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Zusammenfassung

Mit der Entwicklung atomarer Frequenznormale wurden Frequenzen und Zeitdifferenzen zu
den derzeit am genauesten messbaren physikalischen Grössen. Eine der vielversprechendsten
Entwicklungen auf dem Weg zu immer genaueren Frequenznormalen basiert auf der Nutzung
schmaler optischer Übergänge in laser-gekühlten und in elektrischen Hochfrequenzfallen gespei-
cherten Ionen als Frequenzreferenzen. Diese optischen Einzelionenfrequenznormale haben das
Potential geringere Instabilitäten und systematische Unsicherheiten zu erreichen als die derzeit
besten verfügbaren Mikrowellennormale.

Als möglicher Kandidat für ein solches optischen Frequenznormal wurde im Rahmen dieser
Arbeit der 2S1/2(F = 0, mF = 0) → 2D3/2(F = 2, mF = 0) elektrische Quadrupolübergang in
einem einzelnen, in einer Paul Falle gespeicherten, laser-gekühlten 171Yb+ Ion untersucht. Fre-
quenzvergleiche zwischen zwei dieser Normale werden verwendet, um die Instabilitätseigen-
schaften und die systematischen Unsicherheiten des Frequenznormals zu untersuchen. Zu
diesem Zweck wurde zusätzlich zu einem bereits existierenden Ionenfallensystem ein weiteres
aufgebaut.

Eine Instabilität in Form einer Allan Standardabweichung von σy(t) � 1.1 · 10−14 t−
1
2 der

Frequenzdifferenz zwischen den beiden Frequenznormalen konnte demonstriert werden. Die
gemessene Instabilität ist nahe an der Stabilitätsgrenze, die sich aus numerischen Simulationen
ergibt, die als einzige Rauschquelle das Quantenprojektionsrauschen enthalten. Die mittlere
relative Frequenzdifferenz zwischen den beiden Frequenznormalen von 3.8(6.1) · 10−16 ist ver-
gleichbar mit den besten Ergebnissen, die bisher mit Cäsium Fontänen Uhren erreicht wurden.

Zwei systematische Effekte, der quadratische Stark Effekt und die Quadrupolverschiebung,
wurden im Detail untersucht und die zugehörigen atomaren Parameter wurden erstmals ex-
perimentell bestimmt. Für den quadratischen Stark Effekts wurden die Werte der statischen
atomaren elektrischen Skalar- und Tensorpolarisierbarkeiten ΔαS = −6.9(1.4) · 10−40 Jm2/V2

und αT (D3/2) = −13.6(2.2) · 10−40 Jm2/V2 gemessen. Der Wert des Quadrupolmoments
Θ(D3/2) = 9.32(48) · 10−40 Cm2 des 2D3/2 Zustands wurde bestimmt, in guter Übereinstim-
mung mit theoretischen Berechnungen.

Aus Abschätzungen für alle bekannten systematischen Unsicherheiten des Frequenznormals
ergibt sich für den gegenwärtigen Stand des Experimentes eine relative systematische Unsicher-
heit von 1.0 ·10−15. Es werden experimentelle Methoden vorgestellt, die es ermöglichen werden
die relative Unsicherheit im Lauf der nächsten Jahre bis in den 10−17 Bereich zu reduzieren.

Stichworte: Optische Frequenznormale, Einzelionen, Ytterbium
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Abstract

With the development of atomic frequency standards, frequencies and time intervals became the
physical quantities that can be measured with the highest precision. One of the most promising
developments in the ongoing research for ever more accurate frequency standards are frequency
standards based on narrow optical transitions in laser-cooled ions stored in radio-frequency
traps. These single-ion optical frequency standards have the potential to reach instabilities and
systematic uncertainties beyond the capabilities of the best microwave standards available at
present.

In this work, the 2S1/2(F = 0, mF = 0) → 2D3/2(F = 2, mF = 0) electric quadrupole
transition in a single 171Yb+ laser cooled ion stored in a radio frequency Paul trap is investigated
as a candidate for such an optical frequency standard. Frequency comparisons between two
such frequency standards were used as a method to investigate the instability properties and
systematic uncertainties of the frequency standard. For this purpose a new ion trap system
was set up in addition to an existing one.

An instability measured by an Allan deviation of σy(t) � 1.1 · 10−14 t−
1
2 of the frequency

difference between the two standards was demonstrated. This is close to the stability limit
derived from numerical simulations that include quantum projection noise as the only source of
noise. A mean relative frequency difference between the two frequency standards of 3.8(6.1) ·
10−16 was found, which is comparable to the best result achieved with cesium fountain clocks.

Two systematic effects, the quadratic Stark effect and the quadrupole shift, were studied
in detail and the relevant atomic parameters were measured for the first time. For the
quadratic Stark effect, the relevant static atomic scalar- and tensor electric polarizabilities were
measured to be ΔαS = −6.9(1.4) · 10−40 Jm2/V2 and αT (D3/2) = −13.6(2.2) · 10−40 Jm2/V2

respectively. The quadrupole moment of the 2D3/2 state was determined to be
Θ(D3/2) = 9.32(48) · 10−40 Cm2, which is in good agreement with theoretical calculations.

Estimates for all known systematic uncertainties of the frequency standard were derived leading
to a total systematic relative uncertainty of 1.0 · 10−15 for the present state of the experiment.
Experimental strategies are discussed that will allow to improve the relative uncertainty to a
few parts in 1017 over the next years.

Keywords: Optical frequency standards, single ion, ytterbium
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Chapter 1

Introduction

Time is the moving imago of the unmoving eternity.
- Plato [1]

Time is what one reads off the clock.
- A. Einstein [2]

Time is an illusion. Lunchtime doubly so.
- D. N. Adams [3]

The notion of time is one of the most important concepts in the history of mankind
and science, yet to date no generally accepted physical theory or philosophical
concept about the true nature of time has been put forth. This discrepancy
between the familiar notion of time and the understanding of its deeper meaning is
summarized in a famous dictum of the philosopher Augustinus [4]: “What is time?
As long as no one asks me I know it, but if someone asks me to explain it, I do
not know it”. Nevertheless remarkable success was achieved in the measurement
of time defined in an operational sense as it is expressed by A. Einstein’s dictum
quoted above. Among all physical quantities time intervals and frequencies are
at present the ones that can be measured with the highest precision and with
the assignment of a fixed value for the speed of light in vacuum in the SI system
of units, also length measurements became essentially time measurements. From
the calendar and the watch over high speed data transfer and satellite navigation
systems to tests of fundamental physical theories like relativity [5–10], quantum
electrodynamics [11] and the search for time variations of fundamental constants
[12–14], time and frequency measurements are ubiquitous.

At the heart of any time measuring device is a stable periodic process whose cy-
cles are counted. Historically, the rotations of celestial bodies provided the most
stable clocks, and still, the rotation of the earth determines our everyday feeling
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2 Introduction

of time. The first man-made clocks that were superior to the astronomical ones
were the quartz clocks invented around 1930 [15–17], but the greatest progress in
accuracy came from the use of atomic resonance frequencies. The concept of an
atomic clock was envisioned already by J. C. Maxwell in 1870 when he stated [18]:
“If, then, we wish to obtain standards of length, time, and mass which shall be
absolutely permanent, we must seek them not in the dimensions, or the motion,
or the mass of our planet, but in the wavelength, the period of vibration, and the
absolute mass of these imperishable and unalterable and perfectly similar mole-
cules”. This idea found its realization in 1967, when the 13th General Conference
on Weights and Measures lead to the following definition of the SI second: “The
second is the duration of 9 192 631 770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the ground state of the caesium
133 atom” [19]. Today cesium fountain clocks realize the second with relative
uncertainties below 10−15 [20, 21]. Further improvements are expected from the
use of optical instead of microwave atomic transitions as frequency references
because of the approximately 105 times higher frequencies.

Over the last decades techniques were developed that allow to confine and detect
a single ion in a radiofrequency trap [22–26] and reduce its kinetic energy by laser
cooling [27, 28]. The high level of control that can be achieved in such ion trap
experiments has made them an important tool for experiments in many fields
of fundamental as well as applied physics including mass spectrometry (their
first application) [29], quantum computation [30–33], and quantum teleportation
[34, 35].

With the development of frequency-stable tunable laser sources it became possible
to investigate forbidden optical transitions in single ions as candidates for optical
frequency standards, which was proposed first by H. Dehmelt [36]. Because a
single particle at rest which is isolated from the environment is one of the most
simple and well controlled physical systems, single-ion optical frequency standards
are ultimately expected to reach relative uncertainties in the range of 10−18 [24].
Several other concepts for optical frequency standards are currently investigated
[37,38], but the single ion standards are expected to eventually achieve the lowest
uncertainties. With the development of femtosecond frequency combs [39, 40]
as clockworks that can relate the frequency of an optical standard to any other
frequency in the optical or microwave region with high precision, all the necessary
experimental tools for an optical clock are now available. Several transitions in
different ions have been investigated so far as candidates for an optical frequency
standard [41–46] and relative uncertainty of a few parts in 1015 recently have
been demonstrated in frequency measurements relative to cesium fountain clocks
of reference transitions in 88Sr+ [47] and 199Hg+ [48]. Similar measurements of
optical transition frequencies in 199Hg+ [41,49,50], 171Yb+ [51,52], and hydrogen
[53] have been used recently to derive the so far most stringent limit on the
present temporal variation of the fine structure constant [54], demonstrating the
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potential of optical frequency standards.

In order to characterize the performance of a frequency standard it has to be
compared to another frequency standard with an equal or better performance.
Studies of the systematic frequency shifts of an optical frequency standard by
measurements of its frequency relative to established microwave standards are
inherently limited by the instabilities and uncertainties of the latter. These lim-
itations can be overcome by comparing the optical frequency standard with a
second one as is demonstrated in this work by comparing two single-ion fre-
quency standards based on the 2S1/2(F = 0, mF = 0) → 2D3/2(F = 2, mF = 0)
transition in 171Yb+.

The outline of this thesis is the following:

Chapter 2 introduces the basic terminology and concepts used in the context
of optical frequency standards and relates the single ion optical frequency stan-
dard to other concepts for optical frequency standards investigated at present by
various research groups.

In Chapter 3 a short introduction is given to the atomic properties of 171Yb+ and
the experimental techniques used to localize the ion in a Paul trap and to cool it.
A good compensation of electric stray fields at the position of the ion is important
to achieve low temperatures of the ion and to avoid systematic frequency shifts by
the second order Doppler and the second order Stark effect. Section 3.4 therefore
gives a detailed description of the method for the compensation of electric stray
fields used in the experiment.

The important components of the experimental setup and the experimental real-
ization of the methods discussed in Chapter 3 are described in Chapter 4.

The experimental scheme used for the spectroscopy of the
2S1/2(F = 0) → 2D3/2(F = 2) transition, its limitations and the informa-
tion that can be gained from the various types of excitation spectra is the
subject of Chapter 5. The last two sections contain a description of the methods
used to stabilize the probe laser frequency to the atomic resonance and to
compare the two ytterbium frequency standards.

One of the important figures of merit for a frequency standard is its instability.
Chapter 6 discusses the theory of the instability of a single ion frequency stan-
dards and presents a comparison of numerical simulations with the experimental
results of frequency comparisons between the two trap systems.

Chapter 7 presents estimates for all known relevant systematic frequency uncer-
tainties of the 171Yb+ standard with an emphasis on the quadratic Stark and
quadrupole shift which are the two most important systematics and which were
investigated experimentally in detail.
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Finally, in Chapter 8 an experiment is described that demonstrates an agreement
between the two frequency standards which is already comparable to the one
found in similar experiments with cesium fountain clocks.



Chapter 2

Frequency Standards

At the heart of any frequency standard is a stable periodic process whose fre-
quency can be compared to other frequencies. The basic concept of a time mea-
surement is to count the number of cycles of the stable periodic process that occur
between two events whose time separation shall be measured. If the frequency
of the process is determined not by the properties or interactions of macroscopic
objects but solely by fundamental laws of physics, then according to Einstein’s
equivalence principle this frequency should be the same at any time or place and
thus realize an ideal frequency standard. A good approximation to this ideal is
the frequency ω associated with the discrete energy difference ΔE = h̄ω between
two states of an atom. The most prominent example of such an atomic frequency
standard is the frequency of the transition between the two hyperfine levels of the
ground state in 133Cs which was used in 1967 for the definition of the SI second.

Most atomic frequency standards used today are operated as passive standards
that do not produce the frequency output themselves but act as a reference for
the stabilization of a local oscillator which, depending on the atomic transition
frequency is typically a microwave source or a laser.

A detailed description of the various types of atomic frequency standards, their
physics and their many applications can be found in [10,37,55–57], while a com-
prehensive overview over the long history of time measurement and time scales
is given for example in [58–60]. The following sections will introduce the termi-
nology and concepts used in the context of frequency standards.

2.1 Instability, Reproducibility and Accuracy

The three terms that are used to characterize the performance of a (frequency)
standard are instability, reproducibility and accuracy.

5



6 2. Frequency Standards

Table 2.1: Basic noise types in time and frequency measurements

Noise type Frequency dependence of
the power spectral density

White phase noise f 2

Flicker phase noise f
White frequency noise constant
Flicker frequency noise f−1

Random walk of frequency f−2

The instability is a measure of the confidence that one can have in the result of a
(frequency) measurement with respect to the reference in the presence of random
noise and is usually given by the “width” of the distribution of the results of a
large number of measurements. Since in principle every observation of a physical
process leads to noise in the observed quantity and most quantum processes are
intrinsically probabilistic, the instability of a standard will always be limited at
some level by noise. Contributions to the noise which are not random or have
a nonzero mean value are usually accounted for in the accuracy and are not
considered for the determination of the instability. Table 2.1 lists the five basic
noise types and the frequency dependence of their power spectral density.

Information about the instability of a frequency standard can be obtained only
from a series of successive measurements and the instability is thus often described
as the statistical uncertainty of the frequency averaged over a given number of
measurements. The most common time-domain measure for the instability of
a frequency standard is the Allan variance [61, 62]. For a set of N frequency
values averaged over a time t that are obtained from a total of M elementary
measurements of duration t0 the Allan variance can be written as [10, 62]

σ2
y(t) =

1

2(N − 1)

N−1∑
n=1

(yn+1(t) − yn(t))2 , (2.1)

where yn(t) is the nth frequency average over the time t = Mt0/N divided by
the nominal frequency. Usually the instability is given as the Allan deviation
σy(t). The Allan variance coincides with the ordinary variance for white frequency
noise. For divergent noise types like for example flicker frequency noise it has the
advantage that it converges to a value that does not depend on the number of
samples N , which is not always the case for the ordinary variance. If one of the
noise contributions listed in Table 2.1 is dominant over a large enough range of
averaging times t, the type of noise can be determined from the slope of the Allan
deviation as is shown in Fig. 2.1. Aside from possibly avoidable technical sources
of noise associated with the apparatus realizing an atomic frequency standard,
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Figure 2.1: Allan deviation as a function of the averaging time t for the five basic
noise types. The numbers are the slope of the Allan deviation for the given noise
type.

there is also noise associated with the interrogation of the atom(s) that is inherent
to the quantum mechanical nature of the measurement process. This so-called
quantum projection noise will be discussed in more detail in Sec. 5.2. Here it is
only important that it corresponds to white frequency noise and thus the Allan
deviation of an atomic frequency standard is expected to decrease as t−

1
2 for

long averaging times t. For a frequency standard which uses an ensemble of m
indistinguishable and independent atoms that are interrogated simultaneously, it
follows from the equivalence between time and ensemble average that the effective
averaging time is t′ = mt and the instability decreases therefore as m− 1

2 with the
number of atoms. This is equivalent to stating that the signal-to-noise ratio of a
single measurement of time t increases as m

1
2 .

The reproducibility of a frequency standard is a measure of how well two realiza-
tions of the same frequency standard agree with each other. The reproducibility
can be regarded as a measure of the control over the measurement procedure
and the apparatus realizing the standard. The reproducibility is limited by the
instability of the standard for the employed measurement time.

The accuracy is an estimate of the difference between a measured value and the
true value of the quantity that was measured. In most cases the true value of
the measured quantity, like an unperturbed atomic transition frequency, can not
be known and the accuracy is therefore more a qualitative than a quantitative
concept that represents a best estimate for the relation between the measured
and the true value. As in the case of the reproducibility, the accuracy that can
be achieved for a given measurement time is limited by the instability of the
standard. A low instability is therefore required for an accurate standard.
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The concepts of instability and accuracy are often combined in the term “uncer-
tainty”. The uncertainty of the frequency standard characterizes the dispersion
of the frequency values that could reasonably be expected in measurements. The
uncertainty is usually divided into two parts. The systematic uncertainty con-
tains the estimates on all effects that lead to a difference between the frequency
realized by the standard and the true frequency even in the case of negligible in-
stability. The statistical uncertainty is the minimum instability that is achieved
by the standard.

2.2 Concepts for Optical Frequency Standards

The most accurate frequency standards available at present are cesium fountain
standards based on the microwave transition near 9.2 GHz between the two hy-
perfine levels of the ground state in 133Cs. Instabilities σy = 1.6 · 10−14 t−

1
2 and

relative uncertainties of 7 ·10−16 have been demonstrated in comparisons between
cesium fountain standards [21]. A way to even lower relative instabilities and rela-
tive uncertainties are frequency standards that use optical transitions in atoms as
frequency references, because of the approximately 105 times higher transition fre-
quencies. Several concepts for optical frequency standards were proposed [37,38].
The three most promising concepts investigated at present are single ions stored
in radio frequency traps, free falling neutral atom ensembles prepared in magneto
optical traps and neutral atoms stored in optical lattices.

A single two-level atom at rest which is isolated from the environment is one
of the most simple quantum mechanical systems that can be imagined. The
frequency corresponding to the energy difference between the two levels will be
determined solely by the fundamental interactions between the constituents of
the atom and might therefore be the ideal reference for a frequency standard.
In fact, the whole concept of atomic frequency standards is motivated by this
idealized picture. The closest approximation to this ideal of an isolated two level
system that has been realized so far is a single laser cooled ion stored in a radio
frequency trap. Because of its good localization it can be treated as a point-like
particle in the interaction with the local oscillator and the interaction time can
in principle be arbitrarily long. According to the Fourier relation between the
time and the frequency domain, a long interaction time corresponds to a high
frequency resolution which allows to achieve a low instability for the frequency
standard. With respect to accuracy, a single ion has the advantage of being
a well-controlled and conceptually simple system. It is therefore expected that
relative uncertainties of 10−18 can be achieved with optical single-ion frequency
standards [24]. The drawback of using a single particle is that the signal-to-
noise ratio of the interrogation will be much smaller than for an ensemble of
atoms. Nevertheless the instability that can be achieved for an optical single-ion
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frequency standard is a few parts in 1015 t−
1
2 , which is still superior compared to

microwave standards like the cesium clock because of the much higher transition
frequency. Aside from the 2S1/2(F = 0) → 2D3/2(F = 2) transition in 171Yb+

[45,51,63] which is investigated in this work also other transitions in 171Yb+ [44],
199Hg+ [49, 64, 65], 88Sr+ [46, 47], 115In+ [42], 138Ba+ [66–68], 40Ca+ [69, 70], and
27Al+ [71] are investigated at present.

The problem of the low signal-to-noise ratio of single-ion standards can be over-
come by using a large ensemble of atoms. Ions are not well suited for this purpose
because of their strong mutual Coulomb interactions that would give rise to large
systematic uncertainties. Instead, as in the case of cesium fountain clocks, ensem-
bles of about 107 neutral atoms are prepared and laser cooled in a magneto-optical
trap (MOT). Because the interactions of the atoms with the MOT will disturb
the interrogation of the atoms by the local oscillator, the MOT has to be switched
off before the interrogation. Due to the finite temperature of the ensemble and
the influence of gravity, the atoms will leave the interrogation zone in a finite
time which sets a limit for the interrogation time. Concerning the uncertainty,
ensembles of atoms have the disadvantage that they are always extended systems
with internal interactions like collisions between atoms. It will therefore be much
more difficult to obtain the same level of control over the system as for single ions
and thus to obtain a similarly low systematic uncertainty. It is therefore expected
that ensembles of neutral atoms will be the basis for frequency standards with
supreme stabilities of only a few parts in 1017 t−

1
2 , while single ions will probably

achieve the lowest systematic uncertainties. Optical transitions in neutral atoms
are presently investigated for 40Ca [72, 73], 24Mg [74] and hydrogen [49, 53].

In 2001, H. Katori proposed a concept for an optical frequency standard which
he named “optical lattice clock”. It has the potential to combine the advantages
of single-ion and neutral-atom optical frequency standards [75, 76]. The idea is
that a large number of neutral atoms stored in an optical lattice at an average
atom density of less than one atom per lattice site is in principle similar to
a large ensemble of traps for single ions concentrated in a very small volume.
The main problem is that the dipole forces associated with the lattice lead to
large systematic shifts of the energy levels of the atoms by the Stark effect.
However, it can be shown that for a specific wavelength of the laser generating
the lattice, the energy shifts of two states can be exactly the same and the
frequency corresponding to their energy difference is therefore not affected by the
presence of the lattice. The system described in the proposal by Katori is the
1S0 → 3P0 transition in 87Sr which is currently investigated by several groups
[77–81]. Also experiments with the equivalent transition in neutral ytterbium are
beig developed [82].

Another interesting new development is the idea to use an optical nuclear transi-
tion in 229Th at an energy of about 3.5(1.0) eV [83] as a frequency reference [84].
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Because it is a nuclear transition several systematic effects that will limit the
uncertainty of single-ion standards are expected to be much reduced [84]. So
far no direct observation of the transition could be demonstrated in a number of
experiments [85–88]. Investigations in this direction were recently started in the
time and frequency department at PTB.

2.3 Absolute Frequency Measurement

One of the reasons why the first atomic frequency standards were based on mi-
crowave transitions is that the local oscillator frequency can be generated and
processed electronically. The direct counting of the cycles of an optical frequency
with electronic equipment is not possible. This made it difficult to measure
the absolute value of optical frequencies with respect to the cesium standard
defining the SI second and limited the applicability of optical frequency stan-
dards for a long time. The first absolute measurements of optical frequencies
required huge and complicated frequency chains that related the microwave fre-
quency of a cesium standard to the optical frequencies [89,90]. Also for the direct
comparison of two optical frequencies with relative uncertainties in the range of
10−15, new measurement techniques were needed because the best interferometric
wavelength comparisons have relative uncertainties of about 10−11. The situation
changed around 1999 with the advent of the so-called femtosecond laser frequency
combs [39, 40]: A train of phase coherent laser pulses in the time domain corre-
sponds in the frequency domain to a spectrum of equidistant narrow resonances
that are spaced at the pulse repetition frequency, while the total frequency width
of the spectrum is given by the inverse length of a single pulse. The frequency
of the nth comb mode can be written as fn = fceo + nfrep, where n is an integer
number and frep is the pulse repetition rate which can easily be measured with
a fast photodiode. Due to dispersion effects, the frequency origin of the comb
at n = 0 is shifted from zero frequency by the so called carrier envelope offset
(ceo) frequency fceo < frep. If the comb spectrum spans one octave that contains
frequencies fn as well as f2n the ceo frequency can be determined in the following
way: The frequency fn is frequency doubled and compared with the frequency
f2n from the other side of the comb spectrum. The frequency difference is then
2fn − f2n = 2(nfrep + fceo) − 2nfrep − fceo = fceo. Stabilizing both the ceo fre-
quency and the pulse repetition rate by comparison to a microwave frequency
standard, the frequencies of all comb modes are known within the instability of
the microwave reference.

A frequency comb can be used as a “ruler” to measure optical frequencies as
fopt = fceo +nfrep +Δf , where n is the integer number of the comb mode closest
to fopt and Δf is the beat frequency between the nth comb mode and the measured
optical frequency. For a suitable spacing of the comb modes, the mode number n
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can be determined with a conventional wavemeter. The instability properties of
femtosecond frequency combs have been studied in detail [40,91,92] and it can be
expected that their contribution to the uncertainty of frequency measurements
can be negligible. Femtosecond frequency combs can thus in the future provide
the “clockwork” for optical clocks. Many absolute frequency measurements of
optical frequencies were performed over the last years. The absolute frequency of
the reference transition of the 171Yb+ single-ion optical frequency standard was
measured twice with a frequency comb relative to a cesium fountain standard.
The weighted mean fY b = 688 358 979 309 311 (6) Hz has a relative uncertainty
of 1 · 10−14 [51, 52]. Recently absolute frequency measurements were performed
for reference transitions in 88Sr+ with a relative uncertainty of 3.4 · 10−15 [47]
and in 199Hg+ with a relative uncertainty of 1.5 · 10−15 [48], which is the lowest
uncertainty reported for an absolute frequency measurement so far.



Chapter 3

Trapping and Cooling of a Single
171Yb+ Ion

3.1 The Paul Trap

In order to study the properties of a single atom and its interactions with external
fields with high precision, it is advantageous to confine the atom for an extended
time in a small volume of space. In the case of ions it is most convenient to
use electric fields to generate a three dimensional attractive potential. Because
of the Laplace equation such a potential can not be realized using only static
electric fields. A dynamic trapping of the ion can however be achieved with a
time dependent quadrupole potential of the form

φ(r, t) = (UDC + UAC cos Ωt)
(1 + ε)x2 + (1 − ε)y2 − 2z2

κr2
0

, (3.1)

as was first proposed by W. Paul [22, 93]. The parameter r0 is a characteristic
dimension of the trap and ε describes the deviation of the potential from cylin-
drical symmetry. The parameter κ depends on the shapes of the electrodes that
generate the trap potential. For an ideal quadrupole trap whose electrodes per-
fectly conform to hyperbolic equipotential surfaces, κ = 2. Fig. 3.1 illustrates the
geometry of the trap electrodes and the potential for an ideal quadrupole trap
(ε = 0, κ = 2). The properties of the trap used in the experiments are discussed
in Sec. 4.1. The motion of an ion of mass m and charge Q in the potential φ(r, t)
is described by a set of Mathieu differential equations:

d2ri

dτ 2
+ (ai − 2qi cos 2τ)ri = 0 , (3.2)

12
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U +U cos tDC AC �

(a) (b)

r0

Figure 3.1: Ideal quadrupole trap. (a) Geometry of the equipotential surfaces
x2+y2−2z2 = ±r2

0 of the ideal quadrupole potential. (b) Section along the (x, z)-
plane through the electrode configuration that generates the ideal quadrupole
field.

with

ai =
8γiQUDC

mΩ2κr2
0

, qi =
4γiQUAC

mΩ2κr2
0

, τ =
Ω

2
t , γi =

⎧⎨
⎩

(1 + ε) i = x
(1 − ε) i = y
−2 i = z .

(3.3)

A detailed discussion of properties of the Mathieu equations can be found in [94].
Here it is only important that for ai, qi � 1 and UDC < UAC Eq. (3.2) has stable
solutions that can be written as

Ri(τ) = Ri cos
2ωi

Ω
τ
(
1 +

qi
2

cos 2τ
)
, i = x, y, z . (3.4)

The part proportional to qi is an oscillation at the trap frequency Ω, the so-called
micromotion. For times τ > 1/Ω the mean kinetic energy of the micromotion,
which is proportional to E2

i and thus to the square of the distance from the trap
center, acts on the ion as a static pseudo-potential

Φ(Ri) =
m

4Q
ω2

iR
2
i . (3.5)

A measure for the depth of the potential is the quantity

Di � eΦ(r0)

2
. (3.6)

The harmonic motion at the frequency ωi in this pseudo potential is called the
secular motion of the ion. From [94,95] one finds

ωi � Ω

2

√
γiai − (γiai − 1)γ2

i q
2
i

2(γiai − 1)2 − γ2
i q

2
i

− (5γiai + 7)γ4
i q

4
i

32(γiai − 1)3(γiai − 4)
. (3.7)
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where ωi is given up to order q4. In a not perfectly ideal quadrupole potential
generated by a real trap, the description of the motion of the ion in the trap
given above is nevertheless a good approximation if the ion stays close to the
trap center. If the ion is far from the trap center, depending on the actual trap
design effects of higher-order multipole terms of the trap potential can become
important.

According to the above equations, the ion in the trap oscillates around the field-
free trap center and the motions along the three Ri-directions are independent.
For a given potential the amplitudes of the secular and micromotion depend on
the initial velocity of the ion and any further interactions with its environment,
like collisions with the background gas. In order to achieve a good localization of
the ion it is necessary to remove as much of the ion’s kinetic energy as possible.
In the experiment this is done by laser Doppler cooling, which will be described
in Sec. 3.3. Since the amplitude of the micromotion depends on the mean dis-
tance of the ion from the trap center, cooling of the secular motion also reduces
micromotion as long as the motion is symmetric around the trap center. The
situation is usually different if additional electric fields are present that do not
have the same symmetry as the trap field (see Sec. 3.4).

It is obvious that without a rapid cooling process in the trap region, ions brought
into the trap from the outside will not be trapped due to conservation of energy.
In order to store an ion in the trap, a neutral atom is therefore ionized in the
trap region either by electron impact or photoionization (see Sec. 4.1).

3.2 Level Structutre of 171Yb+

Ytterbium is a rare earth metal first discovered in 1878 by Jean de Marignac and
named after the swedish village Ytterby. It belongs to the lanthanide group of
the periodic table of elements. Table 3.2 at the end of this section lists the seven
stable isotopes. Singly ionized ytterbium has a strong alkali-like 2S1/2 → 2P 1/2

resonance transition that can be used for laser Doppler cooling and detection
of the ion by resonance fluorescence. For the realization of a single-ion optical
frequency standard, 171Yb+ is especially well suited. It has a nuclear spin I = 1/2,
so that mF = 0 → mF ′ = 0 transitions which are not subject to the linear Zeeman
effect in low magnetic fields (see Sec. 7.2) are available in a level system with
relatively simple hyperfine and magnetic-sublevel structure. Fig. 3.2 shows the
relevant energy levels of 171Yb+ and Table 3.1 gives their lifetimes and hyperfine
splittings. A detailed overview of the properties of different transitions in 171Yb+

and 172Yb+ and their application in frequency metrology is given in [96, 97].

The quasicycling 2S1/2(F = 1) → 2P 1/2(F = 0) electric dipole transition at
369.5 nm is excited by a linearly polarized laser beam for Doppler cooling and
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Figure 3.2: Level scheme of the 171Yb+ ion. The expressions in round brack-
ets label the type (E: electric, M: magnetic) and multipole order of the atomic
transition

detection of the ion. The natural linewidth of the cooling transition is γP =
ΓP/(2π) � 23 MHz. In the experiment the fluorescence rate on resonance is
R � 1 · 107 s−1 , well below the saturation limit Rmax = ΓP/2 � 7.2 · 107 s−1.
For optimum laser cooling the laser is usually detuned by ΔL = −γP/2 from
resonance. In order to avoid optical pumping to nonabsorbing superpositions of
magnetic sublevels in the 2S1/2(F = 1) manifold, a Larmor precession frequency of
order R/(2π) is introduced by a static magnetic field |B| � 400μT oriented at an
oblique angle with the polarization of the cooling laser field. The optimum value
for |B| and the orientation of the laser polarization are adjusted by maximizing
the fluorescence rate R.

By nonresonant excitation the cooling laser can populate the 2P 1/2(F = 1) state
with a rate RNR � R(ΓP/(2ΔP1/2

)2 � 3 · 102 s−1, where ΔP1/2
is the hyperfine

splitting of the 2P1/2 state. Spontaneous decay from the 2S1/2(F = 1) state is
predominantly to the 2S1/2(F = 0) state, which is not excited by the cooling laser.
In order to ensure a continuous scattering of photons from the cooling laser, the
2S1/2(F = 0) state is depopulated by a repumper sideband of the cooling laser
that is in resonance with the 2S1/2(F = 0) → 2P 1/2(F = 1) transition.

The 2P1/2 state can also decay with probability of approximately 7 · 10−3 to
the 2D3/2 state which decays to the 2S1/2 state after a natural lifetime of about
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Table 3.1: Properties of the atomic levels in 171Yb+ relevant for laser cooling and
detection

State Measured lifetime Hyperfine splitting Reference
2S1/2 - ΔS1/2

= 2π · 12.6 GHz [98]
2P1/2 8.1(1) ns ΔP1/2

= 2π · 2.1 GHz [99, 100]
2D3/2 52(1) ms ΔD3/2

= 2π · 0.86 GHz [101,102]
2D5/2 20(5) ms ΔD5/2

= 2π · 0.82 GHz [96, 103]
3[3/2]1/2 37.7(5) ns Δ[3/2] = 2π · 2.5 GHz [98]
1[5/2]5/2 <160 ms Δ[5/2] = 2π · 0.191 GHz [97, 103]

2F7/2 ≤ 10 yr ΔF7/2
= 2π · 3.6 GHz [104,105]

52 ms and thus causes extended dark periods in the fluorescence of the ion.
An additional repumper laser at λ = 935.2 nm is therefore used to excite the
ion resonantly from the 2D3/2(F = 1) state to the 3[3/2]1/2(F = 0) state from
where the ion decays rapidly to the 2S1/2(F = 1) ground state. Due to the
rather small hyperfine splittings ΔD3/2

= 2π · 0.86 GHz of the 2D3/2 state and
Δ[3/2] = 2π · 2.5 GHz of the 3[3/2]1/2 state this laser can also nonresonantly
excite the 2D3/2(F = 2) → 3[3/2]1/2(F = 1) transition. This effectively reduces
the lifetime of the 2D3/2(F = 2) state, which has to be accounted for in the
interrogation of the 435.5 nm transition (see Sec. 4.2.2).

Collisions with the background gas can also lead to a population of the 2D5/2

state which can decay to the extremely long-lived 2F7/2 state. This can happen
several times per hour, depending on the pressure of the background gas. A laser
at λ = 638.6 nm transfers the atom to the 3[5/2]5/2 state, reducing the average
dwell times in the 2F7/2 state from ∼1 h to ∼1 s.

Several transitions in 171Yb+ can be used for the realization of an
atomic frequency standard. The transition studied in this work is the
2S1/2(F = 0, mF = 0) → 2D3/2(F = 2, mF = 0) electric quadrupole transition
with a natural linewidth of 3.1 Hz at 435.5 nm, which will be simply called clock
transition in the following. Other transitions that are currently investigated are
the 2S1/2(F = 0) → 2F 7/2(F = 3) electric octupole transition [43, 44, 47] and the
2S1/2(F = 0) → 2S1/2(F = 1) microwave hyperfine transition [106].
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Table 3.2: Stable isotopes of ytterbium

Isotope Atomic mass Nuclear spin Abundance [%]
168 167.934 0 0.135
170 169.935 0 3.03
171 170.937 1/2 14.31
172 171.937 0 21.82
173 172.938 5/2 16.13
174 173.939 0 31.84
176 175.943 0 12.73

3.3 Laser Cooling of 171Yb+

After a ytterbium atom is ionized in the trap region, the ion has a mean kinetic
energy which is at least one half of the value of the pseudo-potential at the point
of ionization. In order to achieve a good localization of the ion, its velocity is
reduced by laser cooling on the 2S1/2(F = 1) → 2P1/2(F = 0) transition. A
detailed description the theory of laser cooling is given in [107–109].

In a semi-classical picture laser cooling of a free atom can be understood qualita-
tively as follows: The atom will predominantly absorb photons from the laser if
the Doppler shift due to its velocity brings the laser frequency ωL and the atomic
transition frequency ω0 into resonance. The emission of photons by spontaneous
decay is isotropic and therefore on average no momentum is transferred to the
atom by the emission process. After N � 1 cycles of absorption and emission the
kinetic energy of the atom has therefore in the rest frame of the laser changed by
Nh̄(ωL−ω0)+2ER, where ER = (h̄kL)2/(2M) is the energy of the photon recoil.
For ωL < ω0 + 2ER the velocity of the atom is reduced. If only one laser is used,
only the velocity of the motion towards the laser beam will be reduced, while in
the opposite direction and in the plane perpendicular to the laser beam heating
will occur due to the photon recoil. Thus in general for every direction of motion
laserlight fulfilling ωL < ω0 + 2ER is necessary, in order to cool all directions of
motion of a free atom.

The situation is different if the atom is bound by a potential with discrete energy
eigenstates, like the harmonic potential of a Paul trap. If the energy difference
between the eigenstates of the potential is large compared to the photon recoil
energy, the photon recoil can only with small probability excite the atom to a
higher motional state. Most of the time, the photon recoil instead increases the
kinetic energy of the center of mass motion of the atom-trap-system. However,
the corresponding velocity change of the center of mass is zero because the trap
is treated as having infinite mass, which is equivalent to the assumption that
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the trap potential itself is unaffected by the dynamics of the atom. For an atom
trapped in a harmonic potential, one laser beam is sufficient to cool the motion
of the atom in the potential in three dimensions as long as the secular frequencies
for the three directions of motions are not degenerate and the laser beam has a
finite projection on all three directions of motion. Then no stationary oscillation
of the atom perpendicular to the laser beam exists.

At the beginning of the cooling process in a harmonic potential the kinetic energy
of the atom is so large that the quantum nature of its motion can be neglected
and the motion of the atom can be treated as a classical harmonic oscillator.
The cooling process in this regime is discussed in detail for example in [107,108].
In the following the discussion of laser cooling of an atom in a harmonic trap
potential will concentrate on the final stage of the process when the atom has
reached the so called Lamb-Dicke regime where it is localized on a scale smaller
than the laser wavelength and the quantum mechanical description of the motion
is simplified. The internal degrees of freedom of the atom are described as a
two-level system, while the laser field is treated as a classical plane wave. The
saturation parameter s = 2Ω2

R/Γ
2 is assumed to be much smaller than one. Here

ΩR is the resonant Rabi frequency for the interaction of the laser with the two
level system and Γ is the decay rate of the excited state. This means that the
intensity of the laser light is assumed to be small enough that a motional state n
of the harmonic oscillator is coupled only to adjacent states n− 1, n + 1 by the
interaction with the laser field. Further it is assumed that the cooling process is
slow compared to the internal dynamics of the atom so that the interaction of the
internal degrees of freedom with the light field is determined by the steady-state
solution of the Bloch equations for a two-level atom at rest. The time evolution
is then described by the Hamiltonian [109]

H = H0 +Hcm +Hdipole , (3.8)

H0 = −h̄ΔL

2
σz , (3.9)

Hcm =
p2

2m
+

1

2
m
(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
, (3.10)

Hdipole(r) = h̄
ΩR

2

(
σ+e−ikLr + σ−eikLr

)
, (3.11)

where H0 is the Hamiltonian of the free two-level atom, Hdipole describes the
dipole interaction of the laser with the atom and Hcm describes the center of
mass motion of the atom in the trap. The following quantities were introduced:
σ± are the pseudospin operators of the two level system, the components of the
Bloch vector are σx = σ+ + σ−, σy = (σ+ − σ−)/i, and σz, ΔL is the detuning of
the laser from resonance, kL is the wave vector of the laser, r, p are the position
and momentum operators of the atom, and m is the mass of the atom.

In the Lamb-Dicke regimeHdipole can be expanded in powers of kLr ∼ 2πr/λ� 1.
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Up to first order, one finds

Hdipole(r) = Hdipole(0) − F (0).r + . . . =
ΩR

2
σx − ΩR

2
kL.rσy + . . . . (3.12)

The second term is the dipole force of the laser field acting on an atom at rest.
The steady-state solution of the Bloch equations for the atomic polarization σy

averaged over the internal degrees of freedom of the atom is [109]

〈σy〉SS =
ΓΩR

Γ2/2 + 2Δ2
L + Ω2

R

(3.13)

The dipole force on the atom at rest is then given by

F (0) = h̄kL
ΓΩ2

R

Γ2 + 4Δ2
L + 2Ω2

R

. (3.14)

The time evolution of the mean vibrational quantum number of the atom is
described by a master equation that can be written as [109]

d

dt
〈ni〉 = −(A−

i − A+
i ) 〈ni〉 + A+

i , i = x, y, z . (3.15)

The functions A−
i , A

+
i describe the rates at which the atom is transferred from a

given vibrational state n to the nearest lower vibrational state (n− 1) or excited
to the next higher one (n+ 1) by the absorption of a photon from the laser field.
The rates are given by

A−
i = 2Re[S(ωi) +Di] , (3.16)

A+
i = 2Re[S(−ωi) +Di] , (3.17)

where

S(ωi) = η2
i

(
ΩR

2

)2 ∫ ∞

0

eiωit 〈σy(t)σy(0)〉SS dt (3.18)

is the fluctuation spectrum of the dipole force. Because of the motion of the atom
it is phase modulated in the rest frame of the atom. The diffusion term

Di = α
η2

i ΓΩ2
R

(Γ2 + 4Δ2
L + 2Ω2

R)
(3.19)

describes a random walk of the center of mass in momentum space due to spon-
taneous emission. The parameter α depends on the angular pattern of the spon-
taneous emission. For isotropic emission it is equal to 1/3. The ηi are the
Lamb-Dicke parameters defined as

ηi =
2π cos θi

λL

√
h̄

2mωi
, (3.20)



20 3. Trapping and Cooling of a Single 171Yb+ Ion

where the θi are the angles between the laser and the three directions of motion.
All the equations involving the Lamb-Dicke parameters are valid up to order η2

i .

If Wi = A−
i −A+

i > 0 in Eq. (3.15), the motion of the atom in the trap is cooled
and Wi is therefore called the cooling rate. The dynamics described by Eq. (3.15)
is similar to that of a damped harmonic oscillator coupled to a finite temperature
reservoir. Here the reservoir is the phase modulated dipole field of the laser
and the damping is the spontaneous emission. The end of the cooling process is
reached when d

dt
〈ni〉 = 0 and the steady state energy above the motional ground

state is
Ei = h̄ωi

A+
i

A−
i −A+

i

= h̄ωi
A+

i

Wi
. (3.21)

Two regimes for laser cooling of bound atoms can be distinguished depending on
the ratio of the secular frequencies ωi relative to the spontaneous decay rate Γ
on the cooling transition:

For ωi � Γ, the atom is in the regime of “strong” binding. Here the motion of the
atom leads to discrete sidebands in the spectrum of the atom at multiples of the
secular frequencies ωi. It can be shown [108] that in this case the atom can be
transferred to the motional ground state of the potential by selectively exciting
it on the first red detuned secular sideband (assuming that the laser linewidth is
small compared to the secular frequencies). This process can be viewed as optical
pumping between motional states via the excited state of the atom or as anti-
Stokes Raman scattering by the bound atom in the trap.

If ωi � Γ, the atom is in the regime of “weak” binding also called the “heavy
particle limit” [107], where the motion of the atom is slow compared to the time
for the absorption and emission of one photon. The cooling process can then
be regarded as instantaneous and the situation is similar to the one for Doppler
cooling of a free atom.

For the case of the 2S1/2(F = 1) → 2P 1/2(F = 0) cooling transition in 171Yb+

one has ωi/Γ < 5 · 10−3 � 1 so that the condition for the weak binding regime
is fulfilled. The real part of the fluctuation spectrum of the dipole force in the
weak binding regime calculated from Eq. (3.14) is given by [110]:

S(±ωi) =
η2

i ΓΩ2
R

Γ2 + 4(ΔL ∓ ωi)2 + 2Ω2
R

, (3.22)

which leads up to zero order in ωi/Γ to a cooling rate

Wi � −8η2
i s

Γ

ωiΔL

(1 + s+ 4Δ2
L/Γ

2)2
. (3.23)

The steady state energy is then also up to zero order in ωi/Γ given by

Ei � − h̄Γ

8
(1 + α)

(
(1 + s)

Γ

2ΔL

+
2ΔL

Γ

)
. (3.24)
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This energy has a minimum for ΔL = −√
1 + sΓ/2. In the limit s→ 0 this leads

to the so-called Doppler limit

ED = h̄
Γ(1 + α)

4
=

1

2
kBTD , (3.25)

where kB is Boltzmann’s constant. The effective temperature TD is called the
Doppler temperature. For α = 1/3, TD � 0.37 mK in the experiment. In
the limit ωi/Γ → 0, used to derive the Doppler limit, the final temperature is
independent of the secular frequency ωi and the Lamb-Dicke Parameters ηi and
therefore the same for all three directions of motion. This reflects the fact that
Doppler cooling is ultimately limited by the diffusion in momentum space due
to spontaneous emission. For α = 1/3, the mean vibrational quantum numbers
〈ni〉D at the Doppler limit are

〈ni〉D =
Γ

3ωi

− 1

2
�
{

11 i = x, y
5 i = z

. (3.26)

For the cooling transition of 171Yb+ used in the experiments the harmonic motion
of the ion does not lead to resolved sidebands in the fluorescence spectrum because
ωi � Γ. However, the width and relative intensity of the motional sidebands can
still be studied by optical heterodyne methods [110].

For the clock transition one has ωi � Γ. The motional sidebands are well resolved
and their intensities relative to the central resonance at the Doppler limit are
given by [107]

I±i
I0

� η2
i

(
〈ni〉D +

0
1

)
= cos2 θi

{
0.14(−), 0.15(+) i = x, y
0.03(−), 0.04(+) i = z

(3.27)

Here (−), (+) denote the respective first sideband below (above) the resonance
and the Lamb-Dicke parameters in the experiment are ηx,y � 0.11 cos θx,y, ηz �
0.08 cos θz. Eq. (3.27) presents another way of stating the condition for the Lamb-
Dicke regime. The modulation indices that determine the intensities of the side-
bands are βi = kL cos θiri, where ri is the amplitude of the ion motion in the
i-direction. Going back to the definition of the Lamb-Dicke Parameters one finds
that for 〈ni〉D = 0, βi = ηi. The condition ηi � 1 for the Lamb-Dicke regime
is therefore equivalent to stating that the spectrum of the ion consists only of a
carrier and two sidebands which are weak compared to the carrier. The values
for the I±i given above thus justify the previous assumption that the final stage of
the cooling process takes place in the Lamb-Dicke regime. Since the Lamb-Dicke
parameters depend on the inverse of the secular frequencies ωi, it is obvious that
in order to reach the Lamb-Dicke regime the trap has to be designed such that the
secular frequencies are high enough to obtain ηi � 1. The calculated values I±i
can be compared with measurements in order to verify that the cooling process
brings the ion close to the Doppler limit in the experiment (see Sec. 5.3.1).



22 3. Trapping and Cooling of a Single 171Yb+ Ion

As has been discussed in Sec. 3.2, the cooling scheme for the ytterbium ion in-
volves not only the 2S1/2(F = 1), 2P 1/2(F = 0) four-level system but also other
atomic states. However, a detailed theoretical and experimental investigation of
the fluorescence spectrum of the cooling transition has shown [110] that the for-
malism for the two-level system is a good description for the ytterbium system.
The main modification with respect of the two-level system is that for the ytter-
bium case the total elastic scattering rate on the cooling transition is about six
times lower than for a two-level system with the same natural decay rate Γ. This
modifies the saturation condition, but plays no role for an excitation far below
saturation.

3.4 Compensation of the Electric Stray Field

The considerations in the previous sections assumed that aside from the trap
potential (3.1) no other external electric fields are present. The effect of an
additional static electric stray field E on the motion of the ion is especially
important, because it leads to a force F = QE that shifts the mean position
of the ion away from the otherwise field free trap center to a new equilibrium
position [111]

R′
i =

8QEi

m(2ai + q2
i )Ω

2
� QEi

mω2
i

, i = x, y, z . (3.28)

The ion oscillates around the new position R′ and as a result micromotion is
no longer cooled effectively, because it is now driven motion. This driven micro-
motion is also called “excess” micromotion [111], to distinguish it from the one
caused by the secular motion. The mean square of the trap field at the position
R′ is [111]
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where Ti is the effective kinetic temperature of the secular motion along the Ri-
direction. The first term is the mean square field due to the secular motion,
while the second term is the contribution from the electric stray field. As will be
seen in Sec. 7.3, this second term can lead to significant quadratic Stark shifts of
the atomic levels, while the excess micromotion is the main source of the second
order Doppler shift discussed in Sec. 7.1. A good compensation of the electric
stray field is therefore necessary in order to attain small systematic uncertainties
for a frequency standard based on trapped ions. If the excess micromotion is
large, the ion can also leave the Lamb-Dicke regime. The fluorescence spectrum
of the ion would then contain many strong sidebands at multiples of the secular
frequencies, which would also complicate laser cooling.
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Several schemes for the detection and the reduction of excess micromotion caused
by an electric stray field were demonstrated in the past [111–113]. The one used
in the experiments described in this work exploits the fact that the shift in the
position of the ion due to the electric stray field is according to Eq. (3.28) inversely
proportional to the depth of the pseudo-potential, which is again determined by
the a- and q-parameters. The a-parameters are proportional to the dc voltage
UDC applied to the trap. If an electric stray field is present, then decreasing (or
increasing) the depth of the potential by changing the dc voltage will increase
(decrease) the distance of the ion from the trap center, while if no stray field is
present the position of the ion will remain the same. Because the a-paramter
for the r = (x, y) direction is opposite in sign to the one for the z-direction,
the potential can be selectively lowered in either the r- or the z-direction by
choosing the appropriate sign for UDC . In the experiment the fluorescence of
the ion induced by the cooling laser is imaged with a magnification M onto an
intensified CCD camera, that allows to detect changes in the position of the ion
with a resolution δ. The resolution of the imaging system is Δ = δ/M . From
Eq. (3.28) one finds then for the minimum electric stray field Emin that can be
detected

(Emin)i =
mω2

i

NiQ

Δ

cosϑi

, (3.30)

where Ni is the factor by which the potential is lowered and ϑi is the angle
between the direction of motion and its projection on the plane of observation.
For the compensation of the electric stray field, additional dc voltages can be
applied to compensation electrodes such that the ion does not change its position
by more than δ in any direction when the depth of the potential is changed. Note
that this procedure only leads to a compensation of the electric stray field if the
dc and ac quadrupole potentials of the trap have the same reference potential.
Therefore UDC and UAC are both applied either to the ring or the trap endcaps.

The mean square of the trap field at the position Rmin of the ion after the stray
field compensation is according to equations Eq. (3.30) and Eq. (3.29)
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and the corresponding mean kinetic energy of the excess micromotion after com-
pensation is given by [111]
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where 〈v2
i 〉 is the effective mean square velocity of the excess micromotion

and T ′
i denotes the effective kinetic temperature of the excess micromotion.

In the experiment typical values for the parameters are Ω � 2π · 16 MHz,
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ax = ay = az = 0, qr ≡ qx � qy = 0.11, qz = −0.22, ωr ≡ ωx � ωy = 2π · 660 kHz,
ωz � 2π · 1.34 MHz, Δ = 1.6μm, and ϑi < π/3. The trap potential is typi-
cally lowered to about 0.25 eV in the r- as well as the z-direction, corre-
sponding to Nz = 64 = 2Nr. If the secular motion is at the Doppler limit
Tr = Tz = TD � 0.37 mK, one finds:

(Emin)z � 2(Emin)r < 6
V
m
, (3.33)

|Rmin| � 100 nm , (3.34)〈
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m2
, (3.35)

T ′
r � T ′

z < 5 mK . (3.36)

So far only the effects of a static stray field was discussed. The influence of a
time dependent electric stray field depends on the time scale of its variation. A
Stray field that varies slowly compared to the time needed for the compensation
procedure can be detected by repeating the compensation several times and the
rate of change in the compensation voltages yields information about the time
scale of the stray field variation. Such a drift of the compensation voltages can
pose a problem, because it limits the length of continuous time intervals available
for measurements. For the experimental setup described in this work it was found
that the compensation voltages normally do not change detectably over several
hours and only slight changes are typically observed from one day to another,
except for the time directly after an ion was loaded into the trap. In this case
it takes approximately one day until the compensation voltages are again stable
enough to do precision measurements. This effect is probably due to the large
amount of charges deposited on the trap electrodes during the loading process.
Part of these charges might become trapped for long times in areas where due
to impurities on the surface of the trap electrodes their mobility is hampered.
A Stray field that varies on short timescales would lead either to observable
oscillations or distortions of the ion’s image on the CCD camera, both of which
are not observed in the experiment.

Another effect that can lead to excess micromotion is a phase difference between
the potentials applied to the trap electrodes [111]. Tests in which the fluores-
cence rate on the cooling transition was observed as a function of an applied
variable phase difference suggest that no significant phase shifts are present in
the experiment under normal operating conditions [114].
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Experimental Setup

4.1 The Traps

Two Paul traps of identical design are used in the experiments. Fig. 4.1 shows
a schematic drawing of the electrode configuration and Fig. 4.2 shows a photo-
graph of one of the traps. Instead of using electrodes with hyperbolic surfaces as
shown in Fig. 3.1, the inner side of the ring electrode and the ends of the endcap
electrodes have conical shapes that were designed to generate a potential which
is close to the ideal quadrupole potential [115,116]. The trap electrodes are made
of molybdenum and the inner diameter of the ring electrode is 2r0 = 1.4 mm.
The theoretical geometry parameter for this trap design is κ � 2.161. The conical
trap electrodes are much more easy to manufacture than the hyperbolic ones and
offer the additional advantage of a larger accessible solid angle for fluorescence
detection and positioning of laser beams.

The traps are typically operated at a radiofrequency trap drive voltage of
UAC � 600 V at a frequency Ω � 2π · 16 MHz, leading for zero dc trap volt-
age UDC to a potential depth of about 17 eV in the axial direction and secular
frequencies ωz � ωx + ωy � 2π · 1.3 MHz. The q-parameters obtained from
these values are qz � −0.22 and qx � qy � 0.11. The potential is to a good ap-
proximation cylindrically symmetric. The relative splitting of the radial secular
frequencies 2(ωx − ωy)/(ωx + ωy) is only about 1% (see Sec. 5.3.1). The values
of the parameters κ/r2

0 and UAC are difficult to measure directly, but they can
be determined from measurements of the secular frequencies with high accuracy
using the formulas from Sec. 3.1. The results obtained agree with the values
derived from the assumed trap geometry and with numerical simulations of the
trap potential to within 5%. Both the radiofrequency voltage UAC and the static
voltage UDC are applied to the ring electrode. An additional differential voltage

1The trap design corresponds to the configuration No. 4 in [115].

25
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Figure 4.1: Section along the (x, z)-plane through the trap electrode configuration
(black) used in the experiment. A numerical simulation of the electric potential
Φ outside the electrodes is shown for voltages UAC = 0 V, UDC = 8 V applied to
the ring electrode relative to the endcap electrodes.

can be applied between the endcap electrodes for compensation of the electric
stray field along the trap axis.

The traps are mounted in the centers of cubic quartz glass vacuum chambers with
a size of about 50 × 50 × 50 mm3 pumped by ion getter pumps. The pressure
of the residual gas is below 10−7 Pa, except for hydrogen that has an estimated
partial pressure of ≤ 10−6 Pa. Optical access to the trap is provided through one
flat side of the quartz cube for fluorescence detection and four Brewster windows
for laser excitation mounted on the cube faces perpendicular to the observation
window. The connection to the getter pump and the mechanical mounting of the
trap are on the opposite side of the of the observation window. The maximum
aperture angle of the trap is about 38◦. The vacuum chamber is held by a metal
mount that rests on an optical table. Pieces of silicon rubber between the mount
and the vacuum chamber and below the mount provide vibration isolation against
the optical table. A separate metal box around the vacuum chamber protects the
trap from electric stray fields and ambient light.

Ions are loaded into the trap by ionizing neutral ytterbium atoms in the trap
region by electron impact. For this purpose a tantalum tube filled with metal-
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Figure 4.2: Picture of one of the traps used in the experiments. 1: ring electrode
(Ø1.4 mm), 2: endcap electrode, 3: ytterbium oven, 4: electron source.

lic ytterbium2 and an electron source realized by a thoriated-wolfram wire are
mounted at distances of about 5 mm from the trap. The tantalum tube is heated
electrically until a sufficiently large amount of neutral ytterbium starts to evapo-
rate, then the heating is switched off and a current Ie through the electron source
is switched on for a short time te. Some of the electrons emitted from the wire
collide with the ytterbium atoms and produce positive ions. Some of these will
get trapped in the electrical potential of the trap. The final temperature of the
tube and the total charge emitted by the wire which is proportional to Iete are
normally chosen such that on average at most one ion is stored in the trap dur-
ing one loading cycle. Additional static voltages applied to the electron source
and the oven are used in conjunction with the differential voltage between the
trap endcaps for the compensation of the electric stray field (see Sec. 3.4). For
this purpose the electron source and the oven are mounted at a mutual angle of
approximately 90◦.

A problem of the loading process described above is its low efficiency. Over
time this leads to a noticeable inhomogeneous coating of the trap electrodes
with ytterbium. The contact potentials at the interface of these patches with
the electrode material is believed to be one source of the electric stray field
leading to excess micromotion. Over time there may form also thin layers of

2Both traps have ovens for 171Yb and one has an additional oven for 172Yb.
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oxides or other insulating materials on some parts of the trap electrodes. Because
electrons deposited on such patches can be trapped there for long times, the use
of an electron source for ionization tends to increase the problem of electric stray
fields even further. A better method for ionizing the ytterbium atoms would
be photoionization by resonant two-photon absorption which has already been
demonstrated in various experiments for different atoms [117–120]. Due to the
much higher efficiency considerably smaller amounts of ytterbium have to be
evaporated from the oven and the number of ions that can be loaded into the
trap in a given time can be controlled much more precisely, reducing the number
of loading cycles. Moreover, the ionization process can be isotope-selective by
choosing a suitable frequency of the ionization laser. Aside from being thus
more convenient, the main advantages of photoionization are that it reduces the
amount of ytterbium deposited on the trap electrodes during loading and requires
no electron source.

The storage time for single ytterbium ions in the traps is extremely long even
without laser cooling and up to now, no limiting mechanism for the storage time
has been identified. The longest observed storage time was 16 months. The
typical storage time is several months, limited by accidental ion loss during the
stray field compensation procedure when the trap potential is lowered.

The strength and direction of the magnetic field in the trap is adjusted by three
sets of coils. The first set consisting of three single rectangular coils is located
outside the light shield box and is used to compensate the earth’s magnetic field.
A pair of coils mounted close to the vacuum chamber at an angle of 45◦ to the
Brewster windows provides the bias magnetic field of about 400 μT needed for
laser cooling of the ions (see Sec. 3.2). During excitation of the clock transition
by the probe laser the bias field is switched to a lower value of ≤ 1μT. Two
additional single coils are mounted close to the trap at a mutual angle of 90◦ in
the plane perpendicular to the direction of the bias field. Together with the bias
field coils, these coils realize an approximately orthogonal set of magnetic field
orientations that is used to adjust the magnetic field for spectroscopy of the clock
transition.

4.2 Lasers

Three laser systems at the wavelengths 369.5 nm [121], 935.2 nm [110], and
638.6 nm [110] are employed for laser cooling and detection of the ion, and one
at 435.5 nm [63] is used for the spectroscopy of the clock transition. One of
the advantages of the ytterbium system is that all the necessary wavelengths
can be produced from diode lasers, either directly or by frequency doubling.
Except for the 935 nm sources all lasers are shared between the two trap systems.
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The properties of the individual laser systems are summarized in the following
sections.

4.2.1 Cooling Laser

Laser Doppler cooling of 171Yb+ is done on the quasicycling 2S1/2(F = 1) →
2P 1/2(F = 0) dipole transition at 369.5 nm by a frequency-doubled extended-
cavity diode laser at 739 nm. The frequency doubling is done with a LiIO3

crystal in a ring resonator of finesse ∼ 400 and with a free spectral range of
∼ 750 MHz which acts also as a reference resonator for the short term frequency
stabilization of the laser. The output power of the laser at 369.5 nm is about
10 μW in a bandwidth of less than 0.5 MHz, which is much smaller than the
natural linewidth of the cooling transition. The typical drift of the laser frequency
is ∼ 1 MHz/min. The output beam of the laser is split into two beams in order
to allow simultaneous laser cooling in both available trap systems. Typical laser
powers used for driving the cooling transition below saturation are about 2 μW
for a beam waist in the trap of about 50 μm. By modulation of the injection
current of the 739 nm diode laser at 14.7 GHz, a sideband is generated that excites
the 2S1/2(F = 0) → 2P 1/2(F = 1) repumper transition (see Sec. 3.2). The free
spectral ranges of the extended cavity and of the ring resonator are chosen such
that the sidebands are resonant with both cavities and therefore imparted also on
the output at 369.5 nm. The relative strength of the sidebands is a few percent,
which is sufficient to reduce the average dwell time of ions in the 2S1/2(F = 0)
state to less than 10−4 s.

The linear polarization of the laser is oriented such that the polarization vector
lies in the plane defined by the wave vector of the laser and the orientation of
the bias magnetic field. For an angle of 45◦ between the wave vector and the
magnetic field this configuration maximizes the fluorescence rate on the cooling
transition [110].

4.2.2 Repumper Lasers

There are two repumper lasers at 935.2 nm available for the two trap systems.
Both are extended-cavity diode lasers, which are frequency stabilized to tempera-
ture stabilized Fabry-Perot etalons. By changing the temperature of the etalons,
the lasers are tuned to the 2D3/2(F = 1) → 3[3/2]1/2(F = 0) resonance. The
output powers of the two lasers are ∼ 2 mW and ∼ 40 mW in bandwidths of
about 10 MHz. The frequency drift of the Fabry-Perot reference cavities is small
enough to keep the laser frequency on the atomic resonance for several hours. Be-
cause the lasers also non resonantly excite the 2D3/2(F = 2) →3 [3/2]1/2(F = 1)
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transition and thereby reduce the effective lifetime of the upper state of the clock
transition, the output power of the lasers is attenuated to about 100μW for a
beam waist of the laser in the trap of about 50μm. This power is sufficient to ef-
ficiently deplete the 2D3/2(F = 1) level without significantly reducing the lifetime
of the 2D3/2(F = 2) state.

The repumper laser at 638.6 nm for depletion of the long-lived 2F7/2 state via
the 3[5/2]5/2 state is also an extended-cavity diode laser, but without additional
stabilization to an external reference cavity. In order to deplete both hyperfine
sublevels of the 2F7/2 state, the linewidth of the laser is intentionally broadened
to about 100 MHz by a frequency sweep and the center frequency is periodically
switched by about 4.8 GHz. The output power of the laser is about 0.7 mW and
as in the case of the cooling laser, the output is divided between the two trap
systems.

4.2.3 Probe Laser

The light for the excitation of the clock transition is generated from a frequency-
doubled extended-cavity diode laser at a wavelength of 871 nm. The linewidth of
the free-running laser is about 20 kHz. In order to achieve a frequency stability
of the laser which allows a frequency resolution close to the natural linewidth
of the clock transition, the laser frequency is stabilized by the Pound-Drever-
Hall method to an external high-finesse reference resonator made out of ultralow
expansion (ULE) glass. The finesse of the resonator is approximately 105 and the
free spectral range is 1.5 GHz. The resonator is mounted in a vacuum chamber on
a commercially available passive vibration isolation platform. Additional isolation
against air currents is provided by a box around the platform. About 10 μW of
the laser output are used for the stabilization. This light is first passed through an
acusto-optical modulator (AOM) and then coupled to the resonator by an optical
fiber. The remaining laser output is used to injection lock two other extended
cavity diode lasers that are separately frequency doubled with KNbO3-crystals to
provide the 435.5 nm light for the excitation of the clock transition in the two trap
systems. Two additional AOMs allow independent frequency tuning of the probe
laser frequencies for the two trap systems. For the clock transition, Fourier limited
linewidths of the excitation spectra down to 10 Hz were so far demonstrated in
the experiment with this setup for both trap systems [54] (see also Sec. 5.3.3).
The long-term linear frequency drift of the laser is about −0.16 Hz/s at 435.5 nm.
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4.3 Fluorescence Detection

The fluorescence light of the ion induced by the cooling laser is imaged by a
combination of a doublet lens, a single lens, and a pivoting mirror onto either a
photomultiplier or an intensified CCD camera. The image on the CCD camera
is used to monitor the position of the ion during the compensation of the electric
stray field (see Sec. 3.4). The spatial resolution of the imaging system is about
2 μm and is about the same for both trap setups. The photomultiplier signal
allows an efficient determination of the total fluorescence rate with a high time
resolution. For a laser cooled ion the observed count rates are about 30 kHz on re-
sonance for a saturation parameter of s = 1. Typical count rates for spectroscopy
are about 18 kHz on resonance. The stray light from the lasers contributes about
100 Hz to the count rate, while the ambient light plus the dark counts of the
photomultiplier contribute about 30 Hz.
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Interrogation of the 436 nm
Reference Transition

5.1 Interrogation Sequence

Fig. 5.1 shows the experimental sequence that is employed to obtain an exci-
tation spectrum of the 2S1/2(F = 0) → 2D3/2(F = 2) resonance by an optical
double resonance scheme. During steps (1) and (2), the ion is laser cooled for
typically td + tc = 20 ms and the induced fluorescence light is detected by a
photomultiplier. Typical fluorescence count rates at the halfpoint of the cooling
resonance are 9 kHz, with a background count rate of 130 Hz. Then, the re-
pumper sideband of the cooling laser is switched off. Within a time thf = 20 ms,
the ion will be transferred with high probability to the 2S1/2(F = 0) ground state
via nonresonant excitation to the 2P 1/2(F = 1) state and the fluorescence signal
will disappear (step (3)). The cooling and repumper lasers are then blocked by
mechanical shutters and the magnetic field is switched from the high bias field
Bc ∼ 400μT needed for cooling to a field Bp ∼ 1μT for spectroscopy. After a
waiting time of about 10 ms which ensures that the magnetic field has settled to
its new value, a pulse of length tp from the probe laser is applied (step (4)). As
long as 1/tp is larger than the natural linewidth of the atomic transition, tp de-
termines via the Fourier transformation the frequency resolution of the resonance
signal, while the laser intensity and the detuning from resonance determine the
effective Rabi frequency for the excitation. The cooling and repumper lasers are
switched on again about 3 ms after the end of the probe pulse, ensuring that
the interrogation is not disturbed by stray light. The state of the ion is detected
by the so-called electron shelving method proposed by H. Dehmelt [23, 24]. If
the ion is still in the ground state after the excitation attempt, the fluorescence
signal will reappear immediately, while if no significant signal is detected for a
time td = 4 ms in step (1), the ion was with high probability excited to the

32
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Figure 5.1: Time sequence for the interrogation of the clock transition. The
individual steps are: (1) State detection of the ion by the electron shelving method
during time td, (2) laser cooling for time tc, (3) preparation of the ion in the
2S1/2(F = 0) state by switching off the repumper sideband of the cooling laser
and waiting for a time thf , and (4) excitation of the clock transition by a probe
laser pulse of length tp.

2D3/2(F = 2) state. The sequence of steps (1) to (4) is repeated several times at
a given frequency of the probe laser. The excitation probability at this frequency
is then given by the ratio of the detected excitations to the total number of valid
excitation attempts. In order to qualify as valid, the sequence (1) to (3) prior to
the probe pulse has to fulfill three requirements: (i) the average fluorescence rate
during step (2) has to be above a threshold of 6 kHz, (ii) the average fluorescence
rate during step (3) has to be below the threshold of 6 kHz and (iii) no significant
fluorescence rate is detected during the last 2 ms of thf . Condition (i) ensures
that the ion was in the F = 1 ground state during the cooling step and was
cooled to low temperatures, while conditions (ii) and (iii) make sure that the ion
was in the F = 0 ground state when the probe laser pulse was applied. As can
be seen from Fig. 5.1, the repumper lasers and the magnetic field are switched
off (on) a little bit later (earlier) than the cooling laser. This ensures that any
dark times observed at the beginning of step (1) are due to an excitation to the
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2D3/2 state while dark times at the end of step (3) are not due to an excitation
of the ion from the ground state to states that do not interact with the probe
laser. If an excitation attempt is found to be invalid, it is repeated. To record an
excitation spectrum, steps (1) to (4) are typically repeated until a number of 20
valid excitations is reached. The number of invalid excitations depends on the
detuning of the probe laser, the probe pulse duration, and the maximum excita-
tion probability. The main reason for invalid excitations is that the ion remains
in the excited state during the whole cooling interval tc with some probability.
The ratio of invalid to valid excitations ranges from about 0.05 far from the re-
sonance to 0.5 in the center of a 1 kHz resonance. The excitation spectrum of
the atomic transition is obtained by repeating the procedure described above for
different probe laser frequencies. Spectra taken for different frequency resolutions
and ranges of probe laser frequencies will be discussed in the following section.

Excitation spectra of the atomic transition can also be obtained using Ramsey’s
method of separated oscillatory fields [122] instead of the single-pulse excitation
scheme described above. For the single-ion experiments described in this work
it offers no distinct advantage compared to the single-pulse scheme (with one
exception that will be discussed in Sec. 6.1), so no description of Ramsey’s method
is given here. A detailed description of the method is given in [122] and a typical
Ramsey spectrum for the clock transition is shown in Sec. 5.3.3.

5.2 Quantum Projection Noise

The use of a single ion instead of an ensemble of ions limits the signal-to-noise
ratio of the spectroscopic signal. While the electron shelving method allows to
detect the state of the ion after an interrogation by the probe laser with near 100%
efficiency, still only one “bit” of information is gained from each interrogation and
therefore the ion has to be interrogated many times in order to obtain reliable
information about the excitation probability. During a probe pulse the ion is
prepared in a superposition |ψ〉 = α |g〉 + β |e〉 of the ground state |g〉 and the
excited state |e〉 (|α|2 + |β|2 = 1). The following state detection is described by
a projection operator P̂ = |e〉 〈e|, with eigenvalues 0 (ion in the ground state)
and 1 (ion in the excited state). With the relation P̂ P̂ T = P̂ and the definition
p ≡ |β|2 for the probability the ion being in the excited state, one finds that the
variance of the projection operator in the state |ψ〉 is given by

(ΔP̂ )2 = 〈P̂ 2〉 − 〈P̂ 〉2 = p (1 − p) . (5.1)

The observed population fluctuations described by Eq. (5.1) and their relevance
in atomic frequency standards were first discussed by W. Itano et al., who named
the phenomenon quantum projection noise (QPN) [123]. The signal-to-noise ratio
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for the interrogation of a single ion can be defined as

SNR =
〈P̂ 〉
ΔP̂

=
p√

p(1 − p)
. (5.2)

From Eq. (5.1) one finds that the QPN is zero if the ion is in an eigenstate of P̂ ,
that is for p ∈ {0, 1}. The signal-to-noise ratio is in these cases no meaningful
quantity. For a symmetric superposition of ground and excited state, p = 0.5
and the QPN has its maximum. The result of a sequence of interrogations is
then a random sequence of zeros and ones and the corresponding signal-to-noise
ratio is SNR = 1. The signal-to-noise ratio of the average over a sequence of N
independent interrogations is

√
N · SNR. This means that for the interrogation

of both single particles as well as of ensembles of particles, the signal-to-noise
ratio increases proportionally to the square root of the averaging time and that
the signal-to-noise ratio in the ensemble case increases also with the square root
of the number of particles (see also Sec. 2.1).

5.3 Spectra

The excitation spectra of the 2S1/2(F = 0) → 2D3/2(F = 2) transition obtained
by the methods discussed in the previous section consist of several resonances that
contain information not only about the internal state of the trapped ion, but also
about its motion and interactions with the environment. In the following sections
the individual components of the excitation spectrum and their relevance for the
experiment will be discussed.

5.3.1 Secular and Micromotion Sidebands

The secular motion and micromotion of the ion in the trap potential lead to
sidebands in the excitation spectrum at the secular frequencies and at the trap
drive frequency. The relative intensities of these sidebands with respect to the
carrier contain information on the amount of excess micromotion and on the
temperature of the secular motion. Moreover, the frequency splitting of the
radial secular sidebands is a measure for the deviation of the trap potential from
cylindrical symmetry.

Fig. 5.2 shows a spectrum of the carrier frequency and of the low-frequency secular
sidebands for one of the traps. The angle between the k-vector of the probe laser
and the trap axis was θ � 55◦. The relative intensities of the sidebands are
I−x /I0 = I−y /I0 � 0.14(3) and I−z /I0 � 0.015(3), which is within the uncertainty
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Figure 5.2: Secular sidebands of the clock transition at the Doppler limit. The
duration of the probe laser pulses was 1 ms and every data point is the average
over 20 interrogations. For better visibility the laser power for the excitation of
the sidebands was increased by 2 dB for ωx, ωy and by 12 dB for ωz with respect
to the carrier.

in good agreement with the expected relative intensities of the sidebands at the
Doppler cooling limit calculated from Eq. (3.27).

From the splitting of the radial secular frequencies one finds that the deviation
of the trap potential from cylindrical symmetry is less than 1%. Aside from
an intrinsic asymmetry of the trap potential due to the finite precision in the
manufacturing of the electrodes, also the gradient of an electric stray field would
lift the degeneracy of the radial secular frequencies. In Sec. 7.4.2 this will be used
to estimate the magnitude of the electric stray field gradient at the position of
the ion.

Fig. 5.3 shows the first low-frequency sideband in the spectrum of the clock
transition due to the micromotion of the ion in the trap. The relative intensity
of the sideband with respect to the carrier is only about 1%, indicating a good
compensation of the electric stray field.
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Figure 5.3: First low-frequency micromotion sideband of the clock transition at
the trap frequency Ω for a good compensation of the electric stray field. The
duration of the probe laser pulses was 1 ms and every data point is the average
over 20 interrogations for the carrier and 40 interrogations for the sideband. The
laser power for the excitation of the sideband was increased by 17 dB with respect
to the carrier.

5.3.2 Zeeman Structure

The static magnetic field applied during the excitation of the
2S1/2(F = 0) → 2D3/2(F = 2) transition leads to a frequency splitting of
the five mF sublevels of the 2D3/2(F = 2) state by the linear Zeeman effect (see
Sec. 7.2). Fig. 5.4 shows an example of a Zeeman spectrum for |B| � 1μT.
From the frequency splitting of the Zeeman components, one can according to
Eq. (7.7) determine the absolute value of the magnetic field, while the relative
intensities of the individual Zeeman components provide information about the
orientation of the magnetic field with respect to the probe laser beam. The
relative intensities of the Zeeman components are given by [97, 124]

I±ΔmF
∝ R|ΔmF |

(
2 2 0

ΔmF −ΔmF 0

)2

, mF = −2, . . . , 2 (5.3)

R0 = 6 sin2 θ cos2 θ cos2 φ ,

R1 = cos2 φ
(
sin2 θ − cos2 θ

)2
+ sin2 φ cos2 θ ,

R2 = sin2 θ
(
cos2 θ cos2 φ+ sin2 φ

)
,
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Figure 5.4: Zeeman pattern of the 2S1/2(F = 0) → 2D3/2(F = 2) transition for
|B| � 1μT and a linear polarization of the probe laser that achieves nonvanishing
excitation rates for all ΔmF components. The length of the probe laser pulses
was 1 ms and every data point is the average over 20 interrogations. The red line
is a fit of five Lorentz profiles to the data. The ΔmF = ±1 and ΔmF = ±2 are
broadened due to 50 Hz magnetic stray fields

where θ is the angle between the k-vector of the probe laser beam and the mag-
netic field B and φ is the angle between the polarization vector and its projection
onto the (k, B)-plane. Because there is only the mF ′ = 0 Zeeman sublevel in the
ground state, ΔmF = mF −mF ′ = mF .

The angles θ, φ can be determined (up to the ambiguities due to the cos2 de-
pendence) by comparing Zeeman spectra for different orientations of the laser
polarization with the theory given by Eq. (5.3). The angle φ is most easily deter-
mined from the intensity of the carrier R0, while the ratio R1/R2 is well suited to
determine θ. The precision of this method depends on the signal-to-noise ratio of
the Zeeman spectra, on the quality of the fits to the line profiles of the Zeeman
components, and on the number of spectra used. Uncertainties below ±1◦ are
easily achievable for φ since only the minimum of R0 has to be identified. For θ
it is very time consuming to achieve similar uncertainties due to the low signal-
to-noise ratio of the signal from the single ion. Typical uncertainties are about
±5◦ for θ. Especially for the investigation of the quadrupole shift described in
Sec. 7.4, one wants to implement a set of three mutually orthogonal magnetic
field axes. This was also done by the method described above. Because the
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procedure of determining the orientations of the magnetic field axes takes very
long, the axes were aligned approximately once every month with a ±5◦ preci-
sion. Since no magnetic shielding was used, the orientations of the magnetic field
axes can change by a few degrees between alignments. Thus for the experiments
described in Sec. 7.4 the uncertainty in the orientation of the magnetic field was
conservatively estimated as ±10◦ for one trap system and ±20◦ for the other trap
system, where only less precise measurements of the magnetic field orientations
were performed.

The ΔmF �= 0 resonances in Fig. 5.4 are significantly broadened due to 50 Hz
magnetic stray fields. From the broadening it is estimated that the mean am-
plitude of the total stray field is smaller than 0.3 μT. The ΔmF = 0 Zeeman
component is subject only to the second-order Zeeman shift and is therefore well
suited as a reference transition for an atomic frequency standard.

5.3.3 ΔmF = 0 Clock Transition

Fig. 5.5 shows three excitation spectra of the
2S1/2(F = 0, mF = 0) → 2D3/2(F = 2, mF = 0) clock transition which in
this work is used as the reference transition for the 171Yb+ single-ion optical
frequency standard.

For 1 ms excitation pulses, excitation probabilities of 0.9 are typically achieved
and the linewidth is Fourier limited. Here, the probe pulse duration tp is small
compared to the waiting time t between the end of the probe pulse and the state
detection. The maximum excitation probability pmax is limited by the natural
lifetime τ of the excited state and by the waiting time t according to pmax ∝ e−t/τ .
Due to the finite lifetime of the 2D3/2 state, the maximum excitation probability
decreases further for longer excitation pulses as can be seen in Fig. 5.5(b) and
Fig. 5.5(c). The corresponding reduction in the signal-to-noise ratio of the reso-
nance is a limiting factor for the stability of the frequency standard. In Sec. 6.1
it will be shown that therefore the optimum stability for the single pulse excita-
tion is obtained for approximately 10 Hz resonances, and not for 3.1 Hz which
is for the single-pulse excitation the limit set by the natural linewidth of the
clock transition. The present resolution limit is about 10 Hz (Fig. 5.5(c)). The
linewidth is still essentially Fourier limited, but contributions of laser noise to the
line profile are no longer negligible, which can indirectly be seen also from the
stability measurements shown in Sec. 6.2. Because of the low signal-to-noise ratio
and the decreasing excitation probability, the averaging time needed to obtain
good spectra increases for longer probe times. Since higher resolutions also offer
no advantages for the operation of the frequency standard, no efforts were made
so far to increase the frequency resolution beyond 10 Hz.
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Figure 5.5: Excitation spectra of the clock transition for different durations tp
of the probe laser pulse. Every data point is the average over 20 interrogations.
The laser power was adjusted for maximum excitation probability on resonance.
(a) tp = 1 ms, maximum excitation probability close to one. (b) tp = 30 ms,
typical resolution used for trap comparison experiments. (c) tp = 90 ms, present
resolution limit. The red curves are numerical solutions of the Bloch equations
for the experimental parameters.

Fig. 5.6 shows an excitation spectrum of the clock transition obtained by Ram-
sey’s method of separated oscillatory fields. The two pulses had a length of 5 ms
and were separated by 30 ms. The spectral width of the envelope of the Ramsey
pattern is determined by the duration of the single pulses, while the width of the
individual fringes is determined by the pulse separation. Because of the more
detailed structure it takes significantly more time to record a full spectrum of
the clock transition with a good signal-to-noise ratio than with the single-pulse
excitation.

5.4 Laser Frequency Lock

In order to realize an atomic frequency standard based on the
2S1/2(F = 0, mF = 0) → 2D3/2(F = 2, mF = 0) clock transition as a fre-
quency reference, the probe laser frequency has to be stabilized by a servo
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Figure 5.6: Ramsey spectrum of the clock transition for two 5 ms probe laser
pulses separated by 30 ms. Every data point is the average over 40 interrogations.

system to the atomic transition frequency. The servo algorithm used in the
experiment and its dynamic properties are described in the following.

Before the laser frequency ωL is stabilized to the atomic resonance frequency ω0,
an excitation spectrum of the resonance is recorded, and the laser frequency is
set close to the center of the resonance. In order to obtain an error signal for the
frequency servo, a series of interrogations of the ion at frequencies f+ = ωL + δ
and f− = ωL − δ is performed and the number of successful excitations n+ at f+

and n− at f− is counted. After z pairs of interrogations, a frequency correction
is calculated as

e = g · δ · n+ − n−
z

≡ g · δ · s , (5.4)

where g is a numerical factor that determines the dynamical response of the servo
system which will be named gain for short and s will be referred to as the cycle
error. The laser frequency is shifted from ωL to ωL + e and a new sequence
of z interrogation pairs is started. Since the frequency corrections calculated
for subsequent excitation pairs are added up, this scheme realizes an integrating
servo loop.

Due to invalid excitation attempts during the sequence, the valid excitation at-
tempts at f+ and f− do not always form pairs. Unpaired excitations do not con-
tribute to the error signal, even if they were successful. Fig. 5.7 shows schemati-
cally the interrogation sequence for z = 4.

It can be shown that the best value for δ is close to Γ/2 which corresponds to the
half linewidth of the atomic resonance [125]. There the slope of the resonance and
thus the sensitivity to frequency fluctuations is close to its maximum. The time
constant and the stability of the servo system are determined by the parameters
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Figure 5.7: Interrogation scheme for the laser frequency lock to the clock transi-
tion. The probe laser frequency is periodically switched between the half points
of the atomic resonance f− and f+ unless an invalid excitation attempt occurs.
After typically eight excitation attempts an error signal that is proportional to
n+ − n− is calculated from the valid pairs of excitation attempts. (a) All excita-
tion attempts are valid. (b) One invalid excitation attempt. Although valid, the
last excitation attempt does not contribute to the error signal because it can not
form a pair. (c) Three invalid excitation attempts. The error signal is calculated
from only two pairs and again one valid excitation attempt has to be omitted.

g and z and by the time T = Tc +Tp required for one interrogation of the ion (see
Fig. 5.1). If the laser frequency is initially ωL = ω0 − Γ/2, and if the maximum
excitation probability is unity, the resulting value of s will be close to Γ/2. The
appropriate frequency correction e for the correction of the laser frequency in one
step will be obtained for g � 1. If g � 1, many correction steps will be required
to bring ωL close to ω0. If g ≥ 2, the servo may cause the value of e to jump
irregularly between large positive and negative values and the laser frequency ωL

will not settle at a value close to resonance. For a high number of interrogation
pairs z the time constant of the servo is increased and its ability to cope with
fast frequency fluctuations will be reduced. On the other hand, if z is small the
short-term stability of the system may be degraded by strong fluctuations in s
due to quantum projection noise. In order to find the optimum servo parameters
for a given frequency resolution of the clock transition numerical Monte Carlo
simulations of the servo action were performed [125] (see also Sec. 6.1). For
a 30 Hz resonance with a maximum excitation probability of 0.6 and a total
interrogation time T = 90 ms, the typical parameters chosen for the experiments
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Figure 5.8: Response of the servo system to an applied 10 Hz frequency step for
different values of the gain g and number of interrogation pairs z. The clock tran-
sition was interrogated with 30 ms pulses, the maximum excitation probability
was about 0.6 and the frequency modulation was δ = 13 Hz. The total time for
one interrogation of the ion was T = 90 ms. The solid lines are exponential fits
to the data.

are g � 0.2 and z = 4. Fig. 5.8 shows the response of the servo system to an
externally applied frequency step for different values of g and z.

The relatively long time constant of the servo may lead to a significant servo error
if the laser frequency is subject to drift. The linear long-term frequency drift of
the probe laser is about −0.16 Hz/s, but laser drift rates between 0.1 Hz/s and
−0.3 Hz/s were observed on the time scale of hours. From numerical simulations
the resulting servo error was found to be equal to the product of the response
time of the servo and the frequency drift rate. An efficient reduction of the drift
induced servo error is obtained with the use of a second-order integrating servo.
Periodically after a time tdrift = 1 s a drift correction ed is applied to the laser
frequency:

ωL �→ ωL + ed . (5.5)

The drift correction ed itself is adjusted after a time Tdrift � 10 s via the integra-
tion

ed �→ ed + k
∑
Tdrift

s . (5.6)

The sum is over the cycle errors s obtained during the drift update interval Tdrift,
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Figure 5.9: Schematic of the experimental setup used to compare two 171Yb+

optical frequency standards. Two acusto-optical modulators (AOM) are used to
independently shift the frequencies of the two probe beams interacting with the
ions. Mechanical shutters block the cooling and repumper lasers while the probe
beams interrogate the ions.

which is large compared to the time tdrift between two drift corrections and the
time required to obtain a single cycle error s. The paramter k determines the
time constant for the response of the servo to changes of the laser frequency
drift. A typical value in the experiment is k = 0.005, corresponding to a time
constant of a few hundred seconds. The second-order integrating servo described
above compensates a linear drift for long averaging times. This was confirmed
by numerical simulations of the servo action including the second-order drift
correction and a linear laser frequency drift. To within the statistical uncertainty
of the simulations no residual frequency error of the servo was found in the long-
term average.

5.5 Frequency Comparisons Between Two Trap
Systems

Studies of the systematic frequency shifts of an optical frequency standard by
measurements of its frequency relative to established microwave standards are
inherently limited by the instabilities and uncertainties of the latter. These lim-
itations can be overcome by comparing the optical frequency standard with a
second one. In the experiments described in this work the two optical frequency
standards that are compared are realized by the frequencies of two probe laser
beams that are individually frequency stabilized to the clock transitions of two
single ions stored in two separate traps. The schematic setup for the frequency
comparison is shown in Fig. 5.9. Because both traps share the 369.5 nm cooling
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laser, the time intervals for cooling and detection of the ions coincide for the two
systems. Two independent frequency shift and servo systems are employed to
stabilize the probe beam frequencies to the line centers of the clock transitions
of the two trapped ions by the method described in Sec. 5.4. The length of the
probe pulses interrogating the ions and the position of the pulses in the time
interval between the cooling and detection intervals can be chosen independently
for both trap systems. For times larger than the servo time constants, the optical
frequencies probing the two ions can be regarded as independent and determined
solely by the respective atomic transition frequencies. The frequencies of the two
servos f(AOM1) and f(AOM2) are recorded separately for both trap systems
and the frequency difference between the two servos Δf = f(AOM2)−f(AOM1)
is recorded once per second and averaged for typically 500−700 s. Trap compar-
ison experiments were used to investigate the stability of the 171Yb+ single-ion
optical frequency standard (Sec. 6.2) and some of the systematic frequency shifts
(Sec. 7.3, Sec. 7.4, Sec. 7.8).



Chapter 6

Instability of the 171Yb+ Single-Ion
Frequency Standard

6.1 Theory

In Sec. 2.1, the Allan deviation was introduced as a measure for the instability
of a frequency standard. In the case of a frequency standard that is operated
in interrogation cycles of duration T , the Allan deviation σy(t) for an averaging
time t can be written as [125]

σy(t) =
C

SNR

Δω

ω0

√
T

t
, (6.1)

where C is a numerical constant of order unity that depends on the interrogation
scheme, Δω is the width of the resonance signal used as the reference for the stan-
dard and SNR is the signal-to-noise ratio for a single interrogation. Parameters
that are obtainable with present single-ion optical frequency standards are on the
order of Δω/ω0 ∼ 10−15 [41,47,54]. The signal-to-noise ratio for a single particle
is limited by quantum projection noise to SNR � 1 (see Sec.5.2). The poten-
tial relative systematic uncertainties of single-ion optical frequency standards are
expected to be in the range of 10−18 [24,126]. For C/SNR = 1, a continuous aver-
aging time of nearly 12 days would be necessary to complete one single frequency
measurement at this accuracy. In order to be able to use the potential accuracies
of single-ion standards, it is therefore important to find operation parameters
that minimize the instability of the standard.

Theoretical studies of the instability properties of single-ion frequency standards
were performed recently by several groups [125,127,128]. A detailed investigation
of the instability of the 171Yb+ single-ion optical frequency standard and an

46
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optimization of the locking algorithm introduced in Sec. 5.4 is discussed in [125].
The relevant results derived there are summarized in the following.

The optimization of the instability can be separated into two steps: (i) Determine
the optimum interrogation scheme and the corresponding frequency modulation
δ for the locking algorithm and (ii) find the parameters g and z that minimize
the instability for the optimum interrogation scheme. The two excitation schemes
that were investigated are the single-pulse excitation described in Sec. 5.1 and the
two-pulse Ramsey excitation. The Allan deviation for the two excitation schemes
can be written as

σy(t) = S
1

ω0τ

√
τ

t
, (6.2)

where τ = 1/Γ is the inverse of the natural decay rate of the atomic transition
and S is a dimensionless instability parameter that depends on the excitation
scheme.

For the single pulse excitation, numerical simulations showed that the optimum
frequency modulation δ is always close to the half linewidth of the transition and
the instability parameter is in this case given by

S = S1 =

√
1

2
pmax(1 − 1

2
pmax)

Δωτ

pmax

√
T

τ
. (6.3)

Here pmax is the maximum excitation probability that can be obtained on reso-
nance and Δω is the full linewidth at half maximum of the resonance signal, which
depends on the probe pulse duration tp and on the Rabi frequency ΩR. The time
between two probe pulses t0 = T − tp is the so-called dead time of the interroga-
tion sequence. For the case of negligible laser linewidth and t0 � tp, a numerical
search for the minima of S1 with respect to tp and ΩR yields Smin

1 = 3.22 for
tp = 1.88τ and ΩR = 2.02Γ. The corresponding width of the resonance signal is
about 10 Hz for the clock transition, which is larger than the natural linewidth of
3.1 Hz. This means that the loss in the signal-to-noise ratio due to the decrease
of the maximum excitation probability pmax outweighs for long probe pulse du-
rations the gain in frequency resolution Δω. The minimum instability according
to Eq. (6.2) is σy(t) � 3.3 · 10−15 t−

1
2 for averaging times longer than the servo

time constant.

In the case of Ramsey excitation the optimum frequency modulation δ is always
exactly the half linewidth of the Ramsey fringes and the instability parameter is
given by

S = S2 =
√
p̄ (1 − p̄)

Δωτ

pmax − pmin

√
T

τ
, (6.4)

where pmax and pmin are the maximum and minimum excitation probabilities of
the Ramsey fringes, p̄ = (pmax +pmin)/2 is the average excitation probability, and
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Δω is here the full fringe width. The optimum obtained here is Smin
2 = 2.59 �

0.8Smin
1 for tp = 1.00τ , where for Ramsey excitation τ is the time separation of the

two pulses. The optimum Rabi frequency for the two pulses is that which yields
π/2-pulses. The corresponding minimum instability is σy(t) � 2.7 · 10−15 t−

1
2 .

Comparing the two interrogation schemes one finds that the Ramsey excitation
leads to an approximately 20% lower instability than the single-pulse excitation
in the limit of negligible laser linewidth and dead time. The difference becomes
less pronounced if a finite laser linewidth γL ≤ Γ/(2π) and the typical cycle dead
time t0 � 60 ms are taken into account.

In both Eq. (6.3) and Eq. (6.4) a linear approximation for the slope of the re-
sonance signal was used in order to derive a simple analytic expression for S.
Numerical calculations show, that approximately 30% lower instabilities than
predicted by the analytic expressions should be achievable with both excitation
schemes. The occurrence of invalid interrogation attempts (see Sec. 5.1, Sec. 5.4)
effectively reduces the information that is obtained in one sequence of z interro-
gation pairs. The instability as well as the response time of the servo increase
proportionally to the ratio of invalid excitations to the total number of excitation
attempts for both exciation schemes.

A general disadvantage of Ramsey excitation is that the servo system must be
able to distinguish between the different Ramsey fringes because otherwise the
servo system will stabilize the laser frequency to different fringes if frequency
fluctuations larger than the fringe width occur. In the experiments, the single-
pulse scheme described in Sec. 5.1 and Sec. 5.4 is used.

In the second step of the optimization, numerical Monte Carlo simulations of the
servo action were performed. The result found in [125] is that small values of z
should be chosen in order to achieve a short response time of the servo system
and that values of the gain in the range 0.1 < g < 1 will provide the best overall
stability, depending on the amount of laser frequency noise.

6.2 Comparison with the Experiment

Fig. 6.1 shows the Allan deviation for the difference frequency between the two
ytterbium frequency standards obtained in two frequency comparisons. For the
comparison in Fig. 6.1(a), the two standards were operated with probe pulses
of duration tp = 30 ms, a modulation frequency δ = 13 Hz, and a servo gain
g = 0.2. The number of excitation pairs was z = 4 for one servo and z = 5 for
the other, and the maximum excitation probabilities were about 0.6. The red
curves are the result of numerical Monte Carlo simulations of the servo action
that assume a monochromatic laser excitation and include quantum projection
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Figure 6.1: Allan deviation of the frequency difference between two ytterbium
frequency standards. (a) Probe pulse duration 30 ms, maximum excitation prob-
ability 0.6, g = 0.2, δ = 13 Hz and z = 4 for one servo, z = 5 for the other servo.
The red lines are numerical simulation of the servo action that assume a mono-
chromatic laser excitation and QPN a the only source of noise. The two curves
represent the uncertainty range of the simulation due to the uncertainties of the
experimental parameters. (b) Probe pulse duration 90 ms, maximum excitation
probability 0.4, g = 0.4, δ = 4 Hz and z = 5. The red curve is again a numerical
simulation.

noise as the only source of noise. The simulations account for a dead time of
60 ms and an average percentage of invalid interrogations of 20%. Because some
exerimental parameters like the average excitation probability and the average
number of invalid excitations are known only with a finite precision of a few
percent, simulations wered done for a worst case (upper curve) and best case
(lower curve) estimate of the experimental parameters. The difference between
the two curves is also a measure for the sensitivity of the simulation to the input
parameters. For the worst case estimate, the maximum excitation probability and
the number of invalid excitations was 10% lower than for the best case estimate.
This leads to a difference between the simulated instabilities of about 10%.

The occurrence of invalid excitations effectively reduces the information that
is obtained in one sequence of z interrogation pairs. Therefore the instabil-
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ity as well as the response time of the servo increase proportionally to the
ratio of invalid excitations to the total number of excitation attempts. For
averaging times > 80 s, the instability of the frequency difference scales ap-
proximately as σy(t) � 1.1 · 10−14 t−

1
2 . Under the assumption that both stan-

dards contribute equally to the instability, this corresponds to an instability of
σy(t) � 7.8 · 10−15 t−

1
2 for the individual standards. This is less than a factor 3

above the instability limit derived for the single-pulse excitation in the previous
section. The agreement with the simulation is good for short averaging times,
while for the longest averaging times an excess instability of about 20% with
respect to the lower curve is found.

Fig. 6.1(b) shows the Allan deviation for a similar comparison measurement with
tp = 90 ms, δ = 4 Hz, g = 0.4, z = 5, and a maximum excitation probability
of about 0.4. Here an excess noise of about 50% above the simulation for the
QPN limit is observed in the experimental data. Here, only a simulation for
the nominal values of the experimental parameters is shown. At the frequency
resolution of this measurement, frequency fluctuations of the laser not included
in the simulation are probably no longer negligible and may degrade the stability
of the standards. Also, the finite kinetic temperature of the ion may lead to small
variations in the spectral lineshape and thus to uncorrelated fluctuations of the
excitation rate for the two standards.

In further experiments it was found that the instability of the frequency difference
does not depend on the temporal overlap of the probe pulses interrogating the
two ions, which confirms the assumption that the two frequency standards can
be regarded as independent even though the laser frequencies interrogating the
two ions are derived from the same probe laser.

The instability of the standards can be improved further by reducing the dead
time and the percentage of invalid excitations. In order to reduce the dead time,
it would be useful to prepare the ion in the F=0 ground state by an additional
laser frequency that is resonant with the 2S1/2(F = 1) → 2P 1/2(F = 1) transition
rather than by waiting until non resonant excitation by the cooling laser transfers
the ion to the F=0 ground state. Also the time for the switching of the magnetic
field can be reduced, so that dead times of 20-30 ms seem achievable. If an
successful excitation to the metastable 2D3/2(F = 2) state is detected at the
beginning of the cooling phase, the 935.2 nm repumper laser could be tuned to
the 2D3/2(F = 2) → 3[3/2]1/2(F = 1) in order to rapidly deplete the metastable
state which would reduce the percentage of invalid excitations.
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6.3 Dick Effect

The time sequence for the interrogation of a single ion always includes dead times
for laser cooling and state preparation. The interrogation is therefore always
discontinuous and periodic. This can lead to a degradation of the stability by
down-conversion of laser frequency noise around harmonics of the interrogation
repetition frequency 1/T . This effect was first described by G. J. Dick [129] and
further investigations are presented in [130–132]. For a precise calculation of the
effect, the noise spectrum of the laser would have to be known. Although this is
not the case for the probe laser used in the experiment, an estimate of the limiting
instability for the single-pulse excitation scheme can be obtained from [129]:

σmin
y � σLO

y

2 ln 2

√
T

t

1

g2
0

∞∑
n=1

g2
n

n
≡ RσLO

y

√
T

t
, (6.5)

where σLO
y is the flicker-floor instability of the probe laser and the functions gn

defined as

gn =

∫ T

0

g(τ) cos

(
2πnτ

T

)
dτ (6.6)

are the Fourier coefficients of the function g(τ) that describes the sensitivity of
the excitation scheme to frequency fluctuations at the time τ of the interrogation
pulse of duration tp. The ratio R is calculated in [129] for various duty cycles
tp/T of the interrogation. For the typical value in the experiment tp/T � 0.6,
one finds R � 0.6. Values for the flicker-floor instability of lasers used in other
single ion experiments are σLO

y � 5 · 10−16 [133] leading to a limiting instability
σmin

y � 3 · 10−16
√
T/t. This is about one order of magnitude below the QPN-

limited instability calculated in Sec. 6.1 above. The situation is different for
optical frequency standards using ensembles of atoms, for which QPN-limited
instabilities on the order of σy = 10−17

√
T/t are expected so that the Dick effect

will become important.



Chapter 7

Systematic Frequency Shifts

7.1 Doppler Effect

The motion of the ion in the trap leads to a Doppler shift of the atomic transition
frequency. The shift of the frequency ν observed in the laboratory frame of
reference relative to the frequency ν0 in the rest frame of the ion is given by

ΔνD

ν0

=
ν − ν0

ν0

= − cos θ
v

c
− v2

2c2
+O

((v
c

)3
)
, (7.1)

where v is the absolute value of the instantaneous velocity of the ion relative to the
laboratory frame, c is the speed of light, and θ is the angle of observation. The
term linear in v/c is the classical linear Doppler effect, while the second-order
term is due to relativistic time dilation. Eq. (7.1) accounts only for velocity-
dependent relativistic effects. The influence of general relativistic effects due to
gravity on the frequency of the clock transition are discussed in Sec.7.5. If the
motion of the ion is cooled to the Lamb-Dicke regime, the first-order term leads
to discrete sidebands in the excitation spectrum of the atomic transition, while
the carrier frequency is subject only to the second-order Doppler shift. For the
trapping parameters used in the experiment, the time needed to interrogate the
clock transition is much larger than one oscillation period of either the secular
motion or the micromotion of the ion. Thus one can replace v2 in the above
equation by the mean square velocity of the ion. The properties of secular and
micromotion are quite different and therefore their contributions to the second-
order Doppler shift will be treated separately.

The secular motion is a thermal motion and the corresponding effective temper-
ature TD at the Doppler cooling limit is given by Eq. (3.25). Since the secular
motion is thermal, TD is the same for all directions of motion. For the clock
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transition the fractional second order Doppler shift is then [111]

ΔνD

ν0
= −3

kBTD

2mc2
� −3 · 10−19 , (7.2)

where kB is Boltzmann’s constant and m is the restmass of the ion.

If the ion is displaced from the field-free saddle point of the trap potential, it
undergoes excess micromotion as described in Sec. 3.4. Even in the absence of
an electric stray field, micromotion does not completely vanish because the finite
temperature of the secular motion leads to excursions of the ion from the trap
center. In contrast to the secular motion, micromotion is a driven motion at
the frequency the rf trapping field. When the secular motion is cooled to the
Doppler limit, the fractional second order Doppler shift of the clock transition
due to micromotion is [111]

ΔνD

ν0
� − 1

mc2

∑
i=x,y,z

kBTD(ai + q2
i )

2ai + q2
i

+
4

m

(
eqiEi

(2ai + q2
i )Ω

)2

, (7.3)

where e is the elementary charge, Ω � 2π ·16 MHz is the trap drive frequency, and
ai, qi are the the a- and q-parameters defined in sec. 3.1. For normal operating
conditions, ai = 0. The Ei are the uncompensated components of the static
electric stray field that were estimated in Sec. 3.4. The second-order Doppler
shift due to micromotion is then ΔνD � −2.6 mHz, corresponding to a fractional
frequency shift of about −3.8 · 10−18.

Combining the above estimates for the secular motion and micromotion, one finds
that the second-order Doppler shift contributes about 4.1 · 10−18 to the relative
systematic uncertainty of the frequency standard.

7.2 Zeeman Effect

The interaction of the ion with an external magnetic field splits the hyperfine
states into several discrete sublevels. The energies of these sublevels are deter-
mined by the Zeeman Hamiltonian

HZ = −μ.H = gJμBJ.B + g′IμBI.B , (7.4)

which depends on the electronic g-factor gJ of the atomic state, the nuclear g-
factor g′I which is the nuclear moment expressed in units of the Bohr magneton
μB, the total electronic angular momentum J , the nuclear spin I, and the ex-
ternal magnetic field B = Bez that defines the z-axis of the laboratory frame
of reference. Since for the magnetic fields applied in the experiment the Zee-
man interaction is always weak compared to the hyperfine interaction, HZ can
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be diagonalized in the same basis of states |γJFm〉 as the hyperfine interac-
tion. Here J is the total electronic angular momentum, F is the total atomic
angular momentum including nuclear spin, m is the eigenvalue of Fz, and γ rep-
resents all other quantum numbers characterizing the atomic state. In order to
find the Zeeman energy shift of the ytterbium clock transition, the matrix ele-
ments of HZ have to be calculated for the 2S1/2(F = 0) and the 2D3/2(F = 2)
state. The electronic g-factors for the two states are gS = gJ(S1/2) = 1.998 and
gD = gJ(D3/2) = 0.8021 [134]. Because the nuclear g-factor g′I � 0.9 · 10−3 is
small compared to the uncertainty of the electronic g-factors, the nuclear part of
the Zeeman Hamiltonian can be neglected without increasing the uncertainty of
the calculation. The matrix elements of Jz are [124]

〈γJFm|Jz|γJF ′m〉 = (−1)F−m(γJF ||Jz||γJF ′)
(

F 1 F ′

−m 0 m

)
, (7.5)

with the reduced matrix element

(γJF ||Jz||γJF ′) = (−1)I+J+F+1
√
J(J + 1)(2J + 1)(2F + 1)(2F ′ + 1) ×{

F 1 F ′

F ′ J 1

}
. (7.6)

The frequency shift of the 2S1/2(F = 0, m = 0) → 2D3/2(F = 2, m) transition
depends on m. The m �= 0 transitions are subject to the linear Zeeman effect
given by

Δν
(1)
Z =

gDμBB

h
〈D 3/2 2 0|Jz|D 3/2 2 0〉 � m · 8.4 kHz

μT
, (7.7)

while the m = 0 transition is affected by the quadratic Zeeman effect which is
given by

ν
(2)
Z (D, 3/2, 2, 0)−ν(2)

Z (S, 1/2, 0, 0) =
μ2

BB
2

4h2

(
g2

D

ΔD3/2

+
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S

ΔS1/2

)
� 52

mHz
μT2 , (7.8)

ν
(2)
Z (γ, J, F,m) =

μBB
2

h

∑
F ′ �=F

|〈γJFm|Jz|γJF ′m〉|2
EF − E ′

F

. (7.9)

Here ΔS1/2
= 12.64 GHz and ΔD3/2

= 0.86 GHz are the hyperfine splitting
frequencies of the ground state and of the excited state from Table 3.1. For the
magnetic fields B < 10μT that are typically applied in the experiments, higher
order contributions to the Zeeman shift are negligible.

1In the case of gD, the experimental value listed in [134] is 1.802, the calculated one is
0.800. Since the difference between theory and experiment for other states is typically only
a few percent, Fawcett and Wilson suggest that the experimental value is almost certainly a
missprint for the value 0.802.
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The linear Zeeman shift of the clock transition is zero and the quadratic
Zeeman shift can be calculated from Eq. (7.8), where B is determined from
the frequency splitting of the m �= 0 linear Zeeman components of the
2S1/2(F = 0) → 2D3/2(F = 2) transition. This splitting can easily be measured
with a relative uncertainty of 1% and the calculated second-order shift can then
be applied as a correction to the frequency of the clock transition with a relative
uncertainty of about 2%. Contributions to the uncertainty from the g-factors
and hyperfine splittings can be neglected. At B = 1μT, the contribution of the
quadratic Zeeman effect to the systematic uncertainty of the frequency standard
is about 1 mHz, corresponding to a relative frequency uncertainty of 1.5 · 10−18.
Static magnetic fields below 0.3μT can be achieved in the experiment, but since
in the present state of the experiment no magnetic shielding around the trap
is installed, these low static magnetic fields are not very stable in amplitude or
direction. The latter is especially troublesome, because the optimum laser power
for the excitation of the clock transition then varies unpredictably over time,
which leads to a decrease of the maximum excitation probability. Also for the
investigation and reduction of other systematic shifts like the quadratic Stark
shift (Sec. 7.3) and the quadrupole shift (Sec. 7.4) a good pointing stability of
the applied magnetic field is required. Thus, in the experiments magnetic fields
with B = 1 − 3μT were applied, for which the relative change of B during the
time of the experiments was found to be negligible.

Another source of a quadratic Zeeman shift is the time dependent magnetic field
emitted by electronic devices near the trap which typically oscillates at a fre-
quency of 50 Hz. These field leads to an observable broadening of the m �= 0
transitions from which one can estimate that the mean amplitude of the field
is B̄ < 0.3μT (see Sec. 5.3.2). This leads to a contribution to the systematic
frequency uncertainty of about 5 mHz, which will be difficult to reduce without
magnetic shielding. Similar values for B̄ were also measured with magnetic-field
sensors placed close to the trap.

The magnetic field associated with the thermal radiation emitted by the exper-
imental apparatus also gives rise to a quadratic Zeeman shift of the clock tran-
sition, which is the the magnetic counterpart of the blackbody AC Stark shift
discussed below in Sec. 7.3.2. To account for the time and frequency dependence
of the blackbody field, Eq. (7.9) is written as

ν
(2)
Z (γ, J, F,m) =

μB

h2

∑
F ′ �=F

|〈γJFm|Jz|γJF ′m〉|2
∫ ∞

0

B2(ν)νFF ′

ν2
FF ′ − ν2

dν, (7.10)

where B2(ν) is the spectral distribution of B given by Planck’s law and νFF ′ =
νF − νF ′ is the frequency difference between the states with energies EF and
EF ′. For B2(ν) = B2δ(ν0) and ν0 �→ 0 Eq. (7.10), is with identical Eq. (7.9).
The magnetic blackbody field at T = 300 K has its maximum at a frequency
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νmax � 3.1 · 1013 Hz and a mean amplitude B̄2 � 2.8μT. The frequency νmax is
much larger than the relevant hyperfine splittings. In order to derive an estimate
for the blackbody Zeeman shift it is therefore reasonable to make the approx-
imations B2(ν) = B̄2δ(ν − νmax) and νFF ′/(ν2

FF ′ − ν2
max) � −νFF ′/ν2

max leading
to

ν
(2)
Z (γ, J, F,m) � μBB̄2

h2

∑
F ′ �=F

|〈γJFm|Jz|γJF ′m〉|2νFF ′

ν2
max

. (7.11)

Comparing the above equation to Eq. (7.9) one sees, that the static quadratic
Zeeman shift for B = 1μT is larger than the blackbody Zeeman shift by approx-
imately |(2.8)2ν2

max/ν
2
FF ′| > 60. This means that the blackbody Zeeman shift

does contribute less than 1 mHz to the systematic frequency uncertainty of the
frequency standard.

7.3 Quadratic Stark Effect

In Sec. 3.4 it was shown that in the presence of a static electric stray field the
ion in the trap no longer oscillates around the field free saddle point of the trap
potential, which leads to the appearance of excess micromotion. The interaction
of the atomic dipole moment with the square of the electric field at the position
of the ion gives rise to a quadratic Stark shift of the atomic energy levels. The
Stark Hamiltonian is

HS = −d · E , (7.12)

where d is the electric dipole moment operator and E is the electric field, which
in general will be time dependent. In the following the interaction with static or
time-averaged electric fields is discussed. Further it is assumed that the Stark
interaction is weak compared to the Zeeman interaction and therefore can be
diagonalized separately in the same basis as the Zeeman Hamiltonian. Some
aspects of the interaction with time-dependent fields are discussed in Sec. 7.3.2
and Sec. 7.3.3.

The theory of the quadratic Stark effect is described in detail in [135, 136] and
the relevant formulas are summarized in Appendix A. For the clock transition
Eq. (A.3) gives

hΔνS =
(
2ΔαS + αT

(
3 cos2 β − 1

)) E2

4
, (7.13)

where ΔαS = αS(S, 1/2) − αS(D, 3/2) is the difference of the scalar electric
polarizabilities of the ground state and of the 2D3/2 state, αT = αT (D, 3/2)
is the tensor polarizability of the 2D3/2 state, E is the absolute value of the
electric field, and β is the angle between the electric and the static magnetic field
defining the quantization axis. The electric polarizabilities can be calculated using
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Figure 7.1: Quadratic Stark shift as a function of the displacement Δz of the
ion from the saddle point of the quadrupole trap potential for β = 32◦ (solid
circles) and β = 90◦ (open circles). Δz was calculated from the voltage applied
between the trap endcaps. The lines are least-squares fits of parabolas centered
at Δz = 0. The horizontal bar in the lower part represents the uncertainty range
of the position Δz = 0 which remains after the compensation of the electric stray
field.

the formulas in Appendix A from oscillator strength data, but the precision of
the calculation will be limited by the amount of available oscillator strengths so
that the uncertainty of the obtained polarizabilities is difficult to estimate. It is
therefore useful to determine the relevant polarizabilities also experimentally.

7.3.1 Measurement of the Scalar and Tensor Electric Po-
larizabilities

To measure the polarizabilities, one of the ions in the two traps was displaced by a
distance Δz from the trap center by adding a variable offset to the compensation
voltage applied between the endcap electrodes of the trap [67]. The ion is then
subject to the quadratic Stark shift caused by the time average of the AC trapping
field at the position Δz. The corresponding frequency shift of the clock transition
is measured relative to the unperturbed ion in the other trap. The quantities
ΔαS and αT can be determined from at least two measurements with different
angles β. Fig. 7.1 shows the dependence of Δf on the displacement Δz for a
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magnetic field orientation with β = 32(3)◦. The angle β was determined using
a measurement of an induced quadrupole shift as described later in Sec. 7.4.
The data points taken at Δz = ±0.7 μm and Δz = 1.1 μm include corrections
for the quadratic Zeeman effect as well as for the respective calculated second-
order Doppler shifts of −0.16 Hz and −0.35 Hz, respectively that aries from
the excess micromotion related to the displacements. The differential voltage
between the endcap electrodes also leads to a small electric field gradient of
about 4.4 ·10−4 V/mm2 at the position of the ion. The corresponding quadrupole
shift (see Sec. 7.4) of about 1.2 mHz is negligible for the Stark shift measurement.
A second Stark shift measurement was done for a magnetic field orientation with
β = 90(5)◦. Here no significant shifts were observed, indicating an accidental
cancellation of the scalar and tensorial contributions to the Stark shift at this
angle. Combining these measurements, ΔαS = −6.9(1.4) × 10−40 Jm2/V2 and
αT (D3/2) = −13.6(2.2) × 10−40 Jm2/V2 is obtained. The uncertainties include
contributions from the statistical uncertainty of the data, the uncertainties of the
angles β and from a 5% uncertainty in the determination of E2. The experimental
result is close to values calculated from available oscillator strength data [99,137],
ΔαS = −4.4 × 10−40 Jm2/V2 [138] and αT = −11.5 × 10−40 Jm2/V2.

For optimum compensation of the electric stray field, it was found in Sec. 3.4
that at the position of the ion the components of the time-averaged square of
the trapping field including the contributions due to the secular motion are
E2

r � E2
z ≤ 6000 V2/m2. From Eq. (7.13) it follows that if Er ≤ Ez, the quadratic

Stark shift of the clock transition is maximal for β ∈ {0, π}, that is for Er = 0
(tanβ = Er/Ez since Ez is parallel to the trap axis). This yields an upper limit for
the quadratic Stark shift of |ΔνS| ≤ |(ΔαS +αT )E2

z/2h| ≤ 7 mHz, corresponding
to a fractional frequency shift of about 1 · 10−17.

7.3.2 Blackbody AC Stark Shift

The electric field associated with thermal radiation emitted by the experimental
apparatus also gives rise to a quadratic Stark shift of the clock transition, the so-
called blackbody AC Stark shift. To good approximation the thermal radiation
is isotropic and its spectral energy density is given by Planck’s law:

uλ(T ) =
8πhc

λ5

1

e
hc

λkBT − 1
. (7.14)

At T = 300 K, according to Wien’s law the wavelength corresponding to the
maximum of uλ(T ) is λ0 � 9.7 μm. This is large compared to the transition
wavelengths in 171Yb+, where the longest relevant transition wavelength is at
about 2.4 μm [138]. In a static approximation the blackbody AC Stark shift
can therefore be calculated using the polarizabilities measured with the trap field
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and replacing E by the RMS amplitude of the blackbody radiation electric field
EBB(T ), defined by

ε0E
2
BB(T ) =

∫ ∞

0

uλ(T ) dλ =
8π5(kT )4

15(ch)3
= ε0 ·

(
831.95

V
m

)2(
T

300 K

)4

, (7.15)

where ε0 is the electric constant. As the blackbody radiation is isotropic, the
tensor part of the blackbody AC Stark shift vanishes and the shift of the clock
transition at the typical laboratory temperature T � 297 K is

ΔνBB � ΔαS

2h
E2

BB(297K) � −0.35(0.07) Hz. (7.16)

The uncertainty is determined by the uncertainty of the experimental value of
ΔαS. The above calculation neglects the frequency dependence and also a possi-
ble anisotropy of the blackbody radiation field. The latter is expected to be neg-
ligible since the trap is surrounded by a closed metal box without internal heat
sources. More rigorous calculations of the blackbody shift that take the wave-
length dependence of uλ(T ) into account predict a frequency shift that is about
10% larger than the one calculated from Eq. (7.16) [138, 139] (see also Appen-
dix A). The polarizabilities calculated there are different from the ones measured
in the experiment described above. To avoid confusion, the polarizabilities for the
static case discussed above will be referred to as static polarizabilities, while the
ones accounting also for the any frequency dependence of E will be referred to as
dynamic polarizabilities. The uncertainty in the measurement of the static pola-
rizabilities (see Sec. 7.3.1 above) can easily be reduced below 10% by incresing
the averaging time and the number of displacements for which the shift is mea-
sured. Assuming that the temperature of the environment can be controlled to
within ±1 K, which leads to an additional 5 mHz uncertainty in ΔνBB, the total
uncertainty due to the blackbody AC Stark shift would then be about 40 mHz.
This corresponds to a fractional frequency uncertainty of 6 · 10−17, which would
then be limited by the approximations that lead to Eq. (7.16). In order to re-
duce the uncertainty in the blackbody AC Stark shift below the 10% level, either
more precise theoretical calculations or direct measurements of the blackbody AC
Stark shift must be done. As far as the calculations are concerned, more precise
measurements of the static polarizabilities will also help to get a better measure
of the slight discrepancy between experiment and theory suggested by the mea-
surement of the static ploarizabilities. A direct measurement of the blackbody
shift with the necessary precision by deterministically heating or cooling the ap-
paratus would require major changes of the experimental setup. Another option
would be to permanently cool the environment of the ion to lower temperatures.
As ΔνBB ∼ T 4, the shift will be greatly reduced even for moderate cooling. Go-
ing for example from room temperature (T � 300 K) to the temperature of liquid
nitrogen (T � 80 K) would reduce the shift to about 2 mHz. With decreasing
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temperature also the mean frequency of the electric blackbody field decrases and
therefore the theoretical predictions made by Eq. (7.16) based on the measured
static polarizabilities become more reliable.

7.3.3 Light Shift

Another electric field that may give rise to a quadratic Stark shift is the electric
field of the probe laser interrogating the ion. This so called light shift is propor-
tional to the intensity of the incident light IL = cε0Ē2. Here Ē2 is the square of
the electric field of the laser averaged over one oscillation period. The light shift
due to the dipole coupling of the ground state and of the 2D3/2(F = 2) state to
other states by the probe laser can then be estimated from

ΔνL ≤ (ΔαAC
S + αAC

T )
I

2hcε0
. (7.17)

this equation corresponds to Eq. (7.13), where the static polarizabilities are re-
placed by the dynamic polarizabilities calculated in Appendix A, and E2 is ex-
pressed in terms of the laser intensity IL. Typical laser powers employed to obtain
spectra with a 30 Hz linewidth are on the order of 1 nW and the waist diameter
of the laser focus is about 50 μm, leading to intensities of about 0.5 W/m2. The
relative frequency shift of the clock transition is then calculated to be 3.6 · 10−19,
which is negligible.

Another contribution to the light shift could arise from nonresonant coupling of
the 2S1/2(F = 1) state to the 2D3/2(F = 2) state by the probe laser. In the
dressed-atom picture the corresponding frequency shift of the clock transition is
approximately given by [140]

Δν ∼ K
Ω2

R

2ΔL
∼ 1 · 10−9 Hz , (7.18)

where ΩR is the resonant Rabi frequency for the 2S1/2(F = 1) → 2D3/2(F = 2)
transition, ΔL is the detuning of the probe laser from resonance, and K is a
numerical factor of order unity that depends on the quantum numbers of the
involved states.

The cooling and repumper lasers are blocked by mechanical shutters during the
interrogation of the ion by the clock laser. A variation of the powers of the
cooling and repumper lasers did not lead to any measurable frequency shift in the
trap comparison experiments, confirming the correct operation of the mechanical
shutters.
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7.4 Quadrupole Shift

Aside from the interaction with the external electric field described in the previous
section, there is also an interaction of the ion with the gradient of the electric
field. While the electric field couples to lowest order to the atomic electric dipole
moment, the gradient couples to the atomic electric quadrupole moment. The
resulting energy shift is called quadrupole shift. It has so far been the limiting
systematic uncertainty for most single-ion frequency standards. In the case of
the ytterbium clock transition, only the 2D3/2 state is shifted since the 2S1/2 state
has spherical symmetry and therefore no quadrupole moment.

The Hamilton operator describing the interaction of an external field gradient
with the atomic quadrupole moment of a given state is [136]

HQ = ∇E(2).Θ(2) =
2∑

q=−2

(−1)q∇E(2)
q Θ

(2)
−q . (7.19)

Here ∇E(2) is a symmetric traceless second-rank tensor describing the electric
field gradient at the position of the ion and Θ(2) is the electric-quadrupole oper-
ator for the atom. The definitions of the tensor components ∇E(2)

q and Θ
(2)
q are

given in Appendix B. In general ∇E(2) has five independent components, but
there exists always a coordinate transformation to a reference frame where ∇E(2)

is diagonal. In this so called principal axis frame denoted {x′, y′, z′}, ∇E(2) has
only two independent components due to the constraint Tr(∇E(2)) = 0, which
is the Laplace equation. If it is further assumed that the electric field gradient
is constant over the area of motion of the ion, the electric field gradient in the
principal axis frame can be written as

∇E(2)′ = 2A

⎛
⎝ 1 + ε 0 0

0 1 − ε 0
0 0 −2

⎞
⎠ , (7.20)

and the corresponding electric potential in the vicinity of the ion has the simple
form

Φ = A
(
(1 + ε)x′2 + (1 − ε)y′2 − 2z′2

)
. (7.21)

The parameter A is a measure for the strength of the potential and ε describes
the deviation of the potential from cylindrical symmetry.

The general formulas for the first- and second-order quadrupole shift are derived
in Appendix B. A general discussion of higher order quadrupole shifts can be
found for example in [141]. For the 2D3/2(F = 2, mF = 0) state, one finds for the
first-order quadrupole shift

h · Δν(1)
Q = 〈γJFm|HQ|γJFm〉 = AΘ(D3/2)g(α, β) , (7.22)

g(α, β) = 3 cos2 β − 1 − ε sin2 β cos 2α , (7.23)



62 7. Systematic Frequency Shifts

where Θ(D3/2) is the quadrupole moment of the 2D3/2 state, and α, β are the
first two of the Euler angles that relate the principal axis frame to the laboratory
frame where the z-axis is parallel to the magnetic field. The electric field gradient
at the position of the ion is the sum of the field gradients generated by the trap
and the electric stray field. Since Eq. (7.19) is linear in ∇E(2), the contributions
of the trap and stray field gradients can be analyzed separately.

For the trap potential the deviation from cylindrical symmetry is negligible as
the radial secular frequencies ωx and ωy are degenerate to within 1% for the traps
used in the experiments (see Sec. 3.1). The trap potential in its principal axis
frame is therefore in good approximation given by

Φtrap = (ADC + AAC cos Ωt)
(
x′2 + y′2 − 2z′2

)
, (7.24)

where ADC = UDC/(κr
2
0) and AAC = UAC/(κr

2
0). The contribution of AAC to the

quadrupole shift averages to zero to first order, but could lead to a considerable
contribution via the second-order quadrupole shift as has been pointed out in [67].
For the case ε = 0, the second-order shift of the 2D3/2(F = 2, mF ) state is
according to Eq. (B.14):

h · Δν(2)
Q =

∑
n �=m

|〈γJFn|HQ|γJFm〉|2
Em −En

=
A2Θ2(D3/2)

3ΔEz
m
(
f1(β)(8m2 − 23) + f2(β)(−2m2 + 11)

)
,(7.25)

f1(β) =
3

2
sin2 β cos2 β , (7.26)

f2(β) =
3

8
sin4 β , (7.27)

where ΔEZ is the Zeeman energy difference between adjacent mF sublevels. The
second-order shift is proportional to m and therefore exactly zero for the clock
transition. Thus, the trapping field only causes a quadrupole shift of the clock
transition if ADC �= 0.

The strength and symmetry of the electric stray field gradient is usually unknown,
and the stray field gradient is not compensated. The main reason for this is
that there is no easy way to measure the electric field gradient at the position
of the ion aside from measuring the corresponding quadrupole shift itself for
different directions of the magnetic field. In contrast to the electric stray field, its
gradient does not lead to a shift in the position of the ion, so that the methods
developed for the detection and compensation of the electric stray field yield no
information about the field gradient. The presence of the stray field gradient
however modifies the secular frequencies and an estimate of its strength can
therefore be made from measurements of the secular frequencies for different
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trap voltages, as will be discussed in Sec. 7.4.2. Even if one would know the
field gradient precisely, it would normally be inconvenient to compensate it. In
general five extra compensation electrodes would be required and one would have
to iterate the compensation procedure for the stray field gradient with the one for
the stray field. A compensation would be easier for a so-called endcap trap [142]
that has no ring electrode. In this case, a stray field gradient due to patch charges
on the trap electrodes will to a good approximation be oriented along the trap axis
and therefore can be compensated by a change of the dc trap voltage UDC [43].
The voltage would in this case be adjusted such, that the ratio of the radial and
axial secular frequencies matches the theoretical value calculated from Eq. (3.7).

There also exist methods that can reduce the quadrupole shift without measuring
or compensating the stray field gradient. These methods will be discussed in
Sec. 7.4.3.

7.4.1 Measurement of the Quadrupole Moment of the 2D3/2

State

In order to quantitatively investigate the quadrupole shift and evaluate its con-
tribution to the systematic uncertainty of the frequency standard, it is necessary
to know the quadrupole moment of the 2D3/2 state, which describes the cou-
pling between the atomic state and the external electric field gradient. Once the
quadrupole moment is known, one can use Eq. (7.22) to investigate the influence
of the electric stray field gradient by measuring the quadrupole shift for different
orientations of the magnetic field.

The quadrupole moment is experimentally determined by applying a voltage UDC

to the ring electrode of one trap and by measuring the resulting frequency shift
relative to the second trap, which is kept at UDC = 0. If ADC is much larger
than the strength of the electric stray field gradient, one can replace A by ADC

in Eq. (7.22) and set g(α, β) = 3 cos2 β − 1 ≡ g(β). If also the angle β between
the magnetic field and the trap axis is known, the quadrupole moment Θ(D3/2)
can be calculated from the observed frequency shift using Eq. (7.22). In order to
achieve a low measurement uncertainty it is advantageous to do the measurement
at angles β = {0, π} or β = π/2 where g(β) has an extremum and the measure-
ment is therefore least sensitive to the uncertainty of β. Because β = π/2 for
any magnetic field vector in the plane perpendicular to the trap axis, while the
conditions β = {0, π} can be realized only with a two-dimensional control of
the magnetic field orientation, it is convenient to work at β = π/2. Experimen-
tally, the magnetic field orientation is adjusted such that the absolute value of
the frequency difference between the two traps |Δf | is maximized to within the
statistical uncertainty in the vicinity of β = π/2 as is shown in Fig. 7.2. For
β = π/2 one has g(β) = −1, so that according to Eq.( 7.22) the quadrupole shift
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Figure 7.2: Quadrupole shift as a function of the orientation of the magnetic
field. The orientation of the magnetic field was varied by changing the current
in one of the coils used for the compensation of the ambient magnetic field. The
data points include corrections for the quadratic Zeeman shift. The solid line is
a sinusoidal fit to the data, the maximum corresponds to β = π/2.

is a linear function of the applied electric field gradient ADC with a slope equal
to −Θ(D3/2)/h. From the slope of the linear regression to the experimental data
shown in Fig. 7.3, one finds for the quadrupole moment:

Θ(D3/2) = 9.32(48) · 10−40 Cm2 = 2.08(11)ea2
0

where a0 is the Bohr radius. The given uncertainty consists of the statistical
uncertainty of the measurement, a 3% uncertainty of the applied field gradient,
and a 5◦ uncertainty in the adjustment of the angle β. The uncertainty of β leads
to an asymmetry in the uncertainty of g(β) which was accounted for by applying
a correction to g(β), leading to g(β) = −0.983(0.017). The experimental value
given above is in good agreement with the result 9.13 · 10−40 Cm2 of a multi-
configuration Dirac-Hartree-Fock (MCDHF) calculation done by W. Itano [64].
With the experimental value for the quadrupole moment one can now determine
the angle β (up to the ambiguities caused by the cos2 β dependence) between
the magnetic field and the trap axis for arbitrary orientations of the magnetic
field with high precision from the observed quadrupole shift. This method has
been used to determine the relevant angle for the measurements of the scalar and
tensor polarizabilities in Sec. 7.3.
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Figure 7.3: Measurement of the quadrupole shift as a function of the applied
field gradient for β = π/2. The data points include corrections for the quadratic
Zeeman shift. The solid line is the result of a linear regression to the data. The
quadrupole moment Θ(D3/2) is proportional to the slope of the linear regression.

7.4.2 Estimate for the Gradient of the Electric Stray Field

For a calculation of the contribution of the quadrupole shift to the systematic
uncertainty of the 171Yb+ single-ion optical frequency standard, not only the
quadrupole moment but also the gradient of the electric stray field has to be
known. The total field gradient at the position of the ion is the sum of the trap
field gradient and the stray field gradient. In its principal axis frame it is given
by Eq. (7.20) and the corresponding quadrupole potential can be written as in
Eq. (7.21). From the equation of motion Eq. (3.2) for the ion in the potential
it can be seen that the presence of a static stray field gradient will change the
a-parameters defined in Eq. (3.3) and therefore the secular frequencies. However,
the secular frequencies in the absence of the stray field gradient are normally
not known, because the asymmetry parameter ε contains contributions from the
imperfect shapes of the trap electrodes as well as from the stray field gradient and
the two contributions can not easily be separated. An upper limit for the stray
field gradient can be derived under the assumption that the electric stray field
gradient is small compared to the amplitude of the ac field gradient of the trap
potential. This is equivalent to the requirement that the frequency splitting of the
radial frequencies Δωr is small compared to the radial secular frequency defined
as ωr = (ωx+ωy)/2. In this case the principal axis frame for the total electric field
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gradient is given by the principal axis frame of the trap field gradient, and the
influence of the stray field gradient can be described by modified a-parameters
a′i, defined as

a′i �
8Q

mΩ2κr2
0

(γiUDC + γ′iUS) , γ′x + γ′y + γ′z = 0 , (7.28)

where US/(κr
2
0) ≡ AS is the magnitude of the stray field gradient that one wants

to estimate and the γ′i are defined analogous to the γi in Eq. (3.3) with ε �→ ε′.
Inserting the a′i into Eq. (3.7) for the secular frequencies, the values of AS and
the γ′i can be determined from the measured secular frequencies. This was done
for several sets of secular frequencies measured for various trap parameters. As
a result, it was found that AS < 0.5 V/mm2 and that the intrinsic asymmetry of
the trap is ε < 10−3. Together with the experimental value for the quadrupole
moment, this leads to an estimate for the systematic uncertainty of the frequency
standard due to the quadrupole shift of ΔνQ ≤ 1.4 Hz. It is expected that part
of the stray field gradient is due to the inhomogeneous electric field generated by
the voltages applied for the compensation of micromotion to the ytterbium oven
and electron source. Fig. 7.4 shows a measurement of the dependence of Δωr and
ωz/ωr on the voltages applied to the oven and the electron source. Extrapolating
the quantities Δωz/ωr and Δωr to zero compensation voltage (U = 0) and re-
peating the determination of the stray field gradient, one finds AS ≤ 1.0 V/mm2.
This means, that the gradient produced by the compensation electrodes compen-
sates part of the stray field gradient. Nevertheless it would be better to reduce
the gradient produced by the compensation electrodes, because this field gradient
will vary as the compensation voltages change over time. The contribution to the
field gradient from the compensation electrodes could be significantly reduced by
using pairs of plates as compensation electrodes, which would produce a more
homogeneous electric field.

7.4.3 Methods for Reducing the Quadrupole Shift

Two methods have been proposed which in principle allow to eliminate the
quadrupole shift without a priori knowledge of the electric field gradient. One
method proposed by W. Itano [136] relies on the fact that g(α, β) in Eq. (7.23)
is a linear combination of spherical harmonics (see also Eq. (B.12)) and therefore
the sum over g(α, β) is equal to zero for any set of three mutually orthogonal
directions of the magnetic field. This relation does not hold for the second-
order quadrupole shift (Eq. (B.13)), which is a linear combination of the squared
absolute values of spherical harmonics. For the case of the ytterbium clock tran-
sition, this is not a drawback since the second order quadrupole shift is equal
to zero anyway. Comparing Eq. (7.23) with Eq. (7.13), one finds that the ten-
sor part of the quadratic Stark shift is also proportional to a spherical harmonic
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Figure 7.4: Dependence of the secular frequencies on the compensation voltages
applied to the oven and the electron source. The applied voltages are given with
respect to the voltages for optimum compensation of micromotion, which were
Uo = 119.5 V for the oven and Ue = 15.5 V for the electron source, respectively.
The solid lines are linear regressions to the data.

and thus will also average to zero for three mutually orthogonal magnetic fields.
The suppression of the first-order quadrupole and tensor quadratic Stark shift
that can be achieved depends on the precision to which the three magnetic field
orientations are orthogonal. From numerical Monte Carlo simulations of the av-
eraging process one finds that the uncertainty in the individual angles has to be
about ±1◦ to get a suppression of the orientation dependent shifts by a factor of
100. Such a precision usually requires the use of a magnetic shielding around the
trap. Even then it will be a time-consuming effort to adjust the magnetic fields
and prove that the necessary precision was achieved. One way to do this is to
determine the individual orientations of the magnetic fields from series of Zee-
man spectra for different polarizations of the clock laser as has been described in
Sec. 5.3.2. Another way of checking the orthogonality of the three magnetic field
orientations is to induce a large quadrupole shift and measure the suppression of
the shift with sufficiently low statistical uncertainty. Since the degree of suppres-
sion also depends on the orientation of the electric field gradient relative to the
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Figure 7.5: Averaging of the quadrupole shift induced by a voltage UDC = +10 V
in trap 1 (solid triangles) and trap 2 (solid circles) over three approximately or-
thogonal magnetic field orientations. The lines mark the corresponding averages
for trap 1 (dashed) and trap 2 (solid). The open symbols represent the frequency
differences measured when both traps are at UDC = 0 V. The uncertainties of the
individual data points are smaller than the size of their respective symbols.

three magnetic fields, the procedure should be repeated for at least one additional
set of orthogonal magnetic fields to ensure, that the observed suppression is not
accidental.

The experimentally realized sets of orthogonal magnetic field orientations so far
are only approximately orthogonal with an estimated uncertainty of 20◦ for trap 1
and 10◦ for trap 2 derived from the analysis of series of Zeeman spectra. Fig. 7.5
shows a first experimental realization of the described averaging scheme. The
frequency difference between the two trap systems was successively measured at
UDC = +10 V for the three approximately orthogonal magnetic field orientations
in each trap with respect to a fixed field orientation in the other trap which
was kept at UDC = 0 V. The mean frequency differences obtained are −2.5 Hz
for trap 1 and 0.9 Hz for trap 2. The mean differences measured for the same
combinations of magnetic field orientations, but with UDC = 0 in both traps
were −0.4 Hz for trap 1 and −0.1 Hz for trap 2. For the data with an applied
field gradient, the ratio of the averages to the respective measured maximum
frequency differences can be taken as a measure for the suppression of the induced
quadrupole shift. For trap 1 a suppression by about a factor 4 is found while for
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trap 2 the corresponding factor is about 15. Due to the large uncertainties of
the magnetic field orientations the suppression factors could vary widely if the
orientation or symmetry of the electric field gradient would be changed. Thus
the current implementation of the averaging scheme is not suited to reduce the
contribution of the quadrupole shift to the systematic uncertainty of the frequency
standard significantly. However, by installing magnetic shieldings around the
traps it seems feasible to reduce the uncertainty in the magnetic field alignment to
∼ 1◦, which would effectively reduce the quadrupole shift of the clock transition to
about 10 mHz, corresponding to a fractional frequency uncertainty of 1.5 · 10−17.
In other ion trap experiments a significant suppression of the quadrupole and
tensor Stark shift by averaging over three orthogonal magnetic field orientations
has already been demonstrated for 88Sr+ [47] and 199Hg+ [64].

P. Dubé et al. proposed another method for eliminating the quadrupole shift that
does not require precise control over the direction of the magnetic field [143]. This
method uses the fact that the Hamiltonian for the quadrupole shift is traceless,
which implies that the sum over the quadrupole shifts of all magnetic sublevels for
a given transition is equal to zero up to any order of perturbation theory. Again,
the same is true for the tensor part of the quadratic Stark shift, which can be
seen for example by comparing Eq. (A.3) and Eq. (B.12) which both exhibit the
same dependence on the magnetic quantum number m. The only requirement
for this method to work is that the magnetic field is sufficiently stable during the
measurement, so that all Zeeman components can be interrogated at the same
magnetic field. As for the first method, this usually requires a magnetic shielding
around the trap. The linear Zeeman shift also averages to zero, but not the
quadratic Zeeman shift. Since the quadratic Zeeman shift can be calculated and
corrected with low uncertainty, the contribution of the quadratic Zeeman shift to
the total systematic uncertainty is not significantly increased by this method. In
the operation of a frequency standard, one would alternately stabilize the probe
laser to every m component of the transition. If the frequency fluctuations due to
fluctuations of the magnetic field are small compared to the quantum projection
noise, this procedure will not decrease the stability of the standard as long as
the power of the probe laser and or its polarization are adjusted for maximum
excitation probability every time the interrogation switches to another Zeeman
component.
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7.5 Gravitational Time Dilation

In Sec. 7.1 it was mentioned that the second-order Doppler effect is a manifes-
tation of special relativistic time dilation. In the context of general relativity,
the metric which defines how time and length intervals measured by two distant
observers are related to each other contains also the action of the gravitational
field. Time dilation effects can therefore appear even when the two observers are
at rest with respect to each other. On earth, this gravitational time dilation leads
to a relative shift of the frequency ν observed in a reference frame at gravitational
potential φ with respect to the frequency ν0 measured in the reference frame of
the source at potential φ0 of

ΔνG

ν0
=
ν − ν0

ν0
= −φ− φ0

c2
� −gΔr

c2
+O

(
Δr2

) � −1 · 10−16 m−1 , (7.29)

where g is the local acceleration of gravity at some reference potential surface
and Δr = r − r0 is the difference of the heights of the two observers above the
reference surface. If r > r0, the frequency ν is shifted to the red compared to ν0,
while a clock located at r runs faster than its counterpart at r0.

The local acceleration g can be measured using commercial equipment with a
relative uncertainty of a few parts in 109 [144], which is negligible. For local
frequency comparisons like the ones between the two ion traps it is sufficient to
determine Δr with centimeter precision to reduce the relative uncertainty of ΔνG

to 1 · 10−18, but for long distance comparisons the accurate determination of Δr
might pose a problem. In this case also higher-order terms in the expansion of
the gravitational potential should be taken into account [10].

7.6 Collision Effects

Collisions with the background gas can lead to a frequency shift of the clock
transition. No rigorous calculation of this effect was performed, but an estimate of
the magnitude of the collisional shift was done on the basis of tabulated collisional
shifts for a variety of neutral atoms and some light ions given in [145]. The typical
frequency shifts are less than 3 · 10−12 Hz cm−3. The largest partial pressure of
a background gas component in the experiment is estimated to be ≤ 10−6 Pa for
molecular hydrogen. The corresponding density at room temperature is about
2.4 ·108 cm−3, leading to a frequency shift of 7.2 ·10−4 Hz. The relative frequency
shift is about 1.1 · 10−18. Even though this estimate may not be very accurate,
one can be confident that collision effects play at present no important role for
the systematic uncertainty of the 171Yb+ single-ion optical frequency standard.
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7.7 Cavity QED Effects

From cavity quantum electrodynamics (CQED) it is known that the presence
of boundary conditions for electromagnetic fields in the vicinity of an atom can
lead to shifts of its energy levels. According to [146] these level shifts can be
divided into groups: Shifts caused by the modification of the vacuum fluctuations
close to the surface imposing the boundary conditions and shifts arising from the
interaction of the atom with the part of its own radiation that is reflected from
the surface. The size and relative contribution of the individual shift mechanisms
to the energy shift of a given atomic state depends on the geometry and the
electrical properties of the boundary, the atomic state, and the typical distance
of the atom from the boundary. For the simple case of an atom located between
two parallel perfectly conducting plates, it was found that if the distance r0 of
the atom to one of the plates is large compared to the transition wavelengths
between the atomic states, the energy shift of the state |a〉 is approximately
given by [146, 147]

Δνa ∼ − c

16π3ε0

(
α

r4
0

+
4

r0

∑
b<a

| 〈a|μ|b〉 |2 ln | sinωabr0|
)
. (7.30)

Here α is the static polarizability of the state |a〉, and the sum is over all states
|b〉 with energies below the energy of the state|a〉. The first term is the Casimir
interaction, while the second term appears only for excited states of the atom and
describes the self-interaction of the excited state with its own radiation and the
resonantly enhanced vacuum fluctuations. For the experimental setup described
in Chapter 4 the relevant boundary conditions are imposed by the trap electrodes,
which are at a distance r0 ∼ 1 mm from the ion that is large compared to the
wavelength of the clock transition. Neither the ring electrode nor the two endcap
electrodes form a good resonator, because of their conical form and relatively low
reflectivity. Moreover, for the 2D3/2 state there exist no electric dipole allowed
transitions to lower energy states. It seems therefore reasonable to ignore the
second term in Eq. (7.30) and estimate the influence of CQED effects on the
clock transition from the Casimir term. For the clock transition one has then

ΔνC ∼ c

8π3ε0

ΔαS + αT

r4
0

� 7 · 10−11 Hz , (7.31)

where the static polarizabilities ΔαS and αT from Sec. 7.3 where used. Even
though the above estimate represents no rigorous treatment of the experimental
situation, it gives confidence that cavity QED effects play no important role for
the systematic uncertainty of the frequency standard.
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7.8 Line Profile Asymmetry

An asymmetry in the line profile of the probe laser would lead to an asymmetric
lineprofile of the atomic resonance observed in the experiment. Because the
two trap systems share the same probe laser, such an asymmetry would not
lead to an observable frequency difference in a trap comparison experiment if
both systems are operated under identical conditions. For different values of the
frequency modulation δ (see Sec. 5.4) for the two servo systems an asymmetry of
the line profile should lead to a frequency difference between the two servos. Tests
were performed for frequency resolutions of 30 Hz, and 10 Hz. The frequency
modulation was varied by 50% of its nominal value for one of the servos, and
no significant frequency differences were observed for averaging times of a few
hundred seconds. An upper limit for the contribution of a probe laser induced line
profile asymmetry is thus given by the statistical uncertainty of the measurements
with different frequency modulations in the two servos, which was approximately
0.5 Hz. This corresponds to a relative uncertainty of 7 · 10−16.

The effect of a possible line profile asymmetry of the probe laser on the excitation
spectrum is small, if the intrinsic laser linewidth is small compared to the width of
the excitation spectrum. Effects of laser line asymmetries are therefore expected
to be important mainly close to the resolution limit. The most likely source of
an asymmetric probe laserline is the electronics involved in the frequency stabi-
lization of the probe laser to the reference cavity. It is expected that any possible
asymmetry caused by the electronics can be controlled, so that it does not limit
the uncertainty of the frequency standard.

Another mechanism that could lead to a systematic frequency shift is an asym-
metry in the servo system used to stabilize the probe laser frequency to the
atomic transition. The frequency error due to an asymmetry of the servo system
would likely be proportional to the linewidth Δω of the resonance. An asymme-
try should therefore become observable in frequency comparisons with different
durations of the probe pulses in the two systems. From Eq. (6.1) one finds that
without dead times and for a Fourier limited excitation of the clock transition,
the instability of the frequency standard is proportional to

√
Δω. This means

that if the linewidth of the resonance for one trap system is increased with respect
to the other trap system by a factor of N , the sensitivity to servo asymmetries
increases as

√
N for a given averaging time. In the experiment this was done

comparing first the center frequencies of 10 Hz resonances in both traps. The
relative statistical uncertainty was in this case about σy(500s) = 7 · 10−16 and
no significant frequency difference between the trap systems was observed. Then
the resolution in one trap was changed to 1 kHz. For the same averaging time of
about 500 seconds, also no significant frequency difference between the two traps
was observed after the change in resolution. This leads to an upper limit for the
relative frequency error due to a servo asymmetry of 1 ·10−16 for the operation at
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10 Hz resolution. As in the case of a probe laser asymmetry, it is expected that
a possible servo asymmetry can be controlled sufficiently well, so that it will not
limit the uncertainty of the frequency standard.

7.9 Uncertainty Budget

Table 7.1 summarizes the contributions to the systematic uncertainty of the
171Yb+ single-ion optical frequency standard that were discussed throughout the
Chapter.

The largest contribution comes from the quadrupole shift, which dominates the
total relative systematic uncertainty of 1.0 · 10−15. Up to now, no strict limit
for the magnitude of the quadrupole shift could be derived. The shift calculated
from the estimate for the field gradient (Sec. 7.4.2) gives an upper bound for
the quadrupole shift for the present state of the experiment, but the stray field
gradients might change considerably over time. The trap comparison measure-
ments described in Chapter 8 suggest that the stray field gradient may be weaker
than expected from the measurements of the secular frequencies. A direct mea-
surement of the quadrupole shift requires a good control over the direction of
the magnetic field, as do the two methods discussed in Sec. 7.4.3 which allow to
correct for the quadrupole shift. One of the methods was already implemented
in the experiment, but due to the lack of magnetic shielding a suppression of
the quadrupole shift by only a factor 4 to 15 was achieved so far. However, for
the future suppression factors of more than 100 can be expected [64], reducing
the contribution of the quadrupole shift to the relative systematic uncertainty to
about 1 · 10−17. As a side effect, the magnetic shielding will also allow the use
of lower static magnetic fields which will reduce the quadratic Zeeman shift and
will also reduce time-dependent magnetic stray fields to a negligible level.

The next limit for the uncertainty will then arise from the uncertainty in the
determination of the blackbody AC Stark shift, which is at the moment in the
range of 1 ·10−16. While this systematic will pose no problem for the comparisons
between two ytterbium standards that are operated at the same temperature, it
will limit the uncertainty for comparisons with other atomic frequency standards.
More precise measurements of the static polarizabilities and a better understand-
ing of the slight discrepancy between theory and experiment for the static pola-
rizabilities found in Sec. 7.3.1 will probably help to improve the precision of the
calculations. It is expected that the blackbody AC Stark shift can be determined
and corrected with an uncertainty of about one percent, leading to a relative
uncertainty of about 5 · 10−18. For the case that such a precision can not be
achieved in the calculations, there is also the option to cool the trap apparatus to
lower temperatures as for example in the case of the 199Hg+ single-ion frequency
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standard, which is operated at the temperature of liquid helium [65]. Already at
the temperature of liquid nitrogen, the blackbody AC Stark shift would become
negligible.

Table 7.2 lists the projected systematic uncertainties of the 171Yb+ single-ion op-
tical frequency standard accounting for the expected experimental improvements.

With the experimental improvements discussed above, it is expected that a
171Yb+ single-ion optical frequency standard can achieve a relative uncertainty
of about 1.0 · 10−17 over the next years. A limiting factor for further improve-
ment might be the instability of the standard. With the present instability of
σy(t) � 7.8 · 10−15 t−

1
2 , it would take about one week of continuous averaging to

reach the 10−17 level of statistical uncertainty and even at the minimal instability
for the ytterbium standard estimated as σy(t) � 2.7 · 10−15 t−

1
2 the time required

would still be about two and a half days. Under such circumstances, systematic
parameter studies will be time consuming and demand a high long-term reliability
of especially all the lasers involved in the experiment. Also issues like long-term
drifts of compensation voltages will become more important.
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Table 7.1: Systematic frequency shifts of the clock transition and their contri-
bution to the systematic uncertainty of the 171Yb+ single-ion optical frequency
standard for the present state of the experiment.

Source of the systematic Absolute shift Relative shift Correction Relative
frequency shift [Hz] uncertainty

Second-order Doppler shift
Secular motion −2.1 · 10−4 −3.0 · 10−19 - 3.0 · 10−19

Micromotion −2.6 · 10−3 −3.8 · 10−18 - 3.8 · 10−18

Second-order Zeeman shift
Static field |B| = 1 μT +5.2 · 10−2 +7.6 · 10−17 √

7.6 · 10−19

50 Hz stray field +5.0 · 10−3 +7.3 · 10−18 - 7.3 · 10−18

Blackbody field at T = 297 K +1.0 · 10−3 +1.5 · 10−18 - 1.5 · 10−18

Second-order Stark shift
Secular motion −1.4 · 10−4 −2.0 · 10−19 - 2.0 · 10−19

Micromotion −6.1 · 10−3 −1.0 · 10−17 - 1.0 · 10−17

Blackbody field at T = 297 K −0.35 −5.1 · 10−16 √
1.0 · 10−16

Probe laser light shift −2.5 · 10−4 −3.6 · 10−19 - 3.6 · 10−19

Quadrupole shift
Estimate from secular frequencies <1.4 +2.0 · 10−15 - 2.0 · 10−15

Data scatter in trap comparison <0.7 +1.0 · 10−15 - 1.0 · 10−15

Cavity QED effects 7 · 10−11 1.0 · 10−25 - 1.0 · 10−25

Collisional shift 7.2 · 10−4 1.1 · 10−18 - 1.1 · 10−18

Laser frequency lock <1 · 10−2 1.5 · 10−17 - 1.5 · 10−17
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Table 7.2: Projected systematic uncertainties of the 171Yb+ single-ion optical
frequency standard.

Source of the systematic Absolute shift Relative shift Correction Relative
frequency shift [Hz] uncertainty

Second-order Doppler shift
Secular motion −2.1 · 10−4 −3.0 · 10−19 - 3.0 · 10−19

Micromotion a −5 · 10−4 −7.6 · 10−19 - 7.6 · 10−19

Second-order Zeeman shift
Static field |B| = 0.1 μT b +5.2 · 10−4 +7.6 · 10−19 √

7.6 · 10−21

50 Hz stray field b +5.0 · 10−4 +7.3 · 10−19 - 7.3 · 10−19

Blackbody field at T = 297 K +1.0 · 10−3 +1.5 · 10−18 √
1.5 · 10−19

Blackbody field at T = 70 K +3.1 · 10−6 +4.5 · 10−21 - 4.5 · 10−21

Second-order Stark shift
Secular motion −1.4 · 10−4 −2.0 · 10−19 - 2.0 · 10−19

Micromotion a −2.4 · 10−4 −4.0 · 10−19 - 4.0 · 10−19

Blackbody field at T = 297 K c −0.35 −5.1 · 10−16 √
5.0 · 10−18

Blackbody field at T = 70 K −2 · 10−3 −3 · 10−18 √
3.0 · 10−19

Probe laser light shift −2.5 · 10−4 −3.6 · 10−19 - 3.6 · 10−19

Quadrupole shift b,d

Estimate from secular frequencies < 1.4 · 10−2 +2.0 · 10−17 - 2.0 · 10−17

Data scatter in trap comparison < 7.0 · 10−3 +1.0 · 10−17 - 1.0 · 10−17

Cavity QED effects 7 · 10−11 1.0 · 10−25 - 1.0 · 10−25

Collisional shift 7.2 · 10−4 1.1 · 10−18 - 1.1 · 10−18

Laser frequency locke <1 · 10−3 1.5 · 10−18 - 1.5 · 10−18

aResolution of the imaging system increased by a factor 5.
bwith magnetic shielding
cuncertainty of the polarizabilities Δαs, αT reduced to 1%
dImplementation of orthogonal set of magnetic field axis with angle uncertainty 1◦
eimproved lock algorithm and reduced laser frequency drift



Chapter 8

Agreement Between the Two Trap
Systems

In the previous sections the systematic frequency shifts of the clock transition
were investigated. From the uncertainty budget shown in Table 7.1 it can be ex-
pected that for a compensation of electric stray fields as described in Sec. 3.4 and
without an applied static electric field gradient, the frequencies of the clock tran-
sitions realized by two ions stored in separate traps would agree on the hertz level
or below. Fig. 8.1 shows the result of eight trap comparison measurements taken
on two days separated by one week. Each data point represents the frequency
difference Δf averaged over 500-700 s. In order to be sensitive to systematic
effects that depend on the orientation of the magnetic field, measurements were
done for the two sets of approximately orthogonal magnetic field orientations
from Fig. 7.5 and for the orientation used in the measurement of the quadrupole
moment of the 2D3/2 state in Sec. 7.4.1. The measurements 1 − 5 correspond
to the data points shown as open symbols in Fig. 7.5. The weighted mean fre-
quency difference of all eight measurements is 0.26 Hz and the mean statistical
uncertainty of the individual measurements is 0.42 Hz. All data points include a
correction for the quadratic Zeeman shift. The remaining systematic uncertainty
due to the quadratic Zeeman shift here is about 50 mHz, while the combined
uncertainty contributions of the quadratic Stark and second-order Doppler effect
is below 10 mHz. The blackbody AC Stark shift is about −0.35 Hz at T = 297 K
and should be equal to within 20 mHz for both traps. The total systematic un-
certainty of the measurements not including the uncertainty for the quadrupole
shift is then about 55 mHz, which is small compared to the statistical uncertain-
ties of the measurements. The estimate for the uncertainty contribution of the
quadrupole shift ΔνQ ≤ 1.4 Hz derived in Sec. 7.4.2 is large compared to the
statistical uncertainty, but also less strict than the estimates for other systematic
uncertainties. The measurements shown in Fig. 8.1 thus can be interpreted as a
measurement of the typical quadrupole shift under normal operating conditions
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Measurement
1 2 3 4 5 6 7 8

Δf
 (

H
z)

-0.6
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(1,1)
(1,2)

(1,3)
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(1,4)

(1,4) (1,3)

Figure 8.1: Frequency difference Δf in the absence of external perturbations. The
magnetic field orientations are labeled as in Fig. 7.5 and (1,4) is the orientation
used in the measurement of the quadrupole moment. The data were taken on two
days and are displayed in temporal order. The solid line is the weighted average
of the data, the dashed lines mark the average statistical uncertainty of the data
points.

of the experiment. Assuming that the scatter of the data in Fig. 8.1 is only due
to the orientation dependence of the quadrupole shift, one finds from the scatter
of measurements 1−3 and 3−5 that the typical quadrupole shift under the above
assumption is below 0.7 Hz. If it is further assumed that the magnetic field orien-
tations 1, 2, 3 are exactly orthogonal for both traps, the frequency difference Δf0

between the traps in the absence of the quadrupole shift (and tensor quadratic
Stark shift) is given by

Δf0 =
1

3
(Δf11 + Δf12 − Δf13 + Δf23 + Δf33) , (8.1)

where Δfij is the frequency difference measured for the combination of magnetic
field orientations (i, j). From the estimates of other systematic frequency shifts
made above, one would expect Δf0 to be consistent with zero within the statistical
uncertainty of the measurement. Using measurements 1−5 from Fig. 8.1 one finds
Δf0 = 0.1(6) Hz, which is consistent with the estimated systematic uncertainty.
The uncertainty of Δf0 is dominated by the uncertainties in the mutual angles of
the magnetic field orientations of 20◦ for trap 1 and 10◦ for trap 2 (see Sec. 5.3.2).
The contribution of the angle uncertainties to the uncertainty of f0 was estimated
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from numerical Monte Carlo simulations where the orientations of the magnetic
fields were varied within the range of their uncertainties.

In order to analyze the data from Fig. 8.1 without any assumption on the origin
of the scatter of the data, a χ2-test was performed for the hypothesis that the
data sample represents one constant value equal to the mean of the data set.
The result is χ2 = 3.4, which for seven degrees of freedom gives a probability of
84% that a random set of eight values with the same mean value and the same
statistical uncertainty as the data would give the same or a higher χ2. Thus,
within the statistical uncertainty of the measurements the data yield no evidence
for frequency shifts of the clock transition that depend on the orientation of the
magnetic field. For an uncertainty estimate on the observed mean frequency
difference of 0.26 Hz, it therefore appears justified to regard the scatter of the
data as random and the resulting statistical uncertainty of the mean would be
0.42/

√
8 = 0.15 Hz. Nevertheless, as it is difficult to determine the contribution

of the quadrupole shift to the scatter of the data and because the data sample
is not sufficiently large to allow a significant statement on the distribution of the
data points, the data is not assumed to represent one constant value. Instead,
the data points are treated as measurements of eight independent and potentially
different quantities. The uncertainty of the mean frequency difference can then
be estimated as the mean statistical uncertainty of the individual measurements,
which is 0.42 Hz. The relative frequency difference between the two trap systems
is then 3.8(6.1) · 10−16. This agreement is comparable to the best agreement found
in a comparison of cesium fountain clocks [21], which are the most accurate clocks
available at present.
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Outlook

In the experiments described in this work it could be demonstrated that in com-
parison to cesium fountain clocks a 171Yb+ single-ion optical frequency standard
is competitive in its relative uncertainty and already superior in its relative in-
stability.

The main experimental limit for the uncertainty is presently the insufficient con-
trol over the direction of the magnetic field as it is required for the control of
the quadrupole shift. The implementation of a magnetic shielding will solve this
problem and relative uncertainties in the range of 10−17 will become achievable.
In order to demonstrate such low uncertainties within reasonable measurement
times, the instability of the standard has to be further improved. This can be
done by reducing the dead time in the interrogation sequence and the number
of invalid excitations, and by improving the quality of the excitation spectra at
the resolution limit. Future frequency comparisons between the two trap systems
with lower statistical uncertainty and better control over the magnetic field will
also allow a direct quantitative measurement of the quadrupole shift due to the
electric stray field gradient.

The development of more stable and accurate frequency standards is of great
importance for physics. Not only are many precise tests of fundamental physics
already directly or indirectly connected to frequency measurements, but an in-
creased measurement precision also may open the way for experimental tests of
new physics like theories of grand unification. The agreement between two fre-
quency standards based on the same atomic transition in a single ion can be used
as a precise test of the indistinguishability of two particles of the same kind, which
is one of the fundamental assumptions of quantum mechanics. Since the relative
uncertainties of the present free-space time and frequency transfer techniques are
limited at about 10−15, the first applications of optical frequency standards will
be in local laboratory measurements. However, especially single-ion standards
offer also advantages for technical applications, because in contrast to cesium
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standards their accuracy is (at least in the presence of gravity) not related to
the size of the apparatus and thus in principle single-ion standards can be built
very compact and transportable without loosing their accuracy. In this respect
the development of single-ion frequency standards will also profit from the exper-
imental and technical progress of the many other kinds of ion trap experiments
especially in the context of quantum computation [30–32,118] and will vice versa
itself continue to add to the progress of these experiments.

It is generally assumed that an unperturbed atomic transition frequency is it-
self an invariant quantity, because it is determined by fundamental constants.
However, most theories attempting to unify the fundamental interactions allow
or even imply variations of the coupling constants [13]. According to the infla-
tionary model, dramatic changes of particle properties took place in the early
evolution of the universe and it is conceivable that remnants of these changes
are still observable today. If fundamental constants would vary, a fundamental
assumption of metrology would turn out to be wrong. One of the most interest-
ing applications of frequency standards is therefore in experiments that test the
constancy of fundamental constants.

Variations of the constants have been searched for in various contexts [12, 14]
and various predictions about the relative rate of change of different constants
have been made [148–150]. One of the most important coupling constant in this
context is the fine structure constant α which, being a dimensionless quantity,
can be determined without reference to a specific system of units. Together with
the Rydberg constant, it determines the frequencies of optical atomic transitions.
From astrophysical measurements of quasar absorption lines a relative change of
the fine structure constant of Δα/α = (−0.54 ± 0.12) was deduced over a time
scale of about 1010 years [151]. However, there are is also another analysis of
quasar absorption spectra where within a 3σ uncertainty no change of α was
found [152], so the question if there is a significant experimental evidence for a
cosmological variation of α is still under debate. The most stringent limit on the
present variation of the fine structure constant of α̇/α = (−0.3±2)·10−15 yr−1 was
obtained by the comparison of optical transition frequencies in 171Yb+, 199Hg+

and hydrogen [54] and precise frequency comparisons have lead also to constraints
of other constants [41,50,53,54], which demonstrates the potential of optical fre-
quency standards not only for metrology but also for experiments in fundamental
physics.

171Yb+ is probably one of the most interesting system to study the time varia-
tion of fundamental constants, because it offers three transitions suitable for the
realization of a frequency standard. The 2S1/2(F = 0) → 2D3/2(F = 2) quadru-
pole transition investigated in this work and the 2S1/2(F = 0) → 2F7/2(F = 2)
octupole transition currently investigated at NPL in the UK [44] have the
largest known difference in sensitivity to a change of the fine structure constant
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α [153,154], thus allowing in principle the most sensitive test of a time variation
of α. This test could even be done within one ion, making the test less sensitive
to systematic errors. Together with precise measurements of the ground state hy-
perfine splitting, which can be used as a microwave frequency standard as it was
demonstrated at the CSIRO in Australia [106] and by comparisons with cesium
clocks, also temporal variations of other constants like the Rydberg constant or
the electron to proton mass ratio can be investigated with high precision.

The large selection of reference transitions combined with the long storage time
achieved in radiofrequency traps, the simple cooling scheme and the possibility
to generate all necessary optical wavelength from diode lasers, probably makes
171Yb+ presently the most versatile system for the realization of frequency stan-
dards of the highest precision.



Appendix A

Calculation of the Quadratic Stark
Shift

The calculation of the quadratic Stark shift follows the calculations given in
[136, 155]. In the following it is assumed that the quadratic Stark shift is small
compared to the linear Zeeman shift of the investigated atomic transition. The
quadratic Stark shift can then be determined from the matrix elements of HS

calculated in the same basis of states |γJFm〉 that diagonalizes the Zeeman
Hamiltonian. The Stark Hamiltonian is

HS = −d · E , (A.1)

where d is the electric dipole moment operator and E is the electric field. Treating
HS by second-order perturbation theory in the (IJ) coupling approximation one
finds that for an atom with nuclear spin I the quadratic Stark shift of the state
|γJFm〉 is given by [136, 155]

hΔνS(γ, J, F,m,E) = − (2αS(γ, J) + αT (γ, J, F ) g(F,m, β))
|E|2

4
(A.2)

g(F,m, β) =
3m2 − F (F + 1)

F (2F − 1)

(
3 cos2 β − 1

)
,

where β is the angle between the electric field vector and the orientation of the
static magnetic field defining the quantization axis in the laboratory frame. The
tensor electric polarizability αT (γ, J, F ) can be written as

αT (γ, J, F ) = (−1)I+J+FK(J, F )

{
F J I
J F 2

}
αT (γ, J) , (A.3)

K(J, F ) =

√
F (2F − 1)(2F + 1)(2J + 3)(2J + 1)(J + 1)

(2F + 3)(2F + 1)J(2J − 1)
. (A.4)
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Table A.1: Static polarizabilities of the 2S1/2 and 2D3/2 states of 171Yb+ for
different sets of oscillator strength data

State αS [10−40 Jm2/V2] αT [10−40 Jm2/V2] Atomic data reference
2S1/2 10.1 - [134]

8.9 - [137]
9.8 - [137, 156]

2D3/2 18.0 -14.5 [134]
14.1 -11.5 [137]

In the case of the 2D3/2(F = 2, m = 0) state in 171Yb+, g(2, 0, β) = −(3 cos2 β−1)
and αT (D, 3/2, 2) = αT (D, 3/2). For the interaction with a static electric field
αS(γ, J) and αT (γ, J) can be written in terms of the oscillator strengths fγJγ′j′:

αS(γ, J) =
4πε0e

2

me

∑
γ′J ′ �=γJ

fγJγ′J ′

ω2
γ′J ′γJ

, (A.5)

αT (γ, J) =
4πε0e

2

me
K2(J)

∑
γ′J ′ �=γJ

(−1)J−J ′
{

1 1 2
J J J ′

}
fγJγ′J ′

ω2
γ′J ′γJ

, (A.6)

K2(J) =

√
30J(2J − 1)(2J + 1)

(2J + 3)(J + 1)
.

Here me is the electron mass, and ωγ′J ′γJ = ωγ′J ′ − ωγJ is the angular frequency
of the transition from the state |γJ〉 to the state |γ′J ′〉. Table A.1 gives values for
the static polarizabilities calculated in [138] and in this work for different sets of
available oscillator strength data. The most reliable values are probably obtained
from the data set in [137], which is the largest one available at present.

For an estimate of the light shift in Sec. 7.3.3 one needs to calculate the electric
polarizabilities for the case that the electric field E is not static but oscillates at
the laser frequency ωL. This can be done by replacing

ω2
γ′J ′γJ �→ ω2

γ′J ′γJ − ω2
L (A.7)

in the equations for αS(γ, J) and αT (γ, J). For the clock transition one finds for
ωL/2π � 688 THz using the oscillator strength data from [137]

αAC
S (S, 1/2) � 22.2 · 10−40 Jm2

V2 , (A.8)

αAC
S (D, 3/2) � 0.8 · 10−40 Jm2

V2 , (A.9)

αAC
T (D, 3/2) � −4.1 · 10−40 Jm2

V2 . (A.10)
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In order to calculate the polarizablities for the case of the blackbody AC Stark
shift taking into account the frequency dependence of the blackbody spectrum,
one does a similar replacement as in Eq. (A.7) for the light shift and integrates
Eq. (A.5), Eq. (A.6) over all frequencies of the blackbody spectrum given by
Eq. (7.15). In [139] some analytical expressions are given for limiting cases of the
integral, but in general the integration has to be done numerically. The result
obtained in [138] is ΔαBB

S = −5.1 × 10−40 Jm2/V2, which is somewhat larger
than the value calculated for the static case ΔαS = −4.4 × 10−40 Jm2/V2.
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Calculation of the Quadrupole Shift

The calculation of the quadrupole shift follows the calculations given in [136].
In the following it is assumed that the quadrupole shift is small compared to
the Zeeman shift of the investigated atomic transition. The quadrupole shift can
then be calculated using perturbation theory from the matrix elements of HQ in
the same basis of states |γJFm〉 that diagonalizes the Zeeman Hamiltonian. The
Hamiltonian for the quadrupole shift is

HQ = ∇E(2).Θ(2) =

2∑
q=−2

(−1)q∇E(2)
q Θ

(2)
−q . (B.1)

The tensor components ∇E(2)
q of the electric field gradient are defined as

∇E(2)
0 = −1

2

∂E

∂z
,

∇E(2)
±1 = ± 1√

6

∂E±
∂z

= ± 1√
6
∂±Ez , (B.2)

∇E(2)
±2 = ±− 1

2
√

6
∂±E± .

The components Θ
(2)
q of the quadrupole operator are

Θ
(2)
0 = −e

2

∑
j

(3zj − r2
j ) ,

Θ
(2)
±1 = −e

√
3

2

∑
j

zj(xj ± iyj) , (B.3)

Θ
(2)
±2 = −e

√
3

8

∑
j

(xj ± iyj)
2 .
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The sums are taken over all electrons. In the principal axis frame denoted
{x′, y′, z′}, HQ takes the simple form

HQ = −2AΘ
(2)′
0 +

√
2

3
εA
(
Θ

(2)′
2 + Θ

(2)′
−2

)
. (B.4)

The atomic states in the laboratory frame of reference |γJFμ〉 where the z-axis
is along the magnetic field are related to the ones in the principal axis frame
|γJFm〉′ by rotation matrix elements D(F )

μm (ω) in the following way:

|γJFμ〉 =
∑
m

D(F )∗
μm (ω)|γJFm〉′ , (B.5)

where ω = {α, β, γ} denotes the set of Euler angles that relates the principal axis
frame to the laboratory frame. Since the final rotation is about the laboratory
z-axis, which is parallel to the magnetic field and therefore a symmetry axis, one
can set γ = 0. Generalizing the result from [136] one finds for the matrix elements
of HQ:

〈γJFμ′|HQ|γJFμ〉 = (−1)F−μ

(
F F 2
μ′ −μ μ− μ′

)
(γJF ||Θ(2)||γJF )AGμμ′(ω),

(B.6)
with

Gμμ′(ω) = ε

√
2

3

(
D

(2)∗
(μ−μ′)−2(ω) +D

(2)∗
(μ−μ′)+2(ω)

)
− 2D

(2)∗
(μ−μ′) 0(ω). (B.7)

The reduced matrix element is in the (IJ) coupling approximation

(γIJF ||Θ(2)||γIJF ) = (−1)I+J+F (2F+1)

{
J 2 J
F I F

}(
J 2 J
−J 0 J

)−1

Θ(γ, J).

(B.8)
Θ(γ, J) is the quadrupole moment of the (γ, J) state, which is defined as

Θ(γ, J) = 〈γJJ |Θ(2)
0 |γJJ〉 . (B.9)

The definition used here is the same as in [136,155], which is commonly used for
molecular quadrupole moments. This differs from the definition given in [157]
by a factor of −1

2
and from the one usually found in the literature for nuclear

quadrupole moments by a factor −1
2
e [124]. If configuration mixing in the (γ, J)

state can be neglected, the quadrupole moment can be expressed as

Θ(γ, J) = −q
2
· 2J − 1

2J + 2
〈γ|r2|γ〉, (B.10)
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where q is equal to −e for an electron and +e for a hole in a nearly completely
filled electron shell. The relevant rotation matrix elements

D
(2)∗
0 0 =

1

2

(
3 cos2 β − 1

)
=

√
4π

5
Y ∗

20 ,

D
(2)∗
1±0 = ∓

√
3

2
sin β cos β e∓iα =

√
4π

5
Y ∗

2±1 , (B.11)

D
(2)∗
0±2 =

√
3

8
sin2 β e∓i2α =

√
4π

5
Y ∗

2±2 ,

are related to the spherical harmonics Y2m for l = 2. From the matrix elements
in Eq. (B.6) one finds for the first- and second-order quadrupole shift:

h · Δν(1)
Q = 〈γJFm|HQ|γJFm〉

=
−2A[3m2 − F (F + 1)](γJF ||Θ(2)||γJF )√

(2F + 3)(2F + 2)(2F + 1)2F (2F − 1)

(
3 cos2 β − 1 − ε sin2 β cos 2α

)
(B.12)

h · Δν(2)
Q =

∑
n �=m

|〈γJFn|HQ|γJFm〉|2
Em −En

=
1

ΔEZ

∑
n �=m

A2|(γJF ||Θ(2)||γJF )|2
m− n

(
F F 2
n −m m− n

)
|Gmn(ω)|2

(B.13)

where ΔEZ is the energy difference between adjacent Zeeman sublevels. For the
potential generated by the Paul traps used in the experiments, ε � 0 in Eq. (B.7).
The second-order expression Eq. (B.13) then reduces to

h · Δν(2)
Q � 12A2m |(γJF ||Θ(2)||γJF )|2

ΔEZ
×

|D(2)∗
1±0|2(8m2 + 1 − 4F (F + 1)) + |D(2)∗

0±2|2(−2m2 − 1 + 2F (F + 1))

F (F + 1)(2F − 1)(2F + 1)(2F + 3)

(B.14)
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