
Logical Methods in Computer Science
Vol. 7 (2:12) 2011, pp. 1–21
www.lmcs-online.org

Submitted Jan. 14, 2010
Published Nov. 16, 2011

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY

SEQUENTIAL ∗

OLAF BEYERSDORFF a, ARNE MEIER b, MARTIN MUNDHENK c, THOMAS SCHNEIDER d,
MICHAEL THOMAS e, AND HERIBERT VOLLMER f

a,b,e,f Theoretical Computer Science, Leibniz University of Hannover, Germany
e-mail address: {beyersdorff, meier, thomas, vollmer}@thi.uni-hannover.de

c Computer Science, University of Jena, Germany
e-mail address: martin.mundhenk@uni-jena.de

d Computer Science, Saarland University, Germany
e-mail address: schneider@ps.uni-saarland.de

Revision Note. This is a revised and corrected version of the article originally published
on May 17, 2011.

Abstract. The model checking problem for CTL is known to be P-complete (Clarke,
Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of CTL
obtained by restricting the use of temporal modalities or the use of negations—restrictions
already studied for LTL by Sistla and Clarke (1985) and Markey (2004). For all these
fragments, except for the trivial case without any temporal operator, we systematically
prove model checking to be either inherently sequential (P-complete) or very efficiently
parallelizable (LOGCFL-complete). For most fragments, however, model checking for
CTL is already P-complete. Hence our results indicate that, in cases where the combined
complexity is of relevance, approaching CTL model checking by parallelism cannot be
expected to result in any significant speedup.

We also completely determine the complexity of the model checking problem for all
fragments of the extensions ECTL, CTL+, and ECTL+.

1998 ACM Subject Classification: D.2.4, F.3.1, I.2.2, I.2.4.
Key words and phrases: Model checking, temporal logic, complexity.

∗ A preliminary version of this paper appeared in the proceedings of the conference TIME’09 [BMM+09].
Supported in part by grants DFG VO 630/6-1, VO 630/6-2, DAAD-ARC D/08/08881, and BC-ARC

1323.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (2:12) 2011

c© O. Beyersdorff, A. Meier, M. Mundhenk, T. Schneider, M. Thomas, and H. Vollmer
CC© Creative Commons

http://creativecommons.org/about/licenses

2 O. BEYERSDORFF, A. MEIER, M. MUNDHENK, T. SCHNEIDER, M. THOMAS, AND H. VOLLMER

1. Introduction

Temporal logic was introduced by Pnueli [Pnu77] as a formalism to specify and verify prop-
erties of concurrent programs. Computation Tree Logic (CTL), the logic of branching time,
goes back to Emerson and Clarke [EC82] and contains temporal operators for expressing
that an event occurs at some time in the future (F), always in the future (G), in the next
point of time (X), always in the future until another event holds (U), or as long as it is not
released by the occurrence of another event (R), as well as path quantifiers (E,A) for speak-
ing about computation paths. The full language obtained by these operators and quantifiers
is called CTL⋆ [EH86]. In CTL, the interaction between the temporal operators and path
quantifiers is restricted. The temporal operators in CTL are obtained by path quantifiers
followed directly by any temporal operator, e.g., AF and AU are CTL-operators. Because
they start with the universal path quantifier, they are called universal CTL-operators. Ac-
cordingly, EX and EG are examples for existential CTL-operators.

Since properties are largely verified automatically, the computational complexity of
reasoning tasks is of great interest. Model checking (MC)—the problem of verifying whether
a given formula holds in a state of a given model—is one of the most important reasoning
tasks [Sch03]. It is intractable for CTL⋆ (PSPACE-complete [EL87, Sch03]), but tractable
for CTL (complete for polynomial time [CES86, Sch03]).

Although model checking for CTL is tractable, its P-hardness means that it is presum-
ably not efficiently parallelizable. We therefore search for fragments of CTL with a model
checking problem of lower complexity. We will consider all subsets of CTL-operators, and
examine the complexity of the model checking problems for all resulting fragments of CTL.
Further, we consider three additional restrictions affecting the use of negation and study
the extensions ECTL, CTL+, and their combination ECTL+.

The complexity of model checking for fragments of temporal logics has been examined
in the literature: Markey [Mar04] considered satisfiability and model checking for fragments
of Linear Temporal Logic (LTL). Under systematic restrictions to the temporal operators,
the use of negation, and the interaction of future and past operators, Markey classified the
two decision problems into NP-complete, coNP-complete, and PSPACE-complete. Further,
[BMS+09] examined model checking for all fragments of LTL obtained by restricting the set
of temporal operators and propositional connectives. The resulting classification separated
cases where model checking is tractable from those where it is intractable. For model
checking paths in LTL an AC1(LOGDCFL) algorithm is presented in [KF09].

Concerning CTL and its extension ECTL, our results in this paper show that most
restricted versions of the model checking problem exhibit the same hardness as the general
problem. More precisely, we show that apart from the trivial case where CTL-operators are
completely absent, the complexity of CTL model checking is a dichotomy: it is either P-
complete or LOGCFL-complete. Unfortunately, the latter case only occurs for a few rather
weak fragments and hence there is not much hope that in practice, model checking can be
sped up by using parallelism—it is inherently sequential.

Put as a simple rule, model checking for CTL is P-complete for every fragment that
allows to express a universal and an existential CTL-operator. Only for fragments involving
the operators EX and EF (or alternatively AX and AG) model checking is LOGCFL-complete.
This is visualized in Figure 4 in Section 5. Recall that LOGCFL is defined as the class of
problems logspace-reducible to context-free languages, and NL ⊆ LOGCFL ⊆ NC2 ⊆ P.

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY SEQUENTIAL ∗ 3

Hence, in contrast to inherently sequential P-hard tasks, problems in LOGCFL have very
efficient parallel algorithms.

For the extensions CTL+ and ECTL+, the situation is more complex. In general, model
checking CTL+ and ECTL+ is ∆p

2-complete [LMS01]. We show that for T ⊆ {A,E,X},
both model checking problems restricted to operators from T remain tractable, while for
T * {A,E,X}, they become ∆p

2-complete. Yet, for negation restricted fragments with only
existential or only universal path quantifiers, we observe a complexity decrease to NP- resp.
coNP-completeness.

This paper is organized as follows: Section 2 introduces CTL, its model checking prob-
lems, and the non-basics of complexity theory we use. Section 3 contains our main results,
separated into upper and lower bounds. We also provide a refined analysis of the reductions
between different model checking problems with restricted use of negation. The results are
then generalized to extensions of CTL in Section 4. Finally, Section 5 concludes with a
graphical overview of the results.

2. Preliminaries

2.1. Temporal Logic. We inductively define CTL⋆-formulae as follows. Let Φ be a finite
set of atomic propositions. The symbols used are the atomic propositions in Φ, the constant
symbols ⊤, ⊥, the Boolean connectives ¬, ∧, and ∨, and the temporal operator symbols A,
E, X, F, G, U, and R.

A and E are called a path quantifiers, temporal operators aside from A and E are pure

temporal operators. The atomic propositions and the constants ⊤ and⊥ are atomic formulae.
There are two kinds of formulae, state formulae and path formulae. Each atomic formula
is a state formula, and each state formula is a path formula. If ϕ,ψ are state formulae
and χ, π are path formulae, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), Aχ, Eχ are state formulae, and ¬χ,
(χ∧π), (χ∨π), Xχ, Fχ, Gχ, [χUπ], and [χRπ] are path formulae. The set of CTL⋆-formulae
(or formulae) consists of all state formulae.

A Kripke structure is a triple K = (W,R, η), where W is a finite set of states, R ⊆
W ×W a total relation (i.e., for each w ∈W , there exists a w′ such that (w,w′) ∈ R), and
η : W → P(Φ) is a labelling function. A path x is an infinite sequence x = (x1, x2, . . .) ∈W

ω

such that (xi, xi+1) ∈ R, for all i ≥ 1. For a path x = (x1, x2, . . .) we denote by xi the path
(xi, xi+1, . . .).

Let K = (W,R, η) be a Kripke structure, w ∈W be a state, and x = (x1, x2, . . .) ∈W
ω

be a path. Further, let ϕ,ψ be state formulae and χ, π be path formulae. The truth of a
CTL⋆-formula w.r.t. K is inductively defined as follows:

K,w |= ⊤ always,
K,w |= ⊥ never,
K,w |= p iff p ∈ Φ and p ∈ η(w),
K,w |= ¬ϕ iff K,w 6|= ϕ,
K,w |= (ϕ ∧ ψ) iff K,w |= ϕ and K,w |= ψ,
K,w |= (ϕ ∨ ψ) iff K,w |= ϕ or K,w |= ψ,
K,w |= Aχ iff K,x |= χ for all paths x = (x1, x2, . . .) with x1 = w,
K,x |= ϕ iff K,x1 |= ϕ,
K,x |= ¬χ iff K,x 6|= χ,
K,x |= (χ ∧ π) iff K,x |= χ and K,x |= π,

4 O. BEYERSDORFF, A. MEIER, M. MUNDHENK, T. SCHNEIDER, M. THOMAS, AND H. VOLLMER

∅

AU

AF AX AG

ARAX,AF AF,AG AX,AG

AX,AU AX,AF,AG AX,ARAG,AU

AF,AR

AX,AF,AR

AX,AG,AU

Figure 1: The expressive power of CTL(T).

K,x |= (χ ∨ π) iff K,x |= χ or K,x |= π,
K,x |= Xχ iff K,x2 |= χ
K, x |= [χUπ] iff there is a k ∈ N such that K,xk |= π and K,xi |= χ for 1 ≤ i < k.

The semantics of the remaining temporal operators is defined via the equivalences: Eχ ≡
¬A¬χ, Fχ ≡ [⊤Uχ], Gχ ≡ ¬F¬χ, and [χRπ] ≡ ¬[¬χU¬π]. A state formula ϕ is satisfied by

a Kripke structure K if there exists w ∈ W such that K,w |= ϕ. We will also denoted this
by K |= ϕ.

We use CTL⋆(T) to denote the set of CTL⋆-formulae using the Boolean connectives
{∧,∨,¬}, and the temporal operators in T only. If T does not contain any quantifiers, then
including any pure temporal operators in T is meaningless.

A CTL-formula is a CTL⋆-formula in which each path quantifier is followed by exactly
one pure temporal operator and each pure temporal operator is preceded by exactly one path
quantifier. The set of CTL-formulae forms a strict subset of the set of all CTL⋆-formulae.
For example, AGEFp is a CTL-formula, but A(GFp∧Fq) is not. CTL is less expressive than
CTL⋆ [EH85, EH86].

Pairs of path quantifiers and pure temporal operators are called CTL-operators. The
operators AX, AF, AG, AU, and AR are universal CTL-operators, and EX, EF, EG, EU, and
ER are existential CTL-operators. Let ALL denote the set of all universal and existential
CTL-operators. Note that A[ψUχ] ≡ AFχ ∧ ¬E[¬χU(¬ψ ∧ ¬χ)], and thus E[ψRχ] ≡ EGχ ∨
E[χU(ψ ∧ χ)]. Hence {AX,AF,AR} is a minimal set of operators for CTL (in presence of all
Boolean connectives), whereas {AX, AG, AU} is not [Lar95].

By CTL(T) we denote the set of CTL-formulae using the connectives {∧,∨,¬} and
the CTL-operators in T only. Figure 1 shows the structure of sets of CTL-operators with
respect to their expressive power.

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY SEQUENTIAL ∗ 5

Moreover, we define the following fragments of CTL(T).

− CTLpos(T) (positive)
CTL-operators may not occur in the scope of a negation.

− CTLa.n.(T) (atomic negation)
Negation signs appear only directly in front of atomic propositions.

− CTLmon(T) (monotone)
No negation signs allowed.

This restricted use of negation was introduced and studied in the context of linear temporal
logic, LTL, by Sistla and Clarke [SC85] and Markey [Mar04]. Their original notation was

L̃(T) for CTLa.n.(T) and L+(T) for CTLpos(T).

2.2. Model Checking. Now we define the model checking problems for the above men-
tioned fragments of CTL. Let L be CTL, CTLmon, CTLa.n., or CTLpos.

Problem: L-MC(T)
Input : A Kripke structure K = (W,R, η), a state w ∈W , and an L(T)-formula ϕ.

Question: Does K,w |= ϕ hold?

2.3. Complexity Theory. We assume familiarity with standard notions of complexity
theory as introduced in, e.g., [Pap94]. Next we will introduce the notions from circuit
complexity that we use for our results. All reductions in this paper are ≤cd-reductions
defined as follows: A language A is constant-depth reducible to B, A ≤cd B, if there is a
logtime-uniform AC0-circuit family with oracle gates for B that decides membership in A.
That is, there is a circuit family C = (C1, C2, C3, . . .) such that

− for every n, Cn computes the characteristic function of A for inputs of length n,
− there is a polynomial p and a constant d such that for all input lengths n, the size of Cn

is bounded by p(n) and the depth of Cn is bounded by d,
− each circuit Cn consists of unbounded fan-in AND and OR gates, negation gates, and

gates that compute the characteristic function of B (the oracle gates),
− there is a linear-time Turing machineM that can check the structure of the circuit family,

i.e., given a tuple 〈n, g, t, h〉 where n, g, h are binary numbers and t ∈ {AND,OR,NOT,ORACLE},
M accepts if Cn contains a gate g of type t with predecessor h.

Circuit families C with this last property are called logtime-uniform (the name stems from
the fact that the time needed byM is linear in the length of its input tuple, hence logarithmic
in n). For background information we refer to [RV97, Vol99].

We easily obtain the following relations between model checking for fragments of CTL
with restricted negation:

Lemma 2.1. For every set T of CTL-operators, we have

CTLmon-MC(T) ≤cd CTLa.n.-MC(T) ≤cd CTLpos-MC(T).

Further, for model checking, atomic negation can be eluded, that is, CTLa.n.-MC(T) ≤cd

CTLmon-MC(T).

6 O. BEYERSDORFF, A. MEIER, M. MUNDHENK, T. SCHNEIDER, M. THOMAS, AND H. VOLLMER

Proof. The first part is straightforward, using the identity function as reduction function.
For the second part, let K = (W,R, η) be a Kripke structure and let ϕ be a CTLa.n.(T)-
formula over the propositions Φ = {p1, . . . , pn}. Every negation in ϕ appears inside a
negative literal. We obtain ϕ′ by replacing every negative literal ¬pi with a fresh atomic
proposition qi. Further define K ′ = (W,R, η′), where η′(w) = η(w) ∪ {qi | pi /∈ η(w)}.
Obviously, K,w |= ϕ iff K ′, w |= ϕ′ for all w ∈ W . The mapping (K,w,ϕ) 7→ (K ′, w, ϕ′)
can be performed by an AC0-circuit.

In Section 3.3, we complete the picture by proving CTLpos-MC(T) ≤cdCTLmon-MC(T).
The class P consists of all languages that have a polynomial-time decision algorithm. A

problem is P-complete if it is in P and every other problem in P reduces to it. P-complete
problems are sometimes referred to as inherently sequential, because P-complete problems
most likely (formally: if P 6= NC) do not possess NC-algorithms, that is, algorithms run-
ning in polylogarithmic time on a parallel computer with a polynomial number of proces-
sors. Formally, NC contains all problems solvable by polynomial-size polylogarithmic-depth
logtime-uniform families of circuits with bounded fan-in AND, OR, NOT gates.

There is an NC-algorithm for parsing context-free languages, that is, CFL ⊆ NC. There-
fore, complexity theorists have studied the class LOGCFL of all problems reducible to
context-free languages (the name “LOGCFL” refers to the original definition of the class in
terms of logspace-reductions, however it is known that the class does not change if instead,
as everywhere else in this paper, ≤cd-reductions are used). Hence, LOGCFL ⊆ NC (even
LOGCFL ⊆ NC2, the second level of the NC-hierarchy, where the depth of the occurring
circuits is restricted to O(log2 n)). The class LOGCFL has a number of different maybe
even somewhat surprising characterizations, e.g., languages in LOGCFL are those that can
be decided by nondeterministic Turing machines operating in polynomial time that have a
worktape of logarithmic size and additionally a stack whose size is not bounded.

More important for this paper is the characterization of LOGCFL as those problems
computable by SAC1 circuit families, that is, families of circuits that

− have polynomial size and logarithmic depth,
− consist of unbounded fan-in OR gates and bounded fan-in AND gates and negation gates,

but the latter are only allowed at the input-level,
− are logtime-uniform (as defined above).

Since the class LOGCFL is known to be closed under complementation, the second
condition can equivalently be replaced to allow unbounded fan-in AND gates and restrict
the fan-in of OR gates to be bounded.

To summarize:

NC1 ⊆ L ⊆ NL ⊆ LOGCFL = SAC1 ⊆ NC2;

and problems in these classes possess very efficient parallel algorithms: they can be solved
in time O(log2 n) on a parallel machine with a tractable number of processors. For more
background on these and related complexity classes, we refer the reader to [Vol99].

3. Model Checking CTL and CTLpos

This section contains our main results on the complexity of model checking for CTL and
CTLpos. We defer the analysis of the fragments CTLa.n. and CTLmon to Section 3.3, where

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY SEQUENTIAL ∗ 7

we will see that their model-checking problems are computationally equivalent to model
checking for CTLpos.

While model checking for CTL in general is known to be polynomial time solvable and
in fact P-complete [CES86, Sch03], we improve the lower bound by showing that only one
temporal operator is sufficient to obtain hardness for P.

Theorem 3.1. For each nonempty set T of CTL-operators, CTL-MC(T) is P-complete. If

T = ∅, then CTL-MC(T) is NC1-complete.

If we consider only formulae from CTLpos, where no CTL-operators are allowed inside
the scope of a negation, the situation changes and the complexity of model checking exhibits
a dichotomous behavior. As long as EG or AF are expressible the model checking problem
remains P-complete. Otherwise, its complexity drops to LOGCFL.

Theorem 3.2. Let T be any set of CTL-operators. Then CTLpos-MC(T) is

− NC1-complete if T = ∅,
− LOGCFL-complete if ∅ (T ⊆ {EX,EF} or ∅ (T ⊆ {AX,AG}, and
− P-complete otherwise.

We split the proofs of Theorems 3.1 and 3.2 into the upper and lower bounds in the
following two subsections.

3.1. Upper Bounds. In general, model checking for CTL is known to be solvable in P
[CES86]. While this upper bound also applies to CTLpos-MC(T) (for every T), we improve
it for positive CTL-formulae using only EX and EF, or only AX and AG.

Proposition 3.3. Let T be a set of CTL-operators such that T ⊆ {EX,EF} or T ⊆
{AX,AG}. Then CTLpos-MC(T) is in LOGCFL.

Proof. First consider the case T ⊆ {EX,EF}. We claim that Algorithm 1 recursively decides
whether the Kripke structure K = (W,R, η) satisfies the CTLpos(T)-formula ϕ in state
w0 ∈W . There, S is a stack that stores pairs (ϕ,w) ∈ CTLpos(T)×W and R⋆ denotes the
transitive closure of R.

Algorithm 1 always terminates because each subformula of ϕ is pushed to the stack
S at most once. For correctness, an induction on the structure of formulae shows that
Algorithm 1 returns false if and only if for the most recently popped pair (ψ,w) from S,
we have K,w 6|= ψ. Thence, in particular, Algorithm 1 returns true iff K,w |= ϕ.

Algorithm 1 can be implemented on a nondeterministic polynomial-time Turing machine
that besides its (unbounded) stack uses only logarithmic memory for the local variables.
Thus CTLpos-MC(T) is in LOGCFL.

The case T ⊆ {AX,AG} is analogous and follows from closure of LOGCFL under com-
plementation.

Finally, for the trivial case where no CTL-operators are present, model checking CTL(∅)-
formulae is equivalent to the problem of evaluating a propositional formula. This problem
is known to be solvable in NC1 [Bus87].

8 O. BEYERSDORFF, A. MEIER, M. MUNDHENK, T. SCHNEIDER, M. THOMAS, AND H. VOLLMER

Algorithm 1 Determine whether K,w0 |= ϕ.

Require: a Kripke structure K = (W,R, η), w0 ∈W , ϕ ∈ CTLpos(T)
1: push(S, (ϕ,w0))
2: while S is not empty do

3: (ϕ,w) ← pop(S)
4: if ϕ is a propositional formula then

5: if ϕ evaluates to false in w under η then

6: return false

7: end if

8: else if ϕ = α ∧ β then

9: push(S, (β,w))
10: push(S, (α,w))
11: else if ϕ = α ∨ β then

12: nondet. push(S, (α,w)) or push(S, (β,w))
13: else if ϕ = EXα then

14: nondet. choose w′ ∈ {w′ | (w,w′) ∈ R}
15: push(S, (α,w′))
16: else if ϕ = EFα then

17: nondet. choose w′ ∈ {w′ | (w,w′) ∈ R⋆}
18: push(S, (α,w′))
19: end if

20: end while

21: return true

3.2. Lower Bounds. The P-hardness of model checking for CTL was first stated in [Sch03].
We improve this lower bound and concentrate on the smallest fragments of monotone CTL—
w.r.t. CTL-operators—with P-hard model checking.

Proposition 3.4. Let T denote a set of CTL-operators. Then CTLmon-MC(T) is P-hard
if T contains an existential and a universal CTL-operator.

Proof. First, assume that T = {AX,EX}. We give a generic reduction from the word problem
for alternating Turing machines working in logarithmic space, which follows the same line
as the classical proof idea (see [Sch03, Theorem 3.8]), and which we will modify in order
to be useful for other combinations of CTL-operators. Let M be an alternating logspace
Turing machine, and let x be an input to M . We may assume w.l.o.g. that each transition
of M leads from an existential to a universal configuration and vice versa. Further we may
assume that each computation of M ends after the same number p(n) of steps, where p is a
polynomial and n is the length of M ’s input. Furthermore we may assume that there exists
a polynomial q such that q(n) is the number of configurations of M on any input of length
n.

Let c1, . . . , cq(n) be an enumeration of all possible configurations of M on input x,
starting with the initial configuration c1. We construct a Kripke structure K := (W,R, η)

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY SEQUENTIAL ∗ 9

by defining the set W := {cji | 1 ≤ i ≤ q(n), 0 ≤ j ≤ p(n)} and the relation R ⊆W ×W as

R :=
{
(cji , c

j+1
k)

∣∣M reaches configuration ck from ci in one step, 0 ≤ j < p(n)
}

∪
{
(cji , c

j
i)

∣∣ cji has no successor, 1 ≤ i ≤ q(n), 0 ≤ j < p(n)
}

∪
{
(c
p(n)
i , c

p(n)
i)

∣∣ 1 ≤ i ≤ q(n)
}
.

The labelling function η is defined for all cji ∈W as

η(cji) :=

{
{t}, if ci is an accepting configuration and j = p(n)
∅, otherwise

where t is the only atom used by this labelling. It then holds that

M accepts x ⇐⇒ K, c01 |= ψ1

(
ψ2

(
· · ·ψp(n)(t)

)
· · ·

)
,

where ψi(x) := AX(x) if M ’s configurations before the ith step are universal, and ψi(x) :=
EX(x) otherwise. Notice that the constructed CTL-formula does not contain any Boolean
connective. Since p(n) and q(n) are polynomials, the size of K and ϕ is polynomial in the
size of (M,x). Moreover, K and ϕ can be constructed from M and x using AC0-circuits.
Thus, A ≤cd CTLmon-MC({AX,EX}) for all A ∈ ALOGSPACE = P.

For T = {AF,EG} we modify the above reduction by defining the labelling function η
and the formula ψi as follows:

η(cji) :=

{
{dj , t}, if ci is an accepting configuration and j = p(n)
{dj}, otherwise

ψi(x) :=

{
AF(di ∧ x), if M ’s configurations before step i are universal,

EG(Di ∨ x), otherwise,

(3.1)

where dj are atomic propositions encoding the ‘time stamps’ of the respective configurations
and Di =

∨
i 6=j∈{0,...,p(n)} dj .

For the combinations of T being one of {AF,EF}, {AF,EX}, {AG,EG}, {AG, EX},
{AX,EF}, and {AX,EG}, the P-hardness of CTLmon-MC(T) is obtained using analogous
modifications to η and the ψi’s.

For the remaining combinations involving the until or the release operator, observe that
w.r.t. the Kripke structure K as defined in (3.1), AF(di ∧ x) and EG(Di ∨ x) are equivalent
to A[di−1Ux] and E[di−1Ux], and that R and U are duals.

In the presence of arbitrary negation, universal operators are definable by existential
operators and vice versa. Hence, from Proposition 3.4 we obtain the following corollary.

Corollary 3.5. The model checking problem CTL-MC(T) is P-hard for each nonempty set

T of CTL-operators.

Returning to monotone CTL, in most cases even one operator suffices to make model
checking P-hard:

Proposition 3.6. Let T denote a set of CTL-operators. Then CTLmon-MC(T) is P-hard
if T contains at least one of the operators EG, EU, ER, AF, AU, or AR.

Proof. We modify the proof of Proposition 3.4 to work with EG only. The remaining frag-
ments follow from the closure of P under complementation and Fχ ≡ ¬G¬χ ≡ [⊤Uχ],
[χUπ] ≡ ¬[¬χR¬π].

10 O. BEYERSDORFF, A. MEIER, M. MUNDHENK, T. SCHNEIDER, M. THOMAS, AND H. VOLLMER

d
0

c0
1

d
0

c0
2

· · ·
d
0

c0
q(n)

d
1

c1
1

d
1

c1
2

· · ·
d
1

c1
q(n)

d
2

c2
1

d
2

c2
2

· · ·
d
2

c2
q(n)

...
...

...
...

d
p(n)

cp(n)
1

t,d
p(n)

cp(n)
2

· · ·
t,d

p(n)

cp(n)
q(n)

d
0

c0
1

d
0

c0
2

· · ·
d
0

c0
q(n)

d
1

c1
1

d
1

c1
2

· · ·
d
1

c1
q(n)

d
2

c2
1

d
2

c2
2

· · ·
d
2

c2
q(n)

...
...

...
...

d
p(n)

cp(n)
1

t,d
p(n)

cp(n)
2

· · ·
t,d

p(n)

cp(n)
q(n)

d
0

c0
1

d
0

c0
2

· · ·
d
0

c0
q(n)

d
1

c1
1

d
1

c1
2

· · ·
d
1

c1
q(n)

d
2

c2
1

d
2

c2
2

· · ·
d
2

c2
q(n)

...
...

...
...

d
p(n)

cp(n)
1

t,d
p(n)

cp(n)
2

· · ·
t,d

p(n)

cp(n)
q(n)

· · ·

layer q(n) + 1
layer 2

layer 1

z

Figure 2: The Kripke structure K ′; dashed (resp. solid) arrows correspond to transitions
leaving existential (resp. universal) configurations.

Let the machine M , the word x, the polynomials p, q, and K be as above. Further
assume w.l.o.g. that M branches only binary in each step. Denote by W∃ (resp. W∀) the
set of states corresponding to existential (resp. universal) configurations. The purpose
of the introduced layers below is to ensure the uniqueness of the successors of universal
configurations which is essential in the construction of ψi later. We construct a Kripke
structure K ′ := (W ′, R, η) consisting of q(n) + 1 layers and a ‘trap’ as follows: let W ′ :=
W × {1, . . . , q(n) + 1} ∪ {z}. The transition relation R ⊆W ′ ×W ′ is defined as

R :=

{(
(cji , ℓ), (c

j+1
k , ℓ)

) ∣∣∣∣
cji ∈W∃,M reaches ck from ci in one step,
1 ≤ ℓ ≤ q(n) + 1, 0 ≤ j < p(n)

}

∪





(
(cji , ℓ), (c

j+1
k , i)

)
,(

(cj+1
k , i), (cj+1

k′ , q(n) + 1)
)
,(

(cj+1
k′ , q(n) + 1), z

)

∣∣∣∣∣∣
cji ∈W∀,M reaches ck and ck′ from ci in
one step, ck ≤ ck′ , 0 ≤ j < p(n)





∪
{(

(c
p(n)
i , ℓ), (c

p(n)
i , ℓ)

)
| 1 ≤ i ≤ q(n), 1 ≤ ℓ ≤ q(n) + 1

}

∪
{
(z, z)

}
.

That is, the arcs leaving an existential configurations ci lead to the successor configurations
of ci inside each layer; while any universal configuration ci has exactly one outgoing arc
pointing to its (lexicographically) first successor configuration in the layer i, from where
another arc leads to the second successor of ci in layer q(n) + 1, which in turn has an
outgoing arc to the state z (see Figure 2). The labelling function η is defined as η(z) := {z},

η((cji , ℓ)) := {ℓ, dj , t} if ci is an accepting configuration, and otherwise η((cji , ℓ)) := {ℓ, dj}
for (1 ≤ ℓ ≤ q(n) + 1). Define

ψi(x) :=

{
EG(di−1 ∨ (di ∧ x) ∨ z), if M ’s configurations before step i are universal,

EG(Di ∨ x), if M ’s configurations before step i are existential,

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY SEQUENTIAL ∗ 11

and Di =
∨
i 6=j∈{0,...,p(n)} dj . The correctness of the equivalence K,w |= AF(di ∧ x) iff

K ′, (w, ℓ) |= EG
(
di−1 ∨ (di ∧ x) ∨ z)

)
, for all w ∈ W∀, 1 ≤ ℓ ≤ q(n) + 1 and 1 ≤ i ≤ p(n)

can be verified through the following observations. ⇒: if di and x hold in all successors
of w in K, then there exists a path from (w, ℓ) to both of the series-connected successors
reaching the trap and looping there. This is the only possibility for the path as neither di−1

nor di hold below that level. As in each successor configuration the subformula di ∧ x must
be satisfied the composition of the ψis ensures that in each such state there must start an
EG-path for each universal successor. ⇐: the only path which satisfies at least one of the
three disjuncts ranges through both series-connected successor configurations and ends in
the trap. For each of the two successor states di and x hold. Thus AF(di ∧ x) is true in the
state w in the structure K.

From this, it easily follows that for

M accepts x ⇐⇒ K ′, (c01, 1) |= ψ1

(
ψ2

(
· · ·ψp(n)(t)

)
· · ·

)
.

As we essentially only duplicated the set of states in K and R can be constructed from all
triples of states inW ′,K ′ remains AC0 constructible. ConcludingA ≤cd CTLmon-MC({EG})
for all A ∈ P.

By Lemma 2.1, CTLmon-MC(T) ≤cd CTLpos-MC(T) and hence the above results
directly translate to model checking for CTLpos: for any set T of temporal operators,
CTLpos-MC(T) is P-hard if T * {EX,EF} or if T * {AX,AG}. These results cannot
be improved w.r.t. T , as for T ⊆ {EX,EF} and T ⊆ {AX,AG} we obtain a LOGCFL upper
bound for model checking from Proposition 3.3. In the following proposition we prove the
matching LOGCFL lower bound.

Proposition 3.7. For every nonempty set T of CTL-operators, the model checking problem

CTLmon-MC(T) is LOGCFL-hard.

Proof. As explained in Section 2.3, LOGCFL can be characterized as the set of languages
recognizable by logtime-uniform SAC1 circuits, i.e., circuits of logarithmic depth and poly-
nomial size consisting of ∨-gates with unbounded fan-in and ∧-gates with fan-in 2. For
every single CTL-operator O, we will show that CTLmon-MC(T) is LOGCFL-hard for all
T ⊇ {O} by giving a generic ≤cd-reduction f from the word problem for SAC1 circuits to
CTLmon-MC(T).

First, consider EX ∈ T . Let C be a logtime-uniform SAC1 circuit of depth ℓ with
n inputs and let x = x1 . . . xn ∈ {0, 1}

n. Assume w.l.o.g. that C is connected, layered
into alternating layers of ∧-gates and ∨-gates, and that the output gate of C is an ∨-
gate. We number the layers bottom-up, that is, the layer containing (only) the output gate
has level 0, whereas the input-gates and negations of the input-gates are situated in layer
ℓ. Denote the graph of C by G = (V,E), where V := Vin ⊎ V∧ ⊎ V∨ is partitioned into
the sets corresponding to the (possibly negated) input-gates, the ∧-gates, and the ∨-gates,
respectively. G is acyclic and directed with paths leading from the input to the output
gates. From (V,E) we construct a Kripke structure that allows to distinguish the two
predecessors of an ∧-gate from each other. This will be required to model proof trees using
CTLmon({EX})-formulae.

12 O. BEYERSDORFF, A. MEIER, M. MUNDHENK, T. SCHNEIDER, M. THOMAS, AND H. VOLLMER

For i ∈ {1, 2}, let V i
in := {vi | v ∈ Vin}, V

i
∨ := {vi | v ∈ V∨} and define V i

in,∨ := V i
in ∪ V

i
∨.

Further define

E′ :=
{
(v, ui) ∈ V∧ × V

i
in,∨ | (u, v) ∈ E and u is the ith predecessor of v

}

∪
{
(v, v) | v ∈ V 1

in ∪ V
2
in

}
∪

⋃

i∈{1,2}

{
(vi, u) ∈ V i

in,∨ × V∧ | (u, v) ∈ E
}
,

where the ordering of the predecessors is implicitly given in the encoding of C. We now
define a Kripke structure K := (V ′, E′, η) with states V ′ := V 1

in,∨ ∪ V
2
in,∨ ∪ V∧, transition

relation E′, and labelling function η : V ′ → P({1, 2, t}),

η(v) :=





{i, t}, if (v = vinj ∈ V
i
in and xj = 1) or (v = vinj ∈ V

i
in and xj = 0),

{i}, if (v = vinj ∈ V
i
in and xj = 0) or (v = vinj ∈ V

i
in and xj = 1) or v ∈ V i

∨,

∅, otherwise,

where i = 1, 2, j = 1, . . . , n and vin1 , . . . , vinn , vin1 , . . . , vinn enumerate the input gates
and their negations. The formula ϕ that is to be evaluated on K will consist of atomic
propositions 1, 2 and t, Boolean connectives ∧ and ∨, and the CTL-operator EX. To
construct ϕ we recursively define formulae (ϕi)0≤i≤ℓ by

ϕi :=





t, if i = ℓ,

EXϕi+1, if i is even (∨-layers),∧
i=1,2 EX(i ∧ ϕi+1), if i is odd (∧-layers).

We define the reduction function f as the mapping (C, x) 7→ (K, v0, ϕ), where v0 is the
node corresponding to the output gate of C and ϕ := ϕ0. We stress that the size of ϕ is
polynomial, for the depth of C is logarithmic only. Clearly, each minimal accepting subtree
(cf. [Ruz80] or [Vol99, Definition 4.15]) of C on input x translates into a sub-structure K ′

of K such that K ′, v0 |= ϕ, where

(1) K ′ includes v0,
(2) K ′ includes one successor for every node corresponding to an ∨-gate, and
(3) K ′ includes the two successors of every node corresponding to an ∧-gate.

As C(x) = 1 iff there exists a minimal accepting subtree of C on x, the LOGCFL-hardness
of CTLmon-MC(T) for EX ∈ T follows.

Second, consider EF ∈ T . We have to extend our Kripke structure to contain informa-
tion about the depth of the corresponding gate. We may assume w.l.o.g. that C is encoded
such that each gate contains an additional counter holding the distance to the output gate
(which is equal to the number of the layer it is contained in, cf. [Vol99]). We extend η
to encode this distance i, 1 ≤ i ≤ ℓ, into the “depth-propositions” di as in the proof of
Proposition 3.4. Denote this modified Kripke structure by K ′. Further, we define (ϕ′

i)0≤i≤ℓ
as

ϕ′
i :=





t, if i = ℓ,

EF(di+1 ∧ ϕ
′
i+1), if i is even,∧

i=1,2 EF(di+1 ∧ i ∧ ϕ
′
i+1), if i is odd.

Redefining the reduction f as (C, x) 7→ (K ′, v0, ϕ
′
0) hence yields the LOGCFL-hardness of

CTLmon-MC(T) for EF ∈ T .
Third, consider AX ∈ T . Consider the reduction in case 1 for CTLmon({EX})-formulae,

and let f(C, x) = (K, v0, ϕ) be the value computed by the reduction function. It holds that

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY SEQUENTIAL ∗ 13

C(x) = 1 iff K, v0 |= ϕ, and equivalently C(x) = 0 iff K, v0 |= ¬ϕ. Let ϕ′ be the formula
obtained from ¬ϕ by multiplying the negation into the formula. Then ϕ′ is a CTLa.n.({AX})-
formula. Since LOGCFL is closed under complement, it follows that CTLa.n.-MC({AX}) is
LOGCFL-hard. Using Lemma 2.1, we obtain that CTLmon-MC({AX}) is LOGCFL-hard,
too. An analogous argument works for the case AG ∈ T . The remaining fragments are even
P-complete by Proposition 3.6.

Using Lemma 2.1 we obtain LOGCFL-hardness of CTLpos-MC(T) for all nonempty
sets T of CTL-operators.

In the absence of CTL-operators, the lower bound for the model checking problem again
follows from the lower bound for evaluating monotone propositional formulae. This problem
is known to be hard for NC1 [Bus87, Sch10].

3.3. The Power of Negation. We will now show that model checking for the fragments
CTLa.n. and CTLpos is computationally equivalent to model checking for CTLmon, for any
set T of CTL-operators. Since we consider ≤cd-reductions, this is not immediate.

From Lemma 2.1 it follows that the hardness results for CTLmon-MC(T) also hold for
CTLa.n.-MC(T) and CTLpos-MC(T). Moreover, the algorithms for CTLpos-MC(T) also
work for CTLmon-MC(T) and CTLa.n.-MC(T) without using more computation resources.
Both observations together yield the same completeness results for all CTL-fragments with
restricted negations.

Theorem 3.8. Let T be any set of CTL-operators. Then CTLmon-MC(T), CTLa.n.-MC(T),
and CTLpos-MC(T) are

− NC1-complete if T is empty,

− LOGCFL-complete if ∅ (T ⊆ {EX,EF} or ∅ (T ⊆ {AX,AG},
− P-complete otherwise.

Moreover, the problems CTLmon-MC(T), CTLa.n.-MC(T), and CTLpos-MC(T) are equiv-
alent w.r.t. ≤cd-reductions.

This equivalence extends Lemma 2.1. We remark that this equivalence is not straight-
forward. Simply applying de Morgan’s laws to transform one problem into another requires
counting the number of negations on top of ∧- and ∨-connectives. This counting cannot
be achieved by an AC0-circuit and does not lead to the aspired reduction. Here we obtain
equivalence of the problems as a consequence of our generic hardness proofs in Section 3.2.

4. Model Checking Extensions of CTL

It has been argued that CTL lacks the ability to express fairness properties. To address
this shortcoming, Emerson and Halpern introduced ECTL in [EH86]. ECTL extends CTL

with the F
∞

-operator, which states that for every moment in the future, the enclosed formula
will eventually be satisfied again: for a Kripke structure K, a path x = (x1, x2, . . .), and a
path formula χ

K, x |= F
∞

χ iff K,xi |= Fχ for all i ∈ N.

The dual operator G
∞

is defined analogously. As for CTL, model checking for ECTL is known
to be tractable. Moreover, our next result shows that even for all fragments, model checking
for ECTL is not harder than for CTL.

14 O. BEYERSDORFF, A. MEIER, M. MUNDHENK, T. SCHNEIDER, M. THOMAS, AND H. VOLLMER

Algorithm 2 Case distinction for EF
∞

1: else if ϕ = EF
∞

α then

2: nondet. choose k ≤ |W | and a path (wi)1≤i≤k such that (w,w1) ∈ R
⋆, (wk, w1) ∈ R

3: nondet. choose some 1 ≤ i ≤ k and push(S, (α,wi))
4: end if

Theorem 4.1. Let T be a set of temporal operators. Then ECTL-MC(T) ≡cd CTL-MC(T ′)

and ECTLpos-MC(T) ≡cd CTLpos-MC(T ′), where T ′ is obtained from T by substituting F
∞

with F and G
∞

with G.

Proof. For the upper bounds, notice that ECTL-MC(ALL∪ {EF
∞

,AF
∞

}) ∈ P. It thus remains

to show that ECTLpos-MC(T) ∈ LOGCFL for T ⊆ {EX,EF,EF
∞

} and T ⊆ {AX,AG,AG
∞

}

First, consider the case that T ⊆ {EX,EF,EF
∞

}. We modify Algorithm 1 to handle EF
∞

by
extending the case distinction in lines 4–19 with the code fragment given in Algorithm 1.

The algorithm for T ⊆ {AX,AG,AG
∞

} is analogous and membership in LOGCFL follows
from its closure under complementation.

For the lower bounds, we extend the proofs of Propositions 3.4, 3.6 and 3.7 to handle

sets T involving also the operators AF
∞

, AG
∞

, EF
∞

, and EG
∞

. Therefore, we only need modify
the accessibility relation R of respective Kripke structure K to be reflexive. The hardness

results follow by replacing F with F
∞

and G with G
∞

in the respective reductions.
First consider the case that T contains an existential and a universal operator, say

T = {AF
∞

,EG
∞

}. LetM , x, and p be defined as in the proof of Proposition 3.4. We map (M,x)

to (K̃, c01, ψ1), where K̃ = (W,R, η) is the reflexive closure of the Kripke structure K defined

for the P-hardness of CTL-MC({AF,EG}), c01 ∈ W , and ψ := ψ1

(
ψ2

(
· · ·ψp(n)(t)

)
· · ·

)
,

where

ψi(x) :=

{
AF

∞

(di ∧ x), if M ’s configurations in step i are universal,

EG
∞

(Di ∨ x), otherwise,

In K̃ it now holds that di ∈ η(w) and (w,w′) ∈ R together imply that either w = w′ or

di /∈ η(w
′). Hence, for all w ∈W and 1 ≤ i ≤ p(|x|), K̃, w |= AF

∞

(di∧x) iffK,w |= AF(di∧x),

and K̃, w |= EG
∞

(
∨
i 6=j∈{0,...,p(n)} dj ∨ x) iff K,w |= EG(

∨
i 6=j∈{0,...,p(n)} dj ∨ x). From this,

correctness of the reduction follows. The P-hardness of CTL-MC(T) for the remaining
fragments follows analogously.

As for T ⊆ {EX,EF,EF
∞

}, we will show that ECTLmon-MC(T) is LOGCFL-hard under

≤cd-reductions for T = {EF
∞

}. Let C, x, and ℓ be as in the proof of Proposition 3.7. We

map the pair (C, x) to the triple (K̃ ′, v0, ϕ0), where K̃ ′ = (V ′, E′, η) is the reflexive closure
of the Kripke structure K ′ defined for the LOGCFL-hardness of CTL-MC({EF}), v0 ∈ V

′,
and ϕ0 is recursively defined via (ϕ′

i)0≤i≤ℓ as

ϕi :=





t, if i = ℓ,

EF
∞

(di+1 ∧ ϕi+1), if i is even,∧
i=1,2 EF

∞

(di+1 ∧ i ∧ ϕi+1), if i is odd.

Again, we have that in K̃ ′, di ∈ η(v) and (v, v′) ∈ E′ together imply that either v = v′ or

di /∈ η(v
′). It hence follows K̃ ′, v |= EF

∞

(di ∧ ϕi) iff K ′, v |= EF(di ∧ ϕi), for all v ∈ V ′ and

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY SEQUENTIAL ∗ 15

1 ≤ i ≤ ℓ. We conclude that ECTLmon-MC({EF
∞

}) is LOGCFL-hard. The case T = {AG
∞

}
follows analogously.

We will now consider CTL+, the extension of CTL by Boolean combinations of path
formulae which is defined as follows. A CTL+-formula is a CTL⋆-formula where each pure
temporal operator in a state formula occurs in the scope of a path quantifier. The set of
all CTL-formulae is a strict subset of the set of all CTL+-formulae, which again forms a
strict subset of the set of all CTL⋆-formulae. For example, AGEFp and A(Gp ∧ Fq) are
CTL+-formulae, but AGFp is not. However, CTL is as expressive as CTL+ [EH85].

By CTL+(T) we denote the set of CTL+-formulae using the connectives {∧,∨,¬}
and temporal operators in T only. Analogous to the fragments CTLpos(T), CTLa.n.(T),
and CTLmon(T), we define CTL+

pos(T), CTL+
a.n.(T), and CTL+

mon(T) as those fragments

of CTL+(T) that disallow temporal operators in the scope of negations, contain negation
signs only directly in front of atomic propositions, and do not contain negation signs at all,
respectively.

In contrast to CTL, model checking for CTL+ is not tractable, but ∆p
2-complete

[LMS01]. Below we classify the complexity of model checking for both the full and the
positive fragments of CTL+.

Theorem 4.2. Let T be a set of temporal operators containing at least one path quantifier.

Then CTL+-MC(T) is

− NC1-complete if T ⊆ {A,E},
− P-complete if {X} (T ⊆ {A,E,X}, and
− ∆p

2-complete otherwise.

Proof. If T ⊆ {A,E} then deciding CTL+-MC(T) is equivalent to the problem of evaluating
a propositional formula, which is known to be NC1-complete [Bus87, Sch10].

If {X} (T ⊆ {A,E,X}, then CTL+-MC(T) can be solved using a labelling algorithm:
Let K = (W,R, η) be a Kripke structure, and ϕ be a CTL+({A,E,X})-formula. Assume
w.l.o.g. that ϕ starts with an E and that it does not contain any A’s. Compute K,w |= ψ for
all w ∈ W and all subformulae Eψ of ϕ such that ψ is free of path quantifiers, and replace
Eψ in ϕ with a new proposition pψ while extending the labelling function η such that
pψ ∈ η(w) ⇐⇒ K,w |= ψ. Repeat this step until ϕ is free of path quantifiers and denote
the resulting (propositional) formula by ϕ′. To decide whether K,w |= ϕ for some w ∈W , it
now suffices to check whether ϕ′ is satisfied by the assignment implied by η(w). As for all of
the above subformulae Eψ of ϕ, ψ ∈ CTL+({X}), it follows thatK,w |= ψ can be determined
in polynomial time in the size of K and ψ. Considering that the number of labelling steps
is at most O(|ϕ| · |W |) it follows that CTL+-MC(T) is in P. The P-hardness follows from
CTL-MC({EX}) ≤cd CTL+-MC({E,X}) resp. CTL-MC({AX}) ≤cd CTL+-MC({A,X}).

For all other possible sets T , we have T∩{E,A} 6= ∅ and T∩{F,G,U} 6= ∅. Consequently,
each of the temporal operators A, E, F, and G can be expressed in CTL+(T). The claim
now follows from [LMS01].

For the positive fragments of CTL+ we obtain a more complex picture:

Theorem 4.3. Let T be a set of temporal operators containing at least one path quantifier.

Then CTL+
pos-MC(T) is

− NC1-complete if T ⊆ {A,E},
− LOGCFL-complete if T = {A,X} or T = {E,X},

16 O. BEYERSDORFF, A. MEIER, M. MUNDHENK, T. SCHNEIDER, M. THOMAS, AND H. VOLLMER

− P-complete if T = {A,E,X},
− NP-complete if E ∈ T , A 6∈ T and T contains a pure temporal operator aside from X,

− coNP-complete if A ∈ T , E 6∈ T and T contains a pure temporal operator aside from X,

and

− ∆p
2-complete otherwise.

Proof. The first and third claim follow from Theorem 4.2 and the monotone formula value
problem being NC1-complete [Sch10].

For the second claim, consider the case T = {E,X}. It is straightforward to adopt
Algorithm 1 to guess a successor w′ of the current state once for every path quantifier
E that has been read and decompose the formula w.r.t. w′. For T = {A,X} analogous
arguments hold.

The fourth claim can be solved with a labelling algorithm analogously to the algorithm
for CTL+-MC({A,E,X}). In this case, however, whole paths need to be guessed in the
Kripke structures. Hence, we obtain a polynomial time algorithm deciding CTL+

pos-MC(T)

using an oracle B ∈ NP (resp. B ∈ coNP) . This algorithm is furthermore a monotone ≤p
T-

reduction from CTL+
pos-MC(T) to B, in the sense that for any deterministic oracle Turing

machine M that executes the algorithm,

A ⊆ B =⇒ L(M,A) ⊆ L(M,B),

where L(M,X) is the language recognized by M with oracle X. Both NP and coNP are
closed under monotone ≤p

T-reductions [Sel82]. We thus conclude that CTL+
pos-MC(T) ∈ NP

(resp. CTL+
pos-MC(T) ∈ coNP).

As for the NP-hardness of CTL+
pos-MC(T), note that the reduction from 3SAT to

LTL-MC({F}), the model checking problem for linear temporal logic using the F-operator
only, given by Sistla and Clarke in [SC85] is a reduction to CTL+

pos-MC({E,F}) indeed.

The NP-hardness of CTL+
pos-MC({E,G}) is obtained by a similar reduction: let ϕ be a

propositional formula in 3CNF, i.e., ϕ =
∧n
i=1 Ci with Ci = ℓi1 ∨ ℓi2 ∨ ℓi3 and ℓij = xk

or ℓij = ¬xk for all 1 ≤ i ≤ n, all 1 ≤ j ≤ 3, and some 1 ≤ k ≤ m. Recall that for
a set A,

∨
A denotes the disjunction

∨
a∈A a. We map ϕ to the triple (K, y0, ψ), where

K = (W,R, η) is the Kripke structure given in (4.1) and ψ := E
∧n
i=1

∨3
j=1 G

∨
(Φ \ {∼ℓij})

with Φ := {y0, yi, xi, xi | 1 ≤ i ≤ m} and ∼ℓij denoting the complementary literal of ℓij.

W := {y0} ∪ {xi, xi, yi | 1 ≤ i ≤ m},

R := {(yi−1, xi), (xi, yi), (yi−1, xi), (xi, yi) | 1 ≤ i ≤ m} ∪ {(ym, ym)},

η(w) := {w} for all w ∈W.

(4.1)

Note that the above reductions prove hardness for CTL+
mon-MC(T) already. The coNP-

hardness of CTL+
pos-MC({A,G}) and CTL+

pos-MC({A,F}) follows from the same reductions.

As for the the last claim, note that the ∆p
2-hardness of CTL

+-MC({A,E,F,G}) carries
over to CTL+

mon-MC({A,E,F,G}), because any CTL+({A,E,F,G})-formula can be trans-
formed into a CTL+

a.n.({A,E,F,G})-formula, in which all negated atoms ¬p may be replaced
by fresh propositions p that are mapped into all states of the Kripke structure whose label
does not contain p. It thus remains to prove the ∆p

2-hardness of CTL
+
pos-MC({A,E,F}) and

CTL+
pos-MC({A,E,G}). Consider CTL+

pos-MC({A,E,G}). Laroussinie et al. reduce from
SNSAT, that is the problem to decide, given disjoint sets Z1, . . . , Zn of propositional vari-
ables from {z1, . . . , zp} and a list ϕ1(Z1), ϕ2(x1, Z2), . . . , ϕn(x1, . . . , xn, Zn) of formulae in

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY SEQUENTIAL ∗ 17

xn

xn

xn−1

xn−1

· · ·

· · ·

x1

x1

z1

z1

z2

z2

· · ·

· · ·

zp

zp

cn cn−1 . . . c1

s
11

n

s
00

n

s
10

n

s
01

n

s
11

n−1

s
00

n−1

s
10

n−1

s
01

n−1

s
11

2

s
00

2

s
10

2

s
01

2

s
11

1

s
00

1

s
10

1

s
01

1

Figure 3: Extended version of the Kripke structure constructed in [LMS01, Figure 3].

conjunctive normal form, whether xn holds in the unique valuation σ defined by

σ(xi) = ⊤ ⇐⇒ ϕi(x1, . . . , xi−1, Zi) is satisfiable. (4.2)

An instance I of SNSAT is transformed to the Kripke structure K depicted in Figure 3 and
the formula ψ2n−1 that is recursively defined as

ψk := E

[
G

(n∨

i=1

xi → E
(
¬F

n∨

i=1

(s00i ∨ s
01
i ∨ s

10
i ∨ s

11
i) ∧ F(

n∨

i=1

xi 6→ ψk−1)
))

︸ ︷︷ ︸
(A)

∧ G

(n∧

i=1

¬ci
)

︸ ︷︷ ︸
(B)

∧
n∧

i=1

(
Fxi →

∧

j

∨

m

Fℓi,j,m

)

︸ ︷︷ ︸
(C)

]
,

for 1 ≤ k ≤ n, ψ0 := ⊤, and ϕi =
∧
j

∨
m ℓi,j,m, where the ℓi,j,m’s are literals over

{x1, . . . , xn}∪Zi. Note that the structure K from Figure 3 differs from the Kripke structure

constructed in [LMS01] in that we introduce different labels ci and sji for 1 ≤ i ≤ n and
j ∈ {00, 01, 10, 11}, as we need to distinguish between the states later on. The intuitive
interpretation of (B) is that the existentially quantified path does actually encode an as-
signment of {x1, . . . , xn} to {⊥,⊤}, while (C) states that this assignment coincides with
σ on all propositions that are set to ⊤. Lastly (A) expresses the recursion inherent in the
definition of SNSAT. It holds that I ∈ SNSAT ⇐⇒ K,xn |= ψ2n−1 (see [LMS01] for the
correctness of this argument).

We modify the given reduction to not use F. First note that ψk−1 occurs negatively in ψk.
We will therefore consider the formulae ψ2n−1, ψ2n−3, . . . , ψ1 and ¬ψ2n−2,¬ψ2n−4, . . . ,¬ψ2

separately. In ψ2n−1, ψ2n−3, . . . , ψ1 replace

− (A) with G

(n∨

i=1

xi → E
(
G

n∧

i=1

(¬s00i ∧ ¬s
01
i ∧ ¬s

10
i ∧ ¬s

11
i) ∧ G(

n∨

i=1

xi ∨
n∨

i=1

ci ∨ ¬ψk−1)
))

,

− (C) with

n∧

i=1

(
G¬xi ∨

∧

j

∨

m

G

∨
(Φ \ {∼ℓi,j,m})

)
;

and in ¬ψ2n−2,¬ψ2n−4, . . . ,¬ψ2 replace

− (A) with
∨

1≤i≤n

G

(∨
(Φ \ {xi}) ∨ A

(
G(

∨
Φ \ {ci}) ∨ G(ci ∨ ψk−1

))
,

18 O. BEYERSDORFF, A. MEIER, M. MUNDHENK, T. SCHNEIDER, M. THOMAS, AND H. VOLLMER

− (B) with
n∨

i=2

G

∨
(Φ \ {s00i , s

01
i , s

01
i−1, s

11
i−1}), and

− (C) with

n∨

i=1

(
G

∨
(Φ \ {xi}) ∧

∨

j

∧

m

G¬ℓi,j,m
)
,

where Φ := {xi, xi, ci, s
00
i , s

01
i , s

10
i , s

11
i | 1 ≤ i ≤ n} ∪ {zi, zi | 1 ≤ i ≤ p} is the set of all

propositions used in K. Denote the resulting formulae by ψ′
k, k ≥ 0. In ψ′

k, all negations
are atomic and only the temporal operators E,A and G are used.

To verify that K,xk |= ψk ⇐⇒ K,xk |= ψ′
k for all 0 ≤ k < 2n, consider ψk with k odd

first. Suppose K,xk |= ψk. Then, by (A), there exists a path π in K such that whenever
some xi is labelled in the current state πp, then there exists a path π′ starting in πp that

never visits any state labelled with sji , 1 ≤ i ≤ n, j ∈ {00, 01, 10, 11}, and eventually falsifies
ψk−1 because it reaches a state where neither xi nor ci holds for all 1 ≤ i ≤ n. Hence, by
construction of K, π′ has to visit the states labelled with ci and xi for i such that xi ∈ η(πp).
This is equivalent to the existence of a path π′ starting in πp which never visits any state

labelled with sji , 1 ≤ i ≤ n, j ∈ {00, 01, 10, 11}, and that falsifies ψk−1 if the current state is
not labelled with ci or xi for all 1 ≤ i ≤ n. Hence the substitution performed on (A) does
not alter the set of states in K on which the formula is satisfied.

The formula (C), on the other hand, states that whenever the path π quantified by the
outmost E in ψk visits the state labelled xi, then for every clause j in the ith formula ϕi of
given SNSAT instance at least one literal ℓi,j,m occurs in the labels on π (i.e., ϕi is satisfied
by the assignment induced by π). The path π is guaranteed to visit either a state labelled
xi or a state labelled xi but not both, by virtue of the subformula (B). Therefore, the
eventual satisfaction of xi is equivalent to globally satisfying ¬xi, whereas the satisfaction
of ϕi can be asserted by requiring that for any clause some literal is globally absent from
the labels on π. Thus the substitution performed on (C) does not alter the set of states on
which the formula is satisfied either. Concluding, K,xk |= ψk ⇐⇒ K,xk |= ψ′

k for all odd
0 ≤ k < 2n.

Now, if k is even, then

¬ψk ≡ A

[
F

(n∨

i=1

xi ∧ A
(
F

n∨

i=1

(s00i ∨ s
01
i ∨ s

10
i ∨ s

11
i) ∨ G(

n∨

i=1

xi → ψk−1)
))

︸ ︷︷ ︸
(A)

∨ F

(n∨

i=1

ci

)

︸ ︷︷ ︸
(B)

∨
n∨

i=1

(
Fxi ∧

∨

j

∧

m

G¬ℓi,j,m
)

︸ ︷︷ ︸
(C)

]
.

Here, (A) asserts that on all paths π there is a state πp such that xi ∈ η(πp) for some

1 ≤ i ≤ n and all paths π′ starting in πp eventually visit a state labelled with sji , 1 ≤ i ≤ n,
j ∈ {00, 01, 10, 11}, or satisfy ψk−1 whenever xi ∈ η(πp) for some 1 ≤ i ≤ n. By construction
ofK, this is equivalent to stating the all paths π′ either pass the state labelled ci and globally
satisfy ci ∨ ψk−1 or do not pass the state labelled ci. As for the states in K the formula
F
(∨n

i=1 xi ∧ χ
)
≡

∨n
i=1 F

(
xi ∧ χ

)
is satisfied iff

∨n
i=1 G

(∨
(Φ \ {xi})∨χ

)
is satisfied, the set

of states in K on which the ψk is satisfied remains unaltered when substituting (A) with∨
1≤i≤n G

(∨
(Φ \ {xi}) ∨ A

(
G(

∨
Φ \ {ci}) ∨ G(ci ∨ ψk−1

))
.

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY SEQUENTIAL ∗ 19

Similarly, the set of states in K on which the ψk is satisfied remains unaltered when
substituting (B) with

∨n
i=2 G

∨
(Φ \ {s00i , s

01
i , s

01
i−1, s

11
i−1}), as any path in K that visits a

state labelled with some ci cannot pass via states labelled with s00i , s01i , s01i−1, or s
11
i−1.

Finally, the equivalence of ψk with
∨n
i=1

(
G
∨
(Φ \ {xi})∧

∨
j

∧
m G¬ℓi,j,m

)
follows from

arguments similar to those for the (C) part in the case that k is odd. We conclude that
K,xk |= ψk ⇐⇒ K,xk |= ψ′

k for all 0 ≤ k < 2n. Hence, CTL+
pos-MC({A,E,G}) is ∆p

2-hard.

For T = {A,E,F} similar modifications show that CTL+
pos-MC(T) is ∆p

2-hard, too. This
concludes to proof of Theorem 4.3.

Finally consider ECTL+, the combination of ECTL and CTL+. One can adapt the

above hardness and membership proofs to hold for F
∞

and G
∞

instead of F and G: For example,

to establish the ∆p
2-hardness of ECTL

+
pos-MC(T) in case T = {A,E,G

∞

} we modify K such
that the states labelled xn and xn are reachable from zp and zp and assert that (a) the
path quantified by the outmost path quantifier in ψk, 1 ≤ i < 2n, additionally satisfies∧n
i=1(G

∞

¬xi ∨ G
∞

¬xi) and (b) whenever xi is labelled, then there exists a path that all but a

finite number of times satisfies xi. The changes if F
∞

is available instead of G
∞

follow by the
duality principle of these operators. For its model checking problem we hence obtain:

Corollary 4.4. Let T be a set of temporal operators containing at least one path quantifier

and let T ′ by obtained from T by substituting F
∞

with F and G
∞

with G. Then ECTL+-MC(T) ≡cd

CTL+-MC(T ′) and ECTL+
pos-MC(T) ≡cd CTL+

pos-MC(T).

5. Conclusion

We have shown (Theorem 3.2) that model checking for CTLpos(T) is already P-complete
for most fragments of CTL. Only for some weak fragments, model checking becomes easier:
if T ⊆ {EX,EF} or T ⊆ {AX,AG}, then CTLpos-MC(T) is LOGCFL-complete. In the case

that no CTL-operators are used, NC1-completeness of evaluating propositional formulae
applies. As a direct consequence (Theorem 3.1), model checking for CTL(T) is P-complete
for every nonempty T . This shows that for the majority of interesting fragments, model
checking CTL(T) is inherently sequential and cannot be sped up using parallelism.

While all the results above can be transferred to ECTL (Theorem 4.1), CTL+ and
ECTL+ exhibit different properties. For both logics, the general model checking problem
was shown to be complete for ∆p

2 in [LMS01]. Here we proved that model checking fragments
of CTL+(T) and ECTL+(T) for T ⊆ {A,E,X} remains tractable, while the existential and
the universal fragments of CTL+

pos(T) and ECTL+
pos(T) containing temporal operators other

than X are complete for NP and coNP, respectively.
Instead of restricting only the use of negation as done in this paper, one might go one

step further and restrict the allowed Boolean connectives in an arbitrary way. One might,
e.g., allow the exclusive-OR as the only propositional connective. This has been done for
the case of linear temporal logic LTL in [BMS+09], where the complexity of LTL-MC(T,B)
for an arbitrary set T of temporal operators and B of propositional connectives was studied.
For example, restricting the Boolean connectives to only one of the functions AND or OR
leads to many NL-complete fragments in the presence of certain sets of temporal operators.
However a full classification is still open.

Considering the CTL variants considered in this paper, plus CTL⋆, over arbitrary sets
of Boolean operators would be one way to generalise our results. In the case of CTL+ and

20 O. BEYERSDORFF, A. MEIER, M. MUNDHENK, T. SCHNEIDER, M. THOMAS, AND H. VOLLMER

NC1-c.

LOGCFL-c.

LOGCFL-c.

P-c.

EX,EF

AX,AG

EX,EF

AX,AG

O

AX,AG,O

EX,EF,O

ALL

O = AF,AU,AR,EG,EU,ER

Figure 4: Complexity of CTLpos-MC(T) for all sets T of CTL-operators (depicted as a
“finite automaton” where states indicate completeness results and arrows indicate
an increase of the set of CTL-operators).

CTL⋆, where model checking is intractable [EL87, Sch03, LMS01], such a more fine-grained
complexity analysis could help draw a tighter border between fragments with tractable
and intractable model checking problems. As for the corresponding satisfiability problems
CTL-SAT(T,B) and CTL⋆-SAT(T,B), their complexity has been determined—with respect
to the set of Boolean operators, completely—in [MMTV09].

Throughout this paper, we have assumed that the formula and the Kripke structure
are part of the input and can vary in size. The case where the complexity is measured
in terms of the size of the formula (or the Kripke structure), and the other component is
assumed to be fixed, is usually referred to as specification complexity (or system complexity).
Our approach measures the joint complexity. In applications, where usually the structure
is significantly bigger than the specification, an analysis of the system complexity becomes
interesting. For system complexity, model checking for CTL and CTL⋆ is already NL-
complete [BVW94, KVW00]. Still, the hope for a significant drop of system complexity
justifies a systematic analysis of fragments of these logics.

References

[BMM+09] O. Beyersdorff, A. Meier, M. Mundhenk, T. Schneider, M. Thomas, and H. Vollmer. Model
checking CTL is almost always inherently sequential. In Proc. 16th International Symposium on

Temporal Representation and Reasoning. IEEE Computer Society Press, 2009.
[BMS+09] M. Bauland, M. Mundhenk, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer. The tractabil-

ity of model checking for LTL: the good, the bad, and the ugly fragments. In Proc. 5th Methods

for Modalities, volume 231 of Electronic Notes in Theoretical Computer Science, pages 277–292,
2009.

[Bus87] S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proc. 19th Symposium on

Theory of Computing, pages 123–131. ACM Press, 1987.
[BVW94] O. Bernholtz, M. Vardi, and P. Wolper. An automata-theoretic approach to branching-time

model checking (extended abstract). In Proc. 6th International Conference on Computer Aided

Verification, volume 818 of Lecture Notes in Computer Science, pages 142–155. Springer, 1994.
[CES86] E. Clarke, E. A. Emerson, and A. Sistla. Automatic verification of finite-state concurrent systems

using temporal logic specifications. ACM Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

[EC82] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize synchro-
nization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

MODEL CHECKING CTL IS ALMOST ALWAYS INHERENTLY SEQUENTIAL ∗ 21

[EH85] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal logic
of branching time. Journal of Computer and System Sciences, 30(1):1–24, 1985.

[EH86] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on branching versus
linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.

[EL87] E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes back.
Science of Computer Programming, 8(3):275–306, 1987.

[KF09] L. Kuhtz and B. Finkbeiner. LTL Path Checking is Efficiently Parallelizable. International Col-
loquium on Automata, Languages and Programming, 2009.

[KVW00] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. Journal of the ACM, 47(2):312–360, 2000.

[Lar95] F. Laroussinie. About the expressive power of CTL combinators. Information Processing Letters,
54(6):343–345, 1995.

[LMS01] F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking CTL+ and FCTL is hard. In
Proc. 4th Foundations of Software Science and Computation Structure, volume 2030 of Lecture
Notes in Computer Science, pages 318–331. Springer Verlag, 2001.

[Mar04] N. Markey. Past is for free: on the complexity of verifying linear temporal properties with past.
Acta Informatica, 40(6-7):431–458, 2004.

[MMTV09] A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. The complexity of satisfiability for frag-
ments of CTL and CTL⋆. International Journal of Foundations of Computer Science, 20(5):901–
918, 2009.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.
[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th Symposium on Foundations of Com-

puter Science, pages 46–57. IEEE Computer Society Press, 1977.
[Ruz80] W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences, 21:218–

235, 1980.
[RV97] K. Regan and H. Vollmer. Gap-languages and log-time complexity classes. Theoretical Computer

Science, 188:101–116, 1997.
[SC85] A. Sistla and E. Clarke. The complexity of propositional linear temporal logics. Journal of the

ACM, 32(3):733–749, 1985.
[Sch03] Ph. Schnoebelen. The Complexity of Temporal Logic Model Checking, volume 4 of Advances in

Modal Logic, pages 393–436. King’s College Publications, 2003.
[Sch10] H. Schnoor. The complexity of model checking for Boolean formulas. Int. Journal on Foundations

of Computer Science, 21(3):289–309, 2010.
[Sel82] A. L. Selman. Reductions on NP and P-selective sets. Theoretical Computer Science, 19:287–304,

1982.
[Vol99] H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical

Computer Science. Springer Verlag, Berlin Heidelberg, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Temporal Logic
	2.2. Model Checking
	2.3. Complexity Theory

	3. Model Checking CTL and CTLpos
	3.1. Upper Bounds
	3.2. Lower Bounds
	3.3. The Power of Negation

	4. Model Checking Extensions of CTL
	5. Conclusion
	References

