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Zusammenfassung
Die Risikotheorie beschäftigt sich allgemein mit dem Versicherungsgeschäft und
insbesondere mit Fragen der Solvenz. Das grundlegende Modell der Risikotheorie
ist das klassische Cramér-Lundberg-Modell. Schadenankünfte sowie Schadenhö-
hen sind in diesem Modell zeitlich homogen und das Versicherungsunternehmen
erhält kontinuierlich Prämien gemäß einer konstanten Prämienrate. In einigen
Versicherungsbereichen stellte sich diese zeitliche Homogenität jedoch als un-
realistisch heraus. Verschiedene zeitlich nicht homogene Modelle wie etwa das
Markov-modulierte Poisson-Modell oder das periodische Poisson-Modell wurden
infolgedessen eingeführt. Beide Modelle werden von einem Umweltprozess beein-
flusst, der im ersten Modell durch einen Markov-Prozess und im zweiten Modell
durch eine periodische Funktion gegeben ist.
Das klassische Cramér-Lundberg-Modell wurde vor kurzem unter der zusätzli-
chen Annahme untersucht, dass der Versicherer in einen Aktienindex investieren
kann, der durch eine geometrische Brownsche Bewegung modelliert wird. Un-
glücklicherweise ist die zugehörige Ruinwahrscheinlichkeit Ψ(u) in Abhängigkeit
vom Anfangskapital u des Versicherungsunternehmens schwer zu bestimmen.
Deshalb konzentriert man sich auf den Anpassungskoeffizienten des Modells, der
als die größtmögliche Konstante R definiert ist, so dass Ψ(u) ≤ C e−Ru mit C > 0
für alle u gilt. Es stellte sich heraus, dass der Anpassungskoeffizient unter allen,
ausschließlich vom aktuellen Guthaben abhängenden Investitionsstrategien durch
eine Strategie maximiert wird, die einen konstanten Betrag in den Aktienindex
investiert.
Diese Arbeit zielt darauf ab, entsprechende Aussagen für die beiden oben genann-
ten zeitlich nicht homogenen Poisson-Modelle herzuleiten. Die beiden Modelle
werden daher unter der Möglichkeit untersucht, in einen Aktienindex zu inve-
stieren, der durch eine geometrische Brownsche Bewegung modelliert wird. Da
im klassischen Cramér-Lundberg-Modell eine konstante Investitionsstrategie op-
timal ist, sind nur solche Strategien zugelassen, die ausschließlich vom jeweiligen
Umweltprozess abhängen. In beiden Modellen ergibt sich mit Hilfe von Martin-
galmethoden, dass der zugehörige Anpassungskoeffizient unter allen zugelassenen
Strategien wiederum durch ein konstantes Investment maximiert wird.
Das Markov-modulierte Poisson-Modell mit Investment wird in dieser Arbeit au-
ßerdem durch ein Markov-moduliertes Poisson-Modell ohne Investment appro-
ximiert. Es wird gezeigt, wie mit Hilfe dieser Approximation eine Darstellung
für den Anpassungskoeffizienten des Markov-modulierten Poisson-Modells unter
einer fest gewählten Investitionsstrategie gefunden werden kann. Schließlich ge-
lingt ein direkter Vergleich der Ruinwahrscheinlichkeiten des Markov-modulierten
Poisson-Modells und des zugehörigen klassischen Cramér-Lundberg-Modells mit
gemittelten Parametern unter derselben konstanten Investitionsstrategie.

Schlagwörter: Ruinwahrscheinlichkeit, Anpassungskoeffizient, optimales
Investment, Markovscher Umweltprozess, periodischer Umweltprozess,
Martingalmethoden, Diffusionsapproximation.



Abstract
Risk theory in general is concerned with the business of insurance companies
and in particular with aspects of solvency. The basic model in risk theory is the
classical Cramér-Lundberg model. In this model claim arrivals as well as claim
sizes are homogeneous in time and the insurance company receives premiums at
a constant rate. However, it turned out that time homogeneity is not a realistic
assumption for certain areas of insurance. Different time inhomogeneous mod-
els as for example the Markov-modulated Poisson model or the periodic Poisson
model were therefore introduced. Both models are governed by an environmental
process which is a Markov process in the first model and a periodic function in
the second model.
Recently, the classical Cramér-Lundberg model was studied under the additional
assumption that the insurer has the opportunity to invest into a stock index
which is modelled by some geometric Brownian motion. Unfortunately, it is dif-
ficult to determine the corresponding ruin probability Ψ(u) with respect to the
initial reserve u of the insurance company. Hence, one concentrates on the adjust-
ment coefficient of the model which is defined as the largest constant R fulfilling
Ψ(u) ≤ C e−Ru with C > 0 for all u. It was discovered that amongst all invest-
ment strategies which exclusively depend on the current wealth the adjustment
coefficient is maximized by a strategy which invests a constant amount into the
stock index.
This work aims to derive corresponding assertions for the two time inhomogeneous
Poisson models mentioned above. The two models are consequently considered
with the additional opportunity to invest into a stock index which is modelled
by a geometric Brownian motion. Since a constant investment strategy is op-
timal in the classical Cramér-Lundberg model only investment strategies which
exclusively depend on the respective environmental process are admitted. Using
martingale methods it follows for both models that amongst all admissible strate-
gies the corresponding adjustment coefficient is again maximized by a constant
investment.
Further, the Markov-modulated Poisson model with investment is approximated
by some Markov-modulated Poisson model without investment in this work. Us-
ing this approximation it is shown how to find a representation for the adjustment
coefficient of the Markov-modulated Poisson model under some fixed investment
strategy. Eventually, a pointwise comparison between the ruin probabilities of the
Markov-modulated Poisson model and its associated classical Cramér-Lundberg
model with averaged parameters under the same constant investment strategy is
given.

Keywords: Ruin probability, adjustment coefficient, optimal investment,
Markovian environment, periodic environment, martingale methods, diffusion
approximation.
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Chapter 1

Introduction

In general risk theory is concerned with the business of insurance companies and

in particular with questions of solvency. The study of risk theory was initiated

in the first half of the last century. It started with the basic model in risk theory,

the so-called classical Cramér-Lundberg model. In this model claim arrivals as

well as claim sizes are homogeneous in time and the insurance company receives

premiums at a constant rate. Later, it turned out that time homogeneity is not a

realistic assumption for certain areas of insurance. Different time inhomogeneous

risk models were therefore introduced during the second half of the last century.

Amongst them models in a stochastic Markovian environment and respectively in

a deterministic periodic environment. Recently, the classical Cramér-Lundberg

model was studied under the additional assumption that the insurer has the

opportunity to invest into a stock index which is modelled by some geometric

Brownian motion. It was discovered that the ruin probability is minimized by

investing a certain constant amount into the stock index if the initial reserve is

sufficiently large. This work now deals with optimal investment strategies for risk

models in a Markovian and respectively a periodic environment.

1
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1.1 Risk theory

The basic model for the time evolution of the reserves of an insurance company

is the risk reserve process. Depending on the initial reserve of the insurance

company, denoted by u ≥ 0, the risk reserve process R(u) := {Rt(u), t ≥ 0} is

defined by

Rt(u) := u+ ct−
Nt∑

k=1

Uk

where c > 0 is the premium rate over time, Nt is the number of claims which

occur until time t ≥ 0 and Uk is the claim size of the kth occurring claim. Note

that the process R(0) is often called the surplus process whereas the process

S = {St, t ≥ 0} defined by St :=
∑Nt

k=1 Uk − ct is known as the claim surplus

process.

In this work we assume that the claim sizes have exponential moments

which means that for every claim Uk the expectation E(erUk) is finite for

some r > 0. This case is often referred to as the small claim or respectively

the light-tailed case. The large claim or respectively the heavy-tailed case where

E(erUk) is infinite for all r > 0 is omitted in this work. Hence, we only summarize

results for the small claim case in that what follows.

In risk theory the ruin probability in infinite time Ψ(u), or ruin probability for

short, is defined as the probability that the risk reserve process ever drops below

zero provided that the initial reserve is given by u ≥ 0, i.e.

Ψ(u) := P
(

inf
t≥0

Rt(u) < 0
)
.

The ruin probability is obviously of huge interest for the insurance company.

However, only in certain cases we are able to calculate the ruin probability ex-

plicitly. Hence, the so-called Lundberg inequality is often considered which means



Chapter 1. Introduction 3

that we choose R as large as possible such that

Ψ(u) ≤ C e−Ru

holds for all u ≥ 0 where C < ∞ is some constant. The right hand side of this

inequality is then called the Lundberg bound for the ruin probability Ψ(u) and

R is called the adjustment coefficient of the model.

The classical model in risk theory is the compound Poisson model which is broadly

known as the classical Cramér-Lundberg model. In this model the claim ar-

rival process N := {Nt, t ≥ 0} is a standard Poisson process and the claim

sizes are independent and identically distributed with some common distribution

concentrated on (0,∞).

Some of the main ideas were introduced by Lundberg [Lun1903] whereas the first

mathematically substantial results were given in Lundberg [Lun26] and respec-

tively Cramér [Cra30]. Meanwhile, it is well known for the small claim case that

the ruin probability in this model decreases exponentially fast with the initial

reserve of the insurer.

Since it turned out that the time homogeneity of the compound Poisson model

is not realistic for certain areas of insurance, as for example car insurance where

weather conditions play a major role for the occurrence of accidents, the Markov-

modulated Poisson model has become more and more popular over the last

decades. In this model the claims are not assumed to be homogeneous in time

but determined by an irreducible Markov process on some finite state space, the

so-called environmental Markov process. It is assumed that the intensity of the

arrival process and the claim size distribution vary depending on the current state

of the environmental Markov process. The Markov-modulated Poisson model was

first introduced by Janssen [Jan80] and Reinhard [Rei84]. A more comprehensive



Chapter 1. Introduction 4

treatment as well as a comparison with the classical compound Poisson model

can be found in Asmussen [Asm89] and Asmussen et al [AFR+95], respectively.

Another possibility to get away from the time homogeneity of the classical com-

pound Poisson model is to consider a deterministic periodic environment instead

of the stochastic Markov-modulated environment. In such a periodic Poisson

model the claim arrival process is a Poisson process whose intensity is given by

a deterministic periodic function. Also the claim size distribution is assumed to

depend periodically on its arrival time where the period is the same as for the

intensity function. The periodic Poisson model has for example been studied in

Beard et al [BPP84], Dassios and Embrechts [DE89] or Asmussen and Rolski

([AR92] and [AR94]).

There are of course other time inhomogeneous models in risk theory as for

example the general Cox model which covers the Poisson models mentioned

above. This model where the claims arrive according to a Cox process is due to

Ammeter [Amm48]. Another time inhomogeneous model is the so called Sparre-

Andersen model where the occurrence of the claims is described by a renewal

process as introduced by Andersen [And57]. Good references for this model are

Thorin [Tho74] and a review from the same author [Tho82].

However, in this work we concentrate on the Markov-modulated and respec-

tively the periodic Poisson model. Note that we can compare each of these two

models with an associated compound Poisson model by averaging over the en-

vironment. In this regard we refer the reader to the books by Gerber [Ger79],

Grandell [Grl91], Rolski et al [RSS+99] or Asmussen [Asm00] which provide a

good survey of risk theory in general and the Poisson models mentioned above in

particular. In these sources one can also find results for the large claim case.
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All the Poisson models introduced above can certainly be expanded by adding a

further stochastic process to the underlying risk reserve process. Gerber [Ger70]

for example kept the time homogeneity of the classical compound Poisson model

but enlarged the corresponding risk reserve process by some diffusion component,

namely a Brownian motion. A somewhat more detailed study of this model can

be found in Dufresne and Gerber [DG91].

Later, Furrer and Schmidli [FS94] considered a risk reserve process which is also

perturbed by a Brownian motion but where the claim arrival process is either

a renewal process or a Cox process with a so-called independent jump inten-

sity. Schmidli [Schm95] expanded this considerations to the Markov-modulated

Poisson model which is perturbed by diffusion.

It has only been recently that the compound Poisson model was studied under the

additional assumption that the insurer has the opportunity to invest into a risky

asset. To the best of our knowledge, Paulsen et al ([GP97] and [Pau98]) were

the first who incorporated a stochastic rate of return on investments. However,

in their model the entire wealth of the insurance company is invested into the

risky asset whose price process is modelled by another classical surplus process

which is assumed to be independent of the original risk reserve process. Frolova,

Kabanov and Pergamenshchikov [FKP02] investigated the same model but where

the insurer invests into a stock index whose price process is determined by some

geometric Brownian motion like in the classical Black-Scholes setting.

Later, Hipp and Plum [HP00] considered the case where the insurance company

may invest parts of its wealth into a stock index whose price process is given by

some geometric Brownian motion. They dealt with the question how to invest

into the stock index in order to minimize the probability of ruin. Using the
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Hamilton-Jacobi-Bellman equation a non-linear integro-differential equation for

the minimal ruin probability was derived and the existence of a solution as well

as a verification theorem was proved. For the case with exponential claim size

distribution and special parameter values they gave an explicit solution.

Using an exponential martingale method Gaier, Grandits and Schacher-

mayer [GGS03] showed that amongst all investment strategies which depend on

the current wealth it is asymptotically optimal to invest a certain constant amount

into a stock index in the sense that the corresponding adjustment coefficient is

maximized. At this, the price process of the stock index was again modelled by

some geometric Brownian motion. Eventually, Grandits [Grt04] as well as Hipp

and Schmidli [HS04] specified an asymptotic approximation for the minimal ruin

probability, the so-called Cramér-Lundberg approximation.
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1.2 Outline of this work

After this introductory chapter we consider the Markov-modulated Poisson model

in the small claim case. In our model the insurer has the opportunity to invest

into a stock index whose price process is modelled by some geometric Brownian

motion. This model of course implies the corresponding compound Poisson model

which was treated in Gaier, Grandits and Schachermayer [GGS03]. They found

out that the adjustment coefficient of the compound Poisson model with invest-

ment is maximized by a constant investment strategy. In this connection, the

invested amount was allowed to be larger than the actual wealth or even negative

in their work. For the Markov-modulated Poisson model we consequently admit

investment strategies which only depend on the environmental Markov-process

and which allow to invest an arbitrarily large amount into the stock index even

if it is negative.

After introducing the Markov-modulated Poisson model with investment we ini-

tially determine the adjustment coefficient of this model when using any fixed

investment strategy. Our methods are based on an exponential martingale tech-

nique given in Björk and Grandell [BG88] which is similar to the one used in

Gaier, Grandits and Schachermayer [GGS03]. The obtained adjustment coeffi-

cient is then maximized with respect to the applied investment strategy. It turns

out that the maximum is attained for a certain constant investment strategy.

Note that the Markov-modulated Poisson model under any constant investment

strategy becomes a Markov-modulated Poisson model which is perturbed by some

Brownian motion. We thus compare our assertions with a result for the Markov-

modulated Poisson model perturbed by diffusion given in Schmidli [Schm95].

Thereafter, we prove that the obtained constant investment strategy is in-
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deed asymptotically optimal in the sense that it minimizes the correspond-

ing ruin probability for a sufficiently large initial reserve. Eventually, the

Markov-modulated Poisson model and its associated compound Poisson model

under the respective optimal investment strategy are compared in terms of their

adjustment coefficients.

In the third chapter it is shown how to approximate the Markov-modulated Pois-

son model with investment by some Markov-modulated Poisson model without

investment. The idea is based on the fact that a diffusion arises as the limit of

properly scaled classical claim surplus processes where the claims are very small

and frequent as for example given in Grandell [Grl77].

In the second part of the third chapter we use the obtained approximation in

order to deduce results from what is known for the Markov-modulated Poisson

model without investment. On the one hand we derive an approximation for

the adjustment coefficient of the Markov-modulated Poisson model under an ar-

bitrarily fixed investment strategy. On the other hand the ruin probabilities

of the Markov-modulated Poisson model and its associated compound Poisson

model are compared directly when using the same constant investment strategy

in both models. For this comparison some additional assumptions on the model

are needed in order to apply a result in Asmussen et al [AFR+95].

In the fourth and final chapter of this work the deterministic periodic Poisson

model is considered in the small claim case. As before the insurer has the opportu-

nity to invest into a stock index whose price process is modelled by some geomet-

ric Brownian motion. The chapter is organized analogously to the chapter about



Chapter 1. Introduction 9

the Markov-modulated Poisson model with investment. Initially, we again admit

investment strategies which only depend on the periodic environment and which

provide to invest an arbitrary amount into the stock index.

After introducing the periodic Poisson model with investment the corresponding

adjustment coefficient is determined when using any fixed investment strategy.

We then maximize this adjustment coefficient with respect to the applied in-

vestment strategy. As in the Markov-modulated environment the maximum is

attained for some constant strategy. Later, we verify that this strategy is asymp-

totically optimal even amongst a broader class of investment strategies. The

periodic Poisson model and its associated compound Poisson model are finally

compared and it turns out that the optimal investment strategies and the asso-

ciated adjustment coefficients coincide for both models.
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1.3 Notation

The underlying probability space is generally denoted by (Ω,A,P) and supposed

to be sufficiently large. Thus, almost surely or respectively a.s. means P-a.s. and

E denotes the expectation with respect to P.

Further, let G be any σ-algebra. The probability measure PG then denotes the

probability measure P conditioned under G. With respect to the probability

measure PG we consequently denote the expectation and the variance by EG

and VarG, respectively.

For the Markov-modulated Poisson model, Pj denotes the probability measure

P conditioned under the event that the environmental Markov process starts in

state j ∈ E. Thus, Ej denotes the expectation with respect to Pj.

If two random elements X and Y have the same distribution we write X D
= Y .

At this, the distribution or respectively the law of a random element X is the

image probability measure P ◦ X−1. Furthermore, we say that a sequence of

random elements
(
Xn

)
n∈N of some metric space (S,m) converges in distribution

to a random element X of (S,m) as n→∞, denoted by Xn ⇒ X, if

lim
n→∞

E
(
f
(
Xn

))
= E

(
f
(
X
))

for all real-valued, continuous, bounded functions f on S. In this definition the

metricm apparently determines which functions on S are continuous. For random

variables X,X1, X2, . . . with values in (R, | · |) it turns out that Xn ⇒ X denotes

the commonly known convergence in distribution. The convergence of stochastic

processes is defined in chapter 3 in terms of an adequate metric space.

Moreover note that the same symbol, say F , is used for a distribution F and its

cumulative distribution function F (x), i.e. F (x) =
∫ x

−∞ dF (t).
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Finally, the following notation is used throughout this work:

N strictly positive integers {1, 2, . . .}

N0 non-negative integers N ∪ {0}

R real line (−∞,∞)

R+ strictly positive real line (0,∞)

f(x−) left limit lim
t ↑x

f(t)

F (x) tail of F (x), i.e. F (x) = 1− F (x)

µF mean of F, i.e. µF =

∫
x dF (x)

I(A) : Ω → {0, 1} indicator function of the event A ∈ A,

i.e. I(A)(ω) = 1 if and only if ω ∈ A

δB : R → {0, 1} indicator function of the set B ⊆ R,

i.e. δB(x) = 1 if and only if x ∈ B

δij Kronecker’s symbol, i.e. δij = δ{i}(j)

Id d× d identity matrix

diag
(
ai ; i ∈ {1, . . . , d}

)
d× d diagonal matrix with diagonal

elements ai for i = 1, . . . , d

2 marks the end of a proof

3 marks the end of a remark or an example
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The Markov-modulated Poisson

model with investment

In this chapter we consider the risk reserve process of an insurance company in a

Markov-modulated environment where the insurer additionally has the opportu-

nity to invest into a stock index. The price process of this stock index is modelled

by a geometric Brownian motion and the invested amount of money only depends

on the current state of the environmental Markov process. It is assumed that the

claims have exponential moments.

After introducing the model we determine the adjustment coefficient of the

Markov-modulated Poisson model under any fixed investment strategy in

section 2.2. In the following two sections this adjustment coefficient is maxi-

mized with respect to the investment strategy. In section 2.5 we then show that

the resulting adjustment coefficient and the corresponding investment strategy

are indeed optimal. Finally, the adjustment coefficients of the Markov-modulated

Poisson model and its associated compound Poisson model are compared under

the respective optimal strategy.

12
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2.1 The model

In the Markov-modulated Poisson model the premium rate and claim arrivals are

not homogeneous in time but determined by a Markov-modulated environment.

This environment is described by a continuous-time Markov process which is

defined on some finite state space E = {1, . . . , d}. We denote this environmental

Markov process by J and its intensity matrix by Q =
(
qij
)

i,j∈E
. It is generally

assumed that the environmental Markov process is irreducible. Since the state

space E is finite this implies that J has a stationary distribution which is denoted

by π. Unless otherwise stated the initial distribution of J is arbitrary.

The premium rate and the claim arrivals are influenced by the environmental

Markov process in the following way. At time t ≥ 0 the premium rate is given by

cJt where ci > 0 for i ∈ E, i.e. in time intervals when the environmental Markov

process is in state i ∈ E we have a linear income at constant rate ci. Further,

the claim arrival process N := {Nt, t ≥ 0} is assumed to be a Markov-modulated

Poisson process. This means that N has intensity {λJt , t ≥ 0} with λi > 0

for i ∈ E.

Moreover, a claim Uk which occurs at time t ≥ 0 has distribution BJt where

Bi is some distribution concentrated on (0,∞) for i ∈ E. Conditioned under

the environmental Markov-process J , the claims (Uk)k∈N are as usual assumed to

be mutually independent and also to be independent of the Markov-modulated

Poisson process N . The corresponding Markov-modulated risk reserve process

R(u) := {Rt(u), t ≥ 0} is finally given by

Rt(u) = u+

∫ t

0

cJs ds−
Nt∑

k=1

Uk (2.1)

where u ≥ 0 is the initial reserve of the insurance company.
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Furthermore, let the insurer have the opportunity to invest into a stock index

or say some portfolio. The price process S := {St, t ≥ 0} of this portfolio is

modelled by a geometric Brownian motion with dynamics

dSt = St (a dt+ b dWt) , t ≥ 0 .

Here, W is a standard Brownian motion independent of J as well as R(u) and

a ∈ R, b > 0 are fixed constants. Let Kt be the amount of money which the

insurer invests into the portfolio at time t ≥ 0. We then call the process

K := {Kt, t ≥ 0} the investment strategy of the insurer. Note that Kt can also

be negative or even larger than the actual wealth for any t ≥ 0. This fact can

respectively be interpreted as the possibility to sell the portfolio short or to bor-

row an arbitrary amount of money from the bank. Further, K = 0 means that

nothing is invested into the portfolio, i.e. Kt ≡ 0 for t ≥ 0.

It is assumed throughout this chapter that the invested amount of money only

depends on the current state of the environmental Markov process. This means

that there exists some function k : E → R such that Kt = k(Jt) for t ≥ 0. As a

shorthand notation for this fact we write K = k(J). If at time t ≥ 0 the insurer

invests the amount Kt into the portfolio and the remaining part of his reserve into

a bond which yields no interest, the wealth process Y (u,K) := {Yt(u,K), t ≥ 0}

is given by

Yt(u,K) = Rt(u) +

∫ t

0

Kv

Sv

dSv = Rt(u) +

∫ t

0

Kv dWa,b(v) , t ≥ 0 . (2.2)

Here, Wa,b denotes the Brownian motion with drift defined by Wa,b(t) := at+ bWt

for t ≥ 0 where a ∈ R is called the drift parameter and b > 0 the volatility of the

process. For notational reasons, let the surplus process X(K) := {Xt(K), t ≥ 0}

be defined by Xt(K) = Yt(u,K)− u for t ≥ 0.

Note that the investment strategy K should of course be defined by Kt = k(Jt−)
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for t ≥ 0. Otherwise the insurer does not know how much to invest at a certain

time t ≥ 0 since Kt depends on the state of the Markov process at time t ≥ 0.

However, we see that the strategies K = {k(Jt), t ≥ 0} and {k(Jt−), t ≥ 0}

coincide for a fixed function k : E → R except at points of time where the

environmental Markov process makes a jump to another state. Thus, the wealth

process Y (u,K) defined in (2.2) and the wealth process defined by (2.2) with K

replaced by {k(Jt−), t ≥ 0} clearly coincide almost surely. It is therefore sufficient

to consider the case where K is defined by Kt = K(Jt) for t ≥ 0.

Next, we define the time which the environmental Markov process J spends in

some state i ∈ E until time t ≥ 0 by ξi(t), i.e. ξi(t) :=
∫ t

0
δ{i}(Js) ds. Let us

then consider independent standard Poisson processes N (1), . . . , N (d) which are

also independent of J . It is assumed that N (i) := {N (i)
t , t ≥ 0} has intensity λi

for i ∈ E. Moreover, let (U
(1)
k )k∈N, . . . , (U

(d)
k )k∈N be independent sequences of

random variables which are also independent of the processes N (1), . . . , N (d)

and J . It is further assumed that the random variables (U
(i)
k )k∈N are independent

and identically distributed with distribution Bi for i ∈ E. Then,

Rt(u)
D
= u+

∫ t

0

cJs ds−
∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k , t ≥ 0 . (2.3)

Furthermore, let W (1), . . . ,W (d) be independent standard Brownian motions

which are also independent of the risk reserve process as given in (2.3) including

the environmental Markov process J . We then have

Yt(u,K) = u+

∫ t

0

cJs ds−
Nt∑

k=1

Uk + a

∫ t

0

Ks ds+ b

∫ t

0

Ks dWs

D
= u+

∫ t

0

cJs ds−
∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k + a

∑
i∈E

∫ ξi(t)

0

k(i) ds+ b
∑
i∈E

∫ ξi(t)

0

k(i) dW (i)
s
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= u+

∫ t

0

cJs ds+ a
∑
i∈E

k(i) ξi(t) + b
∑
i∈E

k(i)W
(i)
ξi(t)

−
∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k , t ≥ 0 .

Without loss of generality we can furthermore assume that the premium rate

is the same for all environmental states. Note that we are only interested

in the ruin probability in infinite time. By applying the time transformation

Ŷt(u,K) := YT (t)(u,K) with T (t) :=
∫ t

0
c

cJs
ds the structure of the model conse-

quently does not change. We can therefore assume without loss of generality

that ci = c for some c > 0 and all i ∈ E.

Nevertheless, the parameters of the Markov-modulated Poisson model change

accordingly. The time transformed environmental Markov process Ĵ which is

defined by Ĵt := JT (t) for t ≥ 0 has intensity matrix
(

c
ci
qij
)

i,j∈E
and thus station-

ary distribution π̂ where π̂i := ci πiP
j∈E cj πj

. We also have to notice that obviously

ξ̂i(t) :=
∫ T (t)

0
δ{i}(Ĵs) ds is equal to ci

c
ξi(t) for all t ≥ 0 and i ∈ E. Finally, the

time transformed standard Poisson process N̂ (i) defined by N̂ (i)
t := N

(i)
T (t) for t ≥ 0

has intensity c
ci
λi for i ∈ E.

Hence, let us from now on consider the wealth process Y (u,K) defined by

Yt(u,K) := u+ ct+ a
∑
i∈E

k(i) ξi(t) + b
∑
i∈E

k(i)W
(i)
ξi(t)

−
∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k (2.4)

for t ≥ 0. Note, if the investment strategy is constant over all i ∈ E, i.e. if K̂t ≡ k̂

for all t ≥ 0 and some k̂ ∈ R, then (2.4) becomes

Yt(u, K̂) = u+ (c+ a k̂) t+ b k̂Wt −
∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k , t ≥ 0 . (2.5)

Let the natural filtration of the wealth process Y (u,K) be denoted by

FY := {FY
t , t ≥ 0} and the natural filtration of the environmental Markov pro-
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cess J by FJ := {FJ
t , t ≥ 0}. We then define the filtration F := {Ft, t ≥ 0} by

Ft := FY
t ∨ FJ

∞ for t ≥ 0. Note that F0 = FJ
∞ so that Kt is apparently F0-

measurable for all t ≥ 0.

We generally suppose that the claims have exponential moments. This means

that for every i ∈ E there exists a possibly infinite constant r(i)
∞ > 0 such that

the centered moment generating function hi defined by

hi(r) :=

∫ ∞

0

erx dBi(x)− 1 , r ≥ 0 ,

is finite for every r < r
(i)
∞ . It is moreover assumed that hi(r) → ∞ as r → r

(i)
∞ .

Considering any fixed i ∈ E this assumption implies that hi is increasing, convex

and continuous on [0, r
(i)
∞ ) with hi(0) = 0. The important part of this assumption

is that hi(r) <∞ for some r > 0. Thus, the tail of the distribution Bi decreases

at least exponentially fast. By this condition the lognormal and Pareto distribu-

tion are for example excluded. Further, the case when lim
r→r

(i)
∞
hi(r) < ∞ and

h(r) = ∞ for r > r
(i)
∞ is not allowed. An example that such cases exist is for

example given on page 3 of Grandell [Grl91].

In this work we are interested in the ruin probability in infinite time which is

defined as

Ψ(u,K) := P
(

inf
t≥0

Yt(u,K) < 0
)

depending on the initial reserve u ≥ 0 and the investment strategy K = k(J).

Furthermore, let

τ(u,K) := inf
{
t > 0 ;Yt(u,K) < 0

}
be the corresponding time of ruin. It is obvious that Ψ(u,K) = P

(
τ(u,K) <∞

)
.

In this chapter we study the so-called Lundberg inequality

Ψ(u,K) ≤ C e−Ru (2.6)
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with C < ∞ for all u ≥ 0 where K = k(J) is some fixed investment strat-

egy. At this, the right hand side of (2.6) is called Lundberg bound for the ruin

probability Ψ(u,K) and the largest possible R such that (2.6) holds is called

the adjustment coefficient or Lundberg exponent of the model. The aim of this

chapter is to maximize this adjustment coefficient with respect to the invest-

ment strategy K = k(J). We then call such an optimal adjustment coefficient

the adjustment coefficient of the Markov-modulated model under optimal in-

vestment and the corresponding strategy the optimal investment strategy. It

turns out that this optimal investment strategy is constant over all environmental

states i ∈ E.

Note that the classical compound Poisson model without investment coin-

cides with the present Markov-modulated Poisson model with investment when

E = {1} and K = 0. As for example given in Asmussen [Asm00], the adjustment

coefficient of the compound Poisson model is given as the unique strictly positive

solution of the equation

λh(r) = cr

where λ := λ1 and h(r) := h1(r).

It can be found in the same book that the adjustment coefficient of the Markov

modulated model without investment is given as the strictly positive solution of

the equation κ̃(r) = 0 where κ̃(r) is that eigenvalue of the matrix

Q+ diag
(
λihi(r) ; i ∈ E

)
− crId , r ≥ 0 ,

which has maximum real part. Here, diag
(
λihi(r) ; i ∈ E

)
is the d × d diagonal

matrix with diagonal elements λih1(r), . . . , λdhd(r) and Id is the d × d identity

matrix.
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Another very important value in risk theory is the so-called safety loading.

The Markov-modulated Poisson model has the property that there exists a

constant ς such that limt→∞
1
t

∑Nt

k=1 Uk = ς almost surely. The interpretation

of ς is as the average amount of claim per unit time. Without investment it is

intuitively clear that independently of the initial reserve the insurance company

will get ruined if the premium rate does not exceed ς. In this context the rel-

ative safety loading is widely used. For the Markov-modulated model without

investment it is defined as ρ = c−ς
ς

. It is in fact well known for this model that

independently of u ≥ 0 the insurer gets almost surely ruined whenever ρ ≤ 0,

confer Asmussen [Asm00].

Let us now consider the Markov-modulated Poisson model with investment. For

our purposes it suffices to consider the absolute safety loading ρ(K) with respect

to some investment strategy K = k(J). It is defined as the almost sure limit of
1
t
Xt(u,K) as t→∞. If this limit almost surely exists we thus have

lim
t→∞

1

t
Yt(0, K)

a.s.
= ρ(K) .

We refer to ρ(K) as the safety loading with respect to K = k(J) unless otherwise

stated. Under some regularity assumptions it is later shown that ρ(K) > 0 is

a necessary and sufficient condition for an adjustment coefficient to exist where

K = k(J) is some fixed investment strategy.

As mentioned in the introductory chapter, Gaier, Grandits and Schachermeyer

[GGS03] considered the compound Poisson model with the additional opportunity

to invest into a stock index. The price process of the stock index was modelled by

a geometric Brownian motion in the same way as described above. They found

out that amongst all investment strategies which depend on the current wealth a

constant strategy is optimal in the sense that it maximizes the corresponding ad-
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justment coefficient. This optimal strategy K∗ is defined by K∗
t ≡ a

R∗b2
for t ≥ 0.

At this, R∗ is the adjustment coefficient of the compound Poisson model under

optimal investment and determined as the unique strictly positive solution of the

equation

λh(r) = cr +
a2

2b2

where we again put λ := λ1 and h(r) := h1(r).

The authors also showed that such a solution and therefore an adjustment

coefficient exists as long as the drift parameter a of the Brownian motion with

drift Wa,b does not equal zero. Note that this is even the case if the safety loading

of the underlying model without investment is not strictly positive. However, in

the case where a = 0 the safety loading of the model without investment has to

be strictly positive in order to assure that an adjustment coefficient exists.
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2.2 The adjustment coefficient for any fixed in-

vestment strategy

Throughout this section we consider an arbitrary but fixed investment strat-

egy K = k(J). In order to obtain a Lundberg bound for the ruin probability

Ψ(u,K) we choose an exponential martingale technique as given in Björk and

Grandell [BG88] which goes back to Gerber [Ger73]. An appropriate exponential

martingale is given as follows.

Proposition 2.1. Let the investment strategy K = k(J) and u, r ≥ 0 be fixed.

Then, the process M(u,K, r) defined by

Mt(u,K, r) =
exp

(
− rYt(u,K)

)
exp

(∑
i∈E

[
λihi(r) + 1

2
r2b2k(i)2 − r(c+ ak(i))

]
ξi(t)

)
for t ≥ 0 is a martingale with respect to F .

Proof:

Let t ≥ 0 and i ∈ E. Note, Proposition 2.13 in Yong and Zhou [YZ99],

page 20, for example shows that under the probability measure P
(
·
∣∣FJ

∞
)
(ω),

where ω ∈ Ω is fixed, the random variable ξi(t) is almost surely a deterministic

constant ξi(t)(ω). This implies that E
(
e
−αW

(i)
ξi(t)
∣∣FJ

∞
)

= e
α2

2
ξi(t) a.s. for all α ∈ R

as well as P
(
N

(i)
ξi(t)

= m
∣∣FJ

∞
)

= e−λi (λiξi(t))
m

m!
a.s. for all m ∈ N. At this, the first

equality follows since the process
(
eαWt−α2

2
t
)

t≥0
is a martingale whenever W is a

standard Brownian motion. It therefore follows that almost surely

EFJ
∞

(
exp

(
− rb

∑
i∈E

k(i)W
(i)
ξi(t)

))
=
∏
i∈E

EFJ
∞

(
exp

(
− rbk(i)W

(i)
ξi(t)

))
=
∏
i∈E

exp
(r2b2k(i)2

2
ξi(t)

)
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and

EFJ
∞

(
exp

(
r
∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k

))
=
∏
i∈E

EFJ
∞

(
exp

(
r

N
(i)
ξi(t)∑

k=1

U
(i)
k

))

=
∏
i∈E

EFJ
∞

( ∞∑
m=0

exp
(
r

N
(i)
ξi(t)∑

k=1

U
(i)
k

)
I(N

(i)
ξi(t)

= m)

)

=
∏
i∈E

∞∑
m=0

EFJ
∞

[
exp

(
r

N
(i)
ξi(t)∑

k=1

U
(i)
k

)∣∣∣∣N (i)
ξi(t)

= m

]
PFJ

∞
(
N

(i)
ξi(t)

= m
)

=
∏
i∈E

∞∑
m=0

EFJ
∞

(
er

Pm
k=1 U

(i)
k

)
PFJ

∞
(
N

(i)
ξi(t)

= m
)

=
∏
i∈E

∞∑
m=0

m∏
k=1

E
(
erU

(i)
k

)
PFJ

∞
(
N

(i)
ξi(t)

= m
)

=
∏
i∈E

∞∑
m=0

(
1 + hi(r)

)m
e−λiξi(t)

(λiξi(t))
m

m!

=
∏
i∈E

e−λiξi(t)

∞∑
m=0

(
(1 + hi(r))λiξi(t)

)m
m!

=
∏
i∈E

eλihi(r)ξi(t) = exp
(∑

i∈E

λi hi(r) ξi(t)
)
.

Putting the things together we consequently obtain

E
[
Mt(u,K, r)

∣∣Fs

]
= Ms(u,K, r)

· EFJ
∞

[exp
(
− rb

∑
i∈E k(i) (W

(i)
ξi(t)

−W
(i)
ξi(s)

) + r
∑

i∈E

∑N
(i)
ξi(t)

k=N
(i)
ξi(s)

+1
U

(i)
k

)
exp

(∑
i∈E

(
λihi(r) + 1

2
r2b2k(i)2

)(
ξi(t)− ξi(s)

))
∣∣∣∣∣FY

s

]

= Ms(u,K, r)

·
EFJ

∞

(
exp

(
− rb

∑
i∈E k(i)W

(i)
ξi(t)−ξi(s)

))
exp

(∑
i∈E

r2b2k(i)2

2

(
ξi(t)− ξi(s)

)) EFJ
∞

(
exp

(
r
∑

i∈E

∑N
(i)
ξi(t)−ξi(s)

k=1 U
(i)
k

))
exp

(∑
i∈E λihi(r)

(
ξi(t)− ξi(s)

))
= Ms(u,K, r)
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for 0 ≤ s ≤ t. Since Mt(u,K, r) is positive for all t ≥ 0 this also implies that

the process M(u,K, r) is integrable. It is moreover easy to see that M(u,K, r)

is measurable with respect to F . Thus, M(u,K, r) is an exponential martingale

with respect to the filtration F .

2

If r ≤ 0 the inequality Ψ(u,K) ≤ e−ru is trivially fulfilled for all u ≥ 0 where

K = k(J) is any fixed investment strategy. For r > 0 an upper bound for the

ruin probability Ψ(u,K) can now be found using the exponential martingale from

Proposition 2.1.

Proposition 2.2. Let the investment strategy K = k(J) and r > 0 be fixed.

Then, we have

Ψ(u,K) ≤ e−ruC(K, r)

for all u ≥ 0 where

C(K, r) := E

(
sup
t≥0

exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(t)

))
.

Proof:

For simplicity reasons let us denote the time of ruin by τ := τ(u,K). We have

already shown in Proposition 2.1 that the process M(u,K, r) is a martingale with

respect to the filtration F . Hence, also the stopped process M̃(u,K, r) defined

by M̃t(u,K, r) := Mt∧τ (u,K, r) is a martingale with respect to F .

For r > 0 and u ≥ 0 it therefore follows that

e−ru = M̃0(u,K, r) = E
[
M̃t(u,K, r)

∣∣∣F0

]
= EFJ

∞

(
M̃t(u,K, r)

)
= EFJ

∞

(
M̃t(u,K, r) I(τ ≤ t)

)
+ EFJ

∞

(
M̃t(u,K, r) I(τ > t)

)
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≥ EFJ
∞

[
Mτ (u,K, r)

∣∣∣τ ≤ t
]

PFJ
∞(τ ≤ t)

= EFJ
∞

[
exp (−rYτ (u,K))

exp
(∑

i∈E

[
λihi(r) + r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ)

)∣∣∣∣∣τ ≤ t

]

· PFJ
∞(τ ≤ t)

≥ PFJ
∞(τ ≤ t)

sup0≤v≤t exp
(∑

i∈E

[
λihi(r) + r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(v)

)
and hence

PFJ
∞(τ ≤ t)

≤ e−ru sup
0≤v≤t

exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(v)

)
.

Letting t→∞ and taking the expectation on both sides we obtain

Ψ(u,K) = P
(
τ(u,K) <∞

)
≤ e−ruC(K, r) .

2

We therefore have to maximize r > 0 under the restriction that C(K, r) <∞ in

order to get the asymptotically best possible upper bound using Proposition 2.2.

Hence, put

R(K) := sup
{
r > 0 ;C(K, r) <∞

}
. (2.7)

We consequently say that R(K) does not exist if C(K, r) = ∞ for all r > 0.

The way to find such a maximizing constant R(K) is similar to what Björk and

Grandell [BG88] do for the ordinary Cox model. Let the time epoch of the

nth entry of the environmental Markov process to state j ∈ E be denoted by τ (j)
n .
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This means we recursively define

τ (j)
n := inf

{
t > τ

(j)
n−1 ; Jt− 6= j, Jt = j

}
for n ∈ N where τ (j)

0 ≡ 0. Since τ (j)
1 is often used we put τ (j) := τ

(j)
1 . For j, k ∈ E

we now have to consider the function φ(K)
kj defined by

φ
(K)
kj (r) := Ek

(
exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j))

))

where r ≥ 0. Using these functions we are able to state a necessary condition for

C(K, r) being finite.

Proposition 2.3. Let K = k(J) and r > 0 be fixed. Then, φ(K)
jj (r) < 1 and

φ
(K)
kj (r) <∞ for all k, j ∈ E is a necessary condition for C(K, r) <∞.

Proof:

Let r > 0 and K = k(J) be fixed. For any given ω ∈ Ω the function∑
i∈E

[
λihi(r) + r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(t) is piecewise linear in t. Hence, it

suffices to examine exp
(∑

i∈E

[
λihi(r) + r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(t)

)
at the

jump times
(
τ

(j)
n

)
n∈N, j ∈ E, of the environmental Markov process J . We obtain

C(K, r) = E

(
sup
t≥0

exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(t)

))
<∞

⇔ E

(
max
j∈E

sup
n∈N

exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j)
n )

))
<∞

⇔ E

(
sup
n∈N

exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j)
n )

))
<∞

∀j ∈ E (2.8)

where the last equivalence follows since E is finite.
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Without loss of generality we now assume that J0 = k and consider any fixed

j ∈ E. For n ∈ N define

Z(j)
n (K, r) :=

∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)] (
ξi(τ

(j)
n )− ξi(τ

(j)
n−1)

)
and

W (j)
n (K, r) := exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j)
n )

)

= exp

(
n∑

m=1

Z(j)
m (K, r)

)
=

n∏
m=1

exp
(
Z(j)

m (K, r)
)
.

For simplicity reasons put Z(j)
n := Z

(j)
n (K, r) and W

(j)
n := W

(j)
n (K, r), n ∈ N.

Since the Z(j)
n are independent for all n ∈ N and also identically distributed for

n ≥ 2 we get

Ek

(
W (j)

n

)
= Ek

(
eZ

(j)
1

) n∏
m=2

E
(
eZ

(j)
m

)
= φ

(K)
kj (r)

(
φ

(K)
jj (r)

)n−1

.

Thus, φ(K)
kj (r) < ∞ is clearly a necessary condition for C(K, r) < ∞. Moreover,

φ
(K)
jj (r) > 1 implies Ek

(
W

(j)
n

)
→∞ as n→∞ and therefore C(K, r) = ∞.

Now suppose that C(K, r) < ∞ and φ
(K)
jj (r) = 1. Recall that the Z(j)

n are inde-

pendent and identically distributed for n ≥ 2. (W
(j)
n )n∈N is therefore a martingale

with respect to its natural filtration since

E[W
(j)
n+1|W (j)

n ] = W (j)
n E

(
eZ

(j)
n+1

)
= W (j)

n φ
(K)
jj (r) = W (j)

n , n ∈ N .

Jensen’s inequality yields exp
(
E(Z

(j)
n )
)
< E

(
eZ

(j)
n
)

= φ
(K)
jj (r) = 1 and thus

E
(
Z

(j)
n

)
< 0 for n ≥ 2. Now, C(K, r) < ∞ implies φ(K)

kj (r) < ∞ and there-

fore Z(j)
1

a.s.
< ∞ in particular. It hence follows that limn→∞

∑n
k=1 Z

(j)
k

a.s.
= −∞ and

consequently limn→∞W
(j)
n

a.s.
= 0.
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We have already shown in (2.8) that C(K, r) < ∞ implies E(supn∈NW
(j)
n ) < ∞

which means that (W
(j)
n )n∈N is uniformly integrable. By standard martingale

theory the existence of a random variable W (j)
∞ with W

(j)
∞

a.s.
= limn→∞W

(j)
n and

E[W
(j)
∞ |W (j)

n ] = W
(j)
n for all n ∈ N follows.

Knowing that limn→∞W
(j)
n

a.s.
= 0 we conclude that W (j)

∞
a.s.
= 0 and accordingly

W
(j)
n

a.s.
= 0 for all n ∈ N in contradiction to

W
(j)
2 = exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j)
2 )

)
a.s.
> 0

for example. Hence, we cannot have C(K, r) < ∞ and φ
(K)
jj (r) = 1 for some

j ∈ E at the same time.

2

Let us take a closer look at the environmental Markov process J . Remember

that we denote its intensity matrix by Q = (qij)i,j∈E. Putting qi := −qii for i ∈

E the corresponding embedded Markov chain has transition probability matrix

P = (pij)i,j∈E defined by pij := (1− δij)
qij

qi
where δij is Kronecker’s symbol.

For n ∈ N let σ(j)
n be the time which the environmental Markov process J spends

in state j ∈ E when the process makes its nth visit to this state. It is well known

that conditioned under the embedded Markov chain the σ(j)
n are independent for

all n ∈ N and j ∈ E and that the sequence (σ
(j)
n )n∈N is furthermore identically

distributed with σ(j)
1 ∼ Exp(qj), j ∈ E. For simplicity reasons put σ(j) := σ

(j)
1 .

We now define the function φ(K)
j by

φ
(K)
j (r) := E

(
exp

([
λjhj(r) +

r2b2k(j)2

2
− r
(
c+ ak(j)

)]
σ(j)

))
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for r ≥ 0 and j ∈ E. It thus follows from what is mentioned above that

φ
(K)
kj (r) = φ

(K)
k (r) pkj +

∑
m∈E
m6=j

φ
(K)
k (r) pkm φ

(K)
mj (r) (2.9)

and in particular

φ
(K)
jj (r) =

∑
m∈E

φ
(K)
j (r) pjm φ

(K)
mj (r) (2.10)

for all r ≥ 0 and j, k ∈ E. Having Proposition 2.3 in mind we initially show that

it suffices to consider φ(K)
jj .

Proposition 2.4. Let K = k(J), r > 0 and j ∈ E be fixed. Then, φ(K)
jj (r) <∞

implies φ(K)
kj (r) <∞ for all k ∈ E.

Proof:

Suppose that φ(K)
kj (r) = ∞ for some k, j ∈ E. It then follows from equation (2.9)

that also φ(K)
mj = ∞ for all m ∈ E with pmk > 0. Since the environmental Markov

process J is assumed to be irreducible we gradually get φ(K)
mj = ∞ for all m ∈ E.

Using equation (2.10) we finally conclude that φ(K)
jj (r) = ∞.

2

Let j ∈ E. Recall, that the functions hi are convex for all i ∈ E. It therefore

follows that ∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j))

and consequently also

exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j))

)

are almost surely convex functions in r since the exponential function is convex

and increasing. Taking the expectation preserves convexity. Thus, the function
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φ
(K)
jj is convex and therefore continuous on the interior of its domain. Addition-

ally, it directly follows from the definition of φ(K)
jj that

φ
(K)
jj (0) = 1 . (2.11)

According to the previous two propositions φ(K)
jj (r) < 1 for all j ∈ E is a necessary

condition for C(K, r) to be finite. In order to show that this is also a sufficient

condition for C(K, r) <∞ we have to consider the following functions. For r ≥ 0,

δ ≥ 0 and j, k ∈ E let φ(K)
kj (r, δ) be defined by

φ
(K)
kj (r, δ)

:= Ek

(
exp

(
(1 + δ)

∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j))

))
.

Note that φ(K)
kj (r, 0) = φ

(K)
kj (r). Using these functions we can also give a sufficient

condition for C(K, r) <∞ .

Proposition 2.5. Let K = k(J) and r > 0 be fixed. The existence of a δ > 0

such that φ(K)
jj (r, δ) < 1 for all j ∈ E is a sufficient condition for C(K, r) <∞.

Proof:

Recall the definition of the processes (Z
(j)
n )n∈N and (W

(j)
n )n∈N in the proof of

Proposition 2.3. This time we consider the process
(
(W

(j)
n )1+δ

)
n∈N for an arbitrary

δ > 0, i.e.

(W (j)
n )1+δ = exp

(
(1 + δ)

∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j)
n )

)

= exp

(
(1 + δ)

n∑
m=1

Z(j)
m

)
=

n∏
m=1

exp
(
(1 + δ)Z(j)

m

)
.



Chapter 2. The Markov-modulated Poisson model 30

Note that Ek

(
(W

(j)
1 )1+δ

)
= φ

(K)
kj (r, δ) and (W

(j)
n+1)

1+δ = (W
(j)
n )1+δ · e(1+δ)Z

(j)
n+1 with

E
(
e(1+δ)Z

(j)
n+1

)
= φ

(K)
jj (r, δ) for all n ∈ N, k, j ∈ E and r ≥ 0.

Let r > 0 and suppose that there exists a δ > 0 such that φ(K)
jj (r, δ) < 1 holds

for all j ∈ E. For this δ > 0 and any given j ∈ E,
(
(W

(j)
n )1+δ

)
n∈N is a positive

supermartingale with respect to its natural filtration since

E
[
(W

(j)
n+1)

1+δ
∣∣∣(W (j)

n )1+δ
]

= (W (j)
n )1+δ E

(
e(1+δ)Z

(j)
n+1

)
= (W (j)

n )1+δ φ
(K)
jj (r, δ) < (W (j)

n )1+δ , n ∈ N .

A supermartingale inequality yields

αP
(

sup
n∈N

(W (j)
n )1+δ ≥ α

)
≤ E

(
(W

(j)
1 )1+δ

)
+ sup

n∈N
E
(

min
{
0, (W (j)

n )1+δ
})

for α ≥ 0 as for example shown in Lemma 3.21 in Elliott [Ell82], page 23.

Analogously to the proof of Proposition 2.4, one can show that φ(K)
jj (r, δ) < 1

implies φ(K)
kj (r, δ) < ∞ for all k ∈ E. Hence, E

(
(W

(j)
1 )1+δ

)
is finite under our

assumptions. Since (W
(j)
n )1+δ is strictly positive for all n ∈ N we therefore have

αP
(
supn∈N (W

(j)
n )1+δ ≥ α

)
≤ E

(
(W

(j)
1 )1+δ

)
=: D < ∞ for all α ≥ 0. This

implies

P
(

sup
n∈N

W (j)
n ≥ t

)
= P

((
sup
n∈N

W (j)
n

)1+δ ≥ t1+δ

)
= P

(
sup
n∈N

(W (j)
n )1+δ ≥ t1+δ

)
≤ D t−(1+δ)

for all t > 0 and therefore

E
(

sup
n∈N

W (j)
n

)
=

∫ ∞

0

P
(

sup
n∈N

W (j)
n > t

)
dt ≤ 1 +D

∫ ∞

1

t−(1+δ) dt <∞ .

Together with the fact that C(K, r) <∞ if and only if E
(
supn∈NW

(j)
n

)
<∞ for

all j ∈ E the result follows.

2
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Using the previous propositions we can now state an alternative definition

for R(K) based on the functions φ(K)
jj for j ∈ E.

Proposition 2.6.

R(K) = sup
{
r > 0 ;φ

(K)
jj (r) < 1 ∀j ∈ E

}
(2.12)

Proof:

At first, put R̃(K) := sup
{
r > 0 ;φ

(K)
jj (r) < 1 ∀j ∈ E

}
. If R̃(K) does not exist

we must have some j ∈ E such that φjj(r) ≥ 1 for all r > 0. It then follows by

Proposition 2.3 that C(K, r) = ∞ for all r > 0 which means that also R(K) does

not exist.

Now, let us assume that R̃(K) exists and consider any 0 < r < R̃(K). Furthermore,

choose some δ > 0 sufficiently small such that r′ := (1 + δ)r < R̃(K). Since φ(K)
jj

is convex with φ(K)
jj (0) = 1 it follows that φ(K)

jj (r′) < 1, j ∈ E. We then get

φ
(K)
jj (r′)− φ

(K)
jj (r, δ)

= Ej

(
exp

(∑
i∈E

[
λihi(r

′) +
r′2b2k(i)2

2
− r′

(
c+ ak(i)

)]
ξi(τ

(j))

)

− exp

(
(1 + δ)

∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j))

))

= Ej

(
exp

(
−(1 + δ)

∑
i∈E

r
(
c+ ak(i)

)
ξi(τ

(j))

)

·

[
exp

(∑
i∈E

[
λihi

(
(1 + δ)r

)
+ (1 + δ)2 r

2b2k(i)2

2

]
ξi(τ

(j))

)

− exp

(∑
i∈E

[
(1 + δ)λihi(r) + (1 + δ)

r2b2k(i)2

2

]
ξi(τ

(j))

)])

≥ 0

since (1 + δ)2 r2b2k(i)2

2
≥ (1 + δ) r2b2k(i)2

2
and hi

(
(1 + δ)r

)
≥ (1 + δ)hi(r) for
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each i ∈ E. At this, the last inequality follows due to the fact that hi ist con-

vex with hi(0) = 0 for all i ∈ E.

We therefore have φ(K)
jj (r, δ) ≤ φ

(K)
jj (r′) < 1 for all j ∈ E, i.e. there exists a δ > 0

such that φ(K)
jj (r, δ) < 1. This means that φ(K)

jj (r) < 1 for all j ∈ E implies the

existence of a δ > 0 such that φ(K)
jj (r, δ) < 1 for all j ∈ E. Since the latter is

a sufficient condition for C(K, r) < ∞ we obtain R̃(K) ≤ R(K) . On the other

hand, it follows from Proposition 2.3 that R(K) ≤ R̃(K). Thus, R(K) = R̃(K).

2

From now on we use (2.12) as the definition of R(K). Consequently, R(K) does not

exist if there is an environmental state j ∈ E such that φ(K)
jj (r) ≥ 1 for all r > 0.

Note, if R(K) exists then r ∈ (0, R(K)) particularly implies that C(K, r) <∞.

We are now able to state the first important result of this work. In Proposi-

tion 2.2 we have already given an upper bound for the ruin probability Ψ(u,K).

Unfortunately, we have not been able to give any conditions ensuring that the

given upper bound is finite so far. Using all the results above we can now make

up for this.

Theorem 2.7. Consider any fixed investment strategy K = k(J) and suppose

that R(K) defined by (2.12) exists. For any r < R(K) we then have

Ψ(u,K) ≤ e−ruC(K, r)

with C(K, r) <∞ for all u ≥ 0.

Proof:

The inequality of interest is trivial for all r ≤ 0. Recalling that r ∈ (0, R(K))
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implies C(K, r) < ∞ as shown in the proof of Proposition 2.6 the assertion

follows.

2

Note that the inequality in Theorem 2.7 holds for r < R(K). Theorem 2.21 in

section 2.5 furthermore shows that under some mild regularity conditions we have

lim
u→∞

Ψ(u,K)

e−ru
= ∞

for all r > R(K). From now on we thus refer to R(K) as the adjustment coef-

ficient of the Markov-modulated Poisson model with respect to the investment

strategy K.

Recall, in this work we are interested in the investment strategy K = k(J) which

maximizes the adjustment coefficient R(K). Hence we do not investigate here if

the Lundberg inequality given in Theorem 2.7 also holds for R(K) itself.

Before R(K) is maximized with respect to K = k(J) in the following section, we

conclude this section with stating conditions which ensure that the adjustment

coefficient R(K) exists for a given investment strategy K = k(J). In order to

do so we need the following relation between the function φ
(K)
jj and the random

variable Xτ (j)(K) for j ∈ E. It is also required in order to prove Theorem 2.21 in

section 2.5.

Proposition 2.8. Consider any fixed investment strategy K = k(J). For all

j ∈ E and r ≥ 0 we have

φ
(K)
jj (r) = Ej

(
e−rX

τ(j) (K)
)
.
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Proof:

Consider any fixed investment strategy K = k(J) and arbitrary u, r ≥ 0, j ∈ E.

It is shown in Proposition 2.1 that M(u,K, r) is a martingale with respect to F .

Recall that τ (j) is F0-measurable. Under the probability measure P
(
·
∣∣F0

)
(ω),

where ω ∈ Ω is fixed, τ (j) is therefore almost surely a deterministic constant

τ (j)(ω) according to Proposition 2.13 in Yong and Zhou [YZ99], page 20. We thus

have E
[
Mτ (j)(u,K, r)

∣∣F0

]
= M0(u,K, r) = e−ru almost surely and consequently

Ej

(
e−rX

τ(j) (K)
)

= Ej

(
eru e−rY

τ(j) (u,K)
)

= Ej

(
eru E

[
e−rY

τ(j) (u,K)
∣∣∣F0

])

= Ej

(
e

P
i∈E

[
λihi(r)+

1
2
r2b2k(i)2−r(c+ak(i))

]
ξi(τ

(j)) eru E
[
Mτ (j)(u,K, r)

∣∣F0

])
= φ

(K)
jj (r)

2

Let us from now on denote the ruin probability conditioned under the event that

the environmental Markov process starts in state j ∈ E by Ψj(u,K), i.e.

Ψj(u,K) := Pj

(
inf
t≥0

Yt(u,K) < 0
)

= P
(

inf
t≥0

Yt(u,K) < 0
∣∣∣ J0 = j

)
If the environmental Markov process has initial distribution ν = (νi)i∈E it thus

follows that Ψ(u,K) =
∑

i∈E νi Ψi(u,K).

Certainly, the existence of an r0 > 0 such that φ(K)
jj (r0) < ∞ for all j ∈ E is a

necessary condition for the adjustment coefficient R(K) to exist. The following

result shows us that we cannot find an adjustment coefficient if there does not

exist such an r0.
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Proposition 2.9. Consider any fixed investment strategy K = k(J) and suppose

that there exists an environmental state j ∈ E such that φ(K)
jj (r) = ∞ for all

r > 0. Then, for all ε > 0 we have

lim sup
u→∞

Ψj(u,K)

e−εu
= ∞ .

Proof:

Let us consider any fixed j ∈ E and suppose that φ(K)
jj (r) = ∞ for all r > 0.

Denoting the distribution function of Xτ (j)(K) by G we recognize that

Ψj(u,K) ≥ Pj

(
Yτ (j)(u,K) < 0

)
= Pj

(
Xτ (j)(K) < −u

)
= G(−u)

for u ≥ 0. Let us now assume that there exist an ε > 0 such that

lim sup
u→∞

G(−u)
e−εu

≤ lim sup
u→∞

Ψj(u,K)

e−εu
<∞ .

This means that we can find a constant Dε < ∞ such that eεuG(−u) ≤ Dε for

all u ≥ 0. Choose any r ∈ (0, ε). Using Proposition 2.8 we have

φ
(K)
jj (r) = Ej

(
e−rX

τ(j) (K)
)

=

∫ ∞

−∞
e−rx dG(x)

=

∫ 0

−∞
e−rx dG(x) +

∫ ∞

0

e−rx dG(x)

≤ lim
y→∞

∫ 0

−y

e−rx dG(x) + 1−G(0) .

Integration by parts yields∫ 0

−y

e−rx dG(x) =

[
e−rxG(x)

]0

x=−y

+ r

∫ 0

−y

e−rxG(x) dx

= G(0)− eryG(−y) + r

∫ 0

−y

e−rxG(x) dx

= G(0)− eεyG(−y) e−(ε−r)y + r

∫ 0

−y

e−εxG(x) e(ε−r)x dx
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Since ε− r > 0 it follows that

0 ≤ lim
y→∞

eεyG(−y) e−(ε−r)y ≤ lim
y→∞

Dε e
−(ε−r)y = 0

as well as

lim
y→∞

r

∫ 0

−y

e−εxG(x) e(ε−r)x dx ≤ rDε

∫ 0

−∞
e(ε−r)x dx =

r

ε− r
Dε .

Putting the pieces together we have φjj(r) ≤ 1 + r
ε−r

Dε <∞ for all r ∈ (0, ε) in

contradiction to our assumption that φ(K)
jj (r) = ∞ for all r > 0.

2

However, since we have φ(K)
jj (0) = 1 for all j ∈ E it clearly does not suffice to

assume that there exists an r0 > 0 such that φ(K)
jj (r0) <∞ for all j ∈ E in order

to ensure that R(K) exists. Recall that for the Markov-modulated Poisson model

without investment the adjustment coefficient only exists if and only if the safety

loading ρ(0) is strictly positive. As mentioned in section 2.1, the safety loading

for this model is given by ρ(0) = c−
∑

i∈E πiλiµBi
.

For the Markov-modulated Poisson model with investment we get a similar

representation of the safety loading ρ(K). Recall that the safety loading with

respect to a given investment strategy K = k(J) is defined as the constant ρ(K)

for which

lim
t→∞

1

t
Yt(0, K)

a.s.
= ρ(K) . (2.13)

Proposition 2.10. Consider any fixed investment strategy K = k(J) and let the

corresponding safety loading ρ(K) be defined by (2.13). Then,

ρ(K) = c+ a
∑
i∈E

πik(i)−
∑
i∈E

πiλiµBi
.
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Proof:

We have

Yt(0, K) = ct+ a
∑
i∈E

k(i)ξi(t) + b
∑
i∈E

k(i)W
(i)
ξi(t)

−
∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k , t ≥ 0 .

Note that limt→∞
ξi(t)

t

a.s.
= πi by the Ergodic Theorem. Further, it is well known

that limt→∞
W

(i)
t

t

a.s.
= 0 as well as limt→∞

N
(i)
t

t

a.s.
= λi for i ∈ E. For every environ-

mental state i ∈ E we thus get

lim
t→∞

W
(i)
ξi(t)

t
= lim

t→∞

ξi(t)

t

W
(i)
ξi(t)

ξi(t)
= 0 a.s.

and

lim
t→∞

1

t

∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k =

∑
i∈E

lim
t→∞

ξi(t)

t

N
(i)
ξi(t)

ξi(t)

1

N
(i)
ξi(t)

N
(i)
ξi(t)∑

k=1

U
(i)
k =

∑
i∈E

πiλiµBi
a.s.

where limt→∞
1

N
(i)
ξi(t)

∑N
(i)
ξi(t)

k=1 U
(i)
k

a.s.
= µBi

follows from the law of large numbers.

Putting the things together we see that almost surely

lim
t→∞

1

t
Yt(0, K) = c+

∑
i∈E

πiak(i)−
∑
i∈E

πiλiµBi
.

2

Now, consider the environmental Markov process J and recall that the time

epoch of the nth entry of the Markov process to state j ∈ E is denoted by τ
(j)
n

for n ∈ N. Let us now assume that the environmental Markov process J starts

in state j ∈ E, i.e. J0 = j. For a given investment strategy K = k(J) it follows

from the definition of the process X(K) that the sequence (X̃
(j)
n (K))n∈N defined

by X̃
(j)
n (K) := X

τ
(j)
n

(K) − X
τ
(j)
n−1

(K) is independent and identically distributed.

Thus, (
X

τ
(j)
n

(K)
)

n∈N
=

(
n∑

k=1

X̃
(j)
k (K)

)
n∈N
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is a random walk with Xτ (j)(K) as the generic random variable for the steps.

Analogous to the Markov-modulated model without investment we then get the

following result.

Proposition 2.11. Consider any fixed investment strategy K = k(J) and sup-

pose that the corresponding safety loading ρ(K) ≤ 0. Then,

Ψj(u,K) = 1

for all u ≥ 0 and j ∈ E.

Proof:

The case when ρ(K) < 0 is obvious since 1
t
Xt(K) almost surely converges to a

strictly negative limit by the definition of the safety loading. Hence, we have

inft≥0 Yt(u,K) = −∞ a.s. from which our assertion directly follows. Now let

ρ(K) = 0 and assume that J0 = j for some environmental state j ∈ E. As de-

scribed above,
(
X

τ
(j)
n

(K)
)

n∈N is then a random walk with generic random variable

Xτ (j)(K).

Theorem 4.2 in Asmussen [Asm03], page 51, shows that Ej

(
ξi(τ

(j))
)

= πiEj(τ
(j)).

Thus,

Ej

∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k

 =
∑
i∈E

Ej

E

[N
(i)

ξi(τ
(j))∑

k=1

U
(i)
k

∣∣∣∣∣N (i)

ξi(τ (j))

] =
∑
i∈E

µBi
Ej

(
N

(i)

ξi(τ (j))

)

=
∑
i∈E

µBi
Ej

(
E
[
N

(i)

ξi(τ (j))

∣∣∣ξi(τ (j))
])

=
∑
i∈E

µBi
λiEj

(
ξi(τ

(j))
)

=
∑
i∈E

πiλiµBi
Ej

(
τ (j)
)
.

Since the environmental Markov process is assumed to be irreducible with sta-

tionary distribution π we have Ej

(
τ (j)
)
< ∞. Together with the fact that
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Ej

(
Wξi(τ (j))

)
= Ej

(
E
[
Wξi(τ (j))

∣∣ξi(τ (j))
])

= 0 we therefore get

E
(
Xτ (j)(K)

)
=
(
c+

∑
i∈E

πiak(i)−
∑
i∈E

πiλiµBi

)
Ej

(
τ (j)
)

= 0 .

Hence,
(
X

τ
(j)
n

(K)
)

n∈N is a random walk with zero mean. This implies that(
X

τ
(j)
n

(K)
)

n∈N oscillates between ∞ and −∞, as for example Theorem 4.2 in

Asmussen [Asm03], page 224, shows. Therefore, also in the case when ρ(K) = 0

we have inft≥0 Yt(u,K)
a.s.
= −∞ and consequently Ψj(u,K) = 1 for all u ≥ 0

and j ∈ E.

2

This means that we cannot find an adjustment coefficient for the Markov-

modulated Poisson model under any investment strategy K = k(J) unless

ρ(K) > 0.

Using the previous results we can eventually give conditions which ensure that

the adjustment coefficient R(K) exists.

Proposition 2.12. Consider any fixed investment strategy K = k(J) and sup-

pose there exists an r0 > 0 such that φ(K)
jj (r0) <∞ for all j ∈ E. Then, ρ(K) > 0

implies that the adjustment coefficient R(K) defined by (2.12) exists.

Proof:

Suppose there exists an r0 > 0 such that φ(K)
jj (r0) < ∞ for all j ∈ E and

let ∆ ∈ (0, r0

2
) be arbitrarily chosen. It is well known that for continuously

differentiable, convex functions f we have∣∣∣∣f(∆)− f(0)

∆

∣∣∣∣ ≤ |f ′(∆)|+ |f ′(0)| .
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For any fixed ω ∈ Ω it thus follows that∣∣∣∣∣e−∆X
τ(j) (K) − 1

∆

∣∣∣∣∣ ≤ ∣∣Xτ (j)(K)
∣∣ (e−∆X

τ(j) (K) + 1
)

≤
∣∣Xτ (j)(K)

∣∣ (e− r0
2

X
τ(j) (K) + 2

)
.

Next, consider any j ∈ E and assume that J0 = j. Obviously,
∣∣Xτ (j)(K)

∣∣ is

integrable since Ej(τ
(j)) < ∞. Choosing α ≥ 0 large enough, i.e. such that

α+ e
r0
2

x ≥ x for all x ≥ 0, we have

Ej

(∣∣Xτ (j)(K)
∣∣ e− r0

2
X

τ(j) (K)
)

= Ej

(
Xτ (j)(K) e−

r0
2

X
τ(j) (K) I

(
Xτ (j)(K) ≥ 0

))
+ Ej

(
−Xτ (j)(K) e−

r0
2

X
τ(j) (K) I

(
Xτ (j)(K) < 0

))
≤ Ej

(
Xτ (j)(K) I

(
Xτ (j)(K) ≥ 0

))
+ Ej

((
α+ e−

r0
2

X
τ(j) (K)

)
e−

r0
2

X
τ(j) (K) I

(
Xτ (j)(K) < 0

))
≤ Ej

(∣∣Xτ (j)(K)
∣∣)+ αEj

(
e−

r0
2

X
τ(j) (K)

)
+ Ej

(
e−r0X

τ(j) (K)
)

= Ej

(∣∣Xτ (j)(K)
∣∣)+ α φ

(K)
jj

(r0
2

)
+ φ

(K)
jj (r0) <∞

where we make use of Proposition 2.8. We have therefore found an integrable

upper bound for
∣∣ e−∆X

τ(j) (K)−1
∆

∣∣.
Using the same proposition again, it follows by dominated convergence that

d

dr
φ

(K)
jj (r)

∣∣∣∣
r=0

= lim
∆→0

φ
(K)
jj (∆)− φ

(K)
jj (0)

∆
= lim

∆→0

Ej

(
e−∆X

τ(j) (K)
)
− 1

∆

= lim
∆→0

Ej

(
e−∆X

τ(j) (K) − 1

∆

)
= Ej

(
lim
∆→0

e−∆X
τ(j) (K) − 1

∆

)

= Ej

(
d

dr
e−rX

τ(j) (K)

∣∣∣∣
r=0

)
= Ej

(
−Xτ (j)(K)

)
= −ρ(K) < 0 .

Under our assumptions, φ(K)
jj is therefore continuous on [0, r0] with φ

(K)
jj (0) = 1
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and d
dr
φ

(K)
jj (r)

∣∣∣
r=0

< 0 for all j ∈ E. This means that

R(K) = sup
{
r > 0 ;φ

(K)
jj (r) < 1 ∀j ∈ E

}
exists.

2

Considering a certain investment strategy K = k(J), Proposition 2.12 yields that

ρ(K) > 0 and the existence of an r0 > 0 such that φ(K)
jj (r0) < ∞ for all j ∈ E

are sufficient conditions for the adjustment coefficient R(K) to exist. On the

other hand, it is shown in Proposition 2.9 and Proposition 2.11 that these two

conditions are necessary for the existence of an adjustment coefficient. Thus, in

the Markov-modulated Poisson model with investment an adjustment coefficient

with respect to any fixed investment strategy K = k(J) exists if and only if

ρ(K) > 0 and φ(K)
jj (r0) <∞ for all j ∈ E and some r0 > 0.
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2.3 Maximizing the adjustment coefficient

In the previous section the Markov-modulated Poisson model with investment is

considered under any fixed investment strategy K = k(J). We have shown so far

that

Ψ(u,K) ≤ e−ruC(K, r) (2.14)

with C(K, r) < ∞ for all u ≥ 0 whenever r < R(K). Here, R(K) is defined by

R(K) := sup
{
r > 0 ;φ

(K)
jj (r) < 1 ∀j ∈ E

}
. Recall that we want to find the optimal

investment strategy K = k(J) which maximizes the adjustment coefficient R(K).

Thus, let us concentrate on the functions φ(K)
jj (r) for j ∈ E in the definition

of R(K). For any r > 0 we have

φ
(K)
jj (r) = Ej

(
exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j))

))

= Ej

(
exp

(∑
i∈E

[
λihi(r)−

(
rc+

a2

2b2

)
+
r2b2

2

(
k(i)− a

rb2

)2
]
ξi(τ

(j))

))
.

(2.15)

Defining the constant investment strategy K(r) by K(r)
t ≡ a

rb2
for t ≥ 0 and some

r > 0 we consequently obtain

φ
(K(r))
jj (r) = Ej

(
exp

(∑
i∈E

[
λihi(r)−

(
rc+

a2

2b2

)]
ξi(τ

(j))

))
.

Motivated through this let us examine the functions φkj defined by

φkj(r) := Ek

(
exp

(∑
i∈E

λihi(r)ξi(τ
(j))−

(
rc+

a2

2b2
)
τ (j)

))
(2.16)

for r ≥ 0 and j, k ∈ E. Recall, we show around (2.11) in the previous section

that φ(K)
jj is convex and consequently continuous on the interior of its domain for

every investment strategy K = k(J). Using exactly the same arguments as there
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we obtain that also φjj is convex and therefore continuous on the interior of its

domain. This time, we obviously have

φjj(0) = Ej

(
exp

(
− a2

2b2
τ (j)
))

≤ 1 (2.17)

with strict inequality if the drift parameter a of the Brownian motion with

drift Wa,b does not equal zero.

Analogously to the definition of R(K) in (2.12) we now define R by

R := sup
{
r > 0 ;φjj(r) < 1 ∀j ∈ E

}
(2.18)

and say that R does not exist if there is an environmental state j ∈ E such that

φjj(r) ≥ 1 for all r > 0. Comparing φjj and φ
(K)
jj as given in (2.15) above, we

see that φ(K)
jj (r) ≥ φjj(r) for all r ≥ 0, j ∈ E and K = k(J). This implies that

R(K) ≤ R for every investment strategy K = k(J).

The connection between φjj and φ
(K(s))
jj for some fixed s > 0 and j ∈ E

is illustrated in Figure 2.1 on the next page. As mentioned above we have

φ
(K(s))
jj (r) ≥ φjj(r) for all r ≥ 0 with equality for r = s.

The following result now shows us that R is indeed a sharp upper bound for all

R(K) with K = k(J) since it can almost be attained by choosing an appropriate

constant investment strategy.

Theorem 2.13. Suppose that R defined by (2.18) exists. For any fixed r ∈ (0, R)

and the corresponding investment strategy K(r) defined by K(r)
t ≡ a

rb2
for t ≥ 0 it

follows that

Ψ(u,K(r)) ≤ e−ruC(K(r), r)

with C(K(r), r) <∞ for all u ≥ 0.
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φ
(K(s))
jj (r)

φjj(r)

@R
s

@R

R(K(s))

�	

R

Figure 2.1: Plot of φjj(r) and φ(K(s))
jj (r)

Proof:

Choose r ∈ (0, R) and consider the associated constant investment strategy K(r).

We then have φ(K(r))
jj (r) = φjj(r) < 1 for all j ∈ E as shown above. Hence, we

get C(K(r), r) <∞ and consequently the desired result using Theorem 2.7.

2

Let us consider any 0 < r < R and the investment strategy K(r) defined by

K
(r)
t ≡ a

rb2
for t ≥ 0. Without making any assumptions about the safety loading

ρ(K(r)) with respect to this investment strategy we have

Ψ(u,K(r)) ≤ e−ruC(K(r), r)

with C(K(r), r) <∞ for all u ≥ 0 according to Theorem 2.13. Recall, it is shown
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in Proposition 2.11 that for any investment strategy K = k(J) with ρ(K) ≤ 0

we get Ψj(u,K) = 1 for all u ≥ 0 and j ∈ E. Comparing these two results we

see that ρ(K(r)) must be strictly positive. This means that the absolute value |a|
rb2

which the strategy K(r) provides to invest is sufficiently large so that the safety

loading

ρ(K(r)) = c+ a
∑
i∈E

πi
a

rb2
−
∑
i∈E

πiλiµBi
= c+

a2

rb2
−
∑
i∈E

πiλiµBi

becomes positive.

But note that the inequality given in Theorem 2.13 only holds for r < R. Cer-

tainly, the next question is what we get for R itself. Does there also exist an in-

vestment strategy K = k(J) and a finite constant C such that Ψ(u,K) ≤ C e−Ru

for all u ≥ 0? Before we get to this problem in section 2.4 let us look at the

definition of R again.

Initially, we want to derive conditions under which R defined by (2.18) exists

as done for R(K) in section 2.2. If R does not exist it certainly follows that

we cannot find an investment strategy K = k(J) for which R(K) exists since

φ
(K)
jj (r) ≥ φjj(r) for all r > 0 and K = k(J). As shown at the end of the previous

section we therefore do not get an adjustment coefficient for any investment

strategy K = k(J) unless R exists.

A first necessary condition for R to exist is obviously the existence of an r0 > 0

such that φjj(r0) <∞ for all j ∈ E. Taking this for granted we have to distinguish

between two cases. Firstly, consider the case where the drift parameter a of the

Brownian motion with drift Wa,b does not equal zero. We then have φjj(0) < 1 for

all j ∈ E and it is easy to see that R exists. Secondly, let us assume that a = 0.

Then, we apparently have φjj = φ
(0)
jj for all j ∈ E and it consequently follows
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that R is equal to R(0). According to Proposition 2.12 this implies that R exist

if ρ(0) > 0.

Always provided that there exists an r0 > 0 such that φjj(r0) <∞ for all j ∈ E we

can therefore choose the constant investment strategy K(r) with 0 < r < R and

get an adjustment coefficient for the corresponding Markov-modulated Poisson

model with investment as long as a 6= 0. In the case where a = 0 we have the

existence of an adjustment coefficient if the safety loading of the corresponding

Markov-modulated Poisson model without investment is strictly positive, i.e. if

there exists an adjustment coefficient for the Markov-modulated Poisson model

without investment.

Recall that R is defined as the supremum of all r > 0 such that φjj(r) < 1

for all j ∈ E. Unfortunately, this supremum is generally not easy to determine

since only in very few cases we know φjj as an explicit function of r, confer

Example 2.22 in section 2.5. In that what follows we thus give an alternative

definition for R.

In order to find such a definition, some matrix notation need to be introduced.

Let A = (aij)i,j∈E ∈ Rd×d be a non-negative matrix with eigenvalues κ1, . . . , κd.

The spectral radius of A is then defined as

spr(A) := max
{
|κ1|, . . . , |κd|

}
.

We denote the nth power of A by An =
(
a

(n)
ij

)
i,j∈E

for n ∈ N. A non-negative

matrix A is called irreducible if the pattern of zero and non-zero elements is

the same as for an irreducible transition probability matrix. This means, for

each i, j ∈ E there has to exist an n ∈ N such that a(n)
ij > 0. For an irreducible

and non-negative matrix A it follows from the Perron-Frobenius-Theorem that
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spr(A) itself is a strictly positive and simple eigenvalue of A. Moreover, the

corresponding left and right eigenvectors can be chosen with strictly positive

elements. If the matrix A has some infinite element we put as a convention

spr(A) = ∞.

In that what follows we refer to the d × d identity matrix by Id. Furthermore,

let the d × d diagonal matrix where the kth diagonal element is given by ak for

k ∈ E be denoted by

diag
(
ak ; k ∈ E

)
.

After introducing some matrix notation let us get back to the definition of the

environmental Markov process J which has intensity matrix Q = (qij)i,j∈E. As

shown in section 2.2, the transition probability matrix P = (pij)i,j∈E of the

embedded Markov chain is given by pij := (1− δij)
qij

qi
where qi := −qii and δij is

Kronecker’s symbol. Thus,

P = diag
(
qi ; i ∈ E

)−1
(
Q+ diag

(
qi ; i ∈ E

))
= diag

(
qi ; i ∈ E

)−1
Q+ Id .

The time which the environmental Markov process J spends in state j ∈ E when

the process makes its nth visit to this state is denoted by σ(j)
n for n ∈ N. Recall

that conditioned under the embedded Markov chain the σ(j)
n are independent for

all n ∈ N and j ∈ E and that the sequence (σ
(j)
n )n∈N is furthermore identically

distributed with σ(j) := σ
(j)
1 ∼ Exp(qj) for j ∈ E.

Analogously to the definition of the functions φ(K)
j for any investment strategy

K = k(J) and j ∈ E in section 2.2 we now let the function φj be given by

φj(r) := E
(

exp

((
λjhj(r)− (rc+

a2

2b2
)
)
σ(j)

))
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for r ≥ 0 and j ∈ E. Using these functions let the matrix B(r) ∈ Rd×d be defined

by

B(r) := diag
(
φj(r) ; j ∈ E

)
· P . (2.19)

We denote the matrix elements of B(r) by bij(r), i.e. B(r) =
(
bij(r)

)
i,j∈E

. Note

that the diagonal elements of B(r) are all zero by the definition of P .

Proposition 2.14. Let the matrix B(r) be defined by (2.19). Then,

R = sup
{
r > 0; spr

(
B(r)

)
< 1
}
. (2.20)

Proof:

Firstly, we are going to show that spr
(
B(r)

)
< 1 implies φjj(r) < 1 for all j ∈ E.

Let r > 0 be fixed. Similarly to what is shown around (2.9) and (2.10) we now

get

φkj(r) = φk(r) pkj +
∑
m∈E
m6=j

φk(r) pkm φmj(r)

= φk(r) pkj +
∑
m∈E

φk(r) pkm φmj(r)− φk(r) pkj φjj(r)

=
∑
m∈E

φk(r) pkm φmj(r) + φk(r) pkj

(
1− φjj(r)

)
(2.21)

and in particular

φjj(r) =
∑
m∈E

φj(r) pjm φmj(r) (2.22)

for k, j ∈ E. Now, put Φ(r) :=
(
φkj(r)

)
k,j∈E

. In matrix notation we therefore

have

Φ(r) = B(r) Φ(r) +B(r) diag
(
Id − Φ(r)

)
(2.23)

or equivalently (
Id −B(r)

)
Φ(r) = B(r) diag

(
Id − Φ(r)

)
. (2.24)
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Since spr
(
B(r)

)
< 1 it follows that limn→∞B(r)n = 0 and consequently

(
Id −B(r)

) N∑
n=0

B(r)n =
N∑

n=0

B(r)n −
N∑

n=0

B(r)n+1 = Id −B(r)N+1 −→ Id

as N → ∞. Thus, the invers of (Id − B(r)) exists and is equal to
∑∞

n=0B(r)n.

From (2.24) we therefore have Φ(r) = (Id − B(r))−1B(r) diag(Id − Φ(r)) and

hence

diag
(
Φ(r)

)
= diag

((
Id −B(r)

)−1
B(r) diag

(
Id − Φ(r)

))
= diag

((
Id −B(r)

)−1
B(r)

)
· diag

(
Id − Φ(r)

)
.

Put A := diag
(
(Id − B(r))−1B(r)

)
. All entries of B(r) are non-negative. It

thus follows from
(
Id − B(r)

)−1
=
∑∞

n=0B(r)n that all entries of
(
Id − B(r)

)−1

are non-negative as well. Hence, also the diagonal matrix A =
(
aij

)
i,j∈E

is non-

negative, i.e. ajj ≥ 0 for all j ∈ E. Recalling that the diagonal elements of Φ(r)

are given by φjj(r) = ajj(1− φjj(r)) we can therefore conclude that

φjj(r) =
ajj

1 + ajj

< 1 , j ∈ E .

This means that indeed spr
(
B(r)

)
< 1 implies φjj(r) < 1 for all j ∈ E.

In order to prove the other direction we assume without loss of generality that

φ11(r) < 1 for any given r > 0. Let j ∈ E be arbitrarily chosen. The environmen-

tal Markov process J is assumed to be irreducible. Hence, there exists a sequence

of states i1, . . . , iN ∈ {2, . . . , d} with N ∈ N such that p1i1pi1i2 ·. . .·piN−1iNpiN1 > 0

and in = j for some 1 ≤ n ≤ N . Having equations (2.21) and (2.22) in mind we

thus have

φ11(r) ≥ φ1(r)p1i1φi1(r) · . . . · pin−1j︸ ︷︷ ︸
>0

φj(r) pjin+1 · . . . · φiN (r)piN1︸ ︷︷ ︸
>0
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for r ≥ 0 since pkj ≥ 0, φj(r) > 0 and φkj(r) > 0. Therefore, φ11(r) < 1

particularly implies φj(r) < ∞ for all j ∈ E, i.e. all entries of the matrix B(r)

are finite. From (2.23) we furthermore get

Φ(r) = B(r) Φ(r) +B(r) diag
(
Id − Φ(r)

)
= B(r)2 Φ(r) +B(r)2 diag

(
Id − Φ(r)

)
+B(r) diag

(
Id − Φ(r)

)
= . . . = B(r)N Φ(r) +

N∑
n=1

B(r)n diag
(
Id − Φ(r)

)
≥

N∑
n=1

B(r)n diag
(
Id − Φ(r)

)
for N ∈ N since the matrices B(r) and Φ(r) are non-negative. Now, this yields

spr
(
B(r)

)
< 1 exactly as in the proof of Lemma 8 in Björk and Grandell [BG88].

2

Note, the proof of Proposition 2.14 also shows us that φjj(r) < 1 for some j ∈ E

already implies spr
(
B(r)

)
< 1 and therefore φjj(r) < 1 for all j ∈ E. Thus, for

a given r > 0 we either have φjj(r) < 1 for all j ∈ E or there does not exist

any j ∈ E with φjj(r) < 1.

Finally, let us have a closer look at the matrix B(r). For i ∈ E let r̂(i)
∞ be the

strictly positive solution of the equation qi + rc+ a2

2b2
− λihi(r) = 0 and put

r̂∞ := min
i∈E

r̂(i)
∞ . (2.25)

From the assumptions on hi(r) it follows that the r̂(i)
∞ and consequently also r̂∞

are uniquely defined and that qi + rc + a2

2b2
− λihi(r) > 0 for all 0 ≤ r < r̂

(i)
∞

and i ∈ E. We get the following final result of this section.
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Proposition 2.15. Let r̂∞ be defined by (2.25). Then,

B(r) =

(
qij (1− δij)

qi + rc+ a2

2b2
− λihi(r)

)
i,j∈E

(2.26)

for r < r̂∞ where δij denotes Kronecker’s symbol. For all r ≥ r̂∞, B(r) has at

least one infinite element.

Proof:

The moment generating function m̂(t) of a random variable which ist exponen-

tially distributed with parameter λ > 0 is equal to λ
λ−t

for t < λ and infinite

otherwise. Since σj ∼ Exp(qj) it follows from what is shown around (2.25) that

φj(r) =


qj

qj+rc+ a2

2b2
−λjhj(r)

, r < r̂
(j)
∞

∞ , r ≥ r̂
(j)
∞

. (2.27)

Recall, for a given intensity matrix Q we can compute the corresponding transi-

tion probability matrix P via

P = diag
(
qi ; i ∈ E

)−1
(
Q+ diag

(
qi ; i ∈ E

))
.

For any r < r̂∞ we consequently get

B(r) = diag
(
φj(r) ; j ∈ E

)
P

= diag

(
qi

qi + rc+ a2

2b2
− λihi(r)

; i ∈ E

)
P

= diag
(
qi + rc+

a2

2b2
− λihi(r) ; i ∈ E

)−1 (
Q+ diag

(
qi ; i ∈ E

))
=

(
qij (1− δij)

qi + rc+ a2

2b2
− λihi(r)

)
i,j∈E

where δij is Kronecker’s symbol. For any r ≥ r̂∞ we have φj(r) = ∞ for some

j ∈ E, i.e. B(r) has some infinite element.

2
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Recall that by the definition of the spectral radius we have spr
(
B(r)

)
= ∞ if

B(r) has some infinite element. Thus, R is given by

R = sup

0 < r < r̂∞ ; spr

( qij (1− δij)

qi + rc+ a2

2b2
− λihi(r)

)
i,j∈E

 < 1

 .
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2.4 The Markov-modulated Poisson model under

some constant investment strategy

We have already proved that for any 0 < r < R there exists an investment

strategy K = k(J), namely K(r), and a finite constant C, namely C(K(r), r),

such that

Ψ(u,K) ≤ C e−ru

for all u ≥ 0. Now, the question arises whether we can find a similar upper bound

where r is equal to R. Recall that C(K, r) is finite if and only if φ(K)
jj (r) < 1 for

all j ∈ E. It therefore follows from what is shown in the previous section that

C(K(R), R) = ∞. This means that we have to consider other methods in order

to determine a Lundberg bound with adjustment coefficient R.

Thus, in this section we initially consider another model, namely the Markov-

modulated Poisson model perturbed by diffusion. In this model the wealth pro-

cess Y (η)(u) is defined by

Y
(η)
t (u) := Rt(u) + ηWt = u+ ct−

Nt∑
k=1

Uk + ηWt (2.28)

where R(u) is the risk reserve process from the Markov-modulated Poisson model

as defined before, W is a Brownian motion independent of R(u) as well as J

and η ∈ R. We refer to η as the diffusion volatility.

Without Markov-modulation this model was introduced by Gerber [Ger70]. He

derived a Cramér-Lundberg approximation for the case where the counting

process N is a standard Poisson process. A somewhat more detailed study of
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the same model can be found in Dufresne and Gerber [DG91]. Later, Furrer

and Schmidli [FS94] determined Lundberg inequalities for the case where the

counting process N is either a renewal process or a Cox process with a so-called

independent jump intensity. Using their method it unfortunately could not be

proved that they determined the best possible exponential upper bounds for the

ruin probabilities. However, Schmidli [Schm95] made up for this and also stated

a Cramér-Lundberg approximation for the renewal case. Furthermore, he con-

sidered the Markov-modulated Poisson model perturbed by diffusion as defined

above.

In order to adapt the results in Schmidli [Schm95] to our model the matrix

H(r) ∈ Rd×d given by

H(r) := Q+ diag
(
λihi(r) ; i ∈ E

)
−
(
cr +

a2

2b2

)
Id (2.29)

for r ≥ 0 is needed. In that what follows the spectral radius of the matrix eH(r)

is denoted by eθ(r). The next result is then due to Schmidli [Schm95].

Theorem 2.16. Let eθ(r) be the spectral radius of eH(r) as defined above. If

θ(r) = 0 for some r > 0 then the constant investment strategy K(r) defined by

K
(r)
t ≡ a

rb2
for t ≥ 0 yields

Ψ(u,K(r)) ≤ C e−ru

with C <∞ for all u ≥ 0.

Proof:

Firstly, let us examine the Markov-modulated Poisson model with investment

when using the constant investment strategy K(r). Since we only consider strictly
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positive solutions r of the equation θ(r) = 0 the investment strategy K(r) is well

defined and

Yt(u,K
(r)) = u+ (c+

a2

rb2
)t−

Nt∑
k=1

Uk +
a

rb
Wt .

Comparing this with (2.28) we see that the Markov-modulated Poisson model un-

der the constant investment strategy K(r) coincides with the Markov-modulated

Poisson model perturbed by diffusion where the premium rate is given by

c̃ := c+ a2

rb2
and the diffusion volatility by η̃ := a

rb
.

Let Ψ(η)(u) denote the ruin probability of the Markov-modulated Poisson model

perturbed by diffusion whose wealth process is defined by (2.28), i.e.

Ψ(η)(u) := P
(

inf
t≥0

Y
(η)
t (u) < 0

)
.

According to Theorem 4 in Schmidli [Schm95] it then follows that

Ψ(η)(u) ≤ C e−ru

with C <∞ for all u ≥ 0 if the equation θ̃(r) = 0 is fulfilled for some r > 0. At

this, eθ̃(r) is defined as the spectral radius of the matrix eL(r) where

L(r) := Q+ diag
(
λihi(r) ; i ∈ E

)
+

(
η2r2

2
− cr

)
Id , r ≥ 0 . (2.30)

Now, suppose that θ(r) = 0 for some r > 0. It thus suffices to show that

L(r) = H(r) where the parameters c̃ and η̃ have to be plugged into the definition

of L(r) above. After all, we indeed get

L(r) = Q+ diag
(
λihi(r) ; i ∈ E

)
+

(
η̃2r2

2
− c̃r

)
Id

= Q+ diag
(
λihi(r) ; i ∈ E

)
+

((
a
rb

)2
r2

2
−
(
c+

a2

rb2

)
r

)
Id

= Q+ diag
(
λihi(r) ; i ∈ E

)
−
(
cr +

a2

2b2

)
Id = H(r)

2
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Using this result we thus have to prove that θ(R) = 0 in order to get the desired

upper bound for Ψ(u,K(R)). First of all, we need the following result about the

spectral radius of B(R).

Proposition 2.17. Suppose that R defined by (2.20) exists. Then,

spr
(
B(R)

)
= 1 .

Proof:

Using the same notation as in the previous chapter we recall from Proposition 2.15

that

B(r) =

(
qij (1− δij)

qi + rc+ a2

2b2
− λihi(r)

)
i,j∈E

for r < r̂∞ where δij denotes Kronecker’s symbol and that B(r) has at least

one infinite element for all r ≥ r̂∞. It obviously follows from this representation

of B(r) =
(
bij(r)

)
i,j∈E

that all the matrix elements bij(r) are continuous func-

tions in r ∈ (0, r̂∞). Since the spectral radius of a matrix is a continuous map-

ping with respect to the matrix elements also spr
(
B(r)

)
is a continuous function

in r ∈ (0, r̂∞).

It is furthermore shown in the proof of Proposition 2.15 that

φj(r) =


qj

qj+rc+ a2

2b2
−λjhj(r)

, r < r̂
(j)
∞

∞ , r ≥ r̂
(j)
∞

.

There consequently exists an environmental state m ∈ E, namely the one which

satisfies r̂∞ = r̂
(m)
∞ , such that φm(r) → ∞ as r → r̂∞. Recall from the proof

of Proposition 2.14 that φjj(r) ≥ αφm(r) for all r ≥ 0 where α is some strictly

positive constant. Hence, we get

φjj(r) →∞ as r → r̂∞
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for all j ∈ E. This implies that R ∈ (0, r̂∞). Together with the continuity of

spr
(
B(r)

)
on (0, r̂∞) it follows that spr

(
B(R)

)
equals 1.

2

Using the proposition above it can now be shown that we indeed have θ(R) = 0.

Proposition 2.18. Suppose that R defined by (2.20) exists and let eθ(r) be the

spectral radius of eH(r). Then,

θ(R) = 0 .

Proof:

The environmental Markov process J and therefore the transition probability

matrix P of its embedded Markov chain are assumed to be irreducible. Thus,

also the matrix B(R) is irreducible. We have already mentioned that the matrix

B(r) is moreover non-negative for all r ≥ 0. Applying the Perron-Frobenius-

Theorem we therefore know that spr
(
B(R)

)
itself is an eigenvalue of B(R) and

that the corresponding right eigenvector g can be chosen with strictly positive

elements which is denoted by g > 0.

Together with spr
(
B(R)

)
= 1 from Proposition 2.17 we thus get

B(R) g = g

⇔ diag
(
qi +Rc+

a2

2b2
− λihi(R) ; i ∈ E

)−1 (
Q+ diag

(
qi ; i ∈ E

))
g = g

⇔
(
Q+ diag

(
qi ; i ∈ E

))
g = diag

(
qi +Rc+

a2

2b2
− λihi(R) ; i ∈ E

)
g

⇔ Qg =
(
Rc+

a2

2b2

)
Id g − diag

(
λihi(R) ; i ∈ E

)
g

⇔ H(R) g = 0

for this vector g > 0, i.e. 0 is an eigenvalue of H(R) with right eigenvector g > 0.
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Note that we have

eH(R)v =
∞∑

k=0

H(R)k

k!
v =

∞∑
k=0

αk

k!
v = eαv (2.31)

for any eigenvalue α of H(R) with right eigenvector v. This means that α is an

eigenvalue of H(R) with right eigenvector v if and only if eα is an eigenvalue of

eH(R) with the same right eigenvector v. We have already shown that zero is an

eigenvalue of H(R) with right eigenvector g > 0. This consequently implies that

one is an eigenvalue of eH(R) with the same right eigenvector g > 0.

It is easy to see that the matrix H(r) has non-negative off-diagonal elements

which implies that eH(r) is a non-negative matrix for all r ≥ 0. Since the matrix

eH(r) is moreover irreducible for r ≥ 0 it follows that eθ(R) := spr
(
eH(R)

)
= 1 using

the Subinvariance Theorem which can for example be found in Seneta [Sen81],

page 23.

2

Remark 2.19. Let us fix some r ≥ 0 and recall that the matrix eH(r) is non-

negative and irreducible. It thus follows by the Perron-Frobenius-Theorem that

the spectral radius of eH(r) itself is a simple, real and strictly positive eigenvalue

of eH(r). Hence, we have spr
(
eH(r)

)
= eα for some α ∈ R.

At this, the last assertion is equivalent to the fact that α is the eigenvalue of H(r)

which has maximum real part. This can be seen as follows. Obviously, we obtain

from (2.31) above that α is an eigenvalue of the matrix H(r). It thus suffices to

show that α ≥ Re(α̃) where α̃ is an arbitrary eigenvalue of H(R). Here, Re(α̃)

denotes the real part of α̃. Again, we use the fact that α̃ is an eigenvalue of H(R)

if and only if eα̃ is an eigenvalue of eH(r). By the definition of the spectral radius

we thus have eα = spr
(
eH(r)

)
≥
∣∣eα̃
∣∣ = eRe(α̃) and hence α ≥ Re(α̃).

3
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Motivated through Remark 2.19 we try to find an alternative definition for R

which is defined by (2.20) in section 2.3. As mentioned in Schmidli [Schm95], the

function θ(r) is strictly convex in r. Note that this follows from a theorem in

Kingman [Kin61]. Furthermore, it is easy to see that the matrixH(0) = Q− a2

2b2
Id

has − a2

2b2
as an eigenvalue for which the right eigenvector can be chosen such that

each of its components is equal to one. Thus, e−
a2

2b2 is an eigenvalue of the matrix

eH(0) with exactly the same right eigenvector. Recalling that eH(0) is non-negative

and irreducible it hence follows from the Subinvariance Theorem which is for

example given in Seneta [Sen81] that the matrix eH(0) has spectral radius e−
a2

2b2 .

This in turn implies θ(0) = − a2

2b2
and consequently that the equation θ(r) = 0

has at most one strictly positive solution.

On the one hand Proposition 2.18 therefore yields that if R defined by (2.20)

exists it is the unique strictly positive solution of the equation θ(r) = 0. On the

other hand it is shown in the previous section that we cannot find an adjustment

coefficient for the Markov-modulated Poisson model under any investment strat-

egy K = k(J) if R does not exist. But recall that according to Theorem 2.16

there exists an adjustment coefficient for the Markov-modulated Poisson model

when using the investment strategy K(r) if r > 0 solves the equation θ(r) = 0. In

the case that θ(r) = 0 for some strictly positive r it hence follows that R exists

and consequently that r = R. We can therefore define R as the strictly positive

solution of the equation θ(r) = 0 and say that R does not exist if no such solution

can be found.

Using Remark 2.19 we can alternatively define R as the strictly positive solution

of the equation κ(r) = 0 where κ(r) is that eigenvalue of the matrix

H(r) := Q+ diag
(
λihi(r) ; i ∈ E

)
−
(
cr +

a2

2b2

)
Id (2.32)
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which has maximum real part and say that R does not exist if the equation

κ(r) = 0 has no strictly positive solution.

Combining these assertions with Theorem 2.16 we directly get the following final

result of this section.

Corollary 2.20. Let κ(r) be the eigenvalue of H(r) which has maximum real

part as defined above. If there exists a solution R > 0 of the equation θ(r) = 0

then the constant investment strategy K(R) defined by K(R)
t ≡ a

Rb2
for t ≥ 0 yields

Ψ(u,K(R)) ≤ C e−Ru

with C <∞ for all u ≥ 0.

A verification that R is indeed the optimal adjustment coefficient of the Markov-

modulated Poisson model with investment can be found in the following section.

At last note, it follows from Corollary 2.20 that ρ(K(R)) must be strictly positive

whenever R exists since otherwise Ψj(u,K
(R)) = 1 for all u ≥ 0 and every j ∈ E

according to Proposition 2.11.
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2.5 Optimality

Recall that R is originally defined by R = sup
{
r > 0 ;φjj(r) < 1 ∀j ∈ E

}
in

section 2.3. Under the assumption that R exists we have proved that

Ψ(u,K(R)) ≤ C e−Ru

with C < ∞ for all u ≥ 0 where the constant investment strategy K(R) is

defined by K(R)
t ≡ a

Rb2
for t ≥ 0. Let us now show that the investment strategy

K(R) is indeed optimal amongst all investment strategies K = k(J) in the sense

that we cannot find an investment strategy K = k(J), a constant Ĉ < ∞ and

some r > R such that

Ψ(u,K) ≤ Ĉ e−ru

for all u ≥ 0. Note that we can restrict ourselves to the case where R exists. If R

does not exist it particularly follows that R(K) does not exist for any K = k(J).

As shown at the end of section 2.2 this implies that we cannot find an adjust-

ment coefficient for the Markov-modulated Poisson model under any investment

strategy K = k(J) if R does not exist.

Theorem 2.21. Suppose that R defined by (2.18) exists and consider any fixed

investment strategy K = k(J). For this investment strategy K we further-

more assume that R(K) exists and that we can find a constant δ > 0 such that

φ
(K)
jj (R(K) + δ) <∞ for some j ∈ E. We then have

lim
u→∞

Ψj(u,K)

e−ru
= ∞

for all r > R(K) and thus in particular for all r > R.

Proof:

Consider any fixed environmental state j ∈ E such that φ(K)
jj (R(K) + δ) <∞ for
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some δ > 0 and suppose throughout this proof that J0 = j. Since φ(K)
jj is convex

and therefore continuous on the interior of its domain it follows that φ(K)
jj is finite

in the δ-neighborhood of R(K) with φ(K)
jj (R(K)) = 1.

As shown in section 2.2,
(
X

τ
(j)
n

(K)
)

n∈N is a random walk under the assumption

that J0 = j. Conditioned under J0 = j we define the ruin probability of the

shifted random walk
(
Y

τ
(j)
n

(u,K)
)

n∈N =
(
u+X

τ
(j)
n

(K)
)

n∈N by

Ψrw
j (u,K) := Pj

(
inf
n∈N

Y
τ
(j)
n

(u,K) < 0
)

for u ≥ 0. It is obvious that Ψrw
j (u,K) ≤ Ψj(u,K) for all u ≥ 0. Now, Proposi-

tion 2.8 yields

Ej

(
e−R(K)X

τ(j) (K)
)

= φ
(K)
jj (R(K)) = 1 .

Note that the distribution of Xτ (j)(K), i.e. the distribution of the generic random

variable for the steps, is clearly non-lattice. Since the existence of R(K) moreover

implies that ρ(K) > 0 it follows from Theorem 6.5.7 and the associated remark in

Rolski et al. [RSS+99] that

lim
u→∞

Ψrw
j (u,K)

e−R(K)u
= C̃

for some constant C̃ > 0. From Ψj(u,K) ≥ Ψrw
j (u,K) for all u ≥ 0 it thus

follows that

lim
u→∞

Ψj(u,K)

e−ru
≥ lim

u→∞

Ψrw
j (u,K)

e−R(K)u
e(r−R(K))u = ∞

for all r > R(K) and therefore in particular for all r > R since R ≥ R(K).

2

Hence, R is the optimal adjustment coefficient of the Markov-modulated Poisson

model with investment andK(R) is the corresponding optimal investment strategy

in the sense that it minimizes the ruin probability Ψ(u,K) amongst all investment

strategies K = k(J) if the initial reserve u ≥ 0 is sufficiently large.
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We carry on with an example for which the condition φ
(K)
jj (R(K) + δ) < ∞ is

fulfilled for some δ > 0, j ∈ E and for all investment strategies K = k(J).

Example 2.22. In this example let the Markov process J be periodic in the

sense that its intensity matrix is without loss of generality given by

Q :=



−q1 q1 0 0 0 · · · 0

0 −q2 q2 0 0 · · · 0

0 0 q−3 q3 0 · · · 0

... . . . . . . ...

0 · · · 0 0 −qd−2 qd−2 0

0 · · · 0 0 0 −qd−1 qd−1

qd 0 · · · 0 0 0 −qd


where q1, . . . , qd ∈ R+. Thus, if the Markov process jumps to state j ∈ E, it

stays there for a stochastic time σ(j) ∼ Exp(qj) and then jumps almost surely to

state k where k = 1 if j = d and k = j + 1 otherwise. In state k the Markov

process then stays the stochastic time σ(k) ∼ Exp(qk) and so on.

Let us now consider any arbitrary investment strategy K = k(J). It follows from

the choice of J that

φ
(K)
jj (r) = φ

(K)
j (r) · φ(K)

j+1(r) · . . . · φ
(K)
d (r) · φ(K)

1 (r) · . . . · φ(K)
j−1(r) (2.33)

for all r ≥ 0 and j ∈ E. Note that the function φ(K)
i is given by

φ
(K)
i (r) = E

(
e

[
λihi(r)+

1
2
r2b2k(i)2−r(c+ak(i))

]
σ(i)

)

=


qi

qi+r(c+ak(i))−λihi(r)− 1
2
r2b2k(i)2

, qi + r(c+ ak(i))− λihi(r)− 1
2
r2b2k(i)2 > 0

∞ , otherwise
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for r ≥ 0 and i ∈ E. It thus follows from our assumptions on the centered

moment generating function hi that φ(K)
i continuously converges to infinity for

every i ∈ E. Hence, (2.33) implies that the same is true for the function φ
(K)
jj

for j ∈ E. This in turn means that R(K) exists and that we can find a δ > 0

such that φ(K)
jj (R(K) + δ) is finite for all j ∈ E. In this setup it thus follows from

Theorem 2.21 that

lim
u→∞

Ψj(u,K)

e−ru
= ∞

for all r > R and every j ∈ E.

3

Now that we have verified R as the optimal adjustment coefficient of the Markov-

modulated Poisson model with investment let us suppose for the moment that R

exists. As mentioned in the introductory section of this chapter, the adjustment

coefficient of the Markov-modulated Poisson model without investment is given as

the strictly positive solution of the equation κ̃(r) = 0 where κ̃(r) is the eigenvalue

of the matrix

Q+ diag
(
λihi(r) ; i ∈ E

)
− crId , r ≥ 0 ,

which has maximum real part. Recall from the previous section that we have

a similar result for the optimal adjustment coefficient of the Markov-modulated

Poisson model with investment. The optimal adjustment coefficient R can be

defined as the strictly positive solution of the equation κ(r) = 0 where κ(r) is

the eigenvalue of the matrix

H(r) = Q+ diag
(
λihi(r) ; i ∈ E

)
−
(
cr +

a2

2b2

)
Id

which has maximum real part.
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It is obvious that these two matrices coincide if the drift parameter a of the Brow-

nian motion with drift Wa,b equals zero. In this case the optimal adjustment coef-

ficient of the Markov-modulated Poisson model with investment is therefore equal

to the adjustment coefficient of the Markov-modulated Poisson model without in-

vestment, i.e. R = R(0). But note that this is not surprising since the optimal

investment strategy K(R) defined by K(R)
t ≡ a

Rb2
for t ≥ 0 provides not to invest

into the portfolio if a = 0.
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2.6 A comparison with the compound Poisson

model

In the final section of this chapter we compare the adjustment coefficients of the

Markov-modulated Poisson model and its associated compound Poisson model

under the respective optimal investment strategy. Recall from the previous sec-

tions that the optimal adjustment coefficient of the Markov-modulated Poisson

model with investment is defined by

R = sup
{
r > 0 ;φjj(r) < 1 ∀j ∈ E

}
(2.34)

and that the corresponding optimal investment strategy is given by K(R).

As mentioned in the introductory chapter, it is intuitively clear that we can

associate a compound Poisson model to the Markov-modulated Poisson model

in a natural way by averaging over the environment, confer for example

Asmussen [Asm00], page 148. More precisely, we consider a compound Pois-

son model with investment where the intensity of the claim arrival process and

respectively the claim size distribution are defined by

λ∗ =
∑
i∈E

πiλi and B∗ =
∑
i∈E

πiλi

λ∗
Bi .

We refer to this model as the associated compound Poisson model. Note, that

its claims have exponential moments since

h∗(r) :=

∫ ∞

0

erx dB∗(x)− 1 =

(∑
i∈E

πiλi

λ∗

∫ ∞

0

erx dBi(x)

)
− 1

=

(∑
i∈E

πiλi

λ∗

(
hi(r) + 1

))
− 1 =

(∑
i∈E

πiλi

λ∗
hi(r)

)
+

(∑
i∈E

πiλi

λ∗

)
− 1

=
∑
i∈E

πiλi

λ∗
hi(r) . (2.35)
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Recall from Proposition 2.10 that the safety loading of the Markov-modulated

Poisson model without investment is given by ρ(0) = c −
∑

i∈E πiλiµBi
. Since

µB∗ =
∑

i∈E
πiλi

λ∗
µBi

it is thus obvious that the safety loadings of the Markov-

modulated Poisson model without investment and its associated compound Pois-

son model without investment coincide.

As mentioned in the first section of this chapter, it can be found in Gaier, Grandits

and Schachermayer [GGS03] that the optimal adjustment coefficient R∗ of this

associated compound Poisson model with investment is defined as the strictly

positive solution of the equation

λ∗h∗(r) = rc+
a2

2b2
(2.36)

and that the corresponding optimal investment strategy is given by K(R∗).

Without investment it is known that the adjustment coefficient of the Markov-

modulated Poisson model does not exceed the adjustment coefficient of its asso-

ciated compound Poisson model, confer Remark 2.24. Under optimal investment

we get exactly the same result.

Theorem 2.23.

(i) Let R be defined by (2.34) and let R∗ be the strictly positive solution of

equation (2.36), i.e. R and R∗ are the adjustment coefficients of the Markov-

modulated Poisson model and respectively its associated compound Poisson

model under optimal investment. Then,

R ≤ R∗ .
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(ii) Let the investment strategy K(r) be defined by K
(r)
t ≡ a

rb2
for all t ≥ 0

and r > 0, i.e. the optimal investment strategies for the Markov-modulated

Poisson model and its associated compound Poisson model with investment

are given by K(R) and K(R∗), respectively. For t ≥ 0 we then have∣∣∣K(R)
t

∣∣∣ ≥ ∣∣∣K(R∗)
t

∣∣∣ .
Proof:

(i) Consider any fixed r > R∗ and recall that Ej

(
ξi(τ

(j))
)

= πiEj(τ
(j)) for all

i ∈ E as for example given in Asmussen [Asm03], page 51. Using Jensen’s

inequality we thus get

φjj(r) = Ej

(
exp

(∑
i∈E

λihi(r)ξi(τ
(j))−

(
rc+

a2

2b2

)
τ (j)

))

≥ exp

(
Ej

(∑
i∈E

λihi(r)ξi(τ
(j))−

(
rc+

a2

2b2

)
τ (j)

))

≥ exp

((∑
i∈E

πiλihi(r)−
(
rc+

a2

2b2

))
Ej

(
τ (j)
))

.

Now, we have λ∗ h∗(r) =
∑

i∈E πiλihi(r) as shown around (2.35). Since R∗

solves equation (2.36) it consequently follows for r > R∗ that

∑
i∈E

πiλihi(r)−
(
rc+

a2

2b2

)
= λ∗ h∗(r)−

(
rc+

a2

2b2

)
≥ 0 .

This implies

φjj(r) ≥ exp

((∑
i∈E

πiλihi(r)−
(
rc+

a2

2b2

))
Ej

(
τ (j)
))

≥ 1

for r > R∗ and consequently R ≤ R∗ according to definition (2.34). Note

that the last inequality also implies that the existence of R∗ is a necessary

condition for R to exist.



Chapter 2. The Markov-modulated Poisson model 69

(ii) Noting that the investment strategy K(r) is defined by K(r)
t ≡ a

rb2
for t ≥ 0

it is obvious that part (ii) directly follows from part (i).

2

Remark 2.24. In the special case where the drift parameter a of the Brownian

motion with drift Wa,b is equal to zero the investment strategy K(r) provides

not to invest into the portfolio for all r > 0. In this case Theorem 2.23 thus

coincides with Theorem 3 in Asmussen and O’Cinneide [AO02] where it is shown

that the adjustment coefficient of the Markov-modulated Poisson model without

investment does not exceed the adjustment coefficient of its associated compound

Poisson model without investment.

3

Using the optimal investment strategy in the respective model we therefore get

a smaller adjustment coefficient in the Markov-modulated Poisson model than

in its associated compound Poisson model. Moreover, in the Markov-modulated

Poisson model the optimal investment strategy provides to invest a larger amount

of money into the portfolio than in its associated compound Poisson model if the

drift parameter a of the Brownian motion with drift Wa,b is positive. If the

drift parameter is negative we have to obtain a larger amount of money in the

Markov-modulated Poisson model than in its associated compound Poisson model

by selling the portfolio short. In both models we do not invest into the portfolio

if the drift parameter equals zero.

Finally note that under some additional assumptions a pointwise comparison of

the ruin probabilities of the Markov-modulated Poisson model and its associated

compound Poison model under the same constant investment strategy can be

found in the following chapter.



Chapter 3

Diffusion approximation

In this chapter we consider the same Markov-modulated Poisson model with

investment as before. However, this time the model is approximated by a certain

Markov-modulated Poisson model without investment. We then try to deduce

assertions for the Markov-modulated Poisson model with investment from well

known results for the Markov-modulated Poisson model without investment.

After stating what is meant by the convergence of stochastic processes we initially

introduce the basic ideas in order to approximate a diffusion process. Then,

a Markov-modulated Poisson model without investment is determined which

approximates the original Markov-modulated Poisson model with investment.

We further show that the ruin probability as well as the adjustment coefficient

of the approximating model converge to the ruin probability and respectively the

adjustment coefficient of the model of interest. Finally, the ruin probabilities

of the Markov-modulated Poisson model and its associated compound Poisson

model under the same constant investment strategy are compared under some

additional assumptions.

70
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3.1 An approximation for the Markov-modulated

Poisson model with investment

As in the previous chapter we consider the Markov-modulated Poisson model

with investment. Using the same notation as before, the wealth process for any

investment strategy K = k(J) is given by

Yt(u,K) = Rt(u) + a

∫ t

0

Ks ds+ b

∫ t

0

Ks dWs

= u+ ct−
Nt∑

k=1

Uk + a
∑
i∈E

k(i) ξi(t) + b
∑
i∈E

k(i)W
(i)
ξi(t)

= u+ ct−
∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k + a

∑
i∈E

k(i) ξi(t) + b
∑
i∈E

k(i)W
(i)
ξi(t)

, t ≥ 0 .

Recall that the standard Brownian motions W (1), . . . ,W (d) are assumed to be

independent.

In chapter 2 we directly determine the adjustment coefficient of the Markov-

modulated Poisson model with respect to any fixed investment strategy

K = k(J). An alternative way is to approximate the diffusion part of the wealth

process Y (u,K). It is well known that a diffusion arises as the limit of prop-

erly scaled classical risk processes where the claims are very small and frequent.

We thus might be able to deduce assertions for the Markov-modulated Poisson

model with investment from well known results for the Markov-modulated Pois-

son model without investment. This fact was for example also exploited in Sarkar

and Sen [SaSe05] for the classical Poisson model without Markov-modulation.

First of all, we certainly have to define what is meant by the convergence of

stochastic processes. In this work the convergence of stochastic processes is de-

fined as the weak convergence of their distributions with respect to the commonly
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used Skorohod topology. We only give a short sketch of the definition which can

for example be found in the books by Billingsley [Bil99] and Whitt [Whi02],

respectively.

For any subinterval I of the real line let D(I,Rk) be the space of all cadlag

functions x : I → Rk. We initially consider the space DT := D
(
[0, T ],R

)
where

T > 0. In order to define a metric on DT let ΥT be the set of all strictly

increasing functions υ mapping the domain [0, T ] onto itself such that υ as well

as its inverse υ−1 are continuous. Furthermore, let id be the identity mapping

on [0, T ], i.e. id(t) = t for all t ∈ [0, T ]. We now endow the space DT with the

commonly used J1 topology, the so-called Skorohod topology. Then, the standard

J1 metric on DT is defined by

dJ1(x1, x2) := inf
υ∈ΥT

{
max

{
‖x1 ◦ υ − x2‖, ‖υ − id‖

}}
for x1, x2 ∈ DT (3.1)

where the uniform metric ‖ · ‖ on DT is given by

‖x‖ := sup
0≤t≤T

{
|x(t)|

}
for x ∈ DT . (3.2)

By using the standard J1 metric dJ1 instead of the uniform metric ‖ · ‖ functions

are close in the metric space (DT , dJ1) if they are uniformly close over [0, T ] after

allowing small perturbations of time. Examples of functions which converge in

(DT , dJ1) but not in (DT , ‖ · ‖) can for example be found in the books mentioned

above.

But note that the wealth process Y (u,K) has infinite time horizon. Furthermore,

we have to deal with the convergence of multidimensional stochastic processes in

this chapter. Hence, the space DT has to be modified in the following two ways.

Firstly, let us extend the range of the functions from R to Rk with k ∈ N. The

standard J1 metric defined in (3.1) extends directly to Dk
T := D

(
[0, T ],Rk

)
when
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the norm | · | on R in (3.2) is replaced by a corresponding norm on Rk as for

example the maximum norm. Using the maximum norm on Rk we obtain the

so-called standard J1 metric on Dk
T .

For a fixed k ∈ N let us secondly extend the domain of the functions and consider

the space Dk := D
(
[0,∞),Rk

)
of all cadlag functions x : [0,∞) → Rk. It is now

natural to define the convergence of a sequence
(
xn

)
n∈N in Dk in terms of the

associated convergence of the restrictions of xn to the subintervals [0, T ] in the

space Dk
T for all T > 0. However, as described in Whitt [Whi02] this causes

problems if the right endpoint T is a discontinuity point of the prospective limit

function x. In the space Dk a sequence
(
xn

)
n∈N is thus said to converge to x

as n → ∞ if the restrictions of xn to [0, T ] converge to the restriction of x to

[0, T ] in Dk
T for all continuity points T > 0 of x. In order to ease notation we

put D := D1.

Let now C(Dk) be the space of all functions f : Dk → R which are bounded

and continuous with respect to the standard J1 metric on Dk. A sequence of

k-dimensional stochastic processes
(
X(n)

)
n∈N with X(n) :=

{
X

(n)
t , t ≥ 0

}
is then

said to converge to a k-dimensional stochastic process X :=
{
Xt, t ≥ 0

}
which is

denoted by X(n) ⇒ X if

lim
n→∞

E
(
f
(
X(n)

))
= E

(
f
(
X
))

for all f ∈ C(Dk) .

The idea for the diffusion approximation considered in this chapter is based on

the following result in Grandell [Grl77] which can also be found in the appendix

of Grandell [Grl91]. Let Ñ be a standard Poisson process with intensity α and

(Ũk)k∈N be a sequence of independent and identically distributed random variables
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with expectation µ̃ and variance σ̃2. It then follows that{∑Ñnt

k=1 Ũk − nαµ̃t√
n

, t ≥ 0
}
⇒
{√

α(σ̃2 + µ̃2)Wt , t ≥ 0
}

(3.3)

as n→∞ where W is a standard Brownian motion.

Let us now fix any investment strategy K = k(J) and n ∈ N. In that what fol-

lows we consider independent standard Poisson processes Ñ (1,n), . . . , Ñ (d,n) which

are also independent of the risk reserve process R(u) as well as the environ-

mental Markov process J . Each of these processes have intensity nb2. Further,

let (Ũ
(1)
k )k∈N, . . . , (Ũ

(d)
k )k∈N be independent sequences of strictly positive random

variables which are also independent of the processes Ñ (1,n), . . . , Ñ (d,n), R(u)

and J . For each i ∈ E it is moreover assumed that the random variables

(Ũ
(i)
k )k∈N are independent and identically distributed with expectation µ̃ and sec-

ond moment k(i)2. We denote the corresponding distribution by B̃i. The process

Y (n)(u,K) is then defined by

Y
(n)
t (u,K) = Rt(u) + a

∑
i∈E

k(i) ξi(t) +
√
n b2µ̃ t−

∑
i∈E

Ñ
(i,n)
ξi(t)∑

k=1

Ũ
(i)
k√
n
, t ≥ 0 . (3.4)

It turns out that we can use the processes Y (n)(u,K), n ∈ N, in order to approx-

imate the wealth process Y (u,K) as the following result shows.

Proposition 3.1. Let the process Y (n)(u,K) for n ∈ N be defined by (3.4). For

any investment strategy K = k(J) and any initial reserve u ≥ 0 we then have

Y (n)(u,K) ⇒ Y (u,K) as n→∞ .

Proof:

Let us consider the independent standard Brownian motions W (1), . . . ,W (d)
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and initially fix some i ∈ E. As already mentioned in (3.3) it follows from

Grandell [Grl77] that

{∑Ñ
(i,n)
t

k=1 Ũ
(i)
k − nb2µ̃t√
n

, t ≥ 0
}
⇒
{
b k(i)W

(i)
t , t ≥ 0

}
as n→∞ .

Next, we want to prove that this already implies

({ Ñ
(i,n)
t∑

k=1

Ũ
(i)
k√
n
−
√
n b2µ̃t , t ≥ 0

}
, i ∈ E

)
⇒
({

b k(i)W
(i)
t , t ≥ 0

}
, i ∈ E

)
(3.5)

as n → ∞. The proof is similar to the proof of the multidimensional

Donsker FCLT as for example given in Whitt [Whi02]. However, we have to

be more careful here since the sums contain a random number of terms. The

convergence of the one-dimensional marginal processes is mentioned above. By

Corollary 11.6.2 in Whitt [Whi02], a corollary of Prohorov’s Theorem, it thus

follows that these marginal processes are tight. This in turn implies the tightness

of the d-dimensional process({∑Ñ
(i,n)
t

k=1 Ũ
(i)
k − nb2µ̃t√
n

, t ≥ 0
}
, i ∈ E

)
,

confer Theorem 11.6.7 in Whitt [Whi02].

For α1, . . . , αd ∈ R it moreover follows by general marked point process theory

that {∑
i∈E

αi

( Ñ
(i,n)
t∑

k=1

Ũ
(i)
k√
n
−
√
nb2µ̃t

)
, t ≥ 0

}

=

{
1√
n

(∑
i∈E

Ñ
(i,n)
t∑

k=1

αi Ũ
(i)
k − nb2µ̃

(∑
i∈E

αi

)
t
)
, t ≥ 0

}

D
=

{
1√
n

( Ñ
(0,n)
t∑
k=1

Ũ
(0)
k − nb2d

µ̃

d

(∑
i∈E

αi

)
t
)
, t ≥ 0

}



Chapter 3. Diffusion approximation 76

where Ñ (0,n) is a standard Poisson process with intensity nb2d and where the ran-

dom variables (Ũ
(0)
k )k∈N are independent and identically distributed with distribu-

tion
∑

i∈E
1
d
B̃i(

x
αi

). This means that Ũ (0)
1 has expectation µ̃

d

∑
i∈E αi and second

moment 1
d

∑
i∈E α

2
i k(i)

2. Using the convergence result (3.3) in Grandell [Grl77]

again it therefore follows that{
1√
n

( Ñ
(0,n)
t∑
k=1

Ũ
(0)
k −nb2d µ̃

d

(∑
i∈E

αi

)
t
)
, t ≥ 0

}
⇒
{
b
(∑

i∈E

α2
i k(i)

2
) 1

2
W

(0)
t , t ≥ 0

}
where W (0) is some standard Brownian motion. Finally, since the standard Brow-

nian motions W (1), . . . ,W (d) are assumed to be independent we have{
b
(∑

i∈E

α2
i k(i)

2
) 1

2
W

(0)
t , t ≥ 0

}
D
=

{
b
∑
i∈E

αi k(i)W
(i)
t , t ≥ 0

}
and consequently obtain{∑

i∈E

αi

( Ñ
(i,n)
t∑

k=1

Ũ
(i)
k√
n
−
√
nb2µ̃t

)
, t ≥ 0

}
⇒
{∑

i∈E

αi b k(i)W
(i)
t , t ≥ 0

}
as n → ∞. Applying the Cramér-Wold device which is given as Theorem 4.3.3

in Whitt [Whi02] we thus obtain the convergence of all finite dimensional distri-

butions of the process of interest. This together with the tightness finally yields

the convergence in (3.5) according to Corollary 11.6.2 in Whitt [Whi02].

Recalling that W (i) D
= −W (i) and applying the time transformation t 7→ ξi(t) we

consequently obtain({ Ñ
(i,n)
ξi(t)∑

k=1

( Ũ (i)
k√
n
−
√
n b2µ̃ ξi(t)

)
, t ≥ 0

}
, i ∈ E

)
⇒
({

− b k(i)W
(i)
ξi(t)

, t ≥ 0
}
, i ∈ E

)
as n→∞ .

Note that addition on D × . . . ×D is measurable and continuous at limits with

respect to the standard J1 metric if the limiting functions have no common dis-

continuity points, confer Whitt [Whi02]. In our case, it thus follows from the
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Continuous Mapping Theorem which is for example given as Theorem 3.4.3 in

Whitt [Whi02] that as n→∞ we have

Y (n)(u,K) =
{
Rt(u) + a

∑
i∈E

k(i) ξi(t) +
√
n b2µ̃ t−

∑
i∈E

Ñ
(i,n)
ξi(t)∑

k=1

Ũ
(i)
k√
n
, t ≥ 0

}
⇒
{
Rt(u) + a

∑
i∈E

k(i) ξi(t) + b
∑
i∈E

k(i)W
(i)
ξi(t)

, t ≥ 0
}

= Y (u,K) .

2

Proposition 3.1 thus gives us an approximation for the wealth process Y (u,K).

But we are certainly still interested in the ruin probability Ψ(u,K). Recall from

Proposition 2.11 that Ψ(u,K) = 1 if the safety loading

ρ(K) = c+ a
∑
i∈E

πik(i)−
∑
i∈E

πiλiµBi

is not strictly positive. We can consequently restrict ourselves to the case

where ρ(K) > 0.

Unfortunately, the mapping which takes the infimum of a function x ∈ D over

an infinite domain is not continuous at limits with respect to the standard

J1 metric. Thus, in order to show that Y (n)(u,K) ⇒ Y (u,K) implies

inf
t≥0

Y
(n)
t (u,K) ⇒ inf

t≥0
Yt(u,K)

as n→∞ we cannot directly use the Continuous Mapping Theorem which is for

example Theorem 3.4.3 in Whitt [Whi02]. Nevertheless, we can use

Ψ(n)(u,K) := P
(

inf
t≥0

Y
(n)
t (u,K) < 0

)
(3.6)

with n→∞ in order to approximate the ruin probability Ψ(u,K) as the following

result shows.
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Theorem 3.2. Consider any investment strategy K = k(J) and suppose that

ρ(K) > 0. Further, let the ruin probability Ψ(n)(u,K) for n ∈ N be defined

by (3.6). We then have

(i) sup
t≥0

−Y (n)
t (0, K) ⇒ sup

t≥0
−Yt(0, K) as n→∞ ,

(ii) Ψ(n)(u,K) −→ Ψ(u,K) as n→∞ for all u ≥ 0 .

Proof:

(i) Firstly, note that we have

−Y (n)(0, K) ⇒ −Y (0, K)

as n→∞ using Proposition 3.1. According to Theorem 6 and respectively

Theorem 8 in Grandell [Grl77] this yields

sup
t≥0

−Y (n)
t (0, K) ⇒ sup

t≥0
−Yt(0, K)

as n→∞ if we can prove that

lim
m→∞

lim sup
n→∞

P
(

sup
t≥m

−Y (n)
t (0, K) > 0

)
= 0 . (3.7)

It thus remains to show that condition (3.7) is fulfilled. From the Ergodic

Theorem as for example given in Brémaud [Bré99] we know that

lim
t→∞

1

t
ξi(t) = lim

t→∞

1

t

∫ t

0

δ{i}(Js) ds
a.s.
= πi

and consequently

lim
t→∞

1

t

(
ct+ a

∑
i∈E

k(i) ξi(t)−
∑
i∈E

λiµBi
ξi(t)

)
a.s.
= ρ(K) .
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In particular, we obtain

lim inf
t→∞

c+ a
∑
i∈E

k(i)
ξi(t)

t
−
∑
i∈E

λiµBi

ξi(t)

t

= lim
m→∞

inf
t≥m

c+ a
∑
i∈E

k(i)
ξi(t)

t
−
∑
i∈E

λiµBi

ξi(t)

t
a.s.
= ρ(K) .

Since almost sure convergence implies convergence in probability this yields

lim
m→∞

P
(
ct+ a

∑
i∈E

k(i) ξi(t)−
∑
i∈E

λi µBi
ξi(t) ≥

ρ(K)

2
t ∀t ≥ m

)
= lim

m→∞
P
(

inf
t≥m

c+ a
∑
i∈E

k(i)
ξi(t)

t
−
∑
i∈E

λiµBi

ξi(t)

t
≥ ρ(K)

2

)
≥ lim

m→∞
P
(∣∣∣ inf

t≥m
c+ a

∑
i∈E

k(i)
ξi(t)

t
−
∑
i∈E

λiµBi

ξi(t)

t
− ρ(K)

∣∣∣ ≤ ρ(K)

2

)
= 1 .

Now, let us define the process M (n)(K) by

M
(n)
t (K) :=

∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k −

∑
i∈E

λi µBi
ξi(t) +

∑
i∈E

Ñ
(i,n)
ξi(t)∑

k=1

Ũ
(i)
k√
n
−
√
n b2µ̃ t .

Putting

Am :=
{
ct+ a

∑
i∈E

k(i) ξi(t)−
∑
i∈E

λi µBi
ξi(t) ≥

ρ(K)

2
t ∀t ≥ m

}
we have

P
(

sup
t≥m

−Y (n)
t (0, K) > 0

)
= P

(
sup
t≥m

M
(n)
t (K)−

(
ct+ a

∑
i∈E

k(i) ξi(t)−
∑
i∈E

λi µBi
ξi(t)

)
> 0
)

= P
({

sup
t≥m

M
(n)
t (K)−

(
ct+ a

∑
i∈E

k(i) ξi(t)−
∑
i∈E

λi µBi
ξi(t)

)
> 0
}
∩ Am

)
+ P

({
sup
t≥m

M
(n)
t (K)−

(
ct+ a

∑
i∈E

k(i) ξi(t)−
∑
i∈E

λi µBi
ξi(t)

)
> 0
}
∩ Ac

m

)
≤ P

({
sup
t≥m

M
(n)
t (K)− ρ(K)

2
t > 0

}
∩ Am

)
+ 1− P

(
Am

)
= E

(
I(Am) PFJ

∞

(
sup
t≥m

M
(n)
t (K)− ρ(K)

2
t > 0

))
+ 1− P

(
Am

)
.
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As done in Grandell [Grl78] we intend to bound this probability

using the Hájek-Rényi inequality in the version as given in Theorem 2 of

Frank [Fra66]. For any h ∈ (0, 1) we obtain

PFJ
∞

(
sup

j≥bm
h
c+1

M
(n)
jh (K)− ρ(K)

2
jh > 0

)
= PFJ

∞

(
sup

j≥bm
h
c+1

M
(n)
jh (K)

ρ(K)

2
jh

> 1
)

≤ PFJ
∞

(
sup

j≥bm
h
c+1

∣∣∣∣∣M
(n)
jh (K)

ρ(K)

2
jh

∣∣∣∣∣ > 1
)

Next, let us check if the conditions for the Hájek-Rényi inequality are

fulfilled. Firstly, we note that the sequence
(
∆M

(n)
j (K)

)
j∈N defined by

∆M
(n)
j (K) := M

(n)
jh (K)−M

(n)
(j−1)h(K) satisfies

EFJ
∞

[
∆M

(n)
j (K)

∣∣∣∆M (n)
j−1(K), . . . ,∆M

(n)
1 (K)

]
= EFJ

∞

(
∆M

(n)
j (K)

)
= 0

for every j ∈ N. Secondly, we have

EFJ
∞

((
∆M

(n)
j (K)

)2)
= EFJ

∞

((∑
i∈E

N
(i)
ξi(jh)∑

k=N
(i)
ξi((j−1)h)

+1

U
(i)
k −

∑
i∈E

λi µBi

(
ξi(jh)− ξi((j − 1)h)

))2
)

+ EFJ
∞

((∑
i∈E

Ñ
(i,n)
ξi(jh)∑

k=Ñ
(i,n)
ξi((j−1)h)

+1

Ũ
(i)
k√
n
−
√
n b2µ̃ h

)2
)

for every j ∈ N where the first part of this sum is equal to

VarF
J
∞
(∑

i∈E

N
(i)
ξi(jh)∑

k=N
(i)
ξi((j−1)h)

+1

U
(i)
k −

∑
i∈E

λi µBi

(
ξi(jh)− ξi((j − 1)h)

))

=
∑
i∈E

VarF
J
∞
( N

(i)
ξi(jh)∑

k=N
(i)
ξi((j−1)h)

+1

U
(i)
k

)

=
∑
i∈E

(
EFJ

∞

(
N

(i)
ξi(jh)−ξi((j−1)h)

)
VarF

J
∞
(
U

(i)
1

)
+ VarF

J
∞
(
N

(i)
ξi(jh)−ξi((j−1)h)

)(
EFJ

∞
(
U

(i)
1

))2
)
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=
∑
i∈E

λi

(
ξi(jh)− ξi((j − 1)h)

)(
Var
(
U

(i)
1

)
+
(
E
(
U

(i)
1

))2
)

≤ h max
i∈E

λi E
((
U

(i)
1

)2)
.

Analogously, we can show that the second part is less or equal than

hnb2 max
i∈E

E
(( Ũ (i)

1√
n

)2)
= h b2 max

i∈E
k(i)2 .

Hence,

EFJ
∞

((
∆M

(n)
j (K)

)2) ≤ h
(

max
i∈E

λi E
((
U

(i)
1

)2)
+ b2 max

i∈E
k(i)2

)
︸ ︷︷ ︸

=:C

.

Applying the Hájek-Rényi inequality we consequently obtain

PFJ
∞

(
sup

j≥bm
h
c+1

∣∣∣∣∣M
(n)
jh (K)

ρ(K)

2
jh

∣∣∣∣∣ > 1
)

≤ 1(
bm

h
ch ρ(K)

2

)2 bm
h
c∑

j=1

C h+
∞∑

j=bm
h
c+1

1(
j h ρ(K)

2

)2 C h
=

4C

ρ(K)2

(
1

bm
h
ch

+
1

h

∞∑
j=bm

h
c+1

1

j2

)
≤ 4C

ρ(K)2

(
1

bm
h
ch

+
1

h

∫ ∞

bm
h
c

1

x2
dx

)

=
4C

ρ(K)2

2

bm
h
ch

≤ 8C

(m− 1)ρ(K)2
.

Since this bound is independent of h ∈ (0, 1) and n ∈ N it follows that

PFJ
∞

(
sup

t≥m+1
M

(n)
t (K)− ρ(K)

2
t > 0

)
≤ 8C

(m− 1)ρ(K)2
.

Plugging all things together we thus have

lim
m→∞

lim sup
n→∞

P
(

sup
t≥m

−Y (n)
t (0, K) > 0

)
≤ lim

m→∞
lim sup

n→∞
E
(
I(Am) PFJ

∞

(
sup
t≥m

M
(n)
t (K)− ρ(K)

2
t > 0

))
+ 1− P

(
Am

)
≤ lim

m→∞
lim sup

n→∞

8C

(m− 2)ρ(K)2
E
(
I(Am)

)
+ 1− P (Am) = 0 .

Therefore, condition (3.7) is fulfilled and the assertion follows.
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(ii) Noting that

Ψ(u,K) = P
(

inf
t≥0

Yt(u,K) < 0
)

= P
(

sup
t≥0

−Yt(0, K) > u
)
.

and

Ψ(n)(u,K) = P
(

inf
t≥0

Y
(n)
t (u,K) < 0

)
= P

(
sup
t≥0

−Y (n)
t (0, K) > u

)
for n ∈ N it is obvious that part (ii) directly follows from part (i).

2

Finally note that the approximating wealth process Y (n)(u,K) can be regarded

as a risk reserve process from the Markov-modulated Poisson model without

investment. Recall that for any t ≥ 0 we have

Y
(n)
t (u,K) = Rt(u) + a

∑
i∈E

k(i) ξi(t) +
√
n b2µ̃ t−

∑
i∈E

Ñ
(i,n)
ξi(t)∑

k=1

Ũ
(i)
k√
n

= u+ ct+ a
∑
i∈E

k(i) ξi(t) +
√
n b2µ̃ t−

∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k +

Ñ
(i,n)
ξi(t)∑

k=1

Ũ
(i)
k√
n

 .

Let us now consider independent standard Poisson processes N̂ (1,n), . . . , N̂ (d,n)

which are also independent of the environmental Markov process J . For i ∈ E

the process N̂ (i,n) have intensity λi +nb
2. Further, let

(
Û

(1,n)
k

)
k∈N, . . . ,

(
Û

(d,n)
k

)
k∈N

be independent sequences of random variables which are also independent of the

processes N̂ (1,n), . . . , N̂ (d,n) and J . For each i ∈ E the random variables (Û
(i)
k )k∈N

are assumed to be independent and identically distributed with distribution

B̂
(n)
i (x) :=

λi

λi + nb2
Bi(x) +

nb2

λi + nb2
B̃i(

√
nx) .

It then follows by general marked point process theory that

Y
(n)
t (u,K)

D
= u+

∑
i∈E

(
c+ a k(i) +

√
n b2µ̃

)
ξi(t)−

∑
i∈E

N̂
(i,n)
ξi(t)∑

k=1

Û
(i,n)
k , t ≥ 0 .
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Thus, Y (n)(u,K) can be regarded as a risk reserve process from the Markov-

modulated Poisson model without investment. However, note that the premium

rate of the resulting model obviously depends on the environmental Markov

process J . Therefore, we have to apply the time transformation

T (t) :=

∫ t

0

c

c+ a k(Js) +
√
n b2 µ̃

ds

in order to obtain a model with constant premium rate c but where all other

parameters are also changed accordingly, confer section 2.1.
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3.2 Two applications

3.2.1 Approximating the adjustment coefficient

We can use the diffusion approximation obtained in the previous section in or-

der to approximate the adjustment coefficient of the Markov-modulated Poisson

model with respect to some fixed investment strategy. Recall from chapter 2 that

the adjustment coefficient R(K) with respect to any fixed investment strategy

K = k(J) is given by

R(K) = sup
{
r > 0 ;φ

(K)
jj (r) < 1 ∀j ∈ E

}
where

φ
(K)
jj (r) = Ej

(
exp

(∑
i∈E

[
λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)]
ξi(τ

(j))

))
.

As mentioned at the end of the previous section we can regard Y (n)(u,K) as

the risk reserve process from a certain Markov-modulated Poisson model without

investment. Applying an appropriate time transformation the adjustment coeffi-

cient of our approximating Markov-modulated Poisson model without investment

is therefore given by R̂(K,n) := sup
{
r > 0 ; φ̂

(K,n)
jj (r) < 1 ∀j ∈ E

}
where

φ̂
(K,n)
jj (r) := Ej

(
exp

(∑
i∈E

[(
λi + nb2

)
ĥ

(n)
i (r)− r

(
c+ ak(i) +

√
nb2µ̃

)]
ξi(τ

(j))

))
.

At this, ĥ
(n)
i denotes the centered moment generating function of the

distribution B̂(n)
i for i ∈ E. Thus,

ĥ
(n)
i (r) =

∫ ∞

0

erx dB̂
(n)
i (x)− 1

=
λi

λi + nb2

(∫ ∞

0

erx dBi(x)− 1

)
+

nb2

λi + nb2

(∫ ∞

0

e
r x√

n dB̃i(x)− 1

)
=

λi

λi + nb2
hi(r) +

nb2

λi + nb2

(
E
(
e

r
Ũ

(i)
1√
n
)
− 1
)
.



Chapter 3. Diffusion approximation 85

Using a Taylor series expansion we therefore obtain(
λi + nb2

)
ĥ

(n)
i (r)− r

(
c+ ak(i) +

√
nb2µ̃

)
= λihi(r) + nb2

(
E
(
e

r
Ũ

(i)
1√
n
)
− 1
)
− r
(
c+ ak(i) +

√
nb2µ̃

)
= λihi(r) + nb2

(
1 +

r µ̃√
n

+
r2 k(i)2

2n
+O

(
n−

3
2

)
− 1
)
− r
(
c+ ak(i) +

√
nb2µ̃

)
= λihi(r) +

r2b2k(i)2

2
− r
(
c+ ak(i)

)
+O

( 1√
n

)
, r ≥ 0 .

It consequently follows that φ̂
(K,n)
jj (r) −→ φ

(K)
jj (r) for all r ≥ 0 and hence

R̂(K,n) −→ R(K) as n → ∞. Instead of computing the adjustment coefficient

for the Markov-modulated Poisson model with investment as described in the

second chapter it is thus possible to approximate it by the obtained adjustment

coefficient for the Markov-modulated Poisson model without investment suffi-

ciently close to the limit.

3.2.2 Another comparison with the compound Poisson

model

We consider the Markov-modulated Poisson model with investment and its as-

sociated compound Poisson model with investment once again in this section.

Recall that the intensity of the claim arrival process and respectively the claim

size distribution of the associated compound Poisson model are given by

λ∗ =
∑
i∈E

πiλi and B∗ =
∑
i∈E

πiλi

λ∗
Bi .

It is shown in chapter 2 that a constant investment strategy is optimal in both

models in the sense that it maximizes the corresponding adjustment coefficient.
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Moreover, we have already shown that the optimal adjustment coefficient of the

Markov-modulated Poisson model with investment is smaller or equal to the

optimal adjustment coefficient of the associated compound Poisson model with

investment.

Let us now compare the Markov-modulated Poisson model and its associated

compound Poisson model when using the same constant investment strategy K̂ in

both models. We define K̂ by K̂t ≡ k̂ for t ≥ 0 where k̂ is any real constant. Recall

that the wealth process Y (u, K̂) from the Markov-modulated Poisson model is

then given by

Yt(u, K̂) := u+ (c+ a k̂) t−
∑
i∈E

N
(i)
ξi(t)∑

k=1

U
(i)
k + b k̂Wt , t ≥ 0 .

The wealth process Y ∗(u, K̂) from the associated compound Poisson model is

defined by

Y ∗
t (u, K̂) := u+ (c+ a k̂) t−

N∗
t∑

k=1

U∗
k + b k̂Wt , t ≥ 0 ,

where the random variables (U∗
k )k∈N are independent and identically distributed

with distribution B∗ and where the standard Poisson process N∗ has intensity λ∗.

We know from what is shown in the second chapter of this work that the Markov-

modulated Poisson model under investment strategy K̂ has the adjustment coef-

ficient R(K̂) := sup
{
r > 0 ;φ

(K̂)
jj (r) < 1 ∀j ∈ E

}
where

φ
(K̂)
jj (r) := Ej

(
exp

(∑
i∈E

λihi(r)ξi(τ
(j)) +

[r2b2k̂2

2
− r
(
c+ ak̂

)]
τ (j)

))
.

As given at the beginning of the second chapter, the adjustment coefficient R(K̂)∗

of the associated compound Poisson model under the same constant investment
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strategy K̂ is the strictly positive solution of the equation

λ∗h∗(r) +
r2b2k̂2

2
− r
(
c+ ak̂

)
=
∑
i∈E

πi λi hi(r) +
r2b2k̂2

2
− r
(
c+ ak̂

)
= 0 .

Analogously to the proof of Theorem 2.23 it thus follows that R(K̂) ≤ R(K̂)∗

provided that both adjustment coefficients exist.

In that what follows we directly compare the ruin probability

Ψ(u, K̂) = P
(
inft≥0 Yt(u, K̂) < 0

)
of the considered Markov-modulated Poisson

model and the ruin probability Ψ∗(u, K̂) = P
(
inft≥0 Y

∗
t (u, K̂) < 0

)
of the

associated compound Poisson model for any given u ≥ 0. However, in order

to apply a result in Asmussen at al [AFR+95] we have to make the following

additional assumptions.

Besides λ1 ≤ . . . ≤ λd which can without loss of generality be assumed we need

that B1≤st . . .≤stBd where ≤st denotes the usual univariate stochastic order as

for example defined in Müller and Stoyan [MS02], i.e. Bi≤stBj holds if

Bi(x) ≥ Bj(x) for all x ∈ R .

Further, the environmental Markov process J has to be monotone in the sense

that
d∑

k=l

qik ≤
d∑

k=l

qi+1,k

for all i = 1, . . . , d − 1 and l 6= i + 1 and its initial distribution has to be

its stationary distribution π. Considering any t ≥ 0 and i, j ∈ E with i < j

the monotonicity of the Markov process J implies that Jt given J0 = i is

smaller than Jt given J0 = j with respect to the usual univariate stochastic

order, i.e. Pi

(
Jt ∈ {1, . . . , k}

)
≥ Pj

(
Jt ∈ {1, . . . , k}

)
for all k ∈ E, confer
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Theorem 5.2.19 in Müller and Stoyan [MS02]. Note that the monotonicity condi-

tion is automatically fulfilled if the environmental Markov process only has two

states.

We then get the following result which compares the ruin probabilities of the

Markov-modulated Poisson model and its associated compound Poisson model

under the same constant investment strategy.

Theorem 3.3. Let the Markov-modulated Poisson model and its associated com-

pound Poisson model under the same constant investment strategy K̂ be given.

Further assume that

(i) λ1 ≤ . . . ≤ λd ;

(ii) B1≤st . . .≤stBd ;

(iii) J is monotone and has stationary initial distribution π .

Denoting the ruin probability of the Markov-modulated Poisson model by Ψ(u, K̂)

and the ruin probability of the associated compound Poisson model by Ψ∗(u, K̂)

it follows that

Ψ∗(u, K̂) ≤ Ψ(u, K̂) for all u ≥ 0 .

Proof:

Let us fix any u ≥ 0 and consider the investment strategy K̂ defined by K̂t ≡ k̂

for t ≥ 0. If k̂ = 0 we are in the case without investment and the assertion follows

directly from Theorem 1.1 in Asmussen et al [AFR+95]. Hence, let us suppose

that k̂ 6= 0.

It is shown at the end of section 3.1 that the ruin probability Ψ(u, K̂) of

the Markov-modulated Poisson model under the investment strategy K̂ can be
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approximated by the ruin probability of an adequate Markov-modulated Pois-

son model without investment. Before we define the wealth process of the latter

model let us initially consider its claim size distributions. Recall from section 3.1

that in the approximating model without investment a claim which occurs when

the environmental Markov process is in state i ∈ E has distribution

B̂
(n)
i (x) :=

λi

λi + nb2
Bi(x) +

nb2

λi + nb2
B̃i(

√
nx) . (3.8)

However, since we consider the constant investment strategy K̂ we can this time

suppose that Bi = B̃ for every i ∈ E where B̃ is some distribution concentrated on

(0,∞) with second moment k̂2. Note that the expectation of the distribution B̃,

denoted by µ̃, is arbitrary but certainly has to be considered in the definition of

the wealth process of the approximating model. For this proof we moreover have

to choose B̃ such that there exists a sufficiently large n ∈ N with B̃(
√
nx) ≥ Bi(x)

for all x ∈ R+ and every i ∈ E.

In that what follows we show that such a choice of B̃ is possible. Recall that

all random elements in this work are defined on the same probability space.

The random variable Ũ ′ := min
{
U

(1)
1 , . . . , U

(d)
1

}
is therefore well defined and we

denote its expectation by µ̃′ and its second moment by µ̃(2)′ . Note, that the

distribution, say B̃′, of this random variable Ũ ′ is by definition concentrated

on (0,∞). Consequently, α := k̂2

µ̃(2)′ is a strictly positive finite constant.

We now define B̃ as the distribution of the random variable Ũ :=
√
α Ũ ′. It

hence follows that also the distribution B̃ is concentrated on (0,∞) and that it

has second moment E
(
Ũ2
)

= αE
(
(Ũ ′)2

)
= k̂2

µ̃(2)′ µ̃
(2)′ = k̂2. Furthermore, we have

Ũ√
n

=

√
α√
n
Ũ ′ =

√
α√
n

min
{
U

(1)
1 , . . . , U

(d)
1

}
≤ min

{
U

(1)
1 , . . . , U

(d)
1

}
for all n ∈ N with n ≥ α. For these integers n we thus obtain B̃(

√
nx) ≥ Bi(x)
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for all x ∈ R+ and every i ∈ E. Eventually note that the expectation of the

distribution B̃ is given by µ̃ := E
(
Ũ
)

=
√
α µ̃′.

Using the same notation as at the end of section 3.1, the ruin probability Ψ(u, K̂)

can be approximated by Ψ(n)(u, K̂) = P
(
inft≥0 Y

(n)
t (u, K̂) < 0

)
with n → ∞

where

Y
(n)
t (u, K̂) = u+

(
c+ a k̂ +

√
n b2µ̃

)
t−
∑
i∈E

N̂
(i,n)
ξi(t)∑

k=1

Û
(i,n)
k , t ≥ 0 .

At this, the random variables
(
Û

(i,n)
k

)
k∈N are independent and identically dis-

tributed with distribution B̂
(n)
i (x) as defined above and the standard Poisson

process N̂ (i,n) has intensity λi + nb2 for i ∈ E.

Later in this proof we want to use a result for the Markov-modulated Poisson

model without investment and with constant premium rate one. In order to ob-

tain such a premium rate we thus have to apply the time transformation given by

T (t) := t

c+ak̂+
√

n b2µ̃
. As described in section 2.1 we therefore consider a Markov-

modulated Poisson model without investment whose wealth process Y̆ (n)(u, K̂)

is given by

Y̆
(n)
t (u, K̂) := Y

(n)
T (t)(u, K̂)

D
= u+ t−

∑
i∈E

N̆
(i,n)

ξ̆i(t)∑
k=1

Û
(i,n)
k , t ≥ 0 .

At this, N̆ (i,n) is a standard Poisson process with intensity λi+nb2

c+ak̂+
√

n b2µ̃
for i ∈ E.

The environmental Markov process after time transformation has intensity ma-

trix
( qij

c+ak̂+
√

n b2µ̃

)
i,j∈E

and thus still stationary initial distribution π. Further-

more, ξ̆i(t) =
(
c+ ak̂ +

√
n b2µ̃

)
ξi(t) for all t ≥ 0 and i ∈ E. Recall that this

time transformation clearly does not effect the ruin probability which means

that Ψ(n)(u, K̂) = P
(
inft≥0 Y

(n)
t (u, K̂) < 0

)
= P

(
inft≥0 Y̆

(n)
t (u, K̂) < 0

)
.
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Analogously, the ruin probability of the associated compound Poisson model

Ψ∗(u, K̂) under the same investment strategy K̂ can be approximated by the

ruin probabilities Ψ(n)∗(u, K̂) = P
(
inft≥0 Y̆

(n)∗

t (u, K̂) < 0
)

for n ∈ N where the

process Y̆ (n)∗(u, K̂) is defined by

Y̆
(n)∗

t (u, K̂) = u+ t−
N̆

(n)∗
t∑

k=1

Û
(n)∗

k , t ≥ 0 .

Here, N̆ (n)∗ is a standard Poisson process with intensity λ∗+nb2

c+ak̂+
√

n b2µ̃
and the inde-

pendent and identically distributed random variables
(
Û

(n)∗

k

)
k∈N have distribution

B̂(n)∗(x) :=
λ∗

λ∗ + nb2
B∗(x) +

nb2

λ∗ + nb2
B̃(
√
nx) .

We have already mentioned that Y̆ (n)(u, K̂) can be regarded as the risk reserve

process of a Markov-modulated Poisson model without investment. It is easy

to verify that Y̆ (n)∗(u, K̂) is the risk reserve process of the associated compound

Poisson model without investment.

Let us now consider any i, j ∈ E with i < j and choose n ∈ N sufficiently large

such that B̃(
√
nx) ≥ Bj(x) for all x ∈ R+. We want to show that B̂(n)

i ≤stB̂
(n)
j ,

i.e. that

B̂
(n)
i (x) =

λi

λi + nb2
Bi(x) +

nb2

λi + nb2
B̃(
√
nx)

≥ λj

λj + nb2
Bj(x) +

nb2

λj + nb2
B̃(
√
nx) = B̂

(n)
j (x)

for all x ∈ R+. If Bj(x) = 0 the inequality is obviously fulfilled since λi ≤ λj.

Hence, consider x ∈ R+ with Bj(x) > 0. Note that f : [0,∞) → R defined by

f(x) = λi+x
λj+x

is an increasing function for λi ≤ λj. Since we have B̃(
√
nx) ≥ Bj(x)

and Bi(x) ≥ Bj(x) from our assumptions it thus follows that

λiBi(x) + nb2B̃(
√
nx)

λj Bj(x) + nb2B̃(
√
nx)

=
λi

Bi(x)
Bj(x)

+ nb2 B̃(
√

nx)
Bj(x)

λj + nb2 B̃(
√

nx)
Bj(x)

≥
λi + nb2 B̃(

√
nx)

Bj(x)

λj + nb2 B̃(
√

nx)
Bj(x)

≥ λi + nb2

λj + nb2



Chapter 3. Diffusion approximation 92

which is equivalent to B̂(n)
i (x) ≥ B̂

(n)
j (x).

Further, it follows from our assumptions that λ1+nb2

c+ak̂+
√

n b2µ̃
≤ . . . ≤ λd+nb2

c+ak̂+
√

n b2µ̃
.

Since the environmental Markov process of the time transformed model is still

monotone with stationary initial distribution π we can thus apply Theorem 1.1

in Asmussen et al [AFR+95]. This yields

Ψ(n)∗(u, K̂) ≤ Ψ(n)(u, K̂) .

for all u ≥ 0 and sufficiently large n ∈ N. Letting n → ∞ it thus follows from

Theorem 3.2 that Ψ∗(u, K̂) ≤ Ψ(u, K̂) holds for all u ≥ 0.

2



Chapter 4

The periodic Poisson model with

investment

In this chapter we consider the risk reserve process of an insurance company in a

deterministic periodic environment. As before, the insurer has the opportunity to

invest into a stock index whose price process is modelled by a geometric Brownian

motion. Initially, the invested amount only depends on the current state of the

environment. Later in this chapter also a broader class of investment strategies

is permitted. The claims again have exponential moments.

The outline of this chapter is similar to that of the second chapter. After in-

troducing the actual model the adjustment coefficient with respect to any fixed

investment strategy is determined in section 4.2. In the following section this

adjustment coefficient is maximized with respect to the investment strategy. We

then prove the optimality of the obtained investment strategy in section 4.4. At

this, we do not restrict ourselves to investment strategies which only depend on

the environment. Finally, the periodic Poisson model and its associated com-

pound Poisson model are compared under optimal investment.

93
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4.1 The model

As in the Markov-modulated Poisson model the premium rate and the claim

arrivals in the periodic Poisson model are inhomogeneous in time. However,

instead of an stochastic environment as in the previous chapters we this time

consider the following deterministic, periodic environment.

The premium rate at time t ≥ 0 is given by ct := c(t) where c : [0,∞) → R+

is a bounded and periodic function. We denote the period of this function c by

T > 0. This means that c(t) = c(t+T ) for all t ≥ 0. Further let λ : [0,∞) → R+

also be a bounded and periodic function with the same period T > 0. The claim

arrival process N := {Nt, t ≥ 0} is then assumed to be a Poisson process with

intensity process {λt, t ≥ 0} where we put λt := λ(t). Furthermore, a claim

occurring at time t ≥ 0 have some distribution Bt concentrated on (0,∞). In

the periodic Poisson model it is assumed that also the claim size distribution

periodically depends on the time parameter t with period T in the sense that

the distributions Bt and Bt+T coincide for all t ≥ 0. As a minimum requirement

we further have to assume that λt and Bt are measurable functions in t. The

corresponding risk reserve process R(u) := {Rt(u), t ≥ 0} is then given by

Rt(u) = u+

∫ t

0

cs ds−
Nt∑

k=1

Uk (4.1)

where as before u ≥ 0 is the initial reserve of the insurance company.

Again, let the insurer have the opportunity to invest into a stock index or say

some portfolio. The price process S := {St, t ≥ 0} of this portfolio is modelled

in the same way as in chapter 2 by a geometric Brownian motion with dynamics

dSt = St (a dt+ b dWt) , t ≥ 0 .
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Apart from section 4.4 it is assumed throughout this chapter that the invested

amount at time t ≥ 0 only depends on the current state of the environment. This

means that the investment strategy K := {Kt, t ≥ 0} is determined by some

periodic function k : [0,∞) → R with period T > 0 such that Kt = k(t). At this,

we furthermore suppose that the integral
∫ T

0
K2

s ds is finite. Note that this is a

necessary and sufficient for the stochastic integral
∫ t

0
Ks dWs to exist for all t ≥ 0.

In that what follows we denote the class of such investment strategies by K.

As in chapter 2 we can assume without loss of generality that the premium rate

is constant over time, i.e. ct = c for all t ≥ 0 and some c > 0. However, this time

the appropriate time transformation is given by T (t) :=
∫ t

0
c
cs
ds. Also in this

model we certainly have to take into account that the parameters of the model

change accordingly. In that what follows we consequently consider the wealth

process Y (u,K) given by

Yt(u,K) = u+ ct+ a

∫ t

0

Ks ds+ b

∫ t

0

Ks dWs −
Nt∑

k=1

Uk , t ≥ 0 . (4.2)

As before, let the process X(K) by defined by Xt(K) = Yt(u,K)− u for t ≥ 0

and let FY := {Ft, t ≥ 0} be the natural filtration of the wealth process Y (u,K).

For the present model we also suppose that the claims have exponential moments.

This means that for every t ∈ [0, T ) there exists a possibly infinite constant

r
(t)
∞ ∈ (0,∞] such that the centered moment generating function ht defined by

ht(r) :=

∫ ∞

0

erx dBt(x) − 1 , r ≥ 0 ,

is finite for every r < r
(t)
∞ with ht(r) →∞ as r → r

(t)
∞ . As already mentioned this

assumption implies that ht is increasing, convex and continuous on [0, r
(t)
∞ ) with

ht(0) = 0 for any fixed t ∈ [0, T ).
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Denoting the ruin probability by Ψ(u,K) and the time of ruin by τ(u,K) the aim

of this chapter is the same as of the second chapter. We want to find the optimal

investment strategy in the sense that it maximizes the corresponding adjustment

coefficient R. Recall that R is defined as the largest possible value such that the

Lundberg inequality Ψ(u,K) ≤ C e−Ru with C <∞ is fulfilled for all u ≥ 0. Note

that the compound Poisson model fits into the actual framework by choosing the

same claim size distribution Bt and putting λt = λ for all t ∈ [0, T ).

Let us now consider what has been shown for the periodic Poisson model without

investment. As for example given in Asmussen [Asm00], the adjustment coef-

ficient for this model is given as the strictly positive solution of the equation

λ∗h∗(r) = cr. At this, h∗ is the centered moment generating function of the

distribution B∗ where

B∗ :=
1

T

∫ T

0

λt

λ∗
Bt dt with λ∗ :=

1

T

∫ T

0

λt dt .

Note, if we associate a classical compound Poisson model to the periodic Poisson

model by averaging over the environment the corresponding Poisson process has

intensity λ∗ and the corresponding claim size distribution is given by B∗, confer

section 4.5. It thus follows that without investment the adjustment coefficients of

the periodic Poisson model and its associated compound Poisson model coincide.

We have already mentioned that an adjustment coefficient of the classical com-

pound Poisson model without investment exists if and only if the corresponding

absolute safety loading is strictly positive. Consequently, an adjustment coeffi-

cient of the periodic Poisson model exists if and only if

c− λ∗µB∗ = c− λ∗
∫ ∞

0

x dB∗(x) > 0 .
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Analogously to the Markov-modulated Poisson model with investment we define

the absolute safety loading of the periodic Poisson model with respect to some

given investment strategy K as the constant ρ(K) for which

lim
t→∞

1

t
Yt(0, K)

a.s.
= ρ(K) .

As before, we refer to ρ(K) as the safety loading with respect toK unless otherwise

stated. It is later shown that ρ(K) > 0 is a necessary and sufficient condition for

an adjustment coefficient to exist when using investment strategy K.
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4.2 The adjustment coefficient for any fixed in-

vestment strategy

Throughout this section we consider any fixed investment strategy K ∈ K. As

in the second chapter of this work we use a martingale method in order to ob-

tain a Lundberg bound for the ruin probability Ψ(u,K). However, this time our

exponential martingale slightly differs from the martingale used for the Markov-

modulated Poisson model. Besides some obvious changes we consider an expo-

nential martingale process which is stopped at the time of ruin τ(u,K).

Proposition 4.1. Consider any investment strategy K ∈ K and let u, r ≥ 0 be

fixed. Define the process M(u,K, r) by

Mt(u,K, r) :=
exp

(
− rYt(u,K)

)
exp

( ∫ t

0
λshs(r) + 1

2
r2b2K2

s − r(c+ aKs) ds
) , t ≥ 0 .

The stopped process M̃(u,K, r) given by

M̃t(u,K, r) := Mt∧τ(u,K)(u,K, r) , t ≥ 0 ,

is then a martingale with respect to FY .

Proof:

For simplicity reasons put τ := τ(u,K). Note that
∑Nt

k=1 Uk =
∫ t

0
UNs dNs for

all t ≥ 0. It thus follows that Mt(u,K, r) = exp(Vt) for t ≥ 0 where the process

{Vt, t ≥ 0} has dynamics

dVt = −
(
λtht(r) +

1

2
r2b2K2

t

)
dt− rbKt dWt + rUNt dNt .
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Itô’s Formula as given in Protter [Pro04], page 78, then yields

Mt(u,K, r)

= M0(u,K, r) +

∫ t

0+

Ms−(u,K, r) dVs +
1

2

∫ t

0+

Ms−(u,K, r) r2b2K2
s ds

+
∑

0<s≤t

(
Ms(u,K, r)−Ms−(u,K, r)− (Vs − Vs−)Ms−(u,K, r)

)
= M0(u,K, r)−

∫ t

0+

Ms−(u,K, r)
(
λshs(r) +

1

2
r2b2K2

s

)
ds

−
∫ t

0+

Ms−(u,K, r) rbKs dWs +

∫ t

0+

Ms−(u,K, r) rUNs dNs

+
1

2

∫ t

0+

Ms−(u,K, r) r2b2K2
s ds

+

∫ t

0+

(
Ms(u,K, r)−Ms−(u,K, r)− rUNs Ms−(u,K, r)

)
dNs

= M0(u,K, r)−
∫ t

0+

rbKsMs−(u,K, r) dWs

+

∫ t

0+

(
Ms(u,K, r)−Ms−(u,K, r)

)
dNs −

∫ t

0+

λshs(r)Ms−(u,K, r) ds .

(4.3)

Recall, we want to show that M̃(u,K, r) is a martingale with respect to FY .

Since K ∈ K and 0 ≤ Yt−(u,K) ≤ 1 for all t ≤ τ it follows by the definition of

the Itô integral that the process{∫ t∧τ

0+

rbKsMs−(u,K, r) dWs, t ≥ 0

}
is an FY -martingale. In order to complete the proof it thus suffices to show that

also the process{∫ t∧τ

0+

(
Ms(u,K, r)−Ms−(u,K, r)

)
dNs −

∫ t∧τ

0+

λshs(r)Ms−(u,K, r) ds, t ≥ 0

}
is an FY -martingale. Recall, the claim arrival process N has intensity {λt, t ≥ 0}

with respect to FY . Further, {Mt−(u,K, r)ht(r), t ≥ 0} is an FY -predictable



Chapter 4. The periodic Poisson model 100

process with

E
(∫ t∧τ

0+

∣∣∣Ms−(u,K, r)hs(r)
∣∣∣λs ds

)
<∞

for all t ≥ 0 since 0 ≤ Yt−(u,K) ≤ 1 for t ≤ τ . It therefore follows from

Theorem T8 in Brémaud [Bré81], page 27, that the process{∫ t∧τ

0+

Ms−(u,K, r)hs(r) dNs −
∫ t∧τ

0+

Ms−(u,K, r)hs(r)λs ds, t ≥ 0

}
is a martingale with respect to FY . Using this fact in the last equality below we

conclude that

E
[ ∫ t∧τ

(v∧τ)+

(
Ms(u,K, r)−Ms−(u,K, r)

)
dNs

∣∣∣∣FY
v∧τ

]
= E

[ ∫ t∧τ

(v∧τ)+
Ms−(u,K, r)

(
erU

(s)
Ns − 1

)
dNs

∣∣∣∣FY
v∧τ

]
= E

[ ∞∑
k=1

Mν−k
(u,K, r)

(
e

rU
(νk)

Nνk − 1
)
δ(v∧τ,t∧τ ](νk)

∣∣∣∣FY
v∧τ

]
=

∞∑
k=1

E
[
E
[
Mν−k

(u,K, r)
(
erU

(νk)

k − 1
)
δ(v∧τ,t∧τ ](νk)

∣∣∣FY
ν−k

]∣∣∣∣FY
v∧τ

]
=

∞∑
k=1

E
[
Mν−k

(u,K, r) E
[
erU

(νk)

k − 1
∣∣∣FY

ν−k

]
δ(v∧τ,t∧τ ](νk)

∣∣∣∣FY
v∧τ

]
= E

[ ∞∑
k=1

Mν−k
(u,K, r)hνk

(r) δ(v∧τ,t∧τ ](νk)

∣∣∣∣FY
v∧τ

]
= E

[ ∫ t∧τ

(v∧τ)+
Ms−(u,K, r)hs(r) dNs

∣∣∣∣FY
v∧τ

]
= E

[ ∫ t∧τ

(v∧τ)+
Ms−(u,K, r)hs(r)λs ds

∣∣∣∣FY
v∧τ

]
for v ≤ t where νk denotes the kth jump epoch of the claim arrival process N

for k ∈ N. Using the representation of Mt(u,K, r) given in (4.3), the integrability

of the stopped process M̃(u,K, r) can easily be shown. This finally completes

the proof since M̃(u,K, r) is obviously FY -measurable.

2
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Using the exponential martingale from Proposition 4.1 we can now determine

an upper bound for the ruin probability Ψ(u,K) in the same way as done in

chapter 2.

Proposition 4.2. Consider any investment strategy K ∈ K. For r > 0 we then

have

Ψ(u,K) ≤ C(K, r) e−ru

for all u ≥ 0 where

C(K, r) := sup
t≥0

exp

(∫ t

0

λshs(r) +
1

2
r2b2K2

s − r(c+ aKs) ds

)
.

Proof:

Let us again denote the time of ruin by τ := τ(u,K). We have already shown

that the process M̃(u,K, r) is a martingale with respect to the filtration FY .

Analogously to the respective result in chapter 2, it therefore follows for r > 0

and u ≥ 0 that

e−ru = M̃0(u,K, r) = E
(
M̃t(u,K, r)

)
= E

(
M̃t(u,K, r) I(τ ≤ t)

)
+ E

(
M̃t(u,K, r) I(τ > t)

)
≥ E

[
Mτ (u,K, r)

∣∣∣τ ≤ t
]

P(τ ≤ t)

≥ P(τ ≤ t)

sup0≤v≤t exp
(∫ v

0
λshs(r) + 1

2
r2b2K2

s − r(c+ aKs) ds
)

and hence

P(τ ≤ t) ≤ e−ru sup
0≤v≤t

exp

(∫ v

0

λshs(r) +
1

2
r2b2K2

s − r(c+ aKs) ds

)
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Letting t→∞ we consequently obtain

Ψ(u,K) ≤ e−ru sup
v≥0

exp

(∫ v

0

λshs(r) +
1

2
r2b2K2

s − r(c+ aKs) ds

)
.

2

Recall that the period of the periodic environment is denoted by T . It is thus

obvious that C(K, r) is finite if and only if

exp

(∫ T

0

λshs(r) +
1

2
r2b2K2

s − r(c+ aKs) ds

)
≤ 1 .

For a given investment strategy K ∈ K let us therefore define R(K) as

R(K) := sup

{
r > 0 ; exp

(∫ T

0

λshs(r) +
1

2
r2b2K2

s − r(c+ aKs) ds

)
≤ 1

}
= sup

{
r > 0 ;

∫ T

0

λshs(r) +
1

2
r2b2K2

s − r(c+ aKs) ds ≤ 0

}
(4.4)

It now follows from our assumptions on the functions ht, t ∈ [0, T ), that R(K) is

the strictly positive solution of the equation∫ T

0

λshs(r) +
1

2
r2b2K2

s − r(c+ aKs) ds = 0 . (4.5)

We consequently say that R(K) does not exist if equation (4.5) does not have a

strictly positive solution. If R(K) exists it is uniquely determined.

Using R(K) we can now give a Lundberg bound for the periodic Poisson model

with respect to some fixed investment strategy K ∈ K.

Theorem 4.3. Let K ∈ K and assume that a strictly positive solution R(K) of

equation (4.5) exists. For any r ≤ R(K) we then have

Ψ(u,K) ≤ C(K, r) e−ru
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with

C(K, r) = sup
0≤t<T

exp

(∫ t

0

λshs(r) +
1

2
r2b2K2

s − r(c+ aKs) ds

)
<∞

for all u ≥ 0.

Proof:

Recall that the inequality of interest is trivial for r ≤ 0. As described above,

C(K, r) is finite if r ≤ R(K). Noting that
∫ t

0
λshs(r) + 1

2
r2b2K2

s − r(c + aKs) ds

has its supremum on the interval [0, T ) if r ≤ R(K) the assertion follows.

2

Note that we are interested in the investment strategyK ∈ K which minimizes the

Lundberg bound for the ruin probability Ψ(u,K). Hence we do not investigate

here if there exists some constant C <∞ such that the Lundberg inequality given

in Theorem 4.3 also holds for some r > R(K) and C instead of C(K, r). After

maximizing R(K) with respect to K ∈ K in the following section we then verify

in section 4.4 that the resulting R is indeed the optimal adjustment coefficient

of the periodic Poisson model with investment. Nevertheless, we refer to R(K) as

the adjustment coefficient with respect to some fixed investment strategy K ∈ K

in this work.

As for the Markov-modulated Poisson model we conclude this section with the

study of conditions which ensure that R(K) exists for a given investment strategy

K ∈ K. However, this time it is less complicated since we have a deterministic

environment. Recall from section 4.1 that the safety loading with respect to some

investment strategy K ∈ K is defined as the constant ρ(K) for which

lim
t→∞

Yt(u,K)− u

t
a.s.
= ρ(K) . (4.6)
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We thus get the following representation of the safety loading for the periodic

Poisson model with investment.

Proposition 4.4. Consider any fixed investment strategy K ∈ K and let the

corresponding safety loading ρ(K) be defined by (4.6). Then,

ρ(K) = c+
a

T

∫ T

0

Ks ds−
1

T

∫ T

0

λsµBs ds .

Proof:

We have

Yt(u,K)− u = Xt(K) = ct+ a

∫ t

0

Ks ds+ b

∫ t

0

Ks dWs −
Nt∑

k=1

Uk , t ≥ 0 .

Noting that limt→∞
1
t

(
Xt(K)−Xb t

T
cT (K)

) a.s.
= 0 we almost surely have

lim
t→∞

1

t
Xt(K) = lim

t→∞

1

t
Xb t

T
cT (K) = lim

t→∞

b t
T
cT
t

1

b t
T
cT

Xb t
T
cT (K) =

1

T
E
(
XT (K)

)
by the law of large numbers since

(
XnT (K)

)
n∈N0

is a random walk. We thus have

to determine E
(
XT (K)

)
. At this,

E
(∫ T

0

Ks dWs

)
= 0

and

E
( NT∑

k=1

Uk

)
=

∫ T

0

λs µBs ds

where the latter is well known and can for example be found in section 12.4 of

Rolski et al [RSS+99]. It therefore follows that

ρ(K) =
1

T
E
(
XT (K)

)
=

1

T

(
cT + a

∫ T

0

Ks ds+

∫ T

0

λs µBs ds
)

= c+
a

T

∫ T

0

Ks ds−
1

T

∫ T

0

λs µBs ds .

2
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Analogously to the Poisson models we have considered so far the following result

follows.

Proposition 4.5. Consider any fixed investment strategy K ∈ K and suppose

that the corresponding safety loading ρ(K) ≤ 0. Then,

Ψ(u,K) = 1

for all u ≥ 0.

Proof:

Let K ∈ K. Recall from the proof of Proposition 4.4 that
(
XnT (K)

)
n∈N0

is a

random walk with

E
(
XT (K)

)
= Tρ(K) .

If ρ(K) < 0 it follows that XnT (K) converges to −∞ as n → ∞. According

to Theorem 4.2 in Asmussen [Asm03], page 224, the random walk
(
XnT

)
n∈N0

oscillates between ∞ and −∞ if ρ(K) = 0. In both cases we therefore have

inft≥0 Yt(u,K) = −∞ almost surely and consequently ψ(u,K) = 1 for all u ≥ 0.

2

This means that we cannot find an adjustment coefficient of the periodic Poisson

model under some fixed investment strategy K ∈ K if ρ(K) ≤ 0. On the other

hand it can be shown that the adjustment coefficient R(K) exist if ρ(K) > 0.

Proposition 4.6. Consider any fixed investment strategy K ∈ K. Then, R(K)

defined as the strictly positive solution of equation (4.5) exists if ρ(K) > 0.

Proof:

Let K ∈ K and suppose that ρ(K) > 0. Now, R(K) is defined as the strictly



Chapter 4. The periodic Poisson model 106

positive solution of the equation

g(K)(r) :=

∫ T

0

λshs(r) +
1

2
r2b2K2

s − r(c+ aKs) ds = 0 .

It is well known that under our assumptions we have h′t(0) = µBt for all t ∈ [0, T ),

confer Asmussen [Asm00]. We therefore obtain

d

dr
g(K)(r)

∣∣∣∣
r=0

=
d

dr

∫ T

0

λshs(r) +
1

2
r2b2K2

s − r(c+ aKs) ds

∣∣∣∣
r=0

=

∫ T

0

d

dr

(
λshs(r) +

1

2
r2b2K2

s − r(c+ aKs)
)∣∣∣∣

r=0

ds

=

∫ T

0

λsh
′
s(0)− (c+ aKs) ds

=

∫ T

0

λsµBs ds− cT − a

∫ T

0

Ks ds = −ρ(K)T < 0

which implies that the equation g(K)(r) = 0 must have a strictly positive solution.

2
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4.3 Maximizing the adjustment coefficient

So far, it has been shown that for an arbitrarily chosen investment strategyK ∈ K

we have

Ψ(u,K) ≤ C(K, r) e−ru

with C(K, r) < ∞ for all u ≥ 0 whenever r ≤ R(K). Analogously to chapter 2,

we thus have to maximize R(K) with respect to the investment strategy K ∈ K

under the constraint that C(K,R(K)) is finite. Recall that R(K) is defined as the

strictly positive solution of∫ T

0

λtht(r) +
1

2
r2b2K2

t − r(c+ aKt) dt = 0 .

For r > 0 we have

λtht(r) +
1

2
r2b2K2

t − r(c+ aKt) = λtht(r) +
r2b2

2

(
Kt −

a

rb2
)2 − (rc+

a2

2b2
)
.

Thus, R(K) is the strictly positive solution of the equation∫ T

0

λtht(r) +
r2b2

2

(
Kt −

a

rb2
)2 − (rc+

a2

2b2
)
dt = 0 . (4.7)

As in the second chapter let the constant investment strategy K(r) be defined by

K
(r)
t ≡ a

rb2
for t ≥ 0. It thus follows from equation (4.7) that the strategy K(r)

maximizes R(K) for some r > 0.

Motivated by the definition of R(K) through equation (4.7) we define R as the

strictly positive solution of∫ T

0

λtht(r)−
(
rc+

a2

2b2
)
dt =

∫ T

0

λtht(r) dt−
(
rc+

a2

2b2
)
T = 0 . (4.8)
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Our assumptions on ht for t ∈ [0, T ) imply that R is uniquely determined and

that it exists whenever the drift parameter a of the Brownian motion with drift

Wa,b does not equal zero.

In the case where a = 0 we have

d

dr

∫ T

0

λtht(r) dt− rcT

∣∣∣∣
r=0

=

∫ T

0

λtµBt dt− cT = −ρ(0) T

as noted in the proof of Proposition 4.6. Hence, R exists if and only if ρ(0) > 0.

As in the Markov-modulated Poisson model it therefore follows that R exists as

long as a 6= 0. For a = 0 we have the existence of R if the safety loading of the

periodic Poisson model without investment is strictly positive, i.e. if there exists

an adjustment coefficient without investment.

It moreover follows from the respective definitions that R(K) ≤ R for all invest-

ment strategies K ∈ K with equality if K = K(R). Further, R(K) apparently does

not exist for any investment strategy K ∈ K if R does it exist.

Together with Theorem 4.3 in the previous section we finally get the following

result.

Corollary 4.7. Suppose that the strictly positive solution R of equation (4.8)

exists. Under the investment strategy K(R) defined by K(R)
t ≡ a

Rb2
for t ≥ 0 we

have

Ψ(u,K(R)) ≤ C(K(R), R) e−Ru

with C(K(R), R) <∞ for all u ≥ 0.
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4.4 Optimality

We have already mentioned that there does not exist an adjustment coefficient for

the periodic Poisson model under any investment strategy K ∈ K if R which is

defined in the previous section does not exist. Hence, let us from now on assume

that R exists. It is also proved in the previous section that

Ψ(u,K(R)) ≤ C(K(R), R) e−Ru

with C(K(R), R) <∞ for all u ≥ 0. In this section we are going to show that R

is indeed the optimal adjustment coefficient for the periodic Poisson model with

investment.

Our method to prove this optimality is taken from Gaier, Grandits and Schacher-

mayer [GGS03]. As there, we do not have to restrict ourselves to investment

strategies K ∈ K. Throughout this section, investment strategies K are consid-

ered which are measurable and adapted to FY . We further have to assume that

the integral
∫ t

0
K2

s ds is almost surely finite for every t ≥ 0. Note that this is a

necessary and sufficient condition for the stochastic integral
∫ t

0
Ks dWs to exist

for t ≥ 0. In that what follows we denote the class of such strategies by K∗.

As in Gaier, Grandits and Schachermayer [GGS03] we need the following as-

sumption on the claim size distributions in order to prove the optimality of the

investment strategy K(R). Let the random variable U (t) have distribution Bt for

t ∈ [0, T ). We then assume that

sup
0≤t<T

y>0

E
[
e−R(y−U(t))

∣∣∣U (t) > y
]
<∞ . (4.9)

Recall from Proposition 4.1 that the stopped process M̃(u,K, r) is a martingale

with respect to FY for all u, r ≥ 0 and any investment strategy K ∈ K. Plug-
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ging in R and the corresponding investment strategy K(R) ∈ K we observe that

M̃(u,K(R), R) is a martingale for all u ≥ 0. At this,

Mt(u,K
(R), R) =

exp
(
−RYt(u,K

(R))
)

exp
( ∫ t

0
λshs(R) ds−

(
Rc+ a2

2b2

)
t
) , t ≥ 0 .

Motivated by this formula we define such a process for any arbitrary investment

strategy K ∈ K∗ and get the following result.

Proposition 4.8. Suppose that R defined by (4.8) exists. For any investment

strategy K ∈ K∗ and any u ≥ 0 let the process M∗(u,K,R) be defined by

M∗
t (u,K,R) :=

exp
(
−RYt(u,K)

)
exp

( ∫ t

0
λshs(R) ds−

(
Rc+ a2

2b2

)
t
) , t ≥ 0 .

With respect to FY , the stopped process M̃∗(u,K,R) given by

M̃∗
t (u,K,R) := M∗

t∧τ(u,K)(u,K,R) , t ≥ 0 ,

is then a submartingale for any K ∈ K∗ and a martingale if K = K(R). Moreover,

M̃∗(u,K,R) is uniformly integrable for all K ∈ K∗ if assumption (4.9) is fulfilled.

Proof:

Let u ≥ 0 be fixed. As already mentioned, M̃∗(u,K(R), R) is a martingale accord-

ing to Proposition 4.1. Analogously to the proof of that proposition we can more-

over show that M̃∗(u,K,R) is a submartingale for all K ∈ K∗. Comparing the

processes M̃(u,K,R) and M̃∗(u,K,R) we recognize that M∗
t (u,K,R) = exp(V ∗

t )

where the process {V ∗
t , t ≥ 0} has dynamics

dV ∗
t = −

(
λtht(R)− a2

2b2

)
dt−RaKt dt−RbKt dWt +RUNt dNt .
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Applying Itô’s Formula in this case we consequently get

M∗
t (u,K,R)

= M∗
0 (u,K,R) +

∫ t

0+

M∗
s−(u,K,R)

( a2

2b2
−RaKs +

1

2
R2b2K2

s

)
ds

−
∫ t

0+

RbKsM
∗
s−(u,K,R) dWs

+

∫ t

0+

(
M∗

s (u,K,R)−M∗
s−(u,K,R)

)
dNs −

∫ t

0+

λshs(R)M∗
s−(u,K,R) ds .

(4.10)

Analogously to the proof of Proposition 4.1 it can be shown that the processes{∫ t∧τ

0+

RbKsM
∗
s−(u,K,R) dWs, t ≥ 0

}
and {∫ t∧τ

0+

(
M∗

s (u,K,R)−M∗
s−(u,K,R)

)
dNs

−
∫ t∧τ

0+

λshs(R)M∗
s−(u,K,R) ds , t ≥ 0

}
are martingales with respect to FY . Further,∫ t

0+

M∗
s−(u,K,R)

( a2

2b2
−RaKs +

1

2
R2b2K2

s

)
ds

=

∫ t

0+

M∗
s−(u,K,R)

R2b2

2

(
Ks −

a

Rb2

)2

ds ≥ 0

for all t ≥ 0. Since K ∈ K∗ it moreover follows from the representation of

M∗
t (u,K,R) in (4.10) that the stopped process M̃∗(u,K,R) is integrable. Hence,

M̃∗(u,K,R) is a submartingale for all K ∈ K∗ since the process is apparently

FY -measurable.

It thus remains to show that M̃∗(u,K,R) is uniformly integrable for any K ∈ K∗

if assumption (4.9) is fulfilled. Let us again put τ := τ(u,K). It then follows
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that

E
(

sup
t≥0

∣∣M̃∗
t (u,K,R)

∣∣) ≤ E
(

supt≥0 e
−R Yt∧τ (u,K)

)
inft≥0 exp

( ∫ t

0
λshs(R) ds−

(
Rc+ a2

2b2

)
t
)

≤
E
[
supt≥0 e

−R Yt∧τ (u,K)
∣∣∣τ <∞

]
inft≥0 exp

( ∫ t

0
λshs(R) ds−

(
Rc+ a2

2b2

)
t
)

=
E
[
e−R Yτ (u,K)

∣∣∣τ <∞
]

inf0≤t<T exp
( ∫ t

0
λshs(R) ds−

(
Rc+ a2

2b2

)
t
)

≤
E
[
e−R Yτ (u,K)

∣∣∣τ <∞, Yτ−(u,K) > 0
]

inf0≤t<T exp
( ∫ t

0
λshs(R) ds−

(
Rc+ a2

2b2

)
t
)

≤
sup0≤t<T E

[
e−R Yτ (u,K)

∣∣∣τ <∞, Yτ−(u,K) > 0, Bτ = Bt

]
inf0≤t<T exp

( ∫ t

0
λshs(R) ds−

(
Rc+ a2

2b2

)
t
) <∞ .

2

The following result considers the fact that in the periodic Poisson model with

investment the insurer either becomes infinitely rich or ruin occurs.

Proposition 4.9. Suppose that R defined by (4.8) exists and that assumption

(4.9) is fulfilled. For any K ∈ K∗ and u ≥ 0 the stopped wealth process Ỹ (u,K)

given by Ỹt(u,K) := Yt∧τ(u,K)(u,K) for t ≥ 0 then almost surely converges on

{τ(u,K) = ∞} to ∞ as t→∞.

Proof:

Let K ∈ K∗ and u ≥ 0. Recall from Proposition 4.8 that M̃∗(u,K,R) is an

uniformly integrable submartingale. Applying Doob’s Supermartingale Conver-

gence Theorem to−M̃∗(u,K,R) it follows that limt→∞ M̃∗
t (u,K,R) almost surely

exists. Hence, also Ỹ∞(u,K) := limt→∞ Ỹt(u,K) almost surely exists.
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Now, note that the distribution Bt is concentrated on (0,∞) for every t ∈ [0, T ).

As described in the proof of Lemma 5 in Gaier, Grandits and Schacher-

mayer [GGS03], page 11, there exists some δ > 0 such that the wealth process

infinitely often has a jump of a size which is greater than δ. Apart from these

downward jumps the wealth process is almost surely continuous. On the event

{τ(u,K) = ∞}, Ỹ∞(u,K) can consequently not be equal to a finite value with

positive probability.

2

Having Proposition 4.8 and 4.9 we can finally prove the optimality of the invest-

ment strategy K(R).

Theorem 4.10. Suppose that R defined by (4.8) exists and that assumption (4.9)

is fulfilled. For any investment strategy K ∈ K∗ we then have

Ψ(u,K) ≥ C∗ e−Ru

with C∗ > 0 for all u ≥ 0.

Proof:

Let K ∈ K∗ and u ≥ 0. We know from Proposition 4.8 that M̃∗
t (u,K,R) is

an uniformly integrable submartingale. Once again putting τ := τ(u,K) it thus

follows from Doob’s Optional Sampling Theorem that

e−Ru = M̃∗
0 (u,K,R) ≤ E

(
M̃∗

τ (u,K,R)
)

= E
[
M∗

τ (u,K,R)
∣∣∣τ <∞

]
P
(
τ <∞

)
+ E

[
lim
t→∞

M∗
t (u,K,R)

∣∣∣τ = ∞
]

P
(
τ = ∞

)
= E

[
M∗

τ (u,K,R)
∣∣∣τ <∞

]
P
(
τ <∞

)
(4.11)
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≤

sup
0≤t<T

y>0

E
[
e−R(y−U(t))

∣∣∣U (t) > y
]

inf
0≤t<T

exp
(∫ t

0

λshs(R) ds−
(
Rc+

a2

2b2
)
t
) P
(
τ <∞

)
(4.12)

where the equality in (4.11) follows from Proposition 4.9 and the inequality in

(4.12) as in the proof of Proposition 4.8. This implies that Ψ(u,K) ≥ C∗ e−Ru

where

C∗ :=

inf
0≤t<T

exp
(∫ t

0

λshs(R) ds−
(
Rc+

a2

2b2
)
t
)

sup
0≤t<T

y>0

E
[
e−R(y−U(t))

∣∣∣U (t) > y
] > 0

according to assumption (4.9).

2

Thus, R is the optimal adjustment coefficient for the periodic Poisson model

under any investment strategy K ∈ K∗. Recall that R is given as the strictly

positive solution of the equation∫ T

0

λtht(r) dt−
(
rc+

a2

2b2
)
T = 0 .

and that the corresponding optimal investment strategy K(R) is defined by

K
(R)
t ≡ a

Rb2
for t ≥ 0.
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4.5 A comparison with the compound Poisson

model

In the final section of this chapter we compare the adjustment coefficients of

the periodic Poisson model and its associated compound Poisson model under

optimal investment. For the periodic Poisson model with investment we have

already found out that the optimal adjustment coefficient R is given as the strictly

positive solution of the equation∫ T

0

λtht(r) dt−
(
rc+

a2

2b2
)
T = 0 (4.13)

and that the corresponding optimal investment strategy K(R) is defined by

K
(R)
t ≡ a

Rb2
for t ≥ 0.

We can now associate a compound Poisson model to the periodic Poisson model

in a natural way by averaging over the environment, confer Asmussen [Asm00],

page 176. As mentioned in the introductory section of this chapter, this yields a

compound Poisson model with parameters

λ∗ =
1

T

∫ T

0

λt dt and B∗ =
1

T

∫ T

0

λt

λ∗
Bt dt .

Note that the claims of this associated compound Poisson model have exponential

moments since

h∗(r) =

∫ ∞

0

erx dB∗(x) − 1 =

(
1

T

∫ T

0

λt

λ∗

∫ ∞

0

erx dBt(x) dt

)
− 1

=

(
1

T

∫ T

0

λt

λ∗

(
ht(r) + 1

)
dt

)
− 1

=

(
1

T

∫ T

0

λt

λ∗
ht(r) dt

)
+

(
1

T

∫ T

0

λt

λ∗
dt

)
− 1

=
1

T

∫ T

0

λt

λ∗
ht(r) dt .



Chapter 4. The periodic Poisson model 116

As mentioned at the beginning of the second chapter, it is due to Gaier, Grandits

and Schachermeyer [GGS03] that the optimal adjustment coefficient R∗ of the as-

sociated compound Poisson model with investment is given as the strictly positive

solution of the equation

λ∗h∗(r) = cr +
a2

2b2

and that the corresponding optimal investment strategy is given byK(R∗). Noting

that

λ∗h∗(r)−
(
rc+

a2

2b2
)

= λ∗
1

T

∫ T

0

λt

λ∗
ht(r) dt−

(
rc+

a2

2b2
)

=
1

T

(∫ T

0

λtht(r) dt−
(
rc+

a2

2b2
)
T

)
.

it is obvious that the adjustment coefficients of the periodic Poisson model and

its associated compound Poisson model coincide under optimal investment. Con-

sequently, also the optimal investment strategy is the same for both models.
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