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ABSTRACT

Chemical diffusion of major components and trace element diffusion of a large variety of
cations were studied in dacitic and rhyolitic melts. Dacitic glasses similar in composition to a
dacite erupted from Unzen Volcano in Japan and rhyolitic glasses with compositions close to
the natural obsidian of the Erevan Dry Fountain of Armenia (EDF) were synthesized for this
study. To examine both diffusion processes simultaneously, the classical diffusion couple
technique was modified by combining two diffusion couples of synthetic glass cylinders to
one diffusion triple. In these experiments one end of the triple was enriched by 5 wt% SiO2

and 0.3 wt% TiO2 relative to the middle part in order to measure chemical diffusion of major
components SiO2 and Al2O3. The other end was doped with up to 23 trace elements belonging
to different geochemical groups. Since small amounts of dissolved water may enhance the
diffusion of elements, in addition to nominally anhydrous melts, hydrous melts containing up
to 5 wt% H2O were also investigated. Triple experiments were performed at 500 MPa in
internally heated pressure vessels (1100-1400°C) and cold seal pressure vessels (800°C) for
rhyolitic melts. Triple experiments with dacitic melts were performed at 100, 250 and 500
MPa in internally heated pressure vessels at 1200°C and in a piston cylinder at 1 GPa (1200-
1400°C) with traditional diffusion couples.
Concentration profiles of major and trace elements were determined by electron microprobe
and synchrotron x-ray fluorescence microanalysis, respectively. On some experimental run
products diffusion profiles of trace elements were also measured by secondary ion mass
spectrometry to certify diffusion data and to compare analytical techniques. Water distribution
along the diffusion profiles was analyzed by infrared microspectroscopy. Diffusion profiles
determined by both methods are in excellent agreement for the most elements, except for the
transition metal elements Ni and Cu and the high field strength element Ta.
In rhyolitic melts trace element diffusivities of high valenced cations are close to the effective
binary diffusion coefficients of the major components SiO2 and Al2O3. This indicates that the
network dynamics, which are related to viscosity, determine the mobility of these elements.
Trace element diffusivities systematically decrease at constant pressure, temperature and
water content with ionic charge of the cation, exept of Co, which was found to migrate faster
than the other transition metal elements, whereas diffusivities of Cu are close to the
diffusivities of the high valenced cations. Especially in rhyolitic melts the mobility of Eu is
faster compared to the other rare earth elements, Sn migrates significant faster than Ge and Nb
is faster than its neighbor element Zr. The relatively high mobility of Eu in rhyolitic melts
compared to neighbor elements Sm and Gd may be attributed to contributions of divalent Eu.
The ratio of Eu2+/Eutot derived from DEu, DSr and the average of DGd and DSr, has a minimum
in rhyolitic melts close to 2 wt% water independent of temperature. Because the OH/H2O ratio
increases with water content, an explanation for this trend could be that complexes with OH
groups stabilizes Eu3+ whereas complexes with H2O molecules stabilizes Eu2+ in the melt. In
general, the enhancing effect of water increases with the charge of the cation. A relatively
strong dependence of diffusivity on water content was observed for Sn at 1200°C. This can be
explained by a change in valence of Sn from 4+ at low water to 2+ at high water contents.
In rhyolitic melts activation energies calculated from simple Arrhenius relationships increase
from Rb to Zr by about 100 kJ/mole at both 2 and 5 wt% H2O. Activation energies for the
water-poor rhyolitic melts increase from 100 kJ/mole for low field strenght elements to about
470 kJ/mole for high field strenght elements. Calculated apparent activation volumes for
elements in dacitic melts with 5 wt% H2O increases from 12 cm3/mole for Ni to 18 cm3/mole
for Ba to 43 cm3/mole for the REE’s and Sn to about 80 cm3/mole for Hf in the pressure range
of 100-500 MPa at 1200 ºC.
Keywords: trace element diffusion, chemical diffusion, EBDC, diffusion triple, rhyolite,

dacite, H2O, SYXRF, SIMS



ZUSAMMENFASSUNG

In der vorliegenden Arbeit wurde mit einer subaluminösen Rhyolitschmelze die Abhängigkeit
der Kationendiffusion von der Temperatur (800–1400 ºC) bei 500 MPa experimentell
bestimmt. Der Einfluss von chemischer Zusammensetzung auf die Kationendiffusion wurde
durch den Vergleich mit einer Dazitschmelze bei Temperaturen von 1200-1400 ºC und
Drucken von 0.1-1 GPa untersucht. Da bereits geringe Mengen von Wasser zu einer
Beschleunigung von Transportvorgängen in Silikatschmelzen führen können, wurde
besonders der Effekt von H2O auf die Diffusion herausgearbeitet, indem Schmelzen mit H2O-
Gehalten von ca. 0,1- 5 Gew.% H2O verwendet wurden. Bei 1 GPa wurde mit traditionellen
Diffusionspaaren in der Piston Zylinder Apparatur der University of Michigan in Ann Arbor
(USA) gearbeitet, während bei niedrigeren Drucken in der Gasdruckanlage in Hannover
(kleinerer Temperaturgradient, grösseres Probenvolumen) diese Methode zu Diffusionstriplen
modifiziert wurde. Mit den Diffusionstriplen konnten unter gleichen experimentellen
Bedingungen sowohl die chemische Diffusion von Hauptelementen (SiO2 und Al2O3) als auch
die Diffusion von bis zu 23 verschiedenen Spurenelementen (Rb, Sr, Ba, Cr, Co, Ni, Cu, Zn,
Y, La, Ce, Nd, Sm, Eu, Gd, Er, Yb, V, Zr, Nb, Hf, Ta, Ge, Sn) untersucht werden.
Die Diffusionprofile der Spurenelemente wurden routinemässig mit der ortsaufgelösten
Synchrotron-Röntgenfluoreszenz-Analyse (SYXRF) im Hamburger Synchrotron Labor
(HASYLAB) aufgenommen. Damit konnten für die Vielzahl der Elemente Unterschiede in
den Diffusionsgeschwindigkeiten herausgearbeitet werden. An ausgewählten Proben (D18,
D22 und PC11) wurden Diffusionsdaten mit der Sekundärionen Massenspektrometrie (SIMS)
im Geoforschungszentrum (GFZ) Potsdam ermittelt, um beide analytischen Methoden anhand
der Diffusionsdaten zu vergleichen. Die in experimentellen Studien oft nachgewiesene Uphill
Diffusion von Hauptelementen in Multikomponenten-Schmelzen (Diffusion einer
Komponente gegen seinen eigenen Konzentrationsgradienten) konnte in dieser Arbeit nicht
beobachtet werden. Die chemische Diffusion von SiO2 und Al2O3, die durch Profilmessungen
an der Mikrosonde ermittelt wurde konnte daher mit dem Konzept der sogenannten effektiven
binären Diffusionskoeffizienten (EBDK) beschrieben werden.
Die Diffusionsdaten zeigen, dass mit zunehmender Kationenladung die Diffusion der
Kationen bei konstanten Temperatur-Druckbedingungen in Rhyolithen und Daziten abnimmt.
Mit zunehmendem Wassergehalt nimmt die Kationendiffusion zu. In Rhyolithen wurde für Eu
eine relativ hohe Mobilität im Vergleich zu den Nachbarkationen Sm und Gd beobachtet, was
auf ein Vorliegen von sowohl zwei- als auch dreiwertigem Eu zurückgeführt werden kann.
Das Verhältniss von Eu2+/Eutotal, dass durch die vorliegenden Diffusionskoeffizienten von Eu,
Sr und einem Mittelwert von DGd und DSm abgeschätzt wurde, zeigt ein Minimum bei einem
Wassergehalt von ca. 2 Gew.% H2O. Da das OH/H2O-Verhältniss mit zunehmendem
Wassergehalt ansteigt, könnte Eu3+ durch OH-Gruppen und Eu2+ durch H2O-Molekülgruppen
in der Schmelze stabilisiert werden. Obwohl generell die Beschleunigung durch Wasser mit
der Ladung des Kations zunimmt, zeigt Sn eine stärkere Abhängigkeit der Beschleunigung
vom Wassergehalt als man es vom Ladungszustand erwarten würde. Dafür könnte ein
Ladungswechsel von Sn4+ für niedrige Wassergehalte zu Sn2+ für höhere Wassergehalte die
Ursache sein. Die Temperaturabhängigkeit konnte für alle Elemente mit einer einfachen
Arrheniusbeziehung beschrieben und aus der Steigung Aktivierungsenergien berechnet
werden. Diese zeigen für rhyolithische Schmelzen eine Zunahme mit der Kationenladung und
-grösse und eine Abnahme mit dem Wassergehalt. Scheinbare Aktivierungsvolumen für
Kationen in dazitischen Schmelzen (berechnet aus den Diffusion-Druck-Beziehungen) zeigen
eine Zunahme von einwertig geladenen zu den mehrwertig geladenen Kationen.
Schlagworte: Spurenelementdiffusion, Chemische Diffusion, EBDK, Diffusionstriple,
Rhyolit, Dazit, H2O, SYXRF, SIMS
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1. INTRODUCTION

The diffusion of elements in silicate melts and glasses is of fundamental interest for

understanding and quantifying transport related phenomena in petrologic processes. For

example, crystal growth or dissolution from and in the melt phase (Lasaga, 1982; Ghiorso,

1987; Zhang et al., 1989), melt/rock interactions, and mixing and contamination of magma

bodies (e.g. Watson, 1982; Trial and Spera, 1990; Baker, 1990 and 1991) are affected by

diffusion. Information about melt structure and dynamics of silicate melts may be obtained by

investigating diffusion of particles differing in charge and size (Jambon, 1982; Roselieb and

Jambon, 1997) and comparing diffusivities of elements belonging to different geochemical

groups (i.e. low field strength elements (LFSE), transition metal elements (TME), rare earth

elements (REE) and high field strength elements (HFSE)). These experiments can provide

insight into the mechanisms of cation diffusion in melts (Chakraborty, 1995; Mungall and

Dingwell, 1997; Koepke and Behrens, 2001).

Diffusion coefficients for trace elements in simple and natural silicate melts have been

measured by several investigators over a wide p-T-range, though predominantly for

anhydrous systems (e.g., Hofmann, 1980; Watson and Baker, 1991; Lesher, 1994; Brady,

1995; LaTourrette et al., 1996). Although it has been shown, that H2O is a major constituent

of natural magmas and strongly influences chemical and physical properties of silicate melts,

only a few studies have been performed on hydrous systems (see reviews by Watson, 1994

and Chakraborty, 1995 and studies of Linnen et al., 1996; Mungall and Dingwell, 1997;

Mungall et al., 1999; Koepke and Behrens, 2001). Substantial research has been accomplished

on the diffusion of H2O and on the mechanisms of H2O diffusion in melts (Jambon, 1979;

Stolper, 1982; Lapham et al., 1984; Wasserburg, 1988; Doremus, 1995; Behrens et al., 1996;

Behrens and Nowak, 1997; Nowak and Behrens, 1997; Zhang and Behrens, 1998, 2000;

Zhang, 1999). Also well known is that dissolved water decreases glass and melt density
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(Lange, 1994; Ochs and Lange, 1997; Richet et al., 2000), reduces liquidus temperatures

(Holtz et al., 2000) and melt viscosity (Persikov et al., 1990; White and Montana, 1990; Baker

and Vaillancourt, 1995; Hess and Dingwell, 1996; Richet et al., 1996; Schulze et al., 1996),

and enhances diffusion of cations and volatiles in silicate melts (Watson, 1991; Behrens and

Nowak, 1997; Mungall and Dingwell, 1997; Zhang and Behrens, 2000; Koepke and Behrens,

2001). Comparatively little research is focussed on the effects of water on diffusion of

elements (e.g. Watson, 1994; Mungall and Dingwell, 1997; Mungall et al.,1997,1999; Koepke

and Behrens, 2001). The present study is designed to obtain new experimental diffusion data

for major and trace element diffusion in nominally anhydrous and rhyolitic melts and hydrous

dacitic to (i) characterize differences in transport mechanisms of the geochemical elemental

groups, and (ii) determine the effects of melt composition including dissolved H2O on cation

diffusion of trace elements in silicate melts. Using a new experimental arrangement (diffusion

triple) chemical and tracer diffusion are studied in a single experiment. Systematic differences

in diffusion behavior of elements with regards to temperature, pressure and melt composition

can be reliably obtained. To avoid a complicated diffusion path in compositional space, a

chemical diffusion couple with the compositional difference being close to a main eigen

vector of the haplogranite system (Mungall et al. 1998) was choosen. One half of the couple

was enriched in SiO2 so that during the diffusion experiment silica was exchanged by alumina

and an associated flux of alkali components (Chakraborty, 1995, Mungall et al. 1998).

Since in this study the used method synchrotron x-ray fluorescence microanalysis (SYXRF) is

proved for measuring trace element diffusion profiles, a second goal of this experimental

study is to combine and compare results with secondary ion mass spectrometry (SIMS), which

is a common method for measuring trace elements in geoscience. Therefore typical diffusion

experiments differing in melt composition (SiO2 and FeO in particular) and dissolved water

content were choosen (i) to identify analytical problems of both methods, which may be

specific for selected elements and (ii) to clarify possible matrix effects during analysis. The
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whole set of diffusion data obtained in this study is useful to model magmatic processes, e.g.,

fractionation of elements during differentiation of magmas and redistribution of elements

during magma mixing (see e.g., Grove et al., 1988; Allen, 1991; Blichert-Toft et al., 1992;

Snyder and Tait, 1998). Implications for melt structure and properties are discussed.

1.1. Theoretical Background (Tracer vs. Chemical Diffusion)

In tracer diffusion experiments thermal motion of elements in absence of driving forces such

as chemical or thermal potential gradients is measured. If concentrations of trace elements are

low, the composition of the system (i.e., rhyolitic and dacitic melts as used in this study) does

not vary significantly along the diffusion profile and, in first approximation, the medium can

be considered as chemically homogeneous. Thus, tracer diffusion coefficients are constant in

the experimental charge, however, their values depend on the specific composition and the run

conditions. To predict tracer diffusivities for other compositions either the mechanisms of

diffusion must be well known or additional data must be available to describe the

compositional dependence of tracer diffusivities.

In contrast to tracer diffusion, chemical diffusion in multi-component systems is a complex

process driven by chemical potential and/or temperature gradients. The flux of each

component may depend on the concentration gradients of the other components, and a multi-

component diffusion matrix is required to fully describe diffusive mass transport. A

quantitative approach for such processes must include a theory of the thermodynamics of

irreversible processes. In recent years, several papers have addressed the application of

irreversible thermodynamics to multi-component diffusion in simple systems of three or four

components (Kubicki et al., 1990; Kress and Ghiroso, 1993; Chakraborty et al., 1995a, 1995b;

Liang et al., 1996). However, an accurate estimate of diffusion matrices in multi-component

systems requires at least as many different diffusion couples as components in the system

(Gupta and Cooper, 1971). This means an application to natural melts (such as rhyolite or



10

basalt) is practically impossible due to the large number of components. An attempt was made

by Mungall et al. (1998) to quantify eigenvalues for a simplified granitic melt composition

K2O-Na2O-Al2O3-SiO2-H2O. The authors found that the diffusion matrix has a highly

degenerated set of real, positive eigenvalues that show a regular relation to melt viscosity on

an Arrhenius diagram. In agreement with Chakraborty et al. (1995b), Mungall et al. (1998)

inferred that the exchange of alkalis is independent of alumina, whereas the exchange of

alumina for silica always produces an associated flux of the alkali components.

In a simpler approach, the process of multi-component diffusion is modeled using a single

effective binary diffusion coefficient (EBDC) for each element. The concept, developed by

Cooper (1968), considers all elements other than the diffusing element as an effective solvent,

such that the chemical exchange process can be treated as an effective interdiffusion of a

single melt component with all other melt components. This concept gives meaningful

diffusion coefficients provided (i) concentration gradients of all elements are in the same

direction in compositional space (quasibinary interdiffusion, no uphill diffusion) and (ii) the

system is semi-infinite or infinite. The concept of EBDC was successfully applied to major

element diffusion (e.g., rhyolite/dacite, Baker, 1990; diopside/anorthite, Kubicki et al., 1990;

rhyolite/basalt, Lesher, 1994; rhyolite/rhyolite and rhyolite/andesite, van der Laan et al., 1994)

and minor element diffusion in chemically complex melt systems (e.g., Sr in dacite/rhyolite

pairs, Baker, 1989; F and Cl in peralkaline intermediate and silicic melts, Baker, 1993; Sn in

haplogranite, Linnen et al., 1996). The advantage of using EBDC is the simple application to

diffusion couple experiments. Further, using the Boltzmann-Matano analysis (Crank, 1975),

compositional variation of EBDC along a diffusion profile may be characterized for each

element (Baker, 1989, 1990, 1993). However, the effects of diffusive coupling are absorbed in

the EBDC and consequently, these coefficients are strong functions of composition, and more

notably of concentration gradients (Chakraborty, 1995). This means that measured diffusion
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coefficients are not transferable unless the concentration gradients to be modeled are similar

to those used in the experiments.

The approach of EBDC of Cooper (1968) is unable to describe chemical diffusion in systems

showing strong coupling of element fluxes (indicated for instance by curved diffusion paths in

compositional space) and uphill diffusion of elements. As an improvement, Chakraborty and

Ganguly (1992) suggest incorporation of a thermodynamic factor into the EBDC for such

systems. An alternative may be to use activity gradients instead of concentration gradients for

evaluating the diffusion profiles (Zhang, 1993). However, assumptions on the compositional

dependence of the activity coefficients must be made. For the experiments of this study the

chemical diffusion couple was chosen align parallel to a main eigen vector of the granite

system (Mungall et al. 1998) so that the concept of EBDC is a suitable approach to describe

the diffusion process.

1.2. Analytical Background (SYXRF vs SIMS)

During the past decade, there has been an increasing interest in the development of

microanalytical techniques for the analysis of elements at trace and ultra trace concentrations.

For many years SIMS was the only microanalytical technique commonly available, and it is

still the most widely accepted and established instrument in geoscience and geochemical

research (for detailed geological applications of SIMS, see Metson et al. (1988) and Hinton

(1995)).

In recent times SYXRF has become a well-established and powerful microanalytical

technique, because of the intrinsic characteristics of synchrotron radiation (SR) such as high

intensity, polarization and externe low divergence provide the potential for analysing a wide

range of petrologically important trace elements. It is well established, that SR induced X-Ray

fluorescence (SYXRF) can obtain detection limits under the ppm level for many elements.

Also the development of X-Ray optics and glass capillaries enables lateral resolution in the
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µm range. In the early seventees Horowitz and Howell produced a 2 µm X-Ray beam with a

cylindric mirror to focus the synchrotron beam. Applications to measure trace element

concentrations in geological materials such as in fluid inclusions (Vanco et al., 2001), in lunar

rocks (Tarasov et al., 1998), in atmospheric aerosols (Khodzher et al., 2000) and in natural

and synthetic minerals (Dalpé and Baker, 1995) demonstrate the SYXRF as a complementary

tool for geochemical analysis. Baker (1990) successfully used the SYXRF for trace element

analysis in silicate glasses. However, a very time-consuming wavelength dispersive technique

was used and only a few elements were analyzed. The more recent development of SYXRF as

a tool for high-precision and local multi-elemental analysis in geological relevant glasses

(Baker, 1990, Koepke and Behrens, 2001) has introduced an easy and fast method to analyze

a wide variety of different elements (for further details see Smith and Rivers (1995), Haller

and Knöchel (1996) and references therein). First applications of SYXRF for analyzing

simultaniusly a broad set of trace elements in hydrous andesitic melts were given by Koepke

and Behrens (2001).
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2. EXPERIMENTAL TECHNIQUES

2.1. Sample Description

Diffusion couple experiments were performed using synthetic rhyolitic glasses with

compositions close to a natural obsidian from Erevan Dry Fountain flow (EDF) of Armenia

(Bagdassarov and Dingwell, 1993; Stevenson et al., 1995) or synthetic dacitic glasses similar

to dacite erupted from Unzen Volcanos (Chen et al., 1993). The EDF obsidian is

metaluminous and contains only small amounts of iron (~0.7 wt% FeO) compared to the

dacite composition (~4.7 wt% FeO). This compositional difference can be taken to specify the

effects of iron on spectral resolution of fluorescence lines of transition metal elements in

SYXRF and on matrix effects of SIMS.

In this study synthetic analogues were used to avoid experimental and analytical problems due

to initially present trace elements in natural glasses. Concentrations of trace elements in the

EDF obsidian and Unzen dacite are not known. However, natural melts may contain several

hundreds to thousands ppm of various trace elements (e.g. for rhyolites see Fogel and

Rutherford, 1990; Blank et al., 1993, for dacites see Chen et al., 1993). To investigate the

diffusion of these elements, about the same quantity of trace elements has to be added. Using

a large number of trace elements as in this study, the total amount of added oxides must be in

the range of wt%. In this case, it can not be excluded that the difference in composition of

doped and undoped sample impose chemical gradients on the trace element profiles.

The starting materials were synthesized in three steps. (1) synthesis of the basic glass (A1,

central piece of the triple), (2) synthesis of glasses doped with either 5 wt% of SiO2 and 0.3

wt% of TiO2 (A2, second half of the chemical diffusion couple) or with 300 to 500 ppm of

selected trace elements (A3, second half of the tracer diffusion couple), (3) synthesis of

hydrous glasses.
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To (1): Reagent oxides and carbonates were dried at 110 ºC overnight before weighing. The

oxides and carbonates were grinded and intensively mixed for one hour in a ball mill. The so-

obtained powder was annealed in a platinum crucible at 1600 ºC for 3 h in an electric muffle

furnace. After three cycles of grinding and re-melting a homogeneous glass was obtained for

rhyolitic composition. Since the viscosity of dacitic melts are lower than of rhyolitic melts

homogeneous glasses were obtained already after two cycles for dacitic glasses.

To (2): A part of the A1 glass was ground in an agate mortar. One third of the glass powder

was doped with 300-500 ppm of Rb, Sr, Ba, Co, Cr, V, La, Ce, Nd, Sm, Eu, Gd, Y, Er, Yb,

Sn, Ge, Hf, Zr, Nb and Ta as oxides or carbonates (A3 glass), another third with SiO2 and

TiO2 (A2 glass). In a second charge 300 ppm of Zn, Ni and Cu were added to the A3 glass.

TiO2 was not doped in the A3 glass because of peak overlapping of Ti with other trace

elements in SYXRF measurements. Further, using Ti in the chemical diffusion couple may

provide information on effects of chemical gradients on trace element diffusion by comparing

with other HFSE used in the trace element couple. Added amounts of SiO2 (5.0 wt%) and

TiO2 (0.3 wt%) are large enough to measure well-resolved diffusion profiles. The anhydrous

glasses were synthesized as described under (1).

To (3): Glass powder (< 200 µm) and doubly distilled water were inserted in a platinum

capsule (40 mm long, 3 mm in diameter, 0.2 mm wall thickness) in three to five portions to

get a homogeneous distribution of water in the whole sample. The powder was compacted

with a steel piston to produce a sample with cylindrical shape. For the dacite composition

AuPd-capsules were used to minimize an iron loss through the capsule walls (Johannes and

Bode, 1978; Sisson and Grove; 1993a; Ratajeski and Sisson, 1999). Synthesis were carried

out in internally heated pressure vessels (IHPV) at 1200°C and 500 MPa for 48 hours for

rhyolitic and a shorter run duration of 4 hours for the dacitic glasses. After turning of the

heating power, experiments were quenched isobarically by automatic pumping for rhyolitic

glasses. The initial cooling rate was about 200 °C/min, decreasing to about 100°C/min in the
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range of glass transition. To avoid quench crystals in the dacitic glasses a rapid quench device

described by Roux and Lefevre (1992) was used. With this methods almost bubble-free glass

cylinders (15-40 mm long, 2.6-3 mm in diameter) with H2O contents from 1.9 to 5.2 wt%

H2O for rhyolitic glasses and with H2O contents from 2.3 to 5.1 wt% H2O for dacite glasses

were synthesized.

2.2. Experimental Setup

A suitable experimental method to study cation diffusion is the diffusion couple technique,

where two polished glass cylinders differing in composition are contacted. This design was

modified to determine the diffusion of trace elements and the chemical diffusion of SiO2,

Al2O3 and TiO2 in one single experiment under the same conditions. The setup may be

designated as a double diffusion couple or a diffusion triple. It is noteworthy that this method

only can be applied in an experimental apparatus such as an IHPV which has a relatively large

volume with almost constant temperature. The upper pressure limit of the IHPV’s in

Hannover is at 800 MPa. Experiments at higher pressures of 1 GPa were performed in a piston

cylinder apparatus (PCA). Since temperature gradients in the PCA are much higher than in the

IHPV an acceptable capsule length is limited to at most 7 mm to minimize temperature

differences within the experimental charge. This is too small for diffusion triple experiments

so traditional diffusion couple experiments were performed with trace element diffusion

couples at 1GPa. The experimental arrangements of diffusion triples within an IHPV and

diffusion couples in a PCA are sketched in Fig. 1.

Only homogeneous samples regard to the major elements without bubbles and crystals were

used in diffusion couples or diffusion triples. For diffusion experiments with nominally

anhydrous rhyolitic melts, cylindrical cores of 3 mm in diameter were drilled out of the glass

body synthesized at 1 atm. The dacite glasses tend to build bubbles by the reaction Fe2O3 to

FeO and O2 at 1 atm. To avoid bubbles nominally anhydrous dacitic glasses were synthesized
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in IHPV’s at 1200 ºC and 500 MPa for 4 h using a rapid quench device with an estimated

cooling rate of about 200 ºC/s.
15
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Fig. 1: Schematic scetch of assembled diffusion experiments in the IHPV or PCA.

Anhydrous dacitic samples as well as hydrous rhyolitic and dacitic samples were cut directly

from the synthesis cylinders. The basic planes of cylinders were polished for the diffusion

experiments. Three glasses with the same water content were aligned in a Pt- or AuPd-capsule

with polished planes in contact for diffusion triple experiments. The capsules were carefully

squeezed to minimize the free volume before welding shut. The cylinders varied in length

between 2 and 4 mm to avoid an overlap of diffusion profiles in any part of the triple. Since

diffusion profiles of the fast trace elements (e.g. Rb) are significantly longer than profiles

resulting from chemical diffusion, cylinders differed in length like 4 mm for A3, 2 mm for A2

and the length of A1 was to be about the sum of both others.

For PCA experiments two glass cylinders (2–2.5 mm long, 2.8-3 mm in diameter) with a

polished contact plane were inserted tightly in a specially formed Pt-container (5-7 mm long,
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3.2 mm in diameter). The bottom of a 12 mm long Pt capsule was firstly welded and then

pressed with a piston into a container with a bore hole matching the size of the capsule. Thus

it is insured that at least at one side the sample fits exactly in the capsule so that a movement

of the melt in the capsule under experimental conditions is avoided. The carefully squeezed

container was welded at the top in a 4-fin-crimp shape. The capsules were enclosed in

crushable alumina sleeves and then encased in a graphite heater (3 cm long, 0.65 cm inner

diameter). To insulate the furnace from the carbide core of the PCA, Pyrex glass or BaCO3

tubes were mounted over the graphite heater.

2.3. Pressure Apparatus and Run Conditions

Diffusion triple experiments with rhyolitic melts were performed at 500 MPa in two different

pressure vessels: (1) IHPV at 1100-1400ºC and (2) in cold seal pressure vessel (CSPV) at

800ºC. Experiments with dacitic melts were carried out in (1) IHPV at pressures of 100, 250

and 500 MPa and temperatures of 1200-1400ºC (diffusion triple) and (2) in a solid-media ½

inch PCA at 1 GPa at 1200-1400ºC in the Department of Geoscience in Ann Arbor, Michigan.

Since the diffusivities of the cations differ widely, long and short term runs at identical

conditions were choosen. Furthermore by using different run durations it is possible to control

whether any kind of non-diffusive processes such as convection has an influence on the

experiments. To avoid convection driven by density differences, the more denser melt was

always placed at the base (in IHPV’s A3 was placed at the base and A2 on top of the triple).

The run durations varied from 15 days to 15 minutes for rhyolitic melts and from 60 hours to

5 minutes for dacitic melts depending on pressure, temperature and water content.

Diffusion triples were vertically orientated in the IHPV and pressurized with argon to 500

MPa (for technical details see Becker et al., 1998). Experiments were heated to run

temperature at a constant rate of 30ºC/min using a programmable Eurotherm 900 controller.

Temperature was controlled in the sample chamber of the IHPV by 4 NiCr-Ni thermocouples
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(K-type) calibrated against a certified thermocouple over a length of about 4 cm. The

temperature gradient at the sample position was less than 1ºC/mm. Pressure was measured

with a strain gauge manometer leading to an accuracy of ± 5 MPa. The accuracy of

temperature determination in the diffusion zone is estimated to be within ± 10°C. At an

average rate of 200 ºC/min experiments were isobarically quenched to below 100ºC while

constant pressure was maintained by automatic pumping.

Experiments above 1250 ºC were performed in a high T rapid quench apparatus using S-type

thermocouples. Experiments at 800 ºC and 500 MPa were performed in horizontal direction in

the CSPV pressurized with water. Temperature at the sample position was calibrated to an

external thermocouple by using a calibration vessel and is estimated to be accurate within ±

8ºC (details see Puziewicz and Johannes, 1988). Pressure was measured also with a strain

gauge manometer with an accuracy of ± 5 MPa. Samples were quenched isobarically in a flux

of compressed air with a cooling rate of about 150ºC/min.

Assemblies in the PCA were pressurized to 1 GPa and with a roughly constant pressure

(piston-in method) heated to run temperature while maintaining pressure. Temperatures were

raised to conditions of the experiment at a rate of about 400 K/min. To prevent an overshoot

of the desired temperature, experiments were heated slowly through the final 20ºC at a rate of

10ºC/min. Temperature was controlled with an S-type thermocouple calibrated against the

melting point of gold. Experiments were quenched roughly isobarically by manuell pumping

while turning of the furnace for short term runs (5-15 min) with a cooling rate of about 200

ºC/s. To minimize dilation cracks in the sample long term runs were “warm quenched” by

cooling down to 300 ºC in one step (about 15 s) and then slowly to room temperature in

100ºC/min. During experiments temperatures were monitored with an Eurotherm 984 control

system and fluctuations in temperature at the set point were usually less than 5ºC.

Temperature gradients inside the capsule were determined by measuring the OH/H2O ratios

along the axis of an rhyolitic glass body (6.5 mm long, 4.1 mm in diameter) wrapped in gold
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foil and heated to 600ºC at 500 MPa for 30 min in the PCA. The used rhyolitic glass

contained about 1 wt% H2O. With an Perkin–Elmer GX FTIR spectrometer in the Department

of Geoscience in Ann Arbor, Michigan (USA)) concentrations of H2O molecules and OH

groups were quantified by the absorption bands at 5230 cm–1 and 4520 cm–1, respectively.

With the determined OH/H2O ratios over the whole sample temperature distribution was

calculated with a new calibrated model after Zhang et. al (1997). The resulting temperature

gradient is about 10ºC±1.5/mm for experimental conditions of 600ºC at 500 MPa (see Fig. 2).
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Fig. 2: Temperature distribution (Tae) along the axis of rhyolitic glass body calculated from
OH/H2O ratios after a model by Zhang et. al (1997) with a resulting temperature gradient of
about 10ºC/mm. The thermocouple is placed about 2.5 mm away from the hot zone.

Temperature differences at 1400ºC and 1 GPa were calibrated by the two-pyroxene

thermometry after Nickel et al. (1985). A mixture of pyrope, enstatite and diopside were

loaded into a Pt-capsule (6 mm long, 3 mm in diameter) together with pre-synthesized glass (6

wt% CaO, 30 wt% MgO, 18 wt% Al2O3 and 46 wt% SiO2) and welded shut. The starting

point of the mechanical mixture is at low Ca/low Al orthopyroxen (opx) and high Ca/low Al
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clinopyroxen (cpx). The glassy starting material converts under pressure and temperature

rapidly into pyroxen, low in Ca in respect to cpx and high in Ca in respect to opx. The Pt

capsule was loaded into the PCA and run for 5 hours at 1400 ºC and 1GPa. The Ca and Al

contents in the resulting opx and cpx minerals of the synthesis products were analyzed with a

microprobe after the experimental run. From the Ca and Al concentrations in wt % KD was

calculated after Nickel et al. (1985) with

KD = ((1-Al/2)*(1-Ca)cpx)/ ((1-Al/2)*(1-Ca)opx). (1)

Since the dependency of T on ln KD derived also by Nickel et al. (1985) is given by

T(°C) = 1616.67 (±14.7) + 287.935 (±5.5) * ln KD + 2.933 (±0.25) *P(kbar) (2)

temperature gradients over the whole sample could be calculated with a resulting gradient of

about 14ºC/mm.

Oxygen fugacity was not controlled in the experiments. Redox conditions in the IHPV

apparatus are ∆NNO + 3.5 at 1100 ºC, 500 MPa and ∆NNO + 2.3 at 850 ºC, 500 MPa for

water saturated experiments as measured by NiPd sensors (Wilke and Behrens, 1999; Tamic

et al., 2001). Oxygen fugacity in the CSPV is buffered by the stainless, Ni-rich steel of the

autoclave and is close to that of the NNO buffer. Conditions in the PCA are estimated to be

∆NNO – 2 at 1200ºC and 1 GPa (pers. com. by Zhang and Withers).
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3. ANALYTICAL TECHNIQUES

3.1. Sample Preparation

Along the cylindrical axis of the experimental runs double polished sample sections

(thickness: 50-80 µm) were prepared for trace element analysis with SYXRF. Parallel to this

first section a glass plate of 0.3-0.5 mm thickness polished on both sides was prepared for IR

spectroscopy and SIMS. For SIMS analysis, sample sections were embedded in epoxy disks,

polished, ultrasonically cleaned in ethanol and after drying at 75 ºC for 1 hour and coated with

a conducting gold film. For measuring the diffusion profiles of major elements with electron

microprobe analysis, samples used for IR analysis or SIMS were polished down to 100 µm,

and covered with a carbon film. The plane analyzed by electron microprobe always was that

near the cylindrical axis.

3.2. KFT and FTIR

Water contents at both ends of the starting glasses were determined by both Karl Fischer

titration (KFT) (more details in Behrens et al., 1996) and FTIR (Fourier transform infrared)

microspectroscopy. IR spectra of doubly polished plates were collected in the mid-infrared

(MIR) for glasses with up to 2 wt% H2O and in the near-infrared (NIR) for glasses with higher

water contents.

Measurement were performed using an IR microscope A590 coupled with a Bruker IFS 88

FTIR spectrometer. MIR measurement conditions were: 80–200 µm sample thickness,

glowbar source, KBr beamsplitter, HgCdTe detector, spectral resolution of 4 cm-1. NIR

measurement conditions were: 300–500 µm sample thickness, tungsten white light source,

CaF2 beamsplitter, HgCdTe detector, spectral resolution of 2 cm-1. The thickness of samples

was measured by a digital Mitutoyo micrometer with a precision of ± 2 µm. For each

spectrum 100 scans were accumulated. 20-50 spectra were measured along the diffusion
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profiles. A slit aperture located between objective and detector was used to limit the analysis

sample volume, resulting in a spatial resolution of about 30 µm (Zhang and Behrens, 2000).

Errors in peak heights based on repeated measurements at different points of the sample are

estimated as ± 0.003 for OH peaks and ± 0.002 for H2O peaks.

Simple tangents through the minima on both sides of the water-related absorption bands in the

spectra of rhyolitic compositions were fitted for baseline correction. Total water (MIR

spectra) and water species (NIR spectra) were determined from the heights of the absorption

bands using the Lambert-Beer law. In the MIR absorption spectra, the fundamental OH

stretching vibration band at 3550 cm–1 was evaluated using a linear molar absorption of 78 l

mole-1cm-1 as determined for a haplogranitic composition by Behrens and Schmidt (1998).

Concentrations of H2O molecules and OH groups were quantified by the absorption bands at

5230 cm–1 and 4520 cm–1, respectively. Total water was calculated as the sum of both species.

To evaluate the NIR spectra of glasses containing about 5 wt% water, linear molar absorption

coefficients determined by Withers and Behrens (1999) for the same rhyolite of Armenia

(ε4500 = 1.52 l mole-1cm-1; ε5200 = 1.72 l mole-1cm-1) were used.

Water contents of the dacitic glasses were measured using a new IR microscope (IR-scope II)

coupled with a Bruker IFS 88 FTIR spectrometer. The detector is a narrow band MCT

detector with NIR equipment and the objective is a cassegranian 15x. Due to broad intensive

iron-related bands with a maxima at around 5700 cm-1 the linear baseline under the H2O

combination bands intersects the absorbance curve at 5400 cm-1. To account effects of iron-

related bands influencing the spectra by determing water species in this case, the background

of OH and H2O combination bands is modeled by the two gaussian fit to the iron-related band

at 5770 cm-1 and the water-related band at 3931 cm-1. The procedure of this baseline

correction is described in detail by Ohlhorst et al. (2001). For evaluation of the spectra molar

absorption coefficients determined by Ohlhorst et al. (2001) for the same Unzen Volcano



23

dacite (ε4500 = 1.04 l mole-1cm-1; ε5200 = 1.18 l mole-1cm-1) were used. Since the setup of the IR

spectrometer changed (new microscope, new objective, new CaF2 beamsplitter, condensor

lense instead of a mirror, slit aperture instead of an aperture hole) and a new detector with a

much better signal to noise ratio was used, the calculated water contents for the dacitic glasses

are expect to be 2-10 % to high by using the molar absorption coefficients determined by

Ohlhorst et al. (2001) for the old setup of the IR spectrometer (pers. comm. by Ohlhorst). Also

Behrens et al. (1996) observed a variation of up to 10 % relative in peakintensities by using

different FTIR spectrometers for the same sample.

To consider compositional variation in the chemical diffusion couple, the relationship

between absorption coefficients and SiO2 content derived by Ohlhorst et al. (2001) for basaltic

to rhyolitic composition was extrapolated to higher SiO2-contents (for rhyolitic compositions

to ε4500 = 1.49 l mole-1cm-1 and ε5200 = 1.81 l mole-1cm-1 at 82 wt% SiO2 and interpolated

dacitic compositions to ε4500 = 1.39 l mole-1cm-1 and ε5200 = 1.55 l mole-1cm-1 at 72 wt%

SiO2).

Densities required for evaluation of the spectra were calculated by the linear density-total

H2O-content relationship derived for EDF compositions by Withers and Behrens (1999) as

ρ = (2390 ± 12) – (17.0 ± 2.3) * c water (3)

and derived for dacite of the Unzen Volcano by Ohlhorst et al. (2001) as

ρ = (2517 ± 5) – (12.1 ± 1.7) * c water (4)

where ρ is the density of the hydrous glass in g/l and c water is the total water content in wt%.

Using this relationship for the silica-rich compositions gives only a minor error. Density

measurements on selected starting glasses by the buoyancy method (measuring the sample

weight in water and in air) agree within 2 % with calculated densities independent on

anhydrous composition.
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3.3. Microprobe Analysis

Compositions of anhydrous and hydrous starting glasses were analyzed with an electron

microprobe (Cameca Camebax). Raw data were corrected following the PAP procedure

(Pouchou and Pichoir, 1988). For checking the composition of the starting materials analysis

conditions of 15 kV accelerating voltage, 5 nA beam current, 5 s acquisition time for Si, Al,

Mg, Ca , Fe and 2 s for Na and K were used to avoid migration of the alkalis. Analysis on the

samples were done with a defocused beam (spot size 20 µm). An average of 10-20 electron

microprobe analysis collected for anhydrous and hydrous starting material is listed in Tab. 1

and compared to natural composition of the EDF from Armenia and Unzen Volcano dacite.

Chemical diffusion profiles of SiO2, Al2O3 and TiO2 in the couple A1/A2 were measured with

different operating conditions compared to the standard glass analysis to achieve a higher

analytical precision. Beam conditions varied but best results for the major elements SiO2 and

Al2O3 were obtained using an accelerating voltage of 15 kV, a beam current of 20 nA and a

beam spot of 5 µm. Counting time were 30 s for SiO2 and Al2O3, and 50 s for TiO2 and FeO.

To minimize alkali loss during analysis the profiles of Na2O and K2O were measured

separately in the diffusion samples with analysis conditions as used for the starting materials.

Accurate diffusivities for the components Na2O, K2O, CaO and MgO could not be evaluated

from the profiles due to high signal to noise ratios and small concentration gradients.

3.4. SYXRF

Trace element diffusion profiles were routinously analyzed at the beamline L (SYXRF) at the

Hamburger Synchrotron Labor (HASYLAB) of the Deutsches Elektronen-Synchrotron Labor

(DESY) in Hamburg, Germany. The SYXRF beam arises from deflection of a 4.5 GeV

electron beam around the DORIS III bending magnet ring, yielding a white spectrum with a

maximum flux at 16.6 keV and a usable spectrum in the range of 2 – 80 keV. Theoretical
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concepts and general principles of operation of SYXRF are reviewed in detail elsewhere (e.g.

Haller and Knöchel, 1996; Lechtenberg et al., 1996; Koepke and Behrens, 2001).

The thin section prepared along the cylindrical axis was mounted with epoxy on a slit of an Al

holder so that the synchroton beam only passes through the sample. The middle part of doubly

polished 50-80 µm thin sample sections were centered on 1.0-1.5 mm slits cutted in an Al

holder, which is mounted on a XYZ table (reproducable positioning 0.5 µm).

Fluorescent X-Rays from the K-shell lines of the elements have been measured for

concentration-distance profiles by using the white and lineary polarized fluorescent excitation

of the highly brilliant SR source (white beam technique). To suppress intense K fluorescence

lines of major elements such as Ca and Fe in the used samples and to avoid thermal damage of

beamline components due to the very high white beam intensity, Al absorber of 1-4 mm

thickness (depends on sample material) must be used. Dead-time for the EDS detector was

maintained in the range of 10–30 % and live-time was selected to be 170-180 s for analysis,

yielding a real acquisition time of 240 s for every point, while EDS spectra were accumulated

in a 2048-bit multichannel analyzer. K-spectra of all elements could be measured

simultaneously by acquisition of only one spectrum (multi-element spectra) and with a high

local resolution (10-25 µm point distance). To achieve a smaller and focused beam spot

calibrated glass capillaries of 8 µm (only for very short diffusion profiles) or 20 µm in

diameter were used. To observe the sample position and orientation the SYXRF is equipped

with a CCD camera (3 µm resolution) and a long distance microscope with a magnification of

40–1200x. To minimize Raleigh and Compton scattering, samples were aligned at 45º and the

fluorescence spectrum was detected at 90º to the incident beam. The sample was moved

perpendicular to the diffusion trend (along Y direction) and in the plane parallel to the surface.

Thus, one dimensional line scans were surveyed remote controlled from the outside of the

microprobe set-up. Fluorescence signals are recorded by an energy-dispersive HPGe
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semiconductor, 30 mm2 in diameter and 5 mm thick. The resulting spectra were fitted with the

AXIL-software (van Espen et al., 1977). Net intensities were normalized to an internal

standard (Fe in this study) to correct analytical fluctuations caused by the synchrotron beam

and variations in sample orientation and thickness. The set-up of SYXRF at beamline L is

scetched in Fig. 3.
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Fig. 3: Set-up of the SYXRF at the beamline L in the HASYLAB of DESY in Hamburg.

3.5. SIMS

Trace element diffusion profiles were measured also by SIMS using the Cameca ims 6f SIMS

of the Geoforschungs Zentrum (GFZ) in Potsdam. Relative concentration profiles of trace

elements were measured in three selected diffusion couples differing in (1) bulk composition

at the same H2O contents (rhyolitic (D18) and dacitic (PC 11), 5 wt% H2O) and (2) water

content at the same bulk composition (rhyolitic with either 2 (D22) or 5 wt% of H2O (D18)).

During analysis the sample surface is bombarded with a focused primary beam of high energy

ions generated by an ion column. The impact of primary ions sputters atoms from the sample

(secondary ions). An extraction system transfers the secondary ions to an entrance slit of a
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mass spectrometer where they are accelerated by an electrostatic field for the mass

spectrometric analysis. Since no chemical separation is made prior to analysis, the secondary

ion beam may also contain polyatomic ion combinations or ionized molecular combinations

(especially with oxygen in the positive ion mass spectrum) of elements present in the sample-

matrix including trace elements. However, there are small differences in interfering masses of

the fragments which can be used for separation.

An 16O--ion beam was used for the SIMS analysis of the diffusion samples with energies of

about 12.5 kV and 2 or 8 nA (depended on the diameter of the beam). This source was

preferred to a 133Cs+-ion or Ar beam to analyse the positive species in the glasses. The

resulting minimum spot size by using these conditions is 10 to 25 µm and depends on the

initial source brightness and the optical alignment of the primary column.

The determination of the relative distribution profiles of selected ‘heavy metals’ and REE’s

required the tuning of the instrument to operate at the minimum mass resolution of M/δM =

circa 350. A primary beam intensity of circa 8 nA was focussed to a circa 20 µm diameter

spot (98% of beam); 18 mass stations were included in the peak stepping sequence such as

30Si, 58Ni, 63Cu, 85Rb, 88Sr, 90Zr, 93Nb, 133Cs, 138Ba, 140Ce, 147Sm, 151Eu, 153Eu, 158Gd, 174Yb,

180Hf and 181Ta. The background was measured for 0.1 s, 63Cu for 5 s, 133Cs and 181Ta for 10 s

and the other isotops for 2 s. Four cycles were conducted, resulting in a total analytical time of

7 minutes including a 3 minute presputter. A -100 V energy offset was applied to nominal 10

kV secondary ion extraction potential, the instrument was operated with a 25 V energy

bandpass. Profiles were measured automatically using a 50 µm stage stepping distance.

Secondly profiles for slowly diffusing isotops such as 28Si, 90Zr, 93Nb, 89Y, 59Co, 64Zn, 66Zn,

74Ge, 139La, 180Hf and 181Ta were measured with a smaller point distance of 20 or 25 µm

parallel to the first measured profile. Therefore a primary beam intensity of circa 2 nA was

used focussed to a circa 10 µm diameter spot (98% of beam). Decreasing the intensity of the

primary beam reduces the crater size but also results in longer counting times in order to
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observe sufficient secondary ions. Therefore a longer analytical time of 13 min for each point,

including 5 min presputter was necessary to reach an acceptable number of observed ions.

To correct fluctuations in the secondary ion production and transmission, the secondary ion

intensities were rationed to those of 30Si, which is a major isotop (60-80 wt% of SiO2) in the

used silicate glasses. As the Si concentration is constant across the length of the sample

measured data reflect the relative variation in the element concentration as a function of

diffusion distance.
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4. RESULTS

Small difference in the concentrations of Na2O and K2O between the undoped (A1) and the

doped glasses (A2 and A3) resulting from melting at 1600°C on air were detected. Especially

the SiO2-enriched glass (A2), which had to be grinded and re-melted three times to become

homogeneous, was depleted in alkalis and thus became slightly peraluminous (NBO/T = -

0.04). To check, if the initial inhomogenity in the diffusion triple influence the trace element

diffusion and the interdiffusion of Al and Si, electron microprobe traverses were measured

along the cylindrical axis of selected samples after short and long term runs (run D2, D4, D9

and D11) demonstrated for D4 and D11in Fig. 4.
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Fig. 4a,b: Alkali distribution after the experimental run and calculated NBO/T.

Homogeneous distribution of Na2O and K2O in all samples were found and even in the short

term runs no alkali gradients were measured. NBO/T were calculated over the whole lenght of

the diffusion triples on 10-15 microprobe analysis with the water contents given in Tab. 2 and

3 for each part of the triple. After the experiments NBO/T became 0.08 to 0.14 for D2, 0.15 to

0.16 for D4, 0.32 to 0.33 for D9 and 0.39 to 0.41 for D11 compared to the NBO/T of the

starting materials of 0.01 for A1, 0.04 for A2 and 0.03 for A3 (see Tab.1) Thus, the diffusion

of Na and K must be significant faster than the diffusion of the other cations. This is

consistent with observations in other studies (e.g. Jambon, 1982).
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4.1. Evaluation of Diffusion Profiles

Crystal- and bubble-free glasses were obtained from all diffusion experiments performed in

the IHPV except of one experiment with anhydrous samples at 1200°C (D30). The SiO2-rich

part of this triple was completely crystallized. However, EBDCs for SiO2 and Al2O3 evaluated

from the chemical diffusion profiles of the crystallized part of this experiment agree very well

with Eyring diffusivities Dη (see Tab. 2 and 3) calculated using the viscosity model after Hess

and Dingwell (1996). Diffusion profiles from PCA experiments show crystallization in the

tracer diffusion couple at 1200°C and about 2 wt% H2O (PC12). From PC12 and also from

PC5, PC8 and PC11, which show strong deformation of the samples in diffusion direction no

diffusion data could be evaluated and possible matrix effects during analysis with SYXRF and

SIMS could not be clarified because PC11 was one of the choosen sample.

Diffusion coefficients for trace and major elements were determined by fitting the measured

concentration-distance profiles to the appropriate solution of Fick’s second law. Assuming

concentration-independent diffusion coefficients, the solution for one-dimensional diffusion

between two semi-infinite media is after Crank (1975):
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where C (x,t) is the concentration at a distance x after run time t, a is the inflection point of the

diffusion profile, C0 and C1 are the initial concentrations in both halves of the diffusion couple

and D is the diffusion coefficient. The calculated diffusion coefficients and experimental

conditions are summarized in Tab. 2 and 3 for rhyolitic and in Tab. 5 for dacitic melts.

4.2. Influence of non-diffusive Transport

To ensure that the concentration distance profiles are exclusively due to diffusion,

experiments under identical conditions for different run durations were performed. It is

convenient to normalize concentrations against t to make the profiles invariant in time. The
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time-dependence for cations with very high diffusivities such as Rb could not be analyzed

because in the long term runs profiles were reflected at one end of the diffusion couple.

Normalized diffusion profiles of Co, Nd and Zr are plotted in Fig. 5 a-e.
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Fig. 5: Normalized diffusion profiles of Co, Nd and Zr for short- (open triangles) and long-
(filled circles) term runs at identical P-T conditions. Intensity is normalized to 1 and the
distance is scaled by the square root of time to make the profiles invariant in time.
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In the case of Co, the normalized profiles of the long- and short term run matches very good,

both at 1100°C and 1400°C, for melts containing about 5 wt% H2O. In contrast, the

normalized profiles of Nd and Zr are significantly longer for the short term than for the long

term run at 1400°C. On the other hand, at 1100°C short and long term runs are in good

agreement for Zr. It can be infer from these results that because of the higher H2O content of

the short term run an enhancing effect on diffusion by water is more pronounced for Zr than

for Co.

Also a non-diffusive transport could affect the diffusion data especially for slowly moving

cations in very short runs at high temperature. An apparently enhanced diffusion was

observed also in zero-time experiments on water diffusion in haplogranitic melts (Nowak and

Behrens 1997) and on trace element diffusion in andesitic melts (Koepke and Behrens 2001).

A possible explanation is locally restricted mixing at the contact of the diffusion couple

during heating from glass to melt state. Diffusion data which are affected by non-diffusive

mixing are not included in Tab. 2, 3 and 5.

4.3. Trace Element Diffusion

Selected diffusion profiles of trace elements are shown for rhyolitic and dacitic melts in Fig. 6

a-f for different water contents (0.20-4.91 wt% H2O) and temperatures (1100-1400ºC).

Provided the boundary condition of semi-infinite media is fulfilled, normalized concentration

profiles of the elements with different mobilities (corresponding to different profile lengths)

intersect at the interface of the two halves of diffusion couple. In some long term diffusion

runs the intersection points of mobile cations are shifted compared to the other elements (e.g.

Ba in Fig. 6 b) indicating reflection of the profile at the doped end of the sample. When

diffusional exchange did not proceed to much (less than 10% decrease in concentration at the

doped end), these profiles could be evaluated using the solution of Fick’s second law for finite

media (Crank 1975, eq 2.17).
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Fig. 6: Selected diffusion profiles of Ba, Co, Sm and Nb for different water contents (0.19,
1.77 and 4.98 wt % H2O) and temperatures (1100, 1200 and 1400ºC) in rhyolitic at 500 MPa
and dacitic melts at 1 GPa. Maximum intensities are normalized to 1 for comparison. An error
function fit for each element is shown by a curve through the measured data points.

A basic assumption in the evaluation of the trace element profiles has been that diffusion

coefficients are independent on concentration of the trace element because concentrations are

low. This assumption is supported by the symmetry of concentration distance profiles. The

variation of gradients at the intersection point demonstrate that the LFSE Ba diffuses faster

than the TME Co, the REE Sm and the HFSE Nb, independent of temperature and water
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content. In general, concentration profiles for cations with higher valence such as REE and

HFSE (i.e. Sm and Nb) are more steep than those with lower valence such as LFSE (i.e. Ba).

From Tab. 2, 3 and 5 it is evident that at constant pressure, temperature and water content the

diffusion coefficients decrease with increasing ionic charge from monovalent Rb to tetravalent

Zr and Ge. For instance, at 500 MPa, 1200 °C, 5wt% H2O the tracer diffusivity in rhyolitic

melts decreases from log DRb = -9.99 to log DBa = -10.66 to log DNd = -11.59 to log DZr=-

12.47 (D in m2/s). In dacitic melts at 1 GPa, 1200 °C, 2 wt% H2O tracer diffusivity decreases

from log DRb = -10.80 to log DBa = -11.32 to log DNd = -11.51 to log DZr=-12.26. The decrease

of diffusion coefficients from the LFSE (Rb) to the HFSE (Zr) in rhyolitic melts is about 3.5

log units at 800 ºC for melts containing ca. 5 wt% H2O, about 2 log units at 1100 ºC for melts

with 2 wt% H2O and about 3.5 to 4 log units at 1200 ºC for the water-poor melt. A much

smaller decrease is found for dacitic melts at 1 GPa of about 1.5 log units at 1200 ºC for melts

with 2 wt% H2O and about 0.7 log unit at 1400 ºC in the water-rich melt. Diffusion of cations

is about 0.1 (LFSE) to 1 log units (HFSE) faster at 2 wt% H2O, 1200 ºC and about 0.4 (LFSE)

to 2 (HFSE) log units faster at 5 wt% H2O, 1400 ºC in dacitic melts than in rhyolitic melts.

Shown in a plot log D vs elements (Fig. 7) no simple relationship between diffusivity and

ionic radius can be applied to all cations with the same charge. Whereas Sr2+ (ionic radius =

1.26 Å) always was found to migrate faster than Ba2+ (1.42 Å) the smaller Ni2+ (0.69 Å) is

slower than both with a mobility close to the REE. The diffusion coefficients of the various

REE are almost identical except of Eu, for which D is 0.2 orders of magnitude higher for

rhyolitic melts at 1400 ºC and 5 wt% H2O and even 2 orders of magnitude higher at 1200 ºC

in water-poor rhyolitic melts. In dacitic melts the diffusion of Eu is almost identical to the

diffusion of the other REE. Sn always migrates significant faster than Ge in rhyolitic and

dacitic melts. Nb is faster than its neighbor element Zr and Co is faster than the other TME’s

Ni and Cu. Surprisingly, the determined diffusivities of Cu, which is expected to be in mono-
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or divalent are slower than all the other TME and its diffusion coefficient is close to the

HFSE.
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Fig. 7: Comparison of diffusion coefficients in a log D vs element plot for water-poor and
hydrous rhyolitic melts at 1200 ºC and 500 MPa.

4.4. Diffusion Profiles evaluated by SYXRF and SIMS

SYXRF was routinously used to determine diffusion coefficients by the analysis of

concentration distance profiles. In order to compare results and analytical methods, SIMS was

also used to determine the diffusion of trace elements on the samples D18 and D22 (Tab. 7).

In Fig. 8 a normalized concentration distance profiles determined by SYXRF and SIMS are

presented for Ba, Gd and Zr. Diffusion profiles for V and Sn could not be analyzed by SIMS

because of the overlapping of V with NaSi molecule (which are highly concentrated in the

used glass matrix) and a very low intensity signal of Sn. Although Ni is found to be

problematic element to measure with SIMS because Ni intensity signals overlap with CaO

molecule of the glass matrix, a much higher scattering is observed from the SYXRF profiles
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for Ni (see normalized Ni profiles in Fig. 8 b). Diffusivities of Ni evaluated from SIMS

profiles are about 1 log unit smaller for identical experimental runs.
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Fig. 8: Comparison of concentration distance profiles measured with SYXRF (filled symbols)
and SIMS (open symbols).

Since Ta is used as a material of the cross slit system at the SYXRF beamline the high

discrepancy in diffusivities for Ta (1 to 1.6 log units) and the large scattering of the SYXRF

measurements can be explained by the presence of an intensive Ta background signal in

SYXRF analyses (Fig. 8 c). The scattering of Ce profiles measured with SYXRF is even so

high that because of the low quality of the fit the resulting standard error of D is unacceptably

high (0.45-0.55 log units). From quantitative determinations of trace element concentrations

by Rickers, Ce was found to be much lower concentrated (50-70 ppm, pers. comm. by

Rickers) than the other elements in the glasses (300-500 ppm). This is to low to measure well-

resolved diffusion profiles with SYXRF but still high enough to determine Ce profiles with

SIMS. Experimental problems while doping the starting glasses could caused this low
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concentration in Ce. Since Ce203 is a very hygrouscopic and sticky material it cannot be

excluded that some of the material is lost during grinding and mixing before synthesis.

Diffusivities of Ce and Ta evaluated from SYXRF measurements received no further

consideration in this study because of the mentioned problems and are not presented in Tab. 2,

3 and 5. Profiles of Cu (Fig. 8 d) show a smoother profile from SYXRF than SIMS

measurements. However, the diffusivity of log D = -10.43 calculated from the SIMS is more

compatible to diffusivities of the other TME than the diffusivity of log D = -12.47 evaluated

from the SYXRF profile.

4.5. Chemical Diffusion

An example of concentration profiles of SiO2, Al2O3 and TiO2 measured in a chemical

diffusion couple is shown in Fig. 9. Since all chemical diffusion profiles display an error-

function shape, it can be concluded that the compositional dependence of the diffusion

coefficients is negligible in the range of composition studied. No indication for uphill

diffusion was found in any of the experiments. Therefore the model of the EBDC (Cooper,

1968) is a suitable approach to the experiments and EBDC´s were determined by fitting the

profiles to the solution for a diffusion couple with constant diffusivity (eq. 5). Chemical

diffusion of Ti in rhyolitic melts is found to be systematically 0.2 – 0.8 log units faster than

diffusion of network formers Al and Si except for run D3 in which the profiles are too short

for discrimination of chemical diffusivities. In general, the EBDC of Si, Al and Ti are close to

trace element diffusivities of HFSE (Tab. 2 and 3).
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found.

4.6. Precision of Diffusion Data

Reproducibility of data collection and evaluation was tested by duplicated measurements of

profiles on the same sample (e.g. run D1, D15, D12 and D30). Differences in the diffusion

coefficients are within the uncertainties derived from error calculations. Calculation of errors

of the diffusion coefficient follows Behrens and Koepke (2001) considering uncertainties in

run duration, temperature and water content as well as the spatial resolution of SYXRF, the

intensity of the fluorescence signal of the SYXRF and the quality of the fit. In the short term

experiments the uncertainty in the run duration due to heating up and cooling down can have a

systematic influence on diffusivity data. The time (theat/cool) required at run temperature to

produce the same profile length as generated in the heating/cooling period was calculated for
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each element using the individual activation energies for diffusion. theat/cool decreases with

increasing activation energy and is the largest for Rb and the smallest for HFSE’s (Zr).

Estimated uncertainties due to run duration range from 1% for 800ºC to 6% at 1400ºC for

short term runs (50 h-30 min) and from 0.02% to 3% for long term runs (15 d-4.5 h). The

error of diffusivity due to uncertainty of temperature increases with the activation energy of

diffusion and decreases with temperature. HFSE have a contribution of temperature to the

error in diffusivities of about 15% at 1100 ºC and LFSE of about 5 % at 1400 ºC.

Uncertainties in the determination of water contents by IR measurements is estimated to be

2% (relative). Variation of water content along the diffusion profiles are within 0.2 wt% for

short term runs and 0.4 wt% for the long term runs. The quality of the concentration distance

profiles (lower signal to noise ratio) increases with increasing intensity of the fluorescence

signal of the SYXRF. Based on fit quality, elements of high quality (Ge, Rb, Sr, Y, Zr, Nb)

with 3-5 % standard error of D, intermediate quality (Co, Ni, Cu, V, Sn, Ba, La, Nd, Sm, Eu,

Gd) with 10-15 % standard error of D and low quality (Er, Yb, Hf, Ta) with 30-50 % standard

error of D can be distinguished (Koepke and Behrens (2001). The resulting total errors of

diffusivity are included in Tab. 2, 3 and 5.

4.7. Enhancement of Diffusivities by adding H2O

In Fig. 10 diffusion coefficients of various cations in rhyolitic melts at 1200 ºC as a function

of dissolved water in the melt are presented. The data show an enhancement of diffusion by

1.5 to 3.5 log units when adding 5 wt% H2O to the water-poor melt.
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The dependence on water content decreases with water content and it is larger for the HFSE’s

and the major elements Si and Al than for the LFSE’s Rb and Sr. Diffusivities of Rb and Zr

increase by 1 and 2 log units, respectively, from 0.2 to 1.9 wt% H2O and by 1 log unit from

1.9 to 4.9 wt% H2O. A relatively large variation with water content is observed for Sn which

may indicate a change in redox state with hydration. In excellent agreement are diffusivities

for the HFSE Zr and Si with the chemical diffusivity Dηderived from the viscous flow

modelled after Hess and Dingwell (1996) at low and high water content. The total water

diffusion in rhyolitic melts (Zhang and Behrens, 1999) and also the Ar diffusion (Behrens and

Zhang, 2001) in hydrous silicate melts with similar compositions to melts used in the present

study are close to the diffusion of the LFSE Rb.
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4.8. Temperature Dependence of Diffusion in Rhyolitic Melts

To investigate the temperature dependence of cation diffusion, experiments were performed at

least at three to four different temperatures in the temperature range of 800-1400°C,

depending on water content. With the anhydrous composition, experiments are limited to

temperatures ≥ 1200ºC because of partial crystallization at lower temperatures. Diffusion

coefficients with an error of more than 0.35 log units were not considered for calculations of

activation energies for rhyolitic melts (see Tab. 2, 3 and 4). At constant pressure the

temperature dependence of diffusivity can be described by an Arrhenius law (Glasstone et al.,

1941):

RT

Ea

eDD
−

⋅= 0 , (6)

where R is the gas constant, T the absolute temperature in Kelvin, D0 a pre-exponential factor

and Ea the activation energy for diffusion. Fig. 11 a-j show the Arrhenius plots for selected

elements of the different geochemical elemental groups. The activation energy for trace

element diffusion increases from 116 kJ/mole for monovalent Rb to 231 kJ/mole for

tetravalent Ge in rhyolitic melts with 2 wt% H2O and from 59 kJ/mole for Rb to 161 kJ/mole

for Ge in rhyolitic melts containing about 5 wt% H2O. For the REE’s the activation energies

are intermediate between those of LFSE’s and HFSE’s. The TME Co has a relatively low

activation energy for diffusion similar to those of the LFSE’s. Activation energies for

chemical diffusion of the major components Al2O3 and SiO2 (197 and 207 kJ/mole for melts

with 2 wt% H2O and 156 and 160 kJ/mole for melts with 5 wt% H2O) are in the same range

than activation energies for the HFSE’s. The increase of Ea from the LFSE to HFSE is about

100 kJ/mole at both 2 and 5wt% H2O. Activation energies for diffusion in melts with 2 wt%

H2O are higher by about 20 kJ/mole for LFSE and by up to 60 kJ/mole for HFSE compared to

melts with 5 wt% H2O. Activation energies for the water-poor melts increase from 112 – 218

kJ/mole for Rb – Ba and further to 464 – 467 kJ/mole for Hf – Zr. Since the temperature range
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of 1200-1400ºC is very small and only one data point for each temperature is available, errors

in Ea resulting from the Arrhenian fits are higher for Ea in water-poor than for Ea in the

hydrous melts.
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Fig. 11: Temperature dependence of the elemental groups in Arrhenian plots of log D as a
function of 1/T. From the slope of Arrhenius plots activation energies Ea in kJ/mole were
calculated.

4.9. Pressure Dependence of Diffusion in Dacitic Melts

Diffusion experiments with dacitic melts containing about 5 wt% H2O were performed in the

IHPV at three different pressures at 1200ºC in the pressure range of 100 – 500 MPa to

investigate the pressure dependence on cation diffusion. The experiment performed with the

same melt composition at 1 GPa in the PCA (PC11) is not taken into account because this

sample showed deformation after the run. The apparent diffusion coefficients of all elements

evaluated from these experiments are quite similar. This indicates transport by flow of the

melt and these samples were not considered for evaluating the pressure dependence. From

Tab. 5 it is evident that the pressure effect on the diffusion of the LFSE is negliable

(diffusivities are almost identical for Rb, Sr and Ba in the pressure range 100-500 MPa) but
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for higher valenced cations such as REE and HFSE diffusivities decrease with increasing

pressure by 0.4-0.6 and even 1.2 log units, respectively.

Since the solubility of water in dacitic melts at 100 MPa is about 4 wt% at 1200 °C (pers.

comm. by Ohlhorst) the measured water content after the experimental run is only 4.5-4.7

(PCH14), which is 0.2-0.5 wt% lower than of runs at 250 and 500 MPa. This might also

caused the small variation in diffusivities of the cations in PCH14, which is only 0.5 log units

from Rb to Hf. Most likly are diffusive processes of the cations influenced by an mixing

process of the unsoluted water during the experiment.

However, at constant temperature the pressure dependence of diffusion can be expressed

analog to the Arrhenius-type equation:

RT

PV

TPT

a

eDD
−

⋅=, , (7)

where R is the gas constant, T the absolute temperature in Kelvin, DT is the diffusivity at one

bar and Va is the apparent activation volume diffusion. Fig. 12 shows the Arrhenius plots for

selected elements of the different geochemical elemental groups.

Activation volumes were determined by linear regressions for each element for the water-rich

dacitic melt composition (Tab. 6). It is noteworthy that pressure not only affects the mobility

of cations but also the structure of the melt. Thus, the activation volume can not be directly

related to the local expansion required for a jump of a cation as in the case of crystals. The

apparent activation volume increases from 12 cm3/mole for Ni over 18 cm3/mole for Ba over

43 cm3/mole the REE’s and Sn to about 80 cm3/mole for Hf. The TME Co has the lowest Va

comparable with those for Ni and Ba.
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5. DISCUSSION

5.1. Comparison of SYXRF and SIMS Analyses

The two analytical techniques are reliable and convenient for analysing trace elements with

detection limits under the ppm limit. With the SYXRF it is possible to analyze simultaneously

elements (multi-element spectra) with atomic numbers between 20 and 92 using the Kα lines

as analytical signal at a very small spatial resolution and with no damage of the sample

material. In contrast to SIMS analysis of glasses (Koepke et al., 1998) matrix effects due to

water in the glasses are negligible in SYXRF analysis. An easy analysis and quantification of

the X-ray spectra due to a fundamental and detailed knowledge about the physics of X-rays

enables automatically processing of a great number of X-ray spectra within a short time,

whereas for SIMS analysis magnets have to be calibrated for every session with special metal

standards and for every element. However, due to the X-ray penetration and neglible

absorption of synchrotron radiation inside the samples, a cylindric volume is analysed in

SYXRF. For that reason the lateral resolution depends on thickness and orientation of the

sample and can only be kept with a small section thickness of 50-80 µm, which is very

difficult to prepare and to mount on the sample holder.

An important advantage of SIMS is its high sensitivity and the ability to count individual ions

results in detection limits in the parts-per-billion range for many elements. Also the fact that

ions released from the sample are separated by their mass-over-charge ratio means that

isotopic analyses can be performed on very small sample volumes. However, no simultanous

analysis of the elements is possible and especially for the short profiles such as Zn, Ge, Hf, Zr,

Nb and Ta counting times of about 20 min for one point of the diffusion profile are necessary

to observed sufficient secondary ions because of working with a smaller beam size in contrast

to SYXRF measurements of 4 min for one point. Since the bombarding with the primary
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beam damages the sample with crater-like spots, reproducibility measurements can not be

done on the same point.

Diffusion profiles determined by SYXRF and SIMS are in excellent agreement for the most

elements. However, each method has disadvantages with respect to selected elements out of

the given trace element data set, which is already discussed in detail with the results (chap.

4.4). Problematic elements for SIMS are V (overlapping with NaSi molecule), Sn (intensity to

low), and Ni (overlapping with CaO molecule). Problematic elements for SYXRF are Ta

(material of the cross slit system at the SYXRF) and Ce (to low concentrated in the glasses).

Fluorescence signals of the heavier elements such as Er, Yb, Ta and Hf have very low

intensities, which lead to a large scattering in the analyzed diffusion profiles.

In this study diffusivities of Cu determined by SYXRF deviates strongly from other TME’s.

Diffusion coefficients of Cu are more in the order of diffusivities of major components SiO2

and Al2O3. This is an unexpected slow diffusion for Cu1+ or Cu2+ and could demonstrate a

strong coupling on the network dynamics, possibly be caused by the d-electrons and the

tendency to form strong complex structure of Cu. On the other hand the diffusion of the

TME’s Co and Ni evaluated from SYXRF profiles are slower than the other divalent cations

Sr and Ba it could be a systematically analytical effect in SYXRF measurements as well.

Results from SIMS analyses for the TME’s are more compatible to the divalent cations but

there were no peakoverlaps found for TME’s in SYXRF analysis. It might be difficult to

separate the peak position of each TME because fluorescence peaks of the TME are very close

together.

5.2. Effect of H2O on Diffusion

The new experimental study presents diffusion coefficients for a large variety of important

cations in rhyolitic and dacitic melts in order to evaluate the effect of dissolved water on

diffusion. To constrain and quantify how H2O contents affect cation diffusion, homogeneity
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of H2O in diffusion couples and triple plays an important role. Concentration of H2O vary at

most by 0.25 wt% within a couple or triple (see Fig. 9, Tab. 2, 3 and 5). Except of two long

term runs (D2, D9) the water content after experiment was close to the nominal water content

of the starting glasses indicating that water loss or gain during the experiment is negligible.

Diffusion data obtained from the runs D2 an D9 are similar to data from the corresponding

short term runs. This suggest that water loss in these particular runs mainly occurred in the

final stage of the experiments. To estimate whether an initial inhomogeneity in water

distribution may affect the diffusion of cations in the rhyolitic samples, bulk water

diffusivities in rhyolitic melts at various conditions were calculated (Zhang and Behrens,

2000). As shown in Fig. 10 water migrates much faster than most of the cations at 1200 ºC

and 500 MPa. Thus an initial inhomogeneity of water is rapidly equilibrated in the regime of

diffusion of all elements except of the LFSE’s. On the other hand, the LFSE’s are not very

sensitive to the water content, especially at high cwater. Therefore, it can be concluded that

small initial differences in water content of the constituents of the diffusion couples or triples

had no significant influence on the experiments.

5.3. Effect of Pressure on Diffusion

Since no detailed studies has been obtained for the diffusion mechanisms in hydrous dacitic

melts, the effect of pressure on transport of mater only in rhyolitic melts or simple analog

compositions is briefly reviewed. Mungall and Dingwell (1997) observed an increase of Th

and U diffusivity in haplogranitic melts containing 0.02–0.3 wt% water by a factor of 4 at

1400°C, when the pressure was increased by 1 GPa. In contrast, diffusion of the noble gas Ar

in rhyolitic melts with <0.5 wt% H2O strongly decreases with pressure at 600°C but it is

almost independent on pressure at 1000°C for melts containing up to 5 wt% H2O (Behrens

and Zhang, 2001). Baker and Watson (1988) found that an increasing pressure enhances the

diffusion for Al, Fe, Si, Mn, and Y but slows the diffusion for the HFSE’s Zr and Nb in a
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complex silica rich melt. The effect of pressure on cation diffusion may be correlated to the

melt viscosity. Kushiro (1976) found a negative dependence of the viscosity of anydrous

albitic melt. On the other hand, the viscosity of a hydrous haplogranitic melt (6 wt% H2O) is

independent on pressure in the range 0.3–1 GPa (Schulze et al. 1996). The viscosity reduction

in the polymerized albitic melts was interpreted as the result of a disruption of the three-

dimensional network of silicon-aluminum-oxygen tetrahedral (Mysen and Virgo, 1985). With

increasing depolymerization of the melt (e.g., by incorporation of H2O) this effect becomes

less important and melt viscosity change towards a positive pressure dependence. The

conclusion from these result is that applying this diffusivity data to pressures differing by ±

500 MPa from the experimental pressure of 500 MPa used in this study has no significant

error for hydrous rhyolitic melts (2-5 wt% H2O) but may have an error of up to 0.3 log units

for water-poor melts.

5.3.1. Comparison to other Diffusion Studies on Rhyolitic Melts

Tracer diffusion in natural or dehydrated obsidians was extensively studied at ambient

pressure twenty years ago using radiotracers and etching techniques (Jambon, 1982). The

diffusivities of the LFSE’s Rb, Sr and Ba extrapolated to 1200 °C are log DRb = -11.4 and log

DBa = -11.5 (Jambon, 1982) and log DSr = -11.6 and log DBa = -12.1 (Margaritz and Hofmann,

1978 a). Considering the uncertainty of the diffusion data due to the extrapolation from the

experimental range (T<950°C) and the poorly constrained water content (H2O profiles were

not measured after the runs in both studies), the agreement with data of this study is very good

(within one log unit). The Eu diffusivity determined by Jambon (1982) is half an order of

magnitude faster than measured by Margaritz and Hofmann (1978 b), which may be explained

by differences in water content and/or redox state of europium. Extrapolated Ce diffusivity at

1200°C is close to REE data of this study, the extrapolation to lower temperatures such as 800

ºC differ by about 2 log units compared to results of Mungall et al. (1999) for Nd in
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anhydrous melts. This could be likely affected by the error in extrapolation. Diffusivities of

this study and the study of Mungall et al. (1999) are determined at higher temperatures than

those of Jambon (1982). Activation energy for Ce is about 490 kJ/mole (875-1300ºC), which

is comparable with EA’s for REE’s in nominally anhydrous melts of this study at 1200-

1400ºC.

Activation energies for cation diffusion in obsidians summarized by Jambon (1982) are in the

trend of results for rhyolitic hydrous melts of this study showing an increase of Ea with

decreasing water content (Tab. 4). Diffusion data for a large set of trace elements in a

haplogranitic melt were determined by Mungall et al. (1999) using SIMS to measure

concentration-distance profiles after diffusion couple experiments (see Fig. 13 and Fig. 14).
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Fig. 13: Arrhenian plot of results of Mungall et al. (1999) and Jambon (1982) for granites
compared to our results. Circled lines represent Arrhenian plots for Ba, solid lines for Nd and
dashed lines for Zr. Jambon (1982) only measured Ce as a representive REE in his study.

Compared to results of this study at 500 MPa, diffusivities in the anhydrous haplogranitic

melts at 1 atm melt are slower by 0.2 to 0.5 log units for the LFSE Ba, by 0.3 – 1.5 log units
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for the REE Nd and by 0.2 to 1.0 log units for the HFSE. An explanation for the lower

diffusivity in the study of Mungall et al. (1999) might be a lower water content of the samples,

because diffusivity in rhyolitic melts is very sensitive to cwater at low water content.

Anhydrous samples used for this study contain about 0.15 wt% H2O. The water content of the

nominally anhydrous haplogranitic melts of Mungall et al. (1999) is not known, but a water

content about 0.1 wt% lower than in melts of this study would explain the lower diffusivities.

However, differences in experimental and analytical procedures, anhydrous melt composition

and run pressure may also contribute to the difference in the diffusion data. Sr and Nd

diffusivities in nominally dry rhyoltic melts at 10 GPa were determined by Perez and Dunn

(1996) using electron microprobe to analyze profiles in diffusion couples. Perez and Dunn

only measured the water content of selected diffusion samples by IR spectroscopy. These

measurements indicate a higher cwater (0.5-0.7 wt%) than in water-poor samples used in this

study. In the range 1200-1250°C their data are in excellent agreement with measurements

presented here(within 0.3 log units).

5.3.2. Hydrous Melts ( > 0.5 wt% H2O)

Jambon et al. (1978) firstly demonstrated the large effect of dissolved water on cation

diffusion in rhyolitic melts for Cs. It is difficult to interpret quantitatively the results of their

pioneering study because experiments were performed in an open capsule under Ar pressure,

so that water partly diffused out of the melt. Watson (1981) confirmed the dramatic

enhancement of Cs diffusion by dissolved water and found an increase by 2.5 to 3.5 log units

when 6 wt% H2O were added to an anhydrous melt at 700–900°C. His results indicate that the

enhancing effect of water is related to the mobility of the cation. For the faster diffusing Ca

the effect is smaller than for Cs and diffusion of the mobile Na is nearly independent of water

content of the melt. Data of this study in Fig. 10 support the correlation between the

enhancing effect of H2O and the cation mobility, but the effect of H2O is less pronounced at
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1200°C than at 700-900°C. Diffusivity of Rb and Sr increases by 1.6 log units and diffusivity

of Si by 2.7 log units when 5 wt% water are added to the melt at 1200°C. The studies of

Mungall and Dingwell (1997) and Mungall et al. (1997) on diffusion in haplogranitic melts

indicates that the enhancement by dissolved H2O becomes even smaller at 1400°C.

Diffusivities of Th and U increased only by about 2 log units when 5 wt% H2O were added

(Mungall and Dingwell 1997) and diffusivity of the LFSE Ba did not vary noticeably with

water content (Mungall et al. 1999).

In general, the data of Mungall et al. (1999) for trace element diffusion in hydrous

haplogranitic melts (3.7 wt% H2O) at 1 GPa are in excellent agreement to data of this study

(Fig. 13 and Fig. 14). So combination of both data sets can be used to describe trace element

diffusion for a wide range of elements at various temperatures and water contents. However,

there are some differences in detail, e.g. in variation of diffusivity of alkaline Earth elements,

which will be discussed later on.

5.4. Comparison to other Melt Compositions

The diffusion behavior of cations depend on the matrix composition of the melt and therefore

it is interesting to compare diffusion data of dacitic and rhyolitic melts of this study to

different compositional systems such as andesite and basalt (see Fig. 14).

In general, the trace element diffusion coefficients in anhydrous rhyolitic melt (high-viscous)

are smaller than in andesitic and basaltic (low-viscous) melts, especially at low temperature.

Trace element diffusivities of Ba and Zr in anhydrous rhyolitic melts at 1200-1250 ºC and 500

MPa are 1.2 and 3.3 log units slower than in an haplobasaltic melts at 1 atm (extrapolated data

from LaTourrette et al. (1996)). This data indicate that for the LFSE Sr the diffusivity is also

about one log unit slower in rhyolitic melts than in basaltic melts like determined by Lesher

(1994) but more than 3 log units smaller for the REE such as Nd. Tracer diffusion coefficients

for rhyolitic melts of this study are lower than for andesitic melts studied by Koepke and
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Behrens (2001), e.g., by 0.2 log units for Rb and Ba and 1.0 log units for Zr and Nb at 1200

ºC for a melt containing 5 wt% H2O. In andesitic melts Eu is also faster than the other REE

but the difference in mobility compared to the neighbor elements is more pronounced in

rhyolitic melts (experiments were performed at similar redox conditions in both studies).
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Fig. 14: Variation of trace element diffusion for Zr, Nd, and Ba with viscosity in melts of
different compositions. Andesite: Koepke and Behrens (2001), Granite: Mungall et al. (1999);
Basalt: LaTourrette et al. (1996). Circled lines represent linear regressions of the data points
for Ba, solid lines for Nd and dashed lines for Zr.

5.5. Speciation and Effect of Redox Conditions on Trace Element Diffusion

Our experimental data of diffusivities and results of the other studies discussed above indicate

that the mobility of cations at any given temperature and melt composition relate in some way

to ionic properties such as radius or/and charge. Especially charge and coordination numbers

of many elements depend strongly on experimental conditions and melt composition, but

spectroscopic data for this systems are still little investigated. Available spectroscopic data

known from the literature are summarized:
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Transition elements Ni and Zn are usually in a divalent state in silicate glasses (Brown et al.,

1995). Results of Farges et al. (2001) show that in sodiumtrisilicate and albite glasses

dissolved water increases the coordination number of Ni from 5 to 6. From wet-chemical

analysis (titration against KI by Johnston, 1965) of andesitic melts Co is found to be

predominantly (94%) divalent. Under very reducing conditions Cr is usually divalent

(Schreiber et al., 1978; Keppler, 1992). Wilke and Behrens, (1999) found Eu to be di- and

trivalent under intrinsic conditions of the IHPV. In hydrous haplogranitic melts Sn changes

from divalent under reducing conditions to tetravalent under oxidizing conditions in CSPV’s

(Linnen et. al, 1996). Nb is usually considered to be Nb5+ (e.g., Keppler, 1993; Horng et al.,

1999).

Experimental data on the effect of redox conditions on diffusion of heterovalent elements in

silicate melts are obtained by LaTourette and Wasserburg (1997). They studied the effect of

oxygen fugacity on the diffusion of some elements including Eu in a haplobasaltic system at 1

atm. Decreasing oxygen fugacity from air to Fe-FeO buffer conditions at 1400°C increased

the Eu diffusivity by a factor of two whereas the Nd diffusivity remains unchanged.

Comparing the diffusion data of Eu with its neighbour elements Sm and Gd, which are both

present only in the trivalent state, and with Sr, which is divalent and has a similar radius as

Eu. Therefore the diffusion flux of Eu could be described with the diffusion of Eu2+ and Eu3+

(see Koepke and Behrens, 2001). Assuming that the diffusion of Sr2+ is comparable with the

diffusion of Eu2+ and an average of the diffusion of Sm3+ and Gd3+ with the diffusion of Eu3+,

Eu2+/Eutotal ratios from the diffusion coefficients listed in Tab. 2, 3 and 5 were calculated with

)/2)D(D-(D

)/2)D(D-(D
X

GdSmSr

GdSmEu
Eu2 +

+
=+ . (8)

Experiments in this study were performed in three different pressure apparatus with different

redox conditions, which vary from very oxidizing (∆NNO+3.5 at 1100 ºC, 500 MPa in the

IHPV) to very reducing (∆NNO–2 at 1200ºC, 1 GPa in the PCA).
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The ratio of Eu2+/Eutotal depends not only on the intrinsic conditions of the IHPV or PCA but

also on the water content in and the composition of the melt. Ratios of dacitic melts performed

in the PCA are calculated to be 0.11-0.25 for water contents of 2 wt% H2O, whereas ratios of

dacitic melts performed in the IHPV with 5 wt% H2O are only 0.04-0.11. With increasing

water content the conditions become more oxidizing and Eu3+ clearly dominates in water-rich

melts. This could also be affected by the preoxidated starting materials synthesized in the

IHPV. It is not clear, if an equilibrium is reached for the redox reaction during the

experimental run in the PCA or if the permeability of H2 affects the oxygen fugacity.

In the water-poor rhyolitic melts the calculated ratios of Eu2+/Eutotal are 0.42-0.57, whereas

ratios in hydrous rhyolitic melts containing about 2 wt% H2O reach a minimum at 0.01-0.13

and increase to 0.02-0.24 for melts with up to 5 wt% H2O. Since the diffusion of H2O and H2

is faster than diffusion of di- and trivalent cations (Chekmir et al., 1985, Behrens and Nowak,

1997) a rapid oxidation and reduction can be achieved in hydrous melts by the redox reaction

of H2O and H2. Since in water bearing glasses at low water contents (<4 wt% of total H2O)

hydroxyl groups are the dominant species next to molecular H2O (Nowak and Behrens, 2001;

Zhang et al., 1997 and Stolper, 1982), the minimum of Eu2+/Eutotal for melts with about 2 wt%

H2O could possibly caused by the stabilization of the trivalent Eu species by OH groups.

Eu2+/Eutotal ratios estimated from diffusion data of Koepke and Behrens (2001) are at all

temperatures in the hydrous (around 5 wt% H2O) andesitic melt lower than in the here

presented rhyolitic melts with the same water content. Eu3+ clearly dominates in their hydrous

melts. The Eu2+/Eutotal ratio of 0.06 of their anhydrous andesitic melt is close to unity, whereas

in rhyolitic melts the Eu2+/Eutotal ratio is 0.2. Since experimental conditions are identical to

experiments of this study, it can be assumed that compositional effects have an influence on

the Eu2+/Eutotal as well.

Linnen et al. (1995) studied the effect of fO2 on the solubility, diffusion and speciation of tin in

haplogranitic melts adjacent to cassiterite crystals at 850 ºC and 2 kbar. They found the fastest
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diffusion for tin at the most reducing conditions (fO2 = NNO -1.8) and a decrease in diffusivity

with increasing oxygen fugacity concluding that Sn2+ behaves as a network modifier at

reducing conditions and Sn4+ as a HFSE at oxidized conditions (fO2 = NNO +2.5). The

activation energy for diffusion of tin in rhyolitic melts with 2 wt% H2O (183 kJ/mole) is

found to be in the same order than activation energies of the HFSE (see Tab. 4), whereas the

activation energy for tin in melts with 5 wt% H2O (99 kJ/mole) is more close to activation

energies for divalent cations such as Sr and Ba. That means in rhyolitic melts with 2 wt% H2O

tin is dominantly present as Sn4+, whereas in melts with 5 wt% H2O tin is more stable as Sn2+.

The stabilization of Sn2+ in the melt structure could be caused by complexation with H2O

species in this study.

Since the diffusivity of Nb in rhyolitic melts is always higher than diffusivity of the

tetravalent cations Zr and Hf which have almost identical diffusivity, is inconsistent with Nb

being exclusively Nb5+. A portion of Nb3+ in the melt could explain the relative high

diffusivity of Nb also found in andesitic melts by Koepke and Behrens (2001).

5.6. Predicting Trace Element Diffusivity

Difficulties in finding a quantitative prediction of diffusion coefficient and their relation to

cation properties are the not well defined ionic radii of the cations in the melt structure and

uncertainties in clarifying of the coordination number. Additionally radius and charge can not

be clearly defined for some elements because they exist in more than one oxidation state.

To study the relation between diffusivity and ionic size, Jambon (1982) determined

diffusivities for alkalis in natural and dehydrated obsidian at 300 to 1300 ºC and 0-400 MPa

and Roselieb and Jambon (1997) measured diffusivities of the alkalis K, Rb and Cs in

supercooled jadeite melt at temperatures between 800 and 1020 ºC at 1 bar. They found a

clear decrease of diffusivities with increasing cation size. This is also observed for alkalis in

the system SiO2–NaAlSi2O6 by Rothman et al. (1982). Diffusivities for the LFSE Sr and Ba in
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this study show also a decrease of diffusivity with increasing cation size. Nakamura and

Kushiro (1998) found higher diffusivities for Sr in comparison with Ba both in a jadeite and in

a diopside melt at high pressure. Surprisingly, Mungall et al. (1999) observed an opposite

trend for alkaline earth elements in haplogranitic melts. They found a positive correlation to

cation size for Sr and Ba.

In this study, no simple relationship between diffusivity and ionic radius applies to cations

with the same charge. On one hand Sr2+ (ionic radius = 1.26 Å) diffuses faster than Ba2+ (1.42

Å), on the other the smaller Ni2+ (0.69 Å) diffuses slower than both. Therefore this

relationship does not apply for all melt compositions and care is needed when using it

especially for TME. This could proove the diffusion data of Cu, Co and Ni indicating strong

bondings of d-elements in complex structures with oxygen species.

For diffusing species with similar size and different cationic charge (He, Na+, Ca2+, Ce3+) a

depressing effect of charge on diffusivity and a negative correlation between cation radius and

diffusivity for alkalis was found in granitic melts for temperatures up to 1000°C (Jambon,

1979).

Hofmann (1980) found a linear decrease of log D with the ionic field defined as z2r (z =

atomic number, r = ionic radius) for monovalent Na to pentavalent V in basaltic melts at

1300°C. In order to find correlations of diffusion with cation charge and size for results of this

study diffusion data versus the ionic field strength are plotted in Fig. 15 defined as the ratio of

charge to the squared distance between cation and oxygen (Dietzel, 1942). Coordination

number, charge and radius of the diffusing cations are discussed in Koepke and Behrens

(2001) assuming that the large sized LFSE and most REE are 8-coordinated and the smaller

sized REE Er and Yb as well as the TME and HFSE are 6-coordinated. For calculations of the

ionic field strength corresponding ionic radii from Shannon (1976) were used and

coordination numbers and charge for each cation follows Brown et al. (1995).
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Fig. 15: Correlation between cation diffusivity in hydrous rhyolitic melts and ionic field
strength (z / rM-O

2) defined as the ratio of charge to the squared distance between cation and
oxygen. Only cations with a well defined oxidation state are plotted. Diffusivities show a
negative correlation to the ionic field strength at any temperature.

A general relation between log D and ionic field strength is not valid for all elements in the

presented system (Fig. 15). Such a relation is only expected for elements diffusing by the

same mechanisms. Diffusion coefficients of this study lead to the conclusion that diffusion

mechanisms of the elemental groups are different. To understand diffusion mechanisms of the

different elemental groups trace element diffusion of LFSE, TME, REE and HFSE is

compared with the chemical diffusion of major components Si and Al. In this study tracer

diffusivities and also the activation energies of HFSE are for all temperatures and water

contents similar to the EBDCs of Si and Al. Since diffusivities for LFSE are much faster it

can be suggested that diffusion mechanisms for the LFSE can be described with individual

jumps in the melt structure, whereas the diffusion of higher valenced cations is more

controlled by viscosity and relaxation of the melt structure. Also Nakamura and Kushiro

(1998) suggested that the diffusion behavior of trace elements is correlated with that of major
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elements in jadeite and diopside melts. Mono- and divalent cations behave like network

modifying cations (such as Na, Ca and Mg) and tri and higher valenced cations behave

similarly to network forming elements (such as Si and Al).

5.7. Relation of Diffusivities to Viscosity

The influence of H2O on the viscosity of haplogranitic melts is well investigated by Schulze et

al. (1996) for high temperatures and high water contents. They found a strong decrease of

viscosity with the addition of water to the melt, which is more pronounced at lower water

contents. Hess and Dingwell (1996) presented an equation for the calculation of shear

viscosity’s in leucogranitic melts for different water contents and temperatures. Their model is

based on Vogel-Fulcher-Tammann fit of 111 viscosity data from the literature. Both models

were used to calculate diffusion data from viscosity’s using the Eyring equation:

ηλη  
= Tk

D (9)

where k is the Boltzmann constant, T the absolute temperature in Kelvin, λ is the

characteristic jump distance and η the viscosity of the melt in Pas. The calculated viscous

flow of Schulze et al (1996) is nearly identical to calculated viscositys of Hess and Dingwell

(1996) at 1100 ºC and above. At lower temperatures e.g 800 ºC viscositys of Schulze et al

(1996) are about 0.2 log units higher for water contents of 4-6.5 wt% H2O. The error in

calculation is given by Hess and Dingwell (1996) of about 0.4 log units and the jump distance

is set as a constant of 0.5 nm in both models. To compare the EBDC’s of this study with

Eyring diffusivities Dη a jump distance of 0.3 nm as in the study of Koepke and Behrens

(2001) is used for calculations. The evaluated EBDC’s of Al and Si are in excellent agreement

with the calculated Dη (see Tab. 2 and 3) with the model after Hess and Dingwell (1996).

In the log D versus log η plot (Fig. 14) most of the investigated elements of the hydrous

rhyolite system show a roughly linear relation. For different compositions relevant to nature
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(basaltic, andesitic, granitic) only data sets for trace elements including examples for LFSE,

REE, and HFSE were used. The viscosity’s were either measured (Mungall et al., 1999 for an

anhydrous granitic system; Nakamura and Kushiro, 1998 for an anhydrous jadeite system) or

calculated (this study using the model of Hess and Dingwell, 1996; LaTourrette et al., 1996

for an anhydrous basaltic system using a model of Shaw, 1972; Mungall et al., 1999 for a

hydrous granitic system using the model of Hess and Dingwell, 1996 and Koepke and

Behrens, 2001 for andesitic composition using the model of Richet et al., 1996).

As representives for different geochemical groups, the elements Ba (LFSE), Nd (REE), and Zr

(HFSE) were plotted. For all elements a raw correlation between viscosity and diffusivity can

be demonstrated which roughly fits undependently of melt compositions. E.g., the mobile

elements Rb, Sr and Ba show parallel trends with a nearly constant slope. The REE and Y also

show parallel trends, but with a slightly steeper slope. The trend of Zr with the slowest

diffusivity shows a further small increase in the slope. The different slopes correlate with the

activation energies for diffusion of the elements. The covered range in diffusion coefficients is

large in highly viscous melts and decreases significantly for less viscous melts. In case of the

high-viscous anhydrous granitic melt the diffusivity of Ba is more the 3 decades higher than

Zr (this study, Mungall et al., 1999), whereas in a low-viscous melt the difference in

diffusivity of these elements is less than an order of magnitude (LaTourrette et al., 1996). The

study of Mungall et al. (1999) for the granitic system and this study cover a viscosity range

wide enough for evaluating reliable trends. Since pressure dependencies on diffusion is known

to be very small and negliable for hydrous granitic melts (Schulze et al., 1996) variation in

diffusion could be caused by influences of water species on the melt structure or a variable

jump distance depending on water content could explain systematic variation for the diffusion.

To set the jump distance as a constant is may be not a universal method to calculale

diffusivities or viscosities with the Eyring equation.
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For a better understanding of the effect of water on the melt structure in more detail further

investigations on the mechanisms of diffusion in hydrous melts are needed in a more broader

viscosity range and higher water contents as well. However, the defined relations in the log-

log plot open interesting perspectives for prediction of trace element diffusivities in silicate

melts. A similar study of Mungall et al. (1999) and Koepke and Behrens (2001) presenting an

internally consistent diffusion data set in a granitic and andesitic melt led to the same

conclusion.
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6. CONCLUSION

With the combination of a new experimental arrangement of diffusion triples and the

analytical techniques such as SYXRF or SIMS (trace element diffusion), electron microprobe

(chemical diffusion) and IR (H2O analysis), an internally consistent set of trace element

diffusion coefficients and EBDC’s for nominally anhydrous and hydrous rhyolitic and dacitic

melts could be obtained in a broad temperature (800-1400ºC) and pressure range (0.1-1 GPa).

At constant temperature, pressure and water content, diffusivities systematically decrease with

ionic charge of the cation. The range of diffusivities in rhyolitic melts is about 3.5 log units at

800 ºC and 5 wt% H2O, about 2 log units at 1100 ºC and 2 wt% H2O and up to 4 log units at

1200 ºC in the water-poor melt. A smaller decrease for dacitic melts at 1 GPa (1.5 log units at

1200 ºC and 2 wt% H2O, 0.7 log unit at 1400 ºC and 5 wt% H2O) is found. At constant

temperature and water content cations in dacitic melts diffuses at 1200 ºC about 0.1 (LFSE) to

1 log units (HFSE) faster with 2 wt% H2O and at 1400 ºC about 0.4 (LFSE) to 2 (HFSE) log

units faster with 5 wt% H2O than in rhyolitic melts. On the other hand, no simple relationship

between diffusivity and ionic radius applies to cations with the same charge. Diffusivities of

Eu, Sn, V and Nb are always smaller compared to diffusivities of cations with similar cation

properties, especially in rhyolitic melts. This may be explained by varying oxidation states

during the experiments under intrinsic conditions of the IHPV.

The generally lower diffusivity of the TME than other divalent cations indicates either strong

bondings of d-elements in complex structures with oxygen species or profiles are affected by

systematically analytical problems at SYXRF which could not be clarified so far.

In general, the enhancing effect of water is stronger for network former (HFSE, Si, Al) than

for network modifier (LFSE, TME, REE). Most of the increase in mobility occurs in the first

added 0 to 2 wt% H2O. For H2O contents from 1.88 wt% to 4.85 wt% the enhancement is only

about 0.5 –1.2 log units. The overall enhancement of diffusion by dissolved H2O is about 1.5-
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3.5 log units for nominally anhydrous rhyolitic melts to melts containing about 5 wt%. The

minimum of calculated of Eu2+/Eutotal for melts with about 2 wt% H2O could possibly caused

by stabilization of the Eu3+ by OH-groups. A relatively large variation with water content is

observed for Sn which may indicate a change in valence of Sn from 4+ at low water to 2+ at

high water contents.

Chemical diffusion of Ti is found to be systematically 0.2–0.8 log units faster than diffusion

of network formers Al and Si in rhyolitic melts. In general, the EBDC of Si, Al and Ti are

close to trace element diffusivities of HFSE and in excellent agreement with calculated Eyring

diffusivities after Hess and Dingwell (1996). Also activation energies of Al2O3 and SiO2 are in

the same range than activation energies for the HFSE’s. The increase of Ea from the LFSE to

HFSE is 100 kJ/mole at both 2 and 5 wt% H2O. Activation energies for the water-poor

rhyolitic melts increase from about about 100 kJ/mole for LFSE to 470 kJ/mole for HFSE in

the temperature range of 1200-1400ºC. Apparent activation volumes increases from 12

cm3/mole for Ni to 18 cm3/mole for Ba to 43 cm3/mole for the REE’s and Sn to about 80

cm3/mole for Hf in dacitic melts with 5 wt% H2O in the pressure range of 100-500 MPa at

1200 ºC.

No general fitting to the relation between log D and ionic field strength is found for all

elements in the used melt system. Therefore diffusion mechanisms of the elemental groups are

expected to be different. Diffusion mechanisms for the LFSE can be described with individual

jumps in the melt structure, whereas the diffusion of higher valenced cations is controlled by

the viscosity of the melt.
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