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We present implemented concepts and algorithms for a simulation approach to decision evaluation with second-order belief
distributions in a common framework for interval decision analysis. The rationale behind this work is that decision analysis with
interval-valued probabilities and utilities may lead to overlapping expected utility intervals yielding difficulties in discriminating
between alternatives. By allowing for second-order belief distributions over interval-valued utility and probability statements these
difficulties may not only be remedied but will also allow for decision evaluation concepts and techniques providing additional
insight into a decision problem.The approach is based upon sets of linear constraints togetherwith generation of randomprobability
distributions and utility values from implicitly stated uniform second-order belief distributions over the polytopes given from the
constraints. The result is an interactive method for decision evaluation with second-order belief distributions, complementing
earlier methods for decision evaluation with interval-valued probabilities and utilities. The method has been implemented for trial
use in a user oriented decision analysis software.

1. Introduction

During the later decades decision analysis with imprecise or
incomplete information has received a lot of attention within
the area of utility theory based decision analysis. Stemming
fromphilosophical concerns regarding the ability of decision-
making agents to provide precise estimates of probabilities
and utilities, as well as pragmatic concerns regarding the
applicability of decision analysis, several approaches have
been suggested, for example, approaches based on sets of
probability measures [1] and interval probabilities [2].

With respect to methods for practical decision evalua-
tion with imprecise input statements, a number of meth-
ods have been developed and some of them have been
also implemented in computer software tools. Early works
include the approach to decision making with linear par-
tial information about input statements [3]. This approach

promotes the conservative Γ-maximin decision rule together
with the use of imprecise probabilities modelled by means
of linear constraints, suggesting evaluation algorithms to
obtain minimum expected values. However, imprecision is
restricted to probability assignments, and it is not possible to
allow for constraints between different alternatives. Related
methods aim at investigating whether stochastic dominance
holds between decision alternatives when probabilities (and
weights) are ranked with linear inequalities [4].

For multiattribute decision making a number of
approaches have been suggested.These include theWINPRE,
supporting the preference programming approach and the
PRIME method [5], the Interval SMART/SWING [6], and
the GMAA [7]. However, the procedures employed in these
tools yield limited support when it comes to discriminating
between alternatives where their respective interval-valued
utilities overlap. The Delta framework, which we extend
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in this paper, combines multiattribute value trees with
decision trees in a common model also supporting interval-
valued weights, probabilities, and utilities together with a
quantitative representation of qualitative statements such as
“better than” and “more probable.” It handles overlapping
expected utility intervals by means of an embedded form of
sensitivity analysis; see Section 2 for a presentation.

Decision analysis with second-order information has
been advocated in, for example, [8], in which reasonable
rationales for supporting a discrimination of beliefs in dif-
ferent probability assessments are promoted. Second-order
information can be used for expressing various beliefs over
multidimensional spaces where each dimension corresponds
to, for instance, possible probabilities or utilities of conse-
quences. These ideas have been collected in a conceptual
model for decision analysis in [9] from which investigations
on the implications of decision evaluation followed in, for
example, [10, 11]. As the integrals obtained when expressing
distributions over expected utilities become very hard if pos-
sible to compute analytically, approximatemethods are called
upon. Therefore, this paper involves turning these ideas into
practice using a simulation approach to decision evaluation
with second-order information ready to be employed in a
common framework for decision analysis with imprecise
information. We emphasize how second-order information
provides added value for decision evaluation in practice
and provides an illustrative example together with some
performance measures of the employed algorithms.

2. Concepts

The representational issues are of two kinds; a decision struc-
ture, modelled by means of a conventional decision analysis
decision tree together with input statements. A decision
tree is a way of modelling a decision situation where the
alternatives are represented as branches from a decision root
node and the set of final consequences are the set of nodes
without children, see Figure 1. Intermediary nodes are here
called events. For convenience we can, for instance, use the
notation that the 𝑛 children of a node 𝑥

𝑖
are denoted as

𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
, the𝑚 children of the node 𝑥

𝑖𝑗
are denoted as

𝑥
𝑖𝑗1
, 𝑥
𝑖𝑗2
, . . . , 𝑥

𝑖𝑗𝑚
, and so forth. For presentational purposes,

wewill denote a consequence node of an alternative𝐴
𝑖
simply

with 𝑐
𝑖𝑗
. Over each set of event node children as well as the

set of all consequence nodes functions such as probability
distributions and utility functions can be defined.

2.1. Interval and Comparative Statements. For interval state-
ments, the probability (or utility) of 𝑐

𝑖𝑗
being between the

numbers 𝑎
𝑘
and 𝑏
𝑘
is expressed as 𝑝

𝑖𝑗
∈ [𝑎
𝑘
, 𝑏
𝑘
] (or 𝑢

𝑖𝑗
∈ [𝑎
𝑘
,

𝑏
𝑘
]). In addition to interval statements, the approach also

includes comparative statements such that the utility of 𝑐
𝑖𝑗

is lower than the utility of 𝑐
𝑘𝑙
which is expressed as a less

relation 𝑢
𝑖𝑗
< 𝑢
𝑘𝑙
or the utility of 𝑐

𝑖𝑗
is equal to the utility of 𝑐

𝑘𝑙

which is expressed as an equality relation 𝑢
𝑖𝑗
= 𝑢
𝑘𝑙
. Given

such statements, imprecision may be modelled as sets of
candidates of possible probability distributions and utility
functions.These are expressed as vectors in polytopes that are
solution sets to the statements.
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Figure 1: A conventional decision analysis decision tree.

Definition 1. Given a decision tree 𝑇, a utility base is a set
of linear constraints of the types 𝑢

𝑖𝑗
∈ [𝑎
𝑘
, 𝑏
𝑘
], 𝑢
𝑘𝑙
< 𝑢
𝑖𝑗

or 𝑢
𝑘𝑙
≤ 𝑢
𝑖𝑗
, and, for all consequences {𝑐

𝑖𝑗
} in 𝑇, 𝑢

𝑖𝑗
∈

[0, 1]. A probability base has the same structure but, for
all intermediate nodes 𝑁 (except the root node) in 𝑇, also
includes ∑𝑚𝑁

𝑗=1
𝑝
𝑖𝑗
= 1 for the children {𝑥

𝑖𝑗
}
𝑗=1,...,𝑚𝑁

of𝑁.

The solution sets formed by the probability and utility
bases are polytopes in hypercubes. A probability baseP can
be interpreted as constraints defining the set of all possible
probability distributions over the set of child nodes ema-
nating from an intermediate node. Similarly, a utility base
U consists of constraints defining the set of all possible
utility values for each consequence. The bases P and U
together with the decision tree constitute the information
frame ⟨𝑇,P,U⟩. An information frame then represents a
decision problem.

2.2. Comparing Alternatives. In decision analysis, decision
evaluation is mainly performed through comparing the
expected utility of alternatives.

Definition 2. Given an information frame ⟨𝑇,P,U⟩ and an
alternative 𝐴

𝑖
∈ 𝐴, the expression

E (𝐴
𝑖
) =

𝑛𝑖0

∑

𝑖1=1

𝑝
𝑖𝑖1

𝑛𝑖1

∑

𝑖2=1

𝑝
𝑖𝑖1𝑖2
⋅ ⋅ ⋅

𝑛𝑖𝑚−2

∑

𝑖𝑚−1=1

𝑝
𝑖𝑖1𝑖2 ⋅⋅⋅𝑖𝑚−2𝑖𝑚−1

×

𝑛𝑖𝑚−1

∑

𝑖𝑚=1

𝑝
𝑖𝑖1𝑖2⋅⋅⋅𝑖𝑚−2𝑖𝑚−1𝑖𝑚

𝑢
𝑖𝑖1𝑖2 ⋅⋅⋅𝑖𝑚−2𝑖𝑚−1𝑖𝑚

,

(1)

where𝑚 is the depth of the tree corresponding to𝐴
𝑖
, 𝑛
𝑖𝑘
is the

number of possible outcomes following the event with prob-
ability 𝑝

𝑖𝑘
, 𝑝
⋅⋅⋅𝑖𝑗 ⋅⋅⋅

, 𝑗 ∈ [1, . . . , 𝑚], denote probability variables,
and 𝑢

⋅⋅⋅𝑖𝑗 ⋅⋅⋅
denote utility variables as above, is the expected

utility of alternative 𝐴
𝑖
in ⟨𝑇,P,U⟩.

Alternatives are then compared and ranked according to
their expected utility. For evaluation purposes with imprecise
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information the notion of strength between alternatives𝐴
𝑖
to

𝐴
𝑗
is used, simply being the difference

𝛿
𝑖𝑗
= E (𝐴

𝑖
) − E (𝐴

𝑗
) , (2)

where𝛿
𝑖𝑗
> 0wouldmean that𝐴

𝑖
is preferred to𝐴

𝑗
according

to the utility principle. However, if E(𝐴
𝑖
) and E(𝐴

𝑗
) are

interval-valued expected utilities, 𝛿
𝑖𝑗
is interval-valued as

well which may lead to overlapping utility intervals meaning
that preference is not that straightforward to conclude. To
handle this within the Delta framework, the concept of
contraction has been proposed as an embedded form of
sensitivity analysis when dealing with overlapping expected
utility intervals [12, 13]. The contraction analysis consists
of (proportionally) shrinking the range of each probability
and utility interval while studying max(𝛿

𝑖𝑗
) and min(𝛿

𝑖𝑗
) at

different contraction levels. This evaluation thus involves a
nonlinear optimization problem in finding max(𝛿

𝑖𝑗
) which

is treated in [14]. The level of contraction is indicated as a
percentage, so that for a 50% level of contraction the range of
each variable (probability, utility) interval has been reduced
to half their initial length and for a 100% level of contraction
to a single point (the contraction point), see Figure 2 for a
visualization of the concept. This point may be set by the
decision maker as long as it is consistent with the constraints.
If not set by the decision maker a contraction point may be
suggested from the center of mass of each polytope; see, for
example, [13].

In addition, for a decision problem with 𝑛 alternatives we
may compare one alternative with the average of the other
alternatives by the difference

𝛾
𝑖
= E (𝐴

𝑖
) −

∑
𝑗 ̸=𝑖

E (𝐴
𝑗
)

𝑛 − 1
. (3)

Studying 𝛾
𝑖
may also be done under different contraction

levels and will delimit the number of comparisons needed in
order to find a ranking of alternatives; see, for example, [15].
The contraction approach to evaluating interval-valued deci-
sion trees yields upper and lower bounds for the difference in
expected utilities between alternatives under different levels
of contraction. The underlying idea behind the contraction
analysis is that the there is less belief in the outer endpoints
of the intervals than in points closer to the centroid points. In
other words, points closer to the centroid aremore interesting
in the study of 𝛿

𝑖𝑗
and 𝛾

𝑖
as the belief distribution over the

interval 𝛿
𝑖𝑗
has its mass concentrated in regions close to the

expected utility point obtained from each polytope centroid;
see [11].

However, in real-world decision situations it is often
hard to discriminate between the alternatives due to the
following: (1) the intersection level may be regarded as too
high for a decision maker to conclude preference and (2)
the optimization and contraction approach together with the
cones visualized are cognitively demanding for a decision
maker. Therefore, it is worthwhile to extend the representa-
tion of the decision situation allowing for true second-order
distributions over classes of probability and utility measures
in order to search for more decisive and comprehensible
methods.
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Figure 2: Contraction analysis of 𝐴
1
versus 𝐴

2
studying max(𝛿

12
)

and min(𝛿
12
) at contraction levels between 0% and 100% on the

horizontal axis. It can be seen that, at a contraction level of about
76.6%, there is no overlap. This is called the intersection level.

3. Including Second-Order Information

When including second-order information, interval esti-
mates and relations (comparative statements) can be consid-
ered special cases of representations based on distributions
over polytopes. For instance, a distribution can be defined to
have a positive support only for 𝑥

𝑖
< 𝑥
𝑗
(consistent with a

less relation). More formally, the solution set to a probability
or utility base is a subset of a unit cube since both variable sets
have [0, 1] as their ranges. This subset can be represented by
the support of a distribution over the cube.

Definition 3. By a second-order belief distribution over a
cube 𝐵, we denote a positive distribution 𝐹 defined on the
unit cube 𝐵 such that

∫
𝐵

𝐹 (𝑥) 𝑑𝑉𝐵 (𝑥) = 1, (4)

where 𝑉
𝐵
is the 𝑛-dimensional Lebesgue measure on 𝐵.

As an information frame has two separated constraint
sets, P holding constraints on probability variables and
U holding constraints on utility variables, it is suitable
to distinguish between cubes in the same fashion. A unit
cube holding probability variables is denoted by 𝐵

𝑃
and a

unit cube holding utility variables is denoted by 𝐵
𝑈
. The

normalization constraint for probabilities implies that for a
belief distribution over 𝐵

𝑃
there can be positive support only

for tuples where∑𝑝
𝑖𝑗
= 1.

Definition 4. A probability unit cube for an intermediate
event node 𝑥

𝑖
is a unit cube 𝐵

𝑃𝑖
= (𝑝
𝑖1
, . . . , 𝑝

𝑖𝑛
) where 𝐹

𝑖
(𝑝
𝑖1
,

. . . , 𝑝
𝑖𝑛
) > 0 when ∑𝑛

𝑗=1
𝑝
𝑖𝑗
= 1 and all constraints are satis-

fied. A utility unit cube, 𝐵
𝑈
, lacks the latter normalization.
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Figure 3: The support of 𝐺(𝑢
1
, 𝑢
2
) is the solution set of the set {1 ≥

𝑢
1
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2
≥ 0} of constraints.

Example 5. Given an information frame ⟨𝑇,P,U⟩, con-
straints in the bases can be defined through a belief distri-
bution. Given a unit cube 𝐵

𝑈
= (𝑢
1
, 𝑢
2
) and a distribution 𝐺

over 𝐵
𝑈
defined by 𝐺(𝑢

1
, 𝑢
2
) = 6 ⋅ max(𝑢

1
− 𝑢
2
, 0), then 𝐺

is a second-order (belief) distribution in our sense, and the
support of 𝐺 is {(𝑢

1
, 𝑢
2
) | 0 ≤ 𝑢

2
≤ 𝑢
1
≤ 1}. See Figure 3.

4. A Simulation Approach to
Decision Evaluation

For the purpose of providing an interactive method for
decision evaluation with second-order probabilities, a set of
algorithms for generating random values for a given decision
trees are used.The approach is to generate one random vector
from each of the solution sets formed by the probability and
utility bases. Thereby we generate a random point valued
decision tree consistent with the bases, and a generated
decision tree is labeled with 𝑇̂. The random vectors may be
generated from various second-order distributions over each
solution set. Representative samples from the resulting belief
distributions over quantities of interest such as E(𝐴

𝑖
), 𝛿
𝑖𝑗
,

and 𝛾
𝑖
are obtained by generating a large number of trees

and calculating for each 𝑇̂ the corresponding point values
Ê(𝐴
𝑖
), 𝛿
𝑖𝑗
, or 𝛾
𝑖
. It is also meaningful to keep track of which

alternative had the highest expected utility for each 𝑇̂.

4.1. Generating Probability Vectors. Let 𝑝
𝑖
= (𝑝
𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝑛
)

be a vector of probability values for the children of a node 𝑥
𝑖

in a decision tree such that 𝑝
𝑖
∈ [0; 1]

𝑛; ∑𝑛
𝑗=0
𝑝
𝑖𝑗
= 1. The

fast sampling algorithm was suggested in [16]. The resulting
distribution of vectors 𝑝

𝑖
is the Dirichlet distribution.

Definition 6. Let the notation be as above. Then the proba-
bility density function of the Dirichlet distribution is defined
as

𝑓Dir (𝑝, 𝛼) =
Γ (∑
𝑛

𝑖=1
𝛼
𝑖
)

∏
𝑛

𝑖=1
Γ (𝛼
𝑖
)
𝑝
𝛼1−1

1
𝑝
𝛼2−1

2
⋅ ⋅ ⋅ 𝑝
𝛼𝑛−1

𝑛
(5)

on a set {𝑝 = (𝑝
1
, . . . , 𝑝

𝑛
) | 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
≥ 0,∑𝑝

𝑖
= 1},

where (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) is a parameter vector in which each 𝛼

𝑖

is a positive parameter and Γ(𝛼
𝑖
) is the Gamma function.

Generating vectors 𝑝
𝑖
= (𝑝
𝑖1
, . . . , 𝑝

𝑖𝑛
) from Dirichlet dis-

tribution can be done by sampling 𝑛 − 1 independent uni-
formly distributed variables in the interval (0; 1). The vari-
ables are then ordered in ascending order, so that they divide
the interval into 𝑛 parts. These parts have the same Gamma
distribution with expectation, equal to 1/𝑛.

Handling constraints in the form of inequalities between
probabilities can be done by reordering interval sizes accord-
ing to inequality constraints. However, to deal with interval
restrictions rejection sampling techniques must be used.
Unfortunately, performance of the algorithmheavily depends
on the intervals themselves. Suppose, for example, that one
of the intervals is specified as [0, 0.01]. It will cause rejection
of 99% of the samples and drastically slows down the whole
simulation. Therefore, it is suggested to use only inequalities
to specify relations between probabilities.

4.2. Generating Utility Vectors. Let 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) be

a vector of utility values for all consequences in a decision
tree such that 𝑢 ∈ 𝐵

𝑈
. Generation of utility vectors is done

under the assumption that each utility variable is uniformly
distributed on the corresponding interval [𝑎

𝑖
, 𝑏
𝑖
] : 𝑈
𝑖
∼ U(𝑎

𝑖
,

𝑏
𝑖
). To cope with the comparative statements, utility variables

related to each other by the same relation are collected in
variable groups. Groups with variables related through the
equality relation are formed and the simulation will be done
only for one utility variable from each such group. Groups
with variables related through the “less than” relation are
identified and the utility variables are sorted in ascending
order.

Two utilities 𝑢
𝑖
and 𝑢

𝑗
are collected in one group through

the less relation if and only if either of the following holds:

(1) 𝑢
𝑖
and 𝑢

𝑗
are connected with the less relation;

(2) there exist a sequence of utility variables 𝑢
𝑘1
, 𝑢
𝑘2
, . . . ,

𝑢
𝑘𝑙
such that 𝑢

𝑖
< 𝑢
𝑘1
< 𝑢
𝑘2
< ⋅ ⋅ ⋅ < 𝑢

𝑘𝑙
< 𝑢
𝑗
or 𝑢
𝑗
<

𝑢
𝑘1
< 𝑢
𝑘2
< ⋅ ⋅ ⋅ < 𝑢

𝑘𝑙
< 𝑢
𝑖
.

By analogy with a relation set with less relations, two
utilities 𝑢

𝑖
and 𝑢

𝑗
are in one relation set with equal relation if

and only if either of 𝑢
𝑖
and 𝑢
𝑗
is connectedwith equal relation,

or there exists a sequence of utility variables 𝑢
𝑘1
, 𝑢
𝑘2
, . . . , 𝑢

𝑘𝑙

such that 𝑢
𝑖
= 𝑢
𝑘1
= 𝑢
𝑘2
= ⋅ ⋅ ⋅ = 𝑢

𝑘𝑙
= 𝑢
𝑗
.

Example 7. Let 𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
be six utility variables with

the following relations between them: 𝑢
1
< 𝑢
3
< 𝑢
4
, 𝑢
2
< 𝑢
5
.

Then, there exist three groups, {𝑢
1
, 𝑢
3
, 𝑢
4
}, {𝑢
2
, 𝑢
5
}, and {𝑢

6
}.

It has previously been demonstrated how to simulate
from the joint distribution of a group of ordered utility
variables with arbitrary uniform distributions [17]. The case
where all variables are equidistributed can be solved by
factorizing the joint distribution into a series of univariate
conditional distributions and simulating from them in turn
using inverse transformation sampling. The extension to
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Example

No system

In-house system

Order system

Alt. 1

Alt. 2

Alt. 3

C11

C12

C13

C21

C22

C31

C32

C33

C34

C1

C2

C3

C4

C5

C6

C7

C8

C9

P: [20.0%, 50.0%]

V: [50.0, 70.0]

P: [10.0%, 40.0%]

V: [10.0, 40.0]

P: [40.0%, 70.0%]

V: [70.0, 100.0]

P: [10.0%, 40.0%]

V: [10.0, 50.0]

P: [60.0%, 90.0%]

V: [60.0, 100.0]

P: [10.0%, 35.0%]

V: [10.0, 60.0]

P: [60.0%, 85.0%]

V: [40.0, 70.0]

P: [0.0%, 25.0%]

V: [10.0, 50.0]

P: [5.0%, 30.0%]

V: [60.0, 100.0]

Prob. tot.: [20.0%, 50.0%]

Value tot.: [50.0, 70.0]

Prob. tot.: [10.0%, 40.0%]

Value tot.: [10.0, 40.0]
Prob. tot.: [40.0%, 70.0%]

Value tot.: [70.0, 100.0]

Prob. tot.: [10.0%, 40.0%]

Prob. tot.: [60.0%, 90.0%]

Prob. tot.: [10.0%, 35.0%]

Value tot.: [10.0, 60.0]
Prob. tot.: [60.0%, 85.0%]

Value tot.: [40.0, 70.0]

Prob. tot.: [0.0%, 25.0%]

Prob. tot.: [5.0%, 30.0%]

Value tot.: [10.0, 49.9999]

Value tot.: [60.0, 99.9999]

Value tot.: [10.0001, 50.0]

Value tot.: [60.0001, 100.0]

D1

E1

E2

E3

Figure 4: The decision tree for the example, with interval probabilities and utilities denoted with 𝑃: [⋅,⋅] and 𝑉: [⋅,⋅], respectively, for each
consequence node.

arbitrary uniform distributions can be achieved by splitting
up the unit interval into subintervals and then considering
all possible ways where the variables can be distributed across
those subintervals.

5. Decision Evaluations and Tool

The above-mentioned simulation approach allows for effi-
cient sampling of probability and utility vectors and has
been implemented using the Java programming language as
a part of the DecideIT (http://www.preference.bz/DecideIT/)
decision tool [13]. This tool is an implementation of the
Delta framework, and as such already allows for modelling
of decision trees and compares alternatives by means of the
expected utility principle together with contraction analysis
of max(𝛿

𝑖𝑗
) and max(𝛾

𝑖
). With respect to the simulation

approach, a user can specify lower bounds for probabilities
together with interval-valued utilities as well as comparative
statements between utility variables. In the simulation, dur-
ing each iteration randomprobabilities and utilities satisfying
the user’s constraints are generated in a Monte Carlo fashion.
When the simulation is done a histogram is visualized that
depicts the distribution of an alternative’s expected utility or
the distribution over the strength measure between alterna-
tives.This histogram can then be used for decision evaluation
where not only quantitative characteristics such as the mean
value but also the shape of the distribution can influence
the evaluation. In addition, we may compare all alternatives
in one evaluation by investigating the support for each of

the alternatives being the optimal choice according to the
utility principle, that is, the amount of second-order belief
in favor of each alternative having the highest expected
utility. Such an evaluation method has no counterpart when
delimiting the model to first-order information only.

6. Example and Performance

This example is inspired from a similar example that was used
as a case for illustrating decision evaluation with imprecise
information; see [12]. The tree in Figure 4 represents a
simplified decision tree for the situation when a company
is to decide upon how to acquire a new system. There are
3 alternatives—to develop an in-house system, to order a
new system from consultants, or to live with no system. The
objective is to identify which alternative should be chosen
according to the utility principle. For each alternative we have
an uncertain event with several possible consequences, and in
total we have a consequence set of nine consequences.

(i) No system: there will be no legal requirements to
install the system and thus no additional costs (𝐶

1
).

Legal requirements appear and the company will
have to make investments later and break-even is
not reached (𝐶

2
). Legal requirements appear and the

company will have to make investments later but still
break-even is reached (𝐶

3
).

(ii) Installing in-house system: break-even may not be
reached (𝐶

4
) or be reached (𝐶

5
).
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Figure 5: Pairwise comparison of Alt. 2 and Alt. 1 using contraction analysis (a) and second-order analysis (b). At a contraction level of 84.6%
the expected utility intervals cease to overlap although about 79% of the belief masses are in favor of Alt. 2 in this evaluation.Themean of the
simulated values and the contraction point coincide.
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Figure 6: Comparing Alt. 2 with the average of the other alternatives. At a contraction level of 72.7% the expected utility intervals cease to
overlap although about 94% of the belief masses are in favor of Alt. 2 in this evaluation.Themean of the simulated values and the contraction
point coincide.

(iii) Ordering the system from consultants: delivered but
break-even is not reached (𝐶

6
); delivered and break-

even is reached (𝐶
7
); bot delivered, which leads to

installation of in-house system, and break-even is
reached (𝐶

8
); not delivered and in-house systemmust

be installed, but break-even is not reached (𝐶
9
).

Some comparative statements are also assessed. These
derive from the fact that if the consultants do not deliver
a system, it would have been better to develop an in-house

system from the start. Based upon this 𝐶
4
is better than 𝐶

8

and 𝐶
5
is better than 𝐶

9
in the tree shown in Figure 4. This is

modelled as 𝑢
21
> 𝑢
33
and 𝑢

22
> 𝑢
34
.

Figures 5 and 6 contrast the output from the contraction
analysis to that of the second-order analysis. Both methods
suggest that installation of an in-house system (Alt. 2) is the
preferred choice, although the second-order analysis more
clearly discriminates between the alternatives. For example,
when comparing Alt. 2 to Alt. 1 in Figure 5, about 79% of the
simulated second-order belief is in favor of Alt 2., whereas
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Alternatives
Alt. 1: 21.26%
Alt. 2: 78.32%
Alt. 3: 0.426%

Alt. 1

Alt. 2

Figure 7: Comparing the belief support for all three alternatives in
a circle diagram.

full separation between the alternatives requires a contraction
level almost as high as 85%. In addition, Figure 7 presents a
simultaneous comparison of all three alternatives with regard
to their respective support, that is, the simulated belief that
either alternative is optimal according to the expected utility
principle. It can be seen that approximately 78% of the belief
support is in favor of the fact that Alt. 2 has the highest
expected utility.

6.1. PerformanceTesting. Since the number of samples to con-
duct a proper comparison of alternatives based upon the
belief distribution over the expected utility is usually large,
performance becomes crucial in order for ensuring inter-
active usage. Profiling showed that the most of the time-
consuming operation is the generation of randomvalues, so it
was important to minimize the number of generated random
variables. We compared two trees with an identical structure
consisting of three alternatives with eight consequence nodes
each. For the first three, utility intervals but not comparative
statements were used. For the second tree, three ordered
groups of utility variables connected by the less relation were
used. The time was measured for the whole generation of
expected utilities of the alternatives.

From the performance testing results shown in Figure 8,
one can see that there is no big difference for making
simulations for different types of trees if they have the same
size, that is, the same number of probability and utility nodes.
The performance testing also shows that the time required to
perform a simulationwith the large sample size for a relatively
large tree is tolerable and allows working with the tool in real
time.

7. Discussion and Concluding Remarks

This paper presents an implementation of a simulation
approach to decision analysis with second-order belief dis-
tributions. The approach relies on an existing framework for

0

5

10

15

20

25

Number of simulated vectors

Ti
m

e f
or

 th
e s

im
ul

at
io

n 
(m

s)

First tree
Second tree

0e + 00 2e + 05 4e + 05 6e + 05 8e + 05 1e + 06

×10
3

Figure 8: Performance test results. Lower graph (red) corresponds
to the first tree; upper graph (blue) corresponds to the second tree.

interval decision analysis, here extended with decision eval-
uation methods assuming belief distribution over probability
and utility variables. The main advantage of the framework
in comparison with traditional approach of specifying exact
probabilities and utilities is that for real-world problems these
exact values are often unknown, but imprecise estimates can
be derived.

We provide some performance measurements to insure
that the software can be used for interactive decision analysis
together with an illustrative example showing the increase
of discriminative power obtained when allowing for second-
order distributions. The applicability of the approach can be
increased by findingmethods formanaging upper probability
bounds, not restricting the user to only use lower bounds
when second-order evaluations are deemed necessary. Fur-
ther, larger degrees of freedom in terms of allowing for groups
of utility variables that are not totally ordered together with
a possibility to state different belief distributions for different
variables should be pursued.
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[7] A. Jiménez, S. Rı́os-Insua, and A. Mateos, “A generic multi-
attribute analysis system,” Computers and Operations Research,
vol. 33, no. 4, pp. 1081–1101, 2006.

[8] P. Gärdenfors and N.-E. Sahlin, “Unreliable probabilities, risk
taking, and decision making,” Synthese, vol. 53, no. 3, pp. 361–
386, 1982.

[9] L. Ekenberg and J. Thorbiörnson, “Second-order decision
analysis,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 9, no. 1, pp. 13–37, 2001.

[10] M. Danielson, L. Ekenberg, and A. Larsson, “Distribution
of expected utility in decision trees,” International Journal of
Approximate Reasoning, vol. 46, no. 2, pp. 387–407, 2007.

[11] D. Sundgren, M. Danielson, and L. Ekenberg, “Warp effects
on calculating interval probabilities,” International Journal of
Approximate Reasoning, vol. 50, no. 9, pp. 1360–1368, 2009.

[12] M. Danielson and L. Ekenberg, “A framework for analysing
decisions under risk,” European Journal of Operational Research,
vol. 104, no. 3, pp. 474–484, 1998.

[13] M. Danielson, L. Ekenberg, J. Idefeldt, and A. Larsson, “Using
a software tool for public decision analysis: the case of nacka
municipality,” Decision Analysis, vol. 4, no. 2, pp. 76–90, 2007.

[14] M. Danielson and L. Ekenberg, “Computing upper and lower
bounds in interval decision trees,” European Journal of Opera-
tional Research, vol. 181, no. 2, pp. 808–816, 2007.

[15] M. Danielson, “Generalized evaluation in decision analysis,”
European Journal of Operational Research, vol. 162, no. 2, pp.
442–449, 2005.

[16] T. Tervonen and R. Lahdelma, “Implementing stochastic multi-
criteria acceptability analysis,” European Journal of Operational
Research, vol. 178, no. 2, pp. 500–513, 2007.

[17] O. Caster and L. Ekenberg, “Combining second-order belief
distributions with qualitative statements in decision analysis,”
in Managing Safety of Heterogeneous Systems, Y. Ermoliev, M.
Makowski, and K. Marti, Eds., vol. 658 of Lecture Notes in
Economics and Mathematical Systems, pp. 67–87, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


