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Effektive Feldtheorien für verallgemeinerte Spinleitern

Kurzzusammenfassung
Thema der vorliegenden Arbeit ist die Untersuchung des Phasendiagramms verallgemei-
nerter Spinleitern mit effektiver feldtheoretischer Beschreibung. Zwei verschiedene Spin
Systeme werden untersucht. Im ersten Teil der Doktorarbeit wird eine antiferromagneti-
sche SU(2)-symmetrische Spinleiter mit zusätzlicher zyklischer Vier-Spin-Wechselwirkung
(Ringaustausch) untersucht. Das Hauptziel dieses Teiles der Doktorarbeit ist die Erklärung
des Frustrationseffektes produziert durch Ringaustausch auf dem Grundzustandsphasendia-
gramm und des Verhaltens des Modelles bei endlichen Temperaturen.

Die Bosonisierung-Fermionisierungsmethode wird verwendet für die Beschreibung der nie-
derenergetischen Anregungen der Spinleiter mit den massiven, schwach wechselwirkenden
Majorana Fermionen. Diese Methode ermöglicht auch einen Teil des Grundzustandsphasen-
diagramms f̈ur gen̈ugend starke Frustration zu bekommen. Der gewöhnliche Sprossensinglett-
Grundzustand der Spinleiter geht durch einen Quantenphasenübergang in eine spontan dime-
risierte Phase mit zunehmendem Ringaustauschüber. Eine weitere Transformation zu zwei-
dimensionalen Ising Variablen wird benutzt, um Korrelationsfunktionen des Modells mit 2D
Ising Korrelationsfunktionen in Verbindung zu bringen, die analytisch nicht nur im kritischen
Punkt sondern auch in der massiven Phase bekannt sind. Die quasiteilchen-ähnliche Anre-
gung (Magnon) verschwindet aus dem niederenergetischen Anregungsspektrum. Die letztere
ist aus einem Kontinuum von Dimerisierungskinks zusammengesetzt, die zwischen zwei de-
generierten Vacua des spontan dimerisierten Grundzustands interpolieren. Die fermionische
Beschreibung niederenergetischer Freiheitsgrade ermöglicht uns sowohl Thermodynamik als
auch endlich-temperaturdynamisches Verhalten des Modelles zu studieren. Die Temperatu-
rabḧangigkeit verschiedener Responsefunktionen, Suszeptibilitäten, der Spezifische Ẅarme
und der kernmagnetischen Resonanz-Relaxationsrate werden mit konformer Feldtheorie und
Matsubara-Formalismus berechnet.

In dem zweiten Teil der Doktorarbeit wird das Grundzustandsphasendiagramm von zwei
ferromagnetiesches Spin 1/2 Ketten untersucht, die mit bilinearen Kopplungen von belie-
bigem Vorzeichen gekoppelt sind. Das Hauptziel dieses Teils ist, die Auswirkungen der
Anisotropien in sowohl Holm- als auch in Sprossenkopplungenüber das Grundzustands-
phasendiagramm zu beschreiben. Man bekommt ein extrem reiches Phasendiagram für das
Modell. Alle Phasen der Spin 1 Kette mit zusätzlicher singleionischer Anisotropie können
(XY1, XY2, Haldane, Starke D, Ferromagnetisch) realisiert werden für verschiedene Werte
der Anisotropie. Zus̈atzlich bekommt man weniger bekannte Phasen, die nicht bei Spin 1
Ketten vorkommen.

Der Bosonisierungs-Formalismus wird durch die Kombinierung exakter (nichtperturbativer)
für isolierte Ketten verf̈ugbarer Methoden mit einem linearisierten Ausdruck für die Wech-
selwirkung zwischen Ketten zum ferromagnetischen Instabilitätspunkt f̈ur eine isolierte Ket-
te hin erweitert. Zus̈atzlich zur Bosonisierung werden Spinwellen und starke Sprossenkoppl-
ungsentwicklung ben̈utzt, um die exakte Grenze der ferromagnetischen Phase zu bekommen.
Grundzustandskorrelationsfunktionen werdenüberall auf der Phasendiagramme berechnet.

Schlagworte: Spinleitern, Bosonisierung, Phasendiagramm





Effective Field Theories for Generalized Spin Ladders

Abstract

In the present work generalized spin1/2 ladder systems are investigated using the continuum
limit of the effective field theory description.
Two different spin ladder systems are considered: first part of the thesis is concerned with
the study of aSU(2) antiferromagnetic ladder with additional four-spin ring interactions.
The main aim of this part of the thesis is to study the effects of frustration produced by addi-
tional biquadratic terms on the ground state phase diagram as well as the finite temperature
behavior of the model.
The bosonization- fermionization approach is used to describe the low energy excitations of
the model in terms of weakly interacting massive Majorana fermions. This allows us to ob-
tain a part of the ground state phase diagram for sufficiently strong frustration. We found that
the ordinary rung singlet phase of the pure antiferromagnetic ladder undergoes a quantum
phase transition to a spontaneously dimerized phase with increasing ring exchange. Further
transformation to two dimensional Ising variables is used to relate correlation functions of
the model with the 2D Ising correlation functions that are known analytically both at and off
criticality. The single magnon that is a well defined particle like excitation in the ordinary
ladder disappears from the low energy excitation spectrum. The latter is exhausted by the
continuum of incoherent dimerization kinks interpolating between two degenerate vacua of
a spontaneously dimerized state. The fermionic representation of the low energy degrees of
freedom allows us to study thermodynamics as well as a dynamical behavior of the model
at finite temperature. The temperature dependence of various response functions, suscepti-
bilities, specific heat, and nuclear magnetic resonance relaxation rate is calculated using the
conformal field theory and the finite temperature Matsubara formalism.
In the second part of the thesis we study the ground state phase diagram of two spin1/2
ferromagnetic chains coupled by the exchange interactions of arbitrary sign. The aim is to
describe the effects of the anisotropies both in intra and interchain interactions on the ground
state phase diagram of the spin ladder. All known phases for the spin 1 chain with additional
single ion anisotropy are realized for various values of anisotropies (XY 1, XY 2, Haldane
like, large D, ferromagmetic phases). In addition less conventional phases are obtained that
are not encountered in the analysis of spin 1 chain and thus are genuine to ladder systems.
By combining exact (nonperturbative) results, available for the single chain, with linearized
expressions for interchain interaction the bosonization formalism is extended to approach
the single chain ferromagnetic instability point. In addition to the bosonization analysis spin
wave calculations and large rung coupling expansions are carried out to obtain the exact
boundary of the ferromagnetic phase. The ground state correlation functions are calculated
throughout the phase diagram.

keywords: Spin Ladders, Bosonization, Phase Diagrams
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Introduction 1

Introduction

The study of magnetic properties of systems with reduced dimensionality has gained new in-
terest and strength after the discovery of highTc superconductivity1 in materials showing a
layered structure with superconducting planes alternating with non superconducting blocks.
After it was realized that the celebrated BCS picture of superconductivity, based on phonon
mediated pairing of electrons, failed to account for the properties of highTc materials there
was a need to find a new mechanism responsible for it. One of the universal features of
copper-oxide compounds is the antiferromagnetic ordering of the copper spins in theCuO2

planes. A strong superexchange interaction (via oxygen ions) of the order 1500 K between
hole spins at the copper sites gives rise to a three-dimensional long range AFM order with
high Néel temperature up to 500K. The long-range AFM order disappears in the metallic
and superconducting phase, but strong dynamical spin fluctuations with a wide spectrum of
excitations are observed at temperatures exceeding 100K.2,3 This fact has led to a number
of hypothesis on the possible electron pairing in copper-oxide compounds via the magnetic
degrees of freedom. One, probably the most famous scenario, namely that doped spin liquid
state favors superconductivity, belongs to Anderson.4 The first work on doped spin ladders
were done by Rice et al.5–7 It turns out that only a doped spin ladder of the Haldane type
exhibits strongly enhanced superconducting fluctuations. The physics is very simple to un-
derstand in the limit when rung exchange is much bigger than exchange along the chains.
The holes tend to stay on the same rung of the ladder in order not to break the spin singlet
and to gain the energy of the order of the spin gap. Thus strong AFM exchange interaction
provides with a pairing mechanism to holes. These pairs of holes behaving like bosons with
the hard core can propagate along the ladder. The pairing susceptibility is diverging indicat-
ing that the finite three dimensional interaction between the ladders can stabilize quasi long
range superconductivity order.
Apart from the relevance for highTc superconductivity theoretical understanding of the prop-
erties of quantum spin ladder systems has attracted a lot of current interest for a number of
other reasons as well. On the one hand they possess very rich and interesting ground state
phase diagrams. On the other hand since a spin-S chain can be described as a2S-leg ladder
with spinS = 1/2, provided the interchain coupling is appropriately chosen27–29 the even-
or odd-leg ladder systems are an excellent demonstration for Haldane’s conjecture32 as gen-
eralized toS = 1/2 ladders: theantiferromagneticspin ladder with an even number of legs
corresponds to a spin chain with integer spin and is predicted to have a gap, while a ladder
with an odd number of legs has a gapless excitation spectrum. The two-leg antiferromagnetic
ladder is presumably the simplest spin system which allows to follow the continuous evolu-
tion between the spinS = 1/2 andS = 1 antiferromagnetic chains nearly exactly.29,31 Low
energy excitations of separate spin 1/2 chains are decoupled spinons with quantum number
spin 1/2. Although flipping one spin at least two spinons are created they can propagate
independently. In a ladder system dynamical confinement of spinons occurs into magnons,
particle like excitations with spin 1. In measurements of the dynamical spin susceptibility
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by neutron scattering the emission of a magnon in a ladder system is seen as a sharp peak,
in contrast to the incoherent two-spinon tail that is seen for separate chains. How does an
arbitrary small interaction between the chains modify the low energy excitation spectrum so
dramatically? How do even tiny interchain interactions serve as confining potential between
the spinons? Where do such strong correlations come from? One explanation is that separate
chains are critical, that is they possess no intrinsic scales, so the word weak or tiny looses its
sense. There always exist length scales for which any weak interaction becomes confining.
For infinitesimally weakly coupled chains we can go to still smaller energies and yet will
discover particle like excitation.
In one dimension spin 1/2 systems could be equally well described in terms of spinless
fermions by Jordan- Wigner transformation.8 Thus studying strongly correlated electron sys-
tems in 1D we can unveil physics of much more complicated nonlinear objects – spins. Con-
densed matter physics in one spatial dimension is physics of strongly correlated systems. In
contrast to the standard three dimensional fermi-liquid picture, in one dimensional Fermi sys-
tems with arbitrary weak bare interaction infrared orthogonality catastrophe9(orthogonality
catastrophe means that the ground state wave function of an electron gas perturbed by a lo-
cal potential becomes orthogonal to the unperturbed ground state in thermodynamic limit,
thus making inapplicable conventional perturbation theory) removes single-fermion quasi-
particles from excitation spectrum. The low energy spectrum turns out to be purely bosonic.
This bosonic modes are called Tomonaga bosons10 and represent well defined quasiparticles
made of electron-hole pairs. In any real system excitations always come in pairs, but in
higher dimensions they decay into independently propagating fermionic quasiparticles. In
one dimension there is a strong correlation between electrons and holes forbidding indepen-
dent propagation. The fact that in 1D Fermi systems particle-hole excitations with small
energy and momentum form well defined bosonic modes is a consequence of a drastic re-
duction of available phase space. For a long wavelength density excitations, both particle
and hole must be in the vicinity of one and the same Fermi point. Since close to Fermi points
the spectrum is almost linear, it turns out that for such particle-hole pairs conservation of
momentum automatically implies conservation of the energy. As a result the particle-hole
excitation energy depends only on the relative momentum. In contrast in higher dimen-
sions the energy of the electron-hole pair depends also on the orientation of the particle-hole
relative momentum with respect to the Fermi surface. Thus crucial difference from higher di-
mensions stems from the absence of a finite dimensional Fermi surface in one dimension. It
is a remarkable feature of one dimensional interacting electron systems that the low energy
excitations areexhaustedby bosonic modes. Bosonization is an approach when one tries
to reformulate complicated fermionic interacting models in terms of Tomonaga modes (term
plasmon, or zero sound for interacting systems could equally be used) in such a way that they
become weakly interacting. The simplest example demonstrating the power of bosonization
is manifested when applied to the Tomonaga-Luttinger model, that is the model of inter-
acting electrons without backscattering. The forward scattering term is trivially handled in
the bosonic picture. Bosonization12 provides a convenient basis for the theory of strongly
correlated electron systems in one spatial dimension. It became a universal effective field
theoretical language for describing Luttinger liquids, one dimensional counterparts of Fermi
liquids. The reason why bosonization is so powerful in one dimension and less useful in
higher dimensions results also from the fact that the effective field theories obtained with
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the help of bosonization apart of diagrammatic perturbative treatments are amenable to rig-
orous truly non-perturbative treatments such as current algebra and Bethe ansatz calculation.
These methods fail to deal with higher dimensional problems. Even if the 1D effective field
theory obtained this way does not admit exact solutions, further mappings e.g. refermion-
ization, passing to Ising variables could be used to analyze it. These latter mappings will be
extensively used in the first part of the thesis, which deals with the study of frustrated spin
ladder systems.

The advantage of bosonization manifests itself particularly when applied to frustrated sys-
tems. While quasiclassical approaches need some kind of at least locally ordered basis to
expand on, bosonization does not need some a priori assumption on the spin basis. What
really matters is that interactions in spin systems should be weak compared to intrachain
exchange.

In the first part of the thesis, using bosonization- fermionization approach together with
mapping to Ising variables, we will show how the phase diagram for spin ladder system with
additional four-spin plaquette ring exchange can be derived. The above mentioned methods
will allow us also to study the finite temperature thermodynamics of the model as well as its
dynamical behavior.

In the second part of the thesis we analyze ferromagnetic spin chains coupled by a ladder type
of interaction of arbitrary sign. Here we will see how the effective field theory description
using bosonization can be used to obtain phase diagrams for various anisotropies both in
interchain and intrachain couplings.

A chapter on methods used in effective field theory approach precedes the main part of the
thesis. The technical calculations of physical quantities are given in detail in appendices
A-E.
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CHAPTER 1

Methods

In this chapter we will recapitulate on the formalism of quantum field theory of massless
scalar field in 1+1 dimensions.

1.1 Massless Scalar Field in 1+1 Dimensions

Rather than choosing Hilbert space operator formalism (so called second or canonical quan-
tization) we will follow as described in the book by Polchinski20 path integral formalism for
free scalar field theory in 2 D. The Euclidean action for massless scalar field (Gaussian field)
in 2 D reads:

S =
1

2

∫
dτdx

[
v−1(∂τφ(x, τ))2 + v(∂xφ(x, τ))2

]
(1.1)

whereτ = it is Euclidean time and we used a normalization factor of1
2

in front of the action.
Conveniently regularized Green’s function could be evaluated directly by functional integral
method (detailed and rigorous calculation involving special treatment of zero mode could be
found in17):

〈φ(x, τ)φ(0, 0)〉 =

(∫
Dφe−S

)−1 ∫
Dφe−Sφ(x, τ)φ(0, 0) = − 1

4π
ln

x2 + v2τ 2 + a2

R2

(1.2)
whereR stands for system size anda for ultraviolet cutoff.

It is convenient to adopt complex coordinates:

z = x − ivτ, z̄ = x + ivτ (1.3)

For these coordinates we have:

∂z := ∂ =
1

2
(∂x + iv−1∂τ ), ∂z̄ =: ∂̄ =

1

2
(∂x − iv−1∂τ ) (1.4)

and for measure we adoptd2z := dzdz̄ = 2vdxdτ . Action in new coordinates will take
form:

S =

∫
d2z∂φ∂̄φ (1.5)

Classical equation of motion follows directly:

∂∂̄φ(z, z̄) = 0 (1.6)
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meaning in particular, that∂φ is analytic function ofz, while ∂̄φ is analytic function of
z̄. From above follows that classical solution could be decomposed as sum of analytic and
antianalytic parts (under Minkovski continuationt = −iτ analytic field is function of only
x+vt, thus is left-moving, while antianalytic field is function ofx−vt thus is right-moving).

φ(x, t) = φL(x + vt) + φR(x − vt) (1.7)

We will show, that the same decomposition holds for quantum case. In path integral formal-
ism we are dealing with expectation values of various quantities defined as:

〈F [φ]〉 =

(∫
Dφe−S

)−1 ∫
Dφe−SF [φ] (1.8)

whereF [φ] stands for general functional of fieldφ. We will use the fact, that path integral
of total derivative is zero:

0 =

(∫
Dφe−S

)−1 ∫
dφ

δ

δφ(z, z̄)
e−S

= −
(∫

Dφe−S

)−1 ∫
dφe−S δS

δφ(z, z̄)

= −
〈

δS

δφ(z, z̄)

〉
= 2

〈
∂∂̄φ(z, z̄)

〉
(1.9)

Exactly the same calculation is applicable when arbitrary additional insertions are present in
path integral as long as they are not at pointz.

〈
∂∂̄φ(z, z̄) . . .

〉
= 0 (1.10)

Above dots implicitely mean that insertions are located away fromz. Such statements in
path integral formalism are referred as operator equations. One can view this as Ehrenfest’s
quantum counterpart of classical equation of motion or quantum left-right decomposition.
From (1.2) one can see that Green’s function in new coordinates look:

〈φ(z, z̄)φ(0, 0)〉 = − 1

4π
ln |z|2 (1.11)

(for the moment for the sake of simplicity we don’t bother with regularization of the Green’s
function at small and large distances). From above we can deduce Green’s function for the
chiral left- right components of the quantum field:

〈φL(z)φL(0)〉 = − 1

4π
ln z (1.12)

and

〈φR(z̄)φR(0)〉 = − 1

4π
ln z̄ (1.13)
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1.2 Normal Ordering V Operator Product Expansion

In bosonization formalism we are dealing with e.g. expectation values of exponentials of
quantum fields. So we have to consider situations when there are insertions that coincide with
z. This statement is equivalent of adopting some ordering that renders ill defined products of
quantum fields at coinciding points manageable. Convenient way is to adopt normal ordering
that comes naturally from ’insertions’ formalism.

0 =

(∫
Dφe−S

)−1 ∫
dφ

δ

δφ(z, z̄)

(
e−Sφ(z′, z̄′)

)

= −
(∫

Dφe−S

)−1 ∫
dφe−S

[
δ2(z − z′, z̄ − z̄′

)
+ 2φ(z′, z̄′)∂z∂z̄φ(z, z̄)]

=
〈
δ2(z − z′, z̄ − z̄′)

〉
+ 2∂z∂z̄ 〈φ(z′, z̄′)φ(z, z̄)〉 (1.14)

The same is true for arbitrary insertion away fromz, z′

2∂z∂z̄ 〈φ(z′, z̄′)φ(z, z̄) . . .〉 = − 〈
δ2(z − z′, z̄ − z̄′) . . .

〉
(1.15)

(this statement holds, since as above dots imply that we exclude possibility that other inser-
tions coincide withz, in contrary forφ(z′, z̄′) such possibility was not excluded). Above
means operator equation:

2∂z∂z̄φ(z′, z̄′)φ(z, z̄) = −δ2(z − z′, z̄ − z̄′) (1.16)

Now we introduce very important notion of normal ordering denoted by: A :.

: φ(z, z̄) := φ(z, z̄)

: φ(z, z̄)φ(0, 0) := φ(z, z̄)φ(0, 0) +
1

4π
ln |z|2 (1.17)

The reason for this kind of definition is the property:

∂z∂z̄ : φ(z, z̄)φ(0, 0) := 0 (1.18)

that follows from operator equation (1.15) and the following differential equation:

∂∂̄ ln |z|2 = 2πδ(z, z̄) (1.19)

From vacuum average (1.11) of course one recognizes in:: usual normal ordering in the
sense of creation- annihilation operators. When carrying out perturbative R.G. procedure
one has to deal with products of fields at the close points (we remind, that in R.G. one
has to integrate out short wavelength degrees of freedom). Below we will see that for free
field theories normal ordering renders product of operators at coinciding point well-defined.
Since throughout the thesis we discuss asymptotically (ultraviolet) free theories, we can use
ope of underlying free theory e.g. for R.G. calculation. Equation (1.18) states not only
thatnormal product satisfies naive equation of motion, but more importantly that it is a
harmonic function. It is well known from complex analysis that a harmonic function is
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locally the sum of an analytic and antianalytic functions. In particular it means that it is
nonsingular whenz → 0 and can be freely Taylor expanded inz and z̄. The definition of
normal ordering for arbitrary numbers of fields is given recursively:

: φ(z1, z̄1) . . . φ(zn, z̄n) := φ(z1, z̄1) . . . φ(zn, z̄n) +
∑

subtractions (1.20)

(the sum runs over all ways of choosing one, two, or more pairs of fields from the product
and replacing them with propagator (1.11). In this way defined normal ordered product
of any number of fields retains desired property ofsatisfying equation of motion that is
tantamount of beingharmonic function, thus it is Taylor expandable at any point. Compact
formula for bringing any functional of the field to the normal ordering is:

: F [φ(z, z̄)] := exp

{∫
d2z′d2z′′

1

4π
ln |z′ − z′′| δ

δφ(z′, z̄′)
δ

δφ(z′′, z̄′′)

}
F [φ(z, z̄)] (1.21)

The most simple tool for the calculation to render product of normal ordered operators under
the single normal ordering is to use the following formula:

: F [φ(z, z̄)] :: G[φ(w, w̄)] :

= exp

{
−

∫
d2z′d2z′′

1

4π
ln |z′ − z′′|2 δF

δφ(z′, z̄′)
δG

δφ(z′′, z̄′′)

}
: F [φ(z, z̄)]G[φ(w, w̄)] :

(1.22)

Above functional derivatives act respectively only onF or G functionals. (To apply this rule
for chiral operators we have to change− 1

4π
ln |z′−z′′|2 by the appropriate propagators (1.12)

and (1.13)). Using this practical tool we apply it on probably the most relevant to our case:

: eiαφ(z,z̄) :: eiβφ(0,0) := |z|αβ/2π : eiαφ(z,z̄)+iβφ(0,0) : (1.23)

To deriveope we have to Taylor expand inside the normal ordering (Taylor procedure is
applicable after normal ordering) to express everything in terms oflocal operatorsat 0 and
put the most singular terms first.

: eiαφ(z,z̄) :: eiβφ(0,0) := |z|αβ/2π : ei(α+β)φ(0,0) [1 + O(z, z̄)] : (1.24)
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1.2.1 Some Frequently Used OPE-s

Applying rules from Eq. (1.22) we write out some of the most frequently used in bosoniza-
tion formalism operator product expansions.

: ∂φ(z)∂φ(z) :: ∂φ(0)∂φ(0) :=
1

8π2z4
− 1

πz2
: (∂φ(0))2 : − 1

πz
: ∂2φ(0)∂φ(0) : + · · ·

: ∂φ(z)∂̄φ(z̄) :: ∂φ(0)∂̄φ(0) :=
1

16π2|z|4 − 1

4πz2
:
(
∂̄φ(0)

)2
: − 1

4πz̄2
: (∂φ(0))2 : +

− 1

4πz
: ∂̄2φ(0)∂̄φ(0) : − 1

4πz̄
: ∂2φ(0)∂φ(0) : + · · ·

∂φ(z) : eiαφ(0,0) := − iα

4πz
: eiαφ(0,0) : + : ∂φ(0)eiαφ(0,0) : + · · ·

∂φ(z) : cos αφ(0, 0) :=
α

4πz
: sin αφ(0, 0) : + : ∂φ(0) cos αφ(0, 0) : + · · ·

: ∂φ(z)∂̄φ(z̄) :: cos αφ(0, 0) := − α2

(4π)2|z|2 : cos αφ(0, 0) : + · · ·

: cos αφ(z, z̄) :: cos αφ(0, 0̄) :=
1

2
|z|α2/2π : cos 2αφ(0, 0) : −1

2
|z|−α2/2π

−α2

2
|z| 4π−α2

2π : ∂φ(0)∂̄φ(0) : −α2

4

[
z

4π−α2

2π

(
∂̄φ(0)

)2
+ z̄

4π−α2

2π

(
∂φ(0)

)2
]

+ · · ·
(1.25)

dots in above formulas dots stand either for less singular or regular forz → 0 terms. On
the example of free scalar field in 2D we have demonstrated ’by hand’ general property
of conformally invariant field theories in 2D, and namely possibility of operator product
expansion. The latter states that a product of two local operators close to each other can be
approximated to arbitrary accuracy by a sum of local operators:

Ai(z)Aj(0) =
∑

k

cijk(z)Ak(0) (1.26)

above coefficient functionscijk are called ope coefficients. They govern one loop R.G.
equations (see Appendix D) and are very important to our calculational purposes.

1.2.2 Correlation Functions of Vertex Operators

Now we want to discuss the correlation functions of conformally invariant theories. Scale
invariance alone is enough to fix the two-point correlation function of fields in the infinite
z-plane:

〈φ(z1, z̄1)φ(z2, z̄2)〉 =
1

(z1 − z2)−24(z̄1 − z̄2)−24̄ (1.27)

quantities4 and 4̄ are called left an right conformal weights. Their sum and difference are
called the conformal dimension and the conformal spin of theφ field.

d = 4 + 4̄, S = 4− 4̄ (1.28)
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Let’s return to the Eq. (1.23). From that equation we see, that:

: eiαφ(z1,z̄1) :: eiβφ(z2,z̄2) :=: eiαφ(z1,z̄1)+iβφ(z2,z̄2) : e−αβ〈φ(z1,z̄1)φ(z2,z̄2)〉 (1.29)

With the help of the Green’s functionG(z1, z2) = 〈φ(z1, z̄1)φ(z2, z̄2)〉 = − 1
4π

ln |z1 − z2|2
we can evaluate the two point correlation function of the normal ordered exponentials:

〈
: eiαφ(z1,z̄1) :: eiβφ(z2,z̄2) :

〉
= e−αβG(z1,z2) =

(|z1 − z2|2
)αβ/4π

(1.30)

From this equation follow the conformal dimensions of bosonic exponents (in addition cor-
relator is nonzero only ifα = −β so called neutrality condition).

4 = 4̄ =
α2

8π
, d =

α2

4π
, S = 0 (1.31)

Although the neutrality condition does not follow directly from (1.30) , because it requires
special treatment of the zero mode, we can prove neutrality condition by noting, that the
correlation function should enjoy symmetryφ → φ + const, since action as well as path
integral measure (apparently) enjoy this symmetry. Everywhere in the text we will have in
mind the normal ordered exponents, even if normal ordering sign will be suppressed.

1.3 Weak Coupling Effective Field Theory for Spin Lad-
ders

In this section we derive effective field theory for weakly coupledS = 1/2 chains. Lattice
Hamiltonian of general anisotropic spin ladder Fig.(1.1) reads:

1,1S

S2,1

rung

legs J , ∆
xy,z

J

FIGURE 1.1: Structure of the Spin Ladder

Ĥ = H1
leg + H2

leg + H⊥ , (1.32)

where the Hamiltonian for legα = 1, 2 is

Hα
leg = −J

N∑
j=1

(
Sx

α,jS
x
α,j+1 + Sy

α,jS
y
α,j+1

+ ∆ Sz
α,jS

z
α,j+1

)
, (1.33)
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and the interleg coupling is given by

H⊥ = Jxy
⊥

N∑
j=1

(
Sx

1,jS
x
2,j + Sy

1,jS
y
2,j

)

+ Jz
⊥

N∑
j=1

Sz
1,jS

z
2,j . (1.34)

HereSx,y,z
α,j are spinS = 1/2 operators at thej-th rung. We start with two criticalS = 1/2

chains and treat the interleg coupling as a perturbation assuming|Jz
⊥|, |Jxy

⊥ | ¿ J . The
anisotropic spinS = 1/2 Heisenberg chain with|∆| < 1 is known to be critical. The long
wavelength excitations are described by the standard Gaussian theory.12 Therefore we start
with two Gaussian Hamiltonians and simply will attach a leg indexα = 1, 2 to the fields.

Hleg =
u

2

∫
dx [(∂xφ)2 + (∂xθ)

2]. (1.35)

φ(x) andθ(x) are dual bosonic fields,∂tφ = u∂xθ, and satisfy the following commutational
relation

[φ(x), θ(y)] = iΘ(y − x) ,

[φ(x), θ(x)] = i/2 . (1.36)

u stands for the velocity of spin excitation and is fixed from the Bethe ansatz solution as12

∆−1(AFM) 1(FM)

u/|J|a

π
2

0

1

0

FIGURE 1.2: Spin wave velocity as function of anysotropy parameter (from Bethe Ansatz).

u = J
K

2K − 1
sin (π/2K) , (1.37)

whereK is Luttinger liquid parameter known from comparison with the exact solution of
theXXZ chain:

K =
π

2 arccos ∆
. (1.38)
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Thus the parameterK increases monotonically along theXXZ critical line−1 < ∆ < 1
from its minimal valueK = 1/2 at ∆ = −1 (isotropic antiferromagnetic chain), is equal to
unity at∆ = 0 (theXY chain) andK → ∞ at∆ → 1. At ∆ = 1 the spin excitation velocity
vanishes,u = 0. This corresponds to theferromagnetic instabilitypoint of a single chain.
To obtain the bosonized version of the ladder Hamiltonian we need the explicit bosonized
expressions of the spin operators. To classify the operators which originate from interchain
coupling it is convinient to write the spin operators on each chain in terms of their smooth
and staggered parts in vector denotions:

S1,2(x) = J1,2(x) + (−1)xn1,2(x). (1.39)

WhereJ1,2 = J1,2 + J̄1,2 are sum of analityc and antianalytic currents and represent genera-
tors ofSU(2) rotations on each chain. The interchain coupling:

H⊥ = J⊥ [J1(x)J2(x) + n1(x)n2(x)] (1.40)

is expressed in terms of slowly varying and staggered spin densities. Using bosonic repre-
sentation of spin operators from Appendix (A) we obtain the following bosonic Hamiltonian
density:

H =
u

2
[(∂xθ1(x))2 + (∂xφ1(x))2] +

u

2
[(∂xθ2)

2 + (∂xφ2(x))2]

+ Jz
⊥

(
K

π
∂xφ1(x)∂xφ2(x) +

a2

π2
sin

√
4πKφ1(x) sin

√
4πKφ2(x)

)

+ Jxy
⊥

[
c2

2π

(
cos

√
π

K
θ1 cos

√
π

K
θ2 + sin

√
π

K
θ1 sin

√
π

K
θ2

)

− b2

2π

(
sin

√
4πKφ1 sin

√
π

K
θ1 sin

√
4πKφ2 sin

√
π

K
θ2

+ sin
√

4πKφ1 cos

√
π

K
θ1 sin

√
4πKφ2 cos

√
π

K
θ2

)]
(1.41)

We note, that above expression is strictly valid for easy plane regime, that is when|∆| < 1.
The reason is that when we include all the effect of Z part of interaction in renormalization of
Luttinger liquid parameterK and of nonuniversal constants we assume thatSZSZ interaction
is irrelevant. This assumption is valid for easy plane regime. AtSU(2) AFM point SZSZ

interaction is marginally irrelevant. To be rigorous we have to add to the above effective
Hamiltonian terms originating from single chainSZSZ interaction, which are responsible for
Néel transition into the easy axis regime (see formulas (3.16) and (3.17) and discussion below
them). The rigorous derivation of these terms are possible by nonabelian bosonzation61

starting from Hubbard Hamiltonian and are given by the current-current interaction within
the single chainU

t
JLJR. U stands for the positive onsite repulsion of the underlying Hubbard

model andt is nearest neighbour hopping. In the abelian bosonization approach close to
SU(2) AFM point (∆ = −1) these terms have the following form:

U

(
−(∆ + 2)

∂xφα,L(x)∂xφα,R(x)

π
+

cos
√

8πφα

2π2

)
(1.42)
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In the following we will suppress these terms, having in mind to recover them when dis-
cussingSU(2) AFM point. Now we want to analyse Hamiltonian (1.41). To get rid of
operator∂xφ1(x)∂xφ2(x) and simplify the Hamiltonian we introduce symmetric and anti-
symmetric combinations of the bosonic fields:

φ± =

√
1

2Λ±
(φ1 ± φ2) , θ± =

√
Λ±
2

(θ1 ± θ2) , (1.43)

where

Λ± =

(
1 ∓ 1

2π

Jz
⊥

Jeff

)
and

Jeff =
u

K
= J

1

2K − 1
sin

π

2K
.

Using above transformation we obtain straightforwardly the following bosonic Hamiltonian
density for symmetric and antisymmetric fields:

H = H+ + H− + H±
int , (1.44)

H+ =
u+

2
[(∂xθ+)2 + (∂xφ+)2]

− J z
⊥

2π
cos

√
8πK+φ+(x) , (1.45)

H− =
u−
2

[(∂xθ−)2 + (∂xφ−(x))2]

+
J z

⊥
2π

cos
√

8πK−φ−(x)

+
J xy

⊥
2π

cos

√
2π

K−
θ−(x)

− J̃ xy
⊥

2π
cos

√
2π

K−
θ−(x) cos

√
8πK−φ−(x) , (1.46)

H±
int =

J+−
2π

cos

√
2π

K−
θ−(x) cos

√
8πK+φ+(x) . (1.47)

Here

u± =
u

Λ±
' u

(
1 ± 1

2π

Jz
⊥

Jeff

)
(1.48)

K± = K · Λ± ' K

(
1 ∓ 1

2π

Jz
⊥

Jeff

)
, (1.49)



14 Chapter 1. Methods

and we have introduced the following coupling constants:

J z
⊥ = Jz

⊥/π , (1.50)

for ∆ = 0 and otherwise

J z
⊥ ∼ Jz

⊥ , (1.51)

J xy
⊥ , J̃ xy

⊥ ,J+− ∼ Jxy
⊥ , (1.52)

with some positive constants of proportionality which cannot be fixed by symmetry argu-
ments alone. Thus the effective field theory of weakly coupled spin ladder is governed by
the Hamiltonian (1.44) plus current-current interactions within the single chain that become
marginal at SU(2) symmetric AFM point.
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CHAPTER 2

Spin Ladder with Four Spin Ring Exchange

At half filling and in the limit of small ratiox = t/U of hopping and on-site Coulomb
repulsion the Hubbard model can be mapped to an effective spin exchange Hamiltonian. In
the leading order inx the standard (bilinear) antiferromagnetic nearest-neighbor Heisenberg
exchange interaction with the exchange constantJ = 2t2/U is obtained. Terms of higher
order inx yield, except bilinear exchange interactions beyond the nearest neighbors, also
exchange terms containing a product of four or more spin operators37,38 (on lattices where
square paths are allowed). Those higher-order terms were routinely neglected up to recent
time, when it was realized that they can be important for a correct description of many
physical systems.

For the first time biquadratic exchange was used for the description of the magnetic proper-
ties of solid3He.39 Recently it was suggested that some strongly correlated electron systems
like cuprates40,41and spin ladders43,44are expected to exhibit ring exchange. The analysis of
the low-lying excitation spectrum of the p-d-model shows that the Hamiltonian describing
CuO2 planes should contain a finite value of ring exchange.40–42

There is a number of experimental work like inelastic neutron scattering45 and nuclear mag-
netic resonance47 on Sr14Cu24O41 and Ca8La6Cu24O41 as well as optical conductivity mea-
surements46,48 on (Ca,La)14Cu24O41. All these substances contain spin ladders built of Cu
atoms. The attempts to fit the experimental data without taking ring exchange into account
yield an unnaturally large ratio47 of Jleg/Jrung ≈ 2 which is expected neither from the geo-
metrical structure of the ladder nor from electronic structure calculations. It can be shown
that inclusion of other types of interactions in particular an additional diagonal interaction
does not remove this discrepancy.44

Apart from experimental relevance to study the effect of ring exchange on ordinary quadrat-
ically interacting antiferromagnetic spin systems is by its own interesting theoretical prob-
lem, especially, because of frustration. Very often frustrated interactions in quantum spin
systems give rise to ’unpredictable’ exotic phases. It is very difficult to analyze frustrated
models theoretically because of the presence of several competing interactions. Typical ex-
ample is isotropic spin1/2 Heisenberg chain with nearest and next nearest antiferromag-
netic couplings. Frustration results into dimerization for sufficiently strong next nearest
exchange the result difficult to predict based on classical, or quasiclassical approaches (e.g.
it is well known that Kosterlitz -Thouless transition to spontaneously dimerized phase for
the above mentioned model is notoriously difficult (if ever possible) to obtain by nonlinear
sigma model approach). Fortunately bosonization approach appears sometimes very power-
ful method for studying frustrated systems. Bosonization is weak-coupling approach. So to
compare the results obtained from bosonization to real world it should be accompanied by
numerical studies to calculate so called nonuniversal constants, quantities, that depend on
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finite bandwidth, or cutoff. Two leg ladder spin system is a ’minimal system’ where effect
of ring exchange could be tested. Since in one dimensional lattice (chain) no square paths
are allowed four spin interactions can not be generated from reduction of Hubbard model to
spin sector in strictly one dimensional case. Real two-leg ladder cuprate systems are always
in the rung-singlet phase. Those, where ring exchange is believed to play important role are
relatively close to quantum critical point. Therefore it is very important to understand the
nature of the quantum phase transition with increasing ring interaction.

2.1 Model

J J J J

Jleg

legJ

rungJ ring ring ring ring

S S S S S

S S S S S

1,i−1 1,i 1,i+1 1,i+2 1,i+3

2,i+32,i+22,i+12,i2,i−1

FIGURE 2.1: Structure of two leg ladder with syclic ring exchange

We consider the isotropicS = 1/2 antiferromagnetic spin ladder with additional cyclic four
spin exchange. Fig. 2.1 illustrates the Hamiltonian, which is of the form

H = Hrung + Hleg + Hring

where

Hrung = Jrung

N∑
i=1

S1,iS2,i (2.1a)

Hleg = Jleg

N∑
i=1

∑
a=1,2

Sa,iSa,i+1 (2.1b)

Hring =
Jring

2

∑
〈ijkl〉

(
Pijkl + P−1

ijkl

)
(2.1c)

In (2.1) 〈ijkl〉 labels a four spin plaquette.Pijkl leads to a cyclic permutation of spin mo-
ments, i.e.

Pijkl

∣∣∣∣i j
l k

〉
=

∣∣∣∣ l i
k j

〉
and P−1

ijkl

∣∣∣∣i j
l k

〉
=

∣∣∣∣j k
i l

〉
. (2.2)

We rewrite the operatorPijkl as a product of two spin permutation operators and obtain
the following result which contains both bilinear and biquadratic terms of the spin-1/2-
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operators:

Hring =
Jring

2

∑
〈ijkl〉

[
1

4
+ SiSj + SjSk + SkSl + SlSi

]

+
Jring

2

∑
〈ijkl〉

[
SiSk + SjSl

]
(2.3)

+ 2Jring

∑
〈ijkl〉

[
(SiSj)(SkSl)

+ (SiSl)(SjSk) − (SiSk)(SjSl)
]

2.2 Decoupled Chains Limit of Ordinary Ladder

In this section we perform the weak-coupling analysis (Jleg À Jring, Jrung) of our model.
First we describe effective field theory for an ordinary ladder without ring exchange atSU(2)
AFM point and then study the effect of cyclic ring interaction. We analyze general expression
of Hamiltonian (1.41). For a moment we drop current-current interaction terms since at
K = 1/2 they are marginal, while interactions of staggered parts are relevant (the role of
marginal current-current interactions will be discussed later where they will be responsible
for breaking down of spurious symmetry). Dropping marginal current- current interactions
(originating from both intra and interchain couplings) from Hamiltonian (1.41) makes it
separate into two commuting parts in symmetric and antisymmetric basis:

H = H+ + H−

H+ =
u+

2
[(∂xθ+)2 + (∂xφ+)2] − J⊥c2

2π2
cos

√
4πφ+(x)

H− =
u−
2

[(∂xθ−)2 + (∂xφ−(x))2]

+
J⊥c2

2π2
cos

√
4πφ−(x) +

J⊥c2

π2
cos

√
4πθ−(x) (2.4)

wherec stands for nonuniversal numerical constant. We see, that in antisymmetric sector
Hamiltonian density contains relevantcosine of bosonic field as well as its dual. Bosonic
basis is unconvenient in this case and it is natural to serch for some mapping in order to render
calculations tractable. Natural candidate is representation in terms of Majorana fermions.
Since central charge of uncoupled chains is 2 it is clear that we have to start from 4 massless
Majorana copies. Moreover since the dimensions of all kept perturbing terms are 1 it could be
anticipated that they will be translated into the Majorana masses. Indeed such mapping exists
and is given by inverting bosonization formulas for fermionic operators (fermionization).
Following Shelton et al.29 we introduce spinless fermions:

ΨR(x) ' (2π)−1/2ei
√

4πφR
+(x), ΨL(x) ' (2π)−1/2e−i

√
4πφL

+(x) (2.5)

Under this mapping we have:

1

π
cos

√
4πφ+(x) = i[Ψ†

R(x)ΨL(x) − Ψ†
L(x)ΨR(x)] (2.6)
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If we pass now to real (Majorana) fermions by formulas:

ψ1
ν =

Ψν + Ψ†
ν√

2
, ψ2

ν =
Ψν − Ψ†

ν√
2i

, (ν = R,L) (2.7)

we will have:
1

π
cos

√
4πφ+(x) = i(ψ1

Rψ1
L + ψ2

Rψ2
L) (2.8)

We recognize that symmetric sector describes two degenerate massive Majorannas:

H+ = Hmt [ψ1] + Hmt [ψ2] (2.9)

where

Hm[ψ] = −v

2
(ψR(x)∂xψR(x) − ψL(x)∂xψL(x)) − imtψR(x)ψL(x) (2.10)

and we have introduced the notationmt = J⊥c2/2π. Fortunately hamiltonian in antisym-
metric sector can also be reduced to simple form in Majoranas. Introducing spinless Dirac
fermion like above:

χR(x) ' (2π)−1/2ei
√

4πφR
−(x), χL(x) ' (2π)−1/2e−i

√
4πφL

−(x) (2.11)

we get:

1

π
cos

√
4πφ−(x) = i[χR(x)χL(x) − χ†

L(x)χ†
R(x)]

1

π
cos

√
4πθ−(x) = −i[χ†

R(x)χ†
L(x) − χL(x)χR(x)] (2.12)

Passing again to two real fermions:

ψ3
ν =

χν + χ†
ν√

2
, ρν =

χν − χ†
ν√

2i
, (ν = R,L) (2.13)

we will have:

1

π
cos

√
4πφ−(x) = i(ψ3

Rψ3
L + ρRρL)

1

π
cos

√
4πθ−(x) = i(−ψ3

Rψ3
L + ρRρL) (2.14)

That means in particular:

1

π
cos

√
4πφ−(x) +

2

π
cos

√
4πθ−(x) = 3iρRρL − iψ3

Rψ3
L (2.15)

From this we see that hamiltonian in antisymmetric sector will take form:

H− = Hmt [ψ3] + Hms [ρ] (2.16)
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wherems = −3mt = −3J⊥c2/2π and Hmt as well asHms represent hamiltonians for
free massive Majoranas with corresponding massesmt, and ms. Thus the ladder problem
reduced to 4 copies of massive Majoranas. Triplet of massm and singlet of mass−3m.
One can introduce majorana fermions for describing spin ladder system slightly in different
manner. Since we start from decoupled chains we are dealing with fixed point Hamiltonian
which is described in terms of two copies of WZWSU1(2) that is equivalent toSO(4)
WZW model that admits a representation in terms of four real fermions. This allows directly
to write down expressions for generators ofSU(2) algebras.13

(
JL,R

1 (x) + JL,R
2 (x)

)a

= − i

2
εabcψb

L,R(x)ψc
L,R(x)(

JL,R
1 (x) − JL,R

2 (x)
)a

= iψa
L,R(x)ρL,R(x) (2.17)

wherea, b, c = 1, 2, 3. These formulas will allow to calculate various physicsl quantities
in terms of majorana fermions (like susceptibility, etc.). Using above formulas one can see
what corresponds in majorana formalism to neglected current current interaction.

J⊥(Ja
1 Ja

2 + J̄a
1 J̄a

2 + Ja
1 J̄a

2 + J̄a
1 Ja

2 ) (2.18)

First two terms will induce velocity renormalization, the effect we are not interested in. Last
two terms translate into:

J⊥

(∑
b<c

1

2
(ψb

Lψb
R)(ψc

Lψc
R) − 1

2
(ψa

Lψa
R)ρLρR

)
(2.19)

The role of these marginal four-fermi interactions in the theory of massive fermions is
described in the appendix B.2.

2.2.1 Correlation Functions for Ordinary Ladder

Apart from the correlation functions involving smooth parts of spin components (2.17) it is
possible to calculate also correlation functions involving staggered components of the mag-
netization. It is a well known fact that massive Majorana fermion describes long- distance
properties of the two-dimensional Ising model. Mass of the fermion is proportional to devi-
ation from criticalitym ∼ (T − Tc)/Tc. So the ladder model is equivalent to four copies of
two dimensional off critical Ising models. We use the following representation for total and
relative staggared magnetizationsn± = n1 ± n2 in terms of ising variables29 (see Appendix
B.3):

n+
x ∼ µ1σ2σ3µ, n+

y ∼ σ1µ2σ3µ, n+
z ∼ σ1σ2µ3µ

n−
x ∼ σ1µ2µ3σ, n−

y ∼ µ1σ2µ3σ n−
z ∼ µ1µ2σ3σ (2.20)

Let us consider:ε1,2(x) = (−1)xS1,2(x)S1,2(x + a0) the dimerization operator of the first
and second chain, respectively. Bosonized expression of dimerization operator is given in
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appendix A.2. As explained in Appendix B.3 following representation for total and relative
dimerizationε± = ε1 ± ε2 is possible in Ising variables:

ε+ ∼ µ1µ2µ3µ, ε− ∼ σ1σ2σ3σ (2.21)

These equivalences are crucial, since they allow to calculate dynamical staggered magnetic
susceptibilities (note that in Majorana formalism we would be dealing with nonlocal opera-
tors instead), because correlation functions involving Ising order and disorder operators are
known including off critically. For antiferromagnetic ladder we are consideringmt > 0 and
ms < 0, meaning in particular that in the limitr → ∞:

〈σa(r)σa(0)〉 ' K0(rmt) + O(e−3rmt)

〈µa(r)µa(0)〉 ' const

[
1 +

e−2rmt

8π(rmt)2
+ O(e−4rmt)

]

〈σ(r)σ(0)〉 ' const

[
1 +

e−2r|ms|

8π(rms)2
+ O(e−4r|ms|)

]
〈µ(r)µ(0)〉 ' K0(r|ms|) + O(e−3r|ms|) (2.22)

a = 1, 2, 3 stands for triplet components. The leading asymptotics for the spin correlation
functions obtained from (2.22) look:〈

n−(r)n−(0)
〉 ∼ K0(rmt)

[
1 + O(e−2mtr)

]
〈
n+(r)n+(0)

〉 ∼ e−(2mtr+|ms|r)

r3/2

(2.23)

and for dimerization- dimerization correlation functions:

〈ε−(r)ε−(0)〉 ∼ e−3mtr

r3/2

〈ε+(r)ε+(0)〉 ∼ K0(|ms|r)
[
1 + O(e−2rmt)

]
(2.24)

FIGURE 2.2: Typical configuration in the RVB state of AFM ladder

The ground state of the ordinary ladder system is parity symmetric,〈ε±〉 = 0. The typical
configuration in the resonating valense bond state of the antiferromagnetic ladder is depicted
on Fig. (2.2). Dynamical spin susceptibility calculated by Fourier transforming assymptotics
of the correlation function〈n−(x, τ)n−(0, 0)〉 exhibits the existance of a coherentS = 1
magnon peak at energyω2 = (π−q)2v2

t +m2
t . This is obvious, sinceK0(r|mt|) is Euclidean
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space propagator of a free massive bosons, after Fourier transforming and analyticaly con-
tinuing to real frequencies it contributes aδ-peak to the imaginary part of the dynamical spin
susceptibility corresponding to a ’long-lived’ massive triplet of magnons.

ImD
(R)
− (ω, π − q) '

[
mt

π
√

v2q2 + m2
t

δ(ω −
√

v2q2 + m2
t ) + . . .

]
(2.25)

for energiesω < 2|mt| + |ms|. Thus at low energies ordinary two-leg ladder is in a Hal-

q

ω

πq=q=0

2m

mt

t

3m t

contimuum of

quasiparticle
pole

excitations

FIGURE 2.3: The area in (ω, q) plane where imaginary part of dynamical susceptibility of
spin ladder in Haldane phase is finite

dane disordered spin liquid phase with relative staggered magnetizationn− playing role of
staggered magnetization of Haldane chain.29

2.3 Bosonization of Four Spin Ring Exchange

Now we bosonize separately ring exchange. First we decompose the ring part of Hamiltonian
in the following way:

H(x) = Hquad(x) + Hbiquad(x) , (2.26)

Hquad stands for the quadratic spin interactions andHbiquad for the four-spin interactions
originating from the ring exchange term.

Neglecting renormalization of the intrachain interaction (we are in weak coupling) we first
analyze the quadratic spin interactions which can be cast in the following form:

Hquad ∼ (J⊥
ring + J×

ring)J1(x)J2(x)

+ (J⊥
ring − J×

ring)n1(x)n2(x) (2.27)

whereJ⊥
ring = J×

ring = Jring. Since the scaling dimension of the smooth part of the spin op-
erator is 1, while the dimension of the staggered part is1/2, no relevant terms are generated
from the quadratic part of the ring exchange, and only marginal terms are left. After bosoniz-
ing the biquadratic part only leg-leg interaction will survive, because diagonal-diagonal and
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rung-rung terms give non-distinguishable relevant contributions in the infrared limit which
cancel each other due to the overall opposite signs in front of them (which is fixed by the
structure of the ring exchange):

Hbiquad ∼ JLL
ringε1(x)ε2(x), (2.28)

whereJRR
ring = JDD

ring = JLL
ring = 2Jring.

JLL
ringε1(x)ε2(x) ' JLL

ring

π
cos

√
2πφ1 cos

√
2πφ2

=
JLL

ring

2π
(cos

√
4πφ+ + cos

√
4πφ−) (2.29)

using Eqs: (2.8), (2.14) we get correspondence:

2

π
ε1(x)ε2(x) = i(ψ1

Rψ1
L + ψ2

Rψ2
L + ψ3

Rψ3
L + ρRρL) (2.30)

In the Majorana representation (retaining only relevant operators) we arrive at the following
Hamiltonian:

H =
3∑

a=0

∫
dx

[−iv

2
(ψa

R∂xψ
a
R − ψa

L∂xψ
a
L) − imψa

Rψa
L

]
(2.31)

aboveψ0 stands forρ, fourth Majorana, andm = −c2αJring/2π, α being non-universal
cutoff dependent possitive constant. Thus in the weak-coupling limit we have effectively
reduced the ring exchange to the leg-leg interaction.72 The only difference between the
bosonized forms of the ring exchange and the pure leg-leg coupling stems from the marginal
current-current interaction which does not appear in the leg-leg biquadratic interaction. In
contrast to the leg-leg interaction ring exchange is not invariant under independent global
SU(2) rotations of spins on each chain, and thus should not enjoy fullO(4) symmetry.
This symmetry is in fact lowered by marginal operators. The refermionized version of the
marginal current-current interaction contained in ring exchange will take the following form
in the Majorana representation:

Hmarg = Jringa0

∫
dx[(ψ1

Rψ1
L)(ψ2

Rψ2
L)

+ (ψ2
Rψ2

L)(ψ3
Rψ3

L) + (ψ1
Rψ1

L)(ψ3
Rψ3

L)

− (ψ1
Rψ1

L + ψ2
Rψ2

L + ψ3
Rψ3

L)(ψ0
Rψ0

L)] (2.32)

Renormalizing the masses it weakly splits theO(4) quadruplet into a triplet and a singlet,
consistent with the symmetries of ring exchange:

mt

m
−→ 1 +

Jringa0

πv
ln

Jleg

|m| ,
ms

m
−→ 1 − 3Jringa0

πv
ln

Jleg

|m| . (2.33)
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The full refermionized model, including both rung and ring exchange, in the Majorana rep-
resentation reads as:

H =
∑

a=1,2,3

∫
dx

[−ivt

2
(ψa

R∂xψ
a
R − ψa

L∂xψ
a
L) − imtψ

a
Rψa

L

]

+

∫
dx

[
−ivs

2
(ρR∂xρR − ρL∂xρL) − imsρRρL

]
(2.34)

where

mt =
c2

2π
(Jrung − αJring),

ms = − c2

2π
(3Jrung + αJring) (2.35)

where α is nonuniversal numerical constant that is impossible to determine alone by
bosonization. From the above formulas, one readily obtains the line where the triplet mass
vanishes. Thus we showed that at weak coupling ring interaction induces quantum phase
transition to new phase. To study the symmetry properties of the ground state of new phase
we discuss the behavior of correlation functions.

2.3.1 Correlation Functions in Ring Exchange Dominated Phase

From the representation of staggered magnetization and dimerization operators resp. (2.23)
and (2.24) we find, that relative staggered spin of two chains (which is the same as total
staggared spin across the diagonal), as well as relative dimerization decay algebraically ac-
cording toSU2(2) universality class:30

〈
~n−(r)~n−(0)

〉 ∼ 〈ε−(r)ε−(0)〉 ∼ r−3/4 (2.36)

On the line where mass of the triplet of Majoranas vanishes a quantum phase transition from
conventional Haldane phase (rung exchange dominated phase) where spectrum displays co-
herent single-particle (magnon) excitations to non-Haldane spontaneously dimerized phase
(ring exchange dominated phase) without coherent magnon modes takes place.72 In the
dimerized phase for staggered spin correlation functions we obtain following expressions:

〈
n−(r)n−(0)

〉 ∼ K2
0(r|mt|)〈

n+(r)n+(0)
〉 ∼ K0(r|mt|)K0(r|ms|)

(2.37)

While for dimerization correlation functions we have:

〈ε−(r)ε−(0)〉 ∼ const
[
1 + O(e−2rmt)

]
〈ε+(r)ε+(0)〉 ∼ K3

0(|mt|r)K0(|ms|r) (2.38)
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FIGURE 2.4: Phase diagram of rwo leg ladder with ring exchange

The imaginary part of the dynamical magnetic susceptibility reveals only two-magnon
thresholds and complete disappearance of coherent magnon poles (see Appendix C.3):

ImD
(R)
+ (ω, π − q) ∼ θ[ω2 − q2 − (mt + ms)

2]√
mtms

√
ω2 − q2 − (mt + ms)2

ImD
(R)
− (ω, π − q) ∼ θ[ω2 − q2 − 4m2

t ]

mt

√
ω2 − q2 − 4m2

t

(2.39)

q

ω

πq=q=0

2m t

continuum of
excitations

absence of
quasiparticle pole

FIGURE 2.5: The area in (ω, q) plane where imaginary part of dynamical susceptibility of
spin ladder in dimerized phase is finite

This transition belongs to the universality class of critical, exactly integrable,S = 1 spin
chain (Takhtajan-Babujian point) with the central chargec = 3/2. The dimerization pattern
emerging after crossing the critical line is the following: the chains become dimerized in a
staggered way to each other with a nonzero relative dimerization. This is consistent with
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the fact that for the antiferromagnetic interchain interaction effectiveS = 1 spins exhibiting
nonzero string order are formed across the ladder diagonals rather than along the rungs.34,35

On either side of this line the system is gapped, described in terms of free massive Majorana
fermions with the symmetrySU(2)⊗Z2. The gap (which is the mass of the Majorana triplets
2.35) opens linearly as one deviates from the criticality. Owing to theSU(2) symmetry of
the model no other perturbations than mass terms of Majoranas are allowed in the vicinity of
the critical line.

FIGURE 2.6: Dimerization pattern emerging after the phase transition

2.4 Elementary Excitations in Spontaneously Dimerized
Ladder

Now we want to discuss elementary excitations in spontaneously dimerized ladder. For
the sake of clarity we can switch-off rung interaction and discuss elementary excitations in
purely dimerized phase. Discussion of elementary excitation will hold qualitatively valid
also when rung interaction is nonzero. In this case neglecting the marginal interactions in
Eq.(2.29) Hamiltonian is expressed as:30

H = H+ + H−

H+ =
u

2
[(∂xθ+)2 + (∂xφ+)2] +

JLL
ring

2π
cos

√
4πφ+

H− =
u

2
[(∂xθ−)2 + (∂xφ−)2] +

JLL
ring

2π
cos

√
4πφ− (2.40)

In the ground state plus-minus fields are pinned in one of the vacua
〈√

4πφ±
〉

= π+2πn. El-
ementary excitations could be described as free massive fermions (we remind, thatcos

√
4πφ

is mapped to the mass term under Jordan-Wigner transformation), or kinks interpolating be-
tween the two degenerate ground states.Sz of elementary excitation is:

Sz =
1√
2π

∫
dx(∂xφ1 + ∂xφ2) =

4φ+√
π

= 1 (2.41)

if the kink is in symmetric sector, and otherwise zero. Since dimerization is spontaneous
two nonequivalent vacuum configurations are energetically degenerate and single dimeriza-
tion kink interpolates between them. At infinities fields should approach constant value
φ±∞ → 2πn as a consequence only pairs of dimerization kinks can appear in each sector.
Moreover, since there is no correlation between kinks (decoupling point of sine-Gordon)
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once two kinks are created they propagate independently without coherence. Pictorial com-
parison of elementary excitation in spontaneously dimerized phase and weakly coupled lad-
der is on Fig. (2.7). We note peculiar difference, because of the spontaneous translational
symmetry breaking only pair of solitons are allowed to appear in dimerized phase. That
means at least four spins are involved in elementary excitation, as opposed to ordinary lad-
der, where single magnon, bound state of two spinons can propagate. As is evident from the

a

b

1 2 43 5 6 7 8 9 10

FIGURE 2.7: Elementary excitation in: a) spontaneously dimerized ladder, b) weakly cou-
pled ladder. Arrow indicates possible hopping of the dimerization kink

Fig.(2.7) because of the doubling of the unit cell in the ground state of the dimerized phase
dimerization kink hops over two lattice constants.

2.5 Thermodynamic Quantities

In this section we will extensively use fermionic representation of our model. Since low
energy sector of spin ladder is described in terms of essentially free fermions we can apply
free field theory methods to calculate various thermodynamical quantities. We will start from
perhaps the simplest one, namely specific heat.

2.5.1 Specific Heat

Free energy of fermion systems with dispersion spectrumEk looks:

F = −T

∫ +∞

−∞

dk

2π
ln

(
1 + e−Ek/T

)
(2.42)

Direct evaluation of specific heatC = −T ∂2F
∂T 2 gives:

C =
1

T 2

∫ +∞

−∞

dk

2π

E2
ke

Ek/T

(eEk/T + 1)2
=

1

4T 2

∫ +∞

−∞

dk

2π
E2

k

(
sech

Ek

2T

)2

(2.43)

This expression allows to evaluate specific heat for massless fermions (at criticality) exactly,
so for spectrumE2

k = v2k2 we get

C(T ) =
Tπ2

6v
(2.44)
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On the gapless line in the space of Ring, Rung and Leg exchanges there is a special point,
where ground state is an exact product of singlets36 located along the ladder rungs. On
this special point lowest excitation is propagating triplets along the ladder. The spectrum is
quadraticE ' q2, instead of linear, and thus cpecific heat will be given (using dimensional
arguments for Eq. (2.43)) at this point as:52

C(T ) '
√

T (2.45)

We note, that this point is in some sense pathological, the velocity of linear excitations van-
ishes only on this point. Thus this critical point is not described in terms of free fermions.
For the off critical or massive caseE2

k = v2k2 + m2. At low enough temperatures when
T/m → 0 we can neglect 1 in denominator of the middle part of (2.43).

C ' 1

T 2

∫ +∞

−∞

dk

2π
E2

ke
−Ek/T (2.46)

Furthermore, since at lowT dominant contribution comes from smallk regionv2k2 ¿ m2

we can approximate

e−
Ek
T = e−

√
m2+v2k2

T = e−
m
T

√
1+ v2k2

m2 ' e−
m
T e−

v2k2

2mT (2.47)

Taking simple Gaussian integral finally we get:

C ' 1

T 2

∫ +∞

−∞

dk

2π
m2e−

m
T e−

v2k2

2mT = m2e−
m
T

√
2πmT

2πT 2v
=

(m

T

) 3
2 m

v
√

2π
e−

m
T (2.48)

2.5.2 Static Susceptibility

Static susceptibility for the ladder system is calculated using diagrammatic methods and is
explained in details in Appendix C. 6.

χ(T ) =
1

T

∫ ∞

0

dk

2π
sech

Et(k)

2T
(2.49)

For massless case this expression can be calculated exactly and we get temperature indepen-
dent constant magnetic susceptibility (characteristic to Luttinger Liquids),

χ(T ) =
π

2v
(2.50)

On this special point where velocity of linear excitations vanishes and lowest spectrum is
quadraticE ' q2, instead of constant susceptibility applying dimensional arguments to
(2.49) we have:52

χ(T ) '
√

T−1 (2.51)

We note, that althougth this point is not described in terms of free fermions our fomulas
for specific heat and static susceptibility are equally well applicable to get their temperature
behavior. We have just to replace gapless linear spectrum with gapless quadratic. The reason
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why fermionic theory is so successful is that magnon, is hard core boson. In one dimension
there is no difference between thermodynamical properties of fermions and bosons with
infitite repulsion. For massive case making low temperature approximation as we did for
calculation of the specific heat we get:

χ(T ) '
√

2πmt

v
T− 1

2 e−
mt
T (2.52)

2.5.3 Nuclear Magnetic Resonance Relaxation Rate

Looking on the thermodynamical quantities e.g. specific heat, static susceptibility it is im-
possible to distinguish conventional Haldane phase of spin ladder from the dimerised phase.
The reason is that those quantities depend only on the gap magnitude and are insensitive
on the mutual sign between triplet and singlet excitation masses. Peculiarly there is an in-
teresting quantity: nuclear magnetic resonance relaxation rate that can distinguish between
the Haldane like phase and dimerised phase of the ladder, but not for the spin one chain.
The explanation of this puzzle is, that for spin ladder we get contribution from triplet singlet
channel, which is absent for spin 1 chain. Here we write temperature dependent NMR re-
laxation rate, conventionally denoted byT1. For detailed calculation we refer to Appendix
C.6.

T−1
1 ' mt

2(πv)2
e−

mt
T

(
−C + ln 4 − ln

w

T

)
+

1

(πv)2

√
π|ms|

√
|ms + mt|
|ms − mt|e

−ms
T

√
T (2.53)

The amplitude of the second term depends on the mutual signs of singlet and triplet masses.
Main charachteristics of the above expression is exponential drop in temperature, due to exci-
tation gap. Logarithmic divergence in prefactor with vanishing nuclear resonance frequency
is caused by Van Hove singularity in the density of states of free Majoranas at a bottom of
the band.

2.6 Conclusions

This chapter of the thesis was concerned with the study of aSU(2) antiferromagnetic lad-
der with additional four-spin ring interaction. Bosonization- fermionization approach was
used to describe the low energy exitations of the model and determine effect of frustration
produced by additional plaquette interaction on the ground state phase diagram. Weak cou-
pling regime of the model was described in terms of the massive Majorana fermions coupled
by weak four-fermi intaraction. A part of the ground state phase diagram for sufficiently
strong frustration was obtained. It was shown that the ordinary rung singlet phase of the
pure antiferromagnetic ladder undergoes a quantum phase transition to spontaneously dimer-
ized phase. This phase transition was identified with the one that happens in the spin one
AFM chain with additional biquadratic terms. Since in AFM ladder effective S=1 spins are
formed accross the ladder diagonals dimerization pattern obtained after the phase transition
was of valence bond solid structure (staggeredly dimerized chains). Transformation to the
two dimensional Ising variables allowed to relate correlation functions of the model with
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2D Ising correlation functions that are known analytically both at and off criticality. The
single magnon that is well defined quasiparticle in the ordinary ladder disappears from the
low energy excitation spectrum which is exhausted by the continuum of incoherent dimer-
ization kinks. Finite temperature calculations were carried out using conformal field theory
and Matsubara formalisms.
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CHAPTER 3

Phase Diagrams of Spin Ladders with Ferromagnetic Legs

This part of the thesis is devoted to investigation of ground state phase diagram of spin
ladders with ferromagnetic legs. These systems exhibit very rich ground state properties.
Apart from pure academic interest in these models our motivation stems from the fact that
quasi low-dimensional spin systems with ferromagnetic interactions are also realized as real
crystals, as exemplified by theS = 1/2 chain(C6H11NH3)CuBr3 (CHAB)59 and theS =
1 chainCsNiF3.60 No ladder systems with ferromagnetic interactions are known yet, but
considering recent progress in material science such systems may well be synthesized in the
future. In following we study ground state phase diagram of aS = 1/2 ladder system with
ferromagnetic legs and anisotropic interleg exchange using the continuum limit bosonization
approach.
The Hamiltonian of the model under consideration is given by

Ĥ = H1
leg + H2

leg + H⊥ , (3.1)

where the Hamiltonian for legα = 1, 2 is

Hα
leg = −J

N∑
j=1

(
Sx

α,jS
x
α,j+1 + Sy

α,jS
y
α,j+1

+ ∆ Sz
α,jS

z
α,j+1

)
, (3.2)

and the interleg coupling is given by

H⊥ = Jxy
⊥

N∑
j=1

(
Sx

1,jS
x
2,j + Sy

1,jS
y
2,j

)

+ Jz
⊥

N∑
j=1

Sz
1,jS

z
2,j . (3.3)

HereSx,y,z
α,j are spinS = 1/2 operators at thej-th rung. The intraleg coupling constant is

chosen ferromagneticJ > 0. In these denotions∆ = 1 corresponds toisotropic ferromag-
netic legs , while∆ = −1 corresponds toisotropic antiferromagneticlegs.
We will be concerned with the study of ground state phase diagram of the model for∆ > 0
(ferromagnetic legs), as well as∆ ' 0.
In section II we derive the bosonized formulation of the model in the continuum limit. In
section III we discuss the weak coupling phase diagrams of the model for three different
cases of anisotropic interleg coupling. Finally, we conclude and summarize our results in
section IV. In the Appendix E we present the spin-wave approach to study the transition line
related to the ferromagnetic instability in the system.
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3.1 Bosonization

In this section we derive the low-energy effective field theory of the lattice model Eq. (3.1).

3.1.1 Separate Chains

The bosonized effective field theory of general anisotropic spin ladders is governed by
Hamiltonian (1.44). However, since in this section we consider the ladder model withferro-
magnetic legs, our bosonization conventions require some comments. The unitary transfor-
mation

Sx,y
α,j → (−1)jSx,y

α,j , Sz
α,j → Sz

α,j (3.4)

changes the sign of the intrachain transverse exchange and maps the Hamiltonian (3.1) to
the Hamiltonian withantiferromagneticlegs. This duality transformation maps points under
reflection with respect toJXY = 0 line (Fig. 3.1). Under this mapping smooth and staggered
parts of inplain components of spin operators are interchanged. Bosonization procedure of

J

HFM

HAF

XY

JZ

IFM

IAFM

XYF XYA

FIGURE 3.1: XXZ spin half chain phase diagram for arbitrary sign of inplain and out of
plane couplings. Different regions are denoted respectively from above clock-
wise as: Ising antiferromagnet, Heisenberg antiferromagnet,XY (planar) an-
tiferromagnet, Ising Ferromagnet, Heisenberg ferromagnet, andXY (planar)
ferromagnet

spin system (as derived in Appendix A) is based on Jordan- Wigner transformation to spinless
fermions. While for evaluating terms quadratic in fermionic operators change of sign in front
of hopping term is irrelevant, terms linear in fermionic operators (e.g.S±) undergo smooth
- staggared part transmutation. Under this transformation left and right Fermi points of cor-
responding Jordan- Wigner fermionic bands are interchanged. Equivalently one can pass to
Jordan- Wigner fermions in case of inplain ferro exchange withS−

i = ci exp(iπ
∑i−1

j=0 c+
j cj)

and for antiferroS−
i = (−1)ici exp(iπ

∑i−1
j=0 c+

j cj), thus leaving the positions of left and
right fermi points the same place, but one reads from above again extra staggering factor in
S± between ferro and antiferro inplane coupling cases. So to maintain the ferromagnetic
character of the in-plane correlations in the bosonization, it is convenient to implement the
multiplicative factor(−1)j, introduced by the unitary transformation (3.4), directly in the
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bosonized expressions for the transverse components of the spin operators. Using the stan-
dard bosonization formulas (Appendix A) we obtain:

Sx
j,α ' c√

2π
: cos

√
π

K
θα(x) :

+ (−1)j ib√
2π

: sin
√

4πKφα(x) sin

√
π

K
θα(x) : , (3.5)

Sy
j,α ' c√

2π
: sin

√
π

K
θα(x) :

− (−1)j ib√
2π

: sin
√

4πKφα(x) cos

√
π

K
θα(x) : , (3.6)

Sz
j,α =

√
K

π
∂xφα(x) +

(−1)j a

π
: sin

√
4πKφα(x) : . (3.7)

Note that the first and the second terms in Eqs. (3.5),(3.6) are hermitian because of (1.36).
Furthermore: A : denotes the normal ordering (in following we will omit it from operators,
bur will be understood implicitely) withrespect to free bose system (1.35),α is the leg index.
The non-universal real constantsa, b andc depend smoothly on the parameter∆,64,65 and
are nonzero for general∆ < 1.

3.1.2 Coupled Spin-1/2 Chains

Effective field theory for weakly coupled spin ladder with ferromagnetic legs is obtained
from general Hamiltonian (1.44):

H = H+ + H− + H±
int , (3.8)

H+ =
u+

2
[(∂xθ+)2 + (∂xφ+)2]

− J z
⊥

2π
cos

√
8πK+φ+(x) , (3.9)

H− =
u−
2

[(∂xθ−)2 + (∂xφ−(x))2]

+
J z

⊥
2π

cos
√

8πK−φ−(x)

+
J xy

⊥
2π

cos

√
2π

K−
θ−(x) , (3.10)

H±
int =

J+−
2π

cos

√
2π

K−
θ−(x) cos

√
8πK+φ+(x) . (3.11)

In deriving (3.8) from (1.44) a term∼ J̃ xy
⊥ cos

√
2π
K−

θ− cos
√

8πK−φ− which is strongly

irrelevant at∆ > 0 (ferromagnetic legs) was omitted. Plus strongly irrelevant terms, prod-
ucts of the current current operators along each chain (responsible to AFM transition and
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becoming marginal atSU(2) point) were also neglected. Thus Hamiltonian (3.8) describes
effective field theory of weakly coupled ferromagnetic chains as well as antiferromagnetic
chains only for∆ ∼ 0.

3.1.3 The Effective Continuum-Limit Model

At Jz
⊥ = Jxy

⊥ = 0 the Hamiltonian (3.8) describes two independent Gaussian fields, i.e. two
gapless fields, each describing a critical spin S=1/2 Heisenberg chain. We will study the
effects of longitudinal (Jz

⊥) and transverse (Jxy
⊥ ) part of the interleg coupling separately.

At Jxy
⊥ = 0 the effective theory of the original ladder model is given by two decoupled

quantum sine-Gordon models
Heff = H+ + H− (3.12)

where

H± = u±

∫
dx

[1

2
[(∂xθ±(x))2 + (∂xφ±(x))2]

+
M±
2π

cos
√

8πK±φ±(x)
]
. (3.13)

The two SG models respectively describe the symmetric (φ+) and antisymmetric (φ−) de-
grees of freedom.
The bare values of the dimensionless coupling constantsM± andK± are known only in the
weak-coupling limit|Jz

⊥|/J, |∆| ¿ 1:

M± = ∓Jz
⊥

πJ
, (3.14)

K± = 1 +
2∆

π
∓ Jz

⊥
2πJ

. (3.15)

As M± follow directly from (1.48) and (1.50) some explanation needs derivation ofK± (we
remind, that at∆ = 0 we haveu = J). Part coming from linearization of (1.49) is clear, we
explain how we obtain∆ dependent part. For this we consider bosonized version of separate
xy chain and add∆Sz

i S
z
i+1 part of interaction, assuming|∆| ¿ Jxy = J .

J

2

[
(∂xθ(x))2 + (∂xφ(x))2

]−∆

π
(∂xφ(x))2+

∆

π2
: sin

√
4πφ(x) :: sin

√
4πφ(x+a) : (3.16)

Plus sign before the product of staggered components comes form the(−1)n factors. This
time we have to restore lattice cutoff (ultraviolet regulator), otherwise product of two vertex
operators at coinciding point is divergent and also we restored explicitly normal ordering
signs. We have to apply the following ope:

: sin
√

4πφ(x) :: sin
√

4πφ(x + a) :

=
1

2

[
: cos

√
4π (φ(x) − φ(x + a)) : − : cos

√
4π (φ(x) + φ(x + a)) :

]
= −1

2
: cos

√
16πφ(x) : +

√
πa : ∂xφ(x) sin

√
16πφ(x) : −πa2 : (∂xφ(x))2 : + . . .

(3.17)



3.1. Bosonization 35

The most important term is the last one, together with the term that originates from the
product of smooth parts ofSz it has the form of ’kinetic energy’ of the Gaussian model. All
other terms including dots are irrelevant (at∆ = −1 termcos

√
16πφ(x) becomes marginal).

Collecting all terms Eq. (3.16) will acquire the following form:

J

2

[
(∂xθ(x))2 + (1 − 4∆

Jπ
)(∂xφ(x))2

]
(3.18)

Obtained Hamiltonian density could be diagonalized by canonical transformation (simplest
manifestations of why bosonization is so efficient in 1 dimension). Passing to new canonical
variables (fields):

(∂xθ̃)
2 = (∂xθ)

2/

√
1 +

4∆

Jπ
, (∂xφ̃)2 = (∂xφ)2

√
1 +

4∆

Jπ
(3.19)

We will get for Hamiltonian density:

JK

2

[
(∂xθ̃(x))2 + (∂xφ̃(x))2

]
(3.20)

where

K =

√
1 +

4∆

Jπ
' 1 +

2∆

Jπ
(3.21)

Combining Eq. (3.21) with linearized expression from Eq. (1.48) we arrive at the desired
first order result as in Eq. (3.15). The scaling dimensions of thecosineterms in (3.13) are
dz
± = 2K± ' 2. Therefore, in the weak-coupling limit, both SG models have marginal

dimension and details of their behavior should be determined within the framework of the
renormalization-group analysis.
The transverse interleg exchange (Jxy

⊥ ) leads to the appearance of the strongly relevant op-

eratorJ xy
⊥ cos

√
2πK−1

− θ− with the scaling dimensiondxy
− = (2K−)−1 ≤ 1/2 in the theory.

Therefore, the antisymmetric sector is gapped at arbitraryJxy
⊥ 6= 0. FLuctuations of the field

θ−(x) are completely suppressed in this sector andθ−(x) is condensed in one of its vacua.
The vacuum expectation value of thecosineterm is

〈cos
√

2πK−1
− θ−〉 = γ (3.22)

with γ ∼ (|J xy
⊥ |/Jeff )

d
xy
−

2−d
xy
− ¿ 1 (see Eq. (D.15)) in weak coupling and is of the order

of unity at |J xy
⊥ | ∼ J . If we apply dimensional analyses straightforwardly to the interac-

tion term (3.11) it tells that in weak-coupling atK± ' 1 this term is irrelevant. It is the
condensation of the fieldθ− that strongly influences the coupling between the symmetric
and antisymmetric modes induced byH±

int. Taking into account that theθ− field is frozen,
fluctuates slowly aroud its vacuum expectation value, one easily finds that atJxy

⊥ 6= 0 in-
frared behavior of the symmetric field is governed by the following ”effective” sine-Gordon
theory obtained after mean-field like separation between two sectors:

H+
eff = u+

∫
dx

[1

2
[(∂xθ+)2 + (∂xφ+(x))2]

+
M+

eff

2π
cos

√
8πK+φ+(x)

]
, (3.23)
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where

M+
eff = − 1

πu+

(J z
⊥ + γ · |J+−|) . (3.24)

One may wonder about the self consistency of the above mean-field separation, that is about
the feedback or reverse influence of symmetric sector on antisymmetric one. The effective
Hamiltonian for the symmetric field is the SG model with the marginal coupling, whereas
antisymmetric sector is governed by strongly relevant operator. Thus the reverse influence of
the symmetric field on the antisymmetric one is negligible in the leading order RG analysis
even in the case of strong coupling regime in the symmetric sector. The mapping of the
initial spin S = 1/2 ladder model onto the quantum sine-Gordon theories (3.13) or (3.23)
will allow us to extract the ground state phase diagram of theS = 1/2 ladder from the
infrared properties of the quantum SG models.

3.1.4 The RG Analysis

All the phase transition lines determined within bosonization formalism (sometimes af-
ter mean-field like separations) will belong to the Kosterlitz-Thouless type (exeption will
be transition into ferromagnetic phase). Meaning, that retained singlecosine perturbation
changes from marginaly irrelevant to relevant one on those lines. Thus it is extremely impor-
tant to analyse Kosterlitz-Thoulees transition in sine-Gordon Model. The infrared behavior
of the SG Hamiltonian is described by the corresponding pair of renormalization group (RG)
equations for the effective coupling constantsK(l) andM(l) (for derivation see Appendix
D)

dM(l)

dl
= −2 (K(l) − 1)M(l)

dK(l)

dl
= −1

2
M2(l) (3.25)

wherel = ln(a0) and the bare values of the coupling constants areK(l = 0) ≡ K andM(l =
0) ≡ M . The pair of RG equations (3.25) describes the Kosterlitz-Thouless transition.66 The
flow lines lie on the hyperbola

4 (K − 1)2 −M2 = µ2 = 4(K − 1)2 − M2 (3.26)

and exhibit two different regimes depending on the relation between the bare coupling con-
stants (see Fig.3.2):

Weak coupling regime. For 2(K − 1) ≥ |M | we are in the weak coupling regime: the
effective massM → 0. The low energy (large distance) behavior of the corresponding
gapless mode is described by a free scalar field.

The vacuum averages of exponentials of the corresponding fields show a power-law decay
at large distances

〈 eiKφ(0) e−iKφ(r)〉 ∼ 〈 eiKθ(0) e−iKθ(r)〉 ∼ |r|−K∗2
2π . (3.27)

whereK∗ is the fixed-point value of the parameterK determined from the Eq. (3.26).
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M

2(K−1)

FIGURE 3.2: Renormalization-group flow diagram; the arrows denote the direction of flow
with increasing length scale.

Strong coupling regime.For2(K−1) < |M | the system scales to strong coupling: depend-
ing on the sign of the bare massM , the renormalized massM is driven to±∞, signaling a
crossover to one of two strong coupling regimes with a dynamical generation of a commen-
surability gap in the excitation spectrum. The flow of| M | to large values indicates that the
Mcos

√
8πKφ term in the sine-Gordon model dominates the long-distance properties of the

system. Depending on the sign of the mass term, the fieldφ gets ordered with the expectation
values

〈φ〉 =

{ √
π/8K atM > 0

0 atM < 0
. (3.28)

Using this analysis for the excitation spectrum of the SG model and the behavior of the cor-
responding fields, Eqs. (3.27, 3.28), we will now discuss theweak-couplingphase diagram
of the spinS = 1/2 ferromagnetic laddermodel (3.1).

3.2 Ground State Phase Diagrams

In this section we discuss separately the ground state phase diagram of theferromagnetic
ladder coupled only by the longitudinal part of the interleg spin exchange (subsection 1),
coupled only by the transverse part of the interleg spin exchange (subsection 2) and by an
isotropic interleg coupling (subsection 3). At this point we note that from the structure
of the interaction Hamiltonian Eq. (3.3) follows that the phase diagrams for case (1) and
case (2) will be symmetric with respect to the linesJ⊥ = 0 since a change of sign inJ⊥
leads to a unitary equivalent Hamiltonian. This is in contrast to case (3) where this unitary
equivalence does not exist (compare corresponding Figures:(3.3),(3.4), and (3.5) with respect
to the reflection symmetry around theJ⊥ = 0 axes).

3.2.1 Chains Coupled by the Longitudinal Part of the Interleg Ex-
change

In this subsection we consider the weak-coupling phase diagram of the spin S=1/2 ferro-
magnetic ladder model (3.1) coupled by a weak longitudinal interchain exchange (Jxy

⊥ =
0, Jz

⊥ 6= 0). The bosonized version of the model isHeff = H+ + H− whereH± are given
by Eq. (3.13) and the bare values of the corresponding dimensionless coupling constants are
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given by (3.14)-(3.15). By inspecting the initial values of the coupling constants one easily
finds that:

• At ∆ < 0 both the symmetric and the antisymmetric sectors are gapped (except for
Jz
⊥ = 0).

• At ∆ > 0 thesymmetric sector is gappedfor Jz
⊥/J > 2∆ > 0 while theantisymmetric

sector is gappedfor Jz
⊥/J < −2∆ < 0.

This determines the following three distinct sectors of the phase diagram as traced already
in the RG analysis (see also Fig. (3.3):

• Sector A:∆ < 0 corresponds to the phase with gapped excitation spectrum;

• Sector B:∆ > 0 and|Jz
⊥| > 2J∆ corresponds to the phase characterized by the one

gapless and one gapped mode in the excitation spectrum. In particular atJz
⊥ > 0 the

symmetric mode is gapped whereas the antisymmetric mode is gapless and vice-versa
atJz

⊥ < 0;

• Sector C:∆ > 0 and |Jz
⊥| < 2J∆ corresponds to the phase where both modes are

gapless.

As we will show below, the same phases are present in the strong coupling regime. The
only phase which is missed in the weak-coupling RG analysis is the ferromagnetic phase; it
appears only in the strong coupling regime at∆ ' 1 or at∆ ¿ 1 but |Jz

⊥| ∼ 1/∆ À 1.

To clarify the symmetry properties of the ground states of the system in the different sectors
we study the large-distance behavior of the longitudinal

Kzz
αβ(r) := 〈Sz

α(0)Sz
β(r)〉 , (3.29)

and the transverse
Kxy

αβ(r) := 〈S+
α (0)S−

β (r)〉 , (3.30)

spin-spin correlation functions for intraleg (α = β) and interleg (α 6= β) spin pairs.

Using the results for the excitation spectrum and the behavior of the corresponding fields in
the gapless and gapped phases, Eqs. (3.27)-(3.28), and the expressions for the corresponding
correlation functions from bosonization, we now discuss the characteristics of the various
phases in the different sectors of theweak-couplingground state phase diagram.

In the sector A (Jz
⊥ < 0) the vacuum expectation values of the fields are:

〈φ+〉 =
√

π/8K+ and 〈φ−〉 = 0 (3.31)

In the following we will use the following properties of the bose fields: the ordering of fields
induce exponential decay of their dual fields. This non-trivial fact can be derived for special
cases of anisotropy where vertex operators involving fields map to the order fields of the 2
dimensional Ising variables and dual fields map to disorder variables. In general, where such
mapping does not exist this statement is expected to hold, since fileds and their duals are
non-local objects to each other. Ordering of theφ± suppresses transverse spin correlations
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(which necessarily involve dual fields), Using Eq. (3.31) the longitudinal correlations are
given by the following formula:

Kzz
αβ(r) ∼ 〈∂xφα(r)∂xφβ(0)〉 + (−1)r

〈
sin

√
4πKφα(r) sin

√
4πKφβ(0)

〉
∼ (−1)r · const (3.32)

For the above result we have used the following representations:

sin
√

4πKφ1,2 → sin
√

2πK+φ+ cos
√

2πK−φ− ± cos
√

2πK+φ+ sin
√

2πK−φ− (3.33)

and the vacuum expectation values Eq. (3.31) from which it follows:

〈cos
√

2πK−φ−〉 ' 1 〈sin
√

2πK−φ−〉 ' 0

〈cos
√

2πK+φ+〉 = 0 〈sin
√

2πK+φ+〉 ' 1 (3.34)

Therefore at∆ < 0 andJz
⊥ < 0, the long-range ordered (LRO) antiferromagnetic phase with

inphase spin ordering on the rungs is realized in the ground state of the system.

In the Sector A1 (Jz
⊥ < 0) the vacuum expectation values of the fields are given by

〈φ+〉 = 0 and 〈φ−〉 =
√

π/8K−. (3.35)

From Eq. (3.33) and (3.34) it follows that in this sector

Kzz
αβ(r) ∼ (−1)α+β · (−1)r · const

Therefore, at∆ < 0 andJz
⊥ > 0 the LRO antiferromagnetic phase with antiphase intrarung

spin ordering is realized in the ground state of the system.

In the sector B (B1) the antisymmetric (symmetric) field is gapped with the vacuum ex-
pectation value〈φ−〉 = 0 (〈φ+〉 = 0). However, as can be seen from weak coupling RG
analysis as well as from the strong coupling effective spin1/2 model (see below), atJz

⊥ 6= 0
the line∆ = 0 is the phase transition line along which the gapped at∆ < 0 symmetric
(antisymmetric) mode becomes gapless. Therefore in the sector B (B1) the gapless degrees
of freedom corresponding to the symmetric (antisymmetric) mode are described by the free
Bose field system with the fixed-point value of the parametersK∗

±. Using Eq. (3.26) and the
bare values of coupling constants (3.14)-(3.15)we get for|∆|, |Jz

⊥/J | ¿ 1

K∗
± ' 1 +

1

π

√
2∆(2∆ ∓ Jz

⊥/J) .

Note that at∆ = 0 the fixed-point values of the spin-liquid parameters areK∗
± = 1 while

at Jz
⊥ = 0 (see Eq. (1.49))K∗

± = K. Therefore we conclude that along the line∆ = 0 the
gapless sector in the system is identical to a single isotropic spinS = 1/2 Heisenberg chain,
while along the lineJz

⊥ = 0 we reach the limit of two decoupled spinS = 1/2 Heisenberg
chains.

Ordering of the fieldφ− (orφ+) implies suppression of the transverse correlations (since they
involve dual fields that are disorder operators and in ordered phase decay exponentially). On
the other hand the presence of the gapless excitation mode leads to the power law decay
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of the longitudinal spin correlations. Using representation (3.33) for sector B we get the
following correlation functions:

Kzz
αβ(r) ' K∗

+

2πr2
+

(−1)r

rK∗
+

,

while in the sector B1

Kzz
αβ(r) ' (−1)α+β

[
K∗

−
2πr2

+
(−1)r

rK∗
−

]
.

We denote this phase as thespin liquid I phase. It is interesting to note that in sector B the
following operator shows quasi long range behavior:

〈(S+
1 (r) + S+

2 (r))2 (S−
1 (0) + S−

2 (0))2〉
' 4〈S+

1 (r)S+
2 (r) S−

1 (0)S−
2 (0)〉

' r−1/K∗
+ + (−1)r r−1/K∗

+−K∗
+ . (3.36)

(Sα
1 + Sα

2 )2 for theS = 1
2

ladder corresponds to the operator(Sα)2 in theS = 1 chain and
we therefore identify sector B with theXY 2 phase for theS = 1 chain(27). The counterpart
of this operator exists also in sector B1, al-bight, not connected with effective spin 1:

〈S+
1 (r)S−

2 (r) S+
1 (0)S−

2 (0)〉 ' r−1/K∗
− + (−1)r r−1/K∗

−−K∗
− . (3.37)

With increasing interleg ferromagnetic coupling we reach the line∆ = |Jz
⊥|/2J which marks

the transition into the phase where both fields are gapless (sine-Gordon is marginaly irrele-
vant on this line). In the sector C of the phase diagram the system shows properties of two
almost independentspinS = 1/2 anisotropic Heisenberg chains with dominating ferromag-
netic coupling. Let us calculate the transverse correlations in this phase. Since the rotational
symmetry in plane is not broken it will suffice to evaluate correlation functions involving
one, e.g.x component of the spin:

〈Sx
1 (r)Sx

1 (0)〉 ' 〈cos

√
π

K
θ1(r) cos

√
π

K
θ1(0)〉

−(−1)r〈sin
√

4πKφ1(r) sin

√
π

K
θ1(r) sin

√
4πKφ1(0) sin

√
π

K
θ1(0)〉 (3.38)

We will continue with explicit calculation only for smooth part of the correlation function,
for staggered part exactly the same calculation could be done:

〈Sx
1 (r)Sx

1 (0)〉smooth → 〈cos[

√
π

2K+

θ+(r) +

√
π

2K−
θ−(r)] cos[

√
π

2K+

θ+(0) +
π

2K−
θ−(0)]〉

= 〈(cos

√
π

2K+

θ+(r) cos

√
π

2K−
θ−(r) − sin

√
π

2K+

θ+(r) sin

√
π

2K−
θ−(r))

(cos

√
π

2K+

θ+(0) cos

√
π

2K−
θ−(0) − sin

√
π

2K+

θ+(0) sin

√
π

2K−
θ−(0))〉 (3.39)
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Taking into account following facets: 1) we are dealing with decoupled theories; 2) correla-
tion function ofsin with sin is given by the same formula as forcos with cos; 3) correlation
function ofsin with cos is zero (neutrality condition) we will obtain following expression:

Kxy
αβ(r) ' δαβ

[
r−1/4(1/K∗

++1/K∗
−)

+ (−1)r · r−(K∗
++K∗

−+1/4K∗
++1/4K∗

− )
]
, (3.40)

whereδα,β is the Kronecker symbol. The reason why inplain correlations between spins on
different legs is zero could be seen from considering again only smooth parts:

〈Sx
1 (r)Sx

2 (0)〉smooth →
= 〈(cos

√
π

2K+

θ+(r) cos

√
π

2K−
θ−(r) − sin

√
π

2K+

θ+(r) sin

√
π

2K−
θ−(r))

(cos

√
π

2K+

θ+(0) cos

√
π

2K−
θ−(0) + sin

√
π

2K+

θ+(0) sin

√
π

2K−
θ−(0))〉 (3.41)

We see, that in this case correlation functions involvingcosines are exactly cancelled by the
ones involvinssines. The longitudinal correlations decay faster. In particular the intraleg
longitudinal correlations could be calculated with the help of formula Eq. (3.33) and are
given by:

Kzz
αα(r) ' K∗

+ + K∗
−

2πr2
+ (−1)r · r−(K∗

++K∗
−) . (3.42)

From Eq. (3.33) it follows that the transverse interleg correlations are strongly suppressed in
this phase, while the longitudinal part of the interleg spin-spin correlations is given by:

Kz
αβ(r) ' K∗

+ − K∗
−

2πr2
(3.43)

To obtain the above result one has to reexpressφ1 andφ2 in terms ofφ± fields inverting
equation (1.43) and substitute this into the correlation function:

〈Sz
1(r)S

z
2(0)〉smooth =

K

π
〈∂xφ1(r)∂xφ2(0)〉

=
K

2π
〈
(√

Λ+∂xφ+(r) +
√

Λ−∂xφ−(r)
) (√

Λ+∂xφ+(0) −
√

Λ−∂xφ−(0)
)
〉(3.44)

Sinceφ± fields are independent and described by Gaussian free field theories, correlation
functions of their currents decay quadratically, while in between plus and minus sectors
there is no correlation. Finally using Eq.(1.49) we come to desired result. This phase we
denote as thespin liquid II phase.

Strictly speaking the analysis as considered above is formally valid in the weak-coupling
limit (∆, |Jz

⊥| ¿ J). Still it is interesting to estimate the upper boundary for thespin liquid
II phase, in the vicinity of the single chain ferromagnetic instability regime using the dimen-
sionality analysis. We determine the instability curve corresponding to the transition into the
gapped phase from the conditionK± = 1, where the scaling dimension of the corresponding
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cosinetermd± = 2K± = 2. At Jz
⊥ > 0 the fieldφ− is gapless, while the fieldφ+ becomes

massive forK+ = 1 for which from Eq. (1.49) we find:

K+ = K

(
1 − 1

2π

J c
+K

u

)
= 1

J c
+ = 2π

u

K
(1 − 1/K) (3.45)

Substitutingu/K = Jeff = sin π
2K

/(2K − 1) and taking the limitK → ∞ we get:

J c
+(∆) = 4Jε

(
1 −

√
2ε

π

)
. (3.46)

where we have introduced notation∆ = 1 − ε with ε ¿ 1. For K → ∞ we have∆ =
cos(π/2K) → 1 − π2/8K2 and consecuentlyπ2/8K2 = ε in this limit.

Therefore in the vicinity of the single chain ferromagnetic instability point, at1 − ∆ ¿ 1,
thespin liquid I phase with only one gapless (here antisymmetric) mode reenters the phase
diagram atJz

⊥ > J c
+(∆). (We note that the amplitude of thecosine term in the limit of the

single chain ferromagnetic instability point is not determined exactly, so the phase transition
line determined by the dimensional analysis is of qualitative nature in this limit). ForJz

⊥ < 0
the analysis is done in exactly the same manner with symmetric and antisymmetric modes
changing roles.

At Jz
⊥ = 0 and∆ > 1 each of the decoupled legs is unstable towards the transition into a fer-

romagnetic phase. AtJz
⊥ 6= 0, we can address the problem of the ferromagnetic instability in

the ladder system studying the velocity renormalization of the corresponding gapless excita-
tions. In analogy with the single chain case we mark the transition into the ferromagnetically
ordered phase atu± = 0. Using Eqs. (1.37) and (1.48) one finds by extrapolation of the
result valid up to first order inJz

⊥ the following estimate for the ferromagnetic transition

Jz
FM(∆) = 4Jε . (3.47)

At |Jz
⊥| À J the boundary of the ferromagnetic instability can be established from the large

rung coupling expansion approach. Let us first consider the case of strong ferromagnetic
intrarung interactionJz

⊥ < 0. In this limit a large gap of order|Jz
⊥| exists in the one-

magnon excitation spectrum. Projecting the system on the subspace excluding antiparallel
orientation of spins within a given rung, in the second-order perturbation expansion with
respect toJ2/|Jz

⊥| and up to the additive constantE0 = −N0|Jz
⊥| we obtain the following

effective spin-1/2XXZ spin chain Hamiltonian

H =
∑

n

[
1

2
λxy

eff (τ
+
n τ−

n+1 + h.c.) + λz
effτ

z
nτ z

n+1

]
, (3.48)

where

λxy
eff = − J2

|Jz
⊥|

, λz
eff =

J2

|Jz
⊥|

− 2J∆ (3.49)
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and the pseudospin operators are

τ+
n = S+

n,1S
+
n,2 , τ−

n = S−
n,1S

−
n,2 ,

τ z
n =

1

2
(Sz

n,1 + Sz
n,2) .

In agreement with the weak-coupling bosonization analysis, at∆ = 0 (XY -legs) the system
is equivalent to theS = 1/2 isotropic antiferromagnetic chain. For arbitrary∆ < 0 (λz

eff >
λxy

eff ) the spin chain given by the Hamiltonian (3.48) is in thegapped Ńeel phase. This phase
corresponds to the LRO AFM interleg ordering with interleg phase shift equal to zero. At

0 < ∆ < J/|Jz
⊥|

(−λxy
eff < λz

eff < λxy
eff ) the spin chain (3.48) is in agapless planarXY phase, corresponding

to the ”spin liquid I” phase of the bosonization studies and finally at

∆ > J/|Jz
⊥|

(λz
eff < −λxy

eff ) the transition into the completely polarized ferromagnetic phase takes place.

In the case of strong antiferromagnetic interleg couplingJz
⊥ À J > 0 analysis is similar.

In this case the intrarung ordering of spins is antiferromagnetic. Projecting the system on
the subspace excludingparallel orientation of spins within the same rung, and introducing a
new set of spin operators

τ̃+
n = S+

n,1S
−
n,2 , τ̃−

n = S−
n,1S

+
n,2 ,

τ̃ z
n =

1

2
(Sz

n,1 − Sz
n,2) ,

in the second-order with respect toJ2/Jz
⊥ we once again map the initial ladder model onto

the theory of an anisotropic spin1/2 Heisenberg chain (3.48). One can perform the analysis
as discussed above, however the ferromagnetic ordering in terms of the effectiveS = 1/2
chain, atJz

⊥ > 0 corresponds to an interleg ferromagnetic ordering with a phase shift ofπ of
the order parameter along the rung.

The results obtained within the bosonization approach together with the results from the
strong coupling expansion allow to draw the following phase diagram of the ladder with
a longitudinal interleg couplingJz

⊥ (see Fig.3.3). At∆ < 0 the phase diagram consists of
two gapped phases describing respectively long range ordered Néel antiferromagnetic phases
with gapped excitation spectrum and inphase (atJz

⊥ < 0) or antiphase (atJz
⊥ > 0) ordering

of spins within the same rung. The line∆ = 0 marks the transition into theSpin Liquid I
- phase characterized by a gapless excitation spectrum and a power law decay of the spin-
spin correlation functions. The critical indices for the decay of the corresponding spin-spin
correlations in the Spin Liquid I phase areγi ' 1. In the case of strong interleg exchange
|Jz

⊥| À J , further increase of the interleg ferromagnetic exchange∆ leads to the transition
at ∆c ' J/|Jz

⊥| into the phase with ferromagnetically ordered legs. However, in the weak-
coupling case, at|Jz

⊥| ¿ J , an increase of the parameter∆ at givenJz
⊥ leads to the transition

into theSpin Liquid IIat ∆c(1) = |Jz
⊥|/2J . The Spin Liquid II phase is characterized by a
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gapless excitation spectrum and power-law decay of the spin-spin correlation functions with
critical indicesγi ' 2. This transition marks the development of the regime dominated by
intraleg coupling, whereas the interleg longitudinal exchange plays only a rather moderate
role. However, with further increase of the intraleg ferromagnetic exchange, in the vicinity
of the ferromagnetic instability line theSpin Liquid IIphase becomes unstable and the sys-
tem reentres into theSpin Liquid Iphase. This reentrance effect is connected with a sharp
reduction of the bandwidth in the vicinity of the ferromagnetic transition and a subsequent
increase of the potential energy of the interleg coupling. Therefore, just before the transition
into the ferromagnetically ordered phase, the short range interleg fluctuations get stopped,
and as in the case of the strong intrarung coupling, theSpin Liquid I - phase is unstable
toward the transition into the phase with ferromagnetically ordered legs.

However, since the transition into the ferromagnetic phase is a typical finite bandwidth ef-
fect, the parameters determined quantitatively within the bosonization (i.e. infinite band)
approach strongly depend on the way of regularization of the continuum theory on small
distances. Therefore, it is useful to determine the lowest boundary of the ferromagnetic
phase on the phase diagram, starting from the ferromagnetically ordered phase and using the
standard spin-wave analysis (Appendix E). At|Jz

⊥| ¿ J ordinary spin wave calculation in
the subspace ofSz

Tot = N − 1 givesJSW
FM = 2Jε. It is interesting to note, that spin wave

calculation in the subspace ofSz
Tot = N − 2 gives following boundary for ferromagnetic

phase:

JZ
⊥,cr =

J

4 − J4 (3.50)

This formula interpolates between the results of weacly coupled and strongly coupled chains
limits. We believe this simple expression (3.50) gives exact boundary of ferromegnetic phase
for all interchain coupling strengths.

To conclude this subsection we note that the ground state phase diagram of the ferromagnetic
ladder system coupled only by the longitudinal part of the spin-spin exchange interaction
exhibits a rather rich phase diagram which consist of LRO AFM phases, a spin liquid phase
with one gapped and one gapless mode, a spin liquid phase with two gapless modes and a
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phase with ferromagnetically ordered legs.

3.2.2 Chains Coupled by the Transverse Part of the Ladder Exchange

In this subsection we consider the case of two critical Heisenberg chains coupled by a trans-
verse interleg exchange interactionJz

⊥ = 0 andJxy
⊥ 6= 0. The particular aspects of this

limiting case are the following ones:

• The antisymmetric mode is gapped at arbitraryJxy
⊥ 6= 0.

• The low energy properties of the system are determined by the behavior of the sym-
metric field.

• The infrared properties of the symmetric field are determined by the subtle coupling
between the symmetric and antisymmetric modes.

We start our analysis from the limiting case of weakly anisotropicXY chains, coupled by the
weak interleg transverse exchange, assuming|∆|, |J xy

⊥ |/J ¿ 1. At Jxy
⊥ 6= 0 the antisym-

metric mode is gapped and the dual antisymmetric field is ”pinned” with vacuum expectation
value

〈θ−〉 =

{ √
πK−/2 atJxy

⊥ > 0
0 atJxy

⊥ < 0
. (3.51)

Behavior of the symmetric field is governed by the SG Hamiltonian (3.23). The standard RG
analysis gives that the symmetric mode is gapped at

∆ < ∆c1 =
γ

4J
· |J+−| . (3.52)

Therefore at∆ < ∆c1 the excitation spectrum of the system is gapped. The dynamical
generation of a gap in the symmetric mode leads to condensation of the fieldφ+ with a
vacuum expectation value〈φ+〉 = 0. Since the dual component of the antisymmetric field is
”pinned” with vacuum expectation value given by (3.51), the so-called ”disordered” phase27

is realized in the ground state. AtJxy
⊥ > 0, spins on the same rung try to form a singlet

and the ground state corresponds to the state with a dominant tendency of singlet pairs on
each rung. Correlations between spins along the ladder decay exponentially. In the case
of ferromagnetic coupling, atJxy

⊥ < 0 spins on the same rung form a state corresponding
to theSz = 0 component of the triplet (an ”asymmetric triplet” pair) and the ground state
corresponds to the state with an ”asymmetric triplet” pair on each rung. In analogy to the
phases of theS = 1 chain as discused in27 we denote this phase as ”anisotropic large D
phase”.

For∆ ≥ ∆c1 the system is in the phase where the symmetric mode is gapless. Since the anti-
symmetric mode is gapped thealternating partof the spin-spin correlations isexponentially
damped(alternating part of spin-spin correlation functions necessarily involve antisymmet-
ric field, that decays exponentially, since its dual field is ordered). We examine smooth part
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of the in-plane correlations that are given by

〈Sx
1 (r)Sx

2 (0)〉smooth →
=

〈
(cos

√
π

2K+

θ+(r) cos

√
π

2K−
θ−(r) − sin

√
π

2K+

θ+(r) sin

√
π

2K−
θ−(r))

(cos

√
π

2K+

θ+(0) cos

√
π

2K−
θ−(0) + sin

√
π

2K+

θ+(0) sin

√
π

2K−
θ−(0))

〉
(3.53)

Using expectation values from Eq. (3.51)


〈cos
√

π
2K−

θ−〉 = 0 〈sin
√

π
2K−

θ−〉 ' 1 atJxy
⊥ > 0

〈cos
√

π
2K−

θ−〉 ' 1 〈sin
√

π
2K−

θ−〉 = 0 atJxy
⊥ < 0

. (3.54)

and using the fact, that the symmetric mode is gapless, we get the following result for in-
plane correlations:

Kxy
αβ(r) ' r−1/4K∗

+ (3.55)

while the longitudinal correlations decay universally:

Kzz
αβ(r) ' 〈∂xφ+(r)φ+(0)〉 ' 1

r2
. (3.56)

As follows from Eq. (3.55) the lineJxy
⊥ = 0 marks the transition from a regime with fer-

romagnetic interleg order into the regime with antiferromagnetic interleg order. Following
Schulz27 who has discussed a similar phase in the context of the spinS = 1 chain we identify
this phase as aspin liquid XY1phase.

We want now to discuss the phase diagram of model in the vicinity of the single chain fer-
romagnetic instability point∆ = 1, and in particular investigate what happens with gapless
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XY 1 phase. For the moment we will forget about the antisymmetric sector, that is governed
by strongly relevant operator, and concentrate only on the symmetric one. The symmetric
sector is governed by the sine-Gordon model Eq.(3.23). We want to identify Kosterlitz-
Thouless transition line in the symmetric field given byK+ ' 1. For this we have to find
the mechanism renormalizingK+. As we approach ferromagnetic instability pointK in-
creases to infinity, so we need some mechanism that works in opposite direction and drives
Kosterlitz-Thouless transition in the symmetric sector. We remind that we are working in the
vicinity of the point where bandwidth of linear excitations collapses. So our approach can
only have a qualitative nature.∆ → 1, the effective coupling constant behaves as

M+
eff

2πu
' π2KJ+−

2J
∼ 1√

ε

whereε = 1−∆. We can make a rough estimate of the renormalization of the velocity of the
symmetric mode excitationsu+. We write out Euclidean action density for the sin-Gordon
model:

SE[φ(z, z̄)] = ∂zφ(z, z̄)∂z̄φ(z, z̄) +
2M

u
cos

√
8πKφ(z, z̄)] (3.57)

In the spirit of RG to obtain effective action we have to integrate out short wavelength
fluctuations. In the second order of perturbation theory the effective action for sine-Gordon
theory reads:62

Seff [φΛ] = S0[φΛ] + 〈S1[φΛ]〉h
− 1

2

(〈S2
1 [φΛ + h]〉h − 〈S1[φΛ + h]〉2h

)
(3.58)

AboveS0 is free part,S1 interaction term,φΛ are slowly varying fields andh are fast modes.
Averages are to be understood with respect to free part of short wave length fluctuations. For
our further discussions only the last term〈S2

1 [φΛ + h]〉 is important. We will apply ope for
the products of twocosines.

: cos αφ(z, z̄) :: cos αφ(0, 0̄) :=
1

2
|z|α2/2π : cos 2αφ(0, 0) : −1

2
|z|−α2/2π

−α2

2
|z| 4π−α2

2π : ∂φ(0)∂̄φ(0) : −α2

4

[
z

4π−α2

2π

(
∂̄φ(0)

)
2 + z̄

4π−α2

2π

(
∂φ(0)

)2
]

(3.59)

The term: ∂φ(0)∂̄φ(0) : has the form of kinetic energy Eq. (1.5). For our caseα ∼ K and
we obtain following renormalization ofK:

K+ = K
(
1 − λK (J+−/J)2) (3.60)

whereλ is a nonuniversal positive constant of the order of unity. Using the fact that Luttinger
liquid parameter renormalization is inverse of the velocity renormalization (see Eq.(1.48) and
(1.49), strictly speaking they are valid only in lowest order) for velocity renormalization we
obtain:

u+ = u
(
1 + λK (J+−/J)2) (3.61)
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As follows from Eqs. (3.61/3.60) the strong effective transverse coupling reduces the ten-
dency towards ferromagnetic ordering and leads to the transition into the gapped phase at

J+− > J cr
+− ' J(1 −4)

1
4 .

Which follows from the solution ofK+ = K
(
1 − λK (J+−/J)2) = 1.

Equivalently we have
∆c2 ' 1 − λ2(J+−/J)4.

To summarize this subsection we note that the ground state phase diagram of the ferro-
magnetic ladder system coupled by the transverse part of the spin-spin exchange interaction
only also exhibits a rich phase diagram which consist of the ”disordered rung-singlet” and
”anisotropic large D” phases, the easy-plane gapless XY1 phase and the ”stripe” ferromag-
netic phases with dominating intraleg ferromagnetic ordering. The groundstate phase dia-
gram of the two-leg ladder with only transverse coupling between legs is given in Fig.(3.4).

3.2.3 Chains Coupled by the Isotropic Interleg Exchange

In this subsection we consider the weak-coupling ground state phase diagram of the model
(3.1) in the case ofSU(2) invariant interleg exchangeJz

⊥ = Jxy
⊥ =: J⊥.

In this case the behavior of the antisymmetric sector is completely similar to the above con-
sidered case of the ladder with transverse exchange: the antisymmetric field is gapped and
the vacuum expectation value of the dual fieldθ−, depends on the sign of exchange and is
given by Eq. (3.51) after the substitutionJ xy

⊥ → J⊥.

The symmetric field is governed by the effective SG Hamiltonian (3.23) with the bare values
of the model parameters given byK+ andM+

eff

K+ = K

(
1 − J⊥K

2πu

)
,

M+
eff = − 1

πu+

J⊥ (1 + δsign(J⊥)) , (3.62)

(whereδ is a nonuniversal positive number)

The resulting asymmetry of the model is clearly seen:

• at J⊥ > 0, the antiferromagnetic interleg exchange reducesK+ and increasesM+
eff

and therefore supports the tendencies towards development of a gap in the excitation
spectrum

• atJ⊥ < 0, the ferromagnetic interleg exchange increasesK+, while with increasing
|J⊥| the parameterM+

eff ' J⊥ (1 − δ) → 0 ; therefore we expect an enlargement of
the gapless section in this case.

We start our analysis from the limiting case of weakly anisotropicXY chains assuming
|∆|, |J⊥|/J ¿ 1. At ∆ = 0 we haveK = 1 and the system shows a gap in the excitation
spectrum atJ⊥ > 0 and is gapless in the case of ferromagnetic interleg exchangeJ⊥ < 0.



3.3. Conclusions 49

Therefore at∆ = 0, with increasing ferromagnetic interleg exchange (J⊥ < 0, |J⊥| → ∞)
the system continuously evolves into the limit of theS = 1 XY model, which is known to be
gapless.67,68 In the case of antiferromagnetic interleg exchangeJ⊥ > 0 the symmetric mode
is unstable towards the Kosterlitz-Thouless type transition associated with the dynamical
generation of a gap in the excitation spectrum. The weak-coupling RG analysis tells, that at
∆ 6= 0 andJ⊥ > 0 the gaplessXY 1 phase is realized for

∆ > ∆c1 =
J⊥
2J

(1 + δ) , (3.63)

whereas in the case of ferromagnetic interrung exchangeJ⊥ < 0 it is realized for

∆ > ∆′
c1 = −δJ⊥

2J
.

Therefore, from the RG studies we obtain that the gaplessXY 1 phase is stable in the case
of ferromagnetic exchange. AtJ⊥ > 0 it is unstable towards the transition into the gapped
rung-singlet phase. AtJ⊥ < 0 the gaplessXY 1 phase penetrates into the∆ < 0 sector of
the phase diagram. However, sinceM+

eff → 0 with increasing ferromagnetic exchange, at
|J⊥| À J the gapless phase on the antiferromagnetic side (∆ < 0) of the phase diagram
shrinks up to a narrow stripe as|J⊥|/J → ∞.

With ∆ → 1 the gaplessXY 1 phase becomes unstable towards transition into the ferromag-
netically ordered state. Following the route developed before, we find that at∆ = 1 − ε
and antiferromagnetic interleg exchange,J⊥ > 0, the reentrance of the gapped rung-singlet
phase takes place at

∆c2 = 1 − J⊥
4J

+ O
(J⊥

4J

)3/2

. (3.64)

This reentrance behavior of the gap is similar to the reentrance of the gap in symmetric sector
for the case of chains coupled by longitudinal exchange. Here in addition antisymmetric
mode is gapped, thus there are not left any soft modes. In agreement with the quasiclassical
studies,53 we obtain that two almost ferromagnetically ordered chains coupled by an isotropic
interleg exchange are unstable towards formation of the gapped rung-singlet phase atJ⊥ >
J c
⊥ > 0, whereJ c

⊥ → 0 as∆ → 1. However, in contrast to the quasiclassical case,J c2

increases linearly withε in the quantum spin-ladder case.

In the case of ferromagnetic interleg exchange,J⊥ < 0, the gaplessXY 1 phase becomes
unstable towards the transition into the ferromagnetically ordered phase when∆ increases
towards 1. In this case the spin-wave approach (Appendix E) gives that the boundary between
theXY 1 and the ferromagnetic phase is∆ = 1.

We summarize our results considering the phase diagram of the ladder with ferromagnetic
legs and an isotropic interleg exchange in Fig. 3.5.

3.3 Conclusions

We have studied the ground state phase diagram of theS = 1/2 ladder with ferromagneti-
cally interacting legs using the continuum limit bosonization approach. The phase diagrams
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FIGURE 3.5: The ground state phase diagram of the two-leg ladder with an isotropic interleg
coupling.

for the extreme anisotropic interchain coupling cases (Ising andXY interleg exchange) as
well as for theSU(2) symmetric case were obtained. These phase diagrams exhibit a num-
ber of interesting phases, gapped as well as gapless; some of these are familiar from well
known 1D models (rung singlet phase, anisotropic Haldane phase, ferromagnetic and large
D phase), in addition we revealed less conventional phases for ladders: the spin liquid phases
with (i) one gapless and one gapped mode (including the knownXY 1 andXY 2 phases) and
(ii) two gapless modes. We have shown moreover that the gapped rung singlet phase found
semiclassically to appear for an arbitrarily small isotropic antiferromagnetic interaction be-
tween ferromagnetic legs53 continues to exist forS = 1/2 ladders andxy−like interactions
and actually extends to small values of∆.

The neighborhood of the single chain ferromagnetic instability point turned out to be of
particular interest. We investigated the behavior of the system in this regime using the multi-
plicative regularization scheme. This scheme allows to extend the bosonization formalism to
the limit when the bandwidth of the single chain excitations collapses and leads to the result
that upon increasing the strength of ferromagnetism∆ at any moderate fixed longitudinal
interleg interaction a sequence of two phase transitions occurs before the system enters the
final ferromagnetically ordered phase (see Fig. (3.3).
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Summary

In the present work effective field theory description was applied for studying the
low temperature behavior of generalized spin1/2 ladder systems.
Namely two different spin ladder systems were considered. In the first part we studied
the effect of an additional four-spin ring interaction on the ground state phase diagram
of an antiferromagnetic spin ladder. The bosonization- fermionization approach has been
used that allows us to describe the low energy excitations of the model in terms of weakly
interacting massive Majorana fermions. We showed that the ordinary rung singlet phase of
the pure antiferromagnetic ladder undergoes a quantum phase transition to a spontaneously
dimerized phase with increasing ring exchange. Emerging quantum critical point belongs
to the universality class ofSU(2)2 Wess-Zumino model and is described in terms of
massless triplet of Majorana fermions. Due to universality quantum critical line extends
from weak-coupling to strongly coupled ladder limit and moreover, phases in the vicinity
of the critical line are also universal. We connected the above mentioned quantum phase
transition in the ladder system due to additional four-spin exchanges to the quantum phase
transition that takes place at the integrable point of the spin one chain (Takhtajan-Babujan
point). From bosonization as well as from numerical works it was known that effective
S = 1 spins (objects that exhibit well defined string order parameter) are formed across
the ladder diagonals in the antiferromagnetically coupled ladder. That corresponds to the
dimerization pattern emerging after the crossing the critical line to that of the valence bond
solid type, i.e. chains are dimerized with nonzero relative dimerization.
Thermodynamically both phases of the ladder system – rung singlet phase and sponta-
neously dimerized phase are identical, since both are gapped phases. Dynamical behavior of
the two phases are completely different. Using mapping to 2D Ising variables we calculated
structure factors and found that magnons disappear from the low energy excitation spectrum
with increasing ring interaction. Instead the low energy spectrum is exhausted by the
continuum of incoherent dimerization kinks.
The temperature dependence of various response functions were calculated using Matsubara
imaginary time formalism. Analytically continuing temperature Green’s functions to real
frequencies and extracting the imaginary parts we obtained structure factors in frequency
momentum space that is directly connected to experimentally measurable quantity, namely
scattering cross section of neutrons. With Matsubara formalism we also calculated spin
specific heat, static susceptibility as well as the nuclear magnetic resonance relaxation
rate in the gapped phases. In addition conformal mapping of an infinite plane to a finite
stripe was used for obtaining the temperature dependencies of the dynamical magnetic
susceptibilities at the criticalities.
In the second part of the thesis we analyzed the ground state phase diagram of two spin1/2
ferromagnetic chains coupled by the exchange interactions of an arbitrary sign. In particular
the effects of anisotropies both in intra and interchain interactions on the ground state phase
diagram were investigated. All known phases for the spin one chain with additional single
ion anisotropy as well as less conventional phases were obtained for the model. Using the
peculiar property of the sine-Gordon model, namely that relevancy criterion determined
within the one loop R.G. becomes exact, we determined phase diagram at weak couplings
in case of chains coupled only withZ part of interaction exactly. Combining exact results,
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available for the single chain, with linearized expressions for interchain interaction the
bosonization formalism was extended to approach the single chain ferromagnetic instability
point. In addition we carried out spin wave calculations and large rung coupling expansion
for determining the exact boundary of ferromagnetic phase. Superimposing the phase
diagram of the chains coupled only byZ part of interaction with the phase diagram of
the chains coupled only byXY part of interaction we identified Haldane phase emerging
for the SU(2) symmetrically coupled ladder as Néel ordered rung triplets diluted with
zero components of the triplets. We have shown moreover that the gapped rung singlet
phase found semiclassically to appear for an arbitrarily small isotropic antiferromagnetic
interaction between ferromagnetic legs exists also forS = 1/2 ladders and it extends down
to small values of∆. Ground state spin correlation functions were calculated throughout the
phase diagram.
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APPENDIX A

Bosonization Formalism

A.1 Bosonization Dictionary for Antiferromagnetic XXZ
Spin Chain

We start from antiferromagnetic S=1/2 quantumXY chain which is given by the following
lattice Hamiltonian:

H = |J |
N−1∑
j=1

Sx
j Sx

j+1 + Sy
j Sy

j+1 (A.1)

and introduce Jordan-Wigner transformation from spins to spinless fermions:

S−
n = (−1)n cne

iπ
∑n−1

j=1 c+j cj

Sz
n = c+

n cn − 1

2
(A.2)

Alternating factor(−1)n is implemented for convenience, to obtain Hamiltonian for free
fermions with negative hopping:

H = −|J |
2

N−1∑
j=1

c+
j cj+1 + c+

j+1cj (A.3)

K F K

{

Λ

{

Λ

F−K

E(k)Ψ ΨL R

FIGURE A.1: Linearization of the spectrum of free lattice fermions

After passing to Fourier components we diagonalize Hamiltonian to obtain:

H = −|J |
π∑

k=−π

cos(k)c+
k ck (A.4)
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Now we pass to the continuum limit by linearizing of thecos spectrum around the fermi
points. This step already tells us that if only electrons near the fermi points are involved
in the physics of the model we can approximate around those points spectrum with straight
lines. It is obvious that in this way we can only try to mimic the low energy behavior of
the system. Introducing left and right moving fermions Fig. (A.1) we decompose fermion
annihilation operator in the following way (for simplicity we have set lattice spacing to 1):

c(x) = inψR(x) + (−i)nψL(x)

(x = na, anda = 1) The low energy limit of the Hamiltonian (A.4) will look:

HΛ = −ivF

∫
dx[ψ+

R(x)∂xψR(x) − ψ+
L (x)∂xψL(x)] (A.5)

where indexΛ stands for the momentum cutoff, meaning that we are dealing with effective
field theory. As wee see from Fig. (A.1) the ground state of model is equivalent to the filled
Dirac vacuum, where all states belowEF are occupied. The presence of infinite vacuum
is crucial to guarantee existence of anomalous commutators of the chiral density operators,
providing mathematical background of the fermi-bose equivalence in one dimension. We11

bosonize left and right fermions:

ψR(x) =
1√
2π

ei
√

4πΦR(x), ψL(x)
1√
2π

e−i
√

4πΦL(x) (A.6)

whereΦR(L)(x) is right (left) chiral bosonic field

ΦL(x) + ΦR(x) = φ(x), ΦL(x) − ΦR(x) = θ(x)

For chiral components of the bosonic field we have the following commutation relations:

[ΦR(x), ΦL(y)] =
i

4

[ΦR(x), ΦR(y)] =
i

4
sign(x − y)

[ΦL(x), ΦL(y)] = − i

4
sign(x − y) (A.7)

One can check that the above commutation rules guarantee fulfillment of correct fermionic
commutation relations. It is straightforward to bosonizeSz, since it is a local object in
fermionic representation. Carrying out simple opes for chiral vertexes we get:

Sz
j =

1√
π

∂xφ(x) +
(−1)j

π
sin

√
4πφ(x) (A.8)

Bosonized form of the Jordan-Wigner statistical factor reads:

n−1∑
j=1

c+
j cj =

n − 1

2
+

∫ x−1 1√
π

∂x′φ(x′)dx′ (A.9)
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(−1)nS−
n =

1

2

(
inei

√
4πΦR(x) + (−i)ne−i

√
4πΦL(x)

)
[
e

iπ
(

n−1
2

+
∫ x−1 1√

π
∂x′φ(x′)

)
+ h.c.

]

=
1

2

(
inei

√
4πΦR(x) + (−i)ne−i

√
4πΦL(x)

)
[
ei

√
πφ(x−1)(i)n−1 + e−i

√
πφ(x−1)(−i)n−1

]
(A.10)

Using (A.7):

[ΦR(x), φ(x − 1)] = [ΦR(x), ΦR(x − 1) + ΦL(x − 1)] =
i

2

[ΦL(x), φ(x − 1)] = [ΦL(x), ΦR(x − 1) + ΦL(x − 1)] = − i

2

and Baker-Hausdorff formulaeAeB = eA+Be
1
2
[A,B] we get:

(−1)nS−
n =

1

2
(−1)ne3i

√
πΦR+i

√
πΦL

+
1

2
e−i

√
πθ +

1

2
(−1)ne−3i

√
πΦR−i

√
πΦL

+
1

2
e−i

√
πθ

= e−i
√

πθ +
1

2
(−1)n

(
ei2

√
πφ−i

√
πθ + e−i2

√
πφ−i

√
πθ

)
= e−i

√
πθ

+
1

2
(−1)ne−i

√
πθ

(
ei2

√
πφe−

1
2
[i2

√
πφ,−i

√
πθ]

+ e−i2
√

πφe−
1
2
[−i2

√
πφ,−i

√
πθ]

)
= e−i

√
πθ

+
1

2
(−1)ne−i

√
πθ

(
ei2

√
πφ(−i) + (e−i2

√
πφi

)
= e−i

√
πθ + (−1)ne−i

√
πθ sin

√
4πφ (A.11)

There is a bit of ambiguity in the above derivation. Namely, above we used regularized
on-site commutation rule:

[φ(x), θ(x)] = i/2 (A.12)

Had we used instead
[φ(x), θ(x)] → [φ(x), θ(x + a)] = i (A.13)

we would have obtained:

S− = (−1)ne−i
√

πθ + e−i
√

πθ cos
√

4πφ (A.14)

These two forms are equivalent to each other, application of each of them is a matter of
convenience.
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This completes bosonization dictionary of spin one half operators in case whenSz part of
interaction is zero. If we add bosonizedJzSzSz interaction we will generate (for|Jz| <
Jxy) irrelevant operators. Although irrelevant operator can not modify physical behavior of
the system (infrared behavior) it modifies nonuniversal constants and namely constants in
bosonization expressions for spin operators will change. This change is uncontrollable from
field theory point, and comparison to nonperturbative results whenever possible should be
done. The spin chain is solvable by Bethe ansatz for arbitraryJz, Jxy ≡ |J |. Comparison
with Bethe ansatz solution gives the following bosonization expressions:

Sx
j ' (−1)j c√

2π
: cos

√
π

K
θ(x) :

+
ib√
2π

: sin
√

4πKφ(x) sin

√
π

K
θ(x) :

Sy
j ' (−1)j c√

2π
: sin

√
π

K
θ(x) :

+
ib√
2π

: sin
√

4πKφ(x) cos

√
π

K
θ(x) :

Sz
j =

√
K

π
∂xφ(x)

+ (−1)j a

π
: sin

√
4πKφ(x) : (A.15)

where the quantity

K =
π

2
(
π − arccos Jz

Jxy

) (A.16)

is the one determined from the comparison with Bethe ansatz12 (recently it became possible
to determine all the nonuniversal constants appearing in (A.15) by comparing to the scaling
limit of exactly solvableXY Z chain and using conjectured exact expectation values for
vertex operators in the sin-Gordon model63,64).

A.2 Dimerization Operator

Now we derive the continuum limit expression for the dimerization operator, that is for the
staggered part of the spin energy density

ε(x) = (−1)jSjSj+1 (A.17)

To get continuum version of dimerization operator we have to carry out ope of smooth part
of spin operator with its staggered part.

Sz(x) = a

√
K

π
∂xφ(x) +

(−1)j

π
: sin

√
4πKφ(x) (A.18)
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Carrying out the following ope:

∂xφ(x + a) : sin
√

4πKφ(x) :∼
√

K√
πa

cos
√

4πKφ (A.19)

and

: cos
√

4πKφei
√

π/Kθ :: e−i
√

π/Kθ :∼ cos
√

4πKφ + ... (A.20)

where dots stand for less singular terms. We conclude, that continuum expression for dimer-
ization operator reads:

ε(x) ∼ cos
√

4πKφ + less singular terms (A.21)
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APPENDIX B

Some Words on Majorana Fermions in 2D

B.1 Green’s Functions for Majorana Fermions

Lagrangian for Majorana fermions reads:21

ψ̄(iρα∂α − m)ψ (B.1)

Whereψ̄ = ψ†ρ0 = ψT ρ0 for Majoranas and we choose Majorana basis for Dirac matrices
in 2D:

ρ0 = τ2 =

(
0 −i
i 0

)
, ρ1 = iτ1 =

(
0 i
i 0

)
(B.2)

Whereτ -s are Pauli matrices. We represent Majorana spinor in terms of its chiral compo-
nents:

ψ =

(
ψL

ψR

)

Rewritten in chiral components Majorana Lagrangian takes form:

i(ψL∂tψL + ψR∂tψR) + iv(ψL∂xψL − ψR∂xψR) + imψRψL − imψLψR (B.3)

The partition function for free Majoranas at finite temperatureT = 1/β may be represented
as Berezin path integral:

Z =

∫
d[ψL]d[ψR]e−

∫ β
0 dτ

∫ ∞
−∞ dx[ψL∂τ ψL+ψR∂τ ψR+iv(ψL∂xψL−ψR∂xψR)+imψRψL−imψLψR] (B.4)

Grasman variables are assumed antiperiodic forτ → τ + β. Quadratic form in the exponent
can be written as a matrix:

S =

∫ β

0

dτ

∫ ∞

−∞
dx(ψL, ψR)

(
∂τ + iv∂x −im

im ∂τ − iv∂x

)(
ψL

ψR

)
(B.5)

Introducing finite temperature Fourier components of left and right fields:

ψL(x, τ) = T
1
2

∑
wn

∫
dk√
2π

ei(wnτ−kx)ψL(k, wn)

ψR(x, τ) = T
1
2

∑
wn

∫
dk√
2π

ei(wnτ−kx)ψR(k, wn) (B.6)
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and using the following identities

1

2π

∫ ∞

−∞
dxei(kx+k′x) = δ(k + k′)

T

∫ β

0

dτei(wn+w′
n)τ = δwn,−w′

n
(B.7)

Eq. (B.5) will take form:

S =

∫
dk

∑
wn

(ψL(k, wn), ψR(k, wn))

(
iwn + vk −im

im iwn − vk

)(
ψL(−k,−wn)
ψR(−k,−wn)

)
(B.8)

The Green’s functions may be read off as matrix elements of the matrixG(k, wn) whose
inverse is:

G−1(k, wn) =

( −iwn − vk im
−im −iwn + vk

)
(B.9)

From above we get:

GLL(k, wn) = 〈ψL(k, wn)ψL(−k,−wn)〉 = − iwn − vk

w2
n + v2k2 + m2

GRR(k, wn) = 〈ψR(k, wn)ψR(−k,−wn)〉 = − iwn + vk

w2
n + v2k2 + m2

GLR(k, wn) = 〈ψL(k, wn)ψR(−k,−wn)〉 =
im

w2
n + v2k2 + m2

GRL(k, wn) = 〈ψR(k, wn)ψL(−k,−wn)〉 = − im

w2
n + v2k2 + m2

(B.10)

We can write above in compact matrix notations:

Ĝ(k, wn) =

(
GRR(k, wn), GRL(k, wn)
GLR(k, wn), GLL(k, wn)

)
= −iwnI + vkτ3 − mτ2

w2
n + v2k2 + m2

(B.11)

(I stands for unit two by two matrix) We note, that because of the mass of Majoranas that
couples left and right sectors so called anomalous Green’s functions appeared. Mass term
brakes down discreteZ2 symmetry(ψL, ψR) → (ψL,−ψR) enjoyed by massless theory. This
effect rediscovers itself in spin ladders where hidden order parameter is associated with this
discrete symmetry breaking.

B.2 One Loop Mass Renormalization

In quantum field theories mass corrections due to the interactions follow from the examining
the dressed propagator. As a result the first order mass renormalization is expressed by the
first order self-energy function which is given by the bubble diagrams, the only first order
corrections to the propagator Fig. (B.1).

m = m0 + Σ1
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R a a
LLa R a

Rb bL

FIGURE B.1: First order correction to Majorana massa 6= b

Σ1 is one-loop self energy correction that could be expressed as:

Σ1 =
g

2
4E(0, 0) (B.12)

where

4E(x, τ) = tr

∫
dkdwn

(2π)2

ei(wnτ−k1x)(wnρ0 − k1ρ1 + m0)

k2 + m2
0

(B.13)

(herewn is Matsubara frequencies at zero temperature. In our notations it is related to zero
component of Euclidean momentum ask0 = −wn. Using Euclidean momentum renders
above expression explicitly covariant). Because ultraviolet part of the theory is cut off by
itrachain scaleΛ, 4E(0) is finite, and given by:

4E(0) =
m0

π

∫ Λ

0

kdk

k2 + m2
0

' m0

π
ln

Λ

m0

(B.14)

From above we conclude that first order mass renormalization for the theory of massive
Majoranas interacting with four-fermi interaction is given by:

Σ1 =
gm0

2
ln

Λ

m0

(B.15)

B.3 Mapping to Ising Variables

This appendix is based on chapter 12 of Ref. (62). It is well known fact that two dimensional
classical Ising model on a square lattice near critical line (in the parameter plane: temperature
v coupling constant) in so calledτ -continuum limit (when rows are squeezed) could be
reduced to the one dimensional quantum Ising chain in a transverse magnetic field.70

H = −J
N∑

j=1

(
σz

nσz
n+1 + hσx

n

)
(B.16)

(Starting two dimensional Ising variables have two labels, for rows and columns respec-
tively. In reduction to one dimensional chain row label becomes continuous imaginary time,
whereas column label is just site index. So for example correlation function for two Ising
spins situated at different rows and columns will translate into the correlation function of the
quantum chain Ising spins at different times. Roughly we can writeσm,n → σn(τ), where
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τ = ma anda → 0 corresponds to squeezing the rows. This reduction is a particular exam-
ple of a general equivalence of the statistical classical models at a finite temperature and their
quantum counterparts at zero temperature, but in one less spatial dimension). The transverse
magnetic field plays the role of a temperature in the original two dimensional Ising lattice.
For h = 0 system is equivalent to the classical Ising chain with the long range order (fully
polarized state). It is clear thath tries to reduce the long range order and at a sufficiently
large magnetic field system indeed has zero magnetization on theZ axes. This means, that
for some value ofh the quantum phase transition takes place. In analogy with the two dimen-
sional case there exists a nice argument involving the duality transformation for determining
the critical point. The dual spins are defined on the dual chain (shifted chain by the half of a
lattice constant with respect to the original one). The duality transformation reads:

µz
n+1/2 =

n∏
j=1

σx
j , µx

n+1/2 = σz
nσ

z
n+1 (B.17)

with the inverse transformation:

σz
n =

n−1∏
j=0

µx
j+1/2, σx

n = µz
n−1/2µ

z
n+1/2 (B.18)

If we apply dual spin on the ground state configuration forh = 0 we get:

µz
n+1/2 |+ + + + + . . . + ++〉 = |− − −−− + + . . . + ++〉 (B.19)

thus dual spins create kinks in the ground state, because of this property they are called
disorder operators. Under the duality transformation the analog of Kramers-Wannier duality
holds:

H[σ, h] = hH[µ, 1/h] (B.20)

From above it is clear, that critical point is necessarily self-duality point,hc = 1. Thus we
have the following phase diagram:

〈σz〉 6= 0, 〈µz〉 = 0 h < hc ordered phase
〈σz〉 = 0, 〈µz〉 6= 0 h > hc disordered phase

(B.21)

Now we want to pass to one dimensional lattice fermions by Jordan-Wigner transformation:

σx
n = 2a+

n an − 1

σz
n = (−1)n exp

[
iπ

n−1∑
j=1

a+
j aj

]
(a+

n + an) (B.22)

It is easily checked, that correct fermionic anticommutation relations hold:{
an, a

+
m

}
= δn,m {an, am} = 0 (B.23)

Under this transformation quantum Ising chain is mapped to the following Hamiltonian:

−
∑

n

(
Jσz

nσ
z
n+1 + hJσx

n

) →
∑

n

[
J(a+

n − an)(a+
n+1 + an+1) − hJ(a+

n − an)(a+
n + an)

]
(B.24)
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Introducing two independent real fermions (Majoranas)

ζn =
a+

n + an√
2

, ηn = −i
a+

n − an√
2

{ζn, ζm} = {ηn, ηm} = δn,m, {ηn, ζm} = 0 (B.25)

Hamiltonian will take the following form:

H =
i

2

∑
n

[Jηn(ζn+1 − ζn) − J(h − 1)ηnζn] (B.26)

Assuming thath ∼ 1, so that we are close to criticality we take the continuum limit of the
above Hamiltonian:

a → 0, J → ∞, Ja = v = const, 2J(h − 1) = m

ζn → √
aζ(x), ηn → √

aη(x)

{ζ(x), ζ(y)} = {η(x), η(y)} = δ(x − y), {η(x), ζ(y)} = 0 (B.27)

In continuum limit the model Hamiltonian will look:

H =

∫
dx[ivη(x)∂xζ(x) − imη(x)ζ(x)] (B.28)

Finally performing chiral rotation:

ψR = (η − ζ)/
√

2, ψL = (η + ζ)/
√

2 (B.29)

Hamiltonian in left right chiral components will take form:

HMajorana =

∫
dx

[
iv

2
(ψL∂xψL − ψR∂xψR) − imψRψL

]
(B.30)

with m ∼ (T − Tc)/Tc. Duality transformationψR → −ψR, ψL → ψL effectively inverses
sign of the mass. This corresponds to order disorder transformation in Ising variables.

ψR → −ψR, ψL → ψL induces m → −m which is equivalent to σ ¿ µ (B.31)

Now we want to use this equivalence to derive Ising variables representation of staggered
magnetization and dimerization operators of the ladder system.62 Using bosonization formu-
las Eq. (A.15) and (A.21) atK = 0.5 we bosonize total and relative staggered magnetization
and dimerization operators of the two leg ladder:

n+
x ∼ cos

√
πθ+ cos

√
πθ−, n−

x ∼ sin
√

πθ+ sin
√

πθ−
n+

y ∼ sin
√

πθ+ cos
√

πθ−, n−
y ∼ cos

√
πθ+ sin

√
πθ−

n+
z ∼ sin

√
πφ+ cos

√
πφ−, n−

z ∼ cos
√

πφ+ sin
√

πφ−
ε+ ∼ cos

√
πφ+ cos

√
πφ−, ε− ∼ sin

√
πφ+ sin

√
πφ− (B.32)

First we neglect marginal terms coupling symmetric and antisymmetric sectors. Then our
Hamiltonian is decoupled sum of two sectors. We will derive Ising variables representa-
tion only for symmetric sector, for antisymmetric sector analogous expressions hold. Since
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symmetric filed is equivalent to two degenerate Majoranas we consider two degenerate Ising
models. To be mathematically rigorous we note, that the doublet of identical critical Ising
copies is not equivalent to the CFT of free massless Dirac fermion since the two copies of
Majoranas are not independent, but satisfy the same boundary conditions. On the other hand
Dirac field can be bosonized using free massless scalar field of fixed compactification radius,
in contrast two decoupled Ising models are described by a Bose field living on the orbifold
line with the same radius.16,17 Nonetheless as far as the bulk properties of the model under
consideration are conserned this subtelty does not manifest itself and ’bosonization’ of Ising
variables in terms of massless scalar field can be safely applied.15 At criticality 4 products
of Ising variables

σ1σ2, µ1µ2, σ1µ2 and µ1σ2

have the same scaling dimension1/4. In symmetric sector there are 4 operators with the
same scaling dimension1/4:

cos
√

πφ+, sin
√

πφ+, cos
√

πθ+ and sin
√

πθ+

Therefore we expect that between these two groups of operators some correspondence should
hold. At J⊥ > 0 (m > 0) in Eq. (2.4)

〈
cos

√
4πφ+

〉
= 1, that meansφ+ =

√
πn implying

that 〈
cos

√
πφ+

〉 6= 0,
〈
sin

√
πφ+

〉
= 0 (B.33)

at the same time, sincem > 0 we are in disordered phase of two equivalent Ising copies:

〈σ1〉 = 〈σ2〉 = 0, 〈µ1〉 = 〈µ2〉 6= 0

If we invert sign toJ⊥, then in Eq. (2.4)
〈
cos

√
4πφ+

〉
= −1, that meansφ+ = (

√
π+1/2)n,

implying 〈
cos

√
πφ+

〉
= 0,

〈
sin

√
πφ+

〉 6= 0 (B.34)

but at the same time two Ising copies are in ordered phase:

〈σ1〉 = 〈σ2〉 6= 0, 〈µ1〉 = 〈µ2〉 = 0

From above we can write following correspondence:

σ1σ2 ∼ sin
√

πφ+, µ1µ2 ∼ cos
√

πφ+ (B.35)

To obtain Ising variables representation of vertex operators involving dual symmetric field
we make duality transformation in symmetric sector:

φ+ ↔ θ+ by φ+
L → φ+

L , φ+
R → −φ+

R

Under the duality transformation kinetic part of Hamiltonian is invariant, but

cos
√

4πφ+ → cos
√

4πθ+

from Eqs. (2.6)-(2.8) we conclude that this duality transformation is equivalent of making
the duality transformation only on the first or the second Majorana copy e.g.:

ψ1
R → ψ1

R, ψ1
L → ψ1

L, ψ2
R → −ψ2

R, ψ2
L → ψ2

L,
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or in Ising variablesσ2 ↔ µ2 This gives following identifications:

σ1µ2 ∼ sin
√

πθ+, µ1σ2 ∼ cos
√

πθ+ (B.36)

Analogical identifications will hold for antisymmetric field:

σ3σ ∼ sin
√

πφ−, µ3µ ∼ cos
√

πφ− (B.37)

and for dual field (here we can choose duality transformation on the first Ising copyσ3 ↔
µ3):

µ3σ ∼ sin
√

πθ−, σ3µ ∼ cos
√

πθ− (B.38)

Using identification rules (B.35),(B.36), (B.37), and(B.38) and Eq. (B.32) we come to de-
sired result Eqs. (2.20) and (2.21).62
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APPENDIX C

Response Functions, Temperature Dependencies

C.1 Dynamical Magnetic Susceptibility for Luttinger Liq-
uids

Dynamical susceptibility will be evaluated by general methods of conformal field theory
valid for Luttinger liquids following Schulz and Bourbunais.71 Neutron’s differential cross
section at energy transferw and wave vectorq is proportional to the imaginary part of the
Fourier image of the dynamical spin-spin correlation function.69

dσ(w, q)

dΩ
∼ 1

1 − e−w/T
ImDR(w, q) (C.1)

In case of theory enjoying conformal symmetry thermodynamic Green’s functions can be
determined from conformal mapping of the infinite complex plane onto the cylinder. We will
show general calculations valid for arbitrary spinfull operators. General spinfull correlation
function at zero temperature has the form.

1

(x + vt)24(x − vt)24̄ (C.2)

where4 and4̄ are left and right or analytic and antianalytic conformal weights.

o

oo

− +o o

−      

L

w
z

oo−      

+

o

oo

oo+

τv

x

FIGURE C.1: Logarithmic transformation of the complex plane onto the strip with periodic
condition (cylinder)

First step is to go to the Euclidean formalism by introducing imaginary time byt = −iτ .
Euclidean formalism is tightly related with the finite temperature Matsubara formalism. We
remind, that in Matsubara formalism we sacrifice with time dynamics to account for non
zero temperature statistical equilibrium effects. The imaginary time in Matsubara formalism
runs from0 to the inverse temperature. Thus to go from the Euclidean zero temperature
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formalism to Matsubara finite temperature formalism we have to compactify the imaginary
time. That is we have to translate our theory defined on the infinite complexz plane to the
complex cylinder (stripe with periodic boundary conditions in imaginary time direction) with
circumferenceL = v/T . Fortunately such transformation exists, and moreover belongs to
the conformal transformations. Thus in theories enjoying conformal symmetries all correla-
tion functions calculated with respect to ground state will change according to general rules
of conformal transformation. Let’s demonstrate the transformation of correlation function
under conformal mapping on example of two point exponential correlation function(1.30).
Conformal transformation that maps infinitez plane onto the cylinderw of circumferenceL
along the imaginary axes, and infinitely extended along its real part looks:

w(z) =
L

2π
ln z (C.3)

From equation (1.30) we see that since correlation function is expressed in terms of Green’s
function of free bose field that is at the same time Green’s function of Laplace equation,62

all we need to know is how does the latter transform under mapping (C.3). For this we will
use the following statement from complex analyses saying that Green’s function of Laplace
equation on any surfaceA is connected with Green’s function of Laplace equation on infinite
plane by the following formula:

G(w1, w2) = − 1

2π
ln |z(w1) − z(w2)| + 1

4π
ln |∂w1z(w1)∂w2z(w2)| (C.4)

(wherez are complex coordinate on infinite plane, andw ∈ A) In case of mapping onto
the cylinderz(w) = e2πw/L is the inverse of (C.3) and for the Green’s function of Laplace
equation on the cylinder we obtain:

G(w1, w2) = − 1

2π
ln |e2πw1/L − e2πw2/L| + 1

4π
ln

(
2π

L

)2

|e2πw1/Le2πw2/L| (C.5)

Plugging this Green’s function in the following correlation function we get:〈
eiαφ(w1,w̄1)e−iαφ(w2,w̄2)

〉
= eα2G(w1,w2)

=

((
2π

L

)2
1

|e2πw1/L − e2πw2/L|2 |e
2π(w1+w2)/L|

)α2

4π

=

((
2π

L

)2
1

(e2πw1/L − e2πw2/L)(e2πw̄1/L − e2πw̄2/L)

(
e2π(w1+w2)/Le2π(w̄1+w̄2)/L

)1/2

)α2

4π

=

(
2π

L

eπ(w1+w2)/L

e2πw1/ − e2πw2/L

)24 (
2π

L

eπ(w̄1+w̄2)/L

e2πw̄1/ − e2πw̄2/L

)24̄

=

(
π

L

1

sinh π
L
(w1 − w2)

)24 (
π

L

1

sinh π
L
(w̄1 − w̄2)

)24̄
(C.6)

where we remind for our case4 = 4̄ = α2

8π
. The above formula is applicable to general

correlation functions involving operators behaving covariantly under conformal mappings.19
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From now on for real and imaginary parts ofw we will use the same notations as that forz,
namelyx andvτ , that should not cause confusion. So we can write thermodynamic Green’s
function for any operator with conformal weights(4, 4̄)(restoringL = v/T )

D(τ, x) =
(πT/v)2(4+4̄)

[sinh πT
v

(x − ivτ)]24[sinh πT
v

(x + ivτ)]24̄
(C.7)

It satisfies general requirements, for bosonic operators it is invariant under the shiftτ →
τ+T−1, while for fermionic ones, i.e. for operators with half-odd integer spin it changes sign.
(This could be checked simply observing that4−4̄ = N

2
whereN is even (odd) integer for

bosonic (fermionic) case). We need to calculate fourier transform of thermodynamic Green’s
function inx as well asτ .

D(k, wn) =

∫ T−1

0

dτ

∫ ∞

−∞
dxeiwnτe−ikx (πT/v)2(4+4̄)

[sinh πT
v

(x − ivτ)]24[sinh πT
v

(x + ivτ)]24̄
(C.8)

At the end of calculation we have to analytically continue from the set of discrete imaginary
points on frequency complex plane to the real axes:

iwn → w + iδ (C.9)

to obtain retarded real space-time Green’s function. For definiteness let’s assume first that
k > 0 in Eq. (C.8). Then we can integrate byx using branch cut as shown on the Fig. C.2.
Using Jordan’s lemma for this case we can bend integration contour over the imaginary axes.
Integration part involving infinitesimally small circle around first branch point in the upper
complex semi-plane vanishes and integral is convergent if4 < 1/2, and4̄ < 1/2. For spin
chains where4 + 4̄ = K (K is a Luttinger liquid parameter) the above restriction means
that we are in the repulsive regime, i.e. on antiferromagnetic side of anisotropy. This method
thus is inapplicable for ferromagnetic chains. Integral has zero contribution from curvesΓ1

andΓ2, so we have to evaluate contributions coming from contours adjacent toIm(x) axe.
Denotingx− ivτ = iy on theab line on thecd line it will acquire phaseiye2πi. Plugging this
into the integration along theab andcd and introducing real parameterr = y + vτ we get
for τ < 1

2T
where first branch point in upper semi-plane comes from

[
sinh πT

v
(x − ivτ ]

]−24

after the integration overx we get:

D(τ, q)|τ<(2T )−1 → −
(∫ τ

∞
idr

e−rk

[sinh πT
v

(ir − ivτ)]24[sinh πT
v

(ir + ivτ)]24̄

+

∫ ∞

τ

idr
e−4πi4e−rk

[sinh πT
v

(ir − ivτ)]24[sinh πT
v

(ir + ivτ)]24̄

)
(C.10)

Repeating the same calculation forτ > (2T )−1 when the branch point of secondsinh be-
comes the lowest one in the upper semi plane and gathering everything together we get:
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Im(x)

i

−i

i v(− +1/T)τ

i v( −1/T)τ

τv

vτ

d a

c b

1

−
Re(x)

+

Γ2Γ

FIGURE C.2: Bending of the contour fork > 0.

D(k, wn) =

−2 sin(2π4)

∫ (2T )−1

0

dτ

∫ ∞

|vτ |
dreiwnτe−kr e−2πi4(πT/v)2(4+4̄)

[sinh πT
v

(ir − ivτ)]24[sinh πT
v

(ir + ivτ)]24̄

+2 sin(2π4̄)

∫ T−1

(2T )−1

dτ

∫ ∞

|v(T−1−τ)|
dreiwnτe−kr e−2πi4̄(πT/v)2(4+4̄)

[sinh πT
v

(ir − ivτ)]24[sinh πT
v

(ir + ivτ)]24̄

(C.11)

wn represent Matsubara frequencies:

wn =

{
2nπT−1 if 4− 4̄ is integer
(2n + 1)πT−1 if 4− 4̄ is half-integer

In the second term of (C.11) we make shift of imaginary timeτ → τ −T−1. Under this shift
bosonic Matsubara imaginary time Green’s function as well aseiwnτ remain unchanged,
while for fermionic case both change sign, soD(k, wn) will remain unaffected for both
cases. Moreover, since the conformal spin of a physically measurable quantity should be
half integer we see, thatsin(2π4)e−2πi4 = sin(2π4̄)e−2πi4̄ holds as for bosonic so for
fermionic cases. From above considerations we get:

D(k, wn) =

−2 sin(2π4̄)

∫ (2T )−1

−(2T )−1

dτ

∫ ∞

|vτ |
dreiwnτe−kr e−2πi4̄(πT/v)2(4+4̄)

[sinh πT
v

(ir − ivτ)]24[sinh πT
v

(ir + ivτ)]24̄

(C.12)

Now we make approximation, assuming low enough temperature to extend the integration
in τ to infinities. Extension of integration domain to infinities does not alter the result sig-
nificantly, since the dominant contribution comes from smallτ region because ofe−kr factor.
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Thus the above approximation is exponentially correct.

D(k, wn) =

−2 sin(2π4̄)

∫ ∞

−(∞)

dτ

∫ ∞

|vτ |
dreiwnτe−kr e−2πi4̄(πT/v)2(4+4̄)

[sinh πT
v

(ir − ivτ)]24[sinh πT
v

(ir + ivτ)]24̄

(C.13)

τ Z

W

v

r

FIGURE C.3: Change of integration variables.

Passing to new coordinatesZ = r + vτ andW = r − vτ we get:

D(k, wn) =

−sin(2π4̄)

v

∫ ∞

0

dZ

∫ ∞

0

dWeiwn(Z−W )/2 e−k(Z+W )/2(πT/v)2(4+4̄)

[sinh πT
v

(iW )]24[sinh πT
v

(−iZ)]24̄

= −sin(2π4̄)

v

∫ ∞

0

dZ

∫ ∞

0

dW
e−W ( vk+iwn

2v
)e−Z( vk−iwn

2v
)(πT/v)2(4+4̄)

[sinh πT
v

(iW )]24[sinh πT
v

(−iZ)]24̄
(C.14)

Using table integral from Gradstein-Ryzhyk (3.312):∫ ∞

0

dX
e−µXeX(1−ν)/2β

[sinh(X/2β)]1−ν
= 21−νβB(βµ, ν) (C.15)

whereB is Euler’s Beta function, and making the following identification:

1 − ν =

{
24̄ for Z
24 for W

1

2β
=

{ −iπT/v for Z
iπT/v for W

µ =

{
(vk − iwn − 4iπT 4̄)/2v for Z
(vk + iwn + 4iπT4)/2v for W
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We get:

D(k, wn) = −sin(2π4̄)

v

(
2πT

v

)2(4+4̄−1)

B(4−i
vk + iwn

4πT
, 1−24)B(4̄+i

vk − iwn

4πT
, 1−24̄)

(C.16)
analytically continuing to real frequenciesiwn → w + iδ (and forgetting for the moment
aboutδ → 0+) we arrive at following beautiful expression first obtained by Schulz and
Bourbunnais:

D(R)(k, w) = −sin(2π4̄)

v

(
2πT

v

)2(4+4̄−1)

B(4−i
w + vk

4πT
, 1−24)B(4̄−i

w − vk

4πT
, 1−24̄)

(C.17)
Expression (C.15) forB function allows to study zero temperature limit of expression (C.17).

D(R)(k, w)|T=0 = − sin(2π4)

v2(4+4̄)+1
Γ(1− 24)Γ(1− 24̄)[vk− (w + iδ)]4−1[vk + (w + iδ)]4̄−1

(C.18)
For the spinless operators for imaginary part of the above expression we get:

ImD(R)(k, w)|T=0 ' sign(w)
θ(w2 − v2k2) sin[π(1 −4)]

|w2 − v2k2|1−4 (C.19)

Let’s apply above formulas to the structure factor for spin-spin correlation function for spin
1/2 chain in the Luttinger liquid regime. The structure factor atk = 0 (for Z component
of spin) is given by the correlation function of∂xφ that is sum of left current∂φ (with
conformal weights(4 = 1, 4̄ = 0)) and right current̄∂φ (with conformal weights(4 =
0, 4̄ = 1)). From the property:B(−ia, 1) = i

a
we see that the delta- function peak at zero

momentum that follows from (C.19) survives even at finite temperatures. (Reflecting that
uniform component of totalSz is conserved quantity).

S(k, w) ' δ(w − v|k|)θ(w) (C.20)

While for the structure factor for transfer momentum nearπ (k ∼ π) (for simplicity we
assumeSU(2) symmetry) that is given by correlation function involvingsin

√
2πφ we get at

T = 0:

S(k, w) ' θ(w − |vk − π|)√
w2 − (k − π)2

(C.21)

For the latter expression momentum was shifted byπ for absorbing oscillating Ńeel factor
coming from staggered component of spin operator. So we receive expectedV -shaped re-
gion |w| ≥ v|k| where finite imaginary part of retarded Green’s function exist, in accordance
with the famous picture of Bethe ansatz two spinon continuum.

C.2 Dynamical Susceptibility of Spin Ladder with Ring
Exchange at Criticality

One can apply general formula (C.17) to write Fourier transform of the relative staggered
magnetization operators at critical point (we remind, that the relative staggered magnetiza-
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0 π 2π
k

w

FIGURE C.4: Spin structure factor of Spin1
2

Heisenberg chain from Bethe anzats

tion decays algebraically at criticality):

〈
n−(r)n−(0)

〉 ∼ 1

(x2 − v2t2)3/8
(C.22)

From this expression we read conformal weights ofn−(4 = 3/16, 4̄ = 3/16). Using equa-
tion (C.19) and above given conformal weights we get the following dominant contribution
to structure factor atk ' π atT → 0

ImD(R)(k ' π,w) ' θ(w2 − v2k2)

|w2 − v2k2|13/16
(C.23)

C.3 Dynamical Susceptibility for Dimerized Spin Ladder

We wish to evaluate Fourier transforms of Euclidean space correlation functions of the total
and relative staggered magnetization operators in the dimerized phase:〈

n−(r)n−(0)
〉 ∼ K2

0(|mt|r) (C.24)

and 〈
n+(r)n+(0)

〉 ∼ K0(|mt|r)K0(|ms|r) (C.25)

We will carry out explicit calculation only for the Fourier transform of the relative magneti-
zation, because for the total magnetization exactly similar calculation is applicable. We use
the long-distance asymptotics of the Bessel function :

K0(r) =

√
π

2r
e−r (1 − 0(1/r)) (C.26)

Furthermore, since the correlation function is Lorenz invariant we will setq = 0 and at the
end will restore theq dependence by replacementw2 → w2 − v2q2.∫ ∞

−∞
dτ

∫ ∞

−∞
dxeiWτ

〈
n−(r)n−(0)

〉 ∼ π

2|mt|
∫ ∞

−∞
dτ

∫ ∞

−∞
dxeiWτ e−

√
x2+τ22|mt|

√
x2 + τ 2

=
π

2|mt|
∫ 2π

0

dφ

∫ ∞

0

dreiWr cos φ−r2|mt| ∼ 1

|mt|
√

W 2 + 4m2
t

(C.27)
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Continuing analytically to real frequenciesiW → w + iδ we come to the desired expression
for imaginary part Eq.(2.39). We note that considerable simplification which occured due to
the Lorenz invariance of the correlation functions involving staggered components of spin
operators does not occur for calculating e.g. correlation function of smooth parts. Of course
only conformally scalar operators (that is operators with conformal spin equal to zero) enjoy
Lorenz symmetry.

C.4 Spin Structure Factor nearq = 0

In this section we would like to study correlation function of spin densities at small wave
vectorsq ∼ 0 at zero temperature. Our purpose is to show whether coherent propagation
of quasi particle like excitations are possible at small wave vectors or not. For this purpose
we will calculate imaginary part of the retarded spin spin correlation function, which at zero
temperature up to normalization coincides with structure factor. We will calculate Euclidean
Green’s function by zero temperature Matsubara (Euclidean space) formalism. As usually
at the end we will make analitic continuation to real frequencies to recover retarded Green’s
function. So the quantity of the interest looks:

D(q,W ) =

∫ ∞

−∞
dτ

∫ ∞

−∞
dxeiWτe−ikx

〈
Sz

+(x, τ)Sz
+(0, 0)

〉
(C.28)

τ is imaginary time,W continuous imaginary frequency,S+ stands for total spin, that is
summed spin on one rung, averaging with respect to the ground state is implied and we are
interested in small wave vector behavior. To study small wave vector behavior we have to
substitute total spin by its smooth part:

Sz
+(x) →

∑
ν

Jz,ν
1 (x) + Jz,ν

2 (x) (C.29)

ν = L,R Using formulas from Eq. (2.17) we can expressZ component of total current in
terms of doublet of Majoranas:

∑
ν

Jz,ν
1 (x) + Jz,ν

2 (x) = −i
∑

ν

ψ1
νψ

2
ν (C.30)

Using Euclidean Green’s functions for Majorana fermions Eq. (B.10) we reduce evaluation
of the Euclidean Green’s function Eq.(C.28) to the sum of simple bubble diagrams depicted
on £g. C.5 involving only doublet of Majoranas. Why only first doublet of Majoranas are
involved is easy to understand within linear response theory. If we apply magnetic field in
Z direction it couples to symmetric sector, thus only Majoranas corresponding to symmetric
sector will react on its application.
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FIGURE C.5: Contribution to polarization function (a=1,b=2)

D(q,W ) =∫
dk

2π

dw

2π

[
G1

RR(w, k)G2
RR(w − W, k − q) + G1

RL(w, k)G2
RL(w − W, k − q) + (R À L)

]
= 2

∫
dk

2π

dw

2π

−w(w − W ) + v2k(k − q) + m2

[w2 + v2k2 + m2][(w − W )2 + v2(k − q)2 + m2]

= 2

∫ ∞

0

dt ds

∫
dk

2π

dw

2π
[−w(w − W ) + v2k(k − q) + m2]e−s[w2+v2k2+m2]

× e−t[(w−W )2+v2(k−q)2+m2]

= 2

∫ ∞

0

dt ds

∫
dp1

2π

dp0

2π
e−v2p2

1(s+t)e−p2
0(s+t)e−m2(s+t)e−(W 2+v2q2)st/(s+t)

×
[
m2 −

(
p0 +

tW

s + t

)(
p0 +

tW

s + t
− W

)
+ v2

(
p1 +

tq

s + t

) (
p1 +

tq

s + t
− q

)]
(C.31)

where we have introduced notations:

p0 = w − tW

s + t

p1 = k − tq

s + t
(C.32)

after Gaussian integration overp0 andp1 we get:

D(q,W ) =
1

2πv

∫ ∞

0

dt dse−m2(s+t)e−(v2q2+W 2) st
s+t

[
(W 2 − v2q2)

st

(s + t)2
+ m2

]
1

s + t
(C.33)

Passing to polar coordinates:

t = r sin φ and s = r cos φ (C.34)
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D(q,W ) =
1

2πv

∫ ∞

0

dr

∫ π/2

0

dφ

exp

{
−r[m2(sin φ+cos φ)2+sin φ cos φ(W 2+v2q2)]

sinφ+cos φ

}
sin φ + cos φ

×
[
(W 2 − v2q2)

sin 2φ

2(1 + sin 2φ)
+ m2

]

=
1

2πv

∫ π/2

0

dφ
sin 2φ [m2 + (W 2 − v2q2)/2] + m2

m2 + sin 2φ [m2 + (W 2 + v2q2)/2]

1

(1 + sin 2φ)
(C.35)

So we have reduced our problem to the calculation of the table integral. The answer is:

1

4πv

m2(b − a)
[
ln(b +

√
b2 − m4) − ln(b −√

b2 − m4)
]
+ 2(a − m2)

√
b2 − m4

(b − m2)
√

b2 − m4
(C.36)

With following notations:

b = m2 +
1

2
(W 2 + v2q2)

a = m2 +
1

2
(W 2 − v2q2) (C.37)

After analytical continuation to real frequenciesW 2 → −w2− iδsign(w), for imaginary part
of the above expression we get:

ImDR(q, w) =
m2q2v

(w2 − v2q2)3/2
√

w2 − v2q2 − 4m2
sign(w)Θ(w2 − v2q2 − 4m2) (C.38)

Therefore dynamical magnetic susceptibility at small wave vectors has a threshold at2m.
As can be seenImDR(0, w) = 0 corresponds to the conservation of the total magnetization
of the ladder system (conserved quantity does not experience spontaneous fluctuations since
it is a definite number).

(In fact direct analytic continuation to real frequencies in final formula (C.36) may seem a
bit tedious. In order to obtain imaginary part one can analytically continue directly before
taking the angular integral in the last part of Eq. (C.35). Appearance of sign function in the
final expression is evident in this case, whileΘ threshold comes from the fact thatsin(2φ) is
non negative forφ ∈ [0, π/2]).

C.5 Matsubara Frequency Sums

We recapitulate on some basics from finite temperature field theory formalism for free
fermion (boson) systems. Typical problem we will encounter is evaluation of the frequency
sums of the type:

∑
wn

f(wn) (C.39)
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Wherewn are Matsubara frequencies, that take following values:

wn =

{
(2n + 1)πT for fermions
2nπT for bosons

(C.40)

Introducing complex variablez one checks, that in case of fermi statistics sum (C.39) could

Γ21Γ

FIGURE C.6: Passing from infinite sum to contour integration

be represented as: ∑
wn

f(wn) =
1

4πiT

∫
Γ1+Γ2

tanh
z

2T
f(−iz) (C.41)

whereas one has to usecoth in case of bose statistics. (appearance oftanh andcoth re-
spectively in cases of fermi and bose statistics are not incidental, this could be seen just by
following representation:

tanh
Ek

2T
= 1 − 2nf (Ek)

coth
Ek

2T
= 1 − 2nb(Ek)

wherenf (Ek) and nb(Ek) are fermi and bose distribution functions). Indeed, poles of
tanh z

2T
are pointsz(n)

0 = iπT (2n + 1) and they are simple ones, close to themtanh z
2T

'
2T

z−z
(n)
0

. Matsubara frequencies are recovered bywn = −iz
(n)
0 , so one has to make substitu-

tion wn → −iz in f(wn). Last step is to deform contours so to encircle only finite number
of poles coming fromf(z) and use residue methods. Possible deformation is indicated on
figure (C.7).
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C 1 C2

Γ Γ1 2

FIGURE C.7: Possible deformation of integration contour

C.6 Nuclear Magnetic Resonance Relaxation Rate

Next we consider the NMR longitudinal relaxation rateT−1
1 . Nuclear spins probe local

spin environment. Experiments on the spin- lattice relaxation rate yield information on the
dynamic spin susceptibility. The analysis of the NMR experiments begins with the magnetic
hyperfine hamiltonian, which couples nuclear spins and electron spins:

HHyperF ine =
∑
α,i,j

Aij
α IiαSjα (C.42)

α stands for spin projection, whilei, j are latice cites. Nuclear spins relax througth hyperfine
interactions with the fluctuating local moments of the spin ladder. The nuclear spin- lattice
relaxation rateT−1

1 is given:

T−1
1 ∼

∑
q

AqS(q, w) (C.43)

Where we have introduced following quantities:Aq ' A2
⊥(q) is the nuclear form factor,

with A⊥(q) hyperfine coupling perpendicular to the applied magnetic field averaged over
various nuclei,S(q, w) is the dynamical spin structure factor, andw is the nuclear resonance
frequency which is negligibly small compared to the other relevant energy scales (excitation
gap, temperature). In the limitw ¿ T fluctuation dissipation relation between spin structure
factor and imaginary part of the retarded spin spin correlation function will look:

ImDR(q, w) ' w

T
S(q, w) (C.44)

Also the q dependence arising from appropriate form factors is smooth and we replaceAq

by A0 and in the following suppress this constant. We have reduced calculation of NMR
relaxation rateT−1

1 to the calculation of imaginary part of retarded spin- spin correlation
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function:

T−1
1 ' T

∑
α,β

lim
w→0

∫
dq

2π

ImΓα,β(q, w)

w
(C.45)

where ∑
α,β

ImΓα,β(q, w) = ImDR(q, w) (C.46)

and indecesα, β are Majorana flavor indices, see (C.50).
We will concentrate on calculation of1/T1 in the lowT limit, assumingT much less than
gap in the excitation spectrum. In this limit there are contributions in1/T1 from q ∼ 0 and
q ∼ π. Although we evaluateT−1

1 only by taking into account slowly varying spin-spin
correlation function (q ∼ 0) it turns out that this approach is reasonable, since exact diag-
onalization studies on ladders23 as well as other theoretical calculations24 shows that at low
temperatures the contribution from staggered spin components inT−1

1 is less dominant and
can be absorbed into the prefactor which can be determined by fitting it to the experimental
data. We will calculate Matsubara finite temperature spin- spin correlation function and then
apply analitic continuation to extract imaginary part of the retarded spin- spin Green’s func-
tion, althought direct calculation in real time formalism is also possible. Matsubara finite
temperature spin- spin correlation function in imaginary frequency momentum space is:

D(q,Wn) =

∫ T−1

0

dτ

∫ ∞

−∞
dxeiWnτe−ikx 〈Sz

1(x, τ)Sz
1(0, 0)〉 (C.47)

where we choose for definiteness spins on the first chain and averaging at finite temperature
is implied. Representing smooth parts of spin operators in temrs of Majorana fermions

Jz
1 (x) = Jz

1,L(x) + Jz
1,R(x) (C.48)

where from (2.17) we have:

J1,ν(x) = −iψ1
ν(x)ψ2

ν(x) + iψ3
ν(x)ρν(x) (C.49)

with ν = L,R.
Plugging these expressions into the (C.47) and using Green’s functions for Majorana
fermions (B.10) we reduce calculation of NMR relaxation rate to calculation of bubbles in
Majorana formalism. Unlike structure factor and uniform susceptibility calculations (see
bellow) where only processes withq⊥ = 0 contributed (q⊥ being momentum perpendicular
to chains) for the NMR relaxation process we must take into account processes both with
q⊥ = 0 andq⊥ = π, since we are calculating longitudinal NMR relaxation rate. In Majorana
formalism that means we have to sum triplet-singlet bubble together with triplet- triple
bubbles. Denoting a bubble (or pollarization bubble) made of one Green’s function ofα
Majorana and second Green’s functionβ Majorana byΓα,β(q,Wm) we get:

Γα,β(q,Wm) = −T
∑
wn

∫
dk

2π

(
iwn + vk

w2
n + v2k2 + m2

α

i(wn − Wm) + v(k − q)

(wn − Wm)2 + v2(k − q)2 + m2
β

+

[
(k, q) → (−k,−q)

]
+

2mαmβ

[w2
n + v2k2 + m2

α]
[
(wn − Wm)2 + v2(k − q)2 + m2

β

]
)

(C.50)
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a

bb
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FIGURE C.8: Full propagator corresponds to triplet, while dashed to singlet Majorana.
a,b=L,R

First term giving (R,R) bubble, second (L,L) and final includes (R,L)=(L,R) bubbles.

Γα,β(q,Wm) =

− 1

4πi

∫
C1+C2

dz

∫
dk

2π
tanh

z

2T

(
z + vk

z2 − v2k2 − m2
α

iWm + v(k − q)

(z − iWm)2 − v2(k − q)2 − m2
β

+

[
(k, q) → (−k,−q)

]
+

2mαmβ

[z2 − v2k2 − m2
α]

[
(z − iWm)2 − v2(k − q)2 − m2

β

]
)

(C.51)

Using residue methods (Appendix C 5) we evaluate this integral. Poles of the integrand
inside contoursC1 andC2 are:

z = Eα(k), −Eα(k), Eβ(k − q) + iWm, −Eβ(k − q) + iWm (C.52)

Γα,β(q,Wm) =

− 1

2

∫
dk

2π

(
tanh

Eα(k)

2T

Eα(k) + vk

2Eα(k)

Eα(k) + v(k − q)

(Eα(k) − iWm)2 − E2
β(k − q)

+ tanh
−Eα(k)

2T

−Eα(k) + vk

−2Eα(k)

−Eα(k) + v(k − q)

(−Eα(k) − iWm)2 − E2
β(k − q)

+ tanh
Eβ(k − q) + iWm

2T

Eβ(k − q) + iWm + vk

(Eβ(k − q) + iWm)2 − E2
α(k)

Eβ(k − q) + v(k − q)

2Eβ(k − q)

+ tanh
−Eβ(k − q) + iWm

2T

−Eβ(k − q) + iWm + vk

(−Eβ(k − q) + iWm)2 − E2
α(k)

−Eβ(k − q) + v(k − q)

2 (−Eβ(k − q))

+

[
(k, q) → (−k,−q)

]

+ tanh
Eα(k)

2T

2mα

2Eα(k)

mβ

(Eα(k) − iWm)2 − E2
β(k − q)

+ tanh
−Eα(k)

2T

2mα

−2Eα(k)

mβ

(−Eα(k) − iWm)2 − E2
β(k − q)

+ tanh
Eβ(k − q) + iWm

2T

2mα

(Eβ(k − q) + iWm)2 − E2
α(k)

mβ

2Eβ(k − q)

+ tanh
−Eβ(k − q) + iWm

2T

2mα

(−Eβ(k − q) + iWm)2 − E2
α(k)

mβ

2 (−Eβ(k − q))

)
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= −1

2

∫
dk

2π

(
tanh

Eα(k)

2T

E2
α(k) + v2k(k − q) + mαmβ

Eα(k)
[
(Eα(k) − iWm)2 − E2

β(k − q)
]

+ tanh
Eα(k)

2T

E2
α(k) + v2k(k − q) + mαmβ

Eα(k)
[
(Eα(k) + iWm)2 − E2

β(k − q)
]

+ tanh
Eβ(k − q) + iWm

2T

E2
β(k − q) + v2k(k − q) + mαmβ

Eβ(k − q)
[
(Eβ(k − q) + iWm)2 − E2

α(k)
]

+ tanh
Eβ(k − q) − iWm

2T

E2
β(k − q) + v2k(k − q) + mαmβ

Eβ(k − q)
[
(Eβ(k − q) − iWm)2 − E2

α(k)
]
)

(C.53)

In deriving above formula we have suppressed terms proportional toWm in numerator, since
we are going to take the limitWm → 0. Using formula

Im
1

x ± iδ
= ∓πδ(x)

we extract the imaginary part of the above expression after analytic continuationiWm → w+
iδ and taking the limiting procedurew → 0. First two terms cancel each others contribution
to the imaginary part and we are left with the expression:

ImΓα,β(q, w) =

1

2

∫
dk

2π
∂E

(
tanh

Eβ(k − q)

2T

)
w

E2
β(k − q) + v2k(k − q) + mαmβ

Eβ(k − q)
×

δ
(
(Eβ(k − q) − w)2 − E2

α(k)
)

+
1

2

∫
dk

2π
∂E

(
tanh

Eβ(k − q)

2T

)
w

E2
β(k − q) + v2k(k − q) + mαmβ

Eβ(k − q)
×

δ
(
(Eβ(k − q) + w)2 − E2

α(k)
)

(C.54)

We consider two cases separately. Whenmα = mβ = mt (triplet- triplet contribution and
mα = mt 6= mβ = ms (triplet-singlet contribution). For the latter case calculation is
rather easier, since we can putw equal to zero in (C.54), while for triplet-triplet contribution
because of logarithmic divergence special treatment is necessary. For triplet-singlet channel
we have to evaluate the following integral:

T

∫
dq

2π

∫
dk

2π
∂E

(
tanh

Es(k − q)

2T

)
E2

s (k − q) + v2k(k − q) + mtms

Es(k − q)
×

δ
(
E2

s (k − q) − E2
t (k)

)
= T

∫
dq

2π

∫
dk

2π
∂E

(
tanh

Es(k − q)

2T

)
E2

s (k − q) + v2k(k − q) + mtms

Es(k − q)
×

δ(q − q1) + δ(q − q2)

|v√
k2v2 − (m2

s − m2
t )|

(C.55)



82 Appendix

whereq1,2 = k ± v−1
√

k2v2 − (m2
s − m2

t ).
UsingEs(k − q) = Et(k) and passing to energy variables:

dE(k) =
2|k|v2dk

E(k)
(C.56)

we get:

T

π

∫
dk

2π
∂E

(
tanh

Et(k)

2T

)
E2

t (k) + mtms

Et(k)v
√

E2
t (k) − m2

s

=
T

(2πv)2

∫ ∞

mmax

dE∂E

(
tanh

E

2T

)
E2 + mtms√

E2 − m2
t

√
E2 − m2

s

(C.57)

Taking into consideration:

∂E

(
tanh

E

2T

)
= ∂E

(
1 − 2

eE/T + 1

)
=

(
sech E

2T

)2

2T
(C.58)

We get for triplet singlet channel following contribution:

1

2(2πv)2

∫ ∞

mmax

dE

(
sech

E

2T

)2
E2 + mtms√

E2 − m2
t

√
E2 − m2

s

(C.59)

wheremmax = Max(|ms|, |mt|) Assuming|ms| > |mt| as is the case in ladders we can take
above integral making the same approximations as for (C.65).

T−1
1 |ts ' 1

(πv)2

√
2|ms|

√
|ms + mt|e−

|ms|+|mt|
2T K0

( |ms − mt|
2T

)
(C.60)

For the low temperature, whenT ¿ |ms − mt| we can use asymptotic form of Bessel
function and get:

T−1
1 |ts ' 1

(πv)2

√
π|ms|

√
|ms + mt|
|ms − mt|e

−ms
T

√
T (C.61)

Now we are in a position to evaluate triplet-triplet contribution to NMR relaxation rate. For
this we go back to the general formula (C.54) and treat accuratelyw in the delta function.

T−1
1 |tt ' T

2

∫
dq

2π

∫
dk

2π
∂E

(
tanh

E(k − q)

2T

)
E2(k − q) + v2k(k − q) + m2

E(k − q)[
δ
(
(E(k − q) − w)2 − E2(k)

)
+ δ

(
(E(k − q) + w)2 − E2(k)

)]
=

T

2

∫
dq

2π

∫
dk

2π
∂E

(
tanh

E(p)

2T

)
E2(p) + v2p(p + q) + m2

E(p)[
δ
(
(E(p) − w)2 − E2(p + q)

)
+ δ

(
(E(p) + w)2 − E2(p + q)

)]
=

T

2

∫
dq

2π

∫
dk

2π
∂E

(
tanh

E(p)

2T

)
E2(p) + v2p(p + q) + m2

E(p)[
δ(q − q1

1) + δ(q − q1
2)

|2v√
(E − w)2 − m2| +

δ(q − q2
1) + δ(q − q2

2)

|2v√
(E + w)2 − m2|

]

(C.62)
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We have introduced the following notations:p = k − q, q1
1,2 = −p ± v−1

√
(E − w)2 − m2,

andq2
1,2 = −p ± v−1

√
(E + w)2 − m2 Changing again to energy variables we get:

T−1
1 |tt ' 1

4(2πv)2

∫ ∞

m

dE

(
sech

E

2T

)2
E2 + m2

√
E2 − m2

√
(E + w)2 − m2

+
1

4(2πv)2

∫ ∞

m+w

dE

(
sech

E

2T

)2
E2 + m2

√
E2 − m2

√
(E − w)2 − m2

' 1

2(2πv)2

∫ ∞

m

dE

(
sech

E

2T

)2
E2 + m2

√
E2 − m2

√
(E + w)2 − m2

(C.63)

To calculate the above integral atT ¿ m we can make the following substitution:

(
sech

E

2T

)2

' 4e−
E
T (C.64)

T−1
1 |tt ' 1

2(πv)2

∫ ∞

m

dEe−
E
T

E2 + m2

√
E2 − m2

√
(E + w)2 − m2

' 1

2(πv)2

∫ ∞

m

dEe−
E
T

E2 + m2

(E + m)
√

E − m
√

(E + w) − m

' m

2(πv)2

∫ ∞

m

dE
e−

E
T√

E − m
√

(E + w) − m

=
m

2(πv)2
e−

m
T K0

( w

2T

)
(C.65)

In evaluating above integral we used the fact that integrand is peaked atE ∼ m and used
the formula 3.364(3) from Gradshteyn and Ryzhik. Finally using asymptotic expression for
Bessel function of imaginary argument from Gradshteyn and Ryzhik 8.447(3) we get the
following estimation for relaxation rate

T−1
1 |tt ' m

2(πv)2
e−

m
T (−C + ln 4 − ln

w

T
) (C.66)

with C standing for Euler’s constant.

C.7 Static Susceptibility

For determining the static susceptibility we have to take into account only the triplet-triplet
bubble, since the singlet Majorana does not carry spin. Moreover, since the uniform magnetic
field applied in the direction ofZ axes couples only to the symmetric sector it involves only
the doublet from the Majorana triplet. We can start from equation (C.53), in the limitq → 0
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and take again another limitw → 0.

Γz,z(q → 0, w) = −1

2

∫
dk

2π

(
tanh

Et(k)

2T

2Et(k)[
(Et(k) + w + iδ)2 − E2

t (k)
]

+ tanh
Et(k)

2T

2Et(k)[
(Et(k) − w − iδ)2 − E2

t (k)
]

+ tanh
Et(k) − w

2T

2Et(k)[
(Et(k) − w − iδ)2 − E2

t (k)
]

+ tanh
Et(k) + w

2T

2E2
t (k)[

(Et(k) + w + iδ)2 − E2
t (k)

]
)

(C.67)

Γz,z(q → 0, w → 0) = χ(T ) = −1

2

∫
dk

2π

(
tanh

Et(k)

2T

1

w + iδ

+ tanh
Et(k)

2T

1

−w − iδ

+ tanh
Et(k) − w

2T

1

−w − iδ)

+ tanh
Et(k) + w

2T

1

w + iδ

)
(C.68)

As is clear from the above expression first two terms completely cancel each other. What
survives the limitw → 0 is the real part after the expansion of third and fourth terms, and
we get the final answer:

χ(T ) =
1

T

∫ ∞

0

dk

2π
sech

Et(k)

2T
(C.69)

For the massless case this expression can be calculated exactly and we get temperature inde-
pendent constant magnetic susceptibility (characteristic to Luttinger Liquids),

χ(T ) =
π

2v
(C.70)

while for the massive case making the low temperature approximation as we did for calcula-
tion of the specific heat we get:

χ(T ) '
√

2πmt

v
T− 1

2 e−
mt
T (C.71)
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APPENDIX D

Renormalization Group Analysis

D.1 Perturbative Renormalization Group

We consider the two-dimensional Euclidean scale invariant actionS0 (fixed point action)
perturbed by the operatorsOi(r) of conformal dimensiond.

〈Oi(r)Oi(0)〉 = |r|−2di (D.1)

Correlation function is evaluated with respect to the fixed point action. Partition function of
the theory looks:

Z =

∫
Dφe−S[φ] (D.2)

Where the Euclidean action reads:

S = S0 +
∑

i

gi

∫
d2radi−2Oi(r) (D.3)

The microscopic short distance cut-offa (e.g. the lattice spacing) is needed to make action
dimensionless. We remind, that coupling constantsgi are dimensionless (small numbers),
and from (D.1) dimension of perturbing operators are (length)−di . Let us expand the partition
function in powers ofgi.

Z = Z∗
[
1 −

∑
i

gi

∫
d2radi−2 〈Oi(r)〉

+
1

2

∑
i,j

gigj

∫
d2r1d

2r2a
di+dj−4 〈Oi(r1)Oj(r2)〉

− 1

3!

∑
i,j,k

gigjgk

∫
d2r1d

2r2d
2r3a

di+dj+dk−6 〈Oi(r1)Oj(r2)Ok(r3)〉 . . .

]
(D.4)

All correlation functions are evaluated with respect to the fixed point action. The idea of
renormalization is to start moving towards larger distances (lower energies) by integrating
out the short-distance degrees of freedom. If the action is renormalizable, the effective action,
which incorporates physics at larger distances, will have the same structure as the original
one, (up to irrelevant terms) but with a new set of coupling constants. Such a procedure is re-
peated many times and at each RG step the form of original action is recovered. Relations be-
tween the bare and renormalized couplings then lead to the differential RG equations. Their
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solution reveals the dominant tendencies developing in the system on increasing the length
scale (decreasing energy, temperature). Let us rescale short distance cut-off infinitesimally
a → (1 + dΛ/Λ)a = (1 + δl)a, with δl ¿ 1, andΛ ∼ 1/a is high frequency cut-off. There
are two effects needed to take into account on changing the cut-off. First is trivially handled,
that is explicit dependence on the cut-off from divisors in (D.4) could be compensated by
rescaling coupling constants oppositely.

gi → eδl(2−di)gi ∼ gi + (2 − di)giδl (D.5)

There is also implicit dependence on the cut-off in (D.4). Since integrals have potential
short-distance divergences as points approach each other all integrals should be restricted to
|ri − rj| > a. The effect of changing the cut-off may be evaluated by the use of operator
product expansion. Consider the second order term in (D.4). After rescalinga → (1 + δl)a
we break up the integral as:∫

|r1−r2|>a(1+δl)

=

∫
|r1−r2|>a

−
∫

a(1+δl)>|r1−r2|>a

(D.6)

First term gives back the original contribution toZ. It is the second term where we can use
operator product expansions (ope) from underlying conformal field theory that represents
ultraviolet fixed point of the model (operator product expansions are strictly valid at short
distances, before the nearest additional insertion). The fact that the model under considera-
tion in ultraviolet limit scales to fixed point theory is guaranteed from the requirement of its
renormalizability. We write out ope:

Oi(r1)Oj(r2) '
∑

k

cijk(|r1 − r2|)Ok(
r1 + r2

2
) =

∑
k

cijk

|r1 − r2|di+di−dk
Ok(

r1 + r2

2
) (D.7)

Above cijk are numbers. Plugging this ope in the second part of (D.6) and approximating
|r1 − r2| ' a we get:

1

2

∑
ij

∑
k

cijka
dk−dj−di

∫
a(1+δl)>|r1−r2|>a

d2r1d
2r2

a4−di−dj

〈
Ok(

r1 + r2

2
)

〉
(D.8)

Integration with relative coordinate gives factor of2πa2δl, while the remaining term may be
compensated by making the change:

gk → gk − π
∑
ij

cijkgigjδl (D.9)

Putting together contributions from (D.5) and (D.9) to the renormalization of the coupling
constants we get:

dgk

dl
= (2 − di)gk − π

∑
ij

cijkgigj + . . . (D.10)

Before we apply this mechanism to the concrete example represented by sine-Gordon theory
we want to discuss simple (based on dimensional analyses) consequences of (D.10). First
consider situation when dimension of the perturbing operator is other than 2. In this case
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second term could be neglected compared to first and we can appreciate mass generated by
perturbing operator. Usingδl = dΛ/Λ (dΛ being energy shell eliminated at a given step of
RG) we get:

d ln g = (2 − d)d ln Λ (D.11)

From above follows:
g

g0

=

(
Λ0

Λ

)d−2

=

(
ξ0

ξ

)2−d

(D.12)

Above g0, Λ0, g, andΛ are bare and renormalized values of coupling constant and high
frequency cut-offs andξ-s are correlation lengths associated with two cutoffs. First we see,
that perturbation is relevant ifd < 2, and irrelevant ifd > 2 (we remind, thatΛ/Λ0 → 0).
In Lorenz invariant system finite correlation length means a mass gapm ∼ ξ−1

0 . Mass gap
can be calculated from (D.12) if we assume, that correlation length is of the order of lattice
spacing when coupling constant reaches value of order of unity. Then from (D.12) putting
g = 1 andξ = a we evaluate:

m ∼ a−1g
1/(2−d)
0 (D.13)

If the perturbation is marginald = 2, than first order term in (D.10) is zero. Repeating the
same calculation for mass gap associated with marginally relevant perturbation we get:

m ∼ a−1e
− const

g0 (D.14)

Since we know how mass gap is connected with the bare value of perturbation we can evalu-
ate by dimensional arguments alone expectation values of any operator of scaling dimension
di in the vacuum governed by relevant perturbation of scaling dimensiond.

〈Oi(r)〉 ∼ mdi ∼ a−dig
di/(2−d)
0 (D.15)

D.2 One Loop RG Equations for Sine-Gordon Model

In this section we derive one loop Renormalization Group (RG) equations for sine-Gordon
model. We treat sine-Gordon Hamiltonian as Gaussian conformal field theory perturbed
by two marginal operators. The fact that sine-Gordon model in ultraviolet limit scales to
free field theory is guaranteed from its renormalizability (this fact is responsible for the
mystery why at high energies experimentlists see single chain physics in experiments on
ladder systems).

H =
v

2

[
(∂xφ(x))2 + (∂xθ(x))2 ]

+ α∂xφL(x)∂xφR(x) + g cos
√

8πφ(x) (D.16)

We note, that both perturbations have scaling dimension 2, therefore first terms in (D.10) will
vanish. Denotingα = g1 andg = g2 we write one loop Renormalization Group equations
from (D.10):

dgk

dl
= −π

∑
i,j

cijkgigj (D.17)
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wherecijk numerical constants are obtained from the operator product expansion Eq. (D.7).
For our caseO1 = ∂xφL(x)∂xφR(x) = ∂φ(z)∂̄φ(z̄) andO2 = cos

√
8πφ(z, z̄) wherez and

z̄ represent conformal coordinates on Euclidean plane (see Eq. (1.3)). Writing out relevant
opes for our case:

cos
√

8πφ(z, z̄) cos
√

8πφ(w, w̄) ∼ −4π
∂wφ(w)∂w̄φ(w̄)

|z − w|2

cos
√

8πφ(z, z̄)∂wφ(w)∂w̄φ(w̄) ∼ − 1

2π

cos
√

8πφ(w, w̄)

|z − w|2
(D.18)

From (D.18) we read off following nonzero ope numerical constants:

c221 = −4π (D.19)

and

c122 = c212 = − 1

2π
(D.20)

One loop RG equations will look:

dα

dl
= 4π2 g2

v
dg

dl
=

αg

v
(D.21)

Noting that

∂xφL(x)∂xφR(x) =
1

4

(
(∂xφ)2 − ((∂xθ)

2
)

Hamiltonian (D.16) could be equivalently rewritten as:

H =
v

2

∫ [
(∂xφ(x))2 + (∂xθ(x))2 ]

+
vm

2π
cos

√
8πKφ(x) (D.22)

whereK = 1 − α/2v andm = 2πg
v

and we can write RG equations for running coupling
constant and mass of sine-Gordon:

dK

dl
= −m2

2
dm

dl
= −2m(K − 1) (D.23)

One obtains following pictorial solution of RG flow diagram Fig. (3.2): For2(K −1) ≥ |m|
we are in the weak coupling regime: the effective mass vanishes. The low energy (large
distance) behavior of the corresponding gapless mode is described by a free scalar field.

For 2(K − 1) < |m| the system scales to strong coupling: depending on the sign of the
bare massm, the renormalized mass is driven to±∞, signaling a crossover to one of the
two strong coupling regimes with a dynamical generation of a commensurability gap in the
excitation spectrum.
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APPENDIX E

Spin Wave Calculation

E.1 Spin Wave Calculation inSz
tot = N − 1 Subspace

In this appendix we perform the spin wave analyses for the Hamiltonian

Ĥ = H⊥ + Hleg,1 + Hleg,2 (E.1)

where

H⊥ = −JZ
⊥

∑
j=1,N

SZ
j,1S

Z
j,2 −

JXY
⊥
2

∑
j=1,N

[
S+

j,1S
−
j,2 + S−

j,1S
+
j,2

]
(E.2)

Hleg,α =
N∑

j=1

[
S+

j,αS−
j+1,α + S−

j,αS+
j+1,α

2
−4Sz

j,αSz
j+1,α

]
−

N∑
j=1

hSz
j,α (E.3)

The strategy is to start from the region of phase diagram where we expect ground state to be
fully polarized state in direction ofZ axes and to identify transition line from fully polarized
ground state to some other state as instability in spin wave excitation spectrum. We denote
by

|0〉 =

∣∣∣∣ ↑1 ↑2 ... ↑n−1 ↑n ↑n+1 ... ↑N

↑1 ↑2 ... ↑n−1 ↑n ↑n+1 ... ↑N

〉
(E.4)

fully polarized configuration. As usually in the ferro state lowest excitations are spin waves,
obtained from ground state configurations by inverting one spin on upper or lower chains.
Those states we denote respectively:

|1〉n =

∣∣∣∣ ↑1 ↑2 ... ↑n−1 ↓n ↑n+1 ... ↑N

↑1 ↑2 ... ↑n−1 ↑n ↑n+1 ... ↑N

〉
(E.5)

and

|2〉n =

∣∣∣∣ ↑1 ↑2 ... ↑n−1 ↑n ↑n+1 ... ↑N

↑1 ↑2 ... ↑n−1 ↓n ↑n+1 ... ↑N

〉
(E.6)
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What does Hamiltonian produce acting on this basis states:

H⊥ |1〉n = −1

2
JXY
⊥ |2〉n +

1

4
JZ
⊥ |1〉n − 1

4
JZ
⊥(N − 1) |1〉n

H⊥ |2〉n = −1

2
JXY
⊥ |1〉n +

1

4
JZ
⊥ |2〉n − 1

4
JZ
⊥(N − 1) |2〉n

Hleg,1 |1〉n =
1

2
(|1〉n−1 + |1〉n+1)

+
4
2
|1〉n − 4

4
(N − 2) |1〉n − h(N − 2)

2
|1〉n

Hleg,2 |1〉n = −4
4

N |1〉n − hN

2
|1〉n

Hleg,1 |2〉n = −4
4

N |2〉n − hN

2
|2〉n

Hleg,2 |2〉n =
1

2

(|2〉n−1 + |2〉n+1

)
(E.7)

+
4
2
|2〉n − 4

4
(N − 2) |2〉n − h(N − 2)

2
|2〉n

Collecting all terms we get:

Ĥ |1〉n = −1

2
JXY
⊥ |2〉n + (4 + h +

1

2
JZ
⊥) |1〉n

+
1

2
(|1〉n−1 + |1〉n+1) + Eferro |1〉n (E.8)

where

Eferro = −N

4
JZ
⊥ − N

2
4− Nh (E.9)

stands for Ferromagnetic state energy. (and the same holds forĤ |2〉n with interchange
|1〉n ↔ |2〉n) Now we create spin waves from|1〉n and|2〉n states:

|ψ(q)〉 =
∑

n

(γ |1〉n + β |2〉n)eiqn

(Ĥ − Eferro) |ψ(q)〉 =
∑

n

eiqn{[(4 + h +
J⊥
2

+ cos q)γ

− JXY
⊥
2

β] |1〉n

+ [(4 + h +
JZ
⊥
2

+ cos q)β

− JXY
⊥
2

γ] |2〉n} (E.10)

(Ĥ − Eferro) |ψ(q)〉 = ω |ψ(q)〉
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instability line is given byω = 0

(4 + h +
JZ
⊥
2

+ cos q)γ − JXY
⊥
2

β = 0

(4 + h +
JZ
⊥
2

+ cos q)β − JXY
⊥
2

γ = 0 (E.11)

There are two cases:γ = ±β to which correspond two frequencies:

γ = −β : ω1
q = 4 + h +

JZ
⊥
2

+ cos q +
JXY
⊥
2

γ = β : ω2
q = 4 + h +

JZ
⊥
2

+ cos q − JXY
⊥
2

(E.12)

There are following relevant cases we are interested in:

1. h = 0, JXY
⊥ = 0, in this case for transition line we get:

4 = 1 − 1

2J
Jz
⊥ . (E.13)

where we have restored intraleg exchange (J > 0).

2. for the case ofSU(2) symmetric ferromagnetic interleg exchangeJXY
⊥ = JZ

⊥ > 0,
h = 0 we get:

4 = |J | (E.14)

E.2 Spin Wave Calculation inSz
tot = N − 2 Subspace

In this appendix we consider separately the case of ferromagnetic chains coupled byZZ
interchain ferromagnetic exchange. Spin wave calculation close to decoupled chains limit
gave phase transition line (E.13) from fully polarized state toXY state that behave linearly
with interchain exchange. On the other hand in strong rung coupling limit we determined the
same boundary and it behaved as 1 over interchain exchange. Our spin wave calculation was
done by searching the instability in the spin wave spectrum in the subspace ofSz

tot = N − 1
on the other hand it is clear, that when we pass to the strong rung coupling limit to invert
two spins simultaneously on the same rung will cost less energy, than inverting only one
spin on one of the legs. Thus it is natural to repeat spin wave calculation in the subspace of
Sz

tot = N − 2. Let’s start from Hamiltonian (E.1) and puth = 0 andJXY
⊥ = 0. We introduce

the following basis of states in the subspace ofSz
tot = N − 2:

|n,m〉 = S−
1,nS−

2,m |0〉 =

∣∣∣∣ ↑1 ... ↑m−1 ↑m ↑m+1 ... ↑n−1 ↓n ↑n+1 ... ↑N

↑1 ... ↑m−1 ↓m ↑m+1 ... ↑n−1 ↑n ↑n+1 ... ↑N

〉
(E.15)

Acting by Hamiltonian on these states we get:

Ĥ |n,m〉 = (E0 − JZ
⊥δn,m) +

1

2
(|n + 1,m〉 + |n − 1,m〉 + |n,m + 1〉 + |n,m − 1〉)

(E.16)
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whereE0 = Eferro + 24 + JZ
⊥ with Eferro as in (E.9). Constructing spin waves:

|ψ〉 =
N∑

n=1

eiqn

N∑
m=1

αn−m |n,m〉 (E.17)

We search for instability line as:

Ĥ |ψ〉 = E |ψ〉 = Eferro |ψ〉 (E.18)

After some simple algebra we get:

N∑
n=1

eiqn

N∑
m=1

[(
E0 − JZ

⊥δn,m − E
)
αn−m +

1

2

(
e−iq + 1

)
αn−m−1

+
1

2

(
e−iq + 1

)
αn−m+1

]
|n,m〉 = 0 (E.19)

denotingn − m = p we get the following system of equations:

(E0 − JZ
⊥δp,0 − E)αp + e−iq/2 cos

q

2
αp−1 + e−iq/2 cos

q

2
αp+1 = 0 (E.20)

for all values of p. Redefining amplitudes

α̃p = eipq/2αp (E.21)

we rewrite the above system as:


.

.
cos q

2
α̃−i + (E0 − E)α̃−i+1 + cos q

2
α̃−i+2 = 0

.
cos q

2
α̃−2 + (E0 − E)α̃−1 + cos q

2
α̃0 = 0

cos q
2
α̃−1 + (E0 − JZ

⊥ − E)α̃0 + cos q
2
α̃1 = 0

cos q
2
α̃0 + (E0 − E)α̃1 + cos q

2
α̃2 = 0

.
cos q

2
α̃i + (E0 − E)α̃i+1 + cos q

2
α̃i+2 = 0

.

.

(E.22)

To solve the above system we take the following ’confinement’ ansatz:

α̃ = αe−κ|p| (E.23)

Plugging this Ansatz into above system we get:{
E0 − JZ

⊥ − E + 2 cos q
2
e−κ = 0

2 cos q
2
cosh κ + E0 − E = 0

(E.24)
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Remembering instability condition:E0 − E = 24 + JZ
⊥,cr we get

{ 4 + cos q
2
e−κ = 0

2 cos q
2
cosh κ + 24 + JZ

⊥,cr = 0
(E.25)

which we solve:

JZ
⊥,cr =

−42 + cos2 q
2

4 (E.26)

Since4 = 1 is instability point forJZ
⊥ = 0 (decoupled chains) we deduceq/2 = π and

finally restoring intrachain coupling we get:

JZ
⊥,cr =

J

4 − J4 (E.27)

This formula interpolates between the results of weakly coupled and strongly coupled chains
limits. We believe this simple expression (E.27) gives exact transition line for all interchain
coupling strengths.
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