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Introduction to C++

Background and First Steps

What is C++?

C++ is a programming language that was developed for both
system and application programming.

• Support for several programming paradigms: imperative,
object oriented, generic (templates)

• Emphasizes efficiency, performance and flexibility

• Applications range from embedded controllers to
high-performance super computers

• Allows direct management of hardware resources

• “Zero-cost abstractions”, “pay only for what you use”

• Open standard with several implementations

• Most important compilers:
• Open source: GCC and Clang (LLVM)
• Proprietary: Microsoft and Intel
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Background and First Steps

History

• 1979: Bjarne Stroustrup develops “C with Classes”

• 1985: First commercial C++ compiler

• 1989: C++ 2.0

• 1998: Standardization as ISO/IEC 14882:1998 (C++98)

• 2011: Next important version with new functionality (C++11)

• 2014: C++14 with many bug fixes and useful features

• 2017: C++17, current version

• 2020: upcoming standard
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Background and First Steps

First C++ Program
/* make parts of the standard library available */

#include <iostream>

#include <string>

// custom function that takes a string as an argument

���� print(std::string msg)

{

// write to stdout

std::cout << msg << std::endl;

}

// main function is called at program start

��� main(��� argc, ����** argv)

{

// variable declaration and initialization

std::string greeting = "Hello, world!";

print(greeting);

������ 0;

}
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Central Components of a C++ Program
A basic C++ program consists of two components:

Include directives to import software libraries:
• always the first lines of a program
• only one include directive per line

User-defined functions:
• like mathematical functions, with arguments and return value
• every program must implement the function

��� main(��� argc, ����** argv)

{

...

}

This function is called by the operating system when the
program is executed.
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Background and First Steps

Comments

Rules for comments in C++ code:

• Comments can be placed anywhere in the code

• Comments starting with // (C-style comments) end at a line
break:

��� i = 42; // the answer

��� x = 0;

• Multiline comments are started by /* and ended by */:

/* This comment spans

multiple lines */

��� x = 0;
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Basic Building Blocks

Functions
• During execution of a C++ program functions are called,

starting with the special function
main(��� argc, ����** argv)

• Functions can call other functions
• Function definitions consist of a function signature and a

function body:

������-type functionName(arg-type argName, ...) // signature

{

// function body

}

• The signature defines the name of the function and which
arguments it needs

• In C++, a function always has a return type. The special
type ���� is used if a function shouldn’t return anything.

• The function body describes what the function does
8 / 171



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Introduction to C++

Basic Building Blocks

Statements

��� i = 0;

i = i + someFunction();

anotherFunction();

������ i;

i = 2; // never executed

• A C++ function consists of a number of statements, executed
one by one

• Statements are separated by semicolons

• The special statement ������ val; immediately leaves the
current function and returns val as its return value

• ���� functions can leave out the value or even the whole
������ statement
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Basic Building Blocks

Variables

• Variables are used for storing intermediate values

• In C++, variables always have a fixed type (integer,
floating-point, text, . . . )

• Variables may contain upper and lower case letters, digits and
underscores, but may not start with a digit

• Names are case sensitive!

• Variables have to be declared before they can be used
• Normal variables are declared through a statement:

variable-type variableName = initial-value;

• Function arguments are declared in the function signature:

���� func(var-type1 arg1, var-type2 arg2)
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Basic Building Blocks

Important Variable Types
C++ knows many variable types, here some important ones
(ranges valid on 64-bit Linux):

// 32-bit integer, whole numbers in [−231, 231 − 1]
��� i = 1;

// 64-bit integer, whole numbers in [−263, 263 − 1]
���� l = 1;

// 8-bit integer, whole numbers in [−27, 27 − 1]
���� c = 1;

// Boolean (truth value), true (=1) or false (=0)

���� b = true;

// Text (sequence of symbols), requires #include <string>

std::string msg = "Hello";

// Floating point with double accuracy

������ d = 3.141;

// Floating point with single accuracy

����� f = 3.141;

Integer variables restricted to positive numbers by prepending
��������, with range [0, 2bits − 1]
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Introduction to C++

Basic Building Blocks

Scopes and Variable Lifetime

• A block scope is a group of statements within braces (e.g.,
function body)

• Scopes can be nested arbitrarily

• Variables have a limited lifetime:
• the lifetime of a variable starts with its declaration
• it ends when leaving the scope where it was declared

��� cube(��� x)

{

// x exists everywhere in the function

{

��� y = x * x; // y exists from here on

x = x * y;

} // here y doesn't exist anymore

������ x;

} // here x doesn't exist anymore
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Introduction to C++

Basic Building Blocks

Scopes and Name Collisions
It is impossible to create two variables with the same name within
a scope, and names in an inner scope temporarily shadow names
from an outer scope

{

��� x = 2;

��� x = 3; // compile error!

}

��� abs(��� x) { ... } // absolute value

{

��� x = -2;

{

������ x = 3.3; ��� abs = -2;

std::cout << x << std::endl; // prints 3.3

x = abs(x); // compile error, here abs is a variable!

}

x = abs(x); // now: x == 2

}
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Basic Building Blocks

Namespaces
Scopes can also have an name, and are then called namespaces.
Namespaces are used to group parts of a program together that
share functionality or form a larger unit. They are a tool for the
organization of large code bases.

��������� MyScientificProgram {

��������� LinearSolvers {

// any user-defined functions, objects, etc.,

// that deal with linear solvers

}

��������� NonlinearSolvers {

// any functions, etc., that belong to nonlinear solvers,

// e.g., Newton's method

}

}

Tools provided by the C++ standard library are in namespace std.
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Basic Building Blocks

Expressions
We use expressions to calculate things in C++

• Expressions are combinations of values, variables, function
calls, and mathematical operators, that produce some value
that can be assigned to a variable:

i = 2;

j = i * j;

d = std::sqrt(2.0) + j;

• Composite expressions like (a * b + c) * d use standard
mathematical precedence rules, known as operator
precedence

Rule Overview

https://en.cppreference.com/w/cpp/language/operator_

precedence
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Operators for Numbers
• The usual binary operators +,-,*,/
• a % b calculates the remainder of integer division of a by b:

13 % 5 // result: 3

• Division of integers always rounds to 0
• Integer division by 0 crashes the program
• = assigns its righthand side to its lefthand side, and at the

same time returns this value
a = b = 2 * 21; // both a and b have value 42

• Abbreviations for frequent combinations:

a += b; // shortcut for a = a + b (also for -,*,/,%)

x = i++; // post-increment, shortcut for x = i; i = i + 1;

x = ++i; // pre-increment, shortcut for i = i + 1; x = i;

• of course there’s also pre- and post-decrement (--)
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Introduction to C++

Basic Building Blocks

Comparison Operators

• Comparison operators produce truth values (����):

4 > 3; // true

• Available operators

a < b; // a strictly less than b

a > b; // a strictly greater than b

a <= b; // a less than or equal to b

a >= b; // a greater than or equal to b

a == b; // a equal to b (note the double =!)

a != b; // a not equal to b
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Basic Building Blocks

Combination of Truth Values

Test results can be combined using symbolic or text-based
operators:

• Combination of several tests with “and” or “or”:

a == b || b == c; // a equal b or b equal c

a == b or b == c; // a equal b or b equal c

a == b && b == c; // a equal b and b equal c

a == b and b == c; // a equal b and b equal c

• Inversion of a truth value:
!true == false;

not true == false;
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Basic Building Blocks

Texts / Strings
• Texts (strings) are stored in variables of type std::string
• Fixed strings are enclosed in double quotes

std::string msg = "Hello world!";

• Strings can be concatenated with +

std::string hello = "Hello, ";

std::string world = "world";

std::string msg = hello + world;

• They can be compared with == and !=

std::string a = "a";

a == "b"; // false

Warning

When comparing or concatenating strings, the left argument
must always be a variable!
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Programming Tasks
Task 1

Consider the “hello, world!” program. Modify the program
so that it uses a function mark that

• reads a std::string from std::cin

• adds an exclamation mark “!” to its end

• prints the resulting string using std::cout

Task 1

Add a function calculate that

• reads in two numbers, an ��� and a ������

• prints their sum and product on one line, separated by
a space

• returns their difference as a value
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Introduction to C++

Input and Output

I/O Streams under UNIX

• UNIX (and Linux) programs communicate with the operating
system using so-called I/O (Input/Output) streams

• Streams are one-way streets — you can either read from them
or write to them

• Every program starts with three open streams, namely

stdin Standard input reads user input from the
terminal, is connected to file descriptor 0

stdout Standard output receives results printed by the
program, is connected to file descriptor 1

stderr Standard error output receives diagnostic
messages like errors, is connected to file
descriptor 2
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Input and Output

Redirecting I/O Streams I
• Normally all standard streams are connected to the terminal
• Sometimes it is useful to redirect these streams to files
• stdout is redirected by writing "> fileName" after the

program name

[user@host ~] ls > files

[user@host ~] cat files

file1

file2

files

The output file is created before the command is executed
• Error messages are still printed to the terminal

[user@host ~] ls missingdir > files

ls: missingdir: No such file or directory

[user@host ~] cat files

[user@host ~]
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Input and Output

Redirecting I/O Streams II

• These three operators may be combined, of course

• stdin is read from a file by appending "< fileName"

[user@host ~] cat # no argument means copying stdin to stdout

terminal input^D # (CTRL+D) terminates input

terminal input

[user@host ~] cat < files

file1

file2

files

• stderr is saved to file by using "2> fileName"

[user@host ~] ls missingdir 2> error

[user@host ~] cat error

ls: missingdir: No such file or directory

• These three operators may be combined, of course
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Printing to the Terminal

• A C++ program can use the three streams stdin, stdout and
stderr to communicate with a user on the terminal (shell)

• Output uses std::cout. Everything we want to print is
“pushed” into the standard output using <<

#include <iostream> // required for input / output

...

std::string user = "Joe";

std::cout << "Hello, " << user << std::endl;

• A line break is created by printing std::endl (end line)
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Reading from the Terminal

• Reading user input uses std::cin

• The corresponding variable has to be created first

• Input is “pulled” out of standard input with >>

#include <iostream>

...

std::string user = "";

��� answer = 0;

std::cout << "Enter your name: " << std::endl;

std::cin >> user;

std::cout << "Enter your answer: " << std::endl;

std::cin >> answer;

std::cout << "Hi " << user << "! Your answer was: "

<< answer << std::endl;

• Input on the terminal has to be committed using the return
key
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Control Flow

Control Flow

Most programs are impossible or very difficult to write as a simple
sequence of statements in fixed order.

Examples:

• a function returning the absolute value of a number

• a function catching division by zero and printing an error
message

• a function summing all numbers from 1 to N ∈ N
• . . .

Programming languages contain special statements that execute
different code paths based on the value of an expression
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Control Flow

Branches
• The �� statement executes different code depending on

whether an expression is true or false

��� abs(��� x)

{

�� (x > 0)

{

������ x;

}

����

{

������ -x;

}

}

• The ���� clause is optional:

�� (weekday == "Wednesday")

{

cpp_lecture();

}
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Control Flow

Repetition

Often, a program has to execute the same code several times, e.g.,
when calculating the sum

�n
i=1 i

Two different approaches:

• Recursion: the function calls itself with different arguments

• Iteration: a special statement executes a list of statements
several times
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Control Flow

Recursion
• Idea: a function calls itself again and again with changed

input arguments, until some termination criterion is fulfilled:

��� sum_recursive(��� n)

{

�� (n > 0)

{

������ sum_recursive(n - 1) + n;

}

����

{

������ 0;

}

}

• Requires at least one �� statement, with exactly one of the
branches calling the function again!

• Not suitable for functions that don’t return anything and only
have side effects (e.g., printing the first N numbers on the
terminal) 29 / 171
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Control Flow

Recursion: Example

• sum_recursive(3) calls
sum_recursive(2) . . .

• . . . which calls
sum_recursive(1) . . .

• . . . which calls
sum_recursive(0) . . .

• . . . which ends the recursion
due to the special case.

• Values on arrows are return
values of corresponding
function call.
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Iteration Using While Loop

• A ����� loop executes the following block repeatedly, as long
as its expression evaluates as true

��� sum_iterative(��� n)

{

��� result = 0;

��� i = 0;

����� (i <= n)

{

result += i;

++i;

}

������ result;

}

• Often easier to understand

• Often more explicit and requires more variables
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Iteration with For Loop I

• Many loops are executed several times for different values of
some counting variable (index)

• C++ has a special ��� loop for these cases:

��� sum_for(��� n)

{

��� result = 0;

��� (��� i = 0 ; i <= n ; ++i)

{

result += i;

}

������ result;

}

• communicates to the reader that we sum over some index

• restricts lifetime of i to the loop itself

• somewhat more complicated than a ����� loop
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Iteration with For Loop II

Every ��� loop can be converted into an equivalent ����� loop:

��� (��� i = 0 ; i <= n ; ++i)

{

...

}

becomes

{

��� i = 0;

����� (i <= n)

{

... ;

++i;

}

}
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Integer Powers
Consider q ∈ N raised to the power of n ∈ N.

Recursive definition:

qn :=

�
qn−1 · q if n > 0

1 if n = 0

“Iterative definition”:

qn := q · · · · · q� �� �
n times

Task

How can this function be implemented in C++?
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Recursive Power Function

��� pow_recursive(��� q, ��� n)

{

�� (n == 0)

������ 1;

����

������ q * pow_recursive(q,n-1);

}

• if n = 0 nothing needs to be computed

• else compute qn−1 and multiply by q (compare definition)

35 / 171



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Introduction to C++

Control Flow

Iterative Power Function

��� pow_iterative(��� q, ��� n)

{

��� out = 1;

��� (��� i = 0; i < n; i++)

out *= q;

������ out;

}

• start out with value 1 (case n = 0)

• multiply with q n times
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Recursive Power Function II
��� pow_rec_fast(��� q, ��� n)

{

�� (n == 0)

������ 1;

����

{

��� t = pow_rec_fast(q,n/2);

�� (n % 2 == 0)

������ t*t;

����

������ q * t*t;

}

}

• qn = q2k =
�
qk

�2
for n even

• qn = q2k+1 =
�
qk

�2 · q for n odd
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Iterative Power Function II

��� pow_iter_fast(��� q, ��� n)

{

��� out = 1;

����� (n > 0)

{

�� (n % 2 != 0)

{

out *= q;

n--;

}

q = q*q;

n /= 2;

}

������ out;

}
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Which Version is best?
Two different measures of “best”:

Readability and conciseness: definitely the first two versions

Speed: measure time for 100 billion (108) evaluations of 230

Version Time Version Time

recursive 11.113s recursive 2 1.988s
iterative 7.663s iterative 2 1.397s

std::pow(): 3.378s

Note: This is the maximum range of the user-defined versions.
The built-in std::pow() works for a much wider range, and also
works for floating-point arguments. This explains why it is more
expensive.
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Which Version is best? II
These results were obtained without optimization. Compilers can
optimize code and produce equivalent programs that are
significantly faster (e.g., compiler option -O2).

What changes when we turn on optimization?

Version Time Version Time

recursive 0.001s recursive 2 1.317s
iterative 0.001s iterative 2 0.257s

std::pow(): 0.001s

The simplest versions are now the fastest! Why? Because they are
simple enough to be optimized away (evaluated at compile time)

Therefore: don’t think too much about optimal code, most of the
time it is irrelevant, and if not, measure
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Classes and Objects

Objects are representations of components of a program, i.e., a
self-contained collection of data with associated functions (called
methods).

Classes are blueprints for objects, i.e., they define how the objects
of a certain data type are structured.

Classes provide two special types of functions, constructors and
destructors, which are used to create resp. destroy objects.
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Example: Matrix Class

����� ������

{

�������: // can't be accessed by other parts of program

std::vector<std::vector<������> > entries; // data

��� numRows; // number of rows

��� numCols; // number of columns

������: // defines parts of object that are visible / usable

Matrix(��� numRows_, ��� numCols_); // constructor

������& elem(��� i, ��� j); // access entry

���� print(); // print to screen

��� rows(); // number of rows

��� cols(); // number of columns

};
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Classes and Templates

Encapsulation

����� ������

{

������:

// a list of public methods

�������:

// a list of private methods and attributes

};

The keyword ������: marks the description of the interface, i.e.,
those methods of the class which can be accessed from the outside.

The keyword �������: accompanies the definition of attributes
and methods that are only available to objects of the same class.
This includes the data and implementation-specific methods
reqired by the class. To ensure data integrity it should not be
possible to access stored data from outside the class.
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Definition of Methods

����� ������

{

������:

// ...

������& elem(��� i, ��� j)

{

������ entries[i][j];

}

};

The method definition (i.e., listing of the actual function code) can
be placed directly in the class (so-called inline functions). In the
case of inline functions the compiler can omit the function call and
use the code directly.
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Definition of Methods II

���� Matrix::Matrix(��� numRows_, ��� numCols_)

{

entries.resize(numRows_);

��� (��� i = 0; i < entries.size(); i++)

entries[i].resize(numCols_);

numRows = numRows_;

numCols = numCols_;

}

If methods are defined outside the definition of a class, then the
name of the method must be prefixed with the name of the class
followed by two colons.
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Generic Programming
Often the same algorithms are required for different types of data.
Writing them again and again is tedious and error-prone.

��� square(��� x)

{

������(x*x);

}

���� square(���� x)

{

������(x*x);

}

����� square(����� x)

{

������(x*x);

}

������ square(������ x)

{

������(x*x);

}

Generic programming makes it possible to write an algorithm once
and parameterize it with the data type. The language device for
this is called �������� in C++ and can be used for functions,
classes, and variables. 46 / 171
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Function Templates

A function template starts with the keyword �������� and a list
of template arguments, separated by commas and enclosed by
angle brackets:

��������<�������� T>

T square(T x)

{

������(x*x);

}

This way, the function basically has two types of arguments:

• Types, specified in angle brackets

• Variables, specified in parentheses

This becomes clearer when actually calling the function (see
below).
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Template Instantiation

At the first use of the function with a specific combination of data
types the compiler automatically generates code for these types.
This is called template instantiation, and has to be unambiguous.

Ambiguities can be avoided through:

• Explicit type conversion of arguments

• Explicit specification of template arguments in angle brackets:

std::cout << square<���>(4) << std::endl;

The argument types must match the declaration and the types
have to provide all the necessary operations (e.g. the
��������*()).
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Example: Unary Function Template

#include <cmath>

#include <iostream>

��������<�������� T>

T square(T x)

{

������(x*x);

}

��� main()

{

std::cout << square<���> (4) << std::endl;

std::cout << square<������>(M_PI) << std::endl;

std::cout << square (3.14) << std::endl;

}
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Example: Binary Function Template
#include <iostream>

��������<����� �>

����� U& maximum(����� U& a, ����� U& b)

{

�� (a > b)

������ a;

����

������ b;

}

��� main()

{

std::cout << maximum(1,4) << std::endl;

std::cout << maximum(3.14,7.) << std::endl;

std::cout << maximum(6.1,4) << std::endl; // comp. error

std::cout << maximum<������>(6.1,4) << std::endl; // unambiguous

std::cout << maximum(6.1,������(4)) << std::endl; // unambiguous

std::cout << maximum<���>(6.1,4) << std::endl; // warning

}
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Specialization of Function Templates

It is possible to define special template functions for certain
parameter values. This is called template specialization. It can,
e.g., be used for speed optimizations:

�������� <�������� V, ������ N>

������ scalarProduct(����� V& a, ����� V& b)

{

������ result = 0;

��� (������ i = 0; i < N; ++i)

result += a[i] * b[i];

������ result;

};

��������<�������� V>

������ scalarProduct<V,2>(����� V& a, ����� V& b)

{

������ a[0] * b[0] + a[1] * b[1];

};
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Class Templates
In addition to function templates, it is often also useful to
parameterize classes. Here is a simple stack as an example:

��������<�������� T>

����� �����

{

�������:

std::vector<T> elems; // storage for elements of type T

������:

���� push(����� T&); // put new element on top of storage

���� pop(); // retrieve uppermost element

T top() �����; // look at uppermost element

���� empty() ����� // check if stack is empty

{

������ elems.empty();

}

};

// + implementations of push, pop, and top

52 / 171



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Introduction to C++

Classes and Templates

Further Reading

Online Tutorials

http://www.cplusplus.com/doc/tutorial/

Quick Reference

https://en.cppreference.com/w/

Other Resources

https://isocpp.org/get-started/
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Best Practices for Scientific Computing
G. Wilson, D.A. Aruliah, C.T. Brown, N.P.C. Hong, M. Davis,
R.T. Guy, S.H.D. Haddock, K.D. Huff, I.M. Mitchell,
M.D. Plumbley, B. Waugh, E.P. White, P. Wilson:
Best Practices for Scientific Computing, PLOS Biology

1 Write programs for people, not computers

2 Let the computer do the work

3 Make incremental changes

4 Don’t repeat yourself (or others)

5 Plan for mistakes

6 Optimize software only after it works correctly

7 Document design and purpose, not mechanics

8 Collaborate

54 / 171



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Best Practices for Scientific Computing

Write Programs for People, not Computers

Software must be easy to read and understand by other
programmers (especially your future self!)

• Programs should not require readers to hold more than a
handful of facts in memory at once

• Short-term memory: The Magical Number Seven, Plus or
Minus Two

• Chunking (psychology): binding individual pieces of
information into meaningful whole

• Good reason for encapsulation and modularity

• Make names and identifiers consistent, distinctive, and
meaningful

• Make coding style and formatting consistent
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Minimum Style Requirements
Programming style conventions can be inconvenient, but there is a
bare minimum that should be followed in any case:

• Properly indent your code, use meaningful names for variables
and functions

• Comment your code, but don’t comment every line: main
idea/purpose of class or function, hidden assumptions, critical
details

• Don’t just fix compilation errors, also make sure that the
compiler doesn’t issue warnings

This makes it easier for other people to understand your work,
including:

• Colleagues you may ask for help or input
• Other researchers extending or using your work
• Yourself in a few weeks or months (!)
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Let the Computer do the Work1

Typing the same commands over and over again is both
time-consuming and error-prone

• Make the computer repeat tasks (i.e., write shell scripts or
python scripts)

• Save recent commands in a file for re-use (actually, that’s
already done for you, search for “reverse-i-search” online)

• Use a build tool to automate workflows (e.g., makefiles,
cmake)

But make sure you don’t waste time building unnecessarily
intricate automation structures!

1italics: my personal remarks
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Make Incremental Changes
Requirements of scientific software typically aren’t known in
advance

• Work in small steps with frequent feedback and course
correction (e.g., agile development)

• Use a version control system (e.g., Git, GitLab)
• Put everything that has been created manually under version

control
• The source code, of course
• Source files for papers / documents
• Raw data (from field experiments or benchmarks)

Large chunks of data (data from experiments, important program
results, figures) can be stored efficiently using Git-LFS (large file
storage) extension
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Don’t Repeat Yourself (or Others)

Anything that exists in two or more places is harder to maintain
and may introduce inconsistencies

• Every piece of data must have a single authoritative
representation in the system

• Modularize code rather than copying and pasting

• Re-use code instead of rewriting it

• Make use of external libraries (as long as it is not too
cumbersome)

First point is actually known as DRY principle in general software
design and engineering

59 / 171



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Best Practices for Scientific Computing

Plan for Mistakes
Mistakes are human and happen on all levels of software
development (e.g. bug, misconception, problematic design choice),
even in experienced teams

• Add assertions to programs to check their operation
• Simple form of error detection
• Can serve as documentation (that is auto-updated)

• Use an off-the-shelf unit testing library
• Can assist in finding unexpected side effects of code changes
• In case of GitLab: GitLab CI (continuous integration)

• Turn bugs into test cases
• Use a symbolic debugger (e.g. GDB, DDD, Gnome Nemiver,

LLDB)

Assertions should only be used to catch misconceptions and
omissions by programmers, not expected runtime errors (file not
found, out of memory, solver didn’t converge)! 60 / 171
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The Importance of Backups

Losing your program code means losing months or even years of
hard work. There are three standard ways to guard against this
possibility:

• Create automatic backups (but know how the restore process
works!)

• Create a manual copy on an external drive or another
computer (messy!)

• Use a source code repository to manage the files

It’s a good idea to use two approaches as a precaution

Of the above options, using a repository has the largest number of
benefits

61 / 171



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Best Practices for Scientific Computing

The Importance of Backups

Advantages of using a repository for code management:

• The repository can be on a different computer, i.e., the
repository is automatically also an old-fashioned backup

• Repositories preserve project history, making it easy to retrieve
older code or compare versions

• Repositories can be shared with others for collaboration

One of the tools most often used for this is Git, which can be used
in conjunction with websites like GitHub or Bitbucket. An open
source alternative is GitLab, which can also be installed locally to
provide repositories for the research group.
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Optimize Software Only After it Works Correctly

Identifying potential bottlenecks is hard, and optimization of other
parts of the program is a waste of time

• Use a profiler to identify bottlenecks

• Write code in the highest-level language possible

This is an optimization with regard to development time

High-level prototypes (e.g. in Python, Matlab) can serve as oracles
for low-level high-performance implementations (e.g. in C++)
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Code and Coding Efficiency

Source: Randall Munroe, xkcd.com

The first 90 percent of the code accounts
for the first 90 percent of the development
time. The remaining 10 percent of the
code accounts for the other 90 percent of
the development time.

— Tom Cargill, Bell Labs

Even experts are often unable to accurately
predict the time requirements for
developing a piece of software

This means:

• Project plans should be conservative

• Don’t underestimate the work
needed for the hard parts of coding
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Code and Coding Efficiency

Source: Randall Munroe, xkcd.com

Hofstadter’s Law: It always takes longer
than you expect, even when you take into
account Hofstadter’s Law.

— Douglas Hofstadter, Gödel, Escher,
Bach: An Eternal Golden Braid

As a result, there are two measures of
efficiency, the time your program needs to
run, and the time you need to write it

• Don’t optimize too soon, get a
working prototype first (you will
likely need to change optimized parts
along the way)

• Look for bottlenecks and only
optimize those (your program will
spend most of its time in roughly 5%
of your code)
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Document Design and Purpose, not Mechanics

The main purpose of documentation is assistance of readers who
are trying to use an implementation, choosing between different
implementations, or planning to extend one

• Document interfaces and reasons, not implementations
• Function and method signatures
• Public members of classes

• Refactor code in preference to explaining how it works

• Embed documentation for a piece of software in that software

Refactored code that needs less documentation will often save time
in the long run, and documentation that is bundled with code has
much higher chance to stay relevant
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Collaborate

Scientific programs are often produced by research teams, and this
provides both unique opportunities and potential sources of conflict

• Use pre-merge code reviews

• Use pair programming when bringing someone new up to
speed and when tackling particularly tricky problems

• Use an issue tracking tool

Pre-merge reviews are the only way to guarantee that code has
been checked by another person

Pair programming is very efficient but intrusive, and should be
used with care
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Positional Notation

Definition 1 (Positional Notation)

System representing numbers x ∈ R using:

x = ± . . .m2β
2 +m1β +m0 +m−1β

−1 +m−2β
−2 . . .

=
�

i∈Z
miβ

i

β ∈ N,β ≥ 2, is called base,
mi ∈ {0, 1, 2, . . . ,β − 1} are called digits

History:

• Babylonians (≈ −1750), β = 60

• Base 10 from ∼ 1580

• Pascal: all values β ≥ 2 may be used
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Fixed-Point Numbers

Fixed-point numbers: truncate series after finite number of terms

x = ±
n�

i=−k

miβ
i

Problem: scientific applications use numbers of very different
orders of magnitude

Planck constant: 6.626093 · 10−34 Js
Avogadro constant: 6.021415 · 1023 1

mol
Electron mass: 9.109384 · 10−31 kg
Speed of light: 2.997925 · 108 m

s

Floating-point numbers can represent all such numbers with
acceptable accuracy

70 / 201



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Floating-Point Numbers

Representation of Numbers

Floating-Point Numbers

Definition 2 (Floating-Point Numbers)

Let β, r , s ∈ N and β ≥ 2. The set of floating-point numbers
F(β, r , s) ⊂ R consists of all numbers with the following
properties:

1 ∀x ∈ F(β, r , s) : x = m(x) · βe(x) with

m(x) = ±
r�

i=1

miβ
−i , e(x) = ±

s−1�

j=0

ejβ
j

with digits mi and ej .
m is called mantissa, e is called exponent.

2 ∀x ∈ F(β, r , s) : x = 0 ∨m1 �= 0. This is called normalization
and makes the representation unique.
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Representation of Numbers

Example

Example 3

1 F(10, 3, 1) consists of the numbers

x = ±(m1 · 0.1 +m2 · 0.01 +m3 · 0.001) · 10±e0

with m1 �= 0 ∨ (m1 = m2 = m3 = 0), e.g., 0, 0.999 · 104, and
0.123 · 10−1, but not 0.140 · 10−10 (exponent to small)

2 F(2, 2, 1) consists of the numbers

x = ±(m1 · 0.5 +m2 · 0.25) · 2±e0

=⇒ F(2, 2, 1) =
�
−3

2
,−1,−3

4
,−1

2
,−3

8
,−1

4
, 0,

1

4
,
3

8
,
1

2
,
3

4
, 1,

3

2

�
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Representation of Numbers

Standard: IEEE 754 / IEC 559

Goal: portability of programs with floating-point arithmetics
Finalized 1985

β = 2, with four levels of accuracy and normalized representation:

single single-ext double double-ext

emax 127 ≥ 1024 1023 ≥ 16384
emin -126 ≤ -1021 -1022 ≤ -16381
Bits expon. 8 ≤ 11 11 ≥ 15
Bits total 32 ≥ 43 64 ≥ 79

The standard defines four kinds of rounding:
to −∞, to +∞, to 0, and to nearest

Since 2008: additionally half precision and quadruple precision
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Double Precision

Let’s have a closer look at double precision:

• 64 bit in total

• 11 bit for exponent, stored without sign as c ∈ [1, 2046]

• Let e := c − 1023 =⇒ e ∈ [−1022, 1023], no sign necessary

• The values c ∈ {0, 2047} are special:
• c = 0 ∧m = 0 encodes zero
• c = 0 ∧m �= 0 encodes denormalized representation
• c = 2047 ∧m = 0 encodes ∞ (overflow)
• c = 2047 ∧m �= 0 encodes NaN = “not a number”, e.g., when

dividing by zero
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Double Precision

• 64− 11 = 53 bit for mantissa, one for sign,
52 bit remaining for mantissa digits

• β = 2 implies m1 = 1

• This digit is called hidden bit and is never stored

• Therefore r = 53 in the sense of our definition of
floating-point numbers

Double precision corresponds to F(2, 53, 10) + additional special
codes.
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Rounding Function
To approximate x ∈ R in F(β, r , s), we need a map

rd: D(β, r , s) → F(β, r , s), (1)

where D(β, r , s) ⊂ R is the domain containing F(β, r , s):

D := [X−, x−] ∪ {0} ∪ [x+,X+]

with X+/− being the numbers in F(β, r , s) with largest absolute
value, and x+/− those with the smallest (apart from zero).

Note: this implies that x lies within the representable domain!

A reasonable demand is:

∀x ∈ D : |x − rd(x)| = min
y∈F

|x − y |

(known as best approximation property)
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Rounding Function

With l(x) := max{y ∈ F|y ≤ x} and r(x) := min{y ∈ F|y ≥ x} we
have:

rd(x) =





x l(x) = r(x), x ∈ F
l(x) |x − l(x)| < |x − r(x)|
r(x) |x − l(x)| > |x − r(x)|
? |x − l(x)| = |x − r(x)|

The last case requires further considerations. There are several
possible choices.
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Natural Rounding

Definition 4 (Natural Rounding)

Let x = sign(x) ·
��∞

i=1miβ
−i
�
βe the normalized representation

of x ∈ D. Define

rd(x) :=

�
l(x) = sign(x) ·

��r
i=1miβ

−i
�
βe if 0 ≤ mr+1 < β/2

r(x) = l(x) + βe−r (last digit) ifβ/2 ≤ mr+1 < β

This is the usual rounding everyone knows from school. It has the
undesirable property of introducing bias, since rounding up is
slightly more likely.
This is irrelevant in everyday life, but becomes important for small
β, e.g., β = 2, and/or many operations (as in scientific
computing).
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Even Rounding

Definition 5 (Even Rounding)

Let (with notation as before)

rd(x) :=





l(x) if |x − l(x)| < |x − r(x)|
l(x) if |x − l(x)| = |x − r(x)| ∧mr even

r(x) else

This ensures that mr in rd(x) is always even after rounding.

• For rd(x) = l(x) this is by definition.
• Else rd(x) = r(x) = l(x) + βe−r , mr in l(x) is odd, and

addition of βe−r changes the last digit by one.

This choice of rounding avoids systematic drift when rounding up,
and corresponds to “round to nearest” in the standard.
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Absolute and Relative Error

Definition 6 (Absolute and Relative Error)

Let x � ∈ R an approximation of x ∈ R. Then we call

Δx := x � − x absolute error

and for x �= 0

�x � :=
Δx

x
relative error

Rearranging leads to:

x � = x +Δx = x ·
�
1 +

Δx

x

�
= x · (1 + �x �)
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Motivation

Motivation:

Let Δx = x � − x = 100 km.
For x = Distance Earth—Sun ≈ 1.5 · 108 km,

�x � =
102 km

1.5 · 108 km ≈ 6.6 · 10−7

is relatively small.
But for x = Distance Heidelberg—Paris ≈ 460 km,

�x � =
102 km

4.6 · 102 km ≈ 0.22 (22%)

is relatively large.
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Error Estimation

Lemma 7 (Rounding Error)

When rounding in F(β, r , 2) the absolute error fulfills

|x − rd(x)| ≤ 1

2
βe(x)−r (2)

and the relative error (for x �= 0)

|x − rd(x)|
|x | ≤ 1

2
β1−r .

This estimate is sharp (i.e., the case “=” exists).
The number eps := 1

2β
1−r is called machine precision.

eps = 2−24 ≈ 6 · 10−8 for single precision, and
eps = 2−53 ≈ 1 · 10−16 for double precision.

82 / 201



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Floating-Point Numbers

Floating-Point Arithmetics

Floating-Point Arithmetics

We need arithmetics on F:

� : F× F → F with � ∈ {⊕,�,�,�}

corresponding to the well-known operations ∗ ∈ {+,−, ·, /} on R.

Problem: typically x , y ∈ F �=⇒ x ∗ y ∈ F

Therefore the result has to be rounded. We define

∀x , y ∈ F : x � y := rd(x ∗ y) (3)

This guarantees “exact rounding”. The implementation of such a
mapping is nontrivial!
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Guard Digit

Example 8 (Guard Digit)

Let F = F(10, 3, 1), x = 0.215 · 108, y = 0.125 · 10−5. We consider
the subtraction x � y = rd(x − y).

1 Subtraction followed by rounding requires an extreme number
of mantissa digits O(βs)!

2 Rounding before subtraction seems to produce same result.
Good idea?

3 But: consider, e.g., x = 0.101 · 101, y = 0.993 · 100
=⇒ relative error 18% ≈ 35 eps

4 One, two additional digits are enough to achieve exact
rounding!

5 These digits are called guard digits and are also used in
practice (CPU), e.g., performing internal computations in 80
bit precision.
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Table Maker Dilemma

Algebraic functions:
e.g., polynomials, 1/x ,

√
x , rational functions, . . .

more or less: finite combination of basic arithmetic operations and
roots

Transcendent functions:
everything else, e.g., exp(x), ln(x), sin(x), xy , . . .

Table Maker Dilemma:
One cannot decide a priori how many guard digits are reqired to
achieve exact rounding for a given combination of transcendent
function f and argument x .

IEEE754 guarantees exact rounding for ⊕,�,�,�, and
√
x .
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Further Problems / Properties

The following has to be considered:

• Floating-point arithmetics don’t have the associative and
distributive properties, i.e., the order of operations matters!

• There is y ∈ F, y �= 0, so that x ⊕ y = x

• Example: (�⊕ 1)� 1 = 1� 1 = 0 �= � = �⊕ 0 = �⊕ (1� 1)

• But the commutative property holds:
x � y = y � x for � ∈ {⊕,�}

• Some further simple rules that are valid:
• (−x)� y = −(x � y)
• 1� x = x ⊕ 0 = x
• x � y = 0 =⇒ x = 0 ∨ y = 0
• x � z ≤ y � z if x ≤ y ∧ z > 0
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Error Analysis

Rounding errors are propagated by computations.

• Let F : Rm → Rn, in components F (x) =



F1(x1, . . . , xm)

...
Fn(x1, . . . , xm)




• Compute F in a computer using numerical realization
F � : Fm → Fn.
F � is an algorithm, i.e., consists of

• finitely many (= termination)
• elementary (= known, i.e., ⊕,�,�,�)

operations:
F �(x) = ϕl(. . .ϕ2(ϕ1(x)) . . . )
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Error Analysis

Important:

1 A given F typically has many different realizations, because of
different orders of computation

a+ b + c ≈ (a ⊕ b)⊕ c �= a⊕ (b ⊕ c)!

2 Every step ϕi contributes some (unknown) error.

3 In principle, the computational accuracy can be improved
arbitrarily, i.e., we have a sequence
(F �)(k) : (F(k))

m → (F(k))
n
. But in the following we consider

only a given fixed finite precision.
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Error Analysis

F (x)− F �(rd(x)) = F (x)− F (rd(x))� �� �
conditional analysis

+F (rd(x))− F �(rd(x))� �� �
rounding error analysis

(4)

Where:

• F (x): exact result

• F �(rd(x)): numerical evaluation

• F (rd(x)): exact result for rd(x) ≈ x

From now on:

• “first order” analysis

• absolute / relative errors
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Differential Condition Analysis

We assume that F : Rm → Rn is twice continuously differentiable.
Taylor’s theorem holds for the components Fi :

Fi (x +Δx) = Fi (x) +
m�

j=1

∂Fi
∂xj

(x)Δxj + RF
i (x ;Δx) i = 1, . . . , n.

The remainder is

RF
i (x ;Δx) = O

�
�Δx�2

�
,

i.e., the approximation error is quadratic in Δx .
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Differential Condition Analysis

Therefore, we can rearrange Taylor’s formula:

Fi (x +Δx)− Fi (x) =
m�

j=1

∂Fi
∂xj

(x)Δxj

� �� �
leading (first) order

+RF
i (x ;Δx)� �� �

higher orders

One often omits higher order terms and writes “
.
=” instead of “=”.
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Differential Condition Analysis

Then we have:

Fi (x +Δx)− Fi (x)

Fi (x)
.
=

m�

j=1

∂Fi
∂xj

(x)
Δxj
Fi (x)

(5)

.
=

m�

j=1

�
∂Fi
∂xj

(x)
xj

Fi (x)

�

� �� �
amplification factor kij (x)

·
�
Δxj
xj

�

� �� �
≤eps

,

i.e., the amplification factors kij(x) specify how (relative) input

errors
Δxj
xj

contribute to (relative) errors in the i-th comp. of F !
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Condition

Definition 9 (Condition)

We call the evaluation y = F (x) “ill-conditioned” in point x , iff
|kij(x)| � 1, else “well-conditioned”.
|kij(x)| < 1 is error dampening, |kij(x)| > 1 is error amplification.

The symbol “�” means “much larger than”. Normally this means
one number is several orders of magnitude larger than another
(e.g., 1 million � 1).

This definition is a continuum: there is no sharp separation
between “well-conditioned” and “ill-conditioned”!
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Example I

Example 10

1 Addition: F (x1, x2) = x1 + x2,
∂F
∂x1

= ∂F
∂x2

= 1.
According to our formula:

F (x1 +Δx1, x2 +Δx2)− F (x1, x2)

F (x1, x2)

.
= 1 · x1

x1 + x2� �� �
=k1

Δx1
x1

+ 1 · x2
x1 + x2� �� �
=k2

Δx2
x2

Ill-conditioned for x1 → −x2!
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Example II

Example 10

2 F (x1, x2) = x21 − x22 ,
∂F
∂x1

= 2x1,
∂F
∂x2

= −2x2.

F (x1 +Δx1, x2 +Δx2)− F (x1, x2)

F (x1, x2)

.
= 2x1 ·

x1
x21 − x22� �� �
=k1

Δx1
x1

+ (−2x2) ·
x2

x21 − x22� �� �
=k2

Δx2
x2

=⇒ k1 =
2x21

x21 − x22
, k2 = − 2x22

x21 − x22
,

Ill-conditioned for |x1| ≈ |x2|.
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2 Best Practices for Scientific Computing

3 Floating-Point Numbers

4 Condition and Stability

5 Interpolation, Differentiation and Integration

6 Solution of Linear and Nonlinear Equations
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Rounding Error Analysis
Also known as “forward rounding error analysis”, there are other
variants.

After error decomposition, Eq. (4):
consider F (x)− F �(x) with x ∈ Fm, F � “composed” from single
operations � ∈ {⊕,�,�,�}

Eq. (3) (exactly rounded arithmetics) and Lemma 7 (rounding
error) imply

(x � y)− (x ∗ y)
(x ∗ y) = � with |�| ≤ eps

Careful, � depends on x and y , and therefore is different for each
individual operation!

=⇒ x � y = (x ∗ y) · (1 + �) for an |�(x , y)| ≤ eps
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Example I

Example 11

F (x1, x2) = x21 − x22 with two different realizations:

1 Fa(x1, x2) = (x1 � x1)� (x2 � x2)

2 Fb(x1, x2) = (x1 � x2)� (x1 ⊕ x2)

First realization:

u = x1 � x1 = (x1 · x1) · (1 + �1)

v = x2 � x2 = (x2 · x2) · (1 + �2)

Fa(x1, x2) = u � v = (u − v) · (1 + �3)

Fa(x1, x2)− F (x1, x2)

F (x1, x2)
.
=

x21
x21 − x22

(�1 + �3) +
x22

x22 − x21
(�2 + �3)
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Example 11

Second realization:

u = x1 � x2 = (x1 − x2) · (1 + �1)

v = x1 ⊕ x2 = (x1 + x2) · (1 + �2)

Fb(x1, x2) = u � v = (u · v) · (1 + �3)

Fb(x1, x2)− F (x1, x2)

F (x1, x2)
.
=

x21 − x22
x21 − x22

(�1 + �2 + �3) = �1 + �2 + �3

=⇒ second realization is better than first realization.
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Numerical Stability

Definition 12 (Numerical Stability)

We call a numerical algorithm “numerically stable”, if the rounding
errors accumulated during computation have the same order of
magnitude as the unavoidable problem error from condition
analysis.

In other words:
Amplification factors from rounding analysis ≤ those from
condition analysis =⇒ “numerically stable”

Both realizations a, b from Ex. 11 are numerically stable.
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Quadratic Equation
Let p2/4 > q �= 0, then the equation

y2 − py + q = 0

has two real and separate solutions

y1,2 = f±(p, q) =
p

2
±
�

p2

4
− q. (defines two f !)

Condition analysis with D :=
�

p2

4 − q:

f (p +Δp, q +Δq)− f (p, q)

f (p, q)

.
=

�
1± p

2D

� p

p ± 2D

Δp

p
− q

D (p ± 2D)

Δq

q
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Quadratic Equation
This means:

• For p2

4 � q and p < 0

f−(p, q) =
p

2
−
�

p2

4
− q

is well-conditioned.

• For p2

4 � q and p > 0

f+(p, q) =
p

2
+

�
p2

4
− q

is well-conditioned.

• For p2

4 ≈ q both f+ and f− are ill-conditioned, this cannot be
avoided.
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Quadratic Equation

Numerically handy evaluation for the case p2

4 � q:

p < 0:

Compute y2 =
p
2 −

�
p2

4 − q, then y1 =
q
y2

using Vieta’s Theorem

(q = y1 · y2).

p > 0:

Compute y1 =
p
2 +

�
p2

4 − q, then y2 =
q
y1
.

=⇒ every problem has to be considered individually!
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Cancellation
The discussed examples contain the phenomenon of cancellation.
It appears during

• addition x1 + x2 with x1 ≈ −x2
• subtraction x1 − x2 with x1 ≈ x2

Remark 13
Cancellation means extreme amplification of errors introduced
before the addition or subtraction.

If x1, x2 ∈ F are machine numbers, then
����
(x1 � x2)− (x1 − x2)

(x1 − x2)

���� ≤ eps

holds, so this is not problematic. The problem of cancellation only
occurs if x1 and x2 already contain errors.

105 / 201



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Condition and Stability

Cancellation

Example

Example 14

Consider F = F(10, 4, 1).
x1 = 0.11258762 · 102, x2 = 0.11244891 · 102
=⇒ rd(x1) = 0.1126 · 102, rd(x2) = 0.1124 · 102

x1 − x2 = 0.13871 · 10−1, but rd(x1)− rd(x2) = 0.2 · 10−1

The result has not a single valid digit! Relative error:

0.2 · 10−1 − 0.13871 · 10−1

0.13871 · 10−1
≈ 0.44 ≈ 883 · 1

2
· 10−3

� �� �
=eps

!
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Basic Rule

In the given example: error caused by rounding of arguments.

Source of errors is irrelevant, this also happens if x1, x2 contain
errors from previous computation steps.

Rule 15
Employ potentially dangerous operations as soon as possible in
algorithms, when the least possible amount of errors has been
accumulated (compare Ex. 11).
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Exponential Function
The function exp(x) = ex can be written as a power series for all
x ∈ R:

exp(x) =
∞�

k=0

xk

k!

Obvious approach: truncate calculation after n terms,
exp(x) ≈ �n

k=0
xk

k! .

Use recursion:

y0 := 1, S0 := y0 = 1,

∀k > 0: yk :=
x

k
· yk−1, Sk := Sk−1 + yk

yn: terms of series, Sn: partial sums
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Error for Different Values of x
Results for recursion formula with �����, n = 100:

1*10-10

1*10-5

1*100

1*105

1*1010

1*1015

1*1020

1*1025

1*1030

1*1035

1*1040

-50 -40 -30 -20 -10  0  10  20  30  40  50

relativer Fehler von exp(x)

• Negative values of x lead to arbitrarily large errors

• This effect is not caused by the truncation of the series!
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Deviations for Imaginary Arguments

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Einheitskreis
Auswertung exp(z)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Einheitskreis
Auswertung exp(z)

-4

-2

 0

 2

 4

-4 -2  0  2  4

Einheitskreis
Auswertung exp(z)

-10

-5

 0

 5

 10

-10 -5  0  5  10

Einheitskreis
Auswertung exp(z)

Results for the imaginary interval
[−50, 50] · i

• For |z | ≤ π the result is
somewhat acceptable

• For |z | → 2π the error
continues to grow

• Then the values leave the
circle (the trajectory
approaches a straight line
and won’t return)
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Visualization of Convergence Behavior

-4

-2

 0

 2

 4

-4 -2  0  2  4

exp(2πi · 0.1)
exp(2πi · 0.2)
exp(2πi · 0.3)
exp(2πi · 0.4)
exp(2πi · 0.5)
Einheitskreis

• even powers contribute to
the real part of exp(2πi · x)

• odd powers contribute to
the imaginary part

=⇒ addition of terms alternates
between changes to real and
imaginary part
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Visualization of Convergence Behavior

-40

-20

 0

 20

 40

-40 -20  0  20  40

exp(2πi · 0.6)
exp(2πi · 0.7)
exp(2πi · 0.8)
exp(2πi · 1.0)
exp(2πi · 1.0)
Einheitskreis

• Absolute value of
intermediate results grows
exponentially in x

• Shape of trajectory looks
more and more like a square

=⇒ cancellation
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Condition Analysis for exp(x)

For the function exp we have exp� = exp, and therefore:

exp(x +Δx)− exp(x)

exp(x)
.
=

�
exp�(x)

x

exp(x)

�
·
�
Δx

x

�
= Δx

=⇒ absolute error of x becomes relative error of exp(x)
(compare: exp is isomorphism between (R,+) and (R+, ·).)

k = x means exp is well-conditioned if x is not too large
=⇒ considered algorithm is unstable for x < 0

Is there a more stable algorithm? � exercise
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Recursion Formula for Integrals

Integrals of the form

Ik =

� 1

0
xk exp(x) dx

can be solved using a recursion formula:

I0 = e − 1, ∀k > 0: Ik = e − k · Ik−1

We have a primitive integral for the first term in the sequence,
because exp�(x) = exp(x), other terms can be computed using the
formula above.

How well does this work in practice?
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Recursion Formula for Integrals
The first 26 values of {Ik}k , computed with finite precision:
k computed Ik error |ΔIk |
0 1.718281828459050 2.6 · 10−15

1 1 (zero)
2 0.718281828459045 1.5 · 10−15

3 0.563436343081910 5.5 · 10−16

4 0.464536456131406 1.0 · 10−15

5 0.395599547802016 6.0 · 10−15

6 0.344684541646949 3.8 · 10−14

7 0.305490036930402 2.7 · 10−13

8 0.274361533015832 2.1 · 10−12

9 0.249028031316559 1.9 · 10−11

10 0.228001515293454 1.9 · 10−10

11 0.210265160231056 2.1 · 10−9

12 0.195099905686377 2.5 · 10−8

k computed Ik error |ΔIk |
13 0.181983054536145 3.3 · 10−7

14 0.170519064953013 4.6 · 10−6

15 0.160495854163853 7.0 · 10−5

16 0.150348161837404 1.1 · 10−3

17 0.162363077223183 1.9 · 10−2

18 -0.204253561558257 3.4 · 10−1

19 6.59909949806592 6.7 · 100
20 -129.263708132859 1.3 · 101
21 2717.25615261851 2.7 · 103
22 -59776.9170757787 6.0 · 104
23 1374871.81102474 1.4 · 106
24 -32996920.7463119 3.3 · 107
25 824923021.376079 8.2 · 108

Recursion formula Ik = e − k · Ik−1 leads to error amplification by
a factor of k in k-th step!
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Better Options

1 All Ik are of the form a · e + b, where a, b ∈ Z. Compute
these numbers using the recursion formula, and use
floating-point numbers only in the last step of computation.

2 Flip the recursion formula: if Ik → Ik+1 amplifies the error by
k , then Ik+1 → Ik reduces it by k!

Because of 0 ≤ xk ≤ 1 and 0 ≤ exp(x) ≤ 3 on [0, 1], 0 ≤ Ik ≤ 3
must hold. If we more or less arbitrarily set, e.g., I50 := 1.5, then
the error can be at most 1.5.

Use inverted recursion formula

Ik = (k + 1)−1 · (e − Ik+1).
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Recursion Formula for Integrals
The values for Ik between k = 25 and 50, calculated backwards:
k computed Ik error |ΔIk |
50 1.5 1.4 · 100
49 0.0243656365691809 2.9 · 10−2

48 0.0549778814671401 5.9 · 10−4

47 0.0554854988956647 1.2 · 10−5

46 0.0566552410545400 2.6 · 10−7

45 0.0578614475522718 5.7 · 10−9

44 0.0591204529090394 1.3 · 10−10

43 0.0604354858079547 2.9 · 10−12

42 0.0618103800616533 6.7 · 10−14

41 0.0632493201999379 1.8 · 10−15

40 0.0647568904453441 1.4 · 10−16

39 0.0663381234503425 2.1 · 10−16

38 0.0679985565386847 1.5 · 10−16

k berechnetes Ik Fehler |ΔIk |
37 0.0697442966294832 2.8 · 10−16

36 0.0715820954548530 1.9 · 10−16

35 0.0735194370278942 2.8 · 10−17

34 0.0755646397551757 2.2 · 10−16

33 0.0777269761383491 2.7 · 10−18

32 0.0800168137066878 1.8 · 10−16

31 0.0824457817110112 2.6 · 10−16

30 0.0850269692499366 2.9 · 10−16

29 0.0877751619736370 4.5 · 10−17

28 0.0907071264305313 4.3 · 10−16

27 0.0938419536438755 4.7 · 10−16

26 0.0972014768450063 1.3 · 10−17

25 0.1008107827543860 1.1 · 10−16

Despite a completely unusable estimate for the initial value I50, the
new recursion formula Ik = (k + 1)−1 · (e − Ik+1) quickly leads to
very good results!
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Idea of Error Estimates
Error analysis for initial value Ik+m,m ≥ 1:

|ΔIk | ≈
k!

(k +m)!
|ΔIk+m| ≤

k!

(k +m)!
· 1.5 ≤ (k + 1)−m · 1.5

Idea: compute required number of steps m from desired accuracy
|ΔIk | < tol.

(k + 1)−m · 1.5 < tol =⇒ exp(−m · ln(k + 1)) <
tol

1.5

=⇒ −m · ln(k + 1) < ln

�
tol

1.5

�
=⇒ m >

����
ln(tol)− ln(1.5)

ln(k + 1)

����

Example: k = 25, tol = 10−8 =⇒ m > 5.7
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Idea of Error Estimates

Result for m = 6:
k computed Ik error |ΔIk |
31 1.5 1.4 · 100
30 0.0392994138212595 4.6 · 10−2

29 0.0892994138212595 1.5 · 10−3

28 0.0906545660219926 5.3 · 10−5

27 0.0938438308013233 1.9 · 10−6

26 0.0972014073206564 7.0 · 10−8

25 0.1008107854284000 2.9 · 10−9

• Inverted recursion formula is
numerically stable, in
contrast to naive approach

• Error estimate minimizes
effort for prescribed accuracy

=⇒ stable and efficient
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Introduction

Introduction

Goal: representation and evaluation of functions on a computer.

Typical applications:

• Reconstruction of a functional relationship between “measured
function values”, evaluation for additional arguments

• More efficient evaluation of very expensive functions

• Representation of fonts (2D), structures (3D) in a computer

• Data compression

• Solving differential and integral equations
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Introduction

Introduction
We restrict ourselves to functions of one variable, e.g.:

f ∈ C r [a, b]

This is an infinite dimensional function space. Computers operate
on function classes which are determined through finitely many
parameters (not necessarily linear subspaces), e.g.:

p(x) = a0 + a1x + · · ·+ anx
n (polynomals)

r(x) =
a0 + a1x + · · ·+ anx

n

b0 + b1x + · · ·+ bmxm
(rational functions)

t(x) =
1

2
a0 +

n�

k=1

(ak cos(kx) + bk sin(kx)) (trigonom. polynomials)

e(x) =
n�

k=1

ak exp(bkx) (exponential sum)
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Introduction

Approximation

Basic task of approximation:

Given a set of functions P (polynomials, rational functions, . . . )
and a function f (e.g., f ∈ C [a, b]), find g ∈ P , so that the error
f − g is minimized in a suitable fashion.

Examples:

�� b

a
(f − g)2 dx

�1/2

→ min (2-norm)

max
a≤x≤b

|f (x)− g(x)| → min (∞-norm)

max
i∈{0,...,n}

|f (xi )− g(xi )| → min for a ≤ xi ≤ b, i = 0, . . . , n
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Introduction

Interpolation

Interpolation is a special case of approximation, where g is
determined by

g(xi ) = yi := f (xi ) i = 0, . . . , n

Special properties of interpolation:

• The error f − g is only considered on a finite set of nodes
xi , i = 0, . . . , n.

• In these finitely many points the deviation must be zero, not
just minimal in some weaker sense.
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Polynomial Interpolation

Let Pn the set of polynomials on R of degree smaller or equal
n ∈ N0:

Pn := {p(x) =
n�

i=0

aix
i | ai ∈ R}

Pn is an n + 1-dimensional vector space.
The monomials 1, x , x2, . . . , xn are a basis of Pn.

For given n + 1 (distinct) nodes x0, x1, . . . , xn the task of
interpolation is

Find p ∈ Pn : p(xi ) = yi := f (xi ), i = 0, . . . , n
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Polynomial Interpolation
This is equivalent to the linear system




1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

. . .
...

1 xn x2n · · · xnn




� �� �
=:V [x0,...,xn]

·




a0
a1
...
an


 =




y0
y1
...
yn




The matrix V [x0, . . . , xn]

• is called Vandermonde matrix

• is regular iff all xi are distinct

• leads to a very ill-conditioned map from values yi to
coefficients ai

• requires computational effort in O(n3) when solving the
system
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Polynomial Interpolation

Problem:
Assembling the Vandermonde matrix V [x0, . . . , xn] and then
solving the linear system is not a good approach due to severe
ill-conditioning and high associated cost.

Are there better and simpler approaches?

The problem is caused by the monomial basis 1, x , x2, . . . , xn,
which leads to a particularly unfortunate formulation of the
interpolation task. We are going to consider possible alternatives.
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Langrange Interpolation

Definition 16 (Lagrange Polynomials)

For n + 1 distinct nodes xi , i = 0, . . . , n, define the so-called
Lagrange polynomials:

L
(n)
i (x) :=

�

j �=i

x − xj
xi − xj

, i = 0, . . . , n (n + 1 polynomials)

The L
(n)
i have degree n,

L
(n)
i (xk) = δik =

�
1 i = k

0 i �= k

holds, and the L
(n)
i are a basis of Pn.

128 / 200



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Interpolation, Differentiation and Integration

Polynomial Interpolation

Existence and Uniqueness

Using the Lagrange basis, the coefficients ai are simply the
prescribed values of the nodes: ai = yi . Solving the interpolation
problem is therefore trivial in this basis.

Theorem 17 (Uniqueness of Interpolating Polynomial)

For n + 1 distinct nodes x0, . . . , xn there is exactly one polynomial
p of degree n with

p(xi ) = yi i = 0, . . . , n, yi ∈ R

Therefore, the interpolation problem is solvable, and its solution is
unique.
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Newton Representation
Disadvantage of Lagrange polynomials:
Adding a node changes all previous basis polynomials, making this
approach unsuitable for “incremental” construction of interpolation
polynomials.

In this context, the Newton representation with basis polynomials

N0(x) = 1; i = 1, . . . , n : Ni (x) =
i−1�

j=0

(x − xj)

is a better choice.

Ni always has degree i ,

∀k < i : Ni (xk) = 0

holds, and the polynomials N0, . . . ,Nn are a basis of Pn.
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Staggered Computations

In x0 all the Newton basis polynomials but N0 are zero, in x1 all
but N0 and N1, and so on.

The interpolation task

p(xk) =
n�

i=0

aiNi (xk) =
k�

i=0

aiNi (xk) = yk k = 0, . . . , n

leads to the following staggered computations:

a0 = y0; k = 1, . . . , n : ak =

�
yk −

k−1�

i=0

aiNi (xk)

�
/Nk(xk)
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Background

Polynomial interpolation in the language of linear algebra:

• The monomial basis x i , i = 0, . . . , n is trivial to construct, but
it leads to a dense and very ill-conditioned matrix
V [x0, . . . , xn] (Vandermonde matrix).

• The Lagrange basis L
(n)
i , i = 0, . . . , n, instead leads to an

identity matrix, and therefore the solution is trivial. But an
extension of the set of nodes changes all basis functions.

• The Newton basis Ni , i = 0, . . . , n, in turn, results in a lower
triangular matrix. The scheme of staggered computations
corresponds to forward substitution. Solving requires more
effort than with the Langrange basis, but additional nodes
simply add additional rows to the matrix.
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Divided Differences

Theorem 18 (Divided Differences)

The divided differences are recursively defined as

∀i = 0, . . . , n : y [xi ] := yi (values in nodes)

∀k = 1, . . . , n − i :

y [xi , . . . , xi+k ] :=
y [xi+1, . . . , xi+k ]− y [xi , . . . , xi+k−1]

xi+k − xi

Then

p(x) =
n�

i=0

y [x0, . . . , xi ]Ni (x)

holds.
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Divided Differences

The divided differences are usually arranged in a tableau:

y0 = y [x0] → y [x0, x1] → y [x0, x1, x2] → y [x0, x1, x2, x3]
� � �

y1 = y [x1] → y [x1, x2] → y [x1, x2, x3]
� �

y2 = y [x2] → y [x2, x3]
�

y3 = y [x3]

Then, the first row contains the desired coefficients ai , i = 0, . . . , n
of the basis polynomials. This form of computation doesn’t need
the values of the Ni (xk) and additionally is more stable.
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Example I

Example 19

Consider the following pairs of nodes and values:

(x0 = 0, y0 = 1), (x1 = 1, y1 = 4), (x2 = 2, y2 = 3)

The monomial basis results in the system of equations



1 0 0
1 1 1
1 2 4


 ·



a0
a1
a2


 =



1
4
3




with solution [1, 5,−2]T , therefore

p(x) = 1 + 5 · x − 2 · x2
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Example II

Example 19

The Lagrange basis leads to

p(x) = 1 · L(2)0 (x) + 4 · L(2)1 (x) + 3 · L(2)2 (x)

= 1 · x − 1

0− 1
· x − 2

0− 2
+ 4 · x − 0

1− 0
· x − 2

1− 2
+ 3 · x − 0

2− 0
· x − 1

2− 1

=
1

2
· (x − 1) · (x − 2)− 4 · x · (x − 2) +

3

2
· x · (x − 1)

The individual basis polynomials can be precomputed for a given
set of nodes x0, . . . , xn, afterwards additional interpolation tasks on
the same set of nodes are trivial to solve.
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Example III
Example 19

For the Newton basis we obtain the tableau

y0 = a0 = 1 → a1 =
4−1
1−0 = 3 → a2 =

(−1)−3
2−0 = −2

� �
y1 = 4 → 3−4

2−1 = −1

�
y2 = 3

and therefore

p(x) = 1 · N0(x) + 3 · N1(x)− 2 · N2(x)

= 1 + 3 · x − 2 · x · (x − 1)

Here it is easy to add an additional node if required.
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Evaluating Polynomials
The standard algorithm for the evaluation of a polymial of the form

p(x) =
n�

i=0

aix
i = a0 + a1x + · · ·+ anx

n

at a point x is the Horner scheme

bn := an; k = n − 1, . . . , 0: bk := ak + x · bk+1; p(x) = b0 ,

since it is particularly efficient and stable.

For a polynomial in Newton representation

p(x) =
n�

i=0

aiNi (x) = a0 + a1N1(x) + · · ·+ anNn(x)

this scheme leads to the recursion

bn := an; k = n−1, . . . , 0: bk := ak+(x−xk) ·bk+1; p(x) = b0
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Interpolation Error

Let yi = f (xi ), i = 0, . . . , n, the evaluation of a function f in n + 1
distinct nodes, and p(x) the resulting interpolation polynomial of
degree n.

By construction, the difference

e(x) := f (x)− p(x)

fulfills the condition

e(xi ) = 0 für i = 0, . . . , n

Question: How large can this difference become at other locations?
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Interpolation Error

Theorem 20 (Interpolation Error)

Let f (x) n + 1-times continuously differentiable on [a, b] and

a ≤ x0 < x1 < · · · < xn ≤ b.

Then there is for each x ∈ [a, b] an ξx ∈ (x0, . . . , xn, x) (smallest
interval containing all nodes), so that

f (x)− p(x) =
f (n+1)(ξx)

(n + 1)!

n�

j=0

(x − xj)
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Remarks

For the special case of equidistant nodes, i.e.,

xk+1 − xk = h für k = 0, . . . , n − 1,

we therefore have

|f (x)− p(x)| ≤ |f (n+1)(ξx)| · hn+1 ,

and for |f (n+1)| bounded and n → ∞ it follows |f (x)− p(x)| → 0.

Unfortunately, the higher derivatives of functions, even of simple
ones, are often not bounded for n → ∞, but grow very fast instead.
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Runge’s Counter Example

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Polynomial interpolation of Runge’s function f (x) = (1 + 25x2)
−1

with equidistant nodes (3, 5, 9, 17 resp. 33 node/value pairs).
The minima / maxima of the last two polynomials are
−14.35/1.40 resp. −5059/2.05 (!).
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Remarks

Remark 21
According to the Weierstraß Approximation Theorem, any function
in C 0([a, b]) can be approximated uniformly by polynomials.
The phenomena we observe are no contradiction, since:

• The approximation need not be based on interpolation (the
proof uses Bernstein polynomials).

• Using non-equidistant nodes one can already achieve
significantly improved results (if one knows how to choose
these non-equidistant nodes. . . ).

Remark 22
In general “methods of higher (polynomial) order” require
sufficient differentiability.
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Condition Analysis
With p(x ; y) the interpolation polynomial to the values
(y0, . . . , yn)

T at fixed nodes (x0, . . . , xn)
T , we have

p(x ; y +Δy)− p(x ; y) =
n�

i=0

(yi +Δyi )L
(n)
i (x)−

n�

i=0

yiL
(n)
i (x)

=
n�

i=0

ΔyiL
(n)
i (x)

This implies

p(x ; y +Δy)− p(x ; y)

p(x ; y)
=

n�

i=0

L
(n)
i (x)yi
p(x ; y)

· Δyi
yi

For large n, L
(n)
i can become very large, then the interpolation task

is ill-conditioned!
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Numerical Differentiation

Problem:
Compute the derivative (of some order n) of a function that is
given as a table or implemented as a function (in the computer
science sense of the word).

Idea:
Assemble interpolation polynomial for certain nodes, differentiate it
and evaluate result to obtain (approximation of) derivative.

We assume order of derivative = degree of polynomial.
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Numerical Differentiation
The Lagrange polynomials are

L
(n)
i (x) =

�

j �=i

x − xj
xi − xj

=
�

j �=i

(xi − xj)
−1

� �� �
=:λi∈R

·xn + αn−1x
n−1 + · · ·+ α0,

therefore taking the n-th derivative produces

dn

dxn
L
(n)
i (x) = n! · λi

which gives us the n-th derivative of an interpolation polynomial of
degree n:

dn

dxn

�
n�

i=0

yiL
(n)
i (x)

�
= n! ·

n�

i=0

yiλi (independent of x)
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Numerical Differentiation

We have the following statement about the resulting error:

Theorem 23
Let f ∈ C n([a, b]) and a = x0 < x1 < · · · < xn = b. Then there is
ξ ∈ (a, b), so that

f (n)(ξ) = n! ·
n�

i=0

yiλi

Therefore, the derivative from the interpolation polynomial
coincides in at least one point with the true derivative of f .
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Numerical Differentiation
For equidistant nodes, xi = x0 + ih, 0 ≤ i ≤ n, there is an explicit
formula based on the node values yi :

f (n)(x) ≈ h−n
n�

i=0

(−1)n−i

�
n

i

�
yi , e.g., f (1)(x) ≈ y1 − y0

h
,

f (2)(x) ≈ y2 − 2y1 + y0
h2

, f (3)(x) ≈ y3 − 3y2 + 3y1 − y0
h3

Based on Taylor expansion one can show

f �(x) =
f (x + h)− f (x − h)

2h
+O(h2) for f ∈ C 3,

f ��(x) =
f (x + h)− 2f (x) + f (x − h)

h2
+O(h2) for f ∈ C 4
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Numerical Differentiation
These approximations of function derivatives are called centered
difference quotients.

One can also place the nodes off-center to obtain the forward
difference quotient

f �(x) =
f (x + h)− f (x)

h
+O(h) for f ∈ C 2

and backward difference quotient

f �(x) =
f (x)− f (x − h)

h
+O(h) for f ∈ C 2

Note that forward and backward difference quotients have lower
approximation order than centered variants.

Difference quotients play an important role in the derivation of
methods for differential equations.
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Extrapolation to the Limit I

Let some quantity a(h) be computable for h > 0, but not for h = 0.
We are interested in computing

a(0) = lim
h→0

a(h)

with good accuracy.

Example 24

Possible applications:

1 L’Hospital’s rule:

a(0) = lim
h→0

cos(x)− 1

sin(x)
(= 0)
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Extrapolation to the Limit II

Example 24

2 Numerical Differentiation:

f �(x) = lim
h→0

f (x + h)− f (x)

h

(small h cause cancellation)

3 Numerical Integration:

� b

a
f (x) = lim

N→∞

n�

i=1

N−1f

�
a+ (i − 1

2
)
b − a

N

�

(set h := N−1)
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Extrapolation to the Limit III

Example 24

4 Numerical solution of initial value problem

y �(t) = f (t, y(t)) on [0,T ]; y(0) = y0

Set

h = N−1; yn = yn−1 + h · f (t, yn − 1); y(T ) ≈ yN

Here h → 0 is equivalent to N → ∞ and therefore increasing
computational cost.
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Central Idea of Extrapolation

Idea of extrapolation:

For h0 > h1 > · · · > hn > 0 construct interpolation polynomial

p(hi ) = a(hi ) i = 0, . . . , n

and compute
a(0) ≈ p(0)

(Extrapolation instead of interpolation, since 0 �∈ [hn, . . . , h0])
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Example I

Example 25

For a(h) = (cos(h)− 1) · (sin(h))−1 we have

h0 = 1/8: a(h0) = −6.258151 · 10−2

h1 = 1/16: a(h1) = −3.126018 · 10−2

h2 = 1/32: a(h2) = −1.562627 · 10−2

(i.e., a(h) is directly proptional to h), and with extrapolation using
p2 of degree 2:

a(0) ≈ p2(0) = −1.02 · 10−5

which is significantly better than the initial approximations or a
possible direct evaluation for h � 1 (cancellation)!
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Example II

Example 25

Why does this work so well?

Let hi = h · r i with r < 1 (geometric distribution), e.g., r = 1/2,
and let p the interpolation polynomial of a to the nodes hi . Then
we have

|p(0)− a(0)| ≤ �V−T�∞|a(n+1)(ξ)| hn+1

(n + 1)!
(1 + rn+1)

for the extrapolation error, with Vandermonde matrix V and
ξ ∈ (0, h), as long as a is sufficiently differentiable.
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Extrapolation in the Case of Derivatives

The Taylor expansion of a at zero (Mclaurin expansion) is crucial.
For the usual difference quotient for the second derivative we
obtain

a(h) =
f (x + h)− 2f (x) + f (x − h)

h2

= f ��(x) +
h2

2 · 4! f
(4)(x) + · · ·+ h2n

2 · (2n + 2)!
f (2n+2)(x)

+
h2n+2

2 · (2n + 4)!
[f (2n+4)(ξ+) + f (2n+4)(ξ−)]

= px(h
2) +O(h2(n+1))

This means one gains two powers of h per evaluation (if f is
sufficiently smooth)!
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Newton-Cotes Formulas
The Newton-Cotes formulas are interpolatory quadrature
(integration) formulas.

Idea: Construct the interpolation polynomial p of a function f for
certain nodes and evaluate the integral of p exactly to approximate
the integral of f .

Formally: nodes and values (xi , f (xi )), i = 0, . . . , n, Lagrange
representation:

pn(x) =
n�

i=0

f (xi )L
(n)
i (x), L

(n)
i (x) =

�

j �=i

x − xj
xi − xj

and therefore

I[a,b](f ) ≈ I
(n)
[a,b](f ) =

� b

a
pn(x) dx =

n�

i=0

f (xi )

� b

a
L
(n)
i (x) dx
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Order of Quadrature

Definition 26 (Order of Quadrature)

A quadrature formula I (n)(f ) has at least order m, if it is able to
integrate polynomials of degree m − 1 exactly.

For example, a second order formula integrates linear functions
exactly.

The Newton-Cotes formulas use polynomial interpolation and
therefore they have at least order n + 1 for n + 1 nodes. But there
are other formulas that can achieve even higher orders with the
same number of nodes.
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Closed and Open Formulas

The Newton-Cotes formulas use equidistant nodes. There are two
variants:

Closed formulas:
The interval bounds a and b are nodes, i.e.,

xi = a+ iH, i = 0, . . . , n, with H =
b − a

n

Open formulas:
The bounds a and b aren’t nodes, i.e.,

xi = a+ (i + 1)H, i = 0, . . . , n, with H =
b − a

n + 2
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Examples
Closed formulas for n = 1, 2, 3 and H = (b − a)/n:

The trapezoidal rule:

I (1)(f ) =
b − a

2
· [f (a) + f (b)]

The Simpson rule resp. Kepler’s barrel rule:

I (2)(f ) =
b − a

6
· [f (a) + 4f

�
a+ b

2

�
+ f (b)]

The 3/8 rule resp. “pulcherrima”:

I (3)(f ) =
b − a

8
· [f (a) + 3f (a + H) + 3f (b − H) + f (b)]
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Examples
Open formulas for n = 0, 1, 2 and H = (b − a)/(n + 2):

The midpoint rule:

I (0)(f ) = (b − a) · f
�
a+ b

2

�

The second open rule (no special name):

I (1)(f ) =
b − a

2
· [f (a + H) + f (b − H)]

The third open rule (also no special name):

I (2)(f ) =
b − a

3
· [2f (a)− f

�
a+ b

2

�
+ 2f (b)]
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Remarks

Remark 27
From n = 7 on for closed rules, resp. from n = 2 on for open rules,
negative weights appear in the sums. This is detrimental, because:

• Strictly non-negative functions f can have I (n)(f ) < 0 (solute
concentration, mass conservation,. . . ).

• There is increased risk of cancellation.

• Condition can become worse, while it is bounded for strictly
positive weights.
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Estimates for Remainder Terms I

Theorem 28 (Remainder Terms)

The resulting error can be estimated as follows:

1 Trapezoidal rule: n = 1, order 2, we have

I (f )− b − a

2
· [f (a) + f (b)] = −(b − a)3

12
f ��(ξ), ξ ∈ [a, b]

for f ∈ C 2([a, b]). This means polynomials up to degree 1 are
integrated exactly, because for those f ��(x) = 0 holds on [a, b].

In general: the order of the odd formulas is the number of
nodes, while the order of the even formulas is one higher.
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Estimates for Remainder Terms II

Theorem 28 (Remainder Terms)

2 Simpson rule: n = 2, order 4, for f ∈ C 4([a, b]) we have

I (f )− b − a

6
· [f (a)+4f

�
a+ b

2

�
+ f (b)] = −(b − a)5

2880
f (4)(ξ)

3 Midpoint rule: n = 0, order 2, for f ∈ C 2([a, b]) we have

I (f )− (b − a) · f
�
a+ b

2

�
=

(b − a)3

24
f ��(ξ)

so “half the error of trapezoidal rule” at just one function
evaluation!
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Summed Quadrature Rules

Increasing the polynomial degree doesn’t make much sense, since

• negative weights appear early

• Lagrange interpolation with equidistant nodes doesn’t
converge pointwise

• f has to be sufficiently regular for the estimates to hold

Idea of summed quadrature rules:

• Subdivide interval [a, b] into N smaller intervals

[xi , xi+1], xi = a+ ih, i = 0, . . . ,N − 1, h =
b − a

N

• Apply one of the above formulas on each subinterval and sum
the results.
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Examples
For N subintervals of stepsize h we arrive at:

The summed trapezoidal rule:

I
(1)
h (f ) =

N−1�

i=0

h

2
[f (xi ) + f (xi+1)] = h ·

�
f (a)

2
+

N−1�

i=1

f (xi ) +
f (b)

2

�

The summed Simpson rule:

I
(2)
h (f ) =

h

3
·
�
f (a)

2
+

N−1�

i=1

f (xi ) + 2
N−1�

i=1

f

�
xi + xi+1

2

�
+

f (b)

2

�

The summed midpoint rule:

I
(0)
h (f ) = h ·

N−1�

i=0

f

�
xi + xi+1

2

�
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Introduction

Vectors and Matrices I
A vector v ∈ Rn is a finite sequence of real numbers:

v = [v1, v2, . . . , vn]
T , vi ∈ R

A matrix A ∈ Rn×m is defined similarly, but uses two independent
indices i and j , one for columns and one for rows:

A =




a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm


 , aij ∈ R

Each matrix A ∈ Rn×m corresponds to a linear mapping
ϕA : Rm → Rn given by

ϕA(v) = A · v , v ∈ Rm
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Vectors and Matrices II
For a sufficiently regular scalar function f (x), x = [x1, . . . , xm], we
have the following special vectors and matrices:

∇f :=

�
∂f

∂x1
, . . . ,

∂f

∂xm

�T
(gradient)

Hf = ∇2f :=

�
∂2f

∂xi∂xj

�

ij

(Hessian)

For vector-valued functions f (x) = [f1(x), . . . , fn(x)]
T , the gradient

generalizes to the Jacobian:

Jf =

�
∂fi
∂xj

�

ij

If f = ϕA is a linear function, then Jf = A, i.e., the constituent
matrix A and the Jacobian coincide. 170 / 200
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Natural Matrix Norms

Definition 29 (Associated Matrix Norm)

Let � · � an arbitrary vector norm on Rn. Then

�A� := sup
x∈Rn\{0}

�Ax�
�x� = sup

x∈Rn,�x�=1
�Ax�

is called the matrix norm associated with � · �, or natural matrix
norm. It is compatible with the matrix norm, i.e.,

�Ax� ≤ �A� · �x� A ∈ Rn×n, x ∈ Rn,

and submultiplicative, i.e.,

�AB� ≤ �A� · �B� A,B ∈ Rn×n

(compare with triangle inequality / subadditivity).
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Linear and Nonlinear Systems of Equations

Many important problems, e.g., the solution of ordinary and partial
differential equations, can be framed as solving a given linear
system of equations:

A · x = b resp. A · x − b = 0

or nonlinear system of equations:

F (x) = 0

where F is a possibly vector-valued function, A is a matrix, and x
and b are vectors of the right dimensions.
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Perturbation Theorem

Theorem 30 (Perturbation Theorem)

Let A ∈ Rn×n regular and �ΔA� ≤ �A−1�−1
. Then �A = A+ΔA is

also regular, and for the relative error of the perturbed system

(A+ΔA) · (x +Δx) = b +Δb

the equation

�Δx�
�x� ≤ cond(A)

1− cond(A) · �ΔA�
�A�

·
��Δb�

�b� +
�ΔA�
�A�

�

holds, where cond(A) := �A� · �A−1� is the condition number of
the matrix A. For the special case ΔA = 0 we have

�Δx�
�x� ≤ cond(A) · �Δb�

�b� .
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Triangular Systems

Let A ∈ Kn×n an upper triangular matrix:

a11 · x1 + a12 · x2 + · · ·+ a1n · xn = b1

a22 · x2 + · · ·+ a2n · xn = b2

. . .
...

...

ann · xn = bn

This system permits a unique solution iff aii �= 0, i = 1, . . . , n.

Because of the simple structure this can be solved using “backward
substitution”.
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Triangular Systems
Solution using backward substitution:

xn = bn/ann

xn−1 =
�
bn−1 − a(n−1)n · xn

�
/a(n−1)(n−1)

...

xi =

�
bi −

n�

k=i+1

aik · xk
�
/aii

Required number of operations:

NΔ(n) =
n−1�

i=0

(2i + 1) = n2

(Of course there is an analogous “forward substitution” for upper
triangular matrices.) 175 / 200
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Direct Methods for Linear Systems

Let A ∈ Kn×n regular, but with arbitrary structure.

Goal: Transform A into (upper) triangular form, then use backward
substitution.

This can be done using:

• exchange of two equations / rows

• addition of a multiple of one equation to another

This is a standard technique known as Gauss elimination.
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Gauss Elimination

Perform the following steps until an upper triangular matrix is
obtained, starting with k = 1:

1 For i > k , define lik = aik · a−1
kk .

2 For i > k , set
aij ←− aij − likakj

(subtract a multiple of the k-th row to eliminate the first k
entries of the i-th row).

3 Increase k by one: k ←− k + 1.

4 Repeat.

After (at most) n − 1 loop iterations the matrix has become upper
right triangular.
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Cost of Gauss Elimination

Lemma 31
The cost of transforming A into an upper right triangular matrix
by Gauss elimination is

NGauß(n) =
2

3
n3 +O(n2)

Since the cost for backward substitution is negligible
(NΔ(n) = n2), this is also the cost for solving a linear equation
system using Gauss elimination.
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A Note on Stability

The classic Gauss elimination is unstable for general matrices
(because we divide by diagonal elements of the original matrix,
which can become arbitrarily small).

The algorithm can be made significantly more stable through a
process called row pivotisation. In each iteration, we search for the
largest subdiagonal element in the k-th column and swap its row
with the k-th row, remembering resulting row permutations.

Total pivotisation instead searches for the largest element in the
lower right corner of the matrix, and employs both row and column
permutations. This is more expensive, but leads to further
improvements in terms of stability.
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LU Decomposition I

Storing the factors lik of the elimination steps is a good idea:

Theorem 32 (LU Decomposition)

Let A ∈ Rn×n regular, then there exists a decomposition PA = LU,
where

L =




1 0 · · · 0

l11 1
. . .

...
...

. . .
. . . 0

ln1 · · · ln(n−1) 1



, U =




u11 u12 · · · u1n

0 u22
. . . u2n

...
. . .

. . . u(n−1)n

0 · · · 0 unn



,

and P is a permutation matrix. For P = I this decomposition is
unique.
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LU Decomposition II

Solving a linear system via LU decomposition:

1 For given A, compute LU decomposition and matrix P

2 For given b, calculate b� = Pb

3 Solve triangular system Ly = b� (forward substitution)

4 Solve triangular system Rx = y (backward substitution)

LU decomposition is equivalent to Gauss elimination, and therefore
has the same cost NLU(n) =

2
3n

3 +O(n).

Important difference:
The LU decomposition can be reused for new righthand sides
A�x = �b, while Gauss elimination has to start over from the
beginning!
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Symmetric Positive Definite Matrices

Theorem 33
For a symmetric positive definite (s.p.d.) matrix A ∈ Rn×n the LU
decomposition is always stable, even without pivotisation. The
equation

a
(k)
ii ≥ λmin(A), k ≤ i ≤ n

holds for the diagonal elements, where λmin(A) is the smallest
eigenvalue of A.

The symmetric structure of the matrix can be used to reduce the
cost of LU decomposition.
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Cholesky Decomposition
With D = diag(R) we have

A = LD(D−1R) = LDR with R := D−1U,

and because of symmetry R = LT , therefore A = LDLT . Since all
diagonal elements of D are positive, the matrix D1/2 with

(D1/2)ii = d
1/2
ii , (D1/2)ij = 0 for i �= j

is well-defined, and

A = LD1/2 · D1/2LT = �L�LT with �L := LD1/2

holds.

This special form of the decomposition is called Cholesky
decomposition, it has half the cost of the general version.

183 / 200



Precourse to the PeC3 School on Numerical Modelling with Differential Equations

Solution of Linear and Nonlinear Equations

Iterative Methods for Linear Systems

Iterative Methods for Linear Systems I
We consider a second approach for the solution of

Ax = b, A ∈ Rn×n regular, b ∈ Rn.

Definition 34 (Sparse Matrices)

A sequence of matrices {A(n) | n ∈ N} is called sparse, iff

|{a(n)ij | a(n)ij �= 0}| =: nnz(A(n)) = O(n)

(nnz = “number of non-zeros”).

Because of “fill in” Gauss elimination is often unsuited for sparse
matrices, and: for large systems the cost in O(n3) makes the
solution intractable.
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Iterative Methods for Linear Systems II
We have

Solving Ax = b ⇐⇒ “root search” for f (x) := b − Ax = 0.

With given matrix C , define the iteration

x (t+1) = g(x (t)) = x (t) + C−1f (x (t))

= x (t) + C−1(b − Ax (t))

= (I − C−1A)� �� �
=:B

x (t) + C−1b

with “iteration matrix” B . The choice C = A would be optimal in
theory, but that requires solving the problem itself.

=⇒ look for easily invertible C “similar” to A
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Iterative Methods for Linear Systems III

For the solution x := A−1b,

g(x) := (I − C−1A)x + C−1b = x − (C−1A) · (A−1b) + C−1b = x

holds, therefore x is a fixpoint of g .

The Lipschitz constant of the function g fulfills

�g(x)− g(y)� = �B(x − y)� ≤ �B� · �x − y�,

i.e., if �B� < 1 (for suitable matrix norm � · �), then g is a
contraction on Rn, and repeated application of g defines a
sequence that converges to the solution (consequence of Banach’s
fixpoint theorem).
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Examples for Iterative Methods
Decompose A = L+D +U with L strict lower triangular matrix, D
diagonal matrix and U strict upper triangular matrix.

Jacobi method:
Set C = D, i.e.,

x (t+1) = x (t) + D−1(b − Ax (t))

Gauß–Seidel method:
Set C = L+ D, i.e., (forward substitution)

x (t+1) = x (t) + (L+ D)−1(b − Ax (t))

Such iterative methods typically converge only for special classes of
matrices (since we need �B� < 1).
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Convergence of Jacobi Method

A matrix is called strictly diagonally dominant, iff

�

j �=i

|aij | < |aii | ∀ i = 1, . . . , n.

Theorem 35
The Jacobi method converges for strictly diagonally dominant
matrices.

There are many similar statements for symmetric positive definite
matrices, weakly diagonally dominant matrices, so-called
M-matrices, . . .
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Costs

Let α(n) be the cost for one iteration, typically with α(n) = O(n).
Since

�x (t) − x� ≤ �B�t�x (0) − x�,

a total of t ≥ log(�)
log(�B�) iterations are necessary for a reduction of

the error by a factor � � 1, leading to a total cost of

Tfix(n) =
log(�)

log(�B�)α(n).

Problem: high costs if �B� is close to one, �B� is problem
dependent and often grows with n.
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Conjugate Gradients

For symmetric positive definite matrices A one can instead use the
method of Conjugate Gradients. It uses an initial guess x0, the
initial residuum r0 := b − Ax0, and d0 := r0 to iteratively compute

αt =
rTt rt

dT
t Adt

xt+1 = xt + αtdt

rt+1 = rt − αtAdt

βt =
rTt+1rt+1

rTt rt

dt+1 = rt+1 + βtdt

• The CG method converges
in at most n steps in exact
arithmetic.

• For n � 1 it can be used as
an iterative method, and
often displays good
convergence properties after
the first few steps.
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Newton’s Method
Let f a differentiable function in one
variable. For given xt we have the
“tangent”

Tt(x) = f �(xt)(x − xt) + f (xt)

with root

Tt(x) = 0 ⇐⇒ x = xt −
f (xt)

f �(xt)
. x t+1x t

Using this root as an estimate for the root of f leads to the
iteration

xt+1 = xt −
f (xt)

f �(xt)
.

Obviously we need |f �(xt)| > 0, i.e., we assume that the root of f
is a simple root.
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Newton’s Method in Multiple Dimensions
Newton’s method can be extended to systems f : Rn → Rn:

Assume that the Taylor expansion of f exists:

fi (x) = fi (xt+Δx) = fi (xt)+
n�

j=1

∂fi
∂xj

(xt)Δxi+Ri (xt ,Δx) i = 1, . . . , n

or in vector notation

f (xt +Δx) = f (xt) + Jf (xt)Δx + R(xt ,Δx)

with “Jacobian” matrix

[Jf (xt)]ij =
∂fi
∂xj

(xt)
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Newton’s Method in Multiple Dimensions

Ignoring the remainder term is equivalent to “linearization of f ”.
Find approximate root of f :

f (x) ≈ f (xt) + Jf (xt)Δx = 0 ⇐⇒ Δx = −J−1
f (xt)f (xt)

This leads to the iteration

xt+1 = xt − J−1
f (xt)f (xt)

Every single step requires the solution of a linear system based on
the local Jacobian!
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Convergence of Newton’s Method I

Theorem 36 (Newton’s Method)

Let f ∈ C 2([a, b]) have a root z in (a, b) (interior!), and let

m := min
a≤x≤b

|f �(x)| > 0, M := max
a≤x≤b

|f ��(x)|.

Let ρ > 0 chosen thus, that

q :=
M

2m
ρ < 1, Kρ(z) := {x ∈ R | |x − z | ≤ ρ} ⊂ [a, b]

Then for every initial value x0 ∈ Kρ(z) the Newton iterations
xt ∈ Kρ(z) are defined and converge to the root z .
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Convergence of Newton’s Method II

Theorem 36 (Newton’s Method)

Additionally, the a priori error erstimate

|xt − z | ≤ 2m

M
q(2

t), t ∈ N

and the a posteriori error estimate

|xt − z | ≤ m−1|f (xt)| ≤
M

2m
|xt − xt−1|2, t ∈ N.

hold (a priori: only uses prerequisites, a posteriori: also uses
iterations that were computed up to that point)
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Example: Roots of Real Numbers

Example 37 (Computing Roots with Newton’s Method)

Let a > 0 and n ≥ 1. Solve xn = a, i.e.,

f (x) = xn − a = 0, f �(x) = n · xn−1.

This leads to iteration

xt+1 = n−1 · [(n − 1) · xt + a · x1−n
t ].

According to Thm. 36 this converges, if x0 is close enough to a1/n.
However, in this special case it converges globally, i.e., for all
x0 > 0 (but not necessarily quadratically in the beginning).
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Remarks I

Remark 38

• Newton’s method converges only locally, i.e., when
|x0 − z | ≤ ρ (“basin of attraction”). Here ρ is normally not
known and potentially very small.

• Newton’s method exhibits quadratic convegence,

|xt − z | ≤ c · |xt−1 − z |2,

in contrast to alternatives like, e.g., bisection, which
converges only linearly.
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Remarks II

Remark 38

• Damped Newton’s method:
Convergence outside of the basin of attraction can be
improved by setting

xt+1 = xt − λt
f (xt)

f �(xt)

with the choice of some sequence λt ∈ (0, 1] as “dampening
strategy”.
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Remarks III

Remark 38

• Multiple roots:
If z is a p-fold root, with p > 1, Newton’s method will still
converge, but only linearly. One can show that the modified
iteration

xt+1 = xt − p · f (xt)
f �(xt)

reestablishes quadratic convergence if p is known a priori.
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Summary

In the last few days, we have discussed the fundamentals of the
following topics:

1 Numerical programming in C++

2 Numbers and calculations with finite precision

3 Condition analysis of numerical problems and tasks

4 Error propagation and stability of numerical algorithms

5 Numerical differentiation and integration

6 Numerical solution of linear and nonlinear equation systems

The introduced concepts will form the basis of the lectures and
exercises next week.
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