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Zusammenfassung

Die Risikotheorie beschéaftigt sich allgemein mit dem Versicherungsgeschaft und
insbesondere mit Fragen der Solvenz. Das grundlegende Modell der Risikotheorie
ist das klassische Cramér-Lundberg-Modell. Schadenankiinfte sowie Schadenho-
hen sind in diesem Modell zeitlich homogen und das Versicherungsunternehmen
erhélt kontinuierlich Pramien geméfs einer konstanten Priamienrate. In einigen
Versicherungsbereichen stellte sich diese zeitliche Homogenitdt jedoch als un-
realistisch heraus. Verschiedene zeitlich nicht homogene Modelle wie etwa das
Markov-modulierte Poisson-Modell oder das periodische Poisson-Modell wurden
infolgedessen eingefiihrt. Beide Modelle werden von einem Umweltprozess beein-
flusst, der im ersten Modell durch einen Markov-Prozess und im zweiten Modell
durch eine periodische Funktion gegeben ist.

Das klassische Cramér-Lundberg-Modell wurde vor kurzem unter der zuséatzli-
chen Annahme untersucht, dass der Versicherer in einen Aktienindex investieren
kann, der durch eine geometrische Brownsche Bewegung modelliert wird. Un-
gliicklicherweise ist die zugehorige Ruinwahrscheinlichkeit W(u) in Abhéngigkeit
vom Anfangskapital u des Versicherungsunternchmens schwer zu bestimmen.
Deshalb konzentriert man sich auf den Anpassungskoeffizienten des Modells, der
als die groftmaogliche Konstante R definiert ist, so dass ¥(u) < Ce B mit C' > 0
fiir alle u gilt. Es stellte sich heraus, dass der Anpassungskoeffizient unter allen,
ausschlieflich vom aktuellen Guthaben abhidngenden Investitionsstrategien durch
eine Strategie maximiert wird, die einen konstanten Betrag in den Aktienindex
investiert.

Diese Arbeit zielt darauf ab, entsprechende Aussagen fiir die beiden oben genann-
ten zeitlich nicht homogenen Poisson-Modelle herzuleiten. Die beiden Modelle
werden daher unter der Mdglichkeit untersucht, in einen Aktienindex zu inve-
stieren, der durch eine geometrische Brownsche Bewegung modelliert wird. Da
im klassischen Cramér-Lundberg-Modell eine konstante Investitionsstrategie op-
timal ist, sind nur solche Strategien zugelassen, die ausschlieklich vom jeweiligen
Umweltprozess abhéngen. In beiden Modellen ergibt sich mit Hilfe von Martin-
galmethoden, dass der zugehorige Anpassungskoeffizient unter allen zugelassenen
Strategien wiederum durch ein konstantes Investment maximiert wird.

Das Markov-modulierte Poisson-Modell mit Investment wird in dieser Arbeit au-
ferdem durch ein Markov-moduliertes Poisson-Modell ohne Investment appro-
ximiert. Es wird gezeigt, wie mit Hilfe dieser Approximation eine Darstellung
fiir den Anpassungskoeffizienten des Markov-modulierten Poisson-Modells unter
einer fest gewéhlten Investitionsstrategie gefunden werden kann. Schlieflich ge-
lingt ein direkter Vergleich der Ruinwahrscheinlichkeiten des Markov-modulierten
Poisson-Modells und des zugehorigen klassischen Cramér-Lundberg-Modells mit
gemittelten Parametern unter derselben konstanten Investitionsstrategie.

Schlagworter:  Ruinwahrscheinlichkeit, Anpassungskoeffizient, optimales
Investment, = Markovscher Umweltprozess, periodischer = Umweltprozess,
Martingalmethoden, Diffusionsapproximation.



Abstract

Risk theory in general is concerned with the business of insurance companies
and in particular with aspects of solvency. The basic model in risk theory is the
classical Cramér-Lundberg model. In this model claim arrivals as well as claim
sizes are homogeneous in time and the insurance company receives premiums at
a constant rate. However, it turned out that time homogeneity is not a realistic
assumption for certain areas of insurance. Different time inhomogeneous mod-
els as for example the Markov-modulated Poisson model or the periodic Poisson
model were therefore introduced. Both models are governed by an environmental
process which is a Markov process in the first model and a periodic function in
the second model.

Recently, the classical Cramér-Lundberg model was studied under the additional
assumption that the insurer has the opportunity to invest into a stock index
which is modelled by some geometric Brownian motion. Unfortunately, it is dif-
ficult to determine the corresponding ruin probability W(u) with respect to the
initial reserve u of the insurance company. Hence, one concentrates on the adjust-
ment coefficient of the model which is defined as the largest constant R fulfilling
U(u) < Ce ® with C > 0 for all u. It was discovered that amongst all invest-
ment strategies which exclusively depend on the current wealth the adjustment
coefficient is maximized by a strategy which invests a constant amount into the
stock index.

This work aims to derive corresponding assertions for the two time inhomogeneous
Poisson models mentioned above. The two models are consequently considered
with the additional opportunity to invest into a stock index which is modelled
by a geometric Brownian motion. Since a constant investment strategy is op-
timal in the classical Cramér-Lundberg model only investment strategies which
exclusively depend on the respective environmental process are admitted. Using
martingale methods it follows for both models that amongst all admissible strate-
gies the corresponding adjustment coefficient is again maximized by a constant
investment.

Further, the Markov-modulated Poisson model with investment is approximated
by some Markov-modulated Poisson model without investment in this work. Us-
ing this approximation it is shown how to find a representation for the adjustment
coefficient of the Markov-modulated Poisson model under some fixed investment
strategy. Eventually, a pointwise comparison between the ruin probabilities of the
Markov-modulated Poisson model and its associated classical Cramér-Lundberg
model with averaged parameters under the same constant investment strategy is
given.

Keywords: Ruin probability, adjustment coefficient, optimal investment,
Markovian environment, periodic environment, martingale methods, diffusion
approximation.
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Chapter 1

Introduction

In general risk theory is concerned with the business of insurance companies and
in particular with questions of solvency. The study of risk theory was initiated
in the first half of the last century. It started with the basic model in risk theory,
the so-called classical Cramér-Lundberg model. In this model claim arrivals as
well as claim sizes are homogeneous in time and the insurance company receives
premiums at a constant rate. Later, it turned out that time homogeneity is not a
realistic assumption for certain areas of insurance. Different time inhomogeneous
risk models were therefore introduced during the second half of the last century.
Amongst them models in a stochastic Markovian environment and respectively in
a deterministic periodic environment. Recently, the classical Cramér-Lundberg
model was studied under the additional assumption that the insurer has the
opportunity to invest into a stock index which is modelled by some geometric
Brownian motion. It was discovered that the ruin probability is minimized by
investing a certain constant amount into the stock index if the initial reserve is
sufficiently large. This work now deals with optimal investment strategies for risk

models in a Markovian and respectively a periodic environment.
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1.1 Risk theory

The basic model for the time evolution of the reserves of an insurance company
is the risk reserve process. Depending on the initial reserve of the insurance
company, denoted by u > 0, the risk reserve process R(u) := {R;(u),t > 0} is
defined by

Ny
Ri(u) :==u+ct — ZUk
k=1

where ¢ > 0 is the premium rate over time, N; is the number of claims which
occur until time ¢t > 0 and Uy, is the claim size of the k' occurring claim. Note
that the process R(0) is often called the surplus process whereas the process
S = {S,,t > 0} defined by S, := S Uy — ct is known as the claim surplus

process.

In this work we assume that the claim sizes have exponential moments
which means that for every claim U, the expectation E(e"U*) is finite for
some r > (0. This case is often referred to as the small claim or respectively
the light-tailed case. The large claim or respectively the heavy-tailed case where
E(e"*) is infinite for all 7 > 0 is omitted in this work. Hence, we only summarize

results for the small claim case in that what follows.

In risk theory the ruin probability in infinite time W(w), or ruin probability for
short, is defined as the probability that the risk reserve process ever drops below

zero provided that the initial reserve is given by u > 0, i.e.

U(u) := P(%IzlgRt(u) < 0> .

The ruin probability is obviously of huge interest for the insurance company.
However, only in certain cases we are able to calculate the ruin probability ex-

plicitly. Hence, the so-called Lundberg inequality is often considered which means
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that we choose R as large as possible such that
U(u) <C e Ru

holds for all © > 0 where C' < oo is some constant. The right hand side of this
inequality is then called the Lundberg bound for the ruin probability ¥(u) and

R is called the adjustment coefficient of the model.

The classical model in risk theory is the compound Poisson model which is broadly
known as the classical Cramér-Lundberg model. In this model the claim ar-
rival process N := {N;,t > 0} is a standard Poisson process and the claim
sizes are independent and identically distributed with some common distribution

concentrated on (0, c0).

Some of the main ideas were introduced by Lundberg [Lun1903| whereas the first
mathematically substantial results were given in Lundberg [Lun26| and respec-
tively Cramér |Cra30]. Meanwhile, it is well known for the small claim case that
the ruin probability in this model decreases exponentially fast with the initial

reserve of the insurer.

Since it turned out that the time homogeneity of the compound Poisson model
is not realistic for certain areas of insurance, as for example car insurance where
weather conditions play a major role for the occurrence of accidents, the Markov-
modulated Poisson model has become more and more popular over the last
decades. In this model the claims are not assumed to be homogeneous in time
but determined by an irreducible Markov process on some finite state space, the
so-called environmental Markov process. It is assumed that the intensity of the
arrival process and the claim size distribution vary depending on the current state
of the environmental Markov process. The Markov-modulated Poisson model was

first introduced by Janssen [Jan80| and Reinhard [Rei84]. A more comprehensive
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treatment as well as a comparison with the classical compound Poisson model

can be found in Asmussen [Asm89] and Asmussen et al [AFR 95|, respectively.

Another possibility to get away from the time homogeneity of the classical com-
pound Poisson model is to consider a deterministic periodic environment instead
of the stochastic Markov-modulated environment. In such a periodic Poisson
model the claim arrival process is a Poisson process whose intensity is given by
a deterministic periodic function. Also the claim size distribution is assumed to
depend periodically on its arrival time where the period is the same as for the
intensity function. The periodic Poisson model has for example been studied in
Beard et al [BPP84|, Dassios and Embrechts [DE89| or Asmussen and Rolski
(JAR92| and [AR94]).

There are of course other time inhomogeneous models in risk theory as for
example the general Cox model which covers the Poisson models mentioned
above. This model where the claims arrive according to a Cox process is due to
Ammeter [Amm48|. Another time inhomogeneous model is the so called Sparre-
Andersen model where the occurrence of the claims is described by a renewal
process as introduced by Andersen [And57|. Good references for this model are

Thorin [Tho74| and a review from the same author [Tho82].

However, in this work we concentrate on the Markov-modulated and respec-
tively the periodic Poisson model. Note that we can compare each of these two
models with an associated compound Poisson model by averaging over the en-
vironment. In this regard we refer the reader to the books by Gerber |Ger79|,
Grandell [Grl91], Rolski et al [RSST99| or Asmussen [Asm00| which provide a
good survey of risk theory in general and the Poisson models mentioned above in

particular. In these sources one can also find results for the large claim case.
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All the Poisson models introduced above can certainly be expanded by adding a
further stochastic process to the underlying risk reserve process. Gerber |Ger70|
for example kept the time homogeneity of the classical compound Poisson model
but enlarged the corresponding risk reserve process by some diffusion component,

namely a Brownian motion. A somewhat more detailed study of this model can

be found in Dufresne and Gerber [DGI1].

Later, Furrer and Schmidli [FS94| considered a risk reserve process which is also
perturbed by a Brownian motion but where the claim arrival process is either
a renewal process or a Cox process with a so-called independent jump inten-
sity. Schmidli [Schm95]| expanded this considerations to the Markov-modulated

Poisson model which is perturbed by diffusion.

It has only been recently that the compound Poisson model was studied under the
additional assumption that the insurer has the opportunity to invest into a risky
asset. To the best of our knowledge, Paulsen et al (|[GP97] and [Pau98|) were
the first who incorporated a stochastic rate of return on investments. However,
in their model the entire wealth of the insurance company is invested into the
risky asset whose price process is modelled by another classical surplus process
which is assumed to be independent of the original risk reserve process. Frolova,
Kabanov and Pergamenshchikov [FKP02| investigated the same model but where
the insurer invests into a stock index whose price process is determined by some

geometric Brownian motion like in the classical Black-Scholes setting.

Later, Hipp and Plum [HPO0O| considered the case where the insurance company
may invest parts of its wealth into a stock index whose price process is given by
some geometric Brownian motion. They dealt with the question how to invest

into the stock index in order to minimize the probability of ruin. Using the
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Hamilton-Jacobi-Bellman equation a non-linear integro-differential equation for
the minimal ruin probability was derived and the existence of a solution as well
as a verification theorem was proved. For the case with exponential claim size

distribution and special parameter values they gave an explicit solution.

Using an exponential martingale method Gaier, Grandits and Schacher-
mayer [GGS03| showed that amongst all investment strategies which depend on
the current wealth it is asymptotically optimal to invest a certain constant amount
into a stock index in the sense that the corresponding adjustment coefficient is
maximized. At this, the price process of the stock index was again modelled by
some geometric Brownian motion. Eventually, Grandits [Grt04] as well as Hipp
and Schmidli [HS04] specified an asymptotic approximation for the minimal ruin

probability, the so-called Cramér-Lundberg approximation.



Chapter 1. Introduction 7

1.2 Outline of this work

After this introductory chapter we consider the Markov-modulated Poisson model
in the small claim case. In our model the insurer has the opportunity to invest
into a stock index whose price process is modelled by some geometric Brownian
motion. This model of course implies the corresponding compound Poisson model
which was treated in Gaier, Grandits and Schachermayer [GGS03|. They found
out that the adjustment coefficient of the compound Poisson model with invest-
ment is maximized by a constant investment strategy. In this connection, the
invested amount was allowed to be larger than the actual wealth or even negative
in their work. For the Markov-modulated Poisson model we consequently admit
investment strategies which only depend on the environmental Markov-process
and which allow to invest an arbitrarily large amount into the stock index even

if it is negative.

After introducing the Markov-modulated Poisson model with investment we ini-
tially determine the adjustment coefficient of this model when using any fixed
investment strategy. Our methods are based on an exponential martingale tech-
nique given in Bjork and Grandell [BG88| which is similar to the one used in
Gaier, Grandits and Schachermayer [GGS03]. The obtained adjustment coeffi-
cient is then maximized with respect to the applied investment strategy. It turns

out that the maximum is attained for a certain constant investment strategy.

Note that the Markov-modulated Poisson model under any constant investment
strategy becomes a Markov-modulated Poisson model which is perturbed by some
Brownian motion. We thus compare our assertions with a result for the Markov-
modulated Poisson model perturbed by diffusion given in Schmidli [Schm95].

Thereafter, we prove that the obtained constant investment strategy is in-
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deed asymptotically optimal in the sense that it minimizes the correspond-
ing ruin probability for a sufficiently large initial reserve. Eventually, the
Markov-modulated Poisson model and its associated compound Poisson model
under the respective optimal investment strategy are compared in terms of their

adjustment coefficients.

In the third chapter it is shown how to approximate the Markov-modulated Pois-
son model with investment by some Markov-modulated Poisson model without
investment. The idea is based on the fact that a diffusion arises as the limit of
properly scaled classical claim surplus processes where the claims are very small

and frequent as for example given in Grandell [Grl77].

In the second part of the third chapter we use the obtained approximation in
order to deduce results from what is known for the Markov-modulated Poisson
model without investment. On the one hand we derive an approximation for
the adjustment coefficient of the Markov-modulated Poisson model under an ar-
bitrarily fixed investment strategy. On the other hand the ruin probabilities
of the Markov-modulated Poisson model and its associated compound Poisson
model are compared directly when using the same constant investment strategy
in both models. For this comparison some additional assumptions on the model

are needed in order to apply a result in Asmussen et al [AFR95].

In the fourth and final chapter of this work the deterministic periodic Poisson
model is considered in the small claim case. As before the insurer has the opportu-
nity to invest into a stock index whose price process is modelled by some geomet-

ric Brownian motion. The chapter is organized analogously to the chapter about
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the Markov-modulated Poisson model with investment. Initially, we again admit
investment strategies which only depend on the periodic environment and which

provide to invest an arbitrary amount into the stock index.

After introducing the periodic Poisson model with investment the corresponding
adjustment coefficient is determined when using any fixed investment strategy.
We then maximize this adjustment coefficient with respect to the applied in-
vestment strategy. As in the Markov-modulated environment the maximum is
attained for some constant strategy. Later, we verify that this strategy is asymp-
totically optimal even amongst a broader class of investment strategies. The
periodic Poisson model and its associated compound Poisson model are finally
compared and it turns out that the optimal investment strategies and the asso-

ciated adjustment coefficients coincide for both models.



Chapter 1. Introduction 10

1.3 Notation

The underlying probability space is generally denoted by (€2,.4, P) and supposed
to be sufficiently large. Thus, almost surely or respectively a.s. means P-a.s. and

E denotes the expectation with respect to P.

Further, let G be any o-algebra. The probability measure P9 then denotes the
probability measure P conditioned under G. With respect to the probability
measure PY we consequently denote the expectation and the variance by EY

and Var?, respectively.

For the Markov-modulated Poisson model, IP; denotes the probability measure
P conditioned under the event that the environmental Markov process starts in

state 7 € F. Thus, E; denotes the expectation with respect to P;.

If two random elements X and Y have the same distribution we write X 2 V.
At this, the distribution or respectively the law of a random element X is the
image probability measure P o X!, Furthermore, we say that a sequence of
random elements (X”)neN of some metric space (S, m) converges in distribution
to a random element X of (S, m) as n — oo, denoted by X,, = X, if

lim E( f(X,)) =E(f(xX))

n—oo

for all real-valued, continuous, bounded functions f on S. In this definition the
metric m apparently determines which functions on .S are continuous. For random
variables X, X7, Xo, ... with values in (R, |- |) it turns out that X,, = X denotes
the commonly known convergence in distribution. The convergence of stochastic

processes is defined in chapter 3 in terms of an adequate metric space.

Moreover note that the same symbol, say F', is used for a distribution F' and its

cumulative distribution function F(z), i.e. F(x) = [*__dF(t).



Chapter 1. Introduction

11

Finally, the following notation is used throughout this work:

I,

diag(ai;i e{l,... ,d})

strictly positive integers {1,2,...}
non-negative integers N U {0}

real line (—o0, 00)

strictly positive real line (0, c0)

left limit }:1%1 f(t)

tail of F(x), i.e. F(z) =1— F(z)
mean of F) i.e. up = /a:dF(x)
indicator function of the event A € A,
ie. I[(A)(w)=1ifand only ifw e A
indicator function of the set B C R,
i.e. 0p(x) =1if and only if z € B
Kronecker’s symbol, i.e. §;; = d7;3(4)
d x d identity matrix

d x d diagonal matrix with diagonal
elements a; fori=1,...,d

marks the end of a proof

marks the end of a remark or an example



Chapter 2

The Markov-modulated Poisson

model with investment

In this chapter we consider the risk reserve process of an insurance company in a
Markov-modulated environment where the insurer additionally has the opportu-
nity to invest into a stock index. The price process of this stock index is modelled
by a geometric Brownian motion and the invested amount of money only depends
on the current state of the environmental Markov process. It is assumed that the

claims have exponential moments.

After introducing the model we determine the adjustment coefficient of the
Markov-modulated Poisson model under any fixed investment strategy in
section 2.2. In the following two sections this adjustment coefficient is maxi-
mized with respect to the investment strategy. In section 2.5 we then show that
the resulting adjustment coefficient and the corresponding investment strategy
are indeed optimal. Finally, the adjustment coefficients of the Markov-modulated
Poisson model and its associated compound Poisson model are compared under

the respective optimal strategy.

12
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2.1 The model

In the Markov-modulated Poisson model the premium rate and claim arrivals are
not homogeneous in time but determined by a Markov-modulated environment.
This environment is described by a continuous-time Markov process which is
defined on some finite state space £ = {1,...,d}. We denote this environmental

Markov process by J and its intensity matrix by @ = (qij) It is generally

i,jeE"
assumed that the environmental Markov process is irreducible. Since the state
space E is finite this implies that J has a stationary distribution which is denoted

by 7. Unless otherwise stated the initial distribution of .J is arbitrary.

The premium rate and the claim arrivals are influenced by the environmental
Markov process in the following way. At time ¢ > 0 the premium rate is given by
cj, where ¢; > 0 for ¢ € E, i.e. in time intervals when the environmental Markov
process is in state ¢ € E' we have a linear income at constant rate ¢;. Further,
the claim arrival process N := {V;,t > 0} is assumed to be a Markov-modulated

Poisson process. This means that N has intensity {\j,t > 0} with \; > 0

for: e E.

Moreover, a claim U which occurs at time ¢ > 0 has distribution B, where
B; is some distribution concentrated on (0,00) for ¢ € E. Conditioned under
the environmental Markov-process J, the claims (U )gen are as usual assumed to
be mutually independent and also to be independent of the Markov-modulated
Poisson process N. The corresponding Markov-modulated risk reserve process

R(u) := {R¢(u),t > 0} is finally given by

t Ni
Ry(u) :u+/ cy, ds—ZUk (2.1)
0 k=1

where u > 0 is the initial reserve of the insurance company.
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Furthermore, let the insurer have the opportunity to invest into a stock index
or say some portfolio. The price process S := {S;,t > 0} of this portfolio is

modelled by a geometric Brownian motion with dynamics

Here, W is a standard Brownian motion independent of J as well as R(u) and
a€R, b > 0 are fixed constants. Let K; be the amount of money which the
insurer invests into the portfolio at time ¢ > 0. We then call the process
K :={K;,t > 0} the investment strategy of the insurer. Note that K; can also
be negative or even larger than the actual wealth for any ¢ > 0. This fact can
respectively be interpreted as the possibility to sell the portfolio short or to bor-
row an arbitrary amount of money from the bank. Further, K = 0 means that

nothing is invested into the portfolio, i.e. K; =0 for t > 0.

It is assumed throughout this chapter that the invested amount of money only
depends on the current state of the environmental Markov process. This means
that there exists some function k : E — R such that K; = k(J;) for t > 0. As a
shorthand notation for this fact we write K = k(J). If at time ¢ > 0 the insurer
invests the amount K into the portfolio and the remaining part of his reserve into
a bond which yields no interest, the wealth process Y (u, K) := {Y;(u, K),t > 0}

is given by
Yi(u, K) / —2dS, = Ry(u /K dWap(v), t > 0. (2.2)

Here, W, denotes the Brownian motion with drift defined by W, ,(¢) := at + bW,
for t > 0 where a € R is called the drift parameter and b > 0 the volatility of the

process. For notational reasons, let the surplus process X (K) := {X;(K),t > 0}
be defined by X;(K) = Yi(u, K) — u for t > 0.

Note that the investment strategy K should of course be defined by K; = k(J;-)
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for ¢ > 0. Otherwise the insurer does not know how much to invest at a certain
time ¢ > 0 since K; depends on the state of the Markov process at time ¢ > 0.
However, we see that the strategies K = {k(J;),t > 0} and {k(J,-),t > 0}
coincide for a fixed function k£ : £ — R except at points of time where the
environmental Markov process makes a jump to another state. Thus, the wealth
process Y (u, K) defined in (2.2) and the wealth process defined by (2.2) with K
replaced by {k(J;-),t > 0} clearly coincide almost surely. It is therefore sufficient
to consider the case where K is defined by K; = K(J;) for t > 0.

Next, we define the time which the environmental Markov process J spends in
some state ¢ € E until time ¢ > 0 by &(t), i.e. &(¢) fo 0giy(Js) ds. Let us
then consider independent standard Poisson processes N, ... N which are
also independent of J. It is assumed that N := {Nt(i),t > 0} has intensity \;
for i € E. Moreover, let (U,El))keN, o (Uéd))keN be independent sequences of
random variables which are also independent of the processes N ... N(@
and J. It is further assumed that the random variables (U, ,il)) rken are independent
and identically distributed with distribution B; for i € E. Then,

©)
€;(t)

Rt(u)2u+/ ds=> N U t>0. (2.3)

i€eE k=1

Furthermore, let W® ... W@ be independent standard Brownian motions
which are also independent of the risk reserve process as given in (2.3) including
the environmental Markov process J. We then have

Yi(u, K) —u+/ ¢y, ds—ZUk+a/ K ds—H)/ K dW,

0 k=1

E (t)

_U‘i‘/CJSdS—ZZUl)‘i‘GZ/ ds—i—bZ/ i) dw

el k=1 i€l ickE
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Néity
:u+/C]Sd5+aZk &i(t —|—bZk ZZUk ,t>0.
0 icE icE i€E k=1

Without loss of generality we can furthermore assume that the premium rate
is the same for all environmental states. Note that we are only interested

in the ruin probability in infinite time. By applying the time transformation

~ . t ¢
Yi(u, K) = Yy (u, K) with T(t) := [, o
quently does not change. We can therefore assume without loss of generality

that ¢; = ¢ for some ¢ > 0 and all i € FE.

Nevertheless, the parameters of the Markov-modulated Poisson model change
accordingly. The time transformed environmental Markov process J which is

defined by jt := Jr() for t > 0 has intensity matrix (f Qij)ije 5 and thus station-

Ci T4
ZjeEcj Ty

E(t) = [7V 61 (J,) ds is equal to S &(t) for all t > 0 and i € E. Finally, the

ary distribution @ where 7; := . We also have to notice that obviously

time transformed standard Poisson process N@ defined by N N:(Fi()t) fort >0

has intensity £ A; for i € F.

Hence, let us from now on consider the wealth process Y (u, K') defined by

(4)

i (t)
Yi(u, K) s=u+ct+ay k@) &) +bY k@)W =S U (24)
€l €l i€l k=1

for t > 0. Note, if the investment strategy is constant over all 7 € F, i.e. if K, =k
for all t > 0 and some k € R, then (2.4) becomes

@)
Ne )

Yi(u, K)=u+(c+ak)t+bkW, =Y > U t>0. (2.5)

1€l k=1

Let the natural filtration of the wealth process Y(u, K) be denoted by

FY :={FY,t >0} and the natural filtration of the environmental Markov pro-
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cess J by F:={F/,t > 0}. We then define the filtration F := {F;,t > 0} by
Fi = .7-?/ Vv Fgo for ¢t > 0. Note that Fy = .7-"0‘7O so that K, is apparently Fo-

measurable for all ¢ > 0.

We generally suppose that the claims have exponential moments. This means
that for every ¢ € E there exists a possibly infinite constant r$) > 0 such that

the centered moment generating function h; defined by

hi(r) == /OO e dBi(x)—1,r >0,
0
is finite for every r < r$). Tt is moreover assumed that hi(r) — oo as r — r$d.
Considering any fixed ¢ € F this assumption implies that h; is increasing, convex
and continuous on |0, ) ) with h;(0) = 0. The important part of this assumption
is that h;(r) < oo for some r > 0. Thus, the tail of the distribution B; decreases
at least exponentially fast. By this condition the lognormal and Pareto distribu-
tion are for example excluded. Further, the case when lim, _ @ hi(r) < oo and
h(r) = oo for r > r$) is not allowed. An example that such cases exist is for

example given on page 3 of Grandell |Grl91].

In this work we are interested in the ruin probability in infinite time which is
defined as
U(u, K) = P(%%Yt(u,K) < o)

depending on the initial reserve u > 0 and the investment strategy K = k(J).
Furthermore, let

r(u, K) = inf {t > 0; Y;(u, K) < 0

be the corresponding time of ruin. It is obvious that ¥(u, K) = P(7(u, K) < 00).

In this chapter we study the so-called Lundberg inequality

U(u, K) < Ce B (2.6)
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with C' < oo for all w > 0 where K = k(J) is some fixed investment strat-
egy. At this, the right hand side of (2.6) is called Lundberg bound for the ruin
probability W(u, K) and the largest possible R such that (2.6) holds is called
the adjustment coefficient or Lundberg exponent of the model. The aim of this
chapter is to maximize this adjustment coefficient with respect to the invest-
ment strategy K = k(J). We then call such an optimal adjustment coefficient
the adjustment coefficient of the Markov-modulated model under optimal in-
vestment and the corresponding strategy the optimal investment strategy. It
turns out that this optimal investment strategy is constant over all environmental

states 7 € F.

Note that the classical compound Poisson model without investment coin-
cides with the present Markov-modulated Poisson model with investment when
E ={1} and K = 0. As for example given in Asmussen [Asm00]|, the adjustment
coefficient of the compound Poisson model is given as the unique strictly positive
solution of the equation

AR(r) = cr
where X := X\ and h(r) := hy(r).

It can be found in the same book that the adjustment coefficient of the Markov
modulated model without investment is given as the strictly positive solution of

the equation R(r) = 0 where £(r) is that eigenvalue of the matrix
Q+ diag()\ihi(r) 1€ E) —crly, r>0,

which has maximum real part. Here, diag(\;hi(r);i € E) is the d x d diagonal
matrix with diagonal elements \;hi(r), ..., \ghq(r) and I, is the d x d identity

matrix.
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Another very important value in risk theory is the so-called safety loading.
The Markov-modulated Poisson model has the property that there exists a
constant ¢ such that lim; .. % Ziv;l Ur = ¢ almost surely. The interpretation
of ¢ is as the average amount of claim per unit time. Without investment it is
intuitively clear that independently of the initial reserve the insurance company
will get ruined if the premium rate does not exceed ¢. In this context the rel-
ative safety loading is widely used. For the Markov-modulated model without
investment it is defined as p = <. It is in fact well known for this model that

independently of v > 0 the insurer gets almost surely ruined whenever p < 0,

confer Asmussen [Asm00).

Let us now consider the Markov-modulated Poisson model with investment. For
our purposes it suffices to consider the absolute safety loading p*) with respect
to some investment strategy K = k(.J). It is defined as the almost sure limit of

%Xt(u, K) as t — oo. If this limit almost surely exists we thus have
.1 a.s. (K)
thm ;Yt(O,K) = p).

We refer to p&) as the safety loading with respect to K = k(J) unless otherwise
stated. Under some regularity assumptions it is later shown that p) > 0 is
a necessary and sufficient condition for an adjustment coefficient to exist where

K = k(J) is some fixed investment strategy.

As mentioned in the introductory chapter, Gaier, Grandits and Schachermeyer
|GGS03] considered the compound Poisson model with the additional opportunity
to invest into a stock index. The price process of the stock index was modelled by
a geometric Brownian motion in the same way as described above. They found
out that amongst all investment strategies which depend on the current wealth a

constant strategy is optimal in the sense that it maximizes the corresponding ad-
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justment coefficient. This optimal strategy K™ is defined by K} = &5 for ¢ > 0.
At this, R* is the adjustment coefficient of the compound Poisson model under
optimal investment and determined as the unique strictly positive solution of the

equation

CL2

AR(r) =cr + oTE

where we again put A := Ay and h(r) := hy(r).

The authors also showed that such a solution and therefore an adjustment
coefficient exists as long as the drift parameter a of the Brownian motion with
drift W, ; does not equal zero. Note that this is even the case if the safety loading
of the underlying model without investment is not strictly positive. However, in
the case where a = 0 the safety loading of the model without investment has to

be strictly positive in order to assure that an adjustment coefficient exists.
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2.2 The adjustment coefficient for any fixed in-

vestment strategy

Throughout this section we consider an arbitrary but fixed investment strat-
egy K =k(J). In order to obtain a Lundberg bound for the ruin probability
U(u, K) we choose an exponential martingale technique as given in Bjork and
Grandell [BG88| which goes back to Gerber [Ger73]. An appropriate exponential

martingale is given as follows.
Proposition 2.1. Let the investment strategy K = k(J) and u,r > 0 be fized.
Then, the process M (u, K,r) defined by

exp ( —rYy(u, K))
exp (zieE [\ihi(r) + 3r2B2k(i)2 — r(c + ak(i))}g,.(t))

Mt (u, K, T) =
fort >0 is a martingale with respect to F.

Proof:

Let ¢t > 0 and ¢ € E. Note, Proposition 2.13 in Yong and Zhou [YZ99],
page 20, for example shows that under the probability measure IP’( . ‘]:go)(w),
where w € 2 is fixed, the random variable () is almost surely a deterministic
constant &(t)(w). This implies that E(eiaw&(ﬁ” | FL) = 560 as. for all a € R

as well as P(Ngzt = m}fgo) = e"\i% a.s. for all m € N. At this, the first

)

o2
equality follows since the process (e“Wt—Tt) is a martingale whenever W is a

t>0

standard Brownian motion. It therefore follows that almost surely
J . 7 J . 7
]E]'—oo <eXp ( — rbz k('l) Wﬁ(l()t))) = HE]:OO <eXp ( — T'bk(l) Wﬁ(z()t))>
i€E i€E

Lo (P )

. 2
S
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and
Neito Nejto
E7x (exp Z Z U(Z ) HEFJ (exp (r Z U,g”))
i€E k=1 i€k k=1
Net
= HEf (Z exp (r Z U,g”) I(Nggt) = m))
1€EE m=0 k=1
Nejto
~TIY [ (3 07) |58 = ] 27 (0 =
i€ m=0 k=1
LI () P v = )
1€ m=0 '
I ITe(e ’"U“)PF‘] (N =m)
1€ m=0 k=1
SIS (4 e D)
i€E m=0 m

e = (U4 Bi(r)N&i(6)™
RIS ( ) )

i€k m=0
=[50 = exp (Z Ai hi(r) &(ﬂ) :
icE icE

Putting the things together we consequently obtain

E[M;(u, K,r) }.7:3]

= M(u, K,r)
exp ( — b k@) W — W Y S Vit U(Z))
pFL icE & () &i(s) i€E Lup,_ NG )( 41 k f-Y]
exp (Z,EE (Niha(r) + 3r202k(i)2) (&(t) — 52-(5))) ’
= M(u, K,r)

N<Z)t =&, (s i
E% (exp ( rb ZzeE (i) W, ()) —¢ (s))> E7s (exp (T >icE kill() e Uli )))

exp ( Lier AL (G = 6(9))  exp (Liep M) (6() — &(5)) )
= M(u, K,r)
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for 0 < s < t. Since My(u, K,r) is positive for all ¢ > 0 this also implies that
the process M (u, K, r) is integrable. It is moreover easy to see that M (u, K, r)
is measurable with respect to F. Thus, M (u, K,r) is an exponential martingale

with respect to the filtration F.

If » < 0 the inequality ¥ (u, K) < e "™ is trivially fulfilled for all v > 0 where
K = Ek(J) is any fixed investment strategy. For r > 0 an upper bound for the
ruin probability W(u, K) can now be found using the exponential martingale from

Proposition 2.1.

Proposition 2.2. Let the investment strategy K = k(J) and r > 0 be fized.
Then, we have

U(u, K) <e ™C(K,r)

for all w > 0 where

C(K,r) =E <Sup exp (Z [Aihi(r) 4 ”iﬂ (et ak(i))] i(t))) .

t20 i€E

Proof:

For simplicity reasons let us denote the time of ruin by 7 := 7(u, K). We have
already shown in Proposition 2.1 that the process M (u, K, r) is a martingale with
respect to the filtration F. Hence, also the stopped process M (u, K,r) defined

by M;(u, K,r) := My, (u, K,7) is a martingale with respect to F.
For r > 0 and u > 0 it therefore follows that
e = Mo(u, K,r) = E[Mt(u, K, r)‘fo] — E7% (]\;[t(u, K, 7’))

_ B (Wu, K.r)I(r < t)) 4 ET <Mt(u, Kr)I(r > t))
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> B [MT(u, K, 7”)‘7’ < t} P7% (7 < t)
g exp (C;?-(f’ K)) y t]
exp (Tiep M) + 540 — (e + ak(i)) | &(7))
PP (r < t)
S PP (1 < t)
N SUPg<y<; EXP (ZzeE [Aihi(r) + % —r(c+ ak(z))} fi(v)>
and hence
P7% (1 < t)
2b2k 7\ 2
<e ™ sup exp Z [)\ihi(r) + O r(c+ ak(z))} &Gv) | -
Osvst i€k 2
Letting ¢ — oo and taking the expectation on both sides we obtain
U(u, K) =P(1(u, K) < o0) < e ™C(K,T).
O

We therefore have to maximize r > 0 under the restriction that C'(K,r) < co in

order to get the asymptotically best possible upper bound using Proposition 2.2.

Hence, put

RE) .= sup {7’>0;C(K,r) <oo}. (2.7)

We consequently say that R) does not exist if C(K,r) = oo for all r > 0.

The way to find such a maximizing constant R is similar to what Bjork and

Grandell [BG88| do for the ordinary Cox model. Let the time epoch of the

n'™™ entry of the environmental Markov process to state j € E be denoted by .

)
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This means we recursively define
7U) .= inf {t > Tflj_)l s - FE g = j}

for n € N where Téj) = 0. Since Tl(j) is often used we put 7V := Tl(j). For j,ke E

we now have to consider the function ¢;(§) defined by

qb,(f;)(r) = By (exp (Z [/\ihi(r> + &;@‘(1)2 — T(c + ak‘(z))] fi(T(j)))>

i€E
where r > 0. Using these functions we are able to state a necessary condition for

C(K,r) being finite.

Proposition 2.3. Let K = k(J) and r > 0 be fized. Then, (b%()(r) < 1 and

gb,(f;) (r) < oo for all k,j € E is a necessary condition for C'(K,r) < oo.

Proof:
Let r > 0 and K = k(J) be fixed. For any given w €  the function
Y oicE [/\ihi(r) + w —r(c+ ak(z))] &(t) is piecewise linear in ¢t. Hence, it
suffices to examine exp (ZzeE [)\ihi(r) + w —r(c+ ak‘(z))] &(t)) at the
()

jump times (Tn j € E, of the environmental Markov process J. We obtain

)nEN’

C(K,r)=E (Sup exp (Z |:>\ihi(r) + w —r(c+ ak(z))] @(t))) < 00

20 1€l

< E <max sup exp (Z {)\ihi(r) + w — r(c + ak(z))} &(ﬂﬁ))) < 0

€ neN icE
~B <sup exp (Z () + 2 e a()] &-(Tfﬁ’))) < o0
neN icE 2
VjeE (2.8)

where the last equivalence follows since FE is finite.
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Without loss of generality we now assume that Jy = k and consider any fixed

j € E. For n € N define
ZU(K,r) = Z [Aihi(r) + % —r(c+ ak’(z))} <5z(77(f ) — fi(Tr(Lj—)O)

el

and

W,gj)(K, T) = exp (Z [)\ihi(r) + w — r(c + ak‘(z))} 51(7‘,(1]))>

S
= exp (Z ZUN(K, r)) = H exp (Z,(,Z)(K, r)) :
m=1 m=1

For simplicity reasons put Z¢ = Z9(K,r) and W := WY(K,r), n € N.
Since the Z% are independent for all n € N and also identically distributed for
n > 2 we get

B (77) ~ B2 (A7) TTE () = 00 (6000)

m=2

Thus, ¢,(fj() (r) < oo is clearly a necessary condition for C'(K,r) < co. Moreover,

qb%{) (r) > 1 implies Ey (Wéj)) — 00 as n — 0o and therefore C'(K,r) = 0.

Now suppose that C(K,r) < oo and ¢§§()(T) = 1. Recall that the Z{ are inde-
pendent and identically distributed for n > 2. (Wéj ))neN is therefore a martingale

with respect to its natural filtration since

EWL W] = WOE (e44) =W {0 (r) = W@ neN,

Jensen’s inequality yields exp (E(Zéj))) < E(ez,(j>) = gbgf)(?“) = 1 and thus
E(Zflj)) <0 for n > 2. Now, C(K,r) < oo implies ¢,(§)(r) < oo and there-

fore Z9 °Z oo in particular. It hence follows that lim,_o S Z ,gj ) %% o0 and

consequently lim,, .. W)
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We have already shown in (2.8) that C'(K,r) < oo implies E(sup,,cy W,Sj)) < 00
which means that (Wéﬂ ))neN is uniformly integrable. By standard martingale

theory the existence of a random variable Wég) with Wéé) = limy, o W,gj ) and

EWD W) = Wi for all n € N follows.

Knowing that lim,, .. %% 0 we conclude that W “ 0 and accordingly

W “2 0 for all n € N in contradiction to
; 202k (7)? ; a.s.
W = exp (Z [Aihi(r) + % —r(c+ ak(z’))} gi(@m)) <0
i€E
for example. Hence, we cannot have C'(K,r) < oo and gbgf)(r) = 1 for some

7 € E at the same time.

Let us take a closer look at the environmental Markov process J. Remember

that we denote its intensity matrix by @ = (gij)i jer. Putting ¢; := —¢;; for i €

E the corresponding embedded Markov chain has transition probability matrix
qij

P = (pij)ijer defined by p;; := (1 — 6;;)=2 where §;; is Kronecker’s symbol.

ai
For n € N let o) be the time which the environmental Markov process J spends
in state j € E when the process makes its n'" visit to this state. It is well known
that conditioned under the embedded Markov chain the o’ are independent for
all n € N and j € E and that the sequence (a,({ ))neN is furthermore identically

distributed with a%j ) ~ Exp(q;), j € E. For simplicity reasons put o) := 09 ),

We now define the function ¢§-K) by

¢\ (r):=E (eXp ({Ajhj(r) + w —r(e+ ak(j))} a(j)>)
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for r > 0 and j € E. It thus follows from what is mentioned above that

(bl(é‘() (r) = & (r) prs + Z ") (1) iom Qﬁ? (1) (2.9)
mekr
m#j

and in particular

o () =37 () i dn (1) (2.10)

meFkE

for all » > 0 and 7, k € E. Having Proposition 2.3 in mind we initially show that

it suffices to consider gb%()

Proposition 2.4. Let K = k(J), r > 0 and j € E be fized. Then, gb%()(r) < 00

implies gbg()(r) < oo forallk € E.

Proof:

Suppose that gﬁ,(é.() (r) = oo for some k, j € E. It then follows from equation (2.9)
that also qﬁ%) = oo for all m € E with p,,, > 0. Since the environmental Markov
process J is assumed to be irreducible we gradually get ¢£,IL§) =oo for allm € F.

Using equation (2.10) we finally conclude that gb%() (r) = oc.

Let j € E. Recall, that the functions h; are convex for all i € E. It therefore

follows that
2b2k‘ 7\ 2 )
> [Aihi(r) + % —r(c+ ak(i))} & (1)
i€E
and consequently also
Zka 7\ 2 )
exp <Z [Aihi(r) + % —r(c+ ak(z))} &(T(])))
1€ER
are almost surely convex functions in r since the exponential function is convex

and increasing. Taking the expectation preserves convexity. Thus, the function



Chapter 2. The Markov-modulated Poisson model 29

qﬁgK) is convex and therefore continuous on the interior of its domain. Addition-

ally, it directly follows from the definition of gzﬁ%-() that

o0)=1. (2.11)

Jj

According to the previous two propositions gﬁ%{) (r) < 1forall j € E is a necessary
condition for C'(K,r) to be finite. In order to show that this is also a sufficient
condition for C'(K, ) < oo we have to consider the following functions. For r > 0,

§>0and j,k € E let ¢\ (r,8) be defined by
o1 (r,0)

r20?k(i)? _ )

= Ek exp (1"‘5)2 )\lhz<7a) +T —r(c—i—ak(z)) fi(T‘] ) .
i€E

Note that (;5,(5) (r,0) = qb,(g) (r). Using these functions we can also give a sufficient

condition for C(K,r) < oo .

Proposition 2.5. Let K = k(J) and r > 0 be fized. The existence of a § > 0
such that ¢§-§() (r,0) <1 forall j € E is a sufficient condition for C(K,r) < oo.

Proof:
Recall the definition of the processes (Z,Sj))neN and (WTSJ ))neN in the proof of
Proposition 2.3. This time we consider the process ((WT(LJ ))1+5)n€N for an arbitrary

0>0,ie.

(W) = exp <<1 #0)3 [n) + 5 ek aka) @-@9)))
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7)

Note that By (W)1+9) = 6 (r,8) and (W), )1+ = (Wi)1+5 . (920 with
E(e(H‘;)Zﬂl) = gbx-() (r,0) foralln € N, k,j € E and r > 0.

Let » > 0 and suppose that there exists a 6 > 0 such that gb%()(r, d) < 1 holds

for all 7 € E. For this 6 > 0 and any given j € E, ((V[/ng))”‘s)n6 is a positive

N

supermartingale with respect to its natural filtration since

E |:(WTE‘21)1+(5‘(W(j))1+5:| = (Wéj))ljt& E <6(1+5)Z§£1>

n

— (WO ) (1 5) < (WU p e N.

A supermartingale inequality yields
alP’(sup (W L))+ > a) < ]E((Wl(j))Hé) + sup E(min {0, (Wéj))“r‘s})
neN neN

for « > 0 as for example shown in Lemma 3.21 in Elliott [ElI82|, page 23.
Analogously to the proof of Proposition 2.4, one can show that (b%() (r,0) < 1
implies gb,(é()(r, J) < oo for all k € E. Hence, E((Wl(j))”5) is finite under our
assumptions. Since (Wéj ))”5 is strictly positive for all n € N we therefore have
aP(sup,eyn (W4 > a) < E((Wl(j))1+5) =: D < oo for all @ > 0. This

implies

for all t > 0 and therefore

E (sup W,gﬁ) :/ P (sup Wi > t) dt < 1+D/ 1) gt < 0.
0 1

neN neN

Together with the fact that C(K,r) < oo if and only if IE( SUD,en Wéj)) < oo for

all 7 € E the result follows.
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Using the previous propositions we can now state an alternative definition

K)

for R¥) based on the functions ¢§.j for j € F.

Proposition 2.6.

R¥) = sup {r > 0;(;5%()(7“) <1Vje E} (2.12)

Proof:

At first, put R¥) = sup {r > 0;(255?)(7') <1VjeFE}. If R does not exist
we must have some j € E such that ¢,;(r) > 1 for all » > 0. It then follows by
Proposition 2.3 that C(K,r) = oo for all 7 > 0 which means that also R%) does

not exist.

Now, let us assume that R exists and consider any 0 < r < R¥). Furthermore,
choose some § > 0 sufficiently small such that 7/ := (1 + 6)r < RU). Since Cbgf)

is convex with ¢§~§() (0) =1 it follows that (b;-;() (r') <1, 5 € E. We then get
o5 (r') = o5 (r,0)

=E; (exp (Z [Aihxr’) + %() —1'(c+ ak@)] 51-(7“)))

—exp ((1 +0) Z [Aihi(r) + LS(N _ r(c + ak(@))} &(T(j)))>
=E; (exp (—(1 +9) Zr(c + ak(z‘)) gi(T(j)))
) [exp (; |:)\ihi(<1 + 5)r) +(1+ 5)27"1’27]“@] fi(T(j))>

— exp (ZE {(1 + 0)Nihi(r) + (1 + 5)&5(”2} gi(ﬂj)))] )

>0

since (1 + 6)? w > (14 9) w and h;((1 + 0)r) > (1 4 6)hy(r) for
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each i € E. At this, the last inequality follows due to the fact that h; ist con-

vex with h;(0) =0 for all 7 € E.

We therefore have gb%()(r, J) < qb%-() (r') < 1 for all j € E, i.e. there exists a 6 > 0
such that gb%()(r, 9) < 1. This means that qu() (r) < 1for all j € E implies the
existence of a § > 0 such that qﬁ%-() (r,0) < 1 for all j € E. Since the latter is
a sufficient condition for C(K,r) < oo we obtain R¥) < R¥) | On the other

hand, it follows from Proposition 2.3 that R < R Thus, RF) = RF),

From now on we use (2.12) as the definition of R%). Consequently, R) does not
exist if there is an environmental state j € E such that gb%{)(r) > 1 for all r > 0.

Note, if R¥) exists then r € (0, R) particularly implies that C(K,r) < oo.

We are now able to state the first important result of this work. In Proposi-
tion 2.2 we have already given an upper bound for the ruin probability ¥(u, K).
Unfortunately, we have not been able to give any conditions ensuring that the
given upper bound is finite so far. Using all the results above we can now make

up for this.

Theorem 2.7. Consider any fixed investment strateqy K = k(J) and suppose
that R%) defined by (2.12) exists. For any r < R¥) we then have

U(u, K) <e ™C(K,r)

with C(K,r) < oo for all u > 0.

Proof:

The inequality of interest is trivial for all » < 0. Recalling that r € (0, R%))
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implies C(K,r) < oo as shown in the proof of Proposition 2.6 the assertion

follows.

Note that the inequality in Theorem 2.7 holds for » < R®). Theorem 2.21 in

section 2.5 furthermore shows that under some mild regularity conditions we have

U(u, K
lim —(li’ ) = 00
u—oco e Tu

for all » > R¥). From now on we thus refer to R¥) as the adjustment coef-
ficient of the Markov-modulated Poisson model with respect to the investment

strategy K.

Recall, in this work we are interested in the investment strategy K = k(J) which
maximizes the adjustment coefficient R). Hence we do not investigate here if

the Lundberg inequality given in Theorem 2.7 also holds for R itself.

Before R%) is maximized with respect to K = k(J) in the following section, we
conclude this section with stating conditions which ensure that the adjustment
coefficient R) exists for a given investment strategy K = k(.J). In order to
do so we need the following relation between the function ¢§~§{) and the random
variable X ;) (K) for j € E. It is also required in order to prove Theorem 2.21 in

section 2.5.

Proposition 2.8. Consider any fized investment strategqy K = k(J). For all

j € FE andr >0 we have

¢(K) (r) = ]Ej <@_TXT(j)(K)> .
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Proof:

Consider any fixed investment strategy K = k(J) and arbitrary u,r >0, j € E.
It is shown in Proposition 2.1 that M (u, K, r) is a martingale with respect to F.
Recall that 710 is Fy-measurable. Under the probability measure P( - {fo)(w),
where w € Q is fixed, 7 is therefore almost surely a deterministic constant
7U)(w) according to Proposition 2.13 in Yong and Zhou [YZ99], page 20. We thus

have E[M o (u, K, r)’]—“o] = My(u, K,r) = e~™ almost surely and consequently

T

iop <eerT(j) (K)) —E, (eru eerT(ﬂ(u,K)) —E, (eru E [efTYT(j)(u,K) )]_—0}>

_E, (62@ [t 3020007 etk D)6 ru g [0 (u, K, 1) m])

Let us from now on denote the ruin probability conditioned under the event that

the environmental Markov process starts in state j € E by U, (u, K), i.e.
U (u, K) = Pj(ggyt(u, K) < o) — P(ggyt(u, K) <0 ‘ Jo = g)

If the environmental Markov process has initial distribution v = (v;);cp it thus

follows that W(u, K) =, 5 v ¥i(u, K).

Certainly, the existence of an ry > 0 such that qu() (ro) <ooforall j € Eisa
necessary condition for the adjustment coefficient R to exist. The following
result shows us that we cannot find an adjustment coefficient if there does not

exist such an rg.
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Proposition 2.9. Consider any fived investment strategy K = k(J) and suppose
that there exists an environmental state j € E such that gbg.{)(r) = oo for all

r > 0. Then, for all ¢ > 0 we have

V. (u, K
lim sup —~——~ (I_L’ ) = 00.
U—00 e~

Proof:
Let us consider any fixed j € E and suppose that gbx()(r) = oo for all r > 0.

Denoting the distribution function of X ¢ (K) by G we recognize that
Ui(u, K) > P (Y0 (u, K) < 0) =P; (X, (K) < —u) = G(—u)

for v > 0. Let us now assume that there exist an € > 0 such that

G(— v K
lim sup (_ ) < lim sup L < 00.
U—00 € U— 00 e—cu

This means that we can find a constant D. < oo such that e“G(—u) < D, for

all u > 0. Choose any r € (0, ¢€). Using Proposition 2.8 we have

o0

¢§§<)(T) =E; (e—TXTm(K)) — / e " dG(x)

— 00

= /_io e " dG(x) + /OOO e " dG(x)

0

< lim e ""dG(z)+1—-G(0).

Yy—oo —y

Integration by parts yields

0 0
/ e dG(z) = [ mareles } +r / e Gz
—y r=—y

0
= G(0) — e"G(— +7~/ e G x

= G(0) — e¥G(—y)e Y 4 7“/ G (x) el da
-y
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Since € — r > 0 it follows that

0 < lim eG(—y)e Y < lim D e ¥ =0

Y—00 Yy—o0
as well as

0 0
lim r/ e “"G(x) el dg < rDE/ ez gy — D..

Yy—00 _y €E—7T

Putting the pieces together we have ¢;;(r) <1+ = D, < oo for all 7 € (0,¢) in

'

contradiction to our assumption that qﬁ;j{) (r) = oo for all r > 0.

. K
However, since we have <b(.

i )(0) = 1 for all j € E it clearly does not suffice to

assume that there exists an 79 > 0 such that qb%{) (ro) < oo for all j € E in order
to ensure that R exists. Recall that for the Markov-modulated Poisson model
without investment the adjustment coefficient only exists if and only if the safety
loading p(® is strictly positive. As mentioned in section 2.1, the safety loading

for this model is given by p(®) = ¢ — Y icE TiNillB;-

For the Markov-modulated Poisson model with investment we get a similar
representation of the safety loading p(*). Recall that the safety loading with
respect to a given investment strategy K = k(J) is defined as the constant pt)
for which

1 a.s.
lim ;Yt(O,K) =2 p) (2.13)

Proposition 2.10. Consider any fized investment strategy K = k(J) and let the
corresponding safety loading p) be defined by (2.13). Then,

p(K) =c+ GZ’/TZIC(Z) — Zﬂ—l)\luBz .

S S
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Proof:
We have

£1(t)

Vi(0,K)=ct+a) k@&t +bY k@)W, ZZU,?,t>O

i€ER i€ER i€l k=1

Note that lim;_, . ﬁigt) “2 7 by the Ergodic Theorem. Further, it is well known

Nt(i) a.s

W(i) a.s . . .
p =" )\; for i € E. For every environ-

that lim; .., —— = 0 as well as lim; o, ——

mental state ¢ € EY we thus get

W w
i e _ &) Wew _

=0 as
—oo £ dmoo &t
and
Nt o s N ’2 1 Nt 0
. 7 . 1 Lt i) BV
i $ 373 0= 3 i S0 N 2 U = 2w, o
i€E k=1 S &(t) k=1 el
N(i) i) a.s.
where lim;_ ﬁ i Ukz =" up, follows from the law of large numbers.
& (1)

Putting the things together we see that almost surely

hmll/}OK c+Z7TZak Zm B, -

el el

Now, consider the environmental Markov process J and recall that the time
epoch of the n'" entry of the Markov process to state j € F is denoted by TT(Lj )
for n € N. Let us now assume that the environmental Markov process J starts
in state j € E, i.e. Jy = j. For a given investment strategy K = k(J) it follows
from the definition of the process X (K) that the sequence (Xﬁﬁ (K))nen defined

by XY(K) = X _,(K) — X_» (K) is independent and identically distributed.
Tn Tn—1

(X 1), = (ZX” )

Thus,

neN
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is a random walk with X _(;)(K) as the generic random variable for the steps.

Analogous to the Markov-modulated model without investment we then get the

following result.

Proposition 2.11. Consider any fixved investment strateqy K = k(J) and sup-

pose that the corresponding safety loading p) < 0. Then,

forallu>0andj€ k.

Proof:

The case when p%) < 0 is obvious since %Xt(K ) almost surely converges to a
strictly negative limit by the definition of the safety loading. Hence, we have
infi>o Yi(u, K) = —oo a.s. from which our assertion directly follows. Now let
p¥) = 0 and assume that J, = j for some environmental state j € E. As de-
scribed above, (Xﬂ@ (K)). <y is then a random walk with generic random variable

X, o) (K).

T

Theorem 4.2 in Asmussen [Asm03], page 51, shows that E; (&(71))) = mE;(7().

Thus,
(2)
Neito Ne,)
(4) (4) (
SDIT B SO 1D SRFL ] = S ns (V)
el k=1 icE ek

=3 s (B[N ) |6 D)) = 3 is B (6(7)

1€EE i€E

- Zﬂ-z z,uB ))

i€E

Since the environmental Markov process is assumed to be irreducible with sta-

tionary distribution m we have E; (T(j)) < o0. Together with the fact that
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icE i€E
Hence, (Xﬂ(ij)(K ), y 18 a random walk with zero mean. This implies that
(XTS-)(K))%N oscillates between oo and —oo, as for example Theorem 4.2 in
Asmussen [Asm03|, page 224, shows. Therefore, also in the case when p%) = 0

a.s.

we have inf;> Y (u, K) —oo and consequently W;(u, ) = 1 for all u > 0

and j € E.

This means that we cannot find an adjustment coefficient for the Markov-
modulated Poisson model under any investment strategy K = k(J) unless

p) > 0.

Using the previous results we can eventually give conditions which ensure that

the adjustment coefficient R¥) exists.

Proposition 2.12. Consider any fizved investment strateqy K = k(J) and sup-
pose there exists an rq > 0 such that (%5%() (ro) < oo for all j € E. Then, p') >0

implies that the adjustment coefficient RY) defined by (2.12) ewists.

Proof:
Suppose there exists an ry > 0 such that gb%() (ro) < oo for all j € F and
let A € (0,%) be arbitrarily chosen. It is well known that for continuously

differentiable, convex functions f we have

‘M‘ NEOR
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For any fixed w € 2 it thus follows that

e A X »HE) _q

A

< | X0 (K)| <6_AXTU)(K) + 1>

< | X0 (K)) (6_%0)(7(”([() +2> :

Next, consider any j € E and assume that Jy = j. Obviously, |X ) (K)| is

integrable since E;(71)) < co. Choosing o > 0 large enough, i.e. such that

a4 ese > x for all x > 0, we have
E; <‘XT(j) (K)| e_%XTU)(K))

=E; <Xr<j>(K) e 2 X0 (X )(K) > 0))

+ Ej( — X, (K) e 3 X0 () I(XTU) (K) < 0))

< By (X0 (K) (X, (K) > 0))

+ E; ((a +e 250 (K)) e~ 2 X0 (K) I1(X,0)(K) < 0)>
<E; (’Xr(j) (K)D +ak; <6_%X7(ﬂ')(K)> +E; (e_TOXTW(K))

- Ej<’XT(j)(K)’> + « ¢§§() <%> + ¢§-§()(7’0) < 00

where we make use of Proposition 2.8. We have therefore found an integrable
AX () ) _

upper bound for !e_ x

1 |
Using the same proposition again, it follows by dominated convergence that

N omAX ) (K))
W o) B () -
A AS0 A

—AX_(;y(K) —AX_(j)(K)
. e +(9) —1 . e +09) —1
e () o )

d
=E; (% e~ X, (K) ) = ]Ej< - XTo)(K)) = —p"™ <o0.

d )
. gzﬁgf) (r) ‘ = lim

=0 A—0

r=0

Under our assumptions, gb%() is therefore continuous on [0, 9] with gzﬁx()(O) =1
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and £ qﬁﬁ-{) (r) < 0 for all j € E. This means that
0

r=

RY) = sup {r > O;gb%()(r) <1Vje E}

exists.

Considering a certain investment strategy K = k(J), Proposition 2.12 yields that
p¥) > 0 and the existence of an 79 > 0 such that gbgf)(ro) < ooforaljekE
are sufficient conditions for the adjustment coefficient R¥) to exist. On the
other hand, it is shown in Proposition 2.9 and Proposition 2.11 that these two
conditions are necessary for the existence of an adjustment coefficient. Thus, in
the Markov-modulated Poisson model with investment an adjustment coefficient
with respect to any fixed investment strategy K = k(J) exists if and only if

pE) > 0 and gb%()(ro) < oo for all j € E and some 1y > 0.
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2.3 Maximizing the adjustment coefficient

In the previous section the Markov-modulated Poisson model with investment is
considered under any fixed investment strategy K = k(.J). We have shown so far
that

U(u, K) <e ™C(K,r) (2.14)

with C(K,r) < oo for all u > 0 whenever » < R¥). Here, R is defined by
R¥) .= sup {7‘ > 0; gb%{) (r)y<1Vj e E} Recall that we want to find the optimal

investment strategy K = k(J) which maximizes the adjustment coefficient RE),

Thus, let us concentrate on the functions gzﬁg.()(r) for 5 € E in the definition
of R¥). For any r > 0 we have
r20%k (i .
() = E, (exp (Z () + 25— e ani) @(r%))

el
2 2b2

a T . a \?2 .
= (eXp (Z ) = (rect g2) + 5 (k) - 55) 5@'(70)))) |
el
(2.15)
Defining the constant investment strategy K by K, ) = —7 for £ > 0 and some
r > 0 we consequently obtain

¢(K(r> (r) = E, (exp (Z [/\ihi(r) — (T’C‘f' 2;)} fz( ))) .

1€l

Motivated through this let us examine the functions ¢; defined by

Or;(r) == Ey (exp (Z Aihi(r)& () — (re+ 2—;) m)) (2.16)

i€k
for r > 0 and j,k € E. Recall, we show around (2.11) in the previous section
that (b%() is convex and consequently continuous on the interior of its domain for

every investment strategy K = k(.J). Using exactly the same arguments as there



Chapter 2. The Markov-modulated Poisson model 43

we obtain that also ¢;; is convex and therefore continuous on the interior of its

domain. This time, we obviously have

2
¢3;(0) = E; (exp ( - % T(j))) <1 (2.17)
with strict inequality if the drift parameter a of the Brownian motion with

drift W, ; does not equal zero.

Analogously to the definition of R¥) in (2.12) we now define R by
R = sup{r>0;¢jj(r) <1Vy GE} (2.18)

and say that R does not exist if there is an environmental state 7 € E such that
¢;j(r) > 1 for all r > 0. Comparing ¢;; and (b%() as given in (2.15) above, we
see that gzﬁ%()(r) > ¢;i(r) for all r > 0, j € E and K = k(J). This implies that

R¥) < R for every investment strategy K = k(J).

The connection between ¢;; and ¢§-§((S)) for some fixed s > 0 and j € F

is illustrated in Figure 2.1 on the next page. As mentioned above we have

(K())

i (1) = ¢j5(r) for all r > 0 with equality for r = s.

The following result now shows us that R is indeed a sharp upper bound for all

RY) with K = k(J) since it can almost be attained by choosing an appropriate

constant investment strategy.

Theorem 2.13. Suppose that R defined by (2.18) exists. For any fized r € (0, R)
and the corresponding investment strateqy K™ defined by Kt(r) =5 fort >0t
follows that

U(u, KMy < e ™ (KM, r)

with C(K™ r) < oo for all u > 0.
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0.4 —
0.2 — -
s RE) g
0.0 [ [ ‘ i | N\ | ‘ \{ / .
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Figure 2.1: Plot of ¢;;(r) and ¢§§<(S))(r)
Proof:

Choose r € (0, R) and consider the associated constant investment strategy K.
We then have ¢§§(m)(r) = ¢;j(r) < 1for all j € E as shown above. Hence, we

get C(K™,r) < oo and consequently the desired result using Theorem 2.7.

Let us consider any 0 < r < R and the investment strategy K () defined by
Kt(T) = -5 for t > 0. Without making any assumptions about the safety loading

pET) with respect to this investment strategy we have
U(u, K < e ™ (K™ 7r)

with C(K,r) < oo for all u > 0 according to Theorem 2.13. Recall, it is shown
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in Proposition 2.11 that for any investment strategy K = k(J) with p) <0

we get W;(u, K) =1 for all w > 0 and j € E. Comparing these two results we

la|

(K lal
rb2

see that p “) must be strictly positive. This means that the absolute value
which the strategy K provides to invest is sufficiently large so that the safety
loading
(KM a B a’
p —c+aZ7ri@—Zm)\iuBi—c+@—2m)\m3i
i€R i€ER i€ER

becomes positive.

But note that the inequality given in Theorem 2.13 only holds for » < R. Cer-
tainly, the next question is what we get for R itself. Does there also exist an in-
vestment strategy K = k(J) and a finite constant C' such that ¥(u, K) < C e~

for all w > 07 Before we get to this problem in section 2.4 let us look at the

definition of R again.

Initially, we want to derive conditions under which R defined by (2.18) exists
as done for R in section 2.2. If R does not exist it certainly follows that
we cannot find an investment strategy K = k(J) for which R¥) exists since
¢§~K) (r) > ¢j;(r) for all > 0 and K = k(J). As shown at the end of the previous

section we therefore do not get an adjustment coefficient for any investment

strategy K = k(J) unless R exists.

A first necessary condition for R to exist is obviously the existence of an rq > 0
such that ¢;;(r¢) < oo forall j € E. Taking this for granted we have to distinguish
between two cases. Firstly, consider the case where the drift parameter a of the
Brownian motion with drift W, , does not equal zero. We then have ¢,;;(0) < 1 for
all 7 € E and it is easy to see that R exists. Secondly, let us assume that a = 0.

Then, we apparently have ¢;; = gb;(;) for all j € F and it consequently follows
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that R is equal to R, According to Proposition 2.12 this implies that R exist

if p(© > 0.

Always provided that there exists an ro > 0 such that ¢;;(r¢) < oo forall j € E we
can therefore choose the constant investment strategy K () with 0 < r» < R and
get an adjustment coefficient for the corresponding Markov-modulated Poisson
model with investment as long as a # 0. In the case where a = 0 we have the
existence of an adjustment coefficient if the safety loading of the corresponding
Markov-modulated Poisson model without investment is strictly positive, i.e. if
there exists an adjustment coefficient for the Markov-modulated Poisson model

without investment.

Recall that R is defined as the supremum of all 7 > 0 such that ¢;;(r) < 1
for all j € E. Unfortunately, this supremum is generally not easy to determine
since only in very few cases we know ¢;; as an explicit function of r, confer
Example 2.22 in section 2.5. In that what follows we thus give an alternative

definition for R.

In order to find such a definition, some matrix notation need to be introduced.
Let A = (aij)ijer € R4 he a non-negative matrix with eigenvalues &1, ..., Kq.

The spectral radius of A is then defined as
spr(A) := max {|k1], ..., |ral} .

We denote the n'™ power of A by A" = (aE?)MeE for n € N. A non-negative
matrix A is called irreducible if the pattern of zero and non-zero elements is
the same as for an irreducible transition probability matrix. This means, for

each 7,7 € E there has to exist an n € N such that az(»?) > 0. For an irreducible

and non-negative matrix A it follows from the Perron-Frobenius-Theorem that
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spr(A) itself is a strictly positive and simple eigenvalue of A. Moreover, the
corresponding left and right eigenvectors can be chosen with strictly positive
elements. If the matrix A has some infinite element we put as a convention

spr(A) = oo.

In that what follows we refer to the d x d identity matrix by I;. Furthermore,
let the d x d diagonal matrix where the k' diagonal element is given by a; for
k € E be denoted by

diag(a;.C ke E) )

After introducing some matrix notation let us get back to the definition of the
environmental Markov process J which has intensity matrix @ = (¢;;)ijer. As
shown in section 2.2, the transition probability matrix P = (p;;)ijer of the
embedded Markov chain is given by p;; := (1 — 5@% where ¢; := —g;; and ;5 is

Kronecker’s symbol. Thus,
P = diag(g;;i € E)_l(Q + diag(g; ;i € E)) = diag(q; ;i € E)_lQ + 1.

The time which the environmental Markov process J spends in state j € E when
the process makes its n'" visit to this state is denoted by o) for n € N. Recall
that conditioned under the embedded Markov chain the o’ are independent for
all n € N and j € E and that the sequence (07(3 ))neN is furthermore identically

distributed with o) := 09) ~ Exp(q;) for j € E.

Analogously to the definition of the functions gbgK) for any investment strategy

K =k(J) and j € E in section 2.2 we now let the function ¢; be given by

¢;(r) :=E (exp <(>\jha‘("’) —(re+ ;_;)) U(j)>)
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for r > 0 and j € E. Using these functions let the matrix B(r) € R¥? be defined
by
B(r) := diag(qﬁj('r) e E> P (2.19)

We denote the matrix elements of B(r) by b;;(r), i.e. B(r) = <bij(r))ijeE' Note

that the diagonal elements of B(r) are all zero by the definition of P.

Proposition 2.14. Let the matriz B(r) be defined by (2.19). Then,

R = sup {r > 0; spr(B(r)) < 1} . (2.20)

Proof:

Firstly, we are going to show that Spl"(B(T)) < 1 implies ¢;;(r) < 1forall j € E.
Let 7 > 0 be fixed. Similarly to what is shown around (2.9) and (2.10) we now
get

¢kj<r) pk] + Z gbk pkm ¢mj )

meE
m#j

") Phj + > Ok(r) Dim Gy (1) — Gk(r) prj b35(r)

mekl
= > 01(7) Prm Gy () + B(r) P (1 = 655(r)) (2.21)
meE
and in particular
¢]J Z ¢] p]m ¢mg ) (222)
mekE

for k,5 € E. Now, put ®(r) := ((bkj(r))kjeE. In matrix notation we therefore
have

®(r) = B(r) ®(r) + B(r) diag(I; — ®(r)) (2.23)

or equivalently

(I — B(r)) ®(r) = B(r) diag(I; — ®(r)) . (2.24)
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Since spr(B(r)) < 1 it follows that lim, ., B(r)" = 0 and consequently

(Li—B@) Y. Ber)" =Y B(r)" =Y B(r)""' = I, - Br)™' — I,

as N — oo. Thus, the invers of (I; — B(r)) exists and is equal to >~ B(r)".
From (2.24) we therefore have ®(r) = (I; — B(r))~* B(r) diag(I; — ®(r)) and

hence

diag(®(r)) = diag((ld — B(r)) " B(r) diag(I, — @(r)))

:m%«@—Bv»”B@»«mq@—¢un.

Put A := diag((ls — B(r))"* B(r)). All entries of B(r) are non-negative. It
thus follows from (I; — B(r))_1 = > >, B(r)" that all entries of (I; — B(r))_1
are non-negative as well. Hence, also the diagonal matrix A = (aij)i,je 5 1s non-
negative, i.e. a;; > 0 for all j € E. Recalling that the diagonal elements of ®(r)

are given by ¢;;(r) = a;;(1 — ¢;;(r)) we can therefore conclude that

ajj

T 1+tay

quj(T) <].,j€E.

This means that indeed spr(B(r)) < 1 implies ¢;;(r) < 1 for all j € E.

In order to prove the other direction we assume without loss of generality that
¢11(r) < 1 for any given r > 0. Let j € F be arbitrarily chosen. The environmen-
tal Markov process J is assumed to be irreducible. Hence, there exists a sequence
of states iy,... iy € {2,...,d} with N € Nsuch that p1;,piji, - - Din_yinPin1 > 0
and i,, = j for some 1 < n < N. Having equations (2.21) and (2.22) in mind we

thus have

¢11(r) > 351(7")2912'1@1(7“) o Pinaj ij(r)?jinﬂ C Qi (T)Pmi

~
>0 >0
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for 7 > 0 since pg; > 0, ¢;(r) > 0 and ¢x;(r) > 0. Therefore, ¢1;(r) < 1
particularly implies ¢;(r) < oo for all j € E, i.e. all entries of the matrix B(r)

are finite. From (2.23) we furthermore get

®(r) = B(r) ®(r) + B(r) diag([d — @(7’))

= B(r)>®(r) + B(r)? diag([d — ®(r)) + B(r) diag(Iy — ®(r))

—i—ZB " diag(1s — ®(r))

)" diag(1y — ©(r))

”MZ

for N € N since the matrices B(r) and ®(r) are non-negative. Now, this yields
spr(B(r)) < 1 exactly as in the proof of Lemma 8 in Bjérk and Grandell [BG8S].

|

Note, the proof of Proposition 2.14 also shows us that ¢;;(r) < 1 for some j € E
already implies spr(B(r)) < 1 and therefore ¢;;(r) < 1 for all j € E. Thus, for
a given r > 0 we either have ¢;;(r) < 1 for all j € E or there does not exist

any j € E with ¢;;(r) < 1.

Finally, let us have a closer look at the matrix B (r) For i € E let #{) be the

strictly positive solution of the equation ¢; + rc + 2 2b2 — Aihi(r) = 0 and put

Foo = min (Y . (2.25)

i€E

From the assumptions on h;(r) it follows that the 7 and consequently also 7,

are uniquely defined and that ¢; + rc + &5 — \hi(r) > 0 for all 0 < r < 39

2b2

and i € E. We get the following final result of this section.
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Proposition 2.15. Let 7, be defined by (2.25). Then,

B(@:( 4 (1 = %) ) (2.26)

g +re+ % — Aihi(r)

for r < Fs where §;; denotes Kronecker’s symbol. For all r > 7, B(r) has at

least one infinite element.

Proof:
The moment generating function 7m(t) of a random variable which ist exponen-
tially distributed with parameter A > 0 is equal to ﬁ for t < A and infinite

otherwise. Since o; ~ Exp(g;) it follows from what is shown around (2.25) that

()

— - . T <P
¢j<7') _ Qj-i-rc—i-ﬁ— jhj(r) . (227>
00 , > fé{)

Recall, for a given intensity matrix ) we can compute the corresponding transi-

tion probability matrix P via
P = diag(g;;i € E)_l (Q + diag(q; ;i € E)) .
For any r < 7, we consequently get

B(r) = diag(¢;(r);j € E) P

— diag 4 e E|P
¢ +re+ 5 — Nihi(r)

2

1
= diag(qi +rc+ % — Xihi(r);i € E) (Q + diag(qi;z’ € E))

_ ( a4 (1 — 0y5) )
— —
¢ +re+ 5 — Nihi(r) e

where 0;; is Kronecker’s symbol. For any r > 7, we have ¢,(r) = oo for some

j € E, ie. B(r) has some infinite element.
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Recall that by the definition of the spectral radius we have spr(B(r)) = oo if

B(r) has some infinite element. Thus, R is given by

5 (1= 0,
R=sup{ 0 <7<y ;spr ( qJ(GQ ) ) <1
g; +rc+ %z )\Zhl<7') i e
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2.4 The Markov-modulated Poisson model under

some constant investment strategy

We have already proved that for any 0 < r < R there exists an investment
strategy K = k(J), namely K and a finite constant C', namely C(K) r),
such that

U(u, K)<Ce™

for all w > 0. Now, the question arises whether we can find a similar upper bound
where r is equal to R. Recall that C'(K,r) is finite if and only if ¢§§<) (r) <1 for
all j € E. It therefore follows from what is shown in the previous section that
C(K®_ R) = co. This means that we have to consider other methods in order

to determine a Lundberg bound with adjustment coefficient R.

Thus, in this section we initially consider another model, namely the Markov-
modulated Poisson model perturbed by diffusion. In this model the wealth pro-
cess Y (u) is defined by

Nt
Y () = Ri(uw) +nWe = utct =y Us+nW, (2.28)

k=1
where R(u) is the risk reserve process from the Markov-modulated Poisson model
as defined before, W is a Brownian motion independent of R(u) as well as .J

and n € R. We refer to n as the diffusion volatility.

Without Markov-modulation this model was introduced by Gerber [Ger70]. He
derived a Cramér-Lundberg approximation for the case where the counting

process N is a standard Poisson process. A somewhat more detailed study of
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the same model can be found in Dufresne and Gerber [DG91|. Later, Furrer
and Schmidli [FS94| determined Lundberg inequalities for the case where the
counting process N is either a renewal process or a Cox process with a so-called
independent jump intensity. Using their method it unfortunately could not be
proved that they determined the best possible exponential upper bounds for the
ruin probabilities. However, Schmidli [Schm95| made up for this and also stated
a Cramér-Lundberg approximation for the renewal case. Furthermore, he con-
sidered the Markov-modulated Poisson model perturbed by diffusion as defined

above.

In order to adapt the results in Schmidli [Schm95| to our model the matrix

H(r) € R™ given by

H(r) = Q + diag ()\ihi(r) 1€ E) — <cr + 5—;) Iy (2.29)

H(r)

for r > 0 is needed. In that what follows the spectral radius of the matrix e

is denoted by €. The next result is then due to Schmidli [Schm95].

Theorem 2.16. Let ') be the spectral radius of ") as defined above. If
0(r) =0 for some r > 0 then the constant investment strategy K" defined by
Kt(T) = & fort >0 yields

U(u, K < Ce™

with C' < oo for all u > 0.

Proof:
Firstly, let us examine the Markov-modulated Poisson model with investment

when using the constant investment strategy K (). Since we only consider strictly
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positive solutions 7 of the equation #(r) = 0 the investment strategy K™ is well
defined and
Yi(u, KM = c+——t—§:mf% W .

rb?
Comparing this with (2.28) we see that the Markov—modulated Poisson model un-
der the constant investment strategy K () coincides with the Markov-modulated
Poisson model perturbed by diffusion where the premium rate is given by

c:=c+ % and the diffusion volatility by 77 := &

Let W (u) denote the ruin probability of the Markov-modulated Poisson model

perturbed by diffusion whose wealth process is defined by (2.28), i.e
(m) - : ()
U (u) - P(%Izngt (u) < 0) .
According to Theorem 4 in Schmidli [Schm95] it then follows that
T (y) < Ce™™

with C' < oo for all u > 0 if the equation A(r) = 0 is fulfilled for some r > 0. At

this, %) is defined as the spectral radius of the matrix e“(") where

27,.2

L(r):=Q + diag()\ihi(r) 1€ E) + (nT — cr) Iy, r>0. (2.30)

Now, suppose that 6(r) = 0 for some r > 0. It thus suffices to show that

L(r) = H(r) where the parameters ¢ and 7 have to be plugged into the definition

52,2
o
—— —cr |1
2 )d
b

(
_ Q+diag<)\ih,~(r);z’ € E> + <(7‘ );TQ — (c+ :-;) r> I
(

of L(r) above. After all, we indeed get

um:Q+m%Qmmyuug+

m+i>@:Hm

=Q+ diag(Aihi(T) S E> - 2h2
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Using this result we thus have to prove that #(R) = 0 in order to get the desired
upper bound for W(u, K). First of all, we need the following result about the
spectral radius of B(R).

Proposition 2.17. Suppose that R defined by (2.20) exists. Then,

spr(B(R)) =1.

Proof:
Using the same notation as in the previous chapter we recall from Proposition 2.15

that

gij (1 — 0i;
B(T) — J ( — ])
¢ +1c+ 5 — Nihi(r) LieE

for r < 7o where §;; denotes Kronecker’s symbol and that B(r) has at least
one infinite element for all » > 7. It obviously follows from this representation
of B(r) = (bij(r))i’j . that all the matrix elements b;;(r) are continuous func-
tions in r € (0,7). Since the spectral radius of a matrix is a continuous map-
ping with respect to the matrix elements also spr(B (7")) is a continuous function

inr € (0, 7).

It is furthermore shown in the proof of Proposition 2.15 that

qj A7)
'+rc+a—2]f)\'h~(r) ) T < Teo

gj(r) = q “T T Y :
00 , > f(()%)

There consequently exists an environmental state m € E, namely the one which
satisfies T'oo = plm ), such that ¢,,(r) — oo as r — 7. Recall from the proof
of Proposition 2.14 that ¢,;(r) > a ¢, (r) for all r > 0 where « is some strictly

positive constant. Hence, we get

$ji(r) — 0o as r — T
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for all j € E. This implies that R € (0,7). Together with the continuity of
spr(B(r)) on (0, 7s) it follows that spr(B(R)) equals 1.

Using the proposition above it can now be shown that we indeed have §(R) = 0.

Proposition 2.18. Suppose that R defined by (2.20) exists and let ™) be the
spectral radius of €. Then,

O(R) = 0.

Proof:

The environmental Markov process J and therefore the transition probability
matrix P of its embedded Markov chain are assumed to be irreducible. Thus,
also the matrix B(R) is irreducible. We have already mentioned that the matrix
B(r) is moreover non-negative for all » > 0. Applying the Perron-Frobenius-
Theorem we therefore know that spr(B(R)) itself is an eigenvalue of B(R) and
that the corresponding right eigenvector g can be chosen with strictly positive

elements which is denoted by g > 0.

Together with spr(B(R)) = 1 from Proposition 2.17 we thus get

B(R)g=yg
2 -1
& diag(qi + Rc+ ;_1)2 — ANihi(R) ;i € E> (Q + diag(qi (1€ E)> g=g
a2
& (Q +diag(qi;i € E)) g= diag(qi + Rec+ i Aihi(R) ;i € E) g
2
S Qg= (Rc—i— %)Idg — diag(Aihi(R) S E) g

< H(R)g=0

for this vector g > 0, i.e. 0 is an eigenvalue of H(R) with right eigenvector g > 0.
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Note that we have

o H k >k
el By = Z (F) v = pr— (2.31)
k=0 ' k=0

for any eigenvalue a of H(R) with right eigenvector v. This means that « is an
eigenvalue of H(R) with right eigenvector v if and only if e is an eigenvalue of

efl(

R) with the same right eigenvector v. We have already shown that zero is an
eigenvalue of H(R) with right eigenvector g > 0. This consequently implies that

one is an eigenvalue of e/(®) with the same right eigenvector g > 0.

It is easy to see that the matrix H(r) has non-negative off-diagonal elements
which implies that e”(") is a non-negative matrix for all r > 0. Since the matrix

H(r) is moreover irreducible for r > 0 it follows that e’ := spr(e”(®) = 1 using

e
the Subinvariance Theorem which can for example be found in Seneta [Sen81],

page 23.

Remark 2.19. Let us fix some r > 0 and recall that the matrix e”(") is non-
negative and irreducible. It thus follows by the Perron-Frobenius-Theorem that

T

the spectral radius of e(") itself is a simple, real and strictly positive eigenvalue

of (") Hence, we have spr(eH(T)) = e for some o € R.

At this, the last assertion is equivalent to the fact that « is the eigenvalue of H(r)
which has maximum real part. This can be seen as follows. Obviously, we obtain
from (2.31) above that « is an eigenvalue of the matrix H(r). It thus suffices to
show that a > Re(&) where & is an arbitrary eigenvalue of H(R). Here, Re(a)
denotes the real part of &. Again, we use the fact that & is an eigenvalue of H(R)
if and only if e® is an eigenvalue of ef/("). By the definition of the spectral radius

we thus have e® = spr(eH(T)) > !eﬂ = eR*@ and hence a > Re(a).
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Motivated through Remark 2.19 we try to find an alternative definition for R
which is defined by (2.20) in section 2.3. As mentioned in Schmidli [Schm95], the
function 0(r) is strictly convex in r. Note that this follows from a theorem in
Kingman [Kin61]. Furthermore, it is easy to see that the matrix H(0) = Q— % Iy
has —% as an eigenvalue for which the right eigenvector can be chosen such that
each of its components is equal to one. Thus, e*% is an eigenvalue of the matrix

A(©) with exactly the same right eigenvector. Recalling that e(9) is non-negative

e

and irreducible it hence follows from the Subinvariance Theorem which is for
a2

example given in Seneta [Sen81] that the matrix ef/(®) has spectral radius e~ 22,

This in turn implies 0(0) = —% and consequently that the equation 6(r) = 0

has at most one strictly positive solution.

On the one hand Proposition 2.18 therefore yields that if R defined by (2.20)
exists it is the unique strictly positive solution of the equation 6(r) = 0. On the
other hand it is shown in the previous section that we cannot find an adjustment
coefficient for the Markov-modulated Poisson model under any investment strat-
egy K = k(J) if R does not exist. But recall that according to Theorem 2.16
there exists an adjustment coefficient for the Markov-modulated Poisson model
when using the investment strategy K™ if 7 > 0 solves the equation 6(r) = 0. In
the case that 6(r) = 0 for some strictly positive r it hence follows that R exists
and consequently that » = R. We can therefore define R as the strictly positive
solution of the equation #(r) = 0 and say that R does not exist if no such solution

can be found.

Using Remark 2.19 we can alternatively define R as the strictly positive solution

of the equation k(r) = 0 where k(r) is that eigenvalue of the matrix

H(r) == Q + diag ()\Z-hl-(r) S E) — (cr + ;—;) 1y (2.32)
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which has maximum real part and say that R does not exist if the equation

k(r) = 0 has no strictly positive solution.

Combining these assertions with Theorem 2.16 we directly get the following final

result of this section.

Corollary 2.20. Let k(r) be the eigenvalue of H(r) which has maximum real
part as defined above. If there exists a solution R > 0 of the equation 6(r) = 0

then the constant investment strateqy KB defined by Kt(R) = iz Jor t > 0 yuelds

U(u, KBy < Ce i

with C' < oo for all u > 0.

A verification that R is indeed the optimal adjustment coefficient of the Markov-
modulated Poisson model with investment can be found in the following section.
At last note, it follows from Corollary 2.20 that p(% “) must be strictly positive
whenever R exists since otherwise U;(u, K®) =1 for all u > 0 and every j € E

according to Proposition 2.11.
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2.5 Optimality

Recall that R is originally defined by R = sup {r > 0;¢;;(r) < 1Vj € E} in

section 2.3. Under the assumption that R exists we have proved that
U(u, KBy < Ce v

with C' < oo for all u > 0 where the constant investment strategy K@) is
defined by Kt(R) = 5z for t > 0. Let us now show that the investment strategy
K™ is indeed optimal amongst all investment strategies K = k(J) in the sense
that we cannot find an investment strategy K = k(J), a constant C' < co and

some r > R such that

U(u, K) < Ce ™

for all w > 0. Note that we can restrict ourselves to the case where R exists. If R
does not exist it particularly follows that R) does not exist for any K = k(J).
As shown at the end of section 2.2 this implies that we cannot find an adjust-
ment coefficient for the Markov-modulated Poisson model under any investment

strategy K = k(J) if R does not exist.

Theorem 2.21. Suppose that R defined by (2.18) exists and consider any fized
investment strategqy K = k(J). For this investment strateqy K we further-
more assume that R exists and that we can find a constant 6 > 0 such that
¢§§()(R(K) +9) < 0o for some j € E. We then have

U, (u, K)

lim ———= = ¢
U—00 e~ Tu

for all v > R and thus in particular for all r > R.

Proof:

Consider any fixed environmental state 7 € E such that (bgf)(R(K ) +4) < oo for
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some 0 > 0 and suppose throughout this proof that Jy = j. Since gbg-f) is convex
and therefore continuous on the interior of its domain it follows that gb%() is finite

in the é-neighborhood of R¥) with gb%{)(R(K)) =1.

As shown in section 2.2, (X ) (K)) .

i ey 18 a random walk under the assumption
n

that Jy = j. Conditioned under Jy = j we define the ruin probability of the
shifted random walk (YT(j)(u, K)) = (u+ XT(j)(K))

neN

by

neN
o ) = By nf Yo 0. K) <0)

for u > 0. Tt is obvious that W (u, K) < ¥;(u, K) for all u > 0. Now, Proposi-
tion 2.8 yields
5 (o) ol .

Note that the distribution of X ) (K), i.e. the distribution of the generic random
variable for the steps, is clearly non-lattice. Since the existence of R) moreover
implies that p) > 0 it follows from Theorem 6.5.7 and the associated remark in
Rolski et al. [RSST99] that

W (u, K)

)y C

lim
u—oco e R

for some constant C' > 0. From U;(u, K) > Wi (u, K) for all u > 0 it thus
follows that

lim M > lim M (r=R"Nu _ (o

u—oco e u—oco e~ RUIu

for all » > R¥) and therefore in particular for all » > R since R > R¥).

Hence, R is the optimal adjustment coefficient of the Markov-modulated Poisson
model with investment and K™ is the corresponding optimal investment strategy
in the sense that it minimizes the ruin probability W(u, K') amongst all investment

strategies K = k(J) if the initial reserve u > 0 is sufficiently large.
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We carry on with an example for which the condition qﬁgﬁ()(R(K) + ) < o0 is

fulfilled for some 6 > 0, j € E and for all investment strategies K = k(.J).

Example 2.22. In this example let the Markov process J be periodic in the

sense that its intensity matrix is without loss of generality given by

-1 ¢ 0 0 0 0
0 —¢ ¢ O 0 0
0 0 g3 g3 0 0
Q=
0O -+ 0 0 —qa2 dqao 0
o -~ 0 0 0 —qa-1 Qa1
qd 0 0 0 0 —qd

where qp,...,q4 € Ry. Thus, if the Markov process jumps to state j € FE, it
stays there for a stochastic time (@) ~ Exp(g;) and then jumps almost surely to
state k where Kk = 1 if j = d and kK = 5 4+ 1 otherwise. In state £ the Markov

process then stays the stochastic time ¢®) ~ Exp(q;) and so on.

Let us now consider any arbitrary investment strategy K = k(.J). It follows from

the choice of J that

653 (r) = 650 (r) - () 80 () ) (2:33)
for all r > 0 and j € E. Note that the function gbl(-K) is given by

¢(K) (r)=E (e [)\ihi(r)—l—%r2b2k(i)2—r(c+ak(i))} a<i>)

qi+r(c+ak(z’))—)\?hi(r)—%r%zk(i)z s Qi+ T(C + ak(z)) - Azhz(r) - %T2b2k<i)2 >0

%) , otherwise
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for r > 0 and ¢+ € E. It thus follows from our assumptions on the centered
moment generating function h; that ¢§K) continuously converges to infinity for
every i € FE. Hence, (2.33) implies that the same is true for the function ¢§-§()
for j € E. This in turn means that R) exists and that we can find a § > 0
such that qb%{)(R(K ) 4 §) is finite for all j € E. In this setup it thus follows from
Theorem 2.21 that

U, (u, K)

U—s 0O e Tu

for all r > R and every j € E.

Now that we have verified R as the optimal adjustment coefficient of the Markov-
modulated Poisson model with investment let us suppose for the moment that R
exists. As mentioned in the introductory section of this chapter, the adjustment
coefficient of the Markov-modulated Poisson model without investment is given as
the strictly positive solution of the equation £(r) = 0 where &(r) is the eigenvalue

of the matrix

Q + diag()\ihi(r) 1€ E) —crly, r>0,
which has maximum real part. Recall from the previous section that we have
a similar result for the optimal adjustment coefficient of the Markov-modulated
Poisson model with investment. The optimal adjustment coefficient R can be
defined as the strictly positive solution of the equation x(r) = 0 where k(r) is
the eigenvalue of the matrix

Hry=Q+ diag(/\ihi(r) i€ E) - (cr + ;—;)]d

which has maximum real part.
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It is obvious that these two matrices coincide if the drift parameter a of the Brow-
nian motion with drift W, , equals zero. In this case the optimal adjustment coef-
ficient of the Markov-modulated Poisson model with investment is therefore equal
to the adjustment coefficient of the Markov-modulated Poisson model without in-
vestment, i.e. R = R®. But note that this is not surprising since the optimal
investment strategy K® defined by Kt(R) = 5z for ¢ > 0 provides not to invest

into the portfolio if a = 0.
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2.6 A comparison with the compound Poisson

model

In the final section of this chapter we compare the adjustment coefficients of the
Markov-modulated Poisson model and its associated compound Poisson model
under the respective optimal investment strategy. Recall from the previous sec-
tions that the optimal adjustment coefficient of the Markov-modulated Poisson

model with investment is defined by
R:sup{r>0;gbjj(7")<1‘v’j€E} (2.34)

and that the corresponding optimal investment strategy is given by K.

As mentioned in the introductory chapter, it is intuitively clear that we can
associate a compound Poisson model to the Markov-modulated Poisson model
in a natural way by averaging over the environment, confer for example
Asmussen [Asm00]|, page 148. More precisely, we consider a compound Pois-
son model with investment where the intensity of the claim arrival process and
respectively the claim size distribution are defined by

7Ti>\i
)\*

A= Zﬂz)\l and B* =

i€k 1€l

B;.

We refer to this model as the associated compound Poisson model. Note, that
its claims have exponential moments since

R (r) = /Oo e dB (x) — 1 = (Z ”AA /OOO e dBi(x)> —1

) (Z; (e + 1)) 1= (Z; T mw) ¥ (2}; ”;f") 1

= WAA hi(r) (2.35)

el
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Recall from Proposition 2.10 that the safety loading of the Markov-modulated

Poisson model without investment is given by p(® = ¢ — Y icp Tidiltp, Since

UBs = D ick ’r/\’\ wp, it is thus obvious that the safety loadings of the Markov-
modulated Poisson model without investment and its associated compound Pois-

son model without investment coincide.

As mentioned in the first section of this chapter, it can be found in Gaier, Grandits
and Schachermayer [GGS03] that the optimal adjustment coefficient R* of this
associated compound Poisson model with investment is defined as the strictly
positive solution of the equation

2

X 7 3k a
Ah*(r) =rc+ 2 (2.36)

and that the corresponding optimal investment strategy is given by K ).

Without investment it is known that the adjustment coefficient of the Markov-
modulated Poisson model does not exceed the adjustment coefficient of its asso-
ciated compound Poisson model, confer Remark 2.24. Under optimal investment

we get exactly the same result.

Theorem 2.23.

(i) Let R be defined by (2.34) and let R* be the strictly positive solution of
equation (2.36), i.e. R and R* are the adjustment coefficients of the Markov-
modulated Poisson model and respectively its associated compound Poisson

model under optimal investment. Then,

R<R".
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(ii) Let the investment strategy K be defined by Kt(r) = g5 forallt > 0
and r > 0, i.e. the optimal investment strategies for the Markov-modulated
Poisson model and its associated compound Poisson model with investment

are given by KU and KB respectively. Fort > 0 we then have

’Kt(R)’ > ’Kt(R*)) _

Proof:

(i) Consider any fixed r > R* and recall that E;(&(79))) = mE; (D) for all
i € F as for example given in Asmussen [AsmO03], page 51. Using Jensen’s

inequality we thus get

¢ji(r) =E; (exp (Z Aihi( (rc + %)ﬂﬂ))

> exp (Ej (Z Aihi(r)fi(r(j)) — (rc + ;—;2>T(j)>>
> exp ((Zm)\ihi(r) — (chr 2—;>)E ( U))) '

Now, we have X*h*(r) = >, miAhi(r) as shown around (2.35). Since R*
solves equation (2.36) it consequently follows for r > R* that

a2 . o2

;m)\ihi(r) ~ (re+ 2_52> =X (r) = (re+ 2—b2) > 0.
This implies
a? ,
¢4 (T >exp<(27r,>\h — (rc—i— @>)E (7'(”))> >1
i€k

for r > R* and consequently R < R* according to definition (2.34). Note
that the last inequality also implies that the existence of R* is a necessary

condition for R to exist.
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(ii) Noting that the investment strategy K () is defined by Kt(T) = fort>0

it is obvious that part (ii) directly follows from part (i).

Remark 2.24. In the special case where the drift parameter a of the Brownian
motion with drift W, is equal to zero the investment strategy K provides
not to invest into the portfolio for all » > 0. In this case Theorem 2.23 thus
coincides with Theorem 3 in Asmussen and O’Cinneide [AO02] where it is shown
that the adjustment coefficient of the Markov-modulated Poisson model without
investment does not exceed the adjustment coefficient of its associated compound
Poisson model without investment.

&

Using the optimal investment strategy in the respective model we therefore get
a smaller adjustment coefficient in the Markov-modulated Poisson model than
in its associated compound Poisson model. Moreover, in the Markov-modulated
Poisson model the optimal investment strategy provides to invest a larger amount
of money into the portfolio than in its associated compound Poisson model if the
drift parameter a of the Brownian motion with drift W,, is positive. If the
drift parameter is negative we have to obtain a larger amount of money in the
Markov-modulated Poisson model than in its associated compound Poisson model
by selling the portfolio short. In both models we do not invest into the portfolio

if the drift parameter equals zero.

Finally note that under some additional assumptions a pointwise comparison of
the ruin probabilities of the Markov-modulated Poisson model and its associated
compound Poison model under the same constant investment strategy can be

found in the following chapter.



Chapter 3

Diffusion approximation

In this chapter we consider the same Markov-modulated Poisson model with
investment as before. However, this time the model is approximated by a certain
Markov-modulated Poisson model without investment. We then try to deduce
assertions for the Markov-modulated Poisson model with investment from well

known results for the Markov-modulated Poisson model without investment.

After stating what is meant by the convergence of stochastic processes we initially
introduce the basic ideas in order to approximate a diffusion process. Then,
a Markov-modulated Poisson model without investment is determined which
approximates the original Markov-modulated Poisson model with investment.
We further show that the ruin probability as well as the adjustment coefficient
of the approximating model converge to the ruin probability and respectively the
adjustment coefficient of the model of interest. Finally, the ruin probabilities
of the Markov-modulated Poisson model and its associated compound Poisson
model under the same constant investment strategy are compared under some

additional assumptions.

70
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3.1 An approximation for the Markov-modulated

Poisson model with investment

As in the previous chapter we consider the Markov-modulated Poisson model
with investment. Using the same notation as before, the wealth process for any

investment strategy K = k(J) is given by

Yi(u, K) = /de+b/KdW
—u—i—ct—ZUk—l—aZk G +b> k@)W,
el i€E
Nejto
=utct—Y Y U +ad ki) &)+ k@)W, t>0.
i€eE k=1 i€l i€E

Recall that the standard Brownian motions W ... W are assumed to be
independent.

In chapter 2 we directly determine the adjustment coefficient of the Markov-
modulated Poisson model with respect to any fixed investment strategy
K = k(J). An alternative way is to approximate the diffusion part of the wealth
process Y (u, K). It is well known that a diffusion arises as the limit of prop-
erly scaled classical risk processes where the claims are very small and frequent.
We thus might be able to deduce assertions for the Markov-modulated Poisson
model with investment from well known results for the Markov-modulated Pois-
son model without investment. This fact was for example also exploited in Sarkar

and Sen [SaSe05| for the classical Poisson model without Markov-modulation.

First of all, we certainly have to define what is meant by the convergence of
stochastic processes. In this work the convergence of stochastic processes is de-

fined as the weak convergence of their distributions with respect to the commonly
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used Skorohod topology. We only give a short sketch of the definition which can
for example be found in the books by Billingsley |Bil99] and Whitt [Whi02],

respectively.

For any subinterval I of the real line let D(I,R*) be the space of all cadlag
functions  : I — R*. We initially consider the space Dy := D([0,T],R) where
T > 0. In order to define a metric on Dy let Y1 be the set of all strictly
increasing functions v mapping the domain [0, 7] onto itself such that v as well

I are continuous. Furthermore, let id be the identity mapping

as its inverse v~
on [0,77], i.e. id(t) =t for all ¢t € [0,7]. We now endow the space Dy with the
commonly used J; topology, the so-called Skorohod topology. Then, the standard

J1 metric on D7 is defined by

dj, (1, me) = ir%rf {max{”xlow—x2||,||w—id||}} for x1,20 € Dy (3.1)
velr

where the uniform metric || - || on Dy is given by
|z| == sup {|z(t)|} for z € Dy. (3.2)
0<t<T
By using the standard .J; metric d;, instead of the uniform metric || - || functions

are close in the metric space (Dr,dy,) if they are uniformly close over [0, T after
allowing small perturbations of time. Examples of functions which converge in
(Dr,dy,) but not in (D, || - ||) can for example be found in the books mentioned

above.

But note that the wealth process Y (u, K) has infinite time horizon. Furthermore,
we have to deal with the convergence of multidimensional stochastic processes in
this chapter. Hence, the space Dy has to be modified in the following two ways.
Firstly, let us extend the range of the functions from R to R¥ with k € N. The
standard J; metric defined in (3.1) extends directly to D := D([0, T], R¥) when
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the norm | - | on R in (3.2) is replaced by a corresponding norm on R* as for
example the maximum norm. Using the maximum norm on R* we obtain the

so-called standard .J; metric on D%.

For a fixed k € N let us secondly extend the domain of the functions and consider
the space D* := D([0, 00), R¥) of all cadlag functions z : [0,00) — R¥. It is now
natural to define the convergence of a sequence (a:n)neN in D* in terms of the
associated convergence of the restrictions of x, to the subintervals [0, 7] in the
space DX for all T > 0. However, as described in Whitt [Whi02] this causes
problems if the right endpoint 7" is a discontinuity point of the prospective limit

function z. In the space D* a sequence (xn) is thus said to converge to x

neN
as n — oo if the restrictions of z,, to [0,7] converge to the restriction of = to
[0,7] in D% for all continuity points T > 0 of z. In order to ease notation we

put D := D!

Let now C(DF¥) be the space of all functions f : D¥ — R which are bounded
and continuous with respect to the standard J; metric on D*. A sequence of
k-dimensional stochastic processes (X (”))n . with X .= {Xt(”),t > O} is then
said to converge to a k-dimensional stochastic process X := {Xt,t > O} which is

denoted by X™ = X if

lim E(f(X®)) =E(f(X)) forall fe (D).

n—oo

The idea for the diffusion approximation considered in this chapter is based on
the following result in Grandell [Grl77| which can also be found in the appendix
of Grandell [Gr191]. Let N be a standard Poisson process with intensity a and

((7 k )ken be a sequence of independent and identically distributed random variables
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with expectation fi and variance 62. It then follows that

{Zk 1[&_ najit tzo}i{\/mwt,tEO} (3.3)

as n — oo where W is a standard Brownian motion.

Let us now fix any investment strategy K = k(J) and n € N. In that what fol-
lows we consider independent standard Poisson processes N ... N@n) which
are also independent of the risk reserve process R(u) as well as the environ-
mental Markov process J. Each of these processes have intensity nb?. Further,
let (Uél))keN, . (U ,Ed))keN be independent sequences of strictly positive random
variables which are also independent of the processes N . N(dn) R(u)
and J. For each ¢ € F it is moreover assumed that the random variables
(U ,52)) ren are independent and identically distributed with expectation i and sec-
ond moment k(7). We denote the corresponding distribution by B;. The process
Y™ (u, K) is then defined by

N(Z")
&®) 77(3)
Y (u, K) = Ry(u) +a k() &(t) + Vbt =Y Y (3.4)
(S el k=1 \/_

It turns out that we can use the processes Y™ (u, K), n € N, in order to approx-

imate the wealth process Y (u, K) as the following result shows.

Proposition 3.1. Let the process Y™ (u, K) for n € N be defined by (3.4). For

any investment strateqgy K = k(J) and any initial reserve u > 0 we then have

Y™ (u, K) = Y(u,K) as n— oc.

Proof:

Let us consider the independent standard Brownian motions W, ... W@
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and initially fix some i € E. As already mentioned in (3.3) it follows from

Grandell [Grl77] that

Gi,n) o .
{fo;l Oy — nb?jit

NG ,tZO}:{bk(i)Wt(i),tZO} as n — 00.

Next, we want to prove that this already implies

Glin)

({ Z %—\/ﬁlfﬁt,tzo},ie E) = <{bk(z’)w§“,t20},z’e E) (3.5)

k=1
as n — o00. The proof is similar to the proof of the multidimensional
Donsker FCLT as for example given in Whitt [Whi02|. However, we have to
be more careful here since the sums contain a random number of terms. The
convergence of the one-dimensional marginal processes is mentioned above. By
Corollary 11.6.2 in Whitt [Whi02|, a corollary of Prohorov’s Theorem, it thus
follows that these marginal processes are tight. This in turn implies the tightness
of the d-dimensional process

SN GO ,
({ NG ,tzo},zeE>,

confer Theorem 11.6.7 in Whitt [Whi02].

For aq,...,a4 € R it moreover follows by general marked point process theory
that
{Z Ni) AT
ozi< —= - nbﬂt),tZO}
i€k k=1 v
N(i,n)
1 t 26) o
= {%<Z Z o; Uy’ —nb M(Zm)t) ,t > O}
i€E k=1 i€E
Nt(O,n)

E{Ln( ~é0)_nb2d§(zai)t>,t20}

k=1 S
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where N(©™ is a standard Poisson process with intensity nbd and where the ran-
dom variables ( U ,50) )ren are independent and identically distributed with distribu-
tion Y, 5+ By( o). This means that Ul(o) has expectation £ 3", a; and second
moment %>, - a?k(i)?. Using the convergence result (3.3) in Grandell |Grl77|
again it therefore follows that

NOmn)
L (' 70 ji o
{ﬁ(;% _andE(ieZEai)t)>t20}=>{ (Zoﬂk ) t>0}

i€EE

where W is some standard Brownian motion. Finally, since the standard Brow-

nian motions W, ... W are assumed to be independent we have
{b (Za?k(z‘)2>§ Wt > 0} 2 {bZal W > 0}
i€ER S

and consequently obtain

N i)
{Zai(;U—\/’“ﬁ—\/ﬁbzﬁt),tzo}:s{zalbk t>0}

1€EE i€EE

as n — 00. Applying the Cramér-Wold device which is given as Theorem 4.3.3
in Whitt [Whi02] we thus obtain the convergence of all finite dimensional distri-
butions of the process of interest. This together with the tightness finally yields
the convergence in (3.5) according to Corollary 11.6.2 in Whitt [Whi02].

D

Recalling that W ® W® and applying the time transformation ¢ — &i(t) we

consequently obtain
(i)

(> (% - varaew).ez0).icr)

k=1

:>({—bk;()W()) tZO},ieE) as n— 0.

Note that addition on D x ... x D is measurable and continuous at limits with
respect to the standard J; metric if the limiting functions have no common dis-

continuity points, confer Whitt [Whi02]. In our case, it thus follows from the
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Continuous Mapping Theorem which is for example given as Theorem 3.4.3 in

Whitt [Whi02] that as n — oo we have

N -
YO, ) ={ Rulu) + a3 k(D) (1) + Vbt =Y Z 7 >0}
{ +“Z’f )&i(t) +bZk 20}=Y(u,K)
O

Proposition 3.1 thus gives us an approximation for the wealth process Y (u, K).
But we are certainly still interested in the ruin probability W(u, K'). Recall from
Proposition 2.11 that ¥(u, K) = 1 if the safety loading

_C+CLZ7TZ Zﬂ-z il B;

i€ER i€l

is not strictly positive. We can consequently restrict ourselves to the case

where p&) > 0.

Unfortunately, the mapping which takes the infimum of a function x € D over
an infinite domain is not continuous at limits with respect to the standard

Ji metric. Thus, in order to show that Y™ (u, K) = Y (u, K) implies

inf V;" (u, K) = 11:r>1£Yt(u, K)

>0
as n — oo we cannot directly use the Continuous Mapping Theorem which is for

example Theorem 3.4.3 in Whitt [Whi02]. Nevertheless, we can use
T (y, ) = P(%gg Y, (u, K) < o) (3.6)

with n — 0o in order to approximate the ruin probability ¥ (u, K) as the following

result shows.
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Theorem 3.2. Consider any investment strateqy K = k(J) and suppose that
p) > 0. Further, let the ruin probability W™ (u, K) for n € N be defined
by (3.6). We then have

(i) sup —Y;(n)(O,K) = sup —Y;(0, K) as n — oo,

t>0 t>0

(1) ¥ (u, K) — U(u,K) as n— oo forall u>0.

Proof:

(i) Firstly, note that we have
~Y™(0,K) = -Y (0, K)

as n — oo using Proposition 3.1. According to Theorem 6 and respectively

Theorem 8 in Grandell [Grl77] this yields

sup —Y;" (0, K') = sup —Y,(0, K)

t>0 >0

as n — oo if we can prove that

lim lim sup P(sup —Y;(n)((), K) > 0> =0. (3.7)

m—0 n—oo t>m

It thus remains to show that condition (3.7) is fulfilled. From the Ergodic

Theorem as for example given in Brémaud [Bré99] we know that

1 1 as.
tll)rglo ;fz(t) = lim — [ y(Js)ds = m;

t—oo T 0

and consequently

lim <ct +a k@) &) - )\i,uBi&(t)> L ) |

t—oo t - N
el 1€ER
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In particular, we obtain

hmlnf c+a2k‘

i€l

=) Ap
€l

= lim inf c+a) k(3) &) _ Z)‘iﬂBi &(t) L pE)

m—oo t>m t t
i€E

i€E

Since almost sure convergence implies convergence in probability this yields
K)

lim IP’(ct—l—aZk &(t) Z)\ ws,; &i(t) Z—t Vt>m>

i€ER el

' ' pU)
Jm, P(nf e a3 kO Dz )

2
i€EFE S
. &i(t) K P(K)
> lim IP’( mf c+a k(i - NilLB, — ()‘§—>:1.

Now, let us define the process M ™ (K) by

v (m)
E (t

£ (1) ~(i)
M (K ZZU;? > A, &t +ZZ — Vb,

i€E k=1 i€k i€E k=1
Putting
{t+ SR &) = > N, &(t) = NPV }
ct+a ; ipm, &(t) > —— m
i€k et i€k o é 2
we have

]P(sup ~v"(0,K) > 0)
t>m

:1@(35%(”) — (et +a > k@ &) = Nops, &) )

i€E el

= P({sup M) — (et +0 D RO 60) = 3 An 600) } ")

i€E
+IP’<{§;1£M( ct—{—aZ/{: ) &i(t) Z)\ ws; &(t) }ﬂAC>

el
. s
<P({sup M) = om0 > 0 04 ) +1 - P(4n)
t>m

; () pt)
E(](Am) ]Pfoo(suth" (K) — —1t> 0)) +1-P(A,).
t>m 2
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As done in Grandell |Grl78] we intend to bound this probability
using the Hajek-Rényi inequality in the version as given in Theorem 2 of

Frank [Fra66]. For any h € (0, 1) we obtain

(K) MY (K
Pfé’o( sup MP(K) = 2= jh > o) :Pfffo( sup % > 1)
G241 2 izl ijh
MY (K
< ]P’f51°< sup % > 1)
i>m+1 | &= jh

Next, let us check if the conditions for the H&ajek-Rényi inequality are
fulfilled. Firstly, we note that the sequence (AM;")(K ))] oy defined by
AMJ(")(K) = MJ(Z)(K) — M(TL_)l)h(K) satisfies

(4

J n n n J n
E7% [AM; )(K) ‘ AM®)(K), ..., AM] %K)} — E7% (AM} >(K)> —0

for every j € N. Secondly, we have

v (aa0)
ZEfg"((Z i(]:h) U _Z)\i,uBi (&(5h) —fi((j—l)h)))2>
S ke Ng( )((J 1)h)+1 S

; Nern e )
FL Z Z k 2~
EE k=N

for every 5 € N where the first part of this sum is equal to

Néz)(Jh)
V(3N 00 - h, (&)~ &(G - D))
EE RN+ e
Nﬁ(z)(Jh)
= Z\/arfi’( Z Ux&”)
ek =Nt

=> (EF ( &l)Jh) &((G-Dh )Varf‘i’(Ul(i))

€l
, o,
T ( N FI (110
- Var (Nfi(jh)—ﬁi((j—l)h)) (E (U1 )) )
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el

= > x(&6m) - &l - 1)) (Var(Uf’> + (E(Ul(i))f)
< hma N E((U1)7).

Analogously, we can show that the second part is less or equal than

G0 |
hnb? Iglgng((ﬁf) = hb? max k(i)?.

Hence,

EF$<(AM;”)(K))2> <h (rzneax)\iE((Ul(i)f) + b? maxk‘(i)2> :

E i€l

J/
-

=:C

Applying the Hajek-Rényi inequality we consequently obtain

PFO{’( sup M;Z)(K) >1)
=iz &2 jh
. Ed o .
<—— 53> Cht Y —— 5 Ch
= m (K)\ 2 . (K)\ 2
(Lplhes) = j=1m 41 (1 hE5)

40(1 1°°1) 40(1 1/001)
= o\ T =S e\t T —dz
p(K)2 LEJh hjZLZL%-HJQ p(K)2 Lﬁjh’ h B x?

4C° 2 8C

= < .
o7 TETR = (i — ol

Since this bound is independent of h € (0,1) and n € N it follows that

(K) 8C'
P (sup M) - P o) < — S0
t>m+1 2 (m — 1)p&E)

Plugging all things together we thus have

lim lim sup ]P’(sup —v,"(0, K) > O)

m—xX n—oo t>m

(K)
< lim limsup E(I(Am) p7s <sup MM"(K) - th > 0)) +1-P(A,)

t>m
R 8C
< lim limsup ———— = E(I(4,,)) +1— P(A,) =0.
meoo oo (m — 2)p(F)

Therefore, condition (3.7) is fulfilled and the assertion follows.
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(ii) Noting that

U(u, K) = P(lnf Yi(u, K) < 0) IP’(sup ~Y,(0, K) > u) .
t>0 >0
and
) (y, K) = P(inf Y, (u, K) < o) — ]P’(sup —y™(0, K) > u)
t>0 t>0

for n € N it is obvious that part (ii) directly follows from part (i).

Finally note that the approximating wealth process Y (u, K) can be regarded
as a risk reserve process from the Markov-modulated Poisson model without

investment. Recall that for any ¢ > 0 we have

(1 n)

0
V" (u, K) = Re(u) +a > k(i) &(t) \/‘bmt—ZZU

i€ER i€eE k=1
Néity o New 3G
=u+ct+a k(i) &(t bt — U’ —k
D RD&) +Varat=3 | 300+ 3D
1€EE S k=1 k=1
Let us now consider independent standard Poisson processes N ) ,N (dn)

which are also independent of the environmental Markov process J. For ¢ € F
“r(dn
L (G)

be independent sequences of random variables which are also independent of the

the process N (™ have intensity \; +nb?. Further, let (U ,51’"))

keN? " " keN

processes N(l’”), . ,N(d’") and J. For each ¢ € FE the random variables (U,gi))keN
are assumed to be independent and identically distributed with distribution

5(n) L /\Z an

It then follows by general marked point process theory that

(i,n)
Nei

Y;(n)(u,K)gujLZ(c—i—ak() Vb3 ZZ ;

S i€E k=1
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Thus, Y™ (u, K) can be regarded as a risk reserve process from the Markov-
modulated Poisson model without investment. However, note that the premium
rate of the resulting model obviously depends on the environmental Markov

process J. Therefore, we have to apply the time transformation

t
C
T(t) := d
(t) /0c+ak(Js)+\/ﬁb2/] °

in order to obtain a model with constant premium rate ¢ but where all other

parameters are also changed accordingly, confer section 2.1.
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3.2 Two applications

3.2.1 Approximating the adjustment coefficient

We can use the diffusion approximation obtained in the previous section in or-
der to approximate the adjustment coefficient of the Markov-modulated Poisson
model with respect to some fixed investment strategy. Recall from chapter 2 that
the adjustment coefficient RS) with respect to any fixed investment strategy

K = k(J) is given by
R%) = sup {7’ > 0;925%()(7’) <1Vje E}

where

¢\ (r) = E; (eXp (Z [Aihi(r) L VRGE r(c+ ak(z))} gi(7<j>))> .
i€E 2

As mentioned at the end of the previous section we can regard Y™ (u, K) as

the risk reserve process from a certain Markov-modulated Poisson model without

investment. Applying an appropriate time transformation the adjustment coeffi-

cient of our approximating Markov-modulated Poisson model without investment

is therefore given by R¥™ = sup {r>0; gzg%(n)(r) < 1Vj € E} where

S () R <eXp (Z [(/\Z- +nb?) ™ (r) — r(c+ ak(i) + \/ﬁbzg)} gi(fm)) ) .

i€E

At this, }Azz(n) denotes the centered moment generating function of the

distribution B™ for i € E. Thus,

ﬁg") (r) = / e dBfn) () —1
0

SN /ooemdB-(x)—l +n—b2 /Ooermndé-(x)—l
o )\Z—Fan 0 ! )\z+nb2 0 ‘

A\ nb? "
S — —<E T —1).
A + nb? (r) + A + nb? (6 )
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Using a Taylor series expansion we therefore obtain

()xi + an)fLZ(n) (r) — T(C + ak(i) + \/ﬁbzﬂ)
ol
= Nihi(r) + nb? (E(erﬁ) — 1> — T(C + ak(i) + \/562[0)
= \ihi(r) + nb? (1 n 7\"/_% N r2 ];g)z

—r(c+ak:(i)) +O(%) ,r>0.

+ O(n_%) - 1) —r(c+ ak(i) + Vnb*fi)

P20k (i)?

It consequently follows that éx{n)(r) — gf)(r) for all » > 0 and hence
REm _ RE) a5 n — oco. Instead of computing the adjustment coefficient
for the Markov-modulated Poisson model with investment as described in the
second chapter it is thus possible to approximate it by the obtained adjustment

coefficient for the Markov-modulated Poisson model without investment suffi-

ciently close to the limit.

3.2.2 Another comparison with the compound Poisson

model

We consider the Markov-modulated Poisson model with investment and its as-
sociated compound Poisson model with investment once again in this section.
Recall that the intensity of the claim arrival process and respectively the claim

size distribution of the associated compound Poisson model are given by

TN
)\*

N = Zmi and B* =

el 1€ER

B;.

It is shown in chapter 2 that a constant investment strategy is optimal in both

models in the sense that it maximizes the corresponding adjustment coefficient.
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Moreover, we have already shown that the optimal adjustment coefficient of the
Markov-modulated Poisson model with investment is smaller or equal to the
optimal adjustment coefficient of the associated compound Poisson model with

investment.

Let us now compare the Markov-modulated Poisson model and its associated
compound Poisson model when using the same constant investment strategy K in
both models. We define K by K = k for t > () where kis any real constant. Recall
that the wealth process Y (u, K ) from the Markov-modulated Poisson model is
then given by

i)
Nei )

Yi(u, K) ::u+(c+al%)t—z Z U,gi)+blAth,tZO.

i€E k=1
The wealth process Y*(u, K ) from the associated compound Poisson model is

defined by
N

Y (u, K) ::u—i-(c—l—a/;:)t—ZU,j—i-bl%Wt,tZO,
k=1

where the random variables (U} )ren are independent and identically distributed

with distribution B* and where the standard Poisson process N* has intensity A\*.

We know from what is shown in the second chapter of this work that the Markov-
modulated Poisson model under investment strategy K has the adjustment coef-

ficient RXK) := sup {r > 0;925%%)(7’) <1Vje E} where

¢§-§<)(T) =E; (exp (Z Aihi(r)&(79)) + [r2b22k;2 e+ a/%)]T(j))> '

i€E
As given at the beginning of the second chapter, the adjustment coefficient R&E)

of the associated compound Poisson model under the same constant investment
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strategy K is the strictly positive solution of the equation
2522

A*h*
)+

2b2k2 .
—7“ c—l—ak Zm)\h —T(c—f—ak):().

S

Analogously to the proof of Theorem 2.23 it thus follows that RE) < R&E)”

provided that both adjustment coefficients exist.

In that what follows we directly compare the ruin probability
U(u, K) = P(infiso Yi(u, K) < 0) of the considered Markov-modulated Poisson
model and the ruin probability U*(u, K) = P(infiso Y)*(u, K) < 0) of the
associated compound Poisson model for any given v > 0. However, in order
to apply a result in Asmussen at al [AFR"95] we have to make the following

additional assumptions.

Besides A\; < ... < \j which can without loss of generality be assumed we need
that B1<,; ... <,Bg where <, denotes the usual univariate stochastic order as

for example defined in Miiller and Stoyan [MS02|, i.e. B;<B; holds if

Bi(z) > Bj(x) forall z eR.

Further, the environmental Markov process J has to be monotone in the sense

that . .
Z Qi < Z Qi+1,k
k=l k=1

for all i = 1,...,d — 1 and [ # i + 1 and its initial distribution has to be
its stationary distribution 7. Considering any ¢ > 0 and i,j € E with i < j
the monotonicity of the Markov process J implies that J; given Jy = 17 is

smaller than J; given Jy; = j with respect to the usual univariate stochastic

order, i.e. IP’Z-(Jt € {1,...,]{}) > IP)j(Jt € {1,...,]{:}) for all k¥ € E, confer
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Theorem 5.2.19 in Miiller and Stoyan [MS02]. Note that the monotonicity condi-
tion is automatically fulfilled if the environmental Markov process only has two

states.

We then get the following result which compares the ruin probabilities of the
Markov-modulated Poisson model and its associated compound Poisson model

under the same constant investment strategy.

Theorem 3.3. Let the Markov-modulated Poisson model and its associated com-
pound Poisson model under the same constant investment strateqgy K be given.

Further assume that

(ZZ) Blést CIE Ssth ;

(zii)  J is monotone and has stationary initial distribution .

~

Denoting the ruin probability of the Markov-modulated Poisson model by ¥ (u, K)
and the ruin probability of the associated compound Poisson model by V*(u, K)
it follows that

U (u, K) < U(u, K) forall u>0.

Proof:
Let us fix any u > 0 and consider the investment strategy K defined by K, =k
fort > 0. If k = 0 we are in the case without investment and the assertion follows

directly from Theorem 1.1 in Asmussen et al [AFR795|. Hence, let us suppose
that k # 0.

It is shown at the end of section 3.1 that the ruin probability W(u, K) of

the Markov-modulated Poisson model under the investment strategy K can be
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approximated by the ruin probability of an adequate Markov-modulated Pois-
son model without investment. Before we define the wealth process of the latter
model let us initially consider its claim size distributions. Recall from section 3.1
that in the approximating model without investment a claim which occurs when

the environmental Markov process is in state ¢+ € E has distribution

)\i an

>(n)
B! S R— —

Bi(v/nz). (3.8)

However, since we consider the constant investment strategy K we can this time
suppose that B; = B for every ¢ € I/ where B is some distribution concentrated on
(0, 00) with second moment k2. Note that the expectation of the distribution B,
denoted by fi, is arbitrary but certainly has to be considered in the definition of
the wealth process of the approximating model. For this proof we moreover have
to choose B such that there exists a sufficiently large n € N with B(y/nz) > B;(x)

for all x € R, and every i € E.

In that what follows we show that such a choice of B is possible. Recall that
all random elements in this work are defined on the same probability space.
The random variable U’ := min {Ul(l), Ce Ul(d)} is therefore well defined and we
denote its expectation by i’ and its second moment by f®". Note, that the
distribution, say B’, of this random variable U’ is by definition concentrated

n (0,00). Consequently, o := M’f—;, is a strictly positive finite constant.

We now define B as the distribution of the random variable U := \/aU’. It

hence follows that also the distribution B is concentrated on (0,00) and that it

has second moment E(U?) = aE((U")?) =

% \é__ %mm{(]l ,...,Ul(d)}SmiH{Ul(l),--wde)}

for all n € N with n > a. For these integers n we thus obtain B(y/nz) > B;(z)

, i®" = k2. Furthermore, we have
u(2>
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for all z € Ry and every ¢ € E. Eventually note that the expectation of the
distribution B is given by ji := E(U ) =Vap

Using the same notation as at the end of section 3.1, the ruin probability ¥ (u, K )

can be approximated by W™ (u, K) = P(inftzo Y;(")(u, K) < 0) with n — oo

where
) ) N »
VO K) =t (et ak+vavp) =30 3T U 120,
i€E k=1

At this, the random variables (A ,im)) ey are independent and identically dis-
tributed with distribution Bz(n) (x) as defined above and the standard Poisson

process N@™ has intensity \; + nb® for i € E.

Later in this proof we want to use a result for the Markov-modulated Poisson
model without investment and with constant premium rate one. In order to ob-
tain such a premium rate we thus have to apply the time transformation given by
T(t) := m As described in section 2.1 we therefore consider a Markov-

modulated Poisson model without investment whose wealth process Y™ (u, K)

is given by
“Si,n)
. . D & (1) o
VO, K) = Y, K) Za+t =303 0807 1> 0.
i€l k=1

At this, NG g a standard Poisson process with intensity % fori € E.

The environmental Markov process after time transformation has intensity ma-

<c+ak+\/ﬁb2ﬂ)%]€E

more, &(t) = (c+ ak + Vnbii) &(t) for all t > 0 and i € E. Recall that this

and thus still stationary initial distribution 7. Further-

time transformation clearly does not effect the ruin probability which means

that ¥ (u, K) = P(inf;>o Yt(n)(u, K) < 0) = P(inf;>o Y/t(n)(u, K) < 0).
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Analogously, the ruin probability of the associated compound Poisson model
U*(u, K ) under the same investment strategy K can be approximated by the
ruin probabilities ¥ (u, K) = P(infyo V" (u, K) < 0) for n € N where the
process Y™ (u, K) is defined by

Nt(n)
FO ) —ust— 300t >0,
k=1

Here, N™" is a standard Poisson process with intensity ﬁ and the inde-

pendent and identically distributed random variables (U ]gn)*) e Dave distribution

"(n)* )\* * nb2
B @)= e B0+ 5 BWR).

We have already mentioned that }v/(”)(u, K ) can be regarded as the risk reserve
process of a Markov-modulated Poisson model without investment. It is easy
to verify that y () (u, K ) is the risk reserve process of the associated compound

Poisson model without investment.

Let us now consider any 7,j € E with ¢ < 7 and choose n € N sufficiently large

such that B(y/nx) > B;(x) for all + € R,. We want to show that B;")gstéﬁ.”)

i.e. that
A(n) o )\Z nb
i nb2
P——
A+ nb? i) + )\+nb2 (\/_x) ()

for all x € Ry. If Bj(z) = 0 the inequality is obviously fulfilled since \; < ;.
Hence, consider z € R, with B;(z) > 0. Note that f : [0,00) — R defined by

f(x) = ﬁ is an increasing function for \; < \;. Since we have B(y/nx) > B;(z)

and B;(z) > Bj(x) from our assumptions it thus follows that

~ Bi(x B(vnz B T
N Bi(a) £ niB(viir) _ Npg + PR A nl? By e
\j B;(z) + nb?B(y/nz) \; + nb? Bé,("g”) T\ 4 nb? Bé{"f — A+ nb?
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which is equivalent to Efn)(x) > A](-n) ().

A1 +TLb2 < < >\d+nb2

Further, it follows from our assumptlons that m S LS m.

Since the environmental Markov process of the time transformed model is still
monotone with stationary initial distribution m we can thus apply Theorem 1.1

in Asmussen et al [AFR795|. This yields
T (4, K) < 0™ (u, K).

for all v > 0 and sufficiently large n € N. Letting n — oo it thus follows from
Theorem 3.2 that U*(u, K') < U(u, K) holds for all u > 0.



Chapter 4

The periodic Poisson model with

iInvestment

In this chapter we consider the risk reserve process of an insurance company in a
deterministic periodic environment. As before, the insurer has the opportunity to
invest into a stock index whose price process is modelled by a geometric Brownian
motion. Initially, the invested amount only depends on the current state of the
environment. Later in this chapter also a broader class of investment strategies

is permitted. The claims again have exponential moments.

The outline of this chapter is similar to that of the second chapter. After in-
troducing the actual model the adjustment coefficient with respect to any fixed
investment strategy is determined in section 4.2. In the following section this
adjustment coefficient is maximized with respect to the investment strategy. We
then prove the optimality of the obtained investment strategy in section 4.4. At
this, we do not restrict ourselves to investment strategies which only depend on
the environment. Finally, the periodic Poisson model and its associated com-

pound Poisson model are compared under optimal investment.

93
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4.1 The model

As in the Markov-modulated Poisson model the premium rate and the claim
arrivals in the periodic Poisson model are inhomogeneous in time. However,
instead of an stochastic environment as in the previous chapters we this time

consider the following deterministic, periodic environment.

The premium rate at time ¢t > 0 is given by ¢; := ¢(t) where ¢ : [0,00) — R
is a bounded and periodic function. We denote the period of this function ¢ by
T > 0. This means that ¢(t) = c¢(t+T) for all ¢ > 0. Further let A : [0,00) — R,
also be a bounded and periodic function with the same period T" > 0. The claim
arrival process N := {/N;,t > 0} is then assumed to be a Poisson process with
intensity process {A;,t > 0} where we put A, := A(¢). Furthermore, a claim
occurring at time ¢ > 0 have some distribution B; concentrated on (0,00). In
the periodic Poisson model it is assumed that also the claim size distribution
periodically depends on the time parameter ¢ with period 7" in the sense that
the distributions B; and By, 7 coincide for all ¢+ > 0. As a minimum requirement
we further have to assume that A\, and B; are measurable functions in ¢t. The

corresponding risk reserve process R(u) := {R;(u),t > 0} is then given by

t Ny
Ry(u) :u+/ csds—ZUk (4.1)
0 k=1
where as before u > 0 is the initial reserve of the insurance company.
Again, let the insurer have the opportunity to invest into a stock index or say

some portfolio. The price process S := {S;,t > 0} of this portfolio is modelled

in the same way as in chapter 2 by a geometric Brownian motion with dynamics

dSt:St(adt—l—det),tZO
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Apart from section 4.4 it is assumed throughout this chapter that the invested
amount at time ¢ > 0 only depends on the current state of the environment. This
means that the investment strategy K := {K;,t > 0} is determined by some
periodic function k : [0, 00) — R with period T > 0 such that K; = k(t). At this,
we furthermore suppose that the integral fOT K?ds is finite. Note that this is a
necessary and sufficient for the stochastic integral fot K, dW, to exist for all t > 0.

In that what follows we denote the class of such investment strategies by K.

As in chapter 2 we can assume without loss of generality that the premium rate
is constant over time, i.e. ¢; = ¢ for all ¢t > 0 and some ¢ > 0. However, this time
the appropriate time transformation is given by T'(t) := fot - ds. Also in this
model we certainly have to take into account that the parameters of the model
change accordingly. In that what follows we consequently consider the wealth
process Y (u, K) given by

¢ t Ny
Yt(u,K):u—l—ct—l—a/ sts+b/ KSdWS—ZUk,tEO. (4.2)
0 0

k=1
As before, let the process X (K) by defined by X;(K) = Y;(u, K) —u for t > 0

and let FY := {F;,t > 0} be the natural filtration of the wealth process Y (u, K).

For the present model we also suppose that the claims have exponential moments.
This means that for every ¢ € [0,7") there exists a possibly infinite constant

r) e (0, 00| such that the centered moment generating function h; defined by

he(r) ::/ e®dBy(z) — 1,7 >0,
0

is finite for every r < r$) with hi(r) — oo as r — r¥. As already mentioned this
assumption implies that h; is increasing, convex and continuous on |0, rc(,i) ) with

h¢(0) = 0 for any fixed t € [0,T).
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Denoting the ruin probability by W (u, K') and the time of ruin by 7(u, K) the aim
of this chapter is the same as of the second chapter. We want to find the optimal
investment strategy in the sense that it maximizes the corresponding adjustment
coefficient R. Recall that R is defined as the largest possible value such that the
Lundberg inequality ¥(u, K) < C e~ with C' < oo is fulfilled for all u > 0. Note
that the compound Poisson model fits into the actual framework by choosing the

same claim size distribution B; and putting A, = A for all ¢ € [0, 7).

Let us now consider what has been shown for the periodic Poisson model without
investment. As for example given in Asmussen [Asm00|, the adjustment coef-
ficient for this model is given as the strictly positive solution of the equation
AN*h*(r) = cr. At this, h* is the centered moment generating function of the
distribution B* where

B* = 1/T)\tht 'thA*-—l/T)\ dt
—T ; )\* t W1 _T ; t .

Note, if we associate a classical compound Poisson model to the periodic Poisson
model by averaging over the environment the corresponding Poisson process has
intensity \* and the corresponding claim size distribution is given by B*, confer
section 4.5. It thus follows that without investment the adjustment coefficients of

the periodic Poisson model and its associated compound Poisson model coincide.

We have already mentioned that an adjustment coefficient of the classical com-
pound Poisson model without investment exists if and only if the corresponding
absolute safety loading is strictly positive. Consequently, an adjustment coeffi-

cient of the periodic Poisson model exists if and only if

c— Npps :c—)\*/ rdB*(z) > 0.
0
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Analogously to the Markov-modulated Poisson model with investment we define
the absolute safety loading of the periodic Poisson model with respect to some

given investment strategy K as the constant p) for which
. 1 as. (K)
thm ZY}(O,K) = p\).

(K) as the safety loading with respect to K unless otherwise

As before, we refer to p
stated. It is later shown that p) > 0 is a necessary and sufficient condition for

an adjustment coefficient to exist when using investment strategy K.
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4.2 The adjustment coefficient for any fixed in-

vestment strategy

Throughout this section we consider any fixed investment strategy K € K. As
in the second chapter of this work we use a martingale method in order to ob-
tain a Lundberg bound for the ruin probability ¥ (u, K). However, this time our
exponential martingale slightly differs from the martingale used for the Markov-
modulated Poisson model. Besides some obvious changes we consider an expo-

nential martingale process which is stopped at the time of ruin 7(u, K).

Proposition 4.1. Consider any investment strateqy K € K and let u,r > 0 be
fized. Define the process M (u, K,r) by
o (0.1

My(u, K,r) := - ,1>0.
exp (fo Ashs (1) + %7’262[(52 —r(c+aKy) ds)

The stopped process M(u, K,r) given by

Mt(u7 K7 T) = Mt/\T(u,K)(ua K7 T), t > 07

is then a martingale with respect to FY .

Proof:
For simplicity reasons put 7 := 7(u, K). Note that fo;l Uy = fot Un, dN for
all £ > 0. It thus follows that M;(u, K,r) = exp(V;) for ¢ > 0 where the process

{V;,t > 0} has dynamics

1
dV, = —(/\tht(r) + §T2b2Kt2) dt — rbK, dW; + rUy, dNy .
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[to6’s Formula as given in Protter [Pro04], page 78, then yields

Mt(u7 K7 T)
t 1 t
= Mo(u, K,7)+ | My (u, K,r)dV, + 3 M- (u, K,7) r*b* K2 ds
0+ 0+
+ 3 (Ms(u, K,r) — My (u, K1) — (Vs — Vo) My (u, K, 'r)>
0<s<t
t
1
= Moy(u, K,r) — / M- (u, K, 1) (Ashs(r) + §r2b2K§) ds
o+
t t

— [ Mg (u, K,7)rbKsdWs+ [ Mg (u, K,r)rUy, dN;

0+ 0+

1 t
+—/ M, (u, K,7) r*b*K? ds
2 0+

¢
+/ <M5<U,K, r) — Mg (u, K,r) — rUy, My-(u, K, 7’)) dN,
o+

¢

= Moy(u, K,r) —/ rbKs My (u, K, r)dWj
o+
t

¢
+/ <MS(U,K,T)—MS—(U,K,T)) dNS—/ Ashs(r) My (u, K,r)ds .
0+ 0

+

(4.3)

Recall, we want to show that M(u, K,r) is a martingale with respect to FY.
Since K € K and 0 < Y}~ (u, K) <1 for all ¢ < 7 it follows by the definition of
the It6 integral that the process

tAT
{/ rbKs M- (u, K1) dWs, t > O}
0

+

is an FY-martingale. In order to complete the proof it thus suffices to show that

also the process

tAT

tAT
{/ (Ms(u, K,r) — M, (u, K, r)) dN, — / Aohs(r) M- (u, K, 7) ds, t > o}
o+ o+

is an FY-martingale. Recall, the claim arrival process N has intensity {\;, ¢ > 0}

with respect to F¥. Further, {M;-(u, K,r)hi(r),t > 0} is an FY-predictable
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([ ) <o

for all t > 0 since 0 < Y;-(u, K) < 1 for t < 7. It therefore follows from

process with

—(u, K, r)hg(r)

Theorem T8 in Brémaud [Bré81|, page 27, that the process

tAT tAT
{ M- (u, K,r)hs(r) dNg — M- (u, K,7)hs(r)As ds, t > 0}

0+ o+

is a martingale with respect to FY¥. Using this fact in the last equality below we

UAT}

conclude that

EU(W (MS(U,K, ) — M, (u, K, r)) dN,

vAT)t

—E[/(t:) M, (u, K, 7’)( Ul 1) dN, fg’M}
= {ZM (u, K,r) < N”k'j — 1> Seonrint] (Vk) '7:327}
=1
— iE[ Jo(u, K, ) ( Ul 1) Ownrinr] (Vi ‘fy] -7:3;\7}
k=1
= i]E[Myk_ (u, K,r) E[eTUéUk) - 1).7:2} Swarinr] (Vi) fo};w]

i

1

I
=

Z Myk_ ('Ll,, K7 7’) huk (7’) 5(1}/\7,1&/\7’] (Vk)
k=1

f]

Il
=

/MT M- (u, K,7) hg(r) dNy
(

vAT)T

f]

tAT
=E / M- (u, K,7) hg(r) As ds
(

vAT)T

7]

for v < t where v}, denotes the k'™ jump epoch of the claim arrival process N
for k € N. Using the representation of M;(u, K, r) given in (4.3), the integrability
of the stopped process M(u, K,r) can easily be shown. This finally completes

the proof since M (u, K,r) is obviously FY-measurable.
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Using the exponential martingale from Proposition 4.1 we can now determine
an upper bound for the ruin probability W(u, K) in the same way as done in

chapter 2.

Proposition 4.2. Consider any investment strateqy K € IC. For r > 0 we then
have

U(u, K) < C(K,r)e ™

for all w > 0 where

t 1

C(K,r) := sup exp (/ Ashs(r) + =r?0*K? — r(c + aK,) ds) :
>0 0 2

Proof:

Let us again denote the time of ruin by 7 := 7(u, K). We have already shown

that the process M(u, K,r) is a martingale with respect to the filtration FY.

Analogously to the respective result in chapter 2, it therefore follows for r > 0

and u > 0 that

:NM%Kﬂ:E@LuKr

:E@MmKﬁﬂh<t

\_/

( uKr)](T>t)>

t)

t)
r202 K2 — r(c+ aKy) ds)

| /\

zEMuuKm%<4P(

P(r
SUPg<y<t €XP (f Ashs(r) +

v

[ol»—- |/\

and hence

v 1
P(r <t)<e ™ sup exp (/ Ashs(r) + §T2b2K32 —r(c+akjy) d5>
0

0<v<t
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Letting ¢ — oo we consequently obtain

Y 1
U(u, K) <e ™ sup exp (/ Ashs(r) + §T262K§ —7r(c+ aKy) ds) :

v>0 0

Recall that the period of the periodic environment is denoted by T'. It is thus

obvious that C'(K, ) is finite if and only if
g 1
exp (/ Ashs(r) + §r2b2K§ —r(c+aKy) ds) <1.
0
For a given investment strategy K € K let us therefore define R as

T 1
RY) .= sup {r > 0;exp (/ Ashs(r) + §r2b2K52 —r(c+aKy) ds) < 1}
0

4 1
=sup {r >0 ;/ Ashs (1) + 57“21721(82 —r(c+akK,)ds < 0} (4.4)
0

It now follows from our assumptions on the functions hy, t € [0,7), that R%) is

the strictly positive solution of the equation
T 1
/ Ashs(r) + §r2b2Kf —r(c+aKy)ds=0. (4.5)
0

We consequently say that R does not exist if equation (4.5) does not have a

strictly positive solution. If R¥) exists it is uniquely determined.

Using R¥) we can now give a Lundberg bound for the periodic Poisson model

with respect to some fixed investment strategy K € K.

Theorem 4.3. Let K € K and assume that a strictly positive solution R of

equation (4.5) exists. For any r < R we then have

U(u, K) < C(K,r)e ™
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with

! 1
C(K,r)= sup exp </ Ashs(r) + §r2b2Ks2 —r(c+ aKj) ds) < 00
0

0<t<T

for all u > 0.

Proof:
Recall that the inequality of interest is trivial for » < 0. As described above,
C(K,r) is finite if » < R¥). Noting that fot Ashs(r) + 3r20° K2 — r(c + aK,) ds

has its supremum on the interval [0,T) if r < R the assertion follows.

Note that we are interested in the investment strategy K € I which minimizes the
Lundberg bound for the ruin probability W(u, K). Hence we do not investigate
here if there exists some constant C' < oo such that the Lundberg inequality given
in Theorem 4.3 also holds for some r > R¥) and C instead of C(K,r). After
maximizing R¥) with respect to K € K in the following section we then verify
in section 4.4 that the resulting R is indeed the optimal adjustment coefficient
of the periodic Poisson model with investment. Nevertheless, we refer to R as
the adjustment coefficient with respect to some fixed investment strategy K € KC

in this work.

As for the Markov-modulated Poisson model we conclude this section with the
study of conditions which ensure that R exists for a given investment strategy
K € K. However, this time it is less complicated since we have a deterministic
environment. Recall from section 4.1 that the safety loading with respect to some
investment strategy K € K is defined as the constant p) for which

Y K - a.s.
lim —t(u’ ) Y as

t—o0 t

P (4.6)
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We thus get the following representation of the safety loading for the periodic

Poisson model with investment.

Proposition 4.4. Consider any fized investment strategy K € K and let the

corresponding safety loading p<) be defined by (4.6). Then,

<K>—c+“/Tde 1/T)\ ds
1% - T o s T o s,UBS .

Proof:
We have

N¢

Y (u, K)—u—Xt(K)—ct+a/de—l—b/KdW ZUk,t>0

Noting that lim, o 1 (X:(K) — XL%JT(K» “% 0 we almost surely have

T L) = 2B (%)

1 1
lim — Xt(K) = lim — XL j7(K) = lim

t—oo t t—oo t t—oo t L%J T

by the law of large numbers since (XnT(K ))HGNO is a random walk. We thus have

to determine E(X7(K)). At this,

]E(/OTKSdWs> -

Nt T
E(ZUk) _/ e 115, ds
k=1 0

where the latter is well known and can for example be found in section 12.4 of

and

Rolski et al [RSS799]. It therefore follows that

1 T
p(K):T]E<XT(K)> T cT+a K ds+/ As uBSds>

=c+ = /de —/ As g, ds.
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Analogously to the Poisson models we have considered so far the following result

follows.

Proposition 4.5. Consider any fived investment strateqy K € K and suppose

that the corresponding safety loading p&) < 0. Then,
U(u, K)=1

for all u > 0.

Proof:
Let K € K. Recall from the proof of Proposition 4.4 that (X,r(K)) is a

n€eNp

random walk with
E(XT(K)> — Ty,

If p) < 0 it follows that X,7(K) converges to —oo as n — o0o. According
to Theorem 4.2 in Asmussen [Asm03|, page 224, the random walk <X"T)neN0
oscillates between oo and —oo if p) =0. In both cases we therefore have

inf;>o Yi(u, K) = —oo almost surely and consequently ¢ (u, K') =1 for all u > 0.

|

This means that we cannot find an adjustment coefficient of the periodic Poisson
model under some fixed investment strategy K € K if p(®) < 0. On the other

hand it can be shown that the adjustment coefficient R exist if p(%) > 0.

Proposition 4.6. Consider any fized investment strateqy K € K. Then, R

defined as the strictly positive solution of equation (4.5) exists if pt) > 0.

Proof:

Let K € K and suppose that p&) > 0. Now, R is defined as the strictly
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positive solution of the equation
4 1
g(K)(T) = / )‘shs(r) + §T2b2K82 - T(C + CLKS) ds=0.
0

It is well known that under our assumptions we have h}(0) = pp, forall t € [0,7),

confer Asmussen [Asm00|. We therefore obtain

i (K)(r) = i T)\ h (T)+1r2b2K2—r(c+aK)ds

dr 0 Cdr o 7 2 s s —0
—/Ti<)\h(r)+lr2b2K2—r(0+aK )) ds
— o dr slts 9 s s -

T
= / AhL(0) — (¢ + aKy) ds
OT T
:/ )\suBSds—cT—a/ Ksds = —p(K)T <0
0 0

which implies that the equation g (r) = 0 must have a strictly positive solution.

a
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4.3 Maximizing the adjustment coefficient

So far, it has been shown that for an arbitrarily chosen investment strategy K € K
we have

U(u, K) < C(K,r)e ™

with C(K,r) < oo for all u > 0 whenever r < R&). Analogously to chapter 2,
we thus have to maximize R¥) with respect to the investment strategy K € K
under the constraint that C'(K, R) is finite. Recall that R is defined as the

strictly positive solution of

T
1
/ Aehi(r) + §r2b2Kt2 —r(c+aky)dt=0.
0

For r > 0 we have

L 59700 r2b? a <o a2
Aehy (1) + 57 b°K; —r(c+aKy) = Mhy(r) + T(Kt — W) — (re+ 2_172) .

Thus, R is the strictly positive solution of the equation

T TQbQ a .o CL2
Aeh — (K — —) — —)dt =0. 4.7
| )+ S (= 55 = e+ 5) (4.7)

As in the second chapter let the constant investment strategy K () be defined by
Kt(r) = o for ¢ > 0. It thus follows from equation (4.7) that the strategy K (r)

maximizes R¥) for some r > 0.

Motivated by the definition of R) through equation (4.7) we define R as the
strictly positive solution of
2

T CL2 T a
/0 >\tht<71) — (TC + @) dt = /(; )\tht(r) dt — (TC + @) T=0. (48)
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Our assumptions on hy for ¢t € [0,T) imply that R is uniquely determined and
that it exists whenever the drift parameter a of the Brownian motion with drift

W, does not equal zero.

In the case where ¢ = 0 we have

d T
ar Aehy (1) dt — rcT

T
= / Mpip, dt — T = —pOT
r=0 0

as noted in the proof of Proposition 4.6. Hence, R exists if and only if p(® > 0.

As in the Markov-modulated Poisson model it therefore follows that R exists as
long as a # 0. For a = 0 we have the existence of R if the safety loading of the
periodic Poisson model without investment is strictly positive, i.e. if there exists

an adjustment coefficient without investment.

It moreover follows from the respective definitions that R) < R for all invest-
ment strategies K € K with equality if K = K. Further, R apparently does

not exist for any investment strategy K € K if R does it exist.

Together with Theorem 4.3 in the previous section we finally get the following

result.

Corollary 4.7. Suppose that the strictly positive solution R of equation (4.8)
exists. Under the investment strateqy K defined by Kt(R) = 75 fort >0 we
have

U(u, KBy < C(K® R)e v

with C(K™ R) < oo for all u > 0.
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4.4 Optimality

We have already mentioned that there does not exist an adjustment coefficient for
the periodic Poisson model under any investment strategy K € K if R which is
defined in the previous section does not exist. Hence, let us from now on assume

that R exists. It is also proved in the previous section that
U(u, KBy < C(K®, R) e fu

with C(K® R) < oo for all u > 0. In this section we are going to show that R
is indeed the optimal adjustment coefficient for the periodic Poisson model with

investment.

Our method to prove this optimality is taken from Gaier, Grandits and Schacher-
mayer [GGS03|. As there, we do not have to restrict ourselves to investment
strategies K € K. Throughout this section, investment strategies K are consid-
ered which are measurable and adapted to F*. We further have to assume that
the integral f(f K?ds is almost surely finite for every ¢ > 0. Note that this is a
necessary and sufficient condition for the stochastic integral f(f K, dWy to exist

for t > 0. In that what follows we denote the class of such strategies by K*.

As in Gaier, Grandits and Schachermayer [GGS03| we need the following as-
sumption on the claim size distributions in order to prove the optimality of the
investment strategy K. Let the random variable U®) have distribution B, for

t € [0,7). We then assume that

sup ]E[e_R(y_U(t))‘U(t) > y] < 0. (4.9)
0<t<T
y>0

Recall from Proposition 4.1 that the stopped process M (u, K,r) is a martingale

with respect to FY for all u,7 > 0 and any investment strategy K € K. Plug-
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ging in R and the corresponding investment strategy K € K we observe that

M(u, K™ R) is a martingale for all « > 0. At this,

exp < — RY(u, K(R))>

M,(u, K® R) = L t>0.
exp (fy Ashs(R) ds — (Re+ 53) 1)

Motivated by this formula we define such a process for any arbitrary investment

strategy K € K* and get the following result.

Proposition 4.8. Suppose that R defined by (4.8) exists. For any investment
strategy K € K* and any u > 0 let the process M*(u, K, R) be defined by

M;(u, K, R) =

exp(—Rlﬁ(u,K)) .
exp (Jy Ahs(R)ds = (Re+ 32)t)

With respect to FY, the stopped process M* (u, K, R) given by
M; (u, K, R) == M;, sy (u, K, R), £ >0,

is then a submartingale for any K € K* and a martingale if K = K. Moreover,

M*(u, K, R) is uniformly integrable for all K € K* if assumption (4.9) is fulfilled.

Proof:

Let u > 0 be fixed. As already mentioned, M *(u, K® | R) is a martingale accord-
ing to Proposition 4.1. Analogously to the proof of that proposition we can more-
over show that M*(u, K, R) is a submartingale for all K € K*. Comparing the
processes M (u, K, R) and M*(u, K, R) we recognize that M; (u, K, R) = exp(V}*)
where the process {V;*,¢ > 0} has dynamics

2

AV = — (Atht(R) - %) dt — RaK, dt — RbK, dW, + RUy, dN, .
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Applying It6’s Formula in this case we consequently get

M (u, K, R)
¢ 2

a 1
=M (u,K,R)+ | M (u,K,R)(— — RaK, + -R*’K?) d
S K R) | M (o, K R) (g = RalK, o+ GRKE) ds

t
— / RVK s M (u, K, R) dW;
o+

t

t
+/ (M;(U,K,R)—M;_(U,K,R)> dNS—/ Asho(R) M (u, K, R) ds
0

+ 0+

(4.10)
Analogously to the proof of Proposition 4.1 it can be shown that the processes

tAT
{/ RbKSM;_(u,K,R)dWS,tzo}
0

+

and

([ (00K et a1 )

+

tAT
—/ Ashs(R) M- (u, K, R)ds, tZO}
0

+

are martingales with respect to FY . Further,

¢ a’ 1
M (u, K, (— — RaK, + ~R? 2K2>
M (u, K, R) e Ra +2Rb 2) ds
t R2D? a N2
M R) (KS Rb2> ds > 0

for all t > 0. Since K € K* it moreover follows from the representation of
M;(u, K, R) in (4.10) that the stopped process M*(u, K, R) is integrable. Hence,

M*(u, K, R) is a submartingale for all K € K* since the process is apparently

FY _measurable.

It thus remains to show that M *(u, K, R) is uniformly integrable for any K € K*

if assumption (4.9) is fulfilled. Let us again put 7 := 7(u, K). It then follows
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that

]E(st1>1£>|]\~4t*(u,K,R)|> <- : _
> infizo exp ( [y Aho(R)ds — (Re + §5) 1)
E [ SUpys g €~ R Yenr (0K \T < oo}
infizo exp ( fy Aho(R)ds — (Re + §3) )
E[e 5| < ool
infosi<r exp (fy Acho(R) ds — (Re+ 53) 1)

]E[e‘RYT(“’K)‘T <00, Yo (u, K) > 0}

IN

IN

2

info<i<r exp (f(f Ashs(R) ds — (Re + £5) t)
supongE[e‘RYT(“’K)]T <00,V (u, K) >0, B, = Bt]

s oo () (e 22)7)

< 0.

The following result considers the fact that in the periodic Poisson model with

investment the insurer either becomes infinitely rich or ruin occurs.

Proposition 4.9. Suppose that R defined by (4.8) exists and that assumption
(4.9) is fulfilled. For any K € K* and u > 0 the stopped wealth process Y (u, K)
given by Yi(u, K) = Yinr(ux)(u, ) for t > 0 then almost surely converges on

{T(u, K) = 00} to o0 as t — oo.

Proof:

Let K € K* and u > 0. Recall from Proposition 4.8 that M*(u, K, R) is an
uniformly integrable submartingale. Applying Doob’s Supermartingale Conver-
gence Theorem to — M *(u, K, R) it follows that lim;_, Mt*(u, K, R) almost surely

exists. Hence, also Yao(u, K) := limy_ Y;(u, K) almost surely exists.
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Now, note that the distribution B; is concentrated on (0, 00) for every ¢ € [0, 7).
As described in the proof of Lemma 5 in Gaier, Grandits and Schacher-
mayer |GGS03|, page 11, there exists some 0 > 0 such that the wealth process
infinitely often has a jump of a size which is greater than §. Apart from these
downward jumps the wealth process is almost surely continuous. On the event
{7(u, K) = 00}, Yao(u, K) can consequently not be equal to a finite value with

positive probability.

Having Proposition 4.8 and 4.9 we can finally prove the optimality of the invest-

ment strategy K (%),

Theorem 4.10. Suppose that R defined by (4.8) exists and that assumption (4.9)

18 fulfilled. For any investment strategy K € K* we then have
U(u, K) > C*e
with C* > 0 for all u > 0.
Proof:
Let K € K* and v > 0. We know from Proposition 4.8 that Mt*(u,K, R) is

an uniformly integrable submartingale. Once again putting 7 := 7(u, K) it thus

follows from Doob’s Optional Sampling Theorem that

e~Rv = N[*(u, K, R) < E(M:(u, K, R)>

_ ]E[M;;(u, K, R)‘T < oo} P(r < o0) + E[tlim M (u, K, R)‘T _ oo} P(r = o0)

E[M:(u, K, R)‘T < oo} P(r < oo) (4.11)
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sup E[ R(y—U®)
o<t<T
y>0

U® < y}

> P(r < o0) (4.12)

= i
oirtl<fT P </0 Asha(R) ds = (RC i 2_172) )
where the equality in (4.11) follows from Proposition 4.9 and the inequality in

(4.12) as in the proof of Proposition 4.8. This implies that ¥(u, K) > C* e 1"

where o2

t
ogsl<f:r exp (/ Ashs(R) ds — (Re + @) )

sup E[ yU()‘U >y}
0<t<T
y>0

C* = >0

according to assumption (4.9).

Thus, R is the optimal adjustment coefficient for the periodic Poisson model
under any investment strategy K € K*. Recall that R is given as the strictly
positive solution of the equation
T a2
/0 Aehe(r) dt — (rc+ @) T=0.
and that the corresponding optimal investment strategy K is defined by

K% = 2 fort > 0.

- Rb2
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4.5 A comparison with the compound Poisson

model

In the final section of this chapter we compare the adjustment coefficients of
the periodic Poisson model and its associated compound Poisson model under
optimal investment. For the periodic Poisson model with investment we have
already found out that the optimal adjustment coefficient R is given as the strictly
positive solution of the equation

a2

/T Mehe(r) dt — (re + 2_b2) T=0 (4.13)

and that the corresponding optimal investment strategy K is defined by

Kt(R) = iz for t > 0.

We can now associate a compound Poisson model to the periodic Poisson model
in a natural way by averaging over the environment, confer Asmussen [Asm00],
page 176. As mentioned in the introductory section of this chapter, this yields a
compound Poisson model with parameters

1

N = /T/\dtadB*—l/T)\tht
STy T Ty

Note that the claims of this associated compound Poisson model have exponential

moments since
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As mentioned at the beginning of the second chapter, it is due to Gaier, Grandits
and Schachermeyer [GGS03] that the optimal adjustment coefficient R* of the as-
sociated compound Poisson model with investment is given as the strictly positive

solution of the equation
2

a
Ah*(r) = —
and that the corresponding optimal investment strategy is given by K®"). Noting

that

20? T Jo A\ 20?
1 r a?
== </0 Ahy(r) dt — (re + ﬁ) T) .

it is obvious that the adjustment coefficients of the periodic Poisson model and

2 T 2
AR (r) = (re+ a_) =\ l/ A he(r)dt — (re + a_)
0

its associated compound Poisson model coincide under optimal investment. Con-

sequently, also the optimal investment strategy is the same for both models.
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