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Abstract

In this thesis, we deal with several aspects of the theory of entanglement, all of which
are connected to the problem of finding ways to witness the presence of entanglement
in a system of qudits, i.e., d-level quantum systems.

After having recalled some basic facts and definitions concerning the theory of entan-
glement, we concentrate on the local detection of entanglement via witness operators.
A negative expectation value of these operators signals the presence of entanglement
because their expectation value is positive with respect to all separable states. We
discuss known ways and introduce a new simple method to construct witnesses. In
this form, they are not easily applicable in an experiment, because they require
measurements on the total system. Thus, we construct local decompositions such
that the witnesses can be measured with local measurements only, and minimize
the number of local measurements necessary. We concentrate on witnesses in high
dimensional bipartite systems, and on witnesses for bound entanglement, a weak
form of entanglement, also in multipartite systems. We show how to estimate the
number of local measurements necessary for a witness and prove optimality in some
cases. Finally, we briefly summarize results of the experimental implementation of
witnesses, which has been performed in the group of H. Weinfurter in Munich. Using
witnesses, it has been experimentally proven there that certain states of three and
four photons are multipartite entangled in the polarization degrees of freedom.

Then we introduce simple networks for the experimental generation of bound entan-
gled states of three 2-level systems. We show how the entanglement can be proven
experimentally via locally decomposed witness operators and discuss ways to check
the biseparability properties of the states which are responsible for the bondage of
the entanglement.

Following this, we investigate optimization problems occuring in entanglement the-
ory from the point of view of convex optimization. We show how the problems can
be written such that recently obtained known results from the theory of semi-definite
relaxations can be applied. This leads to a complete hierarchy of approximations to
the optimal solutions. Applications include witnesses operators for bound entangled
states, a known measure of entanglement for multipartite pure states, as well as a
new entanglement criterion for multipartite systems of qudits.

Finally, we discuss the relationship between witness operators and Bell inequalities,
which give bounds on the maximal correlations that can occur in any local and re-
alistic theory. Formulated in the language of quantum mechanics, these inequalities
can be written as witnesses. We investigate the relation in detail for a Bell inequality
for two 2-level systems.

Keywords: Entanglement, Entanglement witnesses, Bound entanglement, Non-
convex optimization, Bell inequalities





Zusammenfassung

In dieser Arbeit behandeln wir mehrere Aspekte der Verschränkungstheorie, die
alle einen Bezug haben zum Problem des Verschränkungsnachweises in Systemen
bestehend aus mehreren

”
qudits“, d.h. quantenmechanischen d-Niveau Systemen.

Wir beginnen mit einer Einführung in die Grundbegriffe der Verschränkungstheorie,
und wenden uns dann dem Verschränkungsnachweis mit Hilfe von lokal zerlegten
Zeugenoperatoren zu. Ein negativer Erwartungswert dieser Operatoren weist Ver-
schränkung nach, da die Operatoren einen positiven Erwartungswert bezüglich aller
separierbaren Zustände haben. Wir erläutern bekannte Konstruktionen und führen
eine neue einfache Methode zur Konstruktion von Verschränkungszeugen ein. In
dieser Form sind die Zeugen experimentell nicht einfach anwendbar, da sie Messun-
gen am Gesamtsystem erfordern. Deswegen zerlegen wir die Operatoren lokal, so daß
sich der Erwartungswert des Zeugen mit mehreren lokalen Messungen messen lässt,
und minimieren die Anzahl der nötigen lokalen Messungen. Wir betrachten Zeugen
in Zweiparteiensystemen hoher Dimension sowie Zeugen zur Detektion von gebun-
dener Verschränkung, einer schwer nachweisbaren Form der Verschränkung, auch für
Mehrparteiensysteme. Wir gewinnen Abschätzungen für die minimale Anzahl der
lokalen Messungen und beweisen in einigen Fällen, daß die Zerlegungen optimal sind.
Schließlich berichten wir in Kürze von Experimenten, die in der Gruppe von Harald
Weinfurter in München durchgeführt worden sind. Dabei wurde die Mehrparteien-
verschränkung von Zuständen von drei bzw. vier Photonen in den Polarisationsfrei-
heitsgeraden mit Hilfe von lokal zerlegten Zeugenoperatoren nachgewiesen.

Dann präsentieren wir einfache Netzwerke zur Erzeugung von gebunden verschränk-
ten Zuständen von drei Zweiniveausystemen. Wir zeigen, wie die Verschränkung
experimentell mit lokal zerlegten Zeugenoperatoren nachgewiesen werden kann, und
vergleichen drei Methoden zum Test der Biseparabilitätseigenschaften, die mit der
Gebundenheit der Verschränkung zusammenhängen.

Danach betrachten wir mehrere Optimierungsprobleme, die in der Verschränkungs-
theorie auftauchen vom Standpunkt der konvexen Optimierungstheorie aus. Wir
zeigen, daß die Probleme so umgeschrieben werden können, daß kürzlich gewonnene
Erkenntnisse der Theorie der semi-definiten Relaxationen angewandt werden
können. Damit erzeugt man eine Hierarchie von Annäherungen an die optimale
Lösung. Beispiele, bei denen solche Optimierungsprobleme auftreten, sind Zeugen-
operatoren für gebunden verschränkte Zustände, ein Verschränkungsmaß für reine
Mehrparteienzustände, sowie ein neues Verschränkungskriterium für Systeme be-
liebiger Dimension und Parteienzahl.

Am Ende der Arbeit wenden wir uns dem Zusammenhang von Zeugenoperatoren
und Bell’schen Ungleichungen zu, die die maximalen Korrelationen begrenzen, die in
einer lokalen und realistischen Theorie auftreten können. In der Sprache der Quan-
tenmechanik entsprechen diese Ungleichungen Zeugenoperatoren. Wir erforschen
diese Beziehung detailliert für eine Bell Ungleichung für zwei Zweiniveausysteme.

Schlagworte: Verschränkung, Verschränkungszeugen, gebundene Verschränkung,
Nicht-konvexe Optimierung, Bell Ungleichungen.
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Introduction

One of the most remarkable features that distinguishes quantum mechanics from
classical mechanics is entanglement. Entanglement refers to quantum correlations
between separated physical systems that can be stronger than correlations allowed by
classical mechanics. The possibility of such correlations was observed already in the
early days of quantum theory by Einstein, Podolsky and Rosen (EPR) [1], who used
it to argue that quantum mechanics could not be regarded as a complete physical
theory. The term entanglement itself was coined by Schrödinger, in a reaction
to the EPR contribution [2]. Three decades later, Bell succeeded in constructing
inequalities that any theory fulfilling the basic assumptions that EPR used in their
argument has to obey [3]. Even more, he showed that entangled states can violate
these inequalities, thereby ruling out the possibility of unifying EPRs beliefs about
the way that physical theories have to be constructed and quantum mechanics.

The attitude towards entanglement changed in the end of the last century from being
focused on the fundamental implications to questions of more practical nature, and
it was realized that quantum systems might be used to perform tasks impossible
or very hard for classical systems. Along these lines, Feynmann suggested to use
quantum systems to simulate other, more complicated quantum systems [6], a very
hard task for a classical computer.

Shortly after, algorithms based on the laws of quantum mechanics were found that
could solve certain tasks faster than any classical computing device, founding the
field of quantum computation. The first of these algorithms was due to Deutsch [7].
Further prominent examples are Shor’s algorithm for factorizing prime numbers [8]
and the search algorithm of Grover [9].

In parallel, other potential applications were developed. The first protocol for the
secure transmission of a random secret key using nonorthogonal polarization states
of photons was proposed by Bennett and Brassard [10], founding the field of quan-
tum cryptography. The first protocol for secret key distribution using entangled
states was proposed few years later by Ekert [11]. Other applications include the
teleportation of quantum states [12], quantum dense coding, enabling the transmis-
sion of two classical bits by sending only one quantum bit or qubit if the two parties
shared an entangled state before [13], and quantum communication complexity pro-
tocols, where several parties have to estimate a function separately with restricted
communication only [14].
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Along with the theoretical discoveries came significant progress on the experimental
side with respect to the capabilities of controlling and manipulating elementary
quantum systems in various experimental set ups. For example, Shor’s algorithm
has been implemented, factorizing 15, in a liquid state nuclear magnetic resonance
(NMR) system [15]. Using NMR control techniques, Deutsch’s algorithm has been
performed recently in an ion trap [16]. An extensive list of achievements can be
found in Refs. [17–19].

Up to now, it is not clear what the crucial ingredient for the success of all these
applications is. However, there is strong evidence that entanglement plays a very
important role. For instance, it was shown that it is necessary for quantum key
distribution [20, 21]. Hence entanglement is interesting both from a fundamental as
well as from a practical point of view. Further, entanglement is not only a theoretical
construct, it has been realized in the laboratory. Even entangled states of more than
two subsystems have been generated in several set ups, e.g., using the polarization
degree of freedom of photons [22] or internal degrees of freedom of trapped ions [23].
Therefore, the characterization of entangled states is of great importance in many
respects.

In this thesis, we deal with several aspects of the theory of entanglement, all of
which are connected to the problem of finding ways to witness the presence of en-
tanglement. In particular, we discuss the local detection of entanglement via witness
operators, the generation and detection of so-called bound entangled states, which
is a particular weak form of entanglement, complete hierarchies of efficient approx-
imations to typical optimization problems in entanglement theory, as well as the
relation between witness operators and Bell inequalities.

The thesis is organized as follows:

In chapter 1 we introduce the basic notions needed for the understanding of the
rest of the thesis. We define entanglement of pure and mixed states and introduce
ways to classify the state space for bipartite systems as well as for multipartite
systems with respect to entanglement properties. Further, we introduce criteria for
entanglement, in particular witness operators. Finally, we give a brief introduction
to Bell’s inequalities.

Then, we concentrate on the construction and local decomposition of witness oper-
ators in chapter 2. We focus on systems consisting of two parties, which can be of
arbitrary dimension, and bound entangled states. Further, we construct new families
of bound entangled states for multiqubit systems, and show how their entanglement
can be detected in a local way with entanglement witnesses. We also present results
of experiments performed by Mohamed Bourennane and coworkers in the group of
Harald Weinfurter in Munich implementing witnesses in multiqubit systems. The
results presented here are based on Refs. [II,V-VIII].1

In the following chapter 3, we turn our attention to the experimental generation
of bound entanglement. We construct simple networks that generate two families
of bound entangled states of three qubits. The motivation is that despite being

1References in roman numerals refer to the publication list on page 103.
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interesting from a fundamental point of view such states have not been produced in
the laboratory so far. We further provide ways to prove that the states are indeed
bound entangled. This chapter is based on Ref. [IX].

In chapter 4, we discuss ways to solve typical optimization problems occuring in en-
tanglement theory. For example, in the construction of witness operators for bound
entangled states typically minimizations of the expectation value of an operator with
respect to product states have to be performed. We show that such problems can be
formulated as minimizations of a linear function subject to polynomial constraints
of a degree of at most three, or subject to a semidefinite constraint and polyno-
mial constraints of a degree no larger than two. We then apply recently obtained
known results from the theory of semi-definite relaxations to the formulated opti-
mization problems. These approximate the original computationally hard problems
by a hierarchy of efficiently solvable semidefinite programms. In the formulation
that involves only polynomial constraints, the solution of the original problem is
obtained asymptotically.

The results, which are based on Ref. [X], are very useful from a practical point of
view. Further, they are also interesting from a fundamental theoretical point of view,
because it is possible to obtain a new criterion for entanglement of mixed quantum
states, for any dimension and for any number of parties.

Finally, in chapter 5, we return to the origin of the introduction: the point raised
by EPR. Formulated in the language of quantum mechanics, the Bell inequalities
correspond to witness operators. In the last chapter, we investigate this relationship
in detail for a prominent two qubit Bell inequality.
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Chapter 1

Entanglement

In this chapter we give an introduction to the main concepts which are needed in
the following chapters. The intention is to give an overview over the basic notions
needed for the rest of the thesis, so we will in general omit proofs and refer to the
literature, while discussing more technical details in later chapters in case they are
needed.

We introduce the concept of entanglement explicitly for pure states of two physical
systems only, and generalize this to mixed states where both quantum and classical
correlations occur. We also mention criteria designed to distinguish classical from
quantum correlations, with an emphasis on entanglement witnesses, which are the
main objects of interest of this thesis. Finally, we introduce the concept of Bell
inequalities.

1.1 Bipartite entanglement

1.1.1 Pure states

A pure quantum state of a single quantum system is described by a state vector |ψ〉
which is an element of a N -dimensional Hilbert space H, where N corresponds to
the number of degrees of freedom of that system. Here, as well as in the rest of the
thesis, we consider only systems with a finite number of degrees of freedom. For
such a space there exists an orthonormal basis {|i〉}Ni=1. Every state can be written
in this basis as

|ψ〉 =
N
∑

i=1

ψi|i〉, where ψi = 〈i|ψ〉. (1.1)

In analogy, we can also describe two separate systems, with N and M degrees
of freedom, say. Let the first be in a state |ψ〉 ∈ HA and the second in a state
|φ〉 ∈ HB , where the dimensions of the Hilbert space are again given by the respective
numbers of the degrees of freedom. The state of the composite system can then be
described with the help of the tensor product, the composite state |ψ〉 ⊗ |φ〉 lives in
the composite Hilbert space HA ⊗HB = Hcomposite with the dimension N ×M .
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The tensor product has the properties that for arbitrary states |ψ1,2〉 ∈ HA, |φ1,2〉 ∈
HB , and for any α ∈ �

the identities

(|ψ1〉 + |ψ2〉) ⊗ |φ1〉 = |ψ1〉 ⊗ |φ1〉 + |ψ2〉 ⊗ |φ1〉 (1.2)

|ψ1〉 ⊗ (|φ1〉 + |φ2〉) = |ψ1〉 ⊗ |φ1〉 + |ψ1〉 ⊗ |φ2〉 (1.3)

α|ψ1〉 ⊗ |φ1〉 = (α|ψ1〉) ⊗ |φ1〉 = |ψ1〉 ⊗ (α|φ1〉) (1.4)

hold.

A particular product basis for the composite system can be constructed from the

tensor products of the bases of the individual systems, i.e., {|i〉 ⊗ |j〉}(N,M)
(i,j)=(1,1) is a

basis of the composite system HA ⊗HB .

Using these definitions, we can state

Definition 1.1. A pure product state of the form |ψ〉 ⊗ |φ〉 ∈ HA ⊗ HB is called
separable. A pure state |Ψ〉 ∈ HA ⊗HB which cannot be written as a product state
is called entangled.

Separable states can be prepared by individual, independent local actions of each of
the two parties alone. For a system in an entangled state, each subsystem is not in
a definite state anymore, only the composite state is well defined.

If we want to write an entangled state of a bipartite state in terms of a product
basis, we can use the freedom of choice of the local bases to obtain a very convenient
form with the Schmidt decomposition. Before we state it, we introduce the singular
value decomposition [24, 25]:

Theorem 1.2. Let C be a complex N ×M matrix of rank k. Then there exist a
unitary matrix U of dimension N × N , a unitary matrix V of dimension M ×M ,
and k positive numbers λj, the singular values of C, such that

C = UDV †, (1.5)

whereD is a N×M matrix where the only nonvanishing entries are the k decreasingly
ordered entries λj on the diagonal. Between the coefficients λj and the entries of
the matrices U and V the following relations hold: The columns of U are given by
the vectors |uj〉 fulfilling CC†|uj〉 = λ2

j |uj〉, while the columns of V are given by the

vectors |vj〉 fulfilling C†C|vj〉 = λ2
j |vj〉.

Theorem 1.3 (Schmidt decomposition). Let |Ψ〉 be a state of a composite system
in the Hilbert space HA⊗HB of dimension N ×M . Then there exist bases {|i〉}Ni=1

of HA and {|̃i〉}Mi=1 of HB such that

|Ψ〉 =
r
∑

i=1

ai|i〉A ⊗ |̃i〉 (1.6)

and ai > 0. The number r is called the Schmidt rank of |Ψ〉. It cannot exceed the
minimum of N and M , i.e., r ≤ min(N,M). For product states, r = 1.
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Proof. Expanding the state in a product basis and applying the singular value
decomposition to the coefficient matrix it follows that

|ψ〉 =
∑

i,j

Cij |i〉 ⊗ |j〉 =
∑

m,n,i,j

UimDmnV
†
nj |i〉 ⊗ |j〉

=
∑

m

λm
(

∑

i

Uim|i〉
)

⊗
(

∑

j

V ∗
jm|j〉

)

=
∑

m

λm|m̃〉 ⊗ |m̄〉.

The vectors |m̃〉 =
∑

i Uim|i〉 are orthogonal because U is unitary, and the vectors
|m̄〉 =

∑

j V
∗
jm|j〉 are orthogonal because V is unitary. Further, the summation over

m goes from 1 to k, and k cannot exceed the minimum of the number of columns
N and the number of rows M of the matrix of coefficients C. 2

Here and in the following, ∗ denotes complex conjugation.

The state

|Ψmax〉 =
1√
d

d
∑

i=1

|ii〉 (1.7)

is usually called maximally entangled. A rather intuitive justification is that it has
the maximal Schmidt rank and balanced Schmidt coefficients. However, there are
more concrete reasons for this, some of which we will name below. For two qubits,
the following maximally entangled states are denoted as Bell states

|ψ±〉 =
1√
2

(|01〉 ± |10〉) (1.8)

|φ±〉 =
1√
2

(|00〉 ± |11〉). (1.9)

The state |ψ−〉 is special because it is invariant under local unitary transformations
of the form U ⊗ U and is referred to as the singlet state. Note that the Bell states
can be transformed into each other just by changing the local bases.

1.1.2 Mixed states

Let us go back to a single system. We can imagine a source that produces dis-
tinct states |ψi〉 with probabilities pi. In order to calculate expectation values of
observables with respect to the average state produced by the source, the density
matrix

ρ =
∑

i

pi|ψi〉〈ψi| (1.10)

can be used. From the definition it follows that ρ fulfills

(i) ρ ≥ 0 (ii) ρ = ρ† and (iii) Tr[ρ] = 1. (1.11)

Here (i) means that all eigenvalues of ρ are positive semi-definite, while (iii) holds
because Tr|ψ〉〈ψ| = 1 for any pure state |ψ〉, and

∑

i pi = 1 by definition.
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For systems a single qubit, the density operator can be conveniently written as

ρ =
1

2

( �
+ s · σ

)

(1.12)

with the help of the Pauli matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, and σz =

(

1 0
0 −1

)

. (1.13)

Together with the identity
�
, they form a basis of the space of 2 × 2 dimensional

Hermitean matrices. In this form, the condition Tr[ρ] = 1 is already ensured by the
prefactor 1/2. Further, the condition ρ ≥ 0 requires that s = |s| ≤ 1. This can be
easily seen by expanding ρ in the basis of eigenstates of s · σ as

ρ =
1

2

(

(1 + s)|s+〉〈s + | + (1 − s)|s−〉〈s − |
)

. (1.14)

Hence the pure states are at the border (s = 1) of the so-called Bloch ball of vectors
s.

If Alice possesses a source of qubits and wants to know the density matrix describing
the source, then she can obtain it by measuring the expectation values of Stern-
Gerlach type experiments oriented along the x, y, and z directions, corresponding
to the σx, σy, and σz operators. From these expectation values she can infer the
vector s,

Tr[ρσi] = si, (1.15)

for i = x, y, z.

Let us come back to bipartite systems again. We can also write any density matrix
of a two qubit system with the help of the Pauli matrices as

ρ =
1

4

3
∑

i,j=0

λijσi ⊗ σj , (1.16)

where σ0 =
�

and σ1,2,3 = σx,y,z. In this case, the tensor products of Pauli matrices
and the identity span the space of Hermitean 4 × 4 matrices. The (0, 0) element of
the λ matrix has to be equal to 1 due to the normalization of ρ, and the other are
calculated as follows:

λkl = Tr[ρ(σk ⊗ σl)]. (1.17)

In fact, if Alice and Bob share a system in the state ρ, then they can obtain the
elements of the λ matrix, and in effect the density matrix itself, just by local mea-
surements due to the tensor structure. For instance, Tr[ρ(σx ⊗ σy)] corresponds to
the expectation value of Alice performing a Stern-Gerlach experiment directed along
the x direction on her part of the system and Bob along the y direction on his part.

In fact, any density operator can be written in terms of a basis of tensor products
of single particle operators, enabling the local measurement of the density matrix.
This is referred to a quantum state tomography.
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We can now extend the definition 1.1 to mixed states:

Definition 1.4 [26]. A density matrix ρ ∈ HA⊗HB is separable iff it can be written
as a convex combination of pure product states, i.e.,

ρ =
∑

i

pi|ψi〉〈ψi| ⊗ |φi〉〈φi| (1.18)

with
∑

i pi = 1. Otherwise, ρ is entangled.

The question arises: Given a state ρ, is it entangled or not? The opposite question
regarding to whether a state is separable or not is the so-called separability problem.
Before we state one of the most important separability criteria, the positive partial
transpose (PPT) criterion, we define the operation of partial transposition.

Definition 1.5. If ρ is the state of a composite system living in a Hilbert space
HA⊗HB of dimension N ×M , then the transposition with respect to subsystem A
is defined as

ρTA =
∑

ijkl

ρik,jl(|i〉〈j|)T ⊗ |k〉〈l| =
∑

ijkl

ρik,jl|j〉〈i| ⊗ |k〉〈l|. (1.19)

The partial transpose is basis dependent, but the eigenvalues of the partially trans-
posed state are not. For bipartite systems, (ρTB )TA = ρT = ρ∗ ≥ 0, so that ρTA ≥ 0
implies ρTB ≥ 0 and vice versa.

If a density operator fulfils ρTA ≥ 0, it is common to say “ρ has a PPT”, or even “ρ
is PPT.”

Now we can state the

Theorem 1.6 (Peres-Horodecki). A state ρ of a bipartite system of dimension 2×2
or 2 × 3 is separable iff ρTA ≥ 0 [27, 28].

For systems of higher dimensions, the positive partial transpose is only a necessary
condition for separability. That it is necessary for any dimension is easy to see
because for a separable state of the form of Eq. (1.18),

∑

i

pi|ψi〉〈ψi|T ⊗ |φi〉〈φi| =
∑

i

pi|ψ∗
i 〉〈ψ∗

i | ⊗ |φi〉〈φi| ≥ 0, (1.20)

holds.

That the criterion is only necessary for systems of higher dimensions or those con-
sisting of more than two parties implies that there exist states of those systems
which are PPT but nevertheless entangled. A criterion which we will use later to
detect the entanglement of PPT entangled states is

Theorem 1.7 (range criterion) [29]. Let ρ act on a Hilbert space H = HA ⊗HB,
dim(H)=M . If ρ is separable then there exists a set of product vectors {|ψi〉⊗ |φj〉}
with n ≤M 2 pairs of indices (i, j) and probabilities pij such that

1. ρ =
∑

i,j pij|ψi〉〈ψi| ⊗ |φj〉〈φj | and ρTA =
∑

i,j pij|ψ∗
i 〉〈ψ∗

i | ⊗ |φj〉〈φj |,
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2. the vectors {|ψi〉⊗|φj〉} ({|ψ∗
i 〉⊗|φj〉}) span the range of ρ (ρTA), in particular

any of the vectors {|ψi〉⊗ |φj〉} ({|ψ∗
i 〉⊗ |φj〉}) belongs to the range of ρ (ρTA).

A criterion related to the PPT criterion, which is also based on a reordering of the
density matrix, is the cross norm [30] or realignment [31] criterion. Other operational
criteria include the reduction criterion [32], the majorization criterion [33], criteria
for low rank density matrices in 2 × N [34] and 2 × 2 × N [35] dimensions, as well
as recently established criteria based on semidefinite programming [36–39]. Such a
criterion [X] is part of this thesis and will be discussed in detail in chapter 4.

All the criteria mentioned above are operational in that given a density operator
ρ, the criteria can be evaluated directly. A further strong nonoperational criterion
based on positive maps can be found in Ref. [28]. In addition, there are several
criteria which do not require the complete knowledge of the density matrix. In the
following subsection, we discuss a prominent example of these: the entanglement
witnesses [28, 40]. In chapter 2, we discuss how they can be applied in experiments
via local decompositions, where we will also compare this method to others which
do not require the knowledge of the complete density matrix either.

1.1.3 Entanglement witnesses

From the definition of a density operator in Eq. (1.10) it follows that the set M of
all physical states ρ fulfilling the conditions (1.11) is a convex set. It is a subset of
the real vector space of Hermitean operators acting on a Hilbert space H, which we
denote as HS. Furthermore, the set is bounded and closed. In addition, it follows

������������������������������������������������������������������������������

������������������������������������������������������������������������������

�����������������������������������������������������������������������������

���������������������������������������������������������������
���������������������������������������
���������������������������������������

a) b) c)

Figure 1.1. The sets a) and b) are convex, because the line connecting
any two points belonging to the set lies within the set. This is not the
case for set c).

from the definition (1.18) of separable states that the set S of separable states is a
convex, bounded, and closed subset of M, with the projectors onto product vectors
as extremal points.

Basic separation theorems of convex analysis ensure [41] that for each state ρ which
does not belong to S there exists a hyperplane separating ρ from S. This can also be
extended to infinite dimensional systems by using a corollary of the Hahn-Banach
theorem [28, 42]. The condition Tr[ρ] = 1 restricts the set of density matrices to an
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S

E

ρ
=0Tr[W  ]σ

W

Figure 1.2. Illustration: the set S is a convex subset of the set M
of all states, and E = M \ S is the set of entangled states. The state
ρ is separated from S by the hyperplane consisting of all states σ with
Tr[Wσ] = 0.

affine hyperplane in HS, i.e., a hyperplane not containing the 0 element. Therefore,
the hyperplane separating ρ from S can be chosen as a linear hyperplane L, i.e., a
hyperplane including the 0 element. By virtue of the Hilbert Schmidt scalar product
〈A,B〉 = Tr[A†B] = Tr[AB] it can be parametrized with an operator W = W † as
consisting of all the states σ for which the scalar product with W vanishes,

L = {σ ∈ M | Tr[Wσ] = 0}. (1.21)

It is convenient to choose the direction of W such that Tr[Wσs] ≥ 0 for all separable
states σs. Now we can formulate [28, 40]

Theorem 1.8. For every entangled state ρ there exists an Hermitean entanglement
witness W such that

Tr[Wρ] < 0 (1.22)

Tr[Wσs] ≥ 0 for all σs ∈ S. (1.23)

Further useful definitions are

Definition 1.9 [43]. A witness W1 is finer than a witness W2 iff Tr[W2ρ] < 0 ⇒
Tr[W1ρ] < 0, i.e., if it detects all states that W2 detects – and more. A witness is
optimal if there is no finer witness. Criteria for optimality can be found in [43].

In order to characterize the set of separable states, an infinite number of optimal
witnesses is necessary. This is because there exist infinitely many extremal vectors
|φ〉 of S, and further there are vectors |ψ〉 /∈ S arbitrarily close to each |φ〉. Hence
if nothing is known about a state, an infinite number of witnesses is necessary to
detect its entanglement in the worst case. That is why this method of entanglement
detecting is only useful from a practical point of view if some knowledge can be
assumed about the state. We will discuss how to construct witnesses explicitly in
chapter 2.
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ES

W W

W W

1 4

3
2

Figure 1.3. Illustration: Both W2, and W3 are finer than W4, but
neither is finer than the other. W1 is optimal and finer than all other
witnesses. In this pictures not all extremal points of S are on the out-
side. Note that for 2 qubits already, the state space is 15-dimensional,
turning the production of a proper illustration into a daunting task.

1.1.4 Distillability, bound entanglement, and entanglement quan-

tification

The distillability problem concerns the question: If we are given m copies of a
bipartite state ρ, can we transform those copies to n copies of the singlet state
|ψ−〉 = (|01〉 − |10〉)/

√
2 by local operations and classical communications (LOCC)

only [44]? It turns out that for bipartite pure states, ρ = |ψ〉〈ψ|, it is always possible.
In the asymptotic limit n→ ∞ the ratio n/m approaches the von Neumann entropy
[18]

S(ρA) = −Tr[ρA log ρA] (1.24)

of the reduces state
ρA = TrB|ψ〉〈ψ| (1.25)

[45]. This rate is called the entanglement of distillation. It is now a natural to ask
how many copies n of singlet states are needed to obtain m copies of a state ρ.
The asymptotic ratio n/m is called entanglement of formation [44]. For bipartite
pure states, it can be shown that both the entanglement of formation as well as the
entanglement of distillation are given by the reduced von Neumann entropy [45].

For the singlet state, the reduced state ρA is given by
�

2/2, hence S(ρA) = 1. For
all other two qubit states, S ∈ [0, 1], which is one of the reasons why the state
can be considered to be a maximally entangled state of two qubits. A motivation
for choosing it as a reference state is that it is the resource necessary for quantum
information tasks like teleportation [12]. Hence with a supply of m states |ψ〉 the
same quantum information tasks can be performed as with n singlet states.

In conclusion, any bipartite pure state can be asymptotically reversibly transformed
into any other, the achievable rates being given by the von Neumann entropy of
entanglement. In this sense, any bi-partite entanglement of pure states is essentially
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equivalent to that of the singlet state, which forms the so-called minimal reversible
entanglement-generating set (MREGS) [46]. The situation is very different in the
multi-partite case, where the MREGS have not even been identified for three-qubit
systems, let alone for more general settings [47]. In the view of this fact, several
more pragmatic (and inequivalent) measures of entanglement have been proposed,
reasonably grasping the degree of multi-particle entanglement [48–50]. To evaluate
these quantities typically amounts to solving a computationally hard problem. In
chapter 4, we show how one of them, the geometric measure of entanglement [49],
can be approximated efficiently.

Coming back to the distillability problem, it is surprising that the natural assump-
tion that all entangled states are distillable to the singlet form holds for systems of
two qubits or of one qubit and a three-level system (qutrit) only. This is related
to the fact that a necessary condition for distillability of a state ρ is that it has
a non-positive partial transpose (NPPT) [51]. However, as mentioned above, for
bipartite systems of a dimensions higher than 2 × 2 or 2 × 3 there exist entangled
states with a PPT [29]. Further, there is evidence that there exist even NPPT states
which cannot be destilled [52, 53]. Undistillable states are called bound entangled
[51].

Apart from being interesting from a fundamental point of view, bound entangled
states are useful for certain quantum information processing tasks: they can ac-
tivate the distillability of one copy of a bipartite state with non-positive partial
transpose [54, 55]. It has also recently been shown that one can extract a secure
key from bound entangled states [56]. In chapter 2, we construct and decompose
witnesses for such states, and design networks for the generation of two families of
three-qubit bound entangled states in chapter 3.

1.2 Multipartite entanglement

The basic definitions of separability and entanglement of the last section can easily
be generalized for more than two parties.

Definition 1.10. A pure state of n parties |ψ〉 ∈ H1 ⊗ H2 ⊗ . . . ⊗ Hn is called
k − separable with respect to a specific partition into k parties iff

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . . ⊗ |ψk〉. (1.26)

For k = 2 the state |ψ〉 is called biseparable. A mixed state ρ of n parties acting on
H1 ⊗H2 ⊗ . . .⊗Hn is fully separable iff it can be written as

ρ =
∑

i

pi|ψ1
i 〉〈ψ1

i | ⊗ |ψ2
i 〉〈ψ2

i | ⊗ . . .⊗ |ψni 〉〈ψni |, (1.27)

where
∑

i pi = 1 and pi ≥ 0. The state ρ is k − separable iff it can be written as

ρ =
∑

i

pi|ψ1
i 〉〈ψ1

i | ⊗ |ψ2
i 〉〈ψ2

i | ⊗ . . . ⊗ |ψki 〉〈ψki |. (1.28)
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A state carries true n-party entanglement iff it cannot be decomposed as a mixture
of biseparable states.

The treatment of multiparty states becomes more difficult because there is no
Schmidt decomposition in general [57]. However, it is still possible to eliminate
some parameters of the states by using the choice of the local bases [58, 59]. Fur-
ther, the possibilities of transforming states are more restricted. As mentioned
above, there exist classes of pure state which cannot be transformed into each other
asymptotically by LOCC only, in contrast to the bipartite pure state case.

One way of characterizing multiqubit states with respect to their separability and
distillability properties was introduced by Dür, Cirac and Tarrach (DCT) [60–62].
They constructed multipartite qubit states depending on relatively few parameters,
from which PPT properties of all possible cuts can be easily read off. Further, they
showed that any n-qubit state can be transformed or depolarized to that form by
local operations, preserving these parameters. So from entanglement and distilla-
bility properties of the depolarized states properties of the original states can be
inferred. Here, distillability is defined as the possibility of distilling a singlet state
between any two parties. This is why – contrary to the bipartite case – a state might
be undistillable even though it does not have a PPT with respect to all bipartite
splits. We will further discuss this property in chapter 3, where we construct explicit
networks for the generation of three qubit states of the family introduced by DCT.

In the following section, we turn towards another way of classifying multiparty states.

1.2.1 Classification of mixed states via SLOCC

We consider here equivalence classes of states with respect to stochastic LOCC
(SLOCC), i.e., LOCC without requiring that the operation succeeds with unit prob-
ability. We illustrate the idea by considering the simplest multipartite system, i.e.,
three qubits.

A three qubit state |φ〉 is locally convertible to a state |ψ〉 by SLOCC iff invertible
operators A,B, and C exist such that [63]

|ψ〉 = A⊗B ⊗ C|φ〉. (1.29)

This leads to the following 6 equivalence classes under SLOCC

• The class of fully separable states |ψA〉 ⊗ |φB〉 ⊗ |γC〉.

• 3 classes of biseparable states |ψA〉⊗ |δBC〉, and in analogy for the biseparable
splittings B −AC and C −AB.

• The W-class represented by |W〉 = 1√
3
(|001〉 + |010〉 + |100〉).

• The GHZ-class [64] represented by |GHZ〉 = 1√
2
(|000〉 + |111〉).
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If non-invertible operators are allowed, then from both the W class and the GHZ
class any of the bipartite classes can be reached, and from any of those the fully
separable class.

As mentioned above, there does not exist a Schmidt decomposition for three qubits,
but the freedom of choosing the local bases allows to bring any pure state to the
form [59]

λ0|000〉 + λ1e
iθ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉, (1.30)

where λi ≥ 0 for i = 0 . . . 4 and θ ∈ [0, π]. Such a state is generically of the GHZ
class, while a W vector can be written as

λ0|000〉 + λ1|100〉 + λ2|101〉 + λ3|110〉. (1.31)

It is not obvious at first sight that the W state is part of this family, but if we relabel
|0〉 ↔ |1〉 for the first party, then all the kets from the W state are present in this
form. Hence even though states from the GHZ class and the W class cannot be
converted into each other by SLOCC, there is a GHZ state arbitrarily close to any
W state, and the set of pure W states is of measure zero among all pure states [63].

For mixed states, the following classes can be defined

• The class S of states which can be written as a convex combination of fully
separable states.

• The class B of states which can be written as a convex combination of bisep-
arable and fully separable states. The decomposition might contain states of
different partitions.

• The class W which can be written as a convex combination of W states and
of states of the classes B and S.

• Decompositions of states of the GHZ class contain at least one GHZ vector.

Only for the production of states belonging to the classes W and GHZ true tripartite
entanglement is needed. All classes are compact, convex, and embedded into each
other as S ⊂ B ⊂W⊂GHZ. Hence we can again find hyperplanes separating states
from a convex set in order to prove that they do not belong to the set. In chapter
2, we explain how this fact can be used to construct witnesses detecting true multi-
partite entanglement, and present results from an experiment where these witnesses
were applied [VII].

For pure bipartite systems, the classification via SLOCC leads to equivalence classes
of states with equal Schmidt rank, where the maximally entangled states with equal
Schmidt coefficients can be taken as representatives [63]. When noninvertible local
operations are allowed, it is possible to decrease the Schmidt rank of a vector,
hence classes of higher Schmidt rank can be regarded as containing more powerfull
entanglement. This also means that it is possible to reach any other state from a
state with highest Schmidt rank in contrast to the case of three qubits, where W
class states cannot be transformed to GHZ class states and vice versa.
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Figure 1.4. The set of mixed three qubit states. The set S is the set
of fully separable states, while there are three sets of biseparable states,
labelled by BA, BB, and BC , corresponding to the partitions A − BC,
B − AC, and C − AB, respectively. The lines indicate hyperplanes or
witnesses that separate GHZ class states from W class states, W class
states from B class states, and B class states from S class states. To
be precise, we should label the classes by GHZ\W and so on in order to
have the same notation as in the previous chapter.

It is also possible to classify the set of mixed bipartite states in a similar way as
the set of mixed three qubit states. The set of states of a given Schmidt rank r is
defined as the set of all states that can be written as a convex combination of vectors
with Schmidt rank smaller than or equal to r. For each r, the sets are convex and
compact subsets of the sets with higher Schmidt rank [65].

There have been attempts to construct an analogous classification for systems of
higher dimension or consisting of more parties. For systems of two qubits and one
N level system, the number of equivalence classes is still finite [63, 66], the three
qubit classes being among them. In contrast, for 4 qubits already, the number of
equivalence classes under SLOCC in infinite [63, 67]. This is due to the fact that the
number of parameters that can be changed locally by SLOCC grows slower than the
number of parameters needed to parametrize a state if the dimension of the systems
and the number of parties is increased [63]. Because of that, the relative size of the
equivalence classes shrinks effectively when the size of the system is increased.

Nevertheless, for n parties, there is always a convex, compact class of biseparable
states embedded into the class of truely n-party entangled states. Hence, hyper-
planes or witness operators can always be used to distinguish true n-partite entan-
glement from biseparable states.
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1.3 Bell inequalities

We mentioned already the criticism of quantum mechanics by EPR, and that Bell
found a way to formulate the assumptions used in the form of inequalities. Bell’s
argument was based on the correlations of the singlet state. This was extended later
by Clauser, Horne, Shimony, and Holt (CHSH) to an inequality for arbitrary two
qubit states [68]. In the following, we will illustrate the idea by deriving the CHSH
inequality in the spirit of [69].

Consider a source emitting two particles at a time to the receivers Alice and Bob.
For each pair, Alice can choose to measure one of the observables Â1 and Â2, while
Bob can choose between B̂1 and B̂2. Each experiment on either side has the possible
outcomes ±1.

The first EPR assumption underlying Bell’s inequalities is that Alice and Bob have
free will in choosing which measurement they want to perform in each run. Second,
the reality assumption implies that to each possible measurement the outcome ±1
can be assigned in advance. Finally, locality is assumed to hold, meaning that the
outcome of a measurement of Alice should not depend on the choice of a spacelike
separated measurement of Bob and vice versa.

By the locality and reality assumptions, we can assign independent values Aj
1, Aj2,

Bj
1, and Bj

2 to the outcomes of all possible measurements on both sides for the j−th
pair of particles. Then, the following relation holds

Aj1(Bj
1 +Bj

2) +Aj2(Bj
1 −Bj

2) = ±2, (1.32)

because only one of the two terms can be nonvanishing. Averaging over many runs,
this leads to

|E(A1, B1) +E(A1, B2) +E(A2, B1) −E(A2, B2)| ≤ 2, (1.33)

where E(Ai, Bj) is the expectation value of the correlation experiment ÂiB̂j . This
is the CHSH inequality [68] that gives a bound on any local realistic theory trying
to explain the results. Each correlation term is measured with a subensemble only,
because in a single run only one of the correlation terms is measured. Therefore,
it has to be assumed that the measured values with respect to these subensembles
does not deviate too much from the outcomes that would have been obtained if the
whole ensemble would have been used.

In the derivations, we did not specify how the values are assigned to the outcomes
of the measurements. This can be done by introducing so-called hidden variables.
A model that can account for all correlations occuring in the measurements in this
way is called a local hidden variable (LHV) model. The violation of a Bell inequality
implies the non-existence of a LHV model for the correlations observed with respect
to a certain state [70]. In the following, when we say that a state admits a LHV
model, it is understood that this model is constructed with respect to a particular
Bell inequality, with a fixed number of measurements.
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In order to test quantum mechanics, the substitutions Âi → ai · σ ≡ σai
have to be

made, and the correlations with respect to a state ρ are calculated as E(Âi, B̂j) =
Tr(σai

⊗σbj )ρ. For the singlet state, E(Ai, Bj) = −ai ·bj . Choosing all measurement
directions to lie in a plane parametrized by the angle θ with respect to the x axis,
then for the choice θa1 = 0, θa2 = π/2, θb1 = π/4, and θb2 = −π/2, we obtain for
the left hand side (lhs) in Eq. (1.33) the result |3 · (−1/

√
2) − 1/

√
2| = 2

√
2, hence

the CHSH inequality can be violated by quantum mechanical states. Note that for
product states, the correlation terms factorize,

Tr
[

(σai
⊗ σbj )|a, b〉〈a, b|

]

= 〈a|σai
|a〉〈b|σbj |b〉. (1.34)

As a consequence, the CHSH inequality (1.33), as well as all other Bell inequalities,
is fulfilled for all separable states, may they be pure or mixed.

Several generalizations of the CHSH inequality have been derived in the following
years. Inequalities for n-qubits with two dichotomic, i.e., two outcome, measurement
settings per site were studied by Mermin [71], Ardehali [72], Belinskii and Klyshko
[73]. The complete set of such inequalities was recently constructed [74, 75]. Further,
generalizations for to more outcomes [76] and to several settings per site have been
made, see, for instance, [77–80].

The first violation of Bell inequalities where all the EPR assumptions were met to a
relatively high degree was observed in the experiment of Aspect et al. [81]. Since that
time, several experiments have been performed improving the detection efficiency of
the detectors [82], as well as the spacelike separation of the measurements [83].

Let us come back to the relation of Bell inequalities and quantum mechanics. We
mentioned that all separable states fulfil all Bell inequalities. Remarkably enough,
the natural assumption that all entangled states violate a Bell inequality is not
necessarily true. For a one parameter family of U ⊗ U invariant states in d × d
dimensions, Werner constructed a LHV model for a parameter range where the
states are entangled [26].

Using the same family of states, Popescu showed [84] that it is possible to obtain vi-
olations of Bell inequalities by local operations from entangled states not violating a
Bell inequality before. Gisin obtained the same effect even for two qubits [85]. A nat-
ural conjecture following from these observations is that all undistillable entangled
states admit a LHV model. However, Dür showed that for a family of multipartite
qubit states there exists a range of parameters where the states are undistillable
while violating a Bell inequality with two dichotomic measurement settings per site
[86].

This leaves open the question whether all PPT states admit a LHV model [87],
because it was shown by Aćın that the violation of the Bell inequalities considered
by Dür always involves at least one bipartite split with a NPPT of the state [88].
This is related to the result of Werner and Wolf that no n-qubit inequality with two
dichotomic measurement settings per site is violated by PPT entangled states [89].

We will come back to Bell inequalities in chapter 5, where we investigate the relation
between the CHSH inequality and witness operators.



Chapter 2

Local detection of entanglement via

entanglement witnesses

2.1 Overview

This chapter is devoted to providing an efficient and easy method for the experi-
mental detection of entanglement, where detection refers to the experimental proof
that the state of a system that two or several parties share is entangled. As an easy
method we consider a method which requires each of the parties to perform mea-
surements on its subsystem only, because global measurements on the whole system
are in general technically demanding. The method should be efficient in the sense
that the number of local measurements that are needed for the decision should be as
small as possible. Further, the method should also be efficient in detecting as many
states as possible, and the entanglement test should be decisive, i.e., it should not
rely on any assumptions.

A method that is always applicable is the measurement of the density matrix with
tomographic methods, followed by the application of one of the entanglement criteria
mentioned in the introduction. The tomographic measurement is possible with local
measurements only, as sketched in chapter 1. The drawback is that this method
requires a large number of measurements in general. Further, even if the density
matrix is known, the criteria might fail to detect the entanglement, or extensive
computations might have to be performed.

There are methods which can be applied with less effort. For instance, if it can be
assumed that the state in question is a pure state of two qubits, a method for mea-
suring the amount of entanglement with local measurements only was introduced in
Ref. [90]. Recently, another method for entanglement detection based on properties
of the states which are invariant under local unitary operations has been introduced
in Ref. [91]. For the entanglement test, the same local measurements as those needed
for state tomography can be performed, but in this case the entanglement might be
detected before the complete tomography has been done. So this criterion is rather
easily implemented, but it is in general weaker than the PPT criterion [91].

Yet another method was developed in Ref. [92] which is based on the PPT criterion.
Here, an approximation to the partial transpose operation is implemented on the
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state in question, followed by an estimation of the eigenvalues of the resulting state.
From the eigenvalues it is possible to tell whether the original state was PPT or not.
The eigenvalues can be estimated by multiple applications of an interferometric
network, acting on different numbers of copies in each run, which can be performed
by LOCC [93]. Each party has to act on its part of the copies of the state then.
This network can be modified such that it estimates the eigenvalues directly [94],
without the need of the approximation of the partial transpose operation. With this
interferometric network less parameters have to be estimated than with tomography
to decide whether a state is PPT, namely the eigenvalues of the partially transposed
state only, while the potential difficulties lie in the realization of the network.

The most frequently used method for proving the entanglement of a state up to now
is the violation of a Bell inequality. Even though they are constructed to formulate
the constraints every local and realistic theory has to obey, their violation is also
a signature for entanglement, because every separable state can be described by a
LHV model, as we saw in section 1.3. Further, they only require local measurements
by construction, so that they can be readily implemented in a laboratory.

In a quantum mechanical world, Bell inequalities correspond to entanglement wit-
nesses [40, 95]. This relation will be investigated in detail for the case of two qubits
in chapter 5. Most likely, Bell inequalities correspond to non-optimal witnesses in
general, because there exist entangled states with a LHV model even for systems of
two qubits [26]. Further, no existing Bell inequality is violated by PPT entangled
states [70]. This is a drawback of this method as far as the detection of entangled
states is concerned. Another problem in this regard is that up to now it is not
possible to construct a Bell inequality for a given state.

In conclusion, even though the presented methods can all be applied with local
means, they either require many local measurements or cannot guarantee that any
state is detected in general. However, in chapter 1 we already introduced operators
capable of detecting any entangled state: the witness operators. If some knowledge
about the state to be detected can be assumed, e.g., when an experiment is aimed
at producing a particular state, then witnesses are well suited for delivering the
entanglement proof. Even further, they are also capable of proving that a state is
multipartite entangled.

So entanglement witnesses are well suited for detecting entanglement. However, it is
essential to find ways to measure them locally, with as little effort as possible. This,
as well as the construction of witnesses, is the aim of this chapter, with the focus on
witnesses for finite-dimensional bipartite NPPT states and PPT entangled states.
Notice that if we would not aim at reducing the experimental effort, then one could
just measure the state ρ with a complete local state tomography and calculate the
expectation value Tr[Wρ] directly.

The scheme of local detection via entanglement witnesses can be formulate explicitly
as follows: Given a state ρ, we construct an entanglement witness W such that
Tr[Wρ] < 0. It is clear from section 1.1.3 that the witness should be as fine as
possible, because finer witnesses detect a larger volume of the set of entangled states,
so that the chances are better that a state is detected even in the presence of noise
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in the laboratory. Then we decompose this operator into a sum of terms which
can be measured locally. We further try to optimize, i.e., minimize, the number of
local measurements that have to be performed in order to reduce the experimental
effort. We distinguish two optimization strategies: i) optimization of the number
of projectors onto product vectors that have to be measured, and ii) optimization
of the number of locally correlated measurement settings where each party has to
perform a von Neumann measurement on its system.

The chapter is organized as follows: In the first two sections 2.2 and 2.3 we dis-
cuss methods to construct witnesses, both for NPPT as well as for PPT entangled
states, and introduce the different optimization strategies for local decompositions
of witnesses explicitly.

In the following sections, we apply these methods to several examples, starting
in section 2.4 with entanglement witnesses for bipartite NPPT entangled states of
N ×M systems. In order to get started, we first discuss a simple example in a two
qubit system there.

Then we focus our attention on PPT entangled states in section 2.5. First, we find
witnesses and local decompositions for three examples of bipartite PPT entangled
states from the literature: UPB states [96] and chessboard states [97] in 3×3 systems
[96], and Horodecki’s states in a 2 × 4 system [29].

We also introduce two families of multiqubit PPT entangled states. The first is an
extension of a family of three-qubit PPTES based on the GHZ state introduced in
[98] to n qubits, while the second is a family of three-qubit PPTES based on the W
state. For the first family, we construct witnesses and local decompositions for their
local detection.

In section 2.6, we tell briefly about how witnesses were used to prove the multipartite
entanglement of the W state in the group of H. Weinfurther [VII,VIII].

Finally, the conclusions and open questions can be found in section 2.7.

2.2 Constructing entanglement witnesses

Here, we introduce three methods of constructing entanglement witnesses: the first
one is based on the NPPT property, while the second can distinguish entangled
from biseparable states, which is useful for proving that a state is truely multiparty
entangled. We show that witnesses constructed with the second method cannot
detect PPT entangled states either. This is exactly what witnesses produced with
the third method are capable of.

2.2.1 Witnesses for NPPT states

If ρ is NPPT, then there exist an entangled vector |φ〉 and λ < 0 such that
ρTA |φ〉 = λ|φ〉. Then

W = |φ〉〈φ|TA (2.1)
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is a witness detecting ρ.

From section 1.1.3 we know that in order to be an entanglement witness, W has to be
positive on all separable states, while having a negative expectation value for at least
one entangled state. The witness from Eq. (2.1) is positive on all separable states
because Tr[|a, b〉〈a, b||φ〉〈φ|TA ] = Tr[|a, b〉〈a, b|TA |φ〉〈φ|] = Tr[|a∗, b〉〈a∗, b||φ〉〈φ|] ≥ 0.
The state ρ is detected by W because Tr[ρ|φ〉〈φ|TA ] = Tr[ρTA |φ〉〈φ|] = λ < 0. This
witness belongs to the class of decomposable witness, to be defined in

Definition 2.1. Decomposable witnesses can be written as W = P +QTA , where P
and Q are both positive semi-definite operators.

Decomposable witnesses cannot detect PPT entangled states because

Tr[(P +QTA)ρ] = Tr[Pρ] + Tr[QρTA ] ≥ 0, (2.2)

since P,Q, and ρTA are positive semi-definite operators. In the following, we will
sometimes refer to positive semi-definite operators just as positive operators. In
systems of one qubit and a qubit or a qutrit, all the entanglement witnesses are
decomposable, because there the PPT criterion is necessary and sufficient.

Theorem 2.2 [43]. An optimal decomposable witness can be written as W = QTA ,
where Q ≥ 0 contains no product vector in its range.

Hence the construction of witnesses from Eq. (2.1) produces optimal decomposable
witness operators. For 2 × 2 systems, there is always a product vector in a plane
spanned by two entangled vectors [99]. Hence Q has to be of rank one in this case.

2.2.2 Witnesses excluding biseparability

A witness operator that detects the entanglement of a pure bipartite state |ψ〉 is
given by

W = α
�
− |ψ〉〈ψ| , (2.3)

where
�

is the identity operator,

α = max
|φ〉∈S

|〈φ|ψ〉|2 , (2.4)

and S denotes the set of separable states. This construction guarantees that
Tr[Wσs] ≥ 0 for all separable states σs, and that Tr[W |ψ〉〈ψ|] < 0.

The overlap α can be calculated as follows. We choose an orthonormal product basis
|ij〉 and expand |ψ〉 =

∑

ij cij |ij〉 and |φ〉 = |a〉|b〉 =
∑

ij aibj |ij〉. The coefficient
matrix is denoted by C = (cij) and the normalized coefficient vectors by ~a = (ai)

and ~b = (bi). Then

max
|φ〉∈B1

|〈φ|ψ〉| = max
ai,bj

|
∑

ij

(ai
∗cijbj

∗)|

= max
~a,~b

|〈~a|C|~b∗〉| = max
k

{λk(C)} , (2.5)
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where λk(C) denotes the singular values of C, i.e. the roots of the eigenvalues of
CC†. In other words, λk(C) are the Schmidt coefficients of |ψ〉, and α is therefore
simply the square of the largest Schmidt coefficient of |ψ〉.
In the following, we will show that all witnesses of the form (2.3) are decomposable,
i.e., they cannot detect PPT entangled states. For doing this, we need the following

Lemma 2.3 [43]. A witness B is finer than a witness A iff there exist a positive x
and a positive operator P such that A = xB + P .

Note that in particular A− xB ≥ 0, which we will use in the following Lemma.

Lemma 2.4. Let |φN 〉 =
∑N−1

i=0 ai|ii〉 be a normalized state of a N × N system
written in the Schmidt decomposition with a0 ≥ a1 ≥ . . . aN−1. Then WφN

=
a2

0

�
− |φN 〉〈φN | is a decomposable witness operator.

Proof. In [100] it was shown that the witnesses

Wφ+
N

=
1

N

�
− |φ+

N 〉〈φ+
N | (2.6)

are decomposable, where |φ+
N 〉 =

∑N−1
i=0 |ii〉/

√
N is the maximally entangled state

in N ×N systems. The reason is that |φ+
N 〉〈φ+

N | = 1
N (
�
− 2P TA

a ) holds, where Pa is
the projector onto the antisymmetric subspace. Hence W = 2P TA

a .

The witness WφN
is of the form of Eq. (2.3). We will show that Wφ+

N
is finer than

WφN
. From this it follows that WφN

is decomposable because Wφ+
N

is a decomposable

witness. By virtue of Lemma 2.4, we can do this by showing that there exists a
positive x such that WφN

− xWφ+
N
≥ 0. The lhs is given by

WφN
− xWφ+

N
= (a2

0 −
x

N
)
�

+ x|φ+
N 〉〈φ+

N | − |φN 〉〈φN | ≡ ρx − |φN 〉〈φN |. (2.7)

In [101] it was shown that ρx − λ|φN 〉〈φN | ≥ 0 for ρx ≥ 0 if λ ≤ 〈φN |ρ−1|φN 〉−1,
where the inverse of ρx is taken on its range. The first condition is ρx ≥ 0 ⇔ x ≤
Na2

0. Then we have to show that there exists a x such that λmax = 〈φx|ρ−1|φx〉−1 ≥
1. Let us see if x = Na2

0 is a solution. In this case ρ−1
x = 1

Na20
|φ+
N 〉〈φ+

N | and we obtain

λmax =
Na2

0

|〈φN |φ+
N 〉|2

=
N2a2

0

(
∑N−1

i=0 ai)2
. (2.8)

Using Lagrangian multipliers it can be shown that a2
0/(
∑N−1

i=0 ai)
2 ∈ [1, 1/N 2], hence

λmax(x = Na2
0) ≥ 1. �

Note that this result also holds for N ×M dimensional systems, where N ≤ M ,
because the maximal Schmidt rank of a state is also N in this case.

So far, we only used the construction of Eq. (2.3) for detecting bipartite states.
However, the construction can be easily extended for multipartite systems. We
just have to calculate the coefficient α for every bipartite splitting by choosing a
basis containing only product vectors with respect to this partition, and take the
maximal value from all partitions as coefficient for the witness. Then, a negative
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expectation value of the observable W clearly signifies that the state |ψ〉 carries true
multipartite entanglement, because the witness is positive on all biseparable states
by construction. We can also extend Lemma 2.4 to the multipartite case.

Theorem 2.5. Every multipartite witness operator of the form W = α
�
− |φ〉〈φ|,

where α is the square of the largest Schmidt coefficient over all bipartite cuts of the
multipartite state |φ〉, is a decomposable witness operator.
Proof. For every bipartite cut, W is of the form of WφN

= a2
0

�
− |φN 〉〈φN |, with a

coeffiecient a2
0 ≤ α, and decomposable due to Lemma 2.4. Hence it is decomposable

with respect to any bipartite splitting and cannot detect PPT entangled states. �

2.2.3 Witnesses for PPT entangled states

In this subsection we present witnesses that are capable of detecting PPT entangled
states. In particular, we present here a method for construction witnesses for the
so-called edge states [43].

A state δ is called an edge state iff it cannot be represented as δ = qδ ′ + (1 −
q)σs, where 0 ≤ q < 1, σs is a separable state and δ′ is a state with a positive
partial transpose. In other words, for all product vectors |e, f〉 and ε > 0, δ −
ε|e, f〉〈e, f | is not a state anymore. This implies that the edge states lie on the
boundary between the bound entangled states and the entangled states with non-
positive partial transpose. They violate the range criterion introduced in section
1.1.2 in an extremal sense, i.e., δ is an entangled edge state with a positive partial
transpose iff for all product vectors |e, f〉 ∈ R(δ), |e∗, f〉 /∈ R(δTA), where R(δ)
denotes the range of δ.

The generic form of an entanglement witness for such a state δ is [43]

W = W̄ − ε
�
, (2.9)

where

W̄ = (P +QTA) (2.10)

ε = inf
|e,f〉

〈e, f |W̄ |e, f〉, (2.11)

and P and Q denote the projectors onto the kernel of δ and δTA , respectively, and
we sometimes call W̄ the prewitness. Because of the edge state properties, the
coefficient ε is positive:

〈e, f |P +QTA |e, f〉 = 〈e, f |P |e, f〉 + 〈e∗, f |Q|e∗, f〉 > 0. (2.12)

This construction can be easily generalized to more than two parties, when more
partitions play a role, as we will see in section 2.5.4.

It is also possible to substract an operator I which is positive on the range of δ [43].
The coefficient ε has to be adopted to

ε′ = inf
|e,f〉

〈e, f |W̄ |e, f〉
〈e, f |I|e, f〉 . (2.13)
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However, from a practical point of view, it is very convenient to substract the iden-
tity, because this term does not require a measurement at all since Trδ = 1, so that
the prewitness W̄ only has to be decomposed.

The parameter ε can be determined by the use of multiparameter minimization
routines. However, these cannot in general guarantee that a global minimum is
reached. This is a severe problem because W from Eq. (2.9) is not a witness if ε
larger than the prescribed value of Eq. (2.11). In chapter 4, we will see that it is
possible to obtain lower bounds for inf |e,f〉〈e, f |W̄ |e, f〉, which makes it possible to
ensure that W is a proper witness.

2.3 Local decompositions of entanglement witnesses

Having constructed an entanglement witness, it is necessary to find a decomposition
into operators which can be measured locally. Such a decomposition is of the general
form

W =

k
∑

i=1

ci|ei〉〈ei| ⊗ |fi〉〈fi|. (2.14)

Such a decomposition can be measured locally: If a source distributes bipartite states
ρ to Alice and Bob, they have to measure the expectation value of the projectors
|ei〉〈ei| ⊗ |fi〉〈fi| with respect to this state and add their results with the weights ci.
One can construct such a decomposition in many ways, but it is reasonable to do
it in a way which corresponds to expenses of Alice and Bob which are as small as
possible. There are several possibilities to define an optimal decomposition:

One possibility is to look for the optimal number of product vectors (ONP), i.e., one
can try to minimize k in (2.14). This optimization strategy looks very natural and
has already been considered in the literature. It was proven in [101] that in general
the ONP k− for any two-qubit state is equal to 5, while separable two-qubit state
need no more than 4 product vectors. Also a constructive way for computing this
optimal decomposition was given.

What is the “cost” Alice and Bob have to pay when measuring W via such a decom-
position? It is the number of measurements they have to perform. When we talk
about measurements here, we consider only von Neumann measurements. We do
not consider more general positive operator valued measurements (POVMs) here,
because their implementation would require additional ancilla systems. One mea-
surement on Alice’s side in the sense above consists of a choice of one orthonormal
basis for Alice’s Hilbert space. For an particle with spin s one may interpret this as
the choice of a direction for a Stern-Gerlach-like apparatus. Alice sets up her device
in the desired direction and is able to distinguish between 2s+ 1 different states.

For one local measurement Bob also has to choose an orthonormal basis in his Hilbert
space; all together this yields one orthonormal product basis for both. Thus, if we
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are in a N ×N system a term of the form

N
∑

k,l=1

ckl|Ak〉〈Ak| ⊗ |Bl〉〈Bl| (2.15)

with 〈As|At〉 = 〈Bs|Bt〉 = δst can be measured with one collective setting of mea-
surement devices of Alice and Bob. Alice and Bob can discriminate between the
states |Ak, Bl〉, measure the probabilities of these states and add their results with
the weights ckl using one collective setting and some classical communication. We
call such a collective setting of measurement devices a local von Neumann measure-
ment (LvNM).

1

2

1

2

ρ
A

B

Figure 2.1. The state ρ is distributed to Alice and Bob. They per-
form local measurements A and B, respectively, from which they can
obtain the probabilities Tr[|Ak, Bl〉〈Ak, Bl|ρ] for all the terms occuring
in Eq. (2.15), here for two-valued measurements on both sides.

It is therefore reasonable to find a decomposition of the form

W =
m
∑

i=1

N
∑

k,l=1

cikl|Aik〉〈Aik| ⊗ |Bi
l 〉〈Bi

l | (2.16)

with 〈Ais|Ait〉 = 〈Bi
s|Bi

t〉 = δst and an optimal number of devices’ settings (ONS),
i.e., a minimal m. In this sense m is the minimal number of measurements Alice and
Bob have to perform.

Please note that a decomposition like (2.14) with the minimal k− (ONP) will prob-
ably require k− LvNMs because the vectors |ei, fi〉 are not orthogonal to each other
in general.

We also would like to emphasize that a decomposition of the form (2.16) is more
general than a decomposition into a sum of tensor products of operators:

W =

m
∑

i=1

γiAi ⊗Bi. (2.17)

The decomposition (2.17) has the advantage that Alice and Bob do not have to
distinguish between some states, they only have to measure locally some expectation
values of Hermitean operators. A decomposition like in Eq. (2.16) can be written
in the form of (2.17) if for all i the matrices (cikl) are of rank one. In the following
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we will see that for qubit systems there is not a big difference between (2.16) and
(2.17). From the optimal decomposition in the sense of (2.16) we can derive a
decomposition of the form (2.17) where some of the operators are the identity (

�
),

so they do not require new measurement settings. For N × N systems we will see
that it is straightforward to derive the optimal decomposition in the sense of (2.17).

2.4 Local detection of bipartite NPPT entanglement

In this section, we construct for the first time explicit examples of witness and local
decompositions. The constructions are based on section 2.2.1. We start looking at
witnesses for two-qubit systems. The results are then used to obtain more general
result for such witnesses in N ×M systems.

2.4.1 Witnesses for two-qubit systems

Let us assume that the state |ψ〉 = a|01〉+b|10〉 written in the Schmidt decomposition
is the output state of a device in a laboratory. In order to being able to proof
its entanglement experimentally, we construct a witnesses, and find different local
decompositions: those with optimal number of projectors (ONP) and with optimal
number of settings (ONS).

The projector onto |ψ〉 partially transposed has the negative eigenvalue −ab, and
the corresponding eigenvector is |φ−〉 = (|00〉−|11〉)/

√
2. Hence the witness is given

by

W = |φ−〉〈φ−|TA =
1

2









1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1









, (2.18)

independent of a. Further, the witness is robust to noise. In the case where the
source emits the state mixed with white noise, so that it has to be described by the
mixture

ρp = p|ψ〉〈ψ| +
1 − p

4

�
, (2.19)

then the state is still entangled and detected by the witness for p > (1+4ab)−1. This
is not surprising, because W is an optimal witness, as explained in section 2.2.1. The
case where noise is admixed which is different from white noise, but not too much,
has been discussed in Ref. [V]. This witness has been implemented experimentally,
the results being described in Ref. [102].

For general states, there may be other states corresponding to the negative eigenvalue
of the partially transposed state. It is therefore natural to decompose a more general
state written in the Schmidt decomposition as |ψ〉 = α|00〉 + β|11〉. For our W we
have the special case α = 1/

√
2 = −β, but we want to deal with the most general

|ψ〉.
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First, we compute the ONP-decomposition with the minimal k− according to [99],
arriving at

|ψ〉〈ψ|TA =
(α + β)2

3

3
∑

i=1

|A′
iB

′
i〉〈A′

iB
′
i| − αβ(|01〉〈01| + |10〉〈10|), (2.20)

where we have used the definitions

|A′
1〉 = ei

π
3 cos(θ)|0〉 + e−i

π
3 sin(θ)|1〉 = |B ′

1〉
|A′

2〉 = e−i
π
3 cos(θ)|0〉 + ei

π
3 sin(θ)|1〉 = |B ′

2〉
|A′

3〉 = cos(θ)|0〉 + sin(θ)|1〉 = |B ′
3〉

cos(θ) =
√

α/(α + β)

sin(θ) =
√

β/(α + β). (2.21)

This decomposition into five product vectors requires four correlated measurement
settings for Alice and Bob.

But we can measure W with less settings. We define the spin directions by |z+〉 =
|0〉, |z−〉 = |1〉, |x±〉 = 1√

2
(|0〉 ± |1〉), |y±〉 = 1√

2
(|0〉 ± i|1〉). The projector to be

decomposed is given by

|ψ〉〈ψ| = α2|00〉〈00| + β2|11〉〈11| + αβ
(

|00〉〈11| + |11〉〈00|
)

. (2.22)

Only the last term is not in the form of a local decomposition yet. We can use the
first of the following simple algebraic identities

ab + cd =
1

2

(

(a + c)(b + d) + (a− c)(b− d)
)

(2.23)

ab− cd =
1

2

(

(a− c)(b + d) + (a + c)(b− d)
)

, (2.24)

the golden equations, to decompose

|0〉〈1| ⊗ |0〉〈1| + |1〉〈0| ⊗ |1〉〈0| =
1

2

(

σx ⊗ σx − σy ⊗ σy
)

(2.25)

= |x+, x+〉〈x+, x + | + |x−, x−〉〈x−, x− |
−|y+, y+〉〈y+, y + | − |y−, y−〉〈y−, y − |,

where we used the completeness relation twice to obtain the second equality. We
arrive at the decomposition

|ψ〉〈ψ|TA = α2|z+z+〉〈z+z+| + β2|z−z−〉〈z−z−| + αβ
(

|x+x+〉〈x+x+| +

+|x−x−〉〈x−x−| − |y+y−〉〈y+y−| − |y−y+〉〈y−y+|
)

=
1

4

( �
⊗
�

+ σz ⊗ σz + (α2 − β2)(σz ⊗
�

+
�
⊗ σz)

+2αβ(σx ⊗ σx + σy ⊗ σy)
)

. (2.26)
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This decomposition into six product vectors requires only the measurement of three
settings: Alice and Bob only have to set up their Stern-Gerlach devices in the x-, y-
and z-direction to measure |ψ〉〈ψ|TA .

Now we want to prove that three LvNM are really necessary, which means that the
decomposition of Eq. (2.26) has an optimal number of settings (ONS). Our proof
is a special case of a theorem about N ×N systems we will show later. But in the
two-qubit case the proof is particularly simple, and therefore we present it here
separately.

Proposition 2.6. In a two-qubit system a decomposition of |ψ〉〈ψ|TA of the
form (2.16) requires at least three measurements.
Proof. Consider a decomposition requiring two measurements:

|ψ〉〈ψ|TA =
2
∑

i,j=1

c1ij |A1
i 〉〈A1

i | ⊗ |B1
j 〉〈B1

j | +
2
∑

i,j=1

c2ij |A2
i 〉〈A2

i | ⊗ |B2
j 〉〈B2

j |. (2.27)

With the help of a Schmidt decomposition as above we can write |ψ〉〈ψ|TA =
∑3

i,j=0 λij σi ⊗ σj with the matrix

(λij) =











1
4 0 0 α2−β2

4

0 αβ
2 0 0

0 0 αβ
2 0

α2−β2

4 0 0 1
4











. (2.28)

Note that the 4x3 submatrix containing the right 3 columns is of rank 3.

Now we write any projector on the rhs of (2.27) as a vector in the Bloch sphere:
|A1

1〉〈A1
1| =

∑3
i=0 s

A
i σi is represented by the vector ~sA1

1
= (1/2, sA1 , s

A
2 , s

A
3 ) and

|A1
2〉〈A1

2| by ~sA1
2

= (1/2,−sA1 ,−sA2 ,−sA3 ); |B1
1〉〈B1

1 | can be written similarly. If we

expand the first sum on the rhs of (2.27) in the (σi⊗σj) basis, the 4x3 submatrix con-
taining the right 3 columns is given by (c111~sA1

1
−c112~sA1

1
+c121~sA1

2
−c122~sA1

2
)T (sB1 , s

B
2 , s

B
3 ).

Hence this submatrix is of the form aibj, which implies that it is of rank one. The
corresponding submatrix from the second sum on the rhs of (2.27) is also of rank
one and we arrive at a contradiction: No matrix of rank 3 can be written as a sum
of two matrices of rank one. 2

2.4.2 Witnesses for N × M systems

Now we want to generalize our results to higher dimensions. First we consider N×N
systems, and at the end of this section we will see that all the results obtained remain
valid also for N ×M systems.

Again, the witness can be constructed from the projector onto a negative eigenvector
of the partially transposed density operator, because we are only looking at NPPT
states in this section. In the following, we decompose the projector, the partial
transposition is easily performed later.
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Our discussion proceeds as follows: After explaining our notation we construct a
decomposition of a projector onto a state with Schmidt rank l using about 2l mea-
surements. This decomposition is a generalization of the decomposition for the
two-qubit case. It is not clear whether this decomposition is optimal. Then we
derive a lower bound for the number of measurements needed if the Schmidt rank l
is maximal. We show that if l = N at least l + 1 measurements are necessary.

We first explain some notational and technical details, partly taken from Ref. [103].
As in the introduction, we denote the real vector space of all Hermitean operators on
HA by HSA. In this space one can use the orthogonal basis {

�
, GA

i , i = 1...N 2 − 1},
where the GAi are the traceless generators of the SU(N), normalized to Tr(G2

i ) = 1.
For N = 2 they are the Pauli matrices, for N = 3 the Gell-Mann matrices, and so
on. We can define GA

0 :=
�

and expand every projector (and any other element of
HSA) in this basis:

|φ〉〈φ| =
N2−1
∑

i=0

fiG
A
i , (2.29)

where the entries of the Bloch vector fi are real, f0 = 1/N, and from the fact that
|φ〉〈φ| is a pure state it follows that

N2−1
∑

i=1

f2
i = 1 − 1

N
. (2.30)

We sometimes write (f0, ..., fN2−1) = (f0, ~f) = f̂ . It is easy to see that an operator
described by ĝ is a projector onto a vector orthogonal to |φ〉 if and only if ~g fulfills
(2.30) and

< ~f,~g >:=
N2−1
∑

i=1

figi = − 1

N
. (2.31)

One can also expand any projector (as every operator) on HA ⊗HB as

|ψ〉〈ψ| =

N2−1
∑

i,j=0

λijG
A
i ⊗GBj (2.32)

since the GAi ⊗GBj form a product basis of the space HS = HSA ⊗HSB.
Before we show our decomposition please note that is easy to decompose any oper-
ator A ∈ HS into N 2 local measurements. One can always write

A =

N2−1
∑

i,j=0

µijG
A
i ⊗GBj =

N2−1
∑

i=0

GAi ⊗





N2−1
∑

j=0

µijG
B
j



 (2.33)

to obtain such a decomposition. This is also a decomposition of the form (2.17)
from section 2.3. In principle, one could also do a singular value decomposition of
the coefficient matrix (λij) to arrive at a Schmidt decomposition for operators.
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Theorem 2.7. Let |ψ〉〈ψ| be a projector onto a state with Schmidt rank l.
If l is even, |ψ〉〈ψ| can be decomposed into 2l − 1 local measurements. If l is odd,
|ψ〉〈ψ| can be decomposed into 2l local measurements.
Proof. If we have |ψ〉 =

∑l
i=1 si|ii〉 we can write

|ψ〉〈ψ| =
l
∑

i=1

s2i |ii〉〈ii| +
l
∑

i,j=1,i<j

sisjK(i, j) (2.34)

with K(i, j) = |ii〉〈jj|+ |jj〉〈ii|. The first sum corresponds to one measurement, and
each of the l(l − 1)/2 terms of the second sum can be decomposed by defining for
every K(i, j) the states |X±

i,j〉 = 1√
2
(|i〉 ± |j〉), |Y ±

i,j〉 = 1√
2
(|i〉 ± i|j〉)

K(i, j) = |X+
i,jX

+
i,j〉〈X+

i,jX
+
i,j | + |X−

i,jX
−
i,j〉〈X−

i,jX
−
i,j |

−|Y +
i,jY

+
i,j〉〈Y +

i,jY
+
i,j| − |Y −

i,jY
−
i,j〉〈Y −

i,jY
−
i,j|, (2.35)

as we have done before for 2 × 2 systems. This corresponds to 2 measurements for
each K(i, j).

In order to reduce the number of necessary measurements we sum up the terms
from (2.35) for different K(i, j) and K(m,n) in a way that the terms from different
K(i, j) and K(m,n) can be measured with one measurement.

Let us first consider the case that l is even. We have l(l − 1)/2 index pairs (i, j).
These pairs can be grouped into l − 1 sets of l/2 pairs in a way that in every set
every index 1 ≤ i ≤ N appears exactly in one pair. For l = 4, for instance, the 3
sets may be defined as {(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}. If we look at the
l/2 K(i, j) belonging to one set, the l vectors |X±

i,j〉 are mutually orthogonal, they

form an orthogonal basis of HA, as well as of HB . The vectors |X±
i,j〉|X±

i,j〉 occuring
in the K(i, j) of one set can then be viewed as eigenvectors of some Hermitean oper-
ator on HA ⊗HB which can be measured with one locally correlated measurement.
The vectors |Y ±

i,j〉|Y ±
i,j〉 can also be measured with one measurement. So we need 2

measurements for one set of l/2 K(i, j) and 2(l − 1) measurements for all K(i, j).
Finally, we need one measurement for the first sum on the rhs of (2.34) and this
completes the proof for even l.

If l is odd, we can similarly group the l(l − 1)/2 index pairs into l sets of (l − 1)/2
pairs. Again, every index appears at most one time in every set, but now one index
is missing in every set, and every index is missing in exactly one set. As before, we
need 2 measurements for one set and therefore 2l measurements for all K(i, j). For
the first sum on the rhs of (2.34) we do not need another measurement since we can
put the vector |i, i〉 to the set of index pairs where i is missing. 2

As mentioned in the beginning, it is not clear whether the number of measurements
needed with our decomposition is the optimal one. In the remaining part of this
section, we want to give a lower bound for the number of required measurements.
The derivation is based on the same idea as the proof of Proposition 2.6 and needs
three lemmata. In Lemma 2.8 we give a lower bound for the rank of some matrix
of the form (2.32) in N ×N -systems. In the Lemmata 2.11 and 2.12 we show that
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the matrix coming from one measurement has a low rank. Together this proves our
bound.

Lemma 2.8. If |ψ〉 ∈ HA ⊗ HB has the full Schmidt rank N then the ma-
trix (λij) in (2.32) has the full rank N 2.
Proof. First, notice that the rank of (λij) is independent of the choice of the basis
GAi ⊗GBj . This is in analogy to the fixed Schmidt rank of a state vector and follows
from the singular value decomposition of the matrix of coefficients (λij) [24].

Now we simply construct an orthonormal product basis of HS where (λ′
ij) is diagonal

and the diagonal elements do not vanish. Starting from the Schmidt-decomposition
|ψ〉 =

∑N
i=1 si|ii〉 we define on HA, as well as on HB :

Pk = |k〉〈k|, 1 ≤ k ≤ N (2.36)

Qjk =
1√
2

(|j〉〈k| + |k〉〈j|), 1 ≤ j < k ≤ N (2.37)

Rjk =
i√
2

(|j〉〈k| − |k〉〈j|), 1 ≤ j < k ≤ N. (2.38)

These N 2 operators form an orthonormal basis of HSA (resp. HSB), denoted by
HA
i (resp. HB

i ), and if one computes

λ′rs =

N
∑

α,β=1

sαsβ〈α|HA
r |β〉〈α|HB

s |β〉 (2.39)

one can directly verify that (λ′rs) is in the basis HA
r ⊗ HB

s diagonal with entries
(s21, . . . , s

2
N , s1s2, . . . , sN−1sN ,−s1s2, . . . ,−sN−1sN ), and has the full rank. 2

Corollary 2.9. If |ψ〉 ∈ HA ⊗ HB has the Schmidt rank l then the matrix
(λij) in (2.32) has the rank l2.
Proof. The proof is essentially the same as the proof of Lemma 2.8, the matrix with
entries given by Eq. (2.39) is diagonal with only l2 nonvanishing entries if |ψ〉 has
Schmidt rank l. 2

Corollary 2.10. If |ψ〉 ∈ HA ⊗ HB has the Schmidt rank l then a decom-
position in the sense of (2.32) requires l2 Hermitean operators for every party.
Proof. If one would need less, this would be a direct contradiction to Lemma 2.8
and Corollary 2.9. Please note that we have already computed this decomposition
– see (2.33). 2

Lemma 2.11. Let ~v1, ..., ~vr ∈ Rn be some vectors obeying the equations

< ~vi, ~vj >= C 6= 0 ∀ i 6= j. (2.40)

~vr should be uniquely defined by ~v1, ..., ~vr−1 and the equations (2.40) while ~vr−1

should not be uniquely defined by ~v1, ..., ~vr−2 and the equations (2.40). Then we
have

~vr ∈ Lin(~v1, ..., ~vr−1) (2.41)
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and
dim(Lin(~v1, ..., ~vr)) = r − 1 (2.42)

where Lin(~v1, ..., ~vr) denotes the linear subspace spanned by ~v1, ..., ~vr.
Proof. We can split ~vr in two parts:

~vr = ~vr‖ + ~vr⊥, (2.43)

where ~vr‖ ∈ Lin(~v1, ..., ~vr−1) and ~vr⊥⊥ Lin(~v1, ..., ~vr−1). Since ~vr is uniquely
determined, it follows that ~vr⊥ = 0 (otherwise ~vr = ~vr‖ − ~vr⊥ would be a different
solution) and the first part of the statement is proven. The equality in (2.42) comes
from the fact that ~vr−1 is not unique. 2

Lemma 2.12. Let M be one LvNM in the sense of (2.15) expanded in the
GAi ⊗GBj basis:

M =
N
∑

i,j=1

cij |Ai〉〈Ai| ⊗ |Bj〉〈Bj | =
N2−1
∑

i,j=0

µijG
A
i ⊗GBj (2.44)

Then the (N 2−1)×N2 submatrix consisting of the lower N 2−1 rows of the N 2×N2

matrix (µij) (called (µij)
red = (µij)i>0) has the rank N − 1.

Proof. We can write any of the projectors |Ai〉〈Ai| and |Bj〉〈Bj | as Bloch vectors Âi
and B̂j (resp. ~Ai and ~Bj) with the help of (2.29). Then we have

(µij)
red =

N
∑

i,j=1

cij( ~Ai)
T (B̂j). (2.45)

This is a (N 2 −1)×N2 matrix, since every ( ~Ai)
T B̂j is a (N2 −1)×N2 matrix. The

range of this matrix is spanned by the vectors ( ~Ai)
T . The vectors ( ~Ai)

T correspond
to the vectors |Ai〉, and they obey relations of the form (2.31). Furthermore,
~AN is uniquely determined by ~A1, ..., ~AN−1, since |AN 〉 is uniquely determined by
|A1〉, ..., |AN−1〉. Thus, we can apply our Lemma 2.11, and the rank of (µij)

red is
N − 1. 2

Theorem 2.13. Let |ψ〉 ∈ HA ⊗ HB have full Schmidt rank N > 1. Then
a local measurement of the projector |ψ〉〈ψ| requires at least N + 1 measurements.
Proof. If we look at |ψ〉〈ψ| in the form (2.32) the matrix λij has, according to
Lemma 2.8, the full rank N 2, and the reduced matrix (λij)

red = (λij)i>0 has a rank
of N2 − 1.

Since the matrix (µij)
red corresponding to a single LvNM has, according to Lemma

2.12, the rank N − 1 we need at least (N 2 − 1)/(N − 1) = N + 1 measurements.
This proves the statement. 2

Using a particular basis for the elements of HS, it was shown recently that, if N
is prime, the projector onto a pure entangled state with equal Schmidt coefficients
and full Schmidt rank can be measured with N + 1 LvNMs, saturating the bound
from Theorem 2.13 [104].
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The question remains which of these results remain valid for N ×M -systems with
M > N. The answer is simple: All results remain valid. Since the maximal Schmidt
rank in a N ×M -system is N, Theorem 2.7 can be proven in just the same way.
Also the arguments which led to Theorem 2.13 can be applied.

2.5 Local detection of PPT entanglement

So far we were concerned with NPPT entangled states which are easily detected
by entanglement witnesses, and obtained local decompositions requiring only few
local measurements. Now we turn to the detection of a particular kind of entangled
states: those having a positive partial transpose, which are undistillable because
of this property. First, we construct and decompose witnesses for bipartite PPT
entangled states. Then, we introduce two new families of entangled multiqubit
states which have a PPT with respect to every bipartite splitting, and construct
and decompose witnesses for the first family.

2.5.1 UPB states for two-qutrit systems

In Ref. [96], an easy method for constructing PPT entangled states was introduced
with the help of unextendible product bases (UPBs). A UPB is a set of orthogonal
product vectors spanning a subspace of the total space such that there is no other
product vector orthogonal to all of them. For systems of two qutrits, the states

|ψ0〉 =
1√
2
|0〉(|0〉 − |1〉), |ψ2〉 =

1√
2
|2〉(|1〉 − |2〉),

|ψ1〉 =
1√
2

(|0〉 − |1〉)|2〉, |ψ3〉 =
1√
2

(|1〉 − |2〉)|0〉,

|ψ4〉 =
1

3
(|0〉 + |1〉 + |2〉)(|0〉 + |1〉 + |2〉) (2.46)

form a UPB. By construction, the state

ρUPB =
1

4

( �
−

4
∑

i=0

|ψi〉〈ψi|
)

, (2.47)

which is the projection on the space orthogonal to that spanned by the UPB, does
not contain any product state in its range. Furthermore, since all the vectors forming
the UPB are real, the partial transposition leaves the state invariant. Hence it is
PPT. In conclusion, ρUPB is an entangled edge state with a positive partial transpose.

Witnesses for these states can be constructed following the method of section 2.2.3.
The projectors P and Q are related to each other by

P = QTA =

4
∑

i=0

|ψi〉〈ψi|, (2.48)
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therefore we skip QTA and write the witness as

WUPB =

4
∑

i=0

|ψi〉〈ψi| − ε
�
. (2.49)

The witness is already in a local form, and five measurements settings are neces-
sary to measure this witness, one for each of the five projectors, since the UPB is
constructed in such a way that no two projectors can be evaluated in the same basis.

The main problem of this construction is to find ε. An analytical bound obtained
with the method of Terhal [105] gives

ε ≥ 1

9

(6 −
√

30)

6

(2 −
√

3)

2
≈ 0.001297. (2.50)

Numerical analysis using a multivariable minimization routine [106], however, leads
to the much bigger value ε ≈ 0.02842. As mentioned in section 2.9, we will present
an efficient method to obtain numerical lower bounds for ε in chapter 4, ensuring
the positivity on product states of the witness.

Note that when the bound entangled state is affected by white noise, namely ρp =
p · ρUPB + (1 − p)

�
/9, the witness given above is still suitable for the detection

of entanglement. We find that Tr[WUPBρp] < 0 when p > (1 − 9ε/5), leading to
p > 0.949 for the numerical bound on ε.

2.5.2 Chessboard states for two qutrits

In Ref. [97], another method for constructing bound entangled states of two qutrits
was introduced. The states are constructed from 4 entangled vectors as follows

ρcb = N
4
∑

i=1

|Vi〉〈Vi|, (2.51)

|V1〉 = (m, 0, s; 0, n, 0; 0, 0, 0)

|V2〉 = (0, a, 0; b, 0, c; 0, 0, 0)

|V3〉 = (n∗, 0, 0; 0,−m∗, 0; t, 0, 0) (2.52)

|V4〉 = (0, b∗, 0; 0,−a∗, 0; 0, d, 0),

where the normalization is ensured by the factor N = 1/
∑

j〈Vj |Vj〉. By choosing
the phases of the |Vi〉 and the basis vectors, 6 of the parameters can be made real,
so that we can assume without loss of generality that only t and s remain complex.
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In matrix form, ρcb can then be written as

ρcb = N





























m2 + n2 0 ms∗ 0 0 0 nt∗ 0 0
0 a2 + b2 0 0 0 ac 0 bd 0
sm 0 |s|2 0 sn 0 0 0 0
0 0 0 a2 + b2 0 bc 0 −ad 0
0 0 ns∗ 0 m2 + n2 0 −mt∗ 0 0
0 ac 0 cb 0 c2 0 0 0
tn 0 0 0 −tm 0 |t|2 0 0
0 bd 0 −da 0 0 0 d2 0
0 0 0 0 0 0 0 0 0





























.

(2.53)
The states are sometimes called chessboard states because the only nonvanishing
matrix elements are distributed as the fields of the same color on a chessboard.

In Ref. [97], two methods were provided of ensuring that ρcb is bound entangled.
We will employ the first one, i.e., we demand that ρcb = ρTA

cb , which is fulfilled for
t = ad/m and s = ac/n real, and implies that P = Q. The kernel of ρcb (and of
ρTA

cb ) is spanned by the (non-normalized) vectors

|k1〉 = |22〉 (2.54)

|k2〉 = (
m

n
, 0,−m

2 + n2

ac
; 0, 1, 0; 0, 0, 0) (2.55)

|k3〉 = (0,− ac

a2 + b2
, 0;− bc

a2 + b2
, 0, 1; 0, 0, 0) (2.56)

|k4〉 = (− ad

mn
, 0,

d

c
; 0, 0, 0; 1, 0, 0) (2.57)

|k5〉 = (0,− bd

a2 + b2
, 0;

ad

a2 + b2
, 0, 0; 0, 1, 0). (2.58)

In order to construct and decompose the witness Wcb in terms of projectors onto
product states with the method of section 2.9, we first examine whether there are
more product vectors in the kernel of ρcb, so we try to solve

(a1|0〉 + a2|1〉 + a3|2〉) ⊗ (b1|0〉 + b2|1〉 + b3|2〉) =
5
∑

i=1

xi|ki〉. (2.59)

When writing down the equations one can see that the xi can be substituted by
products of one aj and one bk. Then it is possible to solve the set of equations which
is then linear in the parameters bk. This in turn gives two equations for the aj. The
first solution is given by

|k′4〉 = |k4〉 −
mn

ac
|k1〉 = (− ad

mn
, 0, 1) ⊗ (1, 0,−mn

ac
), (2.60)
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and with

α1 ≡ (m2 + n2)bmn− (a2 + b2)am2

α3 ≡ ad2n2

α13 ≡ (m2 + n2)(mn+ ab)d− 2abdm2 (2.61)

γ0,1
1 ≡

(

− α13 ±
√

α2
13 − 4α1α3

)

/2α3

γ0,1
2 ≡

[ 1

am2

(

bmn+ d(mn+ ab)γ0,1
1 + ad2(γ0,1

1 )2
)] 1

2
(2.62)

the other solutions can be written as

|e, f〉 = a1

(

1,±γ0,1
2 , γ0,1

1

)

⊗ b2

(

± m2γ0,1
2

mn+ adγ0,1
1

, 1,∓a
2 + b2 + bdγ0,1

1

acγ0,1
2

)

. (2.63)

The parameters a1 and b2 can be used to normalize the vectors. We found 6 product
vectors in the kernels. Of those vectors, 5 will be linearly independent in general.
Since they do not form an orthonormal set in general, we cannot construct P and
Q from them. However, the witness can also be constructed by using instead of the
projector onto the kernel of ρcb (ρTA

cb ) an operator P̃ (Q̃) which is strictly positive on

the range of the kernel of ρcb (ρTA

cb ). This will only affect the value of ε. Here P̃ = Q̃
can be constructed by summing the projectors onto five linearly independent product
vectors from the kernel of ρcb. Since the vectors are real, we have in addition that
P̃ = Q̃TA . Hence in general the pre-witness W̄cb can be decomposed into 5 projectors
onto product vectors requiring 5 settings to measure the witness Wcb, one for each
of the projectors.

Again, an upper bound on the coefficient ε can be calculated numerically with the
use of a multivariable minimization routine [106], while we refer to chapter 4 for a
method capable of generating a lower bound.

2.5.3 Horodecki states for 2 × 4 systems

The first example of a PPT entangled state in the literature was introduced by P.
Horodecki in Ref. [29]. It is a state of a 2×4 system which can be written in matrix
as

ρb =
1

7b+ 1

























b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1
2(1 + b) 0 0 1

2

√
1 − b2

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0 1
2

√
1 − b2 0 0 1

2(1 + b)

























, (2.64)

where b ∈ [0, 1]. For b = 0, 1 the matrix ρb is separable, and bound entangled for all
other values of b. In the following we assume b 6= 0, 1. The kernel of ρb is spanned
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by the entangled vectors

|k1〉 =
1√
2

(1, 0, 0, 0; 0,−1, 0, 0) (2.65)

|k2〉 =
1√
2

(0, 1, 0, 0; 0, 0,−1, 0) (2.66)

|k3〉 =
1

√

2 + y2
(0, 0, 1, 0; y, 0, 0,−1), (2.67)

where y =
√

(1 − b)/(1 + b), so any vector in the kernel can be represented as

|k〉 = (A,B,C, 0; yC,−A,−B,−C) (2.68)

where A,B,C,D are complex parameters. For |k〉 to be a product vector, it must
be of the form

|e, f〉 = (r, s) ⊗ (A′, B′, C ′, D′) ≡ (r(A′, B′, C ′, D′); s(A′, B′, C ′, D′)), (2.69)

where r, s, A′, B′, C ′, and D′ are complex parameters. It can be readily checked that
there is no possibility to write |k〉 in this form, therefore there is no product vector
in the kernel of ρb. On the other hand, the kernel of ρTB

b is spanned by the entangled
vectors

|k1〉 =
1√
2

(0, 0, 1, 0; 0,−1, 0, 0) (2.70)

|k2〉 =
1√
2

(0, 0, 0, 1; 0, 0,−1, 0) (2.71)

|k3〉 =
1

√

2 + y2
(0, 1, 0, 0; 1, 0, 0, y), (2.72)

and does not contain any product vector, either. Therefore, the decomposition of
the witness of the from of Eq. (2.9) in projectors onto product vectors is a rather
tedious task. On the other hand, we can write down the witness W as in Eq. (2.9)
and then decompose it as in Eq. (2.17) and (2.33)

W = P +QTA − ε
�

=

3
∑

i=0

15
∑

j=0

wijσi ⊗ τj ≡
3
∑

i=0

σi ⊗ τ̃i (2.73)

in a straightforward manner. Here σi and τi, for i > 0, are the generators of the
SU(2) and SU(4), respectively, while σ0 =

�
and τ0 =

�
4/4. The matrices τ̃ can be

calculated from
2τ̃i = TrA

(

W (σi ⊗
�

4)
)

, (2.74)

they turn out to be

τ̃0 =
c

2









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









+ (3 − 4ε)τ0, (2.75)
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τ̃1 =
1

4









0 −cy2 2cy 0
−cy2 0 −2 2cy
2cy −2 0 −c(4 + y2)
0 2cy −c(4 + y2) 0









, (2.76)

τ̃2 =
i

4









0 −cy2 −2cy 0
cy2 0 −2 −2cy
2cy 2 0 −c(4 + y2)
0 2cy c(4 + y2) 0









, (2.77)

and

τ̃3 = −cy2τ0, (2.78)

where c = 1/(2 + y2). The number of correlated local measurement settings is 4,
but Alice and Bob need only 3 different settings each to measure the witness.

As before, upper bound on the coefficient ε can be obtained by minimization routines
[106], while lower bounds can be produced with the method to be introduced in
chapter 4.

After having discussed three examples of bipartite PPT entangled states, we turn
now to the multiqubit setting.

2.5.4 A family of n-qubit PPTES from a GHZ state

In Ref. [98], the following family of states of three qubits depending on three positive
parameters a, b, and c has been introduced

ρ3(a, b, c) =
1

N

























1 0 0 0 0 0 0 1
0 a 0 0 0 0 0 0
0 0 b 0 0 0 0 0
0 0 0 1

c 0 0 0 0
0 0 0 0 c 0 0 0
0 0 0 0 0 1

b 0 0
0 0 0 0 0 0 1

a 0
1 0 0 0 0 0 0 1

























, (2.79)

where the normalization is ensured by N = 2 +
∑

x(x + 1/x), x = a, b, c, and we
exchanged c↔ 1/c as compared to the original notation. It can be shown [98] that
if abc 6= 1, then the states have the following very peculiar properties

1. The states have a positive partial transpose with respect to every bipartite
split.

2. The states are separable with respect to every biparte split.

3. The states are entangled.
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Here, we generalize this construction to states of n qubits, for arbitrary n, and
construct entanglement witnesses detecting them for every n. We further present
local decompositions for small n and prove the optimality for n = 3.

Let us first introduce some notation. In the standard computational basis for n
qubits, the basis states can be labeled by an index k running from 000 . . . 0 ≡ 0 up
to 111 . . . 1 ≡ 2n − 1. By k̄ we denote the number which is reached by inverting all
digits in the binary representation, e.g., 0̄ = 1.

The n-qubit family can then be written as

ρn(a) =
1

N

[

2|GHZn〉〈GHZn| +
2n−1−1
∑

k=1

ak|k〉〈k| +
1

ak
|k̄〉〈k̄|

]

, (2.80)

where N = n +
∑2n−1−1

k=1 (ak + 1
ak

), and a is the vector of positive coefficients ak.

These coefficients have to fulfil a1a2a4 · · · a2n−1 = Πn−1
k=0a2k 6= 1 in order to ensure

that the states are entangled. Now we will prove the named properties of the states.

Property 1 (positive partial transpose). When the states (2.80) are partially trans-
posed, only the projector onto the GHZ state is affected, while all the product vectors
remain unchanged. To be precise, only the off-diagonal term |0〉〈1|⊗n + |1〉〈0|⊗n is
changed. If I is a list of all the indices of those systems with respect to which the
state is transposed, then this term is transformed to |kI〉〈k̄I |+ |k̄I〉〈kI |, where kI has
a 0 on all binary positions except for those which have been partially transposed.
Hence, the partially transposed states is a mixture of a state with only positve entries
on the diagonal and the following state in the subspace {|kI〉, |k̄I〉}

(

akI
1

1 1
akI

)

, (2.81)

which is equal to the projector onto the nonnormalized state
√
akI

|kI〉+(1/
√
akI

)|k̄I〉.
Therefore ρn(a) is PPT with respect to every bipartite split. �

Property 2 (biseparability). If we fix a certain bipartite splitting labelled by I,
then we saw in the proof of property 1 that the partial transpose affects only a small
subspace of the whole space, so that we can write

ρn(a) = ρs,I + ρ̃I . (2.82)

Here ρs,I is the unaffected part which contains only projectors onto product states,
and

ρ̃I =









1 0 0 1
0 akI

0 0
0 0 1

akI

0

1 0 0 1









, (2.83)

living in the subspace {|0〉, |kI 〉, |k̄I〉, |2n−1〉}. Since ρs,I is separable, ρn(a) is bisep-
arable if ρ̃ is separable. But ρ̃ lives in a 2×2 dimensional subspace, and it is positive
with respect to partial transposition with respect to one part of this subspace. In
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these dimensions, the PPT criterion is a sufficient criterion for separability. Hence
ρn(a) is separable with respect to every bipartite split. �

Property 3 (entanglement). We prove that the states are entangled when the pa-
rameters a fulfil the conditions named above by showing that the states violate the
range criterion of section 1.1.2 extremely in this case, i.e., that there exists no prod-
uct vector |φ〉 = ⊗n

m=1|φm〉 such that i) |φ〉 ∈ R(ρn(a)) and ii) |φ〉∗I ∈ R(ρn(a)TI )
for all bipartite splittings labelled by I. Here ∗I denotes complex conjugation of all
|φl〉 with l ∈ I and TI denotes partial transposition with respect to all systems listed
in I. With this notation, |kI〉 = |0〉TI .

This can be proven by looking at the respective kernels. Let |φm〉 = cos θm|0〉 +
exp(iϕm) sin θm|1〉 ≡ cm|0〉 + emsm|1〉, and θm ∈ [0, π/4]. The kernel of ρn(a) is
spanned by |GHZ−

n 〉 ≡ (|0〉⊗n−|1〉⊗n)/
√

2. From Eq. (2.81) it is easy to see that the
kernel of ρn(a)TI is spanned by the (nonnormalized) vector |KI〉 ≡ (|kI〉 − akI

|k̄I〉),
for all possible sets I. A product vector fulfilling the range criterion then has to
obey

〈GHZ−
n |φ〉 = 0 (2.84)

〈KI |φ〉∗I = 0, (2.85)

for all sets I. These conditions are equivalent to

Πn
j=1 tan(θj) = exp(−i

n
∑

l=1

ϕl) = 1 (2.86)

Πj /∈I tan(θj)

Πl∈I tan(θl)
=

1

akI

exp(−i
n
∑

m=1

ϕm) =
1

akI

, (2.87)

where the last equalities on the right hand sides are due to the restriction of the
angles θk to the interval [0, π/4]. Therefore, we can without loss of generality assume
that ϕk = 0, for all k. The second condition can be rewritten using the first as

(

Πl∈I tan(θl)
)2

= akI
. (2.88)

A contradiction can now be reached by multiplying the conditions (2.88) for several
splittings such that the dependence on the angles can be taken out by virtue of
(2.86). For instance, let us consider the sets Ij = {j}, j = 1, 2, . . . , n, i.e., all the
sets where only one party is separated from all the others. If we multiply the left
hand sides and right hand sides of Eq. (2.88) for all Ij, we obtain

(

Πn
j=1 tan(θj)

)2
= Πn

j=1akIj
= 1, (2.89)

where the last equality follows again from Eq. (2.86). If we demand that Πn
j=1akIj

6=
1, then ρn(a) violates the range criterion in an extremal sense, and is therefore
entangled. Further, kIj = 2n−j , so that we arrive at the condition below Eq. (2.80).

�
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Note that the minimal number of conditions one has to combine here is 3, because
two sets I together can only contain each party once if I1 is the complement of I2,
so that akI1

·akI2
= 1 by construction, from which no contradiction can be obtained.

Finally, we would like to point out that it is also easy to generate states that are
NPPT with respect to a splitting I by choosing akI

6= (ak̄I
)−1. If I contains more

than one party, then a violation of condition (2.89) still ensures entanglement of the
whole state, not only with respect to I. On the other hand, if I = {1}, say, then
by multiplying the conditions (2.88) for the sets I = {1, 2} and Ij , j = 3, 4, . . . n, we
obtain

ak{1,2}
Πn
j=3akIj

6= 1 (2.90)

as a condition for entanglement of the whole state.

2.5.5 Local detection of the family

We adopt the method from section 2.2.3 to the multiqubit setting to

W = P +
∑

I

QTI

I − ε
�
, (2.91)

ε = inf
|φ〉

〈φ|
(

P +
∑

I

QTI

I

)

|φ〉 (2.92)

where QI = K(ρn(a)TI ), and |φ〉 = ⊗n
i=1|φi〉. The sum can be performed over

all I, but it suffices to take into account those splittings that are involved in the
contradiction from the proof of entanglement of the states, which is reflected in the
condition on the parameters a. This ensures already that ε > 0. The witness is
rather easy to construct because

QTI

I =
1

1 + a2
kI

|KI〉〈KI |TI (2.93)

=
1

1 + a2
kI

(

|kI〉〈kI | + a2
kI
|k̄I〉〈k̄I | − akI

(

|0〉〈1|⊗n + |1〉〈0|⊗n
)

)

.

It takes the form

W =
1

2

(

|0〉〈0|⊗n + |1〉〈1|⊗n
)

+
∑

I

1

1 + a2
kI

(

|kI〉〈kI | + a2
kI
|k̄I〉〈k̄I |

)

−
(1

2
+
∑

I

akI

1 + a2
kI

)(

|0〉〈1|⊗n + |1〉〈0|⊗n
)

− ε
�
. (2.94)

This is already a local decomposition except for the term |0〉〈1|⊗n + |1〉〈0|⊗n, which
is also the problematic term when the projector onto the GHZ state has to be de-
composed locally. It can be found by iterating the trick from section 2.4.1. Starting
from

|00〉〈11| + |11〉〈00| =
1

2

(

σxσx − σyσy
)

(2.95)

|00〉〈11| − |11〉〈00| =
i

2

(

σxσy + σyσx
)

(2.96)
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it is possible to obtain

|000〉〈111| + |111〉〈000| =
1

4

(

σxσxσx − σxσyσy − σyσxσy − σyσyσx
)

=
1

2
σxσxσx −

1

8
(σx + σy)

⊗3 − 1

8
(σx − σy)

⊗3, (2.97)

where we left out the tensor product signs. The number of measurements necessary
is reduced from four to three in the last decomposition, where only the measurements
σxσxσx, and

(

(σx± σy)/
√

2
)⊗3

have to be performed. For the latter measurements,
each party has to perform spin measurements in directions in the x− y plane at an
angle of ±45◦ with respect to the x axis.

For four qubits,

|0〉〈1|⊗4 + |1〉〈0|⊗4 =
1

8

(

σ⊗4
x + σ⊗4

y − σxσxσyσy − σxσyσxσy − σxσyσyσx

−σyσxσyσx − σyσyσxσx − σyσxσxσy

)

(2.98)

=
1

4

(

σ⊗4
x + σ⊗4

y − 1

4
(σx + σy)

⊗4 − 1

4
(σx − σy)

⊗4
)

.

Here, eight measurements are necessary for the first decomposition and only four for
the second. For five qubits, the number of locally correlated measurement settings
necessary is eight already for a decomposition similar to the decompositions in the
lower lines of the Eqs. (2.97) and (2.98), and the number seems to increase expo-
nentially with the number of qubits. However, it is by no means clear that these are
the optimal decompositions.

Optimality of the decomposition for three qubits

We consider again the decomposition of the witness for three qubits and prove that
the decomposition is optimal with similar methods as applied in section 2.4. The
witness is later used in chapter 3, where a network is constructed for the generation
of ρ3(a), given in Eq. (2.79). The witness for ρ3(a) is given by

ρ3 =
1

N

(

2|GHZ〉〈GHZ| + a|001〉〈001| +
1

a
|110〉〈110| + b|010〉〈010| +

1

b
|101〉〈101|

+c|100〉〈100| +
1

c
|011〉〈011|

)

. (2.99)

From Eq. (2.89) we see that the condition for entanglement is abc 6= 1. The witness
is given by

W =
1

2

(

|000〉〈000| + |111〉〈111|
)

+
1

1 + a2

(

|001〉〈001| + a2|110〉〈110|
)

+
1

1 + b2

(

|010〉〈010| + b2|101〉〈101|
)

+
1

1 + c2

(

|100〉〈100| + c2|011〉〈011|
)

−
(1

2
+

a

1 + a2
+

b

1 + b2
+

c

1 + c2

)(

|000〉〈111| + |111〉〈000|
)

− ε
�
. (2.100)
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Proposition 2.14. The witness (2.100) cannot be measured with three LvNMs,
i.e., the second decomposition of Eq. (2.97) is optimal.
Proof. The proof is an extension of the two-qubit case. First, we write the witness
in the σi⊗σj⊗σk basis: W = 1/8

∑3
i,j,k=0 λijkσi⊗σj⊗σk. From this we define the

reduced 4 × 3 × 3 tensor (λred
ijk)i,j,k := (λijk)j,k>0 which is given by

λred
0jk =





0 0 0
0 0 0
0 0 0



 =: A(0) λred
1jk =





−s1 0 0
0 s1 0
0 0 0



 =: A(1)

λred
2jk =





0 s1 0
s1 0 0
0 0 0



 =: A(2) λred
3jk =





0 0 0
0 0 0
0 0 −s2



 =: A(3).

Here we used the abbreviations s1 = 1 + 2
∑

x
x

1+x2 and s2 =
∑

x
1−x2

1+x2 , where x is
summed over a, b, c.

Let us now see what can be achieved with one measurement setting. One measure-
ment setting is of the form

M =

1
∑

r,s,t=0

crst|Ar〉〈Ar| ⊗ |Bs〉〈Bs| ⊗ |Ct〉〈Ct|

=

3
∑

i,j,k=0

µijkσi ⊗ σj ⊗ σk, (2.101)

Defining sA as the Bloch vector of |A0〉〈A0| (and similarly sB and sC for |B0〉〈B0|
and |C0〉〈C0|) and using the same argumentation as in the two-qubit case, it is easy
to see that the reduced 4 × 3 × 3 tensor µredijk is given by

µred
ijk =

1
∑

r,s,t=0

crst(−1)s+t(~sAr )is
B
j s

C
k , (2.102)

where ~sAr = (1/2; (−1)r(sA1 , s
A
2 , s

A
3 )). Hence µred

ijk is of the form aibjck, which can be
defined as a tensor of rank one in analogy to rank one matrices [107], c.f. section
2.4.1.

If the witness W could be measured with three local measurements, then it would
have to be possible to write its reduced tensor as the sum of three rank one tensors,
i.e.,

λred
ijk =

3
∑

r=1

a
(r)
i b

(r)
j c

(r)
k

= a
(1)
i B

(1)
jk + a

(2)
i B

(2)
jk + a

(3)
i B

(3)
jk . (2.103)

The B(r) are matrices of rank one, and their linear combination has to span the
same three-dimensional subspace as the A(i) in the space of 3 × 3 matrices. In this



2.5 Local detection of PPT entanglement 45

case it would be possible to write every single B (r) as a linear combination of the
A(i). However, a general linear combination of the A(i) is of the form:

A =





−α β 0
β α 0
0 0 γ



 (2.104)

This is of rank one if and only if α = β = 0. Thus, we arrive at a contradiction, the
Bi cannot be of rank one and linear independent. 2

The proof shows a link between the minimal number of measurements needed to the
rank of the reduced λ tensor, a connection which is investigated further in Ref. [107].

2.5.6 A family of three qubit PPTES from a W state

In this section, we show that it is also possible to construct a family of three qubit
states with the same properties as the states constructed from a GHZ state in the
preceding section. It is given by

ρW(a) =
1

N

(

3|W〉〈W| + 2a|000〉〈000| +
1

a

(

|011〉〈011| + |101〉〈101| + |110〉〈110|
)

)

,

(2.105)
where N = 3 + 2a + 3/a and a > 0. This state is invariant with respect to the
exchange of two parties, which simplifies the following proofs.

Property 1 (positive partial transpose). Partially transposing the state with re-
spect to subsystem A leads to

ρTA =
1

N

























2a 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1

a 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 1

a 0 0
1 0 0 0 0 0 1

a 0
0 0 0 0 0 0 0 0

























(2.106)

which is a convex combination of projectors onto the product states |011〉 and |100〉
and on the (partly unnormalized) states |0〉A|ψ+〉BC , (

√
a|000〉 + 1√

a
|1〉A|01〉BC ),

and (
√
a|000〉 + 1√

a
|1〉A|10〉BC ), hence it is positive. The states partially transposed

with respect to B and C are of a similar form, so that ρW(a) is PPT with respect
to every partition. �

Property 2 (biseparability). We just consider the partition A− BC, and because
the state is invariant under the exchange of two particles, separability of the other
splits follows. Identifying |00〉BC ≡ |0〉, |01〉BC ≡ |1〉, and so on, we can write the
state as

ρW(a) = ρ̃ +
1

Na
|03〉〈03|, (2.107)
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where ρ̃ has support on
� 2 ⊗ � 3 only, because the projector onto |03〉 and ρ̃ re-

main independent under partial transposition, c.f. Eq. (2.106). Further, ρ̃ ≥ 0 by
construction of the state. Therefore it is separable, because the PPT criterion is
also sufficient for 2 × 3 systems, so that ρW(a) is biseparable with respect to this
splitting. �

Property 3 (entanglement). In order to show that the states are entangled despite
the first two properties, we use the range criterion from section 1.1.2 as in the
preceding section, i.e. we show that there is no product vector |a, b, c〉 ∈ R(ρ)
fulfilling |a, b, c〉∗X ∈ R(ρTX ) for X = A,B,C by looking at the respective kernels.

The kernel of ρW is spanned by |W1,2〉 = (|001〉 + exp(iα1,2)|010〉 +
exp(i2α1,2)|100〉)/

√
3, where α1 = 2π/3 = α2/2, and |111〉. The kernel of ρTA is

spanned by |0〉A|ψ−〉BC , ( 1√
a
|000〉 − √

a|1〉A|ψ+〉BC), and |111〉. The kernels of ρTB

and ρTC are of a similar form again, with (A,BC) replaced by (B,AC) for ρTB

and replaced by (C,AB) for ρTC . The condition K(ρ)|a, b, c〉 = 0 is fulfilled by
|a, b, c〉 ∈ {|000〉, |011〉, |101〉, |110〉} only. On the other hand, K(ρTX )|a, b, c〉∗X = 0
for |a, b, c〉 = |0〉X |11〉 only, which shows that there exists no product vector with
the desired properties. Hence ρW(a) are PPTES for all a > 0. �

2.6 Experimental implementation

In this section, we briefly discuss part of the experiments performed by M. Bouren-
nane and coworkers in the group of H. Weinfurter in Munich [VII]. They produced
two multiparticle states of photons entangled in the polarization degrees of freedom
by parametric down-conversion, and proved that the produced states are truely mul-
tipartite entangled with entanglement witnesses. The first state is the three-qubit
W state [63, 108]

|W〉 =

√

1

3

(

|001〉 + |010〉 + |100〉
)

(2.108)

and the second is a four photon entangled state of the form

|ψ4〉 =
1√
3

(

|0011〉 + |1100〉 − 1

2

(

|0110〉 + |1001〉 + |0101〉 + |1010〉
)

)

. (2.109)

Here, we will concentrate on the first one and refer to Ref. [VII] for the treatment
of the second one. For the detection of its entanglement the following two witnesses

W(1)
W and W(2)

W [98] can be used. The first witness is constructed according to section
2.2.2 and can be decomposed with methods similar to those applied before in this
chapter, resulting in

W(1)
W =

2

3

�
− |W〉〈W| =

1

24

[

17 ·
� ⊗3 + 7 · σ⊗3

z + 3 ·
(

σz

���
+
�
σz

�
+
���
σz

)

+5 ·
(

σzσz
�

+ σz
�
σz +

�
σzσz

)

− (
�

+ σz + σx)⊗3 − (
�

+ σz − σx)⊗3

−(
�

+ σz + σy)
⊗3 − (

�
+ σz − σy)

⊗3
]

. (2.110)
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Its expectation value is positive on biseparable and fully separable states. It thus
detects all states belonging to the two classes of states with genuine tripartite entan-
glement, the W class and the GHZ class, but without distinguishing between them.
The factor 2/3 corresponds to the maximal squared overlap between the W state
and biseparable states. From this we also see that a mixture of |W〉 and white noise,
ρ = p|W〉〈W| + (1−p)

�
/8, exhibits tripartite entanglement for a noise contribution

of up to p > 13/21. This decomposition requires five measurement settings, namely
σ⊗3
z and ((σz±σi)/

√
2)⊗3; i = x, y, see also Fig. 2.3. The number of correlated local

measurement settings can be shown to be optimal with similar methods as those
used before in this section [VI].

A witness that detects genuine tripartite entanglement and, with just one extra local
measurement, allows to distinguish between the W and GHZ states, in its original
and decomposed form is [VI]

W(2)
W =

1

2

�
− |GHZ〉〈GHZ|

=
1

16

[

6 ·
� ⊗3 + 4 · σ⊗3

z − 2 ·
(

σyσy
�

+ σy
�
σy +

�
σyσy

)

−(σz + σx)⊗3 − (σz − σx)⊗3
]

, (2.111)

where |GHZ〉 = (|0̄0̄0̄〉+ |1̄1̄1̄〉)/
√

2 = (|000〉+ |001〉+ |010〉+ |100〉) with |0̄〉 = (|0〉+
i|1〉)/

√
2 and |1̄〉 = −(|0〉 − i|1〉)/

√
2. This witness is constructed slightly differently

from above, namely here 1/2 is the maximal squared overlap between |GHZ〉 and any
biseparable state. Furthermore, since the maximum overlap between |GHZ〉 and any
W state is 3/4 [98], the operator WGHZ = 3/4 ·

�
− |GHZ〉〈GHZ| is a GHZ witness,

i.e., it has a negative expectation value for GHZ states, but is positive for states
belonging to the class of W states. Therefore we can prove with the witness (2.111)

that a state ρ is fully tripartite entangled if Tr[W (2)
W ρ] < 0. If Tr[W(2)

W ρ] < −1/4
then the state ρ does not belong to the W state class. Note, however, that the
witness cannot prove that a state belongs to the W class. Theoretically, one expects

Tr[W(1)
W |W〉〈W|] = −1/3 and Tr[W (2)

W |W〉〈W|] = −1/4.

Let us now proceed with the experimental demonstration. For the experiments the
qubits are represented by the polarization of photons, with ”0” ≡ horizontal (H) and
”1” ≡ vertical (V) linear polarization. The process of spontaneous parametric down-
conversion (SPDC) is used to generate the polarization-entangled four photon state
of Eq. (2.109) in the arms a0 and b0 [109, 110], c.f. Fig. 2.2. In order to transform
the initial state into the W state two photon interference at a beam splitter (BS) is
employed when the photons are distributed into arms a, b and c [108, 111]. Provided
each of the three observers receives one photon they obtain the three photon state
|W〉. The general principle and the experimental techniques to observe multi photon
entangled states are described in detail in [111, 112]; let us here focus on detecting
their entanglement.

For implementing the witness observable polarization analyzers (PA) are used. A
quarter- (QWP) and a half-wave-plate (HWP) together with a polarizing beam
splitter (PBS) allow to set and to analyze any arbitrary polarization direction of
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Figure 2.2. Experimental setup to demonstrate the three-photon en-
tanglement of the W state.

each of the photons. As the computational basis of the qubit ”0”/”1” and thus the
spin observable σz corresponds to a measurement of the H/V linear polarization,
σx (σy) corresponds to the analysis of ±45◦ linear polarization (left/right circular
polarization). Registration of a photon in one of the two detectors of a PA signals
the observation of the corresponding eigenstate of the spin operator. For instance,
when all three output ports are measured in the H/V linear polarization basis, then
the probabilities for the eight possible eigenstates |z±〉 ⊗ |z±〉 ⊗ |z±〉 are obtained
from the events where all three observers register a photon. From these probabilities,
the terms like Tr[ρσ⊗3

z ] of the expectation value of the entanglement witness can be
calculated.

Figure 2.3. Three photon detection probabilities for six settings of
the polarization analyzers as required for the detection of three-photon

entanglement using the witness operators W (1)
W and W(2)

W .

The multi photon detection probabilities for the three-qubit state |W 〉 are shown
in Fig. 2.3. From the experimental results the following expectation values can be
calculated

Tr[W(1)
W ρW ]exp = −0.197 ± 0.018, (2.112)

Tr[W(2)
W ρW ]exp = −0.139 ± 0.030. (2.113)
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This clearly proves with high statistical significance that the observed state is truly
tripartite entangled, and the result of the second witness can be interpreted as an
indication that the state belongs to the W class. In contrast, the evaluation of a
three-photon Bell inequality failed to signify tripartite entanglement for the same
experimental settings and noise [111], indicating the superiority of the witnesses as
far as entanglement detection is concerned.

2.7 Conclusions

To summarize, in this chapter, we presented the scheme for local detection of entan-
glement via witness operators, concentrating on bipartite NPPT entangled states
as well as PPT entangled states. We presented three different methods for the
construction of witnesses, in particular witnesses detecting NPPT states, witnesses
excluding biseparability, as well as witnesses detecting PPT entangled edge states.
We constructed and decomposed witness for bipartite NPPT entangled states of ar-
bitrary finite dimension, and for bipartite PPT entangled states from the literature.
Further, we introduced a new and generalized an existing family of multiqubit PPT
entangled states and constructed and decomposed witnesses detecting the latter.
Finally, we discussed the experimental implementation of witnesses in the group of
H. Weinfurter in Munich.

Further details concerning witnesses detecting multiparticle entanglement, as well
as a more general discussion about ways to prove the optimality of a decomposition
based on the tensor rank of an operator can be found in Ref. [107]. The results seem
to imply that the number of measurement settings of witnesses detecting n-qubit
entangled states such as the GHZ state increases exponentially with the number of
qubits, as also indicated in section 2.5.4. However, it has been realized that witnesses
requiring two locally correlated measurement settings only can be constructed for
the multiparty entangled cluster and GHZ states of n qubits [113]. This reduction
comes at a price of a slightly reduced robustness to noise.

Such witnesses can in turn be related to Hamiltonians of spin systems, enabling
to connect the entanglement properties of states of such systems with macroscopic
properties such as energy and temperature [114]. Witnesses have also been applied
in the context of quantum cryptography, where it has been shown that the provable
presence of entanglement is a necessary condition for the exchange of a secret key
[20]. Another interesting relation is the one between Bell inequalities and witness
operators. In chapter 5, we will investigate this relation for two Bell inequalities for
two-qubit systems.

Finally, we would like to mention two other directions of research that might be
interesting. The first concerns the question whether it might be of advantage to
use POVMs instead of LvNMs in certain situations. The second is related to the
question of how many runs of an experiment have to be performed for a secure
decision whether the expectation value of the witness is positive or negative [115],
see, for instance, Ref. [116, 117], where this question has been addressed in the
context of Bell inequalities.
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Chapter 3

Generation and detection of bound

entanglement

3.1 Overview

In this chapter, we provide short networks for the experimental generation of two
three-qubit families of bound entangled states. The motivation is that even though
this special form of entanglement is very interesting from a theoretical point of view,
it has not been produced in the laboratory so far.

How does one generate a certain bound entangled state experimentally? A solution
that is straightforward from a theoretical point of view is to consider the spectral
decomposition of the state and to compose a mixed density matrix by creating
the eigenvectors with probabilities that are specified by the according eigenvalues.
However, this is, in general, a demanding experimental task, as one would need a
source that can emit various types of product vectors and entangled vectors with
high fidelities and well-specified probabilities. A more satisfactory approach is to
deterministically generate a state that is the purification of the wanted bound entan-
gled state in some higher-dimensional Hilbert space. The additional dimensions are
provided by ancilla systems. Then, by tracing out the ancilla (i.e. experimentally
simply ignoring the ancilla part), one arrives at the desired bound entangled state.

Here we develop the latter method. Namely, we explicitly construct quantum net-
works that generate the two families of bound entangled states of three qubits. The
first is PPT entangled and has been introduced in Ref. [98], it is the three-qubit
family that we generalized to an arbitrary number qubits in section 2.5.4. The sec-
ond family [60] has a parameter range in which it is NPPT only with respect to
one subsystem, which is not sufficient for distillation of a singlet between any two
of the parties [60–62]. The properties of the latter states have been used recently
in the context of quantum cryptography to show that so-called bound information
exists [118]. The networks in both cases act on a six-qubit register that is initially
in state |000000〉, and from which they generate a six-qubit pure state, such that
the reduced density operator ρbound of the first three qubits is the desired bound
entangled state.
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The network for the family [98] requires only eight two-qubit gates and one Toffoli
gate with three control qubits, while the network for the family [60] requires six
CNOT gates, one control-U with two control qubits and one Toffoli gate with three
control qubits. The number of qubits and number of gates is in foreseeable reach of
quantum information technology: at present, with NMR techniques an order-finding
algorithm has been performed with 5 qubits [119], as well as the Shor algorithm with
7 qubits [15]. In ion traps, 6 qubits could be provided, and control gates [120] and
simple algorithms have been demonstrated [16].

The second step for the experimental generation of bound entangled states is to show
that the generated states indeed carry bound entanglement. For the family of bound
entangled states in [98] we discuss this issue explicitly. We constructed an appropri-
ate entanglement witness in section 2.5.4 already, where we also found an optimal
local decomposition which requires only four measurements settings. Here, we opti-
mize its robustness to noise by varying the families’ parameters. Furthermore, this
family of states is PPT with respect to any subsystem. For the experimental proof of
this fact we briefly discuss three methods: we consider the full state estimation of the
produced state ρbound, the more direct spectrum estimation of ρ′bound = A(ρbound),
where A is the LOCC version of the structural physical approximation to the partial
transpose [92, 93], and finally the spectrum estimation of the partial transpose of
ρbound via the LOCC version of the network introduced in [94].

The chapter is organized as follows: In section 3.2 we will introduce the network that
generates the class of bound entangled states described in [98]. In section 3.3 we
construct a network that generates the family of bound entangled states of Ref. [60].
In section 3.4 we look for family parameters optimizing the robustness to noise of the
entanglement witness. Finally, in section 3.5 we briefly discuss the three different
approaches to check the positivity of the partial transpositions of the density matrix
with respect to any of the three subsystems.

3.2 Generation of PPT entangled states

In this section we explicitly construct the quantum network that generates the fol-
lowing class of bound entangled states [98]:

ρbound =
1

N

(

2|GHZ〉〈GHZ| + a|001〉〈001| + b|010〉〈010| + c|011〉〈011|

+
1

c
|100〉〈100| +

1

b
|101〉〈101| +

1

a
|110〉〈110|

)

, (3.1)

where the coefficients fulfill a, b, c > 0 and ab 6= c, while the normalization reads
N = 2 + a + b + c + 1/a + 1/b + 1/c. This state appeared in section 2.5.4 already,
where we also constructed an optimal entanglement witness for it.

This mixed state can be generated deterministically by a quantum network that
uses a register with three qubits plus three auxiliary qubits, all initialized at |0〉,
and generates a pure states of 6 qubits, such that the reduced density operator of
the three qubits of interest is ρbound.
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The procedure to generate the bound entangled state consists of two parts: a prepa-
ration stage for the first three qubits, and a purification stage where from the pre-
pared state and an ancilla state a purification of ρbound is generated. In the prepa-
ration stage one starts with the three-qubit state |000〉, and prepares a three-qubit
pure state of the form

|ψbound〉 =
1√
N

(|000〉 +
√
a|001〉 +

√
b|010〉 +

√
c|011〉

+
1√
c
|100〉 +

1√
b
|101〉 +

1√
a
|110〉 + |111〉). (3.2)

This is achieved by applying certain local rotations (LU) on the three qubits, a
control-U gate CU(3,1) between qubit 3 and qubit 1 (qubit 3 acts as the control
qubit), a control-U gate CU(3,2) between qubit 3 and qubit 2 (qubit 3 acts as the
control qubit) and a CNOT gate between qubit 1 and qubit 3 (qubit 1 acts as the
control qubit). This sequence of gates is illustrated in the left part of Fig. 3.1.

0

0

0

R1

R2

R3

0

0

0

U

U

1

2

Preparation of Preparation of purification ofψbound ρbound

} ρ
bound

Figure 3.1. The network for creating the bound entangled state given
in Eq. (3.1).

The specific form of these gates is given by

LU = N1

(

1 1/
√
b

1/
√
b −1

)

1

⊗N2

(

1
√
b√

b −1

)

2

⊗
(

α β
β −α

)

3

, (3.3)

CU(3,1) =
�
(1,2) ⊗ |0〉〈0|3 (3.4)

+N1N3

(

(
√
a−

√

1/bc) (
√

a/b +
√

1/c)

(
√

a/b +
√

1/c) (−√
a +

√

1/bc)

)

1

⊗
�

2 ⊗ |1〉〈1|3,

CU(3,2) =
�
(1,2) ⊗ |0〉〈0|3 (3.5)

+
�
1 ⊗N2N4

(

(1 −
√

bc/a) (
√
b+

√

c/a)

(
√
b+

√

c/a) (−1 +
√

bc/a)

)

2

⊗ |1〉〈1|3.

where N1 =
√

b/(1 + b), N2 = 1/
√

1 + b, N3 =
√

c/(1 + ac), and N4 =
√

a/(a + c).
The coefficients α and β depend on a, b, c and must be chosen such that αN1N2 =
βN3N4 and α2 + β2 = 1.
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It is straightforward to confirm that this set of gates is constructed such that it
performs the following sequence of transformations:

|000〉 LU−→ N1

(

|0〉 +
1√
b
|1〉
)

N2

(

|0〉 +
√
b|1〉

)(

α|0〉 + β|1〉
)

CU(3,1)·CU(3,2)−→ 1√
N

[(

|0〉 +
1√
b
|1〉
)(

|0〉 +
√
b|1〉

)

|0〉

+
(√

a|0〉 +
1√
c
|1〉
)(

|0〉 +

√

c

a
|1〉
)

|1〉
]

CNOT(1,3)−→ |ψbound〉.

In the second part of the network one first applies a sequence of three CNOT gates
between the main and the auxiliary qubits: in this way each term of |ψbound〉 is
copied to the ancilla system. Here, the first, second, and third qubits of the main
system act as control qubits, and the first, second, and third ancilla qubits act as
target qubits, respectively:

|ψbound〉|000〉 3 CNOTs−→ 1√
N

(|000〉|000〉 +
√
a|001〉|001〉 +

√
b|010〉|010〉

+
√
c|011〉|011〉 +

1√
c
|100〉|100〉 +

1√
c
|101〉|101〉

+
1√
a
|110〉|110〉 + |111〉|111〉). (3.6)

Applying CNOT(4,5) and CNOT(4,6) then leads to

−→ 1√
N

(

|000〉|000〉 +
√
a|001〉|001〉 +

√
b|010〉|010〉 +

√
c|011〉|011〉

+
1√
c
|100〉|111〉 +

1√
c
|101〉|110〉 +

1√
a
|110〉|101〉 + |111〉|100〉

)

. (3.7)

Finally, one applies a 3-Toffoli gate, where the three system qubits are the control
qubits and the first auxiliary qubit is the target. Its action is defined as [18]

|a, b, c〉|f〉 → |a, b, c〉|a · b · c⊕ f〉 . (3.8)

The resulting state of the total system is then

|Ψbound〉 =
1√
N

(

(

|000〉 + |111〉
)

|000〉 +
√
a|001〉|001〉 +

√
b|010〉|010〉 (3.9)

+
√
c|011〉|011〉 +

1√
c
|100〉|111〉 +

1√
b
|101〉|110〉 +

1√
a
|110〉|101〉

)

.

Tracing over the three auxiliary qubits, one obtains that the remaining state of the
three system qubits is of the desired form of Eq. (3.1):

Traux

(

|Ψbound〉〈Ψbound|
)

=
1

N

(

2|GHZ〉〈GHZ| + a|001〉〈001| + b|010〉〈010|

+c|011〉〈011| +
1

c
|100〉〈100| +

1

b
|101〉〈101|

+
1

a
|110〉〈110|

)

= ρbound. (3.10)
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The total quantum network that generates the bound entangled state ρbound is shown
in Fig. 3.1.

Note that for the generation of this bound entangled state a more general version
of the Toffoli gate can also be applied, namely |a, b, c〉|f〉 → exp[iθ(a, b, c)]|a, b, c〉|a ·
b · c ⊕ f〉, because the extra phases cancel when one traces over the ancilla qubits
after the Toffoli gate. This requires less elementary operations than the Toffoli gate
[18]. The Toffoli gate with three controls can be decomposed into 13 two-qubit gates
[121]. We point out that here we are mainly interested in providing a network for
the generation of bound entanglement with a small number of gates, rather than in
the optimization of this network, or the decomposition of the necessary gates into
elementary single and two-qubit gates. The latter issue is discussed elsewhere in the
literature, see, for instance, Ref. [122].

3.3 Generation of the Dür-Cirac-Tarrach states

In this section we will show how to produce the second family experimentally, with
a method similar to the one described above. Using the notation from [60], this
family is given by:

ρDCT =
∑

σ=±
λσ0 |Ψσ

0 〉〈Ψσ
0 | +

∑

k=01,10,11

λk(|Ψ+
k 〉〈Ψ+

k | + |Ψ−
k 〉〈Ψ−

k |). (3.11)

Here |Ψ±
k 〉 = 1√

2
(|k1k20〉 ± |k̄1k̄21〉), where k1 and k2 are the binary digits of k, and

k̄i denotes the flipped ki (Note that the state |Ψ+
0 〉 in this notation corresponds to

|GHZ〉 from above.). The normalization condition reads λ+
0 +λ−0 +2(λ01+λ10+λ11) =

1. With the definitions ∆ ≡ λ+
0 − λ−0 ≥ 0 and

sk ≡
{

1 if λk < ∆/2

0 if λk ≥ ∆/2
(3.12)

the following properties of the partial transposes hold [60]:

s01 = 0 ⇔ ρTB ≥ 0, s10 = 0 ⇔ ρTA ≥ 0, s11 = 0 ⇔ ρTC ≥ 0. (3.13)

A singlet state between two of the parties can be distilled iff the partial transposes
with respect to the two parties are negative. For the following choice of the param-
eters

λ+
0 =

1

3
; λ−0 = λ10 = 0; λ01 = λ11 =

1

6
(3.14)

the corresponding state is inseparable with respect to the splitting A − (BC) but
separable with respect to the other two splittings. In particular, the state is separable
with respect to the splitting B − (AC), hence no singlet can be destilled between
B and A or B and C, and because it has a PPT also with respect to the splitting
C − (AB), no singlet can be destilled between C and A. Hence when all parties
are separated no singlet can be destilled between any two of them, so the state is
bound entangled. However, when it is mixed with two states that are obtained by
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cyclic permutation of the parties it turns out that the mixture is inseparable with
respect to any partition [62]. These properties were used recently to show that
bound information exists and can be activated for distillation [118].

Let us sketch how the states of Eq. (3.11) could be prepared with our scheme. The
density matrix is given by

ρDCT =



























λ+
0 +λ−0

2 0 0 0 0 0 0
λ+
0 −λ−0

2
0 λ11 0 0 0 0 0 0
0 0 λ01 0 0 0 0 0
0 0 0 λ10 0 0 0 0
0 0 0 0 λ10 0 0 0
0 0 0 0 0 λ01 0 0
0 0 0 0 0 0 λ11 0

λ+
0 −λ−0

2 0 0 0 0 0 0
λ+
0 +λ−0

2



























. (3.15)

We start again with the state |000〉 and produce the pure state

|ψDCT〉 =
γ√
2

(

|000〉 + |100〉
)

+
√

λ01

(

|010〉 + |110〉
)

+
√

λ10

(

|011〉 + |111〉
)

+
√

λ11

(

|001〉 + |101〉
)

, (3.16)

where γ =
√

λ+
0 + λ−0 . The state in Eq. (3.16) is reached as follows: Start by a

local rotation and a CNOT gate

|000〉 LU1−→ |0〉
(

α+|0〉 + α−|1〉
)

|0〉
CNOT(2,3)−→ |0〉

(

α+|00〉 + α−|11〉
)

(3.17)

where LU1 =
�
⊗
(

α+ α−
α− −α+

)

⊗
�
.

By proper choice of the coefficients α± we can then reach |ψDCT〉 with 3 local
unitaries described below as follows

LU2−→ |0〉
(

γ|00〉 +
√

2λ01|10〉 +
√

2λ10|11〉 +
√

2λ11|01〉
) LU3−→ |ψDCT〉. (3.18)

Hence we have to choose the coefficients and the local unitaries LU2 such that

α+|00〉 + α−|11〉 LU2−→ α+|φ〉|ψ〉 + α−|φ⊥〉|ψ⊥〉 (3.19)

= γ|00〉 +
√

2λ01|10〉 +
√

2λ10|11〉 +
√

2λ11|01〉,

i.e. we have to find the Schmidt decomposition of the state on the right hand side
(rhs) of the last equation. This state has the decomposition

|ϕ〉 =
∑

ij

Cij|ij〉 with C =

(

γ
√

2λ11√
2λ01

√
2λ10

)

. (3.20)

The Schmidt coefficients are the positive square roots of the eigenvalues of C TC,
namely

α2
± =

1

2

(

1±
√

1 − 4[
(

γ2 + 2λ01

)(

2λ10 + 2λ11

)

−
(

γ
√

2λ11 + 2
√

λ01λ10

)2
]
)

. (3.21)
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Then the rotation is given by LU2 =
�
⊗ V2 ⊗ U2, U2 = (|u+〉, |u−〉) and V2 =

(|v+〉, |v−〉). The vectors |u±〉 can be obtained from (CTC − α±
�
)|u±〉 = 0 and

the vectors |v±〉 from (CCT − α±
�
)|v±〉 = 0. The last local unitary is given by

LU3 = H ⊗
�
⊗
�
, where

H =
1√
2

(

1 1
1 −1

)

, (3.22)

the Hadamard gate.

Now we add again three ancilla qubits in the state |000〉, and by using three CNOT
gates the states of the first three qubits are copied to the ancilla qubits as in the
previous section. This yields the state

|ψDCT〉|000〉 3 CNOT′s−→
( γ√

2

(

|000〉⊗2 + |100〉⊗2
)

+
√

λ01

(

|010〉⊗2 + |110〉⊗2
)

+
√

λ10

(

|011〉⊗2 + |111〉⊗2
)

+
√

λ11

(

|001〉⊗2 + |101〉⊗2
)

)

. (3.23)

Then we apply the unitary

U =
1

γ





√

λ−0

√

λ+
0

√

λ+
0 −

√

λ−0



 (3.24)

on qubit 4 iff the qubits 2 and 3 are in the state |00〉. A 2-controlled operation
usually acts when both control qubits are in the state |1〉, but this can be changed
by flipping the control qubits before and after the gate. This operations leads to the
state

1√
2
|000〉

(

√

λ−0 |0〉 +
√

λ+
0 |1〉

)

|00〉 +
1√
2
|100〉

(

√

λ+
0 |0〉 −

√

λ−0 |1〉
)

|00〉

+
√

λ01

(

|010〉⊗2 + |110〉⊗2
)

+
√

λ10

(

|011〉⊗2 + |111〉⊗2
)

+
√

λ11

(

|001〉⊗2 + |101〉⊗2
)

(3.25)

Then a 3-Toffoli gate flips qubit 4 iff the first three qubits are in the state |100〉.
Finally two CNOT gates flip qubits 2 and 3 iff the first qubits’ state is |1〉. Tracing
out the ancilla particles then yields ρDCT. Summarizing, the procedure is

|ψDCT〉|000〉 3 CNOT′s,2CU,3Toffoli−→

√

λ−0
2

(

|000〉 − |100〉
)

|000〉

+

√

λ+
0

2

(

|000〉 + |100〉
)

|100〉 + . . .

CNOT1,2, CNOT1,3−→
(

√

λ−0 |GHZ−〉|000〉 +
√

λ+
0 |GHZ〉|100〉

+
√

λ01(|010〉⊗2 + |101〉|110〉)
+
√

λ10(|011〉⊗2 + |100〉|111〉)
+
√

λ11(|001〉⊗2 + |110〉|101〉)
)

≡ |ΨDCT〉
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which leads to
Tr4,5,6|ΨDCT〉〈ΨDCT| = ρDCT. (3.26)

The complete network is shown in Fig. 3.2. The existence of bound entanglement
for the choice of parameters in Eq. (3.14) can be proved by showing that the state
has a PPT with respect to two subsystems, but not with respect to the third. This
can be proved experimentally by applying the methods of section 3.5 below.

Note that the method works for a general choice of the parameters for which the
rank of the density matrix is full.

0

0

0

0

0

0

Preparation of ψ Preparation of purification ofDCT

1

H

U V

U

2

2

ρDCT

U

} ρ
DCT

Figure 3.2. The network for creating the bound entangled state given
in Eq. (3.11). Open circles for the control bits indicate that the corre-
sponding gate acts non-trivially on the target if the control is 0, rather
than 1 as usually (filled circles).

3.4 Preparation of the entanglement witness

An entanglement witness and its optimal local decomposition have been obtained in
section 2.5.4 already. The witness with the decomposition of Eq. (2.97) requires only
4 local measurements. On the other hand, if state tomography is applied to confirm
the positivity of the partial transposes (cf. section 3.5), then all measurements
necessary for the witness with the first decomposition of Eq. (2.97) are already
performed there.

The last step on the construction of our witness is the computation of the value of
ε. We use the parametrization |e〉 = cos θe|0〉 + exp iφe sin θe|1〉 and accordingly for
|f〉 and |g〉. This leads to

ε = inf
|e,f,g〉

[1

2

(

(cecfcg)
2 + (sesfsg)

2
)

+
1

1 + c2

(

c2(secfcg)
2 + (cesfsg)

2) (3.27)

+
1

1 + b2

(

(cesfcg)
2 + b2(secfsg)

2
)

+
1

1 + a2

(

(cecfsg)
2 + a2(sesfcg)

2
)

−
[1

2
+

c

1 + c2
+

b

1 + b2
+

a

1 + a2

](

2 cos(φe + φf + φg)cecf cgsesfsg

)]

,
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where ce,f,g ≡ cos θe,f,g and se,f,g ≡ sin θe,f,g. In this equation the phases φe, φf , φg
appear only in the term cos(φe+φf +φg). Therefore the phases can be chosen to be
equal to zero, using the following argument: the term 2 cos(φe+φf +φg)cecf cgsesfsg
in the above equation has to have a positive sign in order to minimize ε. As the
coefficients ce,f,g and se,f,g occur only quadratically in all other terms, all of them
can be chosen to be positive. Then ε is minimized for φe = φf = φg = 0. We are
thus left with 6 real parameters. If the parameters a, b, c are determined by the
experimental set-up, then the corresponding value of ε can be obtained numerically
by use of a multivariable minimization routine [106].

If the parameters a, b, c can be chosen freely, then it is advantageous to maximize ε
with respect to a, b, c. Making the natural assumption that white noise is introduced
in the preparation procedure of the state, i.e. ρp = pρB + 1−p

8

�
, the witness will

detect entanglement in the state for p > 1 − 2ε. Hence the tolerance of the witness
to the presence of noise is enlarged by maximizing ε. We searched for the maximum
[106] in the parameter range a = b = 1/c ∈ ]0, 1[ (Remember from the definition
of ρbound in Eq. (3.1) that one has to use the open interval here.). We obtain
numerically that for a < ath = 0.3460 the minimum is reached at ε = a2/(1+a2), i.e.,
when the product state is one of the three possibilities |e, f, g〉 = |011〉, |101〉, |110〉.
For a > ath the minimum of ε is obtained when θe = θf = θg. These results are
shown in Fig. 3.3. We find εmax

a=b=1/c ≈ 0.1069 which is reached for ath ≈ 0.3460.

This is also the highest value obtained numerically when a, b, 1/c ∈ ]0, 1[ without the
restriction a = b = 1/c. For this choice of parameters the state mixed with white
noise as described above is still detected for p > 0.786, i.e., more than 20% of white
noise can be tolerated.

As mentioned already in section 2.2.3, the problem with the minimization routines
is that it cannot be guaranteed that the minimum ε is indeed the global minimum
for fixed a, b, and c. In chapter 4, we discuss ways to obtain numerical lower bounds
for this situation.

3.5 Testing the positivity of the partial transpose

In this section we briefly discuss three different methods to check the positivity of the
partially transposed density operator ρTX

bound with respect to subsystem X = A,B,C.
One possible option is to perform the full state estimation of ρbound, and then to
check whether all the eigenvalues of ρTX

bound for X = A,B,C are positive. This
method requires the estimation of (2×2×2)2−1 = 63 independent parameters of the
density operator. This can be achieved by performing 3 × 3 × 3 = 27 measurements
on single copies of ρbound, since one can write any three qubit state as

ρ =
1

8

∑

i,j,k=0,x,y,z

λi,j,kσi ⊗ σj ⊗ σk, (3.28)

where λi,j,k = tr(ρσi ⊗ σj ⊗ σk), and σ0 =
�
. As also discussed in section 2.3,

the data from estimating λl,m,n with l,m, n = x, y, z can also be used to estimate
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Figure 3.3. Bounds for εa=b=1/c as a function of a: The left curve (l)
is given by a2/(1+a2), while the right curve (r) is the analytic minimum
of ε for θe = θf = θg. The maximal value εmax ≈ 0.1069 is obtained
for a ≈ 0.3460, where the two curves meet. The result of the numerical
minimization (n) is plotted on top of the two analytical curves, and
equals the lower branch of them for all a.

λ0,m,n, λl,0,n and λl,m,0. Hence, only local measurements in the x, y, z directions
have to be performed. One disadvantage of this option is the superfluous estimation
of parameters of the density operator, since we are only interested in learning about
the lowest eigenvalue of the partially transposed density operator.

Another method for finding out whether ρTX

bound > 0 for X = A,B,C is to start by
applying the structural physical approximation (SPA) [92] to the partial transpose of
ρbound, and then to estimate the lowest eigenvalue of the resulting density operator.
From this one can infer whether or not the original state, partially transposed, is
positive. This procedure has to be performed for the three possible partitions.

A structural physical approximation is a completely positive (CP) map, constructed
from a positive, but not CP map, by adding white noise. The aim in constructing
these approximations is to allow the physical implementation of maps which are
useful in entanglement detection, but are non-physical. In this way one is able to
bypass full state estimation when trying to detect the existence of entanglement in
a given system, since one can estimate directly the relevant parameters, which is the
lowest eigenvalue in this case.

The SPA to the partial transposition with respect to party C can be easily obtained
from the SPA for two particles [IX], and reads

[
�
⊗ ˜
�
⊗ T ](ρ) =

1

3

�
⊗ Λ1 ⊗ Λ2 +

2

3

�
⊗
�
⊗ σxσzΛ1σzσx, (3.29)
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Figure 3.4. Quantum network that each of the parties X = A,B,C has
to perform for the estimation of the non-linear functionals by LOCC.

where Λ1(ρ) = 1/3
∑

i=x,y,z σiρσi, and Λ2(ρ) = 1/4
∑

i=0,x,y,z σiρσi. Note that

the map ˜[
�
⊗
�
⊗ T ] can be implemented using only LOCC. Now ρTC ≥ 0 if

[
�
⊗ ˜
�
⊗ T ](ρ) ≥ 2/9 [92]. The SPA to the partial transposition with respect to

A and B can be obtained from Eq. (3.29) by a permutation of the parties.

In order to estimate the eigenspectrum by LOCC of a state ρ̃ obtained from ρ by an
application of a SPA, the parties first prepare k copies of ρ̃, k = 2, . . . 8. Then each
party performs the interferometric network of Fig. 3.4 that works on a control qubit
coupled to the respective qubits of k copies of the state. If the state of the control
qubit is |1〉, then V (k) performs the shift operation on the state qubits,

V (k)|φ1〉|φ2〉...|φk〉 = |φk〉|φ1〉...|φk−1〉, (3.30)

∀|φi〉, i = 1, ..., k, which can be implemented by a concatenation of swap gates
between two qubits. By varying ϕ, an interference pattern can be observed in the
measurement on the control qubit in the {|0〉, |1〉} basis after the completion of the
network. The visibility is given by vX = Tr[ρkX ], where ρX is the reduced state of
party X = A,B,C. From these visibilities the parties can infer Tr[ρk] [IX]. If they
perform the network for k = 2, . . . 8, they can estimate the spectrum of ρ [92].

Finally, there is the option of directly estimating the non-linear functionals
Tr[(ρTX )k] with k = 1, 2, 3, ... and X = A,B,C, following [94]. This scheme is a
modification of the scheme presented in [92], and can be also implemented using
only LOCC [93]. The main difference between the quantum network of [94], when
compared with [92], is that the C − V (k) gates acting on the different subsystems
do not all shift in the same direction. The one with respect to which the partial
transposition is supposed to be done has to shift in the opposite direction.

In conclusion, for the estimation of the density matrix via tomography, 27 locally
correlated measurements are necessary on single copies of the state. On the other
hand, in both of the other procedures, 3× 7 = 21 measurements are necessary, 7 for
each partition. Each of these measurement requires a network acting on up to 25
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qubits. In the last proposal, the network gives an estimate directly, whereas in the
former, a SPA has to be performed before.

3.6 Conclusions

To summarize, we have presented a quantum network that generates bound entan-
gled states of three qubits. Explicitly, we have studied the production of the two
families of bound entangled states that were introduced in [98] and [60]. Note that
our method could be adapted in a straightforward way to the generation of other
types of bound entangled states. As our networks consists of six qubits and several
two-qubit gates, they go beyond present quantum information processing technology
– however, it seems feasible to realize them in the not too distant future.

We also discussed different methods of testing whether the produced states generated
by the network are indeed bound entangled. Namely, we suggested to detect the
entanglement via a suitable witness operator, and to confirm positivity of the partial
transposes by either full state estimation, or spectrum estimation of the structural
physical approximation of the partial transpose, or direct estimation of some non-
linear functionals.



Chapter 4

Non-convex optimization problems

4.1 Overview

In this chapter, we show that many problems occuring in entanglement theory can
be formulated in such a way that recent known results from non-convex optimization
theory can be applied to efficiently approximate the solutions.

Many problems occuring in the field are in fact convex problems. To state whether a
state is separable or not is equivalent to stating whether a state is in the convex hull of
product states. Also, the evaluation of many measures of entanglement essentially
require the solution of a convex problem. This is why it has been increasingly
realized in recent years [36–38, 123–128] that the solution of many problems of
quantum information theory can be found or approximated with the help of the
field of research that is primarily concerned with questions of this type: the theory
of convex optimization [129]. Many problems from quantum information theory can
easily be translated to the language of convex optimization theory. Examples include
the evaluation of measures of entanglement that reasonably quantify the degree of
entanglement of a given state, such as the distillable entanglement or the asymptotic
relative entropy of entanglement [123, 124].

Also, it has been realized that while the complete solution of the question of sepa-
rability is a NP-HARD problem in the system size [127], one can nevertheless find
hierarchies of sufficient criteria for entanglement in the bi-partite setting. In each
step, by solving an efficiently solvable convex optimization problem, one finds an
answer to the problem in the form (i) one can assert that the state is entangled, or
(ii) one cannot assert it, and has to go one (computationally more expensive) step
further [36]. Even though this method provably detects every entangled state after
some step [37], it will never stop for separable states. This problem was addressed
recently in Ref. [130], where an algorithm is introduced which is designed to prove
a given bipartite quantum state to be separable in a finite number of steps. It is
based on the search for a decomposition via a countable subset of product states,
which is dense within all product states.

The problem of testing for multi-partite entanglement has been related to robust
semi-definite programming and a hierarchy of relaxations in Ref. [38], and the
method of Ref. [36] has also been extended to the multipartite setting [39].
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This chapter is concerned with a link of the theory of entanglement to the theory of
convex optimization in a similar spirit. The central observation here is very simple
yet potentially very useful: many problems related to entanglement can be cast into
the form of optimization problems with polynomial constraints of degree three. This
includes the question whether a state is entangled or not, notably not only in the
bi-partite, but also for the several separability classes of the multi-partite setting.
Then, the construction of non-decomposable witnesses introduced in section 2.2.3
involves a problem of this kind, as well as the evaluation of the geometric measure of
entanglement to quantify multi-partite entanglement. This structure is due to the
fact that in all these instances, one essentially minimizes over product state vectors
of a multi-partite quantum system.

This polynomial part of the optimization problems is still non-convex and compu-
tationally expensive to solve. Yet, applying results from relaxation theory of non-
convex problems [131–135], notably the method of Lasserre [133], we find hierarchies
of solutions to our original problems, and each step is a better approximation than
the previous one. Each step itself amounts to solving an efficiently implementable
semi-definite program [129]. Moreover, the hierarchy is asymptotically complete, in
the sense that the exact solution is asympotically attained. The increase of the size
of the vector of objective variables of these semi-definite problems grows notably
polynomially in the label of the hierarchy.

We will first give a short introduction to semi-definite programming. Then, we will
state how one can introduce auxiliary variables to cast the considered problems
from entanglement theory into the desired form. In the following sections, we will
introduce the hierarchies of relaxations in detail, and study numerical examples. In
particular, we find that the bounds on ε for the entanglement witness of section
3.4 are in excellent agreement with those found with the method introduced in this
chapter.

4.2 Problems in entanglement theory as optimization

problems

At the core of the problems we discuss in this chapter are minimizations over product
vectors. Given a Hermitean operator W , we seek the minimum of

Tr[|ψ1〉〈ψ1| ⊗ ...⊗ |ψn〉〈ψn|W ], (4.1)

where the minimum is taken with respect to product state vectors of a composite
quantum systems with parts labeled 1, . . . , n, in a Hilbert space H = H1 ⊗ . . .⊗Hn.
For instance, this is exactly the problem we faced in section 2.2.3 in the construction
of PPT entanglement witnesses.

One way of solving this problem is to choose a specific basis for the Hilbert space
and to explicitly parametrize the state vectors. This yields a polynomial in these
parameters, in general of very high order, which is obviously not a convex problem
in these variables: a solution can be found, albeit not in an efficient manner. For
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small systems, algorithms such as simulated annealing may be employed, delivering
upper bounds to the optimal solution, as no control is possible as to what extent
one is far away from the global optimum.

The strategy we adopt here is in instances of the above type to introduce additional
variables, giving rise to one vector x ∈ � t, xT = (x1, ..., xt), which is the objective
variable, parametrizing the product states. Then we cast the problem into the form
of a linear objective function, simply as

minimize cTx (4.2)

with a (fixed) c ∈ � t, subject to constraints which are polynomials in the objective
variables:

gl(x) ≥ 0, (4.3)

l = 1, ..., L, where gl : � t → � are real polynomials of a degree up to three.

Then, we apply recently found known results from non-convex relaxation theory
[133], giving rise to a sequence of approximations to the problem above in the fol-
lowing form:

minimize dT y, (4.4)

subject to F [h](y) ≥ 0,

G
[h]
l (y) ≥ 0, l = 1, ..., L

with matrices F [h](y) and G
[h]
l (y) that are linear in the elements of y. For each l, the

matrix G
[h]
l (y) depends on the coefficients of the polynomial gl(x) from Eq. (4.3).

The optimization problem is effectively turned into a problem of a larger vector y,
which is growing in dimension with step size h, as well as the matrices F [h](y) and

G
[h]
l (y). Hence the semi-definite program of the first step, which is denoted by hmin

and grows with the maximal degree of the polynomial constraints, comes at the
lowest computational cost. The objective function stays the same, but is uplifted,
namely

y 7−→ dT y, (4.5)

where

dT = (0, c1, ..., ct, 0, ..., 0), (4.6)

with c ∈ � t being defined as above. The constraints are transformed into so-called
semi-definite constraints in the matrices, because these are constrained to be positive
semi-definite.

In fact, by transforming the constraints, the set over which the minimization is per-
formed is effectively enlarged. In subsequent steps of the hierarchy, the constraints
get more and more restrictive, until the convex hull of the set over which the min-
imization of the original problem is performed is reached. Hence in each step a
lower bound to the solution of the original problem is obtained, and the bounds get
better in subsequent steps. Furthermore, it can be shown that the approximations
converge to the real solution asymptotically [133].
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Optimization problems exhibiting a linear objective function and semi-definite con-
straints are called semi-definite programs [129]. Such instances of convex optimiza-
tion problems can be efficiently solved, for example by means of interior-point meth-
ods [129]. As mentioned above, many problems in quantum information theory are
easily written down in the form of a semi-definite program [36, 125]. In fact, it may
be argued that to specify the solution of a problem in form of a semi-definite pro-
gram has the same status as stating a result in terms of the spectrum of a matrix, as
this again merely means that efficient methods are available to find the eigenvalues
of a given matrix.

Hence by casting the problem into the form of a minimization of a linear objective
function subject to polynomial constraints, and by applying the method of Ref. [133],
we arrive at a hierarchy of efficiently solvable semi-definite programs approximat-
ing the solution of the problem from below with increasing accuracy, and the real
solution is obtained asymptotically.

Before we show how the problem of Eq. (4.1) can be formulated as a problem involv-
ing a linear objective function subject to polynomial constraints, we would like to
mention some useful facts and clarify further some of the notions introduced above.

4.2.1 Polynomial constraints, Lagrange duality, and relaxations

First, in order to make clear why polynomially constrained problems are hard to
solve in general, let us consider as an example quadratic polynomial constraints
which are of the form

xTAlx+ bTl x+ cl ≤ 0, (4.7)

l = 1, ..., L. The matrices Al are, however, not necessarily positive semi-definite.
This is by no means a minor detail: if all matrices A1, ..., AL were positive matrices,
Al ≥ 0, then the constraints of Eq. (4.7) would be convex. This would yield a convex
quadratic program, which can be efficiently solved. In fact, these are also instances
of semi-definite programs, the constraint

(Ax + b)T (Ax + b) − cTx− d ≤ 0 (4.8)

is equivalent to1
( �

Ax + b
(Ax + b)T cTx+ d

)

≥ 0. (4.9)

In contrast, if the matrices are not all positive semi-definite, one obtains a very hard,
non-convex optimization problem. This structure is yet dictated by the problems
from quantum information theory at hand.

1Given two real, symmetric, and positive matrices A and B of dimension n × n and m × m,
respectively, and a real matrix C of dimension n × m, we define

M =

„

A C

CT B

«

,

which is a symmetric matrix of dimension (n + m) × (n + m). Assuming that the kernel of B is
a subset of the kernel of C, then M is positive iff the Schur complement A − CB−1CT is positive.
Here B−1 is the pseudoinverse of B, i.e., the inverse performed on the range of B [24].
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Coming back to semi-definite programs, a very useful fact is that for any primal
semi-definite program, in its most general form being given by

minimize cTx, (4.10)

subject to F (x) = F0 +
∑t

s=1 xsFs ≥ 0,

one can formulate the Lagrange-dual problem, which is again a semi-definite prob-
lem. It is given by

maximize −Tr[F0Z], (4.11)

subject to Tr[FsZ] = cs, s = 1, ..., t,

Z ≥ 0.

Vectors x fulfilling the primal semi-definite constraint are called primal feasible,
while matrices Z fulfilling the dual constraints are called dual feasible. For a primal
feasible x and a dual feasible Z we obtain

cTx+ TrZF0 =
t
∑

i=1

ZFixi + TrZF0 = TrZF (x) ≥ 0, (4.12)

where we used the fact that TrAB ≥ 0 if both A and B are positive operators. From
this it follows that

−TrF0Z ≤ cTx, (4.13)

so any solution of the dual problem is a lower bound to the optimal solution of the
primal problem. This is referred to as weak duality. Under certain conditions, in
particular, if there is a solution x satisfying F (x) > 0, the optimal values of the
dual and the primal problem are identical. This case, which is rather the typical
one, is denoted as strong duality. The idea of Lagrange duality is a powerful tool to
formulate rigorous lower bounds to solutions of optimization problems.

Finally, let us make clear what the notion of a relaxation means that appeared
before. The idea of a relaxation is to introduce new variables and to formulate the
problem as a convex problem in a larger space. This idea can be exemplified in the
simplest form of a relaxation, the Shor relaxation [131]. For example, let A1 in Ineq.
(4.7) be a matrix which is not positive semi-definite, and let us assume that b1 = 0
and c1 = 0 for simplicity. Then, one can still write the constraint equivalently as

Tr[XA1] ≤ 0, X = xxT , (4.14)

using a t × t symmetric matrix X. The equality X = xxT is equivalent to the
constraints X ≤ xxT and X ≥ xxT . The latter is a convex constraint and equivalent
to

(

X x
xT 1

)

≥ 0, (4.15)

while X ≤ xxT is a non-convex constraint. Shor’s relaxation amounts to taking
only the convex part into account, thereby delivering an efficiently solvable convex
problem which yields a lower bound to the original problem [131], because the set
over which the minimization is performed is effectively enlarged. Such relaxations
in terms of semi-definite constraints are employed in Lasserre’s method, yet instead
of one many such relaxations forming a complete hierarchy.
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4.2.2 Polynomial constraints for product states

Now we will show that the encountered optimization problems can be written as
polynomially constrained problems of a degree of at most three. That this is pos-
sible is based on the following observation: An operator O can be constrained to a
projector onto a pure state |ψ〉〈ψ| by requiring

Tr[O] = Tr[O2] = 1 and O ≥ 0. (4.16)

But these constraints are in fact equivalent to the following ones

Tr[O2] = Tr[O3] = 1, (4.17)

see also Ref. [136]. Hence an Hermitean operator can be constrained to a pure state
by two polynomial constraints of degree two and three, respectively.

This follows from the fact that, the only decreasingly ordered vector of eigenvalues
λ of O consistent with

∑

i

λ2
i = 1 and

∑

i

λ3
i = 1 (4.18)

is the vector λ = (1, 0, ..., 0). As the eigenvalues, as well as those of O2 and O3, are
unitarily invariant, the above statements can be shown to be valid on the level of
probability distributions. Essentially,

∑

i λ
2
i = 1 already requires all absolute values

of eigenvalues to be smaller than or equal to 1, such that the only ordered vector of
real numbers consistent with

∑

i λ
3
i = 1 becomes (1, 0, ..., 0).

For a qubit system, the constraints can further be simplified by merely requiring as
constraints Tr[O] = 1, Tr[O2] = 1, as for Hermitean 2 × 2 matrices these conditions
alone imply that O = |ψ〉〈ψ|.
When applied to our specific problems at hand, these constraints will appear in
the following form. We will require that Hermitean matrices P are, except from
normalization, products of pure states with respect to all constituents. This will
be incorporated as follows: Denoting with I = {1, ..., n} the index set labeling the
subsystems and with TrI\j the partial trace with respect to all systems except the
one with label j, the lines

Tr[TrI\j [P ]2] = 1 (4.19)

Tr[TrI\j [P ]3] = 1 (4.20)

for all j ∈ I indeed enforce that all the reductions are pure states. If all reductions
are pure, the global state must be a pure product state. This can be seen as follows.
For states ρ, the only possibility for

Tr[TrI\j[ρ]2] = 1 and Tr[TrI\j[ρ]3] = 1 (4.21)

to hold for all j ∈ I is that ρ is of the form of product pure states,

ρ = |φ1〉〈φ1| ⊗ ...⊗ |φn〉〈φn|. (4.22)
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The constraints can be reduced to constraints of the degrees one and two for systems
consisting only of qubits.

Having stated the general strategy, let us now look at the specific instances of prob-
lems in quantum information we will be considering in this chapter.

4.2.3 Non-decomposable witnesses

Problems of the type of the one in Eq. (4.1) appear in the construction of PPT
entanglement witnesses [28], as we have seen in section 2.2.3. Further, this method
can also be used to obtain a finer witness from a given one W̃ , i.e., a witness that
detects the same states as W̃ – and more. If ε̃ = min|a,b〉 Tr[|a, b〉〈a, b|W̃ ] > 0 then

W̃ − ε̃
�

is a finer witness than W̃ . This is of use even if the local measurements
available are fixed, because the observable

�
does not require a measurement.

This renders the method useful in the context of quantum cryptography. Witnesses
are of practical interest here, since it has been shown that the provable presence
of quantum correlations in such protocols is a necessary precondition for secure key
distillation [20]. Furthermore, the set of local measurements available in a particular
implementation of a quantum key distribution (QKD) scheme is naturally restricted
by the protocol. In order to deliver the entanglement proof, it is sufficient to obtain
one relevant entanglement witness as a first step towards the demonstration of the
feasibility of the scheme, because this witness can then be optimized with the method
presented above.

For a given entanglement witness, we want to solve the following optimization prob-
lem

minimize Tr[WP ] (4.23)

subject to P is a projector onto a product state.

The task is to write this problem in terms of a polynomially constrained problem.
Then we can approximate the problem by a hierarchy of semi-definite programs as
mentioned above. In each step, we obtain a lower bound to the minimal expecta-
tion of W with respect to product vectors. If this lower bound is positive, then it
is already possible to construct a proper PPT witness. Higher relaxations might
improve the witness further.

Using the insights from the last section, we turn the constraint on P into the fol-
lowing polynomial constraints

minimize x, (4.24)

subject to x ≥ Tr[WP ],

Tr[TrI\j[P ]2] = 1, for all j ∈ I,

Tr[TrI\j[P ]3] = 1, for all j ∈ I.

For multi-party qubit systems this can be written as a polynomially constrained
problem with polynomials of degree two by simply replacing the last constraint by
the linear constraint Tr[P ] = 1.
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Finally, we would like to remark that one may trade in the constraint of degree three
for a linear constraint and a semidefinite constraint, so that the problem takes the
form

minimize x, (4.25)

subject to x ≥ Tr[WP ],

Tr[P ] = 1,

Tr[TrI\j[P ]2] = 1, for all j ∈ I,

P ≥ 0,

and look for the intersection of the feasible sets of the semi-definite part and the
constraint set of the relaxations. Again, a positive number leads to a proper witness,
but in this case asymptotic convergence to the optimum cannot be guaranteed. This
change in constraints is also possible in the other examples, but we do not treat it
explicitly there.

Parametrization

In an implementation of this optimization problem, one has to choose a basis of
Hermitean matrices for each Hilbert space,

{σ1, ..., σd2j
}, (4.26)

for j = 1, ..., N , suppressing an additional index labelling the subsystems. The basis
can be chosen such that the Hermitean matrices satisfy Tr[σ1] = 1 and

Tr[σk] = 0, k = 2, ..., d2
j , (4.27)

and have a Hilbert-Schmidt scalar product

Tr[σkσl] = ξdj
δkl (4.28)

with a dimension dependent constant ξdj
(and similarly for terms of third order). For

the case of qubit subsystems, the appropriately normalized familiar Pauli matrices
can be taken. In terms of this basis of Hermitean matrices, the matrix P can be
written as

P =
∑

κ=(k1,...,kN)

pκΣκ, (4.29)

where κ = (k1, ..., kN ), is a multi-index, with kj = 1, ..., d2
j for j ∈ I, and

Σκ = σk1 ⊗ σk2 ⊗ ...⊗ σkN
. (4.30)

If the number of parties is small, it might be useful to reduce the number of variables
at the expense of an increase of the lowest relaxation step hmin as follows: The tensor
pκ can be directly assumed to be of rank one, pκ = ΠN

i=1a
i
ki

. In this case, the rhs of
Eq. (4.29) is a product of the single particle density matrices

ρi =

d2i −1
∑

j=0

aijσj . (4.31)
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These correspond to pure states if the constraints Tr[ρ2
i ] = Tr[ρ3

i ] = 1 are fulfilled.
The number of variables is reduced from ΠN

i=1d
2
i to

∑N
i=0 d

2
i , while the degree of the

polynomial Tr[WP ] is increased from 1 to N , which increases hmin, as will become
clear in section 4.3 below. This is the parametrization that will be used for the
numerical examples.

Before we present the hierarchy of relaxations explicitly, we discuss the other appli-
cations which are similar in structure from the point of view taken here.

4.2.4 Estimating the geometric entanglement to quantify multi-

particle entanglement

The same tools can be used in order to quantify multi-particle entanglement for
pure quantum states. Needless to say, the question of quantifying multi-particle
entanglement is much more involved that the analogous question in the bi-partite
setting.

One of the reasonable quantities to quantify multi-particle entanglement is the
geometric measure of entanglement [48, 49, 138]: for a given state vector |ψ〉 ∈
H1 ⊗ ... ⊗HN , essentially, entanglement is then quantified in terms of the solution
of the maximization problem

Λ2 = max
|φ〉∈S

|〈ψ|φ〉|2, (4.32)

where S is the class of fully separable states, such that the geometric measure of
entanglement becomes

E(|ψ〉〈ψ|) = 1 − Λ2. (4.33)

Setting ρ = |ψ〉〈ψ| and P = |φ〉〈φ| = |φ1〉〈φ1| ⊗ ...⊗ |φN 〉〈φN |, we arrive at

minimize x, (4.34)

subject to Tr[Pρ] + x ≥ 1,

Tr[TrI\j[P ]2] = 1, for all j ∈ I,

Tr[TrI\j[P ]3] = 1, for all j ∈ I,

which is the same optimization as in the previous subsection, except from the first
line in the list of constraints, which enables to write the problem such that objective
variable x corresponds to E from Eq. (4.33).

It is even possible to go further and perform optimizations over all separable mixed
states, hereby constructing sufficient criteria for entanglement.

4.2.5 Tests for bi-partite and multi-partite entanglement

The approach is here to consider for a given state ρ ∈ S(H1 ⊗ ...⊗HN ) the minimal
Hilbert-Schmidt norm with respect to the set of separable states. For simplicity of
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notation, we explicitly formulate the optimization problem for the instance of full
separability, without loss of generality. That is, we test whether ρ can be written as

ρ =
n
∑

i=1

piρ
(i)
1 ⊗ ...⊗ ρ

(i)
N , (4.35)

with {pi}i forming a probability distribution. The question whether a state is fully
separable is hence equivalent to asking whether a state is an element of the convex
hull of product vectors with respect to all subsystems. According to Caratheodory’s
theorem [137], for any k-dimensional subset S ⊂ � m, any point of the convex hull of
S can be written as a convex combination of at most k+1 points from S. Hence, the
number of elements in the convex combination given by Eq. (4.35) can be restricted
to n =

∏N
j=1 d

2
j , again without loss of generality. However, for two qubits it is

known that any separable state can be written as a mixture of only 4 projectors
onto product vectors instead of 16 [99], so that the bound from Caratheodory can
probably be undercut in general.

To decide whether a state ρ is fully separable or not, we may solve the following
optimization problem,

minimize ‖ρ− P‖2
2 = Tr[(ρ− P )2], (4.36)

subject to P is fully separable.

We make use of the Hilbert-Schmidt norm as it is quadratic in the matrix entries.

When written as a polynomially constrained problem, each relaxation gives a lower
bound of the Hilbert Schmidt distance to the set of fully separable states. Hence,
asserting that the state is not fully separable whenever we obtain a value larger
than the one that we accept as accuracy of the computation2, each step delivers a
sufficient criterion for multi-partite entanglement in its own right, and the hierarchy
is complete in the sense that each entangled state is detected by some step. The

2This notion can be sharpened by employing the notion of weak membership [41]. This can be
phrased as follows: we denote for any convex set S ⊂ � m and any rational δ > 0 with B(S, δ) the
set of all x ∈ � m for which there exists a y ∈ S such that

‖x − y‖2 ≤ δ, (4.37)

and with B(S,−δ) the set of all x ∈ S for which y ∈ S for all y ∈ � m with ‖x−y‖2 ≤ δ. So clearly,
S is a strict subset of B(S, δ), and B(S,−δ) is a strict subset of S. The weak membership problem
allows for two alternatives: given a rational element x ∈ � m and a rational number δ > 0 either (i)
assert that x ∈ B(S, δ), or (ii) assert that x 6= B(S,−δ).
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associated optimization problem can now be written as

minimize x, (4.38)

subject to x ≥ Tr(ρ− P )2,

P −
n
∑

i=1

P (i) = 0,

Tr[TrI\j[P
(i)]2] = (Tr[P (i)])2,

for all i = 1, ..., n, j ∈ I.

Tr[TrI\j[P
(i)]3] = (Tr[P (i)])3,

for all i = 1, ..., n, j ∈ I.
n
∑

i=1

Tr[P (i)] = 1.

This is a global optimization problem with polynomial constraints of degree three.
Again, for qubits, polynomial constraints of degree two are sufficient. In the
parametrization, P is a sum of projectors onto product states with a weight dif-
ferent from 1. If |ψ〉〈ψ| is a normalized projector, then α|ψ〉〈ψ| fulfills

Tr[(α|ψ〉〈ψ|)2 ] = (Tr[α|ψ〉〈ψ|])2 and Tr[(α|ψ〉〈ψ|)3 ] = (Tr[α|ψ〉〈ψ|])3 . (4.39)

This explains the terms of the rhs of the lines restricting the P (i). Further, the
weights have to add up to one in order to ensure that Tr[P ] = 1, which is the reason
of the last line.

Here one tests the hypothesis that the state is fully separable against the alternative
that the state is entangled in some sense. To assert that the state is multi-particle
entangled and not separable with respect to any separability class, several tests
are hence required. In this way, the various classes of genuine multi-particle en-
tanglement can be detected. Note that even when applied to the bi-partite case,
the resulting hierarchy of semi-definite relaxations is inequivalent to the one in Ref.
[36, 37], and also inequivalent to the robust semi-definite programming approach
in Refs. [38]. The above formulation in the optimization problem in terms of full
separability still does not constitute a restriction of generality, as this includes all
separability classes with respect to all possible splits.

Alternatively to the above approach, one may write each test in the form of a
feasibility problem, a problem with a vanishing objective function,

minimize 0, (4.40)

subject to ρ satisfies the test of step

h = hmin, hmin+1, ... in the hierarchy.

Either one finds no solution (which is to say, the problem is not primal feasible),
and one can assert that the state is not fully separable, or one has to go on one step
in the hierarchy. In each step of the hierarchy, forming a semi-definite problem, the
dual problem can then be employed to prove the infeasibility of the above primal
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problem serving as a certificate [129] (see also Ref. [36]). Any feasible solution of
the dual problem with −Tr[ZF0] > 0 proves the infeasibility of the primal (original)
problem, because the dual problem gives lower bounds on the primal problem. That
is, we can use the dual problem to prove properties of our original problem at hand.

4.3 Complete hierarchies of relaxations to approximate

the solutions

In this section, we will define the hierarchy of relaxations introduced in section 4.2.
This method is based on recent results in real algebraic geometry, see also Ref. [135].

Before defining the matrices appearing in the semi-definite relaxations, cf. Eq. (4.4),
we need to introduce some notation. Even though the highest degree of the occuring
contraints in the problems discussed above is three, it will be convenient to formulate
the sequence of semi-definite programs in terms that formally involve higher-order
polynomials.

For any r ∈ � , we consider the basis of polynomials of degree r in the variables
x1, ..., xt as

(1;x1, ..., xt;x
2
1, x1x2, ..., x1xt;x

2
2, x2x3, ..., x

r
t ), (4.41)

in this ordering. The dimension of this basis will be denoted as Dr. We drop the
index t, as this will stay the same throughout the procedure. Any polynomial of
degree of at most r can then be identified with a vector p ∈ � Dr . It is convenient
to introduce two labelings, connected with each other by a function

fr : {1, ..., Dr} →
{

α = (α1, ..., αt) :

t
∑

s=1

αs ≤ r

}

, (4.42)

such that the i-th element, i = 1, ..., Dr , of the basis given by Eq. (4.41) is written
as

t
∏

i=1

xαi

i , (4.43)

characterized by α = (α1, ..., αt) ∈ � t
0. Note that for a given k ∈ � there are

(

t+k−1
k

)

possible vectors α such that
∑t

s=1 αs = k. It follows that the dimensions Dh are
given by

Dh =

h
∑

k=0

(

t+ k − 1

k

)

. (4.44)

In the following we give the required matrices from Lasserre’s method for general
polynomials [133] and discuss the cases occuring in the paper explicitly afterwards.
Let δl be the degree of the polynomial constraint l ∈ {1, ..., L} and dδl/2e be the
smallest integer greater than or equal to δl/2. We assume that the objective function
is linear, which is no restriction of generality, as other polynomials can always be
incorporated in the constraints as in section 4.2.5. Then the first possible relaxation
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step of Lasserre’s method is hmin = maxldδl/2e. For h ≥ hmin the matrix F [h](y) is
of dimension Dh ×Dh and linear in a vector y ∈ � D2h ,

[

F [h](y)
]

i,j
= yf−1

2h
(fh(i)+fh(j)). (4.45)

For instance,

F [1](y) =





y00 y10 y01

y10 y20 y11

y01 y11 y02



 . (4.46)

In turn, the matrices G
[h]
l (y), one for each of the constraint polynomials, l = 1, ..., L,

are of dimensionDh̃l
×Dh̃l

, where h̃l = h−dδl/2e. Each polynomial gl is characterized

according to the above procedure by a vector vl. The matrices G
[h]
l (y) are then

defined as
[

G
[h]
l (y)

]

i,j
=
∑

α

vf−1
δl

(α)y(f−1

δl+2h̃l
(f

h̃l
(i)+f

h̃l
(j))+α). (4.47)

For example, let the degree of the polynomial constraint gl be given by δl = 2 and
let h = 1, so that h̃l = 0. Then, the matrix has only a single entry which is given by

G
[1]
l (y) =

D2
∑

i=1

viyi = gl, (4.48)

so that gl is recovered. In the next relaxation step, the matrix would be of the size
D1 ×D1 = 3 × 3.

For qubits, hmin = 1, because the maximal degree of the constraint polynomials is 2.
For higher dimensional systems, the highest occuring order is 3 due to the positivity
constraints. In this case, hmin = 2.

Convergence to the optimum

In Ref. [133] convergence to the solution of the original problem, cf. Eqs. (4.2) and
(4.3), in the limit h → ∞ is guaranteed if there exist polynomials, u0, u1, ..., uL, all
sums of squares, such that the set

{x ∈ � t : u0(x) +

L
∑

l=1

ul(x)gl(x) ≥ 0} (4.49)

is compact. This is, however, the case in all of the specific situations from entangle-
ment theory considered above. The set in Eq. (4.49) is compact if there exists an
l ∈ {1, ..., L} such that the set

{x ∈ � t : gl(x) ≥ 0} (4.50)

is compact. In each of the discussed cases, we find that due to the linear constraints
incorporating the trace requirement and the quadratic constraints coming from the
purity of the reduced states, there exists an a > 0 such that a2 − ‖x‖2 ≥ 0 for all
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x ∈ M. This follows from the fact that for each of the involved matrices, the trace
is bounded from above, and positivity of the matrices enforces boundedness of all
elements. Hence, to ensure asymptotic completeness, we may add the constraint
gL+1(x) = a2 −‖x‖2 ≥ 0 to the list of quadratic constraints, such that the condition
in Eq. (4.50) is certainly satisfied. Hence, one can conclude that

min
y∈M[h]

dT y → min
x∈M

cTx (4.51)

for h→ ∞, and for

M[h] = {y ∈ � D2h : F [h](y) ≥ 0,

G
[h]
l (y) ≥ 0, l = 1, ..., L + 1}. (4.52)

This is not only meant as a numerical procedure: instead, in each step a semi-
definite program is given explicitly, which can also be assessed with analytic means
in principle. Moreover, symmetries of the involved states under certain groups can be
carried over to symmetries in the Hermitean matrices in the semi-definite programs,
similarly to the strategy employed in Ref. [124] for semi-definite programs, and in
Ref. [123] for convex but not semi-definite programs.

After having discussed the asymptotic converges, let us see why the convergence
cannot be guaranteed if the problem is formulated with both semi-definite as well as
polynomial constraints. In section 4.2.3, we saw that it is possible to trade in extra
semi-definite constraints for a lower maximal degree of the polynomial constraints,
see Eq. (4.25). In this case, we may either express the semi-definite constraint with
polynomials of higher order. This is possible because a Hermitean matrix is positive
iff the determinants of all its submatrices are positive (see also Ref. [24]). However,
this will most probably spoil the benefit of having reduced the maximal degree of the
polynomial constraints in the first place, and might only be of interest in situations
where the problem cannot be formulated involving only polynomial constraints, a
situation occuring, e.g., in an entanglement test for continuous variable systems [X].

Another possibility is to combine the semi-definite relaxations with the semi-definite
constraint itself. This gives rise to a hierarchy of sufficient tests, without the property
of asymptotic completeness. To see how they can be combined, let us consider an
additional semi-definite constraint. In terms of the y ∈ � D2h , we have the feasible
set of the additional semi-definite constraint

F = {y ∈ � D2h : F0 +

t
∑

s=1

ys+1Fs ≥ 0}, (4.53)

with appropriate matrices F0, ..., Ft. Therefore, we can write the full hierarchy of
semi-definite programs as

minimize dT y, (4.54)

subject to F [h](y) ≥ 0,

G
[h]
l (y) ≥ 0, l = 1, ..., L

F0 +

t
∑

s=1

ys+1Fs ≥ 0,
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h = hmin, hmin+1, ... being the label of the element of the hierarchy. The projection
of the feasible sets M[h] onto the plane of first order moments, i.e., onto the plane

{y ∈ � D2h : y = (0, y2, ..., yt+1, 0, ..., 0)}, (4.55)

conceived as a subset of � t, converges (pointwise) to the convex hull of M [132–134].
Therefore, we have that

min
y∈M[h]∩F

dT y ≤ p∗ (4.56)

for all h→ ∞. Moreover, miny∈M[h]∩F d
T y is a monotone increasing sequence in h,

such that the sufficient criteria become more powerful with an increasing order of
the hierarchy.

Size of the relaxations

A relevant issue is how large the semi-definite relaxations are in each step of the
hierarchy. The matrix F [h] is of dimension Dh × Dh, with Dh given by Eq. (4.44)
For example,

D2 = 1 + t+
t(t+ 1)

2
. (4.57)

In the number of variables t, this is a manifestly polynomial expression. In step h the
vector y is of the length D2h. Notably, in each of the steps, the effort of a numerical
solution of the associated semi-definite program is polynomial in the dimension of
the matrices [129]. Hence, each problem can be solved in an efficient manner.

In terms of the step h in the hierarchy, it turns out that the scaling is also polynomial.
Approximating the above sum by an integral expression, we arrive at

Dh = O(ht). (4.58)

That is, for a fixed number of variables (which is the setting considered here), the
size of the vector of the objective variables increases also only polynomially in the
step h in the hierarchy.

4.4 Numerical Examples

In order to show that the approach is also feasible in practice, we present in this
section three numerical examples, two for the geometric measure of entanglement
and one for the construction of entanglement witnesses for bound entangled three-
qubit states.
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4.4.1 Geometric measure for three-qubit states

Let us start with the calculation of the geometric measure of entanglement for three-
qubit states. As we have shown in section 4.2 the computation of the geometric mea-
sure of entanglement for a given pure three-qubit state vector |ψ〉 requires essentially
the calculation of

Λ2 = max
|a,b,c〉

|〈a, b, c|ψ〉|2 (4.59)

We use here the second parametrization described in section 4.2.3. In terms of the
Pauli matrices forming a basis of Hermitean matrices, we can write

|ψ〉〈ψ| =
1

8

3
∑

i,j,k=0

λijk(σi ⊗ σj ⊗ σk), (4.60)

|a, b, c〉〈a, b, c| =
1

8

3
∑

i,j,k=0

aibjck(σi ⊗ σj ⊗ σk), (4.61)

where λ000 = a0 = b0 = c0 = 1. The coefficients λijk, i, j, k = 0, ..., 3, are determined
from the known state vector |ψ〉.
We have to impose constraints that guarantee that ρA is a pure state on the coeffi-
cients (a1, a2, a3) describing the state ρA = 1/2

∑3
i=0 aiσi (and similarly (b1, b2, b3)

and (c1, c2, c3)). We have seen before that for qubit systems, instead of requiring
Tr[ρ2

A] = 1 and Tr[ρ3
A] = 1, we may alternatively merely require that Tr[ρA] = 1 and

Tr[ρ2
A] = 1 (where Tr[ρA] = 1 is already a consequence of the parametrization).

So we arrive at the optimization problem

maximizeai,bj ,ck

1

8

3
∑

i,j,k=0

λijkaibjck, (4.62)

subject to a0 = b0 = c0 = 1

a2
1 + a2

2 + a2
3 = 1,

b21 + b22 + b23 = 1,

c21 + c22 + c23 = 1.

This polynomial optimization problem can be solved with the help of Lasserre’s
method, see section 4.3. For the numerical calculations we used the freely available
package GloptiPoly [139] which is based on SeDuMi [140]. The package GloptiPoly
has a number of desirable features, in particular, it provides a certificate for global
optimality.

First, we present a nontrivial example for the calculation of the geometric measure
of entanglement, in a case where its value is already known. In this way we can
test our methods. We aim at computing the geometric measure of entanglement for
state vectors of the form

|ψ(s)〉 =
√
s|W 〉 +

√
1 − s|W̃ 〉, (4.63)
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s ∈ [0, 1], where |W 〉 and |W̃ 〉 are state vectors of three-qubit W states in different
bases,

|W 〉 =
1√
3

(

|001〉 + |010〉 + |100〉
)

, (4.64)

|W̃ 〉 =
1√
3

(

|011〉 + |101〉 + |110〉
)

. (4.65)

For the geometric measure of entanglement of |ψ(s)〉 a formula has been developed
in Ref. [49], exploiting the permutation symmetry of the states. The comparison
between the theoretical value and the numerical calculation using Lasserre’s method
for h = 2 is shown in Fig. 4.1. Details of the performance are summarized in Table
4.1. Note that hmin = 2 here because of the parametrization that we used. The
results indicate clearly the usefulness of the presented approach. As a matter of
fact, this is a case where already a very small number of steps in the hierarchy
detects the global optimum, as is typical for this method [139].
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Figure 4.1. The numerical values of the geometric measure of entan-
glement E of the family of states of Eq. (4.63), plotted on top of the
analytical values of Ref. [49].

4.4.2 Geometric measure for 4-qubit states

We calculate the geometric measure of entanglement also for the following one pa-
rameter family of state vectors

|ψ4(p)〉 =
√
p|GHZ′〉 −

√

1 − p |ψ+〉 ⊗ |ψ+〉, (4.66)

where

|GHZ′〉 = (|0011〉 + |1100〉)/
√

2, (4.67)
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Subsection Relaxation h # variables dim(y) CPU time

4.3.1 2 9 714 10.92 s
4.3.2 2 12 1819 103.97 s
4.3.3 2 9 714 6.14 s

Table 4.1. Details of the relaxations in the three numerical exam-
ples discussed above for one point of each example. The provided CPU
time refers to a machine with a Intel Xeon Processor, 2.2 GHz, 1GB
Ram, using GloptiPoly 2.2e [139], SeDuMi 1.05 [140], and MatLab
6.5.1.199709 (release 13). In all cases h = hmin = 2, so that the result
was obtained after the first relaxation step.

|ψ+〉 = (|01〉 + |10〉)/
√

2, and p ∈ [0, 1]. The state vector |ψ4(2/3)〉 corresponds to
the 4-qubit singlet state, i.e., the state vector satisfying

U⊗4|ψ〉 = |ψ〉 (4.68)

for all unitary U [141]. For the two individual states in the above superpositions
in Eq. (4.66), the geometric measure can be directly evaluated [49]: For p = 1 we
find Λ2 = 1/2, and for p = 0 we obtain Λ2 = 1/4 from Λ2

ψ+ = 1/2. The numerical
results for the geometric measure of entanglement for other values of p are plotted
in Fig. 4.2. It is interesting to note that at the singlet value p = 2/3, the behavior
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Figure 4.2. The numerical values of the geometric measure of entan-
glement E of the family of states of Eq. (4.66).

of the geometric measure changes. From there up to p = 1 the optimum is attained
for the choices |0011〉 or |1100〉 of the product state which gives rise to the linear
behavior.
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The family of states specified in Eq. (4.66) is invariant under the exchange (AB) ↔
(CD). Because of this symmetry, one may without loss of generality assume that the
product state vector leading to the maximal value of Λ2 is given by |φ1, φ2, φ1, φ2〉,
where |φ1,2〉 = eiχ1,2 cos θ1,2|0〉 + eiη1,2 sin θ1,2|1〉, where the optimal phases can be
shown to be all vanishing. This gives rises to an optimization problem with polyno-
mial constraints with only two variables which can be solved exactly by GloptiPoly.
The results coincide with the results above.

4.4.3 Witness for 3-qubit PPT entangled states

Employing the same strategy, we would like to calculate the value of ε as defined in
section 4.2 for the family of witnesses constructed for the three qubit PPT entangled
states introduced in section 2.5.4. In section 3.4, we obtained upper bounds for the
values of ε by using a multi-variable minimization routine [106] for the parameter
range a = b = 1/c ∈]0, 1[, which are plotted in Fig. 3.3. The minimization has
to be performed with respect to W from Eq. (2.100) without the term ε

�
, and

the substitution c ↔ 1/c has to be done. The numerical results obtained with the
methods from this section are plotted in Fig. 4.3 on top of the former results. Again,
the global optimum is achieved, and the values agree with the values found in 3.4.
For details concerning the relaxations, see Table 4.1.
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4.5 Conclusions

In this chapter, we have revisited several problems in entanglement theory with
the tools and language of convex optimization. The central point was that many
problems, where a minimization over pure product vectors is required, can be writ-
ten as instances of certain optimization problems involving polynomial constraints of
degree two or three, or with additional semi-definite constraints. For such polynomi-
ally constrained problems, which are generally instances of non-convex optimization
problems, hierarchies of semi-definite relaxations can be found. One arrives at hi-
erarchies of more and more refined tests detecting entangled or separable states, or
better and better lower bounds to optimization problems.

In all instances, recently achieved known results from semi-algebraic geometry guar-
antee that asymptotically, the achieved minimum is indeed approaching the globally
optimal one. In this sense, the statements are similar in spirit with yet more versa-
tile than the ones presented in Refs. [36, 37, 39]. Moreover, we have seen that the
size of the optimization problems to be solved in each test grows polynomially with
the steps in the hierarchy, and that for small problems, often only a small number
of steps is required to find the exact solution.

The presented method is on the one hand meant as a numerical method to achieve
good bounds to problems that are of relevance in the study of multi-particle en-
tanglement, in the construction of entanglement witnesses in the bi-partite and
multi-partite case, and in the context of quantum key distribution. Other applica-
tion include the construction of entanglement witnesses based on second moments
and the assessment of maximal output purities, see Ref. [X]. On the other hand,
each instance of the hierarchy delivers a semi-definite program which is readily ac-
cessible with analytical methods, and where properties of the Lagrange-dual can
be exploited. It is hoped that these techniques shed new light on the structure of
optimization problems underlying the questions of entanglement and separability of
several constituents.



Chapter 5

Entanglement witnesses vs. Bell

inequalities

5.1 Overview

In this chapter, we turn our attention again to witness operators and investigate
their relation to the CHSH inequality introduced in chapter 1. Many facts about
Bell inequalities and witness operators have been named already in the first two
chapters. Let us recall those which are most important in the context of this chapter.

First of all, Bell inequalities correspond to witness operators in the framework of
quantum mechanics. The relation between the two entities was first studied in
Ref. [40], where a weak form of Bell inequality was introduced. This Bell inequality
is not obeyed by all classical vectors of probabilities for the local measurements
involved, but only by those that are consistent with quantum mechanics. It turns
out that these vectors correspond to quantum mechanical product states, hence all
convex combinations are separable states and the weak Bell inequalities can detect
all entangled states. However, this does not mean that there is no LHV model for
entangled states, an example being the family of entangled states for which Werner
constructed LHV models explicitly [26].

Further, we remarked in the introduction of chapter 2 that the Bell inequalities
correspond to non-optimal witness operators in general because no known Bell in-
equality is violated by PPT entangled states [70] and because there exist entangled
states already in systems of two qubits for which a LHV model exists for any number
of local measurements [26], as also mentioned above. Hence the question about the
relation of witness operators and Bell inqualities concerns the relation of the border
between separable and entangled states and the border between LHV and non-LHV
states.

The main difficulty here is the very large number of degrees of freedom of the Bell
inequalities, because only the number of measurement settings per site and the num-
ber of measurement outcomes on each site is fixed, but not the measurement settings
themselves. In contrast, if all the measurement settings are fixed, then it is possible
to directly apply the formalism of Ref. [43]. This was used in Ref. [142] to show that
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for certain fixed settings Bell inequalities for systems of two qutrits [76] correspond
to decomposable witnesses and are hence not violated by PPT entangled states. For
fixed measurement settings, it is also possible to relate Bell inequalities for the class
of so-called graph states of several qubits to the projector based witnesses of section
2.2.2, as shown in Ref. [XI].

In this chapter, however, we will neither restrict the LHV models nor fix the settings
when treating the CHSH inequality. In section 5.2, we recall some facts related to
witnesses and the CHSH inequality and show how to write a CHSH inequality as
a CHSH witness. Then we transform optimal witnesses to witnesses detecting only
states that violate a CHSH inequality by shifting them with the identity in section
5.3. In section 5.4, we transform CHSH witness in the same spirit by substracting
the identity, bringing them closer to the set of separable states. Then we use another
approach to relate the CHSH witnesses to optimal witnesses directly, by considering
the diagonalized CHSH witness in section 5.5. Finally, we conclude and name open
questions in section 5.6.

5.2 Some useful facts and definitions

In this section, we concentrate on the relation between witness operators and CHSH
inequalities. Before we start, let us recall some facts that we will use in this section,
first about entanglement witnesses and then about CHSH inequalities. We will again
omit the tensor product signs when there is no danger of confusion.

In chapter 2 we already noted that in systems of two qubits all entanglement wit-
nesses are decomposable, i.e., of the form

W = P +QTA , (5.1)

where P and Q are positive semi-definite operators. The optimal entanglement
witnesses are of the form W = |φ〉〈φ|TA , where |φ〉 is an entangled state vector.
An optimal witness detecting the entangled state ρ can be constructed from the
eigenvector of ρTA with negative eigenvalue. Further, writing |φ〉 in the Schmidt
form

|φ〉 = α|00〉 + β|11〉, α, β > 0, α2 + β2 = 1, (5.2)

the witness can be locally decomposed as

Wα =
1

4

( ���
+ σzσz + (α2 − β2)(σz

�
+
�
σz) + 2αβ(σxσx + σyσy)

)

, (5.3)

cf. Eq. (2.26).

Let us now recall some facts about the CHSH inequalities. Within quantum me-
chanics, the CHSH inequalities can be described by an operator B such that

|Tr[BρLHV]| ≤ 2 (5.4)
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is fulfilled for all states ρLHV admitting a local hidden variable model for the mea-
surements of the CHSH operator

B = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ. (5.5)

Here a, a′, b, and b′ are unit vectors describing the measurements that the parties
A and B perform. There exists a necessary and sufficient criterion for the violation
of a CHSH inequality found by the Horodeckis [143]. For this we need that any two
qubit state can be written as

ρ =
1

4

3
∑

i=0

λijσi ⊗ σj. (5.6)

In the following, we will refer to the 3 × 3 dimensional subtensor λi>0,j>0 ≡ Tρ as
the correlation tensor. This tensor holds all the information that is needed to decide
whether a state violates a CHSH inequality: A state ρ violates a CHSH inequality
iff u1 + u2 > 1, where u1 and u2 are the two largest eigenvalues of Uρ = T Tρ Tρ [143].

From the definition of optimal witnesses and the CHSH operator it follows directly
that CHSH witnesses cannot be optimal witnesses. The latter can be constructed
as

WCHSH = 2 ·
�

+ B, (5.7)

they are positive on all LHV states, in particular on all separable states. The
partially transposed witness W TA

CHSH is still a CHSH witness. However, for every

optimal witness, W TA
opt is a positive operator. Hence WCHSH cannot be optimal. In

the following, we will investigate the relation between optimal witnesses and CHSH
witnesses in detail.

5.3 From optimal witnesses to CHSH inequalities

First, we pose the following question: Given an optimal entanglement witness
W = |φ〉〈φ|TA , how much do we have to shift it by adding the identity such that
it is positive on all states admitting a local hidden variable model? In other words,
for which γ > 0 is W + γ

�
a CHSH witness? We calculate bounds on γ, first

considering witnesses with maximally entangled states |φ〉 = |φ+〉 and then optimal
witnesses constructed with arbitrary entangled states.

For |φ〉 = |φ+〉, the optimal witnesses take the simple local form

W =
1

4

( ���
+ σxσx + σyσy + σzσz

)

. (5.8)

Now we can use the observation that

σxσx + σyσy =
1√
2

[

σx

(σx + σy√
2

)

+ σx

(σx − σy√
2

)

+σy

(σx + σy√
2

)

− σy

(σx − σy√
2

)]

≡ 1√
2
Bx,y (5.9)
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to write the witness in terms of CHSH operators as follows

W =
1

4

( ���
+

1

2
√

2

(

Bx,y + Bx,z + By,z
)

)

. (5.10)

The expectation value of each of these CHSH operators is bounded by −2 from
below for states admitting a local hidden variable model, so that we can estimate

Tr[WρLHV] ≥ 1

4

(

1 +
1

2
√

2
(−3 · 2)

)

=

√
2 − 3

4
√

2
≡ −γ. (5.11)

Hence, W ′ = W + γ ·
�

corresponds to a CHSH witness, being positive not only
on separable, but more general on all states fulfilling the CHSH inequality. The
spectral decomposition of W ′ is given by

W ′ =
(1

2
+ γ
)[

|00〉〈00| + |ψ+〉〈ψ+| + |11〉〈11|
]

−
(1

2
− γ
)

|ψ−〉〈ψ−|, (5.12)

and since 1/2 − γ ≈ 0.220 > 0, W ′ is still detecting states.

Let us estimate the strength of the witness by looking at the following family of
states

ρp = p|ψ〉〈ψ| +
(1 − p)

4

�
, (5.13)

where |ψ〉 = a|01〉 − b|10〉, and a, b ≥ 0. In the following, we abbreviate x = ab. For
this family of states, the only eigenvector with possibly negative eigenvalue is |φ+〉,

ρTA
p |φ+〉 =

(

− px+
(1 − p)

4

)

|φ+〉. (5.14)

Hence, following chapter 2, the original witness |φ+〉〈φ+|TA is a good witness for
these states. The states are entangled provided that

p > pe =
1

(1 + 4x)
, (5.15)

while the witness W ′ detects the states provided that

p > pw =
3√

2(1 + 4x)
. (5.16)

The rhs is larger than or equal to one for x ≥ γ, so that the witness does not detect
any states for this range of parameters.

Let us compare the witness with the Horodecki criterion from above [143]: For the
states ρp we have

Tρp =





−2xp 0 0
0 −2xp 0
0 0 −p



 . (5.17)

Since x ≤ 1/2 the states are violating all CHSH inequalities if

p2(1 + 4x2) > 1 ⇔ p > ph =
1√

1 + 4x2
. (5.18)
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Figure 5.1. The graphs show values of p above which the three criteria
detect the states ρp from Eq. (5.13) depending on x = ab. The lowest
line corresponds to the PPT criterion, the middle line to the Horodecki
criterion, and the top line to the shifted witness W ′.

For a = b = 1/
√

2, when the states correspond to the Werner states [26], both W ′

and the Horodecki criterion detect the states if p > 1/
√

2 which is equivalent to the
value found by Werner [26], indicating that γ is a good bound. For other values of
a, however, the bounds differ, see Fig. 5.3. Still, the witness detects a rather large
proportion of the states detected by some CHSH inequality.

Let us now consider the general optimal witnesses given by W = |φ〉〈φ|TA with
|φ〉 = α|00〉 + β|11〉. We can rewrite Eq. (5.3) in the same way as above:

Wα =
1

4

[ ���
+(α2−β2)(σz

�
+
�
σz)+(α−β)2σzσz+

αβ√
2

(

Bx,y+Bx,z+By,z
)]

(5.19)

Again, we would like to find a lower bound for this expression with respect to states
not violating a CHSH inequality. The CHSH contribution is ≥ −3

√
2αβ for states

admitting a LHV model.

The expectation value of the other terms (α2 − β2)(σz
�

+
�
σz) + (α − β)2σzσz is

bounded from below by the minimal eigenvalue. Assuming that α ≥ β, this is given
by −2(α2 − β2) + (α − β)2 because (α2 − β2) − (α − β)2 = 2(αβ − β2) ≥ 0. Hence
we obtain for states ρLHV obeying all CHSH inequalities the bound

Tr[WαρLHV] ≥ 1

4

(

1 − 2(α2 − β2) + (α− β)2 − 3
√

2αβ
)

≡ −γα (5.20)

which reduces to γ from Eq. (5.11) for α = 1/
√

2. The operator W ′
α = Wα + γα ·

�

is positive on states admitting a local hidden variable model. However, in order to
detect states, it must not be positive on all states. The eigenvector with negative
eigenvalue of the witness Wα is again the state |ψ−〉, and hence also for W ′

α, with
the eigenvalue −αβ + γα. This is negative for α ≤ [8/(19 − 6

√
2)]1/2 ≈ 0.872 only,

hence W ′
α does not detect any states for a larger value of α.
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5.4 From CHSH inequalities to witnesses

Now we adress the opposite question: how much can we shift a CHSH witness
towards the set of separable states by substracting the identity so that it remains
a witness? In other words, for which δ > 0 is 2

�
+ B − δ

�
still a witness? We

calculate δ depending on the parameters of B and relate the CHSH witness to optimal
witnesses from a restricted class of witness operators.

First let us parametrize the CHSH operator from Eq. (5.5) such that all mea-
surements vectors lie in the x − z plane. This can be done without loss of gen-
erality, because the only free parameters are the angles between the two mea-
surement directions on each side. In particular, we can choose a = b = ẑ and
(a,b)′ = (sin(θa,b), 0, cos(θa,b)). The operator takes the form

B = −sasb ·σxσx+sa(1−cb)·σxσz+(1−ca)sb ·σzσx+(1+ca+cb−cacb)·σzσz, (5.21)

where we abbreviated sin(θa,b) ≡ sa,b and in analogy for the cosine terms. This is
already written in the basis of products of Pauli matrices. We can perform a singular
value decomposition of the matrix of coefficients and obtain

B = λ+σ̃xσ̄x + λ−σ̃zσ̄z (5.22)

λ± =
(

2
(

1 ±
√

1 − s2as
2
b

)

) 1
2
. (5.23)

We will now estimate the maximal expectation value that this operator can attain
with respect to product states with the help of the following proposition. This will
directly provide the desired bound.

Proposition 5.1. The maximal expectation value of an operator A = ασxσx +
βσzσz with respect to product states is given by max(α, β). The minimal value is
the maximum with opposite sign.
Proof. Using the Cauchy-Schwartz inequality, we can estimate

|〈a, b|
(

ασxσx + βσzσz

)

|a, b〉| = |〈
√
ασx〉a〈

√
ασx〉b + 〈

√

βσz〉a〈
√

βσz〉b|

≤
√

(α〈σx〉2a + β〈σz〉2a)(α〈σx〉2b + β〈σz〉2b).

The maximum of the two terms on the rhs will surely be attained for vectors in the
x−z plane, for which 〈σx〉2+〈σz〉2 = 1 holds. With the help of Lagrange multipliers,
we obtain max[x2+z2=1] αx

2 +βz2 = max(α, β). This holds for both terms below the
square root. For α > β, the maximum is attained for the eigenstates of σxσx, with
positive or negative sign, and an analogous result holds for α < β. 2

Hence the minimal expectation value of the CHSH witness 2
�

+ B with respect to
product states is 2 − λ+, which follows from proposition 5.1 and from λ+ ≥ λ−.
This means that 2

�
+ B − (2 − λ+)

�
= λ+

�
+ B is still a witness.

We will show now how this witness can be related to optimal witness of the class of
witnesses that can be written as

W =
∑

i,j={0,x,z}
cijσi ⊗ σj (5.24)
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which have the property that W = W T = W TA . The CHSH witness 2
�
− B with B

from Eq. (5.21) belongs to this class, which we will refer to as EW4 in the following.
In Ref. [20] it was shown that the optimal witness of this class are given by

We =
1

2

(

|φe〉〈φe| + |φe〉〈φe|TA
)

, (5.25)

where |φe〉 is a real entangled state. Choosing |φe〉 to be the Bell state |φ+〉
in the basis of Eq. (5.22), the corresponding witness in local form is given by
W+ = (

�
+ σ̃xσ̄x + σ̃zσ̄z)/4. Then we can write the shifted witness from above as

λ+

�
+ B = 4λ−W+ + (λ+ − λ−)(

�
+ σ̃xσ̄x), (5.26)

i.e., even after the shift the resulting witness is still given by the sum of an optimal
witnesses from the class EW4 and a positive definite operator. However, if we choose
θa = θb = π/2, then λ+ = λ− =

√
2, and the shifted witness λ+ + B is equal to

the optimal witness from the restricted class. Still, the result indicates that the
substraction of the identity might not be the optimal strategy for the optimization
of the CHSH witness. In the following section, we will use a different approach.

5.5 CHSH inequalities written as non-optimal witnesses

In this section, we show explicitly how any CHSH inequality can be decomposed
into a sum of an optimal witness and a general positive operator, starting from
the diagonalized CHSH witness. First, we find such decompositions into an optimal
witness and a positive operator, and then decompositions involving optimal witnesses
We from the restricted class of witnesses from above.

The Bell operator of Eq. (5.5) in diagonal form is given by

WCHSH = 2 ·
�

+ µ+(|ψ1〉〈ψ1| − |ψ2〉〈ψ2|) + µ−(|ψ3〉〈ψ3| − |ψ4〉〈ψ4|), (5.27)

where µ± = 2
√

1 ± sasb and all the eigenstates |ψi〉 are maximally entangled [144].
Choosing convenient local bases, these can be brought to the form

|ψ1〉 = |φ+〉, |ψ2〉 = |ψ−〉, |ψ3〉 = |φ̃+〉, and |ψ4〉 = |ψ̃−〉 (5.28)

where the local bases of the latter two vectors are different from the local bases of
the first two vectors, while all vectors still form an orthonormal set. Note that for
θa = θb = π/2, the eigenvalue µ− vanishes, while µ+ reaches its maximal value 2

√
2,

so that also WCHSH has a maximal negative eigenvalue for this choice of settings. In
the following, we will refer to these settings as optimal, which is further motivated
by the results of the previous section.

We first write the witness WCHSH directly as the sum of an optimal witness and a
positive operator, i.e.,

WCHSH = χ|φ〉〈φ|TA + P, P ≥ 0, χ ≥ 0, (5.29)
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where |φ〉 is an entangled vector. We start by rewriting

WCHSH = 2 ·
( �

− |ψ−〉〈ψ−|
)

+ µ+|φ+〉〈φ+| + µ−
(

|φ̃+〉〈φ̃+| − |ψ̃−〉〈ψ̃−|
)

+(2 − µ+)|ψ−〉〈ψ−|

where all the terms in the rhs of the first line are orthogonal to |ψ−〉. We use as the
entangled vector in Eq. (5.29) |φ〉 = α|00〉 + β|11〉 with α ≥ β, because the vector
corresponding to the negative eigenvalue −αβ of |φ〉〈φ|TA is |ψ−〉. We substitute

|ψ−〉〈ψ−| = − 1

αβ

[

|φ〉〈φ|TA − α2|00〉〈00| − β2|11〉〈11| − αβ|ψ+〉〈ψ+|
]

, (5.30)

arriving at

WCHSH = χ|φ〉〈φ|TA +O, where χ ≡ µ+ − 2

αβ
. (5.31)

This is already of the desired form provided that O is a positive operator. An easy
bound on the positivity of O can be obtained as follows: the three terms on the rhs
of Eq. (5.30) appear with negative sign in O. If we put all the coefficients to α2,
then in the resulting operator O′ the weight of the negative terms is increased, and
from positivity of O′ the positivity of O follows. Because we substract the identity
in the subspace orthogonal to |ψ−〉, we can estimate

O ≥ (2 − χα2 + µ−)|φ̃+〉〈φ̃+| + (2 − χα2 + µ+)|φ+〉〈φ+|
+(2 − χα2 − µ−)|ψ̃−〉〈ψ̃−|,

so that a sufficient condition for the positivity of O is χα2 + µ− ≤ 2.

Let us investigate the maximal values χ and α can attain. First we will maximize
χ. Since Tr[WCHSH] = χ + Tr[P ] = 8, the decomposition with maximal weight of
the partially transposed projector corresponds to a maximal χ. This is bounded by

χ ≤ 2 − µ−
α2

≤ 2(2 − µ−) ≤ 4, (5.32)

hence χ is maximized by choosing α2 = 1/2, corresponding to the maximal entangled
state. The highest relative weight of 1/2 is reached for the optimal settings, where
µ− = 0. Maximizing α instead, we obtain the bound

α2 ≤ y2

1 + y2
∈ [

1

2
,

1

4 − 2
√

2
≈ 0.854] (5.33)

where y = (2 − µ−)/(µ+ − 2). The maximal bound is again reached for the optimal
settings.

Let us now relate the diagonalized CHSH witness from Eq. (5.27) to the optimal
witnesses of the class EW4, cf. Eq. (5.25). At this point we can make use of the
choice of bases leading to the eigenbasis of the CHSH witness from Eq. (5.28). As
noted in the proof of Lemma 2.4, we can use that

�
−|ψ−〉〈ψ−| is the projector onto

the symmetric subspace to rewrite

�
− |ψ−〉〈ψ−| =

1

2
(
�

+ 2|φ+〉〈φ+|TA) ⇔ −|ψ−〉〈ψ−| = |φ+〉〈φ+|TA −
�

2
. (5.34)
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Using this identity, the CHSH witness in the form of Eq. (5.27) can be written as

WCHSH = 2µ+We + 2µ−W̃e + (2 − µ+ + µ−
2

)
�
, (5.35)

where We = (|φ+〉〈φ+| + |φ+〉〈φ+|TA)/2, and in analogy for W̃e. This is a good
decomposition since, using the abbreviation x = sasb,

2 ≥
√

1 + x+
√

1 − x⇔ 4 ≥ 2(1 +
√

1 − x2) (5.36)

is always fulfilled, hence the term proportional to the identity is positive or vanishes.
From this decomposition we see directly that

WCHSH −
(

2 − µ+ + µ−
2

)

·
�

(5.37)

is still a witness, but not a CHSH witness anymore. In fact, this bound is equivalent
to the bound obtained with the help of proposition 5.1 from the last section, because
µ+ + µ− = 2λ+. Hence the CHSH witness can be written in a very natural way
as a superposition of two optimal witness from the restricted class EW4 and the
identity. For the optimal settings, the weight of one of these witnesses vanishes, and
we recover the result from the end of the preceding section.

5.6 Conclusions

In this chapter, we investigated the relation between optimal witness operators and
the CHSH inequality in detail. We estimated how much optimal witnesses have
to be shifted by the identity to make them positive on all states admitting a LHV
model.

Then we considered the opposite question and obtained tight bounds for how much
the identity can be substracted from a CHSH witness, preserving the witness prop-
erties. We further related this witness to an optimal witness of the class EW4 of
witnesses which are invariant with respect to partial as well as complete transposi-
tion. The CHSH witness in the parametrization that we used is part of that class.
Finally, we diagonalized the witness and related it to general optimal witnesses, as
well as to optimal witnesses of the class EW4. We found a natural decomposition
into two such optimal witnesses and the identity, where the weight of the identity
matched the bound that we had obtained before on how much the identity can be
substracted from the CHSH witness.

A natural next step would be to investigate the relationship between witnesses
and more complex Bell inequalities, for instance, the inequality involving three di-
chotomic measurements per site for two parties found by Śliwa [79], Collins, and
Gisin [80]. Even more fascinating would be the step to more parties or to systems
of higher dimension, because of Peres’ conjecture that PPT entangled states do not
violate any Bell inequality [87]. If it would be possible to show that all Bell in-
equality correspond to decomposable witnesses for any choice of the measurements,
then the conjecture would proven. However, the investigation will become increas-
ingly difficult with the increasing degrees of freedom of the Bell inqualities in higher
dimensions.
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