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Abstract

The objective of this thesis is the construction, analysis and implementation of high order

FE, BE and FE/BE coupling methods for interface and frictional contact problems with

nonmatching discretizations, which have a wide industrial application.

A new hp-Nitsche’s FE/BE coupling method for interface problems is designed and

analysed. The method is proven to be consistent and stable, independent of the dis-

cretization parameters. A priori error analysis shows that the method is optimal in h

and is suboptimal in p on quasiuniform meshes.

The question of unique solvability is addressed for the one-body contact problem with

Tresca’s friction. Constructing a chain of equivalent formulations the frictional contact

problem is approximated with a sequence of frictionless contact problems (Uzawa algo-

rithm). Conditions for the convergence of the algorithm are obtained. An hp-penalty

BEM for one-body frictionless contact is developed. As the a priori error analysis shows,

the penalty parameter εn must be chosen proportional to (h/p)1−ǫ, for optimal conver-

gence rate (in the energy norm) of the discrete penalty solution to the solution of the

original variational inequality formulation. A residual based a posteriori error estimator

for the h-version of penalty FE and BE for one-body contact with Tresca friction is

investigated. The error estimator, motivated so far with heuristical arguments and only

for FEM, is shown to be reliable and efficient for both FEM and BEM.

The two-body elastoplastic contact problem with Coulomb’s law of friction is solved

with the FE/BE coupling and pure BE methods. The incremental loading procedure

with Newton iterations on each loading step is used. Linearization of the frictional con-

tact and plasticity terms as well as a description of the solution procedure are given in

detail. The residual a posteriori error estimate, obtained for one-body frictional contact,

is generalized to this two-body frictional contact problem. A novel hp-mortar method

for two-body contact with Tresca’s friction is designed and analysed for a variational

inequality formulation. The contact constraints are imposed on the discrete global set

of Gauss-Lobatto points. The nonmatched meshes are connected in terms of the hp-

mortar projection. The a priori error analysis shows the convergence rate O((h/p)1/4)

in the energy norm under additional assumptions on the discretization parameters. A

Dirichlet-to-Neumann algorithm and an Uzawa algorithm are used to solve the problem.

A heuristically motivated error indicator is used to perform an hp automatic refine-

ment procedure. The h-version of the constructed method is extended onto two-body

elastoplastic frictional contact problems and is compared to the results provided by the

penalty method.

The theoretical results are supported by numerical benchmark computations.

Key words. frictional contact, interface problems, finite elements, boundary elements,

FE/BE coupling, hp-methods, a priori error, a posteriori error, mortar, penalty, Nitsche’s

method
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Zusammenfassung

Das Ziel dieser Dissertation ist die Konstruktion, Analyse und Implementierung von FE,

BE und FE/BE Kopplungsverfahren für Interface- und Reibungskontaktprobleme mit

unpassenden Diskretisierungen.

Eine neue hp-Nitsche FE/BE Kopplungsmethode für Interface-Probleme wird konstru-

iert und analysiert. Es wird bewiesen, dass das Verfahren konsistent und stabil ist,

unabhängig von den Diskretisierungsparametern. Die durchgeführte a priori Fehlerana-

lyse zeigt, dass die Methode optimal in h und suboptimal in p auf den quasiuniformen

Gittern ist.

Die Frage der eindeutigen Lösbarkeit wird für das Ein-Körper-Kontaktproblem mit Tres-

ca Reibung untersucht. Die Lösung des Ausgangsproblems mit Reibung wird durch eine

Folge von reibungslosen Problemen approximiert (Uzawa Algorithmus). Die Konvergenz-

bedingungen für den Algorithmus werden hergeleitet. Eine hp-Penalty BE Methode für

das Ein-Körper-Kontaktproblem wird entwickelt. Wie die a priori Fehleranalyse zeigt,

muß der Penalty-Parameter εn proportional zu (h/p)1−ǫ, gewählt werden, um die opti-

male Konvergenzordnung (in der Energienorm) der diskreten Penalty-Lösung gegen die

exakte Lösung der variationellen Ungleichung zu erreichen. Als nächstes wird ein resi-

dueller a posteriori Fehlerschätzer für die h-Versionen von FEM und BEM untersucht.

Für den Fehlerschätzer, der bisher nur mit heuristischen Argumenten motiviert und aus-

schließlich für FEM benutzt wurde, wird bewiesen, dass er zuverlässig und effizient ist.

Ferner werden die Zwei-Körper-Kontaktprobleme mit Coulomb’scher Reibung für die

h-Versionen von FE/BE und reinem BE Verfahren betrachtet. Die inkrementelle Last-

aufbringung mit dem Newton-Verfahren in jedem Iterationsschritt wird eingesetzt. Die

Linearisierung der Reibungskontaktterme und der Plastizitätsterme sowie die Beschrei-

bung der Lösungsprozedur werden detailliert angegeben. Die residuelle a posteriori Feh-

lerabschätzung, die im Falle des Ein-Körper-Reibungskontaktproblems gewonnen wur-

de, wird auf ein Zwei-Körper-Reibungskontaktproblem verallgemeinert. Eine neue hp-

Mortar Methode für das Zwei-Körper-Kontaktproblem mit Tresca Reibung wird kon-

struiert und die variationelle Ungleichung analysiert. Die Kontaktbedingungen sind auf

der diskreten globalen Menge der Gauß-Lobatto Knoten definiert. Nichtpassende Git-

ter sind durch die hp-Mortarprojektion verbunden. Die a priori Fehleranalyse zeigt die

Konvergenzordnung O((h/p)1/4) in der Energienorm unter zusätzlichen Bedingungen für

die Diskretisierungsparametern. Dirichlet-zu-Neumann Verfahren und Uzawa Verfahren

werden als Lösungsprozedur benutzt. Ein Fehlerindikator wird heuristisch begründet

und in einer automatischen hp Gitterverfeinerungsprozedur eingesetzt. Die h-Version

des obigen Verfahrens wird auf Zwei-Körper elastoplastische Kontaktprobleme mit Rei-

bung generalisiert und mit den Ergebnissen des Penalty-Verfahrens verglichen.

Die theoretische Ergebnisse werden durch die Benchmark-Rechnungen unterstützt.

Schlagworte: Reibungskontakt, Interface-Probleme, finite Elemente, Randelemente,

FE/BE Kopplung, hp-Methoden, a priori, a posteriori, Mortar, Penalty, Nitsche Ver-

fahren
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Introduction

The last decades are the time of booming development in many branches of industry

and computer technologies. A new generation of powerful computers allow to go beyond

the academic examples and solve complicated high dimensional problems of industrial

interest. On the other hand, there is an undisputed tendency to move as most as

possible of the product design process from the experimental studies on prototypes to

the numerical simulation. In spite of fast growing computer capacities, the commercial

software (ABAQUS, ANSYS, etc.) often does not provide acceptable computing time or

the required precision. Therefore the development of new fast convergent, accurate and

efficient methods for the numerical simulation is of high importance for many branches

of industry and engineering.

The physical problem is transformed into a system of partial differential equations, which

can be solved with different discretization methods. The Finite Element Method (FEM)

is one of the mostly used methods in modern computational mechanics. It is a well-

established universal approach, which can be applied to problems with geometrical and

material nonlinearities, as well as to anisotropic problems, see e.g. Braess [13], Wriggers

[72], Simo and Hughes [60]. A different technique, the Boundary Element Method

(BEM), has also turned out to be an accurate and effective approach for a wide range of

problems (Stephan [62], Sauter and Schwab [55]), however, applying BEM is relatively

seldom. In this thesis the boundary element method and FE/BE coupling method are

developed for interface and frictional contact problems. In BEM, only the boundaries

of the bodies are discretized. This automatically reduces the number of unknowns, but,

in contrast to FEM, due to nonlocal boundary integral operators, the matrices of the

problem are fully populated. There exist several methods, reducing the computational

costs of standard BEM, see e.g. Maischak et al. [48], Tran and Stephan [66]. Another

advantage of BEM is the significant reduction of expenses for mesh generation, since the

dimension of the problem is reduced by one.

Problems of industrial interest are usually very complicated. They often have a complex

geometry and varying material parameters or different material laws in different subdo-

mains. It may be in many cases very convenient to decompose the domain of the original

problem into several simpler subproblems, which are easier to handle. For example, if a

large elastoplastic body is considered and the zone of the plastic deformation is small, it

can be more efficient to extract a small subdomain containing this plastic zone and use

13



Introduction

the elastoplastic material law inside it. Then the complement domain can be treated as

pure elastic. Another example of a strong industrial interest with natural decomposition

of the original domain is the problem of sound radiation of a rolling tire, cf. Nackenhorst

and von Estorff [50]. Here a multifield problem must be considered: strongly nonlinear

mechanical deformation inside the tire must be coupled with the wave equation in the

infinite exterior domain, simulating sound radiation in the air.

It happens very often that one discretization method is especially good for some par-

ticular material behaviour or geometry and is of no advantage in other cases. In the

framework of interface problems coupling of different discretization methods, chosen to

be optimal in different parts of the problem domain Ω, can be realized. For example,

in the sound radiation problem of rolling tire it is natural to apply the boundary el-

ement method in the infinitely large exterior domain (air simulation), while the finite

element method suites better for simulation of high nonlinear behaviour inside the tire.

In this thesis a FE/BE coupling based on Nitsche’s method is developed and analysed

for bounded domains. With similar arguments it can be extended to the case of an

unbounded BE domain.

Using independent discretizations in the different subdomains is often very convenient.

It simplifies the task of global mesh generation and opens some important options such

as possibility of independent automatic mesh refinement in the subdomains. Moreover,

recent studies show that the high order methods, as p- and hp-FEM are quasioptimal

even in case of nonmatching discretizations, cf. Ben Belgacem et al. [7]. The aim of this

thesis is to construct and analyse high order methods allowing independent discretiza-

tions for interface and frictional contact problems.

As soon as a decomposition of the original domain is done, the corresponding transmis-

sion conditions, yielding continuity of displacement and traction, must be imposed on

the interfaces between subdomains. There are several methods for the interface prob-

lems, known from the literature, which allow to treat nonmatching discretizations on

the interface. An auxiliary variable for enforcing the interface conditions is used in

the mortar method, cf. Bernardi et al. [12]. A different approach is given by interior

penalty methods, see e.g. Lazarov et al. [43], where the interface conditions are enforced

by introducing additional penalty terms, depending on a small penalty parameter. The

drawback of this approach is that the formulation is not consistent any more, i.e. the

penalty parameter must tend to zero together with the discretization parameters to

guarantee convergence of the numerical solution to the exact one, which increases the

condition number of the corresponding algebraic system and herewith the computational

time. However, these troubles can be partially reduced with the augmented Lagrangian

techniques, developed e.g. by Le Tallec and Sassi [44]. In the framework of Nitsche’s

methods, e.g. Becker et al. [5], Hansbo et al. [31], the additional terms enforcing consis-

tency of the formulation are introduced. In this thesis a high order hp-Nitsche’s method

is constructed, analysed and applied for enforcing the interface conditions for a FE/BE

14



Introduction

coupling discretization. As the a priori error analysis shows, the method is optimal with

respect to the mesh size h and is suboptimal with respect to the polynomial degree p on

quasiuniform meshes.

A more general and involved class of problems, which often appear in industrial appli-

cations, are frictional contact problems. Actually, frictional contact happens in every

device or during forming of any product. Such branches as automobile industry or metal

forging have a number of applications, where frictional contact appears. Very often the

bodies coming into contact can not be treated as rigid. Then multibody frictional con-

tact problems must be considered. Therefore construction and developing of methods

for accurate and efficient numerical simulation of frictional contact problems became a

very important and fast developing part of modern applied mathematics and mechanics.

In the framework of frictional contact problems, Signorini conditions are enforced on the

normal components of displacement and of boundary traction. This represents noninter-

penetration of the contacting bodies. The tangential components of displacement and

of boundary traction are connected with a friction law (e.g. Coulomb’s friction law).

Moreover, the zone of contact is not known in advance and must be obtained during the

solution procedure. These nonlinearities of different types make the frictional contact

problem much more complicated, then pure interface problems.

Also for frictional contact problems nonmatching discretizations are strongly desirable.

Furthermore, in many cases, as for large deformation or sliding boundaries, it is the only

way to avoid a time consuming remeshing procedure.

The h-version of the FEM is commonly used together with the penalty method for sim-

ulation of multibody frictional contact problems, where penalizing of penetration and

regularizing of Coulomb’s frictional law are performed by introducing penalty parame-

ters, see e.g. Wriggers [72], Laursen [41]. Here we use a pure BE and a FE/BE coupling

approaches with the penalty method for two-body frictional contact problem. Similarly

to the interior penalty approach for interface problems, the lack of consistency of the

formulation and the increase of the condition number of the algebraic system with de-

creasing penalty parameters are the major problems of the approach. To reduce these

drawbacks the augmented Lagrangian technique was extended onto contact problems

with friction, cf. Laursen and Simo [42]. The alternative mortar approach was also ex-

tended onto the h-version of FEM for frictionless and frictional contact problems in Ben

Belgacem et al. [8], Hild [34], see also the paper of Hild and Laborde [35] for extension

onto quadratic FEM.

The special emphasis in this thesis lies in the construction, analysis and implementation

of high order FE, BE and FE/BE coupling methods for solving interface and contact

problems with and without friction with nonmatched discretizations. In many cases the

hp-techniques are shown to be particularly powerful, where the solution of the discrete

problem converges exponentially fast towards the exact solution of the continuous prob-
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lem, see the works of Szabó, Babuška [65] for FEM and of Babuška, Guo and Stephan

[2] for BEM. Employing hp−methods to contact problems is very seldom done. The first

attempt to construct an hp boundary element method for the Signorini problem, mod-

elling unilateral contact of an elastic body and a rigid obstacle goes back to Maischak

and Stephan [45], [46]. In this thesis an hp-BEM with penalty contact discretization is

analysed, see also in Chernov et al. [19]. In case of multibody frictional contact inde-

pendent discretizations should be used, but, as shown in this thesis, the mathematical

analysis as well as the numerical implementation are automatically more complicated.

In this thesis a novel approach employing hp-techniques with FE, BE or FE/BE cou-

pling methods to contact problems with and without friction is constructed. For brevity

we present here the analysis for the boundary element method only, whilst the finite

element method can be treated analogously. Our method allows to handle nonmatching

discretizations by using mortar technique and can be easily implemented.

A very important question in modern computational mechanics is the mesh optimization.

In other words, a mesh, where the error is uniformly distributed over the elements, is

preferable, since it provides the prescribed tolerance with minimal amount of computing

time and memory resources. The approach is based on corresponding error estimators,

which give the information about the local error between exact and discrete solution

of the problem based only on the computed (and therefore known) discrete solution,

cf. Verfürth [67], Bangerth and Rannacher [3], Carstensen and Stephan [17], Eck and

Wendland [27]. Residual-based local error estimators for frictional contact with linear

boundary elements and finite elements are obtained in this thesis. We prove that they

are reliable and efficient, and therefore, fully describe the local behaviour of the error.

Furthermore, based on indicators for the mortar method for interface problems, an hp-

automatic mesh refinement procedure is introduced. A series of numerical experiments

for FEM, BEM and FEM/BEM coupling confirms our theoretical results and shows the

wide applicability and flexibility of the constructed methods.

The thesis is organized as follows. In Chapter 1 main concepts and definitions, needed

in the forthcoming analysis, are recalled. In Chapter 2 a new hp-FE/BE coupling

approach for interface problems with nonmatched meshes, based on Nitsche’s method,

is introduced. The a priori error analysis is carried out in case of quasiuniform meshes,

which are compatible across the interface. It yields an optimal convergence rate with

respect to the mesh size h and a suboptimal convergence rate with respect to the poly-

nomial degree p. Then numerical examples are presented, confirming the theoretical

analysis.

The frictional contact problem between an elastic body and a rigid obstacle is addressed

in Chapter 3. First, the boundary integral formulation is given for the frictional contact

problem with Tresca’s law of friction. It is shown that the resulting variational inequality

has a unique solution. Then, a mixed formulation, containing an auxiliary variable,

which corresponds to the tangential traction, is derived, and equivalence between the
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mixed formulation and the original variational inequality is shown. The solution of

the mixed formulation is approximated with a sequence of solutions of suitably defined

frictionless problems with updated right-hand side. It is proven that this sequence

converges in the energy norm to the exact solution of the original frictional contact

problem. This solution procedure can be treated as an Uzawa algorithm. We prove that

the algorithm converges for sufficiently small damping parameter. The results of this

section are also employed in the Chapter 4, Section 4.3 in construction of the solution

algorithm for hp-mortar BEM for two-body frictional contact problems.

Then the hp-penalty approach for the frictionless contact problem is formulated and

investigated. An a priori error analysis, including treatment of the consistency and

approximation error, is carried out. The convergence rate of order O((h/p)1−ǫ) in the

energy norm is obtained, if the exact solution of the original variational inequality for-

mulation u lies in H̃
3/2

(Σ) and the penalty parameter εn & (h/p)1−ǫ. Here ǫ > 0 is

some fixed small parameter.

Further, the question of automatic mesh refinement is investigated in the framework

of the h-version of penalty FEM and BEM for a one-body frictional contact problem.

The error measure, based on the energy norm of the solution, combined with normal

and tangential contact terms is introduced for FEM and BEM. Then, the local residual-

based error estimators are derived for both FEM and BEM and their reliability and

efficiency are shown. It is worth to say that the similar error indicators were motivated

so far only with heuristical arguments and only for FEM, see e.g. Wriggers [72]. An

automatic mesh refinement procedure, based on these indicators is introduced. Finally

the suggested method is illustrated on several numerical examples.

Chapter 4 is devoted to two-body contact problems with friction. First, piecewise

linear boundary elements and a corresponding FE/BE coupling on nonmatching meshes

with penalty method is considered in the framework of elastoplastic frictional contact

problems. The incremental loading method combined with Newton’s method and return

mapping algorithm is applied to solve the problem. An implicit Euler scheme for both

plasticity and frictional contact is applied in case of FE/BE coupling. In the pure BEM

case, an explicit Euler scheme for plasticity and an implicit scheme for frictional contact

are used. Linearization of normal, tangential contact terms and of plasticity terms are

presented in detail. The a posteriori error estimate for one-body frictional contact,

derived in Chapter 3, is extended to the two-body case. The above mentioned methods

are demonstrated by a number of numerical examples.

The direct application of the hp-penalty method to two-body frictional contact problems

on nonmatched meshes seems to be problematic, due to the required pointwise contact.

Therefore, the hp-mortar method is constructed, which does not have this requirement.

Here the contact conditions are defined in the weak sense. The contact constraints are

imposed on the discrete global set of affinely transformed Gauss-Lobatto points on the
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individual elements. The data transfer is realized in terms of the mortar projection.

The problem is reformulated as a variational inequality of the second kind with the

Steklov-Poincaré operator over a convex cone of admissible solutions. We obtain an

upper error bound in the energy norm. Due to the nonconformity of our approach, the

error is decomposed into the approximation error and the consistency error. Finally,

we show that the discrete solution converges to the exact solution as O((h/p)1/4) in

the energy norm. under additional assumptions on the discretization parameters. We

solve the discrete problem with a Dirichlet-to-Neumann algorithm. The original two-

body formulation is rewritten as a one-body contact problem and a one-body Neumann

problem (see also Chernov et al. [18]). Then the global problem is solved by fixed

point iterations. An alternative approach is the Uzawa algorithm, which consists of

solving two independent one-body problems with a subsequent update for the contact

traction. The error indicator obtained for the pure FE approach for interface problems

by Wohlmuth [70] is applied here to frictional contact problems (also with boundary

elements) and is employed in an automatic mesh refinement procedure together with

the three-step hp-refinement algorithm from Maischak and Stephan [47]. Finally, the

h-version of the suggested approach is generalized onto elastoplastic two-body frictional

contact problems. Then numerical examples are given, which underline the proposed

approach.

The analysis, presented in this thesis is mostly restricted to the two-dimensional case.

However, many results can be directly applied in the three-dimensional case, when prod-

uct meshes are used.
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1 Foundations

In this section we recall some important and often used concepts and properties from

functional analysis and the theory of boundary elements. First the framework of Sobolev

spaces is considered. Then we turn to the boundary integral operators and their prop-

erties. The discretization of the boundary integral operators is also described.

1.1 Sobolev spaces

Here we briefly introduce the main concepts and definitions connected with the Sobolev

spaces, see e.g. [1], [61].

Let Ω ⊂ Rd some bounded, simply connected domain, d ∈ {1, 2, 3}. Let Γ = ∂Ω

be its boundary. We define with Ck(Ω), k ∈ N0, the set of all k-times continuously

differentiable functions u : Ω → R with the norm

||u||Ck(Ω) :=
∑

|α|≤k

sup
x∈Ω

|Dαu(x)|,

where α = (α1, ..., αd) is a multiindex, |α| := α1 + · · · + αd and the partial derivative of

order α is given by

Dαu(x) :=

(

∂

∂x1

)α1

...

(

∂

∂xd

)αd

u(x1, ..., xd)

The support of a function u is given by supp (u) := {x ∈ Ω : u(x) 6= 0}. We define

the set of all k-times continuously differentiable functions u : Ω → R with the compact

support by

Ck
0 (Ω) := {u ∈ Ck(Ω) : supp (u) ⊂ Ω}.

Corresponding spaces of infinitely differentiable functions we denote with C∞(Ω) and

C∞
0 (Ω). For k ∈ N0, κ ∈ (0, 1] we introduce the space of Hölder-continuous functions

Ck,κ(Ω) on Ω with the norm

||u||Ck,κ(Ω) := ||u||Ck(Ω) +
∑

|α|=k

sup
x, y ∈ Ω,

x 6= y

|Dαu(x) −Dαu(y)|
|x− y|κ .
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The function u : Ω → R is called Lipschitz-continuous, if u ∈ C0,1(Ω). The boundary

Γ = ∂Ω is called Lipschitz, if it can be piecewise represented with a Lipschitz-continuous

parameterization. In that case the domain Ω is also called a Lipschitz domain.

Further, we define by L2(Ω) the space of all Lebesgue-measurable functions defined in

Ω, which are square-integrable. The corresponding norm is given by

||u||L2(Ω) :=

(
∫

Ω

|u(x)|2 dx
)1/2

.

We define for k ∈ N0 a norm

||u||Hk(Ω) :=





∑

|α|≤k

||Dαu||2L2(Ω)





1/2

and the Sobolev spaces with a nonnegative integer parameter k ∈ N0 as the closure of

the space {u ∈ C∞(Ω) : ||u||Hk(Ω) <∞} with respect to || · ||Hk(Ω), i.e.

Hk(Ω) := C∞(Ω)
||·||

Hk(Ω) .

This definition can be generalized to the case of Sobolev spaces with real positive pa-

rameter s := k + r, k ∈ N0, r ∈ (0, 1). The corresponding Sobolev-Slobodeckii norm is

given by

||u||Hs(Ω) :=
(

||u||2Hk(Ω) + |u|2Hr(Ω)

)1/2

,

with the half-norm

|u|Hr(Ω) :=





∑

|α|=k

∫

Ω

∫

Ω

|Dαu(x) −Dαu(y)|2
|x− y|d+2r

dxdy





1/2

.

We define the L2 scalar product on Ω by

(u, v)Ω :=

∫

Ω

u(x)v(x) dx.

In the BE analysis the Sobolev spaces on the boundary of the domain Γ = ∂Ω are of

special meaning. The L2-space on Γ is defined similarly to the space L2(Ω) and equipped

with the norm

||u||L2(Γ) :=

(
∫

Γ

|u(x)|2 dsx

)1/2

.

Here it is assumed, that there exists a piecewise parameterization of the boundary

χ : ξ 7→ x, ξ = (ξ1, . . . , ξd−1) ∈ V, x ∈ Γ.
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The definition of higher order Sobolev spaces on Γ requires the partial derivatives with

respect to the parameters ξ

∂αu(x) :=

(

∂

∂ξ1

)α1

. . .

(

∂

∂ξd−1

)αd−1

u(x(ξ1, . . . , ξd−1)), x ∈ Γ.

It should be noted, that existence of the derivative ∂αu(x) with |α| ≤ l depends on the

smoothness of Γ. In particular, Γ ∈ C l−1,1(V) provides existence of ∂αu(x) for |α| ≤ l.

Now we can define the Sobolev spaces on the boundary of order k ∈ N0, k ≤ l as the

closure of the space {u ∈ C∞(Γ) : ||u||Hk(Γ) <∞} with respect to the norm

||u||Hk(Γ) :=





∑

|α|≤k

||∂αu||2L2(Γ)





1/2

.

The generalization onto the case of the Sobolev spaces of real positive order s = k + r,

where k ∈ N0, r ∈ (0, 1) is realized by the corresponding Sobolev-Slobodeckii norm

||u||Hs(Γ) :=
(

||u||2Hk(Γ) + |u|2Hr(Γ)

)1/2

with the half-norm

|u|Hr(Γ) :=





∑

|α|=k

∫

Γ

∫

Γ

|∂αu(x) − ∂αu(y)|2
|x− y|d−1+2r

dsxdsy





1/2

.

Employing the dual product

〈

u, v
〉

Γ
:=

∫

Γ

u(x)v(x) dsx

we introduce the Sobolev spaces H−s(Γ) of negative order for s ∈ (0, l] as the dual spaces

to Hs(Γ)

H−s(Γ) = (Hs(Γ))′, s < 0,

with the norm

||u||H−s(Γ) := sup
06=v∈Hs(Γ)

〈

u, v
〉

Γ

||u||Hs(Γ)
.

In the forthcoming analysis we will also use the Sobolev spaces, defined on the part of

the boundary. Let Γ0 ⊂ Γ be an open subset of the boundary Γ. We define Sobolev

spaces of positive order s ∈ R≥0, s ∈ (0, l] by

Hs(Γ0) := {u : ∃v ∈ Hs(Γ) : u = v|Γ0},
H̃s(Γ0) := {u : ∃v ∈ Hs(Γ) : u = v|Γ0, supp (v) ⊂ Γ0}

with the standard norms

||u||Hs(Γ0) := inf
v ∈ Hs(Γ)

v|Γ0
= u

||v||Hs(Γ),

||u||H̃s(Γ0) := ||u0||Hs(Γ),
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where u0 is the extension of u onto Γ by zero. The Sobolev spaces of negative order on

Γ0 are defined by duality again

H−s(Γ0) := (H̃s(Γ0))
′, H̃−s(Γ0) := (Hs(Γ0))

′, s ∈ (0, l]. (1.1)

Remark 1.1.1. The notation H̃s(Γ0) is commonly used in the boundary element liter-

ature. In the finite element literature the notation Hs
00(Γ0) is used. Then the different

notation for the dual spaces is used (see e.g. [6]).

H−s(Γ0) := (Hs(Γ0))
′, H−s

00 (Γ0) := (Hs
00(Γ0))

′, s > 0.

We will use notations (1.1).

Remark 1.1.2. The boundary Γ of a polygonal domain Ω belongs to the class C0,1.

Nethertheless, following Costabel and Stephan [22], Sobolev spaces Hs(Γ) with s > 1 can

be also defined due to Grisvard, [22, Lemma 2.7]

For the spaces of vector-valued functions we use the bold symbols, e.g.

H s(Γ) := [Hs(Γ)]d

stands for the space of d-dimensional vectors, which components lie in space Hs(Γ).

1.2 Boundary integral operators for elliptic problems

In this section we will introduce the boundary integral operators, arising in the boundary

formulation of the elliptic boundary value problems. We consider the Poisson’s equa-

tion and the equations of linear elasticity. The fundamental solutions of Laplace and

Lamé operators give rise to the corresponding representation formulae, which allows to

transform the domain formulation to the boundary.

The scalar Poisson’s equation in a domain Ω ⊂ Rd with piecewise Lipschitz boundary

Γ = ∂Ω is given by

−∆u(x) = f(x), x ∈ Ω,

where ∆ is the Laplace operator, u : Ω → R is unknown and the volume force f : Ω → R

is prescribed. The equations of linear elasticity are

−∆∗u(x) = f (x), x ∈ Ω.

Here u : Ω → Rd is unknown and the volume force f : Ω → Rd is known in advance.

Further down, we will omit the space variable x, where it does not lead to misunder-

standing. The Lamé operator ∆∗ is given by

∆∗u := (λ+ µ) graddivu+ µ∆u,
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where λ and µ are the Lamé elasticity coefficients, if d = 3, or modified Lamé elasticity

coefficients in case d = 2 (see e.g. [61]). It can also be expressed in terms of the stress

tensor σ as

∆∗u = div σ(u),

where the Hook’s law represents the stress-strain relationship

σ(u) := λ tr ε(u) + 2µε(u)

and the linearized strain tensor ε is the symmetrized gradient of u, i.e.

ε(u) :=
1

2
(∇u+ (∇u)T ).

Let G(x,y) be the fundamental solution of the operator L, L = ∆ or ∆∗, i.e.

∫

Ω

LyG(x,y) · u(y) dy = u(x), x ∈ Ω.

The fundamental solution for the Laplace equation is given by

G(x,y) =















− 1

2π
log |x− y|, for d = 2,

1

4π

1

|x− y| , for d = 3

and the fundamental solution for the Lamé equation is given by

G(x,y) =



















λ+ 3µ

4πµ(λ+ 2µ)

{

log
1

|x− y|I +
λ+ µ

λ+ 3µ

(x− y) ⊗ (x− y)

|x− y|2
}

, for d = 2,

λ + 3µ

8πµ(λ+ 2µ)

{

1

|x− y|I +
λ+ µ

λ+ 3µ

(x− y) ⊗ (x− y)

|x− y|3
}

, for d = 3.

(cf. [61]) We use here the bold symbols also in the scalar case of the Laplace operator,

treating the scalars as vectors of the dimension one. Then the second Green’s formula

provides the representation formula: for arbitrary x ∈ Ω \ ∂Ω

u(x) =

∫

Γ

G(x,y) · Tnyu(y) dsy −
∫

Γ

TnyG(x,y) · u(y) dsy

+

∫

Ω

G(x,y) · f (y) dsy.
(1.2)

Here Tny stands for the traction operator with respect to the y-variable and it is given

by Tnyu(y) := ∇u(y) · n(y)|Γ in the Laplace case and by Tnyu(y) := σ(u(y)) · n(y)|Γ
in the Lamé case. The operator Tn is also called the inner conormal derivative and is

denoted by γint
1 . The inner trace operator (·)|Γ is denoted also by γint

0 , see [61]. The

representation formula (1.2) is also called the Somigliana’s identity in case of Lamé

equations.
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Remark 1.2.1. It follows from (1.2), that for the solution of Poisson’s equation or of

the problem of linear elastostatic, it is sufficient to find the complete boundary data, i.e.

the unknown u and its boundary traction Tnu. Then the values inside the domain can

be obtained with (1.2).

Then taking a limit Ω \ ∂Ω ∋ x → Γ we obtain the well-known system of boundary

integral equations for φ := Tnu

(

u

φ

)

=

(

1/2 −K V

W 1/2 +K ′

)(

u

φ

)

+

(

N0f

N1f

)

, (1.3)

where the single layer potential V , the double layer potential K, the adjoint double layer

potential K ′ and hypersingular integral operator are given for x ∈ Γ by

Vφ(x) :=

∫

Γ

G(x,y) · φ(y) dsy,

Ku(x) :=

∫

Γ

(TnyG(x,y)T ) · u(y) dsy,

K ′φ(x) := Tnx

∫

Γ

G(x,y) · φ(y) dsy,

Wu(x) := −Tnx

∫

Γ

(TnyG(x,y)T ) · u(y) dsy

(1.4)

and the Newton potentials N0, N1 are given for x ∈ Γ by

N0f (x) :=

∫

Γ

G(x,y) · f(y) dsy,

N1f (x) := Tnx

∫

Γ

G(x,y) · f(y) dsy.

The following well-known properties will we widely used in the forthcoming analysis.

Lemma 1.2.1. [21] Let Γ := ∂Ω be the boundary of a Lipschitz domain Ω. Then the

integral operators

V : H −1/2+s(Γ) → H 1/2+s(Γ),

K : H 1/2+s(Γ) → H 1/2+s(Γ),

K ′ : H −1/2+s(Γ) → H −1/2+s(Γ),

W : H 1/2+s(Γ) → H −1/2+s(Γ),

are bounded for all s ∈ [−1/2, 1/2], i.e. there exists constants CV , CK, CK ′, CW > 0 such

that

||Vφ||H 1/2+s(Γ) ≤ CV ||φ||H−1/2+s(Γ), ||K ′φ||H−1/2+s(Γ) ≤ CK ′||φ||H−1/2+s(Γ),

||Ku||H 1/2+s(Γ) ≤ CK ||u||H 1/2+s(Γ), ||Wu||H−1/2+s(Γ) ≤ CW ||u||H 1/2+s(Γ).
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1.3 Symmetric boundary element formulation for mixed boundary value problems

Lemma 1.2.2. (see e.g. [61]) Let Γ := ∂Ω ⊂ Rd be the boundary of a Lipschitz domain

Ω. Let cap(Ω) < 1 in case d = 2. Then the single layer potential V is H −1/2(Γ)-elliptic,

i.e. there exists a constant cV > 0, such that
〈

V φ,φ
〉

Γ
≥ cV ||φ||2H−1/2(Γ)

, ∀φ ∈ H −1/2(Γ).

Since the single layer potential V : H −1/2(Γ) → H 1/2(Γ) is bounded and elliptic, the

Lax-Milgram lemma yields that its inverse operator V −1 : H 1/2(Γ) → H −1/2(Γ) exists

and is bounded, i.e.

||V −1u||H−1/2(Γ) ≤ c−1
V ||u||H 1/2(Γ), ∀u ∈ H −1/2(Γ),

where cV is the ellipticity constant of V .

Lemma 1.2.3. (see e.g. [61]) Let Γ := ∂Ω ⊂ R
d be the boundary of a Lipschitz domain

Ω and Γ0 ⊂ Γ. Then the hypersingular operator W is H̃
1/2

(Γ0)-elliptic, i.e. there exists

a constant cW > 0, such that
〈

Wu,u
〉

Γ
≥ cW ||u||2

H̃
1/2

(Γ0)
, ∀u ∈ H̃

1/2
(Γ0).

1.3 Symmetric boundary element formulation for mixed

boundary value problems

It follows from (1.3), that the traction variable φ := T u can be represented in terms

of u and the volume force f . Since V : H −1/2(Γ) → H 1/2(Γ) is invertible (in case

cap(Γ) < 1, the case of general Γ can be treated with the scaling arguments) we obtain

φ = V −1(K + 1/2)u− V −1N0f ,

φ = Wu+ (K ′ + 1/2)φ+N1f

and therefore

φ = Su−Nf , (1.5)

with the symmetric Steklov-Poincaré operator S and the Newton potential are given by

S := W + (K ′ + 1/2)V −1(K + 1/2) (1.6)

N := (K ′ + 1/2)V −1N0 −N1. (1.7)

The alternative representation is

φ = Tu− V −1N0f ,

where the nonsymmetric Steklov-Poincaré operator T is given by

T := V −1(K + 1/2). (1.8)

Lemmas 1.2.1 - 1.2.3 for boundary integral operators yield the following lemma.
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Lemma 1.3.1. Let Γ := ∂Ω ⊂ Rd be the boundary of a Lipschitz domain Ω and Γ0 ⊂
Γ. Then the Steklov-Poincaré operator S : H 1/2(Γ) → H −1/2(Γ) is continuous and

H̃
1/2

(Γ0)-elliptic, i.e. there exists cS, CS > 0 such that

||Su||H−1/2(Γ) ≤ CS||u||H 1/2(Γ), ∀u ∈ H 1/2(Γ), (1.9)
〈

Su,u
〉

Γ
≥ cS||u||2

H̃
1/2

(Γ0)
, ∀u ∈ H̃

1/2
(Γ0). (1.10)

Note that due to (1.5), if f ≡ 0, then S maps u to its traction. Therefore the Steklov-

Poincaré operator is sometimes called the Dirichlet-to-Neumann mapping. Furthermore,

in case f ≡ 0 there holds

S = T.

Recalling the definition of the internal trace operator γint
0 and of the internal conormal

derivative γint
1 the operators S and T can be rewritten for f ≡ 0 as

S = T = γint
1 (γint

0 )−1,

when γint
0 is invertible.

Assume that we have a mixed boundary value problem in Ω, i.e. its boundary Γ = ∂Ω

is divided into two disjoint parts Γ = ΓD ∪ ΓN and on the part ΓD we have some

prescribed displacements û and the part ΓN is subjected to some given tractions t̂.

The weak formulation, corresponding to (1.5) is obtained by testing it with some test-

function v ∈ H̃
1/2

(ΓN) which provides the problem of finding u ∈ {w ∈ H 1/2(Γ) : w =

û on ΓD}, such that

〈

Su,v
〉

ΓN
=
〈

t̂,v
〉

ΓN
+
〈

Nf ,v
〉

ΓN
, ∀v ∈ H̃

1/2
(ΓN). (1.11)

1.4 Discretization of the Steklov-Poincaré operator

While discretizing the formulation (1.11) we meet a problem of computing of V −1, which,

in general, is not explicitly known. To overcone this difficulty, the approximation Ŝ of

the Steklov-Poincaré operator is constructed. We introduce a mesh Th on Γ, i.e.

Γ =
⋃

I∈Th

I.

Based on Th we define the piecewise polynomial space of discrete tractions

Whp := {Φ ∈ L2(Γ) : ∀I ∈ Th,Φ|I ∈ [PpI−1(I)]
d−1} ⊂ H −1/2(Γ),

where PpI
(I) stands for the space of all polynomials on I with degree not exceeding

pI − 1. We introduce an auxiliary problem of finding Ψ ∈ Whp, such that
〈

VΨ ,Φ
〉

Γ
=
〈

(K + 1/2)u,Φ
〉

Γ
∀Φ ∈ Whp
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1.4 Discretization of the Steklov-Poincaré operator

for some u. Then the approximation Ŝ of the Steklov-Poincaré operator is given by

Ŝu := Wu+ (K ′ + 1/2)Ψ .

Lemma 1.4.1. Let Γ := ∂Ω ⊂ Rd be the boundary of a Lipschitz domain Ω and Γ0 ⊂ Γ.

Then the approximation of the Steklov-Poincaré operator Ŝ : H 1/2(Γ) → H −1/2(Γ) is

continuous and H̃
1/2

(Γ0)-elliptic, i.e. there exists cŜ, CŜ > 0 such that

||Ŝu||H−1/2(Γ) ≤ CŜ||u||H 1/2(Γ), ∀u ∈ H 1/2(Γ), (1.12)
〈

Ŝu,u
〉

Γ
≥ cŜ||u||2H̃ 1/2

(Γ0)
, ∀u ∈ H̃

1/2
(Γ0). (1.13)

We define the operator Ê := S− Ŝ, reflecting the consistency error in the approximation

of the Steklov-Poincaré operator.

Lemma 1.4.2. [46, Lemma 15] The operator Ê is bounded, i.e. there exists CÊ > 0

such that

||Êu||H−1/2(Γ) ≤ CÊ||u||H 1/2(Γ).

Furthermore there exists a constant C0 > 0, such that

||Êu||H−1/2(Γ) ≤ C0 inf
Φ∈Whp

||V −1(K + 1/2)u−Φ||H−1/2(Γ).

Hence, the consistency error in the approximation of S is optimally bounded and there-

fore makes no affect to the convergence rate of the corresponding method.

In order to discretize the other boundary integral operators we introduce the continuous

piecewise polynomial space for the discretization of u.

Vhp := {U ∈ C (Γ) : ∀I ∈ Th,Φ|I ∈ [PpI
(I)]d−1} ⊂ H 1/2(Γ).

In general, Vhp can be defined over some other mesh, different from Th, but for the sake

of simplicity we use Th here as well. Let {U k}ND

k=1 and {Φl}NN

l=1 be the (polynomial) bases

in Vhp and Whp respectively. Then the discrete analogues of the boundary integral

operators are given by

Vhp :=
{〈

VΦk,Φl

〉

Γ

}NN ,NN

k,l=1
, Khp :=

{〈

KU k,Φl

〉

Γ

}ND,NN

k,l=1
,

K ′
hp :=

{〈

K ′Φk,U l

〉

Γ

}NN ,ND

k,l=1
, Whp :=

{〈

WUk,U l

〉

Γ

}ND ,ND

k,l=1
.

Computation of the discrete Newton potentials requires some finite element discretiza-

tion in the domain. Let {Ξ k}NΩ
k=1 be the polynomial basis of that discrete space X hp.

Then the discrete Newton potentials are

N0hp :=
{〈

N0Ξ k,Φl

〉

Γ

}NΩ,NN

k,l=1
, N1hp :=

{〈

N1Ξ k,U l

〉

Γ

}NΩ,ND

k,l=1
.
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1 Foundations

We introduce the canonical embeddings

ihp := Whp →֒ H −1/2(Γ),

jhp := Vhp →֒ H 1/2(Γ), (1.14)

khp := X hp →֒ H 1(Ω)

and their duals i∗hp, j
∗
hp, k

∗
hp. Then the discrete boundary integral operators and the

Newton potentials can be represented by

Vhp = i∗hpV ihp, Khp = i∗hpKjhp,

K ′
hp = j∗hpK

′ihp, Whp = j∗hpWjhp,

N0hp = i∗hpN0khp, N1hp = j∗hpN1khp.

According to this notations we obtain for Ŝ and Ê the representation

Ŝ = W + (K ′ + 1/2)ihpV
−1
hp i

∗
hp(K + 1/2),

Ê = (K ′ + 1/2)(V − ihpV
−1
hp i

∗
hp)(K + 1/2).
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2 Nonconforming methods for

interface problems

In this chapter we consider a nonconforming elliptic boundary value problem (Poisson

equation) with mixed boundary data in some Lipschitz domain Ω ⊂ R2. The domain Ω is

decomposed into two parts Ω1 and Ω2. The boundary element discretization is employed

on the boundary of Ω2 and the finite element discretization is used in the complement

domain Ω1. An independent discretization of both subdomains is considered, and hence,

nonmatched meshes on the artificial interface of the decomposition are allowed. We

construct and analyse an hp-FE/BE coupling on nonmatched meshes, based on Nitsche’s

method. Both, the mesh size and the polynomial degree are changed to improve accuracy.

Nitsche’s method leads to a positive definite formulation. Therefore, unlike the mortar

method, it does not require the Babuška-Brezzi condition for stability. We derive a priori

estimates for our method and demonstrate it in several numerical examples. The given

analysis can be easily extended to the pure FE or the pure BE decomposition as well

as to the case of more then two subdomains. The problem with a bounded domain Ω is

considered in detail, but the case of an unbounded BE subdomain and a bounded FE

subdomain follows with similar arguments.

2.1 The model problem

Let us consider a bounded domain Ω ⊂ R2 decomposed into two disjoint parts, Ω =

Ω1 ∪ Ω2. Define also Γ := ∂Ω, Γi := ∂Ωi, i = 1, 2, ΓI := Γ1 ∩ Γ2.

As a model problem we take the Poisson problem in Ω with mixed boundary conditions:

Find u : Ω → R such that
−∆u = f in Ω,

u = 0 on ΓD,

∂nu = t̂ on ΓN ,

(2.1)

with a disjoint decomposition Γ = ΓD ∪ ΓN , prescribed volume forces f and boundary

tractions t̂. For simplicity of presentation, we assume that there are no body forces

acting in the subdomain Ω2, i.e. f |Ω2 ≡ 0. If the solution u is sufficiently smooth along

ΓI , problem (2.1) in Ω is equivalent to the following interface problem in Ω1, Ω2, [5]:
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2 Nonconforming methods for interface problems

Find u : Ω1 ∪ Ω2 → R

−∆u = f in Ω1,

−∆u = 0 in Ω2,

u = 0 on ΓD,

∂nu = t̂ on ΓN ,

[u] = 0 on ΓI ,

[∂nu] = 0 on ΓI ,

(2.2)

where the jump [u] := u1|ΓI
− u2|ΓI

is defined with restrictions ui := u|Ωi, ∂nu :=

∇u ·n1 on ΓI and therefore [∂nu] = ∇u1|ΓI
·n1 −∇u2|ΓI

·n1. Here n1 denotes the unit

outer normal vector to Ω1. We define for brevity Γi
A := ΓA ∩ Γi and Σi := Γi

N ∩ ΓI with

i = 1, 2 and A = D,N .

We shall use a finite element discretization in Ω1 and a boundary element discretization

on Γ2. Let T 1
h,Ω be a shape-regular decomposition of the finite element part Ω1 into

triangular or quadrilateral elements, and let T 2
h,Γ be a decomposition of Γ2 into straight

line segments

Ω1 =
⋃

K∈T 1
h,Ω

K, Γ2 =
⋃

I∈T 2
h,Γ

I.

Assume that the meshes T 1
h,Ω, T 2

h,Γ are quasiuniform. Let hK and hI stand for the

diameter of K and I respectively, and define

h1 := max
K∈T 1

h,Ω

hK , h2 := max
I∈T 2

h,Γ

hI .

Further we introduce the continuous spaces

V1
Ω := H1

D0
(Ω1) ≡

{

u ∈ H1(Ω1) : u|Γ1
D

= 0
}

,

V2
Γ := H̃1/2(Σ2) ≡

{

u ∈ H1/2(Σ2) : supp u ⊂ Σ2
}

,

V = V1
Ω × V2

Γ,

and their discrete analogues based on T 1
h,Ω, T 2

h,Γ

V1
hp,Ω :=

{

U ∈ V1
Ω : U |K ∈ PpK

(K) ∀K ∈ T 1
h,Ω

}

,

V2
hp,Γ :=

{

U ∈ V2
Γ : U |I ∈ PpI

(I) ∀I ∈ T 2
h,Γ

}

,

Vhp = V1
hp,Ω × V2

hp,Γ.

Here Pp stands for the space of polynomials, with degree not exceeding p. We assume

that the polynomial degree distributions in V1
hp,Ω,V2

hp,Γ are quasiuniform and set

p1 := min
K∈T 1

h,Ω

pK , p2 := min
i∈T 2

h,Γ

pI .

We define with T 1
h,I and T 2

h,I the trace meshes on ΓI induced by the partitions T 1
h,Ω

and T 2
h,Γ respectively. Note, that the functions in the discrete space Vhp are in general
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2.2 hp-Nitsche’s method

discontinuous over ΓI . Moreover, continuity in the strong sense can not be imposed, in

case of nonmatched meshes, i.e. T 1
h,I 6= T 2

h,I . hp-Nitsche’s method, imposing continuity

of the solution u in the weak sense, is constructed and analysed below.

The h-version of Nitsche’s finite element method was recently introduced and studied e.g.

by Becker, Hansbo and Stenberg [5], Hansbo, Hansbo and Larson [31]. It can be treated

as a mesh-dependent penalty method with additional terms, which, in contrast to the

original internal penalty methods (described e.g. by Lazarov, Tomov and Vassilevski

[43]), provide consistency of the coupling. Stability of Nitsche’s method is provided

by the penalty-like parameter λNit, which should be chosen sufficiently large. Due to

consistency of the method there is no need to take higher values of λNit if the stability is

already achieved. In the context of the penalty method, the penalty parameter should

be increased together with decreasing mesh size and/or increasing polynomial degree to

capture the consistency error. For example, in the framework of a frictionless contact

between an elastic body and a rigid obstacle, the relation between the penalty parameter

and the discretization parameters is obtained in Section 3.2.

An alternative method is the mortar method (see e.g. Seshaiyer and Suri [59] for hp-

FEM). In the context of the mortar method, the weak continuity of u is enforced with the

help of a Lagrange multiplier λ. This yields a saddle point formulation. It is well known

from the literature (see e.g. Ben Belgacem [6], Wohlmuth [71]), not every discretiza-

tion of u and λ leads to a stable method. The Babuška-Brezzi condition is the crucial

inequality which guarantees the stable discretization for the mortar method. Nitsche’s

method leads to the positive definite system of algebraic equations, and therefore, it is

always stable for large enough penalty-like parameters λNit.

We use a symmetric boundary element formulation with the Steklov-Poincaré operator

S (see e.g. Carstensen and Stephan [17]) in the BE subdomain. As the operator S

cannot be discretized directly, its approximation Ŝ is used, which yields a consistency

error. This consistency error can be bounded by the approximation error of the discrete

traction space, Lemma 1.4.2, which is optimal and does not damage the convergence

rate of the methods.

2.2 hp-Nitsche’s method

The discrete weak formulation with Nitsche’s coupling across ΓI corresponding to the

problem (2.2) can be written as follows: Find U = (U1, U2) ∈ Vhp such that

ah(U,Φ) = l(Φ) ∀Φ ∈ Vhp, (2.3)

where

l(Φ) := (f,Φ1)Ω1 +
〈

t̂,Φ
〉

ΓN
,
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2 Nonconforming methods for interface problems

ah(U,Φ) := (∇U,∇Φ)Ω1 +
〈

ŜU,Φ
〉

Σ2

− 〈{∂nU}, [Φ]〉ΓI
− 〈[U ], {∂nΦ}〉ΓI

+
〈

λNith−1
1 pα

1 [U ], [Φ]
〉

ΓI
(2.4)

for some α ∈ R, where Ŝ is the discrete Steklov-Poincaré operator. For the normal flux

on the coupling interface we choose, as in [31], the one sided approximation from the FE

subdomain {∂nΦ} := ∂nΦ1. The piecewise constant functions h1(x) and p1(x) represent

the local meshsize and the local polynomial degree from the FE side on ΓI

h1(x) := hK , p1(x) := pK , x ∈ K ∈ T 1
h,Ω, K ⊂ ΓI .

Due to the consistency error, yielding by the approximation of the Steklov-Poincaré

operator Ŝ the Galerkin orthogonality property does not hold for our method. Instead,

the following theorem holds.

Theorem 2.2.1. (Consistency error) The discrete problem (2.3) is consistent up to an

error in the approximation of the Steklov-Poincaré operator, i.e. for u ∈ V solving (2.2)

and Ê := S − Ŝ there holds

ah(u,Φ) − l(Φ) = −
〈

Êu2,Φ2

〉

Σ2
,

and therefore for U ∈ Vhp solving (2.3) there holds

ah(u− U,Φ) = −
〈

Êu2,Φ2

〉

Σ2
.

Proof. For u ∈ V solving (2.2) there holds

[u] = 0, {∂nu} := ∇u1 ·n1 = −∇u2 ·n2 on ΓI .

Therefore

ah(u,Φ) = (∇u1,∇Φ1)Ω1 +
〈

Ŝu2,Φ2

〉

Σ2

− 〈{∂nu}, [Φ]〉ΓI
− 〈[u], {∂nΦ}〉ΓI

+
〈

λNith−1
1 pα

1 [u], [Φ]
〉

ΓI

= (∇u1,∇Φ1)Ω1 +
〈

Ŝu2,Φ2

〉

Σ2
−
〈

∇u1 · n1,Φ1

〉

ΓI
−
〈

∇u2 · n2,Φ2

〉

ΓI

The Steklov-Poincaré operator S is a Dirichlet-to-Neumann mapping, therefore the

Green’s formula provides

(∇u2,∇φ2)Ω2 = 〈Su2, φ2〉Σ2 ∀φ2 ∈ V2
Γ.

Hence, with partial integration we get

ah(u,Φ) − l(Φ) = (∇u1,∇Φ1)Ω1 −
〈

∇u1 ·n1,Φ1

〉

ΓI
−
〈

t̂,Φ1

〉

Γ1
N
− (f,Φ1)Ω1

+ (∇u2,∇Φ2)Ω2 −
〈

∇u2 ·n2,Φ2

〉

ΓI
−
〈

t̂,Φ2

〉

Γ2
N

−
〈

(S − Ŝ)u2,Φ2

〉

Σ2

= (−∆u1 − f,Φ1)Ω1 + (−∆u2,Φ2)Ω2 −
〈

(S − Ŝ)u2,Φ2

〉

Σ2
,
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2.2 hp-Nitsche’s method

which together with (2.3) gives the assertion of the theorem.

The nodes of T 1
h,I and T 2

h,I together produce a finer partition T 12
h,I of ΓI , i.e.

ΓI =
⋃

J∈T 12
h,I

J

and

∀J ∈ T 12
h,I ∃KJ ∈ T 1

h,Ω : J ⊂ KJ , ∃IJ ∈ T 2
h,Γ : J ⊂ IJ .

In the forthcoming analysis we will need the mesh dependent norms (see e.g. [31])

||φ||21/2,h,ΓI
:= ||h−1/2pγ/2φ||2L2(ΓI ) =

∑

J∈T 12
h,I

h−1
KJ
pγ

KJ
||φ||2L2(J),

||φ||2−1/2,h,ΓI
:= ||h1/2p−γ/2φ||2L2(ΓI ) =

∑

J∈T 12
h,I

hKJ
p−γ

KJ
||φ||2L2(J),

(2.5)

and

|||φ|||2h := ||∇φ||2L2(Ω1) +
〈

Ŝφ, φ
〉

Σ2
+ ||{∂nφ}||2−1/2,h,ΓI

+ ||[φ]||21/2,h,ΓI
.

It is easy to see that with the Cauchy-Schwarz inequality there holds

〈φ, ψ〉ΓI
≤
∑

J∈T 12
h,I

h
−1/2
KJ

p
γ/2
KJ

||φ||L2(ΓI )h
1/2
KJ
p
−γ/2
KJ

||ψ||L2(ΓI ) ≤ ||φ||1/2,h,ΓI
||ψ||−1/2,h,ΓI

.

2.2.1 Continuity and coercivity of ah(·, ·)

Continuity and coercivity of the bilinear form ah(·, ·) are needed to be shown to ensure

convergence of our method.

Lemma 2.2.1. (Continuity of ah) The bilinear form ah(·, ·) is continuous in the space V
with the |||·|||h-norm, i.e. there exists a constant C > 0, independent of the discretization

parameters, such that

ah(φ, ψ) ≤ Cp
max{α−γ,0}
1 |||φ|||h|||ψ|||h, ∀φ, ψ ∈ V.

Proof. The assertion follows directly from the definitions and the Cauchy-Schwarz

inequality. For arbitrary φ, ψ ∈ V there holds

(∇φ,∇ψ)Ω1 ≤ ||∇φ||L2(Ω1)||∇ψ||L2(Ω1) ≤ |||φ|||h|||ψ|||h,

〈

Ŝφ, ψ
〉

Σ2
=
〈

Ŝ1/2φ, Ŝ1/2ψ
〉

Σ2
≤
〈

Ŝ1/2φ, Ŝ1/2φ
〉1/2

Σ2

〈

Ŝ1/2ψ, Ŝ1/2ψ
〉1/2

Σ2

=
〈

Ŝφ, φ
〉1/2

Σ2

〈

Ŝψ, ψ
〉1/2

Σ2
≤ |||φ|||h|||ψ|||h,
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2 Nonconforming methods for interface problems

〈{∂nφ}, [ψ]〉ΓI
≤ ||{∂nφ}||−1/2,h,ΓI

||[ψ]||1/2,h,ΓI
≤ |||φ|||h|||ψ|||h,

〈

λNith−1
1 pα

1 [φ], [ψ]
〉

ΓI
≤ λNitpα−γ

1 ||φ||1/2,h,ΓI
||ψ||1/2,h,ΓI

≤ λNitpα−γ
1 |||φ|||h|||ψ|||h.

The choice C := max{λNit, 1} completes the proof.

We need the following Lemma to prove coercivity of ah(·, ·).
Lemma 2.2.2. (Inverse inequality) For all Φ ∈ V1

hp,Ω there exists a constant Cinv > 0,

independent of the discretization parameters, such that

||Φ||1/2,h,ΓI
≤ Cinv

p
1+γ/2
1

h1
||Φ||L2(Ω1), (2.6)

||∇Φ ·n1||−1/2,h,ΓI
≤ Cinvp

1−γ/2
1 ||∇Φ||L2(Ω1). (2.7)

Proof. We recall the result of Warburton and Hesthaven [68] that for some d-

dimensional simplex D and some polynomial Ψ ∈ [PpD
(D)]d there holds

||Ψ ||L2(∂D) ≤
(

(pD + 1)(pD + d)

d

Volume (∂D)

Volume (D)

)1/2

||Ψ ||L2(D) ≤ C
pD

h
1/2
D

||Ψ ||L2(D)

for some C > 0, independent of hD and pD. We denote by KJ ∈ T 1
h,Ω a volume element,

including the part of the interface J ∈ T 12
h,I . Thus,

||Ψ ||1/2,h,ΓI
=





∑

J∈T 12
h,I

pγ
KJ

hKJ

||Ψ ||2L2(J)





1/2

≤





∑

J∈T 12
h,I

C
p2+γ

KJ

h2
KJ

||Ψ ||2L2(KJ )





1/2

≤ C
p

1+γ/2
1

h1
||Ψ ||L2(Ω1),

which is inequality (2.6). Similarly we obtain

||Ψ ||−1/2,h,ΓI
=





∑

J∈T 12
h,I

hKJ

pγ
KJ

||Ψ ||2L2(J)





1/2

≤





∑

J∈T 12
h,I

Cp2−γ
KJ

||Ψ ||2L2(KJ)





1/2

≤ Cp
1−γ/2
1 ||Ψ ||L2(Ω1).

The inequality (2.7) follows by setting Ψ := |∇Φ| and noting that ∇Φ ·n1 ≤ |∇Φ|.
Lemma 2.2.3. (Coercivity of ah) The bilinear form ah(·, ·) is coercive in the discrete

space Vhp with the ||| · |||h-norm, i.e. there exists a constant C > 0, independent of the

discretization parameters, such that

ah(Φ,Φ) ≥ Cp
−max{2−γ,0}
1 |||Φ|||2h, ∀Φ ∈ Vhp,

if the penalty-like parameter λNit fulfils λNit ≥ 1/2pγ−α
1 + Cinvp

2−α
1 , where the constant

Cinv comes from the inverse inequality (2.7).
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2.2 hp-Nitsche’s method

Proof. With the definition (2.4) of the bilinear form ah(·, ·) we obtain

ah(Φ,Φ) ≥ ||∇Φ||2L2(Ω1) +
〈

ŜΦ,Φ
〉

Σ2
− 2 〈{∂nΦ}, [Φ]〉ΓI

+ λNitpα−γ
1 ||[Φ]||21/2,h,ΓI

.

Lemma 2.2.2 provides for arbitrary ǫ > 0

2 〈{∂nΦ}, [Φ]〉ΓI
≤ 2||{∂nΦ}||−1/2,h,ΓI

||[Φ]||1/2,h,ΓI

≤ ǫ−1||{∂nΦ}||2−1/2,h,ΓI
+ ǫ||[Φ]||21/2,h,ΓI

≤ Cinvp
2−γ
1 ǫ−1||∇Φ||2L2(Ω1) + ǫ||[Φ]||21/2,h,ΓI

.

That gives

ah(Φ,Φ) ≥ (1 − Cinvp
2−γ
1 ǫ−1)||∇Φ||2L2(Ω1) +

〈

ŜΦ,Φ
〉

Σ2
+ (λNitpα−γ

1 − ǫ)||[Φ]||21/2,h,ΓI
.

We choose ǫ := 2Cinv p
2−γ
1 and λNit ≥ (1/2 + ǫ)/pα−γ

1 = 1/2pγ−α
1 + Cinvp

2−α
1 . Therefore

ah(Φ,Φ) ≥ 1

2

(

||∇Φ||2L2(Ω1) +
〈

ŜΦ,Φ
〉

Σ2
+ ||[Φ]||21/2,h,ΓI

)

.

Employing inequality (2.7) from Lemma 2.2.2 we obtain

||{∂nΦ}||−1/2,h,ΓI
≤ Cinvp

1−γ/2
1 ||∇Φ||L2(Ω1),

and hence

|||Φ|||2h ≤ (1 + Cinvp
2−γ
1 )

(

||∇Φ||2L2(Ω1) +
〈

ŜΦ,Φ
〉

Σ2
+ ||[Φ]||21/2,h,ΓI

)

.

This yields

ah(Φ,Φ) ≥ (2(1 + Cinvp
2−γ
1 ))−1|||Φ|||2h,

which is the assertion of the lemma.

The right hand side l(·) in the discrete formulation (2.3) is obviously continuous. The

bilinear form ah(·, ·), thanks to Lemmas 2.2.1 and 2.2.3 is continuous and coercive. Thus

the Lax-Milgram lemma guarantees that the discrete problem (2.3) has a unique solution.

2.2.2 Interpolation in the ||| · |||h-norm

The approximation properties of the hp-Lagrange interpolation operator in the Gauss-

Lobatto nodes are needed for further analysis. Let I1
hp,Ω, I2

hp,Γ be the hp-Lagrangian

interpolation operator in the Gauss-Lobatto nodes of the elements of T 1
hp,Ω, T 2

hp,Γ, re-

spectively. Define an interpolation operator on Ω1 ∪ Γ2 such that

Ihpφ|Ω1 := I1
hp,Ωφ|Ω1, Ihpφ|Γ2 := I2

hp,Γφ|Γ2.
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2 Nonconforming methods for interface problems

Lemma 2.2.4. Let J be a straight line segment, h := |J | and let IJ
hp be the hp-Lagrange

interpolation operator on the Gauss-Lobatto nodes of J . For any real numbers ν ∈ [0, 1],

µ > ν/2, there exists a positive constant C depending on µ, such that the following

approximation property holds for any function φ ∈ Hµ+1/2(J)

||φ− IJ
hpφ||Hν(J) ≤ C

(

h

p

)µ+1/2−ν

||φ||Hµ+1/2(J).

Further, let K is a triangle or a plane quadrilateral, h := diam(K) and let IK
hp be the hp-

Lagrange interpolation operator on the Gauss-Lobatto nodes of K. For any real numbers

ν ∈ [0, 1], µ > ν/2, there exists a positive constant C depending on µ, such that the

following approximation property holds for any function φ ∈ Hµ+1(K)

||φ− IK
hpφ||Hν(K) ≤ C

(

h

p

)µ+1−ν

||φ||Hµ+1(K),

||φ− IK
hpφ||Hν(∂K) ≤ C

(

h

p

)µ+1/2−ν

||φ||Hµ+1(K).

Proof. For quadrilaterals the statement of the theorem follows from [10, Theorem

4.7] and [10, Theorem 5.9] by scaling. We adopt the techniques of regularity preserving

extension from a triangle to a quadrilateral (see e.g. [56, Remark 4.74]) to obtain the

corresponding result for triangles.

Lemma 2.2.5. Let Ihp be the Lagrange interpolation operator in the Gauss-Lobatto

nodes of T 1
h,Ω and T 2

h,Γ. Assume that the discrete spaces V1
hp,Ω and V2

hp,Γ have qua-

siuniform and compatible meshes and polynomial degree distributions, with character-

istical discretization parameters denoted by h and p, respectively. Then for arbitrary

φ1 ∈ H1
D0

(Ω1) ∩ Hr+1(Ω1) and for arbitrary φ2 ∈ H̃r+1/2(Σ2), r ≥ 1, and φ := (φ1, φ2)

there exists a constant C > 0 independent of h and p, such that

|||φ− Ihpφ|||h ≤ Cp|1/2−γ/2|

(

h

p

)r
(

||φ1||Hr+1(Ω1) + ||φ2||H̃r+1/2(Σ2)

)

, r ≥ 1. (2.8)

Proof. We estimate the four terms composing the mesh dependent energy norm ||| · |||h
According to Lemma 2.2.4 for the volume term there holds

||∇(φ1 − Ihpφ1)||2L2(Ω1) =
∑

K∈T 1
h,Ω

||∇(φ1 − IK
hpφ1)||2L2(K) ≤

∑

K∈T 1
h,Ω

||φ1 − IK
hpφ1||2H1(K)

≤ C
∑

K∈T 1
h,Ω

(

hK

pK

)2r

||φ1||2Hr+1(K) ≤ C

(

h

p

)2r

||φ1||2Hr+1(Ω1).
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2.2 hp-Nitsche’s method

The discrete Steklov-Poincaré operator Ŝ is bounded, therefore, due to Lemma 2.2.4,

there holds

〈

Ŝ(φ2 − Ihpφ2), φ2 − Ihpφ2

〉

Σ2
≤ CŜ||φ2 − Ihpφ2||2H̃1/2(Σ2)

≤ C

(

h

p

)2r

||φ2||2H̃r+1/2(Σ2)
.

The triangle inequality provides for the jump term

1

2
||[φ− Ihpφ]||21/2,h,ΓI

≤ ||φ1 − Ihpφ1||21/2,h,ΓI
+ ||φ2 − Ihpφ2||21/2,h,ΓI

≤
∑

K∈T 1
h,Ω

∑

J ∈ T
12

h,I

J ⊂ K

pγ
K

hK
||φ1 − IK

hpφ1||2L2(J) +
pγ

K

hK
||φ2 − II

hpφ2||2L2(J),

where J ⊂ I ∈ T 2
h,Γ. Lemma 2.2.4 gives on each interval J

pγ
K

hK
||φ1 − IK

hpφ1||2L2(J) ≤ C

(

hK

pK

)2r

pγ−1
K ||φ1||2Hr+1(K),

pγ
K

hK
||φ2 − II

hpφ2||2L2(J) ≤ C

(

hI

pI

)2r
hI

hK

pγ
K

pI
||φ2||2Hr+1/2(I).

The meshsize and the polynomial degrees are compatible across the interface ΓI , thus

the second inequality becomes

pγ
K

hK
||φ2 − Ihpφ2||2L2(J) ≤ C

(

hI

pI

)2r

pγ−1
K ||φ2||2Hr+1/2(I).

That yields

||[φ− Ihpφ]||21/2,h,ΓI
≤ Cpγ−1

(

h

p

)2r
(

||φ1||2Hr+1(Ω1) + ||φ2||2H̃r+1/2(Σ2)

)

.

Finally, Lemma 2.2.4 gives for the flux term

||{∂n(φ− Ihpφ)}||2−1/2,∂Ω ≤ C
∑

K∈T 1
h,Ω

∑

J ∈ T
12

h,I

J ⊂ K

hK

pγ
K

||∇(φ1 − Ihpφ1)||2L2(J)

≤ C
∑

K∈T 1
h,Ω

∑

J ∈ T
12

h,I

J ⊂ K

(

hK

pK

)2r

p1−γ
K ||φ1||2Hr+1(K)

≤
(

h

p

)2r

p1−γ ||φ1||2Hr+1(Ω1).

Combining above estimates we obtain (2.8), which completes the lemma.
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2 Nonconforming methods for interface problems

2.2.3 A priori error analysis

Now we are in the position to prove the following a priori error estimate.

Theorem 2.2.2. (A priori error estimate) Let u = (u1, u2) with u1 ∈ H1
D0

(Ω1) ∩
Hr+1(Ω1), u2 ∈ H̃r+1/2(Σ2), r ≥ 1, be the solution of (2.2) and let U ∈ Vhp := V1

hp,Ω×V2
hp,Γ

be the solution of the discrete problem (2.3). Assume that the discrete spaces V1
hp,Ω and

V2
hp,Γ have quasiuniform and compatible meshes and polynomial degree, with character-

istical discretization parameters denoted by h and p, respectively. Then the following a

priori error estimate holds

|||u− U |||h ≤ C

(

h

p

)r

pmax{2−γ,0}+max{α−γ,0}+|1/2−γ/2|
(

||u1||Hr+1(Ω1) + ||u2||H̃r+1/2(Σ2)

)

,

where the parameter α stands for the exponent of p in the definition of the bilinear form

(2.4) and the parameter γ is the exponent of p in the definition of the discrete norms

(2.5).

Proof. For some Φ ∈ Vhp there holds

|||u− U |||h ≤ |||u− Φ|||h + |||U − Φ|||h.

Coercivity and continuity of ah(·, ·) shown in Lemma 2.2.3 and Lemma 2.2.1 respectively

combined with Theorem 2.2.1 provide for the second term

|||U − Φ|||2h ≤ Cpmax{2−γ,0} ah(U − Φ, U − Φ)

= Cpmax{2−γ,0}
(

ah(u− Φ, U − Φ) +
〈

Êu2, U2 − Φ2

〉

Σ2

)

≤ Cpmax{2−γ,0}
(

pmax{α−γ,0}|||u− Φ|||h + ||Êu2||H−1/2(Γ2)

)

|||U − Φ|||h

and therefore with Lemma 1.4.2 we obtain

|||u− U |||h ≤ Cpmax{2−γ,0}
(

pmax{α−γ,0}|||u− Φ|||h + ||Êu2||H−1/2(Γ2)

)

≤ C

(

h

p

)r

pmax{2−γ,0}+max{α−γ,0}+|1/2−γ/2|
(

||u1||Hr+1(Ω1) + ||u2||H̃r+1/2(Σ2)

)

.

As shown in Lemma 2.2.3, to ensure coercivity of the bilinear form the penalty-like

parameter λNit must be chosen such that

λNit ≥ 1/2pγ−α + Cinvp
2−α.

It can be chosen independent of the polynomial degree, if

α ≥ max{γ, 2}. (2.9)
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2.2 hp-Nitsche’s method

On the other hand, the parameter α in the definition of the bilinear form (2.4) should not

be too large, since, due to Theorem 2.2.2, large values of α will damage the convergence

rate. To find the optimal values of α and γ we note that

inf{max{2 − γ, 0} + max{α− γ, 0} + |1/2 − γ/2|} = 1/2

and the infimum is achieved if and only if γ = 2, α ≤ γ, which together with (2.9) yields

that α = 2 and γ = 2 are optimal parameters, and therefore the following theorem holds.

Theorem 2.2.3. (A priori error estimate) Let u = (u1, u2) with u1 ∈ H1
D0

(Ω1) ∩
Hr+1(Ω1), u2 ∈ H̃r+1/2(Γ2) be the solution of (2.2) and let U ∈ Vhp := V1

hp,Ω × V2
hp,Γ

be the solution of the discrete problem (2.3). Assume that the discrete spaces V1
hp,Ω and

V2
hp,Γ have quasiuniform and compatible meshes and polynomial degree, with character-

istical discretization parameters denoted by h and p, respectively. Then for α = 2 in the

definition of the bilinear form (2.4) and for γ = 2 in the definition of the discrete norms

(2.5) the following a priori error estimate holds

|||u− U |||h ≤ C

(

h

p

)r

p1/2
(

||u1||Hr+1(Ω1) + ||u2||H̃r+1/2(Σ2)

)

.

2.2.4 Algebraic formulation

The algebraic system corresponding to the weak formulation (2.3) will be described in

this section. We denote by uI and DI the coefficient vectors associated with the interface

from the FE side and from the BE side, respectively. The rest of the coefficients from

the FE side we denote by uN and from the BE side we denote by DN . Then the algebraic

problem has the following structure

(A + B + C)











uN

uI

DI

DN











=











lu
0

0

lD











.

The matrix A is the stiffness matrix of the finite element and the boundary element part

produced with the term (∇U,∇V )Ω1 + 〈ShU, V 〉∂Ω2 without the coupling terms

A :=











ANN AT
IN 0 0

AIN AII 0 0

0 0 SII ST
IN

0 0 SIN SNN











:=

( A 0

0 S

)

.

The mixed terms −〈{∇nU}, [V ]〉ΓI
− 〈[U ], {∇nV }〉ΓI

yield the matrix B, given by

B :=











0 0 (BuD
NI )T 0

0 0 (BuD
II )T 0

BuD
NI BuD

II BDD
II + (BDD

II )T 0

0 0 0 0











.
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2 Nonconforming methods for interface problems

Finally, the penalty-like term
〈

λh−1
1 pα

1 [U ], [V ]
〉

ΓI
yields the matrix C

C :=











0 0 0 0

0 Cuu (CuD)T 0

0 CuD CDD 0

0 0 0 0











.

The matrices B, C are sparse as well as the finite element part A of the matrix A. The

boundary element part S of the matrix A is a dense matrix.

2.2.5 Numerical experiments

We present a series of numerical examples for the hp-FE/BE coupling with Nitsche’s

method on uniform meshes, nonmatched across the coupling interface. First, we con-

sider an example with a smooth solution and investigate convergence of the h-version for

different polynomial degrees. We also show that the p-version converges with an expo-

nential rate. Then, an example with a singular solution will be presented. We compare

the convergence of h- and p-versions. Finally, we study dependence of the convergence

rates on the penalty-like parameter λNit. We show that there exists a threshold value,

such that for smaller λNit no convergence, or a reduced convergence rate takes place,

and for larger λNit, no improvement of the convergence rate is observed. This threshold

value can be interpreted as a coercivity threshold of the bilinear form ah(·, ·) in the weak

problem (2.3), which coincides with our theoretical results.

Example 1: smooth solution

In the first example we consider a square domain Ω := [−1, 1] × [−1, 1]. We introduce

the boundary element domain Ω2 and its complement Ω1, where finite elements will be

employed (Figure 2.1)

Ω2 := [−1, 0] × [−1
2
, 1

2
],

Ω1 := Ω \ Ω2.
(2.10)

The interface boundary is given by

ΓI := ∂Ω1 ∩ ∂Ω2. (2.11)

Let G(ξ,η) stand for the fundamental solution of the two-dimensional Laplace operator

G(ξ,η) := − 1

2π
log |ξ − η|.

In particular for η /∈ Ω there holds

∆ξG(ξ,η) = 0, ∀ξ ∈ Ω ⊂ R
2.
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2.2 hp-Nitsche’s method

Ω2

Ω1

−.1638E−16
0.3125E−01
0.6250E−01
0.9376E−01
0.1250E+00
0.1563E+00
0.1875E+00
0.2188E+00
0.2500E+00
0.2813E+00
0.3125E+00
0.3438E+00
0.3750E+00
0.4063E+00
0.4375E+00
0.4688E+00
0.5000E+00

Figure 2.1: Geometry and the numerical solution: smooth case

u(x, y) =
x+ 1

(x+ 1)2 + (y + 2)2

We fix η = (−1,−2) and let ξ = (x, y) be variable. We define

u(x, y) := −2π
∂

∂x
G((−1,−2), (x, y)) =

x+ 1

(x+ 1)2 + (y + 2)2
. (2.12)

The function u(x, y) is an exact solution of problem (2.1) with

ΓD := {−1} × [−1, 1], ΓN = ∂Ω \ ΓD, f = 0, t̂ =
∂u

∂n

∣

∣

∣

∣

ΓN

.

Moreover, the function u(x, y) is an exact solution of the interface problem (2.2) with

the decomposition (2.10) and with the interface boundary (2.11).

In order to study the convergence of the method we choose λNit := 10.0 and perform

a series of experiments for the uniform h- and p-version. The error reduction for the

h-version for p1 = p2 = 1, 2, 3 in the BE and FE parts is presented in Table 2.1 and in

Table 2.2, respectively.

The numerical experiments for the p-version are obtained for the fixed meshes with the

meshsize relation h1/h2 = 6/5 on the interface boundary with 24 boundary elements and

75 finite elements with increasing p1 ≡ p2. Since the exact solution u(x, y) is an infinitely

differentiable function, the exponential convergence of the p-version is observed. The

results, obtained for the h-version with p = 2, are compared with the p-version and given

in Figure 2.2.
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2 Nonconforming methods for interface problems

h−1 p L2-norm convergence rate H1
0 -norm convergence rate

3 1 0.0045807 0.0263224

6 1 0.0009919 2.2073015 0.0124597 1.0790217

12 1 0.0001865 2.4110190 0.0061552 1.0173917

24 1 .3870E-04 2.2687702 0.0030679 1.0045543

48 1 .9604E-05 2.0106263 0.0015314 1.0024003

3 2 0.0001306 0.0022084

6 2 .1248E-04 3.3874651 0.0004878 2.1786398

12 2 .1520E-05 3.0374747 0.0001188 2.0377549

24 2 .1887E-06 3.0099050 .2944E-04 2.0126853

48 2 .2354E-07 3.0029082 .7331E-05 2.0056958

3 3 .8771E-05 0.0001550

6 3 .2772E-06 4.9837422 .1629E-04 3.2502097

12 3 .1771E-07 3.9682911 .1991E-05 3.0324215

24 3 .1126E-08 3.9752855 .2469E-06 3.0114945

48 3 .9843E-10 3.5159649 .3077E-07 3.0043305

Table 2.1: Convergence rates for h-version: BE part

h−1 p L2-norm convergence rate H1
0 -norm convergence rate

2 1 0.0090366 0.1020531

5 1 0.0017310 1.8035583 0.0462404 0.8639609

11 1 0.0003120 2.1731693 0.0196812 1.0833687

23 1 .6483E-04 2.1302020 0.0088135 1.0891816

47 1 .1567E-04 1.9870058 0.0043547 0.9865327

2 2 0.0009280 0.0153579

5 2 0.0001072 2.3555138 0.0031937 1.7139209

11 2 .8249E-05 3.2526861 0.0005648 2.1972827

23 2 .7335E-06 3.2809424 0.0001119 2.1947782

47 2 .8861E-07 2.9574937 .2732E-04 1.9729656

2 3 0.0003011 0.0069455

5 3 .5454E-05 4.3775333 0.0002450 3.6501417

11 3 .1662E-06 4.4275225 .1710E-04 3.3764410

23 3 .7526E-08 4.1958143 .1780E-05 3.0673378

47 3 .4995E-09 3.7955622 .1774E-06 3.2266853

Table 2.2: Convergence rates for h-version: FE part
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 1e-12
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h: energy-err (BE)
h: energy-err (FE)
p: energy-err (BE)
p: energy-err (FE)

h: L2-error (BE)
h: L2-error (FE)
p: L2-error (BE)
p: L2-error (FE)

Figure 2.2: h-version with p1 = p2 = 2 vs. p-version with h1 = 1/5 h2 = 1/6

Example 2: singular solution

For our second example we choose Ω to be an L-shaped domain

Ω := {[−1, 1] × [−1, 1]} \ {[0, 1] × [−1, 0]} (2.13)

and the decomposition

Ω2 := {[−1
2
, 1

2
] × [−1

2
, 1

2
]} \ {[0, 1

2
] × [−1

2
, 0]},

Ω1 := Ω \ Ω2.
(2.14)

as shown in Figure 2.3. We define also

ΓD := {{0} × [−1, 0]} ∪ {[0, 1] × {0}},
ΓN := ∂Ω \ ΓD, ΓI := ∂Ω1 ∩ ∂Ω2.

(2.15)

For this kind of domain, r2/3 is a typical singularity, located in the origin. Here (r, θ)

stand for the spherical coordinates on the plane. We choose

u(r, θ) := r2/3 sin(2θ/3).
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Ω

Ω

2

1

−.1552E−16
0.7876E−01
0.1575E+00
0.2363E+00
0.3150E+00
0.3938E+00
0.4726E+00
0.5513E+00
0.6301E+00
0.7089E+00
0.7876E+00
0.8664E+00
0.9451E+00
0.1024E+01
0.1103E+01
0.1181E+01
0.1260E+01

Figure 2.3: Geometry and the numerical solution: singular case

u(r, θ) = r2/3 sin(2θ/3)

It is easy to check that u(r, θ) is an exact solution of (2.1) and (2.2) with (2.13)-(2.15).

There holds

u ∈ H1(Ω), u /∈ H2(Ω),

therefore even the h-version does not provide linear convergence in the energy norm and

quadratic convergence in the L2-norm, respectively. Corresponding results are given

in Table 2.3 and Table 2.4. It is possible to show that u ∈ H5/3(Ω), therefore the

convergence rate 2/3 for the h-version in the H1
0 -norm, is optimal. The theoretical

convergence rate agrees with the numerical convergence rate ≈ 0.66, as shown in Table

2.3.

Furthermore, Table 2.3 and Figure 2.4 show that in the BE domain Ω2, which includes

the singularity, the p-version gives a better convergence rate in the energy norm than

the h-version (0.8 vs. 0.66), but a worse convergence rate in the L2-norm (1.19 vs. 1.4).

In the FE domain Ω1 the p-version provides a significantly better convergence rate than

the h-version (see Table 2.4, Figure 2.4), although the singularity affects the FE domain

across the coupling interface.

It is known from the work of Stephan and Suri [64], that the convergence rate for the

p-version of the BEM in the energy norm is twice that the corresponding convergence

rate of the h-version. Therefore, we expect the convergence rate 4/3 in the energy norm

in our example. Due to Theorem 2.2.3, the p-version of our FE/BE Nitsche’s coupling

is suboptimal, caused by the factor p1/2. Thus, for our example the convergence rate

4/3 − 1/2 = 5/6 ≈ 0.83 is expected. This result is in agreement with the numerical

experiments. As shown in Table 2.3, the numerical rate of convergence is ≈ 0.8, which

is very near to the theoretical estimate 0.83.
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2.2 hp-Nitsche’s method

h−1 p L2-norm convergence rate H1
0 -norm convergence rate

8 1 0.0025194 0.0885605

12 1 0.0013665 1.5088057 0.0681681 0.6454544

20 1 0.0006334 1.5052218 0.0489318 0.6490458

36 1 0.0002642 1.4876073 0.0333037 0.6545895

68 1 0.0001044 1.4598948 0.0219059 0.6586791

132 1 .4043E-04 1.4302214 0.0141255 0.6615079

260 1 .1561E-04 1.4038779 0.0090096 0.6633788

6 1 0.0039545 0.1061839

6 2 0.0012297 1.6851889 0.0525158 1.0157416

6 3 0.0006871 1.4355013 0.0364846 0.8982865

6 4 0.0004864 1.2007996 0.0285718 0.8497924

6 5 0.0003743 1.1740143 0.0238089 0.8172352

6 6 0.0003023 1.1717633 0.0205406 0.8098661

6 7 0.0002515 1.1934875 0.0181426 0.8053202

Table 2.3: Convergence rates for BE part: h-version (above) and p-version (below)

h−1 p L2-norm convergence rate H1
0 -norm convergence rate

4 1 0.0011601 0.0316011

8 1 0.0005921 0.9703364 0.0158300 0.9973135

16 1 0.0003858 0.6179877 0.0079073 1.0014042

32 1 0.0001986 0.9579875 0.0039502 1.0012595

64 1 .9029E-04 1.1372275 0.0019737 1.0010230

128 1 .3852E-04 1.2289585 0.0009864 1.0006580

256 1 .1590E-04 1.2765809 0.0004930 1.0005852

4 1 0.0013727 0.0316477

4 2 0.0006130 1.1630574 0.0020695 3.9347465

4 3 0.0002444 2.2679108 0.0006354 2.9122298

4 4 0.0001239 2.3613965 0.0001039 6.2945383

4 5 .7227E-04 2.4157798 .5954E-04 2.4951675

4 6 .4618E-04 2.4564418 .3801E-04 2.4615799

4 7 .3149E-04 2.4837826 .2606E-04 2.4485634

Table 2.4: Convergence rates for FE part: h-version (above) and p-version (below)
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Figure 2.4: h-version with p1 = p2 = 1 vs. p-version with h1 = 1/6 h2 = 1/8

Example 3: choice of λNit

In this section we study convergence of the method for different values of the penalty-

like parameter λNit. We perform a series of tests for a smooth exact solution and

the geometry, described in Example 1. The convergence rates for the h-version for

p1 = p2 = 1, 2, 3 are shown in Figures 2.5–2.8.

For λNit = 1.0 we observe no convergence in the piecewise linear case. Furthermore, for

λNit = 5.0 we observe a reduced convergence rate for the piecewise cubic case. On the

other hand, the convergence rates for λNit = 10.0 and λNit = 20.0 are almost the same,

i.e. the bilinear form becomes coercive. Since our coupling method is consistent (unlike

the penalty method), we do not observe any improvement of the convergence rate with

increase of λNit, if coercivity of the bilinear form is already achieved.

A similar behaviour we have for the singular example, described in Example 2. As

it is shown in Figures 2.9–2.12, the convergence curves do not change starting from

λNit = 5.0.
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Figure 2.5: h-version with λNit = 1: smooth solution

u(x, y) =
x+ 1

(x+ 1)2 + (y + 2)2
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Figure 2.6: h-version with λNit = 5: smooth solution

u(x, y) =
x+ 1

(x+ 1)2 + (y + 2)2

47



2 Nonconforming methods for interface problems

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000

lo
g(

er
r)

log(mesh size)

lambda=10.0

L2-error (BE, p=1)
L2-error (FE, p=1)

energy-err (BE, p=1)
energy-err (FE, p=1)

L2-error (BE, p=2)
L2-error (FE, p=2)

energy-err (BE, p=2)
energy-err (FE, p=2)

L2-error (BE, p=3)
L2-error (FE, p=3)

energy-err (BE, p=3)
energy-err (FE, p=3)

Figure 2.7: h-version with λNit = 10: smooth solution

u(x, y) =
x+ 1

(x+ 1)2 + (y + 2)2
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Figure 2.8: h-version with λNit = 20: smooth solution

u(x, y) =
x+ 1

(x+ 1)2 + (y + 2)2
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Figure 2.9: h- and p-version for λNit = 1: singular solution

u(r, θ) = r2/3 sin(2θ/3)

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000

lo
g(

er
r)

log(dof)

lambda=5.0

h: energy-err (BE)
h: energy-err (FE)
p: energy-err (BE)
p: energy-err (FE)

h: L2-error (BE)
h: L2-error (FE)
p: L2-error (BE)
p: L2-error (FE)

Figure 2.10: h- and p-version for λNit = 5: singular solution

u(r, θ) = r2/3 sin(2θ/3)
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Figure 2.11: h- and p-version for λNit = 10: singular solution

u(r, θ) = r2/3 sin(2θ/3)
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Figure 2.12: h- and p-version for λNit = 20: singular solution

u(r, θ) = r2/3 sin(2θ/3)
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3 Contact between a body and a rigid

obstacle

Contact problems between an elastic body and a rigid obstacle are addressed in this chap-

ter. We investigate questions related to variational formulation (such as well-posedness

of the problem), as well as topics connected with discretization, convergence of numerical

methods and automatic mesh refinement procedures.

In Section 3.1 we derive a boundary integral formulation for contact problems with

Tresca’s law of friction. Constructing a chain of equivalent formulations we approxi-

mate the frictional contact problem with a sequence of the frictionless problems. This

procedure can be treated as an Uzawa-type algorithm. We prove that the sequence of

approximate solutions converges to the exact solution of the problem with friction in the

energy norm, when the damping parameter is sufficiently small.

The rest of the chapter is devoted to the investigation of the numerical solution proce-

dures with the penalty method. In Section 3.2 we formulate an hp-penalty Boundary

Element Method for frictionless problems and investigate its convergence. The solution

of the variational inequality u is approximated with the continuous piecewise polynomial

solution of the discrete penalty formulation U ε. The a priori error analysis shows, that

under additional regularity assumptions on u and on corresponding traction T u that

the error u −U ε converges as O((h/p)1−ǫ) in the energy norm. This convergence rate

is achieved if the penalty parameter εn is proportional to (h/p)1−ǫ for arbitrary small

fixed ǫ > 0.

In Section 3.3 we derive residual-based a posteriori error estimates and employ them in

the automatic mesh refinement procedures. We obtain the a posteriori error estimates

for the h-version of penalty BEM and FEM for one-body contact with Tresca’s fric-

tion. Furthermore, we prove that the error estimates are reliable and efficient. Finally,

we introduce an automatic mesh refinement procedure, based on these estimates, and

illustrate the suggested method on several numerical examples.

The classical formulation of a contact problem between an elastic body and a rigid ob-

stacle with Tresca’s law of friction, considered in this chapter, is given as follows. Let a

linear elastic body occupy a bounded polygonal two-dimensional domain Ω with (Lips-

chitz) boundary Γ with the exterior normal vector n. We assume that Γ is decomposed
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3 Contact between a body and a rigid obstacle

into three disjoint parts Γ = ΓD∪ΓN ∪ΓC . We denote for brevity Σ := ΓN ∪ΓC . For the

sake of simplicity we assume that the volume force vanishes. The case of a nonvanishing

volume force can be treated with the similar arguments employing Newton potentials,

as in the works of Eck, Steinbach and Wendland [26],[27]. We fix the body along ΓD

and prescribe some surface tractions t̂ along ΓN . ΓC is the zone of possible frictional

contact of the body with a rigid smooth obstacle. Let g : ΓC → R+∪{0} be a continuous

mapping associating every point x ∈ ΓC with its distance to the rigid obstacle measured

in the direction of n(x) (cf. [73], see also [38], [26]).

Then the displacement field u satisfies the following boundary value problem

−div σ(u) = 0 in Ω,

u = 0 on ΓD,

σ(u) · n = t̂ on ΓN ,

σn ≤ 0, un ≤ g, σn(un − g) = 0,

|σt| ≤ F , σtut + F|ut| = 0,

}

on ΓC .

(3.1)

Here σ stands for the stress tensor. It is connected with the displacement field u by

Hook’s law of elasticity, i.e. under small strain assumption there holds

σ(u) = C : ε(u) = λtrε(u)I + 2µε(u), ε(u) =
1

2
(∇u+ ∇uT ),

where λ, µ are the Lamé constants and I is the unit tensor of the second order. The

normal and tangential stress on the contact boundary is given by

σn = n · σ(u) ·n, σtt = σ(u) · n− σnn.

The so-called given friction function F ≥ 0 defines pointwise the sticking threshold of

the bodies. As it can be seen from (3.1), if the absolute value of the tangential stress

does not exceed the value of the given friction function |σt| < F , then ut = 0. Moreover,

ut 6= 0 is only possible if |σt| = F . It is worth to mention that in the Tresca’s model of

friction the tangential stress is not necessarily zero when the body does not touch the

obstacle. This nonphysical phenomenon disappears for the more general and realistic

Coulomb’s law of friction. This model consists of setting F := µfσn, where µf is the

friction coefficient. Now, opening of the gap yields σn = 0, which provides F = 0 and

σt = 0.
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

3.1 Boundary weak formulations for contact problems

with Tresca’s law of friction

In this section we derive and analyse a boundary integral variational inequality formu-

lation for contact problems with Tresca’s law of friction. We introduce a constraint

minimization problem and prove its equivalence to the original boundary integral varia-

tional inequality formulation. We show that the both problems are well-posed, i.e. that

they have unique identical solutions. Further, we obtain a mixed formulation, which

includes an auxiliary variable corresponding to the tangential traction. We prove equiv-

alence between the mixed formulation and the original variational inequality. Then we

formulate an Uzawa-type algorithm for solution of the mixed problem. It allows to ob-

tain a solution of the contact problem with friction as a sequence of frictionless problems

with changing right hand side. Finally, convergence of the Uzawa algorithm is investi-

gated and conditions, which guarantee the convergence, are obtained. The results of this

section will be also employed in Section 4.3, where we construct a solution algorithm for

hp-mortar BEM applied for two-body frictional contact problems.

3.1.1 Boundary integral variational inequality

In order to derive the weak formulation of (3.1) we assume that F ∈ L2(ΓC) and t̂ ∈
H −1/2(ΓN). For simplicity of presentation we assume that the gap function g is zero,

i.e. the body is in contact with the obstacle along the whole ΓC , but the gap can open

during the deformation process. After testing the first equation with v ∈ VF := {v ∈
H 1(Ω) : v|ΓD

= 0} we obtain

0 =

∫

Ω

div σ(u) · v dx =

∫

Ω

div(σ(u) · v) dx−
∫

Ω

σ(u) : ∇v dx. (3.2)

Application of Gauss theorem gives for the traction operator T (u) := σ(u) · n
∫

Ω

div(σ(u) · v) dx =

∫

Γ

T (u) · v ds,

and, due to symmetry of σ the last summand in (3.2) becomes
∫

Ω

σ(u) : ∇v dx =

∫

Ω

σ(u) : ε(v) dx =

∫

Ω

ε(u) : C : ε(v) dx.

We define a bilinear form β(·, ·) on H 1(Ω) by

β(u,v) :=

∫

Ω

ε(u) : C : ε(v)dx =

∫

Ω

2µε(u) : ε(v) + λ trε(u) trε(v) dx.

Hence, (3.2) can be rewritten as

β(u,v) =

∫

Γ

T (u) · v ds. (3.3)
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3 Contact between a body and a rigid obstacle

Further we introduce KF := {v ∈ VF : vn|ΓC
≤ 0}. Note, that for the solution u of

problem (3.1) there holds u ∈ KF . Next, we set v = w−u ∈ VF for arbitrary w ∈ KF .

Introducing the functional

L(v) =

∫

ΓN

t̂ · v ds (3.4)

we observe that (3.3) yields for arbitrary w ∈ KF

β(u,w − u) = L(w − u) +

∫

ΓC

σn(wn − un)ds+

∫

ΓC

σt(wt − ut) ds. (3.5)

The contact boundary conditions in (3.1) provide

σn(wn − un) = σnwn ≥ 0

and

−σt(wt − ut) ≤ |σt||wt| − F|ut| ≤ F(|wt| − |ut|).
Further, we define the frictional functional

j(v) =

∫

ΓC

F|vt|ds. (3.6)

Note, that j(·) is non-differentiable, due to the absolute value function under the integral

sign. Now the problem (3.5) can be reformulated as the following domain formulation:

Find u ∈ KF such that

β(u,w − u) + j(w) − j(u) ≥ L(w − u) for ∀w ∈ KF . (3.7)

In order to derive a symmetric boundary integral formulation we employ the Steklov-

Poincaré operator S. It is a Dirichlet-to-Neumann mapping, i.e. (cf. (1.5))

T (u) = Su := Wu+ (K ′ + 1/2)V −1(K + 1/2)u,

which is a continuous mapping S : H̃
1/2

(Σ) → H −1/2(Γ). Looking back to (3.3) we note

that

β(u,v) =

∫

Σ

T (u) · v ds =

∫

Σ

Su · v ds =: 〈Su,v〉Σ. (3.8)

Here and further down, when a function defined in a domain is integrated over some

part of its boundary, the boundary trace operator is ommited for brevity. Introducing

the boundary functional sets

V := H̃
1/2

(Σ), K := {v ∈ V : vn ≤ 0 on ΓC} ,

we rewrite the domain formulation (3.7) in terms of boundary integral operators: Find

u ∈ K such that

〈Su,w − u〉Σ + j(w) − j(u) ≥ L(w − u) ∀w ∈ K. (3.9)

Now we are in a position to find a connection between formulations (3.1) and (3.9).
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

Theorem 3.1.1. The solution of the classical formulation (3.1) is a solution of problem

(3.9). Let u be a solution of (3.9). If the prescribed data t̂,F are sufficiently regular,

such that the function u(x), x ∈ Ω, obtained with the representation formula (1.2) lies

in C 2(Ω), then u solves the classical problem (3.1).

Proof. It remains only to show the second part of the statement. Equivalence

between (3.9) and (3.7) follows from (3.8). Let the boundary data t̂,F be smooth

enough such that the solution of (3.7) has continuous second partial derivatives (the

existence and uniqueness of solution (3.7) will be shown later). Then for any w ∈ KF

we set v = w − u ∈ VF and insert in (3.7). Then

0 ≤ β(u,v) + j(v + u) − j(u) − L(v)

= −
∫

Ω

div σ(u) · vdx+

∫

ΓN

(σ(u) · n− t̂) · vds+
∫

ΓC

σnvnds+

∫

ΓC

F(|vt + ut| − |ut|) + σtvtds.

Choosing v := ±φ with φ ∈ {ψ ∈ VF : supp ψ ⊂⊂ Ω} we derive div σ(u) = 0, which

is the equilibrium equation in (3.1). Next, we take v = ±φ with φ ∈ {ψ ∈ VF : ψ =

0 on ΓC}. That yields σ(u) · n = t̂ on ΓN . It remains to obtain the frictional contact

conditions in the strong form from

0 ≤
∫

ΓC

σnvnds+

∫

ΓC

F(|vt + ut| − |ut|) + σtvtds. (3.10)

Let us take v ∈ {ψ ∈ VF : ψn = 0 on ΓC} such that vt|ΓC
= ±ut. Then |σt| ≤ F

and the equation σtut + F|ut| = 0 holds on ΓC . These are frictional conditions on ΓC .

Finally, we consider w ∈ {ψ ∈ KF : wt = ut on ΓC}, wn|ΓC
= 0 and 2un. Note that

in both cases w ∈ KF . Hence, vn = ±un, which yields σnun = 0. It remains to show

that σn ≤ 0. Assume the opposite, i.e. ∃Γ′ ⊂ Γ : σn > 0. Then we choose w ∈ K, with

wn|Γ′ = un − χΓ′ < 0, wn|ΓC\Γ′ = un and wt|ΓC
= ut, where χΓ′ is some strictly positive

function on Γ′ \ ∂Γ′ and χΓ′ = 0 in ∂Γ′. Therefore

∫

ΓC

σn(wn − un)ds < 0,

which is a contradiction to (3.10).
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3 Contact between a body and a rigid obstacle

3.1.2 Existence and uniqueness of the weak solution

In this paragraph we prove that the variational problem (3.9) is well-posed, i.e. that it

has a unique solution.

Theorem 3.1.2. The solution of the variational problem (3.9) is unique.

Proof. Assume the contrary, i.e. that there exist u1, u2 ∈ K, two not identical

solutions of (3.9). Then there holds holds

〈Su1,u2 − u1〉Σ + j(u2) − j(u1) ≥ L(u2 − u1),

〈Su2,u1 − u2〉Σ + j(u1) − j(u2) ≥ L(u1 − u2).

Summing up we obtain

−〈S(u1 − u2),u1 − u2)〉Γ ≥ 0,

which yields u1 ≡ u2, since the Steklov-Poincaré operator S is positive definite on

H̃
1/2

(Σ).

In order to prove existence of the solution of problem (3.9) we show that (3.9) is equiv-

alent to the following minimization problem: Find u ∈ K :

J(w) ≥ J(u), ∀w ∈ K, (3.11)

where

J(w) :=
1

2
〈Sw,w〉Σ + j(w) − L(w). (3.12)

We show that the problem (3.11) has a solution, which automatically guarantees solv-

ability of the boundary integral variational inequality (3.9).

Theorem 3.1.3. The minimization problem (3.11) and the variational problem (3.9)

are equivalent.

Proof. Let u ∈ K solve (3.9). Since the bilinear form 〈S·, ·〉Σ is symmetric, for

arbitrary w ∈ K there holds

J(w) − 1

2
〈S(w − u),w − u〉Σ ≥ J(u).

Noting that 〈S·, ·〉Σ is positive definite we obtain the formulation (3.11).

Now, let u solve the minimization problem (3.11). Note that the set of admissible

solutions K is convex, i.e.

∀v,w ∈ K, ∀λ ∈ (0, 1) there holds w + λ(v −w) ∈ K.
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

And therefore J(u+λ(v−u)) ≥ J(u) for arbitrary v ∈ K and λ ∈ (0, 1). This together

with symmetry of 〈S·, ·〉Σ provides

λ〈Su,v−u〉Σ +j(u+λ(v−u))−j(u)−λL(v−u)+
λ2

2
〈S(v−u),v−u〉Σ ≥ 0. (3.13)

The frictional functional j(·) is convex, i.e. j(u + λ(v − u)) ≤ j(u) + λ(j(v) − j(u)),

hence, dividing (3.13) by λ > 0 we obtain

〈Su,v − u〉Σ + j(v) − j(u) − L(v − u) +
λ

2
〈S(v − u),v − u〉Σ ≥ 0. (3.14)

Finally, we let λ→ 0+ and obtain the formulation (3.9).

Two following auxiliary lemmas are needed in the existence analysis for (3.11).

Lemma 3.1.1. The functional J(·), defined in (3.12), is coercive, i.e.

J(v) → ∞, when v ∈ K and ‖v‖
H̃

1/2
(Σ)

→ ∞.

Proof. The Steklov-Poincaré operator S is positive definite on H̃
1/2

(Σ) and the

functional L is continuous on H̃
1/2

(Σ), i.e. there exist constants cS, CL > 0, such that

〈Sv,v〉Σ ≥ cS‖v‖2

H̃
1/2

(Σ)
, L(v) ≤ CL‖v‖H̃

1/2
(Σ)
.

Thus

J(v) ≥ 1

2
〈Sv,v〉Σ − L(v) ≥ cS‖v‖2

H̃
1/2

(Σ)
− CL‖v‖H̃

1/2
(Σ)
.

The quadratic term dominates for ‖v‖
H̃

1/2
(Σ)

→ ∞, which provides coercivity of J(·).

Definition 3.1.1. (Gâteaux derivative) [38, Chapter 3] A functional F : K → R is

Gâteaux differentiable at a point u ∈ K ⊂ V if there exists a linear functional DF (u) ∈
V

′ such that

lim
ε→0

∂

∂ε
F (u+ εv) = 〈DF (u),v〉 , ∀v ∈ K.

Definition 3.1.2. (Subdifferentiability) [38, Chapter 3] Let F be a functional on K.

The set ∂F (u) ⊂ V
′ of all linear functionals qu such that

F (v) − F (u) ≥ qu(v − u), v ∈ V , |F (u)| <∞

is called the subdifferential of F at u, and any qu ∈ ∂F (u) is a subgradient of F at u.

Lemma 3.1.2. The functional J(u), defined in (3.12), is weakly lower semicontinuous,

i.e. for any sequence {uk} ⊂ K, such that uk converges weakly to u ∈ K (uk ⇀ u),

there holds

lim inf
k→∞

J(uk) ≥ J(u).
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3 Contact between a body and a rigid obstacle

Proof. We define H(v) := 1
2
〈Sv,v〉Σ − L(v) and hence J(v) = H(v) + j(v). It is

easy to see that the functional H(·) is Gâteaux differentiable with derivative

〈DH(u),v〉Σ = 〈Su,v〉Σ − L(v) ∀v ∈ K.

Note that for any v ∈ K

|vt| − |ut| = vtsign(vt) − utsign(ut) ≥ sign(ut)(vt − ut).

This provides that the frictional functional j(·) is subdifferentiable at u. Indeed, there

holds F ≥ 0 and therefore

j(v) − j(u) =

∫

ΓC

F(|vt| − |ut|) ds ≥
∫

ΓC

Fsign(ut)(vt − ut) ds =: qu(v − u).

Further, for the convex functional J(·) there holds

J(u+ ε(uk − u)) − J(u) ≤ ε(J(uk) − J(u)) ε ∈ (0, 1).

or

1

ε
(H(u+ ε(uk − u)) −H(u)) +

1

ε
(j(u+ ε(uk − u)) − j(u)) ≤ J(uk) − J(u).

Then taking the limit ε→ ∞ we obtain

J(uk) − J(u) ≥ 〈DH(u),uk − u〉Σ + qu(uk − u).

It was supposed that {uk} converges weakly to u, therefore

lim inf
k→∞

J(uk) − J(u) ≥ lim inf
k→∞

(〈DH(u),uk − u〉Σ + qu(uk − u)) = 0,

which finishes the proof.

Now we are at the position to prove existence of the solution of the minimization problem

(3.11).

Theorem 3.1.4. Problem (3.11) has a solution.

Proof. Due to Lemma 3.1.1 there exists a constant M > 0 such that for any v with

‖v‖
H̃

1/2
(Σ)

≥M there holds J(v) ≥ 1. Let us consider a closed functional set

A := {v ∈ K : ‖v‖
H̃

1/2
(Σ)

≤ M} ⊂ K.

This provides

inf
v∈K

J(v) = inf
v∈A

J(v).
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

The Steklov-Poincaré operator S, the frictional functional j and the load functional L

are continuous, i.e. there exists constants CS, C1, C2 > 0 such that

|J(v)| ≤ | 〈Sv,v〉 | + |j(v)| + |L(v)| ≤ CS||v||2
H̃

1/2
(Σ)

+ (C1 + C2)||v||H̃ 1/2
(Σ)

and therefore with M̄ := CSM
2 + (C1 + C2)M

−M̄ < inf
v∈A

J(v) = inf
v∈K

J(v) < M̄.

Then there exists a ∈ [−M̄, M̄ ] and a sequence {un} ⊂ A such that

a = inf
v∈A

J(v) = lim
n→∞

J(un).

Since A is a closed subspace of the Hilbert space H̃
1/2

(Σ) there exists a subsequence

{unk
} ⊂ {un} which converges weakly to some function ū ∈ A. From Lemma 3.1.2 we

have

a = lim inf
k→∞

J(unk
) ≥ J(ū), (3.15)

which implies that a = J(ū) and therefore ū solves the minimization problem (3.11).

3.1.3 Saddle point formulation - Uzawa algorithm

In this paragraph we introduce a dual formulation equivalent to the variational formu-

lation (3.9), and hence to the minimization problem (3.11). The derived formulation

does not include the non-differentiable frictional functional j(·) and is more suitable for

implementation. The obtained problem can be solved with the Uzawa algorithm. Here

we follow ideas of [29, Chapter 4], see also [47].

Let us define the space of Lagrangian multipliers Λ = {σ ∈ L2(ΓC) : |σ| 6 1 a.e. on ΓC}
and the bilinear functional

q(σ,w) =

∫

ΓC

Fσwt ds.

Let us consider the following mixed formulation: Find u ∈ K, σu ∈ Λ :

〈Su,w − u〉Σ + q(σu,w) − q(σu,u) ≥ L(w − u), ∀w ∈ K,

σuut = |ut| a.e. on ΓC

(3.16)

and the saddle point problem: Find u ∈ K, σu ∈ Λ :

F (u, σ) ≤ F (u, σu) ≤ F (w, σu), ∀w ∈ K, ∀σ ∈ Λ, (3.17)

with

F (w, σ) =
1

2
〈Sw,w〉Σ + q(σ,w) − L(w).
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3 Contact between a body and a rigid obstacle

Theorem 3.1.5. Problems (3.16) and (3.17) are equivalent

Proof. Let (u, σu) solve (3.17), then for w ∈ K and ε ∈ (0, 1) there holds

0 ≤ 1

ε
(F (u+ ε(w − u), σu) − F (u, σu))

= 〈Su,w − u〉Σ − L(w − u) +

∫

ΓC

Fσu(wt − ut)ds+
ε

2
〈S(w − u),w − u〉Σ.

Taking the limit ε → 0+ we obtain the first inequality in (3.16). Further, for every

σ ∈ Λ there holds

0 ≤ F (u, σu) − F (u, σ) =

∫

ΓC

F(σu − σ)utds,

Choosing σ := sign(ut) we obtain

∫

ΓC

F(σuut − |ut|)ds ≥ 0.

But σuut ≤ |ut| due to definition of Λ. This implies that σu ≡ sign(ut) a.e. on ΓC and

(u, σu) ∈ K × Λ solve (3.16).

Now let us assume that (u, σu) ∈ K × Λ solve (3.16). Basic calculations show that for

any w ∈ K there holds

F (w, σu) −
1

2
〈S(w − u),w − u〉Σ ≥ F (u, σu)

and the right inequality in (3.17) follows.

Taking into account that for arbitrary σ ∈ Λ there holds (σ − σu)ut = σut − |ut| ≤ 0,

we obtain
∫

ΓC

F(σ − σu)utds ≤ 0.

Hence,

F (u, σ) = F (u, σu) +

∫

ΓC

F(σ − σu)utds ≤ F (u, σu),

and herewith the left inequality in (3.17) follows.

In order to prove equivalence between the minimization problem (3.11) and the mixed

problem (3.16) we introduce a sequence of their regularized versions. First, we employ

the regularization Ψk(x) of the absolute value function and its derivative ϕk(x) := Ψ ′
k(x)

Ψk(x) =

{

|x| − 1
2k
, |x| ≥ 1

k
,

kx2

2
, |x| ≤ 1

k
,

ϕk(x) =

{

1, x ≥ 1
k
,

kx, |x| ≤ 1
k
.

(3.18)
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

For an integer k let us introduce a parameter dependent family of regularized minimiza-

tion problem as follows: Find uk ∈ K :

Fk(w) ≥ Fk(uk), ∀w ∈ K (3.19)

with the family of functionals

Fk(w) =
1

2
〈Sw,w〉 + jk(w) − L(w), jk(w) :=

∫

ΓC

FΨk(wt)ds,

and a parameter dependent family of regularized variational inequalities: Find uk ∈ K :

〈Suk,w − uk〉 +

∫

ΓC

Fϕk((uk)t)(wt − (uk)t)ds ≥ L(w − uk), ∀w ∈ K. (3.20)

Theorem 3.1.6. Problems (3.19) and (3.20) are equivalent for some positive k ∈ N.

Moreover, they have unique solutions.

Proof. First, we show equivalence between (3.19) and (3.20). Let us assume that

uk ∈ K solves (3.19), i.e. for some ε ∈ (0, 1) there holds

Fk(uk + ε(w − uk)) ≥ Fk(uk), ∀w ∈ K.

This leads to the following inequality (cf. Theorem 3.1.5)

0 ≤ 1

ε
(Fk(uk + ε(w − uk)) − Fk(uk))

= 〈Suk,w − uk〉Σ +

∫

ΓC

FΨk((uk)t + ε(wt − (uk)t)) − Ψ((uk)t)

ε
ds− L(w − uk)

+
ε

2
〈S(w − uk),w − uk〉Σ .

Taking the limit ε → 0+ leads to the formulation (3.20). Note, that the function Ψk is

differentiable with Ψ ′
k = ϕk, therefore

Ψk((uk)t + ε(wt − (uk)t)) − Ψ((uk)t)

ε
→ ϕk((uk)t)(wt − (uk)t), ε → 0 + .

Now, let uk be a solution of (3.20). After some calculation we obtain for arbitrary

w ∈ K

Fk(w) − 1

2
〈S(w − uk),w − uk〉Σ

−
∫

ΓC

F(Ψ(wt) − Ψ((uk)t) − Ψ ′((uk)t)(wt − (uk)t)) ≥ Fk(uk).

The function Ψk is convex and is piecewise quadratic, then

Ψ(wt) − Ψ((uk)t) − Ψ ′((uk)t)(wt − (uk)t) ≥ 0.

The formulation (3.19) follows since 〈S·, ·〉Σ is positive definite. The functional Fk is

strictly convex, Gâteaux differentiable and coercive on K. Applying arguments similar

to that in Section 3.1.2 we obtain that problem (3.19), and herewith problem (3.20),

have unique solutions.
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3 Contact between a body and a rigid obstacle

Lemma 3.1.3. Let {uk}k∈N be the family of solutions of the regularized problem (3.19)

and u solve the variational inequality (3.9). Assume that the given friction function

F ∈ L1(ΓC). Then

lim
k→∞

uk = u.

Proof. The variational inequality provides for ∀w ∈ K

〈Su,w − u〉Σ + j(w) − j(u) ≥ L(w − u). (3.21)

The minimization problem can be rewritten as follows (cf. Theorem 3.1.3)

〈Suk,w − uk〉Σ + jk(w) − jk(uk) ≥ L(w − uk), ∀w ∈ K. (3.22)

Substituting w = uk and w = u in (3.21), (3.22) respectively and adding them we

obtain

〈S(uk − u),uk − u〉Σ ≤ jk(u) − j(u) + j(uk) − jk(uk). (3.23)

From definition of Ψk it follows that 0 ≤ |ξ| − Ψk(ξ) ≤ (2k)−1, therefore

0 ≤ jk(w) − j(w) ≤ 1

2k
||F||L1(ΓC), ∀w ∈ K.

This together with (3.23) gives

〈S(uk − u),uk − u〉Σ ≤ 1

k
||F||L1(ΓC) → 0, k → ∞. (3.24)

The bilinear form 〈S·, ·〉Σ is positive definite, hence uk → u when k → ∞.

Theorem 3.1.7. Problems (3.9) and (3.16) are equivalent.

Proof. Let (u, σu) ∈ K × Λ solve (3.16). Noting that
∫

ΓC

σuFwtds ≤
∫

ΓC

F|wt|ds,
∫

ΓC

σuFutds =

∫

ΓC

F|ut|ds

we obtain the variational inequality (3.9) directly from the first line in (3.16).

Let us assume now that u ∈ K is a solution of (3.9). Due to Theorem 3.1.6 and Lemma

3.1.3, u can be represented as a limit limk→∞ uk = u, where {uk} is a sequence of

solutions of the problem (3.20), i.e.

〈Suk,w − uk〉Σ +

∫

ΓC

Fϕk((uk)t)(wt − (uk)t)ds ≥ L(w − uk), ∀w ∈ K, (3.25)

where ϕk defined by (3.18), hence ϕk((uk)t) ∈ Λ, ∀k. The convex set Λ is weakly compact

in L2(ΓC), cf. [29, Chapter 4, Theorem 2.2], therefore there exists a subsequence {ϕnk
},

converging weakly to some σ ∈ Λ. Taking the limit k → ∞ in (3.25) we obtain

〈Su,w − u〉Σ +

∫

ΓC

σF(wt − ut)ds ≥ L(w − u), (3.26)

62



3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

which is the first line in (3.16). Now, set w = 0, 2u ∈ K in (3.9) and in (3.26), which

yields

〈Su,u〉Σ +

∫

ΓC

F|ut|ds = L(u). (3.27)

〈Su,u〉Σ +

∫

ΓC

Fσutds = L(u), (3.28)

respectively. Subtracting (3.28) and (3.27) provides

∫

ΓC

F(|ut| − σut)ds = 0. (3.29)

Since σ ∈ Λ, there holds |σ| ≤ 1 a.e. on ΓC , and therefore |ut| − σut ≥ 0 a.e. on ΓC .

This together with (3.29) leads to

|ut| = σut a.e. on ΓC , (3.30)

which is the second line in (3.16).

The formulation (3.16) gives a natural algorithm for solving the contact problem with

Tresca’s friction law.

Algorithm 3.1. (Uzawa algorithm)

1. Choose σ0 ∈ Λ.

2. For n = 0, 1, 2, . . . determine un ∈ K, such that

F (un, σn) ≤ F (w, σn) ∀w ∈ K,

i.e. find un ∈ K such that

〈Sun,w − un〉 ≥ L(w − un) −
∫

ΓC

Fσn(w − un) ds ∀w ∈ K. (3.31)

3. Set

σn+1 = PΛ(σn + ρFun
t ),

where ρ > 0 is a sufficiently small parameter that will be specified later on, and PΛ

denotes the projection operator from L2(ΓC) to Λ

PΛ(µ)(x) = sup{−1, inf{1, µ(x)}}, x ∈ ΓC , ∀µ ∈ L2(ΓC).

4. Set n := n+ 1. Repeat with 2. until the convergence criterion is satisfied.

63



3 Contact between a body and a rigid obstacle

Theorem 3.1.8. Let F ∈ L∞(ΓC) and 0 < ρ < 2cS‖F‖−2
L∞(ΓC), where cS is the ellipticity

constant of the Steklov-Poincaré operator S. Then the Uzawa algorithm converges for

arbitrary starting function σ0 ∈ Λ, i.e. un → u strongly in H̃
1/2

(Σ).

Proof. Let (u, σu) ∈ K×Λ be the solution of problem (3.16). Then σuut = |ut| a.e. on

ΓC and hence σ2
u = 1 a.e. on ΓC . That gives

PΛ(σu + ρFut) = PΛ(σu(1 + ρF|ut|)) = PΛ(σu) = σu, (3.32)

since ρF|ut| > 0. The projection operator PΛ is a contraction, therefore

‖σn+1 − σu‖2
L2(ΓC) ≤ ‖σn − σu + ρF(un

t − ut)‖2
L2(ΓC)

≤ ‖σn − σu‖2
L2(ΓC) + 2ρ

∫

ΓC

F(σn − σu)(u
n
t − ut) ds

+ ρ2‖F‖2
L∞(ΓC )‖un

t − ut‖2
L2(ΓC).

The first line in (3.16) combined with (3.31) provides with en := u− un

−
∫

ΓC

F(σu − σn)(ut − un
t ) ds ≥ 〈Sen, en〉Σ . (3.33)

Since the Steklov-Poincaré operator S is elliptic on H̃
1/2

(Σ) (cf. (1.10)), there exists a

constant cS > 0 such that

−‖un
t − ut‖2

L2(ΓC) ≥ −‖un
t − ut‖2

H 1/2(Σ)
≥ −c−1

S 〈Sen, en〉Σ .

Hence

‖σn − σ‖2
L2(ΓC) − ‖σn+1 − σ‖2

L2(ΓC) ≥ ρ(2 − ρc−1
S ‖F‖2

L∞(ΓC)) 〈Sen, en〉Σ . (3.34)

If 0 < ρ < 2cS‖F‖−2
L∞(ΓC) we have (2 − ρc−1

S ‖F‖2
L∞(ΓC)) > 0, which gives

‖σn − σ‖2
L2(ΓC) > ‖σn+1 − σ‖2

L2(ΓC)

for en 6= 0. The sequence ‖σn − σ‖2
L2(ΓC) converges, because it is monotone decreasing

and has a lower bound, i.e.

lim
n→∞

(‖σn − σ‖2
L2(ΓC) − ‖σn+1 − σ‖2

L2(ΓC )) = 0

and therefore limn→∞ 〈Sen, en〉Σ = 0. Using again ellipticity of S on H̃
1/2

(Σ) we obtain

that un → u strongly in H̃
1/2

(Σ).

The constructed Uzawa algorithm (Algorithm 3.1) will be also employed in Section 4.3,

where we construct a solution algorithm for hp-mortar BEM for two-body frictional

contact problems.
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3.2 Penalty hp-BEM for one-body contact problem

3.2 Penalty hp-BEM for one-body contact problem

In this section we obtain a priori error estimates for the hp-version of penalty bound-

ary element method, used for solving one-body contact problems in elasticity. The error

analysis is divided into two parts. At first we consider the error caused by the approxima-

tion of the variational inequality (or Lagrange multiplier) formulation with the penalty

formulation. Under additional regularity assumptions we derive a linear convergence

rate with respect to the penalty parameter. Then we consider the discretization error

between the solution of the penalty formulation and its Galerkin approximation. We

show two types of the best approximation property, which are similar to Cea’s lemma,

but here the estimate depends on the penalty parameter. Finally, an a priori estimate

for the error between the exact solution of the variational inequality and the boundary

element Galerkin solution of the penalty problem is obtained. For the displacement

u ∈ H̃
3/2

(ΓC ∪ ΓN) solving the variational inequality formulation, and for the corre-

sponding boundary traction Tu ∈ H 1/2(Γ) we obtain a quasioptimal convergence rate

O((h/p)1−ǫ) for the penalty parameter ε & (h/p)1−ǫ. Here ǫ > 0 is some fixed small

parameter. We finish the section with a numerical example for the h-version of BEM,

which provides the linear convergence rate, since ǫ may be chosen arbitrary close to zero.

3.2.1 Variational inequality, Lagrange multiplier, and penalty

formulation

First, recall the classical formulation of the one-body contact problem described in the

introduction to Chapter 3, where in addition no friction occurs between the elastic body

and the rigid obstacle (σt ≡ 0, or equivalently F ≡ 0). Let the domain Ω, boundary

parts ΓD,ΓN ,ΓC,Σ and the gap function g be defined as in the introduction to Chapter

3. Then the classical formulation of the one-body frictionless contact problem is given

as follows (cf. (3.1))

div σ(u) = 0 in Ω,

u = 0 on ΓD,

σ(u) · n = t̂ on ΓN ,

σn ≤ 0, un − g ≤ 0, σn(un − g) = 0, σt = 0, on ΓC .

(3.35)

Further, we introduce the functional spaces and sets required for the forthcoming analysis

V := H̃
1/2

(Σ), (3.36)

W := H −1/2(Σ), (3.37)

K := {v ∈ V : (vn − g) ≤ 0 on ΓC} , (3.38)

Λ :=

{

λ ∈ H̃−1/2(ΓC) : ∀v ∈ H1/2(ΓC), v ≤ 0,

∫

ΓC

λv ds ≥ 0

}

. (3.39)
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3 Contact between a body and a rigid obstacle

We introduce the single layer potential V , the double layer potential K, the adjoint

double layer potential K ′ and the the hypersingular integral operator W as in (1.4) and

recall the definition Steklov-Poincaré operator S (1.6)

S = W + (K ′ + 1/2)V −1(K + 1/2). (3.40)

As before, we denote the duality pairing over some (closed or unclosed) curve γ by
〈

·, ·
〉

γ
. Let the linear functional L(v) be defined by L(v) :=

〈

t̂,v
〉

ΓN
. As it was shown

in Section 3.1, the classical problem (3.35) can be reformulated in a weak form as a

variational inequality, cf. (3.9): Find u ∈ K :

〈

Su,v − u
〉

Σ
≥ L(v − u) ∀v ∈ K, (3.41)

or equivalently as a minimization problem, cf. (3.11): Find u ∈ K :

J(v) ≥ J(u), ∀v ∈ K. (3.42)

with J(v) := 1
2

〈

Sv,v
〉

Σ
− L(v). In both formulations (3.41) and (3.42) the set of ad-

missible solutions K ⊂ V includes the inequality constraint, which is often undesirable.

Sometimes it may be more convenient to remove the constraint from the displacement by

introducing an auxiliary variable λ ∈ Λ. Now the solution is sought in the whole space

u ∈ V . The problem can be reformulated in a saddle point form: Find u ∈ V , λ ∈ Λ:

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) ∀v ∈ V, λ ∈ Λ, (3.43)

with L(v, µ) := 1
2

〈

Sv,v
〉

Σ
− L(v) −

〈

µ, vn − g
〉

ΓC
, which is equivalent to the following

dual variational formulation with Lagrange multiplier: Find u ∈ V , λ ∈ Λ :

〈

Su,v
〉

Σ
−
〈

λ, vn

〉

ΓC
= L(v) ∀v ∈ V ,

〈

µ− λ, un − g
〉

ΓC
≥ 0 ∀µ ∈ Λ.

(3.44)

The existence and uniqueness of the solution of the variational inequality, and therefore

of the solution of (3.43) and (3.44) is guaranteed by results of Section 3.1. Note that the

inequality constraint is completely removed from the set of admissible displacements and

the equality is obtained for the variation of the displacement (first line in (3.44)). On

the other hand, the inequality constraints are associated now with the auxiliary variable

λ, which has a meaning of the normal contact traction, acting from the side of the rigid

obstacle and resisting the penetration of the body through the obstacle. The inequality

constraints remain in the set of admissible contact tractions Λ and in the second line of

the dual variational formulation (3.44).

To remove the inequality constraints completely from the functional sets and from the

variational formulation, which makes the implementation much easier, the penalty for-

mulation is used, see e.g. [26], [72]. Here some penetration of the body through the

obstacle is allowed and the resisting contact force is defined to be proportional to the
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3.2 Penalty hp-BEM for one-body contact problem

value of penetration. The proportionality coefficient ε is called penalty parameter. The

penalty formulation is given as follows: Find uε ∈ V :
〈

Suε,v
〉

−
〈

pε
n, vn

〉

ΓC
= L(v) ∀v ∈ V , (3.45)

pε
n := −1

ε
(uε

n − g)+. (3.46)

Here the penalty parameter ε > 0 must be chosen in advance. The positive and the

negative part of some function f ∈ H1/2(ΓC) are defined with

f+ := (|f | + f)/2 ≥ 0

f− := (|f | − f)/2 ≥ 0

}

⇒ f = f+ − f−. (3.47)

The main aim of this section is to find a relation between the penalty parameter ε

and the characteristical meshsize h and polynomial degree p in the quasiuniform hp-

discretization of the problem with boundary elements, such that the optimal convergence

rate is achieved.

For simplicity of presentation we assume that both ΓD and ΓC are connected open curves.

Furthermore, we consider only the case ΓD ∩ ΓC = ∅.
Remark 3.2.1. In fact, the case ΓD ∩ΓC = ∅, or equivalently the case when ΓN has two

disjoint connected components, is the most general case. Indeed, for ΓN = ∅ we obtain

ΓC ≡ Σ and the set of admissible normal contact tractions Λ is not a subset of H̃−1/2(ΓC),

but a subset of H−1/2(ΓC). Therefore, do not need the inf-sup condition in the form of

(3.52). On the other hand, if we replace the space H̃−1/2(ΓC) with H−1/2(ΓC) in the right-

hand side of (3.52), we obtain a condition, which holds trivially, since (H−1/2(ΓC))′ =

H̃1/2(ΓC) = H̃1/2(Σ). Moreover, the case of connected ΓN can be treated by combining

the arguments for vanishing ΓN with the arguments presented in this section below.

Further down, if no missunderstanding can occur, we omit the domain of integration γ

when writing the dual product
〈

·, ·
〉

γ
.

3.2.2 Inf-sup condition

In this paragraph we prove an inf-sup condition, which is intensively used in the forth-

coming a priori error estimation. The main result is given by the following abstract

theorem.

Theorem 3.2.1. Let Γ be a closed Lipschitz curve with two open connected disjoint

subsets γ0 ⊂ Γ, γ1 ⊂ Γ, γ0 ∩ γ1 = ∅. Let also γ∗0 := Γ \ γ0, γ
∗
01 := Γ \ (γ0 ∪ γ1). Then

there holds the following inf-sup condition:

∃α > 0 : sup
v∈H̃1/2(γ∗

0 )\{0}

〈

µ, v
〉

γ1

||v||H̃1/2(γ∗
0 )

≥ α||µ||H̃−1/2(γ1) ∀µ ∈ H̃−1/2(γ1). (3.48)
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3 Contact between a body and a rigid obstacle

Moreover, the constant α > 0 depends only on min
i=1,2

|(γ∗01)i|, where (γ∗01)
i, i = 1, 2 are

connected components of γ∗01.

To prove the above theorem we need two following auxiliary lemmas.

Lemma 3.2.1. Let us adopt notations of Theorem 3.2.1 and let

Xγ0,γ1 :=
{

χ ≥ 0 : ||χ||L∞(Γ) = 1, χ′ ∈ L∞(Γ), χ|γ0 ≡ 0 and χ|γ1 ≡ 1
}

.

Then for arbitrary v ∈ H1/2(Γ) and for arbitrary χ ∈ Xγ0,γ1, there holds

χv ∈ H1/2(Γ), χv|γ∗
0
∈ H̃1/2(γ∗0),

and

||χv||H̃1/2(γ∗
0 ) := ||χv||H1/2(Γ) ≤ Cχ′||v||H1/2(γ∗

0 ) ≤ Cχ′||v||H1/2(Γ). (3.49)

where Cχ′ = 21/4
(

1 + ||χ′||2L∞(γ∗
01)

)1/4

.

Proof. Obviously there holds ||χv||L2(Γ) ≤ ||v||L2(γ∗
0 ). Further, for v ∈ H1(Γ) we obtain

||χv||H1(Γ) =

(
∫

Γ

(χ′v + χv′)2 ds+ ||χv||2L2(Γ)

)1/2

≤
(

2

∫

Γ

(χ′v)2 + (χv′)2 ds+ ||χv||2L2(Γ)

)1/2

≤
√

2
(

||χ′||2L∞(γ∗
01)||v||2L2(γ∗

01) + ||v′||2L2(γ∗
0 ) + ||v||2L2(γ∗

0 )

)1/2

≤
√

2
(

1 + ||χ′||2L∞(γ∗
01)

)1/2

||v||H1(γ∗
0 ).

Then the first inequality in the assertion of the lemma follows by the real interpolation

between L2 and H1. The second inequality follows trivially by definition of the Sobolev

spaces on open curves.

Lemma 3.2.2. Under notations of Theorem 3.2.1 the following statement holds. For all

φ ∈ H1/2(γ1) there exists an extension fφ ∈ H̃1/2(γ∗0) of φ onto γ∗0 , such that fφ|γ1 = φ

and

∃α > 0 : ||φ||H1/2(γ1) ≥ α||fφ||H̃1/2(γ∗
0 ), (3.50)

where the constant α > 0 depends only on min
i=1,2

|(γ∗01)i|, where (γ∗01)
i are connected com-

ponents of γ∗01.
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3.2 Penalty hp-BEM for one-body contact problem

Proof. Using the definition of the H1/2-norm on open curve, and Lemma 3.2.1 we

obtain for arbitrary fixed χ ∈ Xγ0,γ1

||φ||H1/2(γ1) := inf
v∈H1/2(Γ)

{

||v||H1/2(Γ) : v|γ1 = φ
}

≥C−1
χ′ inf

v∈H1/2(Γ)

{

||χv||H̃1/2(γ∗
0 ) : χv|γ1 = φ

}

≥C−1
χ′ inf

f∈H̃1/2(γ∗
0 )

{

||f ||H̃1/2(γ∗
0 ) : f |γ1 = φ

}

.

The last inequality holds due to inclusion

{

χv|γ∗
0

: v ∈ H1/2(Γ)
}

⊂ H̃1/2(γ∗0) ∀χ ∈ Xγ0,γ1 .

Further, there exists fφ ∈
{

w ∈ H̃1/2(γ∗0) : w|γ1 = φ
}

such that

||fφ||H̃1/2(γ∗
0 ) ≤ 2 inf

f∈H̃1/2(γ∗
0 )

{

||f ||H̃1/2(γ∗
0 ) : f |γ1 = φ

}

.

and therefore

||φ||H1/2(γ1) ≥ (2Cχ′)−1||fφ||H̃1/2(γ∗
0 ),

The largest constant α in the above estimate is given by

α :=

(

2 inf
χ∈Xγ0,γ1

Cχ′

)−1

= 2−5/4

(

1 + inf
χ∈Xγ0,γ1

||χ′||2L∞(γ∗
01)

)−1/4

.

The infimum is obviously achieved for continuous, piecewise linear χ. Therefore

α = 2−5/4

(

1 + min
i=1,2

(

arctan |(γ∗01)i|−1
)2
)−1/4

. (3.51)

Proof. (of Theorem 3.2.1)

The statement of Theorem 3.2.1 follows by definition of Sobolev norm via duality pairing

||µ||H̃−1/2(γ1) = sup
φ∈H1/2(γ1)\{0}

〈

µ, φ
〉

γ1

||φ||H1/2(γ1)

≤ α−1 sup
φ∈H1/2(γ1)\{0}

〈

µ, fφ

〉

γ1

||fφ||H̃1/2(γ∗
0 )

≤ α−1 sup
v∈H̃1/2(γ∗

0 )\{0}

〈

µ, v
〉

γ1

||v||H̃1/2(γ∗
0 )

where the constant α is defined in (3.51). The last inequality holds, since fφ ∈ H̃1/2(γ∗0)

for arbitrary φ ∈ H1/2(γ1) by construction.
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3 Contact between a body and a rigid obstacle

Corollary 3.2.1. Theorem 3.2.1 trivially yields for γ0 = ΓD, γ1 = ΓC , γ
∗
01 = ΓN and

γ∗0 = Σ the following result

∃α > 0 : sup
v∈H̃

1/2
(Σ)\{0}

〈

µ, vn

〉

ΓC

||v||
H̃

1/2
(Σ)

≥ α||µ||H̃−1/2(ΓC) ∀µ ∈ H̃−1/2(ΓC), (3.52)

where the constant α > 0 depends only on min
i=1,2

|Γi
N |, where Γi

N , i = 1, 2 are connected

components of ΓN .

3.2.3 Consistency error in the penalty approximation

First, we prove some auxiliary results required in the proof of Theorem 3.2.2.

Lemma 3.2.3. Let u ∈ V, λ ∈ Λ solve the Lagrange multiplier formulation (3.44), let

uε ∈ V solve the penalty formulation (3.45) and let pε
n be defined with (3.46). Then

there holds
〈

λ− pε
n, un − g

〉

≤ 0.

Proof. Inserting µ = 0 ∈ Λ, µ = 2λ ∈ Λ in the second equation in (3.44) gives

〈

−λ, un − g
〉

≥ 0
〈

λ, un − g
〉

≥ 0

}

⇒
〈

λ, un − g
〉

= 0.

Equivalence of the Lagrange multiplier formulation (3.44) and the variational inequality

(3.41) yields u ∈ K and therefore (un − g)+ ≡ 0. Thus

〈

λ− pε
n, un − g

〉

=
〈

−pε
n, un − g

〉

=
〈1

ε
(uε

n − g)+, (un − g)+
〉

−
〈1

ε
(uε

n − g)+, (un − g)−
〉

= −
〈1

ε
(uε

n − g)+, (un − g)−
〉

≤ 0,

since (uε
n − g)+ ≥ 0 and (un − g)− ≥ 0 on ΓC provided by (3.47).

Lemma 3.2.4. Let u ∈ V, λ ∈ Λ solve the Lagrange multiplier formulation (3.44), let

uε ∈ V solve the penalty formulation (3.45) and let pε
n be defined with (3.46). Then

there holds
〈

pε
n − λ, (uε

n − g)−
〉

≥ 0.

Proof. For every function f ∈ H1/2(ΓC) there holds
〈

f+, f−
〉

= 0, because suppf+ ∩
suppf− has the Lebesgue measure zero. This yields

〈

pε
n, (u

ε
n − g)−

〉

= 0, and therefore

〈

pε
n − µ, (uε

n − g)−
〉

=
〈

µ,−(uε
n − g)−

〉

≥ 0 ∀µ ∈ Λ.

The last inequality follows from the definition of Λ (3.39).
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3.2 Penalty hp-BEM for one-body contact problem

Lemma 3.2.5. Let u ∈ V, λ ∈ Λ solve the Lagrange multiplier formulation (3.44), let

uε ∈ V solve the penalty formulation (3.45) and let pε
n be defined with (3.46). Then

there holds

||λ− pε
n||H̃−1/2(ΓC) ≤

CS

α
||u− uε||

H̃
1/2

(Σ)
,

where CS is the continuity constant of the Steklov-Poincaré operator S and the constant

α > 0 comes from the inf-sup condition (3.52).

Proof. Inf-sup condition (3.52) combined with penalty formulation (3.44) and La-

grange multiplier formulation (3.45) gives

α||λ− pε
n||H̃−1/2(ΓC) ≤ sup

v∈V

〈

λ− pε
n, vn

〉

ΓC

||v||
H̃

1/2
(Σ)

= sup
v∈V

〈

Su,v
〉

Σ
− L(v) −

〈

Suε,v
〉

Σ
+ L(v)

||v||
H̃

1/2
(Σ)

= sup
v∈V

〈

S(u− uε),v
〉

Σ

||v||
H̃

1/2
(Σ)

≤ CS||u− uε||
H̃

1/2
(Σ)
.

Now we are in the position to derive an upper bound for the error, caused by penalization.

Theorem 3.2.2. Let u ∈ V, λ ∈ Λ solve the Lagrange multiplier formulation (3.44),

let uε ∈ V solve the penalty formulation (3.45) and let pε
n be defined with (3.46). We

assume that λ ∈ H1/2(ΓC). Then there holds

||u− uε||
H̃

1/2
(Σ)

≤ CS

cSα
||ελ||H1/2(ΓC), (3.53)

||λ− pε
n||H̃−1/2(ΓC) ≤

C2
S

cSα2
||ελ||H1/2(ΓC ), (3.54)

where CS and cS are continuity and ellipticity constants of S respectively, and the con-

stant α > 0 comes from the inf-sup condition (3.52).

Proof. According to (3.44), (3.45) we obtain

〈

Su,v
〉

−
〈

λ, vn

〉

= L(v) ∀v ∈ V,

〈

Suε,v
〉

−
〈

pε
n, vn

〉

= L(v) ∀v ∈ V ,

Subtracting these variational equations and choosing v := u− uε ∈ V we obtain

〈

S(u− uε),u− uε
〉

=
〈

λ− pε
n, un − uε

n

〉

=
〈

λ− pε
n, un − g

〉

+
〈

pε
n − λ, uε

n − g
〉
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3 Contact between a body and a rigid obstacle

Lemma 3.2.3 provides
〈

λ− pε
n, un − g

〉

≤ 0, Lemma 3.2.4 gives
〈

pε
n − λ, (uε

n − g)−
〉

≥ 0.

Thus

〈

S(u− uε),u− uε
〉

≤
〈

pε
n − λ, uε

n − g
〉

=
〈

pε
n − λ, (uε

n − g)+
〉

−
〈

pε
n − λ, (uε

n − g)−
〉

≤
〈

pε
n − λ, (uε

n − g)+
〉

.

Recalling the definition (3.46) we rewrite
〈

pε
n −λ, (uε

n − g)+
〉

=
〈

pε
n −λ,−εpε

n

〉

. Further,

since
〈

pε
n − λ, ε(pε

n − λ)
〉

≥ 0 there holds

〈

S(u− uε),u− uε
〉

≤
〈

pε
n − λ,−εpε

n

〉

≤
〈

pε
n − λ,−εpε

n

〉

+
〈

pε
n − λ, ε(pε

n − λ)
〉

=
〈

λ− pε
n, ελ

〉

≤ ||λ− pε
n||H̃−1/2(ΓC)||ελ||H1/2(ΓC)

≤ CS

α
||u− uε||

H̃
1/2

(Σ)
||ελ||H1/2(ΓC),

where we applied Lemma 3.2.5 in the last inequality. Ellipticity of the Steklov-Poincaré

operator (1.10) provides

cS||u− uε||2
H̃

1/2
(Σ)

≤
〈

S(u− uε),u− uε
〉

and therefore

||u− uε||
H̃

1/2
(Σ)

≤ CS

cSα
||ελ||H1/2(ΓC).

We apply Lemma 3.2.5 again and get

||λ− pε
n||H̃−1/2(ΓC ) ≤

CS

α
||u− uε||

H̃
1/2

(Σ)
≤ C2

S

cSα2
||ελ||H1/2(ΓC).

3.2.4 A priori error analysis

Discretization

In order to discretize the problem, we decompose the boundary Γ into disjoint straight

line segments I ∈ Th, with diameters not exceeding h. We allow only conforming meshes

Th, i.e. the points Γ̄D ∩ Γ̄N , Γ̄D ∩ Γ̄C , Γ̄N ∩ Γ̄C , are nodes of Th. Let PpI
(I) be the space

of polynomials on a segment I, with degree less or equal pI . We define the boundary

element spaces on Γ as follows

Vhp :=
{

U ∈ V : ∀I ∈ Th, U ∈ [PpI
(I)]2

}

,

Whp :=
{

U ∈ W : ∀I ∈ Th, U ∈ [PpI−1(I)]
2} ,
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3.2 Penalty hp-BEM for one-body contact problem

where V and W are given by (3.36) and (3.37) respectively. We assume that the meshes

Th and the polynomial degree distributions in Vhp are quasiuniform and let h and p be

the characteristic mesh size and polynomial degree respectively.

In order to define discrete boundary integral operators, we introduce canonical embed-

dings jhp : Vhp →֒ H 1/2(Γ), ihp : Whp →֒ H −1/2(Γ), and their duals j∗hp, i
∗
hp with respect

to the dual pairing
〈

·, ·
〉

, cf. (1.14). Now, we define discrete boundary integral operators

as follows
Vhp := i∗hpV ihp, Khp := i∗hpKjhp,

K ′
hp := j∗hpK

′ihp, Whp := j∗hpWjhp,
(3.55)

Ŝ := W + (K ′ + 1/2)ihpV
−1
hp i

∗
hp(K + 1/2),

Ê := S − Ŝ = (K ′ + 1/2)(V −1 − ihpV
−1
hp i

∗
hp)(K + 1/2).

(3.56)

We introduce discrete spaces Vhp and Whp associated with Vhp and Whp respectively,

and given by

Vhp =
{

jhpuhp : uhp ∈ Vhp

}

, Whp =
{

ihpφhp : φhp ∈ Whp

}

.

For clarity of presentation we will distinguish between spaces Vhp, Whp and Vhp, Whp,

respectively. This will be convenient e.g. in the proof of Lemma 3.2.7. Now, we introduce

the discrete penalty formulation as follows: For given ε > 0 find U ε ∈ Vhp :

〈

ŜU ε,v
〉

−
〈

P ε
n, vn

〉

= L(v) ∀v ∈ Vhp, (3.57)

where

P ε
n := −1

ε
(Uε

n − g)+. (3.58)

Furthermore, for uε ∈ V and U ε ∈ Vhp we define the traction-like functions

ψ := V −1(K + 1/2)uε,

Ψ ∗ := V −1(K + 1/2)U ε, (3.59)

Ψ := ihpV
−1
hp i

∗
hp(K + 1/2)U ε.

Lemma 3.2.6. (cf. [15, Proposition 5.1]) Let uε ∈ V, U ε ∈ Vhp and traction-like

functions defined by (3.59). Then the following identity holds

||uε −U ε||2W + ||ψ −Ψ ||2V =
〈

Suε − ŜU ε,uε −U ε
〉

+
〈

V (Ψ∗ −Ψ),ψ −Ψ
〉

,

where

||uε −U ε||W :=
〈

W (uε −U ε),uε −U ε
〉1/2

,

||ψ −Ψ ||V :=
〈

V (ψ −Ψ),ψ −Ψ
〉1/2

.
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3 Contact between a body and a rigid obstacle

Proof. The definition of the Steklov-Poincaré operator (3.40) yields
〈

S(uε −U ε),uε −U ε
〉

=
〈

(W + (K ′ + 1/2)V −1(K + 1/2))(uε −U ε),uε −U ε
〉

=
〈

W (uε −U ε),uε −U ε
〉

+
〈

(K + 1/2))(uε −U ε), V −1(K + 1/2)(uε −U ε)
〉

= ||uε −U ε||2W +
〈

V (ψ −Ψ ∗),ψ −Ψ ∗
〉

,

Further, (3.56) gives
〈

(S − Ŝ)U ε,uε −U ε
〉

=
〈

(K ′ + 1/2)(V − ihpV
−1
hp i

∗
hp)(K + 1/2)U ε,uε −U ε

〉

=
〈

(V − ihpV
−1
hp i

∗
hp)(K + 1/2)U ε, (K + 1/2)(uε −U ε)

〉

=
〈

Ψ ∗ −Ψ , V (ψ −Ψ∗)
〉

=
〈

V (Ψ ∗ −Ψ),ψ −Ψ ∗
〉

.

Combining the upper identities we get
〈

Suε − ŜU ε,uε −U ε
〉

=
〈

S(uε −U ε),uε −U ε
〉

+
〈

(S − Ŝ)U ε,uε −U ε
〉

= ||uε −U ε||2W +
〈

V (ψ −Ψ ∗),ψ −Ψ ∗
〉

+
〈

V (Ψ ∗ −Ψ),ψ −Ψ ∗
〉

= ||uε −U ε||2W +
〈

V (ψ −Ψ),ψ −Ψ ∗
〉

= ||uε −U ε||2W +
〈

V (ψ −Ψ),ψ −Ψ
〉

+
〈

V (ψ −Ψ),Ψ −Ψ∗
〉

= ||uε −U ε||2W + ||ψ −Ψ ||2V −
〈

V (Ψ ∗ −Ψ),ψ −Ψ
〉

,

or equivalently

||uε −U ε||2W + ||ψ −Ψ ||2V =
〈

Suε − ŜU ε,uε −U ε
〉

+
〈

V (Ψ ∗ −Ψ),ψ −Ψ
〉

.

Lemma 3.2.7. For Ψ ∗,Ψ defined in (3.59) there holds
〈

V (Ψ ∗ −Ψ),Φ
〉

= 0, ∀Φ ∈ Whp.

Proof. Using definitions (3.59), (3.55) for Φ = ihpηhp, ηhp ∈ Whp we obtain
〈

VΨ ∗,Φ
〉

=
〈

(K + 1/2)U ε,Φ
〉

=
〈

i∗hp(K + 1/2)U ε,ηhp

〉

=
〈

VhpV
−1
hp i

∗
hp(K + 1/2)U ε,ηhp

〉

=
〈

i∗hpV ihpV
−1
hp i

∗
hp(K + 1/2)U ε,ηhp

〉

=
〈

i∗hpVΨ ,ηhp

〉

=
〈

VΨ ,Φ
〉

.

Similarly to [16] we prove the following lemma.
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3.2 Penalty hp-BEM for one-body contact problem

Lemma 3.2.8. (cf. [16, Lemma 4.1]) For pε
n and P ε

n given by (3.46), (3.58) respectively

the following inequality holds

||ε1/2(pε
n − P ε

n)||2L2(ΓC) ≤ −
〈

pε
n − P ε

n , u
ε
n − Uε

n

〉

.

Proof. To prove the lemma we use the simple observation, that

((uε
n − g)+ − (Uε

n − g)+)(uε
n − Uε

n) = (a+ − b+)(a− b), (3.60)

where a := uε
n − g, b := Uε

n − g. Recalling (3.47) we obtain

(a+ − b+)(a− b) = |a+ − b+|2 − (a+ − b+)(a− − b−)

= |a+ − b+|2 + (a+b− + a−b+)

≥ |a+ − b+|2 = |(uε
n − g)+ − (Uε

n − g)+|2,

since a+a− = 0 = b+b− and a+, a−, b+, b− ≥ 0. That yields

−
〈

pε
n − P ε

n , u
ε
n − Uε

n

〉

=

∫

ΓC

1

ε
((uε

n − g)+ − (Uε
n − g)+))(uε

n − Uε
n) ds

≥
∫

ΓC

1

ε
|(uε

n − g)+ − (Uε
n − g)+)|2 ds

=

∫

ΓC

ε|pε
n − P ε

n|2 ds = ||ε1/2(pε
n − P ε

n)||2L2(ΓC ).

A priori estimate of the penalty discretization error

Theorem 3.2.3. Let uε solve the continuous penalty problem (3.45), let U ε solve the

discrete penalty problem (3.57). Let ψ,Ψ be defined by (3.59). Then there exists C > 0

independent of h, p, ε such that ∀w ∈ Vhp, ∀Φ ∈ Whp there holds

||uε −U ε||
H̃

1/2
(Σ)

+ ||ψ −Ψ ||H−1/2(Γ) + ||ε1/2(pε
n − P ε

n)||L2(ΓC )

≤ C(||uε −w||
H̃

1/2
(Σ)

+ ||ψ −Φ||H−1/2(Γ) + ||ε−1/2(wn − uε
n)||L2(ΓC)).

Proof. We choose v ∈ Vhp ⊂ V in the variational penalty formulation (3.45) and

subtract (3.45) from the discrete penalty formulation (3.57). The obtained result is

similar to the Galerkin orthogonality property and is given by

〈

Suε − ŜU ε,v
〉

−
〈

pε
n − P ε

n , vn

〉

= 0, ∀v ∈ Vhp. (3.61)

We choose v := U ε −w ∈ Vhp. Then

〈

Suε − ŜU ε,U ε −w
〉

−
〈

pε
n − P ε

n, U
ε
n − wn

〉

= 0, ∀w ∈ Vhp.
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3 Contact between a body and a rigid obstacle

Therefore

〈

Suε − ŜU ε,uε −U ε
〉

−
〈

pε
n − P ε

n, u
ε
n − Uε

n

〉

=
〈

Suε − ŜU ε,uε −U ε
〉

−
〈

pε
n − P ε

n, u
ε
n − Uε

n

〉

+
〈

Suε − ŜU ε,U ε −w
〉

−
〈

pε
n − P ε

n, U
ε
n − wn

〉

=
〈

Suε − ŜU ε,uε −w
〉

−
〈

pε
n − P ε

n, u
ε
n − wn

〉

.

Thus, according to Lemma 3.2.6 we obtain

||uε −U ε||2W + ||ψ −Ψ ||2V −
〈

pε
n − P ε

n, u
ε
n − Uε

n

〉

(3.62)

=
〈

Suε − ŜU ε,uε −U ε
〉

−
〈

pε
n − P ε

n , u
ε
n − Uε

n

〉

+
〈

V (Ψ ∗ −Ψ),ψ −Ψ
〉

=
〈

Suε − ŜU ε,uε −w
〉

−
〈

pε
n − P ε

n, u
ε
n − wn

〉

+
〈

V (Ψ ∗ −Ψ),ψ −Ψ
〉

=: A +B + C.

For the term A there holds

A ≤ ||Suε − ŜU ε||H−1/2(Γ)||uε −w||
H̃

1/2
(Σ)
.

With the following identity

Suε − ŜU ε = S(uε −U ε) + ÊU ε = S(uε −U ε) + Ê(U ε − uε) + Êuε

we estimate

A ≤
(

(CS + CÊ)||uε −U ε||
H̃

1/2
(Σ)

+ ||Êuε||H−1/2(Σ)

)

||uε −w||
H̃

1/2
(Σ)

(3.63)

≤ (CS + CÊ)||uε −U ε||
H̃

1/2
(Σ)

||uε −w||
H̃

1/2
(Σ)

(3.64)

+ C0||ψ −Φ||H−1/2(Γ)||uε −w||
H̃

1/2
(Σ)

∀Φ ∈ Whp, (3.65)

where Lemma 1.4.2 yields the last inequality. For the term B we have

B =
〈

pε
n − P ε

n, wn − uε
n

〉

≤ ||ε1/2(pε
n − P ε

n)||L2(ΓC )||ε−1/2(wn − uε
n)||L2(ΓC). (3.66)

Finally for the term C we employ the orthogonality property from Lemma 3.2.7 and get

C =
〈

V (Ψ ∗ −Ψ),ψ −Φ
〉

=
〈

V (Ψ ∗ −ψ),ψ −Φ
〉

+
〈

V (ψ −Ψ),ψ −Φ
〉

≤
〈

(K + 1/2)(U ε − uε),ψ −Φ
〉

+ CV ||ψ −Ψ ||H−1/2(Γ)||ψ −Φ||H−1/2(Γ)

≤ (CK + 1/2)||U ε − uε||
H̃

1/2
(Σ)

||ψ −Φ||H−1/2(Γ)

+ CV ||ψ −Ψ ||H−1/2(Γ)||ψ −Φ||H−1/2(Γ) ∀Φ ∈ Whp.

As shown in Lemma 3.2.8, the contact term in the left hand side of (3.62) satisfies

||ε1/2(pε
n − P ε

n)||2L2(ΓC) ≤ −
〈

pε
n − P ε

n, u
ε
n − Uε

n

〉

.
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3.2 Penalty hp-BEM for one-body contact problem

Gathering the above results we obtain from (3.62) the following estimate

||uε −U ε||2W + ||ψ −Ψ ||2V + ||ε1/2(pε
n − P ε

n)||2L2(ΓC)

≤ (CS + CÊ)||uε −U ε||
H̃

1/2
(Σ)

||uε −w||
H̃

1/2
(Σ)

+ C0||ψ −Φ||H−1/2(Γ)||uε −w||
H̃

1/2
(Σ)

+ ||ε1/2(pε
n − P ε

n)||L2(ΓC )||ε−1/2(wn − uε
n)||L2(ΓC)

+ (CK + 1/2)||U ε − uε||
H̃

1/2
(Σ)

||ψ −Φ||H−1/2(Γ)

+ CV ||ψ −Ψ ||H−1/2(Γ)||ψ −Φ||H−1/2(Γ).

The standard arguments give

c1||uε −U ε||2
H̃

1/2
(Σ)

+ c2||ψ −Ψ ||2
H−1/2(Γ)

+ ||ε1/2(pε
n − P ε

n)||2L2(ΓC)

≤ c3||uε −w||2
H̃

1/2
(Σ)

+ c4||ψ −Φ||2
H−1/2(Γ)

+ ||ε−1/2(wn − uε
n)||2L2(ΓC)

(3.67)

where the constants

c1 = 2cW − θ1 − θ2

c2 = 2cV − θ3

c3 = (CS + CÊ)2/θ1 + C0

c4 = C0 + (CK + 1/2)2/θ2 + C2
V θ3

are independent of h, p, ε and cV , cW are the ellipticity constants of V,W . The constants

c1, c2 are positive if θ1, θ2, θ3 > 0 are small enough.

Assume that uε ∈ H̃
3/2

(Σ) and ψ ∈ H 1/2(Γ). According to [10], [64], there exists a

constant C > 0, such that there hold the following approximation properties

inf
w∈Vhp

||uε −w||
H̃

1/2
(Σ)

≤ C
h

p
||uε||

H̃
3/2

(Σ)
, (3.68)

inf
Φ∈Whp

||ψ −Φ||H−1/2(Γ) ≤ C
h

p
||ψ||H 1/2(Γ), (3.69)

inf
w∈Vhp

||ε−1/2(wn − uε
n)||L2(ΓC) ≤ C

(

h

p

)3/2

||ε−1/2uε
n||H3/2(ΓC). (3.70)

Here we define the Sobolev space H3/2 on the part of the boundary of the polygonal

domain Ω according to [22].

We recall the equivalent nonsymmetric definition of the Steklov-Poincaré operator (1.8)

T = V −1(K + 1/2). (3.71)

From (3.59) we have ψ = Tuεn.

The approximation properties (3.68)–(3.70) combined with Theorem 3.2.3 yield the fol-

lowing a priori error estimate for the solution of the penalty formulation (3.45).
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3 Contact between a body and a rigid obstacle

Theorem 3.2.4. Let uε ∈ H̃
3/2

(Σ) be a solution of (3.45) and Tuε ∈ H 1/2(Γ). Let

U ε ∈ Vhp be a solution of (3.57). Then there exists a constant C > 0 independent of

h, p, ε, such that

||uε −U ε||2
H̃

1/2
(Σ)

+ ||Tuε −Ψ ||2
H−1/2(Γ)

+ ||ε1/2(pε − P ε)||2L2(ΓC)

≤ C

(

h

p
||uε||

H̃
3/2

(Σ)
+
h

p
||Tuε||H 1/2(Γ) +

(

h

p

)3/2

||ε−1/2uε
n||H3/2(ΓC)

)

.

A priori error estimate of the total error

In order to obtain an a priori error estimate for the total error between the solutions of

problems (3.45) and (3.57) in terms of the solution of the variational inequality (3.45),

we need to combine the results of Theorem 3.2.2 and Theorem 3.2.3. Unfortunately, lack

of stability estimates of type (3.53) for the penalized problem in the L2-norm yields to

the reduced convergence rate. We prove the modified version of Theorem 3.2.3, where

the L2-term on the right hand side of the estimate is absorbed by the H1/2-term. This

becomes possible under additional conditions on penalty parameter’s growth leading to

the quasioptimal rate of convergence for the total error.

The following lemma is important for the proof of Theorem 3.2.5.

Lemma 3.2.9. There exists an operator Ghp : H̃
1/2

(Σ) → Vhp, which is stable in the

H̃
1/2

-norm and has the quasioptimal approximation properties in the L2-norm, i.e. there

exists a constant C, independent of h and p such that for all u ∈ H̃
1/2

(Σ) there holds

||Ghpu||H̃ 1/2
(Σ)

≤ C||u||
H̃

1/2
(Σ)
, (3.72)

||u−Ghpu||L2(Σ) ≤ C

(

h

p

)(1−ǫ)/2

||u||
H̃

1/2
(Σ)

(3.73)

with arbitrary small ǫ ∈ (0; 1/2).

Proof. Let W be the hypersingular integral operator associated with the Lamé

operator. We consider a weak formulation for the one-dimensional hypersingular integral

equation, which consists of finding u ∈ H̃
1/2

(Σ) such that for given f ∈ H −1/2(Σ) there

holds

〈

Wu,v
〉

=
〈

f ,v
〉

, ∀v ∈ H̃
1/2

(Σ). (3.74)

The Galerkin formulation corresponding to (3.74) is given as follows:

Find U ∈ Vhp :

〈

WU ,v
〉

=
〈

f ,v
〉

, ∀v ∈ Vhp. (3.75)
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3.2 Penalty hp-BEM for one-body contact problem

It is well known that both problems have unique solutions for arbitrary f ∈ H −1/2(Σ)

(see e.g. [69]). Now, we define the operator Ghp as the Galerkin projection, related to

(3.74), (3.75), i.e.

Ghpu := U . (3.76)

Stability of the Galerkin projection Ghp follows directly from continuity (Lemma 1.2.1)

and ellipticity (Lemma 1.2.3) of the hypersingular integral operator on the space H̃1/2(Σ)

(see also [61],[69])

||Ghpu||H̃1/2(Σ) ≤
1

cW

〈

WU ,U
〉

||U ||
H̃

1/2
(Σ)

=
1

cW

〈

Wu,U
〉

||U ||
H̃

1/2
(Σ)

≤ CW

cW
||u||

H̃
1/2

(Σ)
.

Here cW and CW stand for ellipticity and continuity constants of W . In order to prove

the approximation property, we apply the Aubin-Nitsche type duality arguments [64],

[23]. There holds

||u−U ||L2(Σ) = sup
ψ∈L2(Σ)\{0}

〈

u−U ,ψ
〉

||ψ||L2(Σ)
. (3.77)

Further, we introduce an auxiliary problem: For ψ ∈ L2(Σ) find φ ∈ H̃
1/2

(Σ), such

that

Wφ = ψ.

Using Galerkin orthogonality and continuity of W we obtain for arbitrary Φ ∈ Vhp

〈

u−U , ψ
〉

=
〈

u−U ,Wφ
〉

=
〈

W (u−U),φ
〉

=
〈

W (u−U),φ−Φ
〉

(3.78)

≤ CW ||u−U ||
H̃

1/2
(Σ)

||φ−Φ||
H̃

1/2
(Σ)

Stability of Ghp (3.72) provides

||u−U ||
H̃

1/2
(Σ)

≤ ||u||
H̃

1/2
(Σ)

+ ||U ||
H̃

1/2
(Σ)

≤ 2||u||
H̃

1/2
(Σ)
. (3.79)

According to Wendland and Stephan [69] the hypersingular integral operator is a bijec-

tive mapping

W : H̃
1/2+s

(Σ) → H −1/2+s(Σ)

for |s| < 1/2. This provides for ψ ∈ L2(Σ) that φ = W−1ψ ∈ H 1−ǫ(Σ) for arbitrary

small ǫ > 0. Following [10] we obtain for some fixed ǫ ∈ (0; 1/4)

inf
Φ∈Vhp

||φ−Φ||
H̃

1/2
(Σ)

≤
(

h

p

)1/2−ǫ

||φ||H̃1−ǫ(Σ) ≤
(

h

p

)1/2−ǫ

||φ||H̃1−ǫ(Σ). (3.80)

Furthermore, since W is continuous for |s| ≤ 1/2, the inverse mapping theorem provides

that the inverse operator W−1 is continuous for |s| < 1/2. It means that

||φ||
H̃

1−ǫ
(Σ)

= ||W−1ψ||
H̃

1−ǫ
(Σ)

≤ C||ψ||
H̃

−ǫ
(Σ)

≤ C||ψ||L2(Σ),

79



3 Contact between a body and a rigid obstacle

which together with (3.77)–(3.80) gives (3.73).

The following theorem is a modification of Theorem 3.2.3 avoiding the L2-term on the

left-hand side of the estimate.

Theorem 3.2.5. Let uε solve the variational penalty problem (3.45), let U ε solve the

discrete penalty problem (3.57). Let ψ,Ψ be defined by (3.59). Assume that ∃C̃ ≥
0 : ε ≥ C̃(h/p)1−ǫ for some fixed ǫ ∈ (0; 1/2). Then there exists a constant C > 0

independent of h, p, ε such that ∀w ∈ Vhp, ∀Φ ∈ Whp there holds

||uε −U ε||
H̃

1/2
(Σ)

+ ||ψ −Ψ ||H−1/2(Γ) + ||ε1/2(pε
n − P ε

n)||L2(ΓC)

≤ C(||uε −w||
H̃

1/2
(Σ)

+ ||ψ −Φ||H−1/2(Γ)).

Proof. Using similar arguments as in Theorem 3.2.2 we estimate the term B now by

B =
〈

pε
n − P ε

n , wn − uε
n

〉

≤ ||pε
n − P ε

n||H̃−1/2(ΓC)||wn − uε
n||H1/2(ΓC).

Further following the proof we obtain instead of (3.67)

c1||uε −U ε||2
H̃

1/2
(Σ)

+ c2||ψ −Ψ ||2
H−1/2(Γ)

+2||ε1/2(pε
n − P ε

n)||2L2(ΓC) − θ4||pε
n − P ε

n||2H̃−1/2(ΓC)

≤ c3||uε −w||2
H̃

1/2
(Σ)

+ c4||ψ −Φ||2
H−1/2(Γ)

+ 1/θ4||wn − uε
n||2H1/2(ΓC)

≤ (c3 + 1/θ4)||uε −w||2
H̃

1/2
(Σ)

+ c4||ψ −Φ||2
H−1/2(Γ)

for some suitable θ4 > 0. We only need to show that the negative term on the left hand

side can be controlled by the positive terms.

LetGhp be the projection operator defined in Lemma 3.2.9. Then, using inf-sup condition

(3.52) we get

α||pε
n − P ε

n||H̃−1/2(ΓC) ≤ sup
v∈H̃

1/2
(Σ)

〈

pε
n − P ε

n, vn

〉

||v||
H̃

1/2
(Σ)

= sup
v∈H̃

1/2
(Σ)

(

〈

pε
n − P ε

n, Ghpvn

〉

||v||
H̃

1/2
(Σ)

+

〈

pε
n − P ε

n , vn −Ghpvn

〉

||v||
H̃

1/2
(Σ)

)

The Galerkin orthogonality property (3.61) yields for the first term (cf. (3.63))

〈

pε
n − P ε

n, Ghpvn

〉

||v||
H̃

1/2
(Σ)

=

〈

Suε − ŜU ε, Ghpv
〉

||v||
H̃

1/2
(Σ)

≤ ||Suε − ŜU ε||H−1/2(Σ)

||Ghpv||H̃ 1/2
(Σ)

||v||
H̃

1/2
(Σ)

≤ C||Suε − ŜU ε||H−1/2(Σ)

≤ C(CS + CÊ)||uε −U ε||
H̃

1/2
(Σ)

+ CC0||ψ −Φ||H−1/2(Γ) ∀Φ ∈ Whp,
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3.2 Penalty hp-BEM for one-body contact problem

since Ghp is stable with respect to the H̃1/2−norm due to (3.72). The approximation

property (3.73) yields for the second term
〈

pε
n − P ε

n, vn −Ghpvn

〉

||v||
H̃

1/2
(Σ)

≤ ||pε
n − P ε

n||L2(ΓC)

||v −Ghpv||L2(ΓC)

||v||
H̃

1/2
(Σ)

≤ C

(

h

p

)(1−ǫ)/2

||pε
n − P ε

n||L2(ΓC ).

It is only left to show that one can choose a constant θ4 > 0 such that

||ε1/2(pε
n − P ε

n)||2L2(ΓC) − θ4

(

h

p

)1−ǫ

||pε
n − P ε

n||2L2(ΓC) ≥
1

2
||ε1/2(pε

n − P ε
n)||2L2(ΓC).

According to the assumption on ε there exists a constant C̃ > 0 such that ε ≥ C̃(h/p)1−ǫ,

therefore the assertion follows with θ4 = C̃/2.

Now we are able to show the optimal rate of convergence of the total error.

Theorem 3.2.6. Let u ∈ V ∩ H̃
3/2

(Σ), λ ∈ Λ∩H1/2(ΓC) be a solution of (3.44) and let

Tu ∈ H1/2(Γ), where T is defined by (3.71). Let U ε ∈ Vhp solve (3.57). Assume that

∃C̃ ≥ 0 : ε ≥ C̃(h/p)1−ǫ for some fixed ǫ ∈ (0; 1/2). Then there exists a constant C > 0

independent of h, p, ε such that

||u−U ε||
H̃

1/2
(Σ)

≤ C

(

h

p
||u||

H̃
3/2

(Σ)
+

(

ε+
h

p

)

||Tu||H 1/2(Γ)

)

. (3.81)

Proof. Theorem 3.2.5, the triangle inequality and (3.71) yield

||uε −U ε||
H̃

1/2
(Σ)

≤ C(||uε −w||
H̃

1/2
(Σ)

+ ||ψ −Φ||H−1/2(Γ))

≤ C(||u− uε||
H̃

1/2
(Σ)

+ ||u−w||
H̃

1/2
(Σ)

+||ψ − V −1(K + 1/2)u||H−1/2(Γ) + ||Tu−Φ||H−1/2(Γ)).

The approximation properties of Vhp,Whp (3.68)–(3.70) provide

inf
w∈Vhp

||u−w||
H̃

1/2
(Σ)

≤ C
h

p
||u||

H̃
3/2

(Σ)
,

inf
Φ∈Whp

||Tu−Φ||H−1/2(Γ) ≤ C
h

p
||Tu||H 1/2(Γ).

Therefore continuity of V −1(K+1/2) : H 1/2(Γ) → H −1/2(Γ) and Theorem 3.2.2 provide

||u−U ε||
H̃

1/2
(Σ)

≤ ||u− uε||
H̃

1/2
(Σ)

+ ||uε −U ε||
H̃

1/2
(Σ)

≤ C

(

||u− uε||
H̃

1/2
(Σ)

+
h

p
||u||

H̃
3/2

(Γ)
+
h

p
||Tu||H 1/2(Γ)

)

≤ C

(

||ελ||H1/2(ΓC) +
h

p
||u||

H̃
3/2

(Γ)
+
h

p
||Tu||H 1/2(Γ)

)

.

The weak formulation (3.44) provides that λ = Tu · n|ΓC
, which gives (3.81).
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3 Contact between a body and a rigid obstacle

3.2.5 Numerical example

We consider a model problem of an elastic body Ω contacting with a rigid straight line

obstacle. The domain Ω = [−1, 1]× [−1, 1] is fixed along ΓD := [−1, 1]×{1} (i.e. u = 0

on ΓD). The contact boundary ΓC := [−1, 1] × {−1} comes in contact with the rigid

obstacle [−2, 2] × {−1 + d} thanks to the shift d = 2 · 10−4. The boundary traction

vanishes on the Neumann boundary, given by ΓN = ∂Ω \ (ΓD ∪ ΓC). The Young’s

modulus and the Poisson’s ratio are E = 266926.0, ν = 0.29 respectively.

We use h-version of the BEM with piecewise linear basis functions on a uniform mesh.

We connect the mesh size h and the penalty parameter ε with a proportionality constant

Cε, i.e. ε := Cεh, which balances the penalization error and the discretization error in

the estimate (3.81). We study convergence of the method for different values of Cε.

Cε DOF ε err(U ε)

10−4 22 0.25000 · 10−4 0.12173862

10−4 46 0.12500 · 10−4 0.10046317

10−4 94 0.62500 · 10−5 0.07444925

10−4 190 0.31250 · 10−5 0.04905021

10−4 382 0.15625 · 10−5 0.02915712

10−4 766 0.78125 · 10−6 0.01609924

10−5 22 0.25000 · 10−5 0.04185280

10−5 46 0.12500 · 10−5 0.02421500

10−5 94 0.62500 · 10−6 0.01314311

10−5 190 0.31250 · 10−6 0.00686598

10−5 382 0.15625 · 10−6 0.00351204

10−5 766 0.78125 · 10−7 0.00177676

10−6 22 0.25000 · 10−6 0.00540834

10−6 46 0.12500 · 10−6 0.00277935

10−6 94 0.62500 · 10−7 0.00141103

10−6 190 0.31250 · 10−7 0.00071157

10−6 382 0.15625 · 10−7 0.00035767

10−6 766 0.78125 · 10−8 0.00017959

10−7 22 0.25000 · 10−7 0.00042198

10−7 46 0.12500 · 10−7 0.00024092

10−7 94 0.62500 · 10−8 0.00012970

10−7 190 0.31250 · 10−8 0.67760 · 10−4

10−7 382 0.15625 · 10−8 0.34964 · 10−4

10−7 766 0.78125 · 10−9 0.18041 · 10−4

Table 3.1: Error behaviour for various penalty parameters ε = Cεh
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Figure 3.1: Error behaviour for varied penalty parameter ε = Cεh

The results of numerical experiments are presented in Table 3.1 and in Figure 3.1.

The error is given by err(U ε) =
〈

ŜU ε,U ε
〉1/2 − ||ulim||S, where the value ||ulim||S =

0.154398 is obtained by the Aitken extrapolation. We see that with decreasing of the

proportionality constant Cε the linear rate of convergence is achieved for smaller number

of unknowns. For Cε ≤ 10−5 the linear rate of convergence is achieved even for low

number of unknowns. Numerical experiments for fixed penalty parameter show that the

error does not decrease if the mesh size is reduced.
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3 Contact between a body and a rigid obstacle

3.3 Residual FE and BE a posteriori error estimates for

contact with friction

The question of automatic mesh refinement in the framework of the h-version of penalty

FEM and BEM for one-body frictional contact problem is addressed in this section.

The error measure, based on the energy norm of the solution, combined with normal

and tangential contact terms is introduced for FEM and BEM. Then, the local residual-

based error indicators are derived for both FEM and BEM and their reliability and

efficiency are shown. An automatic mesh refinement procedure, based on these indicators

is introduced. Finally the suggested method is illustrated on several numerical examples.

A similar error indicator was used for the h-version of FEM for frictional contact prob-

lems, but only with heuristical motivation, cf. Wriggers [72], Hu and Wriggers [36].

Another reliable residual based error indicator was obtained by Eck and Wendland in

[27] for the h-version of the BEM using a different technique, while the efficiency of the

error indicator has not been shown.

We estimate here the error between the solution uε of the weak penalty domain formu-

lation (for FEM) or of the penalty boundary integral formulation (for BEM) and the

corresponding discrete solution U ε. In order to capture the error between uε and the

solution of the variational inequality u, the penalty parameters εn, εt have to be changed

simultaneously with the mesh size. The relation between the penalty parameters and

the mesh size is usually taken from the corresponding a priori error analysis, which guar-

antees the optimal order of convergence of U ε to u. For example, employing the results

of the previous section, we obtain that εn ∼ h1−ǫ, 0 < ǫ ≪ 1, provides the optimal

convergence rate for frictionless contact.

3.3.1 Regularization of the frictional contact problem

We return to the contact problem between an elastic body and a rigid obstacle with

Tresca’s law of friction, described in the introduction to Chapter 3. As shown in Sec-

tion 3.1 for the case of vanishing gap function g ≡ 0, the classical formulation of the

problem (3.1) can be written as a variational inequality, or as a minimization problem

(3.11). Similar arguments provide for the general case g 6≡ 0 the following minimization

formulation: Find u ∈ K := {w ∈ V : vn − g ≤ 0 on ΓC} :

J(w) ≥ J(u), ∀w ∈ K, (3.82)

where

J(w) :=
1

2
〈Sw,w〉Σ + j(w) − L(w), (3.83)
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and V := H̃
1/2

(Σ). The frictional functional j(·) and the load functional L(·) are

given by (3.6) and (3.4) respectively. In Section 3.2 we have shown, how the incon-

venient inequality constraint can be removed from the space of admissible solutions K

by penalizing the penetration of the body through the obstacle. This technique leads

to the (frictionless) penalty formulation (3.45), which can be equivalently rewritten in

terms of the minimization problem. In the case of non-vanishing friction the penalized

minimization problem reads: Find u ∈ V :

J̄ε(w) ≥ J̄ε(u), ∀w ∈ V , (3.84)

where

J̄ε(w) :=
1

2
〈Sw,w〉Σ +

∣

∣

∣

∣

∣

∣

∣

∣

1

(2εn)1/2
(wn − g)+

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(ΓC)

+ j(w) − L(w) (3.85)

and the ”positive value” function (·)+ is defined by (3.47). Note, that the non-differentiable

frictional functional j(·) is still included in the penalized formulation, which is quite in-

convenient for developing of numerical solution schemes. Therefore, we introduce the

regularized version of j(·) (see [38, Section 10.4] for different examples of regularization).

We use here the piecewise quadratic regularization of the absolute value function (cf.

(3.18)), which can be equivalently expressed on the discrete level in terms of the return

mapping algorithm, as described in Section 4.2.

Ψεt(x) =

{

|x| − εt

2
, |x| ≥ εt,

x2

2εt
, |x| ≤ εt,

ϕεt(x) =

{

sign(x), |x| ≥ εt,
x
εt
, |x| ≤ εt.

(3.86)

The regularized frictional functional is now given by

jεt(w) :=

∫

ΓC

FΨεt(wt) ds

and the minimization problem (3.84) transforms as follows: Find u ∈ V :

Jε(w) ≥ Jε(u), ∀w ∈ V , (3.87)

where

Jε(w) :=
1

2
〈Sw,w〉Σ +

∣

∣

∣

∣

∣

∣

∣

∣

1

(2εn)1/2
(wn − g)+

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(ΓC)

+ jεt(w) − L(w). (3.88)

We define for brevity f ∗ := εtϕεt(f) . Hence, according to (3.86),

(f(x))∗ =

{

εtsign(f(x)), |x| ≥ εt,

f(x), |x| ≤ εt.
(3.89)

The regularized functional jεt(·) (and therefore Jεt(·)) is Gâteaux-differentiable and its

derivative is given by

〈Djεt(u),v〉ΓC
= 〈pε

t , vt〉ΓC
, pε

t := − 1

εt

Fu∗t .
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3 Contact between a body and a rigid obstacle

Thus, the problem of finding a stationary point of Jε(·) can be rewritten as the following

variational formulation: Find uε ∈ V such that

〈Suε,v〉Σ − 〈pε
n, vn〉ΓC

− 〈pε
t , vt〉ΓC

= L(v), ∀v ∈ V , (3.90)

where the normal contact traction is given by the constitutive relation (cf. 3.46)

pε
n := − 1

εn
(uε

n − g)+. (3.91)

In order to discretize the problem (3.90), we introduce a partition Th of the boundary Γ

into straight line segments.

Γ :=
⋃

I∈Th

I.

We define the space Vh of admissible displacements consisting of continuous piecewise

linear functions on the mesh Th by

Vh :=
{

v ∈ H̃
1/2

(Σ) : v|I ∈ P1(I), ∀I ∈ Th

}

. (3.92)

As discussed before, the Steklov-Poincaré operator S (cf. (3.40)) can not be discretized

directly, since it includes the inverse V −1 of the single layer potential. Therefore, first, the

approximation Vh of V is computed and then inverted. The construction of the discrete

operator Vh requires a dual variable – the boundary traction, which must be discretized

correspondingly. Therefore one can define some different mesh for discretization of the

boundary traction, as it was suggested in [46]. We employ here the same mesh as for

the primal variable. We define the space of discrete tractions as a space of piecewise

constant functions on Th

Wh :=
{

v ∈ H −1/2(Γ) : v|I ∈ P0(I), ∀I ∈ Th

}

. (3.93)

The same as before, we denote the discrete Steklov-Poincaré operator Ŝ and the error-

operator Ê as follows (cf. (3.56)):

Ŝ := W + (K ′ + 1/2)ihV
−1
h i∗h(K + 1/2),

Ê := S − Ŝ = (K ′ + 1/2)(V − ihV
−1
h i∗h)(K + 1/2).

(3.94)

Then the discrete formulation reads as follows: Find U ε ∈ Vh.

〈

ŜU ε,Φ
〉

Σ
− 〈P ε

n,Φn〉ΓC
− 〈P ε

t ,Φt〉ΓC
= L(Φ), ∀Φ ∈ Vh (3.95)

with

P ε
n := − 1

εn
(Uε

n − g)+, P ε
t := − 1

εt
FUε∗

t .
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

Remark 3.3.1. For the finite element method one can obtain corresponding formula-

tions. The domain variational formulation reads:

Find uε ∈ VF :=
{

v ∈ H 1(Ω) : v = 0 on ΓD

}

such that

a(uε,φ) − 〈pε
n, φn〉ΓC

− 〈pε
t , φt〉ΓC

= L(φ), ∀φ ∈ VF . (3.96)

The bilinear form a(·, ·) and the linear form L(·) are given by

a(uε,φ) :=

∫

Ω

σ(uε) : ε(φ) dx, L(φ) :=

∫

ΓN

t̂ ·φ ds+

∫

Ω

f ·φ dx,

where f ∈ L2(Ω) indicates the volume force. We introduce a piecewise linear space

of admissible displacements VFh over some (triangular or quadrilateral) mesh TFh in

two-dimensional domain Ω. Then the discrete formulation reads: Find U ε ∈ VFh such

that

a(U ε,Φ) − 〈P ε
n,Φn〉 − 〈P ε

t ,Φt〉 = L(Φ), ∀Φ ∈ VFh. (3.97)

Sometimes, we use the following vector notations for the penalized traction

pε := pε
nn + pε

tt, P ε := P ε
nn+ P ε

t t.

3.3.2 Residual a posteriori error estimates for finite elements

Let uε ∈ VF be an exact solution of the domain penalty formulation (3.96) and let

U ε ∈ VFh be the solution of the discrete finite element problem (3.97). In order to

prove an a posteriori error estimate, we have to show a monotonicity property for the

tangential component of the displacement (cf. Lemma 3.2.8 for the normal component

of the displacement).

Lemma 3.3.1. For all uε ∈ VF solving (3.96) and U ε ∈ VFh solving (3.97), there

holds

||εt
1/2F−1/2(pε

t − P ε
t )||2L2(ΓC ) ≤ −〈pε

t − P ε
t , u

ε
t − Uε

t 〉ΓC
.

Proof. At first, we show that for any real numbers a, b there holds

(a∗ − b∗)2 ≤ (a∗ − b∗)(a− b)

We introduce a function (·)# complementary to (·)∗, such that for any a ∈ R the de-

composition a = a∗ + a# holds. Hence

(a∗ − b∗)(a− b) = (a∗ − b∗)2 + (a∗ − b∗)(a# − b#).
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3 Contact between a body and a rigid obstacle

We get the desirable result, if we show that

(a∗ − b∗)(a# − b#) ≥ 0. (3.98)

Therefore, we check the different possible cases. If |a| ≤ εt and |b| ≤ εt, the inequality

(3.98) trivially holds, since a# = 0 = b#. For |a| ≥ εt, |b| ≤ εt, according to (3.89), we

obtain

(a∗ − b∗)(a# − b#) = (εtsign(a) − b)a# = (εt − b sign(a))|a#| ≥ 0,

which yields (3.98). The same holds for |a| ≤ εt, |b| ≥ εt. Finally, for |a| ≥ εt, |b| ≥ εt

there holds

(a∗ − b∗)(a# − b#) = εt(sign(a) − sign(b))(a# − b#)

= εt(1 − sign(ab))(|a#| − |b#|sign(ab))

=

{

0, if sign(ab) = 1,

2εt(|a#| + |b#|), if sign(ab) = −1

}

≥ 0

and (3.98) follows. Now we derive that

||εt
1/2F−1/2(pε

t − P ε
t )||2L2(ΓC) =

∫

ΓC

εt

F (pε
t − P ε

t )2 ds =

∫

ΓC

1

εt
F(uε∗

t − Uε∗
t )2 ds

≤
∫

ΓC

1

εt
F(uε∗

t − Uε∗
t )(uε

t − Uε
t ) ds

= −〈pε
t − P ε

t , u
ε
t − Uε

t 〉ΓC
,

which completes the proof.

We introduce the error measure in the finite element case as follows

|||uε −U ε|||2F := a(uε −U ε,uε −U ε)

+||εn
1/2(pε

n − P ε
n)||2L2(ΓC) + ||εt

1/2F−1/2(pε
t − P ε

t )||2L2(ΓC).
(3.99)

Reliability of the FE a posteriori error estimate

Denote for brevity by EFh the set of all edges in the mesh TFh. Now we are in the

position to show that the following a posteriori error estimate holds.

Theorem 3.3.1. Let uε ∈ VF be an exact solution of the domain penalty formulation

(3.96) and let U ε ∈ VFh be the solution of the discrete finite element problem (3.97).

Then the error defined by (3.99) can be estimated as follows

|||uε −U ε|||2F ≤ C
∑

K∈Th

η2
Fh(K),
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

where the local indicators are given by

η2
Fh(K) := h2

K‖f + div σ(U ε)‖2
L2(K)

+
1

2

∑

I⊂(Eh∪∂K)\Γ

hI‖[σ(U ε) · n]‖2
L2(I) (3.100)

+
∑

I⊂Eh∩∂K∩ΓN

hI‖t̂− σ(U ε) · n‖2
L2(I)

+
∑

I⊂Eh∩∂K∩ΓC

hI

∥

∥

∥

∥

P ε
nn+ P ε

t t− σ(U ε) · n
∥

∥

∥

∥

2

L2(I)

,

with some positive constant C.

Proof. Using the monotonicity properties of Lemma 3.2.8 and Lemma 3.3.1 one can

write

|||uε −U ε|||2F := a(uε −U ε,uε −U ε)

+ ||εn
1/2(pε

n − P ε
n)||2L2(ΓC) + ||εt

1/2F−1/2(pε
t − P ε

t )||2L2(ΓC)

≤ a(uε −U ε,uε −U ε)

− 〈pε
n − P ε

n, u
ε
n − Uε

n〉ΓC
− 〈pε

t − P ε
t , u

ε
t − Uε

t 〉ΓC
. (3.101)

Subtracting (3.97) from (3.96) we obtain for arbitrary Φ ∈ VFh

0 = a(uε −U ε,Φ) − 〈pε
n − P ε

n,Φn〉ΓC
− 〈pε

t − P ε
t ,Φt〉ΓC

. (3.102)

For some Ψ ∈ VFh we choose Φ := U ε −Ψ ∈ VFh. Adding (3.102) and (3.101) we get

|||uε −U ε|||2F ≤ a(uε −U ε,uε −U ε) − 〈pε
n − P ε

n , u
ε
n − Uε

n〉ΓC
− 〈pε

t − P ε
t , u

ε
t − Uε

t 〉ΓC

− a(uε −U ε,U ε −Ψ) − 〈pε
n − P ε

n, U
ε
n − Ψn〉ΓC

− 〈pε
t − P ε

t , U
ε
t − Ψt〉ΓC

= a(uε −U ε,uε −Ψ) − 〈pε
n − P ε

n, u
ε
n − Ψn〉ΓC

− 〈pε
t − P ε

t , u
ε
t − Ψt〉ΓC

.

With φ := uε −Ψ ∈ VF , the variational formulation (3.96) reads

a(uε,uε −Ψ) − 〈pε
n, u

ε
n − Ψn〉ΓC

− 〈pε
t , u

ε
t − Ψt〉ΓC

= L(uε −Ψ)

and therefore

|||uε −U ε|||2F ≤ L(uε −Ψ) − a(U ε,uε −Ψ) + 〈P ε
n, u

ε
n − Ψn〉ΓC

+ 〈P ε
t , uεt − Ψt〉ΓC

.

Applying Green’s formula on each element K ∈ TFh we obtain

−a(U ε|K ,uε|K −Ψ |K) =

∫

K

div σ(U ε) · (uε −Ψ) ds

−
∑

I⊂∂K

∫

I

(σ(U ε) · n) · (uε −Ψ) ds.
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3 Contact between a body and a rigid obstacle

This gives

|||uε −U ε|||2F ≤
∑

K∈TF h

∫

K

(f + div σ(U ε)) · (uε −Ψ) ds

+
1

2

∑

I⊂Eh\∂Ω

∫

I

[σ(U ε) · n] · (uε −Ψ) ds

+
∑

I⊂Eh∩ΓN

∫

I

(t̂− σ(U ε) · n) · (uε −Ψ) ds

+
∑

I⊂Eh∩ΓC

∫

I

(P ε
nn+ P ε

t t− σ(U ε) · n) · (uε −Ψ) ds.

The Cauchy-Schwarz inequality provides

|||uε −U ε|||2F ≤
∑

K∈TF h

||f + div σ(U ε)||L2(K)||uε −Ψ ||L2(K)

+
∑

I⊂Eh\∂Ω

||[σ(U ε) · n]||L2(I)||uε −Ψ ||L2(I)

+
∑

I⊂Eh∩ΓN

||t̂− σ(U ε) · n||L2(I)||uε −Ψ ||L2(I)

+
∑

I⊂Eh∩ΓC

||P ε
nn+ P ε

t t− σ(U ε) · n||L2(I)||uε −Ψ ||L2(I).

We choose now Ψ := U ε + ih(u
ε −U ε) ∈ VFh, where ih is the two-dimensional Clément

interpolation operator applied componentwise. Let v ∈ L2(Ω). The following estimates

for the interpolation error are well-known, see e.g. [20], [49],

‖v − ihv‖L2(K) ≤ c1hK |v|H 1(ω(K)),

‖v − ihv‖L2(I) ≤ c2h
1/2
I |v|H 1(ω(I)),

(3.103)

where ω(E) denotes the neighbourhood of E for E = K, I, i.e. the set of all (finite)

elements from the mesh Th, which have nonempty intersection with E. Using the ap-

proximation property (3.103) we obtain the assertion of the theorem.

Remark 3.3.2. Note that H 1(Ω)-regularity is not enough for working with the La-

grangian interpolation operator, since H 1(Ω) 6⊂ C (Ω). Therefore, we need to employ

an interpolation operator, as the Clément interpolation operator, which works also for

nonsmooth functions.

Efficiency of the FE a posteriori error estimate

The proof of efficiency of the suggested finite element error indicator is analogous to the

proof in the boundary element case, considered below, with some standard modifica-

tions for the domain term ||f + div σ(U ε)||L2(K) and for the interior jumps of the stress
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

||[σ(U ε) · n]||L2(I). The reliability and efficiency properties yield the sharpness of the a

posteriori error estimate.

Theorem 3.3.2. Let Th be a quasiuniform mesh on Γ with characterictical meshsize

h. Then, if the penalty parameters εn, εt are chosen, such that there exists a constant

C̃ > 0, for which

εn ≥ C̃h, εt ≥ C̃Fh,

the a posteriori error estimate is sharp, i.e. there exist constants c, C > 0 independent

of h, such that

c
∑

K∈Th

η2
Fh(K) ≤ |||uε −U ε|||2F ≤ C

∑

K∈Th

η2
Fh(K).

3.3.3 Residual a posteriori error estimates for boundary elements

Let uε ∈ V be an exact solution of the boundary penalty formulation (3.90) and let

U ε ∈ Vh be the solution of the discrete boundary element problem (3.95). Define the

traction-like functions by

ψ := V −1(K + 1/2)uε,

Ψ ∗ := V −1(K + 1/2)U ε, (3.104)

Ψ := ihV
−1
h i∗h(K + 1/2)U ε.

We introduce the error measure in the boundary element case as follows

|||uε −U ε|||2B := ||uε −U ε||2
H̃

1/2
(Σ)

+ ||ψ −Ψ ||2
H−1/2(Γ)

+||εn
1/2(pε

n − P ε
n)||2L2(ΓC) + ||εt

1/2F−1/2(pε
t − P ε

t )||2L2(ΓC).
(3.105)

Reliability of the BE a posteriori error estimate

The following theorem provides an upper bound for |||uε −U ε|||2B.

Theorem 3.3.3. Let uε ∈ V be an exact solution of the boundary penalty formulation

(3.90) and let U ε ∈ Vh be the solution of the discrete boundary element problem (3.95).

Then the following a posteriori error estimate holds for some constant C > 0:

|||uε −U ε|||2B ≤ C
∑

I⊂Th

η2
h(I) (3.106)

91



3 Contact between a body and a rigid obstacle

where the local indicators are given by

η2
h(I) := hI‖t̂− ŜU ε‖2

L2(I∩ΓN )

+ hI‖P ε
nn+ P ε

t t− ŜU ε‖2
L2(I∩ΓC) (3.107)

+ hI

∥

∥

∂

∂s
(VΨ − (K + 1/2)U ε)

∥

∥

2

L2(I)
.

Proof. Employing Lemma 3.2.6 we obtain

||uε −U ε||2W + ||ψ −Ψ ||2V
+ ||εn

1/2(pε
n − P ε

n)||2L2(ΓC) + ||εt
1/2F−1/2(pε

t − P ε
t )||2L2(ΓC ) = A1 + A2,

where

A1 :=
〈

Suε − ŜU ε,uε −U ε
〉

+ ||εn
1/2(pε

n − P ε
n)||2L2(ΓC) + ||εt

1/2F−1/2(pε
t − P ε

t )||2L2(ΓC),

A2 := 〈V (Ψ ∗ −Ψ),ψ −Ψ〉 .

The Galerkin orthogonality property provides for arbitrary Φ ∈ Vh

〈

Suε − ŜU ε,U ε −Φ
〉

+ 〈pε − P ε,U ε −Φ〉ΓC
= 0.

For the first term A1, this relation in combination with Lemma 3.2.8 and Lemma 3.3.1

leads to

A1 ≤
〈

Suε − ŜU ε,uε −U ε
〉

− 〈pε − P ε,uε −U ε〉ΓC

=
〈

Suε − ŜU ε,uε −U ε
〉

− 〈pε −P ε,uε −U ε〉ΓC

+
〈

Suε − ŜU ε,U ε −Φ
〉

+ 〈pε −P ε,U ε −Φ〉ΓC

=
〈

Suε − ŜU ε,uε −Φ
〉

− 〈pε − P ε,uε −Φ〉ΓC
.

Since uε −Φ ∈ V , the variational formulation (3.90) provides

〈Suε,uε −Φ〉 − 〈pε,uε −Φ〉ΓC
=
〈

t̂,uε −Φ
〉

ΓN

and therefore, together with Cauchy-Schwarz inequality, we obtain

A1 ≤
〈

t̂− ŜU ε,uε −Φ
〉

ΓN

+
〈

P ε − ŜU ε,uε −Φ
〉

ΓC

≤
∑

E⊂Th∩ΓN

‖t̂− ŜU ε‖L2(E)‖uε −Φ‖L2(E) +
∑

E⊂Th∩ΓC

‖P ε − ŜU ε‖L2(E)‖uε −Φ‖L2(E).

We estimate now the summand A2. It holds

A2 := 〈V (Ψ −Ψ ∗),Ψ −ψ〉 ≤ ‖V (Ψ −Ψ ∗)‖H 1/2(Γ)‖Ψ −ψ‖H−1/2(Γ).
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

Further, since U ε ∈ Vh ⊂ H 1
0(Σ), Ψ ∈ Wh ⊂ L2(Γ) and V : H s−1/2 → H s+1/2,

W : H s+1/2 → H s−1/2 are continuous mappings for s ∈ [−1/2, 1/2] (cf. Lemma 1.2.1)

we obtain with definition (3.104) that

V (Ψ −Ψ ∗) = VΨ − (K + 1/2)U ε ∈ H 1(Γ) ⊂ C (Γ).

Lemma 3.2.7 yields that V (Ψ − Ψ ∗) is orthogonal in L2(Γ) to Wh. Furthermore, for

the characteristic function χI ∈ Wh of an element I ∈ Th there holds

0 = 〈V (Ψ −Ψ ∗),χI〉Γ =

∫

I

V (Ψ −Ψ ∗) ds,

and therefore the continuous function V (Ψ −Ψ ∗) should have a zero on each boundary

segment I. Since V (Ψ − Ψ ∗) ∈ H 1(Γ), we can apply the result of [15, Theorem 5.1],

which provides existence of a positive constant C such that for quasiuniform meshes

there holds

‖V (Ψ −Ψ ∗)‖H 1/2(Γ) ≤ C
∑

I⊂Γ

h
1/2
I

∥

∥

∂

∂s
V (Ψ −Ψ ∗)

∥

∥

L2(I)
.

Since 〈W ·, ·〉Σ, 〈V ·, ·〉Γ are positive definite, there exist constants cW , cV > 0 such that

cW ||uε −U ε||2
H̃

1/2
(Σ)

+ cV ||ψ −Ψ ||2
H−1/2(Γ)

+ ||εn
1/2(pε

n − P ε
n)||2L2(ΓC) + ||εt

1/2F−1/2(pε
t − P ε

t )||2L2(ΓC)

≤
∑

I⊂Th∩ΓN

‖t̂− ŜU ε‖L2(I)||uε −Φ||L2(I)

+
∑

I⊂Th∩ΓC

‖P ε
nn + P ε

t t− ŜU ε‖L2(I)||uε −Φ||L2(I)

+ C
∑

I⊂Th

hI

∥

∥

∂

∂s
(VΨ − (K + 1/2)U ε)

∥

∥

L2(I)
||ψ −Ψ ||H−1/2(Γ)

for arbitrary Φ ∈ Vh. We choose Φ := U ε + ih(u
ε − U ε) to be the one-dimensional

Clément interpolant of uε. According to Clément [20] the following approximation

property holds

‖uε −Φ‖L2(I) ≤ ChI‖uε −U ε‖H 1(ω(I)),

where ω(I) is the neighbourhood of I, i.e. the set of all (boundary) elements from the

mesh Th, which have a nonempty intersection with I. Real interpolation between L2

and H 1 provides

‖uε −Φ‖L2(I) ≤ Ch
1/2
I ‖uε −U ε‖H 1/2(ω(I)),
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which yields

cW ||uε −U ε||2
H̃

1/2
(Σ)

+ cV ||ψ −Ψ ||2
H−1/2(Γ)

+ ||εn
1/2(pε

n − P ε
n)||2L2(ΓC) + ||εt

1/2F−1/2(pε
t − P ε

t )||2L2(ΓC)

≤ C
∑

I⊂Th∩ΓN

hI‖t̂− ŜU ε‖L2(I)||uε −U ε||H 1/2(I)

+ C
∑

I⊂Th∩ΓC

hI‖P ε
nn+ P ε

t t− ŜU ε‖L2(I)||uε −U ε||H 1/2(I)

+ C
∑

I⊂Th

hI

∥

∥

∂

∂s
(VΨ − (K + 1/2)U ε)

∥

∥

L2(I)
||ψ −Ψ ||H−1/2(Γ).

Using Cauchy’s inequality we throw the terms ||uε − U ε||2
H 1/2(I)

, ||ψ − Ψ ||2
H−1/2(Γ)

to

the left hand side and obtain the a posteriori error estimate (3.106).

Efficiency of the BE a posteriori error estimate

In this paragraph we prove efficiency of the a posteriori error estimates. We extend the

approach of Carstensen and Stephan [17], Carstensen [15] onto the frictional contact

problems.

Theorem 3.3.4. There exists a constant c > 0 such that for any element I ∈ Th the

local error indicator ηh(I) defined in (3.107), can be bounded as follows

cη2
h(I) ≤hI ||W (uε −U ε)||2L2(I∩Σ) + hI ||(K ′ + 1/2)(ψ −Ψ)||2L2(I∩Σ)

+ hI

∥

∥

∂

∂s
V (ψ −Ψ)

∥

∥

2

L2(I)
+ hI

∥

∥

∂

∂s
(K + 1/2)(uε −U ε)

∥

∥

2

L2(I)
(3.108)

+ hI ||pε − P ε||2L2(I∩ΓC)

Proof. Consider the indicator on the Neumann boundary, i.e. the case I ⊂ ΓN .

Noting that t̂ ≡ Suε|ΓN
for the exact solution uε, we obtain

hI ||t̂− ŜU ε||2L2(I) = hI ||Suε − ŜU ε||2L2(I)

= hI ||W (uε −U ε) + (K ′ + 1/2)(ψ −Ψ)||2L2(I)

≤ 2hI ||W (uε −U ε)||2L2(I) + 2hI ||(K ′ + 1/2)(ψ −Ψ)||2L2(I).

We used here the definition of the traction-like functions (3.104). Further, the weak

formulation (3.90) yields the identity pε ≡ Suε on the contact boundary ΓC . Therefore,

if I ⊂ ΓC , then

hI ||P ε − ŜU ε||2L2(I) ≤ 2hI ||pε − P ε||2L2(I) + 2hI ||Suε − ŜU ε||2L2(I)

≤ 2hI ||pε − P ε||2L2(I)

+ 4hI ||W (uε −U ε)||2L2(I) + 4hI ||(K ′ + 1/2)(ψ −Ψ)||2L2(I).
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

Finally, we have to estimate the consistency term. The identity Vψ ≡ (K + 1/2)uε

provides for some element I ⊂ Γ

hI

∥

∥

∂

∂s
(VΨ − (K + 1/2)U ε)

∥

∥

2

L2(I)

≤ 2hI

∥

∥

∂

∂s
V (ψ −Ψ)

∥

∥

2

L2(I)
+ 2hI

∥

∥

∂

∂s
(K + 1/2)(uε −U ε)

∥

∥

2

L2(I)
,

which finishes the proof.

We need the following lemma to prove the efficiency of the a posteriori error estimate.

Lemma 3.3.2. Let ψ ∈ L2(Γ) and Πh : L2(Γ) → Wh be the L2-projection operator.

Then there holds

||ψ − Πhψ||H−1/2(Γ) ≤ Ch1/2
max||ψ||L2(Γ).

In particular, there holds

||ψ − Πhψ||H−1/2(Γ) ≤ Ch1/2
max||ψ − Πhψ||L2(Γ).

Proof. The definition of the L2-projection operator yields

〈

ψ − Πhψ,Φ
〉

= 0, ∀Φ ∈ Wh.

By duality we obtain

||ψ − Πhψ||H−1(Γ) = sup
w∈H 1(Γ)

〈

ψ − Πhψ,w
〉

||w||H 1(Γ)

= sup
w∈H 1(Γ)

〈

ψ − Πhψ,w − Πhw
〉

||w||H 1(Γ)

= sup
w∈H 1(Γ)

〈

ψ,w − Πhw
〉

||w||H 1(Γ)

(3.109)

≤ ||ψ||L2(Γ) sup
w∈H 1(Γ)

||w − Πhw||L2(Γ)

||w||H 1(Γ)

since Πhw ∈ Wh. The Poincaré inequality gives

||w − Πhw||L2(Γ) ≤ Chmax||w||H 1(Γ)

and therefore we obtain from (3.109) that

||ψ − Πhψ||H−1(Γ) ≤ Chmax||ψ||L2(Γ).

The L2-projection is stable in the L2-norm, i.e.

||ψ − Πhψ||L2(Γ) ≤ C||ψ||L2(Γ).
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3 Contact between a body and a rigid obstacle

Hence, the interpolation between H −1(Γ) and L2(Γ) provides

||ψ − Πhψ||H−1/2(Γ) ≤ Ch1/2
max||ψ||L2(Γ).

In particular there holds

||ψ − Πhψ||H−1/2(Γ) = ||ψ − Πhψ − Πh(ψ − Πhψ)||H−1/2(Γ)

≤ Ch1/2
max||ψ − Πhψ||L2(Γ).

Theorem 3.3.5. Let Ih : C (Σ) → Vh be the Lagrangian interpolation operator and let

Πh : L2(Γ) → Wh be the L2-projection operator. Assume that uε ∈ H 1
0(Σ), ψ ∈ L2(Γ)

and that the penalty parameters εn, εt are chosen such that there exists a constant C̃ > 0,

for which

εn ≥ C̃hmax, εt ≥ C̃Fhmax. (3.110)

Then there exists a constant c > 0 such that

c
∑

I∈Th

η2
h(I) ≤ max

(

hmax

hmin
, C̃−1

)

|||uε −U ε|||2B

+
h2

max

hmin
||uε − Ihu

ε||2
H 1

0(Σ) +
h2

max

hmin
||ψ − Πhψ||2L2(Γ).

Proof. Summing the estimate (3.108) over all elements I ∈ Th we obtain

c
∑

I∈Th

η2
h(I) ≤hmax||W (uε −U ε)||2L2(Σ) + hmax||(K ′ + 1/2)(ψ −Ψ)||2L2(Σ) (3.111)

+ hmax

∥

∥

∂

∂s
V (ψ −Ψ)

∥

∥

2

L2(Γ)
+ hmax

∥

∥

∂

∂s
(K + 1/2)(uε −U ε)

∥

∥

2

L2(Γ)

+ hmax||pε −P ε||2L2(ΓC).

To prove the theorem, we need to estimate the terms on the right hand side of (3.111).

For the first term and for the fourth term in (3.111) we obtain

hmax||W (uε −U ε)||2L2(Σ) ≤ Chmax||uε −U ε||2
H 1(Γ),

hmax

∥

∥

∂

∂s
(K + 1/2)(uε −U ε)

∥

∥

2

L2(Γ)
≤ hmax

∥

∥(K + 1/2)(uε −U ε)
∥

∥

2

H 1(Γ)

≤ Chmax

∥

∥uε −U ε
∥

∥

2

H 1(Γ)

since W : H 1/2+s(Γ) → H −1/2+s(Γ) and K : H 1/2+s(Γ) → H 1/2+s(Γ) are continuous

mappings for s ∈ [−1/2, 1/2]. Here we identify functions f , supp f ⊂ Σ, with their
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

zero extension onto whole Γ. Let Ih be the Lagrangian interpolation operator on the

mesh Th. The triangle inequality gives

hmax

∥

∥uε −U ε
∥

∥

2

H 1(Γ)
≤ Chmax||uε − Ihu

ε||2
H 1(Γ) + Chmax||Ihu

ε −U ε||2
H 1(Γ).

Since Ihu
ε −U ε ∈ Vh, we can apply the inverse inequality (see e.g. [14, Proposition 3])

hmax||Ihu
ε −U ε||2

H 1(Γ) ≤ C
hmax

hmin

||Ihu
ε −U ε||2

H 1/2(Γ)

= C
hmax

hmin

||Ihu
ε −U ε||2

H̃
1/2

(Σ)

≤ C
hmax

hmin

||uε −U ε||2
H̃

1/2
(Σ)

+ C
hmax

hmin

||Ihu
ε − uε||2

H̃
1/2

(Σ)
.

Employing properties of space interpolation and approximation properties of Ih we get

||Ihu
ε − uε||2

H 1/2(Σ̃)
≤ C||Ihu

ε − uε||L2(Σ)||Ihu
ε − uε||H 1

0(Σ)

≤ Chmax||Ihu
ε − uε||2

H 1
0(Σ)

and therefore

hmax||W (uε −U ε)||2L2(Σ) + hmax

∥

∥

∂

∂s
(K + 1/2)(uε −U ε)

∥

∥

2

L2(Γ)

≤ C
hmax

hmin
||uε −U ε||2

H̃
1/2

(Σ)
+ C

h2
max

hmin
||Ihu

ε − uε||2
H 1

0(Σ).

For the second term and for the third term in (3.111) there holds

hmax||(K ′ + 1/2)(ψ −Ψ)||2L2(Γ) ≤ hmax||ψ −Ψ ||2L2(Γ),

hmax

∥

∥

∂

∂s
V (ψ −Ψ)

∥

∥

2

L2(Γ)
≤ hmax

∥

∥V (ψ −Ψ)
∥

∥

2

H 1(Γ)
≤ hmax

∥

∥ψ −Ψ
∥

∥

2

L2(Γ)
,

since V : H −1/2+s(Γ) → H 1/2+s(Γ) and K ′ : H −1/2+s(Γ) → H −1/2+s(Γ) are continuous

mappings for s ∈ [−1/2, 1/2]. Let Πh : L2(Γ) → Wh be the L2-projection operator onto

the space of piecewise constants on the mesh Th. Therefore, with the triangle inequality

hmax||ψ −Ψ ||2L2(Γ) ≤ hmax||ψ − Πhψ||2L2(Γ) + hmax||Πhψ −Ψ ||2L2(Γ) (3.112)

In [14, Proposition 3] the inverse inequality ||Φ||L2(Γ) ≤ Ch−1
min||Φ||H−1(Γ) was shown for

∀Φ ∈ Wh. We obtain by interpolation

||Φ||2L2(Γ) ≤ Ch−1
min||Φ||2

H−1/2(Γ)
, ∀Φ ∈ Wh.

Hence, the second term in (3.112) can be estimated as follows

hmax||Πhψ −Ψ ||2L2(Γ) ≤ C
hmax

hmin
||Πhψ −Ψ ||2

H−1/2(Γ)

≤ C
hmax

hmin
||ψ −Ψ ||2

H−1/2(Γ)
+ C

hmax

hmin
||ψ − Πhψ||2H−1/2(Γ)
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3 Contact between a body and a rigid obstacle

Employing Lemma 3.3.2 we obtain

hmax

hmin
||ψ − Πhψ||2H−1/2(Γ)

≤ C
h2

max

hmin
||ψ − Πhψ||2L2(Γ)

and therefore

hmax||(K ′ + 1/2)(ψ −Ψ)||2L2(Γ) + hmax

∥

∥

∂

∂s
V (ψ −Ψ)

∥

∥

2

L2(Γ)

≤ C
hmax

hmin

||ψ −Ψ ||2
H−1/2(Γ)

+ C
h2

max

hmin

||ψ − Πhψ||2L2(Γ).

Finally, if the penalty parameters εn, εt are chosen accordingly to (3.110), the contact

terms can be estimated as follows

hmax||pε −P ε||2L2(ΓC) ≤ C̃−1||εn
1/2(pε

n − P ε
n)||2L2(ΓC) + C̃−1||εt

1/2F−1/2(pε
t − P ε

t )||2L2(ΓC ).

Let us consider the quasiuniform meshes on Γ, i.e. meshes for which there exists a

constant Cq > 0, independent of the meshsize, such that

hmax

hmin

≤ Cq.

Then, with additional regularity assumptions on the solution uε ∈ H̃
1+ν

(Σ) and ψ ∈
H ν(Γ), the approximation properties of the Lagrangian interpolation operator and of

the L2-projection operator yield

h
1/2
max||uε − Ihu

ε||H 1
0(Σ) ≤ Ch

1/2+ν
max ||uε||

H̃
1+ν

(Σ)
,

h
1/2
max||ψ − Πhψ||L2(Γ) ≤ Ch

1/2+ν
max ||ψ||H ν(Γ).

(3.113)

Remark 3.3.3. [26, Remark 7] For the contact problem with friction the best regularity

which can be shown is uε ∈ H 1
0(Σ), which corresponds to the case ν = 0 [25], [37],

[51]. For the frictionless contact problems the regularity uε ∈ H̃
3/2

(Σ) can be shown,

i.e. ν = 1/2 (cf. [39]). Therefore the convergence rate O(h
1/2
max) is expected for frictional

problem and the convergence rate O(hmax) is expected for frictionless problem:

Remark 3.3.4. Based on Remark 3.3.3 we expect that if the solution does not lie in

the BE space uε 6∈ Vh, the convergence rate is not better then h
1/2+ν
max with ν = 0, 1/2

for frictional and frictionless contact problems respectively, i.e. there exists C > 0

independent from the meshsize, such that

Ch1/2+ν
max ≤ |||uε −U ε|||B.

Combining Theorem 3.3.5, Remark 3.3.4 and (3.113) we obtain a sharp a posteriori error

estimate.

Theorem 3.3.6. Under above mentioned assumptions, the a posteriori error estimate

is sharp, i.e. there exists c, C > 0 independent from the meshsize, such that

c
∑

I∈Th

η2
h(I) ≤ |||uε −U ε|||2B ≤ C

∑

I∈Th

η2
h(I).
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

3.3.4 Mesh refinement strategy for the h-version

In the numerical examples we employ the standard mesh refinement procedure for the

h-version of finite elements or boundary elements, given by Algorithm 3.2 (see e.g. [67]).

The discrete problem in the case of a frictional contact problem between an elastic body

and a rigid obstacle with BEM is given by (3.95), the error indicators are given by

(3.107).

If FEM is used, the discrete problem is given by (3.97) and the error indicators are given

by (3.100).

Algorithm 3.2. (Mesh refinement strategy for the h-version of FEM and BEM)

1. generate an initial (coarse) mesh Th,0, discrete spaces Vh,0, Wh,0, set k = 0

2. choose a refinement criterion, refinement quota p ∈ [0, 1], tolerance TOL

3. for k = 0, 1, 2 . . .

a) solve the discrete problem (with FEM or BEM)

b) compute indicators ηI for all segments I ∈ Th,k

c) stop if
∑

I∈Th,k

η2
I ≤ TOL

C

d) refine I, if the refinement criterion for I is satisfied

e) make further refinement to preserve conformity of the mesh, obtain Th,k+1

f) generate the discrete spaces Vh,k+1, Wh,k+1 based on the mesh Th,k+1

g) set k = k + 1, go to (a)

Some refinement criteria:

• refine I if ηI ≥ p max
J∈Th,k

ηJ

• refine I if ηI belongs to (1 − p) · 100% of the largest indicators

Remark 3.3.5. Note, that the step (e) is only necessary, when a two-dimensional mesh

Th is considered (BEM in 3D or FEM in 2D or 3D), or is case of one-dimensional mesh

with restriction on the length the neighbours elements.
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3 Contact between a body and a rigid obstacle

3.3.5 Numerical results

In this section two numerical examples with automatic mesh refinement for contact

problems with Coulomb’s friction are presented, based on error indicators, derived in the

previous sections for the penalty formulation. The problem is solved with the Newton’s

method. The detailed description of linearization of the contact terms and the algebraic

formulation is a special case of the two-body frictional contact problem, presented in

Section 4.2. We give two examples of adaptive mesh refinement for boundary elements,

employing error indicators (3.107). An example for the finite elements with the error

indicator (3.100) will be given in the next chapter within the two-body frictional contact

framework.

Example 1

The first example is based on the same geometry as the numerical example, described

in Paragraph 3.2.5. We consider a frictional contact problem of the two-dimensional

elastic body, occupying Ω := [−1, 1] × [−1, 1], with a rigid horizontal obstacle γ :=

[−1, 1]×{−1+d}, where d varies. The body is fixed along the upper horizontal boundary

u = 0 on ΓD := [−1, 1] × {1}.

The remaining part of the boundary is assumed to be the zone of possible contact with

the obstacle γ

ΓC := ∂Ω \ ΓD, ΓN := ∅.
The elastic parameters are E = 266926.0, ν = 0.29 and the coefficient of friction is

set to be µf = 0.1. The displacement increment d = 0.6 · 10−4 is subjected to the

obstacle γ, which yields contact between the body Ω and the obstacle γ and, therefore,

a deformation in Ω. The geometry of the problem is shown on Fig. 3.2.

Figure 3.2: Contact geometry of Example 1
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

The initial uniform mesh Th consists of four straight line elements per side of Ω, as it is

shown on Fig. 3.3. The space Vh of piecewise linear continuous functions (3.92) is used

for discretization of the displacement; and the space Wh of piecewise constant functions

(3.93) is used for discretization of the boundary traction.

Figure 3.3: Initial mesh Th

The error indicator for BEM with penalty contact discretization (3.107), combined with

the mesh refinement Algorithm 3.2, was used to optimize the mesh Th. The maximum

value of the error indicator over all elements ηmax is computed, and then compared with

the local indicators ηI on elements I ∈ Th. The element I is halved, if its indicator ηI is

larger than 90% of ηmax.

The sequence of obtained the displacement meshes after each of the six refinement steps

and corresponding deformed configuration is presented on Fig. 3.4. The deformed

configuration is plotted for displacements, multiplied with 104, to make the deformation

of the body visible. The red labelling in the mesh is used for the elements being refined

within the current refinement step. As it can be seen from Fig. 3.4, the elements

having symmetric positions are refined in each step, which is caused by the symmetry

of the problem. Furthermore, most of the refinement happens in the zone of actual

contact and near the corners of Ω. This is caused by the singularities, appearing where

the boundary conditions are changing: contact / no contact near the points (−1,−1),

(1,−1); and homogeneous Neumann / homogeneous Dirichlet near the points (−1, 1),

(1, 1). Moreover, refinement of the contact boundary is also caused by the consistency

error on the contact boundary, i.e. nonzero penetration.

The x- and y-components of the displacement inside the body and deformation of the

auxiliary finite element mesh after the sixth refinement step, obtained by the represen-

tation formula (1.2), are shown in Fig. 3.5.

In Fig. 3.6 we compare decay of the error in the norm ||| · |||B, defined in (3.105), for

uniform and adaptive refinement. As a reference norm, we take |||U190|||B, where U 190

is the solution, obtained on the uniform mesh with 190 degrees of freedom. The curves

err(U), plotted in Fig. 3.6 are defined by err(U) :=
∣

∣ |||U |||B − |||U190|||B
∣

∣.
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3 Contact between a body and a rigid obstacle

Figure 3.4: Sequence of the adaptively generated meshes and deformed geometries (value

of the displacement is multiplied by 104)

−.1243E−03
−.1088E−03
−.9324E−04
−.7770E−04
−.6216E−04
−.4662E−04
−.3108E−04
−.1554E−04
−.3001E−16
0.1554E−04
0.3108E−04
0.4662E−04
0.6216E−04
0.7770E−04
0.9324E−04
0.1088E−03
0.1243E−03

x−component

0.0000E+00
0.3701E−04
0.7403E−04
0.1110E−03
0.1481E−03
0.1851E−03
0.2221E−03
0.2591E−03
0.2961E−03
0.3331E−03
0.3701E−03
0.4072E−03
0.4442E−03
0.4812E−03
0.5182E−03
0.5552E−03
0.5922E−03

y−component

Figure 3.5: x- and y-components of the displacement inside the body and deformation

of the auxiliary FE-grid after 6th refinement step, obtained with the repre-

sentation formula (1.2)
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Figure 3.6: err(U) :=
∣

∣ |||U |||B − |||U190|||B
∣

∣ for uniform and adaptive refinement

As it can be seen from Fig. 3.6, the adaptive refinement procedure provides a better

results than the uniform refinement with the same number of the degrees of freedom.

Example 2

In the second example we consider the same geometry and material parameters for the

body Ω as in the Example 1, but change configuration and location of the obstacle. The

obstacle now is given by γ := {−1 + d} × [−1/2, 1/2] and the displacement increment

d := 6 · 10−4 brings the obstacle in contact with the body Ω.

Figure 3.7: Contact geometry of Example 2
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3 Contact between a body and a rigid obstacle

Figure 3.8: Sequence of the adaptively generated meshes and deformed geometries (value

of the displacement is multiplied by 104)

0.0000E+00
0.4101E−04
0.8202E−04
0.1230E−03
0.1640E−03
0.2050E−03
0.2461E−03
0.2871E−03
0.3281E−03
0.3691E−03
0.4101E−03
0.4511E−03
0.4921E−03
0.5331E−03
0.5741E−03
0.6151E−03
0.6561E−03

x−component

−.2003E−03
−.1767E−03
−.1532E−03
−.1297E−03
−.1062E−03
−.8262E−04
−.5909E−04
−.3556E−04
−.1203E−04
0.1151E−04
0.3504E−04
0.5857E−04
0.8210E−04
0.1056E−03
0.1292E−03
0.1527E−03
0.1762E−03

y−component

Figure 3.9: x- and y-components of the displacement inside the body and deformation

of the auxiliary FE-grid after 6th refinement step, obtained with the repre-

sentation formula (1.2)
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

The initial mesh of four elements per side of Ω (Fig. 3.3) is employed again. The same

refinement strategy as in Example 1 is applied, i.e. elements which indicators are larger

than 90% of the maximal indicator are refined. The sequence of adaptively generated

meshes is presented in Fig. 3.8. In the beginning of the refinement process we observe

that most of refinement happens near the point (−1, 1/2), which is caused by the large

gradients of the boundary traction. On the contrary, we do not observe any refinement

near the point (−1,−1/2), since the boundary traction changes there not as sharp.

Following the refinement process, we observe, that after four refinement steps the error

near (−1, 1/2) is sufficiently reduced, and the indicators near the point (1,−1) provide

the largest contribution.

105



3 Contact between a body and a rigid obstacle

106



4 Nonconforming methods for

two-body contact problems with

friction

This chapter is devoted to the investigation of nonconforming methods for two-body

contact problems with friction. Often, it turns out that the one-body frictional contact

description is not sufficient for simulation of the realistic industrial processes. For ex-

ample, deformation of the tool often cannot be neglected in simulation of the stamping

process. This motivates developing of a two-body frictional contact description. The

independent discretization of contacting bodies is usually very convenient, e.g. it sim-

plifies the task of global mesh generation and allows to perform an independent mesh

refinement procedure. Furthermore, in many cases, e.g. for large deformation or sliding

boundaries, it is the only way to avoid a time-consuming remeshing procedure. Below,

we consider two different methods allowing to handle nonmatching discretizations for

two-body contact problems with friction: the penalty and the mortar methods.

First, the standard classical and weak formulations for two-body contact problems with

friction are briefly recalled. Then we consider the h-version of the penalty FE/BE and

BE/BE coupling methods for elastoplastic two-body contact problems with Coulomb’s

law of friction. The suggested solution procedure as well as derivation of the linearized

formulation are described in detail. The methods are demonstrated in several numerical

examples.

Then, a new hp-mortar boundary element method is constructed for two-body contact

problems with Tresca’s law of friction in linear elasticity. We prove under mild regularity

assumptions that the method converges as O((h/p)1/4), provided by suitable restrictions

on the discretization parameters. We solve the discrete problem employing a Dirichlet-

to-Neumann algorithm and an Uzawa algorithm. Furthermore, we perform an automatic

mesh refinement procedure with the three-step hp-refinement algorithm (see e.g. Mais-

chak and Stephan [47]), based on a heuristically motivated error indicator. Finally, the

h-version of the suggested approach is generalized onto elastoplastic two-body frictional

contact problems. The series of numerical examples underlines the proposed approach.
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4 Nonconforming methods for two-body contact problems with friction

4.1 Classical and weak formulation for two-body contact

problems with friction

Let Ω1, Ω2 be bounded two-dimensional polygonal domains with (Lipschitz) boundaries

Γ1, Γ2. Let Γi, i = 1, 2, be decomposed into three disjoint parts Γi
D, Γi

N and Γi
C . Denote

for brevity Σi := Γi
N ∪ ΓC , Ω := Ω1 ∪Ω2, Γ := Γ1 ∪ Γ2, ΓD := Γ1

D ∪ Γ2
D, ΓN := Γ1

N ∪ Γ2
N .

We assume that the displacement û is known along ΓD, that the boundary traction t̂

is prescribed along ΓN and Γi
C , i = 1, 2 are the boundary parts, where the contact can

occur. We denote with f the volume forces acting inside the bodies. Then the classical

formulation of the problem is given by

div σ(u) = f in Ω,

u = û on ΓD,

σ(u) · n = t̂ on ΓN ,

σn ≤ 0, [un] ≤ g, σn([un] − g) = 0,

|σt| ≤ F , σt[ut] + F|[ut]| = 0,

}

on ΓC .

(4.1)

Here σ stands for the stress tensor. Its dependence on the displacement field u is given

by Hook’s law of elasticity, i.e. under small strain assumption there holds

σ(u) = C : ε(u) := λtrε(u) + 2µε(u), ε(u) =
1

2
(∇u+ ∇uT ),

where λ, µ are the Lamé constants. Let ni, ti denote the outer normal and tangential

unit vectors to Γi and introduce

n :=

{

n1, on Γ1,

n2, on Γ2 \ ΓC ,
t :=

{

t1, on Γ1,

t2, on Γ2 \ ΓC .

The stress on the contact boundary is given by

σn = n1 · σ(u1) · n1 = n2 · σ(u2) · n2,

σtt
1 = σ(u1) · n1 − σnn

1 = −(σ(u2) · n2 − σnn
2).

We assume that there is a mapping between Γ1
C and Γ2

C , e.g. orthogonal projection of

points of Γ2
C onto Γ1

C modified near the corners, which allows to identify Γ1
C with Γ2

C .

We denote the ”generalized” contact boundary by ΓC . We write [·] for the jump of the

normal displacement ui
n := ui ·n and the tangential displacement ui

t := ui · t across ΓC ,

namely
[un] := u1

n − u2
n ≡ u1 · n1 + u2 · n2,

[ut] := u1
t − u2

t ≡ u1 · t1 + u2 · t2.
The function g : ΓC ⊂ R2 → R≥0 is the initial distance between two bodies in normal

direction, [32]. Thus [un] ≤ g has the meaning of the nonpenetration condition. The
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4.1 Classical and weak formulation for two-body contact problems with friction

so-called given friction function F ≥ 0 defines pointwise the sticking threshold of the

bodies, i.e. as it can be seen from (4.1), if the absolute value of the tangential stress

does not exceed the given friction |σt| < F , then [ut] = 0 and [ut] 6= 0 is only possible if

|σt| = F . In the more general case of Coulomb’s friction law the given friction function

is defined to be proportional to the normal stress F := µfσn, where µf is the friction

coefficient, see e.g. Wriggers [72]. In order to derive a weak formulation for (4.1) we

assume that û ∈ H 1/2(ΓD), t̂ ∈ H̃
−1/2

(ΓN), F ∈ L2(ΓC).

Further we will use the functional spaces and sets, defined as follows

V
i := H̃

1/2
(Σi), V := V

1 × V
2, (4.2)

W
i := H −1/2(Γi), W := W

1 × W
2, (4.3)

V
i
F :=

{

v ∈ H 1(Ωi) : v = 0 on Γi
D

}

, Ṽ := V
1
F × V

2, (4.4)

K :=
{

u = (u1,u2) ∈ V : [un] ≤ g on ΓC

}

, (4.5)

K̃ :=
{

u = (u1,u2) ∈ Ṽ : [un] ≤ g on ΓC

}

(4.6)

and the spaces including the nonhomogeneous Dirichlet boundary conditions

V
i
D :=

{

v ∈ H 1/2(Γi) : v = û on Γi
D

}

, VD := V
1
D × V

2
D, (4.7)

V
i
F,D :=

{

v ∈ H 1(Ωi) : v = û on Γi
D

}

, ṼD := V
1
F,D × V

2
D, (4.8)

KD :=
{

u = (u1,u2) ∈ VD : [un] ≤ g on ΓC

}

, (4.9)

K̃D :=
{

u = (u1,u2) ∈ ṼD : [un] ≤ g on ΓC

}

. (4.10)

We introduce the Steklov-Poincaré operator

S = W + (K ′ + 1/2)V −1(K + 1/2), (4.11)

which is a continuous, positive definite mapping S : V → W , see Lemma 1.3.1. Let the

linear functionals be defined by

L(v) := 〈Nf ,v〉Σ +
〈

t̂,v
〉

ΓN
, ∀v ∈ V ,

L̃(v) := (f ,v)Ω1 + 〈Nf ,v〉Σ2 +
〈

t̂,v
〉

ΓN
, ∀v ∈ Ṽ ,

there N is the Newton potential, defined in (1.7).

Variational inequality

Similarly to the analysis of Section 3.1 for the one-body problem, it can be shown that

the classical two-body problem (4.1) can be reformulated as a boundary variational

inequality of the second kind. In particular, for û = 0 it reads: Find u ∈ K :

〈Su,v − u〉Σ + j([v]) − j([u]) ≥ L(v − u) ∀v ∈ K, (4.12)
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4 Nonconforming methods for two-body contact problems with friction

where the friction functional is given by

j([v]) :=

∫

ΓC

F|[vt]| ds.

Similarly to Section 3.1 one can prove that the problem with given friction has a unique

solution for sufficiently smooth given friction function F . In the case of Coulomb’s

frictional law, then F := µfσn, applying ideas of Nečas, Jarušek and Haslinger [51] for

the domain formulation, it can be shown that the problem has a unique solution if the

coefficient of friction µf is small enough.

Saddle point formulation

Following the approach of Haslinger, Hlaváček and Nečas [33] based on the domain

formulation, it is possible to obtain a saddle point formulation, equivalent to (4.12). We

define the sets of normal and tangential Lagrange multipliers as follows

Mn :=
{

q ∈ H̃−1/2(ΓC) : 〈q, v〉ΓC
≥ 0, ∀v ∈ H1/2(ΓC), v ≥ 0 a.e. on ΓC

}

,

Mt := {q ∈ L2(ΓC) : |q| ≤ F a.e. on ΓC} ,
M := Mn ×Mt.

(4.13)

The classical formulation (4.1) with û = 0 can be rewritten in a weak sense as a saddle

point problem of finding u ∈ V ,p ∈ M such that

〈Su,v〉Σ + b(p,v) =
〈

t̂,v
〉

ΓN
, ∀v ∈ V ,

b(q − p,u) ≤ 0, ∀q ∈ M.
(4.14)

with the functional b(q,v) := 〈qn, [vn]〉ΓC
+ 〈qt, [vt]〉ΓC

and the bilinear form generated

by the Steklov-Poincaré operator S. It follows from (4.14) that p = −σ(u1) · n1 in a

weak sense.

Penalty weak formulation

Both the variational inequality (4.12) and the saddle point formulation (4.14) include

an inequality restriction in the set of admissible displacements or in the set of contact

tractions. This makes the theoretical analysis and the implementation relatively com-

plicated. Therefore the corresponding penalty formulation is often used. The weak

penalty boundary formulation for the two-body problem with (possibly) nonhomoge-

neous Dirichlet boundary conditions is given by: Find uε ∈ VD such that

〈Suε,v〉Σ − 〈pε, [v]〉ΓC
= L(v), ∀v ∈ V , (4.15)

where the contact traction is given by the constitutive relations (cf. (3.90))

pε := pε
nn+ pε

tt, pε
n := − 1

εn

([uε
n] − g)+, pε

t := − 1

εt

F [uε
t ]
∗, F := µfp

ε
n, (4.16)
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4.1 Classical and weak formulation for two-body contact problems with friction

where the functions (·)+ and (·)∗ are given by (3.91) and (3.89) respectively. The corre-

sponding FE/BE coupling formulation, where finite elements are used in Ω1 and bound-

ary elements are used on Γ2, reads as follows: Find uε ∈ ṼD such that

(σ(uε), ε(v))Ω1 + 〈Suε,v〉Σ2 − 〈pε, [v]〉ΓC
= L̃(v), ∀v ∈ Ṽ , (4.17)

Further down, if it is clear that the penalty method is considered, we will omit the upper

index ε for brevity.
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4 Nonconforming methods for two-body contact problems with friction

4.2 h-version of the penalty method

In this section we consider the h-version of penalty FE/BE coupling and pure BE meth-

ods on nonmatching meshes for elastoplastic frictional contact. The incremental loading

procedure combined with the Newton’s method and return mapping algorithm is ap-

plied to solve the problem. Note, that the frictional contact and the plastic subproblems

are solved within one and the same Newton cycle. An implicit Euler scheme for both

plasticity and frictional contact is applied in case of FE/BE coupling. In the pure BEM

case, an explicit Euler scheme for plasticity and an implicit scheme for frictional con-

tact are employed. Linearization of normal, tangential contact terms and of plasticity

terms are presented in detail. The a posteriori error estimate for one-body frictional

contact, derived in Chapter 3, is extended to the two-body case. The above methods

are demonstrated with a number of numerical examples.

4.2.1 Constitutive relations for contact with friction

The contact conditions in the penalty approach are formulated with help of the so-called

master-slave description, see e.g. Wriggers [72]. Without loss of generality we will refer

to Ω1 as to the master body and to Ω2 as to the slave body. In this paragraph we will

also use the upper indexes (·)m, (·)s instead of (·)1, (·)2 for the values connected with Ω1

and Ω2 respectively.

Penetration and relative displacement

For every point from the slave side xs ∈ Γs
C we can find the closest point on the master

side x̂m(ξ) ∈ Γm
C . The bar over ξ denotes that the value of the parameter ξ is determined

by xs. We define a penetration function gn on the slave surface Γs
C by

gn :=

{
∥

∥x̂m(ξ) − xs
∥

∥ = (x̂m(ξ) − xs) · nm, if (x̂m(ξ) − xs) · nm > 0,

0, if (x̂m(ξ) − xs) · nm ≤ 0.

Here || · || stands for the Euclidean norm, i.e. ||a|| :=
√
a · a for some vector a ∈ Rd;

and ξ is the minimizer of the distance function

d̂(ξ) := ‖x̂m(ξ) − xs‖ −→ MIN over all ξ

for a given slave point xs. The value ξ can be obtained by the necessary condition

d

dξ
d̂(ξ) =

x̂m(ξ) − xs

‖x̂m(ξ) − xs‖ · x̂m
,ξ (ξ) = 0. (4.18)
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4.2 h-version of the penalty method

The tangential vector to the master surface in point ξ can be represented as am := xm
,ξ (ξ).

Therefore (4.18) means that ξ is defined by the condition

nm =
x̂m(ξ) − xs

∥

∥x̂m(ξ) − xs
∥

∥

,

or, in other words, it means that x̂m(ξ) is the orthogonal projection of xs onto the

master side Γm
C . Of course, on the non-smooth boundaries the normal and tangential

vectors are not defined in the corner points. In this case some modification is performed,

as it is described e.g. in Wriggers [72].

Let us define the relative tangential displacement gt of some slave point xs at some time

step with respect to the previous one by

gt = [ut]a
m.

We will also write gt = [ut] ≡ |gt| for its absolute value.

Micromechanical constitutive relations: normal and tangential contact traction

The contact stress is determined by the penetration function gn and the relative dis-

placement gt. The normal stress pε
n in point xs is given by

pε
n(xs) := − 1

εn
gn(x

s). (4.19)

Here εn
−1 is the normal stiffness or penalty factor (see [72], [54]). With standard ar-

guments of elastoplastic theory of friction (see e.g. [52]), we use an additive decompo-

sition of the relative tangential velocity into an adherence (”elastic”, describing stick

behaviour) and slip (”plastic”, responsible for frictional slip) part

gt = ge
t + g

p
t .

The tangential contact traction is set to be proportional to the ”elastic” component

pε
t = − 1

εt
ge

t , (4.20)

where εt
−1 is the tangential contact stiffness. It remains to define, how to compute g

p
t

from known gt, to obtain a closed formulation. Let us consider the yield domain

E :=
{

pε
t ∈ R

d−1
∣

∣ f̂fr(p
ε
t ) 6 0

}

in the space of the contact tangential stress with the the yield function

f̂fr(p
ε
t ) = ‖pε

t‖ − F , F := µf |pε
n|,
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4 Nonconforming methods for two-body contact problems with friction

representing the slip criterion function for a given contact pressure pε
n with friction

coefficient µf due to Coulomb’s law of friction. We define

g
p
t =







0, if f̂fr ≤ 0,
(

1 − F
‖gt/εt‖

)

gT , if f̂fr > 0.

Therefore g
p
T = 0 yields pε

t ∈ E and the point sticks; on the other hand, g
p
T 6= 0 yields

pε
t ∈ ∂E, which means that the point slips.

Remark 4.2.1. The constitutive relation for tangential stress is simply an algorithmic

description of that defined in (4.16). Basic computations show that (4.20) is identical

with (4.16), if the modified penalty parameter εt = εtF is used in (4.16).

4.2.2 Constitutive relations for plasticity: J2 flow theory with

isotropic / kinematic hardening

In this paragraph we make an extension of the pure elastic two-body frictional contact

problem, described in (4.1), to the more general case of an elastoplastic two-body fric-

tional contact problem. We employ an additive decomposition of the strain tensor into

elastic and plastic part ε(u) = εe(u) + εp(u). The material law is given by the Hook’s

tensor, connecting the stress tensor and the elastic part of the strain tensor

σ = C : εe = C : (ε− εp).

The plastic strain εp is computed using the classical J2 flow theory with isotropic/kinematic

hardening, described e.g. by Simo and Hughes [60, 2.3.2]. The J2 flow theory is based

on two material parameters. The equivalent plastic strain α represents isotropic hard-

ening of the von Mises yield surface. The deviatoric tensor β̄ corresponds to the center

of the von Mises yield surface. We use the J2-plasticity model with the following yield

condition, flow rule and hardening law.

η := dev[σ] − β̄, tr[β̄] := 0,

f̂pl(σ, α, β̄) = ||η|| −
√

2

3
K(α),

n :=
η

||η||
ε̇p = γn, (4.21)

˙̄β = γ
2

3
H ′(α)n,

α̇ = γ

√

2

3
,
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4.2 h-version of the penalty method

where f̂pl is the yield function for plasticity, K(α), H(α) are isotropic and kinematic

hardening modules, given by

H ′(α) = (1 − θ)H̄,

K(α) = σY + θH̄α, θ ∈ [0, 1],
(4.22)

where σY , H̄ ≥ 0 are material constants and σY is the yield stress. The von Mises yield

surface is given by the yield condition

f̂pl(σ, α, β̄) ≤ 0.

The loading/unloading complimentary Kuhn-Tucker conditions are given by

γ ≥ 0, f̂pl(σ, α, β̄) ≤ 0, γf̂pl(σ, α, β̄) = 0.

It is easy to check [60, 2.2.18], that the consistency parameter γ is given by

γ =
(n : ε)+

1 + K ′+H′

2µ

.

Here u+ := (u+ |u|)/2 is the positive part function. Finally, we define the elastoplastic

tangent moduli Cep with the following relation

σ̇ = C : (ε̇− ε̇p) = Cep : ε̇,

C = κ1 ⊗ 1 + 2µ

(

I − 1

3
1 ⊗ 1

)

.

Therefore

C
ep = κ1 ⊗ 1 + 2µ

(

I − 1

3
1 ⊗ 1 − n⊗ n

1 + K ′+H′

3µ

)

,

where

1 = δijei ⊗ ej, I = 1/2(δikδjl + δilδjk)ei ⊗ ej ⊗ ek ⊗ el

are second order and fourth order identity tensors respectively and κ := λ+ 2µ/3 is the

bulk modulus and λ, µ are Lame constants. Note that

C : ε = λ tr[ε] + 2µε = κ tr[ε] + 2µ dev[ε]. (4.23)

4.2.3 FE/BE coupling for elastoplastic contact problems with

friction

In this paragraph we consider a frictional contact problem between an elastic body and

an elastoplastic body. We employ boundary element discretization for the elastic domain

and finite elements in the elastoplastic domain. Without loss of generality we denote

the elastic body as a slave body and the elastoplastic body as a master one.
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4 Nonconforming methods for two-body contact problems with friction

Let T m
F,h be some partition of the finite element domain Ωm into triangles or quadrilat-

erals, and T s
h be some partition of the boundary Γs into straight line segments. Define

discrete spaces

V
m
F,D,h :=

{

Φ ∈ H 1(Ωm) : Φ|K ∈
[

R1(K)
]2 ∀K ∈ T m

F,h,Φ|ΓD
= ûm

}

,

V
m
F,h :=

{

Φ ∈ H 1(Ωm) : Φ|K ∈
[

R1(K)
]2 ∀K ∈ T m

F,h,Φ|ΓD
= 0
}

,

V
s
D,h :=

{

Φ ∈ H 1/2(Γs) : Φ|I ∈
[

P1(I)
]2 ∀I ∈ T s

h ,Φ|ΓD
= ûs

}

,

V
s
h :=

{

Φ ∈ H̃
1/2

(Σs) : Φ|I ∈
[

P1(I)
]2 ∀I ∈ T s

h

}

,

ṼD,h := V
m
F,D,h × V

s
D,h, Ṽh := V

m
F,h × V

s
h,

where R1(K) corresponds to the space of linear functions P1(K), if K is a triangle,

and corresponds to the space of bilinear functions Q1(K), if K is a quadrilateral. The

discretized weak formulation corresponding to (4.17) consists of finding U = (U s,Um) ∈
ṼD,h:

F̃ int(U ,Φ) = F̃ ext(Φ) ∀Φ ∈ Ṽh, (4.24)

where

F̃ int(U ,Φ) := (σm, ε(Φm))Ωm +
〈

ŜU s,Φs
〉

Σs
− 〈P , [Φ]〉ΓC

,

F̃ ext(Φ) := L̃(Φ), σm := σ(Um),

and

P := Pnn+ Ptt, Pn := − 1

εn
gn, Pt := − 1

εt
ge

t · t,

according to (4.19), (4.20). Note that the functional F̃ int(U ,Φ) depends on U . The

nonlinear behaviour is described by the contact constitutive equations, formulated in

Paragraph 4.2.1, and constitutive equations for plasticity, written in Paragraph 4.2.2. We

perform the loading process as a consequent application of loading increments (∆f )j+1,

(∆t̂)j+1, (∆û)j+1:

f j+1 = f i
j + (∆f)j+1,

t̂j+1 = t̂
i

j + (∆t̂)j+1, j = 0, 1, 2 . . .

ûj+1 = ûi
j + (∆û)j+1,

which defines the discrete external load after application of the (j + 1)-th increment

F̃ ext
j (Φ) := (fm

j ,Φ
m)Ωm +

〈

Nf s
j ,Φ

s
〉

Σs +
〈

t̂j,Φ
〉

ΓN

and defines the pseudo-time stepping process. Define the increment-dependent func-

tional spaces

V
m
F,Dj,h

:=
{

Φ ∈ H 1(Ωm) : Φ|K ∈ R1(K),Φ|Γm
D

= ûm
j

}

,

V
s
Dj ,h :=

{

Φ ∈ H 1/2(Γs) : Φ|I ∈ P1(I),Φ|Γs
D

= ûs
j

}

,

ṼDj ,h := V
m
F,Dj,h

× V
s
Dj ,h.
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4.2 h-version of the penalty method

LetU 0 be the initial displacement in the bodies, (εp)
(0)
0 , α

(0)
0 , β̄

(0)
0 initial internal variables,

(gp
t )

(0)
0 initial tangential macro-displacement (”plastic” slip) and let f i

0, t̂
i

0, û
i
0 be the

initial loads. Normally, the displacement-free state U 0 = 0 as well as vanishing internal

variables (εp)
(0)
0 = 0, α

(0)
0 = 0, β̄

(0)
0 = 0, (gp

t )
(0)
0 = 0 are chosen as initial data. We use the

backward (implicit) Euler scheme for both contact and plasticity. Thus the problem can

be reformulated as a series of incremental problems, and every subproblem corresponding

to the j-th increment can be written as follows:

Find ∆U j ∈ ṼDj ,h, and therefore the new displacement state U j = U j−1 + ∆U j , stress

σm
j = σ(Um

j ), contact traction P j = P (U j) such that

F̃ int(σm
j ,P

ε
j ,Φ) = F̃ ext

j (Φ) ∀Φ ∈ Ṽh, (4.25)

where contact and plastic constitutive conditions from Paragraph 4.2.1 and Paragraph

4.2.2 are satisfied.

We use Newton’s method to solve (4.25). Let U be the coefficients of the expansion of

U in the basis of the discrete space ṼDj ,h. Define

F̃ int
∗ (U,Φ) := F̃ int(U ,Φ).

Therefore (4.25) becomes

F̃ int
∗ (Uj ,Φ) = F ext

j (Φ) ∀Φ ∈ Ṽh.

We perform the linearization of F̃ int
∗ (Uj,Φ). We choose the starting value

U
(0)
j := Uj−1,

and introduce Newton’s increment ∆U
(k)
j to proceed to the next iterate

U
(k+1)
j = U

(k)
j + ∆U

(k+1)
j , k = 0, 1, 2 . . .

The Taylor expansion provides

F̃ int
∗ (U

(k+1)
j ,Φ) = F̃ int

∗ (U
(k)
j ,Φ) +

∂F̃ int
∗ (U

(k)
j ,Φ)

∂U
(k)
j

∆U
(k+1)
j . (4.26)

Now we are in the position to state the algebraic problem. Define for brevity the matrix

A and the right hand side vector b by

A :=
∂F̃ int

∗ (U
(k)
j ,Φ)

∂U
(k)
j

,

b :=F̃ ext
j (Φ) − F̃ int

∗ (U
(k)
j ,Φ).

Then the algebraic problem is: Find x = ∆U
(k+1)
j such that

Ax = b.

Now, the whole algorithm can be formulated as follows.
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4 Nonconforming methods for two-body contact problems with friction

Algorithm 4.1. (Incremental loading with Newton’s algorithm for FE/BE coupling)

Set initial displacement U
(0)
0 , initial internal variables (εp)

(0)
0 , α

(0)
0 , β̄

(0)
0 , initial tangential

macro-displacement (gp
t )

(0)
0 and initial loads f0, t̂0, û0

1. for j = 0, 1, 2, . . .

a) for k = 0, 1, 2, . . .

i. compute the load vector

b := F̃ ext
j (Φ) − F̃ int

∗ (U
(k)
j ,Φ)

ii. if ||b||l2 :=
√

b · b ≤ TOL goto 2.

iii. compute the matrix A :=
∂F̃ int

∗ (U
(k)
j ,Φ)

∂U
(k)
j

,

iv. find the next displacement increment x = ∆U
(k+1)
j by solving

Ax = b.

v. update the displacement field

U
(k+1)
j = U

(k)
j + ∆U

(k+1)
j

and the internal variables (εp)
(k+1)
j , α

(k+1)
j , β̄

(k+1)
j , (gp

t )
(k+1)
j . They should

satisfy the constitutive contact and plastic conditions. We use the return

mapping procedure for both the frictional contact and the plastification.

The details are described below.

b) exit, if the prescribed tolerance is achieved; otherwise, set k = k+ 1, goto (a)

2. initialise the next pseudo-time step

U
(0)
j+1 = U

(k)
j

3. apply the next load increment

f j+1 = f j + (∆f )j+1,

t̂j+1 = t̂j + (∆t̂)j+1,

ûj+1 = ûj + (∆û)j+1,

exit, if the total load is achieved; otherwise, set j = j + 1, goto 1.
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4.2 h-version of the penalty method

Linear system

Let us consider in detail the structure of the linear system Ax = b. After linearization

of contact and plasticity terms described below we obtain











SΓs
N

ST
Γs

C ,Γs
N

0 0

SΓs
C ,Γs

N
SΓs

C
+ Css −Csm 0

0 −Cms Cmm + Cpl
Γm

C
(Bpl

Γm
C
)T

0 0 Bpl
Γm

C
Apl

Ωm





















xs
Γs

N

xs
Γs

C

xm
Γm

C

xm
Γm

N











=

bext − bint +











0

bs
Γs

C

−bm
Γm

C

0











.

(4.27)

where the stiffness matrix

Ã :=

( As 0

0 Am

)

=











SΓs
N

ST
Γs

C ,Γs
N

0 0

SΓs
C ,Γs

N
SΓs

C
0 0

0 0 Cpl
Γm

C
(Bpl

Γm
C
)T

0 0 Bpl
Γm

C
Apl

Ωm











consists of the finite element and the boundary element part and does not contain the

coupling terms. The submatrix As is the stiffness matrix of the boundary element part.

It is dense, since nonlocal boundary integral operators are involved in the corresponding

bilinear form. The submatrix Am is the stiffness matrix of the finite element part. It

is sparse and has a band structure. The upper index pl means that the matrix changes

within the Newton cycle due to the plastic terms. The matrix block Apl
Ωm is generated

by testing the trial functions, which correspond to the degrees of freedom in the interior

of Ωm and its Neumann boundary Γm
N , against themselves. The block Cpl

Γm
C

corresponds

to the testing the trial functions, associated with the contact boundary Γm
C , against

themselves. The block Bpl
Γm

C
is generated by testing the trial functions, associated with

the interior of Ωm and Γm
N , against the trial functions, associated with Γm

C . The boundary

element block SΓs
N

(SΓs
C
) is generated by testing the trial functions, which correspond to

the degrees of freedom, associated with the Neumann boundary Γs
N (contact boundary

Γs
C), against themselves. The block SΓs

C ,Γs
N

represents the matrix elements, obtained by

testing the trial functions, associated with Γs
C , against the trial functions, associated

with Γs
N .

The term bext is constructed by the usual contributions of external volume forces and pre-

scribed tractions on the Neumann boundary part. The terms Css, Csm, Cms, Cmm, bs
Γs

C
, bm

Γm
C

describe coupling of the bodies along the contact boundary. They appear after the lin-

earization of contact integrals. Ã, bint describe internal behaviour of the bodies and

reflect, for example, the plastic effects. Computation of these terms is discussed below.
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4 Nonconforming methods for two-body contact problems with friction

4.2.4 Pure BEM for elastoplastic contact problems with friction

Boundary integral formulation for elastoplasticity

Plastic deformation is an irreversible nonlinear process. The plastic deformation is deter-

mined by the whole deformation history, and therefore it cannot be written in terms of

boundary integral operators alone. The Newton’s potentials must be employed. We

derive the boundary integral formulation for elastoplasticity from the coupling for-

mulation (4.17) with the plastic material law σ = C : (ε − εp). In particular for

σm, (εp)m ∈ L2(Ω
m),um ∈ V

m
F,D,φ

m ∈ V
m
F , ε(·) := (∇(·) + (∇(·))T )/2 there holds

(σm, ε(φm))Ωm − (fm,φm)Ωm

= (C : ε(um), ε(φm))Ωm − (C : (εp)m, ε(φm))Ωm − (fm,φm)Ωm

= (C : ε(um), ε(φm))Ωm + (div(C : (εp)m),φm)Ωm

−〈(C : (εp)m) · nm,φm〉Σm − (fm,φm)Ωm

= (C : ε(um), ε(φm))Ωm + (div(C : (εp)m) − fm,φm)Ωm

−〈(C : (εp)m) · nm,φm〉Σm

= 〈Sum,φm〉Σm + 〈N(div(C : (εp)m) − fm),φm〉Σm

−〈(C : (εp)m) · nm,φm〉Σm .

Therefore the boundary integral formulation for elastoplastic problem with frictional

contact can be written as follows: Find u ∈ VD such that

〈Su,φ〉Σ + 〈N(div(C : (εp)m)),φm〉Σm − 〈(C : (εp)m) · nm,φm〉Σm

−〈p(u), [φ]〉ΓC
= 〈Nf ,φ〉Σ +

〈

t̂,φ
〉

ΓN
, ∀φ ∈ V ,

(4.28)

with the continuous contact traction

p := pnn+ ptt, pn := − 1

εn
gn, pt := − 1

εt
ge

t · t.

Here the penetration and the relative tangential displacement are computed in terms of

the displacement u, i.e. gn = gn(u), ge
t = ge

t (u).

Discrete weak formulation

We discretize the weak formulation (4.28) by defining a partition T
i
h of the boundary

Γi, i = s,m into straight line segments and introducing discrete spaces

V
i
D,h :=

{

Φ ∈ H 1/2(Γi) : Φ|I ∈
[

P1(I)
]2 ∀I ∈ T i

h ,Φ|ΓD
= ûi

}

,
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4.2 h-version of the penalty method

V
i
h :=

{

Φ ∈ H̃
1/2

(Σi) : Φ|I ∈
[

P1(I)
]2 ∀I ∈ T i

h

}

,

VD,h := V
m
D,h × V

s
D,h, Vh := V

m
h × V

s
h.

The discretized version of (4.28) is given by: Find U = (Um,U s) ∈ VD:

F int(U ,Φ) −G((εp)m,Φm) = F ext(Φ) ∀Φ ∈ V , (4.29)

where

F int(U ,Φ) :=
〈

ŜU ,Φ
〉

Σ
− 〈P , [Φ]〉ΓC

, (4.30)

G((εp)m,Φm) := −〈N(div(C : (εp)m)),Φm〉Σm + 〈(C : (εp)m) · nm,Φm〉Σm

F ext(Φ) := 〈Nf ,Φ〉Σ +
〈

t̂,Φ
〉

ΓN
,

P := Pnn + Ptt, Pn := − 1

εn
gn, Pt := − 1

εt
ge

t · t.

The contact term in the functional F int(U ,Φ) is nonlinear due to the constitutive con-

tact conditions. The functionalG((εp)m,Φm) is nonlinear when the plastic deformations

occur. Similarly to the previous section, we introduce the incremental loading process

as a consequent application of loading increments (∆f )j+1, (∆t̂)j+1, (∆û)j+1:

f j+1 = f j + (∆f )j+1,

t̂j+1 = t̂j + (∆t̂)j+1, j = 0, 1, 2 . . .

ûj+1 = ûj + (∆û)j+1,

which defines the discrete external load

F ext
j (Φ) :=

〈

Nf j ,Φ
〉

Σ
+
〈

t̂j,Φ
〉

ΓN

and defines the pseudo-time stepping process. We introduce the increment-dependent

boundary discrete spaces

V
i
Dj ,h :=

{

Φ ∈ H 1/2(Γi) : Φ|I ∈ P1(I),Φ|Γi
D

= (ûi)j

}

,

VDj ,h := V
m
Dj ,h × V

s
Dj ,h.

Let U 0 be the initial displacement state of the body. Unlike as in the FE/BE description

in the previous paragraph, we use the backward Euler scheme for contact and the forward

Euler scheme for plasticity. Using the implicit scheme for the plastic terms seems to be

a more sophisticated task, since in the pure BE case we need to have the displacement-

degrees-of-freedom only on the boundary of the domain.

The following implicit-explicit formulation must be solved on each loading step j: Find

(∆U)j ∈ VDj ,h, and therefore the new displacement state U j = U j−1 + (∆U)j , plastic

strain εp
j , contact traction P j = P (U j) such that

F int(U j ,Φ) = G(εp
j ,Φ) + F ext

j (Φ) ∀Φ ∈ Vh, (4.31)
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4 Nonconforming methods for two-body contact problems with friction

where contact and plastic constitutive conditions from Paragraph 4.2.1 and Paragraph

4.2.2 are satisfied.

In order to solve (4.31) we use Newton’s method. We proceed similarly to the previous

section. Let U be the coefficients of the expansion of U in basis of the discrete space

VD,h. Define

F int
∗ (U,Φ) := F int(U ,Φ).

Therefore (4.31) becomes

F int
∗ (Uj ,Φ) = G(εp

j ,Φ) + F ext
j (Φ) ∀Φ ∈ Vh.

We perform the linearization of F int
∗ (Uj ,Φ). We choose the starting value

U
(0)
j := Uj−1,

and introduce the Newton’s increment (∆U)
(k)
j to proceed to the next iterate

U
(k+1)
j = U

(k)
j + (∆U)

(k+1)
j , k = 0, 1, 2 . . .

The Taylor expansion provides

F int
∗ (U

(k+1)
j ,Φ) = F int

∗ (U
(k)
j ,Φ) +

∂F int
∗ (U

(k)
j ,Φ)

∂U
(k)
j

(∆U)
(k)
j . (4.32)

Now we are on the position to formulate the algebraic problem. Define for brevity the

matrix A and the right hand side vector b by

A :=
∂F int

∗ (U
(k)
j ,Φ)

∂U
(k)
j

,

b :=F ext
j (Φ) +G((εp)

(k)
j ,Φ) − F int

∗ (U
(k)
j ,Φ).

Note, that plastic strain from the (k)-th Newton’s iteration (εp)
(k)
j is appears in the right

hand side and makes no influence on the matrix. That corresponds to the forward Euler

scheme for plasticity. Then the algebraic problem is: Find x = (∆U)
(k+1)
j :

Ax = b.

The whole algorithm can be formulated now as follows.
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4.2 h-version of the penalty method

Algorithm 4.2. (Incremental loading with Newton’s algorithm for pure BEM)

Set initial displacement U
(0)
0 , initial internal variables (εp)

(0)
0 , α

(0)
0 , β̄

(0)
0 , initial tangential

macro-displacement (gp
t )

(0)
0 and initial loads f 0, t̂0, û0

1. for j = 0, 1, 2, . . .

a) for k = 0, 1, 2, . . .

i. compute the load vector

b := F ext
j (Φ) +G((εp)

(k)
j ,Φ) − F int

∗ (U
(k)
j ,Φ)

ii. if ||b||l2 :=
√

b · b ≤ TOL goto 2.

iii. compute the matrix A :=
∂F int

∗ (U
(k)
j ,Φ)

∂U
(k)
j

,

iv. find the next displacement increment x = ∆U
(k+1)
j by solving

Ax = b.

v. update the displacement field

U
(k+1)
j = U

(k)
j + (∆U)

(k+1)
j

and the internal variables (εp)
(k+1)
j , α

(k+1)
j , β̄

(k+1)
j , (gp

t )
(k+1)
j . They should

satisfy the constitutive contact and plastic conditions. We use the return

mapping procedure for both the frictional contact and the plastification.

The details are described below.

b) exit, if the prescribed tolerance is achieved; otherwise, set k = k+ 1, goto (a)

2. initialize the next pseudo-time step

U
(0)
j+1 = U

(k)
j

3. apply the next load increment

f j+1 := f j + (∆f )j+1,

t̂j+1 := t̂j + (∆t̂)j+1,

ûj+1 := ûj + (∆û)j+1,

exit, if the total load is achieved; otherwise, set j = j + 1, goto 1.
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4 Nonconforming methods for two-body contact problems with friction

Linear system

The linear system Ax = b has the following form











SΓs
N

ST
Γs

C ,Γs
N

0 0

SΓs
C ,Γs

N
SΓs

C
+ Css −Csm 0

0 −Cms Cmm + SΓm
C

ST
Γm

C ,Γm
N

0 0 SΓm
C ,Γm

N
SΓm

M





















xs
Γs

N

xs
Γs

C

xm
Γm

C

xm
Γm

N











=

bext − bint + bεp +











0

bs
Γs

C

−bm
Γm

C

0











.

(4.33)

The similar notations as in the description of the linear system for the FE/BE coupling

problem are used here. The only new term is bεp, which reflects the contribution of

the plastic terms to the right hand side. Since the pure boundary formulation is used,

the submatrices, corresponding to the stiffness matrices of the bodies without contact,

are dense. Therefore, the whole matrix is of dense type, but with sufficiently reduced

size with respect to the FE/BE coupling described above, because the unknowns are

associated only with the boundaries of the bodies.

Note that only the contact blocks Css, Csm, Cms, Cmm of the matrix are updated, which

corresponds to backward Euler scheme for frictional contact and to forward Euler scheme

for plasticity. The details connected with linearization of the contact terms are given

below.

4.2.5 Linearization of the contact terms

In this paragraph we will describe in detail the computation of the matrix elements

caused by the linearization of (4.26) or (4.32). According to the definition of the func-

tional F int, the contact terms must be also linearized. Denoting the contact terms by

C(U ,Φ) := −〈P , [Φ]〉ΓC
and corresponding coefficient dependent functional C∗(U,Φ) :=

C(U ,Φ), where U are expansion coefficients of the discrete function U in the basis of

VD,h. Consider some (fixed) incremental loading step j. Since all the values involved

correspond to this incremental step, we will omit the lower index j for brevity. The

Newton’s scheme is used for solution of the problem. It is an iterative process, where

the next iterate is obtained from the previous one by adding corrections

U(k+1) = U(k) + ∆U, k = 0, 1, 2 . . .

which are solutions of the linear system (4.27) or (4.33). Further down we describe the

computation of the matrix elements Cab, a, b = m, s.
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4.2 h-version of the penalty method

Then linearization of the contact terms can be written as follows (cf. (4.32))

C∗(U
(k+1),Φ) = C∗(U

(k),Φ) +
∂C∗(U

(k),Φ)

∂U(k)
∆U

= C(U (k),Φ) +
d

dα
C(U (k) + α∆U ,Φ)

∣

∣

∣

∣

α=0

. (4.34)

We analyse the normal and tangential contact terms independently. For U = Unn+Utt

we introduce the decomposition

C(U ,Φ) := Cn(Un,Φn) + Ct(Ut,Φt)

with

Cn(Un,Φn) :=
1

εn

∫

ΓC

gn(Un)[Φn] ds, Ct(Ut,Φt) :=
1

εn

∫

ΓC

ge
t (Ut)[Φt] ds.

Linearization of the normal contact terms

For the normal contact terms we obtain with gn(Un) = ([Un] − g)+

d

dα
Cn(U

(k)
n + α(∆U)n,Φn)

∣

∣

∣

∣

α=0

=
1

εn

∫

ΓC

d

dα
gn(U (k)

n + α(∆U)n)

∣

∣

∣

∣

α=0

[Φn] ds+ THO.

Further,

d

dα
gn(U

(k)
n + α(∆U)n)

∣

∣

∣

∣

α=0

=
d

dα
([U

(k)
n + α(∆U)n] − g)+

∣

∣

∣

∣

α=0

=

{

[(∆U)n], if [U
(k)
n ] − g > 0

0, if [U
(k)
n ] − g < 0

}

= [(∆U)n] sign(gn(U
(k)
n )).

Therefore

d

dα
Cn(U (k)

n + α(∆U)n,Φn)

∣

∣

∣

∣

α=0

=
1

εn

∫

ΓC

sign(gn(U
(k)
n )) [(∆U)n] [Φn] ds. (4.35)

Remark 4.2.2. It is worth to say that in the case [U
(k)
n ] = g the penetration function

gn(U
(k)
n ) is not differentiable. The lack of smoothness can lead to some problems in

convergence of Newton’s method. This can be avoided by an appropriate regularization

of gn(U
(k)
n ). But for most problems only few iterations are needed to define the active set

(i.e. contact nodes, coming in contact), see [41, 4.4.2].

Remark 4.2.3. The expression in the right-hand side of (4.35) is linear, since the

values of sign(gn(U
(k)
n )) are taken from the previous iteration. In other words, the matrix

element is ”switched on”, if the penetration function in the corresponding point was

positive in the previous iteration, i.e. the point was in contact.
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4 Nonconforming methods for two-body contact problems with friction

Linearization of the tangential contact terms

For brevity of notation we introduce the parameter-dependent projection operator Πθ

pointwise as follows

Πθ(x) :=

{

x, if |x| ≤ θ,

θ sign(x), if |x| ≥ θ.

It is easy to see that the constitutive conditions, described in paragraph 4.2.1 provide

ge
t (Ut) = ΠεtF(gt(Ut)) = ΠεtF([Ut]),

since gt(Ut) = [Ut]. Therefore

d

dα
Ct(U

(k)
t + α(∆U)t,Φt)

∣

∣

∣

∣

α=0

=
1

εt

∫

ΓC

d

dα
ΠεtF(ge

t (U
(k)
t + α(∆U)t))

∣

∣

∣

∣

α=0

[Φt] ds+ THO.

Remember that in case of Coulomb’s frictional law there folds

F = µf |P (k)
n | =

µf

εn
gn(U (k)

n + α(∆U)n)

We distinguish between stick and slip case, i.e. we need to compare |gt(U
(k)
t +α(∆U)t)|

and εtF := µf
εt

εn
gn(U

(k)
n +α(∆U)n) under condition α = 0. In other words we will speak

about

stick, if |gt(U
(k)
t )| ≤ µf

εt

εn

gn(U (k)
n ),

slip, if |gt(U
(k)
t )| > µf

εt

εn

gn(U (k)
n ).

With this notation we obtain

d

dα
ΠεtF(gt(U

(k)
t + α(∆U)t))

∣

∣

∣

∣

α=0

=















d

dα
gt(U

(k)
t + α(∆U)t)

∣

∣

∣

∣

α=0

, for stick,

d

dα

{

µf
εt

εn

gn(U
(k)
n + α(∆U)n) sign(gt(U

(k)
t + α(∆U)t))

} ∣

∣

∣

∣

α=0

, for slip.

In case of stick we obtain

d

dα
gt(U

(k)
t + α(∆U)t)

∣

∣

∣

∣

α=0

=
d

dα
[U

(k)
t + α(∆U)t]

∣

∣

∣

∣

α=0

= [(∆U)t)].

In case of slip there holds (cf. (4.35))

d

dα

{

µf
εt

εn

gn(U (k)
n + α(∆U)n) sign(gt(U

(k)
t + α(∆U)t))

} ∣

∣

∣

∣

α=0

= µf
εt

εn
sign(gn(U (k)

n )) sign(gt(U
(k)
t ))[(∆U)n],

since
d

dα
sign(gt(U

(k)
t + α(∆U)t))

∣

∣

∣

∣

α=0

= 0.
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4.2 h-version of the penalty method

Remark 4.2.4. There is no singularity in case of slip, since |gt(U
(k)
t )| > µf

εt

εn
gn(U

(k)
n ) >

0 and the origin is excluded.

Summing obtained results we obtain

d

dα
Ct(U

(k)
t + α(∆U)t,Φt)

∣

∣

∣

∣

α=0

=















∫

ΓC

1

εt

[(∆U)t] [Φt] ds, for stick: |gt(U
(k)
t )| ≤ µf

εt

εn
gn(U

(k)
n ),

∫

ΓC

µf

εn

sign(gn(U (k)
n )gt(U

(k)
t ))[(∆U)n] [Φt] ds, for slip: |gt(U

(k)
t )| > µf

εt

εn
gn(U

(k)
n ).

Contact contribution to the right hand side – Return mapping for tangential

contact traction

Linearization of the nonlinear contact terms C(U (k+1)) produces contributions to the

system matrix and to the right-hand side, according to (4.34). The following terms

must be added to the right hand side

−C(U (k),Φ) =

∫

ΓC

Pn[Φn] ds+

∫

ΓC

Pt[Φt] ds.

The normal and tangential contact traction are computed with the constitutive relations

Pn := − 1

εn
gn, Pt := − 1

εt
ge

t .

Computation of the penetration function gn and of the micro-stick function ge
t is de-

scribed in paragraph 4.2.1. The computational algorithm for the tangential traction Pt

is known in the literature as the return mapping algorithm. It is a two-step algorithm of

the predictor-corrector type. First, the trial value of the tangential traction is computed,

based on the total tangential displacement gt

P trial
t := − 1

εt

gt, gt := [Ut].

Then, it is checked, if the trial friction force P trial
t satisfies the Coulomb’s frictional law.

For this reason the value of the frictional yield function f̂fr is computed

f̂fr(P
trial
t ) := |P trial

t | − µf |Pn|

and, if the Coulomb’s law is violated, the correction of P trial
t is performed.

Pt =











P trial
t , if f̂fr(P

trial
t ) ≤ 0,

µf |Pn|
P trial

t

||P trial
t || , if f̂fr(P

trial
t ) > 0.

127



4 Nonconforming methods for two-body contact problems with friction

4.2.6 Linearization of the plasticity terms in the FE domain –

Return mapping for plasticity

Since we use the backward Euler scheme for plasticity in case of FE discretization, the

energy bilinear form is nonlinear. We restrict our attention to the one of bodies with

FE discretization and omit upper indexes ”s” and ”m” marking the master or the slave

body.

Let us consider the linearization of the energy bilinear form closer.

(σ(U (k+1)), ε(Φ))Ωm = (σ(U (k)), ε(Φ))Ωm +
∂

∂U (k)
(σ(U (k)), ε(Φ))Ωm∆U (k+1)

The first summand makes a contribution to the right-hand side and the last one makes

a contribution to the matrix of the linear system as shown in Paragraph 4.2.3. Further

we define the elastoplastic tangent moduli (Cep)(k+1) by

∂σ(U (k))

∂U (k)
∆U (k+1) =

∂

∂U (k)
C : (ε(U (k)) − εp(U (k)))∆U (k+1) (4.36)

= (Cep)(k+1) : ε(∆U (k+1)). (4.37)

We derive the explicit expression for (Cep)(k+1) below.

Discretization of the yield condition, flow rule and hardening law (4.21) with ∆γ :=

γn+1∆t provides

η(k+1) := dev[σ(k+1)] − β̄(k+1), tr[β̄(k+1)] := 0,

(f̂pl)
(k+1) = ||η(k+1)|| −

√

2

3
K(α(k+1)),

n(k+1) :=
η(k+1)

||η(k+1)||
(εp)(k+1) = (εp)(k) + ∆γn(k+1), (4.38)

β̄(k+1) = β̄(k) +

√

2

3
∆H(k+1)n(k+1),

α(k+1) = α(k) + ∆γ

√

2

3
,

where

∆H(k+1) := H(α(k+1)) −H(α(k)).

and isotropic K(α) and kinematic H(α) hardening modules are defined by (4.22). The

discrete version of loading/unloading complimentary Kuhn-Tucker conditions is

∆γ ≥ 0, (f̂pl)
(k+1) ≤ 0, ∆γ(f̂pl)

(k+1) = 0. (4.39)
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4.2 h-version of the penalty method

It is easier to work with deviatoric parts of the stress and the strain tensors

e := dev[ε], s := dev[σ].

On order to obtain the stress field, which satisfies the discrete Kuhn-Tucker conditions

(4.39), we use the predictor-corrector scheme [60]. The predictor step is the pure elastic

step. If the discrete Kuhn-Tucker conditions are not satisfied, then the corrector step is

needed, which performs a correction of the stress deviator by changing the plastic part

of the strain tensor. The method can be geometrically interpreted as the closest point

projection of the stress onto the yield surface (f̂pl)
(k+1) = 0. The method is also known

as the return mapping algorithm.

First we perform the pure elastic trial step. Relation (4.23) yields strial = 2µe. The

discretized version is

(strial)(k+1) := s(k) + 2µ∆e(k+1), ∆e(k+1) := e(k+1) − e(k)

(ηtrial)(k+1) := (strial)(k+1) − β̄(k).

If the discrete yield condition is satisfied, i.e. f̂pl((s
trial)(k+1), α(k), β̄(k)) ≤ 0, then there

is no plastic loading occurs in the current step and we set

(strial)(k+1) := s(k+1), ∆γ := 0.

If f̂pl((s
trial)(k+1), α(k), β̄(k)) > 0, the corrector step should be performed. The discrete

conditions (4.38) yield

s(k+1) = dev[C : (ε(k+1) − (εp)(k+1))]

= dev[C : (ε(k) + ∆ε(k+1) − (εp)(k) − ∆γn(k+1))]

= s(k) + dev[C : (∆ε(k+1) − ∆γn(k+1))]

= s(k) + 2µ∆e(k+1) − 2µ∆γn(k+1)

= (strial)(k+1) − 2µ∆γn(k+1).

Therefore

η(k+1) := s(k+1) − β̄(k+1)

= (strial)(k+1) − 2µ∆γn(k+1) − β̄(k) −
√

2

3
∆H(k+1)n(k+1)

= (ηtrial)(k+1) −
(

2µ∆γ +

√

2

3
∆H(k+1)

)

n(k+1)

=: (ηtrial)(k+1) − A(k+1)n(k+1)

=: (ηtrial)(k+1) − A(k+1) η(k+1)

||η(k+1)||
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4 Nonconforming methods for two-body contact problems with friction

and

(ηtrial)(k+1) =
η(k+1)

||η(k+1)||(||η
(k+1)|| + A(k+1)),

||(ηtrial)(k+1)|| = ||η(k+1)|| + A(k+1), (4.40)

A(k+1) = 2µ∆γ +

√

2

3
∆H(k+1).

This provides that the normal direction n(k+1) is defined fully in terms of (ηtrial)(k+1):

(ηtrial)(k+1)

||(ηtrial)(k+1)|| =
η(k+1)

||η(k+1)|| =: n(k+1).

As the yield condition was not satisfied after the trial step, the corrector step should

return the stress on the yield surface, i.e.

(f̂pl)
(k+1) := ||η(k+1)|| −

√

2

3
K(α(k+1)) = 0.

Finally, we obtain the closed nonlinear system for finding the consistency parameter ∆γ

(f̂pl)
(k+1) := ||(ηtrial)(k+1)|| −

(

2µ∆γ +

√

2

3
∆H(k+1)

)

−
√

2

3
K(α(k+1)) = 0,

α(k+1) = α(k) +

√

2

3
∆γ. (4.41)

Note, that if kinematic/isotropic hardening law is given by (4.22), the system (4.41) is

linear and can be rewritten as

(f̂pl)
(k+1) := (f̂ trial

pl )(k+1) − (2µ+
2

3
H̄)∆γ = 0,

(f̂ trial
pl )(k+1) := ||(ηtrial)(k+1)|| −

√

2

3
(σY + θH̄α(k)).

Now we can establish the update formula for the consistent elastoplastic tangent moduli

(Cep)(k+1). For the stress tensor there holds

σ(k+1) = κ tr[ε(k+1)]1 + s(k+1)

= κ tr[ε(k+1)]1 + 2µe(k+1) − 2µ∆γn(k+1)

= C : ε(k+1) − 2µ∆γn(k+1).

This yields

dσ(k+1) = C : dε(k+1) − 2µ(d(∆γ)n(k+1) + ∆γdn(k+1))

=

(

C − 2µn(k+1) ⊗ ∂∆γ

∂ε(k+1)
− 2µ∆γ

∂n(k+1)

∂ε(k+1)

)

: dε(k+1) (4.42)

= (Cep)(k+1) : dε(k+1).
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4.2 h-version of the penalty method

It is easy to show [60, Lemma 3.2] that

∂n(k+1)

∂(ηtrial)(k+1)
=

1

||(ηtrial)(k+1)||
(

I − n(k+1) ⊗ n(k+1)
)

(4.43)

∂||(ηtrial)(k+1)||
∂(ηtrial)(k+1)

=
(ηtrial)(k+1)

||(ηtrial)(k+1)|| = n(k+1). (4.44)

Furthermore, there holds

∂(ηtrial)(k+1)

∂ε(k+1)
= 2µ

∂e(k+1)

∂ε(k+1)
= 2µ

(

I − 1

3
1 ⊗ 1

)

.

This and (4.43) give

∂n(k+1)

∂ε(k+1)
=

2µ

||(ηtrial)(k+1)||
(

I − n(k+1) ⊗ n(k+1)
)

:

(

I − 1

3
1 ⊗ 1

)

=
2µ

||(ηtrial)(k+1)||

(

I − 1

3
1 ⊗ 1 − n(k+1) ⊗ n(k+1)

)

. (4.45)

Differentiating the consistency condition (4.41) we obtain

∂||(ηtrial)(k+1)||
∂ε(k+1)

= 2µ
∆γ

∂ε(k+1)
+

√

2

3

[

K ′(α(k+1)) +H ′(α(k+1))
] α(k+1)

∂ε(k+1)
. (4.46)

For the first term the chain rule and (4.44) provide

∂||(ηtrial)(k+1)||
∂ε(k+1)

=
∂||(ηtrial)(k+1)||
∂(ηtrial)(k+1)

:
∂(ηtrial)(k+1)

∂ε(k+1)

= 2µ

(

I − 1

3
1 ⊗ 1

)

: n(k+1) = 2µn(k+1).

The hardening law in (4.38) yields

α(k+1)

∂ε(k+1)
=

√

2

3

∆γ

∂ε(k+1)

Thus, we derive from (4.46)

∂∆γ

∂ε(k+1)
=

[

1 +
K ′(α(k+1)) +H ′(α(k+1))

3µ

]−1

n(k+1). (4.47)

Inserting relations (4.45) and (4.47) in (4.42) provides the following representation for

the elastoplastic tangent moduli

C
ep = C − 2µn(k+1) ⊗ ∂∆γ

∂ε(k+1)
− 2µ∆γ

∂n(k+1)

∂ε(k+1)

= κ1 ⊗ 1 + 2µ

(

I − 1

3
1 ⊗ 1

)

− 2µ

[

1 +
K ′(α(k+1)) +H ′(α(k+1))

3µ

]−1

n(k+1) ⊗ n(k+1)

− 2µ∆γ
2µ

||(ηtrial)(k+1)||

(

I − 1

3
1 ⊗ 1 − n(k+1) ⊗ n(k+1)

)
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4 Nonconforming methods for two-body contact problems with friction

or

C
ep = κ1 ⊗ 1 + 2µa(k+1)

(

I − 1

3
1 ⊗ 1

)

− 2µb(k+1)n(k+1) ⊗ n(k+1),

a(k+1) = 1 − 2µ∆γ

||(ηtrial)(k+1)||

b(k+1) =

[

1 +
K ′(α(k+1)) +H ′(α(k+1))

3µ

]−1

− (1 − a(k+1)).

This representation used in (4.36) generates the linear system matrix contribution cor-

responding to the plastic behaviour.

4.2.7 Numerical examples

Example 1

The model problem can be interperted as an idealised isothermic metal forming process,

described as follows. An elastic stamp comes in contact with a plastic work piece and

leaves some plastic deformations in it. Then the stamp changes its location, comes

into contact with the work piece in the neighbours place and initiates some plastic

deformations again. Without loss of generality we denote the stamp as a slave body

and the work piece as a master body. The coordinates of the stamp in the moment of

the first touch are Ωs
1 := [0.2, 1.2] × [−1, 1], and in the moment of the second touch are

Ωs
2 := [−1.8,−0.8] × [−1, 1]. The work piece is given by Ωm := [−2, 2] × [−3,−1]. Both

touches are performed by setting prescribed total displacement on the Dirichlet boundary

of the work piece Γm
D := [−2, 2] × {−3} by um

D := 4, 3 · 10−3. This total displacement is

applied in the incremental form. The homogeneous displacement us
D = 0 is prescribed

on the Dirichlet boundary Γs
D,1 := [0.2, 1.2] × {1}, Γs

D,2 := [−1.8,−0.8] × {1} of the

stamp for the first and second touch respectively.

On Figures 4.1 - 4.4 we present the deformed mesh and the norm of the plastic strain

tensor ||εp|| :=
√
εp : εp in both bodies for both approaches. One can clearly observe

the similar plastic deformations in the work piece for FEM and BEM modelling of the

stamp. To make more feeling of deformation inside the stamp modelled with BEM, we

interpolate the FE mesh, compute displacement inside the body using the representation

formula and compute corresponding deformed state. The displacement is multiplied with

the factor 100 to make it visible. The evolution of the stress deviator norm in dependence

of the applied force in the characteristic point X = (−0.9;−1, 1) in the work piece is

shown on Figure 4.5. The curves for FE/FE and FE/BE simulations are very close.
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4.2 h-version of the penalty method

Figure 4.1: FE/FE: deformed mesh
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Figure 4.2: FE/FE: ||εp||

Figure 4.3: FE/BE: deformed mesh
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Figure 4.4: FE/BE: ||εp||

Example 2

We make now a single touch in the middle of the work piece The coordinates of the

stamp in the moment of the touch are Ωs := [−1, 1] × [−1, 0]. The work piece is given

again by Ωm := [−2, 2]× [−3,−1]. The Dirichlet boundary of the stamp Γs
D := [−1, 1]×

{0} is assumed to be fixed, i.e. us
D = 0. The Dirichlet boundary of the work piece

Γm
D := [−2, 2] × {−3} is subjected to the total displacement um

D := 4, 2 · 10−3, applied

incrementally.

On Figures 4.6 - 4.11 we present deformed meshes and the plastic strain norms. They re-

flect qualitatively the same behaviour. On Figure 4.12 we show the evolution of the norm
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Figure 4.5: FE/FE, FE/BE: || dev σ||
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4.2 h-version of the penalty method

of the stress deviator for all three methods in the characteristic point X = (1;−1, 1).

One observe that both curves with the FEM modelling are pretty close to each other.

The curve for BEM in the work piece shows qualitatively the similar behaviour.

Figure 4.6: FE/FE: deformed mesh
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Figure 4.7: FE/FE: ||εp||

Figure 4.8: FE/BE: deformed mesh
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Figure 4.9: FE/BE: ||εp||

Figure 4.10: BE/BE: deformed mesh
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Figure 4.11: BE/BE: ||εp||
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4.2 h-version of the penalty method

4.2.8 Numerical examples for adaptive mesh refinement

The proofs of the a posteriori error estimates from Section 3.3 for frictional contact

between an elastic body and a rigid obstacle can be easily generalized to the case of

two-body frictional contact problem in elasticity. Moreover, the refinement procedure

can be performed in the both bodies independently. The three coupling combinations

FE/FE, FE/BE and BE/BE can be performed and the FE indicator (3.100) and the BE

indicator (3.107) can be applied in the FE and in the BE part respectively.

Let us consider a frictional contact problem between two elastic bodies Ωs, Ωm, where

Ωs := [−1/2, 1/2] × [0, 2], Ωm := [−2, 2] × [−2, 0].

The upper boundary of Ωs is fixed and on the lower boundary of Ωm the displacements

are prescribed, i.e.

us = 0, on Γs
D := [−1/2, 1/2] × {2},

um = 5 · 10−4, on Γm
D := [−2, 2] × {−2}.

The remaining parts of the boundaries are treated as contact boundaries

Γs
C := ∂Ωs \ Γs

D, Γm
C := ∂Ωm \ Γm

D.

The both bodies have the same material parameters E = 266926.0, ν = 0.29 and the

coefficient of friction µf = 0.1. The examples for boundary elements were presented

for one-body frictional contact problems in Paragraph 3.3.5. We use here the FEM

discretization in both bodies.

The automatic adaptive mesh refinement procedure is given by Algorithm 3.2. On each

iteration step k, new meshes T s
h,k+1, T m

h,k+1 are generated, according to the values of the

error indicators (3.100) and the refinement rules. Then the following discrete problem

is solved: Find U = (U s,Um) ∈ V
s
F,h × V

m
F,D,h, such that

(σ(U), ε(Φ))Ωs∪Ωm −
〈

P ε, [Φ]
〉

ΓC
=
〈

t̂,Φ
〉

ΓN
, ∀Φ ∈ V

s
F,h × V

m
F,h,

where the discrete finite element spaces for b = s,m are given by

V
b
F,D,h :=

{

Φ ∈ H 1(Ωb) : Φ|K ∈
[

R1(K)
]2 ∀K ∈ T b

F,h,Φ|ΓD
= ûb

}

,

V
b
F,h :=

{

Φ ∈ H 1(Ωb) : Φ|K ∈
[

R1(K)
]2 ∀K ∈ T b

F,h,Φ|ΓD
= 0
}

,

where R1(K) represents the linear functions P1(K), if K is a triangle, or the bilinear

functions Q1(K), if K is a quadrilateral. According to (4.19), (4.20),

P := Pnn+ Ptt, Pn := − 1

εn
gn, Pt := − 1

εt
ge

t · t.
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4 Nonconforming methods for two-body contact problems with friction

Figure 4.13: Initial mesh and adaptively generated meshes after 5th, 10th, 21st, 36th and

42nd refinement steps
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Figure 4.14: Value of error indicator (3.100) in Ωs for uniform and adaptive mesh refine-
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Figure 4.15: Value of error indicator (3.100) in Ωm for uniform and adaptive mesh re-

finement
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Figure 4.16: x- and y-components of the displacements after 42nd refinement step

The sequence of adaptively generated meshes is shown in Figure (4.13). We observe that

the most of refinement happens on the zone of actual contact, and near the points, where

the boundary conditions change (contact / no contact or no contact / Dirichlet). We

compare behaviour of the error indicators for the uniform and adaptive mesh refinement

for Ωs and Ωm in Figure 4.14 and Figure 4.15 respectively. The x- and y-components of

the displacements after 42nd refinement step are given in Figure 4.16.

140



4.3 hp-mortar BEM for variational inequality

4.3 hp-mortar BEM for variational inequality

A novel hp-mortar BEM method for two-body frictional contact problems for non-

matched discretizations is constructed in this section. The contact constraints are

imposed in the weak sense on the discrete set of Gauss-Lobatto points involving the

hp-mortar projection operator. The problem is reformulated as a discrete variational

inequality of the second kind with the Steklov-Poincaré operator over a discrete convex

set of admissible solutions. We obtain an upper bound for the discretization error in the

energy norm. Due to the nonconformity of our approach, the error is decomposed into

the approximation error and the consistency error. Finally, we show that for quasiuni-

form meshes the discrete solution converges to the exact solution as O((h/p)1/4) in the

energy norm under additional assumption on the discretization parameters. We solve

the discrete problem applying a Dirichlet-to-Neumann algorithm. The original two-body

formulation is rewritten as a one-body contact problem and a one-body Neumann prob-

lem (see also Chernov et al. [18]). Then the global problem is solved with fixed point

iterations. An alternative approach is the Uzawa algorithm, which consists of solving two

independent one-body problems with a subsequent update for the contact traction. The

error indicator obtained for the pure FE approach for interface problems by Wohlmuth

[70] is extended here to frictional contact problems (also with boundary elements) and

is applied in an automatic mesh refinement procedure together with the three-step hp-

refinement algorithm (see e.g. Maischak and Stephan [47]). Then numerical examples

are given, which underline the suggested approach.

4.3.1 Discretization

Consider two polygonal domains Ω1,Ω2 with Lipschitz boundaries Γi := ∂Ωi, i = 1, 2.

As introduced in Section 4.1, we assume that each Γi consists of three disjoint parts

Γi
D,Γ

i
N and Γi

C . For simplicity of presentation we assume that the bodies are initially

in contact along ΓC ≡ Γ1
C ≡ Γ2

C (ΓC can not enlarge), and that ΓC is a straight line

segment. Similarly to Section 3.2, we assume that ΓD and ΓC are connected curves and

ΓD ∩ΓC = ∅. With each Γi we associate a finite family of disjoint straight line segments

T i
h , with diameters not exceeding hi.

Γ
i
=
⋃

I∈T i
h

I.

We allow only conforming meshes T i
h , i.e. every segment from T i

h is a subset of either

Γi
D or Γi

N or Γi
C . Let PpI

(I) define the space of polynomials on I, with degree less or

equal pI . We define the boundary element spaces on Γi as

V
i
hp :=

{

U ∈ V
i : ∀I ∈ T i

h ,U ∈ [PpI
(I)]2

}

, Vhp := V
1
hp × V

2
hp,

W
i
hp :=

{

U ∈ W
i : ∀I ∈ T i

h ,U ∈ [PpI−1(I)]
2} , Whp := W

1
hp × W

2
hp,
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4 Nonconforming methods for two-body contact problems with friction

where V
i,W i are given by (4.2) and (4.3) respectively. We assume that the meshes T i

h

and the polynomial degree distributions in V
i
hp are quasiuniform, i.e.

∀I, J ∈ T i
h ∃C > 0 :

|I|
|J | < C,

pI

pJ
< C, i = 1, 2,

and C is independent of I, J . Let

hi := max
I∈T i

h

|I|, pi := min
I∈T i

h

pI

be the characteristic mesh size and the characteristic polynomial degree in V
1
hp,V

2
hp.

Note that so far there is no relation imposed between h1 and h2 as well as between p1

and p2.

Since the meshes T 1
h and T 2

h induce two independent partitions of ΓC , we can not

incorporate the contact conditions directly into the set of admissible discrete solutions,

as it was done for the variational formulation (4.5). In order to define discrete contact

conditions we introduce an auxiliary space of normal traces on ΓC , associated with T 1
h

and T 2
h

N i
hp :=

{

W = U · ni|ΓC
: U ∈ V

i
hp

}

, i = 1, 2 (4.48)

and the mortar space, associated with T 1
h

M1
hp :=

{

Ψ ∈ N i
hp : Ψ ∈ PpI−1(I), if I ∩ ∂ΓC 6= ∅

}

. (4.49)

We define the hp-mortar projection operator (e.g. [59]) as the mapping π1
hp : H1/2(ΓC) →

N 1
hp with

π1
hpϕ = ϕ in ∂ΓC ,

∫

ΓC

(ϕ− π1
hpϕ)Ψ 1 ds = 0 ∀Ψ 1 ∈ M1

hp,
(4.50)

The hp-mortar projection operator was studied by Bernardi, Maday, Patera in [11], [12],

Ben Belgacem, Suri, Seshaiyer, Chilton in [59], [9], [7], [58] in the context of domain

decomposition methods. Further, we need the following approximation and stability

properties of π1
hp.

Lemma 4.3.1. [7] For any ν ≥ 0 there exists C > 0 such that ∀χ ∈ H1+ν(−1, 1),

||χ− π1
hpχ||H̃1/2(−1,1) ≤ C

h
1/2+η
1

p
1/2+ν
1

√

log p1||χ||H1+ν(−1,1), (4.51)

where η = min(ν, p1).

Lemma 4.3.2. [59] If the mesh refinement is not stronger than geometric (see [59,

Condition (M)]), then for ∀χ ∈ H̃1/2(−1, 1) there exists a constant C > 0, such that

||π1
hpχ||H̃1/2(−1,1) ≤ Cp

3/4
1 ||χ||H̃1/2(−1,1). (4.52)
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4.3 hp-mortar BEM for variational inequality

Furthermore, according to [58] the stability constant can not be improved.

Let Gi
hp be the set of Gauss-Lobatto nodes associated with the elements of T i

h . Now we

are in the position to define the set of admissible Galerkin solutions Khp of (4.55) below,

by imposing non-penetration conditions only on G1
hp.

Khp :=
{

U ∈ Vhp : (U1
n − π1

hpU
2
n)(x) ≤ 0 ∀x ∈ G1

hp ∩ ΓC

}

.

Note that in general Khp 6⊂ K.

The Steklov-Poincaré operator S defined in (4.11) contains the inverse of the single

layer potential V −1, which cannot be evaluated numerically. Therefore we introduce

the discrete Steklov-Poincaré operator Ŝ := W + (K ′ + 1/2)ihpV
−1
hp i

∗
hp(K + 1/2) which

differs from S. Here, ihp stands for the canonical embedding ihp : Whp →֒ H −1/2(Γ),

and i∗hp denotes its dual with respect to the duality product
〈

·, ·
〉

:= H−1/2(Γ)

〈

·, ·
〉

H 1/2(Γ)
,

cf. Section 1.4. We define the discrete single layer potential by

Vhp := i∗hpV ihp

and the consistency operator Ê by

Ê := S − Ŝ = (K ′ + 1/2)(V −1 − ihpV
−1
hp i

∗
hp)(K + 1/2). (4.53)

The following approximation properties of Ê are given by Lemma 1.4.2:

∃CÊ > 0 : ∀u,v ∈ V
〈

Êu,v
〉

Σ
≤ CÊ||u||H̃ 1/2

(Σ)
||v||

H̃
1/2

(Σ)
,

∃C0 > 0 : ∀v ∈ V ||Êv||H−1/2(Γ) ≤ C0ê(v),

where ê(v) := inf
Θ∈Whp

||V −1(K + 1/2)v −Θ ||H−1/2(Γ).

(4.54)

Now we are able to pose the Galerkin formulation of the problem (4.12):

Find U ∈ Khp :

〈

ŜU ,Φ −U
〉

Σ
+ j(Φ1 − π1

hpΦ
2)− j(U 1 − π1

hpU
2) ≥ L(Φ −U) ∀Φ ∈ Khp. (4.55)

The discrete set of admissible solutions Khp forms a convex cone. Standard arguments

of convex analysis guarantee uniqueness and existence for the solution of (4.55).

Remark 4.3.1. The formulation (4.55) is not symmetric, since the contact conditions

are defined in terms of the mesh T 1
h , associated with Γ1. Of course, it is possible to

introduce a formulation in terms of the mesh T 2
h , associated with Γ2.

In the subsequent analysis we will need the Lagrange interpolation operator

Ii
hp : C(Σi) → {v ∈ C(Σi) : v|I ∈ PpI

(I), ∀I ∈ T i
h}

defined on the set of Gauss-Lobatto points Gi
hp. The following stability and approxima-

tion properties follow from [10, Corollary 4.6, Theorem 4.7] by scaling.
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4 Nonconforming methods for two-body contact problems with friction

Lemma 4.3.3. Let γ be any connected subset of Γi, i = 1 or 2. Assume that the end

points of γ coincide with two mesh nodes from T i
h , i = 1 or 2 respectively. There exists

a positive constant C such that for any ∀u ∈ H1(γ)

||Ii
hpu||H1(γ) ≤ C||u||H1(γ). (4.56)

Furthermore, for any real numbers µ and ν, ν ∈ [0; 1] and µ > 1+ν
2

, there exists a

positive constant C depending on µ such that the following approximation property holds

for ∀u ∈ Hµ(−1; 1):

||u− Ii
hpu||Hν(γ) ≤ C

(

hi

pi

)µ−ν

||u||Hµ(γ). (4.57)

The following inverse inequality for polynomials is of importance.

Lemma 4.3.4. (inverse inequality) For arbitrary U ∈ N i
hp, where N i

hp is the space of

continuous piecewise polynomials on ΓC given by (4.48), there exists a constant C > 0

such that

||U ||H1(ΓC) ≤ C
pi

h
1/2
i

||U ||H1/2(ΓC). (4.58)

Proof. The assertion of the Lemma follows from Schmidt’s inequality (see e.g. [24])

||ϕ′
p||L2(−1,1) ≤

(p+ 1)2

√
2

||ϕp||L2(−1,1) ∀ϕp ∈ Pp(−1, 1)

with standard interpolation and scaling arguments.

4.3.2 A priori error analysis

In order to derive the a priori error estimates for the error between solutions of (4.12)

and (4.55) we proceed in several steps.

Lemma 4.3.5. Suppose u ∈ K is the solution of the variational problem (4.12). Let

U ∈ Khp be the solution of the discrete problem (4.55). Then there exists a constant

c > 0, such that

c||u−U ||
H̃

1/2
(Σ)

≤ inf
Θ∈Whp

||V −1(K + 1/2)u−Θ ||H−1/2(Γ)

+ inf
Φ∈Khp

{

‖u−Φ‖
H̃

1/2
(Σ)

+ |
〈

σn, [Φn]
〉

ΓC
|1/2 +

∣

∣

∣

∣

∫

ΓC

σt[Φt] + F|Φ1
t − π1

hpΦ
2
t | ds

∣

∣

∣

∣

1/2
}

+ inf
φ∈K

{

|
〈

σn, [φn − Un]
〉

ΓC
|1/2 +

∣

∣

∣

∣

∫

ΓC

σt[φt − Ut] + F
(

|[φt]| − |U1
t − π1

hpU
2
t |
)

ds

∣

∣

∣

∣

1/2
}

.

(4.59)
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4.3 hp-mortar BEM for variational inequality

Proof. Since the approximate Steklov-Poincaré operator Ŝ is positive definite on V

(cf. Lemma 1.4.1), and u, U solve (4.12), (4.55), respectively, we obtain for arbitrary

φ ∈ K and Φ ∈ Khp

cŜ‖u−U‖
H̃

1/2
(Σ)

≤
〈

Ŝ(u−U),u−U
〉

=
〈

Ŝu,u
〉

+
〈

ŜU ,U
〉

−
〈

Ŝu,U
〉

−
〈

ŜU ,u
〉

≤
〈

Su,φ
〉

+ j([φ]) − j([u]) + L(u− φ)

+
〈

ŜU ,Φ
〉

+ j(Φ1 − π1
hpΦ

2) − j(U 1 − π1
hpU

2) + L(U −Φ)

−
〈

Su,U
〉

−
〈

SU ,u
〉

−
〈

Êu,u
〉

+
〈

Êu,U
〉

+
〈

ÊU ,u
〉

=
〈

Su,φ−U
〉

− L(φ−U)

+
〈

Su,Φ − u
〉

− L(Φ − u)

−
〈

Su,Φ − u
〉

+
〈

ŜU ,Φ
〉

−
〈

SU ,u
〉

−
〈

Êu,u
〉

+
〈

Êu,U
〉

+
〈

ÊU ,u
〉

+ j([φ]) − j([u]) + j(Φ1 − π1
hpΦ

2) − j(U 1 − π1
hpU

2).

The partial integration provides

〈

Su,φ−U
〉

− L(φ−U ) =
〈

σnn+ σtt, [φ−U ]
〉

ΓC
,

〈

Su,Φ − u
〉

− L(Φ − u) =
〈

σnn+ σtt, [Φ − u]
〉

ΓC
.

Furthermore, since S = Ŝ + Ê, it is easy to see that

−
〈

Su,Φ − u
〉

+
〈

ŜU ,Φ
〉

−
〈

SU ,u
〉

−
〈

Êu,u
〉

+
〈

Êu,U
〉

+
〈

ÊU ,u
〉

=
〈

Ŝu,u−Φ
〉

+
〈

Êu,u−Φ
〉

+
〈

ŜU ,Φ
〉

−
〈

ŜU ,u
〉

−
〈

Êu,u
〉

+
〈

Êu,U
〉

=
〈

Ŝu,u−Φ
〉

+
〈

Êu,u−Φ
〉

−
〈

ŜU ,u−Φ
〉

−
〈

Êu,u
〉

+
〈

Êu,U
〉

=
〈

Ŝ(u−U),u−Φ
〉

+
〈

Êu,u−Φ
〉

+
〈

Êu,U − u
〉

.

Using (4.54) we obtain for some α1 > 0

〈

Êu,u−Φ
〉

+
〈

Êu,U − u
〉

≤ ‖Êu‖H−1/2(Γ)

(

‖u−U‖
H̃

1/2
(Σ)

+ ‖u−Φ‖
H̃

1/2
(Σ)

)

≤ C0

(

α1

2
‖u−U‖2

H̃
1/2

(Σ)
+
α1 + 1

2α1
ê(u)2 +

1

2
‖u−Φ‖2

H̃
1/2

(Σ)

)

.

Continuity of the discrete Steklov-Poincaré operator Ŝ (Lemma 1.4.1) provides for α2 > 0

〈

Ŝ(u−U),u−Φ
〉

≤ CŜ‖u−U‖
H̃

1/2
(Σ)

‖u−Φ‖
H̃

1/2
(Σ)

≤ CŜ

(

α2

2
‖u−U‖2

H̃
1/2

(Σ)
+

1

2α2

‖u−Φ‖2

H̃
1/2

(Σ)

)

.
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Therefore, combining these results we obtain for the global error
(

cŜ − C0
α1

2
− CŜ

α2

2

)

‖u−U‖2
H̃1/2(Σ)

≤ C0
α1 + 1

2α1
ê(u)2 +

(

C0

2
+
CŜ

2α2

)

‖u−Φ‖2
H̃1/2(Σ)

+ |
〈

σn, [Φn − un]
〉

| +
∣

∣

∣

∣

∫

ΓC

(

σt[Φt − ut] + F|Φ1
t − π1

hpΦ
2
t | − F|[ut]|

)

ds

∣

∣

∣

∣

+ |
〈

σn, [φn − Un]
〉

| +
∣

∣

∣

∣

∫

ΓC

(

σt[φt − Ut] + F|[φt]| − F|U1
t − π1

hpU
2
t |
)

ds

∣

∣

∣

∣

.

Since we are free in choosing φ ∈ K, Φ ∈ Khp, we are able to take the infimum in

the above inequality. The assertion of the lemma follows by noting that due to contact

conditions in (4.1) there holds

σn [un] = 0, σt[ut] + F|[ut]| = 0.

Remark 4.3.2. It was shown in Lemma 4.3.5, that the global error consists of three

parts. The first infimum in (4.59) is the approximation error of the space Whp initiated

by the approximation of the Steklov-Poincaré operator by Ŝ. The approximation property

of Whp provides that there exists C > 0 :

inf
Θ∈Whp

||V −1(K + 1/2)u−Θ ||H−1/2(Γ) ≤ C

(

h1

p1
+
h2

p2

)

||Tu||H 1/2(Γ). (4.60)

Here T := V −1(K + 1/2) is the non-symmetric representation of the Dirichlet-to-

Neumann operator, introduced in Section 1.3. The second infimum in (4.59) is standard

even for conforming problems and corresponds to the approximation property of the space

Khp. The last infimum in (4.59) is the consistency error and is caused by nonconformity

of our approach, i.e. Khp 6⊂ K. It disappears in case of matching meshes on the contact

boundary with piecewise linear basis functions.

Remark 4.3.3. Note, that there holds

σn = Tu1 · n1|ΓC
, σt = Tu1 · t1|ΓC

.

We proceed further with the approximation error.

Lemma 4.3.6. Let u ∈ K ∩ H̃
3/2

(Σ) be the solution of (4.12) and σn ∈ H1/2(ΓC) and

σt ∈ H1/2(ΓC) are the normal and tangential contact traction respectively. Then there

exists Φ ∈ Khp and C > 0 such that

‖u−Φ‖
H̃

1/2
(Σ)

≤ C

(

h1

p1

log p1 +
h2

p2

)

‖u‖
H̃

3/2
(Σ)
, (4.61)

|
〈

σn, [Φn]
〉

ΓC
|1/2 ≤ C

(

h1

p1

)3/4
4
√

log p1‖σn‖1/2

H1/2(ΓC )
‖u‖1/2

H̃
3/2

(Σ)
, (4.62)
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∣

∣

∣

∣

∫

ΓC

σt[Φt]+F|Φ1
t − π1

hpΦ
2
t | ds

∣

∣

∣

∣

1/2

≤ C

(

(

h1

p1

log p1

)1/2

+

(

h2

p2

)1/2
)

‖F‖1/2
L2(ΓC)‖u‖

1/2

H̃
3/2

(Σ)
. (4.63)

Proof. We denote the jump of the normal displacement rn := [un] ≤ 0 on ΓC and

r := r∗nn
1 where r∗n is an extension of rn onto Σ1 satisfying

||r∗n||H̃3/2(Σ1) ≤ C||rn||H3/2(ΓC),

Existence of such an extension can be shown similarly to Lemma 3.2.2. Further we

introduce w := (u1 − r,u2). Note that there holds [wn] = 0 in all points of ΓC and

||w||
H̃

3/2
(Σ)

≤ ||u||
H̃

3/2
(Σ)

+ C||rn||H3/2(ΓC) ≤ C||u||
H̃

3/2
(Σ)
.

Let R1
hp be the zero extension operator from ΓC onto Σ1. Due to the definition of the

H̃1/2-norm there holds

||R1
hpΨ ||H̃1/2(Σi) = ||Ψ ||H̃1/2(ΓC)

for arbitrary Ψ ∈ H̃1/2(ΓC). Similarly to the approach of Hild [34] for the h-version of

FEM, we define a piecewise polynomial function W := (W 1,W 2).

W 1 := I1
hpw

1 +R1
hp(π

1
hp(I2

hpw
2
n − I1

hpw
1
n))n,

W 2 := I2
hpw

2.

The operator R1
hp is an identity operator on ΓC and π1

hpI1
hpw

1
n = I1

hpw
1
n on ΓC ; thus in

all points of ΓC there holds

W 1
n − π1

hpW
2
n = I1

hpw
1
n +R1

hp(π
1
hp(I2

hpw
2
n − I1

hpw
1
n)) − π1

hpI2
hpw

2
n = 0. (4.64)

Using the approximation property of the Lagrange interpolation operator (4.57) we

obtain

‖w − Ihpw‖
H̃

1/2
(Σ)

≤ C

(

h1

p1

+
h2

p2

)

‖w‖
H̃

3/2
(Σ)

≤ C

(

h1

p1

+
h2

p2

)

‖u‖
H̃

3/2
(Σ)
.

Moreover, stability of R1
hp provides

‖Ihpw −W ‖
H̃

1/2
(Σ)

=
∥

∥I1
hpw

1 −W 1
∥

∥

H̃
1/2

(Σ1)

=
∥

∥R1
hp

(

π1
hp(I1

hpw
1
n − I2

hpw
2
n)
)∥

∥

H̃1/2(Σ1)
(4.65)

≤ C
∥

∥π1
hp

(

I1
hpw

1
n − I2

hpw
2
n

)∥

∥

H̃1/2(ΓC)
.
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The stability constant in (4.52) of the mortar projection π1
hp includes the factor p

3/4
1 ,

therefore direct application of (4.52) leads to the reduced rate of convergence. To over-

come this we perform a splitting, and employing (4.51) we estimate

∥

∥π1
hp

(

I1
hpw

1
n − I2

hpw
2
n

)∥

∥

H̃1/2(ΓC)
≤
∥

∥(I1
hpw

1
n − I2

hpw
2
n) − π1

hp

(

I1
hpw

1
n − I2

hpw
2
n

)∥

∥

H̃1/2(ΓC)

+
∥

∥I1
hpw

1
n − I2

hpw
2
n

∥

∥

H̃1/2(ΓC)

≤ C

(

h1

p1

)1/2
√

log p1

∥

∥I1
hpw

1
n − I2

hpw
2
n

∥

∥

H1(ΓC)
(4.66)

+
∥

∥I1
hpw

1
n − I2

hpw
2
n

∥

∥

H̃1/2(ΓC)
.

Further, we use the approximation property of the Lagrange interpolation operator (4.57)

to obtain

∥

∥I1
hpw

1
n − I2

hpw
2
n

∥

∥

H̃1/2(ΓC)
≤
∥

∥I1
hpw

1
n − w1

n

∥

∥

H̃1/2(ΓC)
+
∥

∥w2
n − I2

hpw
2
n

∥

∥

H̃1/2(ΓC)

≤ C

(

h1

p1

+
h2

p2

)

‖w‖H̃3/2(Σ),

∥

∥I1
hpw

1
n − I2

hpw
2
n

∥

∥

H1(ΓC)
≤
∥

∥I1
hpw

1
n − w1

n

∥

∥

H1(ΓC)
+
∥

∥w2
n − I2

hpw
2
n

∥

∥

H1(ΓC)

≤ C

(

(

h1

p1

)1/2

+

(

h2

p2

)1/2
)

‖w‖H̃3/2(Σ),

since [wn] = 0 by construction. This together with (4.65) and (4.66) gives

‖Ihpw −W ‖
H̃

1/2
(Σ)

≤ C

(

(

h1

p1

)

√

log p1 +

(

h1

p1

h2

p2

)1/2
√

log p1 +
h2

p2

)

‖u‖H̃3/2(Σ)

≤ C

(

h1

p1

log p1 +
h2

p2

)

‖u‖H̃3/2(Σ).

Therefore, there holds

‖w −W ‖
H̃

1/2
(Σ)

≤ ‖w − Ihpw‖
H̃

1/2
(Σ)

+ ‖Ihpw −W ‖
H̃

1/2
(Σ)

≤ C

(

h1

p1

log p1 +
h2

p2

)

‖u‖
H̃

3/2
(Σ)
.

Now, we introduce Φ :=
(

W 1 + I1
hpr,W

2
)

. It follows with (4.64) that Φ ∈ Khp, since

Φ1
n − π1

hpΦ
2
n = W 1

n + I1
hprn − π1

hpW
2
n = I1

hprn = I1
hp[un]

∣

∣

(x)
≤ 0 ∀x ∈ G1

hp ∩ ΓC .

Note that

u−Φ = (w1 + r,w2) − (W 1 + I1
hpr,W

2) = w −W + (r − I1
hpr, 0).
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Alltogether

‖u−Φ‖
H̃

1/2
(Σ)

≤ ‖w −W ‖
H̃

1/2
(Σ)

+
∥

∥r − I1
hpr
∥

∥

H̃
1/2

(Σ1)

≤ C

(

h1

p1
log p1 +

h2

p2

)

‖u‖
H̃

3/2
(Σ)

+ C
h1

p1
‖[un]‖H3/2(ΓC)

≤ C

(

h1

p1
log p1 +

h2

p2

)

‖u‖
H̃

3/2
(Σ)

and (4.61) follows. In order to show (4.62) we decompose

∫

ΓC

σn[Φn − un] ds =

∫

ΓC

σn[Wn] ds+

∫

Γc

σn

(

I1
hprn − rn

)

ds. (4.67)

For the second term there holds

∫

Γc

σn

(

I1
hprn − rn

)

ds ≤ ‖σn‖L2(ΓC)

∥

∥rn − I1
hprn

∥

∥

L2(ΓC )

≤ C‖σ‖L2(ΓC)

(

h1

p1

)3/2

‖[un]‖H3/2(ΓC) (4.68)

≤ C

(

h1

p1

)3/2

‖σ‖L2(ΓC)‖u‖H̃
3/2

(Σ)
.

Note, that we cannot achieve a better result, since the error of the interpolant cannot

be optimally bounded in Sobolev spaces with negative index. Furthermore, it is crucial

to use the interpolation operator in the definition of Φ to show that Φ ∈ Khp. Using

again that R1
hp is identity on ΓC , definition of the mortar projection (4.50) and stability

property (4.56) we get with the approximation property of M1
hp (cf. [63])

∫

ΓC

σn[Wn] ds =

∫

ΓC

σn

(

π1
hpI2

hpw
2
n − I2

hpw
2
n

)

ds

= inf
Θ∈M1

hp

∫

ΓC

(σn − Θ)
(

π1
hpI2

hpw
2
n − I2

hpw
2
n

)

ds

≤ inf
Θ∈M1

hp

‖σn − Θ‖
H− 1

2 (Γc)

∥

∥I2
hpw

2
n − π1

hpI2
hpw

2
n

∥

∥

H̃1/2(ΓC)
(4.69)

≤ C inf
Θ∈M1

hp

‖σn − Θ‖
H− 1

2 (Γc)

(

h1

p1

)1/2
√

log p1

∥

∥I2
hpw

2
n

∥

∥

H1(Γc)

≤ C

(

h1

p1

)3/2
√

log p1‖σn‖H1/2(ΓC)‖u‖H̃
3/2

(Σ)
.

Combining (4.68), (4.69) we obtain (4.62). For the frictional term (4.63) we use again
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4 Nonconforming methods for two-body contact problems with friction

that for the exact solution of (4.12) there holds σt[ut] + F|[ut]| = 0. Thus

∫

ΓC

σt[Φt] + F|Φ1
t − π1

hpΦ
2
t | ds =

∫

ΓC

σt[Φt] − σt[ut] + F(|Φ1
t − π1

hpΦ
2
t | − |[ut]|) ds

≤
∫

ΓC

σt [Φt − ut] + F
∣

∣Φ1
t − π1

hpΦ
2
t − [ut]

∣

∣ ds

≤
∫

ΓC

F| [Φt − ut] | + F
∣

∣Φ1
t − π1

hpΦ
2
t − [ut]

∣

∣ ds.

We decompose Φ1
t − π1

hpΦ
2
t − [ut] = Φ1

t − u1
t + π1

hp(u
2
t − Φ2

t ) + (u2
t − π1

hpu
2
t ). Thus

∫

ΓC

σt[Φt] + F|Φ1
t − π1

hpΦ
2
t | ds

≤
∫

ΓC

F(|[Φt − ut]| +
∣

∣Φ1
t − u1

t

∣

∣+
∣

∣π1
hp(u

2
t − Φ2

t )
∣

∣+
∣

∣(u2
t − π1

hpu
2
t )
∣

∣) ds

≤ ‖F‖L2(ΓC)(2‖Φt − ut‖L2(ΓC) + ||π1
hp(u

2
t − Φ2

t )||L2(ΓC) + ||(u2
t − π1

hpu
2
t )||L2(ΓC)).

By definition Φt =
(

I1
hpu

1
t , I2

hpu
2
t

)

, therefore

‖Φt − ut‖L2(ΓC) ≤
(

(

h1

p1

)3/2

+

(

h2

p2

)3/2
)

‖u‖
H̃

3/2
(Σ)
,

||π1
hp(u

2
t − Φ2

t )||L2(ΓC) ≤ ||π1
hp(u

2
t − I2

hpu
2
t )||H1/2(ΓC)

≤ ||(u2
t − I2

hpu
2
t ) − π1

hp(u
2
t − I2

hpu
2
t )||H1/2(ΓC) + ||u2

t − I2
hpu

2
t ||H1/2(ΓC)

≤
(

h1

p1

)1/2
√

log p1||u2
t − I2

hpu
2
t ||H1(ΓC) + ||u2

t − I2
hpu

2
t ||H1/2(ΓC )

≤ C

(

h1

p1

log p1 +
h2

p2

)

‖u‖
H̃

3/2
(Σ)
,

and

||u2
t − π1

hpu
2
t ||L2(ΓC) ≤ C

h1

p1

√

log p1||u2
t ||H3/2(ΓC)

≤ C
h1

p1

√

log p1‖u‖H̃
3/2

(Σ)
,

which provides (4.63).

Lemma 4.3.7. Let u ∈ K ∩ H̃
3/2

(Σ) be the solution of (4.12), let σn ∈ H1/2(ΓC) and

σt ∈ H1/2(ΓC) be the corresponding normal and tangential contact tractions, and let

U ∈ Khp be the solution of (4.55). Then there exists φ ∈ K, constants α3, α4 ∈ (0; 1)
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4.3 hp-mortar BEM for variational inequality

and a constant C > 0 such that there holds

∣

∣

∣

∣

∫

ΓC

σn[φn − Un] ds

∣

∣

∣

∣

1/2

≤ α3||u−U ||
H̃

1/2
(Σ)

(4.70)

+
C

α3
γn,hp‖σn‖H1/2(ΓC ) + C

(

h1

p1

)1/4

‖u‖
H̃

3/2
(Σ)
,

∣

∣

∣

∣

∫

ΓC

σt[φt − Ut] + F(|[φt]| − |U1
t − π1

hpU
2
t |) ds

∣

∣

∣

∣

1/2

≤ α4||u−U ||
H̃

1/2
(Σ)

(4.71)

+
C

α4

γt,hp‖σ‖H1/2(ΓC) + Cγu
t,hp‖u‖H̃

3/2
(Σ)
.

where

γn,hp :=

(

h1

p1

)1/4

+
√

log p1
p2

p1

h1

h
1/2
2

,

γt,hp :=
√

log p1
p2

p
3/2
1

h
3/2
1

h
1/2
2

+ 4
√

log p1

(

h1

p1

)3/4

h
1/4
2 + 4

√

log p1
h1

p1

,

γu
t,hp := 4

√

log p1

(

h1

p1

)3/4

h
1/4
2 + 4

√

log p1
h1

p1
.

Proof. Since the solution U of the discrete formulation (4.55) lies in Khp, there holds

π1
hp[Un]|(x) = U1

n − π1
hpU

2
n|(x) ≤ 0 ∀x ∈ G1

hp ∩ ΓC .

Following [46] we define continuous functions inf(f1, f2), sup(f1, f2) for continuous f1, f2

as follows

inf(f1, f2)(x) := inf(f1(x), f2(x)), sup(f1, f2)(x) := sup(f1(x), f2(x)).

Now, choose

φ1
n := U1

n,

φ2
n := U1

n − inf
(

π1
hp[Un], 0

)

φ1
t := U1

t ,

φ2
t := π1

hpU
2
t ,

φ1 := φ1
nn

1 + φ1
t t

1,

φ2 := φ2
nn

2 + φ2
t t

1.

(4.72)

Thus in all points of ΓC there holds

[φn] = φ1
n − φ2

n = inf(π1
hp[Un], 0) ≤ 0,
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4 Nonconforming methods for two-body contact problems with friction

which yields φ := (φ1,φ2) ∈ K. In order to prove the first inequality in the assertion of

the theorem, we split
∫

ΓC

σn[φn − Un] ds =

∫

ΓC

σn

(

inf(π1
hp[Un], 0) − [Un]

)

ds

=

∫

ΓC

σn

(

π1
hp[Un] − [Un]

)

ds−
∫

ΓC

σn sup
(

π1
hp[Un], 0

)

ds (4.73)

=

∫

ΓC

σn

(

U2
n − π1

hpU
2
n

)

ds−
∫

ΓC

σn sup
(

π1
hp[Un], 0

)

ds.

For the first term we use definition of the mortar projection (4.50) and get
∫

ΓC

σn

(

U2
n − π1

hpU
2
n

)

ds = inf
Θ∈M1

hp

∫

ΓC

(σn − Θ)
(

U2
n − π1

hpU
2
n

)

ds (4.74)

≤ inf
Θ∈M1

hp

‖σn − Θ‖H−1/2(ΓC)‖U2
n − π1

hpU
2
n‖H̃1/2(ΓC)

≤ C
h1

p1
‖σ‖H1/2(ΓC)‖U2

n − π1
hpU

2
n‖H̃1/2(ΓC). (4.75)

In order to estimate the second term in (4.73) we observe that I1
hp sup

(

π1
hp[Un], 0

)

≡ 0,

since sup
(

π1
hp[Un], 0

)

= 0 in all x ∈ G1
hp ∩ ΓC . Here I1

hp is the Lagrange interpolation

operator in Gauss-Lobatto nodes G1
hp ∩ ΓC . Therefore

‖ sup(π1
hp[Un], 0) − 0‖L2(ΓC) ≤ C

h1

p1
‖ sup(π1

hp[Un], 0)‖H1(ΓC) ≤ C
h1

p1
‖π1

hp[Un]‖H1(ΓC)

Thus, interpolation between L2(ΓC) and H1(ΓC) gives

‖ sup(π1
hp[Un], 0) − 0‖L2(ΓC) ≤ C

(

h1

p1

)1/2

‖π1
hp[Un]‖H1/2(ΓC). (4.76)

The Cauchy-Schwarz inequality combined with the approximation property (4.76) allows

to estimate the second term in (4.73) as follows

−
∫

ΓC

σn sup
(

π1
hp[Un], 0

)

ds ≤ ‖σn‖L2(ΓC)‖ sup(π1
hp[Un], 0)‖L2(ΓC)

≤ C

(

h1

p1

)1/2

‖π1
hp[Un]‖H1/2(ΓC)‖σn‖L2(ΓC) (4.77)

≤ C

(

h1

p1

)1/2
(

‖U2
n − π1

hpU
2
n‖H1/2(ΓC) + ‖[Un]‖H1/2(ΓC)

)

‖σn‖L2(ΓC).

Therefore putting (4.74) and (4.77) together we obtain

∫

ΓC

σn[φn − Un] ds ≤ C

(

h1

p1

)1/2
(

‖U2
n − π1

hpU
2
n‖H̃1/2(ΓC) + ‖[Un]‖H1/2(ΓC )

)

‖σ‖H1/2(ΓC).

(4.78)
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The term ‖U2
n − π1

hpU
2
n‖H1/2(ΓC) must be estimated in terms of the norms ‖u‖

H̃
3/2

(Σ)

and ‖u − U‖H1/2(ΓC). Unfortunately, for the mortar projection operator π1
hp only the

stability estimate (4.52) with the factor p
3/4
1 holds, and as it was shown in [57], [58]

this estimate is sharp. Direct application of (4.52) provides poor estimates, therefore it

is necessary to involve inverse inequality (4.58), which holds for piecewise polynomial

functions. Further, we decompose

U2
n − π1

hpU
2
n = (U2

n − I2
hpu

2
n) − π1

hp(U
2
n − I2

hpu
2
n)

+ (I2
hpu

2
n − u2

n) − π1
hp(I2

hpu
2
n − u2

n) (4.79)

+ (u2
n − π1

hpu
2
n),

which relates to the bootstrap procedure used e.g. in [8, Lemma 4.4]. Now the term

‖U2
n−π1

hpU
2
n‖H1/2(ΓC) can be bounded as a sum of three terms, corresponding to the lines

of (4.79). Each of them must be estimated separately. For the first term approximation

properties (4.51), (4.57) and inverse inequality (4.58) provide

‖(U2
n − I2

hpu
2
n) − π1

hp(U
2
n − I2

hpu
2
n)‖H̃1/2(ΓC) ≤ C

√

log p1

(

h1

p1

)1/2

‖U2
n − I2

hpu
2
n‖H1(ΓC)

≤ C
√

log p1

(

h1

p1

)1/2
p2

h
1/2
2

‖U2
n − I2

hpu
2
n‖H1/2(ΓC)

≤ C
√

log p1

(

h1

p1

)1/2
p2

h
1/2
2

(

‖U2
n − u2

n‖H1/2(ΓC) + ‖u2
n − I2

hpu
2
n‖H1/2(ΓC)

)

≤ C
√

log p1

(

h1

p1

)1/2
p2

h
1/2
2

‖U2
n − u2

n‖H1/2(ΓC) (4.80)

+ C
√

log p1

(

h1h2

p1

)1/2

‖u2
n‖H3/2(ΓC ).

The remaining terms can be estimated as follows:

‖(I2
hpu

2
n − u2

n) − π1
hp(I2

hpu
2
n − u2

n)‖H̃1/2(ΓC) ≤ C
√

log p1

(

h1

p1

)1/2

‖I2
hpu

2
n − u2

n‖H1(ΓC)

≤ C
√

log p1

(

h1

p1

h2

p2

)1/2

‖u2
n‖H3/2(ΓC) (4.81)

and

‖u2
n − π1

hpu
2
n‖H1/2(ΓC) ≤ C

h1

p1

√

log p1‖u2
n‖H3/2(ΓC ). (4.82)

Combining (4.80) – (4.82) gives

‖U2
n − π1

hpU
2
n‖H1/2(ΓC) ≤ Cδ1‖U2

n − u2
n‖H1/2(ΓC) + Cδ2‖u2

n‖H3/2(ΓC), (4.83)
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with

δ1 = δ1(h1, h2, p1, p2) :=
√

log p1

(

h1

p1

)1/2
p2

h
1/2
2

(4.84)

δ2 = δ2(h1, h2, p1, p2) :=
√

log p1

(

h1

p1

)1/2
(

h
1/2
2 +

(

h1

p1

)1/2
)

(4.85)

Recalling (4.78) and noting that

‖[Un]‖H1/2(ΓC) ≤ ‖un − Un‖H1/2(ΓC ) + ‖un‖H1/2(ΓC )

we derive
∫

ΓC

σn[φn − Un] ds ≤ C

(

h1

p1

)1/2

((1 + Cδ1)‖un − Un‖H1/2(ΓC)

+ (1 + Cδ2)‖un‖H3/2(ΓC))‖σ‖H1/2(ΓC )

≤ α3‖un − Un‖2
H1/2(ΓC) +

C

α3

h1

p1

(1 + δ2
1)‖σ‖2

H1/2(ΓC)

+ C

(

h1

p1

)1/2

(‖σ‖2
H1/2(ΓC) + ‖u‖2

H̃
3/2

(Σ)
),

since δ2 < 1 for sufficiently fine meshes. Here α3 ∈ (0; 1) is a constant to be specified

later. Noting that h1/p1 < 1 for sufficiently fine meshes we obtain
∫

ΓC

σn[φn − Un] ds ≤ α3‖un − Un‖2
H1/2(ΓC)

+
C

α3

(

(

h1

p1

)1/2

+
h1

p1

δ2
1

)

‖σ‖2
H1/2(ΓC) +

(

h1

p1

)1/2

‖u‖2

H̃
3/2

(Σ)

≤ α3‖un − Un‖2
H1/2(ΓC) +

C

α3
γ2

n,hp‖σ‖2
H1/2(ΓC) +

(

h1

p1

)1/2

‖u‖2

H̃
3/2

(Σ)
,

where

γn,hp = γn,hp(h1, h2, p1, p2) :=

(

h1

p1

)1/4

+
√

log p1
p2

p1

h1

h
1/2
2

In order to show (4.71), we choose φ1
t := U1

t , φ2
t := π1

hpU
2
t (see (4.72)) and derive

∫

ΓC

σt[φt − Ut] + F(|[φt]| − |U1
t − π1

hpU
2
t |) ds ≤

∫

ΓC

σt(U
2
t − π1

hpU
2
t ) ds

≤ inf
Θ∈M1

hp

∫

ΓC

(σt − Θ)(U2
t − π1

hpU
2
t ) ds (4.86)

≤ inf
Θ∈M1

hp

||σt − Θ ||H−1/2(ΓC)||U2
t − π1

hpU
2
t ||H̃1/2(ΓC)

≤ C
h1

p1

||σt||H1/2(ΓC )||U2
t − π1

hpU
2
t ||H̃1/2(ΓC ),
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Performing the same decomposition as in (4.79) with U2
t , u

2
t instead of U2

n, u
2
n and pro-

ceeding further in a similar way we obtain (cf. (4.83))

‖U2
t − π1

hpU
2
t ‖H1/2(ΓC ) ≤ Cδ1‖U2

t − u2
t‖H1/2(ΓC) + Cδ2‖u2

t‖H3/2(ΓC),

where δ1, δ2 are defined in (4.84), (4.85) respectively. Therefore from (4.86) we obtain

for some constant α4 ∈ (0; 1)

∫

ΓC

σt[φt − Ut] + F(|[φt]| − |U1
t − π1

hpU
2
t |) ds

≤ C
h1

p1
(δ1‖U2

t − u2
t‖H1/2(ΓC) + Cδ2‖u2

t‖H3/2(ΓC))||σt||H1/2(ΓC)

≤ α4‖U2
t − u2

t‖2
H1/2(ΓC) +

C

α4
γ2

t,hp||σt||2H1/2(ΓC) + C
h1

p1
δ2||u||2

H̃
3/2

(Σ)
,

where γt,hp is defined by

(

(

h1

p1

δ1

)2

+
h1

p1

δ2

)1/2

≤ h1

p1

δ1 +

(

h1

p1

δ2

)1/2

≤
√

log p1
h

3/2
1

h
1/2
2

p2

p
3/2
1

+ 4
√

log p1

(

h1

p1

)3/4

h
1/4
2 + 4

√

log p1
h1

p1
=: γt,hp

which provides (4.71).

Now we are can formulate the main result.

Theorem 4.3.1. Let u ∈ K∩H̃
3/2

(Σ) be the solution of (4.12), and let U ∈ Khp be the

solution of (4.55). Suppose that ‖σn‖H1/2(ΓC) + ‖σt‖H1/2(ΓC) + ‖F‖L2(ΓC) ≤ C‖u‖
H̃

3/2
(Σ)

,

where σn, σt are the normal and tangential contact tractions, corresponding to the so-

lution u, and F is a ”given friction” function. Then for some constant C > 0 there

holds

‖u−U‖
H̃

1/2
(Σ)

≤ Cγhp‖u‖H̃
3/2

(Σ)
,

where

γhp :=

(

h1

p1

)1/4

+

(

h2

p2

)1/2

+
√

log p1
p2

p1

h1

h
1/2
2

Proof. The assertion of the theorem follows after combining Lemma 4.3.5 with Lemma

4.3.6 and Lemma 4.3.7. The convergence rates in estimates (4.61) - (4.63) from Lemma

4.3.6 as well as the convergence rates γn,hp, γt,hp in estimates (4.70) and (4.71) from

Lemma 4.3.7 are obviously dominated by γhp for sufficiently refined meshes.
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Corollary 4.3.1. Connecting the mesh parameters by

h2 := hα
1 , p2 := pβ

1

we observe that the convergence rate γhp is given by

γhp =

(

h1

p1

)1/4

+
h

α/2
1

p
β/2
1

+
√

log p1
h

1−α/2
1

p1−β
1

.

Thus γhp =

(

h1

p1

)1/4

is optimal and is achieved for

1

2
≤ α ≤ 3

2
,

1

2
≤ β <

3

4
.

Furthermore, the minimal number of the degrees of freedom in the algebraic system is

asymptotically achieved for largest h2 and smallest p2, i.e. when α = β = 1/2.

Remark 4.3.4. The condition ‖σn‖H1/2(ΓC) + ‖σt‖H1/2(ΓC) ≤ C‖u‖
H̃

3/2
(Σ)

in Theorem

4.3.1 can be treated as the continuity condition of the Dirichlet-to-Neumann operator

T := V −1(K + 1/2), since Tu|ΓC
= σnn

1 + σtt
1.

Furthermore, the condition ‖F‖L2(ΓC) ≤ C‖u‖
H̃

3/2
(Σ)

in Theorem 4.3.1 is not restrictive.

In practice, where the Coulomb’s friction law is used, F is replaced with µfσn and the

condition is satisfied, if the Dirichlet-to-Neumann operator T is continuous.

4.3.3 Dirichlet-to-Neumann algorithm

We employ a Dirichlet-to-Neumann (DtN) algorithm (see e.g. [40] , [18]) to solve the

discrete problem (4.55), which allows to decompose the two-body problem into two

separate subproblems in each body - a mixed boundary value problem and a frictional

contact problem between an elastic body and a rigid obstacle. The data transfer is

realized in terms of a mortar projection and its adjoint. The convergence of the DtN

algorithm is analysed for the h-version of FEM in [4], [28].

The mortar projection Φ1 := π1
hp(Φ

2) on T 1
h ∩ ΓC of some function Φ2 on T 2

h ∩ ΓC is

according to (4.50) given by

∫

ΓC

Φ1Ψ 1ds =

∫

ΓC

Φ2Ψ 1ds, ∀Ψ 1 ∈ M1
hp. (4.87)

Thus, its algebraic form is Φ1 = D−1BΦ2, with the sparse mass matrix D, produced

by the left hand side of (4.87), and the matrix B, produced by the right hand side

respectively. Note, that B is also sparse, since the basis functions on the meshes T 1
h ,

T 2
h have local supports. The boundary tractions are transferred by the adjoint operator
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4.3 hp-mortar BEM for variational inequality

π1∗
hp. Thus, the algebraic form of the adjoint mortar projection is given by the transposed

matrices π1∗
hp(Φ

2) = BTD−TΦ1. We denote

X i
hp :=

{

Φ|ΓC
: Φ ∈ V

i
hp

}

.

The case of an initial gap g 6= 0 can be incorporated in our problem. We measure the

initial gap in the normal direction to Γ1
C (see [32] for more details).

Algorithm 4.3. (Dirichlet-to-Neumann algorithm)

1. Choose ωD, ωN ∈ (0, 1), set X1
hp ∋ Q0 := 0,X2

hp ∋ P 1 := 0

2. Solve elastic inhomogeneous Neumann problem with BEM:

Find U 2
k ∈ V

2
hp :

〈

ŜU 2
k,W

2
〉

= L(W 2) − 〈P k,W
2〉ΓC

, ∀W 2 ∈ V
2
hp (4.88)

3. Transfer obstacle, damping Qk := (1 − ωD)Qk−1 + ωDD
−1BU 2

k

4. Solve elastic frictional contact problem with BEM:

Find U 1
k ∈ KQk

:= {U 1
k : U1

kn −Qkn ≤ g in G1
hp ∩ Γ1

C} such that ∀W 1 ∈ KQk

〈ŜU 1
k,W

1 −U 1
k〉 + j(W 1

t −Qkt) − j(U1
kt −Qkt) ≥L(W 1 −U 1

k) (4.89)

5. Compute contact traction R1
k ∈X1

hp : 〈R1
k,W

1〉 := 〈ŜU 1
k,W

1〉 − L(W 1)

6. Transfer contact traction, damping

P k+1 := (1 − ωN)P k + ωNB
TD−TR1

k

7. Set k = k + 1, repeat with 2, stop if ||P k − P k−1|| ≤ TOLDtN · ||P k−1||

Remark 4.3.5. The FEM techniques can be easily used in one or in both bodies, as

well as for nonlinear material behaviour. In case of contact of an elastic body with

an elastoplastic body, the problem can be decomposed into the Neumann problem with

plasticity and the contact problem with elasticity. Therefore separation of nonlinearities

is achieved. Numerical example for this elastoplastic contact problem are given in Section

4.4.
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4 Nonconforming methods for two-body contact problems with friction

In order to solve the elastic problem with frictional contact, we rewrite formulation

(4.89) in an equivalent form with a Lagrange multiplier, cf. (3.16):

Find U 1 ∈ KQk
, λu ∈ Λ :

〈ŜU 1,W 1 −U 1〉 +

∫

ΓC

Fλu(W
1
t − U1

t ) ds ≥ L(W 1 −U 1), (4.90)

λu(U
1
t −Qkt) = |U1

t −Qkt| a.e. on ΓC , ∀W 1 ∈ KQk
,

where Λ = {λ ∈ L2(ΓC) : |λ| ≤ 1 a.e. on ΓC}. The product Fλu plays the role of the

tangential contact traction. The Lagrange multiplier λu itself has the meaning of the

sliding direction, if sliding occurs. Problem (4.90) is solved by the Uzawa algorithm.

Algorithm 4.4. (Uzawa algorithm)

1. Choose λ0 ∈ Λ, ρ > 0

2. Solve frictionless contact with Polyak [53] (modified CG) algorithm

Find U 1
m ∈ KQk

, λm ∈ Λ :

〈ŜU 1
m,W

1 −U 1
m〉 ≥ L(W 1 −U 1

m) −
∫

ΓC

Fλk(W
1
t − U1

mt) ds, ∀W 1 ∈ KQk

3. Set λm+1 := PΛ(λm + ρF (U1
mt −Qkt))

4. Set m = m+ 1, repeat with 2, stop if ||λm − λm−1|| ≤ TOLU · ||λm−1||

Here PΛ is given pointwise by

PΛ(x) :=







1, if x > 1,

−1, if x < −1,

x, otherwise.

Theorem 3.1.8 provides that the Uzawa algorithm converges for sufficiently small ρ.

4.3.4 Numerical examples

We solve the discrete contact problem with given friction (4.55) with the Dirichlet-to-

Neumann algorithm, described above. In our model problem we consider two bodies Ω1,

Ω2, which are given by their boundaries Γi := ∂Ωi = Γi
D

⋃

Γi
N

⋃

Γi
C as follows

Γ1
D = [−1, 1] × {2}, Γ2

D = [−1, 1] × {−2}⋃{−1, 1} × [−1, 0],

Γ1
N = {−1, 1} × [0, 2], Γ2

N = ∅,
Γ1

C = γ, Γ2
C = −[1, 1] × {0},
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4.3 hp-mortar BEM for variational inequality

where γ is the arc of a circle including the points (−1, 0.1), (0, 0), (1, 0.1). We denote the

characteristic length by L := 2. The bodies are coming into contact due to prescribed

displacements on the Dirichlet boundary U 1 := (0,−0.09) on Γ1
D and U 2 := (0, 0) on

Γ2
D. The Young’s modulus and Poisson’s ratio are E = 266926.0, ν = 0.29 respectively.

We choose F = 0.1, ρ = 1.0. The tolerances TOLDtN = TOLU = 10−6 are used for the

stopping criteria.

We solve a frictional contact problem on Γ1 and a nonhomogeneous Neumann problem

on Γ2. We associate the mortar space M1
hp with the mesh, induced from Γ1, i.e. the

mesh T 1
h ∩ Γ1. We present numerical examples on quasiuniform meshes.

ωD\ωN 0.3 0.5 0.7 0.9

0.3 42 30 21 16

0.5 30 23 17 18

0.7 21 17 20 -

0.9 23 18 - -

Table 4.1: Number of Dirichlet-to-Neumann iterations

First we study convergence of the DtN algorithm for different damping parameters. We

choose the piecewise quadratic polynomial approximation with 16 elements in T 1
h ∩ Γ1

and 12 elements in T 2
h ∩ Γ2, i.e. h1 := L/16, h2 := L/12. The corresponding initial

and deformed meshes on Γ1 and Γ2 are given on Fig. 4.17. The number of Dirichlet-

to-Neumann iterations related to the damping parameters is given in Table 4.1. We

observe, that the smallest number of iterations is achieved in case ωD + ωN ∈ [1.2; 1.4].

Figure 4.17: Initial mesh and deformed configuration
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4 Nonconforming methods for two-body contact problems with friction

In case of high damping parameters ωD + ωN ≥ 1.6 no convergence is observed.

In order to study convergence of our hp-mortar method we perform a series of experi-

ments for h1 : h2 = 4 : 3, h1 = L/4, L/8, L/16, L/32, L/64 and (p1, p2) = (1, 1), (2, 1),

(2, 2). The norm in the space H̃
1/2

(Σ) can be expressed in terms of the hypersingular

integral operator W as

||U ||H̃1/2(Σ) ≈
(〈

WU1,U 1
〉

Σ1 +
〈

WU 2,U 2
〉

Σ2

)1/2
=: ||U ||W .

We compute ||U ||W,δ for each combination δ := ((h1, h2); (p1, p2)). The limit norm

||U ||W,∞ ≈ 6.110073 is obtained by extrapolation. The behaviour of
∣

∣ ||U ||W,δ−||U ||W,∞

∣

∣

is shown on Fig. 4.18. We observe the convergence rate ≈ 0.63 for the piecewise linear

polynomial discretization, whereas in the piecewise quadratic case the convergence rate

≈ 1.89 is obtained.

 1e-04
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 0.01

 0.1

 10  100  1000  10000

W
-e

rr
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Figure 4.18: Convergence of
∣

∣ ||U ||W,δ − ||U ||W,∞

∣

∣
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4.3 hp-mortar BEM for variational inequality

4.3.5 Uzawa algorithm and hp-adaptive error control

In this section we describe an alternative solution procedure - the Uzawa algorithm. We

make a heuristic motivation for the a posteriori error indicator and give a numerical

example of a two-body contact problem with hp-mesh refinement.

The solution procedure is based on the mixed formulation (4.14), equivalent to the

variational inequality (4.12). In order to construct a discretized version of (4.14), we use

the following continuous piecevise polynomial discrete spaces

V
i
hp :=

{

U ∈ H̃
1/2

(Σi) : ∀I ∈ T i
hp,U ∈ [PpI

(I)]2
}

, Vhp := V
1
hp × V

2
hp,

Y 1
hp :=

{

P ∈ H1/2(ΓC) : ∀I ∈ T 1
hp ∩ ΓC , P ∈ PpI

(I)
}

.

The main difficulty in the discretization of (4.14) lies in the correct interpretation of the

non-penetration condition, hidden in the space of tractions M, defined in (4.13). For

instance, the use of pointwise contact response, as in the penalty method, seems to be

problematic. We employ here the mortar technique, which performs the data transfer

across the boundary with nonmatched meshes in terms of the mortar projection and its

adjoint operator. We define

Mn,hp :=
{

Pn ∈ Y 1
hp : Pn(x) ≥ 0, ∀x ∈ G1

hp ∩ ΓC

}

,

Mt,hp :=
{

Pt ∈ Y 1
hp : |Pt(x)| ≤ F(x), ∀x ∈ G1

hp ∩ ΓC

}

.

Here the positivity condition is enforced only on the discrete set of the Gauss-Lobatto

points G1
hp on Γ1. We introduce the discrete version of (4.14) as follows:

Find U ∈ Vhp,P ∈ Mhp := Mn,hp ×Mt,hp such that

〈

ŜU ,Φ
〉

Σ
+ b(P ,Φ) =

〈

t̂,Φ
〉

ΓN
, ∀Φ ∈ Vhp,

b(Q− P ,U) ≤ 0, ∀Q ∈ Mhp.
(4.91)

In this section we apply the Uzawa algorithm for solution of global problem, an alterna-

tive approach to the Dirichlet-to-Neumann method, used in the previous section. Here

the two-body problem is decomposed into two one-body Neumann problems. In this

case we can avoid nested cycles and compute the solution of the general contact prob-

lem with Coulomb’s friction in a single loop. Moreover, in contrast to DtN, the Uzawa

algorithm can be easily parallelized, since both one-body Neumann problems can be

solved independently. The discrete mortar projection for displacement is given by the

matrix B−1D (cf. (4.87)). The Uzawa algorithm for contact with Coulomb’s friction is

listed below.
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4 Nonconforming methods for two-body contact problems with friction

Algorithm 4.5. (Uzawa algorithm for the global problem)

1. Choose ρ > 0, set Vhp ∋ U 0 := 0,Mhp ∋ P 0 := 0, k := 0

2. Solve Neumann problems on Γ1 and Γ2: Find U i
k ∈ V

i
hp such that

〈

ŜU i
k,Φ

i
〉

=
〈

t̂,Φi
〉

+ (−1)i〈P k,Φ
i〉ΓC

, ∀Φi ∈ V
i
hp, i = 1, 2

3. Compute contact tractions P k+1 := ΠMhp
(P k − ρ(U 1

k − B−1DU2
k))

4. Set k = k + 1, repeat with 2, stop if k ≥ 3 and ||P k −P k−1|| ≤ TOL · ||P 2 −P 1||

Here

ΠMhp
=

{

ΠMn,hp
: Y 1

hp × Y 1
hp → Mn,hp,

ΠMt,hp
: Y 1

hp × Y 1
hp → Mt,hp

is a projection onto Mhp, defined pointwise as follows. If x ∈ G1
hp ∩ ΓC , i.e. x is a

Gauss-Lobatto point, then the value P (x) = (Pn(x), Pt(x)) of a function P ∈ V
1
hp is

projected by

ΠMn,hp
(Pn(x)) := Pn(x)sign(Pn(x)),

ΠMt,hp
(Pt(x)) := max(−µfPn(x),min(µfPn(x), Pt(x)))

Our model problem and a test computation for quadratic polynomials and nonmatched

uniform meshes with h1 : h2 = 41 : 25 are shown on Fig.4.19.

Γ
C

 0

 20000

 40000

 60000

 80000

-1 -0.5  0  0.5  1

 normal contact traction
 tangential contact traction

Figure 4.19: Model problem, deformed configuration, contact stress
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4.3 hp-mortar BEM for variational inequality

In our numerical experiments we use the error indicator η, consisting of three parts

η :=
(

η2
C + η2

N + η2
Ŝ

)1/2
,

where

η2
C :=

∑

I∈T 1
h ⊂ΓC

hI

pI
||[P ]||2L2(I) +

(

hI

pI

)−1

||[Un]+||2L2(I) +
hI

pI
||(−P ) − ŜU ||2L2(I),

η2
N :=

∑

I∈Th⊂ΓN

hI

pI
||t̂− ŜU ||2L2(I),

η2
Ŝ

:=
∑

I∈Th

hI

pI

||VΨ − (K + 1/2)U ||2L2(I).

Here U ∈ Vhp,P ∈ Mhp is the solution of (4.91), and Ψ := ihpV
−1
hp i

∗
hp(K + 1/2)U is

the discrete traction, cf. (3.59). We also need two other traction-like functions, given by

ψ := V −1(K + 1/2)u,

Ψ ∗ := V −1(K + 1/2)U .

The motivation for using η is based on the identity, shown in Lemma 3.2.6. Thus,

||u−U ||2
H̃

1/2
(Σ)

+ ||ψ −Ψ ||2
H−1/2(Γ)

(4.92)

≤ C
(

〈

Su− ŜU ,u−U
〉

+
〈

V (Ψ ∗ −Ψ),ψ −Ψ
〉

)

For the second summand in the right-hand side of (4.92) there holds

〈

V (Ψ ∗ −Ψ),ψ −Ψ
〉

≤ α||ψ −Ψ ||2
H−1/2(Γ)

+
1

4α
||VΨ − (K + 1/2)U ||2

H 1/2(Γ)
,

and the indicator η2
Ŝ

is the discrete analogue of the term ||VΨ − (K + 1/2)U ||2
H 1/2(Γ)

.

Further, formulations (4.14) and (4.91) yield the identity

〈

Su− ŜU ,u−U
〉

=
〈

t̂− ŜU ,u−Φ
〉

ΓN
+
〈

(−P ) − ŜU ,u−Φ
〉

ΓC

− b(p− P ,u−U), (4.93)

for arbitrary Φ ∈ Vhp, which motivates with the standard arguments the indicator η2
N

and the last summand in η2
C . In order to motivate the remaining indicators, let us

consider an interface problem, where the transmission conditions [u] = 0 and [p] = 0

are enforced on ΓC . Then, for the interface problem, the last term in (4.93) yields

−b(p−P ,u−U ) ≤ α||p− P ||2
H̃−1/2(ΓC)

+
1

4α
||[U ]||2H1/2(ΓC ). (4.94)

The term ||p − P ||2
H̃−1/2(ΓC)

corresponds to the term ||ψ − Ψ ||2
H−1/2(Γ)

in (4.92), and

it can be moved to the left-hand side of (4.92); while the term ||[U ]||2
H1/2(ΓC)

makes a
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4 Nonconforming methods for two-body contact problems with friction

contribution to the indicator. It represents the error due to violation of the interface

condition [u] = 0. Unfortunately, the estimate (4.94) is in general wrong for the contact

problems. We replace it by adding the two first indicators in η2
C , which should control

the error due to violation of the contact conditions [p] = 0 and [un] ≤ 0 (or equivalently

[un]+ = 0).

The error indicator η is very similar to the indicator obtained for interface problems by

Wohlmuth [70], and applied by Krause and Wohlmuth [40] to the contact problems. We

use the three-step hp-adaptive algorithm (Algorithm 4.6) used e.g. by Maischak and

Stephan [46].

The h-refinement is performed for all elements, which indicator is larger then 90% of the

largest indicator value; and the p-refinement is used, if the indicator value is between

85% and 90% of the largest indicator value. The sequence of meshes and polynomial

degrees obtained with our approach is shown in Figure 4.20.

Algorithm 4.6. (Mesh refinement strategy for the h-version)

1. generate an initial (coarse) mesh Thp,0, discrete spaces Vhp,0, Whp,0, set k = 0

2. choose a refinement criterion, refinement quota 0 < q1 < q2 < 1, tolerance TOL

3. for k = 0, 1, 2 . . .

a) solve the discrete problem

b) compute indicators ηI for all segments I ∈ Thp,k

c) stop if
∑

I∈Thp,k

η2
I ≤ TOL

d) split the element I increase the polynomial degree on I according to the fol-

lowing rules

i. if ηI ≥ q2ηmax, split the element I into two elements of equal length and

inherit the polynomial degree

ii. if q1ηmax ≤ ηI ≤ q2ηmax, increase the polynomial degree on I

iii. ηI ≤ q1ηmax do nothing

e) compute the resulting mesh Thp,k+1

f) generate the discrete spaces Vhp,k+1, Whp,k+1 based on the mesh Th,k+1

g) set k = k + 1, go to (a)
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 1
 1
 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1
 1
 1  1 1

 1
 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1
 1
 1 1  2 1

 1
 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 3 3 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 3 3

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1
 1
 1 2

 1

 1

 1

 1

 1

 1

 1

 1

 1  1  1  1  1  1  1  1  1  1  1  1

 1

 1

 1

 1

 1

 1

 1

 1  2

 1

 1

 1

 1

 1

 1

 1

 1  1  1  1 1 1 1 1 1 1 1 1 1 1 1 1 1  1  1  1

 1

 1

 1

 1

 1

 1

 1

 2
 2 2
 2

 1

 1

 1

 1

 1

 1

 1

 1  1  1  1 1 1 1 2 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2 2 1 1 1 1  1  1  1

 1

 1

 1

 1

 1

 1

 1

 2
 2 2

Figure 4.20: Adaptively generated meshes and polynomial degrees after 3, 6 and 9

refinement steps

4.4 Mortar and penalty methods for elastoplastic

contact problems

In this section we compare the mortar method and the penalty method for frictional

contact problem between an elastic body and an elastoplastic body. We use the pure

FEM discretization with continuous piecewise bilinear basis functions on quadrilaterals

for the mortar method. For the penalty method we use the FE/BE coupling method

with continuous piecewise bilinear basis functions on quadrilaterals in the FE domain

and continuous piecewise linear basis functions in the BE domain.

We employ the Dirichlet-to-Neumann (DtN) algorithm (Algorithm 4.3) as a solution

procedure for the mortar method with the following modifications. In the step 2 the

inhomogeneous Neumann elastoplastic problem is solved with finite elements by the

Newton method, and in the step 4 corresponding frictional contact problem is solved

also with finite elements.

We assume that an elastic body occupies the domain

Ωs := [−1/2, 1/2] × [0, 2]

and an elastoplastic body occupies the domain

Ωm := [−2, 2] × [−2, 0].

We fix the upper boundary of Ωs and prescribe a nonzero displacement on the lower
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4 Nonconforming methods for two-body contact problems with friction

boundary of Ωm

ûs = 0, on Γs
D := [−1/2, 1/2] × {2},

ûm = 10−4, on Γm
D := [−2, 2] × {−2}.

The remaining parts of the boundaries are treated as contact boundaries

Γs
C := ∂Ωs \ Γs

D, Γm
C := ∂Ωm \ Γm

D .

The both bodies have the same material parameters E = 266926.0, ν = 0.29 and the

given friction function F = 0.22. The yield stress and the hardening parameter in

Ωm are σm
Y = 4.0, hm

Y = 450.0. The damping parameters of the DtN algorithm are

ωD = 0.5, ωN = 0.7. The damping parameter for the Uzawa algorithm is ρ = 8.264 · 105.

The DtN and Uzawa tolerances are TOLDtN = TOLU = 10−6, the tolerance of the

Newton method, used for solving the elastoplastic subproblem, is TOLN = 10−4.

The results of the numerical tests for the mortar method are presented in the Figure

4.21. The norm of the stress deviator is plotted only for the elastoplastic body Ωm,

since Ωs is assumed to be linear elastic. The brown region in the plot of the norm of

the stress deviator corresponds to its maximum value, i.e. represents the plastic region.

Table 4.2 shows the number of DtN iterations depending on the damping parameters.

The number of the Uzawa iterations in the first DtN iteration is given in parenthesis.

DOF= 231 + 1984

displacement, x-component

−.8262E−05
−.7229E−05
−.6196E−05
−.5164E−05
−.4131E−05
−.3098E−05
−.2065E−05
−.1033E−05
0.0000E+00
0.1033E−05
0.2065E−05
0.3098E−05
0.4131E−05
0.5164E−05
0.6196E−05
0.7229E−05
0.8262E−05

−.8486E−05
−.7426E−05
−.6365E−05
−.5304E−05
−.4243E−05
−.3182E−05
−.2122E−05
−.1061E−05
0.0000E+00
0.1061E−05
0.2122E−05
0.3182E−05
0.4243E−05
0.5304E−05
0.6365E−05
0.7426E−05
0.8486E−05

||dev σm||

0.1311E−02
0.2078E+00
0.4144E+00
0.6209E+00
0.8274E+00
0.1034E+01
0.1240E+01
0.1447E+01
0.1653E+01
0.1860E+01
0.2067E+01
0.2273E+01
0.2480E+01
0.2686E+01
0.2893E+01
0.3099E+01
0.3306E+01

displacement, y-component

0.5563E−04
0.5815E−04
0.6067E−04
0.6320E−04
0.6572E−04
0.6824E−04
0.7077E−04
0.7329E−04
0.7581E−04
0.7834E−04
0.8086E−04
0.8338E−04
0.8591E−04
0.8843E−04
0.9095E−04
0.9348E−04
0.9600E−04

0.0000E+00
0.3909E−05
0.7818E−05
0.1173E−04
0.1564E−04
0.1954E−04
0.2345E−04
0.2736E−04
0.3127E−04
0.3518E−04
0.3909E−04
0.4300E−04
0.4691E−04
0.5082E−04
0.5473E−04
0.5863E−04
0.6254E−04

Figure 4.21: Numerical experiments for mortar method with DtN algorithm
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4.4 Mortar and penalty methods for elastoplastic contact problems

ωD \ ωN 0.3 0.5 0.7 0.9 1.0

0.3 27(34) 19(34) 13(34) 9(34) 9(34)

0.5 19(17) 13(17) 11(17) - -

0.7 12(13) 11(12) - - -

0.9 13(9) - - - -

Table 4.2: Number of DtN (Uzawa) iterations for mortar method

Since the sliding direction is correctly recognized after the first DtN iteration, the Uzawa

algorithm needs only 2 iterations starting from the second DtN iteration. The damping

parameter ρ = 8.264 · 105 for the Uzawa algorithm is chosen experimentally. Table 4.2

shows that the optimal values of the damping parameters ωD, ωN are between 0.5 and 0.7.

For large damping parameters there is no convergence observed. The numerical example

with the penalty method is performed for the same geometry and the same boundary

conditions, as in the mortar simulation. But in the experiment with the penalty method,

Coulomb’s law of friction is used, instead of Tresca’s frictional law, used for the mortar

method. The value µf = 0.2 of the friction coefficient is chosen, since it provides

nearly the same maximal tangential displacements in Ωs. Newton’s method, described

in Algorithm 4.1, is applied to solve the problem. The tolerance is TOLN = 10−4 is

chosen in the stopping criterion. The results of the numerical experiments are presented

in Figure 4.22 and in Table 4.3.

DOF= 51 + 1984

displacement, x-component

−.9184E−05
−.8036E−05
−.6888E−05
−.5740E−05
−.4592E−05
−.3444E−05
−.2296E−05
−.1148E−05
0.4997E−18
0.1148E−05
0.2296E−05
0.3444E−05
0.4592E−05
0.5740E−05
0.6888E−05
0.8036E−05
0.9184E−05

−.8495E−05
−.7434E−05
−.6372E−05
−.5310E−05
−.4248E−05
−.3186E−05
−.2124E−05
−.1062E−05
0.7135E−16
0.1062E−05
0.2124E−05
0.3186E−05
0.4248E−05
0.5310E−05
0.6372E−05
0.7434E−05
0.8495E−05

||dev σ||

0.1340E−02
0.2076E+00
0.4140E+00
0.6203E+00
0.8266E+00
0.1033E+01
0.1239E+01
0.1445E+01
0.1652E+01
0.1858E+01
0.2064E+01
0.2271E+01
0.2477E+01
0.2683E+01
0.2890E+01
0.3096E+01
0.3302E+01

displacement, y-component

0.5293E−04
0.5563E−04
0.5832E−04
0.6101E−04
0.6370E−04
0.6639E−04
0.6908E−04
0.7178E−04
0.7447E−04
0.7716E−04
0.7985E−04
0.8254E−04
0.8523E−04
0.8793E−04
0.9062E−04
0.9331E−04
0.9600E−04

−.5079E−07
0.3636E−05
0.7322E−05
0.1101E−04
0.1469E−04
0.1838E−04
0.2207E−04
0.2575E−04
0.2944E−04
0.3313E−04
0.3681E−04
0.4050E−04
0.4419E−04
0.4787E−04
0.5156E−04
0.5524E−04
0.5893E−04

Figure 4.22: Numerical experiments for penalty method with Newton’s method
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4 Nonconforming methods for two-body contact problems with friction

The pure FEM mortar and the FE/BE penalty approaches are in a good agreement:

5-8% difference in displacement and 2-3% difference in stress. The numbers of Newton

iterations needed are given in Table 4.3. Note, smaller penalty parameters reduce the

L2-norm of the penetration function ([un]−g)+. But, on the other hand, it increases the

condition number of the Galerkin matrix as well as the number of Newton iterations.

1/εn 1/εt # Newton iterations ||([un] − g)+||L2(ΓC)

20 ·Em 10 · Em 520 0.8 · 10−6

10 ·Em 5 · Em 356 0.15 · 10−5

5 ·Em 2.5 · Em 248 0.29 · 10−5

2.5 ·Em 1.25 · Em 175 0.55 · 10−5

Table 4.3: Number of iterations and the L2-norm of penetration for penalty method

The mortar method and the penalty method, provide the similar results. Nethertheless,

the mortar method and the penalty method have their advantages and disadvantages.

The mortar approach contains no additional parameters (as penalty parameters). The

discrete solution of the mortar formulation converges to the solution of the variational

inequality, if the mesh size tends to zero. Unfortunately, the solution procedures for the

mortar method are more complicated. The suggested DtN iteration procedure contains

nested loops, where the inner loops solve the one-body problems. The convergence of

the DtN algorithm depends strongly on the damping parameters, which are not allowed

to be sufficiently large. The penalty approach consists only of a single loop. Here the

disadvantage lies in the dependence on the penalty parameters. The smaller values of

the penalty parameters give physically more relevant results, i.e. lead to the smaller

penetration, but it increases the condition number of the Galerkin matrix, and therefore

the time, required for solving the problem.
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[51] J. Nečas, J. Jarušek, and J. Haslinger, On the solution of the variational

inequality to the Signorini problem with small friction, Boll. Un. Mat. Ital. B (5),

17 (1980), pp. 796–811.

[52] J. T. Oden and J. A. C. Martins, Models and computational methods for

dynamic friction phenomena, Comput. Methods Appl. Mech. Engrg., 52 (1985),

pp. 527–634. FENOMECH ’84, Part III, IV (Stuttgart, 1984).

[53] D. P. O’Leary, A generalized conjugate gradient algorithm for solving a class of

quadratic programming problems, Linear Algebra Appl., 34 (1980), pp. 371–399.
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