
MSR position. The green dashed lines are two examples of demodulation phases, with an
angle (or shift) of 20° between them. Relating this error-signal representation to the more
commonly used error-signal amplitude curve, like for example in Figure 3.9, each MSR
position on the horizontal axis of Figure 3.9 corresponds to one vector. The respective
error-signal amplitude is given by this vector’s component regarding the dashed green
line representing the particular demodulation phase. (This is equivalent to projecting
the vector onto this dashed line.) Thus, the error-signal vector perpendicular to the
demodulation phase line marks the respective error-signal zero crossing.

The evaluated MISR . positions in plots like Figure 3.9 are usually constantly spaced. In
agreement, the error-signal vectors in Figure A.1 represent equally spaced MSR. positions
whose increments are the same for all three subfigures. Three of the error-signal vectors
are magenta, and non-solid. The dashed-dotted vector agrees to the MSR position where
the upper control sideband is resonant inside the signal-recycling cavity. For the other two
magenta vectors, MSR is located at the edges of the respective Airy-function linewidth.
The dashed and dotted vectors represent a positive and negative MISR. detuning with
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Figure A.1.: Signal-recycling error-signal vectors for three different detector configura-
tions. The three configurations differ either in signal-recycling cavity linewidth for the
control sideband, or in the cavity tuning. The situation is accordingly labeled. The
dashed-dotted magenta vector represents the error-signal for the sideband resonating
inside the signal-recycling cavity, the dotted and dashed vectors mark the Airy-function
linewidth edges in negative and positive tuning direction, respectively. The dashed
green lines are particular demodulation phases.
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respect to the sideband resonance. A comparison with some examples of error-signal
vector deductions, presented in Figure 3.14, may help for illustration.

In agreement with the phase dispersion associated with a resonance, the error-signal
vector spacing gets narrower, the farer the MISR. position from sideband resonance, i.e.,
the closer to the real axis. (These very narrow-spaced vectors are omitted for clarity.
Instead, the corresponding vector end points are indicated by the red curve.) Comparing
different cavity linewidths, the vector spacing gets narrower, the larger the linewidth.
Accounting for the contribution of the lower control sideband, all real components of
the error-signal vectors from the middle picture get negatively shifted (compare with
Figure 3.14).

For all three cases a demodulation phase increase shifts the zero crossing position neg-
atively, as the MSR tuning associated with the error-signal vectors increases clockwise.
The amount of shift is determined by the number of vectors passed perpendicularly when
rotating the line of demodulation phase. The zero crossing shifts are obviously non-linear
to demodulation phase changes. In the upper two subfigures, the dashed-dotted vector
sets a symmetry axis for the demodulation phases regarding this non-linear behaviour.
This is similar for the lowest case. However, for positive demodulation phase shifts, the
zero crossing shift is comparably steeper than for negative demodulation phase shifts!.

The larger the linewidth of the signal-recycling cavity, the more vectors are perpendicu-
larly passed when rotating the demodulation phase line by one particular amount. Thus,
the zero crossing shifts, in general, more for larger cavity linewidths.

The demodulation phase calibration inaccuracy, associated with wrong assumptions on
both the signal-recycling cavity linewidth, and the exact detector tuning, can be min-
imised using high detector tunings.

e For high signal-recycling cavity detunings from carrier resonance, the control side-
bands can be assumed to be anti-resonant inside the power-recycled Michelson.
With Rpvr ~ 99.993% compared to Rvsg = 98.05%, the linewidth will hardly
alter with different Schnupp lengths. Rysr is determined via the bandwidth of the
sensitivity curve of GEO 600 to an accuracy of ~ 100 ppm. Simulations show that
a deviation of £4000 ppm is necessary to alter the result of the demodulation phase
calibration by £1°.

e With Figure 3.23 (or 3.43) the impact of the lower control sideband on the demod-
ulation phase calibration can well be estimated. Around a detuning of 2kHz an
uncertainty of the tuning of > 250 Hz is necessary to alter the demodulation phase
by 1°. The corresponding signal-recycling cavity length difference exceeds even the
large interval of ~ 30 mm investigated for the 2f signal (see Figure 4.3).

!Please note that for very low tunings, the error-signal vector spacing in the fourth quadrant gets so
narrow, and the vector’s orientation is so close to the imaginary axis that the zero crossing vanishes
completely, even for small demodulation phase shifts. This, and the other mentioned features get visible
in Figure 3.34.
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Appendix B.

Simulation scripts

B.1. FINESSE scripts

The commands in the FINESSE input script below work with FINESSE versions older than
0.99.

B.1.1. Most adequate FINESSE script for the current optical setup

GEO file for the time from May 05

M. Malec, 2005-05-31

H H H H H

1i1 1.7 0 nMU3in

mod eom3 $fPR 0.126433 2 pm O nMU3in nMU3_1 # PR control
mod eom4 $£fSR 0.199417 2 pm O nMU3_1 nMU3_2 # Schnuppl (SR control)
mod eom5 $fMI 0.1225 2 pm O nMU3_2 nMU3_3 # Schnupp2 (MI control)

lens lpr 1.8 nMU3_3 nMU3_4

# some rather arbitrary thermal lense for the isolators and the EQMs:
lens therm 5.2 nMU3_4 nMU3_5

isol d2 120 nMU3_5 nMU3out # Faraday Isolator

# corrected length with respect to OptoCad (Roland Schilling)
s smcpr3 4.391 nMU3out nBDIPR1
bs* BDIPR 50 30 O 45 nBDIPR1 nBDIPR2 dump dump

s smcpr4 0.11 nBDIPR2 nMPRo
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## main interferometer ##

##

## Mirror specifications for the _final_ optics are used.

#

## first (curved) surface of MPR

m mPRo 0 1 O nMPRo nMPRi

attr mPRo Rc -1.85842517051051 # Rc as used in OptoCad (layout_1.41.o0cd)
s smpr 0.075 1.44963 nMPRi nPRo

# second (inner) surface of MPR

m MPR 0.99905 0.0009 0. nPRo nPRi # T= 900 ppm PR

#m MPR 0.9865 0.0135 0. nPRo nPRi # old MPR

s swest 1.1463 nPRi nBSwest # new length with T_PR=900 ppm
#s swest 1.1452 nPRi nBSwest # old MPR

## BS

##

#it

#i# nBSnorth , 0.

i I + ‘.

## | , 2

## nBSwest | +i1 +

#W o e > N i2 ,’

#it +\ -+ nBSeast
#it B <
## + \ +

## )0 ia.’

## ‘. ..

## ‘._ ,’ |nBSsouth

## -

## I

## I

bs BS 0.4859975 0.5139975 0.0 42.834 nBSwest nBSnorth nBSil nBSi3

s sBSla 0.041 1.44963 nBSil nBSilb

# here thermal lense of beam splitter (Roland: f about 1000m for 10kW at BS)
lens bst 8.5k nBSilb nBSilc

#lens bst 20k nBSilb nBSilc # for old MPR

s sBS1 0.051 1.44963 nBSilc nBSi2

s sBS2 0.091 1.44963 nBSi3 nBSi4

bs  BS2 150u 0.99982 0 -27.9694 nBSi2 dump nBSeast nBSAR

bs  BS3 150u 0.99982 0 -27.9694 nBSi4 dump nBSsouth dump

## north arm
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s snorthl 598.5682 nBSnorth nMFN1
bs* MFN 150 10 0.0 0.0 nMFN1 nMFN2 dump dump
attr MFN Rc 666

s snorth2 597.0241 nMFN2 nMCN1
m* MCN 640 10 -0.0 nMCN1 dump
attr MCN Rc 636

## east arm

s seastl 598.4497 nBSeast nMFE1

bs* MFE 150 10 0.0 0.0 nMFE1 nMFE2 dump dump
attr MFE Rcx 665 # 71 W heater power
attr MFE Rcy 662 # 71 W heater power

s seast2 597.0630 nMFE2 nMCE1
m* MCE 640 10 0.0 nMCE1l dump
attr MCE Rc 622

## south arm
s ssouth 1.109 nBSsouth nMSRi

m MSR 0.9814 0.01855 0 nMSRi nMSRo # tuned

## commands

maxtem 2

time

phase 3

# PR cavity (north arm)

cav prcl MPR nPRi MCN nMCN1
# PR cavity (east arm)

cav prc2 MPR nPRi MCE nMCE1
# SR cavity (north arm)

cav srcl MSR nMSRi MCN nMCN1
# SR cavity (east arm)

cav src2 MSR nMSRi MCE nMCE1
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var £SR 9017375

var fMI 14.904927M # used for lock acquisition and tuning
var fPR 37.16M

var phip 110

var phiqg 200

/*

# determine resonant control sideband frequency for the tuned detector
ad SRSB $fSR nMSRo

ad SRSB- -$fSR nMSRo

xaxis eom4 f lin 9017000 9017500 100

xparam SRSB £ 1 0O

xparam SRSB- £ -1 0

*/

/*

# determine best demodulation phase for the tuned detector
fsig sigl MSR phi 1 O

pd2 SREP $fSR O 1 max nBSAR

xaxis SREP phasel 1in 0 180 180

*/

#/%

# SR-EP

pdl SREP1 $£fSR $phip nBSAR

pdl SREP2 $fSR $phiq nBSAR

x2axis MSR phi lin -2.874 10.061 9000
xaxis eom4 f lin 9013375 9017375 160
xparam SREP1 £ 1 O

xparam SREP2 £ 1 0

gnuterm no
#x/

/*

# MI-EP

pdl MIEP1 $fMI O nMSRo

pdl MIEP2 $fMI 90 nMSRo

xaxis MSR phi lin O 5.7489 4000
x2axis MCE phi lin -3.4m 3.4m 100
x2param MCN phi -1 0

gnuterm no

*/

196



B.1. FINESSE scripts

B.1.2. FINESSE script used before May 2005

GEO file containing the optical setup assumptions made up to
May 2005

M. Malec, 2005-04-12

H H H K H H

1 i1 1.75 0 nMU3in

mod eom3 $fPR 0.323002 2 pm O nMU3in nMU3_1 # PR control
mod eom4 $fSR 0.50391 2 pm O nMU3_1 nMU3_2 # Schnuppl (SR control)
mod eomb $fMI 0.27758 2 pm O nMU3_2 nMU3_3 # Schnupp2 (MI control)

lens lpr 1.8 nMU3_3 nMU3_4

# some rather arbitrary thermal lense for the isolators and the EQMs:
lens therm 5.2 nMU3_4 nMU3_5

isol d2 120 nMU3_5 nMU3out # Faraday Isolator

# corrected length with respect to OptoCad (Roland Schilling)
s smcpr3 4.391 nMU3out nBDIPR1
bs* BDIPR 50 30 O 45 nBDIPR1 nBDIPR2 dump dump

s smcpr4 0.11 nBDIPR2 nMPRo

## main interferometer ##

#i#

## Mirror specifications for the _final_ optics are used.
#

## first (curved) surface of MPR

m mPRo 0 1 0 nMPRo nMPRi

attr mPRo Rc -1.85842517051051 # Rc as used in OptoCad (layout_1.41.ocd)
s smpr 0.075 1.44963 nMPRi nPRo

# second (inner) surface of MPR

m MPR 0.9865 0.0135 0. nPRo nPRi # T= 1.35%
s swest 1.145 nPRi nBSwest

## BS
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H##

##

## nBSnorth .

## I + ‘.

## I ’ :?

## nBSwest | +i1 +

#t#t 0 e ——— > ,i._ i2 )2

## +\ -+ nBSeast
#it ,0 13\ , ) T
## + \ +

## )0 ia.’

## ‘. ..

## ‘._ ,” |nBSsouth

## - |

## I

## I

bs BS 0.4859975 0.5139975 0.0 42.834 nBSwest nBSnorth nBSil nBSi3

s sBSla 0.041 1.44963 nBSil nBSilb

# here thermal lense of beam splitter (Roland: f about 1000m for 10kW at BS)
lens bst 20k nBSilb nBSilc

s sBS1 0.051 1.44963 nBSilc nBSi2

s sBS2 0.091 1.44963 nBSi3 nBSi4

bs  BS2 50u 0.99992 0 -27.9694 nBSi2 dump nBSeast nBSAR

bs  BS3 50u 0.99992 0 -27.9694 nBSi4 dump nBSsouth dump

## north arm

s snorthl 598.5682 nBSnorth nMFN1

bs* MFN 50 10 0.0 0.0 nMFN1 nMFN2 dump dump
attr MFN Rc 666

s snorth2 597.0158 nMFN2 nMCN1
m* MCN 50 10 -0.0 nMCN1 dump
attr MCN Rc 636

## east arm

s seastl 598.4497 nBSeast nMFE1l

bs*x MFE 50 10 0.0 0.0 nMFE1 nMFE2 dump dump
attr MFE Rcx 665 # 71 W heater power
attr MFE Rcy 662 # 71 W heater power

s seast2 597.0713 nMFE2 nMCE1
m* MCE 50 10 0.0 nMCE1l dump
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attr MCE Rc 622

## south arm
s ssouth 1.115 nBSsouth nMSRi

m MSR 0.979 0.02095 O nMSRi nMSRo # tuned

## commands

maxtem 2

time

phase 3

# PR cavity (north arm)

cav prcl MPR nPRi MCN nMCN1
# PR cavity (east arm)

cav prc2 MPR nPRi MCE nMCE1l
# SR cavity (north arm)

cav srcl MSR nMSRi MCN nMCN1
# SR cavity (east arm)

cav src2 MSR nMSRi MCE nMCE1

pause

var £SR 9017334
var fMI 14.904915M
var fPR 37.16M

var phip 88 # maximal SR-EP-gain
var phiq 178 # minimal SR-EP-gain
/*

# determine best demodulation phase for the tuned detector
fsig sigl MSR 1 O

pd2 SREP $fSR 0 1 max nBSAR

xaxis SREP phasel 1lin 0 180 180

*/

#/%

# SR-EP

pdl SREP1 $fSR $phip nBSAR

pdl SREP2 $fSR $phiq nBSAR

x2axis MSR phi lin -2.874 10.061 9000
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xaxis eom4 f lin 9012334 9017334 500
xparam SREP1 £ 1 O

xparam SREP2 £ 1 0

gnuterm no

#x/

/*

# MI-EP

pdl MIEP1 $fMI O nMSRo

pdl MIEP2 $fMI 90 nMSRo

xaxis MSR phi lin O 7.186 5000
x2axis MCE phi lin -3.4m 3.4m 100
x2param MCN phi -1 0O

gnuterm no

*/

B.2. MATLAB scripts

B.2.1. MATLAB script for the estimation of signal-recycling error signal
susceptibility to various degrees of freedom

Contents

Separated error signal evaluation for each frequency

Complex error signal

Vector of demodulation phases

Relevant zero crossing

e Gain

Capture ranges

Evaluation of the results

% Determine the range of demodulation phases for which the signal recycling
% error signal deviates minimally or uncritically.

clear all
% perfect detector

x=load (’downtng_SR.out’);
[M,N]=size(x);
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steps=9001; % MSR tuning step number
tun=M/steps; % number of SB frequencies

% SB frequency
f=reshape(x(:,1),steps,tun);
f=f(1,:);

% MSR position in degrees
pos=reshape (x(:,2),steps,tun);
pos=pos(:,1);

% real and imaginary part of the error signal phasor
pd_pl=reshape(x(:,3),steps,tun);
pd_p2=reshape(x(:,4),steps,tun);

% MSR misaligned by 1 urad
x=load(’misal_MSR.out’);

[M,N]=size(x);

steps=9001; % MSR tuning step number
tun=M/steps; % number of SB frequencies

% SB frequency
f2=reshape (x(:,1),steps,tun);
£f2=f2(1,:);

% real and imaginary part of the error signal phasor
pd_msril=reshape(x(:,3),steps,tun);
pd_msr2=reshape (x(:,4),steps,tun);

% MCE and MCN each misaligned by 100 nrad
x=load(’misal_MID.out’);

[M,N]=size(x);

steps=9001; % MSR tuning step number
tun=M/steps; % number of SB frequencies

% real and imaginary part of the error signal phasor
pd_mcxl=reshape(x(:,3),steps,tun);
pd_mcx2=reshape (x(:,4),steps,tun);

% MCE and MCN off-set by 0.1 nm
x=load (’MIDoff.out’);
[M,N]=size(x);
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steps=9001; % MSR tuning step number
tun=M/steps; % number of SB frequencies

% real and imaginary part of the error signal phasor
pd_offl=reshape(x(:,3),steps,tun);
pd_off2=reshape(x(:,4),steps,tun);

% MCE and MCN off-set to the other direction
x=load (°’MIDoff2.out’);

[M,N]=size(x);

steps=9001; % MSR tuning step number
tun=M/steps; % number of SB frequencies

% real and imaginary part of the error signal phasor
pd_off21=reshape(x(:,3),steps,tun);
pd_off22=reshape(x(:,4),steps,tun);

% PRC off-set by 10 pm

x=load (’PRCoff.out’);

[M,N]=size(x);

steps=9001; % MSR tuning step number
tun=M/steps; % number of SB frequencies

% real and imaginary part of the error signal phasor
pd_prcl=reshape(x(:,3),steps,tun);
pd_prc2=reshape (x(:,4) ,steps,tun);

% PRC misaligned by 100 nrad
x=load(*misal_PRC.out’);

[M,N]=size(x);

steps=9001; % MSR tuning step number
tun=M/steps; % number of SB frequencies

% real and imaginary part of the error signal phasor
pd_prcoffl=reshape(x(:,3),steps,tun);
pd_prcoff2=reshape(x(:,4),steps,tun);

% find the frequency lines in the large file corresponding to the

% evaluated in the other files
for k=1:length(£f2)

u(k)=find (f==£2(k));
end
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Separated error signal evaluation for each frequency

for p=1:tun
h=u(p);

Complex error signal

detuned(:,1)=complex(pd_pl1(:,h),pd_p2(:,h));
detuned(:,2)=complex(pd_msri(:,p),pd_msr2(:,p));
detuned(:,3)=complex(pd_mcx1(:,p),pd_mcx2(:,p));
detuned(:,4)=complex(pd_off1(:,p),pd_off2(:,p));
detuned(:,5)=complex(pd_off21(:,p),pd_off22(:,p));
detuned(:,6)=complex(pd_prci(:,p),pd_prc2(:,p));
detuned(:,7)=complex(pd_prcoffl(:,p),pd_prcoff2(:,p));

Vector of demodulation phases

Complex vector of demodulation phase that gives zero crossing close to SB resonance (is
thus perpendicular to maximal error signal phasor)

s=find(abs(detuned(2001:end,1))==max(abs(detuned(2001:end,1))))+2000;
demph_c = detuned(s) * exp(-i * pi /2)./abs(detuned(s));

% in degrees

demph_d=round (angle (demph_c) /pi*180) ;

% maximally necessary demodulation phases
demph=demph_d-90:1:demph_d+89;

Relevant zero crossing

index of MSR position associated with the SB frequency

tuning_i=find(abs(pos+(f(h)-9017375)/125241%180)==. ..
min (abs (pos+(f (h)-9017375) /125241%180))) ;

% with demph demodulated error signals
s_ph=[];
n=0;
for k=1:length(demph)
ep = [cos(demph(k)/180*pi)*real(detuned)+. ..
sin(demph (k) /180%*pi)*imag(detuned)] ;

% determine the indices of all occurring zero crossings of each demodulated
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% error signal, with the function "Ocr"
% s_ph shall contain zero crossing indices of all error signals for only
% one frequency
clear s_ph

3=0;
for gq=1:7
s_ph(q) .i=0cr(ep(:,q));
% eliminate demph that have no zero crossing
if length(s_ph(q).i)==
j=1
break
end
end
if j==
fprintf( ’warning demph: no %f \n’,demph(k))
continue
end

% define a region of +/- 250 Hz (= 0.36 deg.) within which the zero crossing
% can be regarded to be related to a SB resonance

lim=find (pos>=(pos(tuning_i)-0.36) & pos<=(pos(tuning_i)+0.36));

% upper and lower index of region limitations

ulim=1im(end) ;

11im=1im(1);

% determine for each demph, leading to an error signal with at least one zero
% crossing, whether the zero crossing or which of the zero crossings
% is related to the SB resonance
% extract the index of the further considered Ocr
index=[1; %
for g=1:7
% for all detector tunings except carrier resonance
if £(h)"=f(end)

% choose the zero crossings related to SB resonance only
s=find([s_ph((q)).1i]1>2005);
% closest zero crossing(s) to targeted tuning

s2=find(abs([s_ph((q)).i(s)]-tuning_i)==min(abs([s_ph(q).i(s)]-tuning_i)));

s=s(s2);

% for carrier resonance
else
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s=find(abs([s_ph(q).i]l-tuning_i)==min(abs([s_ph(q).il-tuning_i)));
end

% eliminate demph that have no zero crossing
if length(s)==

i=1

break
end

% decrease the number of zero crossings further down if the zero
% crossing is too far away from the point related to SB resonance
for m=1:length(s)
if s_ph(q).i(s(m))<=1lim | s_ph(qg).i(s(m))>=ulim
j=1;
break
end
end
if j==
break
end

index=[index;s_ph(q).i(s)];
end

% eliminate demph that have no zero crossing
if j==
fprintf( ’warning demph: no %f \n’,demph(k))
continue
end

% demphase that is evaluated
n=n+1;
demph?2 (p) .val(n)=[demph(k)];

Gain

% gain at relevant zero crossing
g=[1;

for g=1:7

g =[g; (ep(index(q)+1,q)-ep(index(q)-1,9))/2];
end

g_r(p).val(n,:)=g;
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Capture ranges

% capture ranges defined as monotonic region around zero crossing
cr_i=[];
cr_abs=[];

for g=1:7
s=minimax(ep(:,q));
sl=find(s<index(q));
s2=find(s>index(q));
% index of capture range
cr_i=[cr_i [s(s1(end)) s(s2(1))11;
% absolute value of capture range
cr_abs=[cr_abs abs([s(sl(end)) s(s2(1))]-index(q))];
end
cr(p).i(n,:)=cr_i;
cr(p) .abs(n,:)=cr_abs;
end
end

cputime

Evaluation of the results

demph1=[];
for p=1:tun

clear gain cr_n cr_p

s=[1;

s1=[];

demph=[];

for k=2:7
gain(:,k)=g_r(p).val(:,k)./g_r(p).val(:,1);
s=[s;find(abs(abs(gain(:,k))-1)==min(abs(abs(gain(:,k))-1)))];
si=[s1;find(gain(:,k)<1/2 | gain(:,k)>2)];
n=1:2:14;
cr_n(:,k)=cr(p).i(:,n(k))-cr(p).i(:,1);
n=2:2:14;
cr_p(:,k)=cr(p).i(:,n(k))-cr(p).i(:,1);
s=[s;find(abs(cr_p(:,k))==min(abs(cr_p(:,k))))];

end

s=sort(s);

s2=find (diff(s)>=1);

s=s([1;82+1]);

chunk=chunks(s1);
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for k=1:length(s)

j=0;
for g=1:length(chunk)
if s(k)>=min(chunk(q).ch) & s(k)<=max(chunk(q).ch)
j=1;
end
end
if j==
demph=[demph ; demph2(p) .val(s(k))];
end
end

demphl=[demphl;min(demph) max(demph)];
end

% for the tuned frequency determine the range of demodulation phases
% by the complement of the "forbidden":
ma=[];
mi=[];
for g=1:length(chunk)
ma=[ma;max (chunk(q) .ch)];
mi=[mi;min(chunk(q) .ch)];
end
demph1 (tun, :)=[demph2(p) .val (max (ma)+5) demph2(p).val(min(mi)-5)+180];

result=[f2’ demphl];
save demphase_range.txt result -ASCII

Comments

The influence of other degrees of freedom on the signal-recycling error-signal shape is
investigated separately for each degree. The FINESSE output file from above serves
as reference for the comparison with the other detector setups, where particular de-
grees of freedom have an offset from the ideal states of Appendix B.1.1. Ten detector
configurations with different modulation frequencies, equally spread in the interval of
Ofm € [0kHz, 4kHz], are considered. The MSR tuning steps agree in size and number
with the reference file to facilitate the automated evaluation.

Most of the introduced offsets exaggerate the expected rms offsets of the operating de-
tector:

The differential misalignment of the Michelson end mirrors MCe and MCn, defined ac-
cording to [Grote03b] as an anti-clockwise rotation or tilt of both mirrors at the same
time, was measured to be roughly 1 urad/ VvHz in the frequency region between 10 mHz
and 0.6Hz (see figure 3.32 in [Grote03b]). With an open loop gain of the fast auto
alignment of the Michelson of roughly 30 dB within this frequency regime, a residual rms
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alignment of 30 nrad/ v/Hz can be expected. In the simulation, the offset is set to 100 nrad.
Between 50 mHz and 1 Hz, the rms MPR misalignment of the free mirror was also mea-
sured to have a maximal value in the overall spectrum of 1 urad/v/Hz (see figure 3.22 in
[Grote03b]). The open loop gain of the power-recycling auto alignment is > 40 dB below
1 Hz. This reduces the misalignment to ~ 10 nrad/ VHz. For a worst-case estimation, the
rotation of MPR was set to 100 nrad.

The MSR. misalignment is not at all controlled. Given the measurements of the end mir-
ror and MPR misalignment, the free rms rotation and tilt of MSR at low frequencies
can be presumed to amount as-well to 1 urad/ VvHz. This was applied in the respective
simulation.

The differential longitudinal rms motion of the Michelson end mirrors was measured to
be less than ~ 10 ym/ VvHz around the micro-seismic peak at 0.15Hz (see figure 1.14 of
[Grote03b]). The control loop has, at this frequency, an open loop gain of ~ 120dB,
reducing the rms motion to less than 10 pm/v/Hz. The simulation assumes an end mirror
offset of 100 pm each. As previous simulations already showed a difference in the error-
signal shape depending on the sign of the differential offset, two separate simulations,
accounting for different offset signs, are accomplished.

The offset of the power-recycling cavity from carrier resonance is determined mainly by
the noise of the second mode-cleaner compared with the power-recycling cavity. Fig-
ure 1.5 in [Grote03b] shows an equivalent residual rms frequency noise of the laser
light of ~ 1 MHz/ VHz at roughly 2Hz. At this frequency, the open loop gain of the
power-recycling control loop is 140 dB, slashing the noise down to 0.1 Hz/ VHz. In the
simulation, the power-recycling cavity needs to be detuned equivalently, which is by
0L = O6f -\/2/FSRpr ~ 0.4pm. For a worst-case estimation, the detuning is set to
10 pm.

The evaluation and comparison of the relevant error-signal properties gain and capture
range, leading to an interval of allowed demodulation phases, are executed by a MATLAB
script, given in Appendix B.2.1.

Similarly to Appendix B.2.2, for each of the ten modulation frequencies the zero crossings,
gains and capture ranges of each complex error-signal, projected onto different demodu-
lation phases, are determined. As soon as one of the signals has no zero crossing within
+250 Hz, around the MSR position associated with Jfy,, the respective demodulation
phase is ignored in the further investigation on that modulation frequency. This criterion
also ensures that the MISR position deviations do not alter the optical gain for differential
Michelson control by more than maximum 20 %.

If all parameters are calculated, the gain ratios to the reference (which is the perfect setup
in terms of other degrees of freedom) and upper and lower capture range limit deviations
from the reference are compared among all remaining demodulation phases. For each
kind of altered degree of freedom, the demodulation phases, yielding best agreement with
the reference error-signal, are collected. However, before the minimum and maximum is
determined to yield the interval of suitable demodulation phases, each is cross-checked
with the requirement that for this particular demodulation phase none of the error-signal
gains deviates more from the reference than by a factor within [0.5, 2]. This is neces-
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sary for the automatic evaluation, since for some demodulation phases the capture ranges
minimally change, but the respective gain all the more.

B.2.2. MATLAB script for signal-recycling error signal property optimisation
Contents

e Complex error signal

e Vector of demodulation phases

e Relevant zero crossing

e Gain

e Capture ranges defined as monotonic region around zero crossing
e Highest gain

e Largest capture range

e Largest energy transfer

e Highest symmetry

% Determine the error signal parameters for the signal recycling control
% loop.

% The output for each optimisation criterion will be written in a

% respective file in the order

b

% f Phi Ocr_index Ocr_pos gain cr_l_index cr_u_index Phi_index

b

% with the following definitions

% £ : SB frequency

%  Phi : demodulation phase

%  Ocr_index : index of zero crossing

%  Ocr_pos : position of zero crossing [deg.]

% gain : gain at zero crossing [1/Hz]

% cr_l_index : lower capture range index

% cr_u_index : upper capture range index

% Phi_index : index specifying the right demodulation phase
b

clear all

x=load (’downtng_SR.out’);

[M,N]=size(x);

steps=9001; % MSR tuning step number
tun=M/steps; % number of SB frequencies

% SB frequency
f=reshape(x(:,1),steps,tun);
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f=f(1,:);

% MSR position in degrees
pos=reshape (x(:,2),steps,tun);
pos=pos(:,1);

% real and imaginary part of the error signal phasor
pdl=reshape(x(:,3),steps,tun);
pd2=reshape (x(:,4) ,steps,tun);

% evaluate each tuning frequency separately
for h=1:tun

% s_ph shall contain zero crossing indices of all error signals for only
% one frequency
if h>1
clear s_ph
end

Complex error signal

detuned=complex(pd1(:,h),pd2(:,h));

Vector of demodulation phases

Complex vector of demodulation phase that gives zero crossing close to SB resonance (is
thus perpendicular to maximal error signal phasor)

s=find(abs (detuned(2001:end))==max (abs (detuned (2001:end))))+2000;
demph_c = detuned(s) * exp(-i * pi /2)./abs(detuned(s));

% in degrees

demph_d=round (angle (demph_c)/pi*180) ;

% maximally necessary demodulation phases
demph=demph_d-90:1:demph_d+89;

% with demph demodulated error signals
ep=[1;
for k=1:length(demph)
ep = [ep cos(demph(k)/180*pi)*real (detuned)+. ..
sin(demph (k) /180%pi)*imag(detuned)];
end
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Relevant zero crossing

index of MSR position associated with the SB frequency

tuning_i=find(abs(pos+(f(h)-9017375)/125241%180)==. ..
min (abs (pos+(f (h)-9017375) /125241%180))) ;

% determine the indices of all occurring zero crossings of each demodulated
% error signal, with the function "Ocr"
n=[];
for k=1:length(demph)
s_ph(k) .i=0cr(ep(:,k));

% mark demph that have at least one zero crossing
if length(s_ph(k).i) ~=0

n=[n;k];

end

end

% define a region of +/- 250 Hz (= 0.36 deg.) within which the zero crossing
% can be regarded to be related to a SB resonance
lim=find(pos>=(pos(tuning_i)-0.36) & pos<=(pos(tuning_i)+0.36));

% upper and lower index of region limitations

ulim=lim(end) ;

11im=1im(1);

% determine for each demph, leading to an error signal with at least one zero
% crossing, whether the zero crossing or which of the zero crossings
% is related to the SB resonance

n2=[];

for k=1:length(n)
ni=[];
ti=[];

% for all detector tunings except carrier resonance
if f(h)~=f(end)

% choose the zero crossings related to SB resonance only
s=find([s_ph(n(k)).i]>2005);

% closest zero crossing(s) to targeted tuning
s2=find(abs([s_ph(n(k)).i(s)]-tuning_i)==min(abs([s_ph(n(k)).i(s)]-tuning_i)));
s=s(s2);
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% for carrier resonance
else

s=find(abs([s_ph(n(k)).i]l-tuning_i)==min(abs([s_ph(n(k)).i]l-tuning_i)));
end

% decrease the number of zero crossings further down if the zero
% crossing is too far away from the point related to SB resonance
for m=1:length(s)
if s_ph(n(k)).i(s(m))>=1lim & s_ph(n(k)).i(s(m))<=ulim
ni=[nl;n(k)]; % demph index
t1=[tl;s(m)]; % label of zero crossing for particular demph
end
end
n2=[n2;nl t1];
end

% extract the index of the further considered zero crossing
index=[1; %
[d,n]=size(n2);

for k=1:d
index=[index;s_ph(n2(k,1)).i(n2(k,2))];
end

n2=n2(:,1);

for k=1:d
ep(:,k)=ep(:,n2(k))-ep(index (k) ,n2(k));
end

ep=ep(:,1:k);

Gain

% gain at relevant zero crossing

g=[1;

for k=1:d

g =[g; (ep(index(k)+1,k)-ep(index(k)-1,k))/2];
end

Capture ranges defined as monotonic region around zero crossing

cr_i=[];
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cr_abs=[];

% determine the local minima and maxima by the function "minimax" and
% choose those around the considered zero crossing
for k=1:d
s=minimax(ep(:,k));
s1=find(s<index(k));
s2=find(s>index(k));
% index of capture range edges
cr_i=[cr_i [s(s1(end));s(s2(1))1];
% absolute value of capture ranges
cr_abs=[cr_abs abs([s(sl1(end));s(s2(1))]-index(k))];
end

% Optimisation criteria

Highest gain
s=find (abs (g)==max (abs(g)));

if length(s)>1
n=[s’ £(h)];

res_gain_alt(h,:)=[f(h) demph(n2(s(2))) index(s(2)) pos(index(s(2))) g(s(2))
cr_i(1,s(2)) cr_i(2,s(2)) s(2)]1;
fprintf( ’warning_gain: %f %f %f\n’,m)

end

res_gain(h, :)=[f(h) demph(n2(s(1))) index(s(1)) pos(index(s(1))) g(s(1))
cr_i(1,s(1)) cr_i(2,s(1)) s(1)];

Largest capture range

s1=[1]1;
s=find(min([cr_abs])==max(min([cr_abs])));

if length(s)>1
% take the error signal with the zero crossing closest to the SB
% frequency related one
s1=find(abs(index(s)-tuning_i)==min(abs(index(s)-tuning_i)));
end

s=s(s1);
if length(s)>1
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end

m=[s f(h)];
fprintf( ’warning_cr: %f %f %f\n’,m)

res_cr_alt(h,:)=[f(h) demph(n2(s(2))) index(s(2)) pos(index(s(2))) g(s(2)) ...

cr_i(1,s(2)) cr_i(2,s(2)) s(2)];

res_cr(h,:)=[f(h) demph(n2(s(1))) index(s(1)) pos(index(s(1))) g(s(1)) ...

cr_i(1,s(1)) cr_i(2,s(1)) s(1)];

Largest energy transfer

s1=[1];
en=[];

% determine integral to both sides of the zero crossing, limited by the
% respective capture ranges

for

end

k=1:d
en=[en [sum(abs(ep(cr_i(1,k):index(k)-1,k)));...
sum(abs (ep(index (k) +1:cr_i(2,k),k)))1];

s=find (min(en)==max(min(en)));

if length(s)>1

end

% take the error signal with the zero crossing closest to the SB
% frequency related one
s1=find(abs(index(s)-tuning_i)==min(abs(index(s)-tuning_i)));

s=s(s1);
if length(s)>1

res_

end

res_

m=[s f(h)];

en_alt(h,:)=[f(h) demph(n2(s(2))) index(s(2)) pos(index(s(2))) g(s(2)) ...
cr_i(1,s(2)) cr_i(2,s(2)) s(2)1;

fprintf( ’warning_en: %f %f %f\n’,m)

en(h,:)=[f(h) demph(n2(s(1))) index(s(1)) pos(index(s(1))) g(s(1)) ...
cr_i(1,s(1)) cr_i(2,s(1)) s(1];

Highest symmetry

symi=[];
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for k=1:d
% find smallest cr side:
s=find(cr_abs(:,k)==min(cr_abs(:,k)));

% determine integral to both sides of the zero crossing, limited by the

% smaller capture range
sl=abs(ep(index(k)-cr_abs(s,k) :index(k)-1,k));
s2=flip(abs(ep(index(k)+1:index (k)+cr_abs(s,k),k)));
% determine the difference of both integrals in %
symi=[symi mean(abs((s1-s2)*2./(s1+s2)))];

end

if length(symi)>1

if f(h)~=f(end)
s1=[1];

% determine local minima of symi with function "minimax"
% that indicates minima by

[s, val, chl=minimax(symi’);

s2=find(ch==-1);

s=s(s2);

if length(s)==0
s=find(symi==min(symi));

end

if length(s)>1

% take the error signal with the zero crossing closest to the SB

% frequency related one

s1=find(abs(index(s)-tuning_i)==min(abs(index(s)-tuning_i)));

end
s=s(s1);

else
s=find(symi==min(symi));

end

if length(s)>1
m=[s £(h)];
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res_sym_alt(h,:)=[f(h) demph(n2(s(2))) index(s(2)) pos(index(s(2))) g(s(2))
cr_i(1,s(2)) cr_i(2,s(2)) s(2)1;
fprintf( ’warning_sym: %f %f %f\n’,m)

end

res_sym(h, :)=[f(h) demph(n2(s(1))) index(s(1)) pos(index(s(1))) g(s(1))
cr_i(1,s(1)) cr_i(2,s(1)) s(1];

end
cputime

save SREP_newMPR_cr.txt res_cr -ASCII
save SREP_newMPR_en.txt res_en -ASCII
save SREP_newMPR_sym.txt res_sym —-ASCII
save SREP_newMPR_gain.txt res_gain -ASCII

Comments

The MATLAB script successively evaluates the error-signals for each control sideband
frequency. An overview over the single steps can be gathered from the content at the top
of the script.

First, the error-signals for a range of demodulation phases of [0°, 179°] are determined.
Then, the zero crossings are calculated. As the existence of only one zero crossing is
rather the exception for this large tuning interval, all zero crossings not belonging to the
sideband resonance have to be eliminated. They are discriminated in first instance by
considering only the zero crossing closest to the MISR tuning §y,, associated with Jfy,
(see Equation 3.2). If even this closest zero crossing exceeds a range of +0.36°= + 250 Hz
around &y, the respective error-signal or demodulation phase is ignored in the further
evaluation steps.

As the MSR . tuning steps are equally separated by 1.44 x 1073 ° =1 Hz, for the optical
gain of the error-signal it is enough to calculate the difference of the signal amplitude
around the further considered zero crossing. The gain is then given in [amplitude / Hz].
The capture range is, in agreement with [Grote03b], defined as the monotonic region
around the considered zero crossing. Thus, the local minima and maxima around the
zero crossing are equivalent to the limits of the capture range. The region of the capture
range with smaller tunings with respect to the zero crossing will henceforth be called
negative or lower (one-sided) capture range, whereas the upper or positive (one-sided)
capture range is situated on the positive tuning side.

The error-signals are evaluated regarding the properties listed on page 114 ff. Once the
optimal error-signal is discovered, its most interesting features are stored in matrices,
one for each optimisation criterion. These features are the sideband frequency, the ap-
propriate demodulation phase, the zero crossing as index and MSR position Jy, the
optical gain, the index of upper and lower capture range, and the index associated with
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the demodulation phase. In case there exist by chance several error-signals that yield
the best numerical value, representing the targeted optimisation criterion, the one with
a zero crossing closest to dxy is given priority over the other solutions. In case even this
condition is not one-to-one, a second matrix is created, gathering the alternative solution.
In the following, the mathematical implementation of the criteria is commented in more
detail.

The criterion of highest optical gain is met by simply identifying the error-signal with
the highest slope at the zero crossing.

The crucial point for an optimisation by the capture range is that both tuning sides,
with respect to the zero crossing, need to be considered, at the same time. As estimated
above, the rms mirror motion is not expected to be a limit in first instance. It is rather the
intended, continuous tuning to both directions that equally adds weight to both capture
ranges. Thus, to prevent an optimisation of one side at the expense of the other, for
every demodulation phase the smaller one-sided capture range is stored in a vector, and
the largest among them points to the desired demodulation phase.

For the largest energy transfer, the integrals of each error-signal from the zero crossing
to the respective capture range limits are calculated!. Again, the smaller values for each
demodulation phase are compared among each other to find the maximum, indicating
the appropriate demodulation phase.

Perfect point-symmetry of a function f(x) around xg is defined as f(zg + a) — f(zg) =
—(f(xog — a) — f(z0)), Ya. Thus, for an error-signal optimisation in symmetry, the
deviation of each pair of amplitude, with same position offset from the zero crossing,
is evaluated separately?. To yield a deviation independent from the absolute amplitude
value, each deviation is normalised by the respective total amplitude.

As only the symmetry within the capture ranges is of interest, the contributing pairs of
amplitudes have to sit closer around the zero crossing than the smaller one-sided capture
range. The sum of all deviations has to be normalised by the number of accounted pairs,
not to adulterate the result by the size of the capture range. Thus, the error-signal
possessing the smallest mean deviation is the targeted one.

Gathering the optimal demodulation phases and corresponding parameters in the partic-
ular matrices, after the last sideband frequency, all matrix contents are saved in separate
files for further evaluation and adjustment to the requirements of the experimental script.

B.2.3. MATLAB script for differential Michelson error signal evaluation
Contents

e Complex error signal

!To avoid biasing of the comparison of both sides around the zero crossing, the error-signal amplitude
is set to be exactly 0 at the zero crossing index (see the loop before the header “Gain”).

2 As the error-signal amplitude is set to be exactly 0 at the zero crossing index, the evaluation is free of
any arbitrary offset.
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Vector of demodulation phases
e With demph demodulated error signals
e Relevant zero crossing
e Gain
e Determine demph yielding maximum gain
% Determine the error signal parameters for the differential Michelson control loop.
% The output is written in a file in the order
h
% £ Phi Ocr_index Ocr_pos gain
b
% with the following definitions

hof : MSR tuning

%  Phi : demodulation phase

%  Ocr_index : index of zero crossing

%  Ocr_pos : position of zero crossing [deg.]
% gain : gain at zero crossing [1/pm]

h

clear all

x=load(’downtng_MI.out’);
[M,N]=size(x);

steps=101;

tun=M/steps;

% MSR tuning

f=reshape(x(:,1),steps,tun);

f=f(1,:);

% MCE (=-MCN) position

pos=reshape (x(:,2),steps,tun);

pos=pos(:,1);

% real and imaginary part of the error signal
pdl=reshape(x(:,3),steps,tun);
pd2=reshape (x(:,4) ,steps,tun);

% index of MCE tuning corresponding to dark fringe
tuning_i=find (abs(pos)==min(abs(pos)));

% evaluate each MSR tuning separately

for h=1:tun
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Complex error signal

detuned=complex(pd1(:,h),pd2(:,h));

Vector of demodulation phases

demph=(-90:1:90) ;

With demph demodulated error signals

ep=[1;
for k=1:length(demph)
ep = [ep cos(demph(k)/180*pi)*real(detuned)+...
sin(demph(k)/180%pi)*imag(detuned)];
end

Relevant zero crossing

% determine the indices of all occurring zero crossings of each demodulated
% error signal, with the function "Ocr"

n=[]; % indices of demph
index=[];
for k=1:length(demph)
0=0cr(ep(:,k));
s=1;
% choose the zero crossing closest to 0 deg. if there are several
if length(0)>1
s=find(abs(0-tuning_i)==min(abs(0-tuning_ i)));
end
% mark demph that yield a zero crossing
if length(0) ~=0

n=[n;k];
index=[index;0(s)];
end

end

Gain

% gain [1/pm] at relevant zero crossing
g=[1;
for k=1:length(n)
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% distinguish between zero crossing right at the edge of the simulated
% displacement interval and those inside
if index(k)~=1 & index(k)~=101
g =[g; (ep(index(k)+1,n(k))-ep(index(k)-1,n(k)))/4];
elseif index(k)=1
g =[g; (ep(index(k)+1,n(k))-ep(index (k) ,n(k)))/2];
else
g =[g; (ep(index (k) ,n(k))-ep(index(k)-1,n(k)))/2];
end
end

Determine demph yielding maximum gain
s=find(abs(g)==max(abs(g)));

if length(s)>1

n=[s £(h)];

fprintf (Cwarning: %f %f %f\n’,m)

res_g_alt=[f(h) demph(n(s(2))) index(s(2)) pos(index(s(2))) g(s(2))];
end

res_g(h,:)=[f(h) demph(n(s(1))) index(s(1)) pos(index(s(1))) g(s(1))]1;
end
cputime

save MIEP_newMPR_max2_2SB.txt res_g —-ASCII

B.2.4. MATLAB script for the tuning script generation
Contents

e Experimental tune-VI input-values belonging to the most symmetric signal-
recycling error-signal
e Calibration of signal-recycling parameters

e Consider Michelson error-signal evaluation: refer parameters to the modulation
frequency instead of the MSR, tuning

e Calibration of Michelson parameters

e Generate tuning script
% Calibrate the simulated parameters for the signal-recycling and Michelson
% loop to match the experiment, and generate a tuning script
o

% The signal-recycling parameters in the input file

220



B.2. MATLAB scripts

% are in the order

b

% f Phi Ocr_index Ocr_pos gain cr_l_index cr_u_index Phi_index
b

% with the following definitions

% £ : SB frequency

%  Phi : demodulation phase

%  Ocr_index : index of zero crossing

%  Ocr_pos : position of zero crossing [deg.]

% gain : gain at zero crossing [1/Hz]

% cr_l_index : lower capture range index

% cr_u_index : upper capture range index

% Phi_index : index specifying the right demodulation phase

b

% The script, as displayed here, applies to the GEO setup with the new MPR.
% Lines explicitely differing for the GEO setup with the old MPR

% are commented and indicated by a corresponding header.

/A

clear all

% input file

% (contains 161 different modulation frequencies for a range of 4 kHz)
v = load(’SREP_newMPR_sym.txt’) ;

% % old MPR

% % input file

% % (contains 501 different modulation frequencies for a range of 5 kHz)
% v = load(’SREP_o0ldMPR_sym.txt’);

% v(2:5:501,:);

A

% % experimental tuning script

% x = load(’tune_S3eGavinsamp.dat’);

<
[}

% modulation frequencies
f =v(:,1);

% prevent phase jumps of 360 degrees with the function "cont"
v(:,2) = cont(v(:,2));

% change the demodulation phases for the last three SB frequencies to yield
% a consistent gain, regarding sign, in the experiment

v(end-2:end,2) = v(end-2:end,2)-180;

% change the respective gain sign for the last three SB frequencies
v(end-2:end,5) = -v(end-2:end,5);
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% % old MPR

% % change the demodulation phases for the last SB frequency to yield
% % a consistent gain, regarding sign, in the experiment

% v(end,2) = v(end,2)-180;

2

% % change the respective gain sign for the last SB frequency

% v(end,5) = -v(end,5);

Experimental tune-VI input-values belonging to the most symmetric
signal-recycling error-signal

% signal-recycling modulation frequency
f_exp = 9014365;

% signal-recycling demodulation phase
exsym = 150 ;

% signal-recycling gain
g_exp = 20;

% Michelson demodulation phase
dem_exp_MI = 120;

% Michelson gain
g_exp_MI = 100;

% % oldMPR

b

% % signal-recycling modulation frequency

% f_exp = 9014197;

o

% % determine line in the experimental data corresponding to f_exp
% se = find(x(:,1) == f_exp);

h

% % signal-recycling demodulation phase for most symmetric error-signal
% % (experimentally not used)

% exsym = 117 ;

o

% % signal-recycling gain in the experiment

% g_exp = x(se,3);

b

% % Michelson demodulation phase in the experiment

% dem_exp_MI = x(se,b);
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b
% % Michelson gain in the experiment
% g_exp_MI = x(se,6);

Calibration of signal-recycling parameters

% determine the line of the simulated data agreeing with the experimentally
% investigated modulation frequency
sf = find(abs(f_exp-f) == min(abs(f_exp-£f)));

% simulational demodulation phase difference regarding the one that is
% going to be calibrated
d_off = v(:,2)-v(sf,2);

% new demodulation phases, accounting for evolution with opposite sign,
% in increments of 5
demph_sym = 5*round((exsym-d_off)/5);

% gain ratio of the experimental tune-VI input and the simulational gain
% value for that modulation frequency
g = g_exp/v(sf,5);

% % old MPR

A

% % gain ratio of the experimental tune-VI input and the simulational gain
% % value for that modulation frequency with the experimental demodulation
% % phase applied

% g = g_exp/4.723356e-07;

% new gains, in increments of 5
g_sym = bxround(v(:,5)*g/5);

Consider Michelson error-signal evaluation: refer parameters to the
modulation frequency instead of the MSR tuning

b

% The input file contains

)

% MSR Phi Ocr_index Ocr_pos gain

A

% with the following definitions

%  MSR : MSR tuning in [deg.]
%  Phi : demodulation phase
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%  Ocr_index : index of zero crossing
%  Ocr_pos : position of zero crossing [deg.]
% gain : gain at zero crossing [1/pm]

T

% input file
MI = load(’MIEP_newMPR_max2_2SB.txt’);

% % old MPR
% % input file
% MI = load(’MIEP_oldMPR_max2_2SB.txt’);

% MSR positions at the particular modulation frequencies, determined by the
% signal-recycling error-signal zero crossing
pos_sym = v(:,4);

% find for each modulation frequency the corresponding Michelson script
% line; this is determined by the respective MSR position
sp = [1;
for k = 1:length(f)
sym = abs(pos_sym(k)-MI(:,1));
sp = [sp;find(sym == min(sym))];
end

Calibration of Michelson parameters

% determine the line of the simulated data agreeing with the experimentally
% investigated modulation frequency
sp(sf);

S

% % old MPR

% % with the experimental demodulation phase applied to the signal-recycling

% % error-signal in the simulation, the resulting MSR position is at 4.591 deg.;
% % determine the line of the simulated data closest to 4.591 deg.

% sym = abs(4.591-MI(:,1));

% s = find(sym == min(sym));

% simulational demodulation phase difference regarding the one that is
% going to be calibrated
dMI_off = MI(sp,2)-MI(s,2);

% new demodulation phases, accounting for evolution with opposite sign,

% in increments of 5
dem_MI = 5*round((dem_exp_MI-dMI_off)/5);
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b
/A

gain ratio of the experimental tune-VI input and
the inverse simulational gain value for that modulation frequency

g_mi = g_exp_MI*MI(s,5);

% new gains, in increments of 5
compens = 5xround(g_mi./MI(sp,5)/5);

/A

prevent Michelson-gain input-values greater than 100

sl = find(compens>100);
compens (s1) = 100;

Generate tuning script

b
A

dummy Michelson auto-alignment parameters, guided by some successful
parameter value

comp = [12*ones(length(f),1)];

b
b
b
b
b

/A

% old MPR

% experimental Michelson auto-alignment parameters, filling the last rows
% with the last experimental value to obtain a vector of same size as the
% rest of the parameters

comp = [x(:,4);10*ones(length(f)-length(x(:,1)),1)];

summarise parameters

SYM = [f demph_sym g_sym comp dem_MI compens] ;

b

b
b
b
b

write tuning script

fid = fopen(’tune_sym_SRMI.dat’,’w’);
fprintf(fid,’%.0f %.0f %.0f %.0f %.0f %.0f\n’,SYM’);
fclose(fid);
% old MPR
% write tuning script
fid = fopen(’tune_sym_SRMI2.dat’,’w’);
fprintf(fid,’%.0f %.0f %.0f %.0f %.0f %.0f\n’,SYM’);
fclose(fid);

b
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Appendix C.

Impact of various parameters on the 2f
signal

In Section 4.2 the simulated 2f signal was matched to the experimental data by the least-
square method. The choice of parameter space based on preceding investigations on the
separate impact of the obvious parameters, like signal-recycling cavity length and tuning,
Schnupp length, misalignment, and common Michelson losses and MSR. properties. The
corresponding results are presented here.

C.1. Signal-recycling cavity length and tuning

Figure C.1 shows the 2f signal for various signal-recycling cavity lengths and tunings. The
respective parameters are referred to as deviations from the default values. The subplots
belong to different signal-recycling cavity lengths marked at the top, the lines to different
signal-recycling cavity tunings, allocated in the legend. The 2f signal is normalised to
yield the same maximal value of 1, as the unit is anyway arbitrary in comparison with
the experiment.

Apparently, compared to the signal-recycling cavity length the signal-recycling cavity
tuning only minimally shifts the 2f signal sideways (~ 5Hz for the complete tuning
difference of 100 Hz) nor changes the signal symmetry. In particular for the peak position
it is worth considering that a signal-recycling cavity length shift of 5 mm decreases FSRsr
by roughly —0.5Hz. For the Michelson sidebands, being close to 119 x FSRggr, this
adds up to ~ —60Hz. The associated shift of the signal-recycling cavity resonance is,
hence, comparable to that, associated with the MSR tuning. The unequal impact can
be understood consulting Figure 2.4: tuning MSR shifts all resonance structures to the
same direction, whereas a change of FSRgr alters the separation between the resonances.

As a consequence, when intending to assimilate the experimental and simulational 2f
signal, the signal-recycling cavity tuning requires only a rough setting. When optimising
the signal-recycling cavity length alone, approaching an agreement in symmetry changes
the peak position to the wrong side. At the same time, the signal width is slightly altered.
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Figure C.1.: 2f signal for various signal-recycling cavity lengths and tunings. The signal-
recycling cavity length deviations, ALggr, from the default value are indicated at the
top of each subplot, the MSR position offsets, dz, (in Hz) from the default value are
assigned in the legend.

C.2. Schnupp length

The Schnupp length, Lgchnupp, influences the Michelson sideband enhancement in two
properties. By changing the Michelson reflectivity for the sidebands, on the one hand
the power reflectivity of the srMI alters, varying the appearing power-recycling linewidth
for the sidebands. On the other hand the resonance gets shifted in frequency, according
to the phase shift in reflection of the srMI. This phase shift, however, depends not only
on the resonance condition inside the signal-recycling cavity, influenced by the Schnupp
length through the Michelson reflection, but also on the phase shift appearing at the
isolated Michelson, due to the Schnupp length.

This change of phase shift at the Michelson naturally also influences the pure power-
recycling resonance (i.e., with MSRbeing misaligned). Figure C.2 shows the nor-
malised upper (left graph) and lower (right graph) Michelson control sideband am-
plitudes at the output port of the default power-recycled Michelson of GEO 600, for
fumr = 119 x FSRpr = 14.904875MHz. The amplitude is displayed in the plane of
Schnupp length and power-recycling tuning deviation from the respective default values.
In order to easier relate the power-recycling tuning to the shift of resonance frequency, it
is given in Hertz.

The position of peak frequency f, of the upper sideband obeys in this parameter plane
the approximation

Hz

fp~—18 L—m} - ALSchnupp- (C.1)
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Figure C.2.: Normalised upper (left graph) and lower (right graph) Michelson control
sideband amplitudes at the output port of the default power-recycled Michelson of
GEO600. The amplitudes are displayed in the plane of Schnupp length and power-

recycling tuning deviation from the respective default values.

The power-recycling

tuning is given in Hertz. The modulation frequency is chosen to be 14.904875 MHz
which corresponds to the frequency experimentally determined to be resonant inside
the pure power-recycled Michelson, being resonant for the carrier.
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Figure C.3.: 2f signal for various Schnupp length offsets A Lgchnupp from the default value
(solid green line). The power-recycling cavity length is adjusted to yield a resonance
frequency of 14.904875 MHz in the only power-recycled Michelson.

Considering Figure 2.16, a small shift of the power-recycling resonance can for particular
detunings already noticeably change both the peak and the symmetry of the 2f signal.
Thus, in the following for each Schnupp length the power-recycling cavity length is ac-
cordingly adjusted.

Figure C.3 displays the 2f signal for various Schnupp length offsets’ ALgchnupp from the
default value. The Schnupp length obviously influences all signal characteristics, i.e.,
the width, the symmetry and the peak frequency. In particular the dependency of the
peak frequency on the Schnupp length is larger than on the signal-recycling cavity length,
whereas the symmetry change is less extreme here.

C.3. Common losses and MSR reflectivity

Losses of the Michelson mirrors or of MSR. alter the reflectivity of the srMI. For the
Michelson mirrors two losses can be considered, common and differential. Due to the

!The results for Schnupp length offsets larger than 1cm and smaller than —3cm are not displayed:
the peaks of the larger ones are already either at the edge or completely outside the shown frequency
interval (and thus not relevant considering the experimental curve). The signals for smaller offsets
almost perfectly agree with those for the offsets > —3cm. As the default Schnupp length is ~ 7cm,
an offset of smaller than —3.5 cm repeats the Michelson properties for the control sidebands, just with
exchanged arms.
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Figure C.4.: 2f signal for various MISR (left graph), and M Ce/MCn reflectivities (right
graph). The common reflectivities of each of the end mirrors are given as losses, includ-
ing the respective transmission. Please note the different reflectivity ranges of MISR.
and the end mirrors.

BSAR, the losses inside the two Michelson arms are already asymmetric. Asymmetric
losses appear as Michelson loss by half of their size. Their contribution to the phase shift
of the reflected or transmitted Michelson sidebands is negligible compared with the phase
shift due to the default Schnupp length. Thus, they can be treated as common losses,
and only these l.omm are considered in this subsection.

The left and right graph of Figure C.4 display the 2f signal for various MSR, and
MCe/MCn reflectivities, respectively. The end mirror’s reflectivities are given as losses
which include the mirrors’ transmissions as-well. The given losses apply to each of the
end mirrors.

As expected, different mirror reflectivities mainly alter the width of the 2f signal. How-
ever, the impact of the end mirrors is much larger than of MSR.: although the losses of
MSR . vary by 5000 ppm, compared to 500 ppm loss difference inside the Michelson, the
2f signals hardly differ, whereas on the right hand side the widths noticeably change by
~ 20 Hz.

To understand this, one has again to consider the undercoupled srMI as the output mirror
of the power-recycling cavity. With the default Michelson and MSR reflectivities being
so different (Rysr = 98.14% and Ryp =~ 99.85%), the overall srMI reflectivity is much
more sensitive to slight variations of the Michelson mirrors.

Thus, if the width of the experimental 2f signal is the only remaining property to be
fitted, the common Michelson losses need to be adjusted. The MSR. reflection can then
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Figure C.5.: 2f signal for various differential Michelson end mirrors’ misalignments in
the optical plane of the detector. The curves are labeled with the corresponding east
end mirror’s amount of misalignment, Aayice, implying the same misalignment for the
north end mirror, but with opposite sign. For symmetry reasons, only positive Aanice
are displayed.

be used as a free parameter to customise the bandwidth of the optical transfer function
of the differential Michelson for signal sidebands.

C.4. Misalignment

Michelson mirror misalignments change the Hermite-Gauss mode composition of the light
inside the dual-recycled detector. Hence, similarly to the Schnupp length, they alter the
Michelson losses, and correspondingly the phase shift in reflection of the srMI.

Common and differential misalignments, in both parallel and perpendicular directions
regarding the optical plane, exhibit very similar features in the 2f signal. As an ex-
ample, Figure C.5 displays the impact of differential end mirrors’ misalignment in the
interferometer plane on the 2f signal.

The particular curves are labeled by Aayice, the angle of misalignment of the east arm’s
end mirror, implying the same amount of misalignment, but with opposite sign, for MCn.
The misalignments indeed have an impact on all three signal properties of peak frequency
position, width and symmetry. However, Figures 3.31 and 3.32 in [Grote03b], showing the
open loop gain and phase of the Michelson fast auto alignment and the amplitude spectral
density of the differential-wavefront signals for MCe and MCn rotation, respectively,
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indicate an expectable residual misalignment of < 0.2urad. A misalignment of such low
level only slightly alters the 2f signal, as visible in Figure C.5. Thus, misalignments were
neglected for the fits of the 2f signal.
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