
 

Somatic Embryogenesis and Transformation  
 

Studies in Schlumbergera and Rhipsalidopsis 
 

 
 
 
 
 

Von der Naturwissenschaftlichen Fakultät 

der Universität Hannover 

zur Erlangung 

des akademischen Grades eines 

 

 

Doktors der Gartenbauwissenschaften 

-Dr. rer. hort.- 

 

 

 

 

genehmigte 

Dissertation 

 

 

 

von 

Ezz AL-Dein Muhammed Al-Ramamneh, M. Sc. Hort. (Jordan) 

geboren am 14. January 1973 in Sweileh, Jordan 

 

2006



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referentin: Prof. Dr. Margrethe Serek 

Korreferentin: Prof. Dr. Sridevy Sriskandarajah 

Tag der Promotion: 12. Januar 2006 



 

 i

Zusammenfassung 
 

Ezz AL-Dein AL-Ramamneh 
 

Somatische Embryogenese und Untersuchungen zur Transformation 
bei Schlumbergera und Rhipsalidopsis 

 
Schlagwörter: Genetische Transformation - Osterkaktus - Transgen - 
Weihnachtskaktus 
 
Die In-vitro-Kultur bietet für Kakteen Möglichkeiten zur Vermehrung, somatischen 
Embryogenese und genetischen Transformation. In der vorliegenden Arbeit wurde 
somatische Embryogenese an Phyllokladien-Explantaten von Schlumbergera truncata 
cv. Russian Dancer induziert. Kallus, der sich an Phyllokladien-Explantaten gebildet 
hatte, wurde über einen Zeitraum von 16 Monaten auf MS-Medium mit Cytokininen 
kultiviert. Im Hinblick auf die Induktion somatischer Embryonen war diese 
Behandlung einer kürzeren Etablierungsphase überlegen. Somatische Embryonen 
differenzierten nach drei bis fünf Monaten, wenn Kallus, der in flüssigem Medium auf 
SH- oder MS-Basis mit 7 µM Kinetin kultiviert worden war, auf festes MS-Medium 
entweder mit 0,45 µM 2,4-D oder hormonfrei überführt wurde. Die 
Medienzusammensetzung, Wachstumsregulatoren sowie die Dauer der Kultur auf 
cytokininhaltigen Medien hatten einen Einfluss auf die Embryogenese. Die höchste 
durchschnittliche Anzahl von Embryonen in unterschiedlichen Stadien wurde erzielt, 
wenn die erste Kulturphase von 30 Tagen in flüssigem SH-Medium, und die zweite 
auf hormonfreiem MS-Medium erfolgte. Ungefähr 70 % der somatischen Embryonen 
keimten auf G-Medium. Anschließend wurden die auf somatische Embryonen 
zurückgehenden Pflanzen erfolgreich in Erde überführt. Sie zeigten genetische 
Stabilität im Vergleich zu den Ausgangspflanzen mit Ausnahme der Pflanzen, die sich 
aus somatischen Embryonen mit mehr als vier Keimblättern entwickelt hatten. 
Zusätzlich wurde ein sehr effizientes Regenerationssystem über 
Adventivsprossbildung für Schlumbergera cv. Alex und Rhipsalidopsis cv. CB5 
entwickelt. Darüber hinaus wurden diese effizienten Regenerationssysteme 
weiterentwickelt und erfolgreich eingesetzt, um erstmals transgene Pflanzen von 
Rhipsalidopsis cv. CB5 zu erzeugen, die das uidA-Gen und das selektierbare 
Markergen nptII enthielten. Einige Faktoren, die die Transformation von 
Rhipsalidopsis-Kallus beeinflussen, wurden untersucht. Transformierte 
Rhipsalidopsis-Kallusse wurden nach längerer Kultur auf Medien mit 600 mg/l 
Kanamycin erhalten. Eine Vor-Inkubation von Agrobacterium tumefaciens in SIM-
Medium mit Acetosyringon steigerte die Häufigkeit, mit der transgene Kallusse 
erzielt wurden. Desweiteren war ein zusätzlicher Waschschritt der Kallus-Explantate 
mit Cefotaxim nach der Ko-Kultur notwendig, um Agrobacterium tumefaciens zu 
unterdrücken. Der Verzicht auf Kanamycin im Medium für den letzten Kulturschritt 
sowie die Kultur der transformierten Kallusse unter Ernährungsstress führte zur 
Bildung transgener Adventivsprosse. Mit diesem Ansatz wurde eine 
Transformationsrate von 22,7 % erreicht. Die in dieser Arbeit erzielten Ergebnisse 
zeigen, dass der Agrobacterium-vermittelte Gentransfer ein vielversprechender 
Ansatz für die Erzeugung neuer Genotypen bei diesen beiden Kakteenarten ist. 
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Abstract 
 

Ezz AL-Dein AL-Ramamneh 
 

Somatic Embryogenesis and Transformation  
Studies in Schlumbergera and Rhipsalidopsis 

 
Keywords: Christmas cactus - Easter cactus - genetic transformation - transgene 
 
Tissue culture has emerged as a tool for cacti micropropagation, somatic 
embryogenesis and genetic manipulation. Somatic embryogenesis was induced from 
phylloclade explants of Schlumbergera truncata cv. Russian Dancer. Callus that 
developed on phylloclade explants and sub-cultured over a period of 16 months on 
MS medium containing cytokinins was superior for the induction of somatic embryos 
compared to callus grown for a shorter time in the establishment phase. Somatic 
embryos were induced after three to five months when callus grown in SH- or MS- 
based liquid media supplemented with 7.0 µM kinetin was transferred onto solid MS-
based medium with either 0.45 µM 2,4-D or without hormones. Embryogenesis was 
affected by the type of medium, plant growth regulators and duration of callus 
exposure to cytokinins. The highest average numbers of embryos in the different 
stages were achieved using SH liquid medium for the first culture and MS medium 
without hormones after 30 days. Approximately 70% of somatic embryos germinated 
on G medium. Furthermore, plants derived from somatic embryos were successfully 
potted in soil, and they showed, except those derived from somatic embryos with 
more than four cotyledons, genetic stability compared to mother plants. A highly 
efficient regeneration system through adventitious shoot formation was also 
developed in Schlumbergera cv. Alex and Rhipsalidopsis cv. CB5. Moreover, the 
development of these efficient regeneration systems was further exploited and success 
was demonstrated as the first report in obtaining Rhipsalidopsis cv. CB5 shoots 
transgenic for the uidA gene and the selectable marker nptII gene. Some of the factors 
influencing transformation of Rhipsalidopsis callus explants were evaluated. 
Transformed Rhipsalidopsis calli were obtained by extended culture on media 
containing 600 mg/l kanamycin. The pre-incubation of Agrobacterium tumefaciens in 
SIM medium containing acetosyringone raised the frequency of transgenic calli. 
Furthermore, a washing step with cefotaxime for the callus explants after co-culture 
was necessary to remove the excess Agrobacterium. The removal of kanamycin from 
the final medium together with the culture of the transformed calli under nutritional 
stress led to the formation of transgenic adventitious shoots. With this approach, a 
transformation efficiency of 22.7% was achieved. The results obtained in this study 
suggested that Agrobacterium-mediated transformation is a promising approach for 
generating new genotypes of these cacti. 
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1.0 General Introduction 
 

1.1 Overview 

 
Cacti are dicotyledonous perennial plants with specialised features adapted for 

survival in arid and other climatic conditions (Hubstenberger et al., 1992).  

 

Common and scientific names: The holiday cactus group generally consists of those 

plants derived from the two species: (1) Thanksgiving cactus (Shlumbergera 

truncata), (2) Christmas cactus (Schlumbergera x buckleyi); synonym S. bridgesii 

(Ramirez and Lang, 1997; Dole and Wilkins, 1999). Plants cultivated as Easter cactus 

are a clonally propagated selection of Rhipsalidopsis gaertneri (Regel) Moran, R. 

rosea (Lagerheim) Britton & Rose, and their interspecific hybrids [R. x graeseri 

(Werdermann) Moran] (Liberty Hyde Bailey Hortorium, 1976; Barthlott, 1979). 

Moreover, Hatiora gaertneri has been used as a synonym for Rhipsalidopsis gaertneri 

(Barthlott, 1987; Dole and Wilkins, 1999).  

 

Two species, S. truncata and S. russelliana, have been hybridized to produce the well- 

known Christmas cacti that are widely cultivated as flowering potted plants 

(McMillan and Horobin, 1995). 

 

Much confusion exists over the identity of the species used in the research. 

Schlumbergera truncata was formerly named Epiphyllum truncatum and Zygocactus 

truncatus (Hammer, 1992). These names are used in the literature with the common 

name Christmas cactus, but it would appear from photographs and descriptions that 

most of the work was done with Thanksgiving cactus. Most of the new hybrids that 

are called Christmas cactus in the trade also appear to be Thanksgiving cactus, S. 

truncata (Hammer, 1992). 

 

Origin: Schlumbergera, popularly known as ‘Christmas cactus’ or ‘Thanksgiving 

cactus’, and Rhipsalidopsis, also known as ‘Easter cactus’, are epiphytes native to 

forests in Brazil (Hammer, 1992; Sriskandarajah and Serek, 2004). 
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Family and related taxa: These cacti belong to the Cactaceae family. The three cacti 

are confusing because of frequent taxonomic name changes, interspecific hybrids and 

similar appearance. All three species consist of modified stems called phylloclades 

which are flat-like structures that photosynthesize. Hatiora differ from Schlumbergera 

in that the Hatiora flower perianth tube is shorter, the stamens are separated and the 

stigmatic lobes are spreading. Further, Hatiora phylloclades have shallow marginal 

indentations with obvious bristle-like spines, while the phylloclades of Schlumbergera 

do not have obvious “spines” (Dole and Wilkins, 1999). The main difference between 

the Thanksgiving cactus (S. truncata) and the Christmas cactus (S. x buckleyi) is that 

the former has strongly toothed or pointed edges along the margins of the 

phylloclades; the latter has smooth-edged margins (Heins et al., 1981; Rünger and 

Poole, 1985; Wilkins and Rünger, 1985; Hammer, 1992). 

  

Uses and economic importance: The main economic importance of these cactus 

species lies in world-wide horticultural trade as ornamental plants. The major 

countries for production of ornamental cacti include Denmark, USA, Japan, Great 

Britain, Germany and Holland (Sriskandarajah and Serek, 2004). A total of 8 and 2.8 

million plants of Schlumbergera and Rhipsalidopsis, respectively, were produced in 

Denmark in 2005. This constitutes about 70-80% of the production of the European 

market of these cacti. 

 

Christmas and Easter cactus are popular plants sold during the spring and fall 

holidays. Holiday cactus are suitable for hanging baskets (pendulos types), 4-in. (10 

cm) pots (semipendulous types), or 3-in. (7.5 cm) pots (erect types) (Dole and 

Wilkins, 1999). These cacti are grown as flowering potted plants (Boyle, 1997) and 

they make colourful potted plants which adapt well in the home and re-flower with 

modest care (Dole and Wilkins, 1999). 

 

Schlumbergera species of holiday cactus have become very popular ornamental plants 

for their beautiful flowers, wide flower-colour range, and unusual plant form (Lang 

and Cushman, 1993). Their short-day photoperiodic flowering response and easy care  

make them a favourite plant of consumers during the Christmas season (Ramirez and 

Lang, 1997). 
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1.2 Tissue culture of the Cactaceae family 

 

In their review, Fay and Gratton (1992) have summarized the in vitro culture work of 

cactus. Early studies focused on callus formation and proliferation. King (1957) 

reported the induction of callus in several species and later Sachar and Iyer (1959) 

investigated the effects of auxins, cytokinins and gibberellins on callus formation 

from placental tissue of Opuntia dillenii. Minocha and Mehra (1974) found that callus 

induction on a range of tissues of Mammillaria prolifera was dependent on the 

presence of 2,4-D in the medium. Kolár et al. (1976) were the first to obtain cactus 

shoots from in vitro callus cultures of Mammillaria woodsii. Shoots were 

subsequently recovered from callus of Mammillaria elongata (Johnson and Emino, 

1979). 

 

Johnson et al. (1976) found that shoot tips of Christmas cactus and Easter cactus 

grown on rotating liquid medium, produced an average of 9 shoots per explant in 8 

weeks. The best results were obtained using liquid Linsmaier-Skoog media with 30 

g/l sucrose and 10 mg/l kinetin. 

 

Mauseth (1979) successfully demonstrated the micropropagation of cacti by axillary 

shoot proliferation. Following these pioneering efforts, numerous kinds of cactus have 

been propagated by multiplication of axillary shoots. Depending on the genus, 

explants consisted of the shoot apex of seedlings, lateral or vertical sections of 

plantlets or cladodes, single areoles or single tubercles (George, 1996). 

 

Clayton et al. (1990) have investigated the micropropagation of 11 rare or endangered 

cacti species belonging to the subtribe Cactinae, using shoot tips as explants. Their 

study showed that low or no auxin but moderate to high cytokinin concentrations 

were required for axillary shoot production. Furthermore, all species rooted 

spontaneously on hormone-free media. However, several species rooted better on 

media containing auxin. 

 

Boyle and Marcotrigiano (1997) reported that organogenesis in Easter cactus (Hatiora 

gaertneri) can be controlled by varying the concentration of BA and GA3 in the 

culture medium. The number of flower buds and new phylloclades, from phylloclades 
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cultured in vitro, increased linearly as BA concentration increased from 0 to 444.1 

µM. GA3 increased the number of new phylloclades when present in moderate 

concentrations (2.9 or 28.9 µM), but inhibited flower bud formation when present in 

concentrations as low as 0.3 µM. 

 

Recently, García-Saucedo et al. (2005) have developed a protocol for in vitro 

micropropagation of Opuntia cactus plants. Their method consisted of growing 

cladode explants on MS medium (Murashige and Skoog, 1962) containing BA and 

GA3. The shoots produced were used as secondary explants and grown again on 

medium containing BA for bud formation. Rooting occurred when IBA was added to 

the medium. 

 

The formation of somatic embryos in cacti was also reported. Somatic embryos were 

induced in Ariocarpus retusus, from callus produced from seedlings germinated earlier 

on solid MS medium containing 20 g/l sucrose and 20% (v/v) coconut water (Stuppy 

and Nagl, 1992). After 3-4 months of culture, the first somatic embryo appeared. For 

further growth, somatic embryos were placed on hormone-free MS medium. 

 

Torrez-Muñoz and Rodríguez-Garay (1996) reported plant regeneration in 

Turbinicarpus pseudomacrochele through indirect somatic embryogenesis on solid 

MS medium supplemented with L2 vitamins, 3 mg/l 2,4-D, 2 mg/l NAA, 2 mg/l 

kinetin, 500 mg/l L-glutamine, 250 mg/l casein hydrolizate and solidified with 8 g/l 

agar. 

 

Recently, Marín-Hernández et al (1998) reported the in vitro somatic embryogenesis 

in the severely endangered cactus Mammillaria san-angelensis. Somatic embryo 

structures of both unicellular and multicellular origin were formed from ovule 

integuments cultured in a modified B5 medium (Gamborg et al., 1968) supplemented 

with 2,4-D (4 mg/l) plus kinetin (2 mg/l). However, plant regeneration was not 

obtained. 
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1.3 Plant transformation 

 

Genetic engineering has opened up new avenues to modify crops and provided new 

solutions to solve specific needs. The powerful combination of genetic engineering 

and conventional breeding programs permit useful traits encoded by transgenes to be 

introduced into commercial crops within an economically viable time frame (Hansen 

and Wright, 1999). There is a great potential for genetic manipulation of crops to 

enhance productivity through increasing resistance to pests (Cho et al., 2001), 

diseases (Chen and Punja, 2002) and environmental stress (Uchimiya et al., 2002; 

Lim et al., 2005). 

 

The development of methods for introducing genes into plants is an essential step in 

metabolic manipulation of plant secondary compounds. This provides a potential 

strategy to improve the production of high-value secondary metabolites (Bae et al., 

2005). 

 

Genetic engineering in floriculture is providing a valuable means of expanding the 

floriculture gene pool and so, promoting the generation of new commercial varieties. 

Commercialisation of genetically engineered flowers is currently confined to novel 

coloured carnations (Tanaka et al., 2005). 

 

The production of novel flower colour has been the first success story in floriculture 

genetic engineering (Meyer et al., 1987). Other traits that have received attention 

include floral scent, floral and plant morphology, senescence of flowers both on the 

plant and post-harvest and disease resistance (Tanaka et al., 2005). 

 

Three major techniques were mainly used for transforming plants. Those included 

Agrobacterium-mediated transformation (Toldi et al., 2002; Gruchala et al., 2004), 

protoplast transformation (Tsugawa et al., 1998; Wang et al., 2000) and biolistics or 

microprojectile bombardment (Zhang et al., 2000). 

 

For transformation, antibiotics or herbicides have been widely used as selection 

agents to identify transformants. Hygromycin (Arencibia et al., 1998; Cho et al., 

2001; Bae et al., 2005), kanamycin (Aida and Shibata, 1996; Nebauer et al., 2000; 
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Araújo et al., 2004; Sriskandarajah et al., 2004), bialaphos (Zhang et al., 2000), and 

phosphinothricin (Chen and Punja, 2002; Kang et al., 2005) have been used as 

selection agents to stop non-transformed tissues or cells from growing. 

 

1.4 Statement of the problem 

 

The main post-greenhouse problem of Schlumbergera and Rhipsalidopsis is flower 

bud abscission (Hammer, 1992). Furthermore, these cacti have been considered as 

ethylene sensitive (Serek and Reid, 1993), which leads to abscission of flowers and 

buds. This bud abscission can occur in cactus during long distance shipment of plants 

(Cameron and Reid, 1981) and thus can cause economic loss. However, chemical 

treatments utilizing ethylene inhibitors, like silver thiosulfate (STS), to improve the 

display life of cactus have caused environmental concerns (Serek and Reid, 1993). 

 

Theoretically, hybrids between Hatiora and Schlumbergera may serve as a bridge for 

introgressing desirable traits from one genus to the other. Numerous interspecific and 

intergeneric hybrids have been documented for the Cactaceae, some of which 

originated in the wild while others arose from deliberate crosses (Hawkes, 1982, 

1983; Rowley, 1994). 

 

Interspecific hybrids have been produced by crossing H. gaertneri with H. rosea 

(Moran, 1953) and S. truncata with S. opuntioides (Löfgren & Dusén) D. Hunt, S. 

orssichiana Barthlott & McMillan, and S. russelliana (Barthlott and Rauh, 1977; 

McMillan and Horobin, 1995).  

 

In their study, Boyle and Idnurm (2003) have pointed out that there are barriers to 

intergeneric hybridization that must be overcome to increase the success rate in 

crossing Easter cactus with holiday cactus. However, only one intergeneric hybrid, 

that has proven to be male sterile, has flowered (Boyle and Idnurm, 2003). Hence, 

improving these cacti through classical breeding techniques is limited and alternative, 

more efficient technologies will be needed to expand the gene pool in these plants. 

 

Recently, through the introduction of new tools of biotechnology, crossing barriers 

have been overcome, and genes from unrelated sources have become available to be 
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introduced asexually into plants (Repellin et al., 2001). A transgenic approach to 

genetic improvement would allow modification of various traits without altering the 

essential characteristics of the plant cultivar (Iocco et al., 2001). 

 

The application of gene technology to create new cultivars with desirable 

characteristics, such as ethylene resistance, has been highlighted for plants like 

carnation (Bovy et al., 1999), petunia (Gubrium et al., 2000) and Campanula 

carpatica (Sriskandarajah et al., 2004). In these studies, a mutant etr1-1 allele that 

confers insensitivity to ethylene was used. Because of the bud drop problem of cacti 

due to ethylene sensitivity, molecular approaches through genetic engineering can 

have a high potential for increasing the display life of flowering cactus potted plants. 

Micropropagation and efficient plant regeneration from tissue cultures are required 

steps for the development of protocols for plant improvement through genetic 

engineering (Pozueta-Romero et al., 2001). 

 

Tissue culture has emerged as a tool for cacti micropropagation and has been used in 

different genera like Cereus, Equinocereus, Ferocactus, Mammillaria, Opuntia and 

others (Escobar et al., 1986; Machado and Prioli, 1996; Pérez-Molphe et al., 1998; 

Juárez and Passera, 2002). There have been a few studies on in vitro regeneration of 

Schlumbergera and Rhipsalidopsis. In these studies, regeneration occurred via 

axillary and adventitious shoots but the rate at which these shoots were produced was 

slow and unsatisfactory (Johnson et al., 1976; Sriskandarajah and Serek, 2004).  

 

Another route for in vitro plant regeneration, which has not been reported in either 

Schlumbergera or Rhipsalidopsis, is through somatic embryogenesis. Somatic 

embryos reportedly originate from single cells, so one could avoid the problem of 

producing plants with chimeric tissues. However, this problem could occur when 

regeneration originates from shoots (Nagmani et al., 1987; Nuti Ronchi and Giorgetti, 

1995; Kuksova et al., 1997; Mandal and Gupta, 2003; Mithila et al., 2003). The other 

important aspect of somatic embryos is their practical application in large scale 

vegetative propagation (Fki et al., 2003; Langhansová et al., 2004; Pinto et al, 2004; 

Zouine et al., 2005). Using this method, large number of embryos of uniform 

physiological and growth characteristics can be produced (Von Aderkas et al., 2001). 
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Furthermore, somatic embryos could be used for cloning of somaclonal variants and 

synthetic seed production (Moghaddam et al., 2000). 

 

Agrobacterium-mediated transformation via somatic embryogenesis has been a 

common approach for genetic improvement in many plant types like geranium 

(KrishnaRaj et al., 1997), grapevine (Iocco et al., 2001), carrot (Chen and Punja, 

2002), Lilium (Mercuri et al., 2003), pearl millet (Goldman et al., 2003) and rose 

(Condliffe et al., 2003). When somatic embryogenesis occurs indirectly, embryogenic 

callus provide a large population of embryogenic competent cells that are extremely 

amenable for transformation by Agrobacterium. Each transformed cell represents an 

independent transgenic line, thus tremendously increasing the number of 

transformation events in a regenerable tissue and improving transformation 

frequencies (Leelavathi et al., 2004). 
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1.5 Objectives 

 
Overall goal 

 

To explain the factors influencing morphogenesis in Schlumbergera and 

Rhipsalidopsis in order to improve the regeneration systems in these plants. This can 

be the basis for genetic improvement work in Schlumbergera and Rhipsalidopsis. 

 

Specific goals 

 
(1) To improve the in vitro regeneration systems in Schlumbergera and 

Rhipsalidopsis through: 

 
I. Screening a number of cultivars from both genera for somatic 

embryogenesis potential. 
II. Induction, maturation and plant regeneration via somatic embryos in the 

responsive cultivars. 
III. Improving protocols for adventitious shoot regeneration. 

 
(2) To provide histological evidence of the discrete vascular connections and the key 

developmental stages of the somatic embryos. 

 
(3) To study the genetic stability of the plants derived from somatic embryos. 

 
(4) To develop methods for introducing foreign genes into Schlumbergera and 

Rhipsalidopsis through genetic transformation: 

 
I. Developing a general transformation protocol for the reporter uidA gene 

and the selectable marker nptII gene. 
II. Developing a transformation protocol for the gene etr1-1 that confers 

insensitivity to ethylene.  
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2.0 Plant regeneration via somatic embryogenesis in 

Schlumbergera  

 

Abstract 

 
Keywords: Christmas cactus - multiple cotyledons - secondary embryos – 

organogenesis - adventitious shoots 
 
Somatic embryogenesis was induced from phylloclade explants of Schlumbergera cv. 

Russian Dancer. Callus developed on phylloclade explants and sub-cultured over a 

period of 16 months on MS medium containing mainly cytokinins was superior for 

the induction of somatic embryos compared to callus grown for a shorter time in the 

establishment phase. Subculture of callus grown in SH- or MS-based liquid media 

supplemented with 7.0 µM kinetin and transferred onto solid MS-based medium with 

either 0.45 µM 2,4-D or without hormones resulted in the differentiation into somatic 

embryos. SH-based medium proved better than MS-based medium when used as the 

first medium for the induction of somatic embryogenesis. However, somatic 

embryogenesis, contrary to adventitious shoot formation, was reduced when 2,4-D 

was included in the MS-based medium used for final transfer. This is contrary 

compared to the medium without growth regulators, indicating a critical hormonal 

balance was reached. Somatic embryos developed root and shoot poles when grown 

on G medium. Furthermore, plants from somatic embryos were successfully potted in 

soil and showed an increase in height and formation of a second set of phylloclades 

(secondary phylloclades). With the exception of plants derived from somatic embryos 

with more than four cotyledons, plants derived from somatic embryos showed genetic 

stability compared to mother plants. Histological studies showed that somatic 

embryos had no detectable connection with the mother explants and that advanced 

stages of somatic embryos had a contained vascular system. Medium, plant growth 

regulators, duration of callus exposure to cytokinins and presence or absence of gauze 

were shown to affect morphogenesis in Schlumbergera and Rhipsalidopsis. A highly 

efficient regeneration system in cultivars Alex and CB5 was described. The 

occurrence of anomalous and secondary embryos was also recorded in this study. 
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2.1 Introduction 

 
2.1.1 Overview 

 

Easter cactus [Rhipsalidopsis spp and interspecific hybrids] and Holiday cactus 

[Schlumbergera spp and interspecific hybrids] are popular, flowering, potted plants in 

North America and northern Europe (Scott et al., 1994).  

 

While axillary and adventitious shoots in Schlumbergera and Rhipsalidopsis have 

been produced in vitro from phylloclade explants and callus cultures (Sriskandarajah 

and Serek, 2004) and from shoot tips (Johnson et al., 1976), the frequency at which 

these shoots are produced is still slow and unsatisfactory. However, somatic 

embryogenesis is another pathway that could play a role in the current improvement 

programmes of tissue culture in these two crops. 

 

Induction of somatic embryogenesis has been reported in some cactus plants, 

including Turbinicarpus pseudomacrochele (Torres-Muñoz and Rodríguez-Garay, 

1996), Mammillaria san-angelensis (Marín-Hernández et al., 1998), Opuntia ficus-

indica (Da Costa et al., 2001) and in other succulent plants such as Agave victoria-

reginae (Rodríguez-Garay et al., 1996). However, up to now somatic embryogenesis 

has not been reported in Schlumbergera or Rhipsalidopsis. 

 

2.1.2 Morphogenesis and regeneration 

 

The inherent potentiality of a plant cell to give rise to a whole plant, a capacity which 

is often retained even after a cell has undergone final differentiation in the plant body, 

is described as ´cellular totipotency`. For a differentiated cell to express its 

totipotency it first undergoes dedifferentiation followed by redifferentiation 

(Bhojwani and Razdan, 1996; Nishiwaki et al., 2000). This potentiality has been 

exploited through the culture of protoplasts, cells, tissues and organs in vitro. In 

cultured material it has been possible to study such processes as cytodifferentiation, 

and organ and somatic embryo formation. Morphogenesis, or the origin of form, can 
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be examined through manipulation approaches, descriptively, physiologically, 

biochemically or at the molecular level (Thorpe, 1998). 

 

2.1.3 Organogenesis 

 

Organogenesis is the process by which cells and tissues are forced to undergo changes 

which lead to the production of a unipolar structure, namely a shoot or root 

primordium, whose vascular system is often connected to the parent tissue (Thorpe, 

1998; Victor et al., 1999). 

 

2.1.4 Somatic embryogenesis 

 

Somatic embryogenesis is defined as a process in which a bipolar structure, 

containing a root/shoot axis, resembling a zygotic embryo, develops from a non-

zygotic cell without vascular connection with the original tissue. This process occurs 

through the same key stages of embryo development as zygotic embryogenesis (i.e. 

globular, heart and torpedo stages) (Sharma and Millam, 2004). Somatic 

embryogenesis is a multi-step regeneration process starting with formation of 

proembryogenic masses, followed by somatic embryo formation, maturation, 

desiccation and plant regeneration (Von Arnold et al., 2002).  

 

Sometimes, somatic embryogenesis is favoured over other methods of vegetative 

propagation because of the possibility to scale up the propagation by using bioreactors 

(Mavituna and Buyukalaca, 1996). Often, the somatic embryos or the embryogenic 

cultures can be cryopreserved (Mathur et al., 2003; Winkelmann et al., 2004), which 

makes it possible to establish gene banks (Von Arnold et al., 2002). Furthermore, in 

vitro somatic embryogenesis is an important prerequisite for the use of many 

biotechnological tools for genetic improvement (Santacruz-Ruvalcaba et al., 1998). In 

this regard, somatic embryos play a key role in current genetic transformation 

methods. 

 

The first observation of in vitro somatic embryogenesis was made in Daucus carota 

(Reinert, 1958, 1959; Steward et al., 1958). Since then, the potential for somatic 

embryogenesis has been shown in many plant species. Plant regeneration through 
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somatic embryos has been induced using ovules (Winkelmann et al., 1998), epicotyls 

(Little et al., 2000), ray florets (Tanaka et al., 2000), stem internodes (Seabrook and 

Douglass, 2001), cotyledons (Mandal and Gupta, 2003), leaves (Fki et al., 2003) and 

zygotic embryos (Pinto et al., 2004) as explants.  

 

However, somatic embryos in some species are formed directly from specific explants 

cultured on a medium without growth regulators. This occurred in nucellus of citrus, 

which is thought to compromise pre-embryogenic determined cells (PEDCs) (Sharp et 

al., 1980). 

 

Common embryogenesis-related gene expression has been postulated to exist in plants 

(Reinbothe et al., 1992). DNA methylation plays a role in gene activity and cell 

differentiation (Munksgaard et al., 1995). Somatic embryogenesis could be induced 

by stressful conditions manifested through methylation changes (Leljak-Levanić et 

al., 2004). Some of the factors that can influence the induction of somatic embryos 

and subsequent plant development are the following: 

 

2.1.4.1 Growth regulators 

 

Hormones are the most likely candidates in the regulation of developmental switches. 

Auxins and cytokinins are the main plant growth regulators concerning cell division 

and differentiation related to induction and development of somatic embryogenesis 

(Fehér et al., 2003). However, embryo development in somatic embryos has been 

reported in the absence of growth regulators (Choi et al., 1998). Non-hormonal 

inducers can also be used to promote the somatic embryogenic transition. Such 

inducers include high sucrose concentration or osmotic stress (Kamada et al., 1993), 

heavy metal ions (Pasternak et al., 2002) and high temperature (Kamada et al., 1989). 

 

A) Auxins 

 

The well-studied somatic embryogenic systems, such as alfalfa, carrot, celery, coffee, 

orchardgrass, and most of the cereals, require a synthetic auxin for the induction of 

somatic embryogenesis followed by transfer to an auxin-free medium for embryo 

differentiation (Bhojwani and Razdan, 1996). 2, 4-D alone, or in combination with 
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other plant growth regulators, has been the most commonly used auxin for the 

induction of somatic embryogenesis in plants like pearl millet (Goldman et al., 2003), 

barley (Sahrawat and Chand, 2004) and elm (Conde et al., 2004).  

 

Fehér et al. (2001, 2002) suggested that 2, 4-D above a certain concentration, has a 

dual effect, as an auxin (directly or through the interference with endogenous IAA) 

and as a stressor. 

 

In the last few years a large body of experimental observation has accumulated, 

suggesting that temporal and spatial changes in endogenous auxin, particularly 

indoleacetic acid (IAA), and abscisic acid (ABA) levels are important factors 

controlling the embryogenic fate (Fehér et al., 2003).  

 

The type and concentration of auxin can affect somatic embryo development and 

morphology. Mandal and Gupta (2003) found that NAA at 10.74 µM was optimum 

for high frequency of safflower somatic embryos, whereas IAA provided the 

maximum number of somatic embryos per culture. On the contrary, 2, 4-D failed to 

elicit any embryogenic response. Furthermore, they found that in the p-CPA-

supplemented medium, somatic embryos did not mature, and their development 

ceased at the globular or heart-shaped stage. Maximum numbers of well-developed 

somatic embryos at the cotyledonary stage were obtained with 5.37 µM NAA plus 

2.22 µM BA. However, auxins were found to be inhibitory for somatic embryogenesis 

in oncidium (Chen and Chang, 2004). 

 

B) Cytokinins 

 

In some plants, embryo formation was promoted by cytokinins and reduced or 

inhibited by auxins. Chen and Chang (2001), found that embryo formation was 

retarded on leaf explants of Oncidium ´Grower Ramsey` by the four auxins tested 

(IAA, IBA, NAA and 2, 4-D), whereas the highest percentage of embryo formation 

was recorded using media containing TDZ, 2iP and kinetin. Moreover, in the genus 

Abies, it was reported that cytokinin alone is effective in induction of somatic 

embryos from cultured zygotic embryos (Guevin and Kirby, 1997). However, in 
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chrysanthemum, kinetin was reported to induce somatic embryogenesis in 

combination with an auxin, particularly indoleacetic acid (IAA) (Tanaka et al., 2000). 

 

Thidiazuron, known as TDZ, either alone or in combination with other growth 

regulators, has been found to induce somatic embryogenesis in many plant species 

(Guevin and kirby, 1997; Victor et al., 1999; Mithila et al., 2003; Zhang et al., 2005). 

TDZ also induces shoot organogenesis in a wide variety of plant species (Malik and 

Saxena, 1992; Saito and Suzuki, 1999; Mithila et al., 2003). Moreover, TDZ, a 

synthetic phenylurea-type cytokinin, is believed to modulate the metabolism of 

endogenous auxins and cytokinins (Murch and Saxena, 2001). However, the precise 

mode of action of TDZ remains undetermined. Studies in geranium (Pelargonium x 

hortorum Bailey) have indicated that exposure of hypocotyl sections to TDZ enhances 

the accumulation and translocation of auxin within the tissues (Murch and Saxena, 

2001). 

 

C) Abscisic acid (ABA) 

 

In some species, the use of ABA was found to improve the process of somatic 

embryogenesis. Carrot seedlings formed somatic embryos when cultured on medium 

containing ABA as the sole source of growth regulator (Nishiwaki et al., 2000). 

Langhansová et al. (2004) reported that ABA treatment promoted regeneration and 

rooting of Panax ginseng somatic embryos. 

 

ABA application alone or combined with other substances like PEG (polyethylene 

glycol) or activated carbon, has become a routine method for stimulation of somatic 

embryo maturation in plants like Hevea brasiliensis (Linossier et al., 1997), cork oak 

(García-Martín et al., 2005), date palm (Zouine et al., 2005) and norway spruce 

(Pullman et al., 2005). 

 

D) Daminozide 

 

The growth retardant daminozide is used to reduce the stem length of in vitro- 

propagated plantlets. Daminozide basically results in plantlets with shorter internodes, 

with darker green leaves and stems, and shorter, more uniformly distributed roots 
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(Sipos et al., 1988). Daminozide also improved survival of transplants of potato 

(Sipos et al., 1988). Furthermore, when added to the rooting medium of in vitro nodal 

cuttings of potato, daminozide led to a significantly higher leaf area of the plantlets 

soon after transfer to the greenhouse (Tadesse et al., 2000). 

 

Many growth retardants exert their influence by inhibiting cell division in the 

subapical zones of the shoot apex, causing subsequent cell enlargement, resulting in 

reduced stem elongation (Jarret, 1997). 

 

Few reports are dealing with the effect of daminozide on in vitro organogenesis or 

somatic embryogenesis. Gmitter and Moore (1986) reported that sweet orange ovules 

cultured on media supplemented with 2,4-D and daminozide in the light were the 

most responsive in terms of total embryo production. Daminozide at certain 

concentrations was also reported to severely reduce rooting (Ferreira and Janick, 

1996). 

 

2.1.4.2 Sugars 

 

In plants, sugars are not only the source of a carbon skeleton and energy, but are also 

regulators in many aspects of life’s activities. These include metabolism, assimilating 

partitioning and transporting, growth and development, stress responses and others.  

 

Sugar regulates these activities by enhancing or repressing expression of relevant 

genes (Koch, 1996; Smeekens, 2000; Rolland et al., 2002). Sucrose has been the most 

tested carbon source for induction of somatic embryogenesis. It has been used mostly 

at 3% of the culture medium in a wide range of plants including peanut (Little et al., 

2000), Helianthus maximiliani (Vasic et al., 2001) Eucalyptus globulus (Pinto et al., 

2002) and African violet (Mithila et al., 2003). 

 

In some plants, reduced levels of sucrose (1-2%) in the maturation media were 

reported to ease the conversion of somatic embryos (Conde et al, 2004). The sugar 

type and concentration influence the expression of somatic embryogenesis. Biahoua 

and Bonneau (1999) reported for spindle tree (Euonymus europaeus L.), that the 

frequency of somatic embryogenesis increased steadily with increasing sucrose 
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concentration. They concluded that elevated concentrations of sucrose mainly act 

osmotically, stimulating the emergence of numerous somatic embyos. An opposite 

response was observed with increasing glucose concentration, and it was found that 

elevated concentrations of glucose have an inhibitory effect, independent of their 

osmotic effect.  

 

Recent studies have drawn attention to the signal transduction system as a major 

regulatory function of sugars. Yang et al (2004) have studied the effect of sucrose on 

the germination and radicle elongation of carrot somatic embryos. They concluded 

that there is a sucrose-specific effect regulating elongation of carrot somatic embryo 

radicles, and that this effect is correlated to signal transduction. Northern 

hybridization revealed that there is a marked increase in the expression of a carrot 

sucrose transporter gene (cSUT) at the beginning of somatic embryo germination, and 

this is attributed to regulation on the level of transcription. However, this study 

excluded osmotic stress as the regulating mechanism. 

 

2.1.4.3 Medium  

 

The demand by plants for nutrients is diverse and different plant species require 

specific nutrient elements at specific stages. In fact, each of the tissue culture media 

that have been published in the literature was developed on the bases of a specific 

genotype of a particular plant species (Lin and Zhang, 2005). 

 

MS medium is a universal medium used in plant tissue culture. It has been used 

widely for the induction of somatic embryogenesis (Tanaka et al., 2000; Vasic et al., 

2001; Pinto et al., 2002; Conde et al., 2004). In some studies, MS medium at half 

salts strength was also reported to be used for somatic embryo induction 

(Winkelmann et al., 1998; Kim et al., 2003) and conversion into plantlets 

(Langhansová et al., 2004). In other cases, MS salts were used with B5 vitamins 

instead of MS vitamins (Victor et al., 1999; Little et al., 2000). 

 

There are many examples in literature of the different media and variability in 

individual components of the media used for somatic embryogenesis, in particular, 

and plant tissue culture in general. In Cucurbita pepo L., the embryo development 
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was affected by the nitrogen source or by manipulating the availability of auxin 

(presence or absence) (Leljak-Levanić et al., 2004). Medium BM3 (Gupta and 

Durzan, 1986) was used for maintenance and multiplication of developing embryo 

suspension masses of Picea abies (Pullman et al., 2005). Moghaddam et al. (2000) 

reported the promotion of somatic embryos in sugar beet when proline was used 

together with TIBA. 

 

Rodríguez-Garay et al. (1996) described the induction of direct somatic 

embryogenesis in Agave victoria-reginae on agar-solidified MS medium 

supplemented with L2 vitamins (Phillips and Collins, 1979). Germination of somatic 

embryos was achieved on half-strength MS medium or on half-strength SH medium 

(Schenk and Hildebrandt, 1972), both of which lacked growth regulators. 

 

2.1.4.4 Age of plant material and culture conditions. 

 

In some plant species, the in vitro morphogenesis response is influenced considerably 

by the age and the physiological state of the donor plant. Seedlings of carrot with 

hypocotyls longer than 3.0 cm were not able to form somatic embryos when treated 

with ABA. This indicated that ABA sensitivity to embryogenesis decreases with age 

(Nishiwaki et al., 2000). In another study, seed coats picked from 14- and 18- day old 

carrot seedlings exhibited a relatively high ability to develop somatic embryo 

formation compared to those from 10-day old seedlings (Ogata et al., 2005). 

 

Treatments, like exposure to plant growth regulators, and the duration to which the 

plant material is exposed early in the in vitro culture can affect the final observed 

morphogenic response (Victor et al., 1999; Von Arnold et al., 2002). In African 

violet, increasing the length of exposure to TDZ from 3 to 9 or even 35 days appeared 

to have a positive effect on de novo shoot organogenesis at lower concentrations (up 

to 1.5 µM) (Mithila et al., 2003). In European spindle tree, the stimulation of somatic 

embryos from zygotic embryos dissected from seeds stored at 4 ºC for 2-4 months 

was important for the expression frequency of somatic embryos than a cold storage 

for 10-12 months at -1.30 MPa osmotic potential (Biahoua and Bonneau, 1999).  
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2.1.5 Pathways of somatic embryogenesis 

 

Somatic embryogenesis generally occurs through two different pathways; namely, 

directly without forming the callus phase (Chen and Chang, 2004; Zhang et al., 2005) 

and indirectly following callus formation from explants (Griga, 2002; Kim et al., 

2003; Conde et al., 2004). Direct embryogenesis, without the callus phase, is likely to 

be more suitable for mass propagation because genetic rearrangement is limited 

compared with the embryogenesis via calli, which often showed aberrant 

chromosome numbers during culture (Tanaka et al., 2000). 

 

2.1.6 Cotyledonary morphology of somatic embryos 

 

Generally, zygotic embryos of dicotyledonous plants have two discrete cotyledons 

lateral to the embryo axis, but in somatic embryos the cotyledon number shows great 

diversity (Soh, 1996). The production of embryos with more than two cotyledons 

(multiple, poly) (Choi et al., 1997; Griga 2002) is well documented. Moreover, 

embryos with other forms of cotyledons such as jar-shaped (Choi et al., 1997), were 

also described. 

 

The objective of this study was to induce somatic embryogenesis and plant 

regeneration in Schlumbergera and Rhipsalidopsis. Furthermore, the effect of medium 

type, growth duration of callus on culture medium and plant growth regulators on the 

induction of somatic embryos were evaluated. 
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2.2 Materials and Methods 

 

2.2.1 Plant material 

 

Mother plants of S. truncata (cvs. Russian Dancer, Exotic Dancer, Carribean Dancer, 

Malindi and Alex) and R. gaertneri (cvs.CB1, CB4, CB5 and CB6) were grown in 

0.51 (10 cm square) pots in a greenhouse with 16 h light (provided by SON-T sodium 

lamps during winter months, 600 µmol m-2 s-1 at plant surface) at 25-28 ºC. The plants 

were watered, without fertilizer, at the base without wetting the foliage, in order to 

reduce problems during surface sterilisation. When the experiments started, the plants 

were about 1-year-old with 3-5 tiers of mature phylloclades. 

 

2.2.2 Establishment phase 

 

Phylloclade explants were surface sterilised in 1.5% active chlorine from sodium 

hypochlorite with 0.02% Tween 20 for 15 min. The explants were then thoroughly 

washed five times with sterile water. After the removal of chlorine-damaged areas, 

each phylloclade was cut through the midrib into 2-3 pieces and grown in a medium 

consisting of MS salts, Staba vitamins (Staba, 1969), 22.7 µM TDZ and 1.3 µM NAA, 

3% w/v sucrose and gelled with 3 g l-1 gelrite (maintenance medium). Growth 

regulators were dissolved in DMSO to make stock solutions and were added to the 

media after autoclaving. The pH of all media was adjusted to 5.7 before autoclaving. 

 

Callus developed on explants was used for the next experiments. All of the cultures, 

unless otherwise stated, were incubated in light in a growth room (17-h photoperiod 

of 66 µmol m-2 s-1 provided by cool-white fluorescent tubes) at 25-28 ºC. 

 

2.2.3 Preliminary experiment 

 

From each of the nine cultivars of Schlumbergera and Rhipsalidopsis, small callus 

pieces were grown in liquid MS-based medium supplemented with 7.0 µM kinetin. 

After 20, 30, 40 and 50 days, callus was transferred onto solid MS medium 

supplemented with 0.45 µM 2,4-D (MSD), 0.57 µM IAA (MSIA), 0.54 µM 4-CPA 
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(MSCPA) or 0.62 µM Daminozide (MSDM). Callus was either placed directly on the 

surface of the medium or on a piece of gauze on the medium. 

 

The formation of somatic embryos, roots and shoots was recorded. Based on the 

results, the following experiments using selected cultivars (sections 2.2.4 and 2.2.5) 

were conducted. 

 

2.2.4 Somatic embryogenesis in cv. Russian Dancer 

 

Two types of callus were defined to see the effect of the growth duration of callus on 

the induction biology of somatic embryogenesis. The first type of callus was grown 

for a relatively short period of time on the establishment medium (designated as H 

callus). The second type of callus was grown for a longer time during the 

establishment phase (Ho callus). H callus was obtained by sub-culturing the 

regenerated callus from the explants twice over a period of three months on 

maintenance medium. Ho callus developed on explants was sub-cultured onto fresh 

maintenance medium approximately every two months over a period of nine to twelve 

months. Then it was grown 4.5 months on MS medium containing 26.6 µM BA, 27.2 

µM TDZ, 27.4 µM zeatin, 3% w/v sucrose and 3 g l-1 gelrite, before the start of the 

embryogenesis experiment. 

 

Induction of somatic embryos 

 

Eight callus pieces (approximately 100 mg each) were transferred to 30 ml of liquid 

medium in Erlenmeyer flasks (100 ml). Two media were employed; the first medium 

was based on MS salts and the second medium was SH-based medium. Both media 

were supplemented with 0.1 g l-1myo-inositol, 7.0 µM kinetin and 3% w/v sucrose. 

There were 6 flasks for each medium and the cultures were shaken at 120 rpm using a 

rotary shaker and incubated at 27-29 ºC under a light intensity of 4 µmol m-2 s-1  with 

12 h-photoperiod. 

 

Callus was grown for 30 days in SH medium, whereas in MS-based medium, it was 

grown for 20 and 40 days. Callus was then filtered through sieves (200 µm), and 0.5 g 

callus was placed on gauze (TZMO SA, Poland) which was placed on MSD, or on 
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MS-based medium without hormones (MSWH). The medium contained 3% w/v 

sucrose and was gelled with 3 g l-1 gelrite. Each petri dish containing 0.5 g of callus 

was considered as a replicate, and the petri dishes were placed randomly on shelves in 

the growth room. 

 

To study the effects of gauze and type of auxin used on the induction of somatic 

embryos, callus transferred after 20 days from MS-based medium was grown on MSD 

and MSIA. In this case, callus was placed directly on the surface of the medium (- 

gauze), or on a piece of gauze on the medium (+ gauze).  

 

When somatic embryos began appearing, they were proliferated by transferring them 

to the respective media, MSD and MSWH, after six weeks. Embryos consisting of 2 

cotyledons were classified as normal embryos, and those consisting of 1 or more than 

2 cotyledons or other forms such as vase-like, were classified as abnormal. 

 

Embryo maturation and subsequent plant regeneration 

 

After culturing on the proliferation medium for two months, somatic embryos were 

separated and transferred to a medium consisting of ¾ MS salts, 0.1 g l-1myo inositol, 

50 g l-1 sucrose, Staba vitamins and 3 g l-1 gelrite (G medium) for germination. Ten 

embryos (from the normal and abnormal types) were placed on the surface of G 

medium in plastic containers (99 mm x 91 mm, Danefeld, Breeding Station, 

Denmark) and grown further. 

 

To accelerate the growth of germinated embryos, the embryos were taken from G 

medium after about 3 months and transferred to B medium consisting of 2.2 µM BA, 

½ MS salts, 7.5 g l-1 sucrose and 5 g l-1 glucose. Five germinated embryos were placed 

on the surface of the medium in each plastic container. 

 

Transfer to greenhouse conditions 

 

Plantlets from somatic embryos were transferred after 3 weeks from B medium to 

plastic pots (5.5 cm, OS Plastic A/S Denmark) containing a mixture of autoclaved 

peat and perlite (2:1) and were grown under greenhouse conditions. Acclimatization 
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of the plants was carried out by wrapping them with a plastic cover. After one week, 

the cover was removed gradually and small holes were made in it to enable an 

exchange of air and humidity.  

 

Morphology and histology of somatic embryos 

 

Embryos in the globular and torpedo stages were harvested and observed using an 

environmental scanning electron microscope (ESEM) (Quanta 200 SEM, FEI Europe 

B.V., Eindhoven, Netherlands). 

 

Somatic embryos at the different developmental stages were fixed in histochoice 

overnight at room temperature and then washed 3 times at 20 min intervals using 

distilled water. The samples were dehydrated in isopropanol solutions (10 %, 30 %, 

50 %, 70 %, 85 %, 95 %, twice 100 %) for 2 hrs in each step and embedded in 

paraffin. Sections, of 10 µm, were cut using a rotary microtome (Microm HM340E). 

The sections were mounted on glass slides and placed on a warm tray (40 ºC) 

overnight. For deparaffinizing, sections were passed through 100% ultraclear (3 times 

each for 15, 10 and 5 min) and then a graded series of isopropanol solutions each at 3 

min intervals (100, 95, 85, 70, 50, 30, 20 and 10%). Samples were then rinsed with 

destilled water (5-15 min) and stained with 0.1 % Toludine blue in citrate buffer (pH 

4.4). Samples were photographed using Leica DMR fluorescence microscope 

(Fotoequipment: Leica DC 300F Leica, Germany). 

 

Morphology of zygotic embryos/somatic embryos 

 

Seeds of Schlumbergera cv. Thor-Ritt were sterilized in 1.5 % sodium hypochlorite 

solution for 8 min and rinsed three times with sterile water. Seeds were then 

germinated in petri dishes on MS-based medium containing Staba vitamins, 3% w/v 

sucrose and 3 g l-1 gelrite. 

 

The stages observed from seed germination of the cv. Thor-Ritt were compared to the 

main stages of somatic embryogenesis in the cv. Russian Dancer. 
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Cytological analysis of the regenerated plants 

 

Chromosome counting in root tips was done as described by Parks and Boyle (2003). 

Root tips (1-2 cm) were collected from Schlumbergera mother plants and embryos 

which had 2, 4, or more cotyledons and pretreated in a saturated solution of Para-

dichlorobenzene for 5 h at room temperature. Para-dichlorobenzene was dissolved in 

methanol to make a saturated solution. Root tips were rinsed in deionized H20 (d 

H20), fixed and stored at room temperature for 24 h. The fixation solution consisted of 

3 parts ethanol 95% to one part glacial acetic acid (by volume). Rinsed root tips were 

hydrolyzed for 11 min in 1 N HCl at 60 Cº and then rinsed in dH20. Apices were 

stained in a drop of Feulgen reagent (0.5% (w/v) Para-rosaniline) for 1 hr in the dark 

at room temperature. Feulgen reagent was prepared by dissolving 0.5 g of Para-

rosaniline in 100 ml ethanol. Meristems were squashed in a drop of acetocarmine. 

Acetocarmine was prepared by dissolving 0.5 g carmine in 45% glacial acetic acid (45 

ml glacial acetic acid combined with 55 ml distilled water). Slides were viewed with a 

Leica DMR fluorescence microscope. At least five root tip cells were counted for 

each sample. 

 

2.2.5 Somatic embryogenesis in cvs. Alex and CB5 

 

Callus developed on explants from cv. CB5 was sub-cultured onto fresh maintenance 

medium approximately every two months over a period of nine to twelve months. The 

callus from cv. Alex was sub-cultured over a period of seven months. 

 

Induction of somatic embryos 

 

The procedure is similar to that reported in section 2.2.4, but with modifications. 

Small callus pieces (approximately 5.5 g) were transferred to 40 ml of liquid medium 

in Erlenmeyer flasks (250 ml). The medium used was based on MS salts 

supplemented with 0.1 g l-1myo-inositol, kinetin at 7.0 µM for cv. Alex and 4.7 µM 

for cv. CB5, 3% w/v sucrose. There were 8 flasks for each medium and the cultures 

were shaken at 120 rpm using a rotary shaker and incubated at 27-29 ºC under a light 

intensity of 4 µmol m-2 s-1  with 12 h-photoperiod. 
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Callus was grown for 30 and 50 days in this medium. Then callus was filtered through 

sieves (200 µm), and callus (0.5 g for cv. CB5, 1.0 g for cv. Alex) was placed on 

gauze which was placed on the surface of one of the following: MSD, MSIA, MSDM, 

or MSWH media. The medium contained 3% w/v sucrose and was gelled with 3 g l-1 

gelrite. Each petri dish (9 cm in diameter) containing 0.5 or 1.0 g of callus was 

considered as a replicate and seven replicates were used for each medium. Petri dishes 

were placed randomly on shelves in the growth room. 

 

2.2.6 Data collection and statistical analysis 

 

Each experiment was repeated twice over a 2 year period. In addition to the number of 

embryos in the defined developmental stages, the number of adventitious shoots was 

also counted. The dry weight of shoots was also recorded. Shoots were dried in an 

oven at 70 ºC for two weeks. Embryos were considered germinated if they formed at 

least one 2 mm-long root and had a clear shoot apex with at least one phylloclade. 

The frequency of secondary embryogenesis on the germinated embryos was also 

recorded.  

 

The survival percentage of plants in soil (number of surviving plants / total number of 

plantlets transferred to soil x 100) was recorded 45 days after transferring the embryos 

to soil. At the same time, growth of plants derived from somatic embryos (plant 

height, number of primary and secondary phylloclades) was recorded. Chromosomes 

were counted in root tips of plants derived from somatic embryos of Schlumbergera 

cv. Russian dancer that had 2, 4 or more cotyledons, and in the mother plants. For the 

experiment with the cv. Russian Dancer, data were presented as mean values and their 

standard errors calculated. Treatments consisted of unequal replicates (replicate 

numbers designated as n) according to the availability of plant material. 

 

A factorial randomized experimental design was used for the data of the adventitious 

shoot regeneration in the cultivars Alex and CB5. Statistical procedures were 

performed using SAS software (SAS-Institute Inc, 1996)-general linear model (GLM) 

procedure according to the model Y= time treat and time*treat. Differences between 

means were examined using t test at P level < 0.05. 
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2.3 Results 
 

2.3.1 Preliminary experiment 

 

Differences were observed in the organogenic and embryogenic potential between 

cultivars from both Schlumbergera and Rhipsalidopsis in response to the different 

media tested. After about three to five months, cv. CB1 did not exhibit any growth 

response when grown on any of the media in the final transfer, regardless of the 

duration of culture in the first liquid medium. Cultivar Exotic Dancer formed only 

roots, but no incidence of shoots or somatic embryos was recorded. Cultivars CB4 

and CB6 showed adventitious shoot formation with low frequency when grown on 

MSD (< 5 shoots per petri dish). However, a good regeneration potential through the 

formation of adventitious shoots was observed with the cvs. CB5 and Alex in almost 

all media tested.  

 

The induction of somatic embryogenesis was observed only in Schlumbergera cvs. 

Russian Dancer, Alex, Carribean Dancer and Malindi. Somatic embryos were induced 

3-6 months after transfer from the liquid medium onto MSDM, MSCPA, MSD and 

MSIA.  

 

The results indicated that duration of callus growth in the first liquid medium, 

presence or absence of gauze may influence the regeneration potential. For example, 

somatic embryos of the cv. Carribean Dancer were induced from callus grown for 50 

days in the first liquid medium and then transferred onto MSDM without using gauze. 

In contrast, no somatic embryos were seen on MSDM medium from callus grown 

only for 20 days in the first medium, or when MSDM was used with gauze. However, 

this effect was genotype dependent (Table 1). 
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Table 1. Treatment combinations that resulted in the induction of somatic embryos in 

the preliminary experiment  

 

Cultivar Transfer 
(Days) 

Medium Gauze 

50 MSDM - 

20 MSCPA + 

Carribean Dancer 

50 MSIA + 

Malindi 20 MSDM - 

Russian Dancer 40 MSD + 

Alex 30 MSDM + 

 

2.3.2 Somatic embryogenesis 

 

A) Cultivar Russian Dancer 

 

Induction of somatic embryos 

 

Somatic embryos in cv. Russian Dancer were induced after three and a half months 

from the start of the embryogenesis experiment when callus was transferred from the 

liquid SH-based medium (containing 7.0 µM kinetin) after 30 days to the MSWH or 

after five months when callus was grown in the liquid MS medium (containing 7.0 

µM kinetin) and transferred after 40 days to the MSWH or MSD.  

 

When the embryogenesis experiment began, the colour of the callus grown in the 

liquid media was greenish-brown. Callus texture ranged from medium to hard. After 

the transfer to the second medium, a yellowish, soft, friable callus began forming on 

the older brownish callus, from which somatic embryos later began differentiating 

(Figure 1). 
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Figure 1. The development of friable, soft, yellowish callus (arrow; red) on the older 

brownish callus (arrowhead; black) on MSWH medium after the transfer from SH-

based liquid medium. Bar: 1cm. 

 

The somatic embryos began to form as whitish proembryogenic mass (Figure 2 a), 

from which globular embryos (Figure 2 b) formed and began elongating (Figure 2 c). 

They then successively developed into the torpedo stage (Figure 2 d & e) and 

cotyledonary stage (Figure 2 f). The embryos were easily detachable from the callus 

inside the cultures and showed clear root and shoot poles indicating no vascular 

connection with the original tissue. Induction of somatic embryogenesis was favoured 

by Ho-type callus. The highest average numbers of embryos in the globular (14.7), 

elongation (43.7), torpedo (26.2) and the two-cotyledon (47) stages were achieved 

using SH medium for the first culture and MSWH medium after 30 days. When MS 

medium was used for the first culture, about twice the number of embryos in the two- 

cotyledon stage was formed on the second medium MSWH when compared to that on 

MSD (Table 2). However, no somatic embryogenesis was recorded on MSD, when 

callus was transferred 20 days from liquid MS medium or 30 days from liquid SH 

medium. 
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Figure.2 Plant regeneration via somatic embryogenesis in S. truncata cv. Russian 

Dancer. (A) Proemryogenic mass (Pem) (x18). (B) Globular stage (Gs) (x18). (C) 

Elongation of embryos (Eoe) (x18). (D) Torpedo stage (x18). (E) Mixed stage of 

elongating and torpedo embryos (x6). (F) Embryos with 2 cotyledons (x18). (G) 

Embryos with clear shoot apex (x9). (H) Complete plantlet with new phylloclade 

forming areoles with spines (x9). (I) Secondary embryos (Se) (x8). (J) Embryos show 

multiple finger-like cotyledons (x6) (K) which formed later the new phylloclades 

(x6). (L) Vase-like embryos with cotyledons arranged in a circle at the embryo apex, 

with the new growth primordia located in the centre (x18). 
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Table 2.Effects of media and transfer dates on the average number of somatic 

embryos in the different developmental stages in S. truncata cv. Russian Dancer. 

 

Callus First 
medium 

Transfer 
(days)  

Second     
medium 

No. of embryos/ 0.5 g callus  

   Globular Elongation Torpedo 2 cotyledon 

SH,7.0 
µM kin 

30  MSWH 14.7±4.61 43.7±10.21 26.2±5.91 47.0±12.91 

 MSD  3.0±0.92   5.7±1.32  5.9±1.72 10.4±2.92 

H0 

MS,7.0  
µM kin 

40 

 MSWH 10.6±1.13 13.8±4.63 18.8±4.93 21.4±6.63 

H MS,7.0  
µM kin 

40  MSD  0.1±0.14  0  0  0.3±0.14 

 

The results are the mean ± standard error of 1 (n:6), 2 (n:7), 3 (n:5) and 4 (n:8) 
 

During the course of somatic embryo development, different patterns of cotyledon 

morphology and shoot apex structure of embryos were observed. In addition to the 

normal dicotyledonous embryos, anomalous embryos with multiple cotyledons 

developed (Figure 2 j & k). Vase-like embryos with cotyledons arranged in a circle at 

the embryo apex, with the new growth primordia located in the centre (Figure 2 l), 

were noticed. 

 

All of these embryogenic structures were seen simultaneously in all the media tested. 

When callus was grown in liquid SH-based medium and transferred after 30 days to 

MSWH medium, the highest average number of abnormal embryos were those with 3 

and 4 cotyledons (25), (16), respectively (Figure 3 I). Using this combination of 

media and transfer date, a total of 77 abnormal embryos (Figure 3 II), a total of 124 

normal and abnormal embryos and a total of 208 embryos were formed (Figure 3 III). 

The response was higher than when MS-based medium was used for the first culture. 

62-74% of the total number of embryos in the cotyledonary stage was of the 

anomalous type (Figure 3 IV). 
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Figure 3. Effects of media and transfer dates on the (I) Number of somatic embryos, 

with 1, 3, 4, 5, 6, 7, 8 and more than 8 (>8)cotyledons and those defined as vase-like 

embryos(V). (II) Total number of abnormal embryos. (III): Total number of the 

abnormal embryos (1), The sum of the normal and the abnormal embryos (2), Total 

number of the embryos formed including normal and the abnormal embryos plus 

those in the globular, elongation and torpedo stages (3). (IV) Proportion of normal 

(N) to abnormal embryos (M), from cv. Russian Dancer. Ho-type of callus was 

transferred from (A) SH liquid medium supplemented with 7.0 µM kinetin after 30 

days onto (MSWH) (B) MS liquid medium supplemented with 7.0 µM kinetin after 

40 days onto (MSD) or (C) MS liquid medium supplemented with 7.0 µM kinetin 

after 40 days onto (MSWH). The results are the mean ± standard error of A (n:6), B 

(n:7) and C (n:5). The description for the media and transfer date’s combinations 

designated by (A), (B) and (C) will be the same in figures 4, 5 and 7. 
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Using H callus, only a limited somatic embryogenesis was recorded on MSD-grown 

callus that was transferred after 40 days from liquid MS-based medium supplemented 

with 7.0 µM kinetin (Table 2). 

 

Somatic embryo development in S. truncata, as shown in this study, was 

asynchronous since all phases up to cotyledon phase were observed in the same 

embryogenic callus at the same time. 

 

Embryo maturation and subsequent plant regeneration 

 

Embryos began rooting after 2-3 weeks on G medium (Figure 2 g & h, Figure 4 V). 

After three months on this medium, approximately 70% germination was recorded in 

dicotyledonous embryos. These embryos were differentiated earlier from Ho callus 

grown on either SH-based medium or MS-based medium supplemented with 7.0 µM 

kinetin, and then transferred after 30 days (from SH medium) onto MSWH medium or 

after 40 days (from MS medium) onto MSD medium (Figure 4 I). However, 72-90% 

of embryos formed roots, regardless of shoot formation (Figure 4 II). This occurred 

whether SH- or MS-based medium was used for the first culture. 

 

The germination of abnormal embryos was also recorded. Abnormal embryos with 3, 

4, or more than 4 cotyledons showed significantly higher germination percentages 

(53-78%) than embryos with 1 cotyledon (23-44%) in all media and combinations of 

transfer dates (Figure 4 III). Embryos with one cotyledon also showed slightly less 

root formation than the rest of the abnormal embryos (Figure 4 IV). 

 

However, by this time many new secondary embryos had developed on old embryos 

(Figure 2 i). Similar to the trend obtained with the average number of somatic 

embryos in the two-cotyledonary stage (Table 2), the frequency of secondary somatic 

embryos was about two-fold when embryos were grown on MS-based liquid medium 

as the first medium and transferred after 40 days onto MSWH compared to those 

transferred to MSD as the last media (Figure 5 I). Moreover, the average number of 

secondary somatic embryos per primary embryo was three to four times more on 

MSWH medium than on MSD, regardless of the type of medium used for the first 

step (Figure 5 II). 
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Figure 4. Germination of somatic embryos of S. truncata.cv Russian Dancer. The 

results are the mean ± standard error of I. and II.: A(n:17), B(n:5) and C (n:10); III. 

and IV.: A(1c, 3c, 4c, >4c; n: 5, 8, 6, 9, respectively), B(1c, 3c, 4c, >4c; n: 5, 4, 4, 4, 

respectively) and C (1c, 3c, 4c, >4c; n: 6, 5, 4, 5, respectively). V. Germinated 

somatic embryos after one month on G medium. 
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Secondary somatic embryos formed on abnormal primary embryos showed the same 

trend. The frequency of secondary somatic embryos and the average number of 

secondary somatic embryos per primary abnormal embryo were less when MSD was 

used as the last medium compared to MSWH medium (Figure 5 III & IV, 

respectively).  

 

 
 

Figure 5. Secondary embryogenesis of S. truncata.cv Russian Dancer. The results are 

the mean ± standard error of I. A (n:13), B (n:5) and C (n:10), II. A (n:38), B (n:4) 

and C (n:15) , III. A (1c, 3c, 4c, >4c; n: 4, 8, 4, 7, respectively), B (1c, 3c, 4c, >4c; n: 

5, 3, 2, 3, respectively) and C (1c, 3c, 4c, >4c; n: 6, 6, 4, 6, respectively), IV. A (1c, 

3c, 4c, >4c; n:14, 22, 8, 25, respectively), B (1c, 3c, 4c, >4c; n: 9, 4, 3, 2, 

respectively) and C (1c, 3c, 4c, >4c; n: 16, 20, 14, 13, respectively). 
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Transfer to greenhouse conditions 

 

A total number of 439 germinated embryos from all combinations of media and 

different transfer dates that originated from Ho-type callus, were transferred to soil to 

evaluate their survival rates. When somatic embryos were left more than 3 weeks on 

B medium, they began callusing at the bases. However, plants from somatic embryos 

with 1, 2, 3, 4, or more than 4 cotyledons showed excellent acclimatisation and 

survival rates of (70-80%), (65-81%), (84-94%), (75-88%) and (70-87.5%), 

respectively (Table 3). They also showed an increase in height and formation of the 

second set of phylloclades (secondary phylloclades) (Figure 6, Figure 7I, II and III). A 

maximum average height of 2.6 cm was recorded for those plants developed from 

somatic embryos with more than 4 cotyledons. Those resulted from callus transferred 

after 40 days from MS-based medium onto MSWH (Figure 7 I). Moreover, plants 

developed from somatic embryos with more than 4 cotyledons, and to a lesser extent 

those plants developed from somatic embryos with 4 cotyledons, had the highest 

average number of primary and secondary phylloclades per plant (Figure 7 II & III).  

 
Morphology and histology of the somatic embryos 

 

In this investigation, the main stages of somatic embryogenesis from globular to 

cotyledonary stages were observed. The development of the embryo began with 

small, densely cytoplasmic cells that underwent a series of organized divisions 

(Figure 8 a, arrowhead). Such meristematic centres led to the formation of globular- 

stage somatic embryos (Figure 8 b). The appearance of the globular structures was 

coupled with the development of the protoderm, which is the outermost layer of a 

developing embryo (Figure 8 a, arrow). 

 

The next developmental stage was the oblong embryo (Figure 8 c). The oblong stage 

is considered as a transition stage between the globular and the elongated embryos. 

When embryos began elongating, they were easily separated from the mother tissue 

and showed clear, distinct root and shoot poles (Figure 8 d, arrowhead). They also 

developed a clear vascular system (Figure 8 d, arrow). The torpedo stage marked the 

beginning of the two cotyledons (Figure 8 e, arrowhead). At this stage, the first signs 
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of the two cotyledons (arrowhead) were seen around the top middle notch (arrow) in 

the apical meristem (Figure 8 e & f). 

 

Somatic embryos further progressed through the early (Figure 8 g) and middle 

cotyledonary stages (Figure 8 h) until they attained well-developed and mature 

cotyledons (Figure 8 i). 

 

Table 3. Effects of media and transfer dates on the percentage of survival of S. 

truncata cv. Russian Dancer somatic embryos from Ho-type callus. 

 

First medium Transfer 
(days)  

  Second   
medium 

 Somatic embryo survival (%) 

   1ct 2ct 3ct 4ct >4ct 
SH,7.0 µM kin 30  MSWH 73(11)* 81(70) 84(49) 75(32) 70(50) 

 MSD 80(15)  65(31) 94(17) 77(13) 87.5(16) MS,7.0 µM kin 40 
 MSWH 70(20) 70(27) 89(36) 88(17) 74(35) 

 

* Numbers between brackets in the lowercase represent the number of embryos 

evaluated. 

 

 
 

Figure 6. Regenerated plants from somatic embryos of S. truncata cv. Russian Dancer 

grown in soil for two months. 
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Figure 7. Growth of plants derived from somatic embryos of S. truncata cv. Russian 

Dancer. I., II. and III.: A (1c, 2c, 3c, 4c, >4c; n: 8, 50, 41, 24, 34, respectively), B 

(1c, 2c, 3c, 4c, >4c; n: 12, 21, 16, 9, 14, respectively) and C (1c, 2c, 3c, 4c, >4c; n: 

14, 17, 30, 14, 24, respectively). 
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Figure 8. Histological analysis revealing the key developmental stages in S. truncata 

cv. Russian Dancer somatic embryogenesis. (A) Globular embryo with visible 

protoderm (arrow) and a nearby section of callus cells preparing for somatic 

embryogenesis with apparent meristematic zones (arrowhead) characterized by dense 

cytoplasm and intensely stained nuclei (x10). (B) Isolated somatic embryo in globular 

phase photographed by (ESEM) (Bar: 300 µm). (C) Oblong-shaped somatic embryo 

(x10). (D) Elongated embryo, with a closed basal end (arrowhead: bottom) and 

contained vascular system (arrow) (Bar: 350 µm). (E) Early torpedo-shaped somatic 

embryo, with a notch (arrow) in the middle of the shoot apex, giving rise to the first 

signs of the 2 cotyledons (arrowhead) (Bar: 240 µm). (F) The shoot apex of a somatic 

embryo in the torpedo stage photographed by (ESEM), showing the notch (arrow) 

and the very beginning of the 2 cotyledons (Bar: 300µm). (G) (H) and (I) Early, 

middle and late-cotyledonary stage showing the gradual development of the 2 

cotyledons (Bars: 300 µm (G); 240 µm (H); 240 µm (I)) 
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Organogenesis 

 

Both organogenesis and embryogenesis occurred at the same time. Roots were seen 

after 3-4 weeks when callus was transferred from the liquid medium to the second 

solid medium. Adventitious shoots began forming after 4 weeks on MSWH when Ho 

callus was transferred from SH-based medium. Adventitious shoots formed in almost 

all types of callus with different types of media and combinations of transfer dates. 

Similar to the tendency with somatic embryos, adventitious shoots formed at higher 

frequency when the older callus was used. However, unlike somatic embryos, when 

2,4-D was included in the second medium, formation of shoots was clearly enhanced 

(Table 4). 

 

Table 4. Effects of media and transfer dates on the average number of adventitious 

shoots of S. truncata cv.Russian Dancer from Ho-type callus. 

 
Average number of shoots/ 0.5gm callus First medium Transfer 

(days) 
Second 
medium Scale 1(1) Scale 2(2) Scale 3(3) ∑ shoots 

20  MSD 9.0±0.7*,x 2.6±0.4*,x 0.4±0.4*,x 12.0±0.9*,x 

MSD 6.3±0.5y 3.3±0.5y 0.4±0.2y 9.9±0.7y 
MS, 7.0 µM  kin 

40 
MSWH 0.3±0.2y 0 0 0.3±0.2y 

MSD 6.5±0.6y 2.9±0.4y 0.1±0.1y 9.5±0.6y SH, 7.0 µM  kin 30 
MSWH 1.8±0.4y 1.6±0.3y 0 3.4±0.6y 

(1) shoots that are less than 1 cm long 
(2) shoots that are between 1 and 2 cm long 
(3) shoots that are more than 2 cm long 

* Only data from the first combination (media and transfer date) represent the average 

number of shoots per 1 gm callus. The results are the mean ± standard error of x 

(n:5) and y (n:8). 
 

Effects of auxin type and gauze on induction of somatic embryos 

 

Adventitious shoots, however not somatic embryos, were formed when callus was 

transferred after 20 days from liquid MS-based medium onto MSD or MSIA, 

regardless of whether gauze was used or not. More shoots regenerated on MSIA than 
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on MSD. In this regard, a total of 20 shoots were produced on MSIA compared to 4 

shoots regenerated on MSD when gauze was not used (Figure 9). 

 

The addition of gauze on the surface of MSD enhanced the regeneration of shoots 

(Figure 9). A total of 12 shoots regenerated when gauze was used compared to only 4 

shoots formed in the absence of gauze. However, this effect was not clear with MSIA. 

Approximately the same number of shoots was produced on MSIA, in the presence 

and absence of gauze (Figure 9). 

 

 
 

Figure 9. Effects of auxin type and gauze on the regeneration of adventitious shoots in 

S. truncata cv. Russian Dancer. Gauze was either placed on the surface of the medium 

(+g) or it was not used (-g). Sh1: Shoots that are less than 1 cm long, Sh2: Shoots that 

are between 1 and 2 cm long, Sh3: Shoots that are more than 2 cm long, ∑ Sh: total 

number of shoots. 

 

Morphology of zygotic embryos\ somatic embryos 

 

After the rupture of seed coat, developing Schlumbergera zygotic embryos exhibited 

the torpedo, early, middle and late cotyledonary stages (Figure 10 a). The 

corresponding stages of somatic embryos showed a good resemblance (Figure 10 b). 
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Typical heart-shaped somatic embryos were not observed in Schlumbergera. Based 

on the germination of zygotic embryos, this stage was also absent (Figure 10 a).  

 

However, differences were noticed between zygotic and somatic embryos. Zygotic 

embryos normally exhibited an increase in the gradient of green colour, from light to 

dark green, with the development from torpedo to late cotyledonary stages (Figure 10 

a). Somatic embryos were white at the globular and elongation stages (Figure 10 c). 

Once the torpedo stage began, a change in the colour of somatic embryos was 

observed. Somatic embryos at torpedo and sometimes cotyledonary stages displayed a 

colour gradient (Figure 10 c & e). Sometimes the lower part of the embryo was green 

and the upper part with the cotyledons was white (Figure 10 c). In other cases, the 

opposite was noticed. Cotyledons were green and the lower part of the embryo was 

white (figure 10 e). 

 

In addition to the formation of embryos with multiple cotyledons, somatic embryos 

exhibited a broad spectrum of morphological abnormalities in the dicotyledonous 

stage. Compared to zygotic embryos, which exhibited a clear V shape of the 2 

cotyledons (Figure 10 d), somatic embryos with fused cotyledons and a narrow angle 

between the two cotyledons, were observed (Figure 10 e). 

 

Dicotyledonous somatic embryos with various sizes of cotyledons were also evident. 

For example, embryos that were wide in the middle with short cotyledons were 

observed (Figure 10 f). 

 

Cytological analysis of the regenerated plants 

 

Plants derived from somatic embryos with 4, or more than 4, cotyledons had the 

highest average plant height (Figure 7 I) and showed more primary and secondary 

phylloclade formation than embryos with other types of cotyledons (Figure 7 II & III). 

This finding, coupled with the observed large size of embryos bearing 4 or more than 

4 cotyledons (Figure 11), led to the study of the genetic stability of somatic embryo-

derived plants. The chromosome number of mother plants was diploid (2n=2x=22) 

(Figure 12 I). In plants derived from somatic embryos with either 2 or 4 cotyledons, 

the ploidy level was maintained (2n=2x=22) (Figure 12 II & III). However, plants 
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derived from somatic embryos with more than 4 cotyledons were triploid (Figure 12 

IV). 

 

 

 
 

Figure 10. Morphology of zygotic and somatic embryos. (A) Gradual development of 

zygotic embryos (Bar: 1.50 mm) (B) Gradual development of somatic embryos. (Bar: 

1.70 mm) (C) Mixed stage of elongating and torpedo embryos (x6). Morphology of 

the two cotyledons from zygotic embryos (Bar: 1.50 mm) (D) and somatic embryos 

(E & F; x18 & x9, respectively). 
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Figure 11. Plants derived from somatic embryos with 2, 3, 4 or more cotyledons (from 

left to right, respectively). 
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Figure 12. Chromosome numbers in S. truncata cv. Russian Dancer somatic embryos. 

(I) Diploid chromosome set (2n=2x=22) of the mother plant, (II) Diploid chromosome 

IA IB 

IIA IIB 

IIIA IIIB 

IVA IVB 
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set (2n=2x=22) of dicotyledonous embryos, (III) Diploid chromosome set (2n=2x=22) 

of somatic embryos with 4 cotyledons, (IV) Triploid chromosome set (2n=3x=33) of 

somatic embryos with more than 4 cotyledons. (A) Original slides (B) Individual 

chromosomes are marked to indicate their number. Objects were photographed at 

x1000. 

 

B) Cultivars Alex and CB5 

 

Morphogenesis 

 

Both cultivars produced adventitious roots and shoots. Somatic embryogenesis was 

induced only in cv. Alex. 

 

Induction of somatic embryos 

 

The incidence of somatic embryos was recorded in cv. Alex from callus that was 

grown for 30 days in liquid MS-based medium (containing 7.0 µM kinetin), and then 

transferred on either MSWH or MSDM. Somatic embryos were induced at low 

frequency. Only callus in one replicate out of seven replicates for each medium 

produced friable, white, reddish callus with 3-6 embryos. 

 

Organogenesis 

 

Differences were observed in the colour and texture of the callus from both cultivars 

that were grown in the first MS liquid media. Callus texture from cultivar Alex was 

medium to hard after 30 days of growth in the liquid medium. Its colour was greenish-

yellow. However, the callus from cv. CB5 was characterized by its hard texture and 

greenish-red colour. 

 

Adventitious roots and shoots were seen after about three to five weeks when callus 

was transferred from the liquid media to the various solid media. For cv. CB5, in 

addition to the adventitious roots and shoots, white transparent structures had formed 

by that time on callus gown on MSD. Those structures later produced roots. 
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Effects of the media and transfer dates on the adventitious root and shoot 

formation 

 

Different media were used in the final transfer phase to test the effect of auxins and 

daminozide on morphogenesis in Schlumbergera and Rhipsalidopsis. Two to three 

months after the callus of cv. Alex was transferred to the different media, new soft, 

watery callus had developed on the older callus in the different media (Figure 13). 

This new callus was rhizogenic, giving rise only to roots. 

 

The interaction between the transfer dates and the media was significant for the 

average number of adventitious shoots for both cultivars. The results from cv. Alex 

showed that the longer the callus is grown in the liquid medium, the more the 

regeneration of adventitious shoots in terms of both the average number and dry 

weight of shoots (Table 5).  

 

The callus that was grown for 50 days in the first MS liquid medium, and then grown 

for 5 months on either MSWH or MSDM, significantly produced the highest average 

number of total shoots (40 and 45, respectively) (Figure 14 a). This combination of 

transfer date and medium also resulted in the highest average shoot weight of 0.26 

(MSWH) and 0.31 g (MSDM), respectively (Table 5). In contrast, callus grown for 30 

or 50 days in the first liquid medium and then transferred onto MSD, significantly 

produced the least average number of shoots (1 and 4, respectively). The average dry 

weight of shoots produced from this treatment combination was also poor (Table 5). 

Roots formed in almost all of the combinations of medium and transfer dates (Table 

5). The adventitious shoots formed on the callus had formed a second set of 

phylloclades, with the least response recorded for the callus grown on MSD. Cultivar 

CB5 showed the opposite trend than that of cv. Alex for adventitious shoot formation. 

Callus grown for 30 days in the first liquid medium showed significantly higher 

response in almost all the media in the final transfer than callus grown for 50 days in 

the liquid medium (Table 6). 

 

 

 



Plant regeneration via somatic embryogenesis 
___________________________________________________________ 

 47

 
 

 

Figure 13. Callus culture of S. truncata cv. Alex grown for four months on MSIA 

medium, showing shoot regeneration and the development of new, soft, watery, 

whitish callus (arrow) on the top. 

 

Table 5. Effects of media and transfer dates on the average number of adventitious 

shoots of S. truncata cv. Alex. 

 

Average number of shoots/ 1.0 g callus Medium Transfer
(days) Scale 1(1) Scale 2(2) Scale 3(3) ∑ shoots 

Shoots  
Dry weight 
(g) 

roots 

30 0.57 
f
 0.57 

e
 0.00 1.14 

d
 0.004±0.004 - MSD 

50 1.14 
ef

 3.14 
ed

 0.00 4.29 
d
 0.02±0.002 + 

30 3.14 
de

 8.00 
cb

 2.57
 b

 13.71 
c
 0.14±0.03 + MSWH 

50 7.71 
b
 22.14 

a
 9.71 

a
 39.57 

a
 0.26±0.05 +++ 

30 5.71 
bc

 12.57 b 3.57 
b
 21.86 

b
 0.18±0.03 + MSDM 

50 10.29 
a
 24.71 

a
 9.57 

a
 44.57 

a
 0.31±0.02 ++ 

30 3.86 
cd

 6.29 
dc

 2.29 b 12.43 
c
 0.10±0.02 + MSIA 

50 7.00 
b
 11.29 

b
 8.14 

a
 26.43 

b
 0.28±0.04 +++ 

(1) shoots that are less than 1 cm long 
(2) shoots that are between 1 and 2 cm long 
(3) shoots that are more than 2 cm long 
Numbers within each column having the same letter are not significantly different at 
P=0.05 according to t –test. The results of shoot dry weight are the means ± standard 
errors. Qualitative characterisation of root production: -, absence; +, few; ++, good; 
+++, very good. 
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Figure 14. Adventitious shoot organogenesis (A) Alex callus grown for 50 days in 
liquid MS-based medium, then transferred to media MSWH, MSDM, MSIA and 
MSD (from left to right, respectively). Bar: 2.6 cm (B) CB5 callus grown for 30 days 
in liquid MS-based medium, then transferred to media MSWH, MSIA, MSDM and 
MSD (from left to right, respectively) Bar: 2.6 cm. 
 

A 

B 
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The highest significant average of total shoots was obtained with callus grown for 30 

days in liquid medium, and then transferred to MSWH (495) or MSDM (447) (Figure 

14 b). The response from MSWH was significantly higher than that from MSDM. On 

both media, approximately the same average dry weight of shoots was recorded (0.66 

g) (Table 6). 

 

Similar to cultivar Alex, callus grown on MSD showed poor response for both 

average number of shoots produced and their average dry weight. On this medium, 

most of the shoots produced were small and less than 3 mm long (Table 6). These 

shoots were pale green compared to the darker shoots produced from the other 

treatments. In contrast to other treatments, shoots produced on MSD did not form 

secondary phylloclades. Adventitious roots were formed in all combinations of media 

and transfer dates (Table 6).  

 

Table 6. Effects of media and transfer dates on the average number of adventitious 

shoots of R. gaertneri  cv. CB5. 

 

Average number of shoots/ 0.5 g 
callus 

 Medium Transfer 
(days) 

Scale 1(1) Scale 2(2) Scale 3(3) ∑ shoots 

Shoots  
Dry weight 
(g) 

roots 

30 101.00 
b
    0.00  0.00 101.00 

e
 0.03±0.008 ++ MSD 

50   41.86 
d
    4.57 

e
  0.00   46.43 

f
 0.009±0.004 ++ 

30 131.14 
a
 304.57 

a
 59.14 

a
 494.86 

a
 0.66±0.04 ++ MSWH 

50   69.57 
c
  74.29 

c
 22.57 

b
 166.43 

c
 0.15±0.03 ++ 

30 112.86 
ab

 277.14 
b
 57.14 

a
 447.14 

b
 0.67±0.02 + MSDM 

50   72.71 
c
  62.29 

cd
 13.00 

b
 148.00 

cd
 0.13±0.03 ++ 

30   67.14 
c
  70.57 

c
 13.86 

b
 151.57 

cd
 0.17±0.03 + MSIA 

50   52.43 
cd

  46.43 
d
 15.14 

b
 114.00 

de
 0.12±0.04 + 

(1) shoots that are less than 3 mm long 
(2) shoots that are between 3 and 7 mm long 
(3) shoots that are more than 7 mm long 

Numbers within each column having the same letter are not significantly different at P=0.05 

according to t–test. The results of shoot dry weight are the means ± standard errors. 

Qualitative characterisation of root production: +, few (< 10); ++, good (> 10). 
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2.4 Discussion 
 

Adventitious root and shoot organogenesis were observed in both Schlumbergera and 

Rhipsalidopsis. However, somatic embryogenesis was induced only in Schlumbergera 

cultivars. Differences were observed between cultivars in both plant types for 

morphogenesis response. For example, Rhipsalidopsis cv. CB5 and Schlumbergera 

cv. Alex showed a good potential for adventitious shoot formation compared to the 

other cultivars tested. 

 

In Schlumbergera, differences between cultivars were also evident in terms of the 

time required for the induction of somatic embryos. This response was affected by the 

treatment combinations of media, callus transfer dates, plant growth regulators and 

presence or absence of gauze. 

 

Similarly, genotypic differences for the induction of somatic embryogenesis have 

been observed in Citrus (Gmitter and Moore, 1986), potato (Seabrook and Douglass, 

2001) and cassava (Hankoua et al., 2005). Furthermore, Seabrook and Douglass 

(2001) reported that differences existed between cultivars of potato for the time 

required to form embryos. 

 

Somatic embryogenesis occurred indirectly through the callus phase in S. truncata 

from phylloclade explants. Somatic embryos differentiated from friable, yellowish 

callus that developed on older callus. 

 

It is likely that a hormonal balance, represented by the ratio of cytokinins to auxins, 

controls the morphogenic response observed in Schlumbergera and Rhipsalidopsis. 

 

Callus of the cv. Russian Dancer, which was sub-cultured for a long time in the 

establishment phase on medium containing mainly cytokinins, proved superior in both 

somatic embryogenesis induction and organogenesis compared to callus grown for a 

shorter time on the establishment media. Apparently, embryogenesis and adventitious  

shoot organogenesis were promoted by an increase in cytokinins through the long 

incubation of callus on media with high cytokinin to auxin ratio until a critical balance 
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was reached that, in turn, controlled the fate of the somatic cells. This view is further 

supported by the lack of somatic embryogenesis on MS media containing 2,4-D, when 

callus of cv. Russian Dancer was transferred after 20 days on liquid MS medium or 

after 30 days on liquid SH medium. Therefore, it seems that the period starting from 

the 20th day of callus growth in the liquid culture in the induction phase is critical for 

the regulation of the developmental switches in cv. Russian Dancer. Thus, it was clear 

that the presence or absence of auxins in the last solid media used was the decisive 

factor for determination of the morphogenic response. In this regard, MSWH 

favoured somatic embryo induction, whereas MSD and MSIA favoured adventitious 

shoot regeneration (organogenesis). The same conclusion can be reached for the other 

cultivars of Schlumbergera and for Rhipsalidopsis. However, the length of callus 

exposure to cytokinins and the duration of callus growth in the liquid media, which is 

required to reach the critical hormonal balance, were different in the cultivars of 

Schlumbergera, other than Russian Dancer, and in Rhipsalidopsis. For example, 

somatic embryos were induced after 4 months on MSDM, when callus of cv. Malindi 

was subcultured for seven months in the establishment phase on medium containing 

mainly cytokinins, and then grown for 20 days in the liquid medium. 

 

It seems that the embryogenic callus was transformed from a heterotrophic to an 

autotrophic state and thus became habituated for both auxins and cytokinins. This was 

demonstrated by the continuous production of repetitive somatic embryos when this 

embryogenic callus was transferred monthly onto MS-based medium without 

hormones. Furthermore, the primary embryos or even the cotyledons derived from the 

primary embryos, when grown on MS medium without hormones, were able to form 

new secondary embryos. This indicated indefinite autotrophic growth capacity similar 

to that exhibited by the habituated embryogenic callus. Habituation was earlier 

reported for the in vitro cultures of Nicotiana tabacum (Meins and Lutz, 1980), 

Nicotiana bigelovil (Bennici, 1983), sugarbeet (van Geyt and Jacobs, 1985) and 

soybean (Christou, 1988). 

  

In Rhipsalidopsis, once the hormonal balance was reached adventitious shoots began 

forming. However, it could be that the white, transparent, round structures formed on 

the callus of CB5 on MSD medium were intermediate structures between somatic 

embryos, roots and possibly shoots. Furthermore, under the conditions of the 
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experiment and the physiological state of the callus, it seemed that the hormonal 

balance was in favour of root formation. Provided that the callus in Rhipsalidopsis is 

hard compared to the soft fine callus observed in most of the Schlumbergera cultivars, 

it might be possible that further attempts by manipulation of the plant growth 

regulators and changing callus texture could lead to somatic embryogenesis induction 

in Rhipsalidopsis. 

 

Generally, cactus is known to produce high levels of auxins (Hubstenberger et al., 

1992). Srikandarajah and Serek (2004) reported that accumulation of cytokinin-like 

substances due to repeated culture in media containing cytokinin may have 

contributed to balancing out the high endogenous levels of auxins, thus improving 

adventitious shoot formation in phylloclade explants of cv. CB4 of Rhipsalidopsis. 

Chen and Chang (2001) found that embryo formation was retarded on leaf explants of 

Oncidium ´Grower Ramsey` by the four auxins tested (IAA, IBA, NAA and 2, 4-D), 

whereas the highest percentage of embryo formation was recorded using media 

containing TDZ, 2iP and kinetin. 

 

From the present study, TDZ may have a role in the regulation of morphogenesis. It 

could be that TDZ, a cytokinin-like substance, contributed to the enhanced 

adventitious shoots and somatic embryogenesis induction. Furthermore, TDZ may 

modulate the metabolism of endogenous auxins and cytokinins. TDZ, either alone or 

in combination with other growth regulators, has been found to induce somatic 

embryogenesis in many plant species (Victor et al., 1999; Mithila et al., 2003; Zhang 

et al., 2005). TDZ also induces shoot organogenesis in a wide variety of plant species 

(Malik and Saxena, 1992; Saito and Suzuki, 1999; Mithila et al., 2003). However, 

although the precise mode of action of TDZ remains undetermined, Murthy et al., 

(1995) states that TDZ-induced morphogenesis is related to the levels of endogenous 

growth regulators. 

 

The usage of gauze on the surface of MSD, but not MSIA, enhanced the regeneration 

of adventitious shoots of Russian Dancer derived from callus that was grown for 20 

days in liquid MS-based medium. Therefore, we partially concluded, at least for 

MSD, that the gauze has modified the environment where callus was grown by 
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creating a favourable contact with the medium. This enabled better utilization of 

nutrients from the medium, as well as the removal of metabolites by callus. 

 

Takezawa (2003) highlighted the concept of organ engineering in animals. This 

included development of ideal cellular scaffolds for maintaining the activity of 

functional cells, for regulating cell behaviour and for reconstructing three-dimensional 

multicellular masses. Gauze made of natural cotton fibers, therefore, was used 

because each cotton fiber is sufficiently soft enough to be included in three-

dimensional multicellular masses and possess a high capacity of absorbing water by 

capillary phenomenon. Therefore, such cellular scaffolds sustain capillary networks 

that can provide fresh culture medium to all cells and remove metabolites from the 

cells. 

 

Despite the effect of gauze, more cv. Russian Dancer shoots regenerated on MSIA 

compared to MSD, from callus that was grown for 20 days in liquid MS-based 

medium. The different response observed between these two auxins reflects the 

differences in their uptake, transport and metabolism (De Klerk et al., 1997), 

modulated possibly by the levels of endogenous auxins. 

 

The superiority of SH-based medium over MS-based medium in the induction 

experiments of cv. Russian Dancer, in terms of the highest average number of 

embryos obtained, indicated that differences in the concentrations or combinations of 

nutrients contributed to the optimal expression of embryogenic potential. 

 

The experiments with cvs. Alex and CB5 provided more insights with respect to 

morphogenesis in Schlumbergera and Rhipsalidopsis. 

 

Unlike cv. Russian Dancer, the highest numbers of total shoots in both cvs. Alex and 

CB5 were significantly produced on MSWH and MSDM media. The least response 

was observed on MSD medium. However, reflecting genotypic differences, the two 

cultivars showed the opposite trend for the time required in the liquid medium used in 

the first culture. Whereas callus from cv. CB5 required only 30 days, the callus from 

cv. Alex needed 50 days of growth in the liquid medium to produce the highest 

average number of total shoots. 
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Those findings, together with the observation that somatic embryos were induced in 

cv. Alex on either MSWH or MSDM, indicated that absence or reduction of auxin is 

necessary after long exposure to cytokinins for adventitious shoot regeneration in both 

plant types and for somatic embryo induction in Schlumbergera. 

 

Similar to these results, daminozide was found to enhance the production of somatic 

embryos derived from sweet orange ovules when used together with 2,4-D compared 

to treatment with only 2,4-D (Gmitter and Moore, 1986). Thus, it is possible that 

daminozide reduces the concentration of endogenous auxins or negates its effect 

(George, 1996). 

 

Somatic embryos in cv. Russian Dancer showed variation in cotyledon morphology. 

In addition to the normal embryos, abnormal somatic embryos showing 1, 3, 4 or even 

more than 4 cotyledons were recorded. The production of abnormal somatic embryos 

with multiple cotyledons (Choi et al., 1997; Griga, 2002; Kim et al., 2003) or other 

forms of cotyledons like jar-shaped cotyledons (Choi et al., 1997), is well 

documented. The production of somatic embryos with multiple cotyledons was 

considerable for a continuous culture on a medium containing cytokinins (Lee and 

Soh, 1993), on 2,4-D-containing medium (Cho et al., 1998) or on ABA-containing 

medium (Lee and Soh, 1994). 

 

In agreement with the present study, Guevin and Kirby (1997) reported the formation 

of cotyledonary-stage somatic embryos with stunted cotyledons and reduced embryo 

axes.  

 

The formation of secondary somatic embryos in cv. Russian Dancer noticed in this 

study did not hamper the maturation and eventual acclimatization of plants under 

greenhouse condition. In the literature there have been many reports on secondary 

somatic embryogenesis induced on embryos in several plants, such as Arachis 

hypogaea L. (Little et al., 2000), Helianthus maximiliani (Vasic et al., 2001), Manihot 

esculenta Crantz (Woodward and Puonti-Kaerlas, 2001) and Quercus ilex L (Mauri 

and Manzanera, 2003).  
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The histological investigation showed that the somatic embryos had no detectable 

connection with the mother explants and that advanced stages of somatic embryos had 

a contained vascular system. Histological studies in other plants confirm the same 

results (Kärkönen, 2000; Quiroz-Figueroa et al., 2002; Sharma and Millam, 2004). 

 

The chromosome numbers reported here for Schlumbergera cv. Russian Dancer agree 

with the base number x = 11 for the Cactaceae (Turner, 1994; Pinkava et al., 1998; 

Parks and Boyle, 2003).  

 

With the exception of plants derived from somatic embryos with more than 4 

cotyledons, Schlumbergera (cv. Russian Dancer) somatic embryo-derived plants 

showed genetic stability when compared to the mother plants. However, plants 

derived from somatic embryos with more than 4 cotyledons were morphologically 

different than plants derived from other types of somatic embryos. Those plants were 

triploid, showing the highest average plant height and more phylloclade formation 

compared to plants derived from somatic embryos with fewer cotyledons. 

 

Although in this study, not all the regenerated plants derived from somatic embryos 

were analysed, it was possible to find a relationship between the manifested 

morphological characteristics and the ploidy level at an early stage of development. 

Furthermore, the production of such polyploidy plants from somatic embryos could be 

exploited further through somaclonal variation (Larkin and Scowcroft, 1988) for the 

production of new plant genotypes for breeding. In this respect, polyploids often have  

desirable horticultural features such as larger flowers and stems and a more upright 

habit (Blakeslee, 1941; Sparnaaij, 1979; Levin, 1983; Karle, 1996). 

 

Normally, plant regeneration through somatic embryogenesis considerably decreases 

the possibility of chimeral plant production. Genetic stability using this method was 

reported to be maintained in Cyclamen persicum Mill. (Winkelmann et al., 1998), 

Phoenix dactylifera L. (Fki et al., 2003) and Ulmus minor Mill. (Conde et al., 2004). 
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2.5 Conclusion 
 

This study describes for the first time a protocol for the production of somatic 

embryogenesis in S. truncata cv. Russian Dancer. Using SH-based medium 

supplemented with 7.0 µM kinetin for the first culture, then MSWH medium after 30 

days gave the highest average number of embryos in the two-cotyledon stage. 

Significant regeneration efficiency of primary embryos coupled with the continuous 

production of secondary embryogenesis is highly beneficial. Phenotypic variability 

was not found between somatic embryo-derived plants and mother plants, except for 

those plants derived from somatic embryos with more than 4 cotyledons. The 

production of polyploidy plants from somatic embryos could be exploited further 

through somaclonal variation for the production of new plant genotypes for breeding 

purposes.  

 

Regeneration through adventitious shoots in Schlumbergera cv. Alex and 

Rhipsalidopsis cv. CB5 has a high potential. The highest average numbers of total 

shoots in cvs. Alex and CB5 were obtained on MSWH or MSDM. This occurred 

when callus was grown for 50 days for cv. Alex, or 30 days for cv. CB5, in liquid 

MS-based medium containing 7.0 µM kinetin, for cv. Alex, or 4.7 µM kinetin, for cv. 

CB5 in the first culture.  

 

The protocols established in the present study for the formation of somatic embryos 

and adventitious shoots open the window for plant genetic improvement through 

transformation techniques. 
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3.0 Agrobacterium tumefaciens-mediated transformation of 

Rhipsalidopsis and Schlumbergera  

 

Abstract 

 
Keywords: Agrobacterium tumefaciens – cactus - genetic transformation - nutritional 

stress - Rhipsalidopsis gaertneri 
 
A protocol for Agrobacterium tumefaciens-mediated genetic transformation of 

Rhipsalidopsis cv. CB5 was developed. This is the first report on the transformation 

of Rhipsalidopsis. Calli derived from phylloclade explants and sub-cultured onto fresh 

maintenance medium over a period of nine to twelve months, were co-cultivated with 

A. tumefaciens LBA4404. Plasmid constructs carrying the nptII gene, as a selectable 

marker, and the reporter uidA gene were used. Some of the factors influencing T-

DNA transfer to Rhipsalidopsis callus explants were assessed. Transformed 

Rhipsalidopsis calli with a vigorous growth phenotype were obtained by extended 

culture on media containing 600 mg/l kanamycin. The pre-incubation of A. 

tumefaciens in SIM medium containing acetosyringone raised the frequency of 

transgenic calli. However, after 9 months of stringent selection pressure, the removal 

of kanamycin from the final medium together with the culture of the transformed calli 

under nutritional stress led to the formation of several transgenic adventitious shoots. 

Transformation was confirmed by GUS staining (for uidA gene), ELISA analysis and 

Southern blot hybridization (for the nptII gene). With this approach, a transformation 

efficiency of 22.7% was achieved. In a separate set of experiments, the 

Agrobacterium strain AGL0, harbouring the plasmid pBEO210 that contains both 

etr1-1 and nptII genes, was inefficient when used to transform callus explants from 

Rhipsalidopsis cv. CB5 and Schlumbergera cv. Alex. The loss of morphogenic 

potential in callus explants from cv. Alex may explain the lack of success in 

transforming this genotype. However, key variables in Agrobacterium-mediated gene 

transfer can be further optimised when the bacterial strain AGL0 is used. Overall 

results described in this study demonstrate that Agrobacterium-mediated 

transformation is a promising approach for these cacti. 
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3.1 Introduction 

 

3.1.1 Overview 

 

For potted plants with numerous flowers, flower longevity partially defines the 

duration that plants remain attractive; therefore, it is a major component of plant 

quality. Flower longevity ranged from 7 to 12 days and from 4 to 6 days for 

Rhipsalidopsis and Schlumbergera, respectively (Scott et al., 1994). The display life 

of many flowering potted plants is limited by the loss of flowers, buds or leaves, 

caused by ethylene in the air or by stresses that induce ethylene responses (Fjeld and 

Moe, 1985; Reid, 1985; Reid and Wu, 1992). Stress can occur during packing, transit 

and even retail display. The drop of flowers and buds can be caused by exogenously 

applied ethylene. High temperature and low light intensity condition, which can easily 

occur when plants are transported, also induces flower abscission (Cameron and Reid, 

1981). Flowers also produce endogenous ethylene when exposed to stress or during 

the natural senescence process (Cameron and Reid, 1981; Serek and Reid, 1993). 

 

Christmas cactus has been shown to be sensitive to ethylene (Cameron and Reid, 

1981; Serek and Reid, 1993). Bud drop is actually a major problem that can reduce 

the display life in S. truncata (Serek and Reid, 1993). Flower and bud drop of 

Christmas cactus could reach 30% during long distance transit (Cameron and Reid, 

1981). Efforts had been made to reduce the undesirable effects of ethylene on flowers 

and buds of Schlumbergera. Foliar application of STS, an inhibitor of ethylene action 

(Veen and van de Geijn, 1978), significantly reduced flower and bud abscission of 

Schlumbergera plants stressed by exposure to ethylene even 4 weeks after application 

(Cameron and Reid, 1981). However, because STS is environmentally hazardous 

(Serek and Reid, 1993) and costly, researchers have been seeking alternative tools to 

control the effects of ethylene in the display life of potted plants.  

 

Inhibitors of ethylene biosynthesis have been shown to be ineffective in the presence 

of exogenous ethylene (Serek and Reid 1993). Therefore, it was necessary to find 

environmentally-safe methods for blocking ethylene responses at the receptor level.  
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In the last decade, a volatile ethylene binding inhibitor 1-methylcyclopropene (1-

MCP), a non-toxic compound, has been discovered (Serek et al., 1994). This 

compound inhibited bud abscission and wilting of flowers of potted plants of 

Schlumbergera cv. Dark Marie in the presence of exogenous ethylene (Serek and 

Sisler, 2001). 1-MCP, blocks ethylene responses by binding irreversibly to ethylene 

receptors (Serek et al., 1994; Sisler and Serek, 1997; Kebenei et al., 2003), and after 

pre-treatment most of the receptors are blocked. However, during further plant 

development new sites are synthesized (Müller et al., 2000) and such de novo 

receptors are not protected by 1-MCP. Consequently, the exposure of plant material to 

exogenous ethylene can cause senescence symptoms. 

 

When compared to 1-MCP, STS has proven to be more efficient in preventing bud 

drop in S. truncata caused by ethylene (Serek and Sisler, 2001). It appears that silver 

ion remains in the plant tissue for a longer time and after synthesis of new sites, 

continuously inactivates ethylene responses (Serek and Sisler, 2001) 

 

The display life of flowering Rhipsalidopsis potted plants, for the purpose of 

increasing flower sales, was also addressed through scientific research. Flower 

longevity for R. gaertneri cvs. ‘Evita’, ‘Purple Pride’ and ‘Red Pride’ increased as 

postproduction temperature was decreased (Hartley et al., 1995). The number of days 

required for the last flower to open also increased as the temperature was decreased. 

No efforts have been made in increasing the postproduction longevity of R. gaertneri 

other than through development of improved cultivars. 

 

In summary, the efficacy of 1-MCP to prevent the adverse effects of ethylene is 

limited by its short term residual activity in some plants (Macnish et al., 2004) and 

consequently its modest effect in overcoming the ethylene-mediated flower 

senescence (Reid et al., 2002). This, together with the environmental concern 

regarding the phytotoxicity of STS, necessitates the need to seek alternative tools, 

most likely through molecular approaches to control the effects of ethylene in the 

display life of potted Schlumbergera and Rhipsalidopsis plants.  

 

Strategies have been used to engineer prolonged vase-life in carnations (Bovy et al., 

1999), Petunia (Gubrium et al., 2000) and Campanula (Sriskandarajah et al., 2004) 
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without the need for chemical treatments. For this purpose, a mutant etr1-1 allele that 

confers insensitivity to ethylene was introduced into those plants. The results from 

those studies showed that genetic transformation is a promising route to obtain 

ornamental crops with greatly enhanced shelf life. 

 

Development of an efficient system for transformation in Schlumbergera and 

Rhipsalidopsis for introducing foreign genes into plants would be useful in modifying 

ornamental characteristics such as ethylene sensitivity, flower colour and flower 

shape, and disease resistance.  

 

An efficient system for the induction of somatic embryogenesis in Schlumbergera and 

regeneration through adventitious shoot formation in both Schlumbergera and 

Rhipsalidopsis was achieved in the first part of this study. These improved systems of 

regeneration in both plant types were the basis for further work aimed at genetic 

improvement of these plants through transformation techniques.  

 

3.1.2 Agrobacterium-mediated transformation 

 

The natural ability of the soil microorganism Agrobacterium to transform plants is 

exploited in the Agrobacterium-mediated method. During the process of 

transformation, a specific segment of the vector, T-DNA, which can be engineered to 

contain a selectable marker and/ or genes of interest, is transferred from the 

Agrobacterium to the host plant cells and inserted into the nuclear genome. These 

functions are mediated by a set of virulence genes with optimal expression occurring 

in the presence of phenolic inducers, such as acetosyringone, that are released by 

wounded plant cells (Gelvin, 2003). 

 

Agrobacterium-mediated transformation has been the tool for the transformation of 

many dicotyledonous crops. It will most likely be the method of choice in plant 

species in which efficient T-DNA transfer is possible. This is because of the relative 

ease and precision of gene transfer to intact, regenerable explants (Hinchee et al., 

1998).  
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Generally, Agrobacterium-mediated transformation offers some advantages in 

comparison with direct transformation methods as: (a) transfer of relatively large 

segments of DNA with little rearrangement; (b) integration of low copy numbers of 

the gene into the plant chromosomes; (c) being a simple and economical procedure; 

(d) stable gene expression with more genes intact and (e) production of transgenic 

plants with better fertility (Arencibia et al., 1998; Dai et al., 2001). 

 

Beside its natural plant hosts, Agrobacterium tumefaciens has also been demonstrated 

to have the ability to transform yeast (Bundock et al., 1995), cultivated mushrooms 

(Chen et al., 2000), human cells (Kunik et al., 2001) and fungi (Degefu and Hanif, 

2003). The versatility of Agrobacterium in its ability to transform is one of the unique 

advantages of this technique over other conventional transformation methods. 

 

However, the low efficiency of transformation and adaptability to monocotyledonous 

plants are major disadvantages of Agrobacterium-mediated transformation (Dai et al., 

2001). 

 

The development of binary Ti vectors has revolutionized the use of Agrobacterium to 

introduce genes into plants. The two main components for successful Agrobacterium-

mediated gene transfer, the T-DNA and the vir region, can reside on separate 

plasmids. These form the basis of modern Ti plasmid vectors, termed binary Ti 

vectors (Hoekema et al., 1983). 

 

The flexibility of modern binary Ti vectors will permit the choice of plant selectable 

marker genes and the promoters that initiate and drive their transcription. This will 

permit any combination of selectable marker genes in order to explore such options as 

double and single selection protocols, and alternative selectable marker genes 

(Hellens et al, 2000). 

 

Factors affecting Agrobacterium-mediated transformation 

 

Efficiency of plant transformation depends on many factors. The genotype, applied 

techniques and modification of plant regeneration are the most important among 
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them. Therefore, the following are some of the variables that should be tested to 

guarantee a successful outcome. 

 

Genotype 

 

Different genotypes or cultivars of the same plant species have been reported to show 

different transformation rates (Cao et al., 1998). Sigareva et al. (2004), noticed 

variation in transformation efficiency between elite lines of tomato, with SG048 and 

00-5223-1 lines producing more transgenic plants at a higher transformation rate than 

from 00-0498-B. 

 

Starting explants 

 

Typically, Agrobacterium-mediated transformation is performed using different 

explants. Leaves (Toldi et al., 2002; Kang et al., 2005), seeds (Lim et al., 2005), 

pollens (Li et al., 2004), shoot internodes (Horlemann et al., 2003), cotyledons 

(Zaragozá et al., 2004), shoot apex (Gould et al., 2002), and embryogenic calli (Chai 

et al., 2004; Leelavathi et al., 2004) have been used as explants for Agrobacterium-

mediated transformation.  

 

Explant age was found to influence plant transformation efficiency. Cao et al (1998) 

reported that for some blueberry cultivars, explant age influenced the number of 

GUS-expressing leaf zones and calli. 

 

Bacterial strain 

 

One of the most important factors influencing frequency of Agrobacterium-mediated 

transformation is susceptibility of the host genotype to the specific Agrobacterium 

strain. Nadolska-Orczyk and Orczyk (2000) have compared the virulence of three 

Agrobacterium strains (LBA4404, C58C1 and EHA105) and reported that 

transformation efficiency was the highest (8.2 transgenic plants per 100 explants 

tested) when the hypervirulent EHA105 strain was used. Cao et al. (1998) have 

reported similar results when comparing EHA105 and LBA4404 strains. 

 



Transformation studies 
___________________________________________________________ 

 63

Strains EHA101 and EHA105 are more effective than strain LBA4404 since both are 

derived from supervirulent wild-type strain A281 (Hood et al. 1986, 1993), whereas 

strain LBA4404 was derived from less virulent strain Ach5 (Hoekema et al., 1983). 

 

Optical density 

 

Bacterial suspensions are grown to the optimal optical density (OD600), which allows 

for efficient plant transformation. Normally, OD600 between 0.5-1.0 is used for 

inoculating plant material (Dai et al., 2001; Kim et al., 2004; Bae et al., 2005). 

However, in some studies an OD600 of more than one was used. Sriskandarajah et al 

(2004) used Agrobacterium suspension without dilution (OD600=2-2.5) for inoculating 

cotyledon and hypocotyl explants of Campanula carpatica. They pointed out the need 

to have ample bacteria during explant co-cultivation. However, bacterial suspensions 

grown to an OD600 less than 0.5 have also been reported (Chen and Punja, 2002). 

 

vir genes inducers 

 

Many proteins encoded by vir genes play essential roles in the Agrobacterium-

mediated transformation process. Acetosyringone, a phenolic compound secreted by 

wounded plant cells, is known as a factor inducing the vir genes of Agrobacterium 

(Stachel et al., 1985). Acetosyringone, at a temperature below 28 ºC, sucrose and 

acidic pH were found to influence the expression of virG and virD in the vir region of 

Ti plasmids (Alt-Mörbe et al., 1989). 

 

Gruchala et al. (2004) reported an increased number of transgenic shoots of 

strawberry plants when A. tumefaciens was incubated in LB or MS medium with 

acetosyringone and IAA. However, some studies showed inhibitory (Orlikowska et 

al., 1995) or no effect (Miguel and Oliveira, 1999) of acetosyringone on plant 

transformation efficiency. Nadolska-Orczyk and Orczyk (2000) reported that 

acetosyringone had no apparent influence on the transformation efficiency from pea 

cotyledons with the hypervirulent strain EHA. It did, however, affect transformation 

efficiency when the moderately virulent strain C58C1 was used. 
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Recently, it has been demonstrated that Agrobacterium strains engineered with 

additional virE/ virG genes could be used to improve the transformation efficiency in 

rose (Kim et al., 2004). Similar results were obtained in rice, where the addition of vir 

gene(s) significantly improved transformation, and in particular, the addition of 

virGwt was the most beneficial, doubling the overall performance of the pGreen/ 

pSoup vector system (Vain et al., 2004).  

 

Co-cultivation duration 

 

After inoculation, explants are incubated on the appropriate solid medium for 48-72 

hours to allow for DNA transfer and integration. However, the duration for co-

cultivation that results in efficient transformation varies between different plant 

species. 

 

Explants are normally co-cultivated with Agrobacterium for periods ranging from 2 

(Cho et al., 2001) to 7 days (Jia et al., 1989). In blueberry, 2 days of co-cultivating 

explants with Agrobacterium resulted in almost no visible GUS expression. At least 3 

or 4 days of co-cultivation was required for efficient transformation of gusAint gene 

into leaf explants (Cao et al., 1998). 

 

Preconditioning of explants 

 

Preconditioning the explants before exposure to bacteria helps in inhibiting damage 

(necrosis) and increases the transformation efficiency. Improvement in transformation 

frequency upon reconditioning of the explants has been reported in sugarbeet (Jacq et 

al., 1993); Populus nigra (Confalonieri et al., 1994); tobacco (Sunilkumar et al., 

1999); Brassica napus (Cardoza and Stewart, 2003) and Campanula carpatica 

(Sriskandarajah et al., 2004). 

 

This improvement in transformation efficiency as a result of preconditioning can be 

attributed to the active cell division (Sangwan et al., 1992), which contributed to the 

preparation of cells for active transfer of genes and also for the subsequent 

regeneration (Sriskandarajah et al., 2004). 
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Preconditioning is done by pre-treatment of the explants for certain durations prior to 

inoculation and co-cultivation. This is done by growing explants on media under 

environmental conditions that are genotype-dependent. Cardoza and Stewart (2003) 

defined those conditions for Brassica napus as preconditioning of hypocotyls for 72 h 

on MS medium supplemented with 1 mg/l 2,4-D and 30 g/l sucrose. Under a different 

set of conditions, preconditioning in Campanula carpatica was done by growing 

seedlings in the dark (Sriskandarajah et al., 2004). Those seedlings were etiolated and 

pale, and served as the source of explants that resulted in increased transformation 

efficiency. 

 

In this study, success was demonstrated as the first report in obtaining transgenic 

Rhipsalidopsis shoots for the reporter uidA gene and the selectable marker nptII gene. 
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3.2 Materials and Methods 

 

3.2.1 Plant material 

 

Mother plants of S. truncata cv. Alex and R. gaertneri cv. CB5 were grown in 0.51 

(10 cm square) pots in a greenhouse with 16 h light (provided by SON-T sodium 

lamps during winter months, 600 µmol m-2 s-1 at plant surface) at 25-28 ºC. The plants 

were watered without fertilizer, at the base without wetting the foliage, which reduced 

problems during surface sterilisation. When the experiments started, the plants were 

about 1-year-old with 3-5 tiers of mature phylloclades. 

 

3.2.2 Establishment phase 

 

Phylloclade explants were surface-sterilised in 1.5% active chlorine from sodium 

hypochlorite with 0.02% Tween 20 for 15 min. The explants were then thoroughly 

washed five times with sterile water. After the removal of chlorine-damaged areas, 

each phylloclade was cut through the midrib into 2-3 pieces and grown in a medium 

consisting of MS salts, Staba vitamins, 22.7 µM TDZ and 1.3 µM NAA, 3% w/v 

sucrose and gelled with 3 g l-1 gelrite (Maintenance medium). All the plant growth 

regulators were dissolved in DMSO to make stock solutions and then added to the 

medium after autoclaving.  

 

Callus developed on explants from cv. CB5 was sub-cultured onto fresh maintenance 

medium approximately every two months over a period of nine to twelve months. The 

callus from cv. Alex was sub-cultured over a period of seven months. All of the 

cultures, unless otherwise stated, were incubated in light in a growth room (17-h 

photoperiod of 66 µmol m-2 s-1 provided by cool-white fluorescent tubes) at 25-28 ºC. 
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3.2.3 Transformation studies 

 

Tolerance of Schlumbergera and Rhipsalidopsis to kanamycin 

 

The kanamycin sensitivity of Schlumbergera and Rhipsalidopsis was tested using 

callus and phylloclade explants. Non-transformed callus explants from 

Schlumbergera cv. Alex and Rhipsalidopsis cv. CB5 were cultured on maintenance 

medium containing varying levels of kanamycin (0, 50, 100, 200 and 500 mg/l). Each 

petri dish was divided into two sections and five callus explants from each cultivar 

were placed on the medium in each section. Similarly, non-transformed in vitro 

phylloclades from Rhipsalidopsis cv. CB5 were cut into small pieces and six 

phylloclade explants were grown on MS medium containing 26.6 µM BA, 27.2 µM 

TDZ, 27.4 µM zeatin, 3% w/v sucrose and 3 g l-1 gelrite (B6T6Z6). This medium 

contained various levels of kanamycin (0, 50, 100, 200, and 500 mg/l). Both callus 

explants and phylloclade explants were marked at the bottom of each petri dish to 

monitor growth as formation of new callus or adventitious shoots. Five replicates 

were used for each experiment. 

 

Bacterial strains and plasmids 

 

Two A. tumefaciens strains were used in this study: strain AGL0, harbouring the 

plasmid pBEO210, which contains the etr1-1 gene under the control of the flower 

specific promoter fbp1, and the nptII gene under control of the cauliflower mosaic 

virus (CaMV) 35S promoter. This plasmid was obtained from the University of 

Wageningen. Strain LBA4404, harbouring both a helper plasmid pBBRlMCS 

containing a mutant VirG gene (van der Fits et al., 2000), and plasmid pBI121 

containing the genes nptII and uidA (without intron), both under the control of the 

CaMV 35S promoter, was obtained from Leiden University, The Netherlands. 

 

Inoculation 

 

Bacterial suspensions were prepared using single colonies of bacteria in YEP medium 

(10 g/l bacto peptone, 5 g/l Nacl and 10 g/l yeast extract) and cultured overnight at 28 

ºC on a rotary shaker at 120 rpm. For cv. CB5, these suspensions were used for 
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inoculation at different OD600 (0.4, 0.5-0.6, and without dilution). For the inoculation 

with the bacterial strain AGL0, suspensions were tested further at lower OD600 (0.1-

0.3). However, for cv. Alex, bacterial suspensions were used at OD600 (0.5-0.6) with 

the bacterial strain AGL0 and at OD600 (0.6-0.7) with the bacterial strain LBA4404. 

Twenty to twenty-five callus explants were added to the flasks containing the 

bacterial suspension. The flasks were then gently shaken at 25 rpm for 20 min at 28 

ºC. In a separate experiment the pre-incubation of bacterial cells with acetosyringone 

was studied. Single colonies of bacteria were cultured overnight in YEP medium to 

OD600 (0.8-1.0), then the bacterial suspension was diluted using SIM medium (10 g/l 

bacto peptone, 5 g/l Nacl, 10 g/l yeast extract, 0.5 mM acetosyringone, 20 mM tri 

sodium citrate, pH 5.5) to OD600 (0.6). Acetosyringone was dissolved in DMSO to 

make a stock solution. The bacterial suspension was grown once again overnight to 

OD600 (1.0) then diluted with SIM solution to OD600 (0.6). Explants were then planted 

on co-cultivation medium.  

 

Co-cultivation 

 

Inoculated callus explants were transferred to MS-based medium supplemented with 

0.1 g l-1myo-inositol, kinetin at 4.7 µM for cv. CB5 or 7.0 µM for cv. Alex, 3% w/v 

sucrose and 3 g l-1 gelrite (MSCo medium). The medium had acetosyringone added at 

15 mg/l. Six to eight explants were placed on the surface of the medium in petri 

dishes, and incubated for 24 hours (under light and temperature conditions described 

in the growth room). 

 

Post co-cultivation treatment  

 

After co-cultivation, the explants were washed thoroughly four times with distilled 

water and two times (five minutes each) with 500 mg/l cefotaxime. Twenty to twenty-

five callus pieces were transferred to 40 ml of selection liquid medium in Erlenmeyer 

flasks (250 ml). The medium used was based on MS salts supplemented with 0.1 g l-

1myo-inositol, kinetin at 4.7 µM for cv. CB5 or 7.0 µM for cv. Alex and 3% w/v 

sucrose, 600 mg/l kanamycine and 300 or 500 mg/l cefotaxime (MSI medium). 

Control medium lacked kanamycin but contained cefotaxime (10 explants per flask). 

Flasks were shaken at 120 rpm using a rotary shaker and incubated at 27-29 ºC under 
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a light intensity of 4 µmol m-2 s-1  with 12 h-photoperiod. Kanamycin and cefotaxime 

were dissolved in water to make the needed stock solutions. 

 

After 30 days (for cv. CB5) or 50 days (for cv.Alex), callus explants were transferred 

to MS-based medium supplemented with 0.62 µM Daminozide, 3% w/v sucrose, 3 g l-

1 gelrite, (250, 400 or 600 mg/l) kanamycin and 300 mg/l cefotaxime (MSII medium) 

(6-8 explants per petri dish). Control medium lacked kanamycin. While still on 

selective medium, some of the callus explants of cv. CB5 formed new yellow-reddish 

callus. The newly formed callus was tested for Gus expression, and some of the 

putative transgenic callus lines were transferred to the same fresh selective medium 

(MSII). The remainder of the transgenic calli was sub-cultured on maintenance 

medium supplemented with 600 mg/l kanamycin and 300 mg/l cefotaxime. This 

aimed to multiply the putative transgenic calli to be utilized in the following 

experiment to recover transformed shoots. 

 

Recovery of transformed shoots 

 

This last study was done only in the cv. CB5, to encourage regeneration and the 

production of transgenic shoots from the transgenic callus. For this purpose, the 

previously described system utilising MSI, and later MSII media was modified.  

 

Explants from two independent putative transgenic callus lines were used. Four to six 

callus pieces from each putative callus source were transferred to 40 ml of MSIII 

liquid medium in Erlenmeyer flasks (250 ml). MSIII medium was based on MS salts 

supplemented with 0.1 g l-1myo-inositol, 4.7 µM kinetin, 3% w/v sucrose, 500 mg/l 

cefotaxime and (0 or 500 mg/l kanamycin). Flasks were shaken at 120 rpm using a 

rotary shaker and incubated at 27-29 ºC under a light intensity of 4 µmol m-2 s-1  with 

12 h-photoperiod. 

 

After 30 days, callus explants were transferred from MSIII medium to MSIV medium. 

This medium was MS-based medium supplemented with 0.62 µM daminozide, 3% 

w/v sucrose, 3 g l-1 gelrite, (0, 100, 300 or 500 mg/l) kanamycin and 300 mg/l 

cefotaxime. Four callus pieces from each treatment were placed on the surface of the 
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different media in plastic containers and grown further. These callus explants were 

left on MSIV medium for 4.5 months without being transferred to fresh media. 

 

β-Glucuronidase assay 

 

GUS activity was assessed histochemically, using calli and adventitious shoots from 

both control and transformed cultures. Plant tissues were placed under vacuum in 

fixative (0.3% formaldehyde, 10 mM MES pH 5.6, 0.3 M mannitol) for 2 minutes. 

After samples were left 4-5 minutes at room temperature, they were washed three 

times in phosphate buffer. Phosphate buffer was prepared by adding 11.54 ml of 0.5 

M Na2HPO4 combined with 21.15 ml of 0.2 M NaH2PO4. Then water was added to a 

final volume of 200 ml at pH 7.0. Shoots and calli were incubated in 2 mM 5-bromo-

4-chloro-3-indolyl-β-D-glucuronide (X-Gluc) in phosphate buffer at 37 ºC for two to 

four hours. Stained tissues were washed with 70% ethanol before being examined 

under the microscope. 

 

NPTII-ELISA assay 

 

Tissues from a total of 9 independent putative transformed callus lines and 3 control 

non-transformed calli (two replicates each) were evaluated by ELISA for the 

expression of the nptII gene (NPTII-ELISA kit from Agdia, Elkhart, Indiana, USA). 

Positive controls included those provided with the kit at three dilutions (1:3, 1:10 and 

1:30) along with bacterial strain AGL0. Tissues were homogenised in 100 µl of the 

buffer provided with the ELISA kit and the supernatant was used for the NPTII-

ELISA assay according to the manufacturer’s protocol. The plate containing samples 

was read at 450 nm. The protein content in some of the samples was measured 

according to the method of Bradford (1976). 

 

Genomic DNA extraction and Southern analysis 

 

Total genomic DNA was isolated from control and kanamycin-resistant calli using the 

DNeasy Plant Mini kit (Qiagen, UK) with modifications. From 800 to 1000 mg of 

plant material were weighed for each sample. About 115 mg of PVPP was added 

while grinding plant material under liquid nitrogen to a fine powder. In the first step 



Transformation studies 
___________________________________________________________ 

 71

of DNA preparation, the amounts of AP1 buffer and RNase A stock solution were 

increased six-fold and 180 µl 50% w/v PEG 20,000 was added to the mixture before 

vortexing. Similarly, the amount of AP2 in the later steps was increased six-fold. 

Other steps of the protocol were followed as mentioned in the handbook of the kit. 

 

Ten µg of the genomic DNA from the control and one of the putative transgenic 

callus lines was digested at 37 ºC overnight with HindIII, (HindIII and EcoR1), and 

(HindIII and Xba1). One putative transgenic callus line was digested only with 

HindIII. These enzymes cut once in the T-DNA region, but outside the nptII region 

(Figure 15). This allowed estimating the number of nptII gene copies. DNA fragments 

were then separated by agarose gel electrophoresis (0.8% Seakem GTG) at 30 volts 

overnight and transferred to a Hybond N membrane (Amersham, UK) using 10x SSC 

(3M NaCl, 0.3M Na3Citrate) according to standard procedures (Sambrook et al., 

1989). 

 

Filters were pre-hybridized at 60 ºC in hybridization buffer (Church buffer; 0.25 M 

sodium phosphate buffer pH 7.2, 1mM EDTA, 1% BSA and 7% SDS) for 2 h. The 

DNA probe used for hybridization was a 0.7 kb fragment of the nptII gene amplified 

by PCR from the plasmid pBEO210 described above. The DNA fragment for the nptII 

gene was labelled with 32P-dCTP using the Megaprime kit (Amersham, UK) and 

hybridization was performed overnight at 65 ºC. The filter was then washed in 

2xSSC, 0.1% SDS, 1xSSC, 0.1% SDS and finally 0.1xSSC, 0.1% SDS, for 2 h in 

each solution. The membrane was exposed to X-ray film at –70 ºC for 1 week before 

developing.  

 

With the exception of NPTII-ELISA assay which was done only once, each 

experiment or analysis was repeated at least twice. 
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(A) 
 
 

 
 
(B) 
 

 
Figure 15. T-DNA constructs used for Schlumbergera and Rhipsalidopsis 

transformation. (A) SalI / Cla1 insert of plasmid pBEO210. (B) Plasmid construct 

pBI121. LB, T-DNA left border; RB, T-DNA right border; Pfbp 1, Petunia hybrida 

FBP1 promoter; etr1-1, Arabidopsis thaliana etr1-1 allele; Tnos, polyadenylation 

region of the A. tumefaciens nopaline synthase gene; NOS P, Nopaline synthase gene 

promoter; nptII, neomycin phosphotransferase gene; NOS T, nopaline synthase gene 

terminator; CaMV 35S P, cauliflower mosaic virus 35S promoter; β-glucuronidase, 

coding region of the β-glucuronidase gene. 
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3.3 Results 

 

Tolerance of Schlumbergera and Rhipsalidopsis to kanamycin 

 

The sensitivity of Schlumbergera and Rhipsalidopsis callus and phylloclade explants 

to kanamycin was established prior to transformation experiments in order to 

determine the effective concentration for selecting transformed cells. 

 

After one month, callus explants increased in size on the medium with no selection. 

The presence of kanamycin at 50 and 100 mg/l resulted in increased callus growth. 

However, the colour of the callus was pale green compared to the darker green callus 

grown with no selection. Callus growth decreased when kanamycin concentration 

increased to 200 mg/l. Callus from both cultivars stopped growing on medium 

containing kanamycin at 500 mg/l (Figure 16 a). 

 

Similarly, non-transformed phylloclade explants had overgrown, forming new callus 

on wound edges and showed axillary bud growth on media containing 0, 50 and 100 

mg/l kanamycin (Figure 16 b). This response was much reduced with 200 mg/l 

kanamycin, and in the presence of 500 mg/l kanamycin, phylloclade explants showed 

no growth signs. Two weeks later, phylloclade and callus explants showed necrosis 

and browning on media containing 500 mg/l kanamycin. After three months from the 

start of the experiment, both callus and phylloclade explants turned pale yellow on 

media containing 500 mg/l kanamycin. 

 

From the results of this experiment, kanamycin at 600 mg/l was chosen to select 

transformed cells. 

 

Transformation 

 

One-hundred sixty callus explants from cv. Alex inoculated with either bacterial strain 

(80 callus explants inoculated with each strain) failed to produce any transformed calli 

or shoots.  
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Figure 16. Tolerance of Schlumbergera and Rhipsalidopsis to kanamycin. (A) Non-

transformed callus from cultivars Alex (petri dish; upper half portion) and CB5 (petri 

dish; lower half portion) grown on maintenance medium containing kanamycin (50, 

100, 200, 500 mg/l; from left to right, respectively) Bar: 2.6 cm. (B) in vitro 

phylloclades from cultivar CB5 grown on B6T6Z6 containing kanamycin (0, 50, 100, 

200, and 500 mg/l; from left to right, respectively). Bar: 3.2 cm. 

 

A 

B 
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By the time those calli were transferred from MSI medium with or without selection, 

they were brown and did not survive later on the following media. The Agrobacterium 

strain AGL0, containing the etr1-1 gene was ineffective in producing transformed 

calli or shoots when used to inoculate callus explants from the cv. CB5 under the 

conditions employed in these experiments. A total of 100 callus pieces inoculated 

with this strain at OD600 (0.1-0.4) and 50 callus pieces inoculated at OD600 (0.6-0.9), 

only produced one new callus piece under selection. However, this callus piece did 

not grow further when transferred to maintenance medium containing 600mg/l 

kanamycin. On the contrary, it deteriorated and turned brown. In control treatments, 

without kanamycin, callus explants were overgrown after 3 months on MSII medium, 

with many shoot already formed. 

 

However, transformed calli and shoots were later achieved when callus explants of cv. 

CB5 were inoculated with the bacterial strain LBA4404. Therefore, the next results 

will be dealing with the aspects for this transformation success. 

 

From preliminary experiments, it was found that it is necessary after the co-

cultivation stage to wash callus explants four times with sterilized distilled water and 

two times (5 minutes for each) with 500 mg/l cefotaxime. This is to eliminate 

bacterial re-growth in subsequent steps. The maintenance of selection pressure at 600 

mg/l of kanamycin in MSI and MSII media, after co-cultivation, was also necessary to 

produce transgenic calli (Table 7). 

 

Histochemical GUS assay 

 

Twenty callus pieces and 17 shoots collected from different transformation events and 

tested for GUS expression, were all found to be positive (Table 7 & 8). Those 

transgenic tissues showed blue staining, indicating the presence of GUS activity 

(Figure 17 I & II). No GUS activity was detected in non-transformed control calli and 

shoots (Figure 17 I & II). 
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Table 7. Transformation of Rhipsalidopsis cv. CB5 calli infected with A. tumefaciens strain LBA4404. 

 
a 

Optical density  
b 

Number of GUS-positive calli per total number of regenerated calli x 100  
c 

Experiment with SIM medium 
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Cef-cefotaxime
 

e 
Kan-kanamycin 
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                                    (days) 
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0.6-0.7
 c

 
 

 
120  

 
MSCo 

 
1 MSI (500 mg/l cef

d
)  

30 MSII (600 mg/l kan
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)  
13 

 
10 

 
76.9 

44 MSCo 1 MSI (500 mg/l cef) 30 MSII (600 mg/l kan) 3 2 66.7 0.5-0.6 
6 MSCo 1 MSI (500 mg/l cef) 30 MSII (250 mg/l kan) 0 0 0 

0.5 20 MSCo 1 MSI (300 mg/l cef) 30 MSII (600 mg/l kan) 0 0 0 
86 MSCo 1 MSI (300 mg/l cef) 30 MSII (600 mg/l kan) 11 8 72.7 0.4 
24 MSCo 1 MSI (300 mg/l cef) 30 MSII (400 mg/l kan) 2 0 0 
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Table 8. Transformation efficiency of Rhipsalidopsis cv. CB5. Callus explants were co-cultivated with A. tumefaciens strain LBA4404.  

(a) OD-Optical density 
(b) Number of transgenic callus explants forming shoots as a percentage of the total number of transgenic callus explants x 100 
(c) TE1-Transformation efficiency1: Number of GUS-positive shoots per total number of callus explants inoculated x 100 
(d) TE2-Transformation efficiency2: Number of GUS-positive shoots per total number of transgenic callus explants x 100 
(e) – Kan- Absence of kanamycin 
 

First stage of 
transformation 

Recovery of transformed shoots 

OD 
a
 

Total No. 
 of callus 
explants 
inoculated 

Independent 
putative 
transgenic 
callus lines 

First  
medium 

Second  
medium 

Total  
No. of 
transgenic 
callus 
explants 

No. of 
callus 
explants 
forming 
shoots 

Frequency 
of callus 
explants 
forming 
shoots  

(%) 
b

  

Total No. 
of shoots 
produced 

No. of 
GUS 
positive 
shoots 

TE1 

(%) 
c
 

 

TE2 

(%)
 d 

0.5-0.6 44 1 MSIII (+500 
mg/l kan) MSIV (- kan

 e
) 

52 20 38.5 192 10 22.7 19.2 

    MSIV (100 mg/l 
kan) 

40 12 30 38 0 0 0 

    MSIV (300 mg/l 
kan) 

44 7 15.9 42 2 4.5 4.5 

    MSIV (500 mg/l 
kan) 

32 2 6.3 5 2 4.5 6.3 

   MSIII 
 (-kan) 

MSIV (- kan) 56 29 51.8 212 3 6.8 5.4 

0.5-0.6 44 2 MSIII 
 (-kan) 

MSIV (- kan) 16 4 25 46 0 0 0 
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Figure. 17 Transformation of Rhipsalidopsis cv. CB5 (I) Histochemical GUS assay: 

transgenic (blue staining; right) and non-transgenic (no activity; left) calli. (Bar: 1.4 

mm) (II) Transgenic (left) and non-transgenic (right) shoots (Bar: 1.4 mm) (III) OD 

values obtained by ELISA reader at 450 nm for the immuno-detection of NPTII 

transgene expression of Rhipsalidopsis callus lines. T1-T9 Independent transformed 

callus lines; C1-C3 Non-transformed callus lines; P Positive controls provided with 

the kit at three dilutions (1:3, 1:10, 1:30). 

 

Effect of bacterial cell density (OD600) and acetosyringone on transformation 

 

Eighty callus explants inoculated with A. tumefaciens suspension (without dilution) 

failed to produce shoots or any callus growth. However, when a total of 150 callus 

explants were inoculated in a bacterial suspension with OD600  (0.4-0.6), the frequency 

of GUS positive calli (%) ranged from 67-73%. This occurred with selection pressure 

maintained at 600 mg/l of kanamycin (Table 7). The frequency of GUS positive calli 

II I

III 
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rose to 77% at OD600 (0.6-0.7), when bacterial cells were pre-incubated with 

acetosyringone (Table 7).  

 

In those experiments, after one month of growth in liquid MSI medium supplemented 

with kanamycin at 600 mg/l, callus explants were completely dark or dark-reddish. In 

control medium, lacking kanamycin, explants were reddish-green and overgrown. 

After 3 months, on MSII medium with selection, some of the callus explants formed 

new yellow-reddish callus. However, when these putative transgenic callus lines were 

transferred to the same fresh selective medium, they failed to produce shoots. At the 

same time, callus explants grown without selection were overgrown with many 

shoots.   

 

Recovery of transgenic shoots 

 

Callus explants multiplied from two independent putative transgenic callus lines were 

maintained under selection pressure for five months. To regenerate transgenic shoots, 

it was necessary to compromise between regeneration potential and selection 

pressure. For this purpose, the presence or absence of kanamycin in MSIII and MSIV 

media, together with testing the increase in kanamycin concentration (100, 300 and 

500 mg/l) in MSIV on regeneration potential were investigated. 

 

For the explants from the first putative transgenic callus line, it could be seen that the 

absence of kanamycin from both MSIII and MSIV media produced the highest 

frequency of callus explants that formed shoots (52%). These treatment combinations 

also produced the highest number of shoots (212) (Table 8). When kanamycin was 

present in MSIII medium, followed by an increase in kanamycin in MSIV (0, 100, 

300 and 500 mg/l) regeneration of adventitious shoots decreased as presented by the 

decrease in the frequency of callus explants that formed shoots (38.5, 30, 15.9 and 

6.3%, respectively) (Table 8). It appeared that the presence of kanamycin in MSIII 

had balanced out its absence in MSIV, which in turn, resulted in the highest TE1 and 

TE2 (22.7 and 19.2%) (Table 8). This view can be further understood in that the 

complete absence of kanamycin in both MSIII and MSIV media, although increased 

regeneration potential (52 and 25%; frequency of callus explants that formed shoots 
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for callus lines 1 and 2, respectively), resulted in low transformation efficiencies 

(TE1) (6.8 and 0%, respectively) (Table 8). 

 

Enzyme-linked immunosorbent assay 

 

The ability to detect NPTII by ELISA is based on the expression of the inserted nptII 

gene. Therefore, the detection of NPTII by ELISA confirmed the presence of the 

corresponding gene product inserted in the transformed calli. The nine putatively 

transgenic callus lines tested showed high expression of nptII (Figure 17 III). OD 

values from transgenic calli were 5-13 times higher than that of the control calli 

(Figure 17 III). Moreover, the calculated NPTII for some of the transgenic calli was 

0.33-3.34, on the basis of nano-grams per milligram total protein, which is 3-30 times 

higher than that of control calli. 

 

Southern blot analysis 

 

Southern blot analysis of the genomic DNA from two randomly selected putative 

transgenic callus lines (both kanamycin resistant and GUS positive calli), confirmed 

the presence of the nptII gene in the plant genome. These calli, unlike the control, had 

the sequences that hybridized to the DNA fragment of the nptII gene (kan1 probe) 

(Figure 18). The DNA of the putative transgenic callus digested with HindIII alone or 

in combination with EcoR1 or xba1 showed multiple hybridization bands suggesting 

multiple integrations or multiple transformation events. Only one hybridization band 

was detected from the DNA from the other callus piece digested only with HindIII 

(Figure 18). 
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Figure 18. Southern analysis of genomic DNA of transgenic Rhipsalidopsis calli with 

kan1 probe M: PstI digested λ DNA ladder. Lane 1: DNA from first putative 

transgenic callus digested only with HindIII. Lanes 2, 3 and 4: DNA from the second 

putative transgenic callus digested with HindIII, (HindIII and EcoR1), and (HindIII 

and Xba1), respectively. Lanes 5, 6 and 7: DNA from non-transformed control callus 

digested with HindIII, (HindIII and EcoR1), and (HindIII and Xba1), respectively. 
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3.4 Discussion 

 

3.4.1 Methods 

 

Like all the species in the cactus family, the absence of straightforward protocols in 

Schlumbergera and Rhipsalidopsis for molecular testing, has strongly hampered the 

progress in those plants. Isolation of nucleic acids for molecular gene expression 

analysis is extremely difficult due to the very high content of polysaccharides and 

polyphenols (De la Cruz et al., 1997). Available protocols are laborious and time 

consuming. Furthermore, those methods are based on repeated phenol/chloroform 

extractions and multiple ultra-centrifugations (Valderrama-cháirez et al., 2002). 

 

As part of the development of a transformation protocol for Schlumbergera and 

Rhipsalidopsis, an easy and rapid method for the isolation of genomic DNA has been 

established. This method is based on commercially-available DNeasy Plant Mini Kit, 

and enables the rapid isolation of DNA for southern blot analysis from callus 

explants. 

 

The protocol does not necessitate the addition of toxic β-mercaptoethanol (BME), 

although increased levels of BME have previously been suggested as a way of 

avoiding poly-phenol oxidation (De la Cruz et al., 1997; Lal et al., 2001). 

 

When extracting DNA from phylloclades and calli, in preliminary experiments, the 

extract was highly viscous and gluelike because of the considerable amount of 

gummy polysaccharides. Such thick extracts were noticed in Cinnamomum tenuipilum 

(Zeng and Yang, 2002). 

 

To avoid the precipitation of insoluble complexes, resulting in very poor yield, the 

volumes of AP1 and AP2 buffers were increased up to six-fold. This diluted the 

gummy polysaccharides and thus reduced the viscosity of the extract. The yield could 

be further increased by scaling up the extraction protocol and applying the increased 

volume to the same column in subsequent steps. 
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The combined application of PVPP and high molecular weight PEG (HMW PEG) 

seemed to be advantageous to increase the yield and quality of genomic DNA. HMW 

PEG was reported to bind phenolic and other compounds that may interfere with 

nucleic acids, thus allowing the increased yield of RNA (Gehrig et al., 2000). 

Moreover, Salzman et al. (1999) observed a moderate effect of PVPP in preventing 

quantitative loss of RNA. 

 

Applying the modification described herein, it was possible to extract sufficient 

genomic DNA for southern blotting from both Schlumbergera and Rhipsalidopsis 

using DNeasy Plant Mini Kit from Giagen. 

 

Regarding ELISA assay, the background obtained in the test was a small negative 

value. Therefore, this value was taken as zero and the OD readings from ELISA 

reader were not changed for further calculations.  

 

3.4.2 Results 

 

This is the first successful report on the transformation of R. gaertneri. Transformed 

shoots were achieved when callus explants were inoculated with the bacterial strain 

LBA4404.  

 

The results obtained by GUS expression, ELISA assay and Southern hybridization 

confirmed the presence of the uidA gene and nptII gene in the selected transgenic 

callus lines. Hybridization of the digested DNA of one of the transgenic callus lines to 

the DNA fragment of the nptII gene yielded multiple hybridization bands suggesting 

multiple integrations or multiple transformation events. Moreover, the formation of 

transgenic CB5 shoots was confirmed by GUS assay as shown by the dark blue 

histochemical stain in the shoots tested. 

 

Some of the factors that had effects on the transformation efficiency and led to the 

formation of transformed shoots were optimised. It seems that Agrobacterium when 

used without dilution was deleterious for the callus explants and thus prevented any 

desirable response. On the contrast, using the bacterial suspension with an OD600 
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between 0.4 and 0.7 resulted in the formation of transformed calli at a high frequency, 

and contributed to the eventual recovery of transformed shoots. 

 

Similar to the methodology used in this study, a washing step of the explants after co-

cultivation with cefotaxime for the elimination of A. tumefaciens was included in the 

transformation of sugarcane (Arencibia et al., 1998), rice (Dai et al., 2001), colonial 

bentgrass (Chai et al., 2004) and tomato (Sigareva et al., 2004). 
 

The pre-incubation of bacterial cells in SIM medium containing acetosyringone raised 

the frequency of transgenic GUS positive Rhipsalidopsis calli. Acetosyringone is 

known as a factor inducing the vir genes of Agrobacterium (Stachel et al., 1985) and 

was reported to improve transformation efficiency in Cucumis melo (Bordas et al., 

1997), Glycine max (Trick and Finer, 1997), Craterostigma plantagineum Hochst 

(Toldi et al., 2002), Fragaria x ananassa Duch (Gruchala et al., 2004). 

 

The recovery of transformed shoots in this study was achieved through the 

manipulation of two factors. The first factor was the selection pressure applied. It was 

found that kanamycin at 500 mg/l was effective in allowing the growth of only 

transformed cells. However, the working concentration of kanamycin was raised a 

little higher to 600 mg/l to reduce the chance for escapes. Keeping a stringent 

selection pressure was necessary for the formation of transgenic calli.  

 

An effective selection system should establish a good compromise between the 

regeneration capacity of the explants and the effectiveness of the selection applied 

(Araújo et al., 2004).  

 

After a total of 9 months on media with high selection pressure using 600 mg/l 

kanamycin, it was necessary to determine the effect of reducing kanamycin level on 

the possible regeneration of shoots from the transgenic callus. Therefore, the 

adventitious shoot regeneration system composed of two steps (MSI and MSII media) 

established for cv. CB5 was repeated with modifications that included testing 

different levels of kanamycin (MSIII and MSIV media) on shoot regeneration 

potential. It was found that the presence of kanamycin at this high level was still 

necessary when transgenic callus was grown in MSIII. However, it seemed that this 
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prolonged incubation on media with high selection pressure allowed the complete 

removal of kanamycin in the final medium (MSIV), thus resulting in the highest 

transformation efficiency of 22.7%. It can be stated that a procedure based on a 

stringent selection pressure is required for recovery of transformed plants and thus 

reducing the possibility of escapes (Arencibia et al., 1998; Zhang et al., 2000; Araújo 

et al., 2004; Chai et al., 2004). 

 

The second factor affecting the recovery of transformed shoots was the nutritional 

stress. The callus explants were grown on MSIV final medium for 4.5 months without 

changing or transfer to fresh new media. By this time, the media were depleted inside 

the containers and the callus pieces were overgrown and had formed shoots. This 

situation led to a nutritional and dehydration stress. This nutritional stress together 

with the removal of kanamycin after a prolonged incubation of the callus on media 

with a stringent selection pressure led to the stimulation of adventitious shoot 

formation. 

 

Leelavathi et al. (2004) also reported that nutritional as well as dehydration stress 

applied at the selection stage for embryogenic cotton calli, induces direct development 

of transformed somatic embryos. This resulted in a high frequency of transformation. 

 

As indicated by this study, transformation normally reduces regeneration efficiency 

and more time is needed for adventitious shoot formation. Many shoots formed after 3 

months from callus grown on MSII medium without selection. By this time, however, 

only transgenic callus began forming in the presence of kanamycin selection. 

Formation of transgenic shoots occurred 6 months later when further modifications in 

the regeneration system were made. These results were confirmed in transformation 

studies on strawberry (Gruchala et al., 2004) and Medicago truncatula (Araújo et al., 

2004). In these studies, regeneration of shoots (from strawberry) or somatic embryos 

(from M. truncatula) was faster and more prolific using the normal regeneration 

system without selection compared to Agrobacterium-mediated transformation. 

 

In the present study, transformation efficiency showed a good consistency when 

calculated on the basis of the total number of the callus explants inoculated (TE1) or 

on the basis of the number of transgenic callus used in the final experiment (TE2). 
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Although transformed shoots were produced when callus explants of cv. CB5 were 

inoculated with the bacterial strain LBA4404, no success was obtained with the strain 

AGL0. Bae et al. (2005) reported that bacterial strains can vary in efficiency when 

used for transformation. In their study, Agrobacterium strain EHA105 harbouring 

pCAMBIA vector was more effective for the transformation of dandelion than the 

GV3101 strain harbouring pBI121. 

 

In the present study, the control callus explants inoculated with bacterial strain AGL0, 

and then grown in MSI and MSII media without selection, were overgrown and 

formed shoots after about 3-4 months. This indicated that key variables in 

Agrobacterium-mediated gene transfer can be further optimised when using the 

bacterial strain AGL0. Those may include pH and the salt concentration in the 

infection medium, sugar type, use of acetsyringone, type and age of explant (using old 

or young phylloclades), and age of callus cultures used as explants. 

 

However, for the purpose of introducing etr1-1 gene into the genome of these cacti, 

other bacterial strains such as EHA101 and EHA105, which are supervirulent type 

strains (Hood et al. 1986, 1993), could be used. New vectors could also be 

constructed with more options for optimisation. 

 

The morphogenic potential of callus from cv. Alex was considerably changed over 

time. Green callus was dominated by white, watery callus when maintained by sub-

culturing on maintenance medium. This can explain the lack of response, even 

without selection, when such callus was used as explants for the Agrobacterium-

mediated transformation. It could be concluded that this callus became less competent 

for transformation with a decreased number of actively dividing cells when the 

transformation experiments began. 

 

The choice of suitable starting explants is important for genetic transformation (Toldi 

et al., 2002; Chai et al., 2004). Therefore, only vigorously growing and actively 

dividing cells, that are competent for agroinfection and are capable of regenerating 

into a whole plant, shall be used for transformation experiments (Arencibia et al., 

1998; Leelavathi et al., 2004). 
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3.5 Conclusion 
 

A transformation system mediated by Agrobacterium was established in 

Rhipsalidopsis cv. CB5 using uidA as a reporter gene and nptII gene as a selectable 

marker. The stringent selection from the beginning with 600 mg/l kanamycin, 

together with pre-incubation of bacteria in a SIM medium supplemented with 

acetosyringone were necessary to produce transgenic calli at a high frequency. The 

inclusion of a washing step with cefotaxime for the callus explants after co-culture 

aimed at removing the excess of Agrobacterium in subsequent steps. Both the 

nutritional stress with the removal of kanamycin in the final MSIV medium, had 

contributed to the eventual recovery of transformed shoots. 

 

In this report, relatively high transformation efficiency (maximum 22.7%) was 

demonstrated. Therefore, it can be concluded that Agrobacterium-mediated 

transformation is a promising approach for these cacti. 

 

Results from the present investigation confirm that creation of genetically-modified 

plants requires very precise studies on each genotype, step and factor influencing 

regeneration and transformation processes. 
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Summary 

 

A protocol was developed for the production of somatic embryos in Schlumbergera 

cv. Russian Dancer (Figure 19). A highly efficient regeneration system through 

adventitious shoots in Schlumbergera cv. Alex and Rhipsalidopsis cv. CB5 was also 

demonstrated (Figure 19). Medium, plant growth regulators, duration of callus 

exposure to cytokinins and presence or absence of gauze were shown to affect 

morphogenesis in Schlumbergera and Rhipsalidopsis. The production of polyploidy 

plants from somatic embryos could be exploited further through somaclonal variation 

for the production of new plant genotypes for breeding purposes. These improved 

systems of regeneration in both plant types formed the basis for the subsequent 

transformation studies. 

 

A transformation system mediated by Agrobacterium was established in 

Rhipsalidopsis cv. CB5 using uidA as a reporter gene and nptII gene as a selectable 

marker. Some of the factors that had effects on the transformation of Rhipsalidopsis 

and Schlumbergera were studied. The starting explants, selection system, bacterial 

strain, induction of vir genes by acetosyringone, the inclusion of a washing step with 

cefotaxime for callus explants after co-culture, and nutritional stress were found to 

affect transformation efficiency in these plants. 
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Embryogenesis                                 Organogenesis                        Organogenesis 
(cv. Russian Dancer)                            (cv. Alex)                                 (cv. CB5) 
Protocol                                                 Protocol                                   Protocol 
 
Callus induction                               Callus induction                     Callus induction 
Establishment phase                          Establishment phase                Establishment phase 
Explant (Phylloclades)                      Explant (Phylloclades)             Explant (Phylloclades) 
1) Maintenance medium                   1) Maintenance medium          1) Maintenance medium 
               (9-12 months)                                       (7 months)                                (9-12 months) 
 
                                                           Adventitious shoots                Adventitious shoots 
2) MS+26.6 µM BA                               experiment                              experiment 
+27.2 µM TDZ                                  a) MS+7.0 µM kinetin             a) MS+4.7 µM kinetin 
+27.4 µM zeatin 
                                                                            (50 days)                                  (30 days) 
               (4.5 months) 
                                                           b) MSWH or MSDM               b) MSWH or MSDM  
Embryogenesis experiment                           
1) Induction of somatic embryos                         (5 months)                               (4 months) 
a) SH+7.0 µM kinetin 
               (1 month) 
                                                           Adventitious shoots                 Adventitious shoots 
b) MSWH                                      (highest average number)         (highest average number)    
               (2.5-3 months) 
 
Appearance of  
somatic embryos 
                
               (3.5 months) 
               Somatic embryos 
               Proliferation 
 
2) Germination of embryos 
       G medium 
               3 months 
 
 
3) Development of plantlets 
       B medium 
               3 weeks 
 
 
4) Establishment of plants in  

    soil 
    

Figure 19. Flow chart showing the protocols developed for the in vitro regeneration of 

Schlumbergera and Rhipsalidopsis 
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Appendices 
 

I) Media composition 

 

Appendix 1. MS medium stocks and final recipe 

 

A) Stocks 

 

Macro Elements, 10x  g/l 
KNO3 
NH4NO3 
KH2PO4 
CaCl2 
MgSO4.7H2O 

19.00 
16.50 
1.70 
3.32 
3.70 

Micro Elements, 1000x g/l 
MnSO4.1H2O 
KI 
ZnSO4.7H2O 
H3BO3 
Na2MoO4.2H2O 
CuSO4.5H2O 
CoCl2. 6H2O 

16.90 
0.83 
8.60 
6.20 
0.25 
0.025 
0.025 

Vitamins, 1000x g/100ml 
Glycin 
Thiamine HCl 
Pyridoxine HCl 
Nicotinic acid 

0.20 
0.01 
0.05 
0.05 

Iron, 100x g/100ml 
FeSO4.7H2O 
Na2EDTA.2H2O 

0.278 
0.372 

 
B) MS medium Final recipe 
 
MS medium 1 liter  
Macro 
Micro 
Iron 
Vitamins 
Sucrose 
pH 
Gelrite 

100 ml 
1 ml 
10 ml 
1 ml* 
30 g 
5.7 
3 g 

 
* When Staba vitamins (100x stock solution) are used, 10 ml is added for 1 liter of MS 

medium 
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Appendix 2. Staba vitamins (100x stock solution) 

 

Staba vitamins mg/l 
Cyanocobalamin 
Folic Acid 
p-Aminobenzoic Acid 
Riboflavin 
Biotin 
Choline Chloride 
Thiamine HCl 
Nicotinamide 
Pyridoxine HCl 

0.15 
50.00 
50.00 
50.00 
100.00 
100.00 
100.00 
200.00 
200.00 

 

Appendix 3. SH medium recipe  

 

Micro Elements mg/l 
CoCl2.6H2O 
CuSO4.5H2O 
FeNaEDTA 
H3BO3 
KI 
MnSO4.H2O 
Na2MoO4.2H2O 
ZnSO4.7H2O 

0.10 
0.20 
19.80 
5.00 
1.00 
10.00 
0.10 
1.00 

Macro Elements mg/l 
CaCl2 
KNO3 
MgSO4 
(NH4)H2PO4 

151.00 
2500.00 
195.05 
300.00 

Vitamins mg/l 
myo-Inositol 
Nicotinic acid 
Pyridoxine HCl 
Thiamine HCl 

1000.00 
5.00 
0.50 
5.00 

Sucrose 30 g/l 
pH 5.7 
Gelrite 3 g/l 
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II) Chemicals 

 

Appendix 4. List of the main chemicals and their manufacturers used in this study. 

 

Chemical Company Chemical Company 
Acetosyringone Sigma/USA Sodium citrate Sigma/USA 
BA Duchefa/Netherlands Sodium hypochlorite Sigma/USA 
Bacto peptone Sigma/USA Sucrose Duchefa/Netherlands 
Biotin Duchefa/Netherlands TDZ Duchefa/Netherlands 
Bradford reagent Sigma/USA Thiamine HCL Duchefa/Netherlands 
BSA Sigma/USA Toludine blue Sigma/USA 
Carmine Sigma/USA Tween 20 Duchefa/Netherlands 
Cefotaxime Sigma/USA Ultraclear Baker/Netherlands 
Choline Chloride Duchefa/Netherlands X-Gluc Sigma/USA 
Daminozide Sigma/USA Yeast extract Duchefa/Netherlands 
DMSO Duchefa/Netherlands Zeatin Duchefa/Netherlands 
EDTA Sigma/USA 2,4-D Duchefa/Netherlands 
Ethanol Sigma/USA 4-CPA Sigma/USA 
Folic acid Duchefa/Netherlands   
Formaldehyde Sigma/USA   
Gelrite Sigma/USA   
Glacial acetic acid Sigma/USA   
Glucose Duchefa/Netherlands   
Histochoice Sigma/USA   
IAA Duchefa/Netherlands   
Isopropanol Sigma/USA   
Kanamycin Sigma/USA   
Kinetin Duchefa/Netherlands   
Mannitol Duchefa/Netherlands   
MES Duchefa/Netherlands   
Methanol Sigma/USA   
Myo inositol Duchefa/Netherlands   
NAA Duchefa/Netherlands   
NaCl Duchefa/Netherlands   
NaH2PO4 Sigma/USA   
Nicotinic acid Duchefa/Netherlands   
p-Aminobenzoic 
acid 

Sigma/USA   

p-Aminobenzoic 
acid 

Sigma/USA   

Paraffin Sigma/USA   
PEG 20 000 Sigma/USA   
PVPP Sigma/USA   
Pyridoxol HCl Duchefa/Netherlands   
Riboflavin Duchefa/Netherlands   
SDS Duchefa/Netherlands   
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III) NPTII-ELISA assay 

 

Appendix 5. Absorbance values for the standard solutions of BSA  

 

Standard solutions of BSA (µg/ml) Absorbance (595 nm) 
0.00 0.000 
0.10 0.358 
0.25 0.359 
0.50 0.363 
1.00 0.365 
2.50 0.407 
5.00 0.482 
10.00 0.590 
20.00 0.904 
40.00 1.199 
60.00 1.363 
80.00 1.471 
100.00 1.534 
120.00 1.591 
140.00 1.631 
160.00 1.676 
180.00 1.698 
200.00 1.726 
220.00 1.718 
240.00 1.762 
260.00 1.788 
280.00 1.81 
300.00 1.836 
360.00 1.879 
380.00 1.922 
400.00 1.904 
440.00 1.942 
460.00 1.962 
480.00 1.979 
500.00 1.981 
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Standard curve(total protein)

y = 0.001x + 1.4939
R2 = 0.9658
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Appendix 6. Standard curve used to calculate total amount of protein in the transgenic 

and control calli. 

 

 

Appendix 7. Total amount of protein in transformed and non-transformed calli 

measured according to the method of Bradford 

 

Callus number 
Absorbance 
 (595 nm) 

Total protein 
(µg/ml) 

Total protein 
(mg/ml)  

C1 1.717 223.1 0.2231
C2 1.942 448.1 0.4481
T2 1.873 379.1 0.3791
T3 1.941 447.1 0.4471
T4 1.874 380.1 0.3801
T6 1.871 377.1 0.3771
T7 1.909 415.1 0.4151
T9 1.885 391.1 0.3911

 

C: CB5 non-transgenic callus. T: CB5 transgenic callus; total protein was not calculated for T1, 

T5 and T8. Each value is the average of two replicates. 
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standard curve (NPTII) y = 1.6364x - 0.062
R2 = 1
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Appendix 8. Standard curve for the calculation of NPTII concentration (ng/ml) based 

on a known positive control concentration (3 ng/ml). OD values from diluted positive 

controls (1:3) and (1:30) were plotted versus the corresponding known concentration of 

1 and 0.1 ng/ml, respectively. 
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Appendix 9. Immunodetection of transgene expression by enzyme-linked immunosorbent 

assay (ELISA). Values in last column represent nanograms NPTII per milligram total 

protein in callus explants. Callus numbers: C1-C3 controls; T1-T9 independent 

transformants. P: positive controls (1:3 and 1:30). Nd: not determined 
 

Callus 
number 

OD 
(450 nm) NPTII (ng/ml)

Total protein  
(mg /ml) 

(ng NPTII)/ 
(mg total protein) 

c11 0.051 0.02 0.2231 0.09 
c12 0.06 0.04 0.2231 0.18 
c21 0.058 0.03 0.4481 0.07 
c22 0.063 0.04 0.4481 0.09 
c31 0.054 0..03 Nd Nd 
c32 0.058 0.03 Nd Nd 

P 1:3 0.649 1 Nd Nd 
P 1:30 0.099 0.1 Nd Nd 

T1a 0.295 0.42 Nd Nd 
T1b 0.395 0.58 Nd Nd 
T2a 0.608 0.93 0.3791 2.45 
T2b 0.627 0.96 0.3791 2.53 
T3a 0.459 0.69 0.4471 1.54 
T3b 0.729 1.13 0.4471 2.53 
T4a 0.68 1.05 0.3801 2.76 
T4b 0.813 1.27 0.3801 3.34 
T5a 0.667 1.03 Nd Nd 
T5b 0.613 0.94 Nd Nd 
T6a 0.571 0.87 0.3771 2.31 
T6b 0.716 1.11 0.3771 2.94 
T7a 0.126 0.14 0.4151 0.33 
T7b 0.485 0.73 Nd Nd 
T8a 0.428 0.64 Nd Nd 
T8b 0.325 0.47 Nd Nd 
T9a 0.484 0.73 Nd Nd 
T9b 0.358 0.52 0.3911 1.33 
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IV) Summary of ANOVA tables 

 

Appendix 10. Effects of media and transfer dates on the average number of 

adventitious shoots of S. truncata cv. Alex 

 

1. Shoot Scale 1 

 

Source of variation DF(1) MS(2) F value Significance 
Time 1 144.64 36.43 *** 
Treat 3 123.71 31.16 *** 
Treat*Time 3 12.45 3.14 * 
Error 48 3.97   

 

2. Shoot Scale 2 

   

Source of variation DF MS F value Significance 
Time 1 1003.02 51.80 *** 
Treat 3 762.78 39.39 *** 
Treat*Time 3 107.92 5.57 ** 
Error 48 19.36   
     

3. Shoot Scale 3 

 

Source of variation DF MS F value Significance 
Time 1 315.88 57.25 *** 
Treat 3 129.49 23.47 *** 
Treat*Time 3 36.26 6.57 *** 
Error 48 5.52   
 

     4. Total no. Shoots 

 

Source of variation DF MS F value Significance 
Time 1 3778.57 79.22 *** 
Treat 3 2412.05 50.57 *** 
Treat*Time 3 362.62 7.60 *** 
Error 48 47.70   
 

(1) DF: Degree of freedom 
(2) MS: Mean square 

*, **, *** Significant at P ≤ 0.05, 0.01, or 0.001, respectively
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Appendix 11. Effects of media and transfer dates on the average number of 

adventitious shoots of R. gaertneri  cv. CB5 

 

1. Shoot Scale 1 

 

Source of variation DF(1) MS(2) F value Significance 
Time 1 26972.16 66.29 *** 
Treat 3 4924.40 12.10 *** 
Treat*Time 3 1645.64 4.04 * 
Error 48 406.88   
 

2. Shoot Scale 2 

 

Source of variation DF MS F value Significance 
Time 1 188964.45 383.12 *** 
Treat 3 112133.45 227.35 *** 
Treat*Time 3 53443.88 108.36 *** 
Error 48 493.22   
 

3. Shoot Scale 3 

 

Source of variation DF MS F value Significance 
Time 1 5520.29 50.33 *** 
Treat 3 4971.07 45.32 *** 
Treat*Time 3 1995.57 18.19 *** 
Error 48 109.69   
 

4. Total shoot number  

 

Source of variation DF MS F value Significance 
Time 1 453240.07 343.23 *** 
Treat 3 218177.45 165.22 *** 
Treat*Time 3 84284.98 63.83 *** 
Error 48 1320.52   
 

(1) DF: Degree of freedom 
(2) MS: Mean square 

*, **, *** Significant at P ≤ 0.05, 0.01, or 0.001, respectively 
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