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Abstract 

 

Keywords: Bemisia tabaci, virus transmission, begomoviruses, Watermelon chlorotic 

stunt virus, translocation pathway, immunolocalization.  

To elucidate the interactions between begomoviruses and their whitefly vectors 

leading to virus transmission, the acquisition and translocation of Watermelon 

chlorotic stunt virus, WmCSV, by Bemisia tabaci (Genn.) was studied. A whitefly 

transmissible WmCSV isolate and 4 different non-transmissible virus mutants 

carrying a single amino acid change in the capsid protein at position 133 were used 

in these investigations.  

B. tabaci was fed on infected watermelon plants for an acquisition access period 

(AAP) of 48 h then transferred for 48 h to non host plants, to subsequently inoculate 

healthy watermelons. Transmission was taken as an evidence for a viable interaction 

between virions, the gut membrane and the primary and/or the accessory salivary 

glands. Fresh, dissected organs from viruliferous whiteflies feeding on wild type or 

mutant virus were examined by PCR to determine presence of virus. For the 

transmissible, wild-type virus a pathway already described for the translocation of 

Tomato yellow leaf curl virus (TYLCV) similar to luteovirus / aphid interaction, was 

found. Virus is ingested with plant sap through the stylet into the oesophagus, is 

concentrated in the filter chamber to subsequently passage through the gut wall into 

the haemocoel to reach the salivary glands. The virus is translocated in the salivary 

duct and is finally excreted with the saliva for plant inoculation. 

Virus DNA was detected in the midgut, in the haemocoel and in salivary glands of B. 

tabaci for both the transmissible and non-transmissible mutants. In Trialeurodes 
vaporariorum, a non vector for geminiviruses, the WmCSV wild-type was not 

capable to cross the gut wall and hence was not detected in haemocoel or salivary 

glands. In these non vector whitefly insects, the gut wall represents the essential 

epithelial barrier to virus passage. 

Geminiviruses are transmitted by Bemisia tabaci (Genn.) in a circulative, non 

propagative manner. To be translocated; the ingested virus has to cross two cellular 

 



barriers; the gut epithelial cells, to be released into the haemocoel and, the salivary 

glands, to be re-injected for plant infection. To elucidate this putatively receptor-

mediated process and to reveal the sites of endocytosis, insects fed on plants infected 

with WmCSV were subjected to immunolocalization studies in electron microscopy. 

To test for the best fixation as well as the best embedding resin resulting in 

maximum ultrastructural preservation with high and specific labelling, a number of 

fixation and embedding methods and resins were tested. Ultrathin sections of insect 

organs embedded in different resins such as Epon 812, LR White or Lowicryl, were 

subjected to immunolocalization experiments. Transmission Electron Microscopy 

(TEM) observations demonstrate that the specific labelling using WmCSV antiserum 

was concentrated in the microvilli lining the gut wall of the epithelial cells of the 

food canal (the descending midgut and the filter chamber) which would point to a 

putative virus storage site allowing further internalisation for delivery to the 

haemocoel.  

Both transmissible and the non-transmissible virus mutants were capable of crossing 

the midgut (PCR studies), while different observations were made with glands - 

primary salivary glands (PSG) and accessory salivary glands (ASG). At these organs, 

virus mutants were detected, however, in all cases there was no virus transmission. 

Consequently, virus localization studies concentrated especially on these organs. 

For these investigations, optimisation of methods preserving membrane structures of 

multilamellar/tubular vesicles or -bodies, which are suggested to play a significant 

role in virus transcytosis and transmission, was imperative for this study. Thus, 

different etching and antigen retrieval procedures were investigated on specimens 

that were fixed and embedded in Epon or Lowicryl resins respectively. 

 A highly specific labelling in the primary salivary glands PSG, especially in the 

electron lucent and in multilamellar vesicles was observed. This labelling intensity as 

well as specificity was not observed in examinations of the accessory salivary glands 

(ASG). Hence, for translocation of WmCSV in B. tabaci insects, the primary salivary 

glands represent the major epithelial barrier. These organs therefore play the most 

decisive role for a successful vector transmission of begomoviruses by Bemisia 

tabaci. 

 



 

Zusammenfassung 

 

Schlagwörter: Bemisia tabaci, Weiße Fliege, Virus Übertragung, Begomoviren, 

Watermelon chlorotic stunt virus, Translokationsweg, Immunolokalisierung 

Die Beziehungen zwischen Begomoviren und Weiße Fliege Insektenvektoren, die zu 

Virusübertragung führen, sollen aufgeklärt und Virusakquisition und die 

Translokation der Viren in Bemisia tabaci (Genn.) untersucht werden. Ein Weiße 

Fliege übertragenes watermelon chlorotic stunt virus Isolat, WmCSVwt, und vier 

verschiedene Virusmutanten des WmCSV, die jeweils einen einzigen 

Aminosäureaustausch im Kapsidprotein in Position 133 aufweisen, wurden für diese 

Studien herangezogen.  

B. tabaci Insekten wurden zur Virusaufnahme für eine Akquisitionszeit von 48 h auf 

infizierten Wassermelonen gehalten, danach für 48 h auf Nicht-Wirtspflanzen 

gebracht, um schließlich gesunde Wassermelonen zu inokulieren. Eine erfolgreiche 

Virusübertragung wurde als Zeichen einer effektiven Interaktion zwischen Virionen, 

Darmmembran und Speicheldrüsen (primary, PSG, und accessory salivary glands, 

ASG) bewertet. Frisch entnommene Organe von Weißen Fliegen, die auf WmCSV 

infizierten Wassermelonen gehalten wurden, wurden mittels PCR untersucht, um 

an/in den Organen vorhandenes Virus zu bestimmen. Für das übertragbare 

WmCSVwt wurde so ein bereits für das Tomato yellow leaf curl virus (TYLCV) 

beschriebener Übertragungsweg gefunden, der ähnlich der Luteovirus / Aphiden 

Interaktion verläuft. Virus wird mit dem Pflanzensaft durch das Stylet in die 

Speiseröhre aufgenommen, in den Filterkammern konzentriert, um schließlich durch 

die Darmwand in das Hämozöl zu dringen und an die Speicheldrüsen zu gelangen. 

Das Virus wird dann in die Speichelkanäle transloziert und schließlich mit dem 

Speichel ausgeschieden, um erneut Pflanzen zu inokulieren.  

Sowohl das Weiße Fliege übertragbare WmCSVwt als auch die nicht-

insektenübertragbaren Virusmutanten wurden im Mitteldarm, im Hämozöl und in 

den Speicheldrüsen von B. tabaci gefunden. In Trialeurodes vaporariorum konnte 

WmCSVwt nicht die Darmwand durchdringen und war deshalb weder im Hämozöl 

 



noch in den Speicheldrüsen zu finden. Hier stellt die Darmwand die wesentliche 

epitheliale Begrenzung für die Viruspassage dar.  

Geminiviren werden durch Bemisia tabaci (Genn.) in einem zirkulativen nicht-

propagativen Modus übertragen. Um in den Insekten zu zirkulieren, muss das Virus 

zwei bedeutende zelluläre Barrieren, die epithelialen Zellen des Darms, um in das 

Hämozöl  zu gelangen und die Speicheldrüsen, passieren. Dieser möglicherweise 

Rezeptor -vermittelte/gesteuerte Prozess sollte in Weiße Fliege Insekten untersucht 

werden, vor allem um die Orte der Endozytose aufzuzeigen. Hierfür wurden Weiße 

Fliege Insekten auf WmCSV infizierten Pflanzen gehalten und dann 

elektronenmikroskopischen Immunolokalisierungsstudien unterzogen. Zunächst 

wurde eine Vielzahl verschiedener Fixierungs- und Einbettungsverfahren und  

Medien geprüft, um jenes Verfahren zu finden das eine maximale Erhaltung der 

Ultrastrukturen mit bestmöglicher und spezifischer Markierung gewährleistet. 

Dünnschnitte von Insektenorganen, die in verschiedenen Kunstharzen wie Epon 812, 

LR White oder Lowicryl eingebettet waren, wurden für die Translokationsstudien 

verwendet. In den elektronenmikroskopischen Untersuchungen war eine spezifische 

Markierung des WmCSV mit Antiserum in den Microvilli zu finden, die die 

Darmwände der epithelialen Zellen des Verdauungskanals auskleiden (absteigender 

Mitteldarm, Filterkammer). Das könnte auf eine mögliche Sammelstelle der Viren, 

für die weitere Passsage in das Hämozöl hinweisen.  

Sowohl WmCSVwt als auch die nicht insektenübertragbaren Virusmutaten konnten 

den Mitteldarm durchdringen, während an PSG und ASG unterschiedliche 

Beobachtungen gemacht wurden. Hier konnten zwar einige Virusmutanten mittels 

PCR nachgewiesen werden, eine Virusübertragung blieb jedoch in allen Fällen aus. 

Lokalisierungsstudien konzentrierten sich deshalb im Besonderen auf diese Organe. 

Auch für diese Studien mussten zunächst Verfahren gefunden werden, welche 

Antigenität und Strukturen der Zellmembranen und der multilamellaren und 

tubulären Vesikel, denen eine wesentliche Rolle bei der Transzytose und der 

Virusübertragung zukommen soll, erhalten.  

Eine hoch spezifische Markierung mit WmCSV Antikörpern wurde in den 

multilamellaren Vesikeln der PSG gefunden, was für ASG nicht bestätigt werden 

konnte. Für die Translokation von WmCSV in B. tabaci Insekten stellen somit die 

 



 

 

primären Speicheldrüsen (PSG) eine wesentliche epitheliale Barriere dar. Diese 

Organe spielen für eine erfolgreiche Vektorübertragung von Begomoviren durch 

Bemisia tabaci eine entscheidende Rolle. 
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 1

1 Introduction 

 

1.1 Geminiviruses 

The family Geminiviridae comprises a large number of plant viruses that produce 

significant losses in economically important crops of both monocotyledonous and 

dicotyledonous plants. Especially since the late 1980s, the horticultural-producing 

areas of the Mediterranean, Spain, Morocco, Italy, Central America, Venezuela and 

Brazil, and Southern USA, Arizona and Florida, the Caribbean and Mexico have 

been heavily attacked by whitefly-borne geminiviruses, with devastating economic 

consequences for the respective agro-industries. Geminivirus diseases pose a serious 

threat to agricultural production in tropical and sub tropical world.  

Geminiviruses are small plant viruses appearing as twin (geminate) icosahedral 

particle structures in electron microscopy. The family Geminiviridae comprises four 

genera, Mastrevirus, Curtovirus, Topocuvirus and Begomovirus. Their small 

genomes consist of covalently closed circular single-stranded (ss) DNA molecules. 

The taxonomy of the family is based on genome organization, taxon of insect vector 

and host association (Gafni et al., 2002). 

Mastreviruses like Wheat dwarf virus (WDV) are transmitted by leafhoppers, have 

monopartite genomes and mostly infect monocotyledonous plant species while some 

members such as Tobacco yellow dwarf virus (TYDV) or Bean yellow dwarf virus 

(BeYDV) infecting dicotyledonous plants. Curtoviruses like Beet curly top virus 

(BCTV) are also transmitted by leafhoppers, infect dicotyledonous plants and have 

monopartite genomes with a genetic organization distinct from the mastreviruses. 

The sole member of the genus Topocuvirus, Tomato pseudo-curly top virus 

(TPCTV), is transmitted by treehoppers, and represents the least-well characterized 

genus of geminivirus (Gutierrez, 2002). 



Begomoviruses with the type member Bean golden mosaic virus (BGMV) are 

transmitted by Bemisia tabaci whiteflies. Most members of the genus have bipartite 

circular single-stranded DNA A and DNA B genomic components (approximately 

2.5-3.0 kb) and infect dicots. Some very important members of the genus 

begomovirus, Tomato yellow leaf curl virus (TYLCV) or Cotton leaf curl virus 

(CLCuV) have all genes resident on one DNA A like component of about 2.7 kb. 

Geminiviruses invade the nuclei of infected plants and since their genomes do not 

encode DNA or RNA polymerases, their replication relies entirely on the host 

cellular replication and transcription machinery for gene expression and genome 

amplification (Gutierrez, 1999). DNA replication occurs within the nuclei of infected 

cells by a rolling circle replication (RCR) employing circular dsDNA replicative 

form intermediates serving as templates for replication and transcription (Gutierrez, 

2002).  

 

1.2 Diseases caused by Bemisia tabaci transmitted Begomoviruses  

Begomoviruses cause many diseases of crops and wild plants. Symptoms typically 

consist of leaf-curling, mosaic, vein yellowing or a more generalized leaf chlorosis 

often accompanied by stunted growth of infected plants. In the past two decades, 

Begomoviruses have emerged as serious and devastating pathogens and now present 

major constraints to the cultivation of significant food and fibre crops in various parts 

of the world. Some of the diseases are newly emerging hence providing evidence that 

these viruses are still evolving with increasing impact threatening sustainable 

agricultural production world wide and particularly in the tropics and sub-tropics. 

The recent discovery that these viruses can be accompanied by even smaller DNA 

molecules (ca. 1.3 kb), so called satellite DNA (DNA ß) leading to serious disease 

complexes (Saunders et al., 2002; Varma and Malathi, 2003; Bull et al., 2004; 

Stanley, 2004), contributes to the notion that begomoviruses are the most dangerous 

plant viruses to date.  

Diseases caused by begomoviruses result in the world’s economically most 

important crop losses. For example, mosaic diseases of cassava in sub-Saharan 

Africa cause annual yield losses exceeding $2 billion in value of this most significant 
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staple food for millions of poor people (Thresh et al., 1998). Tomato leaf curl and 

tomato yellow leaf curl diseases are devastating in tomato crops in more than 20 

countries (Czosnek and Laterrot, 1997, Green and Kalloo, 1994). Cotton leaf curl 

disease, the monopartite begomovirus trans-replicating the satellite DNA ß complex, 

has spread enormously affecting more than 2 million acres in Pakistan (Ali et al., 

1995) where cotton covers about 60% of the country’s exports, with serious effects 

on yield and on the nation’s economy. From 1992 to 1995 the accumulated losses in 

this crop in Pakistan were calculated exceeding $5 billion (Briddon and Markham, 

2000). Solanaceous crops, tomato and pepper are most favoured hosts for a large 

number of begomoviruses. Until now more than 50 begomoviruses with 35 distinct 

species were described in natural infections of tomato, pepper and cucurbits in the 

New and Old World (Fauquet et al., 2003). Some of the virus species further occur 

with a large number of distinct virus strains (Jones, 2003) emphasizing the high 

diversity of these pathogens most evident in the tropical and subtropical tomato 

growing regions of the Americas.  

In North Africa, besides TYLCV infections seriously impeding the cultivation of 

tomato and Phaseolus beans, there is yet another begomovirus, Watermelon chlorotic 

stunt virus (WmCSV) threatening the production of melons and related cucurbits. 

This serious disease in watermelon is characterised by vein yellowing, chlorotic 

mottling and a severe stunting of young leaves with drastic reduction of fruit yield. It 

was firstly reported from the former People Democratic Republic of Yemen (PDRY) 

where incidence exceeding 90% infected watermelon plants was common with 

WmCSV present wherever watermelon was grown (Jones et al., 1988). The infected 

plants were found to contain virus particles with a twinned morphology typical of 

geminiviruses and the virus was subsequently described as Watermelon chlorotic 

stunt virus (Bedford et al., 1994) a begomovirus transmitted by the whitefly B. 

tabaci. WmCSV has been found in central and eastern Sudan (Lecoq et al., 1994, 

Kheyr-Pour et al., 1997; Dafalla et al., 1998) and was reported in 1998 from 

watermelon fields in southern regions of Iran (Bananej et al., 1998). 

 



1.3 Genome structure and replication of Begomoviruses 

Bi-segmented, ‘geminate’ particles are characteristic for all viruses in the family 

Geminiviridae including the members of the genus Begomovirus. This structure is 

contained by the only structural protein of the virus; the coat protein (CP) encoded 

by the AV1 gene which is located on DNA A genomic component of the bipartite 

members of this genus (Fig. 1). It codes for a protein of ca 28-30 kDa of which 

approximately 110 CP molecules are required to form the geminate particle. The CP 

enforces the structural features of the virion hence geminivirus CP especially that of 

begomoviruses are highly conserved.  

The circular ssDNA genomes of the geminiviruses contain coding regions in virion-

sense and complementary-sense strands diverging from an intergenic region (IR). 

The circular dsDNA replication intermediates are the transcriptionally active 

templates. Transcription occurs bidirectionally and is dependent on the activity of 

two divergent promoters separated by a non-transcribed region where most (if not 

all) of the cis-acting signals regulating viral replication are also located. 

 

Figure 1: Genome organisation of a typical bipartite begomovirus, WmCSV. On 
WmCSV DNA A, CP is the viral coat protein in virion sense orientation, the 
replication initiation protein (Rep), the transcriptional activation protein 
(TrAP) and the replication enhancer protein (REn) is in complementary 
sense orientation. ORF AV2 and AC4 are present only in Old World 
begomoviruses. On WmCSV DNA B, NSP is the nuclear shuttle protein in 
virion sense orientation, while MP, the movement protein, is in virion 
complementary sense.  
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This IR forms a stem loop structure in which ssDNA is initiated by the replication-

associated protein (Rep) cleaving an absolutely conserved TAATATT/AC nona- 

nucleotide motif in virion sense, forming a potential loop structure. In the bipartite 

begomoviruses, the IR of the DNA A and DNA B components are highly similar 

with identical reiterated motifs (iterons) distinct for a species, so that the DNA A Rep 

will only and specifically recognise the IR of its cognate DNA B for replication. 

On DNA A in complementary C-sense, four proteins: Rep, TrAP, REn and AC4 are 

located while DNA B contains two ORFs coding for proteins directly involved in 

movement of viral DNA (NSP, nuclear shuttle protein; MP, movement protein). 

As a general rule, the complementary, C-sense-encoded proteins are involved in 

DNA replication, regulation of transcription and interference with cellular processes 

needed for the replicative cycle. The Rep protein is the only viral protein absolutely 

required for viral DNA replication interacting with the viral REn. This protein 

enhances viral infection and symptom development, an effect that is likely a 

consequence of stimulation of viral DNA replication. TrAP is a transcriptional 

activator gene (Gutierrez, 2002) and it is the viral gene silencing suppressor gene for 

most begomoviruses counteracting the plants natural defence mechanisms (Gutierrez, 

2002). 

Recent studies with the begomovirus SLCV have elucidated the role of proteins 

encoded by DNA B in cell-to-cell movement of viral genomes. Thus, NSP is 

believed to associate with newly-formed viral ssDNA and translocate it outside the 

nucleus. The NSP and the MP interact mediating the transport of viral genomes to 

the cortical cytoplasm and the plasmodesmata, with the MP being an essential part of 

virus-infected cells (Gafni and Epel, 2002).  

The CP enforces the structural features of the virion hence geminivirus CP genes 

especially that of begomoviruses, are highly conserved. CP has several functions and 

is the basis of serological methods for detecting and identifying individual 

begomoviruses (Harrison et al., 2002). One of the most noteworthy characteristics of 

begomoviruses is the extent of serological relationships among different viral 

species. This was first discovered in work on African cassava mosaic virus (ACMV), 

Bean golden mosaic virus (BGMV), Tomato golden mosaic virus (TGMV) and 



Squash leaf curl virus (SLCV), in which the reactions of polyclonal antibodies were 

tested by immunodiffusion, ELISA, and immunosorbent electron microscopy. The 

nature of these relationships has been explored in more detail by tests with 

monoclonal antibodies (MAbs), especially the panels of MAbs raised against 

particles of ACMV, Indian cassava mosaic virus (ICMV), or Okra leaf curl virus 

(Swanson, 1992; Swanson and Harrison, 1993; Thomas et al., 1986; Swanson, 1992). 

The conclusion drawn from comparing the epitope profiles of about 50 distinct 

begomoviruses is that many of these profiles are specific for a given virus, which can 

thereby be distinguished from other begomoviruses (Harrison 1994; Harrison et al., 

1991). Further comparisons of epitope profiles have led to another, more interesting, 

conclusion: Begomoviruses from different hosts in the same geographical region 

tend to be more closely antigenically related to one another than to viruses causing 

indistinguishable diseases in other regions. For instance, the epitope profile of ICMV 

is more similar to that of another begomovirus from the Indian subcontinent, Cotton 

leaf curl virus from Pakistan (CLCuV-PK), than to that of either of two cassava 

geminiviruses from Africa, ACMV and East African cassava mosaic virus 

(EACMV). In turn, the epitope profile of CLCuV-PK differs greatly from that of 

Cotton leaf crumple virus (CLCrV, from the United States), which is much more 

closely related to TGMV (from Brazil) and BGMV (from Puerto Rico). The obvious 

relation of epitope profile to geographical source among a set of begomoviruses that 

have different host ranges, and the apparently limited influence of plant host species, 

leads to two further propositions (Hong, and Harrison 1995): (a) Begomovirus 

particle proteins have evolved differently in different geographical regions, almost 

without reference to host range, suggesting that region-specific selection pressures 

are operating; and (b) plant host range may be more flexible over a period of years, 

for begomoviruses than it is for RNA plant viruses. Begomoviruses occurring in a 

particular region may thus be able in time, to adapt to additional or alternative plant 

species. 

Sequence comparisons of begomovirus genomes with emphasis on the CP has 

grouped these viruses according to their geographical origin: (1) new world, with 

subgroups including Central and South America and the Caribbean Islands (except 

the newly introduced Middle Eastern TYLCV); (2) western Mediterranean basin, (3) 
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Middle East; (4) Indian subcontinent; and (5) East and Southeast Asia and Australian 

(Rybicki, 1994; Padidam et al., 1994).  

As for the geographic diversification of begomoviruses, the insect vector B. tabaci 

can be separated into five major groups based on a partial mitochondria cytochrome 

oxidase (mtCOI) DNA sequences (Fröhlich et al., 1999) revealing almost identical 

phylogenetic patterns separating B. tabaci whiteflies according to geographical 

origin. This co-adaptation is likely to be the result of co-evolution processes between 

begomoviruses and their vectors (Harrison and Robinson, 1999; Harrison et al., 

1991; Maruthi et al., 2002). 

 

1.4 Geminivirus factors for vector transmission 

The geminivirus coat protein plays a key role in insect transmission determining 

vector specificity and transmission competence. The CPs of begomoviruses are 

antigenically related (Harrison et al., 2002) while CPs of leafhopper-transmitted 

geminiviruses (mastreviruses) are antigenically unrelated and have different vector 

species, indicating a specific correlation between vector and antigenic affinity 

(Roberts et al., 1984).  

The geminivirus coat protein gene determines vector specificity. This was 

demonstrated by replacing the CP of African cassava mosaic virus (ACMV) with 

that of Beet curly top virus (BCTV), a leafhopper (Ciculifer tenellus) (Baker) 

transmitted curtovirus. The ACMV / BCTV CP chimera was transmitted by the 

leafhopper (Briddon et al., 1990). More specific indications for CP sequences 

involved in virus transmission were presented by exchange of the CP of a non 

transmissible Abutilon mosaic virus (AbMV) isolate with that of Sida golden mosaic 

virus (SiGMV-Co), a closely related transmissible geminivirus. The resulting 

chimeric AbMV restored transmissibility by B. tabaci (Höfer et al., 1997). 

The CP amino acid composition determines whitefly transmission. This was first 

described by Noris et al. (1998) with amino acid substitutions in the CP of  Tomato 

yellow leaf curl virus (TYLCV) abolishing whitefly transmissibility in a naturally 

occurring TYLCV strain from Sicily (SicRcv). Comparing CP sequences with the 



closely related Tomato yellow leaf curl Sardinia virus (TYLSCV; Sar), aa exchanges 

were found in positions 129 (P in SicRcv, Q in Sar), 134 (H in SicRcv, Q in Sar) and 

152 (E in SicRcv, D in Sar). When TYLCSV mutants were generated with amino 

acid substitutions in those positions it was found that whitefly transmission is 

determined by a glutamine (Q) at position 134 but also a Q at position 129.  

Höhnle et al. (2001) used the closely related Central American begomoviruses 

Abutilon mosaic virus (AbMV) and Sida golden mosaic virus (SiGMV) isolated to 

study transmission by B. tabaci. Comparison of highly conserved C termini of 

transmissible and non transmissible begomovirus CP sequences showed 6 amino 

acids differing between the non transmitted AbMV and the transmission competent 

SiGMV at positions 124, 149, 174, 179, 193 and 249 . Mutagenesis of the AbMV 

coat protein then revealed that the exchange of two amino acids, Q124K and H149Q, 

restored whitefly-transmissibility. However when in addition, L at 174 was replaced 

with M, AbMV transmission efficiency was increased. Höhnle et al. (2001) 

concluded that not a concise motif, such as the amino acid triplet, aspartate-alanine-

glycine (DAG), involved in aphid transmission of potyviruses, determines 

transmissibility of begomoviruses by B. tabaci but rather a coat protein domain from 

amino acid 123 to 149, acting as a structural context for transmission, with amino 

acids positions 149 to 174 contributing to transmission efficiency.  

While investigating whitefly-transmission of WmCSV, Kheyr-Pour et al. (2000) 

found a single mutation in the CP at position 131 (D, aspartate) of an Sudanese 

isolate abolished whitefly transmissibility of this isolate maintained on infected 

plants through vegetative propagation by multiple grafting cycles. The engineered 

mutant virus WmCSV D131N was transmissible by B. tabaci, hence it was 

concluded that asparagine at position 131 conserved in all whitefly-transmitted 

geminiviruses restores transmissibility of WmCSV.  

With the recent elucidation of the ACMV begomovirus capsid morphology, studied 

in detail by cryo-electron microscopy and image reconstruction (Böttcher et al., 

2004), structural information became available that located the critical amino acids 

essential for begomovirus transmission from the studies by Noris et al. (1998), 

Kheyr-Pour et al. (2000) and Höhnle et al. (2001) to a protruding region on the CP 
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capsomer. This exposed position is suggestive for a structural role of this region in 

receptor recognition.  

 

Figure 2: Structural model of a single ACMV CP capsid with a six aa motif essential 
for begomovirus transmission by Bemisia tabaci exposed in E (violet). 
Model from Böttcher et al., 2004. 

 

1.5 Whiteflies as virus vectors  

Whiteflies are insects belonging to the family Aleyrodidae. They occur in warm 

climates where they are pests of herbaceous and woody plants. In temperate climates, 

they are usually pests of protected crops. About 1300 whitefly species in over 120 

genera have been described (Annon., 2001a; Mound and Halsey, 1978) but relatively 

few are virus vectors. One-hundred and fourteen virus species are transmitted by 

limited genera of whiteflies. In the genus Bemisia, only Bemisia tabaci (Genn.) is a 

virus vector whereas in the Trialeurodes genus, Trialeurodes vaporariorum, T. 

abutilonea and T. ricini transmit viruses. Bemisia tabaci transmits 111 virus species 

while T. vaporariorum and T. abutilonea transmit three species each. B. tabaci and 

T. vaporariorum are present in the European-Mediterranean region, though the 

former is restricted in its distribution to the Southern parts of Europe up to the South 



of France. Of the whitefly transmitted virus species, 90% are begomoviruses, 6% 

criniviruses and the remaining 4% are in the genera Closterovirus, Ipomovirus or 

Carlavirus (Jones 2003).  

 

1.6 Characteristics of Bemisia tabaci virus transmission  

The life span of B. tabaci depends on temperature but on average is 21 days. The 

adult whitefly must feed for only about 3.5 h (Acquisition Access Period, AAP) for 

acquisition of most begomoviruses   with a latency period of at least 8 h and about 10 

min of inoculation feeding (Inoculation Access Period, IAP) for virus transmission. 

The whiteflies then remain viruliferous for more than a week and up to 28 days 

which was found for TYLCV. Transovarial transmission was only reported by 

Ghanim et al., (1998) for a laboratory whitefly culture transmitting TYLCV.  

Parameters of acquisition, inoculation, retention, latent periods and number of 

viruliferous B. tabaci required for transmission of begomoviruses by adult B. tabaci 

have been studied extensively with Tomato yellow leaf curl virus (TYLCV). The 

minimum AAP was found to be between 5 min and 1 hour with TYLCV detectable 

in the head of the specimen already 5 - 10 min after access feeding, in the thorax 

after 10 min and the abdomen after 25 - 40 min (Ghanim et al., 2001; Atzmon et al., 

1998). TYLCV was translocated and reached the haemolymph after 90 min and the 

salivary glands 5.5 h later (Ghanim et al., 2001). For WmCSV transmission by 

whiteflies a 1 hour AAP and 1 hour IAP was found the minimum time necessary 

(Marchelo et al., 1997).  

A single whitefly can acquire TYLCV, transmit it to tomato plants (Cohen and 

Nitzany, 1966) and introduce virus infection. In contrast, attempts to transmit 

WmCSV from and to watermelon plants using one insect / plant were not successful 

(Marchelo et al., 1997). The rate of virus transmission increases with AAP and IAP 

and with the number of viruliferous insects. The frequency of WmCSV transmission 

increased from 12.5% after one hour AAP to 85.7% after 24 h AAP and from 11.1% 

after one hour IAP to 88.9% after 24 h IAP.  
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The rate of infection was 37.5% with 3 insects / plant and reached 100% with 15 

insects / plant (Marchelo et al., 1997), with frequency of TYLCV transmission 

increasing from 10 - 20% after a 30 min AAP to 100% after 24 – 48 h AAP (Brown 

and Czosnek, 2002). The minimum latent period for begomoviruses that was studied 

with different TYLCV isolates was between 17 – 24 h (Caciagli et al., 1995; Cohen 

and Nitzany, 1966; Mehta et al., 1994).  

B. tabaci transmission of begomovirus involves complex interactions between viral 

proteins and vector compounds (Gray and Banerjee, 1999), while the involvement of 

geminivirus capsid proteins in virus transmission has been clearly demonstrated only 

little is known about the whitefly factors determining begomovirus transmission. 

B. tabaci transmits begomoviruses in a circulative manner. The viruses are ingested 

from the plant (phloem) into the alimentary canal, translocated across the midgut into 

the haemocoel, move to the accessory salivary glands for subsequent re-inoculation 

of plants. Circulative transmission of plant viruses involves active translocation in 

the vector across multiple cell membranes. Ultimately the virus must associate with 

the vector salivary system to be inoculated into a host (Ng and Perry, 2004). In 

circulative virus/vector interactions, transmission is determined by the virus to 

successfully passage the critical barrier tissues of the alimentary canal and the 

salivary gland (Reinbold et al., 2003; Rouze-Jouan, et al., 2001; Reinbold et al., 

2001; Rosell et al., 1999; Gildow, 1993; Gildow and Gray, 1993; Ullman et al., 

1992). This mechanism is regarded as a specific interaction between the virus coat 

protein and receptors in the vector. 

During transmission, begomoviruses circulate in their vector, requiring virus 

recognition, penetration, and transport through whitefly tissues and organs. It is 

generally assumed that geminiviruses do not replicate in their whitefly vector. The 

type of virus transmission is a circulative-non propagative transmission (Cohen and 

Nitzany, 1966) and (Rubinstein and Czosnek, 1997) observed first for the 

luteoviruses Barley yellow dwarf virus, Potato leaf roll virus and Carrot mottle virus 

vectored by aphids. It is generally assumed that begomovirus transmission follows a 

strategy similar to the aphid transmitted luteoviruses (Cohen and Antignus, 1994). 



Geminivirus transmission could be divided into four distinct processes (Hunter et al., 

1998):  

a) virus ingestion from the host plant into the lumen of the whitefly alimentary 

canal,  

b) acquisition of the virus through the gut, 

c) retention in the tissues and haemocoel, and  

d) transmission through the salivary gland and into the phloem tissue of a host 

plant.  

 

1.7 Virus translocation in B. tabaci 

The path taken by the virus after being ingested by the insect vector has been 

explored by Hunter et al., (1998) for two begomoviruses, Tomato mottle virus 

(ToMoV) and Cabbage leaf curl virus (CabLCV) which were visualized by indirect-

fluorescent microscopy in dissected whiteflies. More recently, Rossel et al., (1999) 

conducted a more detailed study using Polymerase Chain Reaction (PCR) to trace 

Squash leaf curl virus (SLCV) in whole whitefly body extracts including saliva, 

haemolymph and honeydew.  

From different studies, it appears that a definite scenario of virus passage through the 

insect exists, starting with virus ingestion and passage into the oesophagus and 

foregut (Harris et al.,1995). As food enters the filter chamber, excess water is 

shunted to the ileum of the hindgut (Lindsay and Mashall, 1981), thus nutrients and 

virus become concentrated in the filter chamber. The virus may adsorb to specific 

sites on the alimentary membranes or at anterior region of the midgut with the exact 

mode of the virus entry into the cells still unknown. The virus then moves out of 

these cells into the haemolymph (Rossel et al., 1997) and eventually invading the 

salivary glands (Briddon et al., 1990; Ghanim et al., 2001) Once the virus reaches 

the salivary gland, it passes through the salivary gland membranes via small ductules 

to the salivary ducts, where it be salivated out through the salivary canal, thus being 

injecting into plant cells during insect feeding (Hunter et al., 1998).  
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Selective, or receptor-mediated, endocytosis is a ubiquitous mechanism for 

internalisation functionally important macromolecules in animal cells (Goldstein et 

al., 1985). The selectivity of receptor-mediated endocytosis is dictated by the 

presence of specific receptors on the plasma membrane of the cell, thus enabling the 

internalisation of only particular macromolecules. 

For viruses that enter the host via ingestion, as with begomoviruses, the peritrophic 

membranes must be passaged in order to penetrate midgut cells. This process is not 

fully understood. Studying the interactions of transmissible and non-transmissible 

begomoviruses with vector and non vector insects may assist in identifying the viral 

and cellular determinants involved in transmission and also elucidate the history of 

begomovirus / whitefly co-evolution. Furthermore and from a more pragmatic point 

of view, effective virus control and disease management strategies can also consider 

interfering with whitefly transmission. This however requires a solid and profound 

knowledge of the route viruses take in their vectors and the interactions underlying 

virus translocation and transmission.  

 

1.8 Objectives of the study 

A detailed study of the interactions between begomoviruses and their vectors may 

permit the identification of viral and cellular determinants of insect transmission. This 

shall be reached by an investigation of the begomovirus translocation pathway in 

whitefly insects, to localise the virus in insect organs. By including transmissible and 

non transmissible viruses and virus vectors and non vector insects, the epithelial 

barriers for virus translocation shall be discovered. Microscopical studies, to reveal 

virus at sites on whitefly organs, filter chamber, gut membrane, primary salivary 

gland and/or accessory salivary gland that function as virus recognition/receptor sites 

further contributes to the detailed description of the interactions between 

begomovirus(es) and their whitefly vector. 
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2 Materials and Methods 

 

2.1 Maintenance of whitefly cultures 

B. tabaci (biotype B) whiteflies were reared in colonies on healthy cotton plants, 

(Gossypium hirsutum L.) and tomato plants (Lycopersicon esculentum Mill.) that are 

non host plants of WmCSV. Whiteflies were maintained in insect-proof cages in a 

growth chamber at 26°C with a 16 h photoperiod. Cultures of T. vaporariorum 

insects that are not transmitting begomoviruses were established on virus-free 

tobacco (Nicotiana tabacum L.) plants and maintained in cages at 22°C, for 

comparison and reference. Adult whiteflies were collected using a hand-held 

aspirator.  

 

2.2 Transmission of WmCSV by Bemisia tabaci and Trialeurodes vaporariorum 
insects 

Virus free whiteflies were collected from B. tabaci and T. vap colonies by aspiration. 

Insects were starved for 4 h before allowing them a 48 h AAP on watermelon plants 

infected with a whitefly transmitted WmCSVwt. Insects were discharged for 72 h by 

transferring them onto a non host, healthy tomato plants. 100 specimen, discharged 

insects, were allowed a 72 h IAP on 10-15 healthy watermelon plants for inoculation 

at the first true leaf stage. Plants were sprayed with Confidor® (Bayer CropScience, 

Leverkusen, Germany) or Applaud® (Syngenta Agro, Maintal, Germany) following 

the manufacturer’s prescriptions. Plants were checked for characteristic virus 

symptoms every 2-3 days for a period of 6 weeks. Virus infections were confirmed 

by TAS-ELISA. 

All WmCSV mutants used in this study were subjected to the similar experimental 

conditions to verify their transmissibility and to generate viruliferous whiteflies 

insects for translocation studies. 

http://www.bayercropscience.de/de/pf/produkte/schnellinfo/index.asp?ID=27
http://www.bayercropscience.de/de/pf/produkte/schnellinfo/index.asp?ID=27
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2.2.1 

2.2.2 

Blocking WmCSV transmission by Bemisia tabaci 

To test for receptor recognition specificity, experiments were conducted to inhibit 

transmission of the whitefly transmissible WmCSVwt by saturating insects with 

acquisition of a non transmissible virus mutant WmCSVasp. 100 insects were fed on 

WmCSVasp infected watermelon plants for 5 days and following a 48 h discharge 

period, insects were transferred to WmCSVwt infected plants for further 5 days, 

discharged for 48 h and subsequently transferred to 20 healthy watermelon plants at 

the 2 leaf stage. After 3 days IAP, plants were sprayed with insecticides, observed for 

symptom development and tested by TAS-ELISA. 

 

Feeding Bemisia tabaci on artificial diets for WmCSV transmission and 
increased uptake of virus particles 

For ultrastructural investigations of insect organs, midgut, primary and accessory 

salivary glands respectively, the concentration of virus needed to be increased to 

facilitate localisation of virus particles. Hence purified WmCSV preparations (100 

µg/ml) were added to filter sterilized 15% sucrose in 0.1 M phosphate buffer pH 7.2, 

as artificial diet. This virus solution was placed between 2 layers of stretched 

parafilm onto which insects were allowed to feed.  

Insects from virus free cultures were collected using a hand-held aspirator, starved 

for 4-5 h, cooled on ice for 5 min to arrest movement and subsequently transferred to 

feed for 48-72h AAP on the virus-sucrose diet.  

Following the AAP, insects were placed on watermelon plants for 24 h IAP and 

collected thereafter for virus localisation experiments, insect dissection and organ 

excision and fixation. 

 

2.3 Watermelon chlorotic stunt virus, origin, virus mutants, plant inoculation 
and maintenance of virus infected plants  

WmCSV is not mechanically transmitted and in nature relies on insect transmission 

by B. tabaci for plant infection and spread. In the laboratory virus infections were 
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established for the virus/insect interaction studies using infectious clones of WmCSV 

previously described by Kheyr-Pour et al., (2000). The original virus materials, 

cloned genomic components of WmCSV in E. coli bacteria, were kindly provided by 

Dr. Bruno Gronenborn, CNRS, Gif sur Yvette, France.  

In a previous study by Kheyr-Pour et al., (2000), full length WmCSV genomic 

components DNA A and DNA B were cloned and sequence analysed. For plant 

infections, virus constructs comprising redundant genome sequences, that are dimeric 

DNA components position cloned in a head-to-tail orientation, were generated for 

WmCSV DNA A and DNA B genomic components. These were sub-cloned into the 

binary vector pBin19 and transformed into the Agrobacterium tumefaciens strain 

LBA 4404, to infect plants by agroinoculation (Kheyr-Pour et al., 1991) or by 

biolistic delivery of DNA constructs coated on gold particles using a Helios gene gun 

(BioRad). 

An infectious virus clone, comprising DNA A and DNA B genomic components, 

represented the wild type virus, WmCSVwt with characteristic symptomatology and 

whitefly transmission features. The coat protein of this virus consisted of 258 amino 

acids with a characteristic asparagine aa conserved in all whitefly transmitted 

geminiviruses at position N131.This is part of a potential N-linked glycosylation site 

(NXS/T) and hence mutation were induced in this motif (Fig. 3 bold) to provide 

proof for this hypothesis.  

 

1 MAKRTGDILI STPVSKVRRK LNFDSPYMSR ALAPTVLVTS KRRQWANRPM
51 YRKPRMYRMY RSPDVPKGCE GPCKVQSYEQ RDDVKHTGIV RCVSDVTRGS

101 GITHRVGKRF CVKSIYILGK IWMDENIKKQ NHTNQVMFFL VRDRRPYGSS
151 PMDFGQVFNM FDNEPSTATV KNDLRDRFQV MRKFHATVVG GPSGMKEQAL
201 VKRFYRVYNH VVYNHQETAK YENHTENAML LYMACTHASN PVYATLKIRI
251 YFYDSVTN 

 

Figure 3: Coat protein amino acid sequence of a whitefly transmitted isolate of 
WmCSVwt. 
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Several WmCSV mutants created by site directed mutagenesis (Fig. 4) to alter the 

amino acids in aa position 133 retained infectivity to watermelon and subsequently 

were made available for this study to investigate on vector translocation and whitefly 

transmission. 

 

 

 

Figure 4: WmCSV DNA A mutants generated by site directed mutagenesis to 
exchange thereonine at position T133 with D133 asparagine, S133 serine, 
A133 alanine and V133 valin. Boxed area reflects the protruding 6 aa motif 
in the structural model of the ACMV CP capsid presented in Fig. 2 

 

2.3.1 WmCSV host plants  

The watermelon cultivar Citrullus lanatus cv. Sugar Baby (Petroseed, France) and 

Nicotiana benthamiana were used for virus propagation. Watermelon plantlings were 

agroinoculated as 3-4 weeks old plants, with the first true leaf just unfolding. N. 

benthamiana plants were used in the 5-8 leaf stadium. Infection was confirmed by 

characteristic virus symptom development becoming visible approximately 10-12 

days post inoculation. For agroinoculation experiments the plants were maintained 

under greenhouse conditions with additional light provided for an 18 h photoperiod. 

Temperature was controlled in a closed circuit and conditioned chamber at 25 °C, to 

guarantee vir-gene induction.  
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2.3.2 

2.3.3 

Establishment of WmCSV infections by agroinoculation 

The infection of host plants with cloned viruses using the plant bacterium 

Agrobacterium tumefaciens harbouring a binary plasmid carrying viral sequences 

was used for inoculation of plants with DNA viruses (Kheyr-Pour et al., 1991). It 

utilises the principle of A. tumefaciens, to transfer the T-DNA integrated viral full 

length clones, into plant cells. To establish viral infection, replication competent viral 

intermediates need to be generated, with the induction of agrobacterial vir-genes a 

significant pre-requisite for T-DNA transfer. This activation is initiated at 

temperatures below 28 °C, at low pH and stimulated by the phenolic compounds, 

acetosyringone.   

 

Preparation of bacterial suspension cultures for agro-inoculation  

All media, solutions and distilled water used were sterilized by autoclaving at 121°C, 

1 bar for 30 min, or filter sterilized (pore size 0.2 µm). 

 

YEB medium (per liter) 

3-5 g Beef meat extract  

5 g Peptone (0.5%) 

5 g  Sucrose (0.5%) 

1 g  Bacto yeast (0.1%) 

15 g   Agar if plates were needed 

pH  adjusted to 7.2 with 1 N NaOH  

 

YEB KnRif plates (per liter) pH 7.2  

3-5 g  Beef meat extract       

5 g Peptone 

5 g  Sucrose 

1 g  Bacto yeast  
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15 g  BiTekTM-agar 

1 ml Kanamycin (80 mg/ ml H20) 

1 ml Rifampicin (100mg/ml Methanol) 

 

MS medium 

4.6 g MS (Murashige & Skoog) 

20 g Sucrose 

pH was adjusted to 5.6 using 1N KOH 

 

MMA 

MS medium 

1.95 g MES (2-(N-morpholino)ethane sulfonic acid) 

pH was adjusted to 6.3 using 1N KOH  

150-200 mM Acetosyringone (Sigma, Germany) 

 

A glycerol stock of the Agrobacterium strain LBA 4404 carrying dimers of the 

respective DNA A and DNA B genomic components of wild type or mutant 

WmCSV were streaked onto YEB KnRif plates containing the antibiotics kanamycin 

and rifampicin and grown for 48 hrs and incubated at 28 °C for 48 h. A single colony 

was transferred to 3 ml YEB KnRif adjusted to 2 mM MgSO4 and incubated 

overnight at 28 °C while shaking incubator. 300 µl of each bacterial suspension was 

then used to inoculate 50 ml YEB KnRif medium adjusted to 2 mM MgSO4 and 20 

µM acetosyringone and 1 M MES. After shaking at 28 °C for 48 h, cells were 

harvested by centrifugation in an Eppendorf centrifuge (Germany) at 4000 rpm for 

10 min. Sedimented cells were resuspended in MMA and 200 mM acetosyringone, 

diluted to OD600nm at 0.5-0.7 Bacterial cultures harbouring plasmids with DNA A and 

respective WmCSV DNA B genomic components were mixed to equal amounts and 

left for 2-3 h at room temperature to sediment debris prior to agroinoculation. 
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2.3.4 

2.3.5 

Agroinoculation of watermelon plants with cloned WmCSV genomic 
components 

About 100 µl of bacterial suspension 0.5 x 1012 cells were injected into each plant at 

the base of the stem of the plant leaves. Plants were inoculated using a 1 ml 

disposable syringe with a 28 gauge insulin needle attached. Injection was done by 

inserting several wounds into stem and leaf petioles. For controls, some plants were 

left either uninoculated or were mock inoculated with water. Agroinfection 

experiments were carried out in the BBA Biocontainment facility with all plants 

maintained under strict containment conditions following safety precautions on 

handling and disposal of bacteria and plant materials as prescribed in guidelines on 

biosafety for the BBA facility. 

To confirm presence of WmCSV DNA A in agrobacteria a polymerase chain 

reaction (PCR) was conducted as described in section (2.8). For template preparation 

bacteria were lysed using lysosyme and DNA was extracted using the high pure PCR 

template preparation kit, (Roche, Mannheim, Germany).  

 

Inoculation of watermelon plants using the biolistic Helios gene gun 

Biolistic inoculation to infect plants with cloned WmCSV constructs, was done with 

watermelon plants at the true leaf stage or with N. benthamiana at the 3-5 leaf stage. 

For each DNA delivery, two shots on the underside of leaves from the hand-held 

biolistic device were applied in a helium stream set at a pressure of 200-300 psi. 

Inoculation experiments were done under strict considerations of the biosafety 

guidelines governed by the German law (Gentechnik Gesetz, Gen TG).  

For biolistic bombardment of DNA into plant tissues for virus infection, either 

plasmid preparations containing the respective DNA clone or, total DNA 

preparations from WmCSV infected plants containing virus ssDNA and replicative 

dsDNA forms, were used.  

Plasmid preparations harbouring multimeric DNA constructs were mixed (0.5 μg of 

DNA A + 0.5 μg of DNA B) to reach approximately 1µg DNA per shot prior to 

coating onto gold microcarriers (section 2.3.5.1). When total DNA preparations from 
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2.3.5.1 

virus infected plants were used to prepare inoculum coated on microcarriers, DNA 

preparations were prepared using the DNAzol reagent (Invitrogen, Karlsruhe, 

Germany)  

 

Preparation of DNA-coated micro-carriers and gold-coated tubings for 
biolistic inoculation  

For total DNA delivery, 2 μg/shot of DNA was used, while for biolistic inoculation 

of cloned virus constructs 0.5 μg/μl of plasmids carrying DNA A and 0.5 μg/μl of 

plasmids harbouring DNA B were mixed for precipitation onto the gold. 

To coat extracted total DNA onto gold particles, 25 mg gold (BioRad, Hercules) with 

particle sizes of 1.6 micron was weighed into an eppendorf reaction tube, 100 μl of 

0.05 M spermidine was added, vortexed and immediately sonicated for 5 seconds. 

DNA attachment to the gold particles was accomplished by precipitating the DNA 

from solution to the gold micro-carriers by dropwise addition of 100 μl 1 M CaCl2 

while vortexing. The mixture was then left to stand for 10 min at room temperature, 

then vortexed to resuspend the remaining gold, left to sediment and the gold pellet 

was washed extensively three times in 1 ml of fresh absolute ethanol to remove 

residual water. The final pellet was transferred into a Falcon tube and resuspended in 

2.6 ml of 0.01 mg/ml ρolyvinyl pyrrolidone (PVP, MW 360 kD, BioRad, Hercules) 

in ethanol. 

Gold-coatTM tubing (50ft, BioRad, Hercules) was washed with fresh absolute 

ethanol using a syringe to suck in the ethanol at one end of the rubber tube. This was 

then inserted into the “Tubing Prep Station” (Biorad, Hercules) and dried for 15 min 

under as stream of Nitrogen (N2) gas connected to the “Tubing Prep Station”. The 

DNA micro-carrier solution was vortexed and immediately applied into the gold-coat 

tubing using a syringe. This was then rotated immediately in the Tubing Prep Station 

to evenly coat the inner tube wall with a layer of DNA/micro-carriers. The remaining 

particles in solution were drawn out slowly with the syringe followed by immediate 

rotation of the Gold-coat tubing for a few seconds. The tubing was then dried with 

N2 by opening the gas valve at one end of the tubing. So prepared tubing was then 
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cut into 0.5 inch length cartridges representing the projectiles that could be stored at 

10 °C until use. 

For biolistic inoculation, cartridges, where inserted into the Helios Gene Gun and 

shot to deliver DNA coated gold particles by helium discharge to generate wounds 

and entry sites into plant cells. 

 

2.4 Purification of Watermelon Chlorotic Stunt Virus WmCSV Homogenization 
buffer 

0.5 M Na-Phosphate buffer pH 6.0 

2.5 mM  EDTA 

10 mM  Na2 SO3 

0.1%  2-mercaptoethanol 

1%  Triton-X 100 

0.1%  Driselase 

 

Pellet buffer 

0.5 M  Na-Phosphate buffer pH 7.0 

2.5 mM  EDTA 

 

Sucrose buffer 

10% sucrose in pellet buffer 

 

N. bentamiana plants that were infected by agroinoculation were harvested 21-30 

days post inoculation after pronounced symptoms of WmCSV infection had 

developed. The purification procedure for WmCSV was adopted from the method 

described by (Luisoni et al., 1995) for tomato yellow leaf curl virus. Homogenisation 

and high speed centrifugation for virus concentration was followed by a 

sugargradient centrifugation step replacing the buoyant density gradient.
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Virus purification scheme  

All steps of the purification were carried out at 4 °C.  

1. Leaves were frozen in liquid nitrogen, crushed to a fine powder, and 

homogenized in a Warring blender after adding ice cold homogenisation 

buffer (1:3 w/v) containing Driselase for degradation of cell walls. 

2. The homogenate was stirred overnight at 4 °C, squeezed through 3 layers of 

cheesecloth and then emulsified by stirring in 15% ice cold chloroform for 10 

min. 

3. Phase separation for removal of the chloroform and plant debris was achieved 

by centrifugation at 10.400g for 15 min at 4 °C in a SorvallR RC - 5B 

Refrigerated Superspeed Centrifuge (Du Pont, GmbH, Bad Homburg, 

Germany) using a GSA rotor. 

4. The aqueous phase was removed, transferred to Ti 45 tubes and layered over 

a 15 ml sucrose cushion. High speed centrifugation in a OptimaTM LE-80K 

Ultracentrifuge (Beckman, Palo Alto, California, USA) was then conducted 

in a Beckman Ti 45 rotor at 125.000g for 4 h at 4 °C.  

5. After high speed centrifugation, the supernatant was discarded and pellets 

were resuspended in pellet buffer and left overnight at 4°C to allow complete 

dissolving. 

6. A further clarification step at 10.000g for 15 min at 4 °C followed and virus 

preparation where then loaded onto linear 10-40% sucrose gradients and 

directly centrifuged in a Beckman SW 41 rotor at 151.000 g for 3 h. 
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2.4.1 

7. Following the centrifugation, the sucrose gradients were fractionated 

manually by use of a peristaltic pump and collecting 20 drops aliquots.  

A 10 µl sample of each fraction was then checked in SDS page for virus coat protein 

and presence of other protein impurities. 

Virus containing fractions were combined and sucrose was removed by high speed 

centrifugation in a Beckman Ti 70 rotor at 225.000 g for 2 h at 4 °C. 

Purified virus preparations were re-checked either by polyacrylamide gel 

electrophoresis PAGE or by ISEM to confirm virus purity, identity and the 

approximate concentration needed for artificial feeding experiments. 

 

Separation of proteins by SDS- polyacrylamide gel electrophoresis (SDS-
PAGE) 

To determine purity of the WmCSV preparation and molecular weight of the coat 

protein samples from partially purified virus and purified virus preparations were 

subjected to SDS-polyacrylamide gel electrophoresis (PAGE) using 12% 

discontinous polyacrylamide gels. For molecular weight determination, a molecular 

weight marker (BioRAD, Munich, Germany; Protein standard, phosphorylase b 

97,400 kDa; bovine serum albumin 66,200 kDa; ovalbumin 45,000 kDa; carbonic 

anhydrase 31,000 kDa; soybean trypsin inhibitor 21,500 kDa; lysozyme 14,400 kDa) 

was separated in parallel to the virus samples. 

 

Solutions for SDS-PAGE  

30% Polyacrylamide stock solution 

Resolving gel buffer (4x):  1.5 M Tris-HCl, pH 8.8 

Stacking gel buffer (4x): 1 M Tris-HCl, pH6.8 

10% (w/v) sodium dodecylsulphate (SDS) 

10% (w/v) ammonium persulfate (APS) 
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TEMED: N,N,N`,N`-tetramethylethylenediamine 

 

2x sample buffer, pH6.8, (Laemmli, 1970) 

10% SDS 12.5 ml 

Stacking gel buffer  20.0 ml 

Glycerol   10.0 ml 

1% bromophenol blue 2.5 ml 

Mercaptoethanol  5.0 ml 

 

Electrophoresis buffer, pH 8.3 

25 mM  Tris base,  

192 mM  Glycine 

0.1% (w/v)  SDS 

 

Coomassie staining solution 

Coomassie brilliant blue R 250  0.25% 

Methanol    50% 

Glacial acetic acid   10% 

 

Destaining solution (per liter) 

Methanol    25% 

Glacial acetic acid   10% 
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Table 1: Solutions for preparing 12% resolving gels and 5% stacking gels for SDS-
PAGE. 

 

Solution 20 ml Resolving gel (12%) 5ml Stacking gel 5% 

Distilled water 6.6 ml 3.4 ml 

30% acrylamide 8.0 ml 0.85 ml 

Resolving gel buffer (4x) 5.0 ml - 

Stacking gel buffer (4x) - 0.625 ml 

10% SDS 200 µl 50 µl 

10% APS 200 µl 50 µl 

TEMED 8 µl  5 µl 

 

Using a dual gel caster (Mighty Small TM SE 245, Amersham Pharmacia Biotech, 

Freiburg, Germany), solutions for the resolving gel were mixed carefully (without 

introducing air bubbles), poured between glass plates and overlaid with 1ml 

isopropanol. When polymerization was complete (approx. in 30 min.) the overlay 

was poured off and the gel well drained using Whatman 3MM paper. A comb used to 

form gel slots was inserted and solutions for the stacking gel were mixed and poured 

on top of the resolving gel. The stacking gel was allowed to polymerize for 20 min. 

The comb was removed and the gel was carefully washed with distilled water to 

remove unpolymerized gel solution. The gel plates were subsequently detached from 

the caster and fixed to the gel apparatus to form upper and lower buffer chambers, 

which were filled with cold electrophoresis buffer. 

 

2.4.1.1 Sample preparation, electrophoresis and protein staining 
Semi-purified and purified virus preparations were mixed (1:1 w/v) with 2x Laemmli 

sample loading buffer and proteins were boiled for 6 min for denaturation, placed on 

ice for immediate loading on the gels. 20 µl of each sample to be analysed was 
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loaded on gels (10cm long x 8 cm wide x 2mm thick) with the respective protein 

molecular weight marker loaded on lane 1. 

Gel electrophoresis was conducted at 100 volts in a vertical gel electrophoresis 

apparatus Mighty Small II, Amersham Pharmacia Biotech) for about 1.5 h or until 

the bromophenyl blue dye had migrated to the bottom of the gel. 

After electrophoresis, the gel was carefully removed from the glass plates and stained 

by soaking in the staining solution for 20 min with gentle agitation. Excess stain was 

then removed by immersing the gel for 1 h in destaining solution changing for fresh 

solution every 15-20 min. 

 

2.5 Detection of WmCSV by Enzyme linked immunosorbent assay 
(ELISA)Sample preparation 

Virus infection in host plants of WmCSVwt and the different WmCSV mutants was 

tested using Triple Sandwich Antibody ELISA (TAS-ELISA) essentially as 

described by Thomas et al. (1986). Microtitre plates (96 wells) were coated with a 

polyclonal WmCSV IgG (DSMZ AS-0830) while monoclonal antibodies raised 

against TYLCV (general begomovirus Mab, DSMZ AS-0546/1) were used as 

detecting antibodies. 

For ELISA, the youngest plant leaves were collected and ground 1:10 (w/v) in 

sample extraction buffer.  

 

Sample extraction buffer 

Tris pH 8.4 (per liter): 

6.05 g  Tris 

7.56 g  Na2SO3 

add up to 1 liter with distilled water. 
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ELISA Buffers 

Phosphate buffered saline (PBS); 10x PBS pH 7.4 (per liter): 

80 g  NaCl 

2 g  NaN3 

2 g  KCl 

14.4 g  Na2HPO4.2H2O 

2 g KH2PO4 

dissolve in 800 ml distilled water, adjust pH, make up to 1 liter. 

 

Coating buffer, pH 9.6 (per liter): 

1.59 g  Na2CO3

2.93 g  NaHCO3

0.20 g  NaN3 

dissolve in 900 ml distilled water, adjust pH, make up to 1 liter. 

 

Washing buffer-PBST (per liter):  

100 ml  10x PBS, pH 7.4 

500 µl  Tween 20 

make up to 1 liter with distilled water. 

 

Conjugate buffer, pH 7.4 (per liter):  

100 ml  10x PBS 

500 µl  Tween 20 

20 g  PVP 10,000 (Mr) 

0.2 % egg albumin  

make up to 1 liter with distilled water. 
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Substrate buffer, pH 9.8 (per liter):   

97 ml  Diethanolamine 

0.2 g  NaN3

dissolve in 600 ml distilled water,  

adjust pH with HCl, make up to 1 liter. 

 

The alkaline phosphatase IgG conjugate was detected using the substrate, p-

nitrophenyl phosphate (Sigma, N9389) at a concentration of 1 mg/ml in 1 M 

diethanolamine buffer pH 9.8.  

 

TAS-ELISA  

For all ELISA tests, Microtitre plates (Greiner Microlon medium binding) were used 

and generally volumes for each reactant were kept at 100 µl/well. 

Between incubations 3 intensive washing steps were carried out by repeated soaking 

of the plates in PBS-T washing buffer, tapping dry the wells and plate after the final 

third PBS-T removal. After step 2, application of the blocking solution, the plate was 

not washed and only the blocking solution was removed.  

Microtitre plates (96 wells) were coated with WmCSV IgG (DSMZ AS-830) diluted 

1:1000 (v/v) in coating buffer and incubated for 3 h at 37 °C. 

After washing in PBS-T, blocking was done by adding 2% skimmed milk in PBST 

and incubating for 30 min at 37 °C.  

Sap extracts were prepared by grinding plant materials in extraction buffer (1:20 

w/v) adding 100 µl extract to the microtitre well and incubating it overnight at 4 °C. 

Negative and positive controls, which were extracts from healthy plants and from 

plants infected with known begomoviruses were used as negative and positive 

controls, respectively. 
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After thorough washing in PBS-T, Mabs raised against TYLCV (general 

begomovirus Mab, DSMZ AS 546/1) were used as detecting antibodies at dilutions 

in conjugate buffer of 1:1000 (v/v). Mabs were incubated for 3 h at 37 °C. 

After washing the plates, an alkaline phosphatase labelled (aP), rabbit-anti-mouse 

IgG-aP, (DAKO A/S, Denmark) diluted 1:1000 (v/v) in conjugate buffer was added 

(100 µl/well) and the plates incubated for 45 min at 37 °C. 

The substrate, p-nitrophenyl phosphate diluted 1 mg/ml in substrate buffer was added 

and incubated for 1 h and 2h at 37 °C to monitor substrate conversion.  

Quantitative measurements of the p-nitrophenyl substrate conversion, resulting in a 

yellow colour was made by determining absorbance at 405 nm (A405) in a Titertek 

Multiscan® MCC/340 model spectrophotometer (Labsystems Co., Finland). The 

mean absorbance readings of non-infected controls were determined and twice the 

values were used as the positive/negative thresholds. 

 

2.6 Dissection of whiteflies and excision of insect organs 

After 48 h AAP, insects were collected from their respective host plants by aspiration 

and placed on ice for 5 min to arrest movement. Specimen were placed on a glass 

slide in a drop of insect physiological saline (IPS) and dissected under a stereo 

microscope (Zeiss, Stemi 2000C) essentially as described by Bandla et al., (1998) for 

thrips. Isolated organs were washed thoroughly with dd H2O and adhered to an 

eyelash for transfer to fresh 10 µl sterilized dd H2O in an eppendorf tube.  

Insect physiological saline, pH 7.5 

4.5 g  NaCl 

0.1 g  KCl  

0.1 g  CaCl2

0.1 g  MgCl2

0.1 g NaHCO3 

2.0 g Glucose  adjust volume to 1 liter, autoclave. 
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Removal of midgut 

To dissect midgut, the abdomen was separated from the thorax at their junction. Then 

its content was expelled into IPS by pushing gently the abdominal part. Midguts 

were isolated, gently cleaned from other tissues and flushed several times with water 

(Ghanim et al., 2000). Midguts were also isolated using a fine insect needle (Ehlert 

& Partner, Germany) placed with its fine tip into the last third of the abdomen to pull 

the midgut out of the abdomen essentially free of other organ sections. 

 

Isolation of salivary glands 

To isolate salivary glands, the pro-thorax with the head was separated from the 

meso-thorax and abdomen. The glands were teased away from the head and after 

pushing it the salivary gland appeared aside. Salivary glands were left for 2 min in 

Toluidine blue until they adsorbed the dye for better visualisation during dissection. 

The pair of primary salivary glands and accessory salivary glands was flushed 

several times with sterile dd H2O and collected using surface sterilized eyelashes for 

transfer. 

 

Dissection of stylet and head 

Stylets were pulled out from the head section, flushed several time with sterilized dd 

H2O and collected in PCR tubes. Head segments were separated from the whole 

body, washed as described above and collected in a PCR tube. 

 

Collection of haemolymph fluid 

Adult whiteflies were collected by aspiration from respective host plants, 

immediately cooled on ice for 5 min to arrest movement. Female whiteflies were 

fixed by their dorsal side in a fresh mineral oil droplet. A haemolymph droplet was 

forced out from an immersed individual by removing a hind wing using a fine tip 

(0.15 µm) insect needle from. Haemolymph droplet was collected using a sterile 
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2.7.1 

2.7.2 

glass 1-5 µl capillary pipette and immediately transferred to a tube containing 100 µl 

of sterile TE buffer (pH 8.0) and 10 mM phenylmethyl sulfonyl fluoride (Sigma 

chemical Co., St. Louis) to prevent coagulation (Rosell et al, 1999). 

 

2.7 Isolation, quantification and electrophoretic analysis of DNA  

Extraction of DNA from whole whitefly insects 

Total genomic DNA of whiteflies was isolated using the high pure PCR template 

preparation kit (Roche, Mannheim, Germany). Extractions were carried out 

essentially following the manufacturer’s instructions with modifications according to 

Abdullahi (2001). 

2-3 whitefly individuals were transferred into a sterile 1.5 ml eppendorf tube and 

homogenized with a sterile micro pestle in 15 µl tissue lysis buffer. After addition of 

another 35 µl lysis buffer and 10µl proteinase K (20 mg/ml), the whitefly 

homogenates were gently mixed and incubated for 1 h at 55 °C.  

After addition of 50 µl of binding buffer, mixing and further incubation for 10 min at 

72 °C, 25 µl isopropanol was added prior to transfer of the homogenate to a filter 

tube for centrifugation at 8000 rpm for 1 min. The flow through was discarded, 

250µl wash buffer was added to the upper reservoir of the filter tube and 

centrifugation was repeated. After another round of washing, the filter tube 

containing DNA bound to the matrix was inserted in a clean 1.5 ml sterile eppendorf 

tube and purified DNA was released by addition of 50 µl pre-warmed (70 °C) elution 

buffer and centrifugation for 1 min at 8000 rpm. Aliquots of the DNA preparations 

were analysed by agarose gel electrophoresis to assess the integrity and the quantity 

of insect genomic DNA. 

 

Extraction of DNA from dissected insect organs and haemolymph fluids 

Isolated insect organs from viruliferous and non viruliferous whiteflies presented 

sufficiently accessible template DNA for PCR analysis to amplify WmCSV 
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2.7.3 

2.7.4 

sequences. Excessive washing with double distilled sterilized water (dd H2O) prior to 

submersion in PCR reaction buffer and boiling released sufficient viral DNA for 

PCR. All other DNA extraction methods used for whitefly DNA preparations 

(Abdullahi, 2001), resulted in poor or irreproducible PCR due to loss of template 

DNA during extraction.  

Haemolymph fluids collected from 10 insects were adjusted to 3 % sodium dodecyl 

sulphate (SDS) and 1mg/ml proteinase K, then incubated at 55 °C for 1 h, boiled at 

95 °C for 5 min and extracted with phenol/chloroform (1:1 v/v). Samples were mixed 

by vortexing, and phase separation was reached by centrifugation at maximum speed 

>12 000 rpm for 5 min. The aqueous phase was collected and nucleic acid was 

precipitated adding 2.5 vol ethanol and 0.3 M sodium acetate and overnight 

incubation at -20 °C. Total nucleic acids were pelleted by centrifugation, washed 

with 70% ethanol, dried and dissolved in 20 µl sterilized dd H2O preheated to 70 °C 

(Rosell et al, 1999). 

 

Extraction of total DNA from virus-infected plants 

Total DNA was extracted from plant tissues using either a plant DNA 

minipreparation method (Dellaporta et al., 1983) for PCR analysis or by using the 

DNAzol reagent (Invitrogen, Germany) for DNA extraction when total DNA from 

WmCSV infected plant tissues was prepared as inoculum for gold particle coating 

and subsequent biolistic delivery to infect plants using the Helios gene gun. 

 

Extraction of plant DNA by a plant minipreparation method   
(Dellaporta et al., 1983) 

Fresh leaf tissue (100 – 150 mg) harvested in a polythene sample bag was shortly 

placed in liquid nitrogen and then crushed in 1 ml extraction buffer (100 mM Tris 

HCl, pH 8.0, 50 mM EDTA, 500 mM NaCl, 1% 2-Mercaptoethanol) and 10 μl of 10 

μg/μl RNAse A, using a wallpaper roller.  
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2.7.5 

An aliquot of 500 µl was transferred into a 1.5 ml eppendorf tube, 33 μl of  20% 

SDS was added and incubated for 10 min at 65 °C. After addition of 160 µl of 5M 

potassium acetate, the mixture was thoroughly vortexed and then centrifuged for 10 

min at 13.000 rpm. About 400-450 µl of the clarified supernatant was carefully 

transferred to a new tube, 0.5 vol isopropanol was added, the mixture was vortexed 

and centrifuged for 10 min at 4 °C to precipitate nucleic acids. Isopropanol was 

carefully decanted; DNA pellets were washed with 500 µl of 70% ethanol and 

centrifuged.  

The final DNA pellet obtained was air dried at 37 °C and resuspended in 100 µl of 

dd H2O. An aliquot (5 µl) of each sample was subjected to agarose electrophoresis to 

check for DNA quantity and integrity of the preparation.  

 

Extraction of total DNA from diseased plants using the DNAzol reagent  

Plant DNA preparations extracted by the Dellaporta DNA minipreparation protocol 

were not of sufficiently clean for an even coating of gold particles Hence total DNA 

preparation were made from diseased plant leaves using the DNAzol reagent 

(Invitrogen, Karlsruhe, Germany). 

Portions of one or two fresh diseased leaves, approximately 0.1 g in weight were 

ground with a pestle and mortar in liquid nitrogen. 300 μl freshly prepared DNAzol 

reagent (20 μl 2-mercapthoethanol and 100 mg PVP MW 10000 (SERVA, 

Heidelberg, Germany) added to 20 ml DNAzol) was added and incubated at 25 °C 

for 5 min while shaking. Then 300 μl chloroform was added, mixed vigorously and 

incubated at 25 °C for another 5 min. Phase separation was reached by centrifugation 

for 10 min at 10.000 rpm, the aqueous phase was carefully removed and transferred 

to a fresh tube. DNA was precipitated subsequently by mixing 150 µl absolute 

ethanol to the sample.  

Samples were mixed by vortexing and kept for 10 min at room temperature to settle 

the DNA precipitate. The supernatant was carefully decanted and 300 μl of a DNA-

ethanol wash solution was added (DNAzol mixed with 0.75 volume of 100% 

ethanol). Samples were kept for 5 min, centrifuged for 10 min at 10. 000 rpm and 
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DNA pellets were subsequently washed with 300 μl of  70% ethanol and centrifuged 

for 10 min at 10.000 rpm; Residual ethanol was removed by air drying and DNA was 

dissolved in 70 μl Tris/EDTA buffer (10/1 mM, pH 8.0) adjusted with 2 μl of RNAse 

A (10 μg/μl). 

 

Quantification of DNA  

Total DNA was quantified taking spectrophotometric absorbance readings at 

wavelengths (λ) of A260 nm and A280nm permitting an estimation of nucleic acid 

content and purity (Sambrook et al., 1989).  

Sample absorbance A260nm = 1 corresponds to 50 μg/ml dsDNA or 40 μg/ml/ssDNA 

or RNA. The A260nm/A280 nm ratio provides an estimate of the purity with pure 

preparations of DNA having an A260 nm/A280 nm coefficient between 1.8 and 2.0. 

 

Agarose gel electrophoresis 

For analysis of total DNA preparations, PCR amplicons or plasmid DNA, standard 

agarose gels (1 or 2 % w/v) prepared in 1x TAE electrophoresis buffer (0.04 M Tris 

acetate, pH 8.0; 1 mM EDTA) were used. 

Agarose powder was added to TAE buffer and microwaved for 2 min to dissolve the 

powder. To the cooling solution, 0.005 % ethidium bromide was added and the 

solution subsequently poured into a tray in which a comb was inserted to form 

sample slots. The agarose gel was allowed to solidify for approximately 30 min 

before the comb was removed and the gel immersed in the electrophoresis tank 

containing TAE buffer.  

To 3-10 µl of DNA sample, 3 µl of sample buffer were added and the total volume 

(6-13 µl) loaded into a slot in the gel. The gel was run at 120 volts and maximum 

current for 1-1.5 h before being viewed under UV light and photographed. λ PstI 

digested phage DNA (Fermentas NBI, Germany) was used as molecular size 

markers. 
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2.7.6 

The amount of DNA was estimated in agarose gels after electrophoresis. The 

fluorescence emitted by ethidium bromide intercalating into the dsDNA during 

electrophoresis was compared with the fluorescence emitted by the dsDNA 

fragments of the DNA size marker. 

 

Southern blot hybridization analysis for PCR amplicon verification 
Preparation of labelled DNA probes 

To generate a labelled DNA probe by PCR, a WmCSV DNA A full length clone in 

the plasmid pBluescript SK- was used as template. Labelling was done by PCR 

incorporating the hapten digoxigenin dUTP (DIG-dUTP) into DNA during DNA 

synthesis. Prior to PCR, an aliquot of the a DNA minipreparation was linearised 

outside the amplification region, to prevent formation of circular DNA products from 

circular templates. For labelling, the PCR DIG Probe Synthesis Kit (Roche, 

Germany) was used following the manufacturer’s recommendations. 

 

Reaction mix 

PCR buffer     5 µl 

PCR DIG labelling mix   5 µl 

WmCSVA 1286c   1 µl 

WmCSVA 839s   1 µl 

Taq polymerase    0.5 µl 

Template DNA (plasmid, 50 ng)  1µl 

H2O adjusted to       50 µl 

 

The reaction mix was prepared and subjected to PCR. DNA amplification was done 

in 30 cycles following an initial denaturation step at 95°C for 5 min. 30 cycles of 

95°C for 30 sec, 50 °C for 40 sec, 72 °C for 40 sec were conducted and PCR was 

terminated by a final extension at 72 °C for additional 10 min. The amplification 
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reaction, essentially comprising a DIG-dUTP labelled 429 bp WmCSV DNA A 

fragment, was kept at – 20°C prior to use. 

DNA transfer 

Southern blot: For hybridization analysis, DNA separated by agarose 

electrophoresis was transferred to nylon membranes in a Southern blot procedure.  

Membranes: Boehringer (Nylon membranes, positively charged) 

 

Transfer buffer pH 7.0 

20 x  SSC 

3 M  NaCl 

0.3 M tri-Na-Citrate (C6H5Na3O72H2O) 

 

Denaturation buffer 

1.5 M  NaCl 

0.5 M NaOH 

  

Neutralization buffer 

0.5 M   Tris HCl, pH 7.5l   

1.5 M   NaCl 

0.01 M  Na2EDTA  

PCR reactions were separated by agarose gel electrophoresis and photographed for 

documentation. For transfer to nylon membranes, DNA in gel was denatured by 

submersion of the agarose gels in denaturation buffer for 20 min while shaking, then 

changing into neutralisation buffer for 15 min followed by equilibration in transfer 

buffer prior to vacuum blotting. DNA was blotted onto positively charged nylon 

membranes for 90 min, applying 25 psi vacuum. Slots were marked with a pencil 

before removing the gel from the vacuum apparatus: Upon completion, the 
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membrane was quickly checked under UV light and then was washed for 5 min in 

transfer buffer to remove residual agarose on the gel surface. The membrane was 

placed on dry filter paper to remove excess moisture and DNA was fixed by UV 

cross linking at a wavelength of 254 nm and 1200 joules. Membranes were then 

dried and stored in the dark at room temperature or, directly used for hybridization. 

 

DNA hybridisation 

Hybridisation solution 

50% (v/v) formamide 

7%  SDS 

2%  ROCHE blocking reagent 

5 x  SSC 

0.1 (w/v)  N-lauroylsarcosine, 

50 mM  Sodium hydrogen phosphate pH 7.2 

 

In a prehybridisation step, membranes were first prewetted in 2 x SSC and carefully 

placed in a hybridisation tube to which 10-25 ml of pre-hybridisation solution were 

added. Prehybridisation was done in a hybridisation oven (Techne, UK) for 90 to 120 

min at 42 °C by slowly rotating the tubes. During this step, membranes were blocked 

to inhibit unspecific DNA binding and cross-hybridisation to non target molecules 

leading to false interpretations.  

Hybridization was initiated following this membrane equilibration by changing the 

hybridization solution and adding 10 ml fresh liquid. For DNA annealing and to form 

specific labelled DNA/DNA hybrids, the DNA probe was boiled for 10 min at 95 °C 

to separate the double DNA strands and added directly to the hybridization solution.  

Hybridization was done overnight at 42 °C by gently rotating the tube to keep 

membranes immersed in solution at all times.  

The post hybridization washing removed unbound and excess DNA probe and DNA 

probe mismatching with non homologous DNA at low stringency. First, the 
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hybridization solution was removed and stored at -20 °C for subsequent use. The 

membrane was then washed with 2 x SSC, 0.1% SDS for 10 min at room 

temperature, followed by a 2 times washing cycle at high stringency in 0.1 x SSC, 

0.1% SDS for 15 min at 68 °C . After the post hybridization washing, the membranes 

were either stored dry or subjected directly to the immunological detection of 

digoxigenin labelled DNA. 

 

Immunological detection of DNA hybrids 

For hybridization analysis, a protocol following the procedure and recommendations 

of ROCHE, for the detection of digoxigenin in labelled DNA hybrids was adopted.  

 

Maleic acid buffer 

0.1 M  Maleic acid pH 7.5 

0.15 M  NaCl 

 

Washing buffer 

0.1 M  Maleic acid pH 7.5 

0.15 M NaCl  

0.3%  Tween 
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Blockung stock 

Blocking reagent (Roche), 10% (w/v) in Maleic acid buffer 

 

Blocking buffer 

1:10 (v/v) dilution of blocking stock in Maleic acid buffer 

 

Substrate buffer 

0.1 M  Tris pH 9.5  

0.1 M  NaCl  

 

Membranes were equilibrated for 5 min in washing buffer and unspecific antibody 

binding sites were blocked by incubation in blocking buffer for 30 min at RT. 

Subsequently, the membrane was incubated with an anti-digoxigenin antibody fab 

fragment conjugated to alkaline phosphatase (Roche, Cat. No. 1 093 274), diluted 

1:10000 (v/v) in blocking buffer, for 45 min. Excess antibody was removed by 

washing the membranes 2 times in washing buffer for 15 min followed by 

equilibration for 3 min in substrate buffer prior to adding the chemiluminescent 

substrate CSPD (Roche, CSPD ready-to-use) for the detection of DIG labelled DNA. 

This was done in a moist cover and under exclusion of light. Excess moisture was 

first removed and membranes were placed on plastic sheets. Then 20 drops of CSPD 

were applied, membranes were covered with a second folia and CSPD was evenly 

spread over the membranes by wiping the surface of the sheets with a tissue paper, to 

also squeeze out excess liquid. The damp membrane sandwich was placed between 

Whatman filter papers in an X-ray cassette to exclude light, incubated for 5 min at 

RT and 10 min at 37 °C. The membrane was then exposed to X-ray film (Agfa Curix 

MR 800) for 15–25 min placed in the cassette. After exposure, which was 

sequentially repeated with new X-ray films to obtain the best signal, the X-ray film 

was developed following standard procedures for black/white film development. 
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2.8 Detection of WmCSV by Polymerase Chain Reaction, PCR  

A PCR reaction was conducted using DNA A primers located in the coat protein and 

REn genes. The combination  

WmCSVA 1286c (downstream, complementary)  

5’- GCGATCGTTTCCAAGTTATGCGAA -3’  

and WmCSVA 839s (upstream, sense)  

5’- CGGCCTCAGACTGGTCGTTTCTTAA -3’ 

amplified a 429 bp DNA A fragment indicating for the presence of WmCSV 

sequences in whole insects and in dissected whitefly organs. 

Dissected whitefly organs were subjected to PCR in a total volume of 50 µl. The 

reaction consisted of 2.5 µl MgCl2 (50 mM), 1µl of each primer (50 pmol), 5 µl of 

Taq DNA polymerase buffer, 1µl dNTPs (25 mM) and 0.5 µl Taq DNA polymerase 

(Invitrogen, Karlsruhe, Germany) was added to the mix. DNA amplification was 

reached using the following temperature cycles: an initial denaturation step of 3 min 

at 95 °C followed by 35 cycles of 1 min denaturation at 95 °C, 1.5 min primer 

annealing at 56 °C and 2 min strand extension at 72 °C. PCR amplification was 

terminated with a final extension step for 7 min at 72 °C. Samples were removed and 

kept at – 20 °C or analysed directly in agarose gel electrophoresis. Here fore, 10 µl of 

the amplified reaction mix were analysed by electrophoresis in 2% agarose gels. 

DNA from whole viruliferous insect extracted using the high pure PCR template 

preparation kit (Roche, Mannheim, Germany) were included as a positive control, 

DNA from non-viruliferous insect served as negative PCR control. 
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2.9 Detection of WmCSV mutants using immunocapture PCR (IC-PCR)  

Begomoviruses do not require coat protein for plant infection and transport through 

the plant. To verify that WmCSV mutants are assembled into virions an 

immunocapture PCR (IC-PCR) was conducted using the polyclonal antibody raised 

against watermelon chlorotic stunt virus (DSMZ AS-0800) as the trapping antibody.  

 

IC buffers 

Coating buffer, pH 9.6 

1.59 g Na2CO3

2.93 g NaHCO3 

0.2 g NaN3 

adjust to 1 liter 

 

TBST, pH 8.0 

10 mM Tris-HCl   

150 mM  NaCl 

0.05%   Tween-20  

 

Extraction buffer I  

2.4 g  Tris 

 8 g  NaCl  

0.5 ml Tween 20 

0.2 g  KCl 

0.2 g  NaN3 

adjust to 1 liter, pH 9.0 
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Extraction buffer II  

2.4 g Tris  

20 g PVP  

8 g NaCl 

0.5 ml Tween 20 

0.2 g  KCl 

0.2 g  NaN3 

make up to1 liter, pH 9.0 

 

Immunocapture PCR (IC-PCR) 

For sample preparation, infected leaves were homogenized (1:20 w/v) in extraction 

buffer I. Alternatively, small pieces (0.1 g) of infected leaves or 1-5 whitefly 

specimen were homogenised in 100-200 µl extraction buffer II.  

200 µl of WmCSV IgG (diluted 1:1000 (v/v) in coating buffer) were added to each to 

0.2 ml PCR tube and incubated at 37 °C for 3-4 h.  

WmCSV antibody solutions were removed from the tubes which were subsequently 

washed 3 times with TBST.   

100-200 µl of the virus homogenates were added to the PCR tubes and incubated for 

18 h at 4 °C.  

Samples were discarded and the tubes were thoroughly washed 3x with TBST.  

PCR tubes were dried; and10 µl dd H2O was added and boiled at 100°C for 5 min.  

A 50 µl PCR reaction was set up and conducted directly in those capture tubes as 

stated in section 2.8. 
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2.10.1 

2.10.2 

2.10 Electron Microscopy 

Preparation of specimen grids and carrier films  

For electron microscopy, nickel grids (75 Mesh per inch) or copper grids (400 mesh 

pro inch), (Plano, Wetzlar, Germany), (Stockem, 1970) were used throughout the 

experiments. A support film of 0.5 % pioloform dissolved in chloroform was used to 

coat the grids which subsequently were treated with carbon vapour to stabilize the 

specimen sections caught on the respected grid. Sections were suspended into water 

and adsorbed onto the carbon-coated pioloform films on the grids.  

Since carbon surfaces become contaminated upon storage and thus hydrophobic, it is 

recommended to glow discharge the grids surface prior to use. This was done under 

vacuum in a vacuum evaporator (Balzers, WF006) applying 5 x 104 mbar at 2400 

Volt. To render the coated grids hydrophilic just before use, grids were lightly treated 

again with carbon vapour. For in-situ hybridization carbon treated grids were heated 

for 10 min at 100 °C to stabilize the pioloform layer against mechanical damage 

during long hybridisation procedures and, to render these grids more hydrophilic. 

 

Adsorption preparations 

To confirm presence of virus particles, adsorption preparations were done with sap of 

infected plants, or with purified virus preparations in virus buffer. A leaf disc was 

excised from a WmCSV infected watermelon plant and crushed with a sterile glass 

pestle in 50 µl of phosphate buffer (100 mM KH2PO4/Na2HPO4 pH 7.0). Two sets of 

carbon coated cupper grids (400 mesh pro inch) were floated on a 10µl drop of 

infected and healthy plant homogenate to adsorb to virus in virus preparations for 15 

min or in plant homogenates for  3 h. Grids were subsequently washed with 40 drops 

dd H2O, then without being dried, contrasted using 5 drops of 1% aqueous uranyl 

acetate and subsequently dried using filter paper prior to electron microscopical 

examination (Milne, 1984). Virus particles observed in EM were counted in a surface 

area of (10.3 µm2) where 1-10 of virus particles per screen surface area was 

sufficient estimation of virus concentrations used for insect feeding experiments and 

to ascertain virus presence. 
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2.10.3 

2.10.4 

Immunosorbent Electron Microscopy (ISEM) 

The technique, developed by Derrik (1973), involved trapping of virus particles from 

suspension by virus specific antibodies coated on the grid prior to virus adorption. 

Virus particles become selectively attached to the grid while host plant material is 

easily removed by subsequent washing steps (Dijkstra and de Jager, 1998). This 

method is highly sensitive by increasing the number of virus particles trapped on EM 

grids. 

ISEM was done as described by (Milne and Lesemann 1984). Freshly prepared 

copper grids were incubated for 5 min on a 10 µl drop of WmCSV antiserum (DSMZ 

AS-0803) diluted 1:1000 (v\v) in sample buffer (100 mM KH2PO4/Na2HPO4 pH 7.0, 

2% PVP, 0.2% sodium sulfite). After washing with 20 drops of phosphate buffer 

(100 mM KH2PO4/Na2HPO4 pH 7.0), the grids were floated onto infected plant leaf 

extracts for 3 h at room temperature homogenized in buffer 3 in order to facilitate 

virus particle attachment. After washing with 40 drops of distilled water, grids were 

negatively stained with 5 drops of 1% aqueous uranyl acetate.  

All EM preparations were viewed in a Zeiss TEM (906) transmission electron 

microscope.  

 

ISEM and Decoration tests 

In this experiment, ISEM captured virus particles were incubated with 10µl of 

polyclonal IgG in two dilutions 1:5 (v/v) and 1:50 (v/v) for at least 15 min, 

subsequently washed with dd H2O and contrasted using 1% aqueous uranyl acetate. 

This experiment provides an indicating for the antibody affinity to the respective 

virus, and is used for specific identification of a virus in a given sample (Milne, 

1984; Milne & Luisoni, 1977). The antibody decoration is displaying a more or less 

dense halo on the virus particle depending one the labelling density. 
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2.10.5 Immunogold- labelling of purified virus particles 
Gold immunolabelling experiments were applied to investigate the effect of aldehyde 

fixation on virus antigenicity (to evaluate eventual denaturation of virus epitopes) 

and to determine the stability and intensity of gold particle binding to virus particles. 

Captured virus particles were fixed in a mixture of 0.5% glutaraldehyde and 4% 

paraformaldehyde in PBS, pH 7.4, for 10 min. Decoration with polyclonal antibody 

was done as described in section 2.10.3, subsequently followed by gold 

immunolabelling of decorated virus particles. This was done by using a goat anti 

rabbit fab`2 fragment conjugated to 10 nm gold (British Biocell Internaional) in a 

dilution of 1:50 (v/v) for 30 min. 

 

2.11 Localization of WmCSV in insect organs 

To achieve the maximum retention of antibody binding, different 

immunolocalization strategies were adopted.  

In the pre-embedding immunolocalization, the specimen was fixed through a light 

fixation treatment prior to immunolocalization or first subjected to 

immunolocalization and then fixed. After a dehydration step following 

immunolocalization and fixing, embedding was done in LR white medium at 60 °C. 

In post-embedding immunolocalization, specimen were embedded either using LR 

white as embedding medium followed by polymerization at 60 °C or using Lowicryl 

as an embedding medium with polymerization at -30°C using the Progressive 

Lowering Temperature technique (PLT). 

For pre- and post-embedding methods organs were isolated in IPS to maintain tissue 

integrity replacing IPS directly with fixation solution depending on the method 

described below.  
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2.11.1 Pre-embedding Immunolocalization 

Three methods were adopted to improve antigen antibody binding and reaction. 

Method I: This method was essentially followed as described by Driss-Ecole et al. 

(2000) 

1. Dissected insect organs were fixed in a mix of 0.5% of glutaraldehyde and 

4% paraformaldehyde for 2-3 h at 4 °C; 

2. subsequently treated with 0.5% Triton X 100 for 5-15 min, to enhance 

permeability; 

3. free aldehyde groups from earlier fixation steps were inactivated by treatment 

with sodium borohydride for 15 min (Yi et al., 2001) or with 50 mM glycine 

in PB (Momayezi et al., 2000) for 10 min; 

4. organs were subjected to blocking for 30 min in 5% BSA, 5% goat normal 

serum in PBS-Tween (Yi et al., 2001) at room temperature; 

5. organs were soaked overnight at 4 °C in dilutions of primary antibody 

(WmCSV IgG, DSMZ AS-0803) at 1:100, 1:500, 1:1000 (v/v) in incubation 

buffer (1% BSA, 1% NGS in PBS-T); 

6. organs were subjected to goat anti rabbit fab`2 fragment conjugated to 10 nm 

gold (British Biocell International) diluted 1:100 (v/v) in incubation buffer at 

room temperature for 4 h or with affinity purified goat anti rabbit IgG 

conjugated to 0.8 nm gold (Bio-Trend, Köln, Germany); 

7. organs were then subjected to several washing steps for 15 min each in PBS 

pH 7.4, then post-fixed in 1.25 % glutaraldehyde and subjected to silver 

enhancement (SEM-R Gent) using the Amersham silver enhancement kit for 

10 min (Yi et al., 2001); 

8. After silver staining treatment, organs were subjected to osmication, in 0.5 % 

of osmium tetroxide for 30 min, then washed several times with water and 

stained en block in the dark for 10 min using 0.5 % aqueous uranyl acetate; 
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9. Fixed tissues were dehydrated through a series of ethanol concentrations 

starting from 25%, 50%, 75%,100% each for 15 min prior to infiltration with 

a 50/50 mix of LR white Ethanol for 30 min followed by an infiltration of 

100% L white at room temperature for 30 min; 

10. Infiltration with 100% LR white at 4 °C overnight followed by a further LR 

white infiltration for one h at room temperature finalised the embedding 

process. 

11. LR white embedded organs were transferred into polymerization capsules 

containing LR white which were completely filled and then kept for 24-48 h 

at 60 °C prior to sectioning into 60-90 nm sections and staining with 2% 

aqueous uranyl acetate . 

Controls 

Organs of non-viruliferous insect were treated as described and used as a negative 

control. Organs from viruliferous insects were treated similarly but omitting the 

primary antibody treatment to determine unspecific antibody binding.  

 

Method II: In this method labelling was applied first and then followed by fixation, 

and post-fixation as as described by J.Boyes and J.P. Bolam (2003). 

1. To enhance penetration with reagents, organs were treated with 0.5% Triton 

X-100 as described by Driss-Ecole et al. (2000): 

2. organs were subjected to blocking for 2 h using 10 % normal goat serum in 

PBS;  

3. organs were incubated overnight in primary antibody (WmCSV IgG, DSMZ 

AS-803) at dilution 1:100 and 1:500 (v/v) at 4 °C in 2% NGS; 

4. organs were incubated in goat anti rabbit fab´2 fragment conjugated to 10 nm 

gold (British Biocell International) diluted 1:100 (v/v) in incubation buffer at 

room temperature for 4 h or with affinity purified goat anti rabbit IgG 

conjugated to 0.8 nm gold (Bio-Trend, Köln, Germany); 
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5. organs were fixed in 1% glutaraldehyde for 10 min at room temperature, 

followed by several washing steps, subsequently post-fixed in 1% osmium 

tetroxide in PBS for 10 min at room temperature; 

6. organs were washed three times in PBS pH 7.4, dehydrated in ethanol series 

and soaked in 1% uranyl acetate dissolved in 70 % ethanol during 

dehydration at room temperature; 

7. organs were embedded and left for polymerisation at 60 °C for 24-48h and 

then sectioned and contrasted using lead citrate for 3-4 min at room 

temperature. 

 

Controls were used as described for Method I. 

 

Method III: Pre-embedding immunolocalization, as described by (Thomas Kurth, 

2003). 

1. Organs were pre-fixed in 4% fresh paraformaldehyde in PBS pH 7.4 

overnight at 4 °C, post-fixed in 20% dimethylsulfoxide (DMSO) in methanol 

overnight at 4 °C; 

2. organs were rehydrated in a series of decreasing methanol/water 100%, 90%, 

70% and in methanol/PBS 50%, 30% for 15 min each step;  

3. organs were blocked in 20% NGS for 2 h at room temperature and incubated 

in 20% NGS/PBS containing primary antibody (WmCSV IgG, DSMZ AS-

0803) at dilution 1:100 with incubation time varying from overnight to 2 or3 

days at 4 °C ; 

4. organs were washed several times for 30 min, 4x 1 h, or 1x 2 h and 

subsequently incubated for 3 days at 4 °C in affinity purified goat anti rabbit 

IgG conjugated to 0.8 nm gold (Bio-Trend, Köln, Germany); in 20% 

NGS/PBS at 1:100 (v/v) dilution. 
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2.11.1.1 

5. samples were washed in PBS then post fixed in 2% glutaraldehyde for 2 h, 

washed 4x 10 min in PBS and in distilled water 3x 10 min; 

6. following a silver enhancement for 1-2 h, organs were washed several times 

in water and stained en bloc for 2 h in 1% aqueous uranyl acetate on ice, 

dehydrated in ethanol series from 30%,50%,70%,80%,90%,100% for 15 min 

each step;  

7. organs were infiltrated in 50/50 resin/ethanol (v/v), then 75/25 resin/ethanol, 

1h resin (used), 1 h resin (new), 2 h resin (new), resin (new) overnight and 

finally embedded in Epon (Serva) plastic resin.  

 

Silver enhancement 

The developer and the enhancer were allowed to reach room temperature. 

After the immunogold incubation, grids were washed and post-fixed following the 

descriptions of the R-Gent SE-EM (Aurion, The Netherlands). Prior to silver 

enhancement, excessive washing steps with distilled water were done to remove 

residual buffer that may impede enhancement. 

Once temperature equilibrium was established, 20 drops of the enhancer solution 

were pipetted to a 1.5 ml eppendorf vial to which 1 drop of developer solution was 

added and the mixture was mixed well by vortexing. 

Post-embedding application 

Enhancement solution was dropped on a sheet of parafilm and grids were floated on 

top of it for an enhancement time typically between 20 and 30 min. 

Pre-embedding application 

Silver enhancement was done either before or after osmium tetroxide fixation. When 

silver treatment was applied before osmium fixation, a longer incubation time was 

required due to potential removal of silver by OsO4. When enhancement wass 

complete the specimen were washed extensively with distilled water (at least 3x 5 

min) and subsequently contrasted for 15 min with uranyl acetate. 
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2.11.2 

In order to preserve the silver signal grids were stored in a dry environment. 

 

Post-embedding immunolocalization 

To achieve maximum ultrastructural preservation with minimum effects on 

antigenicity preservation, different concentrations and combinations of 

glutaraldehyde and paraformaldehyde (Karnovsky, 1965) were tested to optimize 

fixation conditions of dissected insect organs for immuno-labelling experiments 

(Table 2). This was done essentially following the procedure of Ramandeep et al. 

(2002) and applied only on the dissected midgut. 

 

Table 2: Combinations of fixative used to evaluate effect on preservation of 
antigenicity (Ramandeep et al., 2002). 

 

No. Fixative combinations  

(preliminary fixation) 
Post-fixation 

1 0.5 % Glutaraldehyde 

4 %  Paraformaldehyde 
No 

2 4 %  Paraformaldehyde No 

3 2.5 % Glutaraldehyde No 

4 0.2 % Glutaraldehyde 

4 %  Paraformaldehyde 
0.5% Osmium tetroxide 
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2.11.2.1 

Fixation 

Insect organs were isolated on a drop of IPS and covered with 2% Nobel agar to 

facilitate handling. For all ultrastructural investigations, organs were fixed on 2.5% 

glutaraldehyde for 4-6 h to overnight, followed by post-fixation in 1% osmium 

tetroxide.  

Epon-embedded organs were fixed in 2.5% glutaraldehyde and 2% 

paraformaldehyde for at least 2 h to overnight, followed by post-fixation in 0.5% 

osmium tetroxide for 2 h (Reinbold et al., 2001) and subsequently contrasted in 2 % 

aqueous uranyl acetate. The fixation solutions were infiltrated in vacuo using a water 

pump for at least 15 min. 

Embedding of insect organs using Epon- 812 

Solution I 62 ml DDSA + 38 ml Epon 812 = 111 g 

Solution II 56 ml Epon 812 + 44 ml MNA = 119 g 

 

A polymerization mix was prepared by mixing solution I and II that contained the 

resin Epon and DDSA or MNA hardeners 1:1 (v/v). To achieve complete 

polymerization an accelerator (DMP) was added using 0.15-0.2 ml DMP-30 per 10 g 

mixed solution.  

Prior to resin polymerization, organs for embedding needed to be dehydrated in a 

series of acetone: 

Osmium fixed organs were washed 4 times with dd H2O for 45 min 

1. contrasted by incubation in dark overnight in 1-2 % aqueous uranyl acetate. 

2. dehydrated two times each for 30 min in 50% acetone. 

3. dehydrated two times each for 30 min in 70% acetone. 

4. dehydrated 4 times each for 30 min in 100% acetone. 

5. infiltrated for 1 h in 100% acetone/ Epon 1:1 at 40°C.  
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2.11.2.2 

6. infiltrated 1 h in Epon at 40°C. 

7. Organs were infiltrated 1 h in freshly prepared Epon at 40 °C. 

Dissected organs were place in silicon-block forms for embedding in Epon resin at 

60 °C for 48 h. One day before embedding, these blocks were filled to 1/3 volume 

with Epon and left overnight at 40 °C for partial polymerisation to facilitate 

positioning of dissected obtaining in the blocks. 

 

Preparation of ultra-thin sections 

Ultra-thin sections (60-100) nm of embedded insect organs were obtained using a 

diamond knife (DuPont Instrument) in an ultramicrotome (Ultratome III, LKB). 

Sections were subsequently collected on carbon coated pioloform nickel grids (75 

mesh per inch) as stated section 2.10.1. 

 

Embedding of insect organs using LR White 

Fixation Buffer  

0.5 % glutaraldehyde 

4 %  paraformaldehyde 

Dissolved in 0.1 M phosphate buffer pH 7.2 

 

Viruliferous and non-viruliferous whiteflies were dissected under a dissection 

microscope in insect physiological saline (IPS) to extract midgut and primary and 

accessory salivary glands as described in section 2.6. 

1. IPS was immediately replaced with fixation solution to preserve the 

ultrastructure of the tissues. Dissected organs were kept in a light shield 

container for at least 2 h; 

2. preliminary fixed organs were washed two times with 1x PBS for 20 min; 
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3. to inactivate residual aldeyhyde groups which may cause gold conjugate 

coagulation and non-specific labelling; tissues were submerged with agitation 

on 0.1% sodium borohydride in 0.1 M PB for 15 min followed by a 4x wash 

with PB for 10 min (Yi et al., 2001); 

4. to improve reagent penetration, sections where 0.05 % Triton X-100 in PB 

followed by 4x washing in PB for 10 min; 

5. tissues were secondary fixed with 1% osmium tetroxide for not less than one 

h while tissues used for immunolocalization studies and for in situ 

hybridization analysis were not subjected osmium tetroxide fixation; 

6. osmium fixed organs were washed two times with 1x PBS for 20 min and 

subsequently dehydrated by incubation for 15 min in a series of increasing 

ethanol concentrations from 25%, 50%,75% to 100%; 

7. dehydrated organs were incubated with LR white in 100% ethanol (50%:50% 

v/v) for 30 min and then infiltrated overnight at 4 °C in 100% LR white;  

8. the dissected organs were transferred to fresh LR white and infiltrated for 1 h 

at room temperature, then transferred into polymerization capsules and 

covered with LR White avoiding air bubbles. 

9. Polymerization in capsules was for 24-48 h at 60 °C. 

 

Embedding of insect organs using Lowicryl K4M 

 The polar (hydrophilic; K4M) embedding medium Lowicryl can be photo-

polymerized in long wavelength (366nm) ultraviolet light. This was used for better 

structural preservation and to improve antigenicity and significantly lower 

background signal development. Lowicryl K4M can be used at room temperature or 

at low temperatures. This section mainly addressed the technique of low temperature 

embedding, as a solution to the most common problems encountered in high 

temperature embedding.  
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Dehydration was done using the Progressive Lowering of Temperature (PLT) 

Technique as follows. 

1. Dissected organs from viruliferous and non-viruliferous insects were fixed in 

1% paraformaldehyde and 0.125% glutaraldehyde for 1 h on ice to preserve 

ultrastructural features, 

2. fixed organs were washed 2x for 20 min at 4 °C with 1x PBS containing 10 

mM glycine to inactivate residual aldehyde groups which may cause gold 

conjugate coagulation; 

3. dehydration was done with ethanol following the PLT method (progressive 

lowering of temperature);  

a. organs were dehydrated in 10%, 30% ethanol, 30 min for each step on 

ice; 

b. further dehydrated in 50% ethanol for 30 min at –20°C; 

c. and subsequently dehydrated to completion in 70, 90 and 100 % 

ethanol steps for 30 min at –30 °C with 2x exchange of 100% ethanol; 

4. Infiltration with Lowicryl K4M resin was by overnight incubation in 

K4M/100% ethanol (1:1 v/v) exchanging with K4M/100% ethanol (2:1 v/v) 

for 8 h and incubation with 100% Lowicryl K4M resin over 2 days with 

several changes for fresh resin; 

5. polymerization was done by placing samples into gelatine capsules filled with 

resin and incubating under UV-light (366 nm) for 1 day at –30°C followed by 

a 2 days incubation period at room temperature; 

6. Ultrathin-sections were prepared as described in section 2.11.1 and subjected 

to immunolabelling experiments as described in section 2.10.4 without 

etching treatments and with etching treatment as described in section 2.11.3. 
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2.11.3 

2.11.4 

Etching of Epon and Lowicryl embedded sections for antigen retreival 

For post-embedding immuno-electron microscopy ultra-thin sections (120nm) of 

Epon embedded organs fixed in 2.5 % glutaraldehyde and 2 % paraformaldehyde, 

were mounted on pioloform carbon coated Nickel grids. Etching treatment was 

carried out using 10 µl drops of saturated sodium metaperiodate (mPJ) solution 

(Pierce, Germany).  

Sections were incubated in a moist chamber for 1 h at room temperature with 15 % 

mPJ. Antigen retrieval was performed by heat incubation of sections in different 

solutions as described by (Röcken and Rössner, 1999) and by (Saito et al., 2003). 

Immuno-labelling of embedded sections treated for antigen retrieval was essentially 

applied as described in section 2.11.4 below. Sections were first washed three times 

with dd H2O. Antigen retrieved sections were blocked for 30 min in 5% BSA and 5% 

NGS in PBS (Yi et al., 2001), then floated overnight on a 10µl drop of WmCSV IgG, 

subsequently washed 3 times with PBS-T and incubated for 3 h with anti rabbit fab´2 

fragment conjugated to 10 nm gold (British Biocell International, Plano, Magdeburg, 

Germany) diluted 1:100 (v/v) in PBS. Grids were incubated on a 10 µl drop of 1% 

GA for 10 min washed 3 times with PBST followed by a brief washing with dd H2O 

prior to contrasting with 2% uranyl acetate for 20-30 min. 

 

Immunogold labelling of ultra-thin sections 

To achieve best results and low background signals, besides the use of antibodies of 

high quality especial emphasis was on the optimization of the blocking procedure 

with reagents and solutions for blocking advised by several authors. Blocking 

solutions that were used are compiled in Table 3. 
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Table 3: Reagents and solutions used to reveal optimum blocking in 
immunolocalization experiments 

 

No Blocking reagent Use and preparation Incubation 

1 Nil PBS PBS 

2 1% Skim milk in 1x PBST 
buffer (Tween- 20, 0.05%) 
(Ramandeep et al., 2002) 

3% w/v dissolved with 
stirring in PBS-T for 2-3 h, 

supernatant used after 
allowing the solution to 

stand for 1 h. 

0.3% skim milk in PBST 
buffer 

 

3 5% BSA in PBS-Tween Dissolved overnight with 
occasional stirring 

1% BSA in PBS-Tween 

4 BSA-c Aurion 

(Ramandeep et al., 2002) 

2% and 0.2 % were 
diluted from 10% w/v 

stock solution 

1% BSA in PBS-Tween 

5 10% Normal Goat Serum 

Ramandeep et al., 2002) 
(J.Boyes and J.P. Bolam, 

2003). 

Dissolved 10% v/v in 
PBS-T 

2% Normal goat serum 
in PBS,(J.Boyes and 
J.P. Bolam, 2003). 

 

6 20% Normal Goat Serum 

Ramandeep et al., 2002) 
(J.Boyes and J.P. Bolam, 

2003). 

Dissolved 10% v/v in 
PBS-T 

2% Normal goat serum 
in PBS,(J.Boyes and 
J.P. Bolam, 2003). 

 

7 5% BSA in PBS-Tween, 
5% Normal goat serum 

(Hong et al., 2001) 

Dissolved overnight with 
occasional stirring 

1% BSA in PBS-
Tween,1% Normal goat 

serum 

8 5% BSA in PBS-Tween, 
5% Normal goat serum (Yi 

et al., 2001) 

Dissolved overnight with 
occasional stirring 

1% BSA in PBS-
Tween,1% Normal goat 

serum, 0.2 BSA-c 
(Momayezi et al., 2000; 
Yi et al., 2001) (Aurion 

newsletter 3) 
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For immunolocalization experiment, blocking and incubation buffers as stated in 

Table 3, (line 8) proved best and were used throughout the immunolocalization 

experiments. 

 

2.12 Immunolocalization of WmCSV in ultra-thin sections 

Blocking buffer 

5%  BSA 

5%  Normal goat serum 

in PBST pH 7.4 

 

Incubation buffer  

1%  BSA 

1%  Normal goat serum 

0.2%  BSA-C (Aurion) 

in PBST pH 7.4 

 

1. To prevent non specific binding of immunoreagents, sections were incubated 

on a 10 µl drop of blocking solution for 30 min; 

2. grids were washed 3x with PBST and then incubated overnight on a 10 µl 

drop of WmCSV IgG, DSMZ AS-803). For optimization, antibody dilutions 

from 1:50 to 1:2000 (v/v) in PBS were tried. For acrylic resins, a 1:50 (v/v) 

dilution of WmCSV IgG and a 1:25 (v/v) dilution of WmCSV IgG for plastic 

resin (Epon 812) resulted in low background to noise signal; 

3. after antibody incubation, grids were washed 3x with PBST and subsequently 

incubated on a drop of 10 µl organs were incubated in goat anti rabbit fab`2 

fragment conjugated to 10 nm gold (British Biocell International Plano, 

Germany) or, using goat anti-rabbit 0.8 nm conjugated gold fab`2 fragment 

(Aurion, The Netherlands) followed by silver enhancement (R-Gent SE-EM, 
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Aurion, The Netherlands) in the case of pre-embedding immunolocalization. 

The working dilutions for secondary antibodies were 1:200 (v/v) for acrylic 

resins while 1:100 (v/v) dilutions were used for the plastic resin (Epon 812) 

that was treated by etching for antigen retrieval. 

4. grids were washed 3x with PBST followed by 3x washing in dd H2O prior to 

incubation for 15-30 min in 1-2% uranyl acetate and ending the procedure 

with 3x washing in dd H2O. 

 

2.13 Quantifying antibody reactions in immunogold labelled thin sections 

To estimate the densities of antibody labelling and as a quantitative comparison, gold 

particles were counted manually on several loop fields approximately (0.237 µm2), at 

a standard final magnification of 12930 x. Particle counts per µm2 section were 

determined for different subcellular compartments of the midgut and the primary and 

the accessory salivary glands. Gold particle counts of the nucleus were taken as an 

estimate of background labelling. The mean values were calculated for the number of 

gold particle found in each figure set. Since considerable differences were found in 

sections and repetitions, the standard deviation was determined to support the 

evaluation and interpretation of the labelling data.  

 

2.14 In-situ hybridization to localise WmCSV in thin sections of insect organs 

This protocol was adopted from Wachtler et al. (1996) and used with minor 

modifications. For the in situ hybridization experiments, Sigma hybridization slides 

were used requiring 100 µl hybridization or probe solutions.  The digoxigenin 

labelled DNA probe was generated as described in section 2.7.6 with a final 

concentration of labelled probe used in the experiments of approximately 2 ng /µl. 
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Pre-hybridization and Hybridization solution 

Hybridization mixture 

50 %  formamide in 2x SSC 

2 ng/µl  labelled probe 

100 ng/µl  salmon sperm DNA 

100 ng/µl  yeast tRNA 

10 %   dextran sulphate 

 

Pre-hybridization solution 

50 %  formamide in 2x SSC  

200 ng/µl denatured salmon sperm DNA 

200 ng/µl yeast tRNA 

0.1 %  Ficoll 400 

0.1 %  BSA  

0.1 %  PVP  

 

In- situ Hybridization protocol 

1. Wash grids for 10 min in Tris CaCl2. 

2. Incubate the grids in proteinase K at 37 °C for 10 min, stop reaction with 2x 

10 min wash in PBS MgCl2.and apply RNAse A for 1 h; 

3. Rinse the sections rapidly at room temperature on three drops of dd H2O and 

wash extensively with f distilled water; 

4. fix the grids by incubation in 4% paraformaldehyde followed by washing for 

2x 10 min in PBS;  

5. wash 3x for 5 min in distilled water and incubate grids for 1 h in pre-

hybridization solution at 45 °C; 
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6. denature the probe at 100°C for 10 min and immediately quench on ice, 

7. soak away the pre-hybridization mixture using filter paper, immediately 

afterwards distribute the hybridization mixture over the grids; 

8. Place the cover slips on the grid and make sure that no air bubbles are left 

under the glass; 

9. Put the loaded slides for 10 min in an incubator adjusted to 80 °C  followed 

by overnight incubation at 45 °C.  

 

Post-hybridization treatments 

Wash the grids 2x 15 min in 2 x SSC at 45 °C followed by 1 x SSC 10 min, then 0.5 

x SSC for 10 min, then in 0.1 x SSC  for 10 min at 50 °C.  

 

Immunological detection of  DNA – DNA hybrids 

The DIG labelled DNA-DNA hybrids were detected using labelled antibodies against 

digoxigenin incorporated in the DNA probe during DNA synthesis. Sections were 

first treated with a blocking reagent to reduce the non-specific labelling, then in for 

immunological reaction in buffers containing BSA. After several washes, the dig 

antibody was detected using a gold conjugated monoclonal antibody fab`2 fragment 

(British Biocell International, Plano, Germany). 



 

3 Results 

 

3.1 Watermelon chlorotic stunt virus, WmCSV, propagation, purification and 
whitefly B. tabaci transmission 

3.1.1 WmCSV infections of test plants 

The agro-inoculation technique described in chapter 2.3.4 proved efficient for 

delivery of cloned WmCSV comprising WmCSV DNA A wt and mutant clones 

mixed with DNA B genomic components.  

More then 95% infections by agro-inoculation were reached with N. benthamiana 

and watermelon, Citrullus lanatus, for all DNA A and DNA B combinations with 

symptoms of the mutant viruses resembling that of WmCSVwt and with somewhat 

milder symptoms of plant infections with WmCSVser.  

Upon virus inoculation, first symptoms in watermelon became visible after 10-14 

days developing into definite WmCSV disease symptoms after approximately 20 

days. In watermelon, chlorotic mottle symptoms were first signs of infection 

followed by severe leaf deformation, leaf curling and severe stunting characterising 

chronical infections. WmCSV infected C. lanatus plants were used as source plants 

for whitefly transmission studies.  
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Figure 5: Typical symptoms of Watermelon chlorotic stunt virus disease on field 
grown watermelon with characteristic chlorotic mottling and mosaic with 
stunting and leaf distortion in the chronic phases of the disease. 

 

A BAA BB

 

Figure 6: A, Chlorotic mottling and mosaic symptoms of WmCSVwt infected 
watermelon, 3-4 weeks post-inoculation by biolistic delivery of infectious 
virus clones. B, Healthy watermelon plants. 
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First symptoms in N. benthamiana for WmCSV appeared later than in watermelon 

and consisted of leaf blistering and deformation accompanied by mild and relatively 

inconspicuous mosaic symptoms. Later, symptoms of WmCSV infections developed 

into a a diffuse mild chlorosis with ystemic curling and leaf deformation. Plants 

infected with WmCSVwt were found showing a rapid symptom development with 

severe leaf curling and stunting than the plants infected with WmCSV mutant clones.  

 

 

Figure 7: N. benthamiana infected with WmCSVwt by agro-inoculation 3-4 weeks 
post-inoculation at an infection stage ready for harvesting for virus 
purification. 

 

In general, plants infected by agro-inoculation developed symptoms faster with 

severe stages of infections reached earlier than plants infected by biolistic 

inoculations using the Helios gene gun. This was most likely because of the delivery 

of a higher number of infectious units with agrobacteria harbouring the DNA A and 

DNA B infectious genomic components. 
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However, to unequivocally exclude any effect of whitefly uptake or eventual 

transmission of residual or contaminating agrobacteria, biolistic delivery of WmCSV 

was pursued in cases where whitefly transmission or WmCSV localisation in the 

insect was of crucial significance. 

 

3.1.2 Preparation of purified WmCSV  

For virus purification symptomatic leaf and stem tissues of N. benthamiana plants 

were used 3-4 weeks after agro-inoculation with WmCSV. 

For WmCSV purification, the procedure described for Tomato yellow leaf curl virus 

purification (Luisoni et al., 1995) and modified using a sucrose gradient 

centrifugation instead of a buoyant density centrifugation in caesium salts, resulted in 

relatively pure virus particle preparations.  

After centrifugation through a 10-40% sugar gradient, the main contaminant of virus 

preparations, Ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO, 

accounting for 30–50% of total soluble protein in chloroplasts was largely removed 

from the virus preparations. The pooled sucrose fractions concentrated by high speed 

centrifugation was essentially free of contaminating plant proteins and a pure virus 

particle preparation was obtained (Fig. 8 lane 4). This was characterised by a single 

polypeptide of approximately 32 kDa in CBB stained SDS-PAGE gels of WmCSV 

particle preparations representing the mass of the WmCSV coat protein. Virus thus 

prepared was regarded as purified virus and used for subsequent transmission 

experiments by artificial feeding and to optimize further immunological fixing and 

staining processes.  

 

 

 

 

 

 65



 

97.4

66.2

45.0

31.0

21.5

97.4

66.2

45.0

31.0

21.5

97.4

66.2

45.0

31.0

21.5
 

Figure 8: WmCSV preparations to produce purified virus. M, Molecular weight 
marker (Protein standard in kDa, BioRad); 2,3 semi purified WmCSV 
preparation after high speed centrifugation; 4, Final WmCSV particle 
preparation. Arrow pointing at CP size of purified WmCSV 

 

3.1.3 WmCSV transmission by whitefly insects 

To study WmCSV transmission by B. tabaci and T. vaporariorum insects were 

allowed a 48 AAP on WmCSV infected watermelons that were either inoculated by 

agro-inoculation or by biolistic-particle delivery. After feeding, on infected plants 

insects were allowed 48-72 h on a non-host plant Lycopersicon esculentum Mill. for 

discharge. After this, insects were transferred to inoculate healthy watermelon plants 

allowing a 48-72 h IAP.  

B. tabaci insects feeding on WmCSVwt infected plants reached almost 100% 

infection of watermelon plants (8/8), while attempts to transmit WmCSVwt by T. 

vap as expected, were not successful (0/15).  

Transmission studies conducted with the virus DNA A mutant clones, WmCSV asp, 

WmCSV ser, WmCSV ala, WmCSV val (Fig. 3) revealed that virus infections were 

not transmissible hence it was found that all infectious WmCSV mutant viruses 

resulting from agroinfection or from biolistic inoculations, were lacking the whitefly 

transmissibility (Table 4). 
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Whitefly inoculated plants developed no symptoms and by further TAS-ELISA 

analysis none of the experimented plants tested positive. 

 

Table 4: B. tabaci transmission of WmCSV infectious virus clones to watermelon 
plants. Inoculation was done allowing 100 insects a 48 h AAP, 48 h 
discharge and 72 h AAP. TAS-ELISA was done to prove WmCSV 
infections. 

 

 
WmCSVasp 

D 133

WmCSVser 

S 133

WmCSVval 

V 133

WmCSVala 

A 133

Mean OD value 0.030 0.029 0.025 0.033

Controls +/- 0.87/0.40 0.88/0.31 1.1/0.04 1.1/0.37

ELISA result neg neg neg neg

No. of positives/ 

No. of plants tested 
0/12 0/10 0/8 0/9
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Blocking virus transmission in B. tabaci 3.1.3.1 

3.1.3.2 

To investigate the possibility of transmission of the transmissible WmCSV wt by 

saturation of putative receptor sites with a non transmissible WmCSV mutant, 100 

insects were allowed feeding for 5 days on WmCSV asp prior to acquisition of 

WmCSVwt from infected plants.  

This experiment has shown that only 8 out of 20 test plants became infected and 

transmission therefore was reduced to 40% of the total number of tested plants. This 

provided a first indication that virus transmission sites in the vector can be blocked 

by non transmissible virus, but that the putative receptors are not completely 

saturated. A further transmission experiment feeding high concentration of purified 

virus might provide clarification of this particular aspect. However since purification 

of mutant WmCSV did not result in particle preparations with sufficient 

concentration and quality, proof of this significant observation is still pending.  

 

Feeding B. tabaci on artificial diets to increase virus concentrations in 
insects 

To increase virus uptake by whiteflies for use in immunolocalization experiments, 

insects were fed on purified virus preparations adjusted to 15% sucrose. Several virus 

concentrations in the diet were tested ranging  50-800 µg/ml. Insect populations were 

unaffected by virus concentrations up to approximately 200 µg/ml, while virus 

concentrations of about 500 µg/ml resulted in a death rate of 75% of a population of 

500-1000 insects that were fed for 72 h on diets of purified virus preparations. A 

virus concentration of approximately 800 µg/ml in the insect diet was fatal and 

eliminated the insect population. When midguts of these insects, after a 24 h AAP, 

were isolated, the organs appeared totally fragile with severe damage found on the 

tissues. This has also been reported for Squash leaf curl virus (SLCV) associated 

with cytopathological abnormalities in vector tissues and with detrimental effects on 

vector biology and reproduction.  

These observations have provided arguments suggesting for begomovirus replication 

in B. tabaci, however despite few reports based on TYLCV observations (Rubinstein 

and Czosnek, 1997) replication intermediates of begomoviruses in their respective 
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vector insects have not been detected. In a recent publication, Xiomara et al. (2005) 

by applying real time PCR, revealed that TYLCV actively produces de novo viral 

transcripts while Tomato mottle virus (ToMoV) does not, hence reflecting 

differences in transcript profiles but still not providing evidence for begomovirus 

replication in B. tabaci. 

 

1 2M 3 4 5 1 2M 3

A B

4 51 2M 3 4 51 2M 3 4 51 2M 3 4 5 1 2M 3 4 51 2M 3

A B

4 5

3.1.4 Detection of WmCSV by Polymerase Chain Reaction, PCR 

PCR was the most versatile method for virus detection in watermelon plants, whole 
insects and dissected insect organs; since amplification of viral DNA sequences 
during PCR and reliable detection of begomovirus sequences was largely 
independent from initial virus DNA concentrations. Total DNA extracted from plants 
using a DNA minipreparation method as described by Dellaporta et al. (1983) 
provided good quality DNA preparations with sufficient template for reliable and 
robust PCR amplification of WmCSV sequences. An approximately 1:10 to 1:100 
(v/v) dilution of each DNA schown in Fig. 9A (ca. 100 ng total plant DNA) was 
subjected to PCR using the WmCSVA c/s primers designed (chapter 2.8) and 
resulting in well defined PCR and specific amplification of WmCSV sequences. 

 

 

Figure 9: A) DNA extracts from watermelon plants infected with WmCSVwt, lane 1; 
and WmCSV mutant clones laned 2 – 5; B) PCR performed with total DNA 
extracts permitting robust WmCSV DNA detection. 
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Localisation of WmCSVwt in B. tabaci and T. vaporariorum insects  3.1.5 

Organs of the whitefly insects were dissected as described in chapter 2.6. For virus 

detection using PCR, insects were arrested for 5 min on ice, organs were isolated, 

flushed with sterile water and immediately subjected to PCR which was conducted 

with isolated organs of 3 specimen. Isolated primary salivary glands were subjected 

as paired organs to PCR and except extensive washing, template DNA was exposed 

by boiling only. The major elements of the stylets as described by Czosnek et al. 

(2002) including labium (outside the head), bundle (inside the head) and the cibarial 

pump protractor muscles were excised and subjected to PCR. The digestive tract 

including the midgut (descending and ascending) with hindgut removed was also 

subjected to PCR for virus detection. 

Only female whiteflies were used in the experiments due to easier handling of larger 

size animals and efficiency of female insects in virus transmission reported (Cohen 

& Nitzany, 1966; Muniyappa et al., 2000). 

Viral DNA was detected in all organs isolated from B. tabaci feeding on WmCSVwt 

infected plants (Fig. 10 A) from stylet to primary salivary glands, while in the non-

vector T. vaporariorum virus was detected in the stylet reaching the midgut only 

(Fig. 10 B). These results are consistent with evidence reported from similar studies 

on TYLCV translocation (Czosnek et al., 2002). 

HD MD HL SG nonV NM ST

B

HD MD HL SG nonV NM ST

A

429 bp

HD MD HL SG nonV NM ST

B

HD MD HL SG nonV NM ST

B

HD MD HL SG nonV NM ST HD MD HL SG nonV NM ST

A

429 bp

 

Figure 10: PCR for detection of WmCSV in organs isolated from A, B. tabaci and B, 
T. vaporariorum. ST, stylet; HD, head; MD, midgut; HL, haemolymph: SG, 
salivary glands; non, non-viruliferous whitefly; V, viruliferous insect; N, 
negative control. 429bp is the expected size of the WmCSV PCR amplicon. 
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The identity of the amplified viral DNA fragments detected by PCR were confirmed 

by Southern blot hybridization using a digoxigenin labelled WmCSV DNA A probe 

as described in chapter 2.7.6. 

 

STST HD MD HL SG V non N

A
ST HD MD HL SG V non N

B
STST HD MD HL SG V non NST HD MD HL SG V non N

A
ST HD MD HL SG V non N

B
ST HD MD HL SG V non NST HD MD HL SG V non N

B

 

Figure 11: Southern blot hybridization analysis verifying results of the PCR analysis 
in Figure 10. A, dissected organs of B. tabaci and B, organs of T. 
vaporariorum. 

 

These experiments provided evidence that the midgut provides an efficient barrier 

preventing passage of the begomovirus WmCSV into the haemolymph of the non-

vector species Trialeurodes vaporariorum. 

 

Localisation of WmCSV mutant virus clones in the vector B. tabaci 3.1.6 

In a similar experiment with dissected organs B. tabaci insects fed on watermelon 

plants infected with WmCSV coat protein mutants, virus DNA was found in all 

organs, except for the WmCSVser mutant which was found in the haemolymph but 

apparently not capable of attaching to the salivary glands hence it was not detected in 

this isolated organ. The failed detection of WmCSVser (Fig. 12 D) was probably due 

to low concentration or instability of this mutant virus in this preparation. However, 

WmCSVser detection was subsequently reached in these organs in later experiments. 
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Figure 12: Translocation of WmCSV mutant virus clones in B. tabaci. A, 
WmCSVala; B, WmCSVasp; C, WmCSVval; D, WmCSVser. ST, stylet; 
HD, head; MD, midgut; HL, haemolymph: SG, salivary glands; non, non-
viruliferous whitefly; V, viruliferous insect; N, negative control. 429 bp is 
the expected size of the WmCSV PCR amplicon. 
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Figure 13: Southern blot analysis confirming results obtained for PCR analysis of 
dissected B. tabaci organs. A, WmCSVala; B, WmCSVasp; C, WmCSVval; 
D, WmCSVser. ST, stylet; HD, head; MD, midgut; HL, haemolymph: SG, 
salivary glands; non, non-viruliferous whitefly; V, viruliferous insect; N, 
negative control. 

 

Feeding B. tabaci with coat protein WmCSV mutant viruses to trace the pathway of 

these viruses in their begomovirus vectors, it was found that the midgut does not 

present a barrier to virus translocation. All mutants were detected in the haemolymph 

and either adhering to salivary glands or, within the salivary system. This is in 

contrast to non vector insects, where the midgut apparently is the barrier to virus 

passage. 

In the interesting case of the WmCSVser mutant, it can be speculated that coat 

protein is not capable of attaching to the salivary glands or that the virus does not 

assemble into a coat protein structure, which is not required for begomovirus 

movement in the plant hence systemic infection. To proof the latter, WmCSVser was 

subjected to immunocapture PCR analysis. 
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3.1.7 Immunocapture PCR analysis to verify WmCSVser virion assembly 

Immunocapture PCR was conducted to investigate the possibility that WmCSVser 

did not form a coat protein hence providing argument for its failure to bind to 

salivary glands. As stated above, the virus was detected in haemolymph and at low 

titers in midgut (Fig 12 D) albeit at low concentrations. Virus purification attempts to 

provide virion preparations for electron microscopy also failed hence immunocapture 

PCR should at least reveal information about assembly of this mutant virus into 

virions. As shown in Fig. 14, WmCSVser was detected by PCR following an 

immunocapture of virion capsid protein using a WmCSV specific antibody for 

trapping of virus particles. Hence, it was confirmed that indeed, WmCSVser forms 

virus particles.  

 

1 2M N V

429 bp

1 2M N V

429 bp

 

 

Figure 14: PCR analysis using IC-PCR confirming the assembly of WmCSVser into 
virions. Lane 1, WmCSVwt, lane 2, WmCSVser; N, negative control; V, 
WmCSVwt in viruliferous insect used as a positive control.
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3.1.8 Tracing WmCSV in organs of whitefly insects 

Virus transmission studies and experiments for virus translocation done with whole 

specimen and with isolated organs of begomovirus vectors, B. tabaci and non-vector 

insects, T. vaporariorum, are summarised in Table 5. 

 

Table 5: Virus detection by PCR in isolated organs of whitefly insects fed on 
watermelon plants infected with WmCSVwt or WmCSV mutant viruses. 

 

 Bemisia tabaci Trialeroudes vaporariorum 

 MD HL SG MD HL SG 

WmCSVwt 
Transmitted virus + + + + - - 

WmCSVasp 
Non transmissible 
virus 

+ + + --- --- --- 

WmCSVser 
Non transmissible 
virus 

+ + - --- --- --- 

WmCSVala 
Non transmissible 
virus 

+ + + --- --- --- 

WmCSVval 
Non transmissible 
virus 

+ + + --- --- --- 
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3.1.9 

3.1.9.1 

Electron microscopical studies with purified WmCSV particle 
preparations  

WmCSV particle structure  
Upon electron microscopical examination of crude sap extracts from virus infected 

watermelon plants and from purified virus preparations, geminate, icosahedral 

particles typical for begomoviruses were observed (Fig. 15). When sap preparations 

of infected plants were subjected to electron microscopy, virions however were only 

found by ISEM, with crude sap of virus-infected plants incubated overnight on grids 

coated with WmCSV polyclonal antiserum (Fig. 16). ISEM conducted on 

WmCSVser mutant infected plants did not trap any particles hence virus 

identification was inconclusive.  

Purified virus preparations were routinely subjected to EM examination prior to 

artificial feeding experiments. 

 

Figure 15: Adsorption preparation of WmCSV particle preparations diluted 1:10 
(v/v) in phosphate buffer. Scale bar represents 100 nm. 
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Figure 16: Electron micrograph showing a negatively stained preparation (1% UAc) 
of WmCSV particles from crude sap of infected watermelon plants trapped 
by ISEM with WmCSV IgG diluted at 1:1000 (v/v) in phosphate buffer. 
Scale bar represents 100 nm.  

 

3.1.9.2 Decoration of purified virus particle preparations with polyclonal 
antibodies 

Virus particles captured by ISEM were incubated on 10 µl of preadsorbed IgG 1:5 

(v/v) and 1:50 (v/v) in phosphate buffer for at least 15 min, subsequently washed 

with dd H2O and contrasted using 1% aqueous UAc. This experiment was conducted 

to investigate antibody binding affinity to WmCSV and to assess quality of the 

antigen-antibody interaction.  

The assessment of the foggy clouds from antibody decoration of respective virus 

particles, hence to determine labelling density, is an important precondition for all 

labelling reactions and especially for in situ experiments.  
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Figure 17: Decoration of purified virus particles trapped with pre-adsorberd WmCSV 
IgG at 1:1000 (v/v) and fixed in 0.5% GA, 4% PFA for 15 min prior to 
decoration with WmCSV IgG at dilutions A, 1:5 (v/v); B, 1:50 (v/v). Scale 
bar represents 100 nm. 

 

In general, using the WmCSV antibody decoration of virus particles with antibody 

dilutions 1:5 (v/v) resulted in very high and dense labelling with fixed or unfixed 

virus particles indicating for only minor adverse effects of fixation on decoration and 

staining intensity. Still, unfixed virus particles subjected to decoration revealed 

higher antibody binding at 1:5 (v/v) dilutions (Fig. 18).  

 

 

 

 

 

 

 

 

 

 78



 

A BA BB

 

Figure 18: Decoration of purified virus particles trapped with pre-adsorbed WmCSV 
IgG at 1:1000 (v/v) and decoration with WmCSV IgG at dilutions A, 1:5 
(v/v); B, 1:50 (v/v). Scale bar represents 100 nm. 

 

3.1.10 Immunogold-labelling of purified WmCSV particle preparations 

Decoration tests with WmCSV antibodies followed by detection of antibody 
reactions with gold labelled anti-antibody conjugates was pursued to assess affinity 
of antibody binding and the intensity of gold labelling that can be reached per virus 
particle. Using antibody dilutions and with fixed particles subjected to decoration, 
WmCSV antibody dilutions of 1:5 (v/v) and 1:50 (v/v) reached similar results with 2-
10 gold particles adhering to one virus particle (Fig. 19, A,B). In contrast omitting 
fixation of virus particles (Fig. 19, D, E); only 2 gold particles were counted per 
virus structure at dilution 1:5 (v/v). Thus fixation of virus sample not only increased 
the density of gold labelling, probably by stabilising virus particles but also 
decreased unspecific background. 
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Figure 19: Immunogold labelling of purified virus particles trapped with pre-
adsorberd WmCSV IgG at 1:1000 (v/v), fixed in 0.5% GA, 4% PFA for 15 
min, A&B, or subjected unfixed, B&D; to decoration with WmCSV IgG at 
dilutions A&C, 1:5 (v/v); B&D, 1:50 (v/v). Gold labelling was applied 
using fab`2 fragment goat anti- rabbit conjugated 10 nm gold antibody at a 
dilution of 1:50 (v/v). Scale bar represents 100 nm. 
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Optimization of embedding and immunogold labelling protocols 

 

Once tissues are excised from its context, autolysis is initiated soon after cell death 

by intracellular enzymes causing proteolysis and breakdown of cellular components. 

Autolysis is independent of any bacterial action, retarded by cold, greatly accelerated 

at temperatures of about 30 °C and almost inhibited at 50 °C. 

Autolysis is more severe in tissues rich in enzymes and autolysed tissue presents a 

`washed-out' appearance with swelling of cytoplasm, eventually converted into a 

granular, homogeneous mass not amenable to staining for microscopy. Nuclei of 

autolytic cells may show signs of necrosis, condensation (pyknosis), fragmentation 

(karyorhexis) and lysis (karyolysis). Diffusion of intracellular substances might 

occur and desquamation of epithelium separating cells from membranes. All this 

occurs within a very short time hence for cytological studies suitable fixation of the 

tissue to be examined is a precondition.  

Fixation is to preserve cells and tissue constituents in a close to life-like state and to 

still support all further preparative procedures without change. Fixation arrests 

autolysis and stabilises the cellular and tissue constituents, preserving cellular 

constituents and proteins for subsequent stages of tissue processing. Fixation 

therefore is the first step in a sequence of events that culminate in the final 

examination of a tissue section. 

However, fixation already constitutes a major artefact since in contrast to the fluid or 

semi-fluid state of living cells, fixation produces coagulation of proteins and cellular 

constituents, a step however necessary to prevent loss or diffusion during tissue 

processing. Fixation methodologies should be adopted taking in consideration 

achieving the minimum antigen denaturation, on the other hand attaining the 

maximum fine structure preservation especially the membrane system of the cell 

which facilitates the correlation of the localization signal with the well defined 

cellular structure. To achieve this goal, different embedding methods in different 

embedding resins as well as different immunogold labelling techniques were 

adopted. 
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3.1.11 Fixation and embedding 

Several combinations of fixative mixtures as described by Karnovsky (1965) were 

used for fixing of dissected organs and to achieve maximum preservation of 

antigenicity while maintaining ultrastructural features. For ultrastructural studies 

embedding in 2.5% glutaraldehyde followed by post-fixation in 0.5% OsO4 and 

contrasting en bloc in 1% UAc was applied as described by Riedel (Ph.D thesis, 

1997). This resulted in a high level of cell structure preservation, especially the 

membranes in the cytoplasm and with an excellent preservation of the vesicular 

structures in embedded organs of whiteflies. Due to its reaction with unsaturated fats, 

OsO4 fixation provides good fixation of membranes & lipids and the fine protruding, 

finger like microvilli structures were fully resolved after fixation and embedding in 

Epon 812. When LR White was used for embedding, even high concentrations of 

glutaraldehyde resulted in loss of the membrane structures.  

A summarised in Table 6, best preservation of antigencity was achieved by specimen 

fixation in 4% paraformaldehyde (PFA). However, this was also accompanied with a 

great loss of fine structure of cells, in particular the cellular membranes. Labelling 

density was reduced from a mean of 56.4 gold particles/5µm2 using 4% PFA to 20.8 

gold particles/5µm2, when 2.5% glutaraldehyde (GA) was used as a fixative. To 

compromise antigencity preservation and maintenance of ultrastructure of immuno-

stained specimens, a mix of 0.5% GA and 4% PFA was used in for organ studies 

prior to LR White embedding.  

To assess the effect of OsO4 on antigen preservation, an immuno-staining experiment 

was conducted with dissected organs embedded in LR White and organs post-fixed 

with 0.5% OsO4. Here, it was observed that this treatment dramatically reduced the 

immuno-staining intensity compared with GA and PFA. Consequently OsO4 fixation 

was never used in for immuno-staining experiments conducted with organs 

embedded in acrylic resins.  

To eliminate high temperature effects reducing antigenicity Lowicryl K4M was used 

for organ embedding permitting tissue processing under very low temperatures from 

-20 up to -35 hence reducing cellular damage during processing. Generally, 

embedding in Lowicryl K4M resin resulted in better preservation of ultrastructures 

with higher contrast compared with LR White acrylic resins.  
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Table 6: Effects of fixatives on immunogold staining of WmCSV antigen in embedded midgut (MD) tissue sections . Viruliferous insects fed 
on artificial diets containing purified WmCSV (50 µg/ml) were fixed immediately after AAP in freshly prepared fixative solutions. 
Embedding was in LR White. MD (midgut), N (nucleus) Out of microvilli is area adjeacent to the microvilli.Counts of gold particles 
were calculated as mean values (Mean) with standard error (± SE) determined as an indicator of the significance of the differences 
obtained in the recordings. 

 

Viruliferous insects  

Mean ± SE 

Non viruliferous insects  

Mean ± SE 

No. Fixative combinations (preliminary fixation) Post fixation 

Microvilli Out of the microvilli N Microvilli Out of the microvilli N 

1 0.5 % Glutaraldhyde 

4 %  Paraformadhyde 

No 31.8 ± 8.2 5.1± 2.1  13± 2.5 3.7± 1.0  

2 4 %  Paraformadhyde No 56.4 ±4.5 9.35 ±1.12 8.9 ±1.6 13.3 ±1.5 4.9 ±1.7 6.3 ±1.4 

3 2.5 % Glutaraldhyde No 20.8 ±3.1 3.1 ± 0.6 3.1 ±1.1 13.6 ±0.17 1.9 ± 0.98 1.75 ±0.49 

4 0.2 % Glutaraldhyde 

4 %  Paraformadhyde 

0.5 % OsO4 12.5 ±1.2 5.5 ±0.5 10.6 ±3.9 7.7 ±0.8 5.4 ±0.1 7.4 ±2.8 

 



 

3.1.12 Optimization of tissue blocking  

One of the major problems that confront all immunolocalization studies is the 

elimination of background and increasing the signal/ background noise ratio, thus 

permitting unequivocal interpretation of results. To achieve best and most 

reproducible signal, several blocking solutions were tested. The use of skimmed milk 

powder as a blocking reagent (Ramandeep et al., 2001) resulted in complete 

saturation of epitopes with no signals obtained, while use of BSA in blocking buffer 

resulted in a very high background (Table 7).  

 

Table 7: Comparison of different blocking solutions to reduce background in 
dissected midgut tissues, embedded in LR White, fixed in 0.5% GA + 4% 
PFA. Blocking buffers, 1% non- fat dry milk in phosphate buffer pH 7.4; 
1% BSA in PBST. Nil (control, phosphate buffer; Out (outer regions 
surrounding microvilli); D (midgut) N (nucleus). Counts of gold particles 
were calculated as mean values (Mean) with standard error (± SE) 
determined as an indicator of the significance of the differences obtained in 
the recordings. 

 

 Nil 

Mean ± SE 

1% non fat dry milk  

Mean ± SE 

1% BSA / PBS-T 

Mean ± SE 

N 100.9±11.45 N ~1-2 particles N 95.6±8.2 

Microvilli 101.5 ±8.5 Microvilli 1-2 particles Microvilli 

82.8±14.4 

Viruliferous 

insects 

Out 30.6±1.7 Out  0 Out 14.7 ±2.6 

N 53.3±15.1 N ~1-2 particles N 67.6±2 

Microvilli 101.3±2.8 Microvilli ~1-2 particles Microvilli 74.3±2.7 

Non viruliferous 

insects 

Out 28.2±2.3 Out 0 Out 16.4 ±4.8 
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Increasing the BSA concentration to 3% and up to 5% resulted in a very high 

background when comparing embedded tissue from viruliferous and non viruliferous 

insects. However, a mix of 5% BSA and 5% NGS (normal goat serum) as described 

by Hong et al. (2001) improved background considerably while a further addition of 

BSA-c as described by Momayezi et al., (2000) and Yi et al. (2001) resulting in a 

incubation buffer composed of 1% BSA in PBST, 1% NGS and 0.2% BSA-c reached 

the most reproducible results with low background, however also reducing the signal 

intensity. This solution was subsequently used in all experiments for blocking and as 

incubation buffer, respectively. 

 

Table 8: Comparison of blocking solutions for background reduction in dissected 
midgut tissues, embedded in LR White, fixed in 0.5% GA + 4% PFA. 
Blocking buffers, 3% BSA in PBS-T, 5% NGS + 5% BSA, 5% NGS + 
5%BSA (*incubation buffer composed of 1% BSA, 1%NGS, 0.2% BSA-c). 
Out (outer regions surrounding microvilli); N (nucleus). Counts of gold 
particles were calculated as mean values (Mean) with standard error (± SE) 
determined as an indicator of the significance of the differences obtained in 
the recordings. 

 

 3% BSA /PBS-T 

Mean ± SE 

5% NGS+ 5% BSA 

Mean ± SE 

*5% NGS+ 5%BSA

Mean ± SE 

N 82.5 ±8.9 N: 98.3 ±7.4 N: ±** 

Microvilli 66.4 ±15.2 Microvilli  75.7 ±3.6 Microvilli 31.8 ±8.2 

Viruliferous insects 

Out 16.6 ±2.3 Out  30.4 ±4.3 Out  5.1 ±2.1 

N:62.4 ±7.3 N: 52.1 ±0.7 N: ±** 

Microvilli 78 ±3.4 Microvilli 64.15 ±9.6 Microvilli 13 ±2.5 

Non viruliferous 

insects 

Out 19.5 ±0.3 Out 30.15 ±4.5 Out 3.7 ±1.0 
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Using 2 %BSA-c (Ramandeep et al., 2002) or increasing NGS to 10% Normal Goat 

Serum as described by Boyes and Bolam, 2003 failed to give reliable results and 

reducing the overall signal obtained.  

As shown in Fig 20 and 21, unspecific immunogold labelling of embedded and 

sectioned whitefly organs presented a major problem and the main impediment of 

image data interpretation and straightforward analysis.  

 

 

Figure 20: Thin section of midgut isolated from B. tabaci reared on WmCSVasp 
infected watermelon. Scattered gold particles on section surface indicated 
high non-specific binding. Fixation in 0.2% GA + 4% PFA prior to 
embedding in LR White resulted in poor preservation of ultrastructural 
features. Scale bar represents 1µm. 
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Figure 21: Immunolocalization of WmCSV by immunogold labelling of LR White 
embedded organ sections. Organs were fixed in 2.5% GA for 2 h then 
subjected to Glycine and Na BHO4 treatments for background reduction. A, 
high unspecific labelling with gold particles scattered over the surface (arrows) 
of the section; B) Specific gold labelling concentrated in the microvilli of the 
anterior part of the midgut (arrows). Scale bar represents 1µm. 
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Ultrastructural studies of B. tabaci organs  3.1.13 

3.1.13.1 Primary salivary glands 
Ultrastructural studies with whitefly organs are prerequisites for interpretation of 

immunolocalisation experiments.  
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N 
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Figure 22: Thin section of a primary salivary gland of B. tabaci. The dissected organ 
was fixed in 2.5% GA, post fixed in 0.5% OsO4 and embedded in Epon 
812. N, nucleus; n, nucleoli; EDG, electron dense granules; RER, rough 
endoplasmic reticulum. Scale bar represents 5µm. 

 

Osmication as a post-fixation treatment provides a good contrast fxing membrane 

bound lipids and revealing cell boundaries. Fig. 22 shows a thin section through a 

primary salivary gland fixed in OsO4 and embedded in Epon 812 plastic resin. 

The gland is composed of 13 large cells with large nucleus and small nucleoli, 

containing condensed and organized whorls of rough endoplasmic reticulum, and 

large numbers of electron dense granules (Fig 22 EDG) differing in size and of yet 
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unknown function. Upon higher magnification (Fig. 23) the gland tissue is filled with 

electron luscent vesicles (Fig. 23 arrows) or similar structures, surrounded by 

membrane bi-layers. These are probably responsible for transport of proteins or, for 

virus transport through cells barriers and from cell to cell. However pending a 

definite proof, this remains speculative. 
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Figure 23: Electron micrograph of a thin sectioned primary salivary gland from B. 
tabaci showing segments of figure 22, at higher magnification. EDG, 
electron dense granules, RER, rough endoplasmic reticulum; Arrows, 
membranous structures (vesicles); open arrow, undefined structure. Scale 
bar represents 1µm. 
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3.1.13.2 Accessory salivary glands  
For ultrastructural investigations of the pear shaped accessory salivary glands (Fig. 

25), the excised organs were fixed as described for PSG.  

The accessory salivary gland is composed of 4 large cells (Fig. 24 and 25), each cell 

characterized by a large nucleus, and a huge number of vesicles. However, electron 

dense granules as observed with primary salivary glands were not found. The four 

cells are composed of one layer of epithelial cells characterized by an extensive 

lining of microvilli assembled to meet in the salivary duct (Fig 24 A, B) Fig 25 

shows a section of a whole accessory salivary gland with pear-like shape, while the 

PSG is kidney shaped (Fig. 22). In this section from the ASG enlarged in Fig. 25, 

microvilli are not found however this segment contains a large number of bi-layered 

vesicles ands is rich in mitochondria. 
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Figure 24: A, Ultrastructure of Epon embedded ASG. Organs were immediately fixed after excision in 2.5% GA for 2h, followed by post-
fixation in 0.5% OsO4  and staining in 2% aquous UAc; B, Enlargement of boxed section of A, Microvilli (M) in the centre of the 
gland and the four cells composing ASG, (m) mitochondria, (v), vesicles. Scale bar in A represents 5µm; scale bar in B is 1 µm. 
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Figure 25: A, Ultrastructure studies of Epon embedded ASG. Organs were immediately fixed after excision in 2.5% GA for 2h, followed by 
post-fixation in 0.5% OsO4  and staining in 2% aquous UAc; B, Enlargement of boxed section of A, in an area of the organ where no 
microvilli are found instead a large number of coated vesicles and mitochondria (m) can be observed.  Scale bar represents 1µm. 
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Immunolocalization of WmCSVwt in dissected organs of B. tabaci 3.1.14 

3.1.14.1 WmCSVwt immunoloalisation studies in Epon 812 embedded organs 
Immunocytochemical localization of antigens at the ultrastructural level is a 

powerful technique to demonstrate relationships between cell structure and function. 

However, the central problem in imunocytochemistry is to retain antigenicity without 

sacrificing cell morphology. A major aspect of this problem is to preserve membrane 

ultrastructure adequately in the absence of OsO4 fixation, a treatment known to 

destroy many antigens. In general, immunological detection is influenced by tissue 

fixation and the embedding procedure. However, the effect of tissue fixation and 

embedding is often the limiting factor, particularly when specimens are embedded 

for electron microscopical examination. Preservation of membranous structures such 

as multilamellar vesicles, and/or tubular vesicles or multilamellar bodies, which are 

suggested playing a significant role in virus transcytosis (Reinbold et al., 2001), is a 

key to investigations of the virus translocation mechanisms. Thus, investigations on 

the effects of etching and antigen retrieval (AR) procedures on post-embedding 

immuno-labelling of our target antigen were preconditions for all 

immunolocalization studies. 

In our experiment, etching was achieved best using saturated sodium metaperjodate, 

mPJ (Table 9). Treatment with mPJ significantly reduced the contrast of the sections, 

thus in later experiments, thicker sections about (120-150 nm) were used and section 

contrast was enhanced. Four different antigen retrieval solutions were evaluated for 

best signal obtained upon each treatment with dd H2O, SCB pH 6.0, EDTA pH 8.0 or 

Tris buffer pH 10.0, respectively. After AR using SCB or EDTA as described by 

(Röcken and Roessner, 1999), a number of holes with variable sizes were observed 

in the sections, although integrity and contrast of the ultrathin section appeared to be 

maintained. 
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Table 9: Effect of antigen retrieval treatments on post-embedding immunolabelling 
of WmCSV in embedded primary salivary gland sections. undef. s., 
undefined structure; multi. ves., multilamellar vesicles; EDG, electron dense 
granules; RER, rough endoplasmatic reticulum; N, nucleus; * comparable 
structures were not found for comparison Counts of gold particles were 
calculated as mean values (Mean) with standard error (± SE) determined as 
an indicator of the significance of the differences obtained in the recordings. 

 

 No treatment 

 

Mean ± SE 

Etching only  

with mPJ 

Mean ± SE 

Etching & heating  

in H2O 

Mean ± SE 

N 10.6 ± 0.7 N 23.5± 0.5 N 54.8± 4.6 

EDG 2.45± 0.5 EDG 17.9±2.8 EDG 19.3 ±5.0 

vesicles 15.2 ± 0.2 vesicles 45.1± 0.5 versicles 62.6± 3.4 

undef. s. 7.8± 0.5 undef. s. 49.8 ± 0.34 undef.s. 78.8±9.7 

multi.ves. 8.9±1.0 multi. ves. 41.7± 1.46 multi.ves. 52.1 ± 3.6 

Viruliferous insects 

RER 8.4±0.4 RER 28.9 ± 1.4 RER 52.8±4.7 

N 10.1±0.4 N 34.8± 2.47 N 47.9± 4.6 

EDG 3.6 ± 0.2 EDG 20.8 ± 1.2 EDG 16.9 ±1.67 

vesicles * vesicles 37.9± 1.8 vesicles 49.5±2.7 

undef. s. 8.2 ±0.1 undef. s. 30.1± 0.8 undef. s. 51.5±2.9 

multi.ves. 8.1±0.95 multi.ves.. * multi.ves. 42.1±3.1 

Non viruliferous insects 

RER 12.2 ± 1.0 RER 32.4± 1.2 RER 40.8±4.8 

 

Different antibodies were used in immunolocalization studies after etching and 

antigen retrieval treatments. The monoclonal antibody against TYLCV, DSMZ AS-

0546/2 (1C1), and the ACMV polyclonal IgG DSMZ AS-0241/2 showed very good 
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reactions with WmCSV in ELISA and in Western-blot analysis. TYLCV 0546/2 was 

used to evaluate the effectivity of antigen retrieval. Sections were subjected to 

saturated sodium metaperjodate (15%) for 1 h and subsequently subjected to antigen 

retrieval in dd H2O for 30 min at 91 °C. Unfortunately, there was no positive effect 

on the retrieval of the target epitope and only very few scattered gold particles were 

observed on PSG tissue sections. With the polyclonal antibody ACMV 0241/2 

applied to etched sections subjected to H2O antigen retrieval, a very weak signal was 

obtained and only few gold particles were observed. Using mPJ without further 

antigen retrieval treatment had moderate effects on labelling signal intensity, but 

there was no significant difference observed between PSG sections from viruliferous 

and non-viruliferous insects. As summerized in table (9) the mean value of gold 

particles scored in the undefined structure without etching treatment was 7.8 and 

after etching with mPJ it has been raised to 49.8 then to 78.8 upon antigen retrieval 

after heating in H2O. 

However when etching was combined with H2O antigen retrieval the signal intensity 

was increased and most intense in multilamellar vesicles. Unspecific signals were 

found on the electron dense granules and nuclei; hence these two organelles may not 

play a significant role in virus translocation. This was in contrast to the report by 

Ghanim et al. (2001) observing TYLCV immunoreactions at high levels in the 

nucleus of PSG.  

To reduce non-specific antibody binding, several blocking solutions were used, with 

non fat dry milk (0.1, 0.5, 3%) in PBS-T resulting in a total blocking of all antigen-

antibody reactions. In parallel experiments with 2 % and 0.5 % BSA-C (Aurion-

Germany) The only blocking method which gave better results was the combination 

of 5% NGS with 5% BSA in PBS-T however, this blocking was also accompanied 

with a relatively higher non-specific binding of gold particles on the nucleus and 

EDG which may not be significant sites for virus translocation. For ultrastructural 

examinations it was found that etching followed by antigen retrieval using H2O 

resulted in satisfactory levels of antigen retrieval and good immunological signals 

(Fig. 27), while etching treatment alone resulted only in very weak immunological 

signals (Fig. 28).  
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These methods were carried out to determine the most effective antigen retrieval 

treatment. Generally, it can be concluded that etching treatment with mPJ followed 

by antigen retrieval has resulted in a great improvement of antigen binding, although 

non-specific binding to insect proteins or proteinaceous structures also was 

increased. In these experiments antigen retrieval of Epon embedded PSG using Tris-

buffer at pH 10.0 for 24h at 65 °C as described by Saito et al. (2003), resulted in a 

very poor antigen retrieval while this treatment improved signal intensities with 

Lowicryl embedded PSG sections.  

 

Figure 26: Immunolocalization of WmCSV in Epon embedded organs sections 
subjected to mPJ etching and antigen retrieval using dd H2O. Polyclonal 
WmCSV AS-803 was used as a primary antibody. Signal was observed in 
vesicle aggregates. Scale bar represents 1µm. 
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Figure 27: Immunolocalization of Epon embedded PSG sections subjected to antigen retrieval after mPJ etching. Polyclonal WmCSV was 
used in dilution of 1:25 (v/v) as primary antibody. Immunological signals were observed in vesicle aggregates and in multilamellar 
vesicles indicated by arrows. B,C is an enlargement of boxes in A. Scale bar represents 1 µm. 
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Figure 28: Immunolocalization of PSG sections embedded in Epon subjected to etching treatment only, without further antigen retrieval. Only 
very weak signal were observed in multilamellar vesicles. B is enlargement of a multilamellar vesicle observed in A. Scale bar 
represents 1µm. 
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3.1.14.2 Optimisation of blocking conditions for immunological experiments on 
sectioned insect organs 

Several blocking buffer combinations were tried with etched and AR treated 

sections. Here it has been found that neither blocking using non fat dry (skim) milk 

(0.1%, 0.5%) nor the use of 2%BSA-c resulted in a satisfactory background 

reduction since the overall signal was almost quenched. The most acceptable signal 

was found using 5% NGS + 5% BSA as a blocking buffer. Immunological signals, 

evident by agglomeration of GAR-gold particles on the section was found to be 

concentrated in vesicles with a mean value of about 62.6 gold particles per 5µm2 

compared with only 49.5 particles found in non-viruliferous insects. In structures 

with a so far not clear function (unidentified structure) a mean value of 78.8 gold 

particles per 5µm2 with viruliferous insects compared with a mean value of 51.5 

reached with the non-viruliferous insect sections provided a good indication for 

specific agglomeration of virus in these structures. Immunogold labelling of 

WmCSVwt in embedded midgut tissuesImmunolocalization experiments preformed 

with dissected organs embedded in LR White at 60 °C and primarily fixed in 0.5% 

GA+4% PFA revealed striking and often ambiguous results for each organ subjected 

to experiments. For the midgut sections, the signal obtained was found to be 

concentrated in the microvilli adjacent to the lumen of the insect gut. In addition the 

signal was found to be intense in the filter chamber of the insect (Fig 29) while no 

signal was observed in the lumen of the midgut. Using LR White as embedding 

medium, the ultrastructure of the organs embedded was not resolve to high resolution 

as it was later found with organs embedded in Lowicryl acrylic resin.   

 

 99



 

3.1.15 Immunogold labelling of WmCSV in embedded midgut tissues 
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Figure 29: Immunogold labelling and localisation of WmCSV in embedded midgut 
tissues. To preserve antigenicity OsO4 treatment was not done hence the 
low contrast particularly with membranes. Immunogold granules are 
concentrated in the microvilli with few gold particles found out of the 
microvilli especially the mitochondria and the nucleus. Scale bar in A,C 
represents 1µm; in B scale is 2µm. 
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The observed signal recorded from assessment and gold granule counting of 20 

sections taken from 2 midgut blocks revealed a mean value of 31.8 gold particles 

found in a 5 µm2 area in viruliferous insect compared with 13 gold particles per 

5µm2 for non-viruliferous whiteflies (Table 10).  

Table 10: Gold particle distribution on subcellular compartments of the proximal part 
of the ascending midgut counted on a 5 µm2 area (at a magnification of 
12930x). Counts of gold particles were calculated as mean values (Mean) 
with standard error (± SE) determined as an indicator of the significance of 
the differences obtained in the recording. 

 

 Subcellular location Distribution of gold particles 

 Mean ± SE 

Microvilli 31.8 ± 8.2 

Viruliferous insect 

Out of the microvilli 5.1 ± 2.1 

Microvilli 13 ± 2.5 Non viruliferous insect 

Out of the microvilli 3.7 ± 1.0 

Primary salivary glands embedded in LR White subjected to immunolocalization 

studies revealed signals concentrated in structures which are in general not well 

defined and hitherto unknown. (Table 30). Especially when post-fixation treatment 

was omitted, these structures remained quite diffuse and not well contrasted. 

However, these structures revealed the most intensive signal regardless of the 

method used for fixation or type of the embedding . 

3.1.16 

 

 

Immunolocalization of  WmCSV in embedded primary salivary glands 
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Figure 30: Immunogold localisation of WmCSV in primary salivary gland sections isolated from B. tabaci fed on purified virus preparations for 72 
h. WmCSV polyclonal antibody was used in 1:25 (v/v) dilution; the secondary antibody, a goat anti rabbit fab`2 fragment conjugated to 10 
nm gold (British Biocell Internaional) was used in a dilution of 1:50 (v/v). Scale bar A, B = 5µm, in C, scale bar is 1µm. Arrows point at 
gold aggregations. 

 



 

The signal observed in this structure using LR White reached a mean value of  23.5 

gold particles per a 5 µm2 area compared with  9 gold particles per 5µm2 for the 

control section (Table 11), taking into consideration that these experiment were done 

on dissected organs from insects feed on infected plants and not on artificial diets 

from purified virus preparations. 
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Table 11: Distribution of gold particles on subcellular compartments of primary 
salivary glands counted on a 5 µm2 area (at a magnification of 12930 x). 
Figures representing mean values of 10 sections obtained from two glands. 
Counts of gold particles were calculated as mean values (Mean) with 
standard error (± SE) determined as an indicator of the significance of the 
differences obtained in the recordings. 

 

 Subcellular location Distribution of gold particles 

 Mean  ± SE 

Nucleus 10.9 ± 3.1 

Undefined structure 

(rich of multilammelar 

vesicles) 

23.5 ± 10.6 

Electron dense 

granules 

8.2 ± 1.8 

Viruliferous insects 

Vesicle aggregates 18.8 ± 9.8 

Nucleus 3.9 ±1.0 

Undefined structure 

(rich of multilammelar 

vesicles) 

9.1 ±0.9 

Electron dense 

granules 

4.6 ±1.0 

Non viruliferous 

insects 

Vesicle aggregates 4.1 ± 0.5 

 

It has further been observed that a high level of gold particles was found in the nuclei 

of viruliferous insects with about 10.9 gold granules per area observed compared 

with 3.9 gold particles for the control section. The signal observed in the vesicle 

aggregates which was rich of multilamellar and electron lucent vesicles, with 
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putative role in protein transport was significantly higher in viruliferous insects (18.8 

particles) than with non viruliferous insect (4.1 gold particles per 5µm2) 

For a more detailed investigation on these undefined structures, salivary gland 

sections embedded in Epon plastic resin after fixation for ultrastructure preservation 

and osmication were used for reference and interpretation of the results (Fig, 31). 

Observations in EM revealed a good preservation of the fine structures in these organ 

sections. 

 

 

 

Figure 31: Section through a primary salivary gland embedded in Epon 812 to 
resolve cytology for ultrastructural investigations. Scale bar represents 1µm. 
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3.1.17 

 

 

 

 

Table 12: Distribution of gold particles on subcellular compartments of accessory 
salivary glands counted on a 5 µm2 area (at a magnification of 12930 x). 
Figures represent mean values from 10 sections obtained from two glands of 
viruliferous and non-viruliferous insects respectively. Counts of gold 
particles were calculated as mean values (Mean) with standard error (± SE) 
determined as an indicator of the significance of the differences obtained in 
the recordings. 

 

The immunological experiments performed with accessory salivary glands overall 
resulted in weak labelling reactions providing an indication that accessory salivary 
glands may not play a role in virus translocation. The overall signal obtained was 
weak and only slightly higher in intracellular vesicle aggregates than in microvilli 
(Fig 32) of the viruliferous insects compared with the control sections of the ASG 
(Table 12). 

Immunolocalisation of WmCSV in embedded accessory salivary glands 

Subcellular location Distribution of gold particles 

 Mean  SE 

Microvilli 7.1 ± 2.9 

Viruliferous insects 

Intracellular vesicle aggregates 12.1 ± 3.2 

Microvilli 2.8 ± 1.3 Non viruliferous insects 

Intracellular vesicle aggregates 2.7 ± 0.7 
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Figure 32: Immunolocalization study of acessory salivary gland sections embedded in LR White. WmCSV antibody was used at 1:25 (v/v). 
The signal observed with scattered gold granules in C, was too weak to be considered a specific binding (arrows). Scale bar in A 
represents 5µm; in B and C represents 1µm.  
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3.1.18 

3.1.18.1 

Immunolocalization studies with insect organ sections embedded in 
Lowicryl K4M 

Immunolocalization of WmCSV in primary salivary glands embedded 
in Lowicryl 

Lowicryl resins are highly cross linked acrylate and methacrylate-based embedding 

media which have been designed for use over a wide range of embedding conditions. 

These resins have been formulated to provide low viscosity at low temperatures -35 

to -80°C. K4M resins are polymerized by long wavelength (360nm). Since the 

initiation of the polymerization is largely independent of temperature, blocks can be 

polymerized at the same temperatures which are used for infiltration. The 

hydrophilic properties of K4M provide two distinct advantages. During dehydration 

and infiltration the specimens may be kept in partially hydrate state, since K4M can 

be polymerized with up to 5% residual water. Secondly, K4M is particularly useful 

for immunolabelling of sections using specific antisera. In the case of this study use 

of K4M resulted in a better ultrastructural preservation (Roth et al., 1981) than with 

LR White, improved preservation of antigenicity (Bendayan and shore 1982; Roth et 

al., 1982) and showed a significantly lower background labelling.  

Embedding in Lowicryl was done using the Progressive Lowering of Temperature 

(PLT) Technique: This procedure involves stepwise reductions in temperature as the 

concentration of dehydration agent is increased. The temperature is selected at each 

step above the freezing point of the concentration used in the preceding step. For the 

freezing points of various dehydrating agents, most polar and nonpolar dehydrating 

agents may be used with both resins. Due to its hydrophobic nature, K4M resin is 

freely miscible with methanol and ethanol. 

Lowicryl as an embedding medium gave better immunostaining results especially 

after antigen retrieval using Tris-buffer pH 10.0 for 24 h at 65°C (Fig. 35). Using 

Tris- buffer as an antigen retrieval solution was mainly used as described by (Saito et 

al., 2003) for retrieving monoclonal antibody specific epitopes. This treatment 

combined with immunolabelling using the monocloanl antibody TYLCV 0546/2 has 

however failed to achieve such goal and only a very faint signal was observed. In 

contrast, a highly specific immunostaining was obtained when antigen retrieval was 
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applied in immunolocalization experiments using cross absorbed WmCSV 

polyclonal antibody instead of the Mab.  

Labelling obtained upon immunolocalization of retrieved sections was specifically 

observed in the undefined vesicular structures and in vesicle aggregates directly 

attached to this structure. In Fig 33 presenting an overview of the primary salivary 

glands, this study for the first time shows that these structures are probably microvilli 

and represented 3 times in this organ. Two identical structures are located at both 

sides of the gland in the middle of electron dense granules rich cells, while the third 

bigger in size structure is located in the centre of the gland.  

Lowicryl embedding has resulted in an improved resolution of ultrastructural 

features with low background staining and higher labelling intensity of primary 

salivary gland sections (Fig 34, 35). Counting of gold particle revealed specific 

signal within these structures while negligible numbers of gold particles were 

occasionally observed in control sections. The signal recorded in antigen retrieved 

sections was found again at highest level in the undefined structure, rich in 

multilammellar vesicles with a mean value of  133.7 gold particles per examined 

field in viruliferous insect compared with 43.6 gold particles per 5µm2 in control 

sections. 

In vesicle aggregates, the mean value of the scored signal was about 43.5 in 

viruliferous insect compared with 17.3 gold particles per 5µm2 in control sections 

(Table 13). 
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Figure 33: Primary salivary gland section embedded in Lowicryl K4M. A, undefined structure is represented 3 times in the organ; B and C are 
enlargements of respective sections in A. Scale bar in B,C and D represents 1µm.  
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Figure 34: Effects of antigen retrieval treatment for immunolocalization of  WmCSV in Lowicryl embedded primary salivary gland sections. 
Sections were fixed in 0.125 GA + 1%PFA, WmCSV adsorbed IgG diluted 1:25 (v/v) was used as primary antibody. A, represents 
immunolocalisation with antigen retrieved sections of PSG from viruliferous insects. B, shows immunolocalization experiment with 
PSG from viruliferous insects not treated for antigen retrieval. Scale bar represents 1µm. 
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Figure 35: Immunolocalization of  WmCSV in Lowicryl embedded primary salivary gland sections. Organs were fixed in 0.125 GA+1%PFA, 
incubated with WmCSV adsorbed IgG diluted 1:25 (v/v) and GAR conjugated gold. Sections were subjected to antigen retrieval. A), 
PSG from viruliferous insects. B, PSG from non viruliferous insects. Scale bar =1µm. 
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Table 13: Distribution of gold particles on subcellular compartments of Lowicryl-
embedded primary salivary glands. Immunolabelling was applied on antigen 
retrieved sections. Gold particles were counted on a 5 µm2 area (at a 
magnification of 12930x). Figures represent mean values from 5 sections of 
viruliferous and non viruliferous whiteflies. RE Counts of gold particles 
were calculated as mean values (Mean) with standard error (± SE) 
determined as an indicator of the significance of the differences obtained in 
the recordings. R, rough endoplasmatic reticulum 

 

 Subcellular location No antigen retrieval 

Mean/ SE 

Antigen retrieval 

Mean/ SE 

Nucleus 11.4 ±1.97 26.7 ±7.7 

Undefined structures rich of 
multilammellar vesicles) 24.9 ±2.3 133.7 ±38.9 

RER 8.8 ±2.2 10.4 ±2.9 

Electron dense granules 7.1 ±1.2 5.27 ±1.3 

Viruliferous 

insects 

Vesicle aggregates 53.3 ±8.5 41.5 ±2.5 

Nucleus 9.4 ±1.4 8.6 ±4.5 

Undefined structures 
(rich of multilammelar 

vesicles) 

15.9 ±6.1 43.6 ±22.6 

RER 9.6 ±2.1 6.5 ±5.3 

Electron dense granules 7.6 ±1.6 5.8 ±2.3 

Non 

viruliferous 

insects 

Vesicle aggregates 23.4 ±2.0 17.3 ±3.3 
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Immunolocalization of WmCSV in Lowicryl embedded accessory  salivary gland 
organs 

Immunolocalization experiments to localise WmCSVwt in Lowicryl embedded ASG 

tissue resulted in a very weak signal in the microvilli of viruliferous insects (fig 36). 

When compared with non-viruliferous insect up to 50% more gold particles could be 

observed, however the estimation of the standard error also revealed ambiguity of the 

results obtained. Examination of sections embedded in LR White and also the Epon 

embedded ASG resulted in no significant differences in all ASG immunolocalization 

experiments. 

Table 14: Distribution of gold particles on subcellular compartments of Lowicryl 
embedded accessory salivary glands. Immunolabelling was applied on  
antigen retrieved sections; gold particles were counted on a 5 µm2 area (at a 
magnification of 12930 x). Figures show mean values from 5 sections of 
viruliferous and non viruliferous whiteflies. Counts of gold particles were 
calculated as mean values (Mean) with standard error (± SE) determined as 
an indicator of the significance of the differences obtained in the recordings. 

 

 Subcellular location Distribution of gold particles 

Mean value/SE 

Nucleus 9.6 ±1.9 

Microvilli 49 ±21.2 

Viruliferous 

insects 

Intracellular vesicle 
aggregates 

8.3 ±1.2 

Nucleus 6.3 ±3.6 

Microvilli 24.7 ±5.5 

Non 

viruliferous 

insecst 

Intracellular vesicle 
aggregates 

5.6 ±0.5 
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Figure 36: Immunolocalization of WmCSV in Lowicryl embedded acessory salivary 
gland sections (ASG) treated by antigen retrieval. WmCSV IgG 1:25 (v/v) was 
used as primary antibody. A section with microvilli, boxed, is enlarged in B. 
Scale bar represents 1µm. 
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3.1.19 In-situ hybridization 

In situ hybridization is a multiple procedure, including:  

(1) preparation of the biological material,  

(2) nucleic acid probe selection and labelling,  

(3) hybridization with labelled probe,  

(4) cytochemical probe detection,  

(5) microscopy and imaging analysis. 

 

Thís first trial for an in situ hybridization experiment to reveal the ultrastructure of 

tissue sections obtained from LR White embedded organs, it was found that 

generally all fine structures are lost hence resolving fine details in dissected organ 

sections of insects might not be possible. There was a major background staining 

obtained upon hybridization and especially this was considered the major problem in 

virus localization by in situ hybridization with non radioactive nucleic acid probes. 

When in-situ hybridization was attempted on etched Epon embedded sections only 

very weak signals were found but with results for salivary gland tissues obtained, 

essentially verifying the immunolocalization studies 

Weak, however, specific signals were obtained for localisation of WmCSV by in situ 

hybridisation in multilamellar vesicles of primary salivary glands excised from 

viruliferous B. tabaci insects (fig 37).  
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Figure 37: In situ hybridization analysis of Epon embedded primary salivary glands 
sections. Arrows pointing to gold agglomerates. Scale bar represents 1µm. 

 

In Summary, 

The results of the immunolocalisation study to detect WmCSV in excised organs of 

B. tabaci insects and to elucidate the translocation pathway in the vector indicate: 

• The ASG apparently does not play a role in the circulative pathway of 

begomoviruses  

• The primary salivary gland, PSG, presents the organ most decisive for 

begomovirus transmission by their B. tabaci whitefly vectors. 
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4 Discussion 

 

4.1 Translocation of WmCSV in Bemisia tabaci vector and Trialeurodes 
vaporariorum non-vector species 

The application of PCR for amplification and detection of geminiviruses is proven as 

a sensitive assay to trace geminiviruses in plants and in insects (Deng et al., 1994; 

Ghanim et al., 1998; Navot et al., 1992; Rojas et al., 1993; Wyatt et al., 1996). The 

PCR primers designed in this study resulted in highly specific amplification of 

WmCSV DNA A sequences that, coupled with DNA hybridization of PCR products 

using a digoxigenin labelled DNA probe allowed for an extremely high resolution of 

begomovirus detection required for tracing virus DNA in single whiteflies and in 

minute volumes of whitefly isolated organs from virulent insects. However, virus 

detection in insects indicates for virus ingestion and does not provide a prove for 

transmission, as demonstrated by Rosell et al. (1999). The Bemisi tabaci transmitted 

begomovirus WmCSV can be detected in the non-vector whitefly T. vaporariorum, 

although transmission assays consistently remain negative. These results are 

consistent with the results of this study, where T. vaporariorum insects served as 

controls for detection and localization studies. Similarly the begomoviruses Squash 

leaf curl virus (SLCV) reported by Polsten et al., (1990) and Tomato yellow leaf curl 

virus (TYLCV) as experimented by Antignus et al. (1993) are only transmitted by B. 

tabaci  insects.  

In this study acquisition access time for virus transmission was not under 

investigation. However, it has been demonstrated (Ghanim et al., 2001), that the 

latent period of a TYLCV virus from Israel was much shorter than reported by 

Cohen and Nitzany in 1966 more than 35 years ago. As it has been reported by 

Cohen and Nitzany (1966), and Cohen et al., (1983) that increasing AAP results in a 

higher PCR detection and consequently also increased the transmission rate. It has 

been observed by Rosell et al. (1999) that the transmission frequency of SLCV 

decreased between the 12 and the 24-h AAP and increased again after the 72-h AAP. 

These observations led to the definition of rather precise AAP ranging between 48-

72 h AAP.  
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The purpose of this study was to obtain information about the passage of 

begomoviruses through the vector and to identify organs participating or rather 

governing vector transmission. To date, information about the translocation pathway 

of begomoviruses is scarce. Despite this, much is known about viral factors involved 

in transmission with coat proteins of begomoviruses as the structures defined. The 

specificity of geminivirus transmission results from an intimate relationship between 

surface structures of the CP and putative insect receptors. There is no evidence for 

any role of other virus-encoded proteins in insect transmission, as for transmission 

factors of caulimoviruses and potyviruses (Pirone and Blanc, 1996) in aphids or the 

read-through domain of luteoviruses (Brault et al., 1995). Still, receptors in insects 

remain speculative as the translocation events, as active virus/vector interaction in 

the vector, are rather dubious.  

Using a non- transmissible isolate of Abutilon mosais virus, AbMV-Is, with whitefly 

transmissibility most probably lost as a result of constant vegetative propagation, 

Morin et al., (2000), could not trace the virus neither in haemolymph nor in the 

salivary glands of the vector species, suggesting that the virus is blocked at the level 

of the gut epithelia.  

The involvement of the epithelial cells of the gut wall in the regulation of virus 

acquisition by the insect has been reported for different viruses and insects. 

Ultrasturctural analyses have shown that the midgut barrier is the cause of the 

inability of adult western flower thrips Frankliniella occidentalis to acquire Tomato 

spotted wilt virus (Ulmann et al., 1992). In aphids, recognition of luteoviruses 

however, occurs at the level of hindgut membrane (Gildow 1987, 1993).  

The observation by Rosell et al. (1999) that SLCV DNA was detected in saliva and 

salivary products and in honeydew produced by B. tabaci insects feeding for 48h on 

virus infected plants and with viral DNA only found in honeydew excreted by T. 

vaporariorum as a control suggested that whitefly transmitted begomoviruses are 

unable to cross the gut membrane barrier of non vector insects. This was also 

observed in this detailed study providing proof that indeed the midgut presents a 

major impediment to begomovirus translocation in T. vaporariorum insects. This is 

however is not the case for Bemisia tabaci, the vector insects for begomoviruses. 
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4.2 Translocation of transmissible and non transmissible WmCSV 
begomoviruses in the whitefly vectors 

 

In experiments with wild type WmCSV and several coat protein mutants generated 

in a transmission sensitive region of the CP, it was found that all mutant viruses were 

infectious to watermelon but not transmissible by B. tabaci insects. Since CP is the 

structural feature required for transmission but not for virus infectivity and 

movement in planta it was first required to provide proof for virus assembly into 

virions, which was done by immunocapture PCR. This method was used because 

begomoviruses and geminiviruses in general are elusive in electron microscopy and 

hence require special treatment (ISEM) or enrichment to semi- purified preparations. 

Using IC-PCR omitted cumbersome virus purification and proved that the WmCSV 

mutants are assembled into virions. It did however not prove the stability of these 

particles in the insect.  

All WmCSV mutants assembled in virions were not transmitted by B. tabaci but 

were capable of crossing the gut wall of the vector. All non transmissible virus 

mutants were found within the salivary glands, except for WmCSVser which; 

although found in haemolymph, most probably failed to attach to the salivary gland.  

The result gained from experiments using wild type transmissible WmCSV supports 

the circulative transmission of geminiviruses with virus detection in all organs thus 

with features similar to other well studied circulative plant virus interactions, 

especially found with luteoviruses. 

The results gained from our experiments suggest that the midgut epithelia in the 

vector species may act as a recognition site for virus transmission, and that two levels 

of barriers exist; the first is the midgut epithelial barrier suggested to play a 

recognition/barrier for vector and non-vector species. The second is the salivary 

gland barrier which plays the most significant role for virus transmission. This can 

also be deduced from the model for circulative persistent non-propagative 

transmission generated from experiments with Potato leafroll virus PLRV (Day, 

M.F., 1955) and Beet western yellows virus, BWYV (Duffus, 1960) verifying that 

luteoviruses entering the aphid vector haemocoel as part of the transmission process. 

However, Rochow and Pang (1961) discovered that some aphid vectors can acquire 
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luteoviruses and translocate it to the haemocel but were unable to transmit virus 

while non-vector insects did not transmit purified luteoviruses even when injected 

into the haemocel. Paliwal and Sinha (1970) demonstrated an association of 

luteoviruses with aphid salivary glands and hypothesized that BYDV vector 

specificity was not due to recognition and passage through the aphid gut but rather 

determined primarily by interactions of the virus proteins with membranes of the 

aphid salivary gland. 

Hence, the results of this study, to trace the virus translocation pathway with 

dissected insect organs carrying WmCSV mutants, revealed a general rule, that 

transmission specificity is associated with inoculation of the virus (i.e., movement of 

the virus through the salivary system) rather than acquisition (uptake of the virus by 

the gut epithelial cells and delivery into the haemocoel.  

 

4.3 Begomoviruses interfering with vector transmission 

Begomviral DNA accumulates with increasing AAP on infected plants up to a peak 

at approximately 12 h for TYLCV, 24 h for TYLCSV (Zeidan and Czosnek, 1991; 

Caciagli and Bosco, 1997), and 48 h for SLCV (Polston et al., 1990). At its peak 

approximately 600 million (about 1ng viral DNA) viral genomes can accumulate in 

these insects. From a single feeding event this finite amount can be acquired reaching 

a steady state between ingestion and discharge after 12-48 h AAP. Feeding studies 

with insects first fed on TYLCV and subsequently on TYLCSV for 48 h each, while 

TYLCV concentration in the insect after first uptake remained, TYLCSV still 

accumulated in the insect during the secondary feeding. This showed that virus 

uptake is independed and additional virus does not chase virus already present in the 

insect. However experiments done by Cohen et al., (1989) showed that whiteflies 

that were fed for 48 h on SLCV-infected squash and then transferred to Melon leaf 

curl virus (MLCuV) infected watermelon for 24 h exhibited a 35-90% reduction in 

transmission of MLCuV. This is a clear result of interference of transmission.  

In this study conducted with a first acquisition feeding with the non transmissible 

WmCSVasp followd by feeding with the transmissible WmCSVwt virus 

transmission dropped considerably to 40 % which points to blocking the virus 
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transmission and the putative receptor-mediated endo/exocytosis. This might be by 

saturation of insect receptors so that further virions fail to attach to these sites.  

4.4 Immunolocalization studies to trace virus in insect organs and define 
sensitive translocation points  

Cytological studies with begomoviruses and their vector insects are presenting a 

problem in itself. This is because of the nature of the whitefly insects which can not 

be studied as a whole sectioned organisms as with aphids due to the high complexity 

of structures, the enormous amounts of symbiontic organisms also present in the 

insects, the almost completely missing cytological data and the limited number of 

experts competent in this field. In addition, geminiviruses are very difficult to 

visualise by any method and even at high concentrations, morphological studies with 

these viruses are difficult. Despite the fact that good antisera for virus detection by 

ELISA are available reaching highly specific detection in these formats, the 

presentation of geminivirus epitopes for immunolocalisation studies is entirely 

different and presents a further technical aspect to consider. 

Consequently this study concentrated merely to find and optimize methods that can 

be used for virus immunolocalization experiments and dealing with low binding-

specificities, problems of virus localization despite low signal intensities of 

immunogold complexes etc.. There are several reasons for such difficulties among 

which, unspecific reactions of antiserum used and low intensity of a specific signal, 

are the most prominent. For example, Epon embeddings of insect tissues were 

characterized by a very good contrast of the membranes but represented a very high 

level of denaturation so that antigenicity was almost lost compared to LR White 

embedded materials where antigenicity was better preserved but with loss of contrast 

to resolve fine structure of the organ sections. 

There is no universal fixative for all types of antigens, so the choice of fixative 

depends on type of epitope and tissue under study, hence complex optimization 

procedures are required to compare and then find the best suited process. As all 

needed to be done with dissected organs excised from insects and then sectioned, this 

process proved to be most complicated and cumbersome. The best level of 

antigencity preservation was achieved by specimen fixation using 4% 
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paraformaldehyde in phosphate buffer pH 7.4. This may be due to the ability of 

formaldehyde to cross-links amino groups of proteins, in a reversible manner.  

While glutaraldhyde reacts with many nucleophiles in the cell (most commonly 

amines), this dialdehyde introduces extensive protein cross-link networks throughout 

the cytoplasm in a very short time which are mostly irreversible and significantly 

reducing antigencity (Hayat, 2000a). This was reflected by the very low 

immunolocalization obtained upon using 2.5% GA. In that case reviving and 

liberating cross-linked and compacted proteins via antigen retrieval treatments of 

denatured proteins upon primary fixation with GA and secondary fixation with 

osmium tetroxide significantly improved the overall signal.  

The fixation conditions using only paraformaldehyde were characterized by a great 

loss of fine cellular ultrastructure in particular when the preservation of cellular 

membrane structures was concerned. Hence, in a study done by Hayat (2000a) 

superior structural preservation was reached with glutarladehyde and showing that 

fixation with formaldehyde is unacceptable for routine electron microscopical 

examinations demanding superior structural preservation. For most 

immunocytochemical studies a mixture of formaldehyde and glutaraldehyde is 

recommended and this was also found in the studies presented here. 

Another common problem, background staining, is one of the most common 

problems in immunohistochemistry.  A major cause for this is protein hydrophobicity 

which can occur between different protein molecules. Fixation with aldehydes render 

proteins more hydrophobic and as a result of cross-linking between reactive amino 

acids, the cross-links are both intramolecular and intermolecular (Hayat, 2000a). It 

should be noted that the greater the proximity of the pH of the antibody diluent and 

the isoelectric point (pI) of the antibody, the stronger the hydrophobic interaction. In 

all experiments reducing the background, blocking did not eliminate background 

neither by increasing BSA concentration nor by the addition of detergents. 

To eliminate the different sources of background staining a number of treatments 

were tested and applied sequentially on fixed tissue sections. To reduce antibody 

cross reactions in the immunolocalization studies; the antibody was cross-absorbed 

with healthy insect tissues sap, which then was affinity purified. To avoid non-

specific staining caused by Fc receptor glycoproteins present on the cell membrane 
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F(ab)2 fragments were used instead of whole IgG molecule as reported by Boenisch 

(2001). To avoid antigen diffusion, isolated organs were immediately transferred to a 

fixation solution after insect dissection or the insect physiological saline was 

immediately replaced by fixation solution after dissecting the organ. It has been also 

observed that the overall recorded signal has been dropped to some extent during the 

combination of different background eliminating factors, which is to be expected in 

this case. 

 

4.5 Immunolocalization of WmCSV in embedded insect organs 

Three pre-embedding immunolocalization procedures described by Driss-Ecole et al. 

(2000), Boyes and Bolam (2003), and Kurth (2003) have been tested for the 

WmCSV localization studies, with special emphasis to elimination of factors that 

lead to antigen denaturation. These factors would be ascribed to the primary 

chemical fixation or to further tissue processing steps which might be the cause of 

weak antigen-antibody interaction. In the method adopted by Driss-Ecole et al., 

(2000), there was no signal obtained even after using the 0.8 nm gold particles 

instead of the recommended 10nm particles, to improve tissue permeability. In the 

second method described by Boyes and Bolam (2003), chemical fixation was not 

applied before primary and secondary antibody incubation however, neither this 

method nor light fixation with 4% paraformaldhyde (Kurth, 2003) and none of the 

methods in general proved suitable for our immunolocalization experiments which 

switched the focus on the post-embedding immunostaining techniques. 

In these studies the most intensive signal was obtained in the filter chamber of the 

midgut and in the region surrounding the filter chamber. Immunolocalization studies 

have been suggested that B. tabaci filter chamber and the anterior portion of the 

midgut are possible sites for geminvirus transport from the gut lumen to the 

haemoceol (Hunter et al., 1998), while for aphids it has been reported that the 

hindgut is significant for virus uptake and transmission. 

Aldehyde fixatives, such as formalin and glutaraldhyde, are cross-linkers that are 

preferred for tissue fixation because they are superior for preservation of tissue 

structure for both light and electron microscopy (Prento and Lyon 1997). They are 
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commonly used and guarantee standardization and reproducibility in morphological 

studies. Cross-linking joins two molecules by covalent bonds and antigen retrieval 

may loosen or break cross linkages caused by aldehyde fixation. In addition, AR may 

also unmask antigen by extracting diffusible proteins. It may precipitate and stabilize 

proteins and rehydrate sections to improve the diffusion of the antibody into the 

tissue section (Shi, 1997).  Specifically, low contrast often resulted after prolonged 

incubation of thin sections with immunoreagents or after even short treatments with 

reagents that contained detergents which were often essential to minimize 

background staining. This problem can be largely overcome by including osmium 

tetroxide as a post-fixative to provide additional membrane contrast. Cell membrane, 

bio-membranous structures and vesicles in the cell are composed of lipid bilayer, 

which could be successfully fixed and preserved through a heavy metal precipitation 

like osmium tetroxide, however with the detrimental effect of removing virus 

antigenicity. 

These probable mechanisms demonstrate that the effect of AR depends not only on 

the mode of fixation, but also on the antigen under investigation. There is no 

evidence thus far for a ‘one and only’ AR method, and it has been recommended that 

a test of different AR procedures should be applied to develop an optimal AR 

method for a given antigen or antibody (Boon and Kok 1994; Shi, et al., 1997). In 

this study such a number of etching and AR procedures to improve the post 

embedding immunohistochemical localization of virus were tried. However, while an 

optimum antigen retrieval on Epon embedded sections was found with well 

preserved ultrastructures, the signal intensity upon immunolocalization of 

viruliferous insect organs was reduced to levels similar to the ones obtained with 

non-viruliferous insects. Antigen retrieval of Epoxy resin may have released the 

protein partly from the epoxy network at the section surface leading to unsatisfactory 

observations and switching to other reisns for better resolution and improved 

immunolabelling. 

The immunogold technique in conjunction with LR White embedding was used to 

localize WmCSV in B. tabaci tissues. Using LR White as a an embedding resin has 

several advantages which can be exploited for localization of antigens in sections of 

fixed and embedded tissue under the electron microscope because of its low viscosity 

and high infiltration rate. 
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It has been concluded from our study that the morphological preservation of 

Lowicryl embedded tissues was superior to that of LR White-embedded tissues, but 

significant differences in antigenicity were not observed. However, after employing 

antigen retrieval treatments a remarkable improvement in gold signal was found. 

Glutaraldehyde, with its greater power to cross-link proteins, undoubtedly stabilizes 

tissue structures to a greater degree than formaldehyd, but in turn, tissue thus fixed 

demonstrates reduced antigenicity, especially in the case of tissue fixing with high 

glutaraldehyde concentrations. 

The results obtained show that LR White is advantageous over Epon for the study of 

nuclear antigens requiring delicate aldehyde fixation. The virus was localized on the 

microvillar surfaces of the apical plasma membrane in midgut tissues which points to 

a putative storage site for further delivering to the haemoceol. The signal also was 

observed in tubular like structure and occasionally in lucent vesicles in intercellular 

spaces between adjacent cells in PSG gland tissues which may imply a collective site 

for virus transfer to the salivary duct. But in the case of LR White embedding the 

borders of the vesicles were not clearly presented as it has been observed in Epon or 

in Lowicryl embedded tissues. 

Several parameters affect the antigen preservation other than the fixative itself. 

While the fixation of specimens for standard histology is generally carried out at 

room temperature for convenience, for electron microscopy and some histochemical 

procedures, the temperature for fixation is usually 0-4 °C. At this lower temperature 

autolysis is slowed down as is the diffusion of various cellular components, allowing 

a more life-like appearance of the tissues. Therefore in order to minimize molecular 

thermal vibration, which can have adverse effects on specimens weakly fixed with 

paraformaldehyde, the samples can be dehydrated partially or totally at low 

temperature. Carlemalm et al., 1982 introduced the PLT technique (progressive 

lowering temperature) that combines increasing organic solvent concentration with 

decreasing temperature, after which infiltration and polymerization are carried out. 

The results obtained with Lowicryl clearly reflect the advantages of this approach 

resulting in good structural preservation of cellular contents and ultrastructure. 

Furthermore, the PLT method employs low temperature reducing protein 

denaturation and maintaining a degree of hydration, which may be important in 

preserving protein structural conformation.  
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It was therefore necessary to use Lowicryl as an acrylic resin which allows post-

embedding immunostaining. In this experiment all temperature dependent problems 

at all steps were avoided. However in preliminary experiments with Lowicryl, there 

was no significant improvement in the intensity of the labelling signal observed. It 

was therefore concluded that the temperature itself was not the direct cause of loss of 

antigenicty loss and not the key factor affecting antigen binding. The fixing method 

used played affected antigenicity and epitope display by altering antigen binding 

sites due to linking. Immunolocalization experiments provided significantly higher 

level of signal enhancement upon antigen retrieval treatments especially when Tris-

buffer pH 10 for 24 h at 65 °C as described by (Saito et al., 2003) was used.  

 

Finally it can be stated that immunolocalization experiments with Lowicryl 

embedded tissues resulted in good resolution and antibody antigen binding. However 

it also needs to be made clear that immunolocalization studies to localize 

geminiviruses in whitefly vectors are confronted with technological limitiations 

where the use of antibodies in cytological studies is not indicated, due to complicated 

insect structures, unique epitope display of begomoviruses and extremely low target 

concentrations at locations not easily amenable to antibody antigen reactions. 

Thus pilot experiments to study WmCSV localization by in situ hybridization (ISH) 

were followed. This has proven to be an important tool in molecular cell biology, 

genetics, and pathology for the detection and localization of specific nucleic acid 

sequences (DNA and RNA) within morphologically preserved chromosomes, cells 

and tissues. 

The principle behind in-situ hybridization is the specific annealing of a labelled 

nucleic acid probe to its complementary sequences in fixed tissue or cells, followed 

by visualization of the hybridization signal with radioactive or fluorescent signals, or 

enzyme histochemistry. A critical aspect of the procedure is that the target nucleic 

acid be preserved in situ and be accessible for hybridization to the probe. Unlike the 

hybridization of nucleic acids in solution to target sequences on membrane filters, the 

target in this case is cross-linked and embedded in a complex matrix that hinders 

access of the probe and decreases stability of the hybrids. 
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The sensitivity of colloidal gold detection is usually lower than for fluorescence or 

enzyme cytochemical detection of hybridized probes in situ, which may be a problem 

for localizing low copy or unique nucleic acid sequences. Nevertheless, these 

ultrastructural nucleic acid detection procedures have contributed to a large extent to 

the current insight concerning the subcellular localization of mRNA transcripts, the 

functional sub-compartmentalization of the cell nucleus, and the analysis of 

intracellular viral life cycles (Bassell et al. 1994; Morey 1995; Dirks 1996; Puvion-

Dutilleul and Puvion 1996).  

A specific signal has been obtained in localization studies via in-situ hybridization of 

viruliferous insect of PSG tissues using a WmCSV DNA A specific probe. It has 

been observed that using Epon embedded organs provided a good preservation of the 

ultrasturcture as well as provding reliable signals that was found in the multilamellar 

vesicles. In a similar study by Brown and Czosnek, (2002) in-situ hybridization 

analysis was used for TYLCV detection in insects and this virus was also found in 

cells of the primary salivary glands of B. tabaci. 

 

4.6 Virus vector interaction 

4.6.1 Virus acquisition: Virus-Gut interactions 

To initiate the circulative transmission process, geminiviruses must be transported 

from the gut lumen into the haemocoel of potential whitefly vectors. Thus, the 

whitefly gut is the first tissue barrier to transmission and the first site where 

begomoviruses recognition must occur. The different whitefly species studied, B. 

tabaci and T. vaporariorum have an almost identical gut morphology and cellular 

anatomy (Ghanim et al., 2001).  

The alimentary canal begins where the stylet food canal empties into the 

praecibarium and cibarium. The cibarium and salivary syringe are found beneath the 

subesophageal ganglion. The cibarium empties into the pharynx, which traverses the 

circumesophageal passage, the tentorial bar and ultimately joins the external 

esophagus (that portion of the esophagus external to the filter chamber). The external 

esophagus is extremely slender and traverses the length of the thorax across the 
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dorsal side of the subesophageal and thoracic-abdominal ganglionic masses. It is 

formed by thin epithelial cells with a well-defined basal membrane and a heavy 

cuticular intima lining surrounding the ligqen. The external oesophagus has 

substantial musculature and the cuticular intima lining is generally folded accordion-

like when these muscles are relaxed. The oesophagus enters the filter chamber 

anterior to the connecting chamber, at which point it is denoted the internal 

esophagus. The filter chamber are formed by a sheath of thin epithelial cells with a 

thin basal membrane and what appears to be a cuticular intima lining. The internal 

surface of these cells faces the continuous lumen of the filter chamber. A layer of 

epithelial cells on the opposing side of the continuous lumen appears to originate 

from the ascending midgut. These cells have extensive microvilli.  

From this study it can be confirmed that the cellular site for geminivirus ingression 

through its whitefly vector is the filter chamber and the anterior part of the midgut, a 

result consistent with what earlier reports by Hunter et al. (1998) in 

immunolocalization studies by immunoflouresence of Tomato mottle virus (ToMoV) 

and Cabbage leaf curl virus (CaLCV).  

In the experimental evidence presented here, a WmCVS signal was found localized 

in the microvilli lining the lumen of the anterior part of the midgut and the filter 

chamber. This was not reported in a similar study by Czosnek et al. (2002) where no 

signal was detected in the lumen of the insect. It has been shown that there are no 

particles freely in the lumen of the insect or in contact with the gut apical 

plasmalemma even upon feeding of insects with purified virus preparations at high 

concentration. The quantitative analysis in this study rather points to a specific 

interaction between virus and the anterior part of the gut. 

Ingestion of plant viruses infecting the phloem cells is not specific, and many viruses 

not transmitted by a respective insect species may be ingested into the gut and exit 

the insect with e.g. honeydew excrements as has been reported for aphids by Gildow, 

(1993) or for T. vaporariorum by Rosell et al., (1999). 

4.6.2 Virus entry via midgut cells 

Viruses that enter the host via ingestion must pass through the peritrophic membrane 

in order to penetrate midgut cells. This process was not fully understood before 
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Derksen and Granados (1988) described an enhancing factor in a granulosis virus 

that disrupts the peritrophic membrane following ingestion by its lepidopteran host. 

Selective, or receptor-mediated, endocytosis is a ubiquitous mechanism for 

internalizing functionally important macromolecules in animal cells (Goldstein et al., 

1985). The selectivity of receptor-mediated endocytosis is dictated by the presence of 

specific receptors on the plasma membrane of the cell, thus enabling the 

internalization of only particular macromolecules. An evidence of receptor mediated 

endocytosis/exocytosis as a mechanism for virus translocation is under investigation 

and has to be further investigated using different other embedding and localization 

methods in order to visualize this virus-receptor membranes interaction at the 

molecular level.  

 

4.6.3 Virus-haemoceol interactions 

The virus is released into the haemocoel where it presumably survives in the 

haemolymph, outside of any cells. Little is known about the specifics of geminivirus 

movement and survival in the haeolymph, but it may involve vector associated 

factors (Van den Heuvel, et al., 1999). Virus survives in the hamolymph for several 

weeks and appears to be passively transported to the salivary glands where it can 

continue its circulative transmission pathway. It has been observed through the PCR 

experiments that all non-transmissible virus clones were detected in the hamolymph 

and in the salivary glands; which means that passage through the haemolymph is 

without any harmful effects on the virus. In fact, the virus remains infectious for 

several weeks in the whitefly, presumably, much of this time in the potentially 

hostile haemolymph environment. Probably this protecting effect would be due to 

binding of the virus with the endosymbiotic bacteria housed in the haemolymph of 

the insect, that produce a GroEL protein homologue stabilising the virus in their 

insect vector (Morin et al., 1999).  
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4.7 Virus transmission: Virus-salivary gland interactions 

Detection of the WmCSVwt in the salivary gland by immunolocalization provides 

evidence that the primary salivary glands are the likely most significant recognition 

sites for a successful begomovirus transmission. Through the different methods used 

in immunolocalization experiments conducted this type of complicated interaction at 

this organ not yet fully understood has at least pinpointed the site of entry to the 

organ and paved the way towards more detailed investigations focussed on the 

primary salivary gland barriers. The signal observed in the primary salivary glands of 

the viruliferous insects was mainly concentrated in tubular like structures in three 

different locations of the primary salivary glands two of them located at both sides of 

the gland and the third one in the centre of the gland which may point to what would 

be called a collection tubular structure with microvilli acting as a sieve or a storage 

site for the virus to sequester it to its final destination, the salivary duct. The virus is 

then transported via an end/exocytotic mechanism which is the only mechanism 

likely for receptor mediated transmission. However for more detailed studies, the 

type of resolution required and the small size and shape of the virus might present 

limitations which require novel methodical approaches.  
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4.8 Conclusion 

The failure to detect WmCSV in haemolymph and in the salivary glands of the non- 

vector species and the detection of all not whitefly transmitted WmCSV mutant 

clones in the haemolymph and in the salivary glands provides evidence that 

geminivirus recognition with vector species occurs at the midgut and particularly at 

the filter chamber membrane, suggesting that virus recognition regulating the 

membrane attachment is a precursor of virus acquisition. This might explain why 

whiteflies transmit certain viruses in a circulative non-propagative manner. 

All virus clones passaged the midgut of B. tabaci suggesting that there are two 

distinct CP recognition events, at the midgut of B. tabaci and at the primary salivary 

gland. Current evidence indicates that the primary salivary gland is acting as the 

major site determining the high level of vector specificity observed for WmCSV 

transmission. The immunolocalization experiments with dissected organs of the 

vector species B. tabaci, have further revealed that the accessory salivary glands 

doesn’t play any role in virus transmission. However, despite all observations made, 

there is no evidence yet to the biochemical interactions involved in specific 

recognition of virus and any component involved is as yet only subject to 

speculations.  

The results of this study presented here are merely to further our understanding of the 

complex virus insect relationships leading to virus transmission, to point to critical 

insect organs involved and to raise more questions directing future research efforts to 

elucidate the mechanisms of begomovirus transmission in the Bemisia tabaci insect 

vector.  
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