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Abstract 

Valeriy Vorontsov 
 

Charge transfer pumping for XUV lasers using femtosecond laser induced 

plasmas interacting with neutrals from a pulsed gas jet 

 

This dissertation introduces a novel setup for investigations of charge transfer 

pumping at high densities and desirable geometries, which makes this approach very 

promising for the realization of lasers in the extreme ultraviolet (XUV) spectral range. 

The new approach consists of a femtosecond laser produced plasma colliding with a 

pulsed gas jet. For this scheme, the widths of the plasma and gas fronts are 

correspondingly steep, allowing effective ion-neutral charge exchange interactions at 

densities of reagents in excess of 1016 cm-3, necessary to achieve inversion densities 

required for high gain and lasing at XUV transitions. 

For basic studies and the optimization of the setup, the well-known charge 

transfer reaction C4+ + H2 � C3+ (n=3) + H2
+ was investigated in detail, and clear 

selective pumping of levels with n=3 of C3+ ions was observed. A strong increase in 

intensities was also obtained for the 3d-2p (λ=23.8 nm) and 2p3s-2p2 (λ=37.4 nm) 

lines of O3+ and O2+ ions, as a result of the reactions O4+ + H  → O3+ + H+ and O3+ + H 

→ O2+ + H+ , correspondingly. As a promising scheme for XUV gain experiments, the 

reaction C6+ + H → C5+ (n=3,4) + H+ was studied, and selective pumping of the 4-2 

transition at 13.5 nm and of the 3-2 transition at 18.2 nm, well known from 

recombination pumped lasing experiments, was achieved. 

A thoroughful analysis based on time resolved measurements allows to perform 

a quantitative comparison of the obtained results with a kinetic model of charge 

transfer pumping. These data confirm that highly selective charge exchange pumping 

has been realized for the first time at densities of both reagents of up to 2.8×1016 cm-3, 

which is sufficient for XUV lasing experiments. 

Based on the achieved data and first test experiments with a line focus 

geometry, it is predicted that for a picosecond pump laser with 2.5 J, a gain-length-

product of 10 appears feasible for the C5+ transition at 18.2 nm. In addition, 

advantages of new charge exchange schemes with potential lasing transitions in Na-

like ions are presented and discussed.  

 

Keywords: charge transfer pumping, XUV lasers, femtosecond laser produced plasma 



Zusammenfassung 

Valeriy Vorontsov 
 

Ladungsaustauschpumpen von XUV Lasern durch Wechselwirkung von 

Femtosekundenlaser-induzierten Plasmen mit einem gepulsten Gasstrahl 

  

Die Dissertation stellt einen neuentwickelten experimentellen Aufbau für die 

Untersuchungen von Ladungsaustausch-Pumpprozessen bei hohen Teilchendichten  

und geeigneten Geometrien für die Verwirklichung von Lasern im extremen 

ultravioletten (XUV) Spektralbereich vor. Durch Einsatz von Femtosekundenlasern 

für die Plasmaerzeugung und gepulsten Gasstrahlen für Neutralteilchen werden im 

Wechselwirkungsbereich von Plasma und Gasstrahl steile Dichtegradienten erreicht, 

die Ladungsaustauschreaktionen bei Teilchendichten von über 1016 cm-3 

ermöglichen, die für eine hohe Verstärkung und einen Laserbetrieb auf XUV-

Übergängen erforderlich sind. 

Für grundlegende Untersuchungen und die Optimierung des Versuchsaufbaus 

wurde die bekannte Ladungsaustauschreaktion C4+ + H2 � C3+ (n=3) + H2
+ 

verwendet. Die Experimente zeigen deutlich, dass selektives Pumpen der Niveaus 

n=3 des C3+ Ions erreicht wird. Eine starke Erhöhung der Linienintensität wird auch 

für die Übergänge 3d-2p (λ=23,8 nm) und 2p3s-2p2 (λ=37,4 nm) der O3+ und O2+ 

Ionen als Folge der Ladungstauschreaktionen  O4+ + H  → O3+ + H+ und O3+ + H 

→ O2+ + H + beobachtet. Als besonders geeignetes Schema  für einen XUV Laser 

wurde die Reaktion C6+ + H → C5+(n=3,4) + H+ untersucht, und es konnte selektives 

Pumpen auf dem 4-2 Übergang bei 13,5 nm und auf dem 3-2 Übergang bei 18,2 nm, 

der als Rekombinations-Laserübergang  bekannt ist,  demonstriert werden. 

Eine ausführliche Analyse von zeitaufgelösten Messungen und ein  

quantitativer Vergleich mit einem entwickelten kinetischen Modell für den Ladungs-

austausch  bestätigt, dass erstmals selektives Pumpen bei Teilchendichten  beider  

stoßenden Komponenten von bis zu 2,8x1016 cm-3 erzielt wurde. 

Erste Testexperimente mit einem Linienfokus ergeben, dass für den 18,2 nm-

Übergang von C5+ ein Pikosekunden-Pumplaser mit einer Energie von 2,5 J 

erforderlich sein wird, um ein Verstärkungs-Längen-Produkt von 10 zu erzielen. 

Zusätzlich werden neue Ladungsaustauschschemata mit Laserübergängen in Na-

ähnlichen Ionen vorgestellt und deren Vorteile diskutiert.  

 

Schlagworte: Ladungsaustausch, XUV Laser, Femtosekundenlaserplasma 
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1. Introduction 

 

 

In the past two decades considerable progress in the development of soft-x-

ray or XUV lasers (spectral range from 0.2 to 100 nm) with collisional and 

recombination pumping using laser-produced and capillary discharge plasmas was 

achieved [Proceedings 2002]. However, the low efficiency of the presently operating 

XUV lasers, which is typically at the 10-7 level [data from “9th X-ray laser conference 

2004”] limits the use of these lasers for applications and provides further motivation 

for investigations of other more efficient pumping schemes.  Among the alternative 

pumping schemes for XUV lasers, charge exchange is one of the most promising 

candidates because of its quasi-resonant character, which makes it possible to 

populate the quantum levels selectively. The cross section of the process may be two 

orders of magnitude higher than that for the electron collisional excitation scheme. 

This makes the charge transfer scheme very advantageous and could dramatically 

improve the situation with XUV lasers by providing a better conversion efficiency.  

In an ion-neutral charge exchange reaction, collisions of ions with neutrals 

take place, leading to the transfer of an electron from a neutral atom to an excited 

state of an ion. Straightforward estimates by [Vinogradov and Sobel’man 1972] 

predicted that a population inversion and lasing effect could be achieved in the short 

wavelength range at densities of ions and neutrals in the range of 1016-1017 cm-3. 

First attempts for creating population inversion by charge exchange were done 

already in the 70`s [Dixon and Elton 1977], in experiments with laser-produced 

plasmas expanding into a uniform background gas. However, the charge-transfer 

pumping efficiency was very low. The main problem with these experiments was the 

formation of shock waves, which further ionized gas particles and prevented a direct 

plasma-gas interaction, and finally the realization of charge-transfer pumping was 

achieved only at very low ion densities of the order of 1014 cm-3, which made this 

approach useless for the realization of XUV lasers. To reach an intermixing of 

different ion species which are initially separated, several other schemes were 

investigated. An ion-ion charge exchange process was suggested in [Ruhl et. al. 

1997]. In experiments with hot and cold colliding plasmas an increase in intensity of 

the C5+ (3d-2p) line at 18.2 nm was reported and explained as an effect of the 

reaction C6+ + C2+
� C5+ (n=3) + C3+. However, due to a smeared interaction region 

and difficulties to control parameters of the plasmas during the collision, no 
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improvement has been reached in further experiments with colliding plasmas.  In a 

work of [Ponomarenko et. al. 1998], a compact gas cloud created by laser ablation 

was used as a source of neutrals flowing towards the laser produced ions. A sharp 

density gradient of the gas cloud and a controllable gap between the plasma target 

and the gas front allowed the realization of efficient and direct charge-exchange 

interaction at ion densities of 1015 cm-3. However, in this approach a further increase 

of the ion density in the interaction region is found to be problematic, since it is 

difficult to position the ablation gas cloud close enough to the plasma target.  

According to an analytical model of charge-exchange interaction of dense 

interpenetrating flows developed by [Shaikhislamov 2000], for an efficient charge-

transfer pumping at relatively high densities of reagents it is crucial to have both a 

compact gas stream and a well-localized plasma jet with a steep ion density gradient. 

At desired particle densities of 1016 cm-3 the characteristic length of charge exchange 

which determines the interpenetration of ions into a gas medium is less than 1 mm. 

Thus, an effective pumping can only be realized on a spatial scale of the order of 1 

mm or less, and therefore, the plasma and gas fronts should be correspondingly 

steep.  

The aim of this work is to perform a systematic analysis of charge transfer 

excitation mechanism, and find and explore suitable experimental scenarios for the 

realization of charge exchange pumping at densities of ions and neutrals in access of 

1016 cm-3, which is necessary to achieve gain in the Amplified Spontaneous Emission 

(ASE) mode. In addition, appropriate candidates for lasing experiments have to be 

found, and corresponding experimental tests have to be performed. 

Furthermore, it is very desirable that the theoretical model developed for this 

purpose be subject to comparison with the experimental data in order to better 

understand the processes of charge transfer interaction and its conditions in more 

detail, and to work out the optimum conditions for the potential laser. 

Because of the difficulty to control the front of the ablation plasma,  the only 

way to ensure the front sharpness is to use ultrashort laser pulses for the generation 

of the plasma and to realize a gas-plasma interaction as close to the plasma target 

as possible. Therefore, a novel experimental scenario for charge exchange pumping, 

consisting of a pulsed gas jet interacting with plasmas produced by ultrashort laser 

pulses will be introduced and tested. With this technique selective charge exchange 

pumping at the required densities will be demonstrated for a number of reactions.   
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In connection with the main purpose, studies on charge exchange reactions 

are also of great interest from a fundamental point of view for laboratory and 

astrophysical plasmas [Rigazio et. al. 2002]. 

 

The work presented here is organized as follows: 

 

In chapter 2, some definitions important for short wavelength lasers as well as 

basic principles, operating modes, and main mechanisms for creating a population 

inversion in the XUV spectral range are described. 

The basics of charge exchange pumping, different theoretical models for the 

estimation of the cross section, rate equations, and an estimation of the gain for this 

excitation mechanism are described and discussed in Section 3.  

Chapter 4 emphasizes previous experimental investigations on charge transfer 

pumping and summarizes the main difficulties and disadvantages of performed 

experiments.  

The novel experimental scenario, allowing the realization of charge exchange 

interaction at desired densities and geometries, is introduced in Chapter 5. The setup 

consists of a femtosecond laser for the production of plasmas with steep ion density 

gradients and a gas jet for the production of neutrals.  

In Section 6 the experimental results obtained with the novel setup are 

presented for a number of different reactions. The optimization of the setup was 

made by investigations on the well know C4+ + H2 � C3+ (n=3) + H2
+ charge transfer 

reaction. Further investigations concern reactions of Oxygen ions with neutrals such 

as  O4+ + H→O3+ + H+ and O3+ + H→O2+ + H+ , and the reaction C6+ + H→C5+ (n=3,4) 

+ H+ with possible lasing on the 3-2 transition at 18.2 nm, at which the lasing was 

already demonstrated with recombination pumping. 

Chapter 7 gives a summary on perspectives for charge exchange lasers, 

discusses an ideal geometry of interaction, and introduces a novel scenario on 

charge transfer pumping in Na-like ions, which promises even more efficient pumping 

as compared with the here analyzed Hydrogen like ions. 

Finally, in Section 8 the obtained results and future directions are summarized.  
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2. Principles of short wavelength lasers 

 

 

Nowadays, x-ray lasers based on laser-produced plasmas have been 

developed worldwide. Shortly after the first demonstration of a ruby laser at 694.3 nm 

[Maiman 1960], laser scientists have pursued to make lasers with shorter and shorter 

wavelength. In the branch of X-ray lasers, plasma sources, and astrophysical fields, 

the spectral range shorter than 100 nm and down to 0.01 nm can be named as X-ray 

spectral range with sub-divisions as extreme ultraviolet (XUV) from 100 to 30 nm, 

soft x-ray for 30- 0.2 nm, and for wavelengths shorter than 0.2 nm hard x-ray or 

kilovolt x-ray when the photon energy is beyond 1 keV. The relationship between the 

wavelength � and the photon energy h� is as follows: h� (eV) = 1240/� (nm), where h 

and � are the Planck constant and frequency, respectively. 

There are different methods developed to generate coherent photons in the 

XUV spectral range such as nonlinear optical processes (mostly due to generation of 

high order harmonics), free electron laser and basic laser principle. Harmonic 

generation can presently provide coherent XUV radiation down to about the water 

window (2-4 nm) with ultrashort pulses and efficiencies of about 10-7-10-8, and are 

already used for some applications [Brabec and Krausz 2000]. Free electron lasers, 

based on electrons periodically accelerated in synchrotrons, are presently developed 

for the generation of radiation down to about 1 nm. They will provide tuneable 

powerful radiation, but will be extremely costly laser facilities [Neil and Merminga  

2002], [Emma et. al. 2004]. X-ray lasers can presently be operated at a variety of 

wavelengths in the XUV and soft x-ray spectral range and are mostly based on laser 

produced plasmas.  Although considerable progress has been achieved, the 

efficiency of present x-ray lasers is still small, about 10-6 or less, so that an output 

energy in the mJ-range still requires kJ of pump laser energy. Consequently, there is 

need for more efficient laser schemes, and the intention of this work is to investigate 

pumping mechanisms, which promise higher efficiencies. The results achieved with 

x-ray lasers nowadays can be found in [Proceedings 2002].  

 

In the following chapter, the principles of x-ray lasers, operating modes as well 

as the main pumping mechanisms are described in detail.  
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2.1 Lasing medium and operating modes 

 

 

The main differences of short wavelength lasers with respect to normal visible 

lasers result from two facts, namely, that they work without cavity and that the 

transitions involved correspond to transitions of high Z-ions and not to transitions of 

neutral species, which is typical for visible lasers, or transitions of low Z-ions for the 

ultraviolet regions. It means that the lasing medium must consist of high Z-ions, 

which are typically produced either by laser irradiation of solid or gaseous targets, or 

by a pulsed discharge in a dense gas. Such a medium is called plasma, consisting of 

ions and free electrons. The main characteristics of a plasma is the temperature of 

electrons and ions and their densities. It is often assumed that Te=Ti (equilibrium 

plasma), and the density of electrons has the following relationship with the density of 

ions Ne=(Z-1)Ni. Due to strong collisional and radiative depopulation of the levels, the 

population inversion is typically short lived (ns or less depending on the pump 

processes and involved transitions) and therefore a resonator is difficult to apply. 

Moreover, the active medium is a plasma which has high a temperature, and mirrors 

would have to be placed very near to the plasma and therefore would be quickly 

damaged. This explains why almost all of the present X-ray lasers operate without a 

resonator, or use in some specific cases a half-cavity (one mirror). Consequently, in 

such a system high gain must occur only for one pass through the medium, the laser 

is operated in the Amplified Spontaneous Emission regime (ASE).  

A typical experimental realization of an x-ray laser consists of producing the 

amplifying medium, which is normally created by a line-focused laser beam on a 

target. The population inversion is produced in an elongated plasma column, where 

spontaneous emission from a group of inverted atoms is amplified by the same 

atoms through the plasma column. This results in a narrow divergence 

monochromatic x-ray beam, which propagates from both ends of the target to the 

other ends. The x-ray laser emission is normally measured using on-axis grazing 

incidence spectrometers placed on either side of the plasma column. 

 

There are two main operating modes of X-ray-lasers: transient/self-terminated 

and quasi-continuous. In the former, the pumping takes place for a short period of 

time, typically from sub-picoseconds to tens of picoseconds, by heating the plasma at 

a rate faster than the relaxation rate of the excited state. This became very practical 
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with the travelling wave pumping performed along the length of the active medium in 

coincidence with the amplified wave. In case of quasi-continuous pumping, 

population inversion exists for the duration of the pumping conditions. Then, if the 

upper levels are metastable with respect to radiative decay to the ground state, and 

the laser lower levels are depopulated by strong dipole-allowed transitions, the 

population inversion is created. 

A first stage in the development of an x-ray laser is the spectroscopic regime 

where the possible lasing line gets strong in comparison with other non-lasing lines. 

The second stage is when the lasing line dominates in the spectrum. The third 

includes the saturated amplification regime where a significant part of the population 

inversion is converted into the lasing signals. The gain-length-product gL for these 

stages corresponds to less than 5, less than 15 and about 15, respectively. For 

applications of x-ray lasers, the saturated amplification regime is extremely important, 

because the effective intensity of the laser beam in this regime, for instance at 8 nm, 

is 104 times higher than that from a Planck thermal x-ray source having a radiation 

temperature of 150 eV [Key et. al. 1995] . 
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2.2 Gain formulations and methods for gain measurements 

 

 

It is firstly necessary to relate the increase in intensity passing through the 

active medium and resulting as amplification of spontaneous emission, to a gain 

coefficient, and then relate this coefficient to the atomic processes in the plasma.  

The macroscopic gain of the active material of the length L can be described 

by  
gL

eG =                                                                                                  (2.1) 

where g is the small signal gain coefficient, which is determined as the product of the 

stimulated emission cross section σst and the population inversion density and given 

by  

g= Nu σst –Nl σabs=  Nu σstF                                                                   (2.2) 

 where   st

l

u

abs
g

g
σσ =      and 

lu

ul

gN

gN
F −= 1                                            (2.3) 

F is the population inversion factor (assumed 1 for efficient pumping Nu>> Nl).  

Nu,  Nl   are the densities of the upper and lower levels correspondingly, and gu ,gl  are 

the upper and lower laser state statistical weights.  

For the general line broadening mechanism, the stimulated emission cross-

section is determined by 

λπ
λ

σ
∆

=
c

Aul

st
8

4

                                                                                         (2.4) 

where Aul is the spontaneous transition probability, and ∆λ is the line width. 

Then the main equation for the gain coefficient will be obtained by combining this 

equation with Eq.(2.2) 

 FN
c

A
g u

ul

λπ
λ

∆
=

8

4

                                                                                            (2.5) 

The cross section for the Doppler broadened lines, which is the typical 

broadening mechanism in laser produced plasmas for the XUV wavelengths, can be 

estimated as  
2/1

3

28 ��
�

�
��
�

�
=

i

ulst
kT

M
A

ππ
λ

σ                                                                                (2.6) 

 

where M is the atomic mass of the lasing ions, and Ti is the ion temperature  
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We can show that for the 3-2 transition of C5+ ions at 18.2 nm, which will be 

considered later, A32 =5.7x1010 s-1 and for the typical value of kTi/M ≈13 in a high 

temperature plasma, �st ≈ 1.5x10-15 cm2. For this value of cross section the required 

ion density in the upper laser level should be about 1016 cm-3 for a 1 cm medium 

length to achive the value of gL≈15  (see Eq. 2.1 and 2.2), and one order of 

magnitude more is necessary for the upper density for a length of 1mm. 

 

 
Figure 2.1 Schematic of an amplified-spontaneous emission, amplification along the 

z-direction. 

 

Since in experiments only a line intensity is detected, one needs to relate this 

value to the gain in the medium. This can be done by analyzing the situation depicted 

in Fig. 2.1. The elemental increase of the spectral intensity dI�    along the z-coordinate 

is given by the amplification of the incident spectral intensity and the spontaneous 

emission emitted into the considered solid angle Ω(z) according to the Eq. 2.7. 

πνν
ν

4

)(z
hvANgI

dz

dI
u

Ω
+=                                                                       (2.7) 

where νA  is the spontaneous emission rate at frequency ν, Nu is the upper 

state population. 

The solution of the eq. (2.7) by integrating over the length z from 0 to L for a 

Gaussian line (which is more usual due to Doppler main broadening mechanism) is 

given by [Svelto 1998]: 

 

( ) ( ) 2
123

1
4

−
−

Ω
= gLgL

s gLeeII
πν                                                               (2.8) 

 

where 
τσ st

s

hv
I = is the saturation intensity, τ is the life time of the 

corresponding transition. 
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 The ASE threshold can be then defined as the situation where the ASE 

becomes the main mechanism of depopulating. It means, the intensity has to be 

comparable to the saturation intensity for a given medium. This yields to gL≈10-15. At 

this point the population inversion gets modified by the laser beam. A detailed 

description of the ASE mechanism one can find in [Svelto O. 1998].  

 

The simplest and reliable way to determine the net gain (in the presence of a 

significant gain coefficient (more than 2 cm-1)) is to measure the increase of the 

output signal as a function of the lasant length. Experimentally it is usually realized by 

varying the length of the target, and the gain is derived by fitting the data for different 

lengths of the target to the above-obtained Eq. (2.8).  

In case of low gain, population density inversion is often measured. Relative 

measurements of Nu/Na are the most straightforward. Such measurement with known 

statistical weights yield directly a value for the population inversion factor F in 

equation (2.3). Then, the measured absolute value for the upper state density 

provides a value for the gain coefficient, while the cross section value is usually 

known.  

In the optically thin plasmas for transitions having levels coupled to the ground 

state (o) through optical transitions, the ratio of intensities from upper and lower laser 

states to the ground state  Iuo/Ilo provides direct evidence of population inversion 

through 

 

        
uo

lo

uo

lo

lo

uo

l

u

h

h

A

A

I

I

N

N

ν
ν

=                                                                         (2.9) 

 

where Alo, Auo are corresponding spontaneous emission coefficients, and hνlo, hνuo 

corresponding energies. For resonance lines, the wavelengths for the transitions l-o 

and u-o are usually very close and, therefore, the value of measured intensities can 

be directly employed for the derivation of population inversion (without knowledge of 

spectral characteristics of the monochromator). 

Another way to confirm the lasing action is comparison of the time-dependent 

spatial divergence of the radiation leaving the medium exit at different wavelengths. 

In this case, the laser line should show a distinctly smaller divergence with increasing 

active length and, therefore, this method can be easily checked experimentally. 
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2.3 Main mechanisms of pumping 

 

 

2.3.1 electron collisional pumping  

 

 

The electron collisional excitation scheme was one of the first explored 

theoretically [Zherikhin et al 1976] and realized experimentally [Matthews et al 1985]. 

This scheme is found to be the most robust and simply operated. Several compact, 

high gain, laser-pumped and discharge pumped soft x-ray amplifiers have been 

successfully developed based on this scheme [Rocca 1999]. This excitation 

mechanism resembles that of some of the most widely utilized visible and ultraviolet 

ion lasers, for instance, the cw-argon ion laser, in which the laser upper levels are 

predominantly excited by direct electron impact collision from the ground state of the 

ion stage of interest. Mostly the generation of a population inversion occurs in a 

quasi-cw regime due to the very favorable radiative lifetime ratio between the laser 

upper and lower levels. The upper levels are metastable with respect to radiative 

decay to the ground state, and the laser lower levels are depopulated by strong 

dipole-allowed transitions. 

The first successful demonstration of lasing was done with utilizing the 2p53p–

2p53s transition in Ne-like Selenium [Matthews et al 1985]. Ne-like ions have a fully 

occupied outer shell and are hard to ionize. This is a significant advantage because it 

allows creating a high relative abundance of the lasing ions over a wide range of 

plasma parameters. To date, amplification has been demonstrated in the majority of 

the Ne-like ions having atomic number between 14 and 47. Figure 2.2 demonstrates 

the principle of this type of pumping with a simplified energy level diagram for the Ne-

like Selenium. Firstly, the desirable stage of ions has to be produced in the ground 

state, and then electron impact excitation takes place. The population inversion is 

maintained by the very rapid radiative decay of the 3s laser lower levels to the 

ground state through strong dipole-allowed transitions. Therefore, operation of these 

lasers in a quasi-cw regime requires the plasma to be optically thin for the transitions 

originating from the laser lower level. This imposes a restriction in the maximum 

plasma column diameter, which is often significantly relaxed by a Doppler shift in the 

lines caused by radial velocity gradients in the plasma. The pumping rate and the 

population inversion increase with the electron density. However, as mentioned 
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before, the maximum electron density at which an inversion can be maintained is 

limited by collisional mixing between the upper and lower laser levels. Another 

disadvantage of Ne-like schemes is the high degree of ionization and consequently 

the large pump power that is required to obtain lasing at a given wavelength.  

 

 

 

 

Figure 2.2 The principle of electron collisional pumping with a simplified energy level 

diagram for the Ne- like Selenium. 

 

Alternatively, the Ni-like sequence has been proposed and successfully 

utilized to extend collisionally excited lasers to shorter wavelengths. Lasers on the 

3d94d–3d94p transitions of Ni-like ions are direct analogs to lasers on 2p53p–2p53s 

transitions in closed shell Ne-like ions, but have the advantage of producing 

amplification at a shorter wavelength for a given state of ionization. This higher 

quantum efficiency significantly reduces the pumping energy required to achieve 

lasing by collisional excitation at a selected wavelength. Ni-like soft x-ray lasers were 

first demonstrated in 1987 in an Eu laser-created plasma [MacGowan et al 1987], 

producing an amplification of gl =4 at 7.1 nm. Subsequently, the scheme was 

isoelectronically extrapolated to a number of ions. Gain has also been observed in 

Co-like ions, [B. J. MacGowan et al 1990], and also the lasing in the Nd-like 
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sequence was proposed.[ P. L. Hagelstein 1991]. The summarized results on 

demonstration of lasing in Ne- and Ni- like ions are given in [Daidoo 2002].  

 

              Transient electron collisional excitation 
 

 
The electron impact excitation under rapid transient conditions results to 

provide much larger population inversions then in quasi-steady state regime.  It was 

first recognized by Afanasiev and Shlyaptsev in 1989, that larger gain coefficients (1–

2 orders of magnitude more then in quasi-steady scheme) can be produced by 

heating the plasma ions into excited states at a rate faster than the ionization rate. 

This corresponds to time duration of sub-picoseconds to tens of picoseconds.  

The larger gain coefficients are a consequence of several phenomena:  

- immediately following rapid collisional excitation before collisions have the time 

to redistribute the populations  

- the upper laser level population is larger as a result of its larger rate of 

excitation. The rate of electron excitation in an overheated plasma is larger, since 

it depends exponentially on the electron temperature. Due to these differences in 

the pumping rates of the closely spaced lasing upper and lower levels, this 

method allows operation at significantly high electron densities, and therefore at 

increased pumping rates.  

Transient gains in excess of 100 cm-1 have been predicted theoretically, and 

the first experimental demonstration was realized by Nickles P. et. al. in 1997 in the 

32.6 nm 3p–3s line of Ne-like Ti. The experiment was performed at the Max Born 

Institute using the hybrid Chirped Pulse Amplification Ti-sapphire/Nd:glass pump 

lasers. This laser system delivers synchronized long and short laser pulses of 1.2 ns 

and 0.7 ps duration, respectively. A dual cylindrical lens optics system was used to 

line focus the two beams onto the target with a width of 30 µm over lengths of 1–5 

mm. No laser pulse was detected as long as only one of both laser pulses was used. 

The first observation of gain was realized with short pulses of more than 2 J and long 

pulses of more than 3 J. The soft x-ray laser pulse was measured to have a duration 

of less than 20 ps. A nonlinear increase was clearly observed corresponded to an 

average gain of 19 cm-1 and to a gain-length product of 9.5. This gain coefficient is 

about seven times larger than that previously reported for the same line in the quasi-

steady state regime when pumped by a 0.6 ns duration pulses with an energy of 

200–500 J [Boehly I. T. et al. 1990]. 
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The short-lived transient population inversions, which are pumped directly 

from the ground state by electron collisional excitation, last until collisions redistribute 

the populations among levels. Following this short transient period of high population 

inversion the gain decreases until the laser level populations finally reach the quasi-

steady state value.  

It should be emphasized, that in the transient electron collisional excitation 

scheme a population inversion is created because the transient collisional processes 

of excitation of the laser upper and lower level occur at different rates, and not 

because of the faster rate of radiative relaxation of the laser lower level. Therefore, in 

the transient regime there is no need to limit the transverse dimension of the plasma 

in order to ensure optical transparency for the lower level radiation. The transient 

excitation scheme has been also extended to the Ni-like sequence. For example, in 

[Ozaki et. al. 2002], at a pump energy only of 150 mJ a gain in the 4d–4p line of Ni-

like Molybdenum at 18.9 nm was demonstrated. 

 

 

2.3.2 recombination pumping 

 

This pumping mechanism, sometimes referred to collisional recombination or 

three-body recombination, was first proposed by Gudzenko and Shelepin in 1965. 

This is the inverse process to electron-collisional ionization. It is assumed that the 

initial ions, which are one ionization stage higher than the lasing one, capture a free 

electron into a high bound quantum state followed by cascading downward to the 

lower states. This combined recombination and cascade processes are illustrated by 

the equation (2.10) and shown in Fig. 2.3.  

 

A
(z-1)+

 + 2e →→→→  (A
z+

)* + e  → → → →  A
z+

  +  hν + e                           (2.10) 

 

The collisional recombination allows the scaling of the wavelength with the 

principal quantum number n (Fig. 2.3) which provides the lasing at shorter 

wavelengths in comparison with electron collisional excitation. The collisional 

recombination rate is proportional to the square of the electron density and extremely 

sensitive to the electron temperature. Therefore, the generation of a large population 

inversion by recombination requires a dense and relatively cold plasma. When the 
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plasma cools, collisional recombination populates highly excited states, and electron 

collisions rapidly transfer the population to levels of lower energy. Since collisional 

electron deexcitation is inversely proportional to the square root of the energy 

difference between the levels, this electronic cascade reaches a level at which 

electron de-excitation is no longer dominant over radiative decay. At this level, a 

population inversion is created with respect to a lower level, which is most commonly 

de-excited by very rapid radiative decay to the ground state of the ion. Hydrogen-like 

ions have a very favorable energy level structure for the generation of population 

inversion by collisional recombination. In principle, several transitions can be 

inverted, but initially much of the attention focused in the very favorable 3–2 transition 

of these ions. Fig. 2.3 shows, for example, the generation of population inversion in 

the 3–2 transition of H-like C at 18.2 nm.  

 

 

 

 

Figure 2.3 Simplified Grotrian diagram of H-like Carbon showing the processes 

responsible for the generation of population inversion between the n=3 and n=2 levels 

in the 18.2 nm C VI recombination laser. 

 

One of the main difficulties with this type of pumping is to satisfy the conflicting 

plasma conditions: a very highly ionized plasma and a very cold electron 

temperature. In practice, the problem was traditionally solved utilizing a two-step 

process. First, a highly ionized and dense plasma is generated by a heating pulse. 

Second, the plasma is rapidly cooled following the termination of the excitation pulse. 
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By this method, the plasma is hot during the excitation pulse, allowing for the 

generation of the required high population density of ions, and cold during the 

recombination phase. The plasma can be rapidly cooled by an adiabatic expansion, 

by electron heat conduction to a nearby wall or colder neighboring plasma, or by 

radiation from high-Z ions introduced as impurities into the plasma. All three cooling 

mechanisms or combinations of them have been utilized experimentally to generate 

gain at soft x-ray wavelengths by collisional electron–ion recombination. In particular, 

important efforts have been devoted to the demonstration and study of amplification 

in the 18.2 nm 3–2 line of H-like Carbon [Zhang et. al. 1995]. Initial experiments for 

creating population inversion by recombination pumping were conducted in plasmas 

generated by ablating solid carbon targets or carbon fibers with high power laser 

pulses and cooled by adiabatic expansion. Large amplification was first observed in 

an experiment in which a 0.3 kJ pulse from a CO2 laser with about 75 ns pulse width 

was used to generate a nearly totally ionized carbon plasma column by bombarding 

a carbon solid target immersed in a strong solenoidal magnetic field [Suckewer et. al. 

1985]. The magnetic confinement allowed to maintain a high electron density, while 

the plasma was cooled by radiation and electron heat conduction to adjacent cooling 

blades. Laser pulses of about 3 mJ were generated at an efficiency of 10-5. 

Amplification has also been demonstrated in numerous experiments in which line 

focus plasmas were cooled by free adiabatic expansion.  

Gain also has been reported in the 4f –3d and 5f –3d lines of Li-like ions [Xu 

et. al. 1994], [Wagner et. al. 1996], and in  Na-like copper ions on 5g-4d transition at 

11.1 nm [Zhang et. al. 1996]. 

An important advantage of the recombination scheme with respect to the 

collisional excitation scheme is its more rapid scaling to shorter wavelengths with 

nuclear charge Z. However, recombination lasers have suffered the problem of not 

scaling adequately with plasma column length. This is possibly due to a very high 

sensitivity of the gain in recombination schemes to the variation of the plasma 

parameters that can be more pronounced for longer plasma columns, although this 

problem is not well understood yet.   
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2.3.3 alternative pumping mechanisms 

 

 

Among other mechanisms capable of creating a population inversion, more 

promising are inner shell excitation, resonant photoexcitation, and charge 

exchange pumpng. The latter will be analyzed in detail in the next chapter.   

  

Duguay and Rentzepis originally proposed the generation of large population 

inversions following the selective x-ray photoionization of inner shell electrons in 

1967. The generation of population inversions by this mechanism is possible 

because at photon energies just above the threshold for inner shell photoionization 

the cross section is an order of magnitude larger for inner-shell electrons as 

compared to outer-shell electrons. This process is described by  

 

Az+
 +  hν →→→→  A(z+1)+

[K,L] + e                                                      (2.11) 

 

where [K,L] shows the vacancy of electron  in n=1,2 or K-, L- shell for the ion, which 

has more than two shells. 

 

This scheme has the potential advantage of leading to relatively compact 

lasers with wavelengths shorter than 1.5 nm. The incoherent x-ray photons that 

pump the laser media would be normally produced by a nearby plasma created by 

heating a target made of a high-Z material such as gold with an intense ultrashort 

laser pulse. Experiments have demonstrated total laser energy to incoherent x-ray 

energy with conversion efficiencies of about 20%. Photons at an energy below the 

inner-shell binding energy are removed with an appropriate filter to avoid pumping of 

the laser lower level. The photoionization scheme was demonstrated in the visible 

region of the spectrum by Silfvast et. al. in 1983. The first proposal for inner-shell 

photoionization lasers at short wavelengths made by [Duguay and Rentzepis 1967] 

has gained in importance after the development of sufficiently powerful ultrashort 

pulse laser drivers. However, up to date there is still a lack of lasing with this 

pumping mechanism in the XUV spectral range. 

Resonant photopumping is based on intense line emission to pump the laser 

upper level. As any resonant process, this mechanism requires a precise wavelength 
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coincidence between powerful pump lines and lines that can populate a laser upper 

level by resonant photoabsorption.  

 

A
z+ +  hν    → → → → ( A

z+
)*                                                             (2.12) 

 

The evidence of a population inversion with this type of pumping was obtained 

in He-like Ne by resonant photoexcitation of the 1s
2
–1s4p  transition in that ion with 

1.1 nm radiation from He-like Na plasmas generated by very large pulsed power 

generators [Porter et al. 1992]. Other experiments showed as well the possibility of 

producing a population inversion [Ilcisin et. al 1994], [Qi,et. al. 1993], but no 

convincing gain product was reported.  
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2.4  Conclusion 

 

 

Finally, it can be concluded that a demonstration of lasing in the short 

wavelength range was successfully made with electron collisional and recombination 

pumping. However, at present, the normal efficiency of the XUV lasers, pumped with 

short pulse driver lasers, is in the range of 10-8, and with the more effective transient 

electron collisional excitation an efficiency of 10-7 was reported on the 9th X-ray laser 

conference by J. Dunn (2004).  The summarized results on the successful 

demonstration of lasing for the different types of ions with electron collisional and 

recombination pumping are given in the table below. 

 

Table 2.1 Summarized results of the main lasing schemes. 

Pumping mechanism Type of ions Lasing transition 

Electron Collisional 

 

 

Recombination 

Ne – like  

Ni – like  

Pd-like  

H – like  

Li – like  

 

Na – like  

3p – 3s 

4d – 4p 

5d – 5p  

3 – 2 

4 – 3  

5 – 3 

5 – 4 

 

 

It should be noticed, that only the electron collisional excitation mechanism 

was found to be robust and simply to operate, while the recombination scheme is not 

easily reproducible and no stable operation with recombination XUV lasers was 

reported.   

Investigations on other promising methods of pumping (inner-shell excitation, 

photo-excitation, charge exchange), which are capable for producing a more efficient 

pumping due to a resonant character of the pumping processes and, therefore, 

higher values of cross-section, so far could only produce a population inversion, but 

no convincing demonstration of a gain was obtained.  
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3. Population inversion by charge transfer 

 

 

A charge exchange reaction in atomic physics is one in which an electron, or 

several electrons, are transferred from one atomic system to another. Charge 

exchange was discovered by Henderson in 1923 during the course of the 

experiments in which α-particles were passed through the absorbing screens of 

mica. Numbers of singly charged He+ ions and also neutral He atoms were observed 

to emerge from the far side of the screens, and these were attributed to the capture 

of electrons by the α-particles [Bransden and McDowell 1992].  

 

 

3.1  Basics of charge exchange mechanism  

 

 

The classical models for the capture of an electron have been developed by 

[Bohr and Lindhardt 1954], [Grozdanov 1980], Barany et. al.1986]. In the simplest 

theoretical model of charge exchange, it is assumed that the electrons in the target 

are at rest and are uniformly distributed over the surface of sphere. Cinematically, 

reaction requires two collisions to take place. At first the incident ion A of a velocity υo 

strikes an electron in the target B, and since an ion is much heavier than the electron, 

it is undeflected. On the other hand, it is possible for the electron to acquire the 

speed υo and to make a collision with the target nucleus B in such a way that it is 

deflected to move in the same direction as the ion A. Those electrons, which are 

moved with the same velocity as A and in the same direction, are considered to be 

captured. The detailed analysis of the classical overbarrier model will be given in the 

next chapter for the derivation of the charge transfer cross section. 

In general, the mechanism of charge exchange is very dependant on relative 

velocities of colliding species υo: at high impact velocities υo>>υe it is quite different 

from that at low velocities υo<<υe, where υe is the electronic velocity in the first Bohr 

orbit of atomic hydrogen. For our experimental conditions the latter situation takes 

place, as the velocities of ions investigated (about 107 cm/s) are smaller than the 

electronic velocity in the first Bohr orbit of atomic hydrogen υe≈2×108 cm/s. The 

interaction time in this case is long compared with the characteristic time required for 
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an electron in the first Bohr orbit to travel the distance ao , which is 2.4 ×10-17 s, where 

ao is the first Bohr radius. At these conditions, a collision complex is formed and the 

transition probability for the rearrangement is high.  

The important feature of this process is its quasi-resonant behavior between 

the binding energy of the electron in the ground state of the atom and that of the 

upper laser state of the ion and can be better understood by the diagram shown in 

Fig. 3.1. The level Eup, where the electron is transferred, is determined by the 

ionization potential of the involved component (Eion(B)), and an energy decrement 

∆E, which is typically in the range of 10-20 eV.  

ground state
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A
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 Figure 3.1 Principle of charge transfer pumping mechanism with simplified energy 

level diagram.  

 

The existence of an energy decrement can be explained from the condition, 

that the energy (Eion(A
(n-1)+) - Eup) must be definitely higher than (Eion(B)) in order to 

capture the electron, so the reaction must be exothermic. And somewhat more 

precisely, theoretical calculations show that the energy decrement is usually in the 

range of 10-20 eV. This is also confirmed by our measurements with investigations 

on the Silicon ions given in Fig. 7.10 and Fig.7.11 (see chapter 7). As for any 

collision, one can assume that the probability of interaction is equal zero at the point 

where (Eion(A
(n-1)+) - Eup) = Eion(B) (i.e. ∆E=0), and then it is getting increased up to a 

point where the cross section has a maximum (∆E≈10-20 eV). For the larger values 
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of ∆E, the cross section is slightly, but steadily decreasing, as shown for example in 

Fig. 7.11 for Silicon ions (see chapter 7).  In general, the processes of charge 

exchange interactions are more complicated and the energy decrement for a 

particular reaction depends not only on relative velocities of the reactants, but also on 

the symmetry and other properties of the involved reagents. For a detailed 

description see [Mapleton 1972], and [Bransden and McDowell 1992]. 

 The mechanism of charge exchange can be in general described by the 

reaction below:      

          An+ + B →  A(n-1)+ + B+ + ∆E                                                        (3.1) 

 

The equation (3.1) represents the capture of an electron by the incident ion 

(projectile) A with charge n+ from atomic target B. The outer electron goes from 

neutral atom B in an excited level of newly created A(n-1)+ ion. 

In terms of quantum mechanics, quantal methods must be employed to obtain 

approximate solutions of the Schrödinger equation for the ion-atom systems. The 

most attractive is the method of curve-crossing. The concept of pseudo-crossing of 

potential energy surfaces is utilized to construct an approximation within the 

framework of the two-state approximation, where the wavefunction is obtained by 

retaining in the trial function only the initial and final states of interest [Mapleton 

1972]. Under these circumstances, the electron to be captured is shared between the 

two ions during the collision, forming a quasi-molecule. Considering the process of 

Eq. 3.1, in the absence of interaction the left- and right-hand members of this 

equation can be imagined to form two quasi-molecules, ∆E is the difference in 

binding energies of the initial and final states at infinite separation and is in an 

inverse relationship with a pseudo potential-curve crossing distance. Without 

interaction the associated potential energy curves have a cross at a critical 

internuclear distance Rcr (Rcr is usually about 5-10 a.u.). If there is an interaction, 

these curves usually do not cross, provided that the matrix element of the associated 

interaction does not vanish. In the region of pseudo-crossing Rc the difference in the 

two potential energies is the smallest and the capture of electron can occur. This 

method is adequate only at low velocities of relative motion of colliding systems. By 

reason of its attractive simplicity the method of curve-crossing has been applied and 

described extensively [Smirnov 1968]. 
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3.2  Cross section data 

 

 

Cross section determines the probability of a process involved. In our case it 

determines the population of the relevant laser levels pumped by charge exchange 

reaction, and it is therefore very important to estimate this parameter. In regard to 

charge exchange interaction, the cross section depends primarily on the relative 

velocity of colliding particles υo, rather than the incident energy. This is why the cross 

sections are generally characterized as a function of energy measured in electron-

volt divided by the mass of the incident particle in atomic mass units (a.m.u.), or as a 

function of relative velocity. There is the following relationship between these 

parameters, valid at non-relativistic energies  

E ≈ 20.8υo
2  keV/a.m.u.                                                              (3.2) 

1 a.m.u. corresponds to the mass of the proton, and υo is expressed in atomic units 

(υo =1 a.u. corresponds to electronic velocity in the first Bohr orbit of atomic hydrogen 

υe≈2.1×108 cm/s). 

At our experimental conditions, the relative velocity is determined by the laser 

produced ion velocities, while the gas can be assumed as standing in the way of ions 

(see chapter 5). The typical velocities of investigated ions are in the range of 107 

cm/s, which corresponds to the relative velocity of υo=0.05 a.u. For the Carbon 

projectile with the mass of 12 the energy is 624 eV. This corresponds to the case of 

low-energy collisions (υo<υe). 

As discussed before, there are different models developed to make an 

estimation of charge transfer cross section. We will consider here the Classical 

Overbarrier Model introduced by [Ryufuku et al. 1980] and elaborated by [Chichkov 

et.al. 1999], since it allows to make precise calculations at low-energy collisions.  

According to the model, the charge transfer corresponds to the transfer of an 

electron having sufficient energy to overcome the potential barrier between the 

projected ion and the target nucleus. Electron capture is considered to take place if 

two conditions are satisfied:  - the release of the electron from the orbit about B and 

                                    - the capture of the released electron by the ion A.  

The release condition can be derived from the following point. If ZA and ZB are 

the charges of the projectile A and the target B correspondingly, then the initial 
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energy of the electron, which is bound to B in an orbit with the principal quantum 

number n is given by  

 
2
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n

Z
E B

n −=                                                                                        (3.3) 

As the nucleus A approaches the atom (B+ +e), the electron gains an 

additional electrostatic energy –ZA/R, where R is internuclear distance between A and 

B. The total energy of the electron before capture is  
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At a point at a distance x, along the internuclear line, the total potential energy 

acting on the electron become 
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The maximum value of this potential and its location are given by the condition  

0
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with the solution x=xmax, where  
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where V(xmax) gives the height of the potential wall.  

The release condition is taken to be that the diabatic potential of the neutral B 

perturbed by the Coulomb potential of the projectile should be equal to the initial 

energy of the electron given by (3.4).  
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where Ry is the Rydberg energy equal to 13.6 eV. 

 This condition defines the crossing point of two potential curves at the 

internuclear distance R=Rn, where  

RyBEnZ

ZZ
R

ionA

BA

n
/)(/

)(2
22 −

−
=                                                                     (3.9) 

Then, the capture condition is that the energy levels  E(R) must lie above the 

potential barrier (Eq. 3.10), and note that the capture can only take place if the kinetic 

energy mv0
2
/2  of the incident ion A is more than the potential energy (-ZA/R) which 

binds the electron to A. The condition can be written as  
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)()( maxxVRE >                                                                                                (3.10) 

This defines the internuclear distance where the overbarrier charge transfer 

becomes possible 
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The cross section strongly depends on the level nu, in the Eq. 3.12 where the 

captured electron is transferred  

A(n-1)+ +  B �  An+(nu)�� + B+ ∆E                                                             (3.12) 

Electron capture into level nu occurs when Rn�Rcr or 
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 The classical charge transfer cross section �ct of this process can be written in 

terms of Rn  

2222
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+
=                                                          (3.14) 

where gi=2n
2 , and gB ∼2nB

2 are the statistical weights of the corresponding ion and 

target states, and a0≈0.52x10-8 cm. The expression for charge transfer cross section 

in this model is independent on the ion kinetic energy, but this is valid only for R<Rcr, 

which corresponds to the low relative velocities range, this is well agreed with the 

experimental findings [Beijers 1992].  

Now we can calculate, for example, that for the charge transfer reaction 

between C4+ ions and hydrogen, in detail investigated later in chapter 6,  the capture 

according to the Eq. 3.13 goes into level nu=3 and the cross section, calculated by 

the use of Eq. 3.9 and 3.14, is as high as �ct≈2x10-15 cm2  which agrees very well with 

experimental data [Dijkkamp et. al. 1985]. 

It must be noticed, that recently other theoretical models for the low impact 

energies were developed. They are based on quantal molecular close coupling 

calculations which allow to provide the total and state selective electron capture 

cross-sections [Harel et. al. 2001].  The detailed description of the method is given in 

[Errea et. al. 1998]. As a result of the calculations, the authors presented the total 

and n-partial charge transfer cross-sections for the number of different reactions 

including  the reactions investigated here: between C4+, C6+ , Be4+ and others. These 

data will be presented later by considering the particular reaction.  
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3.3   Rate equations 

 

 

The rate equation approximations are derived on the basis of a simple notion 

of considering a balance between the total numbers of ions undergoing the charge 

transfer reaction and the total numbers of photons being created. 

In order to estimate the population inversion with charge transfer pumping, let 

us consider the lasing on 3-2 transition at 18.2 nm of hydrogen like Carbon ions. The 

analysis of the lasing on this transition by charge exchange has been done by [Dixon 

and Elton 1977], [Seely and McKnight 1977], [Elton 1990]. The simplified level 

diagrams for these ions are shown in Fig. 3.2.  
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Figure 3.2 Transitions included in the rate equations for the population inversion of 

the levels of C5+ ions. Rct – charge transfer pumping rate, Cmn – collisional excitation 

rates, Amn – spontaneous emission rates, Nn –densities of the levels and Nc – for the 

density of C6+ ions. 

 

Let us assume, that the upper laser state N3 can be populated only by charge 

transfer excitation, while the electron-ion recombination rate is of order of 107s-1 

[Irons and Peacock 1974], and is small compared to the charge exchange rate 

estimated below. The population of the lower excited state N2 of C5+ ions is 
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determined by collisional induced upward transitions and spontaneous downward 

transitions. In general, the population inversion for the n=3�2 transition is  

∆N=N3 - N2g3/g2                                                                                        (3.15) 

In steady state, the rate equations for the upper laser state N3 and the lower 

laser state reduce to  

           (A31+A32+C34)N3 = Rct Nc+C23N2 

          (A21+C23)N2 = A32 N3 +C12N1                                                                                                        (316) 

where all parameters Amn, Rct, Cmn, Nn  are described and shown in Fig. 3.2.  

With the value of g3/g2 =3/2 for the 3-2 transition of C5+ ions, the steady state 

population inversion may be written as  
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The collisional excitation rates Cmn can be found for the corona equilibrium 

regime [ Griem 1964] by the formula:  

)/exp(

1
105.4 6

ee

nmemn
TdETdE

fNC −×=                                    (3.18) 

where Ne, Te are the electron density in cm-3 and temperature in eV, dE is the the 

energy gap in eV, and fnm is the oscillator strength.  

Due to the large energy gap between n=1 and 2 levels, C12 is about seven 

orders of magnitude smaller than A21, and therefore, the last term in (3.17) can be 

neglected. The term C23N2 is negligible compared to Rct,Nc.  

Using Eq. (3.17), (3.18) and spontaneous transition probabilities listed in Fig. 

3.2, the population inversion is finally given by 
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                                   (3.19) 

 

where the densities are in units of cm-3 and electron temperature is in units of eV.  

 

This expression depends now on the plasma parameters and the rate of 

charge transfer pumping Rct, which will be derived in the next chapter. The final 

estimations of population inversion and corresponding gain will be performed in 

chapter 3.5.  
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3.4   Charge transfer pumping rate  

 

 

In a charge exchange pumping process, ions with charge i and density Ni 

collide with the atoms with density Na to create the excited  in a specific level n ions 

with charge (i-1) having density  Ni-1(n).  

Considering an elementary collision process, where the ions with Ni and a 

velocity Vi stream onto the atoms (at rest), the density of ions Ni-1(n) formed per time 

is given by  

ictai

i VNN
dt

dN
σ=−1                                                                               (3.20) 

where �ct is the corresponding cross section 

Using the notations of the Fig. 3.2, the density of created ions Ni-1(n) is N3, and 

Ni=Nc. Consequently, the rate Rct in Fig. 3.2 and in Eq. (3.19) can be then given by  

 Rct = Na. Vi �ct                                                                                                                                                 (3.21) 

This holds true, as along as the density of ions and neutrals are not time and 

space dependent and a unit interaction velocity exists. 

 

At our experimental conditions, the laser produced plasma expands and has 

therefore the velocity and density distributions of ions changing with time and space. 

For such a situation, a more detailed analytical model of charge exchange interaction 

was developed in [Shakhislamov 2000]. In the general case, the equations of charge 

transfer interaction can be written as: 

111 ++++−= iiaiiiai

i VnnVnn
dt

dn
σσ                                              (3.22)

 �−=
i

iiia

a Vnn
dt

dn
σ  

where ni and na are densities of ions and atoms, Vi - velocity of ions, i - index for ions 

of charge Z=i. They must be completed by the equations of continuity and motion. 

The time of radiative decay of newly created exited ions is usually much smaller than 

the inverse rate of charge-transfer 1

i ) ( −= iact Vn στ  or hydrodynamic time of ions flow. 

For example, for the charge exchange interaction between C4+ ions and hydrogen 

[Errea et. al. 2000], at usual velocity of ions  
s

cmV
710≈  and required neutral 

densities in the range of 31610 −= cmna  the ratio of charge exchange and radiative time 
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for C3+ ions is 01.0≈
ct

rad

τ
τ

.  Because of this consideration the population of excited 

ions in the equations can be neglected. In the most simplified case, only one sort of 

desirable ions (for example, C4+) can be considered, and all scatterings and 

decelerations can be neglected,  since V=const. Then, the equations become: 

 iiai
ai Vnn

dt

dn

dt

dn
 σ−==                    (3.23) 

 iai VnnJ i σ=  

where the charge-transfer pumping rate is designated now as J. The equation (3.23) 

has been analyzed by [Ponomarenko et. al. 1998] and in the case of planar flow of 

ions, the density distributions   are given by 
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where dRnN

R

o

aa  �=  is a total number of neutrals along the path of ions up to 

the point of observation R, dtVtRnN

t

i

o

ii �=  ),(  - a total number of ions flown through 

the unit square at the point of observation up to the moment of observation t; i

o

i Vn , o

an  

- ion flow and neutral density taken without interaction.  

The exact solution is then given by: 
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These final expression for the charge transfer pumping rate J(R,t) will be 

further applied in chapter 6.2 in order to model the time behaviour of charge transfer 

induced lines and to compare it with the experimental measurements. These data will 

allow to obtain the quantitative parameters of charge transfer interaction. 
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3.5   Estimations of gain with charge transfer excitation 

 

 

 Recall, that the gain coefficient defined in chapter 2 can be stated as  

g= Nu σst –Nl σabs                                                                                   (3.27) 

and for the σabs= σst gu/gl  

g = ∆N�ct                                                                                                         (3.28)               

where ∆N can be derived from the Eq. (3.17) 

Let us consider again the lasing on the 3-2 transition of hydrogen like Carbon 

ions at 18.2 nm, for which the population inversion ∆N is determined by the Eq. 3.19.  

The charge transfer pumping rate Rct can be estimated with the use of  the Eq. 

3.21. For the typical velocity of laser produced C6+ ions of 3x107 cm/s and charge 

transfer cross section of 0.5x10-15 cm2, which can be derived from the (3.14) and 

(3.9) for the hydrogen gas reagent, the pumping rate can be approximated by  

 

Rct ≈1.5x10-8 1/s                                                                                  (3.29) 

 

Then the final expression for ∆N can be written as  
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                                              (3.30) 

 

The plasmas, produced by femtosecond laser ablation of solid targets are 

assumed to be as very dense and cold. The typical density of electrons is in the 

range of Ne~1022-1023 cm-3, and temperature Te∼150 eV [Goldstein et. al. 1993], 

[Theobald et. al. 1999]. Taking into account that for the ideal spherical expansion the 

plasma density decreases with distance d as Ne~d -3 and the temperature scales as 

Te ∼ d -2, one can calculate that for the distance d=1 mm from the target Ne~1019 cm-

3, and temperature Te∼1.5 eV. For these values of the parameters the denominator 

[ )/8.23exp(102.1
2/118

eee TTN −× −− ] in the Eq. (3.30) is much smaller than 1, and 

therefore this equation can be further simplified by  

ac NNN
1910−=∆                                                                                             (3.31) 
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By combining of the Eqs. (3.28) and (3.31), one can obtain the condition for 

the required ion and neutral densities Nc and Na. Assuming gain length product gL 

~10 with a 1 cm length, this condition becomes 

 

gL= 10 = = = =  ∆N�st L =  10
-19

  Na Nc �st≈ 10
-34

NaNc                                                                   (3.32) 

 

Here we used the �ct~1015 cm2 obtained for this transition in the chapter 2 

(2.6). Since for the effective charge exchange interaction the densities of the involved 

components should be equal, we can write Na=Nc and, then the required ion density 

for the achievement of gL ~10 is                   

           31735 10310 −×≈= cmN c      

According to these estimations, one can conclude that  a gain-length-product 

gL~10 on the 3d-2p transitions at 18.2 nm of C5+ ions can be achieved with charge 

transfer pumping in quasi-steady state if the ion density of C6+ ions is ∼ 3x1017 cm-3.  

However, assuming that charge transfer reaction pumps directly and 

selectively an upper laser level and a lower laser level is usually unoccupied, we can 

consider, that all ions, undergoing charge transfer reaction, will be involved in the 

producing of gain. Based on this, one can apply the formula (2.2) for an estimation of 

gain by assuming that population inversion factor F=1, then the required value of 

gL~10 can be achieved for the density of ions found from the condition  

 

gL =Nu σstFL=10                                                                                   (3.33) 

 

This shows that for the lasing on 3-2 transition described above, the ion 

density of C6+ ions, which are undergone charge transfer reaction, in the range of 

1016 cm-3 is sufficient.  

 

It should be noticed that the lasing at shorter wavelengths as compared for 

example with here analyzed lasing at 18.2 nm requires usually higher ion densities, 

while for the longer wavelengths the lower ion densities are sufficient for achieving 

gain.   
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4. Status of experimental investigations on charge transfer  

pumping 

 

 

Charge-exchange pumping of highly charged ions in a laser-produced plasma 

interacting with a neutral gas was proposed as a source of XUV radiation for the first 

time in 1973 [Vinogradov and Sobelman 1973]. Straightforward estimates predicted 

that a lasing effect could be achieved in the wavelength range down to ~10 nm. 

Although many investigations have been performed, which showed the selective 

charge exchange excitation of desired levels, no realization of charge exchange 

pumping at required densities of 1016-1017 cm-3 and appropriate  geometries for lasing  

experiments and with sharp boundaries of involved components has been achieved. 

 

 

4.1 Typical scenarios of charge exchange interaction 

 

 

First experimental attempts for the realization of charge-exchange pumping 

were done by [Dixon and Elton 1977], [Dixon, Seely and Elton 1978] in experiments 

with laser-produced carbon plasmas expanding into a background gas as depicted in 

Fig. 4.1a.  They observed a population inversion of C5+ and C4+, as a result of 

reactions C0 + C5+,6+ → C+ + (C4+,5+)* +∆E , where ∆E is the difference in binding 

energies of the initial and final states at infinite separation. The levels of preferential 

population were in agreement with those predicted by charge-transfer mechanisms. 

Nevertheless, the observed population inversion was independent on the gas type 

and the gas pressure in the range of most interesting particle densities (1016-1017 cm-

3). An explanation provided by the authors was that this population inversion appears 

due to charge-transfer processes in ion collisions with neutral atoms existing in the 

same expanding plasma. The role of the background gas was only to stop plasma 

expansion and to produce a mixing of neutral and ionic plasma components at 10–15 

mm distance from the target surface. As a result, the charge exchange pumping was 

realized only at the ion densities of 1013-1014 cm-3 and the efficiency of this process 

was very low, not more than 10-3 of the maximum possible value for the given ion and 

neutral densities. The reasons of such low efficiency were clarified in further 
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experiments and numerical simulations discussed in detail in [Ponomarenko A.G et. 

al. 1998]. When nanosecond laser pulses with energy of a few joules are used to 

produce a plasma, the plasma radiation and hot electrons can ionize the background 

gas in a region of up to several millimeters from the target surface. At densities of the 

surrounding pre-ionized gas larger than ~1016 cm-3, plasma expansion generates a 

shock wave that further ionizes gas particles. As a result, gas is ionized before it 

comes into contact with highly-charged ions and a mixing between them and neutral 

gas particles is entirely prevented. 

 

 

 

 

Figure 4.1 Typical experimental scenarios of investigations on charge exchange 

pumping aimed for realization of  XUV lasers. 

 

To achieve sufficient intermixing of different ion species which are initially 

separated, several other schemes were proposed and investigated. An ion-ion 

charge-exchange process was also suggested in [Seely and McKnight 1977], since 

for some reactions the Landau-Zener model predicts relatively large charge-transfer 

cross-sections of the order of 10-15 cm2. In experiments with hot and cold colliding 

plasmas (Fig. 4.1b) [Ruhl et. al. 1997], an increase in intensity of the C5+ (3d-2p) line 
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at λ=18.2 nm was reported and explained as an effect of the reaction C6+ + C2+ → 

C5+ (n=3) + C3+. The densities of involved particles were in the range of 1017 cm-3, but 

due to difficulties to control parameters in the interaction region, no improvement has 

been reached in further experiments with colliding plasmas.  In [Chichkov et. al. 

1999] OFI ionization of gas-cluster mixtures, which should result in two component 

plasmas with ion-ion charge-exchange, was proposed but not tested so far.  

In [Ponomarenko et. al. 1998] a compact gas cloud created by laser ablation 

was used instead of a uniform gas atmosphere [Fig. 4.1c]. A sharp density gradient 

of the gas cloud and a controllable gap between the plasma target and the gas front 

has allowed to realize efficient and direct charge-exchange interaction at densities of 

neutrals >1016 cm-3 and of ions at about 1015 cm-3. However, in this approach a 

further increase of the ion density in the interaction region, which is required for XUV 

lasing, seems problematic since it is difficult to position the ablation gas cloud close 

enough to the plasma target.  

 

 

4.2  Interaction of high Z-ions with a solid easily evaporated obstacle  

 

 

Another interesting experimental scenario for the realization of charge 

exchange excitation could be the setting of easily evaporated material in a way of 

high Z-ions produced by laser ablation of solid targets. Such a material could be 

bombarded by fast ions and produce an evaporated gas cloud near the material 

surface.  This would allow to provide localized neutrals, which could further interact 

with high Z-ions. Successful confirmation of this approach was done by detecting a 

signal of 4f-3d transition at 52.1 nm of O5+ ions as a result of reaction O6+ + H → 

O5+(n=4) + H+ [Shaikhislamov et. al. 2001], which will be further discussed in some 

more detail. 

This experimental approach is depicted in Fig. 4.2, where the radiation emitted 

from the region near the obstacle was imaged by a platinum coated concave grating 

on a set of vacuum photodiodes. The spectral analyses were made in the mode of a 

spectroheliograph. The experiments were done with aluminum oxide target, in order 

to investigate the charge transfer interaction between O VII ions and hydrogen 

atoms. The gain on 4f-3d and 4d-3p transitions at 52.1 nm of O VI ions has been 
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already demonstrated by recombination pumping [Wagner et. al. 1996], and therefore 

the O6+ + H → O5+(n=4) + H+ reaction, which allows to populate the level n=4 

selectively (Fig. 4.3), is of special interest for the realization XUV-lasers by pumping 

with another excitation mechanism.  

 

 

 

 
 

Figure 4.2 The scheme of experiment with oxygen plasma and paraffin obstacle 

to excite charge-transfer interaction. 

 

The specifics of excitation of O5+ ions in the charge-transfer interaction O6+ + H2 

was studied in laser-produced plasmas expanded into uniform gas atmosphere by 

spectroscopic observation of main transitions of O5+ ions at specified conditions 

[Shaikhislamov I.F. 2001]. It was deduced that the luminosity of lines from the n=4 

levels was induced solely by charge transfer, and, that their relative intensities show 

the sublevel distribution of charge transfer pumping. It should be mentioned that 

population of 4f sublevel is bound with the population of 3d sublevel by direct 4f-3d 

transition. Taking it into account, it was calculated that the charge transfer excitation 
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of O5+ ions in this reaction is distributed over sublevels for the distance 9 mm from 

the target in the following proportion: 4s – 11%, 4p – 28%, 4d –36%, 4f - 25% as 

demonstrated in Fig. 4.4. There is also a tendency of populating the higher sublevels 

(4d, 4f) by moving closer to the targets, which makes better conditions for the 4f-3d 

lasing transition.  

 

 

Figure 4.3 The simplified level diagram of O5+ ions (wavelengths are in Angstroms)  

 

To realize proposed lasing experiment it is necessary to produce a sufficiently 

large amount of O6+ ions. They should be in the front of plasma so that other ionic 

components couldn’t interfere with the interaction between O6+ ions and gas cloud. In 

the first preliminary experiment a flat Al2O3 target was irradiated by CO2-laser beam 

with total energy 100 J and 100 ns duration. A chosen focal spot with d≈3 mm 

corresponded to the intensity on the target surface ~10 GW/cm2 which was estimated 

to be most suitable for the maximum output of O6+ ions. Plasma ion composition was 

determined by spectral measurements of visible lines of corresponding ions. For a 

good time resolution a photomultiplier with oscilloscope recording was placed at the 

exit plane of the spectrometer. The light was focused by an optical mirror and lens 

(f=40 cm), and the image of the entrance slit of the spectrometer in the interaction 

0

20

40

60

80

100

120

140

2s

2p

3s 3p 3d

4s 4p 4d,4f
5

49
8

- O5+ ground state

charge-transfer 
pumping

O 6+ H

15
0 17

3

13
2 52

0

11
6

13
0

E
ne

rg
y 

[e
V

]



4. Status of experimental investigations on charge exchange  

 

38 

region had a size of  0.1x0.5 cm2 and was aligned in parallel to the surface of plasma 

target and perpendicular to the axis of the gas target. The whole system from the 

mirror to the oscilloscope was calibrated for absolute measurements in the visible 

range. The measurements showed that the different ionic components were 

separated in space, and the O6+ ions are in the forefront of the plasma.  

 

 

 

 

Figure 4.4 The relative population of sublevels (n=4) of O5+ ions pumped by 

charge transfer measured in experiments with laser plasmas expanding in 

background gas. 

 

 

In fig. 4.5 time of flight diagrams deduced from measurements at various 

distances from the target are presented. The spectral measurements showed that 

generated plasma plume contained at its front a considerable fraction of O6+ ions with 

a total number of about 1016 cm-3. The amount of ions with greater charge is very 

small due to the large ionization potential of helium-like O6+ ions, and one can see 

that the ions with smaller charges move slower and fly well behind of the O6+ ions. 
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Figure 4.5 Time-of-flight diagrams of oxygen ions. 

 

Having the desirable O6+ ions in the front of plasma, an obstacle made of paraffin 

in the form of a cylinder with d=1 cm was inserted on their way at the distance 3 cm 

from the plasma target in order to excite intensive and localized charge-transfer 

interaction. It was supposed that, being easily vaporized, paraffin emits neutral atoms 

due to the intense radiation coming from the plasma focus and due to the 

bombarding by fast ions.  

 

Figure 4.6 Luminosity of plasma at 52 nm. First narrow pick coincides with 

the time of flight of O6+ ions over paraffin target. 
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In the spectral range 550 ±  nm a specific signal against a background radiation 

was detected as shown in fig. 4.6.  This signal was absent in the adjacent spectral 

ranges and when the obstacle was removed. By assumption that all O6+ ions are 

converted to excited O5+ ions and emit photons at 52 nm, the amplitude of the signal 

(pointed out by arrow) was consistent with the estimation that all O6+ shadowed by 

the obstacle undergo charge transfer reaction.  
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4.3  Conclusion 

 

 

So far, the experimental attempts for creation of the lasers in the extreme 

ultraviolet spectral region with charge exchange excitation were able to demonstrate 

only the selective pumping of desired levels, and establish this pumping mechanism 

over recombination and other collisional interactions in plasmas. The pure charge 

exchange interaction was realized at the ion densities of the order of 1014 cm-3 [Dixon 

and Elton 1977], [Ponomarenko et. al. 1998], but at such low ion densities the charge 

transfer pumping rate is also very low, which made the approaches useless for the 

realization of XUV lasers.  In experiments with hot and cold colliding plasmas [Ruhl 

et. al. 1997] the charge exchange interaction was realized at the densities of 1017 cm-

3, but due to a smoothed interaction region (Fig. 4.1b) and difficulties to control 

parameters of the interacting plasmas, no improvement has been reached in further 

experiments with colliding plasmas.   

There is still no convincing results on the realization of pure charge exchange 

pumping at required densities of 1016-1017 cm-3 and appropriate  geometries, and no 

gain with this type of pumping was demonstrated. 
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5. Novel experimental setup (charge-transfer reactions between 

fs-laser produced ions and neutrals from a gas jet)  

 

 

Taking into account the difficulties with the realization of pure charge 

exchange interaction at desirable geometries and particle densities as outlined in the 

previous chapters and described in [Dixon and Elton 1977], [Ruhl F. et. al. 1997],  

[Ponomarenko et. al. 1998], one could think how the obstacles could be removed. 

According to an analytical model of charge-exchange interaction of dense 

interpenetrating flows developed in [Shaikhislamov I.F. 2000], for having an efficient 

charge-transfer pumping at relatively high densities of reagents, it is crucial to have a 

compact gas region as well as a well-localized plasma jet with sharp ion density 

gradient. At desired particle densities (>1016 cm-3), the characteristic length of charge 

exchange, which determines the interpenetration of ions into a gas medium, is less 

than 1 mm. Thus, effective pumping can only be realized on a spatial scale of the 

order of 1 mm or less, and the widths of the plasma and gas fronts should be 

correspondingly small.  

Because of the difficulty to control the front of the ablation plasma, the only 

way to ensure the front sharpness is to use ultrashort laser pulses for the generation 

of the plasma and to realize a gas-plasma interaction as close to the plasma target 

as possible. The potential advantages of high contrast ultrashort laser pulses for 

charge-exchange pumping experiments are clear: (1) ionizing radiation from the focal 

spot is considerably less due to a higher electron density, (2) a low-density pre-

plasma, that may prematurely effect the gas, is absent, and (3) the density gradient 

of the produced ion flow is sharper. From the other side, a pulsed gas jet can be 

applied to provide neutrals for the charge transfer interaction [Vorontsov et. al. 2003].   

Compared to filling the vacuum chamber with background gas, this setup is much 

more suitable for XUV studies because it removes the problem of XUV-radiation 

absorption. Pulsed nozzles have the advantage of simple operation and variability of 

such important parameters as pressure, sort of gas and, especially, jet position and 

orientation relative to the target. 

 

 

 



5. Novel experimental setup 
 

 

43 

5.1  Experimental arrangement and diagnostics   

 

 

This experimental scenario, consisting of a pulsed gas jet interacting with a 

plasma produced by ultrashort laser pulses, should allow to achieve a well-defined 

gas and plasma interaction zone and realize charge-exchange pumping near the 

target surface, where the ion density is large enough, which is important for XUV 

lasing experiments.  

In Fig. 5.1, the basic experimental arrangement is shown. The plasma is 

produced by focusing of 250 fs Ti:sapphire laser pulses on a flat rotating target with a 

f=250 mm lens. The angle of incidence is normal to the target surface and the size of 

the focal spot is ~250 µm. Laser pulses with an energy of up to 70 mJ are used, 

corresponding to an intensity of 7×1014 W/cm2 at the focal spot. XUV radiation of the 

produced plasma is analyzed by a single shot spectrometer (McPherson instrument 

248/310G with a spectral resolution of 0.2 nm) equipped with a MCP-phosphor-CCD 

time-integrating detection unit. To obtain a spatial resolution in the direction normal to 

the target, a 200 µm slit is placed at a 2 cm distance from the focal spot (fig. 5.1). 

The entrance slit of the spectrometer was correspondingly aligned. In between, a 

further slit was introduced for protection of the instrument against plasma debris and 

gas particles and for better differential pumping.  

 

Figure 5.1 Experimental set-up. 
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The gas is injected into the vacuum chamber (evacuated to below 10-4 mbar) 

by a pulsed nozzle (General Valve Corporation) located close to the target surface 

near the focal spot. The pulsed nozzle has an opening time of about 1 ms and is 

operated at a backing pressures p of up to 3 bar. In most measurements the nozzle 

axis coincides with the optical axis defined by the slits. The position of the focal spot 

on the target surface relative to the nozzle opening (diameter 1 mm) can be easily 

varied by moving the target along its normal. The particle density n at the nozzle exit 

is determined from interferometric measurements and can be approximated by the 

following relationship  

 

n (cm-3) =7×1017×p (bar)                                                                (5.1) 

 

where  p – is the backing pressure. 

 

The gas-jet geometry was investigated by using laser pulses tightly focused 

into different regions of the gas jet and by observing the plasma emission. In these 

measurements a 90° spread of the gas-jet was established. Ti:sapphire laser and 

pulsed valve are operated at 10 Hz repetition rate. Single shot spectra are recorded 

in the spectral range of 10–50 nm. Since fluctuations from shot to shot of about 30% 

are observed, results presented below are averaged over ~100 shots.  

In order to perform time resolved measurements to see the different nature of 

charge transfer pumping, a Jobin Yvon monochromator with fast MCP (micro-

channel-plate) and oscilloscope instead of McPherson spectrometer was applied. In 

these measurements the time resolution was limited by both the oscilloscope and 

MCP and was about 1 ns, and the spatial resolution, which was determined by the 

same slit, shown in Fig. 5.1, was about 250 µm.  

 
 
 
 
 
 
 
 
 
 
 



5. Novel experimental setup 
 

 

45 

5.2 Ti:Sapphire laser system 

 
 
 

Over the past decade, there has been rapid progress in the development of 

compact, very high power ultrafast optical lasers based on the technique of chirped-

pulse amplification (CPA). Such short pulse high peak power lasers have led to 

reductions in the laser pump energy required for producing desirable high Z-ions for 

lasing experiments. In the CPA technique, a short seed pulse is first stretched in 

duration, then amplified, and finally recompressed to ideally its initial duration.  The 

process allows us to obtain extremely high peak powers by the amplification of 

ultrashort pulses, while avoiding very high intensities in the amplification pulse that 

would damage the amplifiers. In this chapter, the femtosecond laser system used in 

our experiments will be briefly described. A general description of the CPA technique 

can be found elsewhere [Maine 1988], [Yamakawa et. al. 1994]. The detailed 

description of the Ti:Sapphire laser system applied in present experiments as well as 

the description all of the elements involved one can find in [Koch 2003].  

 

 

5.2.1 Description of the system 

 

 

The Ti:Sapphire laser system (Alpha 10/CS-3TW, Thales, France) used in our 

experiments can be characterized as a system operated at 10 Hz and delivering the 

pulses as short as 100 fs with fluent adjustment up  to 3 ps  and a maximum energy 

of  400 mJ. The diameter of the output radiation is 5 cm. The system is based on 

CPA mechanism that principle is illustrated in Fig. 5.2.  

The short pulses from the MIRA 900- oscillator (Coherent) with the repetition 

rate of 76 MHz, energy of 10 nJ and pulse duration of 70 fs are initially chirped and 

stretched to 250 ps. At the same time the repetition rate of the laser pulses is 

reduced to 10 Hz with the help of a pulse-picker. The stretcher in its original design, 

consists of a pair of diffraction gratings in an antiparallel configuration. A laser pulse 

comprises many frequencies, according to its Fourier transform. By coming into a 

diffraction grating, the pulse spreads out in angle, each frequency component leaving 

at a slightly different dispersed angle. In travelling between two such gratings, 
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different frequencies take different paths, and the total distances of the different 

paths through this diffraction-grating system are not the same. Thus, at the output of 

the grating expander the frequency components arrive at staggered times, ordered 

by their frequencies. The result is a temporally stretched-out pulse of steadily rising 

frequency -- a positively chirped pulse. The chirped pulse amplification laser 

therefore dissects a laser according to its frequency components, and reorders it into 

a time-stretched lower-peak-intensity pulse of the same energy. These “long” pulses 

can then be amplified safely to high energy. There is one regenerative and two multi-

pass amplifiers applied in our experiments. The amplifiers are optically pumped with 

a Q-switched frequency-doubled Nd:YAG lasers, as demonstrated in Fig. 5.3, where 

all parameters of the lasers are given as well. The radiation amplified with the use all 

of the three amplifiers is well in access of 900 mJ with 790 nm central wavelength. 

Finally, the pulse is recompressed close to its original pulse width by a pair of 

identical parallel gratings that provide a negative group delay dispersion.  

 

 

 

Figure5.2 Diagram showing the principle of CPA. The oscillator output is stretched in 

the grating stretcher such that the red frequency components (r) travel ahead of the 

blue (b). The peak intensity is reduced in the process. The stretched pulse is then 

amplified in a regenerative and/or multipass amplifier before recompression in a 

grating-pair compressor. 
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Figure 5.3  The scheme of the Ti:Sapphire laser system applied in the experiments.  
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5.2.2  Intensity in focus 

 

 

For a Gaussian beam, the intensity is determined as  

 cI ρ=                                                                                                   (5.1) 

where ρ - is the energy density given by  
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E -  is the total energy in the laser pulse, and zw is the packet length: 

2ln2

τc
wz =                                                                                           (5.3) 

 τ -  is the total duration of laser pulse (Full Width at Half Maximum). In our 

case, for τ =200 fs, we have wz/c =170 fs , or wz = 51 µm. 

The transverse size of the beam during the propagation is described by 
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Figure 5.4  The designation of parameters by focusing a laser radiation with a lens.  

 

By focussing the Gaussian beam, the waist in the focal plane w0 is expressed 

as a function of waist of the incident beam wi by   
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iw

f
Mw

π
λ2

0 =                                                                                         (5.5) 

f- is the focal length of the focussing optics, and M
2 characterizes the beam 

quality in comparison to an ideal Gaussian beam [Lawrence 1994]. For an ideal 

beam M2=1.  

At our experimental conditions, for the lens with f=250 cm, λ=790 nm, wi =2.5 

cm and M2=1, the diffraction limited waist is w0= 25 µm.  

The Rayleigh length is given by  
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and for the parameters above, the Rayleigh length is  zR=2.37 mm 

On axis, the energy changes as (1+z
2
/zR

2
)
-1. It is a Lorenz function with a half 

width at half maximum equal to zR. For large z, the asymptotic behaviour w∼w0z/zR 

allows to define the angular divergence δ= w/z ∼ w0/zR. The beam waist w0, and 

Rayleigh length zR are both propotional to M2. Thus, the angular divergence does not 

depend on M2: only the beam properties in the vicinity of the focal plane are modified 

by the value of M2. 

The maximum energy density is  
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The intensity is given by 
τ

ρ
2

0

598.0
w

E
cI ≈=                                          (5.9) 

 

With the typical parameters of our laser: τ ∼200 fs, energy of 200 mJ, M
2=4 

and w0 ∼100 µm, the typical intensity is I ∼ 6x1015 W/cm
2.  

 

In some cases, the different time duration laser pulses as well as different 

energies and focusing lenses were applied, the corresponding intensity is then given 

with the changed parameters.
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6.  Experimental results  

 

 

In this chapter, the experimental results obtained with the novel set up 

suggested and in the previous chapter described are presented for a number of 

reactions. Firstly, detailed investigations on the reaction between laser produced C4+ 

ions and hydrogen gas jet were performed in order to optimize all of the parameters 

of the set up, since this reaction is well known as charge transfer reaction from the 

studies related to astrophysics [Dijkkamp et. al. 1985].The novel set up was found to 

be capable to realize pure charge exchange interaction at densities of ions and 

neutrals in access of 1016 cm-3, which are necessary for lasing experiments. Detailed 

experimental studies of time behavior of the process provided additional information 

on the optimum conditions by comparison the results with the theoretical model 

described in chapter 3. This analysis proved also that charge exchange interaction at 

densities of ions undergoing the charge transfer reaction exceeding 2.8x1016 cm-3 

was realized for the first time.   

With this optimized set up, investigations for a number of promising reactions 

capable of creating a population inversion in the XUV spectral range have been 

done. Strong increase in intensities was observed for the 3d-2p (λ=23.8 nm) and 

2p3s-2p2 (λ=37.4 nm) lines of O3+ and O2+ ions as a result of reactions O4+ + H→O3+ 

+ H+ and O3+ + H→O2+ + H+ correspondingly. For the transition at 37.4 the gain was 

already achieved in an optically field ionization recombination scheme [Chichkov et. 

al. 1995].  Towards XUV gain experiments, the reaction C6+ + H→C5+ (n=3,4) + H+ 

was investigated, which is promising for lasing on the 4-2 and 3-2 transitions at 13.5 

nm and 18.2 nm, the latter is well known from recombination pumped lasing 

experiments [Lee and Kim 2001].   
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6.1 Charge Exchange between C4+ ions and hydrogen as a model system. 

 

 

The charge-exchange reaction C4+ + H2 → H2
+ + C3+ (n=3) is well-known as 

charge-transfer reaction from the studies related to astrophysics, and has been 

experimentally studied in detail in ion beam collision experiments [Dijkkamp et. al. 

1985]. In this quasi-resonant reaction, which has a cross-section of � = 2.5×10-15 

cm2, the quantum level n=3 is populated with a probability of over 90 %, followed by 

radiative transitions 3d-2p (38.4 nm), 3p-2s (31.2 nm), and 3s-2p (42 nm) as shown 

in the energy level diagram in Fig. 6.1. Note that for the ion velocities >106 cm/s this 

reaction goes with the energy defect of ~10 eV. Instead of atomic hydrogen, 

molecular hydrogen is used here. With molecular Hydrogen the same quantum level 

is populated, with only a slightly different cross-section, and the main difference is in 

the relative population of the 3d,3p,3s sub-levels.  

Figure 6.1 Simplified level diagram of C3+ ions with indication of charge-transfer 

pumping by collision of  C4+ ions with atomic hydrogen (wavelengths are given in nm). 
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6.1.1 Observation of selective pumping of level n=3 of C3+ ions 

 

 

To produce the necessary carbon ions for the above reaction, we applied short 

laser pulses with intensities of up to 1015 W/cm2 in the focal spot at a pure Carbon 

target surface. At the target surface we can see lines from C5+ ions at 12.0, 13.5 and 

18.2 nm, indicating that we partly produce fully ionized Carbon, but the strongest 

emissions results from C3+ and C4+ ions. Figure 6.2 depicts part of a spectrum 

recorded at the target surface, where all lines of interest of C4+ and C3+ ions are 

identified. Intensity is given in arbitrary units, that are the same for all other figures. 

When the plasma expands into the vacuum, the intensities of lines go down as the 

plasma density decreases. At a distance above 0.5 mm from the target, C4+ lines are 

practically absent, while C3+ and C2+ lines are observed up to distances of more than 

4 mm. In Figure 6.3, a spectrum recorded at a distance of 1 mm is shown (dashed 

line), and one can see that C3+ lines are dominating. As described in chapter 3, the 

plasma parameters at this distance can roughly be estimated by an electron density 

ne ~ 1019 cm-3 and an electron temperature Te~ 1.5 eV . Thus, the main mechanism 

for the line emission from this plasma is three-body recombination. 

Figure 6.2 Typical carbon spectrum (part) recorded on target. 
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Figure 6.3 Example of carbon spectra recorded at 1 mm distance from the target 

surface. Dashed line: in vacuum, solid line: at 100 mbar H2 backing pressure. 

 

With the Hydrogen gas jet present, the signature of the spectra significantly 

changes (Fig. 6.3, solid line).  C3+ lines from quantum level n=3 are strongly 

enhanced, while those from the quantum level n=4 and higher levels strongly 

decrease. This behavior is more or less pronounced for all relevant distances, gas jet 

pressures, and also for other interacting gases (see below) and is assumed to be an 

effect of the charge-exchange process, which preferentially populates the C3+ n=3 

level. The strong effect on lines of C3+ ions allows simple optimization of various 

geometric and gas jet parameters. Best distances between the nozzle tip and laser 

focal spot are found to be in the range of 1-2 mm. For hydrogen, an optimum time 

delay between the valve opening and laser pulse is about 0.6 ms as shown in Fig. 

6.4. Therefore, most of the results presented here were obtained with this optimal 

time delay. For heavier gases the optimum delay is larger (up to 1 ms). In the range 

of interest, the optimum delay is practically independent of the backing pressure. The 

sharp increase of the signal within a time interval of ~0.1 ms can be interpreted as 

the time required for the jet formation.  

To verify the above assumption of charge-exchange population, the 

dependence of relevant line intensities on pressure, distance and sort of interacting 

gas has  been  investigated. When  the  plasma  expands  into vacuum,  all  C3+ lines  
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Figure 6.4 Dependence of line intensity (3p – 2s line at 31.2 nm) on the delay 

between valve opening and laser pulse (the solid line just connects the measurement 

points). 

 

show  similar  behavior, decreasing with the distance from the target as shown in  the 

Fig. 6.5 for the 4d-2p and 3p-2s transitions. Only very close to the target (<0.2 mm) 

an initial rise, not resolved here, was observed. 

 

Figure 6.5 Intensity of C3+ lines versus distance from the target at a H2 backing 

pressure of 100 mbar (solid lines) and for vacuum expansion (dashed lines). All lines 

just connect the measurement points. 
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With the gas jet present, the plasma conditions change as a result of charge-

exchange and collisional interaction between ions, electrons and gas particles. The 

plasma density and temperature can rise if collisions between ions and neutrals are 

important, or the number of free electrons can increase and electron temperature 

decrease due to ionization of neutrals. Depending on the dominant effect, the line 

intensity may increase or decrease with respect to the vacuum case. As can be seen 

in Fig. 6.5, C3+ lines from the level n=4, which cannot be affected by charge- 

exchange, decrease even more faster when gas jet is present. The same is true for 

lines from higher levels as well. This can be attributed to a net heating of the plasma, 

as will be discussed below.  
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Figure 6.6  Intensity of  C3+ lines versus backing pressure (H2) at a distance of 1 

mm from the target (the lines just connect the measurement points). 

 

In contrast to this behavior, lines from the level n=3 clearly rise with distance 

until a maximum value, around 1 mm, is reached and then smoothly decrease. The 

effect of the gas jet compared to the vacuum case is strong even at smaller distances 

and can be explained only by charge-exchange pumping, since possible collisional 

de-excitation from level n=4 to n=3 cannot produce the same effect under the given 

plasma conditions.  
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Charge-exchange pumping, being proportional to the density of neutrals, can 

exceed recombination pumping only at sufficient gas pressures. This is shown in the 

Fig. 6.6. At low backing pressure even lines from level n=3 slightly decrease 

compared to the vacuum case, due to the plasma heating, but then the charge-

exchange affected lines are increasing up to a maximum at about 100 mbar, while 

the lines from n=4 level continue decreasing. By applying of higher pressures the 

processes of collisional interaction and ionization of the gas jet particles are starting. 

In case of 150 mbar nitrogen gas jet, a transition to collisional interaction was clearly 

observed due to the appearance of ionized Nitrogen gas particles (the N2+ lines in 

Fig. 6.7), which are not there when the nitrogen gas jet at the lower backing pressure 

is applied. The same nature of ionization of gas particles was observed with other 

gases as well. It should be noted that at the optimum pressure of 100 mbar, the gas 

density in the interaction region of ~7�1016 cm-3 is comparable to the estimated ion 

density ~1017 cm-3.  

 

 

 
Figure 6.7 Carbon spectra recorded at a distance of 1 mm from the target. Dashed 

line: in vacuum, solid line: with a N2 gas jet at 150 mbar backing pressure.   
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The different nature of excitation of the level n=3 is seen also in the time 

dependent behavior of the line intensity, which was investigated using a 

monochromator (Jobin Yvon) with fast MCP registration. In these measurements the 

time resolution was about 1 ns and the spatial resolution was around 500 µm. In 

Figure 6.8, time-of-flight luminosity of the 3p-2s line of C3+ ion is shown. Zero time 

corresponds to arrival of the fs-laser pulse. The signal rise time measured from 10 to 

90 % of its maximum level is considerably shorter with the gas jet (~4.5 ns) than in 

vacuum (~7.5 ns). Opposite to this, the time behavior of the 4d-2p transition remains 

unchanged and the line intensity decreases in the presence of the gas jet (see for 

example Fig. 6.11).  

 

 

 

Figure 6.8  Time of flight luminosity of the C3+  3p-2s  line with gas jet (solid line; 100 

mbar H2 backing pressure) and in vacuum (dashed). 

 

Charge-exchange pumping is a resonant process and consequently should 

depend on the ionization potential and atomic/molecular masses of the collision 

partners. Besides hydrogen, interactions with other gases such as N2, O2, Ar, and He 

was investigated. The obtained results are summarized in Fig. 6.9, where the 

maximum intensities of the charge-exchange 3p-2s and the recombination 4d-2p 

transitions are given for various gases at the same backing pressure of 50 mbar. At a 

pressure of 100 mbar (which is the optimum one for nearly all gases) the behavior for 



6. Experimental results 

 

 

58 

the 3p-2s line is the same, while the intensity of the 4d-2p line is too small for a 

reliable measurement. Nitrogen and argon, having approximately the same ionization 

potentials as hydrogen, produce nearly the same effect on the 3p-2s transition, while 

the effect of helium with almost double ionization potential is very small and the 

signal is almost equal to that one in vacuum. It is known that for the C4+ ions the 

charge-transfer cross-section for the reaction with helium is much smaller than for 

hydrogen [Zwally and Koopman 1970], [Cederquist et. al. 1985]. For the 4d-2p line 

the influence of the different gases is just the opposite. All gases lead to an intensity 

decrease of this line with the strongest effect for the heavier gases.   

 

 

 

Figure 6.9 Maximum intensity of C3+ 3p-2s and 4d–2p lines at 1 mm distance from 

target for various gases, at backing pressures of 50 mbar, and for vacuum. 

 

 

The observed behavior of lines originating from the level n=3 of C3+ ions is 

consistent with a charge-exchange population mechanism in every important aspect. 

Only these lines grow in the presence of the gas jet (Figs. 6.3, 6.7) and for a reagent 

not suitable for charge-exchange (helium) the effect is negligible (fig. 6.9). Another 

prominent feature is the opposite influences of the gas jet on transitions from high-n 

levels (4d-2p, 5d-2p, 6d-2p). In fact, an analogous behavior, but at much smaller gas 
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pressures and larger distances from the target, was described for the first time in 

[Orishich and Shaikhislamov 1992] for C+, C2+ and C3+ ions and later [Shaikhislamov 

2003] for O5+ ions. In these experiments it was observed that the intensities of all 

lines initially decrease with the gas pressure. Only at sufficiently large pressures lines 

due to charge-exchange pumped transitions start to increase while others continue to 

decrease.  

In the present experiments, a slight decrease in intensity at moderate 

pressures for lines originating from the level n=3 was also observed for H2 (see Fig. 

6.6) and more pronounced for a nitrogen gas jet. The reason for this behavior as 

proposed in [Shaikhislamov I.F. 2001] is that due to elastic collisions with gas the 

plasma becomes heated and recombination processes are slowed down. The 

heating of plasma and subsequent shock wave formation was observed in many 

other experiments with laser-produced plasmas and its effect on charge-transfer 

interaction was discussed in details in [Ponomarenko et. al. 1998]. This explains the 

decrease of intensity of highly lying transitions that are not affected by charge-

exchange. Collisional heating of plasma interacting with gas is also consistent with 

the observation of a stronger reduction of 4d–2p recombination lines for heavier 

gases (Fig. 6.9). 
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6.1.2 Comparison of the results with different pulse duration lasers 

(10 ns, 0.1 ns, 200 fs) 

 

 

As previously mentioned, it is expected that the charge exchange pumping will 

work better in case of a sharp plasma front interacting with the gas jet. That is why a 

short pulse laser was applied to produce the plasma. To check the role of the laser 

pulse duration, in addition to the 250 fs pulses also 100 ps pulses (realized by 

changing the pulse compression of the fs – laser system) and 10 ns pulses (from a 

Q-switch Nd:YAG laser system at 1060 nm) were applied for the generation of 

plasma jets. From the recorded spectra it follows that at equal laser energies the 

produced plasmas differ only by the presence or abundance of highly-charged C5+, 

C6+ ions. For the 100 ps and 250 fs pulses the line intensities of C4+ ions are 

approximately 2 times larger than for ns-pulses, while the line intensities of C3+ ions 

are nearly the same.  
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Figure 6.10 Comparison of charge transfer pumping of C3+ 3p-2s  line at different 

distances from target with different pulse duration lasers (250 fs Ti:Sapphire laser, 

and 10 ns Nd:YAG) . 
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The influence of the gas jet on transitions of C3+ ions is qualitatively the same 

for all three pulses, an increase for lines from the quantum level n= 3 and a decrease 

for lines from the level 4. However, quantitatively there is a clear tendency that for 

shorter pulses the charge-exchange effect is stronger. The gas jet induced increase 

of the 3p-2s line relative to the vacuum case was 1.5 times larger for 100 ps pulse 

and 2 times larger for 250 fs pulse compared to 10 ns pulse. The results of 

investigations with 250 fs Ti:Sapphire laser and 10 ns Nd:YAG lasers are 

summarized in Fig. 6.10. It is clearly seen that the effect for shorter pulses is better 

especially at larger distances from the target, where the difference is more 

pronounced. The observed small dependence of the time integrated line intensities 

on the laser pulse duration can be explained by long plasma expansion times which 

are responsible for the plasma front dispersion. Moreover, in the present experiments 

the exact pulse form and especially the contrast ratio of the ps- or fs- pulses, which is 

important for the initial plasma conditions, was not measured or controlled and 

therefore, a further improvement of the charge-exchange pumping with short pulses 

might be possible.  
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6.2 Theory versus experiment 

 

 

In this chapter the experimental data and dependencies based on time 

resolved measurements are compared with the analytical model described in chapter 

3.3. The experimental results were obtained with Jobyn Yvon monochromator as 

shown in Fig. 5.1, with space resolution of 250 µm, and time resolution of 1 ns. The 

analyses of these data allowed performing quantitative analysis of the results 

obtained by comparison with a kinetic model of charge exchange pumping. This 

provides additional information on the optimum conditions and proves that charge 

exchange interaction at densities of both reagents exceeding 1016 cm-3 was realized 

for the first time.   

It has been shown in previous chapters, that by applying the Hydrogen gas jet 

all charge exchange influenced C3+ lines (from the n=3 level) are strongly enhanced 

in comparison to the case of expansion into vacuum and the lines which cannot be 

pumped by charge exchange (from the n=4 and higher) show even a decrease (Fig. 

6.3). Such strong effect occurs at distances of 1-2 mm from target surface, hydrogen 

backing pressure of 100 mbar (7×1016 cm-3), and at time delay between the valve 

opening and laser pulse of 600 ms. 

Most informative data of the process are obtained from time resolved 

measurements. In Fig. 6.11, line intensities for two distances - close (0.5 mm) and far 

(1.5 mm) from the target surface are presented. The position of the gas nozzle 

relative to the line of sight of the monochromator was kept the same (Fig.5.1). These 

data demonstrate, that at relatively large distances between the target and the gas jet 

the lines from the level n=3 show an increase with respect to the vacuum case during 

the whole time when the plasma streams through the gas jet. At smaller distances, 

where the density of the plasma is comparable to or higher than the density of neutral 

particles, the lines show dramatic increase only at the plasma front. This increase of 

intensity at the plasma front exhibits a linear dependence with the gas jet pressure up 

to about 100 mbar (Fig. 6.12), exactly as expected for charge exchange pumping, 

since the rate of charge transfer pumping is proportional to the density of neutrals. At 

100 mbar backing pressure the density of neutrals is getting comparable to the 

density of ions in the interaction region and, therefore, there should be no further 

increase in intensity of charge transfer pumped lines [Vorontsov et. al. 2004]. Near 



6. Experimental results 

 

 

63 

the target the 4d-2p line doesn't show any change at all under the same conditions 

(Fig. 6.11), because it is not affected by the charge exchange. 

 

 

Figure 6.11  Time resolved intensity of C3+ 3p-2s line at two distances R from the 

target surface with gas jet (solid lines) and in vacuum (dashed lines). Insert: intensity of 

the 4d-2p line measured at R=0.5 mm distance with and without a Hydrogen gas jet.  

 

In order to better understand the behavior of the lines, the experimental curve 

is analyzed with the existing model of charge exchange interaction. The pumping rate 

of charge exchange pumping J can be approximately expressed by the equation (see 

chapter 3) 
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Here Vi is the ion velocity, ni
o, na

o are the densities of species at a distance R and 

time t taken without interaction, �i is the charge exchange cross-section. The 

efficiency of interaction is described by a factor k, which depends on the integral 

densities Na and Ni: where Na=�
R
na

o
dR is the total number of neutrals along the path 
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from the target surface to the observation point R, and Ni=�
t
ni

o
(R,t)Vidt is the total 

number of ions passed through the unit square (located at the observation point) to 

the moment of observation t.  

 

 

Figure 6.12 Maximum intensity of  the C3+ 3p-2s line versus the H2 backing 

pressure at a distance of 0.5 mm from the target surface. 

 

When the ion density is small and Ni<<1/�i  is fulfilled, the efficiency coefficient 

k �is constant and can be approximated by k ≈ exp(-Na�i). In this case the line 

intensity, which is determined by the factor J, is proportional to the ion flux niVi, see 

Eq. (6.1). In the opposite case of large ion density, it follows that k ≈ exp(-Ni�i) 

Because Ni is the time integrated ion flux, the pumping rate exponentially decreases 

with time. In other terms, the pumping rate decreases because the number of neutral 

particles available for interaction decreases with time due to the charge exchange 

process. Thus, from Eq. (6.1) it follows that most effective interaction can be realized 

only if the number of neutrals and ions in front of the gas cloud and plasma flow, 

respectively, are approximately equal to each other, e.i. Ni=Na. It is also desirable to 

keep this values not too large, Ni,Na~1/σi. Otherwise the length of charge exchange is 

too small and interaction takes place only in a thin layer. Na can be calculated as 

Na=na×La, where La is the width of the jet boundary. For our experimental 

parameters, the estimation Naσi ~1 is valid.  
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Figure 6.13 The simplified illustration of observation volume in the experiments. 

 

At large distances R from the target, where Ni�i is small, the line intensity J 

should be proportional to the ion flux niV. The measured line intensity Jm depends on 

the observation volume. Because the laser produced plasma expands in a cone with 

a cross section proportional to R2, and because the plasma density scales as 1/R3 

(Fig. 6.13), the dependence of the line intensity on the distance from the target 

surface should be Jm~1/R. And it is worth to show that the charge exchange 

influenced 3p-2s line has such a behavior (A mean square fit of the experimental 

data agrees very well with the 1/R scaling), while the behavior of the 4d–2p line is 

quite different as illustrated in Fig. 6.14. 

Figure 6.14 The dependencies of maximum line intensities on the distance from the 

target surface in the presence of the Hydrogen gas jet. Open circles - C3+ 3p-2s line; 

filled circles - C3+ 4d-2p line. 
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Figure 6.15  Solid curves: time dependent charge-transfer induced part of the C3+ 3p-2s line 

at distances R=1.5 and 0.5 mm (calculated as difference between the solid and dashed 

curves shown in Figure 6.9).  

Dashed curve: calculation results for a distance R=1.5 mm with the mean velocity Vm 

=1.27×106 cm/s obtained using Eqs. (1-2).  

Dotted curves: calculation results for a distance R=0.5 mm with Vm =1.27×106 cm/s and 

three different values of a total number of ions Ntot: 1
st: 3×1012, 2d: 4×1012 and 3d: 6×1012 Sr-1. 

 

To calculate the time behavior of signals, a model of plasma expansion should 

be added to the solution of charge transfer equations. Plasma produced by a short 

laser pulse is described by a self-similar expansion of ions with Maxwell velocity 

distribution  

 

ni(R,t) = (4/√π)Ntotexp(-(R/Vmt)
2
)/( Vmt)

3
                                   (6.2) 

 

where Ntot  is the total number of particles of interest (in our case C4+ ions) per 

unit solid angle, and Vm is their mean velocity. The velocity of each plasma element is 

given by V=R/t. The value of Vm can be found by fitting of the calculated curve to the 

experimental one. By the solid curves in Fig. 6.15, the difference between the line 

intensities measured with a gas jet and in vacuum are presented for two distances 
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R=0.5 and 1.5 mm (see Fig. 6.11). These curves represent the signals only due to 

charge exchange pumping. For the curve at R=1.5 mm, a best calculated fit is shown 

by the dashed line, which corresponds to Vm =1.27×107 cm/s and agrees very well 

with the experimental measurements, which can be derived from the Figure 6.11 as 

1.3×107 cm/s. Because only relative line intensities were measured in these 

experiments, the value of Ntot cannot be derived from comparison with calculations as 

long as the ion density is small and the efficiency coefficient k �is independent of it. 

However, near the target the behaviour of signals gets dependent on the total 

number of ions involved in the reaction. By dotted lines in Fig. 6.15, results of 

calculations are shown for the distance R=0.5 mm for three values of Ntot at the same 

mean velocity Vm found earlier. A best fit with Ntot=4×1012 Sr-1 corresponds to an ion 

density of 2.8×1016  cm-3  at  the  signal  maximum  located  at  t = 2.7 ns,  as  follows 

from Eq. (6.2). This analysis not only confirms that highly selective charge exchange 

pumping has been realized at densities of both reagents exceeding 2.8×1016 cm-3, 

but also gives a possibility to see a time behavior of charge transfer influenced lines 

at different distances from the target.  

 

As follows from this analysis, the time duration td of the charge exchange 

signal at a distance of 0.5 mm (half-width) corresponds to 2 ns (Fig. 6.15). It means, 

that the charge exchange interaction takes place on the spatial scale S = Vm td  which 

is about 200 µm. Even for the distance of 1.5 mm, where the interaction time is about 

8 ns (Fig. 6.15), the interaction zone is less than 1 mm. Since the slit used in the 

experiment (Fig. 5.1) for providing the spatial resolution is 200 µm, the good 

scanning of the interaction region was possible.  

These data prove our assumption, that the charge exchange is achieved on 

the spatial scale less than 1 mm, which is important as the characteristic length of 

charge exchange determines the interpenetration of ions into a gas, and according to 

theory [Shaikhislamov 2001] must be less than 1 mm to ensure the efficient charge 

exchange interaction at high densities.   
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6.3 Observation of charge transfer excitation in oxygen ions 

 

 

Charge transfer processes due to collisions of ground state O3+(2s22p) ions 

with atomic hydrogen were investigated using the quantum-mechanical molecular-

orbital close-coupling (MOCC) method in [Wang et. al. 2003] for the energy range 

from 0.1 eV/a.m.u to 1 keV/a.m.u. It follows from their calculations that the capture of 

an electron to O2+ 2p3s-state begins to dominate for the impact energies more than 

20 eV/a.m.u., and the state cross section for the capture is as high as 10-15 cm2. The 

investigation of the capture of an electron into the 3s state is of interest since the 

lasing on the corresponding ground state transition 2p3s - 2p2 at λ=37.4 nm of O2+ ion 

was demonstrated with Optically Field Ionization recombination pumping mechanism 

[Chichkov et. al.1995]. The measurements of cross section for the O4+ and O3+ have 

been reported in [Grandall 1977]. Although the measurements were done for the 

higher impact energies, the clear tendency of coinciding results obtained in [Wang et. 

al. 2003] with the measurements in common impact range is observed. Based on 

this, one can expect that the cross section for the O4+ + H→ Ο3+ (n=3) + H+ reaction 

can be as high as 3x10-15 cm2.  

In the present experiments the interaction of O3+ and O4+ ions with hydrogen 

indicates strong charge exchange pumping of O2+ (2p3s-2s22p2) and O3+ (2s3d-

2s22p) lines at 37.4 and 23.8 nm.  
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6.3.1 Dramatic increase in intensities of O2+ and O3+ ions  

 
 

Using the optimum experimental conditions found out in experiments with 

carbon targets, further experiments with the set up described in chapter 5 with Al2O3 

targets were performed. In Fig. 6.16, two spectra are shown, recorded in vacuum 

(dashed line) and with a gas jet (H2) at a backing pressure of 100 mbar (solid line) for 

a 1 mm distance from the target surface. The strongest effect shows the 3d-2p 

(λ=23.8 nm) line of O3+ ions with almost a factor of ten increase with respect to the 

vacuum level. Recall that for the level n=3 the higher value of cross-section as 

described above is supposed. The 2p3s - 2p2 (λ=37.4 nm) line to the ground state of 

O2+ ions, respectively shows very good increase in signal as well as the 2p3d - 2p2  

line in O4+ ions, for which the cross section of is relative high as well [Grandall 1977].  

 

Figure 6.16  Oxygen spectrum recorded at a distance of 1 mm from the Al2O3 target 

at a gas jet backing pressure of 100 mbar (solid line) and in vacuum (dashed line).
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We attribute this effect to the charge-transfer reaction, although the effects of 

collisional interaction begin to play a role, resulting in increasing intensities of other 

non-influenced charge exchange lines. At the backing pressure of 50 mbar only 

these two lines showed a good increase, while the others remained unchanged 

[Vorontsov et. al. 2004].  

 

 

 
Figure 6.17  Time resolved intensities of the 3d-2p and 2p4p -2p lines of O3+ ions at 

a distance of 0.7 mm from the target with a gas jet backing pressure of 100 mbar 

(solid line) and in vacuum (dashed line). 

 

The different nature of excitation of the level n=3 of the ions is seen also in the 

time dependent behavior of the line intensity, which was investigated using a 

monochromator (Jobin Yvon) with fast MCP registration. In these measurements the 

time resolution was about 1 ns and the spatial resolution was around 250 µm. In Fig. 

6.17, time resolved intensity of the 3d-2p and 2p4p -2p transitions of O3+ ions at 23.8 

nm and 17.1 nm correspondingly are shown. Zero time corresponds to arrival of fs-

laser pulse. At distances smaller than 1 mm, when the plasma density is comparable 

or higher than the density of neutral particles, the 3d-2p line shows dramatic increase 

only at the plasma front, which is consistent with the results obtained for C3+ ions 
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analyzed with an analytical model, while the temporal behavior of the 2p4p -2p line, 

which cannot be pumped due to the charge exchange, remains practically 

unchanged.   

 

 

Figure 6.18 Maximum intensity of O3+ 3d-2p line versus backing pressure (H2) at a 

distance of 0.7 mm from the target. 

 

Charge-exchange pumping is proportional to the density of neutrals and 

therefore should have a linear dependence on the gas pressure. This corresponds to 

our experimental data shown in Fig. 6.18 for the 3d-2p line intensity at the plasma 

front. The line intensity exhibits a linear dependence with the gas jet pressure up to 

about 80 mbar, exactly as expected for the charge exchange mechanism, while at 

this backing pressure the density of neutrals is getting comparable to the ion density, 

and no more ions are present for further increase in intensity. 
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6.4 Investigations on possible lasing transition of C5+ ions at 18.2 nm 

 

 

Another interesting XUV lasing candidate are C5+ ions on 3-2 transition at 

λ=18.2 nm, which can be pumped as a result of  the reaction C6+ + H � C5+ (n=3,4) + 

H+. The lasing on this transition is related to the well known recombination laser [see 

for e.g. Lee and Kim 2001] and this mechanism is described in chapter 2. Attempts 

for creation of population inversion on this transition with charge exchange were 

done in experiments with hot and cold colliding plasmas [Ruhl et. al. 1997]. An 

increase in intensity of the C5+ (3d-2p) line at λ=18.2 nm was reported and explained 

as an effect of the reaction C6+ + C2+ � C5+ (n=3) + C3+. However, due to a smoothed 

interaction region and difficulties to control parameters of the interacted plasmas, no 

improvement has been reached in further experiments with colliding plasmas. 

In this chapter new data obtained with the novel set up are presented to show 

that the pumping of the n=3 and n=4 levels of C5+ ions, resulted as charge exchange 

interaction between C6+ ions and hydrogen and helium gases, is realized at simple 

and desirable conditions with the novel experimental set up.  

 

 

6.4.1 Selective pumping of n=3,4 levels with He and H2 gases 

 

 

The experiments were done on the same experimental scenario shown in Fig. 

5.1. At the time of the experiments, we were limited in the energy of our Ti:Sapphire 

laser system. Therefore, for the production of bare Carbon ions from a solid carbon 

target, we have used the uncompressed pulses, which correspond to 100 ps, with the 

energy of 200 mJ. A corresponding intensity at the focal spot was 1013 W/cm2.  

In  Fig. 6.19 examples of spectra recorded in vacuum and with a Hydrogen 

gas jet at a distance of 1.5 mm from the target surface are shown. One can see 

substantial intensity increase of the lines that should be pumped by the charge-

transfer reaction, especially of the 4-2 line at λ=13.5 nm wavelength. On the other 

hand, the line from the higher level n=5 shows decrease, similar to the observations 

with C3+ ions discussed above. 
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Figure 6.19   Carbon spectra recorded at a distance of 1.5 mm from the target. 

Dashed line: in vacuum, solid line: at 80 mbar H2 backing pressure. 

 

The time of flight measurements also show that there is a dramatic increase in 

the front of the signal for both lines with hydrogen gas jet (6.20, dashed lines) in 

comparison with the lines induced in vacuum. 

Figure 6.20 Time resolved measurements for C5+ 4d-2p (a) and 3d-2p (b) lines at a 

distance of 2.5 mm from the target: solid lines – expansion in vacuum, dashed lines – 

with hydrogen gas jet, dotted lines – with Helium gas jet.  
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Unlike the results of experiments with the plasma expanding into background 

gas [Dixon and Elton 1977], a clear dependence of measured line intensities on the 

sort of gas was observed. Charge-exchange, being a resonant process, depends 

mainly on the ionization potential of the collision partners. In case of C5+ ions, the 

level n=4 can better be  pumped with hydrogen gas, but not with Helium which has 

higher ionization potential, and this is confirmed in our experiment (Fig. 6.20(a)), 

where the best increase is for the hydrogen gas jet. The level n=3, however, has the 

better decrement of energy with Helium gas, although the cross section is larger for 

the hydrogen gas, which explains the equal effect of these gases (Fig. 6.20(b)). 
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Figure 6.21 Carbon spectra for the different laser energies (recorded at Max Born 

institute with Nd: glass laser, 6 ps).   

 

For the 18.2 nm line of the C5+ ion, a gain coefficient exceeding 10 cm-1 is 

expected for a length of medium of 1 cm with the densities of reagents of 1016 cm-3 

as discussed in particular in chapter 3. In preliminary investigations towards XUV 

gain experiments, it has been found that about 2.5 J of energy in a ps-laser pulse is 

needed to produce sufficient amount of C6+ ions in a line focus of about 1 cm in 

length and 0.07 cm in width (Fig. 6.21). The latter experiment was conducted at the 

Max-Born Institute in Berlin, where a more powerful laser for this purpose is 

available, but unfortunately it was not possible to perform experiments with line focus 

and a corresponding gas jet.  
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6.5 Conclusion 

 

 

Interaction of ions produced by short laser pulses with atoms from a pulsed 

gas jet has been studied by means of time and space resolved spectroscopy in the 

XUV range. The dependencies obtained on the gas pressure and gas sort are 

explained by direct and highly selective charge exchange pumping. Experimental 

results are in a good agreement with an analytical model and confirm that charge 

exchange pumping has been realized at densities of both reagents well in excess of 

1016 cm-3, which is at least one order of magnitude higher than in previous 

experiments (Chapter 4). At optimum conditions, a strong selective excitation of 

several potential lasing lines in the XUV range was observed in the presence of the 

gas jet. These observations provide new prospects for the realizations of XUV lasers 

with higher efficiency than in presently demonstrated schemes. For the 18.2 nm line 

of the C5+ ion, a gain coefficient exceeding 10 cm-1 is expected for a length of 

medium of 1 cm with the densities of reagents of 1016 cm-3. In preliminary 

investigations towards XUV gain experiments, it has been found that about 2.5 J of 

energy in a ps-laser pulse is needed to produce a sufficient amount of C6+ ions in a 

line focus of about 1 cm in length and 0.07 cm in width. 
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7. Perspectives of charge exchange lasers 

 

 

The results obtained in the previous chapter with the novel setup, consisting of 

a pulsed gas jet and a femtosecond laser produced plasma  with focal spot ablation, 

demonstrated the selective charge transfer pumping for a number of reactions. 

However, for realizing of a charge transfer laser, the geometry of the experiment has 

to be slightly modified. Instead of the spot focus for laser ablation, the line focus has 

to be applied, and for an interaction of the whole elongated plasma column with 

neutrals, some kind of slit nozzle instead of the so far used cylindrical nozzle is 

needed. For this, ideal experimental geometries and possible ways for a realization 

will be introduced.  

Advantages of new charge exchange schemes with potential lasing transitions 

in Na-like ions with an example for Chlorine and Calcium elements will be presented. 

These schemes promise even more efficient pumping as compared with the charge 

transfer excitation in Hydrogen like ions.  

Another approach suggested is the idea of quasi-steady state charge transfer 

pumping, successfully realized with electron-collisional excitation. The idea is to 

pump by charge exchange both the upper and lower laser levels (or in ideal case, 

only the upper level). Then a population inversion is obtained if the lower state rapidly 

depopulates to the ground state. Some first experimental results on pumping in Ne-

like Silicon ions will be presented. 

In order to better evaluate parameters for charge transfer pumped lasers, it is 

suggested to construct a charge exchange laser operating in visible or ultraviolet 

spectral range in a normal operating laser regime with cavity. For this purpose the 

3p-3s transition of O3+ at 307 nm is suggested and discussed. 
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7.1  Desirable  geometry for lasing experiments – uniform plasma 

column interacting with a gas stream having a sharp boundary 

 

 

As it was discussed in previous chapters, for any lasing experiments with 

charge exchange pumping there is a need to create an appropriate interaction zone 

of high Z-ions and neutrals (or low Z-ions). The interaction zone must be in a form of 

an elongated column, and the involved particles should have sharp and uniform 

density profiles along this zone.  

 

          Production of high Z-ions in line focus geometry 

 

In most x-ray laser schemes, long narrow plasmas are produced by focusing 

the pump laser into a line via a cylindrical lens or with a spherical mirror. The line 

focus produced with a cylindrical lens provides normally a line of 100-200 µm in 

width, and has non-uniform intensity distribution along the line for a circular incident 

laser beam with Gaussian distribution. This is because the intensity at any point 

along the focused line is the integral of the laser intensity along a line normal to a 

focal line. This non-uniformity can be compensated either by shaping the aperture of 

the incoming beam into a rectangular form or by the use of deformable focusing 

optics.  

 

 

 

Figure 7.1 Schematic of a line focus design using a concave mirror.  
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An alternate method for focusing laser radiation into a line is with an off-axis 

concave mirror [Ross et. al. 1987]. In this case, a spherical mirror is added to the 

normal point-focus system (Fig. 7.1). Such a mirror is placed at the determined angle 

to the coming radiation that determines the length of focused line. At the fixed angle, 

the length of line can be varied by the limitation of the diameter of the incoming beam 

before it goes to the point-focus system.  

Some new types of line focus geometries have been introduced to improve the 

uniformity along the line, that is, a cylindrical lens array in combination with a 

spherical lens [Wang et. al. 1992] or a segmented wedge array [Villeneuve et. al. 

1991] with a cylindrical lens. Recently, a line focus system with a segmented prism 

array allowing to perform a uniform line focus for the length of 12 mm was developed 

in [Yamaguchi et. al. 1999].  

 

 Producing of gas streams with sharp boundary 

 

There are two main types of gas nozzle constructions: sonic and supersonic. 

The first one is characterized by low Mach numbers (M≈1), has a parabolic gas 

density profile, and can be simply produced with a standard cylindrical nozzle [Li and 

Fedosejevs 1994]. The density profile from a sonic nozzle is only suitable for 

experimental needs at small distances from the nozzle, as in the far field it has a 

smeared density profile. The supersonic nozzle (M>1) is capable for producing 

rectangular profiles, but requires low densities. Such nozzles have mostly conical 

geometries. 

The conical nozzle with optimized length is easy to produce and provides a 

good density distribution. Such a nozzle was developed in [Semushin and Malka 

2001] and is shown in Fig. 7.2, where all import parameters are designated. The 

optimal configurations were computed for different output jet diameters, and throat 

diameters. In Table 7.1 the optimal values of parameters presented in Fig. 7.2 are 

given with the resulting Mach numbers and mean exit densities at 0.5 mm. Smaller 

output diameters give lower Mach numbers and higher densities with smoother 

profiles. To produce steep profiles one needs to diminish the output density. The 

received profiles are nearly rectangular for a nozzle for critical and exit diameters 

given in the Table 7.1. 
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Figure 7.2 The conical nozzle construction. The optimal values of given parameters 

for providing a good density distribution are shown in the table 7.1.   

 

Table 7.1 Optimized nozzles parameters  Dcrit , Dexit, and Lopt, which are defined in 

Fig. 7.2 . Mexit -the Mach number and nexit is the density at 0.5 mm from the nozzle. 

 
 

Such a conical nozzle, with critical Dcrit and exit diameters Dexit of 0.5 mm and 

2 mm, was tested in our experiments, and sharp boundary of gas jet region was 

observed by detecting the charge transfer signal scanned through the boundary 

region of gas jet. However, higher backing pressure was necessary due to large exit 
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diameter output. This caused too high pressure in the vacuum chamber and limited 

the further use of the nozzle.  

For the planned lasing experiment it is important to produce a gas stream in a 

form of an elongated gas sheet with sharp boundary. The desirable parameters of 

such jet are: 10 mm in length and 1 mm in width. Unfortunately, there are no 

standard solutions, and in the simplest case, one could apply the standard cylindrical 

nozzle equipped with cylindrical tube flattened out at the end so that the exit slit was 

10×0.5 mm. Such a construction was tested in our experiments and allowed us to 

create an appropriate gas stream with densities up to 1017 cm-3. 

 

Desirable geometry for lasing experiments 

 

The ideal scenario for charge transfer pumping is depicted in Fig. 7.3. The 

required ions should be produced with the use of a femtosecond laser focused into a 

line as described above. The gas particles in a form of sheet with densities of 1017 

cm-3 should be produced by a suitable nozzle design as well. The best distance in a 

line focus configuration is found to be 2 mm since the plasma expansion in such 

geometry is more directed and the density scales as 1/R2. The spontaneous emission 

then will be amplified along the elongated interaction zone and could be further 

amplified in a  half-cavity configuration (by using one reflection from mirror). 

 

 

Figure 7.3 The ideal scenario for charge transfer laser: high Z-ions produced with 

fs-lasers in line focus geometry interacting with a gas jet having a sharp boundary. 
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7.2   Hydrogen like Beryllium as an ideal candidate for lasing    

 

 

As it was shown in chapter 3, the charge transfer reaction is quasi-resonant, 

and it pumps better the levels of newly created A(n-1)+ ions which have the energy Eu, 

corresponding to the energy of the upper laser level, determined by 

 

Eup ≈ Eion(A
(n-1)+ ) - Eion(B) – ∆E                                                             (7.1) 

 

where Eion(A
(n-1)+ ) is the ionization potential of A(n-1)+ ions,  Eion(B) is the 

ionization potential of the species (neutrals in our case) interacting with the ions, 

and ∆E ≈10-20 eV is the energy decrement discussed in chapter 3.  

Of special interest is to pump selectively the level n=3 of hydrogen like ions 

with the subsequent lasing on 3-2 transition, which has been already demonstrated 

with recombination excitation mechanism for Carbon [Suckewer et.al. 1985] [Lee and 

Kim 2001] and Boron [Goltsov et. al. 1999] ions. The best appropriate gas reagent for 

an ion-neutral charge transfer reaction is found to be hydrogen, since it has usually 

the largest cross section compared with other gases.  
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Figure 7.4 The simplified energy level diagram of Be3+ ions 
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According to these requirements, one can find that the ideal candidate for 

realization of lasing on 3-2 transition of Hydrogen like ions with charge transfer 

pumping is Beryllium. It has the optimum defect of energy ∆E ≈11 eV for the n=3 

level by applying the hydrogen gas jet. The simplified scheme for relevant energy 

levels in Be3+ ions is shown in Fig. 7.4.  Firstly, one needs to create the nuclear 

Beryllium ions and then make them interact with neutrals at relevant conditions for 

charge exchange pumping. At that time, according to equation (7.1), the level n=3 will 

be selectively pumped, and significant population can be build-up in the Be3+ 3d 

state. This process can be written as  

       Be
4+

 + H2 →→→→ Be
3+

(3d) + H2
+ →→→→ Be

3+
(2p) + hν ( 41 nm) + H2

+          (7.2) 

The cross section of this reaction was calculated in [Harel et. al. 2001] and 

shown in Fig. 7.5, and it is as high as 2x10-15 cm2 for the laser produced Be4+ ions 

having velocities of about 0.15 a.u. (3x107 cm/sec). 

 

Figure 7.5 Total and n-partial cross sections as function of impact velocities for 

Be4++H reaction calculated by [Harel et. al. 2001]. 

 

This analysis shows that Beryllium is an interesting candidate for lasing in 

Hydrogen like ions with charge transfer pumping. The lasing is possible on 3d-2p 

transition at 41 nm. Unfortunately, handling of Beryllium is difficult and Beryllium dust 

is very dangerous. 
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7.3   Extensions to non-Hydrogenic ions – lasing in Na-like ions   with 

higher efficiency 

 

 

A possible extension of the basic hydrogenic concept described above to 

plasmas that can be produced with greater efficiency is of interest. The best 

candidates are the ions with single outer electrons, as Li-like, Na-like, Cu-like ions, 

for corresponding lasing transitions between quantum  numbers 4-3 (5-3), 5-4 (6,7,...-

4), 6-5 (7,8,..-5) accordingly. This will open a great possibility to scale further to 

shorter wavelengths with the same required pumping power.  

For  charge exchange pumping experiments it is very important to have in the 

plasma only one desirable sort of ions, and the significant advantage for the above 

proposes is, that one can have only He-, Ne-, or Ni-like ions in the plasma, since 

these ions  have a fully occupied outer shell and are hard to ionize. This results in a 

high relative abundance of the desirable ions over a wide range of plasma 

parameters. In the expanding plasma the ions with lower ionization stage are always 

behind  these closed shell ions due to lower velocities. These abundant ions can 

further interact with neutral atoms with producing population inversion for Li-, Na-, 

Cu-like ions, as shown, for example, below for Na-like ions 

 

Ne-like-ion + H2 →→→→  (Na-like-ion)* +  H2
+                            (7.3) 

 

A first suitable candidate for lasing in Na-like ions with charge exchange 

pumping is Chlorine. This process is described by the reaction 

 

  Cl
7+

 + H2 →→→→   Cl
6+

(n=5) +  H2
+  →→→→ Cl

6+
(n=4) + hν +H2

+
             (7.4) 

 

Since the lower laser level belongs to n=4, from which there is fast relaxation 

to a ground level, the first suitable for lasing situation takes place by capture of an 

electron into level n=5.  The best decrement in energy of about 15 eV in this case is 

for the Cl6+ ions as depicted in Fig. 7.6, where the spontaneous rate coefficients are 

given for all transition of interest. It should be noted, that the lasing then is possible at 

a wavelength of 48.7 nm with the an energy required for producing of Cl7+ ions of 114 
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eV. It should be noted that the lasing in Na-like copper ions was already 

demonstrated with collisional recombination mechanism [Zhang et.al. 1996] on the 

5g-4d transition at 11.1 nm. However, for this demonstration the authors needed to 

use a high power Nd:glass laser system delivering 20 J in 2 ps. 
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Figure 7.6  Simplified level diagram of Cl6+ ions with indication of charge-transfer 

pumped levels due collision of Cl7+ ions with hydrogen. 

 

In order to go to shorter wavelengths, one has to realize appropriate 

conditions for the pumping of levels higher than n=5. One can find that, for example, 

for the interaction of Ne-like Calcium ions with Hydrogen gas jet described by the Eq. 

(7.5), 

Ca
10+

 + H2 →→→→   Ca
9+

(n=7) +  H2
+  →→→→ Ca

9+
(n=4) + hν +H2

+
     (7.5)  

 

the appropriate levels of population belong in this case to the level n=7 as shown in 

Figure 7.7., with possible lasing on 7-4 transitions at wavelength as short as 15.9 nm.  

It should be noted, that as the charge exchange pumping takes place from the 

upper states (not by excitation from the ground state of a given ion to the upper laser 

level) a lasing might also be realized on the 7f-3d transition, since the state 3d is 
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placed relatively high from the ground 3s state, which corresponds to 51 eV and 

might be therefore unoccupied. This would allow the lasing at wavelength already at 

9.4 nm.  
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Figure 7.7 Simplified level diagram of Ca9+ ions with indication of charge-transfer 

pumped lines due to collision of Ca10+ ions with hydrogen. 

 

The spontaneous emission rates for the lower laser levels (n=4), indicated in 

Figures 7.6 and 7.7, were calculated as a sum of probabilities for all possible decays 

from this level.  

Finally, it should be concluded, that there are two main advantages by charge 

transfer pumping of Na-like ions: 

- it requires the production of Ne-like ions, that allows to create a high 

abundance of such ions over a wide range of plasma parameters 

- it opens a great possibility to scale to shorter wavelengths with the 

same required pumping power in comparison with hydrogen like ions.   

This idea can be next extrapolated for the Cu-like ions with further 

improvement in efficiency.  
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7.4   The idea of quasi-steady state charge transfer pumping 

 

 

The lasing in quasi-continuous regime was successfully realized with electron 

collisional excitation and in particular was described in chapter 2.3.1. And, therefore, 

it is of great interest to check whether it is possible to apply charge exchange 

pumping in quasi-steady state operation. The idea is to pump by charge exchange 

both the upper and lower laser levels (or in ideal case, only the upper level). Then a 

population inversion is obtained if the lower state depopulates rapidly to the ground 

state.  

 

 

7.4.1 Results on pumping of Ne-like Silicon ions 

             

 

The first attempts in the direction of quasi-continuous pumping by charge 

exchange were done with Ne-like Silicon. A simplified energy level diagram is shown 

in Fig. 7.8. For the 3p-3s transition of Ne-like silicon the gain was already 

demonstrated in [Li et. al. 1997] with electron collisionally excitation.  
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Fig. 7.8 Simplified level diagram of Si4+ ions with indication of charge-transfer 

pumped lines due to collision of  Si5+ ions with hydrogen 
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This scheme is not ideally suited for direct pumping the 3p level by charge 

exchange, since the level 4s has more suitable decrement in energy to be pumped 

firstly. However, the level 3p can be populated due to three distinct processes: - 

direct charge exchange pumping, - population due to 4s-3p transition, and, lastly, - 

due to 3d-3p transition as depicted in fig. 7.8. On the other hand, the level 3s can be 

populated only due to charge transfer excitation but already at a slower rate, and 

moreover it depopulates rapidly to the ground sate. Since the level 3p is metastable, 

the condition for lasing on the 3p-3s transition is fulfilled.   

The experimental arrangement was similar to that described in chapter 5, but 

with two differences. Instead of Jobin Yvon the “Minuteman 302VM” monochromator 

was applied in order to record the spectra in range from 500 nm to 150 nm, where all 

lines of interest of Silicon ions are presented, and secondly, the radiation of 

Ti:sapphire laser was focused into a line (not a spot-focus). The laser radiation was 

focused via two cylindrical lenses (f1=240 mm, f2=160 mm) into a line of 2 mm in 

length and about 200 µm in width, the lenses were placed perpendicular to each 

other and the distance between them was about 3-5 cm (for different lengths of line 

focus). The spectroscopic resolution of the “Minuteman 302VM” monochrmator was 

about 3 nm, and, therefore, the lines recorded are broad, but still good identified.   

Figure 7.9 Example of Silicon spectra recorded at 2.5 mm distance from the 

target surface with 2 mm line focus ablation. Dashed line: in vacuum, solid line: at 

100 mbar H2 backing pressure. 

60 80 100 120 140
0

2

4

6

8

10

S
i 
V

 5
5
 4

s
-3

p
 d

E
=
2
0
 e

V

S
i I

V
 1

4 
3
p

-3
s
 d

E
=3

6 
eV

 g
r.

st
.

S
i 
V

 1
2
.5

-1
3
.1

 3
p

-3
s
 d

E
=5

1 
eV

S
i I

II 
12

.1
 3

p
-3

s
 d

E
=2

3 
eV

S
i 
V

 8
7
.3

 3
p

-3
s
 d

E
=4

6 
eV

   
  8

8.
2 

3
d
-3

p

S
i 
V

 9
6
.7

 3
d

-3
p

 d
E

=4
0 

eV

S
i I

V
 1

1.
3 

3
d

-3
p
 d

E
=

25
 e

V

S
i I

V
 8

1.
5 

4
s
-3

p
 d

E
=2

1 
eV

S
i 
V

 5
5
 4

s
-3

p
 d

E
=
3
0
 e

V

R
el

at
iv

e 
In

te
ns

ity
 [a

rb
. u

n.
]

Wavelength [nm]



7. Perspectives of charge exchange lasers 
 

 

88 

Part of a recorded spectrum is shown in Fig 7.9. The spectrum was obtained 

with a laser energy of 200 mJ, and pulse duration of 100 fs, which was the maximum 

energy available at that time. An increase in the transition of interest at 87.3 nm and 

another 3p-3s transition at 12.5 nm was observed, although the best increase was 

observed for the transitions from high lying levels 4s and 3p which have more 

suitable energy decrement ∆E as can be seen from Fig. 7.8 for the reaction below   

 

          Si 
5+ + H2→  Si 4+ + H2

+ + ∆E                                                   (7.6) 

 

The increase in intensities of different lines, shown in Fig. 7.9, as a function of 

the energy decrement ∆E is shown in Fig. 7.10 for Si 4+ and in Fig. 7.11 for Si 3+. One 

can see that for charge transfer reaction between Si 5+and H2 as well for similar 

reaction between Si 4+and H2 , there is a clear maximum for an energy decrement of 

10-20 eV. This proves experimentally, that the charge transfer reaction has a quasi-

resonant character and is most probable for ∆E≈10-20 eV. 

 

 

 

 

Figure 7.10 The increase in intensities of different lines of Si4+ ions (shown in Fig. 

7.9) as a function of energy decrement ∆E (solid line just connects the 

measurement points) 
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Figure 7.11 The increase in intensities of different lines of Si3+ ions (shown in Fig. 

7.9) as a function of energy decrement ∆E (solid line just connects the 

measurement points) 

 

Although the good increase in intensity of 3p-3s lines was observed, for lasing 

experiments a line focus of more than 10 mm in length [Li et. al. 1997] is necessary. 

The further scaling with the Ne-like sequence to shorter wavelengths with charge 

transfer pumping is difficult while the energy defect of is too high, and therefore the 

higher levels (n=5,6,..) will be pumped firstly and the population inversion between 3p 

and 3s states can be achieved only due to cascade transitions from the higher levels, 

which makes the scheme more complicated and implies additional losses. As an 

alternative way, one can try to find appropriate interacting components for lasing in 

Ni- or Pd-like ions.  

 

 

7.4.2  3p-3s transition of O3+ at 307 nm as an ideal tool to check lasing  by  

          charge transfer in a normal operating laser mode with cavity 

 
 
 

In order to better understand the relevant conditions for the operation of 

charge exchange lasers in XUV range, it would be of great interest to construct first 

such a laser in the visible or ultraviolet spectral region, where one could use  mirrors 

and operate a laser in a normal mode with cavity.  
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One of the possible candidates could be Boron-like Oxygen. The simplified 

energy levels of O3+ ions are depicted in Fig. 7.12.  
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Fig. 7.12  Simplified level diagram of O3+ ions with indication of charge transfer 

pumped levels due to collision of O4+ ions with hydrogen. 

 
 

Here, both the 3p and 3s states will be populated by charge exchange with 

rapid depopulation of the 3s state. Since the spontaneous rate of the 3s state is 

almost 2 orders of magnitude higher then that of the 3p state, the condition for quasi-

steady state operation is fulfilled for the 3p-3s transition at 307 nm. And for this 

wavelength one can simply apply mirrors to construct a resonator in a way similar as 

depicted in Fig. 7.3. The ions can be produced by laser ablation of oxygen containing 

solid targets (for example Al2O3, SiO2 or other) in a line focus configuration as 

described above. A big increase in line intensities for transitions to the ground state 

from the lower laser 3s state at 28 nm was already observed (Fig. 6.16). 

 

It can be estimated that production of O4+ will not require very powerful pump 

lasers, and a potential gain and lasing at the 307 nm transition is more easily 

detectable as compared to the XUV range. 
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8. Summary 

 

 

In this dissertation a novel experimental scheme for studying charge exchange 

interactions between ions and neutrals is introduced and investigated as a potential 

tool for the pumping of the lasers in the extreme ultraviolet (XUV) spectral range. The 

basic idea behind the new setup is the use of a femtosecond laser for the plasma 

production by ablation of solid targets and a gas jet for the supply of the neutrals. By 

this, steep density gradients of the emerging plasma front and of the gas jet can be 

achieved, those are necessary for an effective charge transfer interaction at high 

densities of ions and neutrals in the interaction zone. To achieve sufficient gain for 

lasing at XUV transitions, the densities of ions and neutrals in the interaction region 

should be more than 1016 cm-3. At these densities the interpenetration length will be 

well below 1 mm, which means that the transversal dimension of the inverted volume 

will only be at the order of several hundreds of micrometers. That is why steep 

density gradients are essential.   

For optimization of the new setup and principal investigations on parameter 

dependencies, the charge transfer reaction C4+ + H2 � C3+ (n=3) + H2
+, well known 

from studies related to astrophysics, was explored. For this, the short pulse pump 

laser radiation is focused to a spot of about 200 µm at the surface of a solid Carbon 

target. Plasma is produced at intensities of about 1015 W/cm2. The gas jet is located 

at distances of 1 mm from the target surface. Spectral intensities of plasma lines are 

used as indicators for the pump processes. Clear selective pumping of levels n=3 of 

C3+ ions up to a few mm distance from the solid target was observed at densities of 

the gas jet around 7x1016 cm-3, while the population of other levels with n�4, which 

could not be pumped with charge transfer mechanism, remained unchanged or even 

slightly decreased. By the use of laser pulses with different pulse durations it was 

also demonstrated, that in fact the short pulses are more favorable for the production 

of the plasma, leading to a steeper density gradient of the plasma front. The 

selectivity of the charge transfer pumping was further tested by using a Helium gas 

jet instead of the hydrogen, and this resulted in an equal effect for all lines as 

predicted, since Helium is non-resonant to all lines due to higher ionization potential.  
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For the first time, time resolved measurements of the charge exchange 

process have been performed. This allowed to specify the time behaviour of the 

interaction and to perform a quantitative comparison with a developed analytical 

model. From this analysis it can be seen that strong charge exchange pumping 

occurs predominantly at the plasma front, and it can be deduced, that in fact charge 

exchange pumping at densities of both reagents exceeding 2x1016 cm-3 was 

achieved, which should be sufficient for XUV lasers.  

With the optimized setup, investigations on a number of promising reactions 

capable of creating a population inversion in the XUV spectral range been performed. 

A strong increase in line intensities was observed for the 3d-2p (λ=23.8 nm) and the 

2p3s-2p2  (λ=37.4 nm) lines of O3+ and O2+ ions as a result of the reactions O4+ + 

H→O3+ + H+ and O3+ + H→O2+ + H+, correspondingly. Interestingly, for the 37.4 nm 

line gain was recently demonstrated in an optically field ionization recombination 

scheme [Chichkov et. al. 1995].  As this is a ground state transition, it is, however, 

doubtful at present to forecast whether a population inversion by charge exchange 

alone will be sufficient for producing gain.  

To explore a transition where gain and lasing in the XUV is well known, the 

reaction C6+ + H→C5+ (n=3,4) + H+ was investigated. The 3-2 transition in C5+ is 

operated since long time as a recombination laser transition [Suckewer et. al. 1985],  

implying that already in a pure C6+ plasma expanding into vacuum an inversion may 

be generated. Again, a clear increase of line intensities originating from the levels 

n=4 and 3 of the C5+ ions was obtained with the hydrogen jet present as compared to 

the vacuum case, where the levels are pumped by recombination. To generate the 

C6+ plasma with a spot focus ablation, an energy of about 200 mJ was necessary. To 

explore the possibility for producing gain (lasing), instead of a point focus a line focus 

at the target has to be used to generate an elongated plasma column. Extrapolating 

from the point focus intensity, this would require a short pulse pump laser energy of 

about 3 J for a line focus of about 1 cm length. As such a laser energy can not be 

delivered from the here used laser system, some first test experiments have been 

performed at the Max Born institute in Berlin, where a more powerful laser exists. It 

was revealed, that with 2.5 J of a 6 ps laser pulse, a sufficient amount of C6+ ions can 

be generated for a line focus of about 1 cm in length and 0.07 cm in width. To 

perform charge exchange lasing experiments with such a line focus plasma, in 

addition a specific nozzle, such as a slit nozzle, for producing an elongated gas jet 
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area has to be used. A corresponding experimental scheme with suitable optics for 

an optimal line focus and an improved nozzle design is briefly outlined. 

Since lasing in hydrogen like ions with charge transfer excitation requires the 

production of bare ions such as, for example, C6+ ions for the C6+ + H2 reaction, the 

high energies are necessary. Therefore, some novel schemes are described those 

might overcome the problem of high energy requirements. Instead of lasing on 

transitions in Hydrogen-like ions, corresponding transitions in Na-like ions such as 

Chlorine or Calcium are considered, starting with producing Ne-like ions. For 

example, in case of the reaction Ca10+ + H2 � Ca9+(n=7) + H2, lasing is possible at a 

wavelength as short as λ=15.9 nm which is even shorter than in case of lasing in C5+ 

ions with λ=18.2 nm, but requires much less pump energy due to smaller ionization 

potential of needed Ca10+ ions (211 eV) in comparison with  C6+ ions (490 eV). In 

case of the reaction Cl7+ + H2 � Cl6+(n=5) + H2  with possible lasing at 48.7 nm, the 

needed pump energy is even smaller, as ionization potential of Cl7+  is only 114 eV.  

For lasing in Na-like ions, it is necessary to produce the Ne-like ions, which have the 

closed shell and hard to be ionized further. This is a big advantage, since one can 

create a high abundance of such ions over a wide range of plasma parameters. 

In so far considered schemes, inversion will only be generated in a short time 

interval. It might also be interesting to explore quasi steady state charge exchange 

pumping, in a similar way as this is known from electron collisional excitation laser 

schemes. The idea consists in pumping by charge exchange both the upper and 

lower laser levels. If the upper level is pumped at a slightly higher rate (having the 

larger cross section) and the lower level is rapidly depopulated by radiative decay, 

steady state inversion is possible. A potential scheme with Si5+ ions for this purpose 

is suggested and first results are presented. 

As XUV lasers are difficult to realize, it might be of interest to first demonstrate 

a charge exchange pumped laser with the new scenario at a laser transition in the 

visible or near UV spectral range, where the stimulated emission cross section is 

larger and where the possibility exists to use a cavity for a further reduction of the 

inversion density and necessary pump power. Such a transition might be the 3p-3s 

transition at 307 nm in O3+ ions. 

In conclusion, considerable progress on charge exchange pumping for XUV 

lasers has been achieved in this work with a new developed experimental scheme. 

For the first time charge exchange pumping at densities necessary for gain has been 
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demonstrated, and a variety of new schemes have been proposed. This gives big 

hopes that with further possible improvements of the experimental setup and with 

more powerful pump lasers, charge exchange pumped lasers at XUV transitions will 

be realized in the future.  
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