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1 Introduction

The f(R) gravity theories, whose Lagrangian is given by the function f of the spacetime

scalar curvature R,

S = −1

2

∫

d4x
√−g f(R) , (1.1)

are the particular class of modified gravity theories which can provide the geometrical de-

scription of inflation in the early universe and acceleration of the present universe due to

gravity alone — see e.g., refs. [1, 2] for a review— in agreement with all known observations.

The f(R) gravity is known to be classically equivalent to the scalar-tensor gravity [3–6], so

that in the context of inflation or dark energy it amounts to quintessence. The “fifth force”

at present due to exchange of the extra scalar (dubbed scalaron in the context of f(R)

gravity) can be effectively screened on local scales (like the Solar system) but can allow the

enhancement of gravity on cosmological scales due to the so-called chameleon effect [7, 8].

Gravitational instabilities in f(R) gravity can also be avoided by demanding the proper

signs of the first and second derivatives of the function f , thus making it free of ghosts

and tachyons [2]. The coupling of f(R) gravity to matter fields after a transformation to

the Einstein frame gives rise to the couplings of inflaton (scalaron) to all matter fields and

thus leads to the universal reheating after inflation in the early universe [9–11]. All the

successes of the f(R) gravity theory are related to the FLRW backgrounds.

The f(R) gravity models currently have the phenomenological status, i.e. they are not

(yet) derivable from any fundamental theory of gravity (like superstrings). Because of that

any f(R) gravity model needs fine-tuning of its parameters, in order to meet observations.

Moreover, the f(R) gravity is neither UV-complete nor renormalizable. The renormaliz-

ability can be restored by adding the higher-curvature terms containing the Weyl tensor,
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like e.g., the conformal gravity term proportional to the Weyl tensor squared [12, 13]. Yet

another way to improve the status of f(R) gravity is to find its embedding into the fun-

damental framework of superstring theory. It should be mentioned that the Weyl-tensor-

dependent terms are known to appear in the (perturbative) superstring gravitational effec-

tive action indeed [14]. Hence, at the best, the f(R) gravity may be considered as merely

part of the gravitational effective action which is presumably derivable from a fundamental

theory of quantum gravity (like superstrings). The f(R) gravity part is responsible for the

evolution of the scale factor in the FLRW metric of the universe, however, it is not enough

for treating gravitational (tensor) perturbations. For example, the f(R) gravity-based

models of dark energy can only be distinguished from the standard (ΛCDM) Cosmological

Model by studying cosmological perturbations [15]. Our interpretation makes it clear that

the full gravitational action should have other terms beyond the f(R) action.

From this perspective it is natural to extend f(R) gravity action (1.1) to a more general

one, namely,

S = −1

2

∫

d4x
√−gf(R,C) , (1.2)

having a generic dependence upon the spacetime Weyl tensor Cµνρσ = Rµνρσ− 1
2(gµρRνσ−

gνρRµσ − gµσRνρ + gνσRµρ) +
1
6 (gµρgνσ − gνρgµσ)R also. Since the indices of the Weyl

tensor have to be contracted in the Lagrangian, the C-dependence is actually given by

f(R,C) = f(R,C2, C3, C4, . . .)

= f0(R) + f2(R)C
2 + f3(R)C

3 + f4(R)C
4 +O(C5)

(1.3)

where the Cn denote the scalar products of the Weyl tensor, and the dots may also in-

clude the contracted covariant derivatives of R and C as the additional arguments of the

f -function. In the case of f(R) gravity, adding the covariant derivatives of R leads to a

classically equivalent scalar-tensor gravity with more scalars [16, 17]. In what follows we

ignore the terms with the covariant derivatives of R and C for simplicity. The FLRW

background has CFLRW
µνρσ = 0 so that an arbitrary C-dependence in the action (1.2) does

not affect the Friedman equation for the FLRW metric, and hence, keeps the cosmological

achievements of f(R) gravity. But, for example, the Schwarzschild solution and the black

hole physics will be modified [18].

When compared to a generic gravitational action, our action (1.2) is distinguished by

the absence of manifest dependence upon the Ricci curvature tensor. At the quadratic

level with respect to the curvatures its only possible contribution, which is proportional

to the Ricci tensor squared, can always be eliminated via the Gauss-Bonnet (topological)

combination in favor of the C2 term. A generic dependence of the gravitational action

upon the Ricci tensor can lead to the extra propagating massless spin-2 mode [19, 20].

Our action (1.2) can also be considered as the alternative to the popular f(R,G) gravity

where G is the Gauss-Bonnet combination, G = CµνρσC
µνρσ − 2RµνR

µν + 2
3R

2. The G-

combination is a total derivative in four dimensions, so that the linear term in G does not

affect the equations of motion, thus leading to a ghost-free f(R,G) theory. The spectrum of

the linearized (R+C2) action has a massive spin-2 ghost particle in addition to a massless
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graviton [12, 13]. Presumably, this ghost violates unitarity in a quantized (R + C2) field

theory.1 The unitarity issue is crucial for a fundamental theory of gravity, but does not arise

when treating the C2 term as a perturbation in the action. It may also be possible that

the conformal gravity ghost is an artifact of the truncation of some highly non-linear (with

respect to the curvature) action to a four-derivative action. See ref. [23] for the possible

ghost-free completion of the conformal gravity by the partially massless bimetric gravity.

However, our main reasoning for the absence of the manifest Ricci tensor dependence

in the gravitational effective action is supersymmetry. We are going to demonstrate that

our action (1.2) allows a locally N = 1 supersymmetric extension as a chiral supersymmet-

ric invariant in curved superspace. Indeed, if such an action is to arise from superstrings, it

must be in a supersymmetric context, while the chirality of the gravitational effective action

would guarantee stability of its cosmological solutions against the higher-order quantum

corrections due to the well known non-renormalization theorems in supersymmetry and

supergravity [24–27]. As is well known in superspace supergravity [24–26, 28], the relevant

superfield containing the Ricci tensor as one of its field component in the superfield is not

chiral, whereas the supergravity superfields containing the R and C tensors are chiral (see

section 3 below for more details).

A supersymmetrization of eq. (1.2) can also be considered as a supersymmetric gener-

alization of the F (R) supergravity action [29] that is the manifestly N = 1 supersymmetric

extension of the f(R) gravity action in N = 1 chiral curved superspace,

SF =

∫

d4xd2θ EF (R) + H.c. , (1.4)

in terms of the analytic function F (R).2 Besides having the manifest local N = 1 super-

symmetry, the action (1.4) has the so-called auxiliary freedom [31, 32] because the auxiliary

fields do not propagate in this theory. It distinguishes the action (1.4) from other possible

supersymmetric extensions of eq. (1.1). A calculation of the real function f(R) in eq. (1.1)

from a given holomorphic function F (R) in eq. (1.4) requires solving an algebraic equation

of motion for the auxiliary field M . It is the non-trivial task in general, unlike the usual

supergravity whose dependence upon the auxiliary fields is always Gaussian. The compo-

nent structure of the bosonic sector of F (R) supergravity was systematically investigated

in refs. [33–37] on the simplest examples.

Some physical applications of the F (R) supergravity theory to the early universe cos-

mology, inflation and reheating were systematically studied in refs. [38–41]. In particular,

a successful embedding of the chaotic slow roll (Starobinsky) inflation into the F (R) su-

pergravity is based on the following Ansatz [38]:

F (R) = −1

2
f1R+

1

2
f2R2 − 1

6
f3R3 (1.5)

1See, however, refs. [21, 22] challenging the standard lore about non-unitarity of conformal gravity.
2The field construction of the F (R) supergravity theory by using the N = 1 superconformal tensor

calculus was given in ref. [30].
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whose coefficients are given by

f1 =
3

2
M2

Pl , f2 =

√

63

8

M2
Pl

m
, and f3 =

15M2
Pl

M2
(1.6)

in terms of the scalaron masses: M in the high curvature regime andm in the low curvature

regime, respectively [38, 40]. We have temporarily restored the Planck mass dependence

here, in order to show the (mass) dimensions of the f -coefficients. A possible connection

between the F (R) supergravity and the Loop Quantum Gravity was investigated in ref. [42].

In this paper we generalize the F (R) supergravity to a more general theory whose

bosonic sector includes an f(R,C) gravity action (1.2).

Our paper is organized as follows. In section 2 we rewrite the bosonic action (1.2) to

the Einstein frame where the R-dependence is reduced to the standard Einstein-Hilbert

term, in the presence of the propagating scalaron and the Weyl tensor. In section 3 we

construct a new manifestly supersymmetric extension of the bosonic action (1.2) by us-

ing curved superspace of the (old) minimal superspace supergravity. Section 4 is devoted

to rewriting our new supergravity action to the more conventional form, in terms of the

Kähler potential and the “superpotential”. In section 5 we derive the bosonic part of the

simplest non-trivial model in our new family of modified supergravity theories. We discuss

the possible origin of our new supergravity actions in section 6. We use the natural units

c = ~ = MPl = 1 where MPl is the reduced Planck mass, and the (1 + 3)-dimensional

space-time signature (+,−,−,−).

2 f(R,C) gravity in Einstein frame

The action (1.2) is the extension of (1.1) with an extra dependence upon the Weyl tensor.

Hence, as long as the Weyl tensor vanishes, all the results of f(R) gravity can be reproduced.

For instance, the vacuum solutions in both theories with R = R0 satisfy the equation

R0f
′(R0) = 2f(R0). (2.1)

The generalized action (1.2) can be transformed to the Einstein frame, like the f(R)

gravity action (1.1). Let us rewrite the action (1.2) to the form

S = −1

2

∫

d4x
√−g

[

f ′(φ,C)(R− φ) + f(φ,C)
]

(2.2)

where the new scalar field φ has been introduced. The primes denote the derivatives with

respect to the first argument. On the one side, the equation of motion for the new scalar

is algebraic,

f ′′(φ,C)(R− φ) = 0. (2.3)

Assuming that f ′′ 6= 0, we get φ = R and, hence, recover the original action (1.1) back.

On the other side, let us define a new metric

g̃µν = f ′(φ,C)gµν (2.4)
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in the action (2.2), where the scalar function f ′ is given by

f ′(φ,C) = f ′(φ, 0) +
df ′

d(C2)

∣

∣

∣

∣

C=0

C2 +O(C4). (2.5)

Though eq. (2.4) is not a standard Weyl transformation because the Weyl tensor C = C(g)

is metric-dependent, it can still be considered as the (non-canonical) local field redefinition

of the metric, under which the Weyl tensor transforms covariantly,

C̃µνρσ ≡ Cµνρσ(g̃) = f ′(φ,C)Cµνρσ(g). (2.6)

As a result, the action (2.2) takes the form

S =

∫

d4x
√

−g̃
[

−1

2
R̃+

3

4(f ′)2
g̃µν∂µf

′∂νf
′ − V (φ,C)

]

(2.7)

where we have introduced the scalar function

V (φ,C) =
f(φ,C)− φf ′(φ,C)

2f ′(φ,C)2
. (2.8)

The new metric g̃ can be considered as the metric in the Einstein frame. After the scalar

field redefinition

σ =

√

3

2
ln f ′(φ,C) or f ′(φ,C) = exp

[

√

2

3
σ

]

, (2.9)

the scalar kinetic term in the action (2.7) takes the canonical form, and the action itself

in terms of the new fields σ and g̃µν reads

S[σ, g̃] =

∫

d4x
√

−g̃
[

−1

2
R̃+

1

2
g̃µν∂µσ∂νσ − V (σ, C̃)

]

(2.10)

with the scalar function

V (σ, C̃) =
1

2
e−2

√
2/3σf(φ(σ, C̃), e−

√
2/3σC̃)− 1

2
e−

√
2/3σφ(σ, C̃) (2.11)

where φ(σ, C̃) is the solution to the algebraic equation (2.9).

As a non-trivial simple example, let us consider the following action:

f(R,C) = R− R2

6M2
− bRCµνρσC

µνρσ (2.12)

with the real parameter b. We find

f ′(φ,C) = 1− φ

3M2
− bC2 = e

√
2/3σ, (2.13)

which can be easily solved for

φ = 3M2
[

1− e
√

2/3σ − be2
√

2/3σC̃2
]

. (2.14)
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Hence, the transformed action in the Einstein frame takes the form

S =

∫

d4x
√

−g̃
[

−1

2
R̃+

1

2
g̃µν∂µσ∂νσ − V (σ, C̃2)

]

(2.15)

with the scalar function

V (σ, C̃2) =
3

4
M2

(

1− e−
√

2/3σ + be
√

2/3σC̃2
)2
. (2.16)

The inflaton scalar potential V (σ) at C = C̃ = 0 is known to be quite suitable for slow roll

inflation at large (positive) σ [43, 44]. However, a nonvanishing Weyl tensor in eq. (2.16)

may destabilize the slow-roll even at a small value of the parameter b due to the large

exponential factor in front of the C̃2 term.

As is clear from our derivation, the classically equivalent actions (1.2) and (2.10) are not

equivalent in quantum theory because they are related via the non-trivial field redefinition

which results in the non-trivial field-dependent Jacobian in the path integral.

Due to the presence of the C̃2 term in the action (2.15), this quantum gravity theory

is formally renormalizable but has ghosts in Minkowski background [12, 13]. In the context

of a fundamental theory of quantum gravity any presence of ghosts is unacceptable [45] so

that the C2 term may not be allowed. However, in the perturbative framework, when the

gravity spectrum is determined by the leading (Einstein-Hilbert) action while all the other

higher-derivative terms are considered as the interaction, the presence of the C̃2 term is

not a problem. For linear gravitational perturbations around the FLRW background, the

whole C-dependence in the action (1.2) is irrelevant.

3 F (R,W) supergravity in superspace

In this section we demonstrate that our action (1.2) has a simple chiral locally N = 1

supersymmetric extension in four spacetime dimensions. For that purpose we use the

chiral version of the curved superspace in the (old) minimal formulation of N = 1 super-

gravity [24–26]. The curved superspace is the most powerful, concise and straightforward

method of constructing general couplings in supergravity, in the manifestly supersymmet-

ric way. We use the notation of ref. [2] and briefly comment on its relation to the more

standard notation of ref. [25] in section 5.

To reduce the off-shell field contents of superfield supergravity to the minimal set, one

imposes certain off-shell constraints on the supertorsion tensor in curved superspace [24–

26]. An off-shell supergravity multiplet has the auxiliary fields of noncanonical (mass)

dimension, in addition to the physical spin-2 field (graviton) eaµ and spin-3/2 field (grav-

itino) ψµ. In the old minimal setting the auxiliary fields (in a WZ-type gauge) are given

by a complex scalar M and a real vector bµ. It is worth mentioning that imposing the

off-shell constraints is independent upon writing a supergravity action.

The chiral superspace density reads

E(x, θ) = e
[

1 + iθσaψ̄a − θ2
(

M∗ + ψ̄aσ̄
abψ̄b

)]

(3.1)
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where e =
√
− det g, ψα

a = eµaψα
µ is chiral gravitino, M = S + iP is the complex scalar

auxiliary field. We use the lower case middle Greek letters µ, ν, . . . = 0, 1, 2, 3 for curved

spacetime vector indices, the lower case early Latin letters a, b, . . . = 0, 1, 2, 3 for flat (tar-

get) space vector indices, and the lower case early Greek letters α, β, . . . = 1, 2 for chiral

spinor indices.

A solution to the superspace Bianchi identities together with the constraints defining

the N = 1 Poincaré-type minimal supergravity theory reduce all the super-curvature and

super-torsion tensor superfields to only three covariant tensor superfields, R, Ga and Wαβγ ,

subject to the off-shell relations [24–26]:

Ga = Ḡa , Wαβγ = W(αβγ) , D̄α̇R = D̄α̇Wαβγ = 0 , (3.2)

and

D̄
α̇Gαα̇ = DαR , D

γWαβγ =
i

2
Dα

α̇Gβα̇ +
i

2
Dβ

α̇Gαα̇ , (3.3)

where (Dα, D̄α̇,Dαα̇) stand for the curved superspace N = 1 supercovariant derivatives,

and the bars denote Hermitian conjugation.

The covariantly chiral complex scalar superfield R has the scalar curvature R as the

coefficient at its θ2 term, the real vector superfield Gαα̇ has the traceless Ricci tensor,

Rµν + Rνµ − 1
2gµνR, as the coefficient at its θσaθ̄ term, whereas the covariantly chiral,

complex, totally symmetric, fermionic superfield Wαβγ has the self-dual part of the Weyl

tensor Cµνρσ as the coefficient at its linear θδ-dependent term.

As is clear from eqs. (3.2) and (3.3), building a chiral superspace action (without using

the covariant derivatives) is only possible with the superfields R and Wαβγ .

Hence, the F (R) supergravity action (1.4) admits a natural extension in the chiral

curved superspace because of the last equation (3.2), namely,

S =

∫

d4xd2θ EF (R,W) + H.c. (3.4)

with an extra dependence upon the totally symmetric spinor N = 1 covariantly-chiral

Weyl superfield Wαβγ of the old minimal N = 1 superspace supergravity. Since the Wαβγ

is anti-commuting and has only four independent components, an expansion of the super-

field F (R,W) in the Wαβγ terminates as

F (R,W) = F0(R) + F2(R)W2 + F4(R)W4 (3.5)

in terms of the (complex) scalar products of the Weyl superfield Wαβγ . For definiteness,

we confine ourselves to the concrete supersymmetric model defined by

F (R,W) = −1

2
f1R+

1

2
f2R2 − 1

6
f3R3 + gRW2 (3.6)

with the real parameters (f1, f2, f3, g), which is the simplest W-dependent extension of

eqs. (1.5) and (1.6). The (mass) dimension of the new coupling constant g in eq. (3.6) is

negative (−1).
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4 Kähler potential and “superpotential” out of F (R,W)

In this section we show that the most general F (R,W) supergravity action (3.4) can be

transformed in curved superspace (i.e. in the manifestly supersymmetric way) to the more

conventional form, in terms of the Kähler potential and the “superpotential”. After that

going to the Einstein frame merely requires the standard procedure of Weyl transformations

for the component fields [25] or the super-Weyl transformations of the superfields [46].

First, the action (3.4) is classically equivalent to

S =

∫

d4x d2θ E [−YR+ Z(Y,W)] + H.c. (4.1)

where we have introduced the new (independent) covariantly chiral scalar superfield Y and

the new analytic function Z(Y,W) = YR(Y) + F (R(Y),W) as the Legendre transform of

the function F (R,W) with respect to its first argument: the functional form of R(Y) is

the inverse of eq. (4.2). In fact, the equation of motion for Y is

Y = Z ′−1(R,W) = −F ′(R,W) (4.2)

where derivatives (denoted by primes) and the inverse are with respect to the first argu-

ments, considering the second argument W as a parameter, and we assume Z ′′(Y,W) 6= 0

or equivalently F ′′(R,W) 6= 0. Substituting the solution Y(R,W) back into the action (4.1)

reproduces the original action (3.4).

Now we treat Y as a dynamical superfield. The kinetic terms of Y in the action (4.1)

are obtained by using the (Siegel) identity

∫

d4x d2θ E YR+H.c. =

∫

d4x d4θ E−1(Y + Ȳ)

= −3

8

∫

d4x d2θ E
(

D̄
2 − 8R

)

e−K/3 +H.c. (4.3)

where E−1 is the full curved superspace density. and K the Kähler potential of the super-

fields (Y,Y),

K = −3 ln
(

Y + Ȳ
)

+ 3 ln 3. (4.4)

It gives rise to the “no-scale” kinetic terms

Lkin =
∂2K

∂Y∂Ȳ

∣

∣

∣

∣

Y=Y

∂µY ∂
µȲ = 3

∂µY ∂
µȲ

(Y + Ȳ )2
. (4.5)

These kinetic terms (4.5) represent the non-linear sigma model [14] with the hyperbolic

target space of (real) dimension two, whose metric is known as the standard (Poincaré)

metric having the SL(2,R) isometry.

Next, consider the remaining term Z(Y,W). For example, as regards our superfield

Ansatz (3.6) with the notation (1.6), we find

Z(Y,W) =
7M2

40m2
R(Y,W) +

(

Y − 3

4
+ gW2

)

[√
14M2

60m
+

2

3
R(Y,W)

]

(4.6)
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where

R(Y,W) =

√
14

20

M2

m

[

1−
√

1 +
80m2

21M2

(

Y − 3

4
+ gW2

)

]

. (4.7)

As is clear from eq. (4.1), the holomorphic function Z(Y,W) plays the rôle of the superpo-

tential. The truly scalar superpotential is given by Z(Y, 0).
In conclusion, the F (R,W) supergravity action can be rewritten to the form of the

standard matter-coupled supergravity action — see eq. (4.1) — as a sum of eqs. (4.3)

and (4.6), in terms of the chiral scalar superfield Y and the chiral spinor superfield W.

5 Bosonic sector of F (R,W) supergravity

The superfield action (3.4) of F (R,W) supergravity leads to the following field theory

action in terms of the superfield components:3

L =

∫

d2θEF (R,W) + H.c.

= − EDDF | − 2 D
αEDαF | − DDEF |+H.c. (5.1)

where the vertical bars stand for the lowest field components of each superfield in its

expansion with respect to the anti-commuting superspace coordinates. By using the results

of refs. [25, 28] we find the bosonic part of the action above in the form

Lb = −e
(

−1

3
R+

2

3
iea

µ
Dµb

a +
4

9
M∗M − 2

9
bµbµ

)

∂F

∂R

∣

∣

∣

∣

− 4eM∗F |

− eǫηλ

576

(

σabαβσ
cd
γλCabcd−iǫλασµβη̇Dµbγ

η̇
)(

σefδǫ σ
gh
ζηCefgh−iǫηδσνǫκ̇Dνbζ

κ̇
) ∂2F

∂Wδǫζ∂Wαβγ

∣

∣

∣

∣

+H.c. (5.2)

where all the fermionic contributions are ignored. The necessary formulae needed to derive

eq. (5.2) are collected in appendix A. The equation of motion for the auxiliary complex

scalar field M reads

0=
∂Lb

∂M∗
(5.3)

=−eF |+ e

6
M

∂F †

∂R†

∣

∣

∣

∣

− e

9
M

(

∂F

∂R

∣

∣

∣

∣

+
∂F †

∂R†

∣

∣

∣

∣

)

+
e

36

(

−1

3
R+

2

3
iea

µ
Dµb

a +
4

9
M∗M − 2

9
bµbµ

)

∂2F †

∂R†2

∣

∣

∣

∣

− eǫη̇λ̇

13824

(

σ̄ab
α̇β̇
σ̄cd
γ̇λ̇
Cabcd+iǫλ̇α̇σ

µ

ηβ̇
Dµb

η
γ̇

)(

σ̄ef
δ̇ǫ̇
σ̄gh
ζ̇η̇
Cefgh+iǫη̇δ̇σ

ν
κǫ̇Dνb

κ
ζ̇

) ∂3F †

∂W̄δ̇ǫ̇ζ̇∂W̄α̇β̇γ̇∂R†

∣

∣

∣

∣

∣

.

3When comparing our notation to that of ref. [25], one should take into account that in the latter

the space-time signature is (−,+,+,+), the normalization of chiral integration over the anti-commuting

superspace coordinates Θ’s differs from ours by the factor of 4, and the definition of the Riemann curvature

differs by the sign.
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As regards our model (3.6), eq. (5.3) takes the form

f3M
3 + 3f3MM∗2 + 6f2M

2 + 12f2MM∗ − 72f1M

− f3 (2bµb
µ + 6iea

µ
Dµb

a + 3R)M∗ − 6f2 (2bµb
µ + 6iea

µ
Dµb

a + 3R)

− 27

4
g

[

2
(

CµνρσC
µνρσ − iCµνρσC̃

µνρσ
)

− 4

3

(

FµνF
µν + iFµνF̃

µν
)

]

= 0 (5.4)

where Fµν = ∂µbν − ∂νbµ is the field strength of the auxiliary vector field bµ, F̃
µν =

1
2ǫ

µνρσFρσ is its Poincaré dual, and C̃µνρσ = 1
2ǫ

µνξπCξπ
ρσ. For many physical applications

(as well as initial study) the imaginary parts of the scalar fields may be ignored, so that

M is real. Then the above equation is simplified to

f3M
3 +

9

2
f2M

2 −
(

3

4
f3R+

1

2
f3bµb

µ + 18f1

)

M

− 9

2
f2R− 3f2bµb

µ − 27

4
g

(

CµνρσC
µνρσ − 2

3
FµνF

µν

)

= 0. (5.5)

It is always possible to get the real roots of this cubic equation by demanding positivity of its

discriminant (e.g., via the standard Cardano-Vieta method) in the case of a sufficiently high

scalar curvature and a sufficiently small contribution of the last term in eq. (5.5). However,

the corresponding formulae appear to be long and not very illuminating. Here we confine

ourselves to the much simpler case when f2 = f3 = 0. Then eq. (5.3) can be easily solved as

M = − g

16f1

[

3
(

CµνρσC
µνρσ − iCµνρσC̃

µνρσ
)

− 2
(

FµνF
µν + iFµνF̃

µν
)]

. (5.6)

Substituting the result with f1 = 3/2 to the bosonic part of the Lagrangian (5.2), we find

e−1Lb = −1

2
R− 1

3
bµb

µ +
g2

432

[

9

4
(CµνρσC

µνρσ)2 − 9

2
CµνρσC

ρσζπCζπτφC
τφµν

+ 9CµνρσC
ρσ

ζπC
µζ

τφC
τφνπ − 3CµνρσCµνρσF

ζπFζπ − 6FµνCµνρσC
ρσζπFζπ

+12FµζF νπCµνρσCζπ
ρσ − (FµνFµν)

2 + 4FµνFνρF
ρσFσµ

]

. (5.7)

6 Discussion

In this section we briefly comment on the possible origin of the Weyl-tensor-dependent

terms in the gravitational effective action.

The obvious source of those terms is provided by the standard Weyl anomaly in the

quantum field theory of massless matter in a gravitational background, which is given by

〈T 〉g =
c

16π2
C2 − a

16π2
G (6.1)

where we have introduced the trace T of the matter energy-momentum tensor in the grav-

itational background (g), the central charge c, the Gauss-Bonnet combination G, and the

so-called a-coefficient. Equation (6.1) suggests us to consider even more general actions of

the type

S = −1

2

∫

d4x
√−gf(R,C,G). (6.2)

– 10 –
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However, as was already mentioned above, the truly chiral supersymmetric extension is not

compatible with the G-dependence. It implies that any dynamics (or gravity models) rely-

ing on the G-dependence of the gravitational action may be unstable, being not protected

against quantum corrections by supersymmetry.

The supergravity corrections in the α′-expansion of the gravitational superstring effec-

tive action arise as the loop corrections in the quantized supergravity, though with finite

coefficients. Since the supergravity counterterms are usually given by the full superspace

integrals, it is unlikely that our action (3.4) can be generated in the perturbative superstring

theory. However, it may well be generated non-perturbatively. The kinetic terms of the

dilaton-axion (complex) scalar in superstring theory are precisely given by the non-linear

sigma-model (4.5) indeed, whereas the dilaton-axion superpotential can only be generated

non-perturbatively in superstring theory.
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A The lowest components of the superfields

The leading (in the zeroth order with respect to the Grassmann superspace coordinates)

field components of various superfields can be obtained by using refs. [25, 28]. Here we list

the leading terms of the relevant bosonic superfields used in the main text:

E| = e, (A.1)

DDE| = 4eM∗ + 4eψ̄µσ̄
µνψ̄ν , (A.2)

R| = −1

6
M, (A.3)

DαDβR| = 1

2
ǫαβ

(

−1

3
R− 2

3
iψ̄µσ̄νψµν −

1

12
ǫµνρσ

(

ψ̄µσ̄νψρσ + ψµσνψ̄ρσ

)

+
2

3
iea

µ
Dµb

a +
4

9
M∗M − 2

9
bµb

µ − 1

3
ψ̄µψ̄µM +

1

3
ψµσ

µψ̄νb
ν

)

, (A.4)

DδWαβγ | =
1

8

[

−2σabαβσ
cd
γδCabcd−iψγǫ̇δψ̄βη̇α

η̇ǫ̇−iψ̄γǫ̇
ǫ̇ψδη̇α

η̇
β−ψαǫ̇βψ̄γ

ǫ̇
η̇bδ

η̇−ψγǫ̇δψ̄αη̇
η̇bβ

ǫ̇
]

t.s.

− i

4
ǫδ(αD̂β

ǫ̇bγ)ǫ̇, (A.5)

where we have introduced the notation

D̂βǫ̇bγη̇ = Dβǫ̇bγη̇

+
3

2
ψβǫ̇

α

[

1

4
ψ̄γ

β̇
αβ̇η̇ +

1

12
ǫαγψ̄

ββ̇
βη̇β̇ − i

6
ψγη̇αM

∗ +
i

6
ψ̄(γβ̇

β̇bα)η̇ −
i

12
ψ̄α

β̇
η̇bγβ̇

]
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− 3

2
ψ̄βǫ̇

α̇

[

1

4
ψβ

α̇βη̇γ+
1

12
ǫα̇η̇ψγ

β̇β
β̇β+

i

6
ψ̄γη̇α̇M− i

6
ψβ(α̇

βbγη̇)+
i

12
ψβ

α̇γbβη̇

]

. (A.6)

The subscript t.s. in eq. (A.5) denotes the total symmetrization of the undotted indices

inside the square brackets, and ψµν = Dµψν − Dνψµ. The Hermitian vector field ba is

defined as the lowest component of the superfield Ga, Ga| = −1
3ba.
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