Stabilization of Flows Through Porous
Media

Von der Fakultat Mathematik und Physik

der Universitat Hannover
zur Erlangung des Grades eines

DOKTORS DER NATURWISSENSCHAFTEN
Dr. rer. nat.
genehmigte Dissertation

von

M. Sc. Zhaoyong Feng

geboren am 28 August 1977 in Guangdong, China

2006



Referent: Prof. Dr. J. Escher
Korreferent: Prof. Dr. G. Starke
Tag der Promotion: 26. Juni, 2006



Zusammenfassung

Transportphédnomene in porosen Medien treten in vielen ingenieurwissenschaftlichen
Disziplinen auf. Im Bauingenieurwesen studiert man z.B. Stomungen in wasserfiithrend-
en Schichten, die Befeuchtung technischer Strukturen oder den Transport von Schad-
stoffen im Boden. In der Agrartechnik wird der Transport von Wasser und Nahrstoftko-
nzentrationen im Erdreich untersucht. Warme- und Massenfliisse, sowie Trocknungspr-
ozesse fithren in der chemischen Verfahrenstechnik zu Transportphénomenen durch
porose Medien. Schliellich untersucht man in der Mineralolférdertechnik den Trans-
port von Erdol, Wasser und Gas in pordsen Strukturen. Allgemein ist man an Mod-
ellen interessiert, in welchen verschiedene Groflen wie Masse, chemische Konzentra-
tionen oder Impuls durch ein poroses Medium transportiert werden. Oft enthélt das
porose Medium mehrere Fliissigkeitsphasen, die gleichzeitig transportiert werden. Die
Trennschichten zwischen den verschiedenen Phasen konnen sich frei bewegen, und sind
deshalb als unbekannte Grofie zu betrachten. Dies bedeutet, dass Transportphdnomene
in porosen Medien mathematisch durch freie Randwertaufgaben beschrieben werden,
und die entsprechenden partiellen Differentialgleichungen in zeitlich sich verandernden
Gebieten zu 16sen sind. Auflerdem erzeugen freie Rander stets eine inharente nicht-
lineare Struktur, da fiir diese Systeme offensichtlich kein Superpositionsprinzip fiir
Losungen gelten kann.

In dieser Arbeit wird der Fluss einer inkompressiblen homogenen Newtonschen Fliissig-
keit in einem starren porosen Medium betrachtet. In dem unbeschrankten Medium
befindet sich eine fixierte Schicht, die fiir die Fliissigkeit undurchlassig ist und eine ex-
ternen Quelle tragt, iber welche das System gesteuert werden kann. Der obere Rand
ist frei und bewegt sich aufgrund der Gravitationskraft. Das Hauptanliegen dieser Ar-
beit besteht in einer Stabilitatsanalyse der Gleichgewichtslage des oben beschriebenen
freien Randwertproblems.

Im ersten Teil der Arbeit werden die mathematischen Grundlagen zusammengestellt,
die zur Untersuchung des betrachteten Problems bendtigt werden. Es werden geeignete
Funktionenraume eingefithrt und die Theorie der maximalen Holderregularitat erklart.
Danach werden die physikalischen Grundlagen der Modellierung von Fliissen durch
porose Medien erlautert und die daraus hervorgehenden Modelle vorgestellt. Die math-
ematische Untersuchung der entsprechenden freien Randwertaufgabe beginnt mit der
Transformation auf ein festes Referenzgebiet. Eine Reduktion des vollen Systems fiihrt
dann auf eine nichtlineare Evolutionsgleichung, die nur noch den freien Rand bein-
haltet. Schliefilich werden die Theorien der Fouriermultiplikatoren, der analytischen
Halbgruppen, der maximalen Regularitat und das Prinzip der linearisierten Stabilitat
angewendet, um diese Evolutionsgleichung zu untersuchen. Im Hauptresultat dieser Ar-
beit wird gezeigt, dass die eindeutig bestimmte Gleichgewichtslage des Systems asymp-
totisch stabil ist, falls die Injektionsrate in der Nahe der Gleichgewichtslage monoton
wachst.

Stichworter: Freie Rander, Fluss durch porése Medien, Gesetz von Darcy, voll



nichtlineare Evolutionsgleichungen, analytische Halbgruppen, maximale Regularitat,
Stabilitat.



Abstract

Phenomena of transport in porous media are encountered in many engineering disci-
plines. Civil engineering deals, for example, with the flow of water in aquifers, the move-
ment of moisture through engineering structures, transport of pollutants in aquifers and
the propagation of stresses under foundations of structures. Agricultural engineering
deals with the movement of water and solutes in the root zone in the soil. Heat and
mass transport in packed-bed reactor columns and drying processes are encountered
in chemical engineering. Reservoir engineers deal with the flow of oil, water and gas
in petroleum reservoirs. One is interested in models in which various quantities, such
as mass or momentum, through a porous medium. Often the porous material contains
several fluid phases and the various quantities are transported simultaneously through-
out the multiphase system. In general, the interface between different phases can move
freely and are thus unknown. This means that these transport problems in porous
media are mathematically described by free boundary problems, and the correspond-
ing partial differential equations have to be solved in non-constant time depending
domains. Moreover, the free interface causes an inherent nonlinear structure of these
systems, since it prevents the existence of a superposition principle of solution.

This thesis considers the motion of an incompressible homogeneous Newtonian fluid
in a rigid porous medium of infinite extent. This fluid is bounded below by a fixed
layer having an external source, and above by a free surface moving under the influence
of gravity. The main focus of this thesis is to analyze the stability of the equilibria of
the moving boundary problem.

In this thesis, we first introduce some preliminary material. We give a precise defi-
nition of all function spaces needed for our analysis, as well as an introduction in the
theory of maximal Holder regularity. Then we give a short introduction on modelling
of flows through porous media and describe the problem which we consider. After
this, we transform the considered problem into a nonlinear evolution equation for the
free interface only. Finally, we mainly use the theory of Fourier multipliers, analytic
semigroup, maximal regularity and principle of linearized stability to investigate the
nonlinear evolution equation. Our main result shows that if the injection rate is strictly
increasing in a neighborhood of the unique equilibrium, then this equilibrium is asymp-
totically stable.

Keywords: Moving Boundaries, Flow through Porous Media, Darcy’s Law, Fully
Nonlinear Evolution Equations, Analytic Semigroups, Maximal Regularity, Stability of
equilibria, Stabilization.
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Chapter 1

Introduction

In the thesis, we shall investigate the motion of an incompressible homogeneous New-
tonian fluid in a rigid porous medium of infinite extent. That fluid is bounded below
by a fixed layer I'y having an external source (with an injection rate b), and above by
a free surface I'y moving under the influence of gravity, see Figure 0. Moreover, the
fluid flow is governed by Darcy’s law. More precisely, writing u(t, z, y) for the pressure
at the moment ¢ and at the position (x,y) and f(¢,x) for the moving interface, we can
describe it as the following problem:

. .Y air in rock | _
rigid porous medium nterf?ce separating
e.g. rock T, alr from water
Given: b, fo /\_/ . ‘- ’ .‘ .....
Unknown : . . .00 LT T T T water
T T T T T in rock
Uu: pressure P Qf e
frinterface ..Ul D Do Do
an external source layer,” Iy T
Figure 0
( Ault,z,y) = 0, ted (z,y) € Qq
0
gy Bo =0 = Wf(t2), e reR
(P) ult, 2, Y)ly=foay = flt,x), te€J reR
e ultey) = e teJ (x,y) € Qs
x|4|y|—00
Ouf(t,x) + (=fe, 1) - Vult, z,y) = 0, teJ, (z,y) € Ly
\ f(0,2) = folx), r € R,

where T' > 0 is fixed, and J = [0,7T), J = J \ {0}. Moreover,
Qf(t) = {(:L‘7y) € R x (Oa 00)70 <y< f(t,l’)}

1



2 CHAPTER 1. INTRODUCTION

and
Lt == graph(f) == {(z,y) € R x (0,00);y = f(t,2)}.

For simplicity, we will use €2y and I'y to replace €y and I'fq, respectively. The
injection rate b is a sufficiently smooth function from R to R. Since the injection rate
can be controlled in advance, we can think it is a given smooth function. Finally, we
are interested in classical solutions of the problem (P). Therefore f has to satisfy at
least the following conditions:

fed:= {f € BC*(R); 1I€1£f(x) > O}.

Otherwise, if f(xz) = 0 for some x then the interface and the fluid domain have a
singularity at this point.

In [12], J. Escher and G. Simonett studied the case of the fluid bounded below by
a fixed impermeable layer, i.e. b = 0. They proved that the problem (P) with b = 0
is locally in time well-posed (cf. [1]). However, the question of the stability of the
equilibrium solution (u, f) = (¢, ¢) was not addressed in [12]. The main goal of this
research is to specify classes of injection rate b such that the equilibrium (u, f) = (¢, ¢)
is stable. Clearly, if (u, f) = (¢, ¢) is an equilibrium of the problem (P), it is necessary
to assume that

b(c) = 0.

In order to state our results for problem (P), we need some notations. Given m € N, we
write S(R™) for the Schwartz space, that is, the Fréchet space of all rapidly decreasing
smooth functions on R™. Moreover, assume that £ € N, o € (0,1) and that U is an
open subset of R™. Then BUC***(U) denote the classical Holder spaces of functions
having bounded derivatives up to order k, and such that the k—th derivatives satisfy a
uniformly a—Holder condition, see Section 2.1 for a precise definition.

For s > 0, we define the closed subspaces h*(R™) of little Holder spaces buc®(R™)
by

h*(R™) := closure of S(R™) in BUC*(R™).

Furthermore, let 7y denote the restriction operator with respect to U. Then we define
R*(U) := closure of vy S(R™) in BUC®(U).

For convenience, we also call h*(R™) to be little Holder spaces. Finally, let

. {g € B B):int{e + g(x)} > o} ,

and for s > 0,
h? = h*(R), and hy == h* N A

We are now ready to state the following existence result for problem (P).



Theorem 1.0.1. Assume that b(c) = 0 and U'(c) > 0. Then there exists wy > 0,
such that for any w € [0,wy), there also exist positive constants r and C = C(r). If

fo—c € hy™ with ||fo — c|[p2+a < 7, the problem (P) has a unique global solution
(u(t,z,y), f(t,x)) such that

u—ceC([0,400), B°**(Qy)) and f—ceC(0,+00), hya®).
Furthermore, we get the following estimate
1£(t) = cllnzra + L/ @)llnrra + [u(t) = cllnzraia,qy) < Ce™ I fo = cllpzra,  VE 0.

A fundamental and inherent difficulty of an analytic treatment of problem (P) is
manifested in the fact that one has to work with variable domains. The nonlinear
structure hidden behind this circumstance is clearly disclosed by the observation that
there is no superposition principle for solution of the problem (P). This means problem
(P) is a nonlinear partial differential problem. To prove our result, we first consider
a transformed version of (P) which applies over a fixed domain. In fact, it turns out
that the transformed problem consists of a nonlinear elliptic equation and a parabolic
equation with a nonlinear nonlocal pseudo-differential operator of first order. Then we
solve the nonlinear elliptic equation, and reduce the transformed problem to a nonlinear
evolution equation. Finally, we mainly use the theory of Fourier multipliers, analytic
semigroup and maximal regularity to investigate the nonlinear evolution equation.

We mention that the corresponding set of equations for incompressible fluids in
porous media was investigated in [11, 13, 18, 22]. In particular, J. Escher and G. Pro-
kert investigated spatially periodic flows in porous media in [16]. The moving boundary
problem in deformable porous media was also investigated in [14, 15]. Moreover, there
is a different approach in weighted Holder spaces to that problem outlined in [7, 8]. In
addition, a L,-theory for that problem was proposed in [25, 26].
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Chapter 2

Preliminary I: Function Spaces

In the first part of this chapter we fix some notations by defining some basic function
spaces. We then introduce Fourier multipliers on Lebesgue and Besov spaces. We close
this chapter by discussing some results from interpolation theory which we need for
our approach.

2.1 Some Function Spaces

2.1.1 Bounded Functions

Let E be a Banach space and suppose that X is a nonempty set. Then B(X, F) is the
Banach space of all bounded functions u : X — FE. equipped with the supremum
norm

[ulloo = llull% := sup [Ju(z)]l&.
rzeX

2.1.2 Continuous Functions

Let now X be a metric space. We denote by BC(X, FE) the closed subspace of
B(X, E) consisting of all bounded and continuous E-valued functions. Moreover,
BUC(X, E) is the closed subspace of BC(X, E) consisting of all bounded and uni-
formly continuous FE-valued functions on X.

Of course, C'(X, E) is given the topology of uniform convergence on compact subsets
of X, the compact-open topology. If X is locally compact and separable, C(X, E) is a
Fréchet space.

If X is locally compact, Cy(X, E) is the Banach space of all continuous functions
vanishing at infinity, equipped with the supremum norm. Recall that v : X — F
vanishes at infinity if, given ¢ > 0, there exists K CC X such that ||u(x)|g < ¢ for
r € K°:= X \ K. It is easily seen that Cy(X, F) is a closed subspaces of BUC(X, E).
Hence

Cyo(X,E) — BUC(X,FE) — BC(X,E) — C(X,E) (2.1.1)

4



2.1. SOME FUNCTION SPACES )

and these spaces all coincide if X is compact.

2.1.3 Holder Continuous Functions

Let d be a metric for X and let 0 < p < 1. A function v : X — FE is uniformly
p-Holder continuous if

X e sy M) —u@)E
[u], = [u]; ””;3:? e (2.1.2)

It is (locally) p-Holder continuous if each point has a neighborhood Y such that u|Y
is uniformly p-Holder continuous. We write u € UC?(X, E) if u is uniformly p-Holder
continuous, and

C?(X,FE):={u: X — E; uis p- Holder continuous} .

If p is replaced by 1, a [uniformly] 1-Hélder continuous function is said to be [uni-
formly] Lipschitz continuous and we write UC'~ (X, F') and C'~ (X, E) for the sets
of all uniformly Lipschitz continuous functions and of all Lipschitz continuous func-
tions, respectively, mapping X into E. In numerical calculations the symbol 1— will
always be identified with the number 1.

If u e C'7(X,F) and K is a compact subset of X, there exists a neighborhood of
Y of K in X such that u|Y is uniformly Lipschitz continuous (e.g., Proposition 6.4 in
[3]). Tt is not difficult to see that d” is an equivalent metric for X. Thus u € C?(X, E)
iff w € C'~((X,dr),E). This implies that, given K CC X and u € C*(X, E), there
exists a neighborhood of Y of K such that u|Y € UC?(Y, E).

Given p € (0,1) U {1—}, we equip C?(X, E') with the family of seminorms

I-lg = 1-lI%+[]y, KccX.

Then C?(X, E) is a LC'S(Locally Convex Space) such that
Cr(X,E)— C(X,E). (2.1.3)

If X is locally compact and separable, C*(X, F) is a Fréchet space.
For each p € (0,1) U {1—}, we denote by

BUC?(X,E) := (BUC?(X,E),| - |lce) (2.1.4)
the Banach space of all bounded and uniformly p-Holder continuous F-valued
functions on X, where || - [|ce := || - ||&,. Observe that

BUC?(X,E) — BUC?(X,E) — BUC(X, E) (2.1.5)

provided p,o € (0,1) U {1—} satisfy o < p. In particular, we write Lip(X, E) instead
of BUC'™ (X, E).
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2.1.4 Smooth Functions

Now suppose that X is a nonempty open subset of R", where n € N. In the following
D; = —i0; with 0; := 0/0z; for j = 1,--- n, and we use standard multiindex
notation.

Of course, C™(X, E) has the usual meaning for m € N, and C° := C. Given a
nonempty open subset Y of X,

lullen = max [0%ulls, (2.1.6)

defines a seminorm on C™(X, E') and
C"(X, E) = (C" (X B) |- &0 K = K <C X})
is a Fréchet space. If p € (0,1) U {1—}, we put
C™P(X,E) :={ue C™X,Fk); 0" e C?(X,E),|a] =m},
equipped with the family of seminorms

we fullEne = ullEn + max(orulyf, K = KccX. (2.1.7)

It is not difficult to see that C™*(X, E) is a Fréchet space and
C"P(X,E) — C"(X,FE) — C™(X,FE) — C™ (X, E), (2.1.8)

where p,o € (0,1) U {1—} satisfy 0 < p and m— := (m — 1) + 1— for m € N. In fact,
C™(X, E) is a closed linear subspaces of C™~ (X, E).
Of course,

C¥(X,E):= [ C"(X,E) = C*(X, E)
m=0 520
is a Fréchet space too (with respect to the obvious projective limit topology).
We write
I llemss =11+ lgmse, — pE[0,1)U{1-}.
Then the Banach spaces BC™ (X, E) and BUC™(X, E) are defined in the obvious way
and are equipped with the norm || - ||cm. Moreover, given p € (0,1) U {1—},
BUC™ (X, E) = ({u € C"""(X, E); ||ullgm+e < 00}, || - [lemtr)

is a Banach space too. In addition, we introduce the Fréchet spaces

BC™(X,E) := ﬁ BC™(X, E)

m=0
and

BUC™(X,E):= (| BUC™(X,E).

m=0
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2.1.5 Little Holder Spaces

Let X be a nonempty open subset of R™. It is well known that the injection
BUC™*(X,E) — BUC™(X,E), meN, 0<o<p<l,

which is an obvious consequence of (2.1.5), is not dense. For this reason we introduce
the little Holder spaces:

buc®(X, E) := closure of BUC™ (X, E) in BUC*(X, E)
for m € Nand m < s <m + 1. Then u € buc™*(R", E) iff u € BUC™(R", E) and
i g 1070 = 0l

t—0 4 ern |z — yl|°
0<|z—y|<t

=0, aeN' |al =m. (2.1.9)

Further, BUC*(R"™, E) is dense in buc™™?(R", E) for m € N and p € (0,1).
Ezxample 2.1.1. Let a € (0,1), then z* € BUC*(0,1) \ buc*(0,1).

Proof Clearly, 2% is bounded and continuous in (0,1). To prove z* € BUC*(0, 1), it
is sufficient to prove that

lz® — y®| <]z —y|* for z,y > 0. (2.1.10)
Without loss of generality, we suppose that x > y > 0. Then we define
hz)=a%—y* —(x —y)* for z >y > 0.

By directly calculating, we know that h(y) = 0 and 2/(z) = a (21 — (z — y)*™!) < 0.
This means h(z) > h(y) = 0, i.e.

¢ —y* < (r—y)* forx >y >0.

Thus (2.1.10) holds. This implies 2 € BUC*(0, 1).
For any t € (0,1), we can take z =t € (0,1) and y = t/2 € (0,1), then we know
that |z —y| =t/2 < t, and
a _ .« 1 — (t/2)
-2
|z =yl (/2)

Therefore z* ¢ buc®(0,1). This completes the proof. d

2.1.6 Functions With Compact Supports

If m € NU{oo} and p € [0,1) U {1—}, we denote by C""*(X, E) the subspace of
C™*P(X, E) consisting of all functions u whose supports, supp(u), are compact in X,
endowed with the usual inductive limit topology. In particular,

D(X,E) = C®(X,E)
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is the space of E-valued test functions on X and D(X) := D(X, K), where K is either
R or C, if no confusion seems likely. Lastly,

C{(X, E) := closure of D(X, E) in BUC*(X,E),  s€R",
It is not difficult to see that

C™(X,E) = C™(X, E) = {u € C™(X, E); 8°u € Cy(X,E),|a| <m}.

2.1.7 Integrable Functions

Let X be a o-compact metric space and let p be a positive Radon measure on X.
Given ¢ € (0,00], a measurable subset Y of X, and a (strongly) measurable function

u: X — F, put
Ju ||Edu> C0<q<os,
HuH}; = (/

ess — sup [[u(y)| g, q =00
yey

If ¢ > 1 then L, 0.(X, p, E) is the Fréchet space of all (equivalence classes of strongly)
measurable functions u : X — E such that

[ulX <00, K=KccX, (2.1.11)
topologized with the family of seminorms (2.1.11). We put [ - [|; :== || - || and denote
by

Ly(X, 1, E) o= (Lo(X, 1, B [ - lg) - 1< g <00,

the usual Lebesgue spaces, which are Banach spaces. (The fact that we use the
symbol || - || in two different contexts will cause no confusion.) In particular,

l,(E) = L,(N,k, E), 1 <p< o0,

where k is the counting measure, are Lebesgue spaces of F-valued sequences.

If £ =K and no confusion seems possible, we put L,(X, ) := L,(X, p, K).

If X is an open subset of R" (more generally, a Lebesgue measurable subset of R™)
and p is the n-dimensional Lebesgue measure on X, we simply put

Lp(XuE) = LP(X7:LL7E)7 1§p§007

and dx := dpu.
Let now X again be an open subset of R”. Recall that

D(X,E) — Ly X, E) = Lyioe(X, E) %L1 106(X, E), 1<g<oo, (21.12)

and that the first two injections are dense too if ¢ < co.
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2.1.8 Distributions and Sobolev Spaces
We write D'(X, E) for the spaces of E-valued distributions on X, that is,

D'(X, E) := L(D(X), E),
equipped with the topology of uniform convergence on bounded sets, and
D'(X) :=D'(X,K).
We also use 0; (and D;) to denote distributional partial derivatives. Recall that
Ly 1oo(X, E) — D'(X, E), (2.1.13)

by means of the identification

we) = [ o@u)s,  6EDX), ue Lun(X.E) (2.1.14)

Given m € N and ¢ € [1, o], the Sobolev space, W;"(X, E), of order m over L,
consisting of E-valued distributions on X is defined by

W;n(Xa E) = ({U € Lq<X7 E)a 0%u € Lq(X> E)> |CY| < m}7 || ’ ||m,Q)7

where
1/q
> lotullg) 1< g <o,
[wllmg = l[ullwyx,p) == <|agm ! (2.1.15)
max ||0%u|| o, q= 0.

laj<m

For ¢ € [1,00) and s € (0,1) we put

oy = s = ( /X ~ <uu<x> - u<y>u>q () )/ (21.16)

lz —yl* |z —y|

Moreover, we denote by [t] the largest integer less or equal to ¢ € R. Then, given
s € R"\ N and ¢ € [1,00), we define the Slobodeckii space, W;(X, E), of order s
consisting of E-valued distributions on X by

W;(Xa E) = ({U € Wgs}(Xa E)a [aau]S—[s},q < 00, |O{| = [S]} ) || ' ||s,q) )

where
1/q

lallsg = llullwyoxm = [ lullly, + D0 0%y, | - (2.1.17)
]

la|=[s
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Further, W2(X, E) := Ly(X, E) so that || - [loq = || - Il It is well known that the
Sobolev and the Slobodeckii spaces are Banach spaces and that
W (X,E) — W,(X,F), 1<g<oo, 0<t<s<oo, (2.1.18)
provided E — F.
As usual,
WX, E) := closure of D(X, E) in W (X, E).
Then

o

S n _ S n -+
WiR", E) = W;(R", E), seR", 1<g< . (2.1.19)

2.2 Fourier Multipliers

2.2.1 Generalities

Let S be the Schwartz space of rapidly decreasing functions on R™ and S’ its dual, the
space of tempered distributions, endowed with the strong topology. We denote by F

the Fourier transform u +— @ in &', defined by (u, ¢) = u,é ) and

B(€) = (2m) "2 / TG d, EERY, pES.
Recall that
F € Laut(S) N Laut(S") (2.2.1)

and that
Flu=d4, ueds, (2.2.2)

where < @, ¢ >:=< u,¢ > for u € &' and ¢ € S with ¢(z) := ¢(—z) for z € R", and
where < -, >:1=< - >g.

Givenu € S’ and ¢ € S, the convolution u*¢ is a well defined tempered distribution
and (u* ¢)" = (27)"/%0¢ by the convolution theorem. Thus, given a € S, we define a
linear operator, a(D) : S — &', a pseudodifferential operator with symbol a, by

a(Dyu = F 'aFu = F Y at) = 2n) " ?Flaxu, ueS. (2.2.3)

It is well known that the convolution u % v can be defined for various classes of
distributions u and v. Thus, given a Banach space with £ — &', an element a € S’ is
said to be a Fourier multiplier for £ (an E-multiplier) if F~'a % u is a well defined
element of F for each u € E and (u+— F'a*u) € L(E). If this is the case, we again
use the notations of (2.2.3). We denote by Mg the vector space of all E-multipliers
equipped with the norm

allars = lla(D)](z)-
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In other words, ||a||as, is the infimum of all ¢ € R satisfying
IF  axulp < c@n)"|lulp,  u€E.
The notation a(D) is, of course, justified by the well known formula
(Du)" = &%, aeN", wed. (2.2.4)
Lastly, we recall the Plancherel’s Theorem guarantees that
F € Laut(Ls) (2.2.5)

and
all2 = [|ull2, u € Lo. (2.2.6)

2.2.2 L,-Multipliers

We put M, = M, 1 < p < oo. It is well known (e.g., [27]) that M, is a Banach
algebra with respect to pointwise multiplication and that the map a — a(D) from M,
to L(L,) is an algebra homomorphism. Moreover, (see Theorem 6.1.2 in [6])

My — M, — M, — My=Ly, 1<p<gqg<2, (2.2.7)
and . )
My =M, 1<p<2 ~+ = =1 (2.2.8)
p D
Set
Mo = ({a € Loo(R™); [¢]™0%a € Loo(R™), || < [n/2] + 1}, 1| - mo) »
where
= el g .
lalls = max[ll€f* 0%l

Then, by the Mikhlin’s multiplier theorem (cf. Theorem 7.9.5 in [21] or Theo-
rem 6.1.6 in [6]), we have the following theorem.

Theorem 2.2.1. My — M,, 1<p<oo.

2.2.3 L;-Multipliers

It is well known that Theorem 2.2.1 is optimal in the sense that the elements of M,
are not L;-multipliers, in general. The following corollary gives a simple sufficient
condition for an element of L., to be an Li-multiplier.

Consider the space

FL = ({ueS; ae L), |lullr, = |lal), (2.2.9)
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and observe that, thanks to (2.2.1), FL; is a well defined Banach space. Also observe
that, thanks to (2.2.1) and (2.2.2), it follows from Young’s inequality for convolutions
that

FLi— M. (2.2.10)

Since there is no good direct description of FL; available, we have to restrict our
considerations to suitable subspaces of FL; to obtain useful multiplier theorems for
Ly.

Proposition 2.2.2. WQ[%]H(R”) — FLj.

Proof It follows from (2.1.15) and Plancherel’s theorem that, given m € N,
1/2
lullma = D lE*al3]  weWz (R, (2.2.11)

laf<m

Let
M) =1+ P2, ¢eRY (2.2.12)

and observe that (2.2.11) and the multinomial theorem imply
1 2 ~ [[ATF - |l (2.2.13)
where ~ denotes equivalent norms. By the Cauchy-Schwarz inequality
lullzo, = [lall = AT aAT™ [0 < [[AT @]z [[AT™ 2, (2.2.14)

and A7™ € Ly iff m > n/2. Thus the assertion is a consequence of (2.2.13) and
(2.2.14). O
Corollary 2.2.3. WQ[%]H(R") — M,, 1<gq<o0.
Proof Recall (2.2.7), (2.2.8) and (2.2.10), this is an immediate consequence of Propo-
sition 2.2.2. - 0
Unfortunately, the space W2[5]+ (R™) is too small to be a useful space of multipliers
for Ly and L. For this reason we introduce now a Banach space M — a subspace of
My — which will turn out to be a fundamental space of multipliers for our purposes.
Set

M = ({a € Loo(R"); AP10%a € Loo(R™), |a] < [n/2] + 1}, - ||M> :

where

R |a| 167
lallam = o AT 0%al[ o0,

and A; is defined in (2.2.12).
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2.3 Besov Spaces

2.3.1 A Partition of Unity

Let ¢» € D := D(R",C) be fixed with supp(v) C (3/2)B, where B := Bg», and such
that 0 < ¢ <1 and ¢|B = 1. Put

po(x) = 1(@),  @i(x) = 9(@/2) —P(x), @uz) = (27 ) (2.3.1)
for € R" and k € N. Then
Lei)=v@ ), meN,
igpj(x)zl, x € R",
wupp(ey) C {z €RY 271 <o <3.21), j €N,
and

pi(r)=1, 3-272<|z|<2, jeN.

2.3.2 Definition of Besov Spaces

Given s € R and p,q € [1,00], the Besov space, B, of order s (and integrability
orders p and q) is defined by

B, =B (R",C):= ({ueS Jull s, < oo}, || - |\B;7q) ,

where

00 a/p\ /4
sy, = !\23’“sok(D>u\lzq<Lp>=<Z ([ Ien e o) o) ) ,
k=0 “/R”

and where (@) is the partition of unity of Subsection 2.3.1. It is well known that
these Besov spaces are Banach spaces which — except for equivalent norms — are
independent of the choice of .

2.3.3 The Mikhlin-Hormander theorem on Besov spaces

It follows from the definition of the Besov spaces and known properties of spaces of
distributions that

D<%S — B, — BS — BS < Bl <58 4D/ s>, (2.3.2)

and that
S 4B

g PV Q<00
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where p V ¢ := max{p, ¢}. In particular,
B3, . =BUC®, seR"\N, (2.3.3)

where the symbol = denote equivalent spaces (cf. Proposition 6 in Section V.4.1 in
[27]).
It is well known that

Mpg = Mps , p,q € [1,00], s € R. (2.3.4)

In order to prove Mikhlin-Hormander theorem we need the following simple and
well known facts about dilatations.
Given t > 0, define the dilatation, oy, by

orp(z) == p(tz), reR", eS8, (2.3.5)
and by
<o, p >i=1" < w, o0 >, uesS’, pes. (2.3.6)
Then
{ov; t > 0} is a subgroup of Laut(S) and of Laut(S”’)
and
(00) ™" = o1 (2.3.7)
Furthermore,
%0y = tllg,0%,  a e N, (2.3.8)
and
fO't = f"al/t}". (239)
Lastly,
ol = Pl 1<p< oo (2.3.10)

Theorem 2.3.1 (Mikhlin-H6érmander Theorem).
M — Mps , pq€[l,c], seR.

Proof Fix x; € D, j =0,1, such that supp(xo) C 2B and x|(3/2)B = 1, and such
that supp(x1) C 4B\ (1/2)B and x;|(3B \ B) = 1. Moreover, put

Xk = 0p-kiix1,  keEN.
Given a € M, since prpxr = @i for k € N, then

wr(D)a(D)u FlronFF YaFu = F loaFu = F taxwperFu

= FxwaFFlopFu=F xpaFpn(D)u, ueS’,

(2.3.11)
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where ¢, has been defined in (2.3.1). Since xxa = (09-s+1X1)a = 09-k+1(X109¢-10a) for
k € N, it follows from (2.3.11), (2.3.9) and (2.2.2) that

or(D)a(D)yu = F'{oyr1(x1090-1a)} For(D)u
= Flogwn {xi(op-1a)(ow-1For(D)u)}
= 26 Ungy  {F (aar, (20" F (09 (pr(D)u))))}  (2.3.12)
oo Fx1apFog—ri (pr(D)u)
= ogi-1(x10k)(D)0og-1+1(pr(D)u)

for ke N , Where
ag = O9k—1Q.

Observe that xo, x1 € D and a € M, then
XoQ, X1Qg S Wéma k € N)
where m := [n/2] + 1. Thus we deduce from (2.3.12), Corollary 2.2.3 and (2.3.10) that

ler(D)a(D)ull,p 20702l (x1ax) (D)o (@r(D)u) [
2072 |y yag|m, 2| oo-r41 0k (D)) (2.3.13)

clixaar]lm, 2llx(D)ull,
for 1 < p<ooandk e N. Similarly,
lpo(D)a(D)ully < clixoallm,2llpo(D)ullp, 1 <p< oo (2.3.14)
It follows from (2.3.8) that
0%ay = 0%(ogp—ra) = 2% Vg1 (0%), o e N™.

Thus a € M implies

Al

ess —sup |0%y(x)| = 2k Dleless —sup [0%a(y)
1/2<|e|<4 1/2<]z|<4 y=2t"lz
< 2tk=Dlal)|g|| o es5 — sup(1 4 |28 1z|?)~lel/2
1/2<|z|<4
< k=1l HGHMQ—(k—?)\aI
= 21l]|a]|r

for |a| < m and k € N. By means of these estimates, Leibniz’ rule, and (2.3.13),
(2.3.14), we deduce that

ler(D)a(D)ully < cllallmllee(D)ullp,  1<p<oo, keN.
Now it follows from the definition of the norm of ng that
la(D)ullsy, < cllallmllullgy,,  1<pg<oo, ue By,
This means M < Mpqo . Thanks to (2.3.4), we get that
M — Mps , p,q€l,o0], seR

Corollary 2.3.2. M — Mpycs, s€RT\N.
Proof This is a direct consequence of (2.3.3) and Theorem 2.3.1. O
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2.4 Interpolation Theory

In this section we collect some facts on interpolation theory. Our representation follows
closely the monograph [24] of Lunardi. If X, Y, D are Banach spaces such that

D—Y — X,

we say that Y is an intermediate space between X and D. If, in addition, for every
linear operator 7' € L(X) such that T'|p € £L(D) it holds T'|y € L(Y'), then Y is called
interpolation space between X and D.

2.4.1 Interpolatory Inclusion

Let X, D be Banach space, with norms || - ||, || - ||p respectively, and assume that D is
continuously embedded in X.

Definition 2.4.1. Let 0 < o < 1. A Banach space Y such that D — Y — X is said
to belong to the class J, between X and D if there is a constant ¢ > 0 such that

lzlly < el ||zl Ve D.
In this case we write Y € J,(X, D).
Some important examples are given in the next propositions.
Proposition 2.4.2. Let k, m be positive integers such that k < m. Then:
(i) BC*(R, X) belongs to the class Jym between BC(R, X) and BC™(R, X);

(ii) BC*(R™) belongs to the class Ji/m between BC(R™) and BC™(R™); BC*(R™)
belongs to the class Ji/p between BC(RY) and BC™(RY);

(iii) if Q is an open set in R™ with uniformly C™ boundary, then BC*(Q) belongs to

the class Ji/m between BC(S)) and BC™(2).

Proof Let us prove statement (i). It is sufficient to show that for every m € N there
is ¢, > 0 such that if BC™(R, X) then

1F P lloo < cnlllFlloo) =™ F ™ o)™, Vh=1,...,m — 1. (2.4.1)
First we prove that (2.4.1) holds for m = 2 and k = 1. From the inequality
1
If(@+ 1) = f(z) = f@)hll < S1f"llh? Vo eR, h>0,

we get

oy < W@+ = f@)]
7)) < /

1
+ 5Hf”Hooh, VreR, h >0,
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so that

i < 2l
<
£l < 2

Taking the minimum on h over (0, +00) we get

1
51 llsh. Wh >0,

1Moo < 201 1) 2(ULf"lls0) 2, ¥f € BC*(R, X). (2.4.2)

Assume now by recurrence that (2.4.1) holds for some m > 2. Then for every f €
BC™ (R, X) we get

10 < emC o) =/ (LF 0 o)
m—1 m—171/m
< el lla0) 7 [emUF o) =57 (LF o) |

It follows that

+1 1

mil 1 m 1
1 oo < ™ (1 Flloo) ™71 (ILF O+ [loo) 7T,

and , for k =2,...,m,

1F oo = N oo < cm1f Nloa) ™ E (LD [log) B0
= :

kb m _k
< o (L lloo) = ([LF D o) 1.

Therefore, (2.4.1) holds with m replaced by m + 1, and statement (i) is proved.
Statement (ii) can be shown similarly, replacing h by he;, where e; is the vector
whose k-th component is 0 if k £ 4, 1 if k =14.
Statement (iii) follows from (ii) by localizing and straightening the boundary. [
Similar arguments lead to the following generalization.

Proposition 2.4.3. Let 0 < 6 < a. Then:
(i) BUC(R, X) belongs to the class Jp/ between BC(R, X) and BUC*(R, X);

(ii) BUCY(R™) belongs to the class Jy o between BC(R™) and BUC*(R™); BUCY(R™)
belongs to the class Jyjo between BC(RY) and BUC*(R?Y);

(iii) if Q is an open set in R™ with uniformly C* boundary, then BUC?(Q) belongs to

the class Jy/o between BC(S) and BUC*(2).

Now we are able to state some interpolatory inclusions between spaces of functions
defined in an interval .

Proposition 2.4.4. Let X, € J,(X, D). Then

(i) B(I,D)N Lip(I,X) — BUC'™*(I, X,),

(ii) B(I,D)N BUCY(I,X) — BUC'=)(I,X,), V0 € (0,1),
(iii) B(I,D)N BC(I,X)— BC(I,X.).
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Proof Let us prove statement (i). For every u € B(I, D) N Lip(I, X) and for s,t € [
we have

lu(t) —u(s)llx. < cllu(t) —u(s)[I"[lu(t) — uls)]3
< clulpxlt = s Cllull ),

so that u is uniformly (1 — a))-Holder continuous with values in X, and

|ull Bucr-er,x,) < C||U||;13_(1X ullB py +2%clu ]};m 1,X) ull Bz,

< 2"+ )CHuHszIX ||u||B(I,D)'

The proof of statements (ii) and (iii) is similar. O

2.4.2 The K-method

Let X,Y be Banach spaces, with Y — X, and let ¢ > 0 be such that

lyllx <elylly, Vyev.

We describe briefly the construction of a family of intermediate spaces between X
and Y, called real interpolation spaces, and denoted by (X,Y)s,, (X,Y )y, with

0<6<1,1<p< o0, see also [6, 29]. We follow the so-called K-method, and we
always set 1/00 = 0.

Definition 2.4.5. For every x € X and ¢t > 0, set

K(taX.Y)= b (allx -+ tbly). (2.4.3)

If there is no danger of confusion, we shall write K (¢, z) instead of K (¢,z, X,Y).

From Definition 2.4.5 it follows immediately that for every t > 0 and z € X we
have

{ (1) min{l,t}K(1,z) < K(t,z) < max{1,t} K (1, z),
(2.4.4)

(i0) K(t x) < |lz]lx-
Now we define a family of Banach spaces by means of the function K.

Definition 2.4.6. Let 0 < 6 <1, 1 < p < o0, and set

{ (X, V), ={r € X;t st O"VPK(t, 2, X,Y) € L,(0, +00)}, (2.45)

2]l (x,v)0, = 1707 YPK (2, X, )| 1, (0,400);

(X,Y)y ={z € X; ynét—@}((t,g;,x, Y) =0} (2.4.6)
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The mapping = +— [|z[|(x,y),, is easily seen to be a norm in (X,Y)y,. Where there
is no danger of confusion, we shall write ||z||s, instead of ||z[/(x,y),,-

Since t +— K(t,z) is bounded, it is clear that only the behavior near t = 0 of
t=?K (t,z) plays a role in the definition of (X,Y),, and of (X,Y)s.

For § = 1, from the first inequality in (2.4.4)(i) we get

<X7 Y>1 = <X7 Y)l,p = {0}7 p < 0.

Therefore, from now on we shall consider the case (0,p) € (0,1) x [1,400] and (6, p) =
(1,00).

If X =Y, then K(t,2) = min{¢,1}||z|. Therefore, as one can expect, (X, X), =
(X, X)1oo=XTfor0<0<1,1<p<o0,and

1 1/p
= = 0<b<lp<
HxH(X7X)9,p (p0<1 . 6)) ”xHXa P 00,

2/l xx)00 = ll2llx, 0<O<1L
Some inclusion properties are stated below.

Proposition 2.4.7. For0 <0 <1, 1< p; <py < oo we have
Y C(X,Y)gp C(X,Y)g,p C(X,Y)gC(X,Y)goo CVY. (2.4.7)
For 0 < 6; <0y <1 we have
(X, Y)p00 C (X, Y )g, 1 (2.4.8)

Proof From the inequality K (t,2) < min{c,t}||z||y for every x € Y, it follows imme-
diately that Y is continuously embedded in (X,Y); o and in (X,Y )y, for 0 < 6 < 1,
1<p< o0

Let us show that (X,Y )y o is contained in Y and it is continuously embedded in X.
For x € (X,Y ) and for every n € N there are a,, € X, b, € Y such that z = a,, + by,
and

1
n’(lanllx + ~l1bally) < 2l|zloco.

In particular, ||z — b,||x = |lan|lx < 2||7]lg.on™?, so that the sequence {b,} goes to z
in X as n — oo. This implies that (X,Y)s ., is contained in Y. Moreover, from the
inequality

lzllx < llallx +1bllx < llallx +clblly, if z=a+0,

we get
lz]x < K(c,2) < llzflose, Vo € (X,Y o,

so that (X,Y )y~ is continuously embedded in X.
The inclusion (X,Y )y C (X,Y )y is trivial, since K(-,z) is bounded.
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Let us show that (X,Y)y, is contained in (X, Y )y and it is continuously embedded
in (X,Y)po for p < co. Note that K (-, z) satisfies

t
K(t,z) < -K(s,z) forxze X,0<s<t.
$
Therefore, for each x € (X,Y )y, and t > 0,

10K (t, ) = [(1—0)pY/? ( /0 t s<1—9>z’—1ds) " K(t,z)

1/p

e ([ s oerapas)

IN

so that
t 1/p
tOK(t,2) <[(1—80)p]/? (/ s_ep_lK(s,az)pds> :
0
Letting t — 0, it follows that € (X,Y)s. The same inequality yields
Iz llo00 < [(1 = 0)p]" P ||2]lop. (2.4.9)
Let us prove that (X,Y)g,, C (X,Y)gp, for p1 < ps. For x € (X,Y)y,, we have

—+o00 1/p2
lelly = ([0 K0y
0

+oo 1/p2
< / t_epl_lK(t, x)Prdt (sup t‘eK(t’ ;1;))(1)2—171)/1)2

0 >0
= (Izllop )PP (I 2llo.00) 71772,
and using (2.4.9) we find
Iz llops < [(1 = O)pi]" P22 |29, - (2.4.10)

Let us prove that (2.4.8) holds. If 0 < 6, < 5 <1 and = € (X,Y )y, 00, we have

1 400
[zl = /t‘“‘lK(t,x>dt+/ t= VK (¢, @) dt
0 1

1 +o00
S e A EY (2:4.11)
0 1

< — .
< gl + 5 lllx

The statement is so completely proved. U]

Proposition 2.4.8. (X,Y)y, is a Banach space.
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Proof Let {z,},en be a Cauchy sequence in (X,Y),,. Due to the continuous embed-
ding of (X,Y)s, in X, {x, }nen is a Cauchy sequence in X too, so that it converges to
an element xr € X.

Let us estimate ||z, — z||g,. Fix ¢ > 0, and let ||z, — z;]lop, < € for n,m > n..
Since y — K (t,y) is a norm, for every n,m € N and ¢ > 0 we have

tOK(t,x, —2) <t OK(t, 2y — 2) + 70|20 — 2 x. (2.4.12)
Let p = oo. Then for every t > 0 and n,m > n.
tOK(t,z, —x) <e+t 0z, — | x.
Letting m — +o0, we find t ?K(t,z, — ) < ¢ for every ¢t > 0. This implies that

z € (X,Y)po and that z,, — z in (X, Y )y .
Let now p < oo. Then

1/6
|zn — x|lp, = lim (/ t P K (t, x, — :L‘)pdt>
’ 6—0 5

Due again to (2.4.12), for every 6 € (0,1) we get, for n,m > n,

1/6 1/p
( / t= 1K (¢, z, — x)pdt)
6

1/5 1/p
< llwn = @mllop + [[2m — 2llx / t(’Pldt>
4

1 1/p
<t lom—als (5 )

Letting m — oo and then 6 — 0 we get x € (X,Y )y, and x,, — x in (X, Y )g,. d

1/p

Corollary 2.4.9. For 0 < 0 <1, (X,Y)y is a Banach space, endowed with the norm
Of (X, Y)gpo.

Proof It is easy to see that (X,Y )y is a closed subspace of (X,Y )y . By Proposi-
tion 2.4.8, (X, Y )y is complete, then (X, Y )y is also complete. O

The spaces (X,Y )y, and (X,Y ), enjoy an important interpolation property, stated
in the next proposition. It implies that they are in fact interpolation spaces.

Proposition 2.4.10. Let X, Xo, Y1, Y5 be Banach spaces, such that'Y; is continuously
embedded in X;, fori = 1,2. If T € L(X1,Xs) N L(Y1,Ys), then T € L((X1,Y1)op,
(X2, Y2)0,,) NL((X1,Y1)e, (X2, Ya)g) for every 6 € (0,1) and p € [1, 00|, and for (6,p) =
(1,00). Moreover,

||T|’C((Xl,Yl)s,p(Xz,YQ)e,p) < (HT|’£(X17X2))179<HT”L(YLYQ))H' (2'4'13)
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Proof If T' = 0 the statement is trivial, so that we can assume that 7" # 0. Let
z € (X1,Y1)s,, then for every a € X;,b € Y such that x = a + b and for every t > 0
we have

1T]| £(v1,v2)
|Tallx, + )Ty, < T|zx:,x0) (HGHXl +t—12)|leY1 :

HTHE(X17X2
so that
T
K(t, T, X5, Ya) < Tl ccxsx0 K (tw,x,xl,n) . (2.4.14)
||T||£(X1,X2)
T
Setting s = tHHﬁM we get Tx € (X3, Ys)p,, and

||T||E(X1,X2)

1Tl v\
1Tl cenrmn, < Il 2co e (— D) el
17| £(x1, %)

and (2.4.13) follows. From (2.4.14) it follows also that
limt K (t,z,X,,Y)) =0 = yr%t—eK(t, Tz, X,Ys) =0,

t—0
that is, 7" maps (X, Y1)s into (X, Y2)s. O
Corollary 2.4.11. For0 <60 < 1,1 < p < oo and for (0,p) = (1,00) there is c(0,p)
such that

1yl x vy, < c@p)YlIX Nully,  Vyev. (2.4.15)
Proof Set K = R or K = C, according to the fact that X is a real or a complex
Banach space. Let y € Y, and define T': K — X, by T(A) = Ay for each A € K. Then

TN ey = yllx, TN ey = llylly, and 1Tk x,v)0,) = 19l (x,v),,- The statement
follows now from Proposition 2.4.10, through the equality (K, K)y, = K. U

The statement of Corollary 2.4.11 can be rephrased saying that every (X,Y)y,
belongs to Jy(X,Y). In particular, (X,Y)s; belongs to Jo(X,Y). We will see later
(Proposition 2.4.17) that in fact a space E belongs to the class Jy(X,Y) if and only if
(X,Y)p1 is continuously embedded in E.

2.4.3 The trace method

We describe now another construction of the real interpolation spaces, which is one of
the most common in the literature, see [23], and which will be useful for proving other
properties.

Definition 2.4.12. For 0 < # <1 and 1 <p < o0 set
V(p,0,Y,X) = {u Ry — Xt up(t) = " VPu(t) € Ly (0, +o00;Y),
t i vp(t) = t"1/P/ () € L, (0, , +00; X)},

v ipo.v,x) = l|Uoll L0, +00:v) + |V6]] (0, 400:%)- (2.4.16)
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Moreover, for p = +o0o we define a subspace of V' (00,0,Y, X), by

Vi(00,8,Y, X) = {u € V(00,0,Y, X); lim [[t%u(t) |y = lim [[#%u/ (1) | x = o}. (2.4.17)

It is not difficult to see that V(p,0,Y, X) is a Banach space endowed with the norm

| - [[v(po,v,x), and that Vy(oo,0,Y, X) is a closed subspace of V(o0,6,Y, X). Moreover,

if 6 < 1, any function belonging to V(p,0,Y, X) has a X-valued continuous extension
at t = 0. Indeed, for 0 < s < ¢, from the equality u(t) — u(s) = fst u'(0)do it follows,

for 1 < p < o0,
t 1/p t 1/q
</ ||09_1/pu’(0)||§(d0> (/ 0_(9_1/p)qda)

1
< ullvpey,x)la(l — )] 71/4 (290 — g90=0)) /q,

[u(t) —uls)l[x

IN

with ¢ = p/(p — 1). Arguing similarly, one sees that if p = 1 or p = oo, then u is
Lipschitz continuous (respectively,(1 — #)-Holder continuous) near ¢ = 0.

We shall use the Hardy-Young inequalities, which hold for every positive measurable
function ¢ : (0,a) = R, 0 < a < oo, and every a > 0,p > 1, (see [19], p.245-246),

, ¢ toods\Pat 1 [ ds
W [ (/ 90(3):) T Sar), S
0 0 0
“ ¢ ds\" dt 1 [ ds
17 tepP - R ap p__ .
i) [ ([o0) o [emaers

Corollary 2.4.13. Let u be a function such that t — ug(t) = t~Y/Pu(t) belongs to
L,(0,a;X), with0 <a<oo0,0<60<1andl<p<oo. Then also the mean value

(2.4.18)

v(t) = —/Otu(s)ds, t>0 (2.4.19)

has the same property, and setting vy = t~Y/Pu(t) we have

1
lvallz, 000 < T4 lusll,0a). (2.4.20)

Proof For p < oo, according to (2.4.18)(i), we have
a t
/ t—(1=0p / u(s)ds
0 0

"t

x t

/0 o (8) 1 dt

@ t ds\? dt
S /t_(l—e)p (/ SHU(S)HX_) R
0 0 S t
1 @ ds
< - —(1-6)p P2
< aoap) T Gl
<

m”“e“i(o,a;xw
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i.e. vp(t) € L,y(0,a;X), and

1
||U9||Lp(0,a;X) S 1— 9||u9”Lp(0,a;X)-

AZ@MSX

te_l/ s70|s%u(s)| xds
0

< Ll
= 1_9 UG || Loo (0,a;X)

For p = oo, we have

vl x < 97!

IN

1
This means ||vgl| L. (0,a:x) < T g
With the aid of Corollary 2.4.13, we are able to characterize the real interpolation

spaces as trace spaces.

Proposition 2.4.14. For (6,p) € (0,1) x [1,+00] U {(1,00)}, (X,Y )y, is the set of
the traces at t = 0 of the functions in V(p,1 —0,Y, X), and the norm

|| £.oc (0,a;x)- Thus, they complete the proof. O

||a:|\g,p = inf {|‘U||V(p71_97y7x); x=u(0),u € V(p,1—-0,Y, X)}
is an equivalent norm in (X,Y)g,. Moreover, for 0 < 8 < 1, (X,Y)y is the set of the
traces of t = 0 of the functions in Vy(oo,1 —0,Y, X).

Proof Letx € (X,Y)y,. Foreveryn € N, let a,, € X, b, € Y be such that a,,+b, = =,
and

1
lanllx + —llbally < 2K (1/n, ).

For t > 0 set
u(t) = anﬂx(%ﬂ,%](t) = Z(:p - an+1)X(%H,%](t>
n=1 n=1

where Y7 is the characteristic function of the interval I, and

Thanks to Proposition 2.4.7, (X,Y ), C (X,Y)g.c0, then %ir% K(t,xz) = 0. In particular,
lim a, = 0ie. z = lim b,, so that z = 1ltir% u(t) = 1ltir% v(t). Moreover,

I u®)lly < tl_GZX(%M,%](t)Q(Wr1)K(1/(n+1),$)

1
2t~ sup {n i } K(t,x)

neN n

< 47K (t,x), (2.4.21)

IN
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so that t s t17971/Py(t) € L,(0,+o0;Y). By Corollary 2.4.13, t ~— t1=9=1/Py(t) belongs
to L,(0,+00;Y), and

100 0400y < 0707 Pull 1, 0,400v) < 407 [l

On the other hand,

)=x—— Qpi1ds,
/ n+1n )TL—‘rl

so that v is differentiable almost everywhere with values in X, and

00 = [ oty = a0

where g(t) = > x(_1 1)(t)an1 is such that

nt+l’'n

lg(t ||X<Zx (s)2K(1/(n+1),z) < 2K(t, z).

It follows that
1Ol < sup gy + I g(Ollx < 4K (1) (24.22)
<s<

Then t — t179=1/Py/(t) belongs to L,(0, +00; X), and
[E 70720 ()] 0, 00) < Al lop-
Therefore, z is the trace at t = 0 of a function v € V(p,1 —60,Y, X), and
|ll6,, < 4(1 +1/0)[|]lo.p-

If 7 € (X,Y)y, then, by (2.4.21), Pr%tl*‘gﬂu(t)”y =0, so that lir%tl’gﬂv(t)”y =0.
By (2.4.22), Pr%t“’Hg(t)HX = 0, so that Pr%tl_eﬂv’(t)HX = 0. Then v € Vj(oo,1 —
0,Y, X).

Conversely, let = be the trace of a function u € V(p,1 —6,Y, X). Then

r=x—u(t)+ut) = —/Otu’(s)ds +u(t), Vt>0,

1 t
—/ u'(s)ds
tJo x

Corollary 2.4.13 implies now that ¢ — t~9"YPK(t x) belongs to L,(0,+00), so that
z € (X,Y)p,, and

so that

t K (t,2) <t + 170 u(t)]|y- (2.4.23)

zllo., < ||$||ep
If x is the trace of a function u € Vj(oo, 1—9, Y, X), then, by (2.4.23), %ir% t 9K (t,x)
=0, so that = € (X,Y). d
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Remark 2.4.15. By Proposition 2.4.14, if x € (X,Y )y, or x € (X,Y )y, then x is the
trace at t = 0 of a function u belonging to L,(a, b;Y)NWP(a,b; X) for 0 < a < b. But
it is possible to find a more regular function v € V(p,1 —0,Y, X) (or v € Vp(co, 1 —
0,Y, X)) such that v(0) = x. For any u € V(p,1 —0,Y, X) (or u € Vy(co,1 —0,Y, X))
such that u(0) = x, set

Then v € WHP(a,b; Y)NW?P(a,b; X) for 0 < a < b, and v(0) = z. By Corollary 2.4.13,
t = t971/Py(t) belongs to L,(0, +00;Y); moreover

V'(t) = 1 (u(s) — u(t))ds = _tl? ) ds/ u'(0)do,

¢
/ u'(o)do

and again by Corollary 2.4.13, t — t'=9=1/Py/(¢) belongs to L,(0, +o0; X), and

so that
L[,
<+ [ o) xdor
X 0

1
[0 ()[[x < + sup
t 0<s<t

1
vllvpi-oy,x) < Zllullvpi-o,y,x) (2.4.24)

Moreover, v'(t) = (u(t) — v(t))/t, so that t — t27971/Py/(t) belongs to L, (0, +o0;Y),
and
127720 ||y 0 400y < (L 1/O) [P0 1 0 ooy (2.4.25)

If u € Vo(oo,1 —0,Y,X), it is easy to see that v € Vy(oco,1 — 6,Y, X), and that
%ix%t2*9||v’(t)||y = 0. O

By means of the trace method it is easy to prove some important density properties.

Proposition 2.4.16. Let 0 < § < 1. For 1 < p < oo, Y is dense in (X,Y)y,. For
p =00, (X,Y)y is the closure of Y in (X,Y )pco.

In the previous subsection we have seen that every (X,Y)y, belongs to Jy(X,Y).
In particular, (X,Y )1 belongs to Jp(X,Y'). Now we can characterize all the spaces in
the class Jp(X,Y).

Proposition 2.4.17. Let 0 < 0 < 1, and let E be a Banach space such that Y C E C
X. The following statements are equivalent:

(i) E belongs to the class Jy between X andY,

(i) (X,Y)g1 C E.
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Proof The implication (i) = (i) is a straightforward consequence of Corollary 2.4.11,
with p = 1. Let us show that (i) = (ii). For every z € (X,Y)g1,let u € V(1,1-6,Y, X)
be such that u(t) = 0 for ¢t > 1. u(0) = z, and set

Then v(0) = x, v(+00) = 0, so that

+oo
T = —/ V' (t)dt.
0

Let ¢ be such that [jy||z < c|lyllx ?lly||% for every y € Y. Then
W' @Olle < cllv'OIX IOl = clt™ v @I It "v' @)1

By Remark 2.4.15, t — t17%/(t) belongs to L (0, +00;Y), and t — t~%'(t) belongs to
L1(0,400; X). By the Holder inequality, v" belongs to L;(0, +00; E), and, by means of
(2.4.24) and (2.4.25),

el < W@ooos 9
<l D La0) UV ()] 2y 0.007))
1— 0
1 1
< c EHUHV(I,I—G,Y,X) (1+5)HUHV(1,1—9,Y,X)
Since u is arbitrary and Proposition 2.4.14, we have ||z||g < const.||z||g.1. O

2.4.4 The Reiteration Theorem

We need some preliminaries about certain classes of intermediate spaces between X
and Y. Now we define another class of intermediate spaces.

Definition 2.4.18. Let F be a Banach space suchthat Y C £ C X, andlet 0 <60 < 1.
E is said to belong to the class Ky between X and Y if there is £ > 0 such that

K(t,z) < kt’||z||g, Vo€ E, t>D0.

In other words, E belongs to the class Ky if and only if it is continuously embedded in
(X,Y)p.0o. In this case, we write £ € Ky(X,Y).

By Definition 2.4.18 and Proposition 2.4.17, a space E belongs to Kp(X,Y) N
Jo(X,Y) if and only if
(X, Y)G,l CFEC (X, Y)gpo.

Now we are able to state the Reiteration Theorem.
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Theorem 2.4.19. Let 0 < 6y < 0, < 1. Fiz 6 € (0,1) and set w = (1 — 0)0y + 00;.
The following statements hold true.

(i) If E; belong to the class Ky, (i =0,1) between X and Y, then

(E07E1)0,p C (X7 Y)w,;m vp € [1700]7 (EO>E1)9 C (X> Y)w

(11) If E; belong to the class Jp, (i = 0,1) between X and Y, then

(X7 Y)w,p C <E07E1>9,p7 \V/p € [17 OO], (X7 Y)w C (E07E1)9'

Consequently, if E; belong to Ky, (X,Y) N Jy,(X,Y), then
(E07 El)@,p = (X7 Y)w,p7 vp S [17 OO]: (E(b El)@ - (X7 Y)wa
with equivalence of the respective norms.

Remark 2.4.20. By Proposition 2.4.7, (X,Y )y, and (X,Y)y belong to Ky(X,Y) N
Jo(X,Y) for 0 < 6 < 1 and 1 < p < oo. The Reiteration Theorem yields

((X7 Y)Oo,qoa (X7 Y)01,Q1)97p = <X7 Y)(179)00+901,p7
((X’ Y)Qov (X7 Y)leq)e,p - <X7 Y>(1—9)90+9617p7
(<X7 Y)@o,(p <X7 Y)01)97p = <X7 Y>(1—0)00+6'01,p7

for 0 < 60p,0, < 1,1 < p,q < co. Moreover, since X belongs to Ko(X,Y) N Jo(X,Y),
and Y belongs to K1(X,Y) N J1(X,Y) between X and Y, then

(X, Y000, Y )g, = (X Y)(-0)00100, (XY )00, Y )g = (X, Y)(1-0)00 40

and
(Xv (X7 Y)Gl,(J)e,p = (Xv Y)919,P7 (X7 <X7 Y)91)€ = (X7 Y)9197

for 0 < p,0, <1,1<p,qg< . [l



Chapter 3

Preliminary II: Maximal Holder
Regularity

3.1 Analytic Semigroup

Let X be a complex Banach space, with norm || - ||. This section deals with the solution
of an initial value problem in X,

u'(t) = Au(t), t > 0; u(0) = =,
where A: D(A) C X — X is a linear operator, with not necessarily dense domain.

Definition 3.1.1. Let A : D(A) C X — X be a linear operator. The resolvent set
p(A) and the spectrum o(A) of A are defined by

p(A)={AeC AN - A) T e LX)}, o(A)=C\p(4).

The complex numbers A € o(A) such that AI — A is not one to one are called eigenvalue.
The set 0,(A) consisting of all eigenvalues of A is called point spectrum.
If A € p(A), we set
(M — At = R(\, A).

The operator R(\, A) is called resolvent operator or simply resolvent.

We state below some properties of the spectrum and the resolvent set.

First, it is clear that if A: D(A) C X — X and B: D(B) C X — X are linear
operators such that R(\g, A) = R(\g, B) for some A\g € C, then D(A) = D(B) and
A = B. Indeed, D(A) = Range (R(X\o, A)) = Range (R(\o, B)) = D(B), and for every
x € D(A) = D(B) we have

R(Mo, A)( Aoz — Az) = x = R(\o, B)(Mox — Bx) = R(\o, A)(Noz — Bx),

so that \gr — Az = \gx — Bz, which implies Ax = Bz.
Next formula is called resolvent identity, its verification is straightforward:

RO\ A) — R(p, A) = (1 — MR, A)R(p, A), YA, 1t € p(A). (3.1.1)

29
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Proposition 3.1.2. If p(A) is not void, then A is closed.
Proof Let (x;) be a sequence in D(A), and

T — T n X,
Ax; —y n X.

Since p(A) # (), there exists some X\ € p(A) such that R(\, A) € L(X). Then
x; = R\, A)(Ax; — Ax;) — R\ A)(Ax — y).

By the uniqueness, we have
=R\ A) (A —vy).

D(A). Moreover, R(A, A) is injective, we get

x
This implies € Range (R(X, A))
Ar — Ax = x — .

That is, Ax = y. Thus, A is closed. O

Proposition 3.1.3. Let \g € p(A). Then the ball

is contained in p(A), and

-M%A)==§§PDWA—MWR”%%MS
= EOmAHL+M—A@R@mA»4. (3.1.2)

Therefore, the resolvent set p(A) is open in C and X\ — R(X, A) is analytic in p(A).

Definition 3.1.4. A is said to be sectorial if there are constants w € R, 0 € (E,W)

2
and M > 0 such that
() p(A) D Spw={AECA£w, |arg(h—w)| <0},

(i) 1RO Al < VA€ Sp (3.1.3)

A —w
The domain D(A), endowed with the graph norm
[l peay = Il + (| Az,

is a Banach space. For every ¢ > 0, (3.1.3) allows us to define a linear bounded operator
et in X, by means of the Dunford integral
1
et = — RN, A)dN, >0, (3.1.4)

20 Sy,
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where r > 0, n € (g,@), and 7, , is the curve {\ € C; |argA| = n, |A\| > r} U{\ €

C; largA| < n, |A| = r}, oriented counterclockwise. We also set
My =12, VreX. (3.1.5)

Since the function A — e*R(\, A) is holomorphic in Sy ,, the definition of e is
independent of the choice of r and 7.

Definition 3.1.5. Let A : D(A) C X — X be a sectorial operator. The family
{etA; t> 0} defined by (3.1.4)—(3.1.5) is said to be the analytic semigroup generated
by A in X.

We recall that a family of linear operators {T'(¢) };>0 C £(X) is said to be a semi-
group if

{ Tt)T(s)=T(t+s), t,s>0,
T0)=1.

A semigroup T'(¢) is said to be analytic if the function ¢ — T'(¢) is analytic in (0, +00)
with values in £(X). It is said to be strongly continuous if for each x € X the
function ¢ +— T'(t)z is continuous on [0, +00). We shall show that if A is sectorial, then
{em} i~ 1s analytic, so that it is strongly continuous if and only if

lime2 = z, Vo e X.
t—0

We shall see later in Proposition 3.1.9 that

Prréemm =x <= x € D(A).

Therefore, {e'}
X.

150 18 strongly continuous if and only if the domain D(A) is dense in

3.1.1 Basic properties of ¢4

In this subsection, the proofs are omitted(cf. [24]).

Proposition 3.1.6. (i) ez € D(A¥) for each t > 0, v € X, k € N. If v € D(A¥),
then

Aretty = 4 Ak, Vi > 0.

(ii) etdesd = 94 Vi s> 0.
(i1i) There are constants My, My, M, ..., such that

a) |let4 < Mpe*t, t>0,
{ @ el < Mo -

(b) [[t"(A —wD)*e" o) < Mye!, >0,
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where w is the constant of assumption (3.1.3). In particular, from (3.1.6)(b), it follows
that for every e > 0 and k € N there is C > 0 such that

HtkAketAnﬁ(X) < Ckﬁe(“ﬂrs)t, t > 0. (317)
(iv) The function t — e belongs to C* ((0,+00); L(X)), and

dk

%em = Akt >0, (3.1.8)

moreover, it has an analytic extension in the sector
Se {AE(C; A#0, |arg)] <9—g}.
Proposition 3.1.7. For every integer n > w, set
A, s X — X, A, =nAR(n, A). (3.1.9)

Then p(A) C p(A,), and R(X\, A,) — RN, A) in L(X) as n — oo, for every A € p(A).

Moreover, et — et in L(X) as n — oo, for every t > 0.
The family {A,; n € N} is said to be the Yosida approzimation of A.

Corollary 3.1.8. Let X be a real Banach space, and let A : D(A) C X — X be a
linear operator such that the complexification

A: D(A) = D(A) +iD(A) —» X = X +iX, Az +iy) = Az +iAy,
is a sectorial operator in X. Then etﬁ(X) C X.
The following proposition deals with the behavior of !4z near t = 0.
Proposition 3.1.9. The following statements hold true.

(i) If © € D(A), then lim+ ez = x. Conversely, if there exists y = lirn+ ez, then
t—0 t—0

z € D(A), and y = x.

(i1) For every x € X and t > 0, the integral f; esAzds belongs to D(A), and
t
A/ eads = ee — .
0
If in addition the function s — Ae*x belongs to Li(0,t; X), then

t
ey — = / Ae*xds.
0
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(i1i) If x € D(A) and Ax € D(A), then lir&(et"‘x —x)/t = Azx. Conversely, if there
t—

exists z = li%l(e“‘x —x)/t, then x € D(A) and z = Az € D(A).
t—

(iv) If v € D(A) and Az € D(A), then lim Ae'tz = Ax. Conversely, if there exists

t—0t

v = lim Atz then v € D(A) and v = Az € D(A).
t—0
If X, is a subspace of X, the part of A in X, is defined by

AO : D(Ao) — X(), on = AZ’

Remark 3.1.10. Let Xy = m, and let Ay be the part of A in X,. Then D(Ay) is
dense in X,. Moreover, A is sectorial so that it generates the analytic semigroup e
in Xy, and we have e!ox = ez for x € Xj. Due to Proposition 3.1.9(i), e/° is strongly
continuous in Xj. O

3.1.2 Identification of the generator

Now we consider the problem of identifying the generator of a given analytic semigroup.

Lemma 3.1.11. Let A: D(A) C X — X satisfy (3.1.3). Then for every A € C such
that Re\ > w we have

+oo
R(\A) = / e Metdt. (3.1.10)
0
Proof Let 0 <r < Re\ —w and n € (7/2,6). Then
/ e MetAdt = — R(Z,A)/ e Mt dz
0 271” wtr.n 0
- A)(z — N)tdz = R(\, A).
i), G A=Y= ROLA

Corollary 3.1.12. For every t > 0, ' is one to one.

Corollary 3.1.13. If A: D(A) C X — X and B: D(B) C X — X are sectorial
operators such that e'* = e'B for every t > 0, then D(A) = D(B) and A = B.

Proposition 3.1.14. Let {T'(t);t > 0} be a family of linear bounded operators such
that t — T(t) is differentiable with values in L(X), and

(1) T(t)T(s) =T(t+s), for every t,s > 0;

(i) there arew € R, My, My > 0 such that [|T(t)||zcx) < Moe", [|tT"(t)||lzx) < Mye*!
fort > 0;
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(111) either (a) there is t > 0 such that T(t) is one to one, or (b) for every x € X,
lim 7T (t)x = .
t—0
Then t — T(t) is analytic in (0, 400) with values in L(X), and there exists a unique
sectorial operator A : D(A) C X — X such that T(t) = e for every t > 0.

Proof The proof can be found in [24] Proposition 2.1.9. O

3.1.3 A sufficient condition to be a sectorial operator

Proposition 3.1.15. Let A : D(A) C X — X be a linear operator such that p(A)
contains a half plane {\ € C; Re\ > w}, and

AR, Al cx) < M, Rel > w,
with w € R, M > 0. Then A 1is sectorial.

Proof By Proposition 3.1.3, for every r > 0 the resolvent set of A contains the open
ball centered at w + ir with radius |w + ir|/M. The union of such balls and p(A)
contains the sector S = {\ € C; A\ # w, |arg(A —w)| < m — arctan M }. Moreover, for
AeV ={AeC; Rel <w,|arg(A —w)| <7 —arctan2M }, A = w + ir — Or/M with
0 <6 <1/2, formula (3.1.2) gives

o0

Mn+1 oM
HR )‘ A Hﬁ Z w"‘” (w2+r2)(n+1)/2 S r

n=0

On the other hand, for A = w + @r — 6r/M it holds

1 -1/2
r> <4M2 +1) A —wl,

1 1/2
so that ||R(\, A)|lzx) < 2M <4M2 + 1) A — w|!. The statement follows. O

Definition 3.1.16. Let D <% X, we define the following class

H(D,X) = {A . D — X: 3w e R,3IM > 0 such that
w—Ae€ Lis(D,X), {A€C; RehA>w} C p(A)
and |\ — w||| RO\, A)l|zco) < M, for Re > w}.

Given A € H(D, X), we know from Proposition 3.1.9 and Proposition 3.1.15 that
A generates a strongly continuous analytic semigroup on X. In fact the converse is true
as well: If A generates a strongly continuous semigroup then A belongs to H(D, X)
(see [17] Section 4.2).

To prove the next proposition, we need the following lemma.
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Lemma 3.1.17. Let X be a connected metric space, let
Be C(X,L(E,F)),
and suppose that there exists 3 > 0 such that
|B(x)ellr > Blell g, reX, eelk.
Then B(X)N Lis(E,F) # 0 implies B(X) C Lis(E, F).
Proof The proof can be found in [4] Proposition 1.1.1. O
Proposition 3.1.18. H(D, X) is open in L(D, X).

Proof For any A € H(D, X), there exist w = w(A) € R and M = M(A) > 0 such
that w — A € Lis(D, X),

{AeC; Red > w} C p(A) and |X — w|||R(X, A)||zcx) < M, for ReX > w.
For ReA > w, we have
r=R(w,A) [N —A)z+ (w— N)z| for x € D.
Then for x € D, we get

lellp < [[B(w, A)lleex.p) (A = A)zf] + |A = wl][z]])
< [[R(w, Allecen) (T + M)[[(A = A)z].

Set K = M + ||R(w, A)||zx,p)(1 + M), we know that for € D and Rel > w,
(A =wlllzll + llz]lp < K[[(A = A)z].

For any B € L(D, X) with || B||z(p,x) < we see that

A= (A+B))z| =
>

!1(A — A)z|| — || Bz

¥ !
= == elllell + 5lelo,

1
(1A= wlllzl + lllp) = 5=l (3.1.11)

for x € D and Re\ > w. Since D <X, (3.1.11) implies that {\; ReA > w} C p(A+ B)
and
A= w|[|R\, A+ B)||zx) < K for Rel > w.

From (3.1.11), we deduce that
1
ﬁHwHDgﬂ(w—(AthB))xH, reD, 0<t<l1.

Thanks to Lemma 3.1.17, we know that w — (A+ B) € Lis(D, X). Therefore A+ B €
H(D, X). This completes the proof. d
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3.1.4 Intermediate spaces

Through the whole subsection we set

C, = sup [[t"A"e"||zx), Vn€N. (3.1.12)
0<t<1

Then C,, < +oo for every n, thanks to estimates (3.1.7).

Proposition 3.1.19. For 0 < k < n, D(A¥) belongs to the class Jin N Ky between
X and D(A™).

Proof Since D(AF) = D((A — (w + 1)I)*) for every k, we may assume without loss
of generality that w < 0. Then the graph norm on D(AF) is equivalent to the norm
x > ||A*z||, which will be used here.

Let us prove that D(A*) € Ji/, (X, D(A™)). First we consider the case k =1, n = 2.
We claim that there is C' > 0 such that

|Az| < O|z||/?||A%z||'/?, = € D(A?). (3.1.13)

Let x € D(A?). Since w < 0, then 0 € p(A?), so that if A2z = 0 then x = 0, and in
this case (3.1.13) holds. Moreover, for every ¢t > 0 we have

t ¢
Aethy — Az = Az/ e*Ards = / e A%eds,
0 0
so that, according to (3.1.6), we get
A ' A )2 M, 2
el < Ac4a]) + [ et Al ds < Sl + Mot 4% >0,
0

If A%z # 0, taking the minimum of the right hand side for ¢ > 0 we get (3.1.13) with
constant C' = 2v/MyM;. (3.1.13) means that D(A) € J;5(X, D(A?)). Arguing by recur-
rence as in the proof of Proposition 2.4.2(i) one can see that D(A*) € Ji/n (X, D(A™))
for 0 < k < n.

To prove that D(A*) € Ky, (X, D(A™)) we show first that D(A) € Kj,(X, D(A™)).
If € D(A) split z = """z + (z — ¢"'"/"4%),, by means of Proposition 3.1.6, we have

| A" A || < My, Y7 Az,

and
t1/n

|z — etl/nA:z;H = H/ Ae*Axds|| < MotY™|| Az
0

It follows that

K(t,;X,D(A") < |lz— "™z + tlle" " 42| pian
MOtl/nHAI“ + Ceq,nMn—ltl/nHAxH

C’eq,l(]wo + Oeq,nMn—l)tl/n”xHD(A)?

VANIVANIVAN
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for ¢ > 0, here, Ceq . is the coefficient concerned with equivalent norms between ||-|| p(.ar)
and ||A* ||, i.e.

C’;qlkHAka < |zl pary < CeqllA*z|, VEk €N, 2 € D(A").
Therefore, D(A) is in the class K7/, between X and D(A™).

Let us argue by recurrence. Assume that for some n > 3 we have D(A®) C
(X, D(A™ N)s/(n-1),00 for s = 1,...,n — 2. We have just proved that this is true
for n = 3. Set Y = D(A). The part Ay of A in Y is sectorial, so that D(Aj) C
(Y, D(AY"))s/(n-1).00 for s = 1,...,n — 2. On the other hand, D(Aj) = D(A*™),
D(A}™Y) = D(A™), so that D(A**!) C (D(A), D(A™))s/(n-1),00- Since D(A) belongs to
Ky (X, D(A™)), by part (i) of the Reiteration Theorem 2.4.19, we get

(D(A), D(An))b‘/(nfl),oo C (X, D(An))(s+1)/n,oo
for 1 < s <n—2. Setting s + 1 = k we get
D(A*) € (X, D(A"))kjnoor, 2<k<n-—1,

and the statement follows. O
In the following, we shall define a class of intermediate spaces between X and D(A)
0<a<1,1<p<oo, and (a,p) = (1,00)), by
{ Dalep) = € X; Lo 0lt) = 1o Al € LOOL
lellpatas = el + [#]paas = ol + [V, 00 -

Dy(a) = {x € Dy(a,00); %i_r%tlfaAetAx = O} . (3.1.15)

As easily seen, for every z € Da(a,p) and T' > 0, the function s — ||Ae*“z|| belongs
to L1(0,T), so that by Proposition 3.1.9(ii) we have

t
ey —x = / Ae*Axds Vit > 0, T = %im et
0

—0

In particular, all the spaces D4(«,p) and D4(«) are contained in the closure of D(A).
Moreover we have

DA(()&7P) = DA()(Oz,p), DA<04) = DAo(a>’

where A is the part of A in D(A). See Remark 3.1.10. In the following, we shall state
several characterizations of the spaces D4(a,p) and Dy (a).

First, the spaces D4(«,p) and D4(«) are real interpolation spaces between X and
D(A).

Proposition 3.1.20. For 0 < a <1 and 1 <p < oo, and for (a,p) = (1,00) we have
Dy(a,p) = (X>D(A))a,pa
with equivalence of the respective norms. Moreover, for 0 < a < 1,

Da(a) = (X, D(A).
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Proof Let ¢: [0,+00) — R be a C* function such that

{ 0<op)<1 |fWH)]<2 V>0, (3.1.16)

pt)=1for 0<t<1/3, p(t)=0fort>1.

Let © € D(a,p). Then, choosing u(t) = p(t)e!z, we get z = u(0), u(t) = 0 for t > 1,
and for 0 < ¢t <1

[ u(t) | peay < [l Ae ]| + [t ez,
[ )] < ([ Aet ]| + @'l It ],

so that u € V(p,1 — a, D(A), X), and

lullv 1-a.04).5) < 2[2]Dacas) + 3l ]|, 0,1%)-
Due to Proposition 2.4.14, z € (X, D(A))a,p, and
I2/la., < 2[2] D) + 3Cocs 12, (3.1.17)

a,p

where ¢, is a suitable constant. Therefore, D (o, p) C (X, D(A))a,. From the above
considerations it is clear that if x € D4(«), then u belongs to V(00,1 — o, D(A), X),
so that z € (X, D(A))a.

Conversely, let z € (X, D(A))q,p. Then z = u(0), with u € V(p,1 —a, D(A), X). It
follows that
t

[t Aetiz|| < ||t AetAu(t)| + ||t At | u/(s)ds

L (3.1.18)
< ol Au(o)] + € 1= / o (s)ds]|
0
Due to Corollary 2.4.13, t +— |[t1=2~ /P Aet4z|| belongs to L,(0, 1), and
[t P Aet ]| 00y < Co||tga_l/pz4“(t)||Lp(o,1)
+El [P0 (#) || 1, 0,1)
C
< max {Co, 31} lullv(p,1-a,D(4),x)-
Since u is arbitrary, we have
[t VP Ae x| 1, 00) < Cllz||Z - (3.1.19)

Estimate (3.1.19) also holds for p = oo, if we set 1/o0 = 0. Therefore, Da(a,p) is
continuously embedded in (X, D(A)),, for 1 < p < oo.
If x € (X, D(A))q, then ||t'~*u(t)||pay and [[t'~*u'(t)|| go to 0 as t — 0, and then

it means that PH(]) t1=*Ae!z = 0, so that & € Da(a), and the statement is completely

proved. [l

The above characterization yields immediately several properties of the spaces
Da(a,p) and Da(«).
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Corollary 3.1.21. The following statements hold true.
(i) The spaces D4(a,p) and Da(«) do not depend explicitly on the operator A, but
only on D(A) and the graph norm of A. Precisely, if B : D(B) = D(A) — X is
a sectorial operator such that
c Azl < || Bz|| < c|| Az V€ D(A)
for some ¢ > 1, then we have (with equivalence of the respective norms)
DB(aap) - DA<a7p>7 DB<a) - DA(O[).

(ii) For0 < a; <as<1,1<p<o0, and for (ay,p) = (1,00), we have

Da(as,p) C Da(ay,p).

ForO0<a<1,1<p <py < o0,

D4(1,00) C Da(a,p1) C Da(a,p2) C Da(a) C Dalar,00) C D(A).

(iii) The spaces Dy(a,p) and Da(a) belong to the class J, between X and D(A).
Moreover, if E is a Banach space such that D(A) C E C X, then E belongs to
the class J, between X and D(A) if and only if Da(a, 1) C E.

(iv) D(A) is dense in D 4(a, p) for p < co. D4(a) is the closure of D(A) in Da(a, 00).

Proof Statement (i) is an obvious consequence of Proposition 3.1.20. Statements (ii),
(iii) and (iv) follow from Proposition 3.1.20 through Proposition 2.4.7, Corollary 2.4.11
with Proposition 2.4.17, and Proposition 2.4.16, respectively. U

The next proposition gives a characterization of the spaces D(«, p) and D4(«) in
terms of the behavior of the function u(t) = ez near t = 0.

Proposition 3.1.22. [t holds
Du(a,p) ={z € X; tw(t) =ty — 2| € L,(0,1)},
and, setting [[7]]p,ap) = |lw|lz,0.1), the norm
e = ]| + [[#]]pa )

is equivalent to the norm of D4(a,p). Moreover,

Da(a) = {35 € X; H%t_a(emzv —x) = 0} :
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Remark 3.1.23. We remark that, in the case p = oo, Proposition 3.1.22 states that x €
D4 (ar,00) if and only if the function ¢ — e4x belongs to BUC*([0,1]; X), if 0 < a < 1,
or to Lip([0,1]; X), if @ = 1. This is clearly equivalent to t — etz € BUC*([0,T]; X)
(respectively, Lip([0,T]; X)) for all T > 0. O

The following proposition gives a characterization of Da(«,p) and D4(«) in terms
of the behavior of AR(\, A)z as A — +o0.

Proposition 3.1.24. Let a > max{1l,w}. Then
Dalep) = {z € X; trs 2(t) = [¢*"VPAR(t, A)a]| € Ly(a, +50)} .

and, setting [z]}, 4 = [I2llL,(0400), the norm

a7p

L= ||l’|| + [ZE]*DA(a,p)

is equivalent to the norm D 4(a, p). Moreover,

Dy(a) = {a: € X; lim t*AR(t,A)x = O} :

t——+o0
For ke N, a € (0,1), p € [1,00], set

Dy(a+k,p) = {z € D(A*); Az € Da(a,p)},
|20l Datatkpy = N2l + 1A 2] D)
Dy(a+k)={z € D(A*); Akz € Dy(a)} .

Thanks to Proposition 3.1.22, the function t — ¢4z belongs to BUC*+<([0, 1]; if and
only if x € Da(k + a, 00). Moreover, since D(A) is dense in D4(a, p) for p < oo, then
D(A*1) is dense in Da(k + a,p) for p < oo; since Dy(a) is the closure of D(A) in
Dy(a,00), then Dy(k + ) is the closure of D(A**1) in D(k + «, 00).

A very important fact is that the parts of A in D(«, p) and in D(«), defined by

Aap s Dala+1,p) = Dala,p), Aapr = Ax;
Ay Da(a+1) — Da(a), Ayx = Az,

are sectorial operators in D4(a, p) and in D4 (), respectively.

Proposition 3.1.25. p(A) is contained in p(Aa,), and for every X € p(A),

IR Aap)llepatam) < 1RO, A)llex)-

Consequently, A, p is a sectorial operator in D s(a, p) and A, is a sectorial operator in

DA(a).

We study now the behavior near ¢ = 0 of the function t + ez, when € D4 (o, p)
or x € Dy(a).
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Proposition 3.1.26. For0 < a <1 and 1 <p < oo,

PH& e — 2||p,(ap =0, Vz € Dala,p). (3.1.20)

For0<a<1 and x € Dy(a, 0),

Pné |42 — 2| py(ace) =0 <= = € Da(a). (3.1.21)

Now we give some estimates for the function ¢ — A"e** when t — 0 and t — oo.
For convenience, in the next proposition we set

DA(Oap) = Xv vp € [1700]

Proposition 3.1.27. Let (o, p), (B,p) € (0,1) x[1,00]U{(1,00)}, and let n € N. Then
there are C' = C(n,p; a, B), C' = C'(n, p; , B) such that

{ (i) et PAE LDy ap) Doy SO0 0 <E<T; (3.1.22)

(i) [[t"(A = wI) e catap,paepy < C'e, t=1.
The statement holds also for n =0, provided a < (3.
Remark 3.1.28. In fact, we can also know that

sup |’tn_a+ﬁAnetA”ﬁ(DA(a,oo),DA(B,p)) < oo, VneN,
0<t<1

for 0 < a,08 < 1,1 <p<oo. In particular, for a = (3,

sup ||tnAn€tAHz:(DA(a,oo),DA(a,p)) < oo, VneN;pell, o
0<tL1

This is not true in general for n = 0. U

Proposition 3.1.29. Let 0 < a < 1, and let I be a (possibly unbounded) interval. The
following statements hold.

(i) If u € BUCY(I; D(A)) N BUC™(I; X), then u'(t) € D4(a,00) for everyt € I,

and
||u/||DA(a,oo) S C (HUHBUC"’(I;D(A)) ‘I' ||u||BUc’1+O‘(I;X)) s Vt - I (3123)
In addition, BUC®(I; D(A)) N BUC'™(I; X) C Lip(I; Da(a, 0)).

(ii) buc*(I; D(A)) Nbuct™(I; X) C BUCHI, D4()).
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Proof (i) First we shall prove that (3.1.23) holds. Let w € BUC®(I;D(A)) N
BUCY™(I; X). For t,t + h € I, split «/(t) as

(t+h) —u(t)
Y .

1
W (t) = / (W() = o (t + oh))do +
0
Then for every ¢ € (0, 1], it holds

lgt = Aes 4 (2)]|

1
< &AM e | W' (t) = w/(t + oh)lldo
0
Au(t + h) — Au(t) ‘
h

£ WX R + Cog o u]d ]|,

(3.1.24)

e ) \
Ch
a-+1

If I is unbounded, for every £ € (0,1] and ¢t € I, there is h € R such that |h| = £ and
t + h € I. Replacing in (3.1.24), we find

o gy C
g At ()] < —

< S W+ Goful, (3.1.25)

and estimate (3.1.23) holds. If I = [a,b], and £ < (b — a)/2, for every t € (a,b], there
is h such that |h| = € and t + h € [a,b]. For such value of &, (3.1.25) holds. On the
other hand, if £ > (b — a)/2, then

/ —a / —2 ’ !
Je At (1) < €l ()] < (b_a) e,

so that [¢]p,(a,c0) is bounded, and (3.1.23) is proved.
Let us show now that w is Lipschitz continuous with values in D(«, 00). For 0 <
£ <1lands<tel,it holds

IA

e At (u(t) — u(s))| / |0 At (o) do

< (8= s)sup['(0)]p, (a0,
[24S

so that
) = 0(5)paoe) < (¢ = 5) SUDI(0)] s 00
Let us prove that statement (ii) holds. If u € buc®(I; D(A)) N buc'*(I; X), then
there is a sequence of approximating functions u, € BUC®(I; D(A)) and converge
to w in BUC*(I; D(A)) N BUC™™*(I; X). By statement (i), {u,},en converges to u’
in Loo(I; Da(a,00)). Since BUC(I, D4(«)) is closed in Lo (I; Da(,0)), then v’ €
BUC(I; Ds(«)). O
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3.2 Maximal Regularity

In the section we shall study the solvability of the initial value problem
u'(t) = Au(t) + f(t), t>0; u(0) = uy, (3.2.1)

where A is a linear sectorial operator in general Banach space X. The function f is
defined and continuous in a (possibly unbounded) interval I such that inf I = 0. We
prove several properties of the solution in a bounded interval [0,7]. We also show
that, under reasonable assumptions on the data, any solution of (3.2.1) in an arbitrary
interval [0, T is given by the variation of constants formula

¢
u(t) = eug + / e(t_s)Af(s)ds, 0<t<T. (3.2.2)
0

In this situation, the study of the solution of (3.2.1) is reduced to the study of the
representation formula (3.2.2). Again we follow here [24], see also [9, 10].
Through the whole section, we fix 7' > 0 and we set

M, = sup |t"A%erx), k€ NU{0}, (3.2.3)
0<t<T+1
and, for a € (0, 1],
Mk,a = sup Htk_aAketA‘|L(DA(O[7OO)7X), ke N, (3.2.4)
0<t<T+1
Kk,a = sup ||tk+aAk6tA||L(X,DA(0671)), ]f - N U {0} (325)
0<t<T+1

Due to estimate (3.1.22), we have My, My, o, Kj o < 00 for every k.

Due to the singular behavior near ¢ = 0 of the derivatives of ¢ — ez, it will be
sometimes convenient to work with weighted functional spaces. In particular, we shall
consider spaces of functions defined in a bounded interval (a,b], which are bounded
or uniformly Holder continuous in each interval [a + €, b] but that are not necessarily
bounded (respectively, Holder continuous) up to ¢t = a. Let p € R, and set

Bul(a,b: X) = {f: (a8 = X; Ifls 0
= sup (¢ — @) (0)] < o . 320
Cu((a,b]; X) = C((a,0]; X) N By((a, b]; X),
[ fllew@mx) = 1 f 1 Bcabsx)- (3.2.7)
For 0 <a <1, >0, set
Cs((a,b; X) = {f € Bs_o((a,b; X) N BUC([a + &,b]; X), Ve € (0,b— a);

[f]cg((a,b};X) = Ssup 5B[f]BUC’a([a+s,b];X) < 400 0]
0<e<b—a

[ lleg@ex) = 1 Bs-at@onx) + [flogiaix)-
(3.2.8)
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In particular, for § = a, the space C%((a,b]; X) is the set of the bounded functions
f: (a,b] — X such that

sup  £°[f]Buce(jate)x) < +00.
0<e<b—a

It may be easily seen that it coincides with the set of the bounded functions f :
(a,b] — X such that t — g¢(t) = (t — a)*f(t) belongs to BUC*((a,b]; X), and that
the norm [[f]]a = || flloo + 9] BUco((ap);x) 15 equivalent to the C norm. More generally,
one can show that C§((a,b]; X) is the space of the functions f : (a,b] — X such
that h(t) = (t — a)?~“f(t) is bounded and g(t) = (t — a)’f(t) is uniformly a-Hélder
continuous in (a,b] with values in X, and that the norms f + [ f[lcg ((ap;x) and

= bl B@px) + [9]Buce (@p:x)

are equivalent. However, in what follows it is more convenient to use the norm defined
in (3.2.8).

3.2.1 Solutions of linear problems

We consider several types of solutions of problem (3.2.1).

Definition 3.2.1. Let " > 0, let f : [0,7] — X be a continuous function, and let
ug € X. Then:

(i) A function u € C'([0,T]; X) N C([0,T]; D(A)) is said to be a strict solution
of (3.2.1) in the interval [0,T] if v/(t) = Au(t) + f(t) for each ¢t € [0,7], and
u(0) = up.

(ii) A function v € C([0,T]; X) is said to be a strong solution of (3.2.1) in the
interval [0,7] if there is a sequence {u, ey C C'([0,T]; X) N C([0,T]; D(A))
such that

Up — U, u,, — Au, — fin C([0,7]; X) as n — +o0.

Let now f: (0,7] — X be continuous. Then

(iii) A function u € C'((0,T]; X) N C((0,T]; D(A)) N C([0,T]; X) is said to be a
classical solution of (3.2.1) in the interval [0, T] if /(t) = Au(t) + f(t) for each
t € (0,7], and u(0) = uy.

If f is defined in [0,400), a function u : [0,4+00) — X is said to be a strict
(respectively classical, strong) solution of (3.2.1) in [0, 4o00) if for every T' > 0 the
restriction u|j 7] is a strict (respectively classical, strong) solution of (3.2.1) in [0, 7.
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From Definition 3.2.1 it follows easily that if problem (3.2.1) has a strict solution
then

whereas if problem (3.2.1) has a classical or strong solution, then
up € D(A). (3.2.10)

Moreover, any strict solution is also strong and classical.

We are going to show that if f € L;(0,7; X) then any type of solution of (3.2.1)
may be represented by the variation of constants formula (3.2.2). We begin with the
classical solution.

Proposition 3.2.2. Let f € L1(0,7; X)NC((0,7]; X), and let ug € D(A). If u is a
classical solution of (3.2.1), then

t
u(t) = eug +/ A f(s)ds, 0<t<T.
0

Proposition 3.2.2 implies that if f € L1(0,7;X) N C((0,7]; X) then the classical
solution of (3.2.1) is unique. In particular, if f € C([0,7]; X) the strict solution of
(3.2.1) is unique and it is given by (3.2.2). As a consequence, also the strong solution
of (3.2.1) is unique, and it is given by (3.2.2).

In the applications we shall find situations in which D(A) is not dense in X, and

the initial datum uy does not belong to D(A). Then the initial condition «(0) = ug has
to be understood in a weak sense, such as

lir% R\, A)u(t) = R(\, A)ug

for some A € p(A). Also in this case the representation formula (3.2.2) holds, as the
next corollary states.

Corollary 3.2.3. Let f € L1(0,T; X)NC((0,T]; X) and ug € X. Ifu € C*((0,T]; X)N
C((0,T); D(A)) satisfies u'(t) = Au(t)+[f(t) fort > 0, and %ir% R(A, A)u(t) = R(\, A)ug
for some \ € p(A), then u is given by (3.2.2).

It is easy to see that (3.2.2) makes sense whenever f € L1(0,7;X) and ug € X.
Therefore we give the following definition.

Definition 3.2.4. Let f € L1(0,7;X), and let up € X. Then function u defined in
(3.2.2) is call the mild solution of (3.2.1).

Due to estimate (3.2.3), with k£ = 0, the mild solution satisfies

t
ool < 840 (ol + [ 150las), 0o 3:2.11)
0
It is easy to see that if ug € D(A) then u belongs to C([0,T7; X).
The mild solution is also an integral solution, in the sense specified by the next
proposition.
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Proposition 3.2.5. Let f € L1(0,7;X), and let ug € X. If u is defined by (3.2.2),
then for every t € (0,1 the integral fot u(s)ds belongs to D(A), and

u(t) = up + A/tu(s)ds + /tf(s)ds, 0<t<T. (3.2.12)

The result of Proposition 3.2.5 is used in the next lemma, where we give sufficient
conditions in order that a mild solution be classical or strict.

Lemma 3.2.6. Let f € L1(0,7;X)NC((0,T); X), let ug € D(A), and let u be the
mild solution of (3.2.1). The following conditions are equivalent.

(a) ue C((0,T]; D(A)),
(b) ue CH(0,T]; X),
(c) w is a classical solution of (3.2.1).
If in addition f € C([0,T]; X), then the following conditions are equivalent.
() we C([0,T]; D(A)),
(b?) uwe CH[0,TT; X),
(¢’) wis a strict solution of (3.2.1).

Now we discuss the relationship between mild and strong solutions. It is clear from
the definition that if problem (3.2.1) has a strong solution, then f € C([0,7]; X) and
up € D(A). Indeed, these conditions are also sufficient for the mild solution be strong,
as the following proposition show.

Proposition 3.2.7. Let f € C([0,T]; X), up € D(A). Then the mild solution of prob-
lem (3.2.1) is strong.

3.2.2 Mild solutions

This subsection is devoted to the properties of the mild solution of (3.2.1) in the
case where f belongs either to L.(0,7; X) or to C((0,7]; X) N Ly(0,T; X). Since the
properties of the function ¢ — e*4uy were studied in last section, we focus our attention
on the function

v(t) = (e % f)(t) = /Ote(t_s)Af(s)ds, 0<t<T. (3.2.13)

Proposition 3.2.8. Let f € Lo.(0,T; X). Then, for every a € (0,1),v € BUC*([0,T7;
X)NC([0,T]; Da(a, 1)). Precisely, it belongs to BUC'*([0,T]; Da(a, 1)), and there is
C independent of f such that

[ollBuci-e(o11:Da(@1) < CllfllLe0r:x)- (3.2.14)

It follows that v belongs to BUC'™*([0,T], X,,) for every space X, € Jo(X, D(A)).
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Proof Since s — ¢4 z(x.p,(a.1)) belongs to L;(0,t) for every ¢ € (0,T], then
v(t) belongs to D4(a, 1) for every a € (0,1), and

t
[ Olaan < Koallfliora [ (6= 5)7ds (32.15)

0
< Kool =) 'T fll oo 0,:x) -

Moreover, for 0 < s <t < T,

v(t) —o(s) = /Os(e(t")A — =) f(g)do + / =4 f(0)do

s t—o t
= /da/ AeTAdT—i—/e(t")Af(a)da,
0 s—0o s

S t—o
lo() — o(Mpseny < Kia / do / e £l
0 s—o
t

which implies

+K0,a/ (t — o)~ do]| f]l (3.2.16)
Kl,a ) KD,a —a
(oo e ) =9Il

so that v is uniformly (1 — a)-Holder continuous with values in D4(a, 1). Estimate
(3.2.14) follows now from (3.2.15) and (3.2.16).

Thanks to Proposition 2.4.17, we also get that v is uniformly (1 — «)-Hélder con-
tinuous with values in X, for X, € J,(X, D(A)). d

Corollary 3.2.9. Let f € Loo(0,1;X), ug € X, and let u be the mild solution of
(3.2.1). Then u € Ly(0,T;X), and

]| 2o 0,730 < Mo(l|tol| + T f || Lo 0.7:))- (3.2.17)

For every a € (0,1), and € € (0,T), w € BUC' ([, T); Da(c,1)). Consequently, u
belongs to BUC'*([e, T; X,) for every space X, € Jo(X, D(A)). There is C' indepen-
dent of f such that

|ull Buce e,r1:x) + Ul Be. DA (0,1)) < CE™Juoll + || fll oo 0.1:x))
(3.2.18)
lull Buct-o (e 10400y < Ce™ ol + || fll Looo.1:))-

Moreover, u € C([0,T]; X) <= ug € D(A). For0 < a <1, u € BUC*([0,T],X) <
g € Da(a, 00).

Proof This is a consequence of Proposition 3.2.8 and Remark 3.1.23. U

In the applications to nonlinear problems we shall consider frequently functions f
which are bounded in every interval [, T with € € (0,7, and blow up at ¢t = 0. Next
proposition deals with functions belonging to the weighted spaces defined in (3.2.6),
(3.2.8).
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Proposition 3.2.10. Let f € L1(0,7;X) N Loo(e,T; X) for every e € (0,T). Then
v = e x f belong to C([0,T]; X) N BUCY([e, T]; Da(c, 1)) for every a € (0,1),
€ (0,7).
If in addition t — t'f(t) is bounded and measurable in (0,T], for some 6 € (0,1)
(so that f € By((0,T]; X)), then the following statements hold.

(i) ve BUCY?([0,T]; X), and
HUHBUCH([O,T];X) < C'Hf||Be((0,T];X)-
(ii) For every a € (0,1), v € C3~*((0,T); Da(a, 1)), and
||U||c1 “((0,T];Da(a,1)) < Cllf I Bo(0,13:)-
In particular, v is bounded with values in Dao(1 — 0,1), and t — tr*"ty(t) €
B([0,T); Da(a, 1)), t — t%0(t) € BUC*([0,T]; Da(a, 1)) for every a € (0,1).
If in addition PH(]) 1t f(t)|| =0, then v € C([0,T]; Ds(1 —6,1)).
(i4i) If a +0 < 1 then v € BUC'*7%([0,T]; Da(c, 1)), and

vl Buci-a-o0.17:Da(a1)) < Clf | Boto.17:)-

Proof Obviously, v is continuous with values in X uptot =0. For 0 <e <t < T,
we have

€/2 t
v(t) = e(t_€/2)A/ &2 f(5)ds + / e (5)ds = vy (t) + vo(t).
0 €/2

By Proposition 3.2.8, vy belongs to BUC'™%([e/2,T|; D(c, 1)) for every a.. Moreover,
vy belongs to BUC™([e, T|; D(A™)) for every n € N, due to Proposition 3.1.6. There-
fore, v € C([0,T]; X) N BUC'*([&, T]; Da(cx, 1)).

Let now t — % f(t) be measurable and bounded. Then for 0 <7 <t < T

t
lo(t) = v(r)l| < +\ [ etmsias
d t= sda ds
S ( _9 MO/ 7 )Hf”Be ((0,7:X)

=S do ds
< —+Mo/ )HfHB (0,17:X
( 70_51(93(9/809 8P 0((0,77;X)

ds 18
< —_Q(M [ B + M) = 1 o

and statement (i) follows.

r

(e(t—s)A . €(T_S)A) f(S)dS
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Let us prove that statement (ii) holds. For 0 <t < T we have

t
ds
Mprwny < Koof —2 |
[0l Da@r) < o,/0(t_SPaSQHfHBa((o,T],X)

o ds
= KO,atl 9/0 m”ﬂbﬂ(&ﬂ%%

so that t — t+*~1y(t) is bounded in (0, 7] with values in D4(a, 1). Moreover, if N is
such that ||tAetAH£(DA(a71)) <NforO<t<T thenforO<e<r<t<T

t—e/2 €/2
/ Ae"Ada/ eEI2=)Af(5)ds
r—e/2 0

NKgq /t 2 do

Dy(a,1)
(r—eg/2)l-« o2 0%

2 [ s O o
NKjq

< e [ )= W o

and by estimate (3.2.16) there is C' > 0 independent of ¢ such that

(3.2.19)

[or(8) = v1() | Da(er) = ‘

[02(t) = v2(llDaery < O =) llnge/2mx)
€

< Ct=1"(5)  1flzomn;

so that v € C;7*((0,T); Da(c, 1)). Choosing @ = 1 — 6, we see that v is bounded up
to t = 0 and continuous for ¢t > 0 with values in D4(1 — 6,1). If in addition

lim |17 (1) = 0,

then v is continuous up to ¢ = 0 with values in D4(1 — 6, 1). Indeed, for every ¢ > 0
there is § > 0 such that for 0 < s < § we have ||s?f(s)|| < ¢, so that for 0 < ¢ < §
estimate (3.2.19) can be replaced by

1
do
ol par-an < Kocoe | =

which implies that Pr% lv(t)|| paci-6,1) = O.

The proof of statement (iii) is similar to the one of statement (i). d
In the next Corollary we combine the above results with the results of last section

about the function t — e*4uy.

Corollary 3.2.11. Let up € X, f € L1(0,7;X), and let u be the mild solution of
(3.2.1). Then u belongs to C((0,T]; X) and

sup [lu(®)[| < C (luoll + I fllz.0rsx)) -
0<t<T
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Moreover, if ug € D4(0,00) and t — t'=0f(t) is measurable and bounded, for some
0 € (0,1), then w € BUC?([0,T); X) N C{=5((0,T); Da(ax, 1)) for every a € (0,1) (so
that in particular t — t'~%u(t) € BUCY=([0,T]; Da(c, 1)) ), and

ull grreoorixy < C (luollpa@oc) + I1f By _a(0.11:)) 5
”UHci:g((o,T];DA(ag)) <C (HUOHDA(BvOO) + ||fHBlfe((07T];X)> :
For a >0, tw— t*%(t) € B([0,T]; Da(a, 1)), and

sup ([t u(t)[| D41y < C (1uollpao.00) + 1115 _o(0m3:x)) -
0<t<T

For a < 0, u € BUC’ ([0, T]; Da(c, 1)), and

||U||BUCG—&([O,T];DA(a,l)) <C <||u0||DA(9700) + ||f||Bl—0((O:T]§X)) :

Note that, if ug does not belong to the closure of D(A), then u is not continuous
up to t = 0. However, a mild continuity result at ¢ = 0 holds. See next proposition.

Proposition 3.2.12. Let f € L1(0,T;X), ug € X, and let u be the mild solution of
(3.2.1). For every A € p(A), it holds

l]_I)I(]) HR(}\, A)(U(t) - UO)HDA(G,p) = 07
for each 0 € (0,1), p > 1.

Proof The function v = e x f is continuous up to ¢ = 0 with values in X, so that
%ir% | R(X, A)v(t)|| paco,p) = 0; moreover, since R(A, A)ug € D(A), then

lim | RO\ A) (o — o)l = lim [[(e = RO, Aol 0,0 = 0.

3.2.3 Time regularity

The results of this subsection can be roughly grouped in two parts: the first part,
concerning the case where f is uniformly Holder continuous up to ¢ = 0, and the second
part, concerning the case where f is uniformly Holder continuous in each interval [e, T7,
with 0 <e < T.

The case where f is uniformly Holder continuous up to t =0

Let u be mild solution of (3.2.1), and set u = uy + us, where

uy (t) = /te(ts)A (f(s) = f(t))ds, 0<t<T,
0 : (3.2.20)

uy(t) = eug + / et=94f(t)ds, 0<t<T.
0
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Theorem 3.2.13. Let 0 < a < 1, f € BUC*([0,T]; X), up € X, and let u be the
mild solution of (3.2.1). Then u belongs to BUC([e,T]; D(A)) N BUC*([e, T]; X)
for every e € (0,T), and

(1) if up € D(A), then u is a classical solution of (3.2.1);

(i1) if ug € D(A) and Aug + f(0) € D(A), then u is a strict solution of (3.2.1), and
there is C' such that

lullero.mx) + ulleqoriniy < C (1fllBuceqorx) + lluollpay) s (3.2.21)

(i17) if ug € D(A) and Aug + f(0) € Da(a,0), then both v and Au belong to
BUC*([0,T]; X), u belongs to B([0,T]; Da(a,0)), and there is C' such that

||U||BUcl+a([0’T};X) + ||AU||BUCO‘([O,T];X) + ||u/||B([07T]§DA(a»OO)) (3_2.22)
< C (IIflBuceqomix) + lluollpay + [Auo + f(0)]pa(asco)) -

Proof Thanks to Lemma 3.2.6, to prove statement (i) and (ii), it is sufficient to show
that u belongs to C'((0,T]; D(A)) in the case where uy € D(A), and to C([0,T]; D(A))
in the case where uy € D(A) and Aug + f(0) € D(A).

Let u; and uy be defined by (3.2.20). Then u;(t) € D(A) for t > 0, uy(t) € D(A)
for t > 0, and

() Au(t) = / AIA(f(s) — f(t)ds, 0<t<T,
(i) Aus(t) = AetAuo + (e =1 f(t), 0<t<T.

(3.2.23)

If ug € D(A), then (3.2.23)(ii) holds also for ¢t = 0.
Let us show that Aw; is uniformly Hélder continuous in [0,7]. For 0 < s <t < T,

Auy(t) — Auy(s) = /OSA (=74 — =AY (f(0) — f(s))do
(e = eI (f(s) = f (1)) (3.2.24)
+ [ A f(0) — fie)do

so that
JAur(8) = Aw(s)|

< M / (s — o) / _:T—zma[ Flo + 2Mo(t — ) la

/t — o) do|fla (3.2.25)
< / do / r=2dr{fl, + (2Mo + Mia™) (t — 5)°[fla
< (a(l_ )+2MO+%) (t =51/



52 CHAPTER 3. PRELIMINARY II: MAXIMAL HOLDER REGULARITY

Therefore, Au; is uniformly a-Hélder continuous in [0, 7. Moreover, Aus is obviously

continuous in (0, T : hence, if ug € D(A), thenu € C([0,T]; X), and Au € C((0,T]; X),

so that, by Lemma 3.2.6, u is a classical solution of (3.2.1), and statement (i) is proved.
If ug € D(A) we have

Aus(t) = e (Aug + F(0) + A(F(1) — F(0)) = F(1), O<E<T,  (3.2.26)

so that if Aug+ f(0) € D(A), then Auy is continuous also at t = 0, and statement (ii)

follows.
In the case where Aug+ f(0) € Da(a, ), from (3.2.26) we get, for 0 < s <t < T,

| Aug(t) — Aua(s)|
< (e — e ) (Aug + f(0))[| + [|[(e"* = e*)(f(s) — f(0)]
(e = 1)(f(t) — f(s))]]

t
/ 1A€A 20 (o001, 580 || Atto + F(O)]] s 000y

A / edol U+ o+ 1) — 9],

M 0
1, o
[ Auo + F(O)ll Do) (= 5)

. (% Mo+ 1) (t = 5)°[fla

so that also Aus is uniformly a-Holder continuous, and the estimate

IN

3.2.27
+5 ( )

IA

|ull Bucraom;x) + | Au|| Buce (o, x)
< C([IfllBuceqomx) + luollpeay + Ao + F(O)|| D4(aso))

follows easily.

Since v’ and Au are uniformly a-Hdélder continuous, from Proposition 3.1.29(i), it
follows that u’ is bounded with values in D 4(«, c0). However, the embedding constant
given by Proposition 3.1.29(i) depends on the length 7" of the interval in such a way
that it blows up as 7" — 0. So we estimate [t/(t)]p,(a,00) directly. For 0 <t < T we
have, by (3.2.23),

u'(t) = /0 Al (f(s) — f(1)ds + e (Aug + f(0)) + e (f(2) — £(0)),

so that for 0 < ¢ <1,
11> Aet A () |
t

< oo [areesniso - o
+]|€1 7 AT (Aug + F(0))]] + (|17 AeTHOA(f () — £(0))]

< Myt a/ (t —8)*(t + & — s)2ds[f]a (3.2.28)
+M0[Auo+f( D a(aoo) + MiE " (t 4+ &)1 fa

< M2/0 o®(o +1)72do|fla + Mo[Aug + f(0)]ps(ae) + Mi[f]a-
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Therefore, [t/(t)|p,(a,00) is bounded in [0, 7], and the proof is complete. O

Corollary 3.2.14. Let 0 < a < 1, and let f € buc*([0,7]; X), up € D(A). Assume
moreover that

Aug + f(O) S DA(O./). (3.2.29)

Then the solution u of problem (3.2.1) belongs to buc' ™ ([0, T]; X ) Nbuc®([0, T]; D(A)),
and u' belongs to C([0,T]; Da(c)).

Proof Let {f,}nen € BUC™([0,T]; X) be such that f, — f in BUC([0,T]; X).
Let A € p(A) be fixed. Since D(A?) is dense in Da(a + 1), and uy+ (A — X))~ f(0) =
(A = XI)7YAug + f(0) — Aug) € Da(a + 1), thanks to (3.2.29), there is a sequence
{Yn}nen C D(A?) such that y, — ug+ (A — AI)71f(0) in Da(a +1,00). Set

Ty =y — (A=) f,(0), neEN.

Then z,, € D(A), and Az, + f,(0) = Ay, — AM(A — XI)7'f,,(0) € D(A). By means of
Theorem 3.2.13, the solution w,, of problem

up (t) = Aun(t) + fu(t), 0<t<T; un(0) =z,
belongs to BUC™*+<([0,T]; X) N BUC**¢([0,T]; D(A)), and u!, € B([0,T]; Da(a +
g,00)) for every € € (0,1 — «), so that u, € buc'™([0,T]; X) N buc®([0,T]; D(A)) and
u,, € C([0,T]; Da(«)) thanks to Proposition 3.1.29(ii). Moreover,

fo— fin BUCY([0,T]; X), x, — uoin D(A),
Az, + fn(0) — Aug + f(0) in Da(a, 0),

thus, due again to Theorem 3.2.13, u,, — u in BUC'™*([0, T]; X)NBUC*([0,T]; D(A))
as n — oo, and {u}, }nen is a Cauchy sequence in C([0,7], Ds(«)). The statement
follows now easily. O

Remark 3.2.15. From Proposition 3.1.29, it follows that if f € BUC*(]0,T]; X) then
the condition Aug + f(0) € Da(a, 00) is necessary to get u', Au € BUC*([0,T]; X),
and if f € buc®([0,T]; X) then the condition Aug + f(0) € D4(«) is necessary to get
o', Au € buc*([0,T]; X). O

The case where f is not uniformly Hoélder continuous up to ¢t =0

In many applications to nonlinear or nonautonomous problems we have to deal with
functions f that are not necessarily uniformly Hoélder continuous up to ¢ = 0.

Theorem 3.2.16. Let 0 < a < 1, f € L1(0,T;X) N BUC*([e,T); X) for every
e € (0,7), and let uy € X. Then the mild solution u of problem (3.2.1) belongs to
C((0,T); D(A)) N C'((0,T); X) 0 BUC([¢, T]; D(A)) N BUC™*([e, T); X), for every

€ (0,7). If in addition uy € D(A), then u is a classical solution.
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Proof Let us split u as u(t) = ey + v(t), where v(t) = e x f. The first term is
obviously continuous in (0,77 with values in D(A), and it belongs to C([0,T]; X) if
and only if ug € D(A). So, we consider only the function v.

We showed in Proposition 3.2.10 that v is continuous in [0,7] with values in X.
Moreover, for 0 < e <t < T,

t
v(t) = 7Py /2) +/ DAL (s)ds = vy (t) + 1),
€/2

where v; € BUC™([e, T|; D(A™)) for every n € N, v, € BUC*([e, T]; D(A))NBUC
([e,T); X) thanks to Theorem 3.2.13. Since ¢ is arbitrary, v € C((0,7]; D(A)) N
CH((0,T); X). -

If in addition uy € D(A), then u € C([0,T]; X) and it is a classical solution thanks
to Lemma 3.2.6. The statement follows. U

If we have more precise information on the behavior of the Holder seminorm of
f near t = 0, we can study the behavior of u near t = 0. In the next theorem we
assume that f belongs to the weighted Holder space C((0,7T]; X), or to C([0,T]; X)N
C%((0,7]; X), with 0 < a < 1. We recall that f € C%((0,7]; X) means that f is
bounded and that ¢ — t* f(t) is a-Hélder continuous in (0, T']. Weighted Hélder spaces
naturally arise in the study of parabolic evolution equations: for instance, the function

t—ele, 0<t<T,

belongs to C%((0,7]; X) for all z € X, and to C([0,7],X) N C¢((0,T]; X) for all
z € D(A).

Theorem 3.2.17. Let 0 < a < 1, f € C((0,T]; X), and set v = e x f. Then v €
Ce((0,T); D(A)), it is differentiable in (0, T| with values in X, and v' € C$((0,T]; X)N
B, ((0,T]; Ds(r,0)). There is C' > 0 such that

[ lcax)y + [[Av]|cax) + 1V 1Ba(Da(aoe)) < Cllfllea(x)- (3.2.30)

Proof By Theorem 3.2.16, v belongs to C'((0,T]; D(A)) N C*((0,T]; X). Let us show
that it is bounded with values in D(A). For 0 <t < T we have

o < MoT[| f]| oo 0.7:) -

Moreover, using the decomposition

v@:AéHMm@—ﬂm@+AJ#ww,

we get
t

[Av@)[| < M| (t—s)*"ts™dsflegeo + (e = 1) f ()]

< M| (1—s)*"s%ds|fleax) + (Mo + 1) fll -

h
/
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Thus,
lo@®) oy < Cillfllegomix), 0<t<T.

As a second step, we prove that t*v’(t) is bounded with values in D4 («a, 00), which
means that v' € B, ((0,7]; Da(c, 00)). Since

V(1) = Au(t) + f(t) = / AIA(f(s) — F(1))ds + A f(8),

0

then for each ¢t € (0,7] and ¢ € (0, 1] we have

trgt || Aet A (1)
t/2

g | AT (f(s) — f(1))ds
0
paogr=e (|| [ avetsan(sis) - ponas
e
Mateg = [ (e € = 0) 2]
Tt (-
+M2tafla/t/2mds[f]cg(x) + Myt =t + &) f()]

t/2
< 2% M| flleo + 20“M2/ 0%(0 +1)*do[flegx) + Millf -
0

IA

tOL

n ||Ae‘”5’Af(t)l|>

IN

Hence, t*v'(t) is bounded in (0,7 with values in D4(a, 00), which implies that v/
belongs to B,((0,T]; Da(a, o0)). Further, there is Cy such that

1)l B ((0,71:Da(v00)) < Coll fllca 0.17:x)-

Let us prove that v € C$((0,T]; D(A). For every ¢ € (0,T) it holds

t
v(t) = e y(e) +/ e f(s)ds, e<t<T.
Since f € BUCY([e,T]; X) and v(e) € D(A), Av(e) + f(e) = v'(¢) € Da(a,0), then
from Theorem 3.2.13(iii), applied in the interval [e, T] instead of [0, 77, it follows that
v € BUC(le, T]; D(A))NBUC™ ([, T]; X), and that v € B([e, T|; Da(«a, 00)). From
estimate (3.2.22) we get

vl Buce(e.ry:pay + 1V Buce(e.ry:x) + 10| Bl 71,04 (0000
< Clv(e)llpay + 1V ()| Datace) + 1f |l Buce (e x)

IA

Cy 1
C | Cil| flleao,m:x) + g_aHfHCg((O,T};X) + g_aHf”Cg((O,T];X)) ,

so that v € C((0,7T]; D(A)), and estimate (3.2.30) follows. O

Corollary 3.2.18. Let 0 < a < 1, f € C2((0,T); X), uo € X, and let u be the mild
solution of (3.2.1). The following statements hold.
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(i) If ug € D(A), then u is a classical solution of (3.2.1);

(1) if ug € Da(1,00), then v’ and Au belong to C&((0,T); X), u' belongs to B, ((0,T];
D (v, 0)), and there is C' > 0 such that

[ llca om0 + [[Aullogo,11:x) + 141 Ba (077D 4 (@r00))
_ (3.2.31)
< C (I leg (orrix) + Nuollpacton)) :

(1i1) if f € C([0,T]; X), up € D(A), and Aup+f(0) € D(A), thenu', Au € C([0,T]; X)
and w is a strict solution of problem (3.2.1).

Proof Statement (i) follows obviously from Proposition 3.1.9(i) and Theorem 3.2.17.
To prove statement (ii) we have to check that for every x € D4(1, 0c0) the function
t — ez belongs to C2((0,7]; D(A)), and that [|t*Ae' x| p,(a,00) is bounded. For

0<e<r<t<Titholds

t t
r o 2,1 do

A~ o) = | [ aerado| < 22 [ ol 1

2,1
—(t —1r)° 00) -
2Lt — 1)l

IN

Moreover, estimate (3.2.4) yields
[t*Ae 2| p o) = |[t*Aetz|| 4+ sup [togl-e A2+
0<€<1
< TMiallzlpagee) + Magllzllpse, 0<t<T.

Statement (ii) follows now easily.

To prove statement (iii) we will show that Aw is continuous up to ¢ = 0, provided
f is continuous up to t = 0 and Aug + f(0) € D(A). Then the statement will follow
from Lemma 3.2.6.

We know already that Aw is continuous in (0, 7], so that we have only to prove that
Au(t) — Aug as t — 0. Fix € > 0, and let 6 € (0,1) be such that

1
/ (1-0)*to %o <e.
1

-5
Split again u(t) as u(t) = uy(t) + ua(t), where uy and uy are defined by (3.2.20). If ¢ is
so small that

sup || f(s) — f(t)|] < e[log ] ™",
0<s<t

then

tH(1-96)
[Aui(t)]| < ‘/0 Ae=A(f(s) = f(t))ds

+

/ " A (f(s) — F(1))ds

(1-9)

IN

1
M |log d| Os<ul<)t lf(s)— f(O)| + Ml/l_a(l —0)* oo floaw)
< Me 1+ [flesx)) -

N
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Therefore, Au;(t) — 0 as t — 0. Moreover, by (3.2.26) it follows easily that Aus(t) —
Aug as t — 0. Hence, Au is continuous up to t = 0. O

Now we consider the case where f is unbounded near ¢ = 0. The introduction of
the weighted spaces Cg,  ((0,7]; X) and Cg, ,((0,T]; D(A)) is motivated again by the
behavior of etz ast — 0 : indeed, it is easy to see that if # € Da(1—p,00), 0 < p < 1,
then t — ez belongs to C%, ,((0,T]; D(A)) for each a € (0,1). We recall that [ €
Cg,,((0,T]; X) means that ¢ +— ¢*f(t) is bounded and ¢ + t**# f(t) is uniformly a-
Holder continuous in (0, 7] with values in X. Of course, since f is possibly unbounded,

we will not get a strict solution but only a classical one.

Theorem 3.2.19. Let 0 < a,pu < 1, f € C, ,((0,T]; X). Then v = e x f belongs to

Cg,,((0,T]; D(A)), it is differentiable in (0, T] with values in X, v" € Cgq, ,((0,T]; X)N
Bo+u((0,T]; Da(cv, 00)), and there is C' such that

[vllca, ey + 1V llca, 0 + 1V | BassDatace) < Cliflles, .- (3.2.32)
Consequently,

(i) if up € D(A), then the mild solution u of (3.2.1) is classical;

(i) if up € Da(l — p,00), then u' and Au belong to Cg, ,((0,T]; X), u’ belongs to
Bo+,((0,T], Da(cv, 00)), and there is C such that

() + [t llce,  x) + 1U']| By (Daaroo))

lulleg Sta

atp

3.2.33
< 0 (Iollpaciopom + 1l 00 (3:2:33)

Proof v belongs to C((0,T]; D(A)) N C'((0,T]; X) thanks to Theorem 3.2.16. To
estimate Av(t), we split it in three addenda, setting

t/2 t
Au(t) = / A4 f(5)ds + /t/QAe‘t‘S)A(f(s) — J(®))ds + (2 — D) (),

and we get

t/2
tAv(B)]] - < Mlt”/ (t =) s ds| fll a0 + (Mo + DI fll 5,000
0
t
+Mytt | (t— s)* tsT o Hds[ f] oo

+
t/2 o

1/2
M, / (1= o) Yodol| f 1,00 + (Mo + )1 f 5,030
0

1
+M1/ (1—o0)* o~ do|[flee, (x)-
1

atp
/2

(X)

IA
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So, Av belongs to B,((0,7]; X). Now we estimate [v']|p,(ao0c). For 0 < ¢t < T and
0<&<1,

g A (D) < g

t/2
/0 A2 (f(s) — F(1))ds

t
Lpotngi-a / A2 (F(s) — F(1))ds
£/2
HtotH|| e AetHOAf(1)|
= L+ L+,
where
t/2
I, < ta+”§1_0‘ / A2€(t+£—s)Af(8)dS
0
ftatugl-a H (AetFOA — Aet/2+0)A H
t/2
< Mytetngi- / (t1é- s)‘zs‘“dstIIB
+ta+u§1—o¢ ‘}(346(t+€)14 Ae (t/24+8)A H
1/2
< M / (1= 0) 20 *do]| fll5,0x +M2< 2| s
0
K t—s)
L, < Mytets H*/ ( d o
2 = 2 § t/28a+“(t+§—s)2 S[f]CaW(X)
+oo
a+ « —2 .
< 9 #MZ/ 0% (0 + 1) 2dolfles, )

0
Iy < Myetrg =t + 7O < Millflls.x)

To conclude the proof, it is sufficient to argue as we did in the proof of Theo-
rem 3.2.17 and of Corollary 3.2.18(i)(ii). O

3.2.4 Space regularity

We consider several regularity assumptions on f, which are suggested by the behavior
of t — e'ug and of t — d/dt e ug = Aeuy as functions with values in D (a, 00).
To begin with, we consider the case where ug € Dy(a + 1,00), then Ae'uq is con-
tinuous for ¢ > 0 and bounded near ¢ = 0 with values in D4(a, 00). If in addition
ug € Ds(a+ 1), then t — Aetuy is continuous up to t = 0 with values in D4 (a). So,
first we consider the case where f is bounded with values in D4(a, 00), and it has some
continuity property, at least for ¢ > 0. Then we consider the case of unbounded f.

The case where f is bounded with values in D4 («a, o0)

Theorem 3.2.20. Let 0 < o < 1, and let f € C((0,7); X) N B((0,T]; Da(cr, 0)).
Then v = €4 % f has values in D(A), it is differentiable for t > 0 with values in X,
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and it 1s the classical solution of
V() =Av(t)+ f(t), 0<t<T, wv(0)=0. (3.2.34)

Moreover, v' and Av belong to C'((0,T]; X)NB((0,T]; Da(a, 00)), Av belongs to BUC*
([0,7T7; X), and there is C' such that

1] B(DA(e00)) + 1AV B(D A(00)) + 1AV BUCa(x) < Cllf | B(DA(@00))- (3.2.35)
In addition,

(i) if f € C([0,T]; X) N B([0,T]; Da(cr,0)), then v' and Av are continuous with
values in X up tot =0, and v is a strict solution of (3.2.534);

(ir) if f € C((0,T]; Da(a,0)) N B([0,T); Da(cx,0)), then v € C((0,T]; Da(cx +
1,00)) N B([0,T]; Da(ar +1,00)) N CH((0, T]; Da(av, 0)).

Proof Let us show that v is a classical solution of (3.2.34), and that (3.2.35) holds.
For 0 <t < T, v(t) belongs to D(A), and

TM,

t
0O < M [ ¢ = 91 5] oo = |l 5atamey.  (3:2:36)
0

Moreover, for 0 < ¢ <1,

t
[E At Au(t)]| = €1 / A=A (5)ds

0
t
< Mg (046 s lmosey (323D

0
MZa
= 7= HfHBDAaoo))

so that Av is bounded with values in D4 («, 00).
Let us show that Awv is uniformly Hélder continuous with values in X : for 0 < s <
t < T, we have

[ Av(t) sl

S HA/ (eta _ so)A dO' tJAf dO'

0

3.2.38
< (Mo 00 mel,a/ (= oy o) I lmouany 2
0 s—o s

M2a Mla
< : : t—s)”
< (i o) €= 9 o

so that Av is uniformly a-Hélder continuous in [0,7]. Estimate (3.2.35) follows now
from (3.2.36), (3.2.37), (3.2.38). Moreover, thanks to Lemma 3.2.6, v is a classical
solution of (3.2.34) if f € C((0,7T]; X), and it is a strict solution if f € C([0,T]; X).
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Let us prove statement (ii). Let f € C((0,T]; Da(c,00)) N B([0,T], Da(ct,0)).
We are going to show that Av belongs to C([a,T]; Da(a, o0)) for every a € (0,T).
For ¢ > 0, let 6 € (0,e A a] be such that for t;,ty € [a,T], [t; — t2| < 0, we have
1f(t1) = f(t2)| Da(ao0) < €, here e A :=min{e,a}. Then fora <r <t <T,t—r <4,
and for 0 < ¢ <1

€17 At (Auv(t) — Av(r))|

< Hfl—w [ e tis =) s s
r—0 s
T |e1oaz / ALt — 5) — f(r — 5))ds
,\lgl aA2 £+s)Af(t _ S)dS
< “5Msl+a—<s+r—5>*l+a>e
T&H (€ + 7 — 6)74% — (€4 )9 2] | s0rh Do)
My,
P2 €1 (4 r) 40— (€ 4)749) | fll o mpaase)
M N 11—«
< 1 _2a (€+ 3£l 301104 OO))Zl—oc) :

Taking the supremum over £ € (0, 1], we see that [Av(t) —Av(7)] p ,(a,00) g0€S to 0 as t—r
goes to 0. Since Av is continuous with values in X, then v € C'((0,T]; Da(a + 1, 00)).
From the equality v = Av + f it follows that ¢’ is continuous in (0, 7] with values
in Dy(a,00), and hence that v is continuously differentiable in (0,7 with values in
DA(Oé, OO) U

Corollary 3.2.21. Let 0 < a < 1, up € X, f € C((0,T]; X) N B((0,T]; Da(cx, >0)),
and let u be the mild solution of (3.2.1). Then u € C*((0,T]; X)NC((0,T]; D(A)), and
u € B([e,T]; Da(c,0)) for every e € (0,T). Moreover, the following statements hold.

(i) if ug € D(A), then u is a classical solution;

(11) if ug € D(A), Aug € D(A), and f € C([0,T]; X)NB([0,T]; Da(a,00)), then u is
a strict solution;

(111) if up € Da(a+1,00) and f € C([0,T]; X)NB([0,T]; Da(c,)), then v’ and Au
belong to C([0,T]; X)N B([0,T]; Da(a, 00)), Au belongs to BUC*(]0,T]; X), and
there is C' such that

14/l B(D A (ay00)) + [[AU|| B(DA(a,00)) + AUl BUCa(x) (3.2.39)
< C (Ifllswatacey + luollpaarion) ;
(iv) ifug € Da(a+1,00) and f € C((0,T]; Da(a,0)), thenu € C*((0,T); Da(a, 00))
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Corollary 3.2.22. Let 0 < a < 1, and let f € C([0,T]; Da(v)), ug € Da(a+1). Then
the solution u of problem (3.2.1) belongs to C([0,T]; Da(a + 1)) N C([0,T]; Da(v)),
and u' belongs to buc*([0,T]; X).

The case where f is unbounded with values in D 4(a, 00)

In the next theorem we show that problem (3.2.1) may have a classical solution even
if f is unbounded with values in D4 (a, 00) near ¢t = 0.

Theorem 3.2.23. Let 0 < a <1, f € L1(0,T; X)NC((0, T]; X)NB([e, T]; Da(cr,0))
for everye € (0,T), and let ug € X. Then the mild solution u of problem (8.2.1) belongs
to C((0,T); D(A))NCH(0,T); X) N B([e, T]; Da(a + 1,00)), for every e € (0,T). If in
addition, uy € D(A), then u is a classical solution.

If f belongs also to C'((0,T]; Da(a, 00)) (respectively, to C((0,T]; Da(c))), then v
and Av belong to C((0,T]; D(a, 00)) (respectively, to C((0,T]; Da(a))).

Proof The proof is similar to the proof of Theorem 3.2.16. We split u as u(t) =
eug + v(t), where v = 4 % f. The first addendum is obviously continuous in (0, 7
with values in D(A), and it belongs to C([0,7]; X) if and only if uy € D(A).

Let us consider the function v. By Proposition 3.2.10, v is continuous in [0, 7] with
values in X. Moreover, for 0 <e <t <T,

v(t) = ey (e) 4 /te(t_s)Af(s)ds = v1(t) + va(2),

where v; belongs to C*°((g,T]; D(A™)) for every n, and vy belongs to C([e, T]; D(A))N
Cl([e,T]; X)N B([e, T]; Ds(a+1,0)), thanks to Theorem 3.2.20. Since ¢ is arbitrary,
then u € C'((0,T]; D(A)) N C'((0,77]; X).

If in addition ug € D(A), then u € C([0,T]; X), so that it is a classical solution
thanks to Lemma 3.2.6.

Let now f be continuous in (0, 7] with values in D4(a, 00) (respectively, Da(«)).
For 0 < ¢ <t < T, split v(t) = wvi(t) + va2(t) as above. Then v; belongs to
C>((,T); D(A™)) for every n € N, and vq belongs to C([e, T]; Da(a + 1, 00)) (respec-
tively, to C([e,T]; Da(a 4+ 1))) thanks to Theorem 3.2.20(ii) (respectively, to Corol-
lary 3.2.22) applied in the interval [e, T|. Since ¢ is arbitrary, then v" and Av belong to
C((0,T]; Da(a, 00)) (respectively, to C'((0,7]; Da())). O

If we know how || f(2)||p,(a,c0) blows up as t — 0, we may give precise information
on the behavior of u(t) as t — 0, getting also optimal regularity results. In the
next theorem we consider the case where f belongs to By((0,T]; Da(a,0)), that is
129 £ (£) || Da(a,00) i bounded, for some 6 € (0,1).

Theorem 3.2.24. Let 0 < o, 0 < 1. and let f € C((0,T]; X) N By((0,T]; Da(cx, 0)).
Then v = e % f has values in D(A), it is differentiable with values in X for t > 0,
and it is a classical solution of (3.2.34). Moreover, v' and Av belong to C((0,T]; X)N
By((0,T); Da(ar,00)), Av belongs to Cg((0,T); X), and there is C' such that

V'] By (DA (@00)) + 1AV By(Da(@oo)) + [[AV]Icox) < Cllf | By(Da(er00))- (3.2.40)
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In particular, if 0 = « then v is bounded with values in D(A). If 0 < «, then Av belongs
to BUC*=%([0,T); X), and there is C' such that

HA/U”BUCQ*G(X) < CHf”Bg(DA(a,oo))- (3.2.41)

If f belongs also to C'((0,T]; Da(c, 00)) (respectively, to C((0,T]; Da(x))), then v’ and
Av belong to C((0,T]; Da(a, 00)) (respectively, to C((0,T]; Da(a))).

Proof By Theorem 3.2.23, v is continuous in (0, 7] with values in D(A), and contin-
uously differentiable in (0,7 with values in X. Moreover,

t
A0l < M. / (t — )15~ f | 5a(Da o)
0

1
- L (3.2.42)
= Mt ? [ (1—=0)* o do| fll 5,000

0
< Kt £l Bo(D ataroo) -
Fix now any r € (0,7). For t > r, it holds
t
Av(t) = Ae=r/DAy(p /) 4 / Ae=94F(s)ds = Avy (1) + Avs(t).
r/2

Denoting by C,, the norm of the embedding D(«, 1) C Da(a,00) and using (3.2.5),
we get

KooCo
40 (Ollpse) < = e 140/ 2)]

KOaCa KoaCaK
< 7 K 2 a=b a,00)) — : o,00)) -
< e (r/2)* P f1l By (DA (@s00)) (r/2)7 1 £ Bo(D A (00))

Moreover, from Theorem 3.2.20 applied in the interval [r/2,T], we get for every t €
[r/2,T],

C

Avy(t ,00 SC sup S Q,00 S— ,00)) -
| Ava ()] D 4 (@,00) T/2§8§T||f( N Das00) (r/z)gllfllBe(DA( )

Summing up and taking ¢t = r we see that
HTGAU(T)HDA(Q,OO) < (26K07QCQK + 200) HfHBG(DA(O‘7°°))’

which implies that Av € By((0,T]; Da(a, 00)).

The proof of the statements about the Holder continuity of Av is similar to the proof
of statements (ii)-(iii) of Proposition 3.2.10. We have seen above that v(r/2) belongs to
D(A). Moreover, we have seen in the proof of Corollary 3.2.18 that for every x € D(A)
the function ¢ +— Ae""/24g belongs to C%((r/2,T]); X), and its C%norm is less or
equal to C||Az||, for some C > 0. Using estimate (3.2.42) we get

1A | e ryx) < Clr/2)~ | Av(r/2)|| < CK(r/2)™° || fll ByDataco)-
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Due again to Theorem 3.2.20, Avy belongs to BUC®([r/2,T]; X), and that

| Ava|| prcea (/2 m1ix) < ClF B 2050 A(@00) < C/2) P ILf 1 By(Da(as00)-

Summing up we get

| Av|| uceinryx) < const.r™ || 1By a(aso)):

which implies that Av belongs to C§'((0,77]; X). Estimate (3.2.40) follows now easily.
Let us prove that if § < o then Av € BUC*%([0,T]; X). For 0 < r <t < T, we

have
(/ AQ aAd0.> /Aet sAf
< | M. —0 i
N ( 270[/0 /r—s o= / (t _ 8)17(189 ) ||f||39 (Da(c,00))-

Following the proof of statement (iii) of Proposition 3.2.10, we find

[Av(t) = Av(r)[| <

1 ! do
Av(t) — A < — My | —————
vt - v<r>c|l|_a_ (120 | =
g
+M1,a/0 m> (t =)l fll By(Da (00000

and estimate (3.2.41) follows.
The last statement follows from Theorem 3.2.23. O

Corollary 3.2.25. Let 0 < a < 1, up € X, f € C((0,7]; X) N By((0,T]; Da(cx,0)),
and let uw be the mild solution of problem (8.2.1). The following statements hold.

(i) If ug € D(A), then u is a classical solution.

(ii) If ug € Da(a+ 1 — 60,00), then u' and Au belong to Ba((0,T]; Da(a, 00)), Au
belongs to C§((0,T); X), and there is C' such that

[ | By (D a(a00)) T | A% By (DA (000)) T [ AU (x) (3.2.43)
< C ([If 1By (D atorce)) + 10l Datar1-0.00)) -

Moreover, in the case where 0 < o, then uw € BUC*9([0,T); D(A)), and there is
C such that

”AUHBUCQ*"(X) <C (||f||B9(DA(a,oo)) + ||u0||DA(Oé+1—9,OO)) . (3.2.44)

(ii1) ]f in addition f € C((0,T]; Da(a, 00)) (respectively, f € C((0,T]; Da(c))), then
u', Au belong to C((0,T]; Da(a, 00)) (respectively, to C((0,T]; Da())).
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(iv) In the case 0 = «, if ug € D(A), Aug € D(A), and f € C([0,T]; X) N B ((0,T7;
D 4(a, 00)), Pn% 1t F ()| Da(a,o0) = 0, then w is a strict solution and

tiz ¢ Au(®)|Da(ace) = g 17 (D)D) = 0

Theorem 3.2.26. Let 0 < a,pu < 1, and let f € C((0,T];X) N B,((0,T];X) N
Basu((0,T]; Da(e,00)). Then v = €' x f is a classical solution of (3.2.34), v/, Av
belong to B,((0,T]; X) N Bayu((0,T]; Da(a, 00)), Av belongs to Cg, ,((0,T]; X), and
there is C' such that

11l ) + 10| Ba (Do) + 14V Bt (D00 (3.2.45)
HlAvlloe,  x) < C (1 f11Bux) + 1 Basu(Datace)) -
If f belongs also to C((0,T]; Da(cr,0)) (respectively, to C((0,T]; Da(w))), then v' and
Av belong to C((0,T); Da(a, 00)) (respectively, to C((0,T]; Da(w))).

Proof By Theorem 3.2.23, v is continuous in (0, 7] with values in D(A). Let us prove
that Av belongs to B, ((0,77; X). For 0 < ¢t < T, we have

t/2 ¢
|th Av(t)|| <t / Ae DA f (s)ds|| + t* / A=D1 f(5)ds||
0 ¢

/2

so that

t/2
[t Av(t)]| < Mlt“/ (t =)~ s7ds| fl| 5, (x)
0
t

M, // (t — 51 5ds| fll s (Da(coo
t/2

1/2
Ml/ (1—o) to"do| fllB,cx)
0

1

LMy, / R A L PR
1/2

IN

From now on, the proof is similar to the proof of Theorem 3.2.24. U

Corollary 3.2.27. Let 0 < a,pu < 1, up € X, f € C((0,7];X) N B,((0,7T}; X) N
Bo+,((0,T]; Da(cr, 00)), and let w be the mild solution of problem (3.2.1). Then

(i) if ug € D(A), then u is a classical solution;

(i) if ug € Da(l — p,00), then v and Au belong to B,((0,T]; X) N Bat,((0,T7;

Da(a, 0)), Au belongs to Cg, ,((0,T]; X), and there is C > 0 such that

[0/ Bux) + 16| Bosa(Da(@v00)) + 1A Bosa(Da(r00)) + 1ALl 02, () (3.2.46)
< C (1 1Bux) + 1Sl Bagu(Datarce)) + 1ol Daci—po0)) -
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3.2.5 A further regularity result
Theorem 3.2.28. Let 0 < 0,0 <1, with 0 + 3 # 1. Let

f € BUCY([0,T]; Da(3,00)), ug € D(A), Aug + f(0) € Ds(0 + 3,00).

Then the mild solution u of problem (3.2.1) is strict, v’ and Au belong to BUCY([0,T7;
Da(B,00)), u' € B([0,T]; Ds(0 + 3,00)), Au € BUC*A([0,T]; X), and there exists
C > 0 such that

HUHBU00+1(DA(5oo) + [[Aul pucopa(s0)) + 11U | B(D A0 +5.00)) + | AUl Buco+s(x)

C ([l fllBuce (pa(s.00p + ||uOHD<A + [l Auo + f(0 )IIDA (6+5.59)) -
(3.2.47)

Proof Let us consider problem (3.2.1) as an evolution equation in the space Y =
D4(8,00). The domain of the part of A in Y is D(Ay) = Da(8 + 1,00), and the
Reiteration Theorem 2.4.19 yields

(Y, D(Ay))gpo = DA(Q —+ ﬁ, OO)

The function f is uniformly Holder continuous with values in Y, moreover uy belongs to
D(Ay) and Aug+ f(0) belongs to Dy, (0, 00) = (Y, D(Ay))g,co- By Theorem 3.2.13(iii),
the mild solution in Y is strict and belongs to BUCY*1([0,T]; Da(f3,00)), moreover
v € B([0,T]; Da(0 + 3,00)).

It remains to show that Au € BUC?*P(]0,T]; X). Thanks to (3.2.23),

Au(t) = /OtAe(ts)A(f(s) — f(t)ds + (e — 1) f(t) + Aetuy.

In the case 0 + 3 < 1, Au(t) — A(r) may be split for 0 <r <t < T as

Au(t) — Au(r) = /OTA (e = el94) (£(s) = f(r))ds
ACC9A(f(s) = F(B)ds + [P = 1)(F(D) = 1)

T

+ [(56“‘ — e )(f(r) = F(0)] + [(e — ") (Auo + £(0))]
=Y I,
k=1

Each addendum I, may be estimated using the methods of Subsection 3.2.4, getting

finally
- M2,ﬂ 2M1”3 Ml,ﬂ
|Au(t) — Au(r)|| < ((1_5_9)(@’—1-9) + 6+ 0 - 5} )

[eS) M ,B+0
(= PRI+ T = 1 Ao + (Ol

Therefore, Au is uniformly (5 + #)-Holder continuous with values in X.
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Let us consider the case 4+ 3 > 1. To prove that Au belongs to BUC*4([0, T); X),
it is sufficient to show that u’ belongs to BUC?*P~1([0,T]; D(A)). Indeed, in this case
Au' is continuous, so that

H Au(t + h}i — Au(t) Au/(t)H _ H%/ttJrh(Au’(s) — Au/(t))ds

Letting h — 0, we find that Au is differentiable and
(Au) = A’ € BUCTP~1([0,T]; X).

For 0 <t < T, we have

u'(t) = /O A (f(s) = f(1))ds + e (f(E) — f(0)) + € (Aug + £(0)),
from which it follows that «'(t) € D(A), and

M, -
A @®l < (M%l + Mm) THII1740%) 4 Mol| AAug + F(0))]-

Moreover, for 0 <r <t < T,

Ad(t) — Ad(r) = /OTA2 (et=94 — er=9A) (f(s) — f(r))ds
n / A2-IA(f(s) — F(1))ds + (A — A (f(r) — F(0))
Af@‘”f“(f(t) — [(r) + Ale — ) (Aug + £(0))
= S J

Again, each J; may be estimated arguing as in Subsection 3.2.4, getting

i / Ms 2Ms 5
utt) = Al = ((2—5—9)(6+9— DB *Mm)

o) Mipio- -
(¢ =M 4 S =) A + F(O0) [Daoss-100)

Therefore, Au' is uniformly (6 + 3 — 1)-Holder continuous, and the statement follows.[]

3.3 Fully nonlinear equation

We now apply the results of the previous section to study fully nonlinear equations.
Again we follow Lunardi’s [24] approach, but we impose the simplifying assumption
that the domain D of the linearization is dense in the basic Banach space X. This
simplification is adapted to our application to moving boundaries porous media.
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Let D be a Banach space endowed with the norm || - ||p, continuously embedded
and dense in X, and let O be an open set in D. We consider the initial value problem

u'(t) = F(t,u(t)), t>0; u(0) = uy, (3.3.1)

where F' : [0,7] x O — X is a nonlinear operator, 7" € (0, +o00), and ug € O. The key
assumption on problem (3.3.1) is

(3.3.2)

O C D is open, F € BC?*([0,T] x O; X) and
F,(t,v) € H(D, X) for all (¢t,v) € [0,T] x O.

3.3.1 Local existence, uniqueness and regularity

We now state the main local existence theorem. It is convenient to choose an arbitrary
initial time ¢y € [0,7T), and to consider the initial value problem:

Ul(t) = F(t,u(t)), to<t<ty+ 5; u(to) = Xy, (333)

with § € (0,7 — to] and z¢ € O. We shall find a local strict solution, that is a solution
u € C([to, to + 6]; D) N C([to, to + 0]; X), with § small, which in addition belongs to
the weighted Holder space CS((to,to + 6]; D).

Theorem 3.3.1. Let o € (0,1). Further, assume that (3.3.2) holds true. Fizt € [0,T)]
and @ € O. Then there are 6 = 6(t,u) > 0, r = r(t,u) > 0 such that

(i) for everyty € [t —r,t+7r]N[0,T], and o € O such that ||xo — u||p < r, there is
a strict solution u € C([to, to+ 0]; D) N C([to, to + 6]; X) of (8.5.3) in [to, to + I];

(11) u belongs to C2((ty,to + d]; D), u' belongs to By ((to,to + 0]; (X, D)aco), and in
addition
liH(l) e” [U]BUCO‘([to-i-e,to—l-?E];D) = 0. (3.3.4)

E—>

Moreover, u is the unique solution of (3.3.83) belonging to

U €5 ((to, to +6]; D) N C([to, to + 0]; D).

0<p<1
Proof We look for a solution of (3.3.3) belonging to the metric space

Y = {ueC(to,to+ 61 D) N Cllto, to + 3 D) .
ulto) = o, [[u(-) = llcaquatorsin) < P} h

endowed with the distance of C%((tg, %o+ 0]; D), where § < T —ty and p < dist(u, 00)
are positive numbers to be chosen later. Clearly, Y is a closed set in CS((to, to +0]; D).
Set moreover

A= F,(t u).
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Since D endowed with the graph norm of A is a Banach space, the norms || - ||p and
| - lIp(a) are equivalent. Then it is easy to see that, due to (3.3.2), for every u € Y the
function t — F(t,u(t)) — Au(t) belongs to C%((to,to + 6]; X) N C([to,to + 6]; X). By
(3.3.2), there exists M > 0 such that for (¢,u) € [0,7] x O,

F(t,u), Fi(t,u), Fy(t,u), F(t,u) and F,,(t,u) are bounded by M.
Define a nonlinear operator I" on Y, by I'(u) = v, where v is the solution of
V() = Av(t) + [F(t,u(t)) — Au(t)], to <t <to+0; v(to) = xo. (3.3.6)

By Corollary 3.2.18 (iii), for every u € Y, I'(u) belongs to C%((to, to+4]; D) NC([to, to+
0]; D). It is clear that a function u € Y is a solution of (3.3.3) if and only if it is a
fixed point of I'. We shall show that I" is a contraction and maps Y into itself, provided
5, p, |to — t|, and ||zg — u||p are suitably small. Let C' be the constant given by
Corollary 3.2.18 (ii), and let ,7, > 1 be such that

{ Ti”yllp <yl + 1Ayl <~lyllp, Vye€ D, (337)
Yo Nl x,0)a e < NWlDAt@oo) < VallYll(x,D)0nes VY € (X, D)oo

Obviously, C,~,7, depend only on ¢ and %. For simplicity, if B is any Banach space,
we write as usual C(B), C5(B) for C([to, to + 0]; B), CS((to, to + 0]; B). For vy, v, €Y,

we have
IT(v1) — T(wa)llca(py < [T (v1) — T(v2)lca(niay

< ACIF () = F(0a() — Awa() ~ 1D les v (338)
For each t € [ty, tg + 0], we have
IIF(f, vi(t)) — F(t,v2(t)) — A(vi(t) — va(2)) ]|
< ‘ /0 [F(t,ov1(t) + (1 — o)va(t)) — Al do (v1(t) — Ug(t))H
< [ IRt om0+ 0= ew) - Alewsdo )~y )
< (IFatlloolt =t 4+ | Fuslloop) [[01(2) — va(t) [0
< M (Jtg =t 46+ p) [Jur(t) — v2(t)|
and for tg+e <s<t<ty+9,
| F'(t, vl( )) — F(t,v2(t)) — F(s,v1(s)) + F(s,v2(s))
—A(vi(t) — vz(t) —v1(s) + v2(s))]|
< H/ (t ovn(8) + (1 — 0)us(D))
<f Lov(s) + (1 — o)ua(s))]do(vy(s) — UQ(S))H 5310
+\/O (Eu(t, o0n(t) + (1 — 0)oa(t)) — A) do
(0(8) = 2() = vi(5) + va(5))|
< ([Fatlloo(t = 8) + [ Fralloope™*(t = 5)%) |lv1r — v2lle(p)

([ Fetlloolt = £ + | Frzlloop)e ™ [v1 — va]cg () (t — ),
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so that
[F' (5 01() = F(0a() = Alvn () = v2())]eax)
< M (to— 1+ 8+ p) [or — vallczo. (3.3.11)

Using now (3.3.8), we find
1T (v1) = L(v2)llcapy < 29CM ([t — [+ 0 + p) [ — v2lca(p)-
Therefore, T" is a 1/2-contraction provided

{ |t0 — ﬂ +0 <9y = (8"}/CM)_1,

p < min{dist(a,00), (8yCM)~'}. (3.3.12)

Let g, 6, p satisfy (3.3.12). We now show that I" maps Y into itself if §, p are sufficiently
small, tq is sufficiently close to ¢, and zg is sufficiently close to u. If v € Y, we have,
denoting by ug the constant function ug(t) = xg, Vt € [to, to + 0],

UF(’U) — 1llcapy < IT'(v) — T'(uo)llca(py + T (uo) — llce(p)
?”U — uollcapy + 1T (o) — wollce(p) + [|x0 — ullp (3.3.13)
slv = allca(py + [T (o) — uollce(py + 2l — @llp

VARVAN

since I'(ug) — ug is the solution w of
w'(t) = Aw(t) + F(t, o), to <t <ty+9; w(ty) =0, (3.3.14)
then
D(uo)(t) — w0 = / AP (s, 2) — F(E, 0)]ds

o (3.3.15)
+ / AR a)ds = I + I, to <t < o+ 6.

to
By means of Theorem 3.2.17 and (3.3.7) again, we get
||f1||cg(D) < /VCHF("'Z‘O) - F(f, ﬂ)”cg(X)-
For each t € [to, to + 0], we have

[E(t x0) — F (¢, @] (8, x0) = F (¢ zo) [| + | (2, w0) — F(E, w)|

<
< Eloolt = 8 + | Fallsollwo — ull
S M(’to—t|+(5+”$o—ﬁ”l)),

and for tg+ec < s <t <ty+9,
S| F(t, 2o) — F(s,20)l| < 6| Blloclt — s < Mo]t — 5|,

thus
| F(-,w0) — F(t,u)||caxy < M(Jto —t| + 26 + [|xo — ©l|p).
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This means
11 llcapy < vOM(Jto — t] + 26 + |lzo — ul[p),

so that if p

to—tl+06<6 = ———

[fo=#+0 < 0= m7p
then p

[ 11llcapy < 6 +~CMl|lxo — | p.

Moreover, since F(t,u) € X = D, then (lsir% |12]|ca(py = 0. Indeed, one checks easily
that for every y € X it holds

t
/ 6(t—s)Ade
to

with constant independent of ¢y, d, y, and that for every y € D,

t
/ e(t_S)Ayds
to

Therefore (3.3.16) holds for every y € D = X. It yields (lsin% | I2]|ce(py = 0, so that there
is 43 > 0 (depending on ¢ and @) such that, if § < o, then

< const.|lyl|
Cg(D)

— 0. (3.3.16)
Ca (D)

lim
6—0

I

1 L2]|copy <

Summing up we find that if
|t0 — ﬂ +0 < min{50,51} and o < (52,

then )
1T (o) — uollca(py < 3 +~yCM||zg — ul|p.

Further, if ||zo — al/p < using (3.3.13), we get

__p
6yCM+9°
IT(v) = @llcapy < p.

This means I" maps Y into itself. Therefore there is a unique fixed point v of I' in Y/
which is a solution of (3.3.3). Statement (i) follows.

Let us prove that statement (ii) holds. The derivatives of the functions in the range
of I' belong to B,((to,to + 9]; (X, D)ao) thanks to Corollary 3.2.18(ii). Since u is a
fixed point of I', then «’ is in By ((to, to + d]; (X, D)a.co)-

Concerning (3.3.4), set

v’ = {v eV lmfelog e =0}
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Y’ is closed in C%((tg,to + 0]; D), and I'(Y') C Y’ (the proof is the same used above
to show that I'(Y) C Y). The fixed point u of I" belongs to Y’, which means that u
satisfies (3.3.4).

Let us prove uniqueness. If u,v are solutions of (3.3.3) belonging to C([to, %o +
8]; D) N C’g((to,to + ¢]; D) for some (3 € (0,1), set

t1 = sup {t € [to, to + 0]; ulfe.) = Vit } - (3.3.17)

Assume by contradiction that ¢; < tg + 0. Then wu(t;) = vy, because both u and v are
continuous. Setting x; = u(t;) = v(t1), both u and v are solution of

w'(t) = F(t,w(t)), t; <t<ty+0; w(ty) = a1, (3.3.18)

where x1 € O and F(t;, 1) = u/(t1). Taking t = ¢;, u = z1, and replacing « by any
v < [ in point (i), we obtain the existence of §; > 0 such that problem (3.3.18) has a
unique strict solution in the set

5/1 = {UEC:J((tl,tl+(51];D)ﬂ0([t1,t1+51];D);
u(ty) = 2, () = 21lloyunaim < P1 s

provided p; and 0, are sufficiently small. Now, both w|y, 1,45, and v|y, +,44,] belong
to Yy if 07 is small: in particular, ||u(t) — z1||p < p1, ||v(t) — 21]|p < p1 for §; small,
because u and v are continuous and they assume the value x, at t = t1; moreover for
to<ti+e<s<t<t;+3 <ty+0 and for every a € (0,1) it holds

lu(t) = u(s)p = [lu(t) — u(s) |5 lult) — uls)llp "

a

< su u(t) — u(s (u . t—s[is*ﬁ)
a t1§s<t§ptl+61 || () ( )HD [ ]Cg((t07t0+5],D)( )

1—a

Choosing a = 1 — /3, we get
esnsano < (s 1) = u6)ln) (Wesurnn)

and, similarly,

[chz«tl,tlw;D)z( sup Hv(ﬂ—v(s)\ln) (e s

11 <s<t<t1+461

Since both v and v are continuous with values in D, we get

[U]C::((tl,thtSﬂ;D) < P1, [U]C;Y((t1,t1+61];D) < P1,

provided ¢, is small enough.
Therefore, uly, 1,45, = |46, but this contradicts the definition of ¢;. Hence
u = v, and statement (ii) follows. d
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Corollary 3.3.2. Under the assumptions of Theorem 3.3.1, for every t € [0,T] and
u € O thereis K = K(t,u) > 0 such that for every to ty € [t —r,t+r], and xg,x1 € O
with ||x; — ul|p < r, we have, denoting by u; the solution of (3.3.3) with initial value
L, 1= 07 17

|uo — urllca ((to,to+a1:0) + llug — u'1HCg<(to,to+5] X)
4+ sup  (t —to)*|ug(t) — ui(D)]l(x,0)00 < Kllxo — 21| D
to<t<to+d

If the initial datum x( is “more regular”, in the sense that
F(to, .T()) S <X7 D)a,om (3319)

then the local solution of (3.3.3) is uniformly a-Hélder continuous with values in D up
to t = 1y, and the corresponding continuous dependence result holds, as the following
theorem shows.

Theorem 3.3.3. Let the assumptions of Theorem 3.3.1 be satisfied, and let in addition
(3.3.19) hold. If u : [to,to+ 8] — D is the solution of (3.5.3) given by Theorem 3.3.1,
then

u € BUC*([to, to + 9]; D) N BUC™([to, to + 6); X), v’ € B([to, to + 6]; (X, D)aoo)-

Moreover, for every t € [0,T], u € O such that F(t,u) € (X, D)a.00, there are ro =
ro(t,u) > 0, Ko = Ko(t, @) > 0 with the following property: for everyty € [t—ro, t+ro],
and xg, 1 € O such that

||IZ - ﬁHD < To, ||F(t07x2) - F(t_v E)H(XD e, 00 < To, 1= 0, ].,
we have, denoting by u;, i = 0,1, the solution of (3.3.3) with initial value x;,

||U0 - U1||BUCa([to to+6);D) T ||u0 U1HBUCD‘([t0 to+0);X) T+ ||U0 U/1HB([to,to+6];(X,D)a,oo)
< Ko (||f170 —a1||p + || F(to, m0) — F(to,w1)l| (X,D)ace) -
(3.3.20)

3.3.2 The maximally defined solution

Throughout the subsection, F' : [0,7] x O — X is a nonlinear function satisfying
assumption (3.3.2). For each ug € O, Theorem 3.3.1 yields existence and uniqueness
of a local solution u of (3.3.1) in the space C2((0,4]; D), enjoying property (3.3.4).
Since u € BUC*([6/2,6]; D) N BUC™*([6/2,6]; X), then «'(§) = F(8,u(d)) belongs
0 (X, D)a00 (see Proposition 3.1.29), so that, thanks to Theorem 3.3.3, u can be
continued to some interval [§,d;] with §; > ¢, in such a way the extension belongs to
C%((0,01]; D). So we define u = u(+;up) by

I'=1(u)=U {[0, d]; problem (3.3.1) has a solution us €
C((0,6); D) 1 C5((0,6); D) for some 3 € (0, 1)}, (3.3.21)
u:l—D, wu(t)=ust)fortel0d Cl.
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u is well defined thanks to the uniqueness part of Theorem 3.3.1. We shall see in the
next proposition that v has no continuous extension with values in D. So, it is the
maximally defined solution of problem (3.3.1). We set

T =7(up) = sup I (up).

Proposition 3.3.4. If u(-;ug) is uniformly continuous with values in D, then either

. lir(n )u(t;uo) € 00, (3.3.22)
or
I(ug) = [0, 7). (3.3.23)

A sufficient condition for u be uniformly continuous in [ is given by next lemma.

Lemma 3.3.5. Let the assumptions of Theorem 3.3.1 hold, and let u : I — D be the
mazximally defined solution of problem (3.3.1). If the orbit

{u(t);0<t<rt}
is relatively compact in D, then u : [0,7) — D is uniformly continuous.

The maximally defined solution depends continuously on the initial value, as the
following proposition show.

Proposition 3.3.6. Let u € O, and fir 7 € (0,7(u)). Then there are ¢ = e(u,7) > 0,
H = H(u,7) > 0 such that if

uy € O and |luo — ul|p < e,

then
T (Uo) Z T

and
(- u0) — w5 @) | cao,7:0) + Jue(5 1) — w5 @) || ca(o,7:x)

+ sup t%|ug(;u0) — we(+0)|| (x,0)ae < H o — ul|p-
o<t<T



Chapter 4

Stabilization of flows through
porous media

In this chapter we study the motion of an incompressible homogeneous Newtonian fluid
in a rigid porous medium of infinite extent. The fluid is bounded below by a fixed layer
having an external source, and above by a free surface moving under the influence
of gravity. The flow is governed by Darcy’s law. In [12], J. Escher and G. Simonett
studied the case of the fluid bounded below by a fixed impermeable layer, instead of
a fixed layer having an external source, i.e. b = 0. They proved that the problem (P)
with b = 0 is locally in time well-posed. However, the question of the stability of the
equilibrium solution (u, f) = (¢, ¢) was not addressed in [12]. In this chapter, we shall
prove that the equilibrium solution (u, f) = (¢, c) is exponentially stable if the term
injection rate b satisfies b(c) = 0 and b'(c) > 0.

4.1 Modelling of flows through porous media

In the following, we describe the physical model we are interested in. We consider a
system composed of two fluid phases that simultaneously occupy the entire void space
of a porous medium. We shall refer to one fluid (subscript w) as the wetting fluid
(e.g. water), and to the other one (subscript n) as the nonwetting fluid (e.g. air).
In addition, subscript s denotes the solid (e.g. rock). Here the wetting fluid is an
incompressible homogenous Newtonian fluid.

4.1.1 The mass balance equations

Our starting point is the mass balance equation for the wetting fluid in a rigid, isotropic
and linearly elastic porous medium. The mass balance for the fluid phase is expressed

74
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by
I(nSwpuw)

5 = VvV {nSu(puVe =Dy - Vpu)}

20V = V) - Ve Soom (4.1.1)

_pw(vw - sz) : szwszsa

(see (2.4.10) in [5]), where n denotes the porosity, p,, S, and V,, denote the density,
the saturation and the mass weighted velocity of the wetting fluid phase, respectively.
The term p,, V,, expresses the wetting fluid’s mass flux, while —D,, - Vp,, expresses the
wetting fluid’s dispersive mass flux. The symbols V., and Vs denote the velocity of
(wetting) fluid-(nonwetting) fluid interface S, and (wetting) fluid-solid interface S,
respectively. Moreover, the term —p,(Vy — Vi) - 7 S expresses the influx of
the mass across the fluid-fluid interface relative to the possibly moving fluid-fluid inter-
face, and the term —p,,(Vy — Vi) - szwszs expresses the influx of the mass across
the fluid-solid interface relative to the possibly moving fluid-solid interface. Following
J. Bear and Y. Bachmat[5], we assume that

Ay The mass fluxes due to dispersion is much smaller than the mass fluz and will
therefore be neglected. i.e.

’pwvwl > |Dw : pr|-

Ao The fluid-solid interface is a material surface with respect to the wetting fluid’s
mass, i.e., no mass of the wetting fluid phase crosses Sys.

Az The fluid-fluid interface is also a material surface with respect to the wetting
fluid’s mass, i.e., no mass of the wetting fluid phase crosses Sy,.

With these three assumptions, (4.1.1) reduces to

(nSwpuw)

T = -V - (nSupuwVuw). (4.1.2)

Equation (4.1.2) is commonly used as the basic (macroscopic) differential mass balance
equation of a phase. So the mass balance for the solid phase can be expressed by an
equation similar to (4.1.2), namely

O{(1 —n)ps}
ot

where ps and V are the solid’s density and velocity, respectively. Let

=—-V- {(1 - n)psvs} ) (413)

Quw = nSwVw and Qur = nSw(Vw - VS)

be the mass weighted specific discharge and the relative mass weighted specific dis-
charge (i.e., relative to the solid), respectively.
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The fluid’s mass balance (4.1.2) can be rewritten in the form

Spw D,n D,S,
Dt —i—Swwa + Npy——— D

where D,(+)/Dt = 0(-)/0t + V- V(+) is the material derivative with respect to the
solid.
Equation (4.1.3) can be rewritten in the form

V - (pwQuwr) + 1Sy +nSupuV -V, =0, (4.1.4)

1 Dy(1- 1 D,p,
( n)Jr Dsps

V.-V,=0. 4.1.5
1—n Dt Ps Dt + ( )
By eliminating V - V; from (4.1.4) and (4.1.5), we obtain
Dspy | Swpw Dsn DSy nSypw Dsps
V : wYQwr Sw w - = O 416
(Puur) +nSu=p= + 7 pr T ey v Dt (4.1.6)

Ay The solid phase (at the microscopic level!) preserves its volume. This means

D;py

=0.
Dt

With assumption A4, equation (4.1.6) reduces to

Dspw Swpw DSTL DsSw

V' wAwr Sw w
(Puuwr) + 1 + +npe—p

2fu | Dube ~0. (4.1.7)

As The solid matriz is macroscopically fixed in space, i.e. Vg = 0.

With assumption A4 and Ajs, equation (4.1.5) reduces to

on
— =0. 4.1.8
5 (4.1.8)
With assumption As, we know that
qQuw = Qur (419)
Moreover, equation (4.1.7) also reduces to
a Sw w
V- (pulw) + n% =0. (4.1.10)
Ag The density is constant, i.e., p, = const., and the microscopic boundary of the
_ , d(nSy)
wetting phase is such that ——= = 0.

With assumption Ag and (4.1.8), equation (4.1.10) reduces to
V-oqu=0 (4.1.11)

This conservation law will be of fundamental importance in the following.
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4.1.2 The momentum balance equation

We next assume that
A7 The wetting fluid is microscopically isochoric flow.

Ag The fluid-solid interface is much larger than the fluid-fluid interface, i.e., Sy >
Swn-

With assumption Ag, we know

/ Ow * VpdS > / Ow * VipdS,

where o,, denotes the stress tensor of the wetting fluid. This means the fluid-fluid
momentum transfer is much smaller than the fluid-solid one. Therefore, we may neglect
the momentum transferred between the fluid phases that together occupy the void
space.

With assumption As, A7 and Ag, the momentum balance equation of the wetting
fluid can be written in the form

aQwi 0 QuiGwj apw 0z

aQQwi Cw (ws)
wa o Mwio O wj s
N T e

(4.1.12)

(see (2.6.48) in [5]), where we use Einstein’s summation convention. In (4.1.12), 0,,(=
nS,) and p, denote the content and the pressure of the wetting fluid, respectively.
Moreover, g is gravity acceleration, z is the z-coordinate of the position, p,, is the
wetting fluid’s dynamic viscosity, C,, is a shape factor associated with the ws-surface
area, on the w side of this surface. Moreover, A, = 0,,/%,s, here ¥, is the specific
area of the fluid-solid interface within per unit volume of the consider domain, T*,, and
o) are two tensorial properties of the configuration of the ws-surface in saturated,
single phase flow.

In (4.1.12), the term on the L.h.s. represents the inertial force acting on the wetting
fluid, per unit volume of porous medium.

The first term on the r.h.s. of (4.1.12) represents the resultant force acting on
the wetting fluid, due to gravity and to pressure gradient, per unit volume of porous
medium.

The second term on the r.h.s. of (4.1.12) represents the force acting on the wetting
fluid, due to the viscous resistance to its flow inside the wetting fluid, per unit volume
of porous medium.

The last term on the r.h.s. of (4.1.12) expresses the viscous resistance, or viscous
drag force exerted by the solid phase on the wetting fluid at their contact surfaces, per
unit volume of porous medium.
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4.1.3 Darcy’s law

We now introduce the fundamental construction relation for the velocity of the wetting
fluid.

Ag The wetting fluid is governed by the Darcy’s law (cf. [20]), i.e.,

qw = —KVu.

Namely, the flow in a given domain is such that the viscous resistance force, due to the
momentum transfer at the solid-fluid interface, is much larger than both the inertial
force and the viscous resistance to the flow inside the fluid, i.e.

(ws)

8qwi a Qwiij
w 7 w. >> I
thuxg @y G| > (P { o +axj( 0,
and
a(ws)q M d” Gui
Y A2 “ Y Oa;01; 0%
Under these conditions, the momentum balance equatlon (4.1.12) reduces to
kwji [ Opuw 0z
i = — w 4.1.13
Gug = =7 { o P (4.1.13)
where 6,2
Fujt = =g (0577 Ty (4.1.14)

is called the effective permeability for the wetting fluid in a porous medium. Assumption
Ag permits to introduce a so-called piezometric head u (see [5] p.175), by setting

Pw(, 2)

u(z,y) == + 2, (z,2) € R x R. (4.1.15)
Pwd
Then, (4.1.13) reduces to
Gwj = —Kjig—;, (4.1.16)
where the second rank symmetrical tensor
Kji = kuyi 224

w

is a coefficient called hydraulic conductivity. Note that assumption Ay is the same as
equation (4.1.16). In general K is a symmetric, uniformly positive definite 3 x 3-matrix.
However, for homogeneous and isotropic media, we have K = k - ¢dgs for some positive
constant k, (see [5] p.189).

Therefore, by means of Darcy’s law, the mass balance equation (4.1.11) reduces to

Au = 0. (4.1.17)
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Ayg The content of the wetting fluid is independent of position, i.e., V8, = 0.

With assumption Ag and A;g, we know that 6,, = const.. Moreover, the Darcy’s law
can be rewritten in the form

k k

4.1.4 The boundary conditions

To describe the shape of the moving boundary, we assume that

A1y The capillary pressure p. = p, — Pw 1S continuous, here p, denotes the pressure
of the nonwetting fluid.

We assume that the air in the unsaturated zone is at atmospheric pressure, normalized
to be zero i.e. p, = 0. With assumption A;;, we know that p,, is continuous and the
shape of the moving fluid-fluid interface I'; at time ¢ is then given by the relation

(x,2) € I'y if and only if z = sup{y € R; p,(t,z,y) > 0}. (4.1.19)

Finally, we assume that the interface I'; is parameterized over R?, i.e., we assume that
there is a function f such that

(x,z) € I'y if and only if z = f(¢, x).

In particular, we find that I'; = ') = graph(f(t,-)). Moreover, (4.1.15) and (4.1.19)
fuse to
u= fonly. (4.1.20)

Finally, setting F'(t,y) := z — f(t,x) for y = (x,2) € R? x R and ¢ > 0, the interface
I'y can also be described by the conservative property that I is identically equal to
zero on I'y. Hence, we get

d
ZF(ty) = 0F(t,y) + VF(t.y) - §=0on Ty, (4.1.21)

Using (4.1.18), we may express the velocity ¢ by —%VU. Consequently, observing
OF = —0f, VF = (—=V,f,1), and v is the outer normal of I'y,

(_v:cfv 1)

N

k
atf+9— 1+ |V, f]?0,u=0o0nT}y. (4.1.22)

(4.1.21) becomes
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Aqo The porous medium is bounded below by a fixed layer I'g with an external source
'™, and this external source depends on the wn-interface.

With assumption A; and A;s, the general boundary condition for mass on I'y can be
expressed by

(poVu +T™) v =0, (4.1.23)

(see (2.7.6) in [5]), where v = (0, —1). Using (4.1.18), equation (4.1.23) can be rewritten
in the form

O
d,u = —b, (4.1.24)
kpw
where b = —I' - v is called interface-dependent injection rate. Since I'™ depends on

the wn-interface, the function b also depends on f.

Finally, adding initial condition for the interface f, i.e., f(0,:) = fo, as well as
the normalization lim w(t,z,z) = ¢, we see that (4.1.17), (4.1.20), (4.1.22), and

|(2,2)[ =00

(4.1.24) fit, up to multiplicative constants, into

Au=0 1in Qr,
O.u=>b(f(t,x)) on Tor,
u=f on Tsrp,
) li)rln u(t,z,z) =c on [0,7T), (P)fo.c
Ohf+ /14 |Vef|?0u=0 on ff,T,

f(ov )=1fo on R?,

where T" > 0 is fixed, and

Qi) = {(z,2) e R xR;0 < z < f(t,2)},
iy i={(z,2) e R x R; z = f(t,2)},
Qf,T = {(t> ) [07T) x R? VNS Qf(t)}a
Lrr:={(ty) €[0,T) xR%y € Ty},
Urr:={(t,y) € (0,T7) xRy € Ty},
FO,T = [O, ) X Fo.

4.2 The full system

In this section, we shall describe the problem we investigate in detail. Now we consider
the case of the problem (P)y, . in one space dimension (see Figure 1),



4.2. THE FULL SYSTEM

rigid porous medium

e.g. rock
Given: b fO /\/
Unknown : . . .. . . ...
u: pressure - - - (g

f: interface

LY

L'y

air in rock .

an external source layer/ Iy
Figure 1
i.e.
Au(t,z,y) = 0,
ou
a_y(tax>y)‘y=0 = b(f(t’x))7
u(tal‘7y)|y=f(t,x) - f(t,I),
lim  w(t,z,y) = ¢
|z[+ly|—o0
atf(t7x> + (_fxa 1) ’ vu(taxa y) = 07
f(0, ) fo(),

81
terf?ce separatlng
air from water
..... . water
""" in rock
0
ted, (x,y) € Qp, (42.1)
teJ zeR, (4.2.2)
teJ xeR, (4.2.3)
teJ (z,y) € Q. (4.2.4)
teJ, (z,y) € Tiu, (4.2.5)
z € R, (4.2.6)

where T' > 0 is fixed, and J = [0,T), J = J \ {0}. The injection rate b is a given

smooth function from R to R.

Recall that A = {g € BC*(R); inﬂg{c+ g(x)} > O}. Given s > 0, let h*(R) be the
re

closure of S(R) in BUC*(R), and
h® = h*(R),

and

b = h* N

Remark 4.2.1. For s > 2, hg is open in h®. Indeed, for Vg € hg;, let

M =

inf e+ g(x)}.

then M > 0. Thanks to (2.1.1) and the definition of h*, we have h* — BUC?*(R) —
BC(R). So that there exists C' > 0 such that

lulloo < Cllullnr, Ve €
For Vh € h* satisfying ||h — g|ns < M/2C, we get
M M
h— gl 22
15— glle < o2
Then we have
M M
c—l—h(:c):c—l—g(x)—i—h(x)—g(x)2]\/[—7:7>O for Vr eR.

Thus h € A. This means h € h, i.e., h§ is open in h°.



82  CHAPTER 4. STABILIZATION OF FLOWS THROUGH POROUS MEDIA
4.3 Transformation

4.3.1 The diffeomorphism

To study the moving boundary problem, in general, we usually first transform a moving
boundary problem into a fixed boundary problem, then study the corresponding fixed
boundary problem. So we now consider a reference domain €2 := R x (0,1). In this
chapter, we always consider f € h?ToN 5[, where a € (0,1). Then we take g = f —c €
hate, and define ¢, : Q; — Q by

/
’o — 1 Y ") € Q
¢g<x7y> ('T7 C_'_g(x,))? (xuy) o

and the inverse function ¢, : Q — Q; by

o, (x,y) = (z,(1—y)(c+g), (z,y)e

Thus we can transform the moving domain €y into the reference domain Q by ¢, (see
Figure 2).

N AY
| S— L
/\_//th\ .....................
ZI{I-ZhI{I-IEI{ i e
I R JUR SIS R SESSSSEIN SESSSSSSE
HEEMIRC R PP .'.'.:.'.'.:.'?I.j' FO 0 5’;/
r
0 Figure 2

Lemma 4.3.1. Given f € BUC*R),k € N with 12£{f(x)} > 0, and ¢f(x,y) =
Y

x,1 — —=). Then we have

L )

¢y € Dif [*(Qy, ).

Proof It is obvious that ¢, € C*(Q;) and

1 0
Dos(z,y) = [ yf'(x) 1
fHx)  f(z)
1
Hence, by means of the assumption of f, det (D¢y) = —? # 0, ie. ¢y is a local
C*-diffeomorphism. Furthermore, observe that y +— 1 — féJ ] is strictly decreasing
x

diffeomorphism. Thus this completes the proof. 0
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4.3.2 The transformed operators

Let _
pau = lu = uop for we C(8y),

PV = Qv = vo for veC(Q),

denote the push forward and pull back operators, respectively. Then we define the
following transformed operators:

Alglv == —pIA(pv),
Bi(g)v = ¢¢ (vu(V(pyv)ng)) i=0,1.

Here (-|-) denotes inner product in R?, ~; : Q — T';(i = 0,1) are trace operators, I'; =
R x {i}, no = (—¢gx,1) and n; = (0,—1). Then problem (4.2.1)-(4.2.6) is transformed
to

Alg)lv = 0 in JxQ, (4.3.1)

v o= g on J x Ty, (4.3.2)

Bi(g)v = blg) on JxTy, (4.3.3)
‘Zl|iinoov(t, z) =0 on J, (4.3.4)
g+ Bolg)v = 0 on JxTIYy, (4.3.5)
g9(0,) = go on R, (4.3.6)

where b(g) := —b(c + g) and go(z) := fo(z) — c.

Proposition 4.3.2. The problem (4.2.1)-(4.2.6) and the problem (4.3.1)-(4.5.6) are
equivalent.

Proof In fact, if (u, f) is a solution of problem (4.2.1)-(4.2.6), then it is obvious that
(s — ¢, f — ¢) is a solution of problem (4.3.1)-(4.3.6). Hence it need to check that
(p*v+c¢,g+c) is a solution of problem (4.2.1)-(4.2.6), if (v, g) is a solution of problem
(4.3.1)—(4.3.6). Therefore we only need to check equations (4.2.1), (4.2.3) and (4.2.5).
Let u := ¢*v+c, f := g+cand (§,n) = ¢4(z,y). Clearly, £ = x. Thanks to Lemma 4.3.1,
we know ¢, € Dif f*(Qy, ). Furthermore, deduced from (4.3.1), we get

A(p*v +¢) = A(p,v) = 0.
It satisfies (4.2.1). Since

ou
a_y($7y)

= (Vel D)@ y)| = —(Vejum)(z.y)

y= y:O

- —(V@Oévlm)w;l(f,n)‘ = —Buw(&n)

n=

= =b(g(9)) = b(f(9) = b(f()).
Similarly, we can check that equation (4.2.5) holds. d

y=0
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Lemma 4.3.3. Given g € 2, we have

2 2
= > —a;1(9)9;0 + as(9)2,  Bi(g) =Y _ bjilg)widy, i = 0,1,
j, k=1 j=1

and

2
> a9 > alg)lg]? for £ R,

J k=1

where w(z,y) == 1 —1y for (z,y) € Q and

anle) =1, amm:@mngg,
nle) = (), ale)i= 2 (2,
o = g, bm@w=—§j9a+gb,
bi(g) =0, 1 b (g) == e

alg) =

L+ (c+9)* + 797

Proof Let g1 = g;1(9) := (950, |0k, "), 1 <4,k <2, denote the components of
the metric tensor. Then

. 147 —7(c+9)0
[95k] = ( —m(c+ 9)gs <C+g)2 ) '

Moreover, it is easily verified that g := det[g;x] = (¢ + g)? and that

TGz
1
i - q_ c+
G =13 = | g, T
(1+7%g;)
c+g (c+g)?

Now, the assertion follows from the well-known formulas

i )

Gk=1

A(g)v = —pIA(pv) = —

<ﬂ

2
Bi(g)v = @7 (vi(V(ghv)Ini) ) (%[kzlajgo’;akv]lﬁg|m)7 i=0,1.

Where ¥ (1 < k < 2) denote the components of ¢, i.e. v, = (o), @2).
To prove the second assertion, we fix (z,y) € Q and suppress it in our notation. Set

a:=alg):=[1+(+g?+7%¢]", B:=05() =2(c+yg),
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and note that
at— 3= [1 —(c+g)* — W2g§}2 +47%g% > 0.

Hence we find that a?3? < 1. This implies that

232\ 2

Observe that the smallest eigenvalue of [gj k} is given by

ANg) = 2(cﬁlL—g)2 {1+(c+g)2+7r29§ — \/[14- (c+g)2+7r2g§}2 —4(c—|—g)2}.

Consequently,

vo) =2 (1-vi—aw) 2 S [i-a-25) -a

~ af? 2

which completes the proof of Lemma 4.3.3. U
In the following, we study problem (4.3.1)—(4.3.6) in the little Holder spaces.

Lemma 4.3.4. Let o € (0,1) be given. Then

(A(), Bo(+),Bi()) € C= (h§[+“,£(h2+a(g)7ha(9) % RIFe h1+a)) 7

and

2 gzh h 1 ) T )

0A(g)[h,v] = C+g{(0+g )by + (s (= ma) = b )
(c+g)? 2(c+9) , 2 /72
1 (h+hg

— — r _ 2
0Bo(g)[h,v] hﬂZ@ler — ( Py gxhx) Y0020,
@Bl(g)[huv] = —Wﬁaﬂ%

for g € hy™™, h € h** and v € h2+*(Q).

Proof It is obvious that the first assertion holds. Given g € hglJra. For h € h*t® and
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v € h*T(Q)), we have

A(g+eh)v — A(g)v

OA(g)[h,v] = lim

e—0 £
1 27 (g + €hy) 1+ 7%(g, +h,)”
=lim=| —9%p -2 "5 _ 2
513%5[ W g reh YT T ergreng 2
™ 2(gac + €hz)2
- T h:c:c ) 2
+C+g+€h(0+g+8h (oo + haz) ) B0 + 020
27 G 1+ m2g? T, 2¢2
c+yg 1920 (c+ g)? 2Y c+g(c—|—g I ) 2
112 —
i L [ m(gch — (¢4 9)eha) 5 5
e~0el (c+g)(c+g+eh)
(1+ 7 g2)h(2c + g) + eh) — (c+ 9)*neha (2, + =ha) ,
+ O5v
(c+9)*(c+ g+ ch)?
m 2((c+ 9)%chy (29, + €hy) — g2ch(2(c + g) + €h))
+ (
c+g+eh (c+ 9)*(c+ g+ ¢h)
JuzEh
- he ) O
2 h — 2h(1 2¢2) — 272
_ 2m(goh — (c+ g)hx)ﬁlﬁgv N h(1+72g;) — 21*(c + 9)9zha o2
(c+9g)? (c+9)?
49.h, 4¢2h -~
(e SR I Vo,
c+gic+g (c+9)? c+yg
Similarly, the other assertions hold. 0J

4.3.3 Isomorphisms induced by elliptic boundary value prob-
lems

In the following, we shall introduce an elliptic regularity theorem.

Theorem 4.3.5. a) Let g € hat®, A >0 and pu > 0 be given. Then

(A + A(9),7, (c+ 9)Bi(g)) € Isom (R*T*(Q), h*(Q) x BT x h'T*),
A+ A(9), 0 + Bo(g), Bi(g)) € Tsom (h*7*(Q), h*(Q) x h'** x h1*®).

b) Given \g > 0 and g € hy'®, there exists a positive constant C, depending on ||g||p2-+a,
Ao, @ and ¢ such that

[ullp2+a@) < C (1A + Alg)) ullne@) + Ivoullnese + [[(c + 9)Bi(g)ullpa)  (4.3.7)
for all uw € h?T*(2) and X\ € [0, \g].

Proof The proof is based on the classical estimates of Agmon-Douglis-Nirenberg [2]
for elliptic equations, see also the Theorem 3.5 in [12]. O



4.3. TRANSFORMATION 87

Remark 4.3.6. Theorem 4.3.5 ensures that the following problem: given g € hy™® and
A >0,

v+ A(g)v = vy in Q,

Yov = U on I'o,

(c+g9)Bi(g)v=v3 onlIfy,

for every (vy,va,v3) € hY(Q2) x h>T*x h'Te there exists a unique solution v € A*(Q2).00

In particular, given g € hy *, thanks to Remark 4.3.6, we can define

R(g) = (A(9). %, (c + 9)Bi(g)) "
and its restrictions
S(g) = R(g)[h*(2) x {0} x {0},
T(g9) = R(g){0} x n*** x {0},
U(g) = R(g)|{0} x {0} x hl*e.
)

Obviously, let v := T (g)hy, vy := U(g)hy for hy € h*T hy € h1T®, then we get

A(g)vy =0 inQ, vy =h1 onTy Bi(g)vy =0 on I'y;
A(glva=0 inQ, yva=0 only, (c+g)Bi(g)va="hy onl}.

Lemma 4.3.7. We have
T() € C% (hy™™, LW R2F(Q))) . U() € CF (hy™, L(WT, h*T(Q)))
and
0T (g)[h, ] = =S(9)0A(9)[h, T(g)-],  OU(g)[h, ] = =S(g)0A(g)[h,U(g)]
for g € 3 *,and h € h*+°.

Proof For simplicity, let X := h3t®, F; := h*2(Q) (i = 0,1,2), E; := h*e(j = 1,2).
a) Thanks to Remark 4.2.1, we know that X is an open subset of Ey. Moreover, letting

A(g) = (A(9),70, (c+9)Bi(g)), geX.

By means of Lemma 4.3.4 and Theorem 4.3.5, we also know that
A e C™ (X, Isom(Fy, Fy X Ey x Ey))
with (note that (¢ + ¢)Bi(g) = 710, is independent of g)
0A(g)h = (0A(g)h,0,0) for h € Es.

b) Given A € Isom(Fy, Fy x Ey x Ey), define j(A) := A~!. Since Isom(Fy, Fy X Ey X E})
is open in £(F27F0 X Fy X El), then

j e C>™ (Isom(Fz,FO X EQ X El),ﬁ(FQ X EQ X Eth)),
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with 3 .
0j(A)A = —AtAAT

for A € fsom(Fg,Fo X E2 X El) and A € £(F2,FO X E2 X El)
c) Let R € L(Fy x Ey X Ey, Fy) be given, and define p(R) € L(FEy, F3) by

p(R)h := R(0, h,0) for h € Es.
Then p € L (L(Fy x Ey x Ey, Fy), L(Es, F»)) and consequently
Op(R)S = p(S) for R, S € L(Fy x By X Ey, Fy).
So that 7 =pojo A and

0T (g)h = O(poyj

i.e.

T (g)[h,v] = p(—=A"'(9)(0A(g)h,0,0)A™"(g)) v

I
I
N
L
~—
—
N
o)
~—
=
=
(=)
~—
o~
L
—~
s
~—
—~
=
<
o
~

for h, v € Es.
It is similar to OU(g)h, thus we can get

aU(g)[h,-] = —S(g)0A(g)[h,U(g)].

4.4 Reduced equation

4.4.1 Equivalent formulation

In this subsection, we shall show that problem (4.3.1)—(4.3.6) can be reduced to an
evolution problem.
Given g € h3t®, we define

®3(9) == Bolg) [T(g)g +u (9)3(9)] :
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Here b(g) = (c + g)b(g) = —(c + g)b(c + g). Suppose that gy € hat®. A function
g: J — h'*®is said to be a classical solution of
g+25(9) =0,  9(0) = g, (4.4.1)

iff g € O(J,hy ™) N CY(J, h1H®) and g satisfies (4.4.1) pointwise.

Proposition 4.4.1. Let gy € hgﬁo‘ be given.

i) Suppose that g is a classical solution of problem (4.4.1) on J. Let v(t) := T (g(t))g(t)
+U(g(t))b(g(t)). Then the pair (v, g) is a classical solution of problem (4.3.1)~(4.5.6)
on J, having the additional regularity

g € C(J,hyg )N CH(J, W), v(t,") € R*T(Q), t € J. (4.4.2)

ii) Suppose that (v,g) is a classical solution of problem (4.3.1)-(4.5.6) on J, having
the reqularity (4.4.2). Then g is a classical solution of problem (4.4.1) on J.

Proof If g is a classical solution of (4.4.1), then let v = T (g)g + U(g)blg), we can
check that (v, g) is a classical solution of (4.3.1)—(4.3.6).
If (v, g) is a classical solution of (4.3.1)—(4.3.6), by the uniqueness, then we know that

v="T(g)g+U(9)b(g).
Thus, g is a classical solution of (4.4.1). d
Corollary 4.4.2. ®; € C=(hy"*, h'**) and

-~

0®;(g9)h = 9By(9)[h, T(9)g +U(9)b(9)] + Bo(9)T (9)h + Bo(g)U ()b’ (g)h
— By(9)S(9)0A(9)[h. T (9)9] — Bo(9)S(9)DA(g) [ U(g)b(9)]
for g € B3t and h € h*e,
Proof By means of Lemma 4.3.4 and Lemma 4.3.7, we know

Bo(-) € C= (hy ™, L(B*T*(Q), h'+))
T() c 0> (h%+a’£(h2+a’ h2+a(Q))) ’
U(-) € C (hy™, LB, h*T*(Q))) .
Then, since b is smooth, for Vg € hgﬁo‘
T(g)g € h*™(Q),  Ulg)blg) € W***(2) and By(g) € L (h*H(Q), ).
Thus, by definition, ®;(g) € h'*%, ie., ®;(g) : hy'* — h'**. Further, we also get that
B, € O (IZF, W)Y

Then 0®;(g) € L(R*™*, h'T*). Using Lemma 4.3.4 and Lemma 4.3.7 again, by chain
law, we obtain

, we get

~

0%;(9)h = OBy(9)[h, T (g)g + U(9)b(9)] + Bo(9)T (9)h + Bo(g)U(9)b" (g)h

— Byl9)S(9)0A(9)[h. T (9)g] — Bo(9)S(9)0A(g) [, U(9)b(g)]
for g € hat® and h € A2+, O
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4.4.2 The linearization
For simplicity, we always assume that
b(0) = 0. (4.4.3)

Thanks to Proposition 4.4.1, we only need to study problem (4.4.1). By (4.4.3), we
know that g = 0 is the stationary solution of (4.4.1). To study problem (4.4.1), using
the theory of Section 3.3, we first consider its corresponding linear problem: For a
suitable open set O C h%fra such that g9 € O,

g +0%3(g)g = G(yg,9), (4.4.4)

where g € O and G(g,9) = 09;(9)9 — ®;3(9).
Since we are concerning about the behavior near g = 0, we take g = 0. This means
that we shall study the following problem

g +02;(0)g = G(g);  g(0) = go, (4.4.5)

here G(g) = 09;(0)g — ®;(g). Before studying (4.4.5), we first study the operator
09;(0). By Corollary 4.4.2, we get

8®;(0)h = By(0)T (0)h + By (0)U(0)b’ (0)h. (4.4.6)

4.4.3 Fourier multipliers

In the following we shall express the operator 0®;(0) as a Fourier multiplier.

Lemma 4.4.3. For h € h*>T®, we have

o - ()

L sinh(clely)
Uor = 7 <c\s|cosh<c\s|>f h)'

Proof In fact, we consider two problems
A(0)v; =0 in €, v1 = hy on Iy, By(0)v; =0 on I'y, (4.4.7)

and
A(O)UQ =0in Q, Vg = 0 on Fo, CBl<O)1)2 = hg on Pl. (448)

1 1
Here A(O) = —8% — 9822, [51(0) = 2’7182.

First, we consider A(0)v = 0. By Fourier transformation with respect to x, we have

Fo(&y) = Chedlely 1 Cpeclély, C1, Cy are two undetermined constants.
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i) For vy, we have

01 + CQ - .7:h1,
CrlE|el — Col¢le= = 0.
Hhen Fh Fh
_ ! — p2¢f¢] 1
G=1rem @~ TIam
Therefore,
oy coshlelel(1=p))

cosh(c|¢])
Since v, = 7 (0)hy is a solution of problem (4.4.7), we have

—ycosh(c[¢[(1 —y))
T(0) =7 cosh(c|¢|) 7

ii) For vy,we have

Ci+Cy,=0,
cCy|€]el — cCyl€le™El = Fhy.

Then

o Fha o Fho
' 2c¢] cosh(cl¢]) > 2cl¢| cosh(cle])
Therefore,
inh
Fpy — SOClEly)

~ clé] cosh(cl¢])
Since vy = U(0)hs is a solution of problem (4.4.8), we have

—y_sinh(c[¢]y)

Uuo) = :
O =7 el cosh(cle]
. O
Since By(0) = —=9002, by Lemma 4.4.3 and (4.4.6), it is easy to obtain that
c
oy (0)h = -1 AEISBEED) = b70) 2y gy v (4.4.9)
b ; . 4.

ccosh(c[¢])

4.5 Sectorial operator

In the section, we shall investigate the operator A; := 9®;(0) : h?t® C h!+e — plte,
and show —Aj is a sectorial operator. Thanks to Proposition 3.1.15, we need to know
that the spectrum and estimate of —A;.
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4.5.1 Spectral properties

In the subsection, we shall investigate the spectrum of the operator A;. To do it, we
first shall study the spectrum of A; in Ly(IR), then in Sobolev spaces H*(R),s > 0.
Finally, we use Sobolev’s embedding theorem to get our results.

By Corollary 4.4.2 and (4.4.9), we have

Ay € L(RPH* BT, (4.5.1)

and
A; = F gy (O)F,
where ~ ~
c[é] sinh(c|¢]) = b'(0) _ c€sinh(cf) — b'(0)
ccosh(clé|) B ccosh(cf)

az(§) =
For simplicity, we assume that b’ (0) < 0. By the definition of ag(§), we know that a;(€)
is an even function, a;(&) > 0 for £ € R and 5E21oo a3(§) = 4o00. Thus there exists a
constant wy > 0, such that wy = rﬁneiﬂlg{ag(f)}.
First, we consider an auxiliary problem, i.e. studying A; on Ly(R).
Lemma 4.5.1. A; is self-adjoint on Ly(R), and
(Agu ;)

L, = wollullz,  foru € Ly(R).

Proof For every u, v € Ly(R), thanks to Plancherel’s theorem, i.e.
(u,v)p, = (Fu, Fv),,,
we have

(u,Agv)Lz = (Agu,v)L2 = (J‘-"_lag(f)]:u,v)L2 = (a3(§) Fu, Fo)

Since a3(§) = az(&), we can get that

Af = Flag(6)F = A,

i.e. A; is self-adjoint.
Moreover, for every u € Lo(R), we get that

(Agu,u)L2 = (ag(ﬁ)j’:u,]:u)L2 :/Rag(f)\}"u]Qdf

> / Fulde = wolull
R
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Proposition 4.5.2.
p(A;) 2 {A € C; ReX < wp}.

Proof For every A € {\ € C; ReX < wp}, since az(§) > wo, we get [N — az(&)| >
|A — wo|. By means of Plancherel’s theorem, we have

IO = Al = (0= Ap)u, (A — Ag)u)
= (]—"’1()\—@5(5)).7%, f’l(A—ag)(é)]:u)Lz
— (0= a©)Fu, (A= ay(€)Fu)
- / A — a (&) 2| Fulde
> 1h = wolull. (45.2)

Hence A — Aj; is injective. Now we will prove that A — Aj is surjective. Suppose
u € Range(\ — Az)*, then, by Lemma 4.5.1, we have

0= (= Aghu,) | = [Nllf = (A, ) | = 1A = wolllul

Thus, u = 0, i.e. A— 4; is surjective. Hence (A — A4;)™" exists. From (4.5.2), we obtain
that (A — A;)~! is bounded. This means that A € p(A). O

Second, we consider the operator A; on the Sobolev Space H*® := H*(R) (s is an
arbitrary positive real number). The inner product of H* is expressed by

(u,v)gs = (N°Fu, N°Fo)p, for w,v e H?,
here A* = (1 + £2)*/2. Similarly, we can also get that A; is self-adjoint and
p(A;) 2 {z € C; Re(z) < wp} -
In the following, we will introduce the Sobolev’s embedding theorem (cf. [28]).

Theorem 4.5.3 (Sobolev’s Embedding Theorem). If s > k + 3, then

H*(R™) — BUC*(R").

Lemma 4.5.4. Let E, F' be Banach spaces, and X be a topological space. Further
assume that X — E — F. If X is dense in E, then X and E have the same closure
i F, that is, X = F in F.

Proof Thank to the assumption, it is clear that X C E. Thus it is sufficient to prove
E C X. For Yu € E and € > 0, there exists some uy € E such that

€
|lu — uol||r < 3"
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Since E — F, there exists a positive constant C' such that
lv||lr < Clvllg forveE.

Furthermore since X is dense in F, there also exists some u; € X such that

lto = il < o
0 e < 54
Hence,
€
lu = wllr < llu—uollr + lluo —willr < 5+ Cllug —wif|p <e.
This means v € X. 0]
Corollary 4.5.5. For s > p > 0, h® <bhP.
Proof It is easy to know that
S(R) <4h® < BUCP(R).
Thanks to Lemma 4.5.4, we get
hs = S(R) = h* in BUC?(R).
This means h* is dense in h?. O

Corollary 4.5.6. If s > k+ 2, then H® <hpkte,

Proof By Sobolev's Embedding Theorem, we know that H® — BUC*"(R). More-
over it is well-known that BUC*(R) — BUC*™*(R) and S(R) <% H?*. Then,

S(R) <L H* — BUC*™(R).
By the definition of little Holder space, we know that
pte = S(R)  in BUC*(R).
Thanks to Lemma 4.5.4, we get
hMTe = Hs  in BUC*T(R).

This means
HY b
O

Remark 4.5.7. If (A — A;)~" € L(BUC'(R), BUC*"*(R)) for Re\ < wy, then (A —
Ag)fl c L:(}llJroz7 h2+a).
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Proof By assumption, we know that (A — 4;)~' € L(h!'T®, BUC?***(R)). For every
xr € h'™® thanks to Corollary 4.5.6, there exists a sequence (z;) in H* (s > 4) such
that z; — z in A'*®. Thus,

A=A 'y —> (A= 4) ' in BUC?*™(R).
Since (A — 4;)~! € L(H?), we conclude that
(A — A;) "'z belongs to the closure of H* in BUC*™*(R).

Again thanks to Corollary 4.5.6, we have (A — A;) 7'z € h*t. O
In the following, we will prove that

(A — 4;)7" € L(RFe, h¥e)

for every A € {z € C; Re(z) < wp}. Thanks to Remark 4.5.7, we only need to prove
that
(A= Ay)~' € L(BUC™(R), BUC***(R))

for every A € {z € C; Re(z) <wp}. To do that, we shall use the theory of Fourier
multipliers. Recall that,

M= ({a € Loo(R™); (1+[€")*20% € Loo(R"), |a] < [n/2] + 1}, ]| llm)

where
lallave = max [[(1+ [¢[*) 20| .

o] <[2]+1

In particular, we only need the case of n = 1.
Before using the theory of Fourier multipliers, we shall introduce a parameter de-
pendent function. Given p and (3, we can define a C'*™ function

() = cosh &
PualS) = pcoshé — Esinh & + 37

Then we can calculate that

_sinhfcosh§+§+ﬁsinth 5 .
Dep, 5(&) = (icoshé — EsinhE 1 B 0% as & — oo. (4.5.3)

Moreover, as & — o0,
(1462 = (1+£)75¢ ~ 0(1). (4.5.4)
Thus, we can get the following statement:

Lemma 4.5.8. If Rel < wy, then (A — A;)~' € L(BUC*(R), BUC*™*(R)).
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Proof Now we consider two functions
mi(€) = (A —ap(€) 7" and  ma(€) = (1+€2)2(A —q5(€)) " (4.5.5)

For fixed A (Re\ < wy), then we have

mi(€) = ep o (€€)  and  ma(€) = c(1+E)7p_,  (ck).
By means of Leibniz’ rule, (4.5.3) and (4.5.4), we know that

IFmyi(€) ~O(E* 1Y) and 9*my(€) ~ O(E*) as &€ — oo for k= 0,1,

i.e. ||mi||pm < oo and ||ma||am < oo. Clearly,

(A= 4) " = F'myFand (1 — A)7(A— Ay) "' = Flmy F.
Then, thanks to Corollary 2.3.2, we get that

(1= 2)2(A = 47" € L(BUC(R)),

and
(A= Ay)~' € L(BUCT(R)).

Since (1 — A)2 € Isom (BUC*(R), BUC*™(R)), we can conclude that
(A= 4;)7' € L(BUC™(R), BUC*™™(R)) .

Thanks to Remark 4.5.7 and Lemma 4.5.8, we get
(A= Ay)~" e LT, R*TY)  for Re) < wy.

By Lemma 4.5.8, we also know that p(4;) D {z € C; Re(z) < wp} on h'*®. For 0 <
w < wp, we denote that
So ={z € C; Re(z) <w}.

We have known that

(A= A) e L) for XE€ S, (4.5.6)
so we obtain that

A—w) A= 45) e LK) for NES,.
Now we consider a function:
mw(X,§) = (A = w)(A = a5(€)) 7,

for A € S, and £ € R. Clearly

A —w)A=4) 7" =F 'm,(\, §)F.
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4.5.2 Estimates of the symbol

Lemma 4.5.9.
Imu (N, &) <1 for A€ S, £ €R. (4.5.7)

Proof  Since ag(&) > wo, then
ReX —ap(§) < ReA —wy < ReA—w <0 for AeS,.

By means of

A= ag()* = (ImA)* + (ReA — a5(6))?,

we get

A —az(§)] > [A —w| =0,
Le. |my(\ €| < 1. O
Theorem 4.5.10. There exists a constant C, > 0, such that
|/\ — w| . H()\ — A/I;)_1||£(hl+a) S Ow fO?“ VA e Sw. (4.5.8)

Proof By Corollary 2.3.2, we only need to prove that |m (A, §)||m is independent
of A € S,. Since m (A, &) is an even function for £, we only need to consider the case
¢ > 0. By direct calculation,

A\ —w) (cosh(cf) sinh(c€) + ¢ —l—g’(()) Sinh(c§)>

Oemy (A, §) = — 5 (4.5.9)
(c)\ cosh(cf) — c€ sinh(cf) + b’(O))
for £ > 0 and A € S,,. Recall that
oy cAcosh(c§) — € sinh(cf) +§’(0)
A—az(§) = cosh(cE) (4.5.10)
and
A —az(&)] = [ReA — az(§)| > |w — wol. (4.5.11)

Thanks to Lemma 4.5.9 and (4.5.9), we have

Q = (1+&)2|9mu()8)l R
c(l+ 52)% ‘cosh(c&) sinh(c) + € + ¥'(0) sinh(cf)‘ (4.5.12)

cosh(c€) }c)\ cosh(c) — € sinh(c€) —i—/b\’(O)‘

Now we consider () with two cases. R
Case 1: For Re) < 0, recalling that &'(0) < 0, we have

cAcosh(c) — € sinh(c€) +E’(0)’ ‘cRe)\ cosh(c) — € sinh(c€) +(0)

>
> ¢ sinh(cg).
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Then,
(1+¢€)2

cosh(c€) sinh(c€) + c€ + V(0) sinh(cﬁ)‘
@< € cosh(c€) sinh(cf)

By (4.5.13), there exist { > 0 and C' > 0 (independent of \) such that @ < C for
¢ > &. By (4.5.11), we also have

(4.5.13)

(1+¢):

cosh(c) sinh(c€) + £ +3’(0) sinh(CS)‘

cosh?(c€)|w — wol

Q<

)

then there exists C, > 0 such that @ < C, for 0 < ¢ < &. Thus @ is bounded
independently of .
Case 2: For Re\ > 0, then 0 < Re) cosh(c€) < wpcosh(c€). Since

cosh(c€)
d ¢ sinh(c€)

< ¢ sinh(cf)
- 2

=0,

there exists & > 0 such that wg cosh(cf)

have

for £ > &;. Then, for & > &, we

cwp cosh(c€) — c& sinh(c€) + b(0)
—g{ sinh(c£) < 0.

cRe) cosh(c€) — & sinh(c€) +1/(0) <
<

This means |cA cosh(c{) — ¢ sinh(c€) —i—g’(())’ > %5 sinh(c) for £ > &;. Thus, similar
to case 1, we also obtain that () is bounded independently of .

Therefore, () is bounded independently of \. Furthermore, by Lemma 4.5.9, we get
that ||my (X, €)||m is independent of A € S,,,. O

Theorem 4.5.11. —A; is a sectorial operator, and
sup{ReX\; A € 0(—4;)} < —wp < 0. (4.5.14)
Moreover, —A; € H(h*T®, h1T*).

Proof For every 0 < w < wy, we denote :9: = {\ € C; ReA > —w}. Then it is clear
that .
A€ S, ifand only if — X € S,.

Then according to (4.5.6), we know S, C p(—A;) and
A+ 4;) L= —(=A— A) "L e LW h2e) for VA € S, (4.5.15)
Thanks to Theorem 4.5.10, there exists a constant C' > 0 such that

A —w| - (<A = 45) ey < C for VA € S,
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1.e. N
A= (—=w)| - [|R(A, —A’l;)||£(h1+a) <(C forvVAels,. (4.5.16)

This means —A; is a sectorial operator. Since w is arbitrary, (4.5.14) holds true.
Further, by means of (4.5.1) and (4.5.15), we know that

—w + A € Lis(h*T, p'T).

Thus —A; € H(h*+*, h1Te). O

Remark 4.5.12. The proof of Theorem 4.5.11 shows that the assumption b’(0) < 0 is
only need to get (4.5.14). In particular, we also have —A; € H(h**t, h'T®) in the case

b'(0) > 0. O

4.6 Main results

4.6.1 Stability of the transformed problem

In the next theorem, we shall show the existence of the solution to (4.4.1).

Theorem 4.6.1 (Well-posedness). Assume that 3(0) = 0. Then there exists r > 0
such that (4.4.1) possesses a classical solution, provided | go||pz+a < 7

Proof Due to Remark 4.5.12, we know
—09;(0) € H(R***, h'T).
Thanks to Corollary 4.4.2 and Proposition 3.1.18, there exists € (0, ¢) such that
—0®;(h) € H(R*T h ) V||hlpera <7

Now we take O := B(0,7) in h?*®. Since r < ¢, we can know that O C hy*. By
Corollary 4.5.5, we know that h*™® is dense in h'*®. Using Corollary 4.4.2 again,
we know that (3.3.2) is satisfied. If ||go|[p2+a < 7, then gy € O. Further, thanks to
Theorem 3.3.1, we can know that (4.4.1) possesses a classical solution. U

In the following, we study the asymptotic behavior near the equilibrium g = 0.
Recall that

G(g) = Azg — P3(9)-
Clearly, G is a C*° function. By the assumption of E, we can calculate that G(0) =
0,0G(0) = 0. Notice that

Org = =449 + G(9).

Moreover, we have known that the important condition (4.5.14) is satisfied. Applying
the principle of linearized stability([24], Theorem 9.1.2), we obtain that
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Theorem 4.6.2 (Exponential stability). Assume that E(O) =0 and E’(O) < 0. For
any w € [0,wy), there are positive constants r and C, such that for any go € hat® with
llgol|n2+a < 7, we get that the mazimal existence interval of the solution g of (4.4.1) is
[0, 4+00), and the estimate

lg(D)]|p2+a + Hg’(t)HhHa < Ce*“’tHgOthM vt > 0, (4.6.1)
holds.

Thanks to Proposition 4.4.1, we know that problem (4.3.1)—(4.3.6) has a solution
(v,g). Since g(t) € hy™ and b € C>, then b(g(t)) € C2. In the following, we will get
the estimate of v.

Theorem 4.6.3. Assume as Theorem 4.6.2. For any w € [0,wy), there are positive
constants vy and C' = C(ry), such that for any go € hy™® with ||go|lpz+e < 70, we get
the estimate

||U(t)”h2+a(g) < Ceic‘)tHg(]HhHa Vit > O, (462)

~

where v := T (g)g + U(9)b(g).

Proof Let r be the constant in the Theorem 4.6.2. Take rq < r, by Theorem 4.6.2,
there exist positive constants M; = M;(ry) and My = Ms(rg), such that

lg(#)llp2ee < My for Ve >0 and  [Blleaoanany < Mo
Since B(O) = 0, we have
[B(g(0)] = [b(g (1)) = B(O)] < Molg(t)]|oc. (4.6.3)
Again since (/b\(g(t,x)))’ :/b\/(g(t,x))g’(t,x), then

(1) < Mallg' ()] e (4.6.4)

Moreover, for x # vy,

(b(g(t,2)))" — (B(g(t,y)))] b/ (g(t,2))(g'(t,2) — g(t,y))|

|z —yl|o |z —y|*

(b (g(t,2)) —b"(g(t,1)))g"(t, )|
|z — y|*
< Ma(lg(®)|mrse + g ()]0 - [9(t)]a).  (4.6.5)

By (4.6.3), (4.6.4) and (4.6.5), there exists a positive constant C' = C'(M;, Ms) such
that

_|_

B(gE)[lnre < Cllg(t)llnrse- (4.6.6)
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By Theorem 4.3.5 b), we know that there exists a positive constant Cy = Cy(M;)
independent of ¢, such that

T (g()] 2n2te, n2+e@) < Co, UG cpre, p2+a@)y < Co VYt 2>0.

Furthermore, since h**® < bt by (4.6.1) and (4.6.6), we have

[o()lln2+0) < Cro)(lg(®)l[nzve + [B(g(E) 1) < Clro)e™ Igollnzre ¥t > 0.
(4.6.7)
O

4.6.2 Stability estimates for the interface and pressure

Thanks to Proposition 4.3.2, we get that problem (4.2.1)—(4.2.6) has a solution (u, f).
In the following, we shall get the estimate of u. To do it, we need some lemmas and
remarks.

Remark 4.6.4. Since /b\(g) = —(c+ g)b(c+ g), we can calculate that

b'(g) = —blc+g) — (c+ ) (c + g).

b(0) =0 b(c) = 0
$10) < o} — {b,(c) e (4.6.8)

Therefore,

g

Lemma 4.6.5. Let E, F' and G be Banach spaces, and let X andY be an open subset of
E and F, respectively. Let further 0 < o < 1. If h,7 € BUC*(X,Y), ¢ € BUC“(Y,G),
and if 0 € CY(X,Y) has a bounded derivative, then

¢ :=1of e BUCYX,G), p:=h-17€ BUC*(X,Y).
In particular,

[0la < [Wlall'lS: [Pl < [AlallTlloo + [1Allc[T]a- (4.6.9)

Proof It is obvious for the function p. Therefore, we only need prove the case of
function ¢. By assumptions, we easily know that ¢ € BC(X, Q). For Vx,y € X,

lp(z) = o(y)lle U(0(x)) = (0(y))lle
Vlallf(x) = 0yl
Yo (10'|ollz = yll£)"
Dlall'll5]lz = yll%-

|
[
[
[

VAVARVANI

Thus, ¢ € BUC*(X,G) and [¢]a < [¥]all0']|% - O
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Lemma 4.6.6. If g € hy™™, then p, € C*T*(Q, Q) and dpp, € BUCT*(Q;,R?) (k =
1,2). Furthermore, ||Opp,|| puci+e o, g2y only depends on ||g||p2+a and constant M, where

M = igﬂ%{c—i—g(x)}.

Proof Denote the kth component of ¢, by ¢ (k =1,2), i.e. ¢, = (1, p2). In order

to prove ¢, € C*T, it is sufficient to prove that ¢1, p2 € C*™*. By the definition of

2(, there exists a positive constant M such that inﬂfg {c+g(z)} > M. Moreover, we can
e

calculate that

_ T G M G
agpl(xay)_(lv())’ 8@2( 7?/) ((c—l—g(x))Q’ c—i—g(:z:))’
yg'(x)  29”(x)y g9'(x)
e R I o R R el
g 0
(c+g(x))?
Moreover,
yg'(z) 1]l 1 .1
(c+g(@)?| = M Jetglx)| ™ M
yg'(x)  2¢°%(x)y 19"l , 2llg'll5 g'(x) 19" [l
(cta@P (ctowp|= M M [{etgR| = ae

1
For 0 < \/(l’l —29)2+ (Y1 —y2)? < o1 we have

yig"(x1)  yag"(x)
(c+9(x1))*  (c+g(22))

2

< %{(91 —y2)g" (x1)(c + g(x2))? + y2(g" (21) — g"(22))(c + g(x2))
+129" (22)(2¢ + g (1) + g(22))(9(x2) — g(a1))]

< %[Hgﬁﬂw(c + llglloo)*[vr = vol + l[gllnz+a(c 4 11glloo) |21 — 2]
+2[1g" lloo (e + lglloo)?[lg [lool 21 — 22| ]

< C(ler — 22| + |yr — v2|*) }

< 20 (21— 22) + (1 — 12)?] 2,
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and
9% (x1)n 9%(x2)12

(c+g(x1))?  (c+g(x2))?

<l g @) et 902)* + (e (00) — ) (1) + o (22)
(¢4 9(2)" + a0 (a){ (e 9 + (e + glan)) e+ gz)
e+ g(w2))}(9(x2) — glw1))]

< (191 lglle)lon — 2] + 20" o9 e+ o) s —
43 (e + gl lor — 2]

< Cflzr = 22| + [y — 92[%)

< 20 [(x1 — 22)° + (11 — 1)) i

1
For \/(z1 — 22)? + (y1 — y2)? > 5 e also have

y19" (71) Y29" (72) 2”91/”00 Hg””oo 2 215

— < < . — — 2
(c+g(x))? (c+g(@))2|~ M — M [0 = 22)" + (1 = 92)°] 7
9”(z1)y 9" (z2)y> 2|lg'lI5 _ 4llg'll5 s

(c+g(x1))?  (c+g(xr))?| — M? < WE (21 = 22)* + (1 — 12)7]

Thus, 1,2 € C?** and i1, dips € BUC(Qs,R) (i = 1,2). Furthermore,
||3¢¢1|\BUC1+a(Qf7R), and ||8i302||BUC’1+0‘(Qf,R)7 Ol’lly depend on Hg||h2+a and M. Finally,
since Oypg = (Jyp1, Dipa), then 0o, € BUC (€, R?), and [|0i0g| puci+e(q, r2) only
depends on ||g[p2+e and M. O

Remark 4.6.7. Similarly, we also can calculate that ¢! € C***(Q,Qy) and O, ' €
BUC™(Q,R?) (k = 1,2). Furthermore, Hak-gp;IHBUC’H—a(Q’RQ) only depends on || g||p2+a-
Hence, we can obtain that the following assertion. If 1) := ¢ o ¢4, then we have

Y € BUC*™(Qy) if f ¢ € BUC*T™(Q).
Furthermore, there exist C7, Cy > 0 (only depend on M and ||g||2+a) such that

Cilldllsucz+ae) < [¥llBuceta,) < CaolldllBuce+a@), (4.6.10)
where M is defined by Lemma 4.6.6.

Proof 7 <=7 Suppose ¢ € BUC?**(Q) and ¢, = (1, 2). Thanks to Lemma 4.6.5,
we know that ¢, € C*T*(Q, Q). Then we have ¢» € BC?*(§2;). By chain law, we can
know that ||¢]|s < ||¢|le and for j, k € {1,2},

2 2
Y = ;@@5(%) <O = Zl((aﬂﬁ) 0 @g) - ki,
"9 = 2
oy = ‘;1 010i9(pg) - Djpr - Onpi + ;3@(%) - 0; 0k

2

2
= ((010:0) © @g) - D501 - Opps + Z((azfﬁ) 0 pg) - 0;0kp;.

i, =1 =1
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Again by Lemma 4.6.6 and Lemma 4.6.5, we can conclude that 0;0,¢ € BUC*(£2y).
This implies ¢ € BUC?T*(Q;). Moreover, there exists a constant Cy > 0 (only depends
on M and ||g||p2+a) such that

[l Buce+aiay) < Coll9llBuce+a(a).-

? = 7 By Lemma 4.3.1, ¢, € Dif f**(Q;, Q). Similar to Lemma 4.6.6, we can
get the similar properties for 90;1. Therefore the statement can be obtained similarly.
Moreover, there exists a constant C' > 0 (only depends on ||g||p2+«) such that

9l Bucz+a@) < CllY] Buce+aa,)-
1 .
Take C; = o We can get the estimate (4.6.10). O

Corollary 4.6.8. Given g € hy™. If » = ¢ o p,, then ¥ € h*T(Qy) iff ¢ € h*F2(Q).

Proof By Remark 4.6.7, we have known that v € BUC**(Qy) iff ¢ € BUC*T*(Q).
For ¢ € h*T*(Q), there exists a sequence {¢;} € 7oS(R?) such that

¢; — ¢ in BUC?*™™(Q) as i— oo.

Since g € h5t® and Remark 4.2.1, there also exists a sequence {g;} € S(R) N 2A such
that
gi—g in BUC*™™R) as i— oco.

Thanks to Lemma 4.3.1, we know ¢y, € Dif f~(Qf, Q). Thus ¢; o ¢, € 7o,S(R?).
Moreover,

piop, — o, in  BUC*™(Q;) as i— oo.
This implies ¢ € h***(Q;). The converse is similar. O
Theorem 4.6.9. Assume that b(c) =0 and V'(c) > 0. For any w € [0,wy), there exist
positive constants vy and C = C(ry), such that for any fo—c € ha ™ with || fo—c||p2ra <
1, the problem (4.2.1)-(4.2.6) has a unique global solution (u(t,x,y), f(t,z)) such that

u—ce C([0,+00), Q) , and f—c € C([0,+00), hy®) . Furthermore, we get
the estimate

”f(t)—C||h2+a+||f/(t)”h1+a+”U(t)—C”h2+a(Qf<t)) < C’e_“’t\|f0—c|]hz+a, vVt > 0. (4.6.11)

Proof Let r, ry be the constants in the Theorem 4.6.2 and Theorem 4.6.3 respec-
tively, and go := fo — ¢. Take r1 < min{r, ro}, by Remark 4.6.4, Theorem 4.6.2 and
Theorem 4.6.3, we know that if fo — ¢ € hg ™ with || fo — ¢|lp2+a < 71, then we have

g € C([0,400), hg*) N C*([0, +00), h'™*) and v € C(]0, +00), KT*(2)).
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Moreover, there exists a constant Cy > 0 such that
9@ ||nz+e + [1g' @) |n1+e + [[0][n2re@) < Coe™ || fo — ¢|lpz+a, VE> 0. (4.6.12)

Thanks to Proposition 4.4.1 and Proposition 4.3.2, we get that problem (4.2.1)—(4.2.6)

exists a unique solution (u(t,z,y), f(t,z)) = (v(t, @gw) (2, y)) + ¢, g(t,z) +¢) . Due

to (4.6.12), we know ||g(t)||p2+a < Cyry for Vit > 0. Let M(t) := in{g{c%—g(t,x)}, and
TE

c
we take r; small enough such that r; < 20 then we can know that
0

M) ze—gOlwzy  JorVizo.

It is similar to Remark 4.6.7, we can get u(t) € BUC*"*(Qy(;) and there exists C} =
C4(r1) > 0 (independent of t) such that

||u(t) — C||BUC’2+°‘(Qf(t)) S Ol||U(t)||h2+a(Q) fOT Vi Z 0. (4613)

By Corollary 4.6.8, u(t) —c € h***(Qy)). Let C = Cy(C1+1), by (4.6.13) and (4.6.12),
we get

1f () = cllnzra + Lf (D) lnata + [[u(t) = cllnz+a(e,q) < Ce | fo — c|lp2+a  for ¥Vt > 0.

g

Remark 4.6.10. By Darcy’s law V,, = —Vu, the y component of the velocity V,, of
the flow on the fixed layer can be pictured as the following (see Figure 3):

Ay
r
- e ____Cm__
\ \ \ \
\ \ \ \
| @ | J |
\ \ \ \
by l v I \ |y
O [y z
Figure 3

This implies that when the interface function f is larger than the constant ¢, the
external source layer will supply an instant negative injection rate which causes the
interface to fall. On the other hand, when the interface function f is less than the
constant ¢, the external source layer will supply an instant positive injection rate which
leads the interface to increase. Thus (u, f) = (¢, ¢) is a stationary solution of problem
(4.2.1)-(4.2.6). O
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