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ABSTRACT i

Common root rot of pea, which is the major yield – reducing factor for pea

production world-wide is caused by the oomycete Aphanomyces euteiches. The

model legume Medicago truncatula was chosen to study the molecular mechanisms

of this disease. Young seedling of M. truncatula were effectively infected with

zoospores of A. euteiches and similar disease development as in pea was observed. A.

euteiches colonizes the root system and the disease symptoms occur mainly in the

plant root. Therefore the root tissue was used for the analyses. cDNA-AFLP method

was used to determine the time point of disease development where the most

transcriptional changes occur. The earliest time point determined, was chosen to

establish a SSH-cDNA-library enriched for the genes preferentially expressed in

plant root after infection with oomycete. In total 560 ESTs from this library were

sequenced and annotated. EST-annotations showed homologies to a number of

classical pathogenesis related and defence genes. Pre-screening of 192 SSH-cDNA

clones revealed 51 ESTs (26.5 %) showing increased mRNA accumulation in the

infected plant root. 46 from total of 560 annotated ESTs showed no homology to

previously identified M. truncatula genes. Moreover 10 of this new M. truncatula

genes were confirmed to be up-regulated in the roots after infection.

Two genes from the Kunitz-type trypsin inhibitor family were analysed for their

structure, expression and function. One of them, MtMir-1, is a gene induced in M.

truncatula roots by A. euteiches, as well as by symbiotic AM (arbuscular

mycorrhizal) fungi. Another one, MtMir-2, is induced in M. truncatula roots

exclusively during symbiotic and not during pathogenic interaction. Complete cDNA

sequences of both genes were determined. Moreover, promoter regions were isolated.

Promoter-reporter gene fusions were used for promoter studies.

Using dsRNA MtMir-1 gene was silenced in transgenic roots of M. truncatula.

Changes occurring in global gene expression pattern after silencing of MtMir-1 gene

were studied using microarray technique.

The transcription profile of M. truncatula root 30 minutes and 6 days after infection

with A. euteiches was also studied using microarrays.

Keywords: Medicago truncatula, Aphanomyces euteiches, transcription profiling



ZUSAMMENFASSUNG ii

Die gemeine Wurzelfäule bei der Erbse, der größte erntereduzierende Faktor

der Erbsenproduktion weltweit, wird durch den Oomyzet Aphanomyces euteiches

verursacht. Die Modell-Leguminose Medicago truncatula wurde ausgewählt, um die

molekularen Mechanismen dieser Krankheit zu untersuchen. Junge Sämlinge von M.

truncatula konnten effektiv mit Zoosporen von A. euteiches infiziert werden. Dabei

wurden ähnliche Befallssymptome wie bei der Erbse beobachtet. A. euteiches

kolonisiert das Wurzelsystem und Krankheitssymptome treten hauptsächlich dort

auf. Deswegen wurde Wurzelgewebe für die Analysen ausgewählt. Die cDNA-

AFLP-Methode wurde benutzt, um den Zeitpunkt der Krankheitsentwicklung zu

bestimmen, an dem die meisten Veränderungen auf Ebene der Transkription

auftreten. Der früheste Zeitpunkt dieser Analyse wurde ausgewählt, um eine SSH-

cDNA-Library zu etablieren, die angereichert ist für Gene, welche bevorzugt in der

Pflanzenwurzel nach Infektion mit dem Oomyzet exprimiert werden. Insgesamt

wurden 560 EST dieser Library sequenziert und annotiert. Die EST-Annotationen

zeigten Homologien zu einer Anzahl von klassischen Abwehr- und Pathogen-

bezogenen-Genen. Eine Analyse von 192 SSH-cDNA-Klonen ergab 51 ESTs (26,5

%), die eine erhöhte mRNA-Akkumulation in den infizierten Pflanzenwurzeln

aufwiesen. 46 der 560 annotierten ESTs zeigten keine Homologie zu vorher

identifizierten M. truncatula Genen. Darüber hinaus konnte für 10 dieser neuen M.

truncatula Gene eine Hochregulation in den Wurzeln nach Infektion belegt werden.

Zwei Gene der Kunitz-Typ Trypsin Inhibitoren Familie wurden auf ihre Struktur,

Expression und Funktion hin analysiert. Das eine, MtMir-1, ist ein Gen, welches in

M. truncatula –Wurzeln sowohl durch A. euteiches als auch durch symbiotische AM

(arbuskuläre Mykorrhiza) Pilze induziert wird. Das andere, MtMir-2, wird in M.

truncatula-Wurzeln ausschließlich während der Symbiose und nicht durch die

Pathogen-Interaktion induziert. Die kompletten cDNAs beider Gene wurden

bestimmt. Darüber hinaus wurden die Promoter-Regionen isoliert. Promoter-

Reporter-Gen-Fusionen wurden für Promoter-Analysen eingesetzt.

Mittels dsRNA wurde das MtMir-1–Gen in transgenen Wurzeln von M. truncatula

ausgeschaltet. Veränderungen der globalen Gen-Expressions-Muster durch das

ausgeschaltete MtMir-1-Gen wurden mittels Mikroarray-Technik analysiert.

Auch die Transkriptionsprofile von M. truncatula-Wurzeln 30 Minuten und 6 Tage

nach Infektion mit A. euteiches wurden mittels Mikroarrays untersucht.

Schlagwörter: Medicago truncatula, Aphanomyces euteiches, transkriptions profil
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PCI = Phenol chloroform isoamylalcohol

PMS = Phenazine methosulfate

RACE = Rapid amplification of cDNA ends

rev = Reverse

RNA = Ribonucleic acid

RNAi = RNA interference

RNase = Ribonuclease

rpm = round per minute

RT = Reverse transcription

RT = Room temperature

SDS = Sodium dodecyl sulfate

SSC = Saline sodium citrate

SSH = Suppression subtractive hybridization

TAE = Tris-acetate-EDTA

Taq = Thermus aquaticus

TE = Tris-EDTA

TBE = Tris-boric acid

TEMED = N,N,N´,N´-Tetramethylendiamine

TC = Tentative concensus

Tris = Tris-(hydroxymethyl)-aminomethane

UV = ultra violet

v = volume

w = weight

x-Gal = 5-Bromo-4-chloro-3-indolyl-ß-D-galactopyranoside
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During their life cycle plants are exposed to numerous biotic and abiotic

environmental stresses. These stresses can result from environmental conditions,

injuries caused by insect attack or mechanical wounding, different symbiotic or

pathogenic bacteria, fungi, nematodes and oomycetes. Although plants may suffer

damage to a lesser or greater extent, many survive these attacks some don’t. The

speed of a plant’s response to infection affects the level of resistance expressed

(Lyon et al., 1990).

To initiate defence reaction rapidly, some plants recognise specific substances from

pathogens. Even though they lack an immune system, plants are surprisingly resistant

to most pathogens. Many plant species react to fungal or bacterial invasion by

synthesising polymers such as lignin or callose, which act as physical barriers and

inhibit the pathogen from gaining an entrance and spreading through the plant. Some

antimicrobal compounds, such as simple phenylpropanoids, are synthesised before

pathogen attack (Maher et al., 1994). Other antipathogen defences are induced by

infection. A further common defence reaction induced after infection is

hypersensitive response (HR), in which cells immediately surrounding the infection

site die rapidly, depriving the pathogen of nutrients and preventing its spread

(Cordelier et al., 2003).

One frequently observed event following infection by pathogen is the transcriptional

activation of PR (pathogenesis-related) proteins (van Loon, 1985; Bowles, 1990;

Somssich and Hahlbroch, 1998). Currently, there are 17 independent PR protein

families. For some of those proteins an antifungal activity has been described (van

Loon and van Strien, 1999; Neuhaus, 1999; Christinsen et al., 2002).

The production of phytoalexins is a further common response of plants to pathogen.

Phytoalexins are a chemically diverse group of secondary metabolites with strong

antimicrobal activity that accumulate around the site of infection. Isoflavonoids are

common phythoalexins in the legume family. Isoflavanoids are generally

undetectable in plant tissues before infection, but they are synthesised rapidly after

pathogen attack because of the activation of new biosynthetic pathways.

In addition to localised defences, plants possess various inducible defence

mechanisms that establish an enhanced defensive capacity in plant parts distant from

the site of primary attack, thereby protecting the plant systemically against

subsequent invasion. This phenomenon, called systemic acquired resistance (SAR),

develops over a period of several days following initial infection (Ryals et al., 1996).
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Recent studies revealed, that plant signal molecules SA (salicylic acid), JA (jasmonic

acid) ET (ethylene) play a dominant role in network of interconnecting signalling

pathway (Dong, 1998; Reymond and Farmer, 1998; Glasebrook, 1999; Pieterse and

van Loon Feys and Parker, 2002).

In the last few years, numerous plant resistance genes known as R gene have been

isolated from different plants (Cooley et al., 2000). Most of the R genes are thought

to encode receptors that recognize and bind specific molecules originating from

pathogens and alert the plant to the pathogens presence. The specific pathogen

molecules recognized are referred as elicitors, and include proteins, peptides, lipids

or polysaccharide fragments arising from the pathogen cell wall, the outer membrane

or a secretion process (Boller 1995). The R gene products themselves are nearly all

proteins, with leucine-rich domain that is repeated inexactly several times in the

amino acid sequence (Hammond-Kosack and Jones 1997). Avr (avirulence) genes are

the genes of pathogen, which encodes specific elicitors.

When corresponding R and avr genes are present in both host and pathogen, the

result is disease resistance. If either is inactive or absent, disease results (Floh 1971).

Most investigations on the molecular basics of plant-pathogen interactions are

focused on interactions which cause disease symptoms on the upper part of the plant

and little is known about root-pathogen associations. And up to now only very little

is known about the molecular basis of root-oomycete associations. Recent studies

have shown that insight gained on the molecular regulation of plant-fungus

associations cannot be generally transferred to plant-oomycete associations

(Judelson, 1997). The position of oomycetes as a unique lineage of stramenopile

eukaryotes, unrelated to true fungi but closely related to heterokont algae, has been

well established using molecular phylogenetic analyses that are based on ribosomal

RNA sequences (Kumar et al.,1996; Van de Peer et al., 1997; Paquin et al., 1997).

From these analyses it is evident that oomycetes evolved the ability to infect plants

independently of other eukariotic plant pathogens and are likely to have unique

mechanism for doing so (Kamoun, 2001). In the present study Medicago truncatula-

Aphanomyces euteiches pathosystem was chosen to study the molecular basis of

plant root-oomycete interaction.

Oomycetes, also known as water molds, are terrestrial and aquatic fungallike

organisms in the kingdom Stramenopila. They are filamentous protists which must

absorb their food from the surrounding water or soil or may invade the body of
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another organisms to feed. The terrestrial oomycetes are mostly parasites of vascular

plants, and include several important plant pathogens. Plant diseases caused by

oomycetes are known for their important economical and social impact. The most

prominent example is Phytophthora infestans, the cause of the Irish potato famine.

During one week in the summer of 1846, this disease wiped out almost the entire

potato crop in Ireland. Nearly a million Irish died in the Great Famine and one-and-a-

half million emigrated to other countries (Ristano, 2002).

The oomycete Aphanomyces euteiches Drechs, in the order Saprolegniaceae, causes

one of the most destructive diseases of pea (Pisum sativum L.), a root rot. It was first

reported in the 1920s in United States, and has been widely observed in many pea

growing areas in North America, Australia, New Zealand, Japan and Europe (Kraft

and Pfleger, 2001)

Several other legumes as alfalfa, snapbean and red clover are also described to be

susceptible (Delwiche et al., 1987; Pfender and Hagedorn, 1982; Greenhalgh et al.,

1985). Root rot causes early stagnation of root growth and symbiotic nitrogen

fixation; it limits the uptake of water and nutrients (Grau, 1990). The typical

symptoms of the root rot are water-soaked, honey-brown lesions spreading from the

location where the root tip had been inoculated with the pathogen. Infection with

A. euteiches can result in the death of seedlings, but more often results in stunted,

chlorotic plants. Roots and hypocotyls develop light to dark brown lesions, but

unlike other root-rot pathogens which cause seedling collapse, hypocotyls infected

with Aphanomyces tend to remain rigid, resulting in stunted but upright seedlings

(Grau, 1990).

The disease cycle is initiated by direct germination of sporangia on the surface of

susceptible plants or indirectly by zoospore formation. While both direct germination

of sporangia and zoospores can act as inoculum for plant infection, it is thought that

the latter are responsible for rapid infections because of their greater numbers and

more efficient germination. The underlying mechanism involved in the perception of

an environmental signal and the molecular events that lead to the genesis of germ

tubes or zoospores are not at all understood. The initial parasitic phase of the

pathogen is relatively short. After few days oospores are formed and the fungus

enters its resting state. Oospores constitute the primary inoculum source in the soil

(Mitchell and Yang, 1966). A. euteiches can grow on a variety of carbon sources, but

studies of its life cycle in plant roots suggests that the relationship is biotrophic, as
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the pathogen mycelium shows activity in living plant tissues only and does not grow

saprophytically within dead plant material (Kjøeller  and Rosendahl, 1998).

To date, no effective fungicides, resistant pea cultivars or biological control methods

are available for the control of this pathogen (Cerenius et al. 1992; Rao et al. 1995).

Only avoidance of fields with high disease potential can prevent the problem

(Oyarzun, 1993). In contrast, resistant alfalfa cultivars are available (Munkvold et

al., 2001)

There are reports about the bioprotective effect of arbuscular mycorrhizal fungi

(Kjøeller and Rosendahl, 1996; Bodker et al., 1998; Slezack et al., 2000) but

development of new strategies to control A. euteiches is necessary and will require a

detailed knowledge of the molecular mechanisms underlying this oomycete-plant

association.

The most thoroughly investigated plant-oomycete pathosystems are the interaction

between potato/tomato and Phytophthora infestance, lettuce and Bremia lactucae,

soybean and Phytophthora sojae (Judelson, 1996). Many resistance genes have been

identified in these plant-oomycete pathosystems (Al-Kherb et al., 1995; Anderson

and Buzzell, 1992; Crute and Pink, 1996).

During the last years several attempts have been made to profile the genes whose

expression was induced by oomycete-pathogens. Using the potato-P.infestans

pathosystem Birch et al., (1999) identified several potato genes induced in late-

blight-resistant potato cultivar undergoing the hypersensitive response (HR). In later

studies identification of 64 transcripts up-regulated in P. infestans during early stages

of infection has been reported (Avrova et al., 2003). By surveying potato EST

libraries from diverse tissues, 1200 sequences potentially involved in the resistance

response of potato against of P. infestans were sequenced (Ronning et al., 2003).

Using hybrid plants derived from late blight resistant and late blight susceptible

potato lines several genes were identified potentially playing a role in horizontal

resistance (Evers et al., 2003). Studies made by screening of arabidopsis defence

response mutants with P. porri suggest that resistance of arabidopsis against P. porri

does not depend on salicylic acid (SA)-, ethylene-, or jasmonate-dependent

signalling pathway (Roetschi et al., 2001).
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Medicago truncatula as a model legume

Legumes represent the third largest family of flowering plants. Many agronomically

important plants are legumes, such as pea, soybean, bean, alfalfa, clover and peanut.

These plants have the unique capacity to establish an atmospheric-nitrogen-fixing-

symbiosis with soil bacteria collectively named rhizobia, and to form symbiotic root

mycorrhizae with soil borne fungi, thus facilitating their uptake of phosphate, water

and other soil nutrients (Gianinazzi-Pearson, 1996; Albrecht et al., 1999). However,

features such as tetraploidy, large genome and lack of efficient transformation

protocols for make them unwieldy and slows the progress on the genetic

characterisation of this crops.

Motivated initially by the needs to understand the molecular basis of symbiotic

nitrogen fixation, researches selected the barrel medic Medicago truncatula as  a

model system for legume biology (Barker et al., 1990; Cook et al., 1997; Cook 1999;

Bell et al., 2000).

M. truncatula, a close realtive of alfalfa, has a genome size of ~500-600 Mbp, only

half that of alfalfa, and almost 10 times smaller than that of pea, but ~ 4-times larger

than that of Arabidopsis thaliana (Blondon et al., 1994). It has a diploid genome with

2n = 16 chromosomes. Its autogamous nature, short generation time, prolific seed

production and high transformation and regeneration efficiency have made it the

system of choice for many studies of basic and applied legume research.

High level of macro- and microsyntheny of M. truncatula to pea, alfalfa and soybean

were identified (Thoquet et al., 2002; Gualtieri et al., 2002). This suggests, that the

results obtained using M. truncatula, could be easily transferred to other important

crop legumes.

Initiation and realization of large EST programmes using model organisms have

become very effective and straightforward strategies to obtain global views on

transcriptional changes during different plant-microbe interactions (Fedorova et al.,

2002; Journet et al., 2002). Large EST- and genomic sequencing projects have been

initiated for M. truncatula (www.medicago.org; www.genome.ou.edu/medicago.html ). Up to

date,  > 204,264 ESTs, generated from more than 30 different cDNA libraries are

available in public databases. The libraries not only encompass most major plant

tissues, but also incorporate developmental stages and treatments with pathogens,
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bacterial and fungal symbionts, insect pests and abiotic stressors (Frigoli and Harris,

2001).

The aim of the present study

The aim of the present study was to analyse the transcription profiles of Medicago

truncatula during an infection by Aphanomyces euteiches in order to gain insight into

molecular and physiological changes during disease development.

Information on both the physical and functional annotation of the genome can be

gained through transcript profiling (Hughes et al., 2001). In recent years, transcript

profiling has become synonymous with gene expression analysis, mostly because of

the technical difficulty and greater molecular complexity of proteomics and

metabolomics (Smith, 2000).

The modern methods of molecular biology provide us a broad possibility of

comparing different gene populations and identifying those genes exclusively

expressed in one of them. The methods such as differential display (DD), cDNA-

amplified restriction fragment polymorphism (cDNA-AFLP), Suppression

Subtractive Hybridization (SSH) and microarray hybridization have been used to

reveal organ or tissue specific as well as genes induced or repressed during different

biotic and abiotic stresses in broad range of plant species.

A key feature of the SSH method is simultaneous subtraction and normalization that

makes it possible to equalize abundance of target cDNAs in the subtracted

population. As a result, rare differentially expressed transcripts can be enriched by

~1000-fold (Diatchenko et al., 1996). The major drawback of SSH is the presence of

background clones representing non-differentially expressed cDNA species in the

subtracted libraries (Rebricov et al., 2000).

Microarray technology allows the measurement of mRNA abundance in cells for

thousands of genes in parallel and permits an assay of global gene expression

patterns under variety of experimental conditions (Singh et al., 2003).

Considering the advantages and disadvantages of above mentioned techniques, in the

present work, cDNA-AFLP method was used to get an overall view of gene

expression pattern of M. truncatula roots after infection with A. euteiches and

determine the time point of disease development where the highest number of

transcriptional changes occur.  SSH method was used to identify large number of

differentially expressed genes. Microarray hybridization method was used to
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compare the gene expression patterns in the early and later stages of disease

development as well as for the study of co-regulated genes. Transcription profile

comparison between A. euteiches-infected and control roots provide a tool to obtain

first views on molecular and physiological processes underlying the disease

development. Recent studies have shown that a number of plant genes which are

regulated during arbuscular mycorrhiza symbiosis are also regulated after infection

by A. euteiches (Krajinski et al., 1998; Lapopin et al., 1999). But so far, the A.

euteiches-legume association has not been the central aspect of transcriptomic

approaches.
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2.1 Materials

2.1.1 Chemicals, reagents, kits and equipment

Chemicals reagents, kits and equipment were obtained from following companies:

Amersham Biosciences Buckinghamshire, England
BioDiscovery Inc., Los Angeles, CA, USA
Biometra Göttingen, Germany
BioRad Hercules, CA, USA
BIORIZE R&D Dijon, France
Clontech Palo Alto, CA, USA
Intas Compact Göttingen, Germany
Invitek Berlin-Buch, Germany
Invitrogen Carlsbad, CA, USA
Kodak Rochester, NY, USA
Leica Bensheim, Germany
Macherrey-Nagel Düren, Germany
MBI Fermentas St. Leon-Rot, Germany
PerkinElmer Boston MA, USA
Pharmacia Biothech Buckinghamshire, England
Promega Madison, WI, USA
Qiagen Maryland, MD, USA
Roche Diagnostics Mannheim, Germany
Sigma-Aldrich Taufkirchen, Germany
Stratagene La Jolla, CA, USA

2.1.2 Organisms
Escherichia coli XL1-Blue MRF’ (Stratagene, La Jolla, CA, USA)
Escherichia coli XL1-Blue (Stratagene, La Jolla, CA, USA)
Escherichia coli TOP 10F’ (Invitrogen, Carlsbad, CA, USA)
Escherichia coli DH5α (Invitrogen, Carlsbad, CA, USA)
Agrobacterium rhizogenes ARqua I (Quandt et al., 1993)
Agrobacterium tumefaciens EHA105 (Hood et al., 1993)
Aphanomyces euteiches Drechs.
ATCC 201684           (S. Rosendahl, University of Copenhagen)
Glomus intraradices BB-E-Sc-02 (Biorize R&D, Dijon, France)
Medicago truncatula Gaertn. A17 

2.1.3 Vectors
Following vectors were used for this work:
pGEM-T Easy (Promega, Madison, WI, USA)
TOPO (Invitrogen Carlsbad, CA, USA)
pLP 100 Szabados et al., 1995
pDONRTM 207 (Invitrogen Carlsbad, CA, USA)
pFGC 5941 (Invitrogen Carlsbad, CA, USA)
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2.1.4 Oligonucleotides
Table 1. List of oligonucleotides used in this study

Oligonucleotide Sequnce 5´→ 3´ Annealing t

(Cº)

Reference

Apo I adaptor CTC GTA GAC TGC GTA CC CAT CTG ACG CAT GGT TAA 1

Mse I adaptor GAC GAT GAG TCC TGA G TA CTC AGG ACT CAT 1

ApoI+0 primer CTC GTA GAC TGC GTA CCA AT 52 1

MseI+0 primer GAC GAT GAG TCC TGA GTA A 52 1

Apo1 (+GC) GAC TGC GTA CCA ATT GC 50.4 1

Apo2 (+AC) GAC TGC GTA CCA ATT AC 50.4 1

Apo3 (+CA) GAC TGC GTA CCA ATT CA 50.4 1

Apo4 (+GA) GAC TGC GTA CCA ATT GA 50.4 1

Apo5+CT GAC TGC GTA CCA ATT CT 50.4 1

Apo6+AG GAC TGC GTA CCA ATT AG 50.4 1

Mse1 (+GC) GAT GAG TCC TGA GTA AGC 51.4 1

Mse2 (+AC) GAT GAG TCC TGA GTA AAC 51.4 1

Mse3 (+CA) GAT GAG TCC TGA GTA ACA 51.4 1

Mse4 (+GA) GAT GAG TCC TGA GTA AGA 51.4 1

Mse5 (+CT) GAT GAG TCC TGA GTA ACT 51.4 1

Mse6 (+AG) GAT GAG TCC TGA GTA AAG 51.4 1

PR4-for GTG AGT GGT CAG AGT GCA 56 1

PR4-rev AGG TGA CCA TTC TGA ACG C 56.7 1

tef1α_for CAA TGT GAG AGG TGT GGC AAT 60.3 3

tef1α_rev GGA GTG AAG CAG ATG ATC TGT TG 60.6 3

MtMir1_for CGG TTC CCA TAT ACA AAT GTG GAC 61 1

MtMir1_rev AGA GAG GCT TTC ATC AAG CTT GTT G 61.3 1

MtMir1_5‘RACE ATC AGC TCG GAG TTT CTT GCC 59.8 1

MtMir1_3‘RACE CAA CAA GCT TGA TGA AAG CCT CTC T 61.3 1

MtMir2_for TGA TTA TCA CTG GGA CAG ATA 54 1

MtMir2_rev CAT ATC AAC AGT TCC ACA TTC 54 1

MtMir1_GWI_GSP1 GTA ATT AGC ATC AGC TCG GAG TTT CTT GCC 66.8 1

MtMir1_GWI_GSP2 GGT CCA CAT TTG TAT ATG GGA ACC GGG ATA 66.8 1

MtMir1_GWII_GSP1 GGC ATG TTG TCA CCA AGA GCA CAA ACC CT 68.1 1

MtMir1_GWII_GSP2 GAA TAC AAT TGG CCC TTT GAA GGG TTA TTT CT 64.4 1

MtMir2_GW_GSP1 GAG ACA CAC ATG AGC AAG AAT AAT GAG GGT TC 66.9 1

MtMir2_GW_GSP2 CTT GTA ATG TAA TAA CTA GGC TTA CAC TC 60 1

MtMir1_BamHI-p GGA TCC CAG CTC GGA GTT TCT TGC 66.1 1

MtMir1_EcoRI-p100 GAA TTC ATG AAA AAC ACA TTG CTA GC 58.5 1

MtMir1_EcoRI-p300 GAA TTC GCC AAT TGT ATT GCA TAT TGG 60.4 1

MtMir1_EcoRIp-900 GAA TTC ACG TTA CTC CCT CCG TCC TA 64.8 1

MtMir2_BamH-p GGA TCC GTT AGA TGT AAC TTG TAA 57.6 1

MtMir2_EcoRI-p800 GAA TTC CAG CTT ATA CTC TGA TAA G 58.1 1

pLP100_for GGG GTT CCG CGC ACA TTT CCC CG 60 1

MtMir1_attB1_for GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT TCC CAT ATA CAA ATG TGG AC 73.5 1

MtMir1_attB2_rev GGG GAC CAC TTT GTA CAA GAA AGC TGG GTG AGA GGC TTT CAT CAA GCT TG 75 1

MtMir2_attB1_for GGG GAC AAG TTT GTA CAA AAA AGC AGG CTA CCC TCA TTA TTC TTG CTC AT 73.5 1

MtMir2_attB2_rev GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC ACT ATC TGT CCC AGT GAT AA 75 1

ChsA_front CCA ATT AAG ATA AAA CGT TGA ATG 54.2 1

ChsA_back CAC TTA CTT ACA CTT GCC TTG GAG 61 1

MtMir1_600_RNAi_for AGC TGA AGC TTC AAA TGA ACA AGT 57.6 1

MtMir1_600_RNAi_rev AGC TGA AGC TTC AAA TGA ACA AGT 54.8 1

MtMir1_200_RNAi_for CTT AAA GCA TAC AGA ACA ATG 52 1

MtMir1_200_RNAi_rev CAT TTG TAT ATG GGA ACC G 52.4 1

MtMir2_RNAi_for TAA ACC ATG TCA ATG AGA TTA TC 53.5 1

MtMir2_RNAi_rev ATC TTA CCA TTC TCA TTC AAC A 52,8 1

MtPT_for GTC GCC TTG TTT GGA ACA TTC CCC GG 68 3

MtPT_rev TCA CAT CTT CTC AGT TCT TGA GTC C 61.3 3

SMART II oligonucleotide AAG CAG TGG TAA CAA CGC AGA GTA CGC GGG 65 2

CDS primer AAG CAG TGG TAA CAA CGC AGA GTA CT(30) N-1N                (N=A, C, G or T; N-1=A, G, or C) 65 2

PCR primer AAG CAG TGG TAA CAA CGC AGA GT 65 2
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Continuation of table 1
Oligonucleotide Sequnce 5´→ 3´ Annealing t

(Cº)

Reference

Nested primer 1 TCG AGC GGC CGC CCG GGC AGG T 73.3 2

Nested primer 2R AGC GTG GTC GCG GCC GAG GT 67.6 2

DT15VN primer TTTTTTTTTTTTTTTVN; V=A,G,C; N=A,C,G,T 37 1

1b11_for GAA TTG GTC ACT GTC TGC T 54.5 1

1b11_rev CAG GCA AGT TCA AGA AGT C 54.5 1

5c01_for CTG CAC TGT TTG AAA GTG T 52.4 1

5c01_rev ACT GTG CTG CTA AGA AAT G 52.4 1

5c03_for GAA GCA TAA TAG GAT TGG A 50.2 1

5c03_rev AAC ACT CAG GAA TTT CAA C 50.2 1

6c10_for TAG TGC ACT TGA CAT CCA 51.4 1

6c10_rev GTT GCA AAA TCT TCA GGC 51.4 1

6d11_for TCC CGC AAA CTT GCT CAA 53.7 1

6d11_rev ACT AAG AGA CCC AAT TGG 51.4 1

1- this work
2- Clontech, Palo Alto, CA, USA
3- Wulf et al., 2003
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2.1.5  Buffers, solutions, media
Table 2. List of the buffers, solutions and media used in this work.

Name Content
TAE buffer: 40 mM

1 mM
Tris-acetate pH 8.0
EDTA

TBE buffer: 40 mM
1mM

Tris-borate pH 8.0
EDTA

TE buffer: 10 mM
1 mM

Tris-HCl pH 8.0
EDTA

10x MOPS buffer
(RNA gel electrophoresis):

200 mM
80 mM
10 mM
pH 7.0

MOPS
Na-acetat
0.5 M EDTA

DNA extraction buffer: 0.1 M
50 µM
0.15 M

Tris-HCl, pH 7.0
EDTA 0.5 M
NaCl (3M, pH 4.8)

RNA Sample buffer: 100 µl
38 µl
20 µl
42 µl

Formamyd
Formaldehyd
10 x MOPS buffer
DEPC-H2O

20 mM
10 mM
10 mM

Tris-HCl
NaHCO3
MgCl2

0.1 mM Na2 EDTA (0.5 M)

STEB buffer
(for protein extraction):

10 mM
10 %
0.1 %

β-mercaptoethanol
Sucrose
Triton X-100

10 x Electrode buffer
(native page):

25 mM
192 mM
pH 8.3

Tris-HCl
Glycine

Staining buffer
(native page):

22 ml
25 mg
1 ml
1 ml
1 ml

0.05 M Tris-HCl pH 8.0
Glucose 6-phosphate (Sigma-Aldrich)
5 mg/ml NADP (Sigma-Aldrich)
5 mg/ml NBT (Sigma-Aldrich)
5 mg/ml PMS (Sigma-Aldrich)

Separation buffer
(native page):

1.5 M Tris-HCl pH 8.8

7.5 % Separation gel
(native page):

2 ml
2 ml
400 µl
600 µl
8 µl
3 ml

Acrylamid
Separation buffer
2 % APS (ammoniumpersulfat)
2 % Triton X-100
TEMED
H2O

Stacking gel
(native page):

0.5 ml
1 ml
200 µl
300 µl
4 µl
2 ml

Acrylamid (29.2/0.8)
Stacking buffer
2 % APS
2 % Triton X-100
TEMED
H2O

Stacking buffer
(native page):

0.5 M Tris-HCl pH 6.8
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Continuation of table-2
Name Content

Digestion medium:
0.05 M
5 %
150 u/ml
15 u/ml

Tris-Citrate buffer pH 9.2
Sorbitol
Cellulase
Pectinase

Staining medium:

ALP staining solution
(staining of oomycete structures):

0.05 M
1 mg/ml
1 mg/ml
0.5 mg/ml
0.5 mg/ml

Tris-Citrate buffer pH 9.2
α-Naphtylphosphat
Fast-Blue
MnCl2
MgCl2

Trypan-blue staining solution: 10 g
10 ml
10 ml
10 ml
30 mg

Phenol
H2O
Glycerol
Lactat
Trypan-blue

13.8 g
17.8 g
pH 7.0

NaH2PO4
NaHPO4

2 ml EDTA (0.5 M)
211 mg K4Fe(CN)6

GUS staining solution (1L):

164 mg
1 mM

K3Fe(CN)6
X-Gluc (added just before using)

2,5 mM Ca(NO3)2 x 4 H2O
2,5 M KNO3
1 mM MgSO4 x H2O
20 µM KH2PO4
50 µM NaFe-EDTA
0,2 µM Na2MoO4 x H2O
10 µM H2BO3
0.2 µM NiSO4 x 6 H2O
1 µM ZnSO4 x 7 H2O
2 µM CuSO4 x 5 H2O
0.5 M MnCl2 x 4 H2O

0,5 x Hoagland solution:

0.2 µM CoCl2 x 6 H2O
DEPC- H2O: 0.03% DEPC dissolved in H2O
Binding-silane solution
(AFLP gel):

50 ml
1.5 ml
150 µl

Abs. Ethanol
8 % Acetic Acid
Metacryloxypropyltrimethylsilane
(Sigma-Aldrich)

Polyacrylamid gel solution
(AFLP gel):

4 %
7.5 M
1 x

(29 % Acryl : 1 % Bisacryl)
Urea
TBE buffer

Formamid sample buffer
(AFLP gel):

98 %
10 mM
0.25 %
0.25 %

Formamide
EDTA
(w/v) Bromphenolblau
(w/v) Xylene-Cyanol FF
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Continuation of table 2
Name Content
Silver solution
(AFLP gel):

1.5 g
1.5 ml
1 L

Silver nitrate
Formaldehyd (37%)
H2O

Developing solution
(AFLP gel):

30 g
1.5 ml
4 µM
1 L

Natrium carbonate
Formaldehyd (37%)
Natriumthiosulfat
H2O

DIG-Denaturation solution
(DIG detection system):

0.5 M
1.5 M

NaOH
NaCl

DIG-Neutralization solution
(DIG detection system):

0.5 M
3 M

Tris-HCl, pH 7.5
NaCl

DIG-Detection solution
(DIG detection system):

100 mM
100 mM

Tris-HCl, pH 9.5
NaCl

Maleic acid buffer (1L)
(DIG detection system):

0.1 M
150 mM pH
7.5

Maleic acid
NaCl

20 x SSC
(DIG detection system):

3 M
300 mM
pH 7.0

NaCl
Na-citrate

0.5 x washing buffer
(DIG detection system):

0.5 x
0.1 %

SSC
SDS

2x washing buffer
(DIG detection system):

2x
0.1 %

SSC
SDS

LB medium (1L) 10 g
5 g
10 g
pH 7.0

Trypton
Yeast extract
NaCl

YEP medium (1L) 10 g
5 g
5 g
pH 7.0

Trypton
Yeast extract
NaCl

SOC medium (1L) 20 g
0.58 g
0,185 g
2.03 g
2.46 g
3.6 g

Tryptone
NaCl
KCl
MgCl2 x 7 H2O
MgSO4 x 7 H2O
Glucose

1% (w/v)
0.5% (w/v)
10 mM
2.5 mM

Tryptone
Yeast extract
NaCl
KCl

SOB medium

after autoclaving sterile 10 mM MgSO4 added
CMA (1L): 17 g CMA (Sigma-Aldrich)
MPB (1L): 3 g

1 g
Maltose
Peptone

Hogness Freeze Medium (HFM): Solution I (800 ml):
622 g
4.99 g
9 g
0.99 g

87 % (v/v) glycerol (=520 ml)
trisodiumcitrate-dehydrate
(di) ammoniumsulfate
magnesiumsulfate-heptahydrate
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Continuation of table 2
Name Content

Solution II (200 ml):
62.72 g
17.96 g

di-kaliumhydrogenphosphate x 3 H2O
kaliumdihydrogenphosphate

Macro elements:
0.9 mM CaCl2
0,5 mM MgSO4
0.7 mM KH2PO4
0.8 mM Na2HPO4
20 µM Ferric citrate
0.5 mM NH4NO3
Micro elements:
100 µg/L MnCl2
100 µg/L CuSO4
100 µg/L ZnCl2
100 µg/L H3BO3
100 µg/L Na2MoO4

Modified Fahraeus medium:

15 g/L Agar
Stock solutions for M-Medium:
Macroelements-1: (1L; 100 x conc.)
8 g KNO3
73.1 g MgSO4 x H2O
6.5 g KCl
Macroelements-2: (1L; 100 x conc.)
28 g Ca(NO3)2 x 4 H2O
Microelements-1: (1L; 1000 x conc.)
4.1 g MnCl2 x 4 H2O
1.5 g H3BO2
2.65g ZnSO4 x 7 H2O
0.0024 g Na2MoO4 x 2 H2O

M-Medium:

0.13 g CuSO4 x 5 H2O
Microelements- 2: (1L; 1000 x conc.)
0.75 g KJ
Fe-EDTA (1L; 100 x conc.)
0.8 g NaFe-EDTA
Vitamins:
0.1 g
5 g
0.05 g
0.01 g
0.01 g

Glycine
Myoinosin
Nicotin acid
Pyridoxine HCl
Thiamin HCl

For 1L M-Medium: 10 ml from 100 x concentrated
solutions, and 1 ml from 1000 x concentrated solutions
are taken.
10 g
3 g

Sucrose
Phytagel
Autoclaved
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2.1.6 Antibiotics and selection substrates

Table 3. A list of antibiotics and selection substrates used.

Name of the substance Final concentration
Ampicillin 50 µg/ml or 100 µg/ml
Kanamycin 25 µg/ml or 50 µg/ml
Streptomycin 50 µg/ml or 600 µg/ml
Augmentin 400 µg/ml
Gentamycin 40 µg/ml
Rifampicillin 5 µg/ml
IPTG 8 µg/ml
X-Gal 40 µg/ml
PPT 5 µg/ml

2.2  Microorganisms

2.2.1 Escherichia coli

In general, cultivation of Escherichia coli was done as described by Sambrook et al.,

(1989). IPTG/X-Gal or different antibiotics were added depending on the

experiment. Glycerol stocks of bacterial cultures were stored at -80°C in 15% final

concentration of glycerine. Production and transformation of heat shock competent

cells were made according to protocol of Sambrook et al., (1989).

2.2.1a  Plasmid DNA extraction from Escherichia coli

Plasmid DNA extractions from E. coli were done using Invisorb® Spin Plasmid Mini

Kit (Invitek, Berlin-Buch, Germany).

2.2.2 Agrobacterium rhizogenes

A. rhizogenes ARqua I strain (Quandt et al., 1993) was cultivated at 28°C, with

agitation in a liquid YEP medium containing 600 µg/ml streptomycin. 50 µl

competent cells were transformed with 1 µl plasmid using  electroporation method.

Transformed cells were plated on YEP-agar medium and grown for 2 days at 28°C.

2.2.3 Cultivation of Aphanomyces euteiches

Aphanomyces euteiches Drechs.  (ATCC 201684), isolated from infected pea in

Denmark, was kindly provided by Prof. Søren Rosendahl, Department of Mycology,

University of Copenhagen. A. euteiches was grown on corn meal agar (CMA) for 3

days in the dark and stored at 4°C until use. New cultures were made every 2
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months. All observations of A. euteiches were made using the light microscope

(Leica MPS 32, Bensheim, Germany). For zoospore induction, 10 disks of 1 cm2

fungal mycelium grown on CMA were cut out and cultured in 20 ml maltose peptone

broth (MPB) for 9 days at room temperature in the dark. Zoospore production was

induced by washing the mycelium twice in an autoclaved lake water and incubating

overnight at RT in a dark. Zoospore concentration was determined and diluted to

appropriate concentrations.

2.2.4 Glomus intraradices

Commercially available inoculum of G. intraradices BB-E-Sc-02 (BIORIZE R&D,

Dijon, France) was used for inoculations.

2.3 Plants

2.3.1  Cultivation of Medicago truncatula

Seeds of Medicago truncatula c.v. Jemalong A17 were surface-sterilised by 10 min

treatment with concentrated sulphuric acid, 5 min incubation in 6% NaClO and three

washing steps with distilled water. Seeds were pregerminated on moist filter paper

for 2 days in a dark. Seedlings were transferred into pots containing a 1:2 mixture of

sterilised expanded clay and vermiculite. Plants grown under constant conditions in a

greenhouse (220 µEm-2s-1 for 16h; 22°C, 65% humidity) and fertilised with half-

strength Hoagland`s solution (Hoagland and Arnon, 1950).

2.3.2 Inoculation of Medicago truncatula with Aphanomyces euteiches

10 days old seedlings of M. truncatula were inoculated by application of zoospore

suspensions with appropriate concentration at the stem basis. For inoculation of root

cultures, 1 ml of zoospore suspension was added onto root cultures of M. truncatula

2 weeks after transferring them to fresh agar plates.

All control plants and root cultures were mock inoculated with autoclaved lake

water.

2.3.3 Visualisation of Aphanomyces  euteiches structures in the plant roots

The method of Kjøller and Rosendahl (1998) was used to visualise active mycelium

of A. euteiches in M. truncatula roots by histochemical staining for alkaline



MATERIALS AND METHODS 17

phosphatase (ALP) activity. The roots were pre-incubated in digestion medium as

described by Tisserant et al. (1993), stained ON, cleared in 3 % sodium hypochloride

for 20 min. The oospores of A. euteiches were visualised by trypan-blue staining as

described for determination of arbuscular mycorrhizal (AM) structures.

2.3.4 Inoculation of Medicago truncatula with Glomus intraradices

Inoculation of M. truncatula with G. intraradices was carried out using the method

of Dumas-Gaudot et al., (1994). Inoculum of G. intraradices was mixed 1:1 with

sterile vermiculite-expanded clay substrate.

2.3.5 Staining of Medicago truncatula roots for arbuscular mycorrhizal (AM)

structures

AM structures in M. truncatula roots colonised with G. intraradices  were visualised

by trypan-blue staining. Roots were cleared in 2 % KOH for 30 min at 90°C, rinsed 3

times with H2O, incubated in trypan blue in lactoglycerol (1:1:1 lactic acid, glycerol

and H2O) for another 30 min at 90°C and destained with 50 % glycerol.

2.3.6 Agrobacterium rhizogenes- mediated transformation of Medicago

truncatula

Electroporation was used to transform the A. rhizogenes strain ARqua I (Quandt et

al., 1993) with binary vectors. M. truncatula hairy roots were transformed according

to the protocol of Boisson-Dernier et al., (2001). The A. rhizogenes strain containing

the binary vector of interest was grown ON on YEP medium containing 50 µg/ml

kanamycin (Km) and 600 µg/ml streptomycin (Sm). Radicles of about 30 hours old

seedlings were cut under sterile conditions, approximately 3 mm from the root tip.

The sectioned surface was coated with A. rhizogenes by slightly scraping on the

surface of the plate. Seedlings were then placed on a Petri dish containing modified

Fahraeus medium and 25 µg/ml Km and incubated at 20°C in a growth chamber.

About one week after inoculation, plates were transferred to 25°C growth chamber

for another 2-3 weeks.
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2.3.7 Histochemical staining of transgenic roots for GUS-gene activity

GUS staining was performed according to Jefferson et al. (1987). The roots were

incubated in GUS staining solution ON at 37°C, cleared in 70 % ethanol, observed

and documented under the light microscope (Leica MPS 32, Bensheim, Germany).

2.4  Molecular biological methods

2.4.1  Genomic DNA extraction

Leaf material of M. truncatula was used for the genomic DNA extraction following

the method of Dellaporta et al., (1983).  Up to 1g leaf material was fine grinded in

liquid nitrogen and transferred into 50 ml falcon tubes. For the extraction of A.

euteiches genomic DNA, one week old mycelium grown in MPB medium was used.

After adding 15 ml DNA extraction buffer, 1 ml 20% SDS and 10 µl RNase, probes

were incubated at 65°C for 10 min. Then 5 ml K-acetate (5M) were added, the

reaction was mixed carefully and centrifuged for 5 min at 5000 x g. After a filtration

step, an equal volume of PCI (25:24:1) was added and centrifuged for 5 min at 5000

x g. The upper phase was taken to a new falcon tube, an equal volume of CI was

added, carefully mixed and centrifuged for 5 min 5000 x g. The upper phase was

transferred to a new tube and 0.1 volume Na-acetate, 0.6 volume isopropanol were

added, incubated at -20 °C for one hour, and centrifuged for 20 min at 5000 x g, at

4°C, washed with 75% EtOH and resuspended in H2O.

2.4.2 RNA extraction

RNeasy Plant Mini Kit (Qiagen, Maryland, MD, USA) was used for all RNA

extractions according to suppliers instruction.

2.4.3 Estimation of nucleic acid concentration

DNA and RNA concentrations were measured spectrophotometrically using

Ultrospec® 3000 photometer (Pharmacia Biotech., Buckinghamshire, England).

Concentration was measured at λ=260 nm. The correlation between the absorption

and DNA (RNA)-concentration was calculated as follows:

dsDNA-concentration = (A 260 nm x df x 50) µg/ml

RNA-concentration = (A 260 nm x df x 40) µg/ml

(A- absorption; df- dilution factor)
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The purity of nucleic acid was checked by determination of the coefficient of

260nm/280nm. For pure DNA this coefficient is > 1,8; for pure RNA it is between

1,9-2,1.

2.4.4 DNA gel electrophoresis

Electrophoresis was carried out in 0.8-2% agarose gels. 0.5 or 1x TAE buffer was

used as a gel and as a running buffer (Sambrook et al., 1989).  A 1 kb or 100 bp Plus

DNA ladder (MBI Fermentas, St. Leon-Rot, Germany) was used for sizing the DNA

fragments. Gels were stained in 1 µg/ml ethidium bromide solution. DNA was

visualised under UV light at 302 nm and documented with a video printer (Compact

Imager, Intas Compact, Göttingen, Germany).

2.4.5 Purification of DNA fragments from agarose gels

Nucleotrap Extraction kit (Macherrey-Nagel, Düren, Germany) or Invisorb Spin

DNA Extraction kit (Invitek, Berlin-Buch, Germany) were used for the purification

of DNA fragments from agarose gel according to instructions of supplier.

2.4.6 RNA gel electrophoresis

Separations of RNA were carried out in 1,2 % agarose gel under denaturing

conditions. All buffers were set with DEPC-H2O. 1x MOPS buffer was used as a gel

and as a running buffer. Same volume of freshly prepared sample buffer was added

to the RNA probes, denatured at 65°C for 10 min and cooled on ice. 2 µl 6x loading

dye (MBI Fermentas, St. Leon-Rot, Germany) containing 1% ethidium bromide was

added to the samples before loading the gel. The gel and the sample buffer contained

3% formaldehyde. RNA was visualised under UV light at 302 nm and documented

with a video printer (Compact Imager, Intas Compact, Göttingen, Germany).

2.4.7 Digestion of DNA

DNA was digested in reaction volume of 50 µl with 1 µl (1-20 U) restriction enzyme

in the reaction buffer of supplier. Complete digestion of genomic DNA was carried

out by incubation ON at 37°C. Plasmid DNA digestions were incubated at 37°C for 1

hour.
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2.4.8 Key restriction enzymes used

The following enzymes from MBI-Fermentas (St.Leon-Rot, Germany) were used in

this study: EcoRI,  EcoRV,  BamHI,  ApoI,  MseI,  SspI,  EheI,  SmaI,  XbaI, RseI.

Buffers recommended by supplier were used.

2.4.9 Cloning of DNA fragments

Using T/A based cloning system, PCR derived DNA fragments were cloned into

pGEM-T Easy vector (Promega, Madison, WI, USA) or TOPO TM TA cloning vector

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol.

T4 DNA Ligase (MBI Fermentas, St.Leon-Rot, Germany) was used for ligation

reactions of DNA fragments into the pLP100 vector. GATEWAYTM cloning system

was used for construction of vectors used for gene silencing.

2.4.10 Labelling of DNA fragments

DNA fragments were incorporated with Digoxygenin-11-dUTP using the PCR DIG

Probe Synthesis Kit (Roche Diagnostics, Mannheim, Germany) according to the

protocol of supplier.

2.4.11 Polymerase chain reaction (PCR)

Polymerase chain reactions (PCRs) were performed in Trio-Thermoblock (Biometra,

Göttingen, Germany). In most cases Red Taq-polymerase (Sigma-Aldrich,

Taufkirchen, Germany) was used. The standard amplification protocol was as

follows: initial denaturing at 95°C for 2 min; denaturing at 94°C for 30 sec;

annealing temperatures between 55-65°C, depending on the primers used, for 30 sec;

elongation at 72°C for  30 sec. 30-35 cycles were performed.

2.4.12 Reverse-transcription based PCR (RT-PCR)

1 µg total RNA was reverse transcribed by MMLV-RT (Promega, Madison, WI,

USA) in a total volume of 20 µl. 1 µl of 1:10 diluted cDNA was taken as a template

for the RT-PCR. 15-30 standard PCR cycles were performed.
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2.4.13 Rapid amplification of cDNA ends (RACE-PCR)

5´- and 3´- RACE techniques were used to obtain the full size cDNA sequences of

interesting genes. First strand SMART cDNA was synthesised using SMART® PCR

cDNA Synthesis Kit (Clontech, Palo-Alto, CA, USA) and taken as a template for

RACE-PCRs. For 5´ end synthesis, SMART II oligonucleotide and gene specific

reverse primers were used. For 3´ end synthesis, CDS primer and gene specific

forward primers were used.

2.4.14 Native PAGE

A. euteiches-specific glucose-6-phosphate dehydrogenase (Gd) activity was detected

in host plants and oomycete, using the method described by Kjøller and Røsendahl

(1996).

1 g plant material and 6 day old mycelium of oomycete was grinded in STEB buffer,

transferred into eppendorf tubes and centrifuged for 10 min at 4°C at 20000 x g.

Supernatant was then taken to another tube and centrifuged for 2 min. 100 µl

supernatant was carefully transferred to a new tube and a drop of bromphenole blue

was added. 5-20 µl extract was loaded on a gel.

Electrophoresis was carried out in a discontinuous, vertical electrophoretic system.

Separation gel contained 7.5 % acrylamid, stacking gel contained 3.75 % acrylamid.

Electrophoresis was carried out in 1 x electrode buffer at 400 V/40 mA for 35 min

with cooling to 4°C. Gels were stained for glucose-6-phosphate dehydrogenase (Gd)

activity as described by Soltis and Soltis (1989). The gels were incubated in a

staining buffer for approximately 10 min at 37 °C in a dark and documented with

digital camera (Olympus, Tokyo, Japan).

2.4.15  cDNA- Amplified Fragment Length Polymorphism (cDNA- AFLP)

cDNA-AFLP method was performed according to a modified protocol described

earlier by Vos et al., (1995) and Bachem et al., (1996), ( fig. 1).

a.  First strand cDNA synthesis

5 µg of total RNA was reverse transcribed by MMLV-RT (50 u/µl) using oligo(dT)

primer in final volume of 30 µl.

b.  Second strand synthesis

Second strand synthesis was carried out using 5 units of DNA Polymerase I

(10000u/ml), in the presence of RNase H (1000 u/ml), in a final volume of 100 µl.
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Reaction was incubated at 16°C for 2 hours, stopped by adding 5 µl EDTA (0.5 M).

After phenol/chloroform extraction, DNA was ethanol precipitated and dissolved in

10 µl H2O.

c.  Restriction digest

The cDNA was first digested with ApoI and subsequently with MseI restriction

enzymes, as these enzymes require different incubation temperatures. 10 µl cDNA

was digested with 5 units of ApoI in reaction volume of 40 µl at 50°C. After 2 hours,

5 units of MseI was added and incubated at 37°C for another 2 hours.  It is important

that the restriction enzymes are still active during the ligation to ensure complete

digestion and to prevent re-annealing.

Fig. 1  Schematic representation of cDNA-AFLP method. Highly stringent PCR
conditions facilitated by adding double-stranded adapters on the ends of restriction
fragments which serve as primer binding sites during amplification. Selective fragment
amplification is achieved by adding two more bases (N2) on to the PCR primers which
only then be successfully extended if the complementary sequence is present in the
fragment flanking the restriction site.
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d.  Adapter ligation

Directly after digestion adapters are ligated onto sticky ends which act as primers

during subsequent PCRs.

ApoI and MseI adapters (50 pmol each) were ligated to the digested DNA, using T4

DNA ligase (5 units) at 37°C for 3 hours.

e.  Pre- amplification

This step amplifies all of the cDNA fragments in the primary template as it uses

primers with no selective extensions (+0).

The product of the ligation reaction was 1:10 diluted and used as a template for the

PCR.

The reaction with a final volume of 50 µl contained 20 µl primary template, 0.5 µl

dNTP’s (25mM), 1 µl ApoI+0 primer (100ng/µl), 1 µl MseI+0 primer (100ng/µl),

6.5 µl 10 x RedTaq-PCR buffer, 19 µl H2O, 2 µl RedTaq polymerase (1U/µl, Sigma-

Aldrich, Taufkirchen, Germany). 20 cycles at 94°C for 30 sec, 52°C for 30 sec, 72°C

for 60 sec were performed. 3 µl pre amplification product were checked on 1.5 %

agarose gel.

f.  Selective amplification

Selective amplification was carried out using primers with 2 selective nucleotides in

order to amplify subsets of the cDNA fragment population.

The pre-amplification product was diluted 1:10 with H2O. 1 µl  diluted pre-

amplification product, 0.8 µl dNTP’s (5mM), 2 µl ApoI+NN primer (50ng/µl), 2 µl

MseI+NN primer (50ng/µl), 2 µl 10 x RedTaq-PCR buffer, 1 µl RedTaq polymerase

(1U/µl, Sigma-Aldrich, Taufkirchen, Germany) and 11.2 µl H2O were mixed in 0.2

ml PCR tube. PCR cycles were as follows: 94°C for 30 sec, 65°C for 30 sec, 72°C

for 60 sec. In the first 12 cycles, primer binding temperature was lowered by 0.7 °C

in each cycle. Annealing temperature of the following 23 cycles was 56°C.

g.  Polyacrylamid gel electrophoresis

Electrophoretic separation of cDNA-AFLP fragments was carried out in 4 %

denaturing polyacrylamid gels using Sequi Gen Cell sequencing gel apparatus (Bio-

Rad, Hercules, CA, USA). One of the glass plates of the gel apparatus was treated

with binding silane solution for 5-10 min with the purpose that the gel matrix is fixed

on the glass plate for silver staining later. The other glass plate is treated with

Acrylease (Stratagene, La Jolla, CA, USA) for 2 min in order to prevent the stacking
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of the gel on it. 70 ml of 4 % gel solution was prepared for each gel. Directly before

casting the gel, polymerisation reaction was started by adding 70µl of TEMED and

140µl of Ammoniumperoxidisulfat (APS). After about 90 min in RT, the gel was

completely polymerised. The equilibration of the gel occurred by running the gel for

20 minutes in advance before loading the samples. 1/5 volume of formamide-sample

buffer was added to the samples and denatured at 99°C for 5 min. 5-6 µl sample was

loaded on a gel. Duration of electrophoresis depended on the size of interested PCR

products.

h.  Silver staining of DNA in polyacrylamid gels

DNA fragments separated in polyacrylamid gel were visualised by silver staining

according to the protocol of Bassam et al., (1991).

The gel which was fixed on one of the glass plates, was incubated for 20 min in 1 L

acetic acid (8 %) and then rinsed with H2O three times for 2 min. Then it is

incubated in 1 L silver solution for 30 min. Before adding, in a 4-10°C cooled

developing solution, the gel is rinsed in 1 L H2O for a maximum of 5 sec. The

developing process was stopped by immediate transfer of the gel into an acetic acid

(8 %) bath. After 3 min incubation the gel was washed in 1 l H2O for 5-10 min and

finally dried ON in RT.

i.  Isolation, re-amplification and cloning of fragments from polyacrylamid gels

Bands of interest were cut out of the gel and incubated in 100 µl TE buffer for 2

hours. AFLP fragments were re-amplified, using the same conditions as during pre-

amplification. Amplification products were cloned into the pGEM-Teasy vector

(Promega, Madison, WI, USA) following the protocol of supplier.

2.4.16  Suppression Subtractive Hybridisation (SSH)

The SSH experiment was carried out using the PCR select cDNA subtraction kit

(Clontech, Palo-Alto, CA, USA).

1 µg total RNA from each sample (control root, infected root, A. euteiches

mycelium) was used to produce SMART-cDNA using the SMART cDNA synthesis

kit (Clontech, Palo Alto, USA). This SMART-cDNA was used to perform a SSH

using the PCR select cDNA subtraction kit (Clontech, Palo Alto, USA).  SMART-

cDNAs derived from control roots and A. euteiches were pooled 5:1 and used as a

driver. Amplification products were cloned into the pGEM-Teasy vector (Promega,
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Madison, USA), and transformed into supercompetent E.coli XL1-Blue MRF’ cells

(Stratagene, La Jolla, CA). Glycerol stocks of bacteria were stored at -80°C in

Hogness Freeze Medium (HFM) containing 100 µg/ml ampcillin.

Solution I and solution II were autoclaved separately and mixed afterwards to obtain

1 l of 10 x HFM. The freeze medium was made by mixing 1 vol of 10 x HFM with 9

vol of LB medium (10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl, pH 7.0).

2.4.17  Reverse Northern Blot

To confirm that the subtracted cDNA fragments represent differentially expressed

genes, reverse Northern blot analysis was performed.

cDNA fragments were amplified by colony PCR. 5 µl PCR product was separated in

parallel on two 1.5 % agarose gels. After denaturation and neutralisation DNA was

capillary transferred onto nylon membranes and fixed at 120°C for 30 min.

Tester and driver SMART-cDNAs were DIG labelled by PCR using High Fidelity

Taq polymerase (Roche Diagnostics, Mannheim, Germany). Two hybridisations

were performed in parallel, one with tester SMART-cDNA probe and one with driver

SMART-cDNA probe.

2.4.18 Virtual Northern Blot

This method gives similar information as provided by the classical Northern analyses

and used to prove the single candidate clones for differential expression.

Tester and driver SMART-cDNAs were amplified by Long distance (LD) PCR. 20 µl

from each PCR product were separated on 1.5 % agarose gel, denatured, neutralised,

capillary transferred and fixed onto nylon membranes.

Candidate clones deriving from SSH-library were labelled using PCR DIG Probe

Synthesis Kit (Roche Diagnostics, Taufkirchen, Germany) and used as a probe for

the hybridisations.

2.4.19 Genomic Southern Blot

20 µg genomic DNA were digested ON with 12 units of appropriate restriction

enzymes. The digested DNA was separated on 1 % agarose gel ON at 15 V. The gel

was incubated 10 min in 0.25 M HCl, 15 min in denaturing solution, 15 min in

neutralisation solution and  finally rinsed in 2 x SSC. The DNA was capillary

transferred to a positively charged nylon membrane (Roche Diagnostics, Mannheim,
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Germany). DIG nonradioactive system (Roche Diagnostics, Mannheim, Germany)

was used for hybridisation and detection.

2.4.20 GenomeWalking

DNA walking is a method for finding unknown genomic DNA sequences adjacent to

a known sequence (Siebert et al., 1995).

This method was used in this work to find out the 5´ upstream region of MtMir-1

gene, the potential promoter sequence. Universal GenomeWalker TM Kit (Clontech,

Palo-Alto, CA, USA) was used for this purpose, following the suppliers protocol

PT3042-1 (fig. 2).

For the construction of DNA libraries, four fractions of M. truncatula genomic DNA

were digested with four different restriction enzymes which leave blunt ends. For

each library 2,5 µg genomic DNA was taken and digested with SmaI, EheI, EcoRV

and SspI. Digested DNA was purified by the phenol/chloroform method and

precipitated with ethanol. Then, GenomeWalker adapters were ligated by T4 DNA

ligase at 16°C ON. Two gene specific primers (GSP1 and GSP2) were designed

according to the instructions given in suppliers manual. The primary and nested

PCRs were done using the Advantage 2 Polymerase mix (Clontech, Palo-Alto, CA,

USA).

Fig. 2  Schematic representation of Genome Walker method.
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PCR products were analysed on a 1.5 % agarose gel. Expected products were cut out

of the gel, purified with DNA purification kit (Macherey-Nagel, Düren, Germany),

cloned into pGEM-T Easy vector (Promega, Madison, WI, USA) and sequenced by

MWG-biotech (Ebersberg, Germany).

2.4.21 Promoter deletion analysis

The promoter regions of interesting genes were amplified from genomic DNA of M.

truncatula using promoter sequence specific primers. The promoters contained

BamHI and EcoRI restriction enzyme recognition sites at their 3´ and 5´ ends. These

fragments were introduced into BamHI and EcoRI restriction sites of the binary

vector pLP100 (Szabados et al., 1995) which encodes β-glucuronidase (GUS) (see

appendix B for vector map).

The presence of the promoter fragments in the pLP100 vector were verified by PCR.

Plant transformation vectors were electroporated into A. rhizogenes. Roots of M.

truncatula were transformed as described by Boisson-Dernier et al., (2001). The

transgenic hairy root selection was taken place on Fåhraeus medium containing 25

µg/ml kanamycin. Approximately 1 cm kanamycin resistant, transgenic root tips

were cut and transferred onto Petri dishes containing M-medium. M-medium

contained 400 µg/ml augmentin in order to suppress the growth of agrobacteria.

Transgenic roots containing A. euteiches inducible promoter fragments were

inoculated with zoospores of A. euteiches. Roots containing mycorrhiza inducible

promoter fragments were inoculated with G. intraradices. A. euteiches inoculated

roots were stained for GUS activity after 6 days of inoculation. G. intraradices

inoculated roots were stained after 3 weeks.

2.4.22 Generation of  the expression clones for gene silencing by RNA

interference (RNAi)

The Gateway technology (Invitrogen, Carlsbad, CA, USA) was used to construct the

binary vectors used for gene silencing by RNA interference.

It is a modified cloning technology based on the site-specific recombination

properties of bacteriophage lambda (Landy, 1989).

attB primers were designed following the recommendations of the manufacturer. 506

bp long coding sequence of the MtMir-1 gene, located between 200-705 bp, was

amplified from cDNA using attB1 and attB2 primers. These primers have template
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specific sequence at their 3´ end and the DNA recombination sequence at their 5´end.

PCR products were purified by QIAquick PCR purification kit (Qiagen, Maryland,

MD, USA). BP recombination reaction was performed with attB-PCR products and

pDONR 207 donor vector to generate the entry clones. This reaction is catalysed by

the BP Clonase enzyme mix. E. coli strain TOP 10F´ was transformed with donor

vector and colony PCR was made to prove the presence of inserted fragments.

Positive colonies were grown ON in LB medium containing 40 µg/ml gentamycin.

Plasmids were extracted using Invisorb Spin Plasmid Mini Kit (Invitek, Berlin-Buch,

Germany). 300 ng entry clone and 300 ng destination vector pFGC 5941 were used

for LR recombination reaction. The pFGC 5941 vector has a kanamycin resistance

gene (kanR) for bacterial selection, a Basta® resistance (bar) gene for plant selection,

a CaMV 35S promoter driving dsRNA synthesis and a 1352 bp ChsA intron from the

petunia chalcone synthase A gene. (see appendix D for vector map).  The LR

reaction generates expression clones containing the fragments in antisence and sense

directions linked with ChsA intron. This reaction is catalysed by the LR Clonase

enzyme mix. The expression vector was transformed into E. coli strain TOP 10F´.

Colony PCR was performed using the linker specific forward or reverse (ChsA-front,

ChsA-back) and attB1 or attB2 primers, to prove the presence of inserted fragments

in both directions. Positive colonies were grown ON in LB medium containing 50

µg/ml kanamycin. Plasmids were extracted using Invisorb Spin Plasmid Mini Kit

(Invitek, Berlin-Buch, Germany).

When the antisense and sense strains are integrated into the plant genome, it is

transcribed into RNA. Since the antisense and sense strains have complementary

sequences, after transcription they form a double stranded RNA with a single

stranded loop (fig. 3). A. rhizogenes was used to integrate the sense and antisense

strains into the genome of M. truncatula.

Fig. 3  P35::A-ChsA-S construct. a.- Gene specific sequences (open boxes with arrows
indicating the orientation) in antisense (A) and sense (S) orientations were linked with a ChsA
intron (hatched box) and controlled by the 35S promoter (solid arraw). When transcribed, it
forms a double stranded RNA stem with a single-stranded loop (b).

a)

b)
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A. rhizogenes strain ARqua I was transformed by electroporation, with destination

vectors. The colonies were selected on LB plates containing 50 µg/ml kanamycin and

600 µg/ml streptomycin.

M. truncatula hairy roots were transformed as described by Boisson-Dernier et al.,

(2001). Selection of transformed hairy roots was a on modified Fåhraeus medium

containing 5 µg/ml PPT. After 2-3 weeks transformed root tips were cut out and

replaced on M-medium containing 400 µg/ml augmentin and the remaining plantlets

were transferred into substrate (1:2 mixture of sterilised expanded clay and

vermiculite), grown for 2 weeks and then inoculated with zoospores of A. euteiches.

Root cultures were inoculated with zoospores after two weeks. After 6 dpi total RNA

was extracted and used for further analyses. The control plants were transformed

with A. rhizogenes containing an empty pFGC 5941 vector.

2.4.23  Microarray hybridisation

Medicago truncatula Mt8k microarrays were kindly provided by Helge Küster

(University of Bielefeld, Germany). Mt8k microarray represents approximately 5,700

root interaction transcripts and 1,700 transcripts from flowers and developing seeds,

three replicates of each transcript are present on a single microarray. Microarray

hybridisation and data analyses were carried out as described by Küster et al., 2003.

In this work the microarray hybridisation method was used for two purposes: In a

first hybridisation experiment, total RNA from control and infected roots of M.

truncatula after 30 min as well as 6 days after inoculation with A. euteiches was used

for hybridisation.

a.  Synthesis of amino-allyl-labelled first-strand cDNA from total RNA

16 µg total RNA was reverse transcribed by Superscript II reverse transcriptase

(Stratagene, La Jolla, CA, USA) using 2 µl of double-anchored oligo dT15VN

primer (see table a). Amino-allyl labelled cDNA was cleaned from nucleotides and

other low-molecular weight molecules with amino groups, using CyScribeTM GFX

purification kit (Amersham Biosciences, Buckinghamshire, England). To 20 µl of

cDNA 1 µl of 1M sodium bicarbonate was added. Coupling of Cy3 and Cy5

fluorescent dyes to amino-allyl labelled first strand cDNA was taken place in amber

Eppendorf tubes for 1 h at RT. All remaining dyes were blocked with the amino
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groups of hydroxylamine by adding 4,5 µl 4 M hydroxylamine and incubating at RT

for 15 min. After this step, fluorescently labelled cDNAs of the two populations

being compared, were mixed together and cleaned with Qia-quick PCR purification

kit (Qiagen, Maryland, MD, USA). 2 µl of the probe were separated on 1 % agarose

gel and scanned for Cy3 and Cy5 fluorescence on a Typhoon phosphoimager

(Amersham Biosciences, Buckinghamshire, England).

b.  PCR labelling of SMART-cDNA with amino-allyl

Alternatively, SMART-cDNA synthesised using the SMART cDNA synthesis kit

(Clontech, , Palo-Alto, CA, USA), was amino-allyl labelled by PCR. 1 µg total RNA

was reverse transcribed by PowerScript reverse transctiptase (Clontech, , Palo-Alto,

CA, USA). 50 x dNTP stock solution including amino-allyl-dUTP (2:1

aadUTP/dTTP mix), SMART PCR primer and Advantage 2 Polymerase mix

(SMART cDNA synthesis kit, Clontech, Palo-Alto, CA, USA) was used for amino-

allyl labelling of SMART cDNA by LD-PCR. Coupling of Cy3 and Cy5 fluorescent

dyes were the same as for RNA samples.

c.  Hybridisation of  microarrays

Microarrays were pre-hybridised in DIG EasyHyb hybridisation solution (Roche

Diagnostics, Mannheim, Germany) containing 5 µg/ml sonicated salmon sperm DNA

for 1 h at 42°C. Following pre-hybridisation, microarrays were washed with H2O for

1 min at RT, shortly rinsed with ethanol and centrifuged for drying. Hybridisation

was taken place in an automated slide processor (ASP) (Amersham Biosciences,

Buckinhamshire, England). Hybridisation solution was DIG EasyHyb hybridisation

solution (Roche Diagnostics, Mannheim, Germany) containing 45 µg/ml sonicated

salmon sperm DNA. Samples were denatured at 65°C for 5 min immediately before

injection. After 16 h of hybridisation, slides were washed twice in 2 x SSC for 1 min,

once with 0,1 x SSC for 1 min at RT and centrifuged for drying. Scanning of slides

in the Cy3 and Cy5 channels were carried out with a pixel size of 10 µm using a

ScanArray 4000 microarray scanner (Perkin Elmer, Boston, MA, USA).
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d.  Analyses of microarray hybridisation data

ImaGene 5.0 (BioDiscovery Inc., Los Angeles, CA, USA) software was used for spot

identification and quantification. The mean intensities of signal pixels and the mean

intensities of local background pixels were calculated for each spot of the microarray

images in both Cy3 and Cy5 channels. In case if in both channels, the difference

between the mean intensity of the signal pixels and the mean intensity of local

background pixels divided by the standard deviation of local background pixels was

equal or less than 1, (R<=1) the spot was flagged empty. In addition, manual flags

were set for the spots where hybridisation artefacts occurred. After the image

processing the raw data was imported into EMMA 1.0 microarray analysis software

(Dondrup et al., 2003). During import the flagged spots were removed and the

remaining spots were used for normalisation and the calculation of the expression

ratios (M-value) and average signal intensities (A-value). The logarithm to the base 2

of the ratio of intensities was computed for each spot using the formula for the ratio

M=log2(R/G) and the average intensity in both channels was calculated using the

formula A=log2(RG)0,5. Where R and G denote intensities of the red and green

channels. R=Ich1-Bgch1 and G=Ich2-Bgch2, where I ch1 or  Ich2 is signal intensities of a

spot in channel 1 or 2 and Bgch1 or Bgch2 is the local background intensity of a spot in

channel 1 or 2, respectively (Dudoit et al., 2002). To be able to work with the

logarithm to the base 2 in case of negative R or G values and to reduce the variation

introduced by very low absolute signal intensities, a floor value of 20 was introduced

before normalisation. After applying normalisation M vs. A, scatterplots of the data

were generated and lists of candidate genes for differential expression were obtained

by applying t-test. Additionally, the confidence indicator p is computed for each

gene, using Holm’s method. Genes were considered differentially expressed if

p<=0,1 and M>=1 or p<=0,1 and M>=-1.
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3.1 Cultivation of Aphanomyces euteiches

The cultivation of the A. euteiches was successful under laboratory conditions. All

the different stages of the life cycle of this oomycete could be observed.

A B

C D

E F

Fig.  4  Vegetative and reproductive stages of oomycete Aphanomyces euteiches life cycle.
A. Nonseptate hyphae; B. Filamentous sporangium; C. Primary zoospores released from the
sporangium; D. Kidney-shaped zoospore with two flagella; E. Anteridium penetrating
oogonium; F. Mature oospores. The bars represent 20 µm.



RESULTS 33

The vegetative state of A. euteiches is a diploid hyphae which is nonseptate, i.e.

lacking in cross walls (fig. 4A). On complete media like CMA (corn meal agar) or a

liquid MPB (maltose peptone broth) medium, A. euteiches shows the typical fungal-

like hyphae growth. Asexual reproduction starts by the formation of sporangia. The

sporangia of A. euteiches are filamentous and resemble vegetative hyphae (fig. 4B).

Under nutrient-limiting conditions, sporangia germinate indirectly by producing

zoospores which are asexual spores that are mobile by means of two flagella (fig. 4C;

D).

Zoospore formation in vitro could be initiated by washing the hyphae in sterile lake

water. Using this protocol approximately 2x105 zoospore/ml could be obtained.

Sexual reproduction in A. euteiches occurs after formation of two dissimilar

gametangia: a large round oogonium and a smaller anteridium (fig. 4E). Oogonium

fertilisation results in a thick-walled zygote called an oospore (fig. 4F). Oospores

function as resting spores during the disease cycle.

3.2 Colonisation of Medicago truncatula root system with Aphanomyces euteiches.

A

B

C

D

Fig. 5  Colonisation of M. truncatula roots by oomycete A. euteiches. A. Zoospores of
pathogen attached to the root. B. Sympthoms of root rot. C. Oomycete hyphae stained for
ALP. D. Trypan blue stained oospores of pathogen in the root.



RESULTS 34

One week old seedlings of M. truncatula were inoculated with zoospores of A.

euteiches (106 zoospore/ml). Zoospores of the pathogen were observed attached to

M. truncatula root surfaces after 6 hours (fig. 5A). The typical disease symptoms

with yellow-honey brown root discolorations could be observed after 6 days (fig.

5B). Active hyphae of A. euteiches could be visualised as a black precipitate in the

root cortex by alkaline phosphatase staining (ALP) (fig. 5C). Oospores in the root

cortex were visible after trypan blue staining (fig. 5D). 5 days after inoculation the

percentage of root length colonised with hyphae rapidly increased. After 10 days

oospores started to develop. At the latest time point analysed, 21 dpi, oospores were

found in more than 60 % of the root system. Pathogen structures have never been

observed in control plants mock inoculated with sterile lake water.

3.3 Detection of A. euteiches glucose-6-phosphate dehydrogenase (Gd) activity in

M. truncatula roots

In order to analyse the metabolic stage of A. euteiches in infected roots, the activity

of A. euteiches specific glucose-6-phosphate dehydrogenase (Gd) was analysed in

infected root systems.

Total protein was extracted from M. truncatula roots 6 days after infection with A.

euteiches. A. euteiches total protein was extracted from 6 day old mycelium grown in

MPB medium and used as a positive control. Total protein of infected roots and

mycelium was separated electrophoretically and the Gd activity was detected as

described by Soltis and Soltis (1989) (fig. 6). This experiment shows that A.

euteiches shows detectable metabolic activity in M. truncatula roots 6 days after

inoculation.

Fig. 6 Glucose-6-phosphate dehydrogenase (Gd)
activity of A. euteiches in M. truncatula roots after 6
days of infection. Lane 1- protein extract of non
infected M. truncatula root as negative control. Lane 2,
3 and 4- total protein of M. truncatula root infected
with A. euteiches (4 µl, 8 µl and 10 µl). Lane 5- protein
extract of A. euteiches mycelium as positive control.
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Transcription profiling:

3.4  cDNA-AFLP results

Using an amplified restriction fragment polymorphism (AFLP)- derived technique

for RNA fingerprinting (cDNA-AFLP) (Bachem et al., 1996), transcriptional

changes in M. truncatula roots infected with A. euteiches have been analysed. The

aim of this approach was to compare different time points of the interaction in order

to determine an early time-point where highest levels of transcriptional changes

occur.

Inoculated and non-inoculated roots were harvested at 6, 14 and 21 days after

inoculation and used for RNA extraction. In this small-scale cDNA profile

comparison by cDNA-AFLP, 14 primer combinations were performed using three

types of ApoI and six different MseI selective primers (for primer sequences see

table-1). For each primer combination, 50-80 bands were observed. The largest

detectable amplification products were about 1000 bp in size and the smallest

fragments were approximately 100 bp. Comparison of cDNA-AFLP patterns

revealed two up-regulated and two down-regulated fragments in infected roots (fig.

7). Differential RNA accumulation of these four fragments already occurred after six

days, the earliest time point analysed, and remained constant until 21 days after

inoculation. The four differentially expressed bands were re-amplified and cloned.

Five clones were randomly picked for each fragment and all clones of one transcript

represented the same sequence. This result confirmed that cDNAs which were

sequenced correspond to the differentially expressed fragment on the gels. The

sequences are shown in fig. 8. The sequence analysis showed that all four fragments

are highly similar to already existing plant sequences in GenBank database (table-4).
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Fig. 7  Example of a cDNA-AFLP gel produced by amplification of
templates derived from non-infected (c) and  infected  (i) roots of M.
truncatula after 6, 14 and 21 days after infection with A. euteiches. A.
euteiches mycelium derived templates are marked (m). The different primer
combinations marked A (Apo2/Mse5), B (Apo2/Mse4) and C (Apo2/Mse2).
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Table-4. Sequence annotation of differentially expressed cDNA-AFLP fragments

Fragment
nr.

Best GenBank database match RNA accumulation
pattern MtGI match

MtAe1 germin-like protein, Pisum sativum increased TC87487

MtAe2 pathogenesis-related protein 4A, Pisum sativum increased TC87236

MtAe3 serine/threonin protein kinase, Glycine max decreased -

MtAe4 UDP-glycose:flavonoid glycosyltransferase,
Glycine max

decreased TC78509

MtAe1

GATGAGTCCTGAGTAAACCCACCTCACATTCACCCTAGGGGAACAGAGAT 50
CCTTATAGTACTCGAAGGCACTCTTTATGTTGGATTTGTCACGTCCAATC 100
AAGACAACAATCGTCTCTTCACCAAAGTGCTAAACAAGGGTGATGTGTCT 150
GTGTTCCCAATTGGTCTTATTCATTTTCAACTAAATGTGGGATATGGCAA 200
CGCTGTTGCTATTGCTGGACTTAGCAGTCAAAACCCAGGAGTTATCACCG 250
TTGCAAATGCTTTGTTTACTCAGGACTCATCA 282

MtAe2

GATGAGTCCTGAGTAACTGGGACTACAACACTGCCAGTGTATACTGTGCT 50
ACCTGGGATGCCAACCAGCCCTTGTCATGGCGTAGCAAATATGGTTGGAC 100
TGCCTTTTGTGGACCAGCTGGGCCAACAGGCAGAGATTCTTGCGGCAAAT 150
GCTTGACTGTGACAAATACTGCAACTGGAGCTCAGGTAACAGTGAGAATA 200
GTGGACCAATGCTCCGACGGTGGACTTGACTTAGGTGTGAATGTCTTCAA 250
TCAAATTGATACCAATGGACAGGGCGTTCAGAATGGTCACCTTACAGTTA 300
CTCAGGACTCATCA 314

MtAe3
GATGAGTCCTGAGTAACTGGGCATTGATTAGGTGCAGCACACCACCAGAA 50
GTACCAAGACCAGTGGAAAATGAGCCGCCGCCACCGCCACCACCAATGAA 100
GGTTGGACCACCAGTTGATGCTGTCGGGGTTGGCAGTACTAGTAAGAGGA 150
TGTCGGGGAATAATGAAATGAAGTCTGGGGGTAAATATCTGGATTTTGAG 200
TTCTTTTAGTTTGGATTCCTTGATCTACTTTTTATTGTATTTGCCATGAA 250
TATGATCAGTTATTTTTGCAGCAGCTGCTCAGTATTACCATGTTAGTTCA 300
GCTTTACCTATTTTGTAGTTACTCAGGACTCATCA 335

MtAe4

GATGAGTCCTGAGTAACTAAGTTTGGATGAGTTGTTGCCAGAAGAGTTTT 50
TGGAGAGGACAAAGGAGAAGGGAATGGTTGTTAGAAACTGGGCACCACAA 100
GGTTCAATACTAAGACATAGCTCAGTTGGTGGGTTCGTGACTCATTGTGG 150
ATGGAACTCCGTGTTGGAAGCTATTTGCGAAGGAGTTCCAATGATAACGT 200
GGCCACTTTACGCGGAGCAGAAGATGAATAGATTGATTTTGGTGCAAGAA 250
TGGAAAGTGGCTTTGGAATTGAATGAGTCAAAAGATGGGTTTGTGAGTGA 300
AAATGAGTTGGGGGAGAGAGTTACTCAGGACTCATCA 337

Fig. 8  The nucleotide sequences of the four differentially expressed fragments derived from
cDNA-AFLP analysis. The primer sequences are underlined.
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3.5  Confirmation of differential RNA accumulation of PR4 gene

Sequence specific primers were made for one PR4-like gene, corresponding to the

MtAe2 fragment (table-4). Semiquantitative RT-PCR showed increased RNA

accumulation of the PR4 gene (designated MtPR4-1 in this work) in infected roots

(fig. 9). For this reason, the MtPR4-1 gene was used as internal control marker,

representing an A. euteiches induced gene, in subsequent analyses.

Transcription profiling:

3.6 Generation of cDNA library by Suppression Subtractive Hybridisation (SSH)

A cDNA-library was generated by suppression subtractive hybridisation (SSH) to

obtain a large number of ESTs, representing genes up-regulated in A. euteiches-

infected roots of M. truncatula 6 days after inoculations. To avoid the enrichment

and cloning of cDNAs of A. euteiches origin, the RNA of non-infected roots was

mixed with RNA extracted from A. euteiches mycelium. PCR fragments were cloned

and about 2000 clones were obtained. Of this cDNA population, 192 clones were

analysed concerning their RNA accumulation pattern in infected roots by reverse

Northern hybridisation analyses. 51 of these cDNAs were strongly induced in A.

euteiches -infected roots, whereas after hybridisation to the probe pooled from

control roots and A. euteiches mycelium, no or very weak signals were detectable

(fig. 10). Sequence annotations of differentially expressed cDNAs are shown in

table-8.

Within this up-regulated cDNAs, three fragments encoded the MtPR4-1 gene, which

was already found by cDNA-AFLP. One fragment encoded a class-10 PR-protein.

With only one exception, all fragments showed highest similarities to plant genes and

in most cases to legume sequences.

Fig. 9  RT-PCR amplification of PR4 from
1- control roots of M. truncatula, 2- infected
roots, and 3- A. euteiches cDNA. M- 100 bp
Plus DNA marker.
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After confirmation that the library contains to a high extent cDNAs from plant genes

induced by A. euteiches infection, 560 ESTs were generated. SSH-cDNA sequences

were designated as MtAPHEU (Medicago truncatula-Aphanomyces euteiches). 504

MtAPHEU-ESTs with a length of more than 100 bp were submitted to GenBank and

the sequences can be found under accession numbers AJ547891-AJ548395.

Clustering of these ESTs according to the TIGR protocol revealed 74 tentative

consensus (TC) sequences and 269 singletons with a sequence length more than 100

bp. A TC encoding a class 10 pathogenesis-related protein, assembled from 13 SSH-

ESTs was the most redundant sequence among the cDNA population.

Fig. 10  Reverse Northern hybridisation. 192 PCR fragments from the SSH library were PCR amplified
and blotted onto two identical nylon membranes. One membrane was hybridised with the digoxigenin
labelled cDNA probe derived from control roots (c). The second membrane was hybridised with
digoxigenin labelled cDNA probe derived from infected roots (i).
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Table 5. Sequence annotation of 51 clones which showed increased mRNA accumulation in
A. euteiches infected roots of M. truncatula.

#
Mtaehac-

index

Length

(bp)

Matching sequence from the Genbank “nr” data

base (blastX)

Origin of matching

sequence

MtGI

identity

1. 1a01 505 aba responsive protein abr17 Pisum sativum TC76640

2. 1a03 529 albumin precursor 1 Pisum sativum TC88792

3. 1a05 618 small GTPase Rab2 Nicotiana tabacum TC77335

4. 1a07 737 Aba responsive protein abr17 Pisum sativum TC82086

5. 1a08 526 pathogenesis-related protein 4A Pisum sativum TC87236

6. 1b06 255 no hits … …

7. 1b08 269 chitinase Medicago truncatula TC85742

8. 1b09 256 no hits below 1e-10 … TC85238

9. 1b10 444 no hits below 1e-10 … TC80304

10. 1b11 400 aconitate hydratase precursor Gracilaria verrucosa …

11. 1b12 404 class 10 PR protein Medicago sativa TC76518

12. 1c05 419 no hits below 1e-10 …

13. 1c07 238 no hits below 1e-10 Medicago truncatula TC77207

14. 1c08 41 no hits … …

15. 1e03 461 no hits I. … …

16. 1e04 386 thaumatin-like protein 1 precursor Pyrus pyrifolia TC77149

17. 1e05 0 … … …

18. 1e06 44 no hits … …

19. 1e07 327 serine palmitoyltransferase Lotus japonicus TC86313

20. 1e08 316 no hits below 1e-10 Arabidopsis thaliana TC79474

21. 1f02 6 no hits … …

22. 1f04 544 dehydrin related protein Pisum sativum TC76699

23. 1g09 21 no hits … …

24. 1g10 336 no hits … TC83308

25. 1g11 599 putative senescence-associated protein … TC76492

26. 1h07 310 pathogenesis-related protein 4A … TC87236

27. 1h10 537 cytochrome P450 Pisum sativum TC81652

28. 1h11 324 polygalacturonase inhibitor protein Pisum sativum TC78258

29. 1h12 50 no hits Arabidopsis thaliana TC85744

30. 2a03 337 probable cinnamoyl-CoA reductase Arabidopsis thaliana TC78732

31. 2b06 0 … … …

32. 2b12 191 no hits Brassica napus TC76608

33. 2c04 307 pathogenesis-related protein 4A Pisum sativum TC81815

34. 2c05 556 no hits … TC83308

35. 2c08 159 no hits … …

36. 2c10 22 no hits … …

37. 2d04 291 protein F4N2.2 Arabidopsis thaliana TC87620

38. 2e01 402 thaumatin-like protein 1 precursor Pyrus pyrifolia TC77149

39. 2e05 599 no hits … TC90135

40. 2e09 0 … … …

41. 2e10 0 … … …

42. 2e11 90 no hits … TC76518

43. 2e12 229 no hits below 1e-10 … TC76394

44. 2f02 501 putative extracellular dermal glycoprotein Cicer arietinum TC77209

45. 2f10 309 putative lemir (miraculin) protein Arabidopsis thaliana TC87871

46. 2g03 579 putative ripening related protein. Cicer arietinum TC85249

47. 2g04 395 glucan-endo-1,3-beta-glucosidase precursor Cicer arietinum TC77400

48. 2g06 270 Pathogenesis related protein 1 precursor Arabidopsis thaliana TC86002

49. 2g07 539 hypothetical protein Arabidopsis thaliana TC87620

50. 2g11 0 … … …

51. 2g12 463 probable 12-oxophytodienoate reductase Vigna unguiculata TC85807
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To get a global view on this EST population, the whole non clustered EST-collection

was annotated and classified into 11 broad categories (fig.11). Only one functional

class was assigned to each cluster. Notably, the cluster of genes corresponding to

abiotic stress and development contained six singletons with

similarity to abr 17, an ABA-responsive protein of P. sativum. Most of ESTs had to

be classified into the “unknown function” category and a large number of ESTs had

to be assigned to the “no homology” category.

Surprisingly, 46 out of the 560 non-clustered ESTs did not match any EST deposited

in the Medicago truncatula gene index (MtGI version 5.0). This indicates that these

ESTs correspond to new unknown M. truncatula genes, which have not been

identified in previous sequencing projects. Among these 46 ESTs, 25 did not show

any significant similarity (e-value below 1e –10) after blastx - search of deposited

GenBank database. One gene (1b11) is found to be of A. euteiches origin.

ESTs without similarities to already existing MtGI (version 5.0) entries were further

analysed concerning their differential expression during A. euteiches infection. Of

these 46 ESTs, eight (1b11, 1c05, 1c11, 1f09, 1h03, 1h06, 1h09 and 2c06) were

already analysed by reverse Northern within the first pool of 192 clones. Three of

these sequences (1b11, 1c05 and 1h03) showed significantly increased signals after

hybridisation to infected root cDNA. The inserts of the remaining 38 clones were

Fig. 11  Functional classification of EST population.
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analysed in a second reverse Northern blot. The housekeeping gene MtEf1-α was

used as non-regulated control gene. The MtPR4-1 was used as an internal positive

control. The MtEf1-α showed even and strong signal to infected as well as to non-

infected root cDNAs. In contrast, compared to the control root cDNA, MtPR4-1 and

seven of the 38 genes, showed stronger signals to the infected root cDNA (fig. 12).

Together with the three ESTs detected from the first reverse Northern hybridisation,

10 of 46 ESTs  showed increased RNA accumulation in the roots infected with A.

euteiches.

Fig. 12  In this reverse Northern hybridisation, 38 out
of 46 new M. truncatula genes from SSH-cDNA bank
were analysed for their RNA accumulation in control
and A. euteiches infected roots. The inserts of the
clones were amplified, blotted on two nylon
membranes and hybridised to labelled cDNA of non-
infected (c) and infected (i) roots. MtAPHEU-index
numbers of corresponding clones are indicated. Internal
controls are marked by: PR4 (inducible possible
control) and Ef1 (constitutively expressed control).
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Five of these ESTs (1c05, 1h03, 3f08, 5h08 and 7e05) showed strong signals after

hybridisation to A. euteiches infected root cDNA, and weaker, but detectable signals

after hybridisation to control root cDNA. This indicates that the corresponding genes

are plant genes which are transcribed at a basal level in non-infected roots but are

significantly up-regulated after A. euteiches infection.

3.7 Confirmation of plant origin of the differentially expressed cDNA-fragments

The plant origin of the remaining five cDNA fragments (1b11, 5c01, 5c03, 6c10 and

6d11), showing only weak signals after hybridisation to the control root cDNA, were

analysed using gene specific primers. Amplification of these fragments from M.

truncatula and A. euteiches genomic DNA showed that all the fragments except the

fragment 1b11are of plant origin (fig. 13).

A. B.

Fig. 13  Amplification of five cDNA fragments from A. M. truncatula and
B. A. euteiches genomic DNA.
M- 100 bp Plus DNA marker
1- 1b11
2- 5c01
3- 5c03
4- 6c10
5- 6d11
6- MtEf1-α plant control gene
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3.8 Analyses of the MtMir-1 gene

From the SSH library, TC 0072 (647 bp) was chosen for further analyses. The

MtMir-1 cDNA was assembled from seven different ESTs (mtaehac7h07; 4f09;

5g10; 4e01; 2f10; 7a12; 06f01) (fig. 14A).

Two ESTs of the TIGR M. truncatula EST database (MtGI version 5.0), deriving

from nematode infected M. truncatula roots, were found to be homologous to

TC0072. These sequences could be assembled with TC0072 (fig. 14B). The

corresponding 905 bp sequence is submitted in the TIGR Medicago truncatula Gene

Index (MtGI version 7.0) under TC number 87871.

Blastn search of the NCBI (http://www.ncbi.nlm.nih.gov/) databank revealed highest

homologies to a tumor-related protein sequence NF34 of tobacco (Nicotiana

tabacum), a miraculin like protein LeMir from tomato (Lycopersicon esculentum),

tumor-related protein from interspecific hybrids between Nicotiana glauca and

Nicotiana langsdorffi. Therefore, the A. euteiches induced gene found of this work

was designated MtMir-1 (Medicago truncatula-miracalin like protein 1) according to

the proposed M. truncatula nomenclature (VandenBosh and Frugoli, 2001).

Fig. 14  A. TC0072 (647 bp) from the SSH-cDNA bank, is assembled from seven different ESTs.
B. MtGI TC87871 is assembled from TC0072 and two ESTs (MTQAP13 and MTQAF56) derived
from nematode infected roots.
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3.8.1 RNA accumulation studies of MtMir-1 gene

Sequence specific  primers were constructed for MtMir-1. RT-PCR result shows

strong RNA-accumulation of MtMir-1 in the roots infected with A. euteiches (fig.

15). No PCR product could be amplified from non-infected roots or from leaves of

non infected and infected plants (fig. 16). No amplification products were obtained

using A. euteiches mycelium. This result implies, that the gene is transcribed

exclusively in infected roots of  M. truncatula.

3.8.2 Differential hybridisation analyses of MtMir-1

The results of reverse northern blot (see fig. 10, clone 2f10) and RT-PCR analysis

could be confirmed by Virtual Northern Blot hybridisation (fig. 17). MtMir-1 mRNA

could be detected only in M. truncatula roots after A. euteiches infection.

Fig. 17  Virtual Northern Blot hybridisation. The same
amount of cDNA of control (c) and infected (i) roots were
blotted on nylon membrane and hybridised against MtMir1
gene specific sequence labelled with digoxigenin (DIG). M-
DIG-labelled marker.

B.

Fig. 16  RT-PCR. MtMir1 amplification from
leaves of non infected and infected plants (c1; i1).
The internal control genes were used. c2, i2- MtPR4-
1. c3, i3- tef1α (transcription elongation factor 1α)  as
a  constitutively expressed control gene.

Fig. 15  RT-PCR. Sequence specific primers of
MtMir1 were used to amplify the fragments from
cDNAs derived from control (1) and infected roots
(2) (6 days after inoculation) of M. truncatula as well
as from cDNA derived from A. euteiches mycelium
(3). The MtEF1α (M. truncatula transcription
elongation factor 1α) gene was used as constitutively
expressed control (4;5;6). M- 100 bp Plus DNA
marker.
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3.8.3 Analysis of the MtMir-1 cDNA sequence

3’ and 5’ RACE-PCR techniques were performed to obtain the complete cDNA

sequence of the MtMir-1 gene.  First strand SMART-cDNA was amplified from total

RNA of infected roots using SMART® PCR cDNA Synthesis Kit (Clontech, Palo-

Alto, CA, USA) and was used as a template for RACE-PCRs. 5’ end of the cDNA

was amplified using a gene specific reverse primer (MtMir1_5’RACE) and a

SMART II Oligonucleotide. For the amplification of the 3’ end, gene specific

forward primer (MtMir1_3’RACE) and CDS primers  were used (see table-1 for

primer sequences). About 300 bp fragment of the 5’ end and about 250 bp of the 3’

end of the cDNA were amplified, cloned and sequenced.

These fragments could be aligned with the already known sequence of the gene and

MtMir-1 could be extended up to 862 bp (fig. 18).

3.8.4 Sequence analyses of MtMir-1 gene

In the 862 bp MtMir-1 cDNA sequence the first ATG triplet is located 175 bp

downstream of the 5´cDNA end.

ATCCATCACAAACCAAACTTAATTACAAACTASTTAAAGCATACAGAACA 50

ATGAAAAACACATTGCTAGCATTTTTCTTTCTCTTTACCTTCTTAAGCTC 100

ACAACCACTTCTTGGAGCAGCTGAAGCTTCAAATGAACAAGTGGTTGACA 150

CATTAGGCAAGAAACTCCGAGCTGATGCTAATYACTAGTRTTATCCCGGT 200

TCCCATATACAAATGTGGACCTTATGGTAAATGTAGAAGCAGTGGTTCAA 250

GTCTTGCCCTAGCAAGTAATGGAAAAACTTGCCCTCTTGATGTTGTGGTT 300

GTTGATAGATATCAAGCTTTGCCACTTACTTTTATCCCTGTTAACCCTAA 350

GAAGGGTGTTATTCGTGTGTCTACTGATTTARACATCAAATTCTCATCTC 400

GTGCTACTTGTCTACACCATTCCATGGTGTGGAAGCTTGATCGTTTTAAT 450

GTATCTAAGAGACAATGGTTTATTACTATTGGTGGTGTTGCTGGAAATCC 500

GGGATGGGAAACCATTAATAATTGGTTCAAGATTGAGAAGTATGGTGATG 550

CTTATAAGTTGGTGTTTTGCCCTAGTGTGGTGCAGTCTTTCAAGCATATG 600

TGTAAGGATGTTGGAGTATTTGTTGATGAAAATGGAAATAAGCGTTTGGC 650

TTTAAGCGATGTTCCCCTTAAAGTTAAATTTCAACAAGCTTGATGAAAGC 700

CTCTCTAATATAATGCATAAATAGATATGAAAACATGCATTTCTCTTTCA 750

ATAATGTTTATTGGGATCCTCAAAGTTAGGCTTCCTTATTACAAACAAAT 800

AAAATAAATAAACTTATTAATGTTTATCATCCTAAAAAAAAAAAAAAAAA 850

AAAAAAAAAAAA-3‘ 862

Fig. 18  The complete cDNA sequence of MtMir-1.  ORF is indicated in boldface type. 5´end is

underlined.



RESULTS 47

The 516 bp long open reading frame encodes a protein of 172 amino acids. The 5’

untranslated region consists of 174 bp and 3’ untranslated region of 172 bp. Amino

acid similarity search revealed strongest homology to a tumor-related proteins and

miraculin-like proteins (table-6).

      1                                               50
MtMir1    (1) --------------------------------------MLITSIIPVPIY
     1    (1) -----MKTNQLFLPFLIFTISFNSFLSSSAEAPPAVVDIAGKKLRTGIDY
     2    (1) -----MKINQLFFPFLILAISFNSLLSSAAESPPEVVDIDGKILRTGVDY
     3    (1) ----------------------------------------GKILRTGIDY
     4    (1) ------MKSTLLVWLSFLLFAFVLSVPSIEAYTEPVLDIQGEELKAGTEY
     5    (1) --------------------------------------------------
     6    (1) MKELTMLSLSFFFVSALLAAAANPLLSAADSAPNPVLDIDGEKLRTGTNY

              51                                             100
MtMir1   (13) KCGPYGKCRSSGSSLALASNG-KTCPLDVVVVDR---YQALPLTFIPVNP
     1   (46) YILPVVRGRGGGLTLDSTGNE--SCPLDAVVQEQQEIKNGLPLTFTPVNP
     2   (46) YILPVVRGRGGGLTMDSIGDK--MCPLDAVVQEHNEIDQGLPLTFTPVDP
     3   (11) YILPVVRGRGGGLTMDSIGNK--TCPLDAVVQEQEEVKQGLPLTFTPFNP
     4   (45) IIGSIFFGAGGG-DVSATNKT----CPDDVIQYSSDLLQGLPVTFSPASS
     5    (1) -------------------------------------ENGLPLTFTPVNP
     6   (51) YIVPVLRDHGGGLTVSATTPNGTFVCPPRVVQTRKEVDHDRPLAFFPENP

              101                                            150
MtMir1   (59) KKGVIRVSTDLXIKFSSRATCLHHS-MVWKLDRFNVSKRQWFITIGGVAG
     1   (94) KKGVIRESTDLNIKFSAASICVQT--TLWKLDDFDETTGKYFITIGGNEG
     2   (94) KKGVIRESTDLNIIFSANSICVQT--TQWKLDDFDETTGQYFITLGGDQG
     3   (59) KKGVIRESTDLNIIFSANSICVQT--TQWKLDNFDETTGKYFITLGGNQG
     4   (90) DDDVIRVSTDLNIKFSIKKACDHS--SVWKIQKSSNSEVQWFVTTGGEEG
     5   (14) KKGVIRESTDLNIKFSAASICVQT--TLWKLDDFDETTGKYFITIGGNEG
     6  (101) KEDVVRVSTDLNINFSAFMPCRWTSSTVWRLDKYDESTGQYFVTIGGVKG

              151                                            200
MtMir1  (108) NPGWETINNWFKIEKYGDA--YKLVFCPSVVQSFKHMCKDVGVFVDENGN
     1  (142) NPGRETISNWFKIEKFERD--YKLVYCPTVCNFCKVICKDVGIFIQD-GI
     2  (142) NPGVETISNWFKIEKYDRD--YKLLYCPTVCDFCKVICRDIGIFIQD-GV
     3  (107) NPGRETISNWFKIEKFERD--YKLVYCPTVCDFCKVICKDIGIFIQD-GV
     4  (138) NPGIDTLTNWFKIEKAGILG-YKLVSCPEGICHCGVLCRDIGIYRENDGR
     5   (62) NPGRETISNWFKIEKFERD--YKLVYCPTVCNFCKVICKDVGIFIQD-GI
     6  (151) NPGPETISSWFKIEEFCGSGFYKLVFCPTVCGSCKVKCGDVGIYIDQKGR

              201                    226
MtMir1  (156) KRLALSD--VPLKVKFQQA-------
     1  (189) RRLALSD--VPFKVMFKKAQVVKD--
     2  (189) RRLALSD--VPFKVMFKKA-------
     3  (154) RRLALSD-------------------
     4  (187) RILSLSDKLSPFLVLFKKVGPLSSSI
     5  (109) RRLALSD--VPFKVMFKKA-------
     6  (201) RRLALSD--KPFAFEFNKTVYF----

Fig. 19  Alignment of MtMir-1 with homologous MLPs from
different organisms. Identical sequences are shadowed black,
sequences with similarities are shadowed grey. Signal peptide
cleavage sites are shadowed red.
1-tumor-related protein from tobacco
2- LeMir from tomato
3- Miraculin-like protein from aubergine
4- Miraculin-like protein from poplar
5- Tumor-related protein from hybrid tobacco
6- Miraculin from sweet berry
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Table 6. At the amino acid sequence level MtMir-1 shows high identity to different plant miraculin-
like proteins.

Organism Protein GeneBank
accession number

% identity to
MtMir-1 e-value

Nicotiana tabacum tumor-related protein U66263 57% 1e-38
Lecopersicum
esculentum LeMir U70076 56% 2e-37

Nicotiana glauca and
Nicotiana langsdorffi tumor-related protein D26457 61% 7e-36

Solanum melongena miraculin-homologue AB23651 56% 2e-34
Richadella delcifica miraculin D38598 53% 7e-31
Populus balsamifera
subsp. trichocarpa x
Populus deltoides

Kunitz-trypsin inhibitor-4 AY378089 49% 6e-28

Alignment of the amino acid sequences of different plant miraculin-like proteins

revealed conserved domains (fig. 19).

SignalP V1.1 - signal peptide location and cleavage site prediction program (Nielsen

et al., 1997) were used to analyse different miraculin-like protein (MLP) sequences

for presence of signal peptides on the N-terminus of the amino acid sequence. Signal

peptides were predicted for MLPs from tobacco, tomato, poplar and the miraculin

from sweet berry. MtMir-1 as well as MLP from aubergine and hybrid tobacco seems

not to have a signal peptide (fig. 19).

Comparison of MtMir-1 cDNA sequence with the genomic DNA sequence obtained

from M. truncatula genome shotgun sequencing project at the University of

Oklahoma (www.genome.ou.edu/medicago.html) shows that the MtMir-1 has no

introns and consists of only one exon.
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3.8.5 Genomic Southern blot analysis of MtMir-1 gene

Genomic Southern blot analysis was performed to identify the number of copies of

the MtMir-1 gene in the M. truncatula genome. As it is seen on fig. 20 there are two

bands in each lane. This result shows that the MtMir-1 gene could belong to a

multigene family.

3.9 Analyses of MtMir-2 gene

A gene with sequence similarity to MtMir-1 was identified in an EST-project of

mycorrhized roots. The corresponding fragment MtMyc-8 was found to be up-

regulated in the M. truncatula roots colonised by mycorrhizal fungi (Wulf et al.,

2003). The complete cDNA sequence of MtMir-2 gene (fig. 21) was provided by J.

Doll (University of Hannover, Germany).

The arbuscular mycorrhiza (AM) induced gene MtMyk-8 was renamed in this work

to MtMir-2 (Medicago truncatula-miraculin like protein 2) according to the proposed

M. truncatula nomenclature (VandenBosh and Frugoli, 2001).

Amino acid sequence alignment of MtMir-1 and MtMir-2 showed 19.5 % identity

(fig. 22).

Fig. 20  Genomic Southern blot of MtMir-1. 20
µg genomic DNA of M. truncatula was digested
with EcoRV (lane 1) and XbaI (lane 2) and
blotted onto nylon membrane. An 600 bp
fragment of MtMir-1 gene was labelled with
digoxigenin and used as probe in the
hybridisation experiment.
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             1                                               50
MtMir1    (1) ----------------MLITSIIPVPIYKCGPYGKCRS------------
MtMir2    (1) MSMRLSIRTLIILAHVCLFITTTTIAQFVLDTVGEPVEGDEEYFIRPVIT

51                                             100
MtMir1   (23) -SGSSLALASNGKTCPLDVVVVDR--YQALPLTFIPVNPKK--GVIRVST
MtMir2   (51) NKGGRSTMVSRNESCPLHVGLELTGLGRGLVVKFTPFAPHHDFDDVRVNR

101                                            150
MtMir1   (68) DLXIKFSSRATCLHHSMVWKLDRFNVSKRQWFITIGGVAGNPGWETINNW
MtMir2  (101) DLRITFQASSSCVQSTEWRLGEKDTKSGRRLIITGTDSATNGSYGNFFRI

151                                            200
MtMir1  (118) FKIEKYGDAYKLVFCPSVVQSFKHMCKDVGVFVDENGNKRLALSDVPLKV
MtMir2  (151) VETPLEG-MYNIQWCPTEVCPSCKFECGTVDMLNENGKILLALDGGPLPL

           201
MtMir1  (168) KFQQA
MtMir2  (200) VFQKE

Fig. 22  Alignment of amino acid sequences of MtMir-1 and MtMir-2 genes. The
identical amino acids are shadowed black and similar ones shadowed grey. Signal
peptide cleavage site of MtMir-2 is shadowed red.

AAAGCCATTGAGTGTAAGCCTAGTTATTACATTACAAGTTACATCTAACA 50

AATAATAAACCATGTCAATGAGATTATCTATTAGAACCCTCATTATTCTT 100

GCTCATGTGTGTCTCTTTATAACGACAACAACAATAGCTCAGTTTGTCTT 150

GGACACAGTCGGAGAACCCGTTGAAGGCGACGAAGAATACTTCATCCGTC 200

CAGTTATCACAAACAAAGGAGGACGTTCCACTATGGTCAGCAGAAATGAA 250

TCATGCCCTTTACATGTTGGTCTTGAGCTCACTGGCTTAGGACGCGGGCT 300

GGTTGTCAAATTCACACCATTTGCTCCCCATCATGACTTCGACGATGTTA 350

GGGTTAACAGAGACTTGAGAATAACATTCCAAGCTTCATCAAGTTGTGTA 400

CAATCAACAGAATGGAGATTAGGTGAGAAAGACACCAAGAGTGGAAGAAG 450

GTTGATTATCACTGGGACAGATAGTGCTACCAATGGATCATATGGTAACT 500

TCTTTAGGATTGTAGAGACCCCACTTGAAGGTATGTATAATATACAATGG 550

TGTCCTACAGAGGTATGTCCAAGTTGTAAATTTGAATGTGGAACTGTTGA 600

TATGTTGAATGAGAATGGTAAGATTTTGTTGGCCCTAGATGGTGGTCCCC 650

TCCCTCTTGTTTTTCAGAAAGAATAATTTTTAATTTATAGGTACCCTTGT 700

TTTTATTTACAATGGAGCTATATATTGTTCATTTCAGTTAATAAAATTGG 750

AAGAGATATTACATGTACTTTGTTCTTGATTCATATAATAAAGCTCTAAA 800

AGTTTGTGTAGAACGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3‘ 846

Figure-21. Complete cDNA sequence of MtMir-2. ORF is indicated in boldface
type.
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3.10 mRNA-accumulation studies of MtMir-1 and MtMir-2

The RT-PCR result shows that the MtMir-2 gene is up-regulated only in the

mycorrhized roots and not in the roots infected with A. euteiches (fig. 23). It turned

out that MtMir-1 is also transcribed in  mycorrhized roots of M. truncatula (fig. 23).

The MtMir-2 genomic DNA sequence was obtained from genome shotgun

sequencing project at the University of Oklahoma

(www.genome.ou.edu/medicago.html). MtMir-2 has no introns at the genomic DNA

as it was the case for MtMir-1.

In the 846 bp MtMir-2 transcript sequence the first ATG triplet is located 62 bp

downstream of the 5´ cDNA end. The 615 bp long open reading frame codes a

protein of 205 amino acids. The 5’ untranslated region consists of 61 bp and 3’

untranslated region of 170 bp (fig. 21). In contrast to MtMir-1, the SignalP software

predicted a 26 amino acid long signal peptide in MtMir-2 protein sequence (fig. 22).

Figure-23. RT-PCR. cDNA derived from sterile roots (c) of
M. truncatula, roots infected with A. euteiches (+A.e), mycorrhized
roots (+Myk) and A. euteiches mycelium (A.e) were used to amplify
MtMir1 and MtMir2 genes. tef 1α gene was used as a constitutively
experessed control. M- 100 bp Plus DNA marker.
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3.11 Promoter isolation of MtMir-1 gene

Since at the time point of starting this promoter analyses, the M. truncatula genomic

sequence was not yet available, the promoter region of the MtMir-1 gene was

isolated using the Universal GenomeWalkerTM Kit (Clontech, Palo-Alto, CA, USA).

Four libraries were constructed after digestion of genomic DNA with SmaI, EheI,

EcoRV or SspI respectively. Adapters were ligated to the ends of digested DNA.

Gene specific primers located at 5’ end of the cDNA and directed upstream of the

gene (MtMir1_GWI_GSP1; MtMir1_GWI_GSP2) were constructed. In the first

genome walker experiment an 450 bp fragment was amplified from the SmaI-library

and an 250 bp fragment was amplified from EcoRV-library. (fig. 24A). These

fragments were cut out from the gel, purified, cloned and sequenced.

Both fragments could be aligned with the known sequence of the MtMir-1 gene.

Therefore, the 5’ end of MtMir-1 gene was extended by 243 bp. Since this could not

be the entire promoter sequence, further genome walking steps were performed using

new primers (MtMir1_GWII_GSP1; MtMir1_GWII_GSP2). This time, of the

EcoRV-library, approximately 1500 bp long fragment could be amplified (fig. 24B).

After cloning, sequencing and aligning of this fragment, the 5’ end of MtMir-1 gene

could be extended by another 612 bp. Together with the 243 bp obtained from the

first experiment, an 855 bp long promoter region of MtMir-1 gene was identified by

genome walking (fig. 25). The predicted TATA box of the promoter is located 29 bp

upstream of the cDNA start of the MtMir-1 gene.

Fig. 24  A. Nested PCR from first genome walker experiment. B. Nested PCR from
second genome walker experiment. M- 100 bp Plus DNA marker; 1-SmaI, 2-EheI, 3-
EcoRV, 4- SspI digested DNA library

A. B.
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3.12 Promoter isolation of the MtMir-2 gene

Identification of MtMir-2 promoter was carried out as described for the MtMir-1.

PCR revealed several bands over 500 bp in all DNA libraries except the library

digested with SspI (fig. 26). MtMir-2 gene was extended upstream by 2152 bp after

aligning the longest fragment, obtained from genome walking, with the known

sequence (fig. 27). The predicted TATA box is localised 27 bp upstream the 5´

cDNA end.

TACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGTATCATTTAAGTAGACATAGTTTA 60

ATTTTGTGTGAATCAATTAGTGAGTTGAATTATTTGATTTTATTTGTGTTATCTACACGT 120

CGTTTAATTAAACGTTACTCCCTCCGTCCTAAATTGTATGATGTTTTGGGCATTTCACAC 180

ATATTAAGAAATGCAATTAATATTGTGTGGAAAAAAGATATTATGAGTTGTTTTACAAAA 240

TTGTCCTTAATGAATAATTGGGAAAGATAAATGAAAGAATTGAAAGAAGAGAAAGTAATA 300

AATAATTAAGGTTATAATAGGAAAAGTAACATTAATGTTGCATTGGTATTTTAAAGCGAC 360

ATATAATTTGGGACAGATTTTTTTCCTTAAAACGACATACAATTTGGGACGGAGGGAGTA 420

GTTTTTCTTTTCAGCGGTTTAAGCATCTTGTAATCCAAAAAAGAAGAAAAAAACTTTCAA 480

ATGTACTTGCTTGTTTACTAGATACTTAGACCGTTTAATAAGTCTGGCTATTATTCCTTT 540

GTTTAGTTTTCTTCAAAATCAATATACTGCATTCATATCAATTATATTATATTCAAAATA 600

GACTCTCCAAATATTATAATTAATTGAAAGTCATCAAAGGMTAATAATATAAAGAAATAA 660

CCCTTCAAAGGGCCAATTGTATTCATATCAAAAGGGTTTGTGCTCTTGGTGACAACATGC 720

CAATTGTATTGCATATTGGTCAAAAGTTTGGCCTTAATTAAAAGTGTGGAAATTGTTTAG 780

GTTACCCATAGATAAGAAAATGTAAGTACGTACTTCCCTCTATAAATTGATATTCTTCAA 840

ATTGCCATAAACTTCATCCATCACAAACCAAACTTAATTACAAATTACTTAAAGCATACA 900

GAACAATGAAAAACACATTGCTAGCATTTTTCTTTCTCTTTACCTTCTTAAGCTCACAAC 960

CACTTCTTGGAGCAGCTGAAGCTTCAAATGAACAAGTGGTTGACACATTAGGCAAGAAAC 1020

TCCGAGCTGATG

Fig. 25   855 bp sequence upstream from the 5´ cDNA end of MtMir-1 gene (putative promoter
region). TATA box located 31 bp upstream 5´cDNA end is indicated by the box around the sequence.
5´end of the cDNA is unterlined. Translation start is indicated in boldface type.

Fig. 26   Nested PCR from genome walker experiment.
1-SmaI, 2-EheI, 3-EcoRV, 4- SspI digested DNA library.
M- 100 bp Plus DNA marker;
The bands indicated by arrows were cut out from the gel,
purified and sequenced.

2 kb

1 kb
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Fig. 27   2152 bp sequence upstream MtMir-2 gene. TATA box localised 24 bp upstream of
the 5´cDNA end is indicated by the box around the sequence. 5´end of the cDNA is
underlined. Translation start is indicated in boldface type.

TAATTTTAATCATATTTAATTGTCTATTTTTTATGCAAAACTGATTGTCCACATATTATATTTATATGAT 70

ACCACTCGAATCGCAAGACAGGAAGTTTGATTAATAATATGGATAGCTAGCTATGATACTAGCATATGCT 140

CCTATGGGAAGAAATAACACATCAGGATACTCTTGTTGGTAGCTAAATAAATTCTTAACTAATAAAGGGA 210

ATTACTATATGCTTGTCGAGAAGACAAGTTTCAGTAGGCTAATTCTACCTTATATACTTGACTATTAGTT 280

AGTAGGATGGTAAAACAAACATATTTCCTAACTAACAAGATATTTATAAAAGTAGAGATCAAGCTTTATC 350

GATACTAGAACTTGGTACATTAGCATGTGTTGAATGAATCTGACATGGACTTTCTAGCAATTTGGATTTA 420

CTGATCATGATCTGCCTTCCTATAATTTCTCTTAGTACATCATTTAAAGATAATCATAGTATACTCACAA 490

AAAAGGACAAGATTATACTTTCAATTACACCATACTATGTTTCTAGGCAAACTCAACGCAATCTTAAAAG 560

TTCATGACTTTTGTGCAGTTTTAAAATATGTACCTGATTCCTTATGGATGATTTCAAATGTATGAAAGTT 630

AAAACTTACGGTGAAGTCGATCATACCATGCTCTNTTAGTTTCTGTAGCAGCCAAAATGAGTTGATACGT 700

CAACGCCTTAAAATCAGCATATCGATGCTATCAGTCGCCCTGGCTTGTCATCTTGATTCCTCCTCCAAAC 770

TTTTTCGCCCTTTAACTTGTTTATCAATAGCATCCTATACCCATGCTTTCTTTATTCTAACCTTTCTTCG 840

TGGTACAGCCTATATTGGTCTATTTTACATAGCTATTTCCTAACGAACCAAGAGGGGTATCTGTTCGCCT 910

AATTGAAAACATATCTCGATCGCAGCTTCCACAACAAAGGTATTTATAGCCTTCTATGGACTTGGGTTTC 980

GGTTGCTTAGTCTCCAAGTAATAGGGGTATTTATGTATTTAGGGGCGGTTTCTAGAAGATTCTAGAGATT 1050

ATTGAGGCGGCGCCATGGATAATGCGTGCCCGGGGCCCTTGGGCTTCTTTTAAAGGTATTAAGGCCTTCT 1120

TGAGGGGTCTAAAAGCCCTTTTGGAGGTCTTTCAGGTCCTTAGGAATATTATGACAGTCCAAGACTAAAA 1190

GAGCTGAAGAGTTTAAAGTTCAGAATTTAAATACTGACAATGAGAAAAATACTAACATACTAACATTTGT 1260

CATTTAAATAGAGAAAAAAGTGTAGTAAGAGAGCGACAAACTTTTTTAAAATTTTTTTTATGTAAAAAGA 1330

GTGTGACAACATGTGAAGAACATGTGTTAAAAAAAATATAGAACACAAACAATGTCTTTTCTTTTATTCA 1400

ATTCAGCTTATACTCTGATAAGAATATTCGAATATGGTTCTACAGAACGGATTAATTCTACATATTTTAG 1470

GGCACTATTTCTATGCAAGAAACACCATTTTTGTCAATCTAATTTTTTCGATAGAAGGGAGGGAAATGAA 1540

GAAGACAAAAGTGTTTGTCTGTTTCATTGGACGATTCATACTAGGGAAAATTCGGCATTGTCTCTTGTCC 1610

ATATTTCCATCAAAAATCCGTAATCCAAACAAAGTAATTAACAAGATACTTATTCTTGACTTAGTTAATA 1680

TCGATGGCATTGTTTGACCCTAAAAGGTACTCTCTTGGTTTCAAAACATGTTTTGTTTTATATTCAATAT 1750

GTCTCATGATAAATATCACATTTATAAAAATAAATTATCTCAAAAGAGTGTCACTTTCAAATGAGTAAAC 1820

AACATTATATAGACAATGGGAGTAAAAAACATTTCTCAAAATTTGTGTAGTTTTATATTTTGAATATAAC 1890

ATTAGTTACTTTATTCAAATTATATCTCAAATCAATATTGTTTCTATATCTTAAAAAAGATAATATAAAA 1960

TTCTTATGATTATTATCATAAATTTAAGTATTTAACAACTACAATACAATTTTGTTAAAATTTTACAATA 2030

ATTATTTTAGAACAATCATTGATTTATATTATAATTACACTTTTCGGTCTATATAAAAATTACAAACTTT 2100

TAAGTGCATGTATCACAGTTCTATAAATACTTAGCCTAGTAACAAAACCCATAAACCCATAAAGCCATTG 2152

AGTGTAAGCCTAGTTATTACATTACAAGTTACATCTAACAAATAATAAACCATG
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3.13  MtMir-1 promoter deletion analysis

For the MtMir-1 promoter-reporter gene studies approximately 100 bp, 300 bp or 900

bp fragments of potential promoter region of MtMir-1 gene, including 177 bp

sequence of 5’ region upstream the translation start, were transformed into roots of

M. truncatula (fig. 28). The promoter-GUS constructs (pLP100-p100; pLP100-p300;

pLP100-p900) of MtMir-1 gene were prepared as described in Materials and

Methods.

The presence of transgenes in each transgenic root culture were confirmed by PCR

analysis. Using vector specific forward (pLP100_for) and EcoRI reverse (EcoRI-

p100, EcoRI-p300, EcoRI-p900) primers constructs were amplified from the

genomic DNA isolated from transgenic roots (fig. 29).

Fig. 28   MtMir-1 promoter deletions. The three constructs used in
this study are shown. PLP100-p100 contains sequences from +177
to +50 (127bp); pLP100-p300 contains sequences from +177 to –
137 (315 bp); pLP100-p900 contains sequences from +177 to  –
724 (901 bp). The numbers represent the nucleotide numbers
relative to the 5´cDNA end.
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Transgenic hairy roots containing the pLP100-p100 and pLP100-p300 constructs did

not show any GUS-gene activity as well as the non-infected control roots (data not

shown).

In contrast, transgenic hairy roots transformed with the pLP100-p900 construct,

showed strong GUS-gene expression 6 days after inoculation with  A. euteiches (fig.

30). Hence, the pathogen-responsive element necessary for a induction of MtMir-1

transcription is located in the area between –300 and –900 bp upstream of the

transcription start.

Fig. 29 PCR amplification of
promoter deletion fragments from
genomic DNA. Fragments were
amplified from genomic DNA isolated
from hairy root cultures containing: 1-
pLP100-p100; 2- pLP100-p300; 3-
pLP100-p900 constructs. Fragment sizes
correspond to the promoter fragment
length plus vector sequence.  M- 100 bp
Plus DNA marker.

Fig. 30   Histochemical staining of transgenic hairy roots for GUS gene activity.
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Cortical cells of transgenic roots which showed zoospore attachment as well as the

root parts colonised by the A. euteiches hyphae showed promoter activity.

3.14 Promoter analysis of MtMir-2

To analyse the promoter activity of the MtMir-2 gene, an 797 bp fragment of the

promoter region (between +49 and –748) of MtMir-2 gene was introduced into

binary vector pLP-100, in front of the promoterless GUS-gene. The transgenic hairy

roots were obtained by A. rhizogenes mediated transformation of M. truncatula. The

presence of the transgene was confirmed by PCR using DNA of hairy root cultures

(fig. 31).

Composite plants which developed transgenic hairy roots were inoculated by the AM

fungi G. intraradices. Three weeks after inoculation with G. intraradices, transgenic

roots were evenly mycorrhized. Different stages of G. intraradices colonisation

could be seen in the roots (fig. 32 A; B).  The histochemical staining of mycorrhized

transgenic roots for GUS gene activity showed that the promoter gene was active in

root parts harbouring AM structures (fig. 32 C; D). In non-inoculated control roots

neither fungal structures nor GUS gene activity were detectable.

Fig. 31  PCR amplification of promoter deletion
fragment from genomic DNA. Fragments were
amplified from the genomic DNA isolated from
hairy root cultures containing: 1-  pLP100-p797
construct. The fragment is bigger in a size because
they contain vector sequence.  M- 100 bp Plus
DNA marker.
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A B

C D

Fig. 32   Analyses of transgenic MtMir-2 promoter-GUS hairy roots. Visualisation
of fungal structures in mycorrhized roots by trypan blue staining: A- appressorium of
G. intraradices; B- arbuscules of G. intraradices. B, C- GUS-activity in transgenic
hairy root parts colonised by G. intraradices.
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Functional analysis:

3.15 Silencing of MtMir-1 gene

An post transcriptional gene silencing (PTGS) approach by RNA-interference

(RNAi) was used to get first insights into the function of MtMir-1.

Transformation vectors that produce RNAs capable of duplex formation (pFGC

5149), were constructed as described in 2.4.22. RNAi constructs were transferred

into the roots of M. truncatula plantlets and transgenic hairy root cultures were

obtained (fig. 33 A; B) as described by Boisson-Dernier et al., (2001). Control roots

were transformed with an empty pFGC 5149 vector.

Two lines of root cultures transformed with the empty vector (pFGC-1 and pFGC-2)

and two lines transformed with constructs providing PTGS of MtMir-1 gene (MtMir-

1-PTGS-1 and MtMir-1-PTGS-2) were chosen for further analyses.

Fig. 33   A. Transgenic hairy roots (indicated with arrows) of M. truncatula growing on Fahraeus Medium
(25 mg/l kanamycin). B. Root cultures on M-Medium (400 mg/l augmentin).

A.

B.
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Consequently, transgenic roots were infected with zoospores of A. euteiches.

Histochemical staining of roots for ALP-activity was done 6 days after inoculation.

There were no visible phenotype difference between hairy roots carrying PTGS-

constructs, vector control lines and wild type roots. All roots inoculated with

zoospores were colonised with A. euteiches mycelium to the same extend (data not

shown).

RNA-accumulation studies were carried out in order to proof the silencing of MtMir-

1-expression in root cultures carrying the PTGS-constructs. Specific primers were

designed which bind near to 5´end of MtMir-1 cDNA. These primers amplify a

fragment of the gene which was not used for the construction of PTGS-vectors (fig.

34).

This 200 bp fragment could be amplified by RT-PCR only from cDNAs derived

from MtMir-1-PTGS containing roots infected with A. euteiches. It was not possible

to amplify this fragment from cDNAs derived from the empty pFGC vector-

containing roots before and after induction of the gene with pathogen (fig. 35).

RNA-accumulation studies were repeated by virtual Northern hybridisation analyses

(fig. 36A). Using a labelled probe of MtMir-1 gene, a fragment with about 1 kb size

could be detected in the control roots infected with A. euteiches. No bands were

detected in the MtMir-1-PTGS roots infected with A. euteiches.

5‘ 3‘
A. 500 bpB. 200 bp

862 bp

Fig. 34 A. MtMir-1 cDNA fragment used for the PTGS-vector
construction. B. cDNA fragment used for RT-PCR and virtual Northern
analyses.
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Fig. 35   RT-PCR. In order to amplify only the endogenous mRNA of MtMir-1 gene and not
the PTGS-construct, two primers (MtMir1_200_RNAi_for/rev) were constructed. These
primers bind to the cDNA region of MtMir-1 gene which is located adjacent to the sequence
taken for PTGS-construct. Therefore only cDNAs derived from the whole length mRNA
should be a target for amplificaiton. cDNAs derived from two independent root cultures
transformed with empty vector, and two independent lines of roots transformed with vector
containing a coding region of MtMir-1, were taken for analysis.
Lane-1 and 2: pFGC-1 and 2 - non infected;
lane 3 and 4: MtMir-1-PTGS-1 and 2 –non infected;
lane 5 and 6: : pFGC-1 and 2 – infected with A.e;
lane 7 and 8: MtMir-1-PTGS-1 and 2 – infected with A.e;
 M- 100 bp Plus DNA marker.

Fig. 36  Virtual Northern Blot. 15 µl
SMART-cDNA amplified by LD-PCR
was blotted onto nylon membranes.
A. 200 bp fragment of MtMir1-cDNA
not including the sequence used for
PTGS construct was labelled with
digoxigenin and used as a probe for
hybridization.
B. Stress inducible MtPR4-1 gene was
used as a positive control for infection.
This MtPR4-1-probe detects 2 other
bands in each cDNA unspecifically.
C. MtEf-1α gene was used as
constitutive expressed positive control.
The membranes were washed under
stringent conditions. Approximate size
of the bands are indicated.

1 2 3 4 5 6 7 8

 ~0,9kb

 ~1kb

 ~1,8kb

A.

B.

C.
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Transcription profiling:

3.16 Gene expression analyses of M. truncatula roots 30 min and 6 days after
inoculation with A. euteiches using microarray technology

Total RNA from control and infected roots of M. truncatula after 30 min of

inoculation with A. euteiches (30min) as well as total RNA from control and infected

roots after 6 days (6d) of inoculation were labelled with fluorescent dye as described

in 2.4.23a and used as a probe for hybridization. For each experimental condition,

two biological controls were analysed (i.e. RNAs were extracted from two

independently inoculated plants). For each biological control two technical controls

(i.e. two aliquots were made from each biological control RNA and treated

throughout all the experimental steps separately) were analysed (table-7).

Table-7.  Experimental design of first microarray hybridisation experiment.

RNA probes
used for array

analyses

cDNA labelling
with Cy dyes

Probe composition Name of the
hybridised slides

Name of the experiment

30’c-1-t-130’c-1 30’c-1-t-2
30’c-1-t-1
30’i-1-t-1 30’Bc-1-t-1

30’i-1-t-1

30
’-

B
c-

1

30’i-1 30’i-1-t-2
30’c-1-t-2
30’i-1-t-2 30’Bc-1-t-2

30’-Bc-1

30’c-2-t-130’c-2 30’c-2-t-2
30’c-2-t-1
30’i-2-t-1 30’Bc-2-t-1

30’i-2-t-1

30
’-

B
c-

2

30’i-2 30’i-2-t-2
30’c-2-t-2
30’i-2-t-2 30’Bc-2-t-2

30’-Bc-2

6d-c-1-t-16d-c-1 6d-c-1-t-2
6d-c-1-t-1
6d-i-1-t-1 6dBc-1-t-1

6d-i-1-t-1

6d
-B

c-
1

6d-i-1 6d-i-1-t-2
6d-c-1-t-2
6d-i-1-t-2 6dBc-1-t-2

6d-Bc-1

6d-c-2-t-16d-c-2 6d-c-2-t-2
6d-c-2-t-1
6d-i-2-t-1 6d-Bc-2-t-1

6d-i-2-t-1

6d
-B

c-
2

6d-i-2 6d-i-2-t-2
6d-c-2-t-2
6d-i-2-t-2 6d-Bc-2-t-2

6d-Bc-2

30’- root material 30 minutes after inoculation
6d- root material 6 days after inoculation
Bc- biological controls of experiments
c- control roots mock inoculated with sterile lake water
i- roots infected with A. euteiches
t- technical control
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Original hybridization data are shown in fig. 37. After hybridization image

processing software ImaGene 5.0 (BioDiscovery Inc., Los Angeles, CA, USA), was

applied to detect the spots and quantify the signals. Because the quality of technical

controls were similar, replicate arrays of technical controls were grouped. The raw

data were imported into EMMA 1.0 microarray analysis software (Dondrup et al.,

2003).

Fig. 37  A cut from original data obtained by hybridizing
Mt8k microarray. Examples of up- and down-regulated
genes as well as constitutively expressed gene are marked
by triangles, rectangular and circles correspondingly.
Every gene is present in three copies on the microarray.
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After applying normalization, M vs. A scatterplots were generated for each

biological control (fig. 38).

In order to show the variation between the biological control experiments M vs. M

scatter plots were generated (fig. 39).

A. 30 min-1 B. 30 min-2

C. 6d-1 D. 6d-2

Fig. 38   Scatterplots showing M vs. A plot of all biological control slides after lowess normalization.
X-value A. Y-value M.

A. 30 min1/30 min2 B. 6d1/6d2

Fig. 39   M vs. M scatterplots showing variations between biological control expreriments.
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Lists of candidate genes for differential expression were obtained by applying t-test.

Those spots which were found in both biological controls and at least in one of them

two-fold  up- or down-regulated (M>or=1 or M<or=-1) and characterized by p-value

of p<0.1, were selected. It resulted in the detection of 138 genes regulated after 30

min (table-8a; b), 207 genes 6 days after inoculation (table-9a; b). 35 genes were

found to be regulated in both experimental conditions in the same (fig. 40).

(35) 207 genes138 genes
30 min 6 days

Fig. 40  Venn diagram showing an overview of A. euteiches
induced genes 30 minutes and 6 days after inoculation.
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Table-8a.  The list of genes up-regulated 30 min after infection. Gene identity, annotation and
functional class of each gene is shown according to MENS (Medicago EST Navigation System,
http://medicago.toulouse.inra.fr/Mt/EST). M-value of biological control 1 and 2 (bc1; bc2) are
shown. Genes showing regulation after 30 min as well as after 6 days are indicated in bold face.

# Gene ID Annotation Functional class M-value
(bc1/bc2)

1. DSLC131 Ribulose bisphosphate carboxylase - 1,53/1,02

2. MtC00798 Arabinogalactan-protein precursor I, Cell Wall 1,39/1,03

3. MtC00485,1 Arabinogalactan-protein precursor I, Cell Wall 0,9/1,61

4. MtC90836 Myosin II, Cytoskeleton 1,34/0,69

5. MtC91062 Putative cytoskeletal protein-like protein II, Cytoskeleton 0,92/1,27

6. MtD22686 Cation diffusion facilitator 2 III, Membrane transport 0,61/1,10

7. MtC00257 Adp-ribosylation factor IV, Vesicular trafficking  secretion and protein sorting 1,24/0,80

8. MtC00207 Ras-related protein rab7 IV, Vesicular trafficking  secretion and protein sorting 1,05/1,22

9. MtC00121 S-adenosyl-l-homocysteinase IV, Vesicular trafficking  secretion and protein sorting 0,95/1,18

10. MtC00117,1 Polyubiquitin IX, Protein synthesis and processing 1,8/1,99

11. MtC00096 40s ribosomal protein s6 IX, Protein synthesis and processing 1,38/0,59

12. MtBA56C06  Elongation factor 1-alpha IX, Protein synthesis and processing 1,24/1,03

13. MtC00017,2 40s ribosomal protein s9 IX, Protein synthesis and processing 1,21/0,98

14. MtC93002 Ubiquitin-conjugating enzyme e2 (3'utr) IX, Protein synthesis and processing 1,12/1,02

15. MtC00325 60s ribosomal protein l15 IX, Protein synthesis and processing 1/1,16

16. MtC00047 40s ribosomal protein s24 (s19) IX, Protein synthesis and processing 0,79/1,43

17. MtC90530 Upp synthetase IX, Protein synthesis and processing 0,78/1,08

18. MtC90428 30s ribosomal protein s16 IX, Protein synthesis and processing 0,74/1,15

19. MtC00324 60s ribosomal protein l35 IX, Protein synthesis and processing 0,69/1,11

20. MtC93222 Serine carboxypeptidase ii IX, Protein synthesis and processing 0,69/1,06

21. MtC00002,1 Elongation factor 1-alpha IX, Protein synthesis and processing 0,23/1,17

22. MtC00028 Serine proteinase inhibitor IX, Protein synthesis and processing 0,23/1,09

23. MtC00046 S-adenosylmethionine synthetase V, Primary metabolism 2,11/2,50

24. MtC90961 Phenylalanine ammonia-lyase V, Primary metabolism 1,42/2,12

25. MtC10397 Chloroplast cytochrome b6 V, Primary metabolism 1,31/0,82

26. MtC10333 Cysteine synthase V, Primary metabolism 1,09/0,96

27. MtD22714 Phosphoglycerate kinase V, Primary metabolism 0,72/1,08

28. MtC00218,2 Malate dehydrogenase V, Primary metabolism 0,71/1,15

29. MtC30578 Blue copper-binding protein V, Primary metabolism 0,7/1,37

30. MtC20048 Nadh-ubiquinone oxidoreductase V, Primary metabolism 0,6/1,04

31. MtC00030 Glyceraldehyde 3-phosphate dehydrogenase V, Primary metabolism 0,51/1,25

32. MtC20054,2 Phospho-2-dehydro-3-deoxyheptonate aldolase
precursor

V, Primary metabolism 0,5/1,33

33. MtC10255 Lipase  class 3 V, Primary metabolism 0,19/1,04

34. MtC10863,2 Chalcone synthase VI, Secondary metabolism and hormone metabolism 2,12/ 1,73

35. MtC20397,4 Chalcone synthase VI, Secondary metabolism and hormone metabolism 1,97/2,71

36. MtC10863,3 Chalcone synthase VI, Secondary metabolism and hormone metabolism 1,52/1,82

37. MtC20397,1 Chalcone synthase VI, Secondary metabolism and hormone metabolism 1,43/1,71

38. MtC10863,1 Chalcone synthase VI, Secondary metabolism and hormone metabolism 1,37/2,12

39. MtC20397,5 Chalcone synthase VI, Secondary metabolism and hormone metabolism 1,05/1,01

40. MtC30184 S-adenosyl-methionine-sterol-c- methyltransferase VI, Secondary metabolism and hormone metabolism 0,85/1,21

41. MtC93164 Coproporphyrinogen iii oxidase precursor VI, Secondary metabolism and hormone metabolism 0,76/1,03

42. MtC45216 Udp-glycose:flavonoid glycosyltransferase VI, Secondary metabolism and hormone metabolism 0,63/1,11

43. MtC50948,1 Hmg-y related protein VII, Chromatin and DNA metabolism 0,74/1,53

44. MtC10493 Wrky-type DNA-binding protein VIII, Gene expression and RNA metabolism 2,09/1,52

45. MtC10374 Zinc finger c2h2 containing protein VIII, Gene expression and RNA metabolism 1,47/0,77

46. MtC10310 Kruppel-like zinc finger protein VIII, Gene expression and RNA metabolism 1,19/2,29

47. MtC91811 B-zip transcription factor VIII, Gene expression and RNA metabolism 1,12/1,45

48. MtC00402 Transcription factor VIII, Gene expression and RNA metabolism 1,07/1,15

49. MtC10507 Rna-binding protein precursor VIII, Gene expression and RNA metabolism 0,69/1,54

50. MtC93018 PR- transcriptional factor and erf VIII, Gene expression and RNA metabolism 0,51/1,17

51. MtC10888 Ef-hand calcium-binding domain X, Signal transduction 1,58/2,75
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Continuation of table 8a
# Gene ID Annotation Functional class M-value

(bc1/bc2)
52. MtC20118 Mitogen-activated protein kinase X, Signal transduction and post-translational regulation 2,21/1,84

53. MtC00346 Calmodulin X, Signal transduction and post-translational regulation 1,19/1,14

54. MtC45594 Rac-like GTP binding protein rho X, Signal transduction and post-translational regulation 1,14/0,56

55. MtC93201 Ser/thr protein phosphatase X, Signal transduction and post-translational regulation 1,02/0,99

56. MtC00050 His-containing phosphotransfer protein X, Signal transduction and post-translational regulation 0,63/1,06

57. MtC10643 Calcineurin b-like protein X, Signal transduction and post-translational regulation 0,42/1,32

58. MtD22717 Cdc2-related protein kinase XI, Cell division cycle 1,2/0,84

59. MtC00405 Ef-hand ca2+-binding domain XII, Miscellaneous 2,06/2,19

60. MtC00020 14-3-3 protein XII, Miscellaneous 1,52/0,37

61. MtC00084,2 PR10 XII, Miscellaneous 1,05/0,88

62. MtC10823 Zinc finger protein XII, Miscellaneous 1,01/2,65

63. MtC00067 Flavodoxin XII, Miscellaneous 0,77/1,10

64. MtC20238 Class III endochitinase XII,A, Defense and cell rescue 2,32/2,02

65. MtC00168 PR10 XII,A, Defense and cell rescue 1,2/0,81

66. MtC90574 Abc transporter XII,A, Defense and cell rescue 1,15/0,83

67. MtC00309,1 Metallothionein XII,A, Defense and cell rescue 1,03/0,17

68. MtC91700 Beta-hexosaminidase precursor XII,A, Defense and cell rescue 0,85/2,93

69. MtC90151 Harpin induced protein-like protein XII,A, Defense and cell rescue 0,56/1,08

70. MtC91472 Ripening-related protein XII,B, Abiotic stimuli and development 0,7/1,28

71. MtC91091 - XII,C, Unknown function 1,7/2,03

72. MtC92233 - XII,C, Unknown function 1,5/0,56

73. MtC91404 - XII,C, Unknown function 1,48/0,79

74. MtC00475 No homology XII,C, Unknown function 1,41/0,89

75. MtC00174,2 4f5rel-like protein XII,C, Unknown function 1,37/1,14

76. MtC91587 Apg proline-rich protein XII,C, Unknown function 1,24/1,21

77. MtC60493 2s albumin precursor XII,C, Unknown function 1,11/1,24

78. MtD05702 Unknown function XII,C, Unknown function 1,11/0,47

79. MtC00174,1 4f5rel-like protein XII,C, Unknown function 1,1/0,48

80. MtC63223 Unknown function XII,C, Unknown function 1,1/0,48

81. MtC10026 - XII,C, Unknown function 1,08/1,31

82. MtC90247 Glu/gln rich protein XII,C, Unknown function 1,05/0,73

83. MtD20153 Esterase XII,C, Unknown function 1,04/1,00

84. MtC93327 - XII,C, Unknown function 1,03/1,16

85. MtC00726 Uncharacterized cys-rich domain XII,C, Unknown function 1,02/1,39

86. MtC90357 - XII,C, Unknown function 0,99/1,85

87. MtD22621 Unknown function XII,C, Unknown function 0,93/1,00

88. MtC00196,2 ABA-inducible protein XII,C, Unknown function 0,82/1,40

89. MtC10950 Zn-finger  ran-binding XII,C, Unknown function 0,78/1,61

90. MtC91460 Zinc finger XII,C, Unknown function 0,77/1,04

91. MtD01700 Pap fibrillin XII,C, Unknown function 0,76/1,09

92. MtD22773 Early nodule-specific protein-like XII,C, Unknown function 0,71/1,29

93. MtD22673 Unknown function XII,C, Unknown function 0,65/1,32

94. MtC91423 Gf14 phi multigene family XII,C, Unknown function 0,62/1,39

95. MtC91858 Zn-finger  ring XII,C, Unknown function 0,54/1,27

96. MtD02855 No homology XIII, No homology 1,92/2,93

97. MtD22562 No homology XIII, No homology 1,26/1,95

98. MtD22795 No homology XIII, No homology 1,08/1,39

99. MtD04283 No homology XIII, No homology 0,85/1,12

100. MtC91516 - XIII, No homology 0,79/1,35

101. mt--abc955104f11 No homology XIII, No homology 0,73/1,25

102. MtD22715 No homology XIII, No homology 0,73/1,09

103. MtC10410 - XIII, No homology 0,52/1,33

104. MtC91979 - XIII, No homology 0,46/1,39

105. HLG200 Hlg 1,0 well 200 XIV CONTROL NO FUNCTIONAL CLASS 1,16/0,80
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Table-8b.  The list of genes down-regulated 30 min after infection. Genes showing regulation after
30 min as well as after 6 days of infection are indicated in bold face.

# Gene ID Annotation Functional class M-value
(bc1/bc2)

1. MtC91831 Oxidoreductase V, Primary metabolism -0,57/-1,13

2. MtGmLS-31 Oxalate oxidase V, Primary metabolism -0,66/-1,09

3. MtC20123 Beta-ketoacyl-acp synthase V, Primary metabolism -1,5/-1,06

4. MtC10626 Nadh-cytochrome b5 reductase V, Primary metabolism -0,53/-1,07

5. MtC60370 Photosystem ii protein x precursor V, Primary metabolism -0,38/-1,13

6. MtC00497 [Nodulin] oxidosqualene cyclase ([nodulin] mtn18) VI, Secondary metabolism and hormone metabolism -0,31/-1,19

7. MtC10148,10 Cytochrome p450 + 26s rrna VI, Secondary metabolism and hormone metabolism -1,74/-1,14

8. MtC10079 Chalcone--flavonone isomerase VI, Secondary metabolism and hormone metabolism -0,83/-1,24

9. MtC10148,2 Cytochrome p450 + 26s rrna VI, Secondary metabolism and hormone metabolism -1,27/-0,60

10. MtC93035 Nucleoid chloroplast dna-binding protein VII, Chromatin and DNA metabolism -0,52/-1,20

11. MtC91628 Splicing factor VIII, Gene expression and RNA metabolism -1,03/-1,01

12. MtC10166,1 40s ribosomal protein s4 IX, Protein synthesis and processing -1,19/-0,26

13. MtC50936 30s ribosomal protein s5 IX, Protein synthesis and processing -1/-0,83

14. MtC91485 Ribosomal protein s13 IX, Protein synthesis and processing -0,78/-1,04

15. MtC30475 Prolyl 4-hydroxylase alpha subunit precursor IX, Protein synthesis and processing -0,63/-1,11

16. MtC30427 Calcium dependent protein kinase X, Signal transduction and post-translational regulation -0,4/-1,15

17. MtC90054 - XII,C, Unknown function -2,61/-1,23

18. MtAe5 - XII,C, Unknown function -2,13/-1,42

19. MtC91489 - XII,C, Unknown function -1,64/-1,16

20. MtC00617 - XII,C, Unknown function -1,57/-0,69

21. MtC40023,1 Peroxidase XII, Miscellaneous -1,2/-0,77

22. MtD22875 Oleosin XII, Miscellaneous -0,91/-1,38

23. MtC50752 Lectin XII, Miscellaneous -0,87/-1,04

24. MtC50092 Unknown function XII,C, Unknown function -0,33/-1,15

25. MtC10690 [Nodulin] mtn13 XII,A, Defense and cell rescue -1,04/-0,46

26. MtC00704 Beta-ig-h3/fasciclin domain  proline-rich region XII,C, Unknown function -0,57/-1,04

27. MtC00044,1 Dehydrin XII,B, Abiotic stimuli and development -0,56/-2,79

28. MtC90541 Cation efflux protein XII,C, Unknown function -1,02/-0,39

29. MtAe14 - XII,C, Unknown function -1,79/-1,15

30. mt--abc955113f02 No homology XIII, No homology -1,23/-0,86

31. MtD22691 No homology XIII, No homology -0,3/-1,41

32. MtD00053 No homology XIII, No homology -1,09/-1,00

33. MtC50719 - XIII, No homology -2,34/-1,14

Table-9a.  List of genes up-regulated 6 days after infection. Genes showing regulation after 6 days
as well as after 30 min of infection are indicated in bold face.

# Gene ID Annotation Functional class M-value
(bc1/bc2)

1. MtC10021 Cell wall protein I, Cell Wall 1,78/0,28

2. MtC30178,2 Extensin I, Cell Wall 0,96/2,17

3. MtC00003 Repetitive proline-rich mtprp1-like protein I, Cell Wall 0,92/2,42

4. MtC90474 (Ser-pro)x-rich cell wall protein I, Cell Wall 0,67/1,44

5. MtC00116 Repetitive proline-rich mtprp2-like protein I, Cell Wall 0,6/1,78

6. MtC10315 Cellulose synthase catalytic subunit I, Cell Wall 0,28/-1,57

7. MtC00320 Caffeic acid 3-o-methyltransferase I, Cell Wall 0,17-1,03

8. MtC90836 Myosin II, Cytoskeleton 0,49/1,82

9. MtC50332 2-oxoglutarate/malate translocator precursor III, Membrane transport 1,18/1,03

10. MtD00065 Bile symporter; bile acid transporter III, Membrane transport 0,83/1,02

11. MtC45640 Sucrose transport protein III, Membrane transport 0,65/1,32

12. MtC60917 Pd002542, tonb dependent receptor protein
signature containing protein

III, Membrane transport 0,51/1,54

13. MtC00195 Dnaj domain containing protein IV, Vesicular trafficking  secretion and protein sorting 1,1/2,20

14. MtC00207 Ras-related protein rab7 IV, Vesicular trafficking  secretion and protein sorting 0,68/1,04

15. MtC93002 Ubiquitin-conjugating enzyme e2 (3'utr) IX, Protein synthesis and processing 1,17/1,67



RESULTS 69

Continuation of table 9a
# Gene ID Annotation Functional class M-value

(bc1/bc2)
16. MtC00092,1 Cysteine proteinase precursor IX, Protein synthesis and processing 1,06/2,17

17. MtC00117,1 Polyubiquitin IX, Protein synthesis and processing 0,91/2,41

18. MtC00036,2 Protein translation factor IX, Protein synthesis and processing 0,58/1,27

19. MtC00321 Skp1-like protein IX, Protein synthesis and processing 0,5/1,41

20. MtC30310 Ubiquitin-conjugating enzyme e2 IX, Protein synthesis and processing 0,27/3,16

21. MtC00104 Cysteine proteinase IX, Protein synthesis and processing 0,18/1,30

22. MtC00065,1 Acid phosphatase V, Primary metabolism 1,17/0,51

23. MtC20039 Dihydrolipoamide s-acetyltransferase component
(e2) of pyruvate dehydrogenase complex

V, Primary metabolism 1,13/1,33

24. MtC10397 Chloroplast cytochrome b6 V, Primary metabolism 1,11/1,99

25. MtC20054,2 Phospho-2-dehydro-3-deoxyheptonate aldolase
precursor

V, Primary metabolism 0,96/1,14

26. MtC10322 Glutenin V, Primary metabolism 0,87/1,73

27. MtC00326 6-phosphogluconate dehydrogenase V, Primary metabolism 0,74/1,64

28. MtC00057 Esterase V, Primary metabolism 0,74/1,55

29. MtC20175 Alanine--glyoxylate aminotransferase 2 precursor V, Primary metabolism 0,55/1,38

30. MtC00025 Udp-galactose-4-epimerase V, Primary metabolism 0,49/3,14

31. MtC00119 Chlorophyll a/b binding protein V, Primary metabolism 0,44/1,04

32. MtC10159 Fructokinase V, Primary metabolism 0,29/1,19

33. MtC50790 Glutamine synthetase precursor V, Primary metabolism 0,15/-1,17

34. MtC45216 Udp-glycose:flavonoid glycosyltransferase VI, Secondary metabolism and hormone metabolism 0,79/1,46

35. MtC10863,1 Chalcone synthase VI, Secondary metabolism and hormone metabolism 0,73/1,18

36. MtC10756 Profucosidase precursor VI, Secondary metabolism and hormone metabolism 0,7/1,34

37. MtC50948,1 Hmg-y related protein VII, Chromatin and DNA metabolism 1,04/1,98

38. MtC10249 DNA topoisomerase ii signature containing protein VII, Chromatin and DNA metabolism 0,62/1,04

39. MtC10139 Rna binding protein VIII, Gene expression and RNA metabolism 1,11/1,17

40. MtC10102 High mobility group protein VIII, Gene expression and RNA metabolism 1,05/0,88

41. MtC00793 Rna-binding domain containing protein VIII, Gene expression and RNA metabolism 0,86/1,54

42. MtC45374 Zinc finger protein VIII, Gene expression and RNA metabolism 0,82/1,14

43. MtC50402 RNA helicase VIII, Gene expression and RNA metabolism 0,72/1,36

44. MtC00232 Myb transcription factor VIII, Gene expression and RNA metabolism 0,64/1,16

45. MtC90627 Forkhead-related transcription factor VIII, Gene expression and RNA metabolism 0,63/1,01

46. MtC00106 High mobility group protein VIII, Gene expression and RNA metabolism 0,62/1,16

47. MtC10711 Homeodomain-leucine zipper protein VIII, Gene expression and RNA metabolism 0,51/1,44

48. MtC00402 Transcription factor VIII, Gene expression and RNA metabolism 0,33/1,12

49. MtC10758,1 Ser/thr protein kinase X, Signal transduction and post-translational regulation 1,53/1,81

50. MtC50031 Protein kinase X, Signal transduction and post-translational regulation 1,17/1,13

51. MtC00080 Calmodulin X, Signal transduction and post-translational regulation 0,86/1,79

52. MtC45594 Rac-like GTP binding protein rho X, Signal transduction and post-translational regulation 0,24/1,62

53. MtC10112 Peroxidase precursor XII, Miscellaneous 1,6/1,70

54. MtC00421 Peroxidase XII, Miscellaneous 0,84/1,08

55. MtC30528,1 C3hc4-type ring zinc finger protein XII, Miscellaneous 0,83/1,27

56. MtC20068 Mtd2 ring zinc-finger protein XII, Miscellaneous 0,48/1,43

57. MtC10070 Lipoxygenase XII, Miscellaneous 0,48/1,06

58. MtC00084,2 PR10 pathogenesis-related / leginsulin chimer XII, Miscellaneous 0,46/1,80

59. MtC00041,1 Metallothionein XII,A, Defense and cell rescue 1,06/-0,68

60. MtC00168 PR10 XII,A, Defense and cell rescue 0,87/1,62

61. MtC00663 PR-1 pathogenesis-related protein -like XII,A, Defense and cell rescue 0,73/2,08

62. MtC30019,1 Nematode resistance (hs1pro-1)-like protein XII,A, Defense and cell rescue 0,24/2,17

63. MtC00640,1 Germin-like protein (oxalate oxidase) XII,B, Abiotic stimuli and development 2,41/1,08

64. MtC10438 Auxin-induced protein XII,B, Abiotic stimuli and development 1,46/1,48

65. MtD22746 Ripening related protein XII,B, Abiotic stimuli and development 1,23/0,79

66. MtC00172 Germin-like protein (oxalate oxidase) XII,B, Abiotic stimuli and development 1,12/-0,74

67. MtC00056 Cold acclimation responsive protein budcar XII,B, Abiotic stimuli and development 1,01/2,47

68. MtC00667 Aluminum-induced auxin-repressed protein XII,B, Abiotic stimuli and development 0,29/1,12

69. MtC00044,1 Dehydrin XII,B, Abiotic stimuli and development 0,09/1,57
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Continuation of table 9a
# Gene ID Annotation Functional class M-value

(bc1/bc2)
70. MtC00174,1 4f5rel-like protein XII,C, Unknown function 1,41/1,49

71. MtC40018 Putative methyltransferase duf248 XII,C, Unknown function 1,32/2,15

72. MtC00499,2 - XII,C, Unknown function 1,28/1,08

73. MtC93068 [Nodulin] mtn21-like protein XII,C, Unknown function 1,18/1,69

74. MtC00475 No homology XII,C, Unknown function 1,1/0,85

75. KV2-5M17 [Nodulin] mtn93 XII,C, Unknown function 1,09/2,28

76. MtC10446,1 Transmembrane protein XII,C, Unknown function 0,92/-1,04

77. MtC30401 Skp1 component XII,C, Unknown function 0,88/1,27

78. MtC10380 Epsin n-terminal homology XII,C, Unknown function 0,85/1,36

79. MtC91376 - XII,C, Unknown function 0,78/1,35

80. MtC10886 Plastocyanin-like  proline-rich region XII,C, Unknown function 0,77/1,39

81. MtC90498,1 Protein kinase  leucine-rich repeat  plant specific XII,C, Unknown function 0,76/1,00

82. MtC90989 Proline-rich region XII,C, Unknown function 0,72/1,16

83. MtC60493 2s albumin precursor XII,C, Unknown function 0,71/1,00

84. MtD22621 Unknown function XII,C, Unknown function 0,7/1,01

85. MtC40184 Ring-h2 finger protein XII,C, Unknown function 0,64/1,93

86. MtC00174,2 4f5rel-like protein XII,C, Unknown function 0,61/1,15

87. MtD05702 Unknown function XII,C, Unknown function 0,6/1,12

88. MtD22890 Unknown function XII,C, Unknown function 0,58/1,01

89. MtC30346 Oxidoreductase fad/nad (p )-binding XII,C, Unknown function 0,51/1,04

90. MtC90044 Curculin-like \(mannose-binding\) lectin XII,C, Unknown function 0,45/4,09

91. MtC30562 Gly-rich protein XII,C, Unknown function 0,44/1,39

92. MtC00726 Uncharacterized cys-rich domain XII,C, Unknown function 0,44/1,03

93. MtC00633 Selenoprotein-like protein XII,C, Unknown function 0,44/1,18

94. MtC10873 - XII,C, Unknown function 0,42/1,16

95. MtC40196 Zn-finger in ran bp domain containing protein XII,C, Unknown function 0,37/1,27

96. MtC30154,1 Wound-induced protein like protein XII,C, Unknown function 0,31/1,08

97. MtC10028 Unknown function XII,C, Unknown function 0,27/2,52

98. MtC00499,1 No homology XII,C, Unknown function 0,14/2,84

99. MtC10038,2 No homology XIII, No homology 2,2/1,41

100. MtD22562 No homology XIII, No homology 1,83/1,91

101. MtC00720,2 Multispecific proteasome protease XIII, No homology 1,6/1,08

102. MtC91486 - XIII, No homology 1,19/1,04

103. MtC90830 Gelsolin  sec23/sec24 helical domain XIII, No homology 1,13/1,71

104. MtD22795 No homology XIII, No homology 0,94/1,33

105. MtC92064 - XIII, No homology 0,86/1,08

106. MtC91972 - XIII, No homology 0,76/2,38

107. MtBC32E12 Na XIII, No homology 0,74/1,20

108. MtC91880 - XIII, No homology 0,7/1,14

109. MtC90850 - XIII, No homology 0,64/1,19

110. MtC30453,1 - XIII, No homology 0,47/3,07

111. MtC93053 No homology XIII, No homology 0,12/-1,04

112. HLG200 Hlg 1,0 well 200 XIV CONTROL NO FUNCTIONAL CLASS 0,62/1,28
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Table-9b.  List of genes down-regulated 6 days after infection.
# Gene ID Annotation Functional class

M-value
(bc1/bc2)

1. MtC10969 Udpglucose:protein transglucosylase I, Cell Wall -0,95/-1,19

2. MtC00010 Membrane intrinsic protein III, Membrane transport -0,33/-1,48

3. MtC00001 Aquaporin III, Membrane transport -0,66/-1,38

4. JVCPG19 Tm protein III, Membrane transport -0,9/-1,83

5. MtC10612,1 Adp,atp carrier protein precursor III, Membrane transport -1,41/-1,99

6. MtC00027 Membrane channel protein III, Membrane transport -1,58/-2,78

7. MtC00109,2 Adpribosylation factor IV, Vesicular trafficking  secretion and protein sorting -0,54/-1,19

8. MtC00150 60s ribosomal protein l32 IX, Protein synthesis and processing -0,3/-1,02

9. MtC00550,1 Endoplasmic reticulum hsc70cognate binding
protein precursor

IX, Protein synthesis and processing -0,32/-2,37

10. MtC00066 60s ribosomal protein l21 IX, Protein synthesis and processing -0,37/-1,27

11. MtC00108 60s ribosomal protein l26 IX, Protein synthesis and processing -0,42/-1,42

12. MtC00083,1 Nascent polypeptide associated complex alpha
chain

IX, Protein synthesis and processing -0,48/-1,50

13. MtC00015 Peptidylprolyl cistrans isomerase (cyclophilin) IX, Protein synthesis and processing -0,51/-1,42

14. MtC00167 40s ribosomal protein s11 IX, Protein synthesis and processing -0,52/-1,17

15. MtC00550,2 Endoplasmic reticulum hsc70cognate binding
protein precursor (bip)

IX, Protein synthesis and processing -0,65/-1,18

16. MtC00163 60s acidic ribosomal protein p1 IX, Protein synthesis and processing -0,65/-1,05

17. MtC00239 Heat shock cognate 70 kda protein IX, Protein synthesis and processing -0,69/-1,04

18. MtC00786 Heat shock cognate protein IX, Protein synthesis and processing -0,71/-2,39

19. MtC00038 60s ribosomal protein l35 IX, Protein synthesis and processing -0,82/-1,17

20. MtC00073 60s ribosomal protein l11 IX, Protein synthesis and processing -0,83/-1,57

21. MtC50070 Aspartyl proteases active site containing protein IX, Protein synthesis and processing -0,85/-1,04

22. MtC00134 60s ribosomal protein l28 IX, Protein synthesis and processing -0,86/-1,03

23. MtC00118,1 40s ribosomal protein s23 IX, Protein synthesis and processing -0,86/-1,28

24. MtC10071 40s ribosomal protein s3a IX, Protein synthesis and processing -0,87/-1,70

25. MtC00011 60s ribosomal protein l9 IX, Protein synthesis and processing -0,89/-1,27

26. MtC01542 60s ribosomal protein l3 IX, Protein synthesis and processing -0,91/-1,08

27. MtC00048 40s ribosomal protein s21 IX, Protein synthesis and processing -0,97/-1,12

28. MtC00586 60s ribosomal protein l31 IX, Protein synthesis and processing -1,04/-1,35

29. MtC00516 40s ribosomal protein s13 IX, Protein synthesis and processing -1,04/-0,76

30. MtC00138 40s ribosomal protein s17 IX, Protein synthesis and processing -1,06/-0,47

31. MtC00052 60s ribosomal protein l41 IX, Protein synthesis and processing -1,1/-1,19

32. MtC00141 40s ribosomal protein s29 IX, Protein synthesis and processing -1,18/-0,82

33. KV118A23 Efc4 IX, Protein synthesis and processing -1,18/-0,95

34. MtC00135 40s ribosomal protein s8 IX, Protein synthesis and processing -1,19/-1,21

35. MtC00077 40s ribosomal protein s25 IX, Protein synthesis and processing -1,2 /-1,13

36. MtC00142 40s ribosomal protein s5 IX, Protein synthesis and processing -1,21/-0,60

37. MtC00325 60s ribosomal protein l15 IX, Protein synthesis and processing -1,23/-0,47

38. MtC00414 60s ribosomal protein l26 IX, Protein synthesis and processing -1,29/-1,47

39. MtC00176 60s ribosomal protein l13 IX, Protein synthesis and processing -1,31/-1,42

40. MtC00539 60s ribosomal protein l21 IX, Protein synthesis and processing -1,39/-1,26

41. MtC00749 60s ribosomal protein l7a IX, Protein synthesis and processing -1,38/-0,97

42. MtC00089 60s acidic ribosomal protein po IX, Protein synthesis and processing -1,39/-0,68

43. MtC00002,1 Elongation factor 1alpha IX, Protein synthesis and processing -1,53/-1,39

44. MtC00318 40s ribosomal protein s3 IX, Protein synthesis and processing -1,6/-1,68

45. MtC10175 40s ribosomal protein s12 IX, Protein synthesis and processing -1,79/-0,38

46. MtC93403 Dihydrofolate reductase V, Primary metabolism -0,44/-1,13

47. MtC60370 Photosystem ii protein x precursor V, Primary metabolism -0,5/-1,05

48. MtC10064 Adenosine kinase V, Primary metabolism -0,76/-2,10

49. MtC00577 Acyl carrier protein (nadhubiquinone
oxidoreductase)

V, Primary metabolism -0,92/-1,06

50. MtC00018 5methyltetrahydropteroyltriglutamatehomocysteine
methyltransferase

V, Primary metabolism -0,92/-1,06

51. MtC00016 Nucleoside diphosphate kinase V, Primary metabolism -1,03/-1,37

52. MtC00098,1 Acyl carrier protein V, Primary metabolism -1,11/-0,60

53. MtC00772 Serine hydroxymethyltransferase V, Primary metabolism -1,28/-0,89
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Continuation of table 9b
# Gene ID Annotation Functional class M-value

(bc1/bc2)
54. MtC00415 Cytochrome c V, Primary metabolism -1,34/-1,01

55. MtC00030 Glyceraldehyde 3phosphate dehydrogenase V, Primary metabolism -1,39/-1,86

56. MtC10068 Enolase V, Primary metabolism -1,55/-2,42

57. MtC10079 Chalconeflavonone isomerase VI, Secondary metabolism and hormone metabolism -0,29/-1,24

58. MtC10148,2 Cytochrome p450 + 26s rrna VI, Secondary metabolism and hormone metabolism -0,7/-1,52

59. MtC10121,1 Cytochrome p450 72a1 VI, Secondary metabolism and hormone metabolism -0,86/-2,63

60. MtC40004,1 Cytochrome p450 VI, Secondary metabolism and hormone metabolism -1,5/-2,35

61. MtC93035 Nucleoid chloroplast dnabinding protein like VII, Chromatin and DNA metabolism -0,6/-1,17

62. MtC10749 Histone h4 VII, Chromatin and DNA metabolism -1/-0,29

63. MtC30166 Nucleolar histone deacetylase VII, Chromatin and DNA metabolism -1,32/-0,76

64. MtC91628 Splicing factor VIII, Gene expression and RNA metabolism -0,53/-1,66

65. MtC30209 Polyadenylatebinding protein VIII, Gene expression and RNA metabolism -0,75/-1,07

66. MtC91092 Helix loop helix containing protein VIII, Gene expression and RNA metabolism -1,37/-1,01

67. MtC30427 Calcium dependent protein kinase X, Signal transduction and posttranslational regulation -0,6/-1,04

68. MtC60790 Oleosin XII, Miscellaneous -0,57/-1,17

69. MtC45080 Betaglucosidase XII, Miscellaneous -0,65/-1,07

70. MtC40041 Calreticulin precursor XII, Miscellaneous -1,31/-1,89

71. MtC10085,1 Glycosyl hydrolase XII, Miscellaneous -1,34/-1,43

72. MtD22921 Gamma thionin; knottin XII,A, Defense and cell rescue -0,38/1,09

73. MtD22777 Auxin responsive saur protein XII,B, Abiotic stimuli and development -0,74/1,08

74. MtC20177 Ghmp kinase XII,C, Unknown function -0,35/2,24

75. MtC50530 - XII,C, Unknown function -0,42/1,05

76. MtC00704 Betaigh3/fasciclin domain  prolinerich region XII,C, Unknown function -0,46/1,51

77. MtC30550,1 - XII,C, Unknown function -0,47/1,01

78. MtAe88 - XII,C, Unknown function -0,54/1,07

79. MtD22941 Unknown function XII,C, Unknown function -0,61/1,03

80. MtC91489 - XII,C, Unknown function -0,62/1,35

81. MtC00393 Prorich protein XII,C, Unknown function -0,72/1,60

82. MtC10504,1 - XII,C, Unknown function -0,89/1,07

83. MtC90145 - XII,C, Unknown function -1/0,42

84. MtC10344 - XII,C, Unknown function -1/0,39

85. MtC00604 Unknown function XII,C, Unknown function -1/0,43

86. MtC20007 Cell elongation protein diminuto XII,C, Unknown function -1,02/ 0,54

87. MtC40074 - XII,C, Unknown function -1,04/ 0,67

88. MtGmLS333 - XII,C, Unknown function -1,1/0,47

89. MtC00130 Glu rich protein XII,C, Unknown function -1,24/1,43

90. MtC00107 Plant lipid transfer signature containing protein XII,C, Unknown function -1,58/1,81

91. mtabc955116f10 No homology XIII, No homology -0,13/1,26

92. MtC90482 Transketolase  c terminal  transketolase  central
region

XIII, No homology -0,64/1,09

93. MtC91127 - XIII, No homology -1,46/0,60

94. GAPDHCentralOligo Gapdh   central 69mer oligo XIV CONTROL NO FUNCTIONAL CLASS -1,03/1,05

95. GAPDH5Oligo Gapdh   5' 69mer oligo XIV CONTROL NO FUNCTIONAL CLASS -1,1/1,38
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3.17 Microarray study of global gene expression pattern changes affected by

silencing of MtMir-1 gene.

The aim of this experiment was to study the influence of the MtMir-1 gene on the

global gene expression pattern during A. euteiches-induced disease development. The

transgenic root cultures carrying empty pFGC 5149 vector and MtMir-1-PTGS

constructs were used for microarray analyses (table-10).

Table-10. Experimental design of the second microarray hybridisation experiment.

RNA probes
used for array

analyses

cDNA labelling
with Cy dyes

Probe composition Name of the
hybridised slides

Name of the experiment

c-1-t-1c-1 c-1-t-2
c-1-t-1
i-1-t-1 Bc-1-t-1

i-1-t-1

pF
G

C
-1

B
c-

1

i-1 i-1-t-2
c-1-t-2
i-1-t-2 Bc-1-t-2

PFGC-Bc-1

c-2-t-1c-2 c-2-t-2
c-2-t-1
i-2-t-1 Bc-2-t-1

i-2-t-1

PF
G

C
-2

B
c-

2

i-2 i-2-t-2
c-2-t-2
i-2-t-2 Bc-2-t-2

PFGC-Bc-2

c-1 c-1

M
tM

ir
-1

-
PT

G
S-

1
B

c-
1

i-1 i-1

c-1
i-1 Bc-1 MtMir-1-PTGS Bc-1

c-2 c-2

M
tM

ir
-1

-
PT

G
S-

2
B

c-
2

i-2 i-2

c-2
i-2 Bc-2 MtMir-1-PTGSBc-2

pFGC –1 and 2                roots not silenced for MtMir-1 gene
MtMir-1-PTGS-1 and 2 roots silenced for MtMir-1 gene
Bc-               biological controls of experiments
c-               control roots mock inoculated with sterile lake water
i-              roots infected with A. euteiches
t-              technical control

M vs. A scatterplots of all biological control experiments (fig. 41) and M vs. M

scatterplots showing variations between biological control experiments (fig. 42) are

generated.
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Fig. 41   Scatterplots showing M vs. A plot of all biological control slides after lowess normalization.
X-value A. Y-value M.

E. pFGC 5149-c-1 F. pFGC 5149-c-2

G. MtMir-1-PTGS-1 H. MtMir-1-PTGS-2

Fig. 42   M vs. M scatterplots showing variations between biological control expreriments.

C. pFGC 5149-c1/c2 D. MtMir-1-PTGS-1/2
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The microarray  hybridization experiment revealed 299 genes which exibited altered

expression (table-12). These genes could be grouped into three clusters (table-11).

The first cluster contains 108 genes which were regulated (> or = 2 fold up or down)

in both non silenced (pFGC-1 and 2) and silenced (MtMir-1-PTGS-1 and 2) roots

lines. A second cluster contains 72 genes which were regulated in an empty pFGC

carrying roots, but not found to be regulated in the MtMir-1-PTGS construct carrying

roots. Cluster III contains 119 genes which were not regulated in an empty pFGC

carrying roots, but regulated in roots carrying the MtMir-1-PTGS contstruct.

Table 11. The overview of regulated genes identified by the microarray study. Genes whose
expression were not affected by silencing of MtMir-1 gene are in cluster I. Genes whose expression
were affected by silencing of MtMir-1 gene are in cluster II and III.

Cluster # Description
Number of up-

regulated genes

Number of down-

regulated genes

Total number of

genes

Cluster I
(pFGC 5149 and

MtMir-1-PTGS)
35 73 108

Cluster II ( pFGC 5149) 31 41 72

Cluster III  (MtMir-1-PTGS) 71 48 119
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Table 12a. The list of  genes up-regulated in both pFGC 5149 and the MtMir-1-PTGS construct
carrying roots after infection with A. euteiches.. Gene identity, annotation and functional class of each
gene is shown according to MENS (Medicago EST Navigation System,
http://medicago.toulouse.inra.fr/Mt/EST). M-value of each gene in  pFGC 5149 and MtMir-1-PTGS
experiments are also shown.
# Gene ID Annotation Functional class pFGC

5149
MtMir-
1-PTGS

1. MtC10480,1 Caffeic acid 3-o-methyltransferase I, Cell Wall 1,23 1,25

2. MtC00798 Arabinogalactan-protein precursor I, Cell Wall 1,03 1,07

3. MtC93333 Cysteine proteinase precursor IX, Protein synthesis and processing 1,31 1,66

4. MtC10148,3 18s ribosomal rna gene IX, Protein synthesis and processing 1,19 1,26

5. MtC91090 4-hydroxyphenylpyruvate dioxygenase V, Primary metabolism 1,28 1,5

6. MtC00025 Udp-galactose-4-epimerase V, Primary metabolism 1,23 1,96

7. MtC20026 3-ketoacyl-coa thiolase peroxisomal V, Primary metabolism 1,01 1,69

8. MtC20397,4 Chalcone synthase VI, Secondary metabolism and hormone metabolism 1,01 1,06

9. MtC10199 Late embryogenesis abundant protein XII, Miscellaneous 1,22 1,12

10. MtC90030 Chitin-binding protein XII,A, Defense and cell rescue 1,68 1,17

11. MtC10312 Chitinase XII,A, Defense and cell rescue 1,22 1,06

12. MtC00666 Wound-induced protein-like XII,A, Defense and cell rescue 1,05 1,16

13. MtC10317,1 Osmotin-like protein XII,B, Abiotic stimuli and development 3,2 3,24

14. MtC10364 - XII,C, Unknown function 1,71 1,11

15. MtC00752 Unknown function XII,C, Unknown function 1,56 1,57

16. MtC10348,1 Glyoxalase/bleomycin resistance protein/dioxygenase
domain

XII,C, Unknown function 1,53 1,65

17. MtAe14 - XII,C, Unknown function 1,5 1,16

18. MtC10409 Octicosapeptide/phox/bem1p  proline-rich region XII,C, Unknown function 1,46 1,05

19. MtC30334 Lys/ser rich protein XII,C, Unknown function 1,42 1,08

20. MtC93138 Transmembrane protein XII,C, Unknown function 1,36 1,35

21. MtC00203 Unknown function XII,C, Unknown function 1,35 1,03

22. MtC00370 - XII,C, Unknown function 1,33 1,25

23. MtC40184 Ring-h2 finger protein XII,C, Unknown function 1,3 1,07

24. MtC30370 - XII,C, Unknown function 1,3 1,1

25. MtC91002 - XII,C, Unknown function 1,29 1,49

26. MtC10326 Cwf15/cwc15 cell cycle control protein XII,C, Unknown function 1,29 1,23

27. MtC00642 Protein of unknown function duf588 XII,C, Unknown function 1,28 1,17

28. MtC10058 Usp domain XII,C, Unknown function 1,2 1

29. MtC30129 Mtn21-like/2 duf6 domains containing protein XII,C, Unknown function 1,06 1,22

30. MtC20211 Unknown function XII,C, Unknown function 1,04 1,66

31. MtC00068 [Nodulin] mtn1 precursor XII,C, Unknown function 1,03 1,62

32. MtC45077 - XII,C, Unknown function 1,03 1,17

33. MtC10299 - XIII, No homology 1,79 1,29

34. MtD02831 No homology XIII, No homology 1,18 1,3

35. MtC10217 - XIII, No homology 1,01 1,11

Table 12b. The list of  genes down-regulated in both pFGC 5149 and the MtMir-1-PTGS construct
carrying roots after infection with A. euteiches.
# Gene ID Annotation Functional class pFGC

5149
MtMir-
1-PTGS

1. JVCPG-39 [Nodulin] mtn12 I, Cell Wall -1,08 -1,05

2. MtC10315 Cellulose synthase catalytic subunit I, Cell Wall -1,29 -1,11

3. MtC00797 Pectinesterase I, Cell Wall -1,41 -1,15

4. MtC10024 Pro rich protein I, Cell Wall -1,44 -1,59

5. MtC10084 Proline-rich protein I, Cell Wall -1,46 -1,01

6. MtC10945 Caffeoyl-coa o-methyltransferase I, Cell Wall -1,59 -1,09

7. MtC10148,9 Pro rich protein I, Cell Wall -1,66 -1,29

8. MtC00548,1 Endoxyloglucan transferase I, Cell Wall -2,42 -1,62

9. MtC10122 Proline-rich protein I, Cell Wall -4,18 -3,31

10. MtC00223 Ran-binding protein III, Membrane transport -1,21 -1,26

11. MtC20057,1 Inorganic phosphate transporter III, Membrane transport -1,23 -1,32
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Continuation of table12b
# Gene ID Annotation Functional class pFGC

5149
MtMir-
1-PTGS

12. MtC10060 Chloride intracellular channel protein III, Membrane transport -1,36 -1,29

13. MtC00001 Aquaporin III, Membrane transport -2,03 -1,98

14. MtC00218,1 Malate dehydrogenase V, Primary metabolism -1,06 -1,18

15. MtC00030 Glyceraldehyde 3-phosphate dehydrogenase V, Primary metabolism -1,32 -1,34

16. MtC30223 Iron/ascorbate-dependent oxidoreductase V, Primary metabolism -1,4 -1,53

17. MtC10068 Enolase V, Primary metabolism -1,45 -1,65

18. MtC10491,1 2og-fe (II ) oxygenase superfamily V, Primary metabolism -1,5 -1,18

19. MtC00065,1 Acid phosphatase V, Primary metabolism -2,22 -1,84

20. MtC10905 Squalene synthase VI, Secondary metabolism and hormone metabolism -1,47 -1,39

21. MtC40169 Gibberellin 20-oxidase ((gibberellin 3-beta-
hydroxylase)

VI, Secondary metabolism and hormone metabolism -1,47 -1,03

22. MtC40004,1 Cytochrome p450 VI, Secondary metabolism and hormone metabolism -1,7 -2,23

23. MtC00296,1 Flavonol 3-o-glucosyltransferase VI, Secondary metabolism and hormone metabolism -2,01 -1,51

24. MtC10121,1 Cytochrome p450 72a1 VI, Secondary metabolism and hormone metabolism -2,05 -1,84

25. MtC30450 Istone h1 VII, Chromatin and DNA metabolism -1,17 -1,04

26. MtC00165 Histone h3 VII, Chromatin and DNA metabolism -1,29 -1,41

27. MtC00730 Dna binding protein s1fa VIII, Gene expression and RNA metabolism -1,18 -1,06

28. MtC90003 Ser/thr protein kinase X, Signal transduction and post-translational
regulation

-1,36 -1,1

29. MtC30440,1 Protein kinase domain containing protein X, Signal transduction and post-translational
regulation

-1,9 -1,44

30. MtC00087,3 GTP-binding nucleocytoplasmic transport ran-like
protein

XI, Cell division cycle -1,25 -1,15

31. MtC50295,1 Cullin XI, Cell division cycle -1,49 -1,09

32. MtC10055 Lectin XII, Miscellaneous -1,04 -1,16

33. MtC00274 Lipid-transfer protein XII, Miscellaneous -1,04 -1,56

34. MtC91313 Zinc-finger XII, Miscellaneous -1,06 -1,06

35. MtC00437 Non-specific lipid transfer-like protein XII, Miscellaneous -1,12 -1,44

36. MtC90512 Zinc finger b box domain containing protein XII, Miscellaneous -1,12 -1,13

37. MtC10911 Peroxidase XII, Miscellaneous -1,2 -1,34

38. MtC10297 Nonspecific lipid-transfer protein XII, Miscellaneous -1,22 -1,12

39. MtC40023,1 Peroxidase XII, Miscellaneous -1,26 -1,02

40. MtC00012 Peroxidase XII, Miscellaneous -1,47 -1,55

41. MtC10085,1 Glycosyl hydrolase XII, Miscellaneous -2,44 -1,94

42. MtC10039 Endochitinase XII,A, Defense and cell rescue -1,04 -1,04

43. MtC40027 S-adenosyl-l-methionine:salicylic acid carboxyl
methyltransferase

XII,A, Defense and cell rescue -1,05 -1,52

44. MtC00123 Pathogenesis-related protein XII,A, Defense and cell rescue -1,17 -1,27

45. MtC10717 Peroxidase precursor XII,A, Defense and cell rescue -1,63 -1,56

46. MtC10018 Glutathione s-transferase XII,A, Defense and cell rescue -1,82 -1,71

47. MtC00172 Germin-like protein (oxalate oxidase) XII,B, Abiotic stimuli and development -1,6 -1,49

48. MtC92094 Purple acid phosphatase-like protein XII,B, Abiotic stimuli and development -2,61 -3,67

49. MtC00013 Albumin / leginsulin precursor XII,C, Unknown function -1,01 -1,32

50. MtC00033 Pollen specific protein-like protein XII,C, Unknown function -1,03 -1,04

51. MtC90852 - XII,C, Unknown function -1,04 -1,15

52. MtC40005 Glycosyl transferase  family 2 XII,C, Unknown function -1,14 -1,05

53. MtC00063 No homology XII,C, Unknown function -1,18 -1,28

54. MtC30395 Leginsulin / albumin XII,C, Unknown function -1,19 -1,22

55. MtC00343,1 Fruit-induced csf-2 protein - like XII,C, Unknown function -1,24 -1,2

56. MtC40162 [Nodulin] mtn3 XII,C, Unknown function -1,26 -1,31

57. MtC00107 Plant lipid transfer signature containing XII,C, Unknown function -1,27 -1,58

58. JVCPG-31 [Nodulin] mtn3 XII,C, Unknown function -1,27 -1,28

59. MtC00620 E1 protein and def2/der2 allergen XII,C, Unknown function -1,38 -1,42

60. MtC00393 Pro-rich protein XII,C, Unknown function -1,41 -1,18

61. MtC00513 Leginsulin / albumin XII,C, Unknown function -1,41 -1,37

62. MtC00472 No homology XII,C, Unknown function -1,43 -1,99

63. MtC00343,2 - XII,C, Unknown function -1,49 -1,09

64. MtC90145 - XII,C, Unknown function -1,49 -1,56

65. MtC00688 Fruit-induced csf-2 protein - like XII,C, Unknown function -1,51 -1,25
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66. MtC00014 Pro/his-rich protein XII,C, Unknown function -1,59 -1,37

67. MtC45044 - XII,C, Unknown function -2,91 -1,02

68. MtC91512 - XIII, No homology -1,03 -1

69. MtD22551 No homology XIII, No homology -1,13 -1,22

70. MtC90482 Transketolase  c terminal  transketolase  central region XIII, No homology -1,21 -1,29

71. MtC93033 No homology XIII, No homology -1,24 -1,16

72. MtC93053 No homology XIII, No homology -1,3 -1,44

73. GAPDH5Oligo Gapdh   5' 69-mer oligo XIV CONTROL NO FUNCTIONAL CLASS -1,33 -1,01

Table 12c. List of genes up-regulated only in pFGC 5149 carrying roots after infection with A.
euteiches..
# Gene ID Annotation Functional class pFGC

5149
MtMir-
1-PTGS

1. MtC10943 Translation initiation factor 5 IX, Protein synthesis and processing 1,31 -

2. MtC00469 40s ribosomal protein s6 IX, Protein synthesis and processing 1,29 -

3. MtC40182 Ubiquitin-like protein activating enzyme IX, Protein synthesis and processing 1,13 -

4. MtC20220 26s proteasome regulatory subunit IX, Protein synthesis and processing 1,08 -

5. MtC00790 40s ribosomal protein s17 IX, Protein synthesis and processing 1,02 -

6. MtC00083,1 Nascent polypeptide associated complex alpha chain IX, Protein synthesis and processing 1,01 -

7. MtC93002 Ubiquitin-conjugating enzyme e2 (3'utr) IX, Protein synthesis and processing 1 -

8. MtC50754 Glycosyltransferase V, Primary metabolism 1,14 -

9. MtC10479 Acid phosphatase V, Primary metabolism 1,02 -

10. MtC10572 Rna lariat debranching enzyme VIII, Gene expression and RNA metabolism 1,02 -

11. MtC10888 Ef-hand calcium-binding domain X, Signal transduction 1,77 -

12. MtC45277 Casein kinase / dual specificity kinase X, Signal transduction and post-translational
regulation

1,17 -

13. MtD01663 Glycoside hydrolase, family 18 XII,A, Defense and cell rescue 1,27 -

14. MtC10834 Disease resistance response protein 206 - like XII,A, Defense and cell rescue 1,03 -

15. MtC30064 Auxin-induced protein-like protein XII,B, Abiotic stimuli and development 1,02 -

16. MtC00174,1 4f5rel-like protein XII,C, Unknown function 1,47 -

17. MtC90020 - XII,C, Unknown function 1,43 -

18. MtC40073 Nodulin-like protein XII,C, Unknown function 1,42 -

19. MtD05388 Unknown function XII,C, Unknown function 1,3 -

20. JVCPG-29 [Nodulin] mtn1 XII,C, Unknown function 1,15 -

21. MtC30550,1 - XII,C, Unknown function 1,12 -

22. MtC30272 Cyclin-like f-box XII,C, Unknown function 1,11 -

23. MtC30084 - XII,C, Unknown function 1,09 -

24. MtC91496 - XII,C, Unknown function 1,09 -

25. MtC00070 Unknown function XII,C, Unknown function 1,08 -

26. MtC30562 Gly-rich protein XII,C, Unknown function 1,03 -

27. MtC93327 - XII,C, Unknown function 1 -

28. MtD22795 No homology XIII, No homology 1,4 -

29. MtD00053 No homology XIII, No homology 1,19 -

30. MtD09036 No homology XIII, No homology 1,08 -

31. MtC91341 - XIII, No homology 1 -



RESULTS 79

Table 12d. List of genes up-regulated only in MtMir-1-PTGS carrying roots after infection with  A.
euteiches..
# Gene ID Annotation Functional class pFGC

5149
MtMir-
1-PTGS

1. MtC10607 Caffeic acid o-methyltransferase I, Cell Wall - 1,48

2. MtC91309 1 4-benzoquinone reductase I, Cell Wall - 1,21

3. MtC92155 Non intermediate filament ifa binding protein II, Cytoskeleton - 1,05

4. MtC10629 Synaptobrevin-like / vesicle-associated membrane
protein

IV, Vesicular trafficking  secretion and protein sorting - 1,28

5. MtC30066 Synaptosomal associated protein 25 IV, Vesicular trafficking  secretion and protein sorting - 1,03

6. MtC90330 Cysteine proteinase IX, Protein synthesis and processing - 1,6

7. MtC90342 Myrosinase-associated protein IX, Protein synthesis and processing - 1,46

8. MtC30310 Ubiquitin-conjugating enzyme IX, Protein synthesis and processing - 1,29

9. MtC00690,1 Proteasome regulatory subunit IX, Protein synthesis and processing - 1,19

10. MtC90590 Elongation factor 1-alpha IX, Protein synthesis and processing - 1,15

11. MtC00117,1 Polyubiquitin IX, Protein synthesis and processing - 1,13

12. MtC20151,1 Translation initiation factor 6 (eif-6) IX, Protein synthesis and processing - 1,03

13. MtC91778 Aminopeptidase 2 autointerpro: cytosol
aminopeptidase

IX, Protein synthesis and processing - 1,01

14. MtC45211,1 S-adenosylmethionine decarboxylase proenzyme V, Primary metabolism - 1,42

15. MtC60381 Pyridine nucleotide-disulphide oxidoreductase
dimerisation domain

V, Primary metabolism - 1,26

16. MtC00430,1 Cysteine synthase V, Primary metabolism - 1,15

17. MtC10397 Chloroplast cytochrome b6 V, Primary metabolism - 1,05

18. MtC91781 Glutathione s-transferase VI, Secondary metabolism and hormone metabolism - 1,25

19. MtC10198 Cytochrome p450 83 VI, Secondary metabolism and hormone metabolism - 1,17

20. MtC10249 Dna topoisomerase II signature containing protein VII, Chromatin and DNA metabolism - 1,15

21. MtC10688 Myb-related protein VIII, Gene expression and RNA metabolism - 1,71

22. MtC10374 Zinc finger c2h2 containing protein VIII, Gene expression and RNA metabolism - 1,12

23. MtC10881 Transcription factor vsf-1 VIII, Gene expression and RNA metabolism - 1,07

24. MtC10978 Transcription initiation factor IIe  beta subunit VIII, Gene expression and RNA metabolism - 1,03

25. MtC10758,1 Ser/thr protein kinase X, Signal transduction and post-translational
regulation

- 1,48

26. MtC10763 Annexin X, Signal transduction and post-translational
regulation

- 1,42

27. MtC30317 Polyphosphoinositide binding protein ssh2p, X, Signal transduction and post-translational
regulation

- 1,27

28. MtC30141 Ser/thr protein phosphatase X, Signal transduction and post-translational
regulation

- 1,17

29. MtC10148,5 18s ribosomal rna XII, Miscellaneous - 1,73

30. MtC30293 Zinc finger protein XII, Miscellaneous - 1,33

31. MtC93156 Atp/GTP-binding site motif a (p-loop) and ring finger
- containing protein

XII, Miscellaneous - 1,19

32. MtC30389 Peroxidase precursor XII, Miscellaneous - 1,13

33. MtC60434 Mtd1 XII, Miscellaneous - 1,06

34. MtC00405 Ef-hand ca2+-binding domain containing protein XII, Miscellaneous - 1,04

35. MtC20238 Class III endochitinase XII,A, Defense and cell rescue - 1,16

36. MtC30019,1 Nematode resistance (hs1pro-1)-like protein XII,A, Defense and cell rescue - 1,13

37. MtC00285 Cysteine-rich antifungal protein -like XII,A, Defense and cell rescue - 1,02

38. MtC00044,1 Dehydrin XII,B, Abiotic stimuli and development - 1,22

39. MtC00681 In2-1 protein XII,B, Abiotic stimuli and development - 1,11

40. MtC00337 (Auxin, heat, ethylene and wounding-induced) arg 2 -
like protein

XII,B, Abiotic stimuli and development - 1,06

41. MtC30250 Stress related protein XII,B, Abiotic stimuli and development - 1,03

42. MtC45422 Transmembrane protein XII,C, Unknown function - 2,12

43. MtC90044 Curculin-like \(mannose-binding\) lectin XII,C, Unknown function - 1,52

44. MtC45388 - XII,C, Unknown function - 1,46

45. MtC20096 - XII,C, Unknown function - 1,43

46. MtC20055 Tms membrane protein/tumour differentially
expressed protein

XII,C, Unknown function - 1,33

47. MtC00407 Unknown function XII,C, Unknown function - 1,3

48. MtC10363 - XII,C, Unknown function - 1,29

49. MtC30535,1 Lim domain containing protein XII,C, Unknown function - 1,29

50. MtC00130 Glu rich protein XII,C, Unknown function - 1,27

51. MtC10357 - XII,C, Unknown function - 1,27

52. MtC90647 - XII,C, Unknown function - 1,25
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53. MtC90571 [Nodulin] mtn19 XII,C, Unknown function - 1,24

54. MtC30353 - XII,C, Unknown function - 1,22

55. MtC45659 Hrs domain containing protein XII,C, Unknown function - 1,2

56. MtC45368 - XII,C, Unknown function - 1,18

57. MtD05702 Unknown function XII,C, Unknown function - 1,16

58. JVCPG-46 [Nodulin] mtn19 XII,C, Unknown function - 1,16

59. KV2-5M17 [Nodulin] mtn93 XII,C, Unknown function - 1,16

60. MtC10007 Fruit-induced csf-2 protein - like XII,C, Unknown function - 1,13

61. MtC00372,1 - XII,C, Unknown function - 1,11

62. MtC90247 Glu/gln rich protein XII,C, Unknown function - 1,1

63. MtC30279 Putative auxin-repressed protein XII,C, Unknown function - 1,1

64. MtC10384 Band 7 protein XII,C, Unknown function - 1,06

65. MtC10709 - XII,C, Unknown function - 1,04

66. MtC91825 - XII,C, Unknown function - 1,04

67. MtC10960 - XII,C, Unknown function - 1,03

68. MtD22059 Thioredoxin domain 2; glutaredoxin-related protein XII,C, Unknown function - 1,02

69. MtC40060 Mouse obesity tubby-like protein XII,C, Unknown function - 1,02

70. MtC91985 - XIII, No homology - 1,64

71. MtC10038,2 No homology XIII, No homology - 1,09

Table 12e.  List of genes down-regulated only in the pFGC 5149 carrying roots after infection with A.
euteiches.
# Gene ID Annotation Functional class pFGC

5149
MtMir-
1-PTGS

1. MtC00004,1 [Nodulin] mtn12 prolin-rich protein I, Cell Wall -1,05 -

2. GVSN-24D7 Prp4 I, Cell Wall -1,07 -

3. MtC00055 Actin depolymerizing factor II, Cytoskeleton -1,25 -

4. MtC00027 Membrane channel protein III, Membrane transport -1,02 -

5. MtC10996 Outer mitochondrial membrane porin III, Membrane transport -1,19 -

6. MtC00709 Phosphatidylethanolamine-binding III, Membrane transport -1,31 -

7. MtC00028 Serine proteinase inhibitor IX, Protein synthesis and processing -1,08 -

8. MtC00016 Nucleoside diphosphate kinase V, Primary metabolism -1,06 -

9. MtC00331 Acid phosphatase V, Primary metabolism -1,06 -

10. MtC00680,1 Narbonin V, Primary metabolism -1,15 -

11. MtC00241 Asparagine synthetase [glutamine-hydrolyzing] V, Primary metabolism -1,17 -

12. MtC00463 Pyruvate kinase, cytosolic isozyme V, Primary metabolism -1,27 -

13. MtC00374,1 Soluble inorganic pyrophosphatase V, Primary metabolism -1,31 -

14. MtC00333 Thiazole biosynthetic enzyme precursor V, Primary metabolism -1,32 -

15. MtC10185,1 Cytochrome p450 VI, Secondary metabolism and hormone metabolism -1,73 -

16. MtC00346 Calmodulin X, Signal transduction and post-translational
regulation

-1,27 -

17. MtC10136,1 Peroxidase XII, Miscellaneous -1,04 -

18. MtC40012 Lipoxygenase XII, Miscellaneous -1,15 -

19. MtC00084,1 Leginsulin XII, Miscellaneous -1,37 -

20. MtC10144 Phosphatase XII, Miscellaneous -1,43 -

21. MtC20059 Monodehydroascorbate reductase XII,A, Defense and cell rescue -1 -

22. MtC00306 Glutathione peroxidase XII,A, Defense and cell rescue -1,03 -

23. MtC10383 Phytochelatin synthetase XII,A, Defense and cell rescue -1,04 -

24. MtC00224 Metallothionein-like protein type 3 XII,A, Defense and cell rescue -1,08 -

25. MtC00309,1 Metallothionein XII,A, Defense and cell rescue -1,18 -

26. MtC92175 Germin-like protein (oxalate oxidase XII,B, Abiotic stimuli and development -1,09 -

27. MtC20178 Hormone-regulated protein XII,B, Abiotic stimuli and development -1,1 -

28. MtC00358 Transmembrane low temperature and salt responsive
protein homolog

XII,B, Abiotic stimuli and development -1,43 -

29. MtC40145,1 Unknown function XII,C, Unknown function -1,01 -

30. MtC30081 Glycerophosphoryl diester phosphodiesterase XII,C, Unknown function -1,01 -
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31. MtC10424 [Nodulin] mtn3-like protein XII,C, Unknown function -1,06 -

32. MtC10662 Lipoxygenase  lh2 domain XII,C, Unknown function -1,14 -

33. MtC00245 Fruit-induced csf-2 protein - like XII,C, Unknown function -1,15 -

34. MtC00741 Protein of unknown function upf0185 XII,C, Unknown function -1,22 -

35. MtC10446,1 Transmembrane protein XII,C, Unknown function -1,46 -

36. MtC93288 Plasma membrane protein XII,C, Unknown function -1,84 -

37. MtC00704 Beta-ig-h3/fasciclin domain  proline-rich region XII,C, Unknown function -2,27 -

38. MtC92160 - XIII, No homology -1,02 -

39. mt--
abc955106g01

No homology XIII, No homology -1,04 -

40. MtC45184,2 - XIII, No homology -1,08 -

41. MtD22569 No homology XIII, No homology -1,14 -

Table 12f. List of genes down-regulated only in MtMir-1-PTGS construct carrying roots after
infection with A. euteiches.
# Gene ID Annotation Functional class pFGC

5149
MtMir-
1-PTGS

1. MtC10021 Cell wall protein I, Cell Wall - -1,79

2. MtC00471 Tubulin beta chain II, Cytoskeleton - -1,15

3. MtC00356,2 Tubulin beta chain II, Cytoskeleton - -1,22

4. MtC10204 Outer plastidial membrane protein porin III, Membrane transport - -1,12

5. MtC10612,1 Adp,atp carrier protein precursor III, Membrane transport - -1,26

6. MtC10259 2-oxoglutarate/malate translocator III, Membrane transport - -1,68

7. MtC00118,1 40s ribosomal protein s23 IX, Protein synthesis and processing - -1,01

8. MtC45369 40s ribosomal protein sa (p40) IX, Protein synthesis and processing - -1,05

9. MtC00148 40s ribosomal protein s7 IX, Protein synthesis and processing - -1,1

10. MtC20091,1 Proteasome regulatory subunit s12 IX, Protein synthesis and processing - -1,13

11. MtC20366,1 Cysteine proteinase IX, Protein synthesis and processing - -1,17

12. MtC00089 60s acidic ribosomal protein po IX, Protein synthesis and processing - -1,2

13. MtC00318 40s ribosomal protein s3 IX, Protein synthesis and processing - -1,29

14. MtC20369 N-carbamoyl-l-amino acid amidohydrolase IX, Protein synthesis and processing - -1,45

15. MtC00046 S-adenosylmethionine synthetase V, Primary metabolism - -1,01

16. MtC10318 Atp synthase d chain, mitochondrial V, Primary metabolism - -1,04

17. MtC90195 Carbonyl reductase [nadph] V, Primary metabolism - -1,06

18. MtC00592,1 Udp-glucose glucosyltransferase V, Primary metabolism - -1,13

19. MtC30078 Seed storage protein V, Primary metabolism - -1,18

20. MtC00018 Vitamin-b12-independent methionine synthase
isozyme

V, Primary metabolism - -1,18

21. MtC00180 Basic blue copper protein V, Primary metabolism - -1,41

22. MtC10064 Adenosine kinase V, Primary metabolism - -1,46

23. MtC00698 Malate dehydrogenase, cytoplasmic V, Primary metabolism - -1,54

24. MtC10119,1 Farnesyl pyrophosphate synthetase VI, Secondary metabolism and hormone metabolism - -1,19

25. MtC00510 Chalcone--flavonone isomerase VI, Secondary metabolism and hormone metabolism - -1,22

26. MtC00085,1 Histone h3,2 VII, Chromatin and DNA metabolism - -1,06

27. MtC00632 Histone h4 VII, Chromatin and DNA metabolism - -1,1

28. MtC10735 Plant lipid transfer/seed storage/trypsin-alpha amylase
inhibitor

XII, Miscellaneous - -1,01

29. MtC10827,2 Basic 7s globulin /extracellular dermal glycoprotein XII, Miscellaneous - -1,05

30. MtC00303 Non-specific lipid transfer-like protein XII, Miscellaneous - -1,07

31. MtC60108 Cupin; cupin domain XII, Miscellaneous - -1,07

32. MtC30379,1 Basic 7s globulin /extracellular dermal glycoprotein XII, Miscellaneous - -1,09

33. MtC40041 Calreticulin precursor XII, Miscellaneous - -1,38

34. MtC10070 Lipoxygenase XII, Miscellaneous - -1,62

35. MtC20391 Hypersensitive reaction induced hsr201 protein -like XII,A, Defense and cell rescue - -1,11

36. MtC00045 Auxin-down regulated adr6-like protein XII,B, Abiotic stimuli and development - -1,09
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37. MtC00276 Germin-like protein (oxalate oxidase) XII,B, Abiotic stimuli and development - -1,18

38. MtC00060,1 [Nodulin] mtn5 (non specific lipid transfer protein) XII,C, Unknown function - -1,01

39. MtC40209 - XII,C, Unknown function - -1,02

40. MtC30434 Burp domain XII,C, Unknown function - -1,08

41. JVCPG-33 [Nodulin] mtn5 XII,C, Unknown function - -1,09

42. MtC93004 Leucine-rich repeat  proline-rich reach, plant specific XII,C, Unknown function - -1,1

43. MtC10504,1 - XII,C, Unknown function - -1,18

44. MtC00378 Leginsulin / albumin XII,C, Unknown function - -1,22

45. MtC40018 Putative methyltransferase duf248; generic
methyltransferase

XII,C, Unknown function - -1,23

46. MtC10203 Phosphate-induced protein-like protein XII,C, Unknown function - -1,26

47. MtC00074 Fruit-induced csf-2 protein - like XII,C, Unknown function - -1,29

48. MtC45436 - XII,C, Unknown function - -1,45
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4.1 Medicago truncatula-Aphanomyces euteiches pathosistem is an appropriate

model to study molecular interaction between legume and oomycete

Transcriptome analysis in different model organisms has been applied for

several years for a comprehensive analysis of plant-microbe interactions (Colebatch

et al., 2002; Journet et al., 2002; Fedorova et al., 2002; Wulf et al., 2003). In order to

study the economically important root rot of legumes caused by Aphanomyces

euteiches, Medicago truncatula was chosen. M. truncatula is subject to large scale

EST analysis (www.medicago.org) and is phylogenetically closely related to the

important crop legume Pisum sativum.

Comparison of fresh weight development, oospore development and ALP-activities

of the pathogen suggest a similar disease development in P. sativum and M.

truncatula (Nyamsuren et al., 2003). This disease development is similar to what

previously has been observed in pea (Kjøeller and Rosendahl 1998). This suggests

that M. truncatula can be used as a model plant to study the molecular background of

the A. euteiches- induced root rot disease in pea. A. euteiches has been shown to have

a short active phase in the root system after infecting it, the pathogen has been shown

to be inactive shortly after first symptoms appear on the host plant (Kjøeller and

Rosendahl 1988). Therefore, early stages of the interaction were selected for

transcription profiling.

4.2 First view of transcriptional changes occuring in M. truncatula roots after

infection of A. euteiches was obtained by cDNA-AFLP

To identify the optimal time point for a large-scale transcription profiling, a cDNA-

AFLP experiment was carried out. This experiment has shown that at six days after

inoculation, notable numbers of differentially expressed cDNAs were detectable.

These observed differences in the transcription pattern remained until the last time

point analysed, namely three weeks after inoculation. Four genes, which show either

an increased or a decreased RNA accumulation during the infection, were cloned and

sequenced. One of the difficult procedures in RNA fingerprinting is to verify that the

band isolated and analysed further is the same as the one visualised in the original

amplification (Bachem et al., 1996). Therefore, after re-amplification and cloning,
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for each of the four fragments five randomly picked clones were selected for

sequencing. One of the cDNAs, which showed higher RNA accumulation in A.

euteiches infected roots, encoded a class 4 pathogenesis-related protein (PR-4). The

PR-4 family of PR proteins consists of class I and class II chitinases (Bravo et al.,

2003). At present, chitinases are grouped into seven different classes (I-VII)

depending on their structure and functional properties (Neuhaus, 1999). Because the

chitinase substrate chitin is the main component of many fungal walls and expression

of many chitinase genes is induced by pathogens, chitinases have long been proposed

to play roles in the active defence response of plants. Antifungal activities have been

described for some of the proteins belonging to the PR-4 family (Hejgaard et al.,

1992; Ponstein et al., 1994; Caruso et al., 1996).

Another cDNA, which also showed increased RNA accumulation in infected roots,

encoded a germin-like protein. Germin has been discussed as an antifungal protein

since the discovery of its pathogen-induced accumulation in leaves of wheat and

barley (Dumas et al., 1995; Hurkman and Tanaka, 1996). Since germin is identified

as functional oxalate oxidase, it is proposed that the germin might be involved in

defence reactions such as degradation of oxalate as a fungal toxin (Thompson et al.,

1995).  It is also discussed that the germins and germin-like proteins with no oxalate

oxidase activity may play a structural role in cell-wall re-enforcement during

pathogen attack (Schweizer et al., 1999).

4.3 SSH reveals a high number of A. euteiches induced M. truncatula genes

A cDNA library, enriched for A. euteiches-induced genes, was established by SSH

from RNA at the earliest time point. A pre-screening of 192 SSH-cDNA clones for

increased RNA-accumulation at six days after inoculation resulted in 26.5% up-

regulated genes in this SSH-cDNA population. Levels of differentially expressed

cDNAs in SSH-pools have been reported to range within less than 10% and to up to

95 % and to depend mainly on the biological material (Desai et al., 2000). The

background of non-differentially expressed cDNAs in this SSH-library is most

probably due to dilution effects resulting from non-infected tissue areas within the

infected-root systems.

Among the genes, which were identified as being induced by the root-pathogen, two

belonged to the pathogenesis-related (PR) protein-encoding class. The induction of

PR-proteins, defined as plant proteins induced specifically in pathological or related
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situations (van Loon et al.,1994; van Loon and van Strien, 1999) is a result of the

plant defensive response and an indication of recognition between the host plant and

the pathogen. One of these genes encodes a typical class 4 (PR) protein containing a

hevein-domain, structural units that are capable to bind chitin (van Damme et al.,

1999). Another PR-protein encoding cDNA was the most redundant gene in this

SSH-library. The TC encoding a class 10 PR protein could be assembled from 13

singletons. For PR-10 protein-like genes it could be demonstrated that they can be

transcriptionally activated by abscisic acid (ABA) (Iturriaga et al., 1994). This

phytohormone is not only an important signal for the plant physiological and

molecular response to a water deficit, it plays also an essential role in triggering gene

expression upon wounding and pathogen attack (Moons et al., 1995). Beside the PR-

10 encoding sequence, the SSH-library contained six further cDNAs encoding ABA-

responsive proteins. This highly redundant presence of PR-10 and ABA-responsive

proteins indicated that ABA-mediated signalling is involved in the interaction

between the plant and the pathogen. The induction of various ABA-responsive genes

after a A. euteiches infection could be a direct effect of the plant response.

Alternatively, the ABA-content of the host plant could be increased as a consequence

to desiccation and senescence of the root system after pathogen colonization. The

presence of a dehydrin related protein among the up-regulated genes further indicate

the involvement of drought stress. The synthesis of dehydrins is a common response

to drought in plants and its RNA accumulation is affected by ABA (Giordani et al.,

1999).

Cinnamoyl-CoA reductase and cytochrom p450 are the enzymes involved in the

biosynthesis of  isoflavonoids. Isoflavonoids comprise a large group of secondary

metabolites involved in plant-microbe interaction. These compounds include the

pterocarpans, such as the fungicides medicarpin from alfalfa (Medicago sativa) and

pisatin from pea (Pisum sativum). The pathway that leads to isoflavonoid synthesis is

a branch of the general phenylpropanoid pathway that exists in all higher plants. It is

known that genes encoding enzymes of this pathway are developmentally and tissue-

specifically induced by different stresses. Induction of these genes in response to A.

euteiches indicates the induction of the isoflavonoid biosynthesis in M. truncatula

after infection with pathogen.

One of the interesting genes found in the SSH-cDNA library was serine

palmitoyltransferase-like sequence (SPT), confirmed to be up-regulated in responce
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to A. euteiches. Birch et al., (1998) have reported an involvement of SPT early in the

potato hypersensitive response (HR) to Phythophtora infestans and suggested that

sphingolipid signalling in a plant-pathogen interaction leads to apoptosis. SPT

catalyses the first step in the synthesis of sphingolipids, an important class of second

messengers involved in the regulation of cell death and proliferation in animals

(reviewed in Merrill et al., 1997).

In addition to the observed gene induction which have been also previously

described to occur during biotic or abiotic stresses, a number of cDNA sequences

which have not been described to be involved in pathogen response were found to be

induced after A. euteiches infection in this study. The most unexpected output of this

SSH-approach is probably the significant number of A. euteiches induced cDNAs

which do not match entries of the M. truncatula Gene Index (MtGI). This large-scale

EST database contains a collection of over 1.8x105 M. truncatula cDNA sequences

(MtGI-release 6.0-december 2002) originating from various tissues and physiological

conditions. A significant number of entries of this collection are derived from tissues

challenged with different pathogens. Of the 560 A. euteiches induced cDNAs

identified in this study, more than eight percent seem to be new M. truncatula-

sequences, since they have not been identified in previous sequencing projects,

which are deposited in the MtGI-collection. The finding of large number of A.

euteiches induced new cDNAs, indicates that these gene products or regulation

mechanisms play a rather specific role during pathogenic root-oomycete interactions

and might not be involved in common stress responses. Hence, these cDNAs could

be of great importance for future research in order to understand the specific

mechanism underlying this agricultural  important legume root-rot disease.

4.4 MtMir-1- is a pathogen induced M. truncatula gene

One A. euteiches induced cDNA, clone 2f10, encoded the partial sequence of a

protein with similarity to a protein called miraculin, isolated from the miracle berry

(Richadella dulcifica), a west African shrub. Because of its sequence similarity to

miraculin, the M. truncatula gene was named MtMir-1 (Medicago truncatula

miraculin). cDNAs encoding MtMir-1 gene were one of the most abundant

sequences in the SSH-cDNA library. The MtMir-1 sequence was assembled from

seven different ESTs from this SSH-library. Two ESTs of this gene were found in
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TIGR Medicago truncatula Gene Index (MtGI version 5.0), deriving from a cDNA-

library constructed from M. truncatula roots after infection with the nemathode

Meloidogyne incognita.

A full-length cDNA sequence of MtMir-1 (862bp) was identified by RACE-PCR.

The 516 bp ORF encodes a protein of 173 amino acids. A database similarity search

revealed that the deduced amino acid sequence has similarities to several cloned

plant genes of unknown function. The highest similarity 61 % at the amino acid level

is to a deduced protein from a cDNA, TID91 (D26457), representing a gene

expressed in stress-induced, genetic tumor tissues found in interspecific hybrids

between Nicotiana glauca and Nicotiana langsdorffii (Fujita et al., 1994). TID91

was demonstrated to be strongly expressed in tobacco callus tissue but absent in

leaves and stems. Expression in roots was not examined (Fujita et al., 1994). Other

related sequences of unknown functions include a tumor-related protein, clone NF34,

from tomato (57 % identity) which was discussed to be a potential elicitor of

hypersensitive response (HR) (Karrer et al.,  1998). LeMir, a protein that is induced

early after infection of tomato with the root-knot nematode Meloidogyne javanica

shows 56 % identity to MtMir-1. LeMir-mRNA was detecetd in roots, hypocotyl, and

flower tissues, with highest expression in the root (Brenner et al., 1998).

Sequence analysis indicates that MtMir-1 and miraculin belong to the soybean

trypsin-inhibitor family. Members of this family are characterized by the presence of

an N-terminal signature sequence. Many but not all members have shown to have

inhibitory activity against a range of serine proteinases (Laskowski and Kato, 1980).

The highest similarity of MtMir-1 to a known enzymatic inhibitor is to a Kunitz

trypsin inhibitor-4 (accession number AAQ84217), found in hybrids between

Populus balsamifera subsp. trichocarpa and Populus deltoides (Miranda et al.,

unpublished).

Kunitz-type trypsin inhibitors represent one group of Kunitz-type proteinase

inhibitors and are divided into three groups based on their abilities to inhibit

chymotrypsin, trypsin and tissue-type plasminogen activator (tPA) (Song and Suh

1998). Kuniz-type trypsin inhibitors are more specific towards trypsin than

chemotrypsin and they do not inhibit tPA (Song and Suh 1998).

Different members of Kunitz-type proteinase inhibitors are described to be induced

by different biotic and abiotic environmental stresses (Bryant et al.,1976; Graham et

al.,1986; Ryan et al., 1987; Kang et al., 2002).
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In pea (Pisum sativum), the major seed trypsin/chemotrypsin inhibitors have been

characterized and genetically mapped (Domoney et al., 1994, 1995) and have been

implicated in plant response to water-deficit stress (Welham and Domoney, 2000).

Three Kunitz trypsin inhibitor genes isolated from trembling aspen (Populus

tremuloides) found to be induced by wounding and herbivory and the overexpressed

product of PtTI2 showed in vitro inhibition of bovine trypsin (Haruta et al., 2001).

This suggests that MtMir-1 could possibly have an inhibitory function against fungal

proteinases. As it was mentioned before, the roots colonized by A. euteiches are

likely to undergo water stress because of the damaged root system. Therefore, it

could be hypothesised that MtMir-1 is induced as a reaction to water-deficit stress, as

in the case of pea trypsin inhibitors. On the other hand, the RT-PCR results showed

that the MtMir-1 gene was induced not only in parasitic oomycete colonized roots,

but also in mycorrhized roots. This implies that the induction of MtMir-1 might not

be directly influenced by water-deficit, but it is a part of plant response or

recognition mechanism against root interacting microorganisms.

It is known that the Kunitz-type trypsin inhibitor gene family represents a distinct

group of proteins. Some members are present in the plant genome as a multigene

family and some contain few genes (Gruden et al., 1997; Domoney et al., 2002).

Genomic Southern blot analysis revealed that MtMir-1 probe binds to two different

fragments of M. truncatula genome. Genomic DNA sequence shows that a MtMir-1

posses no introns. It seems, that this phenomenon is not rare among the

representatives of the trypsin inhibitor gene family, since five proteinase inhibitor

genes isolated from potato, ten trypsin inhibitor genes from pea and the LeMir gene

from tomato were described to carry no introns (Gruden et al., 1997; Page et al.,

2002; Brenner et al., 1998).

RT-PCR analysis showed that the MtMir-1 gene was not present and not induced in

leaves of M. truncatula after infection with A. euteiches. This suggests that MtMir-1

is specifically induced in the root as a response to invading microorganisms.

4.5 MtMir-2- is a mycorrhiza induced M. truncatula gene

Another gene, which showed increased mRNA accumulation, was identified in

mycorrhized roots of M. truncatula (Wulf et al., 2003).  The partial sequence of this

gene showed high homology to miraculin and similarity to MtMir-1. Therefore, the

gene was named MtMir-2 and further analysed in the present work. The
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corresponding TC (78015) was found in MtGI 7.0, which consists of 14 ESTs,

exclusively from the cDNA libraries of mycorrized M. truncatula roots. In contrast

to MtMir-1, MtMir-2 was not regulated in responce to A. euteiches. The expression

pattern indicates that MtMir-2 is specifically induced in response to mycorrhizal

fungi.

During the colonization of plant roots with mycorrhizal fungi, genes of plant defence

mechanisms are also regulated (Gianinazzi-Pearson, 1996). Since MtMir-2 is not

regulated by the pathogenic oomycete, it is difficult to speculate about its possible

role in plant defence against fungal invaders. The role of this protein in a mycorrhizal

symbiosis is still unclear.

4.6 Inducible promoters of MtMir-1 and MtMir-2 genes

For the further gene regulation analysis of MtMir-1 and MtMir-2 the corresponding

promoter regions were isolated. One trypsin inhibitor promoter was investigated

through reporter-gene studies and has been shown to be induced as a response to

water-stress in some but not all organs of Pisum sativum (Welham and Domoney,

2000). In the current work, DNA walking method was used for amplifying the

promoter regions. MtMir-1 and MtMir-2 are both belonging to Kunitz-trypsin

inhibitor gene family and showing different expression patterns. This indicates that

they may have different transcription factors activating these genes in different

situations. But on the other hand, the evidence that MtMir-1 is also activated in

response to mycorrhizal fungi suggests that it could share common regulatory

mechanisms.

In order to identify the shortest promoter region, responsible for the activation of the

gene, promoter deletion fragments analysed by the fusion to the GUS-reporter gene

and used for M. truncatula hairy root transformation.

Transgenic roots containing the longest (~800 bp) promoter::GUS fusion fragment

showed reporter gene activity in the cortical cells, showing attachment of zoospores,

as well as in the root segments colonised with A. euteiches hyphae. In contrast, in

roots carrying shorter fragments, the GUS-reporter gene was not active. These results

suggest that important motifs for transcriptional activation of MtMir-1 gene are

located in an area between –800 and –300 on its promoter. However, additional work
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is necessary to determine the exact regulation motifs and the transcription factors

itself, which specifically regulates the transcription of MtMir-1 gene.

In case of MtMir-2, an 800 bp promoter fragment was shown to activate the

transcription in the mycorrhized root tissue. No reporter gene activity was observed

in non-mycorrhized roots. A similar promoter activity was reported previously.

Promoter studies of AM-regulated gene MtGst1 showed specific activity of this gene

in arbuscule containing cells of mycorrhized root, as well as in the direct vicinity of

cells containing fungal hyphae (Wulf et al., 2003). Additional work is required to

verify whether the MtMir-2 gene is coregulated with MtGst1.

4.7 Transgenic root cultures of M. truncatula completely silenced for MtMir-1 gene

To study the function of MtMir-1, transgenic roots were produced carrying a

construct to provide post-transcriptional gene silencing.

Regulation of eukaryotic gene expression occurs at different stages of protein

synthesis: at the transcriptional, RNA processing and translational levels and during

protein maturation. The postranscriptional levels started to attract the most attention

since in 1998 Andrew Fire et al., have demonstrated in the worm Caenorhabditis

elegans that dsRNA (double-stranded RNA) may specifically and selectively inhibit

the gene expression in an extremely efficient manner. This phenomenon was called

RNA interference (RNAi). RNAi is a post transcriptional gene silencing process

(PTGS) in which dsRNA induces the degradation of homologous RNA sequence.

Soon after this discovery, it became clear that the earlier reports about PTGS in

plants (Napoli et al., 1990), gene quelling in fungi (Cogni et al., 1996) and gene

silencing with antisense RNA (Fire et al., 1991) describe diverse variants of RNAi.

Gene silencing was perceived initially as an unpredictable and inconvenient side

effect of introducing transgenes into plants. It now seems that it is the consequence

of accidentally triggering the plants adaptive defence mechanism against viruses and

transposable elements (Waterhouse et al., 2001).

Since the discovery of RNAi, it was described in diverse organisms: in protozoa

(Ngo et al., 1998), hydra (Lohmann et al., 1999), fruit fly (Kennerdell and Carthew,

1998), zebrafish (Wargelius et al., 1999), frog (Oelgeschlager et al., 2000), mammals

(Wianny and Zernicka-Goetz, 2000), fungi (Cogni et al., 1996) and different plants

(Waterhouse et al., 1998).
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Although the mechanism of RNAi is not well understood, it seems to provide an

effective way to unravel the gene function (Montgomery et al., 1998; Fire, 1999;

Sharp, 1999). RNAi has revolutionized the study of genes in C. elegans. Over 4000

genes on chromosome I and III of C. elegans are being analysed systematically

(Fraser et al., 2000; Gonczy et al., 2000). For the organisms such as M. truncatula,

whose whole genome is being completely sequenced, the next challenge would be to

understand the functions and interplay of genes in that organism. For this purpose

RNAi could be the method of choice. In the present work RNAi method was used to

study the function of MtMir-1 and MtMir-2.

Using a construct providing the production of dsRNAs, transgenic roots were

obtained in vitro. In these roots the MtMir-1 transcripts were completely

undetectable. However, the silencing through dsRNA has been shown to be more

efficient as by the antisense or sense RNA (Levin et al., 2000), in most cases

reported, the gene activation was reduced less than 100 %. In case of the MtMir-1

gene, it seems that dsRNA-mediated genetic interference has completely down-

regulated the expression of this gene. Even after PCR-amplification no transcript

could be detected in MtMir-1-PTGS carrying roots. This result could also be

confirmed by virtual Northern blot analysis. One explanation of complete down-

regulation of the MtMir-1 could be that this gene is an inducible and not a

housekeeping gene. Roots containing PTGS constructs showed no detectable

phenotype changes after infection with A. euteiches. This could be because of the

unspecific response of MtMir-1 against A. euteiches or it could also be that A.

euteiches is able to inhibit the products of MtMir-1.

The results of this study suggest that A. rhizogenes mediated transformation provides

a fast, convenient and efficient method to introduce dsRNA-expressing constructs

into the roots of M. truncatula. Therefore, use of this in vitro method is highly

recommended for the study of root biology such as root branching, rhizobium

symbiosis or root-pathogen interaction.
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4.8 Microarray – is a powerful technique to study global gene expression pattern

In this study, DNA microarray technology was utilized for two specific objectives: In

one experiment, to obtain transcription profiles of the M. truncatula root 30 minutes

and 6 days after inoculation with A. euteiches. In a second experiment, the influence

of MtMir-1-PTGS on transcription profiles of other genes was analysed.

These microarray experiments resulted in determination of an enormous data set.

From a set of 8000 M. truncatula genes on the 8kMt microarray, 138 genes were

identified to be regulated after 30 min and 207 genes after 6 days of inoculation. 35

of the genes which were regulated after 30 min were also regulated in the same

manner after 6 days. Among these 35 genes, plant stress responsive genes such as

PR10 and chalcone syntethase were found to be up-regulated. The presence of these

genes indicates that the plant defence system is activated already 30 minutes after

contact with the pathogen. Interestingly, a dehydrin gene was found to be down-

regulated (M=-2,79) 30 min after infection, but found to be up-regulated (M=1,57)

after 6 days. In fact, up-regulation of dehydrin after 6 dpi was already detected in

current work by SSH method. There are also some genes that were induced or

repressed at one time point, while oppositely regulated at another time point. As it

was expected, there were different transcription factors, such as mitogen-activated

protein kinase (MAPKinase), several zinc-finger proteins, b-Zip transcription factor

and PR-transcription factor, were found to be up-regulated after 30 min, indicating a

rapid recognition of the pathogen by the plant and activation of its signalling

pathways leading to defence response.

Beside several genes previously described to be regulated during biotic and abiotic

stress situations, this study revealed a large number of genes, with no homology to

known genes (29) or genes with unknown function (78). Further investigation of

these genes will permit development of a hypothesis to explain the plant root –

oomycete interaction.

The experimental evidence, that the set of genes regulated after 30 min of infection

differs from those regulated 6 days after, suggests that the plant responds to the

different stages of disease development with specific reactions.

An evidence that the genes previously identified by cDNA-AFLP or SSH methods

have been found in the microarray results, indicates the reliability of the arrays.
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However, confirmatory approaches such as Northern Blots, qRT-PCR and in situ

hybridization are essential in supporting of the array data.

Although the Mt8k microarray contains a significant number of M. truncatula genes,

it does not contain the comprehensive set of all M. truncatula genes.  Hence, for the

identification of new genes the methods like cDNA-AFLP or SSH are preferable.

The second objective, for which microarrays were used in this work, was the study of

genes influenced by MtMir-1 silencing. The global gene expression pattern of M.

truncatula roots infected with A. euteiches was studied in control and MtMir-1 gene

silenced roots. A similar experiment was done on human cells transformed with GFP

gene from jellyfish (Aequoria vicroria). This gene was then silenced by siRNAs and

the impact on global gene expression pattern was studied using microarrays. Results

of this experiment revealed that the siRNA-mediated gene silencing has exquisite

sequence specificity for the target mRNA and does not induce detectable secondary

changes in the global gene expression pattern (Chi et al., 2003). The gene which was

silenced in the above mentioned experiment was an exogenous gene. In case of

MtMir-1, an endogenous gene was silenced and it might be possible that this

silencing influence the expression of other genes.

299 genes showing changed expression were identified to show altered expression

and were clustered into three groups (table-11). Genes belonging to the first group

seem not be affected by the MtMir-1 silencing. But genes from cluster II and III

seem to be affected by the MtMir-1 silencing. The genes in cluster II are showing up-

or down-regulation in the control roots but not in the MtMir-1 silenced roots. The

genes in cluster III are not showing changed expression in control roots, but they are

up- or down-regulated in the MtMir-1 silenced roots. Hence, this experiment was

barely a beginning but a set of genes with significantly altered expression pattern

correlated with silencing of MtMir-1 gene could be identified.

A microarray is effectively equivalent to 8 000 simultaneous Northern blots and thus

provides information on how the expression pattern of the gene relates to many

others (Duffield, 2003). Up to now there is no report on using microarrays for the

study of global gene expression pattern changes affected by silencing a particular

endogenous gene by RNAi. Therefore, this was the first attempt made. The results

are encouraging, however, optimization of experimental materials and conditions are

required. The plant materials used in this study were transformed hairy root cultures.
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Even small differences in cell passage or media metabolism can lead to differences in

global gene expression pattern (Chi et al., 2003). Therefore, for instance, roots of

complete transformed plants silenced for the MtMir-1 gene need to be developed to

avoid any influence which could affect the global gene expression pattern. It is not to

exclude that even the empty pFGC 5941 vector might have changed the expression

pattern of the roots which were used as a control in this experiment.

4.9 Outlook

Using the modern molecular biological methods enormous number of A. euteiches

induced M. truncatula genes were obtained in this work. Beside the genes involved

in common plant response against different environmental stresses, there are new

genes identified not previously described to be involved in plant-pathogen

interactions. Further investigations will show whether these genes are specifically

induced by A. euteiches.

The data available from the whole genome sequencing project of M. truncatula will

make the cloning of the promoter regions of different genes much easier and faster.

Promoter studies of A. euteiches induced genes will give important information about

the genes expression regulations during plant-oomycete interaction.

First results of gene silencing by RNAi obtained in this work encourages us to use

this method for studying the function of A. euteiches induced genes.
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Appendix A. pGEM®-T Easy vector (Promega, Madison, WI, USA) circle map and
sequence reference points:

pGEM®-T Easy Vector sequence reference points:

T7 RNA Polymerase transcription initiation site 1
SP6 RNA Polymerase transcription initiation site 141
T7 RNA Polymerase promoter (-17 to +3) 2999-3
SP6 RNA Polymerase promoter (-17-+3) 139-158
Multiple cloning region 10-128
lacZ start codon 180
lac operon sequence 2836-2996, 166-395
lac operator 200-216
ß-galactamase coding region 1337-2197
phage f1 region 2380-2835
binding site of pUC/M13 Forward Sequencing Primer 2956-2972
binding site of pUC/M13 Reverse Sequencing Primer 176-192
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Appendix B. Map of pLP100 vector (Szabados et al., 1995).
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Appendix C. Map of pDONR 207 vector (5585 nucleotide) (Invitrogen, Carlsbad,
CA, USA).

rrnB T2 transcription termination sequence (c): 73-100
rrnB T1 transcription termination sequence (c): 232-275
Recommended forward priming site: 300-324
attP1: 332-563
ccdB gene (c): 959-1264
Chloramphenicol resistance gene (c): 1606-2265
attP2 (c): 2513-2744
Recommended reverse priming site: 2769-2792
Gentamycin resistance gene: 3528-4061
pUC origin: 4909-5582
(c)= complementary strand
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Appendix D. Map of pFGC 5941 vector (ChromDB, Arizona, AZ, USA).

Km Bacterial kanamycin resistance gene (also called kanR).
Cm Bacterial chloramphenicol resistance gene.
Hyg Plant hygromycin resistance gene.
Bar Gene encoding resistance to the herbicide BASTA.
OCS 3' Poly adenylation signal sequence from Agrobacterium tumefaciens.
MAS 3' Poly adenylation signal sequence from Agrobacterium tumefaciens.
MAS 1' Plant promoter from Agrobacterium tumefaciens.
CaMV 34S Viral promoter; this constructs have the omega leader of TMV (Gene
1987;60(2-3):217-25 ) at the end of the promoter sequence; this sequence is thought
to increase translation efficiency, but it is not expected to influence RNAi.
LB T-DNA left border.
RB T-DNA right border.
GUS 360 base pair fragment from the GUS (Escherichia coli beta-glucuronidase
gene).
ChsA intron 1,353 bp fragment from the petunia Chalcone synthase A gene.
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