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ABSTRACT 

 

In order to compare transcription profiles of Malus domestica cultivars that are differentially 

sensitive to apple scab (caused by the fungus Venturia inaequalis), two cDNA libraries were 

generated. Subtraction hybridization was performed between cDNA populations from 

uninfected young leaves of the resistant cultivar ‛Remo’ and the susceptible ‛Elstar’. In total, 

480 EST clones were obtained: 218 preferentially expressed in ‛Elstar’ and 262 clones in 

‛Remo’. The putative functions of about 50% of the cloned sequences could be identified by 

sequencing and subsequent homology searches in databases or by dot-blot hybridization. In 

‛Remo’ the levels of transcripts encoding proteins related to plant defense (such as cysteine 

protease inhibitor, endochitinase, ferrochelatase, and ADP-ribosylation factor) were highly 

up-regulated compared to ‛Elstar’. A large number of clones coding for metallothioneins type 

3 (91 out of 262) were isolated in ‛Remo’ cDNA population. The corresponding transcripts 

were only present in small amounts in young uninfected leaves of ‛Elstar’, but were up-

regulated in this cultivar after infection with V. inaequalis. The constitutively high-level 

expression of PR proteins may protect ‛Remo’ from infection by different plant pathogens.  

 

Some of the identified genes could be further utilized in apple transformation, in order to 

obtain transgenic plants resistant against diseases. Transformation technologies rely on the use 

of selectable marker genes, which are co-introduced, with the gene of interest to distinguish 

transformed from non-transformed cells. However, public concern is claiming for alternative 

selection systems that avoid the antibiotic and herbicide resistance genes. For this reason, a 

positive selection system basing on the use of a phosphomannose-isomerase gene (pmi) as a 

selectable marker gene and mannose as the selective agent was established for transformation 

of apple and compared with herbicide selection. The pmi gene along with a gus gene was 

transferred into apple cv. ‛Holsteiner Cox’ via Agrobacterium tumefaciens-mediated 

transformation. Leaf explants were selected on medium supplemented with different 

concentrations and combinations of mannose and sorbitol to establish an optimized mannose 

selection protocol. Several transgenic lines were regenerated with efficiencies up to 24%. 

Integration of transgenes in selected plants was confirmed by PCR and southern blot analysis. 

Histochemical GUS staining and chlorophenol red assays confirmed transgene activity in 

transgenic plants. The PMI/mannose selection system proved to be superior to herbicide or 

antibiotic resistance genes.  
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ZUSAMMENFASSUNG 

 

Zur Identifizierung von Genen, die in die Apfelschorf-Resistenz involviert sind, wurden 

Transkriptomanalysen unterschiedlich anfälliger Apfelsorten (Malus domestica) durchgeführt. 

Aus unintifizierten jungen Blättern der resistenten Sorte ‛Remo’ und der anfälligen Sorte 

‛Elstar’ wurden cDNA Bibliotheken erstellt. Mit Hilfe der Suppression Subtractive 

Hybridization  (SSH) wurden die Populationen voneinander subtrahiert. Insgesamt wurden 

480 EST (expressed sequence tags) Klone erhalten, wovon 218 vornehmlich in ‛Elstar’ und 

262 vornehmlich in ‛Remo’ exprimiert wurden. Die putative Funktion von ca. 50% der 

klonierten Sequenzen wurde über Sequenzierungen und anschließenden Homologievergleich 

mit Sequenzen aus Datenbanken oder durch dot-blot Hybridisierungen identifiziert. Im 

Vergleich zu ‛Elstar’ waren in ‛Remo’ die Transkripte von Genen, die für Proteine kodieren, 

die in die Pathogenabwehr involviert sind (z.B. Cystein-Protease Inhibitoren, Endochitinasen, 

Ferrochelatasen, ADP-Rybosylierungsfaktor), stark hochreguliert. In der ‛Remo’ cDNA 

Population wurde außerdem eine hohe Anzahl von Klonen identifiziert (91 von 262), die für 

Metallothionein Typ 3 kodieren. Die jeweiligen Transkripte waren in jungen Blättern von 

‛Elstar’ nur in geringem Maße nachzuweisen, nach einer Infektion mit Venturia inaequalis 

stieg der Gehalt jedoch deutlich an. Der konstitutiv hohe Expressionslevel der PR-Proteine in 

‛Remo’ dient möglicherweise den Schutz von Infektionen durch verschiedene Pathogene. 

 

Differentiell exprimierte Gene stellen potentielle Kandidaten dar, um mit Hilfe der 

Transformation Resistenz in anfälligen Sorten zu etablieren. Bei dem Transfer von Genen 

werden zusätzlich Markergene eingesetzt, um die wenigen Zellen eines Gewebes, die die 

fremde DNA aufgenommen haben, zu selektieren. Bei der Transformation von Apfel wurden 

bisher Herbizid-und Antibiotikaresistenzgene verwendet, deren Einstz aber kritisch diskutiert 

wird. Daher wurde im Rahmen der Arbeit ein sog. positives Selektionssystem für die 

Apfeltransformation etabliert, welches auf der Verwendung einer Phosphomannose-Isomerase 

(pmi) als selektivem Markergen und Mannose als selectivem Agens beruht. Mittels des 

Agrobacterium tumefaciens vermittelten Gentransfers wurde das pmi Gen zusammen mit dem 

Reportergen für eine ß-Glucuronidase in die Apfelsorte ‛Holsteiner Cox’ übertragen. Die 

Selektionsbedingungen für Apfel wurden durch Variation der Konzentrationen und 

Kombinationen von Sorbitol (metabolisierbarer Zucker) und Mannose. Mit 

Transformationseffizienzen bis zu 24% wurden mehrere transgene Linien regeneriert. Die 
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Integration des pmi-Gens wurde mittels Southern Blot Analysen von DNA der regenerierten 

Pflanzen bestätigt. Die Funktionalität des pmi-Gens sowie des gus Gens wurden in einem 

Chlorophenol-Rot Assay bzw. einem histochemischen GUS-Assay nachgewiesen. Das 

PMI/Mannose System erwies sich als effektiver als die Selektion mit Antibiotika oder 

Herbiziden. 

 

Schlagwörter: Suppressive Subtraktionshybridisierung, metallothionein, pathogenesis-related 

proteins, Agrobacterium tumefaciens, Mannose, Chlorophenol-Rot Assay, GUS Assay. 

 



 v

 

Abbreviations 
 
Chemicals  
BSA  bovine serum albumin  
BPB bromophenol blue 
CPR chlorophenol red 
CTAB hexadecyl trimethyl ammonium bromide 
DEPC  diethyl pyrocarbonate 
DMSO dimethyl sulfoxide 
EDTA  ethylenediaminetetra acetic acid  
EtBr  ethidium bromide  
FDA Fluoresceindiacetat 
MOPS 3-(N-morpholino) propane sulfonic acid  
MS Murashige & Skoog medium (1962) 
NaOAc  sodium acetate  
NBT nitroblue  tetrazolium 
PPT  phosphinothricin  
PVP- 40  polyvinylpyrrolidone  
SDS  sodiumdodecylsulfate  
SSC  sodiumchloride -sodiumcitrate  
Tris Tris-hydroxymethyl-aminomethane 
x-GlucA 5-bromo-4-chloro-3-indolyl-ß-D-glucuronic acid 
 
Molecular biology  
cDNA  copy DNA  
dATP  2'-deoxyadenosine 5'-triphosphate  
dCTP  2'-deoxycytidine 5'-triphosphate  
ds   doble stranded 
ESTs  expressed sequence tags 
DNA  deoxyribonucleic acid  
DNAse deoxyribonuclease  (RNAse free) 
PCR  polymerase chain reaction  
RNA  ribonucleic acid  
mRNA messenger RNA 
 
Units  
°C  degree Celsius  
µmol  micromole  
µg  microgram  
µL microliter  
µM  micromolar  
bp  base pair  
Ci  Curie  
g  gram  
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h  hour  
Kb  kilobase  
L liter  
m  meter  
M  molar  
mg  milligram  
min  minute  
mL  milliliter  
mm  millimeter  
mM  millimolar  
mol  mole  
Nm  nanometer  
nM  nanomolar  
nmol  nanomole  
Pa  Pascal  
Psi  pound per square inch  
s  second  
V  volt  
vol Volume 
x g gravitational force 
  
Other abbreviations  
Fig.  figure  
LB Luria-Bertani Broth 
n.s.  not significant  
PDA Potato dextrose agar 
RT Room temperature 
Tab.  table  
UV  ultra violet  
YEP yeast extract peptone 
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1 GENERAL INTRODUCTION 
 

1.1 Apple (Malus domestica Borkh.): origin, distribution and economic importance 
Apples belong to the Pomoideae subfamily Rosaceae, along with pear (Pyrus communis), 

prune (Prunus domestica) and cherry (Prunus avium). The common domesticated apple is 

believed to have originated in the Heavenly Mountains on the border of Western China, in the 

former USSR and in Central Asia, and is putatively an interspecific hybrid complex, 

designated Malus domestica Borkh. (KORBAN and SKIRVIN, 1984, PHIPPS et al., 1990). In 

medieval times, monasteries were responsible for selection, propagation and perpetuation of 

hundreds of different cultivated types. These plantings later became major sources of breeding 

stock for horticulturists in the 1800’s that were developing new techniques for making 

deliberate crosses between desirable selections (MAC HARDY, 1996).  

During the late 19th and 20th centuries, M. domestica cultivars bred in Europe, Russia, North 

America, New Zealand, Japan and Australia were introduced throughout the world and form 

the basis for most current commercial apple production (WAY et al., 1991, JANICK et al., 

1996). Nowadays more than 7.000 varieties have been described 

(http://www.whfoods.com/genpage.php) and breeders worldwide create new selections 

annually; nevertheless, only a few dozen are widely produced in commerce today (JANICK et 

al., 1996).  

In 2004 apple was the third most cultivated fruit crop in the world (5,280 M Ha) and the third 

fruit crop in production (59,059 Mt), after citrus and banana. The most important producers in 

this same year were China, USA and Poland (http://faostat.fao.org/faostat/servlet/). In 

Germany, it corresponded to 80% of the fruit production 

(http://news.agrar.de/archiv/20050222-00000/).  

Beside the economic importance, apple has become a model woody perennial angiosperm for 

genomic research due to the relatively small genome size (769 Mb/haploid) (PATOCCHI et al., 

1999) distributed into 17 chromosomes. Most cultivated apples are diploids (2n = 34) and 

self-incompatible.  
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1.2 Apple diseases 
Apples are host of a large number of diseases, including apple scab, fire blight, mildew, and 

bacterial cancer. The diseases are caused by different pathogens, such as fungi, bacteria, 

nematodes, viruses and phytoplasmas, or can be physiological, genetical or have an 

unidentified basis (WAY et al., 1991). Economic losses are variable since some can kill trees, 

while others may infect fruits, making them unmarketable.  

Apple scab, caused by the fungus Venturia inaequalis (Cke.) Wint, is the most important 

disease of this culture. It presents a wide spread distribution, occurring nowadays in all 

regions where apple is cultivated and can cause losses of about 80% where the summer 

presents high humidity and mild temperatures (BONETI et al., 1999). The control of this 

disease is normally chemical, and over 20 fungicide applications can be necessary per season 

(KOLLAR, 1997).  

V. inaequalis overwinters as a pseudothecia in the apple leaf litter. The sexual stage begins 

after a period of saprophytic activity and vegetative growth following leaf abscission (MAC 

HARDY, 1996) (Fig. 1). In spring the ascospores discharged from the pseudothecia are 

dispersed by wind to young leaves and sepals where infection occurs. The second inoculum is 

marked by conidia production in the scab lesions that develop from infections by primary 

inoculum. The growth of hyphae between the cuticle and epidermal cell wall results in the 

development of conidiophores and conidia that rupture the cuticle, when a scab lesion is 

clearly visible macroscopically. Conidia are produced over approximately four weeks in a 

lesion. The conidia can cause secondary infections on leaves, fruits and shoots during wet 

weather throughout the remainder of the growing season (MAC HARDY, 1996).  

The apple scab symptoms appear as light, olive-coloured spots on the abaxial surface of sepals 

of young leaves of the flower buds. The lesions then become olive grey with velvety surface 

and finally acquire a metallic black color. Occasionally, small scab spots are produced on 

twigs and blossoms. Infected fruits are scabby and sometimes cracked. If the fruits are 

infected early, they become misshapen and frequently drop prematurely. When fruits are 

infected approaching maturity, the disease causes only small lesions (AGRIOS, 1997) (Fig. 

2). 

 

 



 3

 
Fig. 1: Life cycle of Venturia inaequalis.  Source: 
http://plantclinic.cornell.edu/FactSheets/apple_scab_factsheets/apple_scab_disease_cycle.htm 
 

  
Fig. 2: Symptoms of apple scab on a. fruits and b. leaves. Source: http://hflp.sdstate.edu/IMAGE.jpg 

 

 

 

a a b
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1.3 Classical genetic breeding 
Although the high genetic diversity in the genus Malus, much of the world’s production 

consists of a narrow genetic base of the varieties ‘Delicious’ and ‘Golden Delicious’ (WAY et 

al., 1991). The most important commercial cultivars are included in a large scale in breeding 

programs to improve fruit quality. The cultivar ‘Golden Delicious’ and its derivatives, such as 

‘Gala’, are the parents most often used in the crosses. Due to limitations of conventional 

breeding, the potential of Malus germoplasm remains under-exploited (HAMMERSCHLAG, 

2000). 

Although conventional apple breeding programs have generated new cultivars with improved 

qualities, a large number of commercially grown apple cultivars have been derived either as 

chance seedlings, e.g. ‘Delicious’, ‘McIntosh’ and ‘Granny Smith’ or from natural 

spontaneous mutations that have occurred in somatic tissues of some of the important apple 

cultivars (KORBAN and CHEN, 1992).  

Nowadays, the new established agriculture techniques allied to the high market demand apple 

cultivars showing high productivity, uniformity, and long-term storage. In addition, resistance 

to diseases, pests and storage disorders are also desired for large-scale fruit production. 

Because of the long juvenile period, which can take from six to ten years, high levels of 

heterozygosis and time necessary to evaluate hybrids, traditional apple breeding programs are 

slow (KORBAN and CHEN, 1992, BROWN, 1992). Normally after specific crosses, backcrosses 

are necessary to eliminate undesired characteristics from the wild species and a new cultivar 

can take over 40 years to be established on the market (ANDREAS PEIL, Dresden Pilnitz, 

Germany, personal communication).  

 

1.4 Advances of plant biotechnology 
In the last few years, considerable knowledge about molecular biology of plants has been 

gained by application of new genomic technologies. The complete genome of several 

organisms has been sequenced. Genome sequencing has provided the foundation for 

systematic analyses of gene expression, and for the spatial location of proteins and nucleic 

acids. 

However, less than 10% of Arabidopsis thaliana genes have any experimentally defined 

function (The Arabidopsis Genome Initiative 2000). About 30% of the genes of this plant 

have no significant similarity at the protein level to genes found in any other organism. The 

sequencing of chromosome 1 of A. thaliana predicts 6,848 proteins. Around one-third of these 

are ‘hypothetical’, without matching to any EST (expressed sequence tags) in the databases. 
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Seventy per cent of the annotated proteins have some similarity to other ‘hypothetical’, 

‘unknown’ or ‘putative function’ proteins already sequenced from plants and other eukaryotic 

genomes (THEOLOGIS et al., 2000). 

Since the completion of the A. thaliana genome sequencing and the first-pass analysis and 

prediction of gene function, different approaches are in course to determine the function of 

genes. Chemical mutagenesis, gene mapping and, increasingly, RNA interference (RNAi) are 

the most used. The latter, a knocking out system, uses constructs encoding self-

complementary ‘hairpin’ RNAs, homologous to the mRNA from the target gene, and a 

complex system of post-transcriptional gene silencing takes place (MATTHEW, 2004). 

Another challenge is to define the functions of genes in a cellular and whole-organism 

context, once the catalogue of all genes and predicted proteins generated by whole-genome 

sequencing alone can not provide a complete understanding of the interactions among 

organisms. Which genes are expressed under different circumstances, how plants grow and 

develop as well as how they respond to abiotic and biotic stresses are all important questions 

that the genome programs are not able to answer so promptly and are now under investigation 

based on different methods (CÁNOVAS et al., 2004). The establishment of expressed sequence 

tags (EST) databases from plant tissues has enabled the development of global analysis 

methods to study changes in gene expression associated with important processes in plants.  

Moreover, complex regulatory routes, from post-translational modifications to protein 

turnover cannot be studied at the cDNA level (PANDEY and MANN, 2000). To overcome this 

problem, several strategies are evolving. The proteome approach is helping to answer 

questions of functional analysis and to complement data derived from transcriptome analysis 

(THIELLEMENT et al., 1999). Proteomics, the systematic analyses of protein expression, 

involves the separation, identification and characterization of proteins in an organism. The 

new techniques involved enable the simultaneous characterization and analysis of the 

expression profiles of a large set of proteins (DAFNY-YELIN et al., 2005). 

A holistic view of a cell as a self-replicating entity is preserved by studying the functions of 

all genes and proteins within a cell, while the extensive and precise nature of genome-based 

information permits the isolation and characterization of components. Genome-based 

information also provides direct comparison of related and divergent cellular functions in 

different sequenced organisms, adding depth to our understanding of cellular functions. Future 

insights into basic plant biology and the ability to manipulate plants through genetic 

engineering for agronomic improvement will depend on whether we can identify the genes 

that control fundamental developmental and metabolic processes.  
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1.5 Isolation of differentially expressed genes 
In the past decades, techniques for the evaluation of gene expression have progressed from 

methods developed for the analysis of single, specific genes (e.g. Northern, slot and dot 

blotting; semi-quantitative and quantitative reverse transcription and PCR; and nuclease 

protection assays) to techniques focused on identifying all genes that differ in expression 

among experimental samples. A variety of methods has been developed to identify the 

differentially expressed genes associated with a particular phenotype. These methods include 

differential display, representational difference analysis (RDA), subtractive hybridization, 

suppression subtractive hybridization (SSH), differential screening, conventional cDNA array 

hybridization, serial analysis of gene expression (SAGE) (reviewed by NAKATA and McCONN 

2002 and YANG et al., 1999).   

SSH is a PCR-based cDNA subtraction method, which can be used to compare two 

populations and obtain ESTs that are either overexpressed or exclusively expressed in one 

population compared to another. This method is used to selectively amplify target ESTs and 

simultaneously suppress nontarget DNA amplification. The method allows the detection of 

low-abundance differentially expressed transcripts such as many of those likely to be involved 

in signaling and signal transduction, and might thus identify essential regulatory components 

in several biological processes. The mRNA differential display and RNA fingerprinting by 

arbitrary primed PCR are potentially faster methods for identifying differentially expressed 

genes. However, both have a high level of false positives, biased for high copy number 

mRNA and might be inappropriate in experiments in which only a few genes are expected to 

vary (DIATCHENKO et al., 1996, DIATCHENKO et al., 1999). 

The SSH method has been used to isolate genes from all kingdoms, including nematodes, 

fungi and plants. One of the most important aims is the isolation of genes expressed after 

pathogen infection and have been applied for several plant species like barley (HEIN et al., 

2004), potato (BIRCH et al., 1999, BEYER et al., 2001, MONTESANO et al., 2001), tomato 

(MYSORE et al., 2002) and rice (XIONG et al., 2001). The molecular pattern carried out in 

abiotic stress process has also been studied in species like sugarcane (WATT, 2003), A. 

thaliana (KANG et al., 2003), rice (WANG et al., 2002a, WANG et al., 2002b), Sesbania 

rostrata (CATURLA et al., 2002), Medicago truncatula (NAKATA and CONN, 2002) and 

Aegicieras corniculatum (FU et al., 2005). Genes involved in some physiological stages of 

development, like flower development and taproot in sugar beet (KLOOS et al., 2002) have 

also been isolated. The symbiosis process has also been extensively studied in Medicago 
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truncatula (VOIBLET et al., 2001, BRECHENMACHER et al., 2004, WULF et al., 2003, TAYLOR 

and HARRIER, 2003).  

Less common is the application of this technique to isolate genes from different cultivars of 

the same species. But also in this case the method proved to be efficient. The gene pools of 

two strains of Xylella fastidiosa were subtracted in order to identify genes responsible for the 

disease process in citrus and grape (HARAKAVA and GABRIEL, 2003). The isolation of cDNA 

clones differentially accumulated in the placenta of pungent pepper was also carried out 

between two different cultivars (KIM et al., 2001) and genes from two Globodera nematode 

species were isolated in order to investigate which genes were involved in the parasitic 

process of tomato and potato plants (GRENIER et al., 2002). 

SSH allows the construction of EST libraries containing hundreds of differentially expressed 

genes. Genes of all classes have already been isolated, and not only have the most common, 

but also rare transcripts been identified. 

 

1.6 Cloning and isolation of genes from M. domestica  
The isolation of genes responsible for resistance against different pathogens e.g. Venturia 

inaequalis, Podosphaera leucotricha and Erwinia amylovora from different species of the 

Malus genus is in course (SCHMIDT et al., 1999, FISHER and FISHER, 1999, ZIMMER, 1999, 

MANTINGER, 1999, FISHER, 1999). Several genes have already been identified, which are 

responsible for resistance against apple scab, the most important disease of this culture (Tab. 

1). Among them, the Vf has been the most widely used in classical breeding all over the 

world. 

Molecular markers linked to important phenotypic traits are an important tool in shortening 

the length of the selection process, once they can reduce time and costs of breeding programs 

(TARTARINI et al, 1999). A number of random amplified polymorphic DNA (RAPDs) 

markers tightly linked to the already identified apple scab resistance genes have been found 

(KOLLER et al., 1994, YANG and KRÜGER, 1994, HEMMAT et al., 1995, GARDINER et al., 

1996, TARTARINI 1996, YANG et al., 1997a,b). Some of them have been transformed into 

SCAR, SSR and cleaved amplified polymorphic sequence (CAPS) markers 

(GIANFRANCESCHI et al., 1996, YANG and KORBAN, 1996, YANG et al., 1997a, b, TARTARINI 

et al., 1999, BUS et al., 2000 and 2005). 

The Vf locus is focus of a large number of investigations. Based on several molecular markers 

the genetic map has been constructed (VINATZER et al., 1998, PATOCCHI et al., 1999, 

TARTARINI et al., 1999, VINATZER et al., 2001, XU and KORBAN, 2002, VINATZER et al., 
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2004) and the results allowed the identification of a cluster of genes, which were cloned and 

isolated. A high number of hybridizing bands indicated that a gene cluster of many Cf (from 

tomato) resistance gene homologues is present in the Vf region. The authors called the 

members of the cluster ‘HcrVf’ genes (homologous to Cladosporium fulvum resistance genes 

of the Vf region) (VINATZER et al., 2001). Transgenic plants carrying one gene of this cluster 

(HcrVf2) showed resitance against V. inaequalis (BELFANTI et al., 2004). The efficiency of 

different promoter lengths of these genes was also investigated using transgenic research 

(SILFVERBERG-DILWORTH et al., 2005). Other genes also responsible for resistance against V. 

inaequalis have been studied and isolated based on molecular markers and genetic maps, like 

Vh2 and Vh4 (BUS et al., 2005), Vr2 (PATOCCHI et al., 2004), Vb and Va (HEMMAT et al., 

2003), Vm (CHENG et al., 1998), Vx (HEMMAT et al. 2002), Vbj (GYGAX et al., 2004) and the 

recently identified Vr2 (PATOCCHI et al., 2004).  .  

Beside these genes directly correlated to apple scab, another genes involved in the interaction 

pathogen x host are also under investigation. Genes belonging to the pathogenesis-related 

class (PR) are focus of a large number of studies. The genomic cloning and linkage mapping 

of the Mal d 1 (pathogenesis related PR-10) (GAO et al., 2005a) and Mal d 3 (non-specific 

lipid transfer protein) genes (GAO et al., 2005b) have been done. The linkage map position of 

two Mal d 3 genes was constructed based on PCR cloning of ten cultivars. Two distinct Mal d 

3 genes were localized (GAO et al., 2005b). In addition to Mal d 3, three more apple allergens 

genes have been identified by gene cloning and sequencing: Mal d 1(VANEK-KREBITZ et al., 

1995), Mal d 2 (KREBITZ et al., 2003) and Mal d 4 (VAN REE et al., 1995). Leucine-rich 

repeat sequences, sharing homology with known resistance genes have also been identified 

and cloned (KOMJANC et al., 1999, BALDI et al., 2004). 

Organ specific genes have also been identified using differential display. cDNA fragments of 

two transcripts preferentially expressed in flowers (WATILLON et al., 1998) and genes 

expressed early in fruit development were also isolated by this method (DONG et al., 2000). A 

gene encoding a polygalacturonase inhibitor in apple fruit was shown to be developmentally 

regulated and activated by wounding and fungal infection (YAO et al., 1999). Transcripts of a 

thaumatin-like gene (PR protein) were highly expressed in the fruit, but were rarely found in 

other tissue types (KIM et al., 2003). Bacterial expression of a 3-hydroxy-3-methylglutaryl-

CoA reductase was used to elucidate the mechanism of superficial scald in apple fruit 

(PECHOUS and WHITAKER 2002).  
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Tab. 1: Specific apple scab resistance genes and source (MAC HARDY, 1996, HEMMAT et al., 2002, 

PATHOCCHI et al., 2004). 

Gene Source 

Vf M. floribunda # 821 

Vc Cathay crab 

Vm M. micromalus 

Vb Hansen’s baccata # 2 

Vbj M. baccata jackii 

Vr M. pumila R12740-7A 

Vj Jonsib Crab 

Va Antonovka PI 172612 

 

1.7 Apple transformation 
The genetic transformation of plants is the process where a defined fragment of DNA is 

introduced and integrated into the genome of the plant, without fecundation. The genetic 

engineering enlarges the readiness of genes considerably, limited in conventional breeding 

programs, since genes isolated from other plants, animals or microorganisms can be 

transferred for plants (BRASILEIRO and DUSI, 1999).  The most widely used method for 

introducing foreign genes into dicotyledoneous plants is the Agrobacterium tumefaciens-

mediated transformation. 

Transformation of Malus is nowadays a common practice in several laboratories and the 

protocols have been constantly improved to enhance the efficiency (JAMES et al., 1993, 

YEPES and ALDWINCKLE, 1994, DE BONDT et al., 1994, YAO et al., 1995, DE BONDT et al., 

1996, NORELLI et al., 1996, PUITE and SCHAART, 1996, HAMMERSCHLAG et al., 1997, LIU et 

al., 1998, SRISKANDARAJAH and GOODWIN, 1998, BOLAR et al., 1999).  

Because of the susceptibility to diseases of the most important commercially apple cultivars 

and rootstocks, genetic transformation is emphasizing the development of improved forms of 

varieties with diseases resistance. The transformations are mostly based on traditional 

cultivars and transformation have been carried out using genes isolated from apple (BELFANTI 

et al., 2004) or from other organisms (NORELLI et al., 1994, WONG et al., 1999, NORELLI et 

al., 2000, BOLAR et al., 2000, HANKE et al., 2000, BOLAR et al., 2001, LIU et al., 2001, 

SZANKOWSKI et al., 2003, MARKWICK et al., 2003). Genes affecting some physiological or 

morphological characters have also been introgressed in transgenic apples like growth 

(HOLEFORS et al., 2000), flowering (YAO et al., 1999) and self-fertility (VAN NERUM et al., 

2000). Rootstock scions have also been used in transgenic assays to influence rooting rates 
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and growth (HOLEFORS et al., 1998, WELANDER et al., 1998, ZHU and WELANDER, 1999, 

SEDIRA et al., 2001, PAWLICKI-JULLIAN et al., 2002, IGARASHI et al., 2002). The study of 

gene function of some genes like sorbitol-6-phosphate (KANAMARU et al., 2004, CHENG et 

al., 2005), polygalacturonase (ATKINSON et al., 2002) and from several promoters (KO et al., 

2000, GITTINS et al., 2001 and 2003) have also been carried out using apple.  

Although considerable improvement have been gained, the use of antibiotics and herbicides as 

selectable marker still impose limits (PENNA et al., 2002). 

 

1.8 Selection marker genes 
Selective marker genes are introduced into plant genome to express a protein with, generally, 

an enzymatic activity, allowing to distinguish transformed from non-transformed cells. To 

obtain transgenic plants the delivery of a foreign gene of interest and a selectable marker gene 

that enables the selection of transformed cells are necessary. The use of a marker gene in a 

transformation process aims to give a selective advantage to the transformed cells, allowing 

them to grow faster and better, and to kill the non-transformed cells (BRASILEIRO and DUSI 

1999). Over the past several years, consumer and environmental groups have expressed 

concern about the use of antibiotic- and herbicide-resistance genes from an ecological and 

food safety perspective (PENNA et al., 2002).  

 

1.8.1 Negative selectable marker genes   
In the negative selection system, the entire cell population is subjected to a negative (toxic) 

selection pressure that only transformants can bear. There are two main categories of genes 

rising negative selection: the antibiotic and herbicide resistance genes. The most widely used 

selectable marker gene is the neomycin phosphotransferase (nptII), which confers resistance 

to amino glycoside type antibiotics such as kanamycin, neomycin and geneticin. The great 

majority of transgenic apple plants have been obtained using this gene (DE BONDT et al., 

1996, PUITE and SHAART, 1996, HOLEFORS et al., 1998 and 2000, MAXIMOVA et al., 1998, 

WELANDER et al., 1998, WONG et al., 1999, BOLAR et al., 1999, 2000 and 2001, KO et al., 

2000 and 2002, SEDIRA et al., 2001, LIU et al., 2001, FAIZE et al., 2003, BELFANTI et al., 

2004, RADCHUK and KORKHOVOY, 2005, CHENG et al., 2005).  

Among the latter category, the pat and bar genes, isolated from Streptomyces 

viridochromogenes and Streptomyces hygroscopicus respectively, code for the 

phosphinothricin-N-acetyltransferase enzyme (PAT; EC 2.3.1.-) (MURAKAMI et al., 1986). 

The PAT enzyme inactivates herbicides with phosphinothricin (PPT) through the acetylation 
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of the PPT free amino group using acetyl coenzyme A as a cofactor. It prevents PPT from 

binding to the glutamine synthetase enzyme (GS). Normally PPT acts as a competitive 

inhibitor of GS, once it is similar to glutamate, the substrate of this enzyme. The GS plays an 

essential role in the nitrogen metabolism and ammonia assimilation regulation and catalyses 

the conversion of glutamate to glutamine, removing the toxic ammonia from the cell. When 

GS is inhibited, ammonia accumulates and chloroplast structure disrupts, leading to 

photosynthesis inhibition and plant cell death (LINDSEY, 1992). This gene has also already 

been used to generate transgenic apple plants (SZANKOWSKI et al., 2003), although it is much 

less common.  

Regardless the use, most cells transformed with negative selectable marker genes will not 

regenerate into plants because dying untransformed cells release growth inhibitors and toxic 

substances, compromising the uptake of essential minerals and vitamins from the culture 

medium (PENNA et al., 2002). 

 

1.8.2 Positive selectable marker genes  
In this category of marker genes the identification and selection of transgenic cells without the 

injury or death of the non-transformed cells is possible, once the transformed cells acquire the 

characteristic to metabolize some compounds, which the plant normally can not metabolize 

(ARAGÃO and BRASILEIRO, 2002). In the positive selection, the transgenic cells enjoy a 

metabolic advantage over the untransformed cells that are starved rather than killed. This is 

achieved by using a physiologically inert substance as selective agent, which is than converted 

due to the enzyme in transgenic cells into a compound exerting positive effects (PENNA et al., 

2002). Genes that code for enzymes able to metabolize different sugar sources like 

phosphomannose isomerase (manA), xylose isomerase xylA (HALDRUP et al., 1998a; 1998b) 

and DOG R1 (KUNZE et al., 2001) are successfully being used. 

 

1.8.2.1 Phosphomannose isomerase  

Normally plant species cannot metabolize mannose. After uptake, mannose is actively 

transported into the cell and phosphorylated by endogenous hexokinases to mannose-6-

phosphate (FERGUSON et al., 1958, MALCA et al., 1967). Mannose-6-phosphate is no further 

utilized due to a deficiency of phophomannose-isomerase (PMI). The synthesis of mannose-6-

phosphate depletes cells of orthophosphate that is required for ATP production. The ATP as 

well as phosphate starvation deplete cells of energy for critical functions such as cell division 

and elongation, resulting in severe growth inhibition (GOLDSWORTHY and STREET, 1965, 
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LOUGHMAN, 1966, JOERSBO et al., 1998). The accumulation of mannose-6-phosphate also 

inhibits phosphoglucose isomerase, causing a block in glycolysis and induces an endonuclease 

to degrade DNA, responsible for apoptosis and programmed cell death (STEIN and HANSEN, 

1999). 

The pmi gene (pmi: manA from Escherichia coli) (MILES and GUEST, 1984) codes for the 

phosphomannose isomerase (PMI) enzyme (PMI; EC 5.3.1.8), commonly found across 

kingdom. However, this enzyme is absent in many plants, and have been reported only rarely, 

like in soyabeans (GOLDSWORTHY and STREET, 1965, LEE and MATHESON, 1984). PMI 

catalyzes the reversible isomerization of mannose-6-phosphate to fructose-6-phosphate, which 

serves as precursor for the glycolytic pathway (Fig. 3 and 4).. In addition, this enzyme is also 

involved in the synthesis of GDP-mannose, a major constituent of glycosylation reaction 

products as well as a precursor for the ascorbate biosynthetic pathway in plants (WHEELER et 

al., 1998).  

Since mannose cannot normally be metabolized by plant cells, when mannose is added to the 

culture medium, plant growth may be minimized due to mannose-6-phosphate accumulation. 

Cells transformed with the manA gene are able to utilize mannose as a carbon source and 

grow either in the presence of or with the addition of only small amounts of other carbon 

sources such as glucose or sucrose. As a result, transformed cells acquire a metabolic 

advantage, compared with the non-transgenic cells that remain unable to metabolize mannose-

6-phosphate (HANSEN and WRIGHT, 1999).  

ManA has been successfully used as a selection gene in a variety of crops such as sugar beet 

(JOERSBO et al., 1998 and 2000), maize (NEGROTTO et al., 2000), rice (LUCCA et al., 2001 

and HE et al., 2004), sweet orange (BOSCARIOL et al., 2003), pepper (KIM et al., 2002) and 

wheat (WRIGHT et al., 2001). As advantages, this hexose is i. soluble in plant culture media, 

ii. absorbed by plant cells, iii. cheap, iv. easily available, v. safe and vi. the transformation 

efficiencies are normally higher when compared to herbicide or antibiotic resistance genes 

(ARAGÃO and BRASILEIRO, 2002).  
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Fig. 3: Phosphomannose-isomerase pathway. 
Source: http://www.chem.qmul.ac.uk/iubmb/enzyme/EC5/3/1/8.html  
 

 
Fig. 4: Basic intermediary metabolism involving mannose in nonleguminous plant cells not transformed 
with PMI. The reaction catalyzed by PMI is indicated by the dashed lines and rounded arrows 
(PRIVALLE et al., 2002). 
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2 SCOPE OF THE THESIS 
 

Apple scab, caused by the fungus Venturia inaequalis is the most important disease of Malus 

domestica. Over 15 treatments with fungicide per season can be required for its control.  

Combining resistance genes is one of the most important aims in classical breeding programs. 

However, apple presents a long juvenile period and is self-incompatible and is, therefore, 

highly heterozygous. In classical breeding, all genes will be newly recombined in each 

generation and several selections and crosses need to be done until individuals carrying the 

resistance genes as well as other requested quality traits can be selected.  

As an alternative to the introduction of resistance by classical breeding, genetic transformation 

is a promising approach to establish resistance in well established commercial cultivars. The 

most common and less cost intensive method for transformation of plants is the 

Agrobacterium-mediated. Several transgenic apple plants have been developed using the nptII 

gene as selectable marker. However, in recent years, the use of antibiotics and herbicide 

resistance genes for selecting transformed cells has generated widespread public concern 

because of inadequate evidence of the transformed gene’s impact on human health and the 

environment. Especially antibiotic and herbicide resistance genes have provoked concerns 

about whether those marker genes could be transferred into microorganisms by horizontal 

gene transfer resulting in an increased number of resistant pathogens or that genes cross out 

into wild relatives transforming them into weedy pests. Thus it is important to evaluate the 

efficiency of alternative selection systems, such as those based on non-metabolizable agents. 

Another public claim is the fact that transformations events are mainly based on the use of 

genes isolated from other species (inter-specific). For these reasons, the use of genes from the 

same specie as well as the development of alternative selection strategies are highly desirable 

and would certainly contribute to the acceptance of transgenic plants.  

Recently, positive selection systems have been developed, in which the transgenic cells enjoy 

a metabolic advantage over the non-transformed cells that are starved rather than killed. The 

manA gene/mannose as selection agent is one of these systems. The supporting principle in 

this approach is the inability of some plants to use mannose as a carbon source.  

 

The isolation of genes can be carried out by different methods, in order to further use them to 

obtain transgenic plants with improved characteristics. The characterization of expression 
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profile of cultivars showing different response to pathogens attack is an important tool to 

isolate genes involved in the defence mechanisms. Several pathogenesis related proteins (PR), 

such as chitinase, β-1,3-glucanase, osmotin, PR1 protein and thaumatin like protein were 

showed to be constitutively expressed in the apoplast of M. domestica cv. ‛Remo’ (GAU et al., 

2004). This cultivar is resistant against several diseases, including apple scab, mildew and fire 

blight and contains the Vf resistance locus (FISHER and FISHER 1999). Different methods have 

been used to isolate genes expressed under specific circumstances. Among them the 

suppression subtractive hybridization (SSH) has been used with success in several species but 

up to now the isolation of apple genes by this method has not been described. 

 

The isolation of pathogenesis related genes conferring quantitative or partial resistance against 

pathogens and their pyramidizing in one cultivar by transformation is important as a strategy 

to reduce the risk of resistance breakdown and to achieve durable resistance so that the 

pathogen has to simultaneously circumvent different resistance mechanisms to be able to 

infect the plant.  

 

The work presented here is divided in two chapters: 

In the first chapter the objectives are to explore the differences in transcript profile of closely 

related M. domestica cultivars ‛Remo’ and ‛Elstar’ (resistant and susceptible against Venturia 

inaequalis, respectively). In order to obtain further information about the differences between 

the mRNA expression profiles of the non-inoculated leaves of apple scab-resistant cv. ‛Remo’ 

and the susceptible cv. ‛Elstar’, the suppression subtractive hybridization (SSH) method was 

chosen.  

In the second chapter, the objectives are to obtain genetically modified plants of M. domestica 

in order to evaluate the viability of the positive selection system Phosphomannose isomerase-

mannose in the transformation of apple, to avoid the use of antibiotic and herbicide resistance 

genes in this system and enhance the transformation efficiencies. 
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3 MATERIAL AND METHODS 
 

3.1 Materials  
All media, buffer, stocks/and working solutions were prepared using double-distilled water. 

According to different requirements, solutions and media were autoclaved (20 min, 120°C, 2 

x 10
5 
Pa) or filter sterilized with 0.2 µm filters.   

Cellophan membrane: C 325 P (disks of ∅ 8 cm), Pütz GmbH+Co Folien KG 

Columns: MoBiTec GmbH  

Filters (0.2 µm): Sartorius, Millipore  

Filter miracloth:  Calbiochem – 129 µm 

Parafilm: Nescofilm 

Plastic material: Greiner bio-one, Huhmaki, Sarstedt, Kitzel  

X-ray film: Kodak 

TINA software package: Raytest Isotopenmeßgeräte GmbH 

 

3.2 Reagents 
¾ Amersham Pharmacia (Freiburg, Germany): [32P] CTP, Sephadex-G-50 

¾ Applichem (Darmstadt, Germany):, Dimethyl sulfoxide, Formaldehyd, Formamide, 

Glacial acetic acid, Glycerin, Isopropanol, 2-propanol, Litium chloride, Magnesium 

chloride, Maleic acid, MOPS, NBT, SDS, Sodium chloride, Sodium citrate, Sodium 

hydroxide, Sodium phosphate, Tris ultrapure, Tween 20 

¾ BD Biosciences Clontech (Palo Alto, USA): Difco Potato dextrose agar, Smart cDNA 

Synthesis kit, PCR select cDNA subtraction kit 

¾ Biozym (Rockland, USA): Seakem LE Agarose 

¾ Carl Roth GmbH CO (Karlsruhe, Germany): Ethanol, Mannose 

¾ Duchefa (Haarlem, Netherlands): Antibiotics, Gelrite, Murashige and Skoog (MS) 

basal salts including vitamins, Sucrose, Sorbitol, Myo-inositol, Plant growth 

regulators, Plant agar, xGlcA cyclohexylammonium 

¾ Fluka (Ulm, Germany): 2-Butanol 

¾ Gibco BRL (Karlsruhe, Germany): Agar, Yeast extract 
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¾ J.T. Baker (B.-V.-Deventer, The Netherland): Ammonium acetate, Sodium acetate 

trihydrate, Sodium citrate dehydrate, Phenol, Potassium acetate 

¾ MBI Fermentas GmbH (St. Leon-Rot, Germany): restriction endonucleases, dNTPs, 

DecaLabel DNA Labeling kit, RNAse, RNAse inhibitor, DNA leader markers 

¾ Merck (Darmstadt, Germany): Bromophenol blue, Isoamyl alcohol, Potassium 

ferricyanide (II), Pepton, Potassium ferricyanide (III) 

¾ Qiagen (Hilden, Germany):  QuantiTect SYBR Green PCR kit  

¾ Promega (Mannheim, Germany): pGem T Vector kit 

¾ Riedel-de-Häen (Seelze, Germany): Gluphosinate ammonium –Pestanal, Potassium 

nitrate, Potassium dihydrogen phosphate, Sodium hydroxide. 

¾ Roche (Mannheim, Germany): Anti-digoxigenin AP-Fab fragments, Blocking reagent, 

CDP-star kit, DIG DNA Labeling mix, DIG High Prime DNA labeling kit 

¾ Serva (Heidelberg, Germany): Ethidium bromide, N-Laurylsarcosyl, 2-β-

mercaptoethanol 

¾ Sigma (St. Louis, USA): Chlorophenol red,  Ficoll 400, Hexadecyl trimethyl 

ammonium bromide, PVP 40, Taq polymerase, FDA 

¾ Stratagene (La Jolla, CA, USA): XL1-blue Escherichia coli 

¾ Syngenta (Basel, Switzerland): pNOV2819  

¾ Tentenal Photowerk GmbH (Norderstedt, Germany): Tentenal superfix solution, 

Tentenal rapid developer 

¾ ThermoHybaid (Ulm, Germany): primers 

 

3.3 List of devices 
Apparatus Manufacturer 

Autoclave: Varioklav H+P 

Centrifuges: Juoan CR3i; Eppendorf centrifuge 5415R 

Cleanbanch: Biowizard -Kojair  

Dot blot system: Gibco 

Electrophoresis apparatus: Bio Rad Sub-cell GC  

Electroporation device: BTX Electronic Genetics – PEP Personal Electroporation Pak 

Gel documentation: Bio Rad Gel Doc 1000, Intas 

Incubator: Memmert 

Magnetic stirrer with heating plate: IKAMAG, RH, Janke & Kunkel /IKA Labortechnick 

PCR-device: MJ Research – PTC-200 /Peltier Thermal Cycler /Biometra 
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pH- Meter: Beckman pHI31 pH meter 

Real time PCR device: ABI PRISM 7000 Sequence Detection System /Applied Biosystems  

Spectrophotometer: Beckman DU7500  

Power supply: Pharmacia Electrophoresis power supply – EPS 600, Elite 300 Plus 

Vortexing device: MS2,Minishaker IKA Werk 

Waterbath: GFL 1092 

Weighing device: Kern KB, Kern 770, Sartorius BP2100S 

 

3.4 Plant material 

3.4.1 Apple scab resistant Malus domestica cv. ‘Remo’ 
This cultivar was introduced by the Pillnitz breeding institutions, and belongs to the 

denominated Re-cultivars®. The cultivars ‘Elstar’, ‘Golden delicious’ and ‘Cox Orange’ were 

used as donors in cross combinations to guarantee the fruit quality. As sources for scab 

resistance, ‘Steinantonovka’, carrying the resistance gene VA, Malus x floribunda (Vf), M. x 

micromalus (Vm), M. x atrosanguinea Vf?, M. x pumila (Vr), the cultivars ‘James Grieve’, 

‘Cox Orange’ and ‘Oldenbung’, among others were also used. Other cultivars were also used 

as sources of mildew and fire blight resistance. The ‘Remo’ cultivar proved in field 

experiments to be resistant  against apple scab, fire blight and mildew, and is considered a 

special cultivar for processing (FISCHER and FISCHER, 1999). 

 

3.4.2 Apple scab susceptible cv. ‘Elstar’ 
Originated in the Netherlands about 1955, ‘Elstar’ is a cross between the cultivars ‘Golden 

delicious’ and ‘Ingrid Marie’. This cultivar is characterized by fine quality and the fruits are 

suitable for all-purposes (http://www.parkfruitfarm.co.uk/fruit%20varieties.htm).  

 

3.4.3 Greenhouse-grown plants 
The two years old plants of the cultivars ‘Remo’, ‘Elstar’, ‘Holsteiner Cox’ and ‘Gloster’ 

were grown in a greenhouse at 22ºC under daylight with additional illumination (~250 µmol 

per m2.s-1) under a 12h photoperiod.  
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3.4.4 In vitro plants  
Sterile plants of the M. domestica Borkh. cv. ‘Holsteiner Cox’ and cv. ‘Elstar’ were 

introduced in vitro by Dr. Iris Szankowski (University of Hanover). The in vitro plants of the 

cv ‘Remo’ were kindly provided by Susanne Rühmann and Prof. D. Treutter (Institute of Fruit 

Science – Fruit Tree Physiology, TU Munich-Freising Weihenstephan, Germany). ‘Remo’ 

and ‘Elstar’ were cultivated on medium according to PERALES and SCHIEDER (1993) while 

‘Holsteiner Cox’ was cultivated on C1 medium (Tab. 2). The cultures were maintained at 

25oC under 16/8h light conditions and subcultured every four weeks. 

 
Tab. 2: Composition of medium for in vitro culture of the cv. ‛Remo’ and ‛Elstar’ 

Components  PERALES & SCHIEDER (1993) C1 

MS salts incl. Vitamins (g/L) 4.4 4.4 

Sucrose (%) 3 3 

Myoinositol (g/L) 0.1 0.1 

BAP (µM) 3.1 4.4 

IBA (µM) - 0.5 

NAA (µM) 0.5 - 

GA3 (µM) 2.8 - 

Plant Agar (%) 0.8 0.8 

pH 5.6 – 5.8 5.6 – 5.8 

 

3.5 Cultivation of Venturia  inaequalis and inoculation of Malus domestica   

3.5.1 Mycelium production 
The strain (designated as no. 15) of V. inaequalis used was obtained from the cv. ‛Elstar’ at 

the Biologische Bundesanstalt (Dossenheim, Germany) and kindly provided by Dr. Katja 

Schulze (Institute of Vegetable and Fruit Science, Fruit Science Division, University of 

Hanover).   

From plates containing mycelium of V. inaequalis, four pieces of the border of grown 

mycelium were transferred to a new PDA plate. The plates were cultivated at 19°C under light 

for four weeks and were used as source for conidia production. 

 
PDA Medium pH 5.6 ± 0.2 

Potato Dextrose Agar  39 g/L 

Bidest. water  1.000ml 

After autoclaving media were poured in Petri dishes and cellophane membrane disks were placed above the 

medium, in Petri dishes 
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3.5.2 Cultivation and harvesting of conidia 
From the mycelium plates 4 – 5 pieces of the mycelium were cut and placed into 50 mL tubes. 

After addition of 10 mL bidest. water it was mixed. Around 0.75 mL of the solution were 

placed on each PDA plate containing cellophane membrane, according to PARKER et al. 

(1994). The conidia plates were cultivated for 5 – 8 days under light condition at 19°C. 

The cellophane membrane containing the conidia was collected and placed in tubes containing 

20 mL bidest. water. After shaking for 5 min, conidia were washed from the cellophane by 

agitating in sterilized deionized water and the liquid was filtered through Miracloth®. Spore 

density was quantified and adjusted to a final concentration of 0.5 - 0.8 x 104 conidia/mL. 

 

3.5.3 Vitality staining of conidia 
On a microscope plate 300 µL 130 mM Tris-HCl (pH  7.4) and 5 µL FDA buffer was placed. 

After addition of 5 µL of conidia suspension, it was analysed under the microscope using blue 

light (450 – 490 nm). The percentage of  alive conidia was represented as the number of 

conidia with green color. 
 

FDA solution 

 5 mg FDA 

1 mL aceton 

 

3.5.4 Determination of the germination of conidia 
On a microscope plate containing drops of 2% water agar, 5 µL of conidia suspension in the 

final concentration was placed. The microscope plate was placed in a petri dish containing 

water-saturated tissue paper and incubated it at 21°C under 100% humidity. After 24h the 

conidia germination was observed under the microscope as described above.  

 

3.5.5 Inoculation of in vitro plants 
To inoculate the plants, conidia were harvested after propagation for seven days on PDA 

plates. Steril in vitro plants of the cvs ‛Remo’ and ‛Elstar’ were inoculated by spraying 1 mL 

of a suspension containing 1x106 conidia in water. The inoculated plants were incubated 

according to the descriptions above. Control plants were sprayed with water. Leaves were 

harvested after 24 and 48h.  
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3.6 RNA isolation 
The youngest leaves from three healthy plants (5 g) from greenhouse as well as in vitro plants 

were collected and immediately frozen in liquid nitrogen. Total RNA was isolated with some 

modifications according to MENNHAJ et al. (1999). The leaves were ground in liquid nitrogen 

and 15 mL of lysis buffer and 15 ml PCI mix were added. After shaking for 20 min, samples 

were centrifuged at 11500 x g for 20 min at 4ºC. Then, another 15 mL of PCI mix were added 

to the supernatant and centrifuged for 15 min in the same conditions. The RNA was allowed 

to precipitate in the presence of 3.5 M LiCl overnight at 4°C. After centrifugation the pellet 

obtained was dissolved in 1 ml DEPC treated water and precipitated by incubation for 1 hour 

at -20°C in the presence of 500 µl 3M Na–acetate (pH 5.2) and 5 mL of cold 96% ethanol. 

After washing in 70% cold ethanol, the pellet was air dried, dissolved in 500 µL DEPC treated 

water and stored at -70°C. All solutions, except lysis buffer and PCI, were treated with DEPC 

water. 
 

Lysis buffer 

100 mM Tris-Cl pH 8.0 

600 mM NaCl, 20 mM EDTA 

 4% SDS 

 

PCI mix (24:23:1) 

24 mL phenol  

23 mL chlorophorm  

1 mL isoamylalcohol  

 

0,1% DEPC treated water  

Add DEPC to the water. 

Shake vigorously and incubate at 37ºC for 12 

hours. 

The solution was finally autoclaved. 

 

 

3.7 DNA isolation 
DNA was isolated from different apple cultivars from in vitro plants or leaves of greenhouse-

grown plants using the CTAB method (DOYLE and DOYLE, 1990). Around 2 g plant material 

were immediately frozen and macerated in liquid nitrogen. Pre heated (60ºC) CTAB buffer 

was added and after 30 min incubation at 60ºC, 10 mL CI-mix were added. After 

centrifugation for 10 min at 3500 x g at 4ºC, 2/3 vol isopropanol (-20ºC) were added and a 

pellet was obtained by centrifugation for 10 min. After washing in 10 mL washing buffer and 

centrifuging for 10 min, the pellet was dissolved in 3 mL TE buffer containing RNAse and 

incubate for 30 min at 37ºC. The precipitation was carried out by addition of 1 mL of 7.5 M 

NH4-acetate and 8 mL ethanol absolute (-20ºC) and centrifugation for 20 min at 3500 x g. The 

pellet was dissolved in 1 mL bidest water and stored at -20ºC. 
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CTAB buffer 

3% CTAB 

1.4 M NaCl 

0.2 % β-mercaptoethanol 

20 mM EDTA 

0.5% PVP-40 

100 mM Tris-HCl pH 8.0  
 

CI-mix  

23 mL clorophorm 

1 mL isoamylalcohol 

 

Washing buffer 

76% ethanol 

10 mM ammonium acetate 

TE buffer 

10 mM Tris-HCl, pH 8.0 

1 mM EDTA 

10 µg/mL RnaseA 

 

 

3.8 Determination of DNA and RNA concentrations by spectrophotometer  
The concentrations of DNA and RNA were determined by spectrophotometer at an extinction 

of λ = 260 nm, by using the formula: 

DNA concentration = (OD260 . D . 50 µg/mL) 

RNA concentration = (OD260 . D . 40 µg/mL) 

       D = Dilution factor 

The purity of DNA and RNA samples were determined by the ratio between the OD260/OD280. 

For DNA a pure sample has a ratio of 1.8 and for RNA 2.0. 
 

3.9 RNA gel electrophoresis  
The electrophoretic separation of RNA was carried out under denaturation conditions. To 2 µg 

RNA, 18 µl Northern-mix were added and the probes were incubated for 15 min at 65°C on 

water bath. After cooling on ice for two min, the samples were loaded on a 1.5% agarose gel, 

and separated at 80 V, for 45 min. RNA bands were visualized under UV light.  

 
10x MOPS buffer pH 7.0 

0.2 M MOPS 

50 mM Na-acetate 

10 mM EDTA 

 

RNA formaldehyde Gel 

1.5 % agarose (w/v) 

1x MOPS 

1.26% formaldehyde 

Northern mix 

5 mL sample buffer 

1 mL loading buffer 

40 µL ethidium bromide  

Sample buffer 

1x MOPS 

6.5% formaldehyde 

50% formamide 
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Loading buffer 

0.25% bromophenol blue 

0.25% xylenecyanol FF 

50% Glycerin 

1 mM EDTA 

 

 

3.10 DNA gel electrophoresis  
Separation of DNA was carried out in a 0.8 – 1.5% agarose gel (w/v in 1x TAE buffer). 

Samples were mixed with loading buffer in different concentrations, according to the 

purposes, and were loaded in the gel. The electrophoresis was carried out at 4.5 – 6 V/cm. 

Different DNA markers were used to determine the band sizes.  

After staining for 15 min in TAE buffer containing EtBr, gel images were recorded under the 

UV-light. 

 
TAE-buffer (50x) 

40 mM Tris-Ac pH 7.5 

20 mM glacial acetic acid 

1 mM EDTA 

Loading buffer 

100 µL bromophenol blue solution 

50% glycerin 

20 µL TAE buffer 

 

3.11 Suppression subtractive hybridization (SSH) 
The subtractive hybridization is an efficient method for isolation of cDNAs from different 

expressed genes. The PCR-SelectTM cDNA subtraction kit (Clontech) is based on the method 

developed by DIATCHENKO et al. (1996). The combination of subtractive hybridization and 

PCR allows the isolation of several cDNAs, expressed only or in a higher amount in one of 

the RNA-populations. The scheme of this method is presented in the Fig. 5.  

Two subtractions were carried out, in order to generate two different libraries: 

1. “Forward subtraction”- Isolation of genes only or highly expressed in the cv. ‛Remo’ 

(tester 1) using the cDNA population of ‛Elstar’ as ‘driver 1’; 

2. “Reverse subtraction”- Isolation of genes only or highly expressed in the cv. ‛Elstar’ (tester 

2), using the cDNA population of ‛Remo’ as ‘driver 2’; 

The tester is designated as the cultivar from which the genes should be isolated, which should 

be not expressed, or should present a lower expression as the driver cultivar. The driver is 

designated as the cultivar used to subtract the genes differentially expressed. 
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Fig. 5: Scheme of the suppression subtractive hybridization method 
http://www.clontech.com/clontech/archive/OCT01UPD/pdf/PCR-SelectProducts.pdf 
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3.11.1 cDNA synthesis 
cDNA from the samples were synthesized from total RNA using the SMART PCR cDNA 

Synthesis kit according to the procedures described in the manual (Clontech, Palo Alto, CA, 

USA). 

 

3.11.2 SSH - PCR SelectTM cDNA Subtraction kit (BD Clontech) 
In a 0.5 ml tube 43.5 µL of ds cDNA was mixed with 1x RsaI reaction buffer and 15 U of 

RsaI restriction enzyme and incubated for 1.5 h at 37oC, in order to obtain short blunt-ended 

fragments. After stopping the reaction by adding 2.5 µL 20x EDTA/Glycogen mix, cDNAs 

were precipitated. The precipitation step was carried out by adding 50 µL 

phenol:chloroform:isoamylalcohol (25:21:1) and centrifuging at RT for 10 min at 10000 x g. 

The aqueous layer was than mixed with 50 µL chloroform:isoamylalcohol (24:1) and again 

precipitated at the same conditions. Twenty five µL of 4 M NH4OAc and 187.5 µL of 95% 

ethanol were added and after another centrifugation step at 10000 x g for 10 min at RT,  the 

pellet was washed in 200 µL 80% ethanol and centrifuged at 10000 x g for 5 min. The pellet 

was than dissolved in 5.5 µL water.  

After dilution of 1.5 µL of the tester cDNA with 7.5 µL water, 2 µL were mixed with 3 µL 

water, 1x ligase buffer, 400 u T4 DNA ligase and 2 µL adapter 1 (5’- cta ata cga ctc act ata 

ggg ctc gag cgg ccg ccc ggg cag gt-3’) or 2 µL adapter 2R (10 µM) (5’-gta ata cga ctc act ata 

ggg cag cgt ggt cgc ggc cga ggt-3’), respectively in two reactions. The reactions were 

incubated overnight at 16oC and stopped by adding 1 µL 20x EDTA/glycogen mix. The ligase 

was inactivated by heating for 5 min at 72oC. 

 

3.11.3 Subtractive Hybridization  
Both tester cDNA populations, ligated to the different adapters were mixed with the driver-

cDNA in separated reactions containing 1.5 µL driver-cDNA, 1.5 µL tester-cDNA (ligated to 

adapter 1 and adapter 2R, respectively) and 0.4x hybridization buffer in a final volume of 4 

µL, and allowed to hybridize. After 1.5 min at 98oC, the reactions were incubated for 8 h at 

68oC. Samples were than purified and 1 µL was submitted to the second hybridization step. 

After denaturation for 1.5 min at 98oC, 1 µL of the driver cDNA was mixed with 0.4x 

hybridization buffer and 2 µL sterile water. The second hybridization step was carried out 

overnight at 68oC and was completed after addition of 200 µL dilution buffer and heating at 

75oC for 7 min. 
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3.11.4 PCR Amplification of subtracted cDNAs 
The PCR reaction allowed the selective amplification of differentially expressed cDNAs. One 

µL cDNA was mixed with 2.5 µL 10x reaction buffer, 0.5 µL dNTP mix (10 mM), 1 µL 10 

mM primer 1 (5’-cta ata cga ctc cat ata ggg c-3’), 0.5 µL 50x Advantage Klen Taq 

polymerase mix (Clontech) and 19.5 µL water.  The adapters were then extended by 

incubation for 5 min at 75oC. The first PCR was carried out as presented in Tab. 3. 

For the second PCR reaction, the first PCR product was diluted 1:10 and 1 µL was used. In a 

reaction containing 2.5 µL 10x PCR reaction buffer, 1 µL Nested primer 1 (10 µM, 5’-tcg agc 

ggc cgc ccg ggc agg t-3’), 1 µL Nested primer 2 (10 µM, 5’-agc gtg gtc gcg gcc gag gt-3’), 

0.5 µL dNTP mix (10 mM), 0.5 µL 50x Advantage Klen Taq polymerase mix and 18.5 µL 

water the PCR was carried out according to instructions contained in Tab. 3. 

 
Tab. 3: Conditions of the first and second PCR amplification of fragments subtracted by SSH 

1a. PCR Temperature (oC) Time (s) Cycles 

Denaturation 94 30  

Annealing  66 30 27 

Elongation 68 90  

2a. PCR Temperature (oC) Time (s) Cycles 

Denaturation 94 30  

Annealing  68 30 12 

Elongation 72 60  

 

3.12 Ligation of the ESTs to pGEM-T Vector System I (Promega) 
The pGEMT Vector (Fig. 6) contains a cloning site inserted into the coding region of the lacZ 

gene, which codes the β-galactosidase enzyme. Insertional inactivation of the α-peptide 

allows recombinant clones to be directly identified by color screening on indicator plates. This 

vector also contains an amp gene, which confers resistance against the ampicillin, allowing 

the growth of transformed bacteria on medium containing this antibiotic.  

The ligation of the ESTs was done according to the manufacture’s protocol. The enzymes and 

buffers were provided with the kit. For ligation, 50 ng of plasmid were mixed with 0.5 µg of 

the subtracted cDNA in the presence of 2x rapid ligation buffer, 1 µL T4 DNA ligase and 

deionized water to a final volume of 10 µL. After incubation for 1h at RT the ligation product 

was transferred to Escherichia coli XL1-blue. 
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Fig. 6: Map of the binary plasmid vector pGEM-T Vector (Promega). 

http://www.tcd.ie/Genetics/staff/Noel.Murphy/recombinant%20dna%20ge4021/pgem.pdf 

3.13 Transformation of E. coli XL-1Blue by heat shock 
The ligation product (5 µL) was mixed with 200 µL bacteria. The mixture was incubated on 

ice for 30 min, then at 42 ºC for 90 s and again for 2 min on ice. After adding 600 µL LB 

medium, the bacteria were recovered and allowed to grow for 1h at 37ºC. The bacteria were 

plated on LB medium containing 100 µg/mL ampicillin, 0.5 mM IPTG and 80 µg/mL X-Gal, 

since the plasmid contain a blue/white selection system. After incubation overnight at 37oC, 

the white colonies were picked up and incubated on 10 mL LB containing 100 µg/mL 

ampicillin.  
 

LB medium 

0.5% (w/v) yeast extract 

1% (w/v) pepton or trypton 

1% (w/v) NaCl 

pH 7.2 

 
To prepare a long-storage stock culture, 10 mL LB medium were inoculated with 5 µL 

bacteria culture and incubated overnight at 37ºC. From this culture, 850 µL were mixed with 

250 µL autoclaved 87% glycerin. The cultures were stored at -80oC. 
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3.14 Plasmids Isolation and Purification 

3.14.1 Isolation using the Qiagen kit  
The colonies with the bacteria containing the plasmids of interest were incubated overnight 

under shaking at 37°C in 125 mL LB Medium, containing the appropriate antibiotic. The 

plasmids were isolated according to the kit manuals (Qiagen). The pellets were dissolved in 

TE buffer.  

 
TE buffer 

10 mM Tris HCl pH 8.0 

1 mM EDTA  

 

 

 

3.14.2 Isolation using the HB-Lyses method 
For plasmid isolation, the colonies were pre-cultured overnight at 37°C under shaking, in 

micro centrifuge tubes of 1.5 mL, and centrifuged at 11500 x g for 2 min. The pellet obtained 

was dissolved in 300 µL of buffer 1 and the bacteria were lysed by applying 300 µL of buffer 

2, mixing and incubating at RT for 5 min. After addition of 300 µL of buffer 3, it was 

incubated on ice for 10 min and centrifuged at RT for another 10 min at 11500 x g. The 

supernatant containing the plasmids was centrifuged again at the same conditions and 800 µL 

was centrifuged with 700 µL isopropanol, at 11500 x g for 30 min to elute the DNA. The 

pellet was washed with 500 µL ice cold 70% ethanol, incubated for 2 min, centrifuged for 10 

min at 11500 x g and dried by incubation in water bath for 10 min at 60°C. The plasmid DNA 

was dissolved in 50 µL distilled water and stored at -20°C. 

 
Buffer 1 

50 mM Tris-HCl pH 8.0 

10 mM EDTA 

400 µg/ml RNase 

 

 

Buffer 2 

200 mM NaOH 

       1% SDS 

 

Buffer 3 

2.55 M K-Acetate pH 4.8  
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3.15 Polymerase Chain Reaction (PCR) 
PCRs were carried out in a 25 µL final volume. Between 500 ng and 1 µg cDNA or DNA 

were used as template, according to the different experiments. The reactions, except 

somewhere else described, contained 1 µL of 10 µM dNTPs, 1 µL of 10 pM of each primer, 1 

U Taq polymerase and 1x buffer provided by the supplier of the enzyme. The primers used 

varied according to the experiment, and are described in the Tab. 4. 

The reaction conditions of the PCR are shown in Tab. 5. The annealing temperature was 

dependent of the primer. The PCR reaction conditions for the specific primers for the pat and 

pmi genes are shown in the Tab. 6. 

 

3.16 Colony PCR 
The fragments cloned into pGEM-T Vector and transformed into E. coli X-blue 1 were 

amplified by colony PCR. Therefore, using a pipette tip, a small amount of the colonies grown 

on LB plates were transferred to 0.2 mL tubes. The primers T7 and M13, with homology to 

the sequence of pGEM-T Vector were used. The conditions were the same as previously 

described. 

 

3.17 Reverse Transcription (RT) – PCR 
For semi quantitative RT-PCR, total RNA from cv. ‛Remo’ and cv. ‛Elstar’ were first treated 

with DNAse to prevent amplification of fragments from genome. To 1µg RNA, 1x reaction 

buffer and 1 U DNAse were added, and filled to 9 µl with DEPC treated water. After 

incubation for 30 min at 37ºC, 1 µL of 25 mM EDTA was added and  incubated for 10 min at 

65ºC to stop the reaction. 

After treatment, cDNA was synthesized from RNA in a two-step reaction. In the first step, 

500 ng RNA were mixed with 10 mM dNTPs and 10 pmol/µL Oligo(dT)23 primer in a final 

volume of 10 µL. After incubation for 10 min at 70ºC and cooling on ice for 2 min, the RT-

Mix, containing 1x buffer, 1 µL MMuLV polymerase and 50 Units RNAse inhibitor, were 

added. The first strand synthesis was completed by incubation for 1h at 50ºC.   

The cDNA (1 µg) was directly used for PCR reaction. Amplification products were directly 

separated in a 1% (w/v) agarose gel. The quantification of expression was analyzed by the 

TINA software package (Raytest Isotopenmeßgeräte GmbH, Straubenhardt, Germany). 
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Tab. 4: Primer sequence for specific gene fragments. 

Primer Sequence 

thaumatine-like protein, pr5 fwd 5’-atg tcg atg atg aag agc ca-3’ 

thaumatine-like protein, pr5 rev 5’-tta tgg gca gaa agt aat gac g-3’ 

rubisco small subunit, ssu fwd 5’-cgg cac cgt ggc tac agt at-3’ 

rubisco small subunit, ssu rev 5’-cac gaa tcc atg ctc caa ct-3’ 

elongation factor 1a, ef1a fwd 5’-caa tgt gag agg tgt ggc aat c-3’ 

elongation factor 1a, ef1a rev 5’-gga gtg aag cag atg atc tgt tg-3’ 

metallothionein-like protein, mt3 fwd 5’-aag tgc gac aac tgc gac tg-3’  

metallothionein-like protein, mt3 fwd b 5’-gga att aag aga gcc aaa gc-3’ 

metallothionein-like protein, mt3 rev 5’-tga cca cag gtg cag ctc aca-3’ 

ribonuclease-like protein, pr10b fwd 5’-ctc ttg atg aca gaa ccg ct-3’ 

ribonuclease-like protein, pr10b rev 5’-cct gct agg ttg ttc aat gc- 3’ 

ADP-ribosylation factor, arf fwd 5’-aga aca tca gct tca ccg tc-3’ 

ADP-ribosylation factor, arf rev 5’-gag tgg agg cca agc tta tc-3’ 

ferrochelatase, hemH fwd 5’-agt ctc tat gtg ctc gct ca-3’ 

ferrochelatase, hemH rev 5’-cag tta tgt gga gga tgc tg-3’ 

cysteine protease inhibitor, cpi fwd 5’-atc gag gtc aca gat ggt gg-3’ 

cysteine protease inhibitor, cpi rev 5’-aac ctc tct tcc ttg cct cc-3’ 

metallothionein-like protein, mt2 fwd 5’-cat gga ggc atc tga gat gg-3’ 

metallothionein-like protein, mt2 rev 5’-gac gtg cag ctc aga aga ag-3’ 

glutathione-S-transferase, gst fwd 5’-cag gta caa ggc gag tga tt-3’ 

glutathione-S-transferase, gst rev 5’-gga atg tgg tga aga tca gc-3’ 

T7 5’-taa tac gac tca cta tag gg-3’ 

M13 forward 5'-gtt ttc ccc agt cac gac-3' 

Pmi-forward  5`-aca gcc act ctc cat tca-3` 

Pmi-reverse 5`-gtt tgc cat cac ttc cag-3` 

pat-forward 5`-tcg aag tcg cgc tgc cag aa-3` 

pat-reverse 5`-gca cgg tca act tcc gta c-3` 

 
Tab. 5: PCR conditions for amplification of specific gene fragments. 

 Temperature (ºC) Time (s) Cycles 

Denaturation  94 180  

Denaturation 94 30  

Annealing * 60 35 

Elongation 72 90  

Elongation 72 150  
* 50oC, unless described in the text 
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Tab. 6: PCR conditions for amplification of fragments of the pat and pmi genes. 

 Temperature (ºC) Time (s) Cycles 

Denaturation  94 60  

Denaturation 94 45  

Annealing 60 45 30 

Elongation 72 45  

Elongation 72 300  

 

3.18 Real Time PCR 
Expression level of selected genes was determined by using the two step QuantiTect TM 

SYBR® Green PCR kit. The PCR amplifications were performed according to the 

manufactures user manual with small modifications. The volume of each PCR reaction was 

reduced to 25 µL instead of 50 µL. 

Total RNA was isolated from young and old leaves of the cultivars ‛Remo’ and ‛Elstar’ and 

was treated with DNAse and subsequently converted into cDNA, as previously described. The 

PCR transcript quantification was performed with six genes (metallothionein type 2, 

metallothionein type 3, ribulose 1-5-bisphosphate carboxylase small subunit, ADP-

ribosylation factor, PR10b and glutathione-S-transferase) and the housekeeping gene β-Actin 

as endogenous control. Amplification was carried out with 50 ng cDNA per PCR reaction 

under the following conditions: one initial activation step of the HotStart Taq DNA 

polymerase followed by 35 cycles according to the Tab. 7 in the presence of 0.4 µM of the 

respective primers. The results were analyzed using the delta-delta CT-method. 

 
Tab. 7: PCR conditions for amplification of fragments by real time PCR. 

 Temperature (ºC) Time (s) Cycles 

Denaturation 94 15  

Annealing 50 30 35 

Elongation 72 30  
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3.19 Labeling of probes 

3.19.1 Radioactivity labeling of probes using 32P 
The cDNA populations obtained using the Smart kit following the manufacture’s manual, for 

both ‛Remo’ and ‛Elstar’ cDNA populations, were used to synthesize 32P labeled cDNA 

probes of both cultivars. Therefore, 2 µL of cDNA from each cultivar were added to a 

reaction containing 2 µL of the polymerase provided with the kit, 2 µL of 5’PCR primer II A 

(10 µM), 2 µL dNTPs (10 µM from dATP, dTTP and dGTP, and 0,05 µM dCTP) and 5 µL 

(α-32P) dCTP (activity > 3.000 Ci/mol, 10 µC/µl). The labeled cDNA was obtained by PCR 

(Tab. 5). The purification was done on Sephadex G50 columns. The columns were prepared 

by addition of 1 mL Sephadex G50 and centrifugation for 5 min at 1500 x g. After washing 

with 100 mL TNE buffer and centrifuging for 5 min at 1500 x g, the labeled cDNA was 

placed into the columns and purified by centrifugation for 5 min at 1500 x g. 

 

TNE buffer 

10 mM Tris-HCl pH 7.5 

100 mM NaCl 

1 mM EDTA 

 

3.19.2 Digoxigenin labelling of probes 
PCR fragments of the genes of interest were amplified by PCR (Tab. 5 and 6) using the 

specific primers. The products of these amplifications were labeled by digoxigenin-dUTP 

labelling kit, according to the manufacture’s protocol (DIG High Prime DNA Labeling, Roche 

diagnostics, Germany).  

For labelling of the probe, 2 µL of PCR product were mixed with 5 µL of 10x buffer, 10 

pmoL/µL from forward and reverse primers, 5 µL of PCR DIG labelling mix and 0,75 µL of 

the enzyme mix according to the instructions of the manual (PCR DIG Probe Synthesis kit, 

Roche). The probe was denaturated by heating at 95°C for 10 min and immediately cooled on 

ice. 

 

3.20 Fragment sequencing and homology search on databases 
ESTs were sequenced using the M13 forward primer in the Innovation Technology Transfer 

Centre (University of Bielefeld, Germany). After sequencing, the fragments were kindly 

compared to the sequences in the NCBI databases using the BLAST algorithms by Dr. Abdul 

Al-Nasser.    
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3.21 Reverse Northern blot analysis 
The cDNA fragments from both libraries were amplified from pGEM-T Vector by colony 

PCR. Aliquots of 1 µL of PCR reaction were transferred to two nylon membranes in 

replicates, according to the dot blot Gibco system. The cDNAs were cross-linked to the 

membrane by exposure to short-wavelength UV irradiation for three min (SAMBROOK et al., 

1989). The membranes were pre-hybridized for two hours with pre-hybridization buffer and 

subsequently incubated overnight at 60°C in hybridization buffer (pre-hybridization buffer 

containing the labeled cDNA). The membranes were washed twice in low stringency buffer 

for 15 min at RT and twice in high stringency buffer for 15 min at 60°C. Hybridization signals 

were detected using Phosphoimager plates (Raytest Isotopenmeßgeräte GmbH, Straubenhardt, 

Germany) and quantified by the TINA 2.09 software package. 

The fragments that hybridized only with the tester labeled cDNA or showed at least three fold 

higher signals on these membranes, compared to the signals on the membrane hybridized with 

the driver labeled cDNA were sent for sequencing. 

 
Pre-hybridization buffer 

20x Denhardt 

5x SSPE 

0.2% SDS 

0.2 mg/mL salmon sperm DNA 

 

100x Denhard 

2% polyvynilpirrolodone (PVP) 10  

2% serum albumine bovine protein 

2% Ficoll 400 

20x SSPE pH 7.4 

3.6 M NaCl 

0.2 M NaH2PO4 

20 mM EDTA 

 

Low stringency buffer 

2x SSC 

0.2% SDS 

High stringency buffer 

1x SSC 

0.2% SDS 

20x SSC 

0.3 M Na-Citrat pH 7.0 

3 M NaCl 

 

3.22 Dot Blot  
Aliquots of 1 µL of PCR product of all colonies (amplified with the T7 and the M13Rev 

primers) were diluted to a final volume of 100 µL and were blotted onto nylon membranes 

(Dot blot system, Gibco) and fixed by exposure to UV light for three min. Membranes were 

pre-hybridized for 6h at 60°C and hybridized overnight at 68°C with pre-hybridization buffer 
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containing the digoxigenin labeled cDNA. Subsequently, the membranes were washed twice 

for 10 min in low stringency buffer and twice for 10 min with high stringency buffer and 

again once with buffer 1 for one min. Afterwards the membranes were incubated for 30 min at 

68°C with low stringency buffer containing 1% blocking solution and then in washing buffer 

1 for 10 min. For detection, 4 µL of anti-digoxigenin AP (alkaline phosphatase) were added to 

20 mL buffer 1 and the membranes were incubated for 30 min at RT. After washing the 

membranes twice with buffer 1 for 15 min, the development was performed by addition of 

developing buffer. Membranes were incubated until signals were visible.  
 

Pre-hybridization buffer  

5x SSC 

0.1% n-laurylsarcosyl 

1% blocking solution 

 

Low stringency buffer 

2x SSC 

0.1x SDS 

High stringency buffer 

0.1x SSC 

0.1% SDS 

 

Buffer 1 

100 mM Tris HCl pH 7.5 

150 mM NaCl 

Developing buffer 

337.5 µg/mL nitroblue tetrazolium (75 mg/mL) 

and 175 µg/mL X-phosphate (50 mg/mL) in 10 

mL 100 mM Tris–HCl pH 9.5, 100 mM NaCl, 50 

mM MgCl2 

 

 

3.23 Southern Blot 
Approximatelly 20 µg DNA was used from each sample. The DNA was first cleaved by 

adding 60 units of the enzyme BamHI and 1x specific buffer to a final volume of 300 µL. The 

mixtures were incubated overnight at 37ºC (temperature required for the enzyme). After 

addition of another 20 units of enzyme, the probes were incubated for 2h to complete the 

digestion. The precipitation was carried out by addition of 1 M NH4-acetate and 70% cold 

ethanol and then centrifuged for 20 min. The pellets were washed in 70% cold ethanol and 

dissolved in bidest. water.  

The samples were separated in 0.8% (w/v) agarose gel overnight at 20 V. The gel was 

denaturated for 40 min (denaturation buffer) and neutralized for 40 min (neutralization 

buffer). The DNA was transferred to nylon membranes overnight by capillarity in the 

presence of 20x SSC buffer. After transfer, the DNA was fixed to the membrane by 

incubation at 80ºC for 2h. 
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The pre-hybridization was done by incubation at 40ºC for 30 min (pre-hybridization buffer) 

and the hybridization on the same buffer, containing the labeled probe, at 42ºC overnight. The 

membrane was then washed twice for 5 min in low stringency buffer at RT and twice for 15 

min at 65°C in high stringency buffer. 

To avoid unspecific hybridization, the membrane was incubated for 30 min in a blocking 

solution and then incubated for 30 min in blocking solution containing anti-digoxigenin AP, 

(alkaline phosphatase). After that, the membrane was washed twice for 15 min in washing 

buffer.  

To visualize the bands, the membrane was first incubated for 5 min in detection buffer and 

then CDP-Star was spread over the membrane. After incubation for 5 min at RT, the 

membranes were exposed to X-ray film (Kodak) for 8 – 15 min. The films were immersed in 

Tentenal developing solution until the bands were visible, and then rinsed in water and 

immersed in Tentenal fixation solution for 2 min.   

 
Denaturation buffer 

1.5 M NaCl 

0.5 N NaOH 

 

Neutralization buffer pH 5,5 

1 M Tris-HCl 

3 M NaCl  

Pre-hybridisation buffer  

7% SDS 

50% formamide, deionized 

5x SSC 

0,1% N-laurilsarcosil 

2% blocking reagent (Roche) 

50 mM sodium phosphate, pH7.0 

 

Low stringency buffer 

2x SSC 

0.1% SDS 

 

 High stringency buffer 

0.1x SSC 

0.1% SDS 

 

Maleic acid buffer pH 7,5 

0.1 M maleic acid 

0.15 M NaCl  

 

Blocking solution 

1% blocking reagent (Roche) 

maleic acid buffer 

 

Antibody solution 

150 mU/mL Anti-Digoxigenin-AP 

blocking solution 

 

Washing buffer 

Maleic acid buffer 

0.3% Tween 20 

Detection buffer pH 9,5 

100 mM Tris HCl 

100 mM NaCl 
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3.24 Northern Blot 
Around 10 µg of total RNA from each sample were loaded on a denaturating gel and 

separated for 1h at 20 V and one additional hour at 60 V. The RNAs were then directly 

transferred to nylon membranes by capillarity overnight in the presence of 20x SSC buffer. 

The conditions for hybridization and developing of the membranes, as well as the labeling of 

the probe with digoxigenin were the same as used for southern blot. 

 

3.25 Stripping membranes 
After hybridization, the membranes were stripped for further rehybridization with other 

probes, according to the instructions of DIG application manual. Membranes used for 

Southern blot were stripped by rinsing for 1 min in water, washing twice for 15 min at 37ºC in 

solution A and finally rinsing in 2x SSC buffer for 5 min.  

The Northern blot membranes were stripped by two times incubation for 60 min in solution B 

at 80ºC and rinsing in 2x SSC for 5 min. Membranes were stored in 2x SSC. 

 
Solution A 

0.1 M NaOH 

0.1% SDS 

Solution B 

50% formamide 

5% SDS 

50 mM Tris-HCl, pH 7.5 

 

3.26 Plant tissue culture  

3.26.1 Organogenesis from apple leaf explants 
Leaf explants were cut of the four youngest leaves of four-week non-rooted in vitro plants. 

The tip apex and the petiole were removed, in order to originate wounding places, from where 

the regeneration should occur. The explants were then placed with the upper surface touching 

the medium and incubated for two weeks in dark by 25ºC. After that, they were incubated in a 

16/8h (light/dark) rhythm. The medium was changed after two weeks. After a period of six 

weeks, the regenerated shoots were placed on elongation medium for another three weeks and 

finally in the cultivation medium, proper for each cultivar. Depending of the objectives, the 

plants were rooted on the proper medium (Tab. 8).  

 

3.26.2 Explant sensitivity to mannose 
Explants sensitivity to mannose was tested by transferring segments of the four youngest 

leaves of four weeks old in vitro apple shoots onto regeneration medium supplemented with 
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various concentrations of mannose (0, 1, 2, 2.5, 5 and 10 g/L) each in combination with 

different sorbitol concentrations (5, 10, 15 and 30 g/L). Evaluation was done after 7 weeks by 

determination of regeneration rate, percentage of callus bearing and necrotic explants as well 

as number of shoots per explant. 

 
Tab. 8: Culture medium for in vitro culture of M. domestica. 

 Regeneration medium Elongation medium Rooting medium 

MS salts including vitamins 

(g/L) 

4.4 4.4 4.4 

Sorbitol (%) 3 - - 

Sucrose (%) - 3 3 

Myoinositol (g/L) 0.1 0.1 0.1 

TDZ (µM)  3 - - 

IBA (µM) 1 - 1-2 

BAP (µM) - 4.4 - 

GA3 (µM) - 0.28 - 

Plant agar (%) - 0.8 0.7 

Gelrite (%) 0.3 - - 

pH 5.6 – 5.8 5.6 – 5.8 5.6 – 5.8 

 

3.27 Transformation of Malus domestica via Agrobacterium tumefaciens 

3.27.1Agrobacterium tumefaciens strain  
For all transformations of the M. domestica cv. ‘Holsteiner Cox’, the A. tumefaciens strain 

EHA105 (HOOD et al., 1993) was used.  

 

3.27.2 Bacterial cultures 
For transformation, 250 µL of a bacteria glycerol stock culture (stored at -80oC) were 

inoculated in 25 mL YEP medium in the presence of the appropriate antibiotic and allowed to 

grow under shaking overnight at 28ºC. The purification of the bacteria was done by 

centrifugation for 10 min at 3600 x g. The pellet was then resuspended in MS-Medium (4.4 

g/L MS salt including vitamins, pH 5.7) and adjusted to an OD600 of 0.8. This suspension was 

used for transformation of the plants. 

The glycerin stock culture of bacteria (850 µL bacteria + 150 µL glycerin 100%) were stored 

at -80ºC. 
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3.27.3 Electro-competent cells of Agrobacterium tumefaciens 
A single bacteria colony was incubated overnight at 28°C in LB Medium with vigorous 

shaking. The bacteria were then washed three times by spinning at 1250 x g for 5 min at 4°C, 

and re-suspending the pellet in 50 mL of ice-cold 10% glycerol. Finally, the bacteria were re-

suspended in 1 mL ice-cold 10% glycerol and aliquots of 40 µL were stored at –80°C. 

 

3.27.4 Electroporation 
Plasmids were introduced into A. tumefaciens by electroporation. Plasmid DNA (1 µg) and 

the agrobacteria were gently mixed on ice and placed in a 0.2 cm precooled cuvette. 

Conditions were as follow: set capacitor: 25 µF; resistor 200 – 400 Ω; voltage 1.25 – 2.5 kV; 

pulse: 6.25 – 12 kV/cm for 4 – 8 msec. Immediately after transformation, 500 µL precooled 

SOC medium was added to the sample. After inoculation for 30 min on ice, the sample was 

shaked for 2h at 28ºC and plated on YEP medium. 

 

3.28 Transformation vectors 

3.28.1 pNOV2819 
The plasmid pNOV2819 (Fig. 7), used in the transformation experiment was kindly provided 

by Syngenta. This vector confers spectinomycin resistance in bacteria and carries between T-

DNA left and right border the pmi-gene under the control of CMPS promoter (cestrium 

yellow leaf curling virus promoter). The vector was modified by the introduction of a gus 

gene (with intron) by using the HindIII restriction site (Dr. M. Wallbraun, Centrum Grüne 

Gentechnik, Germany.  

 

3.28.2 pIBGUS 
The vector pIBGUS (Fig. 7, DE KATHEN and JACOBSEN, 1995) carries on its T-DNA a GUS 

gene and both the nptII gene coding for neomycin phosphotransferase II and the pat gene, 

encoding the phosphinotricin-acetyltransferase. The pat gene is controlled by the CaMV35S 

promoter. pIBGUS was used to select transgenic cells with the herbicide glufosinate-

ammonium/ppt. The plasmids were introduced into Agrobacterium tumefaciens EHA105 by 

electroporation. 
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3.29 Agrobacterium-mediated transformation 
For transformation the four youngest leaves of four-weeks old in vitro plants were used. The 

plants were cut as described above and incubated within an Agrobacterium suspension for 1h 

under shaking. 

After drying on filter paper, the explants were placed with the adaxial side to the medium and 

co-cultivated in the dark for three days at 25ºC on regeneration medium in absence of 

selection agent. To eliminate the bacteria, the explants were washed twice for 15 min in bidest 

water and 15 min in MS medium containing the antibiotic 200 mg/L ticarcillin under shaking. 

  

 
Fig. 7: Map of binary plasmid vectors pIBGUS and pNOV2819.  

 

3.30 Selection agent and regeneration of transgenic plants  

3.30.1 Selection with mannose 
Adventitious shoot development was induced on regeneration medium (Tab. 8). To 

completely eliminate the agrobacteria, 150 mg/L ticarcillin was added to the medium. The 

selection of explants transformed with the pNOVGUS construct, under selection of the pmi 

gene was done on medium supplemented with various combinations and concentrations of 

sorbitol/mannose (Tab. 9).  

 

3.30.2  Selection with phosphinotricin 
The selection of explants transformed with the pIBGUS construct, was carried out using the 

herbicide phosphinotricin. The selection started directly after co-culture with 1 mg/L 

glufosinate ammonium/PPT in the regeneration medium. The contents of glufosinate 
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ammonium were enhanced during the regeneration up to 10 mg/L, according to SZANKOWSKI, 

(2002). 

 
Tab. 9: Mannose selection conditions after transformation with pNOVGUS. 

Sorbitol/mannose concentration (g/L) for further culture 
 

Sorbitol/mannose 
concentration  

(g/L) for initial or 
subsequent 

culture 

0S/5
M 

0S/10M 0S/15M 10S/5M 15S/ 
2.5M 

15S/5M 15S 
/10M 

30S/5M 

30S/0M     x x x x 
30S/1M x x x x x x x x 
30S/2M x x x x x x x x 
30S/2.5M x x x x x x x x 
30S/5M*         
30S/10M*         
15S/0M     x x   
15S/2M         
15S/5M*         
15S/10M*         
10S/0M*         
10S/2M*         
10S/5M*         
10S/10M*         
5S/0M*         
5S/2M*         
5S/5M*         
5S/10M*         
*Explants were cultivated subsequently on the same medium. 

 

3.31 Gene expression assays 

3.31.1 Histochemical GUS assay 
Expression of the GUS gene was assayed using a modified protocol of JEFFERSON et al. 

(1989). For histochemical staining, entire plants or tissue sections were incubated in a 

equilibration buffer. After 1h 0.5 mg/mL x-GlucA, dissolved in DMSO was added to the 

buffer. The tissues were incubated at 37ºC for 16-20h. Tissues were finally bleached in 70% 

ethanol. The influence of the different selection conditions on proliferation of transformed 

cells were determined three weeks after transformation by quantification of GUS expression. 

Each explant was scanned (CanoScan 1250 U2; Canon), blue stained areas were measured 

and related to the total size of the explant. Experiments were repeated three times (in case of 

30 g/L Sor/2 g/L Man five times) with a minimum of 30 explants per experiment. Statistical 

analysis were done using the softwares SAS8.1 and SigmaPlot 8.0.  
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Equilibration buffer  

0.2 M sodium phosphate buffer  

10 mM EDTA 

0.5 mM K4[Fe(CN)6] 

0.5 mM K3Fe(CN)6) 

 

3.31.2 Chlorophenol red assay 
To verify pmi activity in transgenic plants a chlorophenol red (CPR) assay was carried out 

using mannose as a screen for transgenic plants (KRAMER et al., 1993). Leaves of three plants 

of four transgenic lines were incubated in 15-well plates (one leaf per well) for 5 days in the 

dark at 27oC in MS liquid medium supplemented with mannose (5 g/L) and chlorophenol red 

(50 mg/L). The pH was adjusted to 6.0, a pH at which CPR has a deep red colour. As a 

control, leaves of non-transformed ‛Holsteiner Cox’ were used. The evaluation was based on a 

colour change. Tissue able to metabolize the mannose acidifies the medium and turnes it from 

red to yellow. Media containing non-transgenic tissue remain red (basic) since explants are 

unable to metabolize mannose. 

 

3.33 Statistical analyses 
GUS assays were statistically analysed using the method ‘comparison with the best’ for one-

sided hypothesis according to HSU (1996). Each sample once represented the control group 

and the simultaneous one-sided upper confidence limits were estimated at the α-level (α = 

0.05) using Dunnett’s many-to-one multiple comparison procedure. Tests were performed 

with SAS 8.01 statistical software (SAS Institute, Cary, NC, USA) using the ‘proc glm’ 

procedure. Data are presented as box plots (SigmaPlot 8.02, SPSS Inc. Chicago, IL, USA). 
 

 
 



 42

 

 

4 CHAPTER 1 
 

4.1 RESULTS 
 

4.1.2 Construction of two subtractive cDNA libraries  
The pathogen x host interaction is a very complex process, involving several genes and 

pathways until now not completely elucidated. Several genes should be constitutively 

expressed in plants that are involved in the first contact between both organisms that can 

trigger compatible or incompatible processes. The genes that are constitutively expressed in 

resistant and susceptible cultivars are therefore probably not the same, or should be expressed 

at different levels. In order to isolate genes only or highly expressed in Malus domestica cv. 

‛Remo’ (bearing the Vf locus and resistant against Venturia inaequalis) and ‛Elstar’ 

(susceptible against this fungus) the suppression subtractive hybridization (SSH) method was 

chosen. This technique overcomes the problem of differences in mRNA abundance by 

incorporating a hybridization step that normalizes (equalizes) sequence abundance during the 

course of subtraction by standard hybridization kinetics. It can achieve greater than 1,000-fold 

enrichment for differentially expressed cDNAs (DIATCHENKO et al., 1996).  

Total RNA from young and healthy plants of the cvs. ‛Remo’ and ‛Elstar’, maintained under 

greenhouse conditions, was isolated from the four youngest leaves, and used to synthesize 

cDNA. The cDNA from both cultivars was further subtracted by SSH and the ESTs obtained 

represented clones differentially expressed in ‛Remo’ and/or ‛Elstar’. The fragments obtained 

were amplified by PCR (Fig. 8) and cloned into the pGEM-T vector and the plasmids were 

transferred into Escherichia coli XL-1blue by heat shock transformation. Around 480 

transformed colonies were isolated, and two libraries were generated, representing ESTs from 

both cultivars. These were cultured on LB medium (stock culture) and stored at -80oC until 

further analysis. 
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M   1     2

500 bp

1500 bp

 
Fig. 8: Fragments amplified after first (lane 1) and second (lane 2) PCR of SSH in the subtraction reaction 

using cv. ‛Remo’ as ‘tester’. M – DNA marker (100 bp, Fermentas). 

 

4.1.3 REMO library construction 
From the transformed colonies of E. coli XL-1blue, 262 contained ESTs only or highly 

expressed in ‛Remo’. The fragment size after PCR amplification with T7 and M13 rev primers 

(which flank in the plasmid pGEM TEasy Vector) varied between 300 and 1,000 bp (Fig. 9) 

This library is described later on as REMO and the fragments by the letter R followed by the 

number of the clone.  

 

M     1      2        3     4       5         6

1500 bp

500 bp

 
Fig. 9: Amplitude of variation in fragment size of ESTs from REMO library.  M – DNA marker (100 bp, 
Fermentas); lanes 1- 6- Different EST clones were loaded with PCR-products from different EST clones. 

 

A subtracted cDNA screening was performed by reverse Northern blot by hybridization with 

total cDNA from both cultivars radioactive labeled in order to eliminate false positive clones 

isolated in the SSH libraries (Fig. 10). Therefore, the fragments of all colonies were amplified 
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by PCR reaction using the primers T7 and M13 rev, and were transferred to two nylon 

membranes, in duplicates, by dot blot system. Less than 10% of the fragments were false 

positives in the REMO library. These clones were discarded. 

 
 

 

A B

 
Fig. 10: Reverse northern blot of ESTs isolated in REMO library, hybridized A. with ‛Remo’ cDNA and 

B. with ‛Elstar’ cDNA labeled with 32P. Positive control: Fragments amplified with elongation factor (ef1a) 

primers from cv. ‛Remo’ – Up left position. 

 

4.1.3.1 Sequencing and identification of ESTs from REMO library 
In a first set, 10 clones were sequenced (Innovation Technology Transfer Centre, University 

of Bielefeld, Germany), to get an overview of the library. The sequences were kindly 

compared to the databases by Dr. Abdul Al-Nasser. As the sequencing of these first clones of 

REMO library raised to the identification of four copies of a metallothionein, a dot blot was 

carried out (Fig. 11), aiming to determine the number of colonies containing metallothionein 

fragments in order to avoid the sequencing of clones representing the same gene. Therefore, 

PCR amplified fragments (amplified with T7 and M13 rev primers) of all colonies from both 

libraries were transferred to nylon membranes in duplicates, which where allowed to 

hybridize with a digoxigenin labeled fragment of metallothionein (clone R75), amplified from 

the REMO library. By this method, it was possible to identify at least 90 metallothionein 

ESTs in the REMO library and four in ELSTAR, which were no further sent for sequencing. 

The sequencing of the other ESTs was carried out, and the comparison to the NCBI database 

gave rise to the Tab. 10.  

 



 45

 
Fig. 11: Dot blot hybridization of EST clones from the ELSTAR and REMO cDNA libraries hybridized 

with a probe for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (ssu; NCBI 

Accession No. L24497) and a probe for a metallothionein-like protein (mt3; U61974). 

 

4.1.3.2 Characterization of the REMO library 
Several disease resistance genes were found to be constitutively expressed in REMO library 

(Tab. 10). A larger number of genes belonging to this class was found in this library, in 

comparison to the ELSTAR library. Considering all clones of the library, 9% belonged to the 

disease resistance genes class. The most representative class was metallothionein, with 35% 

of the fragments isolated. cDNAs related to photosynthesis represented 1% and 8% of the 

clones belonged to the oxidative stress class (Fig. 12).  

Even after discarding by dot blot screening, a large number of metallothionein ESTs were 

sequenced in REMO library. Almost all of these fragments showed high homology to the 

metallothionein like protein type 3 (NCBI database), isolated from M. domestica cv. Granny 

Smith. One of these fragments (R77) represented small variations in the sequence, showing a 

high homology to a metallothionein isolated from Pyrus pyrifolia, another member of the 

Malus genus.  

Two genes were classified as belonging to the oxidative stress response genes. Some genes 

related to photosynthesis were also isolated. A large number of genes of unknown function 

and ‘hypothetical proteins’ were also isolated. 
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Tab. 10: Identification of EST clones from the apple scab resistant cultivar ‛Remo’. 
Clone 

no. 
Accesssion number of 
EST from cv. ‛Remo’ 

Number of 
identical clones 

Accesion number 
of matching sequence  

Best e-value 
(Blastx) 

Origin of matching sequence Matching sequence from database 

 Pathogenesis-related (PR) and Disease resistance genes 
R27 CO729291 3  AAB71505 1e-18 Pyrus communis Cysteine protease inhibitor 
R64 CO729292 3  AAS79333 8e-25 Malus domestica Endochitinase class III PR3 
R74 CO729293 1  NP_567802 1e-09 Arabidopsis thaliana Wound-responsive protein-related 
R155 CO729294 1  P42044 3e-88 Cucumis sativus Ferrochelatase II 
R178 CO729295 6  AAK13027 2e-42 Malus domestica Ribonuclease-like PR-10b 
R185 CO729296 1  AAF79587 2e-49 Arabidopsis thaliana ADP-ribosylation factor 
R111 CO729328 1  NP_568651 5e-39 Arabidopsis thaliana Senescence-specific cysteine proteinase 
R112 CO729329 3  AAR92154 6e-31 Iris hollandica Putative cysteine protease 
R25 CO729323 1  AAS79332 2e-44 Malus domestica ß-1,3 glucanase PR2 
R36 CO729326 2  AAD26552 3e-14 Malus domestica Major allergen Mal d 1 (Mal d I) 

 Oxidative stress 
R4 CO729297 1  T07182 1e-24 Lycopersicon esculentum SENU5, senescence up-regulated 
R31 CO729298 20  CAD42938 0.001 Antrodia camphorata Manganese superoxide dismutase 

 Metallothionein 
R8 CO729299 1  O24059 5e-24 Malus  domestica Metallothionein-like protein type 3 
R75 CO729300 83  O24059 3e-29 Malus domestica Metallothionein-like protein type 3 
R76 CO729301 1  U61974 1e-13 Malus domestica Metallothionein-like protein type 3 
R77 CO729302 1  AAF78526 3e-20 Pyrus pyrifolia Metallothionein-like protein 
R87 CO729303 1  O24059 3e-29 Malus domestica Metallothionein-like protein type 3 
R92 CO729304 1  O24059 7e-24 Malus domestica Metallothionein-like protein type 3 
R119 CO729333 1  O24059 3e-29 Malus domestica Metallothionein-like protein type 3 
R142 CO729305 1  O24059 5e-24 Malus domestica Metallothionein-like protein type 3 
R143 CO729306 1  O24059 2e-28 Malus domestica Metallothionein-like protein type 3 

 Photosynthesis 
R172 CO729307 1  NP_051088 8e-59 Arabidopsis thaliana Cytochrome b6 
R117 CO729332 1  AAO69667 3e-32 Phaseolus acutifolius Vacuolar ATPase subunit E 
R102  1  AAF66242 8e-15 Lycopersicon esculentum Dicyanin 

 Others 
R161 CO729308 1  O65759 9e-33 Cicer arietinum Histone H2A 
R176 CO729309 1  AAQ24632 9e-05 Oryza sativa Glycine- and proline-rich protein  
R105 CO729327 1  NP_174450 1e-16 Arabidopsis thaliana Copper amine oxidase 
R122 CO729335 1  NP_195485 1e-05 Arabidopsis thaliana VQ motif-containing protein 

 Hypothetical proteins 
R93 CO729347 1  BAD07869 4e-18 Oryza sativa Hypothetical protein 
R26 CO729324 1  D75542 9e-08 Deinococcus radiodurans  Hypothetical protein 
No matching sequences were found in NCBI database for the following EST clones: R1 (CO729310*), R2 (CO729319*), R6 (CO729311*), R12 (CO729315*), R13 (CO729316*), R18 
(CO729318*), R20 (CO729320*), R22 (CO729321*), R24 (CO729322*), R30 (CO729325*), R45 (CO729405*), R52 (CO729338*) R55 (CO729312*), R62 (CO729339*), R86 (CO729341*), R95 
(CO729342*), R97 (CO729313*), R115 (CO729330*), R123 (CO729336*),*GenBank accession number.  
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EST clones from Remo library
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Photosynthesis
Others / Hypothetical proteins

 
 
Fig. 12: Classification and quantification of all up-regulated EST sequences isolated by SSH from the M. 

domestica cv. ‛Remo’ after subtraction with the M. domestica cv. ‛Elstar’. 

 

4.1.4 ELSTAR library 
Using the subtraction method, 218 transformed colonies corresponding to ESTs exclusively or 

highly expressed in the apple scab susceptible cv. ‛Elstar’ were isolated. After PCR 

amplification using the T7 and M13 rev primers, the size of fragments varied between 300 

and 1,200 bp in the agarose gel (Fig. 13). The subtraction cDNA screening by reverse 

northern blot from these fragments revealed than less then 10% were false positives. These 

were not further analyzed. The other fragments were sent for sequencing or analyzed by dot 

blot or PCR reaction. 

 

 
Fig. 13: Amplitude of variation in fragment size of ESTs from ELSTAR library.  M - DNA marker (100 
bp, Fermentas); lanes 1- 6- Different EST clones were loaded with PCR-products from different EST 
clones. 
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4.1.4.1 Sequencing and identification of ESTs from ELSTAR library 
The sequencing of the first ESTs of the ELSTAR library, allowed the identification of two 

clones corresponding to the ribulose-1,5-bisphosphate carboxylase. Therefore a dot blot 

hybridization was performed, using a labeled fragment of this gene, isolated in this library 

(E55). The hybridization with all ESTs from both libraries, amplified by PCR (T7 and M13 

rev primers) and fixed in nylon membranes by dot blot, allowed the isolation of at least 57 

fragments corresponding to ribulose-1,5-bisphosphate carboxylase in the ELSTAR library and 

no one in the REMO library (Fig. 11). 

 

4.1.4.2 Characterization of the ELSTAR library 
From the sequenced fragments, three belong to the disease resistance genes class (5%), which 

were not found to be constitutively expressed in ‛Remo’, where ten different clones were 

isolated. Two genes related to oxidative stress were isolated (4%) and no metallothionein 

fragments were sequenced (Tab. 11). The most representative class of isolated genes was 

‘photosynthesis’ (34%), suggesting a higher activity in this cultivar in comparison to ‘Remo’, 

were fragments representing only three different genes were isolated (Fig. 14). As in REMO 

library, a large number of fragments with unknown function, as well as ‘hypothetical proteins’ 

were identified (57%).  

 

EST clones from Elstar library

5% 4%

34%
57%

Pathogenesis related proteins
Oxidative stress
Photosynthesis
Others / Hypothetical proteins

 

Fig. 14: Classification and quantification of all up-regulated EST sequences isolated by SSH from the M. 

domestica cv. ‛Elstar’ after subtraction with the M. domestica cv. ‛Remo’. 
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Tab. 11: Identification of EST clones from the apple scab susceptible cultivar ‛Elstar’. 
Clone 

no. 
GenBank accession 

number  
of EST clone  

Number 
of 

identical 
clones 

Accession 
number 

of matching 
sequence  

Best e-
value 

(Blastx) 

Origin of matching 
sequence 

Matching sequence from database 

 Pathogenesis-related and Disease resistance genes 
E35 CO729261 5 NP_187079 5e-40  Arabidopsis thaliana GDSL-motif lipase/hydrolase family protein 
E73 CO729262 1 AAM90651 9e-34 Rubus idaeus Chalcone synthase 11 
E103 CO729263 4 NM_102249 9e-26 Arabidopsis thaliana Bet v I allergen family protein 

 Oxidative stress 
E109 CO729264 1 Q59296 2e-09 Campylobacter jejuni Catalase 
E125 CO729265 7 CAD42938 1e-4 Antrodia camphorata Manganese superoxide dismutase 
   Photosynthesis    
E40 CO729266 2 P12222 2e-13 Arabidopsis thaliana Hypothetical 226 kDa protein ycf1 
E50 CO729267 3 T12416 2e-49  Mesembryanthemum 

crystallinum 
Fructose-bisphosphate aldolase 

E55 CO729268 57 AAA33866 2e-47  Malus domestica x 
Pyrus communis 

Ribulose 1,5-bisphosphate carboxylase, ssu 

E81 CO729269 1 AAQ21121 4e-34 Trifolium pratense Photosystem I psaH protein 
E105 CO729270 2 AAS46120 2e-10 Oryza sativa P700 apoprotein A2; psaB 
E106 CO729404 1 AAB93776 9e-40 Aponogeton elongatus Ribulose 1,5-bisphosphate carboxylase/oxygenase lsu 
E130 CO729271 1 NP_176347 2e-29 Arabidopsis thaliana Chlorophyll A-B binding protein 
E135 CO729272 1 AAF78510 5e-19 Pyrus pyrifolia Ferredoxin 
E153 CO729273 5 NP_084801 8e-09 Lotus corniculatus 

var. Japonicus 
ATP synthase CF0 C chain 

E160 CO729288 1 T17373 2e-38 Rubus rigidus  NADH2 dehydrogenase (ubiquinone) 
 Others  

E82 CO729289 1 S68805 2e-41 Vigna radiata Pectin acetylesterase 
E83 CO729290 6 T07086 3e-25 Glycine max Acid phosphatase 
E113 CO729275 1 BAA96072 6e-25 Panax ginseng Ribosomal protein L29 
E122 CO729276 1 O65759 8e-33 Cicer arietinum Histone H2A 
E131 CO729285 1 AAM53276 2e-38 Rubus rigidus Quinone oxidoreductase-like protein 
E166 CO729274 1 AAC49989 8e-06 Sambucus nigra SNAIf precursor, type 2 ribosome-inactivating protein  
E200 CO729343 1 AAA33056 7e-15 Gossypium hirsutum Cotton fiber E6 protein. 
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Tab. 11: Identification of EST clones from the apple scab susceptible cultivar ‛Elstar’ (continuation). 
  
Clone 

no. 
GenBank accession 

number  
of EST clone  

Number 
of 

identical 
clones 

Accession 
number 

of matching 
sequence  

Best e-
value 

(Blastx) 

Origin of matching 
sequence 

Matching sequence from database 

 Hypothetical protein 
E69 CO729277 1 NP_799510 6e-15 Bacillus megaterium Hypothetical protein 
E148 CO729278 1 NP_084698 7e-09 Oenothera elata 

subsp. Hookeri 
Hypothetical protein 

E163 CO729279 1 CAB61744 5e-37 Cicer arietinum Hypothetical protein 
 
No matching sequences were found in NCBI database for the following EST clones: E62 (CO729280*); E116 (CO729284*), E132 (CO729281*), E156 (CO729282*) * GeneBank 
accession number. 
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4.1.5 Transcriptional characterization of selected clones 
To analyze the expression pattern of some of the ESTs isolated in both libraries, semi 

quantitative and quantitative methods were chosen.  

 

4.1.5.1 Semi quantitative determination of difference in expression level by RT-PCR 
The difference in expression level of some genes corresponding to ESTs isolated from the 

SSH libraries REMO and ELSTAR was analyzed by the semi quantitative RT-PCR method. 

For that, total RNA from the youngest leaves of greenhouse-grown plants of both cultivars 

were used. After generation of cDNA, PCR reactions were carried out using specific primers 

(Tab. 4). By using this method, metallothionein, ribulose-1,5, bisphosphate carboxylase, 

ribonuclease-like protein - pathogenesis related protein (PR) 10b, ADP rybosilation factor, 

ferrochelatase and cysteine protease inhibitor genes were analyzed. The elongation factor 

gene and thaumatin-like protein gene were used as controls. 

Using the TINA 2.09 software package (Raytest, Straubenhardt; Germany) to analyze the 

results from PCR, it was possible to determine differences in the expression level of some of 

the genes between both cultivars. From the tested genes, metallothionein type 3, ADP 

ribosylation factor, ferrochelatase and cysteine protease inhibitor showed at least three fold 

increase in the expression level in ‛Remo’, confirming the results obtained by the SSH (Fig. 

15). These genes were isolated from the REMO library. The ribulose-1,5-bisphosphate 

carboxylase gene, isolated from the ELSTAR library, proved to be highly expressed in 

‛Elstar’ young leaves. The elongation factor and thaumatin-like protein genes were used as 

controls, once the former should be expressed in the same pattern in both cultivars, and the 

latter, a pathogenesis-related protein, was not isolated after the subtractions, suggesting that it 

should be expressed in the same amount in uninfected leaves of both cultivars. These genes 

did not show difference in expression between both cultivars. It was not possible to detect any 

difference in the expression pattern for PR10b. This result indicates that this gene was isolated 

as a false positive by the SSH method, or the expression pattern diverged between the initial 

RNA populations of both cultivars, but could not be further detected in new RNA samples 

isolated, which were used for the RT-PCR. 
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Fig. 15: Semi-quantitative assay of RNA transcripts by RT-PCR. The RT-PCR was performed with 1 µg 

aliquots of total RNA after treatment with DNAse. a. PCR products were separated by eletrophoresis in a 

1% agarose gel. R products obtained from cv. ‛Remo’, E products amplified from the cv. ‛Elstar’. b. 

Quantification of selected transcripts. pr5 thaumatin-like protein, ssu Rubisco small subunit, ef1a 

elongation factor 1a, mt3 metallothionein-like protein, pr10b ribonuclease-like protein, arf ADP 

ribosylation factor, hemH  ferrochelatase, cpi cysteine protease inhibitor 

 

4.1.5.2 Quantitative determination by Real time PCR - Expression level at different leaf stages 
Several genes are differently expressed in young and old leaves of the same plant. As apple 

presents ontogenetic resistance against V. inaequalis, the expression level of some genes was 

analyzed, in order to investigate the possibility of some of them to be involved in this process. 

The quantitative analysis of expression level was carried out by real time PCR. Beside four 

genes isolated from REMO or ELSTAR libraries, metallothionein type 2 and glutathione S-

transferase were also analysed. The cDNA from young and old leaves of both cultivars was 

amplified with primers specific for the genes (Tab. 4). The results were analysed using the ∆∆ 

Ct method (LIVAK and SCHMITTGEN, 2001). All samples were compared to ‛Remo’ young 

leaves (Tab. 12). As a control, the elongation factor gene was used. 

 

The expression of Metallothionein type 3 was explicitly increased in old leaves of both 

cultivars. This pattern was not observed in the metallothionein type 2, which did not showed 

difference between ‛Remo’ and ‛Elstar’ and between young and old leaves. The Gluthatione 

S-transferase gene, although not isolated in the libraries was analyzed, and showed a 
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difference in the expression level between cultivars and a considerable difference between 

‛Remo’ young and old leaves. The differences observed for all genes were clearly lower than 

that observed in the Northern blot, Reverse northern blot, dot blot and RT-PCR analysis, and 

can be attributed to the method, which was not completely well established for these probes or 

to the new RNA samples isolated. 

 
Tab. 12: ∆∆Ct values obtained after Real time PCR analysis of different genes. 

 ∆∆ Ct Value  

Gene ‛Remo’ young 
leaves 

vs. 
 ‛Remo’ old leaves 

‛Remo’ young leaves  
vs. 

 ‛Elstar’ new leaves 

‛Remo’ young 
leaves 

vs. 
 ‛Elstar’ old leaves

Metallothionein 3 22.9 1.5 22.6 

Metallothionein 2 1.9 1 -1.2 

Rubisco small sub. 2 -1.4 1 

ADP ribosylation factor 3.1 3.3 1.4 

PR 10b 2.5 1.1 1.4 

Gluthatione S-transferase 9.1 4.5 5.3 

 

4.1.6 Analysis of the Metallothionein type 3 (mt3) 
Since more than 30% of the fragments isolated in the REMO library were identified as 

metallothionein type 3, this gene was more intensively investigated.  

 

4.1.6.1 Cloning of a metallothionein gene 
A mt3 clone, named R75 (NCBI number: O24059), was identified in the REMO library 

(Tab.10). Using metallothionein specific primers (mt3 fwd and mt3 rev), a genomic DNA 

fragment of the same size of the cDNA fragment was amplified (151 bp). 

In order to further investigate the genomic structure of this gene, another primer (mt3 fwd b), 

flanking 37 bp upstream the cDNA was used to amplify a larger fragment of this gene in the 

genomic DNA from ‛Remo’. A fragment of about 1,200 bp was cloned, demonstrating the 

presence of at least one intron in this gene, which should be placed near to the N-terminal of 

this gene (Fig. 16). The entire sequence of the mt3 cDNA is presented in the Fig. 17. 
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M     1    2      3     4 

250 bp

500 bp

 
Fig. 16: Metallothionein small (lanes 1 and 2) and large (lanes 3 and 4) fragments cloned from ‛Remo’ (R) 

and ‛Elstar’ (E) genomic DNA. M- DNA marker (1 kb, Fermentas).          

 

        1 TTCGAGCGGC CGCCCGGGCA GGTACACGGG GACAGCAAGC AAAATACCAT TCAAGCGAAA 
       61 ACCCTAATTT AAACACATCT TCAGCTCCAA GTTCTTAAGT TTATCTTCAA CATGTCGGGC 
      121 AAGTGCGGCA ACTGCGATTG TGCTGACAGC TCCCAGTGCT TGAAGAAGGG AAACGGCTAC 
      181 GACTTGGTGA TCGTGGAGAC TGAGAACCGC TCCATGGACA CCGTCGTCGT GGACGCTCCT 
      241 GCAGCCGAGA ACGACGGAAA GTGCAAGTGT GGCACAACCT GCCCATGTGT GAACTGCACC 
      301 TGTGGTCAGT AAGCCCAGAT AACCAAATTA AAGATGTGAT TAATAGAAGT GTCATATTAA 
      361 TTAAGGGATT ATAGACCCTT AATTAATGAA AAGTGTTTGT GGGATAAAAA TAACGTTGTG 
      421 GCTTTGTCTT TTGTTTGCTT ATAGTATTTG AGTCTGTCGA GTGGCATGTT GTACCTCGGC 
      481 CGCGACCACG CT 

Fig. 17: M. domestica  metallothionein type 3 cDNA entire sequence (NCBI accession number: U61974). 

 

4.1.6.2 Southern blot analysis 
The genomic DNA from different cultivars (‛Remo’, ‛Rewena’, ‛Reglindis’, ‛Topaz’, ‛Elstar’, 

‛Holsteiner Cox, ‛Golden Delicious’) was digested using BamHI. Southern blot hybridization 

was performed using the small fragment of mt3 amplified by PCR and labeled with 

digoxigenin to investigate the number of copies of metallothionein present in the genome of 

these cultivars (Fig. 18). A high number of copies was observed in all cultivars. There were 

differences in the copy number among cultivars, and the position of the genes in the genome 

was also probably not the same in all cases. 

 

4.1.6.3 Northern blot 
4.1.6.3.1 Expression of mt3 in young and old leaves of Malus cultivars 

As the copy number proved to be different among cultivars, a northern blot analysis was 

carried out to compare the expression profile of this gene among different cultivars. The 

pattern of expression in young and old leaves was also compared, once it showed a great 
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difference in the real time PCR analysis (Fig.19). In all cases the expression was higher in old 

leaves. Differences in the expression of young leaves among different cultivars was also 

evident. 

 

     C                 4  5    6   7    8    9  10

M 2 4 5 6 7 8 9 10

A

B

 
Fig. 18: A- Agarose Gel of genomic DNA from seven apple cultivars digested with the BamH1 restriction 

enzyme; B- Southern blot analysis of genomic DNA from seven apple cultivars hybridized with a 

digoxigenin labeled probe of mt3. M – molecular weight markers (1kb), marker; 2 – positive control – mt3 

PCR amplified cDNA of ‛Remo’; 4 – ‛Remo’; 5 – ‛Rewena’; 6 – ‛Reglindis’; 7 – ‛Topaz’; 8 – ‛Elstar’; 9 – 

‛Holsteiner Cox’; 10 – ‛Golden Delicious’. 

 

 

1    2    3    4    5     6      7    8     9    10
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Fig. 19: A. Northern blot analysis of total RNA from and in young old leaves from several cultivars of 

Malus domestica hybridized with a Digoxigenin labeled metallothionein type 3 (mt3) probe. 1 and 2 –

‛Remo’ young and old leaves; 3 and 4 – ‛Elstar’ young and old leaves; 5 and 6 – ‛Gloster’ young and old 

leaves; 7 and 8 – ‛Holsteiner Cox’ young and old leaves; 9 and 10 – ‛Pilot’ young and old leaves. B. 

Corresponding ethidium bromide stained RNA gel. 
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4.1.6.3.2 Expression of mt3 in inoculated and uninoculated plants of Malus domestica 

The involvement of mt3 gene in the infection of Malus by V. inaequalis was investigated 

using Northern blot analysis. In vitro plants of M. domestica from ‛Remo’ and ‛Elstar’ were 

inoculated with V. inaequalis, and the RNA was isolated 24 and 48h after inoculation. The 

hybridization was carried out with the small fragment of mt3 (151 bp) labeled with 

digoxigenin as a probe (Fig. 20).  

A great difference between uninfected leaves from both cultivars could be observed. In 

‛Remo’, the expression level decreased after inoculation, while in ‛Elstar’ it increased with the 

time. 

 

4.1.6.4 Characterization of ESTs corresponding to metallothionein protein 
The multiple sequence alignment of several metallothionein fragments was carried out. 

Comparison of the predicted eight metallothionein fragments sequenced showed high 

homology among these fragments and metallothioneins isolated from other species (Fig. 21). 

All the metallothionein genes isolated, except R77 clone belong to the Type 3 (COBBETT and 

GOLDSBROUGH, 2002). All contained ten cystein residues, as expected for this type of 

protein, with exception of the predicted products of clones R77 and R142, which contain nine 

and eight residues, respectively. The R77 and R143 clones show another major difference, 

since their C-terminal extensions have a strongly helix breaking character, with one proline 

and two glycines followed by arginine or lysine residues. 

 

1 2 3 4 5 6

1 2 3 4 5 6
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Fig. 20: A. Northern blot hybridization of total RNA from apple scab-resistant cv. ‛Remo’ and susceptible 

cv. ‛Elstar’ using mt3 (metallothionein type 3) as a probe.  B. Ethidium bromide stained RNA gel. 1 – 

Control - uninfected leaves of ‛Remo’; 2 - leaves of ‛Remo’ 1 day after inoculation with V. inaequalis; 3 - 

leaves of ‛Remo’ 2 days after inoculation with V. inaequalis; 4 – Control - uninfected leaves of ‛Elstar’; 5 - 
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leaves of ‛Elstar’ 1 day after inoculation with V. inaequalis; 6 - leaves of ‛Elstar’ 2 days after inoculation 

with V. inaequalis. Each lane was loaded with 10 µg of total RNA. 

 
Fig. 21: Multiple sequence alignment of metallothionein proteins of type3. The sequences were obtained 

from M. domestica (Md_MT3 is NCBI Accession No. U61974; the R8, R77, R87, R119, R143 sequences 

were deduced from EST clones of M. domestica cv. ‛Remo’). The boxes indicate conserved cysteine 

residues, and the corresponding conserved cystein domains are indicated overlines. Asterisks indicate 

completely conserved residues; colons, highly conserved residues; dots, semiconserved residues. 
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4.2 DISCUSSION 
 

Genome-sequencing projects lead to the identification of the complete catalogue of genes of 

an organism; however, they do not consider the gene expression patterns. Large-scale end-

sequencing of cDNA library methods, like suppression subtractive hybridization (SSH), 

generates expressed sequence tags (ESTs) that can be used to obtain a precise gene expression 

pattern in a particular tissue and/or stage of development. EST sequencing has proved a 

popular and cost-effective method of isolating vast collections of coding sequences from a 

plethora of species. Until February 2004, the GenBank dbEST (database expressed sequence 

tags) contained 20,039,613 EST sequences from 611 organisms (MOYLE et al., 2005).  

The identification and functional characterization of genes encoding proteins important in the 

host-pathogen interaction is a pre-requisite for comprehending the pathogen x plant 

interaction. While a large body of information is available about the induction of defense 

mechanisms in many plants, a molecular dissection in apple, involving several genes, has not 

up to date been carried out. Investigation of expressed genes of apple has mainly been carried 

out using pre-defined probes for specific genes (KOMJANC et al., 1999). cDNA libraries, 

based on the subtraction among different genotypes, has not been generated up to date.  

Several monogenic dominant genes conferring resistance against apple scab, the most 

important disease of apple, have been characterized, such as Vf, Vh2, Vh4, Vr2, and Vbj 

(VINATZER et al., 2001 and 2004, XU and KORBAN, 2002, PATOCCHI et al., 2004, GYGAX et 

al., 2004, BUS et al., 2005). However, expression of resistance is often conditioned by minor 

or modifier genes, responsible for the difference in resistance observed among plants of the 

same progeny from the cross between a resistant (Vf carrying) and a susceptible cultivar  

(MACHARDY, 1996). Ontogenic non-race-specific resistance to scab has also already been 

described in M. domestica, where old leaves, but not aged/senescing leaves are resistant 

(GESSLER and STUMM, 1984). 

By using the SSH method, two ESTs libraries were generated, that contained genes expressed 

either in the cv. ‛Remo’ or in the cv. ‛Elstar’. The M. domestica cv. ‛Remo’ is resistant against 

some important pathogens, among them V. inaequalis, the causal agent of apple scab 

(FISHER and FISHER, 1999). ‛Elstar’ is susceptible against this disease. Therefore, one can 

expect that the number of genes involved in the resistance response should be higher in 
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‛Remo’ in comparison to a susceptible cultivar, even in healthy plants. The proteins coded 

from these genes should be involved in a first response of the plant to the pathogen.  

 

4.2.1 Characterization and comparison between both libraries 
The libraries were generated for both cultivars, after subtraction between both cDNA pools 

using the Suppression Subtractive Hybridization method. From the sequenced fragments 

isolated in both libraries, transcripts belonging to the disease resistance genes class are 

constitutively present at a higher level in ‛Remo’ (clones corresponding to ten genes) than in 

‛Elstar’ (three genes), including a number of proteins involved in detoxification of reactive 

oxygen species. A large amount of transcripts encoding metallothionein was also isolated in 

this library.  

The high-level expression of mRNAs for several classes of disease resistance genes in ‛Remo’ 

is partly in accordance with recently published results showing the constitutive expression of 

PR proteins (such as chitinase, β-1,3-glucanases, osmotin, PR1 protein and thaumatin-like 

protein) in the apoplast of ‛Remo’ (GAU et al., 2004). Using SDS-PAGE and ESI-QToF mass 

spectrometry, chitinase and β-1,3-glucanase were detected in the apoplast fluid of ‛Remo’. 

However, total leaf extracts were not analysed. In the present work, by utilizing the SSH 

method, transcript levels in total leaf extracts were investigated. This allowed the 

identification of a number of additional transcripts that are constitutively expressed at higher 

levels in ‛Remo’ than in ‛Elstar’. The constitutive expression of PR proteins, especially in the 

apoplast, of ‛Remo’, and possibly also in other parts of the leaf, is most probably responsible 

for strengthening the cell wall, as well as for rapid degradation of V. inaequalis mycelium and 

for the failure of the fungus to complete its life cycle in the apoplast. It is well documented 

that plant defense against pathogens involves an oxidative burst and that the reactive oxygen 

species not only damage the pathogen but also the plant itself (APEL and HIRT, 2004). 

Therefore, it is not surprising that in ‛Remo’ population, a substantial number of clones 

containing a cDNA for a manganese superoxide dismutase could be identified. 

The ELSTAR library was characterized by a large number of genes related to photosynthesis 

(34%). Fragments coding for three genes of this class were isolated in the REMO library, in 

comparison to ten genes in the ELSTAR library. These results suggest a higher photosynthetic 

activity in young leaves of ‛Elstar’, when compared to young leaves of ‛Remo’ and could 

indicate that ‛Remo’ leaves present an accelerated senescing process, which could positively 

influence the resistance against some diseases such as apple scab, once Malus present 

ontogenetic resistance against it.  
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Several sequences in both libraries did not have significant homology to coding sequences in 

the GenBank database and therefore could not be annotated by similarity. These sequences 

could contain some novel coding sequences that have not previously been isolated. However, 

it is unrealistic to suggest that all of the undiscovered EST subset encode for novel proteins 

with no significant homology to those in public sequence databases. Instead, many of such 

clones are likely to contain insufficient coding sequence to accurately assign an annotation 

based on homology. Furthermore, some of the undiscovered sequence ESTs may contain short 

stretches of protein coding sequence homologous to proteins in the non-redundant database, 

but due to a small open reading frame or short length of overlapping coding sequence, do not 

produce an acceptable expected value.  

 

4.2.2 Analysis of expression profile of some genes isolated in REMO library  
Semi quantitative analysis was carried out for some of the disease resistance genes isolated in 

the REMO library. 

 

4.2.2.1 Cysteine Protease inhibitor  
Three fragments of cysteine protease inhibitor were present in REMO library and showed to 

be highly constitutively expressed in this cultivar when compared to ‛Elstar’. The protein 

sequence analysed by blastx showed 83% similarity to the Pyrus communis sequence in the 

database. Cysteine protease inhibitors (cystatins) have been characterized in a number of plant 

species such as rice (ABE et al., 1987), corn (ABE and WHITAKER 1988), cowpea 

(FERNANDES et al., 1993), sunflower (KOUZUMA et al., 1996), soybean (MISAKA et al., 

1996), carrot (OJIMA et al., 1997) and bean (BRZIN et al., 1998). A cysteine protease inhibitor 

has already been purified from apple fruit and strongly inhibited papain, ficin and bromelian. 

However, the low values for cysteine protease inhibitor when compared with other seeds 

suggests that they may not have a defense function as postulated for many seed protease 

inhibitors but rather has an endogenous role in apple fruit development (RYAN et al., 2003). 

Cysteine protease inhibitors are thought to protect cells from inappropriate endogenous or 

external proteolysis, and to be involved in the control mechanism responsible for intracellular 

or extracellular breakdown. Plant cysteine protease inhibitors are encoded by gene families 

(FERNANDES et al., 1993, WALDRON et al., 1993) but little is known about regulation of these 

genes. Expression of these genes is usually limited to specific organs or to particular periods 

during plant development like germination (BOTELLA et al., 1996), early leaf senescence 
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(HUANG et al., 2001), drought (WALDRON et al., 1993) or cold and salt stresses (PERNAS et 

al., 2000, VAN DER VYVER et al., 2003). Certain cysteine protease inhibitors genes are 

induced during different stresses such as wounding or in response to insect attack (WALDRON 

et al., 1993, BOTELLA et al., 1996, ZHAO et al., 1996). The enhanced expression of cysteine 

protease inhibitors mRNA observed during early leaf senescence in sweet potato suggests a 

role in preventing unwanted cell death in certain leaf tissues during the senescence process 

(HUANG et al., 2001). The expression analysis showed that a low level of expression in 

mature green leaves increased considerably at the early senescence stage and was maintained 

in the subsequent stages (HUANG et al., 2001). 

Cystein protease inhibitor genes isolated from soybean were differentially expressed in 

different organs. The gene was induced by wounding or methyl jasmonate and was presumed 

to have a role in plant defense (BOTELLA et al., 1996). Genes coding for cysteine protease 

inhibitors have been used successfully against insect pests in transgenic plants (LEPLE et al., 

1995; IRIE et al., 1996; COWGILL et al., 2002; RAHBE et al., 2003). 

 

4.2.2.2 PR10b  
Six fragments isolated from REMO libraries showed a high homology to the Ribonuclease-

like PR-10b from Malus domestica by blastn comparison. Two copies in this library 

corresponded to the major allergen Mal d 1 (Mal d I), which shares a high homology to 

PR10b, were also isolated from Malus domestica. In the ELSTAR library, four ESTs showed 

high homology to the Bet v I allergen family protein, from Arabidopsis thaliana. This gene is 

also classified as PR10. These results suggest that genes belonging to this class are 

constitutively expressed and should probably present a wide range not specific resistance. The 

RT-PCR as well as real time PCR did not revealed any differences in expression pattern of 

ribonuclease-like PR-10b between both cultivars and thus this gene could be classified as a 

false positive isolation.  

Most of the PR10 family genes have been shown to be induced upon microbial attack, fungal 

elicitors, wounding and stress stimuli. As is the case of the other PR-protein families, PR10-

type are also expressed in a tissue-specific manner during development. 

Plant interactions with fungal organisms have been investigated with regard to PR-10 gene 

expression. In compatible interactions studied, up-regulation was observed after plant 

contamination with fungi (MC GEE et al., 2001, PINTO and RICARDO, 1995). Other biotic 

interactions, such as mutual symbiosis between plant and microorganisms, also led to the 

induction of PR-10 gene members (FEUGEY et al., 1999, GAMAS et al., 1998).  
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In apple, several homologues of PR-10 genes have been identified, such as the major allergen 

Mal d 1 and its isoforms (SON et al., 1999, VANEK-KREBITZ et al., 1995) or as the Ypr10 

*Md.a gene accumulating in the fruit during ripening (ATKINSON et al., 1996). Two 

subclasses of PR-10 genes (APa and APb) were characterized in leaves (ZIADI et al., 2001).  

In leaves and stems of apple cvs ‛Golden Delicious’ and ‛Gala’, both susceptible to apple 

scab, a low basal level of the APa gene was constitutively expressed, while a high level was 

observed in roots (PÜHRINGER et al., 2000, POUPARD et al., 2003). The expression of two PR-

10 genes of the APa subclass (Ypr10*Md.b and Ypr10*Md.d) in leaves of cv. ‛Golden 

Delicious’, was found to be activated in response to inoculation with V. inaequalis and the 

compatible and incompatible interaction between pathogen and host lead to a differential 

pattern of gene induction, indicating a strong gene induction occurring earlier in the 

compatible situation than in the incompatible one (POUPARD et al., 2003).  

In other respects, the exact function of PR-10 proteins is still unknown and future 

investigations to understand the putative implication of PR-10 in mechanisms associated to 

apple defense are needed. 

A ribonucleolytic activity was previously hypothesized for PR-10 members in plant species 

(BUFE et al., 1996, BANTIGNIES et al., 2000, PARK et al., 2004). WALTER et al. (1996) have 

proposed that cytosolic ribonucleases could be involved in selective and/or highly regulated 

degradation of existing mRNAs during stress or pathogen attack. It was supposed that such 

physiological function of PR-10 could be in part regulated by the binding of ligands of 

different nature such as phytosteroids, cytokinins, fatty acids or flavonoids (POUPARD et al., 

2003).  

PR-10 proteins have amino acid sequence similarity to the major food allergen of celery and 

pollen allergens of tree (WARNER et al., 1994, cited in PARK et al., 2004). The PR10 

isolated from hot pepper is phosphorylated and the phosphorylated protein functions as a kind 

of RNAse being able to cleave viral RNA and as a result, may act as an antiviral protein and 

thus inhibit viral penetration and/or replication (PARK et al., 2004). These transcripts started 

to accumulate abundantly 48h after inoculation with the virus responsible in the incompatible 

interaction (PARK et al., 2004) and the accumulation occurred preferentially in resistant 

leaves, indicating specific induction during the HR upon bacterial inoculation (PARK et al., 

2004). There have been many reports that PR-10 transcripts accumulate upon bacterial or 

fungal inoculation (MCGEE et al., 2001). Sequence analysis indicated that PR-10 proteins 

contain no signal peptide, suggesting that they are intracellular proteins located in the cytosol 

(PARK et al., 2004).  
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4.2.2.3 ADP-ribosylation factor 
ADP-ribosylation factors (ARFs) make up a family of small GTP-binding proteins (BOMAN 

and KAHN, 1995) and can be divided in three classes: class-I (Arf1, Arf2 and Arf3), class-II 

(Arf4 and Arf5), and class-III (Arf6) (TSUCHIYA et al., 1991). They are involved in the 

regulation of intracellular membrane traffic (BALCH et al., 1992, RITZENTHALER et al., 2002), 

actin cytoskeleton (RADHAKRISHNA et al., 1996) and organelle structure (DONALDSON and 

JACKSON, 2000). Plant ARFs have been shown also to play a role in mitosis and cell cycle 

control during seed development (MCELVER et al., 2000).  

One copy of ARF gene was identified in the REMO library. RT-PCR analysis showed a very 

slight difference in expression between ‛Remo’ and ‛Elstar’. However, the differences were 

higher when the gene was analysed by real time PCR, indicating a threefold increase in the 

former cultivar. The deduced amino acid sequence of this clone shares 88% identity with 

ARFs from other plant species, including Medicago truncatula and Triticum aestivum. ARF 

genes have already been identified as house-keeping gene (KOBAYASHI-UEHARA et al., 

2001), since they are constitutively expressed at a low level in control cells. However, the 

ARF isolated from rice also simultaneously demonstrated a role in defense. Rice ARF1 

(RARF1) plays a role in plant disease response, as evidenced by a pathogen-induced rapid 

increase in gene expression (LEE et al., 2003). Moreover, the authors suggested that RARF1 

induces a systematic resistance that relies on different signal transduction pathways (LEE et 

al., 2003). In addition, this ARF transcripts accumulated rapidly in rice cells inoculated with 

an avirulent pathogen, suggesting that RARF1 in susceptible cells responds with a slower 

onset of defense mechanisms following infection (LEE et al., 2003). The authors suggested 

that RARF1 activates plant disease resistance responses, and that constitutive expression of 

RARF1 confers enhanced resistance in transgenic plants (LEE et al., 2003). 

 

4.2.3 Metallothioneins (MTs) 
A large set of clones coding for metallothioneins type 3 (MT3) was detected in the REMO 

library. More than 90 clones were identified either by PCR or dot blot analysis. Although 

most of them could be discarded before sequencing of the clones, eight copies of the 

metallothionein type 3 (mt3) were sequenced, representing a gene family encoding slightly 

different proteins. 

MT are low molecular weight proteins containing eight cysteine residues arranged in two 

domains that bind metal ions through clusters of thiolate bonds. They are found in a wide 



 64

variety of organisms including bacteria, fungi, animals and plants. MT from plants differ from 

the mammalian in the location and number of cysteins. According to the arrangement of Cys 

residues within domains, MT from plants are classified into three (ROBINSON et al., 1993) or 

four types (RAUSER, 1999). Arabidopsis thaliana contains four different gene families 

encoding metallothioneins (mt1, mt2, mt3 and mt4) (COBBETT and GOLDSBROUGH, 2002). 

Of the five families known, those with carboxy terminal glycine are the most widespread 

among plants, algae and certain yeasts (RAUSER, 1999). Type 3 MTs are characterized for 

containing four Cys residues in the N-terminal. The first three Cys are arranged in a Cys-Gly-

Asn-Cys-Asp-Cys manner, while the fourth cysteine is not part of a pair cysteines, but is 

contained within a highly conserved motif, Gln-Cys-Xaa-Lys-Lys-Gly. Another six Cys 

residues are found in the C-terminal cysteine-rich domain and arranged in Cys-Xaa-Cys 

motifs. Approximately 40 amino acid residues separate the two domains from each other 

(COBBETT and GOLDSBROUGH, 2002).  

 

The isolation of a large number of metallothionein fragments in the REMO library was not 

expected, once the SSH method should suppress the amplification of abundant transcripts 

(DIATCHENKO et al., 1996). However, this gene seems to represent a great part of the 

transcripts also in other species. A small-scale EST sequencing project from Citrus unshiu 

fruit library identified 20% of clone sequences as encoding MT (MORIGUCHI et al., 1998) and 

40 clones of MT gene were isolated from pineapple fruit libraries (MOYLE et al., 2005).  

A total of nine active MT genes and one pseudogene have been identified in the Arabidopsis 

genome (COBBETT and GOLDSBROUGH, 2002) and recently the analysis of various genomic 

databases revealed two additional MT genes in this species (GUO et al., 2003). There is only 

one mt3 gene in the Arabidopsis genome (W. BUNDITHYA unpubl. data, cited in GUO et al., 

2003).  

 

4.2.3.1 Molecular characterization 
The cDNA amplification of the EST isolated from cv. ‛Remo’ using the primers mt3 fwd b 

and mt3 rev, gave rise to a fragment containing 188 bp. The genomic DNA amplification 

using the same primers gave rise to a fragment of approximately 1,300 bp, revealing that the 

gene contains at least one intron. Once the amplification with the mt3 fwd primer gave rise to 

cDNA and genomic DNA amplification fragments of the same size (151 bp), it is possible to 

infer that the intron is localized at the end of the gene. All type 3 MTs genes that have been 

characterized contain two introns, and the first lies in the same relative position after the end 
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of N-terminal cys-rich domain (COBBETT and GOLDSBROUGH, 2002). Analysis of the MT3 

isolated from Arabidopsis revealed the presence of three exons and two introns (GUO et al., 

2003), while MT from another types contained two exons interrupted by a single intron. The 

position of this intron is conserved and is located 1 bp before the last cysteine codon in the N-

terminal cysteine-rich domain (ZHOU and GOLDSBROUGH 1995).  

DNA from leaves of seven cultivars (‛Remo’, ‛Rewena’, ‛Reglindis’, ‛Topaz’, ‛Elstar’, 

‛Holsteiner Cox’ and ‛Golden Delicious’) showing different resistance pattern against 

Venturia inaequalis was digested with BamHI. DNA hybridization revealed differences in 

copy number among cultivars. Although ‛Remo’ and ‛Elstar’ showed different expression 

profiles, the pattern of bands obtained was very similar in both cultivars. Different patterns 

were observed among ‛Remo’, ‛Rewena’ (carrying the Vf gene) and ‛Reglindis’ (carrying the 

Va gene), all coming from the same breeding program and all resistant against V. inaequalis 

(FISCHER and FISCHER, 1999). The cultivar ‛Topaz’, also resistant against this fungus, 

showed one additional band, when compared to ‛Remo’. ‛Golden Delicious’, a susceptible 

cultivar also showed a pattern similar to that obtained for ‛Remo’ and ‛Elstar’ (susceptible 

against V. inaequalis). At least six bands were obtained for ‛Remo’ and ‛Elstar’, and although 

there was a difference in the number of bands among cultivars, it was not possible to conclude 

that the resistant cultivars contained more copies than the susceptible ones. However, the 

position of the genes in the genome can certainly influence the expression profile and other 

regulation factors such as gene silencing and methylation could be involved. 

 

4.2.3.2 Protein characterization 
The protein analysis of seven EST clones isolated in the library revealed differences in the 

sequence among them, suggesting that they belong to a family in the apple genome. The 

twelve Cys residues in Arabidopsis MT3, four in the amino terminus and eight in the carboxyl 

terminus, are highly conserved in other plant type 3 MT proteins (GUO et al., 2003). The 

resulting protein sequence in Arabidopsis contains six extra hydrophobic amino acids in the 

N-terminus and lacks two cysteines in the C-terminus (GUO et al., 2003).  

REID and ROSS (1997) isolated two MT clones isolated from apple fruits that shared only 42 

and 27% identity with each other in nucleic and amino acids (respectively), and showed high 

similarity with other MT-like sequences from plants. The banding pattern observed when 

MT1 insert was used as a probe was different from that observed with MT2 insert, suggesting 

that MT1 and MT2 are each representative of an MT-like gene family (REID and ROSS, 1997).  
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4.2.3.3 Functions   
The expression profile of a mt3 cDNA from apple, isolated in the EST library from cv. ‛Remo’ 

was investigated. Information and isolation of plant genes and cDNAs encoding MT proteins 

has not up to date been accompained by a corresponding increase in knowledge, and although 

several efforts have been done, the exact function of these proteins remains to be elucidated.  

It is known that MTs sequester excess amounts of certain metal ions as part of a heavy metal 

detoxification mechanism. However, the regulation of this gene family under accumulation of 

certain metals differ among species and it has been suggested that the regulation and roles of 

the metallothionein-like genes in plants could be different from animals. The MT amount was 

strongly correlated with cadmium accumulation and transport in mammalian cells (BLAIS et 

al., 1999, CHUBATSU et al., 1992, KONDO et al., 1999, PEDERSEN  et al., 1998), arbuscular 

mycorrhizal fungus (LANFRANCO et al., 2002), yeast (VAN HOOF et al., 2001) and 

Caenorhabditis elegans (SWAIN et al., 2004).  

Up-regulation in response to copper has been reported in fungi (LANFRANCO et al., 2002, 

AVERBECK et al., 2001) and yeasts (SYRING et al., 2000, VAN HOOF et al., 2001, MIR et al., 

2004). In contrast, the expression of MT1 is barely induced in Caenorhabditis elegans in 

response to copper (SWAIN et al., 2004) and overexpression of MT in tobacco plants did not 

significantly enhanced tolerance to cadmium (THOMAS et al., 2003). The addition of 

cadmium, manganese or zinc did not lead to a significant up-regulation of a MT1 transcription 

in the fungus Podospora anserine (AVERBECK et al., 2001). MT1 is involved in hyphal 

development and conidiation in M. grisea but is not associated with the response to metal 

toxicity (TUCKER et al., 2004). The induced level of MT-like mRNA by copper treatment was 

relatively mild when compared with wounding or virus infection in Nicotiana glutinosa (CHOI 

et al., 1996) and no significant differences in the GUS expression levels in seedlings of 

Arabidopsis grown on different copper concentrations were observed (BUTT et al., 1998). In 

apple fruits, no differences in steady state RNA level corresponding to a MT1 and a MT2 

genes were detected in response to any of the metal or free radical treatments applied. Thus, 

the poor inducibility of plant MT genes by cadmium reported suggests a secondary role for 

plant MTs in cadmium detoxification (MIR et al., 2004).  

Metallothioneins could also take part in regulation of gene expression and cell metabolism by 

donating/accepting Zn ion to/from Zn-dependent DNA binding proteins or metalloenzymes, 

being involved in normal processes of growth and differentiation (VALLE, 1995). MT1 

isolated from the fungus Magnaporthe grisea displays a high affinity for zinc and is able to 

act as a powerful antioxidant because of its low redox potential and by virtue of its ability to 

release metal in the presence of reactive oxygen species. MT1 mutants, which did not express 
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MT1, did not show susceptibility upon exposure to increasing concentrations of copper, zinc 

or cadmium (TUCKER et al., 2004). However, plant MTs demonstrated a poorer capacity for 

binding Zn compared with animal MTs (MIR et al., 2004).  

Furthermore, as expected for a thionein metal-binding protein, a MT1-deficient mutant failed 

to confer resistance against Ni, a metal with an exceedingly low affinity for thiolate groups 

(LANFRANCO et al., 2002). 

 

4.2.3.3.1 Pathogen defense  

MT3 expression after pathogen infection was analyzed by inoculation with V. inaequalis of in 

vitro plants of the cultivars ‛Remo’ and ‛Elstar’. Northern blot analysis revealed that while in 

‛Remo’ the expression level decreased in the first 24h after inoculation, in ‛Elstar’ it was up-

regulated in the time analyzed (48h), revealing a difference in expression pattern between a 

resistant and a susceptible cultivar. These results confirmed the pattern obtained in a study 

with rice, where expression of a mt gene was suppressed after pathogen attack, thereby 

augmenting ROS accumulation and defense signaling (WONG et al., 2004).  

Reactive oxygen species (ROS) are very important components of plant defense. ROS 

accumulation at the sites of fungal infection during early stages of plant defense signaling 

(LAMB and DIXON, 1997, MELLERSH et al., 2002 cited by TUCKER et al., 2004) is known as 

oxidative burst and may directly repel invading pathogens or serve as signaling molecules that 

activate defense response (HAMMOND-KOSACK and JONES, 1996, cited by WONG et al., 

2004). 

However, under oxidative stress, plants typically respond by activating a complex system of 

enzymatic and nonenzymatic ROS scavengers such as catalases, superoxide dismutase and 

ascorbate peroxidases, for maintaining redox homeostasis and protection against oxidative 

damage (MITTLER, 2002 cited by WONG et al., 2004). When these defenses fail to protect the 

plant from the ROS, cell death will result. Changes in gene expression measured during stress 

responses were found to be similar to some of the changes, which occur during leaf 

senescence (MILLER et al., 1999, JOHN et al., 2001, HANFREY et al., 1996, cited by 

NAVABPOUR et al., 2003, BUTT et al., 1998).  

Therefore, activation of ROS scavengers during defense signaling would diminish ROS 

accumulation during the oxidative burst phase, and would thus be detrimental to disease 

resistance (WONG et al., 2004). MT is known as a ROS scavenger and may participate in 

redox regulation, and its levels may be transiently suppressed, thereby augmenting ROS 

accumulation and defense signaling (WONG et al., 2004). On the other hand, hydrogen 
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peroxide may synergize with nitric oxide (NO) to promote cell death (DELLEDONNE et al., 

2001). MTs are also known to scavenge NO (SCHWARTZ et al., 1995).  

Divergent results have already been obtained for other plant x pathogen interaction systems. 

The expression of LSC54 MT gene in A. thaliana in an incompatible interaction with 

Peronospora induced expression from the LSC54-2 promoter 12 h after infection at a time 

coincident with the appearance of the hypersensitive response and the expression appeared to 

be highly localized rather than systemic (BUTT et al., 1998). The expression was not evident 

until 24 h after inoculation with the compatible isolate (BUTT et al., 1998) and increased ROS 

was suggested to be the signal leading to the expression of the LSC54 gene (NAVABPOUR et 

al., 2003). In Nicotiana glutinosa MT mRNA was also induced after infection with tobacco 

mosaic virus (CHOI et al., 1996). 

 

4.2.3.3.2 Maturation  

In order to evaluate the differences in expression between young and old leaves of apple, 

Northern blot hybridization was carried out, using total RNA from five cultivars (‛Remo’ and 

‛Pilot’ – resistant against V. inaequalis; and ‛Elstar’, ‛Gloster’ and ‛Holsteiner Cox’ – 

susceptible against this fungus). The mt3 expression was strongly increased in old leaves in all 

cultivars evaluated. The results were confirmed by real time PCR amplification. A different 

pattern of expression was observed for MT2 analyzed by real time PCR. No differences were 

detected for this gene between ‛Remo’ and ‛Elstar’ and between young and old leaves, 

confirming that both MT show different pattern of expression, suggesting that they have 

different functions. The analysis of glutathione-S-transferase was also carried out by real time 

PCR, once this enzyme is known to be up-regulated during leaf senescence.  

Leaf senescence is the final stage of leaf development, leading to cell death. During this 

process, loss of photosynthetic activity and hydrolysis of macromolecules, built up during the 

growth phase occur. This hydrolytic activity is concomitant with massive mobilization of the 

hydrolyzed compounds to the growing parts of plants (SMART, 1994).  

The functions of metallothioneins during leaf senescence are not clear. It has been suggested 

that they are involved in the chelation of excess toxic metal ions released from 

metalloproteins during the cellular death and degradation processes. These metal ions may 

form a valuable resource for the future development of the plant. Before being shed from the 

plant, senescent leaves and tissues actively redistribute nutrients, including Zn and Cu ions, to 

other parts of the plant (ROBERT et al., 1996). So the presence of metal-binding proteins may 

have functions in sequestering, mobilization and transport from the senescing tissue to 
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developing areas of the plant (ROBINSON et al., 1993). MTs may also be involved in 

chaperoning released metal ions to protect cells from peroxide and metal-induced oxidative 

stress (BUCHANAN-WOLLASTON, 1994, BUTT et al., 1998) and/or scavenging the reactive 

oxygen species generated during the complex senescence program, thus acting as an 

antioxidant since it is a potent scavenger of hydroxyl radicals (CHUBATSU and MENEGHINI, 

1993, HUSSIAN et al., 1996, MUIRA et al., 1997).  

Increased expression of plant metallothioneins during leaf senescence has been reported in 

apple (REID and ROSS, 1997), tobacco (THOMAS et al., 2003), Arabidopsis thaliana (GARCIA-

HERNANDEZ et al., 1998, HINDERHOFER and ZENTGRAF, 2001, GUO et al., 2003), rice 

(HSIEH et al., 1995), sweet potato (HUANG et al., 2001), pineapple (MOYLE et al., 2005) and 

Brassica (BUCHANAN-WOLLASTON and AINSWORTH, 1997). Transgenic plants of 

Arabidopsis expressing the gus gene under the control of the LSC54-2 promoter of a MT gene 

revealed that while young green leaves showed very little GUS expression, 750-fold increase 

was observed in leaves starting to senesce, with extensive blue staining detected in the 

mesophyll cells (BUTT et al., 1998). Only a few layers of cell, closest to the damaged tissue, 

showed enhanced expression with no systemic induction of the LSC54-2 gene detectable in 

other parts of the leaf (BUTT et al., 1998), as observed for pathogen-induced response.  

MT2a and MT3 function in metal homeostasis in the mesophyll cells of leaves, especially 

young leaves, and in protecting the root apex, the first tissue to absorb excess Cu from the 

soil, from Cu toxicity (GUO et al., 2003). However, the sudden release of metal ions during 

leaf maturation could be highly toxic. The high affinity of plant MTs for metal ions allows 

MTs to function as chelators that protect cells from metal ion toxicity during senescence (GUO 

et al., 2003). 

In a library of up-regulated genes from autumn leaves of Populus tremula, five MT encoding 

both type 2 and 3 MT, apparently originated from six different genes, were found, while in the 

young leaf library most genes with a high abundance of ETSs encoded proteins of the 

photosynthetic apparatus (BHALERAO et al., 2003).  

High mt3 mRNA level was noticed for both green and senescent leaves of buckwheat 

(Fagopyrum esculentum Moench). After H2O2/NaCl treatment, mt3 mRNA level decreased in 

green leaves, contrary to senescent leaves where expression levels remained unchanged 

(BRKLJACIC et al., 2004).  

 

Plant MT like transcripts have been detected in roots, stems, leaves, flowers, fruits and seeds 

of different plant species. The MT1 were mainly found in roots (EVANS et al., 1990, DE 
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FRAMOND, 1991) but have also been detected in etiolated seedling and leaf (ZHOU and 

GOLDSBROUGH, 1995). MT2 were found in leaves (HSIEH et al., 1996, FOLEY and SINGH, 

1994), while MT3 and MT4 were mostly detected in ripening fruits (LEDGER and GARDNER, 

1994, CLENDENNEN and MAY, 1997, GIRITCH et al., 1998). MT genes were up-regulated 

during fruit development in bananas (CLENDENNEN and MAY, 1997), apple (REID and ROSS, 

1997), kiwifruit (LEDGER and GARDNER, 1994), grape (DAVIES and ROBINSON, 2000) and 

Citrus (MORIGUCHI et al., 1998). In M. domestica, the amt1 RNA levels were high in flowers 

and fruit during the early stages of development, and tended to decrease as the fruit 

approached maturity. A contrasting pattern was observed for amt2 RNA, which was barely 

detectable in flowers and young fruit, but accumulated with fruit development. Both amt1 and 

amt2 RNA were detectable in root tips (REID and ROSS, 1997).  

In a study with the promoters of the genes MT1a, MT1c, MT2a, MT2b and MT3 fused with 

the gus open reading frame, the mt3:GUS transgene exhibited a similar pattern of expression 

to that of mt2a:GUS in leaves and root tips. A higher expression of mt2:GUS and mt3:GUS 

was detected in older leaves and was associated with senescence of these organs. A very low 

level of GUS activity in the pollen of mt3:GUS plants was observed (GUO et al., 2003). 

Mt3:GUS expression was observed throughout the mesophyll and was very low in phloem 

(GUO et al., 2003). The Cu treatment increased RNA expression of mt3 in young expanding 

leaves but had no obvious effect on the expression of mt2:GUS and mt3:GUS in mature leaves 

(GUO et al., 2003). A high basal expression of mt2b and responsiveness of MT1a expression 

to Cu was observed and further suggest that MT2b is a housekeeping gene whereas MT1a 

may be responsible for dealing with rapid changes in Cu concentration in the phloem (GUO et 

al., 2003).  

 

In ‛Remo’ leaves some genes that are normally over expressed in senescing leaves, like 

metallothioneins, are constitutively expressed. On the other hand, ‛Elstar’ showed a large 

number of genes related to photosynthesis, like ribulose-1-5-bisphosphate carboxylase, 

characteristic for new leaves. A similar distribution of these two transcripts was found in 

senescent leaves of P. tremula, where the subclass photosynthesis contained 5.2% of the 

clones in the autumn leaf library, compared with 33% in the young leaf library (BHALERAO et 

al., 2003). Thus, once apple presents ontogenetic resistance against V. inaequalis, one might 

speculate that the lower level of rubisco and other proteins related to photosynthesis and the 

high level of metallothioneins in young leaves turns ‛Remo’ unattractive for certain biotrophic 

pathogens, since in this respect the leaves resemble old leaves.  
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Beside metallothioneins, ‛Remo’ also presented a copy of the manganese superoxide 

dismutase that functions as a scavenger of O2
- (ALSCHER et al., 2002). This gene typically 

increased its expression level after infection of Gossypium barbadense with Verticillium 

dahliae (ZUO et al., 2005).  

The expression of glutathione-S-transferase gene was analysed by real time PCR and showed 

a higher expression in ‛Remo’ young leaves in comparison to ‛Elstar’ young leaves. The 

pattern of expression was also higher in old leaves when compared to young leaves in both 

cultivars. This protein have already been related to senescing up-regulated genes in other plant 

species, like Arabidopsis (HINDERHOFER and ZENTGRAF, 2001). 

The results obtained demonstrated different patterns of expression of metallothionein gene 

between resistant and susceptible cultivars of apple against apple scab, the most important 

disease of this culture. The expression level was enhanced in both young and old leaves of 

several cultivars analyzed, while the inoculation with V. inaequalis demonstrated a different 

pattern of expression between the resistant and the susceptible cultivar. In both processes, it is 

possible that a ROS scavenger function can be attributed to MT3 once the pattern of 

expression was different in both cases. Moreover, the results suggest that probably the 

senescence and biotic stress induced this gene by different pathways, although in both cases 

several genes of the same classes are up- or down-regulated. Further work, based on RNAi 

plants could elucidate some of the lacks related to protein  function. 
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5 CHAPTER 2 
 

5.1 RESULTS 
 

Transformation of plants is an important tool for studying gene function as well as to obtain 

plants carrying specific genes, which are not normally present in certain genotypes. M. 

domestica transformation has mainly been carried out via Agrobacterium tumefaciens using 

herbicide or antibiotic resistance genes as marker genes. However, the public concern is 

claiming for alternative genes, which should not present any risks to animals and to the 

ambient. 

 

5.1.2 Sensitivity to mannose 
Several plant species have been reported as not able to metabolize mannose. Up to date, the 

response of apple to mannose as a carbon source in in vitro organogenesis has not been 

documented. The sensitivity of the cultivar ‛Holsteiner Cox’ to this sugar was evaluated, in 

order to investigate the ability of apple explants to use mannose as a carbon source and to 

determine the mannose concentration that should be used in selection after transformation 

events. Several concentrations of sorbitol (the sugar normally used for adventitous shoot 

induction in apple in vitro culture) in combination with mannose were tested (Tab. 13). 

The combination 30 g/L sorbitol in the absence of mannose (the concentration usually used in 

regeneration media), lead to regeneration rates near to 100% with 12.38 ± 1.4 shoots per 

explant. The combination of sorbitol and mannose lead to inhibition in shoots formation, and 

this inhibition grew with increasing concentrations (Fig. 22 and 23; Tab. 13). The explants 

regeneration showed to be negatively affected by adding mannose into the medium in a 

dosage dependent manner. The presence of mannose at higher concentrations in the medium 

was able to inhibit shoot formation, even at high concentrations of sorbitol. 

Decreasing the sorbitol concentration lead to decrease in number of shoot formation, even in 

the absence of mannose, and the addition of mannose to the medium was not able to alleviate 

this effect, suggesting that this sugar can not be metabolized by apple explants (Tab. 13).  

When mannose was tested as the sole carbon source no shoots were regenerated, and a severe 

browning was observed in the explants.  
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Tab. 13: Effect of various combinations of sorbitol and mannose on regeneration of apple leaf explants.  

Sorbitol:mannose 
(g/L) 

Regeneration 
rate (%) 

Shoots per explant Number of explants with 
partial necrosis (%) 

30:0 97.5 ± 5 12.38 ± 1.4 0 
30:0.25 94 ± 2 12.18 ± 5.6 0 
30:0.50 96 ± 1 11.32 ± 1.5 n.e. 
30:0.75 86 ± 11 8.31 ± 3.5 n.e. 
30:1 58 ± 5 3.6 ± 0.3 n.e. 
30:2 7.5 ±15 0.3 ± 0.6 5 ± 10 
30:3 1 ± 2 0 n.e. 
30:5 0 0 71.9 ± 9 
30:10 0 0 100 
15:0 90 ± 20  5.8 ± 1.2 0 
15:0.25 58 ± 15 3.91 ± 1.7 n.e. 
15:0.50 38 ± 18 2.05 ± 0.9 n.e. 
15:0.75 20 ± 15 0.96 ± 0.8 n.e. 
15:1 10 ± 1 0.4 ± 0.1 n.e. 
15:2 0 0 60 ± 29.4 
15:3 0 0 n.e. 
15:5 0 0 80 ± 40 
15:10 0 0 100 
10:0 67.5 ± 34 2.9 ± 1.9 0 
10:2 0 0 85 ± 12.9 
10:5 0 0 100 
10:10 0 0 100 
5:0 0 0 0 
5:2 0 0 100 
5:5 0 0 100 
5:10 0 0 100 
Values represent the mean ± S.D. of two replications with a total of 40 explants per treatment.  
n.e. – not evaluated 
 
 
 

 
Fig. 22:Sensitivity of apple explants three weeks after cultivation on mannose containing medium. 
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Fig. 23: Sensitivity of apple explants ten weeks after cultivation on mannose containing medium. 

 

5.1.3 Mannose selection after Agrobacterium-mediated transformation 
The use of mannose as the sole carbon source was not appropriate once it causes a severe 

browning of the explants within a few weeks. This process is probably too fast, and would not 

allow the regeneration of any transgenic shoots (as showed by the results of the 0 g/L 

sorbitol/5 g/L mannose). For this reason, sorbitol was included in medium in combination 

with mannose after transformation, to alleviate the effect of mannose-6-phosphate. Different 

concentrations of sorbitol (ranging from 5 to 30 g/L) and mannose (ranging from 0 to 10 g/L) 

were evaluated to obtain the best combination for apple. 

 

5.1.4 Transformation rates  
The selection conditions were first evaluated three weeks after infection with Agrobacterium 

by determining the proliferation of transgenic cells. For that, a GUS assay was carried out 

with 50 explants from each treatment.  The expression was quantified by determining GUS 

expressing areas per explant. Assuming that T-DNA transfer rates are similar after coculture, 

an increase in GUS expression should be based on proliferation of transgenic cells (Fig. 24). 
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In average highest proliferation rates were obtained with the sorbitol/mannose (g/L) 

combinations 30/0, 30/2 and 15/0 (Fig. 24). This difference was confirmed by the statistical 

test “comparison with the best” according to what, all other sorbitol/mannose treatments led to 

significantly lower transformation rates.  

Explants not used for GUS staining were further cultivated either on the same medium or with 

decreased/increased sorbitol/mannose concentrations. Shoots that regenerated on sorbitol (30 

g/L) in the absence of mannose (without any selective pressure) were later on cultured on the 

respective sorbitol concentration supplemented with 2, 5, or 10 g/L mannose for selection. 

None of them survived on mannose-containing medium. A minimum of 15 g/L sorbitol was 

necessary to induce adventitious shoot development adequately after transformation. On 

medium containing only 5 and 10 g/L sorbitol explants were not able to develop shoots, 

although some explants showed transgenic callus three weeks after inoculation according to 

the GUS assay. 

In a second set of experiments selection started with 30 g/L sorbitol/2 g/L mannose the 

selection pressure was  increased  by decreasing sorbitol concentration to 15 g/L and 

increasing mannose concentration to 2.5, 5 and 10 g/L after first bud development (Tab. 14). 

Transgenic plants were developed from explants initially selected on 30 g/L sorbitol and 1 g/L 

mannose or 30 g/L sorbitol and 2 g/L mannose. GUS staining of these shoots demonstrated 

these results (Fig. 25). Explants cultivated on 30 g/L sorbitol/2.5 g/L mannose all died on the 

subsequent media. Selection regimes (applied after 8 weeks on initial media) of individual 

experiments employed to recover transgenic plants are shown in Tab. 14.  

 

5.1.5 Phosphinotricin as selection agent 
The construct containing the pat gene, conferring resistance against phosphinotricin and the 

gus gene was used as a control, although the vector utilized was not the same. 

Transformations with pIBGUS using ppt selection were repeated twice with 150 explants 

respectively. Selection was carried out for four weeks on regeneration medium supplemented 

with 1 g/L PPT, two weeks on elongation medium supplemented with 3 g/L PPT, and C1 

medium containing 5 and finally 10 g/L PPT. Only in one of these experiments it was possible 

to regenerate transgenic plants. The five lines regenerated were analyzed by GUS assay and 

PCR to analyse the presence of the gus and the pat genes. The transformation efficiency for 

that individual experiment was 3.3%. 
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Fig. 24: Influence of different selection conditions on GUS expression assayed three weeks after 

inoculation of leaf explants with A. tumefaciens (pNOV2819 with gus gene). The expression is represented 

as the percentage of GUS stained area per explant. Each individual explant was studied and GUS stained 

area was related to the total size of the leaf. A minimum of 30 leaves per experiment was used. 

Experiments were repeated three times with the exception of the treatment 30S/2M, which was repeated 

five times.  Box plots show the results of selection with different sorbitol/mannose concentrations and 

combinations. The line within the box shows the median and the upper and lower hinges represent 

quartiles. The dotted line is the mean. Whiskers mark the 90% percentile and dots  represent outlying 

data. Combinations labelled with an a were the best groups according to the method “comparison with the 

best” (HSU et al. 2000), whereas all other combinations marked with a star were significantly worse.  

 

A C

 
Fig. 25: GUS Assay. A and B: GUS stained shoots regenerated on medium containing mannose. C. GUS 

stained pmi-transgenic plant regenerated and rooted on mannose containing medium. 
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Tab. 14: Selection schemes and transformation frequencies of successful transformation 

experiments (M = mannose; S = sorbitol).  

Exp. No 
Number of 
explants 
 

Mannose 
selection scheme 

Number of 
regenerate
d explants 

Number of 
PCR positive 
shoots 

Number of 
southern positive 
shoots 

Transformation 
frequencies* 

T/HC04.5 100 30S/2M Ö 
15 S/2.5 M 

1 1 1 1% 

T/HC04.6 25 30S/1M Ö 
15 S/5 M 

1 1 1 4% 

T/HC04.6 25 30S/2MÖ 
15S/10M 

5 5 5 20% 

T/HC04.8 25 30S/2MÖ 
15 S/ 2,5 M 

3 3 3 12% 

T/HC04.8 25 30S/2MÖ 
15 S/5 M 

6 6 6 24% 

T/HC04.10 25 30S/1MÖ 
15 S/2.5 M 

1 1 1 4% 

*Transformation efficiencies were calculated for individual experiments as follows: transgenic lines x 

100/number of transformed explants 

 

5.1.6 Chlorophenol red assay 
Plants of four putative transgenic lines growing on mannose selection media (15 g/L 

sorbitol/2.5g/L mannose) were randomly tested for PMI activity with the chlorophenol red 

(CPR) assay. Leaves of the plants were placed into a liquid medium containing the pH 

indicator CPR which conferred a deep red colour. The explants were scored after 4 days 

incubation in the dark. The yellow colour indicated an acidification of the medium, caused by 

the pmi activity, once tissues able to metabolize mannose acidified the medium and turned it 

from red to yellow, indicating that the explants were transgenic. As control, non-transgenic 

leaves from the cultivar ‛Holsteiner Cox’ were used. No colour change was observed in these 

explants (Fig. 26).   



 78

 
Fig. 26: Chlorophenol red assay of leaves from transformed (T1 - T4) and untransformed control plants 

(C). Tissue that is able to utilize mannose due to PMI activity acidifies the medium, which is indicated by a 

colour change from red to yellow.  

 

5.1.7 Rooting 
Rooting of pmi-transgenic plants from 16 lines was performed on media supplemented with 

different combinations of sucrose and mannose, according to the media where the plants had 

been cultivated (Tab. 15). In addition, plants of five lines were placed on rooting medium 

containing 5 g/L mannose in the absence of sucrose.   

 
Tab. 15: Results of rooting of pmi-transgenic plants on media supplemented with different sorbitol and 

mannose concentrations. 

Selection conditions for 
rooting (Suc:Man[g/L]) 

Total no. of 
plants 

Rooted plants /Plants 
with GUS positive roots 

Rooting frequency 
(%) 

0:5 18 0/0 0 
15:2.5 24 14/11 58.3 
15:5 18 7/7 38.9 
15:10 18 8/8 44.4 

 

In average best rooting efficiencies were obtained on medium with 15 g/L sucrose and 2.5 g/L 

mannose. Root pieces were histochemically GUS stained to test transgenity of roots together 

with leaves of the same plant. On rooting medium supplemented with 5 g/L mannose shoots 

did not develop any roots. 

Roots from all shoots, except three (all belonging to the line T/HC 04/8-41), showed GUS 

expression. However, this line proved to be positive in PCR and southern analyses.  
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5.1.8 Molecular analysis  
Preliminary screening of putative pmi-transgenic plants was conducted with PCR or 

histochemical GUS assays. Shoots growing on a minimum mannose concentration of 2.5 g/L 

were screened for pmi integration via PCR and southern blot analysis. All tested lines showed 

the predicted band with the expected size of 514 bp, corresponding to the pmi-gene, while no 

fragment was amplified in untransformed control DNA sample (Fig. 27). 

In order to verify transgene integration and to determine the respective copy number, genomic 

DNA of pmi-transformants and non-transgenic control plants were digested with BamHI, 

which presents a unique cleavage site in the pmi-gene, and subjected to southern blot analyses 

(Fig. 28). Multiple copies were found in two lines (lane 1 and 11), one line had at least three 

copies (lane 16), three had two copies (lane 2, 6 and 13) and ten lines had single integrations 

of the pmi-gene. No signals were detected in the negative control (lane C).  

PCR analysis of phosphinotricin resistant shoots confirmed the presence of the pat gene. All 

tested lines showed the predicted band with the size of 412 bp, while no fragment was 

amplified in untransformed control DNA sample (Fig. 29).   

 

 
Fig. 27: PCR analysis of putative transgenic pmi-plants. Electrophoresis gel of the PCR products showing 

the expected 514 bp. M – Marker (100 bp+; MBI Fermentas, 1-18: putative pmi-transgenic lines of 

‛Holsteiner Cox’, K – wild type plants of ‛Holsteiner Cox’, P – plasmid pNOV2819. 
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Fig. 28: Southern hybridisation of BamHI digested DNA isolated from PMI-transgenic apple plants and 

respective control plants. Genomic DNA was hybridised to a 514 bp pmi-probe. Lanes: M - molecular 

weight markers (1kb), P PCR fragment amplified from pNOV2819, 1-16 DNA isolated from transgenic 

lines: 1 – THC 04.5/3; 2 - THC 04.6/12; 3 - THC 04.6/13; 4 - THC 04.6/14; 5 - THC 04.6/15; 6 - THC 

04.8/8A; 7 - THC 04.8/8C; 8 - THC 04.8/8; 9 - THC 04.8/10; 10 - THC 04.8/15; 11 - THC 04.8/41; 12 - THC 

04.8/59; 13 - THC 04.8/58; 14 - THC 04.8/1; 15 - THC 04.6/6A; 16 - THC 04.6/16, C negative control (DNA 

from wild plants of ‛Holsteiner Cox’), 

 

 
Fig. 29: PCR analysis of transgenic ‛Holsteiner Cox’ plants transformed with pIBGUS. Gel 

electrophoresis of the pat-PCR product with the expected length of 412 bp. M: molecular weight markers 

(1 kb ladder, Fermentas), lane 1-5: transgenic HC clones, P plasmid pIBGUS. 

 

 



 81

5.1.9 Acclimatization of the plants  
The transgenic lines obtained gave rise to phenotipically normal plants, which were 

transplanted to soil and maintained under greenhouse conditions (Fig. 30). 

 

A B

 
Fig. 30: A- Transgenic plant of ‛Holsteiner Cox’ carrying the pmi gene. B- Wild type ‛Holsteiner 

Cox’. 
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5.2 DISCUSSION  
 

There has been a growing concern worldwide regarding the use of genes conferring herbicide 

or antibiotic resistance as marker in transgenic organisms because they might pose an 

unpredictable hazard to the ecosystem as well as to the human health (PENNA et al., 2002). 

For this reason, the avoidance of such genes has been encouraged and several positive 

selection systems have been set up in recent years (HALDRUP et al., 1998a; 1998b, KUNZE et 

al., 2001, HE et al., 2004).  

Generating marker-free transgenic plants would certainly contribute to the public acceptance 

of transgenic crops (DE VETTEN et al., 2003). Increasing research is focusing on marker-free 

transgenic plants via segregation or the use of heterologous site-specific recombination 

systems or transposition (SUGITA et al., 1999 and 2000, EBINUMA et al., 2001, JACOB and 

VELUTHAMBI, 2002). However, these are still in experimental phase and pose risks such as 

the creation of additional recombination spots (PENNA et al., 2002).  

A new class of marker genes, the positive selectable marker genes, is also available, 

conferring metabolic advantage to the transgenic cells over the non-transformed ones. The 

major difference from selection based on antibiotics or herbicides, which kill non-transformed 

cells, is that the non-transformed cells in the positive selection system have their growth and 

development arrested by carbohydrate starvation (WANG et al., 2000) but still survive 

(HALDRUP et al., 1998b). The system based on pmi as the selectable marker gene and 

mannose as the selective agent was successfully applied here for apple transformation. Several 

independent lines expressing the pmi-gene and therefore able to convert mannose-6-phosphate 

into fructose-6-phosphate were produced.  

 

5.2.1 Sensitivity to mannose 
Apple explants were not able to metabolize mannose and develop any shoots on medium 

containing only mannose as a carbon source. In the presence of sorbitol, the inhibition of 

shoot formation was evident even in low concentrations as 1 g/L of mannose, indicating a 

deficiency in endogenous PMI activity in this species and suggesting that this inhibition, is 

probably due to a phosphate and/or ATP depletion rather than carbon depletion. However, it 

was observed that addition of sucrose alleviates the effect of mannose on growth (JOERSBO et 

al., 1998; LOUGHMAN 1966).  
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Phosphorylation of mannose triggered a signalling cascade that results in gene repression and 

energy depletion during seed germination of Arabidopsis thaliana (PEGO et al., 1999). The 

energy depletion via a hexokinase-mediated pathway was also suggested to cause a failure in 

rice embryo germination on mannose (HE et al., 2004). Incubation of spinach beet cells in the 

presence of mannose also resulted in starvation with respect to phosphate and ATP due to 

accumulation of unmetabolizable mannose-6-phosphate (SHEU-HWA et al., 1975, cited by 

JOERSBO et al., 1998). The phosphate depletion in turn resulted in significantly enhanced 

synthesis of starch and maltose (HEROLD et al. cited by JOERSBO et al., 1998). These reactions 

may channel available energy away from energy-dependent processes such as cell division 

and expansion, and could also be the cause of growth inhibition. On the other hand, cells 

transformed with a pmi gene are able to convert mannose-6-phosphate to fructose-6-phosphate 

which is readily metabolized. 

Each species responds to mannose in a dosage dependent manner. For citrus several 

concentrations of this sugar were tested, and supplemented with 73 mM sucrose was chosen 

for selection after transformation (BOSCARIOL et al., 2003). For maize regeneration, 10 g/L 

mannose was lethal to tissue within the first two weeks of exposure; though maize protoplasts 

could grow on sucrose medium supplemented with up to 10 g/L mannose (WANG et al., 

2000). This concentration is the osmotic equivalent of 20 g/L sucrose. The mixture of 10 g/L 

sucrose with 5 g/L mannose decreased growth of the tissue by 35% compared to 20 g/L 

sucrose (WRIGHT et al., 2001).  

Shoot formation from cotyledons of pepper was not inhibited completely until mannose 

concentration reached 50 g/L in combination with 20 or 30 g/L of sucrose. This value is the 

highest quoted for selection of plants with mannose. Higher concentrations of sucrose had an 

additive effect lowering the shoot formation rate of pepper, contrary to other species. In this 

case, mannose itself does not seem to be sole inhibitor of shoot development, but sucrose 

should also be present in the medium in order to generate a selection pressure (KIM et al., 

2002).  

 

5.2.2 Transformation selection and frequencies 
Medium containing only sorbitol (mannose-free) was used after transformation as a control, to 

evaluate the possibility of obtaining transgenic plants without any selection pressure. 

Although GUS assays performed three weeks after inoculation indicated high T-DNA transfer 

rates among the plants cultured on this medium (represented as the percentage of GUS 

expressing explants and size of GUS stained area), only escapes were obtained. None of the 
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regenerants from mannose-free medium was later on able to survive on selective medium, 

indicating that regeneration occurred preferably from non-transgenic cells. The generation of 

transgenic plants without the use of any selection pressure was described in only one study up 

to date. Using a virulent strain of Agrobacterium tumefaciens (AGLO), transgenic shoots of 

potato were obtained at an efficiency of 1-5%, depending on the genotype (DE VETTEN et al., 

2003).  

 

In order to determine the critical concentration threshold of mannose for transgenic 

adventitious shoot regeneration, dose response experiments were done with different 

sorbitol/mannose combinations. The addition of sorbitol prevented explants to become 

necrotic but could not suppress the inhibitory effect of mannose, reinforcing the theory that 

probably the phosphate and/or ATP depletion is the main reason for shoot regeneration, rather 

than carbon source. However, sorbitol positively influenced transformation efficiencies, and 

enabled shoot regeneration of transformed tissue, avoiding fast necrosis of explants. No 

transgenic plants were obtained when sorbitol concentration at the first weeks of selection was 

below 15 g/L.  

For all species, where genetic transformation was carried out using the PMI/mannose 

selection system, a combination of mannose and sucrose was used. On medium with mannose 

alone, the scutellar tissue of maize not only failed to proliferate but also deteriorated in quality 

even at low levels (WRIGHT et al., 2001). Even for species were selection on medium 

containing only mannose was possible, like rice callus, transformation rates were lower than 

when sucrose was added to the medium (2.7% against 6% in the presence of sucrose) (HE et 

al., 2004).   

The carbohydrate concentration varied among species. Compared to other species, apple can 

be considered very sensitive to mannose. For citrus transformation, mannose concentrations 

varying between 73 and 112 mM according to the cultivar transformed were used 

(BOSCARIOL et al., 2003). The concentration of this carbohydrate varied among 10 g/L and 20 

g/L for maize (NEGROTTO et al., 2000, WANG et al., 2000), 15 g/L mannose for pepper (KIM 

et al., 2002) and 25 g/L for rice callus (HE et al., 2004). In rice transformation, fewer escapes 

were obtained at higher concentrations of mannose. This  where suggested to be due to the 

fact that untransformed cells cultured on lower mannose concentration media had enough 

carbon source to survive through selection of 30 days and thus could recover on regeneration 

medium (HE et al., 2004). For apple transformation, concentrations as low as 1 g/L at the 

beginning of the selection process, proved to be efficient to obtain transgenic plants . 



 85

The transformation of A. thaliana on 2 mM mannose lead to a transformation rate of 2.5% 

(TODD and TAGUE 2001). In sugar beet, transformation frequencies of 0.34% were obtained 

after selection on medium containing 1.25 g/L mannose. At concentrations higher than 2.25 

g/L no transformants were obtained (JOERSBO et al., 1998). The average transformation 

efficiency for recovering transgenic plants transformed via bombardment was 45%, while 

some experiments gave frequencies higher than 70% for maize (WRIGHT et al., 2001) and 

20% (highest 45%) for wheat (WRIGHT et al., 2001). The efficiency rate of citrus 

transformation varied between 3 and 23%, depending on the variety and the concentration of 

mannose used (BOSCARIOL et al., 2003). Increasing sucrose concentration resulted in a higher 

number of citrus explants with shoots but a decrease in the number of PCR-positive plants 

(BOSCARIOL et al., 2003). 

 

Response of untransformed explants of apple to mannose were not always consistent with 

results obtained after transformation and selection on the respective media. Although shoot 

regeneration of untransformed tissue was completely inhibited and high transformation 

efficiencies were detected after three weeks of culture on the lowest mannose concentration (2 

g/L mannose), even in combination with 30 g/L sorbitol, subsequent selection on the same 

medium resulted in regeneration of some escapes, as indicated by histochemical GUS assays. 

The number of escapes was strongly reduced when selection pressure was enhanced during 

the process. The highest transformation efficiency (24%) was obtained after an initial 

selection of 30 g/L sorbitol and 2 g/L mannose followed by a selection with 15 g/L sorbitol 

and 5 g/L mannose. Also 2.5 g/L mannose was sufficient to regenerate transgenic shoots 

without escapes.  

Escapes have also been controlled in other species by a stepwise increase in the mannose 

concentration during selection (JOERSBO et al., 1998; LUCCA et al., 2001) as well as by 

continued selection at the rooting stage (WRIGHT et al., 2001). When mannose concentration 

was increased to 5 g/L after the first six weeks of selection of sugar beet and subsequently 

enhanced to 10 g/L, the transformation frequency obtained was 0.94% and the number of 

escapes was dramatically reduced (JOERSBO et al., 1998). Increasing the mannose 

concentration after the first six weeks to 10 or 20 g/L reduced transformation frequencies; 

however, increasing the concentration from 10 to 20 g/L after 12 weeks only had a slight 

effect on transformation frequency suggesting that the tolerance of the PMI-transformed 

plants to mannose increases during selection (JOERSBO et al., 1998).  
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Increased resistance to selective agents such as kanamycin or ppt after Agrobacterium 

tumefaciens infection was also observed in carnation (ZHANG et al. 2005). Changes in gene 

expression of host as a response to the transfer of both T-DNA and Vir proteins during the 

transformation process (VEENA et al. 2003) might be responsible for that phenomenon. 

 

Delayed necrosis was probably the main reason why transformation efficiencies were much 

higher compared to herbicide selection. However, since shoot development was even inhibited 

in the presence of sufficient amounts of a metabolizable sugar, the failure of regeneration was 

presumably due to depletion of orthophosphate required for ATP production and not to 

carbohydrate starvation. The same phenomenon was observed in papaya (ZHU et al. 2005), 

whilst mannose induced inhibition of seed germination in Arabidopsis (PEGO et al. 1999) and 

callus growth in maize (WANG et al. 2000) was reversed by adding metabolizable sugars, 

suggesting the occurrence of different inhibiting mechanisms depending on the plant species. 

For this reason, the system could not be defined as a conventional positive selection system, 

although it has been further on so described. Mannose does not lead to necrotic cells. Instead, 

untransformed explants and shoots grew very slowly and eventually lost vigor and acquired a 

light brown color (LINDSEY and GALLOIS, 1990). The herbicide induces strong necrosis in 

untransformed tissue, accompanied by the release of toxic compounds by the untransformed 

cells into the surrounding tissues that may adversely affect regeneration of transgenic cells 

and compromise the uptake of essential minerals and vitamins from the culture medium.   

In rice callus transformed with the PMI/mannose selection system, necrotic tissues were rarely 

observed. The untransformed cells grew very slowly in this system and eventually lost vigour 

and acquired a light brown colour (HE et al., 2004). Thus, the deleterious effect of dying cells 

were to a large extent avoided using mannose system (HE et al., 2004). Dark brown or even 

black necrotic tissue often encountered in sugar beet transformation experiments, using 

kanamycin selection, were rarely observed when mannose selection was used (JOERSBO et al., 

1998).  

 

The transformation efficiencies obtained using the manA gene is clearly higher than that 

obtained using negative selection systems. The frequency rate of transformation obtained for 

the pat gene (3.3%) are in accordance to that previously reported (SZANKOWSKI et al., 2003). 

In this study the transformation efficiencies were 2.68% and 0.53% for ‛Holsteiner Cox’ using 

two different constructs. The transformation efficiency when the cultivar ‛Elstar’ was used 

was 0.17%. Although the plasmids used are not the same, similar results have been obtained 
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in another species (JOERSBO et al., 1998, WANG et al., 2000, WRIGHT et al., 2001). The 

transformation rates obtained for sugar beet were 10-fold higher when mannose selection was 

used, in comparison to kanamycin selection (JOERSBO et al., 1998) and a fourfold higher in 

comparison to herbicide selection for maize (WRIGHT et al., 2001). The transformation of 

maize using herbicide or antibiotic selectable markers gave rise to transformation efficiencies 

not higher than 12%, compared to more than 45% obtained with mannose (WRIGHT et al., 

2001). Kanamycin resistance conferred by the nptII gene has been widely used as a selectable 

marker for apple transformation and efficiencies between 1.3 and 7.9 % were reported (KO et 

al., 2002, FAIZE et al., 2003, RADCHUK and KORKHOVOY, 2005). 

The promoter strength could also present an influence on the efficiency rates. Different 

promoters were already tested in transformation using the pmi gene. However, no simple 

correlation between promoter strength and transformation frequency was apparent in sugar 

beet transformation (JOERSBO et al., 2000). The evidence for the beneficial effect of a strong 

promoter in front of the selectable marker gene is not unequivocal as it has been reported that 

a relatively weak promoter may be superior (MENGISTE et al., 1997) or the promoter strength 

may appear to be of less importance (LI et al., 1997).  

 

5.2.3 Molecular analysis of gene integration 
In order to verify the stability of transformation, 16 independent PCR-positive lines were 

analysed by Southern hybridization. The BamHI site in the pNOVGUS is upstream of the pmi 

coding region and cuts only once within the T-DNA. Digestion with this enzyme and 

subsequent hybridization with the pmi probe allowed the identification of border fragments 

between the T-DNA and plant DNA and provided an estimate of the copy number. The 

pattern of integration appeared to be simple with most of the events containing only one copy 

of the pmi gene and a few containing two copies.  

Roots from one line did not show GUS expression although that line was confirmed to be 

transgenic by southern blot analysis. It is possible that GUS activity failed due to 

posttranscriptional gene silencing of the gus gene in that line. Multiple T-DNA integrations (6 

copies, Fig. 28) support this hypothesis. Another possible explanation could be that this line is 

a chimera. 

In maize transformation, the Southern hybridization of ten different transgenic lines indicated 

that at least in some cases, a single simple insertion event occurred. There was no correlation 

between signal intensity and the PMI activity of these lines, indicating that copy number has 

little effect on the overall level of pmi expression (TOOD and TAGUE, 2001). 
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The analysis of wheat transformation by Southern blot lead to the identification of multiple 

copies of the pmi gene in six of seven lines analysed after bombardment (WRIGHT et al., 

2001). Two lanes gave very strong bands, suggesting that multiple copies of the transgene had 

integrated into the same loci as concatemers (WRIGHT et al., 2001). In citrus transformation, 

in most of the cases, transgenic plants presented only one copy of the gene (BOSCARIOL et al., 

2003). Differences observed in the PMI activity between transgenic lines of maize suggested 

to have been caused by differences in chromosomal insertion sites of each transgenic event or 

by other factors such as DNA methylation and copy number (WANG et al., 2000).  

 

5.2.4 Gene expression assays  
Plants tested for PMI activity in the CPR assay showed a colour change to yellow, indicating 

the acidification of the medium caused by metabolic activity of the cells. The control plant 

tissues were not able to metabolize mannose, thereby maintaining the initial red colour of the 

medium. 

In transgenic plants of some species, the PMI enzyme activity has also been measured by 

spectrophotometer at an OD of 340 nm. The OD value ranged from 0.17 to 1.32 in 

transformed transgenic sweet oranges, while no activity was observed in control plants 

(BOSCARIOL et al., 2003). The difference in the pmi expression level may have been caused 

by differences either in the position of the insertion or in gene copy number (WANG et al., 

2000, BOSCARIOL et al., 2003). Enzymatic tests with transgenic plants indicated PMI activity 

ranging from about 165 to more than 1000 mU/mg protein in maize (TODD and TAGUE, 

2001). In comparison between the lines showing the lower and the higher PMI activity on 

media containing different concentrations of mannose, both lines germinate to the same extent 

(73-80%) on all concentrations tested, and germination rates were not different from the 

germination rate of control plants on sucrose. The fivefold difference in activity between both 

transgenic lines did not translate into significant differences in growth or germination on high 

levels of mannose, indicating that low levels of pmi expression can support growth of maize 

on mannose (TODD and TAGUE 2001).   

Also for sugar beet, at various mannose concentrations tested, the average PMI activities of 

the transformants were found to be quite similar. The average PMI activities of the 

transformants did not increase significantly when selection pressure was increased (JOERSBO 

et al., 1998). Transformed shoots with PMI activity only 20% above background level could 

tolerate mannose concentrations (5 g/L) which completely killed untransformed cells. This 
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suggests that a weak promoter in front of the pmi gene would be sufficient to obtain high 

transformation frequencies (JOERSBO et al., 1998). 

 

5.2.5 Acclimatization of transgenic plants 
Although no specific tests were carried out with the transgenic apple plants transplanted to the 

soil, the greenhouse-grown plants showed an apparently normal phenotype, when compared to 

control plants of ‛Holsteiner Cox’ and did not present any problems by the acclimatizytion. In 

another study, transgenic maize plants examined for different characteristics of plants and 

compositional analysis of grains also did not showed any statistical differences compared to 

control plants in any of the parameters evaluated nor presented any aberration in fertility 

(NEGROTTO et al., 2000, PRIVALLE et al., 2002). 

The phenotype of PMI transgenic shoots of sugar beet was indistinguishable from clonal 

propagated non-transgenic shoot culture (JOERSBO et al., 1998). While the control plants were 

already killed on concentrations of 5 g/L mannose, transgenic shoots were completely 

resistant to mannose and apparently grew better on mannose containing media than on sucrose 

containing media. One transgenic line expressing less PMI activity showed some sensitivity to 

mannose at concentrations higher than 10 g/L. The results showed that only low levels of PMI 

activity are required to give resistance to the mannose concentrations employed during 

selection. The percentage of rooting was also was dramatically improved when the mannose 

system was used (JOERSBO et al., 1998). 
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6 GENERAL CONCLUSIONS 
 

The Suppression Subtractive Hybridization method proved once more to be an efficient tool to 

generate cDNA libraries under specific circumstances. In the present study, it was used to 

subtract the entire cDNA pool of two M. domestica cultivars (‛Remo’ and ‛Elstar’) that differ 

in the level of resistance against some diseases, among them the apple scab.  

The generation of REMO library (containing genes constitutively expressed in young leaves 

of the resistant cultivar) presented a higher amount of genes related to pathogenesis response, 

when compared to the ELSTAR library. By using different methods, a different pattern of 

expression for some of these genes in both cultivars was confirmed and characterized, while 

in other cases the difference was not evident, as for PR10b. All the disease resistance genes 

evaluated were constitutively expressed in both cultivars, although in different levels. This 

result suggests that these genes are probably important as part of a common defense 

mechanism, although the higher accumulation of their products in ‛Remo’ could also 

influence in rendering this cultivar more resistant against diseases. 

The higher level of photossyntheis related genes in the cv ‛Elstar’, suggested that young 

leaves of this cultivar show a higher photosynthetic activity, and/or that ‛Remo’ leaves present 

an accelerated leaf maturing process when compared to ‛Elstar’. The possible higher 

concentration of carbohydrates in ‛Elstar’ young leaves could turn it more attractive to 

pathogens. If ‛Remo’ leaves mature earlier than ‛Elstar’ leaves, it also could suggest that the 

ontogenetic resistance is earlier induced in ‛Remo’ leaves. Another support for this idea is the 

higher concentration of Metallothionein type3 in ‛Remo’ leaves. This pattern of balance 

among rubisco and mt3 is reported as being characteristic of senescing leaves (BHALERAO et 

al., 2003). 

The study of mt3 expression under pathogen inoculation and senescing suggested different 

pathways for both processes. When in vitro plants of ‛Remo’ and ‛Elstar’ were inoculated 

with Venturia inaequalis, the expression in ‛Remo’ decreased in the first 24h and turned to 

increase in the next 48h, while in ‛Elstar’ the expression was enhanced during the process. In 

the senescing process, the expression level in old leaves was similar in all cultivars, while in 

young leaves it was lower in ‛Elstar’. This results again support the idea that ‛Remo’ leaves 

could start the senescing process earlier than ‛Elstar’. Old leaves of all cultivars present 

ontogenetic resistance, and mt3 could be some how involved in this process, once the 
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expression is expressively higher in such leaves (30 fold higher than in young leaves). This 

gene can be involved in the oxidative burst process by chaperoning released metal ions to 

protect cells from oxidative stress and by scavenging the reactive oxygen species generated 

during the complex senescing program (CHUBATSU and MENEGHINI, 1993, BUCHANAN-

WOLLASTON, 1994, HUSSIAN et al., 1996; MUIRA et al., 1997; BUTT et al., 1998). The 

transformation of plants with this gene would be very important in determining its functions 

and could also be tested as a source of resistance against diseases. 

In both libraries some of the isolated genes could be identified as known genes and could be 

divided in different classes in both libraries. Most of the clones, however, did not showed 

homology to any sequences in databases, or were characterized as ‘hypothetical proteins’. 

These results emphasize the importance of studies aiming the determination of gene functions, 

once several of these unidentified genes are probably important keys in different pathways of 

plant defense and development. From the characterized genes, some present protection 

function against pathogens, and could be introduced in known cultivars, in order to enhance 

their resistance against important pathogens, among them V. inaequalis. These genes, even if 

they do not present a major source of resistance against apple scab, could be used in 

pyramidizing processes, along with other genes, such as Vf, which has been already isolated. 

The use of such genes, isolated from the same specie, in transgenic plants is desirable once it 

could enhance the acceptance of such plants.  

 

Another aspect that should be taken into account in the generation of transgenic plants is the 

use of harmless marker genes in the transformation process, such as those systems that use 

metabolizable sugars. By using these systems, the use of negative markers, such as herbicides 

or antibiotics resistance genes could be avoided, once this is an important public claim.  

The results obtained using the PMI/mannose selection system demonstrates that this is a 

superior system for apple transformation, when compared to either antibiotic or herbicide 

selectable marker genes. In this and in previous studies (SZANKOWSKI et al., 2003) 

transformation efficiencies obtained were between 0.17 and 3.3% using herbicide selection. 

However, direct comparison between the efficiencies obtained was not feasible, once the 

backbones of used plasmids were different. pNOV2819 contains an additional virG copy that 

might increase virulence of bacteria and thus T-DNA transfer (GHORBEL et al., 2001). DE 

BONDT et al. (1996) and RADCHUK and KORKHOVOY, (2005) also used herbicide resistance 

genes for apple transformation, but did not obtain any transgenic shoots after ppt selection. 

Kanamycin resistance conferred by the nptII gene has been widely used as a selectable marker 
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for apple transformation. Efficiencies ranging from 1.3 to 7.9 % were reported (KO et al., 

2002, FAIZE et al., 2003, RADCHUK and KORKHOVOY, 2005).  

By using the PMI/mannose system, it was possible to recover transgenic apple plants with an 

efficiency up to 24%. Transformation rates ranged between the results obtained for other 

crops, such as sugar beet (0.94%) (JOERSBO et al., 1998), maize (45%) (WRIGHT et al., 2001), 

rice (44%) (LUCCA et al., 2001) and sweet orange (3% to 23%) (BOSCARIOL et al., 2003). 

Mannose selection works equally well in soil and in plates. It is a very inexpensive selection 

system, if compared to kanamycin or phosphinotricin. It has also likely the lowest toxicity to 

humans. Toxicity tests were carried out with mice. Doses of 5050 mg/kg body weight were 

administered and the results did not showed any clinical signals of toxicity. No abnormalities 

were observed (PRIVALLE et al., 2002).  

Kanamycin has excellent selective properties in plates and is relatively inexpensive. But 

selection in soil by spraying is problematic, once often complete killing is not possible except 

at high concentrations (TODD and TAGUE, 2001). Phosphinotricin is an excellent marker for 

soil-grown plants, particularly given the low cost of commercially prepared herbicide 

formulations. However, selection on plates is difficult for most of the species, usually 

requiring purified phosphinotricin. Additionally, a large number of escapes was noticed when 

selecting on plates containing phosphinotricin (TOOD and TAGUE 2001).  

The PMI/mannose selection system represents a highly efficient tool to recover transgenic 

apple plants, which is devoid of the disadvantages of herbicide and antibiotic selection. 
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