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ZUSAMMENFASSUNG 
 
 
 
Die Bakterielle Welke verursacht durch Ralstonia solanacearum gehört zu den 
wichtigsten bakteriellen Pflanzenkrankheiten weltweit.  In der Bekämpfung scheinen 
integrierte Maßnahmen mit wesentlichem Augenmerk auf der Resistenz von 
Wirtspflanzen die geeignetsten Mittel. Um die bisher instabile Resistenz der 
Wirtspflanzen zu erhöhen wurden am Modellsystem Tomate / R. solanacearum 
Untersuchungen zur Rolle der Pflanzenzellwandstruktur in der Interaktion mit dem 
Pathogen durchgeführt. Extrahierte Pektine einer resistenten Linie wiesen signifikant 
höhere Methylveresterungsgrade des Homogalakturonans (HG) in der Wurzel (res.: 
64,0%, anf.: 7,0%) und im Stängel (res.: 44,0%, anf.: 9,0%) auf als  Extrakte einer 
anfälligen Linie, während in der Monomerenzusammensetzung Unterschiede im 
Mannoseanteil gefunden wurden. Mittels Immuno-Dot-Blot wurde eine nicht-blockweise 
Esterverteilung im Pektin aus Stängeln der anfälligen und eine blockweise Verteilung in 
der resistenten Linie festgestellt. Im Immun-Stängel-Print wurde  nach Infektion ein 
erhöhter Anteil niedrig veresterter HGs mit homogener De-esterifizierung beobachtet, 
was auf einen spezifischen Abbau nicht-blockweise verteilter Estergruppen durch die 
bakterielle Pektinmethylesterase hindeutet, und es wurden verstärkt Galaktan- und 
Arabinanseitenketten des Rhamnogalakturonan I (RGI) und Arabinogalaktanprotein 
(AGP) in den Xylemwänden der anfälligen Linie nachgewiesen. Der Anstieg im 
Nachweis homogen de-esterifizierten HGs nach Infektion bestätigte sich in anfälligen 
nah-isogenen Linien. In immun- histochemischen Untersuchungen wurden in der 
anfälligen Linie konstitutiv ein erhöhter Anteil homogen de-esterifizierter HGs und 
geringerer Anteil AGPs in den Gefäßwänden sowie Galaktans des RGI im 
Xylemparenchym nachgewiesen. Nach Infektion  stieg in der anfälligen Linie der 
Nachweis von niedrig verestertem HG und die homogene Veresterungsstruktur  sowie 
von Galaktan und Arabinan in den Seitenketten des RGI in und um die Gefäße stark an, 
während sich in der resistenten Linie die Anzahl Gefäße mit erhöhtem Galaktan- und 
Arabinannachweis signifikant erhöhte, was auf einen Abwehrmechanismus hinweisen 
könnte. Eine Erhöhung der Basis- Resistenz durch Selektion von Linien mit veränderter 
Zellwandstruktur könnte möglich sein.  
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ABSTRACT 
 
 
 
Bacterial wilt caused by Ralstonia solanacearum (Yabuuchi) is one of the most important 
and widely distributed plant diseases in the tropics. An integrated approach with 
emphasis on host plant resistance is the most suitable measure for the control of bacterial 
wilt. To improve unstable resistance, investigations were conducted in the model system 
tomato / R. solanacearum focussing on the role of plant cell wall structures in interaction 
with the pathogen. Extracted pectins from the resistant genotype showed significantly 
higher methyl-esterification of homogalacturonan (HG) in roots (resistant: 64%, 
susceptible: 7%) and in stems (resistant: 44%, susceptible: 9%) than extracts from the 
susceptible genotype, while in the monomeric composition differences were observed 
between the genotypes in the mannose content. In immunodot blot membranes a non-
blockwise de-esterification pattern showed in extracts from stems from the susceptible 
genotype compared to a more blockwise pattern of HG in the resistant genotype. In tissue 
print assays of stems of the susceptible genotype after infection an increase in low-
esterified HG was observed indicating the possible action of pathogen 
pectinmethylesterase (PME). Also detection of galactan and arabinan side chains of RG I 
and of arabinogalactan proteins (AGPs) in the xylem cell walls increased in the 
susceptible genotype. The increase in the homogeneous de-esterification of HG after 
infection was also confirmed with susceptible, near-isogenic lines. In immuno-
histochemical studies the susceptible lines revealed a constitutively higher part of 
homogeneous de-esterification of HG and a lower part of AGPs in xylem walls, as well 
as galactan in RG I in the xylem parenchyma. After inoculation an increased labelling of 
low esterified HG was seen in the susceptible genotype as well as stronger labelling of 
arabinan and galactan side chains of RG I in and around vessels, while in the resistant 
genotype after infection labelling of arabinan and galactan side chains of RG I increased 
significantly, indicating a possible resistance mechanism. Selection of tomato lines with 
optimal cell wall structure could be a possible venue to increase basic resistance against 
bacterial wilt.  
The biochemical analysis of lipopolysaccharides (LPS) of R. solanacearum revealed the 
typical composition of LPS for R. solanacearum strains without major differences among 
them. Rheological interactions between extracted plant pectins and bacterial LPS were 
measured in vitro. No synergistic effects such as increases in viscosity were recorded in 
various mixtures of LPS of R. solanacearum strain ToUdk2 and pectins from stems of 
susceptible host plants nor occurred any rheological changes in mixtures with pectin from 
the resistant plant.       
 
 
Keywords : Ralstonia solanacearum, Resistance, Cell wall polysaccharides 
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PIPES                                      piperazine-N.N-bis(2-ethane sulphonic acid)                          

Pme    Pectin methylesterase 

Po    Potato (Solanum tuberosum) 
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PopA, PopB, PopC  Proteins secreted into the extracellular medium by the  R.   

solanacearum Hrp secretion system 

PrhA    Plant regulator of hrp genes 

PrhI/PrhR   Regulatory components of the plant cell contact-dependent  

activation of hrp genes 

P2O5    Phosphorus oxide 

PVPP                                       Polyvinylpolypyrrolidone                                                        

pv.    Pathovar 

rpm    Rotations per minute 

R. solanacearum  Ralstonia solanacearum 

s    Second 

spp.    Species (plural) 

SDS     Sodium dodecyl sulphate 

Tek    Twenty eight kilodalton protein 

TE     Tris EDTA 

TEMED    N,N,N,N,-Tetramethyl –Ethylenediamine 

TZC    Tetrazolium chloride  

UV    Ultraviolet 

V    Volt 

w/v    Weight per volume  
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ABSTRACT 

 

Bacterial wilt caused by Ralstonia solanacearum (Yabuuchi) is one of the most important 

and widely distributed plant diseases. The following studies were conducted using the 

model plant tomato to understand the interaction between R. solanacearum and its host 

plant resistance mechanisms at cell wall level. The cell wall pectins of healthy tomato 

genotypes resistant (H7996) and susceptible (L390) to bacterial wilt were extracted by 

chelator-soluble extraction from stem and root tissues of 4 week-old plants. The pectins 

obtained by this extraction procedure were characterized both by composition and degree 

of methylation. Except for mannose, no significant difference was observed between 

stems and roots of the genotypes in all the monomers. The degree of methylation (% DM) 

of homogalacturonans was by a factor of 4 and 6 higher in polysaccharides from stems 

and roots, respectively, of the resistant genotype H7996 than in extracts from L390. An 

Immunodot blot assay was conducted for the rapid identification of unbranched 

homogalacturonan and branched components occurring in extracted pectic 

polysaccharides using anti-pectin monoclonal antibodies: JIM5 - specific for low ester, 

JIM7 -high ester, LM7 - non-blockwise de-esterification patterns of homogalacturonan 

(HGA), LM2 - arabinogalactan protein, LM5 - galactan, LM6 - arabinan epitopes of 

rhamnogalacturonan I (RG I) respectively. Extracts of both resistant and susceptible 

tomato genotypes reacted with all the antibodies giving a central dot. No outer ring was 

observed. Comparing pectic polysaccharides from stems of resistant and susceptible 

genotypes, the samples from L390 reacted significantly stronger with LM7 than samples 

from H7996 in both concentrations, indicating a homogeneous de-esterification pattern of 

the pectic polysaccharides from L390 in comparison to a more blockwise pattern in 

H7996. Comparing samples from roots, genotype H7996 reacted stronger with antibody 

LM2 than genotype L390, indicating higher contents of arabinogalactan protein in 

H7996. It has recently been proposed that some bacterial species, including R. 

solanacearum that are readily culturable in the laboratory, may enter a long-term survival 

state, when subjected to environmental or laboratory conditions with prolonged starvation 

or other stress, in which they are not detectable by standard culturability tests. Therefore, 

the effect of extracted pectic polysaccharides of tomato genotypes on viability and 
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culturability of R. solanacearum was examined. No significant (P=0.05) difference 

occurred between the numbers of viable and culturable cells from the mixtures with 

pectic polysaccharides from the genotypes as compared to the control after overnight 

incubation. 

 

Based on the results obtained in preliminary investigations the research was continued to 

determine the dynamics of pathogenic processes: interest was concentrated on the 

vascular colonization by R. solanacearum of resistant and susceptible tomato genotypes 

including near isogenic lines. Changes in the pectic polysaccharides in vascular tissues 

before and after inoculation with R solanacearum were examined. Near isogenic lines 

and tomato genotypes were compared for resistance to bacterial wilt as measured by 

disease severity and population density in the mid-stem regions. All symptomless plants 

were latently infected. Wilt incidence was recorded up to 40 days after inoculation with 

R. solanacearum. On the basis of the area under wilt incidence progress curve (AUDPC), 

the genotypes were classified into two significantly different groups, i.e. resistant and 

susceptible genotypes. Two near isogenic lines, NHG 3 and NHG 167, were classified as 

susceptible, with similar AUDPC as the susceptible standard genotypes L390 and Wva 

700. R. solanacearum was detected in the mid-stem region of symptomless plants of the 

resistant genotypes Hawaii 7996, CLN 2123C, CLN1-3-13, CLN4-22-4, CLN1-1-12, 

CLN1-5-12, BL333, NHG 60, NHG 140, NHG 13 and NHG 162, and of the moderately 

resistant King Kong 2.  

 

With the antibodies JIM5, JIM7, LM2, LM5, LM6 and LM7 against epitopes present in 

pectin and AGPs we studied the modification of these wall components during infection 

by stem tissue prints. The composition and structure of pectins in xylem vessels of 

tomato in relation to Rs was examined in tomato genotypes differing in their resistance 

level, such as the standard susceptible and resistant genotypes L390 and H7996, 

respectively, and in near isogenic lines of tomato differing in resistance, obtained from a 

cross between H7996 and the susceptible Wva700. Increased staining after inoculation 

occurred with all antibodies except JIM7 in genotype L390 indicating an increase in low 

esterification and non-blockwise de-esterification pattern of HG and in arabinan and 
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galactan epitopes of RG I and arabinogalactan proteins. The tissue prints of the 

susceptible isogenic lines showed a clear difference from the resistant lines after 

inoculation in binding LM7. 

 

These findings were supported by the immunocytochemical analysis where the density of 

epitopes was determined and compared in vascular tissues of mid-stem sections from 

resistant (H7996) and susceptible (L390) tomato genotypes, with and without inoculation 

with R. solanacearum, using the same antibodies. Significant differences were observed 

between healthy and inoculated H7996 where 70% and 76% of the vessels of inoculated 

plants showed labeling after staining with LM5 and LM6, respectively, compared to 12% 

and 8 % of non-inoculated plants. A dramatic increase in the epitopes labeling with a 

high level of fluorescence in xylem vessels of mid-stems of genotype L390 was observed 

after inoculation when the reactivities of LM2, LM5, LM6 and LM7 recognizing the 

arabinogalactan proteins, epitopes of galactan and arabinan side chains of branched 

regions of pectins and non-blockwise de-esterification pattern of HGA domain of pectic 

polysaccharides respectively, increased. Labeling with ß–glucosyl Yariv reagent resulted 

in typical deep red staining of arabinogalactan-proteins.  

 

The immunological results can best be interpreted with a more blockwise distribution of 

the methyl esters in HG from resistant tomato genotypes and a non-blockwise distribution 

in the HG from susceptible plants.  

 

Using two independent approaches, chemical and immunological methods, and using 

resistant and susceptible standard tomato genotypes and near isogenic lines we have 

found a significant difference in the HG methyl esterification between bacterial wilt 

resistant and susceptible tomato plants.  

 

LPS was extracted from R. solanacearum strains Pss190 and Pss216 (Wang and Lin, 

2002) highly and lowly virulent on tomato, respectively, and Pe104 and ToUdk2 from 

Thailand (Thaveechai, Bangkok), with moderate and high virulence, respectively 

(Leykun, 2003) and analyzed for fatty acids, phosphates, heptoses, keto-deoxy sugar. The 
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biochemical analysis revealed the typical composition of LPS in the R. solanacearum 

strains without major differences among them. The rheological interactions between the 

plant pectins and bacterial LPS were measured. No synergistic effects such as increases 

in viscosity were recorded in various mixtures of lipo-polysaccharides of R. 

solanacearum strain ToUdk2 and pectins from stems of susceptible host plants.  
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CHAPTER I 

 

Structural characterization of extracted cell wall polysaccharides from tomato 

genotypes resistant and susceptible to Ralstonia solanacearum and studies of their 

influence on the physiological state of the pathogen 

 

1.1 INTRODUCTION 

 
Tomato (Lycopersicon esculentum) is one of the most cultivated and consumed vegetable 

worldwide and is grown in various cropping systems and locations. The yearly world 

production averaged 113,308,298 tons over the last 5 years (FAOSTAT, 2003). Besides 

the conventional soil system, tomato is grown in greenhouses to satisfy the high world 

demands (Olympios, 1975). On the market, both field and soil-less grown tomatoes are 

found. The soil-less system allows production of tomatoes in areas, where suitable soil is 

not available or where diseases and other conditions make ground production unfeasible 

(Olympios, 1975; Hochmuth 1999). The greenhouse production requires the simulation 

of field conditions and adapted varieties. Most of the field varieties do not perform well 

in the greenhouse environment. Two kinds of tomato varieties, determinate and 

indeterminate types are cultivated (Rehm and Espig, 1991). The first types are bushy and 

produce tomato fruits in one harvest, while the indeterminate forms produce year round 

and are often grown in soil-less culture, which provides plants with nutrients (Hochmuth, 

1999). Major advantages of this system are the elimination of need for soil sterilization 

by chemicals and a precise control of water and nutrients (Olympios, 1975). 
 

Although nutrients, water and climate are major limiting factors, biotic pressure from 

insects and pathogens can drastically reduce tomato yield. Bacterial wilt is one such 

major constraint for vegetable production, and especially for tomato in the lowland and 

highland tropics. Estimates of yield losses due to the disease in tomatoes range from 75 to 

100 % (Nirmala et al., 2002). The causal agent previously named Pseudomonas 

solanacearum, then reclassified as Burkholderia solanacearum, and recently as Ralstonia 



INTRODUCTION  2 

solanacearum (Yabuuchi et al., 1995) is the most destructive pathogen of tomato and its 

aggressiveness is attributed to its widespread occurrence and high pathogen diversity. 

Ralstonia solanacearum is characterized by the existence of different races, its 

exceptional ability to survive in the soil and in the roots of non-host plants, and its broad 

host range. R. solanacearum affects over 200 different crops and weed species including 

economically important host plants such as banana, eggplant, ginger, tobacco, potato 

(Priou et al., 2002), geraniums (Kim et al., 2002) and tomato (Hayward, 1991). On the 

basis of host range, R. solanacearum strains have been traditionally divided into races, 

with race 1 affecting Solanaceae, some diploid bananas and other hosts, race 2 affecting 

triploid bananas and Heliconia sp. and race 3 causing damages to potato and tomato. 

Physiological and genetic characterization resulted in the formation of biovars and 

divisions (Hayward, 1964, 2001; He et al., 1983, 1986). 

 

R. solanacearum is a soil-borne pathogen and a complex and heterogeneous species. 

Studies on host range and colony morphology (Kelman, 1953; Buddenhagen et al., 1962, 

1986), biochemistry (Hayward, 1964, 2001; Harris, 1972), serology (Colleno et al., 1976; 

Schaad et al., 1978), membrane proteins (Dristig and Dianese, 1990), and phage 

susceptibility (Okabe and Goto, 1963) of the bacterium all conclude that the species is 

composed of a number of distinct strains.  

 

So far, control of bacterial wilt has been ineffective. Breeding for disease resistance has 

not been very successful because of the extensive variability of bacterial strains and the 

interactions of a myriad of biotic and abiotic factors. Although intensive efforts have 

been made to understand the basic mechanism of disease resistance, the fundamental 

biochemical basis is still unknown. 

 

Resistance against this pathogen is described as quantitative or polygenic on several 

plants (Wang et al., 2000). Natural resistance mechanisms occurring in higher plants can 

be classified into preformed and induced mechanisms (Schlösser, 1997; Knogge, 1997; 

Baker et al., 1997; Keen, 1999). After the penetration of the invader, induced processes 

take place. According to the hypothesis of Flor (1971) in host defense, pathogen invasion 
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is recognized by receptor proteins encoded by plant disease resistance (R) genes, which 

bind to specific pathogen-derived products of avirulence (Avr) genes. Following 

recognition of a pathogen, a complex signaling network involving cytosolic Ca2+
 and H+

 

ions, reactive oxygen species (ROS) (oxidative burst), jasmonate, salicylic acid and 

ethylene trigger the induction of defense mechanisms (Odjakova and Hadjiivanova, 2001; 

Brummell and Harpster, 2001). Thus, after the penetration of the pathogen, structural 

mediations and biochemical responses begin. Structural modifications are accumulation 

of callose, suberin, lignin, and accumulation of hydroxyproline rich glycoprotein. The 

biochemical responses are hypersensitive reaction (HR), biosynthesis of phytoalexins and 

pathogenicity related proteins (PR-proteins) (Knogge, 1997; Odjakova and Hadjiivanova, 

2001; Kang and Buchenauer, 2000, 2002, 2003; Graham et al., 2003). Quantitative 

responses include cell wall modifications in response to pathogen invasion (Prell, 1996; 

Odjakova and Hadjiivanova, 2001). 

 

Recently, in R. solanacearum a number of effector proteins have been identified which 

specifically interact with plant proteins forming a recognition complex (Boucher and 

Genin, 2004).  Hrp genes of R. solanacearum code for components of a type III pathway 

that is typically involved in secretion of proteins required for successful host-pathogen 

interactions in numerous animal and plant pathogenic bacteria (Gueneron et al., 2000; 

Genin and Boucher, 2002).  

 

More than 20 hrp genes are clustered on the 1.9-Mb megaplasmid spanning 23 kb 

(Schell, 2000). This gene cluster comprises five transcriptional units which code for a 

type III secretion apparatus. Presumably, this secretion system serves for transportation 

of various virulence determinants and avirulence proteins into plant cells by connecting 

the inner and outer membranes of the bacteria. By providing transfer of these proteins 

nutrition acquisition and avoidance of defense reactions by the host plant are supported 

(Schell, 2000).  

 

Genetic analysis of resistance in tomato with molecular markers has led to the 

observation of an important quantitative trait locus (QTL) on chromosome 6 and showed 
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that the resistance controlled by this locus could be specific for the type of bacterial strain 

(Danesh and Young, 1994; Thoquet et al., 1996a, b; Mangin et al., 1999; Zhang et al., 

2002; Lindhout et al., 2003). A molecular linkage map of tomato based on resistance 

gene analogs (RGA) was constructed where 29 RGAs were located on 9 of the 12 tomato 

chromosomes (Foolad et al., 2002; Zhang et al., 2002). 

 

Pathogens vary greatly in the way and rate they multiply and spread. Resistance generally 

affects the multiplication of the pathogen rather than its spread. Bishop and Cooper 

(1984) observed that various resistance mechanisms probably decrease the extent of 

xylem colonization although the potential for xylem penetration may be similar in 

resistant and susceptible cultivars of tomato invaded with fungal pathogens. The 

formation of tyloses and gels could be induced by wounding. The ontogeny of tyloses 

and gels and the possible involvement of these structures in resistance to wilt disease has 

been studied (Wallis and Truter, 1978; Grimault et al., 1994). In many host pathogen 

systems studied, pectic fragments produced during host cell wall degradation can act as 

endogenous suppressors of the hypersensitive response in the susceptible plants 

(Moerschbacher et al., 2003) and act as elicitors for the HR in resistant plants (Ridley et 

al., 2001). 

 

Root infection by R. solanacearum occurs through wounds caused by various agents as 

insects, nematodes, agricultural equipment and natural openings (Kelman and Sequeira, 

1965; Schmit, 1978). The pathogen colonizes the exterior of the root and then the 

intercellular spaces of the cortex, infects the vascular parenchyma, and finally invades the 

xylem vessel elements (Vasse et al., 1995). Electron-dense material on cell walls and pit 

membranes has been reported during interaction between tomato plants and R. 

solanacearum (Wallis and Truter, 1978; Vasse et al., 1995; Rahman et al., 1999; Nakaho 

et al., 2000). Resistance to wilt in tomato was clearly related to the capacity of the plant 

to restrict R. solanacearum invasiveness in the stem (Bowman and Sequeria, 1982; 

Grimault and Prior, 1994, 1995; Prior et al., 1996; Leykun, 2003). 
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Plant cell walls, mainly consisting of polysaccharides including cellulose, hemicellulose 

and pectin, are an essential barrier for plant pathogens. The cell wall-degrading enzymes 

secreted by the pathogens during infection and colonization of host plants may play an 

important role in pathogenesis (Cooper, 1983; Walton, 1994). In many plant- pathogen 

systems cell wall components have also been suggested to contribute to the susceptible or 

resistant reaction against pathogens (Kang and Buchenauer, 2000; Perombelon, 2002; 

Moerschbacher et al., 2003). In potato stem tissues, a higher percentage of methylated 

and branched pectins has been reported to correlate with resistance against the bacterium 

Erwinia carotovora subsp. atroseptica (McMillan et al., 1993; Marty et al., 1997). A 

difference in the degree of pectin methylation was also observed between tomato 

cultivars resistant and susceptible to Pseudomonas syringae pv. tomato (Venkatesh, 

2002).  

 

Growing plants are shaped by an extensible wall that is a complex amalgam of cellulose 

microfibrils bonded non-covalently to a matrix of hemicelluloses, pectins and structural 

proteins (Cosgrove, 1997). Jarvis et al. (2003) reported that the vascular ring of brassica 

stems is an interesting, exceptionally flexible model system in which to study how cell 

wall structure and the mechanical properties of plant tissues are related. Pectins present in 

the cell walls of plants form a gel phase in which the cellulose-hemicellulose network is 

embedded. The mechanical characteristics of plant cell walls may depend on detailed 

structures of their galacturonan components such as esterification patterns, insertion of 

rhamnose units, presence of neutral side chains, either directly (Yamaoka and Chiba, 

1983; Jarvis, 1984) or indirectly, as in the case when free acidic pectin domains are 

involved in cross-linking and, consequently, in stiffening of the cell wall (Fry, 1986). 

 

Pectic polysaccharides are a major component of the cell wall in vegetable plants and 

have an important influence on ripeness and plant food texture and are widely used as 

stabilizing agents in the food industry (Rollin and De Vries, 1990). Pectins are 

structurally extremely complex. The principal building block of pectins is galacturonic 

acid (GalA). Besides, they contain large quantities of other sugars, with rhamnose, 

arabinose, glucose and galactose being the most abundant. The functional properties of 
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pectins reside primarily in their chemical structure and composition (Fig 1.1). The 

amount of neutral sugars were shown to determine  intercellular attachment (Kikuchi et 

al., 1996). The elucidation of the structure of pectins has been the main centre of research 

over years (Schols and Voragen, 2003). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1.1 Structure of pectin and sites of cleavage of pectin degrading enzymes. PG: 
polygalacturonase; PL: pectate lyase (Daas et al., 1999) 
 

 

Four major domains of complex pectic polysaccharides are known: homogalactouronan 

(HG), rhamnogalacturonans (RG I, RG II) and xylogalacturonan (O’Neill et al., 1990; 

Albersheim et al., 1996; Mohnen, 1999; Ridley et al., 2001). HG (the smooth region) is a 

polymer of (1→4)-α linked galacturonic acid (Gal A) which can be methyl-esterified 
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(C6) and /or acetylated at positions 2/3 and when de-esterified these HG polymers can 

associate via divalent calcium ions leading to gel formation (Jarvis, 1984). The regions of 

the pectin molecule that comprise linear chains of α-(1→4)-D-GalA units are referred to 

as “smooth” regions and the blocks of highly substituted rhamnogalacturonan that 

interrupt the HG backbone are known as “hairy” regions (De Vries, 1982). RG I (the 

hairy region) has a backbone of alternating Gal A and rhamnose residues (Lau et al., 

1987) with 20-80% Rha substituted with (1→4)-ß-D-galactan, (1→5)-α-L-arabinan or 

arabinogalactan (O’Neill et al., 1990; Carpita and Gibeaut, 1993; Schols and Voragen, 

1994; Albersheim et al., 1996; Mohnen, 1999).  RG II consists of a backbone of 

galacturonosyl residues with complex and diverse side chains (Whit Combe et al., 1995), 

which can be linked by borate di-ester bonds, and appears to be the most conserved of the 

pectic polysaccharides (Vidal et al., 2000).  

 

The degree and distribution of esterified regions differ between plant species and also at 

different developmental stages of growth during the life cycle of a plant. Liners and Van 

Cutsem (1992) reported that pectins extracted from tightly attached young calli of carrot 

have higher amounts of methyl-esterified galacturonic acid residues when compared to 

that of loosely attached old calli which have a significant amount of non-methyl esterified 

regions.  The degree of methyl esterification (DM) depends on the plant source as well as 

the cell type and age (Vreeland et al 1989; Liner and Van Cutsem, 1992).  The degree of 

methyl-esterification is highly variable in relation to cells, and can greatly influence the 

pectic network and cell wall properties (Willats et al., 2001).  

 

HG is believed to be synthesized in a highly esterified form, but may be subsequently de-

esterified by the action of plant or pathogen pectin methylesterase (PMEs) which can 

remove methyl groups in a blockwise, or random fashion. An abundant class of plasma 

membrane-associated proteoglycans known as arabinogalactan-proteins (AGPs) are 

implicated in the control of plant cell proliferation and cell development (Fincher et al., 

1983; Bacic et al., 1986; Pennell et al., 1989) (for details see chapter 3). 
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The availability of pectin-degrading enzymes has led to the emergence of a new approach 

known as enzymatic fingerprinting to broaden our understanding of the structural 

diversity of pectins (Limberg et al., 2000). This enzymatic degradation aspect was also 

used to study pectins from leaves of cultivars of tomato resistant and susceptible to 

Pseudomonas syringae pv. tomato (Venkatesh, 2002). The most commonly used 

enzymes for the purpose are the exo- and endo- polygalacturonases (PG), pectate lyase 

(PAL), pectin methylesterase (PME), pectin lyase (PL) and ß-galactosidase (De Veau et 

al., 1993). 

 

Recently, antibodies against structural regions of the pectin molecule have been raised 

(Knox et al., 1991, 2002, 2003). These antibodies are successfully being used to establish 

the deposition of the different structural elements of pectins in the plant cell walls. The 

present studies focus on arabinogalactan-proteins and extracted pectic polysaccharides 

from genotypes of tomato resistant (H7996) and susceptible (L390) to R. solanacearum.  

 

Several virulence factors produced by R. solanacearum have been identified, including 

plant cell-wall degrading enzymes (PG, PMEs) and exo-polysaccharides I (EPS I) (Mc 

Garvey et al., 1999). Plant cell-wall degrading enzymes appear to enhance virulence by 

promoting invasion and vascular colonization (Allen and Simon, 1997; Kang et al., 1994; 

Mc Garvey, 1997). R. solanacearum produces three PGs, called PehA, B and C, which 

hydrolyze polygalacturonic acid, a long chain polymer of galA residues that is the 

predominant component of pectins. In addition, R. solanacearum produces a PME, which 

hydrolyzes an ester bond to release methanol from the –COOCH3 groups on the 

polygalacturonic acid polymer. A substantial proportion of pectin in plants is methylated, 

but before such pectins can be degraded by PGs, methyl groups must first be removed by 

PME because PGs cannot attack highly methylated pectins. PGs can degrade pectic 

polymers in different ways: endo- PGs cleave the pectic polymer internally at random, 

generating a rapid decrease in substrate viscosity, while a second class of PGs remove 

one (exo-PG) or two (exo-poly-a-D-galacturonosidase) terminal galacturonate residues at 

a time (Allen et al., 1998). 

 



INTRODUCTION  9 

As in other major groups of Gram-negative, phytopathogenic bacteria, R. solanacearum 

hrp genes have been identified as essential determinants for disease development on 

compatible hosts and for elicitation of the hypersensitive response (HR) in resistant plants 

(Boucher et al., 1985, 1992, 2002; Lindgren, 1997; Vasse et al., 2000). Allen (2001) 

reported that motility of the bacterium after invasion also contributes to the virulence on 

tomato. During wilt disease development, when the bacterial density is low and the 

LysR-type global regulator called phcA is not expressed, R. solanacearum cells are 

motile and highly pectolytic. As bacterial populations increase in the host xylem 

elements, phcA is expressed, inducing production of the known virulence factors and 

reducing motility by repressing pehSR expression. PehSR is a positive regulator of plant 

cell wall-degrading polygalacturonases, which are also virulence factors. However, 

bacterial motility has not been directly measured in the plant during pathogenesis. 

Numerous Gram-negative bacteria including R. solanacearum produce type IV pili (Tfp) 

important for adhesion, gene transfer and twitching motility (Liu et al., 2001). 

 

An interaction between pectic polysaccharides and a bacterial pathogen at cell walls in 

the intercellular space was suggested by different authors (Vasse et al., 1995). Since the 

interaction may be involved in the compatible or incompatible reaction, a reaction of the 

pathogen to resistance factors of the plant might be possible. R. solanacearum was 

reported to enter the viable but non-culturable  (VBNC) state which is explained as the 

discrepancy between plate counts and total viable counts in a more complex environment, 

in planta, in sterile soil, and in liquid bacterial suspensions, with varying percentages 

depending on the prevailing environmental or host conditions,  presumably  induced by 

shortages of nutrient availability as has been shown to occur with other microbes 

(Heijnen et al., 1995, Van Overbeek et al., 1995). A portion of the original cell 

population that could not be cultured became VBNC and those cells, which could not 

withstand the stresses, may not survive.  

 

The VBNC state could be a long-term survival mechanism induced by an oligotrophic 

environment, and cells can remain as VBNC cells for more than a year (Mc Dougald et 

al., 1998). It might be possible that in the infection process, the pathogenic bacteria 
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become VBNC in response to a signal such as decreased nutrient availability, resistance 

responses of host plants or due to the wilting process prior to the return of the bacteria to 

the soil. However, this response might differ from plant to plant according to their 

resistance level. The VBNC state of bacteria has significance for epidemiology and 

ecology of bacterial pathogens in natural environments and constitutes an adaptive 

strategy of non-spore-forming bacteria allowing survival under adverse conditions 

(Roszak and Colwell, 1987). VBNC cells of pathogenic bacteria may therefore provide a 

potential reservoir for infection, which evades detection by most standard methods (Xu et 

al., 1982; Roszak et al., 1984; Oliver, 1993; Oliver and Bockian, 1995; Colwell et al., 

1996, Rahman et al., 1996; Whitesides and Oliver, 1997; Mc Dougald et al., 1998). 

 

Many gram-negative organisms such as soil microbes including R. solanacearum, 

Pseudomonas fluorescens and Salmonella enterica serovar typhimurium (Binnerup et al. 

1993; Turpin at al., 1993; Van Overbeek et al. 1995; Pernezny et al., 1997; Van Dyke et 

al., 1998; Alexander et al., 1999; Ghezzi et al., 1999) have been reported to respond to 

changes in environmental conditions by entering into the VBNC state. Processes of injury 

(DNA damage) may cause VBNC phenomena, as observed in cold-stressed Vibrio 

vulnificus (Oliver, 2000), however, its role attributed to “programmed cell death” or 

“cellular suicide” (Bloomfield et al., 1998; Hochman, 1997; Nystroem, 1998) was not 

well investigated. 

 

Moreover a VBNC state of R. solanacearum was recently demonstrated to retain its 

pathogenicity (Steck et al., 2001). The ability of VBNC cells to resuscitate has raised 

some controversy, however, it has recently been reported that “VBNC” cells of R. 

solanacearum can be resuscitated (Steck et al., 2001), suggesting that natural conditions 

may be able to “trigger” growth of VBNC cells. Two other reports (Oliver, 1995; Oliver 

and Bockian, 1995) showed growth (resuscitation) of VBNC cells of V. vulnificus, an 

organism which has become the paradigm of the VBNC hypothesis in environmental 

chambers and in a mouse model, and also, more recently, in the laboratory under certain 

conditions (Whitesides and Oliver, 1997). For conventional microbiology, viability and 

culturability are equivalent. Recovery of culturable cells from a population of non-
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culturable cells (resuscitation) is ultimately required and is the keystone for the 

confirmation of the VBNC hypothesis (Steck et al., 2001). However, reports 

demonstrated that the presence of a low level of residual culturable cells within the 

population of VBNC cells are able to grow and multiply in response to changes which are 

suggested to trigger resuscitation of VBNC cells such as host organisms or added 

nutrients in laboratory samples. Hence, investigations on other resuscitation methods are 

required to support the VBNC state of bacteria. Studying the VBNC state of R. 

solanacearum in plant tissue and the percentages of cells entering into this state in 

relation to the level of host resistance and through the progress of infection may further 

elucidate the interaction of the pathogen with its host plant.   

 

We analyzed the extracted pectic polysaccharides from healthy resistant (H7996) and 

healthy susceptible (L390) cultivars of tomato using the recently developed technique of 

immuno-profiling in which immuno-reactive components occurring in the preparation of 

pectic polysaccharides can be resolved on the basis of their differing mobilities on 

nitrocellulose membranes and their reaction to highly specific antibodies (Willats and 

Knox, 1999). We also investigated water-soluble AGP using the monoclonal antibody 

LM2 (Smallwood et al., 1996; Serpe et al., 2002) by immuno-localization studies. 

Specific antibody probes to defined oligosaccharide components of the pectic side chains 

have currently been developed and have been used to gain insight into the function of 

these side chains during cell development and cell expansion in a range of plant systems: 

JIM5 recognizes a low-ester epitope of HG, JIM7 recognizes a high-ester epitope of HG, 

LM5 an epitope of (1→4)-ß-galactan of RG I, LM6 an epitope of (1→5)-α- arabinan of 

RG I, and LM7 the non-blockwise de-esterification pattern of HG. In our present study 

we also investigated the influence of extracted pectic polysaccharides from both resistant 

and susceptible tomato cultivars on the VBNC state of the bacteria. 
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1.2 MATERIALS AND METHODS 

 

1.2.1 Plant material 

 

Tomato genotypes Hawaii 7996 and L390, resistant and susceptible to bacterial wilt 

(Jaunet and Wang, 1999) were received from the Asian Vegetable Research and 

Development Centre (AVRDC), Taiwan. Genotypes King Kong and King Kong-2 with 

moderate resistance level were obtained from Asian Vegetable Research and 

Development Centre (AVRDC), Taiwan. Seeds were sown in a greenhouse (20°C 

day/night temperature, 14h of light per day / 30K Lux, and 70% relative humidity) and 

transplanted to individual pots with 330g of soil (Fruhstorfer Erde, Type P, with 150mg/l 

N, 150mg/l P2O5, and 250mg/l K2O). During the experiment plants were kept in a climate 

chamber with 30/27 °C day/night temperature, 85% relative humidity, 14 hours light, and 

30K Lux. After 4 weeks the stems and roots were harvested and kept frozen for further 

trials. 

 

1.2.2 Extraction of pectic polysaccharides 

 

Pectic polysaccharides were extracted from stem and root tissues of 4 week-old plants of 

the four tomato genotypes following the method of Sonnenberg (1994). 
 

About 100-200 g of stem material was harvested and immediately frozen at -20 °C. The 

root system was thoroughly washed to remove all traces of substrate and also frozen. The 

frozen stem or root material was homogenized with 100 mM NaH2PO4  buffer (pH 5.5) 

(Sigma) containing 4% (w/v) polyvinylpolypyrrolidone (PVPP) (Sigma), 20 mM 

ethylenediamine tetraacetic acid (EDTA) (Sigma) and 2% (w/v) sodium ascorbate 

(Sigma) in a mixer-blender at its maximum speed for few minutes till the material was 

homogenized. After keeping the homogenate overnight at 4 °C, it was centrifuged at 

9,000 x g (Sorvall RC-5B refrigerated centrifuge) for 30 min at 4 °C. The supernatant 

was filtered through cheese cloth and condensed to one fifth of the initial volume using a 
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rotary evaporator (RV 05 rotary evaporator, Janke and Kunkel GmbH, u. Co KG, IKA 

WERK Staufen im Breisgau, Germany), which was held at a temperature below 35 °C. 

 

 

                                        Plant material (frozen stems or roots) 
                                                ↓ 
                                        Homogenisation (extraction buffer)  
                                                ↓ 
                                        Incubation at 4 °C overnight 
                                                ↓ 
                                        Centrifugation and filtration of supernatant 
                                                ↓ 
                                        Condensation by rotary evaporation 
                                                ↓ 
                                         Precipitation of proteins (40-70% ammonium sulphate) 
                                                ↓ 
                                         Incubation at 4 °C overnight   
                                                ↓ 
                                         Centrifugation and filtration 
                                                ↓ 
                                         Dialysis 
                                                ↓ 
                                         Lyophilisation 
 
Scheme for the extraction of pectins from plant stems and roots (Sonnenberg, 1994) 

 

 

Proteins were precipitated from the supernatant by slowly adding ammonium sulphate to 

a saturation of 40-70% and the suspension was kept stirring overnight at 4°C.  The 

suspension was centrifuged at 9,000 x g for 30 min to remove the proteins. The 

supernatant containing pectic polysaccharides was filtered through cheese cloth and filter 

paper (Schleicher and Schüll, Germany, with a pore size 320 mm) and dialyzed against 

demineralised water at 4 °C for 72 h and water being changed after every two hours. 

After reducing the volume by further condensation by a rotary evaporator, the solution 

containing the crude pectic polysaccharides was lyophilized. These pectin extractions 

were repeated three times from each genotype being grown and harvested thrice 

producing pectic polysaccharides in triplicate. 
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1.2.3 Acid hydrolysis of pectic polysaccharides 

 

Monosaccharide compositions from the above extracted pectic polysaccharides produced 

in triplicate from each genotype were analyzed again in triplicate by capillary gas–liquid 

chromatography of the trimethyl-silylated methyl-glycosides using the method of Chaplin 

(1982) with inositol as the internal standard. Briefly, carefully dried samples (approx. 100 

µg) were methanolyzed (200 µL 1.5 M methanolic HCl, 50 µL methyl acetate, 16 h, 

80 °C) and derivatized using a commercial silylating agent (Silyl 2110, Chromatographie 

Service, Langerwehe, Germany) containing hexamethyldisilizane, trimethylchlorosilane 

and pyridine (2:1:10). Prior to injection, samples were dried under a gentle stream of 

nitrogen and dissolved in 30 µL isooctane. One µL samples were split-injected (1:10, 

injection port temperature 230 °C) into the gas–liquid chromatograph (Hewlett-Packard 

model HP 5840A GC with a flame ionization detector maintained at 260 °C) equipped 

with an OV-1 column (25 m × 0.32 mm i.d.; 0.2 µm film thickness; Macherey-Nagel, 

Düren, Germany). Carrier gas was nitrogen at 1 ml/min. The temperature was held at 

140 °C for 4 min, then increased at 2 °C/min to 200 °C, followed by a 6 °C/min rise to 

250 °C. Pectins extracted in triplicate from each genotype were used and the trial was 

repeated twice.  

 

1.2.4 Quantitative determination of uronic acids 

 

Uronic acids were quantified following the method described by Blumenkrantz and 

Hansen (1973). Extracted pectic polysaccharides were dissolved at 10 mg/ml of water. To 

200 µL of the solution, 1.2 ml of H2SO4 was added. The tubes were cooled in crushed ice. 

The mixture was shaken in a vortex mixer and the tubes heated in a water bath at 100°C 

for 5 min. After cooling in a water ice-bath, 20 µL of m-hydroxy-diphenyl reagent 

(Sigma) was added. The tubes were shaken, and within 5 min absorbance measurements 

were made at 520 nm in a Beckman DU spectrophotometer. Because carbohydrates 

produce a pinkish chromogen with sulphuric acid at 100 °C, a blank sample was run 

without the addition of the reagent, which was replaced by 20 µL of 0.5% NaOH. The 
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absorbance of the blank sample was subtracted from the total absorbance. The 

determination of uronic acids from each extracted sample was performed in triplicate.  

 

1.2.5 Total protein determination  

 

The total protein content was determined using the Bradford Reagent (Sigma) assay 

(Bradford, 1976). The samples were prepared at a concentration of 1mg/ml. One hundred 

microliter of the sample were mixed with 900 µL Bradford reagent [0.1 g Coomassie 

brilliant blue G-250 (Sigma) in 50 ml of EtOH (95%), added to 100ml phosphoric acid 

(85%) diluted to 1000 ml with water and filtered].  Samples were measured at 595 nm 

against a BSA standard. 

 

1.2.6 Determination of degree of methyl esterification (DM) of pectic 

polysaccharides 

 

The degree of methylation of the extracted pectic polysaccharides was determined 

following the method of Wojciechowski (1996). Five milligram of the samples were 

weighed and added to 400 µL of water and 1.25 ml of KOH (200 mM). All steps were 

carried out at 4 °C. The tubes were closed air-tight and shaken at 80 rpm at 4 °C for 5 h. 

After centrifuging the samples at 7,000 x g for 10 min at 4°C, the supernatant was filtered 

with Millipore filtration unit using filters with a pore size of 0.45 µm (Pall Life Sciences, 

Centrifugal Devices Nanosep, MF GHP).  
 

Seven hundred fifty microliter of filtrate were mixed with 750 µL potassium-phosphate 

buffer (pH 4.0). Five microliter alcohol oxidase from Pitchia Pastoris, Sigma (400 u/ml) 

was added and incubated at 25°C in a water bath for 15 min. To this 20 µL of Fluoral-P 

reagent (Sigma) (15mg/ml) was added and vortexed. After measuring the volume of the 

samples, they were incubated at 60 °C in a water bath for 15 min. The tubes were cooled 

in ice for 5-10 min and measured again with the fluorometer at Ex - 405 nm and Em - 

503 nm. The standard curve was prepared using methanol. The determination of degree 

of esterification of each sample was performed in triplicate. 
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1.2.7 Immuno-dot Assay 

 

Immunodot assays were carried out as described in Willats et al. (1999, 2000). Extracted 

pectic polysaccharides were dissolved in water at a concentration of 10 mg/ml and 

applied as 1-µL aliquots to a nitrocellulose membrane (Scheicher and Schüll, Dassel, 

Germany) in a 5- or 10-fold dilution series.  

 

Following the application of samples, membranes were left to air-dry for 30 min. All 

subsequent treatments were conducted at room temperature. Membranes were blocked 

with phosphate buffered saline (PBS) (NaCl = 135mM, KCl = 3mM, Na2HPO4.2H2O = 

10mM, KH2PO4 = 2mM) containing 5% skim milk powder (MPBS, pH 7.2) for 1 h prior 

to incubation in primary antibodies (hybridoma supernatants of JIM5, JIM7, LM2, LM5, 

LM6, LM7, diluted 1/10 in MPBS, received from P. Knox, University of Leeds, UK) for 

1.5 h.  After washing extensively under running tap water and for 10 min in PBS 

containing 0.1% (v/v) Tween 20 (PBST), membranes were incubated for 1.5 h in the 

secondary antibody (anti-rat horseradish peroxidase conjugate, Sigma) diluted 1/1000 in 

MPBS. Membranes were again washed as described prior to development in substrate 

solution [25ml deionized water, 5ml methanol containing 10mg/ml 4-chloro-1-naphthol, 

30 µL 6% (v/v) H2O2]. Citrus pectin (63-66% DM) and apple pectins (70-75% DM) 

(Sigma (Poole, Dorset, UK) were used as controls. The results were obtained based on 

visual evaluation by keeping the membranes on an illuminating table, giving color grade 

values from 0-4 for controls and 0-7 for samples. Depending on the intensity of the dots 

obtained we assigned the lower values for samples and the higher values up to grade 7 for 

controls. The samples showed the presence of a central dot and were differentiated from 

the controls which formed the central dot and an outer ring. The immunodot assay was 

repeated three times from pectins that were extracted from each genotype in triplicate.       

 

1.2.8 Quantification of VBNC bacterial cells 

 

Ralstonia solanacearum strain ToUdk2 was grown at 30°C for 48h on NGA medium (0.3 

% beef extract, 0.5 % Bacto peptone, 0.25 % D-glucose, 1.5 % agar). Bacterial colonies 
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were harvested with sterile water and the suspension adjusted to an optical density of 0.06 

at 600nm. Cells were concentrated by filtration on a 0.2 µm pore-size isopore membrane, 

black polycarbonate filter (Millipore, USA.).  

 

To determine the number of VBNC cells after incubation of R. solanacearum with pectic 

polysaccharides, extracted pectic material of the tomato genotypes H7996 and L390, 

resistant and susceptible to bacterial wilt respectively, were dissolved in water at a 

concentration of 10 mg/ml and mixed 1 ml with 1ml of the inoculum suspension of a 48 h 

old culture of R. solanacearum strain To-Udk2 of OD 0.06 at 600 nm. After overnight 

incubation at room temperature the suspension was assayed for viable bacteria by the 

LIVE/DEAD BacLight Bacterial Viability Kit (Molecular Probes Inc., Eugene, Oreg. 

USA). This assay uses two fluorescent nucleic acid stains, Component-A, nucleic acid 

stain, 3.34 mM and Component-B, propidium iodide, 20 mM (Molecular Probes, Eugene, 

Pregon, USA), which differ in their ability to penetrate cell membranes. Component-A 

can enter cells with and without an intact cell membrane. Component-B can only enter 

cells with a compromised membrane. As a result, cells with intact membranes (i.e. viable 

bacteria) stain fluorescent green, and bacteria with damaged membranes (i.e. dead 

bacteria) stain fluorescent red. 

 

From the same samples, an aliquot was streaked on NGA. Live bacterial suspensions as 

control as well as the incubated mixture of pectin from both genotypes H7996 and L390, 

and bacterial suspension were diluted tenfold up to 10-7. One hundred microliter of the 

dilutions were plated in duplicates on NGA agar medium and colonies were counted after 

incubation at 30°C for 48 hours. The concentration of VBNC cells is calculated by 

subtracting the concentration of culturable cells from the concentration of viable cells.   

One milliliter of each dilution of the bacterial suspension of the mixture with pectin was 

stained by adding 1 µL of Component A and 2 µL of Component B, and incubating at 

room temperature for 30 min in the dark. The cells were re-collected on a 0.2-µm-pore-

size filter and counted.  
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At least 100 grids per sample over at least ten fields of vision under the microscope (Zeiss 

fluorescence microscope with a broad range filter for green and red fluorescence 

(Olympus B x 60 Epifluorescence) at a magnification of 250 x were scored in one 

replication of the tested sample. The average number of green cells was calculated per 

one milliliter of inoculum suspension to determine the viability of bacterial cells. 

 

1.2.9 Statistical Methods 

 

Data were processed using analysis of variance in SAS (the SAS System for Windows 

V8, Release 8.02 TS Level 02M0; 1999-2001. Institute INC., Cary, USA).  For all 

analyses a significance level of P = 0.05 or lower was used. The bacterial counts on 

media, were expressed as colony forming units per gram of fresh matter or per milliliter 

of bacterial suspensions, and analyzed using parametric analysis procedures in SAS.  
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1.3 RESULTS  

1.3.1 Carbohydrate composition of pectic polysaccharides from tomato stems and 

roots   

 

Pectic polysaccharides from stems and roots of tomato genotypes H7996 (resistant) and 

L390 (susceptible) to R. solanacearum were obtained by chelator-soluble extraction.     

 

Monomeric composition of pectic polysaccharides from stems of genotypes H7996 and 

L390 was generally similar, with galactose (38-39 %) in highest concentration, followed 

by arabinose, rhamnose, xylose and glucose in pectins from genotype H7996, and 

followed by glucose, arabinose and lower contents of rhamnose and xylose in genotype 

L390 (Table 1.3.1). The total carbohydrate composition made up 15-20 % of the 

extracted stem material. Mannose was only found in pectins from stems of genotype 

L390. Total uronic acids made up 1-2 %, and protein 10-20 % of the extracted stem 

material.  
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Table 1.3.1 Carbohydrate composition of pectic polysaccharides from stems and roots of healthy tomato genotypes H7996 and L390, 
resistant and susceptible to R. solanacearum, respectively. Neutral monosaccharides were obtained by GC (Chaplin, 1982), total 
content of proteins (Bradford, 1976), total content of uronic acids (Blumenkrantz and Hansen, 1973) and degree of methylation (DM) 
(Wojciechowski, 1996) were determined by spectrophotometric methods. Content is expressed as % weight with standard error values 
of pectins from three repeated trials and pectin extractions. Tukey test at P = 0.05. 
 
 
 
 
 

   

sample
Total                 
protein

Uronic              
acids % DM

rha ara xyl man glc gal

H7996-stems 19.8±14.0a 23.8±15.5a 9.7±4.9a 0±0a 8.5±5.9a 37.9±19.5a 19.8±7.7a 1.6±0.4a 44.0±5.0a

L390-stems 6.9±1.2a 13.9±3.3a 5.6±1.5a 5.0±1.0b 29.1±15.7a 39.3±14.1a 10.5±3.0a 1.3±0.2a 9.0±3.8b

H7996-roots 4.4±3.6a 6.1±5.0a 25.3±6.9a 0±0a 11.8±1.9a 51.9±0.5a 7.8±1.9a 0.2±0.03a 64.0±0a

L390-roots 9.7±1.3a 19.0±0.6a 3.2±0.3a 3.2±0.3b 7.4±0.1a 57.4±1.9a 2.7±0.08a 1.2±0.3a 7.0±0.9b

[ % WT ]                                                                                                         Monomeric 
composition 
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In pectins from roots, galactose content was predominant with more than 50% of the total 

% weight, followed by xylose, glucose, arabinose and rhamnose in genotype H7996, and 

by arabinose, rhamnose, glucose, and xylose, in genotype L390. Root pectin of the latter 

genotype contained additionally 3% mannose. Except for mannose, no significant 

difference was observed between stems and roots of the genotypes in all the monomers. 

Comparing genotypes, only the pectin of roots of genotype L390 contained mannose.  

 

The degree of methylation (% DM) of homogalacturonans was by a factor of 4 and 6 

higher in polysaccharides from stems and roots, respectively, of the resistant genotype 

H7996 than in extracts from L390. 

 

1.3.2 Characterization of extracted pectic polysaccharides by immunodot assay 

 

Pectic polysaccharides from genotypes H7996 and L390 were characterized for 

unbranched homogalacturonan and branched components using monoclonal anti-pectin 

antibodies recognizing different epitopes (Table 1.3.2). 
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Table 1.3.2 Characterization of EDTA-extracted pectic polysaccharides from stems and roots of healthy tomato genotypes H7996 and 
L390, resistant and susceptible to bacterial wilt, respectively, and the moderately resistant genotypes King Kong and King Kong 2 by 
immunodot assay with six antibodies specific for different pectic epitopes.  
Quantities of 100 µg and 50 µg pectin were applied to the nitrocellulose membrane. Apple and citrus pectins (10 µg and 5 µg, respectively) were 
used as controls. For visual grade evaluation a scale of 0-4 for samples and 0-7 for controls was used. Antibody specificities: JIM5 - specific for 
low ester, JIM7 -high ester, LM7 - non-blockwise de-esterification patterns of  homogalacturonan (HGA), LM2 - arabinogalactan protein, LM5 - 
galactan, LM6 - arabinan epitopes of rhamnogalacturonan I (RG I). 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

1 Antibodies with specificity to pectic epitopes 
2 Color grade values with standard errors for three repeated trials with pectin from three extractions 
3 Tukey test at P = 0.05; small letters: comparison between genotypes; capital letters:  
   comparison between stem and root extracts 
4 No triplicate extraction done, therefore no SE values , 5 Degree of esterification: 63-66 % , 6 Degree of esterification: 70-75 %  

 

S a m p l e s  µ g  J I M 5 1  J I M 7  L M 2  L M 5  L M 6  L M 7  
L 3 9 0 - s t e m s  1 0 0  1 . 2 ± 0 . 4 2 a A  1 . 2 ± 0 . 6 a A  1 . 4 ± 0 . 8 a A  1 . 2 ± 0 . 2 a A  1 . 6 ± 0 . 5 a A  2 . 1 ± 0 . 0 5 a A  

 5 0  1 . 0 ± 0 . 5 a A  0 . 7 ± 0 . 4 a A  1 . 5 ± 0 . 7 a A  0 . 7 ± 0 . 1 a A  1 . 1 ± 0 . 4 a A  1 . 5 ± 0 a A  
        

H 7 9 9 6 -
s t e m s  

1 0 0  1 . 0 ± 0 . 6 a A  0 . 9 ± 0 . 1 a A  0 . 8 ± 0 . 3 a A  1 . 3 ± 1 . 1 a A  0 . 9 ± 0 . 6 a A  0 . 8 ± 0 . 3 b A  

 5 0  0 . 3 ± 0 . 3 a A  0 . 7 ± 0 . 2 a A  0 . 6 ± 0 . 4 a A  0 . 7 ± 0 . 6 a A  0 . 7 ± 0 . 6 a A  0 . 2 ± 0 . 1 b A  
        
        

H 7 9 9 6 - r o o t s  1 0 0  3 . 5 ± 0 . 5 a A 3  4 ± 0 a B  4 ± 0 a B  3 . 2 ± 0 . 2 a A  3 . 7 ± 0 . 2 a B  4 ± 0 a B  
 5 0  3 . 2 ± 0 . 7 a B  4 ± 0 a B  4 ± 0 a B  3 ± 0 a A  2 . 7 ± 0 . 2 a A  3 ± 0 a B  
        

L 3 9 0 - r o o t s  1 0 0  1 . 7 ± 1 . 5 a A  1 . 7 ± 1 . 2 a A  1 . 4 ± 0 . 6 b A  1 . 5 ± 0 . 5 a A  2 ± 1 a A  1 . 8 ± 1 . 1 a A  
 5 0  1 . 2 ± 0 . 7 a A  1 . 6 ± 1 . 4 a A  1 . 4 ± 0 . 6 b A  1 . 2 ± 0 . 7 a A  1 . 8 ± 1 . 1 a A  1 . 3 ± 0 . 6 a A  
        
        

K i n g  K o n g -
s t e m s  

1 0 0  1 4  1 . 5  0 . 2 5  2 . 5  1 . 2 5  0 . 6 6  

 5 0  0 . 5  1  0 . 3 3  2  0 . 7 5  0 . 5  
        

K i n g  K o n g 2 -
s t e m s  

1 0 0  4  3  3  4  3  4  

 5 0  3  2  2  2  2  3  
        

C i t r u s  
p e c t i n 5  

1 0  7  7  0 . 5  5 . 5  5  0  

 5  7  7  0 . 5  5 . 5  4 . 5  0  
        

A p p l e  
p e c t i n 6  

1 0  6  7  0 . 5  5 . 5  4 . 5  0  

 5  6  6  0 . 5  5 . 5  4 . 5  0  
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Fig.1. Immunodot-binding assay of commercial samples of pectic polysaccharides.  
Samples of citrus pectin (CP) and apple pectin (AP) were dissolved in demineralized 
water and applied at 1- µl volumes (10mg/ml) to a dry nitrocellulose membrane.  
After drying the nitrocellulose was blocked and probed with the anti-low-ester pectin 
(JIM5), anti-high-ester pectin (JIM7), anti-(1→4)-ß-D-galactan (LM5) and anti-(1→5)-α-
L-arabinan (LM6) rat monoclonal antibodies. Antibody binding was detected with anti-
rat IgG linked to horse-radish peroxidase as a dark bluish coloration.  
 

LM6

LM5

JIM7

JIM5

Apple pectinCitrus pectin

10 µg 5 µg 10 µg 5 µg
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Probing commercial samples of citrus and apple pectin with anti-low-ester antibody 

JIM5, at least two components were detected, an outer ring and a central dot (Fig.1). In 

case of citrus pectin, JIM5 binding was most intense in the central dot, whereas apple 

pectin produced a dot and an intense outer ring. Both commercial pectins did not show 

any specificity for the LM7 epitope which recognizes the non-blockwise de-esterification 

patterns of HGA (photo not shown), but reacted intensely with a central dot with LM5 

and LM6, which bind to the epitopes (1→4)-ß-D-galactan, and (1→5)-α-L-arabinan, 

respectively (Fig. 1, Table 1.3.2). A generally slight reaction occurred for controls with 

LM2 which is specific for arabinogalactan-protein except a strong reaction with pectin 

from stems of genotype KK2 (photo not shown).  

 

Extracts of both resistant and susceptible tomato genotypes reacted with all the antibodies 

giving a central dot (Table 1.3.2.). No outer ring was observed. Comparing pectic 

polysaccharides from stems of resistant and susceptible genotypes, the samples from 

L390 reacted significantly stronger with LM7 than samples from H7996 in both 

concentrations (Fig. 2), indicating a homogeneous de-esterification pattern of the pectic 

polysaccharides from L390 in comparison to a more blockwise pattern in H7996. No 

significant difference between genotypes was found in epitope-binding specificities of 

JIM5, JIM7, LM2, LM5 and LM6. Antibody reactions indicated the presence of branched 

pectic polyssaccharides with low quantities of galactan and arabinan epitopes in stems of 

both genotypes. Generally, samples from genotype L390 reacted slightly stronger with 

the antibodies than samples from H7996. 

 

Comparing samples from roots, genotype H7996 reacted stronger with antibody LM2 

than genotype L390 (Fig. 3), indicating higher contents of arabinogalactan protein in 

H7996. No significant difference between root extracts of the two genotypes was found 

when probing with antibodies JIM5, JIM7, LM5, LM6 and LM7. 

 

Comparing pectic polysaccharides from stems and roots, extracts from roots of genotype 

H7996 showed significantly stronger reactions with antibodies JIM5, JIM7, LM2, LM7  
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Fig. 2. Pectins from healthy stems of tomato genotypes H7996 and L390, 
resistant and susceptible to bacterial wilt, respectively were probed on 
nitrocellulose membrane at 100 µg/ml and 50 µg/ml by immuno dot blot 
assay. The two genotypes showed differences in labeling with antibody LM7 
which recognizes the non-blockwise de-esterification pattern of HG.  
Results from three different sets of extracted pectins are shown (upper, middle, 
lower rows). The trial was repeated thrice. 

N-blockwise de-esterification

H7996 (r) L390 (s)

100 µg 50 µg 50 µg100 µg

H7996 (r) L390(s)
100 µg100 µg 50 µg 50 µg

N-blockwise de-esterification

H7996 (r) L390 (s)

100 µg 50 µg 50 µg100 µg

H7996 (r) L390(s)
100 µg100 µg 50 µg 50 µg
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Fig. 3. Dot blots of pectic polysaccharides (50 µg/ml, 100 µg/ml) obtained 
from roots of tomato genotypes H7996 and L390, resistant and susceptible 
to bacterial wilt, respectively, stained for arabinogalactan proteins with 
antibody LM2. Results from two sets of extracted polysaccharides (upper and 
lower rows); the trial was repeated three times. 

H7996 (r) L390(s)

100 µg 100 µg50 µg 50 µg
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and less with LM6 than extracts from stems, indicating a high esterification in a non- 

blockwise pattern of HG, presence of arabinogalactan protein and RG I with arabinan 

side chains, and small quantities of a pectin with low esterified HG. The root 

polysaccharides from genotype L390 seem to be less branched than from H7996. No 

differences between extracts from stems and roots were observed for genotype L390.  

 

Extracts from stems of the moderately resistant genotype King Kong2 reacted strongly 

with all the antibodies, while King Kong extracts showed overall less intense reactions. 

 

1.3.3 Effect of extracted pectic polysaccharides on viability and culturability of R. 

solanacearum  

 

EDTA-extracted pectic polysaccharides from stems of tomato genotypes H7996 and 

L390 were mixed 1:1 (v/v) with a suspension of R. solanacearum (OD = 0.06 at 600 nm 

corresponding to 7.8x107 CFU/ml) and assayed for viable and culturable forms of 

bacteria after overnight incubation.  
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Table 1.3.3 Number of viable and culturable cells of R. solanacearum (cfu/ml) after  
mixture with pectins (10 mg/ml) extracted from tomato genotypes H7996 and  L390, 
resistant and susceptible to bacterial wilt, respectively.   
Values represent cell counts of three repeated trials with standard errors (P=0.05 with Tukey test) 
 
 
 
 

 

 

 

 

 

 

1  Control: Sterile water  

          2  Extracted pectins dissolved in water, 10 mg/ ml 
          3 Detection of viable cells by fluorescence staining with the LIVE/DEAD BacLight  
          Viability Kit, observed under a fluorescence microscope at a magnification of  
          250x.  

     4 Aliquots of serial dilutions were plated on NGA medium and bacterial colonies 
       counted after 48 h incubation at 30 °C. 

 

 

 

 

No significant (P=0.05) difference occurred between the numbers of viable and culturable 

cells from the mixtures with pectic polysaccharides from the genotypes as compared to 

the control after overnight incubation (Table. 1.3.3).  

 

 

 

 

 

 

Cell counts Control H 7996 L 390

viable 3.02x107± 5.06x106 a 3.3x107± 8.4x106 a 1.4x107± 3.7x105 a

culturable 5.5x107± 2.6x107 a 5.2x107± 1.6x107 a 5.4x107± 3.6x107 a

1 2

3

4
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Fig. 4. Viable R. solanacearum cells (green fluorescent) in mixture with  pectins  from 
tomato stem tissue, stained by the LIVE/DEAD BacLight Viability Kit, collected on the 
0.2 µm pore-size filter, observed under fluorescence microscope at a magnification of 
250x.  
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1.4 DISCUSSION 

 

The primary cell wall is composed of a rigid cellulose-hemicellulose network that is 

embedded in a hydrated matrix of pectic polysaccharides and structural glycoproteins 

(Carpita and Gibeaut, 1993; Willats et al., 2001).  

 

Many extractants have been used to solubilize pectins from plant material such as water-

soluble solids (WSS), chelating-agent-soluble solids (ChSS), dilute-alkali (50mM 

NaOH)-soluble solids (DASS) and concentrated-alkali (4M KOH)-soluble solids (CASS) 

as described in Orfila et al. (2002). For instance, chelating agents such as EDTA as used 

in the present studies capture calcium ions, resulting in solubilization of HG-HG 

interactions of the calcium-pectate gel. However, besides HG, also RG I, arabinan, and 

galactan are solubilized, which implies that these polysaccharides are interconnected (De 

Vries et al., 1982). The bulk of these structurally highly complex chelator-soluble 

polymers probably originate from the middle lamella.  

 

The components from the supernatant of the tissue macerate after ammonium sulphate 

fractionation are rich in galactose, arabinose and xylose, but also contain rhamnose and 

glucose. These presumably represent arabinogalactan and xylogalacturonans which are 

present in the side chains of pectic polysaccharides and components of the cell walls (Mc 

Cartney et al., 2000; Vierhuis et al., 2001). Schols et al., (1995) reported the presence of 

xylogalacturonan in pea, which is a type of HG substituted at C-2 or C-3 positions with 

α-D-xylose, and does not appear to be as widespread as the other pectic domains. The 

abundance of arabinose is probably due to the presence of a neutral arabinan, as also 

reported in pea stems by Pauly et al. (2000). Glucose is only a minor component of the 

polysaccharides in the extract. Majewska-Sawka et al. (2002) reported the presence of 

xyloglucan (RG I) bearing terminal α-(1→2)-fucosyl residues in the guard cells in sugar 

beet leaves (Beta vulgaris L.). 

 

The most important constituent sugars in the extracted pectic fractions as detected by gas 

chromatography are galactose, glucose and arabinose, while only low quantities of uronic 



DISCUSSION  31 

acids were detected by photometric determination. This may be due to incomplete 

hydrolysis during analysis (Orfila et al. 2002) possibly caused by the presence of methyl- 

or acetyl- esterified HG, or branched RG I domains covalently bound to HG.  

 

Also Goldberg et al. (1989) reported that the use of the chelating agent EDTA for 

extracting pectins from the cell walls led to the removal of only negligible amounts of 

uronic acids. Additionally, the low content of uronic acids in the pectic polymers is 

typical for pectins derived from primary cell walls (Ryden and Selvendran, 1990). The 

range of pectic polysasccharides obtained indicates the presence of highly branched 

pectins derived from the primary cell wall. The total uronic acids could derive from 

galacturonan or alternating RG I and RG II type side chains (Jarvis et al. 1988), or partly 

from the hemicellulosic fraction. This was found in extracts from some species where 

glucuronic or 4-O-methyl glucuronic acid was attached to xylose. Therefore, we did not 

use the uronic acid content as an indicator of pectin content.  

 

The degree of methylation was observed to be higher in tomato genotype H7996 resistant 

to R. solanacearum than in the susceptible genotype. It is suggested that the high degree 

of pectin methylation could be one of the factors contributing to the resistance of 

genotype H7996 to R. solanacearum.  Also in other host-pathogen systems such as potato 

and Erwinia carotovora subsp. atroseptica and tomato and Pseudomonas syringae pv. 

tomato pectins of the resistant genotype were higher methyl-esterified. It is suggested that 

these genotypes are less easily degraded by pectinolytic enzymes, which cannot act on 

branched or highly methylated galacturonans (McMillan et al., 1993; Venkatesh, 2002).  

 

Populations of pectic polysaccharides with varying compositions are solubilized to 

different degrees by all these above described extractants (Willats et al., 2001; Dinu, 

2001). The presence of arabinan- and galactan-containing pectic polymers has also been 

reported in ChSS extracts from tomato fruit (Gross, 1984; Seymour et al., 1990). Another 

part of pectic polysaccharides which are not extracted by our method may be constituents 

of the non-EDTA soluble fraction. Also Knox et al. (2002) suggested the existence of a 

population of pectic polysaccharides that are tightly associated with the cellulose-
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hemicellulose network. The covalent association of pectic polysaccharides to xyloglucan 

has been reported in Rosa glauca cell suspension cell walls (Thompson and Fry, 2000) 

and the presence of cellulose-associated xyloglucan has been reported in pea stems 

(Pauly et al., 2000).  

 

13C-NMR on tomato cell wall material indicated a population of pectic polysaccharides 

that is tightly associated with cellulose microfibrils (Fenwick et al., 1996). Thus, a 

cellulose-associated cell wall micro-domain, which may be subjected to structural 

modulation during growth and might also be altered after invasion of a pathogen may 

play a role in the determination of cell wall properties. Extensive studies of the pectic 

polysaccharides in the pea testa also identified xylose-rich pectins and xylogalacturonan 

domains (Renard et al., 1997; Huisman et al., 1998; Le Goff et al., 2001) representing 

cell wall polymers that appear to be highly cross-linked.  Nevertheless, according to our 

hypothesis, these less soluble or water and EDTA- unsoluble polysaccharides would not 

come into contact with the pathogen in the intercellular space during the first phases of 

infection. Thus, the non-EDTA soluble fraction is not the goal of our characterization 

studies. 

 

The pectic material is supposed to be covalently bound, if not to the cellulose then to 

other components such as phenolic material and proteins, so as to be enmeshed with the 

cellulose fibres. Moerschbacher et al. (2003) also reported that the pectic fractions 

extracted by HF-solvolysis are usually contaminated with considerable amounts of 

hemicelluloses. The contents of higher amounts of xylose and glucose in the roots of the 

resistant genotype (H7996) than in the roots from the susceptible (L390) could be 

explained by the presence of xyloglucan. Usually pectic polymers contain very low 

quantity mannose so the difference observed between the resistant and susceptible 

genotypes in mannose content where susceptible genotype L390 had higher amount of 

mannose was not important and could be indicating the presence of mannan as the 

chelator used for extraction can also solubilize some nonpectic polymers. Hence it would 
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be interesting to study the role of these mannose containing nonpectic polymers in 

resistance reactions.  

 

The immunodot assays indicated that the chelating agent fractions contained galactan and 

arabinan epitopes, providing evidence that branched RG I domains with arabinan and 

galactan side chains are present in the chelator-soluble fractions of root and stem cell 

walls of tomato genotypes. Also Jones et al. (1997) and Willats et al. (1998) found RG I 

with arabinan and galactan side chains in EDTA-extracts. Therefore, the treatment with 

EDTA was especially effective for extracting low methylated pectic acids.  

 

The monoclonal antibodies with defined epitopes are powerful tools for the dissection of 

the molecular structure of complex pectic polysaccharides. Both the degree and pattern of 

de-esterification influence the capacity of the antibodies JIM5, JIM7, LM2, LM5, LM6, 

and LM7 to bind to HG domains (Willats et al., 2001). The extracted pectic 

polysaccharides reacted with all the antibodies producing a central dot. Our pectin 

samples showed low to high degrees of methyl esterification being higher in the resistant 

genotype, and typical reactions of highly branched polysaccharides because of the 

detection of arabinan and galactan epitopes, while differences occurred in the non-

blockwise de-esterification pattern, with a regular de-esterification in pectin from 

genotype L390 and a more blockwise pattern in genotype H7996. HG which is 

synthesized in esterified form is subsequently de-esterified by the action of plant or 

pathogen PME which is acting in blockwise or non-blockwise pattern, respectively. In 

our study it was observed that in the susceptible genotype which differed from resistant 

genotype H7996 in non-blockwise pattern and this difference must be due to the action of 

the plant PME. It has been observed that some plant PMEs may have a non-blockwise 

action pattern as reported in pea stems (Willats et al., 2001). More Interestingly, inhibitor 

proteins of plant PMEs have been identified that modifies the resulting distribution of 

methyl esters within the HG polymers, possibly shifting from a blockwise towards a more 

random pattern. It is tempting to speculate that the direct or indirect product of the Sr5-

gene might possess such a PME modulating activity that would lead to loss of 

processivity of the enzyme (Camardella et al., 2000; Moerschbacher, 2003). PMEs may 
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have diverse and complex roles during growth and development. In the interaction 

between tomato and R. solanacearum the following scenario may occur: the four 

pectinolytic enzymes comprising one pectin methylesterase (PME) and three 

polygalacturonases produced by R. solanacearum can degrade pectin into oligomers and 

supply the bacteria with monogalacturonic acid as a growth substrate (Tans-Kersten et 

al., 1998). First, PME demethylates pectin and thereby facilitates following degradation 

of pectin by endopolygalacturonase PehA (also designated PglA) and 

exopolygalacturonase PehB (PglB) and PehC (PglC). Nonetheless, the true biological 

function of PME still has to be revealed, since Tans-Kersten et al. (1998) found that 

strains deficient in PME which also exhibited no detectable polygalacturonase activity on 

highly methylated pectin, showed no differences in virulence to the wild-type strains. 

 

PehA is known to degrade polygalacturonate internally which results in trimers and larger 

galacturate oligomers. PehB, however, releases digalacturonic acid and PehC produces 

monogalacturonic acid from the same substrate (Tans-Kersten et al., 1998). Huang and 

Allen (1997) reported that strains lacking exopolygalacturonase (PehB) were less virulent 

than strains lacking endopolygalacturonase (PehA). It was suggested that these two 

enzymes may work additively or synergistically, since in an experiment a pehA pehB 

double mutant exhibited a much lower virulence. These results were even more 

pronounced when soil inoculation was used rather than petiole inoculation, leading to the 

hypothesis that both PehA and PehB are involved in promoting ingress of R. 

solanacearum from the wounds into the vascular system, supplementary to their 

nutritional role (Huang and Allen, 1997). 

 

JIM5- and JIM7-recognized epitopes are produced by a wide range of degrees and 

distribution of methyl esterification. The optimal binding requirements of JIM5 are not 

fully defined. JIM5 has the capacity to bind to a wide range of HGA epitopes with 

varying degrees (up to 40%) and patterns of methyl-esterification (Willats et al., 2000). 

Therefore, discrete microdomains of the cell wall matrix of our tomato pectic 

polysaccharides are likely to contain HG with a mixture of HG methyl-ester distribution 

patterns resulting in a complex combination of physical properties. In vitro, analysis of 
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calcium-mediated pectic gels indicated that strength, water holding capacity, and porosity 

of gels was significantly influenced by both the pattern as well as degree of methyl-

esterification of HG domains. HG is usually highly methyl-esterified prior to insertion 

into cell walls (Mohnen, 1999; Zhang et al., 1992).  It is therefore likely that the activity 

of PMEs from plant origin, but also, in case of infection, deriving from the pathogen 

results in varying de-esterification action patterns and is an important mechanism for 

modifying matrix properties in planta. Thus, differences in the esterification degrees and 

patterns were found after infection of tomato with R. solanacearum in a susceptible 

genotype by immuno-histological studies (chapter III).   

 

Our observation of dots without rings from all our samples stained with the antibodies 

indicates the presence of highly branched pectic polysaccharides. When a sample of 

pectic polysaccharides is applied to nitrocellulose for staining, unbranched HG-rich 

components will migrate to produce an outer ring that is separate from less mobile, 

branched components forming a central dot (Willats and Knox, 1999). Thus, these 

observations confirm the GC- results where high quantities of neutral sugars were found. 

Also Round et al. (1997) found by Atomic force microscopy that pectins from tomato 

fruits revealed to possess long branches, the existence of which was not known 

previously. The neutral components of pectin are known to be rich in galactose and 

arabinose, and occur as side chains of RG I. They have been described as branched or 

hairy regions, probably occurring in covalent association with pectins (Willats et al., 

1999). The elevated levels of arabinose in our pectins may therefore be due to branched 

arabinans not recognized by LM6. Knox et al. (1999) reported that galactan which is 

known to be involved in cell elongation is attached to the acidic pectic domain and also 

indicated that it was separate from a distinct HG-rich component.  

 

The immunoprofiling technique is complementary to histochemical immunolocalization 

studies in that it provides biochemical information on epitope occurrence. For both JIM5 

and JIM7 the degree rather than the pattern of methyl esterification is the most important 

factor influencing binding.  
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Staining occurred with antibodies LM5 and LM6, specific for galactan and arabinan 

across genotypes and origin of pectin. These are the first defined epitopes occurring in 

the side chains of pectic polysaccharides to be immunolocalized in the developing plants. 

The side chains of RG I domains may affect the accessibility by enzymes with wall 

modifying properties to the sites of action within the cell wall matrix. Thus, it may be 

speculated that these parts cannot easily be degraded by enzymes of a pathogen. 

Additionally, a high content of branched RG I makes pectin a less suitable gelling agent 

(Ryden and Selvendran, 1990), which would create more unfavourable conditions for a 

bacterial pathogen (chapter III). Nevertheless, we could not detect differences in arabinan 

and galactan epitopes in pectins from the susceptible and the resistant genotype by the 

immuno-dot-blot method.  

 

The binding of LM7 specific for the non-blockwise de-esterification domain of HG was 

observed in extracts from the susceptible genotype, but significantly less in the resistant 

genotype. The non-blockwise de-esterification pattern makes HG more suitable for 

calcium-pectate gels. These gels are favourable for pathogen survival in case of infection 

(Rudolph, 2001), and thus may constitute a factor supporting the survival and 

multiplication of R. solanacearum in the susceptible genotype in contrast to the resistant 

genotype.  

 

Therefore, the compositional analysis and characterization of pectic polysaccharides from 

tomato stems and roots of both resistant and susceptible genotypes showed that the 

pectins of tomato stems are a heterogeneous group of polysaccharides and that the 

difference in pectin composition e.g. the esterification pattern of HG could be related to 

the resistance of genotypes. King Kong 2 reacted strongly with all the antibodies 

indicates that the pectins must be branched and were recognized by these antibodies used 

whereas it was not the case with genotype King Kong.  

 

Our results showed that the extracted pectic polysaccharides from both resistant and 

susceptible genotypes had no influence on R. solanacearum to enter VBNC. Because 

there are few studies on the VBNC condition in plants and soil, especially using 
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R. solanacearum, it is not known which soil, plant or bacterial parameters influence entry 

of cells into the VBNC state. In former studies, indications were found that the number of 

VBNC cells was higher in a resistant genotype than in a susceptible one in the early 

phase of infection (Leykun, 2003). It is possible that conditions known to influence the 

survival of bacteria such as various host resistance responses, moisture, temperature, pH, 

O2 availability, nutrient availability, soil texture and physiological status of the introduced 

bacteria could trigger cell-entry into the VBNC state.  

 

Nevertheless, we could not find that pectic polysaccharides are involved in triggering the 

VBNC state of R. solanacearum in vitro. This does not exclude a possible interaction of 

pectic polysaccharides with the pathogen in planta, causing a change in the bacterial 

condition. If the VBNC condition is involved in the etiology of bacterial plant-pathogenic 

diseases, either via bacterial survival or in the infection process itself (Steck et al., 2001), 

then it could be expected that the appearance of VBNC cells might differ as the host 

genotypes differ in resistance.  
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1.5 SUMMARY 

 

Pectic polysaccharides were extracted from stem and root tissues of 4 week-old plants of 

tomato genotypes H7996 and L390, resistant, susceptible, respectively, and King Kong 

and King Kong 2, moderately resistant to bacterial wilt, by EDTA-extraction.  

 

Monomeric composition of pectic polysaccharides from stems of genotypes H7996 and 

L390 was generally similar, with galactose (38-39 %) in highest concentration, followed 

by arabinose, rhamnose, xylose and glucose in pectins from genotype H7996, and 

followed by glucose, arabinose and lower contents of rhamnose and xylose in genotype 

L390. 

 

In pectins from roots, galactose content was predominant with more than 50% of the total 

% weight, followed by xylose, glucose, arabinose and rhamnose in genotype H7996, and 

by arabinose, rhamnose, glucose, and xylose, in genotype L390. Except for mannose, no 

significant difference was observed between stems and roots of genotypes in all the 

monomers. 

 

A comparison of the degree of pectin esterification between the susceptible and resistant 

genotypes revealed significant differences. The pectins from the resistant genotype 

H7996 was more esterified than those from the susceptible genotype L390.  

 

Pectic polysaccharides from genotypes H7996 and L390 were characterized for 

unbranched homogalacturonan and branched components using monoclonal anti-pectin 

antibodies recognizing different epitopes. Extracts of both resistant and susceptible 

tomato genotypes reacted with all the antibodies giving a central dot. No outer ring was 

observed.  

 

Comparing pectic polysaccharides from stems of resistant and susceptible genotypes, the 

samples from L390 reacted significantly stronger with LM7 than samples from H7996 in 

both concentrations, indicating a homogeneous de-esterification pattern of the pectic 
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polysaccharides from L390 in comparison to a more blockwise pattern in H7996. No 

significant difference between genotypes was found in epitope-binding specificities of 

JIM5, JIM7, LM2, LM5 and LM6. 

 

Comparing samples from roots, genotype H7996 reacted stronger with antibody LM2 

than genotype L390, indicating higher contents of arabinogalactan protein in H7996. No 

significant difference between root extracts of the two genotypes was found when 

probing with antibodies JIM5, JIM7, LM5, LM6, LM7. 

 

Extracts from stems of the moderately resistant genotype King Kong2 reacted strongly 

with all the antibodies, while King Kong extracts showed less intense reactions. 

 

EDTA-extracted pectic polysaccharides from stems of tomato genotypes H7996 and 

L390 were assayed for viable and culturable forms of bacteria after overnight incubation. 

No significant difference occurred between the numbers of viable and culturable cells 

from the mixtures with pectic polysaccharides from the genotypes as compared to the 

control indicating that pectins did not influence R. solanacearum to enter into VBNC 

state. 

 

To further verify these results and our hypothesis we tested fresh stem material for its 

polysaccharide composition by tissue prints and immunocytochemical studies by using 

the same antibodies to confirm the dynamic nature of the pectic network which is 

reflected in the resistance mechanisms.   
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CHAPTER II 

 

Structural characterization by tissue prints of pectic polysaccharides in xylem 

vessels of tomato in relation to infection by Ralstonia solanacearum 

 
2.1 INTRODUCTION 

 

Bacterial wilt caused by Ralstonia solanacearum ranks as one of the most important if 

not the most important disease of bacterial origin in tropical and subtropical regions of 

the world (Buddenhagen and Kelman, 1964; Persley, 1986; Kleinhempel, 1989; 

Hayward, 1991, 2001; Chellemi et al., 1998). Among bacterial diseases, there is no 

equally harmful organism concerning the actual number of plants killed each year in 

major crops such as banana, groundnut, tobacco and tomato (Kelman, 1998). An 

important host of R. solanacearum is tomato (Lycopersicon esculentum Mill), an 

important and widely distributed vegetable grown throughout the tropics and subtropics 

in the open field or in plastic houses. Both production systems are subjected to high 

losses when infected by R. solanacearum, which may constitute a major limitation of 

production.  

 

Since R. solanacearum can survive in soil (Granada and Sequeria, 1983; Hara and Ono, 

1985), has a wide host range of over 200 plant species (French, 1986; Hayward, 2000) 

and easily multiplies in or around host plants (Kelman and Sequeria, 1965), control of 

this pathogen is difficult. Many authors have stressed the complexity of the epidemiology 

of bacterial wilt and involvement of many interacting factors (Kelman, 1953; 

Buddenhagen and Kelman, 1964; Hayward, 1991).  

 

R. solanacearum (formerly Pseudomonas solanacearum and, more recently, 

Burkholderia solanacearum) (Yabuuchi et al., 1992; Yabuuchi et al., 1995) is classified 

as a member of the ß-subdivision of the class Proteobacteria. Its genetic information is 

organized in a 5.8-megabase (Mb) genome that is separated into two replicons: a 3.7-Mb 

chromosome and a 2.1-Mb megaplasmid (Salanoubat et al., 2002). The soilborne 



INTRODUCTION  41 

pathogen, a Gram-negative, aerobic, motile rod that naturally infects roots (Hayward, 

2001; Genin and Boucher, 2002), causes bacterial wilt. 

 

R. solanacearum is a heterogeneous species, referred to as ‘species complex’ including 

strains differing largely in host range, geographical distribution, pathogenicity, 

epidemiological relationships and physiological properties (Buddenhagen and Kelman, 

1964; Palleroni and Doudoroff, 1971; Hayward, 1991; Seal and Elphinstone, 1994). 

According to French (1986) the insufficient taxonomy of R. solanacearum handicaps 

resistance breeding for crops which cannot be accomplished without an understanding of 

the pathogen and its diversity. Therefore, it is of paramount importance to generate a 

stable taxonomy and nomenclature which characterizes subspecific groups of the 

pathogen corresponding to epidemiology, pathogenicity and host range in order to help 

plant breeders and plant pathologists, and to enhance the capability to predict the 

properties of R. solanacearum strains (Fegan and Prior, 2004). To describe this 

intraspecific variability various classification systems are used. Thus, the pathogen is 

separated into six biovars based on utilization of three disaccharides and three hexose 

alcohols (Hayward, 1961, 1964; He et al., 1983, 1986; Hayward et al., 1992) and into 

five races mainly based on host range (Buddenhagen et al., 1962; Quinon et al., 1964; 

Lum, 1973; He et al., 1983; Buddenhagen, 1986). 

 

The pathogen (Fig. 2.1) causes substantial yield losses worldwide. Losses of about 75% 

of potato due to bacterial wilt have been described, whereas in tomato, being one of the 

most susceptible crops, R. solanacearum can result in total destruction of the harvest 

(Persley et al., 1986; Hayward, 2000; Elphinstone, 2004). In Hawaii, up to 50% of the 

ginger harvest has been destroyed due to R. solanacearum in 1998 and 1999 (Yu et al., 

2003; Alvarez et al., 2004). 
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 Fig. 2.1  R. solanacearum on tetrazolium chloride agar (strain UQRS585). 

 

 

Losses are rising because agriculture is extending into areas where susceptible crops have 

not been cultivated before (Persley et al., 1986).  In countries, where R. solanacearum is 

considered a quarantine pathogen, significant economic losses can be caused by 

destruction of entire infected crops, supplementary eradication strategies and restriction 

of further cultivation on contaminated land (Elphinstone, 2004). In addition to significant 

yield losses, bacterial wilt is also responsible for indirect damage which is difficult to 

assess. This includes interference with land usage and disposal of susceptible crops. The 

presence of R. solanacearum in fields discourages the planting of many vegetables on 

family farms and home gardens which leads to a considerable reduction in food source 

(Kelman, 1998; Hayward, 2000).  

 

Breeding for resistant cultivars is one of the main approaches to control the disease, but 

even though this has led to good levels of site-specific resistance, breakdown of 

resistance has been repeatedly established in tomato cultivars grown in the heat stress of 

the lowland humid tropics (Hanson et al., 1996; Hayward, 2000). Moreover, bacterial 

wilt is still a limiting factor in tropical and subtropical agriculture, because new and more 

virulent strains are continuously reported (Cook et al., 1989). Especially when vegetables  
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are bred for the international trade, the complete absence of R. solanacearum is most 

important, since dissemination of strains on vegetative propagating material is a serious 

problem (Hayward, 2000). 

 

The great economic losses can be attributed to the broad geographical distribution and 

extensive host range of the pathogen. Every year continuous cropping of susceptible 

cultivars increase the severity of the problem (Persley et al., 1986). Furthermore, due to 

the lack of reliable means of control, it is almost impossible to restrict the disease, once it 

appears (Genin and Boucher, 2002).  

 

The disease affects not only solanaceous plants such as tomato, potato, tobacco and 

eggplant, as suggested by SMITH in 1896, but also monocotyledons, trees and shrubs 

(Hayward, 1991; Genin and Boucher, 2002). However, most of the susceptible species 

belong to the Solanaceae, while the Asteraceae (Compositae) and three families of 

leguminous plants form the second and third largest number of host plants (Hayward, 

1994a). Monocotyledons are less frequently attacked by R. solanacearum, except for 

banana (Musa spp.), ginger and their relatives, representing important host species in 

some areas (Hayward, 2000). Numerous economically important crops as well as many 

weed hosts have been reported to be attacked by bacterial wilt, some of which may be 

symptomless carriers of the disease (Horita and Tsuchiya, 2001; Daughtrey, 2003). 

Alternative plants such as weed hosts or presumed non-host plants enable the pathogen to 

survive without a susceptible crop for prolonged periods, hence complicating the disease 

control by rotations (Persley, 1986).  

 

On certain hosts, various incongruities concerning the distribution of the disease have 

been established. In some areas, where bacterial wilt is endemic certain hosts are 

attacked, but not in other places where the disease also is prevalent. For instance, the 

disease has been reported to affect cashew (Anacardium occidentale) in Indonesia, but 

not in Brazil though grown in locations where the disease is indigenous on solanaceous 

hosts and environmental conditions are favourable to the disease (Hayward, 2000). The 

reasons for these differences have not been investigated yet. However, Hayward (1991, 
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2000) suggested this might be attributed to distinct environmental aspects, such as 

temperature, rainfall, or advantageous biotic and abiotic soil factors. Another explanation 

could be that particular strains pathogenic for certain hosts may have evolved only in 

some areas and cannot be found anywhere else (Hayward, 1991, 2000).  

 

The difficulty of developing effective control strategies for bacterial wilt is compounded 

by a lack of basic knowledge about the ecology and evolution of   P. solanacearum. It is 

likely that the difficulty in developing stable, improved resistant cultivars is due, in large 

part, to the apparent variability of the pathogen (Elphinstone, 1996, 2004), and to the 

continued appearance of new, more virulent strains. Control of bacterial wilt will be more 

effective if resistant cultivars could be associated with the crop management measures, 

such as crop rotation, soil amendment and proper irrigation (Lemaga et al., 2002).  

 

Host resistance is defined as the ability of the host to hinder the growth and/or 

development of the pathogen, whereas tolerance is the ability of the host to endure the 

presence of the pathogen (Parlevliet, 1979), the latter can be expressed by less severe 

(reduced) disease symptoms and/or less damage. Accordingly, when R. solanacearum 

infects or colonizes plant genotypes without causing wilt symptoms, these genotypes may 

be classified as resistant or tolerant to the disease. But when yield losses or other 

undesirable influence in the symptomless plants are considered, the above definitions for 

resistance or tolerance must be modified.  Resistance to bacterial wilt has been defined in 

the past as a high percentage of plant survival under certain infection pressure. However, 

latent colonization of R. solanacearum without obvious wilting symptoms has been 

reported in some resistant cultivars of tomato (Hayward, 1991; Grimault and Prior, 1993, 

1994, 1995; Prior et al., 1996). The ability of R. solanacearum to infect and colonize 

tomato and many other crops and weeds without causing symptoms has resulted in its 

widespread dispersal and subsequent establishment in different environments (Hayward, 

1991). This is particularly true in temperate climates where temperatures are usually 

below optimum for the pathogen multiplication, resulting in latent infection rather than 

development of the disease. Late season outbreaks may also result in a greater proportion 

of the infection remaining latent (Ciampi et al., 1980). It can be carried over wide 
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distances in vegetative propagating material and is distributed in latently infected 

seedlings, where the organism remains viable and pathogenic and causes disease 

outbreaks under favourable conditions (Hayward, 1964). Resistant plants are often 

partially colonized by the pathogen and show reduced damage by the disease (Prior et al., 

1996).  

 

Two types of plant resistance responses can be distinguished, non-host and host or 

race/cultivar specific resistance (Vanderplank, 1968 and 1982; Prell, 1996). In both cases, 

the biochemical processes involved in pathogen resistance are similar. Thus, after the 

penetration of the pathogen or pest, structural mediations and biochemical responses 

begin. Preformed resistance factors usually include preformed structural, morphological 

and chemical factors such as leaf position or colour, trichomes, dynamic of stomatal 

thickness and opening, quality of cuticle (thickness, quantity and quality of waxes), and 

cell wall characteristics (thickness and composition) acting as barriers and providing 

resistance against potential invaders, while chemical compounds such as phytoanticipins 

may be directly toxic or indirectly after transformation (Schlösser, 1997; Knogge, 1997; 

Baker et al., 1997; Keen, 1999). These include phenols, phenolic glycosides, saponins 

(steroids and triterpenoides), glycosinolates and cyanogenic glycosides present in high 

concentration in particular tissues. On the other hand, after the penetration of the invader, 

induced processes take place. A complex signaling network involving cytosolic Ca2+
 and 

H+
 ions, reactive oxygen intermediates (oxidative burst), jasmonate, salicylic acid and 

ethylene triggers the induction of defence mechanisms (Odjakova and Hadjiivanova, 

2001). In tomato, several QTL controlling resistance have been found, but in different 

studies, markers spanning a large region of chromosome 6 showed strong association 

with the resistance (Mangin et al., 1999; Lindhout, et al., 2003). Phenotypic evaluation of 

wilt resistance in cultivar H7996 has been previously conducted by inoculating R. 

solanacearum onto wounded roots and monitoring wilt symptom development and 

colonization (Grimault and Prior, 1994; Grimault et al., 1994; Grimault and Prior, 1993). 

Current quarantine tests include visual inspection of the incidence of disease symptoms in 

the field, greenhouse or storage samples. However, symptomless genotypes and 

vegetative propagation materials may carry and protect virulent pathogen populations.  
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Reactions involved in resistance of tomato to R. solanacearum were observed, such as 

tyloses, gums, cell wall breakdown, and modifications to the primary cell wall. Plant cells 

are encapsulated within a complex, fibrous wall with properties crucial to the form and 

function of the plants. The cell wall acts as an exoskeleton to give the plant cell its shape 

and to allow its high turgor pressures. As the skin of the plant cell, the wall participates in 

adhesion, cell-cell signaling, defense, and numerous growth and differentiation processes. 

The wall of enlarging plant cells is composed of approximately 30% cellulose, 30% 

hemicellulose, and 35% pectin, with perhaps 1-5% structural protein on a dry weight 

basis. Substantial deviations from these values maybe found, notably in the grasses, 

where, for example, walls of growing maize coleoptiles consist of 55% hemicellulose, 

25% cellulose, and only 10% pectin (Crosgrove, 1997). Pectin forms a gel phase in which 

the cellulose-hemicellulose network is embedded.  

 

Pectins are the most soluble of the wall polysaccharides. Like the hemicelluloses, pectins 

also constitute a heterogeneous group of polysaccharides, characteristically containing 

acidic sugars such as galacturonic acid. Some pectins have a relatively simple primary 

structure such as homogalacturonan (HGA), a linear polymer of (1→4) α galacturonic 

acid. Rhamnogalactouronan I (RG I) has repeating subunits of (1 →2) α-L-rhamnosyl-

(1→ 2)-α-D-galacturonyl disaccharides, with the long side chains of arabinan and 

arabinogalactan. The size of RG I is reported to range from 500-2000 KDa (Talbott and 

Ray, 1992a). Many of the acidic residues in pectins are esterified with methyl, acetyl, and 

other unidentified groups (Kim and Carpita, 1992; McCann et al, 1994). Recently borate 

di-esters of rhamnogalacturonan II were identified (Kobayashi et al, 1996; O’ Neill et al, 

1996; Ishii and Matsunaga, 1997) indicating that such borate esters likely affect cell wall 

mechanics (Findeklee and Goldbach, 1996).  

 

In addition to the major polysaccharides, growing plant cell wall also contain structural 

proteins (Showalter, 1993). Wounding, pathogen attack, and treatment with elicitors 

increase expression of many of these proteins. Numerous enzymes may be found 

associated with the cell walls (Fry, 1995). Some can modify the major polysaccharides of 

the plant wall, e.g. pectinases, pectin methyl esterases, endoglucanases etc.   
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Arabinogalactan proteins (AGPs) form a very large and diverse group of macromolecules 

in plants and can be subdivided most readily into extracellular proteoglycans composed 

of a hydroxyproline polypeptide backbone to which branched 1,3:1,6 galactan chains are 

attached by O-glycosidic bonds. The galactan is substituted by arabinose residues and 

minor amounts of glucose, uronic acids, xylose and rhamnose and membrane-associated 

glycoproteins (Fincher et al., 1983; Bacic et al., 1986; Pennell et al., 1989).  Water-

soluble AGPs are antigenic and capable of generating monoclonal antibodies with 

reactivities inhabitable by L-arabinose, D-galactose and associated dissacharides 

(Anderson et al., 1984).  

 

Antibodies to defined pectic antigens and epitopes are important probes for the study of 

function and organization of plant cell walls (Freshour et al., 1996; Knox, 1999, 2002, 

2003; Mc Cabe et al., 1997; Willats et al., 1999, 2001, 2003). HGA derived 

oligogalacturonides generated by pectinolytic cleavage are involved in signaling 

processes during development and in defense responses to plant pathogens (Huxham et 

al., 1999; Knox et al., 1999; Samaj et al., 1999; Brent et al., 2001; Moerschbacher, 

2003). Tomato pectins are revealed to possess long branches, the existence of which was 

not known previously (Round et al., 1997). 

 

Pectins are subject to a number of modifications that alter their conformation and linkage 

in the wall and this could explain the correlation of pectins with onset of resistance 

mechanisms (McMillan et al., 1993; Venkatesh, 2002). Electronmicroscopic studies on 

R. solanacearum development in stems showed that the limitation of bacterial spread 

associated with the resistance of tomato to bacterial wilt was mainly attributed to an 

induced, non-specific, physical barrier. These studies indicated that the resistance does 

not arise from an inability of the bacteria to invade the roots, but rather from a limitation 

of their spread from the collar to the mid-stem. Electron-dense materials accumulated in 

or around pit cavities in parenchyma cells next to vessels with bacteria, and in vessels 

with bacteria (Nakaho et al., 2000). Plugging the vessels by bacterial mass (Vasse et al., 

1995) and complete occlusion of vessels by bacteria, gum and tyloses (Wallis and Truter, 

1978) have been considered to be the cause of wilting. The bacteria enter the roots at sites 
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of secondary root emergence (Kelman and Sequeria, 1965; Schmit, 1978) or at root tips 

(Vasse et al., 1995) and progress to the xylem, then spreading systemically in the plant. 

Large numbers of bacteria secreting EPS I and proteins involved in the pathogenesis 

causing impaired water transport and lead to disease symptoms in the host, finally ending 

in wilting and death (Buddenhagen and Kelman, 1964). Certain cell wall degrading 

enzymes secreted by R. solanacearum could also be playing an important role in wilting 

mechanisms (Mc Garvey et al., 1999). Hrp genes, encoding the type III secretion 

machinery, have been shown to be key determinants for pathogenicity in the vascular 

bacterium R. solanacearum (Vasse et al., 2000 a&b). Plant resistance to pathogens in 

various interactions is sometimes associated with a hypersensitive response (HR) (Carney 

and Denny, 1990; Arlat et al., 1994; Genin and Boucher, 2002), a phenomenon often 

controlled by single dominant loci, and some of the genes controlling this type of 

response have been cloned and characterized (Baker et al., 1997; Gebhardt, 1997; 

Hammond-Kosack and Jones, 1997).  

 

With the antibodies against epitopes present in pectin, we studied the modification of 

these wall components during infection using tissue printing. The imprint is formed by 

soluble molecules released at the surface that bind irreversibly to the membrane. The 

print, which is remarkably faithful to the original anatomy, can then be probed with a 

variety of localizing reagents to probes. This study compares infection of resistant and 

susceptible cultivars in relation to modification in pectic epitopes of tomto stem cell walls 

which could be involved in resistance mechanisms. 
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2.2 MATERIALS AND METHODS   

 

2.2.1 Plant material 

 

Seven tomato genotypes with high resistance level to bacterial wilt and two susceptible 

genotypes were received from the Asian Vegetable Research and Development Centre 

(AVRDC), Taiwan: Hawaii 7996, CLN2123C, CLN1-3-13, CLN4-22-4, CLN1-1-12, 

CLN1-5-12, BL333, and Wva 700 and L390 respectively. Genotype King Kong-2 

[moderately resistant (Leykun, 2003; Dannon, 2003, Dannon and Wydra 2004)] was 

obtained from Taiwan. Additionally six near isogenic lines deriving from Wva 700 and 

H7996 were used: NHG 3 and NHG 167 (susceptible), NHG 13, NHG 60, NHG 162, and 

NHG 140 (resistant). Seeds were sown in a greenhouse (20°C day/night temperature, 14h 

of light per day / 30K lux, and 70% relative humidity) and transplanted after four weeks 

to individual pots with 330g of soil (Fruhstorfer Erde, Type P, with 150mg/l N, 150mg/l 

P2O5, and 250mg/l K2O).  

 

2.2.2 Reaction of tomato genotypes to bacterial wilt  

 

The reaction of the above mentioned tomato genotypes and near isogenic lines with the 

fluidal and highly virulent R. solanacearum isolate To-Udk2 obtained from Thailand was 

determined as described by Winstead and Kelman (1952) by inoculating the plants: 

Hawaii 7996, CLN2123C, CLN1-3-13, CLN4-22-4, CLN1-1-12, CLN1-5-12, BL333, 

and Wva 700 and L390 and the near isogenic lines of tomato: NHG 3 and NHG 167 

(susceptible), NHG 13, NHG 60, NHG 162, and NHG 140 (resistant) (AVRDC, 2001) 

differing in their susceptibility to R. solanacearum. Bacterial inoculum was produced by 

streaking a single colony on NGA agar medium (0.3 % beef extract, 0.5 % Bacto 

peptone, 0.25 % D-glucose, 1.5 % agar) and incubating at 30 °C for 48 h. Cells were 

harvested from agar plates by flooding with sterile, distilled water and an optical density 

of 0.06 at 600 nm wavelength (Spectrotonic 20 Bausch and Lomb), corresponding to 

about 7.8x107 colony-forming units per milliliter (CFU/ml) was adjusted.   
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Ten four-week old plants per genotype were inoculated by soil drenching with 33 ml of 

bacterial suspension per pot, corresponding to about 107 CFU/g of soil, around the base 

of the plants directly after transplanting. After inoculation plants were kept in a climate 

chamber with 30/27 °C day/night temperature, 85% relative humidity, 14 hours light, and 

30K Lux. Pots were watered after inoculation up to the soil field capacity without 

producing a surplus.    

 

Symptom development was evaluated daily in 5 severity classes (Fig. 2.2.2) with class 0 

= no wilt symptom, class 1 = one leaf wilted, class 2 = two or more leaves wilted, class 3 

= all leaves except the tip wilted, class 4 = whole plant wilted, and class 5 = death 

(collapse) of the plant (Winstead and Kelman, 1952).  

 

The mean wilt disease severity at the evaluation dates of 5 to 40 days after inoculation of 

each genotype was calculated and used to determine the area under disease progress 

curve (AUDPC) of genotypes using evaluation dates according to the following formula. 

The data on incidence was used only for results. Wilt incidence is the proportion of dead 

plants at the evaluation date out of the total number of plants in the treatment. The area 

under disease progress curve (AUDPC) was calculated on the basis of disease severity 

and of wilt incidence using the following equation (Shaner and Finney, 1977; Jeger and 

Viljanen-Rollinson, 2001): 

 

AUDPC = ∑ [(xi + xi-1)/2](ti -ti-1) 

 

xi and xi-1 is wilt incidence at time ti and ti-1, respectively,  

ti and ti-1 are consecutive evaluation dates. 

and ti -ti-1 was equal to 1. 
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Fig.2.2.2 Illustrated key for symptom assessment of bacterial wilt, where 0 = no wilt, 1 = 
single leaf wilted, 2 = two or more leaves wilted, 3 = all leaves except the tip wilted, 4 = 
all leaves wilted, and 5 = collapse (death) of the plant. 
 

 

 

2.2.3 Quantification of latent infections in stems  

 

Bacterial numbers were quantified in stems of all the genotypes and near isogenic lines, 

which had been evaluated for symptom development as described by Li and Jan (1984). 

The two susceptible reference genotypes L390 and Wva 700 showed first symptoms 5 

days after inoculation and were severely attacked 10 days after inoculation with no 

survival of the plants. Three symptomless plants per resistant genotype were randomly 

harvested four weeks after inoculation. The mid-stem pieces (5-10 g) were surface-

sterilized by submerging the sample in 70% alcohol for less than one minute, rinsed in 

sterile water, and macerated by adding about 20 ml sterile, distilled water. The macerate 

was filtered through cheesecloth and centrifuged for 10 minutes (7000 x g) (Sorvall RC-

5B refrigerated centrifuge). The pellet was re-suspended in 1 ml sterile, distilled water. 

All suspensions were serially, tenfold diluted and 100 µl from at least four dilution levels 

were plated in duplicates on Triphenyl Tetrazolium Chloride medium (TTC): 20g Bacto 

peptone, 5g Glucose, 1g Casamino acids, 15g Bacto agar and 1000 ml H2O (Kelman, 

1954). After autoclaving, 10 ml of filter-sterilized solution of 0.5% (w/v) of 2, 3, 5-
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Triphenyl Tetrazolium Chloride (SERVA, Germany) were added to the medium before 

pouring into Petri dishes. Typical bacterial colonies were counted after 48 hours of 

incubation at 30°C and calculated as colony forming units per gram of fresh matter 

(CFU/g). Identity of colonies was identified by NCM-ELISA and PCR (Leykun 2003). 

 
2.2.4 Tissue printing  

 

Tissue printing was carried out by pressing the cut surface of mid-stems from both 

healthy and inoculated genotypes as well as from near isogenic lines of tomato 5 days 

after inoculation firmly and evenly onto a nitrocellulose membrane (ELISA Kit, Biorad, 

Germany) for approximately 15-20 sec as described by Jones et al. (1997) and 

McCartney et al. (2000). The tissue printing of all genotypes and near isogenic lines was 

repeated three times with newly grown plants for each trial and in each trial prints were 

made in duplicate for each antibody to test the repeatability of the method, with 2 healthy 

and 2 inoculated plants per antibody per print which were picked randomly from each 

healthy and inoculated genotypes and isogenic lines. Each stem material was then tested 

for all the six antibodies JIM5, JIM7, LM2, LM5, LM6, and LM7. 

 

After the prints had dried, the nitrocellulose membrane was blocked by incubation with 

phosphate buffered saline (PBS) containing 5% milk powder (MPBS, pH 7.2) for 1 h 

prior to incubation in primary antibodies (hybridoma supernatants of JIM5, JIM7, LM2, 

LM5, LM6, LM7,  received from P. Knox, University of Leeds, UK) diluted 1/10 in 

MPBS for 1.5 h.  After washing extensively under running tap water and for 10 min in 

PBS containing 0.1% (v/v) Tween 20 (PBST), membranes were incubated in the 

secondary antibody (anti-rat horseradish peroxidase conjugate, Sigma) diluted 1/1000 in 

MPBS for 1.5 h. Membranes were again washed as described above and developed in 

substrate solution [25 ml deionized water, 5 ml methanol containing 10 mg/ml 4-chloro-

1-naphthol, 30 µl 6% (v/v) H2O2]  until a clear colour reaction developed. All steps were 

performed at room temperature. The trial was repeated three times as said above and 

results were obtained based on visual evaluation of the color intensity in increasing 

catergories from -, (+), +, (++), ++, (+++), +++ of the membranes on an illuminating 



MATERIALS AND METHODS  53 

table. Data of the repetitions were compared and their repeatability confirmed, and 

representative results are given.   

 

2.2.5 Statistical Methods 

 

Data were processed using analysis of variance in SAS (the SAS System for Windows 

V8, Release 8.02 TS Level 02M0; 1999-2001. Institute INC., Cary, USA).  For all 

analyses a significance level of P = 0.05 or lower was used. The bacterial counts on 

media, expressed as colony forming units per gram of fresh matter or per milliliter of 

bacterial suspensions and/or stem macerates, were log transformed and analyzed using 

parametric analysis procedures in SAS. A lack of growth on plates of all replications is 

plotted on the log scale as one, which gives zero CFU g 1.   

 

Tukey’s Studentized Range (TSR) test (P = 0.05) was used within parametric analysis of 

variance (ANOVA) as incorporated in SAS version 8.02 (SAS Inc., Cary, USA) to 

compare AUDPC data of respective resistant genotypes based on bacterial numbers in 

stems and the area under wilt disease progress curve. 
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2.3 RESULTS 

 

2.3.1 Symptom development in tomato genotypes  

 

Wilt incidence was recorded up to 40 days after inoculation of tomato genotypes 

inoculated with R. solanacearum. On the basis of the area under wilt incidence progress 

curve (AUDPC), the genotypes were classified into two significantly different groups, i.e. 

resistant and susceptible genotypes. 

 

Two near isogenic lines NHG 3 and NHG 167 were classified as susceptible, with similar 

AUDPC as the susceptible standard genotypes L390 and Wva 700. First symptoms 

appeared 5 days after inoculation, and plants were severely attacked 10 days after 

inoculation, resulting in plant death.  

                  

 

 

Table 2.3.1 Symptom development expressed as area under wilt incidence progress curve 
of the near isogenic tomato lines NHG3 and NHG167 and the susceptible standard 
genotypes Wva700 and L390 after inoculation with R. solanacearum strain ToUdk2 (107 
CFU/g of soil).  
 
 
 

                                            

Genotype
AUDPC of wilt 

incidence

L390 98.1 ± 4.6 a

Wva 99.5 ± 3.3 a

NHG 3 102.2 ± 3.7 a

NHG 167 100.7 ± 3.5 a  
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Genotypes Hawaii 7996, CLN 2123C, CLN 1-3-13, CLN 4-22-4, CLN 1-1-12, CLN 1-5-

12, BL333 and the lines NHG 60, NHG 140, NHG 13 and NHG 162 did not show any 

wilt symptoms and were grouped as resistant. King Kong 2 was identified as moderately 

resistant in former trials. (see section 2.2.1) 

 

2.3.2 Latent bacterial multiplication 

 

R. solanacearum was detected in the mid-stem region of symptomless plants of the 

resistant genotypes Hawaii 7996, CLN 2123C, CLN1-3-13, CLN4-22-4, CLN1-1-12, 

CLN1-5-12, BL333, NHG 60, NHG 140, NHG 13 and NHG 162 and of the moderately 

resistant King Kong 2 with bacterial numbers of 885 to 2.9 x107 CFU/g stem. Significant 

differences in bacterial density between genotypes occurred with significantly higher 

bacterial numbers in genotypes NHG 60, NHG 140, and King Kong 2 than in CLN 1-3-

13 and CLN 2123C, and in CLN 4-22-4 than in CLN 2123C (P = 0.0001) (Fig. 2.3.2). 
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Fig 2.3.2 Bacterial numbers in the mid-stems of asymptomatic plants of 12 
genotypes of tomato at 4 weeks after inoculation with R. solanacearum To-Udk2. 
Data are means of 4 plants ± SE.  Letters indicate significant differences among 
genotypes. 

 
 
 
 

 

Among the resistant genotypes, CLN 2123C showed the lowest bacterial density in the 

stem with about 3 CFU/g stem. No significant differences were observed among the 

resistant isogenic lines where the bacterial numbers in these isogenic lines ranged from 

2.3 x 104 to 2.9 x 107 CFU/g stem with the lowest in NHG 162 being 2.3 x 104 CFU/g 

stem.  
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2.3.3 Characterization of pectic polysaccharides by immunochemical stem tissue 

printing  

 

The resistant tomato genotypes CLN 2123C, CLN 1-3-13, H7996, CLN 4-22-4, CLN 1-

1-12, CLN 1-5-12, BL333, NHG 60, NHG 13, NHG 140, NHG 162 and moderately 

resistant King Kong 2 and the susceptible genotypes L390, Wva 700, NHG 3 and NHG 

167 were characterized for the composition of the pectic polysaccharides of stem sections 

by immunological staining with the monoclonal anti-HG-antibodies JIM5, JIM7 and 

LM7, and antibodies LM5 to (1→4)-ß-galactan and LM6 to (1→5)-α-arabinan epitopes, 

occurring in side chains of RG I, and LM2 specific for arabinogalactan protein with and 

without inoculation with R. solanacearum strain ToUdk2.  
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Table 2.3.3.1 Characterization of pectic polysaccharides in xylem vessels of resistant and susceptible healthy and inoculated tomato 
genotypes by reaction with antibodies specific to low ester (JIM5), high ester (JIM7) or non-blockwise de-esterification patterns of 
HG (LM7), arabinan (LM6), galactan (LM5) and arabinogalactan protein (LM2) on nitrocellulose membrane after stem tissue print1. 
Resistance reaction to Rs from symptom observations. 
 
 
 

Genotypes 
Reaction to 

Rs2 
JIM5-         

low ester 
JIM7-         

high ester 
LM7-         

n-block LM6-arabinan LM5-galactan LM2-AGP 
   H I H I H I H I H I H I 
CLN 2123C R +3 ++ +++ +++ -4 - + + - - + (++) 
CLN 1-3-13 R + ++ +++ +++ - - + + - ++ + ++ 
H7996 R + ++ +++ +++ - - + + + + + + 
CLN 4-22-4 R + + +++ +++ -  - + + + + + + 
CLN 1-1-12 R + ++ +++ +++ - (+) + + + + + + 
CLN 1-5-12 R + (++) +++ +++ - (+) + + + + + + 
King Kong 2 MR + + +++ +++ - - + (++) - + ++ ++ 
BL333 R + + ++ ++ - - + + + + + + 
L-390 S + ++ +++ +++ - ++ + ++ + ++ + ++ 
Wva S + ++ +++ +++ - (+) + + + + + + 
  
 
 
1 Trial repeated three times, table shows representative results 
2 Reaction to Ralstonia solanacearum: R= resistant, MR= moderately resistant, S=susceptible  
3 Color intensity was measured from -, (+), +, (++), ++, (+++), +++ and H = healthy  
   genotype and I = inoculated genotype, 5dpi 
4 (-) no staining was found 
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Among healthy resistant and susceptible genotypes no clear differences in cell wall 

composition were observed. After inoculation all genotypes except King Kong 2,  BL333  

and CLN 4-22-4 showed stronger labeling with JIM5 indicating an increase in low-

esterified pectin epitopes. No difference in the binding specificity was observed between 

inoculated and non-inoculated plants after labeling with JIM7. Increased staining after 

inoculation occurred with all antibodies except JIM7 in genotype L390 indicating an 

increase in low esterification and non-blockwise de-esterification pattern of HG (Fig. 

2.3.3.1.) and in arabinan (LM6) (Fig. 2.3.3.2 a) and galactan (LM5) (Fig. not shown) 

epitopes of RG I and arabinogalactan proteins (LM2) (Fig. 2.3.3.2 b). In genotype CLN1-

3-13 galactan and AGP, and in genotype KK2 galactan labeling increased after 

inoculation.   

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.3.3.1 Stem tissue prints of tomato genotypes H7996 and L390, resistant and 
susceptible to bacterial wilt, in healthy and inoculated treatments after staining with LM7 
specific for non-blockwise de-esterification of homogalacturonan. 
The susceptible genotype showed intense labeling with LM7 after inoculation indicating 
the increase in non-blockwise de-esterification of homogalacturonan, whereas the 
resistant genotypes showed less or no labeling before and after inoculation.  
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Fig. 2.3.3.2a Stem tissue prints of tomato genotypes H7996 and L390, resistant and 
susceptible to bacterial wilt, in healthy and inoculated treatments after staining with LM6 
specific for arabinan side chain of RG I. 
The susceptible genotype showed intense labeling with LM6 after inoculation indicating 
the increase in arabinan side chain of homogalacturonan, whereas the resistant genotypes 
showed less labeling before and after inoculation.  
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Fig. 2.3.3.2b Stem tissue prints of tomato genotypes H7996 and L390, resistant and 
susceptible to bacterial wilt, in healthy and inoculated treatments after staining with LM2 
specific for arabinogalactan protein. 
The susceptible genotype showed intense labeling with LM2 after inoculation indicating 
the increase in arabinogalactan proteins, whereas the resistant genotypes showed less 
labeling before and after inoculation.  
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Table 2.3.3.2 Characterization of pectic polysaccharides in xylem vessels by tissue prints1 in the healthy and inoculated near isogenic 
lines of tomato: NHG 60, NHG 13, NHG 140, NHG 162, NHG 3, and NHG 167 differing in susceptibility to R. solanacearum. The 
susceptible isogenic lines NHG 3 and NHG 167 showed intense labeling after inoculation. Resistance reaction to Rs from symptom 
observations. 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

 

 

 

 

1 Trial repeated three times, table show representative, repeatable results 
2  Reaction to Ralstonia solanacearum: R= resistant, S= susceptible  
3 Color intensity was measured from -, (+), +, (++), ++, (+++), +++ and H = healthy  
  genotype and I = inoculated genotype, 5dpi 
4 (-) no staining was found 
 

Isogenic Lines
Reaction 

to Rs
H I H I H I H I H I H I

NHG 60 R ++ ++ +++ (+++) - - + ++ + (++) ++ ++
NHG 13 R (++) ++ (+++) +++ - (+) (+) ++ + (+++) + ++
NHG 140 R ++ ++ (+++) +++ - (+) + + + + + +
NHG 162 R + + +++ +++ - - + ++ (+) (+) + +
NHG 3 S + +++ ++ ++ - + + + + ++ + ++
NHG 167 S (++) +++ ++ ++ (+) ++ + (++) + (++) + (+++)
L390 S + ++ +++ (+++) - ++ + ++ + ++ + ++

LM5-       
galactan

LM2-       
AGP

JIM5-       
low ester

JIM7-       
high ester

LM7-       
n-block

LM6-
arabinan2

3 4
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Comparing healthy plants of resistant and susceptible isogenic lines, tissue prints of the 

susceptible lines: NHG 3 and NHG 167 showed less intense labeling for HG with high 

degree of esterification (JIM7) than the resistant lines: NHG 60, NHG 140, NHG 13 and 

NHG 162.  

 

NHG 60 and NHG 13 (resistant) as well as NHG 3 and NHG 167 (susceptible) isogenic 

lines showed increases in arabinan   (LM6), galactan (LM5), and arabinogalactan protein 

epitopes in the side chains of RG I after inoculation. Susceptible lines NHG 3 and 

NHG167 showed intense labeling with JIM5 and LM7 after inoculation, indicating an 

increase in low esterification patterns and in the non- blockwise de-esterification pattern 

of HG, respectively (Fig 2.3.3.2 c), while no differences were observed between 

treatments for the prints of the other genotypes stained with JIM5 and with any genotype 

stained with JIM7. The tissue prints of the susceptible isogenic lines showed a clear 

difference from the resistant lines after inoculation in binding LM7. 

 

NHG 60 showed the highest number of bacteria in latently infected plants and increased 

labeling for galactan and arabinan epitopes (Table 2.3.3.2), whereas NHG 140 also 

showed high bacterial populations but no change in labeling with LM5 and LM6 after 

inoculation, indicating no relation between bacterial numbers and cell wall epitopes.  
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Fig 2.3.3.2c Characterization of pectic polysaccharides in xylem vessels in tomato 
isogenic lines by tissue printing before and after inoculation with R. solanacearum. 
Susceptible genotypes: NHG167, NHG3 and L390 showed intense labeling with LM7 
after treatment indicating an increase in the epitope of non-blockwise de-esterification 
pattern of homogalacturonan whereas no change was observed in the resistant lines.  
 

 

L390(s)

NHG 3(s)

NHG167(s)

NHG60(r)

NHG13(r)

NHG140(r)

NHG162(r)

healthy inoculatedhealthy Inoculated

L390 (s)

NHG 60 (r)

NHG 13 (r)

NHG 140 (r)

NHG 162 (r)

NHG 3 (s)

NHG 167 (s)



DISCUSSION  65 

2.4 DISCUSSION 

 

Genotypes were grouped in resistant and susceptible after inoculation with R. 

solanacearum strain To-udk2. The resistant, completely asymptomatic genotypes were 

used for the subsequent study on latent infection. Susceptible genotypes severely wilted 

and ‘resistant’ genotypes showed variation in bacterial density in stems. Several 

solanaceous species, such as tobacco (Nicotiana tabacum L.), potato (Solanum tuberosum 

L.) and also tomato, are known to be symptomless carriers of the pathogen and latent 

infection appears to be a common trait in bacterial wilt pathogenesis (Prior et al., 1994). 

 

Li and Jan, 1984; Liao et al., (1998) found that latent infection in some resistant  

groundnut cultivars affected root proliferation and tolerance to drought, which may 

explain the low productivity of the resistant cultivars in infested areas. Different reaction 

types of plants to latent infections were related to resistance levels in some genotypes, 

and, thus, latent infection studies may provide information to improve breeding efforts.  

 

All resistant genotypes exhibited high populations of bacteria in their stems, regardless of 

their resistance level. Effective resistance mechanisms in the stem could be the reason for 

the low bacterial concentration in the stem of genotype CLN2123C, different to other 

resistant genotypes used in our study. On the other hand, an additional restriction of 

bacterial invasion and /or multiplication, at the root level might play a role as resistance 

mechanism (Dannon and Wydra, 2004). Grimault et al. (1995) and Vasse et al. (2002) 

reported a decrease of bacterial density in mid-stems compared to the collar. Grimault et 

al. (1994) found a significant correlation between the bacterial population at mid-stems 

level and the degree of resistance. Investigating the resistance mechanisms of tomato to 

R. solanacearum, Chellemi et al. (1998) found that the amino acids and organic acids 

present in the xylem fluid of tomato plants may be determinants for resistance against 

bacterial wilt disease. Phenols and ascorbic acid present in high amount in roots and 

stems may also play a role in resistance of tomato to R. solanacearum (Kumar et al., 

2002). Interestingly, Rajan and Bose (2002) reported the presence of proteins bands 

PPO1 (polyphenol Oxidase), PPO 12 and PPO9 in roots of resistant cultivars, while 
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bands PPO2, PPO4, PPO5 and PPO7 were found in the moderately resistant ones. 

However, these bands were not reported to relate to resistance at roots level. 
 

Genotypes CLN 2123C and CLN 1-3-13 with high resistance to bacterial wilt, combined 

with low pathogen colonization were identified. Thus, it is suggested to include the 

quantification of the colonization of the mid part of stems of asymptomatic plants as a 

complementary criterion for evaluating tomato germplasm for resistance to wilt, in 

addition to wilt severity.  

 

Tissue prints of susceptible lines after inoculation, showed an increased labelling with 

LM 5, LM 6 and LM 2 indicating an increase in various pectic polysaccharide epitopes: 

galactan and arabinan and arabinogalactan protein, except no increased labeling for 

arabinan epitope in NHG3, and also no change in Wva700. Comparing the resistant 

genotypes galactan and AGP increased in some resistant genotypes after inoculation with 

Ralstonia solanacearum, and arabinan increased in three of ten resistant genotypes, 

whereas no change was observed in H7996 in labeling with LM6, LM5 and LM2 after 

inoculation. The increased de-esterification after inoculation may be due to the activity of 

pectin methylesterase of Rs, an enzyme which was shown to be involved in the 

pathogenesis of bacterial wilt (Allen et al., 1998).  

 

The difference between resistant and susceptible genotypes in non-blockwise de-

esterification pattern of HG could be due to the action of the cell wall degrading enzyme 

PME of the pathogen, thus increasing the capacity to form gels and these gels which act 

as reservoir of water and nutrients for the bacteria can promote pathogen growth in 

susceptible genotype whereas in the resistant genotype the bacterial movement is 

restricted due to the formation of the cell wall thickening which is a common feature of 

resistance mechanism and at the same time there is deposition of new wall material with 

different composition which can then strengthen the wall and hence can provide 

resistance to pectic enzymes. JIM5 labeling was seen to increase for all genotypes except 

the resistant isogenic lines and King Kong 2, BL333 and CLN4-22-4, after inoculation 

indicating increased low esterification (low DE) pattern of HG which could result from 
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degradation of pectic polysaccharides in the cell walls in the susceptible genotype R. 

solanacearum and could be the onset of the resistance mechanisms in the resistant 

genotypes, and in many host pathogen systems studied, pectic fragments produced during 

host cell wall degradation can act as endogenous suppressors of the hypersensitive 

response in the susceptible plants (Moerschbacher et al., 2003) and act as elicitors for the 

HR in resistant plants (Ridley et al., 2001), whereas no change was observed in labeling 

with JIM7 before or after inoculation.  All the resistant genotypes were observed to be 

latently infected showing presence of bacteria after quantification indicating the bacteria 

present in mid stems has a role in degrading the pectic polysaccharides.  Thus, the 

degradation of plant wall material and, at the same time, deposition of new wall material 

could indicate a resistance mechanism in the resistant genotype (Rahman et al., 1999).  

 

In the resistant genotypes as well as in the resistant isogenic lines, there was no relation 

observed between bacterial numbers and cell wall epitopes. Two of the resistant 

genotypes CLN 2123C and CLN 1-3-13 with lower number of bacteria in the mid-stems 

showed increased labeling for AGP after inoculation and increased binding for galactan 

epitope with the latter genotype. More intense binding of LM5 and LM6 may be because 

of epitope accessibility at lower DE is increased by conformational changes in pectin 

structure (Willats et al., 2000). The high labeling of the pectic galactan and arabinan 

epitopes may also be related to the presence of the low methyl-esterified HG in the cell 

walls of the susceptible genotype after inoculation. LM5 and LM6 epitopes are present at 

cell corners and these are the first defined epitopes to be attacked by the pathogen. The 

de-esterification by pathogen PME makes the galactan and arabinan side chains more 

accessible to the LM5 and LM6 antibodies and thus, indicating the degradation of pectic 

polymers as the presence of pathogen causes damage in those tissues, hence the pathogen 

degenerates the pit membrane and can move from vessel to vessel thus causing wilting of 

the whole plant could be speculated as in susceptible genotypes (Nakaho et al., 2000). 

The increased labeling of arabinan and galactan epitopes on the other hand in resistant 

isogenic lines (NHG 60 and NHG 13) after inoculation was due to increased branching of 

RG I making the epiotpes less degradable by pathogen PME.   
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The increased labeling with LM7 which is specific for non-blockwise distribution of 

methyl ester groups, indicates a change in physico-chemical properties of the cell wall, 

since these HG can form calcium-mediated gels with distinct properties in terms of 

porosity and elasticity (Willats et al., 2001). This observation also indicates the possible 

action of pathogen PME, resulting in non-blockwise de-esterification, and, thereby, 

making the pectin more suitable for gel formation.  

 

Thus, resistance of wilt in tomato was related to the capacity of the plant to restrict R. 

solanacearum multiplication in the stem, similar to other vascular bacterial diseases (Cho 

et al., 1973), inhibiting bacterial growth, or limiting the effects of bacterial virulence 

factors. The changes on the cell wall level that were observed after infection in the 

susceptible genotypes were generally not observed in the same intensity in the resistant 

genotypes. Therefore it is suggested, that pectic polysaccharides are involved in the host 

pathogen interactions and might play a role as resistance mechanisms. Further 

investigations were conducted to identify and confirm the role of these cell wall 

components in host pathogen interactions. However, these results contribute to the 

understanding of resistance mechanisms of tomato to bacterial wilt caused by R. 

solanacearum at molecular level. 
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2.5 SUMMARY 

 

On the basis of the area under disease progress curve (AUDPC), the genotypes were 

classified into two significantly different groups, i.e. resistant and susceptible genotypes. 

The two near isogenic lines NHG 3 and NHG 167 were classified as susceptible, with 

similar AUDPC as the susceptible standard genotypes L390 and Wva 700. The near 

isogenic lines NHG 13, NHG 60, NHG 162 and NHG 140 were grouped as resistant 

genotypes which did not show any wilt symptoms. Significant differences in bacterial 

density between genotypes occurred in the mid-stem region of symptomless plants of the 

resistant genotypes, with genotype CLN 2123C showing the lowest bacterial density with 

2.9 CFU/g. No significant differences were observed among the resistant isogenic lines.  

 

All genotypes and isogenic lines were characterized for the composition of the pectic 

polysaccharides of stem sections by immunological staining of tissue prints with 

monoclonal antibodies. Among healthy resistant and susceptible genotypes no clear 

differences were observed. After inoculation increased staining occurred in genotype 

L390 with all antibodies except Jim 7 indicating an increase in low esterification and 

non-blockwise distribution of esterification of HG and an increase in arabinan and 

galactan epitopes of RG I and arabinogalactan proteins. All genotypes except KK2 and 

BL333 showed stronger labeling with JIM5. No difference in the binding specificity was 

observed between inoculated and non-inoculated plants after labeling with JIM7.  

 

Some resistant as well as susceptible isogenic lines showed increases in arabinan   

(LM6), galactan (LM5), and arabinogalactan protein epitopes in the side chains of RG I 

after inoculation. Susceptible lines NHG 3 and NHG 167 showed intense labeling with 

JIM5 and LM7 after inoculation indicating the low esterification pattern and non 

blockwise de-esterification of HG in these susceptible lines. The tissue prints of the 

susceptible isogenic lines showed a clear difference from the resistant lines after 

inoculation in binding LM7.  
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CHAPTER III 

 

Immunocytochemical differences in methyl-ester distribution and side chain 

composition of pectic polysaccharides from tomato in response to Ralstonia 

solanacearum 
 
3.1 INTRODUCTION          

 

Tomatoes are one of the most widely distributed vegetables grown throughout the tropics 

and subtropics. They are used as a fresh vegetable and can also be processed and canned 

as a paste, juice sauce, powder or as a whole. World production has increased 

approximately 10% since 1985 (FAOSTAT, 2003) reflecting a substantial increase in 

dietary use of the tomato. Nutritionally, tomato is a significant dietary source of vitamin 

A and C.   

 

One of the major constraints in production of tomato is damage caused by pathogens 

(Kelman, 1953; Buddenhagen and Kelman, 1964; Hayward, 1991). Bacterial wilt is one 

of the most devastating plant diseases and affects more than 200 plant species, the most 

susceptible commercial crops being potato, eggplant, pepper, banana, groundnut and 

tomatoes (Hayward, 1991, Elphinstone, 2004). Ralstonia (formerly Pseudomonas) 

solanacearum (Smith) (Yabuuchi et al., 1995), causal agent of the disease, is widely 

distributed in tropical, subtropical, and some warm temperate regions of the world 

(Kelman, 1953; Hayward, 1991; Chellemi et al., 1998). Ralstonia solanacearum which is 

a soil-borne bacterium, enters host plant roots through wounds or at lateral root 

emergence points, colonizes the root cortex, and subsequently invades the developing 

xylem vessels (Vasse et al., 1995; Wallis and Truter, 1978). Once established in the 

xylem, the pathogen spreads rapidly throughout the plant, inducing yellowing, stunting, 

wilting, necrosis, and finally plant death. Hikichi et al. (1997) observed that R. 

solanacearum invading and colonizing the roots spreads into the collars and multiplies in 

xylem vessels of stems, the intercellular spaces and the inner spaces between the 
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epidermis and the cortex, and that bacterial multiplication in stem tissues correlated with 

susceptibility and resistance of tomatoes to bacterial wilt. 

 

R. solanacearum is a Gram-negative bacterium that exists as an array of biotypes with 

varying cultural, physiological and pathogenic traits (Buddenhagen and Kelman, 1964; 

Fraser et al., 2001). Strains of R. solanacearum differ in host range, geographical 

distribution, pathogenicity and physiological properties (Hayward, 1964, 2001; Harris, 

1972; He et al., 1983, 1986; Seal and Elphinstone, 1994).  

 

More recently, R. solanacearum, especially the biovar 3, race 1 phenotype which is the 

most persistent and potentially the most destructive, has increased in importance as a 

quarantine organism and became subject of investigations in cool temperate climates, 

following reports of potato brown rot disease (race 3) outbreaks in some European 

countries (Elphinstone, 1996, 2004; Janse, 1996; Stead et al., 1996). Hence, because of 

its extensive host range, worldwide distribution and destructive economic impact, 

bacterial wilt can be ranked as the most important among the phytopathogenic bacterial 

diseases (Kelman, 1998).  

 

Because of the economic importance of this disease, research has been carried out on this 

disease from different aspects such as disease epidemiology, host plant resistance and 

other means of disease control (Sutton, 1982; Snijders, 1990; Snijders and Krechting, 

1992; Parry et al., 1995; McMullen et al., 1997). Studies of wilt in potatoes (Priou et al., 

2002) suggested the use of bacterial wilt-free seed potatoes of a less susceptible variety 

under farmer cultural practices. Also the use of improved cultural practices with the 

existing farmer varieties has the potential to significantly reduce wilt and increase yield. 

Crop rotation, another important component of integrated disease management, 

significantly reduced wilt and increased yields even under serious bacterial wilt 

infestation in potato (Lemaga et al., 2002).   

 

Use of resistant cultivars remains the key strategy to control bacterial wilt, especially 

caused by the broad host range race 1 strains of R. solanacearum (Hartman and 
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Elphinstone, 1994), since it is the simplest and most effective way among possible 

control options.  Breeding for resistance in tomato has generally resulted in good levels 

of site-specific resistance. However, breakdown of resistance has been frequently 

reported in tomato cultivars grown away from the original breeding areas (Grimault and 

Prior, 1993; Hanson and Wang, 1996). 

 

Even though bacterial wilt is a disease of major international importance, very little is 

known about the cellular mechanisms or genetic underlying host plant resistance. 

Therefore, understanding the mechanism of host resistance is essential for the long-term 

management of bacterial wilt. In their association with pests or pathogens, plants evolved 

an impressive array of defensive mechanisms to avoid pest damage or diseases (Baker et 

al., 1997; Knogge, 1997; Schlösser, 1997; Keen, 1999; Nandakumar et al., 2000). Many 

resistance mechanisms in plants in response to pathogen invasion were described, such as 

the modification of the cell wall in response to infection by vascular pathogens including 

the formation of wall appositions (Beckman and Talboys, 1981), papilla formation (Inoue 

et al., 1994), callous deposition (Beckman et al., 1989), production of gels or gums (Van 

der Molen et al., 1977), formation of tyloses (Beckman et al., 1972; Grimault et al., 

1994), and lignification (Kang and Buchenauer, 2000). Besides these morphological 

defense responses, numerous biochemical alterations may also be involved in resistance 

mechanisms including the synthesis and accumulation of pathogenesis-related (PR) 

proteins (Aist, 1976; Smart, 1991; Benhamou et al., 1989, 1990; Kang and Buchenauer, 

2000, 2002, 2003).  

 

Resistance in tomato is known to be temperature-sensitive and strain-specific (Krausz 

and Thurston, 1975; Mew et al., 1977; Martin and Nydegger, 1982). Temperature is the 

most important factor affecting the host- pathogen interactions as well as survival in soils. 

In general, increase in ambient temperature to 30-35°C increases the incidence and the 

rate of onset of bacterial wilt on hosts such as tomato. Plants that are resistant at moderate 

temperature may become susceptible at a higher temperature (Hayward, 1991). Also, 

high soil moisture accumulations resulting from either a high water table or heavy rainfall 

usually favors development of bacterial wilt.  
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The primary cell wall of dicotyledonous plants principally consists of the cellulose and 

hemicellulose polysaccharides network, embedded in a pectic matrix that is structurally 

complex and heterogeneous (Willats et al., 2002; Ridley, 2001). The pectic 

polysaccharides also form the middle lamella, and are involved in cell adhesion (Jarvis, 

2003). The cell wall provides different mechanical properties at different times during 

cell development. The cell wall assembly has a major influence on the mechanical 

properties of cells and tissues, although as yet there is a relatively poor understanding of 

the effect of specific molecular interactions on wall behavior. Zivanovits et al. (2004) 

suggested that the mechanical properties of the pectin network of the plant cell wall may 

be modulated through the control of the response of the pectic network to the osmotic 

stress of cell contents and the composition of the apoplastic sap. The plant cell wall is, 

thus, a complex matrix with physical properties conferred by the interaction of 

constituent structural polymers (Redgwell and Selvendran, 1986; McCann and Roberts, 

1991). Pectic polysaccharides are probably the most complex class of cell wall 

polysaccharides (O’Neill et al., 1990) (as discussed in chapter 1). The structure and 

material properties of pectins is characterized by cross-linkages with divalent cations and 

with possible esterification to other cell wall polymers (Schols and Voragen, 2003). The 

complex structural composition of pectins reflects perhaps their functional diversity. It is 

not surprising, therefore, that pectins play multifaceted roles during the life cycle of a 

plant. Interestingly, the unique gelling property of pectins is also one of the factors that 

can determine the fate of a host-pathogen interaction. For instance, pectins may act as 

defense barriers against the invasion of microorganisms. The resistance of primary cell 

walls to enzyme digestion has been suggested to be the result of the formation of calcium 

bridges between pectin chains (Ferguson, 1984). On the other hand, Rao et al. (1982) 

indicated that pectins of plant cell walls play a critical role in adherence of bacterial cells 

to the host surface. However, the elucidation of the role of the structural composition of 

pectins in host–pathogen interactions is a topic that has received scant attention, and this 

aspect is the focus of the present investigation. Specific AGPs or AGP epitopes appear to 

be associated with differentiation events during the life cycle of the plant. AGPs are also 

significant components of a number of plant gums or exudates and confer special 

properties on these plant products (Showalter, 2001). AGPs are proteoglycans with poly- 
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and oligosaccharide units covalently attached to their protein moiety (Van Holst and Klis, 

1981) and are known to be present in higher plants and in their exudates. One of the most 

well characterized AGPs to date is LeAGP-1, a major AGP in tomato. LeAGP-1 has four 

distinct regions: N-terminal signal sequence for secretion, a central hydroxyproline/ 

proline-rich region interrupted by a short lysine-rich basic region, and a hydrophobic C- 

terminal sequence identified as a GPI-anchor (glycosylphosphatidylinositol-anchor) 

addition sequence. LeAGP-1 influences stem elongation, lateral branching, fruit 

production and seed development. Alterations of plant cell wall components as pectins 

and AGPs may contribute to induced resistance mechanisms as defense barriers against 

the invasion of pathogens. Lignification and the production of other structural barriers in 

cell walls, eg. formation of calcium bridges between pectic chains, were observed in 

many plant species following attempted infection by pathogenic organisms. (Ferguson, 

1984). 

 

Ralstonia solanacearum has a lower rate of multiplication in resistant plants. Pre-existing 

morphological barriers as well as induced mechanical barriers at the penetration site in 

response to pathogen attack may hamper the spread of the pathogen (Rahman et al., 

1999). Bacterial wilt resistance is not associated with resistance to bacterial root invasion 

but with the capability of the plant to limit R. solanacearum colonization in tomato stems 

(Grimault et al., 1993, 1994). Similar bacterial numbers in roots of tomato varieties with 

different degree of resistance were also observed by Prior et al. (1994), and Dannon, 

(2004) who concluded that resistance did not result from a limitation of bacterial 

penetration in roots, but resistance mechanisms were localized in the mid-stem. Similarly, 

Grimault et al. (1995) and Vasse et al. (2002) reported a decrease of bacterial density in 

mid-stems compared to the collar. Wilting of the plants is therefore the most obvious 

symptom that reflects the invasion of the pathogen and is possibly a result of restricted 

water movement due to the formation of slime or electron dense material (Vasse et al., 

1995), that surrounds the bacterial masses in the stem xylem vessels. 

 

The complexity of tomato - R. solanacearum interactions, are the result of subtle 

combinations between genetic sensor-regulator systems governing R. solanacearum 
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pathogenicity (Schell, 1996) and strong host-genotype-environment interactions. 

Although the resistance in tomato genotype Hawaii 7996 appeared to be monogenic and 

dominant in a Mendelian genetic study (Grimault and Prior, 1995), quantitative genetic 

studies indicate that it is under control of 6 quantitative resistance loci (QRL) (Thoquet, 

1996; Zhang et al., 2002; Lindhout et al., 2003). Resistant plants are often partially 

colonized by the pathogen and show partial tolerance of the disease (Prior et al., 1996). 

Continuous distribution of the pathogen appears to be necessary for colonization of the 

stems and development of the disease symptoms, as also reported by Rodriguez et al., 

(2003) in tomato cultivars, resistant and susceptible to Fusarium oxysporum f. sp. 

lycopersici races 0 and 1. However, the mechanism by which colonization is restricted 

remains unknown. A role of cell wall polysaccharides has been suggested. Thus, pectin 

esterification was observed to be higher in potato cultivars resistant to Erwinia 

carotovora subsp. atroseptica (McMillan et al., 1993) and tomato cultivars differing in 

resistance to Pseudomonas syringae pv. tomato (Venkatesh, 2002), and the degree of 

methyl esterification, which was seen to be higher in the resistant genotypes was related 

to resistance mechanisms indicating the role of pectins in response to pathogen invasion. 

In this study the possible resistance mechanisms involving the role of pectic 

polysaccharides will be elucidated.  

Resistance responses of soybean against fungal pathogens may manifest in the expression 

of pathogenicity related proteins (PRPs) or pathogen inducible genes (Graham et al., 

2003). R. solanacearum contains a set of conserved pathogenicity genes, the hrp 

(hypersensitive response and pathogenicity) gene cluster, which codes for a type of 

bacterial protein secretion system, known as the Type III secretion system (Vasse et al., 

2000a).  So far, PopA, PoPB & PoPC were secreted via the R. solanacearum Hrp 

pathway (Arlat et al., 1994, Genin & Boucher, 2002). Together with PopA, PopB and 

PopC form an operon that is controlled by the hrpB regulatory gene. PopA is responsible 

for a hypersensitive-like reaction when R. solanacearum cells are infiltrated into plant 

tissue at high concentration (Genin and Boucher, 2002). PopB and PopC both exhibit 

characteristics indicating that they might be aimed at eukaryotic cells. PopB possesses a 

functional bipartite signal, which is hypothesized to be carried into the plant cell, where it 
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is targeted at the nucleus. PopC, however, displays 22 tandem leucin-rich repeats (LRR), 

which correspond to the eukaryotic cytoplasmic LRR consensus, implying that PopC 

might be transported into the plant cell cytoplasm (Gueneron et al., 2000). Moreover, 

PopC is homologous to plant LRR proteins serving for development and resistance. Thus, 

Gueneron et al. (2000) propose that PopC could imitate plant LRR proteins and thereby 

alters a specific signal transduction cascade or else PopC could prevent identification of 

the pathogen by influencing effectors of R. solanacearum. Though, in experiments 

popABC mutants are reported to be as virulent as wild-type strains. Investigations have 

also been undertaken to analyze the involvement of bacterial surface appendages in the 

type III-related interactions with host cells. Two roles have been proposed for these type 

III-dependent appendages: either in the attachment to eukaryotic cells and/or in the 

delivery of proteins into host cells. Vasse et al. (2000a) and Blocker et al. (2003) 

identified a type III-associated Hrp-pilus in R. solanacearum which is involved in 

delivering the Pop A proteins into the host cell which are assumed to form pores in the 

eukaryotic cell membrane.       

Based on results from microscopic observations, Vasse et al., (2000b) suggested that hrp 

mutants, such as hrpB mutant and hrcV mutant of R. solanacearum strain GMI1000 

showed reduced infection, colonization, and multiplication ability in the vascular system 

of tomato roots. The mutants also induce a defense reaction similar to a vascular HR at 

one protoxylem pole of invaded tomato plants. Vasse et al. (1998) also suggested that 

these mutants which compete with the pathogenic strain for space within xylem vessels 

and induce local, non-specific resistance may lead to significant protection against tomato 

bacterial wilt. Hikichi et al., (2003) suggested that the hrp mutants, which are deficient in 

type III secretion machinery, lose their ability to colonize and multiply in host tobacco 

plants immediately after invasion, resulting in a loss of their ability to induce host 

responses and the subsequent provocation of disease. 

 

When the plants and pathogens interact, plants use multiple mechanisms to accumulate 

bioactive levels of oligosaccharins which then acts as the signal molecules to elicit the 
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defense responses and on the other hand the pathogens use corresponding mechanisms to 

prevent signal molecules from accumulating (Ridley et al., 2001). 

 

Growth of R. solanacearum in host tissues was associated with pronounced alterations 

including the disintegration of host cell walls, which indicates the production of cell-

wall-degrading enzymes (PG, PMEs) during infection and spread in the host tissues. An 

extracellular enzyme consortium breaks down plant cell walls and facilitates bacterial 

invasion and spread by digesting cortical cell walls, the pectic gels surrounding lateral 

root emergence points, and the pit membranes that separate adjacent xylem vessels (Allen 

et al., 1998).  

 

We have characterized the interactions between wall-matrix polysaccharides by 

examining the cell-tissue, and species-dependent expression of cell wall epitopes using 

well characterized monoclonal antibodies. The distribution of pectic epitopes in the 

primary cell walls of higher plants is rather well-documented (Bush and McCann, 1999; 

Bush et al., 2001; reviewed in Willats et al., 2001, 2002, 2003).  

 

To elucidate the role of pectins and AGPs, which are important components of the 

extracellular matrix (Clarke et al., 1978) in cell wall architecture in the interaction 

between R. solanacearum and tomato genotypes, we have established the use of 

monoclonal antibody probes (JIM5, JIM7, LM5, LM6, LM7, and LM2) for specific 

pectic epitopes [low ester and high esterification pattern of homogalacturonan (HG), 

galactan, arabinan side chains of rhamnogalacturonan I (RG I), non-blockwise pattern of 

de-esterification of HG and arabinogalactan protein (AGP)] respectively.   

 

The monoclonal antibody LM2 detecting specific patterns of expression of AGPs, both 

temporal and spatial (Knox et al., 1989, 1991; Stacey et al., 1990; Pennell et al., 1991, 

1992; Li et al., 1992) was used in this study. Immunolocalization of AGP has also been 

performed using other monoclonal antibodies (Serpe et al., 2002).  
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The artificial AGP carbohydrate antigen (ß–glycosyl Yariv reagent) binds to AGP and 

forms a red precipitate (Yariv et al., 1962, 1967; Jermyn and Yeow, 1975; Clarke et al., 

1975; Fincher et al., 1983). AGPs are preferentially associated with the vascular bundles 

and epidermis (Bacic et al., 1986; Pennell et al., 1989). The protein portion represents up 

to 7% of the molecule and is rich in hydroxyproline, alanine and serine. The carbohydrate 

portion consists of arabinose (36%) and galactose (64%) with 1,3:1,6-galactan substituted 

by arabinofuranosyl residues (Keegstra et al., 1973; Fincher et al., 1983). 

 

Therefore, one of the most powerful ways to study pectin in its physiological and 

developmental contexts is by the use of anti-pectin antibody probes based analyses of 

HGA, RG I, RG II (Knox et al., 2003). The extensive structural and conformational 

variety and the dynamic nature of the pectic network presumably reflects the range of 

properties it provides to the cell wall matrix, in terms of mechanics, ionic and hydration 

conditions, signals, potential for molecular interactions and capacity to be degraded by 

plant and microbial pectinases, and thus, its possible role in host-pathogen interactions. 

The present paper therefore reports characteristics of these pectins and AGPs from the 

mid-stem sections of both resistant and susceptible tomato genotypes being recognized 

by specific monoclonal antibodies before and after infection with R. solanacearum.  
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3.2 MATERIALS AND METHODS 

 

3.2.1 Plant material 

 

The tomato genotypes H7996 with high resistance level and L390, susceptible to 

bacterial wilt were received from the Asian Vegetable Research and Development Center 

(AVRDC), Taiwan. Seeds were sown in a greenhouse (20°C day/night temperature, 14h 

of light per day / 30K Lux, and 70% relative humidity) and transplanted after four weeks 

to individual pots with 330g of soil (Fruhstorfer Erde, Type P, with 150mg/l N, 150mg/l 

P2O5, and 250mg/l K2O). During the experiments plants were kept in a climate chamber 

with 30/27 °C day/night temperature, 85% relative humidity, 14 hours light, and 30K 

Lux. 

 

3.2.2 Inoculum preparation 

 

Ralstonia solanacearum isolate To-Udk2 from Thailand was used for inoculating the 

plants. Bacterial inoculum was produced by streaking a single colony on NGA (0.3 % 

beef extract, 0.5 % Bacto peptone, 0.25 % D-glucose, 1.5 % agar) agar medium and 

incubating at 30 °C for 48 h. Cells were harvested from agar plates by flooding with 

sterile, distilled water, and an optical density of 0.06 at 600 nm wavelength (Spectrotonic 

20 Bausch and Lomb), corresponding to about 7.8x107 colony-forming units per milliliter 

(CFU/ml) was adjusted.   

 

3.2.3 Inoculation of tomato plants 

 

Four week old plants were inoculated by soil drenching with 33 ml of bacterial 

suspension per pot, corresponding to about 107 CFU/g of soil, around the base of the 

plants. Pots were watered after inoculation up to the soil field capacity but without 

producing a surplus, and kept in a climate chamber.   Both healthy as well as inoculated 

plants were harvested at 5 dpi for the study by immuno-fluorescence microscopy and 

histochemical detection of AGPs. 
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3.2.4 Immuno-histochemical preparations and microscopy  

 

Sections of both healthy and inoculated mid-stems from tomato genotypes H7996 and 

L390 were cut in slices of about <0.5 mm and collected in a fixative (4% 

paraformaldehyde in 50 mM PIPES buffer, pH 6.9) by free-hand sectioning.  The 

sections were treated with PBS (phosphate buffer saline) with 5% skim-milk powder for 

1 h at room temperature for blocking. Incubation with the primary antibodies (JIM5, 

JIM7, LM7, LM5, LM6 or LM2 received from P. Knox, University of Leeds, UK) (Table 

3.2.4) was performed over night at 4°C or for 2 h at room temperature, at 1:10 dilution  in 

PBS with 5 % skim-milk powder. The sections were washed with PBS-0.1% Tween 20 

(v/v) 3-5 times for 5 minutes each and followed by dH2O. Incubation with the secondary 

antibody anti-rat IgG FITC (Sigma) at 1:50 concentration in PBS-5 % milk powder was 

then performed over night at 4°C or for 2 h at room temperature. The sections were 

washed again with PBS-0.1% Tween 20, 3-5 times for 5 min each followed by 3-5 times 

washing with dH2O. Finally, the sections were mounted in Citifluor (AF1) antifade 

(Plano, Wetzlar, Germany) on glass slides. Specimens were observed under a 

photomicroscope (Zeiss fluorescence microscope) equipped with epifluorescence 

illumination with a filter system appropriate for fluoroscein fluorescence, 520-560 nm. 

Fluorescein has λEx=495 nm and λEm=518 nm. Increasing color intensity evaluated as -, F 

(few, for single vessels), ±, (+), +, ++, (+++), +++. The immuno-histochemical trial was 

repeated three times with newly grown plants of both healthy and Ralstonia 

solanacearum strain ToUdk2 inoculated resistant (H7996) and susceptible (L390) tomato 

genotypes. 3 healthy and 3 inoculated plants were picked randomly out of set of 5 plants 

and sections were made for both genotypes. On each slide 5-6 mid stem sections were 

observed and evaluated as per the grades described and slides were made in duplicate. 

Control samples were taken from both genotypes and treated same way as described 

above except for the step with the primary antibodies was omitted. The labeled vessels in 

case of healthy and inoculated resistant tomato genotype (H7996) were counted in 

treatments with LM5 and LM6 and Data were processed using analysis of variance in 

SAS (the SAS System for Windows V8, Release 8.02 TS Level 02M0; 1999-2001. 
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Institute INC., Cary, USA).  For all analyses a significance level of P = 0.05 or lower was 

used.  

 

 

 

 

 

 

 

Table 3.2.4 Antibodies used for structural analysis of pectic polysaccharides  

 

 

 

 

 

 

 

 

 

 

 

HG = homogalacturonan, RG = rhamnogalacturonan,  AGP = arabinogalactan  
protein 

 

 

 

3.2.5 Histochemical detection of Arabinogalactan protein (AGPs)  

 

AGPs in tomato stem tissues were stained as described by Majewska-Sawka et al. (2002). 

The hand-cut sections of <0.5 mm of both healthy and inoculated tomato mid-stems from 

genotypes H7996 and L390 were taken from plants 5 days after inoculation with R. 

Pectin domain 1° Ab Epitope recognized

HG JIM 5 low methyl esterification
grade 31-40%

HG JIM 7 'high' methyl esterification
grade 15-80%

HG LM 7 non-blockwise 
de-esterification

RG-I LM 5 (1→4)-ß-D-galactan 

RG-I LM 6 (1→5)-α-L-arabinan 

AGP LM 2 arabinogalactanprotein
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solanacearum strain ToUdk2. Stem sections were stained with 300 µM solutions of ß-

glucosyl Yariv phenylglycoside (ß-D-Glc)3 [Australia Biosupplies, Parkville, Australia] 

in 1% NaCl (Clarke et al., 1975), which specifically binds and precipitates AGPs. As a 

control, sections from the same sample were stained with 300µM solutions of α-

galactosyl Yariv phenylglycoside which does not bind AGPs. After staining for 72 h at 4 

°C, the sections were washed overnight in 1% NaCl to remove excess unbound reagents, 

then briefly rinsed with distilled water, air-dried, and observed under the Zeiss 

microscope. 
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3.3 RESULTS 

 

3.3.1 Cytochemical localization of pectic polysaccharides  

 

The structural composition of pectic cell wall polysaccharides of mid-stem sections of 

healthy and R. solanacearum-inoculated tomato genotypes H7996 (resistant) and L390 

(susceptible) was established by immuno-labeling with the antibodies JIM5, JIM7 and 

LM7, binding to low methyl-esterified, highly methyl-esterified and non-blockwise 

patterns of de-esterification of homogalacturonan (HG), respectively, and LM5, LM6 and 

LM2, specific for galactan and arabinan side chains of rhamnogalacturonan (RG I) and 

arabinogalactan protein, respectively, and subsequent microscopic observations. 

Horizontal stem sections were compared for labeling of epidermis, chlorenchyma, 

angular collenchyma, cortical fibres, phloem, cambium, xylem parenchyma, metaxylem, 

protoxylem, mark parenchyma and inner parenchyma.  

 

Comparing stem sections of healthy plants of genotypes H7996 (H) and L390 (L), a 

stronger labeling of the galactan side chains of RG I (LM5) (Fig. 1 a-d) and of AGPs 

(LM2) (Fig. 1 e, f) was observed in the resistant genotype in the xylem parenchyma (Fig. 

1c, d) and in walls of single vessels (Fig. 1 f), respectively, compared to sections of 

genotype L390 (Fig. 1 a, c, and e, respectively) (see also Tab. 3.3.1.).   On the contrary, 

sections of genotype L390 reacted stronger with antibody LM6 in single xylem 

(Metaxylem) vessels and slightly stronger around the vessels (Fig. 1 g,), and stronger 

with antibody LM7 around xylem vessels (Fig. 1 i) compared to H7996 (Fig. 1h and j, 

respectively). Antibodies JIM5 and JIM7 stained only few vessels in both genotypes 

while no or only low labeling occurred in other tissues of healthy plants (Tab. 3.3.1.). No 

labeling or no differences between genotypes were observed in the other evaluated stem 

tissue components. Significant differences were observed between healthy and inoculated 

H7996 where 70 % and 76 % of the vessels showed more labeling after inoculation in 

treatment with LM5 and LM6 respectively, in contrast to only 12 % and 8 % of the 

vessels being brighter in healthy H7996 in treatments with LM 5 and LM6 respectively, 
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indicating an increase in galactan and arabinan epitopes, in the inoculated resistant 

genotype.   
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Fig. 1.  Pectin epitopes in stem tissues of healthy tomato genotypes H7996 and L390, 
resistant and susceptible to bacterial wilt, respectively. a, c: immunofluorescent labelling 
by LM5 specific for galactan in L390  was observed in the inner parenchyma (IP) and 
cortex (C), but  less in the metaxylem (M) and xylem parenchyma (Xp). b, d: in H7996 a 
strong labelling by LM5 occurred in the xylem parenchyma (Xp); a, b = 2.5 x objectives,  
c, d = 10 x objectives;  e: reaction of LM2 specific for arabinogalactan protein with 
xylem parenchyma of L390. f, in H7996 LM2 showed stronger signals in metaxylem 
(single) vessels  than in L390. g: in L390 labelling by LM6 specific for arabinan was 
detected in epidermis, cortex and metaxylem (single vessel), but no signal was seen in the 
inner parenchyma (not shown). h: in H7996 signals, which were less intense than in 
L390, were detected in the metaxylem (single) vessels  indicating more of the arabinan 
epitope in side chains of RG I. i, L390 showed stronger labelling in the tissue around 
xylem vessels by LM7 which recognizes the non-blockwise de-esterification pattern of 
HG, compared to the resistant genotype H7996 (j). Bars = (a, b =200µm). (c, d, e, f, g, h, 
I, j = 100 µm). The sections were mounted in Citifluor (AF1) antifade (Plano, Wetzlar, 
Germany) on glass slides. Specimens were observed under a photomicroscope (Zeiss 
fluorescence microscope) equipped with epifluorescence illumination with a filter system 
appropriate for fluoroscein fluorescence. 
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Table 3.3.1 Characterization of pectic polysaccharides from mid-stem sections of tomato 
genotypes H7996 and L390, resistant and susceptible to bacterial wilt, before and five 
days after inoculation with R. solanacearum strain To-Udk2. Antibody specificities: 
JIM5 - specific for low ester, JIM7 - high ester, LM7 - non-blockwise de-esterification 
patterns of HGA, LM2 - arabinogalactan protein, LM5 - galactan, LM6 - arabinan 
epitopes, respectively of RGI. Increasing color intensity evaluated as -, F (few, for single 
vessels), (+), +, ++, +++. H= healthy H7996, Hi= inoculated H7996, L= healthy L390, 
Li= inoculated L390. Trial was repeated three times with newly grown plants.    

 

 

 

 

 

 

Strong differences between sections of healthy and inoculated plants of the susceptible 

genotype were observed around vessels after staining with all the antibodies (Tab. 3.3.1., 

Fig. 2a, b). Labeling with LM6 after inoculation in L390 showed intense fluorescence 

localized mainly in around vessels and also in the xylem parenchyma and single vessels, 

indicating arabinan side chains of RG I in branched regions of the pectic polysaccharides. 

After inoculation, a dramatic increase in the epitopes labeling and a high level of 

fluorescence in single vessels of mid-stems of genotype L390 was observed in labeling 

with LM2, LM5, LM6 and LM7 recognizing the arabinogalactan proteins, epitopes of 

  

 

 

Antibodies
H Hi L Li H Hi L Li H Hi L Li

JIM5 - - - - F F F F - - - +++
JIM7 - - - ± F F F F - - - +++
LM7 ++ (+++) ++ ++ ++ (+++) ++ +++ - - + +++
LM2 ++ ++ ++ ++ ++ ++ F +++ - - - +++
LM5 ++ ++ + + ± ++ (+) +++ - - - +++
LM6 + + + ++ + +++ ++ +++ - - ± +++

Around vesselsXylem parenchyma Single vessel
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galactan and arabinan side chains of branched regions of pectins and non-blockwise de-

esterification pattern of HGA domain of pectic polysaccharides respectively.   
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Fig. 2A.  Pectin epitopes in stem tissues of tomato genotypes H7996 and L390, resistant 
and susceptible to bacterial wilt, respectively. A (a, b), labelling by JIM5 in L390 before 
inoculation was in similar pattern as seen in the resistant genotype H7996 (c). A 
significant difference was seen between the genotypes after inoculation where L390 
showed a more intense labelling around the vessels (d, e)  compared to H7996 in (f). No 
significant difference in labeling with Jim 7 was seen between H7996 (i) and L390 (g, h) 
before inoculation, whereas after inoculation much stronger signals were detected around 
vessels and, less, in the xylem parenchyma of L390 (j, k) compared to H7996 (l). (m, n), 
labeling by LM7 in L390 before inoculation was stronger around vessels than H7996 in 
(o). (p, q), after inoculation L390 showed stronger labelling in single vessels and around 
vessels with LM7 which recognizes the non-blockwise de-esterification pattern of HG 
than H7996 (r). Bars = (a, d, g, j, m, p =200µm).   (b, e, h, k, n, q, c, f, i, l, o, r =100 µm)                                 
 

 

 

 

 

 

 

Labeling of single vessels increased more than threefold and was generally intense in 

reactivities of LM2 and LM5 antibodies after infection in the inoculated susceptible 

genotype (L390) (Tab. 3.3.1.). After inoculation, labeling of single vessels with 

antibodies LM2 (Fig. 2B p&q), LM5 (Fig. 2B d&e), LM6 (Fig. 2B j&k) and LM7 (Fig. 

2A p&q) and, stronger, around vessels with all the antibodies, increased in the susceptible 

genotype indicating an increase in AGPs, galactan and arabinan side chains of RG I and 

the non-blockwise deesterification pattern of homogalacturonan (HG), respectively. 

Different than in comparison of genotypes, a reaction was observed around vessels with 

JIM5 (Fig. 2 d&e) and JIM7 (Fig. 2 j&k) after inoculation in the susceptible genotype. 

The JIM 5 binding polymers appeared as irregular aggregates in inner parenchyma and 

some vessels of the susceptible genotype after infection (Fig. 3 a&b). These pectins are 

distributed in the middle lamella or in the intercellular spaces. The resistant genotype 

(H7996) showed no reaction after inoculation around vessels and in the xylem 

parenchyma, but the labeling in single vessels showed a significant increase in the   
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Fig. 2B. Pectin epitopes in stem tissues of tomato genotypes H7996 and L390, resistant 
and susceptible to bacterial wilt, respectively. (a, b), labeling by LM5 in L390 before 
inoculation was similar in single vessels and around vessels but less labeling was 
observed in xylem parenchyma as compared to H7996 (c). After inoculation L390 
showed intense labeling of the single (metaxylem) vessels and around vessels (d, e); as 
compared to H7996 which showed increased labeling of only single vessels after 
inoculation (f). Significant difference was seen in single vessels and around vessels 
between H7996 (i) and L390 (g, h) after labeling with LM6 in healthy plants being 
stronger in L390 than H7996, whereas stronger signals were detected in the single 
(metaxylem) vessels and, around vessels but less, in the xylem parenchyma of L390 (j, k) 
after inoculation compared to inoculated H7996 (l), which showed increased labeling of 
only single vessels after inoculation. A similar intensity of labeling by LM2 was observed 
in the xylem parenchyma and around vessels of L390 (m, n) and H7996 (o) before 
inoculation but significant difference was observed where H7996 showed more labeling 
of single vessels than L390 before inoculation. After inoculation L390 (p, q) showed 
stronger labeling for LM2 in single vessels and around vessels than H7996 (r). Bars = (a, 
d, g, j, m, p =200µm). (b, c, e, f, h, I, k, l, n, o, q, r = 100 µm). 
 

 
 
 
 
 
 
 
 
 
 
 

binding of LM6 (specific for arabinan) (Fig. 2B i&l) and LM5 (specific for galactan) 

(Fig. 2B c&f) epitopes of branched RG I.  

 

An increase in fluorescence of degenerating cells (around vessels) in the transmitting 

tissue of inoculated L390 occurred with both MAbs, JIM 5 and JIM 7. Both these 

antibodies revealed the homogeneous presence of HG epitopes in epidermal and 

parenchymal cell walls throughout the tomato stems. The controls, where primary 

antibodies were omitted, showed a lack of fluorescence in all the tissues except a low 

autofluorescence in the xylem vessels (Fig. 2C).  
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Fig. 2C.  Control samples where primary antibody was omitted or stem  
tissues of 4-week old tomato genotypes H7996 and L390, resistant and susceptible to 
bacterial wilt, respectively. (a), L390 control before inoculation showed no labeling of 
vessels. (b) A significant difference was seen between the healthy and inoculated L390 
where single vessels showed autofluorescence labeling. (c), H7996 control before 
inoculation showed no labeling of vessels. A significant difference was observed between 
genotypes after inoculation where L390 showed a more intense labelling of the 
metaxylem vessels (M) (single vessels) compared to H7996 in (d). Bars = 100µm (a, 
b,c,d). 
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Fig. 3. (a), Demonstration of lowly esterified homogalacturonans with the antibody    
JIM5 in healthy plants of tomato genotype L390, susceptible to bacterial wilt. Labeling 
was recognized in the inner parenchyma. (b), Irregular aggregates in cell corners were 
observed after inoculation with R. solanacearum. Bars = 200 µm (a, b). 
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b
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3.3.2 Histochemical localization of Arabinogalactan-Protein 

 

Labeling with ß–glucosyl Yariv reagent resulted in typical deep red staining of 

arabinogalactan-proteins. The outer epidermal wall showed a clearly defined red zone 

beneath the cuticle and a similar red zone at the inner surface, while staining of the inner 

epidermal wall was much less intense. Control reactions with α–galactosyl Yariv reagent 

resulted in a complete lack of staining (Fig. 4b). The vesicles stained with ß–glucosyl 

derivative were evident around the periphery of the cells. The staining patterns of both 

healthy and inoculated resistant and susceptible genotypes were similar. Both 

immunochemical and histochemical methods revealed the expression of these 

proteoglycans in the xylem. 
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Fig. 4. Demonstration of arabinogalactan-proteins stained with ß-glucosyl Yariv reagent 
in stem tissues of healthy plants of tomato genotypes H7996 and L390, resistant and 
susceptible to bacterial wilt, in the xylem parenchyma and around xylem vessels and in 
the cuticle layer. Weak staining was observed in the inner parenchyma and cortex  (A), 
compared to a control sample treated with (α-D-Gal)3 Yariv reagent, which shows no 
staining (B). Bars = 100 µm (A, B). 
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3.4 DISCUSSION 

 
Immunocytochemical investigations revealed differences between tomato genotypes 

H7996 and L390, resistant and susceptible to bacterial wilt, respectively, in structure and 

composition of their pectic cell wall components and arabinogalactan proteins as 

observed by staining with monoclonal antibodies specific for epitopes of branched 

pectins. 

 
The pectic polysaccharides form a hydrated cross-linked three-dimensional network in 

the matrix of primary plant cell walls and are some of the most structurally complex 

macromolecules that exist in nature. Comparing the healthy resistant and susceptible 

genotypes H7996 and L390, respectively, the labeling of arabinogalactan protein and 

galactan epitopes, presumably side chains of RG I, was higher in H7996 genotype than in 

L390. These polymers could contribute to a higher resistance in genotype H7996, since 

arabinogalactan protein has been reported to be involved in the resistance reactions (Mc 

Cann and Roberts, 1996). 

 

An important component of the extracellular matrix and the plasma membrane are 

arabinogalactan-proteins (Fincher et al., 1983; Samson et al., 1983 and 1984), and play a 

role as messengers in cell-cell interactions during differentiation. Receptors for AGPs are 

present on the cell surface, making the high availability of AGPs possible (Kreuger and 

Van Holst, 1993). This high reactivity could explain the strong labeling of AGP epitopes 

in the susceptible genotype after inoculation and interaction with the pathogen. Pathogens  

tend to attack cell corners, and the complex mixture of pectins and arabinogalactan 

proteins (AGPs) found there may have a role in enmeshing the invading organism as well 

as in signaling to elicit through the release of small pectic fragments defense mechanisms 

(Mc Cann and Roberts, 1996).   

 

Also Grimault et al. (1994) and Vasse et al. (1995) observed in their histochemical 

studies deposition of electron-dense material, they supposed gums, at the cell wall, where 

preferentially the bacteria were distributed, being involved in the resistance reaction. 
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Thus, the degradation of plant wall material and, at the same time, deposition of new wall 

material could indicate a resistance mechanism in the resistant genotype. The arabinan 

and galactan epitopes are the first defined epitopes occurring in the side chains of pectic 

polysaccharides to be immunolocalized in developing systems (Willats et al., 1999), and 

the observations reported here may indicate differences between genotypes H7996 and 

L390 in expression patterns of RG I pectic domains during plant development. 

 

After inoculation with R. solanacearum, dramatic cell wall changes were observed in the 

susceptible genotype (L390), as indicated by increased labeling with all the antibodies. 

Specificity of JIM5 makes it a highly selective probe for low methyl-esterification 

regions of HG and are thought to be a major factor in the cross-linking of HG chains by 

calcium ions and thereby gel formation by HG domains. This gel could form favorable 

conditions for the pathogen, and play an important role in the compatible interaction, 

resulting in wilting and finally death of the plant. It is assumed that the antibody JIM5 

reacts only with partly de-esterified pectins, and that optimal binding requires the 

presence of groups that are methyl-esterified in a range of 31% to slightly over 40%. As 

for JIM7, the pattern of esterification does not significantly influence binding capacity 

(Willats et al., 2000). The increased de-esterification after inoculation may be due to the 

activity of pectin methylesterase of R. solanacearum, an enzyme which was shown to be 

involved in the pathogenesis of bacterial wilt (Allen et al., 1998). After infection many 

resistance mechanisms are started. This fluorescence – in the highly susceptible genotype 

L390 should be partly due to pectins and AGPs, although these polymers are abundant in 

xylem tissues, immunolabelling of these pectic polymers and HRGPs might not be the 

only reason for the observed fluorescence. Also lignification may contribute to a 

yellowish-green shine of xylem vessels by autofluorescence. Due to the characteristic of 

the tissue print to display a colour reaction in the presence of pectic and AGPs epitopes 

because lignin compounds as well as phenolics are not transferred to the nitrocellulose  

membrane, this assay can confirm the participation of these pectins and AGPs to 

fluorescence observed in microscopical studies. Also the strong autofluorescence in 

xylem tissues that were observed in R. solanacearum controls of both genotypes might be 

due to such an increase of phenolics as an host plant response to pathogen infection. 
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Thus, the strong fluorescence of xylem vessels might be caused both by phenolic 

compounds and lignification, additional to the increase in pectic epitopes and AGPs as 

confirmed by tissue prints.   

 

Also the increased labeling with LM7 which is specific for non-blockwise distribution of 

methyl ester groups, indicates a change in physico-chemical properties of the cell wall, 

since these HG can form calcium-mediated gels with distinct properties in terms of 

porosity and elasticity (Willats et al., 2001). This observation also indicates the possible 

action of pathogen PME, resulting in non-blockwise de-esterification, and, thereby, 

making the pectin more suitable for gel formation. The action of the pectic enzymes of Rs 

has been obscure to date, and these observations might elucidate the highly specific 

molecular interaction between these enzymes and plant cell wall structures, in order to 

create a suitable environment for pathogen multiplication.  

 

In plant development, the highly methyl-esterified HG is first inserted into cell walls and 

can be viewed as a raw material from which finely tuned functionalities can be created by 

the action of plant-owned and pathogen-derived pectin methyl-esterases. Enzymatic cell 

wall degradation by pathogens was supposed to create the gels typically found in the 

vessels of wilting plants (Beckman, 1987). In addition, these enzymes may also release 

nutrients that enable rapid bacterial multiplication. Also Cooper (1983) and Walton 

(1994) suggested that the cell wall degrading enzymes secreted by fungal pathogens 

during infection and colonization of host plants may play an important role in 

pathogenesis.  

 

The complexity of HG or other domains of pectic polysaccharides is due to both 

biosynthesis and, most notably, their modification in the cell wall during growth. 

However, the sheer extent to which pectins are modified and the functional possibilities 

created indicates that these polymers have a high potential to play specific biological 

roles. The high level of pectin in single vessels and around vessels with non-blockwise 

de-esterification of methyl-ester groups in the inoculated susceptible genotype L390 

indicates a direct role in maintaining cell wall to cell wall links through calcium-mediated 
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cross-linking. Additionally, the LM7-binding pectin may play a defensive role at points 

of intercellular attachment (Willats et al., 2001).  

 

The high labeling of the pectic galactan and arabinan epitopes may also be related to the 

presence of the low methyl-esterified HG in the cell walls of the susceptible genotype 

after inoculation. The de-esterification by pathogen PME could make the galactan and 

arabinan side chains more accessible to the LM5 and LM6 antibodies. LM5 and LM6 

epitopes are present at cell corners and these are the first defined epitopes to be attacked 

by the pathogen. Thus, the presence of the pathogen could cause damage in those tissues 

and possibly release pectic fragments by cell wall degrading enzymes such as PME and 

endo, exo PGs at the penetration site, where the pathogen degenerates the pit membrane 

and moves from vessel to vessel and these fragments generated can then act as 

suppressors of resistance response in the susceptible genotype (Nakaho et al., 2000). 

 

Hence our results show for the first time that R. solanacearum is capable of degrading 

pectin compounds of the plant cell wall. Pectin degradation has also been reported during 

root decay of rubber trees by Rigidoporus lignosus by Nicole and Benhamou (1993). The 

porosity of the cell wall matrix may be altered in these regions, which could determine 

the capacity of enzymes to reach the sites of action in the pit fields (Orfila, 2000). HG is 

usually synthesized in a largely methyl-esterified form in the Golgi apparatus and could 

be de-esterified in the cell wall by the action of pectin methyl esterases of R. 

solanacearum followed by degradation by PGs may produce HG fragments which could 

act as signal molecules determining resistance or susceptibility of the host plant, as 

shown for the near isogenic wheat lines resistant and susceptible to wheat stem rust 

fungus (Moerschbacher et al., 2003). 

 

AGPs increased in the susceptible genotype after inoculation, as shown by 

immunolocalization studies with antibody LM2 and the presence of these AGPs was also 

confirmed by histochemical staining with the synthetic phenyl glycosides, Yariv reagent, 

that have the ability to bind to AGPs and to block their function within living cells. The 

staining of AGPs by Yariv is simply through the precipitation and aggregation of soluble 
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arabinogalactan-protein molecules. Due to the nature of AGPs it is very likely that the 

sugar moiety is involved in binding the antibody but a contribution of the protein moiety, 

even though it is relatively small, cannot be ruled out. The sugar side chains are probably 

the most variable part of the molecule, generating many epitopes and differences in size 

and charge (Kreuger and Holst, 1995). Some AGPs can interact with pectin, most likely 

through ionic interactions like negative charged ions bonded by Calcium bridges.  

 

AGPs are presumably involved in molecular interactions and cellular signaling at the cell 

surface. Certain AGPs are associated with xylem development. More specifically, such 

AGPs are associated with, and hypothesized to function in, secondary cell wall 

thickening and can identify cells committed to programmed cell death (PCD) of xylem 

cells in order to allow water transport (Gao and Showalter, 2000; Showalter, 2001; 

Schopfer et al., 1995). It has been found that Yariv reagent effectively blocks water 

uptake which might be due to its binding to AGPs, and thus, inhibiting AGPs may 

contribute to wilting of the plant (Ding and Zhu, 1997). It should be noted that several 

investigators have found that AGPs often copurify with pectin (Serpe and Nothnagel, 

1994, 1995; O’Neill and Selvendran, 1985; Carpita et al, 1989; Shea et al., 1989). Since 

cell wall thickening is the common feature of plant resistance mechanism, and it was 

reported that for example tomatoes, affected by vascular wilt disorders, frequently 

respond by secretion of normal or modified wall components as a vascular coating onto 

xylem vessel walls it could be likely that the AGPs which are associated with the cell 

wall thickening might be a part of pathogen defence by physical barriers. It has been 

shown that LeAGP-1 is associated with secondary cell wall thickening of differentiating 

metaxylem in tomato roots and stems (Gao & Showalter, 2000). Therefore, LeAGP-1 

might serve as a marker for wall thickening and lignification in cellular differentiation 

processes.  

 

AGPs might contribute to cell wall thickening by association with other cell surface 

molecules or with one another. For example LeAGP-1 was reported to interact with 

pectin by clusters of basic amino acid residues or by Ca2+ mediated binding. However, it 

remains doubtful whether these bindings are strong enough to paly a role in xylem cell 
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wall strengthening and therefore in induced resistance (Showalter, 2001). Association of 

AGPs among themselves are thought to involve ionic interactions and plant analogs of 

Yariv agents such as flavonols glycosides or oxidative crosslinking (Showalter, 2001). 

The latter is associated with the oxidative burst, a rapid, transient production of huge 

amounts of reactive oxygen species (ROS) by plant cells, as a defense strategy against 

pathogens. It might be assumed that also AGPs located in resistant tomato genotype 

H7996 were crosslinked by these mechanisms and therefore strengthened cell walls, thus 

slowing the ingress of R. solanacearum into the xylem tissues. This could suggest the 

role of AGPs as resistant factor as they were already abundant in the midstem tissues of 

resistant tomato genotype and might be increasingly produced by susceptible genotype as 

a reaction to pathogen infection. 

 

In the resistant genotype after inoculation the epitopes of arabinan and galactan side 

chains of branched pectins showed significantly increased labeling. The greater binding 

of LM5 and LM6 may be because of epitope accessibility at lower DE is increased by 

conformational changes in pectin structure (Willats et al., 2000). The increased labeling 

for arabinan and galactan side chains may be due to their higher accessibility after a 

possible deesterification after pathogen action on the cell wall. This could explain that the 

restricted movement of the pathogen inspite cell wall degrading enzymes causing release 

of pectic fragments such as degraded RG I that might form an electron-dense material 

possibly interacting with bacterial polymers surrounding the bacterial masses which 

could then result in thickening of pit membranes and hence bacteria cannot move from 

vessel to vessel indicating a resistance mechanism activated at the penetration site as was 

reported by Nakaho et al., (2000). It could be speculated, that the resistant plant newly 

synthesizes pectic polymers with changed composition in reaction to an infection. 

Bacterial lipopolysaccharides and pectic polysaccharides from the host were reported to 

form precipitates in an incompatible interaction between Pseudomonas syringae pv. 

phaseolicola and pectins from bush bean, but not in the compatible interaction (Wydra, 

1991).  
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The pathogen infection caused pronounced alterations of the host cell walls and middle 

lamella matrices. The pectin matrix of the plant is found throughout the primary cell wall, 

but is most concentrated in the middle lamella between plant cells (Carpita and Gibeaut, 

1993). Therefore, pectic molecules probably are the first polysaccharides to be degraded 

by the pathogen during infection. Hence our results indicate that R. solanacearum is 

capable of degenerating cell walls in a tomato genotype susceptible to bacterial wilt by 

the production of enzymes and degrading the pectic components in a non-blockwise 

pattern and thus differentiating between the resistant and susceptible genotypes used in 

this study at the pectin level.     
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3.5 SUMMARY 

 

The structural composition of pectic cell wall polysaccharides of healthy and R. 

solanacearum inoculated mid-stem sections of tomato genotypes H7996 (resistant) and 

L390 (susceptible) was established by immuno-labeling with the antibodies JIM5, JIM7 

and LM7, binding to low methyl-esterified, highly methyl-esterified and non-blockwise 

patterns of de-esterification of homogalacturonan (HG), respectively, and LM5, LM6 and 

LM2, specific for galactan and arabinan side chains of rhamnogalacturonan (RG I) and 

arabinogalactan protein, respectively, and subsequent microscopic observations.  

 

Comparing stem sections of healthy plants of genotype H7996 and L390, a stronger 

labeling of the galactan side chains of RG I by antibody LM5 in the xylem parenchyma 

and AGPs of single vessels by antibody LM2 was observed in the resistant genotype.  

 

Genotype L390 reacted stronger in single xylem vessels with antibody LM6 and around 

xylem vessels with antibody LM7, and, slightly, antibody LM6. Antibodies JIM5 and 

JIM7 stained only few vessels in both genotypes while no labeling occurred in other 

tissues of healthy plants. No labeling or no differences between genotypes were observed 

in the other evaluated stem tissue components.   

 

Labeling of single vessels increased more than threefold and was generally intense in 

reactivities of LM2 and LM5 antibodies after infection in the inoculated susceptible 

genotype (L390). After inoculation, labeling of single vessels with antibodies LM2, LM5, 

LM6 and LM7, and, stronger around vessels with all the antibodies, increased in the 

susceptible genotype indicating an increase in the epitope binding recognizing the AGPs, 

galactan and arabinan side chains of RG I and non-blockwise deesterification pattern of 

homogalacturonan (HG), respectively. 

 

Different than in comparison of genotypes, a reaction was observed around vessels with 

JIM5 and JIM7 after inoculation in the susceptible genotype. The JIM 5 binding 
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polymers appeared as irregular aggregates in xylem parenchyma and some vessels of the 

susceptible genotype after infection. 

 

The resistant genotype (H7996) showed no reaction after inoculation around vessels and 

in the xylem parenchyma, but the labeling in xylem vessels showed a significant increase 

in the binding of arabinan and galactan epitopes of branched RG I.  

 

The controls, where primary antibodies were omitted, showed a lack of fluorescence in 

all the tissues but slight autofluorescence was observed around vessesls.  

 

Labeling to detect arabinogalactan-proteins with ß–glucosyl Yariv reagent resulted in 

typical deep red staining of the outer epidermis and vascular bundle, in particular, the 

outer epidermal wall and xylem elements. The staining patterns of both healthy and 

inoculated resistant and susceptible genotypes were similar. 
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CHAPTER IV 

 

Chemical composition of lipopolysaccharides from Ralstonia solanacearum and 

their interactions with cell wall pectins from tomato stems 

 

4.1 INTRODUCTION 

 

The pseudomonads, like all Gram-negative bacterial cells contain complex polymers 

called lipopolysaccharides (LPS) as their outermost layer. Besides providing an 

impermeable barrier against entry of harmful substances, LPS also interact with 

eukaryotic hosts (Newman and Erbs, 2003). In plants, LPS appear to interact with the cell 

wall by direct contact of the bacteria or by release of micelles containing LPS of the 

bacterial cell surface (Rudolph, 2001). Several data indicate that the LPS play a role in 

pathogenesis in susceptible hosts and in resistance induction in incompatible hosts (Laux 

et al., 1996; Müller et al., 1996). The effects of LPS on plant cells have recently been 

reviewed by Dow et al. (2000).  

 

The LPS have a “three in one” type of architecture, consisting of Lipid A, an 

oligosaccharide core region and a chain of repeating sugars or oligosaccharide units 

called O-chains or O-antigen (Fig 4.1). Gram-negative bacteria that are mutated and lack 

O-chains are referred to as rough forms because of their appearance on agar plates; they 

are usually avirulent in nature. The genes for the synthesis of LPS are distributed 

throughout the bacterial chromosome and have been well characterized in Ralstonia 

solanacearum (Kao and Sequeria, 1991), the causal agent of bacterial wilt in over 200 

host species (Yabuuchi et al., 1995). Several LPS genes are clustered in loci, the 

predominant cluster has been shown to be 6.5kb in length. 
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        Fig 4.1 General structure of bacterial lipopolysaccharides (Luderitz et al., 1982) 

 

 

 

The LPS molecules are anionic due to the presence of phospholipid groups and hence can 

bind to charged compounds e.g. pectins from hosts to form aggregates. The interaction of 

bacterial LPS with plant pectins has been studied in several host-pathogen combinations 

(Wydra, 1991; Grolms, 1996; Liehe, 1998; Laux, 1998; Venkatesh, 2002). The degree of 

interaction is influenced by various factors such as temperature, pH, and the presence of 

divalent cations as calcium or magnesium. 

 

In these studies, bacterial LPS and plant pectins mixed in vitro exhibited two types of 

rheological behaviour, synergistic and non-synergistic interaction. A synergistic 

interaction was almost always synonymous with a compatible combination while no 

synergistic interaction accompanied an incompatible combination of host and pathogen. 

A synergistic interaction in vitro can be directly related to conducive conditions in vivo in 
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which the bacteria can multiply (Laux et al., 1996; Grolms and Rudolph, 1997). Thus, it 

seems possible that the bacterial LPS and plant pectins are involved in specific host-

pathogen interactions. Graham (1983) suggested that the O-specific sugar moieties of 

LPS play a vital role in recognition by binding to a specific receptor on the host cell. 

Results of a study by Cody and Gross (1987) also suggest that these biopolymers indeed 

play a governing role in early pathogenesis. The host specificity of the Pseudomonas 

pathovars was suggested to be due to the specific structure of the LPS molecule, mainly 

the O-chain (Rudolph, 2001). 

 

LPS is thought to contribute to the restrictive membrane permeability properties of the 

outer membrane, allowing bacterial growth and survival in harsh environments which 

may include niches within eukaryotic hosts (Newman et al., 2000, 2001, 2003). It is not 

known whether direct contact is involved in LPS-mediated effects, but it has recently 

been shown that a network of functions required for virulence of R. solanacearum is 

activated by contact with plant cells (Aldon et al., 2000). Moreover, the outermost 

portion of the LPS molecule, the Oantigen chain, is not the active moiety in triggering 

plant responses. A significant fraction of LPS may be released from bacteria as micelles 

or blebs during growth (Beveridge, 1999) and this may be the form in which LPS 

interacts with eukaryotic cells. The most studied effect of LPS or LPS protein complexes 

on plant cells is its ability to prevent the hypersensitive response (HR) induced in plants 

by avirulent bacteria. Newman et al. (2001, 2003) studied this effect of LPS by 

infiltration of heat-killed R. solanacearum bacteria into leaves of tobacco which delayed 

or prevented the appearance of disease symptoms or the HR when the leaves were 

subsequently inoculated with live bacteria in compatible or incompatible interactions. 

The activity responsible for the prevention of HR was subsequently shown to reside in 

the LPS of R. solanacearum, specifically in the lipid A- core structure.  

 

In contrast, several reports have described defence-related responses induced by LPS 

treatment of plants. R. solanacearum LPS induced a polypeptide of unknown function 

and also soluble peroxidase activity (Leach et al., 1983). LPS of Xanthomonas 

campestris induced ß-1, 3-glucanase in Brassica sp. (Newman et al., 1995). Other 
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changes induced by LPS include induction of antimicrobial activity (Rathmell and 

Sequeira, 1975) and changes in plant cell wall ultrastructure (Graham et al., 1977). In 

addition to direct effects of LPS on gene expression, LPS pre-treatment of pepper leaves 

altered patterns of gene expression induced by subsequent challenge with bacteria. Genes 

encoding the PR-proteins and basic ß-1,3-glucanase were not induced by Salmonella 

minnesota LPS, but X. campestris LPS gave weak, transient expression (Newman et al., 

2000). However pre-treatment of pepper leaves with LPS from either source caused 

marked changes in degree of expression following subsequent challenge with X. c. 

campestris and X. c. vesicatoria (Newman et al., 2000, 2001). LPS is suggested to have 

sensitized the leaf tissue so that it reacted more rapidly and strongly to bacterial 

challenge.          

 

Bacterial wilt caused by R. solanacearum which is a highly variable species comprising 

five biovars and five races (Hayward, 1991). Race 1 strains occur in tropical areas and 

are highly diverse, as demonstrated by their wide host range including solanaceous crops. 

A population of R. solanacearum race 1 from tomato was analyzed for aggressiveness, 

idnetifying Taiwanese strains Pss 190 as most virulent on tomato and Pss 216 as the least 

virulent (Jaunet and Wang, 1999).  

 

Rheology is the science of deformation and flow of matter and involves the study of the 

manner in which materials respond to applied stress or strain. The word owes its origin to 

the greek words ‘panta rhei’ meaning ‘everything flows’. Rheology is a useful tool to 

study the physical properties of matter and has immediate applications in various fields 

such as geology, soil mechanics, polymer industries, bioengineering, cosmetics, 

pharmaceutics and in food industry. 

 

The ability of a polymer to form a gel depends on the molecular weight of the polymer 

and the nature of intermolecular interactions. These interactions have been broadly 

classified as Newtonian or non-Newtonian. By definition, Newtonian interactions have a 

straight line relation between the shear stress (the ratio of force to area gives a shear 

stress across the liquid and is usually expressed in Pascal, N/m2) and shear rate (the 
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velocity gradient which forms between the two surfaces gives a shear rate) with a zero 

intercept (τ = η x D, where η = viscosity, τ = torque, D = shear rate). All fluids that do 

not obey the above rule are known as non-Newtonian fluids (η = τ/D). The equations that 

relate the stress and strain are called rheological equations.  

 

 

             100  75  50  25         0   %Polymer1                      

  0   25  50  75       100     %Polymer2 

            
 
Fig 4.2 Theoretic curve showing mixture of two polymers: synergistic and     
 nonsynergistic effects. 
 
 
 

 

In synergistic interactions, mixing of polymers results in gels characterized by high 

rigidity and superior to that which would be expected from a linear combination of the 

rigidities of the gels formed by each individual polymeric component. Also, the addition 

of a small amount of a non-gelling polymer to a gelling one may induce a strengthening 

of the resulting gel or even, some polymers that are individually non-gelling can yield 

gels on mixing. Many mixed systems of polysaccharides show this highly specific non-

additive behaviour, which is currently termed synergism (Copetti et al., 1997).  
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But, such synergistic interactions occur rarely in nature, although several cases have been 

reported such as oil spill in marine life and plant viral synergism (Vance et al., 1995). 

Such intermolecular interactions are consequences of chemical, physical or 

thermodynamic factors and the interaction is a function of the different primary and 

secondary structures of the component chains in the polymer system. Cairns et al. (1997) 

classified the synergistic interactions between polysaccharides as single polymer network 

containing a second polymer, interpenetrating networks, phase-separated network, or 

coupled network, depending on the kind of polymer network that results from the 

interactions. 

 

In most cases studied, biological polymers such as LPS and plant pectins from different 

sources show no synergistic interaction or exclusion. Only in very rare cases the 

interaction between polymers of different origin is synergistic, leading to an increase in 

viscosity when two polymers are mixed. 

 

Studies by Wydra (1991) revealed an interaction between LPS of Pseudomonas syringae 

pv. phaseolicola and bush bean agglutinin, a pectic substance, resulting in an increased 

viscosity and yield stress when combining components of the compatible interaction in 

vitro. Grolms (1996) and Laux (1998) demonstrated that the bacterial LPS in general and 

their O-chains in particular bind to pectins from susceptible cultivars in several host-

pathogen systems. The molecular interactions of the compatible host-pathogen 

combination were always accompanied by an increase in viscosity and yield stress 

characteristic of a synergistic effect. An antagonistic phenomenon observed in 

incompatible combinations resulted in no synergistic effect or exclusion. 

 

To investigate possible interactions in the host-pathogen system R. solanacearum and 

tomato, in the present studies partially purified LPS preparations were obtained from 

strains R. solanacearum race 1, biovar 3 and partly characterized biochemically. 

Additionally, the interaction of these LPS-preparations with extracted pectins from stems 

of tomato was studied. 
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Thus, whenever a synergistic interaction between bacterial LPS and plant pectins was 

recorded, the pectins originated from leaves of a plant that was susceptible to the bacteria 

as reported for P. syringae pv. tomato (Venkatesh, 2002). Pectins in these systems have 

never been extracted from stems, which are the primary sites of multiplication of R. 

solanacearum  in tomato and of expression of resistance against this pathogen (Grimault 

et al., 1993, 1994). To further verify the hypothesis on involvement of LPS and pectin in 

the host-pathogen interaction we selected the R. solanacearum strain ToUdk2 race 1, 

biovar 3 from Thailand, characterized its LPS partly by chemical analysis and studied the 

rheological interactions of the partially purified LPS with pectins from both susceptible 

and resistant genotypes of tomato.  
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4.2 MATERIALS AND METHODS 

 

4.2.1 Growth media used in bacterial cultures 

 

The following media were routinely used for the growth and maintenance of the bacterial 

cultures. The composition of the media is given below. 

 

Nutrient broth 

Ingredient Concentration  

Yeast extract  1g 

Bacto peptone  10g 

Casamino acid   1g 

Glucose 10g  

dH2O  ad 1000ml 

 

Nutrient Glucose Agar (NGA)  

 

Ingredient Concentration  

Beef extract  3g 

Bacto peptone  5g 

D-Glucose  2.5g 

Agar  15g 

dH2O  ad 1000ml 
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4.2.2 Extraction of lipopolyssaccharides from strains of R. solanacearum (Westphal 

and Jann, 1965) 

 

LPS was extracted from R. solanacearum strains Pss190 and Pss216 obtained from 

AVRDC, Taiwan (Wang and Lin, 2002) highly and lowly virulent on tomato, 

respectively, and Pe104 and ToUdk2 obtained from Thailand (Thaveechai, Kasetsart 

University, Bangkok), with moderate and high virulence, respectively (Leykun, 2003). 

Hundred litres of nutrient broth supplemented with 1% (w/v) proteose peptone (see 

above) were inoculated with 3 L of preculture of strain Pss190 in a 100 L fermenter 

(Model U 100, Bauner + Diesel GmbH, Germany) maintained at 28 °C under permanent 

stirring and aerobic conditions. For the production of preculture bacterial cultures were 

initiated from single colonies grown on NGA agar medium and subsequently transferred 

to 100 ml of nutrient broth. After 24 h of growth at 28 °C under stirring, 1 ml of the 

culture was transferred to 3 L of nutrient broth to serve as the preculture. This production 

was conducted at the Institut für Mikrobiologie und Genetik, Universität Göttingen, 

laboratory of Prof. W. Liebl. The cells were harvested at mid-logarithmic phase after 30 h 

incubation at 28 °C (Fig 4.2.2) by centrifugation at 12,000 x g for 15 min. The pellets 

were suspended by swirling in a solution containing 0.1% (w/v) NaCl and 10mM EDTA, 

pH 7.0, and centrifuged at 10,000 x g for 20 min at 4 °C. Strain Pss190 was additionally 

produced in 10 L batch cultures (designated as Pss190-WW) at the Institut für 

Mikrobiologie, Universität Hannover, laboratory of Prof. Aulich. Strain Pss216 and 

strains Pe104 and ToUdk2 were produced in a 10 L fermenter and in 1 L batch cultures, 

respectively. In all extractions, the washing steps were repeated at least five times to 

remove the adsorbed exopolysaccharides (EPS) from the bacterial pellets. Cultures 

harvested from the 10 L fermenter and the 1 L batch cultures were centrifuged at 6,000 x 

g (Sorvall RC-5B refrigerated centrifuge, Sorvall, Germany). Additionally, strain Pss190 

produced in 20 L batch culture was washed only with distilled water or with EDTA (see 

above) to study the influence of differences in washings on LPS composition. Then the 

washed pellets were lyophilized. From the fermenter cultures and from other batch 

cultures about 10-40 mg/l pure LPS (see below) were received.    
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Fig 4.2.2 Growth curve of R. solanacearum strain Pss190 in 1 L batch cultures at 28 °C.  
Bacterial cultures were harvested at the mid-logarhythmic phase after 30 h incubation. 

 

 

LPS were extracted from the lyophilized bacterial pellets following the method as 

described by Westphal and Jann (1965). The lyophilized cells were suspended in water 

(15 ml/g dry weight). The slurry was warmed to 68 °C and mixed with an equal volume 

of 90 % (v/v) pre-warmed phenol (60 °C). The mixture was incubated at 68 °C in a water 

bath for 15 min with frequent stirring and cooled to 4 °C before centrifugation at 10,000 

x g for 20 min for phase separation (phenol and water phases). The upper aqueous phase 

containing LPS, polysaccharides, RNA and salts was carefully siphoned off and 

transferred to a sterile flask, and the lower organic phase containing proteins, lipids, 

phospholipids and DNA was dialyzed and then lyophilized.  
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                                         Inoculation (100 L with 3 L preculture) 
                                                ↓ 
                                         Incubation for 30 h and Harvest (centrifugation)  
                                                ↓ 
                                         Pellet + NaCl EDTA 
                                                ↓ 
                                        Centrifugation  
                                                ↓ 
                                        Washings 
                                                ↓ 
                                         Lyophilization 
                                                ↓ 
                                         Phenol precipitation   
                                                ↓                                  Phenol phase (PP) 
                                         Centrifuge (phase separation)        Water phase (WP) 
                                                ↓                                    
                                         Purification (enzyme treatment) 
                                                ↓ 
                                         Dialysis and lyophilization                            

Scheme for the extraction of bacterial lipopolysaccharides (Westphal and Jann, 1965) 

 

Purification of LPS 

 

The lyophilized crude LPS were dissolved in sterile water (5 mg/ml) and clarified by 

centrifugation at 10,000 x g for 20 min to remove insoluble materials. Protein and DNA 

contamination in the supernatant were determined spectrophotometrically at 260 nm and 

280 nm, respectively. The aqueous phase was then treated with RNAse (Sigma), 

proteinase K and DNAse (Sigma) (100 µg/ml each) at 37 °C overnight, followed by 

dialysis against demineralized water with frequent water change for 72 h at 4 °C to 

remove salts. The dialyzed sample was recovered by lyophilization. The purified LPS 

were then characterized biochemically. 
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4.2.3 Biochemical analysis of LPS 

 

The analyses were conducted in collaboration with U. Zähringer, Zentrum für Medizin 

und Biowissenschaften, Borstel, Germany. Generally all measurements were repeated 

three times and data given are means of three replicates. 

 

4.2.3.1 Phosphate analysis 

 

Phosphate was determined by the modified method of Bartlett (1959) as described in 

Gross (1990). LPS solution (2 mg/ml) and the standard NaH2PO4 (1 mM) (Sigma) were 

taken at different volumes (5, 10, 15, 20 µL) and dried overnight. To this 100 µL of the 

reagent containing 62.7 ml H2O, 30.6 ml H2SO4, and 6.7 ml 70% HCLO4 (Sigma) were 

added and incubated at 100 °C for 1 h and then at 165 °C for 2 h. The samples were 

cooled down to room temperature and 1 ml of reagent C (see below) was added and the 

mixture was incubated at 37 °C for 90 min and samples were read at 820 nm.   

 

Reagent A: 1 ml  1 M Na- Acetate solution (Sigma), 1 ml 2.5 % Ammonium-molybdate 

solution (Sigma), 7 ml H2O.  

 

Reagent B: 10 % Ascorbic acid (Sigma) 

 

Reagent C: 9 ml of Reagent A and 1 ml of Reagent B.    

 

4.2.3.2 Analysis of KDO  

 

The keto-deoxy sugar 2-keto-3-deoxy-octonate (KDO) was determined as described by 

Karkhanis et al. (1978). The LPS (2-4 mg/ml) were mixed with two volumes of 0.2 N 

H2SO4, heated for 30 min at 100 °C and centrifuged at 10,000 x g for 10 min. Five 

hundred µL of the supernatant were transferred to a clean test tube into which 250 µL of 

HIO4 [0.04M HIO4 in 0.125%(v/v) H2SO4] (Sigma) were mixed. After 20 min of 

incubation at 25 °C, 250 µL of NaAsO2 (Sigma) were added (2.6% NaAsO2 in 0.5 N 
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HCl). Immediately after the disappearance of brown color, 500 µL of TBA (0.6% 

thiobarbituric acid, dissolved in hot water) were mixed and the sample was incubated for 

15 min at 100 °C. While hot, 1ml of DMSO (Sigma) was added, and after cooling the 

optical density (OD) was read at 548 nm in a photometer at Zentrum für Medizin und 

Biowissenschaften, Borstel, Germany. 

 

4.2.3.3 Analysis of heptoses  

 

Heptoses were determined following the method of Wright and Rebers (1972). To 0.5 ml 

of LPS (2 mg/ml), 4.5 ml of H2SO4 (1 vol. H2O plus 6 vol. conc. H2SO4) were added on 

an ice bath. The sample was first incubated for 3 to 10 min at 0 °C and again for 3 min at 

25 °C. One hundred microliter of freshly prepared L-cysteine-HCl [3% (w/v) in water, 

were admixed and the sample was heated for 20 min at 100 °C. After incubating for 1 h 

at 25 °C, the absorbencies at 505 nm and 545 nm were read in a photometer. The 

difference in the absorptions (505 minus 545 nm) was used to quantify heptoses. 

 

4.2.3.4 Analysis of fatty acids  

 

Fatty acids were analyzed according to the method described by Smith et al. (1985). The 

LPS (2 mg/ml) preparations were hydrolyzed with a 1.5 % solution of acetyl chloride in 

methanol (100°C, 4 h) in sealed ampoules and analyzed on a GC 3400 gas 

chromatograph (Varian) combined with an ITD 800 mass spectrometer (Finnigan, 

Germany) and an IBM PC AT computer; a quartz capillary column packed with OV-

1701 (0.25 µm) was used. The temperature program started at 125 °C for 1 min and then 

increased at 7 °C/min to 275 °C, where it was held for 10 min. Identification of fatty 

acids was performed using a computer database of standard spectra from the National 

Bureau of Standards of the United States. 
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4.2.3.5 Analysis of sugars and amino acids 

 

LPS (2 mg/ml) were hydrolyzed with 2 M 1-2 N trifluoroacetic acid (4 h/100 °C) and the 

alditol acetates of the carbohydrates were analyzed by gas liquid chromatography (GLC) 

(Gross, 1990). Quantification of amino compounds was performed on an automated 

amino acid analyzer Kontron Chromakon 500 equipped with a Kontron Anacomp 220 

computer, after acid hydrolysis using 8M HCl at 100 °C at overnight incubation. 

 

4.2.3.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

 

LPS were separated on a 1 mm thick 10% polyacrylamide gel using a minigel apparatus 

(10 x 10 cm, Biometra Co., Germany). 
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Buffers, chemicals and reagents used for SDS-PAGE 

Acrylamide stock                                                          30% (w/v) acrylamide 

                                                                                      0.8% (w/v) bisacrylamide 

3X separating gel buffer                                              1M Tris- HCl, pH 8.8 

                                                                                       0.3% (w/v) SDS 

3X stacking gel buffer                                                  1M Tris-HCl, pH 6.8 

                                                                                       0.3% (w/v) SDS 

TEMED                                                                         10% (w/v) 

APS                                                                                10% (w/v) 

Denaturing buffer (5X)                                                  62.5 mM Tris-HCl, pH 6.8 

                                                                                       2% (w/v) SDS 

                                                                                       10% (v/v) glycerol 

                                                                                       0.002% (w/v) bromophenolblue 

Electrode buffer (10X)                                                  400mM Tris pH 8.3 

                                                                                       600mM glycine  

                                                                                       1% (w/v) SDS 
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Table 4.2.3.6 Formulation for preparing a 1mm-thick acrylamide gel 

Ingredients                                      Separating gel (10%)                   Stacking gel (3%) 

Acrylamide stock solution                             2.0 ml                                        250.0 µl 

Separating gel buffer                                     2.0 ml                                              -          

Stacking gel buffer                                          -                                                500.0µl     

TEMED                                                        100.0 µl                                       50.0µl 

APS                                                               15.0 µl                                        15.0 µl                                        

Double-distilled water                                   3.0 ml                                         1.75 ml   

  

Procedure for preparing the polyacrylamide gel 

The glass plates were cleaned with 70% ethanol and air-dried. A polymerization cassette 

was made using the two glass plates. All the constituents for the separating gel except 

ammoniumpersulphate (APS) and TEMED were added in a 10ml side arm Erlenmeyer 

flask. The flask was sealed with a rubber stopper and de-aerated. APS and TEMED were 

added and the mixture was dispended between the sandwiched glass plates, overlaid with 

water-saturated iso-butanol or water and allowed to polymerize. A 3% stacking gel was 

prepared as described above and layered over the polymerized separating gel. A comb 

was fixed and the gel was allowed to set for at least 1 h. 

Preparation of LPS samples 

Aqueous suspensions of LPS (0.2-0.4 mg/ml) derived from the strain Pss 190 were mixed 

with one fifth volume of 5 X denaturing buffer (to a final concentration of 1 X) and 

incubated at 65 °C for 75 min under stirring.  
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Electrophoresis conditions  

Ten microliters containing 2-4 µg LPS were loaded per well, and the gel was subjected to 

electrophoresis at 8 V for 30 min (stacking phase) and at 100 V for 1 h for separation. 

Staining 

Following electrophoresis, the LPS were detected on the gel by silver staining as 

described by Heukeshoven and Dernick (1988).  

           Steps                                                            Solutions 

1.     Fixing (2 h)                                                              30% (v/v) ethanol 

                                                                                         10 % (v/v) acetic acid 

2.     Incubation (2 h)                                                        30% (v/v) ethanol  

                                                                                          0.5 % (w/v) sodium acetate 

                                                                                          0.5% (v/v) glutaraldehyde 

                                                                                          0.2% (w/v) sodium thiosulphate 

3.     Washing (H2O, 3 x 10 min)                                     double distilled water 

4.     Staining (45min)                                                       0.1% (w/v) AgNO3 

                                                                                          0.01% (v/v) formaldehyde 

5.     Developing (3-10 min)                                             2.5% (w/v) Na2CO3 

6.     Stopping (5-10 min)                                                 500mM EDTA 

7.     Washing (3 x 10 min)                                              double distilled water  
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4.2.4 Rheological interactions between plant pectins/ bacterial LPS 

 

Lipopolysaccharides were extracted from R. solanacearum strain ToUdk2 as described 

under section (4.2.2). Pectins were obtained from stems of susceptible (L390) and 

resistant (H7996) genotypes of tomato (section 1.2.2). Ten milligrams and 50 mg of 

pectins and 5 mg of LPS were dissolved each in 1 ml of demineralized water separately. 

Plastic viscosity and shear stress of the solutions were measured separately and later in 

mixtures for combinations of different quantities of LPS with pectin of tomato genotype 

L390 (susceptible) or pectin of tomato genotype H7996 (resistant): 80:20, 60:40, 40:60, 

20:80 in a total volume of 500 µL. Pectins (10 mg and 50 mg) extracted from stems in 

triplicate from each genotype were mixed with LPS (5 mg) and each combination was 

run on a viscometer thrice. 

 

Equipment used  

Rheological experiments were conducted using a rotation viscometer (Brookfield Model 

DV-III, Karlsruhe, Germany) with a CP 4/40 cone plate according to the manufacturer’s 

instructions. The rheometer was calibrated initially using the Brookfield standard oil for 

70 cycles. The viscosity measurements were averaged over 40 seconds for 70 cycles in 

total. The temperature was maintained by means of a circulating water bath at 21 °C 

during the measurements.  

 

Mathematical calculations  

Plastic viscosity and shear stress were measured and yield stress (τ0) and consistency 

index (k) were calculated using Bingham’s and Power’s equations using the software 

WinGather V1.1. provided by Brookfield Engineering Laboratories Inc., Middleboro, 

USA. All rheological data were processed using the Microsoft Xact 6.0 computer 

program for graphics. 
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Bingham’s equation   

                                                            τ = τ0 + ηD 

τ = shear stress, τ0 = yield stress (shear stress at zero shear rate),  

η = plastic viscosity, D = shear rate 

 

Power’s equation 

                                                             τ = k Dn 

 τ = shear stress, D = shear rate, k = consistency index, n = flow index 
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4.3 RESULTS 
 
 
4.3.1 Biochemical analysis of LPS from R. solanacearum 

 

LPS were extracted from strains Pss 190, Pss 216, Pe 104 and Toudk2. LPS extracts from 

the water phase and the phenol phase from all above R. solanacearum strains and 

additionally the treatments of strain Pss190 water washed (Pss190-WW) and EDTA 

washed (Pss190-EW) were treated with RNAase, DNAase and Proteinase K to further 

purify the LPS before their chemical composition was analyzed. The analysis of strains 

Pss190-EW washed with EDTA solution and Pss190-WW which was washed with 

distilled water did not show clear differences (table 4.3.1). Similarly, the composition of 

LPS from the lowly virulent strain Pss 216 and the moderately virulent strain Pe 104 

produced in 10 L and 1 L batch cultures, respectively, purified LPS was obtained. The 

LPS of the Thai strain To-Udk2 was used in our plant inoculation studies (see below).   

The 1 L batch cultures of To-Udk2 also produced pure LPS which were further 

characterized biochemically. 

 

The LPS extracts from strains Pss190-EW and Pss190-WW did not show clear 

differences in the chemical composition (table 4.3.1). In the water phase extracts, which 

normally contain the major part of the extracted LPS, the total phosphate content which is 

a part of the Lipid A and the core region, was 124-206 nmol/mg of LPS across strains. 

About 40-80 nmol/mg of keto-deoxy sugar (KDO) which is typical for the core region, 

were obtained. The heptose content, another component typical for the core region was 

determined in both the water and phenol phases with 38-137 nmol/mg of LPS.  

 

The monosaccharides rhamnose, glucose, arabinose are typical components of the O-

chain. Among them, rhamnose was the most dominant, followed by glucose, with 904-

1299 nmol/mg of rhamnose in the water phase and 149-651 nmol/mg in the phenol phase, 

and 55-247 nmol/mg LPS of glucose in the phenol phase across treatments and strains.  
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A dimer of acetylated amino sugars N-acetylglucosamine/mannosamine was generally 

detected in both phases in high quantity, while ethanolamine phosphate was detected in 

high quantity in the water phase and lower quantity in the phenol phase and N-

acetylgalactosamine was generally not detected or in some cases in small quantities. 

These amino sugars typical for the LPS were observed in all our R. solanacearum strains. 

The analysis of fatty acids which constitute the Lipid A region of LPS showed the 

presence of tetradecanoic acid (C14:0), hexadecanoic acid (C16:0), 9-octadecanoic acid 

(C18:1), and 3-hydroxy-tetradecanoic acid (C3OH-14:0) in water and phenol phases 

across strains and treatments.  

 

The amino acids alanine and glycine typical for the core region of LPS were present in 

both the phases at 83-204 nmol/mg, and 39-83 nmol/mg, respectively, in the water phase 

and 345-611 nmol/mg and 91-187 nmol/mg, respectively, in the phenol phase of LPS in 

all the strains of R. solanacearum. 

 

The biochemical analysis revealed the typical composition of LPS in the R. 

solanacearum strains without major differences among them.  

 

 

 

 

 

 

 

 

 
 
 
 



RESULTS  127 

Table 4.3.1 Chemical composition of the lipopolysaccharides from R. solanacearum 
strains Pss190-WW, Pss190-EW, Pss216 and Pe104 obtained from the  water phase (WP) 
and phenol phase (PP)  after purification with enzymes (DNAase, RNAase, and 
Proteinase K). KDO: 3-deoxy-D-manno-octulosonic acid, PO43-: phosphate, C14:0: 
tetradecanoic acid, C3OH-14:0: 3-hydroxy-tetradecanoic acid, C16:0: hexadecanoic acid, 
C18:1: 9-octadecanoic acid, GalN: N-acetylgalactosamine, Etn: ethanolamine phosphate, 
GlcN/ManN: N-acetylglucosamine / N-acetylmannosamine.  
 
 
 
    
 

nmol/mg
WP PP WP PP WP PP WP PP

KDO 76 - 52 - 40 - 56 -
HEXN 114 - 240 - 190 - 105 -
PHOSPHATES 184 - 206 - 148 - 124 -
NEUTRAL SUGARS
Rhamnose 960 490 938 149 1299 651 904 365
Arabinose 0 22 0 0 0 27 0 0
Glc 94 86 202 247 95 65 202 55
Heptose 135 137 105 - 118 81 101 38
FATTY ACIDS
C14:0 35 69 49 - 68 46 37 40
C3OH-14:0 86 176 110 - 157 121 99 103
C16:0 3 21 5 4 5 16 3 12
C18:1 0 11 7 0 6 13 8 9
C2OH-14:0 7 13 9 0 13 9 8 9
AMINO SUGARS
GalN 0 12 42 47 0 0 0 0
EtN 443 20 199 16 113 21 720 6
GlcN+ManN 403 387 544 202 590 320 535 75

Pss190-WW Pss190-EW Pss216 Pe104

 
 
 
 
           1 Pss 190-WW = R. solanacearum strain Pss190 water washed, Pss 190-EW =    
          EDTA washed 
           2 WP = water phase, PP = phenol phase 
           3 not determined 
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Fig 4.3.3 LPS was extracted by the hot phenol-water method of Westphal and Jann 
(1965) and resolved on a 10% polyacrylamide gel and visualized by silver staining.  
Lane 1: protein standard Serva P4 (2µg), Lane 2: E. coli O111 LPS, Sigma (2µg), Lane 3: 
E. coli F515 LPS SB 111,66 (1µg), Lanes 4 & 5: R. solanacearum LPS strains Pss190 
(3µg).  
 
 
 

 

 

The LPS extracted from R. solanacearum strains Pss190, Pss216 and Pe104 were 

characterized by SDS-PAGE. After staining with silver a characteristic ladder-like 

pattern (Fig 4.3.3) was obtained. The ladder-like part represents the O-antigen region. 

The form of LPS as revealed by gel electrophoresis was the smooth (S) type.  

 SDS-PAGE analysis for roughandsmoothtype LPS:

Coomassie-gel Silver stain-gel
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The highest mobility bands of LPS from Rs (lanes 4 & 5) differed from those of the LPS 

standards used (lanes 1, 2 & 3). For all the strains similar ladder-like patterns were 

observed.  

 

4.3.2 Interaction studies between bacterial LPS and plant pectins 

 

Interactions between bacterial LPS and plant pectins were measured as changes in 

viscosity and shear stress in a cone plate viscometer for minimal quantities (<500 µl) at 

the concentration of 10 mg/ml and 50 mg/ml (pectins) and 5 mg/ml LPS. 

 

No synergistic effects indicated by increased viscosity were recorded in various mixtures 

of lipopolysaccharides of R. solanacearum strain ToUdk2 and pectins from stems of 

susceptible genotype L390 (data not shown), nor were any significant changes in the 

viscosity measurements observed for any combination of R. solanacearum LPS with 

pectins from the resistant genotype H9776 (Fig 4.3.4). The figures obtained were similar 

for both resistant and susceptible genotypes hence only resistant H7996 is shown in the 

below given fig.  
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Fig 4.3.4 Rheological properties measured as increase in viscosity in mixtures of LPS 
from R. solanacearum strain ToUdk2 (5 mg/ml) and pectins (50 mg pectin/ml) from 
resistant (H7996) genotype of tomato measured in a cone-plate rheometer. No synergistic 
(gel formation) nor inhibitory interaction was observed in mixtures. Blue curve: pectin 
from L390, Light green, red, light blue curves: LPS (repeated three times), Mixtures: 
LPS:pectin (L390) yellow curve= 80:20, dark blue= 60:40, green= 40:60, brown= 20:80 
 
 
 
                             
                              

 
 

Rate [s-1]

LPS
Pectin

Pectin

Pectin + LPS

}

}
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4.4 DISCUSSION 
 

The typical components of the LPS core from pseudomonads such as glucose, rhamnose, 

heptoses, glucosamine, galactosamine, 2-keto 3-deoxy-D manno-octonic acid (KDO), 

alanine, glycine and phosphate were detected in the LPS from R. solanacearum by 

biochemical analysis. The presence of rhamnose was also observed in the phenol phase 

indicating that the LPS was also present in the phenol phase (PP). The presence of high 

amounts of rhamnose is in line with the observations in phytopathogenic strains of 

Pseudomonas pvs. in which the predominant hexose sugar is rhamnose (Basu, 1991; 

Laux, 1998; Müller, 1998; Janson, 1999; Verbanets et al., 2003). The core also contained 

rare components such as galactose, ribose, and arabinose as also observed by Varbanets 

et al. (2003) in R. solanacearum strains. Galactose was previously revealed in the core 

oligosaccharides of the LPS from Salmonella enterica and E. coli strains whereas 

arabinose was found in the core oligosaccharides from P. mirabilis (Holst, 1999). KDO 

and heptose contents are routinely tested in LPS analysis since these compounds serve as 

valuable markers for LPS. 

 

The lipid A part of Ralstonia solanacearum is highly phosphorylated. Also strains of P. s. 

pv. tomato were reported to contain highly phosphorylated lipid A cores (Das et al, 

1994). A possible role of the degree of phosphorylation of LPS in modulating the 

function of the outer membrane as a permeability barrier has been discussed (Ray et al., 

1994).  

 

The detection of dimers of galactosamine and mannosamine in the water and the phenol 

phases are suggested to be the result of the incomplete separations of the LPS in the 

phenol extraction, probably due to incomplete phase separation through contamination of 

the fractions with extracellular polysaccharides and proteins. The tetradecanoic acid, 

hexadecanoic and octadecanoic acids of the lipid A fraction was reported to be a 

distinguishing feature of R. solanacearum strains (Varbanets et al., 2003). The profile of 

3-hydroxy acids in lipid A fraction of R. solanacearum can serve as an additional 

chemotaxonomic criterion for the elucidation of the phylogenetic relationship between 
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microorganisms (Stead, 1992). Also in other studies with Pseudomonas syringae strains 

decanoic and dodecanoic acids were observed (Venkatesh, 2002). The component 

analyses of the hydrophobic lipid A of Pseudomonas syringae pv. apii showed the 

presence of the 2-hydroxy-dodecanoic acid, 3-hydroxy-decanoic acid, decanoic acid and 

3-hydroxy-dodecanoic acid in the ratio of approximately 2:2:1:3. Various authors 

suggested, that dodecanoic acid is a distinguishing feature of the lipid A fraction for 

Pseudomonads, such as P. s. pv. apii, P. s. pv. tomato (Müller, 1998), P. aeruginosa, P. 

acidovorans, P. syncyanea, P. putida and P. aminovorans (Das et al. , 1994, Wilkinson, 

1977). In P. s. pv. syringae, P. s. pv. phaseolicola and P. s. pv. atrofaciens C16:O, 

C18:O, C16:1 and C18:O were detected in addition to the four fatty acids mentioned 

above (Zdorovenko et al. , 2001). Nevertheless, differences among the pseudomonads 

were also observed. Thus, LPS from P. s. pv. apii seems to possess a fatty acid profile 

that is similar to that of P. s. pv. tomato but different from that of P. s. pv. phaseolicola 

or P. s. pv. atrofaciens. Distinctions in the composition of fatty acids were also observed 

between individual strains belonging to the species B. cepacia and R. solanacearum 

(Stead, 1992). But, in our studies we could not detect differences between strains of R. 

solanacearum using these general analysis methods. In the studies performed by 

Montrozier and Cerantola, (1997) the isolate of B. cepacia elaborates two LPS-related 

polymers with linear and trisaccharide repeating units. Hence, simultaneous production of 

more than one Oside chain by Gram-negative bacteria is not unusual. This has been also 

noted for another Burkholderia species, B. pseudomallei (Knirel et al., 1992; Perry et al., 

1995) and a number of other organisms like P. aeruginosa and also R. solanacearum 

(Kocharova et al., 1993). Another characteristic is the occurrence of the less usual D-

isomer of rhamnose as described for B. cepacia by Shashkov et al., (1986) which is also 

known to occur in other organisms such as E. coli, R. solanacearum and several 

pathovars of Pseudomonas syringae (Ovod et al., 1996; Knirel et al., 1994). 

Nevertheless, the L-isomer is also found in O-antigens of other strains of B. cepacia.       

 

Alanine, cysteine and glycine have been reported as typical amino acid components of 

LPS from the pseudomonads (Das et al., 1994). However, the LPS of R. solanacearum 

showed no presence of cysteine.  
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LPS from R. solanacearum were characterized by SDS-PAGE and visualized by silver 

staining. The electrophoretic behavior of LPS in the presence of SDS reflects its basic 

structure. The typical ladder-like pattern was observed indicating a smooth (S) type of 

LPS which has the O-chain. This pattern is due to the heterogeneity of the length of the 

antigenic side-chain in the LPS molecules (Goldman and Leive, 1980; Palva and Mäkelä, 

1980). Also in other Gram-negative bacteria the ladder-like pattern of the O-chain was 

observed. Thus, Ovod et al. (1997) reported that some strains of P. syringae have 

identical O-chain repeats (e.g. P. s. pv. apii and P. s. pv. tomato or P. s. pv. cannabina 

and P. s. pv. maculicola). Also Varbanets et al. (2003) reported that the structure of the 

O-PS varies with the strain, and different types of the O-PS structure may occur in one 

strain.  

 

In in vitro interaction studies mixing bacterial LPS with pectins of stems of the 

susceptible genotype L390 no significant increase in viscosity (data not shown) was 

observed, and, also, no synergistic interaction nor an inhibitory effect after mixing LPS 

with pectin from the resistant genotype H9776 (fig: 4.3.4) could be demonstrated. In 

other host-pathogen systems, synergistic interactions were observed in mixtures of LPS 

from P. s. pv. tomato with pectins from leaves of a tomato cultivar susceptible to P. s. pv. 

tomato race 0 and race 1 (Grolms, 1996). Synergistic interactions have also been reported 

in compatible combinations of LPS from P. s. pv. phaseolicola and pectins from leaves 

of its susceptible host, the bush bean cv. Red Kidney (Wydra, 1991; Laux, 1998), P. s. 

pv. coriandricola and the susceptible coriander cv. Corry (Liehe, 1998), and, more 

recently, between LPS from X. axonopodiss pv. manihotis and pectins from young leaves 

of the susceptible cassava cv. Ben 86052 (Witt, pers. communication). 

 

Although our rheological experiments revealed no interaction between LPS of R. 

solanacearum with pectins from the susceptible nor the resistant tomato genotypes, 

former studies suggested an interaction of cell wall components of R. solanacearum with 

tobacco cell walls, inducing disease resistance in tobacco whereby bacterial cells became 

immobilized at their binding site through an envelopment process which involves an 

active restructuring of the plant cell wall surface (Goodman et al., 1976; Graham et al., 
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1977). This binding and encapsulating process has not been observed in a susceptible 

interaction, when the virulent bacteria remain free and multiply in the intercellular space 

(Anderson and Jasalavich, 1979; Rudolph and Mendgen, 1985). In light of the fact that 

bacterial LPS bind chemically to plant pectins via H-bonds or Van-der-Waals forces it 

has been speculated that the viscous gel that results from a compatible combination 

serves as a reservoir of water where the bacteria can survive, multiply and further the 

infection process. 

 

No synergistic interactions were in general apparent in compatible nor incompatible 

combinations. Our results could not support the hypothesis that bacterial LPS are actively 

involved in interactions with pectic plant cell wall components, although these 

observations in the mixture of LPS and pectin could be due to low purity of the pectins 

and the method adopted for extraction. Pectic polymers require a specific length of the 

side chain for entanglements, too short or too long side chains will inhibit getting 

entangled (Schols & Voragen, 2003). Our extracted pectins also had too many branches 

which could be reason for observing no interaction between the two polymers (pectins 

and LPS). The impurities like EPS during the LPS extraction could also contribute to the 

non-entanglements of the bacterial and pectic polysaccharides.  
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4.5 SUMMARY 

 

LPS were extracted from R. solanacearum strains Pss190, Pss216, Pe104 and Toudk2.  

The biochemical analysis revealed the typical composition of LPS in the R. 

solanacearum strains without major differences among them. Comparing LPS extracts 

from strains which were EDTA-washed and water-washed before extraction, no clear 

differences in the chemical composition were detected.  

 

The total phosphate content was 124-206 nmol/mg of LPS across strains, and 40-80 

nmol/mg of keto-deoxy sugar (KDO) was determined. The heptose content, was 

determined in both the water and phenol phases with 38-137 nmol/mg of LPS. Among 

the monosaccharides, rhamnose was the most dominant, followed by glucose, with 904-

1299 nmol/mg in the water phase and 149-651 nmol/mg in the phenol phase, and 55-247 

nmol/mg LPS of glucose across treatments and strains. The amino sugars N-

acetylglucosamine/mannosamine typical for the LPS were observed in all our R. 

solanacearum strains. The analysis of fatty acids showed the presence of R. 

solanacearum-characteristic tetradecanoic acid (C14:0), hexadecanoic acid (C16:0), 9-

octadecanoic acid (C18:1), and 3-hydroxy-tetradecanoic acid (C3OH-14:0).  

 

The amino acids alanine and glycine typical for the core region of LPS were present in 

both the phases at 83-204 nmol/mg, and 39-83 nmol/mg, respectively, in the water phase 

and 345-611 nmol/mg, 91-187 nmol/mg, respectively, in the phenol phase of LPS in all 

the strains of R. solanacearum. 

 

The LPS were characterized by SDS-PAGE and visualized by the silver staining method. 

A characteristic ladder-like pattern indicating the presence of smooth type LPS was 

observed. 

 

No synergistic nor inhibitory effects were recorded in various mixtures of 

lipopolysaccharides of R. solanacearum strain ToUdk2 and pectins from stems of 

susceptible and resistant host plants, respectively, and hence no interaction observed. 
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CONCLUSIONS 

 

The present studies elucidate the role of pectic polysaccharides and AGPs from tomato 

genotypes in resistance to R. solanacearum. The data suggest a relationship between 

susceptibility or resistance to bacterial wilt and the properties of the pectic fractions and 

AGPs of stems. 

 

Although useful levels of resistance have been obtained in some crop species such as 

tobacco and groundnut, breeding of tomato lines with stable resistance to R. 

solanacearum has so far met with only limited success. Genetic analysis resulted in the 

detection of general and specific quantitative trait loci important for resistance. 

Genetically characterized individuals are available which can now be used to create 

further lines that lack or possess known combinations of the different resistance loci for 

molecular or cytological studies. The increased awareness of the complexity and dynamic 

nature of the pectic network has been largely due to the development of appropriate tools 

to determine its structural complexity and to dissect this complexity at the cell biological 

level. Isolation of the cell wall polysaccharides from tomato stems yields a fraction 

containing almost all polysaccharides present and few other components. These pectic 

fractions composed of homogalacturonans (HGs) differing in the degree of 

methylesterification and of rhamnogalacturonans (RG) I, which are rich in galactose and 

arabinose, which occur as side chains, and RG II, extracted by the chelating agents are 

usually contaminated with considerable amounts of hemicelluloses. The neutral 

components of pectin are known to belong to the most variable biological molecules and 

were therefore chosen for further studies on their involvement in the resistance reaction.  

 

The use of the chelating agent EDTA for extracting pectins from the cell walls led to the 

removal of only negligible amounts of uronic acids which form the backbone of the 

homogalacturonan molecule. The low content of uronic acids in the pectic polymers is 

typical for pectins derived from primary cell walls. The elevated levels of rhamnose 

indicate the presence of a rhamnogalacturonan, and high levels of arabinan and galactan 

in our pectins may derive from side chains of RG I, arabinogalactan proteins or galactans 
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and arabinans, which have been described as branched or hairy regions, probably 

occurring in covalent association with pectins (Willats et al., 1999). Thus, the range of 

pectic polysaccharides demonstrated by biochemical and immunochemical analysis of 

stems of tomato genotypes resistant and susceptible to R. solanacearum is typical for the 

presence of highly branched pectins in the tomato stems. 

 

The degree of methylation of HGs was observed to be higher in tomato genotype H7996 

resistant to R. solanacearum than in the susceptible genotype. It is suggested that the high 

degree of pectin methylation could be one of the factors contributing to the resistance of 

genotype H7996 to R. solanacearum.  Also in other host-pathogen systems such as potato 

and Erwinia carotovora subsp. atroseptica and tomato and Pseudomonas syringae pv. 

tomato pectins of the resistant genotype were higher methyl-esterified. It is suggested that 

these genotypes are less easily degraded by pectinolytic enzymes, which cannot act on 

branched or highly methylated galacturonans (McMillan et al., 1993; Venkatesh, 2002). 

In a susceptible genotype differences in the esterification degrees and patterns were found 

due to pathogen activity after infection of tomato with R. solanacearum by immuno-

histological studies.  But, in case that HGs can be degraded by pathogen enzymes, 

degradation products such as oligomeres of galacturonic acid are also known to elicit 

defense responses in resistant genotypes. Thus, the degree of pectin methylation can only 

be one factor among others that control the resistance of a given genotype; accumulation 

of hydroxyproline rich glycoproteins and production of phytoalexins, lectins and 

proteinase inhibitors must also be taken into account.  

 

We believe that immunoprofiling complements the repertoire of techniques currently 

available for pectin analysis and has considerable potential in applications where the 

rapid analysis of small amounts of material is required. Furthermore, although the assays 

we have described have been applied specifically to pectic polysaccharides and AGPs, 

this type of assay could readily be extended to other polysaccharides or macromolecules 

with the use of antibodies of appropriate specificities.  These antibodies are to complex 

carbohydrates. Serendipity might play a role in antibody selection and can lead to the 

isolation of antibodies with the specificities of interest. Antibodies can be used in a range 
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of approach and techniques that can extend to the localization of these epitopes in the 

plant material (Schols and Voragen, 2003).  

 

Our result showed the differences between the resistant and the susceptible tomato 

genotypes, and further investigations with genotypes representing near isogenic lines 

differing in resistance to bacterial wilt were carried out to confirm these preliminary data. 

Our results also showed that the extracted pectic polysaccharides from both resistant and 

susceptible genotypes had no influence on R. solanacearum to enter the viable but non-

culturable (VBNC) state. This does not exclude a possible interaction of pectic 

polysaccharides with the pathogen in planta, causing a change in the bacterial condition. 

Tissue prints also showed an increased labeling after inoculation with R. solanacearum 

with the specific antibodies indicating an increase in the pectic polysaccharide epitopes 

galactan and arabinan in xylem vessels of the resistant genotype and galactan, arabinan 

and arabinogalactan protein as well as HG with a more homogeneous degree of 

esterification in the xylem parenchyma of the susceptible genotype. The increased de-

esterification in a homogeneous pattern after inoculation may be due to the activity of 

pectin methylesterase of Rs, an enzyme which was shown to be involved in the 

pathogenesis of bacterial wilt. Galactans and arabinans are the first defined epitopes 

occurring in the side chains of pectic polysaccharides to be immunolocalized in the 

developing plants. The side chains of RG I domains may affect the accessibility by 

enzymes with wall modifying properties to the sites of action within the cell wall matrix. 

Thus, it may be speculated that a higher concentration of side chains of RG I as detected 

for galactan and of arabinan in xylem vessels of the respective resistant isogenic lines 

cannot easily be degraded by enzymes of the pathogen. Additionally, a high content of 

branched RG I makes pectin a less suitable gelling agent (Ryden and Selvendran, 1990), 

which would create more unfavourable conditions for a bacterial pathogen which in a gel 

is well protected against desiccation and resistance mechanisms of the plant. Ralstonia 

uses pectic enzymes as pathogenicity determinants when infecting tomatoes, although 

relative virulence is affected by the effect of temperature on enzyme production.  
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Wilting of plants infected with bacteria has been connected with a blocking of water 

conductance resulting from mechanical plugging of xylem vessels. For bacterial wilt of 

tomato, plugging of vessels has been described in connection with bacterial masses, 

exopolysaccharide (EPS) produced by R. solanacearum, or tyloses.  Occlusion of vessels 

by gels is a common phenomenon following infection of both susceptible and resistant 

genotypes of many species by bacterial pathogens. The present studies showed that R. 

solanacearum infects tomato at the vascular tissues and these tissues are rich in different 

types of pectins. If pectins with gelling properties are present, occlusion of vessels by 

interaction of pathogen- and plant derived poylsaccharides might be enhanced and 

infection facilitated, and thus these pectins might contribute to a fast establishment of the 

disease in a susceptible gentoype.  

 

The biochemical analysis of lipopolysaccharides of R. solanacearum strains revealed the 

typical composition of LPS in the R. solanacearum strains without major differences 

among them. The rheological interactions between the plant pectins and bacterial LPS 

were measured. No synergistic effects such as increases in viscosity were recorded in 

various mixtures of lipopolysaccharides of R. solanacearum strain ToUdk2 and pectins 

from stems of susceptible host plants. Our results could not support the hypothesis that 

bacterial LPS are actively involved in interactions with pectic plant cell wall components, 

although these observations in the mixture of LPS and pectin could be due to low purity 

of the pectins and the method adopted for extraction. LPS impurity with EPS could also 

account for non-entanglements of the two polymers. 

 

The present study strongly supports the hypothesis that susceptibility was related to cell 

wall pectin esterification. Higher labeling of homogeneously esterified pectic 

polysaccharides in host cell walls of the susceptible gentoype compared to a blockwise 

esterification with lower concentration of methylesters in the resistant genotype may 

indicate that these pectins exert a number of effects contributing to defense reactions 

against R. solanacearum. They may act along with other defense responses such as 

deposition of lignin and formation of cell wall appositions.  
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After inoculation with R. solanacearum, dramatic cell wall changes were observed in the 

susceptible genotype (L390), as indicated by increased labeling with all the antibodies. 

The present study demonstrates that pectin is degraded during stem colonization of 

tomato genotypes by R. solanacearum. Our results also show that alteration of pectic 

polysaccharides could result from bacterial pectinases and suggests that degradation of 

these polymers mostly occurs during xylem colonization in the stems. These observations 

on the distribution of pectin epitopes in plant tissues at the level of cells, and tissue 

systems would appear to be novel in terms of the understanding of the biology of pectins. 

To resolve the roles of pectins will require monitoring the degree of esterification and the 

distribution of methyl esters in a series of stem cuts at different stages of plant maturity.  

 

Immunocytochemical investigations with monoclonal antibodies specific for epitopes of 

pectins revealed differences between healthy tomato genotypes H7996 and L390, 

resistant and susceptible to bacterial wilt, respectively, in structure and composition of 

their pectic cell wall components and arabinogalactan proteins. In our resistant (H7996) 

and susceptible (L390) genotypes no significant diference was observed in labeling with 

JIM5 and JIM7. Specificity of JIM5 makes it a highly selective probe for low methyl-

esterification regions of HG, which are thought to be a major factor in the cross-linking 

of HG chains by calcium ions and thereby gel formation by HG domains (Schols & 

Voragen, 2003). The immunological results presented a more blockwise distribution of 

the methyl esters in HG from resistant tomato genotypes and a non-blockwise distribution 

(LM7) in the HG from susceptible plants. In our tomato genotypes we did not observe 

any relation between the degree and pattern of methyl esterification of HG, as has also 

been reported by Willats et al., (2001) where they suggested that LM7 epitope contains 

both methyl esterified and un-esterified Gal A residues. It has been observed that some 

plant PMEs may have a non-blockwise action pattern as reported in pea stems (Willats et 

al., 2001). More Interestingly, inhibitor proteins of plant PMEs have been identified that 

modifies the resulting distribution of methyl esters within the HG polymers, possibly 

shifting from a blockwise towards a more random pattern (Moerschbacher, 2003).  
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Studying the pectic epitopes after inoculation with R. solanacearum, the increased 

labeling with LM7 indicates the possible action of pathogen PME, resulting in non-

blockwise de-esterification. The mode of action of the pathogen PME on plant 

polysaccharides has not been described before. The high level of pectin with non-

blockwise de-esterification of methyl-ester groups were observed in single vessels and 

around vessels in the inoculated susceptible genotype L390. The high labeling of the 

pectic galactan and arabinan epitopes may also be related to the presence of the low 

methyl-esterified HG in the cell walls of the susceptible genotype after inoculation. 

Hence our results show for the first time which pectin compounds of the plant cell wall R. 

solanacearum is capable to degrade. In the resistant genotype after inoculation the 

epitopes of arabinan and galactan side chains of branched pectins showed significantly 

increased labeling. The greater binding of LM5 and LM6 may be because of epitope 

accessibility at lower DE due to pathogen action is increased by conformational changes 

in pectin structure. Methylation of the carboxyl groups of galacturonic acid and the 

formation of bridges between rhamnogalacturonan chains offer resistance to certain 

pectic enzymes as does calcium, and together they confer the gelling property of pectic 

substances which suggests the restricted movement of bacteria in the resistant genotype 

by formation of a barrier, and at the same time in susceptible genotype forms favorable 

conditions by providing the nutrients for the bacteria to grow as the cell wall thickening 

formed is not strong enough to restrict the bacterial movement.   

 

The inhibition of the bacterial growth maybe simply due to the failure of the resistant 

plant to provide the host factors (i.e. nutrients) necessary for the multiplication of the 

pathogen. Susceptible plants that provide these host factors may allow bacteria to grow 

rapidly and cause disease. Although Pagel and Heitfuss (1989) found that potato tuber 

rotting susceptibility of six cultivars was inversely related to cell wall pectin 

esterification, other studies (Weber, 1990) reported the converse. However, as presented 

also in our study, the ranges of resistance and pectin esterification in the tomato 

genotypes against Rs, used were too narrow to draw firm conclusions.   
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AGPs might contribute to cell wall thickening by association with other cell surface 

molecules or with one another. For example LeAGP-1 (Chapter III) was reported to 

interact with pectin by clusters of basic amino acid residues or by Ca2+ mediated binding. 

However, it remains doubtful whether these bindings are strong enough to paly a role in 

xylem cell wall strengthening and therefore in induced resistance (Showalter, 2001). 

Association of AGPs among themselves are thought to involve ionic interactions and 

plant analogs of Yariv agents such as flavonols glycosides or oxidative crosslinking 

(Showalter, 2001). The latter is associated with the oxidative burst, a rapid, transient 

production of huge amounts of reactive oxygen species (ROS) by plant cells, as a defense 

strategy against pathogens. It might be assumed that also AGPs located in resistant 

tomato genotype H7996 were crosslinked by these mechanisms and therefore 

strengthened cell walls, thus slowing the ingress of R. solanacearum into the xylem 

tissues. This could suggest the role of AGPs as resistance factor as they were already 

abundant in the midstem tissues of resistant tomato genotype and might be increasingly 

produced by susceptible genotype as a reaction to pathogen infection. 

 

Hence our results suggest that R. solanacearum is capable of degenerating cell walls in a 

tomato genotype susceptible to bacterial wilt by the production of enzymes and degrading 

the pectic components in a non-blockwise pattern and thus differentiating between the 

resistant and susceptible genotypes used in this study at the cell wall (pectins & AGPs) 

level.  These studies provide a basis for further studies on the cell wall in relation to 

resistance mechanisms. The early stages of infection of tomato with R. solanacearum, 

especially through the root system, needs to be examined in detail. The observations 

reported here demonstrate that modulation of the pattern and degree of methyl-

esterification of pectic HG occurs within discrete regions of primary cell walls and, in 

particular, that a non-blockwise pattern of methyl esters of HG is an abundant feature of 

HG of susceptible tomato genotypes. The pattern and degree of methyl group distribution 

significantly affect the mechanical and physiological properties of pectins and are 

therefore likely to influence the in vivo functionalities of pectic HG domains. 

Understanding the cell biological context of the products of PME action will be crucial 

for determining the functions of PME multigene family members. A study of the 
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structure of the pectic polysaccharides carrying these neutral side chains of RG I and the 

enzymes that are responsible for the synthesis and any modifications of the neutral side 

chains of RG I will be of considerable interest. 

 

The action of the pectic enzymes of R. solanacearum has been obscure to date, and these 

observations might elucidate the highly specific molecular interaction between these 

enzymes and plant cell wall structures, in order to create a suitable environment for 

pathogen multiplication. Enzymatic mechanisms for the de-esterification of pectic 

polysaccharides are known to occur within the cell but little is known of their precise 

location, activity or turnover. One possible approach to help resolve pectic 

polysaccharides metabolism within the wall would be to develop antibodies to plant PME 

and extend the methods used in the study to simultaneously locate PME distribution and 

pectic polysaccharides epitopes in the different tissues.   

 

Although recent work has placed some structural features in cell biological context, there 

is much still to be done in this area, particularly concerning the occurrence and function 

of micro-domains of the primary cell wall matrix. Since immunolocalization studies with 

these anti-pectin antibodies and antibody to AGP in tomato stems revealed differences in 

the distribution of the pectins and AGPs within the cell wall, additional investigations 

should be carried out with further tomato gentoypes. Nevertheless, it is doubtful that a 

tomato line exists that carries resistance to all strains of R. solanacearum, since tomato 

breeding programs are usually specific for certain geographic locations and hundreds of 

different strains of the pathogen are present worldwide. Further research on the resistance 

mechanisms could provide an insight into the basis of resistance and provide criteria for 

selection of more resistant genotypes by traditional or molecular plant breeding methods.  



LITERATURE CITED  144 

LITERATURE CITED 

 

Aist, J. R. (1976). Papillae and related wound plugs of plant cells. Annual Review of 

Phytopathology. 14: 145-163. 

 

Albersheim, P., Darvill, A. G., O’Neill, M. A., Schols, H. A., and Voragen, A. G. J. 

(1996). An hypothesis; the same six polysaccharides are components of the primary cell 

walls of all higher plants. In Pectins and Pectinases (Visser, J. and Voragen, A.G.J., eds). 

Amsterdam: Elsevier Science BV, pp. 47-55. 

 

Aldon, D., Brito, B., Boucher, C. and Genin, S. (2000). A bacterial sensor of plant cell 

contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity 

genes. EMBO J. 19: 2304-14. 

 

Alexander, E., Salazar,  C., and  Steck, T. R.  (1999). The viable but nonculturable  

condition is induced by copper in Agrobacterium tumefaciens and Rhizobium meliloti. 

Applied Environmental Microbiology.  65: 3754 − 3756. 

 

Allen, C.,  Gay, J., and Simon-Buela, L. (1997). A regulatory locus, pehSR, controls 

polygalacturonase production and other virulence functions in Ralstonia solanacearum. 

Molecular Plant-Microbe Interactions. 9: 1054-1064.    

 

Allen, C., Gay, J., Guan, Y., Huang, Q., and Tans-Kersten, J. (1998). Function and 

regulation of pectin-degrading enzymes in Bacterial Wilt disease.  In: Proceedings for 

IInd International Bacterial Wilt Symposium.  pp. 171-177. 

 

Allen, C., Tans-Kersten, J., and Yanfeen, G. (1998). Ralstonia solanacearum pectin 

methylesterase is required for growth on methylated pectin but not for bacterial wilt 

virulence. Applied and Environmental Microbiology. 64: 4918-4923. 

 

 



LITERATURE CITED  145 

Allen, C., Huang, H. Y., Tans-Kersten, J. (2001).  Ralstonia solanacearum needs 

motility for invasive virulence on tomato. J. Bacteriology. 183: 3597-3605.  

 

Alvarez, A. M., Trotter, K. J., Swafford, M. B., Berestecky, J. M., YU, Q.-Y. and R. 

MING (2004). Characterization and detection of Ralstonia solanacearum strains causing 

bacterial wilt of ginger in Hawaii. In: Proceedings of the 3rd International Bacterial Wilt 

Symposium, 2002 (Allen, C., Prior, P., Hayward, A. C.  eds). St. Paul, MN: The American 

Phytopathological Society. (in press) 

 

Anderson, M. and Clarke, A. E. (1984). A high proportion of hybridomas raised to a 

plant extract secrete antibody to arabinose or galactose. Plant Physiology. 75: 1013-1016. 

 

Anderson, A. J. and C. Jasalavich, (1979). Agglutination of Pseudomonad cells by 

plant products. Physiol. Plant Pathology. 15: 149-159. 

 

Arlat, M.,  Van Gijsegem, F.,  Huet, J. C., Pernollet, J. C., Boucher, C. A. (1994). 

PopA1, a protein which induces a hypersensitivity-like response on specific Petunia 

genotypes, is secreted vie the Hrp pathway of Pseudomonas solanacearum. EMBO J. 36: 

543-553. 

 

Bacic, A., Moody, S. F., Clarke, A. E. (1986). Structural analysis of secreted root slime 

from maize (Zea mays L.). Plant Physiology. 80: 771-777. 

 

Baker, B.,  Zambuyski, P.,  Staskaawicz, B. and Dineshkumar, S. P. (1997). Signaling 

in plant microbe interactions. Science. 276:726-733. 

 

Bartlett, G. R. (1959). Phosphorus assay in column chromatography. J. Biol. Chemistry. 

234: 446-468. 

 

Basu, S. (1991). Chemical analysis of the lipopolysaccharides of pseudomonas 

solanacearum, biotype II. Biochemical Archives, Vol. 7: 131-137. 



LITERATURE CITED  146 

Beckman, C. H., Elgersma, D. M., Mac Hardy, W. E. (1972). The localization of 

fusarial infections in the vascular tissue of single-dominant-gene resistant tomatoes. 

Phytopathology. 62: 1256-1260. 

 

Beckman, C. H. and Talboys, P. W. (1981). Anatomy of resistance. In Fungal Wilt 

diseases of plants, (Ed. by M. E. Mace, A. A. Bell and C. H. Beckman), pp. 487-521. 

Academic Press, New York.  

 

Beckman, C. H. (1987). The nature of wilt disease of plants. APS Press, St. Paul,  Minn. 

 

Beckman, C. H., Verdier, P. A., Mueller, W. C. (1989). A system of defense in depth 

provided by vascular parenchyma cells of tomato in response to vascular infection with 

Fusarium oxysporum f. sp. lycopersici. Physiol. Mol. Plant Pathology. 34: 227-239.  

 

Benhamou, N. (1989). Cytochemical localization of ß-(1-4)-D-glucans in plant and 

fungal cells using an exoglucanase-gold complex. Electron Microsc. Rev. 2: 123-138. 

 

Benhamou, N., Chamberland, H., and Pauze, F. (1990). Implication of pectic 

components in cell surface interactions between tomato root cells and Fusarium 

oxysporum f.sp. radicis-lycopersici. A cytochemical study by means of a lectin with 

polygalacturonic acid –binding specificity. Plant Physiology. 92: 995-1003.  

 

Beveridge, T. J. (1999). Structures of Gram-negative cell walls and their derived 

membrane vesicles. J. Bacteriology. 181: 4725-33. 

 

Binnerup, S. J., Jensen, D. F., Thordal-Christensen, H and Sorensen, J. (1993). 

Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a 

microcolony epifluorescence technique. FEMS Microbiology Ecology. 12: 97 − 105. 

 



LITERATURE CITED  147 

Bishop, C. D., Cooper, R. M. (1984). Ultrastructure of vascular colonization by fungal 

wilt pathogens. II. Invasion of resistant cultivars. Physiological plant pathology. 24: 277-

289. 

 

Blocker, A., Komoriya, K., Aizawa, S. (2003). Type III secretion systems and bacterial 

flagella:  Insights into their function from structural similarities.  PNAS vol.100, No. 6,  

pp. 3027-3030.  

 

Bloomfield, S. F., Stewart, G. S. A. B., Dodd, C. E. R., Booth, I. R., Power, E. G. M. 

(1998). The viable but non-culturable phenomenon explained? Microbiology. 144: 1 − 3.  

 

Blumenkrantz, N. and Asboe-Hansen, G. (1973). New method for quantitative 

determination of uronic acids.  Analytical Biochemistry. 54: 484-489. 

 

Boucher, C. A.,  Barberis, P. A., Trigalet, A. P. and Demery, D. A. (1985). 

Transposon mutagenesis of Pseudomonas solanacearum: Isolation of Tn5-induced 

avirulent mutants. J. Gen. Microbiology. 131: 2449-2457. 

 

Boucher, C. A., Cough, C. L., and Arlat, M. (1992). Molecular genetics of 

pathogenicity determinants of Pseudomonas solanacearum with special emphasis on hrp 

genes. Annual Review of Phytopathology.  30: 443-61. 

 

Bowman, J. E. and Sequeira, L. (1982). Resistance to Pseudomonas solanacearum in 

potato: infectivity titration in relation to multiplication and spread of the pathogen. 

American Potato Journal.  59: 155 −163. 

 

Bradford, M. M. (1976). A refined and sensitive method for the quantitation of 

microgram quantities of protein utilizing the principle of protein-dye binding. Analytical 

Biochemistry. 72: 248. 

 



LITERATURE CITED  148 

Brummell, A. D. and  Harpster, M. H. (2001) Cell wall metabolism in fruit softening  

and  quality and its manipulation in transgenic plants. Plant Molecular Biol. 47: 311-340. 

 

Buddenhagen, I., Sequeira, L. and Kelman, A. (1962). Design of races in 

Pseudomonas solanacearum. Phytopathology. 52: 726. 

 

Buddenhagen,  I., and Kelman,  A.  (1964). Biological and physiological aspects of 

bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology 

2: 203-230. 

 

Buddenhagen, I. W. (1986). Bacterial wilt revisited. In: Bacterial Wilt Disease in Asia 

and the South Pacific (Persley, G. J., ed.). Canberra: ACIAR Proceedings No. 13: 126-

143. 

 

Bush, M. S.,  McCann, M. C. (1999). Pectic epitopes are differentially distributed in the 

cell walls of potato (Solanum tuberosum) tubers. Plant Physiology. 107: 201-213. 

 

Bush, M. S., McCann, M. C., Marry,  M., Jarvis, M. C. (2001). Developmental 

regulation of pectic epitopes during potato tuberisation. Planta. 213: 869-880. 

 

Cairns, P., Miles, M. J., Morris, V. J. and Brownsky, G. J. (1997). X-ray fiber 

diffraction studies of synergistic, binary polysaccharides gels. Carbohydrate Research. 

160: 411-423. 

 

Carney, B. and Denny, T. (1990). A cloned avirulence genes from Pseudomonas 

solanacearum determines incompatibility on Nicotiana tabacum at the host species level. 

J. Bacteriology. 172: 4836-43. 

 

Carpita, N.C. (1989). Pectic  polysaccharides of maize coleoptiles and proso millet cells 

in liquid culture.  Phytochemistry. 28: 121-125.  

 



LITERATURE CITED  149 

Carpita, N. C.,  and Gibeaut, D. M. (1993). Structural models of primary cell walls in 

flowering plants: Consistency of molecular structure with the physical properties of the 

walls during growth. Plant J. 3: 1-30. 

 

Chaplin, M. F. (1982).  A rapid and sensitive method for the analysis of carbohydrate 

components in glycoproteins using gas-liquid chromatography. Analytical Biochemistry. 

123: 336-341.  

 

Chellemi, D. O., Anderson, P. C.,  Brodbeck, B., Dankers, W. and Rhoads, F. M. 

(1998). Correlation of chemical profiles of Xylem Fluid of Tomato to resistance to 

bacterial wilt. In: Ph. Prior, C. Allen, J. Elphinstone (eds). Bacterial wilt disease. 

Molecular and ecological Aspects. Reports of the second International Bacterial 

Symposium held in Gosier, Guadeloupe, France. 22-27 Jun 1997, Springer, pp 225-232.  

 

Cho, Y., Wilcoxson, R. and Froshaeser, F. (1973). Differences in anatomy, plant – 

extracts and movement of bacteria in plants of bacterial wilt resistant and susceptible 

varieties of alfalfa, Phytopathology. 63: 760-5. 

 

Ciampi, L., Sequeria, L., and French, E. R. (1980). Latent infection of potato tubers by  

Pseudomonas solanacearum. American Potato Journal.  57: 377 − 386. 

 

Clarke, A.E., Knox, R. B., Jermyn, M. A. (1975). Localization of lectins in legume 

cotyledons. J. Cell Sci. 19: 157-167.  

 

Clarke, A. E., Knox, R. B., Jermyn, M. A. (1978). Characterization and localization of 

ß-lectins in lower and higher plants. Aust. J. Plant Physiology. 5: 707-722.  

 

Cody, Y. S. and Gross, D. C. (1987) Outer membrane protein mediating iron uptake via 

pyoverdinpss, the fluorescent siderophore produced by Pseudomonas syringae pv. 

syringae. J. Bacteriology. 169: 2207-2214. 

 



LITERATURE CITED  150 

Colleno, A.,  Hingand, L., and Rat, B. (1976). Some aspects of the serology of 

pseudomonas solanacearum  E. F. Smith and application of serology for studying 

Bacterial wilt in Seqeuira, L. and  Kelman, A. (eds) Proceedings of the first International  

planning conference on the ecology and control of bacterial wilt disease caused by  

pseudomonas solanacearum pp 110-119, north Carolina state univ., Raleigh, USA.    

 

Colwell, R. R., Brayton, P., Herrington, D., Tall, B., Huq, A. and Levine, M. M.  

(1996). Viable but nonculturable Vibrio cholerae 01 revert to a cultivable state in the  

human intestine. World Journal of Microbiology and Biotechnology. 12: 28 − 31.   

 

Cook, D., Barlow, E. and Sequeira, L. (1989). Genetic diversity of Pseudomonas 

solanacearum: detection of restriction fragment length polymorphisms with DNA probes 

that specify virulence and the hypersensitive response. Molecular Plant-Microbe 

Interaction. 2: 113-121.  

 
Cooper, R.M. (1983). The mechanisms and significance of enzymatic degradation of 

host cell walls by parasites, In: Callow, J.A. (ed.), Biochemical Plant Pathology, pp. 101-

135. John Wiley & Sons Ltd, New York. 

 

Copetti, G., Grassi, M., Lapasin, R. and Pricl, S. (1997). Synergistic gelation of 

xanthan gum with locust bean gum: a rheological investigation. Glycoconjugate J., 14: 

951-961. 

 

Cosgrove, D. (1997). Assembly and enlargement of the primary cell wall in plants. 

Annual Review Cell Dev. Biology. 13: 171-201.  

 

Daas, P. J. H., Hansen, K. M., Schols, H. A., De Ruiter, G. A. and Voragen, A. G. J. 

(1999). Investigation of non-esterifed galacturonic acid distribution in pectin with 

endopolygalacturonase. Carbohydrate Research. 318: 135-145. 

 



LITERATURE CITED  151 

Danesh, D., Aarons, S., McGill, G.E., and Young, N.D. (1994). genetic dissection of  

oligogenic resistance to bacterial wilt in tomato. Molecular Plant-Microbe Interaction. 7: 

464-471. 

 

Dannon, E. (2003). Effect of silicon on the resistance of tomato (Lycopersicon 

esculentum MILL) to bacterial wilt caused by Ralstonia solanacearum (SMITH) 

Yabuuchi et al.  Masters thesis, University of Göttingen, Göttingen, Germany. 

 

Dannon, E. and Wydra, K. (2004).  Interaction between silicon amendment, bacterial 

wilt development and phenotype of Ralstonia solanacearum in tomato genotypes.  

Physiological and Molecular Plant Pathology. 64: 233-243. 

 

Das, S., Ramm, M., Kochanowski, H. and Basu, S. (1994). Structural studies of the 

side chain of outer membrane lipopolysaccharide from Pseudomonas syringae pv. 

coriandricola W-43. J. Bacteriology. 176: 6550-6557. 

 

Daughtrey  (2003). Southern Bacterial Wilt, Caused by Ralstonia solanacearum. 

http://cofcs66.aphis.usda.gov/ppq/ep/ralstonia/MargerySAFtalk2-03r.pdf  

(accessed 19/01/2004). 

 

De Veau, E. J. I., Gross, K. C., Huber, D. J. and Watada, A. E. (1993). Degradation 

and solubilization of pectin by ß-galactosidases purified from avocado mesocarp. 

Physiology. Plant. 87: 279-285. 

 

De Vries,  J. A.,  Rombouts, F. M., Voragen, A. G. J. and Pilnik, W. (1982). 

Enzymatic degradation of apple pectins. Carbohydrate Polymer. 2: 25-34.  

 

Ding, L. and Zhu, J.K. (1997). A role of arabinogalactan proteins in root  epidermal cell 

expansion.  Planta. 203: 289-294. 

 



LITERATURE CITED  152 

Dinu, D. (2001). Extraction and characterization of pectins from Wheat Bran. Roum. 

Biotechnol. Lett., Vol. 6, No. 1, pp. 37-43.  

 

Dow, M., Newman, M. A. and von Roepenack, E., (2000). The induction and  

modulation of plant defense responses by bacterial lipopolysaccharides. Annual Review 

Phytopathology. 38: 241-261. 

 

Dristig, M. C. G and Dianese, J. C. (1990). Characterization of pseudomaonas 

solanacearum biovars based on membrane protein patterns.  Phytopathology. 80: 641-

646. 

 

Elphinstone,  J. G., Hennessy, J., Wilson, J. K., and Stead, D.E. (1996). Sensitivity of  

different methods for the detection of Ralstonia solanacearum in potato tuber extracts.  

BULL. OEPP/EPPO, 26: 663 − 678. 

 

Elphinstone,  J. G. (2004). The current bacterial wilt situation: a global overview. 

Proceedings of the 3rd International Bacterial Wilt Symposium (Allen, C., Prior, P. and 

Hayward, A. C (eds.). St. Paul, MN: The American Phytopathological Society. (in press). 

 

FAOSTAT.  (2003). Tomato production in the World. http://apps.fao.org/. 

 

Fegan, M and Prior, P. (2004). How complex is the “Ralstonia solanacearum species 

complex”. In: Proceedings of the 3rd International Bacterial Wilt Symposium (Allen, C., 

Prior, P. and Hayward, A. C (eds). St. Paul, MN: The American Phytopathological 

Society. (in press) 

 

Femenia, A., Garosi, P., Roberts, K., Selvendran, R. R., Robertson, J. A. (1998). 

Tissue-related changes in methyl-esterification of pectic polysaccharides in cauliflower 

(Brassica oleracea L. var. botrytis) stems. Planta. 205: 438-444. 

 



LITERATURE CITED  153 

Fenwick, K. M., Jarvis, M. C., Apperley, D. C., Seymour, G. B., Bird, C. R. (1996) 

Polymer mobility in cell walls of transgenic tomatoes with reduced polygalacturonase 

activity. Phytochemistry. 42: 301-307. 

 

Ferguson, J. (1984). Calcium in plant senescence and fruit ripening. Plant Cell 

Environment. 7: 477-489. 

 

Fincher, G.B., Stone, B.A., Clarke, A.E., (1983). Arabinogalactan proteins: structure, 

biosynthesis and function. Annual Review Plant Physiology. 34: 47-70. 

 

Flor, H. H. (1971). The current status of the gene for gene concept. Annual Review 

Phytopathology. 9: 275-296. 

 

Foolad, M. R., Zhang, L.P.,  Khan, A.A., Lin, G.Y. (2002). Identification of QTLs for 

early blight (Alternaria solani) resistance in tomato using backcross populations of a 

Lycopersicon esculentum x L. hirsutum cross. Theor Applied Genetics. 104: 945-958. 

 

Fraser,  R. J., Hosein, F., Phelps, R. and Vincent-sealy, L. (2001). The determination 

of the genetic diversity and relative aggressiveness among ten isolates of Ralstonia 

solanacearum in Trinidad: results from a pilot study. In: S.H. De Boer (ed.), Plant 

Pathogenic Bacteria, p. 151 − 155. Kluwer Academic Publishers, Netherlands. 

 

Freshour, G., Clay, R., Albersheim, P. and Hahn, M. (1996). Developmental and 

tissue-specific structural alterations of the cell wall polysaccharides of Arabidopsis 

thaliana roots. Plant Physiology. 110: 1413-1429. 

 

French, E. R. (1986). Interaction between strains of Pseudomonas solanacearum, its host 

and the environment. In: Bacterial Wilt Disease in Asia and the South Pacific (PERSLEY, 

G. J., ed.). Canberra: ACIAR Proceedings No.13, 99-104. 

  



LITERATURE CITED  154 

Fry, S. C. (1986). Cross-linking of matrix polymers in the growing cell walls of  

angiosperms. Annual Review Plant Physiology. 37: 165-186. 

 

Fry, S. F. (1995). Polysaccharide- modifying enzymes in the plant cell wall. Annu. Rev. 

Plant Physiol. Plant Mol. Biology. 46: 497-520. 

 

Gao, M., and Showalter, A.M. (2000). Immunolocalization of LeAGP-1, a modulator 

arabinogalactan protein, reveals its developmentally regulated expression in tomato. 

Planta. 210: 865-874.  

 

Gebhardt, C. (1997). Plant genes for pathogens resistance – variation on a theme. 

Trends Plant Sci. 2: 243-244. 

 

Genin, S. and Boucher, C. (2002). Ralstonia solanacearum: secrets of a major pathogen 

unveiled by analysis of its genome. Molecular Plant Pathology. 3, 111-118. 

 

Genin, S. and Boucher, C. (2004).  The Ralstonia solanacearum-plant Interaction. In 

Plant pathogen interactions. N.J. Talbot, ed (Oxford: Blackwell Publishing), pp. 92-112 

 

Ghezzi, J., and Steck, T.R. (1999). Induction of the viable but non-culturable condition 

in  Xanthomonas campestris pv. campestris in liquid microcosms and sterile soil. FEMS 

Microbiology Ecology. 30: 203 − 208. 

 

Goldberg,  R., Morvan,  C., Herve du Penhoat, C. and Michon, V. (1989). Structure 

and properties of acidic polysaccharides from Mung Bean hypocotyls. Plant cell 

Physiology. 30: 163-173.  

 

Goldman, R. C. and Leive, L. (1980). Heterogeneity of antigenic-side-chain length in 

lipopolysaccharides from Escherichia coli 0111 and Salmonella typhimurium. Eur. J. 

Biochemistry. 107: 145-153. 

 



LITERATURE CITED  155 

Goodman, R. N., Huang, P. Y. and White, J. A. (1976). Ultrastructural evidence for 

immobilization of an incompatible bacterium, Pseudomonas pisi, in tobacco leaf tissue. 

Phytopathology. 66: 754-764. 

 

Graham, T.  L., Sequeira, L. and Huang, T. S. R. (1977). Bacterial 

lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Environ. 

Microbiology. 33: 424-432. 

 

Graham, T. L. (1983). Role of lipopolysaccharide in recognition and induced disease 

resistance in plant host of Pseudomonas solanacearum, In: A. Nowotny (ed.), Beneficial 

effects of endotoxins. Plenum Press, New York, pp. 555-568. 

 

Graham, M. Y., Weidner, J., Wheeler, K., Pelow, M. J., Graham, T. L. (2003). 

Induced expression of pathogensis- related protein genes in soybean by wounding and the 

Phytopathora sojae cell wall glucan elicitor. Physiological and Molecular Plant 

Pathology. 63: 141-149.  

 

Granada, G., Sequeira, L. (1983). Survival of Pseudomonas solanacearum in soil, 

rhizosphere and plant roots. Canadian  J. Microbiology. 29: 433-40. 

 

Grimault, V. and Prior, P. (1993).  Bacterial wilt resistance in tomato associated with 

tolerance of vascular tissues to Pseudomonas solanacearum. Plant Pathology. 42 : 589 −  

594. 

 

Grimault, V.,  Anais, G.,  Prior, P. (1994). Distribution of Pseudomonas  solanacearum 

in the stem tissues of tomato plants with different levels of  resistance to bacterial wilt. 

Plant Pathology. 43: 663-668. 

 

Grimault, V., and Prior, P. (1994). Invasiveness of Pseudomonas solanacearum in 

tomato, eggplant and pepper: a comparative study. European J. Plant Pathology. 100: 

259-267. 



LITERATURE CITED  156 

Grimault, V.,  Prior, P.,  Schmit, J., Gelei, B. (1994). Comparative histology of 

resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. 

Physiol. and Mol. Plant Pathology. 44: 105-123. 

 

Grimault, V.,  Prior, P.,  Anais, G. (1995). A monogenic dominant resistance of tomato 

to bacterial wilt in Hawaii 7996 is associated with plant colonization by Pseudomonas 

solanacearum. J. Phytopathology. 143: 349-352. 

 

Gross, K. C. (1984). Fractionation and partial characterization of cell walls from normal 

and non-ripening tomato fruit. Physiol Plant. 62: 25-32. 

 

Gross, M. (1990). Factors for virulence of bacteria, Lipolysaccharides, In: Z. Klement, 

K. Rudolph and D. C. Sands (eds.). Methods in Phytobacteriology, Akademiai Kiado,  

Budapest, pp. 423-428. 

 

Grolms, U. (1996). Rheologie der Interaktion zwischen bakteriellen Lipopolysacchariden 

(LPS) und pflanzlichen Polymeren und Resistenzinduktion durch LPS. Ph. D. 

Dissertation, University of Göttingen, Göttingen, Germany. 

 

Grolms, U. and Rudolph, K. (1997). Rheological interactions between 

lipopolysaccharides of Pseudomonas syringae pathovars and plant polysaccharides. In 

Developments in Plant Pathology, Vol. 9, Pseudomonas syringae Pathovars and Related 

Pathogens, K. Rudolph, T. J. Burr, J.W. Mansfield, D. Stead, A. Vivian and J. V.Kietzell, 

(eds.), Kluwer Academic Publishers, Dordrecht, pp. 364-369. 

 

Gueneron, M., Timmers, A. C. J., Boucher, C. and M. Arlat (2000). Two novel 

proteins, PopB, which has functional nuclear localization signals, and PopC, which has a 

large leucine-rich repeat domain, are secreted through the Hrp-secretion apparatus of 

Ralstonia solanacearum. Molecular Microbiology. 36, 261-277. 

 



LITERATURE CITED  157 

Hammond-Kosack, K. and Jones, J. (1997). Plant disease resistance genes. Annu. Rev. 

Plant Physiology. 48: 575-607.  

 

Hanson, P., Wang, J.F., Liardo, O., Hanudin, Mah , S.Y., Hartman, G.L., Lin, Y.C.  

and Chen, J. (1996). Variable reaction of tomato lines to bacterial wilt evaluated at  

several locations in Southeast Asia. Horticultural science. 31: 143 − 146.  

 

Hara, H. and Ono, K. (1985). Ecological studies in the bacterial wilt of tobacco, caused 

by Pseudomonas solanacearum E. F. Smith. VI. Dissemination in infected field and 

survival on tobacco leaf of the pathogen exuded from the upper part of infected tobacco 

plants. Bull. Okayama Tob. Exp. Stn.. 44: 87-92. 

 

Harris, D. C. (1972). Intra-specific variation in Pseudomonas solanacearum. In: 

Proceedings of the 3rd International Conference on Plant Pathogenic Bacteria 

Wageningen, 14-21 April 1971 (Mass, H. P., ed.). Wageningen: Centre for Agricultural 

Publishing and Documentation, 298-292. 

 

Hartman, G. L. and Elphinstone, J. G. (1994). Advances in the control of 

Pseudomonas solanacearum, race 1 in major food crops. In: Hayward, A.C. and 

Hartman, G.L. (eds.).  Bacterial Wilt: The Disease and its Causative Agent, Pseudomonas 

solanacearum. CAB International, p. 157 − 177. 

 

Hayward, A. C. (1961). Geographical variation in Pseudomonas solanacearum. Journal  

of Applied Bacteriology. 24, v-vi. 

 

Hayward, A. C. (1964). Characteristics of Pseudomonas solanacearum. Journal of 

Applied Bacteriology. 27: 265-277. 

 

Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by 

Pseudomonas solanacearum. Annual Review Phytopathology. 29: 65-87.  

 



LITERATURE CITED  158 

Hayward, A. C., Sequeira, L., French, E. R., El-Nashar, H. M. and Nydegger, U. 

(1992). Tropical variant of biovar 2 of Pseudomonas solanacearum. Phytopathology 82, 

608. 

 

Hayward, A. C. (1994a). The hosts of Pseudomonas solanancearum. In: Bacterial Wilt:  

the Disease and Its Causative Agent, Pseudomonas solanacearum (Hayward, A. C. and  

Hartman, G. L. eds.). Wallingford: CAB International, 9-23. 

 
Hayward, A. C. (1994b). Systematics and phylogeny of Pseudomonas solanacearum and 

related bacteria. In: Bacterial Wilt: the Disease and Its Causative Agent, Pseudomonas 

solanacearum (Hayward, A. C. and Hartman, G. L. eds.). Wallingford: CAB 

International, 123-135. 

 

Hayward, A. C. (2000). Ralstonia solanacearum. In: Encyclopedia of Microbiology, Vol. 

4 (Lederberg, J., ed.). San Diego, California: Academic Press, 32-42. 

 

Hayward, A. C. and Denny, T. P. (2001). Ralstonia. In: Laboratory Guide for the 

Identification of Plant Pathogenic Bacteria, 3rd edition (SCHAAD, N. W., ed.). St. Paul: 

APS Press, 151-174. 

 

He,  L. Y. (1986). Bacterial wilt in the People’s Republic of China. In: Bacterial Wilt 

Disease in Asia and the South Pacific (Persley, G. J., ed.). Canberra: ACIAR Proceedings 

No.13: 40-48.  

 

He, L. Y., Sequeira, L. and Kelman, A. (1983). Characteristics of strains of 

Pseudomonas solanacearum from China. Plant Disease. 67: 1357-1361. 

 

Heijnen, C., Page, S. and Van Elsas, J. (1995). Metabolic activity of  Flavobacterium  

strain P25 during starvation and after introduction into bulk soil and the rhizosphere of  

wheat. FEMS Microbiology Ecology. 18: 129 − 138. 

 



LITERATURE CITED  159 

Heukeshoven, J. and Dernick, R. (1988). Improved silver staining procedure for fast  

staining in Phast system development unit I. Staining of SDS gels. Electrophoresis, 9: 28- 

32. 

 

Hikichi, Y., Nasu, Y., Toyoda, K., Suzuki, K., Okuno, T., Hirooka, T. (1997). 

Behavior  of bioluminescent Ralstonia solanacearum YN5 containing the lux CDABE in 

tomatoes  susceptible and resistant to bacterial wilt. In Proceedings for IInd International 

Bacterial Wilt symposium. pp. 233-242. 

 

Hikichi, Y., Kanda,A., Ohnishi,S., Tomiyama, H., Okuno.T. (2003). Type III 

secretion machinery-deficient mutants of Ralstonia solanacearum lose their ability to 

colonize resulting in loss of pathogenicity. J Gen Plant  Pathology.  69: 250–257. 

 

Hochman, A. (1997). Programmed cell death in prokaryotes. Crit. Review of  

Microbiology. 23: 207 − 214. 

 

Hochmuth, G. (1999). Nutrient solution formulation for hydroponic (rockwood and 

NFT)  tomatoes in Florida. Florida Coop. Ext. Service, Service for Suwannee Valley 

Education,  Florida, USA, Report 44: 17p. 

 

Holst, O. (1999). Structure of the core region of lipopolysaccharides, Endotoxin in health 

and disease, Brade, H. et al., Eds., New York: Marcel Dekker.  

 

Horita, M. and Tsuchiya, K. (2001). Genetic diversity of Japanese strains of Ralstonia 

solanacearum. Phytopathology. 91: 399-407.  

 

Huang, Q. and Allen, C. (1997). An exo-poly-α-D-galacturonosidase, PehB, is required 

for wild-type virulence of Ralstonia solanacearum. Journal of Bacteriology. 179: 7369-

7378. 

 



LITERATURE CITED  160 

Huisman, M. M. H.,  Schols, H. A., Voragen, A.G. J. (1998). Cell wall polysaccharides 

from soybean (Glycine max) meal. Isolation and characterization. Carbohydrate Polymer. 

37: 87-95. 

 

Huxham, I., Jarvis, M., Dover, C., Jhonson, D. and Knox, J. (1999). Electron-energy- 

loss spectroscopic imaging of calcium and nitrogen in the cell walls of apple fruits. 

Planta. 208: 438-443. 

 

Inoue, S.,  Aist, J. R., Macko, V. (1994). Earlier papilla formation and resistance to 

barley powdery mildew induced by a papilla-regulating extract. Physiol. Molecular Plant 

Pathology. 44: 433-440. 

 

Janse, J. D. (1996). Potato brown rot in western Europe- history, present occurrence, and  

some remarks on possible origin, epidemiology and control strategies. BULL.  

OEPP/EPPO BULL, 26: 679 − 695. 

 

Janson, P. E. (1999). The chemistry of O-polysaccharide chain in bacterial 

lipopolysaccharides, Endotoxin in health and disease, Brade, H. et al., Eds., New York: 

Marcel Dekker. 

 

Jarvis, M.C.  (1984). Structure and properties of pectin gels in plant cell walls. Plant 

Cell  Environment. 7: 153-164. 

 

Jarvis, M.C., Forsyth, W., Duncan, H. J. (1988). A survey of the pectic content of 

nonlignified monocot cell walls. Plant Physiology. 88: 309-314. 

 

Jarvis, M.C., Snape, C.E., Viëtor, R. J., Evans, B.W., Jardine, W.G. (2003). Cell wall  

composition of vascular and parenchyma tissues in broccoli stems. Journal of the Science  

of Food and Agriculture. Vol, 83 issue,13 pgs, 1289-1292. 

 



LITERATURE CITED  161 

Jarvis, M.C., Knox, J. P. (2003). Intercellular adhesion and cell separation in plants.  

Plant Cell & Environment. Vol. 26, Issue 7, pp. 977-989.  

 

Jaunet, T. X. and Wang, J.-F. (1999). Variation in genotype and aggressiveness of  

Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology. 89: 

320-327.  

 

Jeger M. J., Viljanen-Rollinson S. L. H. (2001). The use of the area under the disease-

progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. 

Theor. Appl.Genetics. 102: 32-40. 

 

Jermyn, M. A., and Yeow, Y. M. (1975). A class of lectins present in the tissues of seed  

plants. Aust. J. Plant Physiology. 2: 501-531. 

 

Jones, L., Seymour, G. B., Knox,  J. P. (1997) Localization of pectic galactan using a  

monoclonal antibody specific for to (1 4)- -D-galactan. Plant Physiology. 113: 1405-

1412.  

 

Kang, Z. and Buchenauer, H. (2000). Ultrastructural and cytochemicxal studies on  

cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. 

J.  Phytopathology.  148:  263-275. 

 

Kang, Z. and Buchenauer, H. (2002). Immunocytochemical localization of ß-1, 3- 

glucanase and chitinase in Fusarium culmorum – infected wheat spikes. Physiological  

and Molecular Plant Pathology. 60: 141-153. 

 

Kang, Z., Huang, L., Buchenauer, H. (2003). Subcellular localization of chitinase and 

ß-1,3- glucanase in compatible and incompatible interactions between wheat and 

Puccinia striiformis f. sp. tritici  Journal of Plant Diseases and Protection. 110: 170-183.  

 

 



LITERATURE CITED  162 

Kang, Y., Huang,  J., Mao, G., He, L., Schell, M. A.(1994). Dramatically reduced 

virulence of mutants of Pseudomonas solanacearum defective in export of extracellular 

proteins across the outer membrane. Molecular Plant-Microbe Interactions. 7(3): 370- 

377. 

 

Kao, C. C. and Sequeria, L. (1991). A gene cluster required for coordinated 

biosynthesis of lipopolysaccharide and extracellular polysaccharide also affects virulence 

of Pseudomonas solanacearum. J. Bacteriology. 173: 7841-7847. 

 

Karkhanis, D., Zeltner, J., Jackson, J. and Carlo, D. (1978). A new and improved 

micro assay to determine 2-keto 3-deoxyoctonate in lipopolysaccharide of Gram-negative 

bacteria. Analytical Biochemistry. 85: 595-601. 

 

Keegstra, K., Talmadge, K.W., Bauer, W. D., Albersheim, P. (1973). The structure of  

plant cell walls III. A model of the walls of suspension cultured sycamore cells based on  

the interconnections of the macromolecular components. Plant Physiology. 51: 188-196.  

 

Keen, N. (1999). Mechanisms of pest resistance in plants. Proceedings of a Workshop: 

Ecological Effects Of Pest Resistance Genes In Managed Ecosystems. January 31-

February 3 1999. Bethesda, Maryland. Organized by Information System for 

Biotechnology. Eds P.L. Traynor and J.H. Westwood. 

http:/www.isb.vt.edu/proceedings99/proceedings.keen.html. 

 

Kelman, A. (1953). The bacterial wilt caused by Pseudomonas solanacearum. N. C.  

Agricultural Experiment Station Technical Bulletin. 99: 194. 

 

Kelman, A. and Sequeira, L. (1965). Root- to- root spread of Pseudomonas  

solanacearum. Phytopathology. 55: 304 − 309. 

 



LITERATURE CITED  163 

Kelman, A. (1998). One hundred and one years of research on bacterial wilt. In: 

Bacterial  Wilt Disease: Molecular and Ecological Methods (PRIOR, P., ALLEN, C. and J. 

ELPHINSTONE, eds.). Berlin: Springer Verlag, 1-5. 

 

Kikuchi, A., Edashige, Y.,  Ishii, T., Fujii, T. and Satoh, S. (1996). Variations in the 

structure of neutral sugar chains in the pectic polysaccharides of morphologically 

different carrot calli and correlations with the size of cell clusters. Planta. 198: 634-639.  

 

Kim, J. and Carpita, N. (1992). Changes in esterification of the uronic acid groups of 

cell wall polysaccharides during elongation of maize coleoptiles. Plant Physiology. 98: 

646-653. 

 

Kim,  S. H.,  Olson, R. N. and Schaad, N. (2002). Ralstonia solanacearum Biovar 2, 

Race 3 in geraniums imported from Guatemala to Pennsylvania in 1999. Plant Disease. 

92: S42.  

 

Kleinhempel, H., Naumann, K., and D. Spaar (1989). Bakterielle Erkrankungen der  

Kulturpflanzen. Jena: Gustav Fischer Verlag, pp. 306-309. 

 

Knirel, Y. A., Paramonov, N. A., Shashkov, A. S., Yarullin, R. G., Farber, S. M. and 

Efremenko, V. I. (1992). Structure of the polysaccharide chains of Pseudomonas 

pseudomallei lipopolysaccharide. Carbohydrate Research. 233: 185-193. 

 

Knirel, Y. A. and Kochetkov,  N. K. (1994). The structure of lipopolysaccharides of 

Gram-negative Bacteria. III. The structure of O-Antigens: a Review, Biochem (Moscow) 

59: 1325-1383.   

 

Knogge, W. (1997). Elicitors and suppressors of the resistance response. In H.  Hartleb 

R. Heitefuß H.H.  Hoppe. Resistance of Crop Plants against Fungi. Gustav Fischer, Jena, 

Germany. pp159-182. 

 



LITERATURE CITED  164 

Knox, J. P., Day, S., Roberts, K. (1989). A set of cell surface glycoproteins forms an 

early marker of cell position, but not cell type, in the root apical meristem of Daucus 

carota L. Development. 106: 47-56.     

 

Knox, J. P., Cooper, C., Roberts, K., Linstead, P. (1990). Pectin esterification is 

spatially regulated both within cell walls and between developing tissues of root apices. 

Planta. 181: 512-521. 

 

Knox, J. P., Cooper, C., Roberts, K., Linstead, P. (1991). Developmentally regulated 

epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern 

formation. Plant J. 1: 317-326. 

 

Knox, J. P. (1999). Intriguing, complex and everywhere: getting to grips with 

arabinogalactan proteins. Trends Plant Sci. 4: 123-5. 

 

Knox, J. P., McCartney, L. (2002). Regulation of pectic polysaccharide domains in 

relation to cell development and cell properties in the pea  testa. J. Exp. Bot. Vol. 53, No. 

369, pp. 707-713.  

 

Knox, J. P., Willats, W. G. T., Clausen, M. H.  (2003). Synthetic methyl 

hexagalacturonate hapten inhibitors of anti-homogalacturonan antibodies LM7, JIM5 and 

JIM7. Carbohydrate Research. 338: 1797-1800. 

 

Kobayashi, M., Matoh, T. and Azuma, J. (1996). Two chains of Rhamnogalacturonan 

II are cross-linked by borate- diol ester bonds in higher plant cell walls. Plant Physiology. 

110: 1017-1020. 

 

Kocharova, N. A., Knirel, Y. A., Shashkov, A. S., Muras, V. A., Young, J. M., 

Varbanets, L. D. and Kochetkov, N. K. (1993). Studies of O-specific polysaccharide 

chain of Pseudomonas solanacearum lipopolysaccharides consisting of structurally 

different repeating units. Carbohydrate Research. 250: 275-287. 



LITERATURE CITED  165 

Krausz, J.P. and Thurston, H.D. (1975). Breakdown of resistance to Pseudomonas 

solanacearum in tomato. Phytopathology. 65: 1272-74. 

 

Kreuger, M. And van Holst, G. J. (1993). Arabinogalactan proteins are essential in 

somatic embryogenesis of Daucus carota L. Planta. 189: 243-248. 

 

Kreuger, M. And van Holst, G. J. (1995). Arabinogalactan protein epitopes in somatic 

embryogenesis of Daucus carota L. Planta. 197: 135-141.  

 

Kumar, P.G. S., Rajan, S., Peter, K.V. (2002). Role of phenols and ascorbic acid in 

imparting rersistance to bacterial wilt in tomato. Abstract. 3rd International Bacterial Wilt.  

Symposium, February 4-8, 2002, 

http:/ibws.nexenservices.com/RSA%20Programm/Thursday_poster.htm. 

 

Lau, J. M., McNeil, M., Darvill, A. G., Albersheim, P., (1987). Treatment of 

rhamnogalacturonan I with lithium in ethylenediamine. Carbohydrate Research. 168: 

245-274. 

 

Laux, P., Müller, P., and Rudolph, K. (1996). Interactions between bacterial 

lipopolysaccharides and plant pectins-A mechanism which may determine host/parasite 

relations in bacterial plant diseases. In: A. Mahadevan (ed). Plant Pathogenic Bacteria 

Proc., 9th Intl. Conf. Phytopathogenic Bacteria, Chennai, India, pp. 563-568. 

 

Laux, P. (1998). Zur Rolle der Lipopolysaccharide (LPS) in der Wirt/Parasit-Interaktion 

phytopathogener Pseudomonaden und Xanthomonaden. Ph. D. Dissertation, University 

of Göttingen, Göttingen, Germany. 

 

Leach, J. E., Sherwood, J. and Sequeira, L. (1983). Comparison of soluble proteins 

associated with disease resistance induced by bacterial lipopolysaccahride and viral 

necrosis. Physiol Plant pathology. 23: 377-85.   

 



LITERATURE CITED  166 

Le Goff, A., Renard, C.M.G.C., Bonnin, E., Thibault, J.F. (2001). Extraction, 

purification and chemical characterization of xylogalacturonans from pea hulls. 

Carbohydrate Polymer. 45: 325-334. 

 

Lemaga, B., R. Kakuhenzire, Bekele Kassa, P.T. Ewell and S. Priou. (2002). 

Integrated Control of Potato Bacterial Wilt in Eastern Africa: The experience of African 

Highlands Initiative. In press. In: Bacterial Wilt:  the Disease and the Ralstonia 

solanacearum species complex.  C. Allen, P. Prior and C. Hayward (eds), American 

Phytopathology Society (APS) Press in St. Paul, Minnesota, USA.  

 

Leykun, Z. (2003). Latent Infection of ‘Resistant’ Tomato Genotypes with Ralstonia  

solanacearum and the Viable but Non-Culturable State of the Pathogen in Tomato  

Tissue. MSc Thesis, Department of Horticulture, University of Hannover, pp. 86. 

 

Li, W. R. and Jan, Y. J. (1984). Inoculation techniques for groundnut bacterial wilt. Oil 

Crops China, 2: 77 − 81. 

 

Li, Y., Bruun, L., Cresti, M. (1992). Periodic deposition of arabinogalactan epitopes in  

the cell walls of pollen tubes of Nicotiana tabacum L. Planta. 188: 532-538.  

 

Liao, B. S., Shan, Z. H., Duan, N. X., Lei, Y. J., Tan, Y., Li, D. and Mehan, V. K. 

(1998). Relationship between latent infection and groundnut bacterial wilt resistance. In:  

Prior, P.H., Allen, C., and Elphinstone, J. (eds.). Bacterial Wilt Diseases, Molecular and 

Ecological Aspects, pp. 89-98. Springer-Verlag, Berlin, Heidelberg. 

 

Liehe, A. (1998). Charakterisierung der Resistenz von Korianderlinien (Coriandrum 

sativum L.) gegen Pseudomonas syringae pv. coriandricola, dem Erreger des bakteriellen 

Doldenbrandes. Ph. D. Dissertation, University of Göttingen, Göttingen, Germany. 

 

Limberg, G., Koerner, R., Bucholt, C, H., Christensen, M. I. E. T., Roepstroff, P. 

and Mikkelsen, D. J. (2000). Analysis of different de-esterification mechanisms for 



LITERATURE CITED  167 

pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase 

from A.Niger. Carbohydrate Research. 32: 293-307. 

 

Lindgren, P.B. (1997). The role of hrp genes during plant-bacterial interactions. Annual 

Review Phytopathology. 35: 129-152. 

 

Liners, F. and Van Cutsem, P. (1992). Distribution of pectic polysaccharides 

throughout walls of suspensions-cultured carrot cells. An immmunocytochemical study. 

Protoplasma, 170: 10-21. 

 

Lindhout, P., Bai, Y., Bonnema, G., Van der Hulst, R. (2003). QTLs for tomato 

powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 

co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe 

Interact. 16: 169-176. 

 

Liu, H., Genin, S., Schell, M.A., Denny, P.T. (2001). Twitching motility of Ralstonia 

solanacearum requires a type IV pilus system. Microbiology. 147: 3215-3229. 

 

Lüderitz, O., Freudenberg, M. A., Galanos, C., Lehmann, V., Rietschel. E. T. and 

Shaw, D. W. (1982). Lipopolysaccharides of Gram-negative bacteria. Curr. Top. Membr. 

Transp., 17: 79-151.  
 
 

Lum, K. Y. (1973). Cross inoculation studies of Pseudomonas solanacearum from  

ginger. MARDI Research Bulletin. 1: 15-21. 

 

Majewska-Sawka, A., Munster, A., Rodriguez-Garcia, M. (2002). Guard cell wall: 

immunocytochemical detection of polysaccharide components. J. Exp. Botany, Vol. 53, 

No. 371, pp. 1067-1079. 

 



LITERATURE CITED  168 

Mangin, B., Olivier, J., Thoquet, P., Grimsley, H. (1999). Temporal and Multiple 

Quantitative Trait Loci Analyses of resistance to bacterial wilt in tomato permit the 

resolution of linked loci. Genetics. 151: 1165-1172. 

 

Martin, C. and Nydegger, U. (1982). Susceptibility of Cyphomandra betacea to 

Pseudomonas solanacearum. Plant Disease. 66: 1025-27.   

 

Marty,P., Jouan,B., Bertheau,Y., Vian,B., Goldberg, R. (1997). Charge density in 

stem cell walls of Solanum tuberosum genotypes and susceptibilty to blackleg. 

Phytochemistry. 44: 1435-1441. 

 

McCabe, P., Valentine, T. and Pennell, R. (1997). Soluble signals from cells identified 

at the cell wall established a developmental pathway in carrot. Plant Cell. 9: 2225-2241. 

 

Mc Cann, M., Shi, J., Roberts, K., Carpita, N. (1994). Changes in pectin structure and 

localization during the growth of unadapted and NaCl- adapted tobacco cells. Plant J. 5: 

773-785. 

 

McCann, M.C., Roberts, K. (1991). Architecture of the primary cell wall. In: Lloyd CW 

(ed) The cytoskeletal basis of plant growth and form. In Pectins and Pectinases, 1996, 

Academic press, London. pp 109-129. 

 

McCann, M.C., Roberts, K. (1996). Plant cell wall architecture: the role of pectins. In 

Pectins and Pectinases (Visser, J. and Voragen, A. G. J., eds). Amsterdam: Elsevier 

Science B. V., pp. 91-107. 

 

Mc Cartney,L., Ormerod, A.P., Gidley, M. J., Knox, J.P. (2000). Temporal and spatial 

regulation of pectic (1→4)-ß-D-galactan in cell walls of developing pea cotyledons: 

implications for mechanical properties. Plant J. 22: 105-113.  

 



LITERATURE CITED  169 

Mc Dougald, D., Rice, S. A., Weichart, D. and Kjelleberg, S. (1998). Non-

culturability: Adaptation or debilitation?  FEMS Microbiology Ecology,  25: 1 − 9. 

 

Mc Garvey, J. A., Schell, M. A., Denny, T. P., Saile, E. (1997). Role of extracellular  

polysaccharide and endoglucanase in root invasion and colonization of tomato plants by  

Ralstonia solanacearum. Phytopathology. 87: 1264-1271. 

 

Mc Garvey, J. A., Schell, M. A., Denny, T. P., Bell, C. J. (1998). Analysis of  

extracellular polysaccharide I in culture and in planta using immunological methods: new  

insights and implications. In: Bacterial Wilt Disease: Molecular and Ecological Aspects  

(PRIOR, P., ALLEN, C. and J. ELPHINSTONE, eds.). Berlin: Springer Verlag, 157-163. 

 

Mc Garvey, J. A., Schell, M. A., Denny, T. P. (1999). Spatial-temporal and quantitative  

analysis of growth and EPS I production by Ralstonia solanacearum in resistant and  

susceptible tomato cultivars. Phytopathology. 89: 1233-1239. 

 

Mc Millan, G. P., Hedley, D., Fyffe, L., and Perombelon, M.C. M. (1993). Potato  

resistance to soft-rot erwinias is related to cell wall pectin esterification. Physiol. Mol.  

Plant Pathology. 42: 279-289. 

 

Mc Mullen, M., Jones, R., Gallenberg, D. (1997). Scab of wheat and barley: a 

reemerging disease of devastating impact. Plant disease. 81: 1340-1348.  

 

Mehan, V. and Liao, B. (1994).  Groundnut bacterial wilt: past, present, and future. In: 

Mehan, V. and D., Mc Donald (eds.). Groundnut Bacterial Wilt in Asia, Proc. 3rd 

Working-group Meeting, p. 67 − 68. OCRI, Wuhan, China.  

 

Mew, T.W., Ho, W.C. (1977). Effect of soil temperature on resistance of tomato 

cultivars  to bacterial wilt. Phytopathology. 67: 909-11. 

 



LITERATURE CITED  170 

Moerschbacher, B. M , Wietholter, N., Graessner, B., Mierau, M., Willats, G. T.,   

Knox,. J. (2003). Isolation and characterization of the homogalacturonan from type II 

cell walls of the commelinoid monocot wheat using HF-solvolysis. Carbohydrate 

Research. 338: 423-431. 

 

Moerschbacher, B. M., Wietholter, N., Graessner, B., Mierau, M., Mort, A. J. 

(2003). Differences in the methyl ester distribution of homogalacturonans from near-

isogenic wheat lines resistant and susceptible to the wheat stem rust fungus. Molecular 

Plant Microbe Interact. 16: No.10 pp 945-952. 

 

Mohnen, D. (1999). Biosynthesis of pectins and galactomannans. pp 497-527 in: 

Comprehensive Natural Products Chemistry. Vol.3. S. D. Barton and K. Nakanishi, eds. 

Elsevier, Oxford.  

 

Montrozier, H. and Cerantola, S. (1997). Structural elucidation of two polysaccharides 

present in the lipopolysaccharide of a clinical isolate of Burkholderia cepacia. Eur. J. 

Biochem. 246: 360-366. 

 

Müller, P., Zähringer, U. and Rudolph, K. (1996). Induced resistance by bacterial 

lipopolysaccharides (LPS). A. Mahadevan (ed): Plant Pathogenic Bacteria. Proc., 9th Intl. 

Conf. Phytopathogenic Bacteria, Chennai, India, pp. 569-575. 

 

Müller, P. (1998). Zur Wirkungsweise und Struktur bakterieller Lipopolysaccharide 

(LPS) aus Pseudomonas syringae Pathovarietäten bei der induzierten Resistenz in 

Nicotiana tabacum und Lycopersicon esculentum. Ph. D. Dissertation, University of 

Göttingen, Göttingen, Germany. 

 

Nakaho, K., Hibino, H., Miyagawa, H. (2000). Possible mechanisms limiting 

movement of Ralstonia solanacearum in resistant tomato tissues. J. Phytopathology. 148: 

181-190. 

 



LITERATURE CITED  171 

Nandakumar, R., Babu, S., Viswanathan, R., Raguchander, T., Samiyappan, R. 

(2000). Induction of systemic resistance in rice against sheath blight disease by 

Pseudomonas fluorescens. Soil Bio. And Biochem. 33(4-5): 603-612. 

 

Newman, M., Dow, M., Daniels, M. (1995). Lipopolysaccahride from Xanthomonas 

campestris pathovar campestris induces defense-related gene expression in Brassica 

campestris. Mol. Plant Microbe Interact. 8: 778-80. 

 

Newman, M., Dow, M., Daniels, M. (2000). Lipopolysaccharides and plant responses to 

phytopathogenic bacteria. Mol. Plant Pathology. 1(1): 25-31. 

 

Newman,  M., Dow,  M., Daniels, M. (2001). Bacterial lipopolysaccharides and plant-

pathogen interactions. Eur. J. Plant Pathology. 107: 95-102. 

 

Newman, M. and Erbs, G. (2003). The role of lipopolysaccharides in induction of plant 

defense responses. Mol. Plant Pathology. 4(5): 421-425.  

 

Nicole, M. and Benhamou, N. (1993). Pectin degradation during root decay of rubber 

trees by Rigidoporus lignosus. Can. J. Botany. 71: 370-378.  

 

Nirmala, D. S., Veena, S., Sheena, V.K., Bindu, S. (2002). Development of bacterial 

wilt resistant tomato for processing. Abstract. 3rd International Bacterial Wilt  

Symposium,February4-8,2002  

http:/ibws.nexenservices.com/RSA%20Programm/Tuesday poster B.R.htm. 

 

Nystroem, T. (1998). To be or not to be: The ultimate decision of the growth-arrested 

bacterial cell. FEMS Microbiology Review. 21: 283 − 290. 

 

Odjakova M., Hadjiivanova C. (2001). The complexity of pathogen defence in Plants.  

Bulg. J.Plant Physiology. 27 (1-2): 101-109. 

 



LITERATURE CITED  172 

Okabe, N. and Goto, M. (1963). Bacteriophages of plant pathogens. Annual review of  

phytopathology. vol 1: 397-418. 

 

Oliver, J.D. (1993). Formation of viable but nonculturable cells. In: Kjelleberg S (ed),  

Starvation in bacteria, Plenum, New York. pp. 239 − 272. 

 

Oliver, J.D. (1995).  The viable but non-culturable state in the human pathogen Vibrio  

vulnificus. FEMS Microbiology Lettters. 133: 203 − 208.  

 

Oliver, J.D. (2000). The public health significance of viable but nonculturable bacteria.  

In Colwell, R.R. and Grimes, D.J. (eds), Nonculturable Microorganisms in the 

Environment.  ASM Press, Washington, DC, pp. 277 – 300.  

 

Oliver, J. D.  and Bockian, R. (1995). In vivo resuscitation, and virulence towards mice,  

of viable but nonculturable cells of Vibrio vulnificus. Applied Environmental  

Microbiology. 61: 2620 – 2623.  

 

Olympios, C.M. (1975). Overview of soiless culture advantages, constraints and 

perspectives for its use in Mediterranean countries. Cahiers Options Méditerranéennes 

31: 307-324. 

 

O’Neill, M.A. and Selvendran, R.R. (1985). Hemicellulosic complexes from the cell 

walls of runner bean (Phaseolus coccineus). Biochem. J. 227: 475-481.   

 

O’Neill,  M., Albersheim,  P., Darvill, A. (1990). The pectic polysaccharides of primary 

cell walls. In: Dey, D. M. (Ed.), Methods in Plant Biochemistry, Vol. 2. Academic Press, 

London, pp. 415-441.  

 

O’Neill,  M., Albersheim,  P., Darvill, A. (1996). Rhamnogalacturonan-II, a pectic 

polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-

linked by a borate ester. J. Biol. Chem. 271: 22923-22930. 



LITERATURE CITED  173 

Orfila, C. and Knox, J.P. (2000). Spatial regulation of pectic polysaccharides in relation 

to pit fields in cell walls of tomato fruit pericarp. Plant Physiology. 122: 775-781. 

 

Orfila, C., Huisman, M. H. M., Willats, W. G.T., Van Alebeek, W.M., Schols, H.A., 

Knox, J.P. (2002). Altered cell wall disassembly during ripening of Cnr tomato fruit: 

implications for cell adhesion and fruit softening. Planta. 215: 440-447. 

 

Ovod, V., Rudolph, K.,  Knirel, Y. and Krohn, K. (1996). Immunochemical 

characterization of O polysaccharides composing the α-D-rhamnose backbone of 

lipopolysaccharides of Pseudomonas syringae and classification of bacteria into 

serogroups O1 and O2 with monoclonakl antibodies. J. Bacteriology. 178: 6459-6465.  

 

Ovod, V., Rudolph, K., and Krohn, K. (1997). Serological classification of 

Pseudomonas syringae pathovars based on monoclonal antibodies towards the 

lipopolysaccharide O chains. In Developments in Plant Pathology Vol. 9, Pseudomonas 

syringae Pathovars and Related Pathogens, K. Rudolph, T. J. Burr, J.W. Mansfield, D. 

Stead, A. Vivian and J. V.Kietzell, (eds.), Kluwer Academic Publishers, Dordrecht, pp 

526-531.  

 

Pagel, W.  Heitfuss, R. (1989). Calcium content and cell wall polygalacturonans in 

potato tubers of cultivars with different susceptibilities to Erwinia carotovora subsp. 

atroseptica. Physiological and Molecular plant pathology. 35: 11-21.  

 

Palleroni, N. J. and Doudoroff, M. (1971). Phenotypic characterization and 

deoxyribonucleic acid homologies of Pseudomonas solanacearum. Journal of 

Bacteriology. 107: 690-696. 

 

Palva, E. T. and Mäkelä, P. H. (1980). Lipopolysaccharides heterogeneity in 

Salmonella typhimurium analyzed by sodium dodecyl sulphate/polyacrylamide gel 

electrophoresis. Eur. J. Biochem. 107: 137-143. 

 



LITERATURE CITED  174 

Parlevliet, J. (1979). Components of resistance that reduce the rate of epidemic 

development. Annual Review Phytopathology. 17: 203-22. 

 

Parry, D. W.,  Jenkinson,  P., Mcleod, L. (1995). Fusarium ear blight (scab) in small 

grain cereals, a review. Plant Pathology. 44: 207-238. 

 

Pauly, M., Albersheim, P., Darvill, A., York, W. S. (2000). Molecular domains of the 

cellulose/xyloglucan network in the cell walls of higher plants. Plant J. 20: 629-639. 

 

Pennell, R. I., Knox, J. P., Scofield, G. N., Selvendran, R. R., Roberts, K. (1989). A 

family of abundant plasma membrane-associated glycoproteins related to the 

arabinogalactan proteins is unique to flowering plants. J. Cell Biology. 108: 1967-1977. 

 

Pennell, R. I., Janniche, L., Scofield, G. N., Roberts, K., Peart, J. M. (1991). 

Developmental regulation of a plasma membrane arabinogalactan protein epitope in 

oilseed rape flowers. Plant Cell.  3: 1317-1326. 

 

Pennell, R. I., Janniche, L., Scofield, G. N., Roberts, K., De Vries, S. C. (1992). 

Identification of a transitional cell state in the developmental pathway to carrot somatic 

embryogenesis. J. Cell Biology. 119: 1371-1380.   

 

Pernezny, K. and Collins, J.  (1997). Epiphytic populations of Xanthomonas campestris  

pv. vesicatoria on pepper: relationships to host-plant resistance and exposure to copper 

sprays. Plant Disease,  81: 791 − 794. 

 

Perombelon, M. C. M. (2002). Potato diseases caused by soft rot erwinia: an overview 

of  pathogensis. Plant Pathology. 51: 1-12.  

 

Perry, M. B.,  Ho, M., MacLean, L., Bryan, T. (1995). Structural characterization of 

the lipopolysaccharide O antigen of Burkholderia pseudomallei, Infect. Immun. 63: 3348-

3352.  



LITERATURE CITED  175 

Persley,  G. J. (1986). Ecology of Pseudomonas solanacearum, the causal agent of  

bacterial wilt. In: Bacterial Wilt Disease in Asia and the South Pacific (PERSLEY, G. J.,  

ed.). Canberra: ACIAR Proceedings No.13, 71-76. 

 

Prell, H.H. (1996). Interaktionen von Pflanzen und phyto-pathogenen Pilzen.Gustav  

Fischer, Stuttgart, Germany, 208 p. 

 

Prior, P., Grimault, V. and Schmitt, J. (1994). Resistance to bacterial wilt   

(Pseudomonas solanacearum) in tomato: recent status and prospects. In: Hayward, A.C.  

and Hartman G.L. (eds.). Bacterial Wilt, the Disease and its Causative Agent, 

Pseudomonas solanacearum,  pp. 209 − 223. CAB International, Wallingford.  

 

Prior,  P., Bart,  S., Darrasse, A., Anais, G. (1996). Resistance to bacterial wilt in 

tomato as discerned by spread of Pseudomonas (Burkholderia) solanacearum in the stem 

tissues. Plant Pathology. 45: 720-726.  

 

Priou, S., Gutarra, L., Fernandez, H. and Alley, P. (1999). Sensitive detection of 

Ralstonia solanacearum (race 3) in soil by post enrichment DAS ELIZA. In: Hayward, 

A.C., and Hartamn, G.L. (eds.). Bacterial Wilt: The disease and its causative agent, 

Pseudomonas solanacearum, CAB International, Wallingford, Oxon, UK,  p. 209 - 223. 

 

Priou, S., P. Aley and L. Gutarra. (2002). Assessment of Resistance to Bacterial Wilt 

in CIP Advanced Potato Clones. In press. In: Bacterial Wilt:  the Disease and the 

Ralstonia solanacearum species complex.  C. Allen, P. Prior and C. Hayward (eds), 

American Phytopathology Society (APS) Press in St. Paul, Minnesota, USA.  

 

Quinon, V. L., Aragaki, M. and Ishii, M. (1964). Pathogenicity and serological 

relationship of three strains of Pseudomonas solanacearum in Hawaii. Phytopathology. 

54: 1096-1099. 

 



LITERATURE CITED  176 

Rahman, I., Shahamat, M., Chowdhury, M. A. R. and Colwell, R. R. (1996).  

Potential virulence of viable but non-culturable Shigella dysenteriae Type-1. Applied and  

Environmental Microbiology.  62: 115 − 120. 

 

Rahman, M. A., Abdullah, H., Vanhaecke, M. (1999). Histopathology of susceptible  

and resistant Capsicum annuum cultivars infected with Ralstonia solanacearum. J. 

phytopathology. 147: 129-140. 

 

Rajan, S., Bose, A. (2002). A biochemical marker for screening of bacterial wilt 

resistance in tomato. Abstract. 3rd International Bacterial Wilt Symposium, February 4-8, 

2002  

http:/ibws.nexenservices.com/RSA%20Programm/Thursday_poster .htm. 

 

Rao, S.  S.,  Lippincott, B.  B., and Lippincott, A. J. (1982). Agrobacterium adherence 

involves the pectic portion of the host cell wall and is sensitive to the degree of pectin 

methylation. Physiol. Plant. 56: 374-380. 

 

Rathmell, W. G. and Sequeira, L. (1975). Induced resistance in tobacco leaves: the role 

of inhibitors of bacterial growth in the intercellular fluid. Physiol Plant Pathology. 5: 65-

73.   

 

Ray, M. K., Kumar, G. S. and Shivaji, S. (1994). Phosphorylation of 

lipopolysaccharides in the Antarctic psychrotroph Pseudomonas syringae: a possible role 

in temperature adaptation. J. Bacteriology. 176: 4243-4249. 

 

Redgwell, R. J.  and Selvendran, R. R. (1986). Structural features of the cell wall 

polysaccharides of onion Allium cepa. Carbohydrate Research. 157: 183-199.  

 

Rehm, S. and Espig, G. (1991). The cultivated Plants of the Tropics and Subtropics. 

Cultivation, Economic value, Utilization. Institute of agronomy in the Tropics, University 

of Göttingen, Germany,  552p.  



LITERATURE CITED  177 

Renard, C. M. G. C., Lahaye, M., Mutter, M., Voragen, A. G. J., Thibault, J. F. 

(1997). Isolation and structural characterization of rhamnogalacturonan oligomers 

generated by controlled acid hydrolysis of sugar-beet pulp. Carbohydrate Research. 305: 

271-280. 

 

Renard, C. M. G. C., Thibault,  J. F. (1997). The xylose-rich pectins from pea hulls. 

Int. J. Biol. Macromol. 21: 155-162. 

 

Ridley, B. L., O’Neill, M. A., Mohnen, D. (2001). Pectins: Structure, biosynthesis, and 

oligogalacturonide-related signaling. Phytochemistry. 57: 929-967. 

 

Rodriguez, M. C., Torres-Vila, L. M., Cuartero, J., Medina, I. (2003). Vascular 

colonization patterns in susceptible and resistant tomato cultivars inoculated with 

Fusarium oxysporum f. sp. lycopersici races 0 and 1. Plant Pathology. 52: 199-203. 

 

Rollin,  C., and De Vries, J.  (1990). Food Gels, Harris, P. (ed), Elsevier, Amsterdam, 

401-434. 

 

Roszak, D. B., Grimes, D. J. and Colwell, R. R. (1984). Viable but non-recoverable  

stage of Salmonella enteritidis in aquatic systems. Canadian Journal of  Microbiology, 

30:  334 − 338. 

 

Roszak, D. B. and Colwell, R. R. (1987). Survival strategies of bacteria in the natural  

environment. Microbiology Review. 51: 365 − 379. 

 

Round, A. N., Ring, G. S., Morris, V. J. (1997). Unexpected branching in pectin 

observed by atomic force microscopy. Carbohydrate Research. 303: 251-253. 

 

Rudolph, K. and Mendgen, K. (1985). Multiplication of Pseudomonas syringae pv. 

phaseolicola “in planta”. II. Characterization of susceptible and resistant reactions by 



LITERATURE CITED  178 

light and electron microscopy compared with bacterial counting. Phytopathol. Z. 113: 

200-212. 

 

Rudolph, K. (2001). Thirty-five years of phytobacteriology research with special 

emphasis on pathogenicity of Pseudomonas syringae. Plant Pathogenic Bacteria, Solke 

H.  De Boer (ed.), Proc., 10th Intl. Conf. Phytopathogenic Bacteria, Charlottetown, 

Canada,  pp. 109-117. 

 

Ryden, P. and Selvendran, R. R. (1990). Structural features of cell wall polysaccharides  

of potato (Solanum tuberosum). Carbohydrate Research. 195: 257-272.  

 

Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., 

Billault, A., Brottier, P., Camus, J. C., Cattolico, L., Chandler, M., Choisne, N., 

Claudel-Renard, C., Cunnac, S., Demange, N., Gaspin, C., Lavie, M., Moisan, A., 

Robert, C., Saurin, W., Schiex, T., Siguier, P., Thébault, P., Whalen, M., Wincker, 

P., Levy, M., Weissenbach, J. and C. A. Boucher (2002). Genome sequence of the 

plant pathogen Ralstonia solanacearum. Nature. 415: 497-502. 

 

Samaj, J.,  Ensikat, S., Baluska, F., Knox, J., Barthlott, W. And Volkmann, D. 

(1999). Immunogold localization of plant surface arabinogalactan-proteins using glycerol 

liquid substitution and scanning electron microscopy. J. Micro Sci. Oxf. 193: 150-7. 

 

Samson, M. R., Klis, F. M., Sigon, C. A. M., Stegwee, D. (1983). Localization of  

arabinogalactan proteins in the membrane system of etiolated hypocotyls of Phaseolus  

vulgaris L. Planta. 159: 322-328. 

 

Samson, M.R., Klis, F.M., Jongeneel, R. (1984). Arabinogalactan protein in the  

extracellular  space of Phaseolus vulgaris L. Phytochemistry. 23: 493-496.  

 



LITERATURE CITED  179 

Schaad,  N. W., Takatsu, A. and Disease, J. C. (1978). Serological identification of  

strains of pseudomonas solanacearum in brazil. In proceedings of 4th international  

conference on plant pathogenic bacterial, progress, France, pp 295-300.   

 

Schell, M. A. (1996). To be or not to be: how Pseudomonas solanacearum decides  

whether or not to express virulence genes. European Journal of Plant Pathology. 102:  

459-469.  

 

Schell, M. A. (2000). Control of virulence and pathogenicity genes of Ralstonia 

solanacearum by an elaborate sensory network. Annual Review of Phytopathology. 38, 

263-292. 

 

Schlösser, E. (1997). Preformed structural and chemical barriers. In H. Hartleb R.  

Heitefuss H.H. Hoppe. Resistance Of Crop Plants Against Fungi, Gustav Fischer, Jena,  

Germany. pp 84-99.  

 

Schmit, J. (1978). Microscopic study of early stages of infection by pseudomonas 

solanacearum E.F.S. on “in vitro” grown tomato seedlings.  Pages 841-857 in Proc.  Int.  

Conf.  Plant Pathogenic Bacteria, 4th. 

 

Schols, H. A. and Voragen, A. G. J., and Colquhoun, I. J., (1994).  Carbohydrate 

Research. 256: 97-111. 

 

Schols,  H. A.,  Bakx, E. J., Schipper, D., and Voragen, A. G. J. (1995). A  

xylogalacturonan subunit present in the modified hairy regions of apple pectin. 

Carbohydrate Research. 279: 265-279.  

 

Schols,  H. A.  and Voragen, A. G. J. (2003). (Eds.), Advances in Pectins and 

Pectinases  Research, Kluwer Academic publishers. Printed in Netherlands.  

 



LITERATURE CITED  180 

Schopfer, P. (1990). Cytochemical identification of arabinogalactan protein in the outer 

epidermal wall of maize coleoptiles. Planta. 183: 139-142.  

 

Schopfer, P., Schindler, T., Bergfeld, R. (1995). Arabinogalactan proteins in maize  

coleoptiles: developmental relationship to cell death during xylem differentiation but not  

to extension growth. Plant J. 7: 25-36.  

 

Seal, S. E. and Elphinstone, J. G. (1994). Advances in identification and detection of  

Pseudomonas solanacearum. In: Bacterial Wilt: the Disease and Its Causative Agent,  

Pseudomonas solanacearum (HAYWARD, A. C. and G. L. HARTMAN, eds.). Wallingford:  

CAB International, 35-57. 

 

Serpe, M. D. and Nothnagel, E. A. (1994). Effects of Yariv phenylglycosides on Rosa 

cell-suspensions: evidence for the involvement of arabinogalactan proteins in cell 

proliferation. Planta. 193: 542-550. 

 

Serpe, M. D. and Nothnagel, E. A. (1995). Fractionation and structural characterization 

of arabinogalactan proteins from the cell wall of rose cells. Plant Physiology. 109: 1007-

1016.  

 

Serpe, M. D., Muir, A. J., Driouich, A. (2002). Immunolocalization of ß-D-glucans, 

pectins, and arabinogalactan proteins during intrusive growth and elongation of 

nonarticulated laticifers in Asclepias speciosa Torr. Planta: Available online under 

http://springerlink.metapress.com. 

 

Seymour, G. B., Colquhoun, I. J., DuPont, M. S., Parsley, K. R., Selvendran, R. R. 

(1990). Composition and structural features of cell wall polysaccharides from tomato 

fruits. Phytochemistry. 29: 725-731.  

 



LITERATURE CITED  181 

Shaner, G. and Finney, R. E. (1977). The effect of nitrogen fertilization on the 

expression of slow-mildewing resistance in Knox wheat. Phytopathology. 67, 

1051−1056. 

 

Shashkov, A. S., Knirel, Y. A., Tanatar, N. V. (1986). Application of NMR 

spectroscopy, including n.O.e. studies, to the O-specific polysaccharide from 

Pseudomonas cepacia strain IMV 3181, Carbohydrate Research. 146: 346-349. 

 

Shea, E. M., Gibeaut, D. M., and  Carpita, N. C. (1989). Structural analysis of the cell 

walls regenerated by carrot protoplasts. Planta. 179: 293-308.  

 

Showalter, A.M. (2001). Arabinogalactan-proteins: structure, expression and function. 

CMLS, Cell. Mol. Life Sci. 58: 1399-1417. 

 

Smallwood, M., Yates, E. A., Willats, W.G. T., Martin, H., Knox, J. P. (1996). 

Immunochemical comparison of membrane-associated and secreted arabinogalactan- 

proteins in rice and carrot. Planta. 198: 452-459. 

 

Smart, M.G. (1991). The plant cell wall as a barrier to fungal invasion. In: Cole GT, 

Hoch HC, eds. The fungal spore and disease initiation in plants and animals. Plenum 

Publ. Corp: New TYorklk, NY, U. S. A., 47-65. 

 

Smith, E. (1896). A bacterial disease of tomato, eggplant and Irish potato. Washington: 

US Department of Agriculture. Bulletin No. 12 (Division of Vegetable Physiology and 

Pathology), 1-28.   

 

Smith, A. R. W., Zamze, S. E. and Hignett, R. C. (1985). Composition of 

lipopolysaccharide from Pseudomonas syringae pv. morsprunorum and its digestion by 

bacteriophage A7. J. Gen. Microbiol. 131: 963-974. 

 



LITERATURE CITED  182 

Snijders, C. H. A. (1990). Fusarium head blight and mycotoxin contamination of wheat, 

a review. Netherlands Journal of Plant Pathology. 96: 187-198. 

 

Snijders, C. H. A., Krechting, C. F. (1992). Inhibition of deoxynivalenol translocation 

and fungal colonization in Fusarium head blight resistant wheat. Can. J. Botany. 70: 

1570-1576.  

 

Sonnenberg, B. (1994). Quantifizierung und Markierung bakterieller Polymere und 

pflanzlicher Oberflächenstrukturen mit Biotin in der Interaktion von Phaseolus vulgaris 

und Pseudomonas syringae pv. phaseolicola, Ph. D. Dissertation, University of 

Göttingen, Göttingen, Germany.  

 

Stacey, N. J., Roberts, K., Knox, J. P. (1990). Patterns of expression of the Jim4  

arabinogalactan protein epitope in cell cultures and during somatic embryogenesis in  

Daucus carota L. Planta. 180: 285-292. 

 

Stead, D. E. (1992). Grouping of plant-pathogenic and some other pseudomonas spp. by 

using cellular fatty acid profiles. Int. J. Syst. Bacteriology. 42 (2): 281-295. 

 

Stead, D. E. (1996). Bacterial diseases of Potatoes – future problem? Proc. Crop 

Protection in the Northern Britain, 1996, University of Dundee, 19-21-March 1996:  pp.  

303 – 311.  

 

Steck, T. D. and Brian, E. G. (2001). The viable but non-culturable state of Ralstonia  

solanacearum may be involved in long-term survival and plant infection, Applied  

Environmental Microbiology, 67: 3866 – 3872. 

 

Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by  

Fusarium graminearum. Can. J. Plant Pathalogy. 4: 195-209.  

 



LITERATURE CITED  183 

Talbott, L. and Ray, P. (1992). Changes in molecular size of previously deposited and 

newly synthesized pea cell wall matrix polysaccharides. Effects of auxin and turgor. 

Plant Physiology. 98: 369-379. 

 

Tans-Kersten, J., Yanfeen, G. and Allen, C. (1998). Ralstonia solanacearum pectin  

methylesterase is required for growth on methylated pectin but not for bacterial wilt  

virulence. Applied and Environmental Microbiology. 64: 4918-4923.   

 

Thompson, J. E., Fry, S. C. (2000) Evidence for covalent linkage between xyloglucan  

and acidic pectins in suspension-cultured rose cells. Planta. 211: 275-286. 

 

Thoquet,  P., Olivier,  J., Sperisen, C., Rogowsky,  P., Laterrot, H., and Grimsley, N.  

(1996). Quantitative trait loci determining resistance to bacterial wilt in tomato variety  

Hawaii 7996. Mol. Plant-Microbe Interact. 9: 826-836. 

 

Thoquet,  P., Olivier, J.,  Sperisen, C., Rogowsky, P., Prior, P., Anais, G., Mangin,  

B., Bazin, B., and Grimsley, N. (1996). Polygenic resistance of tomato plants to  

bacterial wilt in  the French West Indies. Mol. Plant-Microbe Interact. 9: 837-842.  

 

Turpin,  P., Maycroft,  K., Rowland, C. and Wellington, E. (1993). Viable but non- 

culturable salmonellas in soil. Applied Bacteriology. 74: 421 − 427. 

 

Vance, V. B., Berger, P. H., Carrington, J. C., Hunt, A. G. and Shi, X. M. (1995). 5’ 

proximal potyviral sequences mediate potato virus X/potyviral synergistic disease in 

transgenic tobacco. Virology. 206: 583-590. 

 

Vander Molen, G. E., Beckman, C. H., Rodehorst, E. (1977). Vascular gelation: a 

general response phenomenon following infection. Physiol.  Plant Pathology. 1: 95-100.  

 

Vanderplank, J. E. (1968). Disease resistance in Plants. Academic Press, New-York and 

London, 206p. 



LITERATURE CITED  184 

Vanderplank, J. E. (1982). Host-Pathogen Interactions in Plant Diseases. Academic 

Press, London, United Kingdom, 207p. 

 

Van Dyke, M. and Prosser, J. (1998). Effect of cell density and attachment on  

resuscitation in soil of starved Pseudomonas fluorescens MON787. FEMS Microbiology  

Ecology, 26: 63 − 70. 

 

Van Holst, G.J.,  Klis, F.M., De Wildt, P.J.M., Hazenberg, C. A. M., Stegwee, D.,  

Buijs, J. (1981). Arabinogalactan-protein from a crude cell organelle fraction of  

Phaseolus  vulgaris L. Plant Physiology. 68: 910-913.  

 

Van Overbeek, L., Eberl, L., Givskov, M., Molin, S. and Van Elsas, J. (1995).  

Survival  of, and induced stress resistance in, carbon-starved Pseudomonas fluorescens 

cells  residing in soil. Applied Environmental Microbiology. 61: 4202 − 4208. 

 

Varbanets, L. D., Brovarskaya, O. S. and Vasil’ev, V. N. (2003). Characterization of 

lipopolysaccharides from Ralstonia solanacearum. Microbiology. 72 (1): 12-17. 

 

Vasse, J.,  Frey, P and Trigalet, A. (1995). Microscopic studies of intercellular  

infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum.  

Molecular Plant-Microbe Interactions. 8: 241-251. 

 

Vasse, J., Trigalet, A., Etchebar, C., Montrozier, H. (1998). Detection and  

visualization of the major acidic exopolysaccharide of Ralstonia solanacearum and its  

role in tomato root infection and vascular colonization. European J. Plant Pathology. 

104:  795-809. 

 

Vasse, J., Etchebar, C., Van Gijsegem, F., and Trigalet, A.  (1998). Xylem  

colonization by an HrcV- mutant of Ralstonia solanacearum is a key factor for the  

efficient biological control of tomato bacterial wilt. Mol. Plant Microbe Interact. Vol. 11:  

No. 9, pp. 869-877. 



LITERATURE CITED  185 

Vasse, J., Van Gijsegem, F.,  Marenda, M., Boucher, C. (2000 a). Ralstonia 

solanacearum produces Hrp-dependent pili that are required for PopA secretion but not  

for attachment of bacteria to plant cells. Molecular Microbiology. Vol. 36: Issue 2, Page  

249.  

 

Vasse, J., Frey, P., Boucher, C., and Brito, B.  (2000 b). The hrp B and hrp G  

regulatory genes of Ralstonia solanacearum are required for different stages of the  

tomato root infection process. Mol. Plant Microbe Interact. Vol. 13: No. 3, pp. 259-267.   

 

Vasse J., Danoun S., Trigalet A. (2002). Cytological and biochemical analysis of roots 

infection of the resistant tomato line Hawaii 7996 by R. solanacaearum. Abstract. 3rd 

International Bacterial Wilt Symposium, February 4-8, 2002. 

http:/ibws.nexenservices.com/Talks/talk_23Vasse.htm 

 

Venkatesh, B. (2002). Characterization of bacterial lipopolysaccharides (Pseudomonas 

syringae pv. tomato and Pseudomonas syringae pv. apii) and pectins of tomato and 

celery plants (Lycopersicon esculentum and Apium graveolens) regarding their possible 

role in host/pathogen-interaction. Ph. D. Dissertation, University of Göttingen, Göttingen, 

Germany. 

 

Vidal, S., Doco, T., Williams, P., Pellerin, P., York, W.S., O’Neill, MA., Glushka, J., 

Albersheim,P., Darvill, A.G. (2000). Structural characterization of the pectic 

polysaccharide rhamnogalacturonan II: evidence for the backbone location of the aceric 

acid-containing oligoglycosyl side chain. Carbohydrate Research. 326: 277-294. 

 

Vierhuis, E., York, W. S., Kolli, V. S. K., Vincken, J. P, Schols, H. A., van Alebeek, 

G. J. W. M., Voragen, A. G. J. (2001). Structural analyses of two arabinose containing 

oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydrate 

Research. 332: 285-297. 

 



LITERATURE CITED  186 

Vreeland, V., Morse, S.R., Robichaux, R. H., Miller, K. L., Hua, S. T., Laetsch, W. 

M. (1989). Pectate distribution and esterification in Dubautia leaves and soybean 

nodules, studied with a fluorescent hybridation probe. Planta. 177: 435-446.  

 

Wallis, F. M. and Truter, S. J. (1978). Histopathology of tomato plants infected with 

Pseudomonas solanacearum, with emphasis on ultrastructure. Physiological Plant 

Pathology. 13: 307-317. 

 

Walton, J. D. (1994). Deconstructing the cell wall. Plant physiology. 104:1113-1118.  

 

Wang, J. F., Olivier, J., Thoquet, P., Mangin, B., Sauviac, L. and Grimsley, N. H. 

(2000). Resisatnce of tomato line Hawaii 7996 to Ralstonia solanacearum Pss4 in 

Taiwan is controlled mainly by a major strain-specific locus. Molecular Plant Microbe 

Interactions. 13: 6-13. 

 

Wang, J. F. and Lin, C. (2002). Colonization capacity of R. solanacearum tomato 

strains varying in aggressiveness on tomatoes and weeds.  

http://ibws.nexenservices.com/talks/talk_7wang.htm 

 

Weber, J. (1990). Erwinia – a review of recent research. In: Mac Kerron DKL, Edmond 

HD, Hall. D, Kirkman MA, Lang RW, eds. Proceedings of the 11th Triennial Conference 

of the EAPR: Lead Papers of Symposia 1990, Edinburgh, Scotland. Oxford: Potato 

Marketing Board, 112-8. 

 

Westphal, O. and Jann, K. (1965). Bacterial lipopolysaccharides: Extraction with 

phenolwater and further applications of this procedure. Methods Carbohydrate 

Chemistry. 5: 83-91. 

 

Whitcombe, A. J., O’Neill, M. A., Albersheim, P., Darvill, A. G. (1995). Structural 

characterization of the pectic polysaccharide rhamnogalacturonan II. Carbohydrate 

Research. 271: 15-29. 



LITERATURE CITED  187 

Whitesides, M. D. and Oliver, J. D. (1997). Resuscitation of Vibrio vulnificus from the 

viable but non-culturable state. Applied Environmental Microbiology.  63: 1002 − 1005. 

 

Wilkinson, S. G. (1977). Composition and structure of bacterial lipopolysaccharides, In: 

I. Sutherland (ed), Surface Carbohydrates of the Prokaryotic Cell. Academic Press, New 

York,. pp. 97-175. 

 

Willats, W. G. T., Marcus, S. E., Knox, J. P. (1998). Generation of a monoclonal  

antibody specific to (1 5)- -L-arabinan. Carbohydrate Research. 308: 149-152. 

 

Willats, W. G. and Knox, J. P. (1999). Immunoprofiling of pectic polysaccharides. 

Analytical Biochemistry. 268: 143-146. 

 

Willats, W. G. T., Gilmartin, P. M., Mikkelsen, J. D., Knox, J. P. (1999). Cell wall 

antibodies without immunization: generation and use of de-esterified homogalacturonan 

block-specific antibodies from a naïve phage display library. Plant J. 18: 57-65. 

 

Willats, W. G. T., Steel-King, C.G., Markus, S. E., Knox, J. P. (1999). Side chains of 

pectic polysaccharides are regulated in relation to cell proliferation and cell 

differentiation. Plant J. 20(6): 619-628. 

 

Willats, W. G. T., Limberg, G., Buchholt, H. C., van Alebeek, G-J., Benen, J., 

Christensen, T. M. I. E., Visser, J., Voragen, A., Mikkelsen, J. D., Knox, J. P. (2000). 

Analysis of pectic epitopes recognized by hybridoma and phage display monoclonal 

antibodies using defined oligosaccharides, polysaccharides and enzymatic degradation. 

Carbohydrate Research. 327: 309-320.  

 

Willats, W. G. T., Steele-King, C. G., McCartney, L., Orfila, C., Knox, J. P., (2000). 

Making and using antibody probes to study plant cell walls. Plant Physiol. Biochem. 38: 

27-36. 

 



LITERATURE CITED  188 

Willats, W. G. T., McCartney, L., Knox, J. P. (2001). Pectin: cell biology and 

prospects for functional analysis. Plant Molecular Biology. 47: 9-27. 

 

Willats, W. G. T., Orfila, C., Limberg, C., Buchholt, H.C., Van Alebeek, G. J. W. 

M.,  Voragen, A. G. J., Marcus, S. E., Christensen, T. M. I. E., Mikkelsen, J. D., 

Murray,  B. S., and Knox, J. P. (2001). Modulation of the degree and pattern of methyl  

esterification of pectic homogalacturonan in plant cell walls. J.Biol.Chem. 276: 19404-  

19413. 

 

Willats, W. G. T., Steele-King, C. G., Marcus, S. E., Knox, J. P. (2002). Antibody  

techniques. In Molecular Plant Biol. Volume 2: A practical approach. Gilmartin,  P. M.,  

and Bowler, C. (Eds). 199-219, Oxford, Oxford Univ. Press.  

 

Willats, W. G. T., McCartney, L., Knox, J. P. (2003). Pectin cell biology: complexity 

in  context. Proceedings for Advances in Pectins and Pectinases Research pp. 147-157,  

Kluwer Academic publishers. Printed in Netherlands.   

 

Winstead, N. N. and Kelman, A. (1952). Inoculation techniques for evaluating 

resistance to Pseudomonas solanacearum. Phytopathology. 42, 628-634. 

 

Wojciechowski, C. L., Fall, R. (1996). A continuous fluorometric assay for pectin  

methylesterase. Analytical Biochemistry. 237:103-108.  

 

Wright, B. G. and Rebers, P. A. (1972). Procedure for determining heptose and hexose 

in lipopolysaccharides. Modification of cysteine sulphuric acid method. Analytical 

Biochemistry. 49: 307-319. 

 

Wydra, K. (1991). Interaktionen zwischen zellwandpolymeren von Bohnenpflanzen und 

zellen von Pseudomonas syringae pv. phaseolicola sowie deren extrazellularen, 

polymeren produkten. Phd Thesis. University of Gottingen, Gottingen, Germany.  

 



LITERATURE CITED  189 

Xu, H. S., Roberts, N., Singleton, F. L., Attwell, R.W., Grimes, D. J. and Colwell, R.  

R. (1982). Survival and viability of non-culturable Escherichia coli and Vibrio cholerae 

in  the estuarine and marine environment. Microbiological Ecology. 8: 313 − 323.  

 

Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., Nishiuchi, Y. (1992). Proposal of 

Burkholderia gen. nov. and transfer of seven species of the genus pseudomonas 

homology group II to the new genus, with the type species Burkholderia cepacia 

(Palleroni and Holmes 1981) comb. nov. Microbiology and Immunology. 36 : 1251-1275.  

 

Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., Nishiuchi, Y. (1995). Transfer of two  

Burkholderia and an alcaligenes species to Ralstonia gen. Nov.: proposal of Ralstonia  

picketti (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum  

(Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol.  

Immunology. 39: 897-904.  

 

Yamaoka, T. and Chiba, N. (1983).  Changes in the coagulating ability of pectin during  

the growth of soybean hypocotyls. Plant cell Physiology. 24:1281-1290. 

 

Yang, C. and Ho, G. (1998). Resistance and susceptibility of Arabidopsis thaliana to 

bacterial wilt caused by Ralstonia solanacearum. Phytopathology. 88: 330-334.  

 

Yariv, J., Rapport, M. M., and Graf, L. (1962). The interaction of glycosides and 

saccharides with antibody to the corresponding phenylazoglycosides. Biochem. J. 85: 

383-388. 

 

Yariv,  J., Lis,  H., and Katchalski, E. (1967). Precipitation of arabic acid and some  

seed polysaccharides by glycosylphenylazo dyes. Biochem. J. 105: 1-2C. 

 

Yu, Q., Alvarez, A. M., Moore, P. H.,  Zee, F., Kim, M. S., De Silva, A., Hepperly, P.  

R. and Ming, R.(2003). Molecular Diversity of Ralstonia solanacearum isolated from 

ginger in Hawaii. Phytopathology. 93, 1124-1130. 



LITERATURE CITED  190 

Zdorovenko, G. M., Shashkov, A. S., Zdorovenko, E. L., Kocharova, N. A., 

Yakovleval, L. M., Yu, A., Knirel, Y. and Rudolph, K. (2001). Characterization of the 

lipopolysaccharide and structure of the O-specific polysaccharide of the bacterium 

Pseudomonas syringae pv. atrofaciens IMV 948. Biochem. (Mosc.) 66: 369-377. 

 

Zhang, G. F., Staehelin, L. A., (1992). Functional compartmentation of the golgi 

apparatus of plant cells; immunocytochemical analysis of high-pressure frozen- and 

freeze-substituted sycamore maple suspension culture cells. Plant Physiology. 99: 1070-

1803.  

 

Zhang, L. P., Khan, A., Foolad, M. R. (2002). A molecular linkage map of tomato 

displaying chromosomal locations of resistance gene analogs based on a Lycopersicon 

esculentum x Lycopersicon hirsutum cross. Genome. 45: 133-146. 

 

Zsivanovits, G., Smith, A., Ring, S. (2004). Material properties of concentrated pectin 

networks. Carbohydrate Research. Vol. 339, Issue 7, pp. 1317-1322.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ACKNOWLEDGEMENT 

 
First of all, I am grateful to Almighty by whose benign blessings I have been able to clear 

another phase of my life. 

 

I thank my Supervisor Dr. Kerstin Wydra for her competent guidance throughout the 

whole work and her readiness to discuss matters of the topic anytime with me. 

 

I am also thankful to Prof. Poehling, Head of Dept. for providing me the necessary 

facilities for conducting the research.  

 

I sincerely thank Dr. Ulrich Zähringer, Borstel, for his collaboration to characterize the 

lipopolysaccharides. 

 

I would also like to thank my colleagues Birgit Milde, Ellie, Zekarias Leykun, Martine 

Zandjanakou, Michael Klüken and Rodrigue Diogo for their moral support during my 

stay in Germany and also their friendly assistance and teamwork. 

 

I express my sincere gratitude to Dejene Eticha, Dr. Mohammad Mobin, for their 

helpfulness during the time we shared at the Institute for Plant Nutrition of the University 

of Hannover. 

 

Words alone cannot describe the immeasurable debt I owe to my parents, in-laws, sister 

for their endurance, unfailing enthusiasm and support during the course of my study. 

 

I cherish with appreciation the joyful and cheerful company of my husband who always 

shared the burden of my work, cheered me in the moments of despair and made the 

things much smoother to make this venture a success. Everybody must have not been 

mentioned but none is forgotten.  




