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Abstract

The objective of this thesis is the construction, analysis and implementation of high order
FE, BE and FE/BE coupling methods for interface and frictional contact problems with
nonmatching discretizations, which have a wide industrial application.

A new hp-Nitsche’s FE/BE coupling method for interface problems is designed and
analysed. The method is proven to be consistent and stable, independent of the dis-
cretization parameters. A priori error analysis shows that the method is optimal in h
and is suboptimal in p on quasiuniform meshes.

The question of unique solvability is addressed for the one-body contact problem with
Tresca’s friction. Constructing a chain of equivalent formulations the frictional contact
problem is approximated with a sequence of frictionless contact problems (Uzawa algo-
rithm). Conditions for the convergence of the algorithm are obtained. An hp-penalty
BEM for one-body frictionless contact is developed. As the a priori error analysis shows,
the penalty parameter &, must be chosen proportional to (h/p)'=¢, for optimal conver-
gence rate (in the energy norm) of the discrete penalty solution to the solution of the
original variational inequality formulation. A residual based a posteriori error estimator
for the h-version of penalty FE and BE for one-body contact with Tresca friction is
investigated. The error estimator, motivated so far with heuristical arguments and only
for FEM, is shown to be reliable and efficient for both FEM and BEM.

The two-body elastoplastic contact problem with Coulomb’s law of friction is solved
with the FE/BE coupling and pure BE methods. The incremental loading procedure
with Newton iterations on each loading step is used. Linearization of the frictional con-
tact and plasticity terms as well as a description of the solution procedure are given in
detail. The residual a posteriori error estimate, obtained for one-body frictional contact,
is generalized to this two-body frictional contact problem. A novel Ap-mortar method
for two-body contact with Tresca’s friction is designed and analysed for a variational
inequality formulation. The contact constraints are imposed on the discrete global set
of Gauss-Lobatto points. The nonmatched meshes are connected in terms of the hp-
mortar projection. The a priori error analysis shows the convergence rate O((h/p)'/4)
in the energy norm under additional assumptions on the discretization parameters. A
Dirichlet-to-Neumann algorithm and an Uzawa algorithm are used to solve the problem.
A heuristically motivated error indicator is used to perform an hp automatic refine-
ment procedure. The h-version of the constructed method is extended onto two-body
elastoplastic frictional contact problems and is compared to the results provided by the
penalty method.

The theoretical results are supported by numerical benchmark computations.

Key words. frictional contact, interface problems, finite elements, boundary elements,
FE/BE coupling, hp-methods, a priori error, a posteriori error, mortar, penalty, Nitsche’s
method



Zusammenfassung

Das Ziel dieser Dissertation ist die Konstruktion, Analyse und Implementierung von FE,
BE und FE/BE Kopplungsverfahren fiir Interface- und Reibungskontaktprobleme mit
unpassenden Diskretisierungen.

Eine neue hp-Nitsche FE/BE Kopplungsmethode fiir Interface-Probleme wird konstru-
iert und analysiert. Es wird bewiesen, dass das Verfahren konsistent und stabil ist,
unabhéngig von den Diskretisierungsparametern. Die durchgefiihrte a priori Fehlerana-
lyse zeigt, dass die Methode optimal in A und suboptimal in p auf den quasiuniformen
Gittern ist.

Die Frage der eindeutigen Losbarkeit wird fiir das Ein-Korper-Kontaktproblem mit Tres-
ca Reibung untersucht. Die Losung des Ausgangsproblems mit Reibung wird durch eine
Folge von reibungslosen Problemen approximiert (Uzawa Algorithmus). Die Konvergenz-
bedingungen fiir den Algorithmus werden hergeleitet. Eine hp-Penalty BE Methode fiir
das Ein-Korper-Kontaktproblem wird entwickelt. Wie die a priori Fehleranalyse zeigt,
muf} der Penalty-Parameter &, proportional zu (h/p)!~¢, gewihlt werden, um die opti-
male Konvergenzordnung (in der Energienorm) der diskreten Penalty-Losung gegen die
exakte Losung der variationellen Ungleichung zu erreichen. Als néchstes wird ein resi-
dueller a posteriori Fehlerschétzer fiir die h-Versionen von FEM und BEM untersucht.
Fiir den Fehlerschitzer, der bisher nur mit heuristischen Argumenten motiviert und aus-
schlieBlich fiir FEM benutzt wurde, wird bewiesen, dass er zuverlédssig und effizient ist.

Ferner werden die Zwei-Korper-Kontaktprobleme mit Coulomb’scher Reibung fiir die
h-Versionen von FE/BE und reinem BE Verfahren betrachtet. Die inkrementelle Last-
aufbringung mit dem Newton-Verfahren in jedem Iterationsschritt wird eingesetzt. Die
Linearisierung der Reibungskontaktterme und der Plastizitdtsterme sowie die Beschrei-
bung der Losungsprozedur werden detailliert angegeben. Die residuelle a posteriori Feh-
lerabschétzung, die im Falle des Ein-Korper-Reibungskontaktproblems gewonnen wur-
de, wird auf ein Zwei-Korper-Reibungskontaktproblem verallgemeinert. Eine neue hp-
Mortar Methode fiir das Zwei-Korper-Kontaktproblem mit Tresca Reibung wird kon-
struiert und die variationelle Ungleichung analysiert. Die Kontaktbedingungen sind auf
der diskreten globalen Menge der GauB-Lobatto Knoten definiert. Nichtpassende Git-
ter sind durch die hp-Mortarprojektion verbunden. Die a priori Fehleranalyse zeigt die
Konvergenzordnung O((h/p)*/*) in der Energienorm unter zusitzlichen Bedingungen fiir
die Diskretisierungsparametern. Dirichlet-zu-Neumann Verfahren und Uzawa Verfahren
werden als Losungsprozedur benutzt. Ein Fehlerindikator wird heuristisch begriindet
und in einer automatischen hp Gitterverfeinerungsprozedur eingesetzt. Die h-Version
des obigen Verfahrens wird auf Zwei-Korper elastoplastische Kontaktprobleme mit Rei-
bung generalisiert und mit den Ergebnissen des Penalty-Verfahrens verglichen.

Die theoretische Ergebnisse werden durch die Benchmark-Rechnungen unterstiitzt.

Schlagworte: Reibungskontakt, Interface-Probleme, finite Elemente, Randelemente,
FE/BE Kopplung, hp-Methoden, a priori, a posteriori, Mortar, Penalty, Nitsche Ver-
fahren
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Introduction

The last decades are the time of booming development in many branches of industry
and computer technologies. A new generation of powerful computers allow to go beyond
the academic examples and solve complicated high dimensional problems of industrial
interest. On the other hand, there is an undisputed tendency to move as most as
possible of the product design process from the experimental studies on prototypes to
the numerical simulation. In spite of fast growing computer capacities, the commercial
software (ABAQUS, ANSYS, etc.) often does not provide acceptable computing time or
the required precision. Therefore the development of new fast convergent, accurate and
efficient methods for the numerical simulation is of high importance for many branches
of industry and engineering.

The physical problem is transformed into a system of partial differential equations, which
can be solved with different discretization methods. The Finite Element Method (FEM)
is one of the mostly used methods in modern computational mechanics. It is a well-
established universal approach, which can be applied to problems with geometrical and
material nonlinearities, as well as to anisotropic problems, see e.g. Braess [13], Wriggers
[72], Simo and Hughes [60]. A different technique, the Boundary Element Method
(BEM), has also turned out to be an accurate and effective approach for a wide range of
problems (Stephan [62], Sauter and Schwab [55]), however, applying BEM is relatively
seldom. In this thesis the boundary element method and FE/BE coupling method are
developed for interface and frictional contact problems. In BEM, only the boundaries
of the bodies are discretized. This automatically reduces the number of unknowns, but,
in contrast to FEM, due to nonlocal boundary integral operators, the matrices of the
problem are fully populated. There exist several methods, reducing the computational
costs of standard BEM, see e.g. Maischak et al. [48], Tran and Stephan [66]. Another
advantage of BEM is the significant reduction of expenses for mesh generation, since the
dimension of the problem is reduced by one.

Problems of industrial interest are usually very complicated. They often have a complex
geometry and varying material parameters or different material laws in different subdo-
mains. It may be in many cases very convenient to decompose the domain of the original
problem into several simpler subproblems, which are easier to handle. For example, if a
large elastoplastic body is considered and the zone of the plastic deformation is small, it
can be more efficient to extract a small subdomain containing this plastic zone and use

13



Introduction

the elastoplastic material law inside it. Then the complement domain can be treated as
pure elastic. Another example of a strong industrial interest with natural decomposition
of the original domain is the problem of sound radiation of a rolling tire, cf. Nackenhorst
and von Estorff [50]. Here a multifield problem must be considered: strongly nonlinear
mechanical deformation inside the tire must be coupled with the wave equation in the
infinite exterior domain, simulating sound radiation in the air.

It happens very often that one discretization method is especially good for some par-
ticular material behaviour or geometry and is of no advantage in other cases. In the
framework of interface problems coupling of different discretization methods, chosen to
be optimal in different parts of the problem domain 2, can be realized. For example,
in the sound radiation problem of rolling tire it is natural to apply the boundary el-
ement method in the infinitely large exterior domain (air simulation), while the finite
element method suites better for simulation of high nonlinear behaviour inside the tire.
In this thesis a FE/BE coupling based on Nitsche’s method is developed and analysed
for bounded domains. With similar arguments it can be extended to the case of an
unbounded BE domain.

Using independent discretizations in the different subdomains is often very convenient.
It simplifies the task of global mesh generation and opens some important options such
as possibility of independent automatic mesh refinement in the subdomains. Moreover,
recent studies show that the high order methods, as p- and hp-FEM are quasioptimal
even in case of nonmatching discretizations, cf. Ben Belgacem et al. [7]. The aim of this
thesis is to construct and analyse high order methods allowing independent discretiza-
tions for interface and frictional contact problems.

As soon as a decomposition of the original domain is done, the corresponding transmis-
sion conditions, yielding continuity of displacement and traction, must be imposed on
the interfaces between subdomains. There are several methods for the interface prob-
lems, known from the literature, which allow to treat nonmatching discretizations on
the interface. An auxiliary variable for enforcing the interface conditions is used in
the mortar method, cf. Bernardi et al. [12]. A different approach is given by interior
penalty methods, see e.g. Lazarov et al. [43], where the interface conditions are enforced
by introducing additional penalty terms, depending on a small penalty parameter. The
drawback of this approach is that the formulation is not consistent any more, i.e. the
penalty parameter must tend to zero together with the discretization parameters to
guarantee convergence of the numerical solution to the exact one, which increases the
condition number of the corresponding algebraic system and herewith the computational
time. However, these troubles can be partially reduced with the augmented Lagrangian
techniques, developed e.g. by Le Tallec and Sassi [44]. In the framework of Nitsche’s
methods, e.g. Becker et al. [5], Hansbo et al. [31], the additional terms enforcing consis-
tency of the formulation are introduced. In this thesis a high order hp-Nitsche’s method
is constructed, analysed and applied for enforcing the interface conditions for a FE/BE

14



Introduction

coupling discretization. As the a priori error analysis shows, the method is optimal with
respect to the mesh size h and is suboptimal with respect to the polynomial degree p on
quasiuniform meshes.

A more general and involved class of problems, which often appear in industrial appli-
cations, are frictional contact problems. Actually, frictional contact happens in every
device or during forming of any product. Such branches as automobile industry or metal
forging have a number of applications, where frictional contact appears. Very often the
bodies coming into contact can not be treated as rigid. Then multibody frictional con-
tact problems must be considered. Therefore construction and developing of methods
for accurate and efficient numerical simulation of frictional contact problems became a
very important and fast developing part of modern applied mathematics and mechanics.

In the framework of frictional contact problems, Signorini conditions are enforced on the
normal components of displacement and of boundary traction. This represents noninter-
penetration of the contacting bodies. The tangential components of displacement and
of boundary traction are connected with a friction law (e.g. Coulomb’s friction law).
Moreover, the zone of contact is not known in advance and must be obtained during the
solution procedure. These nonlinearities of different types make the frictional contact
problem much more complicated, then pure interface problems.

Also for frictional contact problems nonmatching discretizations are strongly desirable.
Furthermore, in many cases, as for large deformation or sliding boundaries, it is the only
way to avoid a time consuming remeshing procedure.

The h-version of the FEM is commonly used together with the penalty method for sim-
ulation of multibody frictional contact problems, where penalizing of penetration and
regularizing of Coulomb’s frictional law are performed by introducing penalty parame-
ters, see e.g. Wriggers [72], Laursen [41]. Here we use a pure BE and a FE/BE coupling
approaches with the penalty method for two-body frictional contact problem. Similarly
to the interior penalty approach for interface problems, the lack of consistency of the
formulation and the increase of the condition number of the algebraic system with de-
creasing penalty parameters are the major problems of the approach. To reduce these
drawbacks the augmented Lagrangian technique was extended onto contact problems
with friction, cf. Laursen and Simo [42]. The alternative mortar approach was also ex-
tended onto the h-version of FEM for frictionless and frictional contact problems in Ben
Belgacem et al. [8], Hild [34], see also the paper of Hild and Laborde [35] for extension
onto quadratic FEM.

The special emphasis in this thesis lies in the construction, analysis and implementation
of high order FE, BE and FE/BE coupling methods for solving interface and contact
problems with and without friction with nonmatched discretizations. In many cases the
hp-techniques are shown to be particularly powerful, where the solution of the discrete
problem converges exponentially fast towards the exact solution of the continuous prob-

15



Introduction

lem, see the works of Szabd, Babuska [65] for FEM and of Babuska, Guo and Stephan
[2] for BEM. Employing hp—methods to contact problems is very seldom done. The first
attempt to construct an hp boundary element method for the Signorini problem, mod-
elling unilateral contact of an elastic body and a rigid obstacle goes back to Maischak
and Stephan [45], [46]. In this thesis an Ap-BEM with penalty contact discretization is
analysed, see also in Chernov et al. [19]. In case of multibody frictional contact inde-
pendent discretizations should be used, but, as shown in this thesis, the mathematical
analysis as well as the numerical implementation are automatically more complicated.
In this thesis a novel approach employing hp-techniques with FE, BE or FE/BE cou-
pling methods to contact problems with and without friction is constructed. For brevity
we present here the analysis for the boundary element method only, whilst the finite
element method can be treated analogously. Our method allows to handle nonmatching
discretizations by using mortar technique and can be easily implemented.

A very important question in modern computational mechanics is the mesh optimization.
In other words, a mesh, where the error is uniformly distributed over the elements, is
preferable, since it provides the prescribed tolerance with minimal amount of computing
time and memory resources. The approach is based on corresponding error estimators,
which give the information about the local error between exact and discrete solution
of the problem based only on the computed (and therefore known) discrete solution,
cf. Verfiirth [67], Bangerth and Rannacher [3], Carstensen and Stephan [17], Eck and
Wendland [27]. Residual-based local error estimators for frictional contact with linear
boundary elements and finite elements are obtained in this thesis. We prove that they
are reliable and efficient, and therefore, fully describe the local behaviour of the error.
Furthermore, based on indicators for the mortar method for interface problems, an hp-
automatic mesh refinement procedure is introduced. A series of numerical experiments
for FEM, BEM and FEM/BEM coupling confirms our theoretical results and shows the
wide applicability and flexibility of the constructed methods.

The thesis is organized as follows. In Chapter 1 main concepts and definitions, needed
in the forthcoming analysis, are recalled. In Chapter 2 a new hp-FE/BE coupling
approach for interface problems with nonmatched meshes, based on Nitsche’s method,
is introduced. The a priori error analysis is carried out in case of quasiuniform meshes,
which are compatible across the interface. It yields an optimal convergence rate with
respect to the mesh size h and a suboptimal convergence rate with respect to the poly-
nomial degree p. Then numerical examples are presented, confirming the theoretical
analysis.

The frictional contact problem between an elastic body and a rigid obstacle is addressed
in Chapter 3. First, the boundary integral formulation is given for the frictional contact
problem with Tresca’s law of friction. It is shown that the resulting variational inequality
has a unique solution. Then, a mixed formulation, containing an auxiliary variable,
which corresponds to the tangential traction, is derived, and equivalence between the
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mixed formulation and the original variational inequality is shown. The solution of
the mixed formulation is approximated with a sequence of solutions of suitably defined
frictionless problems with updated right-hand side. It is proven that this sequence
converges in the energy norm to the exact solution of the original frictional contact
problem. This solution procedure can be treated as an Uzawa algorithm. We prove that
the algorithm converges for sufficiently small damping parameter. The results of this
section are also employed in the Chapter 4, Section 4.3 in construction of the solution
algorithm for hp-mortar BEM for two-body frictional contact problems.

Then the hp-penalty approach for the frictionless contact problem is formulated and
investigated. An a priori error analysis, including treatment of the consistency and
approximation error, is carried out. The convergence rate of order O((h/p)'~¢) in the
energy norm is obtained, if the exact solution of the original variational inequality for-
mulation w lies in ﬁ3/2(2) and the penalty parameter ¢, > (h/p)'=¢. Here ¢ > 0 is

some fixed small parameter.

Further, the question of automatic mesh refinement is investigated in the framework
of the h-version of penalty FEM and BEM for a one-body frictional contact problem.
The error measure, based on the energy norm of the solution, combined with normal
and tangential contact terms is introduced for FEM and BEM. Then, the local residual-
based error estimators are derived for both FEM and BEM and their reliability and
efficiency are shown. It is worth to say that the similar error indicators were motivated
so far only with heuristical arguments and only for FEM, see e.g. Wriggers [72]. An
automatic mesh refinement procedure, based on these indicators is introduced. Finally
the suggested method is illustrated on several numerical examples.

Chapter 4 is devoted to two-body contact problems with friction. First, piecewise
linear boundary elements and a corresponding FE/BE coupling on nonmatching meshes
with penalty method is considered in the framework of elastoplastic frictional contact
problems. The incremental loading method combined with Newton’s method and return
mapping algorithm is applied to solve the problem. An implicit Euler scheme for both
plasticity and frictional contact is applied in case of FE/BE coupling. In the pure BEM
case, an explicit Euler scheme for plasticity and an implicit scheme for frictional contact
are used. Linearization of normal, tangential contact terms and of plasticity terms are
presented in detail. The a posteriori error estimate for one-body frictional contact,
derived in Chapter 3, is extended to the two-body case. The above mentioned methods
are demonstrated by a number of numerical examples.

The direct application of the hp-penalty method to two-body frictional contact problems
on nonmatched meshes seems to be problematic, due to the required pointwise contact.
Therefore, the hp-mortar method is constructed, which does not have this requirement.
Here the contact conditions are defined in the weak sense. The contact constraints are
imposed on the discrete global set of affinely transformed Gauss-Lobatto points on the
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individual elements. The data transfer is realized in terms of the mortar projection.
The problem is reformulated as a variational inequality of the second kind with the
Steklov-Poincaré operator over a convex cone of admissible solutions. We obtain an
upper error bound in the energy norm. Due to the nonconformity of our approach, the
error is decomposed into the approximation error and the consistency error. Finally,
we show that the discrete solution converges to the exact solution as O((h/p)'/*) in
the energy norm. under additional assumptions on the discretization parameters. We
solve the discrete problem with a Dirichlet-to-Neumann algorithm. The original two-
body formulation is rewritten as a one-body contact problem and a one-body Neumann
problem (see also Chernov et al. [18]). Then the global problem is solved by fixed
point iterations. An alternative approach is the Uzawa algorithm, which consists of
solving two independent one-body problems with a subsequent update for the contact
traction. The error indicator obtained for the pure FE approach for interface problems
by Wohlmuth [70] is applied here to frictional contact problems (also with boundary
elements) and is employed in an automatic mesh refinement procedure together with
the three-step hp-refinement algorithm from Maischak and Stephan [47]. Finally, the
h-version of the suggested approach is generalized onto elastoplastic two-body frictional
contact problems. Then numerical examples are given, which underline the proposed
approach.

The analysis, presented in this thesis is mostly restricted to the two-dimensional case.
However, many results can be directly applied in the three-dimensional case, when prod-
uct meshes are used.
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1 Foundations

In this section we recall some important and often used concepts and properties from
functional analysis and the theory of boundary elements. First the framework of Sobolev
spaces is considered. Then we turn to the boundary integral operators and their prop-
erties. The discretization of the boundary integral operators is also described.

1.1 Sobolev spaces

Here we briefly introduce the main concepts and definitions connected with the Sobolev
spaces, see e.g. [1], [61].

Let Q@ C R? some bounded, simply connected domain, d € {1,2,3}. Let I' = 9Q
be its boundary. We define with C*(Q), k € Ny, the set of all k-times continuously
differentiable functions u : 2 — R with the norm

ullor@) = Z sup [D%u(z)|,

lal<k €

where a = (o, ..., aq) is a multiindex, |a| :== oy + - - - + a4 and the partial derivative of

pruoroe ()" () vt

The support of a function w is given by supp (u) := {x € Q:u(z) #0}. We define
the set of all k-times continuously differentiable functions u : {2 — R with the compact

order « is given by

support by
CF(Q) == {u e C*(Q) : supp (u) C Q}.

Corresponding spaces of infinitely differentiable functions we denote with C*°(Q2) and
C3e(Q). For k € Ny, k € (0,1] we introduce the space of Holder-continuous functions
C**(Q) on Q with the norm

| D*u(x) — D*u(y)|
|z =yl '

ul|crm ) == [|ul|cr@) + Z sup
|a‘:k T,y € Q7
TFEY
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1 Foundations

The function v : © — R is called Lipschitz-continuous, if u € C%(Q). The boundary
[' = 01 is called Lipschitz, if it can be piecewise represented with a Lipschitz-continuous
parameterization. In that case the domain € is also called a Lipschitz domain.

Further, we define by L(£2) the space of all Lebesgue-measurable functions defined in
), which are square-integrable. The corresponding norm is given by

1/2
el oy = ( [ luto d:c) |

We define for k € Ny a norm
1/2

ull ey = | D [1D%ull7, 0

laf<k

and the Sobolev spaces with a nonnegative integer parameter k € Ny as the closure of
the space {u € C*(Q) : |[u]|gr) < oo} with respect to || - |[gr(q), i-e.

H*(Q) = C=() @,

This definition can be generalized to the case of Sobolev spaces with real positive pa-
rameter s := k+ 1, k € No, r € (0,1). The corresponding Sobolev-Slobodeckii norm is
given by

1/2
lullae@y = (Il By + @)
with the half-norm

|Du(x) — Du(y)|”
Ul gr) 1= dxdy
|ulmr@) Z/Q/Q |z — y|d+2r

la|=k

1/2

We define the Ly scalar product on {2 by

(me:Kﬁ@w@mx

In the BE analysis the Sobolev spaces on the boundary of the domain I' = 02 are of
special meaning. The Lo-space on I is defined similarly to the space Ly(2) and equipped

1/2
[l Lory == (/FIU(x)Istx) .

Here it is assumed, that there exists a piecewise parameterization of the boundary

with the norm

X:&—x, £=(&,...,81) €Y, xzel.
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1.1 Sobolev spaces

The definition of higher order Sobolev spaces on I' requires the partial derivatives with
respect to the parameters &

0au(g;) = (8%1) 1 ce <a§i_1> o u(x(fl, ce ,fd_l)), rel.

It should be noted, that existence of the derivative 0%u(x) with |a| <1 depends on the
smoothness of I'. In particular, I' € C'=51() provides existence of 9%u(x) for |a| < 1.
Now we can define the Sobolev spaces on the boundary of order £ € Ny, k < [ as the
closure of the space {u € C*(I) : |[u||grr) < 0o} with respect to the norm

1/2

|[ul [y == Z ||3au\|%2(r)

o<k

The generalization onto the case of the Sobolev spaces of real positive order s = k + 7,
where k € Ny, r € (0, 1) is realized by the corresponding Sobolev-Slobodeckii norm

1/2
lallirry = (1l By + el )

with the half-norm

|0%u(x) — 0 u(y)|?
‘u‘HT'(I‘) = Z // y|d Tror dsxdsy

|a|=F

1/2

Employing the dual product

() = [ i) ds,

we introduce the Sobolev spaces H*(I") of negative order for s € (0, [] as the dual spaces
to H*(T")
H™*T) = (H*(I)), s <0,

(u,v)
|u||g-sqry ;== sup —~ r
0£veHs (T) 1

with the norm

H=(T)
In the forthcoming analysis we will also use the Sobolev spaces, defined on the part of
the boundary. Let I'y C I' be an open subset of the boundary I'.  We define Sobolev
spaces of positive order s € R>g, s € (0,] by

H*(Ty) :={u:3we HT) : u =v|p, },

H*(T) :={u:3ve H*T) : u = v|p,, supp (v) C o}

with the standard norms

ul|gsry) ;= inf V|| ms(y,

||| Frs () Lo o] & (ry
vlr, =

||l H3(To) = |[ol|mrs ()
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1 Foundations

where ug is the extension of u onto I' by zero. The Sobolev spaces of negative order on
[y are defined by duality again

H™*(To) := (H*(To)),  H*(To) = (H*(Ty)), s € (0, (1.1)

Remark 1.1.1. The notation H*(Ty) is commonly used in the boundary element liter-
ature. In the finite element literature the notation HSy(T'o) is used. Then the different

notation for the dual spaces is used (see e.g. [6]).
H™(To) := (H(Ty))',  Hog'(To) := (Hgp(Fo))'s >0,
We will use notations (1.1).

Remark 1.1.2. The boundary I' of a polygonal domain 2 belongs to the class C*.
Nethertheless, following Costabel and Stephan [22], Sobolev spaces H*(I') with s > 1 can
be also defined due to Grisvard, [22, Lemma 2.7]

For the spaces of vector-valued functions we use the bold symbols, e.g.
H*(I) o= [H*(I))

stands for the space of d-dimensional vectors, which components lie in space H*(T").

1.2 Boundary integral operators for elliptic problems

In this section we will introduce the boundary integral operators, arising in the boundary
formulation of the elliptic boundary value problems. We consider the Poisson’s equa-
tion and the equations of linear elasticity. The fundamental solutions of Laplace and
Lamé operators give rise to the corresponding representation formulae, which allows to
transform the domain formulation to the boundary.

The scalar Poisson’s equation in a domain 2 C R? with piecewise Lipschitz boundary
' = 09 is given by
—Au(z) = f(z), wel

where A is the Laplace operator, u : {2 — R is unknown and the volume force f : Q2 — R
is prescribed. The equations of linear elasticity are

—A*u(x) = f(x), x € (.

Here u : Q — R? is unknown and the volume force f : Q — R? is known in advance.
Further down, we will omit the space variable x, where it does not lead to misunder-
standing. The Lamé operator A* is given by

A*u = (X + 1) grad div u + TAwu,
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1.2 Boundary integral operators for elliptic problems

where X\ and 77 are the Lamé elasticity coefficients, if d = 3, or modified Lamé elasticity
coefficients in case d = 2 (see e.g. [61]). It can also be expressed in terms of the stress
tensor o as

A'u = divo(u),

where the Hook’s law represents the stress-strain relationship

o(u) == Mre(u) + 20e(u)
and the linearized strain tensor ¢ is the symmetrized gradient of w, i.e.

1 T

e(u) := §(Vu+ (Vu)").

Let G(x,y) be the fundamental solution of the operator L, L = A or A*, i.e.
[ LGy uly)dy=ul@).  eo
)

The fundamental solution for the Laplace equation is given by

1
—%log|a:—y|, for d = 2,
G(.’B,y): 1 1 for d — 3
dr |z —y|’ e

and the fundamental solution for the Lamé equation is given by

X+ 30 AN+7 (x— —
_1L3'u_ {og +_+,u_(:c y)®(a; y)}) for d = 2,
Gla.y) = 47r,u(3\ + 21) |z — y A+ 3 |z — y
’ A+ 37 { 1 A+ﬁ(w—y)®(w—y)} for d — 3
staA+2m) Lz —yl”  X+3 |z —yP ’ '

(cf. [61]) We use here the bold symbols also in the scalar case of the Laplace operator,
treating the scalars as vectors of the dimension one. Then the second Green’s formula
provides the representation formula: for arbitrary & € '\ S

u(@) = [ Glo.) T ulw)ds, - [ T,,Gla) - ulw) ds,

r (1.2)
+ [ Gy fw)ds,

Here 7,,, stands for the traction operator with respect to the y-variable and it is given
by 7,,u(y) := Vu(y) - n(y)|r in the Laplace case and by 7, u(y) := o(u(y)) - n(y)|r
in the Lamé case. The operator 7,, is also called the inner conormal derivative and is
denoted by ~{™. The inner trace operator (-)|r is denoted also by ", see [61]. The
representation formula (1.2) is also called the Somigliana’s identity in case of Lamé
equations.
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1 Foundations

Remark 1.2.1. [t follows from (1.2), that for the solution of Poisson’s equation or of
the problem of linear elastostatic, it is sufficient to find the complete boundary data, i.e.
the unknown w and its boundary traction T,u. Then the values inside the domain can
be obtained with (1.2).

Then taking a limit Q \ 9Q >  — ' we obtain the well-known system of boundary
integral equations for ¢ := 7,u

<Z):<1/2M;K 1/2ZK)<Z)+<JNV?;) (1.3)

where the single layer potential V', the double layer potential K, the adjoint double layer
potential K’ and hypersingular integral operator are given for @ € I' by

Vi) = [ Gla.y)-dly) ds,
Kule) = [ (T, Gy uly)ds,
r (1.4)
K'9(@) = T, [ Gla.y) dly)ds,
Wu(e) = T, [(T,Gla.y)") uly)ds

and the Newton potentials Ny, N; are given for & € I' by

Nof(@) = [ Gla.y)- fly)ds,
r
Nif(@) =T, [ Gla.y)- fly)ds,
r
The following well-known properties will we widely used in the forthcoming analysis.

Lemma 1.2.1. [21] Let I" := 082 be the boundary of a Lipschitz domain Q2. Then the
integral operators

Voo H_1/2+S(F) N H1/2+S(F),
K - H1/2+8(F) N H1/2+S(F),
K- H_1/2+S(F) N H_1/2+8(F),
W H1/2+S(P) _ H_1/2+S(F),

are bounded for all s € [—1/2,1/2], i.e. there exists constants Cy, Cr, Crgr, Cyy > 0 such
that

||V¢||H1/2+S(r) < OV||¢||H*1/2+5(F)’ ||K/¢||H*1/2+5(F) < OK’||¢||H*1/2+5(1")7

K wl| gz py < Ckllwl garzes 1y, Wl g-1/2es ) < Cwllul| grrees 1y

24



1.3 Symmetric boundary element formulation for mixed boundary value problems

Lemma 1.2.2. (see e.g. [61]) Let T := 02 C R? be the boundary of a Lipschitz domain
Q. Let cap(Q) < 1 in case d = 2. Then the single layer potential V is H~/*(T")-elliptic,
i.e. there exists a constant ¢y > 0, such that

Vo, ¢)r > cvll@llyy 1oy, Vo€ H AT

Since the single layer potential V : H~Y/?(I') — HY*(I) is bounded and elliptic, the
Lax-Milgram lemma yields that its inverse operator V=1 : HY*(T') — H'/*(T) exists
and is bounded, i.e.

||V_1’u’||H*1/2(1") < C\_/1||u||H1/2(F)7 Vu € H_l/z(r)a
where ¢y is the ellipticity constant of V.

Lemma 1.2.3. (see e.g. [61]) Let T := 9Q C R? be the boundary of a Lipschitz domain

Q and 'y C I'. Then the hypersingular operator W is fIl/z(Fo)—elliptic, i.e. there exists
a constant cyy > 0, such that

- 1/2
(Wu,u), > cWHuHiIl/Q(FO Vu e H "' (I'y).

)7

1.3 Symmetric boundary element formulation for mixed
boundary value problems

It follows from (1.3), that the traction variable ¢ := 7w can be represented in terms
of w and the volume force f. Since V : HY*I') — HY*(I) is invertible (in case
cap(T") < 1, the case of general I' can be treated with the scaling arguments) we obtain
=V K+1/2u—-V'Nof,
d=Wu+ (K'+1/2)¢+ N1 f

and therefore

¢=Su—NFf, (1.5)

with the symmetric Steklov-Poincaré operator S and the Newton potential are given by
S:=W+ (K +1/2)VHK +1/2) (1.6)

N := (K'+1/2)V"'Ny — N;. (1.7)

The alternative representation is
¢ =Tu—V'Nof.
where the nonsymmetric Steklov-Poincaré operator T' is given by
T:=V 1K +1/2). (1.8)

Lemmas 1.2.1 - 1.2.3 for boundary integral operators yield the following lemma.
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1 Foundations

Lemma 1.3.1. Let I' := 9Q C R? be the boundary of a Lipschitz domain € and I'y C
I'. Then the Steklov-Poincaré operator S : HY*(T') — HY*(T) is continuous and

fIl/2(F0)—elliptic, i.e. there exists cg,Cs > 0 such that
1Sull vy < Csllwllgragy, — Vu e HYA(T), (1.9)
- 1/2
(Su,u), > CS||uH2.EIl/2(F0)7 Vu e H "' (I'y). (1.10)

Note that due to (1.5), if £ = 0, then S maps w to its traction. Therefore the Steklov-
Poincaré operator is sometimes called the Dirichlet-to-Neumann mapping. Furthermore,
in case f = 0 there holds

S=T.
Recalling the definition of the internal trace operator 7¢" and of the internal conormal
derivative v{" the operators S and T can be rewritten for f =0 as

S =T =),

when ~{" is invertible.

Assume that we have a mixed boundary value problem in €2, i.e. its boundary I' = 02
is divided into two disjoint parts I' = I'p U 'y and on the part I'p we have some
prescribed displacements @ and the part 'y is subjected to some given tractions t.
The weak formulation, corresponding to (1.5) is obtained by testing it with some test-

function v € ﬂl/z(FN) which provides the problem of finding u € {w € HY*(I') : w =
w on I'p}, such that

(Su.v). = (Eo). +(Nfo)y . VoeH () (1.11)

1.4 Discretization of the Steklov-Poincaré operator

While discretizing the formulation (1.11) we meet a problem of computing of V!, which,
in general, is not explicitly known. To overcone this difficulty, the approximation S of
the Steklov-Poincaré operator is constructed. We introduce a mesh 7, on I, i.e.

Based on 7;, we define the piecewise polynomial space of discrete tractions
Wi, = {® € Ly() : VI € Tp,, ®|; € [Py, 1 ()]} ¢ H YD),

where P,,(I) stands for the space of all polynomials on / with degree not exceeding
pr — 1. We introduce an auxiliary problem of finding ¥ € W)p,,, such that

(V@, &) = ((K+1/2)u, ®). VPecWy,
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1.4 Discretization of the Steklov-Poincaré operator

for some w. Then the approximation S of the Steklov-Poincaré operator is given by
Su:=Wu+ (K +1/2)@.

Lemma 1.4.1. Let T’ := 0Q C R? be the boundary of a Lipschitz domain Q and T'y C T.
Then, the approzimation of the Steklov-Poincaré operator S : HY*(T') — H~Y*(T) is
continuous and fIl/z(Fo)—elliptic, i.e. there exists cg, Cg > 0 such that

HSU’HH*VQ(F) < C§||UHH1/2(F)7 vu e H'2(T), (1.12)

. ~ 1/2
(Swu)y = cllul s Vue H (T (1.13)

)?

We define the operator £ := S — 9, reflecting the consistency error in the approximation
of the Steklov-Poincaré operator.

Lemma 1.4.2. [/6, Lemma 15] The operator E is bounded, i.e. there exists Cp >0
such that
||E’u’||H*1/2(1") < CE||U||H1/2(P)-

Furthermore there exists a constant Cy > 0, such that

| Ewl| g-1/2ry < Co 20 [VTHE +1/2)u — || g2y

Hence, the consistency error in the approximation of S is optimally bounded and there-
fore makes no affect to the convergence rate of the corresponding method.

In order to discretize the other boundary integral operators we introduce the continuous
piecewise polynomial space for the discretization of w.

Vi, ={U € C(I'):VI € Tp,, ®|; € [P,, ()"} c HV*(I).

In general, V}, can be defined over some other mesh, different from 7j, but for the sake
of simplicity we use 7;, here as well. Let {U}~2 and {@;}Y be the (polynomial) bases
in Vp, and Wy, respectively. Then the discrete analogues of the boundary integral
operators are given by

Vip := {(V @s, —‘pl>r}gf:’]1vN ) Ky = {{KUy, ‘pl>r}gf;]1vN’
Nn,Np Np,Np

Ky, = {(K'®,,U)), Wip = {(WU, Uy,

El=1 k=1

Computation of the discrete Newton potentials requires some finite element discretiza-
tion in the domain. Let {Ek}ivjl be the polynomial basis of that discrete space Xy,.
Then the discrete Newton potentials are

Nq,Nn Nq,Np

Nth = {<N05k, ¢l>1"}k,l:1 s Nlhp = {<N15k7 Ul>1"}k,l:1
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1 Foundations

We introduce the canonical embeddings
inp = Wy — HVA(T),
Jhp = Vi — HY*(I), (1.14)
kpp = Xpp — H'(Q)

and their duals 4j, jj, k- Then the discrete boundary integral operators and the
Newton potentials can be represented by

Vhp = thVth, th = ththp,
! ek /- e .
Ky, = Jhp K inp, Whp = JhpW Jhps
-k 3k
Nonp = 13, Noknp, Ninp = JhpNiknp-

According to this notations we obtain for S and E the representation

S =W+ (K +1/2)in, Vil i, (K +1/2),
E= (K +1/2)(V - inp Vi ih,) (K +1/2).
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2 Nonconforming methods for
interface problems

In this chapter we consider a nonconforming elliptic boundary value problem (Poisson
equation) with mixed boundary data in some Lipschitz domain 2 C R?. The domain (2 is
decomposed into two parts Q' and 2. The boundary element discretization is employed
on the boundary of Q2 and the finite element discretization is used in the complement
domain Q!. An independent discretization of both subdomains is considered, and hence,
nonmatched meshes on the artificial interface of the decomposition are allowed. We
construct and analyse an hp-FE/BE coupling on nonmatched meshes, based on Nitsche’s
method. Both, the mesh size and the polynomial degree are changed to improve accuracy.
Nitsche’s method leads to a positive definite formulation. Therefore, unlike the mortar
method, it does not require the Babuska-Brezzi condition for stability. We derive a priori
estimates for our method and demonstrate it in several numerical examples. The given
analysis can be easily extended to the pure FE or the pure BE decomposition as well
as to the case of more then two subdomains. The problem with a bounded domain €2 is
considered in detail, but the case of an unbounded BE subdomain and a bounded FE
subdomain follows with similar arguments.

2.1 The model problem
Let us consider a bounded domain 2 C R? decomposed into two disjoint parts, =
QTUQ2. Define also I' := 9Q, T := 90, i = 1,2, T, :=T'NTI2

As a model problem we take the Poisson problem in €2 with mixed boundary conditions:
Find u : Q — R such that

—Au=f in Q,
u = on I'p, (2.1)
Ohu =1 on 'y,

with a disjoint decomposition I' = I', U 'y, prescribed volume forces f and boundary
tractions t. For simplicity of presentation, we assume that there are no body forces
acting in the subdomain 92, i.e. f|g2 = 0. If the solution u is sufficiently smooth along
[';, problem (2.1) in € is equivalent to the following interface problem in Q! Q2 [5]:
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2 Nonconforming methods for interface problems

Find v : Q'U0? > R
—Au=f in QY
—Au=0 in 2,

u=20 onlI'p
R ’ 2.2
O,u =1 on I'y, (2:2)
[u] =0 on I'y,
[Opu] =0 on I'y,
where the jump [u] := wi|r, — ue|r, is defined with restrictions w; = u|qi, Oyu =

Vu-n' on T'; and therefore [0,u] = Vuy|r, - n' — Vuy|r, - n'. Here n' denotes the unit
outer normal vector to Q'. We define for brevity I'Yy := T4 NT* and X' := 'y, NT'; with
1=1,2and A= D, N.

We shall use a finite element discretization in Q' and a boundary element discretization
on I'*. Let 7,!¢, be a shape-regular decomposition of the finite element part Q' into
triangular or quadrilateral elements, and let 7,2, be a decomposition of I'* into straight

o- Urw T={T

KeTy q IE€T

line segments

Assume that the meshes 7;'o, 7,21 are quasiuniform. Let hx and h; stand for the
diameter of K and [ respectively, and define

hi := max hg, ho := max hj.
KeT! IeT?

Further we introduce the continuous spaces
Vi = b, (01 = {u e HYQY) : ulpy, =0}
V2= H'/2(x?) = {ue HV*(X?): supp uC ¥*},
V= Vi x V2
and their discrete analogues based on 7;'o, 7,7
V,%p’ﬂ = {U eVy: Ulx € P (K) VK € leﬂ},
V}%p’r‘ = {U eV:: Ul;eP,,(I)VI e ZL%F},
Vip = Vipa X V-

Here P, stands for the space of polynomials, with degree not exceeding p. We assume
that the polynomial degree distributions in V, o, Vi, are quasiuniform and set

b1 = min pg, P2 := min py.
KeTy q €T

We define with 7,'; and 7,7, the trace meshes on I'; induced by the partitions 7,'q
and 7,%; respectively. Note, that the functions in the discrete space Vj, are in general
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2.2 hp-Nitsche’s method

discontinuous over I';. Moreover, continuity in the strong sense can not be imposed, in
case of nonmatched meshes, i.e. 7,'; # 7;2;. hp-Nitsche’s method, imposing continuity
of the solution u in the weak sense, is constructed and analysed below.

The h-version of Nitsche’s finite element method was recently introduced and studied e.g.
by Becker, Hansbo and Stenberg [5], Hansbo, Hansbo and Larson [31]. It can be treated
as a mesh-dependent penalty method with additional terms, which, in contrast to the
original internal penalty methods (described e.g. by Lazarov, Tomov and Vassilevski
[43]), provide consistency of the coupling. Stability of Nitsche’s method is provided
by the penalty-like parameter AV, which should be chosen sufficiently large. Due to
consistency of the method there is no need to take higher values of AV if the stability is
already achieved. In the context of the penalty method, the penalty parameter should
be increased together with decreasing mesh size and/or increasing polynomial degree to
capture the consistency error. For example, in the framework of a frictionless contact
between an elastic body and a rigid obstacle, the relation between the penalty parameter

and the discretization parameters is obtained in Section 3.2.

An alternative method is the mortar method (see e.g. Seshaiyer and Suri [59] for hp-
FEM). In the context of the mortar method, the weak continuity of u is enforced with the
help of a Lagrange multiplier A\. This yields a saddle point formulation. It is well known
from the literature (see e.g. Ben Belgacem [6], Wohlmuth [71]), not every discretiza-
tion of u and A leads to a stable method. The Babuska-Brezzi condition is the crucial
inequality which guarantees the stable discretization for the mortar method. Nitsche’s
method leads to the positive definite system of algebraic equations, and therefore, it is
always stable for large enough penalty-like parameters AV,

We use a symmetric boundary element formulation with the Steklov-Poincaré operator
S (see e.g. Carstensen and Stephan [17]) in the BE subdomain. As the operator S
cannot be discretized directly, its approximation S is used, which yields a consistency
error. This consistency error can be bounded by the approximation error of the discrete
traction space, Lemma 1.4.2, which is optimal and does not damage the convergence
rate of the methods.

2.2 hp-Nitsche’'s method

The discrete weak formulation with Nitsche’s coupling across I'; corresponding to the
problem (2.2) can be written as follows: Find U = (U*, U?) € V, such that

ap(U, @) = 1(D) V& € Vi, (2.3)
where

()= (f, Pr)or +(F, P)p.,
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2 Nonconforming methods for interface problems

an(U, ) = (VU, V $)u + <§U, qs>
— {0.U3,[2))p, — (U], {0n @})r, + (NYRTPY(UY, [2]) (2.4)

for some a € R, where S is the discrete Steklov-Poincaré operator. For the normal flux
on the coupling interface we choose, as in [31], the one sided approximation from the FE
subdomain {0, ®} := 0, ®;. The piecewise constant functions h(z) and p;(z) represent
the local meshsize and the local polynomial degree from the FFE side on I';

hi(z) := hg, pi(x) == px, re K e ’Z;LIQ, K cTy.

Due to the consistency error, yielding by the approximation of the Steklov-Poincaré
operator S the Galerkin orthogonality property does not hold for our method. Instead,
the following theorem holds.

Theorem 2.2.1. (Consistency error) The discrete problem (2.3) is consistent up to an
error in the approzimation of the Steklov-Poincaré operator, i.e. foru € V solving (2.2)
and E =S — S there holds

an(u, @) = U(®) = = (Buz, &2) .
and therefore for U € Vy, solving (2.3) there holds
ap(u—U, &) = — <Eu2, 9252>22
Proof. For u € V solving (2.2) there holds
[u] =0, {0,u} == Vu, -n' = —Vuy -n? onI'y.

Therefore

an(u, ®) = (Vur, V&1 )or + <Su2, @2> 2

— ({0uu}, [9])r, — ([u]. {0 @), + (NP0 (ul, [2])
= (Vuy, V&))gr + <SU2, @) = (Vur-n', ) —(Vuy - m, ),

The Steklov-Poincaré operator S is a Dirichlet-to-Neumann mapping, therefore the
Green’s formula provides

(Vug, Voo)az = (Sug, ¢2)so Vo, € V2.
Hence, with partial integration we get
ap(u, ) —U(P) = (Vuy, V&)1 — <Vu1 ‘nl, @1>F <t @1>F1 (f, 1)
+ (Vug, V&y)g2 — <Vu2 -n?, @2>F1 — <t, @2>F?\z
— <(S — S)us, @2>22
— (~Aus — f, @)ar + (~Aua, Br)oz — (S = S)ua, ),

»2
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2.2 hp-Nitsche’s method

which together with (2.3) gives the assertion of the theorem. O

The nodes of 7,'; and 7;?; together produce a finer partition 7,'7 of I', i.e.
T 7
JET G
and

vJeT); 3K,€T)q: JCKy, A, €T JCI

In the forthcoming analysis we will need the mesh dependent norms (see e.g. [31])
||¢||%/2,h,1“, = ||h_1/2P7/2¢||%2(r1) = Z hkﬂpwwiw),
JET'3

= [|h'?p _7/2¢||%2(r1) = Z hK(]PI_(z||¢||%2(J)>

12
JETR

(2.5)
l21 o nr, =

and

I = 1191y + (56,6 + IHOSHE 1 jary + NGB 2y

It is easy to see that with the Cauchy-Schwarz inequality there holds

—1/2 2 1 2 —~/2
(0,0, < > h ool e hi o 10 oy < Sl 1] -12nr,.
JETS

2.2.1 Continuity and coercivity of a;(-,-)

Continuity and coercivity of the bilinear form ay(-, -) are needed to be shown to ensure
convergence of our method.

Lemma 2.2.1. (Continuity of ap) The bilinear form ap(-,-) is continuous in the space V
with the |||-|||n-norm, i.e. there exists a constant C' > 0, independent of the discretization
parameters, such that

an(6,0) < Cpr Mol 1al[¢llln,  Vo,0 € V.

Proof. The assertion follows directly from the definitions and the Cauchy-Schwarz
inequality. For arbitrary ¢, € V there holds

(Vo, Vi )ar <|IVOl[ Ly [Vl La@ry < [lIalll41]]n,

<§¢>¢>22 _ <5~1/2¢ S1/2¢> <Sl/2¢ 51/2¢> <Sl/2w 51/2¢> /2
(56,6) " ($,) < gl Il
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2 Nonconforming methods for interface problems

{0}, [Wh)r, < IR -1j2nr |[01l1/2.0.00 < HlInl1]R,

AR L, W)y, < APl 1z, < ARG
The choice €' := max{ % 1} completes the proof. O
We need the following Lemma to prove coercivity of a(-,-).

Lemma 2.2.2. (Inverse inequality) For all ® € V; q there exists a constant Ci, > 0,
independent of the discretization parameters, such that

p1+'y/2
[ @[]1/2,nr; < CmvTH@HM(Ql), (2.6)
V@ -0 1 jonr, < Cowpr IV ®||Lyery. (2.7)

Proof. We recall the result of Warburton and Hesthaven [68] that for some d-
dimensional simplex D and some polynomial ¥ € [P, (D)]* there holds

(pp + 1) (pp +d) Volume (9D)\"” Po
v < v < C—=||lw
19l < (200 ) 19 < OB

for some C' > 0, independent of hp and pp. We denote by K; € ’];}Q a volume element,
including the part of the interface J € 7;'7. Thus,

1/2 1/2
Pks g PR e
1 2]1jenr, = | D n oML | < > o1l
Jezpz K Jeryy Ky
P/
1
< O = 1¥lla@),
which is inequality (2.6). Similarly we obtain
1/2 1/2
hk 9
1] -venr, = | D N0 | < | Do Or 11,
JET Pry JET

< Ol
The inequality (2.7) follows by setting ¥ := |V @| and noting that V& -n' < |V@|. O

Lemma 2.2.3. (Coercivity of ap) The bilinear form ay(-,-) is coercive in the discrete
space Vp, with the ||| - |||n-norm, i.e. there exists a constant C' > 0, independent of the
discretization parameters, such that

an(®, @) > Cp, ™ ETN||[]2, VD€V,

if the penalty-like parameter \N® fulfils AN > 1/2p]™% 4 Cinwpt®, where the constant
Ciny comes from the inverse inequality (2.7).
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2.2 hp-Nitsche’s method

Proof. With the definition (2.4) of the bilinear form ay/(-, ) we obtain

@ (®,8) 2 IV 00y + (S8, ) = 2({0, 8}, [8l)r, + X5 ()R o,

»2

Lemma 2.2.2 provides for arbitrary ¢ > 0

2({0. 2}, [Py, < 21{00 D |-1/2.0,1, |[D]l]1/2,,1,
< 6_1||{ands}||2—1/2,h,r, + 6||[¢]||§/2,h,rl
< Cinopt eIV O[T 1) + €lll DN janr,-

That gives

an(®, ®) > (1 - Cinvpf_%_l)”v@ﬁz(m) + <g@7 @> + (AT — 6)”[@”‘%/27}1,1“1'

22

We choose € := 2Cj,,, pfﬂ and AV > (1/2 4 ¢€)/pS™" = 1/2p7* + Cinop2 ™. Therefore

1 N
an(®, @) = 5 (IIV [0 + (52, 0)_ +l[2]B2nr,) -
Employing inequality (2.7) from Lemma 2.2.2 we obtain

1—~/2
{00 @}|| -1 /200 < Cinopt "2(|V D | o),

and hence
12l < @+ Condl™) (VI ) + (52, 8)_ +l[2]1B2nr,)

This yields
an(®, @) > (2(1+ Cinupi )Ml 2117,

which is the assertion of the lemma. O

The right hand side /() in the discrete formulation (2.3) is obviously continuous. The
bilinear form ay(+, -), thanks to Lemmas 2.2.1 and 2.2.3 is continuous and coercive. Thus
the Lax-Milgram lemma guarantees that the discrete problem (2.3) has a unique solution.

2.2.2 Interpolation in the ||| - |||,-norm
The approximation properties of the hp-Lagrange interpolation operator in the Gauss-
Lobatto nodes are needed for further analysis. Let Z} ,Z;, be the hp-Lagrangian

interpolation operator in the Gauss-Lobatto nodes of the elements of 7, ¢, 7,2 -, re-
spectively. Define an interpolation operator on Q' UI'? such that

Ihp¢|ﬂl = Iile,Q(NQlu Ihp¢‘p2 = Iszp,F(NFz-
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2 Nonconforming methods for interface problems

Lemma 2.2.4. Let J be a straight line segment, h := |J| and let I,‘L]p be the hp-Lagrange
interpolation operator on the Gauss-Lobatto nodes of J. For any real numbers v € [0, 1],
w > v/2, there exists a positive constant C' depending on p, such that the following
approzimation property holds for any function ¢ € H*1/2(J)

S h p+1/2—v
||¢ _Ihp¢||HV(J) < C 5 ||¢||Hﬂ+1/2(J)~

Further, let K is a triangle or a plane quadrilateral, h := diam(K) and let I,f; be the hp-
Lagrange interpolation operator on the Gauss-Lobatto nodes of K. For any real numbers
v € [0,1], p > v/2, there exists a positive constant C' depending on i, such that the
following approzimation property holds for any function ¢ € H*(K)

1-v
_TK <C ﬁ "
16 — Ly, &l v x) < . A1 mriet1 (6

” h M+1/2—V
| — T, 0| v or) < C » @] i1 (x)-

Proof. For quadrilaterals the statement of the theorem follows from [10, Theorem
4.7] and [10, Theorem 5.9] by scaling. We adopt the techniques of regularity preserving
extension from a triangle to a quadrilateral (see e.g. [56, Remark 4.74]) to obtain the
corresponding result for triangles. O

Lemma 2.2.5. Let Iy, be the Lagrange interpolation operator in the Gauss-Lobatto
nodes of T, and T,2p. Assume that the discrete spaces Vi, o and Vi, have qua-
stuniform and compatible meshes and polynomial degree distributions, with character-
istical discretization parameters denoted by h and p, respectively. Then for arbitrary
¢1 € Hp (QY) N H™HQY) and for arbitrary ¢o € HrHY2(52) r > 1, and ¢ = (¢, ps)
there exists a constant C' > 0 independent of h and p, such that

_ h\"
o= Zapollh < €2 (5] (onllamoian + allgrign) 721 (28)

Proof. We estimate the four terms composing the mesh dependent energy norm |||-|||x

According to Lemma 2.2.4 for the volume term there holds

||V(¢1 _Ihp¢1)||%2(ﬂl) = Z ||V(¢1 _If€§¢1)||%2([{) < Z ||¢1 _IFIL(;;QSlH?{l(K)

KeT) g KeTq
hK r h 2r
> (—) H%Hip-H(K)SC(—) 16412,
KET}},Q Pk p

36



2.2 hp-Nitsche’s method

The discrete Steklov-Poincaré operator S is bounded, therefore, due to Lemma 2.2.4,
there holds

<S’(q§2 — Ihp¢2)7 ¢2 — Ihp¢2>22 S C§H¢2 — Ihp¢2H%(1/2(22)

h
<c (E) 162012

The triangle inequality provides for the jump term

1
§||[¢ - Ihp¢]||%/2,h,rj < ||¢1 - Ihp¢1||%/2 h,Tr + ||¢2 - Ihp¢2||%/2,h,rj

.
P p
Z Z K ||¢1 If€;¢1||L2(J i”ﬁfb _Iflzp@”%z(JV

KeTl, JeT5
JCK

where J C I € T;21. Lemma 2.2.4 gives on each interval J

¥y 2r

p hK —1

iHﬁbl — Tl <C (p_K) P ol Er ),
9

Pk 1 2 hi hl pK

B, Tl <O (1) RLIE g

The meshsize and the polynomial degrees are compatible across the interface I'y, thus
the second inequality becomes

ol 2r
Pk 2 hi —1 2
P 2~ Tulla < () ok oal By

That yields

3 h 2r
6= Zapoll e, < ™ (2) (horronn + sl

Finally, Lemma 2.2.4 gives for the flux term

1{00(¢ = Tnp®) 1?1 jp00 <C D > p}( IV (61— Tnpd) 13000,

KET}}Q Je T}
JCK

oy ¥ (b ) Pl e

KeT}l, 7e1%
k2 JCK

h 2r
< (5) P 01 o)

Combining above estimates we obtain (2.8), which completes the lemma. 0
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2 Nonconforming methods for interface problems
2.2.3 A priori error analysis

Now we are in the position to prove the following a priori error estimate.

Theorem 2.2.2. (A priori error estimate) Let u = (uy,up) with uy € Hp (') N
H™H(QY), ug € H™V2(52),r > 1, be the solution of (2.2) and let U € Vy, := Vi, o x V3, 1
be the solution of the discrete problem (2.3). Assume that the discrete spaces Vy,, o and
Vﬁpr have quasiuniform and compatible meshes and polynomial degree, with character-
istical discretization parameters denoted by h and p, respectively. Then the following a
priori error estimate holds

h ' — max{a— —
e —Ulll, < C (5) pa(2=7.0}-+max{a—y,0}+[1/2-7/2 (||ul||HT+1(Ql) + IIU2||19T+1/2(22>>’

where the parameter o stands for the exponent of p in the definition of the bilinear form
(2.4) and the parameter ~y is the exponent of p in the definition of the discrete norms

(2.5).
Proof. For some ¢ € V), there holds

v = Ullln < [[lu= @[[[n+ [[[U = ]|

Coercivity and continuity of ay(-, -) shown in Lemma 2.2.3 and Lemma 2.2.1 respectively
combined with Theorem 2.2.1 provide for the second term

U — &|[; < Cpm=C% q, (U — &,U — @)
= C’pmaX{Q—’Y,O} <ah(u — 925, U - Qp) + <EU2, U2 — @2> 2)
b
< Cp =10 (=1 — By + || Busllg-sr500)) 110 — Bl
and therefore with Lemma 1.4.2 we obtain

|||u . U|||h < Cpmax{2—’y,0} (pmax{oc—'y,o}Hlu - @th + ||EA1u2||H71/2(F2)>

h, T
<C (;) prax{2-7.0}+max{a—y,0}+[1/2-7/2] <||U1||H7"+1(Ql) + HU2||f{r+1/2(22)> .

0

As shown in Lemma 2.2.3, to ensure coercivity of the bilinear form the penalty-like
ANt must be chosen such that

parameter
)\Nit 2 1/2p’y—o¢ + Cim)p2_a-

It can be chosen independent of the polynomial degree, if

a > max{vy,2}. (2.9)
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2.2 hp-Nitsche’s method

On the other hand, the parameter « in the definition of the bilinear form (2.4) should not
be too large, since, due to Theorem 2.2.2; large values of o will damage the convergence
rate. To find the optimal values of a and ~ we note that

inf{max{2 — 7,0} + max{a — 7,0} +|1/2 — v/2|} = 1/2

and the infimum is achieved if and only if v = 2, «a < v, which together with (2.9) yields
that o = 2 and v = 2 are optimal parameters, and therefore the following theorem holds.

Theorem 2.2.3. (A priori error estimate) Let u = (uy,us) with wy € Hp (Q') N
HHQ), uy € H™Y2(T?) be the solution of (2.2) and let U € Vi, == VL o x V2,1
be the solution of the discrete problem (2.3). Assume that the discrete spaces Vflm,ﬂ and
VﬁpI have quasiuniform and compatible meshes and polynomial degree, with character-
istical discretization parameters denoted by h and p, respectively. Then for o = 2 in the
definition of the bilinear form (2.4) and for v = 2 in the definition of the discrete norms
(2.5) the following a priori error estimate holds

h T
|Ju—Ul||n < C (5) p'? (|IU1IIHT+1<91> + IIUzIIgr+1/2<22>) -

2.2.4 Algebraic formulation

The algebraic system corresponding to the weak formulation (2.3) will be described in
this section. We denote by u; and D; the coefficient vectors associated with the interface
from the FE side and from the BE side, respectively. The rest of the coefficients from
the FE side we denote by u and from the BE side we denote by Dy. Then the algebraic
problem has the following structure

un lu
@+Bre)| U | = 0
D; 0
Dy Ip

The matrix 2 is the stiffness matrix of the finite element and the boundary element part
produced with the term (VU, VV)g1 + (SpU, V) 52 without the coupling terms

Avy AL, 0 0
Q,['— AIN A]] O 0 L A O
T 0 0 S ST, Lo S8/

0 0  Siv Swn
The mixed terms — ({V, .U}, [V])p, — ([U],{V.V})p, yield the matrix 9B, given by

0 0 (B]“V’f,))T 0

| 00 om0
T\ B B BEBRT 0
0 0 0 0
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2 Nonconforming methods for interface problems

Finally, the penalty-like term (Ahy'p${U], [V]>r1 yields the matrix €

0 0 0 0
¢ 0 Cuu (CuD>T 0
0 CuD CDD 0
0 0 0 0

The matrices B, € are sparse as well as the finite element part A of the matrix 2. The
boundary element part S of the matrix 2 is a dense matrix.

2.2.5 Numerical experiments

We present a series of numerical examples for the hp-FE/BE coupling with Nitsche’s
method on uniform meshes, nonmatched across the coupling interface. First, we con-
sider an example with a smooth solution and investigate convergence of the h-version for
different polynomial degrees. We also show that the p-version converges with an expo-
nential rate. Then, an example with a singular solution will be presented. We compare
the convergence of h- and p-versions. Finally, we study dependence of the convergence
rates on the penalty-like parameter AV, We show that there exists a threshold value,
)\Nit

such that for smaller no convergence, or a reduced convergence rate takes place,

and for larger AN¥ no improvement of the convergence rate is observed. This threshold
value can be interpreted as a coercivity threshold of the bilinear form ay(+,-) in the weak

problem (2.3), which coincides with our theoretical results.

Example 1: smooth solution

In the first example we consider a square domain € := [—1,1] x [—1, 1]. We introduce
the boundary element domain 92 and its complement Q!, where finite elements will be
employed (Figure 2.1)

02 :=[-1,0] x [-1, 1],
~1,0)x [}, } 210
Ol =0\ Q%
The interface boundary is given by
[ =00 N o2 (2.11)

Let G(&,m) stand for the fundamental solution of the two-dimensional Laplace operator

1
=——1 —n|.
G(&m) = —5—log[€ — |
In particular for n ¢ Q there holds
AG(&n) =0, VE € Q C R%
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2.2 hp-Nitsche’s method
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Figure 2.1: Geometry and the numerical solution: smooth case

rz+1
U Y) = o s 2

We fix n = (—1,—2) and let & = (z,y) be variable. We define

r+1
(x4+1)2+(y+2)*

u(e,y) = —2m L G((~1,—2), (2,y)) =

o (2.12)

The function u(z,y) is an exact solution of problem (2.1) with

I'p:={-1}x[-1,1], Tx=0Q\Ip, f=0, pooul
GnrN

Moreover, the function u(x,y) is an exact solution of the interface problem (2.2) with
the decomposition (2.10) and with the interface boundary (2.11).

In order to study the convergence of the method we choose AV := 10.0 and perform
a series of experiments for the uniform h- and p-version. The error reduction for the
h-version for p; = ps = 1,2,3 in the BE and FE parts is presented in Table 2.1 and in
Table 2.2, respectively.

The numerical experiments for the p-version are obtained for the fixed meshes with the
meshsize relation hy /hy = 6/5 on the interface boundary with 24 boundary elements and
75 finite elements with increasing p; = p,. Since the exact solution u(z, y) is an infinitely
differentiable function, the exponential convergence of the p-version is observed. The
results, obtained for the h-version with p = 2, are compared with the p-version and given
in Figure 2.2.
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2 Nonconforming methods for interface problems

42

h™' | p| Ly-norm | convergence rate | H}-norm | convergence rate
3| 1] 0.0045807 0.0263224
6| 1] 0.0009919 2.2073015 | 0.0124597 1.0790217
12 | 1] 0.0001865 2.4110190 | 0.0061552 1.0173917
24 | 1| .3870E-04 2.2687702 | 0.0030679 1.0045543
48 | 1 | .9604E-05 2.0106263 | 0.0015314 1.0024003
3|21 0.0001306 0.0022084
6|2 .1248E-04 3.3874651 | 0.0004878 2.1786398
12 | 2| .1520E-05 3.0374747 | 0.0001188 2.0377549
24 | 2 | .1887E-06 3.0099050 | .2944E-04 2.0126853
48 | 2 | .2354E-07 3.0029082 | .7331E-05 2.0056958
313 ]| .8771E-05 0.0001550
6| 3| .2772E-06 4.9837422 | .1629E-04 3.2502097
12 | 3| .1771E-07 3.9682911 | .1991E-05 3.0324215
24 | 3 | .1126E-08 3.9752855 | .2469E-06 3.0114945
48 | 3 | .9843E-10 3.5159649 | .3077E-07 3.0043305
Table 2.1: Convergence rates for h-version: BE part
h=' | p| Ly-norm | convergence rate | H-norm | convergence rate
2| 1] 0.0090366 0.1020531
5| 1] 0.0017310 1.8035583 | 0.0462404 0.8639609
11| 1] 0.0003120 2.1731693 | 0.0196812 1.0833687
23 | 1 | .6483E-04 2.1302020 | 0.0088135 1.0891816
47 | 1| .1567E-04 1.9870058 | 0.0043547 0.9865327
2| 21 0.0009280 0.0153579
51 2] 0.0001072 2.3555138 | 0.0031937 1.7139209
11 | 2 | .8249E-05 3.2526861 | 0.0005648 2.1972827
23 | 2 | .7335E-06 3.2809424 | 0.0001119 2.1947782
47 | 2 | .8861E-07 2.9574937 | .2732E-04 1.9729656
2 {3 0.0003011 0.0069455
5| 3| .5454E-05 4.3775333 | 0.0002450 3.6501417
11 | 3| .1662E-06 4.4275225 | .1710E-04 3.3764410
23 | 3 | .7526E-08 4.1958143 | .1780E-05 3.0673378
47 | 3 | .4995E-09 3.7955622 | .1774E-06 3.2266853

Table 2.2: Convergence rates for h-version: FE part




2.2 hp-Nitsche’s method
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Figure 2.2: h-version with p; = py = 2 vs. p-version with hy = 1/5 hy = 1/6
Example 2: singular solution

For our second example we choose €2 to be an L-shaped domain
and the decomposition

0 = {[—4, 3] <[5, 51 \ {[0, 5] x [-3,0},

(2.14)
Ol =0\ 0%
as shown in Figure 2.3. We define also
Tp = {{0} x [—1,0]} U {[0,1] x {0},
p = {{0} x [-1,0]} U{[0,1] x {0}} (2.15)

FN = 8Q\FD, F[ = 8910892.

For this kind of domain, 7?/3 is a typical singularity, located in the origin. Here (r,6)
stand for the spherical coordinates on the plane. We choose

u(r,8) := r??sin(26/3).

43



2 Nonconforming methods for interface problems
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Figure 2.3: Geometry and the numerical solution: singular case
u(r, ) = r?/3sin(20/3)

It is easy to check that u(r,#) is an exact solution of (2.1) and (2.2) with (2.13)-(2.15).
There holds

ue HY(Q), ud¢ H(Q),

therefore even the h-version does not provide linear convergence in the energy norm and
quadratic convergence in the Ls-norm, respectively. Corresponding results are given
in Table 2.3 and Table 2.4. It is possible to show that u € H°/3(Q), therefore the
convergence rate 2/3 for the h-version in the H}-norm, is optimal. The theoretical
convergence rate agrees with the numerical convergence rate ~ 0.66, as shown in Table
2.3.

Furthermore, Table 2.3 and Figure 2.4 show that in the BE domain 2, which includes
the singularity, the p-version gives a better convergence rate in the energy norm than
the h-version (0.8 vs. 0.66), but a worse convergence rate in the Lo-norm (1.19 vs. 1.4).
In the FE domain Q! the p-version provides a significantly better convergence rate than
the h-version (see Table 2.4, Figure 2.4), although the singularity affects the FE domain
across the coupling interface.

It is known from the work of Stephan and Suri [64], that the convergence rate for the
p-version of the BEM in the energy norm is twice that the corresponding convergence
rate of the h-version. Therefore, we expect the convergence rate 4/3 in the energy norm
in our example. Due to Theorem 2.2.3, the p-version of our FE/BE Nitsche’s coupling
is suboptimal, caused by the factor p'/2. Thus, for our example the convergence rate
4/3 —1/2 = 5/6 ~ 0.83 is expected. This result is in agreement with the numerical
experiments. As shown in Table 2.3, the numerical rate of convergence is ~ 0.8, which

is very near to the theoretical estimate 0.83.
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h™' | p| Ly-norm | convergence rate | Hj-norm | convergence rate
81 1] 0.0025194 0.0885605

12 |1 1] 0.0013665 1.5088057 | 0.0681681 0.6454544

20 | 1] 0.0006334 1.5052218 | 0.0489318 0.6490458

36 | 1] 0.0002642 1.4876073 | 0.0333037 0.6545895

68 | 1| 0.0001044 1.4598948 | 0.0219059 0.6586791

132 | 1| .4043E-04 1.4302214 | 0.0141255 0.6615079

260 | 1 | .1561E-04 1.4038779 | 0.0090096 0.6633788
6| 1] 0.0039545 0.1061839

6| 2| 0.0012297 1.6851889 | 0.0525158 1.0157416

6| 3| 0.0006871 1.4355013 | 0.0364846 0.8982865

6|4 | 0.0004864 1.2007996 | 0.0285718 0.8497924

6| 5] 0.0003743 1.1740143 | 0.0238089 0.8172352

6| 6| 0.0003023 1.1717633 | 0.0205406 0.8098661

6| 7] 0.0002515 1.1934875 | 0.0181426 0.8053202

Table 2.3: Convergence rates for BE part: h-version (above) and p-version (below)

h=' | p| Ly-norm | convergence rate | H}-norm | convergence rate
411 |0.0011601 0.0316011

8 |1 0.0005921 0.9703364 | 0.0158300 0.9973135

16 | 1 | 0.0003858 0.6179877 | 0.0079073 1.0014042

32 |1 0.0001986 0.9579875 | 0.0039502 1.0012595

64 | 1 | .9029E-04 1.1372275 | 0.0019737 1.0010230

128 | 1 | .3852E-04 1.2289585 | 0.0009864 1.0006580

256 | 1| .1590E-04 1.2765809 | 0.0004930 1.0005852
4 1110.0013727 0.0316477

4121 0.0006130 1.1630574 | 0.0020695 3.9347465

4 | 31 0.0002444 2.2679108 | 0.0006354 2.9122298

4 141 0.0001239 2.3613965 | 0.0001039 6.2945383

4 15| . 7227TE-04 2.4157798 | .5954E-04 2.4951675

416 | .4618E-04 2.4564418 | .3801E-04 2.4615799

4| 7| .3149E-04 2.4837826 | .2606E-04 2.4485634

Table 2.4: Convergence rates for FE part: h-version (above) and p-version (below)

2.2 hp-Nitsche’s method
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2 Nonconforming methods for interface problems
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Figure 2.4: h-version with p; = ps = 1 vs. p-version with h; = 1/6 hy = 1/8
Example 3: choice of \"

In this section we study convergence of the method for different values of the penalty-
like parameter \V¥#. We perform a series of tests for a smooth exact solution and
the geometry, described in Example 1. The convergence rates for the h-version for

p1 = pe = 1,2, 3 are shown in Figures 2.5-2.8.

For AVt = 1.0 we observe no convergence in the piecewise linear case. Furthermore, for
ANt = 5.0 we observe a reduced convergence rate for the piecewise cubic case. On the
other hand, the convergence rates for AV = 10.0 and A\V¥ = 20.0 are almost the same,
i.e. the bilinear form becomes coercive. Since our coupling method is consistent (unlike
the penalty method), we do not observe any improvement of the convergence rate with

increase of AV¥_ if coercivity of the bilinear form is already achieved.

A similar behaviour we have for the singular example, described in Example 2. As
it is shown in Figures 2.9-2.12, the convergence curves do not change starting from
ANt =50,
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Figure 2.5: h-version with AV = 1: smooth solution
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Figure 2.6: h-version with AV = 5: smooth solution

z+1
@, y) = (z+1)%+ (y+2)?
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Figure 2.8: h-version with AV = 20: smooth solution
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ww,y) = (z+ 12+ (y+2)?
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2.2 hp-Nitsche’s method
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Figure 2.9: h- and p—version for ANt =1

singular solution

u(r, 0) = r?/3sin(20/3)
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Figure 2.10: h- and p—version for ANt = 5: singular solution

u(r, 0) = r?/3sin(20/3)
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Figure 2.11: h- and p-version for AV® = 10: singular solution

u(r, 0) = r?/3sin(20/3)
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Figure 2.12: h- and p-version for AV = 20:

u(r, ) = r¥/3sin(20/3)
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3 Contact between a body and a rigid
obstacle

Contact problems between an elastic body and a rigid obstacle are addressed in this chap-
ter. We investigate questions related to variational formulation (such as well-posedness
of the problem), as well as topics connected with discretization, convergence of numerical
methods and automatic mesh refinement procedures.

In Section 3.1 we derive a boundary integral formulation for contact problems with
Tresca’s law of friction. Constructing a chain of equivalent formulations we approxi-
mate the frictional contact problem with a sequence of the frictionless problems. This
procedure can be treated as an Uzawa-type algorithm. We prove that the sequence of
approximate solutions converges to the exact solution of the problem with friction in the
energy norm, when the damping parameter is sufficiently small.

The rest of the chapter is devoted to the investigation of the numerical solution proce-
dures with the penalty method. In Section 3.2 we formulate an hp-penalty Boundary
Element Method for frictionless problems and investigate its convergence. The solution
of the variational inequality w is approximated with the continuous piecewise polynomial
solution of the discrete penalty formulation U®. The a priori error analysis shows, that
under additional regularity assumptions on w and on corresponding traction 7w that
the error u — U*® converges as O((h/p)'~¢) in the energy norm. This convergence rate
is achieved if the penalty parameter ¢, is proportional to (h/p)'~¢ for arbitrary small
fixed € > 0.

In Section 3.3 we derive residual-based a posteriori error estimates and employ them in
the automatic mesh refinement procedures. We obtain the a posteriori error estimates
for the h-version of penalty BEM and FEM for one-body contact with Tresca’s fric-
tion. Furthermore, we prove that the error estimates are reliable and efficient. Finally,
we introduce an automatic mesh refinement procedure, based on these estimates, and
illustrate the suggested method on several numerical examples.

The classical formulation of a contact problem between an elastic body and a rigid ob-
stacle with Tresca’s law of friction, considered in this chapter, is given as follows. Let a
linear elastic body occupy a bounded polygonal two-dimensional domain 2 with (Lips-
chitz) boundary I" with the exterior normal vector n. We assume that I" is decomposed
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3 Contact between a body and a rigid obstacle

into three disjoint parts I = I'p UL y UT'. We denote for brevity ¥ := I'yUT¢. For the
sake of simplicity we assume that the volume force vanishes. The case of a nonvanishing
volume force can be treated with the similar arguments employing Newton potentials,
as in the works of Eck, Steinbach and Wendland [26],[27]. We fix the body along I'p
and prescribe some surface tractions ¢ along I'y. I'c is the zone of possible frictional
contact of the body with a rigid smooth obstacle. Let g : T — RTU{0} be a continuous
mapping associating every point x € I'c with its distance to the rigid obstacle measured
in the direction of n(x) (cf. [73], see also [38], [26]).

Then the displacement field w satisfies the following boundary value problem

—div o(u) =0 in €,
u=0 on I'p,
o(u)-n=t on I'y, (3.1)

O-néoa un§g> Un(un_g):0>
on Fc.
|O't| S f, O¢Ut +f|ut| = 0,

Here o stands for the stress tensor. It is connected with the displacement field w by
Hook’s law of elasticity, i.e. under small strain assumption there holds

o(w) = C: o(u) = Mre(uw)T + 2ic(w),  e(w) = %(V'u, +vaT),

where X, 7 are the Lamé constants and I is the unit tensor of the second order. The
normal and tangential stress on the contact boundary is given by

on=mn-0(u)- n, ot=oc(u) -n—o,n.

The so-called given friction function F > 0 defines pointwise the sticking threshold of
the bodies. As it can be seen from (3.1), if the absolute value of the tangential stress
does not exceed the value of the given friction function |oy| < F, then u; = 0. Moreover,
u; # 0 is only possible if |oy| = F. It is worth to mention that in the Tresca’s model of
friction the tangential stress is not necessarily zero when the body does not touch the
obstacle. This nonphysical phenomenon disappears for the more general and realistic
Coulomb’s law of friction. This model consists of setting F := jr0,, where jis is the
friction coefficient. Now, opening of the gap yields ¢,, = 0, which provides F = 0 and
o = 0.
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

3.1 Boundary weak formulations for contact problems
with Tresca’s law of friction

In this section we derive and analyse a boundary integral variational inequality formu-
lation for contact problems with Tresca’s law of friction. We introduce a constraint
minimization problem and prove its equivalence to the original boundary integral varia-
tional inequality formulation. We show that the both problems are well-posed, i.e. that
they have unique identical solutions. Further, we obtain a mixed formulation, which
includes an auxiliary variable corresponding to the tangential traction. We prove equiv-
alence between the mixed formulation and the original variational inequality. Then we
formulate an Uzawa-type algorithm for solution of the mixed problem. It allows to ob-
tain a solution of the contact problem with friction as a sequence of frictionless problems
with changing right hand side. Finally, convergence of the Uzawa algorithm is investi-
gated and conditions, which guarantee the convergence, are obtained. The results of this
section will be also employed in Section 4.3, where we construct a solution algorithm for
hp-mortar BEM applied for two-body frictional contact problems.

3.1.1 Boundary integral variational inequality

In order to derive the weak formulation of (3.1) we assume that F € Ly(I'¢) and t €
H'/? (I'w). For simplicity of presentation we assume that the gap function g is zero,
i.e. the body is in contact with the obstacle along the whole ', but the gap can open
during the deformation process. After testing the first equation with v € Vp := {v €
H'(Q) : v|r, = 0} we obtain

0= / divo(u) -vder = / div(o(u) - v) dx — / o(u) : Vudz. (3.2)
0 Q Q
Application of Gauss theorem gives for the traction operator 7 (u) := o(u) - n

/dlv( dx—/T ‘v ds,
Q

and, due to symmetry of o the last summand in (3.2) becomes
/ o(u): Vuodr = / o(u) :e(v)dr = [ e(u): C:e(v)dx.
) ) Q
We define a bilinear form 3(-,-) on H*(Q) by

Blu,v) := /Qe(u) :C:e(v)dx = / 2ue(u) @ e(v) + Are(u) tre(v) dx.

Q

Hence, (3.2) can be rewritten as

B(u,v) = /FT(u) -vds. (3.3)
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3 Contact between a body and a rigid obstacle

Further we introduce ICp := {v € Vp : v,|r, < 0}. Note, that for the solution u of
problem (3.1) there holds u € ICp. Next, we set v = w —u € Vp for arbitrary w € Kp.
Introducing the functional

L(v) = /F t-vds (3.4)

we observe that (3.3) yields for arbitrary w € ICp

Sl w -~ w) = Lw — ) +

Te

on(Wy, — uy)ds + / o (wy — uy) ds. (3.5)

Te
The contact boundary conditions in (3.1) provide
on(Wwy, — uy) = opw, >0

and
—o(wy — uy) < og||we] — Flug| < F(Jwe| — |ug]).

Further, we define the frictional functional

j(v) = Flug|ds. (3.6)

Te

Note, that j(-) is non-differentiable, due to the absolute value function under the integral
sign. Now the problem (3.5) can be reformulated as the following domain formulation:
Find u € K such that

Blu,w —u) + j(w) — j(u) > L(w — u) for Vw € ICp. (3.7)

In order to derive a symmetric boundary integral formulation we employ the Steklov-
Poincaré operator S. It is a Dirichlet-to-Neumann mapping, i.e. (cf. (1.5))

T(u) = Su:=Wu+ (K'+1/2)V K +1/2)u,

which is a continuous mapping S : fIl/z(E) — H'*(T"). Looking back to (3.3) we note
that

Blu,v) = /ET(u)-'vds = /ESu-'vds =: (Su,v)s. (3.8)

Here and further down, when a function defined in a domain is integrated over some
part of its boundary, the boundary trace operator is ommited for brevity. Introducing
the boundary functional sets

V::ﬁ1/2(2), K={veV:v,<0onl¢},

we rewrite the domain formulation (3.7) in terms of boundary integral operators: Find
u € K such that

(Su,w—u)y + j(w) — j(u) > L(w —u) Vw e K. (3.9)

Now we are in a position to find a connection between formulations (3.1) and (3.9).
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

Theorem 3.1.1. The solution of the classical formulation (3.1) is a solution of problem
(3.9). Let w be a solution of (3.9). If the prescribed data t,F are sufficiently regular,
such that the function u(x), x € 0, obtained with the representation formula (1.2) lies
in C*(Q), then u solves the classical problem (3.1).

Proof. It remains only to show the second part of the statement. Equivalence
between (3.9) and (3.7) follows from (3.8). Let the boundary data t, F be smooth
enough such that the solution of (3.7) has continuous second partial derivatives (the
existence and uniqueness of solution (3.7) will be shown later). Then for any w € Kg
we set v = w —u € Vp and insert in (3.7). Then

0 < B(u,v) +j(v+u) —j(u) — L(v)
:—/Qdiva(u)-'vdaﬁt/ (o(u) -n—t) - vds+

'y

/ OpUpds + F(|vg + ue| — |we]) + opveds.
T'e e

Choosing v := +¢ with ¢ € {¥p € YV : supp ¥ CC Q} we derive divo(u) = 0, which
is the equilibrium equation in (3.1). Next, we take v = +¢ with ¢ € {¢p € Vp : ¢ =
0 on T'¢}. That yields o(u)-n =t on T'y. It remains to obtain the frictional contact
conditions in the strong form from

0< / gptpds + | F(lvg+ w| — ug]) + opveds. (3.10)
ro o

Let us take v € {¢ € Vp : ¢, = 0 on '} such that v|p, = *w,. Then |oy| < F
and the equation o,u; + F|u;| = 0 holds on I'c. These are frictional conditions on I'c.
Finally, we consider w € {3 € Kp : w; = u; on I'c}, wy|r, = 0 and 2u,,. Note that
in both cases w € KCr. Hence, v,, = tu,, which yields o,u, = 0. It remains to show
that o, < 0. Assume the opposite, i.e. IV C I' : ,, > 0. Then we choose w € IC, with
Wn | = Up — X1 < 0, Wp|r o\ = Uy and wy|p, = uy, where xpv is some strictly positive
function on I\ 0I" and xr = 0 in OI"". Therefore

/ on(wy, — uy,)ds < 0,
Te

which is a contradiction to (3.10). O
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3 Contact between a body and a rigid obstacle
3.1.2 Existence and uniqueness of the weak solution

In this paragraph we prove that the variational problem (3.9) is well-posed, i.e. that it
has a unique solution.

Theorem 3.1.2. The solution of the variational problem (3.9) is unique.

Proof. Assume the contrary, i.e. that there exist w;, us € IC, two not identical
solutions of (3.9). Then there holds holds

(Swy,us — uy)y + j(ug) — j(ur)
(Sug, uy — ug)y + j(ur) — j(u2)

Summing up we obtain
—(S(u1 — ug), uy — uz))r > 0,

which yields u; = o, since the Steklov-Poincaré operator S is positive definite on

7). 0

In order to prove existence of the solution of problem (3.9) we show that (3.9) is equiv-
alent to the following minimization problem: Find u € IC :

J(w) > J(u), Yw € IC, (3.11)

where

J(w) = %(Sw, w)s + j(w) — Lw). (3.12)

We show that the problem (3.11) has a solution, which automatically guarantees solv-
ability of the boundary integral variational inequality (3.9).

Theorem 3.1.3. The minimization problem (3.11) and the variational problem (3.9)
are equivalent.

Proof. Let u € K solve (3.9). Since the bilinear form (S-,-)s is symmetric, for
arbitrary w € IC there holds

J(w) — %(S(w —u),w—u)yx > J(u).

Noting that (S-,-)x is positive definite we obtain the formulation (3.11).

Now, let uw solve the minimization problem (3.11). Note that the set of admissible
solutions IC is convex, i.e.

Vo,we IC, VYA€ (0,1) there holds w+ \v—w) € K.
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

And therefore J(u+ A(v—u)) > J(u) for arbitrary v € K and A € (0, 1). This together
with symmetry of (S-, )y provides

A(Su,v—u>g—|—j(u—|—)\(v—u))—j(u)—)\L(v—u)+?<5(v—u),v—u)g > 0. (3.13)

The frictional functional j(-) is convex, i.e. j(u + A(v —u)) < j(u) + A(j(v) — j(u)),
hence, dividing (3.13) by A > 0 we obtain

(Su,v —u)y + j(v) —j(u) — L(v —u) + %(S(’U —u),v—u)y > 0. (3.14)

Finally, we let A — 0+ and obtain the formulation (3.9). O
Two following auxiliary lemmas are needed in the existence analysis for (3.11).

Lemma 3.1.1. The functional J(-), defined in (3.12), is coercive, i.e.

J(v) — oo, when v € K and ||'v||ﬁ1/2(2) — 00.

Proof. The Steklov-Poincaré operator S is positive definite on H 1/2(2) and the

. . . ~1/2 . .
functional L is continuous on H / (3), i.e. there exist constants cg, C, > 0, such that

(5,005 2 eslolng s L(0) < Cullol o

@)’ )
Thus

1
T(v) 2 5(5v,v)s = L(©) = csl|v][ Lz g, = Crllvll i

() =)

The quadratic term dominates for [[v]| ;1/2 ., — 0o, which provides coercivity of J(-). [

(=)

Definition 3.1.1. (Gateaux derivative) [38, Chapter 3] A functional F : IC — R is
Gateauz differentiable at a point u € IC C 'V if there exists a linear functional DF(u) €
V' such that

lir% %F(u +ev) = (DF(u),v), Vv € K.

Definition 3.1.2. (Subdifferentiability) [38, Chapter 3] Let F' be a functional on IC.
The set OF (u) C V' of all linear functionals q, such that

F(v) — F(u) > ¢, (v —u), veEY, |F(u)] < oo
is called the subdifferential of F' at w, and any q, € OF(u) is a subgradient of F' at w.

Lemma 3.1.2. The functional J(u), defined in (3.12), is weakly lower semicontinuous,

i.e. for any sequence {ur} C IC, such that uy converges weakly to u € I (up — u),
there holds

lilgn inf J(ug) > J(u).
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3 Contact between a body and a rigid obstacle

Proof. We define H(v) := 1 (Sv,v)y, — L(v) and hence J(v) = H(v) + j(v). It is
easy to see that the functional H(-) is Gateaux differentiable with derivative

(DH(u),v)y = (Su,v)y — L(v) Vv € K.
Note that for any v € IC
|vg| — |ue| = vesign(vy) — wgsign(ug) > sign(ug)(vy — uy).

This provides that the frictional functional j(-) is subdifferentiable at w. Indeed, there
holds F > 0 and therefore

J() = j(u) = [ Fllo| = |wl)ds = [ Fsign(u)(vr — u) ds = qu(v — u).

T'c Te

Further, for the convex functional J(-) there holds
Ju+e(upy —u)) — J(u) <e(J(up) — J(u)) e € (0,1).

or

S(H o+ el = w) = H(w) + =t (o — ) — () < Taw) = J(a).

Then taking the limit ¢ — co we obtain
J(ug) — J(u) > (DH(u), ur, — u)y + qu(up — u).
It was supposed that {u;} converges weakly to wu, therefore

liminf J(ug) — J(u) > iminf((DH (u), ur — u)s + ¢u(ur, — u)) =0,

k—o00 k—o00
which finishes the proof. O

Now we are at the position to prove existence of the solution of the minimization problem
(3.11).

Theorem 3.1.4. Problem (3.11) has a solution.

Proof. Due to Lemma 3.1.1 there exists a constant M > 0 such that for any v with
H'vHﬁl/2(E) > M there holds J(v) > 1. Let us consider a closed functional set

A= {v €K |[v] ey, < M} CK.

=
This provides

T = el )
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

The Steklov-Poincaré operator S, the frictional functional j and the load functional L
are continuous, i.e. there exists constants C's, C7, Cy > 0 such that

[T (@) < [{Sv,0) [+ 5 (0)] + [L(@)] < Cs|[v][52 5, + (Cr + Colloll s,

and therefore with M := CsM? + (C) + Co) M

—M < inf J(v) = inf J(v) < M.
veEA vell

Then there exists a € [-M, M] and a sequence {u,} C A such that

= inf = 1li n)-

¢ = )= )
Since A is a closed subspace of the Hilbert space H 1/2(2) there exists a subsequence
{u,,} C {w,} which converges weakly to some function w € A. From Lemma 3.1.2 we

have
a = liminf J(u,,) > J(u), (3.15)

k—oo

which implies that a = J(u) and therefore @ solves the minimization problem (3.11). O

3.1.3 Saddle point formulation - Uzawa algorithm

In this paragraph we introduce a dual formulation equivalent to the variational formu-
lation (3.9), and hence to the minimization problem (3.11). The derived formulation
does not include the non-differentiable frictional functional j(-) and is more suitable for
implementation. The obtained problem can be solved with the Uzawa algorithm. Here
we follow ideas of [29, Chapter 4], see also [47].

Let us define the space of Lagrangian multipliers A = {o € Ly(I'¢) : |o| < 1 a.e. on '}
and the bilinear functional

q(o,w) = Fow,ds.
T'e

Let us consider the following mixed formulation: Find u € IC, 0, € A :

<Su>w - u)Z + Q(Uuaw) - Q(Uuau) > L(’LU - u)> Vw € ’C>

(3.16)
outy = |uy| a.e. on I'g
and the saddle point problem: Find w € IC, 0, € A :
F(u,0) < F(u,0,) < F(w,0y), YVw e KK, Vo €A, (3.17)

with )
Fw,o) = §(Sw, w)y + ¢(o,w) — L(w).
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3 Contact between a body and a rigid obstacle

Theorem 3.1.5. Problems (3.16) and (3.17) are equivalent

Proof. Let (u,o,) solve (3.17), then for w € IC and € € (0, 1) there holds

1
0< -
€

(F(u+e(w—u),0,) — F(u,0,))

= (Su,w—u)y — L(w—u)+ [ Fo,(w —u)ds+ %(S(’w —u),w—u)y.
Te

Taking the limit ¢ — 04 we obtain the first inequality in (3.16). Further, for every
o € A there holds

0< F(u,0,) — F(u,0) = F(oy, — o)uds,
e

Choosing o := sign(u;) we obtain

F(owuy — |ug|)ds > 0.
o]

But o,us < |u| due to definition of A. This implies that o, = sign(u;) a.e. on I'¢ and
(u,0,) € IC x A solve (3.16).

Now let us assume that (u,0,) € IC x A solve (3.16). Basic calculations show that for
any w € I there holds

F(w,o,) — %(S(w —u),w—u)y > F(u,o,)

and the right inequality in (3.17) follows.

Taking into account that for arbitrary o € A there holds (o0 — o,)u; = ouy — |uy| < 0,

we obtain
F(o —oy)uds < 0.
e
Hence,
F(u,0) = F(u,0,)+ | F(o—o,)wds < F(u,o,),
e}
and herewith the left inequality in (3.17) follows. O

In order to prove equivalence between the minimization problem (3.11) and the mixed
problem (3.16) we introduce a sequence of their regularized versions. First, we employ
the regularization W(x) of the absolute value function and its derivative pg(x) := ¥/ (x)

o] = . lal > L3>}
L = 2k’ ’ k’ 3.18
1) {— 2] < ke, o<t 19

I 3=
AS)
B
~—~
&
S~—
I
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

For an integer k let us introduce a parameter dependent family of regularized minimiza-
tion problem as follows: Find u; € IC :

with the family of functionals
1 ‘ .
Fi(w) = 5 (Sw,w) + ji(w) — L(w), jr(w) = F Uy (wy)ds,
|Ne]

and a parameter dependent family of regularized variational inequalities: Find u;, € IC :

(Sup,w—ur) + | Fop((up)s)(wy — (ug)y)ds > L(w — uy), Ywe K. (3.20)

Te
Theorem 3.1.6. Problems (3.19) and (3.20) are equivalent for some positive k € N.
Moreover, they have unique solutions.

Proof. First, we show equivalence between (3.19) and (3.20). Let us assume that
uy € IC solves (3.19), i.e. for some € € (0, 1) there holds
F(up, +e(w —uy)) > Fr(ug),  Vw e K.

This leads to the following inequality (cf. Theorem 3.1.5)

0< E(Fk(uk +e(w —ug)) — Fr(ug))

= (Sup,w—up)y + | F Vo ((un)o + ey — (ux)s)) — ¥ ((ur)o)

™

ds — L(w — uy)
£
+ 5 <S(’U) — uk),w — uk>2 .
Taking the limit ¢ — 04 leads to the formulation (3.20). Note, that the function ¥ is
differentiable with ¥, = ¢y, therefore

U ((u)e + e(wi = (ug)i)) — W ((ur)r)

c — or((ur)e) (wy — (ur)e), e—0+.

Now, let u; be a solution of (3.20). After some calculation we obtain for arbitrary
welk
1

Fr(w) — 3 (S(w —up), w — up)y,

— [ F(U(we) = ¥((w)e) = &' ((un)e) (wr — (ur)e)) = Fr(ur).

el

The function ¥, is convex and is piecewise quadratic, then

w(we) — ¥((ur)e) = ¥ ((ur)e) (we = (ur)e) > 0.

The formulation (3.19) follows since (S-,-)s. is positive definite. The functional Fj, is
strictly convex, Gateaux differentiable and coercive on IC. Applying arguments similar
to that in Section 3.1.2 we obtain that problem (3.19), and herewith problem (3.20),
have unique solutions. O
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3 Contact between a body and a rigid obstacle

Lemma 3.1.3. Let {uy}ren be the family of solutions of the reqularized problem (3.19)
and w solve the variational inequality (3.9). Assume that the given friction function
F € Li(T¢). Then

lim u, = u.

k—oo
Proof. The variational inequality provides for Vw € IC
(Su,w —u)y + j(w) — j(u) > L(w — u). (3.21)

The minimization problem can be rewritten as follows (cf. Theorem 3.1.3)

(Suk, w —ug)s + jr(w) — jr(ug) > L(w — uy), Vw e K. (3.22)
Substituting w = u, and w = w in (3.21), (3.22) respectively and adding them we
obtain

(S(up —w), wp — w)s < jr(u) — j(uw) + jlur) — je(ur). (3.23)
From definition of ¥, it follows that 0 < |£] — U, (€) < (2k)7!, therefore
4 ‘ 1
0 < je(w) —j(w) < %HfHLl(rc), Vw € K.

This together with (3.23) gives
1
(S(up, —u),up —u)s < EHfllLl(FC) — 0, k — oo. (3.24)

The bilinear form (S-, -}y, is positive definite, hence uy — uw when k — oc. O

Theorem 3.1.7. Problems (3.9) and (3.16) are equivalent.

Proof. Let (u,0,) € IC x A solve (3.16). Noting that
/ ouFuwds < Flw,|ds, / ouFuds = Fluy|ds
T'c T'c T'e e
we obtain the variational inequality (3.9) directly from the first line in (3.16).
Let us assume now that u € IC is a solution of (3.9). Due to Theorem 3.1.6 and Lemma

3.1.3, uw can be represented as a limit limy ., ux = u, where {u;} is a sequence of
solutions of the problem (3.20), i.e.

(Sup, w — ug)y + A Foor((ur)e)(wy — (ug))ds > L(w — uy,), Vw € IC, (3.25)

where ¢y, defined by (3.18), hence @i ((ug):) € A, Vk. The convex set A is weakly compact
in Ly(I'¢), cf. [29, Chapter 4, Theorem 2.2|, therefore there exists a subsequence {p,, },
converging weakly to some o € A. Taking the limit & — oo in (3.25) we obtain

(Su,w — u)y +/ oF(wy — ug)ds > L(w — u), (3.26)

Te
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3.1 Boundary weak formulations for contact problems with Tresca’s law of friction

which is the first line in (3.16). Now, set w = 0,2u € K in (3.9) and in (3.26), which
yields

(Su,u)s + [ Fluds = L(u). (3.27)

o]

(Su,u)s + | Fouds = L(u), (3.28)

Fe

respectively. Subtracting (3.28) and (3.27) provides

F(|lug] — our)ds = 0. (3.29)

Te

Since o € A, there holds |o] < 1 a.e. on I'¢, and therefore |us| — ou; > 0 a.e. on I'c.
This together with (3.29) leads to

|ug| = ouy ae. on I'g, (3.30)

which is the second line in (3.16). O

The formulation (3.16) gives a natural algorithm for solving the contact problem with
Tresca’s friction law.

Algorithm 3.1. (Uzawa algorithm)

1. Choose o° € A.
2. Form=0,1,2,... determine u" € IC, such that
Fu",0") < F(w,0") Yw €K,

i.e. find u™ € IC such that

(Su", w—u") > L(w—u") — Fo'(w—u")ds Yw e K. (3.31)
o]

3. Set
o™ = Py(o™ + pFul),

where p > 0 is a sufficiently small parameter that will be specified later on, and Py
denotes the projection operator from Ly(T'c) to A

Py(p)(x) = sup{—1,inf{1, u(x)}}, xele, Yue Lyleo).

4. Setn :=n+ 1. Repeat with 2. until the convergence criterion is satisfied.
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3 Contact between a body and a rigid obstacle

Theorem 3.1.8. Let F € Loo(I'c) and0 < p < QCSH‘FHEi(Fc)’ where cg 1s the ellipticity
constant of the Steklov-Poincaré operator S. Then the Uzawa algorithm converges for

arbitrary starting function o € A, i.e. u™ — w strongly in fIl/z(E).

Proof. Let (u,o0,) € IC X A be the solution of problem (3.16). Then o,u; = || a.e. on
['c and hence 62 =1 a.e. on I'c. That gives

Pr(oy + pFuy) = Pr(oy(1 4 pFluy|)) = Paoy) = oy, (3.32)

since pF|uy| > 0. The projection operator Py is a contraction, therefore

n+1

[0 = Oulltarey < o™ = 0wt pF(uf = u) Ly

< lo" = oullLywe) + 20 A F(o" = ou)(uff —u)ds
C

+P2H}—H%m(rc)||%1 _utH%Q(FC)‘

The first line in (3.16) combined with (3.31) provides with e" := u — u"

— Floy—o")(ur —uy)ds > (Se", e")y . (3.33)

T'e

Since the Steklov-Poincaré operator S is elliptic on H 1/2(2) (cf. (1.10)), there exists a
constant cg > 0 such that

s ey =l — el > 5 (S €.
Hence

0" = 0l we) ~ 10 = olEurey 2 P2 p5 I ) (S ey (3:34)
fo<p< QCSH‘FHZi(Fc) we have (2 — pc§1||~7:”%oo(1“c)) > 0, which gives

n+1

||Un—0||%2(rc) > ||o —U||%2(rc)

for €™ # 0. The sequence ||o™ — o||? converges, because it is monotone decreasing
La(l'c) ’
and has a lower bound, i.e.

lim ([lo” — o7,y — 0"

o - U||%2(rc)) =0

and therefore lim,, ., (Se™, "), = 0. Using again ellipticity of S on H 1/2(2) we obtain
that u" — wu strongly in ﬂ1/2(2). O

The constructed Uzawa algorithm (Algorithm 3.1) will be also employed in Section 4.3,
where we construct a solution algorithm for hp-mortar BEM for two-body frictional
contact problems.
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3.2 Penalty hp-BEM for one-body contact problem

3.2 Penalty hp-BEM for one-body contact problem

In this section we obtain a priori error estimates for the hp-version of penalty bound-
ary element method, used for solving one-body contact problems in elasticity. The error
analysis is divided into two parts. At first we consider the error caused by the approxima-
tion of the variational inequality (or Lagrange multiplier) formulation with the penalty
formulation. Under additional regularity assumptions we derive a linear convergence
rate with respect to the penalty parameter. Then we consider the discretization error
between the solution of the penalty formulation and its Galerkin approximation. We
show two types of the best approximation property, which are similar to Cea’s lemma,
but here the estimate depends on the penalty parameter. Finally, an a priori estimate
for the error between the exact solution of the variational inequality and the boundary
element Galerkin solution of the penalty problem is obtained. For the displacement
uec H 3/2(Fc U T'y) solving the variational inequality formulation, and for the corre-
sponding boundary traction Tu € HY 2(I") we obtain a quasioptimal convergence rate
O((h/p)'=¢) for the penalty parameter ¢ > (h/p)'=¢. Here ¢ > 0 is some fixed small
parameter. We finish the section with a numerical example for the h-version of BEM,
which provides the linear convergence rate, since € may be chosen arbitrary close to zero.

3.2.1 Variational inequality, Lagrange multiplier, and penalty
formulation

First, recall the classical formulation of the one-body contact problem described in the
introduction to Chapter 3, where in addition no friction occurs between the elastic body
and the rigid obstacle (o, = 0, or equivalently F = 0). Let the domain €2, boundary
parts I'p, 'y, I'c, ¥ and the gap function g be defined as in the introduction to Chapter
3. Then the classical formulation of the one-body frictionless contact problem is given
as follows (cf. (3.1))

div o(u) =0 in €,
R 3.35
olu) - n=t on 'y, (3:35)
o0n <0, u,—9<0, ou(u,—g)=0, o,=0, on I'c.

Further, we introduce the functional spaces and sets required for the forthcoming analysis

v.=H">®), (3.36)

W .= H (%), (3.37)

K={veV:(v,—g) <0onTl¢}, (3.38)

A= {A e HY*(T¢): Yoe HY*(I¢), v <0, / \vds > 0} : (3.39)
Te
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3 Contact between a body and a rigid obstacle

We introduce the single layer potential V', the double layer potential K, the adjoint
double layer potential K’ and the the hypersingular integral operator W as in (1.4) and
recall the definition Steklov-Poincaré operator S (1.6)

S=W+(K'+1/2)V"1(K +1/2). (3.40)

As before, we denote the duality pairing over some (closed or unclosed) curve v by
(-, '>'y’ Let the linear functional L(v) be defined by L(v) := (¢, ’U>FN. As it was shown
in Section 3.1, the classical problem (3.35) can be reformulated in a weak form as a
variational inequality, cf. (3.9): Find u € K :

(Su,v — 'u,>Z > L(v —u) Yo € KK, (3.41)
or equivalently as a minimization problem, cf. (3.11): Find u € K :
J(v) > J(u), Yo € K. (3.42)

with J(v) = %<S'v,'v>2 — L(v). In both formulations (3.41) and (3.42) the set of ad-
missible solutions IC C V includes the inequality constraint, which is often undesirable.
Sometimes it may be more convenient to remove the constraint from the displacement by
introducing an auxiliary variable A\ € A. Now the solution is sought in the whole space
u € V. The problem can be reformulated in a saddle point form: Find u € V, X € A:

L(u,p) < L(u,\) < L(v,\) Vo e V,\ €A, (3.43)

with L(v, ) = %<Sv, 'u>2 — L(v) — <,u, Uy — g>Fc, which is equivalent to the following
dual variational formulation with Lagrange multiplier: Find uw € YV, A € A :

<Su,’u>2 — <)\’U">Fc = L(v) Yv eV,

=\ Uy — g > 0 Yu € A. (344)
T'e

The existence and uniqueness of the solution of the variational inequality, and therefore
of the solution of (3.43) and (3.44) is guaranteed by results of Section 3.1. Note that the
inequality constraint is completely removed from the set of admissible displacements and
the equality is obtained for the variation of the displacement (first line in (3.44)). On
the other hand, the inequality constraints are associated now with the auxiliary variable
A, which has a meaning of the normal contact traction, acting from the side of the rigid
obstacle and resisting the penetration of the body through the obstacle. The inequality
constraints remain in the set of admissible contact tractions A and in the second line of
the dual variational formulation (3.44).

To remove the inequality constraints completely from the functional sets and from the
variational formulation, which makes the implementation much easier, the penalty for-
mulation is used, see e.g. [26], [72]. Here some penetration of the body through the
obstacle is allowed and the resisting contact force is defined to be proportional to the
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3.2 Penalty hp-BEM for one-body contact problem

value of penetration. The proportionality coefficient ¢ is called penalty parameter. The
penalty formulation is given as follows: Find u® € V :

(Su,v) — (pf, U">Fc = L(v) Yv eV, (3.45)
1
P ==, —9)". (3.46)

Here the penalty parameter ¢ > 0 must be chosen in advance. The positive and the
negative part of some function f € HY/?(I'¢) are defined with

W0 ey 647
fm=Af=/5/2=0

The main aim of this section is to find a relation between the penalty parameter e
and the characteristical meshsize h and polynomial degree p in the quasiuniform hp-
discretization of the problem with boundary elements, such that the optimal convergence
rate is achieved.

For simplicity of presentation we assume that both I'p and I'¢ are connected open curves.
Furthermore, we consider only the case I'p N T¢ = 0.

Remark 3.2.1. In fact, the case TpNT ¢ = 0, or equivalently the case when Iy has two
disjoint connected components, is the most general case. Indeed, for 'y = () we obtain
T = 3 and the set of admissible normal contact tractions A is not a subset of H='/2(I'¢.),
but a subset of H='/2(I'c). Therefore, do not need the inf-sup condition in the form of
(3.52). On the other hand, if we replace the space H=V/2(D'¢) with H=Y2(T'¢) in the right-
hand side of (3.52), we obtain a condition, which holds trivially, since (H='/*(T¢)) =
H'(I'¢) = HY2(X). Moreover, the case of connected 'y can be treated by combining
the arguments for vanishing Iy with the arguments presented in this section below.

Further down, if no missunderstanding can occur, we omit the domain of integration
when writing the dual product <~, '>7-

3.2.2 Inf-sup condition

In this paragraph we prove an inf-sup condition, which is intensively used in the forth-
coming a priori error estimation. The main result is given by the following abstract
theorem.

Theorem 3.2.1. Let I' be a closed Lipschitz curve with two open connected disjoint
subsets o C T,y C Ty, N7, = 0. Let also v =T\ 7y, 751 =T\ (o U7,). Then
there holds the following inf-sup condition:

(1)

Ja > 0: sup T > allpll g1 V€ H Y2 (). (3.48)
veinzinop V1 ey
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3 Contact between a body and a rigid obstacle

Moreover, the constant o > 0 depends only on @}1%|(7§1)i|, where (v§)',i = 1,2 are

connected components of g, -

To prove the above theorem we need two following auxiliary lemmas.
Lemma 3.2.1. Let us adopt notations of Theorem 3.2.1 and let

Xogm = {x20: |IXllewy =1, X' € Loo(), X|5o =0 and x|, =1}.
Then for arbitrary v € HY*(T') and for arbitrary x € X041, there holds

xveHZT),  yv

’YS S ﬁ1/2(78)7
and

Ixvll gy = lIxvllmeey < Collollmeegg < Collvllmae). (3.49)

1/4
where Cyr = 21/4 <1 + ||X’||%Oo(ﬁ{51)> .
Proof. Obviously there holds ||xv||L,w) < ||v]|Ly(yz)- Further, for v € H*(I') we obtain

1/2
ol ey = ( oo+ xyas+ ||xv||%2m)

1/2
< (2 /(x’v)2 + (xv')? ds + ||Xv||i2<r>>
T
< V2 (IN IR

1/2
<V2 (1 + IIX’IIiOO(wgl)) ol ) -

1/
101 s) + 1101ty + 1011

Then the first inequality in the assertion of the lemma follows by the real interpolation
between Ly and H*'. The second inequality follows trivially by definition of the Sobolev
spaces on open curves. O

Lemma 3.2.2. Under notations of Theorem 3.2.1 the following statement holds. For all
¢ € HY?(v,) there exists an extension fs € HY?(v3) of ¢ onto g, such that ful,, = ¢
and

Jor >0 M| 121) 2 04||f¢‘|ﬁ1/2(~,5)7 (3.50)

where the constant o > 0 depends only on I{lil% |(a1)t], where (v3,)" are connected com-

ponents of v, .
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3.2 Penalty hp-BEM for one-body contact problem

Proof. Using the definition of the H'/?-norm on open curve, and Lemma 3.2.1 we
obtain for arbitrary fixed x € X, -,

oz = mE  Alnsaey  vhy = @)

_1 . ; ) B
ZCX, vehlr{l/fZ(r) {HXUHH”Q(VS) DXy, = Cb}

>0gt it I fllgeggy : flu =0}
()

feHl/Q

The last inequality holds due to inclusion

{xvlg o€ HYAT)} C HY2 () Vv € Xy

Further, there exists f,; € {w e HY?(y) :w|y, = (b} such that

Wollgeey <2 _int (Wl Sl = 6

and therefore
B /27,y 2 (QCx')_1||f¢Hﬁ1/2(»yg)v

The largest constant « in the above estimate is given by

-1 ~1/4
- ; __ o9—5/4 : 112
Q= (2 inf Cx’) =2 (1 + Xeglf 15% ||Loo(751)) .

XEXWO,“ﬂ Y071

The infimum is obviously achieved for continuous, piecewise linear x. Therefore

—1/4
=274 (1 + rg%r% (arctan |(7§1)2|_1)2) : (3.51)
U

Proof. (of Theorem 3.2.1)

The statement of Theorem 3.2.1 follows by definition of Sobolev norm via duality pairing
Il wp VO
F—1/2 =
O semngovoy 1l

1, f
<ot sup %
SEH/2(~y1)\ {0} Hfd>HﬁU2(’YS)

<ot sup M

veHY2(y)\{0} HU||1”{1/2(«,5)

where the constant « is defined in (3.51). The last inequality holds, since f,; € HY 2(v)
for arbitrary ¢ € H'/?(+;) by construction. O
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3 Contact between a body and a rigid obstacle

Corollary 3.2.1. Theorem 3.2.1 trivially yields for v = I'p,v1 = I'e,75 = I';v and
v = X the following result

Ja > 0: sup

veir2eon oy 1P a2

> allullgoragey,  YnEHA(T),  (352)

where the constant o > O depends only on min ||, where T'y,i = 1,2 are connected

components of I'y.

3.2.3 Consistency error in the penalty approximation

First, we prove some auxiliary results required in the proof of Theorem 3.2.2.

Lemma 3.2.3. Let u € V, A € A solve the Lagrange multiplier formulation (3.44), let
u® €V solve the penalty formulation (3.45) and let pt, be defined with (3.46). Then
there holds

<)\—p2,un—g> <0.

Proof. Inserting p=0€ A, u =2\ € A in the second equation in (3.44) gives

N, —¢g)=>0
<<>\,un—g>>20 }:> (X un —g) =0.

Equivalence of the Lagrange multiplier formulation (3.44) and the variational inequality
(3.41) yields w € K and therefore (u,, — g)* = 0. Thus

<)\ — P, Uy — g> = <—pi>un - 9>
= (20~ )" (o — 9)7) — (£, — 9" — 9)7)
1

= —<g(u2 — g)+, (wn — g)_> <0,

since (u, —g)* > 0 and (u, —g)~ > 0 on I'¢ provided by (3.47). O

Lemma 3.2.4. Let u € V, A € A solve the Lagrange multiplier formulation (3.44), let
u® € VY solve the penalty formulation (3.45) and let p5, be defined with (3.46). Then
there holds

@ = A (u;, —g)7) > 0.

Proof. For every function f € H'?(I'c) there holds (f*, f~) = 0, because supp f* N
suppf~ has the Lebesgue measure zero. This yields <p;, (us — g)_> = 0, and therefore

(05—, (w5, —9) )y = (i, —(u5,—g)") =0 VYueA.

The last inequality follows from the definition of A (3.39). O
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3.2 Penalty hp-BEM for one-body contact problem

Lemma 3.2.5. Let u € V, X\ € A solve the Lagrange multiplier formulation (3.44), let
u® € V solve the penalty formulation (3.45) and let pg, be defined with (3.46). Then

there holds
Cs

1A =palla-vewe) < Ml —ull e

()’
where C's is the continuity constant of the Steklov-Poincaré operator S and the constant
a > 0 comes from the inf-sup condition (3.52).

Proof. Inf-sup condition (3.52) combined with penalty formulation (3.44) and La-
grange multiplier formulation (3.45) gives

A_pim/un
af A =pullg-1e Ssup< e
MR = ey ]l e

(Su,v),, — L(v) — (Su,v)_ + L(v)

= sup
vey ||’v||ﬁ1/2(2)
S(lu—u®),v
:Sup< ( ) >E SCSHU—’U,EHI:IUQ(E).
veY ||’v||f11/2(2)

O
Now we are in the position to derive an upper bound for the error, caused by penalization.

Theorem 3.2.2. Let u € V, X\ € A solve the Lagrange multiplier formulation (3.44),
let u® € 'V solve the penalty formulation (3.45) and let pS, be defined with (3.46). We
assume that X\ € H*>(I'¢). Then there holds

Cs

= oy < A ey, (359
: c

A= Billavacrer < = 5lIeM e (35

where C's and cg are continuity and ellipticity constants of S respectively, and the con-
stant o > 0 comes from the inf-sup condition (3.52).

Proof. According to (3.44), (3.45) we obtain
(Su,v) — (A\,v,) =L(v) VveV,

(Su,v) — (p5,vn) = L(v) Yv eV,

Subtracting these variational equations and choosing v := u — u® € YV we obtain

<S(u—u5),u—u€> = <)\—pfb,un—ufl>
= <>‘_p€mun_g>+<pfz_>‘7ui_g>
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3 Contact between a body and a rigid obstacle

Lemma 3.2.3 provides (A — p5, u, — g) < 0, Lemma 3.2.4 gives (p5, — A, (u5, —g)~) > 0.
Thus

(S(u—u),u—u) < (p, — \u, —g)
< {ph = A (u;, = 9)h).
Recalling the definition (3.46) we rewrite (p5 — X, (u5, — g)™) = (p5, — A, —epf ). Further,
since (p5 — A, e(p, — A)) > 0 there holds
(S(u—u),u—u) < (p;, — A\, —p},)
< (ph = A —epl) + (5 — A el — N))
= <)\ - piu 6)‘>
<|[A-— pillH*1/2(Fc)||5)‘||H1/2(Fc)
C
< 5 | o M )

where we applied Lemma 3.2.5 in the last inequality. Ellipticity of the Steklov-Poincaré
operator (1.10) provides

csllu — uH~1/2 _<Su u),u—u’)

and therefore
. o
=l s ) < e v

We apply Lemma 3.2.5 again and get

Cs C?
A= Billavarey € 2l = ¥l g gy <~ M v

3.2.4 A priori error analysis
Discretization

In order to discretize the problem, we decompose the boundary I' into disjoint straight
line segments I € 75, with diameters not exceeding h. We allow only conforming meshes
Ty, i.e. the points [p N Ty, [p N, [y NT¢, are nodes of 7;,. Let P,,(I) be the space
of polynomials on a segment I, with degree less or equal p;. We define the boundary
element spaces on I' as follows

Vip={UeV: VI€T, UcIP, (I},
Wiy ={U eW: VI€T, Uc[P,(I'},
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3.2 Penalty hp-BEM for one-body contact problem

where V and W are given by (3.36) and (3.37) respectively. We assume that the meshes
7T, and the polynomial degree distributions in vh,, are quasiuniform and let h and p be
the characteristic mesh size and polynomial degree respectively.

In order to define discrete boundary integral operators, we introduce canonical embed-
dings jnp : Vip — HY*(T), inp : Wiy — H (D), and their duals Jhps Thp With Tespect
to the dual pairing <~, ~>, cf. (1.14). Now, we define discrete boundary integral operators

as follows
Vhp = iszihpa th = iszjhpa (3 55)
K;Lp = j;;pK/ihpa Whp = j;klijhp’
S = W (K + 1/2)iny Vi i, (K +1/2), (3.56)

E:=8—8=(K+1/2)(V"' =iV, ti; ) (K +1/2).

We introduce discrete spaces Yy, and W, associated with Vj, and W, respectively,
and given by

Vip = {jhpuhp P Upp € vh:n} , Wiy = {ihquhp L@y € Whp} .

For clarity of presentation we will distinguish between spaces Vj,,, Wi, and Yy, Wiy,
respectively. This will be convenient e.g. in the proof of Lemma 3.2.7. Now, we introduce
the discrete penalty formulation as follows: For given ¢ > 0 find U*® € Vy,, :

(SU*,v) — (PZu,) = L(v)  Yv € Vy, (3.57)
where .
Pr=—(U;=9)" (3.58)

Furthermore, for u® € V and U® € V;,, we define the traction-like functions
Y=V (K+1/2)u,
U=V YK +1/2)U°, (3.59)
@ = i,V b (K + 1/2)U°.

Lemma 3.2.6. (¢f. [15, Proposition 5.1]) Let u® € V, U° € V;, and traction-like
functions defined by (3.59). Then the following identity holds

s — US| 3 + |[op — &|} = (Su® — SU*,w° — U*) +{(V(&* — &),4p — &),

where

1/2

l|lu® —U®||lw := <I/V(u‘E —U®),u® — U€> ,
1/2

[ — Pl = (V(ep— @), ¢p— &))"
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3 Contact between a body and a rigid obstacle

Proof. The definition of the Steklov-Poincaré operator (3.40) yields
(S(u* —U%),w —U") =((W+ (K +1/2)V 1K +1/2))(u* — U°),u* — U")
= (W - U"),uv —U")
+ (K +1/2) (v = U?),V (K +1/2)(u* — U?))
= |lw* = U}y + V(e — &), 9 — &),
Further, (3.56) gives
(S = S)U* uf —U") = (K" + 1/2)(V — i, Vi, linp ) (K + 1/2)U%  uf — UF)
= < — thpVip zhp)(K +1/2)U°, (K +1/2)(u* — U*))
= (0" — O, V(¢p— &)
=(V(&" — &), ¢ — &),
Combining the upper identities we get
(Suf — SU*,u* —U®) = (S(u* — U?),w* — U*) + ((S — S)U*,w* — U?)
= llu” = Ulfy + (V3 — &), 9 — &)
+{(V(&" — W), — &)
= |l = Ul + (V(¢ — @),9 — &)
= |l = Uiy + (V¢ = #),9 - &)
+{V(yp— w), & — &)
= |lu* = U°[[§y + |9 — @[ = (V(¥" — @), ¢ — &),
or equivalently

luf — U®|[% + |[op — &|} = (Su — SU*,w® —U?) +(V(&* — &), — &).
Lemma 3.2.7. For ¥* W defined in (3.59) there holds
(V(P*— ), 8)=0, VPecW,,,.

Proof. Using definitions (3.59), (3.55) for @ = in,ny,, My, € Wiy we obtain
(Vw*, &) = (K +1/2)U°, &) = (i} (K + 1/2)U", n;,,,)

- <Vh1” hp th(K + 1/2) nhp>
== <inVithhp th(K _'_ 1/2) nhp>

= (i;, V¥, = (V& &)

Similarly to [16] we prove the following lemma.
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3.2 Penalty hp-BEM for one-body contact problem

Lemma 3.2.8. (c¢f. [16, Lemma 4.1]) For p5, and P given by (3.46), (3.58) respectively
the following inequality holds

1205~ P < — (o5 — P — US).

— n-'n

Proof. To prove the lemma we use the simple observation, that

(w5, = 9)" = (Uz = 9) ")y, = Uy) = (a™ = bT)(a = b), (3.60)
where a := uS — g,b:= UZ — g. Recalling (3.47) we obtain
(a® =b")(a—b) = |a* = b"* = (" = b")(a” —b7)
=la" = b >+ (atb” +a b")
> |at = 0F)? = |(ug, — 9)" = (U; = 9)" P,

n

since ata™ =0=0"0" and a™,a™,b",b~ > 0. That yields
—(ph, — Pryuy, = Us) = ((uy, —9)" = (Us = 9)")(uy, = Uy) ds

1
z/’—m@—w+—aﬁ—mﬂﬁw
re €

=Aem—ﬁﬁkﬂWWm—ﬁmww
C

A priori estimate of the penalty discretization error

Theorem 3.2.3. Let u® solve the continuous penalty problem (3.45), let U® solve the
discrete penalty problem (3.57). Let ¢, ¥ be defined by (3.59). Then there exists C' > 0
independent of h,p, e such that Vw € Vp,, V& € Wy, there holds

[ = U gz gy + 11 = @l vz + 1205 = Pl st
< O — | gz, + 11— Bllg-rragey + [l = 1) ).

Proof. We choose v € Vp, C V in the variational penalty formulation (3.45) and
subtract (3.45) from the discrete penalty formulation (3.57). The obtained result is
similar to the Galerkin orthogonality property and is given by

(Su® — SU*,v) — (p, — PE,v,) =0, Yo €V, (3.61)
We choose v := U® —w € Vp,. Then

(Su® — SU°, U —w) — (p5, — PS,US —w,) =0,  Vw € Vy,
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3 Contact between a body and a rigid obstacle

Therefore

(Su® — SU®, w* — U*) — (p, — P5,ui, — US)

n-'n

= (Suf — SU®, w* — U®) — (p, — P%,ui, — US)

+(Suf — SU*,U* — w) — (pf, — P5,US — w,)
= (Su® — SU?, uf — w) — (P, — P5u;, — wy).

r N

Thus, according to Lemma 3.2.6 we obtain

|lu® = U*|[% + || — 5 — (o5, — Pryu;, — Uy) (3.62)
(5w~ SUR U — {fy— Py~ U) + (V9" — %), — )
= <Su5—5’U€,u5—w> —(p5, = PLoul, —wy,) +{(V (¥ — &), — &)
= A+B+C.

For the term A there holds

A S ||‘SY'U.;€ - SUallH—1/2(F)||u€ - wllHI/Q(E)

With the following identity

A

Sut — SU° = S(u — U%) + BU* = S(u® — U%) + B(U* —w’) + Bu

we estimate

A< ((os + Cp)llu = U e g, + ||Eua||H,1/2(E)) [u” =l gy, (3.63)
< (Cs+ Cp)l[u = U e g Il = ]| gz (3.64)
+ Col [t — B v |10 = wll gy ¥ B E Wi, (3.65)

where Lemma 1.4.2 yields the last inequality. For the term B we have
B = (p;, = Prw, —u;) < |25, = Pl oo |le™* (wn — w3l 1wy (3.66)
Finally for the term C' we employ the orthogonality property from Lemma 3.2.7 and get

C=(V(¥" - W), ¢— D)
= V(" =), b — @)+ (V(p— ), — &)
< (K +1/2)(U° =), — D) + Cvllth — Ol gorro iy |8 — B 12
< (Cx + 12U = | grrz g |19 = @l g-172r
+ vl = CllgarnmllY — Pllgr2py V8 EWhy,

As shown in Lemma 3.2.8, the contact term in the left hand side of (3.62) satisfies

1205, = Pl 1owey < —(p — Py, — Us).
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3.2 Penalty hp-BEM for one-body contact problem

Gathering the above results we obtain from (3.62) the following estimate

lu® = U°[[§y + |l — @15 + 11205, — P10
< (Cs + Cp)llws = U ey [0 = 0] 2 g,

+ COH’J’ - ¢||H*1/2(F)||u - ’w||ﬁ1/2(2)

11205, = Pl a2 (w0 = E) laagrey
(O + DI — | o gy 16— Bl

+ CVH"J) - W“H*l/?(r)”d’ - ¢||H*1/2(F)'

The standard arguments give

cr|us _U€||~1/2 )+C2||77/)_ W||2 H-1/2(I) —|—||51/2(p2—P€)||%2 (To)

el — B2 (3.67)

§03||u _wllﬁl/Q +||8_1/2<wn_u )||L2 Te)

( H- 1/2

where the constants

c1 = 2cw — 61 — b,
cy = 2¢cy — O
cs = (Cs + Cp)? /01 + Cy
= Cy+ (Cx +1/2)%/0, + C305

are independent of h, p, e and ¢y, ¢y are the ellipticity constants of V, W. The constants
1, Co are positive if 61,05, 03 > 0 are small enough. O

Assume that u® € ﬁ3/2(2) and ¢ € HY*(I'). According to [10], [64], there exists a
constant C' > 0, such that there hold the following approximation properties

h g
wlelghp ||u — ’LUH - 1/2( < C’;Hu ||ﬁ3/2(2), (368)
. h
81— Bl < Col (3.69)
1/2 n\*? 1/2
0 = il <€ (2) e il 370

Here we define the Sobolev space H*? on the part of the boundary of the polygonal
domain Q according to [22].

We recall the equivalent nonsymmetric definition of the Steklov-Poincaré operator (1.8)

T=VK+1/2). (3.71)

From (3.59) we have ¢ = Tu®".

The approximation properties (3.68)—(3.70) combined with Theorem 3.2.3 yield the fol-
lowing a priori error estimate for the solution of the penalty formulation (3.45).
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3 Contact between a body and a rigid obstacle

Theorem 3.2.4. Let u® € ﬂg/z(Z) be a solution of (3.45) and Tus € HY*(T). Let
U® € Vy, be a solution of (3.57). Then there exists a constant C > 0 independent of
h,p,e, such that

o = U2+ 1T = @Iy oy + 20 = PR r

h h AN
<O Bl + oI gy + (5 ) e il )

A priori error estimate of the total error

In order to obtain an a priori error estimate for the total error between the solutions of
problems (3.45) and (3.57) in terms of the solution of the variational inequality (3.45),
we need to combine the results of Theorem 3.2.2 and Theorem 3.2.3. Unfortunately, lack
of stability estimates of type (3.53) for the penalized problem in the Ls-norm yields to
the reduced convergence rate. We prove the modified version of Theorem 3.2.3, where
the Lo-term on the right hand side of the estimate is absorbed by the H/?-term. This
becomes possible under additional conditions on penalty parameter’s growth leading to
the quasioptimal rate of convergence for the total error.

The following lemma is important for the proof of Theorem 3.2.5.

Lemma 3.2.9. There exists an operator Gy, : fIl/2(Z) — Vjp, which is stable in the
Hl/z-norm and has the quasitoptimal approzimation properties in the Lo-norm, i.e. there

exists a constant C, independent of h and p such that for all u € ﬁl/z(z) there holds

Hth’uHﬁuz %) S C’H’LL||E[1/2(Z (372)

( )’

B (1-9)/2
=Gyl <€ (5] e, 373)

with arbitrary small € € (0;1/2).

Proof. Let W be the hypersingular integral operator associated with the Lamé
operator. We consider a weak formulation for the one-dimensional hypersingular integral
equation, which consists of finding u € H 1/2(2) such that for given f € H™/2(X) there
holds

(Wu,v) = (f,v), Yo € E[l/z(Z). (3.74)

The Galerkin formulation corresponding to (3.74) is given as follows:
Find U € Vy,, :

<WU,’U> = <f,'u>, Vv € V. (3.75)
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3.2 Penalty hp-BEM for one-body contact problem

It is well known that both problems have unique solutions for arbitrary f € H Y/ 2(%)
(see e.g. [69]). Now, we define the operator Gy, as the Galerkin projection, related to
(3.74), (3.75), i.e.

Gryu == U. (3.76)

Stability of the Galerkin projection Gy, follows directly from continuity (Lemma 1.2.1)
and ellipticity (Lemma 1.2.3) of the hypersingular integral operator on the space H'/%(%)
(see also [61],[69])

1 (Wu,u) 1 (Wu,U) _ Cw

aHUHIﬁIl/z(E) B aHUHf{l/Q(E) - w

Grpul| g1/ < [l 1725
Here ¢y and Cy stand for ellipticity and continuity constants of W. In order to prove
the approximation property, we apply the Aubin-Nitsche type duality arguments [64],
[23]. There holds

u— U7 Qp
l[u —Ul|Lyx) = sup g (3.77)
perongo [Pl
Further, we introduce an auxiliary problem: For ¢ € Ly(X) find ¢ € H 1/2(2), such

that
We = 1.
Using Galerkin orthogonality and continuity of W we obtain for arbitrary @ € V,

(u—U,¢)=(u—-U,W¢)=(W(u-U),e)
— (Wu-U),¢ - &) (3.78)
< Cwllu —Ull gz gl — Pl g1y,

Stability of Gy, (3.72) provides

[|lu — U||ﬁ1/2(2) < ||u||ﬁ1/2(2) + HUHI:IUQ(Z) < 2||UHI:11/2(E (3.79)

)
According to Wendland and Stephan [69] the hypersingular integral operator is a bijec-
tive mapping

W HP(R) - BV (D)

for |s| < 1/2. This provides for @ € Ly(X) that ¢ = W—'ep € H' (X)) for arbitrary
small € > 0. Following [10] we obtain for some fixed € € (0;1/4)

h 1/2—e h 1/2—¢
1o Bl < (5) ol = (5) Il 650

dc

Furthermore, since W is continuous for |s| < 1/2, the inverse mapping theorem provides
that the inverse operator W' is continuous for |s| < 1/2. It means that

16115y = W%l <) < Cllll ey < Cllblsy.
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3 Contact between a body and a rigid obstacle

which together with (3.77)—(3.80) gives (3.73). O

The following theorem is a modification of Theorem 3.2.3 avoiding the Lo-term on the
left-hand side of the estimate.

Theorem 3.2.5. Let u® solve the variational penalty problem (3.45), let U® solve the
discrete penalty problem (3.57). Let 4, W be defined by (3.59). Assume that 3C >
0:¢e > C(h/p)'=c for some fizred ¢ € (0;1/2). Then there exists a constant C' > 0
independent of h,p, e such that Vw € Vp,, V& € Wy, there holds

[ = T gy + 110 = @lgrosragey + 11205 = Pl ey
< O~ wll sz gy + 0 — Bl gz,

Proof. Using similar arguments as in Theorem 3.2.2 we estimate the term B now by
B = (p, — Prown —ug) < |Ipf = Pill g2 | [we — il mee)-
Further following the proof we obtain instead of (3.67)

crllu = U + 2l = P

)
2|20 = P2y = OullEh = Pl
2 2 2
< ol = wl 2o o)+ allth = By + 10l —

< (e b 100 = I+ cillt = 12 g,

for some suitable 4 > 0. We only need to show that the negative term on the left hand
side can be controlled by the positive terms.

Let G, be the projection operator defined in Lemma 3.2.9. Then, using inf-sup condition
(3.52) we get

ps — PS v
ollgh— Pillg gy < sup B Tmtu)

veH (%) HUHfII/Q(E)
¢ — P Gy, c — P v, — Grpuy
_ Sup <pn n hp > + <p hp >
el (3 HUHI:Il/z(E) HUHI:Il/z(E)

The Galerkin orthogonality property (3.61) yields for the first term (cf. (3.63))

<p; - Prfv thvn> - <SuE - gUE, th’U>

||UHI:11/2(Z) ||’vHIiII/2(E)

‘ ‘th’v| |I:11/2(Z)

||UHI:11/2(Z)

< |[Sw - gU&HH*W(Z)

S C||Su€ - gUEHHfl/2(E)
< C(Cs + Cp)l[u” = Ul e gy + CCollt — Bl [ y-s/2z) VB € W,
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3.2 Penalty hp-BEM for one-body contact problem
since G, is stable with respect to the H'/>—norm due to (3.72). The approximation
property (3.73) yields for the second term

P — Py, vn — Gy
< ) < lph = Pillzawe)

||v||ﬁ1/22 ||v||f11/22
) )

B\ (=672
SOQJ 19— Plloaer.

It is only left to show that one can choose a constant 64 > 0 such that

h 1—e 1
1P, = POl 7ore) — O <5) 105, = PillZowe) = 511207 = PllLyre)-

[[v — Grpv| Lo (re)

According to the assumption on ¢ there exists a constant C' > 0 such that ¢ > C/(h/p)'~,
therefore the assertion follows with 6, = C'/2. O

Now we are able to show the optimal rate of convergence of the total error.

Theorem 3.2.6. Let u € VﬂI;IS/z(E), A€ ANHY2(T¢) be a solution of (3.44) and let
Tu € HY*(T), where T is defined by (3.71). Let U € Vy,, solve (3.57). Assume that
3C > 0:e > C(h/p)'=¢ for some fizred € € (0;1/2). Then there exists a constant C' > 0
independent of h,p,e such that

_ h h
||u -U ||I:.I1/2(E) S C (5”11/”1:13/2(2) + (6 + 5) HTUHH1/2(F)> . (381)

Proof. Theorem 3.2.5, the triangle inequality and (3.71) yield
= U, < Ol = wl gy + Il = @)
< C(H’U, - ue”fIl/2(E) + ||u - waIlm(E)
+lp — V_l(K + 1/2)U||H*1/2(r) +[|Tu — ¢||H*1/2(r))~

The approximation properties of Vp,,, Wh,, (3.68)—(3.70) provide

g

h
o = Oz,

: h
4561%@ 1 Tu — D[] g2y < C;HTUHHUZ(F)‘
Therefore continuity of V=1 (K +1/2) : HY*(I') — H~'/*(') and Theorem 3.2.2 provide

Ju = Ul o, < Nl = ] e gy + 10 = U oy
. h h
<C ||u —Uu ||I:Il/2(2) + 5”“”1@[3/2(1“) + EHT’U,HHl/Q(F)

h h
<C (||5>\||H1/2(rc) + EHUH;IS/?(F) + EHTU’HHVQ(F)) :

The weak formulation (3.44) provides that A = T'w - n|r., which gives (3.81). O
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3 Contact between a body and a rigid obstacle
3.2.5 Numerical example

We consider a model problem of an elastic body ) contacting with a rigid straight line
obstacle. The domain 2 = [—1,1] x [—1,1] is fixed along I'p := [—1,1] x {1} (i.e. u =0
on I'p). The contact boundary I'c := [—1,1] x {—1} comes in contact with the rigid
obstacle [—2,2] x {—1 + d} thanks to the shift d = 2-10~*. The boundary traction
vanishes on the Neumann boundary, given by I'y = 9Q \ (I'p U T'¢). The Young’s
modulus and the Poisson’s ratio are £ = 266926.0, v = 0.29 respectively.

We use h-version of the BEM with piecewise linear basis functions on a uniform mesh.
We connect the mesh size h and the penalty parameter € with a proportionality constant
C., i.e. € := C.h, which balances the penalization error and the discretization error in
the estimate (3.81). We study convergence of the method for different values of C..

C. | DOF € err(U*)
1074 22 | 0.25000 - 10~* 0.12173862
1074 46 | 0.12500 - 10~* 0.10046317
1074 94 | 0.62500 - 10~° 0.07444925
107%| 190 | 0.31250-107° 0.04905021
107%| 382 (0.15625-107° 0.02915712
107% | 766 | 0.78125- 1076 0.01609924
107° 22 | 0.25000 - 10~ 0.04185280
107° 46 | 0.12500 - 10~° 0.02421500
107° 94 | 0.62500 - 10~ 0.01314311
107> | 190 | 0.31250 - 1076 0.00686598
107> | 382 (0.15625- 1076 0.00351204
107% | 766 | 0.78125-1077 0.00177676
10-¢ 22 | 0.25000 - 10~ 0.00540834
10-¢ 46 | 0.12500 - 106 0.00277935
10-6 94 | 0.62500 - 1077 0.00141103
1076 | 190 | 0.31250- 1077 0.00071157
1076 | 382 ]0.15625-1077 0.00035767
1079 | 766 | 0.78125-1078 0.00017959
1077 22 | 0.25000 - 10~7 0.00042198
1077 46 | 0.12500 - 1077 0.00024092
1077 94 | 0.62500 - 10~8 0.00012970
1077 | 190 | 0.31250-107% | 0.67760 - 10~*
1077 | 382 0.15625-107% | 0.34964 - 10~*
1077 | 766 | 0.78125-107° | 0.18041-10~*

Table 3.1: Error behaviour for various penalty parameters ¢ = C.h
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Figure 3.1: Error behaviour for varied penalty parameter € = C.h

The results of numerical experiments are presented in Table 3.1 and in Figure 3.1.
The error is given by err(U°®) = <§UE, U5>1/2 — ||®im]||s, where the value ||win||s =
0.154398 is obtained by the Aitken extrapolation. We see that with decreasing of the
proportionality constant C; the linear rate of convergence is achieved for smaller number
of unknowns. For C. < 107° the linear rate of convergence is achieved even for low
number of unknowns. Numerical experiments for fixed penalty parameter show that the
error does not decrease if the mesh size is reduced.
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3 Contact between a body and a rigid obstacle

3.3 Residual FE and BE a posteriori error estimates for
contact with friction

The question of automatic mesh refinement in the framework of the h-version of penalty
FEM and BEM for one-body frictional contact problem is addressed in this section.
The error measure, based on the energy norm of the solution, combined with normal
and tangential contact terms is introduced for FEM and BEM. Then, the local residual-
based error indicators are derived for both FEM and BEM and their reliability and
efficiency are shown. An automatic mesh refinement procedure, based on these indicators
is introduced. Finally the suggested method is illustrated on several numerical examples.

A similar error indicator was used for the h-version of FEM for frictional contact prob-
lems, but only with heuristical motivation, cf. Wriggers [72], Hu and Wriggers [36].
Another reliable residual based error indicator was obtained by Eck and Wendland in
[27] for the h-version of the BEM using a different technique, while the efficiency of the
error indicator has not been shown.

We estimate here the error between the solution u® of the weak penalty domain formu-
lation (for FEM) or of the penalty boundary integral formulation (for BEM) and the
corresponding discrete solution U®. In order to capture the error between u® and the
solution of the variational inequality u, the penalty parameters ¢, ; have to be changed
simultaneously with the mesh size. The relation between the penalty parameters and
the mesh size is usually taken from the corresponding a priori error analysis, which guar-
antees the optimal order of convergence of U® to u. For example, employing the results
of the previous section, we obtain that ¢, ~ h!™¢, 0 < € < 1, provides the optimal
convergence rate for frictionless contact.

3.3.1 Regularization of the frictional contact problem

We return to the contact problem between an elastic body and a rigid obstacle with
Tresca’s law of friction, described in the introduction to Chapter 3. As shown in Sec-
tion 3.1 for the case of vanishing gap function g = 0, the classical formulation of the
problem (3.1) can be written as a variational inequality, or as a minimization problem
(3.11). Similar arguments provide for the general case g # 0 the following minimization
formulation: Findu e K:={weV:v,—g<0onl¢}:

J(w) > J(u), Yw € KK, (3.82)

where

J(w) := %(Sw, w)s + j(w) — L(w), (3.83)
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

and V .= H 1/2(2). The frictional functional j(-) and the load functional L(-) are

given by (3.6) and (3.4) respectively. In Section 3.2 we have shown, how the incon-
venient inequality constraint can be removed from the space of admissible solutions K
by penalizing the penetration of the body through the obstacle. This technique leads
to the (frictionless) penalty formulation (3.45), which can be equivalently rewritten in
terms of the minimization problem. In the case of non-vanishing friction the penalized
minimization problem reads: Find uw € V :

J.(w) > J.(u), Yw €V, (3.84)

where
+ j(w) — L(w) (3.85)

Ly(Te)

J.(w) = %(Sw,’LU)z + Hﬁ(w —g)"

and the " positive value” function (-)* is defined by (3.47). Note, that the non-differentiable
frictional functional j(-) is still included in the penalized formulation, which is quite in-
convenient for developing of numerical solution schemes. Therefore, we introduce the
regularized version of j(-) (see [38, Section 10.4] for different examples of regularization).
We use here the piecewise quadratic regularization of the absolute value function (cf.
(3.18)), which can be equivalently expressed on the discrete level in terms of the return
mapping algorithm, as described in Section 4.2.

€t

— &t > i >
\Dat(x) — { ‘:CJ 27 ‘SL’| Z &, SOEt(QT) _ { 51gn(1'), |£L’| = E¢, (386)

o 2| < e, . 2| < &

The regularized frictional functional is now given by
Je, (W) = FU,,(wy)ds
o]

and the minimization problem (3.84) transforms as follows: Find uw € V :

Jo(w) > J(u), Vw eV, (3.87)
where
Jo(w) = 3 (Sw, w)s + H;(w” —g)t 2 + jo, (w) — L(w). (3.88)
2 (2,)1/2 La(Te)
We define for brevity f* :=e;p.,(f) . Hence, according to (3.86),
ign >
(f(2))* = { jf(sj’ (Fe), Ii: ;Z (3.89)

The regularized functional j., () (and therefore J.,(+)) is Gateaux-differentiable and its
derivative is given by

<Dj€t(u)7v>Fc - <p§7vt>I‘C ) pi = _E—tfut.
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3 Contact between a body and a rigid obstacle

Thus, the problem of finding a stationary point of J.(-) can be rewritten as the following
variational formulation: Find u® € V such that

<S’U,€, ’U>2 - <pfwvn>1“c - <p§7 Ut)l"c = L(U)v Vv e, (390>
where the normal contact traction is given by the constitutive relation (cf. 3.46)
o= ——(un —9)". (3.91)

In order to discretize the problem (3.90), we introduce a partition 7 of the boundary T’

r—|J1

1€7;,

into straight line segments.

We define the space V;, of admissible displacements consisting of continuous piecewise
linear functions on the mesh 7, by

Y, = {’u e H*(%) :v|;, € Pi(I),VI € Th} (3.92)

As discussed before, the Steklov-Poincaré operator S (cf. (3.40)) can not be discretized
directly, since it includes the inverse V ~! of the single layer potential. Therefore, first, the
approximation V}, of V' is computed and then inverted. The construction of the discrete
operator V} requires a dual variable — the boundary traction, which must be discretized
correspondingly. Therefore one can define some different mesh for discretization of the
boundary traction, as it was suggested in [46]. We employ here the same mesh as for
the primal variable. We define the space of discrete tractions as a space of piecewise
constant functions on 7j,

W, = {v e H™V2(D) : v|; € Po(1), VI € Th} . (3.93)

The same as before, we denote the discrete Steklov-Poincaré operator S and the error-
operator F as follows (cf. (3.56)):

S =W + (K + 1/2)in Vi (K +1/2),

. . (3.94)
E:=85-8S=(K+1/2)(V —i,V, "i;) (K + 1/2).
Then the discrete formulation reads as follows: Find U*® € V,,.
<§U€, ¢>2 —(P5, By, — (PL, By, = L(®),  VEEV, (3.95)
with
Ps e _i(Us _ )+ Ps e _ler*
n En n g ’ t £ [
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

Remark 3.3.1. For the finite element method one can obtain corresponding formula-
tions. The domain variational formulation reads:

Findu € Vp:={ve H(Q):v=0o0nTp} such that
a(u€7 ¢) - <pim ¢n>1"c - <p§7 ¢t>FC = L(¢)7 vd) S VF- (396>

The bilinear form a(-,-) and the linear form L(-) are given by
a(ul, ) = /Qa(zf) ce(¢)dr,  L(d) ;:/F b.gds+ /Q f-bdr,

where f € Ly(QY) indicates the volume force. We introduce a piecewise linear space
of admissible displacements V gy, over some (triangular or quadrilateral) mesh Tgy in
two-dimensional domain 2. Then the discrete formulation reads: Find U® € V), such
that

a(U®, @) — (P, &) — (PF, &) = L(P), Vo € Vpy,. (3.97)

Sometimes, we use the following vector notations for the penalized traction

p° = pin + pit, Pc:=P:n+ P/t.

3.3.2 Residual a posteriori error estimates for finite elements

Let u® € Vp be an exact solution of the domain penalty formulation (3.96) and let
U® € Vpp, be the solution of the discrete finite element problem (3.97). In order to
prove an a posteriori error estimate, we have to show a monotonicity property for the
tangential component of the displacement (cf. Lemma 3.2.8 for the normal component
of the displacement).

Lemma 3.3.1. For all u* € Vp solving (3.96) and U® € Vg, solving (3.97), there
holds

e 2F 120 — PO Larey < — 0F — Proug = Up)p -

Proof. At first, we show that for any real numbers a, b there holds
(a* —b")? < (a* —b*)(a —b)

We introduce a function (-)# complementary to (-)*, such that for any a € R the de-
composition a = a* + a* holds. Hence

(a* —b")(a—b) = (a* —b")* + (a* — b*)(a® — b¥).

87



3 Contact between a body and a rigid obstacle

We get the desirable result, if we show that
(a* —b")(a® — b%) > 0. (3.98)

Therefore, we check the different possible cases. If |a| < &, and |b| < &, the inequality
(3.98) trivially holds, since a# = 0 = b#. For |a|] > &, |b] < &;, according to (3.89), we
obtain

(a* —b*)(a® — b?) = (gsign(a) — b)a™ = (g; — bsign(a))|a®| > 0,
which yields (3.98). The same holds for |a| < &, |b| > ;. Finally, for |a| > &, |b| > &;
there holds

(a* = 0")(a® — b%) = e(sign(a) — sign(b)) (a® — %)
= ei(1 — sign(ab))(Ja™| — |b" [sign(ab))

[0, if sign(ab) = 1, >0
| 2e(|a®| + [p#]), if sign(ab) = —1 | —

and (3.98) follows. Now we derive that

1
S = P ds = | —F(uf — Us)2ds

1/2 0—1/2(, ¢ e\ (|2 —
e °F - P =
IE" (p; t)||L2(FC) re F e €t

1
< | ZFlu" =U7)(u; - Up)ds

= o
_ £ 154 € €
—_<pt_Ptaut_Ut>ch

which completes the proof. O
We introduce the error measure in the finite element case as follows
e = U*||[2 = a(u® — U*,uf — U?)

1/2 (e e\|[2 1/2 7—1/2(, ¢ e\ |12 (3'99)
+|len (Pn—Pn)||L2(FC)+||5t F (p§ _Pt)||L2(FC)'

Reliability of the FE a posteriori error estimate

Denote for brevity by Epj, the set of all edges in the mesh 7r,. Now we are in the
position to show that the following a posteriori error estimate holds.

Theorem 3.3.1. Let u® € Vg be an exact solution of the domain penalty formulation
(8.96) and let U° € Vg, be the solution of the discrete finite element problem (3.97).
Then the error defined by (3.99) can be estimated as follows

[[u” = U[7 < C ) npn(K),

KeT,
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3.3 Residual FE and BE a posteriori error estimates for contact with friction
where the local indicators are given by

Min (K) = Wil f + div o (U°) |, x)

1 €
T35 2 hlle@)-nlly (3.100)
IC(ERUOK)\I!
Y il = oU) nlg,
ICELNOKNT N
2
> h|PintPt—oU)n|
ICERNOKNT o L2([)

with some positive constant C'.

Proof.

Using the monotonicity properties of Lemma 3.2.8 and Lemma 3.3.1 one can
write

[|u® — U°|||F = a(u® — U*,w* — U?)
+ e (05, — PO 7y + e F 205 — PO yre
<a(u® - U, v —U")

—(p, — Pous, = Us)p, — (0F — P ouf — Uy, - (3.101)
Subtracting (3.97) from (3.96) we obtain for arbitrary @ € Vg,

0= a(ue - Uav ¢> - <pfz - Pﬁ? @n>1“c - <p§ - R&€7 @t>1“c : (3102)

For some ¥ € Vp, we choose @ :=U® — ¥ € Vp;,. Adding (3.102) and (3.101) we get
llw® = UF|||}: < a(w® = U, u® = U°) = (p}, = Pryus, — Updp, — (0] = PFoui = Uppg,
—a(u —U" U = @) = (p;, — P, Uy — W)y, — (0 — P, U = W,
=a(u® —U°,u" — W) —(p;, — P ,u;, — V) — (p; — P/, ui — Wt)rc .
With ¢ ;== u® — ¥ € Vp, the variational formulation (3.96) reads

a(u’, ut = ) — (pl,u;, = Wn)p, — (pi,u; = Yi)p, = L(u® — &)

and therefore

Il — U713 < L(w® — @) — (U, 0 — B) + (P, — Wby, + (P — W)y,

Applying Green’s formula on each element K € 7r;, we obtain

—a(U®| g, u’| g — !I/|K):/ divo(U?) - (u° — ¥)ds
K
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3 Contact between a body and a rigid obstacle

This gives

e — Ul < 30 /K(f+diva(U5))~(uE—!I/)ds

KeTpp
+% > /I[U(UE)-n]-(uE—W)ds
ICELNOQ
+ ) /,(i—U(UE)-n) (u” = ¥)ds
ICE,MT v

3 / (Pin+ Pit—o(U°) -n) - (u — ) ds.

ICENT ¢

The Cauchy-Schwarz inequality provides

s = Ul < D7 (1F + div o (U)o [u” = @l

KeTrpy,
+ > o) nllnollv — @lna
ICELN\ON
+ Y E=oU) nllLpllw - ¥lnLa
IcE,NT'y
+ Y IPn+ Pt —o(U?) - nl|n,0)l[u — ||50).
ICENT ¢

We choose now ¥ := U® +i,(u® —U®) € Vpy, where i, is the two-dimensional Clément
interpolation operator applied componentwise. Let v € Ly(2). The following estimates
for the interpolation error are well-known, see e.g. [20], [49],

v — ih0]| Ly cthi 0] g iy, (3.103)

<
1/2
< b vlgiw),

v —inv| L,(1)

where w(F) denotes the neighbourhood of E for E = K, I, i.e. the set of all (finite)
elements from the mesh 7, which have nonempty intersection with E. Using the ap-
proximation property (3.103) we obtain the assertion of the theorem. O

Remark 3.3.2. Note that H'(Q)-reqularity is not enough for working with the La-
grangian interpolation operator, since H*(Q) ¢ C(Q). Therefore, we need to employ
an interpolation operator, as the Clément interpolation operator, which works also for
nonsmooth functions.

Efficiency of the FE a posteriori error estimate
The proof of efficiency of the suggested finite element error indicator is analogous to the

proof in the boundary element case, considered below, with some standard modifica-
tions for the domain term || f + div o (U?)||,(k) and for the interior jumps of the stress
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

|[o(U*) - n}||,(r)- The reliability and efficiency properties yield the sharpness of the a
posteriori error estimate.

Theorem 3.3.2. Let 7;, be a quasiuniform mesh on I' with characterictical meshsize
h. Then, if the penalty parameters €,,; are chosen, such that there exists a constant
C >0, for which

Ep > C’h, g > C’]—"h,

the a posteriori error estimate is sharp, i.e. there exist constants ¢, C > 0 independent

of h, such that

¢y pn(K) S [l = U%||[E < C ) npn(K

KeTy, KeTy,

3.3.3 Residual a posteriori error estimates for boundary elements

Let u® € V be an exact solution of the boundary penalty formulation (3.90) and let
U® € V;, be the solution of the discrete boundary element problem (3.95). Define the
traction-like functions by

Y=V K +1/2)u
U=V (K +1/2)U", (3.104)
=i,V i (K +1/2)U°.
We introduce the error measure in the boundary element case as follows

Il = Ul = llw = U g + 119 = Clla
(3.105)
+lea (v, Pa)\l o et F 1/2(29 = PO)lZaey-

Reliability of the BE a posteriori error estimate

The following theorem provides an upper bound for |||u® — U?|||%.

Theorem 3.3.3. Let u® € V be an exact solution of the boundary penalty formulation
(3.90) and let U® € V}, be the solution of the discrete boundary element problem (3.95).
Then the following a posteriori error estimate holds for some constant C' > 0:

Il =T[5 < C Y (D) (3.106)

ICT,
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3 Contact between a body and a rigid obstacle

where the local indicators are given by
(1) = hillt = SU°|| L0y

+ hy||Pin + Pit — §UE||332(IHFC) (3.107)

+ h;H%(V!P — (K +1/2U9)|},

Proof. Employing Lemma 3.2.6 we obtain

[l = U°Ify + [y — 2[5
+len2 (05 = PLawey + e 2F 207 = POl yre) = Ar + Ao,

where
Ay = (S = SU e~ U%) 4 [lea 0 — P2y + e F 205 = P e
Ay = (V(&" - W) ¢ — W).
The Galerkin orthogonality property provides for arbitrary @ € V,,
<Su€ _ SU°, U — _@> +(p°— P U - &), =0

For the first term Aj;, this relation in combination with Lemma 3.2.8 and Lemma 3.3.1
leads to

Ay < <Su€ — SU® uf — U€> —(p" = P u — U,
= <Su‘E — SU®, v — U€> —(p° = P°,u" = U%)
+ (Sut - SUS,U* - @) + (p° = P, U" - &),
= <Sua — SU®, u* — 45> —(p°— P*,u° — ¢>Fc )
Since u® — @ € V, the variational formulation (3.90) provides
(Sut,u” — @) — (p°,u" — @) = <i,u5 - 515>FN

and therefore, together with Cauchy-Schwarz inequality, we obtain

A < <i — SU® uf — 45>F + <P€ — SU® uf — 45>
x

T'e

< Yt SU v = Slom + Y 1P = SU|nmllw — @nm).

ECT,N'y ECT,NT'c

We estimate now the summand As. It holds

Ay = (V(¥ = 07), & — ) < |[V(& — &) gurzn)[| & — Pl g-12ry-
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

Further, since U° € V, C HLY(X), ¥ € W), C LyI) and V : H* Y2 — H*H/?
W H*™Y/2 — H* Y2 are continuous mappings for s € [—1/2,1/2] (cf. Lemma 1.2.1)
we obtain with definition (3.104) that

V(¥ - ") =VW¥—(K+1/2)U° € H(I') C C(I).

Lemma 3.2.7 yields that V(¥ — ¥*) is orthogonal in Ls(I') to Wp,. Furthermore, for
the characteristic function x; € W), of an element I € 7, there holds

0= (V(¥ - &), x,)p = /IV(!II— &™) ds,

and therefore the continuous function V(% — ¥*) should have a zero on each boundary
segment [. Since V(¥ — ¥*) € H'(I'), we can apply the result of [15, Theorem 5.1],
which provides existence of a positive constant C' such that for quasiuniform meshes
there holds

* a *
V(& = &) gy < C Y05V (# = @)

Icr

Lo (1)

Since (W, )y, (V,-)p are positive definite, there exist constants ¢y, ¢y > 0 such that

s =T un g + vl = Bl
e, = POy + e F 205 = PO e

< >t = SU|mllw — @[50

ICT,NI' N
+ > Pin+ Pt — SU%|| ) |luf — @[
ICT,NT'c
9 .
+C Z thg(V!I’ — (K +1/2)U )HL2(1)||¢ — Pllg-12p
ICcTy,

for arbitrary @ € V. We choose @ := U® + i,(u® — U®) to be the one-dimensional
Clément interpolant of u®. According to Clément [20] the following approximation
property holds

[u® = @[ 1,1) < Chyl|u” — U€||H1(w(1))>
where w(I) is the neighbourhood of I, i.e. the set of all (boundary) elements from the

mesh 7;,, which have a nonempty intersection with I. Real interpolation between L,
and H' provides

1/2
lu® — By < Chy?[[uf = U¥|| g2 oy
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3 Contact between a body and a rigid obstacle

which yields
el [0 = Uy + vl = B
+llen?(0f, = Pl Lawey + e 2F 2 (0] — Pl Lo

<C Y Wt = SUT e’ = Utllgag,

ICT,NI"'N

+C Y hyl|Pin+ Pt — SU| pyplluf = U | gz,
ICT,NTc

+C Y hIH— VE — (K+1/2)09)|| 1% = @l
I1CTy,

Using Cauchy’s inequality we throw the terms ||u® — U‘3||H1/2 [ — 2|3, “1apy b
the left hand side and obtain the a posteriori error estimate (3. 106) O

Efficiency of the BE a posteriori error estimate

In this paragraph we prove efficiency of the a posteriori error estimates. We extend the
approach of Carstensen and Stephan [17], Carstensen [15] onto the frictional contact
problems.

Theorem 3.3.4. There exists a constant ¢ > 0 such that for any element I € T, the
local error indicator n,(I) defined in (3.107), can be bounded as follows

cny (1) SthIW(ue = UN[L,uns) + hall (K +1/2)( — @)|[1, 00

a 15
+h1H8 (¥ — @) HL(I +h1H88(K+1/2)(u HLQ(I) (3.108)
+ hil|p® — P* ||L2(mrc)
Proof. Consider the indicator on the Neumann boundary, i.e. the case I C I'y.

Noting that t = Su®|p + for the exact solution u®, we obtain
hillt = SU*||2,) = hul|Su® = SU?||3, 0
= hy||W(w = U*) + (K" + 1/2)(¢ — @)||7,
< 20| [W (u® — U7, + 20 (K" +1/2) (¢ — ®)][7,1)
We used here the definition of the traction-like functions (3.104). Further, the weak

formulation (3.90) yields the identity p* = Su® on the contact boundary I'c. Therefore,
if I C I'¢, then

hil|P* = SU®(|3, 1y < 2hal|p® — P¥|[1, (1) + 2hul|Sus — SU*|[3,
< 2h;||p° —P€||L2(I
+ 4hg||[W (u® U€)||L2 + 4hy|[(K' 4+ 1/2) (¢ — W)HLQ(I
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

Finally, we have to estimate the consistency term. The identity Vi = (K + 1/2)u®
provides for some element I C I’
— (K +1/2)U°) HL 0

hul| 5= (V&

<2h1H— (v — sI/HL +2hy a(K+1/2)(u€

I
which finishes the proof. O

Iy

We need the following lemma to prove the efficiency of the a posteriori error estimate.

Lemma 3.3.2. Let ¥ € Ly(T') and 11, : Ly(I') — W, be the Lo-projection operator.
Then there holds

1% = bl 12y < Chufiall9l |y

In particular, there holds

1% = Ml 120y < Chuaalltb — tpl ey

Proof. The definition of the Lo-projection operator yields
<’l7b - tha ¢> = 07 Vo e Wh.

By duality we obtain

—1I
4 — Tap| g1y = sup (¢ — yap, w)

weH(I) ||wHH1(F)
<’l7b - tha w — th>
= sup
weH (I ||w||H1(r)
<1,Z;,'w — Hh'w>
= sup

weH(I) ||’U7||H1(r)

(3.109)

||lw — Tyw||,r)

< |l|[z,r) sup
weH (T |Jwl |H1(F)

since II,w € W),. The Poincaré inequality gives

lw = Thw||z,w) < Clinac|[w]| 1)
and therefore we obtain from (3.109) that

1Y — || g1 (1) < Chonae ||| L)

The Lo-projection is stable in the Lo-norm, i.e.

| — 1| Ly < Cl|| L, m)-
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3 Contact between a body and a rigid obstacle

Hence, the interpolation between H *(I') and Ly(T') provides

19 = T3pl | g-1/2ry < Chylia| 19| ae)-

In particular there holds

o — bl g1r2ry = ¥ — Wptp — ILn(yp — ) || g2

< ChY2 || — Tyt | oy ).

0

Theorem 3.3.5. Let Z), : C(X) — V;, be the Lagrangian interpolation operator and let
ITj, : Ly(T') — W, be the Ly-projection operator. Assume that u® € H(X), ¥ € Ly(T)
and that the penalty parameters e,,, £, are chosen such that there exists a constant C' > 0,
for which

en > Chiaes €1 > CFhomgo. (3.110)

Then there exists a constant ¢ > 0 such that

hma:c ~N— £ £
S (1) < mae (222,07 ) [ - U

= min

hgna:c € el12 hgna:c 2
+ = e = L[ ) + r““/’ — ||, (ry-

hmin min

Proof. Summing the estimate (3.108) over all elements I € 7, we obtain

¢ (I P |[W (0 = U7, + Bonaa || (K + 1/2) (3 — ®)|[7,)  (3.111)
1€7;,
0

el SV~ B2 )+ B (B 1/2) (= U2

+ Pz | [P — P€||%Q(Fc)'

To prove the theorem, we need to estimate the terms on the right hand side of (3.111).
For the first term and for the fourth term in (3.111) we obtain

himaa | |W (0¥ = U)|[7, 5y < Chinaz |0 — UEHJQHI(r)v
0

P | 72 (B +1/2) (u U)[7, 0y < Fomae || (K + 1/2) (" = U) |31

< ChmawHug - UsHiﬂ(r)

since W : HY*™(I') — H™Y?*(T") and K : HY***(T') — HY***(I") are continuous
mappings for s € [—1/2,1/2]. Here we identify functions f, supp f C X, with their
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

zero extension onto whole I'. Let Z;, be the Lagrangian interpolation operator on the
mesh 7;,. The triangle inequality gives

2
Pinaz || 0" — UfHHl(F) < Chinae| [0 — Tpw® || 31 1y + Chinaa [|Zows® — U |3 -

Since Zpu® —U* € V;,, we can apply the inverse inequality (see e.g. [14, Proposition 3])

hmax
homa || Zhu® = U%[[ 31 1y < O | Ty = Ul
hmam
hmmHI U||~1/z )
hma:c 5 £ h’max
SchmmH U||~1/2 "‘ChmmHIhu _UH~1/2 =)’

Employing properties of space interpolation and approximation properties of Z;, we get

| Zhu® — < COl|Tw® — v | Zhu® — vl gy

€112
HHl/Z(j;
< Chmaz||Zhu® — w ||H1(E

and therefore

0
P W (06" = U2, 5) + P | 5 (K + 1/2) (" = U)o

h’max £ £ hgna:c € €12
<Ch || U||~1/2 + O Thw” — [ )

o man hmzn

For the second term and for the third term in (3.111) there holds
Fmaz || (K7 + 1/2)(112 = D)Ly < nasl |90 — @[3,

mwaa (¥ —9@) HL < hmarHV(l/’ - !p)Hifl(F) < hmawHQ/’ - !I’Hig(r)

since V : H™Y?*(I') — HY*"*(I') and K’ : HY*"(I") — H~Y***(T") are continuous
mappings for s € [-1/2,1/2]. Let IIj, : Ly(I') — W), be the Lo-projection operator onto
the space of piecewise constants on the mesh 7. Therefore, with the triangle inequality

hmaz|[® = 2|7,y < Panaa| [V — Tl 7,0y + Bz |[Tnd — @[3, 1) (3.112)

In [14, Proposition 3] the inverse inequality || ®|| 1,y < Chyi,|| 8| -1 () was shown for

V& € W,,. We obtain by interpolation

min

mwn

||¢||L2 < Ch'_l ||¢||H 1/2(F) v@ 6 Wh

Hence, the second term in (3.112) can be estimated as follows

hma:v
e [T = @30y < O = By

min

hmax hma:c
<C h ||77[) W||2 H=Y/2(T) +C ||77[) Hh¢||2 —1/2(T)

min h’mm
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3 Contact between a body and a rigid obstacle

Employing Lemma 3.3.2 we obtain
2

hma:c hmam
% — a2y < O |90 — ILndpl|7,ry

and therefore

, 0 2
hma:cH(K + 1/2)(77[; - W)H%Q(F) + hmax”gv(v’/) - W)HLQ(F)
hmam 2 h’?nax 2

Finally, if the penalty parameters ¢,,¢; are chosen accordingly to (3.110), the contact
terms can be estimated as follows

hmapre - P€||%2(Fc) S C_lugnl/2(pfl - P’rf)”%z(rc) + C_1||€t1/2f_1/2(p§ - Pf)”%z(rc)’
U

Let us consider the quasiuniform meshes on I', i.e. meshes for which there exists a
constant C, > 0, independent of the meshsize, such that

hma:c
<,

hmin

~ 14+v
Then, with additional regularity assumptions on the solution u® € H " (X) and ¢ €
H"(T"), the approximation properties of the Lagrangian interpolation operator and of
the Lo-projection operator yield

1/2 e B 1/2+I/ £ 5
hnaz || = Tyt gy < Chataa 07| grov (3.113)

bl |9 = Ttpl |y < Chatas 18] o).
Remark 3.3.3. [26, Remark 7] For the contact problem with friction the best reqularity
which can be shown is u¢ € HE(X), which corresponds to the case v = 0 [25], [37],

[51]. For the frictionless contact problems the regularity u® € ﬂg/z(z) can be shown,
i.e. v=1/2 (cf. [39]). Therefore the convergence rate O(h%gx) is expected for frictional
problem and the convergence rate O(hpqy) is expected for frictionless problem:

Remark 3.3.4. Based on Remark 3.3.3 we expect that if the solution does not lie in
the BE space u® & V), the convergence rate is not better then hal2H with v = 0,1/2
for frictional and frictionless contact problems respectively, i.e. there exists C' > 0
independent from the meshsize, such that

Ch1/2+u S |||’U,E o U€|||B-

max

Combining Theorem 3.3.5, Remark 3.3.4 and (3.113) we obtain a sharp a posteriori error
estimate.

Theorem 3.3.6. Under above mentioned assumptions, the a posteriori error estimate
is sharp, i.e. there exists c¢,C > 0 independent from the meshsize, such that

ey nid) < = Ul < C ) ni(l).

1€7y, IeTy,
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3.3 Residual FE and BE a posteriori error estimates for contact with friction
3.3.4 Mesh refinement strategy for the h-version
In the numerical examples we employ the standard mesh refinement procedure for the

h-version of finite elements or boundary elements, given by Algorithm 3.2 (see e.g. [67]).

The discrete problem in the case of a frictional contact problem between an elastic body
and a rigid obstacle with BEM is given by (3.95), the error indicators are given by
(3.107).

If FEM is used, the discrete problem is given by (3.97) and the error indicators are given
by (3.100).

Algorithm 3.2. (Mesh refinement strategy for the h-version of FEM and BEM)

1. generate an initial (coarse) mesh Ty, discrete spaces Vyo, Whyo, set k=0
2. choose a refinement criterion, refinement quota p € [0, 1], tolerance TOL
3. fork=0,1,2...

a) solve the discrete problem (with FEM or BEM)

b) compute indicators n; for all segments I € Ty,

. TOL
c) stopif >, nr < =
IETh,k

d) refine I, if the refinement criterion for I is satisfied
e) make further refinement to preserve conformity of the mesh, obtain Ty 41
f) generate the discrete spaces Vi g+1, Wh 1 based on the mesh Ty, 41

g) setk=k+1, goto (a)

Some refinement criteria:

e refine I if ny > p max ny
JEThyk

e refine I if n; belongs to (1 — p) - 100% of the largest indicators

Remark 3.3.5. Note, that the step (e) is only necessary, when a two-dimensional mesh
Ty, is considered (BEM in 3D or FEM in 2D or 3D), or is case of one-dimensional mesh
with restriction on the length the neighbours elements.
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3 Contact between a body and a rigid obstacle
3.3.5 Numerical results

In this section two numerical examples with automatic mesh refinement for contact
problems with Coulomb’s friction are presented, based on error indicators, derived in the
previous sections for the penalty formulation. The problem is solved with the Newton’s
method. The detailed description of linearization of the contact terms and the algebraic
formulation is a special case of the two-body frictional contact problem, presented in
Section 4.2. We give two examples of adaptive mesh refinement for boundary elements,
employing error indicators (3.107). An example for the finite elements with the error
indicator (3.100) will be given in the next chapter within the two-body frictional contact
framework.

Example 1

The first example is based on the same geometry as the numerical example, described
in Paragraph 3.2.5. We consider a frictional contact problem of the two-dimensional
elastic body, occupying €2 := [—1,1] x [—1, 1], with a rigid horizontal obstacle v :=
[—1, 1] x{—1+d}, where d varies. The body is fixed along the upper horizontal boundary

u=0 on I'p :=[—1,1] x {1}.

The remaining part of the boundary is assumed to be the zone of possible contact with

the obstacle ~
FC::89\FD, FNIZQ.

The elastic parameters are £ = 266926.0, v = 0.29 and the coefficient of friction is
set to be py = 0.1. The displacement increment d = 0.6 - 107 is subjected to the
obstacle 7, which yields contact between the body () and the obstacle v and, therefore,
a deformation in 2. The geometry of the problem is shown on Fig. 3.2.

y4

| )

Figure 3.2: Contact geometry of Example 1
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

The initial uniform mesh 7}, consists of four straight line elements per side of €2, as it is
shown on Fig. 3.3. The space V;, of piecewise linear continuous functions (3.92) is used
for discretization of the displacement; and the space W), of piecewise constant functions
(3.93) is used for discretization of the boundary traction.

Figure 3.3: Initial mesh 7},

The error indicator for BEM with penalty contact discretization (3.107), combined with
the mesh refinement Algorithm 3.2, was used to optimize the mesh 7,. The maximum
value of the error indicator over all elements 7,,,,, is computed, and then compared with
the local indicators 7y on elements I € 7;,. The element [ is halved, if its indicator 7; is
larger than 90% of 7,4z

The sequence of obtained the displacement meshes after each of the six refinement steps
and corresponding deformed configuration is presented on Fig. 3.4. The deformed
configuration is plotted for displacements, multiplied with 10, to make the deformation
of the body visible. The red labelling in the mesh is used for the elements being refined
within the current refinement step. As it can be seen from Fig. 3.4, the elements
having symmetric positions are refined in each step, which is caused by the symmetry
of the problem. Furthermore, most of the refinement happens in the zone of actual
contact and near the corners of (2. This is caused by the singularities, appearing where
the boundary conditions are changing: contact / no contact near the points (—1, —1),
(1,—1); and homogeneous Neumann / homogeneous Dirichlet near the points (—1, 1),
(1,1). Moreover, refinement of the contact boundary is also caused by the consistency
error on the contact boundary, i.e. nonzero penetration.

The x- and y-components of the displacement inside the body and deformation of the
auxiliary finite element mesh after the sixth refinement step, obtained by the represen-
tation formula (1.2), are shown in Fig. 3.5.

In Fig. 3.6 we compare decay of the error in the norm ||| - |||z, defined in (3.105), for
uniform and adaptive refinement. As a reference norm, we take |||U190||| 5, where Ugg
is the solution, obtained on the uniform mesh with 190 degrees of freedom. The curves
err(U), plotted in Fig. 3.6 are defined by err(U) := | |[|U|||z — [||[U190l|| |-
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3 Contact between a body and a rigid obstacle

| | I ] |N
I

[ | [ 4] |
[ | 1] HT—1 I —

Figure 3.4: Sequence of the adaptively generated meshes and deformed geometries (value
of the displacement is multiplied by 10%)

X—component y—component

T B B T R e

et

e

1
| - |
U T W 11

Figure 3.5: - and y-components of the displacement inside the body and deformation
of the auxiliary FE-grid after 6 refinement step, obtained with the repre-
sentation formula (1.2)
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

0.001 [ .
F uniform ——
adaptive ---%--- ]
1e-04 |- 4
;
o \
% \\
>
&
1e-05 | e
&
1e-06 - - : N
10 100
DOF
Figure 3.6: err(U) := | |||U|||5 — |||U190|||B} for uniform and adaptive refinement

As it can be seen from Fig. 3.6, the adaptive refinement procedure provides a better
results than the uniform refinement with the same number of the degrees of freedom.

Example 2

In the second example we consider the same geometry and material parameters for the
body €2 as in the Example 1, but change configuration and location of the obstacle. The
obstacle now is given by v := {—1+d} x [-1/2,1/2] and the displacement increment
d := 6-107* brings the obstacle in contact with the body (.

Figure 3.7: Contact geometry of Example 2
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Figure 3.8: Sequence of the adaptively generated meshes and deformed geometries (value
of the displacement is multiplied by 10%)
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Figure 3.9: z- and y-components of the displacement inside the body and deformation
of the auxiliary FE-grid after 6 refinement step, obtained with the repre-
sentation formula (1.2)
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3.3 Residual FE and BE a posteriori error estimates for contact with friction

The initial mesh of four elements per side of €2 (Fig. 3.3) is employed again. The same
refinement strategy as in Example 1 is applied, i.e. elements which indicators are larger
than 90% of the maximal indicator are refined. The sequence of adaptively generated
meshes is presented in Fig. 3.8. In the beginning of the refinement process we observe
that most of refinement happens near the point (—1,1/2), which is caused by the large
gradients of the boundary traction. On the contrary, we do not observe any refinement
near the point (—1,—1/2), since the boundary traction changes there not as sharp.
Following the refinement process, we observe, that after four refinement steps the error
near (—1,1/2) is sufficiently reduced, and the indicators near the point (1, —1) provide
the largest contribution.

105
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4 Nonconforming methods for
two-body contact problems with
friction

This chapter is devoted to the investigation of nonconforming methods for two-body
contact problems with friction. Often, it turns out that the one-body frictional contact
description is not sufficient for simulation of the realistic industrial processes. For ex-
ample, deformation of the tool often cannot be neglected in simulation of the stamping
process. This motivates developing of a two-body frictional contact description. The
independent discretization of contacting bodies is usually very convenient, e.g. it sim-
plifies the task of global mesh generation and allows to perform an independent mesh
refinement procedure. Furthermore, in many cases, e.g. for large deformation or sliding
boundaries, it is the only way to avoid a time-consuming remeshing procedure. Below,
we consider two different methods allowing to handle nonmatching discretizations for
two-body contact problems with friction: the penalty and the mortar methods.

First, the standard classical and weak formulations for two-body contact problems with
friction are briefly recalled. Then we consider the h-version of the penalty FE/BE and
BE/BE coupling methods for elastoplastic two-body contact problems with Coulomb’s
law of friction. The suggested solution procedure as well as derivation of the linearized
formulation are described in detail. The methods are demonstrated in several numerical
examples.

Then, a new hp-mortar boundary element method is constructed for two-body contact
problems with Tresca’s law of friction in linear elasticity. We prove under mild regularity
assumptions that the method converges as O((h/p)'/*), provided by suitable restrictions
on the discretization parameters. We solve the discrete problem employing a Dirichlet-
to-Neumann algorithm and an Uzawa algorithm. Furthermore, we perform an automatic
mesh refinement procedure with the three-step hp-refinement algorithm (see e.g. Mais-
chak and Stephan [47]), based on a heuristically motivated error indicator. Finally, the
h-version of the suggested approach is generalized onto elastoplastic two-body frictional
contact problems. The series of numerical examples underlines the proposed approach.
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4 Nonconforming methods for two-body contact problems with friction

4.1 Classical and weak formulation for two-body contact
problems with friction

Let O, Q% be bounded two-dimensional polygonal domains with (Lipschitz) boundaries
', T2 Let I, i = 1,2, be decomposed into three disjoint parts I'},, T'y; and T',. Denote
for brevity X' :=T4 Ulc, Q:=Q'UQ* T :=T'UTI? I'p:=T,HUl%, 'y =T UTS.
We assume that the displacement @ is known along I'p, that the boundary traction &
is prescribed along I'y and I';, ¢ = 1,2 are the boundary parts, where the contact can
occur. We denote with f the volume forces acting inside the bodies. Then the classical
formulation of the problem is given by

divo(u) = f in €,
u=1u on I'p,
ou) n=t on 'y, (4.1)

00 <0, [un] <g, anqun]—g):o,}
onFo.

‘O't‘ S f, at[ut] +.7:Hut]| = 0,

Here o stands for the stress tensor. Its dependence on the displacement field w is given
by Hook’s law of elasticity, i.e. under small strain assumption there holds

o(w) = C : e(u) = Mre(u) + 2c(w),  e(u) = %(w + VT,

where ), i are the Lamé constants. Let n’, ¢’ denote the outer normal and tangential
unit vectors to I'" and introduce

S n', onTI!, £ t', onl,
Tl n? onI?\Tg, T, onI?\Tg.

The stress on the contact boundary is given by

2

o, =n'o(u') -n' =n? o(u?) - n?

ott =o(ul) - nt —o,nt = —(c(u?) - n?—o,n?).

We assume that there is a mapping between I'f, and T'Z, e.g. orthogonal projection of
points of I'% onto I't, modified near the corners, which allows to identify T'f, with T'%.
We denote the ”generalized” contact boundary by I'c. We write [-] for the jump of the
normal displacement u! := u’-n and the tangential displacement u! := u’-t across I'¢c,
namely

The function g : T'c C R? — Ry is the initial distance between two bodies in normal
direction, [32]. Thus [u,] < g has the meaning of the nonpenetration condition. The
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4.1 Classical and weak formulation for two-body contact problems with friction

so-called given friction function F > 0 defines pointwise the sticking threshold of the
bodies, i.e. as it can be seen from (4.1), if the absolute value of the tangential stress
does not exceed the given friction |oy| < F, then [u;] = 0 and [u] # 0 is only possible if
|oy] = F. In the more general case of Coulomb’s friction law the given friction function
is defined to be proportional to the normal stress F := pis0,, where jis is the friction
coefficient, see e.g. Wriggers [72]. In order to derive a weak formulation for (4.1) we

assume that @ € HY*(T'p), t € fI_l/z(FN), F e Ly(To).

Further we will use the functional spaces and sets, defined as follows

vi=H"(), Vi=Vix V2 (4.2)
Wi = H~ VX1, W = W' x W?, (4.3)
={veH'(Y):v=00nT}}, V= Vi x V2 (4.4)
IC ={u=(u" u)eV:|u]<gonlc}, (4.5)
K= {u = (u'u?) €V : [u,] < gon FC} (4.6)

and the spaces including the nonhomogeneous Dirichlet boundary conditions
Vi, = {'v € H*(I'"): v =4 on FE}, Vp =V} x Vi, (4.7)
V%D = {v c H'(Q):v=1on I'y}, Vp = V}J,DXVQD, (4.8)
Kp:={u= (u',u?) € Vp : [u,] < g on I'c}, (4.9)
Kp:= {’u, = (u',u?) € Vp : [u,] < g on Fc}. (4.10)

We introduce the Steklov-Poincaré operator

S=W+(K'+1/2V1(K +1/2), (4.11)

which is a continuous, positive definite mapping S : YV — W, see Lemma 1.3.1. Let the
linear functionals be defined by

L(v) :== (Nf,v) <t ’U>F Vv eV,
L) := (f,v)or + (Nf,v) g <t 'v>F Yo ey,

there N is the Newton potential, defined in (1.7).
Variational inequality
Similarly to the analysis of Section 3.1 for the one-body problem, it can be shown that

the classical two-body problem (4.1) can be reformulated as a boundary variational
inequality of the second kind. In particular, for w = 0 it reads: Find u € I :

(Su,v —u)y, + j([v]) —j([u]) > L(v —u) Vv e K, (4.12)
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4 Nonconforming methods for two-body contact problems with friction

where the friction functional is given by

J(w]) = [ Fllv]] ds.

I'e
Similarly to Section 3.1 one can prove that the problem with given friction has a unique
solution for sufficiently smooth given friction function F. In the case of Coulomb’s
frictional law, then F := ps0,, applying ideas of Necas, Jarusek and Haslinger [51] for
the domain formulation, it can be shown that the problem has a unique solution if the
coefficient of friction js is small enough.

Saddle point formulation

Following the approach of Haslinger, Hlavacek and Necas [33] based on the domain
formulation, it is possible to obtain a saddle point formulation, equivalent to (4.12). We
define the sets of normal and tangential Lagrange multipliers as follows

M, = {q e H'2(T¢) (¢,v)p, > 0,Vv € HY?(T'¢),v >0 a.e. on Fc} :
M, :={q € Ly(T¢c) : |q| < F ae. on ¢}, (4.13)
M = Mn X Mt.

The classical formulation (4.1) with @ = 0 can be rewritten in a weak sense as a saddle
point problem of finding u € V, p € M such that

<SU,U>E + b(pvv) = <£”U>FN ) Vv € vv

4.14
b(q —p,u) <0, Vg € M. (4.14)

with the functional b(q, v) := (¢u, [va])r, + (@, [v])r, and the bilinear form generated
by the Steklov-Poincaré operator S. Tt follows from (4.14) that p = —o(u') - n' in a
weak sense.

Penalty weak formulation

Both the variational inequality (4.12) and the saddle point formulation (4.14) include
an inequality restriction in the set of admissible displacements or in the set of contact
tractions. This makes the theoretical analysis and the implementation relatively com-
plicated. Therefore the corresponding penalty formulation is often used. The weak
penalty boundary formulation for the two-body problem with (possibly) nonhomoge-
neous Dirichlet boundary conditions is given by: Find u* € Vp such that

(Sus,v)y, — (P, [v])r, = L(v), Yv €V, (4.15)
where the contact traction is given by the constitutive relations (cf. (3.90))
]_ ]- * (3
=it py= (] =)t pp= o Fl] Fi= gy, (416)
n t
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4.1 Classical and weak formulation for two-body contact problems with friction

where the functions (-)* and (-)* are given by (3.91) and (3.89) respectively. The corre-
sponding FE/BE coupling formulation, where finite elements are used in Q' and bound-
ary elements are used on I'2, reads as follows: Find u® € Vp such that

(o(u®),e(v))ar + (Su, v)5. — (P%, [V])p, = L(v), Yo eV, (4.17)

Further down, if it is clear that the penalty method is considered, we will omit the upper
index ¢ for brevity.
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4 Nonconforming methods for two-body contact problems with friction

4.2 h-version of the penalty method

In this section we consider the h-version of penalty FE/BE coupling and pure BE meth-
ods on nonmatching meshes for elastoplastic frictional contact. The incremental loading
procedure combined with the Newton’s method and return mapping algorithm is ap-
plied to solve the problem. Note, that the frictional contact and the plastic subproblems
are solved within one and the same Newton cycle. An implicit Euler scheme for both
plasticity and frictional contact is applied in case of FE/BE coupling. In the pure BEM
case, an explicit Euler scheme for plasticity and an implicit scheme for frictional con-
tact are employed. Linearization of normal, tangential contact terms and of plasticity
terms are presented in detail. The a posteriori error estimate for one-body frictional
contact, derived in Chapter 3, is extended to the two-body case. The above methods
are demonstrated with a number of numerical examples.

4.2.1 Constitutive relations for contact with friction

The contact conditions in the penalty approach are formulated with help of the so-called
master-slave description, see e.g. Wriggers [72]. Without loss of generality we will refer
to Q' as to the master body and to Q2 as to the slave body. In this paragraph we will
also use the upper indexes ()™, (-)* instead of (-)!, (-)? for the values connected with Q*
and Q? respectively.

Penetration and relative displacement

For every point from the slave side * € I';, we can find the closest point on the master
side 2™ (€) € I'%. The bar over £ denotes that the value of the parameter ¢ is determined
by x°. We define a penetration function g, on the slave surface I'Z. by

- { (€ —a|| = @"(©) —a) w7 — %) 7 > 0,
" 0, if (2™(&) —=x*)-n™ <0.

Here || - || stands for the Euclidean norm, i.e. ||a|| := v/a - a for some vector a € R
and ¢ is the minimizer of the distance function

d(&) == ||[£"(&) — x°|| — MIN over all £

for a given slave point 2. The value £ can be obtained by the necessary condition

L&T(E) = 0. (4.18)
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4.2 h-version of the penalty method

The tangential vector to the master surface in point  can be represented as a™ := x'¢ ().
Therefore (4.18) means that ¢ is defined by the condition

n™m — m(?) -z’ ’
" (E) — a||

B

or, in other words, it means that &™(£) is the orthogonal projection of x* onto the
master side I'tt. Of course, on the non-smooth boundaries the normal and tangential
vectors are not defined in the corner points. In this case some modification is performed,
as it is described e.g. in Wriggers [72].

Let us define the relative tangential displacement g, of some slave point * at some time
step with respect to the previous one by

g = [ug] a™.

We will also write g; = [u;] = |g;| for its absolute value.

Micromechanical constitutive relations: normal and tangential contact traction

The contact stress is determined by the penetration function g, and the relative dis-
placement g,. The normal stress p in point x° is given by

pi(ws):==——£:gn(ws)- (4.19)

1

Here ¢, is the normal stiffness or penalty factor (see [72], [54]). With standard ar-

guments of elastoplastic theory of friction (see e.g. [52]), we use an additive decompo-
sition of the relative tangential velocity into an adherence (”elastic”, describing stick
behaviour) and slip (”plastic”, responsible for frictional slip) part

g =gl +gi

The tangential contact traction is set to be proportional to the ”elastic” component

1 e
P = ——8, (4.20)

1

where ¢,7! is the tangential contact stiffness. It remains to define, how to compute g?

from known g,, to obtain a closed formulation. Let us consider the yield domain

E:={pi € B[ f.(pf) < 0}
in the space of the contact tangential stress with the the yield function

fr@0) = ol =F, F = pylpil,
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4 Nonconforming methods for two-body contact problems with friction

representing the slip criterion function for a given contact pressure p; with friction
coefficient iy due to Coulomb’s law of friction. We define

Oa 1fffr§0a

g = ( F ) 7
1-—2 e, if f7.> 0.
le /el ) & s

Therefore g = 0 yields p; € E and the point sticks; on the other hand, g} # 0 yields
p; € JE, which means that the point slips.

Remark 4.2.1. The constitutive relation for tangential stress is simply an algorithmic
description of that defined in (4.16). Basic computations show that (4.20) is identical
with (4.16), if the modified penalty parameter e, = €, F is used in (4.16).

4.2.2 Constitutive relations for plasticity: J; flow theory with
isotropic / kinematic hardening

In this paragraph we make an extension of the pure elastic two-body frictional contact
problem, described in (4.1), to the more general case of an elastoplastic two-body fric-
tional contact problem. We employ an additive decomposition of the strain tensor into
elastic and plastic part e(u) = e°(u) + € (u). The material law is given by the Hook’s
tensor, connecting the stress tensor and the elastic part of the strain tensor

c=C:e=C:(e—¢£").

The plastic strain ? is computed using the classical J; flow theory with isotropic/kinematic
hardening, described e.g. by Simo and Hughes [60, 2.3.2]. The J, flow theory is based
on two material parameters. The equivalent plastic strain « represents isotropic hard-
ening of the von Mises yield surface. The deviatoric tensor 3 corresponds to the center
of the von Mises yield surface. We use the J-plasticity model with the following yield
condition, flow rule and hardening law.

n := dev[o] — j3 tr[5] := 0,
ful,0,8) = HnH - \fK
||77||

el = n, (4.21)
= 2
ﬁ - ng'(a)n,
s 2

=7 3a
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4.2 h-version of the penalty method

where f,; is the yield function for plasticity, K (), H(a) are isotropic and kinematic
hardening modules, given by

H'(a) = (1-0)H,

_ 4.22
K(a) =0y + 0Ha, 0 € 10,1}, ( )

where oy, H > 0 are material constants and oy is the yield stress. The von Mises yield
surface is given by the yield condition

,]Epl(U,OC,B) <0.

The loading/unloading complimentary Kuhn-Tucker conditions are given by

720,  fulo,0,8) <0, yfulo,a,8)=0.
It is easy to check [60, 2.2.18], that the consistency parameter v is given by

(n:e)t
1T KR
+ 5
Here ut := (u + |u|)/2 is the positive part function. Finally, we define the elastoplastic
tangent moduli C* with the following relation

6=C:(¢—e) =C?P:¢

1
C:/<L1®1+2H<I—§1®1).

Therefore

. . 1 nYn
3n

where
1= 5,~j€,~ X e, I = 1/2(5ik5jl + 5il5jk)ei Re; KepRe
are second order and fourth order identity tensors respectively and  := X 4 2J1/3 is the

bulk modulus and A, 7 are Lame constants. Note that

C: e = Mrle] + 271 = rtr[e] + 2 dev]e]. (4.23)

4.2.3 FE/BE coupling for elastoplastic contact problems with
friction

In this paragraph we consider a frictional contact problem between an elastic body and
an elastoplastic body. We employ boundary element discretization for the elastic domain
and finite elements in the elastoplastic domain. Without loss of generality we denote
the elastic body as a slave body and the elastoplastic body as a master one.
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4 Nonconforming methods for two-body contact problems with friction

Let 77}, be some partition of the finite element domain Q™ into triangles or quadrilat-
erals, and 7, be some partition of the boundary I'® into straight line segments. Define
discrete spaces

Vi = {qs e HY(Q™): &|x € 2

RA(K)]* VK € T, @lr, = @}
fi={ @€ H'(Q): @i € [Ri(K

]
2 m
Ra(K)]* VK € T, &r,, = o} ,
2

ba={®c HYX): @) ¢ [PuD)]" VI € Ty, B, =0},
V;::{sﬁeﬂ/ ): @], € [Py(I)]) VIET,S},
‘}D,h = V?,D,h X vD,hv Vh = F,h X Vi,

where R;(K) corresponds to the space of linear functions P;(K), if K is a triangle,
and corresponds to the space of bilinear functions Q;(K), if K is a quadrilateral. The
discretized weak formulation corresponding to (4.17) consists of finding U = (U*, U™) €
‘}D,hi

F™U, ®) = F'(®) V& e V), (4.24)
where
Fnt(U, @) := (o™, <5U8 4ss> —(P,[®)),,,
Fert(P) = E(sﬁ), o™ =o(U™),
and

1 1
P .= Pnn + Ptt7 Pn = = 8n, Pt = __gf ’ t7
En &t

according to (4.19), (4.20). Note that the functional F" (U, &) depends on U. The
nonlinear behaviour is described by the contact constitutive equations, formulated in
Paragraph 4.2.1, and constitutive equations for plasticity, written in Paragraph 4.2.2. We
perform the loading process as a consequent application of loading increments (A f);41,

(At) 41, (A
fj+1 = f; + (Af)j-i-la
ij+1 :i;+(Ai)j+1, j:0,1,2
Uiy = Uy + (A4,
which defines the discrete external load after application of the (j 4 1)-th increment
FH(@) = (£ 7)o + (NF3 87+ (1 ),
and defines the pseudo-time stepping process. Define the increment-dependent func-
tional spaces

Foo = 1@ € H(Q): &k € Ri(K), Blryy =a)'},
on = {@ e HY2(T*): ®|, € Py(I), Blry, = uj} ,
\)Dj7h = vz%th X v%wh.
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4.2 h-version of the penalty method

Let Uy be the initial displacement in the bodies, (? )(()0), a(()o), B(()O) initial internal variables,

(gb )(()0) initial tangential macro-displacement (”plastic” slip) and let ff),if),'&é be the
initial loads. Normally, the displacement-free state Uy = 0 as well as vanishing internal
variables (57’)(()0) =0, aéo) =0, B(()O) =0, (g} )(()0) = 0 are chosen as initial data. We use the
backward (implicit) Euler scheme for both contact and plasticity. Thus the problem can
be reformulated as a series of incremental problems, and every subproblem corresponding
to the j-th increment can be written as follows:

Find AU, € \}Dm, and therefore the new displacement state U; = U;_; + AU, stress
o' = o(U7"), contact traction P; = P(Uj) such that

J
Fim(o, P, &) = F&™(8) Y& €V, (4.25)

where contact and plastic constitutive conditions from Paragraph 4.2.1 and Paragraph
4.2.2 are satisfied.

We use Newton’s method to solve (4.25). Let 4 be the coefficients of the expansion of
U in the basis of the discrete space Vp, 5. Define

Fmt(y, @) == F"(U, &).
Therefore (4.25) becomes
FM(sly, ®) = F"(®) VP €V,
We perform the linearization of Fi™(il;, @). We choose the starting value
1150) = ﬂj_l,
and introduce Newton’s increment Ailg»k) to proceed to the next iterate
(k+1) _ (k) (k+1) _
Ll] —u] _‘_Au] 3 k—0,1,2...

The Taylor expansion provides

[int (k)
aF* (u] ) QS)

s
J

Now we are in the position to state the algebraic problem. Define for brevity the matrix
2l and the right hand side vector b by

[in (k)
_oFnu®), @)
(k)
._ 1ex rin (k)
b =Fet (@) — Fr(u®) @),

*

Friud) @) = R, @) + Ay, (4.:26)

Y

Then the algebraic problem is: Find ¢ = Ailg»kﬂ) such that
2Ar = b.

Now, the whole algorithm can be formulated as follows.
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4 Nonconforming methods for two-body contact problems with friction

Algorithm 4.1. (Incremental loading with Newton’s algorithm for FE/BE coupling)

Set initial displacement 11(()0), initial internal variables (517)(()0), a(()o)’ B(()O), initial tangential

macro-displacement (gf)go) and initial loads f, o, i

1. for j=0,1,2,...

a) fork=0,1,2,...
i. compute the load vector
b= Feo(®) — Frul, @)
ii. if ||b]|, := Vb -b < TOL goto 2.
oF (U, @)
o

w. find the next displacement increment ¢ = Aﬂgkﬂ) by solving

15 compute the matriz A =

)

Ar = b.
v. update the displacement field
il§'1~3+1) :u§k) + Au§k+1)

and the internal variables (5p)§-k+1), a§k+1), BJ(-RH), (gf)g-kﬂ). They should

satisfy the constitutive contact and plastic conditions. We use the return
mapping procedure for both the frictional contact and the plastification.
The details are described below.

b) exit, if the prescribed tolerance is achieved; otherwise, set k = k+ 1, goto (a)
2. initialise the next pseudo-time step

0) _ (k)
Wity =4

3. apply the next load increment

fj+1 = fj + (Af)j—l-lu

i1 =1t + (AL);1,

Wi = wj + (A)jp,

exit, if the total load is achieved; otherwise, set j = j + 1, goto 1.
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4.2 h-version of the penalty method

Linear system

Let us consider in detail the structure of the linear system 20x = b. After linearization
of contact and plasticity terms described below we obtain

Sry, SII‘;C,F?\, 0 0 F%;V
Sp%,p;‘v Spé + C*® —Com 0 xfﬂé _
0 —Cms  Cmm +10{1lg (BPL)T 2l
P p m
0 0 BY, AP i (127)

0

be:ct _ bint + ::C

by,

0

where the stiffness matrix

SI‘}S'V S?%7F?V 0 0

A A5 0 _ Srs,rs, STy Ol 9
0 Am 0 0 CP . (BIQ%L)T

p P

0 0 B, Al

consists of the finite element and the boundary element part and does not contain the
coupling terms. The submatrix A° is the stiffness matrix of the boundary element part.
It is dense, since nonlocal boundary integral operators are involved in the corresponding
bilinear form. The submatrix A™ is the stiffness matrix of the finite element part. It
is sparse and has a band structure. The upper index ” means that the matrix changes
within the Newton cycle due to the plastic terms. The matrix block A’g)lm is generated
by testing the trial functions, which correspond to the degrees of freedom in the interior
of O™ and its Neumann boundary I'}}, against themselves. The block Cglg corresponds
to the testing the trial functions, associated with the contact boundary I'Zy, against
themselves. The block Bfilg is generated by testing the trial functions, associated with
the interior of 2™ and I'}}, against the trial functions, associated with I'Y. The boundary
element block Srs, (Spsc) is generated by testing the trial functions, which correspond to
the degrees of freedom, associated with the Neumann boundary I'; (contact boundary
I'?)), against themselves. The block Srs, rs, represents the matrix elements, obtained by
testing the trial functions, associated with I'},, against the trial functions, associated
with I'y.

The term b is constructed by the usual contributions of external volume forces and pre-
scribed tractions on the Neumann boundary part. The terms C**,C*™,C™*,C™™, b 5 I"f”g
describe coupling of the bodies along the contact boundary. They appear after the lin-
carization of contact integrals. A, b describe internal behaviour of the bodies and

reflect, for example, the plastic effects. Computation of these terms is discussed below.
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4 Nonconforming methods for two-body contact problems with friction
4.2.4 Pure BEM for elastoplastic contact problems with friction
Boundary integral formulation for elastoplasticity

Plastic deformation is an irreversible nonlinear process. The plastic deformation is deter-
mined by the whole deformation history, and therefore it cannot be written in terms of
boundary integral operators alone. The Newton’s potentials must be employed. We
derive the boundary integral formulation for elastoplasticity from the coupling for-
mulation (4.17) with the plastic material law ¢ = C : (¢ — ¢P). In particular for

o™, (eP)™ € Ly(™), u™ € Vipp, @™ € Vi, e(+) == (V(:) + (V(-))")/2 there holds
(0™, e(@™))am — (f7, @™ )am

= (C:e(um),e(™))am — (C: (7)™, 2(™))am — (", @™ )am

= (C:e(u™),e(9™))am + (div(C: (e7)™), @™ )am
—((C:()m)-n™ @) gm — (F", 9" )am

= (C:e(u™),e(9™))am + (div(C: (7)) — f, @™ )am
—((C: (")) - 0™, " ) om

= (Su™, @) gm + (N(div(C = (")) = ™), ™) gm
—((C: (")) - ™ @ ) g

Therefore the boundary integral formulation for elastoplastic problem with frictional
contact can be written as follows: Find w € VYV such that

(Su, @)y + (N(div(C : (7)), @™ )sm = ((C 2 (")™) - 1™, ™ )5
—(p(u), [B])r, = (Nf. @) +(t.d). . VoV,

with the continuous contact traction

(4.28)

1 1,
P = pyn + pit, DPn = ——8n, p = ——g; - t.
En 5t

Here the penetration and the relative tangential displacement are computed in terms of
the displacement u, i.e. g, = g,(u), gf = gf(u).

Discrete weak formulation

We discretize the weak formulation (4.28) by defining a partition 7 of the boundary
I, i = s,m into straight line segments and introducing discrete spaces

o ={® e HA) @) € [P VI €T, B, =i'},
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4.2 h-version of the penalty method

Vi ={ecu(x): ol e [P(1)] VI T},
Vou =V, XV V5, =V, xV;.
The discretized version of (4.28) is given by: Find U = (U™, U?) € Vp:
F™U, @) — G((e")™, &™) = F*'(P) VP eV, (4.29)
where
Fnl(U, @) = <SU 45> (P
G((e")", @) := — (N(div(C: (e
Fol(@) = (Nf, &)y + (£,

P .= P,n + Pit,

A ®PDr (4.30)
1)) @ )gm 4 ((C: (7)) - 0™, )
P).
P,

The contact term in the functional F™ (U, &) is nonlinear due to the constitutive con-
tact conditions. The functional G((¢?)™, ™) is nonlinear when the plastic deformations
occur. Similarly to the previous section, we introduce the incremental loading process
as a consequent application of loading increments (Af);y1, (At)j41, (Adt); 1

fj+1 = fj + (Af)j-i-la
tj_|_1 :tj+(At)j+1, j:0,1,2
Uiy = w; + (A4,
which defines the discrete external load
Fi*'(@) := (N, gli)z + (1, QS>FN

and defines the pseudo-time stepping process. We introduce the increment-dependent
boundary discrete spaces

b= { @ € HVATY) : @], € Py(1), By = (@),
ij7h = ng,h X v%j,h’
Let Uy be the initial displacement state of the body. Unlike as in the FE/BE description
in the previous paragraph, we use the backward Fuler scheme for contact and the forward
FEuler scheme for plasticity. Using the implicit scheme for the plastic terms seems to be

a more sophisticated task, since in the pure BE case we need to have the displacement-
degrees-of-freedom only on the boundary of the domain.

The following implicit-explicit formulation must be solved on each loading step j: Find
(AU); € Vp, », and therefore the new displacement state U; = U;_; + (AU);, plastic
strain €/, contact traction P; = P(U,) such that

F'™U;, ®) = G, ®) + Fi*'(S) VP eV, (4.31)
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4 Nonconforming methods for two-body contact problems with friction

where contact and plastic constitutive conditions from Paragraph 4.2.1 and Paragraph
4.2.2 are satisfied.

In order to solve (4.31) we use Newton’s method. We proceed similarly to the previous
section. Let i be the coefficients of the expansion of U in basis of the discrete space
Vp.p. Define

F(yU, @) .= F™(U, &).

Therefore (4.31) becomes

P, @) = G(sj, @) + F(®) Y EV,

*

We perform the linearization of F/™(4l;, #). We choose the starting value

U =g,

J

and introduce the Newton’s increment (Aﬂ)g“ to proceed to the next iterate
(k+1) _ (((k) (k+1) _
L[] _Llj _l_(Au)] 3 k—0,1,2...
The Taylor expansion provides

. . oFmt(y® @

J

(AP, (4.32)

Now we are on the position to formulate the algebraic problem. Define for brevity the
matrix 2 and the right hand side vector b by

Note, that plastic strain from the (k)-th Newton’s iteration (5”)§-k)
hand side and makes no influence on the matrix. That corresponds to the forward Euler

scheme for plasticity. Then the algebraic problem is: Find ¢ = (Ail)g-kﬂ):

is appears in the right

Ar = b.

The whole algorithm can be formulated now as follows.
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4.2 h-version of the penalty method

Algorithm 4.2. (Incremental loading with Newton’s algorithm for pure BEM)

Set initial displacement Ll(()o), initial internal variables (517)80), oz(()o), Béo), initial tangential

macro-displacement (g2)" and initial loads f.,to, @

1. for j=0,1,2,...

a) fork=0,1,2,...
1. compute the load vector
b:= F(®) + G((e"), &) — Fim(ul, @)
ii. if ||b]];, := Vb -b < TOL goto 2.
oFm (U, @)
o

w. find the next displacement increment ¢ = Aﬂgkﬂ) by solving

11. compute the matriz A =

)

Ar = b.
v. update the displacement field
(k+1) (k) (k+1)
U =47 + (AU);

and the internal variables (5”)§-k+1), ozg-kﬂ),ﬁj(-kﬂ), (gf)g-kﬂ). They should

satisfy the constitutive contact and plastic conditions. We use the return
mapping procedure for both the frictional contact and the plastification.
The details are described below.

b) exit, if the prescribed tolerance is achieved; otherwise, set k =k + 1, goto (a)
2. initialize the next pseudo-time step

0) _ ¢((k)
U"+1 - uj

J

3. apply the next load increment

fj+1 = fj + (Af>j+17
ti =1+ (A,

Uiy = Uy + (A,

exit, if the total load is achieved; otherwise, set j = j + 1, goto 1.
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4 Nonconforming methods for two-body contact problems with friction
Linear system

The linear system 2r = b has the following form

Sty Sf%,riv 0 0 Er,
Srs,rs,  Srs, +C* —co 0 e |

0 —C™ ™Sy Shipe || e
0 0 Srary Sty Ty (4.33)

0

bt — b 4 bop + e

—pm,

C

0

The similar notations as in the description of the linear system for the FE/BE coupling
problem are used here. The only new term is b.», which reflects the contribution of
the plastic terms to the right hand side. Since the pure boundary formulation is used,
the submatrices, corresponding to the stiffness matrices of the bodies without contact,
are dense. Therefore, the whole matrix is of dense type, but with sufficiently reduced
size with respect to the FE/BE coupling described above, because the unknowns are
associated only with the boundaries of the bodies.

Note that only the contact blocks C**,C*™, C™* C™™ of the matrix are updated, which
corresponds to backward Euler scheme for frictional contact and to forward Euler scheme
for plasticity. The details connected with linearization of the contact terms are given
below.

4.2.5 Linearization of the contact terms

In this paragraph we will describe in detail the computation of the matrix elements
caused by the linearization of (4.26) or (4.32). According to the definition of the func-
tional " the contact terms must be also linearized. Denoting the contact terms by
CU, @) := — (P,[®]), and corresponding coefficient dependent functional C. (4, &) :=
C(U, @), where 4 are expansion coefficients of the discrete function U in the basis of
Vp . Consider some (fixed) incremental loading step j. Since all the values involved
correspond to this incremental step, we will omit the lower index ; for brevity. The
Newton’s scheme is used for solution of the problem. It is an iterative process, where
the next iterate is obtained from the previous one by adding corrections

YEHD — (k) 1 A k=0,1,2...

which are solutions of the linear system (4.27) or (4.33). Further down we describe the
computation of the matrix elements C%, a,b = m, s.
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4.2 h-version of the penalty method

Then linearization of the contact terms can be written as follows (cf. (4.32))
OC,(U® P)
oL k)

d

= oUW, &)+ %C(U(k) +aAU, &) . (4.34)

C. (U @) = O (UP | &) + Al

a=0

We analyse the normal and tangential contact terms independently. For U = U,n + Ut
we introduce the decomposition

C(U, @) = Cn(Un, @n) + Ct(Ut, @t)
with

Co(Un, B,) ::i/F o (U)[B] ds,  CoU, &) = i/F o (U,)[ )] ds.

En En

Linearization of the normal contact terms

For the normal contact terms we obtain with g, (U,) = ([U,] — ¢g)*

d 1 d
et (k) - el (k)
daCn(Un + a(AU)p, Pn) T dagn(Un +a(AU),) azo[@n] ds +THO.
Further,
A ® _ 4w o
dagn(Un + a(AU),) azo_da([Un + a(AU),] — g) .
(AU, i [U]—g >0 . ®)
{0, U] 2o [ = (AU sign(en@)
Therefore
d

== [ sign(eUD)) [(AV),] [6,] ds.  (4:35)

a=0 €n T'e

- (k) A é
—C(UP + a(AV),, 4,)

Remark 4.2.2. It is worth to say that in the case [U,(Lk)] = g the penetration function
gn(U,sk)) is not differentiable. The lack of smoothness can lead to some problems in
convergence of Newton’s method. This can be avoided by an appropriate reqularization
of gl T(Lk)) But for most problems only few iterations are needed to define the active set
(i.e. contact nodes, coming in contact), see [41, 4.4.2].

Remark 4.2.3. The expression in the right-hand side of (4.35) is linear, since the
values of sign(gn(U,(Lk))) are taken from the previous iteration. In other words, the matriz
element 1s "switched on”, if the penetration function in the corresponding point was
positive in the previous iteration, i.e. the point was in contact.
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4 Nonconforming methods for two-body contact problems with friction

Linearization of the tangential contact terms

For brevity of notation we introduce the parameter-dependent projection operator Il

pointwise as follows
x if |[x] <0
H = Y — )
o() { Osign(x), if |z| > 6.

It is easy to see that the constitutive conditions, described in paragraph 4.2.1 provide
gi (Uh) = 1le, 7(ge(Ur)) = 1L, #([U4]),
since g;(U;) = [Uy]. Therefore

d
%Ct(Ut(k) + Oé(AU)t, @t)

Remember that in case of Coulomb’s frictional law there folds

F = il PP| = Hg, (U + a(AD),)

n

1 d
== | —IL,#(gUP + a(AU),))|  [®)] ds+ THO.
Et T'c do

a=0 a=0

We distinguish between stick and slip case, i.e. we need to compare |g; (U™ + a(AU),)|
and e, F := ufj—flgn(Uy(Lk) +a(AU),,) under condition a = 0. In other words we will speak
about

stick, if g (UM < ufj—tgn(Uka))a
. k €
slip, if |gt(Ut( ))| > Mfg—tgn(Uék))'

With this notation we obtain

d
d—Hstf(gt(Ut(k) +a(AU)y))
o a=0
igt(Ut(k) +a(AU))| for stick,
— da a=0
N d
- {ufj—tgnwé’“ + a(AU),) sign(g, (U + a(AU>t>>} . for slip.
n a=0
In case of stick we obtain
d d
a(U ta(ar))| = U0 Fa(AD)]| = (A
@ a=0 o a=0

In case of slip there holds (cf. (4.35))
d 3 .
{2 + a(a0),) s (U + o))}

7 .
= 11y sign(a, (U)) sgn(a(U)[(AD),],

n

since J
— sign(g, (U + a(AU),))

=0.
do

a=0
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4.2 h-version of the penalty method

Remark 4.2.4. There is no singularity in case of slip, since \gt(Ut(k))\ > ufj—;gn(Ur(Lk)) >
0 and the origin is excluded.

Summing obtained results we obtain

d
@Ct(Ut(k) + a(AU)s, D)

a=0

1
/ vy (9] s, for stick: |g(U®)] < iy 2, (UP),
T

c Et

/ P sign(gn (UM (UI)(AV),] [ ds, for slip:  [g(U)] > g (UD).
Te

En

Contact contribution to the right hand side — Return mapping for tangential
contact traction

Linearization of the nonlinear contact terms C(U%**Y) produces contributions to the
system matrix and to the right-hand side, according to (4.34). The following terms
must be added to the right hand side

—Cc(U®, &) = / P,[®,]ds + / P,[®,] ds.
T'e T'o
The normal and tangential contact traction are computed with the constitutive relations

1 1
Pyi=——g,  Pi=-—g.
En Et

Computation of the penetration function g, and of the micro-stick function gy is de-
scribed in paragraph 4.2.1. The computational algorithm for the tangential traction P,
is known in the literature as the return mapping algorithm. It is a two-step algorithm of
the predictor-corrector type. First, the trial value of the tangential traction is computed,
based on the total tangential displacement g;

. 1
Pttmal = —g—tgu gt == [U].

Then, it is checked, if the trial friction force P/ satisfies the Coulomb’s frictional law.
For this reason the value of the frictional yield function fy, is computed

ffr(Pttrial) = |Pttrml| o ,Uf|Pn|
and, if the Coulomb’s law is violated, the correction of P/ is performed.

Pttrial’ if ffr(Pttrml) S O,
B = Ptrial R )
pslPal g AE fae(P7) > 0.
|| P
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4 Nonconforming methods for two-body contact problems with friction

4.2.6 Linearization of the plasticity terms in the FE domain —
Return mapping for plasticity

Since we use the backward Euler scheme for plasticity in case of FE discretization, the
energy bilinear form is nonlinear. We restrict our attention to the one of bodies with

7 77

FE discretization and omit upper indexes and ”m” marking the master or the slave

body.
Let us consider the linearization of the energy bilinear form closer.

0

(U(U(k+1))v E(QS))Q’" = (U(U(k))v E(QS))QM + W

(a(U®), e(®))om AU

The first summand makes a contribution to the right-hand side and the last one makes
a contribution to the matrix of the linear system as shown in Paragraph 4.2.3. Further
we define the elastoplastic tangent moduli (C)*+1) by

0o(U™) )
S AU = 5 € (c(UY) - U)au (4.36)
= (Cer)k+D . (AU *HY), (4.37)
We derive the explicit expression for (C)*+1) below.

Discretization of the yield condition, flow rule and hardening law (4.21) with Ay :=
V1At provides

n(k—i—l = dev|o (k+1)] (k+1) [B(]H'l)] =0,
(f)*FD = [Jn*+)] \/7[( (k1))
D) n+
[[n®+D]]
(eP)*HD) = (7)) 4 AypEtD), (4.38)

Flk+D) :ﬂ(k)+\/;AH(k+l)n(k+l)’

B+ — o) 4 M\/g ’

AH* Y = H(a® D) — H(a®).

where

and isotropic K (a)) and kinematic H(«) hardening modules are defined by (4.22). The
discrete version of loading/unloading complimentary Kuhn-Tucker conditions is

Ay =0, ()™ <0, Ay(fu)*tY =0. (4.39)
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4.2 h-version of the penalty method

It is easier to work with deviatoric parts of the stress and the strain tensors
e := devle], s := dev]a].

On order to obtain the stress field, which satisfies the discrete Kuhn-Tucker conditions
(4.39), we use the predictor-corrector scheme [60]. The predictor step is the pure elastic
step. If the discrete Kuhn-Tucker conditions are not satisfied, then the corrector step is
needed, which performs a correction of the stress deviator by changing the plastic part

of the strain tensor. The method can be geometrically interpreted as the closest point

projection of the stress onto the yield surface ( fpl)(k“) = 0. The method is also known

as the return mapping algorithm.

First we perform the pure elastic trial step. Relation (4.23) yields s = 2fe. The

discretized version is
(Strial)(k—l—l) = S(k) + 2ﬂA€<k+1), Ae(k—l—l) = e(k—l—l) _ e(k)

(ntrial)(k—i-l) = (Strial) (k+1) ﬁ

If the discrete yield condition is satisfied, i.e. fy((s")#+D o®) 3H)) < 0, then there
is no plastic loading occurs in the current step and we set

(Strz’al)(k-l-l) = S(k"‘l)7 Af)/ = 0.

If f ((striahy(k+1) (k) 3(K)) > 0, the corrector step should be performed. The discrete
conditions (4.38) yield

s — dev[C : (e®+D) — (p) (DY)
= dev[C : (e® + Ack+D — (P)®) _ Ay
5% 1+ dev[C : (Ae®H) — AyplEtDy]
= s® 1oAY — o Ayn kD

( tmal)(k-i—l QMA,yn(k—i-l

Therefore

(k+1) k+1) B(k—l—l)

= sl

— (s'rial) D) _ A D) _ G _ \/7AH (k+1) ) (k+1)
3

_ (ntrial)(k-l-l) . <2ﬁA’}/ + \/gAH(k—l—l)) n(k-l—l)

trial)(k—l—l) . A(k—l—l)n(k—l—l)

k
tm’al)(k—i—l) _ A+ 77( )
[+

Ui

= (1

=:(n
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4 Nonconforming methods for two-body contact problems with friction

and
trial\(k+1) _ U(kﬂ) (k-+1) (k+1)
(n"*) W(Hﬁ ||+ AYTY),
||(ntrial)(k+1)|| _ || (k+1) || _‘_A(k-i-l)’ (440)

Alk+1) _ QA + \/%AHUH'D.

This provides that the normal direction n**1) is defined fully in terms of (nrie!)*+1);

(ntrial)(k—l—l) n(k+1)
[1(rien) &0~ Tl —

(k+1)

n

As the yield condition was not satisfied after the trial step, the corrector step should
return the stress on the yield surface, i.e.

. 2
() = )] - 2 () =

Finally, we obtain the closed nonlinear system for finding the consistency parameter A-y

(fp)®FD = || (pfriet) D] — <2ﬁA7+ \[ AH ’f“) \[ K(a®) =0,
2
ot = o) 4 \/;Av- (4.41)

Note, that if kinematic/isotropic hardening law is given by (4.22), the system (4.41) is
linear and can be rewritten as

p

. . 2 =
( Z’zal)(k-l-l) — ||(ntmal)(k+1)|| o \/;(UY + eHa(k))

Now we can establish the update formula for the consistent elastoplastic tangent moduli
(Cer)(**+1) For the stress tensor there holds

. . 2 _
(Fo) D = (F) 0 = (2 + SH)Ay =0,

U(k—l—l) _ Htr[é(k+1)]1 + 8(k+1)

= ktr[e® )1 4 2me* ) — 2mAyn
=C:el+D) _ 2,uA7n (k+1)
This yields
d (k+1) —C - dE (k+1) (d(Av)n(kH) —I—Avdn(kﬂ))
0A ontk+1)
= ((c —2in* Y @ &Ewl — A5y ) t de® ) (4.42)

_ (Cep>(k+1) . d&j(k+1),

130



4.2 h-version of the penalty method

It is easy to show [60, Lemma 3.2] that

ont+D) — 1 (I N (k+1)) (4.43)
(sptrial) k1)~ [ (rial) )| n n :
trial (k+1) trial (k+1)
AN N (D "
a(ntrml)(k-l-l) ‘ ‘ (ntrml)(k-l-l) | |
Furthermore, there holds
a(ntm‘al)(k+1) Helk+1) 1
et APt 2p\ I - gl ®1
This and (4.43) give
ontk+1) 27 1
_ o (E+1) (k+1)\ . =
9D — ]| (ptrial) (1)) | (I-n ®n ) (I 31 ®1
-~ 2n 1 (k+1) o - (k+1)

Differentiating the consistency condition (4.41) we obtain
ol (n"*") k+1)|| _ Ay 2 i)y g eny] O
For the first term the chain rule and (4.44) provide

oll(n")*+V]| _9ll(n
Oe(k+1) o ( mal)(k+1 ’ Oe(k+1)

tmal)(k-i—l || (ntrial)(k-l-l)

=2 (I— 5 ® 1) D) = o+
3
The hardening law in (4.38) yields
Oé(k-H) B D) A')/
Oek+1) — '\ 3 9elk+1)
Thus, we derive from (4.46)

—1
Ay K'(a®)) 4 H' (kD) (k1)

Delk+1) 37 ’
Inserting relations (4.45) and (4.47) in (4.42) provides the following representation for

{1 + (4.47)

the elastoplastic tangent moduli

OA~ onk+1)
DektD) z T 9elkr1)

C? =C — 2an*V) @

1
:K1®1+2ﬁ<I——1®1)

3
K/(a(k+1)) + Hl(a(k—l—l)) -1
-2 |1+ D) @ p k)
3f
L LN  SUE B RN S P R
| |(ntrial>(k+1) | | 3
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4 Nonconforming methods for two-body contact problems with friction

or

Cep _ /{1 ® 1 + 2ﬁa<k+l) (I _ 11 ® 1) _ 2ﬁb<k+1)n(k+l) ® n(k+1)
3 )

gD g 2EAY
|[(ntrial) (1) ]|

k+1 E+1)y7 1
I

This representation used in (4.36) generates the linear system matrix contribution cor-
responding to the plastic behaviour.

4.2.7 Numerical examples
Example 1

The model problem can be interperted as an idealised isothermic metal forming process,
described as follows. An elastic stamp comes in contact with a plastic work piece and
leaves some plastic deformations in it. Then the stamp changes its location, comes
into contact with the work piece in the neighbours place and initiates some plastic
deformations again. Without loss of generality we denote the stamp as a slave body
and the work piece as a master body. The coordinates of the stamp in the moment of
the first touch are Qf :=[0.2,1.2] x [—1, 1], and in the moment of the second touch are
5 :=[-1.8,—0.8] x [—1,1]. The work piece is given by Q™ := [-2,2] x [-3, —1]. Both
touches are performed by setting prescribed total displacement on the Dirichlet boundary
of the work piece I'l} := [—2,2] x {—3} by u} :=4,3-1073. This total displacement is
applied in the incremental form. The homogeneous displacement u}, = 0 is prescribed
on the Dirichlet boundary I'y,; = [0.2,1.2] x {1}, I'}), = [-1.8,-0.8] x {1} of the
stamp for the first and second touch respectively.

On Figures 4.1 - 4.4 we present the deformed mesh and the norm of the plastic strain
tensor ||eP|| := v/e? : e in both bodies for both approaches. One can clearly observe
the similar plastic deformations in the work piece for FEM and BEM modelling of the
stamp. To make more feeling of deformation inside the stamp modelled with BEM, we
interpolate the FE mesh, compute displacement inside the body using the representation
formula and compute corresponding deformed state. The displacement is multiplied with
the factor 100 to make it visible. The evolution of the stress deviator norm in dependence
of the applied force in the characteristic point X = (—0.9; —1,1) in the work piece is
shown on Figure 4.5. The curves for FE/FE and FE/BE simulations are very close.
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Figure 4.1: FE/FE: deformed mesh Figure 4.2: FE/FE: ||e?||
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Figure 4.3: FE/BE: deformed mesh Figure 4.4: FE/BE: ||£?||

Example 2

We make now a single touch in the middle of the work piece The coordinates of the
stamp in the moment of the touch are (2 := [—1,1] x [—1,0]. The work piece is given
again by Q" := [—2, 2] x [-3, —1]. The Dirichlet boundary of the stamp I'}, := [—1, 1] X
{0} is assumed to be fixed, i.e. u$, = 0. The Dirichlet boundary of the work piece

m = [-2,2] x {—3} is subjected to the total displacement w7 := 4,2 - 1073, applied
incrementally.

On Figures 4.6 - 4.11 we present deformed meshes and the plastic strain norms. They re-
flect qualitatively the same behaviour. On Figure 4.12 we show the evolution of the norm
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4 Nonconforming methods for two-body contact problems with friction

Mesh 64x128. Stress deviator at point (-0.9,-1.1)
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Figure 4.5: FE/FE, FE/BE: || dev o||
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(1;—1,1).
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Figure 4.7: FE/FE: ||e?||

0.1123E-C

0.1053E-C

0.9827E-C

0.9125E-C

~ 0.8422E-C

~ 0.7720E-C

~ 0.7017E-C

~ 0.6315E-C
~ 0.5612E-C
 0.4910E-C
 0.4207E-C
r 0.3505E-C
 0.2802E-C

0.2100E-C

0.1397E-C

0.6950E-C

—-.7471E-C

Figure 4.9: FE/BE: ||eP||
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One observe that both curves with the FEM modelling are pretty close to each other.

of the stress deviator for all three methods in the characteristic point X
The curve for BEM in the work piece shows qualitatively the similar behaviour.
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4 Nonconforming methods for two-body contact problems with friction

Mesh 16x32. Stress deviator at point (1,-1.1)
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Figure 4.12: FE/FE, FE/BE, BE/BE: || dev o||
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4.2 h-version of the penalty method
4.2.8 Numerical examples for adaptive mesh refinement

The proofs of the a posteriori error estimates from Section 3.3 for frictional contact
between an elastic body and a rigid obstacle can be easily generalized to the case of
two-body frictional contact problem in elasticity. Moreover, the refinement procedure
can be performed in the both bodies independently. The three coupling combinations
FE/FE, FE/BE and BE/BE can be performed and the FE indicator (3.100) and the BE
indicator (3.107) can be applied in the FE and in the BE part respectively.

Let us consider a frictional contact problem between two elastic bodies 2°, Q™. where
0% =[-1/2,1/2] x [0,2], Q" =[-2,2] x [-2,0].

The upper boundary of ¢ is fixed and on the lower boundary of 2™ the displacements
are prescribed, i.e.

u’ =0, on I'}) == [—1/2,1/2] x {2},
u™=5-10"% on I'l = [-2,2] x {-2}.
The remaining parts of the boundaries are treated as contact boundaries
o= 00°\T'y, o= 0Qm\ I'].

The both bodies have the same material parameters £ = 266926.0, v = 0.29 and the
coefficient of friction 1y = 0.1. The examples for boundary elements were presented
for one-body frictional contact problems in Paragraph 3.3.5. We use here the FEM
discretization in both bodies.

The automatic adaptive mesh refinement procedure is given by Algorithm 3.2. On each
iteration step k, new meshes 7,7, ., 7,7}, are generated, according to the values of the
error indicators (3.100) and the refinement rules. Then the following discrete problem
is solved: Find U = (U*,U™) € V%, X Vi, such that

(c(U),e(D))asuam — (P~ [@]>Fc = <i, 45>FN, Vé € Vi, X Vi,
where the discrete finite element spaces for b = s, m are given by
Vion ={® € H'(@): @i € [R'(K)]’ VK € T2, @, = a'},
Vi, = {45 € H'(): & € [R'K)]* VK € T2, ®|r,, = o} ,

where RY(K) represents the linear functions P(K), if K is a triangle, or the bilinear
functions Q'(K), if K is a quadrilateral. According to (4.19), (4.20),

1 1
P .= P,n+ PBit, B, =——g,, P=——g7-t.
En Et
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4 Nonconforming methods for two-body contact problems with friction

Figure 4.13: Initial mesh and adaptively generated meshes after 5, 10", 215, 36" and
42" refinement steps
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Figure 4.14: Value of error indicator (3.100) in ©° for uniform
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x-component y-component
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Figure 4.16: 2- and y-components of the displacements after 42" refinement step

The sequence of adaptively generated meshes is shown in Figure (4.13). We observe that
the most of refinement happens on the zone of actual contact, and near the points, where
the boundary conditions change (contact / no contact or no contact / Dirichlet). We
compare behaviour of the error indicators for the uniform and adaptive mesh refinement
for Q% and Q2™ in Figure 4.14 and Figure 4.15 respectively. The z- and y-components of

2nd

the displacements after 42" refinement step are given in Figure 4.16.
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4.3 hp-mortar BEM for variational inequality

A novel hp-mortar BEM method for two-body frictional contact problems for non-
matched discretizations is constructed in this section. The contact constraints are
imposed in the weak sense on the discrete set of Gauss-Lobatto points involving the
hp-mortar projection operator. The problem is reformulated as a discrete variational
inequality of the second kind with the Steklov-Poincaré operator over a discrete convex
set of admissible solutions. We obtain an upper bound for the discretization error in the
energy norm. Due to the nonconformity of our approach, the error is decomposed into
the approximation error and the consistency error. Finally, we show that for quasiuni-
form meshes the discrete solution converges to the exact solution as O((h/p)*/*) in the
energy norm under additional assumption on the discretization parameters. We solve
the discrete problem applying a Dirichlet-to-Neumann algorithm. The original two-body
formulation is rewritten as a one-body contact problem and a one-body Neumann prob-
lem (see also Chernov et al. [18]). Then the global problem is solved with fixed point
iterations. An alternative approach is the Uzawa algorithm, which consists of solving two
independent one-body problems with a subsequent update for the contact traction. The
error indicator obtained for the pure FE approach for interface problems by Wohlmuth
[70] is extended here to frictional contact problems (also with boundary elements) and
is applied in an automatic mesh refinement procedure together with the three-step hp-
refinement algorithm (see e.g. Maischak and Stephan [47]). Then numerical examples
are given, which underline the suggested approach.

4.3.1 Discretization

Consider two polygonal domains 0!, Q? with Lipschitz boundaries I'" := 9, i = 1,2.
As introduced in Section 4.1, we assume that each I'* consists of three disjoint parts

0, T% and T',. For simplicity of presentation we assume that the bodies are initially
in contact along I'c = I't, = I'Z (I'¢ can not enlarge), and that I'c is a straight line
segment. Similarly to Section 3.2, we assume that ['p and I'¢ are connected curves and
I'pNTe = 0. With each I'* we associate a finite family of disjoint straight line segments

r=r

IeT}

 with diameters not exceeding h;.

We allow only conforming meshes 7/, i.e. every segment from 7' is a subset of either
I or T or T4, Let P,,(I) define the space of polynomials on I, with degree less or
equal p;. We define the boundary element spaces on I'* as

V;, ={U eV VI T Uc [P, (]}, Vip =V}, X Vi,
=AU e W VT € T, U € [P, (D)}, Wiy =W, x W,
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4 Nonconforming methods for two-body contact problems with friction

where V', W' are given by (4.2) and (4.3) respectively. We assume that the meshes 7}’
and the polynomial degree distributions in Vﬁlp are quasiuniform, i.e.

, 1
vi,J e, 3C>0: u<C, &<C, 1=1,2,
|| P
and C' is independent of I, J. Let

h; := max ||, p; := min py
I€T; 1T}

be the characteristic mesh size and the characteristic polynomial degree in V}Lp,Vip
Note that so far there is no relation imposed between h; and hy as well as between p;
and ps.

Since the meshes 7;' and 7,2 induce two independent partitions of T'c, we can not
incorporate the contact conditions directly into the set of admissible discrete solutions,
as it was done for the variational formulation (4.5). In order to define discrete contact

conditions we introduce an auxiliary space of normal traces on I'¢, associated with 7!
and 7,

= {W=U-n[r,:U€V,,}, i=12 (4.48)
and the mortar space, associated with 7!
M, ={¥eN,,: WeP,_1I),if INc#0}. (4.49)

We define the hp-mortar projection operator (e.g. [59]) as the mapping 7y, : HY2(T'¢) —
hp With
Thp® = ¢ in oL,

/ (o — M) W' ds =0 Vol e M), (4.50)
e

The hp-mortar projection operator was studied by Bernardi, Maday, Patera in [11], [12],
Ben Belgacem, Suri, Seshaiyer, Chilton in [59], [9], [7], [58] in the context of domain
decomposition methods. Further, we need the following approximation and stability
properties of 7.

Lemma 4.3.1. [7] For any v > 0 there exists C' > 0 such that ¥x € H'™(—1,1),

1/2+17

X = mapxl 210y < C i/2+,jv10gp1||xHH1+u ~1,1) (4.51)

where n = min(v, py).

Lemma 4.3.2. [59] If the mesh refinement is not stronger than geometric (see [59,
Condition (M)]), then for ¥x € HY?(—1,1) there exists a constant C > 0, such that

3/4
Xl 211y < CBY NIl 721y (4.52)
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4.3 hp-mortar BEM for variational inequality

Furthermore, according to [58] the stability constant can not be improved.

Let Gj, be the set of Gauss-Lobatto nodes associated with the elements of 7,/. Now we
are in the position to define the set of admissible Galerkin solutions ICp, of (4.55) below,
by imposing non-penetration conditions only on G}Lp.

Khp :={U € Vy, : (Uy —mp,Ul)(z) <0 Vz € Gy, NTc}.

hp“~n

Note that in general ICp, ¢ K.

The Steklov-Poincaré operator S defined in (4.11) contains the inverse of the single
layer potential V!, which cannot be evaluated numerically. Therefore we introduce
the discrete Steklov-Poincaré operator S := W + (K’ + 1/2)inp Vi, i, (K + 1/2) which
differs from S. Here, iy, stands for the canonical embedding ip, : Wh, < H~/*(I),
and iy, ‘denotes its dual with res'pect to 'the duality produ.ct <~, > = H—1/2(F)<', '>H1/2(1“)7
cf. Section 1.4. We define the discrete single layer potential by
Vhp = i;;p‘/ihp

and the consistency operator E by

E:=8—-8=(K+1/2)(V =iV, bir, ) (K +1/2). (4.53)
The following approximation properties of E are given by Lemma 1.4.2:

HCE >0: Yu,v €Y <Eu,'v>2 < CEH’UJ‘|ﬁ1/2(2)”’v||ﬁ1/2(2),

ICo>0: Yo eV |[|Ev||gop < Coé(v), (4.54)
Say) -1
where é(v) = @gl/\)hp [VTHE +1/2)v = Ol g-1/2py-

Now we are able to pose the Galerkin formulation of the problem (4.12):
Find U e ’Chp :
(SU, & -U)_+j(®" —m,8) —j(U —m,U>) > L(®-U) Vb €Ky, (4.55)

The discrete set of admissible solutions K, forms a convex cone. Standard arguments
of convex analysis guarantee uniqueness and existence for the solution of (4.55).

Remark 4.3.1. The formulation (4.55) is not symmetric, since the contact conditions
are defined in terms of the mesh T;', associated with T'. Of course, it is possible to
introduce a formulation in terms of the mesh T2, associated with T2

In the subsequent analysis we will need the Lagrange interpolation operator
7, : C(X) = {ve C(E) :v|; € P,,(I), VI € T))}

defined on the set of Gauss-Lobatto points Gﬁm. The following stability and approxima-
tion properties follow from [10, Corollary 4.6, Theorem 4.7] by scaling.
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4 Nonconforming methods for two-body contact problems with friction

Lemma 4.3.3. Let v be any connected subset of ', i = 1 or 2. Assume that the end
points of v coincide with two mesh nodes from T}, i = 1 or 2 respectively. There exists
a positive constant C such that for any Yu € H*(y)

||Ifizpu||H1(’y) S CHUHHl('y)’ (456)

Furthermore, for any real numbers u and v, v € [0;1] and p > HT”, there exists a

positive constant C' depending on p such that the following approzimation property holds
forYu € H*(—1;1):

; hi\"™"
lu =Ty <€ (%) ey, (@57

)

The following inverse inequality for polynomials is of importance.

Lemma 4.3.4. (inverse inequality) For arbitrary U € Ny, where Ny, is the space of
continuous piecewise polynomials on I'c given by (4.48), there exists a constant C' > 0
such that

1/2
i

Di
U re) < Ch—||U||H1/2(rc)- (4.58)

Proof. The assertion of the Lemma follows from Schmidt’s inequality (see e.g. [24])

(p+1)?
opl|La-1,1) < NG opllra-1,1)  Vipp € Pp(=1,1)

with standard interpolation and scaling arguments. O

4.3.2 A priori error analysis
In order to derive the a priori error estimates for the error between solutions of (4.12)
and (4.55) we proceed in several steps.

Lemma 4.3.5. Suppose u € IC is the solution of the variational problem (4.12). Let
U € ICpy be the solution of the discrete problem (4.55). Then there exists a constant
c > 0, such that

1/2}

1/2}

(4.59)

cllu=Ul| g2, < @g‘l/f;hp [VTHE +1/2)u — Ol g1y

)

hp

: . 1/2
Tl {Hu @l g2y om [Palpr [ +

/ o[ D) + F| 9} — mp, 7| ds
INe]

+ qislel;fc{KU"’ [Pn — Un]>rc|l/2 + ‘ /FC alldr — Ul + F ([ — U} = m,U2]) ds
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4.3 hp-mortar BEM for variational inequality

N

Proof. Since the approximate Steklov-Poincaré operator S is positive definite on V
(cf. Lemma 1.4.1), and u, U solve (4.12), (4.55), respectively, we obtain for arbitrary
¢ and & € Ky,

cgllu — UHﬁuz(Z) < <§(u ~U),u—"U)
= <§u,u> + <§U, U> — <§u, U> — <5’U,u>
< (Su. ) + j([8]) — j([u]) + L(u — )
+(SU, &) + j(®' — 7, &%) — j(U" — 7}, U*) + L({U — P)
— <Su, U> — <SU,u>
— <Eu, u> + <Eu, U> + <EU, u>
=(Su,¢—U)—L(¢p—U)
+(Su, ® —u) — L(P — u)
— (Su, & —u) + (SU, &) — (SU, u)
— <Eu, u> + <Eu, U> + <EU, u>
+i((¢) — i([u]) +j(@" — m,, 8%) — j(U" — m,, U?).

The partial integration provides

(Su,p —U) — L(¢p —U) = (o,n+ out, [¢p — U]>FC,
<Su, b — u> —L(®—u)= <ann +oit, [P — u]>FC.

Furthermore, since S = S+ E, it is easy to see that
—<Su, b — u> + <5’U, 45> — <SU,u> — <Eu,u> + <Eu, U> + <EU,u>
= <§u,u — 45> + <Eu,u — 45> + <S’U, sl5> — <S’U,u> — <Eu,u> + <Eu, U>
= <§u,u — 45> + <Eu,u — 45> — <§U,u — 45> — <Eu,u> + <Eu, U>
= <5’(u— U),u— &)+ <Eu,u— b) + <Eu,U—u>.
Using (4.54) we obtain for some oy > 0
<Eu,u — sl5> + <Eu, U - u>

< HEUHH*UQ(F) <Hu - UHE[l/Q(E) + ||’LL - ﬁHﬁl/Q(E))

Oél—l—lA 2 1 2
() + Sl B2

<Cy| =|lu—-U|-
=0 ( g I = Ul + =55,
Continuity of the discrete Steklov-Poincaré operator S (Lemma 1.4.1) provides for ay > 0

<S('u, - U),u - QS> < CS’HU’ - U||ﬁ1/2(2)||u - !pHﬁl/z(E)

Qi 1
S Cg (7”’(1, — UH%IUZ(Z) + TOAQHU — QS||2}~11/2(2)) .
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4 Nonconforming methods for two-body contact problems with friction

Therefore, combining these results we obtain for the global error
(03] (6%)
(5 = Co = Cs5) = Ulagsy

a;+ 1 C Ca
<o <u>2+( °+—S) = B,

oy 2 2
+|<an,[n >\+\/ () — ) + F| 8} — 7k 82| — Fllw]]) ds

4 o [n — >|+\/ oulée — U+ Flignl| — FIU} — b U2]) ds
o]

Since we are free in choosing ¢ € K, ¢ € K;,, we are able to take the infimum in
the above inequality. The assertion of the lemma follows by noting that due to contact
conditions in (4.1) there holds

on [un] =0, orlu] + Fllug)| = 0.
U

Remark 4.3.2. It was shown in Lemma 4.3.5, that the global error consists of three
parts. The first infimum in (4.59) is the approximation error of the space Wy, initiated
by the approximation of the Steklov-Poincaré operator by S. The approximation property
of Wiy provides that there exists C' > 0 :

. hy = ho
@él‘l/\f)hp ||V (K—I— 1/2)’(1, — @HH 1/2(1“ < C (pl p2) ||TU’||H1/2(1")' (460)

Here T := VYK + 1/2) is the non-symmetric representation of the Dirichlet-to-
Neumann operator, introduced in Section 1.3. The second infimum in (4.59) is standard
even for conforming problems and corresponds to the approximation property of the space
KChp. The last infimum in (4.59) is the consistency error and is caused by nonconformity
of our approach, i.e. Kp, ¢ K. It disappears in case of matching meshes on the contact
boundary with piecewise linear basis functions.

Remark 4.3.3. Note, that there holds

1.1 1 41
o, =Tu -n'|r., o=Tu -t'|r..

We proceed further with the approximation error.

Lemma 4.3.6. Let u € KN fIg/z(E) be the solution of (4.12) and o, € H*(I'¢) and
oy € HY2(T'¢) are the normal and tangential contact traction respectively. Then there
exists @ € Iy, and C > 0 such that

hy ho
= Bl gy < € (Mg + 22 ful o (4.61)

h’l 1/2
(om. [2]);.| 1/2<c(p1) Voamlonlfeng w2 (462
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4.3 hp-mortar BEM for variational inequality

1/2

‘/ o[ D)+ F| ) — mp, 7| ds
el

hy 1/2 ho 1/2 s o
SC((EIng1> o IF 1 e 12l e (4.63)

Proof. We denote the jump of the normal displacement r, := [u,] < 0 on I'c and

r := r*n! where r’ is an extension of r,, onto X! satisfying

[Irallasr2iony < Cllrllgerewe),

Existence of such an extension can be shown similarly to Lemma 3.2.2. Further we

introduce w := (u' — r,u?). Note that there holds [w,] = 0 in all points of I'c and

lwl| gorz ) < lwll gorz ) + Cllrallgarneey < Cllull gore
(=)

) =)

Let R}, be the zero extension operator from I'c onto ¥'. Due to the definition of the
H'2-norm there holds

1R ¥l /sy = 1@l ivgeey
for arbitrary ¥ € H'?(I'¢). Similarly to the approach of Hild [34] for the h-version of
FEM, we define a piecewise polynomial function W := (W' W?).

W Ihpw +th(7rhp(1'hp n Ihp n))
W = Ihp

The operator R;, is an identity operator on I'c and 7, Ty w), = T, w,, on I'c; thus in
all points of [ there holds

Wy —mp Wi =Ty wy + Ry (mp (T wi — T wy)) — m Liws = 0. (4.64)

Using the approximation property of the Lagrange interpolation operator (4.57) we
obtain

hy hz hy hz
w — Tp,w|| -1y <C< )’w~/ <C< w232,
10 = Toguwl gz < € (22452 ) ol gy < C (52422 ) o,

Moreover, stability of Rj, provides
|Zipw = Wl ooy = | Tipw! = W[ gosags

- HRfllP (Wfllp(Ifllp Ilep Wy, )HH1/2(21)

< C|mhy (Tnpwn — Tipwy)

(4.65)

(e
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4 Nonconforming methods for two-body contact problems with friction

The stability constant in (4.52) of the mortar projection 7rhp includes the factor pj 3/4 ,

therefore direct application of (4.52) leads to the reduced rate of convergence. To over-
come this we perform a splitting, and employing (4.51) we estimate

7hp (Thpwn = Zigwi) | o oy < N @npon = Zigwr) = may (Zngwon — Zigwi) || oo
+HIhpwn_If2lp nHHl/z r'eo)

h
gc(p—i) Viogpi || Zhwh — T2, Wil 1,y (4:66)

1T = Tinl ooy -

Further, we use the approximation property of the Lagrange interpolation operator (4.57)

to obtain
HIfllp Ilep nHHl/Z (Te) HIhpw —w, Hﬁl/Z(rc) + Hwi o IlepwiHﬁlﬂ(rc)
h h
<0 (24 22) fwlng,
HIhp n_Ifzm ”HHl Te) HIhpw _leHl( - Hw o h:n nHﬂl(r )

hy h2)
< C —|— - [73/2 5
<<P1) (pz ) el =)

since [wy,] = 0 by construction. This together with (4.65) and (4.66) gives

h hi ha \ M/? hs
T = W o2 <0<Q) bwﬁ(mm) gy + 22 | [l

hq ho
<0 (Btogpi+ 2 Julljoss
Therefore, there holds
||w — W||f11/2(2) S ||w — Ihpwa{l/Q ) + HIth — W||f11/2(2)
h1 ha
<0 (Btogp+ 22 full o
P Do ()
Now, we introduce @ := (W1 +I}Lpr, Wz). It follows with (4.64) that & € ICy,, since
®,, — @ = Wy + Ly — m, Wil = Ly = Ly lual| ,, <0 V2 € G),NTe.

Note that

u—®=(w+rw)- W +Zr W) =w-W+(r—Z,r,0).

148



4.3 hp-mortar BEM for variational inequality

Alltogether

||u — @HHUQ(Z) S ||w — W||H1/2(Z) + H’f‘ — I,llp’r'Hﬁlm(El)

hy

h’l hg
<C <E log p1 + E) lll g2 5, + C ||[un]||H3/2(FC)

hi hs
<0 (Biogp+ 22 ull o

and (4.61) follows. In order to show (4.62) we decompose

/ on|Pn — uy]ds = / on[Wy] ds + / On (I}Lprn — rn) ds. (4.67)
T'c T'c e

For the second term there holds

/ O (Znprn = 1) ds < ||owll ooy [Jrm — IfleT“HLQ(FC)
< Cllollaee o Il 372y (4.68)

hy
<c (p) [0t el s

Note, that we cannot achieve a better result, since the error of the interpolant cannot
be optimally bounded in Sobolev spaces with negative index. Furthermore, it is crucial
to use the interpolation operator in the definition of @ to show that @ € K;,. Using
again that R}Lp is identity on I'c, definition of the mortar projection (4.50) and stability
property (4.56) we get with the approximation property of M, (cf. [63])

/ o[ W] dS:/ Tn (Whpzf%p Wn, If%p n) ds
T'e o]

= inf / (00 — O) (mp, Irwi — Thwy) ds
Te

oeM;
: 2,2 1 72 2
< Qél-/l\illp HUTL - QHHf%(FC) H',Z-hpwn - 7Thp"z—h]urwnHf{l/2(1"c) (469>
hy
< (C inf n— O _1 — v 1o 2w
< QéM}m HU HH 5( <p1) gh1 H hpW HH1

L
<o () ViEmlodmer ey,

Combining (4.68), (4.69) we obtain (4.62). For the frictional term (4.63) we use again
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4 Nonconforming methods for two-body contact problems with friction

that for the exact solution of (4.12) there holds oy[u;] + F|[u¢]| = 0. Thus

/ 0|8 + F| 8! — xl 82| ds =/ o8] — oufur] + F(\ B — b | — |[u]) ds

I'c T'e

S/ Ut[@t_ut] +f‘@tl _ﬂ-flzp@f_ [UtH ds
Te

< Fl[ @ — w] | + F | — mp, &7 — [ug]| ds.

Te
We decompose @} — m, &7 — [w] = & —uf + m (uf — D7) + (uj — mpu7). Thus
11 g2
/ o[ D] + F|®; — 73, ;| ds
Te
< A ]:(\[@t—ut]\jL‘@l—ut}jL‘whp — &) }+‘ ﬂ,llpu?)})ds
C

< N F ooy @I P — el owe) + lmhy (uf — )| Lamey + 110 = )| o))

By definition &, = (Z},uf,Z} ui), therefore

L hy \ 22
| Dr — | ooy < (E) +(E) Hu||i13/2(2)’

[17h (4 — PPy < [ (' = Tnyud)| sz e
<[] (ug _Ii%put) 7Tilqn(ut Iizzput)HHl/? re) T ||uf — If%put2||H1/2(Fc)
B\ 2
< (B)" VREBING - Tyl + 12 - Tl
hy ho
SC(—Ingl—F ) HUH~3/2( )’
p D2
and
| — 7ThputHLz (re) < C V 10gp1||ut||H3/2(Fc
< Cp_l V 1ng1HUHﬁ3/2(Z)
which provides (4.63). O

Lemma 4.3.7. Let u € ICN ﬁ3/2(2) be the solution of (4.12), let o, € HY/*(I'¢) and
o, € H'?(T'¢) be the corresponding normal and tangential contact tractions, and let
U € ICyy be the solution of (4.55). Then there exists ¢ € IC, constants as, oy € (0;1)
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4.3 hp-mortar BEM for variational inequality

and a constant C' > 0 such that there holds

/FC Onln — Uy ds

1/2
< asllu— Ul o

- (4.70)

C h
+ —’Vn thUnHHl/Z(Fc +C <p1) H’UJHI:IB/Z(Z)7

1/2
< ayllu—=Ul| ;2

L:M@—W+fmwkﬂﬁ—ﬁw%%

) (4.71)
C u
+ a—4%,hp||0||H1/2(rc> + Cvpllell gore g

where
o @ A o p2 Iy
’}/n,hp L pl gplp h1/2?
4 hl 3/ 1/4 4 h
Vt.hp = legP1—3/2—1/2 + V1ogp p_ hy'™ + v/log ;1 p_
1 1

h i h
’Vthp 1og py (pi) h;/4—|- 4 logplp—l.

1

Proof. Since the solution U of the discrete formulation (4.55) lies in ICp,, there holds
71-h]u[ ”(ZD - _7Thp |(w) SO \V/IGG}lpmrc.

Following [46] we define continuous functions inf(fi, f2), sup(fi, f2) for continuous fi, fo
as follows

inf(f1, fo)(x) := inf(f1(2), fo(2)),  sup(f1, o) (@) := sup(fi(2), fa(2)).

Now, choose

1 = Ul,

2:= U} —inf (7} [U,],0)

1 = Ul,

L (4.72)
t = 7Thvat ’

@ i=oin' +olt'
¢ = ¢2n® + g3t

Thus in all points of I'c there holds

[6n] = &, — o5 = inf(m, U], 0) < 0,
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4 Nonconforming methods for two-body contact problems with friction

which yields ¢ := (¢*, ¢?) € K. In order to prove the first inequality in the assertion of
the theorem, we split

/F Onln — Uyl ds = /1“ oy (inf (1, [Un), 0) — [Un]) ds
:/1“ o (T, Un] — [Us)]) ds —/F opsup (7, [Un],0) ds  (4.73)

:/ o (U7 = m,U?) ds—/ oy sup (75, (U], 0) ds.
|Ne]

Te

For the first term we use definition of the mortar projection (4.50) and get

n ?) ds = 'f/ — — ; 4.74
/FCU (U2 - WhpU)d @ér/{/t}w FC( o) (U, WhpU)dS (4.74)

< it low = Ollg-12wp) U7 = T, Uil 1/2re
hp

ha
< CEHUHHWFC)HUZ TpUn /2 (4.75)
In order to estimate the second term in (4.73) we observe that Z, sup (), [Us,],0) = 0,

since sup (m,[Uy],0) = 0 in all € G}, N T¢. Here T is the Lagrange interpolation
operator in Gauss-Lobatto nodes G}, N I'c. Therefore

hy hy
Fsup(my,[Unl, 0) = Ol| o(rcy <Cp—llsup(7fhp[ nls Ol (re) <Cp 17 [ Unlll 222 e

Thus, interpolation between Ly(I'¢) and H*(T'¢) gives

h
oot 000~ Oy € () bl 470

The Cauchy-Schwarz inequality combined with the approximation property (4.76) allows
to estimate the second term in (4.73) as follows

—/F 0 5up (4, [Un], 0) ds < [0l Laqrey | sup(m, [Unl, 0)l Larey
C

h
<c (pi) It Ol sz ol oo (4.77)
<o 02 = 1 U2y + 1) [oalliatror

Therefore putting (4.74) and (4.77) together we obtain

h
[ ton—vias 0 (B) 7 (102 - 02y 10 Vo
T'c b1
(4.78)
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4.3 hp-mortar BEM for variational inequality

The term [|U — m, Uz g1/2(r) must be estimated in terms of the norms ||u||ﬁ3/2(2)
and [[u — Ul|g12r,,). Unfortunately, for the mortar projection operator W}Lp only the

stability estimate (4.52) with the factor pi’/ * holds, and as it was shown in [57], [58]
this estimate is sharp. Direct application of (4.52) provides poor estimates, therefore it
is necessary to involve inverse inequality (4.58), which holds for piecewise polynomial
functions. Further, we decompose

U - 71-h]uUQ - <U2 Ihp n) - ﬂ-flzp<U2 Ihp n)
+ (T — i) — mh, (Thous — ul) (4.79)
+ (Ui - ﬂ-flzpu?z)v
which relates to the bootstrap procedure used e.g. in [8, Lemma 4.4]. Now the term
1U7 =7, Ul || r1/2(r ey can be bounded as a sum of three terms, corresponding to the lines

of (4.79). Each of them must be estimated separately. For the first term approximation
properties (4.51), (4.57) and inverse inequality (4.58) provide

(02 = Ty = U2 = Byl < OV ( )muvz 22,02 o)
sc@( ) Bl = Tl

< oo (3 ) 2 102 = s+ 10~ Tl

sa/@( )

hih 1/2
+ C+/log p1 ( ) ||UnHH$/2 Te):

1/2 |[]2 12’L||H1/2(Fc) (480)

The remaining terms can be estimated as follows:

1
122 — 2) — (T2 — )| rne <o\/1ogp1( ) 122,02 = 2lrcee
hl h2 2
<C\/10gp1 ||un||H3/2(Fc) (481)

and
h
Hui - W}Lpu12’LHH1/2(Fc) < Cp—iv 10gPIHUi||H3/2(rC)- (4.82)
Combining (4.80) — (4.82) gives

HUg - W}ILpUSHHl/Z(Fc) < C51HU72L - UiHHl/Z(FC) + Cé?”“iHHWZ(Fc)v (4.83)
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4 Nonconforming methods for two-body contact problems with friction
with

B\ 12
01 = 61(ha, he, p1,p2) = \/log py (p—l) % (4.84)
1

2

h\ ' 1/2 h\ '
0y = 02(hq, ho, p1,p2) := \/log py (E) hy'™ + (—) (4.85)

y4

Recalling (4.78) and noting that

IUnll1/2(re) < Nlun = Unllmniawey + lunllmreee)

we derive

h 1/2
/ O'n[qbn—Un] ds < C (—1> ((1+C’51)||un— UnHHl/Q(FC)
I'c b1

+ (14 Coo)lunll gz oyl e

C hy
< asllu, — U, ||H1/2 re) T _E(l + 5%)HUH§{1/2(FC)

hy
(Y ot k)

since 02 < 1 for sufficiently fine meshes. Here a3 € (0;1) is a constant to be specified
later. Noting that hy/p; < 1 for sufficiently fine meshes we obtain

/ Un[¢n - Un] ds S O53||un - Un”?{l/Z(FC)
e

C hl 1/2 h’l hfl 1/2
J— _ —62 2 1 ]
" o3 <<p1) - p1 ! ||U||H1/2(Fc) + e ||U|| 7%

2 C 2 2 hl 1/2
< aalltn = Unllrsrey + ol + () Ml

where

Yoy = Yanp(h1, ho, p1, p2) = <h1)1/4 log p1 = i
nhp — "In, 1,702, P1,172) -— | —— 11—
P P P1 P1h B2

2

In order to show (4.71), we choose ¢; := U/, ¢7 := m, U? (see (4.72)) and derive

/ o1lén — Ui + F([on]] — UL — 7k U2)) ds < / o (U2 — 7l U2) ds
NG}

Te

< inf / (o0 — ©)(U} — mp,UP) ds (4.86)
C

OeM;

< inf oy = Ollg-120o) 107 = mp Ul 12

- eeM;,

1
< CE||Ut||H1/2(Fc)||Ut2 — ﬁ,llprHﬁl/z(rc)a
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4.3 hp-mortar BEM for variational inequality

Performing the same decomposition as in (4.79) with U2 u? instead of U2 u? and pro-
ceeding further in a similar way we obtain (cf. (4.83))

HUE - 7T}1LpUt2HH1/2(Fc) < C51||Ut2 - U?HHUZ(FC) + 052”“3“1{3/2(1“0)7

where 01, d5 are defined in (4.84), (4.85) respectively. Therefore from (4.86) we obtain
for some constant ay € (0;1)

L:M@—m+fmwww mh, U2 ds

h1
(51||U ut||H1/2(Fc +C52||Ut||H3/2 Te) )||Ut||H1/2(FC)

hy
Samw i liacrer + o enallol ey + Ol [l

where 7, 3, is defined by
2 1/2 1/2
((hl 51) @52> < Mgy <@52)
P1 b1 D1 P1
3/2

h P2 hy 3/ 1/4 hy
< Vl0ogpi—75 55 + V1ogp <— hy'" + N/log pi— =: Y,

which provides (4.71). O

Now we are can formulate the main result.

Theorem 4.3.1. Let u € Kﬂff?)/z(Z) be the solution of (4.12), and let U € Ky, be the
solution of (4.55). Suppose that ||ow|l gir2rey + loel w2y + 1F lLawe) < C||u||ﬁ3/z(2),
where o,, o, are the normal and tangential contact tractions, corresponding to the so-

lution w, and F is a “given friction” function. Then for some constant C' > 0 there
holds

||’LL - U||ﬁ1/2(2) < C’}/th’U/HHSM(E),

)y
Vhp . n Do gplp h2/2

Proof. The assertion of the theorem follows after combining Lemma 4.3.5 with Lemma

where

4.3.6 and Lemma 4.3.7. The convergence rates in estimates (4.61) - (4.63) from Lemma
4.3.6 as well as the convergence rates ¥, np, Vnp i estimates (4.70) and (4.71) from
Lemma 4.3.7 are obviously dominated by ~3, for sufficiently refined meshes. O
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4 Nonconforming methods for two-body contact problems with friction

Corollary 4.3.1. Connecting the mesh parameters by
h’2 = h’?u D2 = pf

we observe that the convergence rate 7yp, 15 given by

TYhp = | — + 5—/2 + logplTﬁ
p1 Dy b1

B\ /A4
Thus Ypp = <p—1) 1s optimal and 1s achieved for
1

3 1 3
<a<? —<p<l
Sesy, 2_6 1

N~

Furthermore, the minimal number of the degrees of freedom in the algebraic system is
asymptotically achieved for largest hy and smallest py, i.e. when o = =1/2.

Remark 4.3.4. The condition ||oy || g2y + ol mzey) < C’||u||ﬁ3/z(2) in Theorem
4.83.1 can be treated as the continuity condition of the Dirichlet-to-Neumann operator
T :=V YK +1/2), since Tu|r, = o,n' + o,t'.

Furthermore, the condition || F || ryre) < C||u||ﬂ3/2(z) in Theorem 4.3.1 is not restrictive.
In practice, where the Coulomb’s friction law is used, F is replaced with pyo, and the
condition 1s satisfied, if the Dirichlet-to-Neumann operator T is continuous.

4.3.3 Dirichlet-to-Neumann algorithm

We employ a Dirichlet-to-Neumann (DtN) algorithm (see e.g. [40] , [18]) to solve the
discrete problem (4.55), which allows to decompose the two-body problem into two
separate subproblems in each body - a mixed boundary value problem and a frictional
contact problem between an elastic body and a rigid obstacle. The data transfer is
realized in terms of a mortar projection and its adjoint. The convergence of the DtN
algorithm is analysed for the h-version of FEM in [4], [28].

The mortar projection @' := W}Lp(sﬁz) on 7,! NT¢ of some function #* on 7,2 N T¢ is
according to (4.50) given by
/ Pl wlds = / P*ulds, V' e M, (4.87)
I'c T'c

Thus, its algebraic form is #' = D 'B®?, with the sparse mass matrix D, produced
by the left hand side of (4.87), and the matrix B, produced by the right hand side
respectively. Note, that B is also sparse, since the basis functions on the meshes 7,!,
7,2 have local supports. The boundary tractions are transferred by the adjoint operator
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4.3 hp-mortar BEM for variational inequality

W}L;. Thus, the algebraic form of the adjoint mortar projection is given by the transposed
matrices m5(9?) = B"D~T ¢'. We denote

Xﬁlp ={P|r,: D€ V;Lp}.

The case of an initial gap g # 0 can be incorporated in our problem. We measure the
initial gap in the normal direction to T'}, (see [32] for more details).

Algorithm 4.3. (Dirichlet-to-Neumann algorithm)

1. Choose wp,wn € (0,1), set X;llp > Q= O,X%p > P, =0

2. Solve elastic inhomogeneous Neumann problem with BEM:
Find Uy € V3, -

(SUZ,W?) = LW?) — (P, W, YW?eVi (4.88)

3. Transfer obstacle, damping Q,, := (1 — wp)Q,_, + wpD ' BU?}

4. Solve elastic frictional contact problem with BEM:
FindUy € Kq, ={U, : U}, — Qun < g in G}, NTE} such that VW' € K,

(SUL W' = U} + (W} = Q) = (U}, — Qu) ZL(W' = U)}) (4.89)
5. Compute contact traction Ry € X, : (R, W) := (SUL, WY — L(WY)
6. Transfer contact traction, damping

Pk—i—l = (1 - wN)Pk + (,UNBTl)_TR,lf

7. Set k =k + 1, repeat with 2, stop if ||Pr — Pr_1|| < TOLpiy - || Pr-1]|

Remark 4.3.5. The FEM techniques can be easily used in one or in both bodies, as
well as for nonlinear material behaviour. In case of contact of an elastic body with
an elastoplastic body, the problem can be decomposed into the Neumann problem with
plasticity and the contact problem with elasticity. Therefore separation of nonlinearities
1s achieved. Numerical example for this elastoplastic contact problem are given in Section

4.4
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4 Nonconforming methods for two-body contact problems with friction

In order to solve the elastic problem with frictional contact, we rewrite formulation
(4.89) in an equivalent form with a Lagrange multiplier, cf. (3.16):
Find U' € Kg,, A\, €A

(SUYW'—UY+ [ F W} —UNds > LW —UY), (4.90)

Te

MU = Qrt) = |U} — Q| ace. on T, VW' e Kg,,

where A = {\ € L?(I'¢) : |A\| < 1 a.e. on I'¢}. The product FA, plays the role of the
tangential contact traction. The Lagrange multiplier \, itself has the meaning of the
sliding direction, if sliding occurs. Problem (4.90) is solved by the Uzawa algorithm.

Algorithm 4.4. (Uzawa algorithm)

1. Choose N’ € A, p >0

2. Solve frictionless contact with Polyak [53] (modified CG) algorithm
FindU,, € Kq,, Am € A :

(SUL W' —UL) > LW ~UL)— | FNW}=UL)ds, YW'eKq,

el
3. Set Ams1 = Px(Am + pF (UL, — Q)

4. Set m =m + 1, repeat with 2, stop if ||Am — Am—1|| < TOLy - || A1

Here P, is given pointwise by

1, ifx>1,
Py(z):=<¢ -1, ifx<—1,
x, otherwise.

Theorem 3.1.8 provides that the Uzawa algorithm converges for sufficiently small p.

4.3.4 Numerical examples

We solve the discrete contact problem with given friction (4.55) with the Dirichlet-to-
Neumann algorithm, described above. In our model problem we consider two bodies Q!,
Q?, which are given by their boundaries I := 9Q = I', | T4 UT'% as follows

1—‘lD = [_17 1] X {2}7 F%) = [_17 1] X {_2} U{_L 1} X [_170]7
L ={-1,1} x [0,2], I3 =0,
Lo =7, I = —[1,1] < {0},
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4.3 hp-mortar BEM for variational inequality

where 7 is the arc of a circle including the points (—1,0.1), (0,0), (1,0.1). We denote the
characteristic length by L := 2. The bodies are coming into contact due to prescribed
displacements on the Dirichlet boundary U' := (0, —0.09) on '}, and U? := (0,0) on
I'%,. The Young’s modulus and Poisson’s ratio are £ = 266926.0, v = 0.29 respectively.
We choose F = 0.1, p = 1.0. The tolerances TOLp;n = TOLy = 107 are used for the
stopping criteria.

We solve a frictional contact problem on I'" and a nonhomogeneous Neumann problem
on I'2. We associate the mortar space M}Lp with the mesh, induced from I'', i.e. the
mesh 7;] NT''. We present numerical examples on quasiuniform meshes.

wp\wy 0.3 05 0.7 0.9
0.3 42 30 21 16
0.5 30 23 17 18
0.7 21 17 20 -
0.9 23 18 - -

Table 4.1: Number of Dirichlet-to-Neumann iterations

First we study convergence of the DtN algorithm for different damping parameters. We
choose the piecewise quadratic polynomial approximation with 16 elements in 7, N T
and 12 elements in 7,2 N T2, i.e. hy := L/16, hy := L/12. The corresponding initial
and deformed meshes on I'' and I'? are given on Fig. 4.17. The number of Dirichlet-
to-Neumann iterations related to the damping parameters is given in Table 4.1. We
observe, that the smallest number of iterations is achieved in case wp + wy € [1.2;1.4].

| 1

Figure 4.17: Initial mesh and deformed configuration
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4 Nonconforming methods for two-body contact problems with friction

In case of high damping parameters wp + wy > 1.6 no convergence is observed.

In order to study convergence of our hp-mortar method we perform a series of experi-
ments for hy : hg =4:3, hy = L/4, L/8, L/16, L/32, L/64 and (p1,p2) = (1,1), (2,1),
(2,2). The norm in the space H 1/2(2) can be expressed in terms of the hypersingular
integral operator W as

U125y = (WU U, + (WU U2 = ||U |-

We compute ||U||w,s for each combination § := ((hi,ha); (p1,p2)). The limit norm
|U||w,oc = 6.110073 is obtained by extrapolation. The behaviour of | ||U||w,s—||U||w,|
is shown on Fig. 4.18. We observe the convergence rate =~ 0.63 for the piecewise linear
polynomial discretization, whereas in the piecewise quadratic case the convergence rate
~ 1.89 is obtained.

0.1
pl=1, p2=1 ——
pl=2, p2=1 ---x---
pl=2, p2=2 ---*---
0.01 | _
s
o
2
0.001 _
le-04 L L
10 100 1000 10000

dof

Figure 4.18: Convergence of | ||U||w,s — [|U]||w,|
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4.3 hp-mortar BEM for variational inequality
4.3.5 Uzawa algorithm and hp-adaptive error control

In this section we describe an alternative solution procedure - the Uzawa algorithm. We
make a heuristic motivation for the a posteriori error indicator and give a numerical
example of a two-body contact problem with hp-mesh refinement.

The solution procedure is based on the mixed formulation (4.14), equivalent to the
variational inequality (4.12). In order to construct a discretized version of (4.14), we use
the following continuous piecevise polynomial discrete spaces

i i /2 i i
hp::{UeH (%) : VI e hp,Ue[Pp,u)]?}, Vip = Vi, x V2

Y ={PeH?Tc):VIeT,NTc,PeP,(I)}.

The main difficulty in the discretization of (4.14) lies in the correct interpretation of the
non-penetration condition, hidden in the space of tractions M, defined in (4.13). For
instance, the use of pointwise contact response, as in the penalty method, seems to be
problematic. We employ here the mortar technique, which performs the data transfer
across the boundary with nonmatched meshes in terms of the mortar projection and its
adjoint operator. We define

My pp = {Py €Yy, : Po(x) > 0,Vz € G,,NTc},
My = {P, € thp | Pi(x)| < F(x), Vo € G,llp NTc}.

Here the positivity condition is enforced only on the discrete set of the Gauss-Lobatto
points G}, on I''. We introduce the discrete version of (4.14) as follows:
Find U € Vy,, P € My, := M, »,, X My}, such that

(SU, &) +b(P, &)= (t, &), , VeV,

Q- P,U) <0, VQ € My, o

In this section we apply the Uzawa algorithm for solution of global problem, an alterna-
tive approach to the Dirichlet-to-Neumann method, used in the previous section. Here
the two-body problem is decomposed into two one-body Neumann problems. In this
case we can avoid nested cycles and compute the solution of the general contact prob-
lem with Coulomb’s friction in a single loop. Moreover, in contrast to DtN, the Uzawa
algorithm can be easily parallelized, since both one-body Neumann problems can be
solved independently. The discrete mortar projection for displacement is given by the
matrix B~'D (cf. (4.87)). The Uzawa algorithm for contact with Coulomb’s friction is
listed below.
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4 Nonconforming methods for two-body contact problems with friction

Algorithm 4.5. (Uzawa algorithm for the global problem)

1. Choose p >0, set Vi, 2 U :=0, My, > Py =0,k :=0

2. Solve Neumann problems on I'* and I'?: Find U}, € V},, such that
(SU, &) = (¢, ') + (—1)"(Py,, '), VB €V}, i=1,2

3. Compute contact tractions Py =1 pq (Pr — p(U; — B~'DU?Y))

4. Set k =k+1, repeat with 2, stop if k > 3 and ||Py — Py_1|| < TOL - || Py — P4

Here
1 1
HMn,hp th X th — Mn’hp,

11 =
Mhp { HMt,hp : thp X thp — Mt,hp

is a projection onto My, defined pointwise as follows. If z € G,llp NT¢g, ie. xis a
Gauss-Lobatto point, then the value P(z) = (P,(z), P,(z)) of a function P € V}, is
projected by

M, p, (Po()) = Po()sign(Pu()),
Tt (Pe()) 1= max(—=pip Po (), min(pep Pa(2), Py(7)))

Our model problem and a test computation for quadratic polynomials and nonmatched
uniform meshes with hy : ho = 41 : 25 are shown on Fig.4.19.

L
/ \ o —
/ r \ 60000 -
/ c \ 40000 |
\ / 20000 -
\ / 0
\ / 1 0.5 6 0.5 1

Figure 4.19: Model problem, deformed configuration, contact stress
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4.3 hp-mortar BEM for variational inequality

In our numerical experiments we use the error indicator 7, consisting of three parts
1/2
n=(ne+nk+mnz) ",

where

h hr\ h -

2 . I 2 I +112 I 2
= E —||| P + | — U, + —||(-=P) - SU

Ule] pIH[ ]||L2(I) (pz) ||[ ] ||L2(I) I||( ) ||L2(I)

IeT!CT¢
hros s
=y, —llE= U5,
I1€T,CT'N
hi
=Y V& — (K +1/2Ul|3,0.
€T, Pr

Here U € Yy, P € My, is the solution of (4.91), and ¥ := i,V 'ij (K +1/2)U is
the discrete traction, cf. (3.59). We also need two other traction-like functions, given by

P =V YK +1/2)u,
=V I (K+1/2)U

The motivation for using 7 is based on the identity, shown in Lemma 3.2.6. Thus,
= Uy + 1180 = By g (4.92)
<C((Su-SUu-U)+(V(# - &), @))
For the second summand in the right-hand side of (4.92) there holds
. 1
(V8 ~ @)= ) < allp— By o)+ 5 IV~ (K 4 12Uy

and the indicator 73 is the discrete analogue of the term ||V & — (K +1/2)U|[3

HY2(T)"
Further, formulations (4.14) and (4.91) yield the identity
(Su—SU,u-U)=(t-SU,u— &) +((-P)-SU,u— &)
—bp—P,u—-U), (4.93)

for arbitrary @ € Vj,, which motivates with the standard arguments the indicator n?%
and the last summand in n%. In order to motivate the remaining indicators, let us
consider an interface problem, where the transmission conditions [u] = 0 and [p] = 0
are enforced on I'c. Then, for the interface problem, the last term in (4.93) yields

1
—b(p = P,u—=U) < allp= P[5y + =02 (4.94)

The term ||p — P||%_ 121y COrresponds to the term [ — !I,Hirlﬂ(r) in (4.92), and

it can be moved to the left hand side of (4.92); while the term ||[U]|[?

||H1/2(FC) makes a
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4 Nonconforming methods for two-body contact problems with friction

contribution to the indicator. It represents the error due to violation of the interface
condition [u] = 0. Unfortunately, the estimate (4.94) is in general wrong for the contact
problems. We replace it by adding the two first indicators in 12, which should control
the error due to violation of the contact conditions [p] = 0 and [u,] < 0 (or equivalently
[u,]t = 0).

The error indicator 7 is very similar to the indicator obtained for interface problems by
Wohlmuth [70], and applied by Krause and Wohlmuth [40] to the contact problems. We
use the three-step hp-adaptive algorithm (Algorithm 4.6) used e.g. by Maischak and
Stephan [46].

The h-refinement is performed for all elements, which indicator is larger then 90% of the
largest indicator value; and the p-refinement is used, if the indicator value is between
85% and 90% of the largest indicator value. The sequence of meshes and polynomial
degrees obtained with our approach is shown in Figure 4.20.

Algorithm 4.6. (Mesh refinement strategy for the h-version)

1. generate an initial (coarse) mesh Ty, discrete spaces Vipo, Whpo, set k=0
2. choose a refinement criterion, refinement quota 0 < q1 < qo < 1, tolerance TOL
3. fork=0,1,2...

a) solve the discrete problem
b) compute indicators nr for all segments I € Ty 1

¢) stopif >, n3 <TOL

IeThp,k
d) split the element I increase the polynomial degree on I according to the fol-
lowing rules
v i N1 > @Mmaz, Split the element I into two elements of equal length and
inherit the polynomaial degree
i i Umaze < N1 < @2Mmaz, increase the polynomial degree on I
15 N1 < Q1 maz do nothing
e) compute the resulting mesh Tpyp 11

f) generate the discrete spaces Vip i1, Whp i1 based on the mesh T, 1

g) setk=Fk+1, goto (a)
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Figure 4.20: Adaptively generated meshes and polynomial degrees after 3, 6 and 9
refinement steps

4.4 Mortar and penalty methods for elastoplastic
contact problems

In this section we compare the mortar method and the penalty method for frictional
contact problem between an elastic body and an elastoplastic body. We use the pure
FEM discretization with continuous piecewise bilinear basis functions on quadrilaterals
for the mortar method. For the penalty method we use the FE/BE coupling method
with continuous piecewise bilinear basis functions on quadrilaterals in the FE domain
and continuous piecewise linear basis functions in the BE domain.

We employ the Dirichlet-to-Neumann (DtN) algorithm (Algorithm 4.3) as a solution
procedure for the mortar method with the following modifications. In the step 2 the
inhomogeneous Neumann elastoplastic problem is solved with finite elements by the
Newton method, and in the step 4 corresponding frictional contact problem is solved
also with finite elements.

We assume that an elastic body occupies the domain
0 :=[-1/2,1/2] x [0, 2]
and an elastoplastic body occupies the domain
Q" =[-2,2] x [-2,0].

We fix the upper boundary of 2° and prescribe a nonzero displacement on the lower
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4 Nonconforming methods for two-body contact problems with friction

boundary of 2™

u’ =0, on I'y, :=[-1/2,1/2] x {2},
™ =107 on I'l :=[-2,2] x {—2}.

The remaining parts of the boundaries are treated as contact boundaries
['do=00°\ T}, Iy =00m\I'p.

The both bodies have the same material parameters E = 266926.0, v = 0.29 and the
given friction function F = 0.22. The yield stress and the hardening parameter in
Q™ are oyt = 4.0,hy? = 450.0. The damping parameters of the DtN algorithm are
wp = 0.5,wy = 0.7. The damping parameter for the Uzawa algorithm is p = 8.264 - 10°.
The DtN and Uzawa tolerances are TOLp,y = TOLy = 1075, the tolerance of the
Newton method, used for solving the elastoplastic subproblem, is TOLy = 1074

The results of the numerical tests for the mortar method are presented in the Figure
4.21. The norm of the stress deviator is plotted only for the elastoplastic body ™,
since ()® is assumed to be linear elastic. The brown region in the plot of the norm of
the stress deviator corresponds to its maximum value, i.e. represents the plastic region.
Table 4.2 shows the number of DtN iterations depending on the damping parameters.
The number of the Uzawa iterations in the first DtN iteration is given in parenthesis.

DOF= 231 + 1984

||dev o™

0.3306E+C
0.3099E+C
0.2893E+C
0.2686E+C
0.2480E+C
0.2273E+C
0.2067E+C
0.1860E+C
0.1653E+C
0.1447E+C
0.1240E+C

0.2078E+C
0.1311E-C

displacement, y-component

0.6254E-04
0.5863E-04
0.5473E-04
0.5082E-04

0.2736E-04
0.2345E-04
0.1954E-04
0.1564E-04
0.1173E-04
0.7818E-05
0.3909E-05
0 0000F+00

0.8262E-0!
0.7229E-0!

0.9600E-Q
0.9348E-0

3E-0!
—.2065E-0!
—.3098E-0!
—-.4131E-0!
-.5164E-0!
-.6196E-0!
-.7229E-0!
—.8262E-0!

0.5815E-Q
0.5563E-0

Figure 4.21: Numerical experiments for mortar method with DtN algorithm
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4.4 Mortar and penalty methods for elastoplastic contact problems

wp \ wy 0.3 0.5 0.7 0.9 1.0

0.3 27(34) 19(34) 13(34) 9(34) 9(34)
0.5 19(17)  13(17) 11(17) - -
0.7 12(13)  11(12) - - -
0.9 13(9) - - - -

Table 4.2: Number of DtN (Uzawa) iterations for mortar method

Since the sliding direction is correctly recognized after the first DtN iteration, the Uzawa
algorithm needs only 2 iterations starting from the second DtN iteration. The damping
parameter p = 8.264 - 10° for the Uzawa algorithm is chosen experimentally. Table 4.2
shows that the optimal values of the damping parameters wp, wy are between 0.5 and 0.7.
For large damping parameters there is no convergence observed. The numerical example
with the penalty method is performed for the same geometry and the same boundary
conditions, as in the mortar simulation. But in the experiment with the penalty method,
Coulomb’s law of friction is used, instead of Tresca’s frictional law, used for the mortar
method. The value puy = 0.2 of the friction coefficient is chosen, since it provides
nearly the same maximal tangential displacements in 2°. Newton’s method, described
in Algorithm 4.1, is applied to solve the problem. The tolerance is TOLy = 107% is
chosen in the stopping criterion. The results of the numerical experiments are presented
in Figure 4.22 and in Table 4.3.

DOF= 51 + 1984

0.3302E+C
0.3096E+C
0.2890E+C
0.2683E+C
0.2477E+C
0.2271E+C
0.2064E+C
0.1858E+C
0.1652E+C
0.1445E+C
0.1239E+C
0.1033E+C
0.8266E+C
0.6203E+C
0.4140E+C
0.2076E+C
0.1340E-C

displacement, y-component

0.5893E-04
0.5524E-04
0.5156E-04
0.4787E-04
0.4419E-04
0.4050E-04
0.3681E-04
0.3313E-04
0.2944E-04
0.2575E-04
0.2207E-04
0.1838E-04
0.1469E-04
0.1101E-04
0.7322E-05
0.3636E-05
_'BE079F-()

0.9600E-0

0.9184E-Q
0.8036E-0
0.6888E-Q
0.5740E-Q
0.4592E-0
0.3444E-0

-.8036E—C
-19184E-C

Figure 4.22: Numerical experiments for penalty method with Newton’s method
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4 Nonconforming methods for two-body contact problems with friction

The pure FEM mortar and the FE/BE penalty approaches are in a good agreement:
5-8% difference in displacement and 2-3% difference in stress. The numbers of Newton
iterations needed are given in Table 4.3. Note, smaller penalty parameters reduce the
Ly-norm of the penetration function ([u,] —g)*. But, on the other hand, it increases the
condition number of the Galerkin matrix as well as the number of Newton iterations.

1/en 1/e;  # Newton iterations ||([tn] — ¢)"||Lore)
20-E™ 10- ™ 520 0.8-1076
10- ™ >-B™ 356 0.15-107°
5-E™ 25-E™ 248 0.29-107°
25-E™ 125-E™ 175 0.55-107°

Table 4.3: Number of iterations and the Lo-norm of penetration for penalty method

The mortar method and the penalty method, provide the similar results. Nethertheless,
the mortar method and the penalty method have their advantages and disadvantages.
The mortar approach contains no additional parameters (as penalty parameters). The
discrete solution of the mortar formulation converges to the solution of the variational
inequality, if the mesh size tends to zero. Unfortunately, the solution procedures for the
mortar method are more complicated. The suggested DtN iteration procedure contains
nested loops, where the inner loops solve the one-body problems. The convergence of
the DtN algorithm depends strongly on the damping parameters, which are not allowed
to be sufficiently large. The penalty approach consists only of a single loop. Here the
disadvantage lies in the dependence on the penalty parameters. The smaller values of
the penalty parameters give physically more relevant results, i.e. lead to the smaller
penetration, but it increases the condition number of the Galerkin matrix, and therefore
the time, required for solving the problem.
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