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Kurzfassung 
Physiologische und molekulare Effekte von Thidiazuron und Ethylen auf Blattvergilbung und 
Bewurzelung bei Pelargonium-Stecklingen (Pelargonium zonale Hybriden)  
Die Blattvergilbung ist ein wichtiges Problem bei Pelargionien-Stecklingen, da diese die 
Nacherntequalität negativ beeinflusst. Daher sind die Blattalterung, das Wachstumspotential und die 
Bewurzelungsfähigkeit wichtige Qualitätsmerkmale der Stecklinge. In dieser Arbeit sollte die 
Beeinflussung der Blattalterung durch Behandlungen mit TDZ, Ethylen und ABA oder eine Lagerung 
im Dunkeln untersucht werden, um mögliche praktische Anwendungen zu entwickeln, die zur 
Verbesserung der Stecklingsqualität bei Pelargonium zonale führen. Für die Untersuchungen standen 
fünf verschieden Pelargonium zonale Sorten (‘Fire’, ‘Ganymed’, ‘Greco’, ‘Katinka’ and ‘Surfing’) der 
Firma Selecta Klemm GmbH als Mutterpflanzen zu Verfügung. Die Stecklinge wurden nach dem 
Schneiden mit unterschiedlichen Konzentrationen von TDZ, Ethylen und ABA behandelt oder für 4 
Tage bei Dunkelheit gelagert. Die Versuche wurden in einer vollständig randomisierten Anordnung 
mit zwei Wiederholungen und jeweils vier Stecklingen pro Behandlung durchgeführt. Die Messungen 
der Blattfarbe und die Bestimmung der Chlorophyllkonzetartion wurden bei allen behandelten 
Stecklingen durchgeführt. Die Entnahme der Blattproben für die molekulargenetischen Studien 
erfolgte, bevor die Stecklinge in einer Nährlösung (hydrophonisch) für einen Monat bewurzelt 
wurden. Für die molekulargenetischen Analysen mittels PCR und RT-PCR wurde DNA und RNA aus 
unterschiedlichen Organen der Sorten ‘Katinka’ und ‘Ganymed’ isoliert. TDZ Behandlungen führten 
bei allen Sorten zu einer signifikanten Verzögerung der Blattalterung. Die Lagerung der Stecklinge im 
Dunkeln und die Behandlung mit Ethylen oder ABA führten hingegen zu einer Beschleunigung der 
Blattalterung. Eine Hemmung der Blattalterung mittels TDZ konnte durch eine Erhöhung des Blatt-
Hue-Wertes und eine Verringerung des Blatt-Chroma-Wertes nachgewiesen werden. Dagegen zeigten 
alle weiteren Behandlungen gegensätzliche Werte. TDZ führte außerdem, im Vergleich zu der 
unbehandelten Kontrolle, zu einer Erhöhung des Chlorophyllgehaltes. Eine Ethylenbehandlung (2 µl l-

1) führte bei allen Sorten zu einer Erhöhung der Bewurzelungsrate, jedoch zeigte sich auch eine 
Reduzierung weiterer Wurzelparameter. Die Lagerung im Dunkeln und die Behandlung mit ABA 
reduzierte die Anzahl der Wurzeln pro Steckling, die Wurzellänge, den Wassergehalt und das 
Trocken- und Frischgewicht. Die Zugabe von 4 µl l-1 IBA in die Bewurzelungsnährlösung führte bei 
der Sorte ‘Ganymed’ zu einer maximalen Bewurzelungsrate von 100%, erhöhte die Anzahl, die Länge, 
das Frisch- und Trockengewicht (%) und führte damit effektiv zu einer Revidierung der inhibierende 
Effekte von TDZ auf das Wurzelwachstum bei 3 Sorten. Durch den Einsatz von degenerierten Primern 
konnten drei DNA Fragmente aus genomischer DNA von ‘Katinka’ amplifiziert werden. Durch 
anschließende Sequenzanalysen gelang es, zwei neue, unvollständige, mögliche ACC Synthase Gene 
nachzuweisen, die als PzACS3 und PzACS4 bezeichnet wurden. Nach der Konstruktion von 
spezifischen Primern von bereits bekannten und neu isolierten ACC Synthase Genen und von 
Ethylenrezeptor Genen (ETR) wurden Expressionsanalysen mittels RT-PCR durchgeführt. So konnte 
eine starke Expression des Gens PzACS3 und eine schwache Expression des Gens PzACS4 in den 
Wurzeln nachgewiesen werden. Wohingegen das Gen PzETR1 eine starke Expression in Wurzeln und 
Knospen zeigte. Aufgrund dieser gewebespezifischen Expression kann vermutet werden, dass die 
untersuchten Gene eine unterschiedliche Funktion bei der Regulation der Ethylenbiosynthese und 
Ethylenperzeption haben. Diese differentielle Expression konnte auch nach unterschiedlichen 
Behandlungen nachgewiesen werden. Außerdem zeigte sich eine Korrelation der Expression mit der 
Ethylenproduktion der Stecklinge. Eine exogene Ethylenbehandlung hatte jedoch keinen Einfluss auf 
das Expressionsmuster der analysierten Gene. ABA und die Lagerung im Dunkeln erhöhte die 
Expression der Gene PzACS1 und PzACS2. Außerdem konnte erstmals die Induktion einer starken 
Expression des Gens PzETR1 nach einer TDZ Behandlung nachgewiesen werden. Zusammenfassend 
(physiologisch und molekular) zeigen die Ergebnisse dieser Arbeit, dass die Blattvergilbung, die durch 
Ethylen, ABA oder Lagerung im Dunkeln bei Pelargonium Stecklingen induziert wird, durch eine 
TDZ Behandlung revidiert werden kann. Möglicherweise wird dieser TDZ Effekt durch die 
nachgewiesene Erhöhung der PzETR1 Expression hervorgerufen, die dann zu einer reduzierten 
Ethylensensitivität führen und so die Blattalterung verzögern wird. Außerdem konnte gezeigt werden, 
dass die Wurzelinhibierung durch die TDZ Behandlung durch IBA in die Bewurzelungsnährlösung 
revidiert werden kann.  
Schlagwörter: ACC-Synthase, Ethylenrezeptor, Genexpression, Blattalterung, Pelargonium zonale, 
Phytohormone, Lagerung, TDZ 
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Abstract 
Physiological and Molecular effects of Thidiazuron and Ethylene on Leaf 
Yellowing and Rooting of Pelargonium (Pelargonium zonale hybrids) 
Cuttings 
Leaf yellowing is a major problem in Pelargonium cuttings and leads to high post harvest losses. 
Hence, the absence of leaf senescence symptoms and the capacity of cuttings to continue growth of 
initiated roots are vital quality attributes. The effects of treatments with TDZ, ethylene and ABA or 
dark storage during leaf senescence process were studied to possibly come up with a potential 
commercial approach for improving post harvest quality of Pelargonium cuttings. Five new 
Pelargonium zonale cultivars (‘Fire’, ‘Ganymed’, ‘Greco’, ‘Katinka’ and ‘Surfing’) from Selecta 
Klemm GmbH were grown into stock-plants. Cuttings were treated after harvest with various levels of 
TDZ, ethylene, ABA or stored in the dark for 4 days. Then arranged in a completely randomized 
design comprising of 2 replications per treatment of four cuttings per replication and evaluated for leaf 
colour and chlorophyll content. Leaf samples were taken for molecular studies to examine gene 
expression after treatments before cuttings were hydrophonically for one month rooted in greenhouses. 
DNA and total RNA were isolated from ‘Katinka’ and/ or ‘Ganymed’ tissues for PCR and One step 
RT-PCR, respectively. TDZ treatment markedly delayed the onset of leaf senescence in all cultivars. 
Storing cuttings in dark and treating them with ethylene or ABA hastened the onset of leaf yellowing 
while TDZ retarded leaf yellowing. TDZ treatment increased leaf hue and decreased leaf chroma 
whereas the reverse was true for other treatments because the leaves turned yellow. TDZ treated leaves 
had high chlorophyll contents, while levels declined in the untreated controls. Ethylene (2 µl l-1) 
increased rooting percentage in all cultivars but reduced other root parameters. Dark storage and ABA 
reduced number of roots per cutting, reduced root length, root water content, fresh and dry weights. 
Applying 4 µl l-1 IBA in nutrient solutions induced maximal (100%) root induction in ‘Ganymed’, 
increased numbers and length of roots, fresh and root dry matter (%) accumulation and effectively 
offset the inhibitory effect of TDZ on root formation for cultivars ‘Fire’, ‘Katinka’ and ‘Ganymed’. 

Degenerate primer pair was used to amplify three DNA fragments using genomic DNA from 
‘Katinka’ leaves. Sequence analysis of two novel partial putative ACC synthases led to their 
characterisation and designation as PzACS3 and PzACS4. PzACS3 is 590 bp long with 374 bp coding 
region and two introns while PzACS4 is 745 bp long with 374 bp exon and two introns too. Gene-
specific primers for the new ACC synthase, other ACC synthase and ethylene receptor (ETR) genes 
were synthesized. Expression studies were done using a One step RT-PCR. PzACS3 and PzACS4 
transcripts were expressed and undetectable in roots, respectively, while PzETR1 was strongly 
expressed in roots and flower buds. Tissue specific gene expression patterns suggest they have 
different roles in ethylene biosynthesis and signaling. Also, transcripts of these genes were induced in 
a treatment-specific fashion and correlated positively with ethylene production by cuttings after 4 days 
in various treatments except for 2 µl l-1 ethylene which had inhibitory effect. Ethylene slightly down 
regulated accumulation of PzACS1 mRNAs. ABA and dark storage increased expression of PzACS1 
and PzACS2 mRNAs, respectively. Moreover, for the first time, TDZ was shown to strongly induce 
expression of PzETR1.  

Taken together (physiological and molecular), these results suggest leaf yellowing in 
Pelargonium cuttings was due to either stress-induced ethylene that occurs after dark storage or ABA 
treatment and TDZ was able to antagonise their deleterious effects, by increasing the amount of 
ethylene receptors via up-regulation of PzETR1 transcripts, thus reducing sensitivity of leaves to 
ethylene with the concomitant beneficial effect of delaying the onset of senescence. Also, inhibition of 
rooting by TDZ was effectively offset by applying IBA in rooting solutions through induction of 
adventitious roots. 
Key words: ACC synthase, Ethylene receptor, Gene expression, Leaf senescence, Pelargonium 
zonale, Phytohormones, Storage, TDZ 

 x



General Introduction 
 

1.0 General Introduction 
 

Overview 
 

Pelargonium zonale hybrid (syn. Pelargonium x hortorum L. H. Bailey), also known as 

storksbill or geranium, is one of the most popular potted and bedding plants in Europe and 

North America (Serek et al., 1998). Pelargonium zonale hybrid had a global annual sale of $ 

700 million (Canadian dollars) in 2000 (Mithila et al., 2001). Also, it is one of the popular 

floricultural crops in Germany. In 2000, Germany recorded a total production of 117 million 

mature plants comprising of 113 balcony plants and 4 million potted flowering plants 

(Statistisches Bundesamt, 2001). Pelargonium zonale hybrids are grown for their colourful 

and showy flowers, scented foliage and exotic leaf shape. Furthermore, NBV/UGA flower 

auction in Straelen, Germany traded a total of 7.2 million Pelargonium zonale plants valued at 

an average price of € 0.82 per plant (NBV/UGA Geschäftsbericht, 2001). This was in contrast 

to the USA where the market of Pelargonium cuttings was valued at $ 111 million in 2003 

(USDA, 2003: www.ers.usda.gov). 

 

The genus Pelargonium belongs to the family Geraniaceae and nearly all of its 280 species 

originated from South Africa where they are naturally found growing in dry, hot habitats with 

sandy or rocky soils and/ or sand dunes (Van der Walt, 1977). The commercially important 

Pelargonium species have been categorised into four major groups: zonale geraniums 

(Pelargonium x hortorum L. H. Bailey), regal Pelargonium (Pelargonium x domesticum), ivy 

geraniums (Pelargonium peltatum) and scented geraniums (Pelargonium sp.) (Mithila et al., 

2001). These species have been cultivated since 17th century (Huxley et al., 1992). The 

species zonale was first introduced to Europe in 1609 (Ewart, 1981). 

 

Pelargonium is an annual or perennial herb with entire, lobed or dissected leaves, usually with 

prominent stipules at the base of the petiole. Flowers are borne in umbels on a peduncle, 

which may be terminal on the stem, axillary to the leaves or opposite (Huxley et al., 1992). 

The zonale geranium is probably one of the most beautiful of the flowering Pelargonium and 

is mainly propagated through cuttings. The number of plants produced from cuttings was 

almost equal to the number produced from seed, but the value of plants grown from cuttings 

was almost double that from seed (Berninger, 1993). Also, propagation by seed is restricted 
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because Pelargonium hybrids are highly heterozygous plants and seed propagation usually 

leads to the segregation in subsequent progenies (Mithila et al., 2001). 

 

Absence of senescence symptoms in the leaves of Pelargonium cuttings, their capacity to 

initiate roots and continued growth of initiated roots is an important quality attribute (Purer 

and Mayak, 1988). This is because when cuttings undergo senescence, they show reduced 

rooting percent and number of main roots. Cuttings of high quality are essential in the highly 

competitive market. Moreover, senescing leaves turn yellow and are more prone to infection 

by diseases such as Botrytis. This in turn affects the rate of development and survival of new 

plants that take longer to get established and start vigorous growth (Purer and Mayak, 1988). 

Also, application of fungicides and more handling measures tend to increase cost of 

production and are therefore, undesirable in the competitive world market (Purer and Mayak, 

1988). 

 

1.2 Statement of the problem 
 

European growers have been looking for a reliable and economical method for the storage of 

Pelargonium cuttings, in order to meet early spring demand (Paton and Schwabe, 1987). 

Pelargonium cuttings and other tropical foliage plants are imported from Africa, Latin 

America, the Canary Islands or the Middle East. They are subsequently rooted and finished in 

Europe (Serek et al., 1998). The above named areas are climatically favourable for cutting 

production and have the added advantage of a ready supply of labour and land, which are 

cheap as compared to Europe (Serek et al., 1998). The delivery process can take between 4 to 

14 days. However, these cuttings are exposed to adverse conditions during shipment, such as 

exposure to ethylene, low humidity and long hours of darkness (Purer and Mayak, 1989) that 

induce senescence (Behrens, 1988). Leaf senescence is apparent as leaf yellowing due to 

chlorophyll loss. It is a common problem in Pelargonium, chrysanthemum (Purer and Mayak, 

1989), Alstroemeria (Mutui et al., 2001), tulip, roses (Halevy and Mayak, 1981), and lillies 

(Han, 1997) and leads to high post harvest losses. Consequently, the maintenance of green 

colour and the altered potential of cuttings to initiate roots are important quality attributes in 

plant cuttings. 

 

Leaf yellowing is a complex physiological process that may result from one or several 

inducers. Also, it is thought to be under control of phytohormones (Weaver et al., 1998). 
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Ethylene, ABA and darkness have been implicated as important factors in promoting leaf 

senescence (Nooden, 1988; Purer and Mayak, 1989; Becker and Apel, 1993). Additionally, 

these factors inflict economic loss. Senescing leaves are readily recognisable by a 

characteristic yellowing, starting at the veins and extending outwards, resulting in a loss of 

chlorophyll (Quirino et al, 2000). This in turn leads to a rapid decline in photosynthesis, as 

chlorophyll is lost. Consequently, rooting of the cuttings is delayed (Purer and Mayak, 1989). 

Smart (1994) proposed that the decrease in photosynthesis below a certain threshold level 

might function as a signal to induce senescence. In addition, chlorotic leaves not only reduce 

acceptability of cuttings but also promote susceptibility to Botrytis, which readily spreads 

within shipping containers (Carrow and Bahnemann, 1980). 

 

Leaf senescence and chlorophyll degradation can be reduced or eliminated in a wide range of 

species by application of cytokinins (Thimann, 1980). Cytokinins are powerful inhibitors of 

leaf senescence (Gan and Amasino, 1996). Pulsing Alstroemeria with benzyladenine (BA) 

effectively reduced leaf yellowing and improved its post harvest vase life (Mutui et al., 2001, 

2003; Whitman et al., 2001) and other plant species (Halevy and Mayak, 1981). Recently, 

Thidiazuron (TDZ), a substituted phenyl urea with powerful cytokinin-like activity, has been 

reported to be very effective in preventing leaf yellowing and retarding chlorophyll 

degradation in Alstroemeria cut flowers (Ferrante et al., 2002a), poinsettia (King et al., 2001), 

cut tulips and cut chrysanthemum (Ferrante et al., 2003). But, TDZ treatment inhibited 

rooting and promoted lateral shoot elongation in cut chrysanthemum ‘Regan giallo’ (Ferrante 

et al., 2003), thus limiting its’ practical use. Also, 1-methylcyclopropene (1-MCP) retarded 

storage-induced leaf yellowing in Pelargonium cuttings (Serek et al., 1998). Therefore, in the 

current study, TDZ was used to prevent leaf senescence in Pelargonium cuttings. Thus 

exogenous auxins (IBA) were added into nutrient solutions to alleviate a TDZ rooting 

inhibition effect, since auxins are known to universally induce adventitious roots (Kelen and 

Ozkan, 2003). 
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General Introduction 
 

1.3 Objectives 
 

Overall goal 

 

To elucidate physiological and molecular mechanisms of TDZ (cytokinin) that leads to a 

delay in the onset of leaf senescence. This was geared towards coming up with a potential 

commercial approach for improving the post harvest quality of Pelargonium cuttings. 

 

Specific goals 

 

1. To determine the effects of senescence inducers (ethylene, ABA and dark-storage) on leaf 

yellowing and rooting ability of Pelargonium cuttings. 

2. To counteract the adverse effects of senescence inducers with senescence retardant (TDZ) 

via extension and improvement of post harvest quality of the cuttings. 

3. To determine if auxins (IBA) could alleviate TDZ rooting inhibition effect to enhance the 

practical use of TDZ. 

4. To investigate the expression of ethylene biosynthesis [ACC synthase and ethylene receptor 

(ETR1)] genes in various Pelargonium organs and after dark-storage or exogenous application 

of ethylene, ABA and TDZ treatments. 
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2.0 Effects of Thidiazuron, Ethylene, Abscisic acid and dark 
Storage on leaf yellowing and rooting of Pelargonium zonale 
hybrid cuttings 
 

Abstract 
 

The effects of post harvest treatments with TDZ, ethylene, ABA or dark storage of 

Pelargonium cuttings were investigated. TDZ treatment markedly delayed the onset of leaf 

senescence in cultivars ‘Fire’, ‘Ganymed’, ‘Greco’, ‘Katinka’ and ‘Surfing’. Storing cuttings 

in the dark for 4 days and/ or treating them with 2 µl l-1 ethylene or 100 µM ABA hastened 

the onset of leaf yellowing, while 5 µM TDZ retarded leaf yellowing. TDZ increased leaf hue 

values and decreased leaf chroma values because TDZ-treated leaves remained green. In 

contrast, applying ethylene, ABA or dark storage decreased leaf hue and increased leaf 

chroma because the leaves turned yellow. TDZ treated leaves had high chlorophyll content, 

while levels declined in the untreated controls. Ethylene at 2 µl l-1 significantly increased 

rooting percentage (%) in all cultivars, but reduced other root parameters investigated. Short-

term dark storage and 100 µM ABA reduced the ability of cuttings to continue growth of 

regenerated roots. This effect was evidenced by reduced number of roots per cutting, root 

length, water content, fresh and dry weights. Applying 4 µl l-1 IBA in the rooting solutions 

induced maximal rooting proportion in ‘Ganymed’, increased numbers and length of roots, 

fresh weight and root dry matter (%) accumulation in all cultivars. IBA effectively offset the 

inhibitory effect of TDZ on root formation. These results suggest leaf yellowing in 

Pelargonium cuttings was due to either stress-induced ethylene that occurs after dark storage 

or ABA treatment. However, TDZ was able to antagonise their deleterious effects with the 

concomitant beneficial effect of delaying the onset of senescence. 

 

Key words: Leaf senescence, Pelargonium zonale, Phytohormones, Postharvest, Rooting, 

Storage  
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2.1 Introduction 
 

2.1.1 Overview 

 

Natural leaf senescence, also known as ‘senescence syndrome’, is a complex, genetically 

determined cell death program. It is characterised by a decline of macromolecules such as 

total protein, RNA levels, membrane lipids and chloroplast degradation (Weaver et al., 1998). 

This catabolic process enables the plant to salvage and redistribute carbon and nitrogen into 

the growing tissues (Bleecker, 1998). The most visible symptom of senescence is a loss of 

chlorophyll pigments and concomitant yellowing of the leaves. The initiation and progression 

of leaf senescence can be influenced by various external factors such as extremes of 

temperature, moisture, pathogens, light intensity and duration (Chandlee, 2001; Smart, 1994; 

Weaver et al., 1998). Internal senescence-inducing factors appear to be hormonal in nature 

(Chandlee, 2001). Conversely, phytohormones and certain forms of stresses hasten or repress 

senescence. 

 

2.1.2 Ethylene 

 

Ethylene is a gaseous plant hormone synthesised in all cells and moves freely through plant 

tissues (Yang and Hoffman, 1984). Pelargonium is an ethylene-sensitive flowering plant 

(Woltering, 1987). The response of Pelargonium to ethylene is dependent on concentration, 

duration of exposure, temperature and stage of development (Dole and Wilkins, 1999). Some 

of senescence-symptoms caused by ethylene in Pelargonium are leaf yellowing, leaf drop, 

bud abortion and bud abscission (Serek et al., 1998). However, 1-methylcyclopropene (1-

MCP), a gaseous compound, completely inhibits ethylene effect and appears to bind 

irreversibly to the putative ethylene binding site (Serek et al., 1994). 1-MCP prevented the 

adverse effects of ethylene in ivy geraniums (Cameron and Reid, 2000) and Pelargonium 

cuttings (Serek et al., 1998). Therefore, the rapid decline in quality, which is observed in 

Pelargonium cuttings, was attributed to ethylene (Arteca et al., 1996; Serek et al., 1998). 

 

Ethylene biosynthesis in carnation flowers is autocatalytically triggered by ethylene (Mor and 

Reid, 1981). However, in tobacco vegetative tissues such as leaves, ethylene production is 

auto-inhibited via a negative feedback control mechanisms (Philosoph-Hadas et al., 1985). 

Also, ethylene interacts with ABA during the senescence of oat leaf segments. ABA appears 

to be the initiating agent, whereas ethylene appears to exert its effect at a later stage (Gepstein 
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and Thimann, 1981). The role of ethylene in leaf senescence has been investigated genetically 

using the ethylene-insensitive Arabidopsis mutant etr1-1 (Grbic and Bleecker, 1995) and 

transgenic tomato plants, whose ethylene synthesis was blocked by an ACO antisense gene 

(John et al., 1995). Blocking ethylene biosynthesis in these plants delayed senescence, 

suggesting ethylene action may be involved in leaf yellowing (Picton et al., 1993; John et al., 

1995). However, once senescence was initiated, the regulation of SAGs did not differ much 

from Arabidopsis wild-type plants (Grbic and Bleecker, 1995). These results suggest an age-

dependent senescence program that does not involve the ethylene-dependent pathway, which 

is sufficient and necessary for leaf senescence (Nam, 1997). 

 

Ethylene plays a role in adventitious rooting but the literature is conflicting. Recently, Kadner 

and Druege (2004) demonstrated that ethylene treatment of zonal Pelargonium ‘Mitzou’ 

cuttings increased root formation. Additionally, ethylene promoted rooting in mung bean 

cuttings (Robbins et al., 1985). Generally, ethylene affects various stages of rooting process 

differently. Small amounts of ethylene stimulate root initiation and thus the number of roots 

formed, but it inhibits root emergence and elongation (Riov and Yang, 1989). Liu et al. 

(1990) concluded that wound-induced increase in ethylene seen within 3 h of excision of 

Sunflower cuttings was the key stimulatory factor in the induction of root primordia. 

 

2.1.3 Abscisic acid (ABA) 

 

Apart from ethylene, other plant hormones like ABA and cytokinins are also involved in leaf 

senescence and rooting. ABA is synthesised in roots and mature leaves while seeds are also 

rich in ABA, which may be imported from the leaves or synthesised in situ (Rivier et al., 

1977). ABA is transported in both xylem and phloem, thus it has been detected in every major 

organ or tissue from the root cap to apical bud (Milborrow, 1984). Applying ABA at very low 

concentrations to roots of geranium cuttings consistently promoted a decrease in 

photosynthesis, transpiration and relative growth rate (Arteca et al., 1985). Other reports 

showed that exogenously applied ABA accelerated leaf senescence (Kaiser et al., 1985; Smart, 

1994). However, some reports may be related to stresses that are imposed and thus induce leaf 

senescence (Becker and Apel, 1993). Also, in many plant species, ABA accelerates senescence 

in both attached leaves and leaf segments (Kaiser et al., 1985). It also, induces premature 

appearance of proteinase activity in barley leaves (Quiles et al., 1995) with a pattern on activity 

gels similar to those observed in naturally senescing leaves. In contrast, the antisense suppression 
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of a phospholipase essential for ABA-stimulated senescence in Arabidopsis leaves had no effect 

on the normal course of senescence (Fan et al., 1997), implying senescence of Arabidopsis 

leaves are not influenced by ABA. 

 

Both ABA and ethylene enhance senescence and are thought to interact in that ABA stimulates 

ethylene production in a number of species (Riov et al., 1990; Müller et al., 1999). However, the 

mechanisms of ABA-induced ethylene production are not clear. Ethylene production was 

restored to normal levels by exogenously applied ABA in flacca mutant of tomato (Tal et al., 

1979). However, it was uncertain whether ethylene production was a direct result of ABA 

deficiency or indirect effect of water stress. Also, ABA stimulated ethylene production in citrus 

leaf and tomato fruit tissues directly via enhancement of ACC synthesis (Riov et al., 1990). 

 

Leaf yellowing and abscission in miniature Roses was promoted by spraying ABA. However, 

it was unclear whether this was a direct ABA effect or was via ethylene, since no ethylene 

was detected in leaves (Müller et al., 1999). Also, ABA promoted senescence of detached rice 

leaves but inhibited water stress and ethylene production (Tsai et al., 1996). Also, treating 

detached rice leaf segments with inhibitors of ethylene action inhibited ABA-induced senescence 

(Tsai et al., 1996). However, 1-MCP did not reduce ABA-induced flower drop in miniature 

roses, suggesting it is not mediated via ethylene (Müller et al., 1999). Additionally, Zacarias 

and Reid (1990) showed that ethylene accelerated chlorophyll loss from wild-type Arabidopsis 

leaf discs but had no effect on yellowing of mutant discs. Contrary, ABA treatment stimulated 

chlorophyll loss in both Arabidopsis wild type and mutant discs. Zacarias and Reid (1990) 

concluded that although ABA stimulated ethylene production in Arabidopsis ethylene-insensitive 

mutant, its effects on leaf senescence were not mediated by ethylene. 

 

ABA is known to inhibit root formation in vegetative cuttings (Kracke et al., 1981; Kelen and 

Ozkan, 2003). However, ABA does not always play a remarkable role in rooting process 

(Kracke et al., 1981). ABA reduced transpiration and maintained satisfactory water balance in 

geranium cuttings. This is not only useful in shipment and storage (Arteca et al., 1985), but it 

is also important for the success of rooting of cuttings (Loach, 1988). However, difficult to 

root grapevine rootstock cuttings contained higher ABA levels than easy-to-root cuttings 

(Kelen and Ozkan, 2003; Kracke et al., 1981). Also, endogenous ABA decreased during 

rooting process (Kracke and Cristoferi, 1983), implying a negative correlation between ABA 

and rooting rate (Kelen and Ozkan, 2003). Moreover, ABA accumulation plays a role in root 
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growth maintenance and/ or inhibition of shoot growth under water stress and depends on the 

response of a plant organ to ethylene (Saab et al., 1990). Also, roots maintain growth under 

dry soil conditions when supplied with high amounts of ABA. This is a further evidence for 

ABA interaction with ethylene in controlling root and shoots growth. 

 

2.1.4 Dark-storage 

 

Dark-induced senescence occurs in both old and young leaves, while natural senescence 

occurs in aged leaves “source”, which enable supply of assimilates to young leaves and 

flowers “sink” (Weaver et al., 1998). Dark-induced senescence is characterised by a 

chlorophyll loss in Pelargonium cuttings (Arteca et al., 1996; Serek et al., 1998), 

Alstroemeria cut flowers (Mutui et al., 2001, 2003) and both a decline in carbohydrates and 

gibberellins (GA3) levels in Alstroemeria cut flowers (Jordi et al., 1994). Kadner and Druege 

(2004) found storage of Pelargonium ‘Isabell’ at 20oC promoted leaf chlorosis and decay 

during rooting period and led to a higher percentage of decayed cuttings. Moreover, high 

storage temperatures lead to high metabolic processes that deplete carbohydrate and other 

reserves compounds in Pelargonium cuttings (Behrens, 1988; Arteca et al., 1996). 

Carbohydrates are necessary, not only for providing energy, carbon skeletons and osmotic 

potential, but also for interacting with plant signalling hormones such as cytokinins and ABA, 

which play a role in leaf senescence (Smart, 1994). Furthermore, difficult-to-root grapevine 

cuttings were unable to utilize their starch reserves, because they had low endogenous IAA 

levels (Kracke et al., 1981). 

 

Stresses, such as mechanical wounding, drought or chemicals like auxins, heavy metals and 

other pollutants induces ethylene production in plant species (Abeles et al., 1992). Also, 

ethylene is involved in storage and transport-induced leaf senescence of Pelargonium cuttings 

(Purer and Mayak, 1989). Pre and post storage-induced leaf senescence was reduced by 

application of silver nitrate and silver thiosulphate (STS) (Carrow and Bahnemann, 1980; 

Paton and Schwabe, 1987; Purer and Mayak, 1989), suggesting involvement of ethylene. 

Also, 1-methylcyclopropene (1-MCP) retarded storage-induced leaf yellowing in 

Pelargonium cuttings (Serek et al., 1998). Additionally, 1-MCP increased ethylene evolution 

and partially reduced leaf senescence in Pelargonium cuttings during rooting period, after 

they were stored for 48 h at 20oC (Kadner and Druege, 2004). However, STS and silver 

nitrate caused severe post storage injury and decay in Pelargonium ‘Isabell’ cuttings (Kadner 
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and Druege, 2004) during rooting that was similar to the one observed in Epipremnum 

cuttings (Müller et al., 1997). 

 

Successful storage of unrooted cuttings depends on storage conditions, state of cuttings and 

species (Behrens, 1988). Within the storage unit, it is best to maintain nearly 100% RH and 

maintain low temperature, as the hardiness of a given species can tolerate. This minimises dry 

matter loss and pathogen infestations (Behrens, 1988), which result in chlorosis, wilting and 

leaf abscission (Kirk et al., 1986). Therefore, the goal of post-harvest storage is to keep plant 

material alive and fresh for a long time by minimising stress-inducing factors, as well as 

slowing down normal physiological processes initiated by harvesting. These include; 

degradation of chlorophyll, protein and starch, temporary accumulation of sugars and free 

amino acids, increase in respiration and ethylene production (Kirk et al., 1986). Low pressure 

conditions improved storability of geranium cuttings (Eisenberg et al., 1978). Moreover, 

storage of unrooted geranium cuttings (Pelargonium x hortorum L. H. Bailey) was improved 

by high humidity in polyethylene bags stored at 4oC and low irradiance illumination (1-30 µ 

mol m-2 s-1) (Paton and Schwabe, 1987). In contrast, prestorage application of antitranspirants 

was detrimental to cuttings, but soaking their bases in 2 to 5% sucrose for 24 h prior to 

storage improved rooting (Paton and Schwabe, 1987). Eisenberg et al. (1978) observed a 

decrease in quality and rooting ability of many ornamental cuttings with increase in storage 

time. Eisenberg et al. (1978) concluded that maintaining post harvest quality of ornamental 

cuttings will remain a basic line of research. 

 

2.1.5 Cytokinins 

 

Cytokinins are senescence retardants and are biosynthesised in the root meristems (Itai and 

Birnbaum, 1996). They are translocated in riboside form via xylem to shoots, where they 

exert major regulatory influence on growth, photosynthesis and timing of senescence (Itai and 

Birnbaum, 1996). Also, cytokinins are involved in cell division, respiration, inorganic and 

organic nutrient mobilisation, enhancing flowering and other plant growth processes (Halevy 

and Mayak, 1981; Thimann, 1987). The first evidence that cytokinins were able to inhibit leaf 

yellowing or prevent accelerated protein loss was observed in detached Xanthium leaves 

(Richmond and Lang, 1957). Additionally, Mothes and Engelbrecht (1961) demonstrated that 

if a small area of basal leaf is treated with kinetin solution, only that area remains green while 

the rest of plant turns yellow. Cytokinins delays leaf senescence by arresting degradation of 
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chlorophyll, proteins (Sacher, 1973; Mutui et al, 2003), and delaying the onset of rising 

respiration in excised oat leaves (Thimann, 1987). 

 

Synthetic cytokinins are used extensively in postharvest stage of floricultural plants to delay 

leaf senescence, but their mechanisms of action are not fully understood (Thimann, 1987; 

Smart, 1994). However, Salunke et al. (1962) explained that the primary step in degradation 

of soluble type RNA, which is one of the most important characteristics of senescence, is 

thought to involve the loss of end adenine group. Thus supplements of BA in holding 

solutions should provide the necessary adenine to restore the soluble RNA molecule. 

Conversely, exogenous cytokinins delayed leaf senescence in many plant species including 

Pelargonium (Purer and Mayak, 1988). Kinetin eliminated decay of leaves and retarded 

chlorophyll degradation in darkened geranium leaf tissues (Steinitz et al., 1987). Also, when 

kinetin was applied before storage, it prevented poststorage senescence, decay of leaves and 

shoot cuttings stored with or without root primordia (Carrow and Bahnemann, 1980; Steinitz 

et al., 1987). Moreover, Steinitz et al. (1987) found all detrimental effects (leaf yellowing, 

reduction in rooting percentage and main root numbers) of storage were avoided by 

prestorage formation of root primordia. Steinitz et al. (1987) concluded formation of root 

primordia is a simple and efficient means of reducing storage or shipment dependent loss of 

leafy cuttings quality. 

 

Cytokinins interact with other plant hormones in regulation of senescence. Cytokinins antagonise 

the action of ABA and delay senescence of oat leaf segments (Gepstein and Thimann, 1981). In 

water stressed plants, levels of cytokinins have been reported to decrease while the level of 

ABA increases. Consequently, the leaves quickly turned yellow (Aharoni et al., 1977). In 

contrast, Suttle (1984) reported enhanced endogenous ACC levels and ethylene evolution in 

mung bean hypocotyls segments following TDZ treatment. Suttle (1984) observed that high 

levels of TDZ induced leaf abscission in cotton via increased high ethylene production. 

Application of BA in holding solutions has been shown to reverse or inhibit leaf senescence 

leading to a reduction in leaf chlorosis in Alstroemeria (Hicklenton, 1991; Mutui et al., 2001) 

and Easter lilies (Han, 1997; Heins et al., 1996). On the other hand, leaf chlorosis was 

promoted by ethylene in zonal Pelargonium (Purer and Mayak, 1988). Also, TDZ inhibited 

leaf yellowing and retarded chlorophyll degradation in cut tulips (Ferrante et al., 2003), but 

had little effect on the vase life of cut Eucalyptus parvifolia (Ferrante et al., 2002b). 
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Additionally, TDZ promoted lateral shoot elongation in cut chrysanthemum ‘Regan giallo’ 

(Ferrante et al., 2003).  

 

Histidine kinase (AHK4) is suggested to serve as a primary receptor that directly binds a 

variety of natural and synthetic cytokinins in Arabidopsis. These include aminopurines, such 

as isopentenyl-adenine or BA, and diphenylurea derivatives like TDZ; but not riboside 

derivatives (Yamada et al., 2001; Inoue et al. 2001). However, it is unclear whether TDZ acts 

to invoke cytokinin responses by interacting directly with cytokinin receptors in the leaves 

(Christianson and Hornbuckle, 1999), or indirectly by stimulating conversion of cytokinin 

nucleotides to their biologically active ribonucleosides (Capelle et al., 1983), or by inducing 

accumulation of endogenous adenine-based cytokinins (Thomas and Katterman, 1986), which 

could be due to inhibition of cytokinin oxidase (Hare and Van Staden, 1994). Ferrante et al. 

(2002a) concluded that the effectiveness of TDZ may result from a combination of these 

mechanisms. Also, transgenic Arabidopsis plants with a isopentenyl transferase (ipt) gene 

inserted that increases cytokinin levels showed a delay in onset of senescence and cytokinin 

activity increased in leaf tissue, when growing points were surgically removed (Smart, 1994). 

Regulation of senescence by naturally occurring cytokinins in Phaseolus vulgaris leaves, was 

attributed to their ability to delay expression of senescence associated receptor-like kinase 

(SARK), a senescence associated gene (SAG), which is exclusively expressed during 

senescence (Hajouj et al., 2000). SARK regulates initiation and / or the rate of progress of 

senescence syndrome at transcriptional level in aging leaves of Phaseolus vulgaris (Hajouj et 

al., 2000). 

 

Endogenous cytokinins at normal physiological concentrations can either promote or inhibit 

root initiation and development, depending on their concentration and the plant species 

concerned (Fries, 1960; Bollmark et al., 1988). Conversely, both endogenous and synthetic 

kinetins stimulated dry weight and elongation of roots in lupin seedlings, but high kinetin 

levels strongly inhibited root elongation (Fries, 1960), wheat, flax and cucumber seedlings 

(Stendil, 1982). Moreover, when kinetin was in contact with roots for more than 2 days, it 

diminished the growth of roots and entire plant, but when applied to roots at very low levels, 

kinetin stimulated photosynthesis and plant growth (Dong and Arteca, 1982). 

 

Exogenous cytokinins in rooting solutions of cuttings caused a strong inhibition of root 

formation and growth (Steinitz et al., 1987; Bollmark et al., 1988; Ferrante et al., 2003). Also, 
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a low level of endogenous cytokinins was found in pea cuttings during adventitious root 

formation (Bollmark et al., 1988). Applying CPPU, a synthetic cytokinin to apex of pea plants 

doubled the concentration of IAA, increased ethylene evolution at the base of cuttings and 

reduced root formation (Koukourikou-Petridou and Bangerth, 1997). Additionally, it was 

reported that cuttings of species with high natural cytokinin levels are more difficult to root 

than those with low cytokinin levels (Okoro and Grace, 1978). Moreover, internode and root 

elongation in Arabidopsis were both inhibited in transgenic plants expressing the cytokinin 

gene, isopentenyl transferase (ipt) and in cytokinin overproducing mutants (Cary et al., 1995; 

Vogel et al., 1998). Cary et al. (1995) and Vogel et al. (1998) suggested it was possible that 

inhibition of hypocotyls and internode elongation induced by excess cytokinin, was due to 

production of ethylene and this inhibition represented another example of interdependence of 

hormonal regulatory pathways. 

 

2.1.6 Auxin 

 

Auxins promote cell elongation leading to plant growth. They may also be involved in 

delaying senescence, since aging is accompanied by a decrease in auxin levels, due to 

degradation by IAA oxidase (Halevy and Mayak, 1981). In contrast, Ahmad et al. (1987) 

found leafy cuttings of Pisum sativum treated with high concentrations of chlorinated auxins 

showed permanent epinasty, loss of apical growth and dominance, resulting in outgrowth of 

laterals from axillary buds. All these effects were ascribed to an increase in ethylene synthesis 

(Ahmad et al., 1987). Also, Sun and Bassuk (1993) reported that STS stimulated bud break 

and reduced root formation in rose cuttings. Sun and Bassuk (1993) assumed an increase in 

ethylene production after IBA treatment in plants, which inhibited bud break and stimulated 

rooting. Conversely, Sun and Bassuk (1993) concluded that use of ethylene action inhibitor, 

possibly stimulated bud break by blocking ethylene action. 

 

The most pronounced effect of auxins is adventitious root formation. Rooting is a complex 

phenomenon, which involves numerous endogenous factors, among which auxin and ABA 

are believed to play a major role (Nordström and Eliasson, 1991). Auxins are regarded as 

universal inducers of rooting (Kelen and Ozkan, 2003). On the other hand, ABA is known to 

inhibit root formation (Kracke et al., 1981). IAA is the primary auxin found in plants but 

other indole compounds such as IBA and NAA have been isolated (Normanly et al., 1995). 

IAA is synthesised in young leaves (Feldman, 1980) and has diverse physiological roles in 
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plant growth such as cellular elongation, phototropism, geotropism, apical dominance, 

ethylene production and fruit development (Jarvis, 1986). Also, auxins are required for 

adventitious roots initiation on stems and division of first root initial cells are dependent upon 

them (Strömquist and Hansen, 1980). 

 

There is a positive correlation between endogenous IAA levels in grapevine cuttings and 

number of roots produced (Kelen and Ozkan, 2003). Consequently, the lowest IAA levels are 

found in dormant and swollen bud stages (Kelen and Ozkan, 2003). Moreover, Gaspar et al. 

(1994) found the initiating phase of rooting (cell division and differentiation) was 

characterised by a decrease in free auxin levels to a minimum while the expressive phase of 

rooting (growth and emergence of root primordial) was associated with an increase in free 

auxin levels. This was in agreement with Koukourikou-Petridou and Bangerth (1997). After 

root initiation, IAA decreased either by degradation or conjugation but this had little effect on 

rooting, since root elongation requires little amounts of IAA (Jarvis, 1986; Kracke and 

Cristoferi, 1983). 

 

Several stages of root formation exhibit extreme sensitivity to exogenous auxin and are 

correlated to endogenous auxin concentration shifts (King et al., 1995). Studies with a 

recessive Arabidopsis nuclear mutant, rooty (rty) showed that auxin is highly involved in root 

proliferation and restriction of shoot growth (King et al., 1995). Also, applying IBA to 

grapevine cuttings (Kracke and Cristoferi, 1983) or NAA (Koukourikou-Petridou and 

Bangerth, 1997) to pea stem cuttings promoted rooting. Therefore, it was suggested that root 

stimulating effects of IAA or IBA are closely associated with induction of ACC and ethylene 

biosynthesis (Riov and Yang, 1989; Robbins et al., 1985). This was because inhibitors of 

ethylene biosynthesis (AVG) and perception (STS and 1-MCP) have been shown to reduce 

root numbers in mung bean cuttings (Jusaitis, 1986; Robbins et al., 1985) and Pelargonium 

(Serek et al., 1998). Moreover, auxins have the ability to stimulate ethylene production in 

vegetative tissues of many plants (Abeles et al., 1992). 

 

The objective of this study was to investigate the possible use of TDZ for improving the post 

harvest quality of Pelargonium cuttings against transport-associated stress and to elucidate 

how it modulates leaf senescence. Such stress involves short-term dark storage and ABA and 

ethylene as stress-response agents. IBA treatment was tested to alleviate a TDZ rooting 

inhibition effect in order to enhance the overall performance of the cuttings. 
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2.2 Materials and Methods 
 

Plant material 

 

Cuttings of five new Pelargonium zonale hybrid cultivars (‘Fire’, ‘Ganymed’, ‘Greco’, 

‘Katinka’ and ‘Surfing’) considered to be susceptible to leaf yellowing were obtained from 

stock plants grown by a commercial breeder (Selecta Klemm GmbH & Co., KG, Stuttgart, 

Germany). They were rooted in commercially produced soil (Einheitserde, Werkverband 

E.V., Germany) and re-potted into 14 cm diameter pots 4 weeks later. They were 

subsequently grown in a greenhouse at the University of Hannover under the following 

conditions: 22oC day / 20oC night temperatures with 16 h supplementary irradiance of 100 

µmol m-2 s-1 from SON-T lamps (Osram, 400W, Philips, Holland) between October-

December to produce stock plants to provide experimental material. An automatic fertigation 

system was used to apply 0.75 % WuxalR Super fertiliser [8% (w/w) N, 8% (w/w) P2O5, 6% 

(w/w) K2O, 0.01% (w/w) B, 0.007% (w/w) Cu, 0.015% (w/w) Fe, 0.013% (w/w) Mn, 0.001% 

(w/w) Mo, 0.005% (w/w) Zn; Wilhelm Haug GmbH & Co. KG, Ammerbuch-Pfäffingen, 

Germany] solution to the plants 1-3 times per week depending on the prevailing weather 

conditions. 

 

Harvesting and evaluation of cuttings 

 

Terminal cuttings were harvested with sterilised knife after 19 weeks growth, leaving the first 

two leaves of the axillary shoot on the stock-plant. The cuttings were 6 cm in length at most, 

and had 4 leaves of which at least one was fully developed. After harvesting, cuttings were 

transferred immediately to an interior environment room (IE) kept at 21oC + 1oC, 60% RH 

and continuous light from cool-white fluorescent tubes (20 µmol m-2 s-1). They were exposed 

to various treatments as described below. The air in the IE was ethylene-free. Evaluation of 

the cuttings was done initially, and at 2 and 4 days after treatment application. Leaf samples 

were taken from the cuttings for documentation by photography, colour and total chlorophyll 

content determination before they were rooted under hydroponics in greenhouses to evaluate 

their rooting potential. 
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Ethylene sensitivity  

 

Cuttings were horizontally placed in sealed 54 l glass chambers. Ethylene gas was injected 

with a hypodermic syringe to give 0, 0.5, 1 and 2 µl l-1. This procedure was repeated daily 

after 1h ventilation of the glass chambers until termination of the experiment. Ethylene 

concentrations inside the chambers were monitored using a Perkin-Elmer portable digital gas 

chromatograph (GC Voyager FFKG312, Canada) equipped with a photoionisation detector. 

The carrier gas was N2 at 40 ml min-1, the injection pressure was 69 kPa, the oven temperature 

was 60oC and the column temperature was 60oC. Control cuttings were kept sealed in an 

identical glass chambers, but without ethylene. 

 

Thidiazuron (TDZ) treatment 

 

TDZ (Sigma-Aldrich GmBH, Germany) was dissolved in 1M KOH to prepare stock 

solutions. Deionised water containing 0.2% (v/v) Tween 20 (Duchefa, Haarlem, The 

Netherlands) as wetting agent was used to prepare 5, 10 and 20 µM TDZ solutions. The 

foliage on cuttings was completely immersed in TDZ solutions for 1 min. Care was taken that 

no solution reached the stem base. Control cuttings were immersed in deionised water 

containing 0.2% (v/v) Tween 20. After treatment, the cuttings were laid on absorbent paper to 

dry for 30 minutes. 

 

Abscisic acid (ABA) treatment 

 

ABA (Precision Biochemicals, Germany) was dissolved in 1M KOH to prepare stock 

solutions. Deionised water containing 0.2% (v/v) Tween 20 (Duchefa, Haarlem, The 

Netherlands) as wetting agent was used to prepare 25, 50 and 100 µM ABA solutions. The 

foliage on cuttings was completely immersed in ABA solutions for 1 min. Care was taken that 

no solution reached the stem base. Control cuttings were immersed in deionised water 

containing 0.2% (v/v) Tween 20. After treatment, the cuttings were laid on absorbent paper to 

dry for 30 min. 
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Effects of TDZ, Ethylene, ABA and dark Storage 
 

Dark storage  

 

Cuttings were placed in polyethylene bags and the top of the bag was tightly sealed with a 

band. They were then packed randomly into boxes and stored at 21oC + 1oC in darkness for 4 

days to simulate transport conditions. 

 

Indole-3-butyric acid (IBA) treatment 

 

IBA (Duchefa, Haarlem, The Netherlands) was dissolved in 1M KOH and deionised water 

was added to prepare a 500 mg l-1 IBA stock solutions. Aliquots of IBA stock solution were 

dissolved at the beginning of the experiment into 10 l nutrient solutions (as described below) 

to make 4, 8 and 12 µl l-1 IBA solutions. Control cuttings were placed in nutrient solutions 

without IBA. 

 

Colour measurement 

 

Representative colour measurements were performed in triplicate on the surface of individual 

leaves using a Minolta Chroma Meter (Model CR-300, Minolta, Osaka, Japan). This tri-

stimulus colour analyser consists of a head with an 8 mm diameter measuring area, a diffuse 

illumination and a 0o viewing angle. It was initially calibrated with a white tile and checked 

between measurements. The three measurements were done on the left, right and centre of 

each leaf blade, respectively, at the start of the experiment. In addition to the initial 

measurements, they were made at 2 and 4 days after TDZ, ethylene or ABA treatments. For 

dark storage treatment, measurements were taken initially and after 4 days. The three 

parameters of brightness (L*), red-to-green scale (a*) and yellow-to-blue scale (b*) were 

recorded. Chroma and Hue were calculated using the formulae: 

Chroma = (a2 + b2)0.5

Hue = arc tan (b/a) 

High chroma and low hue values indicate that the leaves turn yellow due to onset of 

senescence. Low chroma and high hue values indicate that the leaves remain green. Leaf 

chroma refers to the saturation of the colour, which is how intense, pure or vivid it is while 

leaf hue refers to visual sensation or tone of the colour. 
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Effects of TDZ, Ethylene, ABA and dark Storage 
 

Chlorophyll determination 

 

Leaves without petioles were weighed (fresh weight). Then, three 8 mm diameter discs were 

excised from left, centre and right, respectively, of each leaf blade using a cork borer. 

Chlorophyll content was analyzed according to Lichtenthaler (1987). Extraction was in 80% 

(v/v) ethanol at 75oC for 10 min. Absorption was measured using a SmartSpecTM 3000 

Spectrophotometer (Biorad, California) at 647, 664 and 700 nm. Chlorophyll content was 

calculated using the equation: 

Chlorophyll a+b = 5.24(A664-A700) + (A647-A700)22 

Where, A is absorbance at 647 nm, 664 nm and 700 nm. The results were expressed as mg 

chlorophyll cm-2 of leaf area.  

 

Rooting of cuttings 

 

Rooting was done in a greenhouse under the following conditions: 24oC+ 1oC temperature 

inside the rooting chamber, 97+1% RH, and supplementary irradiance from SON-T lamps 

(Osram, 400W, Philips, Holland) at 60 µmol m-2 s-1. Eight cuttings for each treatment level 

were placed in grey StyroporTM plates and floated on nutrient solution in 10 l containers (Fig. 

1). Containers were covered with non-transparent white polyethylene which, together with the 

grey StyroporTM plates, substantially reduced the amount of light reaching the base of the 

cuttings. The nutrient solution was continuously aerated to prevent oxygen depletion. The 

composition of the nutrient solution was as follows (mg salt l-1): NH4NO3, 12; K2PO4, 162.8; 

MgSO4, 71.2; KNO3, 174; Mg(NO3)2, 487; FeEDTA, 12; MnSO4, 1.9; ZnSO4, 2.4; CuSO4, 

0.36; H3BO3, 1.9; NaMoO4, 0.16; NaCl, 25.5; and, Ca(NO3)2, 861. Propagation vessels were 

placed under a white polyethylene tent to increase humidity. The rooting period was 4 weeks. 
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Effects of TDZ, Ethylene, ABA and dark Storage 
 

Ethylene 

Dark-Storage 

Phytohormones 

 
 

Fig. 1. Schematic presentation of application of treatments and rooting of Pelargonium 

cuttings by hydroponics. 

 

Rooting parameters 

 

The percentage (%) of rooted cuttings was determined by counting the number of rooted 

cuttings against the initial number that was placed in the rooting solution. The number and 

length of roots per cutting were also determined. The roots were weighed using a balance 

ELE (Sartorious GmbH, Göttigen, Germany) to obtain fresh weight. The root samples were 

then wrapped in aluminium foil, oven dried at 66°C for 72 hr to constant weight using 

incubator (Memmert GmbH, Schwabach, Germany), cooled in a desiccator for 30 min and re-

weighed for dry weight. Root water content was determined by subtracting root dry weights 

from their corresponding fresh weights. 

 

Experimental design and statistics 

 

The experiments were conducted in a completely randomised design using two replications 

per treatment of four sample cuttings per replication. Data were subjected to a single factor 

analysis of variance (ANOVA) using the general linear models (Proc GLM) of the Statistical 

Analysis System (SAS, 2002) program package. Multiple comparisons among treatment 

means was done using the Least Significant Difference (LSD) or Student’s t test at P = 0.05. 
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Results 
 

2.3 Results 
 

Effects on leaf colour 

 

Storing Pelargonium cuttings in the dark for 4 days and/ or treating them with 2 µl l-1 

ethylene or 100 µM ABA hastened the onset of visible leaf yellowing in ‘Fire’, ‘Ganymed’, 

‘Greco’, ‘Katinka’ and ‘Surfing’. This was documented by photography for ‘Katinka’ which 

was representative of the other 4 cultivars (Fig. 2A, B, C). In contrast, treatment with 5 µM 

TDZ retarded leaf yellowing in ‘Katinka’ (Fig. 2D). 
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Fig. 3. Effects of continuous exposure to (A,B) 0.5, 1 and 2 µl l-1 ethylene for 4 days, (C,D) 

application of ABA at 25, 50 or 100 µM for 4 days and (E) dark storage for 4 days on leaf 

chroma of five Pelargonium cultivars. Means separated by LSD (P=0.05), means followed by 

the same letter(s) within the cultivar are not significantly different. 
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Results 
 

Applying ABA at 100 µM increased leaf chroma throughout the study period in all cultivars 

investigated except ‘Greco’ where the difference was not apparent after 2 days (Fig. 3C, D). 

Contrary, 25 µM ABA had no effect on leaf chroma except in ‘Katinka’ for all days of 

observation (Fig. 3C, D) and ‘Ganymed’ after four days (Fig. 3D). Furthermore, application 

of 50 µM ABA increased leaf chroma for ‘Ganymed’ and ‘Katinka’ during the experimental 

period (Fig. 3C, D and ‘Fire’ after four days (Fig. 3D). 

 

Storing cuttings in the dark for 4 days increased leaf chroma for all five cultivars studied (Fig. 

3E). Treating the cuttings with 20 µM TDZ decreased leaf chroma after 2 or 4 days in all five 

cultivars (Fig. 4A, B). Furthermore, there was no difference among TDZ levels except in 

‘Fire’ where 5 µM was less effective. Overall, 20 µM TDZ was the most effective level 

especially in ‘Surfing’ in preventing onset of yellowing in the five investigated cultivars (Fig. 

4A, B). 

 

Leaf hue (computed using –a* values) decreased for all cultivars after 2 and 4 days of 

continued exposure to 2 µl l-1 ethylene (Fig. 5A, B), except in ‘Katinka’ first after 4 days (Fig. 

5B). Just like in leaf chroma, 0.5 µl l-1 ethylene had no effect on leaf hue values in all 

cultivars studied except in ‘Surfing’, when it first decreased leaf hue after 4 days (Fig. 5B). 

Moreover, 0.5 µl l-1 ethylene was not significantly different from 1 µl l-1 ethylene except in 

‘Fire’ after 2 days and ‘Greco’ in both days of evaluation (Fig. 5A, B). Treating the foliage of 

cuttings with 100 µM ABA decreased leaf hue in all five cultivars for all the days of 

observation (Fig. 5C, D). Additionally, 25 µM ABA had no effect on leaf hue values in all 

cultivars. Furthermore, 50 µM ABA was only different from 25 µM ABA for ‘Fire’ and 

‘Ganymed’ after 2 days and likewise for ‘Katinka’ and ‘Ganymed’ after 4 days (Fig. 5C, D). 

 

Dark storage of the cuttings for 4 days decreased leaf hue values for all five cultivars 

investigated (Fig. 5E). In contrast, applying 20 µM TDZ to the cuttings foliage, consistently 

increased leaf hue values throughout the experimental period (Fig. 4C, D), except for ‘Fire’ 

after 2 days when it had no effect (Fig. 4C). Two days after TDZ treatment, there was no 

significant difference between 5 µM and 10 µM TDZ (Fig. 4C). Moreover, there was no 

discernable difference among TDZ levels after 4 days, except in ‘Fire’ where 5 µM was less 

effective (Fig 4D). Furthermore, 20 µM TDZ was the most effective in preventing the onset 

of leaf yellowing in all cultivars. 
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Fig. 4. Effects of application of TDZ at 5, 10 and 20 µM for 4 days on (A,B) leaf chroma, 

(C,D) leaf hue and (E,F) total leaf chlorophyll content of five Pelargonium cultivars. Means 

separated by LSD (P=0.05), means followed by the same letter(s) within the cultivar are not 

significantly different. 
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Fig. 5. Effects of continued exposure to (A,B) 0.5, 1 and 2 µl l-1 ethylene for 4 days, (C,D) 

application of ABA at 25, 50 or 100 µM for 4 days and (E) dark storage for 4 days on leaf hue 

of five Pelargonium cultivars. Means separated by LSD (P=0.05), means followed by the same 

letter(s) within the cultivar are not significantly different. 
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Effects on leaf chlorophyll content 

 

During the experimental period, all ethylene levels significantly decreased total leaf 

chlorophyll content compared to the untreated control in all five Pelargonium cultivars 

investigated (Fig. 6A, B). Additionally, ethylene levels were significantly different, with the 

highest level of 2 µl l-1 being the most effective at promoting chlorophyll degradation (Fig. 

6A, B). Similarly, total chlorophyll content also decreased in leaves of all five cultivars after 

treatment with ABA (Fig. 6C, D). This effect was greatest in leaves treated with the highest 

concentration of 100 µM ABA. Likewise, all the levels of ABA were significantly different 

throughout the period of study. Moreover, storing Pelargonium cuttings in the dark for 4 days 

decreased total leaf chlorophyll in all cultivars studied (Fig. 6E). 

 

Chlorophyll content of Pelargonium leaves treated for 4 days with the lowest TDZ 

concentration of 5 µM TDZ was higher than their initial content (Fig. 4F), while chlorophyll 

content declined in the untreated controls. Similarly, 5 µM TDZ increased leaf chlorophyll 

content in ‘Greco’ and ‘Surfing’ after 2 days but had no effect on other cultivars (Fig. 4E). 

Additionally, 5 µM TDZ was not different from 10 µM TDZ after 2 days in all cultivars 

except in ‘Greco’ and ‘Katinka’, where the latter level was more effective (Fig. 4E). Four 

days after TDZ application, all the TDZ levels were significantly different with respect to leaf 

chlorophyll content except in ‘Fire’ where 5 µM TDZ was not different from 10 µM (Fig. 

4F). TDZ at 20 µM consistently increased leaf chlorophyll contents (Fig. 4E, F). 

 

Effects on adventitious root formation 

 

Due to genotypic variation among the cuttings, the control for each individual cultivar was 

taken as having 100% rooting. Ethylene at 2 µl l-1 induced root formation in ‘Greco’, 

‘Katinka’ and ‘Surfing’. This effect was expressed in increased rooting proportion, and the 

same trend was true for ‘Fire’ (Table 1). Additionally, when ethylene was applied at lower 

levels (0.5 µl l-1), root induction was observed in ‘Greco’ and ‘Surfing’. Moreover, ‘Fire’ and 

‘Ganymed’ showed a similar trend, but the beneficial effect of 0.5 µl l-1 ethylene was not 

apparent in ‘Katinka’. In contrast, ethylene treatment reduced the ability of cuttings to 

continue growth of regenerated roots. This was evidenced by reduced numbers of roots per 

cutting in all cultivars (Fig.7A; Table 1) but this was not apparent in ‘Greco’ (Table 1). 
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Fig. 6. Effects of continued exposure to (A,B) 0.5, 1 and 2 µl l-1 ethylene for 4 days, (C,D) 

application of ABA at 25, 50 or 100 µM for 4 days and (E) dark storage for 4 days on total 

leaf chlorophyll content of five Pelargonium cultivars. Means separated by LSD (P=0.05), 

means followed by the same letter(s) within the cultivar are not significantly different. 
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Likewise, ethylene reduced the length of roots in all investigated cultivars (Fig. 7A) except in 

‘Greco’ and ‘Surfing’, where it had no effect. All ethylene levels had similar effect (Table 1). 

Furthermore, root fresh weight of ‘Katinka’ and ‘Surfing’ reduced after exposure to ethylene 

for 4 days (Table 1). The same trend was observed for the other three cultivars. In contrast, 

0.5 µl l-1 ethylene increased the root dry matter (%) accumulation in ‘Greco’ and ‘Surfing’ 

(Table 1) and the same trend was true for ‘Katinka’. Similarly, 0.5 and 1 µl l-1 ethylene 

reduced root water content (%) in ‘Greco’ and ‘Surfing’, respectively. Also, 2 µl l-1 ethylene 

exhibited a similar trend in ‘Katinka’ (Table 1). 

 

Treating Pelargonium cuttings with both 50 µM and 100 µM ABA retarded root induction as 

expressed by rooting proportion in ‘Ganymed’ and ‘Katinka’ (Table 2). Also, 25 µM ABA 

had the same effect in ‘Surfing’ and ‘Katinka’. Similarly, 50 µM ABA reduced the ability of 

cuttings to continue growth of roots. This was shown by reduced numbers of roots per cutting 

in all cultivars (Fig. 7B) except ‘Ganymed’, where this effect was not apparent (Table 2). All 

levels of ABA comparably reduced the lengths of roots per cutting in all cultivars investigated 

(Fig. 7B; Table 2). The fresh and dry weights of roots followed essentially the same pattern as 

the root lengths except in ‘Surfing’, where 50 µM ABA had no effect on root dry weights 

(Table 2). Moreover, ABA levels comparably reduced root water content and showed a 

similar pattern to that exhibited by root fresh weights (Table 2). 

 

Storing Pelargonium cuttings for 4 days in the dark had no effect on the rooting proportion in 

all cultivars (Table 3). However, short-term dark storage reduced the number of roots per 

cutting by 50% in ‘Katinka’ (Fig. 7C; Table 3). Likewise, darkness reduced the lengths of 

induced roots in ‘Surfing’ and ‘Katinka’ (Fig. 7C; Table 3). The fresh weights, dry weights 

and water content of the roots followed essentially the same pattern as the root length in 

‘Greco’ and ‘Katinka’ (Table 3). 

 

TDZ severely inhibited root formation at the base of stems of the cuttings (Fig. 7D). This 

resulted in just 1-2% rooting of all cuttings, in five Pelargonium cultivars tested (data not 

presented). TDZ treatment also led to browning of the stem tissues after 8 days, followed by 

blackening 7 days later (Fig. 7D). 
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Fig. 7. Appearance of representative Pelargonium cv ‘Katinka’ roots after continued exposure 

to (A) 2 µl l-1 ethylene for 4 days, (B) application of 100 µM ABA for 4 days, (C) dark 

storage for 4 days, (D) application of 5 µM TDZ for 4 days, (E) application of 4 µl l-1 IBA in 

rooting solution and (F) pre-treatment with 5 µM TDZ for 4 days followed by application of 4 

µl l-1 IBA in rooting solution for 28 days. 
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Results 
 

Table 1 
Effect of continued exposure to 0.5, 1 and 2 µl l-1 ethylene for 4 days on root induction and growth in cuttings of five Pelargonium cultivars. 
 
Cultivar Treatment  Rooting Number of  Length of   Roots   Roots   Roots 
     (%)  roots  roots (cm)  FW (mg)  DW (%)  WC (%) 
 
‘Fire’  Control  100a  12.80a  155.05a  323.80a  6.77a   93.23a 
  0.5 µl l-1 C2H4  125a  4.50b  56.03b   243.80a  6.33a   93.67a 
  1.0 µl l-1 C2H4  125a  7.00b  114.13ab  376.30a  7.99a   92.01a 
  2.0 µl l-1 C2H4  125a  5.80b  78.63ab  341.30a  7.69a   92.31a 

LSD   ns  4.96  90.40   ns   ns   ns 
‘Ganymed’ Control  100a  12.50a  178.08a  497.50a  8.11a   91.89a 
  0.5 µl l-1 C2H4  125a  4.00b  68.78b   256.30a  7.91a   92.09a 
  1.0 µl l-1 C2H4  125a  6.50ab  114.45ab  350.00a  7.63a   92.37a 
  2.0 µl l-1 C2H4  100a  4.30b  79.48ab  281.30a  8.74a   91.26a 
  LSD   ns  6.14  103.11   ns   ns   ns 
‘Greco’ Control  100b  5.80a  79.83a   317.50a  18.07b   94.40a 
  0.5 µl l-1 C2H4  150a  3.50a  62.00a   200.00a  26.46a   91.79b 
  1.0 µl l-1 C2H4  125ab  4.00a  62.08a   125.00a  13.79b   92.84ab 
  2.0 µl l-1 C2H4  125ab  6.50a  92.15a   177.50a  14.44b   92.49b 

LSD   20.96  ns  ns   ns   4.31   1.78 
 
‘Katinka’ Control  100b  9.80a  209.15a  1482.50a  40.7ab   94.19ab 
  0.5 µl l-1 C2H4  100b  1.00b  12.20b   263.50b  64.05a   96.01a 
  1.0 µl l-1 C2H4  100b  3.50b  70.80b   422.50b   41.65ab  95.32a 
  2.0 µl l-1 C2H4  150a  2.00b  35.40b   108.30b   32.15b   87.89b 

t value   2.18  2.57  2.57   2.57   ns   ns 
‘Surfing’ Control  100c  11.67a  180.47a  965.00a  34.68b   93.06a 
  0.5 µl l-1 C2H4  133b  8.80ab  139.48a  987.50a  55.32a   92.11ab 
  1.0 µl l-1 C2H4  133b  6.50b  105.50a  446.30b  38.99b   90.64b 
  2.0 µl l-1 C2H4  200a  7.50ab  146.53a  600.00ab  35.91b   91.26ab 

t value   2.18  2.20  ns   2.20   2.20   2.20 
Means separated by LSD (P=0.05). For each cultivar, means followed by the same letter(s) within columns are not significantly different. N=8. 
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Table 2 
Effect of application of 25, 50 and 100 µM ABA for 4 days on root induction and growth in cuttings of five Pelargonium cultivars. 
 
Cultivar Treatment  Rooting Number of  Length of   Roots   Roots   Roots 
     (%)  roots  roots (cm)  FW (mg)  DW (mg)  WC (mg) 
 
‘Fire’  Control  100a  6.60a  98.86a   871.30a  36.54a   834.80a 
  25 µM ABA  100a  4.60b  62.30b   711.10ab  28.83ab  682.20ab 
  50 µM ABA  100a  4.10b  54.01b   521.10b  24.29b   496.80b 
  100µM ABA  100a  3.50b  48.38b   502.50b  26.49b   476.00b 
  LSD   ns  1.26  23.39   342.61   9.96   334.49 
 
‘Ganymed’ Control  100a  6.30a  112.29a  1080.30a  46.21a   1034.10a 
  25 µM ABA  100a  5.10a  77.19ab  748.00ab  35.88ab  712.20ab 
  50 µM ABA  90b  5.30a  83.19ab  645.10ab  29.25ab  615.90ab 
  100 µM ABA  90b  3.50b  52.63b   468.70b  20.00b   448.70b 

LSD   7.74  1.37  35.17   517.47   17.85   502.03 
‘Greco’ Control  100b  4.00a  53.98a   599.40a  23.71a   575.70a 
  25 µM ABA  111a  3.80ab  53.18ab  377.50ab  19.12ab  358.30ab 
  50 µM ABA  111a  2.80b  34.60b   269.50b  13.99b   255.50b 
  100 µM ABA  100b  3.30ab  45.79ab  556.00ab  21.00ab  535.00ab 

LSD   7.74  1.10  19.23   322.74   8.32   316.25 
‘Katinka’ Control  100a  3.40a  52.48a   329.75a  16.34a   313.41a 
  25 µM ABA  89b  2.30b  32.33b   194.50b  10.55b   183.95b 
  50 µM ABA  89b  2.60b  38.20b   183.20b  11.03b   172.17b 
  100 µM ABA  89b  2.10b  27.29b   135.04b  9.25b   125.79b 

LSD   5.47  0.73  13.48   85.60   5.17   83.25 
‘Surfing’ Control  100a  5.25a  67.13a   778.70a  32.21a   746.50a 
  25 µM ABA  80b  3.25b  37.05b   279.80b  15.54b   264.30b 
  50 µM ABA  100a  3.50b  42.48b   497.20b  32.46a   464.70b 
  100 µM ABA  90ab  3.63b  42.83b   419.90b  17.97b   401.90b 

LSD   12.24  1.27  18.30   278.45   12.88   268.04 
Means separated by LSD (P=0.05). For each cultivar, means followed by the same letter(s) within columns are not significantly different. N=8. 
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Table 3 

Effect of dark storage for 4 days on root induction and growth in cuttings of five Pelargonium cultivars. 

 
Cultivar Treatment  Rooting Number of  Length of   Roots   Roots   Roots 
     (%)  roots  roots (cm)  FW (mg)  DW (mg)  WC (mg) 
 
‘Fire’  Control  100a  11.30a  280.63a  2072.90a  83.13a   1989.80a 
  Stored   100a  7.50a  116.38a  928.40a  38.88a   889.50a 

LSD   ns  ns  ns   ns   ns   ns 
 
‘Ganymed’ Control  100a  6.80a  119.38a  924.80a  39.63a   885.10a 
  Stored   100a  7.50a  102.75a  1264.10a  46.25a   1217.90a 

LSD   ns  ns  ns   ns   ns   ns 
 
‘Greco’ Control  100a  6.00a  102.00a  775.60a  31.13a   744.50a 
  Stored   100a  4.30a  63.13a   393.60b  16.63b   377.00b 

LSD   ns  ns  ns   382.32   14.47   368.69 
 
‘Katinka’ Control  100a  8.00a  178.13a  954.00a  48.00a   906.00a 
  Stored   83.34a  4.00b  45.13b   368.10b  18.25b   349.90b 

LSD   ns  2.45  77.12   578.78   25.68   553.87 
 
‘Surfing’ Control  100a  8.30a  158.38a  1019.40a  52.75a   966.60a 
  Stored   120a  6.50a  99.13b   717.80a  30.88a   686.90a 

LSD   ns  ns  59.11   ns   ns   ns 
Means separated by Least Significant Difference (P=0.05). For each cultivar, means followed by the same letter(s) within columns are not significantly different. 

N=8. 
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Pelargonium cuttings were treated with a range of IBA concentrations dissolved in the 

rooting solutions to determine if exogenous auxin could overcome the root inhibitory effects 

of TDZ. Preliminary results showed that IBA could not overcome the root inhibitory effects 

of TDZ in ‘Greco’ and ‘Surfing’ (data not presented). Therefore, further investigations were 

conducted with ‘Fire’, ‘Ganymed’ and ‘Katinka’. Treating cuttings with 4 µl l-1 IBA resulted 

in 100% root induction in ‘Ganymed’ and compared favourably to the control (Table 4). 

However, the proportion of rooted cuttings declined with higher (8 µl l-1 and 12 µl l-1) IBA 

concentrations in the three cultivars tested (Table 4). Similarly, there was a reduction in the 

number of roots, and this was more pronounced when IBA was applied at 12 µl l-1 in ‘Fire’ 

and ‘Katinka’. Also, ‘Ganymed’ exhibited the same trend. In contrast, this decline in the 

number of roots was not apparent at 4 µl l-1 and 8 µl l-1 IBA levels (Fig. 7E). Additionally, 4 

µl l-1 and 8 µl l-1 IBA compared favourably with the control in all cultivars studied (Table 4). 

The lengths of the roots were not changed by application of 4 µl l-1 IBA in rooting solutions 

for ‘Fire’ and ‘Katinka’ (Fig. 7E, Table 5). However, 8 µl l-1 and 12 µl l-1 IBA retarded root 

growth as shown by reduced length of the roots in all cultivars. Fresh weights of roots 

followed the same pattern as root lengths. IBA at 4 µl l-1 resulted in a profound increase and 

reduction in root dry matter (%) accumulation and root water content (%), respectively, in all 

three cultivars (Table 4). 

TDZ severely inhibited root formation, therefore control cuttings were treated with deionised 

water containing 0.2% (v/v) Tween 20. Based on IBA results (Table 4) cuttings were treated 

with 5 µM TDZ followed by application of 4, 8 or 12 µl l-1 IBA in the rooting solutions. 

Treating cuttings of ‘Fire’, ‘Ganymed’ and ‘Katinka’ with 5 µM TDZ followed by application 

of 4 µl l-1 IBA in rooting solutions at the beginning of experiment, restored their rooting 

abilities. This effect was evidenced by high rooting proportion in all cultivars (Table 5). 

Applying 4 µl l-1 IBA increased rooting proportions in ‘Fire’ and ‘Katinka’ and numbers of 

roots per cutting in ‘Katinka’. However, IBA at 8 µl l-1 or 12 µl l-1 reduced root induction in 

all cultivars (Table 5). When placed in rooting solution containing 4 µl l-1 IBA, cuttings of 

‘Fire’ and ‘Ganymed’ increased their root length. A similar trend was observed in ‘Katinka’ 

(Fig. 7F). Likewise ‘Katinka’ exhibited a similar pattern to root lengths with respect to root 

fresh weights (Table 5). Applying 8 µl l-1 IBA had a markedly increased dry weight (%) by 

15% and reduced root water content (%) by 1% in ‘Fire’ (Table 5). Generally, high (8 and 12 

µl l-1) IBA levels were not different from each other for all cultivars, except rooting 

proportion in ‘Fire’ and root lengths in ‘Ganymed’ (Table 5). 
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Table 4 

Effect of application of 4, 8 and 12 µl l-1 IBA in the rooting solution for 28 days on root induction and growth for five Pelargonium cultivars. 
 
Cultivar Treatment  Rooting Number of   Length of   Roots   Roots  Roots 
     (%)  roots   roots (cm)  FW (mg)  DW (%) WC (%) 
 
‘Fire’  Control  100a  5.50a   52.00a   1263.60a  4.73b  95.27a 
  4 µl l-1 IBA  82.80b  5.10ab   41.00ab  827.90ab  7.36a  92.63b 
  8 µl l-1 IBA  71.40b  5.10ab   27.30b   913.00ab  4.84b  95.16a 
  12 µl l-1 IBA  52c  3.80b   38.60ab  539.40b  4.65b  95.35a 

t value   2.07  2.07   2.07   2.07   2.07  2.07 
 
‘Ganymed’ Control  100a  6.30a   80.88a   1593.60a  3.93b  96.07a 
  4 µl l-1 IBA  100a  5.40a   39.88b   755.40b  6.36a  93.64b 
  8 µl l-1 IBA  94ab  6.00a   36.13b   1001.60ab  4.26b  95.74a 
  12 µl l-1 IBA  89b  4.80a   46.00b   740.90b  4.38b  95.62a 

t value   2.05  ns   2.05   2.05   2.05  2.05 
 
‘Katinka’ Control  100a  5.10a   61.50a   727.10a  4.70b  95.29a 
  4 µl l-1 IBA  71.40b  4.10ab   45.86ab  498.70ab  6.92a  93.07b 
  8 µl l-1 IBA  71.40b  4.00ab   24.57b   479.40ab  4.36b  95.64a 
  12 µl l-1 IBA  52c  2.80b   37.40ab  359.60b  4.25b  95.74a 

t value   2.07  2.07   2.07   2.07   2.07  2.07 
 
Means separated by Student’s t test (P=0.05). For each cultivar, means followed by the same letter(s) within columns are not significantly different. 

N=8. 
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Table 5 

Effect of treating cuttings with 5 µM TDZ followed by application of 4, 8 and 12 µl l-1 IBA in rooting solution for 28 days on root induction and 
growth for five Pelargonium cultivars. 
 
Cultivar Treatment  Rooting Number of   Length of   Roots   Roots  Roots 
     (%)  roots   roots (cm)  FW (mg)  DW (%) WC (%) 
 
‘Fire’ 
 DI Water   100b  4.10ab   28.43bc  603.40ab  5.68b  94.32a 
 5 µM TDZ + 4 µl l-1 IBA 140a  5.50a   49.25ab  889.60a  5.41b  94.59a 
 5 µM TDZ + 8 µl l-1 IBA 73c  4.60ab   55.20a   576.20ab  6.51a  93.49b 
 5 µM TDZ + 12 µl l-1 IBA 84c  3.00b   23.00c   298.20b  6.01ab  93.99ab 

Critical t value  2.07  2.07   2.07   2.07   2.07  2.07 
 
‘Ganymed’ 
 DI Water   100a  3.80a   27.13b   480.30a  4.55a  95.45a 
 5 µM TDZ + 4 µl l-1 IBA 79b  4.60a   45.86a   592.30a  4.95a  95.05a 
 5 µM TDZ + 8 µl l-1 IBA 33c  3.70a   37.67ab  390.00a  4.39a  95.60a 
 5 µM TDZ + 12 µl l-1 IBA 79b  3.70a   34.00ab  460.70a  4.94a  95.06a 

Critical t value  2.08  ns   2.08   ns   ns  ns 
 
‘Katinka’ 
 DI Water   100b  3.10b   54.71a   457.00b  4.98a  95.01a 
 5 µM TDZ + 4 µl l-1 IBA 117a  4.80a   66.38a   860.40a  4.78a  95.22a 
 5 µM TDZ + 8 µl l-1 IBA 92bc  4.00ab   68.00a   554.60ab  5.39a  94.61a 
 5 µM TDZ + 12 µl l-1 IBA 78c  4.20ab   68.67a   704.30ab  4.95a  95.04a 

Critical t value  2.06  2.06   2.06   2.06   ns  ns 
 
TDZ treatment without IBA inhibited root formation (data not shown). Means separated by Student’s t test (P = 0.05). For each cultivar, means followed by the 
same letter(s) within columns are not significantly different. N=8. 

 34



Discussion 
 

2.4 Discussion  
 

2.4.1 Methods 

 

New five Pelargonium cultivars susceptible to leaf yellowing were used. The goal was to find 

if various genotypes respond in the same way with respect to leaf colour, leaf chlorophyll 

content and rooting potential after exposing them to various treatments. Generally, all 

cultivars showed similar trends after treatments with respect to leaf chroma, leaf hue and 

chlorophyll content but variations were observed in root induction. Only three out of five 

cultivars rooted after treating them with TDZ followed by application of IBA in the rooting 

solutions. This could be attributed to variable environmental conditions in greenhouses (light, 

temperature and RH) since experiments were conducted at different times. Moreover, variable 

environmental conditions are known to affect the balance of endogenous levels of 

phytohormones in mother plants. Consequently, this could have influenced the biosynthesis of 

leaf chlorophyll, colour pigments and rooting process of cuttings either positively or 

adversely (Kelen and Ozkan, 2003). 

 

In addition, Kadner and Druege (2004) attributed variation in rooting of ‘Mitzou’ zonal 

Pelargonium cuttings to environmental factors. Kadner and Druege (2004) argued that spring 

and early summer temperatures could have raised the leaf temperatures causing a higher 

degree of tissue dehydration during rooting period, which is known to reduce root 

regeneration capability of cuttings (Loach, 1988). Use of growth chambers and carrying 

experiments in one season would greatly reduce data variation. Furthermore, cuttings of 40 

clones of Norway spruce tested on seven contrasting sites in Lower Saxony, Germany showed 

a high clone-site interaction. This could be reduced by selection of stable clones over a wide 

range of environments (Clair and Kleinschmit, 1986). 

 

Chlorophyll determination according to Lichtenthaler (1987) elucidated clear cut effects 

among levels of various treatments as compared to Chroma meter (that determines leaf 

chroma and hue). Thus, Chroma meter could not detect differences between control and 0.5 µl 

l-1 ethylene or 5 and 10 µM TDZ throughout the experimental period. The same pattern was 

observed between 25 and 50 µM ABA except leaf chroma in ‘Ganymed’ after four days and 

‘Katinka’ for the whole period of study (Fig. 3C, D). Additionally, both methods had similar 

results after storing the cuttings in the dark for 4 days. Moreover, Chroma meter could detect 

changes in leaf chroma after treatment with TDZ for two days that was not apparent in most 
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cultivars from chlorophyll extraction method. Leaf chroma and hue have been shown to be 

correlated to leaf chlorophyll and indicates a general trend of what is happening to the 

chlorophyll content (Steet and Tong, 1996). Overall, extraction of chlorophyll though very 

accurate is tedious and time consuming as opposed to use of Chroma meter, which is fast, 

efficient and user friendly but it is expensive. Furthermore, hydroponics rooting system was 

used for it is easy to evaluate roots compared to other media that are laborious, costs more 

time and leads to lose of roots during washing. 

 

2.4.2 Results 

 

Application of exogenous ethylene, ABA or dark storage accelerated senescence of the leaves 

of Pelargonium cuttings as expressed by visible onset of leaf yellowing (Figs. 2A, B, C). 

Additionally, these treatments increased leaf chroma and decreased leaf hue which is used to 

quantify a decrease in green colour of the leaves as they turn yellow (Steet and Tong, 1996). 

Furthermore, ethylene, ABA and dark storage hastened chlorophyll degradation (Figs. 6A, B, 

C, D, E). It is therefore inferred that chlorophyll degradation occurred leading to a decrease in 

leaf chlorophyll content with time. Chlorophyll breakdown in senescing leaves occurs via to a 

controlled, energy dependent process, which allows apoproteins complexed with chlorophyll 

to be broken down in order to salvage nitrogen (Matile et al., 1996). Moreover, the results 

(leaf chroma and hue values) of the present study agree with those of Roberts et al. (1985), 

Purer and Mayak (1989) in that ethylene has been shown to induce premature leaf yellowing 

in many plants as a result of accelerated chlorophyll degradation. 

 

Application of ethylene action inhibitor (1-MCP) retarded storage-induced leaf yellowing in 

zonal Pelargonium (Serek et al., 1998; Kadner and Druege, 2004), implying ethylene action 

is involved in storage-induced leaf senescence. Additionally, storing cuttings shortly after 

harvest leads to water stress (Schatz, 1982) and accumulation of wound-ethylene in the 

packing material (Kadner et al., 2000), which promotes senescence as evidenced by leaf 

chlorosis (Schatz, 1982; Roberts et al. 1985). Moreover, during storage cuttings are exposed 

to darkness and low humidity that causes chlorosis (Behrens, 1988; Wang, 1987). Darkness 

stimulates senescence of green tissues (Thimann, 1980). In contrast, Zacarias and Reid (1990) 

found dark-induced leaf yellowing did not require the action of ethylene. Moreover, the levels 

of ABA increases in water stressed plants leading to leaf chlorosis (Aharoni et al., 1977) 
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showing interaction of hormones in regulation of leaf senescence. Thus, it is evident that 

during storage, other ethylene-independent processes are also involved in leaf yellowing. 

 

TDZ treatment delayed onset of leaf senescence, increased leaf hue and decreased leaf 

chroma (Figs. 4A, B, C, D). This effect on hue and chroma is because treated leaves remained 

green while those of untreated controls turned yellow (Fig. 2D). Additionally, TDZ retarded 

leaf chlorophyll degradation by maintaining or slightly increasing it as compared to controls 

(Figs. 4E, F). Cytokinins reduce leaf yellowing in ornamental plants (Richmond and Lang, 

1957; Mutui et al., 2001) because they are involved in chlorophyll biosynthesis (Zavaleta-

Mancera et al., 1999). Chory et al. (1994) showed that if etiolated leaves of Arabidopsis are 

treated with a cytokinin before being illuminated, they form chloroplasts with more extensive 

grana. Upon illumination, chlorophyll and photosynthetic enzymes were synthesized at a 

faster rate, implying cytokinins regulate synthesis of photosynthetic pigments and proteins. 

 

Zavaleta-Mancera et al. (1999) reported that cytokinins activate NADH protochlophyllide 

reductase, an enzyme involved in chlorophyll biosynthesis, and reduce chlorophyll 

degradation in tobacco leaves. Exogenous cytokinins promoted regreening in yellow leaves 

(Zavaleta-Mancera et al., 1999). Transgenic plants of Nicotiana tabacum and Arabidopsis 

thaliana with a gene inserted that increases cytokinin synthesis did not exhibit leaf yellowing 

(Zavaleta-Mancera et al., 1999). Moreover, Ferrante et al. (2002a, 2002b) reported that TDZ 

prevented leaf yellowing in Alstroemeria cut flowers, cut Tulips and cut Chrysanthemum 

‘Regan bianco’ by inhibiting chlorophyll degradation. 

 

Ethylene enhanced root induction, but reduced the capacity of cuttings to continue growth of 

induced roots as expressed by decreased number of roots per cutting, root length, root fresh 

weights and percent water content (Table 1). The fact that ethylene-insensitive transgenic 

petunia formed few adventitious roots (Clark et al. 1999) and 1-MCP (ethylene action 

inhibitor) reduced rooting in Pelargonium cuttings (Serek et al., 1998) support the view that 

ethylene is involved in adventitious rooting. Kadner and Druege (2004) observed promotion 

of root formation in stored zonal Pelargonium ‘Mitzou’ cuttings after application of ethylene. 

The reduced capacity of induced roots to grow could be attributed to stress response 

mechanisms induced by high levels of ethylene. Mensuali-Sodi et al. (1995) showed the 

rooting of tomato cotyledon and lavandin micro-cuttings was inhibited when endogenous 

ethylene levels were either increased or decreased. This implies that ethylene was promoting 
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rooting over a narrow range of concentrations. These concentration-dependent effects of 

ethylene (Ma et al., 1998) and difference in sensitivity of experimental plant organs to 

ethylene at different stages of development (Clark et al., 1999) may account for the 

conflicting results in literature. 

 

In contrast, 0.5 µl l-1 ethylene increased the percent root dry matter accumulation in ‘Greco’ 

and ‘Surfing’ (Table 1). Similarly, ethylene-insensitive Never ripe (Nr) tomato plants 

produced more below-ground root mass but fewer above-ground adventitious roots than 

Pearson wild-type plants (Clark et al., 1999). Clark et al. (1999) suggested that ethylene does 

not play a major role in root formation of plants established in soil and growing under optimal 

growth conditions. It is therefore inferred that low ethylene level used in this study could have 

played a similar role. Moreover, although there are reports that ethylene may be involved in 

adventitious rooting, the literature is conflicting. Ethylene and ethylene-releasing compounds 

have been reported to inhibit adventitious root formation in pea cuttings (Nordström and 

Eliasson, 1984) and faba bean (Khalafalla and Hattori, 2000), promote in mung bean cuttings 

(Robbins et al., 1985) or have no effect in mung bean cuttings (Mudge and Swanson, 1978). 

 

Exogenous application of 50 µM and 100 µM ABA reduced the ability of Pelargonium 

cuttings to regenerate roots. Furthermore, ABA decreased the number and length of the roots, 

root fresh weight and water content. Applied ABA can inhibit ethylene production from 

various organs in a range of species (Tan and Thimann, 1989; Spollen et al., 2000). 

Conversely, Wright (1980) showed that pre-treatment with ABA prevents increase in ethylene 

production caused by wilting of excised wheat leaves. In the current context exogenous ABA 

may restrict ethylene production (Spollen et al., 2002) play a role in Pelargonium root 

formation. In contrast, 25 and 50 µM ABA unexpectedly increased rooting proportion in 

‘Greco’ (Table 2). ABA has been shown to stimulate root growth in Phaseolus coccinensis 

(Hartung and Abou-Mandour, 1980) and results obtained in the current study could be 

ascribed to a greater partitioning of assimilates to the growing roots in the nutrient solution at 

the expense of vegetative growth (Blum and Sullivan, 1997). 

 

Consistent with results of this study, Blum and Sullivan (1997) found a 30% increase in root 

biomass of dwarf spring wheat (Rht3) grown under atmospheric desiccation stress as 

compared to the control. ABA, a stress hormone maintained root growth and reduced shoot 

growth thus increasing root/shoot ratio (Sharp, 1990). Furthermore, Spollen et al. (2002) 
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demonstrated that ABA accumulation plays an important role in the maintenance of root 

elongation in maize. This role was profound at low water potential, when ABA restricted 

ethylene production. Therefore, Spollen et al. (2002) concluded that restriction of ethylene 

production may be a widespread function of ABA. Moreover, in flacca mutant of tomato, it 

was shown that ethylene production could be restored to normal levels with exogenous ABA 

(Tal et al., 1979). However, it was uncertain whether the increase in ethylene evolution was a 

direct result of ABA deficiency or it was indirect effect of decreased plant water status. 

 

Storing cuttings for four days in the darkness had no effect on rooting percentage but it 

decreased all the other investigated root parameters (Table 3). Furthermore, storing 

Pelargonium ‘Mitzou’ at 20oC decreased the number of roots per cutting (Kadner and Druege, 

2004). The results of the present investigation suggest that the amount of ethylene released by 

zonal Pelargonium cuttings enclosed in un-perforated polyethylene bags (Kadner et al., 2000) 

exceeds the threshold level required for optimal root production. Based on studies with 

ethylene and ethylene inhibitors, Jusaitis (1986) suggested that low (10-fold basal ethylene) 

concentrations of ethylene are required for rooting of mung bean cuttings, whereas too high 

(1000-fold basal ethylene) concentrations have inhibitory effect. 

 

In accordance with present findings, short-term storage inhibited rooting of Pelargonium 

cuttings (Serek et al., 1998). In addition, ethylene was found to inhibit adventitious root 

formation in pea cuttings (Nordström and Eliasson, 1984). Contrary, it was found to stimulate 

root formation in mung bean cuttings (Robbins et al., 1985). With respect to stress induced by 

water deficiency to cuttings during storage, Kage et al. (2004) reported that specific root 

length of cauliflower was lower under drought stress conditions leading to a higher dry matter 

deposition in the fine root fraction. Moreover, Eisenberg et al. (1978) reported a decrease in 

quality and rooting abilities for many ornamental cuttings after storage. 

 

It was observed that low (4 µl l-1) IBA level induced maximal (100%) root induction in 

‘Ganymed’ (Table 4). IAA enhances the synthesis of enzymes that induce hydrolysis of starch 

and other nutrients, so IAA seem to be involved directly with initiation of roots and formation 

of vascular tissue (Kracke et al., 1981). IAA also induces ethylene synthesis in many plant 

species and tissues (Kawase, 1971). Therefore, the current results suggest that ethylene 

induced by auxins may account for the observed root promoting activity of IBA. Higher (8 

and 12 µl l-1) IBA concentrations decreased the proportion of rooted cuttings and other 
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investigated root parameters. It is possible that this observation was due to higher demand for 

carbon allocation as a result of increased adventitious root formation in Pelargonium cuttings 

(Clark et al., 1999). Furthermore, Mudge (1988) hypothesised that if a low saturating 

concentration for ethylene-stimulated rooting exists, then auxin-stimulated ethylene 

production above this level would have no additional effect on rooting. 

 

Since auxins are known to induce ethylene biosynthesis (Kawase, 1971), numerous attempts 

(Geneve and Heuser, 1982, Mudge, 1988) have been made to determine if interactions exists 

between auxin and ethylene during adventitious root formation and development. However, 

there has been no clear correlation between the two (Geneve and Heuser, 1982, Mudge, 

1988). Reports of the variable rooting response of many plant systems to ethylene compared 

with ubiquitous reports of auxin-stimulated rooting have suggested that ethylene is less often 

a limiting factor or is less directly involved in the rooting process than auxin (Mudge, 1988). 

Overall, the promotive effect of auxin on adventitious rooting is influenced by ethylene 

responsiveness (Clark et al., 1999). 

 

TDZ treatment severely inhibited root induction (Fig. 7D), but this was effectively offset in 

‘Fire’, ‘Ganymed’ and ‘Katinka’ by application of IBA (Fig. 7F, Table 5) in the rooting 

solutions. This result may be explained in that TDZ is very stable in Pelargonium leaves 

leading to root initiation inhibition. Mok and Mok (1985) found that [14C]-TDZ was not 

substantially broken down in Phaseolus lunatus callus tissue over 33 days. Mok and Mok 

(1985) concluded that TDZ itself and not its catabolites was stimulating the physiological 

responses. Ferrante et al. (2003) reported that TDZ inhibited rooting in cut Chrysanthemum 

‘Regan giallo’. Additionally, synthetic cytokinins inhibited root initiation in Rhododendron 

stem cuttings (Pierik and Steegmans, 1975). In Arabidopsis, a down-regulated cytokinin 

receptor mutant and a loss-of-function allele of a cytokinin signalling element both have 

longer roots than the wild type (Inoue et al. 2001; Sakai et al., 2001). Additionally, transgenic 

tobacco engineered to over express cytokinin oxidase (and thus to have lower levels of 

cytokinin) also has longer roots than its wild type counterpart (Werner et al., 2001). These 

findings suggest that high levels of endogenous cytokinins regulate root elongation 

negatively. Furthermore, Murch and Saxena (2001) found that the TDZ molecule remained 

intact in both a free and conjugated form within the hypocotyls tissues of Pelargonium x 

hortorum and this suggests that TDZ exposure enhances accumulation and translocation of 

auxin within tissues. 
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The fact that TDZ treated Pelargonium cuttings followed by application of IBA at 4 µl l-1 

restored their rooting abilities as evidenced by 100% root induction in ‘Ganymed’ is a clear 

evidence of a central role of auxins in adventitious root formation. Similarly, 4 µl l-1 IBA 

produced comparable number of roots, root lengths and fresh weights in ‘Fire’, ‘Ganymed’ 

and ‘Katinka’. Also, TDZ increased ethylene production in Pelargonium cuttings (Fig. 12), 

geranium hypocotyl cultures (Hutchinson et al., 1997), mung bean hypocotyl segments 

(Suttle, 1984) and suspension cultures (Yip and Yang, 1986). This led Hutchinson et al. 

(1997) to hypothesise that TDZ enhanced ethylene production leading to elevated levels, 

which was inhibitory to somatic embryogenesis. Other reports indicated that when NAA was 

applied alone after decapitation of pea cuttings, it stimulated rooting, probably by being an 

auxin and partly by inhibiting accumulation of cytokinins at the base (Koukourikou-Petridou 

and Bangerth, 1997). Koukourikou-Petridou and Bangerth, (1997) concluded that adventitious 

root formation is a complex intrinsic balance between auxins and cytokinins. Generally, a 

high auxin/low cytokinin ratio favours adventitious root formation and a low auxin/high 

cytokinin ratio favours adventitious bud formation (Bouza et al., 1994). In the current context, 

it can be concluded that the yet unidentified role of TDZ in ethylene biosynthesis, possibly as 

inhibitor of ethylene perception through over-expression of ethylene receptor genes (Figs. 17, 

18), may at least in part, account for the observed difficulty in rooting of TDZ-treated 

cuttings. 

 

2.5 Conclusion 
 

Ethylene, ABA and dark storage accelerated leaf senescence and reduced rooting percentage 

of cuttings whereas TDZ delayed leaf senescence and inhibited root formation. Promotion of 

leaf senescence by ABA was indirectly through increased ethylene formation. Dark storage 

evidently had similar effects probably because it is a form of stress that led to enhanced 

ethylene evolution. TDZ, despite having root inhibitory effects that need to be offset by 

application of IBA in rooting solutions, is able to counteract deleterious effects of dark 

storage, ethylene and ABA. Thus TDZ treatment had a marked beneficial effect of delaying 

the onset of leaf yellowing in Pelargonium cuttings during storage and shipment. For practical 

purposes of TDZ, genotypes should be tested to determine optimum levels of using TDZ and 

IBA for preventing leaf senescence and inducing rooting, respectively. In future work, testing 

efficacy of novel aromatic cytokinin that are easily metabolised in plant tissues and have 

potential to prevent leaf yellowing without inhibiting root formation will be done. 
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3.0 Isolation, Characterization and Expression studies on ACC 
synthase and Ethylene Receptor (ETR1) genes in Pelargonium 
 
Abstract 
 

The effects of TDZ, ethylene, ABA or dark storage on ACC synthase and ethylene receptor 

(ETR1) genes during Pelargonium leaf senescence were studied. Genomic DNA and total 

RNA were isolated from roots, stems, leaves, flower buds, petals and pistils of ‘Katinka’ and / 

or ‘Ganymed’ for PCR and One step RT-PCR, respectively. Degenerate primer pair was used 

to amplify three DNA fragments using genomic DNA from ‘Katinka’ leaves. Sequence 

analysis of two novel partial putative ACC synthases led to their characterisation and 

designation as PzACS3 and PzACS4. PzACS3 is 590 bp long with 374 bp coding region and 

two introns, 83 and 133 bp long, respectively. Additionally, PzACS4 is 745 bp long with 374 

bp exon and two introns, 169 and 202 bp long too. Gene-specific primers for the ACC 

synthase and ethylene receptor (ETR1) genes were constructed and synthesized. Expression 

studies were done using a One step RT-PCR. Conversely, PzACS1 and PzACS2 were 

expressed in most of tissues examined in ‘Katinka’ except in roots and petals, respectively. In 

contrast, PzACS2 was not detected in ‘Ganymed’ leaves. PzACS3 and PzACS4 transcripts 

were respectively expressed or undetectable in roots while PzETR1 was strongly expressed in 

roots and flower buds whereas PzETR2 was constitutively expressed in all tissues. Tissue 

specific gene expression patterns suggest they have different roles in ethylene biosynthesis 

and signaling. Also, transcripts of these genes were induced in a treatment-specific fashion 

and correlated positively with ethylene production by cuttings after 4 days in various 

treatments except for 2 µl l-1 ethylene which had inhibitory effect. Ethylene slightly down 

regulated the expression of PzACS1 transcripts. Additionally, 100 µM ABA and dark storage 

increased PzACS1 and PzACS2 mRNAs, respectively. This was due to either stress-induced 

ethylene that occurs after dark storage or ABA treatment. Moreover, for the first time, TDZ 

was shown to strongly induce expression of PzETR1, possibly by increasing the amount of 

ethylene receptors via up-regulation of PzETR1 transcripts, thus reducing sensitivity of leaves 

to ethylene with the concomitant beneficial effect of delaying the onset of leaf yellowing. 

 

Key words: 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, Dark stress response, 

Ethylene receptor (ETR1) genes, Gene expression, Pelargonium zonale, Phytohormones, TDZ 

 42



Isolation, Characterisation and Expression Studies 
 

3.1 Introduction 
 

3.1.1 Overview 

 

Phytohormones are essential for integrating many aspects of plant development and responses 

to the environment. Ethylene, a simple readily diffusible gaseous hormone is involved in a 

variety of plant growth, development and stress related processes including tissue senescence, 

seed germination, leaf abscission, stem or root elongation, root hair development, epinasty, 

fruit ripening and flower fading (Abeles et al., 1992). Pelargonium zonale hybrids are 

classified as ethylene sensitive (Woltering, 1987) and ethylene leads to abscission of leaves 

and flowers. Conversely, exogenous application of ethylene enhances the senescence process 

while inhibition of ethylene synthesis or action slows senescence (Reid and Wu, 1992). The 

production of ethylene is tightly regulated by internal signals during development and in 

response to environmental stimuli from biotic (e.g. pathogen and fungal infection) and abiotic 

stresses such as wounding, anaerobiosis, ozone, drought, chilling, heavy metals, auxin, 

ripening and senescence processes (Wang et al., 2002). Ethylene is found in the atmosphere 

as a pollutant and is also internally biosynthesized in plants. Different plant species respond 

differently to varying levels of ethylene (Abeles et al., 1992). To understand the roles of 

ethylene functions, it is important to know how this gaseous hormone is synthesized, how its 

production is regulated and how the signal is transduced (Wang et al., 2002). 

 

Application of ethylene or its metabolic precursor, 1-aminocyclopropane-1-carboxylic acid 

(ACC) is known to induce a “triple response” trait in dark-grown (etiolated) dicotyledonous 

seedlings (Bleecker et al., 1988). This is characterised by exaggerated curvature of the apical 

hook, radial swelling of the hypocotyls and shortening of the hypocotyls and roots. Over the 

past decade, the triple response phenotype has been used to screen mutants that are defective 

in ethylene responses (Bleecker et al., 1988). Etiolated Arabidopsis seedlings with minor or 

no phenotypic response upon ethylene application are termed ethylene-insensitive (ein) or 

ethylene resistant (etr) mutants. Other mutants that display constitutive triple response in the 

absence of ethylene have also been identified (Kieber et al., 1993). They are grouped based 

on whether or not the constitutive triple response can be suppressed by inhibitors of ethylene 

perception like (1-MCP or STS) and / or biosynthesis (AVG). Those mutants unaffected by 

these inhibitors are termed constitutive triple-response (ctr) whereas mutants whose 

phenotype reverts to normal physiology are termed ethylene-overproducer (eto) mutants, 

which are defective in the regulation of ethylene biosynthesis (Wang et al., 2002). 
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3.1.2 Ethylene biosynthesis 

 

The genetic hierarchy among ethylene biosynthesis and signalling pathway components in 

Arabidopsis has been established by epistasis analysis using etr, ctr or eto mutants (Solano 

and Ecker, 1998). Ethylene is biosynthesized from methionine, which in addition to being an 

essential building block of protein synthesis, is converted into S-adenosyl-methionine (S-

AdoMet) by the enzyme AdoMet synthase (Yang and Hoffman, 1984). The first committed 

and rate-limiting step of ethylene synthesis is the conversion of S-AdoMet to ACC (the 

immediate precursor of ethylene) by the enzyme ACC synthase (Yang and Hoffman, 1984). 

Lastly, ACC is converted into ethylene by ACC oxidase. The first successes in molecular 

cloning of the ACC synthase genes in zucchini were reported by Sato and Theologis (1989) 

and for ACC oxidase genes in tomato by Hamilton et al. (1991). The observations that 

expression of the ACC synthase genes are highly regulated by a variety of signals and that 

active ACC synthase is labile and present at low levels suggest that ethylene biosynthesis is 

tightly controlled (Wang et al., 2002). 

 

The ethylene biosynthetic enzymes, AdoMet synthase, ACC synthase and ACC oxidase are 

encoded by multi-gene families (Bleecker and Kende, 2000; Rottmann et al., 1991). For 

instance, ACC synthase families in Lycopersicon esculentum consist of at least nine members 

(Rottmann et al., 1991) whereas in Arabidopsis thaliana comprise of twelve putative genes 

(Liang et al., 1992; The Arabidopsis Genome Initiative, 2000). Because ACC synthase, a 

pyridoxal phosphate containing enzyme (Bleecker and Kende, 2000), plays a central role in 

ethylene biosynthesis, its regulation has been intensively investigated (Wang et al., 2002). 

Also, its activity is regulated at the transcriptional (Rottmann et al., 1991) and post-

transcriptional levels (Vogel et al., 1998) and it is believed that enhanced transcription is the 

main regulatory step of these enzymes’ activities, though post-transcriptional regulation is 

operational too (Vogel et al., 1998). An emerging paradigm is that different isoforms of ACC 

synthase are differentially regulated (Peck and Kende, 1998a). 

 

3.1.3 Ethylene signal transduction  

 

Molecular mechanisms underlying ethylene signalling, including the identification of the 

genes encoding the ethylene receptor such as ETR1-like genes and several downstream 

signalling elements have been isolated and characterized in Arabidopsis (Chang et al., 1993; 
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Chao et al., 1997; Solano et al., 1998). Consequently, the translation product of ETR1 has 

three membrane spanning regions at N-terminal hydrophobic domains where ethylene binding 

occurs (Schallar et al., 1995), and a well conserved histidine kinase domain at the C-terminal 

part of the protein (Chang et al., 1993). Five ETR1-like genes; ETR1 (Chang et al., 1993), 

ERS1 (Hua et al., 1995), ETR2 (Sakai et al., 1998), EIN4 and ERS2 (Hua et al., 1998) have 

been identified in Arabidopsis. Hua and Meyerowitz (1998) classified ETR1 and ERS1 into 

ETR1-like subfamily, which have three transmembrane domains in the N-terminus. 

Additionally, ETR2-like subfamily comprise of ETR2, ERS2 and EIN4, which have four 

hydrophobic transmembrane domains in the N-terminus. Among these receptors, only ETR1, 

ETR2 and EIN4 contain a receiver domain that shows similarity to the bacterial two 

component system (Chang et al., 1993; Hua et al., 1995). The expression of ETR1 and ERS1 

from Arabidopsis in yeast provides a high affinity binding site for ethylene, hence ETR1 acts 

as an ethylene receptor (Schallar et al., 1995).  

 

Point mutations in transmemebrane domain of ERS1 (Hua et al., 1995) and NR (Lanahan et 

al., 1994) cause insensitivity to ethylene in Arabidopsis and tomato, respectively, indicating 

these homologues share a common function with ETR1. Moreover, four mutants etr1-1, etr1-

2, etr1-3 and etr1-4 were modified by a single amino acid of three N-terminal transmembrane 

domains in the ETR1 protein isolated in Arabidopsis and all were found to be insensitive to 

ethylene. Introduction of one of these genes into wild type Arabidopsis also caused a loss of 

sensitivity to ethylene (Chang et al., 1993). Furthermore, loss-of-function ctr1 mutants exhibit 

constitutive ethylene responses, which suggest that CTR1 acts as a negative regulator of 

ethylene responses. The predicted CTR1 protein is a serine-threonine protein kinase that is 

most closely related to the Raf protein kinase family (Kyriakis et al., 1992). Double mutant 

analysis indicates that CTR1 acts downstream of ETR1 (Kieber et al., 1993). 

 

The current paradigm is that ethylene receptors, which are located in the cytoplasmic-cell 

membrane, are responsible for ethylene perception (Wang et al., 2002). According to a model 

by Klee (2002), Ciardi and Klee (2001), Arabidopsis’ ETR1 functions as a membrane-

associated homodimer linked by two disulfide (S-S) bonds (Schallar et al., 1995) as shown in 

(Fig. 8). Wild-type receptor without ethylene binding would cross phosphorylate a conserved 

histidine within the kinase region. This cross phosphorylation would initiate a signaling 

cascade, which suppresses the ethylene response. Ethylene binding occurs at the N-terminal 

transmembrane domain and ETR1 exhibits a copper co-factor mediated high affinity ethylene 

 45



Isolation, Characterisation and Expression Studies 
 

binding (Schallar et al., 1995). Arabidopsis RESPONSIVE-TO-ANTAGONIST (RAN1) gene 

is involved in the delivery of copper to the ethylene receptor (Hirayama et al., 1999). 

Interestingly, silver also binds to ETR1 and mediates ethylene binding. Additionally, silver is 

widely used as inhibitor of ethylene perception probably by displacing copper in the active 

site of the receptor complex (Ciardi and Klee, 2001). Moreover, 1-MCP binding to the 

receptor helps to block ethylene perception (Sisler and Serek, 1997). 

 

 
Fig. 8. Model for role of ethylene receptors in ethylene signalling (Ciardi and Klee, 2001; Klee, 2002). 

 

Binding of ethylene causes a conformational change in the receptor, which suppresses kinase 

activity (turns the receptor off) thus relieving the downstream block on signal transduction 

and allowing an ethylene response to occur. Loss-of-function mutations in multiple ethylene 

receptors would eliminate kinase activity and removes active suppression of ethylene 

response. Additionally, partial loss-of-function mutants should require less ethylene than 

wild-type to achieve an ethylene response since there is less receptor on a molar basis to 

inactivate (Ciardi and Klee, 2001; Klee, 2002). 

 

According to a model by Wang et al. (2002), in the absence of an ethylene signal, ethylene 

receptors activate a Raf-like kinase, CTR1 (Kyriakis et al., 1992) which in turn negatively 

regulates the downstream ethylene response pathway, possibly through a mitogen-activated 
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protein (MAP) kinase cascade (Fig. 9). Furthermore, genetic epistasis analysis of ethylene 

response mutants have shown that ETHYLENE INSENSITIVE (EIN2) acts downstream of 

CTR1 and upstream of EIN3 (Alonso et al., 1999). Also, null mutations in EIN2 result in the 

complete loss of ethylene responsiveness throughout plant development, suggesting it is an 

essential positive regulator in ethylene signalling pathway (Alonso et al., 1999). Therefore, 

binding of ethylene inactivates the receptors, resulting in deactivation of CTR1 (Kieber et al., 

1993), which allows EIN2 to function as a positive regulator of the ethylene pathway (Alonso 

et al., 1999). 

 
Fig. 9. Ethylene signal transduction pathway model in Arabidopsis (Chang and Shockey, 1999). 

 

EIN2 contains the N-terminal hydrophobic domain similar to the Nramp metal transporter 

proteins and the novel hydrophilic C terminus (Alonso et al., 1999). Consequently, it 

positively signals downstream to the EIN3 (Chao et al., 1997) family of transcription factors 

located in the nucleus. A search for target promoters for the EIN3 family of proteins led to the 

identification of the primary ethylene response element binding proteins (EREBPs) (Solano et 
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al., 1998). EIN3 binds to the promoter of ERF1 gene and activates its transcription in an 

ethylene-dependent manner. Transcription factors, ERF1 and other EREBPs can interact with 

the GCC box in the promoter of target genes and activate downstream ethylene responses 

(Yamamoto et al., 1999). 

 

3.1.4 Expression of ACC synthase and ethylene receptor (ETR1) genes 

 

Expression of selected members of the multi-gene ACC synthase family in higher plants is 

induced by a diverse group of external and internal ethylene inducers. For instance in 

Arabidopsis, AtACS2 is induced by cycloheximide, wounding and 2 h of ethylene exposure 

(Liang et al., 1996). However, ethylene-induced expression gradually decreases with 

prolonged ethylene exposure, suggesting negative feedback regulation of AtACS2 (Liang et 

al., 1996). AtACS3 does not show ACC synthase activity in either bacterial or yeast 

expression systems (Liang et al., 1996) and is believed to be a pseudogene resulting from a 

partial duplication of AtACS1 (Wang et al., 2002). AtACS4 is induced in seedlings by 

cycloheximide, idoleacetic acid and wounding (Liang et al., 1992). Also, AtACS5 is induced 

by lithium chloride (Liang et al., 1996). Additionally, AtACS6 can specifically be induced by 

cyanide treatment, exposure to ozone in light-grown leaves as well as by cycloheximide, 

idoleacetic acid and ethylene (Liang et al., 1992; Smith and Arteca, 2000). Moreover, 

AtACS10 promotes flowering of Arabidopsis in response to light (Samach et al., 2000). 

Because cycloheximide treatment induces most of the ACC synthase isoforms, the 

implication is that ACC synthase transcripts are short-lived and negatively regulated by some 

unknown labile repressor(s) (Liang et al., 1992). Alternatively, cycloheximide treatment 

could possibly result in retention of mRNA on the ribosome thus relatively increasing the 

steady state of ACC synthase mRNA (Wang et al., 2002). 

 

Most of ethylene receptor (ETR) genes isolated from Arabidopsis (Tieman et al., 2000) are 

homologous to those of geranium (Dervinis et al., 2000), carnation (Shibuya et al., 2002; 

Nagata et al., 2000), rose (Müller et al., 2000a; Müller et al., 2000b) and Delphinium (Kuroda 

et al., 2003). Ethylene receptors have been shown to act as negative regulators of ethylene 

responses in Arabidopsis (Hua and Meyerowitz, 1998) and tomato (Tieman et al., 2000). 

Additionally, these genes are up regulated by both developmental and exogenous stimuli. For 

instance in geranium, PhETR1 and PhETR2 are expressed at moderate levels in leaves, 

pedicels, sepals, pistils and petals and at very low levels in roots (Dervinis et al., 2000). Their 
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expression at flower bud stage indicates that the amount of receptors is not indicative of the 

level of sensitivity of geranium florets to ethylene. Hence, Dervinis et al. (2000) concluded 

that perhaps the control of ethylene induced petal abscission in geranium florets may be 

mediated by another yet uncharacterised member of the PhETR gene family, at the post 

transcriptional level or through a downstream component of signal transduction pathway.  

 

Expression of RhETR1 and RhETR3 mRNAs were distinctly higher in ‘Bronze’, a miniature 

rose cultivar with shorter flower life, than in long lasting ‘Vanilla’ (Müller et al., 2000a; 

Müller et al., 2000b), suggesting flower life in roses is a function of inherent amount of 

receptors (Müller et al., 2000b). Moreover, the highest expression of RhETR1 transcripts was 

at bud stage and young open flowers in ‘Bronze’ and ‘Vanilla’, respectively (Müller et al., 

2000a), indicating rose flowers respond to ethylene at early developmental stages. 

Additionally, RhETR3 transcripts increased in senescing flowers of ‘Bronze’ while both 

RhETR2 and RhETR3 mRNAs in ‘Vanilla’ appeared to be constitutively expressed albeit at 

very low levels (Müller et al., 2000b). Also, DC-ERS2 and DC-ETR1 transcripts were 

expressed at considerable amounts in the petals, ovaries and styles of carnation flowers, at 

full-opening stage (Shibuya et al., 2002). However, the level of DC-ERS2 mRNAs in petals 

decreased as flower senesced while it slightly increased in ovaries and was unchanged in 

styles whereas DC-ERS1 transcripts were not detectable at any time (Shibuya et al., 2002). 

Moreover, in tomato, expression of LeETR4 and LeETR5 mRNAs were highly regulated 

among plant tissues with high levels in reproductive (flower buds and mature flowers) tissues 

whereas LeETR1 was constitutively expressed in all tissues (Tieman and Klee, 1999). 

 

In Delphinium, expression of DI-ERS1 was proportional to endogenous ethylene produced by 

the florets, which in turn could have been perceived by the elevated DI-ERS1 levels to cause 

flower senescence (Kuroda et al., 2003). In contrast, levels of DC-ERS2 and DC-ETR1 

transcripts in carnation petals decreased inversely with the increase in ethylene production in 

untreated flowers but this decrease was independent of ethylene production, for those treated 

with 1, 1-dimethyl-4-(phenylsulphononyl) semicarbazide (DPSS) which blocks ethylene 

production (Shibuya et al., 2002). This implies that DC-ERS2 and DC-ETR1 are ethylene 

receptor genes responsible for ethylene perception in carnation and their expression during 

flower senescence is regulated in a tissue specific manner and independent of ethylene 

(Shibuya et al., 2002). Furthermore, expression of RhETR1 preceded ethylene production by 

rose flowers but abundance of RhETR3 transcripts increased during flower senescence in 
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‘Bronze’ indicating that ethylene response system is composed of multiple receptor types with 

overlapping patterns of expression (Müller et al., 2000b). Also, expression of RhETR1 and 

RhETR3 in ‘Vanilla’ was low despite having moderate ethylene production. 

 

Transcript levels of PhETR1 and PhETR2 in pistils and receptacles were unaffected either by 

self-pollination or exogenous ethylene in Pelargonium (Dervinis et al., 2000) and in 

carnations petals, indicating these genes are not subject to up-regulation by ethylene (Shibuya 

et al., 2002). In contrast, exposing miniature rose flowers to ethylene increased expression of 

RhETR1 (Müller et al., 2000a) and RhETR3 (Müller et al., 2000b). On the other hand, 

expression of RhETR2 transcripts increased after ethylene treatment in ‘Bronze’ only (Müller 

et al., 2000b). These results are in contrast to the standard model of ethylene signal 

transduction (Bleecker, 1999), whereby a reduction in the level of receptors would normally 

lead to increased ethylene sensitivity and vice versa. Nevertheless, in Arabidopsis leaves, 

transcript levels of ERS1, ETR2 and ERS2 genes were up-regulated by ethylene while it had 

no effect on ETR1 and EIN4 (Hua et al., 1998). These authors suggested that differential 

regulation of the receptor genes’ expression may provide a mechanism for achieving 

differential sensitivities even in the same response under different conditions (Hua et al., 

1998). ABA application increased expression levels of RhETR2 and RhETR3 in miniature 

rose (Müller et al., 2000) and induced ABA-responsive (rab) gene (Skriver and Mundy, 

1990). Additionally, in Arabidopsis, AtACS5 was induced by a low concentration of cytokinin 

in etiolated seedlings (Vogel et al., 1998). Moreover, van Gysel et al. (1993) demonstrated 

that photo-regulated (bcb) gene was induced by darkness in Arabidopsis. 

 

Because ACC synthase plays a central role in ethylene biosynthesis and subsequent regulatory 

effect in the senescence process (especially for ethylene sensitive plants like Pelargonium 

zonale hybrids), isolation of new members of the ACC synthase gene family was carried out 

using a PCR method, based on amplification of genomic DNA fragments with degenerate 

primer pairs. Additionally, in order to better understand the pattern and control of the 

expression of PzACS3 and PzACS4 genes alongside other ethylene biosynthetic pathway 

genes (obtained from the gene bank), characterization of their distribution in roots, stems, 

leaves, flower buds, petals and pistils with respect to temporal and spatial regulation was 

investigated using RT-PCR method. Moreover, molecular studies on the effects of ethylene, 

ABA, dark storage and TDZ on accumulation of mRNAs encoding ACC synthase and ETR1 

genes were performed.  
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3.2 Materials and Methods 
 

3.2.1 Plant material 

 

Pelargonium zonale hybrids cultivars ‘Katinka’ and ‘Ganymed’ were grown as described in 

Section 2.2. In order to perform expression studies of the ethylene biosynthetic genes, various 

plant tissues were collected. Young (non-woody) stem tissues were used. Roots were 

collected after 1 month growth of cuttings under hydroponics. The second leaf below the 

apical region, which was dark green, not folded and wrinkled was used and referred to as fully 

expanded leaf. Flower buds were closed florets containing a calyx and a pedicel 

approximately 2 mm long. The age of the florets were determined by morphology. Petals and 

pistils were obtained from fully open (non-senescent) flowers that had slightly open stigmas 

ready for pollination. These plant tissues were put in 15 ml tubes (Sarstedt, Germany) and 

immediately frozen in liquid nitrogen. They were then ground in liquid nitrogen and stored at 

-80oC deep freezer until extraction of DNA or RNA. 

 

3.2.2 Ethylene, ABA, TDZ and dark storage treatment 

 

Terminal Pelargonium cuttings with three fully expanded leaves were harvested and their 

foliage were completely immersed in 20 µM TDZ or 100 µM ABA solutions for 1 minute as 

described in Section 2.2. For control, dark storage and ethylene, the foliage on cuttings were 

immersed in deionised water containing 0.2% (v/v) Tween 20 and laid on absorbent paper to 

dry for 30 minutes. Then, cuttings for ethylene treatment were placed in sealed 54 l glass 

chambers and 0.11 ml pure ethylene gas was injected with a hypodermic syringe to give 2 µl 

l-1 for 6 hours and thereafter ventilated for 1 hour before being placed in glass bottles fitted 

with rubber septum caps. 

 

3.2.3 Ethylene production determination 

 

The fresh weights of all the cuttings were determined. Two cuttings were placed in each of 

250 ml glass bottles and sealed with rubber septum caps. For dark storage, the glass bottles 

were placed randomly into boxes and stored in the dark. Gas samples (0.5 ml) were 

withdrawn with a syringe from the headspace after every 12 hours for 4 days. Ethylene levels 

in the samples were measured by gas chromatograph and expressed as nanolitres per litre per 

gram of fresh weight as described in Section 2.2. 
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Sequence comparison between known ACC synthase sequences of Cucumis sativus L from 

the NCBI gene bank (http://www.ncbi.nlm.nih.gov) was done according to Mibus (2003). 

Degenerate primers that allow for amplification of unknown ACC synthase genes were 

developed using homologous regions of CsACS1 (AB032937), CsACS2 (AB032938) and 

CsACS3 (AB006805) sequences. The nucleotide and amino acid sequences; 

5’TT(CT)CA(AG)GA(CT)TA(CT)CA(CT)GGI(CT)TICC’3 and FQDYHGLP were used for 

the sense primer ACSd2s whereas 5’GTICCIA(AG)IGG(AG) TTIGAIGG(AG)TT’3 and 

NPSNPLGT were used for anti sense primer ACSdas, respectively. Where; () = variable 

nucleotide and I = Inosine. The annealing temperature was between 44oC and 50oC while the 

distance between the position of sense primer and that of anti sense primer was 125 amino 

acids. Therefore, the expected exon size is 375 bp. These primers were designed using the 

programme Primer 3 (Steve and Skaletsky, 2000; http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi). The oligonucleotides were synthesized by MWG Biotech AG 

(Ebersberg-Munich, Germany) as shown in Table 6. 

Materials and Methods 

Genomic DNA was isolated from 80 mg of ground Pelargonium leaf using the DNeasyR Plant 

Mini Kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions. The 

concentration of ‘Katinka’ genomic DNA was determined by comparing it with standard 

concentrations (5, 10, 25, 50, 100 and 200 µg ml-1) of λDNA (Fermentas GmbH, St. Leon-

Rot, Germany) in a 1% agarose, flatbed gel electrophoresis visualised by staining with 40 µg 

ethidium bromide. A temperature gradient PCR was performed to optimise the annealing 

temperatures for the various gene-specific primers (Table 6) to minimise the number of 

incorrect base pairings (mismatches). This phenomenon is enhanced by low annealing 

temperature (Rychlick et al., 1990). Additionally, if the PCR reactions are allowed to stand at 

room temperature for about 5 min, the sensitivity decreases by a factor of 1000 (Mullis, 

1991). Therefore, in order to reduce mispriming, the time between the completion of PCR 

reaction probes and the starting of PCR programmes was minimised. This reduced the chance 

of experiencing a low primer annealing temperature, which is responsible for mismatching 

(Rychlick et al., 1990).  

 

 

3.2.4 Database analyses and primer design 

 

 
3.2.5 DNA isolation and PCR 
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Table 6: Gene specific primer pairs for β-Actin gene, ACC synthase (PzACS1, PzACS2, PzACS3 and PzACS4) genes and Ethylene receptor 
(PzETR1 and PzETR2) genes designed using the programme Primer 3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). 
 
Name  sense Primer      Name  antisense Primer   Annealing   PCR Product 
                Temp. (oC)  (bp) 
 
β-Actin _for 5’AGATCTTTATGGAAACATTGTGCTC3’ β-Actin_rev 5’ATCCAGACACTGTATTTCCTCTCT3’ 53  150 
 
PzACS1s 5’AAAGGCGTGCTCTTAACCAA’3  PzACS1as 5’GACCCACCTCCTTCTTCCTC’3 62  721 
 
PzACS2s 5’ACCCTCAAGGTGTCATCCAG’3  PzACS2as 5’CCTCTCACCTTTCCCATGAA’3 56.3  205 
 
PzACS3a 5’CGAGCAAGCTAGTCCTCACC’3  PzACS3as 5’TTTTCGGGCTTGATTGTAGG’3 58.3  378 
 
PzACS4a 5’CTGGTTCAACCTCAGCCAAT’3  PzACS4as 5’AGAGCTCGAACAATGGATGG’3 54.4  375 
 
PzETR1/2a 5’GGGATGTGACGTGACAAGTG’3  PZETR1/2as 5’TTACCTTGTCTGCGTTGCTG’3 54.4  197 
 
PzETR2a 5’CAACTGCACGAGAGTTGGAA’3  PZETR2as 5’GCTTTCGGTATGGTCCGTTA’3 56.3  206 
 
 
β-Actin primer used as an internal reference (housekeeping gene) is bolded. 
 
The primer pairs were constructed from the novel partial ACC synthase (PzACS3 and PzACS4) genes and the other genes were obtained from the gene bank with 
their respective accession numbers as follows: β-Actin (PoAc97, X55751), PzACS1 (pGAC-1, U17299), PzACS2 (GACS2, U88971), PzETR1 (PhETR1, 
AF141928) and PzETR2 (PhETR2, AF141929). 
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For PCR analysis, 15 ng genomic DNA was used as a template in a 20 µl volume reaction that 

contained 0.03 µM of degenerate primer pair: ACSd2s and ACSdas or 1.2 µM gene-specific 

primer pairs (Table 6), 150 µM of each dNTP and 0.5 units of Taq DNA polymerase (Invitek 

GmbH, Berlin, Germany) in the 10x (100 mM Tris-HCl, pH 8.3, 500 mM KCl, 20 mM MgCl2 

and 0.01% gelatin) Williams Buffer (Promega GmbH, Mannheim, Germany) as 

recommended by the supplier (Biometra, Göttingen, Germany). The reaction mixture was 

incubated in a Thermocycler (Biometra, Göttingen, Germany) and the PCR was initiated by 

denaturation at 94oC for 2 min, followed by 40 cycles of 94oC for 1 min, 53oC to 62oC (after 

optimisation of the annealing temperature) for 1 min and 72oC for 2 min. The PCR included a 

final extension step at 72oC for 30 min. and a cooling step at 4oC. Each PCR reaction was 

repeated at least three times to reconfirm the results obtained. 

 

3.2.6 Cloning, sequencing and sequence analysis 

 

Orange G (30% Glycerin, 20 mM EDTA-pH 8, 0.25% Orange G and 10 ml deionised water) 

loading Buffer was added to the PCR products and centrifuged for 5 seconds. This mixture 

was then loaded into 1% agarose gels and separated in a flatbed gel electrophoresis using 

1xTAE (40 mM Tris-Acetate, 1 mM EDTA, pH 8) Buffer. The gels had a capacity of either 

50 ml or 150 ml and were run at 120V or 80V, respectively. Also, they were visualised by 

staining with 40 µg ethidium bromide and observed using a BioDocAnalyze UV trans-

illuminator (Biometra, Göttingen, Germany). The sizes of amplicons were estimated by 

comparing them to a 100 bp-ladder DNA marker. The desirable fragments were cloned by 

ligation into a TA plasmid cloning vector using pCRR4-TOPOR TA Kit (Invitrogen, Carlsbad, 

CA; Appendix 15) and transformed into Escherichia coli.  

 

The plasmid vector (pCRR4-TOPOR) was supplied linearised, the so called “activated vector”. 

The Vaccinia virus Topoisomerase I binds to duplex DNA at specific sites and cleaves 

phosphodiester backbone after 5’-(T/C)CCTT in one strand (Shuman, 1991) and the energy 

released is conserved through formation of a covalent bond between 3’ phosphate of the 

cleaved strand and a tyrosyl residue (Tyr-274) of topoisomerase I. The phospho-tyrosyl bond 

between DNA and enzyme can subsequently be attacked only by 5’ hydroxyl of original 

cleaved strand, reversing the reaction and releasing topoisomerase (Shuman, 1994). The 

plasmid vector has two adjacent cutting surfaces and since both ends of DNA fragments are 

blocked by Topoisomerase, this prevents self ligation. Moreover, the vector allows direct 
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selection of positive recombinants via disruption of the lethal Escherichia coli, ccdB gene 

(Bernard et al., 1994) since the cells that contain non-recombinant vector are killed upon 

plating and hence there is no need for blue / white screening. 

 

After transformation into Escherichia coli, 125 µl S.O.C (2% Tryptone, 0.5% Yeast extract, 

10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose) medium was 

added to the plasmid-E. coli mixture and shaken horizontally using a shaker at 240 rpm for 

1.5 hours at 37oC in order for the bacteria to multiply. Then the transformants were cultured 

in LB (1% Tryptone, 0.5% Yeast extract, 1% NaCl, 950 ml deionised water, pH 7.0) medium 

containing 150 µg µl-1 Ampicillin at 37oC. Plasmid DNA from transformed E. coli was 

recovered using the NucleoSpinR Plasmid Kit (Macherey-Nagel GmbH, Düren, Germany). 

Positive transformants were directly analysed using 0.2 µg T3 and 0.2 µg T7 primer pair in a 

PCR reaction. The nucleotide sequences for T3 and T7 were 5’-

ATTAACCCTCACTAAAGGGA-3’ and 5’-TAATACGACTCACTATAGGG-3’ 

respectively. Sequencing by dideoxynucleotide method was performed commercially by 

MWG Biotech AG (Ebersberg-Munich, Germany). The isolated sequences were analysed 

using CLUSTAL W programme, European Bioinformatics Institute (EMBL; Higgens, 1994) 

and homology search was done using the BLUSTN programme, National Center for 

Biotechnology Information (NCBI; Altschul et al., 1997). 

 

3.2.7 RNA isolation and RT-PCR 

 

Total RNA was isolated from 30 mg of ground Pelargonium leaf treated (as described in 

Section 2.2) with 2 µl l-1 ethylene, 20 µM TDZ, 100 µM ABA or dark stored respectively for 

4 days or untreated (control) using InvisorbR Spin Plant RNA Mini Kit (Invitek GmbH, 

Berlin, Germany) following the protocols by the manufacturer. However, there was still some 

contaminating genomic DNA, despite following the protocol to the latter. Hence, the protocol 

was modified to include two DNA digestion steps. This was done by separately applying 6.7 

units of DNAse I (Qiagen GmbH, Hilden, Germany) dissolved in 95 µl 10x DNase reaction 

(10 mM Tris-HCl, 2.5 mM MgCl2, 0.5 mM CaCl2, pH 7.6 and kept at 25oC) Buffer to the cell 

lysis mixture and later directly on the RNA-binding spin filter membrane. Also, mRNA 

comprised of about 2% of total RNA and for most applications like RT-PCR, this amount was 

sufficient. However, for meticulous applications such as synthesis of cDNA banks where high 

sensitivity is required, total RNA including Poly-A+-RNA must be used. Total RNA from 
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‘Katinka’ and ‘Ganymed’ was determined by use of a Spectrophotometer (Biorad, California). 

To check for the presence of contaminating genomic DNA, total RNA was compared with 

standard concentrations (5, 10, 25, 50, 100 and 200 µg ml-1) of λDNA (Fermentas GmbH, St. 

Leon-Rot, Germany) in a flatbed gel electrophoresis visualised by staining with 40 µg 

ethidium bromide. Stepwise (10x) dilution series were performed to obtain the required RNA 

concentration and then stored at -20oC for short-term or -80oC deep freezer for long-term 

storage, until further use. Under these conditions, no degradation of RNA is detectable for at 

least 1 year. Also, RNA was handled using latex hand gloves and was kept under ice when 

taking aliquots. Additionally, the laboratory working surfaces and equipments were cleaned 

with RNases degrading chemicals. 

 

Unless otherwise stated, 1 µl of 500 pg total RNA was used as a template in a 25 µl RT-PCR 

reaction that contained 0.6 µM each of gene specific primer pairs (Table 6). These primers 

were designed such that they spanned an intron, in respective gene sequences to rule out 

potential genomic DNA contamination. Amplification of ß-Actin (housekeeping gene) by 

using gene-specific primers for the Solanum tuberosum mRNA gene (accession number 

X55751, Table 6) was performed as a control to ensure that equal amounts of total RNA were 

added to each RT-PCR reaction. In addition, 400 µM of each dNTP and 0.5 µl of QIAGENR 

One Step RT-PCR enzyme mix in 5 x RT-PCR buffer containing 12.5 mM MgCl2 were used 

as recommended by the supplier (Qiagen GmbH, Hilden, Germany). This kit contained 

optimised components that allowed both reverse transcription and PCR amplification to take 

place in a single tube. Also, it was designed for use with gene-specific primers only, since use 

of random oligomers or oligo-dT primers would have resulted in amplification of non-specific 

products. Reverse transcription was done by two novel unique Omniscript and Sensiscript 

reverse transcriptases, which are recombinant heterodimeric enzymes expressed in E. coli and 

HotstarTaq DNA polymerase, which enabled a hot-start PCR was completely inactivated, 

thus it did not interfere with the reverse transcriptase reaction. The reaction mixture was 

incubated in a Thermocycler (Biometra, Göttingen, Germany) for 30 min at 50oC (reverse 

transcription), 15 min at 95oC (initial PCR activation step) followed by 35 cycles: 1 min at 

94oC, 1 min at 49oC to 62oC (after optimisation of the annealing temperature for the primer 

pairs), 2 min at 72oC as recommended by the manufacturer (Qiagen GmbH, Hilden, 

Germany). The PCR included a final extension step at 72oC for 30 min. and a cooling step at 

4oC. Each PCR reaction was repeated at least three times to reconfirm the results obtained. 

The products of PCR were separated as described for a normal PCR above. 

 56



Results 
 

3.3. Results 
 

Ethylene production by Pelargonium cuttings 

 

Throughout the experimental period, 20 µM TDZ increased ethylene production whereas 

exogenous ethylene (2 µl l-1) significantly decreased ethylene production by the cuttings 

compared to the untreated control, respectively (Fig. 10). Storing cuttings in the dark had no 

significant effect on ethylene production for the first 2 days. However, on the third and fourth 

day after the onset of the experiment, dark storage increased ethylene production 

significantly. In contrast, 100 µM ABA had no effect on ethylene production by the cuttings 

for the first 3 days. However, on the fourth day, 100 µM ABA significantly increased 

ethylene production comparably to dark storage. 

 

0

4

8

12

16

20

24

28

32

36

40

44

24 48 72 96

Time (Hours)

Et
hy

le
ne

 P
ro

du
ct

io
n 

(n
l.l-1

.g
-1

 F
W

)

Control
2µl/l ethylene
Dark
100 µM ABA
20 µM TDZ

b

c

b b

a

b

c

b
b

a

C

d

b

c

a

c

d

bc

b

a

 
Fig. 10. Ethylene production in Pelargonium zonale ‘Katinka’ cuttings that were untreated (control) or 

treated with 2 µl l-1 C2H4, dark storage, 100 µM ABA and 20 µM TDZ for 4 days. 
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Amplification of putative ACC synthase genes 

 

The amplification pattern for the degenerate primer pair ACSd2 using genomic DNA of 

Pelargonium zonale ‘Katinka’ with an annealing temperature between 44oC to 50oC resulted 

in three (600, 750 and 800 bp) visible fragments (Fig. 11). 

 

 

400 bp 

800 bp 

46.4oC 48.4oC 50.3oC44.7oC
1200 bp 

 

Fig. 11. Amplification patterns of putative ACC synthase genes of Pelargonium zonale ‘Katinka’ with 

ACSd2 primer pair and different annealing temperatures (44.7oC to 50.3oC). The 3 inner arrows 

indicate a 600, 750 and 800 bp fragments, respectively. Each PCR reaction was repeated at least three 

times to reconfirm the results obtained. 

 

Sequence analysis  

 

A search in the European gene bank (NCBI/BLAST) revealed that the 800 bp genomic DNA 

fragment sequence (Appendix 11) was identical to gGAC-2 (accession number U17230), 

which had been previously cloned by Wang and Arteca (1995). The 600 and 750 bp 

fragments were found to be novel partial putative ACC synthase genes and designated as 

PzACS3 and PzACS4, respectively. This was because two ACC synthase genes were 

previously isolated in Pelargonium x hortorum (Wang and Arteca, 1995). Based on homology 

comparison with Cucumis sativus (CsACS1, AB032937) sequence using CLUSTAL W 

programme, putative exons were identified in each coding sequence of PzACS3 and PzACS4 
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(Fig. 12). Furthermore, the binding positions for both sense and anti-sense gene specific 

primers were obtained for the new putative genes are shown in Fig. 12. 

 

A. PzACS3  
GTTCCAAGATTACCACGGGTTGCCTGCATTCAAACAAGTAAGCACTGACACATAAAACGTGTGCACTTTGACTGA
TTTAAAAAAAAAATGTACATTTTCTAACGATATTGTACTTTTCAGGCATTGGTCGATTTTATGTCCCAAATAAGA
GGAAACAAAGTGACATTCGACCCGAGCAAGCTAGTCCTCACCGCGGGTGCCACCTCAGCCAACGAGGCTCTCATG
TTCTGCCTGGCGGATCCCGGCGAAGCCTTCCTCCTCCCCACGCCGTACTATCCAGGGTACGTATCTTTTTACGTA
CTTTTCATGTTAACAACACTATCAAGTCACATGCCAGAAACTTTATTCTAAAGAATTTTAAAAATGTACTATGTT
AACACGTCACTGATCATACTTTTGAATATTTTTCCACAGATTTGACCGAGACCTCAAGTGGCGAACTGGAGCAGA
GATCGTGCCGATCCACTGCACGAGTTCAAACGGATTTCAAATCACCGAATCGGCCCTCGAAGAAGCCTACAATCA
AGCCCGAAAACAGAACCTGAAAGTGAAGGGCGTGCTCGTGACCAACCCCTCCAATCCCCTCGGCAC 
 

 

B. PzACS4 
TTTTCCAAGATTATCACGGGTTGCCTGCTTTTAAGAACGTACGTACGTGCCATTTAATTATTTTATTGATCGACT
ATATATTTCCACAATAATTTGAAAACGCGTCTACACGTTATATATATGGGATATATAATGAGTGGATGTTGCGTA
GTTGTTTATATAATTGACATCAAACTGAGGTAGCTAGGTTGGAATGTACTTATGCAGGAAATGGTGGAGTTCTTG
TCTGCACTAAGAGGGAAGAAAGTGAAATTTGATCCAAACAACCTTGTACTCACTGCTGGTTCAACCTCAGCCAAT
GAGTCCCTCGTGTTTTGTCTAGCTCAACCTGGTGATGCTTTCCTTCTTCCCACTCCTTACTATCCCGGGTAATCA
TTTTACATATGGTCACAATTTAAAGTAGCCTTTTGATTTTAAGTTTTGGTTTTATGTGAATCACATTCAACAATG
TTATTTCCGTTATTTTTTCACATAAAACATTTTCATAATCACACTCTATTTACTGTTTTTAAGTAGTCCACATCT
CAATATACCTTTCATTCCTCACGTGTTTATTTGTGTGTGAGACAGGTTTGATAGAGATCTCAAATGGCGAACCGG
AGCTGAAATCGTTCCCATCCATTGTTCGAGCTCTAACAATTTCCGAATCACTCCTTGTGCGCTACAAGAAGCTTA
CGAGCGAGCTCAAAAACTAGGCCTAAACCCGAAAGCAGTACTGATCACCAACCCCTCCAACCCCCTCGGCAC 
 

Fig. 12. Base pairs sequence of (A) PzACS3, 590 bp and (B) PzACS4, 745 bp. Exon; Intron; binding 

position for sense Primer and binding position for antisense Primer. The border between the intron and 

exon sequence was detected with splicing specific sequence GT and AG, respectively. 

 

After determining the position and size of exon and intron, mRNA sequences for both genes 

were obtained. Conversely, PzACS3 is 590 bp long and contains a 374 bp coding region with 

two introns, 83 and 133 bp long, respectively. Additionally, PzACS4 is 745 bp in length, 

contains 374 bp exons and has two introns, 169 and 202 bp long (Fig. 13). Overall, the 

expected exon length of approximately 375 bp was confirmed in the novel putative ACC 

synthase genes by means of sequence analysis. 
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1200bp 
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400bp 

Exon  
PzACS4

Exon  Exon  

 
Fig. 13. Schematic representation of the new Pelargonium zonale putative ACC synthase genes 

(PzACS3 and PzACS4) with respect to intron and exon sizes. In brackets is the expected exon size. 

 

Further polypeptide sequences analysis using CLUSTAL W programme for alignment 

revealed that both PzACS3 and PzACS4 codes for 124 amino acids. These partial ACC 

synthase genes contain five out of eleven conserved amino acid residues common to all ACC 

synthases and various amino acid transferases (Fig. 14). Additionally, three out of seven 

conserved domains of all the ACC synthase isozymes are found in PzACS3 and PzACS4 (Fig. 

14). 
 
PzACS3          FQDYHGLPAFKQALVDFMSQIRGNKVTFDPSKLVLTAGATSANEALMFCLADPGEAFLLP 60 
CsACS1          FQDYHGLPAFKKALVEFMAEIRGNKVTFEANNIVLTAGATSANETLMFCLAEAGDAFLLP 60 
PzACS4          FQDYHGLPAFKNEMVEFLSALRGKKVKFDPNNLVLTAGSTSANESLVFCLAQPGDAFLLP 60 
                ***********: :*:*:: :**:**.*:..::*****:*****:*:****:.*:***** 
 
PzACS3          TPYYPGFDRDLKWRTGAEIVPIHCTSSNGFQITESALEEAYNQARKQNLKVKGVLVTNPS 120 
CsACS1          TPYYPGFDRDLKWRTGVEIVPIHCTSSNGFQVTQPALEQAYQEAQARNLRVKGVLVTNPS 120 
PzACS4          TPYYPGFDRDLKWRTGAEIVPIHCSSSNNFRITPCALQEAYERAQKLGLNPKAVLITNPS 120 
                ****************.*******:***.*::*  **::**:.*:  .*. *.**:**** 
 
PzACS3          NPLG- 124 
CsACS1          NPLGT 125 
PzACS4          NPLG- 124 
                ****  
 

Fig. 14. Alignment of deduced amino acid sequences for partial putative PzACS3, PzACS4 and 
CsACS1. Three out of seven conserved domains of all the ACC synthase isozymes are shaded light 
grey. Also five out of eleven residue amino acids conserved among all the ACC synthases and various 
amino transferases are written in white letters. *= identical amino acid. := two nucleotides out of the 
triplicate amino acid code are identical. .= one nucleotide out of the triplicate amino acid code are 
identical. 
 

The nucleotide sequences of the new PzACS3 and PzACS4 genes were compared with 

sequences from other plant species using CLUSTAL W programme in order to construct a 

Dendrogram (Fig.15). This Dendrogram shows that PzACS3 and PzACS4 are closely related 

to each other as compared to pGAC-1G and pGAC-2G isolated earlier by Wang and Arteca 

(1995). Also, PzACS3 shows a higher homology to STAC1 from Solanum tuberosum. 

Intron 2 Intron 1 PzACS3 

590 bp (374 bp) 

745 bp (374 bp) 
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Likewise PzACS4 is highly homologous to LeACS3 from tomato (Fig.15). Moreover, pGAC-

1G and pGAC-2G have high sequence homology to CsACS1 from Cucumber. 
 

 
 
Fig.15. Dendrogram of various nucleotide sequences of ACC synthase genes from different plant 
species. Gene bank names and their Accession numbers: Pz-ACS3 Pelargonium (new); STAC1 Potato 
(Z27233); Pz-ACS4 Pelargonium (new); LE-ACS3 Tomato (L34171); Ph-ACS2 Petunia (AF049711); 
Vr-ACS7 mung Bean (AF 151961); Rh-ACS5 Rose (AY525069); pGAC-2G Geranium (U17230); 
pGAC-1G Geranium (U17228); Cs-ACS1 Cucumber (AB032937); Nt-ACS1 Tobacco (X65982); Dc-
ACS1 Carnation (Z18952); Ds-ACS2 Orchid (L07883); Os-ACC1 Rice (M96673); Zm-ACS65 Maize 
(AY359571); pAS-ACS Asparagus (AB111528); MA-ACS3 Banana (AB021908); Ps-ACS1 Pea 
(AF016458); Am-ACS3 Snapdragon (AF083816); At-ACS4 Arabidopsis (U23482); Pp-ACS Pear 
(AB015624); Md-ACS1 Apple (U89156). 
 
Expression of ACC synthase and ETR genes in tissues 

 

To determine expression of ethylene biosynthetic genes during developmental phases, one 

step RT-PCR was performed on total RNA from various tissues of ‘Katinka’. PCR-products 

with fragment sizes as predicted from their respective cDNA sequences were amplified using 

gene specific primer pairs. The four ACC synthase and two ETR genes were expressed in 

tissue-specific manner. The mRNAs of PzACS1 were abundantly expressed in stems, leaves, 

flower buds, petals and pistils but were barely detectable in the roots (Fig. 16). Additionally, 

PzACS2 transcripts accumulated to high levels in roots, at moderate levels in the leaves and 

pistils, at low levels in stems and flower buds and are almost undetectable in the petals. 

Interestingly, no visible PzACS3 signals were detected in all tissues examined but only a weak 

band in the roots. Furthermore, PzACS4 mRNAs were strongly expressed in the flower buds, 

moderately in the stems, leaves and petals whereas it was only weakly expressed in pistils and 

were not at all detectable in roots. The PzETR1 transcripts accumulated to very high levels in 

roots and flower buds whereas only very low levels were found in stems, leaves and pistils 
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and were undetectable in petals. Moreover, PzETR2 mRNAs were strongly and constitutively 

expressed in all plant tissues (Fig. 16). 
 

 

Fig.16. Expression of ACC synthase (PzACS1, PzACS2, PzACS3, PzACS4) and ETR (PzETR1 and 

PzETR2) in various tissues of ‘Katinka’. Roots, stems, leaves, flower buds, petals and pistils were 

harvested from mature plants. Petals and pistils tissues were obtained from un-pollinated flowers 

which had slightly opened stigmatic lobes but no signs of petal senescence. For all probes, 500 pg total 

RNA was used in each PCR reaction. β-Actin was used as an internal control and its uniform 

amplification in all tissues indicates uniform loading in each lane. The right size for each gene was 

detected and each PCR reaction was repeated at least three times to reconfirm the results obtained. 

 

Expression of ACC synthase and ETR genes after treatments 

 

One step RT-PCR was used to investigate the expression of target genes in young fully 

expanded leaf of ‘Katinka’ after application of various treatments as described in 2.2. 

Applying 100 µM ABA led to accumulation of high levels of PzACS1 transcripts whereas the 

other treatments resulted in moderate expression levels (Fig. 17). Indeed, this ABA effect was 

confirmed in ‘Ganymed’ leaves and reconfirmed in ‘Katinka’ leaves too (Fig. 18A).  
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Fig.17. RT-PCR analysis of PzACS1, PzACS2, PzACS3, PzACS4, PzETR1 and PzETR2 transcripts 

accumulation in fully expanded leaf of ‘Katinka’ that were untreated (control) or treated with 2 µl l-1 

C2H4, dark storage, 100 µM ABA and 20 µM TDZ for 4 days. For all probes, 500 pg total RNA was 

used in each PCR reaction. β-Actin was used as an internal control and its uniform amplification in all 

treatments indicates uniform loading in each lane. The right size for each gene was detected and each 

PCR reaction was repeated at least three times to reconfirm the results obtained. 

 

Additionally, following dark storage of cuttings for 4 days, the levels of PzACS2 mRNAs 

detected in ‘Katinka’ leaves were slightly increased whereas the rest of treatments induced 

comparable expression bands (Fig. 17). To the contrary, PzACS2 transcripts were not detected 

in ‘Ganymed’ leaves (Fig. 18B). Furthermore, PzACS3 transcripts were not detectable in 

‘Katinka’ leaves (Fig. 16) and consequently its mRNAs were not detectable in the leaves 

irrespective of treatments (Fig. 17). Moreover, PzACS4 and PzETR2 mRNAs were strongly 

and constitutively expressed in ‘Katinka’ leaves for all treatments (Fig. 17). In contrast, 

PzETR1 transcripts were very strongly expressed in ‘Katinka’ leaves in response to 20 µM 

TDZ application whereas the other treatments had more or less equal levels of expression 

(Fig. 17). Likewise treating ‘Ganymed’ leaves with 20 µM TDZ had similar effect (Fig. 18C). 

Lastly, treating ‘Katinka’ leaves with 2 µl l-1 ethylene had no effect on the accumulation of 

transcripts in all the genes examined (Fig. 17). 
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A 

 

B 

 

C 

Fig.18. RT-PCR analysis of PzACS1, PzACS2 and PzETR1 transcripts accumulation in fully expanded 

leaf of ‘Katinka’ and ‘Ganymed’ after they were treated with100 µM ABA, dark storage and 20 µM 

TDZ or untreated (control) for 4 days. For all probes, 500 pg total RNA was used in each PCR 

reaction except for PzETR1 where 1 pg total RNA was used. β-Actin was used as an internal control 

and its uniform amplification indicates uniform loading in each lane. The right size for each gene was 

detected and each PCR reaction was repeated at least three times to reconfirm the results obtained. 
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3.4 Discussion 
 

3.4.1 Methods 

 

DNeasyR Plant Mini Kit used to isolate purified genomic DNA was rapid and efficient. 

Additionally, the advantage of PCR method against other proven methods, stems from its 

high sensitivity since theoretically, it can detect a single DNA molecule. However, in practice 

this high sensitivity is rarely achieved. Also, PCR has the disadvantage of amplifying non-

specific product(s) alongside the target product(s) (Lyons, 1992). This indicates the presence 

of other nucleotide sequences and a possible cause for this non-specific amplification is the 

binding of primers to the DNA matrix that does not exactly match their complementary base 

sequences the so called mispriming. The plasmid vector (pCRR4-TOPOR) is faster (takes 5 

minutes) than the conventional T4 ligase reaction and provides a highly efficient one step 

cloning strategy for the direct insertion of Taq polymerase-amplified PCR products into a 

plasmid vector for sequencing. However, it has the disadvantage of skidding at times.  

 

InvisorbR Spin Plant RNA Mini Kit used to isolate high purity total RNA had the advantage 

of being fast. However, it had some shortcomings as indicated in Section 3.4.7. Also, Qiagen 

one step RT-PCR kit was simple to use, more rapid, highly sensitive, more specific and less 

expensive than northern blot analysis used by other authors, with detection level of ca. 1 pg-2 

µg total RNA. Also, the kit minimised the risk of contamination, as there were neither 

separate reverse transcriptions nor post-amplification steps. It resulted in a highly specific 

amplification and eliminated extension from non-specifically annealed primers and primer-

dimers in the first cycle, thus ensuring highly specific and reproducible PCR. A semi-

quantitative RT-PCR was used to estimate the relative abundance of transcripts in various 

tissues and in response to different treatments with β-Actin (house keeping gene) as internal 

control. This is because β-Actin is expressed at relatively constant rates in most living cells. 

Conversely, β-Actin mRNAs were strongly and constitutively expressed in all tissues 

including leaves of ‘Katinka’ and ‘Ganymed’ after application of different treatments. This 

observation not only showed the integrity of total template RNA used in all RT-PCR reactions 

but also confirmed uniform loading (Figs. 16, 17, 18). However, RT-PCR has a disadvantage 

in that, quantification is difficult because many sources of variation exist, including template 

concentration and amplification efficiency (Dean et al., 2002). For RT-PCR to be accurate 

and quantitative, it must be analyzed in the linear range of amplification before reaction 

components become limiting, which occurs after only 20 cycles. However, RT-PCR with 35 
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cycles was shown to closely resemble northern blot analysis, indicating relatively low 

template amount or amplification efficiency (Dean et al., 2002). 

 

Amplification of putative ACC synthase genes  

 

For one to amplify unknown putative genes using genomic DNA, it is important to construct a 

highly specific degenerate primer from the conserved exon regions of ACC synthase gene 

sequences. Due to the large number of known ACC synthase genes from different plants in 

NCBI gene bank, it was possible to design appropriate degenerate primer pairs using ACC 

synthases from Cucumis sativus L as an example, and the subsequent sequence analysis of the 

amplicons was simple (Rottmann et al., 1991). The specific degenerate primer used made it 

possible to make amplification from less genomic DNA templates. Conversely, each of the 3 

fragments cloned represented a putative ACC synthase gene and the difference in the size of 

amplicons resulted possibly from the difference in their intron numbers and their size (Fig. 

11). Additionally, the degenerate primer pairs exhibited variability in intron size between the 

sense and anti-sense primer binding sites within the ACC synthase gene family (Mibus, 

2003). The rationale behind this approach is to amplify many putative ACC synthase genes 

with only one PCR reaction and it is also possible to apply it within other gene families.  

 

Most of the cloned ACC synthase genes were amplified from cDNA. These cDNAs were 

generated from mRNA, hence there was very little or no difference at all in size among 

members of one gene family (Mibus and Serek, 2004). Therefore, separation and 

differentiation of different ACC synthase genes was difficult. However, cDNA (no introns) 

amplified products were smaller than those from genomic DNA (with introns). The size 

difference in products was used to detect presence of contaminating genomic DNA in the 

template RNA, because the length of genomic PCR products was approximately 100 bp 

longer than cDNA products (Caelers et al., 2004). Moreover, where only mRNA sequence 

was known, a primer annealing site with more than 300-400 bp apart were chosen as in 

PzACS2 (720 bp). It was most likely that fragments of this size from eukaryotic DNA 

contained a splice junction that was used to detect genomic DNA contamination. Another 

disadvantage of using cDNA as template DNA was the need to have prior knowledge about 

the tissue or developmental stage at which the gene is expressed. Furthermore, construction 

and screening of a cDNA or genomic bank with heterologous probes from other species is a 

more effective but both time consuming and cost intensive method (Mibus and Serek, 2004). 
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Consequently, to clone genes of different plant species within a short time, the construction of 

a cDNA or genomic bank of each plant species is not feasible. In general, it is easier to clone 

genes from cDNA than genomic DNA because the number of templates is much higher at the 

mRNA level compared to cDNA. Furthermore, a potential problem with genomic DNA 

occurs if the gene specific primers are based on protein or cDNA alignments and one of the 

primers span an exon-intron junction (Mibus and Serek, 2004).  

 

The isolation of two new partial ACC synthase genes in this study (Fig. 13) indicates presence 

of a multigene family in Pelargonium just like in other plants. In Arabidopsis, many gene 

products encode isoforms of the same polypeptide (The Arabidopsis Genome Initiative, 

2000). The biological significance of multigene families and of ACC synthase gene family in 

particular is unknown. However, it has been postulated that tissue-specific expression of a 

particular ACC synthase isozyme satisfies the biochemical environment of the cells and 

tissues in which each isozyme is expressed (Rottmann et al., 1991). Consequently, this 

concept enhances the physiological fine-tuning of the cell and demands that the enzymatic 

properties of each isozyme be distinct (Graur and Li, 2000). Furthermore, ACC synthase 

polymorphism may reflect the evolution of a family of proteins with different enzymatic 

properties (Km, pI etc.) to effectively utilize S-adenosyl-methionine in different tissues during 

plant growth and development or under different stress conditions (Rottmann et al., 1991). 

Indeed, PzACS3 was only expressed in roots whereas it was not detected in leaves (Fig. 16), 

which supports the views of Rottmann et al. (1991) and seems to hold true for the new 

Pelargonium genes.  

 

3.4.2. Results 

 

Ethylene production 

 

Ethylene elicits different responses in a variety of plant tissues (Abeles et al., 1992). 

Therefore, the ability of a given tissue to perceive ethylene becomes an important aspect of 

plant development. Exogenous application of ethylene inhibited ethylene evolution by 

Pelargonium cuttings ‘Katinka’ (Fig. 10), which are mainly comprised of vegetative tissues 

(leaves and stems). This was expected since Philosoph-Hadas et al. (1985) demonstrated auto-

inhibition of ethylene production in tobacco leaf discs. Vegetative tissues are less sensitive to 

exogenous ethylene application as opposed to floral tissues (Abeles et al., 1992). Moreover, 
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both positive and negative feedback regulation of ethylene biosynthesis have been reported in 

different species (Nakatsuka et al., 1998). For instance in carnation, ethylene production in 

the leaves was slightly inhibited by treatment with ethylene (Henskens et al., 1994). 

 

Various forms of stresses induce ACC and ethylene production in a variety of plant species 

and are thought to be responsible for inducing leaf senescence (Abeles et al., 1992). Dark 

storage, a form of stress increased ethylene evolution in ‘Katinka’, 3 and 4 days after the 

beginning of the experiment (Fig. 10). Additionally, dark storage positively regulated the 

accumulation of PzACS2 transcripts (Fig. 17). This may be responsible for the increased 

ethylene evolution that led to the observed leaf senescence manifest as leaf yellowing (Fig. 2). 

Furthermore, stress-induced ethylene production is typically controlled by accelerating the 

conversion of S-AdoMet to ACC (Kende, 1993). 

 

Applying 100 µM ABA increased ethylene production comparably to dark storage on the 

fourth day (Fig. 10) and up-regulated PzACS1 transcripts in ‘Katinka’ (Fig. 17). Taken 

together, these results indicate that ABA hastens ethylene production by increasing the 

expression of PzACS1. Therefore, it is this ABA-induced ethylene that made the cuttings to 

become chlorotic (Fig. 2). Furthermore, Hanley and Bramlage (1989) confirmed using 

enzyme-linked immunosorbent measurements that higher ABA levels paralleled ethylene 

increase and onset of irreversible wilting in carnation petals. However, while ABA has been 

shown to stimulate ethylene evolution in a number of species, it also inhibits senescence and 

water stress-induced ethylene in others (Riov et al., 1990). 

 

TDZ (20 µM) markedly increased ethylene production throughout the study period (Fig. 10). 

A plausible explanation is that TDZ bound into ethylene receptors, in the same way like 

AHK4 gene (Yamada et al., 2001), thus preventing ethylene from binding to the same 

receptors. This is because AtETR1 is highly homologous to AHK4 gene, which acts as a 

primary cytokinin receptor that directly binds cytokinins including TDZ (Yamada et al., 

2001). Therefore, blocking the ethylene receptors would inhibit the down-regulating action of 

ethylene. Conversely, since cuttings could not detect presence of ethylene, they responded by 

possibly inducing a positive ethylene feedback mechanism leading to observed increase in 

ethylene production. Similarly, enhanced ethylene production in response to MCP application 

was recently reported in Pelargonium (Kadner and Druege, 2004). Furthermore, TDZ 

increased ethylene production in hypocotyl cultures of geranium (Hutchinson et al., 1997), 
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mung bean hypocotyl segments (Suttle, 1984) and suspension cultures (Yip and Yang, 1986). 

Moreover, cytokinins at low doses (0.5-10 µM BA) have been shown to stimulate ethylene 

production in etiolated Arabidopsis seedlings and to induce morphological (triple response) 

changes typical of ethylene (Cary et al., 1995). 

 

Gene expression in tissues  

 

Generally, PzACS1, PzACS2 and PzACS4 were expressed in most of the tissues examined 

except PzACS2, which was not detectable in ‘Ganymed’ leaves (Fig. 18B). Therefore, the 

observed difference in the tissue-specific gene expression pattern from other reports is 

attributable to genotypic differences among the cultivars and different analysis methods used. 

Also, PzETR2 was constitutively expressed. Theses results differ with those of Wang and 

Arteca (1995) in that, PzACS1 was expressed in all tissues except roots in this study while 

Wang and Arteca (1995) using northern hybridization were unable to detect PzACS1 in any 

plant part. Also, Hilioti et al. (2000) supports these findings because they found using 

northern hybridization, specific expression of GAC-1 in stigma and style tissues and observed 

that the abundance of GAC-1 in vegetative tissues (such as leaves, roots and stems) was too 

low to be detected in 30 µg total RNA (Hilioti et al., 2000). Hilioti et al. (2000) attributed the 

observed differences to the fact that GAC-1 expression is difficult to detect in whole pistil 

extracts. This is because it is expressed only in stigma and style, which represent 5% of the 

total fresh weight of pistil. Additionally, PzACS2 mRNAs were expressed in all tissues albeit 

weakly in petals (Fig. 16). Similar results were obtained by Clark et al. (1997) in that GACS2 

was not expressed in leaves as shown in ‘Ganymed’ (Fig. 18) but it was expressed in pistils, 

roots and stems whereas it was barely detectable in petals. However, Wang and Arteca (1995) 

reported that GAC-2 transcripts were expressed to a lesser degree in fully expanded leaves or 

roots but was undetectable in old leaves and floret buds. Moreover, while PhETR1 was 

equally expressed in all tissues (Fig. 16), Dervinis et al. (2000), using northern hybridization 

found highest, lowest and moderate expression in pistils, roots and rest of the examined 

tissues, respectively. PzACS2 transcripts were not expressed in ‘Ganymed’ leaves unlike in 

‘Katinka’, which is a clear evidence for genotypic difference. Moreover, while the other 

authors used northern hybridization method, RT-PCR method used in this study was highly 

sensitive. 
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The distinct tissue-specific gene expression pattern observed among members of ethylene 

biosynthetic pathway families suggests that they play crucial role(s) in these tissues. For 

instance, the new PzACS3 gene was exclusively expressed in a vegetative tissue (root) while 

PzACS1 and PzACS4 were expressed both in vegetative and reproductive tissues but later in 

the development stage. Also, PzETR1 was strongly expressed in roots and flowers buds. In 

contrast, PzACS2 and PzETR2 were expressed throughout all the developmental stages of 

‘Katinka’. Zhou et al. (1996) found mRNAs for an ETR1 homologue in tomato were 

constitutively expressed in both vegetative and reproductive tissues. Additionally, ACC 

synthase enzymes were found to be spatially and temporally regulated and were controlled by 

internal signals (Nakatsuka et al., 1998). This leads to the conclusion that differential 

expression of individual members of the gene family may lead to differential sensitivities of 

tissues to ethylene throughout plant growth and development (Rottmann et al., 1991; 

Yamagami et al., 2003). 

 

The abundant expression of PzACS1 in almost all tissues except roots suggests it plays a vital 

role in ethylene biosynthesis (Wang and Arteca, 1995) that occurs in all cells. After 

biosynthesis, ethylene moves freely throughout the plant tissues (Yang and Hoffman, 1984). 

Additionally, since PzACS1 is strongly expressed in pistils, it seems likely that it plays a role 

in pollination-induced ethylene production. Indeed, the findings of Hilioti et al. (2000) 

support current study in that specific expression of GAC-1 cDNA was detected 2 h after 

pollination in the stigma and style tissues and correlated very well with the peak in ethylene 

production and pattern of pollen tube penetration into the style (Clark et al., 1997). This 

suggests one of the functions of PzACS1 maybe related to preparation for and/ or facilitation 

of pollination. Moreover, the initial signalling should originate with live pollen since neither 

heat-killed pollen nor mock pollination with sand, induced post-pollination responses (Clark 

et al., 1997). Conversely, the degree of response was modulated by pollen load, since 

increasing the number of pollinated lobes increased both ethylene production and petal 

abscission (Hilioti et al., 2000). 

 

An alternative explanation is possible since PzACS1 and PzACS2 transcripts accumulated in 

pistils. Consequently, it seems likely that wounding resulting from excision of pistils from the 

flowers could induce their transcriptional regulation. Ethylene biosynthesis is known to be 

stimulated by wounding, most likely by induction of ACC synthase activity (Watanabe et al., 

2001). Wound-induced ACC synthase genes were differentially expressed in carnation 
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flowers (Park et al., 1992). Furthermore, the stigmatic recognition of pollen and tissue 

damage associated with stigma penetration and pollen tube growth leads to increased ethylene 

production (Abeles et al., 1992). 

 

The fact that PzACS3 transcripts are specifically expressed in the roots of ‘Katinka’ indicates 

that one of its functions could be involvement in the ethylene biosynthesis that takes place in 

the roots of Pelargonium. Indeed, ethylene is involved in adventitious root formation of 

transgenic tomato cuttings (Clark et al., 1999), root hair development and nodulation (Wang 

et al., 2002). Therefore, in plant organs other than roots, other ACC synthase genes may 

function as vital components of ethylene biosynthesis. In this regard, PzACS1 and PzACS4 are 

the best candidates. However, PzACS4 seems the most likely gene because it is expressed in 

several shoot organs (stems, leaves and petals) and its polypeptide sequence is highly 

homologues to that of PzACS3. A similar hypothesis was advanced by Ueguchi et al. (2001b) 

with respect to histidine kinase 4 (AHK4) genes. 

 

Transcripts of PzACS4 were strongly expressed in the flower buds and moderately in the 

petals. Additionally, PzACS1 mRNAs were also abundant in petals. Pollination is known to 

evoke rapid non-autocatalytic ethylene evolution followed by abscission of turgid petals 

(Clark et al., 1997; Hilioti et al., 2000). Therefore, it seems possible that both PzACS4 and 

PzACS1 play a role in ethylene produced at the bases of petals which leads to their abscission. 

Indeed, despite very low ACC oxidase activity, it was shown that pollination induced ACC 

synthase activity at the base of petals (Hilioti et al., 2000). In contrast, low expression of 

PzACS4 transcripts in the pistil implies that it is partially not involved in the pollination non-

autocatalytic ethylene production that occurs specifically in the stigma and style (Hilioti et al., 

2000). 

 

Expression studies revealed that PzETR2 mRNAs were strongly and constitutively expressed 

in all plant tissues. This coupled with distinct expression patterns of ACC synthase genes 

would allow ethylene to be synthesised and perceived in a tissue-specific manner, in order to 

mediate various biological responses. It was observed that during tomato fruit ripening, there 

is up-regulation of NR (Lashbrook et al., 1998) and the same is true for Nt-ERS1 during 

tobacco development (Terajima et al., 2001). Therefore, it seems likely that various ethylene 

biosynthetic genes have been tailored in the course of evolution, so that they are appropriate 
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for the specific metabolic and perception roles they sub-serve in the particular intracellular 

environment of the tissues in which they are found (Yamagami et al., 2003).  

 

Transcripts of PzETR1 accumulated to very high levels in the roots and flower buds (Fig. 16). 

This suggests that PzETR1 is expressed early during root development and it is could be 

involved in making the stem tissues of Pelargonium cuttings to be less sensitive to ethylene. 

This would have negative effect especially during adventitious root formation as previously 

reported in Petunia cuttings (Clark et al., 1999). On the other hand, PzETR1 expression in 

flower buds indicates that it is expressed early during flower development. Also, it is likely 

that PzETR1 could be expressed later during flower development and senescence in at least 

one of flower tissues (sepals, pistils or stamens). The former idea is supported by results of 

Dervinis et al. (2000), whereby accumulation of PzETR1 and PzETR2 mRNAs occurred early 

in pistil development, when detectable amounts of both transcripts were expressed at tight bud 

stage (Dervinis et al., 2000) and the florets were insensitive to exogenous ethylene (Evensen, 

1991). Furthermore, mRNA levels of both PzETR1 and PzETR2 remained constant 

throughout pistil development with a slight increase in post-pollination receptive pistils in 

geranium (Dervinis et al., 2000). This is also consistent with the findings of Lashbrook et al. 

(1998) with tomato LeETR1, LeETR2 and Nr, which did not increase more than three fold 

during floral development. Additionally, genomic southern analysis revealed that both 

PzETR1 and PzETR2 are members of same gene family (Dervinis et al., 2000) but it is not 

known why ethylene receptors exist like so. However, Lashbrook et al. (1998) suggested that 

individual ethylene receptors maintain a distinct functional identity via the capacity to 

respond differentially to developmental cues. 

 

Expression of genes in leaves after treatments 

 

Exogenous ethylene slightly down regulated expression of PzACS1 mRNAs but had no effect 

on accumulation of ETR1 genes investigated. These results indicate that Pelargonium leaves 

do not respond to ethylene by producing more ethylene. However, since exogenous ethylene 

lead to inhibition of ethylene production (Fig. 10), it implies that ethylene possibly inhibited 

the action of ACC oxidase or another as yet to be determined ACC synthase. Similar 

conclusions were independently arrived at by Wang and Arteca, (1995), Clark et al. (1997) 

and Dervinis et al. (2000). Ethylene production in carnation leaves was slightly inhibited by 

ethylene application. Consequently, no ACC synthase transcripts were detected (Henskens et 
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al., 1994). Additionally, LeACS2 and LeACS4 were positively regulated whereas LeACS6 was 

negatively regulated by ethylene synthesised during tomato fruit ripening (Nakatsuka et al., 

1998). Further support for this view comes from Kadner and Druege (2004) whose results 

strongly indicated a negative ethylene biosynthesis feedback control mechanisms in zonal 

Pelargonium cuttings. Therefore, this study suggests that exogenous ethylene does not 

transcriptionally activate the ethylene biosynthetic pathway genes during leaf senescence. 

Moreover, cycloheximide completely blocked pollination-induced (Hilioti et al., 2000) and 

ethylene-induced (Evensen et al., 1993) petal abscission in geranium while ethylene 

production was unaffected suggesting protein synthesis is required for leaf and petal 

abscission (Abeles et al., 1971; Ten Cate et al., 1975). This is evidence that post-

transcriptional control of ethylene biosynthesis occurs primarily at the level of ACC synthase 

(Hilioti et al., 2000). 

 

Applying 100 µM ABA increased PzACS1 transcripts in ‘Katinka’ leaves and correlated 

positively with ethylene production (Fig.10). However, 100 µM ABA had no influence on 

other genes. It follows that ABA was involved in ethylene biosynthesis of Pelargonium 

cuttings through enhancement of PzACS1 activities that led to the observed increase in 

ethylene production. Moreover, it was shown that ABA has a direct effect on ethylene 

biosynthesis in that it stimulated ethylene production in citrus leaf tissues directly through 

enhancement of ACC synthesis (Sagee et al., 1980; Riov et al., 1990) which supports the 

results of this study. Also, Müller et al. (2000b) speculated that ABA either increased rose 

tissues sensitivity to ethylene just as it did in cut carnations (Ronen and Mayak, 1981) or 

participated directly or indirectly in the ethylene signal transduction pathway. 

 

Dark storage slightly increased expression of PzACS2 but had no effect on the rest of studied 

genes. This is an evidence for a stress-induced ethylene evolution since it correlated positively 

with ethylene production (Fig 10) and could have resulted from increased activities of ACC 

synthase enzyme (Woodson et al., 1993). Generally, increases of ACC synthase activity are 

typically associated with increased levels of ACC synthase message (Peck and Kende, 1998b), 

suggesting that the expression of ACC synthase is the major target of regulation (Kende, 

1993). Moreover, expression of ACC synthase correlated positively with ethylene levels in 

senescing Pelargonium cuttings (Fig. 10) and rose flower petals (Wang et al., 2004). 

Therefore, darkness increased PzACS2 transcripts accumulation that led to enhanced ethylene 

production which was responsible for leaf yellowing. Furthermore, storing Pelargonium 
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cuttings shortly after harvest leads to accumulation of wound-ethylene in the packing material 

(Kadner et al., 2000), which promotes senescence as evidenced by leaf chlorosis (Schatz, 

1982; Roberts et al., 1985). 

PzETR1 transcripts but not of other genes were strongly induced by exogenous application of 

20 µM TDZ in Pelargonium leaves. Additionally, PzETR1 mRNAs were strongly expressed 

in ‘Katinka’ roots (Fig. 16). Also, TDZ increased ethylene production in Pelargonium 

cuttings ‘Katinka’ (Fig. 10). In Arabidopsis, there are at least 11 sensor His-kinases (The 

Arabidopsis Genome Initiative 2000). Except for the ETR1-family of ethylene sensors, no 

external stimulus has yet been assigned convincingly for the other His-kinases (Suzuki et al., 

2001). Moreover, the fact that AHK4 is specifically expressed in the roots of Arabidopsis 

(Ueguchi et al., 2001a) and AHK4 cDNA confers cytokinin responsiveness on yeast cells 

(Ueguchi et al., 2001b) strongly supports the idea that AHK4 functions as a primary receptor, 

which directly and specifically binds a variety of natural and synthetic cytokinins including 

TDZ (Ueguchi et al., 2001b; Yamada et al., 2001) causing activation of His-kinase of AHK4 

(Suzuki et al., 2001). Additionally, AHK4 is capable of interacting with Arabidopsis Hpt 

factors (AHPs) through phosphorelay (Suzuki et al., 2001). This is in contrast to the case of 

ETR1, in that binding of ethylene to the receptor is assumed to result in inactivation of its 

kinase activity in Arabidopsis leaves (Hua and Meyerowitz, 1998), Additionally, exogenous 

ethylene induced expression of LeETR3 in tomato leaves (Wilkinson et al., 1995), ERS2 in 

carnation (Shibuya et al., 2002) and RhETR2 and RhETR3 in miniature rose flowers (Müller 

et al., 2000b) whereas endogenous ethylene induced expression of ERS1 in Delphinium 

(Kuroda et al., 2003). Also, exposure of Arabidopsis plants to salt (NaCl) or osmotic stress 

reduced expression of ETR1 (Zhao and Schaller, 2004). However, the foregoing explanation 

seems not tenable in the current study, since ethylene had no effect on induction of both ACC 

synthase and PzETR1 genes in Pelargonium leaves. 

 

Interestingly, AtETR1 is highly homologous to AHK4 gene in its entire amino acid sequences 

in Arabidopsis including N-terminal extensions as well as His-kinase and receiver domains 

(Yamada et al., 2001). Ethylene receptor, AtETR1 contains N-terminal transmembrane 

domains that encompass the ethylene-binding site. The AHK4 gene acts as a primary 

cytokinin receptor that directly binds cytokinins (both natural and synthetic) including TDZ 

and presumably functions as His-kinase since it is involved in His-Asp phosphorelay 

signalling (Yamada et al., 2001). Likewise, AHK4 locus lies within the vascular tissue of 

Arabidopsis roots just as in Pelargonium (Fig. 16). Additionally, both a loss-of-function 
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ahk4-1 mutant and a wooden leg (wol) mutant in Arabidopsis resulted in no visible inhibition 

of root growth, greening or shoot induction of calli (Ueguchi et al., 2001b) and in reduced cell 

number and exclusive xylem differentiation, respectively (Mähönen et al., 2000). 

Furthermore, the root meristems are the sites of cytokinin biosynthesis (Itai and Birnbaum, 

1996). This observation is consistent with a potential cross-talk between ethylene and 

cytokinin signalling (Ciardi and Klee, 2001). Conversely it is speculated that there is a link 

between cytokinin signalling and vascular morphogenesis in Pelargonium roots. Moreover, 

based on genetic and biochemical experiments in tomato (Klee, 2002) and Arabidopsis 

(Tieman et al., 2000), it is generally accepted that most members of ethylene receptors act as 

negative ethylene regulators of downstream responses, that is, in the absence of ethylene, 

receptors actively suppress expression of ethylene responsive genes (Klee, 2002). 

 

Consistent with this idea, a plausible explanation of the observed TDZ effect would be that it 

binds to the membrane-localized ethylene receptor(s) thus blocking basal ethylene from 

binding to the same. Another possibility is that a cross-talk between TDZ and ethylene could 

have taken place via mitogen-activated protein kinase (MAPK) cascade in the ethylene signal 

transduction. This occurred possibly between CTR and EIN2 (in the cytoplasm) or at the level 

of the transcription factors (in the nucleus) (Kieber et al., 1993; Ueguchi et al., 2001b). 

Therefore, since the cuttings could not detect ethylene, they possibly responded by inducing a 

positive feedback mechanism leading to observed increase in ethylene production (Fig. 10). 

Pelargonium cuttings induced mechanisms that led to generation of more ethylene receptors 

(Fig. 17) in an attempt to bind ethylene thus making the leaves to become insensitive to 

ethylene. Furthermore, ethylene sensitivity in plants is dependent on the amount of receptor 

protein present (Klee, 2002), in that more ethylene receptor reduces sensitivity. It is hereby 

concluded that that retardation in the onset of leaf senescence after TDZ application was 

responsible for making the Pelargonium leaves to remain green for a longer time. 
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3.5 Conclusion 
 

Novel partial putative PzACS3 and PzACS4 genes were isolated, characterised and found to 

be expressed in a tissue-specific fashion. Also, the expression of the transcripts of novel genes 

were not influenced by any of the treatments applied suggesting they may be developmentally 

regulated. Moreover, the current study provided evidence, for the first time that PzETR1 is 

strongly induced by TDZ in addition to being developmentally regulated. Since, the same 

level of TDZ retarded the onset of leaf senescence, it seems likely that TDZ reduces 

sensitivity of Pelargonium leaves to ethylene exposure by increasing the amount of ethylene 

receptors. However, the reverse was true for PzETR2 in that it was strongly and constitutively 

expressed in all plant tissues irrespective of developmental stage or treatment applied. 

Additionally, PzACS1 transcripts were developmentally regulated and induced by exogenous 

ABA application and in deed ABA increased ethylene production in Pelargonium leaves. 

Furthermore, transcripts of PzACS2 were developmentally controlled and were also induced 

by the presence of darkness in storage, which is a form of stress, exemplifying an evidence of 

stress-induced ethylene evolution. Since both ethylene biosynthesis and perception contribute 

to the regulation of ethylene response in plants via each plants’ ethylene threshold 

concentration (Wilkinson et al., 1995). These results suggest that the response of 

Pelargonium cuttings to both biotic and abiotic factors in the course of growth and 

development, especially during leaf senescence are modulated by changes in the expression 

levels of ACC synthase and ethylene receptor genes. 
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Summary 
 

The effects of treatments with TDZ, ethylene and ABA or dark storage during leaf senescence 

process were studied to possibly come up with a potential commercial approach for improving 

post harvest quality of Pelargonium cuttings. TDZ delayed the onset of leaf senescence 

because leaves remained green. Additionally, Ferrante et al. (2002a, 2002b) found TDZ 

prevented leaf yellowing in Alstroemeria cut flowers and cut chrysanthemum ‘Regan bianco’ 

by inhibiting chlorophyll degradation. In contrast, ethylene, ABA and dark storage 

accelerated leaf senescence since leaves turned yellow. Promotion of leaf senescence by ABA 

and dark storage was indirectly through increased ethylene production after 4 days (Fig. 10). 

Moreover, ethylene has been shown to induce premature leaf yellowing in Pelargonium as a 

result of accelerated chlorophyll degradation (Purer and Mayak, 1989; Serek et al., 1998). 

 

Ethylene increased rooting proportion of cuttings while TDZ severely inhibited rooting. 

Additionally, ethylene, ABA and dark storage reduced growth of roots. This was shown as 

reduced number of roots per cutting, reduced root length, root water content, root fresh and 

dry weights. Furthermore, applying 4 µl l-1 IBA in rooting solutions induced maximal rooting 

proportion in ‘Ganymed’, increased numbers and length of roots, fresh weight and root dry 

matter (%) accumulation in all cultivars. The fact that 1-MCP (ethylene action inhibitor) 

reduced rooting in Pelargonium cuttings (Serek et al. (1998) support the view that ethylene is 

involved in adventitious rooting. ABA and dark storage reduced growth of roots indirectly 

through increased ethylene production (Fig. 10). Ethylene promotes rooting over a narrow 

range of concentrations (Clark et al., 1999). 

 

Root inhibitory effects of TDZ may partly be attributed to TDZ being a cytokinin, which is 

very stable in Pelargonium leaves as shown by Mok and Mok (1985). The concentration-

dependent effects of ethylene (Ma et al., 1998) and difference in sensitivity of experimental 

plant organs to ethylene at different stages of development (Clark et al., 1999) may account 

for the conflicting rooting results in literature. Moreover, root promoting effects of IBA could 

be via enhanced synthesis of hydrolytic enzymes, which induces hydrolysis of starch and 

other nutrients that are directly involved in initiation of roots and formation of vascular tissue 

(Kracke et al., 1981). Also, auxins have been shown to induce ethylene synthesis in many 

plant species and tissues (Kawase, 1971). Therefore, current results suggest that auxin-

induced ethylene may account for the observed root promoting effect of IBA. Overall, 
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Koukourikou-Petridou and Bangerth, (1997) concluded that adventitious root formation is a 

complex intrinsic balance between auxins and cytokinins. 

 

Two (GAC-1 and GAC-2) members of the putative ethylene ACC synthase gene family were 

isolated in Pelargonium (Wang and Arteca, 1995). In this study, two novel partial putative 

additional members of ACC synthase family were cloned, characterised and designated as 

PzACS3 and PzACS4. These novel ACC synthase genes and other ACC synthase or ethylene 

receptor (ETR1) genes were expressed in a tissue-specific fashion suggesting they have 

different roles in ethylene biosynthesis and signaling. The biological significance of a 

multigene ACC synthase gene family is unknown. However, Rottmann et al., (1991) 

postulated that tissue-specific expression of a particular ACC synthase isozyme satisfies the 

biochemical environment of the cells and tissues in which each isozyme is expressed. 

Additionally, ACC synthase enzymes were found to be spatially and temporally regulated and 

were controlled by internal signals (Nakatsuka et al., 1998). 

 

Gene specific primers for the new, other ACC synthase and ethylene receptor (ETR) genes 

were expressed in a treatment-specific fashion and correlated positively with ethylene 

production by cuttings after 4 days. However, ethylene slightly down regulated the 

accumulation of mRNAs for PzACS1 gene, implying it deactivates this gene during leaf 

senescence. Furthermore, in vegetative tissues, ethylene leads to negative feedback regulation 

of its biosynthesis, which explains observed ethylene evolution inhibitory effects of 2 µl l-1 

ethylene. Also, ABA and dark storage increased PzACS1 and PzACS2 mRNAs, respectively 

which is an evidence for ABA and stress-induced ethylene evolution that possibly resulted 

from increased activities of enzymes ACC synthase (Woodson et al., 1993). For the first time, 

TDZ was shown to strongly induce expression of PzETR1 in the current study. These 

(physiological and molecular) results suggest leaf yellowing in Pelargonium cuttings was due 

to either stress-induced ethylene that occurs after dark storage or ABA treatment and TDZ 

was able to antagonise their deleterious effects, possibly by increasing the amount of ethylene 

receptors via up-regulation of PzETR1 transcripts, thus reducing sensitivity of leaves to 

ethylene with the concomitant beneficial effect of delaying the onset of senescence. Also, the 

yet unidentified role of TDZ in ethylene biosynthesis and perception, possibly as an inhibitor 

of ethylene perception through over-expression of ethylene receptor genes may partly account 

for the difficulty in rooting of TDZ treated that was effectively offset by application of IBA in 

rooting solutions. 
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Appendix 1. The chemical structures of plant growth regulators (a) Thidiazuron, (b) Ethylene, 

(c) Abscisic acid and (d) Indole-3-butyric acid. 
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Appendix 2 
Effects of continued exposure to 0.5, 1 and 2 µl l-1 ethylene for 4 days, dark storage for 4 days, application of ABA at 25, 50 and 100 µM and TDZ at 5, 
10 and 20 µM for 4 days, respectively on leaf chlorophyll content (mg/cm2) of five Pelargonium cultivars. 
 
TREATMENT ‘FIRE’  ‘GANYMED’ ‘GRECO’   ‘KATINKA’   ‘SURFING’ 
   Chlorophyll  Chlorophyll  Chlorophyll   Chlorophyll   Chlorophyll 
   Day 2 Day 4  Day 2  Day4  Day 2 Day 4   Day 2  Day4   Day 2  Day4 
 
Ethylene 
Control       3.704a  3.499a  3.381a  3.282a  4.861a  4.462a   3.361a  3.193a   3.002a  2.816a 
0.5 µl l-1 C2H4       3.017b  2.856b  2.900b  2.895b 3.915b  3.795b  2.833b  2.778b  2.667b  2.178b 
1 µl l-1 C H        2.479c  2.322c  2.539c  2.416c  3.281c  2.847c   2.571c  2.265c   2.369c  1.519c 2 4
2 µl l-1 C H        1.875d  1.341d  1.978d  1.483d 2.487d  1.959d  2.056d  1.469d  1.751d  0.921d 2 4
 
Storage 
Control               2.409a     2.203a    2.906a     1.870a     2.467a 
Stored                1.239b     1.009b    1.453b     1.135b     1.507b 
 
ABA 
Control       3.171a  2.941a  3.101a  2.965a  4.111a  3.951a   2.511a  2.478a   3.301a  3.023a 
25 µM ABA       2.616b  2.453b  2.674b  2.359b 3.286b  3.280b  1.951b  1.731b  2.969b  2.682b 
50 µM ABA       2.167c  2.062c  2.218c  1.841c  2.871c  2.741c   1.716c  1.163c   2.719c  2.392c 
100 µM ABA       1.753d  1.401d  1.789d  1.355d 2.395d  2.051d  1.356d  0.799d  2.246d  1.903d 
 
TDZ 
Control       2.798b  2.165c  3.037b  2.321d 3.398d  3.203d  2.589c  2.166d  3.117c  2.535d 
5 µM TDZ       2.896b  3.486b  3.213b  3.815c 3.828c  4.790c   2.768c  3.424c   3.440b  3.956c 
10 µM TDZ       3.084b  3.887b  3.304b  4.268b 4.269b  5.241b  3.122b  3.797b  3.469b  4.368b 
20 µM TDZ       3.399a  4.491a  3.660a  4.755a  4.979a  5.885a   3.519a  4.328a   3.987a  4.927a 
 
Means separated by LSD (P=0.05). For each cultivar, means followed by with the same letter(s) within days are not significantly different. 
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Appendix 3 
Effects of continued exposure to 0.5, 1 and 2 µl l-1 ethylene for 4 days, dark storage for 4 days, application of ABA at 25, 50 and 100 µM and TDZ at 5, 
10 and 20 µM for 4 days, respectively on leaf chroma of five Pelargonium cultivars. 
 
TREATMENT ‘FIRE’  ‘GANYMED’ ‘GRECO’   ‘KATINKA’   ‘SURFING’ 
      Chroma     Chroma     Chroma      Chroma      Chroma 
   Day 2 Day 4  Day 2  Day4  Day 2 Day 4   Day 2  Day4   Day 2  Day4 
 
Ethylene 
Control       22.941c  25.015c  27.238b  27.973c 18.316c  20.712c  27.566c  28.438b  30.092b  32.748b 
0.5 µl l-1 C2H4       23.458c  25.098c  28.294b 29.860bc 19.048c  20.834c  29.290bc 29.662b  30.679b  35.850b 
1 µl l-1 C H        26.569b  27.604b  29.201ab 30.570b 22.215b  28.109b  29.778ab 31.278b  30.710b  35.897b 2 4
2 µl l-1 C H        29.202a  42.925a  31.665a  39.784a 29.409a  37.008a  31.403a  41.965a  36.723a  49.543a 2 4
 
Storage 
Control                 27.207b     29.184b    29.034b     30.127b     31.508b 
Stored                  42.692a     49.293a    42.143a     42.010a     41.771a 
 
ABA 
Control       24.409b  25.193c  26.636c  26.652d 21.366a  22.089b  26.611c  29.353d  27.942b  28.066b 
25 µM ABA       25.329b  26.313bc 28.101c  29.435c 21.617a  22.174b  29.492b  32.538c  28.428b  28.871b 
50 µM ABA       25.837b  27.581b  29.979b  32.705b 22.262a  23.336b  33.384a  41.381b  29.045b  29.211b 
100 µM ABA       28.218a  34.960a  32.458a  38.793a 23.553a  30.529a  35.325a  49.098a  31.171a  32.456a 
 
TDZ 
Control       27.137a  30.742a  29.396a  31.674a 24.900a  33.033a  32.051a  46.057a  28.714a  29.172a 
5 µM TDZ       25.761b  25.070b  26.989b  24.880b 21.659b  20.209b  27.735b  27.711b  27.899ab 26.544b 
10 µM TDZ       25.380b  23.041c  26.921b  24.761b 21.477b  19.480b  27.681b  27.553b  27.846ab 26.308b 
20 µM TDZ       24.839b  22.586c  26.333b  24.223b 20.688b  19.147b  27.349b  26.571b  27.510b  25.048c 
 
Means separated by LSD (P=0.05). For each cultivar, means followed by the same letter(s) within days are not significantly different. 
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Appendix 4 
Effects of continued exposure to 0.5, 1 and 2 µl l-1 ethylene for 4 days, dark storage for 4 days, application of ABA at 25, 50 and 100 µM and TDZ at 5, 
10 and 20 µM for 4 days, respectively on leaf hue of five Pelargonium cultivars. 
 
TREATMENT ‘FIRE’  ‘GANYMED’ ‘GRECO’   ‘KATINKA’   ‘SURFING’ 
          Hue          Hue         Hue          Hue           Hue 
   Day 2 Day 4  Day 2  Day4  Day 2 Day 4   Day 2  Day4   Day 2  Day4 
 
Ethylene 
Control       -0.893a  -0.915a  -0.932a  -0.944a -0.848a  -0.911a  -0.932a  -0.939a  -0.926a  -0.944a 
0.5 µl l-1 C2H4       -0.897a  -0.927ab  -0.934a  -0.948a -0.873a  -0.911a  -0.941a  -0.942a  -0.941ab -0.986b 
1 µl l-1 C H        -0.927b  -0.941b  -0.947ab -0.951a -0.916b  -0.965b  -0.951a  -0.952a  -0.958b  -0.994b 2 4
2 µl l-1 C H        -0.947c  -1.088c  -0.957b  -1.029b -0.967c  -1.078c  -0.954a  -1.062b  -0.994c  -1.175c 2 4
 
Storage 
Control                -0.922a     -0.939a    -0.938a     -0.933a     -0.964a 
Stored                 -1.058b     -1.095b    -1.092b     -1.032b     -1.061b 
 
ABA 
Control       -0.891a  -0.902a  -0.912a  -0.917a -0.871a  -0.873a  -0.905a  -0.925a  -0.946a  -0.947a 
25 µM ABA       -0.893a  -0.909ab  -0.919a  -0.934a -0.873a  -0.886a  -0.929ab -0.949a  -0.947a  -0.954a 
50 µM ABA       -0.917b  -0.921b  -0.939b  -0.958b -0.881ab -0.897a  -0.952bc -1.027b  -0.953ab -0.957ab 
100 µM ABA       -0.927b  -0.986c  -0.955b  -1.008c -0.899b  -0.958b  -0.975c  -1.117c  -0.958b  -0.972b 
 
TDZ 
Control       -0.922a  -0.962c  -0.946b  -0.978b -0.909b  -0.991b  -0.943c  -1.065b  -0.948c  -0.958b 
5 µM TDZ       -0.921a  -0.916b  -0.933a  -0.915a -0.900ab -0.887a  -0.922b  -0.915a  -0.943bc -0.935a 
10 µM TDZ       -0.918a  -0.909b  -0.930a  -0.915a -0.893ab -0.876a  -0.916ab -0.911a  -0.939ab -0.932a 
20 µM TDZ       -0.917a  -0.893a  -0.928a  -0.909a -0.888a  -0.869a  -0.905a  -0.900a  -0.934a  -0.929a 
 
Means separated by LSD (P=0.05). For each cultivar, means followed by the same letter(s) within days are not significantly different. 



Appendices 
 

0

4

8

12

16

20

24

28

32

36

40

44

0 12 24 36 48 60 72 84 96

Time (hours)

Et
hy

le
ne

 P
ro

du
ct

io
n 

(n
l.l-1

.g
-1

 F
W

)
Control
2µl/l ethylene
Dark
100 µM ABA
20 µM TDZ

a

a

a

a

a
a a

a

c

b

b
b

c

b

b
b

b

b

b

b

b

b

b

b

b

c
c c

d

c

c

b

d
d

cc

b b

bc
bc

 
Appendix 5. Ethylene production in Pelargonium zonale ‘Katinka’ cuttings that were 

untreated (control) or treated with 2 µl l-1 ethylene, dark storage, 100 µM ABA and 20 µM 

TDZ for 4 days. Means separated by LSD (P=0.05). For each cultivar, means followed by the 

same letter(s) within days are not significantly different. 

 
Appendix 6. 

Total RNA concentration from the leaves of Pelargonium zonale cvs ‘Katinka’ and 

‘Ganymed’ after exposing them to various treatments. 

 
SAMPLE 

NO. 
CULTIVAR TREATMENT CONCENTRATION 

(µg/ml) 
CONCENTRATION X 

10 Dilution Factor 
(ng/µl) 

1 ‘Katinka’ Control 12.2703 122.703 
2 ‘Katinka’ 2 µl/l C2H4 13.2723 132.723 
3 ‘Katinka’ Dark Storage 7.9387 79.387 
4 ‘Katinka’ 100 µM ABA 18.8962 188.962 
5 ‘Katinka’ 20 µM TDZ 15.8419 158.419 
6 ‘Ganymed’ Control 29.2207 29.2207 (no dilution) 
7 ‘Ganymed’ 2 µl/l C2H4 19.33 193.3 
8 ‘Ganymed’ Dark Storage 12.1745 121.745 
9 ‘Ganymed’ 100 µM ABA 24.1046 24.1046 (no dilution) 
10 ‘Ganymed’ 20 µM TDZ 20.9152 20.9152 (no dilution) 
Measurements were done using a SmartSpecTM 3000 Spectrophotometer (Biorad, California). 
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(a). ‘Katinka’ leaves. 
 

 

1 2 3 4 5 

 
 

13.3 12.3 18.9 7.9 15.8 5 10 25 50 100 200 (µg/ml)

 
(b). ‘Ganymed’ leaves. 
 

 

1 2 3 4 5

 29.2 19.3 20.924.1 12.2 5 10 25 50 100 200 (µg/ml)
 
Appendix 7. Total RNA concentration by comparing with standard concentrations of λDNA 

from the leaves of Pelargonium zonale (a) ‘Katinka’ and (b) ‘Ganymed’ after exposing them 

to various treatments. Quantification of RNA and detection of presence of DNA in lanes (1) 

control, (2) 2 µl l-1 ethylene, (3) dark storage, (4) 100 µM ABA and (5) 20 µM TDZ was done 

by loading total RNA into a 1% agarose gel and performing flatbed electrophoresis using 

1XTAE buffer. 
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Appendix 8. 
Total RNA concentration from various organs of Pelargonium zonale ‘Katinka’. 

SAMPLE NO. ORGAN CONCENTRATION. 
(µg/ml) 

CONCENTRATION. X 10 
Dilution Factor (ng/µl) 

1 Roots 8.569 85.69 
2 Stems 6.989 69.89 
3 Leaves 6.407 64.07 
4 Buds 56.0398 56.0398 (no dilution) 
5 Petals 11.6996 11.6996 (no dilution) 
6 Pistils 93.2166 93.2166 (no dilution) 
Measurements were done using a SmartSpecTM 3000 Spectrophotometer (Biorad, California). 
 
 
(a) Roots, stems and leaves. 
 

 

Stems LeavesRoots  

6.9 6.4 10 50 100 200 (µg/ml)8.6 

 
(a) Petals, pistils and buds. 

Pistils Petals  Buds 

 93 56 5 10 25 50 100 200 (µg/ml)11  
Appendix 9. Total RNA concentration by comparing with standard concentrations of λDNA 

from various organs of Pelargonium zonale ‘Katinka’. Quantification of RNA and detection 

of presence of DNA in (a) roots, stems or leaves, (b) petals, pistils or buds was done by 

loading total RNA into a 1% agarose gel and performing flatbed electrophoresis using 

1XTAE buffer. 
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Appendix 10. 
Three fragments obtained after amplification of degenerate primer pair ACSd2 using genomic 

DNA of Pelargonium zonale ‘Katinka’. 

GENE NAME GENOMIC DNA (bp) mRNA (bp) REMARKS 
PzACS3 590 374 New partial putative ACC gene 
PzACS4 745 374 New partial putative ACC gene 
PACSD2_8 803 374 Entirely homologous to pGAC-2G 

(Accession No. U17230) 
 
(a). PACSD2_8 genomic DNA 
 
TTCCAAGATTATCACGGGTTGCCAGAGTTCAGATATGTAAGTACATATATAAAATACATACATCAAATCTGTGTACAAAAATT
TAGTTTTGAACGGTGATACTGATATACATATTGGTTTGGTGAACAGGCTGTTGCAAATTTCATGGGAAAGGTGAGAGGAAACA
GAGTAACATTTAACCCAGATCGCATAGTTATGAGTGGAGGAGCAACTGGAGCTCATGAAATGATTGCCTTCTGTTTGGCTGAT
CCTGGCGATGCTTTTCTTGTCCCAACTCCTTATTATCCTGGGTAAGATCATCAAAATTATATAGTAACCTCTCATAACTATCT
TTGACTTGTGCTTCTCTGGCTGCAAAAAAAATCACTAGTATTTTACTATTTTTGATGTCAATACCCTTATTTTTAAGTTCCAG
TGTCACCGTCCCAATCACCTGTTGGATCCTACTAGTATCATTATTGGTGTTGCCATGATACCAAAAATTAGGATTTGCTAAAA
CTATCTCCATCTTGAATTAGACCCAACAACAACCCATCTCTAAAACTTTTCACTGTTGAGACCAGTTAAAAGACTTGAAGAAT
CATTTTATGCTATTTGTACTCGTAAAGATTTTGTCACTTGTGTTGCAGATTTGATAGAGACCTGAGGTGGAGAACTGGTGTGC
AGCTAATTCCTGTAGTCTGTGAAAGTGAGAACAATTTCAGGATCACCCGAAGTGCCTTAGAAGAAGCCTATGAGAGAGCTCAA
GAGGACAACATTAGAGTCAAGGGATTGCTCATAACAAACCCCTCCAATCCCCTCGGCACA 
 
(b). PACSD2_8 mRNA 
 
TTCCAAGATTATCACGGGTTGCCAGAGTTCAGATATGTAAGTACATATATAAAATACATACATCAAATCTGAAACAGAGTAAC
ATTTAACCCAGATCGCATAGTTATGAGTGGAGGAGCAACTGGAGCTCATGAAATGATTGCCTTCTGTTTGGCTGATCCTGGCG
ATGCTTTTCTTGTCCCAACTCCTTATTATCCTGGATTTGATAGAGACCTGAGGTGGAGAACTGGTGTGCAGCTAATTCCTGTA
GTCTGTGAAAGTGAGAACAATTTCAGGATCACCCGAAGTGCCTTAGAAGAAGCCTATGAGAGAGCTCAAGAGGACAACATTAG
AGTCAAGGGATTGCTCATAACAAACCCCTCCAATCCCCTCGGCACA 
 
(c).PzACS2 Amino acids (126) 
 
FQDYHGLPEFRYVSTYIKYIHQIZNRVTFNPDRIVMSGGATGAHEMIAFCLADPGDAFLVPTPYYPGFDRDLRWRTGVQLIPV
VCESENNFRITRSALEEAYERAQEDNIRVKGLLITNPSNPLGT 
 
(d) PzACS2 amino acid sequence compared to those of CsACS1 
 
PzACS2          FQDYHGLPEFRYVSTYIKYIHQIZ-NRVTFNPDRIVMSGGATGAHEMIAFCLADPGDAFL 59 
CsACS1_         FQDYHGLPAFK--KALVEFMAEIRGNKVTFEANNIVLTAGATSANETLMFCLAEAGDAFL 58 
                ******** *:  .: :::: :*  *:***:.:.**::.***.*:* : ****:.***** 
 
PzACS2          VPTPYYPGFDRDLRWRTGVQLIPVVCESENNFRITRSALEEAYERAQEDNIRVKGLLITN 119 
CsACS1_         LPTPYYPGFDRDLKWRTGVEIVPIHCTSSNGFQVTQPALEQAYQEAQARNLRVKGVLVTN 118 
                :************:*****:::*: * *.*.*::*:.***:**:.**  *:****:*:** 
 
PzACS2          PSNPLGT 126 
CsACS1_         PSNPLGT 125 
                ******* 
 

Appendix 11. Sequence analysis of Pelargonium zonale ‘Katinka’ 803 bp genomic DNA 

fragment. (a) nucleotide sequence, (b) mRNA sequence, (c) deduced amino acid sequence (d) 

homology comparison with CsACS1 (AB032937) sequence using CLUSTAL W programme.  

*= identical amino acid. Border between intron and exon sequence was detected with splicing 

specific sequence GT and AG, respectively. := two nucleotides out of the triplicate amino 

acid code are identical. .= one nucleotide out of the triplicate amino acid code are identical. 
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(a). β-Actin (PoAc97, X55751), DNA 
 
GTCGACATACTATTATTCAATTTATCTGCGGCCTTTACTTTGTCATCTGTGCAAAGAGAGAATATATTTCCCTGA
AAACTGAAAAAATAGAGGTTCGAAGTAATAGTAACCTTTGACTGAAGGAATAGTATATGAACCTCTCTTTCCCAT
AAGGTGCCTTCTTTTATGTGGGACTTTATGTGTTCAGCTTATTTAAACTTGTTTGTTATTTACAAATAGCGAAAA
CTTGTATAAGGAATCAAGATATCAGTATCAGATGGTAATTTTTTGGACATATACATTTCTTACTGAGGTTTCGTT
TTTCAATGCAGGAAATAGCATAAAATGGCAGACGGAGAGGATATTCAGCCCCTTGTCTGTGACAATGGAACTGGA
ATGGTCAAGGTAAGCTCAAGTGTTTTGTACTACAGCAGAGTTGGCCTGCCATTTTTTACTGATGCTTATTACCTT
GTTGCCCATTCTGTTTACAAAATTAAGAGATTCTTATATTGGTTTATTATCTAGGCTGGGTTTGCTGGAGATGAT
GCTCCACGAGCTGTATTTCCTAGTATTGTTGGCCGTCCCCGCCATAGTGGTGTGATGGTGGGTATGGGTCAAAAA
GACGCCTATGTGGGAGATGAAGCTCAATCGAAGAGAGGTATTTTAACTCTTAAATACCCAATTGAACACGGAATT
GTCAGCAATTGGGATGATATGGAGAAGATATGGCATCATACTTTCTACAATGAGCTTCGTGTTGCCCCTGAGGAG
CATCCTGTCCTCCTAACTGAAGCCCCTCTTAACCCCAAGGCTAATCGTGAAAAGATGACCCAGATTATGTTTGAG
ACTTTCAATACCCCAGCTATGTATGTTGCTATTCAGGCTGTACTCTCACTGTATGCCAGTGGTCGTACCACCGGT
AAGAAAATTTTCATTCTTTATTAGCATAATTATTTTATATGACTGACATCTCTCAAGTTTCTTGATGCTTCTACC
ATGTAAAGAGCTTGCACTTATATGATGCTTTGTGGATATGATTACTTATAAGTTATAACCTTCTAATGTCGACAT
GGTTGTTATCAATTGAGTTATTACTTCTAATTCTTTTTCTTCTCCACAGGTATTGTGTTGGACTCTGGTGATGGT
GTCAGCCACACTGTCCCAATTTATGAAGGGTATGCCCTTCCACATGCCATTCTCCGTCTTGACTTGGCGGGTCGT
GACCTCACTGATAGTTTGATGAAGATCCTCACCGAGCGTGGTTACTCGTTCACCACCTCAGCTGAGAGAGAAATT
GTCAGGGACGTGAAAGAAAAGCTCGCTTACATAGCTCTTGACTATGAACAGGAACTTGAGACTTCAAAGACCAGC
TCTTCTGTTGAGAAGAGCTATGAGCTCCCAGATGGGCAGGTGATCACCATTGGTGCTGAGCGTTTCCGGTGTCCT
GAGGTCCTTTTCCAACCTTCAATGATTGGAATGGAAGCTGCAGGAATCCACGAGACTACATACAACTCTATCATG
AAATGTGATGTGGATATTAGAAAAGATCTTTATGGAAACATTGTGCTCAGTGGTGGTACTACCATGTTCCCTGGT
ATTGCTGATAGAATGAGCAAAGAAATTACTGCATTGGCTCCTAGCAGCATGAAGATTAAGGTGGTCGCTCCACCA
GAGAGGAAATACAGTGTCTGGATTGGAGGCTCTATCTTGGCTTCCCTCAGCACCTTCCAGCAGGTCTCGTCGCCC
CTTCCCCTTCCCCCTCCCTCCTAATAATTATAAGTTTGCTTTTTTTCGGTGTCTATTGTACTTCGAAGCTTGACA
GTTACTGACGGTCTTTTCTGCTTCTCTTATTTTCTGTAGATGTGGATTGCAAAGGCAGAGTATGACGAATCTGGT
CCTTCTATTGTCCACAGGAAGTGCTTCTAATTTTTCCAAGATTGACAATGTTGGTGAAAGGAAAATACTTCTTAT
TTCCTACTGGATCAGAAATGCAATTGCAGTGTTATATTCTAGCTTTATTTTCTGTATTTTTGTTCTCATGCTGGA
TTGAAGATATTGAGAGGGCAGAGTTGATTGTTGGGTTATGTTAATTCTTTTATTTCTATTGACTTTTTCTACTCT
TCCGTTATTCTTCCTTTTTCTGTGGCCCCTCCCAACCCCATTTGAGGTAACTGAAGATTGGTATAAAAACATATT
CGCCTCACGGTAAATTTATGTATTTTTTCACATCATTAAATCATTTCACTATGGTAAGTTAAGTTTGTTCGGTGT
AGACACTTGTATTTACTATGAAAATGCTTTAACTTAGGCAAGAATCTTATTTATGGTTGATTAGTGATTAAGGCA
TGTTAATTGTGATGGGTACCATGATTAATCATAGCAATTATTTAAACCTTGTTGAATCAAAGTAGCTTGGCCGAA
GATCCTAGAACTTAAATAAAAGGAAAGAATTC 
 
 
(b). PzACS1 (pGAC-1, U17299), mRNA 
 
TATCACTACTCTCGCTTCTGAGTGCCTAATTATTTTTGTCCAAGCTCTCAGTACGTACGTGTTGTACGTGTTTAC
ATAGATGGAGAACAAGAGCAAACAGCTTCTGTCAAAGATTGCAACCAACGACGGACACGGCGAGAACTCCCCATA
TTTCGATGGTTGGAAGGCTTATGACCGTGATCCGTTCCATCCGTCTCAGAATCCTAACGGTGTTATCCAGATGGG
TTTAGCTGAAAATCAGCTTTCATCTGACTTGATTGAAGATTGGGTGAGGTCCAACCCAGAAGCCTCAATCTGCAC
TCTTGAGGGAGTTGGTAAGTTCAAGGACGTAGCTAACTTTCAGGACTACCATGGCCTGCTGGAGTTCAGGCACGC
CGTGGCTAAATTTATGAGCAGAGGAAGGGGCGGGAAGGTCACATTTGATCCCGACCGTGTCGTCATGAGCGGCGG
AGCCACCGGAGCCAACGAGCTCATCGTCTTCTGTTTGGCCAATCCCGGCGACGCTTTCCTTCTCCCATCTCCTTA
TTATCCAGCAAACGACCGTGACTTGCAGTGGCGAACCGGAGCTCAGATCATTCCGGTGCACTGCAACAGCTCCAA
CGGTTTCAAGATAACCAGAGAGGCACTAGAAAGATCATACGCACAAGCACAAGAAAGCAACATAAACGTAAAAGG
CGTGCTCTTAACCAACCCATCGAACCCTCTAGGCACAATTCTGGACCGCGACACTCTCAAGAGCATCGTCAGCTT
CGTCACCGACAACAACATCCACCTAGTCATCGACGAAATCTACGCCGCCACCGTTTTCGTTGCCCCGGAGTTCGT
AAGCGTCTCCGAAATCCTCCAAGAAATGGACGACACCACGTGCAACCCCGACCTCATCCACATCGTGTACAGCCT
GTCCAAGGACTTGGGCATGCCCGGGTTCCGCGTCGGGATCGTGTACTCATTCAACGACGACGTCGTATCCTGCGC
ACGGAAGATGTCGAGCTTCGGGTTGGTGTCGACCCAGACGCAGCACCTTCTCGCAGCGATGCTATCCGACGACGT
TTTCGTGGAGCGGTTCCTCGCGGAGCGGAGGCGGTTGGGGAGGAGGCACGGCGTGTTCACGAAAGGGCTCGAGGA
GTTGGGGATTGGGTGTTTAAAGAGCAACGCGGGGCTCTACTTCTGGATGGATTTGCGGAAGCTTCTAGAAGAAGA
GACGTTTGAGGCGGAGATGGTGCTGTGGAAGGTGATTATTAATGAGGTGAAGCTAAACGTGTCTCCGGGGTCGTC
GTTTCATTGCGTGGAGCCGGGTTGGTTTAGGGTTTGCTTTGCCAACATGGACGACGAGACGGTCCACGTGGCGCT
GAAGAGGATCAGGGCGTTTGTGAGGAAGAAGGAGGTGGGTCCGGTGAAGAGGAAGAGGTTCATGGACAACCTTAA
CCTCAGGCTGAGCTTCTCGTCGCTAAGGTACGATGAGAGTGTGATGTTGTCGCCGCACATAATGGGTCCACGCAC
TCGCCGCTTGTTCGTGCGAGAACATAATGAGCATGCACGTTTTTATTTGCTACTGTTAGTAATTAACTAATTAAT
TGTTATTTGATTGTGTGCTGAATGTTGGATTCTTTCTTTGTAGAAGAGAAGCTATAGGAGATGTTTTTAACCAAT
TACCGTAGATATATATGCAGTGGAATTAAGAAAAATAGAGGTTAAATATTAATTCCATGCATATATATGTAGGAA
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GGAATTGGTACATATTTTAGGGTTTGCTGATGTTTTCTTTCATCATGAATTGGTACATATTTATGATGTTCAAGG
CTCCAAGTGATGGATACATGGAGGATTCATTTGGATGCATGCCTTGCAAGAGTCAGCAATCTTTGTTAATTAGTG
TATGGTTTGTGATAATAAAGATGCAAAATTCTGTGTTGTTTTA 
 
 
(c). PzACS2 (GACS2, U88971), mRNA 
 
TTCACAGCACAGCTCTTTAAGCAACCATCATCATCTTTTGCATATTAATTCTGAGGATTTTCTTTGAGCAAAACA
ACATCGATCAAAAATGGTGAACATGTCCTCAACAACTAACCAAAGAACATTGTTATCTAAGATGGCAACTGGAGA
TGGACATGGCGAAAACTCACCTTACTTTGATGGCTGGAAAGCTTACGACAACAATCCTTTCCATCTCACCCAAAA
CCCTCAAGGTGTCATCCAGATGGGCCTCGCAGAAAATCAGCTTTCTTTCGAGTTGATTGAGCAATGGGTCCTTAA
CAACCCACAAGCCTCCATTTGCACAGCACAAGGTCTGCAAGAATTCAAGGACACTGCAATCTTTCAAGATTACCA
TGGCTTGCCAGAGTTCAGATATGCTGTTGCAAATTTCATGGGAAAGGTGAGAGGAAACAGAGTAACATTTAACCC
AGATCGCATAGTTATGAGTGGAGGAGCAACTGGAGCTCATGAAATGATTGCCTTCTGTTTGGCTGATCCTGGCGA
TGCTTTTCTTGTCCCAACTCCTTATTATCCTGGATTTGATAGAGACCTGAGGTGGAGAACTGGTGTGCAGCTAAT
TCCTGTAGTCTGTGAAAGTGAAAACAATTTCAGGATCACCCGAAGTGCCTTAGAAGAAGCCTATGAGAGAGCTCA
AGAGGACAACATTAGAGTCAAGGGATTGCTCATAACAAACCCATCAAACCCACTAGGAACTATCCTGGACAGAGA
GACACTAGTCAGTCTAGTGAGCTTCATCAATGAAAAGAACATTCACTTGGTCTGTGATGAAATCTACGCCGCCAC
AGTCTTCTCTCAGCCCGCTTTCGTTAGCATTGCTGAGGTTATCGAGCAAGAGAACGTTTCGTGCAACCGCGACCT
CATCCACATTGTCTACAGCCTGTCCAAGGACATGGGCTTCCCTGGCTTCAGGGTGGGGATTGTCTACTCCTACAA
TGACGCAGTTGTGAATTGTGCGCGAAAGATGTCAAGTTTCGGCCTTGTATCCACACAAACTCAGCACCTAATCGC
ATCAATGCTCTCGGACGATGAATTCGTGGACACATTCATCGTGGAGAGCGCGAAGAGGCTAGCGAGAAGGTACAC
AACCTTCACAAGAGGGCTTGCACAAGTGAACATTGGATGCCTAAAGAGCAATGGGGGGTTATTCATATGGATGGA
CTTGAGGAGGCTTCTCAAGGAGAAGACTTTCGAGGCGGAGATGGCTCTGTGGAGAGTGATAATCAATGAAGTGAA
GCTAAATGTGTCGCCAGGGGCGTCGTTCCATTGCTCGGAGCCAGGGTGGTTTAGAGTGTGCTTTGCCAACATGGA
TGACTTGACGATGCAGGTGGCTCTGAGGAGGATCATAACATTTGCACTTCAGAACAAGGAAGCTGCGGTTTTGCC
TGCAATCAAGAGACAGTGTTGGCAAAACAACCTTGGAAGGCTCAGCTTGTCTTTCAGGAGATTTGATGATTTCAC
GATGTCTCCAATGTCCCCTCACTCCCCAATACAATCACCACTTGTGAGAGCCACTTAGAAACACATGAATAATAG
AGAATAACGGGCGATGCGGCCGCCAAAAATAGGTTGATCTATGTATGCATTAACGTTTTTAGTTAATCTGTGTTT
ATATGTATAACAAGAAGGAACAAAATGTATTCTTTCTGTATAAATAACCCAAACTTAGAAGATGCTTGCTGTGCA
TCCTTCTGGGAAAAAAAAAAAAAAAAAAAAAA 
 
 
(d). PzACS3 (new), DNA, Partial cds 
 
GTTCCAAGATTACCACGGGTTGCCTGCATTCAAACAAGTAAGCACTGACACATAAAACGTGTGCACTTTGACTGA
TTTAAAAAAAAAATGTACATTTTCTAACGATATTGTACTTTTCAGGCATTGGTCGATTTTATGTCCCAAATAAGA
GGAAACAAAGTGACATTCGACCCGAGCAAGCTAGTCCTCACCGCGGGTGCCACCTCAGCCAACGAGGCTCTCATG
TTCTGCCTGGCGGATCCCGGCGAAGCCTTCCTCCTCCCCACGCCGTACTATCCAGGGTACGTATCTTTTTACGTA
CTTTTCATGTTAACAACACTATCAAGTCACATGCCAGAAACTTTATTCTAAAGAATTTTAAAAATGTACTATGTT
AACACGTCACTGATCATACTTTTGAATATTTTTCCACAGATTTGACCGAGACCTCAAGTGGCGAACTGGAGCAGA
GATCGTGCCGATCCACTGCACGAGTTCAAACGGATTTCAAATCACCGAATCGGCCCTCGAAGAAGCCTACAATCA
AGCCCGAAAACAGAACCTGAAAGTGAAGGGCGTGCTCGTGACCAACCCCTCCAATCCCCTCGGCAC 
 
 
(e). PzACS4 (new), DNA, Partial cds 
TTTTCCAAGATTATCACGGGTTGCCTGCTTTTAAGAACGTACGTACGTGCCATTTAATTATTTTATTGATCGACT
ATATATTTCCACAATAATTTGAAAACGCGTCTACACGTTATATATATGGGATATATAATGAGTGGATGTTGCGTA
GTTGTTTATATAATTGACATCAAACTGAGGTAGCTAGGTTGGAATGTACTTATGCAGGAAATGGTGGAGTTCTTG
TCTGCACTAAGAGGGAAGAAAGTGAAATTTGATCCAAACAACCTTGTACTCACTGCTGGTTCAACCTCAGCCAAT
GAGTCCCTCGTGTTTTGTCTAGCTCAACCTGGTGATGCTTTCCTTCTTCCCACTCCTTACTATCCCGGGTAATCA
TTTTACATATGGTCACAATTTAAAGTAGCCTTTTGATTTTAAGTTTTGGTTTTATGTGAATCACATTCAACAATG
TTATTTCCGTTATTTTTTCACATAAAACATTTTCATAATCACACTCTATTTACTGTTTTTAAGTAGTCCACATCT
CAATATACCTTTCATTCCTCACGTGTTTATTTGTGTGTGAGACAGGTTTGATAGAGATCTCAAATGGCGAACCGG
AGCTGAAATCGTTCCCATCCATTGTTCGAGCTCTAACAATTTCCGAATCACTCCTTGTGCGCTACAAGAAGCTTA
CGAGCGAGCTCAAAAACTAGGCCTAAACCCGAAAGCAGTACTGATCACCAACCCCTCCAACCCCCTCGGCAC 
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(f). PzETR1 (PhETR1, AF141928), mRNA 
 
CTCTCTTAATCGAATCGAAGGGAAGAAGAAGAATCAGATTGATCTTCCGGAGGTTTTGGTGTGAGCCTCGCGTGG
CTCACTCAGTCAAATAGCCATAGATGATCGCTGAATTGCTGAGAATTCTCGTCCCTTGATTGAAAATTAAGTAAT
GCTTAAGAGGAAAAATTGACTGATTCTGTTCAATTCAACGGCAATGGAGGCTTGCAATTGTTTTGAGCCACAATG
GCCGGCTGATGACCTTTTAATGAAATACCAATATATATCAGATTTTTTTATCGCGGTTGCTTACTTCTCAATCCC
TTTAGAGCTGATCTACTTCGTTAAAAAATCGGCAGTGTTTCCATATAAGTGGGTCCTTGTGCAGTTTGGTGCTTT
CATAGTTTTGTGTGGGGCAACACATCTTATTAACTTATGGACTTTTAACTTGCATACAAGAACTGTGGAAATAGT
AATGACCACCGCAAAGCTTATGACTGCTGCAGTCTCATGTGTGACTGCCCTTATGCTAGTTCACATTATTCCTGA
TCTGTTGAGTGTTAAGACTAGAGAACTATTTTTGAAAAACAAGGCTGCAGAGCTTGATAGAGAAATGGGTCTGAT
TCGCACACAGGAAGAGACTGGTCGACATGTTAGGATGCTGACTCATGAAATCAGAAGCACACTTGATAGACATAC
TATACTAAAGACCACTCTTGTTGAGCTGGGTAGAACTTTGGGATTGGAAGAATGCGCCTTGTGGATGCCAACACG
GACTGGTTTAGAGCTTCAACTTTCACATACTCTTCGTCAACAGAATCCAGTGGGATATACAGTACCCATCCATCT
TCCTGTGCTTAATCAGGTTTTTAGTAGCAACCGGGCAATAAAAATATCACCAAATTCCCCTATAGCAAGGTTACG
ACCTCTTGCAGGAAAATACGTACCTGGAGAAGTTGTTGCTGTTCGGGTCCCGCTTTTACATCTTTCCAATTTCCA
AATCAATGACTGGCCTGAACTTTCAACAAAACGTTATGCTATGATGGTTTTGATGCTTCCATCGGATAGTGCAAG
GCAATGGCATGTCCACGAATTGGAGCTGGTGGAAGTAGTAGCTGATCAGGTAGCAGTAGCACTTTCACATGCTGC
TATATTAGAAGAGTCGATGAGGGCAAGGGATCTTCTTATGGAGCAGAATGTGGCACTTGACATGGCCAGGAGAGA
AGCAGAAACAGCAATTCGTGCTCGCAATGACTTCTTGGCTGTTATGAACCATGAGATGAGAACTCCTATGCATGC
AATAATTGCACTTTCTTCCTTACTACAGGAAACTGATCTGACATCTGAGCAGCGCCTGATGGTGGAAACTATATT
AAAAAGCAGTAACCTTTTGGCTACTCTTATAAATGATGTGTTAGATCTGTCAAGGCTTGAAGATGGGAGTCTTCA
ACTGGACATTGCAACTTTTAACCTTCATGCTGTATTCAGACAGGTTTTTAACTTAATCAAGCCTATTGCATCTGT
CAAGAAGTTGTTTATCACATTAAATGTGTCCCCGGATTTGCCAGAGTATGTCATTGGTGATGAAAAACGACTTGT
TCAGATAATGCTAAATGTCGTGGGTAATGCTGTAAAGTTCTCAAAAGAGGGTATTATCTCAGTAACTGCTTTTGT
TGCAAAATCAGAATCTGTAAGAGATCCTCGTGCTCCTGACTTCTTTCCAGTATCAAGCGACAATCAGTTTTACAT
GCGTGTACAGGTAAAGGATTCAGGATCGGGAATTAACCCCCAAGATATGCCCAAGCTGTTCACCAAATTTGCACA
ATCTCAACCAGTAGCAACTAAAAACTCTGGTGGCAGTGGACTTGGATTAGCTATCAGTAAGAGGTTCGTAAATCT
TATGGATGGACACATTTGGATTGATAGTGAAGGCCCCAGTAAAGGATGCACTGTTACTTTTGTTGTAAAACTTGG
AATTCCGGAGGGATCAAATGAACCTAAGCTACCTTTGATGCCTAAAGTTTCAGCGAATAACAGTCAGACAGACTT
TCCAGGGCTCAAAGTTCTTCTTATGGATGAAAATGGCATTAGCCGGATGGTGACAAAAGGACTTCTTATGCACTT
GGGATGTGACGTGACAAGTGTAAGCTCCTCCGAAGAGTGCTTGCGCATGGTTTCTCAGGATCACAAGGTGGTTTT
CATGGACGTCCGCGTGCCTGGCTTAGATGGTCACGAACTTGCTGTTCGTATTCACGAAAAATTCATGAAGCGCCA
CGAGAGGCCGCTTATAGTAGCGTTGACCAGCAACGCAGACAAGGTAACCAAAGAAAACTGCTTGAGAGTCGGCAT
GGAAGGTGTTATCCTGAAACCAGTTTCCGTTGACAAAATGAGAAACGTCTTGTCCAAACTTTTAGAGCATCGTAT
TCTTTTCGAGGCCTAAAACATTGTGATGAAAAGAATGGATAAGCTGCTCATTTGTATATAATACCATTTTGCTTA
GAAGAAATCGGCGAAAAAGTATCAGATCATGCTGAAAGGAACTTGAGCATAGCTTATGCCTTCATGTCATAAAAC
TATAGAGAGATAAATACATTGTCAAGCTTTTGGAGATCTTAAAAACCAATAATAGGTCTTTTATGCATAAATTTT
GCTTGTTTTGGGTTTTAAAAA 
 
(g).PzETR2 (PhETR2, AF141929), mRNA 
 
AAAAAGTAGCAGATCTTCATAAGGATTGGGTGTGGGTCTCTCGTGGCTCTCTGACACAGAAAGCCATAGCTGATA
GCTCCTAATCTCTCAAGCTCTTATTCTCTCTCTACATCGCTTCTGCAGAAGCAAGGTTTGCATAAGAGGAAGATT
TGACTAATTTGATTCAATTATATTGGGATGGAGTCTTGCAATTGCATTGAGCCACAATGGCCTGCCGATGAGTTA
TTAATGAAATATCAGTATATTTCTGATTTCTTTATCGCAATTGCATACTTCTCCATCCCTTTAGAGTTGATCTAC
TTCGTAAAGAAATCTGCTGTGTTTCCCTACCGATGGGTCCTAGTTCAGTTTGGTGCTTTCATAGTTTTGTGCGGG
GCTACACATCTTATTAACTTGTGGACTTTTAACATGCATTCAAAAACTGTGGAAATAGTAATGACCACCGCAAAG
ATTATGACAGCTGTCGTGTCATGTGCTACCGCTCTTATGCTGGTTCACATAATTCCTGATCTGTTGAGTGTTAAG
ACTAGAGAATTGTTTTTGAAAAACAAGGCTGCAGAGCTTGATAGAGAAATGGGTCTGATCCGTACTCAAGAAGAG
ACTGGTCGACATGTAAGGATGCTGACTCATGAGATCAGAAGCACTCTCGATAGACACACTATATTGAAGACCACT
CTTGTTGAACTGGGTAGAACTTTGGCATTGGAAGAATGTGCCTTGTGGATGCCAACGCGTACCGGTTTAGAGCTT
CAACTTTCATATACTCTTCGACAACAGAATCCAGTTGGATTTACTGTACCCATCCATCTTCCCGTGATTAATCAA
GTGTTCAGTAGCAACCATGCGATAAAAATATCACCAAATTCCCCTATAGCTCGACTAAGACCTATTGCAGGGAAA
TACATGCCCGGGGAGGTTGTTGGTGTTCGAGTCCCTCTTTTACATCTCTCCAATTTCCAAATCAATGACTGGCCA
GAACTCTCAACAAAACGATATGCTTTGATGGTTTTGATGCTTCCATCAGATAGTGCAAGACAGTGGCATGTCCAT
GAGTTGGAATTGGTTGAAGTTGTAGCTGACCAGGTGGCAGTTGCTCTTTCACATGCTGCTATTTTAGAAGAGTCG
ATGAGGGCAAGGGACCTTCTCATGGAGCAAAATGTTGCACTTGACATGGCCAGGAGAGAAGCAGAAACAGCAATT
CGTGCTCGCAATGATTTCTTGGCTGTCATGAACCATGAGATGAGAACTCCCATGCATGCGATTATTGCACTTTCT
TCATTACTACAGGAAACTGAGCTGACACCCGAGCAGCGCCTGATGGTGGAAACTGTATTGAAAAGTAGCAACCTT
TTGGCTACTCTTATAAATGACGTGTTGGATCTCTCCAGGCTAGAAGATGGGAGCCTTCAACTTGACATTGGAACT
TTTAATCTCCATGCTTTACTCCGAGAGGTTCATAACTTAATCAAGCCTATTGCATCTGTCAAGAAGCTGTGCATA
TCATTGAATGTAGCTACCGATCTGCCCGAGTATGCCGTTGGTGATGAGAAGCGGCTGGTGCAGATAATTCTGAAT
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GTGGTTGGCAATGCTGTGAAGTTCTCAAAAGAGGGTAATATCTCAATAACTGCTTTCGTTGCAAAGTCTGAATCT
TTAAGAGATCCTCGAGCTCCGGATTTCTTTCCAATATGTGGTGAAAATCAGTTTTACTTGCGAGTCCAGGTAAAA
GATTCGGGATTGGGAATTAACCCTCAAGATATTCCCAGGCTGTTCACCAAATTTGCACAAACCCAACCGGTGGCG
ACGAAAAATTCTGGTGGCAGTGGACTTGGCCTTGCCATCTGTAAGAGGTTTGTGAATCTTATGGAGGGCCATATC
TGGATTGATAGTGAAGGCCCCGGCAAAGGATGCACTGCTACTTTTGTAGTAAAACTCGGGATTCCAGAACGATCT
AGCGAACCTAAGCTGCTGTTGATGCCTAAAGTGCCAGCAAATCACGGGCAGACAAATTTTTCAGGGCTCAAAGTT
CTTTTGCTGGATGATAACGGCGTAAGCAGGGCAGTGACAAGAGGACTTCTTGCGCACCTGGGATGTGATGTGACG
ACTGTAAGCTCCAGTGACGAGTTGTTGCGGGTCGTCTCTCAGGACTACAAGGTGGTCTTCATGGATGTCTGCATG
CCCGAAGTGGACGGTTTTGAAATTGCTGTCCGCATCCATGAAAAGTTCATGACGCGCCACGAGAGACCCCTCATA
GTGGCATTGACTGGCAACATAGACCAGGTAACCAAGGACAACTGCACGAGAGTTGGAATGGAAGGCGTTGTGTTG
AAACCTGTTTCAATCGATAAAATGCGGAATGTTTTGTCTAACCTTTTAGAGCACCGTGTGCTATTTGAGGCCATT
TAGGCGGATTTGAAGCTCCTGATCATTTTGTGCATACCATAACTGCATTGAAGAAAATGGAGCATTGGTGAAAAT
AACGGACCATACCGAAAGCATCTAAGCAAAGGTGATGCCTTTCTAGTTAGGACGGGAGAGAGAGAAAATGGCGGG
GGTATTTTGCCATAATACTGCTTTAGGAGACAAGTTGGGTGTTATTGCTTGGCTGTAAAAAACTGATTGGTCTTT
TTATATACAATGGATTTTTCTCAAAAAAAAA 
 
Appendix 12. Gene sequences obtained from gene bank and used for the construction of gene 

specific primer pairs (a) β-Actin, (b) PzACS1, (c) PzACS2, (d) PzACS3, (e) PzACS4, (f) 

PhETR1 and (g) PzETR2. 

 

 

 
 

Appendix 13. Dendrogram of various amino acids sequences of ACC synthase genes from 
different plant species. Gene bank names and their Accession numbers: Pz-ACS3 Pelargonium 
(new); STAC1 Potato (Z27233); Pz-ACS4 Pelargonium (new); LE-ACS3 Tomato (L34171); 
Ph-ACS2 Petunia (AF049711); Vr-ACS7 mung Bean (AF 151961); Rh-ACS5 Rose 
(AY525069); pGAC-2G Geranium (U17230); pGAC-1G Geranium (U17228); Cs-ACS1 
Cucumber (AB032937); Nt-ACS1 Tobacco (X65982); Dc-ACS1 Carnation (Z18952); Ds-
ACS2 Orchid (L07883); Os-ACC1 Rice (M96673); Zm-ACS65 Maize (AY359571); pAS-ACS 
Asparagus (AB111528); MA-ACS3 Banana (AB021908); Ps-ACS1 Pea (AF016458); Am-
ACS3 Snapdragon (AF083816); At-ACS4 Arabidopsis (U23482); Pp-ACS Pear (AB015624); 
Md-ACS1 Apple (U89156). 
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(a). NCBI Blast program 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Web&LAYOUT=TwoWindows&AUTO

_FORMAT=Semiauto&ALIGNMENTS=50&ALIGNMENT_VIEW=Pairwise&CLIENT=we

b&DATABASE=nr&DESCRIPTIONS=100&ENTREZ_QUERY=%28none%29&EXPECT=

10&FILTER=L&FORMAT_OBJECT=Alignment&FORMAT_TYPE=HTML&NCBI_G). 

 

 
 

(b). ClustalW program (http://www.ebi.ac.uk/clustalw/). 
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(c). Chromas (http://www.technelysium.com.au/chromas.html) 

 

 
 

(d). Primer 3 Input program (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi).  

 
 

Appendix 14. Computer programs used for analysing gene sequences (a) NCBI Blast 

program, (b) ClustalW program, (c) Chromas and construction of primers (d) Primer 3 Input 

program. 
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Appendix 15. The principle of ligation into a Topo TA Cloning Kit (Invitrogen, Carlsbad, 

CA, http://www.invitrogen.com/content/sfs/vectors/pcr4topo_map.pdf). 
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