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Abstract

Optical collisions are studied in a crossed beams experiment. Differential cross sections of K-Ar
collisions are measured and are used to derive the repulsive parts of the XΣ and BΣ potential
curves. The achieved accuracy has not been realized with scattering experiments before. A colli-
sion energy resolved analysis of the final state probes the relative population of the fine-structure
states K(4p1/2) and K(4p1/2) which depends on details of the outer part of the potentials. Cal-
culations from the determined potentials are in concordance with the experimental results. The
relative population of the Na fine-structure states after Na-N2 and Na-O2 collisions is determined
similarly. The results for N2 are in very good agreement with the theory. Differential cross sec-
tions of Ca-Ar optical collisions are measured for an asymptotically forbidden transition. The
spectral dependence of the signal intensity shows a characteristic maximum. The experimental
data are in good agreement with ab initio calculations.

Wires on a microchip create a magnetic trap that is used to obtain a 87Rb Bose-Einstein conden-
sate. The roughness of the magnetic potential is characterized by the measured density of a cold
atom cloud. The measured roughness is compared to the roughness that is calculated from the
geometry of the microwire.

Key words: optical collisions, molecular potentials, Bose-Einstein condensate

In einem Aufbau mit gekreuzten Teilchenstrahlen werden optische Stöße untersucht. Differ-
entielle Wirkungsquerschnitte von K-Ar Stößen werden gemessen und benutzt, um die repul-
siven Teile der XΣ und BΣ Potentiale mit einer Genauigkeit zu bestimmen wie sie in Streuexper-
imenten bislang nicht realisiert wurde. Die relative Besetzung der Feinstrukturniveaus K(4p1/2)
und K(4p3/2) nach dem Stoß werden energieaufgeloest bestimmt. Sie hängt von den äußeren
Teilen der Potentiale ab und stimmt sehr gut mit Berechnungen auf der Basis der bestimmten
Potentiale überein. Ebenso wird die relative Besetzung der Na Feinstrukturniveaus nach Na-N2

und Na-O2 Stößen gemessen und für N2 von den theoretische Ergebnisse sehr gut reproduziert.
Differentielle Wirkungsquerschnitte des Stoßpaares Ca-Ar werden für einen asymptotisch ver-
botenen Übergang gemessen. Die spektrale Abhängigkeit der Signalintensität zeigt ein charak-
teristisches Maximum. Die experimentellen Ergebnisse stimmen gut mit ab initio Berechnungen
überein.

Mit Strömen durch Drähte auf einem Mikrochip wird eine Magnetfalle realisiert, die benutzt
wird, um ein 87Rb Bose-Einstein Kondensat zu erzeugen. Die Rauigkeit des Magnetpotentials
wird durch die Dichtemessung einer Atomwolke in der Falle charakterisiert. Die Größe der
gemessenen Rauigkeit wird verglichen mit der Rauigkeit, die sich aus der Geometrie des Drahtes
berechnet.

Schlagworte: optische Stöße, Molekülpotentiale, Bose-Einstein Kondensation
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Nous avons étudié les collisions assistées par la lumière entre deux jets atomiques croisés. Les
sections efficaces différentielles de collisions K-Ar sont mesurées et utilisées pour calculer les
parties répulsives des potentiels XΣ et BΣ. La précision sur les potentiels ainsi obtenus n’avait
jamais été atteinte auparavant dans des expériences de diffusion. Une analyse de l’état final en
fonction de l’énergie de collision nous permet de sonder la population relative entre les niveaux
fins K(4p1/2) et K(4p1/2). Cette différence relative de population dépend en détail de la structure
externe des potentiels. Les calculs à partir des potentiels déterminés sont en accord avec nos
résultats expérimentaux. Nous avons également étudié la population relative entre les états fins
d’atomes de sodium après des collisions Na-N2 et Na-O2. Les résultats pour N2 sont en très bon
accord avec la théorie. Nous avons mesuré les sections efficaces différentielles de collision pour
des collisions Ca-Ar assistées par la lumière pour une transition asymptotiquement interdite. La
dépendance spectrale de l’intensité du signal présente un maximum caractéristique. Les données
expérimentales sont en bon accord avec des calculs ab initio.

Nous avons utilisé des fils microfabriqués pour créer un potentiel magnétique dans lequel nous
avons obtenu un condensat de Bose-Einstein de 87Rb. Nous avons caractérisé la rugosité du po-
tentiel magnétique en mesurant le profil de densité d’un nuage d’atomes froids. Nous comparons
la rugosité mesurée avec la rugosité calculée par la géométrie du fil.
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Introduction

Since the first experimental evidence of atoms in the beginning of the 19th century, the
study of their nature and interaction is one of the major goals in physical and chemical
research. The characterization of the interactions of these microscopic particles demands
elaborate experimental and theoretical techniques. A widespread method for the exper-
imental study of atomic and molecular interactions is the analysis of collision experi-
ments. Collisions between atoms or molecules determine the characteristics of various
systems such as combustions, laser media, the outer atmosphere of stars, and the atmo-
sphere of the earth. Collision processes also constitute an essential mechanism involved
in chemical reactions in the gaseous phase and in the process of forming of a Bose Ein-
stein condensate. Studies of collisions reveal the underlying physical mechanisms by
characterizing the most basic system of two (or just a few) particles.

The theoretical description of atom-atom and atom-molecule collisions (as opposed to
for example electron-atom collisions) can in very good approximation be broken down
into two steps. The first step is the determination of interatomic potentials describing
the energy of the system in a certain eigenstate as a function of the static interatomic dis-
tance (Born-Oppenheimer approximation). On the basis of the potentials, the collision
dynamics are described in a second step in which also couplings between different states
can be taken into account. The treatment of cold, thermal or hot collisions with colli-
sion energies from less than a meV to MeV is hereby different only in details, not in the
overall principle. The quality of ab initio calculations of collision processes, especially for
alkali+rare-gas systems, has improved considerably with increasing computing power.
However, experimental data are still more accurate than calculations, so the possibility
of comparing calculated to experimental results is essential for testing the various theo-
retical approaches. In cases for which a calculation exceeds the computation power, an
experiment is left as the only alternative.

A widespread experimental approach to a study of collisions is a complete characteriza-
tion of the quantum states of the particles before and after the collision. This is possible
in a standard crossed beams experiment in which, however, the collision itself is not ob-
served. A direct access is possible with an optical excitation of the collision pair, a process
known as an optical collision [Bur85]. The photon serves as a tool to gain a direct insight
into the collision and can be used to coherently control the outcome of the collision.
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INTRODUCTION

An optical collision

A+B+hν → (AB)∗ → A∗ +B (0.1)

is a collision between a projectile A and a target B. The collisional complex (AB) is excited
during the collision by a photon with the energy hν which is detuned by ∆hν from the
atomic transition A→A∗. The optical transition occurs in good approximation at a fixed
distance rc of the atoms where the resonance condition

Ve(rc)−Vg(rc) = hν . (0.2)

is fulfilled [All82]. rc is called Condon radius. Vg(r) is the potential corresponding to the
initial state of the collision system as a function of the interatomic distance r and Ve is the
potential that is coupled to Vg by the light field.

Optical collisions are usually studied in gas cells [Hav86, Gon94, Beh96, Lin01]. In this
type of experiment, the signal is averaged over the scattering angle and over a thermal
distribution of collision energies. The observation of optical collisions in a crossed beams
experiment has considerably expanded the experimental possibilities, as presented first
in [Gro94]. In the so-called differential optical collisions, a scattering angle of the ex-
cited particles A∗ is selected and their velocities are determined. The technique allows a
very detailed characterization of the collision event. Differential optical collisions have
been used successfully to study Na–rare gas and Na–molecule systems [Gro96, Gro97b,
Gro99a] leading to new insights into the collision processes. In the present work, the
following differential optical collisions are studied:

K(4s)2S +Ar+hν → (KAr)2Σ → K(4p)2P1/2,3/2 +Ar

Ca(4s2)1S+Ar+hν → (CaAr)1Σ → Ca(4s3d)1D+Ar (0.3)

Na(3s)2S +M +hν → (NaM)2A′ → Na(3p)2P1/2,3/2 +M, M=N2,O2

The range of systems is thus expanded to K–Ar, another alkali+rare-gas system, and Ca–
Ar, an alkaline-earth+rare-gas collision pair.

The differential cross sections of optical collisions show pronounced Stueckelberg oscilla-
tions resulting from a coherent superposition of pathways that lead to the same scattering
angle. The interference pattern can be used to test and determine interatomic poten-
tials [Gro97a, Gro00]. Potentials can be determined with customary spectroscopic tech-
niques with an accuracy of less than cm−1. However, the measurements are restricted
to regions where bound states exist [Lee91, Bru91, Bok96, Kau97b, Zim99]. Repulsive
parts of potentials can be studied with optical collisions in gas cell experiments reach-
ing accuracies around 50 cm−1 [Hed72, Beh96]. The accuracy of potentials derived from
differential cross sections of optical collisions, however, is more precise. A combination
of results from ab initio calculations, spectroscopic measurements and differential cross
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sections of optical collisions is a novel approach to determine a set of potentials that is re-
liable over a greater range of interatomic distances for which the potentials are repulsive
as well as attractive. In this work, the technique is applied to the K-Ar system.

Coupling between different states can lead to nonadiabatic transitions during a collision
resulting in a variety of final states. Transitions in the ingoing part of a collision may
even decide over the outcome of a chemical reaction cite68. With the method of differen-
tial optical collisions, transition probabilities in the outgoing cannel of a collision can be
probed as a function of the collision energy which is more detailed than measurements
in gas cells [Gro99b]. Measured relative population ratios of the fine-structure levels of K
and Na after an optical collision will be presented.

The atomic transition that is used for the Ca–Ar system is forbidden in the free calcium
atom. It becomes an allowed molecular transition in the presence of an argon atom as
a perturber. Thus, the strength of the transition varies considerably with the Ca-Ar dis-
tance. It is given by the absolute value of the transition dipole moment. Referring to
Equation 0.2, the energy hν of the excitation photon determines the distance of the col-
lision partners at the moment of excitation. The energy is hereby usually given by its
detuning from a reference atomic transition (given in Table C). A variation of the de-
tuning thus probes the absolute value of the transition dipole moment as a function of
the interatomic distance. Comparable transitions were studied as well in alkali+rare-gas
systems [Kle88, Ued89].

The optical transition probability depends not only on the absolute value of the transition
dipole moment but also on its orientation with respect to the light polarization. The tran-
sition dipole moment reflects the geometric properties of the ground and excited state
wavefunction at the moment of excitation and is oriented with respect to the axis of the
collision partners. Notably, in a differential optical collision experiment the direction of
the axis at the moment of excitations is fixed in space. In the case of atom – atom colli-
sions, the transition dipole moment is orientated either parallel or perpendicular to the
atom – atom axis and a polarization experiment allows the determination of the relative
position vectors of the collision partners during the collision and is comparable to a pho-
tography of the collsion. For atom – molecule collisions, the orientation of the transition
dipole moments is more complicated, and polarization experiments probe the distribu-
tion of orientations of the dipole transition moments with respect to the atom-molecule
axis [Gol01, Fig02]. The polarization of the photon can not only be used to study the col-
lision event, it is also a tool to coherently control the collision. Using different elliptical
polarizations, the interference pattern of the differential cross sections can be arbitrarily
tuned by imprinting the phase of the light onto the collision complex [Sch04]. This way,
basically a tunable interferometer is established.

A Bose-Einstein condensate (BEC) is a different domain of atomic interaction. It is the
massive population of the ground state in an external trapping potential that occurs when
the phase-space density exceeds a critical value. The crucial decrease to temperatures of
nK to µK is realized by evaporative cooling which relies on the rethermalization of the
atoms by elastic collisions. Elastic collisions at low temperatures are governed only by
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one parameter, the s-wave scattering length, and the differential cross sections do not de-
pend on the scattering angle, as opposed to the thermal collisions that are studied in the
first part of this work. In a BEC, the atoms can be collectively described by a macroscopic
wavefunction resulting in interference phenomena that are commonly known in lasers or
superconductors. BEC, although predicted already in 1925, has become experimentally
accessible only some years ago in 1995 [And95, Dav95, Brad95]. For the achievement and
study of a BEC, the atoms are often held in a magnetic trap which is usually created by
macroscopic coils outside the vacuum chamber. An alternative is the use of wires on a
microchip that is mounted close to the atoms [For98, Rei99, Den99, Key00, Fol00, Rei01].
The shape of the trapping potential can be changed conveniently and accurately by the
current in the wires and atom-optical devices like wave guides and beam splitters can be
realized [Cass00, Den99, Rei01]. BEC on a microchip was achieved by several groups in
the last years [Hän01, Ott01, Sch03]. The most important technical advantage of a set-up
with a microchip is that more confining traps can be realized. Thus, a higher density
of the trapped cloud is achieved resulting in a larger elastic collision rate which sets the
timescale for the evaporative cooling process and a BEC is achieved about 10 times faster
than in an experiment with macroscopic coils. Hence, the lifetime of the atoms in the
magnetic trap can be accordingly shorter which results in weaker demands on the back-
ground pressure and thus in a significant technical simplification of the experiment. A
further advantage is the low inductivity of the micro wires allowing to turn off the mag-
netic trap very quickly. The experimental realization with a microchip is hence smaller
and more convenient.

One of the main expamples of macroscopic quantum effects is Josephson tunneling which
occurs in two superconductors separated by a finite barrier [Jos62, Mei02]. It was pointed
out even before BEC was accomplished experimentally that Josephson tunneling could
be observed in a BEC [Jav86]. For such an experiment, two traps are required that are sep-
arated on a scale of µm by a tunable tunneling barrier. It seems realistic that such traps
could be realized with wires on a microchip. Furthermore, with the high confinement
of microtraps, mono-mode atomic waveguides could be established to form a guided
interferometer. However, in various experiments a fragmentation of the atomic density
was reported when the atoms are brought close to the wires [Lea02, Kra02, For02, Lea03]
limiting the possibility of a coherent manipulation of a BEC. The reason for the fragmen-
tation is the roughness of the magnetic field from the wire which presents the current
limitation for a coherent manipulation of a BEC. The cause and the order of magnitude of
the roughness is studied in the present work. A cloud of cold atoms is used to probe the
spatial variation of the magnetic field produced by a wire on a microchip and the results
are compared to calculations that rely on an analysis of the geometry of the wire.
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Chapter 1

Theoretical description

1.1 Light absorption by a collision complex

The interaction of a collisional system with a light field results in a modification of the
potential curves. Secondly, the optical excitation is not located precisely at a fixed dis-
tance of the collision partners. It takes rather place in a region around it. In the rest of
this work, the limiting case of small light intensities is assumed for which the two ef-
fects are neglected. To justify the approximation, the magnitude of the effects will be
calculated. Furthermore, the optical transition probability will be derived. For the calcu-
lations, the dressed states model is used and the molecular system is simplified by a two
state model [Ban94, Coh92]. In the presented experiments, the duration of the laser pulse
(several ns) is long compared to the duration of the collision (several ps). Therefore, the
Hamilton operator for the light field is assumed to be time independent.
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Figure 1.1: Potential curves for the KAr system [Czu02] as an example for a system of two atoms.
Shown is the ground state XΣ1/2 and the excited state BΣ1/2 which is accessible with a positive
detuning of the laser.
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Figure 1.2: Potential energy curves of the KAr system including the energy of the photon. The
asymptote of the ground-state potential is shifted to zero. The intersection of the two curves is
denoted as the Condon radius rc.

The optical transition occurs from a ground-state potential Vg(r) to an excited-state po-
tential Ve(r). Vg(r) and Ve(r) are the eigenenergies of the Hamilton operator Hatoms(r)
(Figure 1.1). Hatoms(r) includes the interactions of the two particles as a function of the
interatomic distance r. Hlight is the Hamilton operator corresponding to the energy of the
photons. The eigenstates of Hatoms + Hlight can be described by coupled product states of
the eigenstates |g〉 and |e〉 of Hatoms and the Bloch states of the photons: |1〉 = |g〉|n+1〉 is
the ground state of the molecular system in the presence of n+1 photons, and |2〉 = |e〉|n〉
the excited state with n photons. In the experiment, the system is prepared in the initial
state |1〉 and detected in the final state |2〉. The corresponding eigenenergies are

H11 = Vg(r)+hν and H22 = Ve(r), (1.1)

as illustrated in Figure 1.2. Note that at the Condon radius rc, where Ve(rc)−Vg(rc) = hν ,
H11 = H22. The interaction between the atoms and the light is described by Hint, so the
Hamilton operator H that will be considered in the following is

H = Hatoms +Hlight +Hint. (1.2)

When written in the basis of |1〉 and |2〉, Hint introduces non-diagonal entries H12 into H.
H12 = h̄ωR

2 where ωR = Ed
h̄ is the Rabi frequency given by the electric dipole interaction

for an electric field of magnitude E and the transition dipole moment d = 〈2|er|1〉. With
typically used laser pulse energies of 0.1 mJ, a pulse duration of 12 ns and a transition
dipole moment of 1 a.u., the value of the Rabi frequency is at maximum 2.3 ·1011s−1 and

H12 ≤ 6.0 ·10−1 cm−1. (1.3)
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1.1 LIGHT ABSORPTION BY A COLLISION COMPLEX
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Figure 1.3: Modification of interatomic potentials by light shown for the KAr XΣ1/2 and BΣ1/2

state. Detuning is 480 cm−1. Dashed lines: Potentials without atom-light interaction, solid lines:
interaction included.

The eigenenergies H+,− of H are calculated by diagonalizing H:

H+,− =
H11 +H22

2
±

√(
H11 −H22

2

)2

+H2
12. (1.4)

H11,22 and H+,− are shown examplarily for the KAr system in Figure 1.3 for a detuning
of 480 cm−1. In the limit of small light intensities, H12 → 0 and the eigenvalues of H pass
into the eigenvalues H11 and H22 of Hatoms +Hlight. For nonzero H12, the crossing of the
potential curves at rc becomes an avoided crossing. The modification due to the light
field depends on r and is at maximum directly at the Condon radius with a magnitude of
H12. This is small compared to typical accuracies of calculated potentials of 10-50 cm−1.
Furthermore, the modification is significant only in a region around the Condon radius
where H12 ≥ |H11 −H22|. The region’s dimension is less than 0.01 a.u. It is thus justified
to neglect the change of the potential curves due to the interaction of the atoms with the
light field.

Now we turn to the estimation of the region of transition from |1〉 to |2〉. For this reason,
the eigenfunctions |+〉 and |−〉 of H are calculated. In the basis of |1〉 and |2〉 they can be
expressed by:

|+〉 = cosα |1〉+ sinα |2〉 |−〉 = sinα |1〉− cosα |2〉 (1.5)

with the mixing angle α given by

cot(2α) =
H11 −H22

2H12
. (1.6)
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α can vary from zero to π/2. In a certain region around the Condon radius, α changes
from values close to zero to values close to π/2. Accordingly, the composition of |+〉 goes
from almost only |1〉 to almost only |2〉. The change takes mainly place where H12 ≥ |H11−
H22|. This is the same region in which the modifications of the potentials are significant.
For the present experimental conditions, the optical excitation takes place at distances of
0.01 a.u. around the Condon radius. The assumption of a well localized transition is thus
legitimate.

For calculating the optical transition probability, a collision process has to be considered.
We start in the state |1〉 for large distances r. When the atoms approach, r is decreased. An
adiabatic (slow) following of the system would lead to the state |2〉 after having passed
the avoided crossing at rc. On the contrary, a sudden, diabatic behavior would conserve
the initial state |1〉. The probability pd for a diabatic passage can be calculated using the
Landau-Zener model [Nik84]:

pd = e−πγ (1.7)

with the Massey parameter γ = 2H2
12

h̄|∆H ′|v(rc)
where ∆H ′ = ∂r(H11(rc)−H22(rc)) is the differ-

ence in slope of the two potentials and v(rc) is the radial velocity, both taken at the Con-
don radius. Correspondingly, the probability for an adiabatic passage is pa = 1− pd. In a
full collision, the system passes the Condon radius twice and the probability poc for the
initial state |1〉 to transform into the final state |2〉 is

poc = pd(1− pd) (1.8)

Under the experimental conditions, pd is close to one and transition probabilities for KAr
are in the order of a hundredth percent. In this case, poc can be expanded in γ :

lim
γ→0

poc = πγ =
π(Ed)2

2h̄|∆H ′|v(rc)
(1.9)

Note that poc depends on the relative orientation of the polarization with respect to the
transition dipole moment.

1.2 Semiclassical description

A discussion of the semiclassical method opens an intuitive understanding of the col-
lision process The deviations between the classical and quantum mechanical treatment
are small enough to use a semiclassical treatment for qualitative discussions [Hof99]. For
quantitative comparisons, the quantum mechanical approach is used which is outlined
in section 1.3. In this section, the concept of trajectories and deflection functions will be
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Figure 1.4: Potential curves for the KAr system including the energy of the excitation photon. The
asymptote of the incoming state is shifted to zero. Left figure corresponds to the excitation taking
place in the outgoing part of the collision, right figure in the incoming part.

introduced for the case of atom–atom collisions. The deflection functions will be used to
derive an expression for the phase of the trajectory and for the differential cross section.

The starting point for a semiclassical calculation are again the two potential energy curves
Vg +hν and Ve. From these, V (r) is constructed which changes at the Condon radius from
Vg + hν to Ve. To provide uniqueness, V (r) is split into V1(r) and V2(r) for the incoming
part of the collision (ṙ < 0) and the outgoing part (ṙ > 0), respectively. There are two pos-
sible combinations of Vg +hν and Ve since the excitation can take place when the Condon
radius is passed in the incoming part of the collision or in the outgoing part, as can be
seen in Figure 1.4. Each of the two constructed V (r) is used to set up equations of motion
and calculate trajectories r(t) where r(t) is the relative position vector of the nuclei. From
the conservation of the orientation of the angular momentum follows that the trajectories
are confined to the plane that is set by the initial positions and the initial relative veloc-
ity of the atoms v. Suitable coordinates to describe the motion of the system are thus
the polar coordinates r(t) and φ(t) as illustrated in Figure 1.5. The equations of motion
are derived from the conservation of angular momentum and from the conservation of

r(t)

�(t) target atom

projectile atom

Figure 1.5: Illustration for the coordinates r and φ that are used to describe a collision.
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v
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v'
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�

r

�
target atom

projectile atom

Figure 1.6: A classical trajectory. b is the impact parameter, χ the deflection angle, v and v′ the
velocities before and after the collision, respectively, and r0 the classical turning point.

energy E [Chi74]:

ṙ(t) = ±v

√
1− V (r)

E
− b2

r2(t)
(1.10)

ϕ̇(t) =
vb

r2(t)
. (1.11)

Initial conditions are the initial relative velocity v =
√

2E
m , m being the reduced mass of

the system, and the impact parameter b. The negative sign in Equation 1.10 corresponds
to the incoming part of the collision, the positive to the outgoing part. The distance r0

for which ṙ = 0 is the classical turning point. From Equation 1.11 and Equation 1.10, the
trajectory can be calculated numerically.

The deflection angle χ (see Figure 1.6) is found by integrating ϕ over r from and to a
distance R large enough to neglect the atomic interactions, resulting in

χ(v,b) = π −
R∫

r0

b
r2


 1√

1− V1(r)
E − b2

r2

+
1√

1− V2(r)
E − b2

r2


dr. (1.12)

χ(v,b) is the deflection function which assigns every impact parameter b the correspond-
ing deflection angle for a fixed collision energy E as given by v. It can be calculated nu-
merically in a straightforward way. A typical deflection function for an optical collision
with the excitation taking place in the outgoing part of the collision is shown in Figure 1.7.
There is a largest possible impact parameter. Trajectories with larger impact parameters
do not reach the Condon radius anymore. The minimum in the deflection function at the
impact parameter br is denoted as the rainbow scattering angle θr. The experimentally
accessible scattering angle θ is related to the deflection angle by θ = |(χ +π)mod(2π)−π|
since a negative and a positive deflection angle of the same absolute value can experi-
mentally not be distinguished. The same is true for deflection angles modulo 2π .
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Figure 1.7: Deflection function. br is the impact
parameter for which the scattering angle has a min-
imum θr.
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To account for interference effects, each trajectory is assigned a phase φ(r) which can be
calculated by the stationary phase method [Chi91]. A more intuitive way, however, is an
integration of the wavenumber k(r) = m|ṙ|

h̄ over the pathway of the trajectory:

φ(r) =
r∫

R

k(r)ds (1.13)

In comparison to the stationary phase method, Equation 1.13 gives the same result apart
from several constant contributions of π

4 which are, however, not of interest for the fol-
lowing discussion. On this basis, the phase φ(v,b) of the trajectory after the collision can
be calculated. Some transformations which are given in detail in Appendix A result in a
rather simple expression:

φ(v,b) = −k

br∫
b

χ(b′)db′ − kbχ +C′. (1.14)

The integral is the area under the deflection function as illustrated in Figure 1.8. In the
case of an optical collision, there are two potentials that can be constructed leading to
two deflection functions (see Figure 1.8). They merge at the largest possible impact pa-
rameter. For all other impact parameters, the two deflection functions result in more
than one trajectory that contribute to one scattering angle. We will discuss the case of
positive deflections angles with the contribution of two trajectories which is relevant for
the discussion of the experimental results. When interference of these indistinguishable
pathways shall be taken into account, their relative phase ∆φ has to be determined. The
trajectories have different impact parameters b1(θ ) and b2(θ ) and can belong to different
deflection functions χ1 and χ2. The phase difference ∆φ(θ) is:

∆φ(θ) = k

θr∫
θ

(
b1(θ ′)−b2(θ ′)

)
dθ ′. (1.15)
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Figure 1.8: Left: Graphical illustration of Equation 1.14. The shaded area is, apart from constant
addends, proportional to the phase of the corresponding trajectory. Right: Typical example for
two deflection functions χ1 and χ2 for one Condon radius for a positive detuning. The difference
in phase of the two trajectories is proportional to the shaded area.
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Figure 1.9: A situation in the KAr system
where the two deflection functions cross. The
collision energy is 1000 cm−1, the detuning is
480 cm−1.

For a derivation of this expression refer again to Appendix A. ∆φ is directly proportional
to the area that is comprised by the deflection function at the considered scattering angle,
as illustrated in Figure 1.8. It changes with the scattering angle with an oscillation fre-
quency that is given by the difference of the corresponding impact parameters and k. ∆φ
is strictly increasing for increasing scattering angles as long as the two deflection func-
tions do not cross. In the case of a crossing, ∆φ decreases for increasing scattering angles
from the crossing point. An example for such a situation is shown in Figure 1.9. As can
be seen from Equation A.3, ∆φ depends mainly on the region of the potentials from the
Condon radius to the classical turning point.

The differential cross section dσ
dΩ(θ) is a measure for the intensity of elastically scattered

atoms into a solid angle dΩ around the scattering angle θ . Classically, it is calculated
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1.3 QUANTUM MECHANICAL TREATMENT AND NONADIABATIC COUPLINGS

from the deflection function. Taking into account the probability of the optical excitation
as calculated in section 1.1, and the phase corresponding to each trajectory results in

dσ
dΩ

=

∣∣∣∣∣∣∑j

√∣∣∣∣ b j

sinχ(dχ/db)|b j

∣∣∣∣ · π(�E�d j)2

2h̄|∆H ′|v(rc)
· eiφ j

∣∣∣∣∣∣
2

(1.16)

with the sum including all trajectories j with deflection angle χ contributing to the scat-
tering angle θ . Singularities in the differential cross section result classically in an infinite
signal and are denoted as rainbow structures. They are found for instance at the smallest
possible deflection angle (dχ/db) = 0) and at extreme values of the potential difference
(∆H ′ = 0).

Equation 1.16 is the basis for the discussion of differential optical collisions. When the
scattering angle is scanned, the change of the relative phase results in interference struc-
tures in the differential cross sections. For linear polarized light, the measured signal
depends on the relative orientation of �E and �d. Polarization experiments for which the
direction of �E is varied, give information about the orientation of the transition dipole
moments. The light contributes as well to the phase of the trajectories. When using el-
liptically polarized light, the oscillation maxima of the differential cross section can be
shifted in analogon to a tunable interferometer

1.3 Quantum mechanical treatment and nonadiabatic
couplings

For a quantitative description of optical collisions, differential cross sections are calcu-
lated from a given set of potentials using coupled channels equations. A detailed de-
scription of the procedure can be found in [Reb98]. Only a limited number of potential
curves and eigenstates are included. This is a justified approximation since only eigen-
states are neglected for which the coupling to the states of interest is much smaller than
the distance of the corresponding potential curves. Furthermore, the hyperfine structure
is neglected. The equations are solved for the limiting case of zero light intensity. As dis-
cussed in section 1.1, this is justified and implies a transition that is localized precisely at
the Condon radius and neglects the modification of the potentials due to the interaction
of the atoms with the light field. A significant influence on the interference pattern of
differential cross sections is only expected for laser intensities that are a factor 10 higher
than presently used [Reb03]. The coupling that is included at present is the spin-orbit
coupling which is assumed to be independent of the internuclear distance.

The spin-orbit coupling is the cause for nonadiabatic transitions. It is relevant in the
asymptotic parts of molecular potentials that connect to atomic states with a fine-structure
splitting as Na(3p) and K(4p). In the case of alkali+rare-gas collisions, with a positive de-
tuning the BΣ1/2 state is excited. It is adiabatically connected to the nP3/2 state of the free
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Figure 1.10: Region of coupling in which transitions from BΣ1/2 to nP1/2 can occur.

alkali atom. In the asymptotic parts of the potentials, where the angular momentum cou-
pling scheme changes from Hund’s case a or b to Hund’s case e or c, the BΣ1/2 potential
is coupled to the nP1/2 state with the coupling constant given by the spin-orbit splitting.
The transition probability from BΣ1/2 to nP1/2 goes to zero for low collision energies ap-
proaching the extreme case of adiabaticity. For high collision energies, the BΣ1/2 state
is conserved which is expressed in the basis of the atomic states by the Clebsch-Gordan
coefficients:

|BΣ1/2〉 =

√
1
3

|nP1/2〉+
√

2
3

|nP3/2〉. (1.17)

Thus, a sudden passage through the coupling region leads to a characteristic transition
probability of 1/3.

Another case for which the spin-orbit coupling introduces nonadiabatic transitions is an
avoided crossing of the two curves with angular momentum projection Ω = 1/2 which
is present in some systems. The effectiveness depends on the energy and the details of
the potentials in this region. This can lead to transition probabilities greater than 1/3
as observed in Na-Ar and Na-Kr collisions [Gro99b]. In collisions with molecules, the
probability is furthermore a function of the rotational temperature of the molecules.

The two regions of transitions are indicated in Figure 1.10. Transition probabilities for
alkali+rare-gas systems were determined in gas cell experiments [Hav86]. However, in
these measurements the quite essential value of the collision energy cannot or only indi-
rectly be determined. This is the major advantage of the method of differential optical
collisions compared to previous experiments. The determination of the collision energy
allows a direct comparison to theoretical calculations.
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Chapter 2

Experimental method

2.1 Overview

The core of the experiment are the three beams that take part in the optical collision:
the target beam, the projectile beam and the excitation laser (Figure 2.1). They intersect
roughly at right angles (exact values can be found in Table 2.1). The scattered projectile
atoms are detected by the detection laser in combination with the Rydberg detector. The
scattering volume is defined as the region where all four beams overlap. The detector
is rotatable around the axis of the laser beams to select a desired scattering angle. The
detection is state selective as well as angular and velocity resolved. The scattering angle
in the laboratory frame is measured relative to the projectile beam. The position of the
detector as seen in Figure 2.1 corresponds to a negative scattering angle.

target beam
source

projectile beam
source

rotatable
Rydberg detector

detection laser

excitation laser

scattering volume

Figure 2.1: Principle of the experimental set-up.
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2. EXPERIMENTAL METHOD

Measurements that will be presented are the number of detected atoms as a function of

1. the scattering angle (differential cross sections): The collected data can be used to
improve a given set of potentials.

2. the energy of the excitation photon, to probe the strength of the optical transition
in dependence on the interatomic distance.

3. the detected state to measure nonadiabatic transition probabilities.

In order to completely characterize a collision between two particles, the velocity vectors
of the particles as well as their internal states before and after the collision have to be
known. In this experiment, the particles are prepared in their electronic ground state.
When the optically excited collision complex separates, an excited state (Equation 0.3)
of the scattered projectile atom is selected by the detection scheme. The target particle
leaves the collision in its ground state. In measurements of atom-molecule collisions, it
was ensured that no energy transfer into rotational or vibrational degrees of freedom of
the molecule occurs. The directions of the target and projectile beam before the collision
are fixed by apertures and the mean value of the velocity of the target atoms before the
collision can be calculated. The velocity of the scattered projectile is measured by a time
of flight analysis, and the direction is selected by the detector aperture. With these infor-
mation, the remaining four parameters can be calculated from the conservation of energy
and momentum, in particular the velocity of the projectile atom before the collision and
thus the collision energy. In conclusion, a complete characterization of the observed col-
lision is achieved.

Errors in the characterization of the collision event are introduced for example by sys-
tematic errors in the measurement of the scattering angle, the angle between the particle
beams, the time of flight of the scattered projectile atoms and the corresponding distance,
and the wavelength and polarization of the excitation photon. Furthermore, the exper-
imental resolution of the kinematic quantities have to be taken into account. For this
reason, it is necessary to measure or calculate the angular and velocity distributions of
the particle beams, the dimensions of the scattering volume, and the dimensions of the
detection aperture. Errors in all these quantities and distributions introduce errors into
the interpretation of the experimental results. Their determination together with the cor-
responding uncertainties will be presented in the corresponding sections of this chapter.

angle between target and projectile beam 90.1◦-90.7◦

angle between laser and particle beams 90◦

dimensions of scattering volume ø 1 mm, length 10 mm
accessible laboratory scattering angle -18◦. . . 92◦

Table 2.1: General quantities of the experimental set-up
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2.2 LASER SYSTEM AND OPTICAL COMPONENTS

2.2 Laser system and optical components

The two laser pulses are produced by dye lasers1 which are pumped by an excimer laser2.
The excimer laser emits pulses at a wavelength of 308 nm with an energy of around
300 mJ. The maximum repetition rate is 80 Hz [Lam85]. The pump pulse is divided by
a beam splitter to pump both dye lasers simultaneously. Dyes that are used for the differ-
ent projectile atoms are given in Table 2.2. The resulting pulses of the dye lasers have a
duration of 10-20 ns with a typical maximum energy of 5 mJ. The bandwidth of the lasers
is 0.2 cm−1and the wavelength reproducibility 0.0006 nm [Lam87].

For an overview of the laser systems and optical components refer to Figure 2.2. The
lasers and the vacuum chamber are placed in two rooms which results in a pathway of
around 12 m of the light. The frequency filter for the excitation laser benefits from the
pathway. It is described below in more detail. To decrease resulting spatial instabilities
of the laser beams at the position of the vacuum chamber, they are enlarged by telescopes
to a diameter of 1-2 cm. For manipulating the polarization of the lasers, polarizers in
combination with fresnel rhombs are used. The fresnel rhombs are turned to change the
plane of polarization of the linear polarized light. The fraction of linear polarized light
thus produced is more than 99%. The direction of the polarization is adjustable with

1Dye Laser FL 3002, Lambda Physik, Göttingen
2Excimer laser EMG 201 MSC, Lambda Physik, Göttingen
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Figure 2.2: Layout of the optical components.
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projectile excitation laser detection laser

K Pyridine 2 Coumarin 47
695-790 nm 440-484 nm

Na Rhodamine 6G DPS
569-608 nm 399-415 nm

Ca Coumarin 2 DMQ
432-475 nm 346-377 nm

Table 2.2: Laser dyes used for measurements with different projectile atoms and the wavelength
at which they operate [Bra94].

an accuracy of 1◦. The lasers enter the vacuum chamber through plan parallel plates
with an anti-reflection coating so that intensity variations with the wavelength due to
interference in the plates are excluded. By a combination of lenses and apertures inside
the vacuum chamber, it is ensured that the lasers overlap with the particle beams and
that the scattering volume is confined to a diameter of 1 mm. The power density in the
scattering volume is typically 2 MW/cm2. Iris diaphragms outside the vacuum chamber
are placed in line with the inner apertures for easier adjustment of the laser beams and
to avoid stray light in the vacuum chamber. Photodiodes equipped with suitable glass
filters monitor the intensities of the lasers after the passage through the vacuum chamber.

Elimination of resonant light

Besides the peak at the selected wavelength, the lasers produce a broad amplified spon-
taneous emission (ASE) background over the entire spectrum of the dye with intensities
more than a factor 103 smaller than the peak intensity. The resonant fraction of the ASE of
the detection laser can excite the projectile atoms K and Na as free atoms which causes a
background signal. Thus, the resonant wavelengths have to be suppressed. For the mea-
surements with Ca a suppression is not necessary because the corresponding transition
of the free calcium is dipole forbidden. In previous experiments with Na, the resonant
frequencies were eliminated by a sodium vapor cell. The vapor absorbed the resonant
light and reemitted it in all directions leading to an efficient suppression of the resonant
fraction of the laser. This solution requires a different vapor cell for every projectile. Since
the range of projectile elements was expanded with this work from Na to K and Ca, a fil-
ter suitable for a broad range of wavelengths was designed (Figure 2.3): By backreflecting
the beam through two SF 10 dispersion prisms3, a dispersion of 10−3 rad/nm at the Na
D1-line and of 6·10−4 at the K D1-line is reached [LIN03]. Because of the long pathway of
the laser beam, it is easily possible to suppress the resonant fraction with iris diaphragms
before the dispersion prisms and in front of the vacuum chamber down to a detuning of
120 cm−1 even without taking much care about the adjustment. If measurements with
a smaller detuning should be made, more prisms can be employed or the diameter of
laser beams can be decreased. A drawback of this solution is the need of readjusting the
mirrors after a change of the detuning.

3LINOS, Göttingen
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Figure 2.3: The set-up to filter the excitation laser. P indicates a dispersion prism, S a mirror, A an
iris diaphragm. Shown is only the pathway of the beam for the selected wavelength.

Calibration

The wavelength of both lasers is calibrated by scanning the detection laser over Rydberg
series of the projectile and measuring the yield of Rydberg atoms. For this, the excita-
tion laser is set to a chosen detuning, so that excited projectile atoms A∗ are produced
in an optical collision. The detection laser is scanned over Rydberg series of transitions
A∗ + hνdetection →A(nl), as shown in Figure 2.4. With the measured spectrum, the detec-
tion laser is calibrated. To calibrate the excitation laser, the detection laser is scanned
over a different Rydberg series corresponding to two-photon transitions A+hνexcitation +
hνdetection →A(nl) from the ground state of the projectile to a Rydberg state (see Figure 2.5).
As the detection laser is calibrated already, the wavelength of the excitation laser can be
calculated. Alternatively, the excitation laser can be calibrated by tuning the laser to
a resonant transition from the ground state to the excited state of the projectile by ob-
serving the fluorescence from the projectiles through a window in the vacuum chamber.
However, this method is suitable only for sodium with the transition being in the yellow
region of the visible spectrum. The transitions of K and Ca are near the infrared and the
UV, respectively so that the fluorescence cannot be perceived with the bare eye.

The energies Tn,l of the Rydberg states with principal quantum number n and angular
momentum quantum number l are calculated according to the formula

Tn,l = T∞ − Rm

(n−δl)2 (2.1)

where T∞ is the ionization energy and δl is the corresponding quantum defect. Rm =
R∞/(1+ me

m ) is the Rydberg constant for the nuclide with mass m, me being the mass of the
electron and R∞ the Rydberg constant. Ionization energies are taken from [Bas75], quan-
tum defects from [Rad85]. The uncertainties in the quantum defects of a Rydberg series
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Figure 2.4: Spectrum of transitions from K(4p) to a Rydberg state nl. Vertical lines indicate the
calculated position of the peaks. The principal quantum number n of the Rydberg state is given
above the lines. The fine-structure state of the detected state and the angular momentum l of
the Rydberg state are indicated at the right side of the graph. Detuning of the excitation laser is
220 cm−1, laboratory scattering angle is 5.4◦. Most measurements on this system were made using
the K(4p3/2) →K(35d) transition.
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projectile uncertainty excitation uncertainty detection
laser [cm−1] laser [cm−1]

K 0.07 0.2
Ca 0.3 0.3
Na 0.1 0.2

Table 2.3: Uncertainty in the frequency of the lasers. Included is the uncertainty of the quantum
defects which are used to calculate the Rydberg spectra, the wavelength reproducibility of the
lasers and a typical drift of the wavelength during operation.

introduce uncertainties in the position of the calculated lines and thus in the calibration.
More sources for uncertainties of the wavelength are the reproducibility of the lasers in
wavelength and a drift of the wavelength that is observed by calibrating the lasers after
different durations of operation. A typical range for this drift is 0.004 nm. These three
effects give the total uncertainty of the wavelength which is given in Table 2.3 for the
different projectiles. It is in the order of 0.1 cm−1.

2.3 Detection scheme

Na(3p) and K(4p) have a lifetime in the order of 10−8s [Vol96]. With the velocity being
in the order of 103 m/s, they decay back to the ground state before leaving the scattering
volume. To make a detection nevertheless possible, the detection laser transfers the col-
lision products into Rydberg states. The lifetime of the Rydberg atoms is long enough to
reach the detector while the fraction of the Rydberg atoms that are scattered elastically by
the background gas on the way to the detector is neglectable even for higher pressures
than present [Klo96]. Inside the detector, Rydberg atoms are ionized and detected by a
channeltron. Alternatively, ground state projectile atoms can be detected if the photon
energies of detection and excitation laser add up to a transition from the ground state to
a Rydberg state. If the detection wavelength is chosen appropriately, only one transition
contributes to the signal.

The detector is shown in Figure 2.6. It consists of an array of nickel meshes serving
as electrodes and a channeltron4. Between the first two meshes, the electric field force of
about 170 V/mm is high enough to field ionize Rydberg atoms with a quantum number of
n = 15 and higher [Gun93]. The ionization takes place in the vicinity of the first mesh. The
ions that are thus produced inside the detector are focussed onto the channeltron. The
first and fourth mesh are set to a positive potential of +60 V and +100 V, respectively (all
potentials are given with respect to the ground potential of the vacuum chamber). They
shield the channeltron from positive ions that might be present in the vacuum chamber.
The channeltron itself is set to a negative potential of -2.7 kV, so that electrons that might
enter the detector do not reach the channeltron. The channeltron is not visible from both
the beam sources so that neutral particles from the beams do not reach the channeltron

4Elektronenvervielfacher-Kanal Typ KBL10RS, Dr. Sjuts Optotechnik GmbH, Göttingen
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Figure 2.6: The Rydberg detector. The figure on the top left shows the design of the detector. The
potentials of the meshes are shown in the figure below. The dashed line indicates the energy of
the ions inside the detector. The figure on the right illustrates the detection scheme by showing
the potential energies.

either. From the Rydberg atoms, a fraction of 70% reaches the detector under typical
experimental conditions and 70% of those are counted by the channeltron leading to a
detection efficiency of around 50% [Mae94].

The velocity of the scattered atoms is basically determined by the time of flight trun from
the scattering volume to the first mesh of the detector. trun is in the order of 100 µs and
the distance is 70 mm. To determine trun, corrections to the actual measured time texp have
to be made. trun=0 is the time at which the Rydberg atoms are produced, i.e. the arrival
of the laser pulse in the scattering volume. It is determined by the use of a photodiode
inside the detection laser. texp is the time difference between the photodiode pulse to
the amplified pulse from the channeltron (see Figure 2.7) measured by a multichannel
analyzer PC-Card5 (MCD-2 card). To texp, the running time of the photodiode pulse to
the card and the difference in processing time of the trigger and the signal pulse of the
MCD-2 card [FAS] have to be added. The time of flight of the light from the laser to the
scattering volume, the time of flight tion of the ions inside the detector (which is different
for every projectile), the running times of the pulse in the cables, and the processing time
of the preamplifier have to be subtracted. Combining all corrections, the time of flight of
the atoms from the scattering volume to the first mesh of the detector trun is

trun = texp − tion −68ns (2.2)

5MCD-2 Dual Input Multiscaler/Multichannel Analyzer, FAST ComTec GmbH, Oberhaching
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Figure 2.7: Determination of the time of flight of the Rydberg atoms

tion was calculated by simulating the pathways of the ions inside the detector with the
software package SIMION 6. The values of tion in Table 2.4 are mean time of flights for an
aperture of 3 mm x 30 mm. They are used to calculated the velocity. The uncertainties in
the determination of the time of flight sum up to a total uncertainty of 80 ns in trun. The
path length is determined with an accuracy of 0.3 mm. For a velocity of 1000 m/s this
results in a total uncertainty of 0.4%.

The assumption of nominal values for the traveling distance of the Rydberg atoms and
the time of flight of the ions is an approximation: The traveling distance of the atoms
depends on the point of origin in the scattering volume and the entrance point at the
detector. tion depends on the point of origin of the ions. The errors thus made are corrected
for when experimental results are compared to calculations as described in more detail
in section 2.9.

Figure 2.4 and Figure 2.5 show two typical measured spectra of detected transitions. In
Figure 2.4, K(4p1/2,3/2) is detected after an optical collision, in Figure 2.5, K(4s) is detected
directly. For each line, the detected state and the Rydberg state are given. If the wave-
length of the detection laser is not chosen carefully, more than one state can be detected
as can be seen for example in the second line from the right in Figure 2.4. On the other

6D. A. Dahl and J E Delmore, Simion Electrostatic Lens Analysis and Design Program, Idaho Falls, 1983

Element Time of flight of ions inside
Rydberg detector [ns]

K/Ca 1113
Na 840
Li 461

Table 2.4: Time of flight of ions from the first mesh of the Rydberg detector to the channeltron.
Mean values for an aperture of 3ṁm x 30 mm.
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hand, isolated lines are found that can be assigned to one detected state, for example both
the lines around 457.35 nm which were used for most measurements on the KAr system.

In order to change the detected scattering angle, the detector is mounted on a swivel arm.
The scattering angle is given with respect to the forward direction of the projectile beam
which is measured by a direct detection of the ground state projectile. The accuracy of
the 0◦ scattering angle and the accuracy of the swivel arm add up to an uncertainty of
0.3◦ in the given scattering angle.

The detector is also used to determine the angle between the two particle beams. This
has to be done regularly because the angle depends on the mounting of the beam sources
and can vary up to 1◦. A 0.8 mm x 8 mm aperture is mounted on the swiveled support
of the detector. With a direct detection of the ground state projectile, the direction of the
projectile beam is determined. Without changing the aperture, the Rydberg detector is
replaced by an ionization detector to measure the direction of the target beam. Thus, the
angle between the beams is measured with an accuracy of 0.3◦.

2.4 Projectile beam

The projectile beam sources consist basically of two heatable stainless steel cylinders: the
reservoir and the head. The two parts are heated to different temperatures which are
measured with thermocouples. The temperature of the reservoir determines the vapor
pressure of the projectile atoms inside the reservoir and the head and thus the particle
density in the scattering volume. From the reservoir, the atoms reach the head which
is heated to a higher temperature. The reason for the two chamber configuration is the
resulting decrease of the fraction of dimers in the beam which cause a background signal.
For typical temperatures, the fraction is decreased by a factor of 30 for K and a factor
of 60 for Na to 0.03% (Table 2.6). Calcium atoms are less likely to form dimers, even
without the two chamber configuration the fraction does not exceed 0.001%. Apart from
the fraction of dimers, the temperature of the head determines the velocity distribution of
the projectile atoms. The atoms leave the head through a line of capillaries. The sources
are mounted inside a cooled copper chamber with an aperture that confines the projectile
beam to the scattering volume. On the cold copper surface, the projectile atoms that do
not leave the chamber directly are deposited so that the projectile background pressure
in the scattering volume is reduced.

There are two types of projectile beam sources (Figure 2.8) that are different, however,
only in the technical realization. While for potassium and sodium the maximum required
temperature of the reservoir is about 750 K, for calcium temperatures up to 1100 K are
needed. Hence, the sources for potassium and sodium can be heated by commercial
heating devices (heating cartridge7 and heating cable8), while for the calcium source a

7T+H HLP 0203, Türk+Hillinger GmbH, Tuttlingen
82ZE/15/25-44/Ti/CW2 15, Thermocoax, Stapelfeld
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Figure 2.8: Front view of the projectile beam sources and top view of the calcium beam source.

Potassium/Sodium Calcium

reservoir
heating device heating cartridge tantalum wire (ø0.5 mm)
temperature 550-750 K 970-1070 K
volume 11.4 cm3 11.4 cm3

head
heating device heating cable tantalum wire (ø0.5 mm)
temperature 850-970 K 1040-1140 K

distance capillaries-scattering volume 71.2 mm 63.6 mm
diameter and length of capillaries ø0.8 mm; 8 mm ø0.8 mm; 5 mm
number of capillaries 10 per 10.6-11.8 mm 9 or 10 per 9 mm
gasket nickel ring stainless steel ring
particle density in beam 2·1021-3·1022/m3 1·1021-8·1021/m3

mean velocity 730-1030 m/s 800-840 m/s
aperture 1 mm x 10 mm 1 mm x 10 mm
distance aperture – scattering volume 7.2 mm 7.2 mm

Table 2.5: Relevant quantities of the projectile beam sources
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Figure 2.9: Profile of the projectile beam. Full width at half maximum is 1.3◦ which includes the
angular resolution of the detection aperture of 0.7◦.

tantalum wire is used. A second difference is the gasket which seals the reservoir to the
head. It is a ring made of nickel for potassium and sodium. Nickel has a high enough
melting point of 1728 K being nevertheless soft enough to serve as a gasket. With calcium,
nickel cannot be used because it forms an alloy with calcium with a melting point as low
as 878 K at a weight percent of nickel of 16% [Mas90]. After use, the melted alloy makes
it impossible to separate the head from the reservoir for refilling. Thus, a ring made of
stainless steal is used as a gasket in the case of calcium. Concerns that the hard material
does not seal satisfactorily have not been affirmed.

The beam profile as shown in Figure 2.9 is measured by directly detecting the projectile
atoms by a two-photon transition as a function of the laboratory scattering angle. The
angular resolution of the aperture of the detector was 0.7◦ for this measurement. The
measured full width at half maximum is 1.3◦.

The angular distribution of one capillary was calculated representatively for sodium (left

projectile Tr [K] pr [mbar] fraction of dimers
in reservoir [%]

Th [K] fraction of dimers
in head [%]

K 590 0.62 1.0 850 0.03
Na 665 0.40 2.0 970 0.03
Ca 1050 0.68 0.0003 1130 <0.0009

Table 2.6: Vapor pressure [Nes63] and fractions of dimers [Var87, All04] in reservoir and head
for typical temperatures of the projectile sources. Tr: temperature of reservoir, Th: temperature of
head, pr: vapor pressure in reservoir
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Figure 2.10: Calculated angular distribution of projectile atoms (left) and the resulting density
over the scattering volume (right) shown representatively for sodium.

part of Figure 2.10). The concepts for the calculation are described in [Gol04, Hof95,
Mil88]. The density distribution in the scattering volume along the axis of the lasers as it
results from the contribution of all capillaries is presented in the right part of Figure 2.10.
The density is almost constant over the scattering volume: In the outmost parts of the
scattering volume the density is 3% lower than in the center.

For low vapor pressures, the projectile beam is in the effusive regime. Thus, the velocity
distribution p(v) of the particles can be described by a Maxwell-Boltzmann distribution

p(v) ∼ v2e−( v
vw )2

(2.3)

with vw =
√

2·kB·Th
m1

and Th the temperature of the head. However, this does not describe
the real velocity distribution correctly. Firstly, the temperature is measured at the out-
side of the head, so the real temperature is most probably higher. Secondly, for the sake
of high projectile densities, the projectile source is operated at higher vapor pressures
than those for which a purely thermal behavior is expected. Both effects lead to higher
velocities than calculated with Equation 2.3. To derive a more realistic assumption, the
velocity distribution of the projectile atoms before the collision is measured by detect-
ing the projectile atoms directly by a two-photon transition in forward direction of the
projectile beam. Thus, a fraction α of the projectile atoms in the scattering volume V
is transferred into a Rydberg state, depending on the intensity and duration ∆t = 10−8 s
of the laser pulses. There are n(v) ·V atoms in the scattering volume, where n(v) is the
velocity-resolved density distribution of the projectile atoms, and V = 2.5π · 10−9 m3 the
volume of the scattering volume. Additionally, v · n(v) ·A ·∆t atoms enter the scattering
volume during the laser pulse. A = 10−5 m2 is the projection of the scattering volume
onto a plane perpendicular to the projectile beam. The atoms have a mean length of
flight through the scattering volume of 2

π ·d (d = 10−3 m is the diameter of the scattering
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Figure 2.11: Comparison of measured ve-
locity distribution of the flux of potassium
atoms in comparison with a Maxwell-
Boltzmann distribution (dashed line) for
a measured temperature of 887 K of the
head of the beam source and a fit accord-
ing to Equation 2.4 (solid line).

volume) and thus a mean time of dwelling in the scattering volume of 2d
πv . For a typi-

cal velocity of 1000 m/s, this is long compared to the duration of the laser pulse. So the
atoms that additionally enter the scattering volume are still there when the laser pulse is
over. However, for them the mean pulse duration is only half of the real pulse duration.
This can be combined to the intensity of the signal I(v)

I(v) ∝ n(v) ·V ·α + v ·n(v) ·A ·∆t · α
2

=

α ·n(v) · (π ·2.5 ·10−9m3 + v ·5 ·10−14m2/s). (2.4)

Thus, for the velocity range that is relevant for the collisions (i.e. up to 2000 m/s), the
second term of Equation 2.4 can be neglected. In the above considerations, the atoms that
leave the scattering volume are not accounted for. Their number is a fraction of the second
term in Equation 2.4 which makes its neglection even more justified. In conlculsion,
the velocity distribution of the measured signal is directly proportional to the velocity
distribution of the density of the projectile atoms before the collision. For a description
of I(v), the function

Ifit(v) ∼ v2e(p(v)) (2.5)

is fitted to the measured data where the fitting parameters are the coefficient of a poly-
nomial of fifth grade p(v). A measured velocity distribution is shown in Figure 2.11 to-
gether with the fitted function in Equation 2.5 and the Maxwell-Boltzmann distribution
(Equation 2.3) of the measured temperature. Indeed, the velocity is higher than expected
from a thermal distribution and the description by the fit is therefore necessary and real-
istic.
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2.5 Target beam

Argon beam source

The argon beam is produced by a nozzle9 in combination with a skimmer (Figure 2.12).
The nozzle is pulsed to reduce the pressure of the background gas being triggered by
a commercial control unit10. The design of the source is such that the expansion of the
beam is supersonic [Hoh95, Weh95]. A detailed treatment of supersonic beams is left out
here but can be found in [Mil88]. The velocity distribution p(v) of a supersonic beam can
be approximated by a Gaussian:

p(v) ∝ e−
m(v−vm)2

2kBTt . (2.6)

m is the mass of the atom, kB the Boltzmann constant. The width is given by the transla-
tional temperature Tt. The mean velocity vm is higher than the mean velocity of a corre-
sponding thermal distribution. The parameters vm and Tt depend on physical properties
of the gas, the pressure in the reservoir, the diameter of the nozzle, and the temperature
of the reservoir. Typical calculated values for an argon beam are:

vm = 540m/s Tt = 4.5K.

The angular distribution I(θ ) is given by

I(θ) ∝ cos2 (1.15θ). (2.7)

For a typical distance of the nozzle from the scattering volume this results in a target
density of 80% at the outmost parts of the scattering volume compared to the one in
the center. Angular distribution and density distribution over the scattering volume are
shown in Figure 2.13.

It turned out that the velocity distribution given by Equation 2.6 is not realistic if the
pressure in the reservoir exceeds a critical value. A reason for this may be found in
the expansion of the so-called quitting surface with increasing pressure in the reservoir.
Following the definition of [Mil88], the quitting surface divides the region of continuum
flow from the region of free molecular flow. Having passed the quitting surface, the
atoms are assumed not to undergo collisions anymore. In Figure 2.12 the quitting surface
is indicated by the arc. The distance of the quitting surface to the nozzle increases with
the pressure in the reservoir. If the quitting surface reaches the skimmer, the expansion
can be disturbed so that no supersonic beam is established. Clearly, a critical reservoir
pressure has to be found for which the argon velocity is still under control.

9series 9 high speed solenoid nozzle, General Valve, Fairfield
10IOTA pulse driver, General Valve, Fairfield
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Skimmer

scattering volume

nozzel

quitting surface

reservoir
valve

aperture of skimmer 5.38 mm x 0.76 mm
inclination of skimmer 53◦

distance skimmer – scattering volume 5.02 mm
distance nozzle – scattering volume 12.5 mm
dimensions of nozzle diameter: 0.2 mm
pressure in reservoir 100-800 mbar

Figure 2.12: Design of argon beam source with relevant quantities of the source.
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Figure 2.13: Calculated angular distribution of argon atoms (left) and the resulting density over
the scattering volume (right). Both distributions are normalized to the values in forward direction.
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Figure 2.14: Experimental test of argon velocity distribution for three different scattering angles.
Top left: measured velocity of potassium before collision (data points with error bars). The line
describes the velocity distribution by a Gaussian. Top right to bottom right: Comparison of cal-
culated (line) and measured (data points with error bars) velocity of scattered potassium atoms
after optical collision. Laboratory scattering angle is 18◦, 27◦, and 34◦, respectively from top right
to bottom right. Detuning of the excitation laser is 480 cm−1.

35



2. EXPERIMENTAL METHOD

The experimental determination of the argon velocity was achieved indirectly: The veloc-
ity of the potassium atoms before the collision was measured by a two-photon excitation
of the ground state potassium into a Rydberg state. The resolution was increased by a
chopping wheel inserted into the projectile beam which is described in detail in [Gol04].
Thus, the velocity distribution before the collision could be described by a Gaussian with
a maximum at 1002 m/s and a full width at half maximum of 219 m/s (see Figure 2.14
top left). Assuming a supersonic argon beam, the velocity of the postassium after an op-
tical collision was calculated taking into account the experimental resolutions. Results
for three different scattering angles with an argon pressure of 100 mbar are presented in
Figure 2.14. It was found that the potassium velocity could be reproduced within ±3 m/s
with an error of ±4 m/s. This can be transformed into an uncertainty of the argon velocity
of ±8 m/s. However, the uncertainties of the quantities that are needed for the convolu-
tion of the theoretical differential cross sections to get the velocity distribution after the
collision are estimated to sum up to a total uncertainty of ±15 m/s in the argon velocity at
this pressure. In comparison, for an argon pressure of 150 mbar and 250 mbar, the mea-
sured velocities were found to be shifted by 20 m/s and 35 m/s, respectively, towards
lower values. Thus, the argon velocity can be assumed to be 33 m/s and 58 m/s lower
than the velocity of a supersonic beam. The exact meachnisms that lead to a slower argon
beam, however, had not been studied, so that the velocity distribution is questionable for
pressures exceeding 100 mbar. Almost all measurements were performed with an argon
pressure of 100 mbar or less. In the experiments with CaAr, a background signal that is
negligible in the other experiments dominated over the signal of an optical collision at
argon pressures of 100 mbar. Therefore, a higher Ar pressure was exeptionally used. As-
suming a thermal velocity distribution of the argon beam as the worst case, the resulting
systematic errors of the calculated collision energies are estimated to be in the order of
100 cm−1.

Molecular target beam source

In previous measurements, the atomic target beam source was also used for molecular
targets. However, it turned out that it was not possible to produce a supersonic beam for
molecular gases under the present experimental conditions. Therefore, a thermal beam
source is used in measurements with molecular targets for which the kinematic quantities
are well defined accepting the drawback of a wider velocity distribution.

While the beam is also pulsed, the design is such that the beam is effusive, so that the ve-
locity distribution can be described by a Maxwell-Boltzmann distribution (Equation 2.3)
which was checked experimentally just as described above for the argon beam source.
The calculated values were found to agree with the experimental data within 10 m/s
(Figure 2.17). Relevant quantities of the nozzle can be found in Figure 2.16 together with
a drawing of the source itself. The angular distribution of the beam and the resulting
density distribution in the scattering volume was calculated in the same manner as for
the argon beam source. It is shown in Figure 2.15 for both molecules. The target density
changes about 30% over the scattering volume.
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Figure 2.15: Calculated angular distribution of target atoms (left) and the resulting density over
the scattering volume (right) for the molecules N2 and O2.

valve

reser-
voir

capillaries

aperture

scattering volume

dimensions of capillaries diameter: 10 µm, length: 1 mm
distance between capillaries 12 µm
area of array 1.2x11 mm2

distance array – scattering volume 10.3 mm ± 0.1 mm
dimensions of aperture 1.1 mm x 11 mm
distance aperture – scattering volume 2.0 mm
pressure in reservoir N2: 40 mbar, O2: 35 mbar
density in center of scattering volume N2: 1.3 x 1020 m−3

O2: 1.5 x 1020 m−3

temperature 290 K
mean velocity N2: 468 m/s, O2: 438 m/s

Figure 2.16: Design of molecular target beam source with relevant quantities of the source.
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Figure 2.17: Experimental tests of N2 velocity distribution. Comparison of calculated (line) and
measured (data points with error bars) velocity of scattered Na atoms after an optical collision
with N2. Laboratory scattering angle is 18.9◦, detuning is 240 cm−1.

2.6 Vacuum system

The vacuum system consists of two differentially pumped vacuum chambers. Everything
but the target gas nozzle is placed in the scattering chamber which is pumped by an
oil diffusion pump reaching pressures around 10−6-10−7 mbar without operating beams
and 10−5-10−6 mbar with beams in operation. The target gas nozzle is placed in a second
chamber. It is pumped by a turbo molecular pump. The pressure is around 10−7 mbar
if the nozzle is closed and rises typically to 10−4-10−3 mbar when the nozzle opens for
300 µs with a repetition rate of 80 Hz.

2.7 Background signals and corrections

Projectile atoms are detected after an optical collision in an excited state A∗ by transfer-
ring them into a Rydberg state A(nl) with n typically larger than 20. If projectile atoms
reach a Rydberg state by a process other than an optical collision with a target particle
and a subsequent transfer to a Rydberg state by the detection laser, they can cause a sig-
nal that is denoted in the following as background signal. There are various mechanisms
that lead to background signals, some of which can be suppressed while others have to
be corrected for. The process of detecting a projectile atom after an optical collision is
characterized by employing one particle of each of the four beams. Background signals
usually require not all of the beams or more than one particle from a beam, making it
possible to identify competing processes, minimize or quantitize them.
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2.7 BACKGROUND SIGNALS AND CORRECTIONS

Identified sources of background signal are:

1. Directly excited projectile atoms: Projectile atoms can be excited directly, i.e. not
during a collision but as a free atom:

A+hν → A∗. (2.8)

This can be caused by resonant fractions in the spectrum of the excitation laser.
By suppressing the resonant fractions with the dispersion prisms (Figure 2.3), the
process is completely eliminated. A direct excitation can also occur by multi-photon
processes, for example hyper-Raman excitation: The projectile absorbs two photons
from the excitation laser emitting one photon of another frequency to end in the
detected excited state,

A+2hν → A∗ +hν ′. (2.9)

If hν or 2hν are energetically close to a transition from the ground state, this process
is enhanced. This is for example the case for small detunings of the laser. As two
photons from the excitation laser are needed, the ratio of the background to the
entire signal can be decreased by using a lower intensity of the excitation laser.
Since no collision partner is involved, the angular distribution is the one of the
projectile beam.

2. Projectile-projectile optical collisions: An excitation of the projectile atom can take
place during a collision with another projectile atom,

A+A+hν → (AA)∗ → A∗ +A. (2.10)

A is either directly from the beam or from undirected projectile atoms from the
background pressure in the copper chamber of the projectile source. The process
requires two projectile atoms, so its intensity in relation to the entire signal is de-
creased by decreasing the projectile density. Secondly, when the temperature of the
copper chamber is lowered, a decrease of this type of background is achieved since
the background pressure is reduced. The angular distribution of this background
is broad and is not changed considerably by the target gas.

3. Projectile dimers: Remaining dimers in the projectile beam can be photodissoci-
ated with at least one of the projectile atoms ending up in the excited state,

A2 +hν → A∗ +A. (2.11)

This process is decreased by using a higher temperature of the head of the projectile
source to decrease the fraction of dimers in the beam. It has also got a broad angular
distribution.
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2. EXPERIMENTAL METHOD

4. Spontaneous emission: A projectile atom that was excited either during an optical
collision or by another process can decay. The emitted photon can be absorbed by
another projectile atom,

A∗ +A → A+A+hν → A+A∗. (2.12)

The background signal was found to decrease if the detection laser pulse arrives
around 2 ns before the excitation laser pulse in the scattering volume [Mae94], prob-
ably because a reasonable fraction of A∗ is transferred into A(nl) before decay-
ing. Under these conditions, the contribution of spontaneous emission to the back-
ground signal can be neglected.

5. Directly detected projectile atoms: For small or negative detunings the energy of
the excitation laser plus detection laser can be resonant to a direct transition from
the ground state into a Rydberg state,

A+hν1 +hν2 → A(nl). (2.13)

The yield of this process is much larger than that of an optical collision and prevents
measurements if present. However, the process is easily avoided by selecting a
suitable detection transition hν2 for which no two-photon transition is resonant.

6. Detection during optical collision: If the intensity of the detection laser is in-
creased, the signal saturates, as can be seen in Figure 2.22. At the same time, when
scanning the wavelength of the detection laser the signal does not decrease to zero
between the lines. A possible explanation for this is the detection transition occur-
ing also during the collision for which the saturation takes place at much higher
intensities as for the detection of a free atom. When this is the case, a determina-
tion of the internal state of the projectile is no longer possible. By chosing the laser
intensity low enough, the process is sufficiently suppressed

7. Background signal without lasers

In measurements with alkali-atoms as a projectile, there is a vanishing counting
rate when the lasers are turned off. It turns out to be the dominating background
signal when the calcium beam source is in operation. Two processes were identi-
fied that contribute to the so called “dark” signal. One process involves charged
particles, probably electrons evaporating from the glowing tantalum wire. After
two electrodes at 0 and around 100 V were placed as well in front of the aperture of
the projectile beam and in front of the detector aperture, charged particles are de-
flected by the electric fields and cannot exit the copper chamber of the particle beam
source or enter the detector, respectively. The “dark” signal was thus reduced dras-
tically about a factor of 100. A different set-up was tested where the beam source
as a whole was shielded by a stainless steel containment that could be set to a de-
sired potential. This has proven to be an even more promising approach after care
was taken that a layer of calcium does not electrically connect the containment to
the ground potential. The remaining contribution to the “dark” signal might come
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Figure 2.18: Signal of CaAr optical collision for two intensities of the excitation laser. Detuning:
300 cm−1, scattering angle: 21.6◦. The background signal is measured by turning off the lasers.

from metastable calcium atoms that are ionized when they hit the meshes of the
detector. As a solution, a detector without meshes could be used, a suitable design
for such a detector having been proposed [Mat95].

The experimental parameters are chosen such that all background signals are minimized.
But in favor of realistic data taking periods, not all of it can be avoided. In measurements
with calcium, the background signal 7. dominated over all the others so that as the only
correction procedure the signal without lasers is measured and subtracted from the sig-
nal with lasers. The dependency of the thus quantified signal on the excitation laser was
tested and found to double with double intensity (Figure 2.18) which is a strong indica-
tion that the intensity of the optical collision is quantified correctly.

In measurements with sodium and potassium, process 7. is negligible and processes
5. and 6. are avoided. There remain two types of background signal to be corrected
for: Type I with a broad angular distribution which remains essentially unchanged by
the target gas (2.-4.) and type II with the same narrow angular distribution as the pro-
jectile beam (1.). The background of type I is measured without the target gas as a func-
tion of the scattering angle. Due to the broad angular distribution it can be interpolated
from higher angles to the forward direction of the projectile beam. The unscattered back-
ground signal of type II in forward direction is calculated by subtracting the interpolated
background signal type I from a measurement in forward direction without target gas.
The fraction of the projectile atoms that are scattered from the beam to higher scattering

41



2. EXPERIMENTAL METHOD

−4 −2 0 2 4
laboratory scattering angle [deg]

0

10

20

30

si
gn

al
 in

te
ns

ity
 [a

rb
. u

ni
ts

]

without gas
with gas

Figure 2.19: Projectile beam profile with and without target gas.

angles by the target gas is measured by directly detecting the projectile atoms with the
target gas turned off in forward direction and with the gas turned on at scattering an-
gles. The background signal of type II is scattered likewise and can thus be calculated.
Due to the large detuning of the excitation laser, the background signal of type II con-
tributes less than one percent to the entire signal in the here presented measurements.
The background signal of type I, however, can be much higher. Although the stability of
the experimental conditions would in principle allow a precise determination of the back-
ground signal of higher percentages than 25%, data with a background contribution of
more than that are discarded to ensure that uncertainties due to imprecisions in the back-
ground quantification are negligible. The measurements shown in this work are always
corrected for both types of background. The error bars of the data points correspond to
one standard deviation and include usually only the statistical error.

The Rydberg atoms can not only be elastically scattered by the target gas but also stabi-
lized. The stabilizing process relies on a change of the angular momentum of the Rydberg
atom by a collision with a target-gas atom by which the probability of an optical decay
of the Rydberg atom is decreased and thus the detection efficiency is higher. The back-
ground signal type I is then understimated since it is measured without gas. The amount
of stabilization can only roughly be estimated. It depends on the target element and was
found to be more effective for molecular targets than for atomic targets. The angular dis-
tribution of the projectile atoms is measured with and without target gas, see Figure 2.19.
When the target gas is turned on, the width of the distribution is increased due to elastic
scattering. If there is a not neglectable amount of stabilization, the total signal increases.
In the example for KAr that is shown in Figure 2.19, the width increases by 0.1◦ when the
gas is turned on while a significant stabilization is not observed.
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Figure 2.20: Signal dependency on intensity of excitation laser. Detuning is 480 cm−1, scattering
angle 21.6◦.

The dependence of the signal on both laser intensities is presented for the KAr system.
If the intensity of the excitation laser is varied, as shown in Figure 2.20, the background-
corrected signal increases linearly. The background signal of type I shows saturation.

For low intensities of the detection laser, the signal shows an increase with the intensity
that can be sufficiently approximated by a power function (Figure 2.21). For higher in-
tensities, saturation is reached, as seen in Figure 2.22. The onset of this plateau depends
on the other experimental parameters. The detection laser intensity is chosen well below
the plateau to ensure a correct state selection (see 6. on page 40).

Another source for systematic errors is the fact that the intensity of the beams, especially
the one of the laser beams, cannot be kept constant for longer measurements. This is
accepted only if the decrease in signal is slow compared to one cycle of the measurement.
To correct for this, two procedures can be employed. One data point can be measured
several times during the measurement. Its intensity is used as a reference to correct the
intensity of the other data points in between the reference point. Another possibility is
to run the experimental cycle alternating forward and backward so that changes in the
beam intensities are averaged.
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Figure 2.21: Signal dependency on detection laser intensity: Low intensities. Detuning: 640 cm−1,
scattering angle: 21.6◦
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Figure 2.22: Signal dependency on detection laser intensity: High intensities. Detuning: 480 cm−1,
scattering angle: 21.6◦
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2.8 Data acquisition, automatization and electronics

The measurements are conducted automatically by a computer with a program written in
LabView11. There are seven parameters that can be set automatically, as listed in Table 2.7
with the corresponding step width, and illustrated in Figure 2.23. The TTL pulses for the
stepping motors that rotate the Fresnel rhombs and the swivel arm of the detector are
given by a multi function PC-Card12 (DaqBoard). A digital output of the DaqBoard con-
trols the trigger for the nozzle while two analog digital converter inputs read the voltages
of the photodiodes that monitor the laser intensities. The wavelength of the lasers is set
by sending commands via a GPIB interface of the computer. The possibility to adress
a third laser via the COM1 port of the computer was included for future experiments.
The communication of the computer with the hardware is illustrated in Figure 2.23. Time
insensitive communications paths are indicated by thin arrows. They are in use before
taking a data point to set all parameters to the desired value.

The process of taking a data point is initiated by the excitation laser that sends trigger
pulses to a trigger switch with a repetition rate that is specified by the computer. The
trigger switch sends a trigger to the control unit of the nozzel. After a tunable delay
in the order of milliseconds follows a trigger to the excimer laser, so that the dye laser
pulses are produced. The data are taken by a multichannel analyzer PC-Card13 (MCD-2
card). It is triggered by a pulse from the photodiode in the detection laser. The amplified
pulses from the channeltron are sorted into 4096 channels corresponding to time intervals
of 125 ns. The data are read out by the program from the MCD-2 card and the number
of laser pulses is counted. When the desired number is reached, the excitation laser is
given the command to stop sending the trigger and the counts of the MCD-2 card are

11National Instruments, München
12DaqBoard/2000, IOtech, Cleveland
13MCD-2 Dual Input Multiscaler/Multichannel Analyzer, FAST ComTec GmbH, Oberhaching

Parameter step width controlled by means of

wavelength of excitation laser 0.3 nm stepping motor that tilts grating
in resonator of laser

wavelength of detection laser 0.3 nm stepping motor that tilts grating
in resonator of laser

orientation of polarization of ex-
citation laser

0.225◦ stepping motor that turns fresnel
rhomb

orientation of polarization of de-
tection laser

0.225◦ stepping motor that turns fresnel
rhomb

detected scattering angle 0.00475◦ stepping motor that turns swivel
arm of detector

trigger for Ar-nozzle on/off digital output (high/low)
wavelength of a third laser 0.0001 nm stepping motor that tilts grating

Table 2.7: The parameters that can be varied automatically by the computer and their increments.
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Figure 2.23: Illustration of the communication of computer with experimental hardware. Thick
arrows indicate the trigger pulses that are time sensitive.

summed up for all laser pulses. The velocity that corresponds to the measured time of
flight is calculated with nominal values for the distance from the scattering volume to the
detector and the time of flight of the ions inside the detector (see section 2.3) and the data
are sorted into velocity intervals that are usually equally spaced. The delay of the trigger
switch is chosen such that the gas and the laser pulses overlap in the scattering volume.
It is determined experimentally. The digital output of the DaqBoard is read by the trigger
switch, and the trigger to the nozzel is only send if the output is high (i.e. the voltage is
-5 V). Otherwise, the nozzel trigger is left out for a measurement without target gas. The
measurements are done in cycles that are repeated automatically. The data are saved on
a different computer at regular intervals for further processing.

2.9 Convolution of theoretical data

In order to compare calculated data to experimental results, the theoretical data are con-
verted from center-of-mass coordinates to the laboratory-frame coordinates and the ex-
perimental resolutions are taken into account. The method is comparable to a convolu-
tion with an apparatus function and will hence be denoted such in the following. For
the convolution, the relevant factors that influence the experimental resolution are taken
into account: the velocity distribution before the collision of both the projectile and the
target beam, the dimensions of the scattering volume and of the aperture of the detector
and the resolution of the velocity of the scattered atoms. The nozzle of the target beam
and the individual openings of the projectile beam source are assumed as point sources.
The different times-of-flight of the ions inside the detector as a function of their point of
origin are corrected for. Most of this section deals with the mathematical details of the
transformation and convolution.
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Figure 2.24: Illustration of the differential scattering rate.

We start with the differential scattering rate dI in laboratory coordinates. The optical
collision of particles with velocities �vpr and �vt takes place in a finite volume dτ around
�r (as illustrated in Figure 2.24). The particles are scattered into the solid angle element
dΩlab around the scattering angle θlab .

dI(dΩlab,dτ,�E) = |�vpr −�vt| n
dσlab

dΩlab
dΩlab dτ (2.14)

with n = n(�vpr,�vt,�r) = npr(�vpr,�r) ·nt(�vt,�r) the product of the particle densities at�r and �E the

electric field vector of the light. dσlab
dΩlab

= dσlab
dΩlab

(
�vpr,�vt,�E,θlab

)
is the differential cross section

in the laboratory frame.

To obtain the total scattering rate I, Equation 2.14 is integrated over the velocities before
the collision, the scattering volume and the solid angle of the detection aperture as seen
from the center of the scattering volume:

I
(

Ωdet,�E
)

=
∫

d�vpr

∫
d�vt

∫
dτ

∫
dΩdet

∣∣∣∣dΩlab

dΩdet

∣∣∣∣ |�vpr −�vt| n
dσlab

dΩlab
(2.15)

where
∣∣∣ dΩlab

dΩdet

∣∣∣ = �v ṕr·(�v ṕr−�r)|(�v ṕr−�r)|
|�v ṕr|3 (see Figure 2.24).

All quantities on the right side of Equation 2.15 are converted to center-of-mass coordi-
nates since the differential cross sections are calculated in the center-of-mass frame. But
first, the velocity resolved detection of the scattered particles shall be discussed. For every
combination (�vpr,�vt), the velocity v ′

pr of the particle scattered into dΩdet can be calculated
from the conservation of energy and momentum as described in detail in Appendix B.
The velocity �v ′

pr,a that is assigned to the detected particle by the data acquisition pro-
gram can be slightly different, because a nominal pathway and a nominal time of flight
of the ions inside the detector is assumed. �v ′

pr,a is calculated by determining the time of
flight that is be measured. It is the sum of the time of flight to the point of ionization in
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the detector as caclulated from v ′
pr , and the time of flight of the ions to the channeltron.

Subtracting the nominal time of flight and dividing by the nominal pathway results in
�v ′

pr,a . In the data acquisition, the counts from particles with an assigned velocity between
vl and vr are summed up. The sum is introduced into Equation 2.15 by a double step
function θ vr

vl
(�v ′

pr,a ) which is 1 for vl <�v ′
pr,a ≤ vr and 0 otherwise:

I
(

Ωdet,�E,vl,vr

)
=

∫
d�vpr

∫
d�vt

∫
dτ

∫
dΩdet

∣∣∣∣dΩlab

dΩdet

∣∣∣∣ θ vr
vl

(�v ′
pr,a ) |�vpr −�vt|n dσlab

dΩlab
. (2.16)

What follows now is the transformation from the laboratory frame into the center of
mass frame which is given in more detail in Appendix B. The relative velocity�vrel of the
particles before the collision and the velocity of the center of mass �vcm are determined
from �vt and �vpr . The collision energy is εrel = 1

2mred (�vrel)
2 with the reduced mass mred =

mpr·mt

mpr+mt
. The scattering angle in the center-of-mass frame is given by

θcm = arccos

( (
�vṕr −�vcm

)
�vrel∣∣�vṕr −�vcm

∣∣ |�vrel|

)
. (2.17)

Equation 2.16 can thus be converted into

I(Ωdet,�E,vl,vr) =
∫

d�vcm

∫
d�vrel

∫
dτ

∫
dΩdet

∣∣∣∣dΩlab

dΩdet

∣∣∣∣θ vr
vl

(�v ′
pr,a ) vrelncm

dσcm

dΩcm

∣∣∣∣dΩcm

dΩlab

∣∣∣∣ . (2.18)

ncm = ncm(�vcm,�vrel) is the density of collision pairs with�vcm and�vrel , dσcm
dΩcm

= dσcm
dΩcm

(
εrel,αpol,θcm

)
is the differential cross section in the center of mass frame with αpol the angle between �E

and �vrel . The apparatus function
∣∣∣ dΩlab

dΩdet

∣∣∣θ vr
vl

(�v ′
pr,a ) vrelncm

∣∣∣ dΩcm
dΩlab

∣∣∣ gives the weighing factors

for dσcm
dΩcm

. The apparatus function containes the experimental resolution of center of mass
parameters, e.g. the center of mass scattering angle and the collision energy.

Equation 2.18 is calculated by approximating the integrals by sums. Thus, the quality of
the outcome depends on a suitable number of interpolation nodes for the distributions
and care has to be taken not to set the grid too rough. However, computing time sets a
limit to this, so that the number of interpolation nodes has to be chosen individually for
each measurement.

The times-of-flight of the ions tion from the point of ionization to the channeltron were
calculated as mentioned in section 2.3 by simulating the pathways of the ions starting
from various ionization points. The following formula was derived by interpolation:

tion =
√

mpr

mNa
(657.88+0.99z2 +0.01z4 +17.20y+0.20yz2 +2.57y2 +0.02y2z2) ·10−9s, (2.19)

where y is the vertical distance from the center of the aperture (in the direction in which
the detector can be rotated, see Figure 2.1) and z is the horizontal distance (in the direction
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Figure 2.25: Left: Resolution of center-of-mass scattering angle. Shown are the contributions
of center-of-mass scattering angles to a measured laboratory scattering angle, examplarily for a
detuning of 480 cm−1 and a velocity of the scattered K of 1075 m/s. Laboratory scattering angle
from left to right: 5◦, 20◦, 35◦, 50◦. Right: Contribution of collision energies to differential cross
section for a detuning of 480 cm−1 and a velocity of the scattered K atoms of 1075 m/s. Sum over
all scattering angles.

of the laser beams). The time of flight scales with the square root of the mass of the
projectile mpr and was calculated for Na.

The resolution of the center of mass scattering angles is plotted on the left side of Figure 2.25
for the KAr measurements presented in subsection 3.1.1. The center of mass angle contri-
bution to four selected laboratory scattering angles is shown for a detuning of 480 cm−1and
a velocity of the scattered K atoms of 1075 m/s. The center of mass scattering angle is
roughly twice the laboratory scattering angle while the full width at half maximum of
the apparatus function is about 5◦ in the center-of-mass frame. The opening angle of
the aperture of the detector is 2.6◦ in the laboratory frame, so the angular resolution is
determined mainly by the detector aperture in this case. An additional contribution to
the angular resolution is the elastic scattering by target gas. It is not accounted for in
the calculation of the apparatus function, but as estimated from measurements as seen in
Figure 2.9, it is only in the order of 0.1◦ which is usually small compared to the resolution
of the detector aperture.

The corresponding contribution of collision energies to the sum over all measured scat-
tering angles is shown on the right side of Figure 2.25. The collision energy is centered
around 820 cm−1 with a full width at half maximum of 160 cm−1.
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Chapter 3

Results and discussion

3.1 KAr

3.1.1 Differential cross sections

Differential cross sections of KAr optical collisions were measured for the detunings of
220 cm−1, 480 cm−1, 640 cm−1, and 720 cm−1 and for a variety of velocities of the scat-
tered potassium. The detected state was K(4p3/2), background signals were subtracted as
described in section 2.7. After discarding the measurements for which the fraction of the
background signal exceeded 25%, 67 sets of data were kept, resulting in a total of 2274
data points. In the left column of Figure 3.1, selected results of similar collision energies
for each of the detunings are shown. Differential cross sections for different velocities
of the scattered potassium are presented in Figure 3.2 for a detuning of 480 cm−1. The
graphs in Figure 3.2 have the same scale, and the different signal intensities reflect pri-
marily the velocity distribution of the particle beams. The complete experimental data
can be found in Appendix D. All measurements show pronounced interference patterns.
The oscillation period varies between 8◦ and more than 40◦, increasing with the detuning
and decreasing with the velocity. The first maximum is a rainbow structure (see page 15).
The position of the rainbow scattering angle depends on the detuning and on the veloc-
ity. While the oscillations in Figure 3.1 (a) are rather uniform, deviations from a regular
interference pattern are seen for example in Figure 3.2 (c) as a broad third maximum and
in Figure 3.1 (c) as a dip in the first maximum.

The interference patterns can be qualitatively understood on the basis of the correspond-
ing deflection functions which are given next to the experimental results. It is useful
to keep in mind that the center-of-mass scattering angle is roughly twice the laboratory
scattering angle (see page 49) and that for all measurements presented here the scattering
angle is equal to the deflection angle (refer to page 12). Note that in principle a range of
deflection functions contribute to the measurements according to the resolution of the
collision energy of about 160 cm−1 (see Figure 2.25). They were calculated from the quan-
tum chemical potentials that are shown in Figure 3.3. A prominent feature is the shoulder
of the BΣ potential curve around 7 a.u. It results in a maximum in the potential difference
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Figure 3.1: Left column: Differential cross sections for different detunings, multiplied by the sine
of the laboratory scattering angle, the lines connect the data points to guide the eye. The detuning
and the velocity of the scattered K atom is indicated in the graphs. Collision energies are around
800 cm−1. Right column: Corresponding deflection functions for the inner (dashed) and outer
(solid) Condon radii for a collision energy of 800 cm−1.
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Figure 3.2: Left column: Differential cross sections for different velocities at a detuning of
480 cm−1, multiplied by the sine of the laboratory scattering angle. The velocity of the scattered
K atoms is given in the box, the lines connect the data points to guide the eye. Right column:
Corresponding deflection functions for the inner (dashed) and outer (solid) Condon radii with
the collision energy given in the box.
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Figure 3.3: Ab initio calculated
potentials for KAr [Czu02].
Spin-orbit interaction is not
included and all curves are
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Figure 3.4: Detuning as a function of the Condon radius rc [Czu02]. The detunings that were used
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3.1 KAR

so that classically only detunings below 722 cm−1 are accessible. Figure 3.4 shows the de-
tuning as a function of the Condon radius which is basically the difference of the BΣ and
the XΣ curve including the spin-orbit interaction. The Condon radii for the four detun-
ings are listed to the right of the graph. Below the maximum detuning, two Condon radii
exist of which the distance increases for smaller detunings. In Figure 3.1 and Figure 3.2,
the deflection function for the inner Condon radius is indicated by a dashed line while a
solid line corresponds to the one of the outer Condon radius. The inner Condon radius
contributes to the signal only at large scattering angles, in most cases larger than the ones
measured. For the other cases, the experimental results show no effect that can be directly
assigned to the inner Condon radius. Therefore, the contribution of the deflection func-
tions of the inner Condon radius is neglected for the present qualitative discussion. The
increase of the oscillation period in Figure 3.1 can be assigned to the decreasing distance
of the branches of the deflection function while in Figure 3.2 it is due to a larger deBroglie
wave number (refer to Equation 1.15). For all detunings, the deflection functions for the
outer Condon radius cross, which is also a direct consequence of the shoulder in the BΣ
potential: While for larger distances the BΣ potential is more repulsive than the XΣ, the
situation reverses as the slope decreases at the shoulder of the BΣ curve. As explained
in section 1.2, a crossing of the deflection functions leads to less regular structures in the
interference pattern and indeed, the deviations of the measurements from regular oscil-
lations are located around the scattering angles of the crossings.

3.1.2 Determination of XΣ and BΣ potentials

The differential cross sections of subsection 3.1.1 were used in a fitting procedure to deter-
mine the XΣ and BΣ potentials. Trial potentials were generated by systematically varying
fitting parameters of model potentials. The variation is done by the software package
MINUIT1. Since there is not only one unique system of potentials which reproduces the
experimental results in this nonlinear fit, a good choice of the starting parameters (i.e. the
initial potential system) and the model potentials together with the fitting parameters are
essential ingredients for the quality of the outcome of the fit.

K-Ar potential curves were determined by several groups, both by experimental and by
theoretical means (Figure 3.5). Zimmermann and Braune derived the attractive2 parts of
the XΣ, BΣ and AΠ state by analyzing line spectra connecting these states with accuracies
ranging from ±1 cm−1 to ±10 cm−1 [Brau02]. By measuring bound-free spectra they also
determined the repulsive part of the XΣ potential curve up to energies of 1000 cm−1 with
an accuracy of ±10 cm−1. For the attractive parts of the potentials, quantum chemical
calculations by Jungen [Jun02] and Czuchaj and coworkers [Czu02] agree with the results
from Zimmermann typically within 20 cm−1. For the repulsive part of the XΣ state, the
calculations by Jungen coincide almost perfectly with the experimental data while the
results from Czuchaj underestimate the repulsion with a maximum deviation of about

1MINUIT, Function Minimization and Error Analyses, Release 89.12j, CERN, Geneva
2As attractive are denoted the parts of the potentials below the asympote. Those above are denoted as

repulsive.
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Figure 3.5: Potentials for the KAr system. Quantum chemical calculations by Czuchaj [Czu02]
and Jungen [Jun02] and experimental results by Zimmermann and Braune [Brau02]

45 cm−1at a K-Ar distance of 8 a.u. Furthermore, there exist older potentials by Pascale
and Vandeplanque [Pas74] and Düren and coworkers [Dür82].

As the initial potential system, the data from Zimmermann and Braune were used for
all but the repulsive part of the BΣ state for which the data from Czuchaj were taken for
distances from 7 a.u. on inwards. The smallest internuclear distances on the BΣ state that
were accessible by the measurements of Zimmermann and Braune are 12.1 a.u. From
12.1. a.u. to 7. a.u., an interpolation by two polynomial functions was made. The thus
constructed BΣ curve is shown in Figure 3.6 together with the corresponding data from
Czuchaj and Zimmermann and Braune. Calculated differential cross sections from the
initial potential system are shown in Figure 3.7 in comparison to the experimental re-
sults for selected data sets. While the measured structures for the two large detunings
are reproduced rather well, the agreement is poor for the two small ones for which the
difference between the oscillation maxima is smaller in the theoretical data. Starting from
the initial potential system, different model potentials were realized. Up to nine correc-
tions at chosen sampling points were interpolated by splines and added to the initial
set of potentials where the fitting parameters were the magnitude of the corrections. In
another model, the position of one sampling point together with the magnitude of the
correction was fitted. Alternatively, polynomials were added to the initial set of poten-
tials with the fitting parameters being the coefficients and the position. The number of
fitting parameters is currently limited to a total number of nine by computation time.
The potentials were only changed for distances smaller than 12 a.u. for the BΣ potentials
and smaller than 8.6 a.u. for the XΣ potential as to keep the results of Zimmermann und
Braune for the attractive parts.

From every generated trial potential system, differential cross sections are obtained by
quantum scattering calculations. The theoretical results are tranfsormed into laboratory
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Figure 3.6: BΣ state of the initial potential system in comparison with the Czuchaj (Cz) and Zim-
mermann and Braune (ZB) potentials. In the inset, the difference between the initial potential and
each of the two others is plotted.

coordinates and convoluted with the apparatus function as described in section 2.9. The
quantity

χ2 = ∑
i

pi
(yex,i − yth,i)2

∆y2
i

(3.1)

is minimized by varying the fitting parameters. yex,i are the experimental data points with
errors ∆yi and yth,i the theoretical values. pi are weights that can be assigned to certain
sets of data. Usually, they were taken 1 for the detunings of 220 cm−1, and 480 cm−1, and
2 for the other two detunings in order to compensate for the different number of data
points in the measurements. Due to the weighting factors, a χ2 around 2700 is expected
for a perfect fit.

The best set of potentials as shown in Figure 3.8 was found by successively applying fits
using different model functions and fitting parameters, and taking the result, sometimes
smoothed by hand, as the starting point for the next fit. The numerical values of the
potentials are listed in Appendix D. Comparing the calculations from the new potentials
with the experimental results in Figure 3.9, an almost perfect agreement is found. Graphs
for all experimental results are shown in the Appendix D. χ2 is 4547 which is still a
factor of 1.7 higher than the value of a perfect fit which means that the average difference
between measured and calculated points is 1.3 times the experimental error margin. This
indicates either an insufficient model or underestimated error bars of the experimental
values. The error bars are indeed too small because they include only the statistical and
not the systematic errors and hence, the value of χ2 is not a measure for the goodness of
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Figure 3.7: Representative experimental results in comparison with calculations from the initial
set of potentials. Each column corresponds to the velocity of the scattered potassium that is given
above, the detuning is given on the right of each row.

the fit. The deviation of the result of the modified fit to the fit with the realistic parameters
was taken as the corresponding error of the potentials.

The statistical error is calculated by the use of constant χ2-boundaries as confidence lim-
its [Pre86]. Errors in the quantities that are used for the convolution of the theoretical
cross sections (see chapter 2) have been considered by modifying the corresponding
quantities by one standard deviation before entering them into the convolution proce-
dure of the fit. The model potential for the error analysis was realized by 3 corrections
to the X potential and 4 to the B state at fixed sampling points. Considered were inaccu-
racies in the determination of the velocity of the scattered potassium atom, the velocity
distribution of both particle beams, the relative angle of the beams and the scattering an-
gle, and the direction of the polarization. Additionally, a hypothetical variation of the
detection efficiency with the scattering angle was assumed. Adding all contributing er-
rors, the error margin of the potentials is found to increase from 2.0 cm−1 at 8.0 a.u. to
9.5 cm−1 at 6.0 a.u. on the X potentials and from 2.6 cm−1 at 9.5 a.u. to 13.9 cm−1 at 5.5 a.u.
on the B potential. A change of the model potentials did not significantly reduce χ2 and
resulted in changes of the potentials below 1 cm−1 for interatomic distances larger than
6.0 a.u. for the X and 5.5 a.u. for the B potential. Hence, in this region the new set of po-
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Figure 3.8: Left: Potentials as determined in this work in comparison with results from Zim-
mermann and Braune (ZB), Czuchaj (Cz) and Jungen (Ju). The dashed line indicates the initial
potential system. Right: Differences to the new set of potentials for the XΣ and the BΣ state.

tentials is believed to be realistic. The values that are found for smaller distances depend
considerably on the model potential and are therefore not given here.

In the graphs of Figure 3.8, the new potentials are compared to the previously introduced
results. The calculations of Czuchaj and Jungen overestimate the repulsion of the BΣ
curve with the deviation being as large as 90cm−1. The same is true for the Czuchaj data
of the XΣ state for which the difference is only in the order of 50 cm−1. The X-state data
of Jungen are found to agree with the present result within less than 10 cm−1 with an
exception around 6 a.u. where the difference increases to 30 cm−1. The deviation from
the experimental Zimmermann and Braune data are as small as 3 cm−1 for values larger
than 7 a.u., while for smaller distances the difference increases to 30 cm−1. Considering
the increasing error margin, this is still a reasonable agreement. When calculating the
Condon radii with the new potentials they are shifted by up to 0.3 a.u. inwards with
respect to the results from Czuchaj while the maximum accessible detuning of 730 cm−1

is almost the same compared to 722 cm−1 for the Czuchaj potentials. It is notable that
in contrast to previous determinations of potentials with differential cross sections of
optical collisions, both potential curves can be determined [Gro97a, Gro00]. The achieved
accuracy is common for a potential determination based on the analysis of line spectra.
However, it was not achieved so far on the basis of scattering data. A confirmation by an
independent approach is therefore highly desirable.
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Figure 3.9: Representative experimental results in comparison with calculations from the new
potential. Each column corresponds to the velocity of the scattered potassium that is given above,
the detuning is given at the right of each row.
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3.1.3 Nonadiabatic transitions

With a positive detuning of the excitation laser, the BΣ1/2 state is excited during the
collision. In the output channel of the collision, nonadiabatic transitions from BΣ1/2 to
K(4p1/2) can occur. The relative population of the fine-structure states is measured by
scanning the detection lasers over lines that correspond to transitions from each of the
fine-structure levels into the same Rydberg states as illustrated in Figure 3.11. The inte-
grated signal is proportional to the population of the corresponding fine-structure level.
Relative populations were determined for detunings of 480 cm−1 at a scattering angle of
18◦ and for 640 cm−1 at 24◦ and 36◦. The results are shown in Figure 3.12, presented as
a function of the kinetic energy after the collision. To keep the experimental procedure
simple, the yield of the two levels is compared not for the same relative kinetic energy
but for the same velocity of the scattered potassium atoms. The same velocities, how-
ever, correspond to slightly different relative kinetic energies as illustrated in Figure 3.13.
For a velocity of 1225 m/s, the difference is 30 cm−1 while the resolution is 120 cm−1.
The energy that is precisely assigned to a data point corresponds to the kinetic energy
of a K(4p1/2) atom after the collison. The relative population decreases for low relative
kinetic energies and reaches the characteristic value of 1/3 for higher energies for all
measurements.
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Figure 3.11: Principle of nonadiabatic transition transition measurement.

61



3. RESULTS AND DISCUSSION

0 1000 2000
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0
F

ra
ct

io
n 

of
 p

1/
2

18
o
, 480cm

−1

0 1000 2000
Relative kinetic energy after collision [cm

−1
]

24
o
, 640cm

−1

0 1000 2000

36
o
, 640cm

−1
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Figure 3.13: Comparison of contribution of kinetic energies after collision for a measured velocity
of 1225 m/s. solid line: detected state is K(4p1/2), dashed line: detected state is K(4p3/2).

For a correct determination of the relative population it is essential to probe the two fine-
structure states with the same sensitivity. Since the detection transitions are chosen such
that the same Rydberg state is excited, the optical transition probabilities and the lifetime
of the Rydberg atoms is the same. The measurements are done with the polarization of
the detection laser changed alternatingly about 90◦ in order to exclude errors due to po-
larization effects. The efficiency of the laser dye depends on the wavelength, so that the
laser intensity is different for each of the detected states. As a correction, the dependency
of the signal on the detection laser intensity is determined with a measurement compa-
rable to the one shown in Figure 2.21. During the actual experiment, the laser intensity is
monitored by the photodiodes for both detection transitions and the signal is corrected
for the different intensities. The only remaining considerable systematic error is a pos-
sible incorrect treatment of the background so that 50% of the subtracted background
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signal was included into the error bars of the signal. The contribution is small, however,
compared to the statistical uncertainties of the data, the systematic error lies in the order
of 3% of the measured relative population.

The relative population was calculated from the new potentials of subsection 3.1.2. The
agreement between theory and experiment is very good, see Figure 3.12. As the transition
probability is governed mainly by the outer parts of the potentials, this confirms the
results of Zimmermann and coworkers. For collisions of Na with Ar and Kr, it was found
that the influence of an avoided crossing of the AΠ1/2 and the BΣ1/2 curve leads to a
population of up to 80% of the Na(3p1/2) state for low energies [Gro99b]. The reason
is a diabatic passage of the crossing which is located at smaller interatomic distances
followed by an adiabatic passage of the outer coupling region. Although such a crossing
is present also in the KAr potential curves at a distance of about 13 a.u., the relative
population does not exceed 1/3. The coupling at the avoided crossing is given by the
spin-orbit interaction. It is about a factor 3 higher for K than for Na, and supports thus
an adiabatic passage of the crossing. The oscillations in the measurements at scattering
angles of 18◦ and 36◦ are caused by the interferences that are also seen in the differential
cross sections and are determined by the inner part of the potentials.

3.2 NaN2, NaO2: Nonadiabatic transitions

The fine-structure branching ratio in the output channel of Na-molecule collisions was
measured for the molecules N2 and O2. The results are shown in Figure 3.14, for a detun-
ing of 240 cm−1 and laboratory scattering angles of 18.9◦ for NaN2 and 19.9◦ for NaO2.
The only difference of the experimental method to the one described for the KAr mea-
surements in subsection 3.1.3 is the use of the molecular target beam source. In contrast to
previous experiments with molecular targets, the velocity distribution and the rotational
temperature of the molecular beam was thus well defined (see section 2.5). Although
the velocity distribution of the molecular target beam is thermal, the resolution of the
collision energy is comparable to the energy resolution in the KAr measurements: It is
10%, whereas it was about 8% for KAr. For both targets, the relative population of the
Na(3p1/2) state lies around 1/3 and shows no significant dependence on the collision
energy. For NaO2, it can be speculated that the values rise above 1/3 for energies around
800 cm−1. However, the error bars are too large for a definite statement.

Calculated values for NaN2 are shown as a line in Figure 3.14. Because of the weak
dependence of the relative population on the collision energy in the observed energy in-
terval, the theoretical data were not convoluted with the apparatus function. The mean
values of the experimental and theoretical data agree within less than 5% which is within
the error margin of the experimental data. It shall be noted that all possible systematic
errors were corrected or included into the error bars (see subsection 3.1.3). Thus, the
theory is found to be in very good agreement with the measurements. A comparison
of the O2 measurements to calculated values would be highly desirable but cannot be
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Figure 3.14: Relative population of the Na(3p1(2) fine-structure state as a function of the relative
kinetic energy after the collision of the Na(3p1/2) collision product. Left: NaN2 in comparison
with calculation. Right: NaO2.

presented to date since no energy surfaces of NaO2 are available. An interpretation of
the results is not as straightforward as in the case of atom-atom collisions. Apart from
the interatomic distance, the potential energy depends also on the relative orientation of
the molecule with respect to the Na-molecule axis so that not only potential curves but
potential surfaces have to be considered and calculations have to average over a large
number of different trajectories. The calculations for NaN2 show that the relative popu-
lation of the fine-structure levels shows a significant dependence on the actual trajectory
of the system in the potential surface. The value of 1/3 that is observed in the experi-
ments can therefore not be assigned to a diabatic passage of the system through the outer
coupling region of the potential surfaces as it was in the atom-atom case. It is rather an
average over different values from many trajectories. Surprisingly, the calculations pre-
dict a dependence of the relative population on the rotational temperature of the target
beam [Reb03]. For a lower rotational temperature, the values would rise above 1/3. It
would therefore be interesting to repeat the measurements with a supersonic N2 beam
for which the rotational temperature would be lower. A supersonic beam could be pro-
duced using a seeded beam technique in which, however, the comparably high density
of the carrier gas presents a problem. A distinction of collisions with a target molecule
from collisions with a carrier gas atom could be possible if the carrier gas is much lighter
than the target molecule. Then, larger scattering angles can only be reached by collisions
with the heavier molecule.

3.3 CaAr: Optical collisions near a forbidden atomic transition

The spectral line shape in the far wing of a collisionally broadened allowed atomic tran-
sition is primarily governed by the shift of the atomic resonances in the presence of a per-
turber [All82]. In the case of a weak or forbidden atomic transition, the interaction with a
collider can result in an enhancement of the line [Say80]. We performed experiments near
the dipole forbidden Ca(4s2)1S→Ca(4s4d)1D atomic line for which the transition dipole
moments show a strong dependence on the CaAr distance.
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Figure 3.15: Potential curves of CaAr [Czu03]. The arrow indicates the transition used in the here
presented experiments.

In gas cell experiments with rare gas perturbers, a blue satellite band was detected near
the Ca(4s2)1S→Ca(4s4d)1D atomic line [Cou88, Gon94]. Other experiments with calcium
and rare gases studied the influence of collisions on another dipole forbidden transi-
tion [Kle86], an intercombination line [Cra93] and a transition that is allowed in the
atomic case [Sat95]. Various bound states of the CaAr molecule were the subject of spec-
troscopic measurements [Leu99, Kau97b, Kau97a, Leu97]. The experiments initiated cal-
culations of the electronic structure [Czu89, Czu91, Spi02, Kir00] and of collisional ef-
fects [Dev86, Dev97, Cou87, Bic00].

Recent quantum chemical potentials [Czu03] of the ground state and the first four sets
of states corresponding to a single excitation of Ca are shown in Figure 3.15. For the
experiments, a positive detuning from the Ca(4s2)1S→Ca(4s4d)1D resonance was used,
the corresponding potential difference is shown in Figure 3.16(a). For detunings larger
than 10 cm−1, only the Σ curve is reached for which the difference, similar as in the
case of KAr, goes through a maximum leading to two possible Condon radii. However,
with the present collision energies, the inner Condon radius is only accessible for detun-
ings close to the maximum of 310 cm−1. The corresponding transition dipole moments
(Figure 3.16(b)) decrease to zero for large Ca-Ar distances illustrating the dipole forbid-
den atomic transition. For small interatomic distances, they reach values of a strong
optical transition.

Measured differential cross sections for a detuning of 303 cm−1 are shown in Figure 3.17
for four different velocities of the scattered Ca. Due to the use of a high argon pressure,
the collision energy has an estimated uncertainty of about 100 cm−1 (see section 2.5). The
signal intensity shows a slow variation with the scattering angle, so that only the first
maximum is observed. For higher velocities, a shoulder can be seen before the minimum
is reached.
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Figure 3.16: (a) Condon radius of the Σ−Σ transition indicated by the arrow in Figure 3.15 as
a function of the CaAr distance. The Condon radius of the Σ−Π transition is plotted to show
that it is not accessible with positive detuning. (b) Corresponding transition dipole moments as a
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Figure 3.18: Signal dependence on the detuning. Registered were Ca1D atoms with a velocity of
1050 m/s to 1150 m/s, laboratory scattering angle was 28.8◦. Circles: Experimental results. Line:
Theoretical values.

The detuning of 303 cm−1 is close to the maximum in the potential difference curve.
Hence, the situation is comparable to the KAr measurements for a detuning of 720 cm−1

and the structures of the differential cross sections are similar. However, the separation
of the two branches of the deflection functions is smaller leading to a slower change of
the phase difference with the scattering angle and thus to a comparably slow variation of
the signal intensity. The line in Figure 3.17 shows the theoretical results. The calculations
are based on the potentials in Figure 3.15 and include the ground state and the Σ and Π
excited state. The agreement is good for higher velocities. For example, the shoulder at
high scattering angles for a velocity after the collision of 1450 m/s is seen both in the-
ory and experiment, even though shifted by about 10◦. The uncertainty in the collision
energy might be the reason for the remaining disagreement.

Fixing the laboratory scattering angle at 28.8◦, the yield of Ca1D collision products was
measured as a function of the detuning of the excitation laser in the velocity interval from
1050 m/s to 1150 m/s, see Figure 3.18. Increasing the detuning, the signal goes from zero
through a maximum at 235 cm−1 and vanishes for large detunings.

For detunings above 310 cm−1, resonant transitions are not possible due to the maximum
in the potential difference curve. The peak is a rainbow structure from the maximum in
the difference potential. This is why it occurs below the maximum potential difference
of 310 cm−1. When the detuning goes toward zero, the Condon radius is shifted towards
larger values where the transition dipole moments become small. A comparison with the
calculations (the line in Figure 3.18) shows a very good agreement, the position of the
peak is reproduced within 15 cm−1. However, the second peak around 100 cm−1 in the
theoretical data is not confirmed by the experimental results. It is tempting to assign the
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peak to interference effects from the two Condon radii, but at detunings around 100 cm−1

the inner one does not contribute to the signal. The second peak is rather an interference
structure from two trajectories for the outer Condon radius. Thus, the abscence of the
small peak in the experimental results reflects the disagreement of experiment and theory
in the differential cross sections. The position of the peak confirms the results of Gondal
and coworkers who detected a maximum at 230 cm−1 [Gon94].

It is desirable to reproduce the measurements under conditions for which the velocity of
the argon beam is well defined. For this, the calcium beam source has still to be improved
in order to suppress the described “dark” signal. The containment around the source
seems to be a promising approach, a detector without meshes could be an alternative
solution.

The study of a two-electron system opens the possibility for the observation of spin-
changing collisions. With a negative detuning, the Π state converging to the atomic 1D
state would be excited. At the avoided crossing with the Σ curve converging to the 3D
state, transitions can occur which could be studied by detecting the 3D collision products.
Comparable experiments were performed in gas cells in which the system was prepared
in the 1P state and the yield of the three fine-structure levels of the 3D was probed [Spi02].
Spin-changing collisions were also studied for higher lying states [Kha96]. However,
none of the experiments provided an energy resolved analysis that is possible in a differ-
ential optical collisions experiment. Another interesting capability of the method comes
from the fact that the detuning determines if the excitation takes place inside or outside
the avoided crossing. If the excitation takes place outside of the avoided crossing, only
atoms that are excited during the incoming part of the collision can make a transition to
the 3D state. For the transition occuring in the outgoing part of the collision, the cross-
ing is not passed. In a differential optical collisions experiment, the molecular axis at the
moment of transition and with it the direction of the transition dipole moment is fixed in
space. Thus, by turning the polarization perpendicular to the corresponding transition
dipole moment, one of the two trajectories could be selectively suppressed and the final
state of the collision could be manipulated by the polarization.
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Chapter 4

Theoretical description

4.1 BEC phase-transition

For a trapped gas of noninteracting bosons, the mean occupation number Ni of each single
particle state of energy εi is given by the Bose-Einstein distribution

Ni =
1

e(εi−µ)/kBT −1
(4.1)

with µ the chemical potential, kB the Boltzmann constant and T the temperature of the
gas where the total number of particles is N =

∫
n(ε)dε . The BEC phase-transition is

characterized by the start of a massive population of the ground state ε0 of the trap-
ping potential. It occurs at a temperature for which the matter waves of the particles
start to overlap [Ket99]. For an ideal gas of particle density n this is the case when
the interparticle separation 1/n3, is comparable to the thermal deBroglie wavelength
λT = h/

√
2πmkBT with m the mass of the particle. The critical temperature TC of the

phase transition for many particles in a large box potential is reached when the phase-
space density nλT3 = 2.612 [Cor99]. A further decrease in temperature results in a rapidly
increasing population of the ground state given by

N0

N
= 1−

(
T
TC

)3

. (4.2)

For a harmonic trap with the frequencies ωx,ωy, and ωz, the critical temperature is given
by

kBTC ≈ h̄ω̄
(

N
1.202

)1/3

(4.3)

with ω̄ = (ωxωyωz)1/3 the geometric average of the trap frequencies.
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Although Equation 4.3 does not take into account the interactions between the parti-
cles and applies only for a very large total number of particles, the critical temperature
calculated from Equation 4.3 has proven to be close to the experimentally observed val-
ues [Ens96]. Typical experimental parameters result in a critical temperature between nK
and µK so that in order to initiate a Bose-Einstein condensation, efficient cooling tech-
niques have to be applied.

4.2 Collisions at low energies

Collisions at low energies can be described by only one parameter, the scattering length
a, as opposed to thermal collisions for which the details of the interatomic potentials have
to be known. In a quantum-mechanical treatment of cold collisions, the wavefunction can
be expanded in the basis of spherical harmonics, which are eigenfunction to the angular
momentum operator, so-called partial waves. In the limit of small energies and densities,
only the partial wave with angular momentum l = 0 contributes to the differential cross
section . For larger l the centrifugal barrier dominates over the potential energy. This
is why the scattering process is referred to as s-wave scattering. An s-wave scattering
process is independent of the scattering angle, comparable to the scattering from a solid
sphere. In good approximation, the exact interatomic potential can be replaced by the
pseudo potential

V (r) =
4π h̄2

m
aδ (r)

(
∂
∂ r

r

)
(4.4)

where r is the relative position vector of the two particles [Cast01]. The sign of a deter-
mines whether the interaction of the particles is attractive or repulsive. With the pseudo-
potential, the total cross section σ is calculated to be [Ket96]

σ =
8πa2

1+ k2a2 . (4.5)

Although a depends very sensitively on the underlying potentials, two collision systems
with the same scattering length have got the same collision properties when they are
cooled down. The theoretical determination of a is difficult because a small error in the
interatomic potentials can result in severe errors in the scattering length. Thus, a is com-
monly determined experimentally.

4.3 Wavefunction and density distribution

For a mean distance of the particles larger than the scattering length and a large number
of particles, the interaction energy is independent of the exact coordinates of the other
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particles (mean field approximation), and the wavefunction ψ of the ground-state parti-
cles can be described by a product state of N0 single-particle wavefunctions. ψ fulfills the
time-independent nonlinear Gross-Pitajevskii equation

(
− h̄

2m
∇2 +Vext(r)+

4π h̄2a
m

|ψ(r)|2
)

ψ(r) = µψ(r) (4.6)

which is derived from the Schrödinger equation by including the interaction between the
particles by the pseudo-potential given by Equation 4.4. Vext(r) is the external trapping
potential. The time evolution of ψ is given by ψ(r, t) = e−iµt/h̄ψ(r).

|ψ |2 is the density distribution of the condensate. In the Thomas Fermi regime, where
the interaction energy of the atoms dominates over the kinetic energy, the first term in
Equation 4.6 is negligible and the density distribution n(r) is easily seen to be

n(r) =
m

4π h̄2a
[µ −Vext(r)]. (4.7)

The density distribution reflects directly the inverted shape of the trapping potential. In
comparison, the density distribution of a thermal cloud nth at temperatures T � TC is
given by the classical Boltzmann-distribution [Dal99]:

nth(r) ∝ e−
Vext(r)

kBT . (4.8)

4.4 Magnetic trapping

A trap is essential to hold the atoms in place when cooling and later on studying them.
Traps can be realized by magnetic fields or far-off resonant laser beams. In the present
work, a magnetic trap is used. Magnetic traps rely on the Zeeman shift ∆E that is intro-
duced into the energy levels of an atom in the presence of a magnetic field B. It is given
by

∆E(B,mF) = gFµBmFB (4.9)

where gF is the Landé g-factor, µB is the Bohr magneton and mF is the projection of the
angular momentum F onto the axis given by B. Depending on the sign of gFmF, the
potential energy of the atom is at minimum either at the minimum or the maximum of
the magnetic field. Since Maxwell’s equation do not allow a maximum of a magnetic field
in free space [Ket92], in a magnetic trap only so-called low-field seekers can be trapped.
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To guarantee that the spin follows the direction of the field so that mF is constant, adia-
bacity has to be maintained implying that the change in the direction θ of the magnetic
field must be slow compared to the Larmor frequency ωL:

dθ
dt

 ωL ∝ |B|. (4.10)

Adiabacity cannot be maintained around a zero minimum of the magnetic field so that
atoms near the center of the trap are lost through spin flips. To avoid the so-called Majo-
rana spin flips, a trap with a nonzero minimum can be used.

4.5 Laser cooling

Magnetic traps for neutral atoms have depths of the order of mK which is too shallow
to hold atoms of room-temperature energy. The customary technique to load a magnetic
trap is to pre-cool atoms with optical and magneto-optical techniques in which the cool-
ing is established by the interaction of atoms with a light field.

The Doppler cooling relies on the radiation pressure on the atoms created by the light of a
laser beam that is detuned to the red of the atomic resonance by δ = ωL − ωA

(ωL: frequency of light, ωA: frequency of atomic transition). Atoms that move in the
opposite direction of the beam are more likely to absorb photons than atoms that move
in the same direction of the beam since the Doppler shift moves the frequency of the
light closer to the atomic resonance. The photonic recoil as experienced by the absorbing
atom has always the direction of the corresponding laser beam whereas the following
spontaneous emission is isotropic. An average over many cycles of absorption and spon-
taneous emission results in a directed net momentum-transfer to the atom. The temporal
derivative is the radiation pressure

Frp = h̄k
Γ
2

s0

1+ s0 +(2(δ−kv)
Γ )2

(4.11)

which is the effective force acting on the atoms. 1
Γ = τ is the lifetime of the excited state,

h̄k is the momentum of the photon, v the velocity of the atom and s0 = 2Ω2

Γ2 the resonant
saturation parameter with Ω the Rabi frequency. If there are two counterpropagating
beams of the same frequency, intensity and polarization, the net force onto the atoms is
the friction-like force

F = −αDv (4.12)

for small velocities (kv  Γ) and laser intensities (s0  1) with

αD = −8h̄k2 s0
δ
Γ

(1+(2δ
Γ )2)2

(4.13)
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being at maximum for a detuning of δmax = − Γ
2
√

3
. The force is opposed to the velocity of

the atoms which leads to cooling. The atoms continuosly gain and lose the momentum
of the photons and a steady state will be reached that can be compared to the Brownian
motion of a particle. The so-called Doppler limit is the minimum temperature TD that
can be reached by Doppler cooling with a detuning of half the natural linewidth of the
transition:

TD =
h̄Γ
2kB

(4.14)

which is 143 µK in the case of 87Rb. As experimentally observed in 1988 [Let88], there
is another velocity dependent force present which was later named the Sisyphus effect:
Two coherent counterpropagating laser beams of orthogonal circular polarization create a
light field with a position-dependent polarization. For an atom with a suitable hyperfine
structure, this results in a position-dependent light-shift of the corresponding sublevels.
Optical pumping occurs from the energetically higher Zeeman sublevel to the energet-
ically lower one. This leads to a situation in which an atom climbs a potential energy
hill more often than it goes down, the rise in potential energy being compensated by
the atom’s kinetic energy. This process eventually cools down the atom to temperatures
given by the maximum light shift U0 = h̄Ω2

4δ for large detunings with Ω the Rabi frequency,
so Sisyphus cooling could lead to arbitrarily low temperatures in theory. Nevertheless,
the temperature Trec of the recoil limit, corresponding to the recoil energy of the atom
after absorbing a photon,

Trec =
h̄2k2

2mkB
(4.15)

sets a limit to Sisyphus cooling. h̄k is the momentum of the photon. Trec is 180 nK for 87Rb,
and experimentally achievable temperatures lie in the order of a few Trec [Coh98].

4.6 Magneto-optical trap

The radiation pressure of the light can additionally be made position sensitive by apply-
ing a spatially dependent magnetic field B as suggested by Dalibard in 1986 [Coh98]. It
requires a trapping transition that includes at least one state with a nonzero total angu-
lar momentum F . The principle will be shown for a one-dimensional configuration in
which the magnetic field is B = Bzez. For simplicity, an atomic F=0→F’=1 transition is
considered. Two red-shifted lasers of opposite circular polarization counterpropagate in
the z-direction as shown in Figure 4.1. Thus, the absorption of a photon from the laser
counterpropagating to the displacement of the atom is more probable than of the other
one because the transition that is selected by the polarization of the lasers is shifted into
resonance by the Zeeman shift (Figure 4.1). The momentum transfer results in a restoring
force toward the point of zero magnetic field.
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Figure 4.1: Principle of a magneto-optical trap. A linear magnetic field results in a position depen-
dent splitting of the magnetic sublevels. Red detuned laser beams of circular polarization yield a
force toward the zero of the magnetic field.

The combination of Doppler and Zeeman effect results in a net force onto the atom which
is both velocity and position dependent, and the equation of motion of an atom is the
same as the one of a damped harmonic oscillator. The scheme can be extended to three
dimensions by using a quadrupole magnetic field and six laser beams from each direc-
tion, and a so called magneto-optical trap (MOT) was first realized in 1987 [Raa87].

4.7 Evaporative cooling

For a decrease in temperature below the recoil limit, the technique of evaporative cooling
can be employed. Evaporation is commonly known as the conversion of the liquid to the
gaseous state. In a more general sense, it can be defined as the situation in which ener-
getic particles, as present in the tail of a Maxwell-Boltzmann distribution, leave a system
with a finite binding energy. A mere removing of particles above a certain energy limit
from the energy distribution does not increase phase space density and the temperature
remains unchanged. For cooling, the remaining particles in the trap have to rethermalize
by elastic collisions. When the timescale of rethermalization is larger than the timescale of
evaporation, the system can be considered to be in a quasi-thermal equilibrium with the
energy distribution given by a truncated Maxwell-Boltzmann distribution of correspond-
ing temperature. Despite the drawback of decreasing the number of particles, evapora-
tive cooling has become the key technique to cool a trapped atom-cloud below the critical
temperature. A good overview about the concepts of evaporative cooling can be found
in [Ket96].

Experimentally, evaporative cooling of spinpolarized atoms which are held in a magnetic
trap with the potential Ut(r) is realized by inducing a transition to an untrapped spin
state with the potential Uu(r) by an rf-magnetic field of frequency ωrf (Figure 4.2). The
trapped and the untrapped spin states are coupled where Ut(r)−Uu(r) = h̄ωrf. The trap is
thus effectively reduced to a height ∆Ueff = h̄(ωrf −ω0) where ω0 = Ut(0)−Uu(0). Atoms
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Figure 4.2: Principle of forced evaporative cooling. The figure on the left shows a trapped and an
untrapped spin state with potential energies Ut and Uu. A coupling introduced in the right figure
by an rf-magnetic field leads to transitions from the trapped to the untrapped state effectively
reducing the trap depth to Ueff.

of energy E > Ueff are lost from the trap. In reality, there are usually more than one
trapped and untrapped state, but the scheme can be readily expanded to that situation.
∆Ueff = ηkBT is usually given in dependence of the temperature of the trapped particles
by the truncation parameter η > 1. The efficiency α of evaporative cooling is given by

α =
d lnT
d lnN

=
η +κ
δ + 3

2

−1 (4.16)

with κ of the order of one and δ given by the shape of the potential U ∝ r d/δ of dimension
d [Coh96]. α characterizes how much more than the average energy is taken from the
system by evaporating one atom. The higher the efficiency the less atoms are necessary
to be lost for a certain decrease in temperature. In principle, α can be set to arbitrarily
high values by increasing η , but in reality it is limited by the finite lifetime of the atoms
as is described in the following.

The timescale τevap of the cooling process, given by the evaporation rate 1/τevap at which
particles are produced by elastic collisions with an energy larger than ηkBT , increases
with α . To estimate τevap, an untruncated Maxwell-Boltzmann distribution is considered.
For η much larger than 1, almost every collision involving a particle of energy larger than
ηk BT will remove the particle from the high-energy tail. In equilibrium, this rate is the
same as the rate at which high-energy particles are produced. The rate Ṅ of evaporated
particles can thus be expressed by

Ṅ = − 1
τevap

N with
1

τevap
= n0σ v̄ηe−η . (4.17)

n0 is the peak density, σ the total elastic cross section and v̄ the average velocity. If Ueff is
kept constant (simple evaporative cooling), η increases with decreasing temperature and
the rate of collisions leading to evaporation decreases (Equation 4.17) slowing down the

79



4. THEORETICAL DESCRIPTION

cooling process. To avoid this, η is usually kept approximately constant (forced evapora-
tive cooling).

The time constant τel for rethermalization is given by the rate of elastic collisions:

1
τel

= n0σ
√

2v̄. (4.18)

The ratio λ = τevap/τel is given by

λ =
√

2
eη

η
. (4.19)

η should be chosen such that λ is large compared to 1 to ensure rethermalization during
the cooling process.

In the dynamical process of evaporation, n0 and v̄ vary in time due to the loss of particles
and the decrease in temperature. Furthermore, there are losses from the trap due to
collisions with the background gas, inelastic collisions or three-body collisions in the trap.
The resulting trapping time Γ is determined experimentally by measuring the number
of atoms in the trap as a function of time. For constant η , the time evolution of the
evaporation rate is given by [Ket96]

d
dt

ln(1/τevap) =
1

τel

(
α(δ − 1

2)−1

λ
− 1

R

)
, (4.20)

where R = Γ/τel is the number of elastic collisions per trapping time. An increasing colli-
sion rate (run-away evaporation) is achieved when

R >
λ

α(δ − 1
2)−1

=
√

2eη 1

η(η−2
3 )−1

(4.21)

which sets an upper limit to η . Since η determines the efficiency, R should be as large as
possible. R can be increased either by decreasing the background pressure or by increas-
ing the density of atoms in the trap which is achieved by a higher atom number or a more
confining trap geometry.

The dynamics of the system during the evaporative cooling process can be calculated
to find the time evolution of ωrf(t) for which the desired temperature is reached with a
minimum loss of atoms [Sac97]. However, since the calculations always involve some ap-
proximations, the process is optimized empirically by realizing a decreasing ramp ωrf(t)
in several linear steps with different slopes, optimizing each slope for a large elastic col-
lision rate.
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Chapter 5

Experimental realization

5.1 Overview of the set-up

The design of the experiment is shown in Figure 5.1. A microchip is placed in the center
of a cube-shaped high-vacuum chamber that is evacuated by an ion pump and a getter
pump to pressures of some 10−10 mbar. The microchip is used to create magnetic fields
by currents passing through its wires and, coated with a gold layer, serves as a mirror.
Above the chip, the atom source, the so-called dispenser, is placed. It is a wire coated with
87Rb. When running a current through the dispenser and thus heating it, 87Rb atoms are
released into the vaccum chamber. Laser beams enter the chamber from four directions,
as indicated by the arrows in Figure 5.1. Two beams counterpropagate parallel to the chip
surface, two beams are reflected under 90◦ from the surface of the chip. They overlap
above the central wires of the chip. The lasers cool and trap the 87Rb atoms, transfer

MOT coils in
anti-Helmholtz
configuration

chip

rubidium dispenser

bias coils in Helmholtz
configuration

trap
center

CCD
camera

front view side view

Figure 5.1: Design of the experiment.
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5. EXPERIMENTAL REALIZATION

them into suitable states and image the atoms. A charge coupled device (CCD) camera is
the other main element of the imaging system.

There are three kinds of traps in the experiment: The light field for the two MOTs are
created by the trapping lasers and their reflections from the chip. Such a type of MOT
is often denoted as a mirror-MOT. The external MOT, for which the magnetic field is
created by a pair of coils in anti-Helmholtz configuration, collects rubidium atoms from
the background gas. The u-MOT is established by a current running through a u-shaped
wire on the chip in combination with a magnetic bias-field made by two pairs of coils in
Helmholtz configuration outside the vacuum chamber. It is used to transfer the atoms
into the third trap, a magnetic trap which is created by a current through a z-shaped wire
on the chip in combination with a magnetic bias field. In the magnetic trap, a BEC is
achieved by forced evaporative cooling for which the rf magnetic field is created by yet
another wire on the chip. Three pairs of coils (not shown in Figure 5.1) in Helmholtz
configuration are employed to cancel the residual magnetic field at the position of the
chip. With the different traps, the cloud of atoms can be placed at heights from 100 µm to
3 mm over the surface of the chip.

5.2 Production of the microchip

A picture of a microchip is shown in Figure 5.2 together with the layout of the wires.
Shown are the u-wire, the z-wire and the wire that is used to create the rf-field for the
evaporative cooling with the dimensions given in the drawing. The production of the
microchip is sketched in Figure 5.3. The basis of the microchip is a 0.25 mm silicon wafer
with an area of 16 mmx28 mm. The upper 100 nm of the silicon are oxidized to achieve
an insulating layer. A 100 nm layer of titanium is deposited for a better adhesion of a
following 100 nm layer of gold which is the basis for the wires. A layer of photoresist
(PMMA) is applied onto the chip and spread by spinning. The PMMA is irradiated by
UV-light through a glass mask on which the layout of the wires is applied by electron
lithography. The development of the photoresist leads to trenches in which the gold wires
are grown by electroplating. The maximum height of the wires depends on the thickness
of the photoresist and was 6 µm in the present case. The photoresist is chemically taken
off and the gold and titanium layers are removed by chemical etching so that the wires
are electrically isolated. The production technique allows for a minimum width of the
wires of 6-8 µm, a maximum height of 6 µm and a minimum separation of 2 µm. In order
not to damage the wires by heating, the maximum current is 2 A in the z-wire and 4 A in
the u-wire.

A 100 nm layer of titanium is applied to support the final 100 nm layer of gold which
serves as a mirror for the laser beams. The surface must be sufficiently flat on a large
scale so that a good reflection is possible. Defects on the surface with a wavelength that
is comparable to the wavelength of the light can be the cause of diffuse scattering of the
lasers. Therefore, the surface has to be as smooth as possible on a horizontal scale given
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Figure 5.2: Layout of the microchip. Top: Photo of a microchip with an older design of the wires.
Below: Schematic drawing of the present layout of the wires.
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Figure 5.3: Production of the wires on the microchip. The silicon wafer is coated with layers of
SiO2, Ti, Au and PMMA. The PMMA is irradiated through a mask. After developing the mask,
gold is electroplated onto the chip. After removing the photoresist the wires are insulated by
chemical etching.
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Figure 5.4: Height profile of the surface of the chip after applying a layer of BCB. Shown is a scan
over a grid of wires (that is not used in the experiment), the z and the u-wire.

by the wavelength of the light. A smoothing was achieved before applying the titanium
layer by covering the surface with a layer of BCB (benzocyclobutene), spinning the chip,
and curing the BCB by heating. The process was repeated successively seven times. The
height profile that was achieved can be seen in Figure 5.4. The drastic steps of the wires
are smoothed out. Nevertheless, the surface still shows the structure of the wires on a
vertical scale of 0.1 µm and a smooth step of 3 µm over a length of 2 mm. However, the
surface is flat enough to serve as a mirror, the improvement of the surface with the BCB
resulted in a larger number of atoms that were collected in the MOT.

5.3 Magnetic fields of the microwires

The magnetic fields of the wires are treated in two steps. First, the field from a current I
in the central part of each of the wires in combination with a magnetic bias field Bbias is
calculated. The central wire is modeled by an infinitely long wire. It runs in z-direction,
as indicated in Figure 5.5, whereas the magnetic bias field is parallel to the chip surface
in x-direction. The resulting magnetic field is

B =
µ0I

2π (x2 + y2)


−y

x
0


+


Bbias

0
0


 (5.1)

It is zero at the height y = µ0I
2πBbias

=: h and x = 0 on a line parallel to the wire at x = 0.
Around this point the field can be approximated as

B(x  h,h+∆,0) =
µ0I

2πh2


∆

x
0


 (5.2)
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Figure 5.5: Magnetic field created by a current in an infinitely long wire and bias field. On the
dotted line parallel to the wire in the left figure, the magnetic field vanishes. In the right figure,
the magnetic field in y-direction and x=z=0 is given for a current of 2 A and a bias field of 10 G.

which is a two-dimensional quadrupole field in the (x,y)-plane. The principal axis
∧
x=

x+ y and
∧
y= y− x coincide with the laser beams.

By adding two side-wires, a u-wire is formed, as illustrated in Figure 5.6. The resulting
magnetic field as used in the experiment is shown in Figure 5.6. The current is 2 A and
the bias field (in x-direction) is 4.2 G. For the calculation, the finite length of the wires is
taken into account but they are still assumed to be infinitely thin. The z-components of
the magnetic field from the side wires cancel in the center of the central wire, so that the
zero minimum of the magnetic field is maintained at z = 0 but shifted towards x = 313µm.
The height is y = 665µm. In the vicinity of the minimum, the field can be approximated
by a three-dimensional quadrupolar field, and in combination with the laser beams, the
u-MOT is realized.

With the z-wire, the longitudinal components of the magnetic fields from the the side
wires do not cancel, so that a trap with a non-zero minimum is produced. For a current
of 2 A in the wire and a magnetic field of 8 G in x-direction, the resulting field is shown
in Figure 5.7. The depth of the trap is given by Bbias. The magnetic field in a region
around the minimum, which is located directly above the wire, can be approximated by a
harmonic potential, hence an Ioffe-Pritchard type trap is created. The radial confinement
is given mainly by the central wire whereas the longitudinal confinement is created by
the side wires. The curvature of the trap, which determines the trap frequencies, as well
as the height of the minimum above the wire and the minimum of the magnetic field
can be controlled by the current and the external bias field. Calculated values for the
parameters that are used in an experimental sequence are listed in Table 5.1. A more
detailed treatment of the magnetic fields can be found in [Aus03].
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Figure 5.6: Magnetic fields created by the u-wire with a current of 2 A in the wire and an external
magnetic field of 4.2 G in x-direction. The three graphs show the absolute value of the magnetic
field in the three directions in space. Around the minimum, the field can be approximated by a
linear function.
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5.3 MAGNETIC FIELDS OF THE MICROWIRES

I[A] Bbias h[µm] Bmin B′′
r [G/cm−2] B′′

l [G/cm−2]

2 8 474 0.85 4.2·104 166
2 15 262 0.50 7.0·105 131
2 40 100 0.20 8.2·107 57

Table 5.1: Parameters for the magnetic fields of the z-wire that are used in the experimental se-
quence. I: current through z-wire, h: height of minimum of field above wire, Bmin: value of mini-
mum of magnetic field, B′′

r : radial curvature of field near minimum, B′′
l : longitudinal curvature of

field near minimum.
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Figure 5.8: Optical transitions of 87Rb. Given is the wavelength of the D1 and the D2 transition
and the lifetime τ of the excited level and the energy of the corresponding hyperfine structure
levels [Ari77]. On the right, the transitions are indicated that are used for cooling and trapping
the atoms as well as imaging them.
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5.4 Laser system

In order to achieve a closed cooling cycle, several laser frequencies are needed, as shown
in Figure 5.8. The 5S1/2(F=2) → 5P3/2(F=3) transition is used for cooling and trapping
from which the cooling and trapping beam is 14 MHz detuned to the red. The trapping
laser beams are detuned by -16 MHz from the F=2 → F’=3 D2-transition. Thus, 87Rb
atoms are trapped in the F=2 sublevel of the 5S1/2 state. The transition is also used for
imaging the atoms, the imaging beam is detuned by 0-20 MHz to the red. A repumping
beam closes the cooling cycle. It is resonant to the 5S1/2(F=1) → 5P1/2(F=2) transition
and pumps atoms from the untrapped 5S1/2(F=1) state into the trapped 5S1/2(F=2) state
in which they do not interact with the repumping beam anymore. A third transition,
5S1/2(F=2) → 5P3/2(F=2), is used for reonantly pumping the atoms into the 5S1/2(F=2,mF =
2) sublevel before transferring them into the magnetic trap.

The repumping beam comes from a free running Hitachi diode laser which is frequency
stabilized to the F = 1 → F’=2 D1-transition by saturation spectroscopy. The other beams
are produced by two Sanyo diode lasers. One of those, combined with a grating to form
an external cavity, is locked to the crossover F→(F’ = 2 / F’ = 3) of the D2-transition.
It serves as a master laser to inject the second laser, after the frequency is shifted by
double passing an acousto-optical modulator (AOM). In the course of an experiment, the
frequency is set to the desired value by this AOM. The frequency stabilization scheme
has a locking period of about one day and the linewidth of the lasers is around 1-2 MHz.

5.5 Imaging system

The density of the atom cloud is measured with a charge coupled device (CCD) camera
by shining the imaging beam on the atoms and determining the fraction of light that
is absorbed (absoption imaging). The imaging beam is passed from below through the
cloud, reflected by the chip and imaged in x-direction by the camera (see Figure 5.9). By
two lenses in a f/2f/f configuration, the cloud of cold atoms is imaged one-to-one onto
the CCD chip of the camera. The achieved resolution is limited to (9 µm)2 by the size of
pixels. For imaging a condensate having dimensions around 50 µm, the imaging system
is extended with a third lens of the same focal length to realize an enlargement of three,
thus increasing the resolution to (3 µm)2.

The fraction of transmitted intensity Itrans of the initial intensity Iin is measured by divid-
ing the data obtained with a cloud by the data obtained without a cloud. It is connected
to the density n by the relation

Itrans

Iin
(y,z) = e−σ(δ )

∫
n(x,y,z)dx. (5.3)

ln Itrans
Iin

(y,z) is the optical density of the cloud in x-direction which is proportional to the
column density

∫
n(x,y,z)dx. The absolute cross section of absorption σ is independent

88



5.5 IMAGING SYSTEM

lenslens

2f ff

CCD

2f ff 4f/3 4f

lenslenslens CCD

enlargement x1
resolution 9 µm

enlargement x3
resolution 3 µm

imaging beam

imaging beam

Figure 5.9: Principle of the imaging system.

of I for intensities that are small compared to the saturation intensity Isat = πhcΓ
3λ 3 . Isat is

1.7 mW/cm2 for the 87Rb D2-transition and σ(δ ) is then given by

σ(δ ) =
3λ 2

2π

1+ 4δ 2

Γ2

. (5.4)

In the absence of a magnetic field, the imaging laser is tuned to resonance with the
F= 2 →F′ = 3 D2-transition. The cloud is then imaged twice: once from the imaging beam
directly and once after being reflected from the surface of the chip (Figure 5.10). Not only
allows this a determination of the height of the cloud above the chip but it also projects
the cloud onto two perpendicular planes, thus imaging the cloud in a three-dimensional
way.

For some images, a magnetic field parallel to the surface of the chip is present. Thus,
the imaging beam can be brought into resonance with only one of the Zeeman sublevels,
of which the F= 2,mF = 2 →F′ = 3,mF = 3 D2-transition was used. Since the axis of the
beam is not the quantization (z-) axis of the atomic spin, the polarization of the laser can
be decomposed into σ+,σ− and π . Assuming that the imaging beam has a polarization
of σ− with respect to the y-axis that is indicated in Figure 5.10. For the direct imaging
beam, the fraction of σ+ light with respect to the quantization axis of the atomic spin
is much larger (73%) than the fraction of σ− (2%) polarized light leading to an effective
cross section of the transition of 0.73·σ(0) [Aus03]. When reflected, the direction of the
circular polarized light is reversed, so that the effective cross section is 0.02·σ(0). Thus,
the image of the reflected beam is very weak compared to the direct beam. However,
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when changing the initial polarization to σ− with respect to the y-axis, the cloud will
be measured by the reflected beam and a superposition of both images still yields the
three-dimensional information about the cloud as described above.

cloud imaged by direct beam

imaging beam cloud imaged by reflected beam

surface
of chip

atom cloud

reflection
of cloud

h h 20

&x

&y

&z

image on CCD camera

x

y

z

Figure 5.10: Principle of the imaging system. The density of the cloud is determined by measuring
the fraction of light that is absorbed by the cloud. Due to the double imaging from the direct and
the reflected imaging beam, the cloud is imaged in a 3-dimensional way. σi indicates the widths
that can be measured.

The temperature of the cloud is measured by determining its size as a function of the
time of free expansion. The width σ(t) of the cloud after a time of flight t is given by

σ(t)2 = σ(0)2 +
kBT
m

t2 (5.5)

By fitting a linear function to the measured values σ 2
i (ti), the temperature and the initial

size of the cloud can be determined.
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Chapter 6

Results and discussion

6.1 The way to a 87Rb BEC on a microchip

This section is a brief summary of the experimental steps to a BEC. A detailed study of
the performance of the traps and the determination of the experimental parameters can
be found in [Aus03].

External MOT

For the collection of rubidium atoms from the background gas, the external MOT is used
because the capture region of the external MOT is larger than the one of the u-MOT,
limited mainly by the overlap of the laser beams. The external MOT coils are operated
with a current of 8 A to create a magnetic field gradient of 30 G/cm. An experimental
sequence begins with a 2.6 s current pulse of 8 A through the dispenser during which
rubidium atoms are released into the vacuum chamber. From the start of the pulse, the
external MOT is loaded in 10 s with atoms from the background gas. The times are a
compromise between a short loading time of the MOT and a long lifetime of the atoms in
the magnetic trap later on. The number of thus collected atoms is of the order of 3·107.

u-MOT

In a next step, the atoms are adiabatically transfered into the u-MOT which serves to
transfer the atoms from the external MOT into the magnetic z-trap. A direct trans-
fer would be more difficult for two reasons: In this set-up, the magnetic fields of the
MOT have to be turned off very rapidly while the magnetic field of the magnetic trap
is switched on since the nonzero minimum of the magnetic field of the MOT cannot be
transfered adiabatically into the zero minimum of the magnetic trap. Because of the in-
ductance of the external MOT coils, it is much easier to turn off the current in the u-
shaped wire than in the MOT coils. A second reason for the u-MOT is that the MOT
and the magnetic trap have to overlap spatially very well to avoid heating of the atoms
during the transfer. Such an alignment is more difficult to achieve with external coils in
comparison to the configuration with the chip where the alignment is quasi automatical.
The transfer is done by rapidly ramping up the current in the u-wire to 4 A, after 3 ms
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Figure 6.1: Left: Absorption image of cloud in u-MOT after transfer from the external MOT with
the scale for the optical density given above the picture. The upper image is the reflection of the
cloud. Right: Vertical profile of the density and a fit of two Gaussian functions. The image is
taken after 3 ms of free expansion.

followed by ramping down the current in the MOT coils and ramping up the bias field
to a value of 4.2 G. The sequence and values of the currents were optimized to obtain a
maximum number of atoms in the magnetic trap. Thus, 2.5·107 atoms with a temperature
of 140 µK are transfered into the u-MOT. It is localized 1.3 mm above the surface of the
chip. An image of the cloud can be seen in Figure 6.1.

Preparation of transfer into magnetic trap

To overlap the cloud in the u-MOT with the magnetic trap, the cloud is compressed and
moved closer to the surface 10 ms after the transfer. The current in the u-wire is ramped
down to 2 A which brings a cloud of 2.2·107 atoms to a distance of 727 µm to the surface,
the temperature of 140 µK remaining unchanged.

Since the magnetic trap created by the z-wire is not very deep (200-300 µK), the temper-
ature of the cloud has to be decreased (< 50µK) before the transfer to avoid major losses
of atoms. This is achieved by ramping down all magnetic fields to zero and detuning the
lasers by -80 MHz from the F=2→ F’=3 D2-transition during 7 ms, achieving a so-called
molasses in which the atoms are cooled for 1.7 ms by Sisyphus cooling down to 40µK.

At this stage, the atoms are unpolarized, but only the fraction in the mF = 2 state will be
trapped in the magnetic trap (although the mF = 1 state is principally a trapping state as
well, the depth of the magnetic potential, being only half as deep as for the mF = 2 state,
is not sufficient to trap a significant number of atoms). The mF = 2 fraction is increased
by optical pumping: By establishing a quantization axis by a magnetic field of 7.5 G in
z-direction, the degeneracy of the magnetic sublevels is lifted. By turning on the σ+

polarized optical pumping beam, also incident in z-direction, tuned to the F=2→F’=2 D2
transition, the atoms are successively pumped during 50 µs into the mF = 2 sublevel in
which they do not interact with the laser field anymore.

92



6.1 THE WAY TO A 87RB BEC ON A MICROCHIP

0 0.2 0.4 0.6 0.8 1 1.2

50

100

150

200

250

100 200 300

z

[pixels]

[p
ix

e
ls

]

optical density

Figure 6.2: Absorption image of atoms in magnetic trap after 500 ms trapping time and 0.1 ms of
free expansion. The bias field has not been switched off for imaging the atoms, so the cloud is
imaged mainly by the direct imaging beam and only very faintly by the reflected imaging beam.
The temperature of the cloud is 39 µK, 3.6·106 atoms are in the cloud.

Magnetic trap

0.6 ms after turning off the laser beams by an AOM and a mechanical shutter and chang-
ing the magnetic bias-field from zero to 8 G, the current in the z-wire is set to 2 A to
establish the magnetic trap. Figure 6.2 shows a picture of the atoms that have been trans-
ferred into the magnetic trap. It is taken after 0.1 ms of free expansion of the cloud. Since
it takes 3 ms to switch off the current in the external bias coils, the images of the atoms
in the magnetic trap are always taken in the presence of the magnetic bias field resulting
in only one image of the cloud, as described in section 5.5. There are 3.6·106 atoms in the
cloud with a temperature of 39 µK and a density of 3·1011 atoms/cm3. The phase-space
density is still seven orders of magnitude lower than needed for a phase transition.

Evaporative cooling and BEC

In order to increase the density and thus the rate of elastic collisions for a quicker evap-
orative cooling, the trap is compressed by increasing the external magnetic bias field to
40 G in 300 ms. Taking the trap parameters from Table 5.1 and assuming an adiabatic
compression of the trap, the temperature is increased by a factor of 10 to 414 µK and
the density to 1.0·1013 atoms/cm3. Thus, the elastic collision rate at the beginning of the
forced evaporative cooling is in the order of 1000 s−1 as compared to a collision rate of a
few 10 s−1 in the uncompressed trap. In the compressed trap, the minimum of the mag-
netic field is 0.2 G compared to 0.8 G in the uncompressed trap. Due to rf noise at 2 MHz
that is present in the experiment, the lifetime of the atoms in the compressed trap would
be significantly reduced by induced spin flips. An additional bias field in z-direction of
3.9 G is applied to displace the potential difference from the rf-component. This leads
to a lifetime of the atoms in the compressed trap of about 10 s which is limited by the
background pressure. Thus, the rate of losses is four orders of magnitude smaller than
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Figure 6.3: Evolution of the rf-frequency and of the temperature of the atoms during forced evap-
orative cooling. Given is the duration of each segment for which the frequency is decreased
linearly to the final value νfinal together with the temperature T of the cloud at the end of the
segment.

the elastic collision rate, so an important requirement for evaporative cooling is fulfilled.

Evaporative cooling is introduced by an oscillating current in the rf-source wire on the
chip. The current is generated by a digital synthesizer which is amplified before passing
through the wire. During the evaporation, the frequency is ramped down. If the ramping
is too quick, the cloud does not rethermalize sufficiently while a slow ramping leads to
atom losses due to the finite lifetime of the atoms in the trap. 11 segments of linear ramps
have thus been determined, listed in Figure 6.1 together with the measured temperatures
of the cloud. The parameters are plotted in Figure 6.1 Note that during the segment 10
the frequency is kept constant. During this time, the trap is decompressed by lowering
the external bias field to 15 G to avoid severe losses by three-body collisions in the cloud
due to the increasing density. At the end of the rf-ramp, a condensate is obtained.

Images of the cloud containing a Bose-Einstein condensate achieved with the above des-
cribed parameters are shown in Figure 6.5 after different times of flight. A typical signa-
ture of a condensate is the bimodal distribution of the density: the density distribution
of the condensate reflects the inverse form of the potential (see Equation 4.7), in this case
a parabola, as seen in Figure 6.41 while the density of the thermal cloud is given by the
Boltzmann law (Equation 4.8) which is a broad Gaussian. From the thermal part, the tem-

1The difference of the equation given in Figure 6.4 from a parabola comes from the fact that a column
density is measured [Ket99].
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Figure 6.5: Absorption image of BEC after different times of flight ttof as given below the pictures.
The scale for the optical density is given on the right. The ellipticity, the ratio of the radial to the
longitudinal size, increases from 0.50 over 0.99 to 1.46 (from left to right).
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perature can be determined. The determination of the critical temperature as the onset of
the bimodal distribution in combination with the trap frequencies was used to calibrate
the measurement of the number of atoms. The number of condensed atoms is 1.5 · 103

atoms, corresponding to a fraction of 7.5%. A second signature of BEC is the time evo-
lution of the aspect ratio, the ratio of the radial and longitudinal size of the cloud, refer
to Figure 6.5. The density of the condensate is so large that the interaction energy domi-
nates over the kinetic energy. The condensate does thus expand more quickly the larger
the confinement of the trap is in the corresponding direction. In contrast, for a sufficiently
thin thermal gas for which the interactions can be neglected, the initial velocity dominates
over the interaction and the cloud will become eventually spherical independent of the
initial shape.

In total, a BEC is achieved within 15 s which is a factor of 10 faster than in experi-
ments that use macroscopic coils instead of a microchip. However, the resulting num-
ber of atoms in the BEC in the order of 103 is considerably lower by about a factor of
1000 [Lye02].

6.2 Roughness of the magnetic potential

In various experiments where atoms were held in magnetic traps formed by microstruc-
tures, a fragmentation of the atomic cloud was reported when the atoms were brought
close to the wires [Lea03, Lea02, Kra02, For02, Jon03]. The reason for this is given either
in inhomogenities in the conducting wires [Kra02] or in geometric deformation of the
wire [Lea02] both leading to spatial dependent deviations of the current flow from the
nominal path of the conductor and thus to a roughness of the magnetic field along the
wire. It is interesting to note that in a configuration with a macroscopic copper wire with
a diameter of 1.27 mm the phenomenon of fragmentation was not observed [Gus01].

Figure 6.6: Absorption images of cloud at different heights above the wire. The height above the
surface decreases from approximately 500 µm on the left to 50 µm on the right.
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Figure 6.7: Left: Absorption image of cloud, shifted along the central wire by a magnetic field
gradient in z-direction. Right: longitudinal potential V (z) as calculated from the density distribu-
tion.

The density distributions of thermal clouds in the magnetic trap were measured for dif-
ferent heights of the clouds above the wire. As can be seen in Figure 6.6 in which the
height decreases from 500 µm to 50 µm, the cloud is fragmented into several parts at
small distances. In order to explore the wire in a larger range in longitudinal direction
than the magnetic trap would allow at the chosen temperature, gradients Vgrad(z) of up to
7 G/cm were applied in longitudinal direction to shift the cloud along the central wire as
seen in Figure 6.7. Temperatures of the cloud of 0.5-2 µK were prepared by chosing the
final value of the rf-ramp. Since the temperatures are well above TC, the density n of the
cloud depends on the magnetic trapping potential in the following way:

n = n0e−
V (x,y,z)

kBT (6.1)

where n0 is the peak density. V (x,y,z) was checked to be separable into

V (x,y,z) = V (x,y)+V (z) (6.2)

by measuring the radial size of the cloud at various positions z over the wire. At ther-
mal equilibrium of the cloud, the transverse size is proportional to the curvature of the
harmonic transverse potential V (x,y). A maximum change in size of 13% was observed
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6. RESULTS AND DISCUSSION

Figure 6.8: Measured potential Vtrap(z)+Vrough(z) in comparison with the fitted harmonic potential.
The difference of the two curves give the roughness potential.

which is small enough to keep the assumption of separability. Thus, V (z) can be extracted
directly from

n(z) = n0

∫
dx

∫
dy e−

V (x,y,z)
kBT = n̄0e−

(V (z)
kBT , (6.3)

as shown in the right column of Figure 6.7. V (z) = Vtrap(z)+Vgrad(z)+Vrough(z) is the sum
of the z-dependent component of the nominal trapping potential Vtrap(z), the potential of
the additionally applied gradient Vgrad(z) and the potential Vrough(z) that causes the rough-
ness of the potential, denoted as roughness potential. Vgrad,i(z) were determined for each
applied gradient by fitting a linear function to the corresponding measured Vi(z) min-
imizing the differences between the different (Vtrap(z)+Vrough(z))i in chosen overlapping
regions. The fitted gradients were found to be in reasonable agreement with the expected
ones. Vtrap(z)+Vrough(z) was obtained over a distance of 1500 µm by subtracting Vgrad,i(z)
from Vi(z) and averaging the results in the overlapping regions, as shown in Figure 6.8.

The trapping potential Vtrap(z) of the z-wire and the bias field was found by modeling the
z-wire by two infinitely long arms of finite width not taking into account the finite height
of the wires. The height of the trap center above the wire and the length of the central wire
were left as free parameters in a fit to the measured data. From the images, only the height
above the chip surface could be obtained whereas the exact thickness of the BCB and gold
layer over the wire was not known at this time. The thickness was measured later on and
the experimental value of 12 µm was found to be in good agreement with the fitted value
of 13 µm. The length of the central wire was left as a fitting parameter because when the
measured length was taken, the fit was not very good. A physical reason might be found
in curvatures of the current flow at the corners of the z. However, the fitted length was
found to agree with the measured length within 4%. In Figure 6.8, the line indicates the
determined Vtrap(z). Vrough(z) is obtained by subtracting Vtrap(z) from V (z). The result,
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Figure 6.9: Roughness potential Vrough(z) for different heights of the cloud above the wire. Each
curve is shifted successively about 3 µK/A to the top for better visibility.

normalized to the current in the z-wire, is shown in Figure 6.9 for seven different heights
of the cloud. The amplitude of Vrough(z) clearly decreases with increasing distance from
the wire. As opposed to the observation of other groups [Jon03], no obvious periodicity
is seen. Vrough(z) was checked to be both independent of the temperature of the cloud in
the given range and to be linear with the current in the z-wire. Furthermore, it is stable
in time. The temperatures of the clouds were chosen to be about three times larger than
Vrough(z).

A spectral analysis of Vrough(z) was performed by calculating the power spectral density
PSDV. The power spectral density PSDf (k) of a function f (z) that is given in an interval
L is defined by

PSDf (k) =
1

πL
〈|

∫
dz f (z)eikz|2〉. (6.4)

The normalization factors are chosen such that
∫ ∞

0 PSDf (k)dk is the square of the rms
(root mean square) roughness given by 1

L

∫
f 2(z)dz. The calculation was done with the

pwelch method. The potential was devided into three segments with an overlap of 50%
which were windowed with Hamming windows. The results for seven distances from
the wire are shown in Figure 6.10 as a function of the wavenumber k = 2π/λ . Indeed, no
periodicity is observed. Instead, the power spectral density PSDV is distributed over a
broad range of k with the maximum of the distribution shifted to smaller wavenumbers
with increasing distance from the wire. The rms roughness decreases with the distance,
as expected from Figure 6.9. Errors may have been introduced at small k by the fit of the
length of the wire in the determination of Vtrap(z). The errors are not estimated here, but
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Figure 6.10: Power spectral density of measured roughness potential for heights above the wire
as given in the graph.

it shall be noted that in any case possible errors would lead only to an underestimation
of the power spectral density for small wavenumbers.

For a study of the origin of the roughness of the magnetic potential, the wire that was
used for the measurements is characterized. The reflecting gold layer and the layer of
BCB were removed by plasma etching to gain access to the wire. Figure 6.11 shows two
images that were taken with an electron microscope. Clearly visible, the surface of the
wire is quite rough. However, in the left picture it can be seen that the roughness in the
direction perpendicular to the chip surface is negligible compared to the roughness in the
two other directions. Images with different magnification were taken with the electron
microscope from directly above the wire, like the one shown on the right in Figure 6.11,
to quantify the roughness of the border of the wire. The border was determined from the
greyscale pictures by chosing a threshold value of intensity and determining the position
at which it was reached. The function of the position of the border fwire(z) that was found
in Figure 6.11 is drawn into the electron microscopy picture as a white line. From fwire(z),
a constant gradient and the mean value were subtracted. The result is shown in the left
graph of Figure 6.12. The amplitude of fwire(z) is typically 0.2 µm. The power spectral
density PSDwire(k) of fwire(z) can be seen in the right graph of Figure 6.12. The calculation
was done in the same way as described for PSDV. Shown are two curves: The curve ex-
panding to smaller wavenumbers is calculated from the average over two pictures with
a scale of 5 µm per 469 pixel, like the ones shown in Figure 6.11, the other one is aver-
aged over two pictures with a scale of 20 µm per 469 pixels, each picture of 1600 pixels
length. The surface of the wire can be assumed to be correlated on a small scale but un-
correlated on a large scale. The power spectral density shows the thus expected course:
a plateau for large wavelengths, as expected for white noise, and a drop with decreasing
wavelength. Only wavelengths with wavenumbers of 0.1 µm−1 and less are of interest
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6.2 ROUGHNESS OF THE MAGNETIC POTENTIAL

Figure 6.11: Electron-microscope picture of the central z-wire. The scale is given in the picture.
Right: View is perpendicular with respect to the chip surface. The white line in the right picture
indicates the extracted edge of the wire
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Figure 6.12: Left: Extracted line of Figure 6.11 after subtracting a constant gradient and the mean
value. Right: Power spectral density of the edge of the wire. Shown are the average over two
pictures of 68 µm, length, and the average over four pictures of 17 µm length. The thick line is an
averarage over wavenumbers smaller than 3 µm−1.
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for the experiment (see Figure 6.10) which is the region of white noise of the wire. Thus,
the values on the plateau in Figure 6.12 are averaged to get the (wavenumber indepen-
dent) magnitude of the power spectral density of the white noise of large wavelengths.
Points that correspond to wavenumbers smaller than 3 µm−1 were averaged, resulting in
a power spectral density of 0.003 µm2/µm−1.

Following the method of Lukin and coworkers [Wan03], from the power spectral density
of the border of the wire PSDwire(k), the power spectral density of the magnetic potential
that is caused by the border PSDV,w(k) can be calculated by

PSDV,w(k) =
(

µB
µ0I
2πd

)2 (kd)4

d2 |K1(kd)D(kW0,kd)|2PSDwire(k). (6.5)

The term µB
µ0I
2πd is hereby the potential created by the nominal current in the wire. K1 is

the modified Bessel function of the second kind of order 1 and the function D is defined
by

D(x,y) =
2sinh(x/2)

xsinh(x)K1(y)

∞

∑
n=0

(−1)n

n!(2y)n Kn+1(y)[γ(2n+1,x/2)− γ(2n+1,−x/2)] (6.6)

where γ(n,x) is the incomplete Gamma function. In the following, the sum is calculated
with an upper limit of 20 for which D(x,y) has converged for the considered x and y. To
derive Equation 6.5, the height of the trap above the wire is assumed to be large com-
pared to the height of the wire which is only the case for the larger distances that were
measured. Contributions to the roughness potential from the roughness of the height of
the wire are assumed to be small compared to the contributions from the roughness of
the border and are neglected. fwire(z) is assumed to be small compared to the width of
the wire and the slope of fwire(z) is much smaller than one which both is well fullfilled.

The power spectral density of the magnetic potential calculated with Equation 6.5 is
shown in Figure 6.13 for the heights above the wire for which the measurements were
done. The qualitative appearance is the same as for the measured potential.

The two sets of results are presented together in Figure 6.14 each box corresponds to
a different height above the wire as indicated in the box. Obviously, the calculations
from the border of the wire fail to explain the measured roughness potential: for small
wavenumbers, the observed values are about a factor of 10 larger than the calculated
ones. Furthermore, the calculated values decrease faster with the height than the mea-
sured ones. As mentioned above, the experimental values might be underestimated for
large wavelengths which would lead to an even larger disagreement. The assumption of
Lukin that the height above the wire shall be large compared to the height of the wire
itself is not fullfilled in all cases. Surprisingly, the experimental and calculated results
agree better for small heights of the cloud above the wire. For the calculations, only the
fluctuations of the border were considered. The surface of the wire was characterized
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6.2 ROUGHNESS OF THE MAGNETIC POTENTIAL

A

Figure 6.13: Power spectral density of the roughness potential as calculated from the power spec-
tral density of the border of the wire for different heights as given in the graph.
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wire is given in each box.
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by an atomic force microscope and an independent calculation showed that the contri-
bution of the surface to the roughness of the potential is indeed negligible compared to
the one from the border [Bou03]. Concluding, most likely inhomogenities of the wire are
the dominating reason for the fluctuations of the current causing the roughness potential.
However, the results show that the roughness of the border of a wire that is used for a
magnetic microtrap gives a lower limit for the roughness of the magnetic potential that
can be expected.
Note added: After the work of this thesis was finished, the whole length of the wire was
analyzed and unexpectedly it turned out that the assumption of white noise for small
wavevektors was wrong. With the new data, the power spectral density increases consid-
erably instead of remaining constant. With these results, the roughness potential as mea-
sured with the atoms could be reproduced by calculations from the wire profile [Est04].
Thus, for this microwire, the roughenss of the wire edge is really the dominating factor
contributing to the roughness potential.

6.3 Prospects

Structures like beamsplitters or atomic wave guides can conveniently be realized and dy-
namically changed with the realization of magnetig traps by wires on a microchip. The
principle has been demonstrated with thermal atoms [Den99, Cass00, Rei01]. However,
the roughness of the magnetic field that was measured does not allow to coherently trans-
port or split a BEC [Lea02]. In order to decrease the roughness, the chip was redesigned
and is currently in production. The first layer of wires is lowered under the surface into
chemically etched cuts of 15 µm depth. In these trenches, wires are produced with a sim-
ilar technique as the old chip: optical lithography followed by electroplating. To fill the
rest of the trenches, a layer of BCB is applied. The layer is cured by heating and then
polished mechanically by spheres of AlO2 with a diameter of 0.3 µm. This yields a flat
surface on a large scale with scratches of 0.3 µm depth which are leveled by another 5 µm
layer of BCB. By plasma etching, most of the BCB is removed again leaving a remaining
roughness of 10 nm on a small scale and a curvature with an amplitude of 2 µm over 2 cm
which is a large improvement in comparison to the old chip. After an earlier improve-
ment of the optical quality, a larger number of atoms could be collected in the external
MOT. If the number of atoms is still limited by the optical quality, the same effect should
occur again. A larger number of atoms is desirable because it leads to shorter times for
the evaporative cooling and a larger number of condensed atoms. Five wires of 500 nm
width will be applied on the surface in a second layer. The design is such that one trap
can be dynamically split into two. This opens the possiblilty of interference and tun-
neling experiments for which oscillation frequencies of 500 Hz are calculated. Wires of
sub-µm dimensions cannot be produced by optical lithography. Instead, the photoresist
is irradiated with an electron beam. After developing the photoresist, the small wires will
be grown by evaporation to a height of 500 nm. Apparently, the gold does not stick to the
surface of the BCB very well. The problem might be solved by switching to another resin.
There are three reasons why the new chip is expected create a flatter trapping potential.
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The production of the wires by evaporation instead of electroplating should lead to less
impurities in the wire which are assumed presently to be the reason for the observed
roughness of the potential. Furthermore, the amplitude of the current fluctuations is at
least limited by the dimensions of the wires which will be decreased by a factor of 100.
The border of the wires is expected to yield a roughness at least one order of magnitude
less both in amplitude and in correlation length in comparison with the old chip. Further-
more, the realization of the magnetic field with five uncorrelated wires should decrease
the resulting roughness approximately by a factor of 1/

√
5. It is not possible to predict

the roughness of the potential that the new chip will produce, however, it is expected to
be much lower than the present one.
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Summary

Optical collisions were studied in a crossed beams set-up. In contrast to optical colli-
sions that are performed in gas cells, the observed collision event is well characterized.
The method was established already for Na with atomic and molecular targets and was
expanded to K and Ca collisions with argon.

The repulsive parts of the K-Ar XΣ and BΣ potential curves were derived from the in-
terference pattern of differential cross sections of optical collisions. The accuracy is es-
timated to be 2-14 cm−1depending on the interatomic distances larger than 6.0 a.u. on
the XΣ and 5.5 a.u. on the BΣ curve. Such an accuracy is commonplace for potentials
that are determined by the analysis of line spectra but was not achieved so far on the
basis of scattering data. A confirmation by an independent approach would therefore
be highly desirable. A comparison is possible at present for the repulsive branch of the
XΣ state which was investigated on the basis bound-free spectra and gives a reasonable
agreement. The repulsive branch of the BΣ potential has not been studied experimentally
before. However, quantum chemical data reasonably agree with the present data. Devi-
ations in the order of 50 cm−1 are within the expected accuracy of present day quantum
chemical methods. By measuring the population ratio of the K fine-structure states after a
collision event, the transition probability from BΣ to K(4p1/2) was probed which depends
on details in the outer part of the BΣ and AΠ potentials. The good agreement of experi-
ment and calculation confirms the spectrosopic results also in this region. An expansion
of the method to binding parts of potential curves is possible and would complement the
spectroscopic approach.

Nonadiabatic transitions in the outgoing channel of Na-molecule collisions were stud-
ied for the molecules N2 and O2. The results for N2 are in very good agreement with
theory. Calculations show a dependence on the rotational temperature of N2. A compar-
ison of theory to the O2 data would be interesting. However, it is not possible at present
due to the lack of potential curves. The expansion of the technique to other molecules as
collision partners or other detunings is easily possible. Nonadiabatic transitions in the in-
going part of a collision can decide about the reactivity of the process. An understanding
of the transition mechanisms might allow to manipulate chemical reactions.

The 1S→1D transition that is probed in CaAr optical collisions is forbidden for the free
Ca atom, but the excitation probability increases considerably in the presence of an Ar
atom. The spectral dependence of the yield of excitated Ca atoms was measured, and the
results are in good agreement with data from gas cell experiments. Fixing the detuning,
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SUMMARY

differential cross sections were obtained. The experimental results agree satisfactorily
with ab initio calculations. The remaining disagreement is likely to a large part due to in-
accuracies in the experimental determination of the collision energy. The expansion to an
alkaline-earth+rare-gas system opens especially the opportunity to study spinchanging
collisions.

Wires on a microchip were used to create the magnetic traps for obtaining a 87Rb Bose-
Einstein condensate. The roughness of the magnetic trap was characterized by measur-
ing the spatial density distribution of a trapped thermal cloud of atoms for a range of
distances to the wire. From the data available at the time of working on this thesis, it
was found that the magnitude of the roughness cannot be explained by the roughness of
the wire, so that inhomigenities inside the wire are believed to be the cause. However,
the analysis of the complete wire edge revealed that fluctuations of the wire edge are
indeed the dominating factor. A microchip is a promising approach to realize magnetic
fields that act like beam splitters or wave guides for atoms. However, the roughness of
the magnetic potential, that was observed also in many comparable experiments, cur-
rently prevents a coherent manipulation of a BEC. A new chip is being fabricated and is
expected to produce a less rough magnetic potential.
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Appendix A

Derivation of the phase difference of two
trajectories

Equation 1.15 for the phase difference will be derived. We start with the integral over the
wavenumber in Equation 1.13, first only for the incoming part of the collision, which is
the semiclassical phase φ(r):

φ(r) =
r∫

R

k(r)ds =
m
h̄

r∫
R

|ṙ|ds. (A.1)

Since ṙ is always parallel to ds, |ṙ|ds = ṙds = ṙdr + r2ϕ̇dϕ and thus

φ(r) =
m
h̄

r∫
R

ṙdr +

ϕ(r)∫
0

mr2ϕ̇
h̄

dϕ =
m
h̄

r∫
R

ṙdr +
mvb

h̄

ϕ(r)∫
0

dϕ

=
mv
h̄

R∫
r

√
1− V1(r)

E
− b2

r2 dr + kbϕ(r) (A.2)

with k = k(∞) = mv/h̄. The phase φ(v,b) after the collision at R is calculated by integrating
over the whole trajectory:

φ(v,b) =
mv
h̄

R∫
r0

(√
1− V1(r)

E
− b2

r2 +

√
1− V2(r)

E
− b2

r2

)
dr + kb(π −χ(v,b)) (A.3)

The derivative with respect to b of the first addend in Equation A.3 is:

mv
h̄

R∫
r0

−b
r2


 1√

1− V1(r)
E − b2

r2

+
1√

1− V2(r)
E − b2

r2


 = k (χ(v,b)−π) (A.4)
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Figure A.1: Graphical illustration of Equation A.6
and Equation A.9. The shaded area is the integral
in Equation A.9, the hatched area is the integral in
Equation A.6. Apart from constant addends, each
area is proportional to the phase of the correspond-
ing trajectory.

Taking the antiderivative of the right part of Equation A.4 results in:

mv
h̄

R∫
r0

(√
1− V1(r)

E
− b2

r2 +

√
1− V2(r)

E
− b2

r2

)
dr = −k

br∫
b

χ(b′)db′ − kbπ +C (A.5)

with the arbitrary integrating boundary chosen as br and an integration constant C. In-
serting this into Equation A.3 results in the expression for the phase in Equation 1.14:

φ(v,b) = −k

br∫
b

χ(b′)db′ − kbχ +C. (A.6)

The integral is the shaded area in Figure A.1. To derive the expression for the phase
difference, the integral is transformed. For this, the deflection function is assumed to
be invertible such that each scattering angle1 θ can be assigned an impact parameter
b(θ). If this is not the case (when there is more than one trajectory with different impact
parameters leading to the same scattering angle as for example seen in Figure A.1 for
impact parameters slightly larger than br), the integrals in the following considerations
have to be broken down to regions where an inversion is possible. Substituting θ for b,
the integral of Equation A.6 is:

k

br∫
b

χ(b′)db′ = k ·

 θr∫

θ

b(θ ′)dθ ′ −b(θ) ·θ +b(θr) ·θr


 . (A.8)

Inserting this into Equation A.6 results in

φ(θ) = −k ·

 θr∫

θ

b(θ ′)dθ ′ +b(θr) ·θr +C′.


 (A.9)

1The experimentally accessible scattering angle θ is related to the deflection angle χ by

θ = |(χ +π)mod(2π)−π|. (A.7)
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A. DERIVATION OF THE PHASE DIFFERENCE OF TWO TRAJECTORIES

It can be easily seen that apart from addends independent of θ , φ(θ) is proportional to
the hatched area in Figure A.1. As discussed in section 1.2, we turn to the case where two
trajectories with different deflection functions contribute to the scattering angle θ . They
have different impact parameters b1 and b2. The integration constant in Equation A.9
is the same for both trajectories for reasons of continuity at the largest possible impact
parameter, so that the phase difference is given by

∆φ(θ) = = k


2R+

θr∫
θ

b1(θ ′)dθ ′ +b(θr) ·θr


−

k


2R+

θr∫
θ

b2(θ ′)dθ ′ +b(θr) ·θr




= k

θr∫
θ

(
b1(θ ′)−b2(θ ′)

)
dθ ′. (A.10)
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Appendix B

Conversion from optical collision
laboratory to center of mass coordinates

Theoretical data are mostly calculated in the center of mass frame of the collision while
experimental data are collected in a (rather arbitrary) laboratory frame. Therefore, a con-
version from one set of coordinates to the other is necessary if theory and experiment
shall be compared. A Newtondiagram (Figure B.1) illustrates this conversion. It displays
the relevant vectors and angles that will be treated in this chapter. As a starting point,
the projectile velocity�vpr and the target velocity�vt before the collision as well as the labo-
ratory scattering angle shall be given as well as the masses of the particles. From these
quantities, all other parameters in Figure B.1 can be deduced.

Θ
prv

prv´tv

pr,cm

cm

cm

relα v
lab

Θ
V

v´ ϕ

Figure B.1: Newtondiagram. Velocities before the collision (dashed): �vt (target), �vpr (projectile),
and relative velocity �vrel . �vcm : center of mass velocity. Velocities after the collision (dashed):
�vṕr,cm (projectile, center of mass coordinates), �vṕr (projectile). The dotted line inidicates a part of
the Newtonsphere.

The relative velocity before the collision�vrel is defined by�vpr and�vt :

�vrel =�vpr −�vt. (B.1)
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The velocity of the center of mass

�vcm =
mpr�vpr +mt�vt

mpr +mt
(B.2)

devides the relative velocity into the projectile and target velocity in the center of mass
frame according to their mass ratio:

�vpr,cm =
mt�vrel

mpr +mt
und �vt,cm = − mpr�vrel

mpr +mt
. (B.3)

Following from the conservation of momentum, the center of mass velocity remains un-
changed after the collision. If the collision is elastic, energy conversation demands an
external addition of energy ∆E during the collision to be transformed into kinetic energy
changing the length of the relative velocity about a corresponding value.

1
2

mred (�vŕel)
2 =

1
2

mred (�vrel)
2 +∆E ⇒ |�vŕel| =

√
(�vrel)

2 +
2∆E
mred

(B.4)

mred = mpr·mt

mpr+mt
is the reduced mass of the system. Hence, the absolute values of the veloci-

ties of the scattered atoms in the center of mass frame are also known:

|�vṕr,cm| = mt|�vŕel|
mpr +mt

and |�v´t,cm| = − mpr|�vŕel|
mpr +mt

. (B.5)

A selected direction �eṕr in which the scattered projectile atoms are detected specifies a
certain laboratory scattering angle θlab . The corresponding scattering angle in the center
of mass frame θcm is found geometrically by intersecting �eṕr with the Newtonsphere (a
sphere around the end of the center of mass velocity of radius |�vṕr,cm|)1. For the calculation
of the center of mass scattering angle, the angles α and ϕ as indicated in Figure B.1 are
given by

α = arccos

(
�eṕr ·�vcm

|�vcm|
)

(B.6)

ϕ = arcsin

( |�vcm| · sinα
|�vṕr,cm|

)
. (B.7)

With this, the absolute value of the projectile velocity after the collision can be calculated:

∣∣�vṕr
∣∣ =

√
|�vcm|2 +

∣∣�vṕr,cm
∣∣2 + |�vcm| ·

∣∣�vṕr,cm
∣∣ · cos(π −α −ϕ). (B.8)

1In the case of the same target and projectile velocity before the collision with equal masses of target and
projectile, simple geometric consideration show that the center of mass scattering angle is twice the labo-
ratory scattering angle.
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B. CONVERSION OF COORDINATES

Finally, the center of mass scattering angle θcm is obtained:

θcm = arccos

( (
�vṕr −�vcm

)
�vrel∣∣�vṕr −�vcm

∣∣ |�vrel|

)
. (B.9)

v´

pr,cm

cm

pr

V

v´

pr,cm

pr

dΩcm

v´

A

A

ϕ
A

co
s

d

v´
ϕ

Ωlab

ϕ

Figure B.2: Calculation of the Jakobi determinante. The two-dimensional surface of the Newton-
sphere A is indicated by a onedimensional dashed circle.

The differential cross section in the laboratory frame can thus be transformed into the
differential cross section in the center of mass frame:

σlab
(
�vpr,�vt,θlab

)
= σcm (�vrel,�vcm,θcm)

∣∣∣∣ dΩcm

dΩlab

∣∣∣∣ . (B.10)

with the Jakobi determinant
∣∣∣ dΩcm

dΩlab

∣∣∣ calculated by

dΩcm =
A
r2 =

A(
�vṕr,cm

)2 dΩlab =
Acosϕ(
�vṕr

)2

⇒
∣∣∣∣ dΩcm

dΩlab

∣∣∣∣ =

(
�vṕr

)2(
�vṕr,cm

)2
cosϕ

(B.11)

as it can easily be seen in Figure B.2.
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Appendix C

Reference atomic transitions and
conversion to SI units

system reference transition wavelength [nm] energy [cm−1]

K-Ar K(4s1/2)→K(4p1/2) 770.109 12985.17

Ca-Ar Ca(4s2)1S→Ca(4s3d)1D 457.674 21849.634

Na-molecule Na(3s1/2)→Na(3p1/2) 589.755 16956.183

Table C.1: Atomic transitions that are used as reference transitions from which the detuning of
the photon is given. Data are taken from [Bas75].

1 cm−1 = 1.99·10−23 J
1 MHz = 6.63·10−34 J
1 eV = 1.60·10−19 J
1 a.u. (length) = 5.29·10−11 m
1 a.u. (mass) = 1.66·10−27 kg
1 a.u. (transition dipole moment) = 8.48·10−30 Asm

Table C.2: Conversion factors into SI units.
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Appendix D

KAr differential cross sections and
determined potentials

On the following pages, the data are presented that were used to determine the KAr
potentials. The signal is multiplied by the sine of the laboratory scattering angle. Every
box corresponds to a certain velocity of the scattered K atoms which is indicated at the
side. The width of each velocity interval is 50 m/s. The data are given with error bars
of one standard deviations including the statistical uncertainty. The lines are calculations
from the potentials as determined in this work which are given at the end.

121



APPENDIX

0.000

0.010

11
75

0.000

0.010

12
75

0.0000

0.0100

13
75

0.000

0.010

1125

0.000

0.010
1225

0.000

0.010

1325

0 20 40θlab

0.000

0.010

67
5

0.000

0.010

77
5

0.000

0.010

87
5

0.000

0.010

97
5

0.000

0.010

10
75

0 20 40
0.000

0.010

625

0.000

0.010

725

0.000

0.010

825

0.000

0.010

925

0.000

0.010

1025

Figure D.1: Experimental differential cross sections (circles) in comparison with caluclations from
the potentials of this work (lines). The velocity of the scattered potassium is given beside each
box. Detuning: 220 cm−1.
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D. KAR DIFFERENTIAL CROSS SECTIONS AND DETERMINED POTENTIALS
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Figure D.2: Experimental differential cross sections (circles) in comparison with caluclations from
the potentials of this work (lines). The velocity of the scattered potassium is given beside each
box. Detuning: 480 cm−1.
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Figure D.3: Experimental differential cross sections (circles) in comparison with caluclations from
the potentials of this work (lines). The velocity of the scattered potassium is given beside each
box. Detuning: 640 cm−1.
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the potentials of this work (lines). The velocity of the scattered potassium is given beside each
box. Detuning: 720 cm−1.

125



APPENDIX

r [a.u.] XΣ [cm−1] BΣ [cm−1] AΠ [cm−1]

5.0 2286.7
5.2 988.5
5.4 259.2
5.6 1319.2 -133.4
5.8 1173.3 -330.2
6.0 675.2 1080.0 -415.6
6.2 527.6 1039.4 -440.1
6.4 420.4 1011.4 -432.7
6.6 338.0 983.4 -409.4
6.8 272.0 950.2 -379.2
7.0 217.7 908.6 -347.1
7.2 171.6 859.3 -315.6
7.4 132.4 804.2 -286.0
7.6 99.5 745.2 -258.7
7.8 71.9 683.8 -233.9
8.0 48.9 621.8 -211.6
8.2 29.4 560.7 -191.5
8.4 12.6 501.9 -173.4
8.6 -1.4 446.3 -157.7
8.8 -12.7 393.9 -142.6
9.0 -21.6 344.5 -129.4
9.4 -33.6 255.4 -106.9
9.8 -39.4 180.3 -88.7

10.2 -41.0 121.4 -73.7
10.6 -40.0 76.7 -61.5
11.0 -37.4 43.1 -51.5
11.5 -33.1 11.9 -41.5
12.0 -28.5 -9.1 -33.5
13.0 -20.1 -27.6 -22.3
14.0 -13.8 -30.1 -15.1
16.0 -6.9 -20.4 -7.4
18.0 -3.7 -11.0 -3.8
20.0 -2.1 -5.8 -2.1
22.0 -1.3 -3.2 -1.2
25.0 -.6 -1.5 -.6
28.0 -.3 -.7 -.3

Table D.1: Data of KAr potentials as determined in this work.
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Appendix E

Physical properties of 87Rb

mass m = 1.44 10−25 kg
scattering length a ∼= 5.7 nm
total differential cross section σtot = 8πa2 = 7 10−16 m2

D1 transition 5S1/2 ←5P1/2

wavelength λD1 = 794.76 nm

D2 transition 5S1/2 ←5P3/2

wavelength λD2 = 780.02 nm
natural linewidth Γ

2π = 5.89 106 MHz
recoil velocity vrecoil = h̄k

m = 6.02 mm s−1
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Anomalous longitudinal magnetic field near the surface of copper conductors,
J. Phys. B 35 (2002), L469.

[Lam85] Lambda Physik, Göttingen, Germany, Excimer laser emg 201 msc, instruction
manual, 1985.

[Lam87] Lambda Physik, Göttingen, Germany, Dye Laser FL 3001/2, instruction man-
ual, 1987.

[Lea02] A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson,
W. Ketterle, and D. E. Pritchard, Propagation of Bose-Einstein Condensates in a
Magnetic Waveguide, Phys. Rev. Lett. 89 (2002), 040401.

[Lea03] A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle,
and D. E. Pritchard, Bose-Einstein Condensates near a Microfabricated Surface,
Phys. Rev. Lett. 90 (2003), 100404.

134



BIBLIOGRAPHY

[Lee91] C. J. Lee, M. D. Havey, and R. P. Meyer, Laser spectroscopy of molecular LiHe:
The 3d2∆ ← 2p2Π transition, Phys. Rev. A 43 (1991), 77.

[Let88] P. D. Lett, R. N. Watts, C. I. Westbrook, and W. D. Phillips, Observation of
Atoms Laser Cooled below the Doppler Limit, Phys. Rev. Lett. 61 (1988), 169.

[Leu97] A. W. K. Leung, J. G. Kaup, D. Bellert, J. G. McCaffrey, and W. H. Brecken-
ridge, Spectroscopic characterization of the weakly bound Ca(4s4dσ 3D3)·Ar[3Σ+]
state: Evidence for a substantial maximum in the potential curve at long range,
J. Chem. Phys. 111 (1999), 2484.

[Leu99] A. W. K. Leung, J. G. Kaup, D. Bellert, and J. G. McCaffrey, Spectro-
scopic characterization of excited Ca(4s4dδ 3DJ) RG (3∆1,2) states (RG = Ar, Kr,
Xe): No “heavy -atom” mixing of RG(ndδ ) character into the wave functions,
J. Chem. Phys. 111 (1999), 981.

[Lin01] G. Lindenblatt, H. Wenz, and W. Behmenburg, Study of excitation transfer
Li(3D → 3P) occuring in optical collisions with rare gas atoms experimentally,
Euro. Phys. J. D 13 (2001), 329.

[LIN03] LINOS, Göttingen, Germany, Catalog, 2003.

[Lye02] J. E. Lye, C. S. Fletcher, U. Kallmann, H.-A. Bachor, and J. D. Close, Images of
evaporative cooling to Bose-Einstein condensation, J. Opt. B 4 (2002), 57.

[Mae94] A. Maetzing, Eine neue Methode zur Untersuchung von Stoßprozessen: Optische
Stöße in gekreuzten Atomstrahlen, Ph.D. thesis, Universität Hannover, 1994.

[Mas90] T. B. Massalski and H. Okamoto (eds.), Binary Alloy Phase Diagrams, 2nd ed.,
ASM International, 1990.

[Mat95] M. Mattiesen, Entwicklung eines Detektors für Natrium-Atome in Ryd-
bergzuständen, Examensarbeit, Universität Hannover, 1995.

[Mei02] F. Meier and W. Zwerger, Josephson tunneling between weakly interacting Bose-
Einstein condensates, Phys. Rev. A 64 (2002), 033610.

[Mes82] J. M. Mestdagh, J. Berlande, J. Cuvellier, P. de Pujo, and A. Binet, Fine-
structure transitions in K(4P) induced by rare gases and diatomic molecules,
J. Phys. B 15 (1982), 439.

[Mil88] D. R. Miller, Atomic and Molecular Beam Methods (G. Scoles, ed.), Oxford
University Press, 1988.

[Nes63] A. N. Nesmeyanov, Vapor pressure of the chemical elements, Elsevier, 1963.

[Nik84] E. E. Nikitin and S. Ya. Umanskii, Theory of Slow Atomic Collisions, Springer,
Berlin, 1984.
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