# Silicid-, Borid- und Carbid-Beschichtung hochschmelzender Metalle mittels Gasphasenreaktion

Von dem Fachbereich Chemie der Universität Hannover zur Erlangung des Grades Doktor der Naturwissenschaften - Dr. rer. nat. genehmigte Dissertation

von Dipl.-Chem. Wibke Friedhoff geboren am 14. Juni 1972 in Bad Gandersheim Dezember 2004 meinen Eltern

Jeder dumme Junge kann einen Käfer zertreten. Aber alle Professoren der Welt können keinen herstellen.

Arthur Schopenhauer (\*1788 † 21860), dt. Philosoph

Referent:Prof. Dr. Michael BinnewiesKorreferat:Prof. Dr. Werner Urland

Tag der mündlichen Prüfung: 02. Februar 2005

#### Inhaltsübersicht

Reaktionen zwischen gasförmigen Nicht- oder Halbmetallhalogeniden und Metallen können bei Temperaturen oberhalb von 1000 °C zu Verbindungen zwischen dem Metall und dem Nichtoder Halbmetall führen. Solche Reaktionen verlaufen reproduzierbar, sie führen in der Regel zu phasenreinen Produkten und sind über den Druck und die Temperatur steuerbar. Von besonderem präparativen Interesse sind derartige Reaktionen dann, wenn die gebildeten Produkte auf andere Weise nicht, oder nur schwer zugänglich sind. Dies ist insbesondere dann der Fall, wenn die jeweiligen Silicide, Carbide oder Boride sehr hohe Schmelztemperaturen aufweisen, also insbesondere die der Metalle der Gruppen 4 bis 6 des Periodensystems.

In dieser Arbeit wird untersucht, ob solche Reaktionen auch geeignet sind, um Deckschichten dieser Metallcarbide, -silicide oder -boride zu erzeugen. Das jeweils verwendete Metall (Titan, Zirconium, Vanadium, Niob, Tantal, Molybdän und Wolfram) wurde - meist in Drahtform - in einen Stromkreis eingebunden und durch Stromfluss auf hohe Temperaturen erhitzt. Das leicht flüchtige Nichtmetallhalogenid (Trichlorsilan, Bortrichlorid, Tetrachlorkohlenstoff) wurde in einer Art Glühlampenanordnung als Reaktionspartner bereitgestellt. Bei diesen Reaktionen bildeten sich in der Regel die gewünschten Schichten. Es wurden zwei unterschiedliche Reaktionsweisen beobachtet: In manchen Fällen verläuft eine solche Reaktion unter Bildung des jeweiligen Metallsilicids, -carbids oder -borids unter gleichzeitiger Bildung eines bei den hohen Temperaturen gasförmigen Metallhalogenids, in anderen Fällen wird das Nichtmetallhalogenid thermolytisch gespalten, es kommt zur Bildung des jeweiligen Metallsilicid, -carbids oder -borids unter Freisetzung von Halogen oder Halogenwasserstoff.

Die präparativen Experimente wurden begleitet von massenspektrometrischen Untersuchungen der ablaufenden Reaktionen und thermodynamischen Betrachtungen. Daraus lies sich in allen Fällen ein abgerundetes Bild des Reaktionsgeschehens ableiten.

Ein Teil der Arbeit widmet sich der Bildung von MoSi<sub>2</sub>, einer Verbindung die beträchtliches praktisches Interesse wegen seiner Verwendung als Hochtemperaturwerkstoff verdient. Es konnte gezeigt werden, dass es mit dem untersuchten Verfahren gelingt, dichte, fest haftende MoSi<sub>2</sub>-Schichten auf Molybdänsubstraten zu erzeugen: Ein mit MoSi<sub>2</sub> beschichteter Draht lässt sich an der Luft auf Weißglut erhitzen, ohne dass Molybdänoxide gebildet werden.

Schlagworte: Boride, Silicide, Carbide, Beschichtung, Gasphasenreaktion

#### Abstract

Reactions between gaseous non-metal- or semimetal-halogenides and metals at temperatures above 1273 K can give compounds between these metals and non-metals or semimetals. Those reactions pass off reproducible lead to pure phases and can be control by variation of pressure and temperature. A special preparative interest of these reactions is given when the product can not be obtained in a simple or any other way. This case is given when silicides, carbides or borides have high melting temperature especially metals from group 4 - 6 at the Periodic Table of the Elements.

This thesis deals with reactions to form top layers of those metal carbides, -borides or -silicides. The applied metal (titan, zirconium, vanadium, niobium, tantalum, molybdenum, tungsten) was integrated into an electric circuit and heated to high temperatures with current flow. The volatile non-metal (silico chloroform, boron trichloride, carbon tetrachloride) is appropriated in manner of an incandescent lamp. Usually those reactions gave the requested layers. Two mechanisms could be observed: in some cases the boride, carbide or silicide was formed under contemporaneous formation of a gaseous metal chloride at high temperature. In the other cases the non-metal halogenide was split thermally and the boride, carbide or silicide was formed under release of halogen or hydrogen halide.

The preparative experiments are accompanied by mass-spectrometric investigations and thermodynamic calculations of the proceeding reactions. In many cases these investigation leads to a good understanding of these reactions.

Another part of this thesis devoted to the formation of MoSi<sub>2</sub>. This is an interesting compound because of its usage as high temperature material. It can be shown that the used method lead to fixed sticking MoSi<sub>2</sub>-layers on molybdenum substrates. It could be shown that a MoSi<sub>2</sub>-layered wire can be heated at high temperature in oxidizing atmosphere, without forming molybdenum oxides.

Keywords: boride, carbide, silicide, coating, vapour deposition reactions

Die vorgelegte Arbeit wurde in der Zeit von Mai 2002 bis Dezember 2004 am Institut für Anorganische Chemie der Universität Hannover angefertigt.

Herrn Prof. Dr. Michael Binnewies danke ich für die Aufnahme in seine Arbeitsgruppe, die Überlassung der sehr interessanten Aufgabenstellung und die stets gewährte Unterstützung.

Herrn Prof. Dr. Werner Urland gilt mein Dank für die Übernahme des Korreferats.

Des Weiteren gebührt mein Dank sämtlichen Mitgliedern des Arbeitskreises von Herrn Prof. M. Binnewies. Sie haben mich bei aufkommenen Fragen tatkräftig unterstützt. Mein besonderer Dank gilt auch allen Personen, die mich während der gesamten Zeit mental unterstützt haben.

| 1                     | Einleitung                                                                                            |     |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------|-----|--|--|
| 2                     | Charakterisierungsmethoden / Geräte                                                                   |     |  |  |
|                       | <ul> <li>2.1 Pulverdiffraktometrie</li></ul>                                                          |     |  |  |
| 3                     | Eigenschaften und Verwendung von Hartstoffen                                                          | 21  |  |  |
| 4                     | 1 Thermodynamische Berechnungen                                                                       |     |  |  |
| 5 Präparationstechnik |                                                                                                       |     |  |  |
|                       | <ul><li>5.1 Bereits verwendete Arbeitstechnik</li><li>5.2 Arbeitstechniken in dieser Arbeit</li></ul> | 26  |  |  |
| 6                     | Versuchsaufbau und Versuchsdurchführung                                                               |     |  |  |
| 7                     | <ul> <li>6.1 Verwendete Apparatur</li> <li>6.2 Versuchsdurchführung</li> </ul>                        |     |  |  |
| /                     | Untersuchte Systeme                                                                                   |     |  |  |
|                       | 7.1 Trichlorsilan                                                                                     |     |  |  |
|                       | 7.1.1 Vergleich der Silane                                                                            |     |  |  |
|                       | 7.1.2 Das System Molybdän / Trichlorsilan                                                             |     |  |  |
|                       | 7.1.3 Das System Niob / Trichlorsilan                                                                 |     |  |  |
|                       | 7.1.4 Das System Tantal / Trichlorsilan                                                               | 49  |  |  |
|                       | 7.1.5 Das System Titan / Trichlorsilan                                                                |     |  |  |
|                       | 7.1.6 Das System Vanadium / Trichlorsilan                                                             |     |  |  |
|                       | 7.1.7 Das System Wolfram / Trichlorsilan                                                              | 61  |  |  |
|                       | 7.1.8 Das System Zirkonium / Trichlorsilan                                                            | 65  |  |  |
|                       | 7.2 Bortrichlorid                                                                                     |     |  |  |
|                       | 7.2.1 Das System Molybdän / Bortrichlorid                                                             | 71  |  |  |
|                       | 7.2.2 Das System Niob / Bortrichlorid                                                                 |     |  |  |
|                       | 7.2.3 Das System Tantal / Bortrichlorid                                                               |     |  |  |
|                       | 7.2.4 Das System Titan / Bortrichlorid                                                                |     |  |  |
|                       | 7.2.5 Das System Vanadium / Bortrichlorid                                                             |     |  |  |
|                       | 7.2.6 Das System Woltram / Bortrichlorid                                                              |     |  |  |
|                       | 7.2. / Das System Zirkonium / Bortrichlorid                                                           |     |  |  |
|                       | 7.2                                                                                                   |     |  |  |
|                       | 7.2.2 Das System Wolybdan / Letrachlorkohlenstoff                                                     |     |  |  |
|                       | 7.2.2 Das System NiOD / TetrachlorKonlenstoff                                                         |     |  |  |
|                       | 7.3.4 Das System Titan / Tetrachlarkahlarataff                                                        | 109 |  |  |
|                       | 7.3.5 Das System Vanadium / Tetrachlorkohlenstoff                                                     |     |  |  |
|                       | (.3.3 Das System vanadium / TetrachiorKonienston                                                      |     |  |  |

|    | 7.3.6  | Das System Wolfram / Tetrachlorkohlenstoff<br>Das System Zirkonium / Tetrachlorkohlenstoff |     |
|----|--------|--------------------------------------------------------------------------------------------|-----|
|    | 1.3.1  | Das System Zirköndin / Tetraemorkönenstöri                                                 | 123 |
| 8  | Versu  | che zur praktischen Anwendung                                                              |     |
|    |        |                                                                                            |     |
| 8. | 1 1    | /erwendung von MoSi2                                                                       |     |
| 8. | 2 I    | Erhitzen von MoSi <sub>2</sub> -beschichtetem Molybdändraht                                |     |
|    | -      |                                                                                            |     |
| 9  | Zusan  | nmenfassung und Ausblick                                                                   |     |
|    |        |                                                                                            |     |
| 10 | Litera | tur                                                                                        |     |
|    |        |                                                                                            |     |
| 11 | Anhai  | ng                                                                                         |     |
|    |        |                                                                                            |     |
| 11 | .1 V   | /erwendete Materialien                                                                     |     |
| 11 | .2 \   | Verwendete Geräte                                                                          |     |
| 11 | .3 /   | Abkürzungen - Einheiten - Symbole                                                          |     |
| 11 | .4 🗇   | hermodynamische Berechnung                                                                 | 141 |
|    | 11.4.1 | Thermodynamische Daten                                                                     | 141 |
|    | 11.4.2 | Auftragung der Partialdrücke im System Metall / SiHCl3                                     |     |
|    | 11.4.3 | Auftragung der Partialdrücke im System Metall / BCl3                                       |     |
|    | 11.4.4 | Auftragung der Partialdrücke im System Metall / CCl4                                       |     |
| 11 | .5 /   | Abbildungsverzeichnis                                                                      |     |
| 11 | .6 1   | abellenverzeichnis                                                                         |     |

# 1 Einleitung

Silicide, Boride und Carbide gehören zu der Gruppe der Hartstoffe und sind aufgrund ihrer hohen Schmelztemperaturen und ihrer Härte von besonderer Bedeutung. Die Beschichtung von Metallen mit diesen Materialien schützt sie z. B. vor Korrosion und verleiht ihnen besondere mechanische Eigenschaften.<sup>[1]</sup> Die üblichen Herstellungsverfahren dieser Stoffe sind mit zahlreichen Problemen behaftet. Sinterprozesse erfordern sehr hohe Temperaturen und sind energie- und zeitaufwendig. Die Synthese aus den Elementen ist aufgrund der allgemein sehr niedrigen Diffusionskoeffizienten selbst bei hohen Temperaturen oft sehr langwierig und führt häufig nicht zu homogenen Produkten. Ein weiteres Problem stellt die Verarbeitung von Hartstoffen dar. Da sie meist sehr spröde und schlecht formbar sind, ist es nicht einfach möglich, ein Werkstück dem Bedarf entsprechend zu formen oder dickere Hartstoffschichten auf Substrate aufzubringen.

2001 ist es M. BINNEWIES et. al. gelungen, einen Eisendraht mit Eisensilicid zu beschichten.<sup>[2]</sup> In einem Hochtemperaturofen wurde ein Eisendraht mit gasförmigen Siliciumchlorid umgesetzt. Die Reaktion verlief nach folgender Reaktionsgleichung:

$$3 \operatorname{Fe}(s) + \operatorname{SiCl}_4(g) \rightleftharpoons \operatorname{FeSi}(s) + 2 \operatorname{FeCl}_2(g)$$
 (1-1)

Auf diesem Weg gelang es auch, eine Eisenspirale vollkommen zu Eisensilicid umzusetzen ohne Veränderung ihrer Morphologie. Durch die Bildung von Poren innerhalb der Silicidschicht war ein Stofftransport von der Gasphase in den Festkörper hinein und umgekehrt möglich, so dass man ohne Bildung von Deckschichten eine einheitliche FeSi-Phase erhielt. Mit dieser Methode ist es gelungen, aus einem leicht zu bearbeitenden und verformbaren Metall, ein Werkstück zu bilden, welches die Form des eingesetzten Metalls hatte.

Wie in Abbildung 1.1 zu erkennen, bildete sich zuerst eine Eisensilicidschicht und nach längerer Reaktionszeit war das gesamte Material zu Eisensilicid umgesetzt.



Abbildung 1.1: Elektronenrückstreubilder von polierten Flächen nach 30 (a) und nach 120 Minuten (b).

Es ist also möglich, einen Eisendraht vollkommen in Eisensilicid umzuwandeln, als auch ihn mit FeSi zu beschichten.

Das Ziel dieser Arbeit ist die Beschichtung von hochschmelzenden Metallen mit Silicid-, Boridund Carbidschichten. Da das aufgeführte Verfahren einige Nachteile mit sich bringt, wie lange Reaktionszeiten und ein begrenzter Temperaturbeich, war es unsere Idee einen Metalldraht in einen geschlossenen Stromkreis einzubinden und seine Temperatur durch die Stromstärke und -spannung zu regeln. Der Aufbau erinnert an eine Art "Glühlampentechnik". Die Temperatur soll durch optische Temperaturmessung mit einem Pyrometer gemessen werden. Das Reaktionsprinzip ist dabei identisch zu dem zitierten System Fe-SiCl<sub>4</sub>, jedoch bei abgeänderter Arbeitstechnik. Auf diesem Weg ist es möglich, sehr schnell, sehr hohe Temperaturen zu erreichen. Da die Reaktion in einem Glaskolben stattfindet, kann der Reaktionsverlauf direkt beobachtet und sofort nach der Reaktion die Halogenidzufuhr (hier: SiHCl<sub>3</sub>, BCl<sub>3</sub>, CCl<sub>4</sub>) beendet werden. Ein weiterer Vorteil liegt in der verringerten Reaktionsdauer, da ein langsames Hochheizen und Abkühlen des Ofens vermieden werden kann.

Mit Hilfe dieser Methode sollte es möglich sein, Metalldrähte auf sehr schnelle und einfache Weise zu beschichten.

# 2 Charakterisierungsmethoden / Geräte

## 2.1 Pulverdiffraktometrie

#### 2.1.1 Röntgenbeugung

Zur Erzeugung von Röntgenstrahlen werden Elektronen von einer Glühkathode freigesetzt und durch eine angelegte hohe Spannung zur Anode hin beschleunigt. Am Anodenmaterial, meist Kupfer, werden die Elektronen abgebremst, wobei Energie in Form einer kontinuierlichen Röntgenstrahlung, auch Bremsstrahlung genannt, abgegeben wird. Bei Überschreitung einer bestimmten Beschleunigungsspannung sind zusätzliche, diskrete Linien im Röntgenspektrum zu sehen. Diese charakteristische Strahlung entsteht, indem ein Elektron aus einer tiefen Elektronenschale der Cu-Atome des Anodenmaterials herausgeschlagen und die Lücke von den Elektronen aus höheren Schalen aufgefüllt wird. Die Differenzenergie wird in Form von Röntgenstrahlung abgegeben, die charakteristisch für das jeweilige Anodenmaterial ist.<sup>[3], [4]</sup>

Durch geeignete Filtermethoden wird aus der so erzeugten Röntgenstrahlung monochromatisches Röntgenlicht separiert und je nach Verfahren auf einen Einkristall oder eine Pulverprobe gestrahlt. Die Beugungsphänomene an den Kristallgittern dienen zur Charakterisierung der Proben.

#### 2.1.2 Kristallstrukturanalyse

Zur Kristallstrukturbestimmung sind unterschiedliche Verfahren entwickelt worden, die alle auf der von BRAGG gefundenen Beziehung ( $2d \sin \Theta = n\lambda$ , n = Laufzahl (1, 2, 3...n) basieren.

Beim Laue-Verfahren trifft ein polychromatischer Röntgenstrahl auf einen Kristall. Hinter dem Kristall befindet sich senkrecht zum Primärstrahl ein photographischer Film. An jeder Netzebenenschar wird nun Röntgenstrahlung einer ganz bestimmten Wellenlänge gebeugt und zwar jeweils diejenige, die die BRAGGSCHE Gleichung erfüllt (s.o.). Aus dem abgebildeten Beugungsmuster kann man die Punktsymmetrie-Elemente parallel zum Primärstrahl ablesen. Um eine quantitative Auswertung zu erhalten, ist dieses Verfahren jedoch unzureichend.

Eine von BRAGG 1913 ausgearbeitete Methode ist das **Drehkristall-Verfahren**. Man verwendet dabei monochromatische Röntgenstrahlung. Für eine Drehkristall-Aufnahme wird ein Einkristall so auf eine Drehachse montiert, dass eine kristallographische Achse mit der Drehachse zusammenfällt. Ein zylindrischer Film ist so angebracht, dass die Film- und die Drehachse zusammenfallen. Der Röntgenstrahl fällt senkrecht zur Drehachse auf den Kristall und erzeugt auf dem Film punktförmige Schwärzungen (Reflexe), die auf Schichtlinien liegen.

Bei der Vierkreisdiffraktometrie wird der Kristall in einer willkürlichen Orientierung auf einem Goniometerkopf befestigt. Nun bestimmt ein Computer die Dimensionen der Elementarzelle, als auch die Werte der Winkel im Diffraktometer, für die bestimmte (*bkl*)-Reflexe zu erwarten sind. Der Computer misst die Intensität der Reflexe mit Hilfe eines Detektors, indem er sie nacheinander ansteuert. Um die Hintergrundintensität zu bestimmen, wird an Positionen gemessen, an denen keine Reflexe auftreten. Mit dieser Methode lassen sich bei hochsymmetrischen Kristallgittern (kubisch, orthorhombisch, tetragonal, hexagonal) die die Beispielbilder identifizieren und die Gitterparameter bestimmen.

Weitere Verfahren zur Bestimmung der Kristallstruktur ermöglichen auch die Verwendung von Pulver als Probenmaterial. DEBYE und SCHERRER entwickelten eine der klassischen Methoden dieser Art, das DEBYE-SCHERRER-Verfahren. Hierbei wird die zu untersuchende Substanz in zylindrischen Röhrchen von < 0,5 mm Durchmesser als einem feines Kristallpulver (Korngröße < 0,1 mm) von monochromatischem Röntgenlicht durchstrahlt. Das Probenröhrchen wird ins Zentrum einer kreisförmigen Kamera gebracht, in die ein streifenförmiger Film eingelegt wird (siehe Abbildung 2.1.1). Im Unterschied zum Einkristallverfahren trifft der Röntgenstrahl immer auf eine Vielzahl von Kristallen, welche durch ihre Orientierung die BRAGGSCHE-Gleichung (s.o.) erfüllen. Die Gesamtheit der reflektierten Strahlen einer Netzebenenserie liegt auf einem Kegelmantel mit einem bestimmten Öffnungswinkel. Auf dem verwendeten Film tritt nun eine Schwärzung an der Stelle ein, wo der Kegelmantel den Filmzylinder schneidet. Der Glanzwinkel für jede betreffende Linie lässt sich aus dem Abstand zweier zum Durchstoßpunkt des Primärstrahls symmetrisch liegenden Linien und dem Radius des Filmzylinders ermitteln. Dadurch lassen sich Kristalle mit kubischer oder tetragonaler Elementarzelle häufig gut zuordnen.

Zur Bestimmung der Kristallstruktur sind heutzutage Computerprogramme verfügbar, mit deren Hilfe sich eine eindeutige Identifizierung und eine vollautomatische Bestimmung der Symmetrie und der Dimensionen der Elementarzelle durchführen lassen.



Abbildung 2.1.1: Anordnung (schematisch) zur Herstellung einer Debye-Scherrer-Aufnahme.<sup>[3]</sup>

Das in dieser Arbeit verwendete Verfahren ist eine Computer gestützte Weiterentwicklung des DEBYE-SCHERRER-Verfahrens. Feinkristallines Pulver wird in einem Röhrchen oder als Flachpräparat ins Zentrum eines Diffraktometers gebracht. Um eine statistische Orientierung der Kristalle zu erreichen, wird das Präparat senkrecht zur Ebene der Röntgenstrahlen in Rotation versetzt. Ein auf einem Goniometer montiertes Zählrohr erfasst die Reflexe, indem es um die Probe bewegt werden kann und so den Film aus der DEBEYE-SCHERRER-Kamera ersetzt. Die Daten werden elektronisch erfasst und ausgewertet.<sup>[3]</sup>

In dieser Arbeit wurde zu Auswertung der Pulverdiffraktogramme die Software WinX<sup>pow</sup> von Stoe & CIE GmbH verwendet. Diese enthält ein großes Spektrum an Literaturdiffraktogrammen, welche die Identifizierung der erhaltenen Diffraktogramme ermöglicht.

### 2.2 Rasterelektronenmikroskopie (REM)

Die ersten Grundzüge der Rasterelektronenmikroskopie entwickelte RUSKA 1931. 1933 wurde das erste Elektronenmikroskop mit einer Vergrößerung größer als bei einem Lichtmikroskop erstellt. 1938 wurde dann ein Gerät mit einer 300 000 - fachen Vergrößerung gebaut. Beim Lichtmikroskop ist die Auflösung nach ABBÉ durch die Wellenlänge  $\lambda$  des verwendeten Lichtes begrenzt. DE BROGLIE postulierte 1924, dass Teilchen ebenfalls Wellencharakter besitzen. Die Wellenlänge dieser Teilchen lässt sich im relativistischen Fall (Teilchengeschwindigkeit ist nahe der Lichtgeschwindigkeit i) durch folgende Beziehung beschreiben:

$$\lambda = \frac{hc}{\sqrt{2EE_0(1 + \frac{E}{2E_0})}}$$
(2.2-1)

*h* Planck'sches Wirkumsquantum 6,626  $\cdot$  10<sup>-34</sup> Js

- $E_0$  Ruheenergie (=  $m \cdot r^2$ ; bei Elektronen 0,511 MeV)
- *E* kinetische Energie
- c Lichtgeschwindigkeit 2,998·10<sup>8</sup> ms<sup>-1</sup>
- $\lambda$  Wellenlänge

bzw. bei kleineren Geschwindigkeiten:

$$\lambda = \frac{hc}{\sqrt{2EE_0}} \tag{2.2-2}$$

Für nicht relativistische Elektronen gilt:

$$\lambda = \frac{1,226}{U \cdot 10^{-9} m}$$
(2.2-3)
$$U \qquad \text{Spannung in Volt}$$

*m* Masse des Elektrons

Elektronen, die durch eine Spannung von 100 kV beschleunigt werden, besitzen also eine Wellenlänge  $\lambda$  von 0,0037 nm. Dies ist ca. 10<sup>5</sup> mal kleiner, als die Wellenlänge von sichtbarem Licht. Es lässt sich also eine Auflösung erreichen, die im Vergleich zum Lichtelektronenmikroskop um den Faktor 10<sup>5</sup> größer ist.

Im Prinzip besteht ein Elektronenmikroskop aus einer Hochvakuumapparatur (um die freie Weglänge der Elektronen möglichst groß zu halten und um die Schwächung oder Aufweitung des Elektronenstrahls durch Stöße mit Hintergrundsgasteilchen zu vermindern), einer Glühkathode (in diesem Fall eine Wolfram-Haarnadelkathode) und magnetischen Linsen, die durch magnetische Felder die Bahnen der Elektronen umlenken.

Bei der Verwendung von Elektronenmikroskopen stieß man jedoch bald auf Probleme: Zum Einen konnte das Objekt nur in Transmission betrachtet werden, was durch die geringe Eindringtiefe von Elektronen ein sehr dünnes Probenmaterial erforderte, welches nur kompliziert hergestellt werden konnte. Zum Anderen war ein Elektronenstrahl mit sehr hoher Intensität notwendig, um eine ausreichende Helligkeit und einen guten Kontrast zu erreichen. Dieser Strahl heizte die Probe allerdings so stark auf, dass es zu thermischen Veränderungen oder sogar zur Zerstörung der Probe kommen konnte.

Diese Nachteile konnten beim Rasterelektronenmikroskop umgangen werden. Hierbei wird ein Elektronenstrahl mit einem Durchmesser von 10 nm auf einen kleinen Fleck der Probe fokussiert und die Probe zeilenweise abgefahren. Die durch Wechselwirkung der Primärelektronen mit dem Objekt austretenden Sekundärelektronen weisen nur eine geringe Energie auf und können somit durch ein schwaches elektrisches Feld abgesaugt, nachbeschleunigt und mit Hilfe eines Sekundärelektronenvervielfachers (SEV) detektiert werden. Da die Nachweiswahrscheinlichkeit von Sekundärelektronen sehr hoch ist, kann mit einem energiearmen Primärelektronenstrahl gearbeitet werden, womit auch die Zerstörung der Probe vermieden wird.<sup>[5]</sup>

#### 2.3 Massenspektrometrie

Der Aufbau eines Massenspektrometers kann in vier Hauptkomponenten eingeteilt werden: Probenaufgabesystem, Ionisierung, Massentrennung, Detektion.

Zu jeder dieser Komponenten gibt es verschiedene Verfahren. Im Folgenden sollen nur die für diese Arbeit relevanten erläutert werden. Die Probenaufgabe erfolgt hier sehr speziell und ist in Kapitel 7 genauer beschrieben. Beim verwendeten Gerät handelt es sich um ein Sektorfeldmassenspektrometer. Hierbei werden die Ionen durch Ablenkung im Magnetfeld B voneinander getrennt. Der Ablenkungsradius r ergibt sich durch Gleichsetzen von Lorentz- und Zentrifugalkraft, wie in Gleichung (2.3-1) dargestellt.

| $r = m \cdot v / (e \cdot B)$ | m | Ionenmasse            | (2.3-1) |
|-------------------------------|---|-----------------------|---------|
|                               | е | Ionenladung           |         |
|                               | v | Ionengeschwindigkeit  |         |
|                               | B | magnetische Induktion |         |
|                               | r | Ablenkradius          |         |
|                               |   |                       |         |

Die Geschwindigkeit hängt nach Gleichung (2.3-2) nicht nur von der Ladung und der Masse sondern auch von der Beschleunigungsspannung der Ionen ab.

$$e \cdot U = m \cdot v^2 / 2$$
 U Beschleunigungsspannung (2.3-2)

Nach Umstellen von Gleichungen (2.3-1) und (2.3-2) wird Gleichung (2.3-3) erhalten.

$$m/e = B^{2} \cdot r^{2} / (2 \cdot U) \tag{2.3-3}$$

Es ist zu erkennen, dass die Ionen nicht nach ihrer Masse getrennt werden, sondern nach dem Verhältnis Masse zu Ladung (m/e), d.h. dass z.B. ein einfach geladenes Ion der Masse 23 u und ein zweifach geladenes Ion der Masse 46 u denselben Bahnradius beschreiben. Aus diesem Grund wird nie allein die Masse *m* sondern m/e (m/z) angegeben.

Nach Verlassen des Analysators gelangen die Ionen in den Detektor. Dort werden sie registriert und die Daten in einem Spektrum zusammengefasst.<sup>[6], [7]</sup> Besonders wichtig in dieser Arbeit ist die Detektion von Metallchloriden (MCl<sub>x</sub>). Zum besseren Verständnis der Massenspektren soll an dieser Stelle eine kleine Einführung gegeben werden. Unterschiedliche Metallchloride verhalten sich bei der Fragmentierung ähnlich. Das Mutterion spaltet vorzugsweise ein Choratom ab und bildet MCl<sub>x-1</sub><sup>+</sup>. Zu geringeren Teilen werden auch zwei oder mehrere Chloratome abgespalten. Als Beispiel soll hier das Massenspektrum von ZrCl<sub>4</sub> dienen.

Beobachtete Ionen, (Intensität, I)<sup>[8]</sup>  
ZrCl<sub>4</sub> 
$$ZrCl_3^{2+}(6), Zr^+(11), ZrCl^+(16), ZrCl_2^+(18), ZrCl_3^+(100), ZrCl_4^+(58)$$

Am Beispiel von  $ZrCl_4$  lässt sich gut erkennen, das der größte Peak von einem  $MCl_{x-1}^{+}$ -Ion stammt. Der Peak des  $MCl_{x-2}^{+}$ -Ions ist in diesem Fall um mehr als das fünffache kleiner. Taucht also in einem Spektrum von z.B.  $ZrCl_4$  ein Peak eines  $ZrCl_2^{+}$ -Ions auf, der eine erheblich größere Intensität aufweist, so ist dies ein Hinweis auf die Anwesenheit eines weiteren Moleküls, in diesem Fall  $ZrCl_3$ .

## 2.4 Optische Temperaturmessung - Pyrometer

Eine berührungslose Methode zur Messung der Temperatur ist die Pyrometrie. Das Prinzip beruht auf der Messung von Infrarot-Strahlung, die jeder Körper oberhalb des absoluten Nullpunkts (0 K) in Abhängigkeit von seiner Temperatur abstrahlt. Es wird also die von einem Körper abgestrahlte Energie zur berührungslosen Temperaturmessung genutzt. Es gibt zwei subjektive oder visuelle Hauptarten von Strahlungspyrometern. Zum Einen das Teilstrahlungspyrometer (Glühfadenpyrometer), bei dem das menschliche Auge zur Bewertung der Leuchtdichtegleichheit eines glühenden Pyrometerfadens mit dem anvisierten Umfeld herangezogen wird. Zum Anderen photoelektrische oder objektive Pyrometer, welche mit physikalischen Empfängern (Strahlungssthermopaare, Bolometer, Golay-Empfänger, Photo- und Vielfach-photozellen, Photoelemente, Photowiderstände usw.) arbeiten. Bei beiden Messmethoden ist die Anordnung der wirksamen Blenden von großer Bedeutung, da durch diese der Strahlungstransport vom Objekt zum Empfänger festgelegt ist.

Bei der Verwendung des menschlichen Auges als Strahlungsdetektor ist gleichzeitig der Einsatzbereich des visuellen Pyrometers bestimmt, da die Strahlung durch das Auge noch sichtbar, d.h. im sichtbaren Spektralbereich sein muss. Unter diesen Bedingungen sind nur Messungen über 950 K sinnvoll.<sup>[9], [10]</sup>

Bei dem in dieser Arbeit verwendeten Pyrometer handelt es sich um ein Kompaktpyrometer. Es ist digitales, berührungsloses Temperaturmessgerät für mittlere und höhere ein Temperaturbereiche (800 bis 2500°C). Es verfügt über eine Vor-Ort-Bedienung, einen linearen parametrierbaren Stromausgang und über eine serielle Schnittstelle. Über diese Schnittstelle können Geräteparameter (z.B. der Emissionsgrad) fernverstellt werden. Die Messverarbeitung erfolgt hierbei digital und wird im Mikroprozessor verarbeitet, so dass die Temperatur auf ein Grad genau abgelesen werden kann. Eine Parametrisierung des Analogausganges auf einen Teilmessbereich (Messbereichslupe) ist per Computer ohne Kalibrierstrahler möglich. Die Optik ist durch ein parallaxefreies Durchblickvisier fokussierbar und ermöglicht so das Ausrichten des Gerätes. In Abbildung 2.4.1 ist der Aufbau eines digitalen Pyrometers als Blockschaltbild wiedergegeben. Das Detektorsignal wird direkt oder nach Vorverstärkung mit einem AD-Wandler digitalisiert. Alle Signal-Verarbeitungsschritte übernimmt nun der nachgeschaltete Mikroprozessor, in den entsprechende intelligente Algorithmen implementiert sind. Ein Schnittstellenbaustein stellt die bidirektionale Standardschnittstelle RS232 oder RS458 zur Verfügung, ein D/A-Wandler ein analoges standardisiertes Ausgangssignal 0/4...20 mA.<sup>[11]</sup>



Abbildung 2.4.1: Aufbau eines Digitalpyrometers.<sup>[12]</sup>

Die optische Temperaturmessung erwies sich in dieser Arbeit als sehr vorteilhaft, da die Temperatur mit dieser Methode sofort bestimmt werden konnte. Des Weiteren wurden Fehler vermieden, die durch schlechte Wärmeübertragung entstehen könnten.

# 3 Eigenschaften und Verwendung von Hartstoffen

Hartstoffe lassen sich entsprechend ihrem Vorkommen und ihrer Herstellung in zwei unterschiedliche Arten einteilen. Zum Einen die natürlichen Hartstoffe, wie Diamant, Korund und andere harte Mineralien, ferner Siliciumcarbid, Borcarbid, kubisches Bornitrid, künstliche Edelsteine und synthetischer Diamant und zum Anderen synthetische Hartstoffe, wie Carbide, Boride, Nitride, Silicide.

Ein Metallurge hat an Hartstoffe ganz spezielle Anforderungen. Sie sind nicht nur aufgrund ihrer besonderen Härte (z.B. 8 bis 9 Mohs) und ihrem hohen Schmelzpunkt interessant sondern auch ihr metallischer Charakter und ihre Legierbarkeit mit Eisenmetallen spielen eine wichtige Rolle. Aufgrund dieser Eigenschaften werden Hartstoffe wiederum in zwei Gruppen eingeteilt.

- 1. Metallische Hartstoffe, wie Carbide, Boride, Nitride und Silicide der Übergangsmetalle der 4. bis 6. Nebengruppe des Periodensystems.
- 2. Nichtmetallische Hartstoffe, zu denen Diamant, Korund und andere harte Mineralien (natürliche und synthetische), Siliciumcarbid, Bornitrid, Siliciumnitrid u. a. gehören.

In dieser Arbeit liegt das Augenmerk nur auf den metallischen Hartstoffen. Diese finden durch ihre besonderen Eigenschaften einen breiter gefächerten Anwendungsbereich. Von BECKER <sup>[13]</sup> werden diese auch als hoch- und höchstschmelzende Hartstoffe bezeichnet. Sie weisen folgende Eigenschaften auf:

- Die hohe Schmelztemperatur, die teilweise denen der hochschmelzenden Metalle, wie Wolfram, Rhenium u. a. nahe kommt und übersteigt.
- Die Härte, welche im Bereich zwischen der von Korund und Diamant eingeordnet werden kann.
- Die hohe chemische Beständigkeit, da sie in kompakter Form bei Raumtemperatur nur von stärksten konzentrierten Säuregemischen oder von starken oxidierenden alkalischen Lösungsmitteln langsam angegriffen werden.
- Der metallische Charakter, insbesondere in Bezug auf Glanz (Boride und Carbide), thermische und elektrische Eigenschaften.
- Ihre Neigung zur Supraleitung.
- Gute Legierungsbildung mit Eisenmetallen. Die Löslichkeit ist hierbei stark temperaturabhängig, bei Raumtemperatur allerdings sehr gering.

Aus der Gruppe der Carbide bilden insbesondere WC, TiC, TaC im kleineren Umfang VC, NbC und Mo<sub>2</sub>C Schneidlegierungen und verschleißfeste Werkstoffe mit Cobalt und Nickel als Bindemetalle. Aus der Gruppe der Boride sind vor allen Titan- und Zirkoniumdiborid für Verschleiß, korrosions- und warmfeste Teile von technischer Bedeutung. Aus der Gruppe der Silicide werden hauptsächlich Molybdän-, Wolfram- und Titandisilicide wegen ihrer hervorragenden Zunderfestigkeit im Temperaturbereich 1300 °C bis 1700 °C für an der Luft betriebene Heizleiter eingesetzt. <sup>[14], [15], [16]</sup>

# 4 Thermodynamische Berechnungen

In der vorangegangenen Diplomarbeit<sup>[17]</sup>, die das Ziel hatte, eine Silicidschicht auf hochschmelzende Metalle aufzubringen, wurden Reaktionen von Metallen und Siliciumtetrachlorid durchgeführt. Der Gedanke hierbei war, bei gleichzeitiger Bildung eines gasförmigen Metallchlorids eine Silicidschicht auf dem Metall zu bilden, ähnlich wie bei der Reaktion von Eisen und Siliciumtetrachlorid (siehe Kapitel 1). Bei der Reaktion Molybdän mit Siliciumtetrachlorid bildete sich jedoch - dies haben die Experimente gezeigt - keine Silicidschicht auf dem Molybdänmetall.

Nun stellte sich die Frage, ob es möglich ist, durch Wahl eines anderen Reaktionspartners eine Silicidschicht auf Molybdän aufzubringen. Eine Möglichkeit wäre z.B. der Austausch von Siliciumtetrachlorid durch Trichlorsilan, Dichlorsilan oder Monochlorsilan. Zum Einen ist der höhere Dampfdruck dieser Silane von Vorteil und zum Anderen bilden diese Silane im Gegensatz zu SiCl<sub>4</sub> durch thermische Zersetzung entstehendes gasförmiges HCl und beeinflussen so die Entropiebilanz der Reaktion.

Um nun vorhersagen zu können, ob ein Unterschied in der Verwendung von SiCl<sub>4</sub> und SiHCl<sub>3</sub> (als Beispiel für eines der Silane) besteht, wurden die Gleichgewichtskonstanten für folgende Reaktionen bestimmt:

$$4 \operatorname{Mo}(s) + \operatorname{SiCl}_{4}(g) \rightleftharpoons \operatorname{Mo}_{3}\operatorname{Si}(s) + \operatorname{MoCl}_{4}(g)$$

$$(4-1)$$

$$7 \operatorname{Mo}(s) + 2 \operatorname{SiHCl}_{3}(g) \rightleftharpoons 2 \operatorname{Mo}_{3} \operatorname{Si}(s) + 2 \operatorname{HCl}(g) + \operatorname{MoCl}_{4}(g)$$

$$(4-2)$$

Es wird dabei beispielhaft davon ausgegangen, dass sich bei diesen Reaktionen Mo<sub>3</sub>Si bildet. Aus thermodynamischer Sicht kann nur das siliciumärmste Silicid neben Molybdän entstehen. Gleichgewichtsberechnungen im System zeigen, dass unter den Molybdänchloriden bei unseren Bedingungen vorzugsweise mit der Bildung von MoCl<sub>4</sub> gerechnet werden muss.

Die Berechnungen der Gleichgewichtskonstanten für diese Reaktionen wurden für unterschiedliche Temperaturen durchgeführt. Die Ergebnisse der Berechnungen sind in Tabelle 4.1 zusammengestellt.

| <b>9</b> / °С | Т/К  | <i>K</i> für (4-1)              | <i>K</i> für (4-2)             |
|---------------|------|---------------------------------|--------------------------------|
| 25            | 298  | 5,33·10 <sup>-27</sup>          | 1,27·10 <sup>-26</sup>         |
| 800           | 1073 | <b>4,99</b> ·10 <sup>-07</sup>  | <b>1,42·1</b> 0 <sup>-03</sup> |
| 1000          | 1273 | 7 <b>,</b> 03·10 <sup>-06</sup> | <b>2,73</b> ·10 <sup>-02</sup> |
| 1200          | 1473 | <b>4,</b> 67·10 <sup>-05</sup>  | 0,222                          |
| 1400          | 1673 | 1,92·10 <sup>-04</sup>          | 1,039                          |
| 1600          | 1873 | 5,67·10 <sup>-04</sup>          | 3,350                          |
| 1800          | 2073 | 1,32·10 <sup>-03</sup>          | 8,270                          |

 Tabelle 4.1: Gleichgewichtskonstanten

Die Gleichgewichtskonstante gibt Auskunft über die die Lage des Gleichgewichts: Ist K < 1, so liegt das Gleichgewicht auf der linken Seite. Ist K > 1, so liegt das Gleichgewicht auf der rechten Seite.

Aus Tabelle 4.1 ist zu entnehmen, dass die Gleichgewichtskonstante der Reaktion (4-1) bei allen berechneten Temperaturen K << 1 ist. Dies bestätigt die vorab durchgeführten Experimente: Es bildet sich keine Silicidschicht auf dem Molybdänmetall.

Bei Berechnung der Reaktion (4-2) hingegen ist die Gleichgewichtskonstante bei  $\mathcal{G} = 800$  °C, 1000 °C und 1200 °C kleiner als eins. Bei höheren Temperaturen ergibt sich eine Gleichgewichtskonstante größer als eins. Unter den hier getroffenen Annahmen kann sich demnach das Molybdänsilicid Mo<sub>3</sub>Si bilden.

Eine genaue Berechnung der Gleichgewichtssituation erfordert die Berechnung der Partialdrücke aller gasförmigen Reaktionsteilnehmer und die Festlegung der festen oder flüssigen Bodenkörper, die mit dieser Gasphase im Gleichgewicht stehen. Dies ist z.B. mit dem Rechenprogramm CVTrans<sup>[18]</sup> möglich.

Mit Hilfe dieses Programms werden Gleichgewichtspartialdrucke sowie die dazugehörigen Gleichgewichtsbodenkörper berechnet. Es ermöglicht durch Einsetzen der thermodynamischen Daten aller beteiligten Stoffe, dem Reaktionsvolumen und den eingesetzten Stoffmengen, die Partialdrücke aller Stoffe im Reaktionsraum zu bestimmen. Die Berechnung mit diesem Programm erfolgt für ein Stoffsystem unter isothermen Bedingungen. Das präparative Experiment ist jedoch durch einen ausgeprägten Temperaturgradienten gekennzeichnet: Die Reaktionstemperatur ist sehr hoch, die gasförmigen Reaktionsprodukte können jedoch in einem großen Temperaturgradienten an der Kolbenwand kondensieren. Die Rechnungen können also die Experimente nur sehr eingeschränkt beschreiben.

## 5 Präparationstechnik

#### 5.1 Bereits verwendete Arbeitstechnik

Im Rahmen der Promotionsarbeit von SCHÜTTE<sup>[19]</sup> sind bereits Experimente zum Thema "Darstellung von Hartstoffen", insbesondere Silicide, durchgeführt worden. Hierbei wurden in einem Hochtemperaturofen Metalle mit Siliciumtetrachlorid umgesetzt. Es konnten Temperaturen bis zu 1900 K erreicht werden. Ein Argonstrom wurde mit Siliciumtetrachlorid beladen. Diese Gasmischung wurde in den Hochtemperaturofen geleitet und reagierte dort mit dem Metall. Das nicht umgesetzte Siliciumtetrachlorid wurde gemeinsam mit den Reaktionsprodukten in einer Kühlfalle auskondensiert. Wichtig bei dieser Reaktion ist, dass keine Feuchtigkeit und kein Luftsauerstoff in den Reaktionsraum eindringen kann, um Reaktionen des Metalls mit Wasser oder Sauerstoff auszuschließen. Es wurden auch weitere Halogenide außer Siliciumtetrachlorid verwendet. Bei derartigen Reaktionen bildeten sich entweder Silicidschichten oder es erfolgte eine vollständige Umsetzung, in der Regel unter Erhaltung der Morphologie des eingesetzten Drahtes.

Nachteile dieser Arbeitstechnik sind a) der begrenzte Temperaturbereich und b) die relativ lange Versuchsdauer von jeweils einem Tag. Jedoch liegt der Vorteil darin, dass über einen langen Zeitraum stationäre Bedingungen eingestellt werden können.

#### 5.2 Arbeitstechniken in dieser Arbeit

In dieser Arbeit sollte eine Arbeitstechnik verwendet werden, welche die genannten Nachteile, insbesondere den nach oben begrenzten Temperaturbereich, nicht mehr aufweisen. Bei dieser Technik wurde das eingesetzte Metall, das mit Siliciumtetrachlorid zur Reaktion gebracht werden soll, durch Stromfluss erhitzt. Bei dieser Methode sollte im Prinzip jede Temperatur bis hin zur Schmelztemperatur erreicht werden können. Die Technik wurde bereits in der o.g. Diplomarbeit<sup>[19]</sup> erprobt. Folgende Silicide konnten so als Schichten auf den jeweiligen Metalldrähten dargestellt werden: FeSi, Nb<sub>5</sub>Si<sub>3</sub>, Ta<sub>5</sub>Si<sub>3</sub>, TiSi<sub>2</sub>, ZrSi<sub>2</sub>. Die Beschichtung von Molybdän- und Wolframdraht mit gelang jedoch nicht.

Das Ziel dieser Arbeit war die Beschichtungen auch dieser Metalle durch Einsatz anderer Halogenide und Optimierung der Versuchsbedingungen.

Des Weiteren sollte untersucht werden, ob es möglich ist, siliciumreiche Schichten auf den Metallen zu erhalten. Aus thermodynamischer Sicht muss stets das siliciumärmste Silicid auf dem Metall entstehen.

Ein weiteres Ziel sollte die Darstellung anderer Hartstoffschichten wie Borid- und Carbidschichten unter Einsatz von Bortrichlorid und Tetrachlorkohlenstoff sein. Carbide sind aufgrund ihrer besonderen Härte von Interesse. Boridschichten werden u. a. in der Raumfahrttechnik eingesetzt.<sup>[1], [20]</sup>

# 6 Versuchsaufbau und Versuchsdurchführung

## 6.1 Verwendete Apparatur



Abbildung 5.1.1: Skizze der Versuchsapparatur

Wie in Abbildung 5.1.1 dargestellt bestand die Versuchsapparatur aus einem Rundkolben (1) mit sechs Hälsen. Über einen gekühlten, aus Messing angefertigten Schliff verbanden zwei Kupferstäbe, die zur Stroquelle führten, den jeweils verwendeten Metalldraht. Am unteren Teil des Rundkolbens befand sich ein Schlenkkolben (2). Durch den Hahn wurde die Apparatur mit Argon gespült, um den Restsauerstoff aus dem Reaktionsraum zu entfernen. Des Weiteren diente der Schlenkkolben zum Auffangen der flüchtigen Reaktionsprodukte. Über einen weiteren Schliff war der Kolben mit einem Vorratsgefäß (3) für das Nichtmetallchlorid verbunden. Mit Hilfe eines Hahnes konnte die Gaszufuhr geregelt werden. Über den vierten Schliff war der Kolben an ein Quecksilberüberdruckventil (4) angeschlossen. Ein weiterer Hals (5) verband den Kolben über eine Kühlfalle mit einer Pumpe. Durch einen sechsten Hahn führte ein Thermoelement (6), welches mit einem Temperaturregler verbunden war. Dies sicherte eine konstante Temperatur während der Reaktion. In Abbildung 5.1.2 ist eine Fotographie des Versuchsaufbaus abgebildet.



Abbildung 5.1.2: Versuchsapparatur

### 6.2 Versuchsdurchführung

Für die einzelnen Versuche wurden Metalldrähte mit einem Durchmesser zwischen 0,5 mm und 1,2 mm verwendet. Diese wurden mit Lüsterklemmen an den Kupferstäben befestigt und anschließend die Apparatur bis auf einen Druck von ca. 1·10<sup>-5</sup> bar evakuiert. Nach dreimaligem Spülen mit Argon wurde entweder der zu erreichende Druck erneut eingestellt oder eine Argonatmosphäre belassen. Nach Einkühlen der Kühlfalle mit flüssigem Stickstoff, wurde die Verbindung zur Pumpe durch Schließen des Hahns (5) getrennt. Über die Stromzufuhr wurde die Spannung geregelt und mit Hilfe des Pyrometers die Temperatur des Drahtes verfolgt. Nachdem sich die gewünschte Temperatur eingestellt hatte, wurde durch Öffnen des Hahns am Vorratsgefäß das Nichtmetallhalogenid in die Apparatur eingeleitet. Es stellte sich der Dampfdruck des entsprechenden Nichtmetallhalogenids bei Raumtemperatur ein. Während der

Reaktion wurde die Apparatur mit Lüftern von Außen gekühlt. Nach der Reaktion wurde das restliche Halogenid in der Kühlfalle kondensiert. Nach Beendigung und Abkühlen des Kolbens wurde der Metalldraht entfernt und mit Hilfe von Röntgen-Pulveraufnahmen charakterisiert. Das bei der Reaktion entstandene Pulver wurde aus dem Schlenkkolben und von den Wänden des Rundkolbens entnommen und ebenfalls charakterisiert.

# 7 Untersuchte Systeme

In der vorliegenden Arbeit wurden die Reaktionen von Metalldrähten mit unterschiedlichen Nichtmetallchloriden untersucht. Als Metalle wurden Molybdän, Niob, Tantal, Titan, Wolfram, Vanadium und Zirkonium verwendet. Als Halogenid wurde Trichlorsilan, Bortrichlorid oder Tetrachlorkohlenstoff eingesetzt. Für jedes dieser Systeme werden im Folgenden die Ergebnisse mit Hilfe der jeweiligen Phasendiagramme diskutiert.

## 7.1 Trichlorsilan

#### 7.1.1 Vergleich der Silane

Mit Ausnahme von SiHCl<sub>3</sub> handelt es sich bei allen anderen genannten Stoffen um perchlorierte Verbindungen. Die Verwendung dieser Substanz wird im Folgeneden begründet.

#### 7.1.1.1 Siliciumtetrachlorid: Thermisches Verhalten und Reaktivität gegenüber Metallen

In Abbildung 7.1.1 ist das thermische Verhalten von Siliciumtetrachlorid in einem Temperaturintervall von  $\mathcal{G} = 800 - 2000$  °C aufgetragen. Folgender Spezies wurden bei der Berechnung berücksichtigt: Cl (g), Cl<sub>2</sub> (g), Si (s), Si (l), Si (g), SiCl (g), SiCl<sub>2</sub> (g), SiCl<sub>3</sub> (g), SiCl<sub>4</sub> (g). Während des gesamten Temperaturbereiches liegt SiCl<sub>4</sub> beinahe unzersetzt vor und nur in geringen Anteilen (p < 0,01 bar) liegen SiCl<sub>3</sub>, SiCl<sub>2</sub>, Cl<sub>2</sub>, Cl<sub>2</sub>, Cl und SiCl vor.

Beim Vorhandensein eines Metalls im Reaktionsraum würde dieses also hauptsächlich mit Siliciumtetrachlorid reagieren. Hierfür kann beispielhaft folgende Reaktionsgleichung aufgestellt werden:

$$3 \text{ M}(s) + \text{SiCl}_4(g) \rightleftharpoons \text{MSi}(s) + 2 \text{ MCl}_2(g)$$

$$(7.1-1)$$

Betrachten wir diese Reaktion für das Beispiel M = Fe, so ergeben sich folgende Werte für die freien Reaktionsenthalpien und Gleichgewichtskonstanten.

$$\Delta_{\rm R} G^0_{1000} = 83,6 \text{ kJ} \cdot \text{mol}^{-1} \qquad K_{1000} = 4,3 \cdot 10^{-5}$$
  
$$\Delta_{\rm R} G^0_{1500} = -9,0 \text{ kJ} \cdot \text{mol}^{-1} \qquad K_{1500} = 2,1$$
  
$$\Delta_{\rm R} G^0_{2000} = -87,9 \text{ kJ} \cdot \text{mol}^{-1} \qquad K_{2000} = 194,6$$



Abbildung 7.1.1: Thermisches Verhalten von SiCl<sub>4</sub>

Wie schon in Kapitel 3 beschrieben, ist die Bildung eines gasförmigen Metallchlorids bei der Reaktion mit SiCl<sub>4</sub> Vorraussetzung für die Entstehung eines Silicids (als Beispiel wurde hier ein Dichlorid gewählt). Dies ist aus thermodynamischer Sicht notwendig, da sich die Entropie während der Reaktion vergrößern muss, damit diese abläuft. Dies ist nur gegeben, wenn sich die Anzahl der Gasteilchen während der Reaktion erhöht. Da die Entropien der Teilchen in fester Phase relativ klein gegenüber denen der gasförmigen Phase sind, kann deren Entropie bei der Betrachtung vernachlässigt werden.

Bildet ein Metall bei der Reaktion mit Siliciumtetrachlorid kein Metallchlorid, so ist auch die Möglichkeit der Bildung eines Silicids nicht mehr gegeben.

#### 7.1.1.2 Trichlorsilan: Thermisches Verhalten und Reaktivität gegenüber Metallen

In Abbildung 7.1.2 ist das thermische Verhalten von Trichlorsilan in einem Temperaturintervall von  $\mathcal{G} = 800 - 2000$  °C aufgetragen. Folgende Spezies wurden bei der Berechnung berücksichtigt: Cl (g), Cl<sub>2</sub> (g), H<sub>2</sub> (g), Si (s), Si (l), Si (g), SiCl (g), SiCl<sub>2</sub> (g), SiCl<sub>3</sub> (g), SiCl<sub>4</sub> (g), SiH<sub>2</sub>Cl<sub>2</sub> (g), SiHCl<sub>3</sub> (g). Es ist eindeutig zu erkennen, dass sich Trichlorsilan schon bei  $\mathcal{G} = 800$  °C in SiCl<sub>2</sub>, HCl, SiCl<sub>3</sub>, H<sub>2</sub> und SiCl<sub>4</sub> zersetzt.



Abbildung 7.1.2: Thermisches Verhalten von SiHCl<sub>3</sub>

Die Zersetzung von Trichlorsilan lässt sich danach im Wesentlichen durch folgende Reaktionsgleichungen beschreiben:

$$SiHCl_3(g) \rightleftharpoons SiCl_2(g) + HCl(g)$$
 (7.1-2)

$$4 \operatorname{SiHCl}_{3}(g) \rightleftharpoons 3 \operatorname{SiCl}_{4}(g) + \operatorname{Si}(s) + 2 \operatorname{H}_{2}(g)$$

$$(7.1-3)$$

 $SiHCl_3(g) \rightleftharpoons SiCl_3(g) + \frac{1}{2}H_2(g)$ (7.1-4)

Diese kompliziert zusammengesetzte Gasphase bietet einem Metall vielerlei Reaktionsmöglichkeiten. Die Gleichgewichtslage der Reaktion eines Metalls (Beispiel: Eisen) mit SiHCl<sub>3</sub> stellt sich deutlich anders dar als für SiCl<sub>4</sub> als Reaktionspartner, denn hier ist durch thermische Zersetzung ein beträchtlicher Anteil an SiCl<sub>2</sub> vorhanden, der in folgender Weise mit dem Metall (Eisen) reagieren kann:

$$2 \operatorname{Fe}(s) + \operatorname{SiCl}_2(g) \rightleftharpoons \operatorname{FeSi}(s) + \operatorname{FeCl}_2(g) \tag{7.1-5}$$

$$\Delta_{\rm R} G^0_{1000} = -54,2 \text{ KJ} \cdot \text{mol}^{-1} \qquad K_{1000} = 679,7$$
  

$$\Delta_{\rm R} G^0_{1500} = -49,4 \text{ KJ} \cdot \text{mol}^{-1} \qquad K_{1500} = 52,5$$
  

$$\Delta_{\rm R} G^0_{2000} = -37,7 \text{ KJ} \cdot \text{mol}^{-1} \qquad K_{2000} = 9,7$$

Zudem bildet sich bei der Dispropotionierung von SiHCl<sub>3</sub> elementares Silicium, das gleichfalls mit dem Metall reagieren kann.

Insgesamt ist die Bildung von Metallsiliciden (hier FeSi) bei der Reaktion eines Metalls mit SiHCl<sub>3</sub> deutlich gegenüber einer Reaktion mit SiCl<sub>4</sub> bis hin zu ca. 2000 °C begünstigt.

#### 7.1.1.3 Thermisches Verhalten von Dichlorsilan und Monochlorsilan

In den Abbildungen 7.1.3 und 7.1.4 ist das thermische Verhalten von  $SiH_2Cl_2$  und  $SiH_3Cl$  dargestellt. Folgende Spezies wurden bei den Berechnungen berücksichtigt: Cl (g), Cl<sub>2</sub> (g), H<sub>2</sub> (g), Si (s), Si (l), Si (g), SiCl (g), SiCl<sub>2</sub> (g), SiCl<sub>3</sub> (g), SiCl<sub>4</sub> (g), SiH<sub>2</sub>Cl<sub>2</sub> (g), SiHCl<sub>3</sub> (g), SiH<sub>3</sub>Cl (g), SiH<sub>4</sub> (g). Hier ist ein ähnlicher Verlauf wie bei der Zersetzung von SiHCl<sub>3</sub> zu erkennen. Erwartungsgemäß steigt der Anteil an gebildetem H<sub>2</sub>. Die Verwendung von SiH<sub>2</sub>Cl<sub>2</sub> oder SiH<sub>3</sub>Cl würde die Reaktion mit Metall zu Metallsiliciden also noch mehr begünstigen. Je höher der Wasserstoffanteil des eingesetzten Silans, desto leichter sollte eine Reaktion zum Metallsilicid ablaufen.



Abbildung 7.1.3: Thermisches Verhalten von SiH<sub>2</sub>Cl<sub>2</sub>



Abbildung 7.1.4: Thermisches Verhalten von SiH<sub>3</sub>Cl

Die ausgeführten Argumente gelten in zunehmender Weise auch für die Verwendung von SiH<sub>2</sub>Cl<sub>2</sub> und SiH<sub>3</sub>Cl.

Von der Verwendung dieser Silane wurde jedoch abgesehen, da diese aufgrund ihrer sehr hohen Dampfdrücke schwer zu handhaben und dadurch auch kostspieliger sind.

#### Laborexperimente mit SiHCl<sub>3</sub>

Vor der Reaktion des Metalls mit Trichlorsilan wurde ein Druck von  $p = 1 \cdot 10^{-5}$  bar in der Apparatur eingestellt (beim System Titan / Trichlorsilan wurde unter Argonatmosphäre gearbeitet). Nach Öffnen des Vorratgefäßes stellte sich der Dampfdruck des Trichlorsilans  $p_0$  (SiHCl<sub>3</sub>) = 0,85 bar ein.

Alle Versuche wurden unter ähnlichen Bedingungen ( $p_0(\text{SiHCl}_3) = 1.10^{-6} \text{ bar}, \ \mathcal{G} \sim 2000^{\circ}\text{C}$ ) am Massenspektrometer durchgeführt, um die entstandenen Produkte sofort zu untersuchen.

Die folgenden Systeme sind alphabetisch aufgeführt.
# 7.1.2 Das System Molybdän / Trichlorsilan

Im Phasendiagramm des Systems Molybdän / Silicium sind drei Mo-Si-Verbindungen zu erkennen. Die Strichphase Mo<sub>3</sub>Si schmilzt bei 2025 °C inkongruent. Bei Erhöhung des Siliciumanteils auf 37,5 % liegt Mo<sub>5</sub>Si<sub>3</sub> mit einer Phasenbreite von ca. 3 % vor. Diese Verbindung schmilzt bei  $\mathcal{G} = 2180$  °C kongruent. Eine weitere Strichphase existiert bei 66,7 % Si. Diese tritt in zwei Modifikationen auf.  $\beta$ -MoSi<sub>2</sub> ist eine Hochtemperaturphase, die nur oberhalb von  $\mathcal{G} = 1900$  °C stabil ist und bei  $\mathcal{G} = 2020$  °C kongruent schmilzt.  $\alpha$ -MoSi<sub>2</sub> geht bei  $\mathcal{G} = 1900$  °C in  $\beta$ -MoSi<sub>2</sub> über (siehe Abbildung 7.1.5).



Abbildung 7.1.5: Phasendiagramm des Systems Mo-Si [21]

Vor Beginn jedes Versuches wurde die Gleichgewichtslage berechnet. Bei der Berechnung dieses Systems konnten Stoffmengen und Aktivitäten<sup>1</sup> an Mo<sub>3</sub>Si, Mo<sub>5</sub>Si<sub>3</sub> und MoSi<sub>2</sub> bestimmt werden. Die Aktivität von MoSi<sub>2</sub> hat bei  $\mathcal{G} = 1600$  °C einen Wert von a = 0,00595. Die Aktivität von

<sup>&</sup>lt;sup>1</sup> Das hier verwendete Computerprogramm CVTrans verwendet den in der Thermodynamik eingeführten Begriff "Aktivität" auf eine andere Weise. Eine Aktivität von eins wird einem thermodynamisch stabilen Bodenkörper zugeordnet. Eine Aktivität kleiner als eins bedeutet, dass er nicht thermodynamisch stabil ist. Wird eine Aktivität von nur wenig kleiner als eins berechnet, heißt dies, dass die Bedingungen (p,T) nicht weit davon entfernt sind, dass dieser Bodenkörper im Gleichgewicht stabil ist.

Mo<sub>3</sub>Si beträgt bei  $\mathcal{G} = 1700^{\circ}$ C, a = 0,96915 mit steigender Tendenz zu höheren Temperaturen. Diese Ergebnisse werden im Folgenden durch die Experimente bestätigt. In Abbildung 7.1.6 sind die Partialdrücke der gasförmigen Komponenten im Reaktionsraum aufgetragen. Folgende Spezies wurden bei der Berechnung berücksichtigt: Cl (g), Cl<sub>2</sub> (g), H<sub>2</sub> (g), HCl (g), Mo<sub>3</sub>Si (s), Mo<sub>5</sub>Si<sub>3</sub> (s), Mo (s), Mo (g), MoCl (g), MoCl<sub>2</sub> (g), MoCl<sub>3</sub> (g), MoCl<sub>4</sub> (g), MoCl<sub>5</sub> (g), MoCl<sub>6</sub> (g), MoSi<sub>2</sub> (s), Si (s), Si (l), Si (g), SiCl (g), SiCl<sub>2</sub> (g), SiCl<sub>3</sub> (g), SiCl<sub>4</sub> (g), SiH<sub>2</sub>Cl<sub>2</sub> (g), SiHCl<sub>3</sub> (g).



Abbildung 7.1.6: Verhältnisse der Partialdrücke im System Mo-SiHCl<sub>3</sub>

An der Graphik in Abbildung 7.1.6 lässt sich ablesen, dass im System Mo-SiHCl<sub>3</sub> kein gasförmiges Molybdänchlorid in nennenswerten Anteilen auftaucht. Es sind zwar geringe Konzentrationen an MoCl<sub>2</sub>, MoCl<sub>3</sub>, MoCl<sub>4</sub> und MoCl<sub>5</sub> vorhanden, diese sind allerdings zu gering, um die Bildung von Molybdänsiliciden zu ermöglichen.

### 7.1.2.1 Experimente und Ergebnisse

Der Molybdändraht ( $\emptyset = 0,5$  mm) wurde auf  $\vartheta = 1600$  °C erhitzt. Nach Öffnen des Vorratsgefäßes entstand sofort ein farbloser Rauch. Nach kurzer Zeit setzte sich an der Kolbenwand ein brauner Niederschlag ab, der von einer kondensierenden Flüssigkeit in den Schlenkkolben gespült wurde. Nach 2,5 Stunden beendete das Durchbrennen des Drahtes die Reaktion. Unter dem Mikroskop war eine metallisch glänzende Schicht, die sich auf dem Draht gebildet hatte, zu erkennen (siehe Abbildungen 7.1.7 und 7.1.8). Um den Querschnitt abzubilden, wurde der Draht in Technovit 4004 (Kunstharz) eingegossen, abgeschliffen und poliert. Der Gesamtdurchmesser des Drahtes betrug nach der Reaktion 0,78 mm. Das Innere bestand aus einem Metallkern mit einem Durchmesser von 0,36 mm. Demnach hatte sich eine 0,21 mm dicke Schicht auf dem Draht gebildet.



Abbildung 7.1.7: Silicidschicht auf Molybdändraht



Abbildung 7.1.8: Querschnitt des silicierten Molybdändrahtes



In Abbildung 7.1.9 ist eine REM-Aufnahme des Querschnitts dargestellt.

Abbildung 7.1.9: REM-Aufnahme des silicierten Molybdändrahtes (Querschnitt)

Die Pulverdiffraktometrische Untersuchung zeigt die Bildung von  $MoSi_2$  und  $Mo_5Si_3$  auf dem Draht (siehe Abbildung 7.1.11).



Abbildung 7.1.11: Pulverdiffraktogramm der gebildeten Silicidschicht auf Molybdändraht

Für die massenspektrometrische Untersuchung wurden in einem Quarzröhrchen  $\emptyset_{außen}$  ca. 8 mm (siehe Abbildung 7.1.10) eine Drahtspirale durch Stromflusss erhitzt. Über diesen erhitzten Draht wurde der gasförmige Reaktionspartner geleitet und die Reaktionsprodukte in die Ionenquelle des Massenspektrometers geleitet und analysiert. Die Temperatur des Drahtes betrug  $\mathcal{G} \sim 2000$  °C.



Abbildung 7.1.10: Quarzröhrchen mit Molybdändraht

Auch hier bildete sich ein brauner Niederschlag, der sich auf der Innenseite des Quarzröhrchens niederschlug, allerdings kondensierte keine Flüssigkeit. Ebenfalls auf der Innenseite des Quarzröhrchens hatte sich ein Molybdänspiegel gebildet. Es wurde demnach Molybdän an die Innenwand des Quarzröhrchens transportiert. Die Pulverdiffraktometrische Messung ergab die Bildung von Mo<sub>3</sub>Si an der Wand des Quarzröhrchens.

| Fragment                        | Intensität <sup>*</sup> |
|---------------------------------|-------------------------|
|                                 |                         |
| $\mathrm{Cl}^+$                 | 21                      |
| $\mathrm{HCl}^{+}$              | 39                      |
| $\mathrm{SiCl}^+$               | 10                      |
| SiCl <sub>2</sub> <sup>+</sup>  | 79                      |
| SiHCl <sub>2</sub> <sup>+</sup> | 56                      |
| SiCl <sub>3</sub> <sup>+</sup>  | 100                     |
| SiCl <sub>4</sub> <sup>+</sup>  | 3                       |
| $\mathrm{Mo}^+$                 | 8                       |

Tabelle 7.1.1: Massenspektrum im System Mo-SiHCl<sub>3</sub>

\* Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von HCl (g), SiHCl<sub>3</sub> (g) und Mo (g) an. Aufgrund der hohen Intensität von SiCl<sub>2</sub><sup>+</sup> kann das Auftreten von SiCl<sub>2</sub> (g) angenommen werden. Gasförmige Molybdänchloride werden jedoch nicht beobachtet. Die beobachtete Bildung von Molybdänsiliciden führen wir auf die Disproportionierung von SiCl<sub>2</sub> (g) (Reaktion (7.1-6)) zurück.

$$2 \operatorname{SiCl}_2(g) \rightleftharpoons \operatorname{Si}(s) + \operatorname{SiCl}_4(g) \tag{7.1-6}$$

Bei hohen Temperaturen ( $\mathcal{G} > 800$  °C) liegt dieses Gleichgewicht auf der linken Seite. An der wesentlich kälteren Kolbenwand verschiebt es sich nach rechts. Das gebildete Silicium reagiert mit dem dort durch Sublimation gebildeten Molybdän zu Mo<sub>3</sub>Si (siehe Gleichung (7.1-7)).

$$\operatorname{Si}(s) + 3 \operatorname{Mo}(s) \rightleftharpoons \operatorname{Mo}_3 \operatorname{Si}(s)$$
 (7.1-7)

Aus thermodynamischer Sicht kann sich auf dem Draht nur das Silicid bilden, welches im Phasendiagramm (siehe Abbildung 7.1.5) mit Molybdän koexistieren kann. Wir nehmen an, dass sich auf dem Draht zunächst das siliciumärmste Silicid,  $Mo_3Si$ , bildet. Dieses reagiert dann zu  $Mo_5Si_3$  und schließlich zu  $MoSi_2$ . Die Bildung von  $MoSi_2$  ist kinetisch kontrolliert. Hierbei findet eine Reaktion zwischen Silicium und der glühenden Molybdänspirale statt (siehe Reaktionsgleichung (7.1-8)). Silicium entsteht durch die thermische Zersetzung von Trichlorsilan (siehe Reaktionsgleichung (7.1-3)). Das bestätigten auch die Ergebnisse des Pulverdiffraktogramms (siehe Abbildung 7.1.11). Die Bildung der einzelnen Silicide lässt sich mit folgenden Reaktionsgleichungen beschreiben:

$$4 \operatorname{SiHCl}_{3}(g) \rightleftharpoons 3 \operatorname{SiCl}_{4}(g) + \operatorname{Si}(s) + 2 \operatorname{H}_{2}(g)$$

$$(7.1-3)$$

$$3 \operatorname{Mo}(s) + \operatorname{Si}(s) \rightleftharpoons \operatorname{Mo}_3 \operatorname{Si}(s) \tag{7.1-8}$$

$$5 \operatorname{Mo}_{3}\operatorname{Si}(s) + 4 \operatorname{Si}(s) \rightleftharpoons 3 \operatorname{Mo}_{5}\operatorname{Si}_{3}(s)$$

$$(7.1-9)$$

$$\operatorname{Mo}_{5}\operatorname{Si}_{3}(s) + 7 \operatorname{Si}(s) \rightleftharpoons 5 \operatorname{MoSi}_{2}(s)$$
 (7.1-10)

Im thermodynamischen Gleichgewicht ist je nach Siliciumdruck ein unterschiedliches Silicid stabil. Je höher der Siliciumdruck desto siliciumreicher ist das erwartete Silicid.

Um diese Abhängigkeit zu veranschaulichen, ist in Abbildung 7.1.12 der Zersetzungsdruck von Silicium über den verschiedenen Siliciden gegen die Temperatur aufgetragen. Die Berechnung hierzu wurde mit dem Programm CVTrans durchgeführt. Im mit (1) gekennzeichneten Bereich ist MoSi<sub>2</sub> stabil, im Bereich (2) ist es Mo<sub>5</sub>Si<sub>3</sub> und im Bereich (3) das siliciumärmste Silicid Mo<sub>3</sub>Si. Der Zersetzungsdruck von Mo<sub>3</sub>Si ist so gering, dass er sich mit dem verwendeten Programm nicht berechnen lässt.



Abbildung 7.1.12: Auftragung des Siliciumdruckes in Abhängigkeit von der Temperatur

# 7.1.3 Das System Niob / Trichlorsilan

Das Phasendiagramm Niob / Silicium enthält drei Niobsilicide. Nb<sub>5</sub>Si<sub>3</sub> weist eine deutliche Phasenbreite auf (37,5 bis 38,5 % Si), die in der Hochtemperaturform noch ausgeprägter ist (37,5 bis 40,5 % Si). Im Bereich  $\mathcal{B} = 1650 \text{ °C} - 1940 \text{ °C}$  können die  $\alpha$ - und  $\beta$ -Modifikation nebeneinander vorliegen.  $\beta$ -Nb<sub>5</sub>Si<sub>3</sub> schmilzt bei  $\mathcal{B} = 2520 \text{ °C}$  kongruent und hat die höchste Schmelztemperatur des Systems. Unterhalb von  $\mathcal{B} = 1650 \text{ °C}$  zerfällt es zu  $\alpha$ -Nb<sub>5</sub>Si<sub>3</sub> und NbSi<sub>2</sub>. Die  $\alpha$ -Modifikation geht oberhalb von  $\mathcal{B} = 1940 \text{ °C}$  in die  $\beta$ -Modifikation über. Nb<sub>3</sub>Si ist eine metastabile Hochtemperaturphase, die nur zwischen  $\mathcal{B} = 1770 \text{ °C}$  und  $\mathcal{B} = 1980 \text{ °C}$  existent ist. Die Verbindung NbSi<sub>2</sub> schmilzt bei  $\mathcal{B} = 1940 \text{ °C}$  kongruent (siehe Abbildung 7.1.13).



Abbildung 7.1.13: Phasendiagramm des Systems Nb-Si<sup>[21]</sup>

### 7.1.3.1 Experimente und Ergebnisse

Während der Reaktion erreichte der Niobdraht ( $\emptyset = 0,65 \text{ mm}$ ) eine Temperatur von  $\vartheta = 1400^{\circ}$ C. Zu Beginn bildete sich farbloser Rauch, der sich nach einiger Zeit als brauner

Niederschlag an der Kolbenwand absetzte. Dieser wurde, wie schon beim Versuch mit Molybdändraht, von kondensierender Flüssigkeit in den Schlenkkolben gespült. Nach ca. 6 Stunden beendete das Durchbrennen des Drahtes die Reaktion. Unter dem Mikroskop war eine metallisch glänzende Schicht zu erkennen (siehe Abbildung 7.1.14). In Abbildung 7.1.15 ist der Querschnitt des beschichteten Drahtes dargestellt. Der Durchmesser des reagierten Drahtes betrug 0,89 mm. Der des Metallkerns betrug 0,51 mm. Es hatte sich eine 0,19 mm dicke Schicht auf dem Draht gebildet.



Abbildung 7.1.14: Silicidschicht auf Niobdraht



Abbildung 7.1.15: Querschnitt des silicierten Niobdrahtes

In Abbildung 7.1.16 ist eine REM-Aufnahme des Querschnitts dargestellt.



Abbildung 7.1.16: REM-Aufname des silicierten Niobdrahtes (Querschnitt)

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von  $NbSi_2$  auf dem Draht. Das Kondensat von der Kolbenwand ergibt bei der pulverdiffraktometrischen Messung keine auswertbaren Reflexe (siehe Abbildung 7.1.17a).



Abbildung 7.1.17 b: Pulverdiffraktogramm der gebildeten  $\mathrm{Nb}_2\mathrm{Si}$  - Schicht

| Fragment                        | Intensität <sup>*</sup> |
|---------------------------------|-------------------------|
| $\mathrm{Cl}^+$                 | 40                      |
| $\mathrm{HCl}^{+}$              | 84                      |
| SiCl <sup>+</sup>               | 8                       |
| SiCl <sub>2</sub> <sup>+</sup>  | 31                      |
| SiHCl <sub>2</sub> <sup>+</sup> | 29                      |
| SiCl <sub>3</sub> <sup>+</sup>  | 100                     |
| SiCl <sub>4</sub> <sup>+</sup>  | 6                       |
| $Nb^+$                          | 0,6                     |
| $NbO^+$                         | 3                       |
| $NbO_2^+$                       | 1                       |
| $NbCl^+$                        | 0,6                     |
| $NbOCl^+$                       | 1                       |
| $NbCl_2^+$                      | 1                       |
| $NbOCl_2^+$                     | 4                       |
| NbCl <sub>3</sub> <sup>+</sup>  | 1                       |
| NbOCl <sub>3</sub> <sup>+</sup> | 2                       |
| $NbCl_4^+$                      | 0,1                     |

Tabelle 7.1.2: Massenspektrum im System Nb-SiHCl<sub>3</sub>

\*Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von Niob/Chlor-Verbindungen, wahrscheinlich NbCl<sub>4</sub> (g), von Nioboxidchloriden (NbOCl<sub>3</sub> (g), NbOCl<sub>2</sub> (g)), von SiCl<sub>4</sub> (g) und SiHCl<sub>3</sub> (g) neben HCl (g). Der Sauerstoff muss aus geringen Mengen an Restgas oder aus dem Quarzglasrohr stammen.

Aus den Ergebnissen und den thermodynamischen Berechnungen (siehe Anhang) ist zu erkennen, dass sich die ablaufene Reaktion in etwa mit Reaktionsgleichung (7.1-11) beschreiben lässt. Im Gegensatz zum System Mo-SiHCl<sub>3</sub> bildet sich hier ein Niobchlorid.

$$2 \operatorname{Nb}(s) + 2 \operatorname{SiHCl}_{3}(g) \rightleftharpoons \operatorname{NbSi}_{2}(s) + \operatorname{NbCl}_{4}(g) + 2 \operatorname{HCl}(g)$$

$$(7.1-11)$$

Aus thermodynamischer Sicht kann nur das Silicid gebildet werden, welches im Phasendiagramm mit Niob koexistieren kann, also Nb<sub>5</sub>Si<sub>3</sub>. Um zu prüfen, ob dieses zu Beginn der Reaktion tatsächlich entsteht, wurde der Versuch mit kürzerer Reaktionszeit wiederholt. Bei Wiederholung des Versuches war also gegebenenfalls ein siliciumärmeres Silicid zu erwarten. Diese Vermutung bestätigte sich. Nach einer Stunde hatte sich eine  $\beta$ -Nb<sub>5</sub>Si<sub>3</sub>-Schicht auf dem Draht gebildet (siehe Abbildung 7.1.17b), dessen Bildung durch folgende Reaktionsgleichung beschrieben werden kann.

13 Nb (s) + 6 SiHCl<sub>3</sub> (g) 
$$\Rightarrow$$
 2 Nb<sub>5</sub>Si<sub>3</sub> (s) + 3 NbCl<sub>4</sub> (g) + 6 HCl (g) (7.1-12)

Die Bildung von NbSi<sub>2</sub> muss dann in einem weiteren Schritt erfolgen, z.B. nach folgender Reaktionsgleichung:

$$Nb_5Si_3(s) + 7Si(s) \rightleftharpoons 5NbSi_2(s)$$
 (7.1-13)



Abbildung 7.1.17b: Pulverdiffraktogramm der gebildeten Nb5Si3 - Schicht

Die Herkunft des im Pulverdiffraktogramm (Abbildung 7.1.17 a) nachgewiesenen Niobs wird durch die Probenvorbereitung erklärt. Die Schicht auf dem Draht konnte nicht manuell entfernt werden, sondern musste mit der Kugelmühle vom Draht gelöst werden. Dabei gerieten geringe Mengen von metallischem Niob in die zu untersuchende Probe.

# 7.1.4 Das System Tantal / Trichlorsilan

Im Phasendiagramm Tantal / Silicium treten vier Tantalsilicide auf. Bei 25 % Si liegt die Strichphase Ta<sub>3</sub>Si vor. Diese Verbindung schmilzt bei  $\mathcal{G} = 2340$  °C inkongruent. Ta<sub>2</sub>Si schmilzt bei  $\mathcal{G} = 2440$  °C ebenfalls inkongruent. Ta<sub>5</sub>Si<sub>3</sub> existiert in zwei Modifikationen.  $\alpha$ -Ta<sub>5</sub>Si<sub>3</sub> geht bei  $\mathcal{G} = 2160$  °C in  $\beta$ -Ta<sub>5</sub>Si<sub>3</sub> über.  $\beta$ -Ta<sub>5</sub>Si<sub>3</sub> schmilzt bei  $\mathcal{G} = 2550$ °C kongruent und ist damit die höchstschmelzende Verbindung des Systems. TaSi<sub>2</sub> schmilzt bei  $\mathcal{G} = 2040$  °C ebenfalls kongruent (siehe Abbildung 7.1.18).



Abbildung 7.1.18: Phasendiagramm des Systems Ta-Si<sup>[21]</sup>

### 7.1.4.1 Experimente und Ergebnisse

Eingesetzt wurde ein Tantaldraht mit einem Durchmesser von  $\emptyset = 0,5$  mm. Die Reaktion lief bei  $\vartheta = 1400$  °C ab. Nach Öffnen des Vorratsgefäßes entstand ein farbloser Rauch, der sich nach einiger Zeit als brauner Niederschlag an der Kolbenwand absetzte. Der Versuch wurde nach 4,5 Stunden abgebrochen. Die auf dem Draht gebildete Schicht war unter dem Mikroskop als matt - braun zu erkennen (siehe Abbildung 7.1.19). In Abbildung 7.1.20 ist der Querschnitt des

Drahtes dargestellt. Es hatte sich eine 0,07 mm dicke Schicht auf dem Draht gebildet. Ein Metallkern mit einem Durchmesser von 0,46 mm war zurückgeblieben. Der gesamte Draht hatte nach der Reaktion einen Durchmesser von 0,6 mm.



Abbildung 7.1.19: Silicidschicht auf Tantaldraht



Abbildung 7.1.20: Querschnitt des silicierten Tantaldrahtes

In Abbildung 7.1.21 ist eine REM-Aufnahme des Querschnittes dargestellt.



Abbildung 7.1.21: REM-Aufnahme des silicierten Tantaldrahtes (Querschnitt)

Die Pulverdiffraktometrische Untersuchung zeigt die Bildung von TaSi<sub>2</sub> auf dem Draht (siehe Abbildung 7.2.2) und von TaO<sub>2</sub> an der Kolbenwand.



Abbildung 7.1.22: Pulverdiffraktogramm der gebildeten Silicidschicht auf Tantaldraht

Die Reflexe des Tantals im Pulverdiffraktogramm stammen erneut aus der Probenaufbereitung.

| Fragment                        | Intensität <sup>*</sup> |
|---------------------------------|-------------------------|
|                                 |                         |
| $\mathrm{Cl}^+$                 | 30                      |
| $\mathrm{HCl}^{+}$              | 100                     |
| $\mathrm{SiCl}^+$               | 6                       |
| ${\rm SiCl_2}^+$                | 6                       |
| SiHCl <sub>2</sub> <sup>+</sup> | 7                       |
| SiCl <sub>3</sub> <sup>+</sup>  | 29                      |
| $\mathrm{SiCl}_4^+$             | 2                       |
| Ta <sup>+</sup>                 | 0,3                     |
| $TaO^+$                         | 0,4                     |
| TaO <sub>2</sub> <sup>+</sup>   | 0,3                     |

Tabelle 7.1.3: Massenspektrum im System Ta-SiHCl<sub>3</sub>

<sup>\*</sup>Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von  $SiCl_4$  (g),  $SiHCl_3$  (g), HCl (g) und geringer Anteile an Tantaloxiden oder auch Tantaloxidehloriden (TaO<sub>2</sub>Cl (g)).

Tantal/Sauerstoff-Verbindungen entstehen durch Einwirkung von Restsauerstoff oder gegebenenfalls auch durch im Tantalmetall enthaltenem Sauerstoff.

Es entstehen, ähnlich wie beim System Molybdän / Trichlorsilan, keine Tantalchloride. Das Reaktionsgeschehen lässt sich in etwa durch folgende Reaktionsgleichungen beschreiben:

| $3 \operatorname{Ta}(s) + \operatorname{Si}(s) \rightleftharpoons \operatorname{Ta}_3 \operatorname{Si}(s)$ | (7.1-14) |
|-------------------------------------------------------------------------------------------------------------|----------|
|-------------------------------------------------------------------------------------------------------------|----------|

| $2 \operatorname{Ta}_{3} \operatorname{Si}(s) + \operatorname{Si}(s) \rightleftharpoons 3 \operatorname{Ta}_{2} \operatorname{Si}(s) $ (7.) | .1-1 | 15 | 5) |
|---------------------------------------------------------------------------------------------------------------------------------------------|------|----|----|
|---------------------------------------------------------------------------------------------------------------------------------------------|------|----|----|

| $5 \operatorname{Ta}_2 \operatorname{Si}(s) + \operatorname{Si}(s) \rightleftharpoons 2 \operatorname{Ta}_5 \operatorname{Si}_3(s)$ | (7.1-16) |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                     |          |

 $Ta_{5}Si_{3}(s) + 7 Si(s) \rightleftharpoons 5 TaSi_{2}(s)$  (7.1-17)

Dieser Reaktionsverlauf bestätigt auch die thermodynamischen Berechnungen (siehe Anhang). Bei kürzerer Reaktionszeit (ca. 1,5 Stunden) werden keine tantalreicheren Silicide beobachtet.

Die Reaktionsgeschwindigkeit der Bildung von TaSi2 ist offenbar sehr hoch.

# 7.1.5 Das System Titan / Trichlorsilan

Das Phasendiagramm Titan / Silicium zeigt fünf Titansilicide.  $Ti_5Si_3$  besitzt eine Phasenbreite von 35,5 bis 39,5 % Si. Die Phasen TiSi<sub>2</sub> und  $Ti_5Si_3$  schmelzen kongruent, letztere mit der höchsten Schmelztemperatur des Systems von  $\mathcal{G} = 2130$  °C. Alle anderen Titansilicide schmelzen inkongruent (siehe Abbildung 7.1.23).



Abbildung 7.1.23: Phasendiagramm der Systems Ti-Si [21]

### 7.1.5.1 Experimente und Ergebnisse

Die Temperatur des Titandrahtes ( $\emptyset = 0,5$  mm) betrug während der Reaktion  $\vartheta = 900$  °C. Der Draht wurde unter Argonatmosphäre erhitzt und nach Öffnen des Trichlorsilanbehälters bildete sich ein violetter Belag am Kolbenrand, offenbar TiCl<sub>3</sub>. Nach drei Stunden wurde der Versuch abgebrochen. Es hatte sich eine 0,05 mm dicke, graue Schicht auf dem Titandraht gebildet (siehe Abbildung 7.1.24). Ein Metallkern mit dem Durchmesser von 0,53 mm blieb zurück. Der Gesamtdurchmesser des reagierten Drahtes betrug 0,63 mm (siehe Abbildung 7.1.25).



Abbildung 7.1.24: Silicidschicht auf Titandraht



Abbildung 7.1.25: Querschnitt des silicierten Titandrahtes

In Abbildung 7.1.26 ist eine REM-Aufnahme des Querschnittes dargestellt.



Abbildung 7.1.26: REM-Aufnahme des silicierten Titandrahtes (Querschnitt)

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von TiSi und TiSi<sub>2</sub> auf dem Draht (siehe Abbildung 7.1.27) und TiCl<sub>3</sub> an der Kolbenwand.



Abbildung 7.1.27: Pulverdiffraktogramm der gebildeten Silicidschicht auf Titandraht

| Fragment                        | Intensität <sup>*</sup> |
|---------------------------------|-------------------------|
| $Cl^+$                          | 22                      |
| HCl <sup>+</sup>                | 40                      |
| SiCl <sup>+</sup>               | 20                      |
| SiCl <sub>2</sub> <sup>+</sup>  | 46                      |
| SiHCl <sub>2</sub> <sup>+</sup> | 47                      |
| SiCl <sub>3</sub> <sup>+</sup>  | 100                     |
| SiCl <sub>4</sub> <sup>+</sup>  | 0,9                     |
| Ti <sup>+</sup>                 | 1                       |
| ${\rm TiCl}^+$                  | 6                       |
| $\operatorname{TiCl}_{2}^{+}$   | 7                       |
| TiCl <sub>3</sub> <sup>+</sup>  | 3                       |

Tabelle 7.1.4: Massenspektrum im System Ti-SiHCl<sub>3</sub>

\*Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von SiHCl3 (g), SiCl4 (g), TiCl3 (g) und HCl (g).

Bei dieser Reaktion werden erneut gasförmige Metallchloride, hierbei Titantrichlorid, gebildet. Das Reaktionsgeschehen kann in etwa mit folgenden Reaktionsgleichungen beschrieben werden:

$$10 \text{ Tr}(s) + 4 \text{ SiHCl}_{3}(g) \rightleftharpoons 4 \text{ Tr}_{3}\text{Sr}(s) + 3 \text{ Tr}\text{Cl}_{3}(g) + 3 \text{ HCl}(g)$$
(7.1-18)

$$5 \operatorname{Ti}_{3}\operatorname{Si}(s) + 4 \operatorname{Si}(s) \rightleftharpoons 3 \operatorname{Ti}_{5}\operatorname{Si}_{3}(s)$$

$$(7.1-19)$$

$$Ti_{5}Si_{3}(s) + Si(s) \rightleftharpoons Ti_{5}Si_{4}(s)$$

$$(7.1-20)$$

$$Ti_{5}Si_{4}(s) + Si(s) \rightleftharpoons 5 TiSi(s)$$

$$(7.1-21)$$

$$TiSi(s) + Si(s) \rightleftharpoons TiSi_2(s)$$
(7.1-22)

Die Bildung von TiSi und TiSi<sub>2</sub> wurde Pulverdiffraktometrisch nachgewiesen. Die Annahme, dass sich zuerst Ti<sub>3</sub>Si als titanreichstes Silicid bildet, wird von thermodynamischen Berechnungen gestützt. Aus diesem entsteht in weiteren Reaktionsschritten Ti<sub>5</sub>Si<sub>3</sub>, Ti<sub>5</sub>Si<sub>4</sub> TiSi und schließlich TiSi<sub>2</sub>.

# 7.1.6 Das System Vanadium / Trichlorsilan

Im Phasendiagramm dieses Systems sind vier Silicide des Vanadiums zu erkennen. V<sub>3</sub>Si hat als einziges Silicid eine Phasenbreite (19 bis 25,5 % Si). Bei den anderen handelt es sich um Strichphasen. V<sub>6</sub>Si<sub>5</sub> existiert in einem Temperaturbereich von  $\mathcal{G} = 1160 - 1670$  °C, oberhalb von 1650 °C zersetzt es sich. Die Verbindungen V<sub>3</sub>Si, V<sub>5</sub>Si<sub>3</sub>, VSi<sub>2</sub> schmelzen kongruent. V<sub>5</sub>Si<sub>3</sub> stellt mit einer Schmelztemperatur von  $\mathcal{G} = 2010$  °C das Temperaturmaximum dieses Systems dar (siehe Abbildung 7.1.28).



Abbildung 7.1.28: Phasendiagramm des Systems V-Si [21]

### 7.1.6.1 Experimente und Ergebnisse

Die Temperatur betrug während des Versuches  $\mathcal{G} = 1050$  °C. Eingesetzt wurde ein Vanadiumdraht mit einem Durchmesser von  $\mathcal{O} = 1,0$  mm. Nach Öffnen des Vorratsgefäßes setzte sich ein schwarzer Niederschlag auf der Kolbenwand ab. Der Versuch wurde nach 1,7 Stunden manuell abgebrochen, nachdem keine merkliche Reaktion mehr zu erkennen war. Unter dem Mikroskop war eine graue Schicht zu erkennen (siehe Abbildung 7.1.29). Diese

Schicht hatte eine Dicke von 0,06 mm. Der Durchmesser des Metallkerns betrug 0,98 mm. Der Draht hatte nach der Reaktion einen Durchmesser von 1,1 mm (siehe Abbildung 7.1.30).



Abbildung 7.1.29: Silicidschicht auf Vanadiumdraht



A**bbildung 7.1.30:** Querschnitt des silicierten Vanadiumdraht

In Abbildung 7.1.31 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.



Abbildung 7.1.31: REM-Aufnahme des silicierten Vanadiumdrahtes (Querschnitt)

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von VSi<sub>2</sub> auf dem Draht (siehe Abbildung 7.1.32) und VCl<sub>3</sub>·6 H<sub>2</sub>O an der Kolbenwand, dieses entsteht durch Einwirkung von Wasser aus der Luft aus VCl<sub>3</sub>.



Abbildung 7.1.32: Pulverdiffraktogramm der gebildeten Silicidschicht auf Vanadiumdraht

| Fragment                        | Intensität <sup>*</sup> |
|---------------------------------|-------------------------|
|                                 |                         |
| $\mathrm{Cl}^+$                 | 22                      |
| $\mathrm{HCl}^{+}$              | 85                      |
| SiCl <sup>+</sup>               | 19                      |
| $SiCl_2^+$                      | 18                      |
| SiHCl <sub>2</sub> <sup>+</sup> | 23                      |
| SiCl <sub>3</sub> <sup>+</sup>  | 100                     |
| $V^+$                           | 8                       |
| $\mathrm{VCl}^+$                | 7                       |
| $\text{VCl}_2^+$                | 10                      |
| $\mathrm{VCl}_{3}^{+}$          | 2                       |

Tabelle 7.1.5: Massenspektrum im System V-SiHCl<sub>3</sub>

\*Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von SiCl<sub>4</sub> (g), SiHCl<sub>3</sub> (g), VCl<sub>3</sub> (g) und HCl (g).

Unerwarteterweise besteht die gebildete Schicht aus VSi<sub>2</sub>, also dem siliciumreichsten Vanadiumsilicid, welches im thermodynamischen Gleichgewicht nicht mit Vanadium koexistieren kann. Auch hier nehmen wir eine Folge von Reaktionsschritten an, die durch folgende Reaktionsgleichungen beschrieben werden kann:

$$13 V (s) + 6 SiHCl_3 (g) \rightleftharpoons 3 V_3Si (s) + 4 VCl_3 (g) + 6 HCl (g)$$
(7.1-23)

$$5 \operatorname{V}_{3}\operatorname{Si}(s) + 4 \operatorname{Si}(s) \rightleftharpoons 3 \operatorname{V}_{5}\operatorname{Si}_{3}(s)$$
(7.1-24)

$$6 V_5 Si_3 (s) + 7 Si (s) \rightleftharpoons 5 V_6 Si_5 (s)$$
 (7.1-25)

$$V_6 Si_5 (s) + 7 Si (s) \rightleftharpoons 6 VSi_2 (s)$$

$$(7.1-26)$$

VSi<sub>2</sub> und VCl<sub>3</sub> konnten pulverdiffraktometrisch nachgewiesen werden. Die Bildung von VSi<sub>2</sub> über Zwischenstufen verläuft offenbar so schnell, dass auch bei Wiederholung des Experiments mit kürzerer Reaktionszeit (ca. 30 Minuten) nur die Bildung von VSi<sub>2</sub> nachgewiesen wurde.

# 7.1.7 Das System Wolfram / Trichlorsilan

Das Phasendiagramm Wolfram / Silicium zeigt zwei Wolframsilicide. Die Strichphase  $WSi_2$  schmilzt bei  $\mathcal{G} = 2160$  °C kongruent. Bei  $\mathcal{G} = 2010$  °C weist  $W_5Si_3$  eine Phasenbreite von 2,5 % Si auf und schmilzt bei  $\mathcal{G} = 2320$ °C kongruent. An den vielen gestrichelten Linien ist zu erkennen, dass das System W - Si noch nicht vollständig untersucht wurde (siehe Abbildung 7.1.33).



Abbildung 7.1.33: Phasendiagramm des System W-Si<sup>[21]</sup>

#### 7.1.7.1 Experimente und Ergebnisse

Der Wolframdraht ( $\emptyset = 1 \text{ mm}$ ) wurde auf  $\vartheta \sim 1750 \text{ °C}$  erhitzt. Nach Öffnen des Vorratsgefäßes bildete sich ein farbloser Rauch, der sich als brauner Niederschlag an der Kolbenwand absetzte. Dieser wurde von kondensierender Flüssigkeit in den Schlenkkolben gespült. Die Versuchdauer betrug 3 Stunden, danach wurde der Versuch abgebrochen, da kein Reaktionsfortschritt mehr zu erkennen war. Unter dem Mikroskop war eine braune Schicht zu erkennen (siehe Abbildung 7.1.34). Der Gesamtdurchmesser des Drahtes betrug nach der Reaktion 1,17 mm. Der Metallkern hatte einem Durchmesser von 0,97 mm. Demnach hatte sich eine 0,10 mm dicke Schicht auf dem Draht gebildet (siehe Abbildung 7.1.35).



Abbildung 7.1.34: Silicidschicht auf Wolframdraht



Abbildung 7.1.35: Querschnitt des silicierten Wolframdrahtes

In Abbildung 7.1.36 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.



Abbildung 7.1.36: REM-Aufnahme des silicierten Wolframdrahtes (Querschnitt)

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von WSi<sub>2</sub> auf dem Draht (siehe Abbildung 7.1.3.7). Das Kondensat von der Kolbenwand zeigt keine auswertbaren Reflexe im Pulverdiffraktogramm.



Abbildung 7.1.37: Pulverdiffraktogramm der gebildeten Silicidschicht auf Wolframdraht

Die Reflexe des Wolframs ergeben sich erneut aus der Probenvorbereitung.

| Fragment                        | Intensität <sup>*</sup> |
|---------------------------------|-------------------------|
| $\mathrm{Cl}^+$                 | 33                      |
| $\mathrm{HCl}^{+}$              | 100                     |
| $\mathrm{SiCl}^+$               | 7                       |
| SiCl <sub>2</sub> <sup>+</sup>  | 4                       |
| SiHCl <sub>2</sub> <sup>+</sup> | 4                       |
| SiCl <sub>3</sub> <sup>+</sup>  | 15                      |
| $\mathrm{SiCl}_4^+$             | 1                       |

Tabelle 7.1.6: Massenspektrum im System W-SiHCl3

<sup>\*</sup>Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von  $SiCl_4$  (g),  $SiHCl_3$  (g) und HCl (g), Wolframchloride werden nicht beobachtet.

Wie aus den massenspektrometrischen Untersuchungen zu entnehmen ist, bildete sich bei der Reaktion von Wolfram mit Trichlorsilan kein gasförmiges Wolframchlorid. Der Reaktionsmechanismus ist vermutlich ähnlich wie beim System Molybdän / Trichlorsilan. Mit den folgenden Reaktionsgleichungen kann das Reaktionsgeschehen in etwa beschrieben werden:

| $SiHCl_3(g) \rightleftharpoons SiCl_2(g) + HCl(g)$                                                | (7.1-2)  |
|---------------------------------------------------------------------------------------------------|----------|
| $2 \operatorname{SiCl}_2(g) \rightleftharpoons 2 \operatorname{Si}(s) + \operatorname{SiCl}_4(g)$ | (7.1-6)  |
| $3 \text{ W}(s) + 5 \text{ Si}(s) \rightleftharpoons W_3 \text{Si}_5(s)$                          | (7.1-27) |
| $W_3Si_5(s) + Si(s) \Rightarrow 3 WSi_2(s)$                                                       | (7.1-28) |

Auch hier ist offenbar die Reaktionsgeschwindigkeit bei der Bildung von WSi<sub>2</sub> im Verhältnis zur Bildung der siliciumärmeren Silicide so groß, dass auch bei kürzerer Reaktionsdauer (ca. 1 Stunde) nur WSi<sub>2</sub> nachgewiesen wird.

# 7.1.8 Das System Zirkonium / Trichlorsilan

Im System Zirkonium / Silicium treten mit sechs Siliciden die meisten Verbindungen der hier untersuchten Systeme auf. Einige treten in unterschiedliche Modifikationen auf. Wie beim System Ti-Si schmelzen auch hier die meisten Verbindungen inkongruent, lediglich  $Zr_5Si_4$  schmilzt bei 2250 °C kongruent. Dies ist auch die höchste Schmelztemperatur des Systems. Alle Verbindungen sind Strichphasen. Im Unterschied zu  $Ti_5Si_3$  ist  $Zr_5Si_3$  eine Hochtemperaturphase, die nur oberhalb von 1745 °C existiert und bei einer Temperatur von 2180 °C inkongruent schmilzt (siehe Abbildung 7.1.38).



Abbildung 7.1.38: Phasendiagramm des Systems Zr-Si [21]

#### 7.1.8.1 Experimente und Ergebnisse

Während des Versuches erreichte der Zirconiumdraht ( $\emptyset = 1,1$  mm) eine Temperatur von  $\vartheta \sim 1500^{\circ}$ C. Nach Öffnen des Vorratsgefäßes entwickelte sich farbloser Rauch, der sich ebenfalls farblos am Kolbenrand niederschlug. Nach 15 Minuten beendete das Durchbrennen des Drahtes die Reaktion. Unter dem Mikroskop war eine grau-braune Schicht auf dem Draht zu

erkennen (siehe Abbildung 7.1.39). Es hatte sich eine 0,59 mm dicke Schicht um den 0,21 mm dicken Metallkern gebildet. Der Gesamtdurchmesser des Drahtes nach der Reaktion betrug 1,39 mm (siehe Abbildung 7.1.40).



Abbildung 7.1.39: Silicidschicht auf Zirkoniumdraht



Abbildung 7.1.40: Querschnitt des silicierten Zirkoniumdrahtes

In Abbildung 7.1.41 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.



Abbildung 7.1.41: REM-Aufnahme des silicierten Zirkoniumdrahtes (Querschnitt)

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von  $ZrSi_2$  und Si auf dem Draht (siehe Abbildung 7.1.42). Die Untersuchung des Kondensats ergibt  $ZrOCl_2 \cdot 8H_2O$ . Das während der Reaktion entstehende  $ZrCl_4$  reagiert unter Einwirkung von Luftfeuchtigkeit zu diesem Oxidchlorid.



Abbildung 7.1.42: Pulverdiffraktogramm der gebildeten Silicidschicht auf Zirkoniumdraht

Das im Pulverdiffraktogramm (Abbildung 7.1.42) nachgewiesene Silicium stammt aus der Reduktion von Trichlorsilan (siehe Reaktionsgleichung (7.1-3). Dieses wurde vollkommen reduziert bis hin zu elementaren Silicium.

$$4 \operatorname{SiHCl}_{3}(g) \rightleftharpoons 3 \operatorname{SiCl}_{4}(g) + \operatorname{Si}(s) + 2 \operatorname{H}_{2}(g)$$

$$(7.1-3)$$

| Intensität <sup>*</sup> |
|-------------------------|
| 12                      |
| 36                      |
| 15                      |
| 17                      |
| 22                      |
| 100                     |
| 1                       |
| 2                       |
| 4                       |
| 7                       |
| 6                       |
|                         |

Tabelle 7.1.7: Massenspektrum im System Zr-SiHCl<sub>3</sub>

\*Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von SiCl<sub>4</sub> (g), SiHCl<sub>3</sub> (g), ZrCl<sub>4</sub> (g) und HCl (g).

Bei diesem System handelt es sich erneut um einen Reaktionsverlauf, bei dem ein gasförmiges Metallchlorid gebildet wird. In diesem Fall ZrCl<sub>4</sub> (als ZrOCl<sub>2</sub>·8H<sub>2</sub>O). Das Reaktionsgeschehen kann mit folgenden Gleichungen beschrieben werden:

$$7 \operatorname{Zr}(s) + 2 \operatorname{SiHCl}_{3}(g) \rightleftharpoons 2 \operatorname{Zr}_{3} \operatorname{Si}(s) + \operatorname{ZrCl}_{4}(g) + 2 \operatorname{HCl}(g)$$

$$(7.1-29)$$

$$2 \operatorname{Zr}_{3} \operatorname{Si}(s) + \operatorname{Si}(s) \rightleftharpoons 3 \operatorname{Zr}_{2} \operatorname{Si}(s)$$
(7.1-30)

$$3 \operatorname{Zr}_{2}\operatorname{Si}(s) + \operatorname{Si}(s) \rightleftharpoons 2 \operatorname{Zr}_{3}\operatorname{Si}_{2}(s)$$
(7.1-31)

•••

$$\operatorname{ZrSi}(s) + \operatorname{Si}(s) \rightleftharpoons \operatorname{ZrSi}_2(s)$$
 (7.1-32)

ZrSi<sub>2</sub> und ZrCl<sub>4</sub> konnten pulverdiffraktometrisch nachgewiesen werden. Hier bildete sich offenbar erneut die siliciumärmste Verbindung, welche dann in mehreren Schritten weiter zu ZrSi<sub>2</sub> reagierte. Offensichtlich war die Reaktionsgeschwindigkeit bei der Bildung von ZrSi<sub>2</sub> im Verhältnis zur Bildung der siliciumärmeren Silicide so groß, dass auch bei kürzerer Reaktionsdauer (< 15 Minuten) nur ZrSi<sub>2</sub> nachgewiesen werden konnte.

# 7.2 Bortrichlorid

Zunächst wurde das Verhalten von Bortrichlorid bei hohen Temperaturen simuliert. In Abbildung 7.2.1 sind die Partialdrücke verschiedener Borchloride gegen die Temperatur aufgetragen. Folgende Spezies wurden bei der Berechnung berücksichtigt: B (s), B (g), B<sub>2</sub> (g),  $B_2Cl_4$  (g), BCl (g), BCl<sub>2</sub> (g), BCl<sub>3</sub> (g), Cl (g), Cl<sub>2</sub> (g). Bortrichlorid zersetzt sich nur zu geringen Teilen in BCl<sub>2</sub>, BCl und B. Auch  $B_2Cl_4$  spielt keine nennenswerte Rolle. Die Zersetzungsreaktionen können mit folgenden Reaktionsgleichungen beschrieben werden:

- $BCl_{3}(g) \rightleftharpoons BCl_{2}(g) + \frac{1}{2}Cl(g)$ (7.2-1)
- $2 \operatorname{BCl}_2(g) \rightleftharpoons 2 \operatorname{BCl}(g) + \frac{1}{2} \operatorname{Cl}_2(g)$  (7.2-2)
- BCl (g)  $\rightleftharpoons$  B (s) +  $\frac{1}{2}$  Cl<sub>2</sub> (g) (7.2-3)

$$\operatorname{Cl}_2(g) \rightleftharpoons 2 \operatorname{Cl}(g)$$
 (7.1-4)



Abbildung 7.2.1: Thermische Zersetzung von Bortrichlorid

### Laborexperimente mit BCl<sub>3</sub>

Bei den Experimenten mit Bortrichlorid wurde der gleiche Aufbau, wie bei den Versuchen mit Trichlorsilan verwendet. Während des Versuches stellte sich ein Gleichgewichtsdruck von p (BCl<sub>3</sub>) = 1,0 bar ein. Alle Experimente wurden unter Argonatmosphäre durchgeführt. Auch hier wurden die Systeme am Massenspektrometer untersucht.

Im Folgenden werden die Systeme in alphabetischer Reihenfolge diskutiert.

### 7.2.1 Das System Molybdän / Bortrichlorid

Beim Blick auf das Phasendiagramm sind fünf Boride zu erkennen. Jede dieser Verbindungen weist eine Phasenbreite auf. Mo<sub>2</sub>B schmilzt bei  $\mathcal{G} = 2280$  °C inkongruent.  $\beta$ -MoB ist mit einer Schmelztemperatur von  $\mathcal{G} = 2600$  °C die höchstschmelzende Verbindung des Systems.  $\alpha$ -MoB zersetzt sich bei  $\mathcal{G} = 2180$  °C in  $\beta$ -MoB und Mo<sub>2</sub>B. Die Phase MoB<sub>2</sub> existiert nur zwischen  $\mathcal{G} = 1517$  und 2375 °C. Mo<sub>2</sub>B<sub>5</sub> und MoB<sub>4</sub> schmelzen, wie schon Mo<sub>2</sub>B, inkongruent: Mo<sub>2</sub>B<sub>5</sub> bei  $\mathcal{G} = 2140$  °C und Mo<sub>2</sub>B bei  $\mathcal{G} = 1807$  °C. Die höchste Schmelztemperatur des Systems hat Molybdän mit  $\mathcal{G} = 2623$  °C (siehe Abbildung 7.2.2).



Abbildung 7.2.2: Phasendiagramm des Systems Mo-B<sup>[21]</sup>

Um den Versuchsverlauf voraus zu sagen, wurde das System thermodynamisch untersucht. Es wurden folgende Spezies in der Rechnung berücksichtigt: B (s), B (l), B (g),  $B_2Cl_4$  (g), BCl (g), BCl<sub>2</sub> (g), BCl<sub>3</sub> (g), Cl (g), Cl<sub>2</sub> (g), Mo (s), Mo (g), MoB (s), MoCl (g), MoCl<sub>2</sub> (g), MoCl<sub>3</sub> (g), MoCl<sub>4</sub> (g) und MoCl<sub>5</sub> (g). Die Ergebnisse der Berechnungen sind in Abbildung 7.2.3 aufgetragen.



Abbildung 7.2.3: Verhältnisse der Partialdrücke im System Mo-BCl<sub>3</sub>

An der Auftragung der Partialdrücke ist zu erkennen, dass sich während der Reaktion  $MoCl_4$ bildet. Der Anteil ist jedoch gering (Verhältnis zu Bortrichlorid 1:100). Bei  $\mathcal{G} = 800$  °C beträgt die Stoffmenge an Molybdäntetrachlorid n (Mo $Cl_4$ ) = 0,34 mmol. Weitere Berechnungen ergeben eine Stoffmenge an Molybdänborid von n (MoB) = 0,45 mmol. Da eine Stoffmenge an n (Mo) = 21 mmol eingesetzt wurde, bedeutet dies, dass schon bei  $\mathcal{G} = 800$  °C 4,2 % des vorgegebenen Molybdäns umgesetzt werden.
### 7.2.1.1 Experimente und Ergebnisse

Während des Versuches erreichte der Molybdändraht ( $\emptyset = 0,5$  mm) eine Temperatur von  $\mathscr{G} \sim 1500^{\circ}$ C. Nach Öffnen des Vorratsgefäßes entwickelte sich ein gelblicher Niederschlag am Kolbenrand. Nach 33 Minuten wurde die Reaktion manuell beendet, da kein Reaktionsfortschritt mehr zu erkennen war. Unter dem Mikroskop war eine grau-braune Schicht auf dem Draht zu erkennen (siehe Abbildung 7.2.4). Der Draht hatte nach der Reaktion einen Gesamtdurchmesser von 0,60 mm. Es hatte sich eine 0,09 mm dicke Schicht um einen 0,42 mm dicken Metallkern gebildet (siehe Abbildung 7.2.5).



Abbildung 7.2.4: Boridschicht auf Molybdändraht



Abbildung 7.2.5: Querschnitt des Boridbeschichteten Molybdändrahtes



In Abbildung 7.2.6 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.

Abbildung 7.2.6: REM-Aufnahme des Borid-beschichteten Molybdändrahtes (Querschnitt)

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von MoB auf dem Draht (siehe Abbildung 7.2.7). Das Kondensat konnte nicht untersucht werden, da die Menge für eine Messung zu gering war.



Abbildung 7.2.7: Pulverdiffraktogramm der gebildeten Boridschicht auf Molybdändraht<sup>[22]</sup>

| Fragment               | Intensität <sup>*</sup> |
|------------------------|-------------------------|
| $Cl^+$                 | 27                      |
| HCl <sup>+</sup>       | 100                     |
| $\mathrm{BCl}^+$       | 1                       |
| $\mathrm{BCl}_{2}^{+}$ | 7                       |
| $\mathrm{BCl}_3^+$     | 2                       |
| $\mathrm{Mo}^+$        | 18,6                    |
|                        |                         |

Tabelle 7.2.1: Massenspektrum im System Mo-BCl<sub>3</sub>

<sup>\*</sup>Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von BCl<sub>3</sub> (g) und Mo (g). Darüber hinaus werden offenbar durch Hydrolyse beträchtliche Mengen an HCl (g) gebildet.

Bei den massenspektrometrischen Untersuchungen wurden keine Molybdänchloride nachgewiesen. Nach der thermodynamischen Berechnung sollte hingegen  $MoCl_4$  (g) gebildet werden (siehe Abbildung 7.2.3).

Diese Diskrepanz zwischen den beiden Untersuchungen hat folgende Ursache: Der Partialdruck von Bortrichlorid betrug während der massenspektrometrischen Untersuchung  $p_0$  (BCl<sub>3</sub>) = 1·10<sup>-6</sup> bar, der Versuch wurde hingegen bei einem Druck von  $p_0$  (BCl<sub>3</sub>) = 1 bar durchgeführt. Bei der Bildung von MoCl<sub>4</sub> (g) handelt es sich um eine Reaktion unter Veringerung der Teilchenzahl. Mit sinkendem Gesamtdruck verschiebt sich also die Gleichgewichtslage auf die Seite der Ausgangsstoffe, der Anteil an MoCl<sub>4</sub> (g) wird also geringer.

$$11 \operatorname{Mo}(s) + 4 \operatorname{BCl}_{3}(g) \rightleftharpoons 4 \operatorname{Mo}_{2}B(s) + 3 \operatorname{MoCl}_{4}(g)$$

$$(7.2-5)$$

Bei Berechnung des Systems bei einem Druck von  $p_0$  (BCl<sub>3</sub>) = 1·10<sup>-6</sup> bar ergeben sich die in Abbildung 7.2.8 dargestellten Partialdrücke. Die Partialdrücke der Molybdänchloride sind im gesamten Temperaturbereich kleiner als 10<sup>-8</sup> bar. Somit erklärt sich, dass bei der massenspektrometrischen Untersuchung keine Molybdänchloride gefunden wurden.



**Abbildung 7.2.8:** Verhältnisse der Partialdrücke im System Mo-BCl<sub>3</sub> bei der massenspektrometrischen Untersuchung

Die thermodynamischen Berechnungen entsprechen zwar nicht exakt den experimentellen Bedingungen, sollten aber das Reaktionsgeschehen grob beschreiben. Es muss also davon ausgegangen werden, dass sich Molybdänchloride im Reaktionsraum bilden. Die thermodynamischen Berechnungen ergeben ebenfalls, dass sich MoB bildet. Der Reaktionsverlauf kann in etwa mit folgenden Gleichungen beschrieben werden:

$$11 \operatorname{Mo}(s) + 4 \operatorname{BCl}_{3}(g) \rightleftharpoons 3 \operatorname{MoCl}_{4}(g) + 4 \operatorname{Mo}_{2}B(s)$$

$$(7.2-5)$$

$$Mo_2B(s) + 2 B(s) \rightleftharpoons 2 MoB(s)$$

$$(7.2-6)$$

Wir nehmen an, dass Molybdän mit Bortrichlorid unter Bildung von Molybdäntetrachlorid und Molybdänborid reagiert. MoB konnte, wie bereits erwähnt, pulverdiffraktometrisch nachgewiesen werden. Da Mo<sub>2</sub>B nicht beobachtet wurde, nehmen wir an, dass dieses sehr schnell weiter zum thermodynamisch stabileren MoB reagiert. Dies ist thermodynamisch erlaubt, da die beiden Phasen im Phasendiagramm (siehe Abbildung 7.2.2) koexistieren.

## 7.2.2 Das System Niob / Bortrichlorid

Das Phasendiagramm enthält fünf Niob-Bor-Verbindungen. Die Phase NbB<sub>2</sub> hat mit  $\mathcal{G} = 2980^{\circ}$ C die höchste Schmelztemperatur des Systems und eine Phasenbreite von bis zu 12 %. Alle anderen Verbindungen sind Strichphasen, die inkongruent schmelzen. Die gestrichelten Linien weisen auf nicht vollständig untersuchte Bereiche des Phasendiagramms hin (siehe Abbildung 7.2.9).



Abbildung 7.2.9: Phasendiagramm des Systems Nb-B<sup>[22]</sup>

Die thermodynamische Berechnung (siehe Anhang) dieses Systems ergibt, dass es sich erneut um ein System handelt, bei dem gasförmige Metallchloride gebildet werden. Bei  $\mathcal{G} = 800$  °C ergibt sich eine Stoffmenge für Niobtetrachlorid von n (NbCl<sub>4</sub>) = 9,84 mmol und Niobdiborid von n (NbB<sub>2</sub>) = 8,90 mmol. Dies lässt auf eine vollständige Umsetzung der Niobmetalls schließen, da Niob und Niobdiborid im Phasendiagramm nicht koexistieren. Bortrichlorid liegt in diesem Fall also im Überschuss vor ( $p_0$  (BCl<sub>3</sub>) = 1 bar).

### 7.2.2.1 Experimente und Ergebnisse

Während des Versuches erreichte der Niobdraht ( $\emptyset = 1,0$  mm) eine Temperatur von  $\mathscr{G} \sim 1500^{\circ}$ C. Nach Öffnen des Vorratsgefäßes entwickelte sich ein gelber Niederschlag am Kolbenrand. Nach 3 Stunden wurde die Reaktion beendet. Unter dem Mikroskop war eine gold-glitzernde Schicht auf dem Draht zu erkennen (siehe Abbildung 7.2.10). Die Schichtdicke betrug 0,40 mm. Der Draht hatte nach der Reaktion einen Gesamtdurchmesser von 1,14 mm. Der Metallkern hatte einen Durchmesser von 0,34 mm (siehe Abbildung 7.2.11).



Abbildung 7.2.10: Boridschicht auf Niobdraht



Abbildung 7.2.11: Querschnitt des Boridbeschichteten Niobdrahtes



In Abbildung 7.2.12 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.

Abbildung 7.2.12: REM-Aufnahme des Borid-beschichteten Niobdrahtes (Querschnitt)

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von  $NbB_2$  auf dem Draht (siehe Abbildung 7.2.13). Das Kondensat konnte nicht untersucht werden, da die Menge für eine Messung zu gering war.



Abbildung 7.2.13: Pulverdiffraktogramm der gebildeten Boridschicht auf Niobdraht

| Fragment           | Intensität <sup>*</sup> |
|--------------------|-------------------------|
| $Cl^+$             | 28                      |
|                    | 20                      |
| HCl⁺               | 100                     |
| $\mathrm{BCl}^+$   | 1                       |
| $\mathrm{BCl}_2^+$ | 9                       |
| $\mathrm{BCl}_3^+$ | 4                       |
| $Nb^+$             | 0,4                     |
| $NbO^+$            | 0,5                     |

| Tabelle 7.2.2: Masser | spektrum im | Notem Nb-BCl |
|-----------------------|-------------|--------------|
|-----------------------|-------------|--------------|

<sup>\*</sup>Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von BCl<sub>3</sub> (g) und HCl (g). Über die Zuordnung von Nb<sup>+</sup> und NbO<sup>+</sup> kann nur spekuliert werden. Denkbar sind NbO (g) und/oder Nb (g).

- -

Der niedrige Partialdruck an Bortrichlorid bei der massenspektrometrischen Untersuchung bewirkte wie im System Mo-BCl<sub>3</sub>, dass keine Niobchloride nachgewiesen werden konnten.Die thermodynamischen Berechnungen ergeben jedoch die Bildung von NbCl<sub>4</sub> und NbCl<sub>5</sub> (siehe Anhang).

Es muss also davon ausgegangen werden, dass sich Niobchloride insbesondere NbCl<sub>5</sub> (g) im Reaktionsraum bilden. Der Reaktionsverlauf kann mit folgenden Reaktionsgleichungen beschrieben werden:

| $10^{1/2} \text{ Nb}(s) + 5 \text{ BCl}_3(g) \rightleftharpoons 3 \text{ NbCl}_5(g) + 2^{1/2} \text{ Nb}_3 \text{B}_2(s)$ (7) | 7.2 | 2- | .7 | ) |
|-------------------------------------------------------------------------------------------------------------------------------|-----|----|----|---|
|-------------------------------------------------------------------------------------------------------------------------------|-----|----|----|---|

| $Nb_3B_2(s) + B(s) \rightleftharpoons 3 NbB(s)$ | ( | (7. | .2 | -8 | 3) | ļ |
|-------------------------------------------------|---|-----|----|----|----|---|
|-------------------------------------------------|---|-----|----|----|----|---|

$$5 \text{ NbB}(s) + B(s) \rightleftharpoons \text{Nb}_5 B_6(s) \tag{7.2-9}$$

$$3 \operatorname{Nb}_5 B_6(s) + 2 B(s) \rightleftharpoons 5 \operatorname{Nb}_3 B_4(s)$$
 (7.2-10)

- - -

----

$$Nb_{3}B_{4}(s) + 2 B(s) \rightleftharpoons 3 NbB_{2}(s)$$

$$(7.2-11)$$

Der Reaktionsverlauf ist ähnlich, wie bei der Bildung von Molydänborid. Die Bildung von NbB2 konnte pulverdiffratometrisch nachgewiesen werden. Da die Zwischenstufen nicht beobachtet wurden, ist die Bildung des NbB2 vermutlich sehr schnell.

# 7.2.3 Das System Tantal / Bortrichlorid

In diesem Phasendiagramm sind fünf Tantalboride erkennbar. Das Diborid und das Monoborid schmelzen kongruent. TaB hat mit  $\mathcal{P} = 3090$  °C die höchste Schmelztemperatur des Systems. Ta<sub>3</sub>B<sub>2</sub> zersetzt sich bei  $\mathcal{P} = 2180$  °C zu TaB und Ta<sub>2</sub>B. Ta<sub>2</sub>B existiert in einem Temperaturintervall von  $\mathcal{P} = 2040 - 2417$  °C. Oberhalb zerfällt es in TaB und tantalreicher Schmelze. Alle Verbindungen weisen Phasenbreiten von bis zu 11 % auf (siehe Abbildung 7.2.14).



Abbildung 7.2.14: Phasendiagramm des Systems Ta-B [21]

Die thermodynamischen Berechnungen ergeben bei  $\mathcal{G} = 800$  °C folgende Stoffmengen für die Reaktionsprodukte dieses Systems:

n (TaCl<sub>5</sub>) = 5,27 mmol

n (TaB<sub>2</sub>) = 4,95 mmol

### 7.2.3.1 Experimente und Ergebnisse

Während des Versuches erreichte der Tantaldraht ( $\emptyset = 0,5 \text{ mm}$ ) eine Temperatur von  $\vartheta \sim 1400^{\circ}$ C. Nach Öffnen des Vorratsgefäßes entwickelte sich ein gelber Niederschlag am Kolbenrand. Nach 1,8 Stunden beendete das Durchbrennen des Drahtes die Reaktion. Unter dem Mikroskop war eine grau-glitzernde Schicht auf dem Draht zu erkennen (siehe Abbildung 7.2.15). Der Draht hatte nach der Reaktion einen Gesamtdurchmesser von 0,51 mm. Die Schichtdicke betrug 0,09 mm. Der Metallkern hatte einen Durchmesser von 0,33 mm (siehe Abbildung 7.2.16).



Abbildung 7.2.15: Boridschicht auf Tantaldraht



Abbildung 7.2.16: Querschnitt des Boridbeschichteten Tantaldraht



In Abbildung 7.2.17 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.

Abbildung 7.2.17: REM-Aufnahme des Borid-beschichteten Tantaldrahtes (Querschnitt)

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von  $TaB_2$  auf dem Draht (siehe Abbildung 7.2.18). Das Kondensat konnte nicht untersucht werden, da die Menge gering war.



Abbildung 7.2.18: Pulverdiffraktogramm der gebildeten Boridschicht auf Tantaldraht

| Fragment               | Intensität <sup>*</sup> |  |  |
|------------------------|-------------------------|--|--|
| $\mathrm{Cl}^+$        | 27                      |  |  |
| $\mathrm{HCl}^{+}$     | 100                     |  |  |
| $\mathrm{BCl}^+$       | 1,2                     |  |  |
| $\mathrm{BCl}_2^+$     | 6,6                     |  |  |
| $\mathrm{BCl}_{3}^{+}$ | 1,6                     |  |  |

Tabelle 7.2.3: Massenspektrum im System Ta-BCl<sub>3</sub>

\*Isotopenmuster berücksichtigt

Das Massenspektrum zeigt lediglich die Anwesenheit von BCl<sub>3</sub> (g) und HCl (g).

Auch in diesem Fall unterscheiden sich aus den bereits diskutierten Gründen die Ergebnisse der massenspektrometischen Untersuchung und der thermodynamischen Berechnung (siehe Anhang).

In diesem System kann also wieder davon ausgegangen werden, dass ein gasförmiges Tantalchlorid gebildet wird. Der vermutliche Reaktionsverlauf kann mit den folgenden Gleichungen beschrieben werden:

$$13 \text{ Ta}(s) + 5 \text{ BCl}_3(g) \rightleftharpoons 3 \text{ TaCl}_5(g) + 5 \text{ Ta}_2 \text{B}(s)$$
(7.2-12)

$$3 \operatorname{Ta}_{2} B(s) + 3 B(s) \rightleftharpoons 2 \operatorname{Ta}_{3} B_{2}(s)$$
 (7.2-13)

$$Ta_{3}B_{2}(s) + B(s) \rightleftharpoons 3 TaB(s)$$

$$(7.2-14)$$

$$3 \operatorname{TaB}(s) + B(s) \rightleftharpoons \operatorname{Ta}_{3}B_{4}(s) \tag{7.2-15}$$

$$Ta_{3}B_{4}(s) + 2 B(s) \Rightarrow 3 TaB_{2}(s)$$
 (7.2-16)

 $TaB_2$  konnte pulverdiffraktometrisch nachgewiesen werden. In einem ersten Reaktiosschritt wird vermutlich erneut das Borid mit dem niedrigsten Boranteil gebildet. Die Bildung von TaCl<sub>5</sub> und TaCl<sub>4</sub> wurde in thermodynamischen Berechnungen vorrausgesagt (siehe Anhang). Zur Vereinfachung wurde die Bildung TaCl<sub>4</sub> vernachlässigt. Da Ta<sub>2</sub>B und Ta<sub>3</sub>B<sub>2</sub> nicht nachgewiesen werden konnten, nehmen wir an, dass diese sehr schnell weiter zum thermodynamisch stabileren TaB<sub>2</sub> reagieren.

Die Bildung von TaB bestätigte die Wiederholung des Versuches bei kürzerer Reaktionsdauer (ca. 1 Stunde).

## 7.2.4 Das System Titan / Bortrichlorid

In diesem System existieren drei Titanboride. TiB und TiB<sub>2</sub> weisen eine Phasenbreite von bis zu 2 % auf. Das Monoborid zersetzt sich bei  $\mathcal{G} \sim 2200$  °C zu titanreicher Schmelze und Ti<sub>3</sub>B<sub>4</sub>. TiB<sub>2</sub> hat mit  $\mathcal{G} = 3225$  °C die höchste Schmelztemperatur des Systems (siehe Abbildung 7.2.19).



Abbildung 7.2.19: Phasendiagramm des Systems Ti-B<sup>[21]</sup>

#### 7.2.4.1 Experimente und Ergebnisse

Die Reaktion lief bei  $\mathcal{G} = 1200$  °C ab. Eingesetzt wurde ein Titandraht mit einem Durchmesser von  $\mathcal{O} = 0,5$  mm. Nach Öffnen des Vorratsgefäßes entstand violetter Rauch (TiCl<sub>3</sub> (g)), der sich nach einiger Zeit als Niederschlag an der Kolbenwand absetzte. Der Versuch wurde nach 2 Stunden abgebrochen, da kein Reaktionsfortschritt mehr zu erkennen war. Unter dem Mikroskop war eine grau-schwarze Schicht zu erkennen (siehe Abbildung 7.2.20). Die Schichtdicke betrug 0,07 mm. Der regierte Draht hatte einen Gesamtdurchmesser von 0,64 mm und einen 0,5 mm dicken Metallkern (siehe Abbildung 7.2.21).



Abbildung 7.2.20: Boridschicht auf Titandraht



Abbildung 7.2.21: Querschnitt des Boridbeschichteten Titandrahtes

In Abbildung 7.2.22 ist eine REM-Aufnahme des reagierten Drahtes zu sehen.



Abbildung 7.2.22: REM-Aufnahme des Borid-beschichteten Titandrahtes

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von TiB und TiB<sub>2</sub> auf dem Draht (siehe Abbildung) und TiCl<sub>3</sub> an der Kolbenwand.



Abbildung 7.2.23: Pulverdiffraktogramm der gebildeten Boridschicht auf Titandraht

Die Reflexe des Titans erklärt erneut die Probenvorbereitung mit der Kugelmühle.

| Fragment           | Intensität <sup>*</sup> |
|--------------------|-------------------------|
| ~! <b>+</b>        |                         |
| Cl                 | 23                      |
| $\mathrm{HCl}^{+}$ | 100                     |
| $\mathrm{BCl}^+$   | 8                       |
| $\mathrm{BCl}_2^+$ | 88                      |
| $\mathrm{BCl}_3^+$ | 34                      |
| Ti <sup>+</sup>    | 5                       |
| ${\rm TiCl}^+$     | 6                       |
| ${\rm TiCl_2}^+$   | 17                      |
| ${\rm TiCl_3}^+$   | 13                      |
| ${\rm TiCl_4}^+$   | 2                       |

Tabelle 7.2.4: Massenspektrum im System Ti-BCl<sub>3</sub>

\*Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von BCl<sub>3</sub> (g), TiCl<sub>4</sub> (g) und HCl(g).

Hier liegt ein Reaktionsverlauf unter Bildung eines gasförmigen Metallchlorid vor. Die massenspektrometrischen Untersuchungen bestätigen die thermodynamischen Berechnungen (siehe Anhang). Dies erklärt sich aus der sich nicht ändernden Teilchenzahl in Gleichung (7.2-17). Der Reaktionsverlauf kann mit folgenden Gleichungen beschrieben werden:

$$2 \operatorname{Tr}(s) + \operatorname{BCl}_{3}(g) \rightleftharpoons \operatorname{Tr}Cl_{3}(g) + \operatorname{Tr}B(s)$$
(7.2-17)

$$3 \operatorname{Ti}B(s) + B(s) \rightleftharpoons \operatorname{Ti}_{3}B_{4}(s)$$
(7.2-18)

$$Ti_{3}B_{4}(s) + 2B(s) \rightleftharpoons 3TiB_{2}(s)$$

$$(7.2-19)$$

Wie bereits erwähnt, ergeben die Pulverdiffraktometrischen Messungen die Bildung von TiB,  $TiB_2$  und  $TiCl_3$ . Wir nehmen an, dass der Reaktionschritt aus Gleichung (7.2-18) auf Grund der schnellen Reaktionszeit nicht nachgewiesen werden kann.

## 7.2.5 Das System Vanadium / Bortrichlorid

Das Phasendiagramm enthält mit sechs Boriden die meisten der hier untersuchten Systeme. Keine der Verbindungen hat eine Phasenbreite.  $V_3B_2$  schmilzt bei  $\mathcal{G} = 1900$  °C inkongruent. Ein gleiches Schmelzverhalten weisen VB ( $\mathcal{G} = 2570$  °C),  $V_5B_6$  ( $\mathcal{G} = 1727$  °C) und  $V_2B_3$  ( $\mathcal{G} = 2667$  °C) auf. VB<sub>2</sub> schmilzt bei  $\mathcal{G} = 2747$  °C kongruent und stellt damit die am höchsten schmelzende Verbindung im Phasendiagramm dar (siehe Abbildung 7.2.24).



Abbildung 7.2.24: Phasendiagramm des Systems V-B<sup>[21]</sup>

#### 7.2.5.1 Experimente und Ergebnisse

Während der Reaktion wurde eine Temperatur von  $\mathscr{G} \sim 1200$  °C eingestellt. Eingesetzt wurde ein Vanadiumdraht mit einem Durchmesser von  $\mathscr{O} = 1,0$  mm. Nach Öffnen des Vorratsgefäßes entstand farbloser Rauch, der sich nach einiger Zeit als violetter Niederschlag an der Kolbenwand absetzte. Der Versuch wurde nach einer Stunde abgebrochen, da kein Reaktionsfortschritt mehr zu erkennen war. Unter dem Mikroskop war eine graue Schicht zu erkennen (siehe Abbildung 7.2.25). Der Gesamtdurchmesser des Drahtes betrug nach der Reaktion 1,07 mm. Es hatte sich eine 0,22 mm dicke Schicht gebildet. Der Metallkern hatte einen Durchmesser von 0,63 mm (siehe Abbildung 7.2.26).



Abbildung 7.2.25: Boridschicht auf Vanadiumdraht



Abbildung 7.2.26: Querschnitt des Boridbeschichteten Vanadiumdrahtes

In Abbildung 7.2.27 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.



Abbildung 7.2.27: REM-Aufnahme des Borid-beschichteten Vanadiumdrahtes

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von  $VB_2$  auf dem Draht (siehe Abbildung 7.2.28) und  $VCl_3 \cdot 6 H_2O$  an der Kolbenwand, welches durch Einwirkung von Luftfeuchtigkeit auf  $VCl_3$  entsteht.



Abbildung 7.2.28: Pulverdiffraktogramm der gebildeten Boridschicht auf Vanadiumdraht

| Fragment           | Intensität <sup>*</sup> |
|--------------------|-------------------------|
|                    |                         |
| $\mathrm{Cl}^+$    | 25                      |
| $\mathrm{HCl}^+$   | 100                     |
| $\mathrm{BCl}^+$   | 6                       |
| $\mathrm{BCl}_2^+$ | 55                      |
| $\mathrm{BCl}_3^+$ | 17                      |
| $V^+$              | 1,1                     |
| $\mathrm{VCl}^+$   | 1,4                     |
| $\mathrm{VCl}_2^+$ | 4,3                     |
| $\text{VCl}_3^+$   | 3,8                     |
| $\mathrm{VCl}_4^+$ | 1,2                     |

\*Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von  $VCl_4$  (g) wahrscheinlich neben  $VCl_3$  (g),  $VCl_2$  (g) und HCl (g) an.

Hier liegt wieder ein Reaktionsverlauf unter Bildung eines oder mehrerer gasförmiger Metallchlorid vor. Thermodynamische Berechnungen (siehe Anhang) ergeben die Bildung von  $VCl_3(g)$ . Dies wird von der pulverdiffraktometrischen und der massenspektrometrischen Untersuchung bestätigt. Der Reaktionsverlauf kann in etwa durch Gleichungen (7.2-20) - (7.2-24) beschrieben werden.

$$5 V (s) + 2 BCl_3 (g) \rightleftharpoons 2 VCl_3(g) + V_3B_2(s)$$

$$(7.2-20)$$

$$V_{3}B_{2}(s) + B(s) \rightleftharpoons 3 \text{ VB}(s)$$

$$(7.2-21)$$

$$5 \text{ VB}(s) + B(s) \rightleftharpoons V_5 B_6(s) \tag{7.2-22}$$

$$2 V_5 B_6 (s) + 3 B (s) \rightleftharpoons 5 V_2 B_3 (s)$$
 (7.2-23)

$$V_2B_3(s) + B(s) \rightleftharpoons 2 VB_2(s)$$

$$(7.2-24)$$

Die Bildung von VB<sub>2</sub> und VCl<sub>3</sub> ist pulverdiffraktometrisch nachgewiesen. Da VB<sub>2</sub> und elementares Vanadium nicht koexistieren können, nehmen wir an, dass die Geschwindigkeit bei den Reaktionen (7.2-20) - (7.2-23) so groß ist, dass auch bei Wiederholung des Experimentes mit kürzerer Reaktionsdauer (30 Minuten) kein vanadiumreicheres Silicid nachgewiesen werden konnte.

### 7.2.6 Das System Wolfram / Bortrichlorid

Im Phasendiagramm des Systems W-B sind vier Wolframboride zu erkennen. W<sub>2</sub>B schmilzt bei  $\mathcal{G} = 2670$  °C kongruent und weist eine Phasenbreite von bis zu 2 % auf. Das Monoborid tritt in zwei Phasen auf:  $\alpha$ - und  $\beta$ -WB.  $\alpha$ -WB hat eine Phasenbreite, die bei  $\mathcal{G} = 2110$  °C 3,5 % erreicht. Bei  $\mathcal{G} = 2170$  °C zersetzt es sich zu  $\beta$ -WB und W<sub>2</sub>B<sub>5</sub>.  $\beta$ -WB schmilzt bei  $\mathcal{G} = 2685$  °C kongruent und zerfällt unterhalb  $\mathcal{G} = 2110$  °C zu  $\alpha$ -WB und W<sub>2</sub>B. W<sub>2</sub>B<sub>5</sub> schmilzt bei  $\mathcal{G} = 2365$  °C ebenfalls kongruent und weist eine Phasenbreite von 2 % auf. Die borreichste Verbindung WB<sub>4</sub> zersetzt sich bei  $\mathcal{G} = 2020$  °C zu W<sub>2</sub>B<sub>5</sub> und borreicher Schmelze. In diesem Bereich ist das Phasendiagramm noch nicht ausreichend untersucht, was durch die gestrichelten Linien dargestellt wird (siehe Abbildung 7.2.29).



Abbildung 7.2.29: Phasendiagramm des Systems W-B<sup>[21]</sup>

### 7.2.6.1 Experimente und Ergebnisse

Bei diesem Versuch wurde der Wolframdraht ( $\emptyset = 1,0 \text{ mm}$ ) auf  $\vartheta \sim 1800 \text{ °C}$  erhitzt. Da nach einer Stunde keine Anzeichen einer Reaktion zu erkennen waren, wurde der Versuch abgebrochen.

Es hatte offensichtlich keine Reaktion stattgefunden. Betrachtet man Reaktionen unter Bildung des Wolframborids WB aus thermodynamischer Sicht, unter der Annahme, dass bei den sehr hohen Temperaturen WCl<sub>2</sub> (g) gebildet wird, so wird das negative Ergebnis des Experiments verständlich, wenn man die Gleichgewichtskonstanten berechnet.

$$7 W (s) + 2 BCl_3 (g) \rightleftharpoons 2 W_2 B (s) + 3 WCl_2 (g) \qquad K_{2073} = 7,6 \cdot 10^{-3}$$
(7.2-25)

$$4 W (s) + 2 BCl_3 (g) \rightleftharpoons 2 W_2 B (s) + 3 Cl_2 (g) \qquad K_{2073} = 2,0.10^{-38}$$
(7.2-26)

Für beide Reaktionen ergeben die Berechnungen  $K \ll 1$ . Es findet also keine dieser Reaktionen bei den gegebenen Reaktionsbedingungen statt.

## 7.2.7 Das System Zirkonium / Bortrichlorid

Im System Zr-B existieren zwei Verbindungen der genannten Elemente. Die Strichphase  $ZrB_{12}$  schmilzt inkongruent und zerfällt bei  $\mathcal{P} = 2030$  °C in  $ZrB_2$  und eine borreiche Schmelze. Die höchste Schmelztemperatur im System stellt  $ZrB_2$  mit  $\mathcal{P} \sim 3200$  °C dar. Auch hier ist an den gestrichelten Linien zu erkennen, dass einige Gebiete des Phasendiagramms noch nicht vollständig untersucht wurden (siehe Abbildung 7.2.30).



Abbildung 7.2.30: Phasendiagramm des Systems Zr-B<sup>[21]</sup>

#### 7.2.7.1 Experimente und Ergebnisse

Der Zirkoniumdraht ( $\emptyset = 1,1$  mm) wurde auf eine Temperatur von  $\vartheta \sim 1300$  °C erhitzt. Nach Öffnen des Vorratsgefäßes bildete sich farbloser Rauch, der sich an der Kolbenwand als Niederschlag absetzte. Nach 75 Minuten wurde der Versuch abgebrochen, da kein Reaktionsfortschritt mehr zu erkennen war. Unter dem Mikroskop war eine graue Schicht zu erkennen (siehe Abbildung 7.2.31). Die Schichtdicke betrug 0,05 mm. Der Gesamtdurchmesser des Drahtes betrug nach der Reaktion 1,20 mm. Der Durchmesser des Metallkerns betrug 1,10 mm (siehe Abbildung 7.2.32).



Abbildung 7.2.31: Boridschicht auf Zirkoniumdraht



Abbildung 7.2.32: Querschnitt des Boridbeschichteten Zirkoniumdrahtes

In Abbildung 7.2.33 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.



Abbildung 7.2.33: REM-Aufnahme des Borid-beschichteten Zirkoniumdrahtes

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von  $ZrB_2$  auf dem Draht (siehe Abbildung 7.2.34). Die Untersuchung des Kondensats ergibt  $ZrOCl_2 \cdot 8H_2O$ , welches durch Hydrolyse aus  $ZrCl_4$  entsteht.



Abbildung 7.2.34: Pulverdiffraktogramm der gebildeten Boridschicht auf Zirconiumdraht

| Fragment                      | Intensität* |
|-------------------------------|-------------|
| Cl <sup>+</sup>               | 22          |
| $\mathrm{HCl}^+$              | 100         |
| $\mathrm{BCl}^+$              | 7           |
| $\mathrm{BCl}_2^+$            | 50          |
| $\mathrm{BCl}_{3}^{+}$        | 11          |
| $Zr^+$                        | 12,5        |
| $\mathrm{ZrCl}^+$             | 1,3         |
| $\operatorname{ZrCl}_{2}^{+}$ | 2           |
| $\operatorname{ZrCl}_{3}^{+}$ | 6,4         |
| $\operatorname{ZrCl}_4^+$     | 2,3         |

| Tabelle | 7.2.6: | Massenspel | ktrum im | System | Zr-BCl <sub>3</sub> |
|---------|--------|------------|----------|--------|---------------------|
|---------|--------|------------|----------|--------|---------------------|

\*Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von BCl<sub>3</sub> (g), ZrCl<sub>4</sub> (g) und HCl (g).

Hier liegt erneut ein Reaktionsverlauf vor, bei dem ein gasförmiges Metallchlorid gebildet wird. Dieser Reaktionsverlauf bestätigt die thermodynamischen Berechungen (siehe Anhang). Er kann mit folgenden Gleichungen beschrieben werden:

$$5 \operatorname{Zr}(s) + 4 \operatorname{BCl}_{3}(g) \rightleftharpoons 3 \operatorname{ZrCl}_{4}(g) + 2 \operatorname{ZrB}_{2}(s)$$
(7.2-27)

Zirkonium reagierte bei den gegebenen Bedingungen mit Bortrichlorid zu Zirkoniumdiborid und Zirkoniumtetrachlorid. Dies ist thermodynamisch erlaubt, da die beiden Phasen im Phasendiagramm koexistieren. Beide Produkte konnten pulverdiffraktometrisch nachgewiesen werden.

(7.3-2)

# 7.3 Tetrachlorkohlenstoff

 $\operatorname{Cl}_2(g) \rightleftharpoons 2 \operatorname{Cl}(g)$ 

Vor Beginn der Versuche wurde das thermische Verhalten von  $CCl_4$  thermodynamisch berechnet. Dabei wurden folgende Spezies berücksichtigt: C (s), C (g), C<sub>2</sub>Cl<sub>2</sub> (g), C<sub>2</sub>Cl<sub>4</sub> (g), C<sub>2</sub>Cl<sub>6</sub> (g), C<sub>3</sub> (g), C<sub>4</sub> (g), C<sub>5</sub> (g), CCl (g), CCl<sub>2</sub> (g), CCl<sub>3</sub> (g), CCl<sub>4</sub> (g), Cl (g), Cl<sub>2</sub> (g). In Abbildung 7.3.1 sind deren Partialdrücke gegen die Temperatur aufgetragen. Erhitzt man  $CCl_4$ auf hohe Temperaturen so zersetzt sich dieses, anders als die bisher betrachteten Nichtmetallhalogenide, hauptsächlich in Cl<sub>2</sub>, Cl und C. Der gebildete elementare Kohlenstoff taucht in der Graphik nicht auf, da er als fester Bodenkörper vorliegt. Die ablaufenden Zersetzungsreaktionen können mit folgenden Reaktionsgleichungen beschrieben werden:

$$\operatorname{CCl}_4(g) \rightleftharpoons 2 \operatorname{Cl}_2(g) + C(s)$$
 (7.3-1)



Abbildung 7.3.1: Thermische Zersetzung von Tetrachlorkohlenstoff

#### Laborexperimente mit CCl<sub>4</sub>

Hierbei wurde der gleiche Aufbau, wie bei den Versuchen mit Trichlorsilan und Bortrichlorid verwendet. In der Apparatur wurde vor Beginn des Versuches jeweils ein Druck von p = 0,01 bar eingestellt. Zu Beginn des Versuches stellte sich der Dampfdruck von Tetrachlorkohlenstoff  $p_0$  (CCl<sub>4</sub>) = 0,36 bar (Dampfdruck von CCl<sub>4</sub> bei  $\mathcal{G} = 25$  °C) ein. Auch hier wurden die Versuche am Massenspektrometer untersucht.

### 7.3.1 Das System Molybdän / Tetrachlorkohlenstoff

Im Phasendiagramm des Systems Mo-C sind vier Verbindungen aus Molybdän und Kohlenstoff zu erkennen. Mo<sub>2</sub>C tritt in zwei Phasen auf, die im Phasendiagramm als  $\beta$ ' und  $\beta$  bezeichnet werden. Die  $\beta$ '-Phase geht bei  $\vartheta \sim 1450$  °C in die  $\beta$ -Phase über. Diese schmilzt bei  $\vartheta \sim 2500$  °C kongruent. Bei 37 - 40 % C liegt die  $\eta$ -Phase vor. Die  $\delta$ -Phase existiert im Bereich 37 - 43 % und schmilzt bei  $\vartheta = 2605$  °C kongruent. MoC ist eine Strichphase, die sich bei  $\vartheta = 1220$  °C zersetzt (siehe Abbildung 7.3.3).



Abbildung 7.3.3: Phasendiagramm des Systems Mo-C<sup>[21]</sup>

Die thermodynamischen Berechnungen der Systeme Metall / Tetrachlorkohlenstoff (siehe Anhang) zeigen, dass  $CCl_4$  mit allen betrachteten Metallen reagieren sollte. In Abbildung 7.3.2 sind die Partialdrücke im System Mo-CCl<sub>4</sub> exemplarisch dargestellt. Folgende Spezies wurden bei der Berechnung berücksichtigt: C (s), C (g), C<sub>2</sub>Cl<sub>2</sub> (g), C<sub>2</sub>Cl<sub>4</sub> (g), C<sub>2</sub>Cl<sub>6</sub> (g), C<sub>3</sub> (g), C<sub>4</sub> (g), C<sub>5</sub> (g), CCl (g), CCl<sub>2</sub> (g), CCl<sub>3</sub> (g), CCl<sub>4</sub> (g), Cl (g), Cl<sub>2</sub> (g), Mo (g), Mo (s), Mo<sub>2</sub>C (s), MoCl (g), MoCl<sub>2</sub> (g), MoCl<sub>2</sub> (g), MoCl<sub>3</sub> (g), MoCl<sub>4</sub> (g), MoCl<sub>5</sub> (g), MoCl<sub>6</sub> (g).



Abbildung 7.3.2: Verhältnisse der Partialdrücke im System Mo-CCl4

Der Partialdruck von MoCl<sub>4</sub> ist in Abbildung 7.3.2 im gesamten Temperaturbereich am höchsten. Andere Chloride wie: MoCl, MoCl<sub>2</sub> und MoCl<sub>5</sub> spielen keine so große Rolle für den Reaktionsverlauf, da ihre Partialdrücke im gesamten Temperaturbereich unterhalb von  $p = 1 \cdot 10^{-2}$ bar liegen. Der Partialdruck von MoCl<sub>3</sub> gewinnt ab  $\mathcal{P} = 1500$  °C an Bedeutung. Oberhalb dieser Temperatur ist der Partialdruck  $p > 1 \cdot 10^{-2}$  bar. Die Spezies Cl, Cl<sub>2</sub>, CCl, CCl<sub>2</sub>, CCl<sub>3</sub>, C<sub>2</sub>Cl<sub>2</sub> und C<sub>2</sub>Cl<sub>4</sub> stammen aus der thermischen Zersetzung von CCl<sub>4</sub>.

### 7.3.1.1 Experimente und Ergebnisse

Während des Versuches erreichte der Molybdändraht ( $\emptyset = 0,5$  mm) eine Temperatur von  $\mathscr{G} \sim 1600$  °C. Nach Öffnen des Vorratsgefäßes bildete sich farbloser Rauch, der sich an der Kolbenwand als brauner Niederschlag absetzte. Nach 20 Minuten wurde der Versuch manuell abgebrochen, da kein Reaktionsfortschritt mehr zu erkennen war. Unter dem Mikroskop war eine dünne schwarze Schicht zu erkennen (siehe Abbildung 7.3.4). Die Schichtdicke betrug ca. 0,01 mm (siehe Abbildung 7.3.5).



Abbildung 7.3.4: Carbidschicht auf Molybdändraht



Abbildung 7.3.5: Querschnitt des Carbidbeschichteten Molybdändrahtes

In Abbildung 7.3.6 ist eine REM-Aufnahme des reagierten Drahtes zu sehen.



Abbildung 7.3.6: REM-Aufnahme des Carbid-beschichteten Molybdändrahtes

Die pulverdiffraktometrischen Untersuchungen zeigen die Bildung von Mo<sub>2</sub>C (siehe Abbildung). Das Kondensat von der Kolbenwand zeigt keine auswertbaren Reflexe im Pulverdiffraktogramm.



Abbildung 7.3.7: Pulverdiffraktogramm der gebildeten Carbidschicht auf Molybdändrahtdraht

Die Reflexe des Molybdäns im Pulverdiffraktogramm stammen erneut aus der Probenaufbereitung.

| Fragment                 | Intensität <sup>*</sup> |
|--------------------------|-------------------------|
| $C1^+$                   | (2)                     |
| CI                       | 63                      |
| $\mathrm{HCl}^{+}$       | 89                      |
| $\mathrm{CCl}^+$         | 19                      |
| $\operatorname{CCl}_2^+$ | 23                      |
| $\operatorname{CCl}_3^+$ | 100                     |
| $\mathrm{Mo}^+$          | 15                      |

| Tabelle 7. | 3.1: Masser | spektrum im | System 1 | Mo-CCl <sub>4</sub> |
|------------|-------------|-------------|----------|---------------------|
|            |             |             | - /      |                     |

<sup>\*</sup>Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von  $CCl_4$  (g), Mo (g) und HCl (g). Zerfallsprodukte von  $CCl_4$  (g) konnten nicht beobachtet werden. Vermutlich hat sich das thermodynamische Gleichgewicht der thermischen Zersetzung von  $CCl_4$  nicht eingestellt, somit konnten die im thermodynamischen Gleichgewicht auftretenden Produkte bei der massenspektrometrischen Untersuchung nicht nachgewiesen werden. Dies steht im Einklang mit dem chemischen Verhalten von  $CCl_4$ , welches sich im Gegensatz zu den thermodynamischen Erwartungen besonders inert verhält.

Der Reaktionsverlauf kann z.B. mit Gleichung (7.3-3) beschrieben werden.

$$Mo(s) + CCl_4(g) \rightleftharpoons MoCl_4(g) + Mo_2C(s)$$

$$(7.3-3)$$

Die Bildung von  $MoCl_4$  ergibt sich aus der thermodynamischen Berechnung. Bei der pulverdiffraktometrischen Untersuchung wurde die Bildung von  $Mo_2C$  nachgewiesen. Tetrachlorkohlenstoff reagiert offenbar mit Molybdän bei den hohen Temperaturen zu Molybdändicarbid und gasförmigem Molybdäntetrachlorid. Im Phasendiagramm ist diese Phase als " $\beta$ " gekennzeichnet. Die Bildung dieses Carbids ist thermodynamisch erlaubt, da die  $\beta$ -Phase im Phasendiagramm mit Molybdän koexistiert.

## 7.3.2 Das System Niob / Tetrachlorkohlenstoff

Im Phasendiagramm dieses Systems überwiegen die nicht genau definierten Bereiche. Aus diesem Grund beschränkt sich diese Beschreibung nur auf die genau untersuchten Verbindungen. Nb<sub>2</sub>C liegt in zwei Modifikationen vor.  $\beta$ -Nb<sub>2</sub>C geht im Bereich von  $\mathcal{G} = 2530 - 2450$  °C in  $\gamma$ -Nb<sub>2</sub>C über.  $\gamma$ -Nb<sub>2</sub>C zersetzt sich bei  $\mathcal{G} = 3080$  °C in niobreiche Schmelze und NbC<sub>1-x</sub>. Als weitere Verbindungen treten noch Nb<sub>4</sub>C<sub>3-x</sub> und Nb<sub>5</sub>C<sub>6</sub> auf (siehe Abbildung 7.3.8).



Abbildung 7.3.8: Phasendiagramm des Systems Nb-C<sup>[21]</sup>

#### 7.3.2.1 Experimente und Ergebnisse

Der Niobdraht ( $\emptyset = 1,0$  mm) wurde auf eine Temperatur von  $\vartheta \sim 1400$  °C erhitzt. Nach Öffnen des Vorratsgefäßes bildete sich farbloser Rauch, der sich an der Kolbenwand als Niederschlag absetzte. Nach 10 Minuten wurde der Versuch abgebrochen, da kein Reaktionsfortschritt mehr zu erkennen war. Unter dem Mikroskop war eine schwarze Schicht zu erkennen (siehe Abbildung 7.3.9). Die Schichtdicke betrug ca. 0,01 mm (siehe Abbildung 7.3.10).



Abbildung 7.3.9: Carbidschicht auf Niobdraht



Abbildung 7.3.10: Querschnitt des Carbidbeschichteten Niobdrahtes

In Abbildung 7.3.11 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.



Abbildung 7.3.11: REM-Aufnahme des Carbid-beschichteten Niobdrahtes

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von NbC auf dem Draht (siehe Abbildung 7.3.12). Das Kondensat von der Kolbenwand zeigt keine auswertbaren Reflexe im Pulverdiffraktogramm.



Abbildung 7.3.12: Pulverdiffraktogramm der gebildeten Carbidschicht auf Niobdraht

| Fragment                 | Intensität* |
|--------------------------|-------------|
| $C1^+$                   | 60          |
|                          | 100         |
| HCI                      | 100         |
| $\mathrm{CCl}^+$         | 15          |
| $\operatorname{CCl}_2^+$ | 19          |
| $\operatorname{CCl}_3^+$ | 68          |
| $Nb^+$                   | 3           |
| $NbO^+$                  | 1,5         |

Tabelle 7.3.2: Massenspektrum im System Nb-CCl<sub>4</sub>

<sup>\*</sup>Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von CCl<sub>4</sub> (g), und HCl (g) neben Nb (g) und/oder NbO (g).

Niob verhält sich bei der Reaktion mit CCl<sub>4</sub> ähnlich wie das System Mo-CCl<sub>4</sub>. Bei der massenspektrometrischen Untersuchung konnte kein Niobchlorid nachgewiesen werden. NbO (g) entsteht aus Restsauerstoff im System oder Sauerstoffeinlagerungen im Metalldraht. Es trägt nicht zur Bildung der Carbidschicht bei. Nach thermodynamischer Berechnung des Systems bildete sich allerdings NbCl<sub>4</sub> (siehe Anhang). Der Reaktionsverlauf kann mit folgenden Gleichungen beschrieben werden:

$$3 \text{ Nb}(s) + \text{CCl}_4(g) \rightleftharpoons \text{NbCl}_4(g) + \text{Nb}_2\text{C}(s)$$

$$(7.3-4)$$

$$2 \operatorname{Nb}_{2} C(s) + C(s) \rightleftharpoons \operatorname{Nb}_{4} C_{3}(s)$$

$$(7.3-5)$$

$$Nb_4C_3(s) + C(s) \Longrightarrow 4 NbC(s)$$
 (7.3-6)

Zur Vereinfachung beschränken sich die Reaktionsgleichungen nur auf die Bildung von NbCl<sub>4</sub>, die Bildung von NbCl<sub>5</sub> wurde vernachlässigt. Vermutlich wird zuerst das kohlenstoffärmste Carbid gebildet aus welchem dann in weiteren Reaktionsschritten NbC entsteht. Die Bildung von NbC verläuft offensichtlich sehr schnell, so dass die Zwischenprodukte nicht nachgewiesen werden konnten.
### 7.3.3 Das System Tantal / Tetrachlorkohlenstoff

Das Phasendiagramm von Tantal und Kohlenstoff zeigt ebenfalls nicht genau untersuchte Bereiche. Ta<sub>2</sub>C tritt in zwei Phasen auf.  $\alpha$ -Ta<sub>2</sub>C geht bei  $\vartheta > 2020$  °C in  $\beta$ -Ta<sub>2</sub>C über. Die  $\beta$ -Phase zersetzt sich bei  $\vartheta = 3330$  °C in tantalreiche Schmelze und TaC. TaC schmilzt bei  $\vartheta = 3985$  °C kongruent. Die nicht genau definierte  $\zeta$ -Phase liegt bei ca. 40 % C vor (siehe Abbildung 7.3.13).



Abbildung 7.3.13: Phasendiagramm des Systems Ta-C<sup>[21]</sup>

#### 7.3.3.1 Experimente und Ergebnisse

Während des Versuches betrug die Temperatur  $\mathscr{G} \sim 1500$  °C. Eingesetzt wurde ein Tantaldraht mit einem Durchmesser von  $\mathscr{O} = 0,5$  mm. Nach Einleiten von Tetrachlorkohlenstoff entwickelte sich farbloser Rauch, der sich als brauner Niederschlag an der Kolbenwand absetzte. Nach 1,5 Stunden wurde der Versuch abgebrochen, da kein Reaktionsfortschritt mehr zu erkennen war. Unter dem Mikroskop war eine schwarze Schicht zu erkennen (siehe Abbildung 7.3.14). Die Schichtdicke betrug 0,01 mm (siehe Abbildung 7.3.15).



Abbildung 7.3.14: Carbidschicht auf Tantaldraht



Abbildung 7.3.15: Querschnitt des Carbidbeschichteten Tantaldrahtes

In Abbildung 7.3.16 ist eine REM-Aufnahme des reagierten Drahtes zu sehen.



Abbildung 7.3.16: REM-Aufnahme des Carbid-beschichteten Tantaldrahtes

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von Ta<sub>2</sub>C und TaC auf dem Draht (siehe Abbildung 7.3.17). Das Kondensat von der Kolbenwand zeigt keine auswertbaren Reflexe im Pulverdiffraktogramm.



Abbildung 7.3.17: Pulverdiffraktogramm der gebildeten Carbidschicht auf Tantaldraht

Die Reflexe des Tantals erklären sich erneut mit der Probenvorbereitung.

| Fragment                 | Intensität <sup>*</sup> |
|--------------------------|-------------------------|
| $Cl^+$                   | 50                      |
| HCl <sup>+</sup>         | 75                      |
| $\mathrm{CCl}^+$         | 21                      |
| $\operatorname{CCl}_2^+$ | 25                      |
| $\operatorname{CCl}_3^+$ | 100                     |
| Ta <sup>+</sup>          | 0,6                     |
| $\mathrm{TaO}^+$         | 1,2                     |

| Tabelle 7 | 7.3.3: | Massens | pektrum | im S | System | Ta-CCl <sub>4</sub> |
|-----------|--------|---------|---------|------|--------|---------------------|
| I abene   |        | massens | pentium | mi c | yoccin | 14 004              |

\*Isotopenmuster berücksichtigt

Hier liegt wieder ein Reaktionsverlauf unter Bildung eines oder mehrerer gasförmiger Metallchlorid gebildet vor ähnlich wie beim System Mo-CCl<sub>4</sub>. Das massenspektrometrisch beobachtete Tantaloxid entstand aus Restsauerstoff im System oder Sauerstoffeinlagerungen im Metalldraht. Dieses trug nicht zur Bildung der Carbidschicht bei. Die thermodynamischen Berechnungen des Systems ergeben, dass sich TaCl<sub>4</sub> und TaCl<sub>5</sub> bildet (siehe Anhang). Der Reaktionsverlauf kann mit folgenden Gleichungen beschrieben werden:

$$14 \text{ Ta}(s) + 5 \text{ CCl}_4(g) \rightleftharpoons 4 \text{ TaCl}_5(g) + 5 \text{ Ta}_2 \text{C}(s)$$
(7.3-7)

$$Ta_2C(s) + C(s) \rightleftharpoons 2TaC(s)$$
 (7.3-8)

Bei der pulverdiffraktometrischen Untersuchung wurde die Bildung von  $Ta_2C$  und TaC nachgewiesen. Vermutlich wurde wieder zuerst das kohlenstoffärmste Carbid gebildet, aus welchem dann in weiteren Reaktionsschritten TaC entstand. Zur Vereinfachung wurde die Bildung von  $TaCl_4$  vernachlässigt. Die Bildung einer  $Ta_2C$  neben Tantal ist thermodynamisch erlaubt.

### 7.3.4 Das System Titan / Tetrachlorkohlenstoff

Im Phasendiagramm Ti - C treten nur zwei Verbindungen aus den genannten Elementen auf. TiC hat eine Phasenbreite von bis zu 16,8 % C und schmilzt bei  $\mathcal{G} = 3067$  °C kongruent. Eine Phase Ti<sub>2</sub>C ist nicht genau untersucht (siehe Abbildung 7.3.18).



Abbildung 7.3.18: Phasendiagramm des Systems Ti-C<sup>[21]</sup>

### 7.3.4.1 Experimente und Ergebnisse

Der Titandraht ( $\emptyset = 0,5$  mm) wurde auf eine Temperatur von  $\mathscr{G} \sim 1000$  °C erhitzt. Nach Öffnen des Vorratsgefäßes bildete sich farbloser Rauch, der sich an der Kolbenwand als violetter Niederschlag absetzte (TiCl<sub>3</sub> (g)). Nach 5 Minuten beendete das Durchbrennen des Drahtes den Versuch. Unter dem Mikroskop war eine schwarze Schicht zu erkennen (siehe Abbildung 7.3.19). Die Schichtdicke betrug 0,15 mm. Der Durchmesser des Metallkerns war 0,30 mm. Der Gesamtdurchmesser des reagierten Drahtes betrug 0,6 mm (siehe Abbildung 7.3.20).



Abbildung 7.3.19: Carbidschicht auf Titandraht



Abbildung 7.3.20: Querschnitt des Carbidbeschichteten Titandrahtes

In Abbildung 7.3.21 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.



Abbildung 7.3.21: REM-Aufnahme des Carbid-beschichteten Tantaldrahtes (Querschnitt)

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von TiC auf dem Draht (siehe Abbildung7.3.22). Das Kondensat von der Kolbenwand zeigt keine auswertbaren Reflexe im Pulverdiffraktogramm.



Abbildung 7.3.22: Pulverdiffraktogramm der gebildeten Carbidschicht auf Titandraht

| Intensität <sup>*</sup> |
|-------------------------|
|                         |
| 20                      |
| 100                     |
| 27                      |
| 21                      |
| 100                     |
| 8                       |
| 13                      |
| 35                      |
| 30                      |
| 10                      |
|                         |

Tabelle 7.3.4: Massenspektrum im System Ti-CCl<sub>4</sub>

\*Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von CCl<sub>4</sub> (g), TiCl<sub>3</sub> (g), TiCl<sub>4</sub> (g), und HCl (g).

In diesem System werden gasförmige Metallchloride gebildet. Hierbei stimmen die Ergebnisse der thermodynamischen Berechnungen und der massenspektrometrischen Untersuchung qualitativ überein. Der Reaktionsverlauf kann mit folgenden Gleichungen beschrieben werden:

$$4 \operatorname{Ti}(s) + 3 \operatorname{CCl}_{4}(g) \rightleftharpoons 4 \operatorname{Ti}Cl_{3}(g) + \operatorname{Ti}_{2}C(s)$$

$$(7.3-9)$$

$$2 \operatorname{Ti}(s) + C(s) \rightleftharpoons \operatorname{Ti}C(s)$$
(7.3-10)

Die Bildung von TiC konnte pulverdiffratometrisch nachgewiesen werden. Die thermodynamischen Berechnungen ergeben die Bildung von TiCl<sub>3</sub>. Titan reagierte bei den gegebenen Bedingungen mit Tetrachlorkohlenstoff vermutlich zunächst zu Ti<sub>2</sub>C und TiCl<sub>3</sub>. Ti<sub>2</sub>C war als Zwischenstufe jedoch nicht nachweisbar. Vermutlich verläuft die anschließende Reaktion zu TiC sehr schnell.

### 7.3.5 Das System Vanadium / Tetrachlorkohlenstoff

Im Phasendiagramm des Systems V-C sind fünf Carbide zu erkennen. V<sub>2</sub>C tritt in drei Phasen auf:  $\alpha$ -,  $\beta$ -, und  $\beta$ '-V<sub>2</sub>C.  $\beta$ -V<sub>2</sub>C zersetzt sich bei  $\mathscr{G} = 2187$  °C in vanadiumreiche Schmelze und VC.  $\beta$ '-V<sub>2</sub>C ist eine metastabile Hochtemperatur-Modifikation. V<sub>4</sub>C<sub>3-x</sub> zersetzt sich bei  $\mathscr{G} = 1320$  °C zu  $\beta$ -V<sub>2</sub>C und VC. VC schmilzt bei  $\mathscr{G} \sim 2800$  °C kongruent. Des Weiteren liegen noch die Phasen V<sub>6</sub>C<sub>5</sub> und V<sub>8</sub>C<sub>7</sub> vor, die nicht genau untersucht und daher gestrichelt dargestellt wurden (siehe Abbildung 7.3.23).



Abbildung 7.3.23: Phasendiagramm des Systems V-C<sup>[21]</sup>

#### 7.3.5.1 Experimente und Ergebnisse

Der Vanadiumdraht ( $\emptyset = 1,0$  mm) wurde auf eine Temperatur von  $\vartheta \sim 1200$  °C erhitzt. Nach Öffnen des Vorratsgefäßes bildete sich farbloser Rauch, der sich an der Kolbenwand ebenfalls farblos absetzte. Nach 10 Minuten wurde der Versuch abgebrochen, da kein Reaktionsfortschritt mehr zu erkennen war. Unter dem Mikroskop war eine schwarze Schicht zu erkennen (siehe Abbildung 7.3.24). Die Schichtdicke betrug 0,02 mm (siehe Abbildung 7.3.25).



Abbildung 7.3.24: Carbidschicht auf Vanadiumdraht



Abbildung 7.3.25: Querschnitt des Carbidbeschichteten Vanadiumdrahtes

In Abbildung 7.3.26 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.



Abbildung 7.3.26: REM-Aufnahme des Carbid-beschichteten Vanadiumdrahtes

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von  $V_7C_8$  auf dem Draht (siehe Abbildung 7.3.27). Das Kondensat von der Kolbenwand zeigt keine auswertbaren Reflexe im Pulverdiffraktogramm.



Abbildung 7.3.27: Pulverdiffraktogramm der gebildeten Carbidschicht auf Vanadiumdraht

| Fragment                 | Intensität <sup>*</sup> |
|--------------------------|-------------------------|
|                          |                         |
| $\mathrm{Cl}^+$          | 31                      |
| $\mathrm{HCl}^{+}$       | 58                      |
| $\mathrm{CCl}^+$         | 24                      |
| $\operatorname{CCl}_2^+$ | 26                      |
| $\operatorname{CCl}_3^+$ | 100                     |
| $V^+$                    | 16                      |
| $\mathrm{VCl}^+$         | 16                      |
| $\mathrm{VCl}_2^+$       | 14                      |
| $\text{VCl}_3^+$         | 7                       |
| $\mathrm{VCl}_4^+$       | 3                       |
| 1                        |                         |

Tabelle 7.3.5: Massenspektrum im System V-CCl<sub>4</sub>

<sup>\*</sup>Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von  $CCl_4$  (g),  $VCl_4$  (g), vermutlich  $VCl_3$  (g), gegebenenfalls  $VCl_2$  (g) und HCl (g).

Hier liegt ein Reaktionsverlauf vor, bei dem ein gasförmiges Metallchlorid gebildet wird. Wie schon im System  $\text{Ti-CCl}_4$  stimmen die Ergebnisse aus thermodynamischen Berechnungen und massenspektrometrischer Untersuchung überein. Das Reaktionsgeschehen kann in etwa mit den Gleichungen (7.3-15) - (7.3-19) beschrieben werden.

$$2 V(s) + CCl_4(g) \rightleftharpoons 2 VCl_2(g) + V_2C(s)$$
 (7.3-11)

$$V(s) + C(s) \rightleftharpoons V_4 C_3(s) \tag{7.3-12}$$

$$2 V_2 C(s) + C(s) \rightleftharpoons 2 V_6 C_5(s)$$
 (7.3-13)

$$3 V_4 C_3 (s) + C (s) \rightleftharpoons V_8 C_7 (s)$$
 (7.3-14)

Die Bildung von  $V_8C_7$  konnte pulverdiffraktometrisch nachgewiesen werden. Die thermodynamischen Berechnungen ergeben die Bildung von  $VCl_2$  (siehe Anhang). Vanadium reagierte bei den gegebenen Bedingungen ähnlich wie Titan, es bildete sich wieder zuerst das kohlenstoffärmste Carbid, aus welchem in mehreren Reaktionsschritten  $V_7C_8$  entstand. Die Zwischenprodukte konnten nicht nachgewiesen werden, da offenbar die Bildung von  $V_8C_7$  sehr schnell abläuft.

### 7.3.6 Das System Wolfram / Tetrachlorkohlenstoff

Im System W-C liegen drei Phasen vor:  $\beta$ ,  $\gamma$  und  $\delta$ . Die  $\beta$ -Phase, kommt in drei Modifikationen vor. Die  $\beta$ -Phase liegt bei ~ 25,5 - 34 % C vor, die  $\beta$ '-Phase bei ~ 29,5 - 33 % C und die  $\beta$ "-Phase bei ~ 29,5 - 32,5 % C. Die  $\gamma$ -Phase existiert bei 37 - 39,5 % C und die  $\delta$ -Phase bei ~ 50 % C (siehe Abbildung 7.3.28).



Abbildung 7.3.28: Phasendiagramm des Systems W-C [21]

#### 7.3.6.1 Experimente und Ergebnisse

Während des Versuches betrug die Temperatur  $\mathcal{G} \sim 1600$  °C. Eingesetzt wurde ein Wolframdraht mit einem Durchmesser von  $\mathcal{O} = 1,0$  mm. Nach Einleiten von Tetrachlorkohlenstoff entwickelte sich farbloser Rauch der sich als brauner Niederschlag an der Kolbenwand absetzte. Nach 45 Minuten beendete das Durchbrennen des Drahtes die Reaktion. Unter dem Mikroskop war eine dünne schwarze Schicht mit einer Dicke von 0,01 mm erkennbar (siehe Abbildung 7.3.29 und 7.3.30).



Abbildung 7.3.29: Carbidschicht auf Wolframdraht



Abbildung 7.3.30: Querschnitt des Carbidbeschichteten Wolframdrahtes

In Abbildung 7.3.31 ist eine REM-Aufnahme des reagierten Drahtes zu sehen.



Abbildung 7.3.31: REM-Aufnahme des Carbid-beschichteten Wolframdrahtes

Die pulverdiffraktometrische Untersuchung zeigt die Bildung von  $W_2C$  und WC (siehe Abbildung7.3.32). Das Kondensat von der Kolbenwand zeigt keine auswertbaren Reflexe im Pulverdiffraktogramm.



Abbildung 7.3.32: Pulverdiffraktogramm der gebildeten Carbidschicht auf Wolframdraht

| Fragment                     | Intensität <sup>*</sup> |
|------------------------------|-------------------------|
| $\mathrm{Cl}^+$              | 16                      |
| $\mathrm{HCl}^{+}$           | 100                     |
| $\mathrm{CCl}^+$             | 4                       |
| $\operatorname{CCl}_2^+$     | 7                       |
| $\operatorname{CCl}_{3}^{+}$ | 15                      |

Tabelle 7.3.6: Massenspektrum im System W-CCl<sub>4</sub>

\*Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von CCl<sub>4</sub> (g) und HCl (g).

Hierbei handelt um einen ähnlichen Reaktionsverlauf wie beim System Mo-CCl<sub>4</sub>. Die thermodynamischen Berechnungen ergeben, dass gasförmiges  $WCl_4$  bildet (siehe Anhang). Der Reaktionsverlauf kann mit den folgenden Gleichungen beschrieben werden:

$$3 W (s) + CCl_4 (g) \rightleftharpoons WCl_4 (g) + W_2C (s)$$

$$(7.3-15)$$

$$W_2C(s) + C(s) \rightleftharpoons 2 WC(s)$$
 (7.3-16)

Die Bildung von  $W_2C$  und WC konnte pulverdiffraktometrisch nachgewiesen werden. Es wurde wieder zuerst das kohlenstoffärmste Carbid gebildet, aus  $W_2C$  entstand dann in einem weiteren Reaktionsschritt WC. Die Bildung einer  $W_2C$ -Schicht auf Wolframdraht ist thermodynamisch erlaubt.

### 7.3.7 Das System Zirkonium / Tetrachlorkohlenstoff

Im Phasendiagramm des Systems Zr-C ist nur eine Verbindung aus den genannten Elementen zu erkennen, ZrC weist eine Phasenbreite von bis zu 17 % auf. Es schmilzt bei  $\mathcal{G} = 3540$  °C kongruent (siehe Abbildung 7.3.33).



Abbildung 7.3.33: Phasendiagramm des Systems Zr-C<sup>[21]</sup>

#### 7.3.7.1 Experimente und Ergebnisse

Der Zirkoniumdraht ( $\emptyset = 1,1$  mm) wurde auf eine Temperatur von  $\vartheta \sim 1200$  °C erhitzt. Nach Öffnen des Vorratsgefäßes bildete sich farbloser Rauch, der sich an der Kolbenwand ebenfalls farblos absetzte. Nach 10 Minuten wurde der Versuch abgebrochen, da kein Reaktionsfortschritt mehr zu erkennen war. Unter dem Mikroskop war eine schwarze Schicht zu erkennen (siehe Abbildung 7.3.34). Die Schichtdicke betrug 0,02 mm (siehe Abbildung 7.3.35).





Abbildung 7.3.34: Carbidschicht auf Zirkoniumdrahtdraht

Abbildung 7.3.35: Querschnitt des Carbidbeschichteten Zirkoniumdrahtes

In Abbildung 7.3.36 ist eine REM-Aufnahme vom Querschnitt des reagierten Drahtes zu sehen.



Abbildung 7.3.36: REM-Aufnahme des Carbid-beschichteten Zirkoniumdrahtes

Die pulverdiffratometrische Untersuchung zeigt die Bildung von ZrC auf dem Draht (siehe Abbildung 7.3.37). Die Untersuchung des Pulvers von der Kolbenwand ergab  $ZrOCl_2 \cdot 8H_2O$ , welches durch Hydrolyse aus  $ZrCl_4$  entsteht.



Abbildung 7.3.37: Pulverdiffraktogramm der gebildeten Carbidschicht auf Zirkoniumdraht

| Fragment                      | Intensität <sup>*</sup> |
|-------------------------------|-------------------------|
|                               |                         |
| $\mathrm{Cl}^+$               | 18                      |
| $\mathrm{HCl}^{+}$            | 32                      |
| $\mathrm{CCl}^+$              | 23                      |
| $\operatorname{CCl}_2^+$      | 25                      |
| $\operatorname{CCl}_3^+$      | 100                     |
| $Zr^+$                        | 1                       |
| $\mathrm{ZrCl}^+$             | 2                       |
| $\operatorname{ZrCl}_{2}^{+}$ | 14                      |
| $\operatorname{ZrCl}_{3}^{+}$ | 10                      |
| $\operatorname{ZrCl}_4^+$     | 7                       |

Tabelle 7.3.7: Massenspektrum im System Zr-CCl<sub>4</sub>

<sup>\*</sup>Isotopenmuster berücksichtigt

Das Massenspektrum zeigt die Anwesenheit von  $CCl_4$  (g),  $ZrCl_4$  (g), vermutlich auch  $ZrCl_3$  (g) und HCl (g).

Hierbei handelt es sich um einen Reaktionsverlauf ähnlich wie beim System Mo-CCl<sub>4</sub>. Das Reaktionsgeschehen kann mit folgender Gleichung beschrieben werden:

$$2 \operatorname{Zr}(s) + \operatorname{CCl}_{4}(g) \rightleftharpoons \operatorname{ZrCl}_{4}(g) + \operatorname{ZrC}(s)$$
(7.3-17)

Die Bildung von ZrC und ZrCl<sub>4</sub> konnte pulverdiffraktometrisch nachgewiesen werden. ZrCl<sub>4</sub> (g) wird bei der massenspektrometrischen Untersuchung als auch bei der thermodynamischen Berechnung nachgewiesen. Zirkonium reagiert bei den gegebenen Bedingungen ähnlich wie Titan und Vanadium, es bildet sich Zirkoniumcarbid. Dies ist die einzig bekannte Verbindung aus Kohlenstoff und Zirkonium. Die Bildung von ZrC neben Zirconium ist thermodynamisch erlaubt.

# 8 Versuche zur praktischen Anwendung

## 8.1 Verwendung von MoSi<sub>2</sub>

Silicide, Boride und Carbide finden in vielen Bereichen praktische Anwendung. Sie können als Hartstoffe oder auch im Korrosionsschutz angewandt werden. Silicide werden als Hochtemperaturheizelemente, Boride in der Raumfahrt und als Neutroneneinfangmaterialien und Carbide auf Grund ihrer ganz besonderen Härte als Werkzeuge für Schleifarbeiten verwendet.<sup>[1], [20]</sup>

Bei einigen Systemen dieser Arbeit ist es gelungen dichte Deckschichten auf die Oberfläche des Drahtes zu bringen. Eine besonders einheitliche Deckschicht bildete Molybdändisilicid auf Molybdändraht. Molybdändisilicid ist auf Grund seiner Oxidationsresistenz ein sehr interessanter Hartstoff. Es findet vor allem Verwendung in der Hochtemperaturtechnik. In Hochtemperaturöfen werden Heizstäbe aus MoSi<sub>2</sub> eingesetzt.

An dieser Stelle beschäftigte uns die Frage, ob es möglich ist, auf einen Molybdändraht eine dichte Schicht von MoSi<sub>2</sub> aufzubringen. Gelingt dies, kann ein Heizdraht mit einem metallischen Kern so gegenüber der Atmosphäre geschützt werden, dass er als an der Luft stabiles Heizelement genutzt werden kann. Ein solches Material könnte viel kostengünstiger hergestellt werden, als ein nur aus MoSi<sub>2</sub> bestehendes Material, das zwar gleichfalls an der Luft stabil ist, jedoch nur mit großem Aufwand hergestellt werden kann und dementsprechend teurer ist.

# 8.2 Erhitzen von MoSi<sub>2</sub>-beschichtetem Molybdändraht

Um zu überprüfen ob die bei der Reaktion von Molybdän mit SiHCl<sub>3</sub> gebildete MoSi<sub>2</sub>-Schicht, das unter der Schicht befindliche Molybdän bei hohen Temperaturen vor Oxidation schützt, wurde eine Spirale aus Molybdändraht, wie in Kapitel 7 beschrieben, mit MoSi<sub>2</sub> beschichtet und das Verhalten mit einer unbeschichteten Spirale verglichen.

Abbildung 8.1 und 8.2 zeigen die unbeschichtete und die beschichtete Drahtsprirale. Von links ragt jeweils ein Thermoelement in diese Drahtspirale.



Abbildung 8.1: Reiner Molybdändraht



Abbildung 8.2:  $MoSi_2$ -beschichteter Draht

Bei beiden Versuchen wurde eine Temperatur von  $\mathcal{G} = 1000$  °C eingestellt. Das Verhalten der beiden Drahtspiralen ist in Abbildung 8.3 und 8.4 dargestellt.



Abbildung 8.3: Erhitzter Molydändraht



Abbildung 8.4: Erhitzen von MoSi<sub>2</sub>-beschichtetem Draht

In Abbildung 8.3 ist zu sehen, dass der Molybdändraht wie erwartet reagiert. An der starken Rauchentwicklung ist zu erkennen, dass sich spontan Molybdänoxide bilden. Nach wenigen Sekunden brennt der Draht durch. Im Gegensatz dazu glühte der MoSi<sub>2</sub>-beschichtete Draht bis zu 30 Minuten beständig, danach wurde das Experiment beendet (siehe Abbildung 8.4).

# 9 Zusammenfassung und Ausblick

Die Ergebnisse dieser Arbeit sollen an dieser Stelle noch einmal zusammengefasst werden. Zur einfacheren Übersicht sind sie in Tabelle 9.1 zusammengestellt.

| Metalldraht | Halogenid          | Feste Produkte<br>(als Schicht)                     | Flüchtige Produkte                                                                                                    |
|-------------|--------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Molybdän    | SiHCl <sub>3</sub> | $Mo_5Si_3$ , $MoSi_2$                               | -                                                                                                                     |
|             | BCl <sub>3</sub>   | MoB                                                 | $MoCl_4$ (TB) <sup>2</sup>                                                                                            |
|             | CCl <sub>4</sub>   | Mo <sub>2</sub> C                                   | MoCl <sub>4</sub> (TB)                                                                                                |
| Niob        | SiHCl <sub>3</sub> | NbSi <sub>2</sub> , Nb <sub>5</sub> Si <sub>3</sub> | NbCl <sub>4</sub> (MS, TB), NbCl <sub>5</sub> (TB)                                                                    |
|             | BCl <sub>3</sub>   | NbB <sub>2</sub>                                    | $NbCl_4$ (TB)                                                                                                         |
|             | CCl <sub>4</sub>   | NbC                                                 | NbCl <sub>4</sub> (TB), NbCl <sub>5</sub> (TB)                                                                        |
| Tantal      | SiHCl <sub>3</sub> | TaSi <sub>2</sub>                                   | -                                                                                                                     |
|             | BCl <sub>3</sub>   | TaB <sub>2</sub>                                    | TaCl <sub>4</sub> (TB), TaCl <sub>5</sub> (TB)                                                                        |
|             | CCl <sub>4</sub>   | Ta <sub>2</sub> C, TaC                              | TaCl <sub>4</sub> (TB), TaCl <sub>5</sub> (TB)                                                                        |
| Titan       | SiHCl <sub>3</sub> | TiSi, TiSi <sub>2</sub>                             | TiCl <sub>3</sub> (MS, TB)                                                                                            |
|             | BCl <sub>3</sub>   | TiB <sub>2</sub>                                    | TiCl <sub>3</sub> (MS, TB, PD), TiCl <sub>4</sub> (MS, TB)                                                            |
|             | CCl <sub>4</sub>   | TiC                                                 | TiCl <sub>3</sub> (MS, TB), TiCl <sub>4</sub> (MS)                                                                    |
| Vanadium    | SiHCl <sub>3</sub> | VSi <sub>2</sub>                                    | VCl <sub>2</sub> (MS, TB), VCl <sub>3</sub> (MS, TB, PD)                                                              |
|             | BCl <sub>3</sub>   | $VB_2$                                              | $\text{VCl}_2$ (MS, TB), $\text{VCl}_3$ (MS, TB, PD)                                                                  |
|             | CCl <sub>4</sub>   | $V_8C_7$                                            | $\operatorname{VCl}_2(\operatorname{MS},\operatorname{TB}),\operatorname{VCl}_3(\operatorname{MS},\operatorname{TB})$ |
| Wolfram     | SiHCl <sub>3</sub> | WSi <sub>2</sub>                                    | -                                                                                                                     |
|             | BCl <sub>3</sub>   | -                                                   | -                                                                                                                     |
|             | CCl <sub>4</sub>   | W <sub>2</sub> C, WC                                | WCl <sub>4</sub> (TB)                                                                                                 |
| Zirkonium   | SiHCl <sub>3</sub> | ZrSi <sub>2</sub>                                   | ZrCl <sub>4</sub> (MS, TB, PD)                                                                                        |
|             | BCl <sub>3</sub>   | ZrB <sub>2</sub>                                    | $\operatorname{ZrCl}_4(MS, TB, PD)$                                                                                   |
|             | CCl <sub>4</sub>   | ZrC                                                 | ZrCl <sub>3</sub> (MS), ZrCl <sub>4</sub> (MS, TB, PD)                                                                |

Tabelle 9.1: Zusammenfassung der Ergebnisse

<sup>&</sup>lt;sup>2</sup> In Tabelle 9.1 wurden folgende Abkürzungen verwendet: TB Thermodynamische Berechnung, MS massenspektrometrische Untersuchung und PD pulverdiffratometrische Untersuchung.

Wie in Tabelle 9.1 zu erkennen ist, konnte in fast allen untersuchten Systemen eine Hartstoffschicht auf das Metall aufgebracht werden. Lediglich im System Wolfram/Bortrichlorid entstand keine Schicht. Dies erfolgte im Einklang mit vorangegangenen thermodynamischen Berechnungen.

Schon bei Betrachtung der Abbildungen dieser Arbeit fällt auf, dass die Stabilität der Schichten bei Einsatz unterschiedlicher Nichtmetallhalogenide variiert. Die gebildeten Silicidschichten sind z.B. im Fall von MoSi<sub>2</sub> und NbSi<sub>2</sub> außerordendlich stabil und und fest auf dem Draht. Bei Experimenten des Systems Metall/BCl<sub>3</sub> konnte in den meisten Fällen ebenfalls eine stabile Schicht dargestellt werden. Beim System Metall/CCl<sub>4</sub> gelang die Beschichtung der Metalle mit Carbiden, jedoch waren diese Schichten sehr dünn und unstabil und lagen locker auf dem Draht.

Bei der Bildung der Schichten wurden zwei unterschiedliche Reaktionsverläufe gefunden.

- 1. Die Bildung einer Silicid-, Borid- oder Carbid Schicht unter gleichzeitiger Entstehung eines gasförmigen Metallchlorids.
- Die Bildung einer Schicht ohne Entstehung eines gasförmigen Metallchlorids. Dieser Fall wurde nur bei Verwendung von Trichlorsilan beobachtet. Er ist auf den thermischen Zerfall von SiHCl<sub>3</sub> (g) in SiCl<sub>2</sub> (g) und dessen Disproportionierung zurückzuführen.

Die gebildeten Schichten sind in aller Regel reich an dem jeweiligen Nichtmetall. In den meisten Fällen koexistiert das Material der gebildeten Schicht laut Phasendiagramm nicht mit dem metallischen Kern. Es bildet sich also ein Zwei- oder Mehrstoffsystem im thermodynamischen Ungleichgewicht. Dies wird damit erklärt, dass sich in ersten Schritten der fest/gasförmig-Reaktion eine Schicht aus einem metallreichem Silicid, Borid bzw. Carbid bildet, die dann schnell weiter reagiert zu Schichten mit größeren Anteilen des jeweiligen Nichtmetalls. In einigen Fällen konnten diese Zwischenstufen nachgewiesen werden.

Die Experimente zur Schichtbildung wurden begleitet von thermodynamischen Berechnungen an den jeweiligen Gleichgewichten und massenspektrometrischen Untersuchungen der ablaufenden Reaktionen. Daraus lies sich in allen Fällen ein abgerundetes Bild der untersuchten Reaktionsabläufe ableiten. Ein besonderer Reiz ging von der Bildung der MoSi<sub>2</sub>-Schichten aus, denn dieses Material findet eine ausgedehnte praktische Verwendung als hochschmelzendes, chemisch sehr inertes und besonders hartes Material in der Hochtemperaturtechnik. Des Weiteren wird es z.B. als Material für Turbinenschaufeln verwendet.<sup>[24]</sup> Es konnte gezeigt werden, dass mit dem untersuchten Verfahren dichte MoSi<sub>2</sub>-Schichten auf Molybdänsubstrate aufgebracht werden können. Ein mit MoSi<sub>2</sub> beschichteter Molybdändraht lässt sich an der Luft auf hohe Temperaturen erhitzen, ohne dass sich Molybdänoxide bilden. Dies lässt für die Zukunft eine Reihe von potentiellen Anwendungen möglich erscheinen. Das hier vorgestellte Verfahren - ein CVD-Verfahren - hat gegenüber den in den Ingenieurwissenschaften eingeführten Plasmaspritzverfahren den großen Vorteil, dass auch Substrate an schwer zugänglichen Stellen beschichtet werden können. Das Verfahren zur Patentanmeldung ist bereits eingeleitet worden.

Des Weiteren können mit dieser Methode auf einfache Weise andere Beschichtungen, wie z.B. Nitride, Titanide, Germanide u.ä. dargestellt werden. Auch ternäre Verbindungen wären von besonderem Interesse, z. B. eine Verbindung aus Mo, Si und B, die in der Industrie Anwendung findet.

Die Darstellung von Hartstoffen in bestimmter Form stellt wegen ihrer Eigenschaften (hart, spröde) eine besondere Herausforderung dar. In dieser Arbeit wurde eine Technik vorgestellt, mit der die Beschichtung von Metallen in beliebiger Form möglich ist. Dies könnte für die Zukunft vielfältige Anwendungsmöglichkeiten ergeben.

# 10 Literatur

- J. H. Westbrook, R. L. Fleischer, *Intermetallic Compounds Principles and Practice*, Volume 2, John Wiley & Sons Ltd., Chichester, **1995**.
- [2] M. Binnewies, A. Meyer, M. Schütte, Angewandte Chemie, 2001, 113, 3801-3803.
- [3] CD Römpp Chemie Lexikon, Version 1.0, Stuttgart / New York, Georg Thieme Verlag, 1995.
- [4] P. W. Atkins, *Physikalische Chemie*, Weinheim, 2. Auflage, **1996**.
- [5] S. Steeb, Röntgenspektralanalyse und Mikrosondentechnik, Sindelfingen, Expert Verlag, 1987.
- [6] H. C. Hill, *Einführung in die Massenspektrometrie*, Rheine, Heyden & Son Ltd., 1973.
- [7] H. Budzikiewicz, *Massenspektrometrie Eine Einführung*, Weinheim, 3. erw. Auflage, VCH Verlagsgesellschaft mbH, 1992.
- [8] J. A. Barth, Z. anorg. Chem., 1974, 410, 251-268.
- [9] H. Neumann, K. Stecker, *Temperaturmessung*, Akademie-Verlag, Berlin, 1983, 288.
- [10] H. Henning, H. Moser, *Temperaturmessung*, Springer-Verlag, Berlin, Heidelberg, New York,3. Auflage, 1977.
- [11] H. Pauly, Sonderdruck aus MSR 7-8/97, Vereinigte Fachverlage GmbH, Mainz, 1997.
- [12] H. Pauly, F. Engel, *Das Pyrometerkompendium*, Firmenschrift der Firma IMPAC Electronic GmbH, **1999**.
- [13] K. Becker, *Hochschmelzende Hartstoffe und ihre technische Anwendung*, Verlag Chemie, Berlin, 1933.
- [14] R. Kieffer, P. Schwarzkopf, Hartstoffe und Hartmetalle, Springer Verlag, Wien, 1953.
- [15] R. Kieffer, F. Benesovsky, *Hartstoffe*, Springer Verlag, Wien, 1963.
- [16] R. Kieffer, F. Benesovsky, *Hartmetalle*, Springer Verlag, Wien, 1965.
- [17] W. Friedhoff, *Diplomarbeit*, Ein neuer Weg zur Bildung von Hartstoffen, Universität Hannover, 2002.
- [18] http://www.uni-giessen.de/~gej4/olli.htm
- [19] M. Schütte, *Dissertation*, Neue Wege zu Metallsiliciden, Universität Hannover, **2004**.
- [20] A. Schrempf, Darstellung von Bor-Modifikationen sowie Bor-Niob- und Bor-Tantal-Phasen durch Elektronenstrahlverdampfen und -schmelzen im Ultrahochvakuum, *Dissertation*, 1978.
- [21] T. Massalski, *Binary Alloy Phase Diagrams*, Second Edition, The Materials Information Society, 1991.
- [22] R. Kiessling, *Acta Chemica Scandinavica 1*, The crystal structures of Molybdenum and Tungsten Borides, **1947**, 893-916.

- [23] F. Güntert, Bestimmung des Einflusses der Oxidation auf den Emissionsgrad von metallen am Beispiel von Stählen und Titan, *Dissertation*, Stuttgard, **1990**.
- [24] G. Reisel, Oxidationsverhalten hochgeschwindigkeitsflammgespritzter Schichten auf Basis von Molybdänsiliciden, *Dissertation*, Chemnitz, **2003**.

# 11 Anhang

# 11.1 Verwendete Materialien

Tabelle 12.1: Verwendete Marterialien

| Material                        | Reinheit | Hersteller                                          |
|---------------------------------|----------|-----------------------------------------------------|
| Molybdändraht                   | 99,97 %  | Goodfellow GmbH Germany                             |
| Niobdraht                       | 99,9 %   | Goodfellow GmbH Germany                             |
| Tantaldraht                     | 99,95 %  | Strem Chemicals                                     |
| Titandraht                      | 99,6 %   | Goodfellow GmbH Germany                             |
| Vanadiumdraht                   | 99,5 %   | Haines & Maassen                                    |
| Wolframdraht                    | 99,95 %  | Metallhandelsgesellschaft mbH<br>Haines & Maassen   |
| Zirkoniumdraht                  | 99,5 %   | Metallhandelsgesellschaft mbH<br>Haines & Maassen   |
| Trichlorsilan                   | > 95,0 % | Metallhandelsgesellschaft mbH<br>Wacker-Chemie GmbH |
| Bortrichlorid                   | > 99,9 % | Merck                                               |
| Tetrachlorkohlenstoff           | > 99,8 % | Merck                                               |
| Technovit 4004, Härter (liquid) | -        | Bühler GmbH                                         |
| Technovit 4004, Pulver          | -        | Bühler GmbH                                         |
| Argon 4.6                       | 99,996 % | Linde                                               |

## 11.2 Verwendete Geräte

### Pulverdiffraktometer

Stoe Pulverdiffaktometrie-System Stadi P mit PSD, Darmstadt, Cu-K $_{\alpha}$ -Strahlung, 40 kV, 30 mA AED2 und IPD, Fa. Stoe, Darmstadt, Software WinXPow, Fa Stoe

### <u>REM</u>

Philips/FEI-Electron Optics, Eindhoven, Ndl, XL 30 - SEM - W, 2001

### Digitalkamera

Kappa, DX 20 L – 1394a, Digitales Farbsystem, ½" CCD, 1384 (H) x, 1032 (V) BP, 2 Ports á 400 Mbits / s mit 1394 Interface, Lichtempfindlichkeit: 0,0065 Ix bei 10 s Integrationszeit, 12 Bit Digitalisierung.

### Pyrometer

Digitales Kompaktpyrometer, Infratherm IS 5, Temperaturbereich: 650 - 2500°C, Spektralbereich: 0,8 - 1,1 µm, IMPAC Electronic GmbH Frankfurt

# 11.3 Abkürzungen - Einheiten - Symbole

### Physikalische Symbole

| a, b, c  | Gitterkonstanten                |
|----------|---------------------------------|
| °C       | Temperatureinheit, Grad Celsius |
| d        | Netzebenenabstand               |
| g        | Gramm                           |
| h        | Stunden                         |
| h, k, l  | Miller'sche Indizes             |
| L        | Liter                           |
| λ        | Wellenlänge                     |
| m        | Masse                           |
| п        | Stoffmenge                      |
| $\theta$ | Glanzwinkel                     |
| t        | Reaktionszeit                   |
| U        | Spannung                        |

### Thermodynamische Symbole

| bar                        | Druckeinheit, bar                          |
|----------------------------|--------------------------------------------|
| $C_p$                      | molare Wärmekapazität bei konstantem Druck |
| G                          | freie Enthalpie                            |
| $\Delta_{\rm R}G^0$        | freie Standardreaktionsenthalpie           |
| $\Delta_{\rm R} G^0_{\ T}$ | frei Reaktionsenthalpie bei $T$ in K       |
| Н                          | Enthalpie                                  |
| $\Delta H^0_{298}$         | Standardbildungsenthalpie bei 298 K        |
| $\Delta_{\rm R} H^0$       | Standardreaktionsenthalpie                 |
| J                          | Energieeinheit, Joule                      |
| К                          | Temperatureinheit, Kelvin                  |
| Κ                          | Gleichgewichtskonstante                    |
| $K_p$                      | druckabhängige Gleichgewichtskonstante     |
| Þ                          | Druck                                      |
| R                          | allgemeine Gaskonstante                    |
| S                          | Entropie                                   |
|                            |                                            |

| $S_{298}^{0}$                                            | Standardbildungsentropie bei 298 K |
|----------------------------------------------------------|------------------------------------|
| $\Delta_{\scriptscriptstyle R} S^{\scriptscriptstyle 0}$ | Standardreaktionsentropie          |
| Т                                                        | (thermodynamische) Temperatur      |
| 9                                                        | Temperatur in °C                   |
| V                                                        | Volumen                            |

## Sonstige Symbole

| REM      | Rasterelektronenmikroskop        |
|----------|----------------------------------|
| ~        | circa, ca.                       |
| <b>+</b> | Reaktionspfeil, im Gleichgewicht |

# 11.4 Thermodynamische Berechnung

### 11.4.1Thermodynamische Daten

C V T r a n s - Result - File (c) 1996-1997 Olli Trappe, Institut für anorganische und analytische Chemie II Universität Giessen R.626, Tel.: 0641/99-34164

#### $SiCl_4$

Data file: MS.dat Input file: SiCl4.ein

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 500°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| C12,g     | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g      | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| Si,c      | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g    | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g   | 0.00000       | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g   | 0.00000       | 0.000       | 298  | -93.245       | 76.001        | -115.894      |
| SiCl4,g   | 30.655670     | 5208.322    | 330  | -158.283      | 79.034        | -184.365      |
| Si,g      | 0.000000      | 0.000       | 298  | 107.481       | 40.126        | 95.523        |

#### SiHCl<sub>3</sub>

Data file: MS.dat Input file: SiHCl3.ein

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g      | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| Si,c      | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g    | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g   | 0.00000       | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g   | 0.000000      | 0.000       | 298  | -93.245       | 76.001        | -115.894      |
| SiCl4,g   | 0.000000      | 0.000       | 330  | -158.283      | 79.034        | -184.365      |
| SiHCl3,g  | 26.057320     | 3529.526    | 298  | -118.515      | 74.926        | -140.843      |
| HCl,g     | 0.00000       | 0.000       | 298  | -22.045       | 44.640        | -35.348       |
| SiH2Cl2,g | 0.00000       | 0.000       | 298  | -76.550       | 68.477        | -96.956       |
| Si,g      | 0.000000      | 0.000       | 298  | 107.481       | 40.126        | 95.523        |
| H2,g      | 0.000000      | 0.000       | 298  | 0.000         | 31.217        | -9.303        |

 $SiH_2Cl_2$ 

Data file: MS.dat Input file: SiH2Cl2.ein

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval:  $T(low) = 800^{\circ}C - T(high) = 2000^{\circ}C$  step width =  $50^{\circ}C$ 

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g      | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| Si,c      | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g    | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g   | 0.00000       | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g   | 0.00000       | 0.000       | 298  | -93.245       | 76.001        | -115.894      |
| SiCl4,g   | 0.00000       | 0.000       | 330  | -158.283      | 79.034        | -184.365      |
| SiHCl3,g  | 0.00000       | 0.000       | 298  | -118.515      | 74.926        | -140.843      |
| HCl,q     | 0.00000       | 0.000       | 298  | -22.045       | 44.640        | -35.348       |
| SiH2Cl2,g | 30.655670     | 3096.446    | 298  | -76.550       | 68.477        | -96.956       |
| Si,g      | 0.00000       | 0.000       | 298  | 107.481       | 40.126        | 95.523        |
| H2,g      | 0.00000       | 0.000       | 298  | 0.000         | 31.217        | -9.303        |
| SiH3Cl,g  | 0.00000       | 0.000       | 298  | -33.868       | 59.903        | -51.719       |
| SiH4,q    | 0.000000      | 0.000       | 298  | 8.192         | 48.892        | -6.377        |

#### SiH<sub>3</sub>Cl

Data file: MS.dat Input file: SiH3Cl.ein Date: 18.08.2004 Time: 12:55:54

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance     | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|---------------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g         | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g          | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| Si,c          | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g        | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g       | 0.00000       | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g       | 0.00000       | 0.000       | 298  | -93.245       | 76.001        | -115.894      |
| SiCl4,g       | 0.00000       | 0.000       | 330  | -158.283      | 79.034        | -184.365      |
| SiHCl3,g      | 0.00000       | 0.000       | 298  | -118.515      | 74.926        | -140.843      |
| HCl,g         | 0.00000       | 0.000       | 298  | -22.045       | 44.640        | -35.348       |
| SiH2Cl2,g     | 0.00000       | 0.000       | 298  | -76.550       | 68.477        | -96.956       |
| Si,g          | 0.00000       | 0.000       | 298  | 107.481       | 40.126        | 95.523        |
| H2 <b>,</b> g | 0.00000       | 0.000       | 298  | 0.000         | 31.217        | -9.303        |
| SiH3Cl,g      | 30.655670     | 2040.509    | 298  | -33.868       | 59.903        | -51.719       |
| SiH4,g        | 0.00000       | 0.000       | 298  | 8.192         | 48.892        | -6.377        |
|               |               |             |      |               |               |               |

BC1<sub>3</sub>

Data file: MS.dat Input file: BCl3.ein Date: 17.10.2004 Time: 18:15:48

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval:  $T(low) = 800^{\circ}C - T(high) = 2000^{\circ}C$  step width =  $50^{\circ}C$ 

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g      | 0.000000      | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| B,c       | 0.000000      | 0.000       | 298  | 0.000         | 1.385         | -0.413        |
| B,g       | 0.000000      | 0.000       | 298  | 133.754       | 36.639        | 122.835       |
| BCl,g     | 0.000000      | 0.000       | 298  | 35.707        | 50.946        | 20.526        |
| BCl2,g    | 0.000000      | 0.000       | 298  | -18.988       | 65.133        | -38.398       |
| BCl3,g    | 30.655670     | 3591.894    | 298  | -96.255       | 69.313        | -116.910      |
| B2,g      | 0.000000      | 0.000       | 298  | 198.171       | 48.247        | 183.793       |
| B2Cl4,g   | 0.000000      | 0.000       | 298  | -116.820      | 85.746        | -142.372      |

CCl₄

Data file: MS.dat Input file: CCl4.ein Date: 18.10.2004 Time: 15:21:08

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| C12,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| C,s       | 0.00000       | 0.000       | 298  | 0.000         | 1.361         | -0.406        |
| C,g       | 0.00000       | 0.000       | 298  | 171.181       | 37.762        | 159.928       |
| CCl,g     | 0.00000       | 0.000       | 298  | 119.925       | 53.621        | 103.946       |
| CC12,g    | 0.00000       | 0.000       | 298  | 56.965        | 63.366        | 38.082        |
| CC13,g    | 0.00000       | 0.000       | 298  | 18.988        | 70.889        | -2.137        |
| CCl4,g    | 11.036041     | 1697.597    | 298  | -24.601       | 73.994        | -46.651       |
| C2,g      | 0.00000       | 0.000       | 298  | 200.081       | 47.626        | 185.889       |
| C2C12,g   | 0.00000       | 0.000       | 298  | 50.062        | 64.966        | 30.702        |
| C2Cl4,g   | 0.00000       | 0.000       | 298  | -2.962        | 82.020        | -27.404       |
| C2C16,g   | 0.00000       | 0.000       | 298  | -32.053       | 95.037        | -60.374       |
| C3,g      | 0.000000      | 0.000       | 298  | 195.854       | 56.654        | 178.971       |
| C4,g      | 0.000000      | 0.000       | 298  | 231.919       | 54.529        | 215.670       |
| C5,g      | 0.000000      | 0.000       | 298  | 233.830       | 57.801        | 216.606       |
| Cl,q      | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |

#### Mo / SiCl4

Data file: MS.dat Input file: MoSiCl4.ein Date: 04.05.2004 Time: 15:13:21

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g      | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| Si,c      | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g    | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g   | 0.00000       | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g   | 0.00000       | 0.000       | 298  | -93.245       | 76.001        | -115.894      |
| SiCl4,g   | 0.001766      | 0.300       | 330  | -157.591      | 81.255        | -184.405      |
| Mo,s      | 20.846362     | 2000.000    | 298  | 0.000         | 6.831         | -2.036        |
| MoCl4,g   | 0.00000       | 0.000       | 298  | -91.932       | 88.827        | -118.402      |
| MoCl5,g   | 0.00000       | 0.000       | 298  | -106.931      | 95.013        | -135.245      |
| MoSi2,s   | 0.00000       | 0.000       | 298  | -31.384       | 15.525        | -36.011       |
| MoCl,g    | 0.00000       | 0.000       | 298  | 97.330        | 61.689        | 78.946        |
| Mo6Cl12,g | 0.00000       | 0.000       | 298  | 72.848        | 49.680        | 58.043        |
| Mo3Si,s   | 0.00000       | 0.000       | 298  | -28.279       | 25.150        | -35.774       |
| Mo5Si3,s  | 0.00000       | 0.000       | 298  | -74.186       | 49.656        | -88.983       |
| Si,g      | 0.00000       | 0.000       | 298  | 107.481       | 40.126        | 95.523        |
| Mo,g      | 0.00000       | 0.000       | 298  | 157.400       | 43.470        | 144.445       |

#### Mo / SiHCl<sub>3</sub>

Data file: MS.dat Input file: MoSiHCl3.ein Date: 27.10.2004 Time: 11:36:06

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance     | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|---------------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g         | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Si,c          | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g        | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g       | 0.00000       | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g       | 0.00000       | 0.000       | 298  | -97.234       | 77.004        | -120.181      |
| SiCl4,g       | 0.00000       | 0.000       | 330  | -158.283      | 79.034        | -184.365      |
| Mo,s          | 20.846362     | 2000.000    | 298  | 0.000         | 6.831         | -2.036        |
| MoCl4,g       | 0.00000       | 0.000       | 298  | -91.932       | 88.827        | -118.402      |
| MoCl5,g       | 0.00000       | 0.000       | 298  | -106.931      | 95.013        | -135.245      |
| MoSi2,s       | 0.000000      | 0.000       | 298  | -31.384       | 15.525        | -36.011       |
| SiHCl3,g      | 26.057320     | 3529.526    | 298  | -118.515      | 74.926        | -140.843      |
| HCl,g         | 0.000000      | 0.000       | 298  | -22.045       | 44.640        | -35.348       |
| MoCl,g        | 0.00000       | 0.000       | 298  | 97.306        | 61.718        | 78.914        |
| Mo3Si,s       | 0.00000       | 0.000       | 298  | -28.279       | 25.150        | -35.774       |
| Mo5Si3,s      | 0.00000       | 0.000       | 298  | -74.186       | 49.656        | -88.983       |
| SiH2Cl2,g     | 0.00000       | 0.000       | 298  | -76.550       | 68.477        | -96.956       |
| Si,g          | 0.00000       | 0.000       | 298  | 107.481       | 40.126        | 95.523        |
| H2 <b>,</b> g | 0.000000      | 0.000       | 298  | 0.000         | 31.217        | -9.303        |
| Mo,g          | 0.00000       | 0.000       | 298  | 157.400       | 43.470        | 144.445       |
| MoCl6,g       | 0.00000       | 0.000       | 298  | -104.925      | 100.196       | -134.783      |
| MoCl3,g       | 0.00000       | 0.000       | 298  | -35.731       | 79.416        | -59.397       |
| MoCl2,g       | 0.000000      | 0.000       | 298  | 19.848        | 70.221        | -1.078        |
| Cl,g          | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |

#### Nb / SiHCl<sub>3</sub>

Data file: MS.dat Input file: NbSiHCl3.ein Date: 27.10.2004 Time: 10:58:23

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Si,c      | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g    | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g   | 0.00000       | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g   | 0.00000       | 0.000       | 298  | -97.234       | 77.004        | -120.181      |
| SiCl4,g   | 0.00000       | 0.000       | 330  | -158.283      | 79.034        | -184.365      |
| Nb,s      | 21.527042     | 2000.000    | 298  | 0.000         | 8.718         | -2.598        |
| NbCl4,g   | 0.00000       | 0.000       | 298  | -133.993      | 84.958        | -159.310      |
| NbCl5,g   | 0.00000       | 0.000       | 298  | -167.980      | 96.518        | -196.743      |
| NbSi2,s   | 0.00000       | 0.000       | 298  | -29.975       | 16.695        | -34.950       |

| SiHCl3,g      | 26.057320 | 3529.526 | 298 | -118.515 | 74.926 | -140.843 |
|---------------|-----------|----------|-----|----------|--------|----------|
| HCl,g         | 0.00000   | 0.000    | 298 | -22.045  | 44.640 | -35.348  |
| Nb5Si3,s      | 0.00000   | 0.000    | 298 | -121.907 | 59.950 | -139.772 |
| Si,g          | 0.00000   | 0.000    | 298 | 107.481  | 40.126 | 95.523   |
| H2 <b>,</b> g | 0.00000   | 0.000    | 298 | 0.000    | 31.217 | -9.303   |
| Nb,g          | 0.00000   | 0.000    | 298 | 175.074  | 44.497 | 161.814  |
| Cl,g          | 0.00000   | 0.000    | 298 | 28.972   | 39.457 | 17.214   |
| NbCl2,g       | 0.00000   | 0.000    | 298 | -97.234  | 27.993 | -105.576 |

#### Ta / SiHCl₃

Data file: MS.dat Input file: TaSiHCl3.ein Date: 27.10.2004 Time: 11:16:28

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance     | n(start)/mmol | m(start)/mg | Τ°/Κ | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|---------------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g         | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Si,c          | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g        | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g       | 0.00000       | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g       | 0.00000       | 0.000       | 298  | -97.234       | 77.004        | -120.181      |
| SiCl4,g       | 0.00000       | 0.000       | 330  | -158.283      | 79.034        | -184.365      |
| SiHCl3,g      | 26.057320     | 3529.526    | 298  | -118.515      | 74.926        | -140.843      |
| HCl,g         | 0.00000       | 0.000       | 298  | -22.045       | 44.640        | -35.348       |
| Ta,s          | 11.052905     | 2000.000    | 298  | 0.000         | 9.912         | -2.954        |
| TaSi2,s       | 0.00000       | 0.000       | 298  | -28.447       | 17.985        | -33.806       |
| Ta2Si,s       | 0.00000       | 0.000       | 298  | -29.975       | 25.174        | -37.477       |
| Ta5Si3,s      | 0.00000       | 0.000       | 298  | -79.942       | 67.044        | -99.921       |
| SiH2Cl2,g     | 0.00000       | 0.000       | 298  | -76.550       | 68.477        | -96.956       |
| Si,g          | 0.00000       | 0.000       | 298  | 107.481       | 40.126        | 95.523        |
| H2 <b>,</b> g | 0.00000       | 0.000       | 298  | 0.000         | 31.217        | -9.303        |
| Ta,g          | 0.00000       | 0.000       | 298  | 186.778       | 44.569        | 173.496       |
| TaCl,g        | 0.00000       | 0.000       | 298  | 85.937        | 91.908        | 58.548        |
| TaCl2,g       | 0.00000       | 0.000       | 298  | -15.979       | 71.272        | -37.218       |
| TaCl3,g       | 0.00000       | 0.000       | 298  | -76.956       | 82.641        | -101.583      |
| TaCl4,g       | 0.00000       | 0.000       | 298  | -137.121      | 90.117        | -163.976      |
| TaCl5,g       | 0.00000       | 0.000       | 298  | -182.669      | 98.643        | -212.065      |
| Cl,g          | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
|               |               |             |      |               |               |               |

### Ti / SiHCl<sub>3</sub>

Data file: MS.dat Input file: TiSi.ein Date: 27.10.2004 Time: 14:06:22

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance     | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|---------------|---------------|-------------|------|---------------|---------------|---------------|
| C12,g         | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Si,c          | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g        | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g       | 0.000000      | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g       | 0.00000       | 0.000       | 298  | -97.234       | 77.004        | -120.181      |
| SiCl4,g       | 0.00000       | 0.000       | 330  | -158.283      | 79.034        | -184.365      |
| SiHCl3,g      | 26.057320     | 3529.526    | 298  | -118.515      | 74.926        | -140.843      |
| HCl,g         | 0.00000       | 0.000       | 298  | -22.045       | 44.640        | -35.348       |
| Ti3Si,s       | 0.00000       | 0.000       | 298  | -23.885       | 14.331        | -28.155       |
| Ti5Si4,s      | 0.000000      | 0.000       | 298  | -28.662       | 11.942        | -32.220       |
| TiSi,s        | 0.000000      | 0.000       | 298  | -30.978       | 11.703        | -34.466       |
| TiSi2,s       | 0.00000       | 0.000       | 298  | -31.981       | 14.593        | -36.330       |
| TiCl,g        | 0.00000       | 0.000       | 298  | 36.878        | 59.520        | 19.141        |
| TiCl2,g       | 0.00000       | 0.000       | 298  | -56.654       | 66.471        | -76.463       |
| TiCl3,g       | 0.00000       | 0.000       | 298  | -128.810      | 75.690        | -151.365      |
| TiCl4,g       | 0.00000       | 0.000       | 298  | -182.287      | 84.766        | -207.548      |
| Ti2Cl6,g      | 0.00000       | 0.000       | 298  | -297.960      | 115.148       | -332.274      |
| Ti,c          | 41.771094     | 2000.000    | 298  | 0.000         | 7.356         | -2.192        |
| Ti5Si3,s      | 0.00000       | 0.000       | 298  | -138.411      | 52.068        | -153.928      |
| SiH2Cl2,g     | 0.00000       | 0.000       | 298  | -76.550       | 68.477        | -96.956       |
| Si,g          | 0.00000       | 0.000       | 298  | 107.481       | 40.126        | 95.523        |
| H2 <b>,</b> g | 0.00000       | 0.000       | 298  | 0.000         | 31.217        | -9.303        |
| Ti,g          | 0.000000      | 0.000       | 298  | 113.117       | 43.064        | 100.284       |
| Cl,g          | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
#### V / SiHCl<sub>3</sub>

Data file: MS.dat Input file: VSi.ein Date: 04.05.2004 Time: 14:46:14

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g      | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| Si,c      | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g    | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g   | 0.00000       | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g   | 0.00000       | 0.000       | 298  | -93.245       | 76.001        | -115.894      |
| SiCl4,g   | 0.00000       | 0.000       | 330  | -157.591      | 81.255        | -184.405      |
| SiHCl3,g  | 26.057320     | 3529.526    | 298  | -118.515      | 74.926        | -140.843      |
| HCl,g     | 0.00000       | 0.000       | 298  | -22.045       | 44.640        | -35.348       |
| SiH2Cl2,g | 0.00000       | 0.000       | 298  | -76.550       | 68.477        | -96.956       |
| Si,g      | 0.00000       | 0.000       | 298  | 107.481       | 40.126        | 95.523        |
| H2,g      | 0.00000       | 0.000       | 298  | 0.000         | 31.217        | -9.303        |
| V,s       | 39.260721     | 2000.000    | 298  | 0.000         | 6.903         | -2.057        |
| V,g       | 0.00000       | 0.000       | 298  | 123.125       | 43.542        | 110.150       |
| VSi2,s    | 0.00000       | 0.000       | 298  | -29.975       | 13.996        | -34.146       |
| V3Si,s    | 0.00000       | 0.000       | 298  | -35.970       | 24.243        | -43.195       |
| V5Si3,s   | 0.00000       | 0.000       | 298  | -110.419      | 49.871        | -125.280      |
| VCl2,g    | 0.00000       | 0.000       | 298  | -48.510       | 67.880        | -68.738       |
| VCl3,g    | 0.00000       | 0.000       | 298  | -90.929       | 85.937        | -116.538      |
| VCl4,g    | 0.00000       | 0.000       | 298  | -125.514      | 87.537        | -151.600      |
|           |               |             |      |               |               |               |

#### W / SiHCl<sub>3</sub>

Data file: MS.dat Input file: WSi.ein Date: 04.05.2004 Time: 14:23:04

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance     | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|---------------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g         | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g          | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| Si,c          | 0.00000       | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g        | 0.00000       | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g       | 0.00000       | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g       | 0.00000       | 0.000       | 298  | -93.245       | 76.001        | -115.894      |
| SiCl4,g       | 0.00000       | 0.000       | 330  | -157.591      | 81.255        | -184.405      |
| SiHCl3,g      | 26.057320     | 3529.526    | 298  | -118.515      | 74.926        | -140.843      |
| HCl,g         | 0.00000       | 0.000       | 298  | -22.045       | 44.640        | -35.348       |
| SiH2Cl2,g     | 0.00000       | 0.000       | 298  | -76.550       | 68.477        | -96.956       |
| Si,g          | 0.00000       | 0.000       | 298  | 107.481       | 40.126        | 95.523        |
| H2 <b>,</b> g | 0.00000       | 0.000       | 298  | 0.000         | 31.217        | -9.303        |
| W,s           | 10.878434     | 2000.000    | 298  | 0.000         | 7.810         | -2.327        |
| W,g           | 0.00000       | 0.000       | 298  | 198.003       | 41.559        | 185.619       |
| WSi2,s        | 0.00000       | 0.000       | 298  | -22.189       | 15.286        | -26.744       |
| W5Si3,s       | 0.00000       | 0.000       | 298  | -32.292       | 54.863        | -48.641       |
| WCl,g         | 0.00000       | 0.000       | 298  | 132.201       | 62.554        | 113.560       |
| WCl2,g        | 0.00000       | 0.000       | 298  | -3.009        | 73.899        | -25.031       |
| WCl4,g        | 0.00000       | 0.000       | 298  | -80.252       | 90.594        | -107.249      |
| WCl5,g        | 0.00000       | 0.000       | 298  | -98.524       | 96.900        | -127.400      |
| WCl6,g        | 0.00000       | 0.000       | 298  | -117.918      | 100.124       | -147.755      |
| W2Cl10,g      | 0.00000       | 0.000       | 298  | -207.462      | 170.441       | -258.253      |

#### Zr / SiHCl<sub>3</sub>

Data file: MS.dat Input file: ZrSi.ein Date: 27.10.2004 Time: 14:22:02

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Si,c      | 0.000000      | 0.000       | 298  | 0.000         | 4.490         | -1.338        |
| SiCl,g    | 0.000000      | 0.000       | 298  | 47.363        | 56.798        | 30.437        |
| SiCl2,g   | 0.000000      | 0.000       | 298  | -40.269       | 67.187        | -60.291       |
| SiCl3,g   | 0.000000      | 0.000       | 298  | -97.234       | 77.004        | -120.181      |
| SiCl4,g   | 0.000000      | 0.000       | 330  | -158.283      | 79.034        | -184.365      |
| SiHCl3,g  | 26.057320     | 3529.526    | 298  | -118.515      | 74.926        | -140.843      |
| HCl,g     | 0.00000       | 0.000       | 298  | -22.045       | 44.640        | -35.348       |

| SiH2Cl2,g | 0.000000  | 0.000    | 298 | -76.550  | 68.477 | -96.956  |
|-----------|-----------|----------|-----|----------|--------|----------|
| Si,g      | 0.00000   | 0.000    | 298 | 107.481  | 40.126 | 95.523   |
| H2,g      | 0.00000   | 0.000    | 298 | 0.000    | 31.217 | -9.303   |
| Zr,c      | 21.925016 | 2000.000 | 298 | 0.000    | 9.291  | -2.769   |
| Zr,g      | 0.000000  | 0.000    | 298 | 145.696  | 43.303 | 132.792  |
| ZrSi,s    | 0.000000  | 0.000    | 298 | -36.973  | 13.901 | -41.116  |
| Zr2Si,s   | 0.00000   | 0.000    | 298 | -49.776  | 23.980 | -56.922  |
| ZrSi2,s   | 0.000000  | 0.000    | 298 | -38.072  | 17.077 | -43.161  |
| Zr5Si3,s  | 0.000000  | 0.000    | 298 | -137.504 | 62.864 | -156.237 |
| ZrCl,g    | 0.000000  | 0.000    | 298 | 49.059   | 60.715 | 30.966   |
| ZrCl2,g   | 0.00000   | 0.000    | 298 | -44.473  | 69.886 | -65.299  |
| ZrCl3,g   | 0.00000   | 0.000    | 298 | -125.227 | 81.040 | -149.377 |
| ZrCl4,g   | 0.00000   | 0.000    | 298 | -207.796 | 87.824 | -233.967 |
| Cl,g      | 0.00000   | 0.000    | 298 | 28.972   | 39.457 | 17.214   |

Mo / BCl<sub>3</sub> Data file: MS.dat Input file: MoB.ein Date: 27.10.2004 Time: 10:42:50

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval:  $T(low) = 800^{\circ}C - T(high) = 2000^{\circ}C$  step width =  $50^{\circ}C$ 

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Mo,s      | 20.846362     | 2000.000    | 298  | 0.000         | 6.831         | -2.036        |
| MoCl4,g   | 0.00000       | 0.000       | 298  | -91.932       | 88.827        | -118.402      |
| MoCl5,g   | 0.00000       | 0.000       | 298  | -106.931      | 95.013        | -135.245      |
| MoCl,g    | 0.000000      | 0.000       | 298  | 97.306        | 61.718        | 78.914        |
| Mo,g      | 0.000000      | 0.000       | 298  | 157.400       | 43.470        | 144.445       |
| MoCl6,g   | 0.00000       | 0.000       | 298  | -104.925      | 100.196       | -134.783      |
| B,c       | 0.00000       | 0.000       | 298  | 0.000         | 1.385         | -0.413        |
| B,g       | 0.000000      | 0.000       | 298  | 133.754       | 36.639        | 122.835       |
| BCl,g     | 0.000000      | 0.000       | 298  | 35.707        | 50.946        | 20.526        |
| BCl2,g    | 0.000000      | 0.000       | 298  | -18.988       | 65.133        | -38.398       |
| BCl3,g    | 30.655670     | 3591.894    | 298  | -96.255       | 69.313        | -116.910      |
| MoB,s     | 0.00000       | 0.000       | 298  | -29.593       | 6.043         | -31.394       |
| B2,g      | 0.00000       | 0.000       | 298  | 198.171       | 48.247        | 183.793       |
| B2Cl4,g   | 0.000000      | 0.000       | 298  | -116.820      | 85.746        | -142.372      |
| MoCl3,g   | 0.000000      | 0.000       | 298  | -35.731       | 79.416        | -59.397       |
| MoCl2,g   | 0.000000      | 0.000       | 298  | 19.848        | 70.221        | -1.078        |
| Cl,g      | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |

#### Nb / $BCl_3$

Data file: MS.dat Input file: NbB.ein Date: 18.10.2004 Time: 14:53:22

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval:  $T(low) = 800^{\circ}C - T(high) = 2000^{\circ}C$  step width =  $50^{\circ}C$ 

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Nb,s      | 21.527042     | 2000.000    | 298  | 0.000         | 8.718         | -2.598        |
| NbCl4,g   | 0.000000      | 0.000       | 298  | -133.993      | 84.958        | -159.310      |
| NbCl5,g   | 0.000000      | 0.000       | 298  | -167.980      | 96.518        | -196.743      |
| Nb,g      | 0.000000      | 0.000       | 298  | 175.074       | 44.497        | 161.814       |
| B,c       | 0.00000       | 0.000       | 298  | 0.000         | 1.385         | -0.413        |
| B,g       | 0.00000       | 0.000       | 298  | 133.754       | 36.639        | 122.835       |
| BCl,g     | 0.000000      | 0.000       | 298  | 35.707        | 50.946        | 20.526        |
| BCl2,g    | 0.000000      | 0.000       | 298  | -18.988       | 65.133        | -38.398       |
| BCl3,g    | 30.655670     | 3591.894    | 298  | -96.255       | 69.313        | -116.910      |
| B2,g      | 0.000000      | 0.000       | 298  | 198.171       | 48.247        | 183.793       |
| NbB2,s    | 0.000000      | 0.000       | 298  | -41.870       | 8.933         | -44.532       |
| B2Cl4,g   | 0.000000      | 0.000       | 298  | -116.820      | 85.746        | -142.372      |
| Cl,g      | 0.000000      | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| NbCl2,g   | 0.00000       | 0.000       | 298  | -97.234       | 27.993        | -105.576      |

#### Ta / BCl<sub>3</sub>

Data file: MS.dat Input file: TaB.ein Date: 27.10.2004 Time: 10:18:34

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| C12,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Ta,s      | 11.052905     | 2000.000    | 298  | 0.000         | 9.912         | -2.954        |
| Ta,g      | 0.000000      | 0.000       | 298  | 186.778       | 44.569        | 173.496       |
| TaCl,g    | 0.00000       | 0.000       | 298  | 85.937        | 91.908        | 58.548        |
| TaCl2,g   | 0.00000       | 0.000       | 298  | -15.979       | 71.272        | -37.218       |
| TaCl3,g   | 0.000000      | 0.000       | 298  | -76.956       | 82.641        | -101.583      |
| TaCl4,g   | 0.000000      | 0.000       | 298  | -137.121      | 90.117        | -163.976      |
| TaCl5,g   | 0.000000      | 0.000       | 298  | -182.669      | 98.643        | -212.065      |
| B,C       | 0.00000       | 0.000       | 298  | 0.000         | 1.385         | -0.413        |
| B,g       | 0.00000       | 0.000       | 298  | 133.754       | 36.639        | 122.835       |
| BCl,g     | 0.000000      | 0.000       | 298  | 35.707        | 50.946        | 20.526        |
| BCl2,g    | 0.000000      | 0.000       | 298  | -18.988       | 65.133        | -38.398       |
| BCl3,g    | 30.655670     | 3591.894    | 298  | -96.255       | 69.313        | -116.910      |
| B2,g      | 0.00000       | 0.000       | 298  | 198.171       | 48.247        | 183.793       |
| TaB2,s    | 0.00000       | 0.000       | 298  | -49.967       | 10.605        | -53.127       |
| B2Cl4,g   | 0.00000       | 0.000       | 298  | -116.820      | 85.746        | -142.372      |
| Cl,g      | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
|           |               |             |      |               |               |               |

#### Ti / BCl<sub>3</sub>

Data file: MS.dat Input file: TiB.ein Date: 10.05.2004 Time: 14:32:52

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | Τ°/Κ | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g      | 0.000000      | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| TiCl,g    | 0.000000      | 0.000       | 298  | 36.878        | 59.520        | 19.141        |
| TiCl2,g   | 0.000000      | 0.000       | 298  | -56.654       | 66.471        | -76.463       |
| TiCl3,g   | 0.000000      | 0.000       | 298  | -128.810      | 75.690        | -151.365      |
| TiCl4,g   | 0.000000      | 0.000       | 298  | -182.287      | 84.766        | -207.548      |
| Ti2Cl6,g  | 0.000000      | 0.000       | 298  | -297.960      | 115.148       | -332.274      |
| Ti,c      | 41.771094     | 2000.000    | 298  | 0.000         | 7.356         | -2.192        |
| Ti,g      | 0.000000      | 0.000       | 298  | 113.117       | 43.064        | 100.284       |
| B,c       | 0.000000      | 0.000       | 298  | 0.000         | 1.385         | -0.413        |
| B,g       | 0.000000      | 0.000       | 298  | 133.754       | 36.639        | 122.835       |
| BCl,g     | 0.000000      | 0.000       | 298  | 35.707        | 50.946        | 20.526        |
| BCl2,g    | 0.000000      | 0.000       | 298  | -18.988       | 65.133        | -38.398       |
| BCl3,g    | 44.450722     | 5208.247    | 298  | -96.255       | 69.313        | -116.910      |
| TiB,s     | 0.000000      | 0.000       | 298  | -38.263       | 8.288         | -40.733       |
| B2,g      | 0.000000      | 0.000       | 298  | 198.171       | 48.247        | 183.793       |
| TiB2,s    | 0.000000      | 0.000       | 298  | -75.451       | 6.807         | -77.480       |
| B2Cl4,g   | 0.00000       | 0.000       | 298  | -116.820      | 85.746        | -142.372      |

#### V / BCl3

Data file: MS.dat Input file: VB.ein Date: 18.10.2004 Time: 21:37:08

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| V,s       | 39.260721     | 2000.000    | 298  | 0.000         | 6.903         | -2.057        |
| V,g       | 0.000000      | 0.000       | 298  | 123.125       | 43.542        | 110.150       |
| VCl2,g    | 0.000000      | 0.000       | 298  | -48.510       | 67.880        | -68.738       |
| VCl3,g    | 0.000000      | 0.000       | 298  | -90.929       | 85.937        | -116.538      |
| VCl4,g    | 0.000000      | 0.000       | 298  | -125.514      | 87.537        | -151.600      |
| B,c       | 0.000000      | 0.000       | 298  | 0.000         | 1.385         | -0.413        |
| B,g       | 0.000000      | 0.000       | 298  | 133.754       | 36.639        | 122.835       |
| BCl,g     | 0.000000      | 0.000       | 298  | 35.707        | 50.946        | 20.526        |
| BCl2,g    | 0.000000      | 0.000       | 298  | -18.988       | 65.133        | -38.398       |
| BCl3,g    | 30.655670     | 3591.894    | 298  | -96.255       | 69.313        | -116.910      |
| VB,s      | 0.000000      | 0.000       | 298  | -33.080       | 6.998         | -35.166       |
| B2,g      | 0.000000      | 0.000       | 298  | 198.171       | 48.247        | 183.793       |
| VB2,s     | 0.000000      | 0.000       | 298  | -48.629       | 7.189         | -50.771       |
| V3B2,s    | 0.000000      | 0.000       | 298  | -79.058       | 20.756        | -85.243       |

| V2B3,s  | 0.00000  | 0.000 | 298 | -82.450  | 14.187 | -86.678  |
|---------|----------|-------|-----|----------|--------|----------|
| V3B4,s  | 0.000000 | 0.000 | 298 | -116.222 | 21.186 | -122.536 |
| V5B6,s  | 0.000000 | 0.000 | 298 | -182.431 | 35.158 | -192.908 |
| B2Cl4,g | 0.000000 | 0.000 | 298 | -116.820 | 85.746 | -142.372 |
| Cl,g    | 0.00000  | 0.000 | 298 | 28.972   | 39.457 | 17.214   |

### W / BCl<sub>3</sub>

Data file: MS.dat Input file: WB.ein Date: 18.10.2004 Time: 21:43:07

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| W,s       | 10.878434     | 2000.000    | 298  | 0.000         | 7.810         | -2.327        |
| W,g       | 0.00000       | 0.000       | 298  | 198.003       | 41.559        | 185.619       |
| WCl,g     | 0.00000       | 0.000       | 298  | 132.201       | 62.554        | 113.560       |
| WCl2,g    | 0.00000       | 0.000       | 298  | -3.009        | 73.899        | -25.031       |
| WCl4,g    | 0.00000       | 0.000       | 298  | -80.252       | 90.594        | -107.249      |
| WCl5,g    | 0.00000       | 0.000       | 298  | -98.524       | 96.900        | -127.400      |
| WCl6,g    | 0.00000       | 0.000       | 298  | -117.918      | 100.124       | -147.755      |
| W2Cl10,g  | 0.00000       | 0.000       | 298  | -207.462      | 170.441       | -258.253      |
| B,c       | 0.00000       | 0.000       | 298  | 0.000         | 1.385         | -0.413        |
| B,g       | 0.00000       | 0.000       | 298  | 133.754       | 36.639        | 122.835       |
| BCl,g     | 0.00000       | 0.000       | 298  | 35.707        | 50.946        | 20.526        |
| BCl2,g    | 0.00000       | 0.000       | 298  | -18.988       | 65.133        | -38.398       |
| BCl3,g    | 30.655670     | 3591.894    | 298  | -96.255       | 69.313        | -116.910      |
| WB,s      | 0.00000       | 0.000       | 298  | -15.788       | 7.906         | -18.144       |
| W2B,s     | 0.00000       | 0.000       | 298  | -15.979       | 15.979        | -20.740       |
| B2,g      | 0.00000       | 0.000       | 298  | 198.171       | 48.247        | 183.793       |
| B2Cl4,g   | 0.00000       | 0.000       | 298  | -116.820      | 85.746        | -142.372      |
| Cl,g      | 0.000000      | 0.000       | 298  | 28.972        | 39.457        | 17.214        |

#### Zr / BCl<sub>3</sub>

Data file: MS.dat Input file: ZrB.ein Date: 27.10.2004 Time: 14:25:43

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval:  $T(low) = 800^{\circ}C - T(high) = 2000^{\circ}C$  step width =  $50^{\circ}C$ 

| Substance     | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|---------------|---------------|-------------|------|---------------|---------------|---------------|
| C12,g         | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Zr,c          | 21.925016     | 2000.000    | 298  | 0.000         | 9.291         | -2.769        |
| Zr,g          | 0.00000       | 0.000       | 298  | 145.696       | 43.303        | 132.792       |
| ZrCl,g        | 0.00000       | 0.000       | 298  | 49.059        | 60.715        | 30.966        |
| ZrCl2,g       | 0.00000       | 0.000       | 298  | -44.473       | 69.886        | -65.299       |
| ZrCl3,g       | 0.00000       | 0.000       | 298  | -125.227      | 81.040        | -149.377      |
| ZrCl4,g       | 0.00000       | 0.000       | 298  | -207.796      | 87.824        | -233.967      |
| B,c           | 0.00000       | 0.000       | 298  | 0.000         | 1.385         | -0.413        |
| B,g           | 0.00000       | 0.000       | 298  | 133.754       | 36.639        | 122.835       |
| BCl,g         | 0.00000       | 0.000       | 298  | 35.707        | 50.946        | 20.526        |
| BCl2,g        | 0.00000       | 0.000       | 298  | -18.988       | 65.133        | -38.398       |
| BCl3,g        | 30.655670     | 3591.894    | 298  | -96.255       | 69.313        | -116.910      |
| B2 <b>,</b> g | 0.00000       | 0.000       | 298  | 198.171       | 48.247        | 183.793       |
| ZrB2,s        | 0.00000       | 0.000       | 298  | -77.052       | 8.575         | -79.607       |
| B2Cl4,g       | 0.00000       | 0.000       | 298  | -116.820      | 85.746        | -142.372      |
| Cl,g          | 0.000000      | 0.000       | 298  | 28.972        | 39.457        | 17.214        |

#### Mo / CCl<sub>4</sub>

Data file: MS.dat Input file: MoC.ein Date: 18.10.2004 Time: 15:11:55

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| C12,q     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Mo,s      | 20.846362     | 2000.000    | 298  | 0.000         | 6.831         | -2.036        |
| MoCl4,g   | 0.000000      | 0.000       | 298  | -91.932       | 88.827        | -118.402      |
| MoCl5,g   | 0.000000      | 0.000       | 298  | -106.931      | 95.013        | -135.245      |
| MoCl,g    | 0.00000       | 0.000       | 298  | 97.306        | 61.718        | 78.914        |
| Mo,g      | 0.000000      | 0.000       | 298  | 157.400       | 43.470        | 144.445       |
| C,s       | 0.00000       | 0.000       | 298  | 0.000         | 1.361         | -0.406        |

| C,g     | 0.00000   | 0.000    | 298 | 171.181  | 37.762  | 159.928  |
|---------|-----------|----------|-----|----------|---------|----------|
| CCl,g   | 0.00000   | 0.000    | 298 | 119.925  | 53.621  | 103.946  |
| CC12,g  | 0.00000   | 0.000    | 298 | 56.965   | 63.366  | 38.082   |
| CC13,g  | 0.00000   | 0.000    | 298 | 18.988   | 70.889  | -2.137   |
| CCl4,g  | 11.036041 | 1697.597 | 298 | -24.601  | 73.994  | -46.651  |
| MoC,s   | 0.00000   | 0.000    | 298 | -6.807   | 8.766   | -9.419   |
| Mo2C,s  | 0.00000   | 0.000    | 298 | -11.823  | 15.716  | -16.506  |
| C2,g    | 0.00000   | 0.000    | 298 | 200.081  | 47.626  | 185.889  |
| C2C12,g | 0.00000   | 0.000    | 298 | 50.062   | 64.966  | 30.702   |
| C2Cl4,g | 0.00000   | 0.000    | 298 | -2.962   | 82.020  | -27.404  |
| C2Cl6,g | 0.00000   | 0.000    | 298 | -32.053  | 95.037  | -60.374  |
| C3,g    | 0.00000   | 0.000    | 298 | 195.854  | 56.654  | 178.971  |
| C4,g    | 0.00000   | 0.000    | 298 | 231.919  | 54.529  | 215.670  |
| C5,g    | 0.00000   | 0.000    | 298 | 233.830  | 57.801  | 216.606  |
| MoCl6,g | 0.00000   | 0.000    | 298 | -104.925 | 100.196 | -134.783 |
| MoCl3,g | 0.00000   | 0.000    | 298 | -35.731  | 79.416  | -59.397  |
| MoCl2,g | 0.00000   | 0.000    | 298 | 19.848   | 70.221  | -1.078   |
| Cl,g    | 0.00000   | 0.000    | 298 | 28.972   | 39.457  | 17.214   |

Nb /  $CCl_4$ 

Data file: MS.dat Input file: NbC.ein Date: 18.10.2004 Time: 21:28:08

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Nb,s      | 21.527042     | 2000.000    | 298  | 0.000         | 8.718         | -2.598        |
| NbCl4,g   | 0.000000      | 0.000       | 298  | -133.993      | 84.958        | -159.310      |
| NbCl5,g   | 0.000000      | 0.000       | 298  | -167.980      | 96.518        | -196.743      |
| Nb,g      | 0.000000      | 0.000       | 298  | 175.074       | 44.497        | 161.814       |
| C,s       | 0.000000      | 0.000       | 298  | 0.000         | 1.361         | -0.406        |
| C,g       | 0.000000      | 0.000       | 298  | 171.181       | 37.762        | 159.928       |
| CCl,g     | 0.000000      | 0.000       | 298  | 119.925       | 53.621        | 103.946       |
| CC12,g    | 0.000000      | 0.000       | 298  | 56.965        | 63.366        | 38.082        |
| CC13,g    | 0.000000      | 0.000       | 298  | 18.988        | 70.889        | -2.137        |
| CCl4,g    | 11.036041     | 1697.597    | 298  | -24.601       | 73.994        | -46.651       |
| Nb2C,s    | 0.000000      | 0.000       | 298  | -44.378       | 15.286        | -48.933       |
| C2,g      | 0.000000      | 0.000       | 298  | 200.081       | 47.626        | 185.889       |
| C2Cl2,g   | 0.000000      | 0.000       | 298  | 50.062        | 64.966        | 30.702        |
| C2Cl4,g   | 0.000000      | 0.000       | 298  | -2.962        | 82.020        | -27.404       |
| C2Cl6,g   | 0.000000      | 0.000       | 298  | -32.053       | 95.037        | -60.374       |
| C3,g      | 0.000000      | 0.000       | 298  | 195.854       | 56.654        | 178.971       |
| C4,g      | 0.000000      | 0.000       | 298  | 231.919       | 54.529        | 215.670       |
| C5,g      | 0.000000      | 0.000       | 298  | 233.830       | 57.801        | 216.606       |
| NbC,s     | 0.000000      | 0.000       | 298  | -33.176       | 8.455         | -35.695       |
| Cl,g      | 0.000000      | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| NbCl2,g   | 0.000000      | 0.000       | 298  | -97.234       | 27.993        | -105.576      |

Ta / CCl4

Data file: MS.dat Input file: TaC.ein Date: 05.05.2004 Time: 16:40:37

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval:  $T(low) = 800^{\circ}C - T(high) = 2000^{\circ}C$  step width =  $50^{\circ}C$ 

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g      | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| Ta,s      | 11.052905     | 2000.000    | 298  | 0.000         | 9.912         | -2.954        |
| Ta,g      | 0.000000      | 0.000       | 298  | 186.778       | 44.569        | 173.496       |
| C,s       | 0.000000      | 0.000       | 298  | 0.000         | 1.361         | -0.406        |
| C,g       | 0.000000      | 0.000       | 298  | 171.181       | 37.762        | 159.928       |
| CCl,g     | 0.000000      | 0.000       | 298  | 119.925       | 58.637        | 102.451       |
| CCl2,g    | 0.000000      | 0.000       | 298  | 56.965        | 63.366        | 38.082        |
| CCl3,g    | 0.000000      | 0.000       | 298  | 18.988        | 70.889        | -2.137        |
| CCl4,g    | 11.036041     | 1697.597    | 298  | -23.574       | 77.219        | -46.585       |
| TaC,s     | 0.000000      | 0.000       | 298  | -34.418       | 10.127        | -37.436       |
| Ta2C,s    | 0.000000      | 0.000       | 298  | -49.776       | 19.490        | -55.583       |
| C2,g      | 0.000000      | 0.000       | 298  | 200.081       | 47.626        | 185.889       |
| C2C12,g   | 0.000000      | 0.000       | 298  | 50.062        | 64.966        | 30.702        |
| C2Cl4,g   | 0.000000      | 0.000       | 298  | -2.962        | 82.020        | -27.404       |
| C2C16,g   | 0.000000      | 0.000       | 298  | -32.053       | 95.037        | -60.374       |
| C3,g      | 0.000000      | 0.000       | 298  | 195.854       | 56.654        | 178.971       |
| C4,g      | 0.000000      | 0.000       | 298  | 231.919       | 54.529        | 215.670       |

| C5,g    | 0.00000 | 0.000 | 298 | 233.830  | 57.801 | 216.606  |
|---------|---------|-------|-----|----------|--------|----------|
| TaCl,g  | 0.00000 | 0.000 | 298 | 85.937   | 91.908 | 58.548   |
| TaCl2,g | 0.00000 | 0.000 | 298 | -15.979  | 71.272 | -37.218  |
| TaCl3,g | 0.00000 | 0.000 | 298 | -76.956  | 82.641 | -101.583 |
| TaCl4,g | 0.00000 | 0.000 | 298 | -137.121 | 90.117 | -163.976 |
| TaCl5,g | 0.00000 | 0.000 | 298 | -182.669 | 98.643 | -212.065 |

### Ti / $CCl_4$

Data file: MS.dat Input file: TiC.ein Date: 06.05.2004 Time: 10:33:04

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance     | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|---------------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g         | 0.00000       | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g          | 0.00000       | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| TiCl,g        | 0.00000       | 0.000       | 298  | 36.878        | 59.520        | 19.141        |
| TiCl2,g       | 0.00000       | 0.000       | 298  | -56.654       | 66.471        | -76.463       |
| TiCl3,g       | 0.00000       | 0.000       | 298  | -128.810      | 75.690        | -151.365      |
| TiCl4,g       | 0.00000       | 0.000       | 298  | -182.287      | 84.766        | -207.548      |
| Ti2Cl6,g      | 0.00000       | 0.000       | 298  | -297.960      | 115.148       | -332.274      |
| Ti,c          | 41.771094     | 2000.000    | 298  | 0.000         | 7.356         | -2.192        |
| C,s           | 0.00000       | 0.000       | 298  | 0.000         | 1.361         | -0.406        |
| C,g           | 0.00000       | 0.000       | 298  | 171.181       | 37.762        | 159.928       |
| CCl,g         | 0.00000       | 0.000       | 298  | 119.925       | 58.637        | 102.451       |
| CC12,g        | 0.00000       | 0.000       | 298  | 56.965        | 63.366        | 38.082        |
| CC13,g        | 0.00000       | 0.000       | 298  | 18.988        | 70.889        | -2.137        |
| CCl4,g        | 11.036041     | 1697.597    | 298  | -23.574       | 77.219        | -46.585       |
| TiC,s         | 0.00000       | 0.000       | 298  | -43.972       | 5.780         | -45.694       |
| C2,g          | 0.00000       | 0.000       | 298  | 200.081       | 47.626        | 185.889       |
| C2Cl2,g       | 0.00000       | 0.000       | 298  | 50.062        | 64.966        | 30.702        |
| C2Cl4,g       | 0.00000       | 0.000       | 298  | -2.962        | 82.020        | -27.404       |
| C2Cl6,g       | 0.00000       | 0.000       | 298  | -32.053       | 95.037        | -60.374       |
| C3,g          | 0.00000       | 0.000       | 298  | 195.854       | 56.654        | 178.971       |
| C4,g          | 0.00000       | 0.000       | 298  | 231.919       | 54.529        | 215.670       |
| C5 <b>,</b> g | 0.00000       | 0.000       | 298  | 233.830       | 57.801        | 216.606       |
|               |               |             |      |               |               |               |

v / ccl₄

Data file: MS.dat Input file: VC.ein Date: 06.05.2004 Time: 11:32:15

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval:  $T(low) = 800^{\circ}C - T(high) = 2000^{\circ}C$  step width =  $50^{\circ}C$ 

| Substance     | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|---------------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g         | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g          | 0.000000      | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| V,s           | 39.260721     | 2000.000    | 298  | 0.000         | 6.903         | -2.057        |
| V,g           | 0.000000      | 0.000       | 298  | 123.125       | 43.542        | 110.150       |
| VC12,g        | 0.000000      | 0.000       | 298  | -48.510       | 67.880        | -68.738       |
| VCl3,g        | 0.000000      | 0.000       | 298  | -90.929       | 85.937        | -116.538      |
| VCl4,g        | 0.000000      | 0.000       | 298  | -125.514      | 87.537        | -151.600      |
| C,s           | 0.000000      | 0.000       | 298  | 0.000         | 1.361         | -0.406        |
| C,g           | 0.000000      | 0.000       | 298  | 171.181       | 37.762        | 159.928       |
| CCl,g         | 0.00000       | 0.000       | 298  | 119.925       | 58.637        | 102.451       |
| CCl2,g        | 0.00000       | 0.000       | 298  | 56.965        | 63.366        | 38.082        |
| CC13,g        | 0.000000      | 0.000       | 298  | 18.988        | 70.889        | -2.137        |
| CCl4,g        | 11.036041     | 1697.597    | 298  | -23.574       | 77.219        | -46.585       |
| V2C,s         | 0.000000      | 0.000       | 298  | -27.993       | 12.205        | -31.630       |
| C2,g          | 0.00000       | 0.000       | 298  | 200.081       | 47.626        | 185.889       |
| C2Cl2,g       | 0.00000       | 0.000       | 298  | 50.062        | 64.966        | 30.702        |
| C2Cl4,g       | 0.000000      | 0.000       | 298  | -2.962        | 82.020        | -27.404       |
| C2Cl6,g       | 0.000000      | 0.000       | 298  | -32.053       | 95.037        | -60.374       |
| C3 <b>,</b> g | 0.000000      | 0.000       | 298  | 195.854       | 56.654        | 178.971       |
| C4,g          | 0.000000      | 0.000       | 298  | 231.919       | 54.529        | 215.670       |
| C5,g          | 0.00000       | 0.000       | 298  | 233.830       | 57.801        | 216.606       |
|               |               |             |      |               |               |               |

#### W / CCl4

Data file: MS.dat Input file: WC.ein Date: 06.05.2004 Time: 10:46:10

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g      | 0.000000      | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| W,s       | 10.878434     | 2000.000    | 298  | 0.000         | 7.810         | -2.327        |
| W,g       | 0.000000      | 0.000       | 298  | 198.003       | 41.559        | 185.619       |
| WCl,g     | 0.000000      | 0.000       | 298  | 132.201       | 62.554        | 113.560       |
| WCl2,g    | 0.000000      | 0.000       | 298  | -3.009        | 73.899        | -25.031       |
| WCl4,g    | 0.000000      | 0.000       | 298  | -80.252       | 90.594        | -107.249      |
| WCl5,g    | 0.000000      | 0.000       | 298  | -98.524       | 96.900        | -127.400      |
| WCl6,g    | 0.000000      | 0.000       | 298  | -117.918      | 100.124       | -147.755      |
| W2Cl10,g  | 0.00000       | 0.000       | 298  | -207.462      | 170.441       | -258.253      |
| C,s       | 0.000000      | 0.000       | 298  | 0.000         | 1.361         | -0.406        |
| C,g       | 0.000000      | 0.000       | 298  | 171.181       | 37.762        | 159.928       |
| CCl,g     | 0.000000      | 0.000       | 298  | 119.925       | 58.637        | 102.451       |
| CCl2,g    | 0.00000       | 0.000       | 298  | 56.965        | 63.366        | 38.082        |
| CCl3,g    | 0.00000       | 0.000       | 298  | 18.988        | 70.889        | -2.137        |
| CCl4,g    | 11.036041     | 1697.597    | 298  | -23.574       | 77.219        | -46.585       |
| WC,s      | 0.000000      | 0.000       | 298  | -9.697        | 8.288         | -12.167       |
| W2C,s     | 0.00000       | 0.000       | 298  | -6.306        | 19.490        | -12.114       |
| C2,g      | 0.00000       | 0.000       | 298  | 200.081       | 47.626        | 185.889       |
| C2Cl2,g   | 0.00000       | 0.000       | 298  | 50.062        | 64.966        | 30.702        |
| C2Cl4,g   | 0.00000       | 0.000       | 298  | -2.962        | 82.020        | -27.404       |
| C2Cl6,g   | 0.00000       | 0.000       | 298  | -32.053       | 95.037        | -60.374       |
| C3,g      | 0.000000      | 0.000       | 298  | 195.854       | 56.654        | 178.971       |
| C4,g      | 0.000000      | 0.000       | 298  | 231.919       | 54.529        | 215.670       |
| C5,g      | 0.000000      | 0.000       | 298  | 233.830       | 57.801        | 216.606       |

#### Zr / CCl<sub>4</sub>

Data file: MS.dat Input file: ZrC.ein Date: 06.05.2004 Time: 11:23:08

\*\*\* Isotherm / isochor Model calculations \*\*\*

Interval: T(low) = 800°C - T(high) = 2000°C step width = 50°C

| Substance | n(start)/mmol | m(start)/mg | T°/K | H°/(kcal/mol) | S°/(cal/molK) | G°/(kcal/mol) |
|-----------|---------------|-------------|------|---------------|---------------|---------------|
| Cl2,g     | 0.000000      | 0.000       | 298  | 0.000         | 53.287        | -15.879       |
| Cl,g      | 0.000000      | 0.000       | 298  | 28.972        | 39.457        | 17.214        |
| Zr,c      | 21.925016     | 2000.000    | 298  | 0.000         | 9.291         | -2.769        |
| Zr,g      | 0.000000      | 0.000       | 298  | 145.696       | 43.303        | 132.792       |
| ZrCl,g    | 0.000000      | 0.000       | 298  | 49.059        | 60.715        | 30.966        |
| ZrCl2,g   | 0.000000      | 0.000       | 298  | -44.473       | 69.886        | -65.299       |
| ZrCl3,g   | 0.000000      | 0.000       | 298  | -125.227      | 81.040        | -149.377      |
| ZrCl4,g   | 0.000000      | 0.000       | 298  | -207.796      | 87.824        | -233.967      |
| C,s       | 0.000000      | 0.000       | 298  | 0.000         | 1.361         | -0.406        |
| C,g       | 0.000000      | 0.000       | 298  | 171.181       | 37.762        | 159.928       |
| CCl,g     | 0.000000      | 0.000       | 298  | 119.925       | 58.637        | 102.451       |
| CCl2,g    | 0.000000      | 0.000       | 298  | 56.965        | 63.366        | 38.082        |
| CCl3,g    | 0.000000      | 0.000       | 298  | 18.988        | 70.889        | -2.137        |
| CCl4,g    | 11.036041     | 1697.597    | 298  | -23.574       | 77.219        | -46.585       |
| ZrC,s     | 0.000000      | 0.000       | 298  | -49.465       | 7.930         | -51.828       |
| C2,g      | 0.00000       | 0.000       | 298  | 200.081       | 47.626        | 185.889       |
| C2C12,g   | 0.000000      | 0.000       | 298  | 50.062        | 64.966        | 30.702        |
| C2Cl4,g   | 0.000000      | 0.000       | 298  | -2.962        | 82.020        | -27.404       |
| C2C16,g   | 0.000000      | 0.000       | 298  | -32.053       | 95.037        | -60.374       |
| C3,g      | 0.000000      | 0.000       | 298  | 195.854       | 56.654        | 178.971       |
| C4,g      | 0.000000      | 0.000       | 298  | 231.919       | 54.529        | 215.670       |
| C5,g      | 0.000000      | 0.000       | 298  | 233.830       | 57.801        | 216.606       |

# 11.4.2Auftragung der Partialdrücke im System Metall / SiHCl<sub>3</sub>

Die thermodynamischen Daten für die Berechnungen sind entnommen aus:

Thermochemical Data of Elements and Compounds, M. Binnewies, E. Milke, Hannover (Germany), 2002.



## Nb / SiHCl<sub>3</sub>

## Ta / SiHCl<sub>3</sub>



## Ti / SiHCl<sub>3</sub>



## V / SiHCl<sub>3</sub>



W / SiHCl<sub>3</sub>



## Zr / SiHCl<sub>3</sub>



# 11.4.3 Auftragung der Partialdrücke im System Metall / BCl<sub>3</sub>





Ta / BCl<sub>3</sub>



Ti / BCl<sub>3</sub>



V / BCl<sub>3</sub>



W / BCl<sub>3</sub>



Zr / BCl<sub>3</sub>



# 11.4.4 Auftragung der Partialdrücke im System Metall / CCl<sub>4</sub>





## Ta / CCl<sub>4</sub>



Ti / CCl<sub>4</sub>



V / CCl<sub>4</sub>



W / CCl<sub>4</sub>



Zr / CCl<sub>4</sub>



# 11.5 Abbildungsverzeichnis

| Abbildung 1.1:      | Elektronenrückstreubilder von polierten Flächen nach 30 (a) und nach 120      |
|---------------------|-------------------------------------------------------------------------------|
|                     | Minuten (b)                                                                   |
| Abbildung 2.1.1:    | Anordnung (schematisch) zur Herstellung einer Debye-Scherrer-                 |
|                     | Aufnahme                                                                      |
| Abbildung 2.4.1:    | Aufbau eines Digitalpyrometers                                                |
| Abbildung 4.2.1:    | Auftragung der thermodynamischen Berechnung des Systems                       |
|                     | Molybdän / Trichlorsilan                                                      |
| Abbildung 4.2.2:    | Auftragung der thermodynamische Berechnung des Systems                        |
|                     | Molybdän / Siliciumtetrachlorid                                               |
| Abbildung 5.1.1:    | Skizze der Versuchsapparatur                                                  |
| Abbildung 5.1.2:    | Versuchsapparatur                                                             |
| Abbildung 7.1.1:    | Thermisches Verhalten von SiCl <sub>4</sub>                                   |
| Abbildung 7.1.2:    | Thermisches Verhalten von SiHCl <sub>3</sub>                                  |
| Abbildung 7.1.3:    | Thermisches Verhalten von SiH <sub>2</sub> Cl <sub>2</sub>                    |
| Abbildung 7.1.4:    | Thermisches Verhalten von SiH <sub>3</sub> Cl                                 |
| Abbildung 7.1.5:    | Phasendiagramm des Systems Mo-Si                                              |
| Abbildung 7.1.6:    | Verhältnisse der Partialdrücke im System Mo-SiHCl <sub>3</sub>                |
| Abbildung 7.1.7:    | Silicidschicht auf Molybdändraht                                              |
| Abbildung 7.1.8:    | Querschnitt des silicierten Molybdändrahtes                                   |
| Abbildung 7.1.9:    | REM-Aufnahme des silicierten Molybdändrahtes (Querschnitt)                    |
| Abbildung 7.1.10:   | Quarzküvette mit Molybdändraht                                                |
| Abbildung 7.1.11:   | Pulverdiffraktogramm der gebildeten Silicidschicht auf Molybdändraht          |
| Abbildung 7.1.12:   | Auftragung des Siliciumdruckes in Abhängigkeit von der Temperatur             |
| Abbildung 7.1.13:   | Phasendiagramm des Systems Nb-Si                                              |
| Abbildung 7.1.14:   | Silicidschicht auf Niobdraht                                                  |
| Abbildung 7.1.15:   | Querschnitt des silicierten Niobdrahtes                                       |
| Abbildung 7.1.16:   | REM-Aufname des silicierten Niobdrahtes (Querschnitt)                         |
| Abbildung 7.1.17 a: | Pulverdiffraktogramm der gebildeten Nb <sub>5</sub> Si <sub>3</sub> - Schicht |
| Abbildung 7.1.17 b: | Pulverdiffraktogramm der gebildeten $Nb_2Si$ - Schicht                        |
| Abbildung 7.1.18:   | Phasendiagramm des Systems Ta-Si                                              |
| Abbildung 7.1.19:   | Silicidschicht auf Tantaldraht                                                |
| Abbildung 7.1.20:   | Querschnitt des silicierten Tantaldrahtes                                     |

- Abbildung 7.1.21: REM-Aufnahme des silicierten Tantaldrahtes (Querschnitt)
- Abbildung 7.1.22: Pulverdiffraktogramm der gebildeten Silicidschicht auf Tantaldraht
- Abbildung 7.1.23: Phasendiagramm der Systems Ti-Si
- Abbildung 7.1.24: Silicidschicht auf Titandraht
- Abbildung 7.1.25: Querschnitt des silicierten Titandrahtes
- Abbildung 7.1.26: REM-Aufnahme des silicierten Titandrahtes (Querschnitt)
- Abbildung 7.1.27: Pulverdiffraktogramm der gebildeten Silicidschicht auf Titandraht
- Abbildung 7.1.28: Phasendiagramm des Systems V-Si
- Abbildung 7.1.29: Silicidschicht auf Vanadiumdraht
- Abbildung 7.1.30: Querschnitt des silicierten Vanadiumdrahtes
- Abbildung 7.1.31: REM-Aufnahme des silicierten Vanadiumdrahtes (Querschnitt)
- Abbildung 7.1.32: Pulverdiffraktogramm der gebildeten Silicidschicht auf Vanadiumdraht
- Abbildung 7.1.33: Phasendiagramm des System W-Si
- Abbildung 7.1.34: Silicidschicht auf Wolframdraht
- Abbildung 7.1.35: Querschnitt des silicierten Wolframdrahtes
- Abbildung 7.1.36: REM-Aufnahme des silicierten Wolframdrahtes (Querschnitt)
- Abbildung 7.1.37: Pulverdiffraktogramm der gebildeten Silicidschicht auf Wolframdraht
- Abbildung 7.1.38: Phasendiagramm des Systems Zr Si
- Abbildung 7.1.39: Silicidschicht auf Zirkoniumdraht
- Abbildung 7.1.40: Querschnitt des silicierten Zirkoniumdrahtes
- Abbildung 7.1.41: REM-Aufnahme des silicierten Zirkoniumdrahtes (Querschnitt)
- Abbildung 7.1.42: Pulverdiffraktogramm der gebildeten Silicidschicht auf Zirkoniumdraht
- Abbildung 7.2.1: Thermische Zersetzung von Bortrichlorid
- Abbildung 7.2.2: Phasendiagramm des Systems Mo-B
- Abbildung 7.2.3: Verhältnisse der Partialdrücke im System Mo-BCl<sub>3</sub>
- Abbildung 7.2.4: Boridschicht auf Molybdändraht
- Abbildung 7.2.5: Querschnitt des Borid-beschichteten Molybdändrahtes
- Abbildung 7.2.6: REM-Aufnahme des Borid-beschichteten Molybdändrahtes (Querschnitt)
- Abbildung 7.2.7: Pulverdiffraktogramm der gebildeten Boridschicht auf Molybdändraht
- Abbildung 7.2.8: Verhältnisse der Partialdrücke im System Mo-BCl<sub>3</sub> bei der
  - massenspektrometrischen Untersuchung
- Abbildung 7.2.9: Phasendiagramm des Systems Nb-B
- Abbildung 7.2.10: Boridschicht auf Niobdraht
- Abbildung 7.2.11: Querschnitt des Borid-beschichteten Niobdrahtes
- Abbildung 7.2.12: REM-Aufnahme des Borid-beschichteten Niobdrahtes (Querschnitt)

- Abbildung 7.2.13: Pulverdiffraktogramm der gebildeten Boridschicht auf Niobdraht
- Abbildung 7.2.14: Phasendiagramm des Systems Ta-B
- Abbildung 7.2.15: Boridschicht auf Tantaldraht
- Abbildung 7.2.16: Querschnitt des Borid-beschichteten Tantaldraht
- Abbildung 7.2.17: REM-Aufnahme des Borid-beschichteten Tantaldrahtes (Querschnitt)
- Abbildung 7.2.18: Pulverdiffraktogramm der gebildeten Boridschicht auf Tantaldraht
- Abbildung 7.2.19: Phasendiagramm des Systems Ti-B
- Abbildung 7.2.20: Boridschicht auf Titandraht
- Abbildung 7.2.21: Querschnitt des Borid-beschichteten Titandrahtes
- Abbildung 7.2.22: REM-Aufnahme des Borid-beschichteten Titandrahtes
- Abbildung 7.2.23: Pulverdiffraktogramm der gebildeten Boridschicht auf Titandraht
- Abbildung 7.2.24: Phasendiagramm des Systems V-B
- Abbildung 7.2.25: Boridschicht auf Vanadiumdraht
- Abbildung 7.2.26: Querschnitt des Borid-beschichteten Vanadiumdrahtes
- Abbildung 7.2.27: REM-Aufnahme des Borid-beschichteten Vanadiumdrahtes
- Abbildung 7.2.28: Pulverdiffraktogramm der gebildeten Boridschicht auf Vanadiumdraht
- Abbildung 7.2.29: Phasendiagramm des Systems W-B
- Abbildung 7.2.30: Phasendiagramm des Systems Zr-B
- Abbildung 7.2.31: Boridschicht auf Zirkoniumdraht
- Abbildung 7.2.32: Querschnitt des Borid-beschichteten Zirkoniumdrahtes
- Abbildung 7.2.33: REM-Aufnahme des Borid-beschichteten Zirkoniumdrahtes
- Abbildung 7.2.34: Pulverdiffraktogramm der gebildeten Boridschicht auf Zirconiumdraht
- Abbildung 7.3.1: Thermische Zersetzung von Tetrachlorkohlenstoff
- Abbildung 7.3.2: Verhältnisse der Partialdrücke im System Mo-CCl<sub>4</sub>
- Abbildung 7.3.3: Phasendiagramm des Systems Mo-C
- Abbildung 7.3.4: Carbidschicht auf Molybdändraht
- Abbildung 7.3.5: Querschnitt des Carbid-beschichteten Molybdändrahtes
- Abbildung 7.3.6: REM-Aufnahme des Carbid-beschichteten Molybdändrahtes
- Abbildung 7.3.7:Pulverdiffraktogramm der gebildeten Carbidschicht auf<br/>Molybdändrahtdraht
- Abbildung 7.3.8: Phasendiagramm des Systems Nb-C
- Abbildung 7.3.9: Carbidschicht auf Niobdraht
- Abbildung 7.3.10: Querschnitt des Carbid-beschichteten Niobdrahtes
- Abbildung 7.3.11: REM-Aufnahme des Carbid-beschichteten Niobdrahtes
- Abbildung 7.3.12: Pulverdiffraktogramm der gebildeten Carbidschicht auf Niobdraht

- Abbildung 7.3.13: Phasendiagramm des Systems Ta-C
- Abbildung 7.3.14: Carbidschicht auf Tantaldraht
- Abbildung 7.3.15: Querschnitt des Carbid-beschichteten Tantaldrahtes
- Abbildung 7.3.16: REM-Aufnahme des Carbid-beschichteten Tantaldrahtes
- Abbildung 7.3.17: Pulverdiffraktogramm der gebildeten Carbidschicht auf Tantaldraht
- Abbildung 7.3.18: Phasendiagramm des Systems Ti-C
- Abbildung 7.3.19: Carbidschicht auf Titandraht
- Abbildung 7.3.20: Querschnitt des Carbid-beschichteten Titandrahtes
- Abbildung 7.3.21: REM-Aufnahme des Carbid-beschichteten Tantaldrahtes (Querschnitt)
- Abbildung 7.3.22: Pulverdiffraktogramm der gebildeten Carbidschicht auf Tantaldraht
- Abbildung 7.3.23: Phasendiagramm der Systems V-C
- Abbildung 7.3.24: Carbidschicht auf Vanadiumdraht
- Abbildung 7.3.25: Querschnitt des Carbid-beschichteten Vanadiumdrahtes
- Abbildung 7.3.26: REM-Aufnahme des Carbid-beschichteten Vanadiumdrahtes (Querschnitt)
- Abbildung 7.3.27: Pulverdiffraktogramm der gebildeten Carbidschicht auf Vanadiumdraht
- Abbildung 7.3.28: Phasendiagramm des Systems W-Si
- Abbildung 7.3.29: Carbidschicht auf Wolframdraht
- Abbildung 7.3.30: Querschnitt des Carbid-beschichteten Wolframdrahtes
- Abbildung 7.3.31: REM-Aufnahme des Carbid-beschichteten Wolframdrahtes (Querschnitt)
- Abbildung 7.3.32: Pulverdiffraktogramm der gebildeten Carbidschicht auf Wolframdraht
- Abbildung 7.3.33: Phasendiagramm des System Zr-Si
- Abbildung 7.3.34: Carbidschicht auf Zirkoniumdraht
- Abbildung 7.3.35: Querschnitt des Carbid-beschichten Zirkoniumdrahtes
- Abbildung 7.3.36: REM-Aufnahme des Carbid-beschichteten Zirkoniumdrahtes (Querschnitt)
- Abbildung 7.3.37: Pulverdiffraktogramm der gebildeten Carbidschicht auf Zirkoniumdraht
- Abbildung 8.1: Reiner Molybdändraht
- **Abbildung 8.2:** MoSi<sub>2</sub>-beschichteter Draht
- Abbildung 8.3: Erhitzter Molydändraht
- Abbildung 8.4: Erhitzen von MoSi<sub>2</sub>-beschichtetem Draht

# 11.6 Tabellenverzeichnis

| Tabelle 4.1.:  | Gleichgewichtskonstanten                       |
|----------------|------------------------------------------------|
| Tabelle 7.1.1: | Massenspektrum im System Mo-SiHCl <sub>3</sub> |
| Tabelle 7.1.2: | Massenspektrum im System Nb-SiHCl <sub>3</sub> |
| Tabelle 7.1.3: | Massenspektrum im System Ta-SiHCl <sub>3</sub> |
| Tabelle 7.1.4: | Massenspektrum im System Ti-SiHCl <sub>3</sub> |
| Tabelle 7.1.5: | Massenspektrum im System V-SiHCl <sub>3</sub>  |
| Tabelle 7.1.6: | Massenspektrum im System W-SiHCl <sub>3</sub>  |
| Tabelle 7.1.7: | Massenspektrum im System Zr-SiHCl <sub>3</sub> |
| Tabelle 7.2.1: | Massenspektrum im System Mo-BCl <sub>3</sub>   |
| Tabelle 7.2.2: | Massenspektrum im System Nb-BCl <sub>3</sub>   |
| Tabelle 7.2.3: | Massenspektrum im System Ta-BCl <sub>3</sub>   |
| Tabelle 7.2.4: | Massenspektrum im System Ti-BCl <sub>3</sub>   |
| Tabelle 7.2.5: | Massenspektrum im System V-BCl <sub>3</sub>    |
| Tabelle 7.2.6: | Massenspektrum im System Zr-BCl <sub>3</sub>   |
| Tabelle 7.3.1: | Massenspektrum im System Mo-CCl <sub>4</sub>   |
| Tabelle 7.3.2: | Massenspektrum im System Nb-CCl <sub>4</sub>   |
| Tabelle 7.3.3: | Massenspektrum im System Ta-CCl <sub>4</sub>   |
| Tabelle 7.3.4: | Massenspektrum im System Ti-CCl <sub>4</sub>   |
| Tabelle 7.3.5: | Massenspektrum im System V-CCl <sub>4</sub>    |
| Tabelle 7.3.6: | Massenspektrum im System W-CCl <sub>4</sub>    |
| Tabelle 7.3.7: | Massenspektrum im System Zr-CCl <sub>4</sub>   |
| Tabelle 9.1:   | Zusammenfassung der Ergebnisse                 |

# Lebenslauf

## Persönliche Daten

| Name:           | Wibke Friedhoff              |
|-----------------|------------------------------|
| Geburtsdatum:   | 14. Juni 1972                |
| Geburtsort:     | Bad Gandersheim              |
| Adresse:        | Gustav-Adolf-Straße 10       |
|                 | 30167 Hannover               |
| Telefon:        | 0511/1 69 56 16              |
| E-Mail-Adresse: | nhcawifr@aca.uni-hannover.de |

## Schulausbildung

| 1979 - 1980 | Grundschule Bad Gandersheim              |
|-------------|------------------------------------------|
| 1980 - 1983 | Grundschule Peine-Vöhrum                 |
| 1983 - 1985 | Orientierungsstufe am Schlossberg, Peine |
| 1985 - 1989 | Gunzelin Realschule, Peine               |
|             |                                          |

## Berufsausbildung

| 08/1989 - 07/1991 | Berufsfachschule Dr. von Morgenstern, Braunschweig |
|-------------------|----------------------------------------------------|
|                   | Ausbildung zur Chemisch Technischen Assistentin    |

## Berufserfahrung

| 09/1991 - 07/1993 | CUTEC-Institut GmbH, Clausthal-Zellerfeld     |
|-------------------|-----------------------------------------------|
|                   | Tätigkeit als Chemisch Technische Assistentin |

## Abitur

## Universität

| 09/1996 - 03/2002 | Universität Hannover:<br>Abschluss:<br>Diplomarbeit:                                                  | Chemiestudium<br>Diplom Chemikerin<br>Ein neuer Weg zur Bildung<br>von Hartstoffen<br>Institut für Anorganische Chemie |
|-------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 10/1999 - 03/2000 | Schwerpunktpraktikum:                                                                                 | University of Cambridge,<br>Department of Chemistry,<br>Fleming group                                                  |
| seit 05/2002      | Wissenschaftliche Mitarbeiterin am Institut für Anorganische<br>Chemie zur Vorbereitung der Promotion |                                                                                                                        |

## Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst und die verwendeten Hilfsmittel angegeben habe.

Hannover, 16. Dezember 2004

Wibke Friedhoff