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Abstract

An Abelian variety is a g-dimensional complex torus which is a projective variety. In
order to obtain an embedding into projective space one has to chose an ample line
bundle. To each such line bundle one can associate a polarisation which only depends
on the class of the line bundle in the Néron-Severi group. The type of the polarisation is
given by a g-tuple of integers e1, . . . ,eg with the property that ei|ei+1 for i = 1, . . . ,g−1.
If e1 = · · · = eg = 1, the polarisation is said to be principal. If the values ei+1

ei
are

pairwise coprime, the polarisation is said to be coprime. Furthermore, we can give
a symplectic basis for the group of n-torsion points, which is then called a level-n
structure.

Not only Abelian varieties but also their moduli spaces have been of interest for
many years. The moduli space of Abelian varieties with a fixed polarisation (and op-
tionally a level-n structure for a fixed n) can be constructed from the Siegel upper half
space by dividing out the action of the appropriate arithmetic symplectic group. These
spaces are quasi-projective algebraic varieties and can made into projective algebraic
varieties by the method of toroidal compactification.

Many different aspects of these varieties have been investigated, such as the type
of singularities that arise in the interior and on the boundary, and the question whether
a given compactification has specific desired properties. Another task is to determine
their Kodaira dimension.

For principally polarised Abelian varieties, the Kodaira dimension of the moduli
space is known (except for the case g = 6). If we approach the situation from another
direction and ask for a lower bound on the level such that the moduli space is of general
type, we can also give an explicit answer.

However, the case of non-principal polarisations is much less investigated. For
g = 2 there are still several results: the Kodaira dimension is known for all but a few
polarisations, and a level of 4 is known to be enough for the moduli space to be of
general type for any polarisation (if one extra condition is satisfied).

This thesis considers moduli spaces of higher-dimensional, non-principally po-
larised Abelian varieties with a level-n structure. The main result establishes that the
moduli space is of general type for any fixed coprime polarisation if the level is higher
than an explicitely given bound (if one extra condition depending on the polarisation
is satisfied).

To be able to prove this theorem we had to generalise a result on the minimum of
integer quadratic forms that plays a central role in the construction. Furthermore, we
give the orbits of one- and g-dimensional isotropic subspaces of Q2g under the action
of the arithmetic symplectic groups that correspond to polarised Abelian varieties.
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Zusammenfassung

Eine Abelsche Varietät ist ein g-dimensionaler komplexer Torus, der eine projektive
Varietät ist. Um eine Einbettung in einen projektiven Raum zu erhalten, muss man
ein amples Geradenbündel wählen. Jedem dieser Geradenbündel kann man eine Po-
larisierung zuordnen, die nur von der Klasse des Geradenbündels in der Néron-Severi-
Gruppe abhängt. Der Typ dieser Polarisierung wird durch ein g-Tupel e1, . . . ,eg von
ganze Zahlen gegeben, die die Eigenschaft ei|ei+1 für i = 1, . . . ,g− 1 erfüllen. Falls
e1 = · · · = eg gilt, nennt man die Polarisierung prinzipal. Sind die Zahlen ei+1

ei
paar-

weise teilerfremd, nennt man die Polarisierung teilerfremd. Außerdem kann man eine
Basis für die Gruppe der n-Teilungs-Punkte angeben, was dann als Level-n Struktur
bezeichnet wird.

Seit vielen Jahren sind nicht nur die Abelschen Varietäten, sondern auch ihre
Modulräume von Interesse. Der Modulraum Abelscher Varietäten mit einer bes-
timmten Polarisierung (und eventuell einer Level-n Struktur für festes n) kann aus
dem Siegelschen oberen Halbraum konstruiert werden, indem man die Operation
der entsprechenden arithmetischen symplektischen Gruppe austeilt. Diese Räume
sind quasi-projektive algebraische Varietäten und können durch toroidale Kompak-
tifizierung zu projektiven algebraischen Varietäten gemacht werden.

Viele verschiedene Aspekte dieser Varietäten wurden bereits untersucht, wie zum
Beispiel welche Singularitäten im Inneren oder am Rand auftreten, und die Frage,
ob eine gegebene Kompaktifizierung spezielle, gewünschte Eigenschaften hat. Eine
weitere Aufgabe ist es, die Kodaira-Dimension zu bestimmen.

Für prinzipal polarisierte Abelsche Varietäten ist die Kodaira-Dimension des
Modulraums bekannt (außer für den Fall g = 6). Andererseits können wir auch nach
einer unteren Schranke für das Level fragen, so dass der Modulraum von allgemeinem
Typ ist. Auch hier ist eine explizite Antwort bekannt.

Die Modulräume nicht-prinzipal polarisierter Abelscher Varietäten sind jedoch
deutlich weniger untersucht. Für g = 2 gibt es noch einige Ergebnisse: die Kodaira-
Dimension ist bis auf ein paar Ausnahmen für fast alle Polarisierungen bekannt, und
man weiß, dass Level 4 bei jeder Polarisierung ausreicht, um einen Modulraum von
allgemeinem Typ zu erhalten (wenn eine weitere Bedingung erfüllt ist).

Die vorliegende Doktorarbeit beschäftigt sich mit Modulräumen nicht-prinzipal
polarisierter Abelscher Varietäten von höherer Dimension mit Level-n Struktur. Das
zentrale Ergebnis zeigt, dass für eine fest gewählte, teilerfremde Polarisierung der
Modulraum von allgemeinem Typ ist, sobald das Level über einer explizit angegebene
Schranke liegt (und eine weitere Bedingung, die von der Polarisierung abhängt, erfüllt
ist).

Um diesen Satz zu beweisen, mussten wir ein Ergebnis über das Minimum
ganzzahliger quadratischer Formen verallgemeinern, das eine zentrale Rolle in der
Konstruktion spielt. Außerdem geben wir die Orbits der ein- und g-dimensionalen
isotropen Unterräume von Q2g unter der Operation der arithmetischen symplektischen
Gruppen an, die zu polarisierten Abelschen Varietäten gehören.
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Chapter 1

Introduction

1.1 Overview:
The Kodaira dimension of Siegel modular varieties

In one (complex) dimension, an elliptic curve E can be given as E = C/L, where L is
a non-degenerate lattice. Without loss of generality, we may assume L to be given in
the form L = Zτ +Z with Im(τ) > 0. Two elliptic curves Eτ and Eτ ′ are isomorphic
if and only if there are integers a,b,c,d with ad − bc = 1 such that τ ′ = aτ+b

cτ+d . This
means that their moduli space, i. e. the space parametrising elliptic curves, is

A1 := S1/Γ1,

where S1 :=
{

τ ∈ C
∣∣ Im(τ) > 0

}
is the Siegel upper half plane and Γ1 := SL(2,Z).

The action of M ∈ Γ1 on S1 is defined by

M =

(
a b
c d

)
: τ 7→ aτ +b

cτ +d
.

The concept corresponding to an elliptic curve in higher dimension is that of an
abelian variety; this is defined to be a complex torus which admits an embedding into
projective space. Such an embedding exists if and only if there exists a positive definite
Riemann form1. It can be given by f (x,y) = xΛ ty with a matrix of the form

Λ =

(
∆

−∆

)
where ∆ = diag(e1, . . . ,eg).

We call it a polarisation of type (e1, . . . ,eg). The ei are positive integers which, without
changing the group, may be chosen such that ei|ei+1 for i = 1, . . . ,g− 1. The special
case of type (1, . . . ,1) is called a principal polarisation.

Again, we ask for the moduli space. Let us first consider g-dimensional abelian
varieties with a principal polarisation. The moduli space of these varieties is

Ag := Sg/Γg,

where Sg :=
{

τ ∈ Sym(g,C)
∣∣ Im(τ) > 0

}
is the Siegel upper half space. As it turns

out, we cannot use SL(2g,Z) as one might expect, but

Γg := Sp(2g,Z) :=
{

M ∈ GL(2g,Z)
∣∣MJ tM = J

}
,

1This is a non-degenerate alternating bilinear form satisfying certain properties.

9



Overview: The Kodaira dimension of Siegel modular varieties Chapter 1. Introduction

where J :=
( �

− �
)
. Since for a principal polarisation ∆ is the unit matrix, we could

also write Λ instead of J. The action of M ∈ Γg on Sg is defined by

M =

(
A B
C D

)
: τ 7→ (Aτ +B)(Cτ +D)−1.

Ag is a quasi-projective variety. We want to ask for the Kodaira dimension of
these varieties or, more precisely, that of a projective model. So we have to compact-
ify, and the best way to do this is via toroidal compactifications; the details will be
discussed in chapter 2, but for now assume that there exists a compactification with
Ag as a Zariski-open subset. Since the Kodaira dimension is birationally invariant and
these compactifications are birational to each other we may choose any. We define the
Kodaira dimension of Ag to be that of a smooth projective model.

It is known that Ag is rational for g ≤ 3, unirational for g = 4,5 and of general
type for g ≥ 7. The results about (uni-)rationality are due to S. Mori, S. Mukai, J.-
I. Igusa and a number of other people, and those proving general type to Y.-S. Tai,
E. Freitag and D. Mumford.

In many cases one has an additional structure on the abelian varieties, namely
level structures. The subgroups Γg(n) ⊂ Γg, which we will define in section 1.2.2,
allow to define Ag(n) := Sg/Γg(n), the moduli space of g-dimensional principally
polarised abelian varieties with a full level-n structure. And again, the question is for
the Kodaira dimension.

We can summarise the known results in the following table:

...................................................

6 754321n
g

uni-
rat.

?6

5

4

3

2

1

7

rational

ell.

general type

This shows the combinations for which Ag(n) is known to be rational or at least uni-
rational, to have Kodaira dimension 0, or to be of general type. Note that still nothing
is known about the Kodaira dimension of A6.

Let us now consider the case of non-principal polarisations. We can construct
the moduli space for these abelian varieties with given type of polarisation using a
group Γ̃pol defined analogously to Γg, only that ∆ is not the unit matrix. The action of
M ∈ Γ̃pol on Sg is defined by

M : τ 7→ (Aτ +B∆)(Cτ +D∆)−1∆.

The fact that this action depends on ∆ and hence on the polarization is denoted by the
tilde on Γ̃pol.
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Again, we ask for the Kodaira dimension of these spaces Apol. There are various
results, due to Y. Tai, V. Gritsenko, G. K. Sankaran, K. Hulek and others.

For example, it is known that

Ae1,...,eg is of general type, if
g ≥ 16 or
g ≥ 8 and the ei are odd and sums of two squares

∀t ∈ N ∃g(t) ∈ N ∀g ≥ g(t) : A1,...,1,t is of general type
(V. Gritsenko also showed that g(2) = 13)

And for two dimensions:
A1,1(= A2),A1,2,A1,3 are rational
A1,4 is unirational
A1,p for p ≥ 73 prime is of general type (G. K. Sankaran and C. Erdenberger)
κ(A1,t) ≥ 0 for t ≥ 13 (there are 14 exceptions for which

this is not yet known)

As before, let us now consider full level structures by using the subgroups Γ̃pol(n) ⊂
Γ̃pol (defined in section 1.2.2) to construct Apol(n). We can ask the following question:
Which level do we need so that Apol(n) is of general type for all polarisations?

For g = 2, we already know that A1,1(n) is rational for n ≤ 3, so that we need at
least level 4. K. Hulek showed in [H] that indeed

A1,t(n) is of general type for n ≥ 4,gcd(n, t) = 1.

The condition that t and n are to be coprime is technical and can probably be weakened
or even dropped.

For g = 3, we know that A1,1,1(n) is rational for n ≤ 2, so that we need at least
level 3. The claim is the following:

Theorem: Let the type of the polarisation be (1,e1,e2) with e1,e2 ∈ N where e1|e2,
e2 6= 2 and gcd(e1,

e2
e1

) = 1. Then A1,e1,e2(n) is of general type provided
gcd(n,e2) = 1,n ≥ 3 and

n >
9e2

4
min





e2
1

min{e1e2,e2
√

3e1,e1
√

3 3
√

e1e2}
,

e2

min{e1e2,e1
√

3e1e2,
√

3 3

√
e2

1e2
2}



 .

Furthermore, we can even generalise to higher genus. There is, however, one
drawback in form of Proposition 3.3.8 that we have only been able to prove up to
genus 9. So, the result is the following:

Theorem: Let 3 ≤ g ≤ 9. Let the type of the polarisation be (1,e1, . . . ,eg−1) with
ei|ei+1, eg−1 6= 2 and gcd( ei

ei−1
,

e j

e j−1
) = 1 for all i 6= j. Then A1,e1,...,eg−1(n) is of general

type provided gcd(n,eg−1) = 1, n ≥ 3 and

n >
2g +1

(g+1)2g−3 min

{
eg−2

C(L1)
,

eg−1

e1C(L2)

}

where L1 = L(e1,
e2
e1

, . . . ,
eg−1

eg−2
) and L2 = L(

eg−1

eg−2
, . . . , e2

e1
,e1) and

C(L(x1, . . . ,xg−1)) = min

{
min

2≤r≤g

{ √
3

r
√

∏r−1
i=1 xi

i

}
,1

}
.
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Basic definitions and theorems Chapter 1. Introduction

1.2 Basic definitions and theorems

Now we shall state in detail what we have only sketched so far.

1.2.1 Siegel modular forms

Definition 1.2.1: Siegel space.
We define the Siegel space of dimension g to be

Sg :=
{

τ ∈ Sym(g,C)
∣∣ Im(τ) > 0

}
,

the space of symmetric complex g×g matrices with positive definite imaginary part.

Definition 1.2.2: Symplectic Group.
Let E be an euclidian domain. The symplectic group Sp(2g,E) is the subgroup of
GL(2g,E) defined by

Sp(2g,E) :=
{

M ∈ GL(2g,E)
∣∣MJ tM = J

}
, where J :=

(
0

�

− �
0

)
.

In the case of E = Z we also use the notation Γg := Sp(2g,Z).

Lemma 1.2.3.
For an euclidian domain E the symplectic group Sp(2g,E) is generated by J =

(
0

�

− �
0

)

and the matrices of the form
( �

S
0

�

)
, where S ∈ Sym(g,E).

Proof.
See [Fre83, Satz A 5.4 in the appendix]. �

Definition 1.2.4: Action of the symplectic group.
The symplectic groups Sp(2g,E) for E = Z,Q,R act on Sg the following way: For
M =

(
A B
C D

)
and τ ∈ Sg let Mτ := (Aτ +B)(Cτ +D)−1.

Definition 1.2.5: Siegel modular form.
Assume g ≥ 2. A function f : Sg → C is called Siegel modular form with respect
to an arithmetic subgroup Γ ⊂ Sp(2g,Q) of degree g and weight w if the following
properties apply:

(i) f is holomorphic

(ii) For M =
(

A B
C D

)
∈ Γ we have the equality f (Mτ) = det(Cτ +D)w f (τ)

Remark 1.2.6.
For g = 1 we need the additional condition that f is bounded around any cusp: for any
M ∈ Sp(2,Q) and any y ∈ R,y > 0 we have that { f (Mτ)

∣∣ Im(τ) > y} is bounded.
Property (ii) needs only to be shown for the generators of the modular group; in

the case of Γ = Γg = Sp(2g,Z) this means:

• For all S ∈ Sym(g,Z) : f (τ +S) = f (τ)

• f (−τ−1) = (det τ)w f (τ).
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1.2.2 Abelian varieties

Definition 1.2.7: Abelian variety.
An Abelian variety is a complex torus which admits an embedding into projective
space, i. e. we have A = Cg/L where L = Zb1 + · · ·+Zb2g for an R-basis {b1, . . . ,b2g}
of Cg and a map φ : A ↪→ PN .

Remark 1.2.8.
For g = 1 such an embedding always exists. If L = Zτ + Z it can be found e. g. by
using the Weierstraß ℘-function associated to the lattice L:

φ :





C/L ↪→ P2

z 7→ (1 :℘(z) : ℘′(z)) for z 6= ∞
∞ 7→ (0 : 0 : 1)

.

This means that every elliptic curve is an abelian variety. In general:

Lemma 1.2.9.
A complex torus A = Cg/L admits an embedding into projective space if and only if
there exists a non-degenerate alternating bilinear form H ′ : L⊗L→ Z whose R-linear
extension to Cg satisfies H ′(ix, iy) = H ′(x,y).

Proof.
See [Mu1, p. 35]. �

Remark 1.2.10.
This is equivalent to saying that there exists a Riemann form on Cg with respect to L,
which is a positive-definite Hermitian form H with the property that its imaginary part
is integer-valued on L. This form can be constructed from H ′ by H(x,y) = H ′(ix,y)+
iH ′(x,y).

Lemma 1.2.11.
With respect to a suitable basis of L the aforementioned form H ′ can be given by

H ′(x,y) = xΛ ty where Λ =

(
∆

−∆

)
and ∆ = diag(e1, . . . ,eg).

The values ei can be chosen to be positive integers satisfying ei|ei+1 for all i =
1, . . . ,g−1. This choice is unique.

Proof.
See [Igu72, p. 65]. �

Definition 1.2.12: Polarization.
The form H ′ corresponding to ∆ = diag(e1, . . . ,eg) is called a polarization of type
(e1, . . . ,eg). A polarization of type (1, . . . ,1) is called a principal polarization.

13
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Lemma 1.2.13.
The moduli space of principally polarized g-dimensional abelian varieties can be given
by the normal complex analytic space

Ag := Sg/Γg.

The action of Γg on Sg has already been given in Definition 1.2.4. Ag is a quasi-
projective variety.

Proof.
See [LB, Chapter 8, Corollary 2.7] and [LB, Remark 10.4]. �

Definition 1.2.14: Symplectic groups for polarizations.
For a given polarization (e1, . . . ,eg) define

Γ̃pol := Γ̃e1,...,eg :=
{

M ∈ GL(2g,Z)
∣∣MΛ tM = Λ

}
.

The action of Γ̃pol on Sg is defined to be

Mτ := (Aτ +B∆)(Cτ +D∆)−1∆ where M =

(
A B
C D

)
∈ Γ̃pol.

Remark 1.2.15.
Note that this is in fact a generalization of the principally polarized case, where now ∆
is no longer the unit matrix. The tilde on Γ̃pol is used to point out that the group action
involves ∆ 6= �

.
Note also that we may chose e1 = 1 without changing the group Γ̃pol.

Lemma 1.2.16.
The moduli space of abelian varieties with a polarization of type (e1, . . . ,eg) can be
given by the normal complex analytic space

Apol := Sg/Γ̃pol.

Proof.

See [LB, Chapter 8, Corollary 2.7]. �

Definition 1.2.17: Full level structures.
Let A = Cg/L be a polarized abelian variety. A symplectic basis λ1, . . . ,λg,µ1, . . . ,µg

of L for the polarization determines a basis for the group of n-torsion points A [n] in
A, namely 1

n λ1, . . . ,
1
n λg,

1
n µ1, . . . ,

1
n µg. A full level-n structure on A is a basis of A[n]

coming from a symplectic basis in this way.

Definition 1.2.18: Principal congurence subgroups.
Define the principal congruence subgroups Γpol(n) and Γ̃pol(n) by

Γpol(n) :=
{

M ∈ Γpol
∣∣M ≡ �

mod n
}

and

Γ̃pol(n) :=
{

M ∈ Γ̃pol
∣∣M ≡ �

mod n
}
.

14
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The action of Γpol(n) and Γ̃pol(n) on Sg are the actions induced from Γpol and Γ̃pol,
respectively.

Lemma 1.2.19.
The moduli space of (e1, . . . ,eg)-polarised abelian varieties (whether principally or
non-principally polarised) with a (full) level-n structure can be given by the normal
complex analytic spaces

Ag(n) := Sg/Γg(n) or Apol(n) := Sg/Γ̃pol(n),

respectively.

Proof.
See [LB, Chapter 8, Theorem 3.2]. �

Definition 1.2.20: Dual lattice.
Given a non-degenerate form Λ : L×L → Z (actually, we extend this map to a map
L× (L⊗Q)→ Q which we also denote by Λ), the dual lattice L∨ is defined by

L
∨ :=

{
y ∈ L⊗Q

∣∣∀x ∈ L : Λ(x,y) ∈ Z
}
.

Remark 1.2.21.
The group L

∨/L is non-canonically isomorphic to (Ze1 ×·· ·×Zeg)
2 where the ei are

the elementary divisors of the polarisation. It carries a skew form induced by Λ, and
the group (Ze1 ×·· ·×Zeg)

2 has a Q/Z-valued form which with respect to the canonical
generators is given by (

∆−1

−∆−1

)
.

The details can be found in [HKW, p. 9], so we only mention that we assume the
polarisation of A to be given by the class of an ample line bundle (or its divisor D ∈
Pic(A)) and define

λ :

{
A → Pic0(A)
x 7→ [(D+ x)−D]

.

Now, L∨/L ' kerλ and we can define

Definition 1.2.22: A canonical level structure.
A canonical level structure is a symplectic isomorphism

α : ker λ → (Ze1 ×·· ·×Zeg)
2

where the groups are equipped with the forms described above. Define the group Γ̃lev
pol

by
Γ̃lev

pol :=
{

M ∈ Γ̃pol
∣∣M|L∨/L = idL∨/L

}
⊂ Γ̃pol

with the induced action on Sg.
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Remark 1.2.23.
The concept of canonical level structures does only make sense for non-principally
polarised abelian varieties, since otherwise L∨ = L. Note, however, that a full level-n
structure in the principally polarised case is the same as a canonical level structure for
a polarisation of type (n, . . . ,n).

Lemma 1.2.24.
The moduli space of non-principally polarised abelian varieties with a canonical level
structure can be given by the normal complex analytic space

A
lev

pol := Sg/Γ̃lev
pol.

Proof.

Again, see [LB, Chapter 8, Theorem 3.1]. �

1.2.3 Theta functions

Notation 1.2.25.
For x ∈ C, let e[x] := e2πix.

Definition 1.2.26: Theta function.
Let m = (m′m′′) ∈ R2g,τ ∈ Sg,z ∈ Cg. We define the theta function of characteristic
m and modulus τ to be

θm(τ ,z) := ∑
ζ∈Zg

e[ 1
2 (ζ +m′)τ t(ζ +m′)+(ζ +m′) t(z+m′′)].

Lemma 1.2.27.
θm(τ ,z) is a holomorphic function on Sg ×Cg.

Proof.
See [Igu72, p. 49]. �

Notation 1.2.28.
For any square matrix A ∈ Cg×g let (A)0 := (a11, . . . ,agg) ∈ Cg be the vector of the
diagonal elements of A.

Theorem 1.2.29: Theta transformation formula.
Let m = (m′m′′) ∈ R2g be a character, τ ∈ Sg,z ∈ Cg and choose a transformation
M =

(
A B
C D

)
∈ Sp(2g,Z). Then the following equation holds:

θm#(τ#,z#) = e[ 1
2 z(Cτ +D)−1C tz]det(Cτ +D)

1
2 uθm(τ ,z),

in which the new values are given by

τ# = (Aτ +B)(Cτ +D)−1, z# = z(Cτ +D)−1 and

16
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m# = mM−1 + 1
2((C tD)0(A

tB)0).

The value u is an eighth root of unity, independent of τ and z.

Proof.
See [Igu72, p. 85]. �

Remark 1.2.30.
For the expression det(Cτ + D)

1
2 we may choose either of the roots, since Sg is con-

nected and simply connected.2 This choice may influence u but this is not a problem;
it is only important that once a root is chosen we do not change the selection.

When we want to use theta functions to construct Siegel modular forms, there are
some points in this transformation formula that may cause problems:

• the value u; but since u is a root of unity, we can get rid of it by taking the
appropriate power

• the factor e[ 1
2 z(Cτ +D)−1C tz]; by letting z = 0, this factor becomes 1

• the fact that the characteristic changes, so that one theta function is transformed
into another one — the classical way to solve this problem by taking the product
of theta functions, so that both θm and θm# are factors of the modular form we
want to construct. We will come back to this idea shortly.

These observations motivate the following definitions:

Definition 1.2.31: Thetanullwert or theta constant.
A function θm(τ) := θm(τ ,0) : Sg → C is called thetanullwert or theta constant.

Definition 1.2.32: Even and odd characteristics.
Let m = (m′m′′) ∈ {0, 1

2}2g. Then the characteristic m, the theta function θm(τ ,z) and
the theta constant θm(τ) are called even, if and only if 4m′ tm′′ ≡ 0 mod 2; otherwise
they are called odd.

Lemma 1.2.33.
θm(τ) vanishes for all τ ∈ Sg if and only if m is an odd characteristic.

Proof.
See [Fre83, p. 42, Folgerung 3.21]. �

Lemma 1.2.34.
The set of even (resp. odd) theta functions is closed under the operation of Sp(2g,Z).

Proof.
We show this by applying the theta transformation formula to the character m =(m ′m′′)
for the generators of Sp(2g,Z):

2cf. [Igu72, p. 83]
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For M1 =
( �

S
0

�

)
with S = tS, we get M−1

1 =
( � −S

0
�

)
and therefore

m# = (m′#m′′#) = (m′m′′)

( � −S
0

�

)
+ 1

2

(
(0)0(S)0

)

= (m′,m′′−m′S+ 1
2(S)0), which gives

4m′# tm′′# = 4m′ tm′′−4m′ t(m′S)+2m′ t(S)0

= 4m′ tm′′−4m′S tm′ +2m′ t(S)0

= 4m′ tm′′−4 ∑
1≤i≤ j≤g

mim jsi, j(2−δi j)+2 ∑
1≤i≤g

misi,i

= 4m′ tm′′− ∑
1≤i< j≤g

2(2mi)(2m j)si, j − ∑
1≤i≤g

[−(2mi)
2 +(2mi)]si,i

≡ 4m′ tm′′ mod 2,

where the last equivalence follows from

2mi ∈ Z =⇒ 2(2mi)(2m j) ≡ 0 mod 2 and

2mi ∈ {0,1} =⇒ (2mi)
2 = 2mi =⇒ −(2mi)

2 +(2mi) = 0.

For M2 =
(

0
�

− �
0

)
, we get M−1

2 =
(

0 − �

�
0

)
and

(m′#m′′#) = (m′m′′)

(
0 − �

�
0

)
= (m′′,−m′),

which immediately leads to

4m′# tm′′# ≡ 4m′m′′ mod 2.

This shows that the transformed character is even if and only if the original one
is, which proves the lemma. �

Now we can construct Siegel modular forms by taking the product of some even
theta constants, such that for each θm contained in χ := θm1 . . .θmk the theta constant
θm# transformed according to Theorem 1.2.29 is also a factor of χ . As it turns out, in
order to fulfil this property we have to include all even theta constants in the product.
Taking into account that we still need the correct exponent to get rid of the factor u in
the transformation formula, we obtain the following theorem:

Theorem 1.2.35.
The functions

χ (g)(τ) := ∏
m even

θm(τ)kg

with

kg :=





8 for g = 1
2 for g = 2
1 for g ≥ 3

are non-zero modular forms of degree g and weight

r =





12 for g = 1
10 for g = 2

(2g +1)2g−2 for g ≥ 3
.

18



Chapter 1. Introduction Basic definitions and theorems

Proof.

See [Fre83, p. 42, Satz 3.3]. �

Theorem 1.2.36.
Let g ≥ 3. Then the order of vanishing of χ (g) on the boundary of Ag is 22g−5.

Proof.
This is part of [Mu3, Theorem 2.10]. �

1.2.4 Number theoretic functions

We recall and define some functions that will help us in counting later on.

Definition 1.2.37: Generalised phi function.
Let n,k ∈ N. A set of integers x1, . . . ,xk is said to be relatively prime to n if
gcd(x1, . . . ,xk,n) = 1. Define

ϕk(n) :=
∣∣{(x1, . . . ,xk) ∈ Zk

n

∣∣gcd(x1, . . . ,xk,n) = 1}
∣∣.

For k = 1 this function is known as the Euler phi function which we also denote by ϕ .

Lemma 1.2.38.
The functions ϕk are multiplicative3 .

Proof.
This proof is a generalisation of [Nath, Theorem 2.7].

Fix k ∈ N and assume gcd(m,n) = 1. There are ϕk(mn) congruence classes in
(Z/mnZ)k that are relatively prime to mn. By [Nath, Theorem 2.6], every congruence
class modulo mn can be written uniquely in the form

(ma1 +nb1 +mnZ, . . . ,mak +nbk +mnZ),

where ai and bi are integers such that 0 ≤ ai ≤ n− 1 and 0 ≤ bi ≤ m− 1. (This is
essentially the Chinese Remainder Theorem).

Let c := gcd(x1, . . . ,xk). Then gcd(m,n) = 1 implies that

gcd(c,m) = gcd(x1, . . . ,xk,m) = gcd(ma1 +nb1, . . . ,mak +nbk,m)

= gcd(nb1, . . . ,nbk,m) = gcd(b1, . . . ,bk,m)

and, analogously, gcd(c,n) = gcd(a1, . . . ,ak,n). It follows that gcd(c,mn) = 1 if and
only if gcd(c,m) = gcd(c,n) = 1 if and only if

gcd(a1, . . . ,ak,n) = gcd(b1, . . . ,bk,m) = 1.

Since the numbers of a ∈ [0, . . . ,n−1]k and b ∈ [0, . . . ,m−1]k satisfying these condi-
tions are given by ϕk(n) and ϕk(m), respectively, we have ϕk(mn) = ϕk(m)ϕk(n), and
so the function ϕk is multiplicative. �

3A number theoretic function f : N → N is called multiplicative if for all coprime n,m ∈ N we have
f (nm) = f (n) f (m).
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Lemma 1.2.39.
For any integer n the following equation holds:

∑
d|n

ϕ(d) = n.

Proof.
See [Nath, Theorem 2.8]. �

Lemma 1.2.40.
For any square-free integer n we have ϕ(n2) = nϕ(n).

Proof.
With [Nath, Theorem 2.7] we know ϕ(m) = m ∏p|m(1− 1

p) for all m ∈N and p prime.
If n is square-free, i. e. a product of distinct primes, we obtain

ϕ(n2) = n2 ∏
p|n2

(1− 1
p) = n∏

p|n
(p−1) = n∏

p|n
ϕ(p) = nϕ

(
∏
p|n

p
)

= nϕ(n).

�

Definition 1.2.41: Sigma functions.
For n ∈ N,α ∈ C let

σα(n) := ∑
d|n

dα .

For α = 0 this function is known as the function τ that gives the number of divisors.

Lemma 1.2.42.
The functions σα are multiplicative.

Proof.
Assume gcd(m,n) = 1. Then

σα(nm) = ∑
d|nm

dα = ∑
d1|n,d2|m

(d1d2)
α = ∑

d1|n
dα

1 ∑
d2|m

dα
2 = σα(n)σα(m).

�
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Chapter 2

Toroidal compactification

In this thesis, we will make extensive use of toric varieties and toroidal compactifica-
tions introduced by D. Mumford et al. in [AMRT]. For more detail on the background
of these constructions, we refer the reader to the books by T. Oda [Oda] or K. Hulek,
C. Kahn and S. Weintraub [HKW]. These methods have been used by several au-
thors to compactify the moduli spaces of abelian varieties, both with and without
polarisation. One of the interesting questions was to describe the boundary of such
a compactification, with particular interest in the compactification corresponding to
the second Voronoi decomposition, which turns out to represent a good functor ([AN],
[Ale]). Those descriptions can be found in the publications by H.-J. Brasch [Bra94],
M. Friedland [F] or M. Friedland and G. K. Sankaran [FS].

In this thesis, however, we do not need to go into as much detail. Therefore, we
will only give the general construction of toroidal compactifications.

The overall idea of toroidal compactifications is that we use several toric varieties
to ”add parts of a boundary” to a given open variety and then ”glue” these partial
compactifications (which are compactifications in only one direction each) to obtain
a global compactification of the variety. This glueing process requires that the partial
compactifications are compatible in a sense that we will specify later. Let us begin by
describing toric varieties, closely following the aforementioned books, namely [Oda,
Chapter 1], [HKW, Section 3] and [Bra94, Kapitel 3, Paragraph 1].

2.1 Toric varieties

2.1.1 Summary of the construction

Toric varieties are special algebraic varieties that contain an algebraic torus T = (C∗)r

as an open and dense subset and admit an algebraic action of T extending the group
multiplication of T on T to the whole of the toric variety.

The construction of toric varieties does not consist of very many steps. However,
since in some way it parallels the significantly more complex construction of toroidal
varieties nicely, we shall give a summary nonetheless.

(i) Decompose a vector space containing a lattice using rays through the lattice
points (in other words, construct a fan).

For each of the open cones σ that make up the fan
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(ii) construct an affine algebraic variety Tσ .

Combine these varieties to obtain the toric variety as follows:

(iii) Define the disjoint union of all Tσ .

(iv) Define an equivalence relation on it.

(v) Finally, define the toric variety to be the quotient of the union by the equivalence.

This method shall now be established in more detail.

2.1.2 Construction

Notation 2.1.1.
Let N be a free abelian group of rank r ≥ 1 and NR := N ⊗Z R the vector space
of dimension r with integer structure given by N. Denote the dual Z-module by
M := HomZ(N,Z). We have the canonical R-bilinear pairing 〈,〉 : MR×NR →R which
we may use to define an algebraic torus

TN := HomZ(M,C∗) ' N⊗Z C∗ ' (C∗)r.

Remark 2.1.2.
This torus will be the aforementioned torus T contained in the toric variety.

Furthermore, we can regain N and M from TN : Each n ∈ N gives rise to a one-
parameter subgroup γn : C∗ → TN , which is a homomorphism defined for λ ∈ C∗

and m ∈ M by γn(λ )(m) := λ 〈m,n〉. Therefore, N is isomorphic to the groups of one-
parameter subgroups of TN which is Homalg(C∗,TN).

On the other hand, define for m ∈ M the homomorphism e(m) : TN → C∗ by
t 7→ t(m). Because of the ’exponential’ law e(m + m′) = e(m)e(m′) and e(0) = 1 we
can identify M with the character group of TN , namely Homalg(TN ,C∗).

The construction of the toric variety depends on the choice of a fan in NR, by
which we mean the following object:

Definition 2.1.3: Cones and fans.

(i) A strongly convex rational polyhedral cone1 in NR is a subset σ ⊂ NR of the
form

σ = R≥0n1 + · · ·+R≥0ns n1, . . . ,ns ∈ N

that does not contain a line.

(ii) The dual cone to σ is defined to be

σ∨ :=
{

x ∈ MR
∣∣∀y ∈ σ : 〈x,y〉 ≥ 0

}
.

1in short: scrp-cone
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(iii) A face of an scrp-cone is a subset of σ which can be given using an element
m0 ∈ σ∨ in the way

τ = σ ∩{m0}⊥ :=
{

y ∈ σ
∣∣〈m0,y〉 = 0

}
.

This relation is denoted by τ ≺ σ .

(iv) A fan Σ is a non-empty collection of scrp-cones satisfying

(a) ∀σ ∈ Σ ∀τ ≺ σ : τ ∈ Σ
(b) ∀σ1,σ2 ∈ Σ : σ1 ∩σ2 ≺ σi for i = 1,2

Proposition 2.1.4.
Every scrp-cone contains {0} as a face.

Proof.
Follows directly from strong convexity. �

Definition 2.1.5: Simplicial and regular cones.
An scrp-cone in NR is called simplicial if the set of generators {ni} is linearly inde-
pendent.

An scrp-cone in NR is called regular (also basic or non-singular) if the set of
generators {ni} can be enlarged to a Z-basis of N.

Next we need affine varieties Tσ for each σ ∈ Σ. These will then be glued to form
the toric variety. They are constructed as follows.

Notation 2.1.6.
Let Sσ := M∩σ∨.

Remark 2.1.7.
If we think of N as a lattice and M as its dual lattice, Sσ is the set of points of the dual
lattice lying in the dual of the cone σ . In this light, the following proposition is rather
obvious.

Proposition 2.1.8.

(i) Sσ is a finitely generated additive semigroup of M containing 0, i. e. there exist
m1, . . . ,mn such that Sσ = Z≥0m1 + · · ·+Z≥0mn.

(ii) Sσ is saturated, i. e. ∀m ∈ M ∀c ∈ N : cm ∈ Sσ =⇒ m ∈ Sσ .

(iii) Sσ generates M as a group, i. e. Sσ +(−Sσ ) = M.

Proof.
See [Oda, Proposition 1.1] �

Notation 2.1.9.
Let C[M] :=

⊗
m∈M Ce(m) be the group algebra of M over C where we interpret the

e(m) only as symbols with the ring multiplication given by e(m) · e(m′) := e(m+m′).
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Remark 2.1.10.
Since Sσ is an additive subsemigroup of M, its semigroup algebra C[Sσ ] is a C-
subalgebra of C[M]. From Proposition 2.1.8 we see that

C[Sσ ] = C[e(m1), . . . ,e(mn)].

Definition 2.1.11: Affine torus embedding.
The affine torus embedding Tσ is the algebraic variety over C defined by

Tσ :=
{

φ : Sσ → C
∣∣φ is an algebra homomorphism

}
.

Lemma 2.1.12.
Tσ is indeed an r-dimensional affine variety and can be embedded into Cn by the map

φ 7→
(
φ(e(m1)), . . . ,φ(e(mn))

)
.

Proof.
See [Oda, Proposition 1.2]. �

Theorem 2.1.13.

(i) T{0} ' HomZ(M,C∗) = TN

(ii) For each τ ≺ σ , the inclusion Sσ ⊂Sτ gives rise to a map Tτ → Tσ which is an
embedding.

(iii) Tσ is non-singular if and only if σ is regular.

Proof.
See [Oda, Proposition 1.3, Theorem 1.4 and Theorem 1.10]. �

We are now in the position to define the main object of this section:

Definition 2.1.14: Toric variety.
The toric variety TΣ associated to the fan Σ in NR (also denoted by TNemb(Σ)) is
defined to be

TΣ :=
⊔

σ∈Σ
Tσ

/
glueing

where the glueing is the equivalence relation generated by the embeddings

Tσ1∩σ2 ↪→ Tσ1 ,Tσ2 .
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2.1.3 Properties

Remark 2.1.15.
TΣ is an irreducible normal Hausdorff space of dimension r = rankN containing the
algebraic torus TN ' T{0} as an open and dense subset.

The operation of TN on TΣ is given as follows: let t ∈ TN and φ ∈ Tσ . This means
we have homomorphisms t : M → C∗ and φ : C[Sσ ] → C. Then

t ·φ :

{
C[Sσ ] → C

e(m) 7→ t(m)φ(e(m))
.

Every affine open subset Tσ of TΣ is stable under this operation and on T{0} ' TN this
is exactly the usual group multiplication.

If a second fan Σ′ is a subset of Σ, i. e. σ ′ ∈ Σ′ =⇒ σ ′ ∈ Σ, then TΣ′ can in a
natural way be considered as an open subvariety of TΣ.

Since we now have an action of TN on TΣ, it is natural to ask how we can decom-
pose TΣ into orbits of this action. This can be done as follows.

Definition 2.1.16: Orbit of a cone.
For a scrp-cone σ define the algebraic torus of group homomorphisms

orb(σ) := Homgrp(M∩σ⊥,C∗).

Remark 2.1.17.
Every group homomorphism ϕ̃ ∈ orb(σ) defines a C-algebra homomorphism ϕ ∈ Tσ
by

ϕ(e(m)) :=

{
ϕ̃(m) for m ∈ M∩σ⊥

0 for m ∈ Sσ\σ⊥ .

Furthermore, the map ϕ̃ 7→ϕ is an embedding of orb(σ) into Tσ . Its image is obviously
stable under the action of TN , and it is even an orbit. All in all, one has the following:

Theorem 2.1.18: Orbit decomposition.
TΣ has a stratification of TN-orbits

TΣ =
⊔

σ∈Σ
orb(σ)

satisfying the properties

(i) dim(orb(σ))+dim(σ) = r

(ii) orb({0}) = T{0} = TN

(iii) Tσ =
⊔

τ≺σ orb(τ)

(iv) orb(σ) ⊆ orb(τ) ⇐⇒ σ � τ

(v) For σ ∈ Σ, the torus orb(σ) is the unique closed TN-orbit in Tσ .
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Proof.
See [Oda, Proposition 1.6] �

Lemma 2.1.19: Canonical divisor on toric varieties.
If TΣ is a nonsingular toric variety, and D1, . . . ,Dd are the irreducible T -divisors on X ,
then −∑Di is a canonical divisor.

Proof.
See [Ful93, Section 4.3, page 85]. �

Another interesting topic is that of maps between toric varieties. Here T. Oda
gives the following statement:

Definition 2.1.20: Map of fans.
A map of fans ϕ : (N ′,Σ′) → (N,Σ) is a Z-linear homomorphism ϕ : N ′ → N whose
scalar extension ϕ : N ′

R → NR satisfies the property

∀σ ′ ∈ Σ′ ∃σ ∈ Σ : ϕ(σ ′) ⊂ σ .

Theorem 2.1.21: Equivariant Holomorphic Maps.
Let ϕ : (N ′,Σ′)→ (N,Σ) be a map of fans and let TΣ′ and TΣ be the corresponding toric
varieties. Then there exists an equivariant2 holomorphic map ϕ∗ : TΣ′ → TΣ, whose
restriction to the open subset TN′ coincides with the homomorphism of algebraic tori
arising from ϕ .

This map satisfies the following properties:

(i) If N ′ is a Z-submodule of N of finite index and Σ′ = Σ, then ϕ∗ coincides with
the projection to the quotient of TΣ′ with respect to the natural action of the finite
group ker[T ′

Σ → TΣ] ' N/N ′.

(ii) The map ϕ∗ is proper and birational if and only if ϕ : N ′ → N is an isomorphism
and Σ′ is a locally finite subdivision3 of Σ under the identification N ′

R = NR.

Proof.
The existence of ϕ∗ as extension of ϕ is given in [Oda, Theorem 1.13]. The two prop-
erties given are stated in [Oda, Corollary 1.16] and [Oda, Corollary 1.17], respectively.

�

Corollary 2.1.22: Resolution of Singularities.
Any toric variety admits an equivariant resolution of singularities.

Proof.
This statement is given in [Oda] following Corollary 1.18. �

2with respect to the actions of TN ′ and TN
3i. e. for each σ ∈ Σ the set S := {σ ′ ∈ Σ′∣∣σ ′ ⊂ σ} is finite and σ =

⋃
S σ ′.
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2.2 Toroidal compactification

In this section we want to sketch the construction of toroidal compactifications which
David Mumford described in [AMRT]. We will not do this in all generality and in
particular we will not go into detail on the (mainly Lie theoretic) background for this
method. The notation is chosen to follow that in [HKW, Part I]4.

2.2.1 Summary of the construction

Mumford constructed toroidal compactifications starting from bounded symmetric do-
mains5 D ⊂ CN and the action of an automorphism group Γ on it. Although the Siegel
space Sg is a symmetric bounded domain the discussion of the boundary ’at infinity’
becomes clearer if we precede the construction with a preliminary step:

(i) Use a map Φ to embed Sg into CN such that � g := Φ(Sg) is bounded. Derive
the action of Γ on � g from that on Sg.

In the case we are concerned with we may assume Γ to be an arithmetic subgroup of
Sp(Λ,R). (In fact, it does not make much difference whether we consider Sp(J,R)
or Sp(Λ,R). For a comparison of the two cases see [HKW, p. 56 ff.]. At this point
it should be mentioned that in [HKW] and also the later chapters of this thesis we
use a tilde on subgroups of Sp(Λ,R) to distinguish them from subgroups of Sp(J,R).
The same tilde is used on objects defined with respect to these groups. But in this
chapter this would mean we have a tilde on each F,U,P and so on, which does not
help much. Therefore, we chose to leave out the tilde for the section of the toroidal
compactification.) Now, start with Mumford’s construction:

(ii) Consider the (topological) closure � g in CN . Extend the action of Γ onto � g.
Decompose the boundary � g\ � g into boundary components (we still have to
specify what we mean by this). Define an adjacency relation.

(iii) Select only the rational boundary components6 F (the others are irrelevant for
the construction).

For each of these rational boundary components F we define a partial compactification
of � g/Γ ”in the direction of F” called YΣ(F) by using a trivial fibre bundle XΣ(F)
whose fibres are toric varieties as follows:

(iv) Associate to F a parabolic subgroup of Sp(Λ,R), namely the stabiliser P(F).

(v) Intersect P(F) with Γ to obtain a group P(F) acting on � g.

(vi) Split P(F) into P′(F) and P′′(F) such that the action of P′(F) on � g is ’nice’
and hence we have a nice quotient X(F) := � g/P′(F) with an action of the
remaining part P′′(F) on it.

(vii) Construct a trivial torus bundle X (F) with fibres T ' (C∗)r and regard X(F)
as a subset of it.

4We will only cite from Part I of this book.
5For a definition of symmetric bounded domain see [Na, p. 113]
6we shall shorten this to ’rbc’ where needed

27



Toroidal compactification Chapter 2. Toroidal compactification

(viii) Compactify the standard fibre T by a toric variety TΣ. (The fan Σ := Σ(F) may
not be arbitrary but has to satisfy certain properties.)

(ix) Construct a trivial fibre bundle XΣ(F) with fibres TΣ that contains X (F). Hence
we have X(F) ⊂ X (F) ⊂ XΣ(F).

(x) Denote by XΣ(F) the interior of the closure (in the C-topology) of X(F) in
XΣ(F).

(xi) For ’good’ fans Σ (which we will call ’admissible’) we have an action of P ′′(F)
on XΣ(F) and hence we can define the partial compactification of � g/P(F) in
the direction of F to be YΣ(F) := XΣ(F)/P′′(F).

(xii) Interpret YΣ(F) as a partial compactification of � g/Γ.

Now that we have partial compactifications in the directions of all rational boundary
components we have to glue all these together to obtain the compactification of � g/Γ.
Note that we have a fan for each boundary component, in other words a collection
Σ̃ := {Σ(F)}. This collection also has to satisfy some conditions in order to allow the
following glueing process:

(xiii) Define the disjoint union Y := Y (Σ̃) :=
⊔

all rbc F YΣ(F).

(xiv) Define an equivalence relation ∼ on Y (Σ̃) arising from the action of Γ and the
adjacency of boundary components. This equivalence is the formal way of say-
ing what is meant by ”glueing”.

(xv) Finally, define the toroidal compactification ( � g/Γ)∗ of � g/Γ to be the quotient
space ( � g/Γ)∗ = Y (Σ̃)/∼.

Recall that YΣ(F) is constructed from XΣ(F) using the action of a subgroup of Γ. Now,
the aforementioned equivalence relation also arises from the action of Γ. Therefore,
we could also use the following construction to arrive at the same result:

(xiii) Define the disjoint union X := X(Σ̃) :=
⊔

all rbc F XΣ(F).

(xiv) Define an equivalence relation ∼ on X(Σ̃) arising from the action of Γ and the
adjacency of boundary components.

(xv) Finally, define the toroidal compactification ( � g/Γ)∗ of � g/Γ to be the quotient
space ( � g/Γ)∗ = X(Σ̃)/∼.

2.2.2 The preliminary step and boundary components

Having completed this summary we will now go through the whole process in some
more detail. In particular, we have to give precise definitions of all the objects men-
tioned and list the conditions on the fans. For most propositions we refer to [HKW]
for proofs although there most proofs are only given for the case g = 2. The general
case may, however, be obtained by simply replacing the appropriate indices.

In step (i) we need a map Φ. This can be chosen to be

Φ :

{
Sg → Sym(g,C)

τ 7→ (τ − i
�
)(τ + i

�
)−1
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which maps Sg isomorphically onto the g(g+1)/2-dimensional bounded domain

� g =
{

Z ∈ Sym(g,C)
∣∣ � −ZZ > 0

}
.

This is called the Cayley transformation, or, in the case of g = 2 the Harish-Chandra
embedding. It is a generalization of the map from the ordinary upper half plane onto
the unit disc.

For this � g the (canonical) closure � g ⊂ Sym(g,C) is the compact set

� g =
{

Z ∈ Sym(g,C)
∣∣ � −ZZ ≥ 0

}

and the action of Γ on � g can be defined as in [HKW, Proposition 3.3]. Since we
are never actually concerned with the details of this action and its precise statement
requires some more definitions, we refer the interested reader to this book.

Definition 2.2.1: Boundary components.

(i) A boundary component of � g is an equivalence class of points in � g where
two points p,q ∈ � g are equivalent if and only if they can be connected by
finitely many holomorphic curves. (See [HKW, Definition 3.5]) Denote the set
of boundary components by F .

(ii) A boundary component lying in � g\ � g is called proper.

(iii) A boundary component F is said to be congruent to a boundary component F ′

under the action of Γ if there exists an a ∈ Γ such that F = a(F ′). This fact shall
be denoted by F ∼Γ F ′.

(iv) A boundary component F is said to be adjacent to a boundary component F ′ if
F 6= F ′ and F ⊂ F ′. This fact shall be denoted by F ≺ F ′.

Note that the points (iii) and (iv) introduce two relations between boundary com-
ponents. Whenever we map the boundary components onto some other objects we
want these relations to be represented in the new set.

Definition 2.2.2: Representing sets.
A partially ordered set (E ,≺′) with an action of Γ is said to represent the set of bound-
ary components if we have a surjective map ϕ : F → E such that

• F ∼Γ F ′ =⇒ ϕ(F) ∼Γ ϕ(F ′) and

• F ≺ F ′ ⇐⇒ ϕ(F) ≺′ ϕ(F ′).

It is called strongly representing if ϕ is a bijection and we have equivalence in both
conditions.

Remark 2.2.3.
Before we continue with the next step of the summary, let us introduce the most
important example of a representing set. Recall that we are dealing with a group
Γ ⊂ Sp(Λ,R). First, we can associate to each point Z ∈ � g a Λ-isotropic subspace7

U(Z) ⊂ R2g such that

7A subspace U ⊂ R2g is called (totally) isotropic if for all u,v ∈U : 〈u,v〉 = uΛ tv = 0.
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• the action of a ∈ Γ on Z is equivariant to that of a on U(Z) by matrix multipli-
cation in the sense that U(a(Z)) = U(Z)a−1 and

• the subspace is an invariant of the boundary components, i. e. for two points
Z1,Z2 lying on the same boundary component we have U(Z1) = U(Z2).

The precise definition of this map may be found in [HKW, Proposition 3.6]. But even
from the two properties stated here we see that we have a well defined map

U : F →{isotropic subspaces of R2g}

by U(F) := U(Z) for a Z ∈ F . This leads to the important statement

Lemma 2.2.4.
The set ({U(F)},%) with Γ acting by inverse matrix multiplication as above strongly
represents the boundary components.

Proof.
The map ϕ : F → {U(F)} is a bijection according to [HKW, Proposition 3.12].
Equivariance of the action of Γ follows from the equivariance on the U(Z) mentioned
above. The equivalence of the two order relations is given in [HKW, Proposition 3.16].

�

2.2.3 Partial compactifications

Let us now proceed in the construction of the toroidal compactification. Step (iii)
asks for the rational boundary components. To define these, we need the stabilizing
subgroup mentioned in step (iv).

Definition 2.2.5: Stabiliser groups, rational boundary components.
To each boundary component we associate the stabiliser group

P(F) :=
{

a ∈ Sp(Λ,R)
∣∣a(F) = F

}
.

A boundary component F is called rational if P(F) is defined over Q (i. e. there is
a subgroup PQ ⊂ Sp(2g,Q) such that P(F) = PQ(R), the R-valued points of the
algebraic group PQ. In other words, take the equations defining PQ and allow not
only rational but also real solutions.).

Denote the set of all rational boundary components by F rat.

Lemma 2.2.6: Characterization of rational boundary components.
For a boundary component F ⊂ � g the following statements are equivalent:

• F is a rational boundary component.

• U(F) ⊂R2g is a rational subspace, i. e. it can be generated by rational (or equiv-
alently integral) vectors.
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• There exists a ∈ Sp(Λ,Q) such that F = a(F (i)) where

F(i) :=

{(
Z

�
g−i

)∣∣Z ∈ � i

}

with � i as before and � 0 = /0. The dimension of U(F) is g− i.

Proof.
See [HKW, Proposition 3.19] �

This lemma not only gives a characterization of rational boundary components,
but it also names standard representators F (i) with respect to the action of the (whole)
group Sp(Λ,Q).

Definition 2.2.7: Corank-c boundary components.
A rational boundary component F with dimR(U(F)) = c is called corank-c boundary
component.

Lemma 2.2.8.
Let ei denote the ith unit vector. Then

U(F(i)) = Reg+i+1 + · · ·+Re2g and U(F(g)) = {0}.

A rational boundary component F is a corank-c boundary component if and only if
there exists a ∈ Sp(Λ,Q) with F = a(F (g−c))

Proof.
This follows from the definition of U(Z) which can be found in [HKW, Proposi-
tion 3.6]. The correspondence is proved in [HKW, Lemma 3.10, Remark 3.22].
�

So far we have only considered the action of Sp(Λ,R) and its subgroups P(F).
Now we reintroduce the group Γ ⊂ Sp(Λ,R) and split the resulting group into two
parts as mentioned in step (vi):

Definition 2.2.9: Subgroups of Γ and P(F).

• Let P(F) := P(F)∩Γ.

• Let P ′(F) be the center of the unipotent radical8 Ru(P(F)) of P(F) and let
P ′′(F) := P(F)/P ′(F).

• Let P′(F) := P ′(F)∩Γ and P′′(F) := P(F)/P′(F).

• Denote the quotient X(F) := � g/P′(F) and define the partial quotient map
e(F) : � g → X(F).

8The unipotent radical Ru(G) of a Lie group G is by definition the maximal connected unipotent
normal subgroup of G.
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Remark 2.2.10.
This decomposition of P(F) is based on the following idea: P ′(F) is isomorphic to a
real vector space containing the lattice P′(F). One can therefore hope that the partial
quotient map e(F) can be given in a nice form. Indeed, we have X(F) ' (C∗)r ×U
where r is the rank of P′(F) and U is open in (C∗)g(g+1)/2−r. (See [HKW, page 68f.].)

Step (vii) is done in the following theorem:

Theorem 2.2.11.
For each rational boundary component F of � g there exists a trivial torus bundle X (F)
with fibre T = (P′(F)⊗Z C)/P′(F) ' (C∗)r over the base F ×V (F) where V (F) is
the complex vector space Ru(P(F))/P ′(F). The set X(F) is naturally isomorphic to
an open subset of X (F). The operation of P′′(F) on X(F) extends to X (F).

Proof.
See [AMRT, Chapter III, Paragraph 4]. �

In step (viii) we use a toric variety to compactify the torus fibre T of X (F). For
this construction we need a lattice N = Hom(C∗,T ) and a fan Σ in NR. Because of the
definition of T we actually have N = P′(F) and hence NR = P ′(F). We still need to
make precise what conditions the fan has to satisfy.

The reasons for the following definitions, which may seem a bit ad-hoc, can be
found in [HKW, Paragraph 3D]. For the scope of this thesis we will restrict ourselves
to simply stating what turns out to be a good choice.

For F (i) we have

P
′(F(i)) =

{( �
S

0
�

)∣∣S =

(
0i

S′

)
and S′ ∈ Sym(g− i,R)

}
.

Here Γ acts by adjungation: if for a∈Γ we have F ′ = a(F) then P ′(F ′)= aP ′(F)a−1.
Define the open (self adjoint) cone C(F) ⊂ P ′(F) to be the subset satisfying the con-
dition that S′ be positive definite. Hence we have natural identifications

P
′(F (i)) ' Sym(g− i,R) and C(F (i)) ' Sym+(g− i,R).

On these spaces the adjoint action of P(F (i)) is equivariant to the action of GL(g−
i,R) defined by Q ∈ GL(g− i,R) : S′ 7→ tQ−1SQ−1.

These choices allow the following lemma:

Lemma 2.2.12.
The set of cones ({C(F)},%) represents the rational boundary components. More
precisely, for two boundary components F,F ′ we have:

• if F = a(F ′) for an a ∈ Γ then P(F) = aP(F ′)a−1. This correspondence also
applies for the other groups P ′,P ′′,P′,P′′ and for the cones C(F) = aC(F ′)a−1.

• F ≺ F ′ if and only if P ′(F ′) ⊂ P ′(F) and C(F ′) =
(
C(F)∩P ′(F ′)

)0
where

the closure is taken in P ′(F) with respect to the C-topology but the interior is
taken with respect to P ′(F ′).
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Proof.
See [AMRT, Theorem III.4.3] or [HKW, Proposition 3.60]. �

We use this to define the rational closure of the cones C(F):

Definition 2.2.13: Rational closure.
The rational closure C(F)rc of C(F) is defined to be the union of all adjoint cones:

C(F)rc := C(F)
⋃

F ′∈F
rat,

F ′≺F

C(F ′).

Definition 2.2.14: Automorphism group P̄(F).
Define the group P̄(F) ⊂ Aut(P′(F)) to consist of all automorphisms Ad(a) of P′(F)
defined by b 7→ aba−1.

Now we are in a position to state the conditions on a fan to be admissible for our
toric construction:

Definition 2.2.15: Admissible fan.
A fan Σ ⊂ P ′(F) is called admissible if it satisfies the following three conditions:

(i) It covers C(F)rc, i. e.
⋃

σ∈Σ σ = C(F)rc.

(ii) It is stable under the action of P̄(F), i. e. for all a ∈ P̄(F) and all σ ∈ Σ we have
a(σ) ∈ Σ.

(iii) There are only finitely many orbits, i. e. Σ/P̄(F) is a finite set.

Next, we can complete step (viii) by using an admissible fan Σ to construct the
toric variety TΣ. This is done exactly as in the previous section, so we need not give
further detail here. Steps (ix) and (x) consist of the following definitions:

Definition 2.2.16: Associated fibre bundle.
For a rational boundary component F and an admissible fan Σ = Σ(F) let

• XΣ(F) := X (F)×T TΣ be the associated toric fibre bundle and

• XΣ(F) :=
(
X(F)

)0
be the interior of the closure of X(F) in XΣ(F).

This setting enables us to complete step (xi) as planned:

Lemma 2.2.17.
The induced action of P′′(F) on X(F) extends in a unique way to a properly discon-
tinuous action of P′′(F) on XΣ(F).

The quotient space YΣ(F) := XΣ(F)/P′′(F) is an analytic variety that contains
� g/P(F) as an open and dense analytic subvariety whose complement (called the
boundary) ∂YΣ(F) := YΣ(F)\( � g/P(F)) is a purely 1-codimensional analytic subva-
riety.

If XΣ(F) is smooth, then YΣ(F) contains at worst finite quotient singularities.
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Proof.
See [HKW, Proposition 3.62] �

Remark 2.2.18.
So far, YΣ(F) can be interpreted as a partial compactification of � g/P(F). However,
since the natural quotient map p(F) : � g/P(F) → � g/Γ is an isomorphism (if re-
stricted to a sufficiently small interior neighbourhood of F in � g), we can use it to
attach ∂YΣ(F) to the space � g/Γ and thus get a partial compactification of � g/Γ in the
direction of F .

This is step (xii) and completes the procedure that has to be done for each rational
boundary component. We may now easily define the objects of both alternatives of
step (xiii).

2.2.4 Global compactification

Definition 2.2.19.
Denote the collection of fans by Σ̃ := {Σ(F)} and the disjoint union of partial com-
pactifications by

Y (Σ̃) :=
⊔

F∈F rat

YΣ(F) and X(Σ̃) :=
⊔

F∈F rat

XΣ(F).

However, to be able to glue these partial compactifications and obtain a global
compactification, we need to look at the collection of fans in more detail.

Definition 2.2.20: Admissible collection of fans.
A collection of fans Σ̃ := {Σ(F)} is called admissible if it satisfies the following three
conditions:

(i) Each Σ(F) is an admissible fan for the boundary component F .

(ii) Σ̃ is compatible with the action of Γ on the boundary components, i. e. if for
a ∈ Γ we have F = a(F ′), then Σ(F) = a(Σ(F ′)) = aΣ(F ′)a−1.

(iii) Σ̃ is compatible with the adjacency relations between the boundary components,
i. e. F ≺ F ′ ⇐⇒ Σ(F ′) = Σ(F)∩P ′(F ′).

Remark 2.2.21.
Conditions (ii) and (iii) imply that the set (Σ̃,%) represents the rational boundary com-
ponents.

Note that condition (iii) implies that an admissible collection Σ̃ is already deter-
mined by the fans associated with minimal rational boundary components9 .

We now need the aforementioned equivalence relation on Y (Σ). According to
step (xiv) this will be built from two parts: the action of Γ and the adjacency relations

9A rational boundary component F is called minimal, if there exists no rational boundary component
F ′ with F ′ ≺ F .
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of boundary components. To define the equivalence properly we need to look at maps
between the partial compactifications for two different boundary components.

Again, let us first consider the action of Γ.

Proposition 2.2.22.
Let F,F ′ be two rational boundary components with F = a(F ′) for an a ∈ Γ. Then a
induces natural isomorphisms ã, ā such that the following diagrams commute:

XΣ(F ′)(F
′)

ã−−−−→ XΣ(F)(F)

∪
x ∪

x
� g/P′(F ′)

a−−−−→ � g/P′(F)

YΣ(F ′)(F
′)

ā−−−−→ YΣ(F)(F)

∪
x ∪

x
� g/P(F ′)

a−−−−→ � g/P(F)

The vertical arrows represent the natural inclusions.

Proof.
See [HKW, Proposition 3.69] �

We now consider maps between adjacent boundary components. Since here the
construction is a bit easier for X(Σ̃) we will consider this case.

Recall that for two adjacent boundary components F ≺ F ′ we have the inclusion
P ′(F ′) ⊂ P ′(F) and hence a natural quotient map π(F ′,F) : X(F ′) → X(F). Because
of condition (iii) in Definition 2.2.20, this map extends to an étale map10

π(F ′,F) : XΣ(F ′)(F
′) → XΣ(F)(F).

We can use this map for the equivalence relation.

Definition 2.2.23: Equivalence relation.
Let the equivalence relation ∼ on X(Σ̃) be generated by the following relations: two
points x ∈ XΣ(F)(F) and x′ ∈ XΣ(F ′)(F

′) are to be equivalent

(i) if there exists a ∈ Γ such that F = a(F ′) and x = ã(x′) or

(ii) if F ≺ F ′ and π(F ′,F)(x
′) = x.

Remark 2.2.24.
As to the YΣ(F), the compositions XΣ(F) ↪→X(Σ̃)→ X(Σ̃)/∼ give rise to natural maps

p̄(F) : YΣ(F) → X(Σ̃)/ ∼

which extend the projections p(F) mentioned in Remark 2.2.18.
We have now reached the end and may define

Definition 2.2.25: Toroidal compactification.
For an admissible collection of fans Σ̃ define the toroidal compactification ( � g/Γ)∗ of
� g/Γ determined by Σ̃ to be the quotient space

( � g/Γ)∗ := X(Σ̃)/ ∼ .

10An étale map is a smooth map with discrete fibres; it need not be surjective.
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2.2.5 Properties

The space constructed in this way has the following properties:

Theorem 2.2.26.
Let A ∗ := ( � g/Γ)∗ be the toroidal compactification of A := � g/Γ. Then we have:

(i) A ∗ is compact.

(ii) A ∗ contains A as an open and dense subset.

(iii) The boundary A ∗\A is purely 1-codimensional, i. e. it is a Weil divisor.

(iv) For each rational boundary component F the map p̄(F) is an isomorphism when
restricted to a sufficiently small neighbourhood of the boundary of YΣ(F).

(v) A is the union of the images of the maps p̄(F) for every F .

(vi) A is the union of the images of the maps p̄(F) for every minimal F .

Proof.
See [HKW, Theorem 3.82, Remark 3.77] �

Remark 2.2.27.
Having completed the construction, we see that at the core of this process we have
the collection of fans Σ̃ that determines the compactification. More precisely, we have
the fans Σ(F) ∈ Σ̃ for minimal rational boundary components F determining every-
thing. These fans are decompositions of the cone Sym+(g,R), which explains why
this subject is central in the context of toroidal compactification.

The compactification may, of course, be singular. Singularities may arise from
two sources:

• On the one hand, the fans used to construct the toroidal compactification may
be non-basic, which leads to singularities on the boundary of the corresponding
XΣ(F). We say these singularities come ’from the toroidal construction’ or ’from
the fan’.

• On the other hand, the group Γ (more precisely, P′′(F) ⊂ Γ) acts on XΣ(F) and
may in this way introduce additional singularities in YΣ(F). These singularities
are said to be coming ’from the group action’.

Definition 2.2.28: Stack-smoothness.
If a variety has no singularities coming from the toroidal construction, we call it stack-
smooth.

Definition 2.2.29: Neat groups.
A subgroup Γ ⊂ GL(n,C) is called neat if the subgroup of C∗ generated by the eigen-
values of all a ∈ Γ is torsion free.

The importance of neat groups in this context lies in the following statement.
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Lemma 2.2.30.
Let Γ be an arithmetic subgroup of the automorphism group of a bounded domain � .
Then

• Γ contains a neat subgroup Γ′ of finite index.

• If Γ itself is neat, then Γ operates on � without fixed points.

Proof.
See [Na, Theorem 7.18]. �

Applying this to toroidal compactification leads to:

Theorem 2.2.31: Existence of Smooth Compactifications.

• For any Γ-admissible collection of fans Σ̃ = {Σ(F)} there exists a Γ-admissible
refinement Σ̃′ = {Σ′(F)} such that all cones are regular. The dominating map is
a blowing-up and the compactification with respect to Σ′ is stack-smooth.

• Hence if Γ is neat, any toroidal compactification ( � /Γ)∗ is dominated by a
smooth toroidal compactification.

• In general, if Γ is neat there exists a smooth and projective toroidal compactifi-
cation of � /Γ.

Proof.
See [Na, Theorem 7.20] and [Na, Theorem 7.26]. �

Remark 2.2.32.
This obviously parallels the statement of Corollary 2.1.22. Note that for n ≥ 3 the

group Γpol(n) is neat11.
Recall the following definition.

Definition 2.2.33: Order of branching.
Let M,N be two normal algebraic varieties and let p : M → N be a dominant rational
map. Assume we have two divisors D ⊂ M and D′ ⊂ N with p−1(D′) = D as sets. As
divisors, we have p∗(D′) = kD for some integer k. Then define the order of branching
of p along D to be k.

Theorem 2.2.34: Maps of toroidal varieties.
Assume we are given two arithmetic subgroups Γ1 ⊂ Γ2 of Sp(2g,Z) and a collection
of fans Σ̃ that is admissible for both groups. Let A ∗

i := (Sg/Γi)∗. Then we have a
map π : A ∗

1 → A ∗
2 . Furthermore, for a corank-1 boundary component F the order of

branching of π on F is given by the index [P′
Γ2

(F) : P′
Γ1

(F)].

Proof.
The existence of π follows easily from Theorem 2.1.21 since for every boundary com-
ponent F we have

N ′ = P′
Γ1

(F) = P′
Sp(2g,Z)(F)∩Γ1 ⊂ P′

Sp(2g,Z)(F)∩Γ2 = P′
Γ2

(F) = N

11This follows from a general result by Serre which says that every algebraic integer which is a unit
and which is congruent to 1 mod n for n ≥ 3 is equal to 1.
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where [N : N ′] < ∞ due to the choice of Γi. We can glue the maps ϕF,∗ since Σ̃ is
admissible.

Since F has corank 1, the groups P′
Γ j

(F) for j = 1,2 are 1-dimensional lattices. To
ease the notation, we only consider the case F = F0, but the construction goes through
the same for all other rational corank 1 boundary components. For F0, the quotient
maps e j(F0) are given by

e j(F0) :

{
Sg → X j(F0) = C∗×Cg−1 ×Sg−1

(τ1,1,τ1,2, . . . ,τg,g) 7→ (t j,τ1,2, . . . ,τ1,g,τ ′)

where τ ′ = (τm,n)m,n≥2 and t j = e2πiτ1,1/k j for some k j ∈ N, j = 1,2. Now we have a
map

π̃ :





X1(F0) → X2(F0)

t1 7→ t2 = (t1)
k1/k2

τm,n 7→ τm,n for all (m,n) 6= (1,1)

.

This map extends naturally to the boundary {0}×Cg−1 ×Sg−1 of Cg ×Sg−1. Obvi-
ously, the order of branching of π̃ in {0}×Cg−1 ×Sg−1 is k1

k2
.

Now we have to consider the quotient maps q j

X j(F0) ↪→ XΣ, j(F0)
q j→ XΣ, j(F0)/P′′

Γ j
(F0) ↪→ A

∗
j .

According to [HKW, Proposition 3.90 and Proposition 3.91] the group P ′′(F0) can be
identified as the group consisting of the block matrices




ε m n
0 A B
0 C D


 ∈ GL(g+1,R)

where
(

A B
C D

)
∈ Sp(2(g−1),R), ε ∈ R and m,n ∈ Rg−1. The action of its generators

g′′1 =




1 0 0
0 A B
0 C D


 , g′′2 =




ε 0 0
0

�
0

0 0
�


 and g′′3 =




1 m n
0

�
0

0 0
�




on τ = (τ1,τ2) ∈ Cg−1 ×Sg−1 is given by

g′′1(τ) = (τ1(Cτ2 +D)−1,(Aτ2 +B)(Cτ2 +D)−1)

g′′2(τ) = (τ1ε ,τ2)

g′′3(τ) = (τ1 +mτ2 +n,τ2).

Now suppose that g′′ = g′′1g′′2g′′3 ∈ P ′′(F0) is an element that operates like the identity
on all of the boundary. Obviously, its action on the second component is determined
by the submatrix M :=

(
A B
C D

)
, and hence we need to have M = ± �

. If M =
�

, the
factor g′′1 leaves τ1 invariant, and otherwise changes its sign. It is easy to see that in
both cases m = n = 0 and ε = ±1, where ε = 1 if and only if M =

�
. Hence, the only

elements of P ′′(F0) that operate like the identity on all of the boundary are in fact
� ∈ P ′′(F0) and − � ∈ P ′′(F0). The same remains true if we intersect P ′′(F0) with
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the appropriate group Γ j. But since − �
operates trivially on all of Cg ×Sg−1, this

shows that the maps q j are not branched along the boundary divisor.
We obtain that the order of branching of π : A ∗

1 → A ∗
2 on the rational boundary

components of corank 1 is also given by k1
k2

= [P′
Γ2

(F) : P′
Γ1

(F)]. �

Lemma 2.2.35: Symmetry.
There is a canonical isomorphism of coarse moduli spaces

A(e1,...,eg)
∼−→ A(e1,

e1eg
eg−1

,...,
e1eg

e2
,eg)

.

Proof.
This is the main result of [BL02]. �

Lemma 2.2.36: Canonical divisor on toroidal compactifications.
On a toroidal compactification A ∗

g of genus g the canonical divisor in the smooth part
is given by

K = (g+1)L−D,

where D is the boundary divisor of A ∗
g and L is the line bundle of modular forms of

weight 1, i. e. the line bundle given by the automorphy factor det(Cτ +D).

Proof.
This is well known; the interested reader may find a proof in several articles, e. g. in
[HS, Section II.1]. �
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Chapter 3

Symplectic Theorems

3.1 Divisors of vectors

Let us now begin the analysis of the corank-1 rational boundary components of a
toroidal compactification. Since there is only one admissible fan in the corresponding
(1-dimensional) cone, namely the fan consisting of {0} and R≥0, we do not need to
specify the collection Σ of fans1 but only the group Γ. Our field of interest are, of
course, the moduli spaces of abelian varieties with different types of polarisation. As
mentioned in Remark 1.2.15, we may chose e1 = 1 without changing the groups Γ̃pol

and Γ̃pol(n). In addition, since ei|ei+1 for all i = 1, . . . ,g−1, we have some redundancy
and rather large numbers. Therefore, we introduce the

Notation 3.1.1.
Let di := ei+1/ei for i = 1, . . . ,g−1 and define

di: j :=

{
e j+1

ei
= ∏ j

n=i dn for i ≤ j
1 for i > j

.

Then all di are positive integers and the polarisation is given by (1,d1,d1:2, . . . ,d1:g−1).

Definition 3.1.2: Types of polarisations.
We call a polarisation (1,d1, . . . ,d1:g−1) square-free if all di are square-free. If a polar-
isation satisfies gcd(di,d j) = 1 for all i 6= j we call it a coprime polarisation.

In Remark 2.2.3 we described a map U between boundary components and
isotropic subspaces of R2g. In the light of Lemma 2.2.6 this map restricts to the rational
boundary components and rational subspaces of R2g. Here, corank-1 boundary com-
ponents correspond to 1-dimensional subspaces. On the other hand, for each of these
subspaces we have (up to the sign) a primitive integral vector, so that the composition
of these two maps leads to a bijection

V :

{
F rat of corank 1 → {primitive vectors in Z2g}/±1

F 7→ V (F) := generating element of U(F)
.

The group Γ acts on the image space by matrix multiplication from the right. Note
that the corank-1 boundary components are in general not the minimal boundary com-
ponents (whose fans determine the compactification, see Remark 2.2.27). There is,

1See also the text following Proposition 3.101 in [HKW, p. 92].
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however, reason to believe that they are the ones that determine the order of vanishing
of cusp forms on all of the boundary (see section 4). This is why we ask for a complete
list of non-congruent rational corank-1 boundary components with respect to a group
Γ or, equivalently, for an orbit decomposition of the set of primitive integral vectors
(again, up to the sign).

First of all, we define the divisors Di(v) of a vector v ∈ Z2g for i = 1, . . . ,g− 1.
These are defined using entries of the vector and the values di of the polarisation. To
keep the notation easier, we shall drop the vector v where possible and write D i :=
Di(v).

Definition 3.1.3: Divisors.
Define the divisors Di := Di(v) of a primitive vector v ∈ Z2g recursively to be the
generating element of a principal ideal as follows:

(D1) := (d1,v1,vg+1) ⊂ Z and for 1 < i < g define

(Di) :=
(

di,
v1

D1 · . . . ·Di−1
,

vg+1

D1 · . . . ·Di−1
, . . . ,

vi−1

Di−1
,
vg+i−1

Di−1
,vi,vg+i

)
⊂ Z

To make things easier we define some notation

Notation 3.1.4.

• Analogously to di: j define for 1 ≤ i, j < g

Di: j :=

{
∏ j

n=i Dn for i ≤ j
1 for i > j

.

We will also use this notation with other variables instead of di or Di but assume
the corresponding definition without further mentioning it.

• For large parts of the following calculations, the entries v j and vg+ j of a vector
v can be treated simultaneously. In order to shorten the notation and to make it
easier to read the proofs, we introduce the notation v j|g+ j (or even v j|·) for the
pair (v j,vg+ j). So, writing gcd(v j|g+ j) actually means gcd(v j,vg+ j).

• For an ideal (or a gcd, lcm and so on) containing a similar term T for multiple
indices we define

(
T ( j)

)
j=a,...,b :=

(
T (a), . . . ,T (b)

)
.

Lemma 3.1.5. For i = 1, . . . ,g−1 we have

(Di) =
(

di,
v j|g+ j

D j:i−1

)
j=1,...,i

⊂ Z.

Proof.
This is nothing but Definition 3.1.3 in the new notation. �
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Lemma 3.1.6: Divisibility properties.
For easier reference we collect the following properties:

∀1 ≤ i < g : Di|di

∀1 ≤ i ≤ j ≤ k < g : D j:k|vi and D j:k|vg+i

Proof.
This follows immediately from the definitions. �

Definition 3.1.7: Ideal of lattice and vector.
Let L ⊂ Cg be the lattice of a polarisation of type (1, . . . ,d1:g−1) and identify L with
Z2g. Define the pairing on Z2g×Z2g by 〈v, l〉 := vΛ tl. For a vector v ∈Z2g let (v,L) :=
{〈v, l〉

∣∣l ∈ L} which is an ideal in Z, namely

(v,L) = (d1: j−1v j|g+ j) j=1,...,g = (v1,vg+1,d1v2,d1vg+2, . . . ,d1:g−1vg,d1:g−1v2g) ⊂ Z.

Proposition 3.1.8.
For 1 ≤ k ≤ i < g and m such that m

Dk:i−1
∈ Z, the following equivalence holds:

(3.1)
m

Dk:i−1
∈
(

di,
(v,L)

D1:i−1

)
⇐⇒ d1:k−1

D1:k−1

m
Dk:i−1

∈
(

di,
(v,L)

D1:i−1

)
.

Proof.
We prove equivalence by induction.

For k = 1 we have d1:k−1
D1:k−1

= 1
1 = 1 and there is nothing to show.

Assume now that k > 1 and that the statement holds for all j ≤ k−1, i. e.

(3.2)
m

D j:i−1
∈
(

di,
(v,L)

D1:i−1

)
⇐⇒ d1: j−1

D1: j−1

m
D j:i−1

∈
(

di,
(v,L)

D1:i−1

)
is true.

We have to show (3.1) as stated. For abbreviation, let

Ai :=
(

di,
(v,L)

D1:i−1

)
.

”⇒”: If m
Dk:i−1

∈Ai then any integer multiple is also in Ai. Since from Lemma 3.1.6

it follows that d j

D j
∈ Z for any j, we immediately obtain d1:k−1

D1:k−1
∈ Z and thus

d1:k−1

D1:k−1

m
Dk:i−1

∈ Ai

which shows the implication.
”⇐”: Let m′ be such that m′

Dk:i−1
∈ Z. From Lemma 3.1.5 we know that

Dk−1 = gcd
(

dk−1,
v j|g+ j

D j:k−2

)
j=1,...,k−1

=⇒ 1 = gcd
( dk−1

Dk−1
,

v j|g+ j

D j:k−1

)
j=1,...,k−1

=⇒ m′

Dk:i−1
= gcd

( dk−1m′

Dk−1:i−1
,

v j|g+ jm
′

D j:i−1

)
j=1,...,k−1

=: I(3.3)
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where I is an ideal in Z. We will show that all generators of I are contained in A i. From
Definition 3.1.7 we know that d1: j−1v j|g+ j ∈ (v,L) and hence

d1: j−1

D1: j−1

v j

D j:i−1
=

d1: j−1v j

D1:i−1
∈ Ai and

d1: j−1

D1: j−1

vg+ j

D j:i−1
=

d1: j−1vg+ j

D1:i−1
∈ Ai,

and since j ≤ k−1 we may use assumption (3.2) with m = v j and m = vg+ j to obtain

v j

D j:i−1
∈ Ai and

vg+ j

D j:i−1
∈ Ai =⇒

v j|g+ j

D j:i−1
m′ ∈ Ai.

Now the right hand side of (3.1) states that

d1:k−1

D1:k−1

m′

Dk:i−1
∈ Ai.

We can rearrange the factors

d1:k−1

D1:k−1

m′

Dk:i−1
=

d1:k−2

D1:k−2

dk−1m′

Dk−1:i−1

and can now apply assumption (3.2) for j = k−1 and m = dk−1m′ to obtain

dk−1m′

Dk−1:i−1
∈ Ai.

We now know that the ideal I defined in (3.3) is contained in Ai and thus m′
Dk:i−1

∈ I ⊂ Ai.
This completes the induction. �

Lemma 3.1.9.
The ideal (Di) can also be given by

(Di) =
(

di,
(v,L)

D1:i−1

)
.

Proof.
Let Ai :=

(
di,

(v,L)
D1:i−1

)
as above. We know from the definitions that

(Di) =
(

di,
v1|g+1

D1:i−1
,

v2|g+2

D2:i−1
, . . . ,

vi−1|g+i−1

Di−1:i−1
,vi|g+i

)
and(3.4)

Ai =
(

di,
v1|g+1

D1:i−1
,

d1:1v2|g+2

D1:i−1
, . . . ,

d1:i−2vi−1|·
D1:i−1

,
d1:i−1vi|g+i

D1:i−1
,
d1:ivi+1|·
D1:i−1

, . . .
)

(3.5)

=
(

di,
v1|g+1

D1:i−1
,

d1:1

D1:1

v2|g+2

D2:i−1
, . . . ,

d1:i−2

D1:i−2

vi−1|g+i−1

Di−1:i−1
,

d1:i−1

D1:i−1
vi|g+i

)
(3.6)

The last elements in (3.5) that have been omitted in (3.6) are multiples of d i and are
therefore not needed to generate Ai. Since now all elements in (3.6) are multiples
of elements in (3.4), we obviously have Ai ⊂ (Di). For the other inclusion we ap-
ply Proposition 3.1.8 to every element in (3.6) to obtain that all elements in (3.4) are
contained in Ai. This completes the proof. �
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This lemma now shows that Proposition 3.1.8 also applies to (Di), i. e.

Corollary 3.1.10.
For 1 ≤ k ≤ i < g and m

Dk:i−1
∈ Z the following equivalence holds:

m
Dk:i−1

∈ (Di) ⇐⇒ d1:k−1

D1:k−1

m
Dk:i−1

∈ (Di).

More importantly, we also now know the following:

Corollary 3.1.11: Invariance.
The divisors Di of a vector v are invariant under the action of Γ̃pol on Z2g.

Proof.
This can be deduced from the invariance of L under the action of Γ̃pol as follows: Let
M ∈ Γ̃pol. Since Γ̃pol ⊂SL(2g,Z) we have in particular that ( tM)−1 is an integer matrix.
Hence, for v ∈ Z2g we obtain

(vM,L) =
{
〈vM, l〉

∣∣l ∈ L
}

=
{

vMΛ tl
∣∣l ∈ Z2g

}
since MΛ = Λ( tM)−1 by definition of Γ̃pol

=
{

vΛ( tM)−1 tl
∣∣ tl ∈ Z2g

}
and since ( tM)−1 is integer

=
{

vΛ tl
∣∣l ∈ Z2g}

= (v,L).

Using Lemma 3.1.9 we see that

Di(vM) = gcd
(

di,
(vM,L)

D1:i−1

)
= gcd

(
di,

(v,L)

D1:i−1

)
= Di(v).

�

Remark 3.1.12.
Let us point out that the divisors Di are not independent and therefore not every pos-
sible combination of divisors of the polarisation di can actually occur. E. g. take g = 3
and d1 = 4,d2 = 6 so that we have a polarisation (1,4,24). Now, there is no vector
with the divisors D1 = D2 = 2 because that would mean that

D1 = gcd(4,v1,v4) = 2 and(3.7)

D2 = gcd(6, v1
2 , v4

2 ,v2,v5) = 2,(3.8)

where equation (3.8) clearly shows that 4 divides both v1 and v4, which is a contradic-
tion to (3.7).

The additional restriction on the divisors Di is the following:

Theorem 3.1.13: Restrictions on Di.
For 1 ≤ i < j ≤ g−1 we have

(3.9) gcd
( di

Di
,D j
)

= 1.
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Moreover, any ordered set of positive integers {Di} := {D1, . . . ,Dg−1} satisfying Di|di

and condition (3.9) does occur as set of divisors of a vector v ∈ Z2g.

Proof.
Necessity:
Take i < j and assume n := gcd( di

Di
,D j) 6= 1. We claim that any power of n divides di

in contradiction to di 6= 0. The proof is by induction.
Define the index set I := {1, . . . , i,g+1, . . . ,g+ i} and let

v(0)
k := vk for k ∈ I, d(0)

i := di, D(0)
i := Di and

v(r)
k :=

vk

nr , d(r)
i :=

di

nr , D(r)
i :=

Di

nr for r ≥ 1.

We want to show that all values we just defined are integers. For the generation r = 0
this is obvious.

Assume that all values of the generation r−1 are integers. By definition of n we
know that n divides di

Di
and hence

di

Di
=

nr−1d(r−1)
i

nr−1D(r−1)
i

=
d(r−1)

i

D(r−1)
i

=⇒ n|d(r−1)
i =⇒ d(r)

i ∈ Z.

From the definitions of n and D j we know that n divides

D j = gcd
(

d j,
v1|g+1

D1: j−1
, . . . ,

v j−1|g+ j−1

D1: j−1

)

= gcd
(

d j,
nr−1v(r−1)

1|g+1

nr−1D(r−1)
1: j−1

, . . . ,
nr−1v(r−1)

i|g+i

nr−1D(r−1)
i: j−1

,
vi+1|g+i+1

Di+1: j−1
, . . . ,

v j−1|g+ j−1

D j−1

)
,

= gcd
(

d j,
v(r−1)

1|g+1

D(r−1)
1: j−1

, . . . ,
v(r−1)

i|g+i

D(r−1)
i: j−1

,
vi+1|g+i+1

Di+1: j−1
, . . . ,

v j−1|g+ j−1

D j−1

)
,

where by D(r−1)
k: j−1 we actually mean Dk:i−1D(r−1)

i Di+1: j−1. This shows that in particular

(3.10) n divides
v(r−1)

k|g+k

D(r−1)
k: j−1

for k = 1, . . . , i

and hence also n|v(r−1)
k which implies v(r)

k ∈ Z for all k ∈ I. Furthermore, since

Dk:i−1|Dk:i−1D(r−1)
i Di+1: j−1 = D(r−1)

k: j−1, statement (3.10) implies that

n
∣∣gcd

(
d(r−1)

i ,
v(r−1)

k|g+k

Dk:i−1

)
k=1,...,i

=
1

nr−1 gcd
(

di,
vk|g+k

Dk:i−1

)
k=1,...,i

=
1

nr−1 Di = D(r−1)
i .

So, we have shown that all values in the rth generation are integers. The contradiction
follows as mentioned above.
Sufficiency:
Choose integers Di satisfying the conditions stated in the lemma. Consider the vector

v = (D1:g−1,D2:g−1, . . . ,Dg−1,1,0, . . . ,0) ∈ Z2g.
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For i = 1, . . . ,g−1 we have

1
Di

Di(v) =
1
Di

gcd
(

di,
vk

Dk:i−1
,

vg+k

Dk:i−1

)
k=1,...,i

=
1
Di

gcd
(

di,
Dk:g−1

Dk:i−1
,0
)

k=1,...,i

=
1
Di

gcd
(
di,Di:g−1

)
= gcd

( di
Di

,Di+1:g−1
)

= 1,

since for all j = i+1, . . . ,g−1 we have gcd( di
Di

,D j) = 1. This equation shows that the
divisors Di(v) are exactly the chosen Di. �

This lemma has an interesting consequence:

Corollary 3.1.14: Characterising property of D1:g−1.
For a given polarisation (d1, . . . ,d1:g−1), the value D1:g−1(v) determines all the values
Di(v) uniquely.

Proof.
Let d1, . . . ,dg−1 and D1:g−1 be given. Then Theorem 3.1.13 leads to the following:

gcd( d1
D1

,D2) = · · · = gcd( d1
D1

,Dg−1) = 1 =⇒ gcd( d1
D1

,D2:g−1) = 1

=⇒ gcd(d1,D1:g−1) = D1

so that we can determine D1 from d1 and D1:g−1. Divide D1:g−1 by D1 to obtain D2:g−1

and apply the same lemma. By iterating this method all values Di are obtained. �

3.2 Properties of symplectic matrices

3.2.1 Conditions on submatrices and rows

We have defined Γ̃pol = Sp(Λ,Z) in Definition 1.2.2 to be the group of matrices satis-
fying MΛ tM = Λ. The action of Γ̃pol on Sg is defined using the subdivision of M ∈ Γ̃pol

into its four square g×g submatrices A to D. One can ask for a characterisation of Γ̃pol

in terms of these submatrices, and the answer is as follows:

Lemma 3.2.1.
Let M =

(
A B
C D

)
∈ GL(2g,Z) where the submatrices are all in Zg×g. We have

M ∈ Γ̃pol ⇐⇒





A∆ tB is symmetric
C∆ tD is symmetric
A∆ tD−B∆ tC = ∆

.

For principal polarisations, we have in particular

(3.11) M ∈ Sp(2g,Q) ⇐⇒





A tB is symmetric
C tD is symmetric
A tD−B tC =

�
.

Proof.
This can be seen by simple calculation. �
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Definition 3.2.2: Skew symmetric form on row vectors.
For two vectors v = (v1, . . . ,v2g),w = (w1, . . . ,w2g) ∈ Z2g the matrix Λ =

( ∆
−∆

)
de-

fines the skew-symmetric form

〈v,w〉 := vΛ tw =
g

∑
i=1

d1:i−1

∣∣∣∣
vi vg+i

wi wg+i

∣∣∣∣

=

∣∣∣∣
v1 vg+1

w1 wg+1

∣∣∣∣+d1

∣∣∣∣
v2 vg+2

w2 wg+2

∣∣∣∣+ · · ·+d1:g−1

∣∣∣∣
vg v2g

wg w2g

∣∣∣∣ .

If we denote the row vectors of a matrix M ∈ GL(2g,Z) by mi for i = 1, . . . ,2g,
the conditions given in Lemma 3.2.1 can be transformed into the following:

Lemma 3.2.3.

M ∈ Γ̃pol ⇐⇒





〈mi,mg+i〉 = d1:i−1 for i = 1, . . . ,g
〈mg+i,mi〉 = −d1:i−1 for i = 1, . . . ,g
〈mi,m j〉 = 0 for all other i, j

,

where the first and second line are equivalent and only stated for completeness.

Proof.
Again, this is simple computation. �

Remark 3.2.4.
Note that the conditions stated in Lemma 3.2.1 and Lemma 3.2.3 are valid for symplec-
tic matrices over any commutative ring, even finite ones that are not integral domains.

So far we have introduced five groups with two different actions on Sg, namely

Γg,Γg(n) : τ 7→ (Aτ +B)(Cτ +D)−1 and

Γ̃pol, Γ̃pol(n), Γ̃lev
pol : τ 7→ (Aτ +B∆)(Cτ +D∆)−1∆.

In later chapters of this thesis we will need a combination of these. Since this can be
very confusing we want to restrict ourselves to only one action. In order to achieve
this we must allow rational numbers.

Definition 3.2.5: Conjugated symplectic groups.
Let R :=

( �

∆
)

and recall that J =
( �

− �
)
. Define

Γpol := R−1Γ̃polR ⊂ Sp(J,Q) and Γlev
pol := R−1Γ̃lev

polR ⊂ Sp(J,Q).

The groups Γpol and Γlev
pol act on Sg in the same way as Γg ⊂ Sp(J,Q), namely by

τ 7→ (Aτ +B)(Cτ +D)−1.

We drop the tilde to denote that the operation of the group is now independent of
the polarisation. The substitution suggested by this definition changes nothing in the
quotient by these groups as the following lemma shows.

Lemma 3.2.6.
Let the action of Sp(Λ,Q) be given by

µΛ :

{
Sp(Λ,Q)×Sg → Sg

(M,τ) 7→ (Aτ +B∆)(Cτ +D∆)−1∆ .
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For Λ = J we have ∆ =
�

. Define ρ : Sp(Λ,Q) → Sp(J,Q) by ρ(M) := R−1MR. Then
the following diagram is commutative:

Sp(Λ,Q)×Sg
µΛ−−−−→ Sg

ρ×id

y
∥∥∥

Sp(J,Q)×Sg
µJ−−−−→ Sg

Proof.
Yet again, a simple computation will show this. �

3.2.2 Divisibility of matrix entries

The groups Γ we are dealing with are so far defined by equations involving several
entries of the matrices M contained in Γ. In many cases, however, we will also need
properties of single matrix entries. We will state these properties by giving subsets of
GL(2g,Q) that still contain the groups we are interested in.

Definition 3.2.7: Triangular polarisation matrices.
Define the set of matrices

D(∆) :=
{
(si j) ∈ Zg×g

∣∣ j < i =⇒ d j:i−1|si j
}
,

in which the entries in the lower left triangle satisfy the given divisibility condition,
which depends on the polarisation (1,d1, . . . ,d1:g−1). Define its subset

SD(∆) := D(∆)∩SL(g,Z) =
{

S ∈ D(∆)
∣∣det(S) = 1

}
.

Lemma 3.2.8.
The set D(∆) with the normal matrix operations is a ring with unity. Its subset SD(∆)
is a multiplicative group.

Proof.
Let A,B ∈ D(∆) where A = (ai j) and B = (bi j). For j < i, we have ai j = a′i jd j:i−1 and
bi j = b′i jd j:i−1.

It is obvious that A + B ∈ D(∆), since for j ≥ i there is nothing to show and
for j < i we have

d j:i−1|ai j, d j:i−1|bi j =⇒ d j:i−1|(ai j +bi j).

Equally obvious are the remaining facts to show that (D(∆),+) is a group.
Now, let C := AB and consider one entry ci j . If j ≥ i, there is again nothing to

show. Therefore, let j < i. We have

ci j =
n

∑
k=1

aikbk j

=
j

∑
k=1

(a′ikdk:i−1)bk j +
i−1

∑
k= j+1

(a′ikdk:i−1)(b
′
k jd j:k−1)+

n

∑
k=i

aik(b
′
k jd j:k−1)

= d j:i−1
( j

∑
k=1

a′ikdk: j−1bk j +
i−1

∑
k= j+1

a′ikb′k j +
n

∑
k=i

aikb′k jdi:k−1
)
.
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This shows that C ∈ D(∆). Since the unit matrix also fulfils all conditions, D(∆) is as
claimed.

Since SD(∆) ⊂ SL(g,Z) per definition, it is obvious that for any S ∈ SD(∆) the
inverse T := S−1 exists, is an integer matrix and has determinant 1. It remains to show
that T = (ti j) ∈ D(∆). Since for j ≥ i there is no additional condition, let j < i. By
Cramer’s rule we know ti j =

1
|S| |S( j,i)|= |S( j,i)| where S( j,i) is the minor of S constructed

by removing the jth row and ith column. In more detail, we have

ti j = det




s1,1 . . . s1,i−1 s1,i+1 . . . s1,g
...

...
...

...
d1: j−2s j−1,1 . . . di−1: j−2s j−1,i−1 di+1: j−2s j−1,i+1 . . . s j−1,g

d1: js j+1,1 . . . di−1: js j+1,i−1 di+1: js j+1,i+1 . . . s j+1,g
...

...
...

...
d1:gsg,1 . . . di−1:gsg,i−1 di+1:gsg,i+1 . . . sg,g




.

Fix n in I := { j, . . . , i− 1}. The matrix S( j,i) fulfils the condition of Lemma A.1 for
d = dn if we choose k = n. Therefore dn|det(S( j,i)) and we can successively divide out
the factors dn for all n ∈ I. Hence we have d j:i−1|ti j which completes the proof that
T ∈ SD(∆). �

Lemma 3.2.9.
We have the following congruence conditions:

Γ̃pol ⊂ D(∆)2×2

where D(∆)2×2 :=
{(

A B
C D

)∣∣A,B,C,D ∈ D(∆)
}
.

Proof.
Let M = (mi, j) ∈ Γ̃pol and chose k ∈ {1, . . . ,g−1}. Denote the index set

Ik := {k +1, . . . ,g,g+ k +1, . . . ,2g}.

Now chose any i ∈ Ik and let v := ei ∈ Z2g be the ith unit vector. From the invariance
of the divisors we know that Dk(v) = Dk(vM). Furthermore,

Dk(v) = gcd(dk,
v j

D j:k−1
,

vg+ j

D j:k−1
) j=1,...,k since v = ei with i ∈ Ik and j ≤ k

= gcd(dk,0, . . . ,0)

= dk and

Dk(vM) = gcd(dk,
∑2g

n=1 vnmn, j

D j:k−1
,

∑2g
n=1 vnmn,g+ j

D j:k−1
) j=1,...,k and since v = ei

= gcd(dk,
mi, j

D j:k−1
,

mi,g+ j

D j:k−1
).

This reasoning for all valid combinations of values gives rise to

∀k ∈ {1, . . . ,g−1} ∀i ∈ Ik ∀1 ≤ j ≤ k : dk|mi, j and dk|mi,g+ j,

which is exactly the divisibility condition for M ∈ D(∆)2×2. �
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Lemma 3.2.10.
For the conjugated group we have

Γpol = Sp(2g,Q)∩
(

D(∆) D(∆)∆
∆−1D(∆) ∆−1D(∆)∆

)

Proof.

From Definition 3.2.5 we obviously have

N ∈ Γpol ⇐⇒ ∃M ∈ Γ̃pol : N = R−1MR.

Because of Lemma 3.2.9 this means

N ∈ Γpol ⇐⇒ ∃A,B,C,D ∈ D(∆) :

(
A B
C D

)
∈ Γ̃pol and N =

(
A B∆

∆−1C ∆−1D∆

)
.

The conditions of Lemma 3.2.1 for M ∈ Γ̃pol may be transformed as follows:

A∆ tB = t(A∆ tB
)
⇐⇒ A t(B∆) = t(A t(B∆)

)

C∆ tD = t(C∆ tD
)
⇐⇒ ∆−1C∆ tD∆−1 = ∆−1 t(C∆ tD

)
∆−1

⇐⇒ ∆−1C t(∆−1D∆) = ∆−1D∆ tC∆−1 = t(∆−1C t(∆−1D∆)
)

A∆ tD−B∆ tC = ∆ ⇐⇒ A∆ tD∆−1 −B∆ tC∆−1 = ∆∆−1 =
�

⇐⇒ A t(∆−1D∆)− (B∆) t(∆−1C) =
�
.

This in turn means

N ∈ Γpol ⇐⇒ ∃A,B,C,D ∈ D(∆) : N =

(
A B∆

∆−1C ∆−1D∆

)
∈ Sp(2g,Q)

which proves the claim. �

For the groups with canonical level structure we obtain additional conditions:

Lemma 3.2.11.

Γ̃lev
pol =

{
M ∈ Γ̃pol

∣∣M ∈
(( td

td

)
12g

)
⊗Z+

�
}

where d := (1,d1, . . . ,d1:g−1) and 12g := (1, . . . ,1) ∈Z2g. The tensor denotes that each
matrix entry of the rank 1 matrix in brackets may be multiplied by an integer z i j .
Proof.

Denote the basis of L ⊂ Cg by {b1, . . . ,b2g}. Then a basis of the dual lattice L∨ can
be given by { 1

d1:i−1
bi|g+i}i=1,...,g. According to Definition 1.2.22 a matrix M ∈ Γ̃pol is

in Γ̃lev
pol if and only if it satisfies ML∨/L = idL∨/L . This is satisfied if and only if for all

i = 1, . . . ,g we have

1
d1:i−1

bi|g+iM ≡L

1
d1:i−1

bi|g+i ⇐⇒ 1
d1:i−1

bi|g+i(M− �
) ∈ L

⇐⇒ 1
d1:i−1

ei|g+i(M− �
) ∈ Z2g
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where ei is the ith unit vector. This means that d1:i−1 divides every entry in the ith and
g+ ith row of the matrix M− �

which is exactly the condition we wanted to prove. �

Lemma 3.2.12.

Γlev
pol = {M ∈ Γpol

∣∣M ∈
(( td

t1g

)
(1g,d)

)
⊗Z+

� }

where again d := (1,d1, . . . ,d1:g−1) and 1g := (1, . . . ,1) ∈ Zg.
Proof.

This follows directly from Lemma 3.2.11 by conjugating with R as in Definition 3.2.5.
�

One important result from this lemma is the following observation: Although Γpol

may have rational non-integer entries, this is no longer possible for its subgroup Γ lev
pol:

Corollary 3.2.13.
Γlev

pol ⊂ Sp(2g,Z).

Proof.
With Lemma 3.2.10 we know Γlev

pol ⊂ Γpol ⊂ Sp(2g,Q), and since the condition given
in Lemma 3.2.12 implies that all matrix entries must be integers the claim follows
immediately. �

3.2.3 Restriction to square-free polarisations

So far, if we want to state a theorem on ’all polarisations’, we actually have to consider
all polarisations separately. If, on the other hand, we know that a theorem is automat-
ically true for all subgroups Γ′ ⊂ Γ if it is true for Γ, then we can restrict ourselves to
square-free polarisations: the groups associated with other polarisations are conjugate
to subgroups of the groups for square-free polarisations. The following lemma will
make this precise.

Lemma 3.2.14: Square-free.
Let (1,e1, . . . ,e1:g−1) be the type of a polarisation where ei = dis2

i and all di are square-
free. Denote the groups associated with this polarisation by

Γ̃pol,e, Γpol,e, Γ̃lev
pol,e and Γlev

pol,e.

Denote the groups associated with the polarisation (1,d1, . . . ,d1:g−1) by

Γ̃pol,d , Γpol,d , Γ̃lev
pol,d and Γlev

pol,d .

Let S := diag(1,s1, . . . ,s1:g−1),T :=
( S 0

0 S−1

)
and U :=

(
S 0
0 S

)
. Then we have

T−1Γpol,eT ⊂ Γpol,d , T−1Γlev
pol,eT ⊂ Γlev

pol,d

and
U−1Γ̃pol,eU ⊂ Γ̃pol,d , U−1Γ̃lev

pol,eU ⊂ Γ̃lev
pol,d .
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Proof.
Let us begin with the relation T−1Γpol,eT ⊂ Γpol,d . Denote the matrices for the two
polarisations by

∆e := diag(1,e1, . . . ,e1:g−1) and ∆d := diag(1,d1, . . . ,d1:g−1).

We have ∆d = S−1∆eS−1. Furthermore, for two matrices M = (mi j) ∈ D(∆e) and N =
(ni j) := S−1MS we have ni j = s−1

i:i−1mi js1: j−1 and hence

for j < i : ni j = s−1
1:i−1(e j:i−1m′

i j)s1: j−1 =
s1: j−1

s1:i−1
(d j:i−1s2

j:i−1m′
i j)

=
s1: j−1s j:i−1

s1:i−1
d j:i−1s j:i−1m′

i j = d j:i−1(s j:i−1m′
i j) and

for j ≥ i : ni j =
s1: j−1

s1:i−1
mi j = si: j−1mi j

which implies the divisibility conditions from Definition 3.2.7 for N ∈ D(∆d). There-
fore,

(3.12) S−1D(∆e)S ⊂ D(∆d).

For Γpol,e, Lemma 3.2.10 tells us

T−1Γpol,eT ⊂
(

S−1

S

)(
D(∆e) D(∆e)∆e

∆−1
e D(∆e) ∆−1

e D(∆e)∆e

)(
S

S−1

)

=

(
S−1D(∆e)S S−1D(∆e)∆eS−1

S∆−1
e D(∆e)S S∆−1

e D(∆e)∆eS−1

)

=

(
S−1D(∆e)S (S−1D(∆e)S)(S−1∆eS−1)

(S∆−1
e S)(S−1D(∆e)S) (S∆−1

e S)(S−1D(∆e)S)(S−1∆eS−1)

)

and with relation (3.12) this implies

⊂
(

D(∆d) D(∆d)∆d

∆−1
d D(∆d) ∆−1

d D(∆d)∆d

)
.

Since on the other hand Γpol,e ⊂ Sp(2g,Q) and T,T−1 ∈ Sp(2g,Q), we may use
Lemma 3.2.10 to conclude

T−1Γpol,eT ⊂
(

D(∆d) D(∆d)∆d

∆−1
d D(∆d) ∆−1

d D(∆d)∆d

)
∩Sp(2g,Q) = Γpol,d .

The relation U−1Γ̃pol,eU ⊂ Γ̃pol,d follows immediately from the previous, since by
definition Γpol = R−1Γ̃polR and

T−1Γpol,eT ⊂ Γpol,d

⇐⇒ T−1(R−1
e Γ̃pol,eRe)T ⊂ R−1

d Γ̃pol,dRd

⇐⇒ (RdT−1R−1
e )Γ̃pol,e(ReTR−1

d ) ⊂ Γ̃pol,d

and indeed

RdT−1R−1
e =

( �

∆d

)(
S−1

S

)( �

∆−1
e

)
=

(
S−1

∆dS∆−1
e

)
= U−1.
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For the relation T−1Γlev
pol,eT ⊂ Γlev

pol,d we first note that the first relation we proved
implies that

T−1Γlev
pol,eT ⊂ T−1Γpol,eT ⊂ Γpol,d ,

so that we only need to show the additional conditions imposed by Lemma 3.2.12.
This lemma states that the matrices M ∈ T −1Γlev

pol,eT are those matrices of Γpol,e that
have the form

M ∈
(

S−1

S

)(( t
e

1g

)
(1g,e)⊗Z+

�
)(

S
S−1

)
=

(
S−1 t

e

S

)
(S,eS−1)⊗Z+

�

where e = (1,e1, . . . ,e1:g−1). Since eis
−1
i = disi for all i = 1, . . . ,g−1 this means

M ∈
(

S td

S

)
(S,dS)⊗Z+

� ⊂
( td

1g

)
(1g,d)⊗Z+

�

Hence, all these matrices also satisfy the conditions of Γlev
pol,d .

The last relation U−1Γ̃lev
pol,eU ⊂ Γ̃lev

pol,d follows from this with the same argument
as the second relation from the first. �

Remark 3.2.15.
Since according to Corollary 3.2.13 the groups Γlev

pol associated with both polarisations
are integer matrices and

di|ei =⇒ ei: jZ ⊂ di: jZ,

we also have the relation Γlev
pol,e ⊂ Γlev

pol,d .

3.3 Orbits under the group actions

3.3.1 Orbits of isotropic lines under Γ̃lev
pol

We are now interested in the orbits of vectors v ∈ Z2g under the action of Γ̃pol and its
subgroup Γ̃lev

pol. In other words, we want to find a standard form (ṽ or v̂, respectively)
which selects a unique vector from each orbit. In a corollary we will then collect these
standard vectors into a set of representatives. Let us first consider the smaller group.

Lemma 3.3.1: Orbits of isotropic lines under Γ̃lev
pol.

(i) Under the action of Γ̃lev
pol, every vector v ∈ Z2g can be transformed into

ṽ = (D1:g−1(v),∗, . . . ,∗,0,∗, . . . ,∗)

where the given 0 is at the g+1st place.

(ii) Two vectors v,w ∈ Z2g are conjugateunder Γ̃lev
pol if and only if

D1:g−1(v) = D1:g−1(w) and ∀i = 1, . . . ,2g : vi ≡ wi mod D1:g−1.

This means that we may chose the entries of the vector ṽ such that they satisfy
the property 0 ≤ ṽi < D1:g−1 for all i = 2, . . . ,2g.

Proof.
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Part (i):
Let us first prove that v can be transformed into a ṽ of the given form. We shall again
use the notation introduced in Notation 3.1.4.

Since v is primitive, not all entries vi are zero. Hence we can assume (if necessary
after a suitable transformation with a matrix in Γ̃lev

pol) that v1 6= 0. For i = 1, . . . ,g define

xi :=
d1:i−1vi

D1:g−1
and xg+i :=

d1:i−1vg+i

D1:g−1
.

These xi are all integers, since according to Lemma 3.1.6 D1:i−1|d1:i−1 and Di:g−1|vi|g+i.

The same lemma tells us that
v j|g+ j

D j:k
∈Z for j ≤ k < g and so it makes sense to say

gcd
( v j|g+ j

D j:g−1
,

di

Di

)
j=1,...,i

divides gcd
(v j|g+ j

D j:i
,

di

Di

)
j=1,...,i

.

Since by Lemma 3.1.5 the second gcd(. . . ) = 1, this implies

(3.13) gcd
( v j|g+ j

D j:g−1
,

di

Di

)
j=1,...,i

= 1.

Now we have

(3.14) I := (x1, . . . ,x2g) =
( v1|g+1

D1:g−1
,

d1

D1

v2|g+2

D2:g−1
, . . . ,

d1

D1

d2:g−1vg|2g

D2:g−1

)

and using (3.13) for i = 1, i. e. gcd(
v1|g+1

D1:g−1
, d1

D1
) = 1, we may drop the terms d1

D1
to get

I =
( v1|g+1

D1:g−1
,

v2|g+2

D2:g−1
, . . . ,

d2:g−1vg−1|2g−1

D2:g−1
,
d2:g−1vg|2g

D2:g−1

)
.

Iterating this process using (3.13) for i = 2, . . . ,g−1 we may cancel all the factors di
Di

to obtain
I =

( v1|g+1

D1:g−1
,

v2|g+2

D2:g−1
, . . . ,

vg−1|2g−1

Dg−1
,vg|2g

)
,

and since gcd(v1, . . . ,v2g) = 1 we have I = (1) = Z. With Lemma A.2 we can find λi

such that
(

x1,xg+1 + ∑
i=2,...,2g

i6=g+1

λixi

)
= (1) or equivalently

(
v1,vg+1 + ∑

i=2,...,g

(λid1:i−1vi +λg+id1:i−1vg+i)
)

= (D1:g−1).

The matrix

M :=




1 −λg+2 . . . −λ2g 0 λ2 . . . λg

1 d1λ2
. . .

...
1 d1:g−1λg

1
d1λg+2 1

...
. . .

d1:g−1λ2g 1
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is in Γ̃lev
pol according to Lemma 3.2.11. The entries of the vector v′ := vM satisfy by

construction of λi the relation gcd(v′1,v
′
g+1) = D1:g−1. Therefore there exist t1, t2 ∈ Z

with t1v′1 + t2v′g+1 = D1:g−1, and the matrix

N :=




t1
−v′g+1

D1:g−1

1
. . .

1

t2
v′1

D1:g−1

1
. . .

1




∈ Γ̃lev
pol

transforms v′ into a vector of the form ṽ = v′N = (D1:g−1,∗, . . . ,∗,0,∗, . . . ,∗).
Part (ii):
Necessity:
Since the divisors are invariant under the action of Γ̃lev

pol, we must have Di(v) = Di(w)
for conjugatevectors v and w which obviously implies D1:g−1(v) = D1:g−1(w).

Now, let M ∈ Γ̃lev
pol such that w = vM and let k ∈ {1, . . . ,2g}. We have

wk =
2g

∑
1

mikvi.

To keep the notation easier we only consider the case k ≤ g, the other case g < k ≤ 2g
can be treated similarly. From Lemma 3.1.6 we know that Di:g−1 divides vi and vg+i.
Lemma 3.2.11 shows that d1:i−1 and thus also D1:i−1 divides both mik and mg+i,k for
all i = 1, . . . ,g except for the element of the diagonal which can be written as mkk =
d1:k−1n+1 for some n ∈ Z. Hence we have

wk =
g

∑
i=1,
i6=k

mikvi +
g

∑
i=1

mg+i,kvg+i +mkkvk

=
g

∑
i=1,
i6=k

(D1:i−1m′
ikDi:g−1v′i)+

g

∑
i=1

(D1:i−1m′
g+i,kDi:g−1v′g+i)+(d1:k−1n+1)vk

≡ 0+d1:k−1nDk:g−1
vk

Dk:g−1
+ vk mod D1:g−1 and since vk

Dk:g−1
∈ Z

≡ vk mod D1:g−1.

Sufficiency:
Due to part (i) we can assume v and w to be given in the form

v = (D1:g−1(v),v2, . . . ,vg,0,vg+2, . . . ,v2g) and

w = (D1:g−1(w),w2, . . . ,wg,0,wg+2, . . . ,w2g),

where v1 = w1. Let Di := Di(v) = Di(w). Since vi ≡ wi mod D1:g−1, let ni be defined
by

wi = niD1:g−1 + vi for i = 2, . . . ,g,g+2, . . . ,2g.
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The matrix M defined as

M :=




1 n2 · · · ng 0 ng+2 · · · n2g

1 d1:1ng+2
. . .

...
1 d1:g−1n2g

1
−d1:1n2 1

...
. . .

−d1:g−1ng 1




∈ Γ̃lev
pol

transforms v into vM = (w1, . . . ,wg,vg+1,wg+2, . . . ,w2g) where

vg+1 = d1:1ng+2v2 + · · ·+d1:g−1n2gvg +0−d1:1n2vg+2 −·· ·−d1:g−1ngv2g.

Since Di:g−1 divides vi and vg+i according to Lemma 3.1.6, we know that D1:g−1 di-
vides every term of vg+1 and thus gcd(D1:g−1,vg+1) = D1:g−1. This implies that we can
find a matrix N as in part (i) of this proof which transforms vM into w and thus v and
w are conjugateunder Γ̃lev

pol. �

Corollary 3.3.2: Set of representatives.
A set of representatives for the orbits of Γ̃lev

pol is given by the vectors

ṽ = (D1:g−1,D2:g−1a2,D3:g−1a3, . . . ,ag,0,D2:g−1ag+2,D3:g−1ag+3, . . . ,a2g)

where {Di} runs through the set of all possible divisors (see Theorem 3.1.13) and

0 ≤ ai < D1:i−1, 0 ≤ ag+i < D1:i−1 for i = 2, . . . ,g.

Proof.
This follows easily from the above Lemma 3.3.1 considering Lemma 3.1.6, which
states that Di:g−1|vi|g+i, and using Theorem 3.1.13 for the restrictions on {Di}. �

3.3.2 Orbits of isotropic lines under Γ̃pol

In this section we proceed analogously to the last section: first we give a standard form
for a vector under the action of Γ̃pol which we will denote by v̂ and then collect these
vectors into a set of representatives.

Definition 3.3.3: Representative vector for Γ̃pol.
For v = (v1, . . . ,v2g) ∈ Z2g and i = 1, . . . ,g, let

v̂i := gcd(v1|g+1, . . . ,vi|g+i,divi+1|g+i+1, . . . ,di:g−1vg|2g) and

v̂ := (v̂1, . . . , v̂g,0, . . . ,0) ∈ Z2g.

In this form, adjacent entries are related in the following ways:

Lemma 3.3.4: Properties of v̂i.
For all primitive v ∈ Z2g, the v̂i satisfy the following relations:
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(i) v̂1 = D1:g−1(v) and v̂g = 1

(ii) ∀i = 1, . . . ,g−1 : v̂i|div̂i+1

(iii) ∀i = 2, . . . ,g : v̂i|v̂i−1

(iv) ∀i = 2, . . . ,g−1 : v̂i = gcd(v̂i−1,vi|g+i,div̂i+1)

Proof.
Part (i):
From Lemma 3.1.6 we already know that D1:g−1|v̂1. The definition of v̂1 immediately
gives ( v̂1

D1:g−1
) = I with I defined as in equation (3.14) on page 55. We have already

proved that I = (1) and hence we have v̂1 = D1:g−1 as claimed.
Since v is primitive, we have v̂g = gcd(v1, . . . ,v2g) = 1.

Part (ii) and (iii):
These follow immediately from comparing the elements of the greatest common divi-
sors in the definitions of v̂i and v̂i+1 or v̂i−1, respectively.
Part (iv):
Define v′i := gcd(v̂i−1,vi|g+i,div̂i+1). We want to show v′i = v̂i. Obviously,

part (iii) =⇒ v̂i|v̂i−1

definition of v̂i =⇒ v̂i|vi|g+i

part (ii) =⇒ v̂i|div̂i+1



 =⇒ v̂i|v′i.

On the other hand, from the definition of v′i above and v̂i in Definition 3.3.3 we imme-
diately obtain

v′i|v̂i−1 =⇒ v′i|gcd(v1|g+1, . . . ,vi−1|g+i−1)

and v′i|vi|g+i

and v′i|div̂i+1 =⇒ v′i|di gcd(vi+1|g+i+1,di+1vi+2|g+i+2, . . . ,di+1:g−1vg|2g)

=⇒ v′i|gcd(divi+i|g+i+1,di:i+1vi+2|g+i+2, . . . ,di:g−1vg|2g)

which in turn implies

v′i|gcd(v1|g+1, . . . ,vi−1|g+i−1,vi|g+i,divi+1|g+i+1, . . . ,di:g−1vg|2g) = v̂i.

Since both are positive integers, this proves equality. �

We now show that there is a unique v̂ in each orbit.

Lemma 3.3.5: Orbits of isotropic lines under Γ̃pol.
Let ∼ denote congruence with respect to the action of Γ̃pol. Then

(i) v ∼ v̂.

(ii) v ∼ w ⇐⇒ v̂ = ŵ (here we have equality, not only congruence)

(iii) (̂v̂) = v̂
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Proof.
Part (i):
We prove congruence by giving matrices that transform v into v̂ iteratively. In the ith
step the ith component of the vector will become v̂i whereas the (g + i)th component
will become zero. The existence of such matrices is shown by induction.

For the first step we refer to Lemma 3.3.1 where it has already been done using a
matrix M ∈ Γ̃lev

pol ⊂ Γ̃pol. For the other steps we shall now construct matrices in a similar
way. Assume that we have completed the first (i−1)st steps and hence have a vector
of the form

v = (v̂1, . . . , v̂i−1,vi, . . . ,vg,0, . . . ,0,vg+i, . . . ,v2g).

Lemma A.2 tells us that we can find λ j such that

gcd
(
vg+i,vi + ∑

j=1,...,g
j 6=i

λ jdi: j−1v j + ∑
j=1,...,g

j 6=i

λg+ jdi: j−1vg+ j
)

= gcd
(
v1|g+1, . . . ,vi|g+i,divi+1|g+i+1, . . . ,di:g−1vg|2g

)

= v̂i by definition.

Since vg+1 = · · · = vg+i−1 = 0 we may obviously choose λg+1 = · · · = λg+i−1 = 0.
Now we can define the matrix Mi :=

(
A B
C D

)
where

A :=




1 λ1
. . .

...
1 λi−1

1
diλi+1 1

...
. . .

di:g−1λg 1




,

B :=




λ1
d1:i−1vg+i

v̂1
. . .

λi−1
di−1vg+1

v̂i−1

0
. . .

0




which is an integer matrix according to Definition 3.3.3,

C :=




0
...

0 . . . 0 λg+i+1 . . . λ2g

diλg+i+1
...

di:g−1λ2g
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where the zeroes outside the diagonal are λg+1, . . . ,λg+i−1 and

D :=




1
. . .

1
−d1:i−1λ1 . . . −di−1λi−1 1 −λi+1 . . . −λg

1
. . .

1




.

By Lemma 3.2.1, M ∈ Γ̃pol. Define w := vM. Then obviously w j = v̂ j and wg+ j = 0 for
1 ≤ j < i. The definition of λ j makes sure that gcd(wi,wg+i) = v̂i. For i < j ≤ g and
g+ i < j ≤ 2g we have w j = v j ±λkvg+i with the appropriate index k. But nevertheless
ŵ = v̂ since vg+i is part of the gcd for all v̂ j with j > i.

We can now find integers t1, t2 such that wit1 + wg+it2 = v̂i. Define the matrix N
to be the unit matrix except for the four entries

(
ni,i ni,g+i

ng+i,i ng+i,g+i

)
=

(
t1 −wg+i

v̂i
t2

wi
v̂i

)
.

Then N ∈ Γ̃pol and v′ := wN has the properties that v′i = v̂i and v′g+i = 0. This completes
the induction.
Part (ii):
⇐: Using (i), we immediately obtain

v ∼ v̂ = ŵ ∼ w.

⇒: Since we know from part (i) that v̂ is conjugateto v, we assume v and w to be of
the form v̂ and ŵ, respectively. Since v ∼ w there exists a matrix M ∈ Γ̃pol such that
w = vM. We will show that v̂ j divides ŵ j for all j = 1, . . . ,g.

Fix j ∈ {1, . . . ,g}. We have

v̂ j = gcd(v1, . . . ,v j,d jv j+1, . . . ,d j:g−1vg) and

ŵ j = gcd(w1, . . . ,w j,d jw j+1, . . . ,d j:g−1wg)

= gcd
( g

∑
i=1

mi,1vi, . . . ,
g

∑
i=1

mi, jvi,d j

g

∑
i=1

mi, j+1vi, . . . ,d j:g−1

g

∑
i=1

mi,gvi

)
.

Consider a single entry in this gcd and denote it by

Wk =

{
∑g

i=1 mikvi for 1 ≤ k ≤ j
d j:k−1 ∑g

i=1 mikvi for j < k ≤ g
.

Lemma 3.2.9 tells us that mik = dk:i−1m′
ik if k < i and hence we can rewrite this as

follows: For 1 ≤ k ≤ j we have

Wk =
k

∑
i=1

mikvi +
j

∑
i=k+1

(dk:i−1m′
ik)vi +

g

∑
i= j+1

(dk: j−1d j:i−1m′
ik)vi.
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The summands in the first two sums each contain the factor vi with i≤ j; the summands
of the last sum the factors d j:i−1vi with i > j. On the other hand, for j < k ≤ g we have

Wk = d j:k−1

j

∑
i=1

mikvi +
k

∑
i= j+1

(d j:i−1di:k−1)mikvi +
g

∑
i=k+1

d j:k−1(dk:i−1m′
ik)vi.

Again, the summands of the first sum contain the factor vi with i ≤ j and the
other summands contain d j:i−1vi with i > j. Thus, each Wk is a multiple of
gcd(v1, . . . ,v j,d j: jv j+1, . . . ,d j:g−1vg) = v̂ j and therefore v̂ j|ŵ j.

Since M−1 ∈ Γ̃pol and v = wM−1 we now also know that ŵ j divides v̂ j for all
j = 1, . . . ,g, thus v̂ = ŵ.
Part (iii):
From part (i) we know that v ∼ v̂, and so setting w = v̂ in part (ii) proves the statement.

�

Again, the interesting consequence is the set of vectors representing all orbits.

Corollary 3.3.6: Set of representatives.
A set of representatives for the orbits of Γ̃pol is given by the vectors

v̂ = (D1:g−1,D2:g−1a2,D3:g−1a3, . . . ,Dg−1ag−1,1,0, . . . ,0) ∈ Z2g

where {Di} runs through the set of possible divisors (see Theorem 3.1.13) and ai ≥ 0
with

ai|gcd(Di−1ai−1,
di
Di

ai+1) for i = 2, . . . ,g−1

where we let a1 = ag = 1.

Proof.
We first show that the vectors v̂ defined in Definition 3.3.3 can indeed be given in the
form stated above.

The factors Di:g−1 must be present because of the divisibility conditions in
Lemma 3.1.6. Define ai := v̂i

D1:g−1
. The values for a1 and ag follow from Lemma 3.3.4

part (i). Then Lemma 3.3.4 part (iv) shows for i = 2, . . . ,g−1

Di:g−1ai|gcd(Di−1:g−1ai−1,diDi+1:g−1ai+1)

⇐⇒ ai|gcd(Di−1ai−1,
di
Di

ai+1).

The fact that this is indeed a set of representatives follows from the just established
Lemma 3.3.5. �

Corollary 3.3.7: Coprime polarisations.
If the polarisation is coprime then ai = 1 for all i = 1, . . . ,g. In particular, the orbits
can be represented by the vectors

v̂ = (D1:g−1,D2:g−1, . . . ,Dg−1,1,0, . . . ,0) or even

ˆ̂v = (D1:g−1,0, . . . ,0,1,0, . . . ,0)

where Di divides di.
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Proof.
We claim that

(3.15) ai|gcd(D1:i−1,ai+1) for i = 2, . . . ,g−1

and prove this by induction over i.
For i = 2 Corollary 3.3.6 states that

a2|gcd(D1a1,
d2

D2
a3) and a1 = 1 leads to

= gcd(D1,
d2

D2
a3) and since gcd(d1,d2) = 1 we have

= gcd(D1,a3)

so statement (3.15) is true.
Assume now that (3.15) is true for a given i. Then Corollary 3.3.6 states

ai+1|gcd(Diai,
di+1
Di+1

ai+2)

=⇒ ai+1|gcd(Di gcd(D1:i−1,ai+1),
di+1
Di+1

ai+2)

= gcd(D1:i,Diai+1,
di+1
Di+1

ai+2)

=⇒ ai+1|gcd(D1:i,
di+1
Di+1

ai+2) and since gcd(D1:i,di+1) = 1

=⇒ ai+1|gcd(D1:i,ai+2).

This completes the induction and thus (3.15) holds for all i = 2, . . . ,g−1.
Now we can use the fact that ag = 1 which implies recursively that ai = 1 for all

i = g−1, . . . ,2. This is what we wanted to show.
The second form now follows easily from the fact that, according to Corol-

lary 3.1.14, the value D1:g−1(v) determines all Di(v) uniquely, and so ˆ̂v and v̂ are in the
same orbit under the action of Γ̃pol.

Note that Theorem 3.1.13 does not imply any restrictions on the Di since for all
Di|di and i 6= j

gcd( di
Di

,d j) divides gcd(di,d j) = 1.

�

3.3.3 Orbits of isotropic g-spaces under Γ̃pol

Let us now consider only polarisations that are square-free and coprime. For these po-
larisations we prove that Γ̃pol acts transitively on the g-dimensional isotropic subspaces
of Q2g.

In order to do this we consider primitive integer vectors v1, . . . ,vg that generate
an isotropic subspace h = v1 ∧ ·· ·∧ vg ⊂ Q2g. We may restrict the discussion to those
sets of vectors that form a Z-basis of hZ := h∩Z2g, in other words hZ =

⊕
Zvi. In this

case primitivity with respect to hZ implies primitivity with respect to Z2g.
The main point of the proof is that any hZ of rank g has a basis satisfying the

following property:

(3.16) D1:g−1(v
i) = d1:i−1 for all i = 1, . . . ,g.

To construct such a basis for any given h we use two basic transformations:
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• The operation of γ ∈ Γ̃pol on all of the vi, so that ṽi := γ(vi) for all i = 1, . . . ,g. A
priori we may not assume h̃ := γ(h) to be equal to h. However, since the Di are
invariant under the operation of Γ̃pol, we can find a basis of h satisfying property
(3.16) if and only if we can find such a basis of h̃.

• A linear combination of basis vectors of h given by a unimodular matrix. Ac-
cording to Lemma A.3 we have h̃Z = hZ. Furthermore, we have the following
property: assume that the basis transformation only involves 2 ≤ n ≤ g of the
vectors and assume further without loss of generality that these are the vectors
v1, . . . ,vn. Then Lemma A.4 shows that

gcd
(
Dk(ṽ

1), . . . ,Dk(ṽ
n)
)

= gcd
(
Dk(v

1), . . . ,Dk(v
n)
)

for any 1 ≤ k ≤ g−1.

• Note that we can regard the transformation ṽi := vi +λv j and ṽ j := v j with λ ∈Z
as a special case of the aforementioned linear combination.

We first state a property on n-tuples of the basis vectors.

Proposition 3.3.8.
Let h ⊂Q2g be an isotropic subspace and v1, . . . ,vg a Z-basis of hZ. Let 2 ≤ n ≤ g and
1 ≤ i1, . . . , in ≤ g a set of n distinct indices. Then

gcd
(
Dk(v

i1), . . . ,Dk(v
in)
)

= 1 for all k ≥ g−n+1.

Remark 3.3.9.
For g = 2, this proposition is the same as [FS, Lemma 2.4], and indeed the following
arguments are also given by Friedland and Sankaran in this case. For g ≤ 9, a proof
is given below. For large g, although we still conjecture the proposition to be true,
neither proof nor counterexample have been found yet.

Proof of Proposition 3.3.8 for g ≤ 9.
Before we explain the idea of the proof let us begin with a few observations that are
true for any g. Since the order of the vectors is irrelevant for the gcd, we may assume
i j = j for all j = 1, . . . ,n. The claim of the lemma is obviously implied by the statement

(3.17) mk := gcd
(
Dk(v

1), . . . ,Dk(v
n)
)

= 1 for k = g−n+1

since higher values for k mean smaller values for n and hence we have that a set of
fewer Dk is already coprime.

Now, the basic idea is to show that we can construct a basis vector w with the
property that mk divides every entry. Since basis vectors are primitive, this implies
that mk = 1 as claimed. To construct this vector w we use the basic transformations
mentioned above, none of which change the value mk. The proof we give here is in
fact independent of g. The first part where we bring roughly half of the basis vectors
into a standard form is proved in full generality but the second part requires n to be
small enough. It has not yet been possible to apply the same techniques to higher n.
Therefore, Proposition 3.3.8 is only proved in full for g ≤ 9.
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We shall write the basis vectors as row vectors of a matrix, where ∗ is to stand for
any value in Z and •k ∈ mkZ.
Part I:
Claim 1: Let g ∈ N and n = 2, . . . ,g. Let q := b n+1

2 c and j = 1, . . . ,q. Then we can
transform the basis v1, . . . ,vn into the following form:

for 1 ≤ i ≤ j−1: vi = (∗, . . . ,∗︸ ︷︷ ︸
g− j

,0, . . . ,0︸ ︷︷ ︸
j−i

,1,0, . . . ,0︸ ︷︷ ︸
i−1

;∗, . . . ,∗︸ ︷︷ ︸
g− j

,•k, . . . ,•k︸ ︷︷ ︸
j−i

,0, . . . ,0︸ ︷︷ ︸
i

)

for i = j: v j = (∗,0, . . . ,0︸ ︷︷ ︸
g− j−1

,1,0, . . . ,0︸ ︷︷ ︸
j−1

;0, . . . ,0︸ ︷︷ ︸
g

)

for j +1 ≤ i ≤ n− j: vi = (∗, . . . ,∗︸ ︷︷ ︸
g− j

,0, . . . ,0︸ ︷︷ ︸
j

;0,∗, . . . ,∗︸ ︷︷ ︸
g− j−1

,0, . . . ,0︸ ︷︷ ︸
j

)

for n− j +1 ≤ i ≤ n−1: vi = (∗, . . . ,∗︸ ︷︷ ︸
g− j

,0, . . . ,0︸ ︷︷ ︸
j

;0,∗, . . . ,∗︸ ︷︷ ︸
g− j−1

,0, . . . ,0︸ ︷︷ ︸
n−i

,•k, . . . ,•k︸ ︷︷ ︸
j−n+i

)

for i = n: vn = (∗, . . . ,∗︸ ︷︷ ︸
g− j

,0, . . . ,0︸ ︷︷ ︸
j

;∗, . . . ,∗︸ ︷︷ ︸
g− j

,•k, . . . ,•k︸ ︷︷ ︸
j

)

We fix g and prove claim 1 by considering the values n = 2, . . . ,g separately, using
induction over j. For j = 1, the first and fourth condition are empty and the second
one is implied by Corollary 3.3.7. We transform the basis such that v1 has the given
form. To fulfil conditions three (if n ≥ 3) and five we proceed as follows:

For i = 2, . . . ,n replace vi by ṽi := vi − vi
gv1 and denote this new basis (by abuse

of notation) again by v1, . . . ,vn. It has the form




v1

v2

...
vn


=




D1:g−1(v1) 0 . . . 0 1 0 . . . 0
∗ ∗ . . . ∗ 0 ∗ . . . ∗
...

...
...

...
...

...
∗ ∗ . . . ∗ 0 ∗ . . . ∗


 .

Since v1 ∧ ·· ·∧ vn is an isotropic space, we know that for i = 2, . . . ,n

(3.18) 0 = 〈v1,vi〉 = D1:g−1(v
1)vi

g+1 +d1:g−1vi
2g =⇒ vi

g+1 = − d1:g−1

D1:g−1(v1)
vi

2g.

If all vi
2g = 0 we already have a basis satisfying conditions three and five. Otherwise we

may assume that vn
2g 6= 0. For all i = 2, . . . ,n−1 where vi

2g 6= 0 we fulfil condition three
iteratively the following way: we know from number theory that there exist integers
λ ,µ such that

λvi
2g + µvn

2g = gcd(vi
2g,v

n
2g).

If we now replace

ui :=
vn

2g

gcd(vi
2g,v

n
2g)

vi − vi
2g

gcd(vi
2g,v

n
2g)

vn

un := λvi + µvn
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we obtain a new basis v1, . . . ,vi−1,ui,vi+1, . . . ,vn−1,un where

ui
2g =

vn
2g

gcd(vi
2g,v

n
2g)

vi
2g −

vi
2g

gcd(vi
2g,v

n
2g)

vn
2g = 0 and

ui
g+1 =

vn
2g

gcd(vi
2g,v

n
2g)

vi
g+1 −

vi
2g

gcd(vi
2g,v

n
2g)

vn
g+1

(3.18)
= − vn

2g

gcd(vi
2g,v

n
2g)

d1:g−1

D1:g−1(v1)
vi

2g +
vi

2g

gcd(vi
2g,v

n
2g)

d1:g−1

D1:g−1(v1)
vn

2g

= − d1:g−1

D1:g−1(v1)
ui

2g = 0

and hence (again by abuse of notation letting vi := ui and vn := un) we have achieved
that vi satisfies condition three. Note that vn

2g = gcd(vi
2g,v

n
2g) 6= 0 and so we may

proceed with the next i.
For condition five we use the isotropy

(3.19) 0 = 〈v1,vn〉 = D1:g−1(v
1)vn

g+1 +d1:g−1vn
2g.

Since mk divides both Dk(v1) and Dk(vn) and the latter in turn divides vn
g+1, this implies

that
d1:g−1vn

2g ≡ 0 mod (mk)
2.

On the other hand, gcd(dr,mk) = 1 for all r 6= k since dr and dk are coprime, and
gcd( dk

mk
,mk) = 1 since dk is square-free. Hence, we must have mk|vn

2g. This completes
the proof of condition five for j = 1.

Now we continue the induction over j by assuming that claim 1 is true for some
j = 1, . . . ,q−1 and establish it for j+1. This is done by essentially the same methods
we have used for j = 1.

The vector v j+1 has the form

v j+1 = (∗, . . . ,∗︸ ︷︷ ︸
g− j

,0, . . . ,0︸ ︷︷ ︸
j

;0,∗, . . . ,∗︸ ︷︷ ︸
g− j−1

,0, . . . ,0︸ ︷︷ ︸
j

)

since j ≤ q−1 and hence

2 j+1≤ 2(q−1)+1 = 2(b n+1
2 c−1)+1 ≤ 2( n+1

2 −1)+1 = n =⇒ j+1≤ n− j.

(If j = q, as happens at the end of the induction, the third condition is empty and the
vector v j+1 is governed by condition four.) In particular, we may use Corollary 3.3.7
for genus g− j to find a matrix γ ∈ Γ̃pol of the form

γ =




A B
�

C D
�


 where A,B,C,D ∈ Z(g− j)×(g− j)

that transforms v j+1 into

ṽ j+1 = (D1:g− j(v
j+1), 0, . . . ,0︸ ︷︷ ︸

g−( j+1)−1

,1,0, . . . ,0︸ ︷︷ ︸
j

;0, . . . ,0︸ ︷︷ ︸
g

)
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which already satisfies condition two for j + 1. It also (possibly) alters the entries
vi

1, . . . ,v
i
g− j,v

i
g+1, . . . ,v

i
2g− j for all other vectors but this does not present a problem.

We now replace vi by ṽi := vi − vi
g− j ṽ

j+1 for i = 1, . . . , j, j + 2, . . . ,n and denote the
new basis again by v1, . . . ,vn. The first halves of all these vectors (i. e. the entries
vi

1, . . . ,v
i
g) are in accordance with the five conditions of claim 1 for j +1.

To obtain the zeroes at vi
g+1 and vi

2g− j of condition three and four we proceed
similar to (3.18). Let i = j + 2, . . . ,n− 1. If vi

g+1 = 0 then the isotropy 0 = 〈v j+1,vi〉
shows that vi

2g− j = 0 and nothing has to be done. If vi+1
g+1 = 0 we swap the vectors vi

and vi+1 and otherwise replace both by linear combinations as described above. By
this method, both conditions three and four are fulfilled.

It remains to show that in condition one and five the entry vi
2g− j is indeed a mul-

tiple of mk. This is done in the same way as (3.19) using

0 = 〈v j+1,vi〉 = D1:g−( j+1)(v
j+1)vi

g+1 +d1:g−( j+1)v
i
2g− j

and the appropriate divisibility, coprimality and square-freeness properties. This com-
pletes the induction and hence the proof of claim 1.
Part II:
We are now in a position to try and transform the basis such that we obtain a basis
vector w having the property that mk divides every entry of w. Recall that this proves
the proposition since basis vectors are primitive and hence mk must be equal to 1.

From the definition of mk we know that it divides Dk and hence the entries
vi

1, . . . ,v
i
k,v

i
g+1, . . . ,v

i
g+k for all i = 1, . . . ,n. Because of the entry 1 in the vectors

v1, . . . ,vq where all other vectors have zeroes, it does not make sense to use them
in the construction of w.

The vectors vi for q + 1 ≤ i ≤ n are constructed such that mk divides all entries
vi

g−q+1, . . . ,v
i
g−1,v

i
2g−q+1, . . . ,v

i
2g since they are either zero or •k. This shows that we

only need to consider the entries vi
r where k < r < g−q+1 or g+ k < r < 2g−q+1.

If we count these entries, we obtain the number

2(g−q− k) = 2(g−b n+1
2 c− (g−n+1)) = 2(n−b n+1

2 c−1) = 2(b n
2c−1).

Let δn := b n
2c−1.

For g ≤ 3 we have n ≤ 3 which gives δn = 0. Hence, for this case the proof is
complete.

For 3 < g ≤ 5 we also have to consider n = 4,5 and here δn = 1. In these cases,
n−q = 2 and hence we have two vectors of the form

(
vn−1

vn

)
=

(
∗ . . . ∗ 0 0 0 ∗ . . . ∗ 0 •k

∗ . . . ∗ 0 0 ∗ ∗ . . . ∗ •k •k

)
if n is even and

(
vn−1

vn

)
=

(
∗ . . . ∗ 0 0 0 0 ∗ . . . ∗ 0 •k •k

∗ . . . ∗ 0 0 0 ∗ ∗ . . . ∗ •k •k •k

)
if n is odd.

Since both cases can be treated absolutely the same and everything is independent of
g, we only give the details for g = 4 and n = 4, which means we are considering k = 1.
Here,

(3.20)

(
v3

v4

)
=

(
v3

1 v3
2 0 0 0 v3

6 0 v3
8

v4
1 v4

2 0 0 v4
5 v4

6 v4
7 v4

8

)
.
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If v3
6 = 0 we already have the situation of equation 3.21. Otherwise, we can find

integers λ ,µ such that λv3
2 + µv3

6 = gcd(v3
2,v

3
6). Now the matrix that differs from the

unit matrix only in the entries

(
a22 a26

a62 a66

)
=


λ − v3

6
gcd(v3

2,v
3
6)

µ v3
2

gcd(v3
2,v

3
6)




is in Γ̃pol and transforms the basis into

(3.21)

(
v3

v4

)
=

(
v3

1 v3
2 0 0 0 0 0 v3

8
v4

1 v4
2 0 0 v4

5 v4
6 v4

7 v4
8

)
.

We know that m1 divides v3
8 from the construction of part I, and it divides v3

1 since it
divides D1(v3) by definition. So, since v3 is a basis vector and hence primitive, we
must have gcd(v3

2,m1) = 1 and in particular either m1 = 1 and we are done or v3
2 6= 0.

Note that at this point the method relies on the fact that we have only a single entry to
consider, in other words, that δn = 1. We proceed as in (3.19) and obtain

(3.22) 0 = 〈v3,v4〉 = v3
1v4

5 +d1v3
2v4

6 ≡(m1)2 d1v3
2v4

6 =⇒ m1|v4
6.

Now we find integers α ,β such that αv3
2 + βv4

2 = gcd(v3
2,v

4
2) and transform the basis

into

(3.23)

(
v4

2
gcd(v3

2,v
4
2)

v3 − v3
2

gcd(v3
2,v

4
2)

v4

αv3 +βv4

)
=

(
•k 0 0 0 •k •k •k •k

•k ∗ 0 0 •k •k •k •k

)

which clearly shows that we have constructed a basis vector with the property that m1

divides every entry. This is the contradiction we wanted to reach and hence the proof
for g ≤ 5 is complete.

Since no general proof for all g is yet known to us, we have developed a short-
hand notation for these constructions that will make the proofs easier to read. First
of all, recall that we only need to consider the entries vi

k with k < r < g− q + 1 and
g + k < r < 2g− q + 1 and q + 1 ≤ i ≤ n where q = b n+1

2 c, assuming that g is large
enough such that these ranges are not empty. Since these are always 2δn entries in
δn +1 vectors, we can work independently of g. Note, however, that for the proposition
to hold for a given g, we need to consider all δn ≤ b g

2c− 1. Conversely, if we have
completed the construction for a fixed δn, this proves the proposition for g ≤ 2δn +3.

We denote the entries again by 0, ∗ ∈ Z, •k ∈ mkZ and X ∈Z\mkZ. Furthermore,
we denote a transformation concerning the columns x + 1 and g + x + 1 (for example
from (3.20) to (3.21) with x = 1 – note that the first column will be excluded from

the short notation) by
|x|
 and a transformation combining the ith and jth vector (for

example the transformation that leads to (3.23)) by
i, j
 . When we use the fact that the

ith vector has to be primitive we denote this by
(i)=1
 , and when we consider the product

of the ith and jth vector as in (3.22) we denote this by
〈i, j〉
 .

For some steps to be possible we need certain entries of the basis vectors to be
non-zero. We assume this to be the case where needed. If these entries would vanish,
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we could either alter the order of the basis vectors, skip the step in question or even
arrive directly at a contradiction proving our claim.

Using this new notation, we rewrite the above proof for δn = 1 starting with the

entries

(
v3

2 v3
6

v4
2 v4

6

)
as follows:

(
∗ ∗
∗ ∗

)
|1|
 

(
∗ 0
∗ ∗

)
(1)=1
 

(
X 0
∗ ∗

)
〈1,2〉
 

(
X 0
∗ •k

)
1,2
 

(
0 •k

∗ •k

)

where now all entries of the first row vector are divisible by mk while it is supposed to
be a primitive vector, giving the contradiction.

For δn ≥ 2 we need to use Corollary A.7 choosing v to be the ith vector which we

will denote by
~i
 . The gcd thus constructed will be denoted by · and all its multiples

by ?. The proof for δn = 2 can now be given by




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 |1|
 

|2|
 




∗ ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 ~1
 




? · 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




(1)=1
 




∗ X 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 2,3
 




∗ X 0 0
∗ ∗ 0 ∗
∗ ∗ ∗ ∗


 〈1,2〉
 




∗ X 0 0
∗ ∗ 0 •k

∗ ∗ ∗ ∗




1,2
 




0 ∗ 0 •k

∗ ∗ 0 •k

∗ ∗ ∗ ∗


 (1)=1
 




0 X 0 •k

∗ ∗ 0 •k

∗ ∗ ∗ ∗


 〈1,3〉
 




0 X 0 •k

∗ ∗ 0 •k

∗ ∗ ∗ •k




1,2
 




∗ 0 0 •k

∗ ∗ 0 •k

∗ ∗ ∗ •k


 (1)=1
 




X 0 0 •k

∗ ∗ 0 •k

∗ ∗ ∗ •k


 〈1,3〉
 




X 0 0 •k

∗ ∗ 0 •k

∗ ∗ •k •k




2,3
 




X 0 0 •k

∗ 0 •k •k

∗ ∗ •k •k


 1,2
 




0 0 •k •k

∗ 0 •k •k

∗ ∗ •k •k




and again the first row gives the contradiction as before.
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For δn = 3 the proof runs as follows:



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




|1|
 

|2|
 

|3|
 




∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




~1
 




? ? · 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




(1)=1
 




∗ ∗ X 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




2,4
 




∗ ∗ X 0 0 0
∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




3,4
 




∗ ∗ X 0 0 0
∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




2,3
 




∗ ∗ X 0 0 0
∗ ∗ ∗ 0 0 ∗
∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




〈1,2〉
 




∗ ∗ X 0 0 0
∗ ∗ ∗ 0 0 •k

∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




1,2
 




0 ∗ ∗ 0 0 •k

∗ ∗ ∗ 0 0 •k

∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




~1
 




0 ? · 0 •k •k

∗ ∗ ∗ 0 •k •k

∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




(1)=1
 




0 ∗ X 0 •k •k

∗ ∗ ∗ 0 •k •k

∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




3,4
 




0 ∗ X 0 •k •k

∗ ∗ ∗ 0 •k •k

∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ ∗




〈1,3〉
 




0 ∗ X 0 •k •k

∗ ∗ ∗ 0 •k •k

∗ ∗ ∗ ∗ 0 •k

∗ ∗ ∗ ∗ ∗ ∗




1,2
 




∗ ∗ 0 0 •k •k

∗ ∗ ∗ 0 •k •k

∗ ∗ ∗ ∗ 0 •k

∗ ∗ ∗ ∗ ∗ ∗




2,3
 




∗ ∗ 0 0 •k •k

∗ ∗ 0 ∗ •k •k

∗ ∗ ∗ ∗ •k •k

∗ ∗ ∗ ∗ ∗ ∗




1,2
 




∗ 0 0 ∗ •k •k

∗ ∗ 0 ∗ •k •k

∗ ∗ ∗ ∗ •k •k

∗ ∗ ∗ ∗ ∗ ∗




|1|
 




∗ 0 0 0 •k •k

∗ ∗ 0 ∗ •k •k

∗ ∗ ∗ ∗ •k •k

∗ ∗ ∗ ∗ ∗ ∗




(1)=1
 




X 0 0 0 •k •k

∗ ∗ 0 ∗ •k •k

∗ ∗ ∗ ∗ •k •k

∗ ∗ ∗ ∗ ∗ ∗




〈1,2〉
 

〈1,3〉
 

〈1,4〉
 




X 0 0 0 •k •k

∗ ∗ 0 •k •k •k

∗ ∗ ∗ •k •k •k

∗ ∗ ∗ •k ∗ ∗




1,2
 




0 ∗ 0 •k •k •k

∗ ∗ 0 •k •k •k

∗ ∗ ∗ •k •k •k

∗ ∗ ∗ •k ∗ ∗




(1)=1
 




0 X 0 •k •k •k

∗ ∗ 0 •k •k •k

∗ ∗ ∗ •k •k •k

∗ ∗ ∗ •k ∗ ∗




〈1,4〉
 




0 X 0 •k •k •k

∗ ∗ 0 •k •k •k

∗ ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k ∗




2,3
 




0 X 0 •k •k •k

0 ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k ∗




1,2
 




0 0 ∗ •k •k •k

0 ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k ∗




(1)=1
 




0 0 X •k •k •k

0 ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k ∗




〈1,4〉
 




0 0 X •k •k •k

0 ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k •k




3,4
 




0 0 X •k •k •k

0 ∗ ∗ •k •k •k

0 ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k •k




2,3
 




0 0 X •k •k •k

0 0 ∗ •k •k •k

0 ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k •k




1,2
 




0 0 0 •k •k •k

0 0 ∗ •k •k •k

0 ∗ ∗ •k •k •k

∗ ∗ ∗ •k •k •k




and again the first row vector gives the contradiction.
This completes the proof for g up to 2δn +3 = 9. �
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Lemma 3.3.10.
Assume Proposition 3.3.8 is true for g. Then, in any rank-n-sublattice h̃Z ⊂ hZ with
2 ≤ n ≤ g we find a vector v satisfying Dg−n+1(v) = 1.

Proof.
Let k := g−n+1 and denote a basis of h̃Z by ũ1, . . . , ũn. Let

m := min{Dk(u)
∣∣u ∈ h̃Z}.

Now, let û1 ∈ h̃Z be a primitive vector with Dk(û1) = m. We can obviously always
find such a vector. Our aim is to show that m = 1. Since û1 is primitive, Lemma A.3
tells us that we can find û2, . . . , ûn such that û1, . . . , ûn is a basis of h̃Z. According to
Corollary 3.3.7 we can find a transformation γ such that in the basis ui := γ ûi of h̃Z the
kth entry of u1 is

u1
k = Dk:g−1(u

1) = mDk+1:g−1(u
1).

Note that due to the invariance of the divisors we have the equality m = min{Dk(u)
∣∣u∈

γ h̃Z}.
We modify the basis as follows: Let i = 2, . . . ,n. If the kth entry of ui is equal to

zero, we leave ui unchanged. Otherwise, we replace both u1 and ui by linear combina-
tions of these two vectors, such that the kth entry of u1 is u1

k = gcd(u1
k ,u

i
k) and ui

k = 0.
This is possible without changing h̃Z according to the considerations at the beginning
of this section. By abuse of notation, after all but the last transformation we denote the
new basis again by ui.

After repeating this procedure for i = 2, . . . ,n we have a basis of h̃Z where

(3.24) u1
k = gcd(u1

k , . . . ,u
n
k) 6= 0

and ui
k = 0 for all i = 2, . . . ,n. We modify the basis one more time by letting

v1 := u1, and vi := ui +u1 for i ≥ 2,

so that now the kth entries of all vectors v1, . . . ,vn are equal to u1
k . Therefore, for all

i = 1, . . . ,n we have

Dk(v
i) = gcd(dk,

vi
s|g+s

Ds:k−1(vi)
)s=1,...,k and considering only the kth entry

= gcd(dk, . . . ,u
1
k , . . . ) which, according to (3.24), is equal to

= gcd(dk, . . . ,gcd(u1
k , . . . ,u

n
k), . . . ).

Hence we know that Dk(vi) divides gcd(dk,u1
k) = gcd(dk,mDk+1:g−1(u1)) = m which

implies Dk(vi) ≤ m. On the other hand, from the definition of m we know Dk(vi) ≥
m since vi ∈ h̃Z and m is minimal. Therefore, Dk(vi) = m. This shows that, using
Proposition 3.3.8,

m = gcd
(
Dk(v

1), . . . ,Dk(v
n)
)

= 1

which shows that Dk(u1) = m = 1 as claimed. �

Theorem 3.3.11.
Assume Proposition 3.3.8 is true for g. Then Γ̃pol acts transitively on the g-dimensional
isotropic subspaces of Q2g
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Proof.
Let ek := (0, . . . ,0,1,0, . . . ,0) where the 1 is the kth entry. We want to show that, given
any g-dimensional isotropic subspace h⊂Q2g we can find a basis u1, . . . ,ug of hZ such
that there exists a transformation γ ∈ Γ̃pol satisfying γui = ei for i = 1, . . . ,g. The proof
is by induction.

More precisely, we want to show the following for any k ∈ {0, . . . ,g}:
Claim 1: We can transform the basis u1, . . . ,ug of hZ such that

ui = ei for i = 1, . . . ,k and

ui = (0, . . . ,0︸ ︷︷ ︸
k

,∗, . . . ,∗︸ ︷︷ ︸
g−k

,0, . . . ,0︸ ︷︷ ︸
k

,∗, . . . ,∗︸ ︷︷ ︸
g−k

) for i = k +1, . . . ,g.(3.25)

For k = 0 this is trivially true and hence we may use this as start for the induction.
Assume that claim 1 is true for some k ∈ {0, . . . ,g−2}. Denote the isotropic subspace
generated by uk+1, . . . ,ug by h̃. Note that we may apply Lemma 3.3.10 for this sub-
space without losing the property (3.25): of the basic transformations mentioned at
the beginning of this section only the operation of γ ∈ Γ̃pol could cause problems since
we have to apply it to all basis vectors. However, we may restrict ourselves to using
transformations of the form

(3.26) γ =




�
k

A B
�

k

C D


 ∈ Γ̃pol

and these leave the property (3.25) valid.
Hence, Lemma 3.3.10 tells us that we may assume (if necessary after suitable

transformations) that the basis uk+1, . . . ,ug of h̃Z is such that Di(ui) = 1 for i = k +
1, . . . ,g−1.

If k = g− 2, the vector v := ug−1 already has the property that Dk+1:g−1(v) = 1.
Otherwise, we let

v :=
g−1

∑
n=k+1

d(n)
k+1:g−1un,

where d(c)
a:b := da:c−1dc+1:b. Since gcd(d(n)

k+1:g−1)n=k+1,...,g−1 = 1, Lemma A.3 shows

that we can find a basis vk+1, . . . ,vg of h̃Z where vk+1 = v. We want to show that
Dk+1:g−1(v) = 1 for 0 ≤ k < g−1. Again, we use induction to prove
Claim 2: For j = k, . . . ,g−1 we have Dk+1: j(v) = 1.

Again, for j = k the claim is trivially true and we have a start for the induction.
Assume now that claim 2 is true for some j ∈ {k, . . . ,g−2}. Then

D j+1(v) = gcd
(

d j+1,
vs|g+s

Ds: j(v)

)
s=1,..., j+1

and since v1|g+1 = · · · = vk|g+k = 0,

= gcd
(

d j+1,
vs|g+s

Ds: j(v)

)
s=k+1,..., j+1

.
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By assumption Dk+1: j(v) = 1, which implies Ds: j(v) = 1 since s ≥ k +1. Hence

= gcd
(
d j+1,vs|g+s

)
s=k+1,..., j+1

= gcd
(
d j+1,

g−1

∑
n=k+1

d(n)
k+1:g−1un

s|g+s

)
s=k+1,..., j+1 leaving out multiples of d j+1

= gcd
(
d j+1,d

( j+1)
k+1:g−1u j+1

s|g+s

)
s=k+1,..., j+1 and coprimality of the di gives

= gcd
(
d j+1,u

j+1
s|g+s

)
s=k+1,..., j

and since the polarisation is coprime we have gcd(d j+1,D1: j(u j+1)) = 1 and therefore

= gcd
(

d j+1,
u j+1

s|g+s

Ds: j(u j+1)

)
s=k+1,..., j+1

and since u j+1
1|g+1 = · · · = u j+1

k|g+k = 0,

= gcd
(

d j+1,
u j+1

s|g+s

Ds: j(u j+1)

)
s=1,..., j+1

= D j+1(u
j+1)

= 1.

This shows that claim 2 is true for j+1, completing the proof that Dk+1:g−1(v) = 1 for
any k ∈ {0, . . . ,g−1}.

Hence, we can find γ ∈ Γ̃pol of the form (3.26) such that γv = ek+1. Under this
operation the basis vk+1, . . . ,vg of h̃Z is transformed into a basis of γ h̃Z which we shall,
by abuse of notation, again denote by vk+1, . . . ,vg. Note that now vk+1 = ek+1. Since
γh is again an isotropic subspace, we have for j = k +2, . . . ,g:

(3.27) 0 = 〈vk+1,v j〉 = d1:k ·1 · v j
g+k+1 =⇒ v j

g+k+1 = 0.

Thus, we obtain a basis ũk+1 := vk+1, ũi := vi − vi
k+1vk+1 satisfying claim 1 for k + 1.

This completes the induction.
Now that we have reached (3.25) for k = g− 1 it is easy to see that we only

need one more transformation of the form (3.26) (where the matrices A to D are just
integers) to prove claim 1 for k = g.

Since we have now shown that for any g-dimensional isotropic subspace h we can
find a basis of hZ that can be transformed into e1, . . . ,eg by the action of an element in
Γ̃pol, we have proved the transitivity of the group action. �
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Chapter 4

Vanishing on the boundary of
higher codimension

4.1 The result by Barnes and Cohn

We have already mentioned in section 3.1 that the corank-1 boundary components
play a crucial part in determining the order of vanishing of a cusp form on all of the
boundary. In the principally polarised case this is shown using the result by Barnes
and Cohn in [BC] which we restate in Theorem 4.1.2.

For the non-principally polarised case this theorem unfortunately cannot be es-
tablished; in fact, there is a counterexample which we will give in Example 4.2.6.
Nevertheless, a generalisation of the result by Barnes and Cohn provides a weaker
bound which may be used instead.

Following the paper [BC] we generalise their theorem 3 to some more general
lattices which correspond to the non-principally polarised case. We first establish our
notation which is closely related to that of [BC].

Notation 4.1.1.
Let f (x) := xA tx and h(x) := xB tx be two quadratic forms with real symmetric matrices
A and B, and define their inner product as ( f ,h) := tr(AB) := ∑i, j ai jbi j. For positive
definite f denote by M( f ) its arithmetic minimum, i. e. the minimum of f (x) with
integral x 6= 0.

Barnes and Cohn show the following

Theorem 4.1.2.
Let f be a real positive definite n-ary form and h an integral positive definite or semi-
definite n-ary form with h 6≡ 0. Then

( f ,h) ≥ M( f ),

and equality can hold only if h has rank 1 and so has the form

h(x) = (x tm)2 = ∑
i, j

mim jxix j.

Proof.
See [BC, Theorem 3]. �
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Remark 4.1.3.
We always find a h0 of rank 1 for which equality holds, namely h0(x) := (x tm)2 where
we chose the m satisfying f (m) = M( f ).

This theorem is used in the context of moduli of principally polarised abelian
varieties in form of the following

Corollary 4.1.4.
Let f be a real positive definite n-ary form and denote by L0 the lattice of all positive
definite or positive semi-definite integral forms and by L1 ⊂L0 the sublattice of forms
of rank 1. Then

min
h∈L0\{0}

( f ,h) ≥ min
h∈L1

( f ,h).

The main connection between extending pluricanonical forms to a toroidal com-
pactification and this corollary is a theorem by Y.-S. Tai.

Theorem 4.1.5.
Consider the bounded symmetric domain � = Sg. Let Γ be a neat, arithmetic sub-
group of the connected group of automorphisms Aut( � )0, χ be an automorphic form
of weight l(g+1) with respect to Γ, ω =

∧
i≤ j dτi, j , χω⊗l ∈ ΩN( � /Γ)⊗l , and let � /Γ

be the compactification of � /Γ corresponding to a Γ-admissible collection of fans
{Σ(F)} where each σα(F) ∈ Σ(F) is basic (i. e. it can be generated by a part of a basis
of P′(F)). Then

χω⊗l extends to � /Γ ⇐⇒





for every rational boundary component F ,

in the Fourier expansion of χ at F:

χ(z) = ∑
f∈(P′(F))∨

aF
f (u, t)e[〈 f ,z〉]

aF
f 6≡ 0 implies min

h∈P′(F)∩C(F),
h6=0

( f ,h) ≥ l.

Proof.
See [AMRT, Chapter IV, paragraph 1, Theorem 1]. �

We can now prove the correspondence between the vanishing on the corank-1
boundary components and on the rest of the boundary1 :

Corollary 4.1.6.
Suppose � = Sg,Γ ⊂ Sp(2g,Z) and let χ and ω be as in Theorem 4.1.5. Then

χω⊗lextends to Sg/Γ ⇐⇒





χ vanishes on all

rational corank-1 boundary components

of order at least l.

Proof.
Since we have a principal polarisation, (P′(F))∨ consists of integer matrices for all

1See also [Tai, Theorem 1.1].
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rational boundary components F . Therefore, according to Corollary 4.1.4, the mini-
mum of ( f ,h) with f ∈ (P′(F))∨ over all h ∈ P′(F)∩C(F) is obtained for a form h
of rank 1. For any such h we can find a corank-1 boundary component F1 ≺ F with
h ∈ P′(F1)∩C(F1). Because the coefficients aF

f of the Fourier-Jacobi expansion are
the same for every pair F � F1 we can now bound the minimum over all h for all F by
the minimal order of vanishing on all rational corank-1 boundary components. �

4.2 Non-principal polarisations

Corollary 4.1.4 depends heavily on the fact that we consider the minimum over all
integral forms h. However, in our situation this is only the case if we apply it to
principal polarisations. Otherwise the matrix of the bilinear form h is no longer simply
an element of Sym(g,Z) but of a sublattice. To make things precise we define the
relevant lattices as follows.

Definition 4.2.1: Tits Lattice.
By the Tits lattice we mean the lattice L = P′(F(0))∩C(F (0)) for the standard corank-
g boundary component F (0), where we identify the containing space P ′(F (0)) with
the space of symmetric matrices as in section 2.2.3. If the polarisation is given by
(1,d1, . . . ,d1:g−1) and we have no level structure we also write L(1,d1, . . . ,d1:g−1).

Remark 4.2.2.
Although the definition above only considers the standard corank-g boundary com-
ponent, this is no restriction, since according to Theorem 3.3.11 all other corank-g
boundary components are conjugate to this one under the action of Γ̃pol for those g
where Proposition 3.3.8 is true.

Definition 4.2.3: Characteristic values of a lattice.

• Let L⊂ Sym(n,Z) be a sublattice of the lattice of symmetric matrices and define
the subsets L0 ⊂ L and L+ ⊂ L0 of positive semi-definite (including the zero
matrix) and positive definite matrices, respectively. Let L1 ⊂ L be the subset of
rank 1 matrices.

• If L is of maximal rank, define two characteristic values for the lattice, namely
the greatest common divisor of all (non-zero) determinants

µ(L) := max{λ ∈ N
∣∣∀B ∈ L+ : λ |det(B)}

and the least value ν that makes sure that all matrices νC are members of the
lattice

ν(L) := min{λ ∈ N
∣∣∀C ∈ Sym(n,Z),C positive semi-definite : λC ∈ L0}.
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Lemma 4.2.4.
The Tits lattice of a polarisation of type (1,d1, . . . ,d1:n−1) without level-structure is

L(1, . . . ,d1:g−1) =
{

M ∈




Z d1Z . . . d1:n−1Z
d1Z d1Z d1:n−1Z

...
. . .

...
d1:n−1Z d1:n−1Z . . . d1:n−1Z



∣∣M symmetric

}

and it has the characteristics µ(L) = ∏i dn−i
i and ν(L) = d1:n−1.

Proof.
In section 2.2.3 we stated

P
′(F(0)) ' {

( �
S�
)∣∣S ∈ Sym(g,R)} ' Sym(g,R)

for the standard rational boundary component F (0). This isomorphism maps a ma-
trix M ∈ P ′(F(0)) onto its upper right quarter. Since in Definition 2.2.9 we defined
P′(F(0)) = P ′(F (0))∩Γpol we are only interested in the symmetric g×g matrices sat-
isfying the conditions on the upper right quarter of the matrices in Γpol. Lemma 3.2.10
gives the condition claimed. �

Remark 4.2.5.
We shall make no difference between a form f and its corresponding matrix A, so that
by f ∈ L we actually mean f (x) = xA tx with A ∈ L.

Now we want to give the aforementioned counterexample to the inequality in
Corollary 4.1.4:

Example 4.2.6.
Let L = L(1,17) and

f (x) = x

(
3 − 14

17
− 14

17
4

17

)
tx ∈ L∨.

We claim that minh∈L1( f ,h) = 3. To show this, define h0 to be a rank 1 form realizing
the minimum and let the form be given by the matrix

(
a2 ab
ab b2

)
. For h0 ∈ L1 we need

17|ab and 17|b2.
Since the rank of h0 is 1, we cannot have a = b = 0. If a = 0 or b = 0 we obtain

( f ,h0) = tr( f h0) =
4

17
b2 = 4 or ( f ,h0) = tr( f h0) = 3a2 = 3,

respectively, since 17 divides b2 and the minimality of h0. This shows that

min
h∈L1

( f ,h) ≤ 3.

Now assume that ab 6= 0 and tr( f h0) < 3. Since h0 is positive semi-definite, we
have a2,b2 ∈ N and hence a,b ∈ R. Fix a ∈ R and define

fa(b) := tr( f h0) = 3a2 − 28
17 ab+ 4

17 b2 = 4
17(b− 7

2 a)2 + 2
17 a2.
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Then fa has no zeroes and assumes its minimum over R at b = 7
2 a. Since the assump-

tion that fa(
7
2 a) = 2

17 a2 < 3 leads to a2 < 51
2 and we have seen that a2 ∈ N, this leaves

only 10 possible values for a.
If a = ±1,±2 then the condition ab ∈ 17Z leads to b = 17b′ with b′ ∈ Z. Easy

calculation shows that fa(17b′) = 3a2−28ab′+68b′2 ≥ 3. If a =±
√

2,±
√

3,±
√

5 the
condition ab ∈ 17Z leads to b = 17ab′ with b′ ∈Z. But now fa(17ab′) = a2 f1(17b′)≥
3a2 > 3. Hence, minh∈L1( f ,h) ≥ 3, which shows the claim.

On the other hand, for the rank 2 form h with matrix
(

6 17
17 51

)
we calculate ( f ,h) =

tr( f h) = 2, so obviously

min
h∈L

( f ,h) ≤ 2 < 3 = min
h∈L1

( f ,h)

which shows that the analogue to the inequality of Corollary 4.1.4 cannot be estab-
lished for p = 17.

4.3 Barnes and Cohn generalised

4.3.1 Retracing Barnes and Cohn

In the following propositions we shall retrace some steps of the paper by Barnes and
Cohn and then give the generalisation of their main theorem to non-principal polarisa-
tions.

Lemma 4.3.1.
For all positive definite forms f ,h we have

( f ,h) ≥ n n
√

det( f ) n
√

det(h).

Proof.
See [BC, Theorem 1]. �

We now get

Lemma 4.3.2.
For all positive definite forms f ,h with h ∈ L+ we have

( f ,h) ≥ n
γn

n
√

µ(L)M( f )

where γn is Hermite’s constant.

Proof.
Let φ be a positive definite form in n variables. From the definition of Hermite’s
constant

γn := sup
pos. def. φ

M(φ)
n
√

det(φ)

we obtain n
√

det( f ) ≥ M( f )/γn. On the other hand, from the definition of µ(L) we
have µ(L)|det(h) and so n

√
det(h) ≥ n

√
µ(L). Inserting this into Lemma 4.3.1 gives

the result. �
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Corollary 4.3.3.
If h ∈ L+ and n ≥ 2, then

( f ,h) ≥
√

3 n
√

µ(L)M( f ).

Proof.
We want to use Lemma 4.3.2 and therefore need

(4.1)
n
γn

≥
√

3.

For 2 ≤ n ≤ 8 the values for γn are known and given in [Cas, p. 332] to be

γ2
2 =

4
3
, γ3

3 = 2, γ4
4 = 4,

γ5
5 = 8, γ6

6 =
64
3

, γ7
7 = 64, γ8

8 = 28.

These all fulfil inequality (4.1). For n > 8 (actually, even for n ≥ 3) we may use
Minkowski’s bound (which can easily be derived from [Cas, p. 247])

γn < 4
π
(
Γ(1+ n

2)
)2/n

,

where Γ is the usual gamma function. It remains to show that for n ≥ 3

(4.2) Γ(1+ n
2) <

( π
4
√

3
n
) n

2 ,

which immediately establishes inequality (4.1). First of all, recall that

∀n ∈ N : Γ(1+ n+2
2 ) = Γ(1+ n

2 +1) = (1+ n
2)Γ(1+ n

2).

We will need the following inequality, which can be verified by easy calculation:

(4.3) ∀n ∈ N : π
2
√

3
(n+1) > 1+ n

2 .

Now, consider the even integers. We show inequality (4.2) by induction. For n = 4 we
have ( π

4
√

3
·4
) 4

2 ≈ 3.29 > 2 = Γ(1+ 4
2).

Assume the inequality holds for n. For n+2 we obtain

( π
4
√

3
(n+2)

) n+2
2 =

( π
4
√

3
n+ π

2
√

3

) n
2 +1

the binomial theorem gives(4.4)

≥
( π

4
√

3
n
) n

2 +1
+

( n
2 +1

1

)( π
4
√

3
n
) n

2
( π

2
√

3

)

=
( π

4
√

3
n
) n

2
( π

4
√

3
n+( n

2 +1) π
2
√

3

)

=
( π

4
√

3
n
) n

2 (2 · π
4
√

3
n+ π

2
√

3
) and with (4.3)

>
( π

4
√

3
n
) n

2 (1+ n
2) now using the assumption for n

> Γ(1+ n
2)(1+ n

2)

= Γ(1+ n+2
2 ).
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This completes the case of even integers. The inequality for n = 3,5,7 can be shown by
simple calculation. For the other odd integers we use the following trick: the distance
between the two sides of the inequality grows so rapidly that we may compare terms
for n = 8 and n = 10, namely

( π
4
√

3
·8
) 8

2 ≈ 173,17 > 120 = Γ(1+ 10
2 ).

Using this as a start for the induction and noting that for n ≥ 3 we may replace (4.3)
by π

2
√

3
(n+1) > 1+ n+2

2 we may use the same reasoning as in (4.4) to show

(4.5) ∀n ≥ 8,n even :
( π

4
√

3
n
) n

2 > Γ(1+ n+2
2 ).

We may now use the monotony of both sides of the inequality to complete the proof
for odd n ≥ 9 by

( π
4
√

3
n
) n

2
monotony

≥
( π

4
√

3
(n−1)

) n−1
2

(4.5)
> Γ(1+ n+1

2 )
monotony

≥ Γ(1+ n
2).

�

Theorem 4.3.4.
Let f be a real positive definite n-ary form where n ≥ 2. Then

min
h∈L+

( f ,h) ≥
√

3 n
√

µ(L)

ν(L)
min
h∈L1

( f ,h).

Proof.
According to Remark 4.1.3 we can find h0 of rank 1 with ( f ,h0) = M( f ). Now, Corol-
lary 4.3.3 gives

min
h∈L+

( f ,h) >
√

3 n
√

µ(L)M( f ) from the definition of h0

=
√

3 n
√

µ(L)( f ,h0)

=

√
3 n
√

µ(L)

ν(L)
( f ,ν(L)h0)

≥
√

3 n
√

µ(L)

ν(L)
min
h∈L1

( f ,h)

since ν(L)h0 ∈ L from the definition of ν(L) and since h0 has rank 1 we also have
ν(L)h0 ∈ L1. �

Corollary 4.3.5: Dimension 2.
Let f be a real positive definite binary form, i. e. n = 2. Then

min
h∈L0\{0}

( f ,h) ≥ min
{√3µ(L)

ν(L)
,1
}

min
h∈L1

( f ,h).

Proof.
This follows directly from Theorem 4.3.4 since for n = 2 we have L0\{0} = L+∪L1.

�
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4.3.2 Application to Tits lattices

Let us now apply the results to the case we are interested in, namely when L is a Tits
lattice.

Corollary 4.3.6: (1, t)-polarisation.
Let t ∈ N, t ≥ 3 and L = L(1, t). Then

min
h∈L0\{0}

( f ,h) ≥
√

3
t

min
h∈L1

( f ,h).

Proof.
This follows from Theorem 4.3.4 using the values given in Lemma 4.2.4. �

Unfortunately, for a general lattice of higher dimension it is not as easily possible
to compare minh∈L0 and minh∈L1 . For a Tits lattice, i. e. a lattice that comes from a
polarisation, we can however give the following theorem:

Theorem 4.3.7.
Let f be a real positive n-ary form with n ≥ 2 and let L = L(1,d1, . . . ,d1:n−1). Then

min
h∈L+

( f ,h) ≥
√

3

n

√
∏n−1

i=1 di
i

min
h∈L1

( f ,h) and(4.6)

min
h∈L0\{0}

( f ,h) ≥C(L) min
h∈L1

( f ,h) where(4.7)

C(L) := min
{

1, min
2≤r≤n

√
3

r

√
∏r−1

i=1 di
i

}
.

Proof.
If h is positive definite, we may use Theorem 4.3.4 with the values given in
Lemma 4.2.4 to obtain

min
h∈L+

( f ,h) ≥
√

3 n

√
∏n−1

i=1 dn−i
i

d1:n−1
min
h∈L1

( f ,h)

=

√
3

n

√
∏n−1

i=1 di
i

min
h∈L1

( f ,h)

which proves (4.6).
The value C(L) is constructed from terms that give valid bounds for the different

possible cases r := rank(h) = 1, . . . ,n. The first term, which is 1, obviously covers for
h of rank r = 1. The term for r = n has already been established in (4.6).

For positive semi-definite h of rank r with 1 < r < n, we proceed along the lines
of Theorem 3 in [BC].

We can give h as h(x) = txBx where B is a rational singular matrix; the equation

Bx = 0
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hence has a rational solution x 6= 0. Multiplying by a suitable rational number, we
obtain a primitive integral vector v = (v1, . . . ,vn) with

Bv = 0.

According to Lemma A.8 we can find an integral unimodular matrix T of the form

T =




∗ d1 d1:2 . . . d1:n−2 v1

∗ ∗ d2 d2:n−2 v2
...

. . . . . .
...

...
∗ . . . ∗ dn−2 vn−2

∗ . . . ∗ vn−1

∗ . . . ∗ vn




.

We now replace f and h by tT−1 f and Th, respectively; this leaves M( f ) unchanged
and also ( f ,h), by

( tT−1 f ,Th) = tr(T−1A tT−1 tTBT ) = tr(T−1ABT) = tr(AB) = ( f ,h).

The matrix B of h is replaced by the matrix tTBT and, since Bv = 0, the integral form h
has been replaced by an integral form in the n−1 variables x1, . . . ,xn−1. Furthermore,
the special form of T guarantees that tTBT ∈ L. We may clearly repeat this procedure
until h(x) is expressed as a positive definite integral form in the variables x1, . . . ,xr.

Let
h(x1, . . . ,xr) := h(x) = h(x1, . . . ,xr,0, . . . ,0),

f (x1, . . . ,xr) := f (x1, . . . ,xr,0, . . . ,0).

Then f ,h are positive definite forms in r variables, and h is integral. Clearly we have
M( f ) ≥ M( f ) and ( f ,h) = ( f ,h). With respect to the sublattice

L :=








Z . . . d1:r−1Z 0 . . . 0
...

...
...

d1:r−1Z . . . d1:r−1Z 0
...

0 . . . 0 0
...

. . .
0 . . . 0








∩L ⊂ L

which contains h we may therefore use (4.6) to obtain

min
h∈L of rank r

( f ,h) ≥
√

3

r

√
∏r−1

i=1 di
i

min
h∈L1

( f ,h).

Note, that L1 ⊂ L1 and thus

min
h∈L1

( f ,h) ≥ min
h∈L1

( f ,h).
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Hence, we have

( f ,h) = ( f ,h) ≥ min
h∈L

+
( f ,h)

≥
√

3

r

√
∏r−1

i=1 di
i

min
h∈L1

( f ,h)

≥
√

3

r

√
∏r−1

i=1 di
i

min
h∈L1

( f ,h).

This construction supplies all the other terms in C(L) and thus ends the proof. �

Corollary 4.3.8: Dimension 3.
For g = 3 and L = L(1,m,mn) with m,n ∈ N we have

min
h∈L0\{0}

( f ,h) ≥C(m,n) min
h∈L1

( f ,h)

where

C(m,n) =





1 if mn ≤ 2√
3/m if m ≥ 3 and m ≥ n4

√
3

3√mn2
otherwise

.

Proof.
This follows easily from Theorem 4.3.7 by explicitely determining the minimum. �

Remark 4.3.9.
Theorem 4.3.7 can now be used as a substitute for Corollary 4.1.4. This leads to the
following generalisation of Corollary 4.1.6:

Theorem 4.3.10.
Assume a (non-principal) polarisation (1,d1, . . . ,d1:g−1) and let L be its Tits lattice.
Suppose � = Sg,Γ ⊂ Γpol and let χ and ω be as in Theorem 4.1.5. Then

χω⊗lextends to � /Γ ⇐⇒





χ vanishes on all

rational corank-1 boundary components

of order at least l/C(L).

Remark 4.3.11.
This theorem can now be used in the case of interest as a substitute for Corollary 4.1.4.
We shall now present the construction how we combine the known facts to reach
Apol(n).
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Chapter 5

How to get from Ag to Apol(n)

5.1 Geometric layout

Our main goal is to investigate the Kodaira dimension of Apol(n). For this, we need
pluricanonical forms on a compactification (Apol(n))∗ which we can construct from,
for example, cusp forms. However, we do not know a non-trivial cusp form on Apol(n)
yet. But there is a cusp form on Ag, as we have stated in Theorem 1.2.35. For the
time being, assume we have a cusp form χ with respect to Sp(2g,Z) of weight wχ that
vanishes on the cusp of Ag of degree vχ . How can we use χ to construct a cusp form
on (Apol(n))∗?

5.1.1 Maps, cusps and branching

Assume the following situation:

(Ag)
′ (Apol)

′

(A lev
pol )

′ (Apol(n))′

π1 π2 π3

where by A ′ we denote Mumford’s partial compactification of A . This is constructed
from A by adding only the corank-1 boundary components. Note that this construc-
tion is well defined since it does not depend on a fan. Due to Lemma 3.2.6 we
may define the spaces by Ag := Sg/Sp(2g,Z),Apol := Sg/Γpol,A

lev
pol := Sg/Γlev

pol and
Apol(n) := Sg/Γpol(n) and have all groups acting on Sg in the same way. We know
that Γlev

pol ⊂ Sp(2g,Z) – which, of course, is the reason for using this intermediate step.
What do we know about the partial compactifications of these spaces? First of

all, we know1 that (Ag)
′ has only a single cusp which we shall call C0.

In (Apol)
′ there are several rational corank-1 boundary components which we

shall denote by C1, . . . ,Cu. Fix i in 1, . . . ,u and denote the irreducible components of
the reduction of π∗

2Ci by C1
i , . . . ,C

vi
i ⊂ (A lev

pol )
′. We have already seen that to each C j

i

we can associate a unique2 primitive vector in Z2g that we shall, by abuse of notation,
also denote by C j

i . Let C lev
pol (i) be a set of vectors that is a full system of representatives

1See [HKW, Part I, Lemma 3.11]
2up to multiplication with −1
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for these boundary components. Denote the order of branching of π1 in C j
i by m1(i, j)

and that of π2 by m2(i, j).

We know that Γlev
pol is a normal subgroup of Γpol and so π2 : A lev

pol → Apol is a
Galois cover. The Galois group ΓG of this cover will be discussed in more detail in
section 5.2.2. It operates transitively on C lev

pol (i), so that for any fixed i the order of the

stabiliser StabΓG(C) := {g ∈ ΓG
∣∣g(C) =C} is the same for all C ∈ C lev

pol (i). If −1 6∈ ΓG

(as we will see in Lemma 5.2.7 this is implied by d1:g−1 > 2), it can be given by

(5.1) |StabΓG(C j
i )| =

|ΓG|
|C lev

pol (i)|
.

Furthermore, the values m2(i, j) are the same for all C∈C lev
pol (i) and we can denote

them by m2(i). Then we have

π∗
2Ci = ∑

j

m2(i, j)C j
i = m2(i)∑

j

C j
i .

All in all, we have considered the following cusps and maps with order of branching:

π1 π2

m1(i, j)

C j
i ∈ C lev

pol (i)

C0

m2(i)

Ci

5.1.2 Modular forms

From Corollary 3.2.13 we know that Γlev
pol ⊂ Sp(2g,Z) and hence χ is also a cusp form

with respect to Γlev
pol. On C j

i it vanishes of order ord(χ ,C j
i ) = vχ m1(i, j).

For a modular form F and a matrix M =
(

A B
C D

)
the slash-operator is defined by

F|kM(τ) := det(Cτ +D)−kF(Mτ).

We use this operator to construct the symmetrisation of χ

χ sym := ∏
M∈ΓG

χ |wχ M

where wχ is the weight of χ . This is a cusp form with respect to Γlev
pol (and also with

respect to Γpol) of weight wsym = |ΓG|wχ . Because of the symmetrisation, we may
choose any one cusp C1

i and have

∀C ∈ C
lev
pol (i) : ord(χ sym,C) = ord(χ sym,C1

i ).
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To be precise, we have

ord(χ sym,C1
i ) = ∑

a∈ΓG

ord(χ ,a−1(C1
i ))

= ∑
C j

i ∈C lev
pol (i)

|StabΓG(C j
i )|ord(χ ,C j

i )

= ∑
C j

i ∈C lev
pol (i)

|ΓG|
|C lev

pol (i)|
vχ m1(i, j)

= vχ
|ΓG|

|C lev
pol (i)|

∑
C j

i ∈C lev
pol (i)

m1(i, j).

To ease the notation define

M1(i) := ∑
C j

i ∈C lev
pol (i)

m1(i, j).

We have already mentioned that χ sym is also a cusp form with respect to Γpol. To make
clear which group we are referring to we use the notation χ in case of this second
group. The weight obviously stays the same, i. e. we have wχ = wsym = |ΓG|wχ . On
(Apol)

′ we now have

ord(χ ,Ci) = ord(χ sym,C1
i )/m2(i)

= vχ
|ΓG|

m2(i)|C lev
pol (i)|

M1(i).

5.1.3 Vanishing on higher codimension

So far we are able to control the order of vanishing on the corank-1 boundary com-
ponents of a compactification of Apol. This compactification may, however, be sin-
gular. Assume we are given a Γpol-admissible collection of fans Σ and obtain the
corresponding compactification (Apol)

∗. According to Theorem 2.2.31, there exists a
refinement Σ̃ of the collection Σ, which is also Γpol-admissible, such that the corre-
sponding compactification (Apol)

∼ is stack-smooth. Furthermore, we also get that the
map (Apol)

∼ → (Apol)
∗ is a blowing-up and hence (Apol)

∼ is constructed from (Apol)
∗

by inserting new boundary divisors.
We are now ready to proceed to the map π3. Assume that the level n is such that

π3 is branched of order n along all boundary components. (It will turn out that the
assumption gcd(d1:g−1,n) = 1 does already imply this.)

For any cusp C in the pullback π∗
3Ci we then have

(5.2) ord(χ ,C) = nord(χ ,Ci) = nvχ
|ΓG|

m2(i)|C lev
pol (i)|

M1(i).

Now we use the generalised Barnes and Cohn Theorem 4.3.7 on (Apol(n))∼ which
states that χ vanishes on all of the boundary at least of order ord(χ ,C)C(L). (Recall
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that C(L) ≤ 1.) On the other hand, χ is a modular form of weight wχ = |ΓG|wχ with
respect to Γ̃pol(n) ⊂ Γ̃pol. This leads to the following equation for (Apol(n))∼ :

wχ |ΓG|L = ord(χ ,C)C(L)D+Deff

where L is the divisor corresponding to the (Q-)line bundle3 of modular forms of
weight 1 on Apol(n), D is the boundary divisor of (Apol(n))∼ and Deff is some ef-
fective divisor that we do not need to specify more precisely. This implies

−D ≥− wχ |ΓG|
ord(χ ,C)C(L)

L+D′
eff.

Assume now that n ≥ 3 such that Γ̃pol(n) is neat. For any smooth toroidal compactifi-
cation of Apol(n) we may use Lemma 2.2.36 to obtain

K = (g+1)L−D

≥
[
(g+1)− wχ |ΓG|

ord(χ ,C)C(L)

]
L+D′

eff.

We know from Mumford’s extension of Hirzebruch proportionality (see [Mu2, Corol-
lary 3.5]) that h0(Lk) ∼ k

1
2 g(g+1). We can therefore conclude that h0(Kk) ∼ h0(Lk) ∼

k
1
2 g(g+1) and hence that the Kodaira dimension is maximal if the coefficient of L is

positive. This means we want

ord(χ ,C)C(L) >
wχ |ΓG|
g+1

⇐⇒ n
vχ |ΓG|M1(i)C(L)

m2(i)|C lev
pol (i)|

>
wχ |ΓG|
g+1

⇐⇒ n >
wχm2(i)|C lev

pol (i)|
(g+1)vχ M1(i)C(L)

.(5.3)

5.2 Properties of the Construction

5.2.1 The geometry of A lev
pol → Ag and A lev

pol → Apol

We shall now give more details on the geometry of the maps π1 and π2. In particular,
we shall state a lemma on the order of branching for these maps in each corank-1
boundary component of (A lev

pol )
′.

Lemma 5.2.1: Order of branching.
For a corank-1 boundary component F ⊂ (A lev

pol )
′ the orders of branching of the maps

between the partial compactifications π1 : (A lev
pol )

′ → (Ag)
′ and π2 : (A lev

pol )
′ → (Apol)

′

are given by

m1(C) := [P′
Sp(2g,Z)(C) : P′

Γlev
pol

(C)] and

m2(C) := [P′
Γpol

(C) : P′
Γlev

pol
(C)],

3For n ≥ 3 this is in fact a line bundle.
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respectively, where P′
Γ(C) := P ′(F)∩ Γ ⊂ P(F) is the relevant lattice part of the

stabiliser of F with C = V (F) as in Definition 2.2.9.

Proof.
This is a specialisation of Theorem 2.2.34. �

Let us now give the general outline of how we want to perform this calculation
in both cases. We do the calculations that are the same for all cases over the rationals,
and only then intersect with the four different groups.

The group Sp(2g,Q) has only a single corank-1 boundary component, namely
C0=̂(0, . . . ,0,1) ∈ Z2g, and for this cusp we have shown in section 2.2.3

P′
Sp(2g,Q)(C0) =

{( �
S

0
�

)
where S =




0
. . .

0
s


 and s ∈ Q

}
.

From this information we calculate the groups P′
Γ(C) for the other Γ ⊂ Sp(2g,Q) and

any cusp C as follows: First, we calculate P′
Sp(2g,Q)(C) by conjugating with a suitable

matrix M ∈ Sp(2g,Q). Since C0 is the only cusp with respect to Sp(2g,Q) and C is
given by a primitive vector, we can always find a matrix M ∈ Sp(2g,Q) satisfying

(5.4) C = C0M.

This implies

M−1
PSp(2g,Q)(C0)M = PSp(2g,Q)(C)

which, in turn, implies by intersecting with Sp(2g,Q)

M−1P′
Sp(2g,Q)(C0)M = P′

Sp(2g,Q)(C).

Now, since Γ ⊂ Sp(2g,Q), we can calculate the group we are interested in by

P′
Γ(C) = P′

Sp(2g,Q)(C)∩Γ.

This leads to the following lemma:

Lemma 5.2.2.
Let P′

Q := P′
Sp(2g,Q)(C0). Then we have

m1(C) = [M−1P′
QM∩Sp(2g,Z) : M−1P′

QM∩Γlev
pol] and

m2(C) = [M−1P′
QM∩Γpol : M−1P′

QM∩Γlev
pol].

Note that the matrices Q0 ∈ P′
Q have the form Q0 =

(
0 S
0 0

)
+

�
, so that for all

QC ∈ P′
Sp(2g,Q)(C) = M−1P′

QM we have

QC = M−1Q0M = M−1
((

0 S
0 0

)
+

�
)

M = M−1
(

0 S
0 0

)
M +

�
= Q+

�
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where obviously

(5.5) Q := M−1
(

0 S
0 0

)
M.

To intersect the group P′
Sp(2g,Q)(C) with Γ we only need to consider the conditions

imposed on Q by the appropriate lemma from section 3.2.2.
Because of the properties of M ∈ Sp(2g,Q) stated in Lemma 3.2.1 we know that

the inverse of a matrix M =
(α β

γ δ
)

is given by M−1 =
( tδ − tβ
− tγ tα

)
where α ,β ,γ ,δ ∈

Qg×g. Split the vector representing the cusp into two vectors of length g such that
C = (c1,c2). Then equation (5.4) implies that c1 and c2 are the last rows of the matrices
γ and δ , respectively. Since the matrix S has only one non-zero entry s ∈Q we see that

(5.6) Q = s

( tc2

− tc1

)
(c1,c2).

We shall now give the explicit calculation in the two cases separately.

Lemma 5.2.3: Branching of π1.
For a cusp C j

i = (D1:g−1,D2:g−1a2, . . . ,ag,0,D2:g−1ag+2, . . . ,a2g) ∈ A lev
pol given with

respect to Γ̃lev
pol the order of branching of π1 : A lev

pol → Ag is given by

m1(C
j
i ) = gcd(D1:g−1,D2:g−1a2, . . . ,Dg−1ag−1,ag)

2.

Proof.
Recall from Lemma 3.3.1 that any cusp can be represented in the form given in the
statement. Since we want to work with Γlev

pol rather than with Γ̃lev
pol we have to multiply

by R and obtain

C j
i R = (D1:g−1,D2:g−1a2, . . . ,ag,0,d1D2:g−1ag+2, . . . ,d1:g−1a2g).

In case this is not a primitive vector we divide by k := gcd(D1:g−1, . . . ,d1:g−1a2g) to
obtain as representative of the cusp

C :=
(D1:g−1

k
,
D2:g−1a2

k
, . . . ,

ag

k
,0,

d1D2:g−1ag+2

k
, . . . ,

d1:g−1a2g

k

)
∼Q C j

i R.

We have already stated above that a matrix M satisfying equation (5.4) always
exists. So, we define Q as in (5.5) and can now proceed by asking when Q +

�
is in

P′
Γ(C) = P′

Sp(2g,Q)(C)∩Γ for Γ = Sp(2g,Z) or Γ = Γ̃lev
pol, respectively.

When taking the intersection of P′
Sp(2g,Q)(C) with Sp(2g,Z) the only condition is

that the matrix Q be integer. We can use

c1 =
(D1:g−1

k
,
D2:g−1a2

k
, . . . ,

ag

k

)
and

c2 =
(

0,
d1D2:g−1ag+2

k
, . . . ,

d1:g−1a2g

k

)
.
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in equation (5.6) to see that the first entry of the g+1st row is given by

qg+1,1 = −s(−(c1)1)(c1)1 = −D2
1:g−1

k2 s.

We substitute t :=
D2

1:g−1

k2 s and obtain the necessary condition t ∈ Z for Q to be integer.
With this substitution,

Q =
k2t

D2
1:g−1

( t
c2

− tc1

)
(c1,c2).

Obviously, the k2 cancels in every entry. Furthermore, it is easy to see that D1:g−1

divides every entry of c2. Define

c̃1 := k
D1:g−1

c1 =
(
1, a2

D1
, a3

D1:2
, . . . ,

ag

D1:g−1

)
.

Then the lower left quarter of Q is given by − k2t
D2

1:g−1

t
c1c1 = −t t

c̃1c̃1. The diagonal

elements of this quarter give rise to the necessary condition

(5.7) −t

(
ai

D1:i−1

)2

∈ Z ⇐⇒ D2
1:i−1|a2

i t for all i = 2, . . . ,g.

If this is given, Lemma A.9 tells us that both

D1:i−1|ait and D1:i−1D1: j−1|aia jt

are satisfied for all 2 ≤ i, j ≤ g. This means that t t
c̃1

c2
D1:g−1

and t t
c̃1c1 are integer matri-

ces, and hence so is Q. Therefore, condition (5.7) is also sufficient. Since for t ∈ Z we
have the equivalence

D2
1:i−1|a2

i t ⇐⇒
( D1:i−1

gcd(D1:i−1,ai)

)2|t,

we have the condition t ∈ n2Z where

n := lcm
[ D1:i−1

gcd(D1:i−1,ai)

]
i=2,...,g

= lcm
[ D1:g−1

gcd(D1:g−1,Di:g−1ai)

]
i=2,...,g

.

Using Lemma A.10 (and letting a1 = 1 to simplify the notation) we therefore obtain

(5.8) Q ∈ Sp(2g,Z) ⇐⇒ t ∈
( D1:g−1

gcd(Di:g−1ai)i=1,...,g

)2
Z.

Since Γlev
pol ⊂ Sp(2g,Z) we also get this condition for P′

Γlev
pol

(C) but in addition we

have to consider Lemma 3.2.12. The conditions of the upper right quarter of Q state
that

k2t

D2
1:g−1

t
c2c2 ∈ t

dd⊗Z

where d := (1,d1, . . . ,d1:g−1) as in Lemma 3.2.12. From the elements on the diagonal
of this quarter we obtain the necessary condition

k2t

D2
1:g−1

(
d1:iDi+1:g−1ag+i+1

k

)2

=
d2

1:i

D2
1:i

a2
g+1+it ∈ d2

1:iZ ⇐⇒ D2
1:i|a2

g+1+it
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for all i = 1, . . . ,g−1. Again, Lemma A.9 tells us that this implies all other conditions
on Q and hence the condition is also sufficient. We proceed exactly as before and
obtain (letting ag+1 = 0 again to simplify the notation)

Q ∈ Γlev
pol ⇐⇒ t ∈

( D1:g−1

gcd(Di:g−1ai,Di:g−1ag+i)i=1,...,g

)2
Z = D2

1:g−1Z

since the vector C is primitive and hence the denominator is 1. Combining this with
equation (5.8) gives m1(C) = gcd(Di:g−1ai)

2
i=1,...,g as claimed. �

Lemma 5.2.4: Branching of π2.
For a cusp C j

i = (D1:g−1,D2:g−1a2, . . . ,ag,0,D2:g−1ag+1, . . . ,a2g) ∈ A lev
pol given with

respect to Γ̃lev
pol the order of branching of π2 : A lev

pol → Apol is given by

m2(C
j
i ) = D1:g−1.

Proof.
Since Γlev

pol is a normal subgroup of Γpol, the map π2 induces a Galois covering. This

means that we may consider any cusp C0
i in the orbit of C j

i under the action of the Ga-
lois group. All those cusps map to the same cusp Ci ∈Apol which, according to Corol-
lary 3.3.6, can be given in the form Ci = (D1:g−1,D2:g−1a2, . . . ,Dg−1ag−1,1,0,0,0).
Let us therefore choose C0

i = (D1:g−1,D2:g−1a2, . . . ,Dg−1ag−1,1,0,0,0) which after
multiplying by R remains unchanged. Furthermore, it is obviously a primitive vector.

As before we define M and Q by (5.4) and (5.5), respectively. Again, we obtain
conditions on Q by intersecting P′

Sp(2g,Q)(C) with Γ.
Since c2 = 0, according to (5.6) the only non-zero entries of Q are in the lower

left quarter. Lemma 3.2.12 states that for Q+
� ∈ Γlev

pol these entries need to be integers.
In particular, q2g,g = s · 1 · 1 = s ∈ Z. Since now s tc1c1 is obviously an integer matrix
we obtain the equivalence

Q+
� ∈ Γlev

pol ⇐⇒ s ∈ Z.

For Q +
� ∈ Γpol we consider Lemma 3.2.10 where for the lower left quarter we

find the condition

−s t
c1c1 ∈ ∆−1D(∆) =




Z Z Z . . . Z
Z 1

d1
Z 1

d1
Z 1

d1
Z

Z 1
d1

Z 1
d1:2

Z 1
d1:2

Z
...

. . .
...

Z 1
d1

Z 1
d1:2

Z . . . 1
d1:g−1

Z




.

The condition on the top right matrix entry reads qg+1,g = sD1:g−1 ∈ Z and hence we
know that s∈ 1

D1:g−1
Z is a necessary condition. We claim that it is in fact also sufficient.

To show this, choose one matrix entry qg+i, j in the lower left quarter of Q. Since
both s tc1c1 and ∆−1D(∆) are symmetric, we may assume i ≤ j. The condition for this
entry is

s ·Di:g−1ai ·D j:g−1a j ∈ 1
d1:i−1

Z

⇐⇒ sd1:i−1Di:g−1D j:g−1aia j ∈ Z(5.9)
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On the other hand,

sd1:i−1Di:g−1 ∈ 1
D1:g−1

d1:i−1Di:g−1Z =
d1:i−1

D1:i−1
Z ⊂ Z

and hence relation (5.9) is true. Therefore,

m2(C
0
j ) = [P′

Γpol
(C0

j ) : P′
Γlev

pol
(C0

j )] = [ 1
D1:g−1

Z : Z] = D1:g−1

which completes the proof. �

subsectionBranching of Apol(n) → Apol

Lemma 5.2.5.
Assume gcd(n,d1:g−1) = 1. Then π3 : Apol(n) → Apol is branched of order n on all
corank-1 boundary components.

Proof.
Let D be a corank-1 boundary divisor. Denote the stabilisers of the corresponding
isotropic line in the groups Γ̃pol and Γ̃pol(n) by StabΓ̃pol

(D) and StabΓ̃pol(n)(D), respec-
tively. Since D has corank 1, these stabilisers are one-dimensional lattices and can
therefore be given by StabΓ̃pol

(D)' k1Z and StabΓ̃pol(n)(D)' k2Z. Since Γ̃pol(n)⊂ Γ̃pol

by definition, we know that k1|k2. Since gcd(n,d1:g−1) = 1, the congruence condition
imposed by Γ̃pol(n) implies that k2/k1 = n for every such pair of lattices. But this index
is exactly the order of branching, which proves the claim. �

5.2.2 The Galois group of A lev
pol → Apol

In this section we give a result by Brasch [Bra93], only slightly adjusting the notation,
and then give a more explicit description of the Galois group.

Definition 5.2.6: Symplectic group of K(∆).
Let

K(∆) := (Zg/∆Zg)2 with standard generators f1, . . . , f2g.

Define a (multiplicative) alternating form e∆ : K(∆)2 → C∗ by

e∆( fν , fµ) :=





exp
(
+ 2πi

eν

)
if µ = g+ν

exp
(
− 2πi

eµ

)
if ν = g+ µ

1 otherwise.

Denote by Sp(∆) the group of symplectic transformations of K(∆).

Lemma 5.2.7: Galois group.
The embedding Γ̃lev

pol ↪→ Γ̃pol as normal subgroup induces a Galois covering A lev
pol →

Apol of finite degree. The effective Galois group ΓG of this Galois covering is isomor-
phic to

ΓG
∼=
{

Sp(∆) for d1:g−1 = 1,2
Sp(∆)/ < ± �

2g > otherwise.
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Proof.
See [Bra93]. �

Lemma 5.2.8: Factorisation of the Galois group.
Define

S :=
g−1⊕

n=1

Sp
(
2(g−n),Zdn

)
.

For a coprime polarisation we have an isomorphism

ΓG
∼=
{

S for d1:g−1 = 1,2
S/ < ± �

2g > otherwise
.

Proof.
With Lemma 5.2.7 we know that we can determine ΓG from S as claimed. This means
that we need to calculate the group of automorphisms of

K(∆) = (Z×·· ·×Z)2
/(Z×d1Z×·· ·×d1:g−1Z)2

that leave the form e∆ invariant, i. e. for ϕ ∈ ΓG we have e∆ ◦ (ϕ ×ϕ) = e∆. Since no
confusion can occur we will simply write e∆ ◦ϕ = e∆. Since the dn are coprime, the
Chinese remainder theorem tells us that

K(∆) ∼= Z2(g−1)
d1

×·· ·×Z2
dg−1

=: K.

For n = 1, . . . ,g−1 denote the standard generators of the factors

Z2
d1:n

⊂ K(∆) and (Zd1 ×·· ·×Zdn)
2 ⊂ K

by { f n
1 , f n

2 } and {gn
1, . . . ,g

n
2n}, respectively. With respect to these generators the alter-

nating form e∆ on K(∆) is given by

e∆( f n
a , f m

b ) =





exp( 2πi
d1:n

) for n = m and a = 1,b = 2
exp(− 2πi

d1:n
) for n = m and a = 2,b = 1

1 otherwise
.

On K, define the alternating form e′ by

e′(gn
a,g

m
b ) :=





exp( 2πi
dn

) for n = m and a = b−n
exp(− 2πi

dn
) for n = m and a = b+n

1 otherwise
.

Obviously, e′ =
⊕

e′n where e′n are the alternating forms on Z2(g−n)
dn

that induce the
standard symplectic structure. This shows that Sp(K) =

⊕
Sp(2(g−n),Zdn).

We claim that there is an isomorphism α : Aut(K(∆))→Aut(K) with the property
α(Sp(∆)) = Sp(K). This is proved by explicitely giving an isomorphism α : K(∆)→K
which induces such an α :
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Let d( j)
1:n := d1: j−1d j+1:n for j = 1, . . . ,n. Since the d j are pairwise coprime and

hence gcd(d( j)
1:n) j=1,...,n = 1, there exist λ n

j ∈ Z such that

(5.10)
n

∑
j=1

λ n
j d( j)

1:n = 1.

This also means that λ n
j d( j)

1:n ≡ 1 mod d j for all j.
For the subspaces mentioned above define αn by

αn :

{
Z2

d1:n
→ (Zd1 ×·· ·×Zdn)

2

(a1,a2) 7→ (λ n
1 a1, . . . ,λ n

n a1,a2, . . . ,a2)
.

Then the inverse map is given by

α−1
n :





(Zd1 ×·· ·×Zdn)
2 → Z2

d1:n

(b1, . . . ,b2n) 7→ (
n

∑
j=1

d( j)
1:nb j,

n

∑
j=1

λ jd
( j)
1:nbn+ j)

.

These maps are well defined homomorphisms and an easy calculation shows that they
are indeed inverse maps, so α :=

⊕
αn is a bijection. Furthermore, this bijection is

equivariant with respect to the forms defined above, i. e. we have e′ ◦α = e∆. This can
be seen because e∆ and e′ are both multiplicative and for the generators f n

a we have

(e′ ◦α)( f n
a , f m

b ) = e′(δa,1

n

∑
k=1

λ n
k gn

k +δa,2

2n

∑
k=n+1

gn
k ,δb,1

m

∑
l=1

λ m
l gm

l +δb,2

2m

∑
l=m+1

gm
l )

= 1 = e∆( f n
1 , f m

2 )

for n 6= m and any a,b ∈ {1,2}. This follows from e′(gn
k ,g

m
l ) = 1 for all k, l. Here,

δx,y is the Kronecker symbol, which is 1 if x = y and 0 otherwise. For the remaining
combinations of generators we obtain

(e′ ◦α)( f n
1 , f n

1 ) = e′(
n

∑
k=1

λ n
k gn

k ,
n

∑
l=1

λ n
l gn

l ) = 1 = e∆( f n
1 , f n

1 ),

(e′ ◦α)( f n
2 , f n

2 ) = e′(
2n

∑
k=n+1

gn
k ,

2n

∑
l=n+1

gn
l ) = 1 = e∆( f n

2 , f n
2 ) and

(e′ ◦α)( f n
1 , f n

2 ) = e′(λ n
1 gn

1 + · · ·+λ n
n gn

n,g
n
n+1 + · · ·+gn

2n)

= exp(λ n
1

2πi
d1

) · . . . · exp(λ n
n

2πi
dn

)

= exp
(

2πi
d1:n

(λ n
1 d(1)

1:n + · · ·+λ n
n d(n)

1:n)
)

and with (5.10)

= exp( 2πi
d1:n

) = e∆( f n
1 , f n

2 ).

By α(ϕ) := α ◦ ϕ ◦ α−1 we now have an isomorphism between the groups
Aut(K(∆)) and Aut(K). Let ϕ ∈ Sp(∆) and ψ := α(ϕ) = α ◦ϕ ◦α−1. Then

e′ ◦ψ = e′ ◦α ◦ϕ ◦α−1 = e∆ ◦ϕ ◦α−1 = e∆ ◦α−1 = e′
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which means that ψ ∈ Sp(K), hence α(Sp(∆)) ⊂ Sp(K). Analogously, for ψ ∈ Sp(K)
and ϕ := α−1(ψ) = α−1 ◦ψ ◦α we obtain

e∆ ◦ϕ = e∆ ◦α−1 ◦ψ ◦α = e′ ◦ψ ◦α = e′ ◦α = e∆

and hence ϕ ∈ Sp(∆), which proves equality. �
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Chapter 6

Putting it all together

6.1 Main Theorem

We shall now combine the facts collected so far to prove our main theorem.

Theorem 6.1.1: General type for general genus.
For any genus 3 ≤ g ≤ 9 and coprime d1, . . . ,dg−1 ∈ N with d1:g−1 6= 2, the mod-
uli space Apol(n) of (1,d1, . . . ,d1:g−1)-polarised Abelian varieties with a full level-n
structure is of general type, provided gcd(n,d1:g−1) = 1,n ≥ 3 and

n >
(2g +1)d2:g−2

(g+1)2g−3 min

{
d1

C(L(d1, . . . ,dg−1))
,

dg−1

C(L(dg−1, . . . ,d1))

}

where

C(L(x1, . . . ,xg−1)) = min

{
1, min

2≤r≤g

{ √
3

r
√

∏r−1
i=1 xi

i

}}
.

Proof.
First of all, if d1:g−1 = 1 we are in the principally polarised case and much weaker
bounds than the one given are already known. Hence, we may assume d1:g−1 > 2.
Furthermore, we may assume the di to be square-free. Otherwise, we may write di =
s2

i ei where the ei are square-free. Then, according to Lemma 3.2.14, we can conjugate
Γpol,d(n) such that it becomes a subgroup of Γpol,e(n). This means that we have a
map π4 : (Apol,d(n))∼ → (Apol,e(n))∼ and after some blowing-up this map becomes
a morphism. By this morphism each form on (Apol,e(n))∼ gives rise to a form on a
suitable blow-up of (Apol,d(n))∼ which implies that, if we can show general type for
the (square-free) polarisation e, we also have general type for the polarisation d.

We consider the construction given in section 5.1. For Ag, Theorem 1.2.35 tells us
we have a cusp form χ of weight wχ = (2g +1)2g−2 that vanishes of order vχ = 22g−5

according to Theorem 1.2.36.
Since we have n ≥ 3 we know that Γ̃pol(n) is neat1 and hence operates without

fixed points. This implies that the quotient by P′′ introduces no singularities, and since
(Apol)

∼ is stack-smooth we know that (Apol(n))∼ is smooth.
The map π3 needs to be branched of order n. According to Lemma 5.2.5 this is

implied by the condition gcd(n,d1:g−1) = 1. We can now calculate a bound for the

1See Remark 2.2.32
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level n by the construction described in section 5.1, which gives

(6.1) n >
wχ m2(i)|C lev

pol (i)|
(g+1)vχ M1(i)C(L)

.

Here we need that Proposition 3.3.8 holds and hence we can only prove the theorem
for g ≤ 9. Let us now calculate this value explicitely.

From Lemma 3.3.5 we know that the cusps of Apol are given by vectors of the
form

Ci = (D1:g−1,D2:g−1, . . . ,Dg−1,1,0, . . . ,0).

Let us consider such a cusp and the set C lev
pol (i) consisting of the primitive vectors of

the form

C j
i = (D1:g−1,D2:g−1a2, . . . ,ag,0,D2:g−1ag+2, . . . ,a2g)

with 0 ≤ ak,ag+k < D1:k−1 for k = 2, . . . ,g. From Lemma 5.2.3 and Lemma 5.2.4 we
know that

m1(i, j) = gcd(D1:g−1,D2:g−1a2, . . . ,ag)
2 and m2(i) = D1:g−1.

Define Bk|dk for k = 1, . . . ,g−1 by B2
1:k = m1(i, j). This definition is unique because

the dk are coprime. We now have

(6.2) B1:g−1 = gcd(D1:g−1,D2:g−1a2, . . . ,ag).

We need to count these vectors, and we can do this using Lemma A.11. We let both
the di and ci of the lemma to be equal to Di and the bi of the lemma to be equal to Bi.
Then we obtain that the number of (g−1)-tuples (a2, . . . ,ag) satisfying equation (6.2)

is ∏g−1
j=1 ϕg− j(

D j

B j
).

On the other hand, C j
i is a primitive vector, so we have

1 = gcd(D1:g−1,D2:g−1a2, . . . ,ag,0,D2:g−1ag+2, . . . ,a2g)

= gcd(B1:g−1,D2:g−1ag+2, . . . ,a2g)

and Lemma A.11 (this time by letting also the ci of the lemma to be equal to Bi)
states that we have a choice of ∏g−1

j=1 ϕg− j(B j)
(D j

B j
)g− j values for the (g − 1)-tuple

(ag+2, . . . ,a2g). So all in all

∣∣∣
{

C j
i ∈ C

lev
pol (i) : m1(i, j) = B2

1:g−1

}∣∣∣=
g−1

∏
j=1

ϕg− j(
D j

B j
)

g−1

∏
j=1

ϕg− j(B j)
(D j

B j

)g− j

=
g−1

∏
j=1

ϕg− j(D j)
(D j

B j

)g− j

where we use the property that the dk and hence the Dk are square-free, because this
implies that in the cases considered the functions ϕg− j are multiplicative. Taking the
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unweighted and weighted sum over all Bk|Dk we therefore get

|C lev
pol (i)| = ∑

B1|D1

· · · ∑
Bg−1|Dg−1

g−1

∏
j=1

ϕg− j(D j)
(D j

B j

)g− j

=
( g−1

∏
j=1

ϕg− j(D j)
)

∑
B1|D1

· · · ∑
Bg−1|Dg−1

g−1

∏
j=1

(D j

B j

)g− j

=
( g−1

∏
j=1

ϕg− j(D j)
) g−1

∏
j=1

∑
B j|D j

(D j

B j

)g− j

=
g−1

∏
j=1

(
ϕg− j(D j) ∑

B′
j|D j

(B′
j)

g− j
)

=
g−1

∏
j=1

ϕg− j(D j)σg− j(D j)

and analogously

M1(i) = ∑
B1|D1

· · · ∑
Bg−1|Dg−1

g−1

∏
j=1

ϕg− j(D j)
(D j

B j

)g− j ·B2
1:g−1

=
g−1

∏
j=1

ϕg− j(D j)
g−1

∏
j=1

∑
B j|D j

Dg− j
j

Bg− j−2
j

=
g−1

∏
j=1

ϕg− j(D j)
[( g−2

∏
j=1

∑
B j|D j

(D j

B j

)g− j−2
D2

j

)
∑

Bg−1|Dg−1

Dg−1Bg−1

]

=
g−1

∏
j=1

ϕg− j(D j)
[
D2

1:g−2Dg−1

( g−2

∏
j=1

σg− j−2(D j)
)

σ1(Dg−1)
]
.

Inserting this into condition (6.1) (using m2(i) = D1:g−1) the product of the ϕg− j can-
cels and we are left with

n >
wχ

(g+1)vχC(L)

D1:g−1 ·∏g−1
j=1 σg− j(D j)

D2
1:g−2Dg−1σ1(Dg−1)∏g−2

j=1 σg− j−2(D j)

=
wχ

(g+1)vχC(L)

∏g−1
j=1 σg− j(D j)

D1:g−2σ1(Dg−1)∏g−2
j=1 σg− j−2(D j)

and since σa+b(D) = ∑B|D Ba+b ≤ ∑B|D BaDb = Dbσa(D) this is implied by

⇐= n >
wχ

(g+1)vχC(L)

∏g−2
j=1 σg− j−2(D j)D2

j ·σg−(g−1)(Dg−1)

D1:g−2σ1(Dg−1)∏g−2
j=1 σg− j−2(D j)

=
wχ

(g+1)vχC(L)
D1:g−2.
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This condition has to hold true for all valid Dk|dk which obviously gives the condition

n >
wχd1:g−2

(g+1)vχC(L)

=
(2g +1)2g−2d1:g−2

(g+1)22g−5C(L)

=
(2g +1)d1:g−2

(g+1)2g−3C(L)

=
(2g +1)d1:g−2

(g+1)2g−3 min{min2≤r≤g
√

3 r

√
∏r−1

i=1 di
i ,1}

.

Finally, we may use the symmetry given in Lemma 2.2.35 to obtain the other term of
the statement. �

To conclude this thesis, we give the bound for some special kinds of polarisations
as corollaries:

Corollary 6.1.2.
For any genus 3 ≤ g ≤ 9 and d ∈ N, d ≥ 3, the moduli space Apol(n) of (1, . . . ,1,d)-
polarised Abelian varieties with a full level-n structure is of general type, provided
gcd(n,d) = 1, n ≥ 3 and

n >
2g +1

(g+1)2g−3
√

3
g
√

dg−1.

The same bound for the level applies for the moduli space of (1,d, . . . ,d)-polarised
abelian varieties with a full level-n structure.

If the polarisation is of type (1, . . . ,1,d, . . . ,d) where 1 < i < g−1 is the number
of 1’s, the bound is

n >
2g +1

(g+1)2g−3
√

3
d min{1,

g
√

dmin{i,g−i}}.

Proof.
If the polarisation is of type (1, . . . ,1,d) we have d1 = · · · = dg−2 = 1 and dg−1 = d.
Therefore,

C(L(d1, . . . ,dg−1)) = min{1,min{
√

3, . . . ,
√

3,
√

3
g√dg−1

}}

= min{1,
√

3
g√dg−1

} and

C(L(dg−1, . . . ,d1)) = min{1,min{
√

3√
d
, . . . ,

√
3

g√d
}}

= min{1,
√

3
g√d
}.

Hence, Theorem 6.1.1 gives the bound

n >
2g +1

(g+1)2g−3 min





1

min{1,
√

3
g√dg−1

}
,

d

min{1,
√

3
g√d
}





=
2g +1

(g+1)2g−3 min

{
max

{
1,

g
√

dg−1
√

3

}
,max

{
d,

g
√

dg+1
√

3

}
}

.(6.3)
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Let
M1 := max{1,3−1/2 g

√
dg−1} and M2 := max{d,3−1/2 g

√
dg+1}.

Since g ≥ 3 we have g < 2(g−1) which implies

3−1/2 g
√

dg−1 ≤ 1 ⇐⇒ g
√

dg−1 ≤
√

3 ⇐⇒ d ≤ 3
g

2(g−1) < 3

and therefore d ≥ 3 leads to M1 = 3−1/2 g
√

dg−1. On the other hand,

M2 ≥ 3−1/2 g
√

dg+1 ≥ 3−1/2 g
√

dg−1 = M1

and hence the minimum in equation (6.3) is always equal to M1. This shows the first
statement.

If the polarisation is of type (1,d, . . . ,d) we have d1 = d and d2 = · · · = dg−1 = 1
and the same reasoning applies with the roles of M1 and M2 exchanged.

For the polarisation of type (1, . . . ,1,d, . . . ,d) we have di = d and d j = 1 for j 6= i.
Therefore,

C(L(d1, . . . ,dg−1)) = min{1,min{
√

3, . . . ,
√

3,
√

3
i+1√di

, . . . ,
√

3
g√di

}}

= min{1,
√

3
g√di

} and similarly

C(L(dg−1, . . . ,d1)) = min{1,
√

3
g√dg−i

}.

Hence, Theorem 6.1.1 gives the bound

n >
(2g +1)d

(g+1)2g−3 min





1

min{1,
√

3
g√di

}
,

1

min{1,
√

3
g√dg−i

}





=
(2g +1)d

(g+1)2g−3 min
{

max{1,3−1/2 g
√

di},max{1,3−1/2 g
√

dg−i}
}

=
(2g +1)d

(g+1)2g−3 min
{

1,3−1/2 g
√

dmin{i,g−i}}.

�

Remark 6.1.3.
To make this result more accessible, we give a table for the lower bounds for n in the
case of polarisations of type (1, . . . ,1,d). Note that we have disregarded the condition
gcd(d,n) = 1 to make make the pattern more obvious.

g\d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 10 10
4 3 3 4 4 5 5 6 6 6 7 7 8 8 8 9 9 9 10
5 3 3 3 4 4 5 5 6 6 6 7 7 7 8 8 9 9 9
6 3 3 3 3 4 4 5 5 5 6 6 7 7 7 8 8 8 9
7 3 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8
8 3 3 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8
9 3 3 3 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7
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Corollary 6.1.4.
Let s, t > 1 be integers with gcd(s, t) = 1. Then the moduli space Apol(n) of (1,s,st)-
polarised Abelian varieties with a full level-n structure is of general type provided
gcd(n,st) = 1 and

n > 3
4

√
3 3

√
s2t2 min{s, t}2.

Proof.
From Theorem 6.1.1 we obtain the bound

n >
9
4

min





s

min{1,
√

3√
s ,

√
3

3√st2
}
,

t

min{1,
√

3√
t
,

√
3

3√s2t
}



 .

Due to the symmetry we may assume s < t without loss of generality. Let M1 be the
denominator of the first fraction and M2 the denominator of the second.

First, we consider M1. Since 1 < s < t we have s2t4 > 27 which implies
√

3
3√st2

< 1.

Furthermore, since s < t implies s < t4 we also have
√

3
3√st2

<
√

3√
s . Hence, M1 =

√
3

3√st2
.

Now, consider M2. Again, 1 < s < t implies s4t2 > 27 and hence
√

3
3√s2t

< 1. Con-

trary to M1, we cannot exclude one of the other two possibilities, so we have

M2 =

{ √
3√
t

if s4 ≤ t
√

3
3√

s2t
if s4 > t

.

The bound for n can now be given by

n >
9
4

min

{
3
√

s4t2
√

3
,

t
M2

}
.

For s4 ≤ t we have t
M2

=
√

t3√
3

which is greater than
3√s4t2√

3
since otherwise we had

√
t3 ≤ 3

√
s4t2 ⇐⇒ t9 ≤ s8t4 ⇐⇒ t5 ≤ s8 s4≤t

=⇒ t5 ≤ s8 ≤ t2,

which is a contradiction to t > 1. So in this case the minimum is given by the first
fraction.

For s4 > t we have t
M2

=
3√s2t4√

3
which is obviously greater than the first fraction

since s < t. Hence, in both cases we obtain the bound

n >
9
4

3
√

s4t2
√

3
=

3
4

√
3

3
√

s4t2.

Note that 1 < s < t implies that the minimal value of n satisfying this inequality is
n = 7 so that we do not need to state the condition n ≥ 3 seperately. �

Remark 6.1.5.
To give an impression of the case g = 3, we give the following table of minimal values
for n for a fixed polarisation of type (1,s,st) for arbitrary s, t ∈ N. Where the level
had to be increased to satisfy the condition gcd(n,st) = 1 this is denoted by a pair
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of brackets around the increased value. The empty spaces result from the conditions
st 6= 2 and gcd(s, t) = 1.

s\t 1 2 3 4 5 6 7 8 9 10
1 3 (4) (5) 4 5 5 (7) (7) 7
2 7 (11) (13) (17)
3 (4) 7 (17) 17 (22) 23 (29)
4 (5) (17) (27) 31 (37)
5 4 (11) 17 (27) 37 41 (47) 49
6 5 37 (53)
7 5 (13) (22) 31 41 (53) (71) 76 81
8 (7) 23 (47) (71) (91)
9 (7) (17) (37) 49 76 (91) 113

10 7 (29) 81 113

Remark 6.1.6.
We need the constant condition n ≥ 3 to know that Γ(n) is neat and so we have no
singularities coming from the group action. However, if we consider only principal
polarisations, Y.-S. Tai showed in [Tai] that for g ≥ 5 all singularities that occur on
a suitable toroidal compactification are canonical. An argument by Salvetti Manni2

shows that a similar reasoning can be applied to g = 4. Since this means that we can
extend pluricanonical forms to a smooth model we may drop the condition n ≥ 3 in
this case. The same reasoning we employed for Theorem 6.1.1 now leads to the bound

n >
2g +1

(g+1)2g−3

which gives (including the known results for g = 1,2)

g 1 2 3 4 5 6 7 8 9
n 7 4 3 2 2 2 2 1 1

.

These are exactly the numbers given in [HS, p. 17], except for g = 7 where n = 1
is known to be sufficient. Note that for g = 1,2 the above formula remains true and
even gives a sharp bound. Note also that this gives the known result that Ag is of
general type for g ≥ 8. This was originally proved by E. Freitag [Fre83], respectively
D. Mumford [Mu3] and is better by 1 that the result by Y.-S. Tai [Tai].

2given in [HS, p. 19]
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Appendix A

Technical lemmata

In the appendix we want to state the lemmata that were used in the text but not yet
proved, since their nature is mainly technical.

Lemma A.1.
Let g,d ∈ N and A = (ai j) ∈ Zg×g. If there exists k ∈ {1, . . . ,g} such that for all i, j
satisfying 1 ≤ j ≤ k ≤ i ≤ g we have d|ai j , then d|det(A).

Proof.
We prove this by induction over g. For g = 1 the claim is trivial.

Assume the claim is true for some g, i. e. we have

(A.1) (∃1 ≤ k′ ≤ g ∀1 ≤ j′ ≤ k′ ≤ i′ ≤ g : d|a′i′ j′) =⇒ d|det(A′).

Let A ∈ Z(g+1)×(g+1) and k ∈ {1, . . . ,g+1} such that it fulfils the condition

(A.2) ∀1 ≤ j ≤ k ≤ i ≤ g+1 : d|ai j .

We want to calculate det(A) using the expansion by minors along the kth column.
Denote the minors by A(i,k). If k is odd we have

det(A) = a1,k|A(1,k)|∓ · · ·+ak−1,k|A(k−1,k)|−ak,k|A(k,k)|± · · ·+ag+1,k|A(g+1,k)|
≡ a1,k|A(1,k)|∓ · · ·+ak−1,k|A(k−1,k)| mod d

since d divides the other ai,k by (A.2). Now, the A(i,k) are g× g-matrices and by con-
struction satisfy the condition of (A.1) for k ′ = k− 1. The assumption now provides
d|det(A(i,k)) for all i = 1, . . . ,k − 1 and hence d|det(A). For even k only the signs
change but the same reasoning may be employed. �

Lemma A.2.
Let x1,x2 and y1, . . . ,yi be integers with x1 6= 0 and gcd(x1,x2,y1, . . . ,yi) = d ∈N. Then
there exist integers α1, . . . ,αi ∈ Z such that gcd(x1,x2 +α1y1 + · · ·+αiyi) = d.

Proof.
If y1 = · · · = yi = 0 there is nothing to prove. Assume this is not the case. Let
z := gcd(y1, . . . ,yi). Since any multiple of z can be expressed as an integral lin-
ear combination of y1, . . . ,yi, is suffices to show that there exists an integer α with
gcd(x1,x2 +αz) = d.
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Let s := gcd( x2
d , z

d ) and write x2 = dsm,z = dsn. By definition of s we have
gcd(m,n) = 1. Let t := x1

d . By assumption we have gcd(s, t) = 1. To find an α with
the property stated above, it therefore suffices to find α with u := m + αn satisfying
gcd(t,u) = 1, because we obtain

1 = gcd(t,u) = gcd(t,m+αn)

=⇒ gcd(t,sm+αsn) = 1

=⇒ d = gcd(dt,dsm+αdsn)

= gcd(x1,x2 +αz)

= gcd(x1,x2 +α(λ1y1 + · · ·+λiyi))

for suitable λ1, . . . ,λi.
Now, let p j be the primes dividing t for j = 1, . . . ,k. If p j does not divide m set

a j = 0, while if p j divides m set a j = 1, so that in any case p j does not divide m+a jn.
Now apply the Chinese remainder theorem to obtain α satisfying the congruences
α ≡ a j(mod p j) for j = 1, . . . ,k. �

Lemma A.3.
Assume we are given a lattice h ⊂ ZN with a basis v1, . . . ,vn and a vector u ∈ h which
is either

• known to be primitive with respect to h or

• given as a linear combination u = ∑n
i=1 λivi with gcd(λ1, . . . ,λn) = 1.

Then we can find a basis u1, . . . ,un of h such that u1 = u.

Proof.
Since u ∈ h we can always write u = ∑n

i=1 λivi. If u is primitive this also implies
gcd(λ1, . . . ,λn) = 1, so we may assume this condition in both cases. Hence, we
can find a unimodular integer matrix A = (ai j) with first row vector (a11, . . . ,a1n) =
(λ1, . . . ,λn). This matrix can act as basis transformation matrix




u1
...

un


 := A




v1
...

vn


 .

Due to the construction of the first row of A we have u1 = u. Obviously,
⊕

uiZ ⊂⊕
viZ. Since A is unimodular, A−1 is again an integer matrix, and thus

⊕
viZ⊂⊕uiZ.

This shows that u1, . . . ,un is indeed a basis of h. �

Lemma A.4.
Assume we are given a coprime polarisation, vectors v1, . . . ,vn ∈Z2g and a unimodular
integer matrix A. Consider the basis transformation




u1

...
un


 := A




v1

...
vn


 .
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Then
gcd
(
Dk(u

1), . . . ,Dk(u
n)
)

= gcd
(
Dk(v

1), . . . ,Dk(v
n)
)

for any 1 ≤ k ≤ g−1.

Proof.
Assume the notation A = (ail). The jth entry of the ith vector is given by

ui
j =

n

∑
l=1

ailv
l
j.

Recall that by definition

Dk(u
i) = gcd

(
dk,

ui
j|g+ j

D j:k−1(ui)

)
j=1,...,k

and since the polarisation is coprime and Dr|dr we have gcd(dk,Dr(ui)) = 1 for r 6= k
which implies

Dk(u
i) = gcd(dk,u

i
j|g+ j) j=1,...,k

and so

gcd
(
Dk(v

1), . . . ,Dk(v
n)
)

= gcd(dk,v
1
j|g+ j, . . . ,v

n
j|g+ j) j=1,...,k

= gcd(dk,v
i
j,v

i
g+ j)i=1,...,n; j=1,...,k

divides

gcd(dk,
n

∑
l=1

ailv
l
j,

n

∑
l=1

ailv
l
g+ j)i=1,...,n; j=1,...,k = gcd(dk,u

i
j,u

i
g+ j)i=1,...,n; j=1,...,k

= gcd(dk,u
1
j|g+ j, . . . ,u

n
j|g+ j) j=1,...,k

= gcd
(
Dk(u

1), . . . ,Dk(u
n)
)
.

Since A−1 is also a unimodular integer matrix we also obtain divisibility in the other
direction, and since both numbers are positive integers this implies equality. �

Lemma A.5.
Assume a,b,d ∈ Z given. Let ∆ = diag(1,d). Then there exists a matrix G ∈ SD(∆)
such that (a,b)G = (u,v) with v = gcd(a,b).

Proof.
Denote x := gcd(a,b). Then there exist integers α ,β ∈ Z such that

αa+βb = x =⇒ α a
x +β b

x = 1

=⇒ gcd( a
x ,β ) = 1.(A.3)

Furthermore, we have for all t ∈ Z:

(α + t b
x )a+(β − t a

x )b = x =⇒ (α + t b
x )

a
x +(β − t a

x )
b
x = 1

=⇒ gcd(α + t b
x ,β − t a

x ) = 1.(A.4)
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Now chose
t = ∏

p prime
p|d,p-β

p.

Then we claim

(A.5) gcd(β − t a
x ,d) = 1.

This can be seen as follows: Let p be a prime dividing d. Then either p|β which
implies both gcd(p, a

x ) = 1 because of equation (A.3) and gcd(p, t) = 1 by choice of t;
this in turn implies gcd(β − t a

x , p) = 1. Or we have p - β . Then p|t by choice of t and
hence again gcd(β − t a

x , p) = 1. Equation (A.5) follows.
Combining equations (A.5) and (A.4) we obtain gcd

(
β − t a

x ,d(α + t b
x )
)

= 1 and
hence there exist integers λ ,µ ∈ Z with

λ (β − t a
x )−µd(α + t b

x ) = 1.

Therefore, the matrix

G =

(
λ α + t b

x
dµ β − t a

x

)

satisfies the properties claimed. �

Corollary A.6.
Assume g≥ 2, let (1,d1, . . . ,d1:g−1) be any polarisation and ∆ = diag(1,d1, . . . ,d1:g−1).
For any v =(v1, . . . ,vg)∈Zg we can find a matrix G∈SD(∆) such that u := vG satisfies
ug = gcd(v1, . . . ,vg).

Proof.
The proof is by induction and shows that G can be chosen to be of the form

(A.6) G =




β1 0 . . . 0 α1

0 β2 0 α2
...

. . .
...

...
0 0 . . . βg−1 αg−1

d1:g−1γ1 d2:g−1γ2 . . . dg−1γg−1 αg




.

For g = 2 this is exactly the statement of Lemma A.5. For the induction, fix any g ≥ 2
and assume we can find Gg of the form (A.6) satisfying

(A.7) detGg = 1 and
g

∑
i=1

αivi = gcd(v1, . . . ,vg).

Now let the polarisation for g + 1 be given by (1,d0,d0:1, . . . ,d0:g−1) and v =
(v0,v1, . . . ,vg).

We use Lemma A.5 with a = v0,b = gcd(v1, . . . ,vg) and d = d0:g−1 ∏g−1
i=1 βi to

obtain a matrix G′ =
( µ0 λ0

dµ1 λ1

)
satisfying

(A.8) detG′ = 1 and λ0v0 +λ1 gcd(v1, . . . ,vg) = gcd(v0, . . . ,vg).
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Now define the matrix Gg+1 to be

Gg+1 :=




µ0 0 0 . . . 0 λ0

0 β1 0 0 λ1α1

0 0 β2 0 λ1α2
...

. . .
...

0 0 . . . 0 βg−1 λ1αg−1

d0:g−1µ1 d1:g−1γ1 . . . dg−2:g−1γg−2 dg−1γg−1 λ1αg




.

Then we have for u := vGg+1 with u = (u0, . . . ,ug)

ug = λ0v0 +λ1α1v1 + · · ·+λ1αgvg

= λ0v0 +λ1

g

∑
i=1

αivi

(A.7)
= λ0v0 +λ1 gcd(v1, . . . ,vg)

(A.8)
= gcd(v0, . . . ,vg).

Furthermore, by developing along the first column

detGg+1 = µ0 det




β1 . . . λ1α1
...

. . .
...

d1:g−1γ1 . . . λ1αg


+

+(−1)gd0:g−1µ1 det




0 . . . 0 λ0

β1
. . .

... λ1α1

0
. . . 0

...
0 . . . βg−1 λ1αg−1




.

Apart from the factor λ1 which we can take out of the last column, the first matrix is
exactly Gg. The second determinant can be developed along the first row to

detGg+1 = µ0λ1 detGg +(−1)gd0:g−1µ1 · (−1)g−1λ0 det
(

diag(β1, . . . ,βg−1)
)

(A.7)
= µ0λ1 ·1−µ1λ0(d0:g−1

g−1

∏
i=1

βi) and by definition of d

= µ0λ1 −dµ1λ0

= detG′ (A.8)
= 1

and hence Gg+1 is as claimed. �

Corollary A.7.
Assume g ≥ 2 with any polarisation and v = (v1, . . . ,vg,0, . . . ,0) ∈ Z2g. Then there
exists a matrix M ∈ Γ̃pol such that for u = (u1, . . . ,u2g) := vM ∈ Z2g we have ug =
gcd(v1, . . . ,vg). Furthermore, M can be chosen such that it is an automorphism of the
sublattices Zg ×{0}g ⊂ Z2g and {0}g ×Zg ⊂ Z2g.
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If we choose a set of indices 1 ≤ i1 < · · · < in ≤ g then there exists M ∈ Γ̃pol such
that uin = gcd(vi1 , . . . ,vin) and M is an automorphism of the sublattices

⊕
j ei j Z and⊕

j eg+i j Z where ei j is the i jth unit vector.

Proof.
Use Corollary A.6 to obtain a matrix G ∈ SD(∆) satisfying u′

g = gcd(v1, . . . ,vg) for
u′ := (v1, . . . ,vg)G. Since SD(∆) is a multiplicative group, G−1 ∈ SD(∆). Now, M =(

G 0
0 G−1

)
satisfies the properties claimed.

The proof goes through the same if we restrict everything to the sublattice⊕
j(ei j Z⊕ eg+i jZ). �

Lemma A.8.
Let v = (v1, . . . ,vn) ∈ Zn. Then we can find an integer matrix T of the form

T =




∗ • • . . . • v1

∗ ∗ • • v2
...

. . . . . .
...

...
∗ . . . ∗ • vn−2

∗ . . . ∗ vn−1

∗ . . . ∗ vn




(where the • are arbitrary fixed integer values) such that det(T ) = gcd(v1, . . . ,vn).

Proof.
We prove the claim by induction.

For n = 2 we have the matrix T =
( t11 v1

t21 v2

)
. We can choose t11, t21 such that

det(T ) = t11v2 − t21v1 = gcd(v1,v2)

which completes this case.
Let n ∈ N be arbitrary and assume the claim holds for n− 1. Let T (i) and T (i, j)

denote the submatrices of T that consist of the columns 2 to n− 1 with the ith or ith
and jth rows removed. Expansion of the determinant along the 1st column shows that

det(T ) = t11

∣∣∣∣∣∣∣

v2

T (1) ...
vn

∣∣∣∣∣∣∣
− t21

∣∣∣∣∣∣∣∣∣

v1

v3

T (2)
...

vn

∣∣∣∣∣∣∣∣∣
±·· ·− (−1)ntn1

∣∣∣∣∣∣∣

v1

T (n) ...
vn−1

∣∣∣∣∣∣∣
.

In particular, t11, . . . , tn1 can be chosen such that the claim holds if

(A.9) F := gcd




∣∣∣∣∣∣∣

v2

T (1) ...
vn

∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣

v1

v3

T (2) ...
vn

∣∣∣∣∣∣∣∣∣
, . . . ,

∣∣∣∣∣∣∣

v1

T (n) ...
vn−1

∣∣∣∣∣∣∣




?
= gcd(v1, . . . ,vn).

We now prove this equality. The first matrix is a n− 1× n− 1 matrix of the special
form needed for the induction. We may therefore assume that

(A.10)

∣∣∣∣∣∣∣

v2

T (1) ...
vn

∣∣∣∣∣∣∣
= gcd(v2, . . . ,vn) =: f .

108



Chapter A. Technical lemmata

Furthermore, expansion of this determinant along the last column gives

v2|T (1,2)|∓ · · ·+(−1)nvn|T (1,n)| = −(−1)n f

⇐⇒ v2
f |T

(1,2)|∓ · · ·+(−1)n vn
f |T

(1,n)| = −(−1)n1

=⇒ gcd
(
|T (1,2)|, . . . , |T (1,n)|

)
= 1.(A.11)

Now we can simplify F by using expansion of the determinants along the last columns.
Almost all terms of these expansions are multiples of f because they contain one of
v2, . . . ,vn. Since according to (A.10) the first term in the gcd of (A.9) is equal to f
these terms are not needed to determine the value of F . Hence, we are left with

F = gcd
(

f ,v1|T (1,2)|, . . . ,v1|T (1,n)|
)

= gcd
(

f ,v1 gcd
(
|T (1,2)|, . . . , |T (1,n)|

))

and because of equation (A.11) this gives

= gcd( f ,v1) = gcd(v1, . . . ,vn).

So, the equation in (A.9) is true and hence we can find T as claimed. �

Lemma A.9.
Let a1,a2,b1,b2,c ∈ Z. Then

a2
1|b2

1c and a2
2|b2

2c =⇒ ai|bic for i = 1,2 and a1a2|b1b2c.

Proof.
Let p be any prime number and define e(p,n) = m : ⇐⇒ pm|n and pm+1 - n.

Then we have

a2
i |b2

i c ⇐⇒ ∀p : 2e(p,ai) ≤ 2e(p,bi)+ e(p,c)

⇐⇒ ∀p : e(p,ai) ≤ e(p,bi)+ 1
2 e(p,c)(A.12)

=⇒ ∀p : e(p,ai) ≤ e(p,bi)+ e(p,c)

=⇒ ai|bic

and by adding inequality (A.12) for i = 1,2 we obtain

∀p : e(p,a1)+ e(p,a2) ≤ e(p,b1)+ e(p,b2)+ 2
2 e(p,c) ⇐⇒ a1a2|b1b2c

as claimed. �

Lemma A.10.
Let n ∈ N and a,b1, . . . ,bn ∈ Z. Then

lcm
[ a

gcd(a,b1)
, . . . ,

a
gcd(a,bn)

]
=

a
gcd(a,b1, . . . ,bn)

.
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Proof.
We prove this by induction over n. For n = 1 the claim is trivial. Let n = 2. Then we
have

lcm
[ a

gcd(a,b1)
,

a
gcd(a,b2)

]
=

a2

gcd(a,b1)gcd(a,b2)

gcd( a
gcd(a,b1)

, a
gcd(a,b2)

)
(A.13)

=
a

gcd(gcd(a,b2),gcd(a,b1))

=
a

gcd(a,b1,b2)

which proves this case. Assume the claim holds for some n ∈ N. Then we obtain

lcm
[ a

gcd(a,b1)
, . . . ,

a
gcd(a,bn+1)

]

= lcm
[

lcm
[ a

gcd(a,b1)
, . . . ,

a
gcd(a,bn)

]
,

a
gcd(a,bn+1)

]
by assumption

= lcm
[ a

gcd(a,b1, . . . ,bn)
,

a
gcd(a,bn+1)

]

= lcm
[ a

gcd(a,gcd(b1, . . . ,bn))
,

a
gcd(a,bn+1)

]
now, with equation (A.13)

=
a

gcd(a,gcd(b1, . . . ,bn),bn+1)

=
a

gcd(a,b1, . . . ,bn+1)

as claimed. �

Lemma A.11.
Let k ∈ N and let d1, . . . ,dk ∈ N be coprime integers. Chose integers c1, . . . ,ck and
b1, . . . ,bk satisfying bi|ci|di for all i = 1, . . . ,k. Then

∣∣∣
{

(x1, . . . ,xk)
∣∣0 ≤ xi < d1:i,gcd(xici+1:k)i=0,...,k = b1:k

}∣∣∣=
k

∏
i=1

ϕk+1−i

( ci

bi

)(di

ci

)k+1−i

where we let x0 = 1 to ease the notation of the gcd.

Proof.
Define d( j)

i:k := di: j−1d j+1:k. Since the di are coprime we can rewrite the xi as

xi ≡
i

∑
j=1

yi, jd
( j)
1:i mod d1:i for i = 2, . . . ,k

where we may chose 0 ≤ yi, j < d j (and let y1,1 := x1). This, according to the Chinese
Remainder Theorem, makes the yi, j unique. Now the condition we have to consider is

b1:k = gcd
(

c1:k,c2:ky1,1,c3:k

2

∑
j=1

y2, jd
( j)
1:2, . . . ,ck

k−1

∑
j=1

yk−1, jd
( j)
1:k−1,

k

∑
j=1

yk, jd
( j)
1:k

)

= gcd
(

c1:k,c2:ky1,1,
2

∑
j=1

c( j)
1:ky2, j , . . . ,

k

∑
j=1

c( j)
1:kyk, j

)
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since ci|di and the di are coprime. Furthermore, since bi|ci and the ci are coprime we
obtain that b j|yi, j for all 1 ≤ j ≤ i. Now the above condition is equivalent to

⇐⇒ 1 = gcd
(

c1:k
b1:k

, c2:k
b2:k

y1,1

b1
,

2

∑
j=1

c( j)
1:k

b( j)
1:k

y2, j

b j
, . . . ,

k

∑
j=1

c( j)
1:k

b( j)
1:k

yk, j

b j

)
.

Now let ỹi, j := yi, j/b j . Then the equality above is equivalent to

⇐⇒ 1 = gcd
( c1

b1
, ỹ1,1, . . . , ỹk,1

)
· . . . ·gcd

( ck
bk

, ỹk,k
)

⇐⇒ 1 = gcd
( c j

b j
, ỹ j, j , . . . , ỹk, j

)
∀ j = 1, . . . ,k.

Since we have chosen 0 ≤ yi, j < d j we know 0 ≤ ỹi, j <
d j

b j
. In the restricted range

0 ≤ ỹi, j <
c j

b j
the number of possible (k − j + 1)-tuples (ỹ j, j, . . . , ỹk, j) satisfying the

conditions is given by ϕk− j+1(
c j

b j
). Since c j|d j we have exactly (

d j

c j
)k− j+1 copies of

this range. This gives the value claimed. �
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[F] Friedland, M.: Modulräume (1, p)-polarisierter Abelscher Flächen mit
Level-2-Struktur Doktorarbeit, Universität Hannover

[FS] Friedland, M. and Sankaran, G. K.: Das Titsgebäude von Siegelschen
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