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ABSTRACT 
 
Keywords: Tungsten bronze systems: Li-Nb-PTB/Cs-Nb-HTB, optical properties, Phase 
stability range 
 

Synthesis and characterisation of LixWO3 (x = 0.03 – 0.7), LixNbyW1-yO3 (x = 0.1, 0.4; y = 

0.00 – 0.4), LixMoyW1-yO3 (x = 0.1, 0.4; y = 0.00 – 0.3), Na0.6MoyW1-yO3 (y = 0.00 – 0.25) 

and CsxNbyW1-yO3 (x =0.25, 0.3; y = 0.00 – 0.2) systems have been studied. Powder samples 

were prepared by solid state method at 700°C for 7 days. Single crystals of LixWO3 (x = 0.1 – 

0.45) system were grown by chemical vapour transport method using HgCl2 transporting agent 

in a temperature gradient T1 / T2 = 700°C / 800°C. The samples were characterized by using 

X-ray powder diffraction (Guinier, Philips diffractometer and Stoe Stadi P diffractometer), 

infrared investigation (KBr-method, Bruker IFS66) as well as by optical spectroscopy (Bruker 

IFS88 with attached microscope A590 and Zeiss-Specord S10 spectrometer). Some samples 

were also characterized by selected area electron diffraction, scanning electron microscopy 

(SEM) in combination with microanalysis and by high resolution electron microscopy 

(HREM). 

 

From the powder samples of LixWO3, single phase PTBcubic (PTB = perovskite tungsten 

bronze) is observed for 0.3 ≤ x ≤ 0.5, PTBtetr for x = 0.1, PTBcubic and PTBtetr mixed phase for 

0.1 < x < 0.3, PTBtetr and PTBorth mixed phase for x = 0.03, 0.05. For x > 0.5 samples, Li2WO4 

and WO2 reactants appear along with PTBcubic phase. Single crystals of LixWO3 show PTBcubic 

for x = 0.45 and 0.4, mixed phase of PTBcubic and PTBtetr for x = 0.35, 0.3 and 0.25 and of 

PTBtetr and PTBorth for x = 0.1. The cubic lattice parameter of LixWO3 system tends to 

increase with decreasing x into the two phase region due to a strain minimising interaction 

between the tetragonal and cubic phases. The infrared absorption spectra also indicate the 

phase coexistence in the same range. Single crystal optical properties on polished crystals of 

the x = 0.45 sample show Drude free carrier type isotropic reflectivity with a  minimum at 

about 14800 cm-1. Crystals of x = 0.4 differ slightly indicating a superimposition of an 

additional spectral contribution in the range of the minimum. This contribution is related to 

the influence of the tetragonal phase due to submicroscopical exsolution phenomena. For x < 

0.4 crystals, there are brighter lamellars separated by sharp interfaces due to the separation 

into PTBcub and PTBtetr. The data imply that the properties in the tetragonal part of the crystals 

are dominated by electron localisation effects  whereas the cubic parts are dominated by the 

free electron gas effect.  
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An interesting optical  property is the gradual change in color of lithium tungsten bronzes, 

LixWO3 at atmospheric condition. This effect is explained by the high mobility of Li, which is 

attracted by oxygen at the surface to form Li2O, followed by a reaction with atmospheric H2O 

and CO2 to form Li(OH) and Li2CO3. Therefore, LixWO3 is transformed to WO3 as indicated 

by the color change from blue or dark blue to greenish. The color change phenomena and all 

the atmospheric effects are mostly reversible when the sample is heated in evacuated tubes 

above 500°C. 

 

The system Li0.4NbyW1-yO3 shows that in presence of even small contents of Nb (y = 0.04), 

trace amount of LiNbWO6 type phase comes as impurity along with PTBcubic phase. The 

intensity of PTBcubic phase reduces and the intensity of LiNbWO6 trirutile type phase increases 

with increasing Nb content. For x = y = 0.4 the structure shows mainly the  LiNbWO6 

trirutile.  The system Li0.4MoyW1-yO3 shows that Li2W2O7 type impure phase comes out along 

with PTBcubic phase in presence of small amount of Mo contents. For samples with y > 0.15, 

the PTBcubic phase totally disappears and Li2W2O7 type phase is mainly identified. The 

variations in the X-ray pattern compared to the Li2W2O7 pure phase indicate the formation of 

Li2W2-xMoxO7 of variable compositions. Li0.1NbyW1-yO3 and Li0.1MoyW1-yO3 systems show 

that with increasing Nb and Mo content, the Li content of the PTB phase decreases with 

increasing y.  In the system Na0.6MoyW1-yO3 significant amount of W can be substituted by 

Mo in the PTBcubic phase. 

 

For the hexagonal tungsten bronzes (HTB) CsxWO3, it is observed that under the present 

preparation conditions a Nb/W substitution according to CsxNbyW1-yO3 is only possible for x 

= 0.25, 0.3 and y < 0.1. For sample with y ≥ 0.1, along with main HTB type bronze phase a 

significant amount of oxidised HTB-II type phase is also observed. Similar results are 

obtained in the system RbxNbyW1-yO3. 
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Zusammenfassung 
 
Schlagwörter: Wolframbronzen-Systeme: Li-Nb-PTB/Cs-Nb-HTB, Optische Eigenschaften 
Phasenstabilitätsbereiche 
 

Es wurden Synthesen und Charakterisierungen an den Systemen LixWO3 (x = 0.03 – 0.7), 

LixNbyW1-yO3 (x = 0.1, 0.4; y = 0.00 – 0.4), LixMoyW1-yO3 (x = 0.1, 0.4; y = 0.00 – 0.3), 

Na0.6MoyW1-yO3 (y = 0.00 – 0.25) und CsxNbyW1-yO3 (x =0.25, 0.3; y = 0.00 – 0.2) 

durchgeführt. Polykristallines Material wurde durch Festkörperreaktionen bei 700°C 

(Reaktionszeiten 7 Tage) erhalten. Größere Kristallkörper (bis 0.5 mm im Durchmesser) 

konnten im System LixWO3 (x = 0.1 – 0.45) durch chemischen Transport mit HgCl2 in einem 

Temperaturgradienten T1 / T2 = 700°C / 800°C erhalten werden. Die Proben wurden durch 

Röntgenpulveruntersuchungen (Guinier Methode, Philips und Stoe Stadi P Diffraktometer), 

infrarot Absorptionsspektren (KBr-Methode, Bruker IFS66) und optischer 

Reflexionsspektroskopie (Bruker IFS88 mit Mikroskopzusatz A590 und Zeiss-Specord S10 

Spektrometer) charakterisiert. Einige Proben wurden zudem durch elektronenmikroskopische 

Verfahren (HRTEM, SEM, EDX-Analysen) analysiert. 

 

Die polykristallinen Proben im System LixWO3 zeigen nach Röntgenuntersuchungen eine 

kubische Modifikation PTBcubic (PTB = „perovskite tungsten bronze“) für 0.3 ≤ x ≤ 0.5, eine 

tetragonale Form PTBtetr für x = 0.1, sowie Mischphasen von PTBcubic und PTBtetr für 0.1 < x 

< 0.3, PTBtetr und PTBorth (orth = orthorhombisch) für x = 0.03, 0.05. Für x > 0.5 werden 

Li2WO4 and WO2 neben PTBcubic beobachtet. Die Versuche zur Zucht größerer Kristalle im 

System LixWO3 zeigen PTBcubic für x = 0.45 und 0.4, Mischphasen von PTBcubic und PTBtetr 

für x = 0.35, 0.3 und 0.25, sowie von PTBtetr und PTBorth für x = 0.1. Der kubische 

Gitterparameter steigt mit abnehmenden x in das Zweiphasenfeld, was durch eine 

Minimierung des „strains“ erklärt wird. Die infrarot Absorptionsspektren ergeben analoge 

Phasenkoexistenzen von PTBcubic und PTBtetr wie sie auch in den 

Röntgenbeugungsdiagrammen beobachtet werden. Mikroreflexionsuntersuchungen an den 

polierten Kristallkörpern der x = 0.45 Proben zeigen ein „Drude freies Ladungsträger 

Verhalten“  mit einer isotropen Reflektivität mit einem Minimum bei ca. 14800 cm-1. Kristalle 

der x = 0.4 Proben zeigen hiervon geringe Abweichungen, die auf eine Überlagerung eines 

zusätzlichen Effektes im Bereich des Minimums hindeuten. Dieser Beitrag deutet auf den 

Einfluß einer submikroskopischen Entmischung hin. Für Kristalle der Proben mit x < 0.4 

werden durch die Entmischung in PTBtetr und PTBcubic hellere und dunklere Lamellen 
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beobachtet, die durch scharfe Grenzlinien voneinder getrennt erscheinen. Die Ergebnisse 

reflexionmikroskopischer Untersuchungen zeigen den Effekt von Elektronenlokalisierungen 

für die PTBtetr Bereiche, wohingegen die kubischen Bereiche durch den Effekt freier 

Ladungsträger dominiert werden. 

 

Eine interessante optische Eigenschaft ist die allmähliche Farbänderung der polykristallinen 

LixWO3 Proben unter atmosphärischen Bedingungen. Dieser Effekt wird durch die hohe 

Mobilität des Li erklärt, welches durch den Luftsauerstoff oberflächlich zu Li2O oxidiert wird 

und im folgenden mit atmosphärischen H2O und CO2 zu Li(OH) und Li2CO3 reagiert. Daher 

wird LixWO3 an Li abgereichert und zu WO3, was eine Farbänderung von blau nach grün 

bewirkt. Die Farbänderung durch die atmosphärischen Effekte können durch eine 

nachfolgende Wärmebehandlung bei 500°C unter evakuierten Bedingungen zurückgeführt 

werden. 

  

Im System Li0.4NbyW1-yO3 werden schon durch die Gegenwart kleiner Anteile von Nb (y = 

0.04) neben der Hauptphase PTBcubic die Spuren einer LiNbWO6 Typ Phase beobachtet. Bei 

einer weiteren Erhöhung von y verringert sich der Anteil der PTBcubic Phase während der 

Anteil der „Trirutil-Typ“ Phase LiNbWO6 zunimmt. Für x = y = 0.4 wird im wesentlichen nur 

LiNbWO6 beobachtet. Im System Li0.4MoyW1-yO3 wird bereits für kleine Mo-Anteile ein 

geringer Anteil einer Li2W2O7 Typ Phase neben PTBcubic als Hauptphase beobachtet. Für 

Proben mit y > 0.15 wird im wesentlichen nur noch eine Li2W2O7 Typ Phase beobachtet und  

PTBcubic Anteile sind vollkommen verschwunden. Die Veränderungen in den 

Röntgendiffraktogrammen deuten dabei auf die Bildung eines Li2W2-xMoxO7 

Mischkristallsystems hin. Die Systeme Li0.1NbyW1-yO3 und Li0.1MoyW1-yO3 zeigen, dass mit 

steigenden Nb bzw. Mo Anteilen offensichtlich der Li-Anteil der PTB Phase abnimmt. Im 

System Na0.6MoyW1-yO3 können deutliche W Anteile durch Mo innerhalb der PTBcubic ersetzt 

werden. 

 

Im HTB (= “hexagonal tungsten bronzes”) System CsxWO3, wird eine geringe Nb/W –

Substitution entsprechend der Zusammensetzungen CsxNbyW1-yO3 mit x = 0.25, 0.3 und y < 

0.1 beobachtet. Für Proben mit y ≥ 0.1 wird eine Koexistenz mit einer sogennanten mehr 

oxidierten HTB-II Typ Phase beobachtet. Analoge Ergebnisse werden für das RbxNbyW1-yO3 

System erhalten. 
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1. INTRODUCTION 
 

1

1. INTRODUCTION 
 
Tungsten trioxide, WO3 which is the host structure of alkali metal tungsten bronzes, is a 

transparent semiconductor with an indirect band gap of about 2.6 eV between the mostly 

oxygen 2p dominated filled valence band and the tungsten 3d dominated empty conduction 

band. WO3 has a perovskite-like ABO3 type structure with empty A sites. In the WO3 

structure the tungsten atoms are surrounded by six oxygen atoms, forming WO6 octahedra, 

which are linked by corner sharing in three-dimentional network. The displacement of the 

tungsten atoms from the centre of the octahedra changes with the temperature, causing the 

symmetry of the structure to alter [1]. WO3 thus exists in several polymorphic forms, which 

are stable within well-defined temperature regions and transform into each other reversibly. 

The tetragonal, orthorhombic, monoclinic and triclinic WO3 modifications are observed in the 

temperature region –180° to 900°C [2]. A hexagonal form of WO3 has also been prepared by 

soft chemistry methods [3].  

 

During last 25 years it has become increasingly apparent that WO3, modified by ion 

incorporation or substoichiometry, can exhibit many technologically important properties. 

First and foremost one can achieve electrochromism, i.e., optical properties that can be 

modified reversibly and persistently by electrical pulses [4, 5]. Electrochromic WO3-based 

devices [4, 5] are currently being developed for ‘’smart windows’’ with variable throughput of 

visible light and solar energy, high contrast system for passive and active information display, 

variable-reflectance mirrors, and variable emittance surfaces for controlled thermal emission.  

 

The interest in the physical and chemical properties of WO3 is also renewed for many reasons, 

such as, because of observing recently of novel crystal structure types in consumption with 

sheet type superconductivity along twin boundaries in WO3-x [6, 7], or because of reports on 

high temperature (Tc = 91k) superconductivity in NaxWO3 [8]. However, reconfirmation of 

such a high Tc in this systems is still required, or even because of the wish of a basic 

understanding of the insulator to metal transition in the field of d-metal oxides.  

 

In the present work investigations were carried out on tungsten bronzes, MxWO3 and 

MxM′yW1-yO3 systems. The tungsten bronzes are ternary metal oxides of general formula, 

MxWO3, where M is an electropositive metal, typically alkali and 0 < x < 1. These non-

stoichiometric compounds have been known since 1823 when Wöhler obtained a colored 

sodium tungsten bronze while he was trying to prepare metallic tungsten from a molten 



1. INTRODUCTION 
 

2

mixture of Na2WO4 and WO3 by hydrogen reduction [9]. Same type of compounds was 

observed by Laurent [10] a few years later with potassium. The reddish violet needles 

obtained were given formulas like K2W3O9 [11], K2W4O12 [12-14] and K2W5O15[11] or 

considered to be mixtures of several stoichiometric phases [10, 15]. Hallopeau [11] reported 

first the lithium tungsten bronzes in the beginning of 19th century. Later Brunner [15] 

submitted his dissertation on lithium tungsten bronzes. Schäfer [14] synthesized a 

corresponding rubidium compound and described it as an octatungstate. 

 

The tungsten bronzes, however, regarded as stoichiometric compounds until 1935 when Hägg 

[16] showed that the sodium bronzes of cubic symmetry belong to a continuous series of solid 

solutions, NaxWO3 of variable composition within an extended homogeneity range 0.32 ≤ x ≤ 

0.93. Magnéli and Blomberg [17] reported the presence of such solid solution in other alkali 

metal tungsten bronzes and also prepared the corresponding cesium compounds. 

 

As a general class bronzes of high-valency metals such as tungsten, vanadium, molybdenum, 

tantalum, and titanium accommodate the guest ions such as alkalis, alkaline earths, rare 

earths, copper, silver, uranium, hydrogen, and ammonium. There are a high number of 

publications on this field, which has been reviewed from time to time during the last 50 years 

by the authors Hägg and Magneli (1954) [18], Sienko (1963) [19], Shanks et al. (1963) [20], 

Ribnick et al. (1963) [21], Wadsley (1964) [22], Dickens and Whittingham (1968) [23], 

Galasso (1969) [24], Hagenmuller (1971) [25], Bevan and Hagenmuller (1975) [26], Gamble 

and Geballe (1976) [27], T. Ekstrom (1980) [1], M. M. Dobson (1987) [28]  and recently by 

Ph. Labbe (1992) [29]. 

 

The tungsten bronze comprises the metal – oxide lattice as the host matrix, the positive ions as 

the interstitial guests, resulting an equivalent number of quasi free electrons. The general 

formula MxWO3 can be written as (M+
xW5+

xW6+
1-x)O3, which formally indicate the presence 

of pentavalent tungsten in the bronzes. W atom can be replaced by other pentavalent metals of 

suitable atomic size such as V, Nb or Ta; the phase thus can become fully oxidised. Sabatier 

and Baud [30] reported that not only pentavalent but lower valent metals can also partly 

replace tungsten such as monovalent (Li), divalent (Mg), trivalent (Cr) and tetravalent (Ti) in 

appropriate amount so that the resultant compounds are completely oxidized. The oxidized 

analogues of bronzes have been called bronzoids [31]. Magneli described the bronzoid in the 

12th European Crystallographic meeting [32]  by the following way ‘’a number of compounds 
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and solid solutions crystallize with a structure of tungsten bronze-type’’. Among them, 

niobates and tantalates take an important part and have been the most studied. The main 

feature of the substitution of Nb or Ta for W pertains to the fact that the resulting products are 

bronze-like from the compositional and structural points of view, but contrary to the bronzes 

are insulating phases owing to the d° character of Nb (v) and Ta (v). For this reason they have 

been called ‘’bronzoids’’. 

  

Such compounds of bronze, MxWO3 or bronzoid have properties which sensibly depend not 

only on the environment, temperature and pressure, but also on the ratio of the components in 

the solid, and notably on the nature and the rate of inserted ions. Thus, an original aspect of 

most of these phases is to possess composition–altering features which are function of a 

variable x fixing the atoms proportion. Thus by a variation of x the properties (color, 

conductivity, magnetic properties etc.) can change dramatically involving certain type of 

phase transitions of the WO3 host. 

 

Tungsten Bronzes have intense color (some are black), metallic lustre (hence their name), 

metallic or semi-metallic conductivity, inertness to attack by strong acids. The large interest in 

the tungsten bronzes is based on the fact that they exhibit interesting electric and magnetic 

properties. Except for tungsten bronzes with the lowest alkali content, they are all good 

electronic conductors with metallic character, which is due to that the M-atoms donate their 

valence electrons to a conduction band of the W-O framework [33]. Wanlass and Sienko [34]  

have shown that the rubidium tungsten bronzes, RbxWO3 with x = 0.2 and 0.30, are 

superconducting with critical temperature up to 4.35 °K and 2.90°K, respectively.  

 

Technological applications of the bronzes appear very promising. Because of the high 

electrical conductivity (comparable to graphite) and inertness to acid media, bronze can be an 

economical substitute for noble metals, particularly as electrode materials in acidic 

environments. Extensive studies have hence been pursued on the bronze electrodes in a wide 

range of electrochemical systems. Typical applications are indicating electrodes in analytical 

and synthetic reactions for acid–base, oxidation–reduction, metal–complexing, metal–

chelating etc [35-50]. In some application, the bronze and the reference electrodes in water 

generate an electric potential which is a sensitive function of the dissolved oxygen; this 

assembly can be conveniently used for monitoring the oxygen level in water which is 

important for pollution control [51]. 
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The bronzes are also invaluable in catalysis and related applications. The bronzes can catalyze 

the ortho–para conversion of hydrogen and the hydrogen–deuterium exchange reaction in the 

gas phase [52]. The bronze doped with platinum is as effective an electrocatalyst as the best 

known catalyst, platinum, in the electrochemical reduction of oxygen to water in acidic media 

[35, 53-57]. However, some platinum doped bronzes showed weak activity [58-60]. The 

bronze containing a trace of platinum enhances the catalytic oxidation of hydrogen, 

hydrocarbons, carbon monoxide and reformer gas in fuel cells [61-63]. The surface 

characteristics play a vital role in these catalytic reactions. 

 

Tungsten bronzes adopt four different types of structures. In general, their structures consist 

of networks of corner-sharing WO6 octahedra [Fig. 1], forming various kinds of cages or 

tunnels that are at least partly occupied by alkali metal atoms. These are, in stable form,  

 

 

Fig. 1.  The structure of WO3 

 

perovskite tungsten bronze (PTB), formed by Li, Na, rare earth, Zr, Al, Sb etc; tetragonal 

tungsten bronze (TTB), formed by Na, K, Sn, Pb etc; hexagonal tungsten bronze (HTB) 

formed by K, Rb, Cs, In and Tl often ions of large size; intergrowth tungsten bronze (ITB) 

formed with numerous cations. Some metals other than alkali are also known to form ITB 

bronzes, namely Sn, Ba, Sb, Pb and Bi. The present study is mainly focused on PTB and HTB 

structure.  

 

The perovskite tungsten bronze (PTB), which is formed with lithium and sodium, has 

quadratic tunnels, or rather 12-coordinated cages, in which the smaller atoms of lithium and 
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sodium can be accommodated [16, 64] [Fig. 2]. The value of x varies from 0.028 to 0.50 for 

Li-PTB, whereas the Na-PTB forms within two composition ranges: x = 0.01 – 0.11 and 0.32 

– 0.93 [66]. The structure of the cubic sodium tungsten bronzes, NaxWO3, is analogous to that 

of perovskite, CaTiO3 (ABX3), but with the A positions only partially occupied by Na. The  

 

 

Fig. 2. The structure of perovskite tungsten bronzes, PTB. The large circles indicate metal 
atoms and the small circles tungsten atoms. 

 

PTB structure permits only atoms with a maximum radius of 1.3 Å at atmospheric pressure. 

Thus of the alkali metals only Li and Na are permitted [65]. The structure of the cubic sodium 

tungsten bronzes was determined by Hägg [16]. The structure of Na0.1WO3 reported by 

Magnéli [66], is closely related to the cubic perovskite tungsten bronzes, but the tungsten 

atoms are slightly displaced from the centre of the WO6 octahedra along the c-axis, thus 

forming puckered layers. Due to this puckering the unit cell becomes tetragonal rather than 

cubic and the cell volume is doubled. This structure is thus designed as PTBtetr [65]. The PTB 

structure of lithium tungsten bronzes, LixWO3, was reported by Magnéli [67] and Straumanis 

and Hsu [68]. 

 

The second type, tetragonal tungsten bronze (TTB) structure determined by Magneli [69], has 

three type of tunnels, namely trigonal, tetragonal and pentagonal [Fig. 3]. The pentagonal and 

at least partially the tetragonal tunnels are occupied by alkali atoms [70, 71]. The occupancy  

of the alkali positions in the tunnels has been investigated for both K and Na – TTB. Kihlborg 

and Klug [70] showed that a crystal of composition K0.37WO3 has about 88% of the 
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pentagonal tunnel sites and about 10% of the tetragonal tunnel positions occupied by 

potassium. Takusagawa and Jcobsson [71] used Na as interstitial atoms in the TTB structure 

and found that for a sample of composition Na0.48WO3 the pentagonal tunnels were filled to 

100% and the tetragonal tunnels to about 40%. However, in a sample of composition NaxWO3 

(x ≈ 0.33) only the pentagonal tunnels were occupied. From these results they concluded that   

 

 
Fig. 3. The structure of tetragonal tungsten bronze, TTB, projected onto the xy plane. The 

large open and filled circles indicate the alkali metal atoms, located in pentagonal and 
tetragonal tunnels respectively. The WO6 octahedra shown by shaded. 

 

with increasing alkali content the pentagonal tunnels are first completely filled before the 

tetragonal tunnel positions are occupied (x ≥ 0.4). This is probably due to that the pentagonal 

tunnels have more space available for the Na atoms. 

 

In 1953, Magneli [72] reported the third type structure, hexagonal tungsten bronze (HTB), for 

Rb0.29WO3. This structure contains hexagonal and trigonal tunnels along the c-axis, formed by 

a network of corner-sharing tungsten-oxygen octahedra [Fig. 4]. The alkali atoms occupy the 

hexagonal tunnels in the structure. Since the A-ion site is larger in HTB than in PTB and 

TTB, the HTB phase is stabilized by large ions such as K+, Rb+ and Cs+. Recent high pressure 

experiments [73, 74] have produced HTB phases containing Nd and Ca. Complete filling of 

all the hexagonal tunnel sites gives xmax = 0.33. A number of elements other than alkali metals 

are known to form the same structure. The heavy alkali metals also form HTB-type phases 
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with niobium oxide fluoride (AxNbO2+xF1-x) [75] and vanadium fluoride (AxVF3) [76], with 

niobium and vanadium replacing tungsten in the structure. Gerand et al. [77, 78], using a 

special low-temperature synthesis technique, have succeeded in preparation of a hexagonal 

modification of WO3 with the same structure as HTB but without alkali content.  

 

Fig. 4. The structure of hexagonal tungsten bronze, HTB, projected along the c –axis. The 
WO6 octahedra form a network with three and six membered rings. The large open circles in 

the hexagonal tunnels are the alkali metal atoms. 
 

This form of WO3 transforms irreversibly to the normal ReO3-type modification at 400-

500°C. Alkali metal atoms, even Li and Na which normally do not form an HTB phase, can 

be inserted into the tunnels by reacting hexagonal WO3 with alkali vapour or organometallics 

[79]. 
 

In 1975, Hussain and Kihlborg [80] reported the fourth type structure, intergrowth tungsten 

bronze, (ITB), for MxWO3 (M = K, Rb, Cs, Tl and 0.01 ≤ x ≤ 0.12). This structure can be 

considered as an intergrowth of the HTB and WO3 structure type at the unit cell level [Fig. 5], 

and it thus also contains hexagonal tunnels in which K, Rb and Cs can be accommodated. 

Here in this structure the alkali metal atom are located in the hexagonal tunnels in the HTB 

slab, and the octahedra in the WO3 slabs are tilted by about 15° in an alternating sequence, to 

allow the two slabs to fit together. The simplest series, in ITB is called (n)-ITB which consists 

of single hexagonal tunnel rows separated by n chains of WO6 octahedra, n = 2, 3, 4 etc. A 

b 
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second type, called (1,n)-ITB, has two hexagonal tunnels connected by one row of WO6 

octahedra, and these double rows are in turn separated by n layers of octahedra as in (n)-ITB 

[80]. 

  

Fig. 5. The structure of intergrowth tungsten bronze, ITB, projected along the c-axis. The 
(1,7) member is shown. The large circles in the hexagonal tunnels indicate the positions of the 

heavy alkali metal atoms. 
 

 

Several different methods have been used to synthesize bronzes and bronzoids. The most 

common method is conventional solid-state synthesis, which involves mixing appropriate 

amounts of the starting materials and heating the resulting powders in air or in an evacuated 

silica tube under ambient pressure conditions. In general, the fully oxidized phases are heat-

treated in Al2O3 or Pt crucibles in air, whereas the reduced tungsten bronzes are heated in 

evacuated ampoules. Single crystal of tungsten bronzes can also be synthesized by chemical 

vapour transport method. Recently, alkali metal HTB and ITB [81] crystals of bronze and 

bronzoids were also prepared by chemical vapour transport method from a mixture of 

appropriate amount of oxides using transporting agents. Electrolytic reduction was also used 

to grow large single crystal of tungsten bronzes. Molten mixture of metal tungstate  and 

tungstic acids were electrolytically reduced to grow big crystal of sodium tungsten bronzes. 

 

 Solid state synthesis can also be performed at high pressure and high temperatures, using the 

same starting materials as at ambient pressure, but the heating times are much shorter. Bither 

et al. [82] prepared the alkali and alkaline earth metal tungsten bronzes at high pressure, and 

the results obtained differ substantially from those at ambient pressure. Both sodium and 

calcium normally form compounds with PTB-type structures, but at high pressure phases with 

HTB-type structures are formed instead. Zakharov et al. [73] have performed high–pressure 

b
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synthesis at 50kbar in the Nd2O3-WO3 system and obtained crystals with HTB and ITB 

related structure. Again this is an interesting difference from the same system at ambient 

pressure, for which only PTB-type RExWO3 bronzes have been reported.  

 

There are some alternative methods to solid state synthesis which include several fairly new 

techniques like soft chemistry or chemical intercalation reactions [83]. Shorter reaction times 

or lower synthesis temperature is the advantage of these two method. Preparation by 

intercalation chemistry in h.WO3, has recently given some spectacular compounds of HTB 

type [83]: HxWO3, LixWO3, NaxWO3, KxWO3, RbxWO3 and CsxWO3. Many research group 

use the film method for the synthesis of the tungsten bronzes. In the present investigation, 

solid state reaction method and chemical vapour transport method are used for powder sample 

and single crystal preparation, respectively. 

 

Hydrothermal synthesis offers an alternative to the usually high temperature of conventional 

solid-state synthesis, and this method has been used to obtain both reduced and fully oxidized 

phases in the RE-W-O system. Kletsov et al. [84] prepared and studied RE2W2O9 crystals with 

RE = Ce, Pr and Nd, and Reis et al. [85] synthesized alkali metal tungsten bronzes of both the 

pyrochlore and hexagonal structure types. Single HTB crystals were prepared hydrothermally 

under a pressure of 3000 atm [86]. The hexagonal symmetry, compatible with the space group 

P63/mcm is verified by precession photographs for Li0.3WO3 and (NH4)0.33WO3. 

 

The most extensively studied inorganic bronzes are sodium tungsten bronzes, NaxWO3 with 

0.45 < x < 1, which are metallic and exhibit perovskite structure. The electronic transport 

properties of the bronzes were interpreted based on various clustering models regarding the 

sodium distribution: a linear–polymer– like clustering [87], a randomly linked clustering [88] 

and NaWO3 globules surrounded by WO3 [89-91]. However, these clustering models ascribing 

microscopic inhomogeneity have been rejected by Tunstall [92], Crandall and Faughnan [93] 

and Weinberger [94]. According to these authors this perplexity is largely attributed to 

macroscopic inhomogeneity in the bronze specimen. 

 

The optical reflectance spectra of sodium tungsten bronzes have been measured repeatedly to 

obtain congruous electronic energy values [23, 95-98]. There are still vital inconsistencies 

among these measurements. Inhomogeneities in the surface structure should be largely 

responsible for this. 
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Explanation of the electronic and optical properties of all the WO3 based system are however, 

still somewhat controversial, in particular for the technically interesting compositions to the 

limit beyond the metal insulator transition, e.g. for the bronzes MxWO3 with x below about 

0.4. It has often been ignored in theoretical considerations of the electronic properties of these 

systems, e.g. for the PTB containing H, Li and Na [99] that there occurs phase transitions 

together with the appearance of two phase fields [100]. These fact could of course produce 

largely inhomogeneous samples with metallic and insulating areas within one grain or even 

within one crystal. In this respect Zhong et al. [101] have shown in situ measurements using 

electolytic cells of Li/LixWO3 (films and powders) the coexistence ranges of monoclinic and 

tetragonal phases at about 0.01 < x < 0.082 and between tetragonal and cubic phases at about 

0.13 < x < 0.36. Or with other words LixWO3 is cubic for 0.36 < x < 0.5 and tetragonal for 

0.083 < x < 0.13 during intercalation of Li. During deintercalation the lower stability limit of 

the cubic phase becomes x = 0.21 and the tetragonal phase was observed for 0.078 < x < 0.12. 

 

It seems to be well known that electrons introduced in WO3, either by oxygen deficiency 

WO3-x or by intercalation with hydrogen are affected by strong electron phonon coupling. 

Therefore, these electrons are self trapped forming polarons rather than being free electron 

like [102-105]. These polarons are characterized by their strong absorption feature in the near 

infrared spectral range tailing into the visible, which is with increasing polaron concentration 

x responsible for the change to dark blue color in WO3-x powders [104]. The ‘’blue effect’’ is 

also seen e. g. by H intercalation into WO3 crystals [102] or Li into WO3 films [106]. As 

discussed in ref [104] for WO3-x with increasing x there occurs a metal/insulator transition at 

about x = 0.1, which has been explained by the saturation in polaron concentration, thus 

producing free carriers for further enhanced x. The spectral changes are dominated by the 

appearance of a Drude free carrier plasma frequency. In this respect the often cited visual 

appearance in NaxWO3 from greenish (for WO3 according to the band to band transition) 

through gray to blue might be explained by the increase in polaron concentration from zero to 

above the metal insulator transition. On the other hand the change to purple, red, orange and 

yellow as x is further increased to one is well explained by a further increase in the carrier 

concentration due to a gradual shift in the plasma frequency through the visible part of the 

spectrum [107]. Thus an important question here is how the plasma frequency will break 

down, or with other words how the spectral properties will change on crossing from the metal 

to the insulating material in these systems or going through the two phase fields. It is 

interesting to note that recently Likalter [108] suggested on theoretical reasons a percolation 
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threshold value for x of about 0.1 for MxWO3 with M = Li, Na, i.e. there should be a first 

infinite metallic path through insulating islands for x about 0.1. This author ruled out also that 

any polaron formation suggesting the intercalated alkali atoms in the low concentration limit 

are only weakly ionized and that the binding energy to the alkali ions is of the order of 1eV. 

For comparison the polaron stabilisation energy is of the order of 0.5eV. Therefore, the near 

infrared absorption peak with maximum at about 1eV is explained by Likalter by the photo 

ionization of the intercalated atoms rather than by the polaron effect in strict contradiction to 

earlier assumption about polaron formation.  

 

Thus, there are reasons to reinvestigate the PTB systems. Therefore, the main part of this 

thesis are focused on the synthesis and characterization of LixWO3 system in order to explore 

the stability field in the solid state synthesis technique and to investigate in particular their 

spectral properties.  The absorption spectra which are related on powder sample of strongly 

absorbing materials possessing strong anisotropic effects are often hard to interpret. 

Therefore, beside the investigation of powder samples of LixWO3 and the crystal growth 

conditions of the nonstoichiometric LixWO3 compounds, another aim was to obtain the 

crystals within the system LixWO3 is sufficiently large for studying their single crystal optical 

properties. For this polarised micro reflectivity, crystal of LixWO3 were also prepared with 

different composition by chemical vapour transport method.  

 

Lithium ionic conductors have been a subject of interest not only because of their application 

to solid lithium batteries and chemical sensors, but also from a fundamental point of view in 

relation to ionic transportation inside of the solid state. Among many lithium ionic 

conductors, (La2/3-xLi3x)TiO3 has been especially interesting because of its high ionic 

conductivity as much as 10-3 S/cm at room temperature [109]. The structure of this compound 

and its modified materials are perovskite-type, in which lithium ion and its vacancy are 

located at its A-site, and the mechanism of ionic transportation is considered as hopping of 

lithium via vacancy. LixWO3 itself cannot be a pure solid electrolyte, because it has high 

electronic conductivity. On the other hand, it has been reported that partial substitution of 

tungsten by niobium or tantalum reduces the electronic conductivity of sodium tungsten 

bronzes. The published bronzoid phases are mainly of the intergrowth tungsten bronze (ITB), 

hexagonal tungsten bronze (HTB) and tetragonal tungsten bronze (TTB) type compounds. 

There are very few reports on substitution of tungsten atom by other metal atoms in the PTB 

type bronzes.  All these has incited us to investigate LixMyW1-yO3 (x = 0.1 and 0.4, M = Nb 
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and Mo) and NaxMoyW1-yO3 (x = 0.6) system and determine their spectral and structural 

properties. The results of the study in these systems are reported in this thesis. 

 

Recently there is a report about the synthesis and characterization of niobium substituted HTB 

phases, MxNbyW1-yO3 with M = K, Rb; x = 0.2, 0.25, 0.3 and 0.0 ≤ y ≤ 0.2 where the number 

of electrons introduced by alkali metal atoms are only partly compensated by pentavalent 

niobium [110]. There are no reports on substitution of tungsten atom by other metal atoms 

in the Cs-HTB type bronze phase. This has also incited us to investigate Nb substituted 

Cesium tungsten bronze system. The results of this study are reported in this thesis. 

Moreover, the reproducibility of Nb substituted rubidium system reported by Hussain et 

al. [110], was rechecked and the results obtained are also given in the present thesis. 

 

It is also interesting to note that Drude free carrier plasma frequencies have been detected in 

so far for all HTB type compounds, MxWO3 with M = K, Cs, Rb and 0.2 < x < 0.3 with a 

splitting in their position according to the strong anisotropic effect related on their hexagonal 

symmetry [81]. Here it was the main aim to see how far the stability limit of fully reduced 

forms of HTB could be extended to lower electron concentration according to a suggested 

equation Mx(Wx-y
5+Nby

5+W1-x
6+)O3 with increasing y.
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2. EXPERIMENTAL 
 
2.1 Methods Of Preparation  
 
LixWO3 

Series of LixWO3 were prepared according to the following reaction : 

x/2 Li2WO4 + (1-x) WO3 + x/2 WO2  →  LixWO3     ..........................(i)   

Polycrystalline powder samples of LixWO3 were prepared by solid state synthesis method and 

single crystals of LixWO3 were prepared by chemical vapour transport method.  

 

Two series of polycrystalline powder samples (series 1 and series 2) of lithium tungsten 

bronzes, LixWO3 were prepared with various x running from x = 0.03 to x = 0.7.  

 

The following procedure was followed for the polycrystalline sample [series 1, series 2, series 

4 to series 10] preparation. Appropriate amount of the reactants were mixed in an agate 

mortar and transferred into clean dried silica tubes. The silica tubes were evacuated at room 

temperature for 1 - 2 hours, sealed and then heated in a Muffle Furnace at temperature 700°C 

for 7 days. In all cases the samples were quenched to room temperature within minutes by 

taking the reaction tubes out of the furnace.  

 

Series 1: The preparation were carried out with the reactant Lithium tungsten oxide, Li2WO4 

(99.9%), Tungsten (iv) oxide, WO2 (99.9%) and Tungsten (vi) oxide, WO3 (99.998%) all 

from Alfa Aesar. 
 

Series 2: Lithium tungsten oxide, Li2WO4 of ICN pharmaceuticals , Tungsten (iv) oxide, WO2 

(99%) of Alfa product of ventron Division, and Tungsten (vi) oxide, WO3 (99.7%) of Ventron 

GMBH, were used as reactant. 

 

Series 3: For the single crystal preparation chemical vapour transport method was carried out 

by using the same reactants as used for series 1. After many unsuccessful experiments the 

optimum condition was found out for single crystal preparation. From all of these 

experiments, it is observed that for the preparation of single crystal of LixWO3, the amount of 

reactant mixture, the amount of transport agent, the tube diameter  and also the temperature 

gradients played important rule. Finally, the appropriate amount of reactants according to the 
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equation 1 were mixed thoroughly in an agate mortar, transferred into clean dried 10 mm 

diameter silica tubes, the silica tubes were then evacuated at room temperature for 2-3 hours 

and sealed. The transport agent mercury (ii) chloride, HgCl2 of Alfa Aesar 99.9995% was 

loaded in the silica tubes before evacuation. The reaction tubes were then heated in a double-

zone furnace for different periods of time with a temperature gradient between 700°C for the 

sink and 800°C for the source side. 

 

LixNbyW1-yO3  
Attempts were made to prepare niobium doped lithium tungsten bronzes according to the 

following reaction : 

 

x/2Li2WO4 +  (1-x-y/2)WO3 +  1/2(x-y)WO2 +  y/2Nb2O5     →    LixNbyW1-yO3  …………(ii) 

 

Series 4: For Li0.4NbyWO3 system with y = 0.00 – 0.35, the reactions were carried out at 

700°C for 7days with the same reactants as used for series 2 and for niobium source, Niobium 

(v) oxide, Nb2O5 (99.9%) of Fluka AG was used.  

 

Series 5: Samples of nominal composition of Li0.4NbyWO3 with y = 0.00 – 0.35 were prepared 

at 700°C for 7 days from the same reactants as used for series 1 and for niobium source, 

Niobium (v) oxide, Nb2O5 of Alfa Aesar (99.9985%) was used. A sample with nominal 

composition x = y (i.e fully oxidised) was prepared by sealing the silica tube without vacuum 

and then heated at 700°C for 7 days in a furnace. 

 

Series 6: Attempts were also made to dope niobium in the Li0.1WO3 PTBtetr system. Samples 

of nominal composition of  Li0.1NbyW1-yO3 with  y = 0.00 – 0.08 were  prepared at 700°C for 

7 days from the appropriate amounts of reactants as used for series 5 according to the 

equation (ii). A sample with x = y (i.e fully oxidised) for nominal composition was prepared 

by the same way as described in series 5. 

 

LixMoyW1-yO3  
Series 7 and 8: In series 7 samples of various compositions of Li0.4MoyW1-yO3 with  y = 0.00 

– 0.3 and in series 8 samples of various compositions of Li0.1MoyW1-yO3 with  y = 0.00 – 0.1 

have been prepared at 700°C for 7 days  according to the following reaction :                        
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x/2Li2WO4 +  y MoO3 +  (1-x-y) WO3 +  x/2 WO2     →    LixMoyW1-yO3 ………………(iii) 

For these preparation reactants were used as for series 1 and MoO3 (Alfa Aesar, 99.9985%). 

In series 7, a sample with y = 0.05 was unsuccessful because of the leakage of the tube on 

sealing in vacuum which could be identified from the color of the sample after completing the 

reaction. 

 

Na0.6MoyW1-yO3  
Series 9: Samples of various compositions of Na0.6MoyW1-yO3 system with  y = 0.00 – 0.2 

have been prepared according to the following equation : 

 

x/2 Na2WO4 +  y MoO3 +  (1-x-y) WO3 +  x/2 WO2     →    NaxMoyW1-yO3……………(iv) 
 

at 600°C and 700°C for 7 days by the same procedure as described for LixWO3 powder 

sample in series 1. In this series Na2WO4 of ICN, Tungsten (iv) oxide, WO2 of Alfa product 

of ventron Division, Tungsten (vi) oxide, WO3 of Ventron GMBH and molybdenum (vi) 

oxide, MoO3 of BDH were used as reactants.  

 

CsxNbyW1-yO3  
Series 10: Samples of various compositions of CsxNbyW1-yO3 with  x = 0.25 and 0.3; y = 0.00 

– 0.2 have been prepared at 800°C for 7 days by the same procedure as described for series 1. 

Appropriate amounts of reactants were calculated and used according to the following 

reaction - 

  

x/2Cs2WO4 +  (1-x-y/2)WO3 +  1/2(x-y)WO2 +  y/2Nb2O5     →    CsxNbyW1-yO3 …………(v) 

 

Cesium tungsten oxide, Cs2WO4 of BDH laboratory supplies, Tungsten (iv) oxide, WO2 of 

Alfa product of ventron Division (99%), Tungsten (vi) oxide, WO3 of Ventron GMBH 

(99.7%) and Nb2O5 of Fluka AG (99.9%) were used as reactant.  

 

Li2W2O7 
Samples of Li2W2O7 were prepared  at atmospheric conditions  to compare some results 

according to the following reaction : 

Li2CO3 + 2WO3  →  Li2W2O7 + CO2 
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2.2 Characterisation  
 
X-ray diffraction 
All the samples were characterised by X-ray powder diffraction using a Guinier camera with 

monochromatized CuKα1 radiation (λ = 1.540598Å). Silicon was added as an internal  

standard and the positions of the silicon lines were used to correct shrinkage of the film. The 

2θ peak position were measured manually by using a film reader. These parameters were  

indexed and used to refine the cell parameters with the programs Korguis, Korguisp, Lqrf and 

Asin [111]. 

 

Powder diffraction data for direct comparison between the samples were also collected from 

PW1800 Philips diffractometer with graphite monocromator and CuKα1 radiation. For some 

samples X-ray data were also collected in a Stoe Stadi P diffractometer in a 0.02 mm capillary 

tube by using MoKα1 radiation together with a focusing Ge (iii) monocromator. 

 

Infrared absorption 
All samples were investigated by infrared spectroscopy in the range 375 – 4000 cm-1 using a 

Bruker IFS66 FTIR-spectrometer. For the transmission (T) measurements, the powder 

samples were diluted by KBr (1 mg sample in 200 mg KBr) and pressed into pellets. The 

spectra are given in absorption units with Abs = log (Io / I), where Io and I are transmitted 

intensities through the reference pellet (KBr) and sample pellet diluted with KBr, 

respectively. 

 

Powder Reflectivity 
The optical reflectivity were measured in the range of 3000 – 24000 cm-1 from the undiluted 

powders against a suitable reference by using Bruker IFS88 FTIR spectrometer. In the present 

investigation KBr, MgO and mirror were used as a reference. The optical reflectivity of the 

series of powder samples were also measured in the range 10,000 to 40,000 cm-1 against MgO 

as a reference by using a Zeiss-Specord S10 spectrometer. The relative intensities Rd = I / I0 

were plotted as well as recalculated to Kubelka Munk (KM) units according to : 

                                       

F (Rd) = (I-Rd)2 / 2Rd  
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Single Crystal Reflectivity 
For the single crystal reflectivity measurements crystals from different batches as obtained by 

transport reactions were glued to plane sample holder (ordinary glass). They were then 

mechanically abraded and finally polished (0.2 µm diamond paste) to show optically high 

quality surfaces. The reflectivity measurements were carried out between 600 and 20000 cm-1 

using a spot size of 80 µm in diameter. All these single crystal reflection experiments were 

carried out using polarized light (Glan Thompson polarizer) at nearly normal incidence onto 

the surfaces. For the measurements, a FTIR equipment (Bruker IFS88) with an attached 

microscope (Bruker A590) were used. Al-mirror were used for reference measurements. 

 

Electron Microscopy 
A number of samples from different series have been investigated by electron microscopy 

methods, including microanalysis.  The scanning electron microscopy (SEM) studies gave 

information about the variation in crystal size and shape, and energy-dispersive X-ray (EDX 

analysis) provided an indication of the compositions of the various crystals. Different SEM 

microscopes were used in the present investigation. For SEM-image and quantitative 

distribution of elements JEOL 820 SEM was used which is equipped with a LINK AN10000 

EDX microanalysis system. For collecting the spectrum and to see the quantitative 

distribution of elements of some selective Na0.6MoyW1-yO3 sample JEOL 880 SEM was also 

used which is equipped with a LINK ISIS EDX microanalysis system (GEM detector). 

HITACHI S-530 SEM was used for a large number of sample mainly for collecting the 

spectra. However, EDX analysis with HITACHI S-530 SEM shows lower local resolution 

comparing to that with JEOL 820 SEM. For JEOL 820 SEM and  HITACHI S-530 

microscope studies, the powders were smeared on adhesive carbon films and mounted on 

aluminium plates whereas for JEOL 880 SEM copper plate was used. The EDX analysis in 

the SEM microscope were taken from at least 2-3 different parts of each crystals in the JEOL 

820 SEM.  

 

For further information about phase and crystal composition the TEM microscope was used 

specially for the CsxNbyW1-yO3 and Na0.6MoyW1-yO3 systems, where electron diffraction (ED) 

and microanalysis studies of individual crystal fragments were combined. A JEOL 2000FXII 

transmission electron microscope, equipped with a LINK AN10000EDS microanalysis 

system was used. For these studies, specimens were prepared by crushing a small amount of 
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the sample in an agate mortar, dispersing the fine powder in n-butanol and finally putting a 

drop of the suspension on a holey carbon film supported by a Cu grid.  

 

High-resolution electron microscopy (HRTEM) was used for few samples to get information 

about the ordered and defect structures of crystals. The HRTEM images were taken in a JEOL 

3010JEM, operated at an accelerating voltage of 300kV. The radius of the objective aperture 

used corresponded to 0.68 Å-1 in reciprocal space, and the image were taken close to Scherzer 

focus conditions, which means that the projected metal atoms appear as dark spots in the 

HRTEM images. 

 

Thermal analysis 
Thermogravimetric analysis (TG) for the weight change of a sample as a function of 

temperature was measured by SETARAM Scientific and industrial equipment.
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3. RESULTS 
 
3.1 LixWO3 system 
 
3.1.1 Characterisation of solid state synthesis products 

X-ray investigation 

The results of the X-ray powder (Guinier method) analysis of all lithium tungsten bronzes, 

LixWO3 of series 1 and series 2 are collected in table 1a. Results obtained previously [112] 

from samples of LixWO3 which were prepared at 600°C, 700°C and 800°C by the same way 

and from the same reactants as described for series 2 are also given in table 1b. In series 1 

single phase of PTBcubic is observed for 0.3 ≤ x ≤ 0.5 whereas for series 2 it is observed for 0.4 

≤ x ≤ 0.5. The PTBcubic phase field for series 2 is in good agreement with the data obtained 

previously [112] at 600°C, 700°C and 800°C indicating that the temperature conditions are 

not important for the resultant product. However, these samples show different color changes 

at atmospheric condition depending on preparation temperature (see below). On the other 

hand the differences between series 1 and series 2 can be explained by a different quality of 

WO2. IR spectra and X-ray pattern obtained a significant deviation from pure WO2 for Alfa 

product of ventron Division as used in series 2 compared to WO2 as used in series 1.  

 

The typical deviation obtained by several time reading the same X-ray film is about ± 0.003. 

Furthermore, the deviation in the results from some samples, in particular five times 

preparation of same nominal composition of Li0.4WO3, but prepared individually is ± 0.005. 

In all cases the estimated standard deviation of the refinement was smaller, which is therefore 

not given in table 1a.  

 

For cubic phase the refinement was done in all cases using a primitive cell (Pm3m) containing 

1 formula unit of LixWO3. Some weak additional reflections are observed which are related to 

a unit cell parameter doubling, i.e. according to a body centred cell (Im3) containing 8 

formula units. Doubling of unit cell has been reported first, using neutron diffraction data 

[113]. There are also some few reports about doubling of unit cell of cubic LixWO3 [114, 

115]. For comparison, refinements of unit cell parameter were carried out by using the 8 fold 

cell for series 1. The unit cell parameter are given in Table 1a as a / 2. It can be seen that the 

change from the primitive to the body centre cubic phase does not have any significant change 

in the absolute value and general trend of lattice parameters on x.  
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Table 1a: Results of the X-ray powder analysis of different samples of lithium 
tungsten bronzes, LixWO3 ( x = 0.03- 0.7) of series 1 and series 2 

LixWO3 Prepared 
at 700°C 
(series 1 ) 

LixWO3 Prepared 
at 700°C 

( series 2 ) 
Cell parameters 

(Guinier method) 

Nominal 
composition 

 
 Phase 

observed 
3 h X-ray 

 
(Å) 

a / 2 
(Å) 

Phase 
observed 
40 min 
X-ray 

Cell parameters
(Guinier 
method) 

(Å) 

Li0.03WO3 
 

PTBO 
+PTBT 

 

 
- 

 
- 

 
- 

 
- 

Li0.05WO3 PTBO 
 
 

+PTBT 

a = 7.3114 
b = 7.4654 
c = 7.7901 
a = 5.2106 
c = 3.8558 

 
- 

PTBO 
 
 

+PTBT 
+● 

a = 7.3254 
b = 7.5250 
c = 7.7306 
a = 5.1906 
c = 3.8453 

Li0.1WO3 PTBT a = 5.2113 
c = 3.8422 

 
- 

PTBT 
+● 

 

a = 5.2089 
c = 3.8518 

Li0.15WO3  
- 

 
- 

 
- 

PTBC 
+PTBT 

+● 

a = 3.7400 
a = 5.2027 
c = 3.8457 

Li0.2WO3 PTBC 
   +PTBT 

a = 3.7353 
a = 5.2015 
c = 3.8379 

 

3.7376 PTBC 
+PTBT 

+● 

a = 3.7381 
a = 5.1886 
c = 3.8324 

Li0.25WO3  
- 

 
- 

 
- 
 

PTBC 
+PTBT 

+● 

a = 3.7324 
 

Li0.3WO3 PTBC a = 3.7394 3.7360 PTBC 
+● 

 

a = 3.7256 

Li0.35WO3 PTBC a = 3.7383 3.7382 PTBC 
+● 

a = 3.7258 

Li0.4WO3 PTBC a = 3.7237 3.7260 PTBC a = 3.7245 

Li0.45WO3 PTBC a = 3.7177 3.7212  
- 

- 

Li0.5WO3 PTBC a = 3.7181 3.7182 PTBC a = 3.7209 

Li0.55WO3 PTBC 
+ traces of 

Li2WO4 

a = 3.7170 3.7178 PTBC 
+traces of 
Li2WO4 

a = 3.7222 

Li0.6WO3 PTBC 
+Li2WO4+

WO2 

a = 3.7233 3.7238 PTBC 
+Li2WO4 

+WO2 

a = 3.7246 

Li0.7WO3 PTBC 
+Li2WO4 

+WO2 

a = 3.7232 3.7247 PTBC 
+Li2WO4 

+WO2 

a = 3.7210 

● = 2-8 extra lines   
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Table 1b: Results of the X-ray powder analysis of some previous samples [112] of 
LixWO3 ( x = 0.1- 0.7)  prepared  from old reactants at 600°C, 700°C and 800°C. 

 
 
 

LixWO3 Prepared 
at 600°C 

 

LixWO3 Prepared 
at 700°C 

 

LixWO3 Prepared 
at 800° 

 
 

Nominal 
composite-

on 
 
 Phase 

observed
(30 min 
X-ray) 

Cell 
parameters 
(Guinier –

Hägg method)
(Å) 

Phase 
observed
(30 min 
X-ray) 

Cell 
parameters 
(Guinier –

Hägg method)
 

(Å) 

Phase 
observed 
(30 min 
X-ray) 

Cell 
parameters
(Guinier –

Hägg 
method) 

(Å) 
Li0.1WO3 

 
 

PTBT 
+ ● 

a = 5.2034(12)
c = 3.8441(18) 

PTBT 
+ ● 

a = 5.2034(12)
c = 3.8441(18)

PTBT 
+ ● 

 
- 

Li0.2WO3 PTBC 
 

+PTBT 
+● 

a = 3.7366(58)
 

a = 5.2078(96)
c = 3.8392(12) 

PTBC 
 

+PTBT 
+● 

a = 3.7378(33)
a=5.2064(115)
c=3.8420(136)

PTBC 
 

+PTBT 
+● 

 
- 

Li0.3WO3 PTBC 
 

+PTBT 
+● 

a = 3.7268(45)
 

a = 5.1974(744)
c = 3.8379(293)

PTBC 
 

+PTBT 
+● 

a =3.7259(45)
 

a=5.2029(217)
c=3.8351(131)

PTBC 
+● 

 

 
- 

Li0.35WO3 

 
 

PTBC 
+● 

a = 3.7338(55) PTBC 
+● 

a = 3.7261(47) PTBC 
+● 

a = 
3.7237(51) 

Li0.4WO3 

 
 

PTBC a = 3.7233(27) PTBC a = 3.7238(21) PTBC a = 
3.7231(30) 

Li0.5WO3 

 
 

PTBC a = 3.7225(43) PTBC a = 3.7209(40) PTBC a = 
3.7213(58) 

Li0.6WO3 

 
 

PTBC 
+● 

a = 3.7233(35) PTBC 
+● 

 
- 

PTBC 
+● 

 
- 

Li0.7WO3 PTBC 
+● 

a = 3.7221(55) PTBC 
+● 

- PTBC 
+● 

- 

 
● = 2-8 very weak extra lines.  
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Fig.6. Examples of X-ray powder diffraction patterns taken immediately after opening the 
reaction tubes of LixWO3 (series 1) with x = 0.1 – 0.7 as denoted. For x = 0.1 and 0.3 pure 
PTBtetr and PTBcubic is seen respectively. For sample with x = 0.7 along with main PTBcubic 
phase some weak additional lines observed which belongs to WO2 reactant as denoted and the 
rest lines without any notation are belongs to Li2WO4 reactant. For x = 0.2 mixed phase of 
PTBcubic and PTBtetr is seen. (further explanation see text) 
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Selected X-ray diffraction patterns (Philips Diffractometer) of series 1 are given in Fig. 6 and 

Fig. 7. Fig. 6 gives a typical example of pure PTBcubic phase, PTBcubic phase in combination 

with non-bronze phases, PTBcubic phase coexisting with PTBtetr and pure PTBtetr. In Fig. 6 for 

x = 0.3 the bronze is typically identified as PTBcubic by the peaks 100 (2θ° at about 24.02), 

110 (2θ° at about 34.13), 111 (2θ° at about 42.07) and 200 (2θ° at about 48.93). The two 

weak peaks at 38.0 and 45.32 2-theta position are identified as 310 and 321 respectively, 

indicating doubling of the unit cell as also used in the refinement in table 1a (series 1, colum 

3). In this case the peaks of 100, 110 become 200, 220 etc. The spliting of the peaks at higher 

2-theta angle, is due to the effect of CuKα2 radiation in addition to CuKα1, indicating a 

misalignment of the grafite monocromator. When x > 0.5 some additional lines appear along 

with PTBcubic in the powder pattern which are identified as Li2WO4 and WO2 as shown for the 

Li0 .7WO3 sample in Fig. 6. 

 

For x = 0.1 the PTBtetr bronze is identified by the peaks 001 (2θ° at about 23.24), 110 (2θ° at 

about 24.31), 101 (2θ° at about 28.97), 111 (2θ° at about 33.81), 200 (2θ° at about 34.58), 201 

(2θ° at about 42.01), 211 (2θ° at about 45.64) and 220 (2θ° at about 49.63). For x = 0.2 the 

pattern is explained by a combination of PTBcubic and PTBtetr. The lattice parameter for both 

phases was obtained separately within the mixture as given in Table 1a. The same holds for 

the lower x = 0.05 and 0.03 composition which were PTBtetr together with PTBorth is observed 

[Fig. 7]. The PTBorth phase is identified by their diffraction peaks 001, 200, 020, 210, 111 etc. 

at about 2-theta 23.18, 23.67, 24.25, 26.67 and 28.89 positions as indicated for the x = 0.03 

sample in Fig. 7. The reactant WO3 is identified as monoclinic by the peaks 002 (2θ° at about 

23.19), 020 (2θ° at about 23.67), 200 (2θ° at about 24.42), 012 (2θ° at about 26.07), 120 (2θ° 

at about 26.66), 112 (2θ° at about 28.69) and 121 (2θ° at about 29.21). Thus the X-ray powder 

patterns of the samples of series 1 reveal that the single phase of perovskite tungsten bronze 

tetragonal type, PTBtetr can be prepared with nominal composition Li0.1WO3. For x = 0.03 and 

x = 0.05 mixed phase of PTBorth and PTBtetr is obtained. A distinction between PTBorth and 

monoclinic will be discussed further below. 

 
Phonon absorption characteristics 

In Fig. 8, all IR absorption spectra as obtained for series 1 samples are shown between 375 

cm-1 and 1600 cm-1. Above 1600 cm-1 all spectra appear featureless, which are not shown, 

therefore. For monoclinic WO3 typical peaks with maxima at about 773 cm-1 and 825 cm-1 are 

present. There is a considerable change in the spectra with increasing the nominal Li content.  
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Fig. 7. Examples of X-ray powder diffraction patterns taken immediately after opening the 
reaction tubes of LixWO3 (series1) with x = 0.0 – 0.1 as denoted. For x = 0.0 the monoclinic 
phase and for x = 0.1 PTBtetr is seen, whereas for x = 0.03 and 0.05 mixed phase of PTBtetr 
and PTBorth are seen. (further explanation see text) 
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For Li0.03WO3 the maximum absorption becomes more pronounced compared to the peak on 

the low frequency side. The maxima is shifted to about 860 cm-1.There is a further shift to  

 

Fig. 8. IR absorption spectra (KBr-method) of LixWO3 (x = 0.0 – 0.7) of series 1 as measured 
directly after opening the reaction tubes. 

 

about 870 cm-1 for Li0.05WO3 but turns somehow back to 850 cm-1 for Li0.1WO3 and 

Li0.2WO3. Going from WO3 to Li0.1WO3  and Li0.2WO3, the minimum structure observed at 

about 800 cm-1 tends to disappear. A new absorption feature is seen at about 430 cm-1. The 

samples Li0.3WO3 to Li0.5WO3 do not show any phonon absorption signature. This can be 
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explained by the free electron metallic behaviour of the samples (see below). The systematic 

decrease in phonon absorption with increasing x may be noted. Phonon signature appear for 

Li0.55WO3 to Li0.7WO3 indicating typically Li2WO4. From the X-ray result, Li0.1WO3 shows 

rather pure PTBtetr type. Therefore, the absorption spectra with x = 0.1 can clearly be related 

to this phase. The lower phonon absorption intensity for Li0.2WO3 can be explained by an 

increase of PTBcubic contribution with respect to PTBtetr. On the other hand towards lower x 

more PTBorth has to be taken into account.  

 
For a better comparison, the temperature dependent changes in the IR spectra of WO3 was  

Fig.9. Temperature dependent (in situ measurement) IR absorption 
spectra (KBr-method) of WO3. 
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measured on heating the sample from 25°C to 651°C [Fig.9]. It is observed that the peak 

maximum at about 820 cm-1 at 25°C shifts to 860 cm-1 above 350°C. A further increase in 

temperature leads to a gradual disappearance of the peak at about 790 cm-1 and the minimum 

at about 800 cm-1. Additionally the main peak position shifts towards lower wavenumber. 

This effect can be explained by the decreasing order parameter of the orthorhombic phase. 

The tetragonal phase has still not been reached here up to 651°C for experimental reasons.  

However, the peak form is almost indicative for the tetragonal phase of WO3. These 

interpretations become available on comparing the spectral changes with the results of 

temperature dependent X-ray diffraction studies [116] which will be further discussed below. 

 

UV-VIS spectra 

The reflectivity spectra of the powder samples of series 1 is given in Fig.10 in percent (R = 

100I/ Io). The reflectivity of WO3 is about 55% at 15000 cm-1, increases to 65% at 21000 cm-1  

 

Fig.10. As measured UV- VIS spectra                                 Fig.11. UV- VIS spectra of 
                  of LixWO3 (series 1).                                               LixWO3 (series 1) in KM units.      
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and sharply drop down above 22500 cm-1 to nearly 5-10% above 25000 cm-1. For x = 0.03, 

the maximum reflectivity has reduced to about 20% and for x = 0.05, only 5% reflectivity is 

observed. For WO3 and x = 0.03 the as measured spectra are shown whereas the spectra of the 

other samples are shifted as denoted. With increasing lithium concentration the reflectivity 

decreases in the range 10000 to 25000 cm-1 becoming rather flat for x = 0.3 to 0.4 samples. 

For x = 0.45 to 0.7, the samples show a minimum in the reflectivity spectrum at around 15000 

cm-1 to 18000 cm-1 respectively, increasing significantly towards lower wavenumber. 

 

The reflectivity spectra were recalculated using the Kubalka Munk formula [Fig. 11]. The 

important observation is the strong increase in intensity of a broad peak between 15000 cm-1 

and 18000 cm-1 for the LixWO3 with x = 0.3-0.55 which corresponds to a minima in 

reflectivity [Fig. 10]. The peak shows the highest intensity for the x = 0.5 and strongly 

decreases in intensity towards x = 0.7. There is an evidence of decreasing intensity with 

decreasing effective Li-content, which thus shows the less contribution of the PTBcubic phase. 

On the other hand a shoulder towards lower wavenumbers corresponds to the absorption 

property of PTBtetr which becomes dominant for the sample with a nominal Li content of x = 

0.1. In further experiments in the spectral range 2000 cm-1 to 12000 cm-1 a broad peak 

observed around 8000 cm-1 for x = 0.05 and at about 10000 cm-1 for the sample x = 0.1 [not 

shown]. These corresponds in principle with the reflectivity measurement for single crystals. 

However, it was difficult to reproduce the reflectivity spectra in the spectral range 2000 cm-1 

to 12000 cm-1 on powder samples, probably due to the effect of superimposition of regular 

and diffuse reflectivity. 

 

3.1.2 Characterisation of single crystal synthesis products 

The SEM image and the photos of the abraded and polished crystals of x = 0.1 to 0.45 as 

obtained in the optical microscope (reflection mode) are given in Fig. 12a and 12b showing 

their typical shapes and sizes. For nominal composition of Li0.45WO3 and Li0.4WO3 the 

crystals appear homogeneous in the microscope. However, for further decreasing nominal Li 

content the crystals become optically inhomogeneous. For Li0.35WO3 crystals some regularly 

formed thin lighter slabs are observed, which become more expressed for Li0.3WO3 and 

probably dominant for Li0.25WO3. The Li0.1WO3 crystals show plat like shapes. 

 

For characterisation, crystals were selected from the batches and crushed for X-ray and IR 

powder investigation. The phase observed and the refined lattice parameter are given in Table 
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2. The samples with nominal composition Li0.1WO3 show PTBtetr with 3-5 weak lines of 

PTBorth in the powder diffraction pattern. The sample Li0.25WO3 and Li0.3WO3 indexed as 

superimposition of PTBtetr plus PTBcubic and the lattice parameters were refined. For 

Li0.35WO3 there are also 2-3 weak lines of PTBtetr beside the phase PTBcubic which are, 

however, too weak for any refinement. Li0.4WO3 and Li0.45WO3 are single phase PTBcubic 

according to X-ray pattern refinement. The IR results of crushed crystals [KBr-method, Fig. 

13] also support these X-ray results, although for Li0.1WO3 absorption is more indicative for 

PTBorth. 

 

 

Table 2: X-ray results (Guinier) of single crystals of LixWO3 prepared by chemical 
vapour transport method with a temperature Gradient, T = 100°C (T2 = 800°C; T1 = 
700°C); HgCl2 was used as a transporting agent. Crystals obtained by 100% transport . 

 
 

Experime-
ntal no. 

Nominal 
composition 

Heating 
period 

 
(days) 

Phase 
observed in 
X-ray for 

transported 
crystals 

Cell parameter obtained 
from crystals (Guinier 

method) 

1 Li0.1WO3 5 days PTBtetr +■ 
 

a = 5.2051(11) 
c = 3.8447(13) 

2 Li0.1WO3 7 days PTBtetr +■ 
 

a = 5.2015(12) 
c = 3.8448(12) 

3 Li0.25WO3 7 days PTBcubic 
 

+ PTBtetr. 

a = 3.7325(13) 
 

a = 5.1997(09) 
c = 3.8381(11) 

4 Li0.3WO3 7 days PTBcubic 
 

+ PTBtetr. 

a = 3.7322(12) 
 

a = 5.2029(11) 
c = 3.8379(01) 

5 Li0.35WO3 7 days PTBcubic+ ● 
 

a = 3.7313(15) 

6 Li0.4WO3 5 days PTBcubic 
 

a = 3.7301(07) 

7 Li0.45WO3 7 days PTBcubic 
 

a = 3.7204(15) 

 

    ●= 2-3 very weak extra lines of  PTBtetr.          ■ = 3-5 weak extra lines of PTBorth .   
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                                 SEM image and the polished  single crystal of Li0.45WO3  
 

 
 
 
 
 
 
 
 
 
 
 
 
                                  
                               SEM image and the polished  single crystal of Li0.4WO3  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
                   
                               SEM image and the polished  single crystal of Li0.35WO3 
 

Fig.12a. SEM image and polished single crystal of LixWO3 with x = 0.35 - 0.45 as denoted. 
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                                    SEM image and the polished  single crystal of Li0.3WO3 
 
 

                  
     
                                      SEM image and the polished  single crystal of Li0.25WO3 
 
 

               
  
                                   SEM image and the polished  single crystal of Li0.1WO3 
     

Fig.12b. SEM image and polished single crystal of LixWO3 with x = 0.1- 0.3 as denoted. 
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Polarized micro reflectivity measurements between 600 cm-1 to 18000 cm-1 were carried out 

on selected polished crystal slices using a spot size diameter of 80 µm. The typical reflectivity 

spectra of LixWO3 with nominal x = 0.45, 0.4 and 0.35 are shown in Fig. 14a. All the crystals  

Fig. 13. IR absorption spectra (KBr-method) of crushed single crystals of LixWO3 
 (x = 0.1 - 0.45) as measured immediately after opening the reaction tubes. 

 

from the batches of x = 0.45 show the same Drude free carrier type isotropic reflectivity with 

a minimum between 14000 and 15000 cm-1. Crystals from the batches with x = 0.4 and 0.35 

all slightly differ indicating a superimposition of an additional spectral contribution in the 

range of the minimum. This contribution is related to the influence of submicroscopical 

exsolution of the tetragonal phase, since this effect becomes increasingly significant for 

crystals from the x = 0.35 batch. For these crystals, there are brighter lamellars which are 

separated by sharp interfaces [Fig. 12a], due to the phase separation. For x = 0.35, 

measurement spot sizes were only on the dark part avoiding any contribution of the white 

lamellars. However, already in the darker part deviation from isotropic reflectivity can be 

related to submicroscopical exsolution phenomena into PTBcubic and PTBtetr. 
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Fig. 14a. Polarized reflectivity spectra of LixWO3 crystals where x = 0.35, 0.4 and 0.45. For x 
= 0.45 and 0.4 isotropic behaviour is observed. For x = 0.35 there are angle dependencies 
between 8000 and 14000 cm-1 as shown by the spectra Rθ = 0°, 30°, 60° and 90°(spectra are 
shifted upwards relative to each other). 
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Fig. 14b. Polarized reflectivity spectra of dark and white area of LixWO3 where x = 0.25 and 0.3. 
For x = 0.3 (white part) and x = 0.25 (dark part) Rθ = 45° also shown. (spectra are shifted upwards 
relative to each other) 
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The brighter lamellars become more significant in area for crystals from the batches x = 0.3 

and 0.25 and their optical properties were measured separately as shown in fig. 14b. The dark  

parts show significant deviations from isotropy down from 14000 cm-1 extending into the mid 

infrared. For the white part a reflectivity minimum typically appear at about 10000 cm-1. The  

spectra appear to be strongly anisotropic. The appearance of phonon effects indicate the 

disappearance of the free carrier plasma effect. Moreover, a systematic decrease in the NIR 

reflection intensity of the PTBcubic dark parts with decreasing x in LixWO3 is also observed 

together with increasing anisotropy. The typical reflectivity spectra of Li0.1WO3 crystals show 

the strong anisotropic reflectivities, observing significant phonon contributions as shown in 

Fig. 14c. The minimum reflectivity occurs here at about 8000 cm-1 and 10000 cm-1 etc.  

 

Fig. 14c. Polarized reflectivity spectra of examples of Li0.1WO3 crystals considering their 
main directions of polarisation Rθ = 0°, 90°. 
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Some HRTEM images of Li0.45WO3, Li0.35WO3 and Li0.25WO3 single crystals are given in Fig. 

15a, 15b and 15c respectively. Fig. 15a shows an well ordered crystal fragment of Li0.45WO3 

single crystal sample with corresponding ED-pattern. Fig. 15b shows a defect in the image of 

a thin crystallite from Li0.35WO3 single crystal sample with corresponding ED pattern. 

However in Fig. 15c the image of a thin crystallite from Li0.25WO3 single crystal shows 

different atomic arrangements with different diffraction patterns which might indicate the 

transformation of phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15a. HRTEM image of a single crystal of Li0.45WO3 fragment with corresponding DP pattern 

processed with the CRISP program 
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Fig. 15b. HRTEM image of a thin crystallite from Li0.35WO3 single crystal with corresponding 

DP patterns processed with the CRISP program. 
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Fig. 15c. HRTEM image of a thin crystallite from Li0.25WO3 single crystal with corresponding 
DP patterns processed with the CRISP program. 
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3.1.3 Color of  LixWO3 and its change at atmospheric condition  

The color of the samples of LixWO3 changes systematically with increasing x from gray to 

blue, deep blue to violet blue as shown in Fig. 16 for series of sample prepared at 600, 700  

 

Fig. 16. The color of the sample LixWO3 prepared at 600°C, 700°C and 800°C from old reactant 
before exposed in atmospheric condition and after 60 days exposed in atmospheric condition. 

 

and 800°C [112]. The color changes significantly for samples exposed at atmospheric 

condition. After 60 days exposed in atmospheric condition, the samples with x ≥ 0.4  change 

to blackish, excluding the samples prepared at 600°C  with x = 0.4 which become greenish 

grey and with x = 0.5 which becomes grey [Fig.16]. There are also systematic changes in 
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color for sample with lower x. All samples with 0.2 ≤ x ≤ 0.35 appear blue in color as 

prepared. The sample with x = 0.1 prepared at 800°C appeared also blue whereas the samples 

prepared with same composition at 600°C and 700°C are grey. The samples with 0.1 ≤ x ≤ 0.3 

prepared at 600 °C and 700°C, with x = 0.35 prepared at 600°C and x = 0.1 and 0.2 at 800°C 

when exposed at atmospheric conditions become greenish. A change to greenish grey at 

atmospheric condition is also observed for samples with x = 0.3 when they were prepared at 

800°C and for sample with x = 0.35 when prepared at 700°C. In contrast the sample with x = 

0.35 prepared at 800 °C has changed its colour to blackish. The sample with x = 0.05 prepared 

at 600°C, 700°C and 800°C appear gray in colour as prepared, whereas at atmospheric 

condition became green. 

 

It can be suggested that the change in color here is related to change in absorption effects. 

Therefore the diffuse reflectivity of the samples of series 2 has been measured systematically  

directly after opening the reaction tube, after 30 days and 90 days of exposed at atmospheric  

Fig. 17a. UV-VIS spectra of LixWO3 (x = 0.0 – 0.7) of series 2 in KM-units as measured 
immediately after opening the reaction tubes. 
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conditions. The spectra are given in KM-units in Fig. 17a and 17b. It appears that the greenish 

color is related to strong increase in absorption above about 22500 cm-1 (absorption in the 

blue) and the slight increase in absorption with decreasing wave number (absorption in the 

red). The strong increase of absorption in the red around 16000 cm-1 changes the color  

 

Fig. 17b. UV-VIS spectra of LixWO3 (x = 0.05 – 0.7) of series 2 in KM-units as measured 
          after 30 days (left) and after 90 days (right) exposed in atmospheric condition . 
 

towards blue and dark blue [Fig. 17a]. However, there are considerable changes in the spectra 

of the samples after 30 days and even after 90 days exposed in atmospheric condition [Fig. 

17b]. The strong peak completely disappears at about 16000 cm-1 for x ≤ 0.4 samples. All of 

the spectra of the sample of x ≤ 0.4 becomes similar to WO3 like spectra. Only for x = 0.5 the 

sample has still a strong absorption effect which becomes less after 90 days exposure time and 

somehow shifted to lower wavenumber, similar to the peak that also observed in the sample 

with x = 0.2 after open. For x > 0.5, all the spectra after 90 days show a flat like behaviour 

which is related to strong absorption of  blackish color of the sample. The spectra indicate a 

decrease in effective lithium content in LixWO3 with increasing exposure time in atmospheric 

condition. 
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The IR spectra of the samples, LixWO3 of series 2 together with the samples exposed to 

atmospheric condition for 90 days from the same series are given in Fig. 18. A gradual 

exsolution of Li from LixWO3 with the  appearance of  Lix’WO3 forms occur indicating x’ < x. 

 
Fig. 18. IR absorption spectra (KBr-method) of some samples of  LixWO3 (x = 0.05 – 0.4) of 

series 2 as measured immediately after opening the reaction tubes (left) and after 90 days 
exposed in atmospheric condition (right). 

 

After 90 days exposed in atmospheric condition the spectra for x < 0.25 look like the 

monoclinic form of WO3 whereas for 0.25 ≤ x ≤ 0.5 the IR spectra show a clear signature of 

PTBtetr which is superimposed to featureless absorption of PTBcubic. It can be suggested that in 

all cases, LixWO3 for x < 0.5 will become Li-free at the surface thus obtaining the monoclinic 

phase of WO3 at room temperature depending on time, i.e the Li exsolution is kinetically 

controlled here. The question arises where the Li goes. Typical IR spectra in the range 1200 to 

4000 cm-1 show clearly the presence of CO3
2-, H2O and OH- peaks as shown in Fig. 19. And 

Fig. 20 shows clearly that with increasing the amount of weight of exposed sample, the 

intensity of the peak of CO3
2-, H2O and OH- increases, which proves a contamination of 
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LixWO3 samples at atmospheric condition. Therefore, as a main sink the formation of Li2CO3 

and Li(OH) type phases could be suggested. 

Fig. 19. IR absorption spectra (KBr-method) of Li0.4WO3, before exposed in atmospheric 
condition showing the typical PTBcubic spectra. Whereas after 5 month exposed in atmospheric 
condition the sample shows a spectra like the orthorhombic form of WO3 and with increasing 
the weight of exposed sample, the intensity of the peak of OH-, CO3

-- and H2O increases.  
 
 

The X-ray powder diffraction patterns of some samples of LixWO3, before and after exposed 

in atmospheric condition, were collected from Guinier and also from Philips diffractometer 

[Fig. 21]. From these X-ray pattern, it can be seen that the exposed samples with nominal x < 

0.3 are mainly converted to monoclinic WO3. But the exposed samples for x ≥ 0.3 are partly 

converted to the tetragonal bronze first. With increasing exposure time these samples are 

further converted to monoclinic WO3. As for example, for x ≥  0.3 the sample shows a 

combined form of PTBcubic and PTBtetr in atmospheric condition even after 6 months.   
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However, the intensity of PTBcubic phase inside the sample reduces with increasing exposure 

time in atmospheric condition. In some cases, for the samples with x ≥ 0.5 the WO2 and 

Li2WO4 reactants are also observed along with PTBcubic and PTBtetr as they were present  

Fig. 20. Showing the peak intensity of H2O, CO3
-- and OH- increases with increasing the 

amount of weight of sample Li0.4WO3 after exposed in atmospheric condition. 
 

before exposed in atmospheric condition. The X-ray diffraction patterns of some samples of 

LixWO3 from series 1 with nominal  x = 0.3 and 0.4 before and after 60 days exposed in 

atmospheric condition are given in Fig. 21 as representative spectra for whole series.  

 

It may be noted that the color change phenomena and all this atmospheric effects are mostly 

reversible when the sample is heated in evacuated tubes above 500°C. It was also observed 

that a gradual mass loss of about 1 wt% occurs up to 500°C in TG experiments. The IR 

spectra and X-ray results from the samples after heat treatment, indicate the formation of 

Li2W2O7 with main PTBcubic phase which is contrary to our first assumption [117] of a 100% 

reversible process. In the X-ray pattern (Guinier) even after 3 hour exposure of the film it was 

not possible to identify the Li2W2O7 phase along with main PTBcubic phase. However, by the 

IR method it was easy to detect the identity of Li2W2O7 after preparing a pure phase of 

Li2W2O7 [see below, Fig. 22]. As for example the X-ray powder pattern of a reheated sample 

Li0.4WO3 is also given in Fig. 21, showing the PTBcubic pattern in presence of very small 

amount of Li2W2O7, which is difficult to identify even after 3 hour X-ray. However, the 
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disappearance of PTBtetr phase after being reheated the sample can clearly be seen in X-ray 

pattern. The IR spectra of the reheated sample Li0.4WO3 with many phonon lines is similar 

Fig. 21. Typical X-ray powder patterns of LixWO3 of series 1 with x = 0.3 and 0.4, taken 
immediately after opening the reaction tubes and after 60 days exposed in atmospheric 
condition. The X-ray powder pattern of Li0.4WO3 reheated sample also given as an 
representative pattern of reheated sample of PTBcubic. 
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with the IR spectra of Li0.35WO3 after TG. Fig. 22 shows the IR-spectra of pure Li2W2O7 with 

many phonon lines for comparing the IR spectra of Li0.35WO3 sample after TG treatment. In 

Fig. 22 the IR spectra of Li0.35WO3 before and after exposed in atmospheric condition are also 

given. Before and after exposed in atmospheric condition the IR spectra show PTBcubic form 

without any phonon lines and the WO3 form with a peak maximum at about  820 cm-1 

respectively. However, the IR-spectra of Li0.35WO3 sample after TG treatment shows a clear 

signature of Li2W2O7 phase with many phonon lines which is superimposed to featureless 

absorption of PTBcubic. Both exposed sample Li0.4WO3 and Li0.35WO3 regain their blue colour 

after being reheated or after TG treatment. 

  
Fig. 22. Typical IR-spectra of sample Li0.35WO3 showing the change in atmospheric condition 
and also how it comes with an extra phase (Li2W2O7) after TG or reheated on vacuum. IR 
absorption spectra of pure nominal Li2W2O7 sample also given for comparing the IR spectra 
of Li0.35WO3 after TG treatment.  

Li0.35WO3 at different condition

Wavenumber [cm-1]
400 600 800 1000 1200 1400 1600

A
bs

or
pt

io
n 

[r
el

. u
ni

ts
]

0.0

0.2

0.4

0.6

0.8

1.0

after open

After 5 months exposed in 

atmospheric condition

afterTG

Li2W2O7



3. RESULTS 
 

47

3.2. Characterisation of Li0.4NbyW1-yO3 system where y = 0.00 - 0.4 
3.2.1 As prepared samples 

The X-ray powder diffraction patterns of Li0.4NbyW1-yO3 system of series 5 samples with y = 

0.04 – 0.4 are given in Fig. 23. For y = 0.04 the X-ray pattern can be identified mainly as 

PTBcubic with the peaks 100 at about 23.8 2-theta, 110 at about 34.0 2-theta positions in 

presence of two weak lines at about 26.95 and 34.76 2-theta positions. These 2 weak lines is 

due to the presence of LiNbWO6 trirutile type structure. Untill y < 0.1 only this 2 extra lines 

of LiNbWO6 along with PTBcubic are observed. The intensity of this extra lines become more 

significant and the intensity of the lines of PTBcubic phase decreases with increasing niobium 

content. For 0.1 ≤ y < 0.4 samples show the combination of PTBcubic phase, LiNbWO6 type 

non-bronze oxidised phase and some very weak reflections of Nb2W3O14 and LiNb3O8 phase 

in the X-ray diffraction patterns. For y = 0.4 the X-ray powder pattern shows mainly 

LiNbWO6 type phase with some weak lines of Nb2W3O14 and LiNb3O8 phases as impurity. 

LiNbWO6 is a derivative of rutile structure except that the cations assume ordered positions 

resulting in a tripling of the C-axis. The weak reflections which correspond to the Nb2W3O14 

and LiNb3O8 phases listed in the JCPDS index are marked in the figure of  diffraction 

patterns.  

 

The results of the X-ray powder analysis of (Guinier method) all niobium doped lithium 

tungsten bronzes, Li0.4NbyW1-yO3 of series 4 and series 5 are given in table 3. In a previous 

investigation [112], samples of Li0.4NbyW1-yO3 were prepared at 600°C for 7 days by the 

same method using the same reactants as described for series 4. The X-ray results and the cell 

parameters obtained from previous investigation [112] are given in table 3. It can be seen 

from table 3 that the phase observed for series 4 are in good agreement with the results 

obtained previously at 600°C. However, in previous investigations, since the X-ray exposure 

time was only 30 minute for all samples prepared at 600°C, the extra phase had not been seen 

untill y ≤ 0.15. The lattice parameters [table 3] show that with increasing Nb content the a 

PTBcubic cell parameter increases. In the present investigation in series 4 and 5 pure PTBcubic 

phase is only possible for y = 0.0 i.e for pure Li0.4WO3 bronze. In presence of very low 

amount of niobium as for example y = 0.04, a trace amount of LiNbWO6 type extra phase is 

formed along with PTBcubic phase. However, for y < 0.15 the extra phase of LiNbWO6 is 

observed after long time X-ray exposure (3h). For sample with y > 0.15, the extra phase is 

detected already in 30 min X-ray exposure time.  
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Fig. 23. X-ray powder patterns of Li0.4NbyW1-yO3 system taken immediately after opening the 
reaction tubes with y = 0.04 – 0.4 as denoted. 

5 10 15 20 25 30 35

0

8000

16000

5 10 15 20 25 30 35

0

8000

16000

y = 0.04

0

2000

4000

6000

8000

y = 0.06

In
te

ns
ity

 [c
ou

nt
s]

0

6000

12000

18000

0

6000

12000

y = 0.1

y = 0.15

2 Theta [degree]

y = 0.2

0

2000

4000

6000

y = 0.3

0

3000

6000

y = 0.35

0

4000

8000

y = 0.4

100

110
110

100

o
oo

o

o
oo

o
o*

*

* **

* = LiNb3O8

o = Nb2W3O14
LiNbWO6 type phase

LiNbWO6 type phase

PTBcubic

PTBcubic
PTBcubic

PTBcubic



3. RESULTS 
 

49

Table 3: Results of the X-ray powder analysis of different samples of Li0.4NbyW1-yO3 ( y 
= 0.04 - 0.4) system of series 4,  series 5 and some previous results [112] of the same 

system  prepared  at 600°C for 7 days. 
Li0.4NbyW1-yO3 

prepared 
at 700°C for 7 

days  
(Series 4) 

 
 

Li0.4NbyW1-yO3 prepared 
at 700°C for 7 days  

(Series 5) 

Li0.4NbyW1-yO3 
prepared at 

600°C for 7 days 
 

Nominal 
composition 

 

Phase observed 
(3h X-ray) 

Phase 
observed 

(3h X-ray) 

Cell 
parameters 

(Guinier 
method) 

 (Å) 

Phase 
observ

-ed 
(40min 
X-ray) 

Cell 
paramet-

ers 
(Guinier 

Hägg-
method) 

(Å) 
Li0.4WO3 PTBC PTBC a = 

3.7237(02) 
 

PTBC a = 
3.7232 

Li0.4Nb0.02W0.98O3 - 
 

- - PTBC a = 
3.7231 

Li0.4Nb0.04W0.96O3 PTBC 

 
+ traces of ● 

PTBC 

 
+ traces of ●

a = 
3.7247(08) 

PTBC a = 
3.7245 

Li0.4Nb0.06W0.94O3 PTBC 

 
+ traces of ● 

PTBC 

 
+ traces of ●

a = 
3.7238(15) 

PTBC a = 
3.7240 

Li0.4Nb0.08W0.92O3 - - - 
 

PTBC a = 
3.7239 

Li0.4Nb0.1W0.9O3 PTBC 

 
+ traces of ● 

PTBC 

 
+ traces of ●

a = 
3.7257(19) 

PTBC a = 
3.7239 

Li0.4Nb0.15W0.85O3 PTBC 

 
+ traces of ● 

PTBC 

 
+ traces of ●

a = 
3.7307(16) 

PTBC a = 
3.7242 

Li0.4Nb0.2W0.8O3 PTBC 

 
+ traces of ● 

PTBC 

 
+ traces of ●

a = 
3.7316(15) 

PTBC 
+▲ 

a = 
3.7252 

Li0.4Nb0.3W0.7O3 PTBC 
●+ ▪ + ▫ 

PTBC 
●+ ▪ + ▫ 

a = 
3.7315(23) 

PTBC 
+▲ 

a = 
3.7332 

Li0.4Nb0.35W0.65O3 PTBC 
●+ ▪ + ▫ 

PTBC 
●+ ▪ + ▫ 

a = 
3.7316(20) 

PTBC 
+▲ 

a = 
3.7357 

Li0.4Nb0.4W0.6O3 - LiNbWO6 
type(trirutil
e structure) 

+ ▪ + ▫ 

a= 
4.6804(70) 
c 
=9.2756(155)

- - 

    ● = LiNbWO6 
    ▪ = Nb2W3O14 
    □= LiNb3O8 and ▲= unknown phase. 
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Samples for nominal y = 0.15 and 0.2 were examined in the JEOL-820 SEM microscope. The 

EDX analysis on about 20 crystals also indicates the two phase coexistance. One phase is with 

the crystals of about y = 0.03 - 0.08 which belongs to PTBcubic. The other phase is formed 

with the crystals containing about y = 0.39 which may belong to non-bronze oxidised phase or 

Fig. 24a. Li0.4Nb0.15W0.85O3  

Fig. 24b. Li0.4Nb0.2W0.8O3 
 
Fig. 24a and 24b. SEM-image of nominal Li0.4Nb0.15W0.85O3 and Li0.4Nb0.2W0.8O3 showing 
some cubic crystals together with polycrystalline powder. SEM/EDX analysis results of these 
samples are also given where the values of W and Nb are calculated as W = W/ (Nb+W) and 
Nb = Nb/ (Nb+W). 
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other impurity phases of LiNb3O8 or Nb2W3O14. Fig. 24 shows the SEM image and the 

distribution of the SEM/EDX analysis made on crystals taken from nominal 

Li0.4Nb0.15W0.85O3 and Li0.4Nb0.2W0.8O3 samples. In most cases the impure phase was not easy 

to detect for the analysis because of the percentage of impure phase is very small in amount 

comparing to the main PTBcubic phase [for example Fig. 24b]. From this analysis it can be 

suggested that about 5-8 atom % niobium can be doped in the system Li0.4NbyW1-yO3. 

 

The IR absorption spectra between 375 cm-1 and 1600 cm-1 as obtained for Li0.4NbyW1-yO3  

Fig. 25. IR absorption spectra (KBr-method) of Li0.4NbyW1-yO3 (y = 0.0 – 0.4) as measured 
immediately after opening the reaction tubes. 
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system of series 5 samples are shown in Fig. 25. For the y = 0.4 sample the IR spectra show 

several peak at about 950 cm-1, 875 cm-1, 750 cm-1, 628 cm-1 and 2-3 weak peaks below 600 

cm-1. These absorption characteristics are assigned to the LiNbWO6 type phase. For y = 0.0 i.e 

for the pure Li0.4WO3 bronze, the typical PTBcubic spectra without any phonon signature are 

observed. For y ≤ 0.06 a peak signature at 875 cm-1 is noted which is the most intense peak of 

the LiNbWO6 type phase. The increase in intensity of the peak at 875 cm-1 with increasing 

niobium content is related to the increasing contribution of the LiNbWO6 type phase.  

 

The reflectivity of the powder samples of series 5 in the range 10000 cm-1  to 18000 cm-1 are 

given in Fig. 26. For y = 0.0  the spectra show a minimum at about 14000cm-1.  

Fig. 26. Reflection spectra of powder samples of Li0.4NbyW1-yO3 (series 5) system where y = 0.0 
– 0.3 as denoted. All the spectra measured immediately after opening the reaction tubes. 

Wavenumber (cm-1)
10000 11000 12000 13000 14000 15000 16000 17000 18000

R
ef

le
ct

an
ce

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

y = 0.0

y = 0.04

y = 0.06

y = 0.1

y = 0.15

y = 0.2

y = 0.3



3. RESULTS 
 

53

When 0.0 < y < 0.1, sample shows a small shift of minimum reflectivity to the lower 

wavenumber, which indicates a small amount of niobium doping in the system Li0.4NbyW1-

yO3. However, for y > 0.1 the minimum reflectivity feature nearly disappear due to the 

dilution by the LiNbWO6 type phase. 

 

3.2.2 Atmospheric effect on samples of Li0.4NbyW1-yO3 system 

The diffuse reflectivity of the samples of series 4 were measured systematically directly after 

opening the reaction tubes and after 90 days of exposed in atmospheric condition [Fig. 27].  

 

Fig. 27. UV-VIS spectra of Li0.4NbyW1-yO3 (y = 0.0 – 0.35) system of series 4 as measured 
immediately after opening the reaction tubes (left) and after 90 days exposed in atmospheric 

condition (right). 
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intensity with increasing niobium content shows the less contribution of PTBcubic phase. The 

minimum in the absorption observed for y = 0.02 at about 23000 cm-1 becomes shifted to 

about 26000 cm-1 for y = 0.35. This effect can be explained by the increasing contribution of 

the LiNbWO6 type phase.   

 

The spectra of series 4 samples after exposed 90 days at atmospheric conditions indicate a 

gradual loss of just that spectral feature which is related with decreasing the Li-content in the 

PTBcubic phase. The change in the spectral feature before and after exposed in atmospheric 

condition is not so significant for y > 0.15 samples. This can be related to the high amount 

LiNbWO6 type phase compared to Li0.4WO3. The effect that at atmospheric conditions the 

Li0.4WO3 phase contribution is affected, i.e as gradually transferred to WO3 type contribution 

is also observed in IR-spectra and X-ray pattern (not shown). 

 

3.3 Characterisation of Li0.1NbyW1-yO3 system where y = 0.00 - 0.1 
X-ray powder diffraction patterns of series 6 with y = 0.00 – 0.1 are given in Fig. 28. For y = 

0.02 the X-ray patterns show mainly a PTBtetr phase with the peaks 001 (2-theta 23.24), 110 

(2theta 24.31), 101 (2-theta 28.97), 111 (2-theta 33.81) and 200 (2theta 34.58) in presence of 

traces amount of Nb2O5 at 2-theta 22.64, 24.89 and 28.3 positions. For y = 0.04 the X-ray 

pattern shows mainly the PTBtetr phase and a small amount of Nb2O5 with the peaks as 

observed for y = 0.02 sample. However, y = 0.04 sample also indicates the presence of 

PTBorth phase with the extra peaks at about 23.7, 26.69, 33.35 and 34.23 2-theta and a trace 

amount of LiNb3O8 at 30.21 2-theta position. Up to y = 0.08 all these peaks of PTBtetr are 

present strongly and the intensity of the impure phase of PTBorth, Nb2O5 and LiNb3O8 

increases with increasing Nb content. For y = 0.1 all these peaks for PTBtetr could identified 

but in low intensity along with Nb2O5 impurity and PTBorth main phase. For y = 0.1 sample 

the impure phase Nb2O5 was identified at about 22.64, 24.89, 26.35 and 28.30 2-theta 

positions and also a small amount of LiNb3O8 type phase was present as impurity at about 2- 

theta 29.39, 30.21, 30.70, 31.06 etc. 

 

The results obtained from series 6 by using Guinier method are collected in table 4. In a 

previous investigation [112] samples of Li0.1NbyW1-yO3 with  y = 0.00 – 0.08 were prepared at 

600°C for 7 days by the same way and from the same reactants as described for series 4. The 

X-ray results which are observed and the cell parameters obtained from previous investigation  
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Fig. 28. X-ray powder pattern of Li0.1NbyW1-yO3 (y = 0.0 – 0.1) system of series 6 taken 
immediately after opening the reaction tubes. For sample with y = 0.1, Nb2O5 and LiNb3O8 
impure phase are denoted and the rest lines belongs to PTBorth and PTBtetr. 
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are also given in table 4. The data obtained from previous investigation well coincide with the 

present results obtained from series 6. In series 6, PTBtetr is only possible for y = 0.02. 

However, the samples with 0.02 < y < 0.1 show the presence of of PTBorth, Nb2O5 and 

LiNb3O8 as impurity along with PTBtetr phase. For x = y = 0.1 the sample shows mainly the 

PTBorth phase in presence of small amount of PTBtetr, Nb2O5 and LiNb3O8 as impurity. 

 

Table 4: Results of the X-ray powder analysis of different samples of Li0.1NbyW1-yO3 ( y 
= 0.02- 0.1) system of series 6 and some previous results [112] of the same system 
prepared  at 600°C for 7 days. 
 

Li0.1NbyW1-yO3 prepared at 700°C 
for 7 days  
(Series 6) 

Li0.1NbyW1-yO3 prepared at 
600°C for 7 days heated 

 

Nominal 
composition 

 

Phase observed 
 (4h X-ray) 

Cell parameters 
(Å) 

(Guinier 
method) 

Phase 
observed 
(40 min 
X-ray) 

Cell parameters 
(Å) 

(Guinier-Hägg) 

Li0.1WO3 PTBT a = 5.2113(11) 
c = 3.8424(12) 

PTBT a = 5.2058(32) 
c = 3.8498(43) 

Li0.1Nb0.02W0.98O3 PTBT a = 5.1966(10) 
c = 3.8435(13) 

 

PTBT a = 5.2068(75) 
c = 3.8485(88) 

Li0.1Nb0.04W0.96O3 PTBT 
+ traces of PTBO  
+traces of Nb2O5 

+traces of LiNb3O8
 

a = 5.1983(15) 
c = 3.8396(14) 

PTBT 
 

a = 5.2084(54) 
c = 3.8520(82) 

Li0.1Nb0.06W0.94O3 PTBT+ PTBO  + 
traces   of Nb2O5 + 
traces of LiNb3O8 

 

a = 5.2036(11) 
c = 3.8474(15) 

PTBT 
+▲ 

a = 5.2037(54) 
c = 3.8474(52) 

Li0.1Nb0.08W0.92O3 PTBT + PTBO  +  
Nb2O5+traces of 

LiNb3O8 
 

a = 5.2020(15) 
c = 3.8482(15) 

 

PTBT 
+▲ 

a = 5.2024(32) 
c = 3.8469(34) 

Li0.1Nb0.1W0.9O3 PTBT + PTBO 
+ Nb2O5 + traces of

LiNb3O8 
 

 

a = 5.1655(45) 
c = 3.8404(45) 
a = 7.3098(60) 
c = 7.5164(30) 
c = 7.8373(58) 

 

 
 
- 

 
 
- 

 
▲ = 2 - 5 weak lines of unknown phase. 
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The IR absorption spectra between 375 cm-1 and 1600 cm-1 of the sample of Li0.1NbyW1-yO3 

system of series 6 are given in Fig. 29. For y = 0.00 and 0.02 the spectra show a typical 

PTBtetr structure with a peak maximum at about 850 and 874 cm-1 respectively. The 

absorption feature at 423 cm-1 also can be seen only for y = 0.00 and 0.02. For y = 0.04 the 

sample shows a peak maximum at about 871 cm-1. Two peak maximum at about 867 cm-1 and 

769 cm-1 and a minimum at about 800 cm-1 observed for sample with y = 0.06. For the sample 

with y = 0.08 two peak maximum at about 852 cm-1 and 773 cm-1 and a minimum at about 

800 cm-1 also observed.   

 
Fig. 29. IR absorption spectra (KBr-method) of Li0.1NbyW1-yO3 (y = 0.0 – 0.1) system of 

series 6 as measured immediately after opening the reaction tubes. 
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However for y = 0.1 sample two peak maximum are observed at about 817 cm-1 and 778 cm-1 

and the minimum at about 800 cm-1 indicating the monoclinic form of WO3. 

 

The as measured reflectivity spectra of series 6 are given in Fig. 30. The color of the sample 

changes from grey greenish to greenish with increasing niobium content as prepared. It can be 

seen that with increasing niobium concentration the reflectivity increases below 25000 cm-1.  

 

Fig. 30. UV-VIS spectra (left) and NIR spectra (right) of Li0.1NbyW1-yO3 (y = 0.02 – 0.1) 
system of series 6 as measured after opening the reaction tubes. 
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related to a decreasing amount of Li in LixWO3, which is supported by IR and X-ray data. 
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3.4 Characterisation of Li0.4MoyW1-yO3 system where y = 0.00 - 0.3 
The X-ray diffraction patterns of all samples of Li0.4MoyW1-yO3 with y = 0.00 – 0.3 as 

collected by philips diffractometer are given in Fig. 31. For y = 0.08, the X-ray powder 

pattern can be identified mainly as PTBcubic phase in presence of some weak additional lines. 

These weak lines are due to the presence of Li2W2O7 type phase as impurity as is seen by 

comparison to the Li2W2O7 pattern also shown in Fig. 31. For y = 0.1 and 0.15 the samples 

show the same diffraction patterns as obtained for y = 0.08. With increasing molybdenum 

content the intensity of the Li2W2O7 impure phase increases. For y > 0.15 there is a 

considerable change in the X-ray diffraction patterns. The PTBcubic phase has totally 

disappeared and Li2W2O7 type phase is mainly identified in presence of small amount of 

Li2Mo2O7 phase. Variation in the X-ray pattern compared to the Li2W2O7 pure phase could 

indicate the formation of Li2W2-xMoxO7 of variable composition. 

 

The X-ray results of series 7 of system Li0.4MoyW1-yO3 are given in table 5. In a previous 

investigation [118] samples of Li0.3MoyW1-yO3 were prepared at 800°C for 7 days by the same  

 
 

Table 5: Phase observed from different sample of Li0.4MoyW1-yO3 (y = 0.00 - 0.3) system 
prepared at 700°C for 7 days and compared with some previous results [118] of 
Li0.3MoyW1-yO3 (y = 0.0 – 0.25) system prepared at 800°C for 7 days. 
 

Li0.4MoyW1-yO3 prepared at 700°C for 7 days 
(Series 6) 

(6 h X-ray by philips diffractrometer) 

Li0.3MoyW1-yO3 prepared at 800°C for 7 
days 

(40 min Guinier- Hägg) 
Nominal 

composition 
Phase observed Nominal 

composition 
Phase observed 

Li0.4WO3 
 

PTBC Li0.3WO3 PTBC+● 

Li0.4Mo0.08W0.92O3 PTBC + traces of 
Li2W2O7 

Li0.3Mo0.05W0.95O3 
 

PTBC+ PTBT +● 

Li0.4Mo0.1W0.9O3 
 

PTBC + traces of 
Li2W2O7 

Li0.3Mo0.1W0.9O3 PTBC+ PTBT +● 

Li0.4Mo0.15W0.85O3 PTBC + Li2W2O7 +traces 
of Li2Mo2O7 

Li0.3Mo0.15W0.85O3 PTBC+ PTBT +● 

Li0.4Mo0.2W0.8O3 
 

Li2W2O7 + Li2Mo2O7 Li0.3Mo0.2W0.8O3 PTBT+● 

Li0.4Mo0.3W0.7O3 
 

Li2W2O7 + Li2Mo2O7 Li0.3Mo0.25W0.75O3 PTBT+● 

● = 2 - 6 weak lines of unknown phase. 
 

way and from the same reactants as described for series 4 and molybdenum from BDH. The 

phase observed from this previous investigation are also given in table 5. From this table it 
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can be seen that PTBcubic phase is only possible up to y = 0.15. When y > 0.15 in the previous 

investigation the sample was identified as PTBtetr. However, in the present investigation for y 

> 0.15, the sample is mainly identified as Li2W2O7 and Li2Mo2O7 phase. 

Fig.31. X-ray powder patterns of Li0.4MoyW1-yO3 (y = 0.0 – 0.3) system of series 7 taken 
immediately after opening the reaction tubes. The X-ray powder pattern of pure nominal 
Li2W2O7 sample also given for comparing the extra phase which formed with Mo content. 
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Samples for nominal composition Li0.4Mo0.15W0.85O3 and Li0.4Mo0.2W0.8O3 were examined in 

the JEOL-820 SEM microscope. The EDX analysis on about 10 crystals also indicates the 

formation of variable Li2W2-xMoxO7 type phases which belong to high Mo content. There are 

also some crystals containing low Mo which belong to PTBcubic. Fig. 32 shows the SEM 

image and the distribution of the SEM/EDX analysis made on crystals taken from nominal 

Li0.4Mo0.15W0.85O3 and Li0.4Mo0.2W0.8O3 samples. The SEM image of Li0.4Mo0.15W0.85O3 

sample shows some cubic shape crystals together with some ‘’flake-crystals’’ and powder. 

However, the SEM image of Li0.4Mo0.2W0.8O3 sample shows, only some ‘’flake-crystals’’ and 

powder.  

 

Li0.4Mo0.15W0.85O3 (a)                      Li0.4Mo0.15W0.85O3 (b)                      Li0.4Mo0.2W0.8O3 

 Fig. 32. SEM image of nominal Li0.4Mo0.15W0.85O3 sample shows few larger ‘flake-crystal’ 
(a) together with polycrystalline powder and some cubic crystals (b) with some powder. 
Whereas the SEM image of nominal Li0.4Mo0.2W0.85O3 sample shows only few larger ‘flake-
crystal’ together with polycrystalline powder. SEM/EDX analysis results of these two 
samples also given where the values of W and Mo are calculated as W = W/ (Mo+W) and Mo 
= Mo/ (Mo+W). 
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The IR-absorption spectra of series 7 between 375 cm-1 and 1600 cm-1 are given in Fig. 33. 

For y = 0.0, the IR-spectra show the typical PTBcubic structure without any phonon signature. 

For y = 0.08, the IR-spectra show many phonon lines which are related to the Li2W2O7 type  

Fig. 33. IR absorption spectra (KBr-method) of Li0.4MoyW1-yO3 (y = 0.0 – 0.3) system of 
series 7 as measured immediately after opening the reaction tubes. 

 

 

phase. For 0.08 ≤ y ≤ 0.15, the X-ray results shows a mixed phase of PTBcubic and Li2W2O7 

Therefore, for the samples with 0.08 ≤ y ≤ 0.15, the IR-spectra is the superimposed form of 

PTBcubic and Li2W2O7 phase [compare in Fig. 22]. For y > 0.15, sample the IR-spectra indicate 
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a structural relation to Li2W2O7 which thus imply the formation of Li2W2-xMoxO7 type 

composition.   

 

The as measured reflectivity spectra of series 7 are given in Fig 34. The color of the as 

prepared sample goes from deep blue to blue to gray bluish with increasing molybdenum 

content. For y = 0.0 the spectra show a reflectivity minimum about 15000 cm-1 which  

Fig. 34. As measured UV-VIS spectra of Li0.4MoyW1-yO3 (y = 0.0 – 0.3) system of series 7 
taken immediately after opening the reaction tubes. 

 
disappears with increasing molybdenum content. For y > 0.1 the reflection curves above 

about 25000 cm-1 indicate a strong new absorption effect of Li which is due to the Li2W2-

xMoxO7 type phase. 
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3.5 Characterisation of Li0.1MoyW1-yO3 system where y = 0.00 - 0.1 
The X-ray diffraction patterns of all the samples of system Li0.1MoyW1-yO3 with  y = 0.00 - 

0.1 collected from Philips diffractometer are given in Fig. 35. For y = 0.02 the X-ray patterns  

Fig. 35. X-ray powder diffraction patterns of Li0.1MoyW1-yO3 system taken immediately after 
opening the reaction tubes with y = 0.0 – 0.1 as denoted. 
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can be identified mainly as PTBtetr with the peaks 001 at 23.24, 110 at 24.31, 101 at 28.97, 

111 at 33.81 and 200 at 34.58 2-theta position. Up to y = 0.08 these peaks are present 

strongly. However, in the presence of very small amount of molybdenum as for example for y 

= 0.02 the sample contains a small amount of PTBorth and Li2W4O13 phase along with main 

PTBtetr phase as impurity. The intensity of these impure phases increases with increasing 

molybdenum content. For y = 0.1 the X-ray diffraction pattern mainly could identified as 

PTBorth in presence of a small amount of PTBtetr and Li2W4O13 phase as marked in the 

diffraction patterns. 

  

The IR absorption spectra between 375 cm-1 and 1600 cm-1 of the system Li0.1MoyW1-yO3 of 

series 8 are given in Fig. 36. For y = 0.02 the IR-spectra show a typical PTBtetr structure with  

 
Fig.36. IR absorption spectra (KBr-method) of Li0.1MoyW1-yO3 system as measured immediately 

after opening the reaction tubes with y = 0.0 – 0.1 as denoted. 
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a peak maximum at about 865 cm-1. The absorption feature at 423 cm-1 also can be seen for y 

= 0.0, 0.02 and 0.04.  A further increase of molybdenum concentration leads to an increase of 

the peak intensity at about 865 cm-1 together with a shift of the main peak position towards 

lower wavenumber. For y > 0.02 a shoulder also observed around 650 cm-1 and 754 cm-1. 

However, for y = 0.1 the IR-spectra shows two sharp peaks at about 773 cm-1 and 848 cm-1 

position like the orthorhombic form of WO3. 

 

3.6 Characterisation of Na0.6MoyW1-yO3 system where y = 0.00 – 0.25 
The X-ray powder diffraction patterns of all samples of Na0.6MoyW1-yO3 system with y = 0.00 

– 0.2 of series 9 prepared at 600°C and 700°C are given in Fig. 37 and 38. In Fig. 37 for y = 

0.0 the sodium bronze is typically identified as PTBcubic by the peaks 100 (2θ° at about 23.30), 

110 (2θ° at about 33.13), 111 (2θ° at about 40.85) and 200 (2θ° at about 47.52). For y = 0.05 

the X-ray pattern can be identified mainly as PTBcubic with the peaks as observed for y = 0.0 

in presence of two weak lines at about 26,05 and 37.05 2-theta position. These 2 weak lines 

are due to the presence of WO2 reactant as impurity. However, for y > 0.1  along with PTBcubic 

phase and WO2 impurity some other extra weak lines are also present in the diffraction pattern 

in different 2-theta position. For example several weak lines are present at about 12.10, 16.13, 

18.83, 23.36, 27.09, 27.05, 27.59, 29.99, 34.01 and 35.2 2-theta positions. All of these extra 

lines were identified as Na2Mo2O7 type phase, which is listed in the JCPDS index. With 

increasing molybdenum content the intensity of these extra lines increases. The structure of 

Na2Mo2O7 is made up of (MonO3n+1)2-
 anion chains, and the construction of the chains 

depends on the value of n. Na2W2O7 is isomorphous with Na2Mo2O7. In Fig. 38 the X-ray 

powder patterns of the sample of Na0.6MoyW1-yO3 system, prepared at 700°C show the same 

behaviour as observed in Fig. 37. 

 

The IR absorption spectra between 375 cm-1 and 1500 cm-1 as obtained for series 9 are shown 

in Fig. 39. For y = 0.0 the IR-spectra shows the typical PTBcubic spectra with very weak 

phonon signature at about 900 cm-1 and 930 cm-1. For y = 0.05 and 0.1 the IR-spectra shows 

the same behaviour as observed for y = 0.0. However, y > 0.1 the IR-spectra show the many 

phonon lines due to the presence of Na2Mo2O7 phase. Therefore, the spectra of the sample 

with y > 0.1 are the superimposed from of PTBcubic phase and Na2Mo2O7 phase. 

 

 

 



3. RESULTS 
 

67

 

Fig. 37. X-ray powder diffraction patterns of Na0.6MoyW1-yO3 system with y = 0.0 – 0.25 as 
denoted prepared at 600°C. 

2 Theta [degree]
10 15 20 25 30 35 40 45 50

0

7000

14000

y = 0.0

0

7000

14000

In
te

ns
ity

 [c
ou

nt
s]

y = 0.05

0

7000

14000

y = 0.1

0

4000

8000

y = 0.15

0

5000

10000

y = 0.2

0

3000

6000

y = 0.25

100 110

200

111

WO2

WO2

* *
* * *

***
* *** * *** * ***

PTBcubic
PTBcubic

PTBcubic

PTBcubic

* = Na2Mo2O7 type phase



3. RESULTS 
 

68

 

 

Fig.38. X-ray powder diffraction patterns of Na0.6MoyW1-yO3 system with y = 0.0 – 0.2 as 
denoted prepared at 700°C. 
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The X-ray and IR results indicate that molybdenum can be doped in the PTBcubic Na0.6WO3 at 

600°C and 700°C up to nominal y = 0.1. These results are supported by the TEM/EDX 

analysis. Most of the samples from Na0.6MoyW1-yO3 series were examined in the SEM and 

some samples were also examined by TEM microscopes. The shape and size of the crystal  

 

Fig.39. IR absorption spectra (KBr-method) of Na0.6MoyW1-yO3 system with y = 0.0 – 0.25 as 
denoted prepared at 600°C (left) and 700°C (right). 

 

vary considerably in samples with increasing Mo content as shown Fig. 40a and 40b in the 

SEM images. From SEM image, it can be seen that untill  y ≤ 0.1 the cubic shape crystal is 

present, whereas with y > 0.1 some extra solid slab with cubic crystal appear. These results 

also support the X-ray and IR results. EDX analysis of crystals from each bulk sample in the 

SEM microscope showes that the average Na content was x = 0.9 which is higher than the 

starting material. However, the EDX analysis of thin crystal fragments in the TEM 

microscope showed that most of the crystals of the system contain average Na content x = 0.6 

± 0.01 and this is in good agreement with that of the starting composition. The diagram in Fig. 

41b shows the TEM/EDX analysis of a nominal Na0.6Mo0.2W0.8O3 sample which shows the  
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SEM image of nominal Na0.6WO3 sample showing the cubic crystals. 
 
 

                           
 
SEM image of nominal Na0.6Mo0.05W0.95WO3 sample showing the cubic crystals together with 

small amount of polycrystalline powder. 

 
SEM image of nominal Na0.6Mo0.1W0.9WO3            SEM image of nominal Na0.6Mo0.15W0.85WO3 
showing the cubic crystals together with small        showing the cubic crystals together with some 
amount of polycrystalline powder.                           solid slab of impurity phase (denoted by arrow). 
                                                                   
 
 
Fig. 40a. Systematic SEM-image of Na0.6MoyW1-yO3 system  prepared at 600°C with y = 0.00 – 
0.15 as denoted, showing that with increasing Mo content the amount of cubic crystals decreases. 
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SEM image of nominal Na0.6WO3 sample showing the cubic crystals. 
     

 
SEM image of nominal Na0.6Mo0.05W0.95WO3 (left) and Na0.6Mo0.1W0.9WO3 (right) sample 

showing the cubic crystals together with very small amount of polycrystalline powder. 
     
                    

 
SEM image of nominal Na0.6Mo0.15W0.85WO3 (left) and Na0.6Mo0.2W0.8WO3 (right) sample 

showing the cubic crystals together with polycrystalline powder and small amount of solid of 
impurity phase (denoted by arrow) . 

 
Fig. 40b. Systematic SEM-image of Na0.6MoyW1-yO3 system  with y = 0.0 – 0.2 as denoted 
prepared at 700°C showing that with increasing Mo the amount of cubic crystals decreases. 
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average Na content about 0.55 and Mo about 0.09. The EDX spectrum of the same sample 

Na0.6Mo0.2W0.8O3 showing the presence of Na and Mo as shown in the Fig. 41a. 

Fig. 41a. Typical EDX spectra of Na0.6MoyW1-yO3 system. 

Fig. 41b. SEM-image and plot of  TEM/EDX analysis results of nominal Na0.6Mo0.2W0.8O3 
sample (black circle). Each triangle point represent the mean of two or three measurements on 
the same crystal. The value of the Na and Mo are calculated from the signal intensities as  Na = 
Na / (Mo+W) and Mo = Mo / (Mo+W). 
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In Fig. 42, the as measured reflectivity spectra of Na0.6MoyW1-yO3 system of series 9 are 

given. Fig. 42 shows a reflectivity minima at about 17000 cm-1 for y = 0.0 sample. Up to y = 

0.15 the sample shows nearly the same reflectivity minimum at the same position as observed 

for y = 0.0. However, for y > 0.15 the reflectivity minimum decreases due to the dilution by 

Na2Mo2O7 phase. Same behaviour is observed in the same figure for the samples of 

Na0.6MoyW1-yO3 prepared at 700°C.   

Fig. 42. UV-VIS spectra of Na0.6MoyW1-yO3 (y = 0.0 – 0.25) system prepared 
at 600°C (left) and 700°C (right). 

 

 

The sample Na0.6Mo0.2W0.8O3 was also selected for further structural studies by HRTEM 

method. Fig. 43 shows an well ordered image of a thin crystallite from fragment of 

Na0.6Mo0.2W0.8O3 crystalline powder sample with corresponding ED-pattern. However, a 

small amount of impure phase of Na2Mo2O7 and WO2 are present along with the main 

PTBcubic phase in the sample Na0.6Mo0.2W0.8O3, Fig. 43 shows only the well ordered HRTEM 

image of PTBcubic part of the sample.  

 

Prepared at 600°C

Wavenumber [cm-1]
10000 15000 20000 25000 30000 35000 40000

R
ef

le
ct

iv
ity

0

10

20

30

40

50

60

70

80

y = 0.0

y = 0.05

y = 0.1

y = 0.15

y = 0.2

y = 0.25

Prepared at 700°C

Wavenumber [cm-1]
10000 15000 20000 25000 30000 35000 40000

R
ef

le
ct

iv
ity

0

10

20

30

40

50

60

70

80

y = 0.0

y = 0.1

y = 0.15

y = 0.05

y = 0.2



3. RESULTS 
 

74

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 43. HRTEM image of a thin crystallite from Na0.6Mo0.2W0.8O3 powder sample 

with corresponding DP pattern processed with the CRISP program 
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3.7 Characterisation of CsxNbyW1-yO3 system where x = 0.25, 0.3 and y = 
0.00 – 0.2 and RbxNbyW1-yO3 system where x = 0.3 and y = 0.00 – 0.175  
 
The X-ray powder diffraction patterns (Philips Diffractometer) of Cs0.25NbyW1-yO3 and 

Cs0.3NbyW1-yO3 system of series 10 are given in Fig. 44 and Fig. 45, respectively. In Fig. 44 

the X-ray diffraction pattern of nominal Cs0.25WO3 is identified mainly as HTB-I type bronze 

phase by the peaks 100 (2θ° at about 13.85), 002 (2θ° at about 23.53), 110 (2θ° at about 

24.04), 111 (2θ° at about 26.80), 102 (2θ° at about 27.38), 200 (2θ° at about 27.83), 112 (2θ° 

at about 33.87) and 202 (2θ° at about 36.73) in presence of few weak lines of unknown phase  

at about 24.25, 26.25, 31.15 and 32.62 2-theta position. However, these weak lines of 

unknown phase in the X-ray diffraction pattern disappear in presence of niobium. For y = 

0.05 the X-ray pattern can be identified as single phase of HTB-I type bronze phase with the 

peaks as observed for the sample Cs0.25WO3 HTB-I type phase.  For y = 0.1 and 0. 15 samples 

were identified mainly as HTB-I type bronze phase in presence of some weak lines in 

different 2-theta position. The intensity of these weak lines increases with increasing niobium 

content. As for example the sample with y = 0.2 shows many weak lines which were indexed 

as Cs0.2Nb0.2W0.8O3 HTB-II type oxidized phase [119] with the peaks 002 (2θ° at about 22.5), 

102 (2θ° at about 26.59), 200 (2θ° at about 27.94) and 112 (2θ° at about 33.24). 

 

In Fig. 45 it can be seen that the X-ray powder pattern of nominal Cs0.3WO3 shows a pure 

HTB-I type bronze phase with the peaks 100 (2θ° at about 13.86), 002 (2θ° at about 23.49), 

110 (2θ° at about 24.09), 111 (2θ° at about 26.82), 102 (2θ° at about 27.35), 200 (2θ° at 

about 27.85), 112 (2θ° at about 33.85) and 202 (2θ° at about 36.71). For y = 0.05 the X-ray 

pattern also identified as pure HTB-I type bronze phase with the peaks as observed for y = 

0.0. However, for y = 0.1 and 0.15 samples are identified mainly as HTB-I type bronze phase 

in presence of some weak lines in different 2-theta position. The intensity of these weak lines 

increases with increasing niobium content. The sample with y = 0.15 shows many weak lines 

at about 2-theta 22.56, 26.51, 28.48, 33.18 and 36.19 positions. Most of these extra weak lines 

were identified as a Cs0.2Nb0.2W0.8O3 HTB-II type phase with the peaks 002 (2θ° at about 

22.56), 102 (2θ° at about  26.51) and 112 (2θ° at about 33.18). Two very weak reflections at 

about 28.48 and 29.80 2-theta positions are also observed. These two weak reflections 

correspond to Cs0.35Nb0.35W0.65O3 pyrochlore type phase listed [119] in the JCPDS index. 

  

The results of the X-ray powder analysis (Guinier) of all niobium doped cesium tungsten 

bronzes, CsxNbyW1-yO3 of series 10 are given in table 6. Results obtained from Rietveld  
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Fig.44. X-ray powder diffraction patterns of Cs0.25NbyW1-yO3 system 

with y = 0.0 – 0.2 as denoted. 
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Fig.45. X-ray powder diffraction patterns of Cs0.3NbyW1-yO3 system 
with y = 0.0 – 0.15 as denoted. 
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refinements of series 10 are also given in table 6. From this table it can be seen that the cell 

parameters and phase obtained from Guinier method are in good agreement with the results 

obtained from Rietveld method. Additionally, by the Rietveld method the percentage of the 

main HTB-I type bronze phase and HTB-II type oxidized phase was calculated as given in 

table 6. From the Rietveld refinement results it can be seen that when nominal Nb = 0.1 the 

main HTB type bronze phase is about 95% and the extra phase is about 5%. For nominal Nb 

= 0.15,  the main HTB type phase is about 86% - 88% and the extra phase is about 12% - 

14%. For nominal Nb = 0.2, the main HTB type phase is about 64% and the extra phase is 

about 36%. These refinements were carried out in P63/mcm (No. 193) with Cs at (0, 0, 0) 

position. Alternative refinements are also possible by using P6322 (No. 182) with splitting of 

Cs atom on 4e ( 0, 0, 0.22) position.  

 

The lattice parameters of the extra HTB- II type [Table 6] oxidized phase significantly differ 

compared to the typical values of the Cs-HTB type bronze phase. All these X-ray results are 

supported by SEM and TEM microanalysis. The minimum, maximum and the average value 

of Cs  and Nb according to SEM and TEM microanalysis for each sample are also given in 

table 6. For an example, the SEM/EDX and TEM/EDX analysis of nominal Cs0.25WO3, shows 

that the minimum  content of x is 0.04 and 0.06 respectively as given in table 6, which are 

responsible for the unknown weak lines in the X-ray pattern. However, in most cases it can be 

seen in table 6, that the average value of x and y according to SEM and TEM microanalysis 

are nearly the same value as starting composition of each sample. A large number of ED 

pattern has been taken for some sample of series 10. They also confirm the unit cell 

dimensions obtained from the X-ray study. 

  

The SEM image and the distribution of the SEM/EDX and TEM/EDX analysis made on 

crystals of Cs0.25NbyW1-yO3 (y = 0.00 - 0.2) and Cs0.3NbyW1-yO3 (y = 0.00 - 0.15) systems  are 

given in fig. 46 and 47 in details. The microanalysis of Cs0.25NbyW1-yO3 system gives some 

information about the homogeneity of the samples. A small local variation in Cs and Nb 

content is observed by ED/EDX method for some crystals of this system. But most of the 

crystals shows nearly no local variation. The microanalysis results, thus indicate that the 

fragments from Cs0.25WO3 sample contain some needle like crystal with a low Cs 

concentration x = 0.04 - 0.05, which are therefore, not HTB type [Fig. 46a]. But most of the 

crystals contain higher amount of Cs corresponding to a HTB type bronze phase with almost  
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Table 6. X-ray and electron microscopy results of the system CsxNbyW1-yO3 

(x = 0.25, 0.3; y = 0.05 – 0.2) 
Cell parameters (Å) EDX analysis 

SEM TEM 
 

Starting 
Compositi

on 

Phase observed 
(Guinier and 

philips 
Diffractometer) 
and Percentage 

of phase 
calculated by 

Rietveld method. 

Güinier 
method 

Rietveld 
method 
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fully occupied hexagonal tunnel sites. However, from X-ray pattern and even from this 

microanalysis and from SEM image, it can be seen that with increasing Nb content, as for 

example Nb ≥ 0.1 this low Cs content needle like crystals disappear [Fig. 46c]. With high Nb 

content, for example the nominal Cs0.25Nb0.2W0.8O3 sample shows that some crystals contain 

around Cs = 0.3 and Nb = 0.05 – 0.15 which belongs to HTB-I type bronze phase, whereas 

some crystal contain high amount of Cs and Nb, which may be belong to HTB-II type phase. 

But  in most cases, it was not possible to identify the phase separation. 

 

Cs0.25WO3 
                                                                                              
         
              

 
Fig. 46a. SEM image of nominal Cs0.25WO3 sample showing the typical HTB type crystals 
together with some needle like crystals. Some polycrystalline powder also present. HTB type 
crystals containing high Cs (x = 0.23 – 0.34) whereas the needle crystals containing very low Cs 
(x = 0.03 – 0.08). The TEM/EDX analysis results denoted by open triangle and SEM/EDX 
analysis results denoted by filled triangle in the same diagram. Each filled triangle point 
represent the mean of two or three measurements on the same crystal. The value of the Cs is 
calculated from the signal intensities as  Cs = Cs / W. 
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 Fig. 46b. SEM image of nominal Cs0.25Nb0.05W0.95O3 (up) and Cs0.25Nb0.1W0.9O3 (down) 
sample showing the typical HTB type crystals together with some needle like crystals. Some 
polycrystalline powder also present. The HTB like bronze crystals are containing Cs about 
0.23 to 0.34 and Nb about 0.0 to 0.15 as shown in the EDX analysis diagram. The nominal 
composition of Cs0.25Nb0.05W0.95O3 and Cs0.25Nb0.1W0.9O3 are shown in the diagram by open 
circle. Each filled triangle point represent the mean of two or three measurements on the same 
crystal. The value of the Cs and Nb are calculated from the signal intensities as  Cs = Cs / 
(Nb+W) and Nb = Nb / (Nb+W). 
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Fig. 46c. SEM image of nominal Cs0.25Nb0.15W0.85O3 (up) and Cs0.25Nb0.2W0.8O3 (down) 
sample showing the typical HTB type crystals together with some polycrystalline powder. 
The HTB like bronze crystals are containing Cs about 0.23 to 0.34 and Nb about 0.0 to 0.15 
as shown in the EDX analysis diagram. The nominal composition of Cs0.25Nb0.05W0.95O3 and 
Cs0.25Nb0.1W0.9O3 are shown in the diagram by open circle. Each filled triangle point represent 
the mean of two or three measurements on the same crystal. The value of the Cs and Nb are 
calculated from the signal intensities as  Cs = Cs / (Nb+W) and Nb = Nb / (Nb+W). 
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For Cs0.3NbyW1-yO3 ( y = 0.00 - 0.15) system it can be seen from the SEM image that some 

crystals are bigger in size whereas some are small. All these big crystals have the same size 

and shape containing the same composition as observed on EDX quantitative analysis [Fig. 

47]. X-ray powder diffraction and transmission electron microscope (TEM) studies of the 

sample Cs0.3WO3 suggests the fully occupied tunnels for this sample. With high Nb content, 

for example the nominal Cs0.3Nb0.15W0.8O3 sample shows that some crystal contain around Cs 

= 0.3 and Nb = 0.05 – 0.15 which belongs to HTB-I type bronze phase, whereas some crystals 

contain higher amount of Cs and Nb which could belong to HTB-II type phase. But  in most 

cases it was also not possible to identify the phase separation. 
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Fig. 47. SEM image of Cs0.3NbyW1-yO3 system with y = 0.0 – 0.15 showing the typical HTB 
type bronze crystals together with some polycrystalline powder. HTB type bronze crystals 
containing Cs = 0.25 – 0.34 and Nb = 0.0 – 0.15 as shown in the EDX analysis diagram. 
Crystals with Nb ≥ 0.15 are belongs to oxidised HTB-II type phase, which is difficult to see in 
the SEM image. The nominal composition of the sample of Cs0.3NbyW1-yO3 with y = 0.0 – 
0.15, denoted by open circle in the diagram. Each triangle point represent the mean of two or 
three measurements on the same crystal. The value of the Cs and Nb are calculated from the 
signal intensities as  Cs = Cs / (Nb+W) and Nb = Nb / (Nb+W). 
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    Fig. 48a. Typical EDX spectra of Cs0.3NbyW1-yO3 system with y = 0.0 – 0.15. 
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Fig. 48b. Typical EDX spectra of Cs0.25NbyW1-yO3 system with y = 0.0 – 0.2. 
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The combined ED and EDX studies in thin crystal fragments from the samples of different 

batches in the TEM microscope confirmed that the tungsten bronze of HTB structure types 

were the dominating phase in the bulk product. The ED pattern taken from the HTB crystals in 

(001) and (100) orientations did not show any streaking effect of the reflections or any 

additional superstructure spots. But very few crystals with high niobium content showed 

streaking effect which may related to oxidized HTB-II type phase.  

 

Fig. 48a and 48b show the typical EDX spectra of the samples of Cs0.3NbyW1-yO3 and 

Cs025NbyW1-yO3 systems respectively.  The presence of small amount of Nb can be seen clearly 

in the spectra. 

 

The IR-absorption spectra between 375 cm-1 and 2000 cm-1 as obtained for Cs0.25NbyW1-yO3  

and Cs0.3NbyW1-yO3 systems of series 10 are shown in Fig. 49. For y = 0.0, the IR-spectra  

Fig. 49. IR absorption spectra (KBr-method) of Cs0.25NbyW1-yO3 (left) and Cs0.3NbyW1-yO3 
(right) system. Spectra are shifted vertically against each other for better comparison. Vertical 
line marks wavenumber position at which the intensities (int*) relative to an extrapolated 
background line as indicated by solid lines were measured. Insert: The dependence of (int*) on 
niobium content y. 
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show only a weak broad phonon absorption band below 1000 cm-1. However, for y > 0.05, the 

intensity of this broad phonon absorption band increases with increasing niobium content. For 

y ≥ 0.15, the IR-spectra show a small peak at about 1100 cm-1. The absorption peak can be 

explained by HTB-II type oxidized phase. 

 

The optical reflectivity of the powder sample of series 10 were measured in the range 4000 

cm-1 to 22000 cm-1 are given in Fig. 50. For y = 0.0 the sample show two minima at about 

16000 cm-1 and 10000 cm-1. This minimum feature in the reflectivity becomes weaker and  

 
Fig.50. Reflection spectra of powder samples of Cs0.25NbyW1-yO3 (left) and Cs0.3NbyW1-yO3 
(right) system with y = 0.0 – 0.2 as denoted. Spectra are shifted vertically against each other 
for better comparison. 
 

shifted to lower wavenumber with increasing niobium content. For y > 0.1 the minimum 

structures become less significant and there is nearly no shift in position because of the 

dilution by the oxidised phase, whereas for y < 0.1 a doping effect could be indicated. 
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A HRTEM image of a thin crystal of nominal Cs0.25Nb0.1W0.9O3 projected along [010] is 

shown in fig. 51. The image shows a misfit layer along b direction which can not be seen in 

the hexagonal c direction. The corresponding ED pattern was taken from the different part of 

the image. The ED pattern from the image including the defect part shows the streaking effect 

whereas, the DP pattern from the other part shows the HTB pattern without any streaking 

effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 51. HRTEM image of a thin crystallite from Cs0.25Nb0.1W0.9O3 powder sample with 
corresponding DP patterns processed with the CRISP program projected along [010] axis. 
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Fig. 52. X-ray powder diffraction patterns of Rb0.3NbyW1-yO3 system with y = 0.0 – 0.175 as 
denoted. 
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In a previous investigation [110], it was reported that single phase of niobium substituted Rb 

and K hexagonal tungsten bronzes can be prepared for x = 0.2, y ≤ 0.05; x = 0.25, y ≤ 0.125 

and x = 0.3, y ≤ 0.15. Following the observation of CsxNbyW1-yO3 system, in the present 

study the Rb0.3NbyW1-yO3 system was reinvestigated from the same sample as obtained from 

Hussain et al. [110]. The X-ray powder diffraction patterns (Philips Diffractometer) of system 

Rb0.3NbyW1-yO3 are given in Fig. 52. It can be seen that the X-ray powder diffraction pattern 

of nominal Rb0.3WO3 shows a pure HTB-I type bronze phase with the peaks 110 (2θ° at about 

13.85), 002 (2θ° at about 23.57), 110 (2θ° at about 24.10), 111 (2θ° at about 26.87), 102 (2θ° 

at about 27.43), 200 (2θ° at about 27.89), 112 (2θ° at about 33.95) and 202 (2θ° at about 

36.82). For samples with y = 0.025 and 0.05, the X-ray patterns are identified as pure HTB-I 

type bronze phase with the peaks as observed for y = 0.0. However, for samples with y = 

0.075 and 0.125, the X-ray patterns are mainly identified as HTB-I type bronze phase in 

presence of some weak lines at about 2-theta 22.85, 33.57 and 36.49 positions. The intensity 

of these weak lines increases with increasing niobium content. All these extra weak lines were 

indexed as HTB-II type oxidised phase, with lattice parameters reported for Rb bronzoid 

phases (Rb0.2Nb0.2W0.8O3) [119]. Results obtained from Rietveld refinements of nominal 

Rb0.3Nb0.175W0.825O3 sample show that the main HTB-I type bronze phase is about 84% and 

the non-bronze HTB-II type phase about 16%. This refinements were carried out in P63/mcm 

(No. 193) with Rb at (0, 0, 0) position.  

 

Some samples of Rb0.3NbyW1-yO3 system were studied by SEM/EDX microanalysis. Fig. 53 

shows the crystal sizes and shapes of the samples with y = 0.125, 0.15 and 0.175 in the SEM  
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image. The distribution of the SEM/EDX analysis of these crystals are also given in the same 

figure. The results of these samples consist of crystals with Rb = 0.29 - 0.37 and Nb = 0.06 - 

0.11 which belong to HTB-I type bronze phase. Since the amount of impure HTB-II type 

 

Fig. 53. SEM image of Rb0.3NbyW1-yO3 system showing the HTB type crystals together 
with some polycrystalline powder. The HTB-I type bronze crystals containing Rb about  
0.25 – 0.33 and Nb about 0.05 – 0.15 as shown in the SEM/EDX diagram. The nominal 
composition of Rb0.3NbyW1-yO3 (y = 0.0 – 0.15) denoted by open circle in the diagram and 
the value of Rb and Nb are calculated from the signal intensities as  Rb = Rb / (Nb+W) 
and Nb = Nb / (Nb+W). Each triangle point represent the mean of two or three 
measurements on the same crystal. 
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phase is very small in amount, it was not possible to detect for this microanalysis. However, 

like Cs-Nb-W-O system, it is also difficult to identify the phase separation in the system Rb-

Nb-W-O. 

 

From all these results it can be observed that Rb and Cs systems show the similar behaviour 

with increasing niobium content, i.e. with increasing Nb content all these systems go to a 

mixture of HTB-I bronze type phase and HTB-II type oxidized phase.
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4. DISCUSSION 
 
4.1. LixWO3 system 
 
4.1.1 Phase stabilities in the LixWO3 system and relation to the thermally induced WO3 

phase transitions. 

The phase diagram of LixWO3 by Réau et al [100] is given in fig. 54. In the same figure the 

results of the X-ray powder analysis of different samples of lithium tungsten bronzes, LixWO3 

of series 1 and series 2 are also given. The results obtained from series 1 closely agree with 

the results of Réau et al. At low x content Réau et al showed for x = 0.03 sample, a pure 

PTBorth phase whereas series 1 reveals a mixed phase of PTBtetr and PTBorth. Series 2 gives 

even more different results, because of the difference of the reactant used for series 1 and 

series 2. Similarly there is a  significant difference between the series 2 and Réau et al data, 

Réau et al showed that the single PTBcubic phase in the range 0.26 ≤ x ≤ 0.5, whereas series 2 

shows the PTBcubic phase region for 0.35 < x < 0.55. In series 2 it is observed that sample with  

 

Fig. 54. Phase diagram of the lithium tungsten bronze, LixWO3, from the data of Réau et al. 
and the results of the lithium tungsten bronze, LixWO3 (x = 0.03 – 0.7) of series 1 (open 
square) and series 2 (black square) obtained from Guinier powder method. 
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x = 0.1 always gives 2-3 extra lines of PTBorth along with PTBtetr whereas, Reau et al showed 

only PTBtetr with x = 0.1. Samples with 0.15 ≤ x ≤ 0.35, in series 2 also show some very weak 

lines which could not be indexed as any reported phase of tungsten bronzes. During the 

investigation of series 2 (old reactant) it was found that the commercially available WO2 was 

not stoichiometric, containing an excess of oxygen. Therefore, the whole series (series 1) was 

prepared once again using analytical grade WO2. This reproduces the results which is shown 

in Fig. 54 by open squre with an extended homogeneity range of PTBcubic phases. Further on 

with the new reactant in series 1 it is observed that all forms of PTBcubic possess a doubling of 

the unit cell. This observation about the doubling of the unit cell are in good agreement with 

Wiseman and Dickens [113]. With the old reactant in series 2 the doubling of unit cell could 

also be identified.  

 

The lattice parameter obtained from Guinier method of series 1 and series 2 and some 

literature values as given by Réau et al [100] and Mart et al. [114] are ploted in Fig. 55. It is  

 
Fig. 55. Lattice parameters versus composition for cubic lithium tungsten bronzes of series 1, 

series 2 and series 3 together with some literature data. 
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observed from this figure that the value of the cubic lattice parameter of series 1 and series 2 

tend to increase systematically with decreasing x into the two phase region. The same trend 

has also been observed by in situ measurements during the intercalation in electrolytic cells by 

Zhong et al. [101] also given in Fig. 55 (here changes in x was calculated from the cathode 

mass, the constant current and the time of current flow).  The results of Réau et al also shows 

the same trend as shown in Fig. 55 but in different position (Réau et al. prepared the bronzes 

by the thermal method at 750°C using sealed gold tubes).  

 

The variation of lattice parameter, though small, as a function of x could imply a solid 

solution type dependence suggesting a homogeneous distribution of Li on the perovskite A 

sites within the stability field of 0.25 < x < 0.55. However, this effect is related to a strain 

induced interaction between the tetragonal and cubic phases where the tetragonal part tends to 

expand the cubic one. 

 

The IR-absorption spectra of series 1 of LixWO3, obtained directly after opening the reaction 

tubes show that the sample with x = 0.05 and 0.1 can be explained by orthorhombic and 

tetragonal lattice of WO3 respectively. It is also observed that the amount of tetragonal phase 

becomes gradually smaller with increasing x up to 0.2. All spectra for samples with x = 0.25 - 

0.5 closely agree to each other with some low intensity phonon signature at the same position 

indicating residual tetragonal phase within a cubic matrix. 

 

The absence of any IR phonon absorption in PTBcubic can be explained by the free carrier 

effect with a plasma frequency sufficiently larger than the phonon frequencies. Conclusively 

the decreasing phonon intensity from single phase tetragonal Li0.1WO3 to Li0.2WO3 is 

explained  by the upcoming content of PTBcubic and thus by an increase in the total carrier 

concentration. The phonon intensities at peak maximum relative to the minimum absorption 

intensities are plotted as a function of x [Fig. 56]. There is an overall decrease in phonon 

absorption intensity of the WO3 matrix, which is therefore related to the increase in carrier 

(electron) concentration also below x = 0.1. For samples with x > 0.5, the IR spectra also 

show upcoming phonon intensity which is mainly related to Li2WO4. 

 

X-ray powder (Guinier method) and infrared absorption (KBr-method) investigations of 

single crystal of LixWO3 show a close analogy with the results obtained from powder samples 

of LixWO3, which, however, produce crystal powders of submicron sizes. The lattice 
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parameters obtained from Guinier method of single crystals also given in Fig. 55 shows the 

same trend as observed for series 1 and series 2. According to single crystal investigation, it is 

Fig. 56. The phonon intensities at peak maximum relative to the minimum absorption 
intensities as a function of x in LixWO3 (x = 0.0 – 0.7) of series 1. 

 

observed that single phase PTBcubic for LixWO3 is obtained with nominal composition of x = 

0.45, 0.4 and mixed phase of PTBcubic and PTBtetra for x = 0.35, 0.3, 0.25. The x = 0.1, sample 

reveals mixed phases of PTBtetr and PTBorth of lower symmetry. These results are in good 

agreement with the stability field reported by Zhong et al [101] as 0.36 < x < 0.5 for PTBcubic 

and 0.082 < x < 0.13 for PTBtetr during intercalation. It can be noted that although same 

reactants were used for the crystal growth (in series 3) and for powder samples (in series 1), the 

stability field of PTBcubic is different. The stability field of PTBcubic for the powder samples (in 

series 1) was observed with  0.3 ≤ x ≤ 0.5 where that for single crystals (in series 3) was found 

with 0.4 ≤ x ≤ 0.5. The difference of the stability field of these two series could be related to 

different preparation conditions revealing a different scale in the formation of exsolution 

lamellars of LixWO3. 
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In Fig. 57 the obtained lattice parameter of the PTBcubic phase are plotted together with the 

refined tetragonal lattice parameter as recalculated by the equation atetr ~ acubic21/2.   

 
Fig. 57. Lattice parameters versus concentration of x of lithium tungsten bronzes, LixWO3 
obtained from different series. The acubic and ctetr lattice parameters are ploted as obtained from 
refinement. Whereas, the lattice parameters of atetr are ploted from the values recalculated by 
the equation atetr ~ acubic√2. 
 

The average of atetr and ctetr is calculated by the equation (√2atetr + ctetr) / 3 which is denoted by a 

black bar in the fig. 57. From this figure, it can be seen that the a parameter of PTBcubic phase 

with increasing content of PTBtetr in the bulk sample becomes close to this average value. 

Therefore, this indicates a strong interaction between these related phases. 
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All data show that with increasing lithium concentration in LixWO3, the WO3 host changes to 

the higher symmetric structure. This is similar in pure WO3 with increasing temperature. The 

structure of tungsten trioxide, WO3 is of a distorted ReO3 type and shows displasive successive 

phase transitions. They are stable within well defined temperature ranges and transform into 

each other reversibly. The structure of ReO3 is the BO3 structure in which the A ion of the 

ABO3 perovskite crystal is completely missing.  

 

The structure of WO3 is tetragonal above 740°C. It undergoes the tetragonal–orthorhombic 

transition (740°C), the orthorhombic–monoclinic transition (330°C), the monoclinic–triclinic 

transition (17°C) and the triclinic–monoclinic transition (-40°C) as shown below [120, 121].  

tetragonal (P4/nmm) 
710°C   ↓↑ 740°C 

orthorhombic (Pmnb) 
              WO3                                       285°C ↓↑ 330°C  

monoclinic I (P21/n) 
17°C     ↓↑ 20-30°C 

triclinic (P-1) 
-40°C ↓↑ -20°C 

monoclinic II (Pc) 
 
As the structure of WO3 in each phase are of a distorted ReO3 type, it is assumed that WO3 is 

cubic with the ideal ReO3 type in the hypothetic highest temperature phase.  

 

Salje and Viswanathan [116] determined the cell dimensions of WO3 from –100°C to 900°C 

by X-ray powder method. They have shown that the lattice constants change very gradually 

during the monoclinic-orthorhombic transformation, whereas they change abruptly during the 

monoclinic–triclinic and orthorhombic–tetragonal transformations. In particular, the transition 

to the tetragonal form is characterized by a large decrease in the volume and in b. They have 

also shown from the X-ray data that the monoclinic modification undergoes only two 

transitions, namely, the monoclinic-orthorhombic transition at 480°C and the orthorhombic-

tetragonal transition at 740°C. The triclinic first becomes monoclinic at about 200°C with 

identical lattice constants. Then it behaves just like the monoclinic modification. This 

important phase transition alters the physical properties considerably and causes a change in 

the space group.  

 

Salje [122] discusses the different phase transitions on the basis of ‘’critical modes’’ : a 

torsional mode, which gives rise to tilt structures and a deformational mode, which induces 
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deformations of the individual WO6 octahedra and particularly the off-centre position of the 

W atoms. Starting from the tetragonal phase of highest symmetry [123], in which, with 

respect to the cubic reference structure of a, b and c cubic axis with length about 3.7Å, the W 

positions are shifted from the octahedral midpoints to form zigzag chains along (110), the 

transition to the orthorhombic phase at 740°C can be explained by freezing critical modes, 

which induce a change in the lattice cell, with á = a√2,  b′= b√2 and c′= 2c, the tilt axis being 

parallel to a. The transition to the monoclinic room temperature phase implies an other 

torsional mode with tilt axis about c. The structure of the triclinic phase, studied from the data 

of a single crystal diffractometer is known precisely [124] and has been compared to the 

monoclinic modification determined by powder neutron diffraction [125]. The comparison 

shows clearly that the transformation occurs at some of the oxygen positions, involving a tilt 

of WO6 octahedra about the b axis, i.e. the third direction, the tilting angle being about 17°. 

This angle is the critical parameter during the triclinic-monoclinic phase transition, the 

interatomic distances and angles remaining almost unchanged. 

 

In the present investigation, the temperature dependent IR-spectra (KBr–method) of WO3 was 

measured between 25°C to 651°C, the upper temperature limit of the experimental setup here 

for experimental reasons. The spectral change depending on phase transition of WO3 with 

temperature has been observed in this experiment. The tetragonal phase was not seen here up 

to 650°C, however, the peak shape is almost indicative for the tetragonal phase of WO3. The 

same peak form and peak position is also observed for Li0.1WO3, which is PTBtetr according to 

the X-ray investigation. Additionally peak form and peak position are also very similar and 

indicative for Li0.05WO3 and orthorhombic WO3, showing that the Li – content has a similar 

effect on WO3 as increasing the temperature to the orthorhombic and even the tetragonal 

modification. Further increase in Li has equal effectivity on the W-O bond lengths in the a 

and b direction and the zigzag rotations of the octrahedra in the c direction disappear. Thus 

the structure of the WO3 host finally becomes cubic and the W-O bond length becomes 

effectively equal in all three directions. 

 

4.1.2 Electronic properties and color of the lithium tungsten bronze, LixWO3. 

The optical measurement could be a very sensitive analytical method to detect Li exsolution 

phenomena and structural changes in the system LixWO3. For nominal composition of 

Li0.45WO3 and Li0.4WO3 the crystals appear homogeneous in the microscope. The appearance 

of a large scale exsolution phenomena into PTBcubic and PTBtetr is observed directly in the 
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microscope for x = 0.35 – 0.25 samples. But even for the supposed cubic part, 

submicroscopical exsolution phenomena can be suggested from their reflectivity spectra. This 

indicates a very limited stability field for PTBcubic on x ( i.e. x > 0.4) or a high tendency to 

separate into lithium enriched (PTBcubic) and Li exhausted (PTBtetr) areas. The structural 

change is produced by ordering of Li in the crystal. During preparation, when the sample is 

quenched to room temperature within minutes by taking the reaction tubes out of the furnace, 

the high temperature framework tends to collapse around the interstitial cation. A sufficiently 

large content of Li may be able to prevent the collapse, while a smaller content of atoms 

allows the framework to distort, reducing the symmetry. The high mobility of Li might be the 

reason for the formation of Li enriched PTBcubic and Li exhausted PTBtetr during cooling as 

driven by the distortion of the framework.  

 

All of the reflectivity spectra of x = 0.45 crystals, show the same Drude free carrier type 

isotropic reflectivity. The reflectivity spectra of the crystals from the batches with x = 0.4 and 

0.35, all slightly differ indicating a superimposition of an additional spectral contribution in 

the range of the minimum. This contribution is related to the influence of submicroscopical 

exsolution of the tetragonal phase, since this effect becomes increasingly significant for 

crystals from the x = 0.35 batch. For these crystals there are brighter lamellars which are 

separated by sharp interfaces due to the phase separation. The brighter lamellars become more 

significant in area for crystals from the batches x = 0.3 and 0.25 and their optical properties 

were measured separately. The dark parts show significant deviations from isotropy down 

from 14000 cm-1 extending into the mid infrared. Moreover, a systematic decrease in the NIR 

reflection indicates an increasing influence from Li-exsolution phanomena on a 

submicroscopic scale. The bright part of the crystals shows a non-Drude like strong 

anisotropic behaviour with the appearance of phonon effects in the MIR. It can be noted that 

the non cubic parts of the crystals possess strong infrared absorption phenomena which are 

peaked in the range between 2000 cm-1 to 8000 cm-1 strongly dependent on crystal 

orientation. The data further imply that any deviation from single phase PTBcubic is related 

with a break down of the Drude free carrier dominated near infrared response. The excitation 

spectra of PTBtetr and PTBorth phases, may be explained by photon assisted hopping of 

polarons with a strong anisotropy in their coupling parameters due to the tetragonal / 

orthorhombic host.  
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The as measured reflectivity spectra of powder samples of series 1 after recalculating by using 

the Kubalka Munk formula show that with increasing x in LixWO3 there is a strong increase 

in intensity of a broad peak between 15000 cm-1 and 18000 cm-1 for x = 0.25 – 0.55 [Fig. 11]. 

These broad peaks can be explained by the free carrier plasma effect. A shift of the peak to 

higher wave number with increasing x would imply an increase in carrier concentration. 

However, although remeasured several times, it was quite difficult from the powder series to 

see the shifting of the peak as a function of x , i.e with an increase in Li content. On the other 

hand, the increase in intensity at 16000 cm-1 suggests an increase in content of PTBcubic phase. 

In this context it is interesting to note that a clustering into higher and lower Li- contents 

implies a separation into metallic and nonmetallic domains on a nanometer scale. The 

absorption peak which is responsible for the dark blue color is due to the so called surface 

plasmon, as for example, described for nanoparticals of gold and silver in ceramic matrices 

[126]. It is interesting to note that there is also a broad peak for the samples with x = 0.2 and 

0.15 at around 15,000 cm-1 which could be present also in the sample with x = 0.25 as a 

shoulder in the plasmon peak. In further experiments in the spectral range 2000 cm-1 to 15000 

cm-1, a peak is observed around 10000 cm-1 and 8000 cm-1 for the sample with x = 0.1 and 

0.05 respectively which closely corresponds to the peaks also observed in thin films [106].  

 

Lithium tungsten bronzes, LixWO3 prepared at 600°C, 700°C and 800°C show deep blue 

colour for 0.3 ≤ x ≤ 0.6 and more violet blue for x = 0.7 if kept in closed evacuated tubes. The 

changes in colour can be explained by the high mobility of Li which is attracted by surface 

oxygen. The IR spectra of the exposed sample shows the presence of OH- and CO3
-- species, 

which can be explained by the following way- LixWO3 ( x < 0.5) in atmospheric condition 

reacts with O2 and forms Li2O, which may then react with the atmospheric H2O and CO2 and 

can form Li(OH) and Li2CO3. These Li(OH) and Li2CO3 can be detected by IR-absorption 

spectra. The reaction is going on in the following way – 

 

Li0.4WO3 + 0.1O2+ 0.2H2O  →  0.4LiOH + WO3 

Li0.4WO3 + 0.1O2+ 0.2CO2  →  0.2Li2CO3 + WO3 

 

It can be suggested that in all cases LixWO3 for x < 0.5 will become Li-free at the surface thus 

obtaining the monoclinic form of WO3 at room temperature. From the appearance of the IR 

absorption characteristics it can be seen that all compositions of LixWO3 for x < 0.5 are 

gradually transferred from the higher symmetry phase to the lower symmetry phase with 
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increasing exposure time at atmospheric conditions due to a gradual depletion in Li. For 

compositions x > 0.5, a slight increase in the concentration of Li2WO4 could occur with 

increasing exposure time. There is very little change in colour of sample with composition, 

Li0.5WO3, even after 90 days of exposure time. Therefore, it may be concluded that Li0.5WO3 

is the most stable composition due to a half occupation of Li on the A site in the ABO3 

structure. 

 

After reheated, the exposed samples regain their original color and the IR spectra and x-ray 

result of the samples indicate the formation of Li2W2O7 with main PTBcubic phase. The 

Li2W2O7 type phase is may be due to the presence of WO3, LiOH and Li2CO3 which lead the 

formation of  Li2W2O7. Probably a reversible process occurs in part or would occur to 100% 

in dried and CO2 free O2 atmosphere, which could be useful for an electronic device for 

measurement of oxygen partial pressure. The surface-related properties of the bronzes have 

been reported earlier in a number of publications. Spitzin and Kaschtanoff [127] stated that 

the bronze powders (1-20 µm) contain adsorbed water to the extent of about 0.4 wt %, which 

can be driven off by heating at 200-300°C. Straumanis and Dravnieks [128] observed for 

sodium tungsten bronzes that, when the sintered bronze is exposed to moist air, the electrical 

resistivity increases with time, probably owing to the formation of a surface layer at the 

intergrain boundaries. A preliminary electron-diffraction work of Muldawer [129] indicate 

that the surface of a Na0.7WO3 single crystal immersed in HF and / or exposed to moist air 

was converted partly to the tetragonal bronzes (x = 0.1) and partly to tungsten oxides as it is 

observed in the present investigation for LixWO3 system. Consadori and Stella [130] observed 

(for optical reflectivity of NaxWO3) that the bronze exposed to air exhibits time-dependent 

optical–reflectivity spectra, indicative of a film growing on the surface. 

 

4.2 Li0.4NbyW1-yO3 and Li0.1NbyW1-yO3 system  
In Li0.4NbyW1-yO3 system there is only a small effect of Nb/W substitution. This system 

shows that even in presence of small amount of Nb (y = 0.04) a trace amount of LiNbWO6 

type phase comes as impurity along with PTBcubic phase. The intensity of PTBcubic phase 

reduces and the intensity of LiNbWO6 trirutile type phase increases with increasing Nb 

content. For x = y = 0.4 the structure shows mainly the  LiNbWO6 trirutile type structure in 

presence of very small amount of Nb2W3O14 and LiNb3O8 as impurity phase. Y. Xia et al. 

[131] also found Nb2WO8 and LiNb3O8 as impurity phase around 2% along with main phase 

when they worked on in the system Li1-xNb1-xWxO3 (0 ≤ x ≤ 0.5). However, Yamada et al. 
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[115] reported that single phase of cubic perovskite-type compound was obtained when y < 

0.15 in the system LixNbyW1-yO3 (x ~ 0.4,  0 ≤ y < 0.15) prepared by electrolysis of fused salt. 

 

The cubic cell parameter obtained from series 5 and some previous data obtained from old 

reactants are given in table 3 and also plotted in Fig. 58. The different behaviour on y in  the  

Fig. 58. Lattice parameters versus concentration of  y in Li0.4NbyW1-yO3 of series 5 and some 
previous data of the same system which was prepared from old reactants  at 600°C. 

 

cell parameter between series 4 and series 5 as shown in Fig. 58 could be due to different 

WO2 reactant used. In Fig. 58 it can be seen that with increasing Nb content the acubic cell 

parameter increases. This general trend is very similar to the behaviour which is also observed 

for decreasing Li content in LixWO3. Therefore, the cell parameter increasing behaviour 
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observed in Li0.4NbyW1-yO3 system does not give any evidence of Nb substitution for W in 

Li0.4WO3 PTBcubic phase. 

 

Some hints of the effect of the substitution of tungsten by niobium in Li0.4NbyW1-yO3 system 

are, however, obtained from the optical spectra [Fig. 26]. The single crystal spectral properties 

of Li0.4WO3 have been explained in terms of a Drude free carrier plasma frequencies which 

show a minimum at about 14,000 cm-1. Similar spectrum is observed with the same minimum 

for the powder sample of Li0.4WO3. The reflectivity of the powder samples of series 5 [Fig. 

26] of Li0.4NbyW1-yO3 system shows that the minimum is somewhat shifted to lower wave 

number with increasing Nb concentration, which has not been observed as a function of Li in 

LixWO3. This behaviour can be explained by an effective decrease of the carrier concentration 

due to the doping with Nb. The EDX analysis results support this explanation by showing the 

different amount of niobium in different crystals as described in results. From all these 

experimental results it can be suggested that 5-8 atom % niobium can be doped in the system 

Li0.4NbyW1-yO3. 

 

At atmospheric condition the PTBcubic phase contribution in system Li0.4NbyW1-yO3 is 

affected, i.e. gradually transferred to WO3 type compound. For this reason the oxidised phase 

becomes more significant with increasing exposure time in atmospheric condition.  

 
For Li0.1NbyW1-yO3 system the main observation is the gradual loss of the tetragonal phase 

with increasing Nb content and upcoming orthorhombic phase. With increasing Nb, a small 

amount of Nb2O5 and LiNb3O8 type phase also observed along with main PTBtetr and PTBorth 

phase. The reflectivity of the powder sample of series 6 shows that the minimum feature in 

the reflectivity becomes weaker and shifted to lower wavenumber with increasing niobium 

content. For the sample with y ≥ 0.08, the minimum structure becomes less significant and 

there is nearly no shift in position, which could indicate the effect of the substitution of 

tungsten by niobium in the system Li0.1NbyW1-yO3 [Fig. 30]. This behaviour can be explained 

by an effective decrease of the carrier concentration due to the doping with Nb. Therefore, 

there can be a small effect of substitution in this system. However, the change in properties 

mostly can be related to a decreasing amount of Li in LixWO3. There is no clear evidence in 

this system for a substitution effect. 
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4.3 Li0.4MoyW1-yO3 and Li0.1MoyW1-yO3 system 
In the system Li0.4MoyW1-yO3 the proportion of PTBcubic phase reduces with increasing 

molybdenum content. In presence of small amount of Mo, a Li2W2O7 type phase is formed  

along with PTBcubic phase. From the X-ray and IR results it can be suggested that with 

increasing molybdenum content W is replaced according to Li2W2O7 phase, but not at all in 

LixWO3 phase of PTBcubic. For sample with y > 0.15, the PTBcubic phase totally disappeared 

and Li2W2O7 type phase is mainly identified. Variation in the X-ray pattern compared to the 

Li2W2O7 pure phase could indicate the formation of Li2W2-xMoxO7 of variable composition. 

 

The EDX analysis results support this explanation by showing the different amount of 

molybdenum and tungsten in different crystals as described in results. The SEM image also 

supports this observation by showing that sample with y > 0.15 has no cubic crystal, only 

some flake crystals together with polycrystalline powder remain. From EDX analysis results, 

it can be suggested that may be only about 5% Mo can be doped in Li0.4MoyW1-yO3 system.  

 

Attempts were also made to substitute tungsten by Mo in PTBtetr Li0.1WO3. From the X- ray 

powder diffraction pattern, it can be seen that with increasing Mo content the proportion of 

PTBtetr decreases and a phase of orthorhombic symmetry increases in presence of small 

amount of impure phase of Li2W4O13. This X-ray result is supported by the IR absorption 

spectra of the samples. X-ray and IR results show that with increasing Mo content the higher 

symmetry phase goes to lower symmetry phase as it is observed in Li0.1NbyW1-yO3 system. 

Only a small effect of substitution can be present in the system Li0.1MoyW1-yO3. However, the 

change in properties is mostly be related to a decreasing amount of Li in LixWO3. There is no 

clear evidence in this system for a substitution effect. 

 

On the basis of the experimental results, it can be concluded that the experimental condition 

which was used for the synthesis of these systems is unsuccessful for the substitution of 

tungsten by Nb and Mo in PTBtetr Li0.1WO3 and PTBcubic Li0.4WO3 system. 

 

4.4 Na0.6MoyW1-yO3 System  
The sodium tungsten bronzes, NaxWO3 with 0.35 <x < 0.96, are typically metallic and had 

been classified to the ideal perovskite structure as postulated from the cubic sublattice of 

tungsten in the earlier X-ray study [132]. In the present study, Na0.6WO3 was prepared at 

different temperature ( 600°C, 700°C and 800°C) to check the structure at first. From the X-
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ray powder diffraction pattern all of them were indexed as PTBcubic. Then an attempt was 

made to replace the W atom by Mo in Na0.6WO3 at 600°C and 700°C and to investigate their 

properties and structural changes with increasing Mo concentration. From both series, it can 

be seen that with y ≤ 0.1 the X – ray pattern shows 3-4 very weak reflections along with 

PTBcubic phase which are identified as WO2. However, for y > 0.1 an extra phase of 

Na2Mo2O7 is observed along with PTBcubic and WO2. This is similar as Li2Mo2O7 was 

observed in the system Li0.4MoyW1-yO3. It has been reported [133] that Na2W2O7 type phase is 

formed after oxidation of Na0.65WO3 in air at 500°C for 12hr, which is isomorphous [134] 

with Na2Mo2O7 phase.  

 

The IR absorption spectra of the samples with  y ≤ 0.1 of system Na0.6MoyW1-yO3 can be 

explained as PTBcubic phase of Na bronze. The IR spectra of the sample with y > 0.1 show the 

upcoming phonon intensity which is related to Na2Mo2O7 type compound. However, the 

spectra for y > 0.1 are the superimposed forms of PTBcubic and Na2Mo2O7, because according 

to X-ray PTBcubic phase is present strongly along with Na2Mo2O7 phase. From SEM image, it 

can be seen that untill  y ≤ 0.1 a cubic shape of the crystals is present, whereas with y > 0.1 

some extra forms appear. This results support the X-ray and IR results. The EDX analysis of 

thin crystal fragments in the TEM microscope shows that for most of the crystals of sample 

Na0.6Mo0.2W0.8O3 have the average Na content x = 0.6 ± 0.01 and this is in good agreement 

with that of the starting composition. However, the TEM microanalysis results also show that 

most of the crystals have Mo content y = 0.05 – 0.15.  

 

From all the experimental results, it can be seen that molybdenum substituted PTBcubic bronze 

phase can be prepared up to y ≤ 0.1 in the system Na0.6MoyW1-yO3. 

 

4.5 CsxNbyW1-yO3 and RbxNbyW1-yO3 System 
Cesium tungsten bronzes, CsxWO3 with x = 0.19 - 0.33 had been classified as hexagonal 

tungsten bronzes [135]. In the present study Cs0.25WO3 and Cs0.3WO3 were prepared at 

800°C. From the X-ray powder diffraction pattern Cs0.3WO3 was indexed as pure HTB type 

bronze phase whereas Cs0.25WO3 shows 2-3 very weak extra lines along with HTB phase. An 

attempt was made to replace the W atom by Nb in Cs0.25WO3 and Cs0.3WO3 at 800°C and to 

investigate their properties and structural changes with increasing Nb concentration. From 

both series it can be seen that with y ≤ 0.1 the X – ray pattern shows some weak reflections 

along with HTB type bronze phase which are identified as oxidised HTB-II type phase. HTB-
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II type oxidised phase corresponds to Cs bronzoid phases of Cs0.2Nb0.2W0.8O3 which was 

reported by Sharma [119]. In Cs0.3NbyW1-yO3 system for y = 0.15 sample along with HTB 

type bronze and HTB-II type oxidised phase, a trace amount of Cs0.35Nb0.35W0.65O3 pyrocloro-

type phase is observed. It was also reported [119] that in the Cs-Nb samples the increase in 

the alkali content results in the formation of a (defect) pyrochlore-type phase with Cs.  

 

According to TEM microanalysis, sometimes even in the same crystals different Cs and Nb 

content is obtained. This indicates that there is intergrowth on a submicroscopical scale of 

different compositions. Some needle like crystals were observed for Cs0.25WO3 sample in the 

SEM image which conatin very low Cs as shown in the microanalysis diagram. These needle 

crystals could be responsible for the weak extra line in the X-ray diffraction pattern of 

Cs0.25WO3 sample. With increasing niobium content, the needle like crystals disappeared. 

Such a behaviour has been reported recently on RbxWO3 HTB by Brusetii et al. [136]. They 

have shown that for x < 0.2 there are parasitic peaks in the X-ray pattern which correspond to 

ITB type structures. In this context it is argued that the addition of Nb avoids the formation of 

ITB. SEM and TEM microanalysis also show the incorporation of Nb as shown in results. 

 

Recently, structure refinements by Rietveld method for samples of nominal composition 

Cs0.23Nb0.09W0.91O3 and Cs0.29Nb0.1W0.9O3[137] supports the incorporation of niobium on 

tungsten site which agrees well with nominal composition of the starting materials. The data 

for structure refinement in Ref. 137 were collected in a STOE STADI P diffractometer in a 

0.02 mm capillary tube and then the weak extra reflections other than main HTB type phase in 

the samples  has been ignored. The EDX analysis support the Rietveld refinements in so far as 

significant Nb contents were detected in samples according to an increase in the Nb signal 

relative to the W signal. 

  

A large number of ED pattern has been taken for some samples of series 10. They confirm the 

unit cell dimensions obtained from the X-ray study. A HRTEM image of a thin crystal of 

nominal Cs0.25Nb0.1W0.9O3 in (010) projection shows an interruptions of the tunnels in the b 

direction. For such a defect in the crystal the Cs atom can not move easily and probably for 

this defect the optical property measurement in the b-direction is difficult.  

 

In a previous investigation [110] it was observed that single phase of niobium substituted Rb 

and K hexagonal tungsten bronzes can be prepared for x = 0.2, y ≤ 0.05; x = 0.25, y ≤ 0.125 
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and x = 0.3, y ≤ 0.15.  It was also reported [110] that some of the extra lines observed at high 

niobium due to the presence of WO3 and some weak lines were not indexed as any reported 

phase of HTB. However, in the present study by reinvestigation of the system Rb0.3NbyW1-

yO3, it is observed that the  pure  Rb - HTB type phase is only possible when x = 0.3 and y ≤ 

0.05. With y > 0.05 some very weak extra lines are observed along with main HTB phase as it 

was observed in Cs0.3NbyW1-yO3 system. All these extra lines were indexed as HTB-II type 

oxidised phase. This HTB-II type oxidised phase corresponds to Rb0.2Nb0.2W0.8O3 type HTB 

phase reported by Sharma [119]. SEM/EDX microanalysis results also suported this X-ray 

observation by showing about Rb = 0.25 – 0.35 and Nb = 0.05 – 0.15 in the bulk crystals. 

However, it was difficult to observe the oxidised phase by SEM/EDX analysis probably due 

to the less amount of sample.  

 

The infrared absorption spectra (KBr-method) within each series of MxW1-yNbyO3,  M = K, 

Rb (Hussain et al.) and CsxNbyW1-yO3 shows a broad phonon absorption band below 1000 cm-

1 which increases in intensity for y >  0.05. Hussain et al. have described that this could 

indicate a metal to insulator transition due to a disappearance of free carriers and the  

 
Fig. 59. Reflection spectra of Cs0.3WO3 for polarizations parallel (E par. C) and perpendicular 

(E per. C) to the c-axis using the Drude model 
 

appearance of polarons quasi particles which dominates the near infrared response instead. 

The spectral feature of the phonon absorption band closely agrees with spectra obtained by 
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Maczka et al. [138] for the fully oxidized compositions with y = x in these systems. The 

observation of the additional HTB-signature in the X-ray diffraction pattern indicates, 

therefore, a gradual increase of the contribution of MxNbyW1-yO3 with x = y with increasing y. 

There are also some evidences in optical reflectivity spectra of CsxNbyW1-yO3 powder 

samples for the effect of Nb/W substitution in reduced HTB system. The optical reflectivity of 

the powder sample of Cs0.3WO3 shows two minima at about 16000 cm-1 and 10000 cm-1 [Fig. 

50]. This is explained by two different Drude free carrier plasma frequencies for polarizations 

perpendicular and parallel to the hexagonal axis as calculated from single crystal spectra [Fig. 

59]. A qualitatively similar spectrum is observed for CsxNbyW1-yO 3 (x = 0.25, 0.3; 0≤ y≤ 0.2) 

system [Fig. 50 ] with the plasma frequencies shifted to lower values. The minimum feature in 

the reflectivity becomes weaker and shifted to lower value with increasing niobium 

concentration. For y > 0.1 the minimum structures become less significant and there is nearly 

no shift in position. A similar observation has been observed for RbxNbyW1-yO3. system. The 

shift up to a certain y can be explained by the decreasing concentration of formally W5+ states 

as MxNb5+
yW5+

x-yW6+
1-xO3. However, this can be an effect of oxidized HTB-II type phase. 

With increasing Nb content the HTB bronze type phase can be diluted by the oxidized HTB-II 

type phase.  
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