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Biological control of Meloidogyne incognita (Tylenchida: Meloidogynidae) using 
arbuscular mycorrhizal fungi and rhizobacteria. 
 
The sedentary endoparasitic root-knot nematode, Meloidogyne incognita, attacks the 

majority of the flowering plant species. It poses particular control difficulties due to its 

wide host range, short generation period and high reproductive rate. The worldwide phase-

out of methyl bromide and the extreme costs for bringing new nematicides into the market 

increases the need for alternative nematode control strategies that are economically 

feasible and environmentally acceptable. Biological control of nematodes using 

rhizosphere micro-organisms is considered as a potential management tactic and effective 

alternative of nematicides. The main focus in this research area has been given to groups of 

soil micro-organisms co-occurring with plant parasitic nematodes; among those are 

mycorrhizal fungi and rhizobacteria. However, despite the intensive research, the topic of 

AMF/nematode interaction is in a greatly confused state. The poor understanding of the 

mechanisms involved contributes to this situation. Subjects of this study were i) to screen 

for an effective mycorrhizal isolate that confers bio-protection against M. incognita and ii) 

to characterize the influence of AMF on the different nematode pre- and post-infectional 

aspects, iii) to elucidate possible involved mechanisms, and iv) to consider physiological 

markers for the interaction between AMF and M. incognita. Moreover, v) the possible 

stimulation of the mycorrhizal effect against M. incognita was tested through the combined 

inoculation of AMF with bacterial isolates of known effects on M. incognita.  

 
Nematode-mycorrhiza interactions appear to be highly dependent on the given association 

of plant cultivar, nematode species, and AMF species or isolate. Several mycorrhizal 

isolates were screened; the differences in their efficacy to suppress nematode infection 

could not be attributed to differences in their ability to colonize the roots or to enhance 

plant growth.  An isolate of Glomus intraradices (No. 510) reduced gall numbers induced 

by M. incognita in the roots of the tomato cultivar Kingkong II. The sequence of aspects in 

the interaction between the two partners were tested. Differences in final number of galls 

were not attributed to differences in nematode pre-infectional aspects. Root diffusates 

collected from mycorrhizal and non-mycorrhizal plants did not influence egg hatch of M. 

incognita. Second stage juveniles were less attracted to mycorrhizal plants than to non-

mycorrhizal plants in a pair-choice assay.  In an invasion assay, second stage juveniles 

were slower in invading roots of mycorrhizal plants compared to the non-mycorrhizal 

control. However, the final number of juveniles detected in roots of mycorrhizal plants was 
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similar as in non-mycorrhizal ones. Nematode suppression is partially attributed to induced 

resistance mechanisms as observed in split root experiments.  

 
The amount of AMF inoculum that had been added to the substrate initially did not 

influence the degree of nematode infection suppression; however, the diameter of 

nematode galls was significantly influenced. Considering proline and the performance 

index for chlorophyll-a-fluorescence (PIabs) as physiological markers for the interaction, it 

was observed that nematode infection caused an increase in proline content of roots,  

parallel with increasing density of nematode inoculation level. AMF slightly reduced the 

concentration of proline in roots. Nematode inoculation caused also a decrease of PIabs that 

declined with raising nematode inoculation levels. At earlier stages of the experiment, 

AMF inoculation had positive influence on the PIabs state; however, this effectdiminished 

with the time course of mycorrhizal infection.  

 
Results of combined inoculation of micro-organims suggest that the co-inoculation of 

tomato with AMF and either bacterium Cellulomonas turbata (SR1), or Acinetobacter 

baumannii (SR6) can improve the efficacy of M. incognita control conferred by the single 

inoculation of the AMF. The mycorrhizal symbiosis had no influence on the bacterial 

population density and itself was not influenced by the bacteria. 
 
Overall, an isolate that confers a bio-protective activity against M. incognita had been 

selected and the characterization of the influence of AMF on the different nematode pre- 

and post-infectional aspects revealed that the attraction of juveniles was sensitive to the 

plant mycorrhizal state. It appeared that reduction in nematode infection can be attributed 

to post-infectional aspects and may be due in part to induced resistance.  It was shown that 

combined inoculants of AMF and certain rhizobacteria provided a more stable control and 

that the binary association of bacteria and mycorrhizal fungi could be beneficial to plant 

health and growth. 

 
Keywords: Meloidogyne incognita, Biological control, arbuscular mycorrhizal fungi, 

rhizobacteria. 
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Biomanagement von Meloidogyne incognita (Tylenchida: Meloidogynidae) an Tomate 
mit Hilfe von arbuskulären Mykorrhizapilzen (AMF) und Rhizobakterien 
 

Der sedentäre Wurzelgallen-Nematode Meloidogyne incognita befällt sehr viele Arten der 

Blütenpflanzen. Bedingt durch diesen weiten Wirtspflanzenkreis, eine kurze 

Generationszeit und eine hohe Reproduktionsrate treten besondere Schwierigkeiten bei der 

Bekämpfung auf. Der weltweite Rückzug von Methylbromid einerseits und die extremen 

Kosten für die Entwicklung und Vermarktung neuer Nematizide andererseits erhöhen den 

Bedarf an alternativen Strategien zur Bekämpfung von Nematoden, die sowohl 

ökonomischen realisierbar als auch ökologisch vertretbar sind. Die biologische 

Bekämpfung von Nematoden durch Rhizosphären-Mikroorganismen wird als potentieller 

Lösungsweg und Alternative zu chemischen Nematiziden betrachtet. Der Schwerpunkt in 

diesem Forschungsbereich lag auf verschiedenen Gruppen von Boden-Mikroorganismen, 

die gemeinsam mit pflanzenparasitären Nematoden vorkommen; zu diesen Gruppen zählen 

auch Mykorrhizapilze und Rhizobakterien. Trotz intensiver Forschung liegen zur Thematik 

der AMF-Nematoden-Interaktionen bisher widersprüchliche Thesen vor. Insbesondere 

fehlen Erkenntnisse über Mechanismen der Wechselwirkungen. Themen dieser Arbeit 

waren i) die Auswahl eines effektiven Mykorrhiza-Isolates mit biologischer 

Schutzwirkung gegen M. incognita, ii) die Charakerisierung des Einflusses von AMF auf 

den Nematoden in verschiedenen prä- und postinfektionellen Abschnitten, iii) die 

Aufklärung möglicher beteiligter Mechanismen und iv) die Überprüfung physiologischer 

Marker für diese Beziehung. Darüberhinaus sollte v) eine mögliche Stimulation des 

Mykorrhizaeffektes durch Dualapplikation von AMF und Rhizobakterien mit bekannter 

Wirkung gegen M. incognita getestet werden.  
 
Nematoden-Mykorrhiza-Interaktionen sind hochgradig abhängig von der vorliegenden 

Kombination von Pflanzensorte, Nematodenart und AMF-Art oder Isolat. Verschiedene 

Mykorrhiza-Isolate wurden getestet; ihre unterschiedliche Wirksamkeit zur Unterdrückung 

der Nematodeninfektion konnte nicht zurückgeführt werden auf ihre unterschiedliche 

Fähigkeit zur Wurzelbesiedlung und zur Steigerung des Pflanzenwachstums. Das Isolat 

510 von Glomus intraradices reduzierte die Anzahl der von M. incognita induzierten 

Gallen in der Tomatensorte Kingkong II. Verschiedene Aspekte in der Folge der 

Interaktionen beider Partner wurden untersucht. Der Unterschied in der Endzahl an Gallen 

konnten nicht korreliert werden mit unterschiedlichem präinfektionellem Verhalten des 

Nematoden. Wurzeldiffusate von mykorrhizierten und nicht-mykorrhizierten Pflanzen 

beeinflussten den Eischlupf von M. incognita nicht. 
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In einem Wirtswahlversuch wurden Larven von mykorrhizierten Pflanzen weniger 

angezogen als von nicht-mykorrhizierten. In einem Besiedlungsversuch drangen Larven 

langsamer in die Wurzeln mykorrizierter Pflanzen ein als in die nicht-mykorrhizierter 

Kontrollen. Die Endzahl der Larven in mykorrhizierten Pflanzen unterschied sich jedoch 

nicht von der in nicht-mykorrhizierten Pflanzen. Die Abwehr von Nematoden ist teilweise 

induzierten Resistenzmechanismen zuzuschreiben, wie sie in einem Split-Root-Experiment 

beobachtet wurden.  
 
Die Menge des applizierten AMF-Inokulums beeinflusste nicht den Wirkungsgrad der 

Unterdrückung von Nematodeninfektionen, jedoch war der Durchmesser der 

Nematodengallen signifikant reduziert. Unter Zuhilfenahme der physiologischen Marker 

Prolingehalt und Performance Index der Chlorophyll-α-Fluoreszenz (PIabs) wurde 

beobachtet, dass mit steigender  Inokulumdichte die Nematodeninfektionen einen Anstieg 

des Prolingehalts der Wurzeln verursachten. AMF reduzierten geringfügig den Wurzel-

Prolingehalt. Unter Nematodenbefall fiel der Performance Index PIabs mit zunehmender 

Inokulumdichte ab. Zu Beginn dieses Experiments wirkte sich die Mykorrhiza positiv auf 

den PIabs aus; dieser Effekt verlor sich im Verlauf des Versuches.  
 
Die Ergebnisse von kombinierter Inokulation (AMF mit Bakterium Cellulomonas turbata 

(SR1) oder Acinetobacter baumannii (SR6)) deuteten darauf hin, dass die Wirksamkeit von 

AMF allein gegen M. incognita auf diese Weise gesteigert werden kann. Die Mykorrhiza 

hatte keinen Einfluss auf die Populationsdichte der Bakterien und war selbst durch die 

Bakterien nicht beeinträchtigt. 

 
Zusammengefasst: Es wurde ein Isolat mit bioprotektiver Aktivität gegen M. incognita 

ausgewählt und sein Einfluss auf prä- und postinfektionelle Beziehungen zum Nematoden 

untersucht. Es ergab sich, dass die Attraktion infektiöser Larven vom Mykorrhiza-Status 

der Wirtspflanzen abhängt. Ferner kann die Reduktion der Nematodeninfektionen 

verknüpft werden mit postinfektionellen Wechselwirkungen und partiell auf induzierter 

Resistenz beruhen. Es zeigte sich, dass die Kombination von AMF und bestimmten 

Rhizobakterien eine solidere Nematodenbekämpfung ermöglicht und sich auch positiv auf 

Pflanzengesundheit und Pflanzenwachstum auswirkt. 

 

Schlagworte: Meloidogyne incognita, Biologische Bekämpfung, arbuskulären 

Mykorrhizapilzen, Rhizobakterien. 
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Abbreviations 
 

a. dest.   Distilled water 

AMF   Arbuscular Mycorrhizal Fungi 

cfu   Colony Forming Units  

dai   Days after nematode inoculation. 

g   gram 

gav   Acceleration of free fall  

Ge   Glomus etunicatum 

Gi   Glomus intraradices  

IR   Inner root periphery  

J2   Second stage juveniles (of M. incognita)  

l   liter 

MI    Mycorrhizal infection. 

MF   Frequency of mycorrhizal colonization 

Mi   Meloidogyne incognita 

ml   millilitre 

µl   microliter 

µg   microgram 

No.   Number 

OR   Outer root periphery  

PCR   Polymerase Chain Reaction 

ppm   parts per million 

R L   Root length 

RKN   Root-knot nematode 

sec.   Second 

Sh DWT  Shoot dry weight 

Sh FWT  Shoot fresh weight 

SR1   Cellulomonas turbata 

SR1**   SR1 resistant to 100 ppm rifampicin and streptomycin  

SR6   Acinetobacter baumannii 

SR6**   SR6 resistant to 100 ppm rifampicin and streptomycin  

Wks   Weeks 



General introduction  
 

1 

1 General introduction 

 

Soil is a dynamic microbiologically complex environment. A single cubic meter would 

contain hundreds of species of micro-organisms whose identities, quantities and 

activities are largely unknown (Copley, 2000). In the course of their existence, plant 

pathogenic and non-pathogenic micro-organisms come into association with each other; 

the outcome of this association may involve interactions among the different groups. 

 

Rhizosphere is the site where most interactions between plants and their subterraneous 

environment occur. The outcomes – from plant’s perspective – are many and range 

from harmful to beneficial and would likely change when the interactors or when the 

surrounding environmental factors alter. Symbioses, parasitism, and antagonism, are 

part of an array of interactions that would take place in the rhizosphere. 

 

Since the 1800s agricultural soils have been degraded due to cultivation, monoculture 

and excessive chemical inputs. The chemical components to support plant growth have 

been sustained over decades through fertilizer application. However, the maintenance of 

the balanced state of agricultural soils exceeds the replacement of nutrients consumed 

by the crops to the maintenance of the chemical, physical and biological components of 

soil (Bethlenfalvay and Linderman, 1992). The underlying processes and functions in 

soils- such as mineralization, nitrification, nitrogen fixation, and plant biodiversity- are 

governed by soil micro-organisms; loss of some species may result in a loss of some 

soil functions (van der Heijden et al., 1998; Griffiths et al., 2000; Emmerling et al., 

2002). Managing the positive attributes of micro-organisms in agricultural soils does 

not only affect soil fertility but is likely to carry the key to improved suppression of soil 

borne pathogens, especially in light of the increased costs of chemical pesticides and the 

increased concern of environmental pollution.  

 

Biological control of soil-borne pathogens by introduced micro-organisms has been 

studied for over 60 years (Barker, 1987), and considered to be a potential non-chemical 

mean of plant disease control (Spiegel and Chet, 1998). Initially, plant pathologists 

adopted the entomologist’s classical definition of biological control where the emphasis 

is on the use of predaceous or parasitic organisms to maintain another organism’s 

density at a lower average than that would occur in their absence (Wilson, 1997). In the 
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area of biological control of diseases caused by soil-borne pathogens the goal is to 

reduce the inoculum potential of the pathogens in soil. The fundamental difference 

between the objects to be controlled by entomologists and plant pathologists is that 

entomologists are targeting an organism (the insect), while plant pathologists are 

targeting a process (the disease) and an organism (the pathogen), strategies controlling 

the disease process (therapy) can differ from those used to control the pathogen 

(Wilson, 1997). Focus in this research area has been given to the major groups 

interacting with land flora; amongst those, mycorrhizal fungi and rhizobacteria. 

 

Mycorrhizal associations have existed since at least 350 million years (Simon et al., 

1993; Taylor et al., 1995). They have been found with plants in polar, temperate and 

tropical areas (Mosse et al., 1981). Mycorrhizas vary widely in structure and are 

classified into different types according to their morphological relationships with the 

host plants. Two broad types are predominant, endomycorrhiza and ectomycorrhiza, 

with the endomycorrhiza further divided into vesicular arbuscular, ericoid, and 

orchidaceous mycorrhizas (Mitchell, 1993). 

 

Arbuscular mycorrhizal fungi (AMF), by far the most widespread mycorrhizal fungi, 

constitute a low diversity taxon, with approximately 150-160 species being known 

world wide (Brussaard et al., 2001). AM fungi belong to the Glomeromycota 

(Zygomycotina) (Schuessler et al., 2001) under which seven genera are classified; 

Glomus, Entrophospora, Acaulospora, Gigaspora, Scutellospora, Archaeospora and 

Paraglomus. Arbuscules are the common character in the symbioses formed by this 

group of fungi. Among these genera; Glomus is the most widespread, it comprises about 

90 species. 

 

AMF colonize endogenously the epidermis and the cortical parenchyma of the root, 

forming intimate connections with the cells of more than 80% of vascular plant taxa, 

including Bryophyta, Pteridophyta, Gymnospermae and Angiospermae which reflect a 

wide host range for each individual fungal species and consequently a low degree of 

taxonomic specificity. Reports about AMF effects on their host plants indicate that the 

outcomes are highly specific regarding species or isolate of AMF used. Despite the lack 

of host specificity and the wide host range of individual AMF, there is a level of 

functional compatibility shown by symbioses between different AM isolates and 
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different plant species or cultivars (Harrier and Watson, 2004), this has been addressed 

(Newsham et al., 1995; Van der Heijden and Kuyper, 2001) in three respects: Different 

effects of different fungi on the same plant; different effects of the same fungus on 

different plants; different effect of the same fungus on the same plant under different 

environmental conditions. However, the knowledge concerning how and why fungal 

species or isolates differ in their symbiotic efficiency remains very limited (Varma, 

1998).  

 

The ecological significance of AMF is being intensively studied because of their 

ubiquitous nature, their influence on plant diversity and productivity, and also due to 

their ability to protect their hosts from various stresses. AMF are recognized as an 

ecologically important group of organisms, which contributed to the maintenance of 

plant biodiversity and to ecosystem functioning and are considered important in 

maintaining a basic level of plant biodiversity (van der Heijden et al., 1998), the authors 

emphasized that even at low AMF diversity, an alteration in the composition and 

number of AMF taxa can lead to fluctuations in the composition of plant communities.  

 

The most thoroughly studied benefit of the mycorrhiza is the growth stimulation of the 

host plant. Enhanced plant growth following mycorrhizal colonization was 

demonstrated for a wide variety of plant species (Mosse, 1973; Smith and Gianinazzi-

Pearson, 1988; Koide, 1991). The effect of AMF on plant growth can be either direct or 

indirect. AMF can play a key role in plant growth by increasing acquisition of low 

mobility nutrients such as phosphate, zinc and copper (Evans and Miller, 1988; Gnekow 

and Marschner, 1989; Smith and Read, 1997; Karagiannidis and Hadjisavva-Zinoviadi, 

1998; Cantrell and Linderman, 2001). A variety of mechanisms and symbiotic effects 

have been suggested to be involved in improved nutrient uptake by mycorrhizal plants. 

Firstly, increased total root length – and consequently increased absorbing surface - 

would contribute to increased total uptake. Secondly, extraradical hyphae of 

mycorrhizal fungi reduce the distance that nutrients must diffuse to plant roots and 

increase the volume of accessible soil. Thirdly, mycorrhizal hyphae may physically 

and/or chemically modify the availability of nutrients for uptake. In addition to the 

direct influence on plant growth due to improved nutrient status, the presence of AMF 

also impart other benefits to plants as improved soil aggregation and thus improved soil 

physical properties and stability (Bethlenfalvay and Linderman, 1992). They increase 
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plant tolerance to abiotic stress such as chilling (Charest et al., 1993), drought (Kothari 

et al., 1990) and salinity (Cantrell and Linderman, 2001).  

Apart from their influence on plant biodiversity and growth stimulation, AMF 

contribute to the protection of the host plant against soil borne pathogens. Research 

considering the bioprotective effects of AMF started in the seventies, their prophylactic 

effects have been demonstrated for many agronomically important nematodes 

(Roncadori and Hussey, 1977; Kellam and Schenk, 1980; Pinochet et al., 1996; Jaizme-

Vega et al., 1997; Habte et al., 1999; Calvet et al., 2001; Elsen et al., 2001; Talavera et 

al., 2001; Diedhiou et al., 2003; Elsen et al., 2003), fungal pathogens (Davies and 

Menge, 1980; Dugassa et al., 1996; Trotta et al., 1996; Rabie, 1998), bacterial 

pathogens (Rosendahl, 1985; Pardeep and Sood, 2002), plant viruses (Deokar and 

Sawant, 2001) and  insects (Vicari et al., 2002) . Nevertheless, the degree of response of 

mycorrhizal plants to a certain biotic or abiotic factor is not always the same, since it 

depends on the specific fungal-host interaction. Conflicting results have been obtained 

and inconsistencies are reported in some reviews (Dehne, 1982; Todd et al., 2001; Ryan 

et al., 2003). The high biodiversity and complexity of relationships between the many 

microbial taxa in soil leads to undefined experimental conditions and contribute to the 

low reproducibility of observations and some of the contradictory results. 

Bioprotection of mycorrhizal plants is an outcome of complex interactions between 

plants, pathogens and AM fungi (Harrier and Watson, 2004). Therefore, the variability 

of results concerning the bioprotective ability of AMF could be ascribed to one or a 

combination of those elements contributing to the final balance of the 

plant/AMF/pathogen interaction, (1) the AMF isolate, (2) the pathogen, concerning both 

virulence and inoculum potential, (3) the host plant, (4) the substrate, and (5) the 

prevailing environmental conditions (Azcón-Aguilar et al., 2002). Apart from these 

elements, the different methods used for recording disease patterns -which do not 

always reflect a correlation between the different parameters (Kjøller and Rosendahl, 

1996)- contribute to the controversy in literature.  

 

Though much attention that has been devoted to the role of AMF in controlling plant 

diseases, the mechanisms involved are not yet well characterized. However, 

bioprotection is more likely to include indirect mechanisms since AMF have not been 

shown to interact directly with pathogens through antagonism, antibiosis and/or 

mycoparasitism (Harrier and Watson, 2004). Azcón-Aguilar et al. (2002) argued that 
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the effective bioprotection against root pathogens conferred by AMF is probably a 

consequence of several, and likely interacting mechanisms; and their relative 

contribution in the overall protection process is directly related to AMF/plant genotype 

combination and with the environmental conditions. Literature (Azcón-Aguilar and 

Barea, 1996; Harrier and Watson, 2004) proposed several mechanisms to explain the 

bioprotection conferred by AMF: (1) Improved nutrient status of the host, (2) damage 

compensation, (3) anatomical change of the root system, (4) root architecture, (5) 

competition for colonisation and infection sites, (6) competition for photosynthates, (7) 

rhizosphere deposition, (8) change on the soil microbial populations and (9) and 

activation of plant defence responses. 

 

Despite the many studies of the interaction between AMF and soil borne diseases it is 

still not possible to quantify the impact of single mechanisms on plant health via clear-

cut conclusions. To make the situation more complex, the impact on plant growth is not 

correlated with bioprotective abilities, or with colonization levels. This in turn 

underlines the need for screening according to defined selection traits (Azcón-Aguilar et 

al., 2002) to find the appropriate experimental AMF, and emphasizes the need of 

multidisciplinary approaches to identify their functional diversity and differences in 

their symbiotic abilities (Varma, 1998). 

 

Plant parasitic nematodes, are among the most widespread and important pathogens 

causing crop loss. The annual loss in agriculture has been estimated as US $ 100 billion 

worldwide (Oka et al., 2000). Based on their parasitic strategies, root parasitic 

nematodes can be classified into five major types: migratory ectoparasites; sedentary 

ectoparasites; migratory ecto-endoparasites; migratory endoparasites and sedentary 

endoparasites, with the latest considered as the most economically important group of 

plant parasitic nematodes (Sijmons et al., 1994).  

 

The sedentary endoparasitc root-knot nematodes, Meloidogyne spp., attack the majority 

of the estimated 250,000 flowering plant species (Sasser and Freckman, 1987). They 

belong to the order Tylenchida, suborder Tylenchina, superfamily Heteroderoidea; 

family Meloidogynidae (Dropkin, 1989). Jepson (1987) described 51 species in the 

genus Meloidogyne. Four species; Meloidogyne incognita, M. javanica, M. arenaria and 

M. hapla, account for 95% of all root-knot nematode infestations in agricultural land 
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with M. incognita being the most economically important species (Sasser and Carter, 

1985; Hussey and Janssen, 2003), as it is able to reproduce in more than 2000 plant 

species (Jung and Wyss, 1999). Studies on host range differences, cytology and mode of 

reproduction resulted in the classification of several host and cytogenetic races for each 

of the major four species of Meloidogyne (Sasser and Carter, 1985; Trudgill and Block, 

2001). 

 

Infection is performed by second stage juveniles, which hatch spontaneously from eggs, 

or due to stimuli from root diffusates in some instances (Vigliercho and Lownsbery, 

1960; Gaur et al., 2000). The juveniles migrate toward roots in response to stimuli 

emanating from roots, when they get into contact with a root they primarily enter 

directly behind the root cap; however, penetration can occur at other regions (Hussey, 

1985). They migrate then intercellularly between cortical cells, first towards the root tip 

where they turn to reach the vascular cylinder (Wyss et al., 1992), this process appears 

to include both mechanichal force and enzymatic secretions from the nematode 

(Williamson and Hussey, 1996). Shortly after penetration the second stage juveniles 

reside in the cortical tissue with their heads in the periphery of the vascular tissue. They 

induce then sophisticated feeding sites, called “Giant cells”. Giant cells arise by 

expansion of individual parenchyma cells in the vascular cylinder, they undergo rounds 

of synchronous nuclear division uncoupled from cytokinesis (Bird and Bird, 2001), and 

they have dense cytoplasm and thickened walls remodelled to form elaborate ingrowths. 

The parenchyma and pericycle cells embedding the giant cells undergo hyperplasia 

while the surrounding cortical cells become hypertrophied giving rise to the 

characteristic root gall (Hussey, 1985). Feeding site inductive signals are believed to be 

emanated from the nematode, specifically from the pharyngeal glands, they interact 

with host genes and function as transcription factors (Bird and Bird, 2001). Gene 

expression patterns within the giant cells are altered during feeding site induction and in 

mature giant cells (Opperman et al., 1994; Van der Eycken et al., 1996; Bird and Bird, 

2001; Wang et al., 2003). Several genes have been identified. The integrity and 

maintenance of the giant cells is dependent on the continuous stimulus by the nematode 

(Bird, 1962), however; whether this stimulus is a physiological effect caused by the 

metabolic sink of feeding or more specific factors is unknown (Bird and Bird, 2001). 

After the induction of the feeding site the second stage juvenile then molts a second and 

third time and develops into an adult male or female, the male emerges from the root 
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while the female remains attached to its feeding site, and it produces eggs released on 

the root surface in a gelatinous matrix (Dropkin, 1989).  

 

As parasites, nematodes affect plant growth and consequently productivity by disrupting 

physiological processes of the host (Melakeberhan and Webster, 1993). The damage 

caused by root knot nematodes results from water stress due to nematode parasitism and 

the disruption of root vascular tissue at the feeding sites which results in restricted water 

flow (Meon et al., 1978). Nematode infection causes deformation of the root system, 

which subsequently prevents roots from extending into moist soil (Hussey, 1985). The 

physiological effects of the decreased water availability include decreased nutrient 

uptake and translocation of solutes (Melakeberhan and Webster, 1993). Beside their 

effect on host-water relationship, several studies report negative effects on the 

photosynthetic rate (Loveys and Bird, 1973; Wallace, 1974; Melakeberhan and Ferris, 

1989; Melakeberhan et al., 1990). However, this effect varies with inoculum levels of 

the nematodes and duration of infection (Melakeberhan et al., 1986). Apart from being 

serious pests by themselves, root-knot nematodes may predispose plant roots to 

subsequent disease attack. Enhanced susceptibility for fungal or bacterial pathogens was 

reported (Powell, 1971; van Gundy et al., 1977; Deberdt et al., 1999). 

 

Root-knot nematodes pose particular control difficulties due to their wide host ranges, 

short generation periods and high reproductive rates (Trudgill and Block, 2001). Control 

measures of plant parasitic nematodes can be classified into chemical, cultural and 

biological (Trudgill et al., 1992). Conventional control options of nematodes are getting 

more limited, especially with the increased environmental concern.  

 

Since chemical nematicides were first developed, they played a dominant role in 

nematode control in major crops (Minton and Baujard, 1990). Generally, nematicides 

are classified into fumigants and non-fumigants. Soil fumigation is considered as the 

most common mean used to achieve economical control in agricultural land, and 

fumigants are considered more effective in controlling root-knot nematodes and in 

increasing crop yield than the non-fumigant nematicides; due to their broad spectrum 

activity (Lamberti, 1979; Netscher and Sikora, 1990).  
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The most effective and widely used fumigant is methyl bromide (Oka et al., 2000). The 

reason behind the excellent nematicidal activity of methyl bromide is its ability to 

diffuse in a vapour state within plant roots and kill nematodes and eggs surviving within 

galls or cysts (Giannakou and Karpouzas, 2003). However, being one of the substances 

implicated in the depletion of the ozone layer (Ristaino and Thomas, 1998), included 

methyl bromide in international treaties restricting its availability since January 2001 

and calling for the complete ban of this substance in the developed countries by January 

2005 (Giannakou and Karpouzas, 2003; Schneider et al., 2003). Chemical control by 

non fumigant nematicides, as organophosphates and carbamates, is expected to increase 

after the withdrawal of methyl bromide – with the consequence of new environmental 

concerns (Oka et al., 2000). Moreover, many of the currently available nematicides 

offer no long-term suppression, often costly; having differential effects on species of the 

nematodes and their activity is affected by many environmental factors (Schmitt, 1986; 

Starr et al., 2002). Developing any new marketable nematicide is a long and expensive 

process (Schmitt, 1986); reports state that no new widespread use nematicide has been 

developed in the past 20 years (Starr et al., 2002). The worldwide phase-out of methyl 

bromide and the extreme cost for bringing new nematicides into the market increases 

the need for alternative nematode control strategies that are economically feasible and 

environmentally acceptable – even if these strategies cannot compare to the 100% 

efficacy of methyl bromide. 

 

Cultural measures to control plant parasitic nematodes include means like crop rotation 

and soil management (Trudgill et al., 1992) such as soil solarization (Nico et al., 2003) 

and flooding which had been considered as potential effective cultural practices; 

however, they are adaptable only in certain regions. Crop rotation may provide a short-

term suppression of nematode population densities (Starr et al., 2002). However, due to 

the polyphagous nature of the pest, as well as the relatively low economic value of some 

recommended rotational crops, control of root-knot nematodes by crop rotation is very 

limited (Netscher and Sikora, 1990; Waceke et al., 2001). Host resistance to nematodes 

can be an effective management tool that complements crop rotation and improves the 

ease with which effective rotation systems can be developed (Starr et al., 2002). 

Resistance to several root-knot nematode species is present in some crops such as 

tomato and soybean; the most widely used and investigated is the Mi gene in tomato, 

which was introgressed from the wild tomato species Lycopersicon peruvianum 



General introduction  
 

9 

(Williamson and Hussey, 1996; Trudgill and Block, 2001; Hussey and Janssen, 2003). 

However, resistance mediated by Mi gene is lost at elevated temperature (Dropkin, 

1969; Augustin et al., 2002); and races breaking resistance have been found in M. 

incognita, M. javanica and M. arenaria (Starr et al., 2002). Moreover, virulence against 

Mi gene can develop in some cases after as few as five plantings (Noling, 2000). 

 

Biological control of nematodes using rhizosphere micro-organisms was considered in 

several reviews to be a potential management tactic and effective alternative of 

nematicides (Sikora, 1992; Kerry, 1993; 2000; Barker, 2003). The contribution to the 

biocontrol of plant parasitic nematodes was reported for a great diversity of micro-

organisms including: plant growth promoting rhizobacteria (Becker et al., 1988; 

Verdejo and Jaffee, 1988; Spiegel et al., 1991; Racke and Sikora, 1992; Siddiqui and 

Ehteshamul-Hauque, 2001; Siddiqui and Shaukat, 2003), bacterial parasites (Singh and 

Dhawan, 1994), obligate fungal parasites and facultative fungal parasites (Leij et al., 

1993, Kok and Papert, 2002), competitors including both fungal endophytes (Hallmann 

and Sikora, 1994; Diedhiou et al., 2003) as well as mycorrhizal fungi (Roncadori and 

Hussey, 1977; Kellam and Schenk, 1980; Pinochet et al., 1996; Jaizme-Vega et al., 

1997; Habte et al., 1999; Calvet et al., 2001; Elsen et al., 2001; Talavera et al., 2001; 

Todd et al., 2001; Waceke et al., 2001; Diedhiou et al., 2003; Elsen et al., 2003). 

Although biological control of nematodes using rhizosphere micro-organisms could be 

a promising approach to suppress those pests, the problems associated with biocontrol 

in the rhizosphere under practical conditions are far from being totally overcome mainly 

because of too many species and races occurring naturally. With the current knowledge 

it is difficult to promote or establish a micro-flora in soils that effectively suppresses 

nematode population densities, especially in the relatively short period of time of a 

single growing season (Starr et al., 2002). The major focus in the research regarding 

biological control of nematodes has been given to the major groups of soil micro-

organisms co-occurring with plant parasitic nematodes; among those are mycorrhizal 

fungi. AMF and root-knot nematodes (RKN) share a striking feature, which is their 

ability to form associations with the roots of the majority of plant species whereas other 

biotrophs generally show a restricted host range (Trudgill and Block, 2001). However, 

despite the intensive research, the topic of AMF/nematode interaction is in a greatly 

confused state, with a variety of isolated observations from which no useful 



General introduction  
 

10 

generalization could be made (Varma, 1998). The poor understanding of the 

mechanisms involved contributes to this situation. 

 

The impact of AMF on different host plants and nematode species is presented in table 

1.1. 

 

1.2 Aims of the study 

The main aims of this thesis were i) to screen for isolates of arbuscular mycorrhizal 

fungi (AMF), effective in suppressing the root-knot nematode (RKN) Meloidogyne 

incognita, ii) to differentiate the aspects in the interaction process, iii) to examine 

possible mechanisms of action involved in RK control, iv) to use chlorophyll-a- 

fluorescence and proline accumulation as physiological indicators for the interaction 

between AMF and RKN, and v) to examine the possible existence of synergistic 

interactions between AMF and plant health promoting rhizobacteria (PHPR) with the 

aim to increase the stability and efficacy of the biocontrol conferred by AMF. 
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Table 1.1: Effects of interactions between AMF and plant parasitic nematodes (Nem) on host plant, mycorrhizal symbioses, and nematode 

species associated as reported in literature (+: positively affected; -: negatively affected; 0: not affected; and /: not reported). 

Host Nematode Mycorrhizal 
fungus 

Separate 
effect on host 

by 
Nem      AMF 

Dual inoculation effect 
on 

Host    AMF      Nem 

Author (s) 

Cotton (2 cultivars) Meloidogyne 
incognita  

Gigaspora 
margarita 

- + + 0 0,+ Roncadori & Hussey, 1977 

Soybean  Meloidogyne 
incognita 

Glomus 
macrocarpus 

/ / + 0 - Kellam & Schenk, 1980 

Onion Meloidogyne 
hapla  

Glomus 
fascilculatum 

- + 0 0 0 MacGuigwin et al., 1985 

Tomato  Meloidogyne 
hapla 

Mixture of 4 
fungi 

- + + 0 - Cooper & Grandison, 1986 

Gigaspora 
margarita 

- + + - /  
Cotton 

 
Meloidogyne 
incognita 
 

Glomus 
intraradices 

- + + - -,0 

 
Smith et al., 1986 
 

Gigaspora 
margarita  

/ + / 0 -  
Soybean  
 

 
Meloidogyne 
incognita 
 

Glomus 
etunicatum  

/ + / 0 - 

 
Carling et al., 1989 
 

Cowpea Rotylenchulus 
reniformis 

Glomus 
fascilculatum 

- + + 0 + Lingaraju & Goswami, 1993 

Banana Meloidogyne 
incognita 

Glomus 
mosseae 

- + + 0 - Jaizme-Vega et al., 1997 

Tomato Meloidogyne 
incognita 

Glomus 
mosseae 

- + + / - Parvatha Reddy et al., 1998 

Ruber tree  Meliodogyne 
exigua 

Gigaspora 
spp. 

- + / - / Schwob et al., 1999 
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Table 1.1 continued: Effects of interactions between AMF and plant parasitic nematodes (Nem) on host plant, mycorrhizal symbioses, and 

nematode species associated as reported in literature (+: positively affected; -: negatively affected; 0: not affected; and /: not reported). 

Host Nematode Mycorrhizal 
fungus 

Separate 
effect on host 

by 
Nem      AMF 

Dual inoculation effect 
on 

Host     AMF      Nem 

Author (s) 

Tomato Meloidogyne 
incognita 

Glomus 
mosseae 

- 0 -,+ / 0,- Talavera et al., 2001 

Carrot  Partylenchus 
penetrans 

Glomus 
mosseae 

- 0 + 0 - Talavera et al., 2001 

Glomus spp. 
 
LM1 
ML34 
ML35 

 
 

+ 
0 
0 

- 
 
 
 
 

 
 

+ 
0 
+ 

 
 
0 
- 
- 

 
 
- 
0 
0 

 
Scutellospora 
spp. 
 

 
+ 
 
 

 
/ 
 
 

 
+ 
 
 

 
0 
 
 

 
- 
 
 

 
 
 
 
 
Pyrethrum 

 
 
 
 
 
Meloidogyne 
hapla 

Gigaspora 
spp. 

0 / 0 
 

0 
 

- 

 
 
 
 
 
Waceke et al., 2001 

Tomato Meloidogyne 
incognita 

Glomus 
coronatum 

0 0,+ + + - Diedhiou et al., 2003 

Banana  Radopholus 
similis 
 
Partylenchus 
coffeae 

 
Glomus 
mosseae 

0 
 
 
0 

 
 

+ 

0 
 
 

+ 

- 
 
 
- 

0 
 
 
- 

 
 
Elsen et al., 2003 
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2 General materials and methods 
 

2.1 General plant cultivation and growing conditions 

Unless stated otherwise; tomato (Lycopersicon esculentum Mill.) cultivars King Kong II 

(Known-You Seed Co., Ltd. Taiwan), Hildares (HILD Samen GmbH, Marbach, 

Germany) and Tip top (Weigelt & Co., Erfurter Samenzucht) were grown from seeds in 

trays in commercial peat-based substrate (Fruhstorfer Erde Typ P, Fa. Flormaris, 

Germany). When plants reached the 4-5 leaf stage they were transplanted into a 3:1 

mixture of sterile sand and commercial peat-based substrate mixture for use in the 

experiments. Plants were watered adequately throughout the experiment period and 

fertilized weekly with 0, 2 % Wuxal top N (N P K 12-4-6, Aglukon Ltd., Düsseldorf, 

Germany). Experiments were conducted in a greenhouse with a day-night cycle 

consisting of 16 h of light at 28°C and eight hours of darkness at 24°C at a relative 

humidity of 80% and a photosynthetic photon flux density of 600-700 mmol·m-2·s-1 . 

 

2.2 General harvesting procedures 

At each harvest, shoots were cut at soil surface, weighed then oven-dried (48 h, 70°C). 

Roots were washed free of soil, blotted dry and weighed. For experiments where root 

length was considered as an interaction parameter, roots were cut 1-2 cm segments and 

root length was measured with a Comair root scanner. 
 

2.3 Arbuscular mycorrhizal fungi (AMF) 

Four mycorrhizal isolates were used in this work. Three were obtained from the 

collection of the Institute of Plant Disease and Plant Protection / Hanover University, 

and those were: No. 510, No. 49, and No. 139. An additional isolate from a tropical 

forest in Uganda (obtained from Dr. H. Baltruschat, Justus-Liebig University, Gießen), 

No. 36 was also used. 

 

2.3.1 Multiplication of AMF inoculum  

The mycorrhizal inoculum was multiplied on Marigold (Tagetes erecta) cv. 

Sonnenschein (Carl- Sperling & Co., Lüneburg) for 12 weeks under greenhouse 

conditions on expanded clay (LECA®) as described by Dehne and Backhaus (1986).   
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2.3.2 AMF identification  

Grouping AMF isolates as taxonomic units is possible using morphological criteria of 

spores and other fungal structures. Based on morphological criteria the isolates used 

were identified in the collection as follows: No. 510 as Glomus intraradices, No. 49 

registered in the European Bank of Glomales as BEG148 and identified as G. 

intraradices, No. 139 as G. etunicatum and No. 36 as G. versiforme. 

 

However, identification is an important requisite and species determination based on 

morphology criteria requires considerable experience of spore morphology of a wide 

range of AMF. Especially that in some cases, the criteria considered in species 

determination (such as spores size and colour) are continuous rather than discrete, thus, 

isolates may not be easily distinguished. The most recent approaches focus on the use of 

Polymerase chain Reaction (PCR) combined with the group specific primers. 

 

PCR is an in vitro technique enabling chemical amplification of DNA, it has opened the 

possibility to analyse organisms at the nucleic acid level even when only small amount 

of nucleic acid can be obtained, as in the case of AMF.  Ribosomal genes have various 

characters that make them a target choice for phylogenetic and taxonomic studies; they 

are multicopy genes tandemly organized in the genome. In eukaryotes, each ribosomal 

gene encodes for three subunits: small subunit, 5.8 subunit, and the large subunit. The 

three subunits are conserved coding regions unlike the internal transcribed space 

separating them, which mutate frequently. A protocol to amplify the 5´ end of the large 

ribosomal unit of Glomeromycota, using AMF spore as starting material was adopted 

(van Tuinen et al., 1998; Turnau et al., 2001).  

 

2.3.2.1 Preparation of the nucleic acids 

AMF spores (isolates 510 and 36) were collected by wet sieving and rinsed well with 

distilled water. 5-10 spores were picked under a dissection microscope and transferred 

into 1.5 ml Eppendorf tubes containing 10 µl distilled water. The spores were crushed 

within the Eppendorf tubes with a sterile pipette tip. 30 µl 100mM Tris/HCL (pH 8.0) 

and 10 µl of 20% Chelex 100 were added immediately to the crushed spores. The 

eppendorfs were incubated at 95°C for 5 minutes, and then cooled on ice. The 

suspension was then cleared by centrifugation for 1 minute at 10 000 g, and the pellet 



General material and methods 

15 

was discarded, the obtained supernatant was directly used as template for PCR 

amplification. 
 
2.3.2.2 Preparation of the PCR reaction 

Each reaction mixture contained: 

 5µl template DNA, 

 2µl 10 PCR reaction buffer containing 15 mM MgCl2, 

 2µl dNTP stock solution 1 mM, 

 1µl primer 1 (LR1, tab.2.1) stock solution 10 µM, 

 1µl primer 2 (NDL2, tab. 2.1) stock solution 10 µM; 

 

Each tube was filled to a final volume of 50µl with double distilled water and 1U Taq 

DNA polymerase (stock solution 5U/µl) was added for each reaction tube. Negative 

control reaction without template DNA. 

 
 

PCR cycles were performed as follows: 

 

Initial denaturation: at 95°C for 3 min.  

Denaturation for the remaining cycles: at 93°C for 45 s  

Annealing: at 62°C for 45 s  

Extension: at 72°C for 45 s 

A final extension of 5 min. was performed at the end of the cycles. In total 33 cycles 

were performed. 
 
The PCR products were checked by separating 5µl aliquots of the amplification 

products on a 1.2% agarose gel (Invitrogen, Karlsruhe, Germany) and visualised by 

ethidium bromide staining. 

 
 
2.3.2.3 Nested PCR reaction 

To increase the specificity of the amplification; a second PCR reaction was performed 

using a 1:10 dilution of the first amplification product and an internal primer (FL2, tab. 

2.1). The amplification reaction was performed as mentioned above. 
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Table 2.1: List of the primers used for AMF species determination and their sequences. 

Primer  Sequence  

LR1 5´-GCA TAT CAA TAA GCG GAG GA- 3´ 

NDL2 5´-TGG TCC GTG TTT CAA GAC G-3´ 

FL2  5´- TGG TCC GTG TTT GAC G-3´ 

 

2.3.2.4 Cloning and transformation 

PCR fragments were cloned into pCR2.1-TOPO vector (Invitrogen, Karlsruhe, 

Germany) according to the instructions of the manufacturer. 4µl aliquot of the PCR 

product, 1µl salt solution and 1µl of the vector solution were mixed and incubated for 5 

min. at room temperature. This ligation solution was placed on ice to be used for 

transformation of the bacteria.  

 

The -80°C stored component cells were thawed on ice, 2µl of the ligation solution was 

added and incubated further 30 min. on ice, followed by 30 sec. heat shock at 42°C. The 

tubes were then cooled on ice for 2 min. and 250µl S.O.C. medium was added and the 

cells were shaken (225 rpm) in an incubator at 37°C for 1 hour. The cells were then 

spread on LB plates for white/blue screening and incubated overnight at 37°C. 

 

For analysing positive clones, 8 white colonies were picked and cultured overnight in 

LB medium containing 50µg/ml ampicillin. Plasmid DNAs were prepared with 

NucleoSpin® Plasmid kit following the manufacturer’s instruction. Sequences obtained 

were analysed and expressed in a neighbour-joining tree (Fig. 2.1) 

 

2.3.3 MPN test 

The number of infective AM propagules per cm3 of inoculum was determined by the 

most probable number (MPN) technique, using pre-germinated marigold seedlings as 

test plants. Dilutions with sterilized sand (1/10, 1/100 and 1/1000) were used in the test. 

The diluted samples were transferred to multi-well trays. The marigold seedlings were 

then planted in each well. There were five replicates per dilution. The plants were 

watered moderately. After 30 days all root systems were harvested separately. The 

MPN of AM fungal propagules for each inoculum was calculated.  
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2.3.4 AMF inoculation 

For inoculation, the substrate of the related treatments was mixed thoroughly with the 

AMF inoculum. Initial AMF inoculation levels are described later in the experiments 

designs. 

 

2.3.5 Assessment of AMF variables: Staining and colonization  

To visualise AMF colonization, roots were cleared by immersion in 10% KOH (w/v) at 

room temperature overnight, rinsed with tap water then stained with 2% black ink 

(Pelikan Co., Hannover)/ household vinegar (5% acetic acid) solution (Vierheilig et al., 

1998, modified). The degree of AMF colonization in the root systems was determined 

microscopically using 20 1-cm root segments. Mycorrhization was expressed as 

percentage and calculated as follows: 

    Root pieces colonized by the fungus 
% Colonization =        x 100 
       20 
 

Intensity of colonization was rated on a scale from 0-3 with 0 = no colonization and 3 = 

completely colonized by all fungal particles (Backhaus, 1984).  

 

 

2.4 Nematodes  

The source of nematode inocula was a population of M. incognita (race 3) maintained as 

a stock culture on tomato Lycopersicon esculentum cv. Hildares growing in sterile sand. 

 

2.4.1 Nematode inocula 

Nematode eggs were extracted from heavily galled roots as described by Hussey and 

Barker (1973). Roots were washed, cut into 1-2cm segments and macerated in a blender 

for 20 seconds. The macerate was filled into a flask containing 500ml of 1.25% NaOCl 

solution and shaken for 3 minutes to liberate eggs from the gelatinous matrix. Eggs 

were separated from plant debris by passing the egg suspension successively through 

sieves of 200µm, 100µm and 25µm mesh size. To remove excess chlorine, the eggs 

from the 25µm sieve were washed several times with tap water. The eggs were passed 

again through a sieve combination of 45µm and 20µm mesh sizes. Eggs from the 20µm 

sieve were then collected in tap water. For inoculation aliquots of egg suspension were 

mixed with the substrate.  
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When second-stage juveniles (J2) were required as inoculum, eggs were collected as 

mentioned above. The resulting egg suspension was diluted with tap water and agitated 

for three days at 24°C to induce juvenile hatching. Active juveniles were separated from 

eggs using Oostenbrick trays method (Oostenbrink 1960). The juveniles were 

suspended in tap water and inoculated in holes made around the stem base. 

 

2.4.2 Assessment of nematode variables 

 

2.4.2.1 Nematode infection  

The nematode gall index was rated on a 0-10 scale with 0 = no galls and 10 = 

completely galled (Zeck, 1971). Numbers of galls and egg masses induced were 

counted under a dissecting stereomicroscope. For the counting of eggmasses roots were 

immersed in aqueous solution of Ploxine B (0.15 g l-1) for 15 minutes. 

 

2.5 Statistical analyses  

Data were analysed according to the standard analysis of variance procedures using 

SAS (version 8.2, SAS Institute Inc., Cary, NC, USA). To normalize variances for all 

analyses, the number of galls and eggsacs per gram roots were square root transformed 

after adding a constant factor of 0.5, mycorrhizal infection frequencies were arcsin 

transformed and bacterial population counts were transformed to log (χ + 1). Data were 

then analysed using the GLM procedure. Treatment means were separated using 

Tukey’s or Duncan’s multiple range tests. Statistical differences referred to in the text 

are significant at P ≤ 0.05. Non-parametric analysis of variance was run for the data of 

the histology studies. 
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Figure 2.1: Phylogenetic tree obtained from the alignment on 670 base of the Large 

ribosomal subunit. Percentage bootstrap (out of 1000 trails) is indicated. 

Sequences obtained in this work are in blue, compared to sequences 

published in the Gene Bank. 
 
2.6 Remarks 

The Alignment of the sequences obtained was made on 670 base of the large ribosomal 

subunit. The sequences were aligned with Clustalw. The neighbourjoining tree was 

tested with th e bootstrab method. The Results obtained from the molecular 

identification of the AMF isolates confirms the earlier identification of the AMF isolate 

510. This isolate is highly homologous with Glomus intraradices. On the other hand, 

the molecular identification of the AMF isolate 36 reveals it similarity to Glomus 

etunicatum and not to G. versiforme as was assumed.  

G. mosseae BEG161

G.versiforme LSU2

G .intraradices 510

G.intraradices LUS3

1000

982

G. etunicatum 36

G .etunicatum BEG186 
874
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3 Study of the interaction aspects between arbuscular mycorrhizal fungi and the 

root-knot nematode Meloidogyne incognita in tomato. 

 

Abstract 

Nematode-mycorrhiza interactions appear to be highly dependent on the given associa-

tion of plant cultivar, nematode species, and AMF species or isolate. An isolate of G. 

intraradices (no. 510) reduced gall numbers induced by M. incognita in the roots of the 

tomato cultivar Kingkong II, but had no influence on the number of eggsacs, while G. 

etunicatum (no. 139) reduced both gall and eggsac numbers. In contrast, a tropical iso-

late of G. etunicatum (no. 36) had no influence on galls and eggsacs, while G. intra-

radices (no. 49) exhibited a non consistent effect. All tested mycorrhizal isolates re-

duced gall size. The sequence of aspects in the interaction between AMF and M. incog-

nita has been tested. Differences (between mycorrhizal and non-mycorrhizal treatments 

or among mycorrhizal treatments themselves) in final number of galls were not attrib-

uted to differences in nematode pre-infectional aspects. Root diffusates collected from 

mycorrhizal and non-mycorrhizal plants did not influence egg hatch of M. incognita. 

Second stage juveniles were less attracted to mycorrhizal plants than non-mycorrhizal 

plants in a pair-choice assay and were slower in invading roots inoculated with G. intra-

radices (no. 510) in an invasion assay. However, the final number of nematodes in-

vaded mycorrhizal roots was similar as in non-mycorrhizal roots. Nematode suppression 

by G. intraradices (no. 510) is partially attributed to induced resistance mechanisms.  

 

3.1 Introduction 

Root-knot nematode parasitism of plants is a complex dynamic interaction that involves 

hatching stimuli, attraction to the host, invasion of the host tissue, feeding site forma-

tion, and an active response from the host (Bleve-Zacheo and Melillo, 1997). These 

aspects are generally categorized into pre- and post-infectional (Thomson Cason et al., 

1983; Trudgill, 1992). Pre-infection aspects may occur within the rhizosphere or at the 

root surface and likely involve signals from roots; thereby influencing egg hatch, attrac-

tion toward the roots, and attraction and penetration of the target tissues (Thomson 

Cason et al., 1983; Trudgill, 1992; Perry, 1997; Zhao et al., 2000). Post-infectional as-

pects involve physiological processes within the roots which affect: 1) nematode feed-

ing, 2) establishment of feeding sites, 3) nematode development, and 4) reproduction 

(Trudgill, 1992). 
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Over many years, research efforts were undertaken to identify factors involved in the 

different nematode interaction aspects (Viglierchio, 1961; Lownsbery and Vigliercho, 

1961; Abou-Setta and Duncan, 1998; Zhao et al., 2000). However, the primary focus 

was on comparing hosts to non-hosts, susceptible to resistant cultivars, and plants of 

different host status. The aspects of the nematode/host interaction are very likely to be 

affected by co-occurring organisms such as arbuscular mycorrhizal fungi. The descrip-

tive model of Hussey and Roncadori (1982) was used as a framework in studies on the 

interaction of nematodes and mycorrhizal fungi. The model considered mycorrhizal 

effects on host efficiency (measured in terms of nematode, or egg densities, or nema-

tode development in mycorrhizal plants compared to non-mycorrhizal plants) and host 

sensitivity (determined in terms of growth or yield suppression), which describes the 

final outcome of the association. However, the detailed knowledge regarding the precise 

aspects of interaction between nematodes and AMF can be beneficial in designing effi-

cient integrated pest management (IPM) systems.  

 

3.2 Objectives and experimental program 

The objectives of the presented group of experiments were to screen for an effective 

AMF isolate that confer a bioprotective activity against the RKN M. incognita and to 

characterize the influence of AMF on the different nematode pre- and post-infectional 

aspects. An additional objective was to elucidate possible involved mechanisms. 

For differentiation of the full extent interaction processes, independent but complemen-

tary experiments were used. The tested interaction aspects were: hatching, attraction, 

invasion, and development as reflected by gall size and egg laying, as well the devel-

opment of feeding sites. 

 

3.2.1 Interaction of AMF, RKN and tomato (cv. Kingkong II):  Influence of nurs-

ery AMF treatments on nematode infection and mycorrhizal colonization exten-

sion into AMF-free soil  

 
3.2.1.1 Experimental set-up 

The experiment was designed to simulate common techniques of tomato production 

where seedlings are first produced in pathogen free soil in the nurseries and then trans-

planted into the infected field soil. Five-days old tomato seedlings were potted in 500 

ml plastic pots; the substrate at this stage was thoroughly mixed with 10% AMF inocu-
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lum, substrate of the control was mixed with AMF-free expanded clay. Two weeks later 

–when mycorrhizal colonization ≈ 25%- the plastic pots were substituted with mesh 

pots and then transplanted in 2 l pots containing the same substrate mixture, inoculated 

or non-inoculated with 1250 M. incognita eggs; according to the treatment (Figure 3.1). 

Plants were fertilized weekly with 0,2 % Wuxal top N and harvested forty days after 

being potted. Shoot fresh and dry weights were recorded. Roots in the central compart-

ment were separated, washed, and weighed independently from those grown in the outer 

compartment. Number of galls (3 one-gram counts per replicate) and diameters of galls 

(15 measurements per replicate) induced by M. incognita were evaluated using a ste-

reomicroscope. The final numbers of galls per root system were calculated (average of 

galls per gram × root weight). AMF colonization density and intensity were rated using 

light microscope (see: 2.3.5).  

 

This experiment was conducted three times at different time frames during the research 

work (Experiment I: Dec. 2002 –Feb. 2003, Experiment II: Jun.-Aug. 2003, Experiment 

III: Jan.-Mar. 2004), the results of each are compared later to its relative control. Ex-

periment III was conducted to confirm the results obtained earlier, to compare further 

parameters, and to test an AMF isolate that was multiplied later.  

 

Treatments of the different experiments were as follows: 

 Experiment I:  

1. non-inoculated (C),  

2. inoculated with M. incognita (Mi),  

3. inoculated with G. intraradices 510 (Gi 510),  

4. inoculated with G. etunicatum 36 (Ge 36),  

5. inoculated with M. incognita and G. intraradices 510 (Gi 510 + Mi),  

6. inoculated with M. incognita and G. etunicatum 36 (Ge 36 + Mi).  

 

Experiment II:  

1. non- inoculated (C);  

2. inoculated with M. incognita (Mi);  

3. inoculated with G. intraradices 49 (Gi 49);  

4. inoculated with M. incognita and G. intraradices 49 (Gi 49 + Mi).  
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Experiment III:  

1. non- inoculated (C),  

2. inoculated with M. incognita (Mi);  

3. inoculated with M. incognita and G. intraradices 510 (Gi 510 + Mi);  

4. inoculated with M. incognita and G. etunicatum 36 (Ge 36 + Mi);  

5. inoculated with M. incognita and G. intraradices 49 (Gi 49 + Mi);  

6. inoculated with M. incognita and G. etunicatum 139 (Ge 139 + Mi);  

7. inoculated with negative inoculum i.e. produced following the same procedures of 

AMF inoculum production but without the mycorrhizal fungus so that it contains the 

micro-organisms that are not specifically associated with the AMF (Ne + Mi).  

 

The treatments were laid out in a completely randomised design and each consisted of 6 

replicates. 

 

Based on the results obtained from experiments I and II (data obtained until August 

2003), the AMF isolate conferring bioprotection against M. incognita was further tested. 

The interaction was tested in a stepwise manner to verify the event that is most affected 

by the mycorrhizal symbiosis. 

 

 

Figure 3.1: Schematic overview of the time frames used in the set-ups of the mesh pot 

experiments. 

             
           Transplanting 
    (Nematode inoculation)            Harvest 
Newly germinated                         
   seeds [5 days]                              
(AMF inoculation) 

2 Wks 
in the nusery 

5.5 Wks  
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3.2.1.2 Results 

Table 3.1 shows the data obtained in the experiments studying the influence of nursery 

AMF treatments on nematode control (experiments I and II). Neither nematode infec-

tion nor mycorrhizal colonization had an effect on shoot weight. Nematode infection 

increased root weight. Generally, the tested AMF isolates did not induce different 

growth responses. Inoculation of G. intraradices 510 reduced the number of galls in-

duced by M. incognita; however, the reduction was not significant. On the other hand, 

G. etunicatum 36 did not influence the number of nematode galls. In contrast to gall 

numbers, gall size was clearly reduced by all mycorrhizal treatments (Figure 3.2, a-b). 

Mycorrhizal infection by all AMF isolates ranged between 83 % and 95 % and did not 

significantly differ between the inner (inoculated) root periphery and the outer one. 

Nematode infection did not influence mycorrhizal colonization (Table 3.1).  

 

In experiment III (Table 3.2), the results obtained exhibited no plant response in terms 

of growth parameters (shoot fresh weight, shoot dry weight, root weight, and root 

length) to any of the treatments. The numbers of galls (per gram roots) induced by M. 

incognita were significantly reduced in the inner and outer compartments of G. intra-

radices 510 and G. etunicatum 139 treatments (Table 3.3) and per plant (Figure 3.3), 

whereas, the reduction of gall numbers by G. etunicatum 36 was not significant. The 

influence of G. intraradices 49 was restricted to the inner root periphery (Table 3.3), 

and resulted in a reduction in the total number of galls per root system (Figure 3.3). In-

terestingly, the negative (control) inoculum reduced the total number of galls; this re-

duction was statistically similar to G. etunicatum 36 and G. intraradices 49 (Figure 3.3). 

Except for the treatment G. etunicatum 139 there was no difference in the distribution of 

galls between the inner and the outer root peripheries (Figure 3.4). Fewer galls were 

induced in the inner root periphery of G. etunicatum 139 compared to the outer root 

part. G. etunicatum 139 was the only treatment that yielded significantly less eggsacs 

(Table 3.3, Figure 3.3). The density of mycorrhizal infection of all AMF ranged be-

tween 85 % and 90 % and did not differ between the inner and outer root parts (Table 

3.3). As in the results of set I and II, nematodes had no effect on mycorrhizal density. 

Figure 3.2 (c) exhibits clearly that even when mycorrhizal colonization did not affect 

the number of galls, it reduced gall size. This influence was general for all isolates 

tested. 
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Table 3.1: Plant, nematode and mycorrhizal interaction parameters in the experiments studying the influence of nursery AMF treatments on 

nematode control; experiment I and II. Root fresh weight (R FWT), shoot fresh weight (Sh FWT), frequency of mycorrhizal colonization (MF, 

in % colonized root pieces of 1 cm length), and numbers of galls per g in the inner and the outer root peripheries (IR and OR respectively) and 

per plant (± SE). 

 Treatment R FWT [g] Sh FWT [g] Galls/g - IR Galls/g – OR  MF - IR  
[%] 

MF - OR 
[%] 

Galls/plant 

G. intraradices 510 38.1 ± 1.0 abc 154.3 ± 9.9 bc     95.8 ± 2.3 95.8 ± 2.3  
            

G. intraradices 510 
+ M. incognita 

45.4 ± 2.0 ab 171.0 ± 6.3 ab 32.1 ±5.3 b 42.3 ±8.4 b 92.5 ± 2.1 91.7 ± 3.3 680.8 ± 113.0 

            
G. etunicatum  36 32.9 ± 2.2 c 150.4 ± 5.7 bc     95.8 ± 1.5 91.7 ± 2.7  

            
G. etunicatum  36 

+ M. incognita 
35.9 ± 4.1 bc 157.8 ± 5.9 bc 62.9 ±9.4 a 83.3 ± 1.7 a 88.3 ± 3.3 83.3 ± 3.5 987.5 ± 128.4 

            
Control 31.4 ± 1.4 c 161.8 ± 7.8 ab        

            

E
xp

er
im

en
t I

 

M. incognita 47.6 ± 2.7 a 199.3±14.7 a 50.3 ± 10.0 ab 63.8 ± 5.7 ab   992.9 ± 103.5 
             

G. intraradices 49 50.5 ± 2.5 ab 158.0 ± 3.2      95.0 ± 1.7 95.8 ± 2.2  
            

G. intraradices 49 
+ M. incognita 

54.5 ± 3.2 a 143.9 ± 4.9  64.2 ±2.7 a 60.2 ± 6.3  92.5 ± 2.1 98.3 ± 1.7 934.1 ± 27.1 

            
Control 43.6 ± 2.4 b 151.6 ± 5.6         

            

E
xp

er
im

en
t I

I 

M. incognita 51.7± 2.2 ab 157.9 ± 3.5  42.2 ±4.3 b 77.9 ± 6.8    962.3 ± 26.9 

Within the sets values in the same column followed by different letters are significantly different according to Tukey’s multiple range test (P ≤ 

0.05). 
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Table 3.2: Plant growth parameters in the experiment studying the influence of nursery AMF treatments on nematode control and mycorrhizal 

extension; experiment III. Shoot fresh weight (Sh FWT), shoot dry weight (Sh DWT), root fresh weight (R FWT), root length (R L) of the inner 

and the outer root peripheries (IR and OR respectively) of plants (±SE), n.= 6. 

R FWT [g]  R L [m]  
Treatment 

 
Sh FWT [g] 

 
Sh DWT [g] 

IR OR Total  IR OR 
         

Control 
 

95.6 ± 1.8 17.8 ± 0.4 14.2 ± 0.6 10.5 ± 0.7 24.7 ± 1.1  51.2 ± 2.6 62.8 ± 1.9 
 

M. incognita 
 

 

88.2 ± 5.8 
 

17.1 ± 0.9 
 

15.0 ± 1.2 
 

10.5 ± 1.0 
 

25.5 ± 1.9 
  

53.2 ± 3.5 
 

58.4 ± 6.1 
         

G. intraradices 510 
+ M. incognita 

 

89.8 ± 2.3 17.9 ± 1.0 13.5 ± 1.0 9.8 ± 0.7 23.2 ± 1.5  50.5 ± 1.3 57.8 ± 2.4 

G .etunicatum 36 
+ M. incognita 

 

103.0 ± 7.1 18.8 ± 0.8 13.6 ± 1.0 9.9 ± 0.6 23.5 ± 1.6  58.7 ± 3.1 54.6 ± 3.2 

G. intraradices 49 
+ M. incognita 

 

92.2 ± 1.4 18.8 ± 1.3 14.3 ± 0.9 11.2 ± 1.4 25.5 ± 1.5  55.7 ± 1.6 55.5 ± 4.9 

G. etunicatum 139 
+ M. incognita 

 

83.9 ± 3.4 17.2 ± 0.8 16.6 ± 1.2 9.3 ± 0.8 25.9 ± 2.0  56.7 ± 2.5 56.9 ± 7.9 

Negative inoculum 
+ M. incognita 

103.0 ± 6.9 19.4 ± 1.2 13.0 ± 0.7 10.2 ± 0.9 23.3 ± 1.5  48.9 ± 2.2 61.2 ± 2.9 
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Table 3.3: Nematode and mycorrhizal parameters in the experiment studying the influence of nursery AMF treatments on nematode control and 

mycorrhizal extension; experiment III. Numbers of galls per g, numbers of eggsacs per g, frequency of mycorrhizal colonization (MF, in % 

colonized root pieces of 1 cm length), in the inner and the outer root peripheries (IR and OR respectively), and number of galls or eggsacs per 

plant (± SE), n = 6. 

 Galls/ g Eggsacs/g MF [%] 
Treatment IR OR IR OR IR OR 

       
M. incognita 48.9 ± 1.8 a 41.2 ± 5.2 a 7.1 ± 1.1 a 10.1 ± 1.4 a   

           
G. intraradices 510 

+ M. incognita 
23.2 ± 2.1 b 22.4 ± 4.6 b 5.3 ± 0.9 a 5.4 ± 0.4 b 88.3 ± 4.4 90.83 ± 3.52 

           
G.etunicatum 36 
+ M. incognita 

46.6 ± 2.4 a 28.6 ± 3.2 ab 6.6 ± 1.1 a 7.2 ± 1.6 ab 86.6 ± 3.3 85.83 ± 3.27 

           
G. intraradices 49 

+ M. incognita 
29.6 ± 2.7 b 33.9 ± 7.3 ab 4.7 ± 0.8 a 9.5 ± 1.9 a 90.0 ± 2.6 85.83 ± 3.96 

           
G.etunicatum 139 

+ M. incognita 
3.2 ± 0.4 c 11.5 ± 1.2 c 0.3 ± 0.2 b 4.8 ± 0.7 b 89.2 ± 3.0 85.83 ± 1.54 

           

Negative inoculum 
+ M. incognita 

34.1 ± 7.1 ab 29.3 ± 3.0 ab 5.0 ± 1.6 a 9.6 ± 1.6 a   

Values in the same column followed by different letters are significantly different according to Tukey’s multiple range test (P ≤ 0.05). 
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Figure 3.2: Diameter of galls (± SE), induced by M. incognita (Mi) in the inner and 

outer root parts of mycorrhizal (G. intraradices isolates 49 and 510, G. etunicatum iso-

lates 36 and 139) or non-mycorrhizal plants (Ne) in the experiments studying the influ-

ence of nursery AMF treatments on nematode control and mycorrhizal extension; ex-

periments III. I (a), II (b), and III (c). Bars followed by different letters are significantly 

different according to Tukey’s multiple range test (P ≤ 0.05). 
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Figure 3.3: Number of galls (a) and eggsacs (b) (± SE), induced by M. incognita per 

plant in the experiment studying the influence of nursery AMF treatments on nematode 

control and mycorrhizal extension; experiment III. Treatments were inoculated with, G. 

intraradices 510 (Gi 510), or 49 (Gi 49), G. etunicatum 36 (Ge 36) or 139 (Ge 139), 

inoculated with negative inoculum (Ne), or non-mycorrhizal (Mi). Bars headed by dif-

ferent letters are significantly different according to Tukey’s multiple range test (P ≤ 

0.05). 
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Figure 3.4: Distribution of galls (± SE), induced by M. incognita, in the inner and outer 

root peripheries of the different treatments in experiment studying influence of nursery 

AMF treatment on nematode control and mycorrhizal colonization extension experi-

ment III. Treatments were inoculated with, G. intraradices 510 (Gi 510), or 49 (Gi 49), 

G. etunicatum 36 (Ge 36) or 139 (Ge 139), inoculated with negative inoculum (Ne), or 

non-mycorrhizal (Mi). Bars headed by different letters are significantly different ac-

cording to Tukey’s multiple range test (P ≤ 0.05). 
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3.2.1.3 Discussion 

It is generally observed that increased resistance or tolerance of plants to pathogens is 

associated with a well established mycorrhizal infection (Dehne, 1982). Inoculation of 

the plants in the nursery with AMF allows sufficient time to establish the symbiosis 

before transplanting and prior to pathogen exposure (Calvet et al., 2001; Talavera et al., 

2001). The presented group of experiments was designed to meet these observations and 

to simulate common techniques of tomato production; where seedlings are first pro-

duced in pathogen free soil in the nurseries and are then transplanted into the field. The 

experimental set-up permitted also to differentiate the development of AM and nema-

tode infection in the different root peripheries.  

 

Under field conditions beneficial effects of AM on nematode-infested plants can often 

be due to a better plant nutrition of mycorrhizal plants that are then more vigorous and 

able to compensate. In spite of the intense mycorrhizal colonization, growth benefits 

due to AMF inoculation were not observed. In literature, the lack of a growth response 

to AM in greenhouse tomato plants under experimental conditions was often observed 

(Daft and Nicholson, 1972; Bagyaraj et al., 1979; Thomson Cason et al., 1983; 

Diedhiou et al., 2003). Moreover, it is well established that this mycorrhizal effect is 

highly dependent on the involved plant and fungal species (Plenchette et al., 1983). In 

the presented study, beneficial nutritional effects of AM and detrimental influence of 

nematodes are likely excluded by the good growth conditions in the greenhouse, favour-

ing rapid growth and nematode tolerance (Netscher and Sikora, 1990). The tendency of 

higher root weight in the nematode treatments observed in some of the presented ex-

periments (mesh pot- experiments I and II) can be attributed to the hypertrophic root 

tissue of the M. incognita galls. 

 

Mycorrhizal infection by all AMF isolates did not significantly differ between the inner 

(inoculated) and the outer root peripheries and was not influenced by nematode infec-

tion. Nematodes may physically disrupt root tissues and cause physiological alterations 

that impeding AMF colonisation (Brussaard et al., 2001). However, in the presented 

experiment the mycorrhization was rather intense and does not appear to have been af-

fected by nematode infection, the results corroborate with those obtained by Jaizme-

Vega et al. (1997), where M. incognita did not affect the colonization of G. mosseae in 

banana.  
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The significantly lower gall incidence in plants inoculated with G. intraradices 510 and 

G. etunicatum 139 (experiments I and III) confirm reports on the ability of AMF to sup-

press phytonematodes (Jaizme-Vega et al., 1997; Parvatha Reddy et al., 1998; Elsen et 

al., 2001; Diedhiou et al., 2003; Elsen et al., 2003). G. etunicatum 139 was the most 

effective in reducing both nematode infection parameters; no. of galls and no. of egg-

sacs, followed by G. intraradices. Similar influence on gall indices of M. incognita by 

an isolate of G. intraradices on tomato was reported by Suresh et al. (1985). On the 

other hand, the results obtained from other AMF treatments (G. etunicatum 36 and G. 

intraradices 49; experiments I, II and III) agree with other studies where no nematode 

suppression by AMF was conferred (Thomson Cason et al., 1983; Vaast et al., 1998). 

The numbers of galls represent the number of nematodes invaded the root and devel-

oped, while numbers of eggsacs represent the egg-laying females thus the rate of devel-

opment. The lower galls indices in the G. etunicatum 139 and G. intraradices 510 

treatments suggest reduced hatching, reduced invasion, or – when hatching and/or inva-

sion are not involved- the failure of more of nematodes to develop due to post infec-

tional factors. Although mycorrhization by G. intraradices 510 negatively affected the 

number of galls, it seems that females were more advanced in development in this 

treatment as it yielded similar number of eggsacs compared to the control. The results 

provide no evidence of a relationship between the treatments and nematode reproduc-

tion since the egg output was not evaluated. 

 

The differences in efficacy of the AMF isolates to suppress nematode infection could 

not be explained by differences in their ability to improve plant vigour and nutrient up-

take and thus enhancing plant tolerance; neither could it be attributed to difference in 

their ability to colonize the roots as mycorrhization did not differ among the AMF 

treatments. A comparable lack of relation between infectivity and effectivity of AMF in 

interaction with nematodes was reported before (Elsen et al., 2003). Different my-

corrhizal colonization levels would reflect different competition abilities of the isolates. 

Competition for infection sites is one of the mechanisms by which AMF control root 

pathogens (Azcón-Aguilar and Barea, 1996; Harrier and Watson, 2004). It is obvious 

that the ability of AMF isolates to prevent gall formation is not related to the ability to 

colonize roots, suggesting that, competition –if actually involved- is not the only 

mechanism. Tylka et al. (1991) and Elsen et al. (2001) suggested that certain AMF iso-
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lates are capable to induce a systemic response in plants that would be antagonistic to 

the development of nematodes. 

 

Among the other mechanisms reported to be involved in pathogens suppression by 

AMF, are the morphological changes in the root system. Such changes are likely to af-

fect the interaction, particularly nematode-infection. Root system parameters such as 

root weight and length and number of axes may influence invasion (Cook et al., 1999; 

Ehwaeti et al., 1999). In this regard, no differences among the mycorrhizal treatments or 

in comparison to the control were observed in terms of root weight and length. How-

ever, whether this reflects also similarity in root branching was not evaluated. The most 

frequent consequence of AM colonization is an increase in branching (Azcón-Aguilar 

and Barea, 1996). A more branched root system offer more infection sites for juveniles’ 

penetration. More detailed examination for anatomical changes in roots of the different 

treatments is required to reveal the influence of different AMF isolates on root branch-

ing. 

 

Except for G. etunicatum 139 treatment, no differences were observed in gall incidence 

in the two root peripheries. Sikora (1978) demonstrated that the majority of galls in-

duced by M. incognita on tomato were negatively correlated with the colonization levels 

of G. mosseae in the root system which was lower in the outer periphery of the root 

compared to the internal regions. The results obtained here do not exhibit any difference 

in the mycorrhizal colonisation between the two peripheries – when quantified at the 

end of the experiment. However, it could be that AMF isolates effectively suppressing 

nematodes are faster colonizers, which requires evaluation of the mycorrhizal coloniza-

tion at different phases of the experiment.  

 

In contrast to the differences among AMF isolates on the numbers of galls and eggsacs, 

all AMF treatments seem to have negatively affected nematode development, resulting 

in the smaller gall size in all mycorrhizal treatments. Smaller galls under the experimen-

tal conditions used indicate younger age of the galls or suppressed development. Direct 

competition between AMF and endoparasitic nematodes for space inside roots may re-

sult in a suppression of nematode development. Moreover, the growth of both endo-

phytes depends on host photosynthates, so competition for carbon compounds could be 

a cause for smaller nematode galls in mycorrhizal plants. Generally it would be as-
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sumed that the smaller the galls the smaller and the less developed the adult inside the 

gall, growth rate and size of the adults are influenced by food supply and host (Ferris et 

al., 1984; Hillocks et al., 1995; Atkinson et al. 1996), which in turn affects the number 

of generations per growing season and hence the size of nematode population attacking 

the next crop (Madulu and Trudgill, 1994; Mcloed et al., 2001). If smaller galls are 

simply younger, then smaller gall size in mycorrhizal plants is then due to differences in 

pre-infectional aspects such as delayed hatching, less attraction to the target tissues and/ 

or delayed penetration. Synchronization of juveniles’ penetration is necessary to deter-

mine the factors involved.  
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3.2.2 Influence of root diffusates from mycorrhizal and non-mycorrhizal plants on 

nematode hatch 

In the experiments regarding influence of nursery AMF treatments on nematode infec-

tion and mycorrhizal colonization extension into AMF-free soil, some treatments re-

sulted in reduced gall numbers. This reduction could be in principle due to reduced egg 

hatching making less nematodes attack the roots. To investigate this hypothesis root 

exudates of the different mycorrhizal treatments were tested in an in vitro hatching ex-

periment. 

 

3.2.2.1 Experimental set-up 

Tomato seedlings (cv. King Kong II) were transplanted into 600 ml plastic pots and 

grown for four weeks with and without AMF. Plants were watered daily near to field 

capacity. In order to obtain root diffusates watering was stopped for two days and root 

diffusates were then leached with 250 ml water per pot. The crude exudates from five 

pots in each treatment were pooled, filtered and stored in plastic bottles (Gaur et al., 

2000) at 4°C. After collection of root exudates, the root fresh weight was determined 

and mycorrhizal colonization was assessed. The ratio of fresh weight/root diffusates 

solution (w/v) was similar in all treatments; therefore, standardization of root exudates 

concentration was not necessary.  

 

Sterile tissue culture multi-well plates (Greiner Bio-One GmbH, Germany) were used 

for the hatching test. Each treatment was conducted in a separate plate, five wells in 

each plate were used; each represented a replicate. The root diffusates used were col-

lected in the first experiment from three treatments; tomato plants inoculated with: the 

AMF G. intraradices 510, G. etunicatum 36 and from non-inoculated control plants 

(Experiment I). Hatching in distilled water served as a control. Diffusates from plants 

colonized by the AM fungus G. intraradices 49 were tested in a second experiment 

compared with an independent control and water (Experiment II). 

 

Galls of approximately equal sizes, each with one egg-mass, obtained from tomato 

plants 4 weeks after inoculation with freshly hatched juveniles were used. Three galls 

were placed in each test well; 1 ml of the root exudates solution was added. Juveniles’ 

counts and replacement of the exudates from stock solution were made at 48 h intervals 

for 14 days. The plates were incubated in dark at 27 ±1 °C. At the end of the test, the 
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galls in each test well were immersed in 5ml of a 20% solution of 5.25% sodium hy-

pochlorite (Clorox®) for 15 minutes then vortexed for 1 minute to liberate the remaining 

eggs from the gelatinous matrix. The percentage hatch was determined as the ratio of 

the cumulative number of juveniles hatched in the solution to the total number of 

hatched juveniles plus the eggs remaining in the egg mass. 

 

3.2.2.2 Results 

The hatching response by M. incognita to tomato root exudates did not differ among 

diffusates collected from plant colonized by different AMF. Hatching response to root 

diffusates from AMF plants was similar to that of root diffusates collected from control 

plants and similar to hatching rate recorded in water in both experimental sets (Table 

3.4).  

 

Table 3.4: Cumulative percentage of M. incognita hatch (± SE) in root exudates from 

tomato seedlings colonized by different mycorrhizal fungi and compared to root exu-

dates from non-mycorrhizal (control) plants and water, n=5. 

 Days exposed to root exudates  
Treatments 2 4 6 8 10 12 14 

 
Control 

 
5.6 

±0.8 

 
18.6 
±2.0 

 
29.1 
±3.7 

 
45.1 
±5.5 

 
52.7 
±5.7 

 
66.4 
±5.9 

 
77.8 
±4.3 

        
G. intraradices 

510 
4.5 

±1.2 
 

17.6 
±2.2 

26.9 
±2.9 

43.1 
±3.5 

52.1 
±3.4 

66.4 
±2.7 

79.3 
±1.9 

        
G. etunicatum  

36 
7.7 

±1.3 
 

21.1 
±2.9 

34.1 
±4.0 

46.3 
±4.1 

57.4 
±4.2 

71.3 
±3.4 

82.0 
±1.2 

        

E
xp

er
im

en
t I

 

Water 8.4 
±2.4 

 

17.6 
±3.6 

29.4 
±2.9 

42.2 
±2.6 

54.5 
±2.1 

70.3 
±2.2 

82.5 
±2.0 

         
Control 4.4 

±0.7 
 

16.9 
±1.4 

31.8 
±1.8 

49.4 
±2.2 

62.5 
±2.2 

78.0 
±1.4 

92.0 
±0.8 

        

G. intraradices 
49 

4.0 
±1.1 

16.1 
±2.3 

28.8 
±2.9 

46.3 
±2.2 

59.2 
±2.4 

74.8 
±2.8 

90.4 
±1.5 

        

E
xp

er
im

en
t I

I 

Water 6.9 
±1.0 

18.3 
±1.9 

30.2 
±1.2 

42.8 
±1.1 

58.0 
±2.0 

75.8 
±1.5 

90.3 
±0.5 
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3.2.2.3 Discussion 

The first recognition event in the interaction between host and nematode is the possible 

influence of the plant on egg hatching. However, in contrast to some species of cyst 

nematodes, where stimulation by host root diffusates is required for substantial hatch, 

most species of Meloidogyne hatch in water once the development of J2 has completed; 

host root diffusates are not required for substantial hatch, but may enhance the rate of 

hatch (Perry, 1997; Gaur et al., 2000; Zhao et al., 2000). Environmental conditions, 

such as temperature, oxygen level, absence of physiological barriers influence hatching 

(Perry, 1987; Perry, 1997). Cumulative percentage hatch of M. incognita was reported 

to be positively correlated with enzymes activity such as protinase and lipase (Perry et 

al., 1992). However, enzymes activity does not appear to be related to plant signals 

(Perry, 1997). The observations of similar hatching in response to diffusates from my-

corrhizal and non-mycorrhizal plants clearly exhibit that root diffusates did not influ-

ence nematodes hatch and thus the difference in galls incidence in the treatments does 

not mean that more juveniles hatched and attacked the root systems. Still, it is possible 

that hatching test in liquid suspensions does not permit a realistic assessment of all fac-

tors that may influence nematode hatch in soil. However, an in vitro test was adopted 

due to its efficacy and reduced error factor compared to in situ systems where re-

extraction of the eggs and juveniles from soil are required. 

 

3.2.3 J2 attraction to mycorrhizal and non-mycorrhizal plants 

 

3.2.3.1 Experimental set-up 

The migration rate of the second stage juveniles of M. incognita toward mycorrhizal 

and non-mycorrhizal plants was evaluated in a pair choice assay (Olfactometer test). 

Each experimental unit consisted of two 2 l plastic pots attached to each other with a 

dark PVC tube for sewage discharge (Ostendorf, Germany). The tube was composed of 

four compartments (50 mm each) that were separated from each other by polyester 

gauze. The compartments were filled with fine washed and sterilized sand and then at-

tached to the empty pots. Three days before inoculating with M. incognita, tomato 

plants grown with or without AMF (10% v/v) were transferred with their substrate to 

the experimental units in a way that always a mycorrhizal one was connected by the 

tube to a non-mycorrhizal one. Nematode inoculation (1200 J2 in 2ml of water) was 

done through a hole in the upper surface at the middle of the tube. 
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Figure 3.5: Diagram of the experimental unit in which attraction of J2 was studied. 

 

In the first experiment, G. intraradices 510 was tested using five weeks old tomato 

plants (at flowering stage) and evaluation of juvenile migration took place 48 hours af-

ter inoculation. To confirm the result, the experiment was repeated using the AMF G. 

etunicatum 36, and G. intraradices 510, each separately, tomato seedlings used then 

were three weeks old, and evaluation of juvenile migration took place 24 hours after 

inoculation. 

 

For the recovery of second stage juveniles, the sand in each compartment was mixed 

with 2 l of water and stirred for 30 seconds, then allowed to settle for 20 seconds. The 

upper suspension was passed through a set of 150, 50, 30 and 10 µm sieves respectively. 

The precipitated sand was subjected to this procedure five times. To recover the nema-

todes, the sieves were rinsed with 25-30 ml of water. Juveniles extracted from each 

compartment were counted separately in a nematode counting chamber under micro-

scope (method modified; Sikora and Schuster, 2000). The recovery rate for each ex-

perimental unit was calculated as the number of juveniles recovered in relation to the 

number applied and expressed as percentage.  

 

3.2.3.2 Results 

In both experiments, including plants of different ages also at different harvest times, 

significantly higher numbers of M. incognita juveniles migrated towards non-

mycorrhizal plants (Figure 3.6, a-c). There was no difference between G. intraradices 

20 cm 

  

+ AMF - AMF 

Mi J2 
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isolate 510 and G. etunicatum isolate 36 regarding this effect. This difference in migra-

tion was not attributed to differences in growth between the mycorrhizal and the non-

mycorrhizal plants since no differences in this regard were observed (Table 3.5).  

 
Table 3.5: Root fresh weight (R FWT), shoot fresh weight (Sh FWT), shoot dry weight 

(Sh DWT) and mycorrhizal colonization (MF, in % colonized root pieces of 1 cm 

length) ±SE of plants used in the attraction experiment, n = 6. 

Treatments  R FWT 

[g] 

Sh FWT 

[g] 

Sh DWT 

[g] 

MF 

[%] 

G. intraradices 510 (5 wks) Not recorded 93.7 ± 8.0 20.9 ± 0.7 70 ± 3.2 

Non-mycorrhizal  Not recorded 98.3 ± 2.3 20.6 ± 0.46  
     

G. intraradices 510 (3 wks) 15.2 ± 1.6 51.7 ± 1.4 10.5 ± 1.2 62 ± 7.8 

Non-mycorrhizal  16.5 ± 1.9 52.9 ± 1.4 11.0 ± 1.2  

G. etunicatum 36 (3 wks) 14.6 ± 3.0 44.1 ± 3.8   9.2 ± 1.3 55 ± 6.7 

Non-mycorrhizal 15.6 ± 1.7 51.8 ± 3.1 10.6 ± 1.4  
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Figure 3.6: Orientation 

of M. incognita larvae in 

an olfactometer test: Per-

centage of nematodes 

extracted from each part 

is shown.  

a) Attraction experiment 

I, AMF G. intraradices

510; plant age 5 wks; 

nematode extraction af-

ter 48 h.  

b) Attraction experiment 

II, AMF G. intraradices

510; plant age 3 wks; 

nematode extraction af-

ter 24 h.  

c) Attraction experiment 

II, AMF G. etunicatum

36; plant age 3 wks; 

nematode extraction af-

ter 24 h. Bars followed 

by different letters are 

significantly different 

according to Tukey’s 

multiple range test (P ≤

0.05). 
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3.2.3.3 Discussion 

The second event that might be altered in M. incognita - AM systems is the attraction of 

juveniles towards the roots. Generally, attractiveness of a host to a pest is correlated 

with the host or non-host status of the plant (Viglierchio, 1961; Perry, 1997). Attrac-

tiveness of roots depends on many parameters such as root age, level of growth activity, 

and presence of micro-organisms (Lownsbery and Vigliercho, 1961; Perry, 1997). In 

both sets of the attraction experiment presented here, non-mycorrhizal plants were more 

attractive than mycorrhizal ones. The difference in migration of M. incognita juveniles 

is attributed to an altered root growth of mycorrhizal plants as no difference in this re-

gard was observed.  

 

Meloidogyne second stage juveniles do not find their host by random movement, but are 

attracted to host in response to stimuli (Prot, 1980; Hussey, 1985). The primary mecha-

nism of host finding behaviour by nematodes is believed to involve chemotactic factors 

emanating from the hosts’ roots (Zuckerman and Jansson, 1984; Perry, 1997). AM fun-

gal colonisation alters root exudates qualitatively and quantitatively, and changes in the 

exudation pattern are likely to alter the chemotaxis to the roots by the pathogens (Mar-

schner, 1997; Harrier and Watson, 2004). Therefore, the decreased attractiveness (or the 

repellence) of the mycorrhizal roots could result from altered levels or quality of root 

exudates due to mycorrhizal colonization. It is reported that mycorrhizal infection de-

crease root exudation of sugars and amino acids and the formation of lipid-rich vesicles 

may increase costs of the mycorrhizal roots (Peng et al., 1993; Marschner et al., 1997).  

 

Root exudates can be classified broadly according to their rates of diffusion in soil into 

three types; (i) volatile or gaseous compounds, (ii) water soluble and high diffusible 

components and (iii) non-diffusible materials (Spiegel et al., 2003). Observations con-

cerning the kairomones attracting nematodes point that they are of hydrophilic nature 

(Perry, 1997; Rühm et al., 2003). The design of the experimental unit excludes the in-

volvement of non-diffusible materials. Perry (1997) presumed that plant signals reach 

nematode sensory receptors (amphids) exclusively by diffusion. A genus specific gly-

coprotein -associated with the amphids found in several Meloidogyne species- was ex-

pressed in all stages of the Meloidogyne life cycles but not in the sedentary female 

which indicate the involvement of nematode sensory receptors in receiving plant signal 

and their role in host orientation (Davis et al., 1992). It is suggested that nematodes ori-
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entate along amino acids-, carbon dioxide-, lower redox potential- gradients around and 

at root’s surface (Hussey, 1985; Perry, 1997). However, whether factors influencing 

long distance migration (>10 cm) are similar to factors influencing attraction to target 

tissue is unknown.  

 

Lucas García et al. (2001) reported that exudates are related to plant age. The attractive-

ness of mycorrhizal plants did not change when mycorrhizal plants of different age were 

tested. Moreover, the two AMF isolates used in the experiments had an identical effect 

on nematode attraction, although G. etunicatum 36 could not reduce the numbers of 

nematode galls as observed earlier (in the results obtained from testing the influence of 

nursery AMF treatments on nematode infection and mycorrhizal colonization extension 

into AMF-free soil). This may reflect that even when AMF isolates do not have the 

same influence on nematode infection; they share the same basis of attractiveness and 

would exhibit that root finding behaviour by the nematodes does not necessarily reflects 

the degree of compatible interaction establishment.  

 

Further analysis of this phenomenon requires fractionation and comparison of root exu-

dates from mycorrhizal and non-mycorrhizal plants. This would also help to determine 

whether decreased attractiveness was due to altered levels of exudates or to the genera-

tion of novel chemicals associated with the mycorrhizal interaction and capable to im-

pair the orientation of nematodes. Still, the results of the attraction test represent a pair 

choice situation and do not necessarily reflect the situation in the field where the nema-

tode might not have the choice between mycorrhizal and non-mycorrhizal roots. It can-

not explain the reduced number of galls after infection with AMF isolates G. intraradi-

ces 510 and G. etunicatum 139. 

 

3.2.4 Quantification of juveniles’ invasion 

3.2.4.1 Experimental set-up 

The experiment compared invasion into mycorrhizal and non-mycorrhizal tomato roots 

by M. incognita juveniles. Newly germinated tomato plants were grown in 9.5 cm di-

ameter vertically incubated petridishes with a hole in the upper edge, and pores for wa-

ter percolation at the lower edge. The substrate of the mycorrhizal treatment was mixed 

with 10% (v/v) AMF inoculum while the substrate of the control plants was mixed with 

the same amount AMF-free expanded clay. The experimental units were later covered 
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with aluminium foil. Five days later, nematode treatments received 2 ml aliquots of M. 

incognita juveniles’ inoculum (50 ± 2.5 ml-1); control treatments received 2 ml water. 

 

The experimental design included two treatments, with and without AMF (G. intraradi-

ces 510), and 5 harvest times. Five replicates from each treatment were harvested with 

three days intervals. At each harvest AMF colonization and nematodes penetration rate 

were determined (Figure 3.7). 

 

For staining nematodes within the root tissues; roots were bleached in 10% KOH (w/v), 

heated at 70°C for one hour and left in the KOH solution overnight, rinsed with tap wa-

ter, and acidified with 1% HCl for 5 min. The roots were then stained in a solution of 

10% blue ink in 5% acetic acid. 

 

 

Figure 3.7: Diagram of the experimental unit in invasion of J2 was studied and an over-

view of the time frames used. 

 

3.2.4.2 Results  

Significantly fewer nematodes were detected in root of the mycorrhizal treatments at 3 

and 6 days after inoculation. Later, 9 days and afterwards, no significant differences in 

invasion of mycorrhizal plants compared to non-mycorrhizal were detected. No differ-

ences in root weight were observed (Table 3.6). 

3 days 5 days 

Transplanting 
(AMF inoculation) 

 
Covered with 
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 (Nematode inoculation) 
 
 

Covered with 
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Harvest  
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15 days 
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Table 3.6: Invasion of M. incognita juveniles into mycorrhizal and non-mycorrhizal 

roots. Number of juveniles per plant detected in roots of G. intraradices 510 or non-

inoculated Control, frequency of mycorrhizal colonization (MF, in % colonized root 

pieces of 1 cm length) and root fresh weight (R FWT) ±SE, n=5. 

Penetration R FWT [g]  
Day Control   G. intraradices 

510 

 
MF Control G. intraradices 

510 
3 11.2±1.7 a 5.8±0.6 b 28.0±3.7 1.40± 0.03 1.34± 0.02 

6 19.2±2.4 a 10.8±1.1 b 26.0±5.1 1.39± 0.03 1.37± 0.04 

9 26.4±4.3  20.6±2.5  42.0±5.8 1.46± 0.02 1.48± 0.04 

12 27.4±2.3  23.4±1.5  46.0±5.1 1.49± 0.03 1.49± 0.06 

15 28.6±1.6  24.0±1.3  44.0±7.5 1.52± 0.04 1.46± 0.05 

Values in the same row followed by different letters are significantly different accord-

ing to Tukey’s multiple range test (P ≤ 0.05). 

 

3.2.4.3 Discussion  

Nematode resistance due to pre-infection factors may occur at the root surface thereby 

influencing penetration (Thomson Cason et al. 1983); the assay was performed to de-

termine whether the rate of juveniles invading mycorrhizal and non-mycorrhizal roots is 

in correspondence with the results obtained in the attraction test. The experimental unit 

used is expected to exclude long distance attraction. 

 

Mycorrhizal colonization did not limit potential infection sites for nematode juveniles 

and the final number invading the roots of mycorrhizal plants was similar to those in 

non-mycorrhizal plants. These results corroborate with those of Smith et al. (1986). 

However, there was a clear delay in the invasion of mycorrhizal plants. Non-

mycorrhizal roots were invaded faster. This suggests that juveniles reached or recog-

nized penetration sites in non-mycorrhizal root earlier or that penetration was easier, 

whereas in mycorrhizal roots they required longer time to select a penetration site or to 

penetrate.  

 

When second stage juveniles contact the plant root, they explore the root by rubbing and 

pressing the epidermal cells until locating an invasion site, likely in the elongation zone 

of the roots tips. The subventral glands are at their maximum size at this stage (Bird, 
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1968). During invasion, the juveniles secrete cell wall-degrading enzymes such as 1,4-

ndoglucanases, pectates, and cellulases which are produced  in the oesophageal glands 

(Rosso et al., 1999; Huang et al., 2003). Hence, entering the root involves a combina-

tion of mechanical piercing by the stylet and enzymatic softening. 

 

The delayed penetration of mycorrhizal roots could thus be attributed to increased 

lignification of the cell walls of mycorrhizal roots (Gnavi et al., 1996; Slezack et al., 

1999) and thus longer time required for penetration, since invasion involves mechanical 

and enzymatic actions (Hussey, 1985; Wyss, 1992; Francl, 1993, Huang et al., 2003). 

 

Delayed penetration may also be attributed to the interference of AM with recognition 

processes (Oka et al., 2000). Considering the results obtained earlier (attraction assay), 

plants signals emanated from the mycorrhizal roots may have irritated the juveniles so 

that orientation of the penetration sites was delayed. If this to be proved, then factors 

influencing long distance migration (>10 cm) are similar to factors influencing attrac-

tion to target tissue.  

 

Moreover, at such a high inoculation level, the extraradical mycorrhizal hyphae may 

have contributed - as physical barriers for juveniles’ movements- in the delayed inva-

sion. The size of the root system could be excluded from being involved here by show-

ing that treatments had identical root weight. 

 

The results obtained indicate that the less gall incidence in mycorrhizal plants, inocu-

lated with G. intraradices 510 in earlier experiments, appears to be expressed primarily 

due to post infectional resistance mechanisms rather to differences in J2 penetration 

since no difference in the final penetration was observed. Moreover, if delayed penetra-

tion is proved to be a general phenomenon for all mycorrhizal plants, then the smaller 

gall size on mycorrhizal plants can be attributed to this aspect. 

 

3.2.5 The histology of the AMF - nematode- tomato interaction 

In order to follow up the development of nematodes after invasion and plant response 

after the infection process, preliminary histological investigations on tomato root tissue 

were carried out with detail studies of giant cells.  
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3.2.5.1 Experimental set-up 

Histological differences in galls induced by M. incognita as affected by mycorrhizal 

inoculation were examined. Two tomato cultivars known to exhibit different suscepti-

bility levels to RK, Hildares and Tiptop (Masadeh, 2000) and cultivar King kong II 

were used in this test. Two harvest times were considered 

 

For each cultivar the were three treatments (two AMF isolates: G. intraradices 510, G. 

etunicatum 36, and a control); and two harvest times, 14 and 28 days after nematode 

inoculation (dai). At each harvest time, galls induced in tomato roots of different treat-

ments were counted and classified into size scales (small, medium and large). Numbers 

of eggsacs were recorded only at the second harvest. 

 

With regard to the preparation of galls for histological assessment, 15 galls were col-

lected and were fixed for 48 hours in EFA (90:5:5 mixture of ethanol 70%, acid free 

formaldehyde solution 37%, and acetic acid). The fixed samples were dehydrated in a 

series of ethanol concentrations (70%, 90%, 96%, 100%). The embedding procedure in 

2-hydroxyethyl-methacrylate (GMA) was done with Technovit 7100 (Hereaus Kulzer 

Comp., Wehrheim). The dehydrated gall samples were then soaked for two hours in a 

mixture of equal amounts of the basic Technovit 7100 solution and 100% ethanol. 

Overnight, the galls were placed in a mixture of 100 ml Technovit 7100 and 1g “Hard-

ener I” for infiltration. For embedding and block formation, the infiltrated samples were 

orientated in wells of a special Teflon form (Histoform S). The base of the form was 

filled with embedding solution (15ml infiltration solution + 1ml “Hardener II”), then 

five galls were placed longitudinally, the rest of the embedding form was then carefully 

filled. After polymerisation at 37C° the sample blocks were removed from the form by 

use of the Technovit 3400 system and preserved at 4°C until sectioning. 

 

Thin sectioning was done with a rotation microtome (Autocut 2040, Reichert-Jung 

Comp.). Two sectioning thickness were adopted; 4 µm and 6 µm for the two harvesting 

dates (14 and 28 days after nematode inoculation, respectively). The sections were then 

placed on water and every fourth continuous section was mounted on a glass slide, 

which was left overnight on a warm plate (48°C). The dried slides were stained with 0.1 

% toluidine blue in 50 % ethanol for 12-15 min. Galls were compared at two harvest 

dates (14, 28 days after nematode inoculation) for numbers of induced giant cells and 
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numbers of nuclei per feeding site. Additionally the dimensions of the feeding site and 

females and average diameters of nuclei were measured. 

 

3.2.5.2 Results 

The tested tomato cultivars differed in their susceptibility to M. incognita as reflected 

by the number of galls induced (Table 3.7). The two cultivars Hildares and Kingkong II 

were more susceptible compared to cv. Tiptop. Inoculation with either AMF isolate, G. 

intraradices 510 or G. etunicatum 36 did not influence gall numbers in this experiment. 

Colonization among the mycorrhizal treatments did not differ (Table 3.8). No influence 

of the mycorrhizal treatments on gall size was observed (data not shown). Histological 

examination of the structure of galls showed that the observed difference in susceptibil-

ity was expressed as retardation in the development of the typical giant cell wall altera-

tions (Figure 3.8). Cell wall alterations were clearly delayed in cv. Tiptop compared to 

cv. Hildares and cv. Kingkong II. Among other histological parameters quantified in 

this study (number of giant cells/feeding site, diameter of the nuclei, and the female 

size), no specific histological changes could be attributed to mycorrhization (Table 3.9). 

 

Table 3.7: Number of galls and eggsacs per root system (±SE) induced by M. incognita 

at different harvest times (dai = 14, 28) on three tomato cultivars inoculated and non 

inoculated with G. intraradices 510 and G. etunicatum 36, n=3. 

           Cultivar 
 

Treatment  

 
[dai] 

Hildares 
 

galls       eggsacs 

Kingkong II 
 

galls     eggsacs 

Tiptop 
 

galls     eggsacs
 

14 
296.3  
± 7.4 

 295.7  
± 3.7 

 145.0  
± 11.5 

 

       

 
 

M. incognita 
 

28 
373.7   
±17.1 

323.3  
± 23.4 

327.0 
± 18.3 

299.3  
± 9.2 

219.3 
± 13.3 

134.3 
± 6.9 

        
        

 
14 

205.0 
±  35.6 

 263.7  
± 2.8 

 150.0 
± 11.2 

 

       

 
 

G. intraradices  510 
 

28 
344.0 

±  13.1 
280.7  
± 12.2 

326.0  
± 22.2 

308.0  
± 21.7 

243.7 
± 12.4 

127.7 
± 16.3

        
     

14 
312.3 
± 35.8  

 
297.0 
± 10.4 

 
129.0 
± 16.5  

 

       

 
G. etunicatum  36 

28 318.3 
± 11.7  

245.3  
± 10.8 

324.3 
± 11.3 

307.7  
± 6.7 

219.3 
±9.5  

110.0 
± 15.8
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Figure 3.8: Giant cells induced by M. incognita in the tomato cultivars Tiptop (A and 

B), Hildares (C and D) and Kingkong II (E and F). 14 days (A, C and E) or 28 days (B, 

D and F) after inoculation with juveniles. Arrows = cell wall modifications. 
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Table 3.8: Mycorrhizal colonization frequency measured in the histological studies of 

the AMF-nematode-tomato-interaction. Hildares, King Kong II, Tiptop = tomato culti-

vars, dai= days after nematode inoculation, n=3. 

G. intraradices 510 + M. incognita G. etunicatum  36 + M. incognita  
Cultivar  14 dai 28 dai 14 dai 28 dai 

61.7 88.3 65.0 78.3 Hildares 
± 8.8 ± 4.4 ± 5.7 ± 3.4 
68.3 78.3 55.0 88.3 Kingkong II 
± 7.3 ± 6.0 ± 8.7 ± 3.4 
73.3 90.0 81.7 88.3 Tiptop 

± 16.9 ± 2.9 ± 1.7 ± 1.7 
 
Table 3.9: Parameters measured in the histological studies of the AMF-nematode-

tomato-interaction (average of 15 galls). Hildares, King Kong II, Tiptop = tomato culti-

vars, dai= days after nematode inoculation, Area = length × width, n=15. 

  feeding site characteristics female  

Treatment dai Giant cells 

per gall 

diam. of  

nuclei [µm] 

area  

[mm2] 

area  

[mm2] 

14 5.38 ±1.7 14.12 ± 3.9 0.13 ±0.04 0.05 ±0.02  
M. incognita 

28 5.62 ±2.3 14.43 ± 4.1 0.16 ±0.07 0.15 ±0.06 

14 6.33 ±2.5 13.92 ± 3.7  0.16 ±0.08 0.04 ±0.03 G. intraradices  
510  

+ M. incognita 28 6.15 ±2.3 14.70 ± 4.8 0.21 ±0.07 0.18 ±0.06 

14 5.70 ±2.1 11.61 ± 3.7 0.17 ±0.07 0.04 ±0.03 

H
ild

ar
es

 

G. etunicatum  
36  

+ M. incognita 28 5.64 ±2.1 15.37 ± 5.1 0.20 ±0.09 0.17 ±0.06 

       

14 5.75 ±1.2 13.29 ± 3.4 0.15 ±0.03 0.06 ±0.03  
M. incognita 

28 5.71 ±1.1 12.55 ± 4.1 0.14 ±0.05 0.16 ±0.03 

14 5.64 ±1.0 12.70 ± 3.7 0.14 ±0.05 0.05 ±0.03 G. intraradices 
510  

+ M. incognita 28 5.87 ±0.7 13.84 ± 4.4 0.14 ±0.04 0.16 ±0.04 

14 5.80 ±1.5 13.57 ± 3.6 0.15 ±0.05 0.05 ±0.02 K
in

g 
K

on
g 

II
 

G. etunicatum  
36  

+ M. incognita 28 5.73 ±1.0 12.19 ± 3.3 0.17 ±0.07 0.16 ±0.04 

       

14 5.80 ±1.2 13.17 ± 4.4 0.15 ± 0.05 0.02 ±0.01  
M. incognita 

28 6.29 ±1.4 15.02 ± 6.8 0.14 ±0.06 0.10 ±0.06 

14 5.76 ±1.4 12.55 ± 3.5 0.11 ±0.03 0.02 ±0.01 G. intraradices 
510  

+ M. incognita 28 5.67 ±1.0 13.21 ± 4.0 0.15 ± 0.05 0.13 ±0.05 

14 6.13 ±1.3 13.45 ± 3.7 0.15 ±0.05 0.02 ±0.01 

T
ip

to
p 

G. etunicatum  
36  

+ M. incognita 28 5.2 ±1.3 15.57 ± 4.2 0.17 ±0.07 0.15 ±0.07 
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3.2.5.3 Discussion 

The cellular response following root-knot nematode invasion of different hosts has been 

studied (Bleve-Zacheo et al., 1998; Rodrigues et al., 2000). The morphology of the cells 

acting as the feeding site or located near the feeding site is different from other cells; 

differences include the nucleus, the cytoplasm, and the cell wall. lobing of nuclei, pro-

liferation of cytoplasm and organelles, and development of irregularly thickened cell 

walls, are indicators of increased metabolic activity.  

 

In spite of AMF absence on nematode infection parameters, the histological examina-

tion was undertaken to compare the cellular reactions occurring on roots of the different 

cultivars. The histological investigations of galls showed variability in the response of 

the cultivars regarding RKN infection. Although all were susceptible hosts, reactions 

varied with plant cultivars but not with AMF isolates used. When the nematode invades 

the root tissue and becomes sedentary, the initial giant cells are transformed into a mul-

tinuclear system of transfer cells of high metabolic activity (Bleve-Zacheo and Melillo, 

1997). Initial plant responses to nematode infection include cell wall thickening and 

deposition of lignin (Endo, 1991). Between the cells, the walls are transformed by mate-

rial deposited between high numbers of plasmodesmata (Huang and Maggenti, 1969). 

Nutrients delivered to the nematode by the giant cell system are transported via the 

phloem and loaded into the giant cells (Grundler and Böckenhoff, 1997) probably by 

sucrose carriers (Juergensen et al., 2003), a process crucial for the functioning of the 

giant cell system, and referred to as “sink phenomenon” (Hussey, 1985). The assumed 

sink competition by the neighbouring mycorrhizal fungus had no influence on the char-

acteristics of the nematodes feeding site in this study, i.e. cell number or size. However, 

there are reports concerning influence of mycorrhizae on the characteristics of feeding 

sites induced by RKN. Sikora (1979) reported that giant cells produced on mycorrhizal 

tomato plants inoculated with Glomus mosseae were smaller, fewer in number and con-

tained less nuclei and denser cytoplasm than giant cells of the same age produced on 

non-mycorrhizal tomato plants. 

 

The tomato cultivars Hildares and Tiptop are known to have different susceptibility lev-

els to M. hapla (Masadeh, 2000). The results presented here suggest that differences in 

feeding site characteristics are related to different degrees of susceptibility. Studying the 

histological and ultrastructral changes in coffee in response to Meloidogyne exigua and 
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M. megadora, Rodrigues et al. (2000) indicated that differences in morphological char-

acteristics of nematode feeding sites can be in relation to resistance and susceptibility. 

Coffee root cells fed upon by M. megadora showed retraction and roughening of the 

inner wall surface, great presence of paramural bodies, and processes of autophagy 

within the vacuoles, all suggesting an intermediate response between susceptibility and 

resistance. 

 

3.2.6 Mechanisms of action: 

 

3.2.6.1 Induced resistance 

In the experiments studying the influence of nursery AMF treatments on nematode in-

fection and mycorrhizal colonization extension into AMF-free soil the treatments of G. 

intraradices 510 yielded less gall numbers. Certain AMF isolates are capable to induce 

a systemic response in plants that would be antagonistic to the development of nema-

todes. This study was undertaken to test ability of G. intraradices isolate 510 to stimu-

late induced resistance against M. incognita was tested in a split-root trail. 

 

3.2.6.1.1 Experimental set-up 

Two-weeks-old tomato seedlings were uprooted; roots were washed free of soil and 

carefully split into two halves with a dissecting scalpel until just below the cotyledons. 

Each half was transplanted into separate 400 ml plastic pot. The pots were attached to-

gether on the outside with tape. The AM fungus was inoculated to one side of split root 

systems; care was taken to keep the halves separated during transplanting. For the non-

mycorrhizal treatment, one side of split root systems received the same amount of 

AMF- free expanded clay. One week after seedling establishment the untreated halves 

of the root system were inoculated with 500 freshly hatched juveniles. 

 

3.2.6.1.2 Results 

In the split root experiment, inoculation of G. intraradices 510 did not influence growth 

parameters (table 3.10). However, the non-mycorrhizal root halves of mycorrhizal 

plants showed a significant reduction in numbers of galls, but not in number of eggsacs 

neither in gall diameter (table 3.11). 
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Table 3.10: Shoot fresh weight (Sh FWT), shoot dry weight (Sh DWT), root fresh 

weight (R FWT), and root length (±SE) of plants in a split root experiment. Gi 510 = G. 

intraradices 510, Mi = M. incognita, n=6. 

 

 

Left pot                   Right pot 

 

Sh 

FWT 

 

Sh 

DWT 

R FWT 

left          right 

 pot           pot  

R L 

left          right 

  pot           pot 
       

Control                        Mi 111.1 
± 3.3 

21.1 
± 0.4 

12.2 
± 0.7 

16.1 
± 1.1 

36.5 
± 2.1 

38.9 
± 1.3 

       
G. intraradices 510         Mi 107.3 

± 2.3 
22.1 
± 0.5 

11.9 
± 1.0 

13.3 
± 1.1 

37.9 
± 1.6 

38.3 
± 2.1 

 

 

Table 3.11: Numbers of galls, numbers of eggsacs per root compartment, diameter of 

galls (±SE), and mycorrhizal colonization (±SE) in a split root experiment. Gi 510 = G. 

intraradices 510, Mi = M. incognita, MF = mycorhizal frequency in % colonized root 

pieces of 1 cm length, n=6. 

 

 

Left pot                  Right pot

 

No. of  

galls 

 

No. of  

eggsacs 

 

Gall  

diameter 

 

MF  

% 
     

Control                        Mi    324.6 a 
     ± 7.9  

192.0 
± 20.9 

1.01 
± 0.01 

 

     
G. intraradices 510        Mi    279.3 b 

    ± 9.7  
205.0 
± 25.6 

1.03 
± 0.04 

84.0 
± 3.27 

Values in the same column followed by different letters are significantly different ac-

cording to Tukey’s multiple range test (P ≤ 0.05). 

 

3.2.6.1.3 Discussion 

The split root experiment presented here was used to elucidate the possible involved 

mechanism of nematode suppression by mycorrhization. In this context, gall number 

after inoculation with juveniles was reduced only in the non-mycorrhizal halves of 

AMF treatment. However, the level of reduction did not reach the suppression found in 

the mesh pot experiment, where nematodes had been inoculated as eggs giving a lower 

invasion pressure over a longer period. Which suggest that nematode suppression due to 

mycorrhizal inoculation is a result of both localized defense response in the colonized 
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tissue and systemic responses in the non-mycorrhizal roots. It is likely that AM are act-

ing by more than one mechanism as biocontrol agents. Regarding soil-borne diseases 

both local effects and induced resistance have been reported from mycorrhizal tomato 

plants colonized by G. mosseae BG 12 (Cordier et al., 1998).  

 

Plant responses to induced resistance by AMF may include changes in root physiology, 

carbon allocation, root exudation and morphology. The activation of specific plant de-

fence mechanisms as a response to AM colonization has been reported and reviewed. 

Root infection by VAM can elicit the production phytoalxins and associated isoflavi-

noid; molecules that are usually associated with the development of host resistance to 

pathogens, these molecules diffuse from cell to cell and this ability may contribute to 

the irregular distribution of infected cells within cortical tissues. (Gianinazi, 1991)  

However, this aspect of the interaction seems also to be very specific and highly de-

pendent on the particular association of the plant cultivar, fungal species and isolate and 

nematode species since the results do not corroborate with earlier ones under similar 

conditions (Masadeh et al., 2004). 
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4 Physiological markers for the interaction between M. incognita and AMF 

 

Abstract 

A greenhouse pot experiment was conducted to observe differences in susceptibility to 

nematode infection in roots non-colonized or colonized to different degrees by AMF. 

Pre-inoculation of tomato seedlings cv. King Kong II with the AM fungus G. 

intraradices 510 suppressed nematode infection. The degree of nematode infection 

suppression was not influenced by the initial inoculation level of AMF. Mycorrhizal 

treatments inoculated with either 1% or 5% v/v AM inoculum yielded similar number of 

nematode galls. The diameter of nematode galls and mycorrhizal colonization frequency 

were significantly influenced by AMF initial inoculation level. Neither mycorrhizal 

parameter was influenced by nematode inoculation.  

 

Nematode inoculation caused, in correlation with the amount of nematodes used, an 

increase in proline content of roots.  In leaves, raising the nematode inoculation level 

caused a decrease in the chlorophyll fluorescence parameter, Performance Index (PIabs), 

the latter representing a physiological marker for plant vitality. Mycorrhization did not 

change the proline content, but had at least at early stages of the experiment a positive 

impact on photosynthetic activity, assessed as PIabs. 

 

4.1 Introduction 

AMF and RKN are involved in major physiological processes in the plant, including 

host respiration, photosynthesis, nutrient translocation and availability, water relations. 

Thus, evaluating the interaction between the fungal endophyte and the sedentary 

nematode could be measured in other terms than the classical parameters of AMF 

influence on host efficiency and sensitivity. However, investigations of the biochemical 

and physiological relationships of AMF and RKN to their hosts have been rarely 

conducted. 

 

Photosynthesis is of major importance in the life of plants; any interference, disturbance 

or stimulation of this process would influence plant growth and performance. It involves 

two linked stages: 1. the light reaction that occurs in the grana and starts with splitting 

the water at the photosystem II reaction centre and produces ATP and forms NADPH 

by transferring the electron from water to NADP+, 2. the dark reaction that takes place 
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in the stroma and uses ATP and the electrons donated by the NADPH to form sugar 

from CO2 .  

 

Nematode infection causes plant chlorosis and stunted growth, mainly due to their 

influence on water and nutrients uptake, thus it is expected that photosynthesis is 

reduced in nematode infected plants (Melakeberhan and Webster, 1993). A decrease in 

the photosynthetic rate of M. incognita infected beans has been observed as early as 

three days after inoculation (Melakeberhan et al., 1986). On the other hand, AMF is 

known to improve plant resistance or tolerance to nematodes, one of the proposed 

mechanisms is the improved water and nutrient uptake by AMF plants and improved 

rates of photosynthesis in AMF plants. Stimulated photosynthetic activities in 

mycorrhizal plants were reported and attributed mainly to improved phosphate status 

and increased synthesis of the photosynthetic pigments, which in turn result in higher 

rates of photosynthesis (Brown and Bethlenfalvay, 1987; Guillemin et al., 1996). 

 

Another considerable impact of nematodes on plant physiology is their influence on 

contents of amino acids (Lewis and Mc Clure, 1975; Meon et al., 1978; Showler et al., 

1991; Hassan et al., 1994). Amino acid content may change with stress and appear to be 

linked with the susceptibility and resistance to some pests including nematodes (Lewis 

and Mc Clure, 1975; Stephan et al., 1980; Showler et al., 1991). Proline is a non-

essential amino acid and the most rigid of the twenty naturally occurring amino acids. In 

some plants it appears to be critically important in the formation of cell wall proteins, 

and the extensibility of the cell wall may be controlled by the amount of hydroxylation 

of the proline residues in it (Lewis and Mc Clure, 1975). Galls induced on tomato roots 

in response to infection by root knot nematodes contain large amounts of free amino 

acids, particularly proline (Meon et al., 1978).  

 

The aim of this study was to test whether the influence of each, AMF and RKN 

separately and in combination, on the host plant can be qualified by investigating the 

photosynthetic activity through probing the behaviour of the photosystem II by means 

of chlorophyll-a-fluorescence emitted by host leaves did access to the photosynthetic 

activity (Strasser et al., 2000). Another aim of the study was to test the influence of 

AMF on the concentration of proline as it is reported to be a stress marker and exists in 

large amounts in nematode infected plants and AM is known to influence its level.  
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4.2 Material and methods 

4.2.1 Analysis of proline content  

Roots were cut into 2 cm segments and 1 gm of fresh root tissue from each plant was 

washed with distilled water, wrapped with aluminium foil and immediately frozen in 

liquid nitrogen to be stored at -28°C until assay. For analysing the proline content in 

shoots, 5 to 7 leaflets were taken from the eighth leaf of each plant, wrapped in 

aluminium foil, immediately frozen in liquid nitrogen and stored at -28°C until assay. 

Frozen roots and leaves were separately ground to a fine powder in liquid nitrogen with 

a porcelain mortar and pestle. Approximately 0.4 gm were used for proline extraction, 

1.8 ml 10% sulfosalicylic acid was added. The mixture was then vortexed, and allowed 

to stand on ice for 30 min, then centrifuged at 10000 g for 15 minutes. 500 µl of the 

upper aqueous layer was removed into a boiling tube. 300-µl acetic acid, and 300 µl 

fresh ninhydrin reagent (25 mg/ml ninhydrin in acetic acid/phosphor acid mixture, end 

concentration: 60% acetic acid, orthophosphate acid 2.4 M) were applied. The samples 

were heated in a water bath for 45 min and then cooled to room temperature in ice 

water. The ninhydrate colour complex was then extracted with 2 ml toluene. The 

absorbance was measured photometrically at 520nm using toluene for a blank (Bates et 

al., 1973). The proline concentration was estimated through a standard curve of L-

proline with end concentrations of 0, 5, 10, 20, 40, and 60 µg (Figure 5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Standard curve of absorption at 520nm of L-proline solution in toluene. 
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4.2.2 Chlorophyll-a-fluorescence measurements  

Plants were dark adapted for 45 min before measurements. Chlorophyll-a-fluorescence 

kinetics was measured using the Plant Efficiency Analyzer (Handy PEA, Hansatech 

Ltd., King's Lynn, Norfolk, UK); data were analysed and normalised with the program 

‘Biolyzer’ (developed by R. Maldonado-Rodriguez, Laboratory of Bioenergetics of the 

University of Geneva). Measurements were conducted with six coeval plants on leaflets 

of mid leaf-levels. Chlorophyll-a-fluorescence was measured at various steps in the 

time course related to nematode inoculation and development (one week before 

inoculation, one week after nematode inoculation, then every second week until 

harvest); using an excitation light intensity of 2500 µmol m-2 sec-1 plant tissue was 

exposed to excitation light during 1 sec. 

 

The behaviour of the photosystem was evaluated with the JIP-Test (Strasser et al., 1999, 

2000), of which two selected parameters were used in this study: First, the Performance 

Index (PIabs) was chosen as a parameter accounting for functionality of both 

photosystems (PS II and I); it provides a general quantitative value of the actual state of 

plant vitality by combining several physiological events in favour of photosynthetic 

performance (The effects on PIabs result from the regulation of its components which 

are: TR/ABS = density of fully active reaction centres per chlorophyll; ET/TR= 

efficiency with which a trapped exciton moves an electron into the electron transport 

chain further than QA, and ET/ABS= the probability that an absorbed photon will move 

an electron into the electron transport chain). Additionally, the dissipation per excited 

reaction centre (DI/RC) was analysed as it represents the energy that is lost for feeding 

into the electron transport chain. 

 

4.3 Experimental setup 

Tomato seedlings cv. King Kong II were transplanted into 800 ml plastic pots. Two 

weeks after transplanting, when the seedlings had developed enough roots, they were 

inoculated with 0, 500, 1000 and 5000 freshly hatched (≤ 3-day-old) M. incognita 

juveniles. At the inoculation level of 1000 J2 the influence of mycorrhizal colonization 

level was tested by pre-inoculating tomato seedlings at transplanting with 1% or 5% v/v 

AMF inoculum (G. intraradices 510).  
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Treatments of the experiment were as follows:  

1. non-inoculated control (C),  

2. inoculated with 500 J2 M. incognita (Mi L1),  

3. inoculated with 1000 J2 M. incognita (Mi L2),  

4. inoculated with 5000 J2 M. incognita (Mi L3),  

5. inoculated with 1 % v/v G. intraradices 510 (1% AMF),  

6. inoculated with 1 % v/v G. intraradices 510 + 1000 J2 M. incognita (1% AMF Mi 

L2),  

7. inoculated with 5 % v/v G. intraradices 510 (5%AMF),  

8. inoculated with 5 % v/v G. intraradices 510 + 1000 J2 M. incognita (5% AMF Mi 

L2).  
 

The treatments were laid out in a completely randomised design and each was replicated 

6 times. Plants were harvested five weeks after nematode inoculation. 
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4.4 Results 

Data obtained show that all plant growth characters were not affected by the initial 

inoculation levels of AMF. In contrast, initial nematode inoculation levels influenced 

root but not shoot growth. A significant increase in root weight was observed at the 

highest nematode inoculation level (Figure 4.2). 

 

Figure 4.2: Shoot fresh weight (Sh F WT), root fresh weight (R F WT), and shoot dry 

weight (Sh D Wt) of tomato plants. Treatments were: Control (C), inoculated with 500 

J2 M. incognita (Mi L1), inoculated with 1000 J2 M. incognita (Mi L2), inoculated with 

5000 J2 M. incognita (Mi L3), inoculated with 1 % AMF G. intraradices 510 (1% 

AMF), inoculated with 1 % AMF + 1000 J2 M. incognita (1% AMF Mi L2), inoculated 

with 5 % AMF G. intraradices 510 (5%AMF), inoculated with 5 % AMF + 1000 J2 M. 

incognita (5% AMF Mi L2), * = significantly different according to Duncan’s multiple 

range test (P ≤ 0.05), n = 6.  
 

Nematode parameters were influenced by the initial inoculation levels. Gall indexes 

(Figure 4.3, a), numbers of nematode galls (Table 4.1), numbers of eggsacs (Table 4.2) 

and galls diameter (4.4, a), all exhibited an increase with increasing the nematode initial 

inoculation levels. Pre-inoculation of seedlings with the AM fungus G. intraradices 510 
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suppressed nematode infection. This suppression was significant when comparing the 

gall index (Figure 4.3 b) and the number of galls induced per root system (Table 4.1), 

but not the number of egg sacs (Table 4.2). The initial inoculation level of AMF did not 

influence the degree of nematode suppression when comparing number of nematode 

galls (Table 4.1) or gall index (Figure 4.3, b). Both mycorrhizal treatments yielded 

similar number of nematode galls. In contrast, the diameter of nematode galls was 

significantly influenced by the AMF initial inoculation density; galls induced on root 

system of the 5% AMF Mi L2 treatment (inoculated with 5 % v/v G. intraradices 510 + 

1000 J2 M. incognita) were smaller than those induced on root systems of the 1% AMF 

Mi L2 treatment (inoculated with 1 % v/v G. intraradices 510 + 1000 J2 M. incognita) 

and both were smaller than galls of the nematode treatment Mi L2 (Figure 4.4, b). AMF 

colonisation frequency, but not intensity, was also dependent on the initial inoculation 

density (Figure 4.5, a and b). Neither mycorrhizal parameter was influenced by 

nematode inoculation.  
 

Table 4.1: Number of galls per root system (± SE) induced by different levels of M. 

incognita on non-mycorrhizal tomato plants and by 1000 J2 on mycorrhizal plants pre-

inoculated with different levels of the AM fungus G. intraradices 510.  

M. incognita inoculation level  
AMF inoculation level 500 1000 5000 

Non-mycorrhizal 355.0 ± 51.9 634.7 ± 45.3 a 2653.6 ± 196.7 

1% G. intraradices 510  435.3 ± 36.2 b  

5% G. intraradices 510  437.1 ± 57.7 b  
Values in the same column followed by different letters are significantly different 

according to Duncan’s multiple range test (P ≤ 0.05), n = 6. 
 
Table 4.2: Number of eggsacs per root system (± SE) induced by different levels of M. 

incognita on non-mycorrhizal tomato plants and by 1000 J2 on mycorrhizal plants pre-

inoculated with different levels of AM fungus G. intraradices 510, n = 6. 

Nematode inoculation level  
AMF inoculation level 500 1000 5000 

Non-mycorrhizal 137.3 ± 19.5 228.5 ± 23.7 719.9 ± 55.5 

1%  182.2 ± 15.7  

5%  188.0 ± 29.0  
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Figure 4.3: Galls indexes (±SE), (a) comparing three initial inoculation levels of M. 

incognita; 500 J2= Mi L1, 1000 J2= Mi L2, and 5000 J2 = Mi L3, (b) comparing the 

influence of three initial AMF (G. intraradices 510) inoculation levels and one 

nematode inoculation level; non-mycorrhizal= Mi L2; 1% AMF = 1% AMF Mi L2; 5% 

AMF= 5% AMF Mi L2. Bars headed by different letters are significantly different 

according to Duncan’s multiple range test (P ≤ 0.05), n=6. 
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Figure 4.4: Diameter of galls (±SE), (a) compared at three levels of M. incognita; 500 

J2= Mi L1, 1000 J2= Mi L2, and 5000 J2 = Mi L3, (b) compared at three initial AMF 

(G. intraradices 510) inoculation levels and one nematode inoculation level; non-

mycorrhizal= Mi L2; 1% AMF = 1% AMF Mi L2; 5% AMF= 5% AMF Mi L2. Bars 

followed by different letters are significantly different according to Duncan’s multiple 

range test (P ≤ 0.05), n=6. 
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Figure 4.5: (a) Mycorrhizal density and (b) mycorrhizal frequency (±SE), as influenced 

by initial AMF inoculation level and M. incognita. Treatments are: 5 % G. intraradices 

510 (5% AMF), 5 % G. intraradices 510 + 1000 J2 M. incognita (5% AMF Mi L2), 1 

% G. intraradices 510 (1% AMF), 1 % G. intraradices 510 + 1000 J2 M. incognita (1% 

AMF Mi L2). Bars headed by different letters are significantly different according to 

Duncan’s multiple range test (P ≤ 0.05), n = 6. 
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Although values obtained from proline analyses were not significant, the data reveal a 

trend of higher proline content in roots compared to leaves (Figures 4.6, 4.7 and 4.8). 

Nematode inoculation caused an increase in proline content in tomato roots, the 

concentration increased with increasing density of nematode inoculum (Figure 4.6). 

Inoculation of healthy tomato plants with either level of the AM fungus G. intraradices 

510 did not influence proline concentration neither in leaves nor in roots (Figure 4.7). 

Pre-inoculation of nematode infected plants with AMF seemed to reduce the 

concentration of proline in roots compared to the nematode treatments, however, with 

statistically insignificant differences (Figure 5.8). 

 

Figure 4.6: The relationship between nematode inoculation level and proline 

concentration (± SE) in roots and leaves of tomato plants at harvest; Mi L1, Mi L2, Mi 

L3 = 500, 1000, and 5000 J2 M. incognita, respectively, n = 6. 
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Figure 4.7: Effect of initial mycorrhizal inoculum density on proline concentration 

(±SE) in leaves and roots of tomato cv. King Kong II, C= non-inoculated, 1% AMF= 

inoculated with 1% v/v G. intraradices 510, 5% AMF= inoculated with 5% v/v G. 

intraradices 510, n = 6. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 4.8: Effect of initial mycorrhizal inoculum density on proline concentration 

(±SE) in leaves and roots of tomato cv. King Kong II, C= non-inoculated, 1% AMF= 

inoculated with 1% v/v G. intraradices 510, 5% AMF= inoculated with 5% v/v G. 

intraradices 510, and L2= inoculated with 1000 J2 M. incognita, n = 6. 

C

1%AMF Mi L2

5%AMF Mi L2
Mi L2

Pr
ol

in
e 

(µ
g/

 g
 fr

es
h 

w
ei

gh
t)

10

20

30

40

50

60

70

Roots 
Leaves 

C
1%AMF

5%AMF

Pr
ol

in
e 

(µ
g/

g 
fr

es
h 

w
ei

gh
t)

0

20

40

60

80

Roots 
Leaves 



Physiological markers 

66 

Inoculation with M. incognita resulted in a decrease of photosynthetic performance 

assessed as PIabs. The results also show that this influence increased with increasing 

nematode inoculation levels and varied at different duration of infection (Figure 4.9, a). 

On the other hand, Figure 4.9, b exhibits a positive influence of both AMF inoculation 

levels on photosynthetic activity (PIabs), however, this increase was observed only at 

earlier stages of the experiment and later diminished with time to a level equal to the 

non-inoculated control. The effect of AMF inoculation on the PIabs of nematode 

inoculated plants was also positive compared with the singly inoculated nematode 

treatment at one and three weeks after inoculation (Figure 4.9, c). 

Figure 4.10 (a-c) demonstrates the results of the dissipated energy flux determined as 

dissipation per reaction centre (DI/RC). A comparison between nematode inoculated 

plants and the control exhibit a clear increase in DI/RC with increasing nematode 

inoculation level and duration of infection (Figure 4.10, a). AMF inoculation instead 

decreases dissipation of the healthy AMF treatments compared to the non-inoculated 

control (Figure 4.10, b), as well as in dual inoculation treatments with M. incognita 

compared to the singly inoculated M. incognita treatment (Figure 4.10, c). 
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4.5 Discussion 
 
In the presented investigation, tomato plants inoculated with either level of the AM 

fungus G. intraradices 510 or M. incognita did not exhibit growth promotion or 

reduction due to the infection of either root colonizer. AMF improve plant growth 

through improved water and nutrient uptake by AMF external mycelium (Linderman et 

al., 1994), enhanced synthesis of growth promoting hormones (Allen et al., 1982) and 

increased number of vascular bundles. On the other hand, root-knot nematodes affect 

plant growth due to their consumption of host assimilates, through interfering with 

water and nutrient uptake by deforming roots thus diminishing and blocking water and 

nutrients absorption and translocation; nematode infection may also negatively 

influence the production of phytohormones (Melakeberhan and Webster, 1993). Abbot 

and Robson (1985) reported that inoculum density and potential play a role in 

influencing the degree of mycorrhizal dependency. Similarly, loss of biomass or yield 

due to nematode infection is a function of nematode inoculation level, nematode size, 

reproductive potential and duration of infection (Melakeberhan and Webster, 1993). 

The positive effects of either inoculation level of AMF and the negative influence of M. 

incognita on tomato growth in the presented study are obviously excluded by the good 

growth conditions in the greenhouse favouring rapid growth and nematode tolerance 

(Netscher and Sikora, 1990) and reducing mycorrhizal dependency. The results in this 

regard agree with those obtained by Talavera et al. (2001) and Diedhiou et al. (2003). 

The increase in root weight observed at the highest nematode inoculation level is likely 

attributed to nematode weight and the hypertrophic root tissue of the M. incognita galls.  

 

The lower gall indices and numbers in nematode-AMF treatments confirm reports on 

the ability of AMF to suppress phytonematodes (Jaizme-Vega et al., 1997; Parvatha 

Reddy et al., 1998; Elsen et al., 2001; Diedhiou et al., 2003; Elsen et al., 2003). The 

differences of the AMF treatments in colonizing roots were not translated into different 

degrees of nematode suppression. This clearly proves that the ability of AMF to prevent 

gall formation is not related to their ability to colonize roots. Nematode control appears 

when a certain level of mycorrhization is achieved. Saleh and Sikora (1984) reported 

that 38% AM colonization was required for M. incognita control on cotton by G. 

fasciculatum. Mycorrhization in both AMF treatments in the presented study exceeded 

this level; further increase in mycorrhization did not lead to a higher nematode control 
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which corroborates with the results obtained by Diedhiou et al. (2003) who tested the 

influence of G. coronatum against M. incognita on tomato. However, though increased 

mycorrhization - due to a higher initial inoculation level of AMF - did not result in 

increased nematode control, it reduced nematode gall size. Gall size is related to the 

number of nematodes in the tissue and differs among plant species in response to 

nematode infection (Hussey, 1985). Reduced gall sizes on mycorrhizal plants are 

attributed to either younger age of the galls, slower development of the female inside 

the gall, lower degree of hypertrophic development of the gall tissue and/or less 

nematodes in the tissue. Younger age of galls suggest less attractiveness of mycorrhizal 

roots and/or delayed penetration by the second stage juveniles (Oka et al., 2000), while 

slower development of the female inside the gall is likely to be explained by 

competition for space and/or nutrients inside the roots. Moreover, it has been reported 

that ethylene production is correlated with increase in gall weight, suggesting its 

involvement in the hypertrophy of the tissues during gall formation (Glazer et al., 

1983). On the other hand, AM is reported to suppress ethylene production (Mc Arthur 

and Knowles, 1992). It could be that smaller galls on mycorrhizal plant are simply due 

to lower degree of hypertrophic development of the gall tissue. The exact mechanism 

causing the reduction in gall sizes in mycorrhizal plants is uncertain. The correlation 

between gall size and internal AMF colonization favours the idea of space competition 

or suppressed hypertrophic tissue. Moreover, the number of eggsacs produced on 

mycorrhizal and non-mycorrhizal plants was similar which in turn reflect similar 

number of mature females. However, a firm conclusion in this regard requires data on 

gall and female size of mycorrhizal and non-mycorrhizal treatments with synchronized 

J2 penetration. Smaller nematode sizes shall be in favour of plant health, since it is 

assumed that smaller nematodes have less energy demand and thus less influence on 

host growth (Melakeberhan and Webster, 1993).  

 

Infection of plants with nematodes is associated with accumulation of amino acids 

(Stephan and Mc Clure, 1975; Mohanty and Pradhan, 1990; Hassan et al., 1994; Sharma 

and Trivedi, 1996; Mohanty et al., 1999). Amino acid content was reported to affect the 

degree of tolerance, resistance or susceptibility of tomato plants to nematodes (Lewis 

and Mc Clure, 1975; Showler et al., 1991). Proline is the most rigid of the twenty 

naturally occurring amino acids. Its accumulation is a common response of plants to 

water deficit and salinity stress (Taylor, 1996); it was reported in several studies as one 
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of the most influenced amino acids by nematode infection (Sharma and Trivedi, 1996; 

Mohanty et al., 1999). On the other hand, the possible influence of mycorrhizae on 

proline content in relation to environmental stress has been tested in several studies 

(Ruiz-Lozano et al., 1995; Vivas et al., 2003; Pinior et al., submitted), mycorrhizal 

roots were reported to accumulate more proline than non-mycorrhizal ones, while the 

opposite was observed in shoots. The higher proline accumulation in mycorrhizal roots 

enhances osmotic adjustments contributing to maintenance of water potential gradients 

(Porcel and Ruiz-Lozano, 2004). 

 

In tomato plants inoculated with M. incognita, proline concentration increased, although 

not significant, with an increase in nematode inoculum. Proline accumulation may be 

caused by water stress due to the disruption of xylem elements and reduced absorption 

and translocation of water and nutrients from roots to the shoot, due to the malformation 

of roots because of galling, or due to giant cells formation. Accumulation of proline due 

to water stress is a known phenomenon. However, plants were provided with adequate 

amounts of water through out the experiment, thus water stress could be excluded which 

is also supported by growth data. It is obvious that proline accumulation in this case is 

related to other factors than water stress. Moreover, plants subjected to water stress 

accumulate proline in shoots, whereas results obtained here exhibit higher proline 

content in roots compared to shoots. Meon et al. (1978) tested proline accumulation in 

roots and shoots of tomato infected by different levels of M. javanica in comparison to 

proline accumulation in cucumber (which does not accumulate proline under water 

stress, but did so due to M. javanica infection) and concluded that proline accumulation 

was induced by other factors than water stress. The authors proposed that the high 

metabolic activity in roots associated with giant cells and gall formation and with egg 

production (proline is a major constituent of nematode egg shells), exerts a requirement 

for energy which is supplied by free proline manufactured in the leaves and translocated 

to the site of nematode activity, a metabolic sink. However, the fact that proline 

concentration does not deceases in shoots while increases in the roots with increased 

nematode inoculation level and infection does not support the idea of the metabolic 

sink. Mohanty et al. (1999) attributed increased proline concentration in nematode 

infected roots compared with healthy ones to the breakdown of complex proteins during 

feeding process. This would explain the results obtained, since proline concentration 

increased with increasing nematode initial inoculum levels and infection. Moreover, 
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proline appears to be of critical importance in the formation of cell wall proteins, and 

the extensibility of the cell wall may be controlled by the amount of hydroxylation of 

the proline residues in it (Stephan and Mc Clure, 1975).  

 

No clear relationship between proline and AMF colonization was observed. However, a 

trend of proline reduction in shoots and roots in mycorrhizal treatments was observed. 

How proline fits in the general pattern of the physiology of nematode-AMF interaction 

might be explained - if the results would be confirmed in further studies - in either of 

two ways: (1) proline is involved in formation of cell wall proteins and the extensibility 

of cell walls. Galls on mycorrhizal plants are reduced and giant cell systems reported to 

be smaller on mycorrhizal plants (Sikora, 1979), (2) On the other hand, if proline is to 

be considered an energy source for nematodes, it is then expected that less numbers of 

nematodes on mycorrhizal plant have lower energy demand.  

 

Chlorophyll-a-fluorescence transients were analysed to quantify the behaviour of the 

photosystems in tomato plants inoculated with different levels and combinations of 

AMF and nematodes. This method has been used to screen decreases in photosynthetic 

activities caused by abiotic stress (e.g. Strasser et al., 1996; Clarck et al., 1998). 

Influence of inoculation with rhizobacteria and mycorrhizal fungi on photosynthetic 

activity of alfalfa was also tested (Tsimilli-Michael et al., 2000) and stress buffer 

capacity of AMF measured on roses under drought (Pinior et al., submitted) and on 

Pisum sativum plants suffering from cadmium stress (Rivera-Becerril et al., 2002). 

Briefly, this method depends on calculations based on the fluorescence rise exhibited 

during the first second of illumination of a photosynthetic material which shows a 

sequence of phases from the initial to the maximum fluorescence values and have been 

labelled O, J, I, P (Strasser and Govindjee, 1992). The shape of the O, J, I, P transient is 

influenced by several environmental factors. Analysis of the O, J, I, P transients (named 

“JIP-test”) leads to the calculation of structural and functional parameters to quantify 

the behaviour of photosystem II (Strasser and Strasser, 1995). Measurements using this 

method are carried out quickly and thus can be applied easily for screening many 

samples; moreover, the method is non-invasive.  

 

The vitality of plants inoculated by different levels and combinations of AMF and 

nematodes was characterized with the Performance Index which accounts for the 



Physiological markers 

73 

functionality of photosystems I and II. The effect of any microbial inoculation is a result 

of complex interactions with the plant. Both AMF and nematodes are reported to 

influence photosynthetic rate in host plants. M. incognita infection negatively 

influenced the performance index PIabs and this impairment increased with raised 

nematode inoculum density. From the results obtained it seems that at least one 

component of the PIabs parameter (TR/ABS, ET/TR, ET/ABS) is influenced by 

nematode infection. Melakeberhan et al. (1991) used the chlorophyll-a-fluorescence 

technique to assay the activity of water splitting complex of PSII and showed a decline 

in its activity within 24 hours after nematode (Bursaphelenchus xylophilus) inoculation. 

The reduction of the water splitting complex of PSII results in a reduced number of 

electrons (splitting one H2O molecule = 2 H+ + ½ O2 + 2 é) in the electron transport 

chain, which in turn reduces the probability that an absorbed photon will move an 

electron into the electron transport chain. If nematode infection is positively correlated 

with the reduction level of the water splitting complex of PSII, then reduction in PIabs is 

explained also with this trait. Results of the dissipation per reaction centre (DI/RC), 

reflecting non-photochemical processes like heat or chlorophyll-fluorescence 

(Govindjee 1995) are in accordance with those of PIabs. Nematode infection results in a 

higher DI/RC compared to the healthy control plants, and as nematode infection 

increases, this leads to a less active photosynthetic state. The observed reduction in PIabs 

and increase in DI/RC with the course of time during the experiment could be attributed 

to physiological senescence of leaves.  

 

On the other hand, plants inoculated with AMF exhibited a higher performance index 

PIabs compared to the control. The results corroborate with those obtained by Tsimilli-

Micheal et al., (2000), who found through evaluating extra parameters in the JIP-test 

that AMF increases electron transport activity per leaf area. Combined AMF-nematode 

inoculation resulted also in increased values for PIabs and decreased values for DI/RC 

compared to the singly inoculated nematode treatment. This reflects a better vitality in 

mycorrhizal plants even when this is not reflected directly on plant biomass production.  

 

The results obtained demonstrate that the different inoculation levels and combinations 

of G. intraradices - M. incognita exhibit differences when analysed by means of the 

JIP-test. However, due to the lack of studies using different microbial combinations, the 

overall significance of the results obtained cannot be estimated yet. 
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5 Dual inoculation of AMF and rhizobacteria for the improvement of biocontrol of 

Meloidogyne ingognita on tomato 

 

Abstract 

Inoculation of tomato (cv. King Kong II) with the AM fungus G. intraradices 510 or 

either rhizobacteria; Cellulomonas turbata (SR1) or Acinetobacter baumannii (SR6) did 

not enhance growth of the tomato plants. Single inoculation of either bacterium did not 

suppress M. incognita infection. G. intraradices suppressed nematodes infection and 

development. The concomitant inoculation of the AM fungus and either bacterial strain 

enhanced the suppression of nematode galls and eggsacs. When concomitantly 

inoculated, the mycorrhizal symbiosis did not influence the bacterial population density. 

Co-inoculation of SR1 or SR6 with G. intraradices did not enhance mycorrhizal 

colonization.  

 

5.1 Introduction 

Biological control of plant parasitic nematodes is often regarded as a non-acceptable 

alternative for pesticides. Reasons behind this include: inconsistent performance, low 

efficacy and slower action when compared to pesticides (Meyer and Roberts, 2002). 

One approach to improve antagonists’ performance is to include multiple biocontrol 

agents in the nematodes control strategies (Sikora, 1992). Interactions between two 

organisms may produce completely different effects on plants than the separate effects 

of each and even the sum of their separate effects. Potential advantages of bio-control 

agents applied in combination include: (i) multiple modes of action against the target 

pathogen or nematode, (ii) ability to affect more than one stage of the life cycle of the 

target organism, (iii) activity of microbes during different times in the growing season, 

(iv) increased consistency in performance over a wider range of soil conditions, and (v) 

potential to select organisms that affect more than one plant pathogen (Meyer and 

Roberts, 2002). 

 

Rhizobacteria are part of the natural microflora of healthy plants; they may be important 

contributors to plant health and general soil suppressivness (Kloepper et al., 1999). 

Bacteria that possess antagonistic features against pathogens or produce compounds that 

stimulate plant growth are called plant health promoting rhizobacteria (PHPR) or plant 

growth promoting rhizobacteria (PGPR) (Sikora, 1992; Kloepper et al., 1999). Many 
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studies demonstrated the ability of some rhizobacteria strains to suppress a variety of 

soil-borne pathogens (Oostendorp and Sikora, 1990; Raupach and Kloepper, 1998; 

Hoffmann-Hergarten et al., 1998; Reitz et al., 2001; Jetiyanon et al., 2003; Siddiqui and 

Shaukat, 2003). Although a wide range of bacterial genera and species were studied, the 

typical representatives of PGPR are the members of the genera Pseudomonas and 

Bacillus. PGPR antagonize soil pathogens by competing for resources such as iron, by 

production of antibiotics or enzymes, or by inducing systemic resistance in plants (van 

Loon et al., 1998). 

 

Apart from influencing plant growth and health, some rhizobacteria may interact and 

influence the growth and function of other soil microflora. Among the diverse 

interactions between rhizobacteria and other soil micro-organisms are those with AMF. 

In recent years, several types of bacteria have been reported to be associated with the 

rhizosphere of plants colonized by AMF and have been identified as N2 fixing bacteria, 

plant growth promoting rhizobacteria, phosphate solubilizing bacteria and antagonists 

of plant pathogens (Budi et al., 1999). It has been demonstrated that some rhizobacteria 

have the ability to influence mycorrhizal colonization (von Alten et al., 1993; Garbaye, 

1994; Gryndler and Vosatka, 1996); those have been named mycorrhiza helper bacteria 

(MHB) (Garbaye, 1994). von Alten et al. (1993) reported stimulation of mycorrhizal 

development in eight different crops when inoculating the plants with both G. 

intraradices and the rhizobacterium Bacillus mycoides. Similarly, Duponnois and 

Plenchette (2003) described the ability of the Pseudomonas monteilii strain HR13 to 

promote the colonization of several Australian Acacia species by ectomycorrhizal fungi 

and one endomycorrhizal fungus. The combined inoculation enhanced growth of several 

species compared to single inoculation treatments. Among the proposed mechanisms 

underlying the effect of MHB are (i) stimulation of AMF hyphal growth in the 

rhizosphere, (ii) increase of the receptivity of the root, (iii) production of phenolic 

compounds such as hypaphorine, and (iv) increase of the aggressiveness of the fungal 

hyphae (Garbaye, 1994; Duponnois and Plenchette, 2003). 

 

Compared with the substantial volume of work reported on the single use of 

rhizobacteria, AMF, and other antagonists to control plant parasitic nematodes, 

considerably less work has been done to examine the potential of combined inoculants. 

Management of multi-microbial interactions could be a promising control approach; 
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however, candidate biocontrol agents to be used in combinations must be compatible. 

Arising from the believe that associated organisms may complement mycorrhizal 

activities, increased research is being conducted using combined inoculations of AMF 

and bacteria.   

 

Two rhizobacteria, C. turbata (SR1) and A. baumannii (SR6) - both isolated from AMF 

spores - were selected because of their antagonistic behaviour against RKN. Both 

strains were effective in suppressing M. incognita infection in tomato (Reimann and 

Sikora, 2003).  

 

Bacteria that belong to the genus Acinetobacter are Gram-negative, strictly aerobic, are 

found in soil and water, and considered as opportunist pathogens in humans. In contrast, 

members of the genus Cellulomonas are Gram-positive, aerobic or facultatively 

anaerobic, and found mostly in soil (Singleton, 1999). 

 

The main objectives of this study were to determine the effects of the two rhizobacteria 

SR1 and SR6 i) on the control of M. incognita, ii) on mycorrhizal colonization by G. 

intraradices, and iii) the possible stimulation of the mycorrhizal effect against M. 

incognita. 

 

5.2 Material and methods:  

The tomato (L. esculentum Mill.) cultivar King Kong II (Known-You Seed Co. Ltd., 

Taiwan) was used. 

 

5.2.1 Bacteria  

Bacterial cultures were maintained on bouillon agar medium (BN). 

Bouillon agar: meat extract  10 g 

  pepton  10 g 

  NaCl    5 g 

  agar  18 g 

  a. dest.  ad 1000 ml 
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5.2.1.1 Selection of marker strains  

SR1** and SR6 ** are spontaneous rifampicin and streptomycin resistant derivatives of 

the wild type strains of SR1 and SR6, respectively; they were selected as tools for 

monitoring the population density of the bacteria throughout the experimental period. 

The bacterial strains were sub cultured on BN plates and incubated for 48 h at 28°C. A 

selected single colony was transferred into 3 ml CASO broth (CB, 30 g/l, Fluka, 

Germany) and incubated on a rotary shaker (110 rpm) at 28°C. After 24 h, 2 ml of the 

turbid bacterial culture were inoculated into 200 ml CB in a 500 ml Erlenmeyer flask 

and incubated until the suspension became turbid. Then 25 ppm (final concentration) 

sterile filtered rifampicin solution was added and the bacteria were reincubated for 

another 24 h. Two ml of the bacterial suspension were then added to 200 ml CB 

containing 25 ppm rifampicin and incubated until turbidity. After two days the same 

procedure was repeated with 50 ppm rifampicin, and after another two days with 100 

ppm rifampicin to obtain mutants resistant to 100 ppm rifampicin.  

 

In order to obtain mutants resistant against two antibiotics (rifampicin and 

streptomycin), 2 ml of the bacterial culture containing 100 ppm rifampicin were 

transferred into 200 ml CB with 25 ppm rifampicin and 25 ppm sterile filtered 

streptomycin and incubated for 2 days in the shaker. The same procedures to obtain the 

mutant resistant against rifampicin were followed to obtain the mutants resistant for 

both antibiotics. Bacteria surviving the 100 ppm rifampicin and 100 ppm streptomycin 

in the liquid culture were further subjected three times to single-colony isolation on 

rifampicin and streptomycin (100 ppm of each) supplemented BN agar to test for 

stability (Sikirou, 1999). 

 

5.2.1.2 Bacteria inoculation  

For inoculation, a single colony of each bacterial isolate was cultured in 100 ml of CB 

in 250-ml Erlenmeyer flasks incubated on a rotary shaker for 20 h (100 rpm, 28°C in the 

dark). When the antibiotic resistant mutants were used, the medium used for culturing 

them was supplemented with 100 µl/l streptomycin and rifampicin. Bacterial 

suspensions were adjusted to an optical density of 2 at 650 nm, and cells were then 

collected by centrifugation (5000 gav, 20 min, 10°C) the pellet was washed twice with, 

and re-suspended in sterile ¼ Ringer’s solution.  
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The inoculum concentrations were estimated by dilution plating; which corresponded to 

a concentration of 2.6×105 cfu/ml and 4.4×105 cfu/ml for SR1 and SR6 respectively. 

Inoculation of tomato plants was performed by pipetting 5 ml bacterial suspension 

around the stem base. 

 

5.2.1.3 Re-isolation of bacteria from rhizosphere and population assessment  

At the end of the experiment, pots were entirely colonized by the root system, and it 

was assumed that the measurements were made on rhizosphere soil. The abundance of 

the bacteria in the rhizosphere at different times during the experiment was determined 

by dilution plating from the rhizosphere. Three plants were randomly chosen, substrate 

samples were taken with a cork borer from each pot and soil suspensions (1:10) were 

prepared with sterile distilled water and then serially diluted. 100 µl aliquots were 

plated on BN agar supplemented with rifampicin and streptomicin (100 µg/ml). After 

incubation for 48 h at 28°C, the number of cfu was determined and expressed per gram 

of soil dry weight. Re-isolation of the bacteria from the rhizosphere took place three 

times: at nematode inoculation, at the second date of bacterial inoculation, and at 

harvest (Figure 5.1).  

 

5.3 Experimental set-ups 

Newly germinated tomato plants were transferred to Jiffy pots into a mixture of sterile 

sand and commercial compost (3:1), containing, according to the treatment, 10% (v/v) 

of mycorrhizal inoculum. Non-mycorrhizal treatments received the same amount of 

expanded clay. Bacteria were inoculated twice during the experimental period: the first 

inoculation took place when AMF colonization achieved 20% (3- to 4- leaf stage; 14 to 

18 days after sowing), 5 ml of bacterial inoculum were applied in the Jiffy pot around 

the stem base, non-bacterial treatments received 5 ml Ringer’s solution. One day later, 

seedlings were transplanted into 800 ml plastic pots. One week after transplanting, 

when the seedlings developed root system, each plant was inoculated with 500 M. 

incognita juveniles. The second bacterial inoculation was done two weeks after the first 

bacterial inoculation (i.e. one week after nematode inoculation). 

 

The experiment was conducted twice. The first experiment was conducted during the 

summer months (May-July), plants were then fertilized twice a week (Experiment I). 

The repetition was conducted during winter months (January-March) and included the 
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antibiotic resistant strains to monitor the population density of the bacteria (Experiment 

II). Plants of the repetition experiment were fertilized once a week. Harvest took place 5 

weeks after potting. Shoot and root weight were recorded, the numbers of galls induced 

by M. incognita were counted using a stereomicroscope, and mycorrhization parameters 

(colonization frequencies and intensities) were rated.  

 

 

Figure 5.1: Schematic overview of the time frames used in the AMF-rhizobacteria 

combination experiment. 

 

Experiment I consisted of 8 treatments: 

 1. control (C),  

2. M. incognita (Mi),  

3. G. intraradices 510 (AMF),  

4. G. intraradices 510 + M. incognita (AMF + Mi),  

5. SR1 + M. incognita (SR1 + Mi),  

6. SR6 + M. incognita (SR6 + Mi),  

7. G. intraradices 510 + SR1 + M. incognita (AMF SR1 +Mi),  

8. G. intraradices 510 + SR6 + M. incognita (AMF SR6 + Mi).  

Each treatment consisted of 6 replicates. 
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Experiment II consisted of 12 treatments: 

 1. Control (C),  

2. M. incognita (Mi),  

3. G. intraradices 510 (AMF),  

4. G. intraradices 510 + M. incognita (AMF + Mi),  

5. SR1 + M. incognita (SR1 + Mi),  

6. SR1** + M. incognita (SR1** + Mi ),  

7. SR6 + M. incognita (SR6 + Mi),  

8. SR6** + M. incognita (SR6** + Mi ),  

9. G. intraradices 510 + SR1 + M. incognita (AMF SR1 + Mi),  

10. G. intraradices 510 + SR1** + M. incognita (AMF SR1** + Mi),  

11. G. intraradices 510 + SR6 + M. incognita (AMF SR6 + Mi),  

12. G. intraradices 510 + SR6** + M. incognita (AMF SR6** + Mi).  

Each treatment consisted of 8 replicates.  

The treatments of both experiments were laid out in a completely randomised design.  

 

5.4 Results 

Data obtained in experiments I and II show that neither treatment had an effect on plant 

growth parameters (Tables 5.1 and 5.2). Shoot and root weights of plants in Experiment 

I were higher than those obtained in Experiment II. The colonisation by the AM fungus 

was not influenced by the co-inoculation with either bacterium or its antibiotic resistant 

derivative, and neither by M. incognita. Levels of AMF colonization were similar in 

both experiments. 
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Table 5.1: Shoot fresh weight (Sh FWT), root fresh weight (R FWT), and mycorrhizal 

infection (MI) parameters (MF, % colonized root pieces of 1 cm length and MD, 

density of fungal particles in the roots) (±SE) of plants used in Experiment I, AMF= G. 

intraradices 510, SR1= C. turbata, SR6= A. baumannii, Mi = M. incognita, n = 6. 

MI Treatment Sh FWT 
[g] 

R FWT 

[g] MF MD 

Control  70.0 ± 3.0 27.8 ± 1.0   

Mi 66.9 ± 2.4 27.3 ± 1.8   

AMF 70.2 ± 2.4 33.8 ± 2.4 40.0 ± 9.9 1.1 ± 0.1

AMF  + Mi 68.5 ± 1.2 33.1 ± 1.6 40.8 ± 12.0 1.4 ± 0.1

SR6 + Mi 69.9 ± 1.9 35.4 ± 2.2   

AMF SR6 + Mi 74.6 ± 2.3 32.3 ± 1.3 42.5 ± 7.0 1.2 ± 0.1

SR1 + Mi 70.6 ± 1.6 33.0 ± 1.3   

AMF SR1 + Mi 71.5 ± 2.7 31.0 ± 2.4 49.2 ± 9.2 1.2 ± 0.1
 
 
Table 5.2: Shoot fresh weight (Sh FWT), shoot dry weight (Sh DWT), root fresh weight 

(R FWT), and mycorrhizal infection (MI) parameters (MF, % colonized root pieces of 1 

cm length and MD, density of fungal particles) (± SE) of plants used in Experiment II. 

AMF = G. intraradices 510, SR1= C. turbata, SR6= A. baumannii, Mi = M. incognita, 

SR1**, SR6** are the antibiotic mutants of SR1 and SR6 respectively, n = 8. 

MI Treatment Sh FWT 

[g] 

Sh DWT 

[g] 

R FWT 

[g] MF MD 

Control  34.5 ± 0.6 6.7 ± 0.2 8.0 ± 0.4   

Mi 33.2 ± 0.9 6.3 ± 0.2 9.0 ± 0.6   

AMF 32.3 ± 0.7 6.1 ± 0.2 7.8 ± 0.5 41.3 ± 3.2 1.1 ± 0.05

AMF + Mi 32.2 ± 0.9 6.2 ± 0.2 8.6 ± 0.5 38.7 ± 2.5 1.2 ± 0.03

SR6 + Mi 35.9 ± 0.5 7.0 ± 0.1 9.8 ± 0.5   

AMF SR6 + Mi 34.9 ± 0.9 6.6 ± 0.2 9.1 ± 0.3 48.8 ± 4.2 1.2 ± 0.05

SR6 **+ Mi 37.3 ± 0.5 7.2 ± 0.2 8.5 ± 0.4   

AMF SR6 ** + Mi 34.9 ± 0.6 6.7 ± 0.2 7.7 ± 0.3 45.6 ± 4.5 1.2 ± 0.02

SR1 + Mi 32.7 ± 0.7 6.2 ± 0.2 8.2 ± 0.5   

AMF SR1 + Mi 36.2 ± 0.7 6.9 ± 0.1 8.1 ± 0.3 48.8 ± 3.1 1.2 ± 0.04

SR1** + Mi 34.0 ± 0.8 6.9 ± 0.2 8.3 ± 0.6   

AMF SR1** + Mi 35.9 ± 0.9 7.1 ± 0.3 7.3 ± 0.4 47.5 ± 2.7 1.1 ± 0.03
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The results obtained in Experiment I show that the single inoculation of the AM fungus 

G. intraradices 510 and both bacterial isolates SR1 and SR6 did not influence the 

number of galls compared to the M. incognita treatment (Figure 5.2). However, a 

significant reduction in gall numbers was observed in plants inoculated concomitantly 

with both the AM fungus and either bacterial isolates. When inoculated concomitantly 

with the mycorrhizal fungus both bacterial isolates suppressed nematode galls. Both 

bacteria were equally effective in co-inoculation treatments.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 5.2: Number of galls per root system (± SE) induced by M. incognita in AMF-

rhizobacteria combination experiment I. Treatments were: M. incognita (Mi), G. 

intraradices 510 + M. incognita (AMF + Mi), SR1 + M. incognita (SR1 + Mi), SR6 + 

M. incognita (SR6 + Mi), G. intraradices 510 + SR1 + Mi (AMF SR1+ Mi), G. 

intraradices 510 + SR6 + Mi (AMF SR6 +Mi). Bars followed by different letters are 

significantly different according to Duncan’s multiple range test (P ≤ 0.05), n = 6. 

 

Results obtained from Experiment II exhibit the same tendency of the results obtained 

in Experiment I. The AMF treatment significantly reduced number of galls compared to 
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antibiotic resistant derivatives had no influence on the number of galls. All concomitant 

inoculation treatments reduced the number of galls compared to the M. incognita and 

also to the AMF treatments. Effects on nematode galls were almost doubled compared 

to the singly AMF treatment. There were no differences in the level of gall reduction 

among the concomitant inoculation treatments (Figure 5.3, a). With regards to the 

number of eggsacs, the AMF treatment and all concomitant inoculation treatments 

reduced eggsacs when compared to the M. incognita treatment and all singly inoculated 

bacteria treatments except the SR1 treatment (Figure 5.3, b). Differences in gall sizes 

were not observed in this experiment (data not shown).  

 

Over the whole experimental period concomitant inoculation with the AM fungus had 

no significant influence neither on the density of the bacterial population, nor on the 

rhizosphere colonization pattern of either bacterium (Figure 5.4). However, when 

treatments were compared over the three sampling periods, an increase in the population 

density of both rhizobacteria was observed at harvest. Treatments inoculated with A. 

baumannii had a higher number of cfu per g at harvest than treatments inoculated with 

C. turbata.  
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Figure 5.3: Number of (a) galls & (b) eggsacs per root system (±SE) induced by M. 

incognita experiment II. Treatments were: M. incognita (Mi), G. intraradices 510 + M. 

incognita (AMF Mi), SR1 + M. incognita (SR1Mi), SR1** + M. incognita (SR1** Mi), 

SR6 + M. incognita (SR6 Mi), SR6** + M. incognita (SR6** Mi), G. intraradices 510 + 

SR1 + M. incognita (AMF SR1 Mi), G. intraradices 510 + SR6 + M. incognita (AMF 

SR6 Mi), G. intraradices 510 + SR1** + M. incognita (AMF SR1** Mi), G. intraradices 

510 + SR6** + M. incognita (AMF SR6** Mi). Bars followed by different letters are 

significantly different according to Duncan’s multiple range test (P ≤ 0.05), n = 8. 
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Figure 5.4: Colony forming units (cfu) per g soil by the rhizobacteria C. turbata (a) and 

A. baumannii (b), isolated from soil infested with M. incognita, inoculated and non-

inoculated with the AM fungus G. intraradices 510 (a) shows the rhizosphere 

colonization pattern by C. turbata when inoculated singly (SR1**) and concomitantly 

with G. intraradices 510 (AMF SR1**), (b) shows the rhizosphere colonization pattern 

by the A. baumannii when inoculated singly (SR6**) and concomitantly with G. 

intraradices 510 (AMF SR6**), n = 3. 
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5.5 Discussion 

Neither treatment had growth promotion influence in both experiments. The lack of 

growth response might be due to optimum growth conditions in the greenhouse which 

favour rapid growth and tolerance to nematode attack (Netscher and Sikora, 1990). The 

better growth of plants in Experiment I is likely attributed to differences in the dominant 

environmental conditions and to the higher fertilization during the experiment in 

summer. In spite of the controlled growth environment in the greenhouse, external 

environmental factors exert major influences that may demand different cultural 

practices -such as watering and fertilization- during the experiments conducted at 

different seasons. The difference in nematode inoculum efficiency (number of J2 

inoculated: the number of nematodes that developed galls) between the two experiments 

can be therefore attributed to either enhanced plant tolerance or to direct influence of the 

prevailing environmental conditions on the J2 inoculum. The first experiment was 

conducted in the summer; the nematode juveniles may have suffered difficult 

penetration condition due to lower moisture content. 

 

With regard to the influence on nematode infection, the results obtained show that both 

SR1 and SR6 did not control M. incognita although previously shown to have biological 

control activity. In a study comparing nine bacteria isolated from the mycorrhizosphere 

Reimann and Sikora (2003) detected significantly less number of M. incognita 

penetrating roots treated with either SR1 or SR6 three weeks after nematode 

inoculation. Variation in the biocontrol activities of rhizobacteria is a known 

phenomenon (Weller, 1988). Abiotic and biotic factors, as well as delivery methods and 

rates may play major roles.  Substrate has a major influence on bacterial communities in 

relation to nematode control; density and diversity are influenced by level of organic 

amendments (Hallmann et al., 1999) 

 

The absence of effect of the singly inoculated bacterial treatments and the identical 

population densities in mycorrhizal and non-mycorrhizal rhizosphere exclude the 

possibility of direct influence of either bacterium or its metabolites on activity or 

infectivity of J2. Thus detail tests were not considered necessary. Modes of actions by 

which bacteria suppress plant pathogens include growth promotion, induction of 

systemic resistance, competing for resources such as iron and production of antibiotics 

and lytic enzymes (van loon, 1998).   
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The main results of the study suggest that the co-inoculation of tomato with the AM 

fungus G. intraradices 510 and either bacterium SR1or SR6 results in a synergism 

against M. incoognita and improve the efficacy of M. incognita control conferred by the 

single inoculation of the AM fungus.).  

 

The better performance of the dual treatment in suppressing nematode infection may be 

due to specific attributes of micro-organisms under the described experimental system. 

Nematode infection can be suppressed with short-term disruption of early root 

penetration (Sikora and Hoffman-Hergarten, 1993).  

 

The ability of the tested bacteria to stimulate mycorrhizal development and function, as 

well as mycorrhizal effects on the associated bacterial population density and 

development do not seem to play a role. Certain bacteria are reported to stimulate 

mycorrhizal formation and development (von Alten et al., 1993; Garbaye, 1994). 

However, comparing mycorrhizal colonization in singly inoculated AMF treatments 

with dually inoculated treatments revealed no differences in either mycorrhizal 

colonization parameters (frequency and intensity). It was reported that some bacteria are 

capable to accelerate mycorrhizal colonization at early stages and that such influence 

diminishes with time (von Alten et al., 1993). Therefore bacterial inoculation may have 

had accelerated the mycorrhizal colonization during early phases of the interaction 

process. However, bacteria were inoculated when AMF achieved colonization 

frequency of 20%, and this developed into approximately 49% after six weeks in the 

best case, which does not favour the idea of accelerated colonization. Detailed 

estimation of the AMF colonization throughout the whole experimental period and 

testing the influence of bacterial inoculation timing may reveal the exact influence of 

the co-inoculation with either bacterium. Moreover, AM colonization was quantified by 

assessing the level of fungal infection in plant roots after staining which is not a proper 

indicator for the functional aspect of symbiosis (Vierheilig and Ocampo, 1989). If the 

enhanced nematode suppression in dual inoculation treatments is due to stimulated 

functional aspects of the symbiosis and the two tested bacteria are to be considered as 

MHB, the main proposed mechanisms for the MHB effect are to stimulate hyphal 

growth in the rhizosphere (Duponnois and Plenchette, 2003). Among other mechanisms, 

Garbaye (1994) proposed possible effects of MHB on the receptivity of the root, on 
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stimulation of the production of phenolic compounds such as hypaphorine, and on 

increased aggressiveness of the fungal symbiont.  

 

However, the above mentioned parameters were not evaluated in this study. The two 

tested bacteria exhibited similar levels of compatibility in co-inoculation with AMF, 

might be because they are originally isolated from a related microbial community. 

Reports regarding MHB specificity are controversial; while Garbaye and Duponnois 

(1992) demonstrated that the MHB effect was fungus specific, these findings were not 

supported by other studies (Duponnois and Plenchette, 2003).  

 

The results of the bacterial re-isolation clarify that dual inoculation treatments did not 

exhibit higher bacterial population densities in the substrate. Therefore, the better M. 

incognita suppression was not due to better bacterial colonization of the rhizosphere in 

mycorrhizal plants. However, the identical bacterial colonization rates of the 

rhizosphere of the mycorrhizal and non-mycorrhizal plants do not necessarily reflect 

similar colonization and development of each bacterial isolate in the endorhizosphere, 

which was not evaluated in this study. In other words, mycorrhizal colonization may 

have enhanced the endophytic colonization of the bacteria or may have facilitated 

bacterial entrance. Endophytic bacteria may contribute to the control of sedentary plant 

parasitic nematodes (Hallman et al., 1997). A strain of C. turbata has been reported to 

be endophytic with biological control capability against Fusarium wilt (Musson et al., 

1995; Chen et al., 1995).  

 

The present study clearly demonstrates a synergism influence of dual inoculation 

treatments against M. incognita under the described experimental conditions. It is 

accepted that more complex interactions should provide more stable control achieved 

with micro-organisms, and the binary association of bacteria and mycorrhizal fungi 

could be beneficial to plant health and growth. However, the proper selection of both 

bacterium and AM fungus is very important for a positive effect on plant performance. 

To better utilize the beneficial effect of the mycorrhizal symbiosis screenings for 

compatibility with different bacterial strains remain a major task (Alabouvette et al., 

2001).  
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6 General discussion 

 

Estimated crop losses due to plant-parasitic nematodes exceed annually $100 billion. The 

recent de-registration of several chemical nematicides such as DBCP 

(dibromochloropropane) and EDB (ethylene dibromide) and the phase out of methyl 

bromide the have led to increasing interest in the use of biological control agents to control 

those pests (Oka et al., 2000 Chitwood, 2003). Natural enemies of nematodes in the soil are 

many, including bacteria, fungi, and protozoa.  Other types of biological control agents are 

the rhizospheric and endophytic fungi and bacteria, which may protect plants directly or 

indirectly rather than through direct parasitism of the nematodes.   

 

Introduction of natural enemies into soil is one possible biological control strategy for plant 

parasitic nematodes (Sikora, 1992; Kerry, 1993; Kerry, 2000; Oka et al., 2000; Meyer and 

Roberts, 2002; Meyer, 2003). The outcome, however, depends on the interactions of the 

organisms within particular plant pathogen ecosystems (Roberts and Lohrke, 2003). The 

more that is known about the behavior of the nematodes in a particular biocontrol 

interaction system, the easier it will be to establish strategies that optimize biocontrol 

performance for that particular interaction. 

 

In this work the AMF-RKN interaction in tomato was studied. Several AMF isolates were 

screened as possible biocontrol agents against the root-knot nematode M. incognita.  

For an effective reduction of damage caused by nematodes it is necessary that AMF 

influence the pre- and/or post-infectional nematode/host relationship or that they enhance 

plant tolerance (Thomson Cason et al., 1983).  

 

Suppression of nematode infection by AMF is isolate specific and was not attributed to 

difference in mycorrhizal colonization. Raising AMF initial inoculation levels enhanced 

mycorrhization, however, this was not translated into higher degree of nematode 

suppression. This clearly proves that the ability of AMF to prevent gall formation is not 

related to their ability to colonize roots and agree with earlier observations (Saleh and 

Sikora, 1984; Diedhiou et al., 2003). On the hand, the size of nematode galls induced by M. 
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incognita was not isolate specific and was sensitive to frequency of AMF colonization. 

Reduced gall sizes on mycorrhizal plants are attributed to either younger age of the galls, 

slower development of the female inside the gall, lower degree of hypertrophic 

development of the gall tissue and/or less nematodes in the tissue. The exact mechanism 

causing the reduction in gall sizes in mycorrhizal plants is uncertain and requires a close 

synchronization of juveniles’ penetration and estimation of female’s size.   

 

The mycorrhizal colonization seems to exert different influences on the different aspects in 

the nematode life cycle. The first possible recognition event in the AM-nematode 

interaction  (Hatching) was not influenced by mycorrhizal colonization. Root diffusates are 

not required for substantial hatch of most Meloidogyne spp. (Gaur et al., 2000; Zhao et al., 

2000). Hatching is more dependent on environmental factors rather than plant signals.  In 

contrast, juveniles were less attracted to (or even repelled by) the mycorrhizal plants. 

Influence of mycorrhizal colonization on root exudation in relation to chemotaxis of plant 

pathogens have been reported (Marschner, 1997; Harrier and Watson, 2004). Kairomones 

attracting nematodes are likely to be of a volatile or water diffusible nature (Perry, 1997; 

Rühm et al., 2003) and reported to be genus specific and to influence specific 

developmental stages in the nematode life cycle (Davis et al., 1992). The degree of 

nematode suppression by the different mycorrhizal isolates was not related to the degree of 

attractiveness of the roots. An isolate of G. etunicatum (36) -that is inefficient in 

suppressing nematode infection- was as repellent to nematodes juveniles as the efficient 

AMF isolate (G. intraradices 510). Fractionation and comparison of root exudates from 

mycorrhizal and non-mycorrhizal plants would help to determine whether reduced 

attractiveness of the mycorrhizal roots is due to altered levels of exudates or to the 

generation of novel chemicals associated with the mycorrhization and capable to impair the 

orientation of the juveniles. 

 

Moreover, mycorrhization did not limit the potential infection sites for nematode juveniles, 

however, delayed the penetration process. Entering the root involves a combination of 

mechanical piercing by the stylet and enzymatic softening (Hussey, 1985; Wyss, 1992; 

Francl, 1993, Huang et al., 2003). Lignification of the cell walls due to mycorrhizal 
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infection is known (Gnavi et al., 1996; Slezack et al., 1999).  The delayed penetration can 

thus be attributed to the lignification of the AM roots. Correlating this observation to the 

results obtained from attraction assay would suggest that juveniles’ orientation could have 

been affected.  Delayed penetration due to juveniles’ disorientation suggests that 

mycorrhization exert influence on both long distance attraction and attraction to the target 

tissue.   

 

To understand the mechanism involved in AMF suppression of root-knot nematode, AMF 

performance was assessed in a split root trial. Compared with the controls, application of 

AMF to one-half of the root system lowered the infection of root-knot nematode in non-

mycorrhizal nematode-treated sections indicating enhanced defence in the non-mycorrhizal 

half. 

 

Proline was considered as a physiological indicator for the AMF-RKN interaction as it is 

known to accumulate in nematode-induced galls at high concentrations (Lewis and 

McClure, 1975; Bird and McClure, 1976) and reported to be one of the most influenced 

amino acids by nematode infection (Sharma and Trivedi, 1996; Mohanty et al., 1999). 

Proline concentration was positively correlated with the nematode’s infection. Considering 

the reduced nematode infection in mycorrhizal plants and that induced resistance is 

involved in nematode suppression by AMF would explain the negative influence of AMF 

on proline accumulation. Induced resistance is reported to be inactivated in tomato by 

treatment with L-proline (Oka and Cohen, 2001).  

 

The main results of the co-inoculation of tomato with the AM fungus G. intraradices 510 

and either rhizobacterium SR1or SR6 suggest a synergistic effect of the co-inoculation 

treatment against M. incognita.  It is suggested the some rhizobacteria cause a short 

disruption of nematode infection during early roots penetration (Sikora and Hoffman-

Hergarten, 1993). The better performance of the co-inoculation treatment in suppressing 

nematode infection suggests a combined effect due to mycorrhizal and bacterial 

inoculation. Thus lack of influence of the singly inoculated bacteria treatments would 

suggest that disrupting penetration is not enough to suppress infection. 
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In general, it is expected that AMF would only provide partial levels of nematode control 

and likely to not to work as fast as chemical pesticides. The implementation of early 

mycorrhizal inoculation at nursery level can represent an option that is rarely considered for 

the management of root-knot nematodes. Further investigation on the repellence of 

nematode juveniles and the delayed invasion due to mycorrhization may be fruitful for 

possible practical applications in combination with other biocontrol agents that may 

influence the juveniles to optimize biocontrol performance. 
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