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Abstract 

The ectopeptidase dipeptidyl-peptidase IV (DPPIV; CD26) specifically truncates dipeptides 

from substrates with an alanine or proline at the second N-terminal position of the amino acid 

sequence. Due to this specificity, the neurotransmitter neuropeptide Y (NPY) represents one 

of the best substrates for DPPIV but implications of the “DPPIV-NPY” interactions on 

behavioral responses in vivo have not been investigated.  

The aims of the present studies were (1) to characterize the phenotype of two mutant F344 rat 

substrains [F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-)], which exhibit an extreme 

reduction of their endogenous DDPIV activity, and of a wildtype-like F344 substrain 

[F344/Crl(Por)], and (2) to test the hypothesis whether this lack of enzymatic activity is 

associated with differential in vivo effects of centrally applied NPY. In a first experimental 

step, we mapped the Dpp4 gene, performed breeding experiments, and determined the glucose 

tolerance and the natural killer (NK) cell function in the three different substrains. In a second 

step, the influence of DPPIV deficiency on behavioral domains such as feeding behavior, 

anxiety, nociception, memory, and the sedative effect of ethanol was analyzed. In a third step, 

we investigated the effects of intracerebroventricularly (i.c.v.) applied NPY in various 

behavioral tasks for feeding behavior, anxiety, and nociception. 

Results demonstrated the position of the Dpp4 gene on rat chromosome 3 (RNO3) and a 

semi-dominant mode of inheritance. DPPIV deficiency improved the glucose tolerance and 

blunted the NK cell function. Furthermore, it was found to be associated with a reduced body 

weight and water intake, a hyperalgesic response under stress, and an anxiolytic-like 

phenotype. In addition, we observed a decreased susceptibility for the sedative effect of 

ethanol. After i.c.v. administration of NPY most behavioral effects of this peptide were more 

potent in the mutant substrains strongly suggesting that the anxiolytic- and hyperalgesic-like 

phenotype of the DPPIV-deficient F344 substrains is caused by a differential degradation of 

NPY. 

In conclusion, a differential cleavage of NPY in our different substrains can be considered as 

at least one of the main reasons for the differences in the behavioral and physiological 

phenotype. Overall, these animals provide a useful model to study various behavioral and 

physiological effects associated with DPPIV-enzymatic activity and to study the “DPPIV-

NPY-axis”. Furthermore, these animals could serve as a physiological and molecular model 

for behavioral modulations. 
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Kurzzusammenfassung 

Die Ektopeptidase Dipeptidyl-Peptidase IV (DPPIV; CD26) spaltet spezifisch Dipeptide von 

Substraten ab, die ein Alanin oder Prolin an der zweiten N-terminalen Position der 

Aminosäuresequenz aufweisen. Aufgrund dieser spezifischen Eigenschaft ist der 

Neurotransmitter Neuropeptid Y (NPY) eins der besten Substrate für die DPPIV. Die 

Auswirkungen von „DPPIV-NPY“ Interaktionen auf Verhaltensantworten in vivo wurden 

allerdings bisher nicht untersucht. 

Ziele der vorliegenden Studie lagen (1) in der Charakterisierung des Phänotyps zweier 

mutanter F344 Rattensubstämme [F344/DuCrj(DPPIV-) und F344/Crl(Ger/DPPIV-)], die eine 

extreme Reduzierung der endogenen DPPIV-Aktivität aufweisen, und eines wildtyp-

ähnlichen F344 Substammes [F344/Crl(Por)], sowie (2) in der Überprüfung der Hypothese, 

ob das Fehlen der enzymatischen Aktivität mit unterschiedlichen in vivo Effekten von zentral 

appliziertem NPY verbunden ist. 

In einem ersten experimentellen Schritt kartierten wir das Dpp4 Gen, führten 

Vererbungsexperimente durch, bestimmten die Glucosetoleranz und die natürliche 

Killerzellfunktion in den drei verschiedenen Substämmen. In einem zweiten Schritt wurde der 

Einfluss der DPPIV-Defizienz auf Verhaltensdomänen wie Fressverhalten, Ängstlichkeit, 

Schmerzwahrnehmung, Erinnerungsleistung und sedative Effekte von Ethanol analysiert. In 

einem dritten Schritt wurden die Effekte von intrazerebroventrikulär (i.c.v.) injiziertem NPY 

in verschiedenen Verhaltenstests zum Fressverhalten, zur Ängstlichkeit und zur 

Schmerzwahrnehmung untersucht. 

Die Ergebnisse bestätigten die Lokalisierung des Dpp4 Gens auf Chromosom 3 (RNO3) der 

Ratte und eine semi-dominante Vererbung. DPPIV-Defizienz verbessert die Glucosetoleranz 

und schwächt die Killerzellfunktion. Ausserdem ist sie mit reduziertem Körpergewicht und 

reduzierter Wasseraufnahme, einer hyperalgetischen Reaktion unter Stress und einem 

angstlösenden Phänotyp assoziiert. Zusätzlich wurde eine verringerte Empfänglichkeit für 

sedativen Effekte von Ethanol beobachtet. Nach i.c.v.-Gabe von NPY waren die meisten 

Verhaltenseffekte von NPY deutlicher in den mutierten Substämmen nachweisbar. Dies 

deutet darauf hin, dass angstlösende und der hyperalgetische Phänotyp der DPPIV-defizienten 

Tiere auf einer differentiellen Spaltung von NPY basiert. 

Zusammenfassend zeigt sich, dass die unterschiedliche Spaltung von NPY in den 

verschiedenen Substämmen zumindest einer der Hauptgründe für die Unterschiede im 



  
 
 
verhaltensbiologischen und physiologischen Phänotyp ist. Insgesamt lässt sich feststellen, 

dass unsere Tiere ein nützliches Tiermodell zur Untersuchung von verschiedenen 

verhaltensbiologischen und physiologischen Effekten, die mit der DPPIV-Aktivität assoziiert 

sind, und zur Untersuchung der „DPPIV-NPY-Achse“ darstellen. Des Weiteren könnten diese 

Tiere als physiologisches und molekulares Modell für Verhaltensmodulationen dienen.  

Schlagworte: Dipeptidyl-Peptidase IV - Neuropeptid Y - Verhalten 
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1. Introduction 

The aim of the present study was to characterize the behavioral and physiological phenotype 

of three F344 rat substrains, which differ in their endogenous dipeptidyl-peptidase IV activity 

(DPPIV; CD26). Two F344 rat substrains, which were commercially available from Japanese 

and German breeding colonies of Charles River Laboratories (F344/DuCrj, Atsugi, Japan and 

F344/Crl, Sulzfeld, Germany) in the year 1998, exhibit an extreme reduction in endogenous 

DPPIV activity, whereas F344 substrains from breeding colonies in the USA (Portage and 

Raleigh) exhibit a wildtype-like phenotype (same laboratory code as the German substrain: 

F344/Crl). In this study the impact of the substrains´ differential DPPIV activity on the 

behavior and physiology as a model for DPPIV deficiency was analyzed. We focused 

especially on behavioral and physiological effects, that are possibly mediated by a differential 

cleavage of the DPPIV substrate neuropeptide Y (NPY), which is one of the best substrates 

for DPPIV. Using a systematic and multi-tiered approach for the phenotyping of the three 

different substrains (Karl et al., 2003a), we first characterized the genetics and some general 

physiological effects of the mutation in the Dpp4 gene (Karl et al., 2003b), applied a broad 

screening to identify key behavioral differences (Karl et al., 2003c), and tested finally by 

intracerebroventricular (i.c.v.) application of NPY if some of the observed differences could 

be due to a differential cleavage of NPY in the different substrains (Karl et al., 2003d; Karl et 

al., 2003e). 

 

1.1 Discovery and distribution of DPPIV 
The enzyme and binding protein dipeptidyl-peptidase IV was discovered in rat liver 

homogenates in 1966 (Hopsu-Havu and Glenner, 1966). The ectopeptidase DPPIV is a type II 

integral membrane peptidase being anchored to the plasma membrane by its signal sequence 

and is identical to the leukocyte differentiation marker CD26 (De Meester et al., 2000; De 

Meester et al., 1999). The enzyme is highly conserved among different species (Ludwig et al., 

2003). 

DPPIV is expressed at different levels in tissues like kidney, lung, liver, adrenal gland, spleen, 

testis, and brain. Due to its abundant expression on endothelial cells, the enzyme is in close 

contact to hormones, chemokines, and cytokines circulating in the blood. Moreover, the 

peptidase is found as a soluble enzyme in plasma and cerebrospinal fluid (CSF), in the latter 

at low levels. Furthermore, DPPIV/CD26 is expressed on cells of the immune system and 

here especially on activated T-helper lymphocytes and subsets of macrophages. In the adult 
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central nervous system (CNS) DPPIV has contact with neuropeptides mainly in the CSF, 

brain vessels, and leptomeningeal cells. Based on protein detection by immunohistology, 

DPPIV is particularly high expressed in the circumventricular organs and on leptomeningeal 

cells, whereas in the embryonic brain it is abundantly present on neuronal cells (Mentlein, 

1999). In the peripheral nervous system DPPIV is located in the perineurium and on 

Schwann-cells. The peptidase is also present at sites of physiological barriers (i.e. blood-brain 

barrier). Its location allows DPPIV to act on bioactive peptides in body fluids or during 

communication processes between immune cells (Mentlein, 1999). 

 

1.2 Functional role of DPPIV 
The role of DPPIV in the inactivation of bioactive peptides was recognized 25 years ago 

(Heymann and Mentlein, 1978; Kato et al., 1978) due to its unique ability to cleave dipeptides 

from the N-terminus from polypeptides and proteins carrying a Xaa-proline or Xaa-alanine in 

the second (penultimate) position of the amino acid sequence (De Meester et al., 1999; 

Reinhold et al., 2002). Many neuropeptides, immunopeptides (i.e. cytokines), and peptide 

hormones have proline residues at specific positions in their amino acid sequence, which 

serve as a cleavage point for DPPIV (Table 1). Thus, due to this specificity, DPPIV is 

potentially involved in the regulation of nervous, endocrine, and immune functions at various 

functional levels (Hildebrandt et al., 2000).  

 

Table 1:  

Neuropeptides Endomorphine-2, kentsin, enterostatin, and neuropeptide Y 

Immunopeptides RANTES, TNF-α, TNF-γ, IL-1, IL-2, IL-6 , IL-11, and IP-10 

Peptide hormones Growth-hormone-releasing factor, glucagon-like peptide 1, glucose-

dependent insulinotropic peptide, peptide YY, and substance P 

Substrates of DPPIV (data are displayed according to Hildebrandt et al., 2000). 

 

1.3 Genetics of DPPIV and DPPIV deficiency 
Several studies focused on the location and expression of the Dpp4 gene in man and mice. In 

humans the DPP4 gene is located on the long arm of chromosome 2  (HSA2, 2q24.3) and 

spans approximately 70 kb. It contains 26 exons, ranging in size from 45 b to 1.4 kb. The 

active site Ser630 of human DPP4 is surrounded by Gly-Trp-Ser630-Tyr-Gly, which 

corresponds to the motif Gly-Xaa-Ser-Xaa-Gly proposed for serine-type peptidases (De 

Meester et al., 1999). The cDNA codes for a polypeptide of 766 residues. The mouse Dpp4 
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gene is located on chromosome 2 (MMU2; partially homologous to HSA2/HSA11), 

encompasses more than 90 kb, and is also composed of 26 exons. Their length varies from 

100 bp to more than 20 kb. The cDNA codes for a polypeptide of 760 residues (Bernard et al., 

1994). 

In rats the Dpp4 gene maps to a region of chromosome 3 (RNO3; genome.ucsc.edu/cgi-

bin/hgGateway?org=rat), which is homologous to the Dpp4 gene containing MMU2 region. 

The mode of inheritance of the Dpp4 gene still remains unclear. Tsuji and coworkers (1992) 

analyzed the genetics of DPPIV in wildtype-like F344/Clea rats (Nihon Clea, Osaka, Japan) 

and DPPIV-deficient F344/DuCrj rats from a breeding colony of Charles River Laboratories 

(Crl) in Atsugi, Japan. On the basis of the cDNA sequence for DPPIV the primary structure of 

the enzyme seems to consist of 767 amino acid residues. It is initially synthesized as a 103 

kDa form. Afterwards, DPPIV is processed to the mature form of 109 kDa during the 

intracellular transport. Like in the human DPP4 gene a serine-protease typical Gly629-Trp-Ser-

Tyr-Gly633 sequence surrounds the active-site Ser631 of DPPIV. Recently, the three-

dimensional structure of rat DPPIV was analyzed. The protein exists as a dimer with 

structural analogies to the serine peptidase POP (Ludwig et al., 2003). 

Cloning and sequencing of Dpp4 cDNA in the DPPIV-deficient F344/DuCrj rats revealed a G 

to A transition at nucleotide 1897 in the cDNA sequence, which results in a substitution of 

Gly633 to Arg in the active-site sequence (catalytic center). This substitution leads to a 

conformational change of the ectopeptidase, which appears to be responsible for the loss of 

DPPIV activity and the absence of DPPIV in the plasma membrane of F344/DuCrj (Tsuji et 

al., 1992). Based on this point mutation, DPPIV activity is reduced or deficient in kidney, 

lung, liver, submaxillary glands, brain, and urine of these animals (Watanabe et al., 1987), 

although Dpp4 mRNA levels are similar in mutant F344/DuCrj and wildtype-like F344/Clea 

rats (Erickson et al., 1992). In contrast to the wildtype-like enzyme, mutant DPPIV of the 

F344/DuCrj substrain, although also being synthesized as a 103 kDa form, is rapidly degraded 

without normal post-translational processing to the mature form. The single substitution of 

Gly633 to Arg is sufficient to cause this rapid intracellular degradation of DPPIV (Tsuji et al., 

1992). 

The mutation in the German F344/Crl substrain has not been characterized to that extend. But 

similar to the F344/DuCrj substrain, comparable mRNA levels are detected in mutant 

F344/Crl rats from German breeding colonies and in wildtype-like F344/Crl rats from 

breeding colonies in Portage, USA. Only wildtype-like DPPIV is expressed in an active form 

(Gossrau, 1990; Thompson et al., 1991). 
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Because of the involvement of DPPIV in cleavage processes of several neuro- and 

immunopeptides (Table 1), differences in DPPIV expression and/or activity between different 

rat strains or substrains can be of considerable importance for research regarding the direct 

and indirect role of DPPIV in the regulation of nervous, endocrine, and immune functions. 

Thus, in a first step, we mapped Dpp4 using a gene linked SSLP marker, performed breeding 

experiments to identify the mode of inheritance of DPPIV-like activity (cooperation with 

W.T. Chwalisz and Dr. D. Wedekind: Institute for Laboratory Animal Science and Central 

Animal Facility, Hannover Medical School, Germany), and screened several laboratory rat 

strains including F344 rat substrains from different breeding colonies obtained at different 

time points from Charles River Laboratories (Crl) for their endogenous DPPIV-like activity 

(cooperation with Dr. T. Hoffmann: Probiodrug AG, Halle, Germany). Furthermore, we 

determined the glucose tolerance and the natural killer cell function (the latter one in 

cooperation with Dr. R. Jacobs: Department of Clinical Immunology, Hannover Medical 

School, Germany) in mutant (F344/DuCrj, Atsugi, Japan and F344/Crl, Sulzfeld, Germany) 

and wildtype-like (F344/Crl, Portage, USA) F344 rat substrains in order to exemplify the 

functional importance of spontaneous mutations in the Dpp4 gene (Karl et al., 2003b). 

For clarity, the different F344 substrains were coded as followed: DPPIV-deficient F344 rats 

derived from breeding colonies in Atsugi, Japan were designated as F344/DuCrj(DPPIV-), 

DPPIV-deficient animals from breeding colonies in Sulzfeld, Germany, as 

F344/Crl(Ger/DPPIV-), wildtype-like rats obtained from colonies in Portage, USA, as 

F344/Crl(Por), and wildtype-like rats from colonies in Raleigh, USA, as F344/Crl(Ral). 

Additionally, the time point, at which the animals were obtained from Charles River 

Laboratories (1998/2001) was indicated in our code (“98” for 1998 and “01” for 2001), 

whenever this appeared to be necessary. 

 

1.4 Substrates of DPPIV and their physiological impact 
Exogenously administered inhibitors of DPPIV prolong the biological half-life of DPPIV 

substrates, with several of them being highly important clinical and pharmaceutical targets for 

drug development. For example, DPPIV inhibition stabilizes and hence improves the 

intestinal absorption of enterostatin, which, having an anorectic effect (Erlanson-Albertsson 

and York, 1997), produces a dose-dependent reduction in fat intake and body weight (Bouras 

et al., 1995; Bouras et al., 1996; De Meester et al., 2000). Furthermore, the insulinotropic 

hormones glucagon-like peptide 1 (GLP-1) and the glucose-dependent insulinotropic peptide 

(GIP) are inactivated by DPPIV truncation (Kieffer et al., 1995). GLP-1 has multifaceted 
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actions including stimulation of insulin gene expression (Hildebrandt et al., 2000) and the 

inhibition of food intake (Turton et al., 1996).  Inhibition of DPPIV increases the amount of 

the intact incretins GLP-1 and GIP, improves their insulinotropic effect, and has been 

proposed as a valid therapeutic approach for lowering glucose levels in type 2 diabetes or 

other disorders involving glucose intolerance (Mentlein, 1999). Interestingly, elevated urinary 

concentrations of DPPIV have been shown in non-insulin-dependent diabetic patients (Nagata 

and al, 1988). 

DPPIV inhibition also elicits analgesia by potentiating the actions of the endogenous opioid 

peptide endomorphine-2 (and endomorphine-1), which has a high affinity at µ opioid 

receptors and produces potent analgesia (Shane et al., 1999). In addition, DPPIV enhances 

nociception by processing substance P to a more potent derivative, a process, which may 

involve additional circuits via other substrates for DPPIV like NPY and endomorphine-2 

(Hildebrandt et al., 2000). These modulators of pain perception and processing may result in 

multiple interactions (and may modulate - as a net effect - the expression of pain). In addition, 

several studies demonstrate the involvement of DPPIV in the metabolism of NPY, which is 

involved in various other physiological and behavioral processes (see below and De Meester 

et al., 2000; Mentlein, 1999; Wettstein et al., 1995). 

Furthermore, DPPIV seems to be involved in human diseases like rheumatoid arthritis 

(Kamori et al., 1991; Williams et al., 2003), AIDS (Vanham et al., 1993), major depression 

(Maes et al., 1991), schizophrenia (Maes et al., 1996), and anorexia nervosa (Hildebrandt et 

al., 1999). Patients with psychiatric disorders (anxiety-disorders or psychosis) show a 

decrease in serum DPPIV activity (Maes et al., 1996; Maes et al., 1991), whereas an increase 

in DPPIV serum activity was reported in patients with hyporectic eating disorders (van West 

et al., 2000). 

Inhibition of DPPIV/CD26 plays also an important role in the process of activation and 

proliferation of human lymphocytes and can provoke many cellular effects, including 

suppression of DNA synthesis and reduced production of various cytokines (Kahne et al., 

1999). Elevation of DPPIV/CD26 activity exerts an immunoprotective effect, mainly via 

expansion of T cell activation (Morimoto and Schlossman, 1998). 

Because of the ability of DPPIV/CD26 to cleave several substrates and its involvement in 

various human diseases and immune functions, it is of great interest to investigate an animal 

model with a differential endogenous DPPIV activity. The DPPIV-deficient F344 substrains 

F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-), which exert an extreme reduction in 

endogenous DPPIV activity but produce DPPIV mRNA (Erickson et al., 1992), could be a 
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useful tool for investigating the effects of “natural” DPPIV inhibition via “germline-

knockout”-comparable mechanisms on the behavioral and physiological phenotype but with 

the advantage of using the species Rattus norvegicus instead of Mus musculus laboratorius. 

Theoretically, differences in the behavioral phenotype between the mutant F344 substrains 

[F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-)] and wildtype-like animals from Portage, 

USA [(F344/Crl(Por)] could be attributed to differential degradation processes of various 

DPPIV substrates such as enterostatin, GLP-1, endogenous opioids, NPY, or substance P in 

the CNS. Therefore, in a second step of this study, the influence of DPPIV deficiency on 

behavioral and physiological topics was analyzed in the mutant and wildtype-like F344 

substrains. For this the different substrains were observed in several schedules (Table 2), 

which are potentially affected by above-mentioned DPPIV substrates (Table 1) (Karl et al., 

2003c) after a systematic behavioral phenotyping (Crawley, 1999; Crawley and Paylor, 1997; 

Karl et al., 2003a). A differential degradation of these substrates (caused by the differences in 

endogenous DPPIV activity) could have a high impact on the various behavioral and 

physiological domains. 

 

Table 2:  

Behavioral and physiological domains Related test paradigmes 

Feeding behavior Voluntary food and fluid consumption 

Glucose homeostasis Glucose tolerance test 

Nociception Tail flick and hot plate 

Anxiety Open field, elevated plus maze, and social 

interaction 

Memory and learning Radial maze, object exploration, and passive 

avoidance 

Ethanol Voluntary consumption of ethanol 

Sedative effect of ethanol 

Tests related to symptoms of human 

psychiatric disorders 

Schizophrenia: 

Startle response and prepulse inhibition 

Depression: 

Porsolt swim test 

Schedules for various behavioral and physiological domains. 
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Among the various substrates for DPPIV, NPY is the most abundant neuropeptide in the brain 

(Allen et al., 1983) and it is rapidly cleaved by DPPIV (Mentlein, 1999). Thus, we focused 

especially on the endogenous metabolism of the DPPIV substrate NPY and its involvement in 

behavioral and physiological processes in the three F344 substrains.  

 

1.5 Neuropeptide Y as a substrate of DPPIV-like enzymatic activity 
1.5.1 Discovery, distribution, and function of NPY 

NPY, discovered in 1982 (Tatemoto, 1982; Tatemoto et al., 1982), is a member of the 

pancreatic polypeptide (PP-fold) family of peptides (Gehlert, 1998). It is composed of 36 

amino acids and its sequence is one of the most conserved peptide sequences known 

(Larhammar et al., 2001). The neuropeptide has a C-terminal amide that is essential for its 

biological activity and contains a large number of tyrosine residues on both ends of the 

molecule (Colmers and Wahlestedt, 1993; Gehlert, 1998; Michel et al., 1998). Significant 

NPY levels are found in most brain regions including cerebral cortex, hippocampus, thalamus, 

hypothalamus, and brainstem. NPY-containing cell bodies have a broad distribution as well. 

NPY-containing fibres are found in the peripheral nervous system within a variety of organs 

including the pancreas, intestinal tract, heart, thyroid, lung, kidney, and gonads (Allen et al., 

1983). The localization of nerve terminals and cell bodies suggest a wide-ranging role for 

NPY on behavior and physiology. In the periphery, NPY functions as a potent vasoconstrictor 

and has effects on reproduction, on the gut, and on the gastrointestinal and renal epithelial 

secretion. In the CNS, NPY seems to be implicated in feeding (food intake) and obesity, 

anxiety, nociception, memory retention, seizure susceptibility, neuronal excitability, circadian 

rhythm, inhibition of insulin release, metabolism, and human psychiatric disorders such as 

schizophrenia and depression (Gehlert, 1998; Kalra et al., 1999; Kask et al., 2002; Wettstein 

et al., 1995). Furthermore, NPY regulates the secretion of various hypothalamic 

neuropeptides, stimulates the corticotropic axis and has potent inhibitory effects on the 

gonadotropic and somatotropic axis. Interestingly, studies with NPY knockout animals 

negotiate some of the assumed effects of endogenous NPY (Bannon et al., 2000; Erickson et 

al., 1997; Erickson et al., 1996). NPY is stored in synaptic vesicles often with classical 

neurotransmitters such as norepinephrine. The release of NPY is prejunctionally regulated by 

endogenous noradrenaline acting on α2-adrenoreceptors and is increased in response to stress 

(Colmers and Wahlestedt, 1993). 
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1.5.2 Receptors for NPY 

All cloned NPY receptor subtypes [Y1, Y2, Y4, Y5, and y6 - the latter is not present in rats and 

its function is obscure in mice and humans (pseudo-receptor)] belong to the large super-

family of G-protein-coupled heptahelical receptors. Y1 and Y2 receptors are the major 

receptor subtypes expressed in the rat brain (Blomqvist and Herzog, 1997; Parker and Herzog, 

1999). DPPIV rapidly cleaves the first two N-terminal amino acid residues (Tyr-Pro) with 

high turnover rates from native NPY. The resulting C-terminal fragment NPY3-36 has a 

markedly reduced affinity to the NPY Y1 receptor subtype, while being as potent as the native 

peptide on the NPY Y2 and Y5 receptor subtype (although the receptor affinity is dependent 

on the endogenous level of NPY3-36). In the present study it is hypothesized that the loss of 

DPPIV activity in the mutant F344 substrains leads to changes in the NPY catabolism. We 

expect that in the wildtype-like F344/Crl(Por) rats DPPIV converts NPY to NPY3-36 and 

therefore to an agonist of Y2 and Y5 receptors, but terminates NPY´s action at the Y1 receptor 

(De Meester et al., 2000; Mentlein, 1999). In the mutant DPPIV-deficient substrains 

F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) NPY should not be cleaved and, therefore, 

still exhibits its high affinity to the Y2, Y5, and especially the Y1 receptor and acts prolonged 

at the latter one (Fig. 1). But since these rats could be regarded as “germline-knockout” 

animals, developmental compensation of the enzyme deficiency on various levels (including 

up-regulation of related enzyme systems or down-regulation of NPY receptor expression) 

may have taken place. 

 

Fig. 1: hypothesized differential cleavage of NPY in the different F344 substrains. 
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The Y1 receptor is the best-characterized receptor for NPY and predominates in the cerebral 

cortex, the thalamus, the hypothalamus, and in certain nuclei of the amygdala (Dumont et al., 

1998). The Y2 receptor subtype is found in the hippocampal and hypothalamic formation, the 

septum, and nuclei of the brainstem (Bischoff and Michel, 1999). Y5 receptor mRNA has 

been reported in several brain structures, including the limbic system (paraventricular 

hypothalamic nucleus, lateral hypothalamus, and arcuate nucleus) and the brainstem. 

Interestingly, Y5 receptor mRNA expression always coincides with the presence of Y1 

receptor mRNA (although not vice versa), possibly due to the overlapping organization of 

both receptors (Bischoff and Michel, 1999). 

One of the earliest discovered central effects of NPY was a profound increase in food intake 

along with an involvement of the peptide in body weight regulation (Kalra et al., 1999). 

Recent studies suggest that this response is likely to be mediated by the Y1 receptor (Inui, 

1999; Kushi et al., 1998; Pedrazzini et al., 1998), although considerable numbers of 

investigations also reported the Y5 receptor as being an appetite receptor (Bischoff and 

Michel, 1999; Gerald et al., 1996; Inui, 1999; Marsh et al., 1998). The distribution of the Y5 

receptor in the CNS hints to its role in hypothalamic processes such as feeding. Very recently, 

also the Y2 receptor has been discussed in regard to its feeding (food intake) regulation (Inui, 

2000; Kaga et al., 2001; Naveilhan et al., 1999). Interestingly, patients with anorexia nervosa 

and bulimia show altered levels of NPY in the CSF (Gehlert, 1998; Kalra et al., 1999). In 

addition to its effects on feeding behavior, NPY seems to produce potent anxiolytic-like 

effects in animal models of anxiety (Broqua et al., 1995; Heilig et al., 1989; Kask et al., 

2002). This effect appears to be mediated via specific Y1 receptors localized primarily in the 

amygdala (Heilig, 1995; Heilig et al., 1993; Kask et al., 2001a; Sajdyk et al., 1999; 

Wahlestedt et al., 1993). Central administration of NPY also reduces locomotor activity and 

homecage activity in rodents interpreted as sedation, presumably mediated also through the 

Y1 receptor activation (Heilig and Murison, 1987; Heilig et al., 1988; von Horsten et al., 

1998a). The antinociceptive effect of NPY (mediated by Y1 and perhaps Y2 receptors) seems 

to be particularly dependent on either the intensity or the modality of the painful stimulus 

(Lecci, 2001; Naveilhan et al., 2001b; Wettstein et al., 1995). In addition, very early studies 

on NPY found that the neuropeptide probably improves memory retention via Y2 receptors 

(Clearly et al., 1994; Flood and Morley, 1989; Morley and Flood, 1990). The same receptor 

seems to be involved in the regulation of the circadian rhythm of rodents (Biello, 1995; Biello 

et al., 1994; Biello and Mrosovsky, 1995; Calza et al., 1990; Golombek et al., 1996). 
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Furthermore, NPY influences the neuronal excitability, which is proved by its protective 

effect against seizure activity. This could be mediated through Y2 and Y5 receptors (Baraban 

et al., 1997; Erickson et al., 1996; Vezzani et al., 1994; Woldbye et al., 1997). NPY and its Y1 

receptor are also involved in the neurobiological response to the sedative effect of ethanol and 

the ethanol preference (Kelley et al., 2001; Thiele and Badia-Elder, 2003; Thiele et al., 2002; 

Thiele et al., 1998; Thiele et al., 2000). 

In humans, levels of NPY in the temporal cortex (a region, whose dysfunction may be related 

to schizophrenia) of schizophrenic patients are reduced (Colmers and Wahlestedt, 1993). 

Furthermore, NPY levels in the CSF seem to be negatively correlated with anxiety scores in 

patients diagnosed with major depression (Colmers and Wahlestedt, 1993). Reduced 

concentrations of NPY have been measured in the brain and CSF of suicide patients and 

antidepressants have been reported to increase NPY levels in rodent brains (Redrobe et al., 

2002). 

To prove our hypothesis that differences in the behavioral and physiological phenotype 

between the wildtype-like and DPPIV-deficient F344 rats could be based especially on 

differences in the metabolism of NPY and in receptor specificities, in a third experimental 

step of this study, we analyzed the effect of i.c.v. administration of different doses of NPY 

(0.0/0.2/1.0 nmol) in the wildtype-like F344/Crl(Por) and in the DPPIV-deficient 

F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) rats on behavioral tasks like feeding (food 

intake), anxiety, and nociception (Karl et al., 2003d, Karl et al., 2003e). 

 

1.6 Aims of the present study 
Because of the influence of DPPIV activity on several substrates, especially NPY (and 

associated changes in NPY receptor specificity) and possible resulting effects on different 

behavioral and physiological processes, we hypothesize differences in the phenotype of 

wildtype-like and DPPIV-deficient F344 rats. Therefore, we first investigated the genetics and 

variations of DPPIV activity in different inbred rat strains, especially in F344 substrains. 

Furthermore, we validated the functional relevance of these differences in DPPIV-like activity 

in regard to the glucose homeostasis and the NK cell function (Karl et al., 2003b). In a second 

step, a systematic behavioral phenotyping was performed based on a multi-tiered strategy 

(Karl et al., 2003a), which was focused on behavioral and physiological domains, which are 

well-known to be influenced by DPPIV substrates such as GLP-1, enterostatin, endomorphin-

2, substance P, and especially NPY (Table 1). For this purpose, the different substrains were 

screened in various experiments (Table 2) to get a largely complete overview about their 
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behavioral and physiological phenotype (Karl et al., 2003c). To investigate the hypothesis if 

differences in the phenotype between mutant and wildtype-like rats could be associated with 

differences in the NPY metabolism and receptor specificity (Fig. 1), in a third step, animals 

were tested in selected paradigms after i.c.v. treatment with different doses of NPY (Karl et 

al., 2003d) and additionally after i.c.v. treatment with the DPPIV inhibitor isoleucyl-

thiazolidide Ile-Thia (Karl et al., 2003e). More potent effects of NPY in the DPPIV-deficient 

rat substrains would suggest that observed differences in behavior and physiology between 

mutant and wildtype-like F344 substrains would be at least particularly caused by a DPPIV-

dependent differential degradation of NPY (or other DPPIV substrates). 
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Abstract 
The evaluation of behavioral effects is an important component for the in vivo screening of 

drugs or potentially toxic compounds in mice. Ideally, such screening should be composed of 

monitoring general health, sensory functions, and motor abilities, right before specific 

behavioral domains are tested. A rational strategy in the design and procedure of testing as 

well as an effective composition of different well-established and reproducible behavioral 

tests can minimize the risk of false positive and false negative results in drug screening. In the 

present review we describe such basic considerations in planning experiments, selecting 

strains of mice, and propose groups of behavioral tasks suitable for a reliable detection of 

differences in specific behavioral domains in mice. Screening of general health and 

neurophysiologic functions (reflexes, sensory abilities) and motor function (pole test, 

wirehang test, beam walking, rotarod, accelerod, and footprint) as well as specific hypothesis-

guided testing in the behavioral domains of learning and memory (water maze, radial maze, 

conditioned fear, and avoidance tasks), emotionality (open field, hole board, elevated plus 

maze, and object exploration), nociception (tail flick and hot plate), psychiatric-like 

conditions (porsolt swim test, acoustic startle response, and prepulse inhibition), and 

aggression (isolation-induced aggression, spontaneous aggression, and territorial aggression) 

are described in further detail. This review is designed to describe a general approach, which 

increases reliability of behavioral screening. Furthermore, it provides an overview on a 

selection of specific procedures suitable for but not limited to behavioral screening in 

pharmacology and toxicology. 

 

 

Keywords: Mouse - Behavioral phenotyping – Neurological reflexes – Motor functions – 

Learning and memory – Emotionality - Anxiety – Nociception – Psychiatric-like conditions - 

Aggression 
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2.1 Introduction 
The detection of discrete behavioral difference in rodents is a time consuming, cost intensive 

and laborious task in current biomedical research. Furthermore, scientists are challenged by a 

large amount of different techniques and may experience problems in developing a 

meaningful and rational strategy in planning their experimental designs. Several experimental 

steps must actually precede before hypothesis-driven behavioral differences in a specific 

behavioral domain can reliably be evaluated. This presumption has re-gained considerable 

attention during the past ten years since many researchers were faced with an unknown 

phenotype in their transgenic or knockout mice (CRAWLEY and PAYLOR 1997). However, the 

development of a “multi-tiered” strategy in the field of behavioral phenotyping of transgenic 

and knockout mice (CRAWLEY 1999) has generated certain novel implications for the general 

approach of behavioral testing, which are also important in screening for epigenetic, 

pharmacological, and toxic effects of novel compounds on behavioral performances. 

Uncoordinated experimental approaches in applying behavioral tests for specific behavioral 

domains bear a high risk of false negative and/or false positive results, if not a basic 

phenotyping does precede such tests. For example, if a compound induces blindness during 

development of mice, these mice perform badly in spatial learning tasks such as the Morris 

water maze or the radial maze. Both of these tests code for the behavioral domain “learning 

and memory” and essentially rely on the ability of rodents to use and to store visual 

information. The interpretation of differences in a spatial learning task as “learning 

impairments”, thus, is only valid if the mouse can properly see its surroundings and thereby 

develop spatial memory. Another example from recent studies in Huntington transgenic mice 

(CARTER et al. 1999), is diabetes mellitus, which – if remains undetected - most likely 

interferes with motoric and cognitive functions of mice. The consequence of this 

consideration is that every firm conclusion based on certain difference in a specific behavioral 

performance must be substantiated by the proof that the experimental animals are equipped 

with the corresponding sensory and sensorimotoric abilities. Otherwise, the finding bears a 

high risk to be false positive or false negative. 

Therefore, every experimental design in drug screening and toxicological research should 

include a proper evaluation of general health, sensory functions, and motor abilities of mice, 

before specific behavioral domains are tested. If this is done, the resulting “multi-tiered” 

rational strategy minimizes the danger of misleading findings.  

In the present review we describe an approach based on these basic considerations in planning 
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experiments and furthermore propose groups of behavioral tasks suitable for a reliable 

detection of drug or toxicological effects on the behavior of mice (summarized in Table 1).  

Screening of general health and neurophysiologic functions (reflexes, sensory abilities) and 

motor function (pole test, wirehang test, beam walking, rotarod, accelerod, and footprint) as 

well as specific hypothesis testing in the behavioral domains of learning and memory (Morris 

water maze, radial maze, conditioned fear, and avoidance tasks), emotionality (open field, 

hole board, elevated plus maze, and object exploration), nociception (tail flick and hot plate), 

psychiatric-like conditions (porsolt swim test, acoustic startle response, and prepulse 

inhibition), and aggression (isolation-induced aggression, spontaneous aggression, and 

territorial aggression) are described in further detail.  

2.2 Behavioral tests for a comprehensive behavioral screening 

Animals 

The mouse strain can greatly affect the behavioral phenotype and this fact actually must be 

taken into account before the behavioral screening starts. For example, 129/J and 129/SvJ 

mice exhibit a complete or incomplete lack of the corpus callosum and some C57BL/6J mice 

produce amyloid plaques, both which make these strains poor learners (HSIAO et al. 1996; 

WEHNER and SILVA 1996).  

 

2.2.1 Systematic behavioral phenotyping 
First steps and preliminary observations 

The first step in a behavioral analysis is to obtain a sufficient number of animals for each 

treatment group. Breeding problems often limit the availability of sufficient numbers of 

individuals. It is also important that the test animals are in the same range of age (differences 

of up to 10 days in age can be tolerated). For most behavioral paradigms, animals have to be 

adult (at least 70 days of age) to obtain general and reproducible results, which are not 

influenced by endocrinological processes during ontogenetic development. In general, 10 to 

12 mice of each treatment group or genotype should be used to minimize derivations within 

one group because of individual differences possibly occurring between animals (CRAWLEY 

and PAYLOR 1997). Furthermore, it is extremely important that each animal is screened for 

general health, home cage behavior, sensory abilities, and motor performance (see below). 

Usually this latter point is disregarded, if the animals are obtained from commercial breeders. 

Normally, researcher can rely on a constant genotype of mice provided by commercial 
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breeders. However, very recently we observed a segregation in the genotype of F344 rats 

obtained from a commercial breeder (KARL et al. 2003). Thus, at least in the case that a large 

research program will be based on a particular strain, a screening of all animals provides 

important information on several baseline performances of the particular genotype and might 

allow also to confirm this phenotype at later stages. Furthermore, if the ultimate hypothesis-

driven specific behavioral domain is “emotionality”, also observations of the social status and 

aggression of each mouse may provide important additional information. 

Neurophysiology  and health 

It is extremely important to detect any gross abnormalities, sensory, or motor deficits in the 

animals that will interfere with further behavioral testing. Therefore a “physical exam” is 

required (CRAWLEY 1999). Illness (signs are, e.g., poor grooming, labored breathing, very low 

body weight or other easily observable symptoms) will compromise the performance of the 

animals in different tests. Indices of general health are obtained by measuring body weight 

and rectal temperature and recording observations of any abnormal physical features (like 

poorly groomed fur, bald patches in the coat or absence of whiskers, which can lead to 

unusual home cage behavior). Illness can lead to increased aggression, hypoactivity, or also 

hypersensitivity to handling (CRAWLEY 1999). Furthermore, a blind or deaf mouse will not 

perform tasks, which require visual or auditory cue perception and discrimination. Therefore 

it is important to control sensory abilities and neurological functions. The following battery of 

tests, which are useful for detecting severe neurological dysfunctions, can be used (CRAWLEY 

1999; PICCIOTTO and WICKMAN 1998): 

1. The animal is placed in an empty cage for 3 min to record abnormal spontaneous 

behavior (like wild-running, excessive grooming, freezing). 

2. The response to an approaching unknown object is observed (normally,  the mouse 

will sniff or approach the object, will then turn away and avoid this object – 

abnormally, the mouse will attack the object or ignore it). 

3. modificated “visual cliff”: the mouse is placed onto the center of a platform. The 

latency to reach the edge of the platform (normally less than 10 s) and the 

frequency of dipping the head over the edge (normally several times a minute) is 

measured. 

4. A simple olfactory test can be used (e.g. latency to locate an odiferous piece of 

food, buried under the litter in a clean test cage - or time spent sniffing a novel odor 

painted onto the test cage wall, i.e. vanilla or lemon extract) to measure the 

olfactory abilities of the animal. 
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5. Measuring of several reflexes (CRAWLEY and PAYLOR 1997; MIYAKAWA et al. 

2001): 

a) Balance: The mouse is placed in an empty cage, which is rapidly moved 

from side to side and then up and down. The normal postural reflex is to 

extend all four legs in order to maintain an upright, balanced position. 

b) Righting reflex: The postural reflex is measured. The animal is turned on its 

back and the time to right itself to an upright position is measured. Mice 

normally will right themselves up within seconds. 

c) Eye blink reflex and ear twitch reflex: These paradigms are measured by 

simply touching the eye with a cotton-tip swab and by slightly pinching the 

tip of the ear with a tweezers. 

d) Whisker-orienting reflex: The whiskers of a freely moving animal are 

touched lightly. Normally, the continual moving of the whiskers will stop 

and in many cases, the mouse will turn its head to the side of the stimulus. 

e) Constriction and dilatation reflex: This test determines the visual response 

of the pupil to light. In a dimly lit room, a penlight or a small flashlight 

beam is directed at the eye and the constriction and following dilatation 

(when the light is removed) of the pupils are observed. 

6. It is also important to observe the behavior of the mouse in the home cage (without 

any influences): locomotion, grooming, nesting, sleeping, reproductive (lactation 

and reproductive success) and aggressive behavior as well as playing behavior of 

pups. 

On the basis of these considerations it can be concluded that each behavioral 

investigation should start with a basic behavioral phenotyping. The resulting information 

about the animal’s health, neurophysiology, and sensory abilities are extremely important for 

all further experiments. This characterization should not only be performed prior to studies 

regarding the behavioral phenotype of animals but also prior to physiological measurement, 

because of the influence of health and neurophysiologic functions on both, the behavior and 

the physiology of animals. A systematic behavioral phenotyping must be a first step in 

research and all the different tasks mentioned above should be screened comprehensively. 

 

2.2.2 Motor functions 
Locomotion is a complex behavior affected by many different brain systems, including the 

telencephalic dopaminergic system and the cerebellum, as well as by peripheral abnormalities 
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(i.e. muscle weakness). Because locomotor activity is required for many complex behavioral 

tasks, increases or decreases in locomotor activity nonspecifically affect performance in many 

behavioral tests and should be measured before any other behavioral characterization is 

performed. The following tests are not only a sensitive control for more complex behavioral 

tasks, but also a useful tool to study cerebellar or dopaminergic functions. Several aspects of 

locomotor activity can be measured in parallel with tests for the response to novelty, 

exploratory behavior, or the locomotor response to drug treatment. All measures of activity 

are also sensitive to the circadian clock. Therefore, the experiments should be performed and 

compared under consideration of the circadian rhythm of the animals. The following list 

provides a considerable number of tests, which – if performed in a group – provide a rather 

comprehensive picture on the various aspects of motor functions.  

Pole test 

The pole test was developed in 1985 (OGAWA et al. 1985) to measure bradykinesia (slowed 

down movement ability). The mouse is confronted with a situation, in which it has to turn 

round and to climb down a pole. For this a wooden stick (diameter: 1 cm; length: 50 cm) with 

a cork ball on its top (diameter: 1.5 cm) is installed vertical on a heavy platform (SEDELIS et 

al. 2000). The mouse is placed directly under the ball at the top - the head held upwards. The 

time to turn round and to reach the platform at the bottom is measured (cut-off time: 120 s). If 

the animal slides down the wooden stick without active climbing or turning round, both 

parameters are recorded as 120 s. The apparatus is cleaned after each trial with 70% ethanol. 

Healthy animals can climb down the pole in 10-20 s. After loss of dopamine in the striatum 

the behavior is slowed down or vanishes completely. 

Beam walking test 

Motor coordination and balance of mice are assessed by measuring the ability of the mice to 

traverse a graded series of narrow beams to reach an enclosed safety platform (PERRY et al. 

1995). The beams consists of long strips of wood (1 m) with 28 mm, 12 mm, or 5 mm square 

cross sections and/or 28 mm, 17 mm, or 11 mm round diameters (CARTER et al. 1999). The 

beams are placed horizontally, 60 cm above the floor, with one end mounted on a narrow 

support and the other end attached to an enclosed box (20 cm square) into which the mouse 

can escape. Two lights (60 W) are positioned above the beam and to the narrow support (start 

of the beam). During training, the mouse is placed at the start of the 12 mm square beam and 

trained over 3 days (4 trials per day) to traverse the beam to the enclosed box. Once the mouse 

is trained (i.e. crossing of the 12 mm square beam in less than 20 s) it receives two 

consecutive trials on each of the square and round beams, in each case progressing from the 
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widest to the narrowest beam (cut-off time: 60 s). The latency to traverse each beam and the 

number of times the hind feet slip off each beam are recorded for each trial. Analysis of each 

measure is based on the mean scores of the two trials for each beam. To avoid influences of 

possible differences in the learning abilities of the mice the task can also be realized without 

any training session. Experimenters may experience with the motivation of animals to traverse 

the beams. In this case it may help to use the home cage of each animal as the escape box. 

Wirehang test 

Neuromuscular strength is tested by the wirehang test (CRAWLEY 1999; MIYAKAWA et al. 

2001). The mouse is placed on a wire cage lid and the lid is gently waved in the air so that the 

mouse grips the wire. The lid is then turned upside down approximately 50 cm above the 

surface of soft bedding material. The latency to fall onto the bedding is recorded (cut-off time: 

60 s). 

Rotarod and accelerod 

The rotarod/accelerod is the widely used test of neuromotor performance – a balance task 

performed on a motor-driven, rotating rod. It was developed in 1968 (JONES and ROBERTS 

1968). Motor coordination, balance and ataxia can be tested with the rotarod test. The rotarod 

measures the ability of the mouse to maintain balance on a rotating rod (BARLOW et al. 1996). 

Thus, the fore- and hind limb motor coordination and balance can be analyzed. This task 

requires an intact cerebellar function and motor coordination (CARTER et al. 1999). Mice with 

severe motor coordination problems will have difficulties to remain on the rotating rod. The 

motivation to stay on the rod can be increased by raising the rod to greater heights above a 

soft landing surface. Two methods have been established: 

1) Rotarod: each mouse is placed on the rotating rod and the time to fall off is 

measured (cut-off time: 60 s). Different constant rotation speeds are used in this 

paradigm. 

2) Accelerod: an accelerating rotarod allows the rotation speed to be constantly 

increased from 4 to 40 revolutions per minute (rpm), over a 5 min period. In the 

accelerating rotarod test the latency and the rotation speed, at which the animal 

falls off the rod, are recorded. 

The accelerod is more sensitive than the rotarod in detecting motor function deficits, i.e. 

induced by acrylamide or ethanol.  

Training: In order to exclude difference in motivation and motor learning, it is very important 

to sufficiently train the animals before testing. During the training phase for 2-4 consecutive 

days each mouse is placed on the rotarod at a constant speed (12 rpm) for a maximum of 120 
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s and the latency and frequency to fall off the rotarod within this time period is recorded. 

During the 120 s of the training trials, the animals are instantly replaced on the rotarod. 

Testing: a) Rotarod: Animals are subjected to two consecutive test sessions (trials) on each 

level (ranging from 4-40 rpm in 4 rpm steps) with an intertrial interval of 1 h for four 

consecutive days (SEDELIS et al. 2000). The average of the latency to fall off the rotating rod 

of the two trials per day per rotation speed level is recorded. b) Accelerod (can follow directly 

after the training or after the rotarod test session): Duration of each trial is in the maximum 5 

min. During this time, the rotation speed is constantly increased, i.e. from 4 rpm to 40 rpm 

within four and a half minutes. The latency to fall off the rod and the actual rotating speed 

level are measured. The animals are tested in two trials per day for four consecutive days with 

an intertrial interval of 1 h. The average latency of falling off the rod and the average actual 

rotating speed per day are recorded. 

Footprint test 

The footprint test evaluates the walking pattern of mice and thereby allows gait abnormalities 

to be detected. Footprint patterns of mice are analyzed after the mouse was walking along a 

narrow corridor (BARLOW et al. 1996). To obtain footprints, the hind and fore paws are coated 

with blue and black non-toxic paints. The mouse is then placed at one end of a dark tunnel 

(10x10x50 cm). A light (60 W) is positioned above the starting point of the tunnel. All 

animals have (optional) three training runs before the test session, which is performed during 

the dark phase of the light cycle. The mouse has to walk along the narrow, dark corridor (the 

motivation of the animal to walk along this tunnel can be increased by stimulation with food 

rewards). The footprints are recorded on a sheet of white paper that is placed on the floor of 

the tunnel. The footprint patterns are analyzed for three step parameters (CARTER et al. 1999): 

1) The stride length is analyzed by measuring the distance between each step on the same 

side of the body (distance between one right front or hind footprint and the next right 

front or hind footprint). 

2) The hind-base and front-base widths are measured as the average distance between left 

and right hind footprints and left and right front footprints. 

3) The distance from front footprint/hind footprint overlap is used to assess uniformity of 

step alternation. When the center of the hind footprint falls on top of the center of the 

preceding front footprint, a value of zero is recorded (when the footprints do not 

overlap, the distance between the centers of the footprints is recorded). 
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For each parameter, three values are measured of each run, excluding footprints made at the 

beginning and the end of the run (because of initiating/finishing movements). The mean value 

of each set of three values is used in subsequent analyses. 

Open field  

(see section “Emotionality/Anxiety and exploration”) 

Thus, several tests are available for the characterization of motor functions in rodents. 

As part of a systematic behavioral phenotyping, the pole test, the wirehang test, and the 

accelerod test should be realized to control the basic motor functions in mice. These tasks can 

be performed easily and briefly and detect gross abnormalities in natural climbing abilities, 

neuromuscular strength, motor coordination, and balance abilities. If a study concentrates on 

investigations regarding possible motoric dysfunctions, additionally, the beam walking test, 

the rotarod task, and the footprint paradigm should be included in order to obtain a more 

comprehensive analysis of the mice´s motor abilities. The open field is an additional and 

important tool for analyzing the locomotion of rodents. However, open field behavior of mice 

and rats is affected by two behavioral dimension, activity and emotionality/anxiety (DEFRIES 

et al. 1966; VON HORSTEN et al. 1998; WHIMBLEY and DENENBERG 1967). The interpretation 

of results is confounded by these two underlying constructs. Therefore, this test usually 

should not be used as a single measure of activity or anxiety.  

 

2.2.3 Learning and memory 
Learning is a complex phenomenon subserved by the activity of many brain regions. Some 

aspects of learning that can be measured in rodents include attention, working memory (the 

short-term memory used while a task is being performed), memory consolidation, and 

reference memory (the long-term memory, which lasts from 24 h to the lifetime of the 

animal). Various tests have been developed that evaluate preferentially one or another of these 

aspects of learning (HODGES 1996).  

Morris water maze 

Hidden platform version of the Morris water maze (MORRIS 1981; OWEN et al. 1997): 

This is a task for measuring spatial memory. Each mouse learns to swim in a circular pool of 

water to locate a submerged hidden platform. On the first day the mouse is alternated between 

standing on this platform and swimming for 10 s in the pool to familiarize the animals with 

the test apparatus. The mouse is given three blocks consisting of four trials each for a total of 

three days. On each trial, the starting position is randomized between four possible positions. 

The platform’s location remains constant throughout training for each mouse but is rotated 
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over three possible positions between treatment groups or genotypes. Each trial lasts 60 s or 

until the animal locates the platform. Mice that do not find the platform are guided to the 

platform and given a latency score of 60 s. All animals receive a 10-15 s rest period on the 

escape platform between trials. The time to reach the platform (latency to escape) is recorded 

for each trial (LIONE et al. 1999). Between blocks, the animals are placed individual in a 

heated enclosure (metal holding cages that have a single paper towel at the bottom under a 

heat light). 

After training on the third day, animals are given a 60 s probe trial during which the platform 

is removed from the pool. The probe trial starts from a start position opposite to the quadrant 

that originally contained the platform. The number of times the mouse crosses each of the 

four possible platform positions (platform crossings) is calculated from a videotaped 

recording of the probe trial. Then the preference score is calculated. It is defined as the 

number of crossings over the trained position minus the mean number of platform crossings 

over the other three positions. Therefore, a higher preference score indicates better spatial 

selectivity for the trained platform location. 

Cued (visible platform) version of the Morris water maze (OWEN et al. 1997): 

A white plastic sail (5 cm2) is attached to the platform and sits approximately 12 cm above the 

water surface. The sail is outlined with black electrical tape to provide visual contrast. Other 

than the following two exceptions, the training procedure is identical to the spatial (hidden 

platform) version of the task: 1) training takes place on only two consecutive days and 2) both 

the visible platform’s position and the animal’s starting position are randomized between each 

trial. 

Radial maze 

Radial mazes are frequently used to study hippocampal function, and different procedures 

permit to dissociate spatial and non-spatial memory capabilities in rodents (CRUSIO et al. 

1987). In the radial arm maze paradigm, rodents are trained to visit a pattern of arms in an 8 

arm maze to receive a food reward (for this food deprivation of the mice is necessary). The 

animal must keep the egozentric or allocentric/spatial information, which arms of the maze it 

has already visited during the course of the task, to perform well. Recent developments of 

mazes often try to assess choice accuracy for information presented within the day’s test 

session, and learning that has accumulated across days of testing. These two different types of 

tests are often referred to as working memory (WM) and reference memory (RM) tasks 

respectively (OLTON and SAMUELSON 1976). Nowadays most tasks are particularly geared 

towards measuring working and reference memory. 
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The original radial arm maze consists of an octagonal central area from which 8 arms radiate 

outwards, like spokes around a hub (HOLSCHER and SCHMIDT 1994). Optional, all arms can be 

closed by doors so that the mouse can be forced to stay in an arm or the center platform for a 

defined time. The maze is elevated above the ground, and has no high walls at the sides so 

that the room view is unobstructed. The maze is normally placed in a well-lit room containing 

several other objects. During all experiments the maze is kept in a constant position in the 

room (BUBSER and SCHMIDT 1990). At the outer end of each arm a food cup is located, which 

can be baited before each test. The cups are not rebaited during the test session. A food-

deprived mouse is placed into the maze, and quite rapidly learns to avoid choosing arms it 

already visited during the test session. It seems that mice can learn to visit each spatial 

location once, and remember the locations they visited (SUZUKI et al. 1980). 

Up to 2 weeks before starting the maze experiment, the food-deprivation schedule should be 

introduced gradually. Body weight should be kept at 80-90% of the pre-test body weight 

(MIYAKAWA et al. 1996). The mice should also be accustomed to the reward. Furthermore, 

mice should be picked up and put down so that they are used to the handling procedure 

(RAWLINS and DEACON 1993). 

There are some factors, which influence the spatial memory in the radial maze: a) motivation, 

b) stress and anxiety, c) age and gender (TROPP and MARKUS 2001; WINTER 1997). The 

operator must clean the apparatus after each trial, because mice use also olfactory cues to 

orientate in the maze (HODGES 1996).  

Working memory: 

In the training phase, food pellets are scattered along the arms. The mouse is placed in the 

center of the maze and can explore the apparatus for 10 min. On the consecutive days food is 

increasingly restricted to the further ends of the arms until on day 4 it is only available in the 

food cups. 

In the following test phase (day 5-18), the mouse is placed into the central area of the maze. 

All arms are baited. The tests ends either if the mouse has collected all pellets or after a 

maximum of 5 min. The chosen arms are recorded (if it is a previously visited arm – WM 

error) and numbers of right choices in the first eight tries, number of errors, the latency for the 

first arm entry, the total time for collecting all pellets, entry angles, and ratio of time and 

errors are analyzed. 

Reference and working memory: 

Animals are trained and tested like in the working memory schedule. But in this schedule only 

four arms are baited at the beginning of the test session – the other four arms are never baited. 



 24 Behavioral Phenotyping: Exp Toxicol Pathol 55 (1). 2003. 69-83. 
 
 
Learning to avoid selecting these never baited arms constitutes a RM task. A reentry in an 

already visited arm is recorded as a WM error. To avoid errors in the results because of 

possible simple learning patterns (LANKE et al. 1993), each treatment group or genotype 

should be split in two groups so that baited arms for the one group constitute unbaited arms 

for the other group and baited and unbaited arms should be chosen randomly and not 

alternating. 

Conditioned-fear paradigm 

Cued and contextual conditioning is a fear-conditioning task that measures memory of an 

aversive experience and the stimuli present during this aversive experience. A standard foot 

shock shuttle box is used to control foot shock delivery and to measure the duration of 

freezing behavior (OWEN et al. 1997). Freezing, a standard response to a sudden aversive 

stimulus, is defined as a complete behavioral immobility except for natural respiratory 

motions (STIEDL et al. 2000; STIEDL et al. 1999; STIEDL and SPIESS 1997).  

Day 1: The first day of training consists of pre-exposure. The mouse is placed in the chamber 

and left there for 10 min to explore the environment. 

Day 2: 24 h later the animal is returned to the same test chamber. The mouse is allowed to 

explore the context for 2 min. During this time, baseline-freezing behavior is observed at 10 s 

intervals. After 2 min, an 80 dB auditory clicker stimulus sounds for 30 s immediately 

followed by a 0.35 mA foot shock (2 s duration). This pairing is repeated after a 2 min 

intertrial interval. Baseline-freezing is only measured before the first shock is administered. 

The mouse is returned to its home cage 30 s after the second foot shock. 

Day 3: 24 h later, the mouse is returned to the testing chamber. During the 5 min contextual 

phase, the animal’s contextual-freezing behavior is examined every 10 s. No auditory 

stimulus is presented at this time. Approximately 1 h later the mouse is returned once more to 

the now altered testing chamber (Plexiglas floor instead of grid floor) so that associations to 

the testing context are reduced. Furthermore, a divider is placed in the cover restricting the 

animal’s space to a small triangular area. Olfactory cues are changed by placing 

approximately four drops of liquid orange extract in the corner of the testing chamber, out of 

the animal’s reach. Once in the altered context, the animal is observed for 6 min. During the 

first 3 min, no auditory stimulus is presented (pre-CS). During the last 3 min, the auditory 

stimulus of Day 2 is presented (CS). The freezing behavior is examined at 10 s intervals for 

the entire 6 min testing period. A total percent freezing score is calculated for each animal at 

each of the four time periods tested: baseline, contextual, pre-CS, and CS (OWEN et al. 1997; 

VAN GAALEN and STECKLER 2000). 
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Active and passive avoidance 

Maze learning and avoidance tasks are among the oldest learning and memory tasks used in 

rodents. Passive and active avoidance tasks measure the memory of an aversive experience 

through the simple avoidance of a location, in which the aversive experience occurred. A 

commercially available automated apparatus consists of two connected chambers (for the 

passive avoidance task: one lighted, one dark). The animals will readily learn an avoidance 

response only if this response is closely related to the animals species-specific defensive 

behavior. 

Passive avoidance: 

Passive avoidance is a two-day task. This one-trial test of aversive memory pairs a mild foot 

shock with the entry into a dark chamber (BOVET et al. 1969). This task depends on fear of the 

foot shock and involves activation of the amygdala. Lesion studies and dopaminergic 

antagonists have also shown that both passive avoidance and active avoidance, in which the 

mouse is trained to avoid a shock, are dependent on an intact striatal function. Mice tend to 

prefer a dark, not brightly illuminated environment and will immediately enter the dark 

chamber when placed in the lighted chamber of the apparatus (CHAOULOFF et al. 1997; 

CRAWLEY and GOODWIN 1980). The animals should not be tested in the light phase because 

then they do not show an aversion to the lighted test box. The conclusion that a brightly lit, 

white environment is aversive to mice and inhibits their exploratory behavior is based on data, 

which are recorded in the dark phase of the animals (COSTALL et al. 1989).  

Day 1: In the training session, the mouse is placed in the lighted chamber for 10 s. The door 

to the dark chamber is then opened, and the latency to enter the dark chamber is measured as a 

control for visual ability and motor activity. Immediately after the mouse entered the dark 

chamber, a 0.3 mA, 1 s foot shock is delivered. The animal remains in the dark compartment 

for further 10 s to allow the formation of an association between the dark compartment and 

the received foot shock. The mouse is then returned to the home cage. 

Day 2: In the retention test session, the mouse is placed in the lighted compartment and the 

door is opened. The latency to enter the dark compartment is measured (cut-off time: 300 s). 

The mouse is then returned to its home cage. 

Active avoidance: 

Two-way active avoidance is a type of conditioning that results in associative learning. 

Essentially the animals learn to avoid a signaled noxious stimulus (electrical foot shock – 

signaled by light or sound) by initiating a specific locomotor response (moving to the other 

compartment of the apparatus). In the other compartment the signaled noxious stimulus 
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occurs again. This procedure is repeated several times. The task contains elements of conflict 

because the animal has to initiate a response towards a location where it previously 

experienced a noxious stimulus (WADENBERG and HICKS 1999). Hence speed of conflict 

resolution, anxiety, and fear are elements that influence avoidance probability. These seem to 

be especially important in the early phase of acquisition and have led to the use of this 

paradigm also as a model of anxiety. Anxiolytic drugs improve learning and performance in 

the avoidance task at low doses, probably due to the stress-reducing effect of anxiolytic 

agents. 

For active avoidance, using the same chambers as in the passive avoidance task, the mouse 

must move into the opposite chamber after the presentation of a light or sound stimulus to 

avoid receiving the foot shock. This procedure is repeated twice a day for several days. The 

latency to enter the non-shocked chamber is the measure of learning. 

Object exploration 

(see section “Emotionality/Anxiety and exploration”) 

In conclusion, different learning paradigms measure different types of cognitive 

processes. The Morris water maze and the radial maze appear to be very suitable and well-

validated tasks for spatial memory. However, the mouse is forced to swim in the Morris water 

maze test (which induces very high stress levels in mice) while - in contrast - the radial maze 

test uses food rewards to motivate cognitive processes. It is very likely that testing mice in the 

water maze represents a more potent stressor for the animals than radial maze testing. 

Furthermore, it should be kept in mind that stress represents an important determinate of 

cognitive performance, suggesting that a priori the selection of one of these tests should be 

based on the level of stress necessary for the experiment. In addition, stress levels must be 

considered when applying the conditioned-fear paradigm or the active/passive avoidance task. 

One advantage of the passive avoidance task, when evaluating drug effects, is the brief, two-

day-spanning design. In this design the aversive treatment is minimized to only one single 

event. Finally, it should be kept in mind that in all tests, which are based on painful stimuli 

such as electrical foot shocks, nociception of the animals has to be analyzed right before the 

learning paradigm, in order to avoid confounding effects of differences in pain perception on 

the learning process. 
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2.2.4 Emotionality/Anxiety and exploration 
Open field 

Locomotor activity and emotionality can be evaluated by placing the mouse in a square or 

circular (BADISHTOV et al. 1995) open field arena (OF) under standard room lighting 

(CRAWLEY 1985). The OF is divided in a peripheral and center area by a grid cross on the 

floor (SATINDER 1982). This paradigm mimics the natural conflict in mice between the 

tendency to explore a novel environment and the tendency to avoid a brightly lit open area 

(DEFRIES et al. 1966). The behavior is also influenced by thigmotaxis (TREIT and FUNDYTUS 

1988). Exploratory tendencies, emotional reactivity, or both can motivate a mouse exposed to 

a novel environment. Crawley (1985) mentioned that anxiolytic agents minimize the activity 

of the mice in the OF and so the exploratory behavior. The stimulating effect of emotionality 

on distance traveled in the OF was confirmed by another study (EIKELIS and VAN DEN BUUSE 

2000), although Denenberg (1969) discussed an inverse relation between the ambulation and 

the emotionality of mice. 

In the most schedules the mouse is tested only once in the arena for 10 min. In other studies 

the animals were tested four times and the summed activity and defecation scores were used 

as a measure of emotionality (WHIMBLEY and DENENBERG 1967). The level of illumination of 

the OF and also the background noise influences the locomotor activity and emotionality of 

the animals (WALSH and CUMMINS 1976). Environmental odors should be removed by 

cleaning the OF after each session to avoid influences of the behavior by odor trials. Other 

factors, which determine the behavior in the OF, are genetic, experiential and developmental 

background, biological rhythm, litter size and sex of the test animal – also pre- and post 

weaning treatment, and observation methods (WALSH and CUMMINS 1976). 

The animal’s horizontal activity and total distance (number of total square entries), vertical 

activity (number of rearings), and center distance are recorded. The ratio of center distance to 

total distance and the defecation rate can be taken as a measure of emotionality (DENENBERG 

1969). Furthermore, the latency and frequency of self-grooming should be recorded. Rearing 

combined with ambulation is proved to reflect a stable individual trait called “nonspecific 

excitability level”. Normally, it is taken as a measure for activity.  

Activity can also be scored by its absence. Two major parameters are the latency: 1) to leave 

the start area (to reach the periphery) or 2) to show freezing behavior (defined as the absence 

of movement). This is a widely used parameter usually taken as indicative of a high stress 
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rate. The recording of the OF behavior should be split in 2 min sessions so that also the 

development of the behaviors during 10 min can be analyzed. 

Hole board 

The hole board test provides independent measures of locomotor activity and directed 

exploration (VAN GAALEN and STECKLER 2000). The mouse is placed in a Plexiglas box with 

four up to sixteen holes equally spaced in the floor. Infra-red photocells directly beneath each 

hole provide automated measures of the number of head dipping and time spent head dipping 

in a 3 min test session (LISTER 1987). 

Head dipping or hole-poking is a spontaneous elicited behavior in the mouse. It is suggested 

that the frequency of head dipping represents inquisitive exploration, whereas the duration 

reflects inspective exploration. The hole board is validated pharmacologically: anxiolytic 

agents increase significantly the number of holes explored in a standard 3 min session 

(PELLOW et al. 1985). 

Elevated plus maze 

The elevated plus maze (EPM) is an ethologically-based approach-avoidance conflict test, 

which is sensitive to anxiolytic drug treatment (CRUZ et al. 1994; PELLOW and FILE 1986). 

Mice prefer a dark, enclosed, small place over a brightly lit, open, large space. However, mice 

are also highly exploratory. The EPM represents the natural conflict between the tendency of 

mice to explore a novel environment and the tendency to avoid a brightly lit open field like in 

the OF paradigm (MONTGOMERY 1958). The behavior is also influenced by thigmotaxis 

(TREIT and FUNDYTUS 1988) and the fear of heights. The elevated plus maze is in the shape of 

a “+”. The four arms extend from a central platform. Two alternate arms are dark and 

enclosed, while two alternate arms are open, lit and optional available with or without ledges. 

These ledges influence the behavior of mice (FERNANDES and FILE 1996). Additionally, the 

surface of all arms is raised 1 m above the floor (BALDWIN and FILE 1986). 

One of the first elevated plus maze tasks for mice was developed by Montgomery et al. 

(1955). The hypothesis that novel stimuli generate both an exploratory drive leading to 

approach behavior and a fear drive leading to avoidance behavior was employed to develop 

an elevated plus maze, in which the intensity of the fear drive (anxiety) could be measured by 

the ratio of open and enclosed arm entries (MONTGOMERY and MONKMAN 1955). The open 

and enclosed arms of the plus maze generate exploratory behavior and the avoidance of 

elevated open arms is an indication of the intensity of anxiety (HOGG 1996; LISTER 1987). 

This model was pharmacologically validated (HANDLEY and MITHANI 1984) – anxiolytic 

drugs were found to increase open arm entries (anxiogenic agents decrease number of 
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entries). These results were confirmed and extended (FILE 1987; PELLOW et al. 1985; 

RODGERS and COLE 1993). 

The mouse is placed onto the center field of the “+” (faced to an open arm) and is allowed to 

explore the maze for 5 min. Anxiety can be measured by the time spent on open arms as well 

as the percentage of open arm entries (HOGG 1996; PELLOW et al. 1985; PELLOW and FILE 

1986). These parameters are inversely related to anxiety. The number of total arm entries 

reflects also the general motor activity. Also the number of enclosed arm entries and rearing 

seem to reflect general motor activity (FILE 1986). Furthermore, head dipping over the edges 

of the open arms, risk-assessment, self-grooming and the defecation rate should be recorded. 

A mouse is taken to have entered an arm when all four legs are on the arm. After each session 

the apparatus has to be cleaned. Testing should be take place during the dark phase, starting 1 

h after the lights had been turned off. Dim illumination can be provided by a red light. 

Behavior should be video-recorded. 

Object exploration 

While many authors have emphasized the attractive properties of novelty, others have shown 

that an animal, if given the opportunity, will avoid novel stimuli (BARNETT 1975; VAN 

GAALEN and STECKLER 2000). In another study (MISSLIN and ROPARTZ 1981) the number of 

distinct contacts to a novel object in a familiar environment is significantly lower as if the 

animal is exposed to a novel object placed into a novel environment (COWAN 1976). Mice 

show in a familiar environment very few approach responses to a novel object and often push 

sawdust towards it (reason: contrast of familiar background and unfamiliar configuration). 

Thus, a novel object placed in a familiar environment releases avoidance responses in mice. 

But because of the attractive properties of novelty also rearing and stretch-attend postures 

play a role in the control of the responses towards the novel object (stretch-attend posture: 

directing the nose to the object within a distance of ≤ 2 cm and/or touching it with the nose – 

the body is stretched). In the object exploration task, the animal is confronted with two 

identical objects. After a habituation phase, one object is replaced by a novel object and the 

behavior of the mouse is recorded. Thus, this task investigates the emotionality (by placing a 

new object in a familiar environment) and the memory ability (by recognizing the novel 

object) of the animal. 

Day 1: In this paradigm the mouse is first habituated to a conventional open field area. 

Habituation lasts for 10 min. Subsequently, the animal is briefly returned to its home cage. 
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Day 2-3: 24 h after the habituation trial without a novel object, the mouse is exposed to two 

identical objects, placed in opposite corners (quadrants) of the open field area, for 10 min. 

This procedure is repeated on the following day. 

Day 4: The mouse is exposed again to two objects, one from the previous trial (familiar 

object) and a new object (novel object), which is different to the familiar object. The position 

of the two objects is counterbalanced and randomly permuted in the different treatment 

groups or genotypes. 

In the habituation trial (day 1), the place preference of the animal is controlled by recording 

the entries into and the time spent in the different quadrants. Similar parameters are measured 

during the two trials with the presentation of two similar objects (day 2-3) and the last trial on 

day 4 with the novel object. The latency and frequency of stretch-attend postures and 

rearings, the latency to approach the objects, the time spent in exploration, and the overall 

time spent in the object quadrants is measured in the test trials (day 2-4). 

Emotionality/anxiety of mice should be evaluated by at least two different tasks. The 

most common ones for mice are the open field test and the elevated plus maze test. Both 

paradigms depend on locomotion and therefore, the overall activity of the animals has to be 

measured in these schedules as well. If possible, additionally, the locomotion of the animals 

could be recorded in the hole board test. Importantly, mice should be tested standardized in 

the dark phase of the light cycle under dim red light to increase their activity and to avoid 

possible influences on the behavior by the mice’s endogenous circadian rhythm. Furthermore, 

animals should be completely undisturbed during the last 24 h before the experiment and pre-

experiences in other tests should be avoided. Finally, it must be kept in mind that most tests 

for emotionality/anxiety of rodents are based on the exposure to novelty. Therefore, repeated 

testing raises several unwanted problems with loss of reliability being probably most 

important. 

 

2.2.5 Nociception 
For the assessment of drug effects on nociception, mice could be screened using the tail flick 

and the hot plate task. It should be noted here that several other tests exist to measure pain 

perception (MILLAN MJ, 1999). 

Tail flick 

The tail flick test has been used widely as an experimental model to measure nociception, 

especially for the screening of analgesic drugs (DEWEY et al. 1969). The test is based on the 

withdrawal of the tail in response to a noxious cutaneous thermal stimulation (DOURISH et al. 
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1990; LEE and RODGERS 1990). This is a spinal reflex that requires both segmental 

connections and an ascending propriospinal connection from coccygeal and caudal sacral 

dorsal horn to motor neurons in the lumbar. The latency of the reflex is dependent upon 4 

variables: 

a) The time for activation of cutaneous nociceptors by the thermal stimulus. 

b) The time for afferent conduction of the impulse to the spinal cord dorsal horn neurons. 

c) The conduction within the central nervous system, or central delay. 

d) The time for conduction of the impulse from the ventral horn to, and activation of tail 

muscles. 

The tail flick reflex is modulated by supraspinal structures, which have excitatory or 

inhibitory effects on the activity of dorsal horn interneurons.  

This kind of nociception task measures a simple spinal reflex to a sudden, painful thermal 

stimulus. A photo beam is used to apply a heat stimulus to the tail. Latency to flick the tail out 

of the path of the light beam is measured (NAVEILHAN et al. 2001). The photo beam is turned 

off if the tail is not flicked away within 20 s (to avoid tissue damage). Three consecutive 

determinations with a 5 min intertrial interval are averaged to obtain the tail flick response 

latency (MAIER et al. 1982). In order to minimize possible tissue damage, a different patch of 

the tail skin is stimulated in each trial. 

Hot plate 

The hot plate assay is one of the most commonly used tests for determining the analgesic 

efficacy of experimental drugs in rodents (PICK et al. 1991). The mouse is placed on the 

surface of a hot plate, which is maintained at 52.5 °C (VAN GAALEN and STECKLER 2000). A 

plastic frame consisting of Plexiglas encloses the surface so that the mouse cannot jump out. 

The mouse´s latency to raise or lick hind paws, to flutter, or to jump up is recorded 

(RUBINSTEIN et al. 1996; WIESENFELD-HALLIN et al. 1990). If the mouse has not responded 

within 15 s it is removed from the hot plate to prevent tissue damage. 

There are several other paradigms besides the tail flick and the hot plate test for 

analyzing nociception, such as paw pressure experiments or acid-induced writhing tests. But 

these tests can induce severe injury in the animals and should be avoided – if possible - 

because of ethical considerations. Furthermore, the influence of the handling procedure on the 

mouse is stronger especially in paw pressure experiments and acid-induced writhing tests than 

in the hot plate task. Because of influences on the animal’s behavior due to restraining the 

animal in the tail flick test, the hot plate task should be preferred when selecting only one 

paradigm for screening of drug effects on nociception. 
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2.2.6 Tests related to symptoms of human psychiatric disorders 
Porsolt swim test 

The method is based on the observation that a mouse, when forced to swim in a situation, 

from which there is no escape, will, after an initial period of vigorous activity, eventually 

make only those movements, which are necessary to held its head above the water. This 

identifiable behavioral immobility indicates a “state of despair”, in which the mouse has 

learned that escape is impossible and resigns itself to the experimental conditions. The test is 

sensitive to antidepressants and is used as a model for aspects of human depression. The 

behavioral response to this paradigm might reflect “behavioral despair” and has been 

connected to a “learned helplessness” theory of depression (PORSOLT et al. 1978; SELIGMAN 

and MAIER 1967; SHERMAN et al. 1979). 

A naive mouse is plunged into a vertical Plexiglas cylinder (height: 40 cm; diameter: 18 cm) 

containing 15 cm of water (so that the mice cannot balance on its feet or tail) maintained at 25 

°C (PORSOLT et al. 1978; PORSOLT et al. 1977). The water surface is far enough away from 

the top of the cylinder, so that the animal cannot jump out. It is forced to swim inside the 

cylinder for 15 min. Each mouse, which does not swim or float, is immediately removed from 

the water. After 15 min in the water the mouse is removed and allowed to dry for 15 min in a 

heated enclosure (32 °C) before being returned to its home cage. This treatment produces long 

periods of immobility in the water (10-12 min total duration) and the mouse can be 

hypothermic and hypoactive for periods up to 30 min after the removal (therefore, this test is a 

great stressor for mice). The mouse is replaced in the cylinder 24 h later and the latency and 

total duration of immobility is measured during a 5 min test. The mouse is judged to be 

immobile whenever it remained floating passively in the water in a slightly hunched but 

upright position, its head just above the surface. It makes only those movements, which are 

necessary to keep the head above the water. 

The duration of immobility is decreased by treatment with antidepressant drugs and therefore 

this paradigm is used as a depression model (KORZENIEWSKA-RYBICKA and PLAZNIK 1998). 

But other studies proved (BORSINI and MELI 1988; BORSINI et al. 1986) that a reduction of 

immobility time can also be observed in animals, which live in an enriched environment. 

Furthermore, there seems to be no relationship between inescapability and immobility, since it 

was shown that rats in an inescapable test design did not show longer immobility durations 

than rats in an escapable test design (O'NEILL and VALENTINO 1982). The prior exposure to 

the water alone resulted in longer immobility. Thus, familiarity with the environment rather 
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than “despair” may induce behavioral immobility. Perhaps a “life threatening experience” 

plays a role in inducing behavioral immobility.  

Therefore, the Porsolt swim test does not provide a model resembling depressive illness in 

human beings (HAWKINS et al. 1978). Normally, antidepressive drugs have a chronic effect, 

but in the Porsolt swim test an acute effect of antidepressive treatment can be observed 

(decreased immobility duration). After all, this paradigm cannot be considered to be an 

adequate analog model for pathological depression. 

Acoustic startle response and prepulse inhibition 

The startle response is an unconditioned, reflexive response to a sudden environmental 

stimulus. Prepulse inhibition (a senorimotor gating reflex, similarly quantitated in rats, mice 

and humans) is a phenomenon, in which a weak prestimulus or prepulse suppresses the 

response to a startling stimulus. Deficits in prepulse inhibition (PI) are common in 

schizophrenic patients and may measure attentional dysfunctions that contribute to auditory 

hallucinations (BRAFF et al. 1978; BRAFF et al. 1999; CADENHEAD et al. 1993). The PI 

impairment observed in these neuropsychiatric patients is thought to reflect an underlying 

problem with inhibitory mechanism in neuronal systems used for senorimotor gating 

(SWERDLOW et al. 2000). This loss of auditory gating (as an aspect of schizophrenia) can be 

reproduced in an animal model (CAINE et al. 1992). Two tones are presented very close 

together. In most people it will not evoke a response to the second tone, but schizophrenic 

patients will respond to both tones (GRILLON et al. 1992). When a mild stimulus (prepulse) 

immediately preceded a startle stimulus, a healthy mouse will flinch less to the startle 

stimulus, although the prepulse does not startle the animal itself (PAYLOR and CRAWLEY 

1997). So the prepulse depresses the startle response in humans and rodents. The prepulse 

inhibition is one of the few paradigms, in which humans and rodents are tested in a similar 

fashion (GEYER and SWERDLOW 1998). Key neuroanatomical and neuropharmacological 

substrates mediating PI have been analyzed in rats. Direct pharmacological injections and 

lesion studies indicate that structures contributing to prepulse inhibition include the nucleus 

accumbens, hippocampus, amygdala, medial prefrontal cortex, pedunclopontine tegmental 

nucleus, ventral and caudodorsal striatum, median and dorsal raphe nucleus, and the superior 

colliculus (SWERDLOW and GEYER 1998). Neurotransmitters affecting prepulse inhibition 

include dopamine, acetylcholine, serotonin, glutamate, and norepinephrine (KOCH 1999). 

First, animals have to be habituated to the testing chambers for five consecutive days (5 min 

per day). Acoustic stimuli of 120/105 dB, a single prepulse interval (100 ms), and four 

different prepulse intensities (2/4/8/16 dB above background noise – i.e. white noise of 65 
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dB) are used. There are 5 min of acclimatization period (with background noise alone). Then 

the animal is presented with 72 startle trials, each trial consisting of one of three conditions: 

a) 30 ms 120 dB noise burst presented alone; 

b) 30 ms 120 dB noise burst preceded 100 ms by prepulses (30 ms noise bursts) that were 

2/4/8/16 dB above the background noise; 

c) No stimulus (background noise alone), which is used to measure baseline movement 

in the chamber; 

These six trial types are each repeated six times in a pseudorandom order (36 trials), such that 

each trial type is presented once within a block of six trials. This block of six trials is then 

repeated using an acoustic stimulus of 105 dB. Analysis is based on the mean of the six trials 

for each trial type (CARTER et al. 1999). 

In several studies, the Porsolt swim test is often discussed as an animal model for 

depression and the prepulse inhibition test as a model for schizophrenia. But obviously, each 

of these tests can only be used as one in a row of several additional experiments in order to 

finally draw a conclusion, which relates the finding to human psychiatric conditions. Some 

researchers even completely reject the possibility of developing an animal model for 

psychosis. In the same line, the effect of anti-depressant drugs in the Porsolt test should also 

be confirmed in other animal models for depression such as olfactory bulbectomy or even 

better postnatal maternal deprivation schedules and tests, which combine different stressful 

situations for animals (WILLNER 1990). It appears that the knowledge about the relationship 

between these animal models, the resulting behavior of rodents and their relevance for human 

psychiatric disorders has to be further developed before one or even a combination of such 

tasks can be considered as a valid model for this type of questions. 

 

2.2.7 Aggression 
 Isolation-induced aggression 

The adult male test animal is isolated for 14 days (i.e. kept single in a standard cage). After 

this period it is placed in a neutral cage together with a standard opponent mouse (BRAIN and 

POOLE 1974), which is an adult, male, weight-matched mouse of a defined genotype and a 

peaceful phenotype. The mice are placed simultaneously in opposite corners of the cage and 

fixed there for 5 s. Then the test starts, the mice can walk and interact freely in the cage. The 

latency and frequency of the agonistic behaviors biting, tail rattling, sideway threats, upright 

postures, and aggressive grooming and also of sociopositive behaviors like nosing, anogenital 

sniffing, crawling over/under, and allo grooming should be recorded during the next 10 min 
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(BRAIN and POOLE 1976; KOOLHAAS et al. 1980; LAGERSPETZ 1969). It is also possible to 

investigate the territorial behavior of the test animal by testing the mice in the home cage of 

the isolated mouse (BRAIN 1980).  

Spontaneous aggression 

If spontaneous aggression is to be measured, the adult male group-caged mouse is tested with 

a standard opponent in a neutral cage. Details of the procedure are similar to the methodology 

described above. 

Territorial Aggression 

Territorial aggression can be investigated by the Resident-Intruder paradigm. For this, the 

adult male, group-caged mouse is tested with a standard opponent in its home cage. The 

littermates of the test animal are removed from the home cage 10 min before the test. Then 

the standard opponent is taken to the test location. The resident mouse is fixed in one corner 

and the standard opponent intruder is placed in the opposite corner of the cage. After fixation 

for 2 s the test starts. The recorded parameters are similar compared to the isolation-induced 

aggression test (BLANCHARD et al. 1988).  

For the characterization of aggressive behavior in mice, all three different test 

paradigms, which analyze different kinds of aggression in rodents, should be used (for an 

overview about further aggression tests see: MICZEK et al. 2001). Because of influences of 

fight-experiences on the behavior in consecutive aggression schedules, animals should be 

tested only once (BRAIN and POOLE 1974). The use of a defined, peaceful standard opponent 

(i.e. A/J mice) is as important (LAGERSPETZ 1969) as a high level of standardization during 

breeding (i.e. litter size, gender-ratio of litter, presence or absence of father). Since most 

strains of mice are per se very aggressive, this behavioral domain has also an important 

impact on other behavioral domains such as emotionality/anxiety. Furthermore, several 

studies have demonstrated that the behavioral performance of mice depends on whether these 

animals are dominant or not within their cohort.  

2.3 Conclusion 

The accurate evaluation of a behavioral phenotype and screening for toxic effects in rodents is 

an important step for evaluating novel drugs and compounds. The detection of specific drug-

induced behavioral effects represents often a critical and far-reaching event in the 

development of novel drugs and compounds. In order to optimize current approaches and to 

obtain more reliable results, it is vital to exclude false positive and false negative results in 
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specific behavioral tests. These confounding factors result from previously undetected 

problems of the mouse in health and sensory performance. We therefore propose that an 

experimental design aimed at screening for unexpected drug effects should always be 

composed of monitoring general health, sensory functions, and motor abilities, right before 

specific behavioral domains are tested. 
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2.6 Table 
 

Table 1: Behavioral domains and the different corresponding experimental tasks – including 

relevant references. 

Behavioral 

domain 

Experimental  

task 

References 

 

Neurophysiology 

and health 

 

  

CRAWLEY 1999; CRAWLEY and PAYLOR 1997; 

LIONE et al. 1999; PICCIOTTO and WICKMAN 1998 

 

Pole test 

 

 

OGAWA et al. 1985; SEDELIS et al. 2000 

 

Beam walking test

 

 

CARTER et al. 1999; PERRY et al. 1995 

 

Wirehang test 

 

 

CRAWLEY 1999; MIYAKAWA et al. 2001 

 

Rotarod 

and 

accelerod 

 

 

BARLOW et al. 1996; CARTER et al. 1999; 

CRAWLEY 1999; JONES and ROBERTS 1968; 

PICCIOTTO and WICKMAN 1998; SEDELIS et al. 

2000 

 

 

Motor functions 

 

 

Footprint test 

 

 

BARLOW et al. 1996; CARTER et al. 1999 

 

Learning 

and memory 

 

Morris water maze

 

 

HODGES 1996; MORRIS 1981; OWEN et al. 1997 
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Radial maze 

 

 

BUBSER and SCHMIDT 1990; CRUSIO et al. 1987; 

HODGES 1996; HOLSCHER and SCHMIDT 1994; 

LANKE et al. 1993; MIYAKAWA et al. 1996; 

MORRIS 1981; OLTON and SAMUELSON 1976; 

PICCIOTTO and WICKMAN 1998; RAWLINS and 

DEACON 1993; SUZUKI et al. 1980; TESKEY et al. 

1998; TROPP and MARKUS 2001; WINTER 1997 

 

 

Conditioned-fear 

paradigm 

 

 

CRAWLEY 1985; CRAWLEY 1999; OWEN et al. 

1997; VAN GAALEN and STECKLER 2000 
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BOVET et al. 1969; CHAOULOFF et al. 1997; 

COSTALL et al. 1989; CRAWLEY and GOODWIN 

1980; GROSSEN and KELLEY 1972; PICCIOTTO and 

WICKMAN 1998; STEWART et al. 1993 
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BADISHTOV et al. 1995; BRITTON and BRITTON 
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PRUT and BELZUNG 2003; SATINDER 1982; TREIT 

and FUNDYTUS 1988; TRULLAS and SKOLNICK 

1993; VAN GAALEN and STECKLER 2000; VON 

HORSTEN et al. 1998; WALSH and CUMMINS 1976; 

WHIMBLEY and DENENBERG 1967 
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Anxiety 
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LISTER 1987; PELLOW et al. 1985; VAN GAALEN 

and STECKLER 2000 
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Elevated 

plus maze 

 

 

BALDWIN and FILE 1986; CHAOULOFF et al. 1997; 

CRUZ et al. 1994; FERNANDES and FILE 1996; FILE 

1986; FILE 1987; FILE 1993; HANDLEY and 

MITHANI 1984; HOGG 1996; KORTE and DE BOER 

2003; LISTER 1987; MONTGOMERY 1958; 

MONTGOMERY and MONKMAN 1955; PELLOW et 

al. 1985; PELLOW and FILE 1986; RODGERS and 

COLE 1993; SHEILA and MITHANI 1984; TRULLAS 

and SKOLNICK 1993 

 

 

 

Object exploration

 

 

BARNETT 1975; COWAN 1976; MISSLIN and 

ROPARTZ 1981; TROPP and MARKUS 2001; VAN 

GAALEN and STECKLER 2000 
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Tail flick 

and 
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CRAWLEY 1999; DEWEY et al. 1969; DOURISH et 

al. 1990; LECCI 2001; LEE and RODGERS 1990; 

MILLAN 1999; MIYAKAWA et al. 1996; 

NAVEILHAN et al. 2001; RUBINSTEIN et al. 1996; 

WIESENFELD-HALLIN et al. 1990 

 

 

Tests related to 

symptoms of 

human psychiatric 
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swim test 

 

BORSINI and MELI 1988; BORSINI et al. 1986; 

HAWKINS et al. 1978; HILAKIVI-CLARKE et al. 

1991; KORZENIEWSKA-RYBICKA and PLAZNIK 

1998; NIKULINA et al. 1991; NISHIMURA et al. 

1988; O'NEILL and VALENTINO 1982; PORSOLT et 

al. 1978; PORSOLT et al. 1977; SELIGMAN and 

MAIER 1967; SHEARMAN et al. 2000; WIELAND et 

al. 1986; WILLNER 1990 
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Acoustic 

startle response 

and 

prepulse inhibition

 

BRAFF et al. 1978; BRAFF et al. 1999; CADENHEAD 

et al. 1993; CADENHEAD et al. 2000; CAINE et al. 

1992; GEYER and SWERDLOW 1998; GRILLON et 

al. 1992; KOCH 1999; PAYLOR and CRAWLEY 

1997; SWERDLOW and GEYER 1998; SWERDLOW 

et al. 2000 

 

 

Aggression 

 

 

Isolation-induced 

aggression, 

spontaneous 

aggression, 

and 

territorial 

aggression 

 

 

BLANCHARD et al. 1988; BRAIN and POOLE 1974; 

BRAIN 1980; BRAIN et al. 1987; BRAIN and POOLE 

1976; KOOLHAAS et al. 1980; LAGERSPETZ 1969; 

MICZEK et al. 2001 
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Abstract 

Dipeptidyl-peptidase IV (DPPIV) is involved in endocrine and immune functions via cleavage 

of regulatory peptides with a N-terminal proline or alanine such as incretins, neuropeptide Y, 

or several chemokines. So far no systematic investigations on the localization and 

transmission of the Dpp4 gene or the natural variations of DPPIV-like enzymatic function in 

different rat strains have been conducted. Here, we map the Dpp4 gene to rat chromosome 3 

and describe a semi-dominant mode of inheritance for Dpp4 in a mutant F344/DuCrj(DPPIV-

) rat substrain lacking endogenous DPPIV-like activity. This mutant F344/DuCrj(DPPIV-) rat 

substrain constantly exhibits a nearly complete lack of DPPIV-like enzymatic activity, while 

segregation of DPPIV-like enzymatic activity was observed in another DPPIV-negative 

F344/Crl(Ger/DPPIV-) rat substrain. Screening of twelve different inbred laboratory rat 

strains revealed dramatic differences in DPPIV-like activity ranging from 11 mU/µl 

(LEW/Ztm rats) to 40 mU/µl (BN/Ztm and DA/Ztm rats). A lack of DPPIV-like activity in 

F344 rats was associated with an improved glucose tolerance and blunted natural killer cell 

function, which indicates the pleiotropic functional role of DPPIV in vivo. Overall, the 

variations in DPPIV-like enzymatic activity probably represent important confounding factors 

in studies using rat models for research on regulatory peptides.  

 

 

 

Keywords: F344 – Dipeptidyl-peptidase IV - CD26 – Gene mapping – Glucose tolerance – 

NK cell function 
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3.1 Introduction 

Dipeptidyl-peptidase IV (DPPIV/CD26) is an ectopeptidase with a triple functional role. 

DPPIV is involved in catalyzing the release of Xaa-Pro or Xaa-Ala dipeptides from the N-

terminus of circulating hormones and chemokines [1, 2]. Furthermore, the enzyme is involved 

in T cell dependent immune responses [3-5] and in cell adhesion processes [2, 6]. The 

biological activity of several hormones and chemokines can be abolished or modified by 

DPPIV in vitro and in vivo [2, 7]. Substrates of the DPPIV are neuropeptide Y (NPY), 

endomorphine, circulating peptide hormones like peptide YY, and chemokines like RANTES. 

However, it should be noted that cleavage of many of these substrates of DPPIV have been 

demonstrated only in in vitro studies, while the physiological relevance in vivo still remains 

unknown [2]. Additionally, cytokines and growth factors like IL-3, IL-10, and GM-CSF are 

characterized by a N-terminal structure with a proline in the second position. They are further 

potential substrates for this enzyme [2]. Thus, DPPIV is directly and indirectly involved in the 

regulation of endocrine, immune, and nervous functions [8]. 

In recent years a number of enzymes were identified expressing DPPIV-like activity [9, 10]. 

The fibroblast activating protein is a highly homologous protein to DPPIV, which possesses a 

gelatinase activity as well as a post-proline specific dipeptidyl-aminopeptidase activity. The 

protein was found on the surface of activated fibroblasts and on several cancer cells. It seems 

to play a role in cancer invasion and in angiogenesis [11-13]. DP8 and DP9 are also 

peptidases of the prolyl oligopeptidase family S9. For both a DPPIV-like activity could be 

proved [14, 15]. They are located intracellulary but physiological function remains unknown. 

Dipeptidyl-peptidase II (DP II, QPP) is a post-proline and post-alanine cleaving dipeptidyl-

peptidase with an acidic pH-optimum [16]. It is located in intracellular vesicles, including 

lysosomes. Attractin shares no sequence homology with the other dipeptidyl-peptidases but a 

DPPIV-like activity was found [17] and could be confirmed by another study [18]. Low 

molecular weight substrates could not distinguish between these DPPIV-like activities. Only 

DP II could be measured at pH 5 were at least DPPIV and attractin but probably also the other 

enzymes are inactive. Recently, there were the first inhibitors described, which show a clear 

preference for DP II over DPPIV [19]. 

DPPIV knockout mice confirm the importance of DPPIV-like enzymatic activity in regulating 

blood glucose levels [20]. This effect of DPPIV-like enzymatic activity on glucose 

homeostasis is likely to be mediated via a prolonged action of the incretins glucagon-like 

peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which potentiate 
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the glucose-stimulated insulin secretion [21-23]. GLP-1 and GIP possessing an alanine at the 

penultimate position are rapidly degraded and inactivated by DPPIV. The intact N-terminus is 

absolutely required for the biological activity of these incretins [24]. Thus, the truncated 

forms GLP-19-36 and GIP3-42 are not insulinotropic any more [25, 26]. Despite these important 

and pleiotropic functions of DPPIV, so far, no systematic investigations on natural variations 

in DPPIV-like activity in different laboratory rat strains have been conducted. In contrast to 

humans and mice [27], also the genetics and the localization of the Dpp4 gene in rats 

remained unknown.  

Interestingly, and in addition to the above mentioned lack of knowledge on natural variation 

in DPPIV-like activity in rats, a sequence alteration (spontaneous mutation) of the Dpp4 gene 

has been described in independent studies of F344 rat substrains from breeding colonies of 

Charles River Laboratories in Sulzfeld, Germany (laboratory code: Crl) [28] and in Atsugi, 

Japan (laboratory code: DuCrj) [29, 30]. These mutations result in an almost complete lack of 

enzymatic activity. In contrast, F344 rats from Charles River Laboratories (Crl) in Raleigh or 

Portage, USA, exhibit a normal DPPIV-like activity, but unfortunately carry the same 

laboratory code (Crl) as the animals from Germany (Sulzfeld). For the purpose of clearness, 

we therefore extended the official laboratory codes of these F344 rat substrains by adding the 

country or town of origin (i.e. “Ger” for Germany, “Ral” for Raleigh/USA, “Por” for 

Portage/USA), a description of the phenotype (i.e. “DPPIV-“ for lack of DPPIV-like activity), 

and if necessary, the year of receipt of these substrains from the commercial breeders (i.e. 

“98” for 1998 and “01” for 2001). 

In F344/DuCrj(DPPIV-) rats a G to A transition at nucleotide 1897 in the Dpp4 cDNA 

sequence leads to a substitution of Gly633 to Arg in the catalytic center of the enzyme (Gly629-

Trp-Ser-Tyr-Gly633). The Ser631 is the active serine of rat DPPIV. As a result of this point 

mutation, DPPIV-like activity is deficient in plasma and other tissues of these F344 rats, 

although there is still evidence for mutant Dpp4 mRNA [31]. In the other DPPIV-deficient 

F344 substrain from Germany [F344/Crl(Ger/DPPIV-)] the gene sequence has not been 

characterized but there is also evidence for non-active Dpp4 mRNA [28]. Possibly, a mutation 

interrupts the translation of Dpp4 mRNA in the Japanese F344/DuCrj(DPPIV-) substrain [31] 

as well as in the German F344/Crl(Ger/DPPIV-) substrain. Both DPPIV-deficient F344 

substrains may provide an interesting model to further study the in vivo functional role of 

DPPIV for the cleavage of regulatory peptides and resulting various endocrine or 

immunological processes such as glucose tolerance or natural killer (NK) cell function. 

Likewise, differences in endogenous DPPIV-like activity in various rat strains may have an 



 55 DPPIV in different rat strains and F344 substrains: Regul Pept 115. 2003. 81-90. 
 
 
important impact for specific experiments focusing on in vivo effects of regulatory peptides, 

which are substrates for the DPPIV. 

Therefore, in the present study we mapped Dpp4 using a gene linked SSLP marker, 

performed breeding experiments to identify the mode of inheritance of DPPIV-like activity, 

and screened several laboratory rat strains including F344 rat substrains from different 

breeding colonies obtained at different time points from Crl for their endogenous DPPIV-like 

activity. Furthermore, we determined the glucose tolerance and NK cell function in DPPIV-

deficient and wildtype-like F344 rat substrains in order to exemplify the functional 

importance of spontaneous sequence variations in the Dpp4 gene.  
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 3.2 Materials and methods 
Animals 

All animals were housed at the Central Animal Facility of the Hannover Medical School 

(Ztm). Rats were maintained in a separated minimal barrier sustained facility and kept in 

Makrolon type III cages on standard bedding (Altromin GmbH, Lage, Germany). Food 

(Altromin Standard Diät 1320: Altromin GmbH) and water were available ad libitum. 

Environmental temperature was automatically regulated at 21 ± 2 °C, relative humidity at 55 

± 5% with an air change rate of 15 times per hour. The animal rooms were operated with a 

positive pressure of 0.6 Pa. Animals were maintained under 12:12 h light cycle, underwent 

routine animal care once a week and were microbiologically monitored according to FELASA 

recommendations [32]. All research and animal care procedures were approved by the district 

government, Hannover, Germany, and performed according to international guidelines for the 

use of laboratory animals. 

Origin of different F344 substrains from Charles River Laboratories 

The inbred F344 colony was originated by Curtis and Dunning at the Columbia University 

Institute for Cancer Research in 1920 [33]. In 1949 F344 animals were transfered to Heston 

(in F31) and in 1951 to the National Institute of Health (in F116). F344/Crl(Por) is derived 

from F344/Crl animals from the colony in Portage, which was established in 1998 with 

animals from the National Institute of Health subline. F344/Crl(Ral) were originated from 

F344/Crl animals from the colony in Raleigh (USA), which were derived from nucleus 

animals from Wilmington (New England) in 1985. The F344/DuCrj(DPPIV-) substrain was 

based on the colony of Curtis and Dunning in 1920. In 1960, the substrain was passed in 

generation F68 to Charles River Laboratories in Wilmington (Crl). After a rederivation via 

hysterectomy in the USA in 1965 (F81), the breeding was started in generation F110 at 

Charles River Laboratories in Japan in 1976 (Crj). F344/Crl(Ger/DPPIV-) rats were obtained 

as F344/Crl animals from Sulzfeld in Germany, which were derived from the nucleus-colony 

CDF from Wilmington in 1999. 

Unfortunately, several of these F344 substrains carry the same laboratory code (Crl). For 

clarity, animal groups were coded dependent on country or town of origin and the DPPIV-

related phenotype as followed: F344 rats derived from breeding colonies in Atsugi, Japan 

were designated as F344/DuCrj(DPPIV-), animals from breeding colonies in Sulzfeld, 

Germany, as F344/Crl(Ger/DPPIV-), wildtype-like rats obtained from colonies in Portage, 

USA, as F344/Crl(Por) and wildtype-like animals from Raleigh, USA, as F344/Crl(Ral). 

Additionally, the time point, at which the animals were obtained from Charles River 
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Laboratories (1998/2001) was indicated in our code (“98” for 1998 and “01” for 2001), 

whenever this appeared to be necessary. 

Dpp4 gene mapping 

Dpp4 maps to mouse chromosome 2 (MMU2) and the position of the homologous human 

gene (DPP4) is on human chromosome 2 (HSA2). Large parts of RNO3 are homologous to 

MMU2 and HSA2 (www.informatics.jax.org/menus/homology_menu.shtml). 

In this study genomic rat sequences available on the NCBI Rat Genome Blast page 

(www.ncbi.nlm.nih.gov/genome/seq/RnBlast.html) were used to identify polymorphic short 

tandem repeats in close proximity to Dpp4. To determine the position of Dpp4 in the rat 

genome, we analyzed 202 individual rats of a (LEW/Ztm-ci2 x BN/Ztm)F1 x LEW/Ztm-ci2 

backcross (N2) for inheritance of simple sequence length polymorphisms. For tissue 

collection, animals were sacrificed (anesthetized with carbon dioxide followed by cervical 

dislocation). For DNA preparation genomic DNA was prepared from ear or tail tissue with the 

Nucleo SpinTM Tissue kit (Macherey-Nagel GmbH, Düren, Germany). We used Taq-DNA-

polymerase (Peqlab Biotechnologie GmbH, Erlangen, Germany) and a PTC-200 thermal 

cycler (MJ Research Inc., Watertown, MA) for the polymerase chain reaction. Amplification 

was carried out in a 10 µl reaction with 1.5 mM MgCl2, 75 µm of each dNTP, 0.17 µm of 

each primer, 100 ng genomic DNA and 0.5 unit polymerase. After an initial step at 95 °C for 

4 min, 35 cyles of 15 s at 94 °C, 1 min at 55-56 °C and 2 min at 72 °C were performed, 

followed by 72 °C for 7 min. All PCR products were detected by gel electrophoresis using 3% 

NuSieveTM 3:1 agarose (Bio Wittaker Molecular Applications Inc., Rockland, Maine). 

All N2 rats were genotyped with the following SSLP markers to create a genetic linkage map 

of rat chromosome 3 (RNO3): D3Mgh8, D3Mit12, D3Mit4, D3Mgh1. Primer sequences for 

all markers used were obtained from the Rat Genome Database. All oligonucleotide primer 

pairs were synthesized by Carl Roth GmbH (Karlsruhe, Germany). Selection of gene linked 

short tandem repeats followed this step of the analysis. The rat genomic sequence used for 

this study was derived from the CHORI-230 Rat BAC library sequencing project. The library 

was constructed with the DNA of a 3-months old female BN(BN/SsNHsd/MCW) rat 

(www.chori.org/bacpac/). 

Rat genomic DNA sequence featuring identities to the rat cDNA sequence of Dpp4 [34] were 

identified with the NCBI Rat Genome Blast program. Tandem repeats within the rat genomic 

sequence were found using the Mount Sinai/The Department of Biomathematical Science 

Tandem Repeats Finder. Primer pairs for the short tandem repeats found in the rat genomic 

sequence were chosen using Oligo4.0TM (Molecular Biology Insights, Inc., Cascade, 
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Colorado) software and synthesized by Carl Roth GmbH. Short tandem repeats displaying 

variant alleles for LEW/Ztm-ci2 and BN/Ztm rat strains were used as gene linked SSLP 

markers. 

Mode of inheritance of DPPIV-like activity 

The mode of inheritance of DPPIV-like activity was determined using 

F344/DuCrj(98/DPPIV-), F344/Ztm, [F344/Ztm x F344/DuCrj(98/DPPIV-)]F1, and 

[F344/Ztm x F344/DuCrj(98/DPPIV-)]F2 rats. The enzyme activity of the parental strains, 

their F1, and their F2 generation was measured as described below.  

Determination of DPPIV-like enzymatic activity 

F344/DuCrj(98/DPPIV-), F344/DuCrj(01/DPPIV-), F344/Crl(Ger/98/DPPIV-), 

F344/Crl(Ger/01), F344/Crl(Por/98), F344/Crl(Por/01), and F344/Crl(Ral/01), as well as 

animals of various inbred rat strains maintained at Ztm (BDII, BDIX, BDE, BN, DA, E3, 

F344, LEW, LE, OM, WF, and WKY) were screened.  

EDTA-plasma samples were kept at –80 °C until use. DPPIV enzyme activity of the different 

rat strains was determined using glycyl-prolyl-4-nitroaniline (Gly-Pro-pNA) as substrate. A 

volume of 30  µl plasma was diluted with 120 µl 0.9% NaCl and 600 µl of 0.5 M substrate 

solution in HEPES buffer pH 7.6 were added. Release of 4-nitroaniline were monitored at 37 

°C and 390 nm up to 20 min using the UV1 spectrophotometer (ThermoSpectronics, Neuss, 

Germany). Activity (mU/ml) was calculated from the linear slope using a factor of 2193 

µmol/l calculated from the molar absorption coefficient and the plasma dilution. One unit is 

defined as the DPPIV activity, which cleaves 1 µmol Gly-Pro-pNA per minute. 

For determination of plasma activity of F344 rats during the inheritance study a more 

sensitive and faster microplate based fluorescence assay was used. The release of 4-Amino-7-

Methylcoumarin (AMC) from the substrate Gly-Pro-AMC was monitored at 360/480 nm 

(Ex/Em) and 30 °C using the Novostar fluorescence microplate reader (BMG, Offenburg, 

Germany). The assay consists of 20 µl plasma sample, 100 µl H2O, 100 µl HEPES buffer pH 

7.6, and 50 µl Gly-Pro-AMC. Activity was calculated from the linear slope using a factor of 

3.116*10-4 µmol/l calculated from an AMC standard curve and the sample dilution. One unit 

is defined as the enzyme activity, which cleaves 1 µmol Gly-Pro-AMC per minute. 

Both assays result in different activities due to differences in assay conditions and the 

different substrates used. Direct comparison of the same samples in both assays demonstrate 

that the activity determined by the assay using Gly-Pro-pNA as substrate is approximately 1.9 

times higher than the activity determined by the fluorescence assay (which was used for the 

mode of inheritance study). Both assays are selective for DPPIV-like activities. It has been 
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proven that the substrates are cleaved by DPPIV, by DP II and by attractin. Probably they are 

also substrates for DP8 and DP9. Importantly, the chromophores are not released by other 

proline-specific peptidases, such as prolidase, prolyl endopeptidase or aminopeptidase P. 

Glucose tolerance 

Animals of F344/Crl(Por/98), F344/DuCrj(98/DPPIV-), and F344/Crl(Ger/98/DPPIV-) 

substrains (n = 10) aging of 154 ± 5 days were used for this experiment. These animals were 

standardized in regard to their breeding conditions (littersize: n = 6, gender-ratio: 1:3 or 1:2), 

and number of animals per cage. Following an overnight fasting (12 h) 1 h after the onset of 

the light phase, animals (fasting) blood glucose levels were controlled. If the glucose 

concentration was < 7.8 mmol/l (< 140 mg/dl) the animals were orally administered with 

glucose (1.5 g glucose/kg) using a feeding tube [35, 36]. For this, rats were anesthetized 

shortly with Isofluran. Blood samples (10 µl) were collected from the tail vein of conscious 

unrestrained rats at 30, 60, 90, and 120 min following the oral glucose load and the glucose 

level was measured by a glucometer (Bayer AG, Leverkusen, Germany). Criteria for the 

definition of the glucose tolerance of the animals were blood glucose concentrations after 120 

min: < 7.8 mmol/l (< 140 mg/dl): normal glucose tolerance; 7.8-11.1 mmol/l (140-200 mg/dl): 

impaired glucose tolerance; > 11.1 mmol/l (> 200 mg/dl): Diabetes mellitus. 

Quantification of NK cell cytotoxicity in spleens of different F344 substrains 

A single cell suspension of splenocytes was prepared for each subject of F344/Crl(Por/98), 

F344/DuCrj(98/DPPIV-), and F344/Crl(Ger/98/DPPIV-) rats by gently pressing spleen tissue 

using the ends of stamps from sterile plastic syringes (n = 3 per each F344 substrains in three 

independent experiments). After erythrolysis and two washes in PBS, cells were re-suspended 

in exactly 10 ml RPMI 1640. Leukocyte numbers were determined using a Coulter cell 

counter and the splenocyte concentrations adjusted to 6 × 106 cells/ml with supplemented 

RPMI 1640 containing 10% fetal bovine serum. NK cytotoxicity was measured in classical 
51Cr-release assays using MADB106 target cells [37, 38], which were derived from standard 

cell culture conditions, as previously described [27]. Splenocytes, prepared through Ficoll-

Hypaque gradient [39], were used as effectors and effector-to-target (E:T) ratios of 12.5:1, 

25:1, 50:1, 100:1 were obtained. Co-incubation of effector and target cells was carried out 

either for 4 h with addition of 1000 U/ml IL-2 (EuroCetus, Amsterdam, The Netherlands) or 

for 18 h incubation, respectively [38]. Control wells containing only labelled targets were also 

plated to determine the spontaneous release. For determination of maximal possible release, 

the targets in one set of control wells were lyzed with Triton X-100. The spontaneous release 

was always less than 10% of the maximum release. Plates were centrifuged for 4 min prior to 
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incubation (37 ˚C, 5% CO2) and again prior to harvesting 75 µl of the supernatant for 

determining 51Cr release in a gamma counter. The specific cytotoxity was calculated by 

means of the following formula: [(experimental release) – (spontaneous release)] / [(maximal 

release) – (spontaneous release)] × 100.  

 

Statistical analysis 
The position of all RNO3 SSLP markers obtained from the Rat Genome Database as well as 

the position of our gene-linked marker were calculated using JoinMapTM2.0 (Centre for Plant 

Breeding and Reproduction Research; CPRO-DLO, Wageningen, The Netherlands) software. 

MapChartTM2.0 (CPRO-DLO) software was applied for drawing a linkage map of RNO3. The 

analysis of the blood plasma DPPIV-like activity was assessed by one-way ANOVA followed 

by the Fisher-PLSD-test for post hoc comparison, if appropriate. The analyses of the blood 

glucose level and NK cell mediated specific cytotoxicity were assessed by analysis of 

variance (ANOVA) for repeated measures followed by two-way and one-way ANOVA and 

the Fisher-PLSD-test as post hoc test, if appropriate. Differences were regarded as statistically 

significant if p < .05. In the figures and tables, all data are displayed as means ± standard error 

of the mean (SEM) and significant post hoc effects versus the wildtype-like control animals of 

the F344/Crl(Por/98) substrain are indicated by asterisks (*p < .05 - **p < .01 - ***p < .001).
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3.3 Results 

Dpp4 gene mapping 
Rat specific DNA sequences derived from BAC clones were useful for this investigation. We 

screened rat BAC sequence data for the presence of both a tandem repeat and identity to the 

cDNA of rat Dpp4. BAC clone CH230-34P1/AC1257121 contains the genomic sequence of 

Dpp4 as well as a (CT)36 tandem repeat. According to the sequence of this BAC clone the 

tandem repeat is located within an intron of rat Dpp4. This tandem repeat displayed variant 

alleles for LEW/Ztm-ci2 and BN/Ztm rats and was used as a gene linked SSLP marker 

(D3Ztm1). We used TGG GGG ATT ATA CTA ATT CAG TCC CCA (5´-3´) as upper 

primer and ACT TCC CTT GCA AGC ACA GAA AAC (5´-3´) as lower primer for 

amplification of D3Ztm1. The calculated product size (BN rats) of this gene linked SSLP 

marker is 299 base pairs. 

Linkage analysis revealed that the four D3 SSLP markers described by the Rat Genome 

Database map to RNO3. The maximum distance between D3Mgh8 and D3Mgh1 is 114.0 

centimorgan (cM) as calculated for the N2 population studied. Since D3Ztm1 showed 

significant linkage to these four RNO3 markers it was integrated into the scaffold previously 

created by those microsatellites. The position of Dpp4/D3Ztm1 was determined as 29.0 cM on 

our RNO3 genetic linkage map (Fig. 1).  

Mode of inheritance of DPPIV-like activity 

DPPIV-like activity in male F344/DuCrj(98/DPPIV-) rats was 3.0 ± 0.4 mU/ml, while female 

F344/Ztm rats exhibit an average DPPIV-like activity of 19.1 ± 0.7 mU/ml. In the [F344/Ztm 

x F344/DuCrj(98/DPPIV-)] F1 generation an average enzyme activity of 9.3 ± 0.4 mU/ml 

could be measured. The F2 progeny of the F344/Ztm x F344/DuCrj(98/DPPIV-) cross could 

be subdivided into three phenotypic groups. The first group had a low DPPIV-like activity of 

2.2 ± 0.1 mU/ml and was therefore considered homozygous for the mutant Dpp4 allele. A 

high endogenous DPPIV-like activity of 20.6 ± 1.4 mU/ml was found in the second group. 

These animals appear to be homozygous for the Dpp4 wildtype-like allele. The third group 

represents F344 rats with an intermediate DPPIV-like activity as this has been shown for the 

F1 generation. The mean value in this group was 10.8 ± 0.3 mU/ml, displaying an 

intermediate phenotype suggestive for a semi-dominant mode of inheritance. 

DPPIV-like enzymatic activity 

The different F344 substrains showed significant overall differences in the DPPIV-like 

activity (one-way ANOVA: p < .0001). The F344/Crl(Por/98) substrain (n = 27) exhibited a 
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normal DPPIV-like activity whereas the DPPIV-deficient substrains F344/DuCrj(98/DPPIV-) 

(n = 32) and F344/Crl(Ger/98/DPPIV-) (n = 31) showed a dramatic reduction in the DPPIV-

like activity (Fig. 2).  

The F344 animals ordered from the different breeding colonies of Charles River Laboratories 

in Germany, Japan, and the USA in 2001 showed a unique pattern of DPPIV-like activity and 

differed from the previously in 1998 obtained animals. Male and female animals of the colony 

in Raleigh, F344/Crl(Ral/01), and surprisingly also from Sulzfeld, F344/Crl(Ger/01) exhibited 

a considerable high DPPIV-like activity (Table 1). The latter was opposite to the extreme 

reduction of DPPIV-like activity in the F344/Crl(Ger/98/DPPIV-) rats subsequently bred in 

our laboratory. The animals of the Japanese substrain, F344/DuCrj(01/DPPIV-) did still lack 

DPPIV-like activity (one-way ANOVA: p = 0.02; Table 1). The results found in the F344 

substrain from the colony in Portage, F344/Crl(Por/01) were gender-dependent. Female rats 

exhibited a normal DPPIV-like activity, while males nearly completely lacked DPPIV-like 

activity (one-way ANOVA: p < .0001). This potent gender-dependent phenotype was 

different to the F344/Crl(Por/98) animals bred in our laboratory (Fig. 2).  

Furthermore, we also found a wide range of DPPIV-like activity in several other inbred rat 

strains maintained in the Ztm (Table 2). Among those strains LEW/Ztm exhibited the lowest 

(11.5 mU/ml) while DA/Ztm and BN/Ztm showed the highest DPPIV-like activity (DA/Ztm: 

39.8 mU/ml and BN/Ztm: 39.7 mU/ml). 

Glucose tolerance 

The fasting blood glucose levels of the three F344 substrains were not different (Fig. 3). The 

DPPIV-negative substrains F344/DuCrj(98/DPPIV-) and F344/Crl(Ger/98/DPPIV-) showed a 

significant lower blood glucose level during the oral glucose tolerance test in comparison to 

F344/Crl(Por/98), which were taken as a control group. This was shown by ANOVA for 

repeated measures (p < .0001) and one-way ANOVA for the blood glucose levels split by 

time at 30 min (p = 0.004), 60 min (p = 0.001), and 90 min (p = 0.01) after the oral 

administration of glucose. Although at the critical time point of 120 min after the 

administration the blood glucose tolerance of all three substrains was normal (< 7.8 mmol/l), 

the tolerance of the two DPPIV-deficient substrains during the schedule was improved 

compared to the wildtype-like animals. 

NK cell cytotoxicity in spleens of different F344 substrains 

NK specific lysis of MADB106 tumour cells using a classical ex vivo NK cell functional 

assay is shown in Fig. 4. In the DPPIV-deficient F344/Crl(Ger/98/DPPIV-) and 

F344/DuCrj(98/DPPIV-) substrains, NK cell mediated lysis against MADB106 tumor targets 
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is significantly decreased compared to wildtype-like F344/Crl(Por/98) rats. This effect was 

observed in both assays (4 h co-incubation in the presence of IL2; Fig. 4A; and 18 h 

incubation; Fig. 4B). Two-way ANOVA showed a significant effect of "substrain" (p < .001) 

and "E:T ratio" (p < .01) in the 4 h assay. Similarly, two-way ANOVA of the 18 h assay data 

revealed a significant effect of "substrain" (p < .001) and "E:T ratio" (p < .05). Furthermore, 

post hoc analysis of the 4 h assay data (Fig. 4A) revealed a significantly reduced NK 

cytotoxicity in the F344/Crl(Ger/98/DPPIV-) substrain when compared with the 

F344/DuCrj(98/DPPIV-) rats.  
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3.4 Discussion 

DPPIV-like enzymes specifically cleave several regulatory peptides including GLP-1, NPY, 

substance P, and chemokines, which are characterized by a N-terminal alanine or proline. 

Biological research on in vivo functions of these regulatory peptides is often carried out in rats 

or in rat derived biomaterial. The present study demonstrates that the Dpp4 gene is located on 

rat chromosome 3 and that it is inherited in a semi-dominant fashion. Furthermore, we show 

that laboratory inbred strains of rats exhibit obvious differences in DPPIV-like enzymatic 

activity, which probably affects degradation and half-life of regulatory peptides, which are 

substrates of the DPPIV. Even more important for researchers using F344 rats, we also 

observed that the commercially available F344/DuCrj(DPPIV-) rat substrain from a breeding 

colony in Japan (Atsugi) constantly exhibits a nearly complete lack of DPPIV-like enzymatic 

activity, while rats of the F344/Crl(Ger) substrain from breeding colonies in Germany 

(Sulzfeld) only occasionally showed a lack of DPPIV-like enzymatic activity. In regard to the 

physiological relevance of this enzymatic system, we furthermore demonstrated that a lack of 

DPPIV-like activity is associated with an improved glucose tolerance and a decreased NK cell 

mediated lysis of tumor cells. 

Using an SSLP marker located within the sequence of rat Dpp4 we were able to define the 

position of this gene on RNO3. This finding suggests that the gene content is conserved 

between this segment of RNO3 and the corresponding parts of MMU2 and HSA2, where the 

homologous orthologous genes of rat Dpp4 are located. Further on, we provide information 

about the distance of Dpp4 to anonymous microsatellite markers, which are generally used for 

linkage mapping of loci defined by phenotype alone. This should be a valuable prerequisite 

for further analysis of the influence of Dpp4 on the phenotypes of different rat strains. 

Since the present study demonstrates that F344/DuCrj(DPPIV-) rats, which are homozygous 

for the mutant Dpp4 allele, lack the endogenous DPPIV-like activity our data about the mode 

of inheritance provide strong evidence that the wildtype-like DPPIV remains active on an 

intermediate level in heterozygous F344 rats. Therefore, out- and intercrosses between 

F344/DuCrj(DPPIV-) and F344/Ztm might be a valuable tool to examine the impact of 

DPPIV-like activity also on other DPPIV-dependent physiological parameters.  

Furthermore, we screened different F344/Crl breeding colonies in Portage and Raleigh 

(USA), in Atsugi (Japan), and in Sulzfeld (Germany) in 1998 and 2001. The two independent 

sets of F344 rats from Japan F344/DuCrj(98/DPPIV-) and F344/DuCrj(01/DPPIV-) 
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constantly exhibit a nearly complete lack of DPPIV-like activity. In contrast, we found a 

variation between the F344/Crl(Ger/98/DPPIV-) colony, which we continued to breed in our 

laboratory, and another set of animals from the same colony from Crl, which we obtained 3 

years later [F344/Crl(Ger/01)]. While F344/Crl(Ger/98/DPPIV-) rats show a nearly complete 

loss of DPPIV-like activity, F344/Crl(Ger/01) are indistinguishable from the wildtype-like 

F344/Crl(Por/98) and F344/Ztm substrains. Surprisingly, rats recently obtained from the Crl  

colony in Portage, USA [F344/Crl(Por/01)], show a gender-dependent difference in the 

DPPIV-like enzymatic activity. Males have a dramatic reduction in the enzymatic activity, 

while females exhibit a wildtype-like phenotype. The differences in the DPPIV-like activity 

among the F344 rats from different breeding colonies of a world-wide operating vendor at 

different intervals clearly indicates a persisting segregation for the Dpp4 gene. Furthermore, 

the laboratory code of the substrains from the different breeding colonies in the USA and 

Germany is - unfortunately - identical. Overall, these findings on variation in DPPIV-like 

enzymatic activity indicate that scientists, who obtain F344 rats from this vendor or who work 

on DPPIV-dependent physiological processes in the rat should screen their animals in regard 

to their DPPIV-like activity. 

In addition, the present study shows that there is a considerable variance in the DPPIV-like 

activity in different inbred strains of rats. High levels are found especially in the DA/Ztm and 

BN/Ztm, while LEW/Ztm animals show a low activity. In spite of the microsatellite D3Ztm1 

being polymorphic between BN/Ztm and LEW/Ztm, it still remains unclear whether the 

various DPPIV-like activities can be attributed to differences among coding regions of the 

Dpp4 genes or to modifier genes of the respective genetic background. Regarding the F344 

substrains F344/DuCrj(98/DPPIV-) and F344/Crl(Ger/98/DPPIV-) we assume that the 

deficiency in DPPIV-like activity can be attributed to a previously described spontaneous 

mutation [31], which lead to a null allele. Modifier genes can be most likely excluded due to 

the fact that the genetical background of the different F344 substrains might be similar. 

Nevertheless, these findings might have important implications for research focusing on 

endocrine and immunological aspects directly or indirectly related to DPPIV/CD26 such as 

research on diabetes, T cell function, or cell migration in the rat.  

To our knowledge, only a few studies so far used DPPIV-deficient F344/DuCrj(DPPIV-) rats 

to investigate influences of DPPIV-like activity on glucose tolerance [35, 36, 40]. Because of 

partly contradictory findings regarding the glucose tolerance in these F344/DuCrj(DPPIV-) 

animals and since the DPPIV-deficient F344/Crl(Ger/DPPIV-) colony has not been tested, we 

investigated the glucose homeostasis in the three F344 substrains bred in our laboratory since 
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1998. The results of the study provide strong evidence that DPPIV plays an essential role in 

the physiological control of blood glucose. This is reflected by an improved glucose tolerance 

in the DPPIV-deficient F344/DuCrj(98/DPPIV-) and F344/Crl(Ger/98/DPPIV-) rats. These 

findings are in agreement with studies in F344/DuCrj(DPPIV-) rats [35, 40] and in DPPIV 

knockout mice [20]. The lack of DPPIV-like activity in the two DPPIV-deficient substrains 

seems to be responsible for the improved glucose tolerance. 

GLP-1 is involved in glucose homeostasis by its multifaceted actions, which include 

stimulation of insulin gene expression, increase of glucose-stimulated insulin secretion [22, 

23], and inhibition of glucagon secretion, all of which contribute to normalize elevated blood 

glucose levels [41]. Administration of GLP-1 functions as an antidiabetic in patients with type 

2 diabetes [35] and GLP-1 receptor antagonists induce glucose intolerance in rats [42]. Thus, 

active GLP-1 has a powerful influence on glucose tolerance. Interestingly, inhibition of 

DPPIV-like activity is effective to suppress the degradation of exogenously administered or 

endogenously circulating incretins like GLP-1 [41, 43]. Besides DPPIV-inhibition by valine-

pyrrolidide or isoleucyl-thiazolidide (Ile-Thia) improve the glucose tolerance [23, 44] and Ile-

Thia also enhances the insulin secretion [45]. Obviously, inhibition of DPPIV results in 

increased levels of active GLP-1 and GIP [24] and an improved glucose tolerance. We 

conclude that a lack in DPPIV-like activity in the mutant F344 rats improves the glucose 

tolerance probably by an incretin-mediated mechanism [23]. Manipulation of plasma incretin 

concentrations by acute inhibition of DPPIV could be a therapeutic approach for improving 

glucose tolerance and could prevent transition to type 2 diabetes. Therefore, different F344 

substrains may represent a useful tool for research focusing on glucose homeostasis. 

The finding on a blunted NK cell mediated cytotoxicity against syngenic tumor cell targets 

suggests that DPPIV/CD26 is involved in mediating specific aspects of NK cell function. 

Previous work on the role of DPPIV/CD26 on NK cells has demonstrated that IL-2 

stimulation increases DPPIV/CD26 expression on a subpopulation of these cells [4, 46]. 

However, NK cell cytotoxicity of DPPIV/CD26-positive NK cells was not different compared 

to DPPIV/CD26-negative NK cells [46]. Since in addition DPPIV/CD26 inhibitors had no 

effect on NK cell function but instead suppressed DNA synthesis and cell cycle progression 

of NK cells, it was concluded that DPPIV/CD26 is involved in the regulation of NK cell 

proliferation, whereas natural cytotoxicity seems to be regulated independently [46]. The 

present finding that the mutant substrains exhibited a differential suppression of their NK cell 

function might suggest that either a lack of DPPIV/CD26 enzymatic activity or a differential 



 67 DPPIV in different rat strains and F344 substrains: Regul Pept 115. 2003. 81-90. 
 
 
DPPIV/CD26 expression or both factors may mediate the decrease in NK cell mediated tumor 

lysis. 

However, important for the in vivo situation, it should be noted here that other partly 

completely different enzymes also mediate a DPPIV-like enzymatic activity [namely, 

fibroblast activation protein (FAP), DP8 and DP9, which like DPPIV belongs to the prolyl 

oligopeptidase protease family and the lysosomal enzyme DP II]. All of these peptidases 

possess a high homology around the active site. Furthermore, the structural unrelated protein 

attractin was found to express post-proline dipeptidyl-peptidase activity. At least for DP II 

and for attractin we could demonstrate that the Gly-Pro substrates are cleaved by these 

enzymes. Theoretically, a cleavage of substrates with a N-terminal penultimate proline is also 

possible by a subsequent action of aminopeptidase P and a prolyl aminopeptidase activity. 

This could be widely excluded for the measured plasma activities because control 

experiments demonstrates that the measured activity could be nearly completely inhibited be 

competitive DPPIV inhibitor Ile-Thia. But this small inhibitor may also be effective for 

inhibition of all other DPPIV-like enzymes, as it was proven for DP II and for attractin. 

In conclusion, we present a gene linked SSLP marker, which allowed us to map the semi-

dominant inherited Dpp4 to rat chromosome 3. Screening of DPPIV-like enzymatic activity in 

commercially available F344/DuCrj(DPPIV-) rats exhibited a nearly complete lack of 

DPPIV-like enzymatic activity, while F344/Crl(Ger) and F344/Crl(Por) rats obtained in 

different years (1998 and 2001) apparently segregate or show a gender-associated difference. 

In addition, different rat inbred strains revealed considerable differences in enzymatic activity. 

DPPIV deficiency of F344 substrains was found to be associated with an improved glucose 

tolerance and a decreased NK cell function. Overall, the variations in DPPIV-like enzymatic 

activity reported here could act as confounding factors in biomedical research using rats not 

screened (genetically monitored) for this factor beforehand and probably should be considered 

when selecting rat strains for studies on regulatory peptides, which are substrates for the 

DPPIV. 
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3.7 Tables and figures 
 

Table 1:  

 Male Female 

 n DPPIV-like activity n DPPIV-like activity 

F344/Crl (Por/01) 3                 6.6 ± 1.0 6 20.2 ± 0.4 

F344/Crl (Ral/01) 3               18.1 ± 1.2 6 16.8 ± 3.5 

F344/DuCrj(01/DPPIV-) 3                 3.5 ± 0.1 6 6.7 ± 0.7 

F344/Crl (Ger/01) 3               18.0 ± 0.2 6 17.8 ± 0.8 

Gender-dependent DPPIV-like activity [mU/ml] in the different F344 rat substrains obtained 

from Crl in 2001 [F344/Crl(Por/01), F344/Crl(Ral/01), F344/DuCrj(01/DPPIV-), and 

F344/Crl(Ger/01)]. Data represent means ± SEM. 
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Table 2:  

Rat strain 

(Ztm) 

DPPIV-like activity  

LEW 11.5 ± 1.1 

WF 14.0 ± 0.3 

OM 14.4 ± 1.5 

WKY 14.6 ± 1.3 

BDII 18.4 ± 1.7 

F344 19.1 ± 0.7 

BDE 20.9 ± 1.2 

LE 23.1 ± 1.0 

E3 24.7 ± 0.4 

BDIX 31.0 ± 0.8 

BN 39.7 ± 3.3 

DA 39.8 ± 0.9 

DPPIV-like activity [mU/ml] in different inbred rat strains obtained from the Ztm in 2001. 

Data represent means ± SEM (n ≥ 3 rats). 
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Fig. 1: Genetic linkage map of RNO3 including gene linked SSLP marker (D3Ztm1). 
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Fig. 2: DPPIV-like activity [mU/ml] in three different F344 rat substrains obtained from Crl 

in 1998 [F344/Crl(Por/98), F344/DuCrj(98/DPPIV-), and F344/Crl(Ger/98/DPPIV-)]; blood 

samples were taken from the tail vein. Data represent means + SEM. Significant post hoc 

effects versus the wildtype-like animals of the F344/Crl(Por/98) substrain are indicated by 

asterisks (***p < .001). 
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Fig. 3: Glucose tolerance [mmol/l] in three different F344 rat substrains obtained from Crl in 

1998 [F344/Crl(Por/98), F344/DuCrj(98/DPPIV-), and F344/Crl(Ger/98/DPPIV-)] following 

an overnight fast; administration of oral glucose (1.5 g glucose/kg) in animals, which were 

anesthetized shortly with Isofluran. Blood samples (10 µl) were collected at 30, 60, 90, and 

120 min following the oral glucose load. Data represent means + SEM. Significant post hoc 

effects versus the wildtype-like animals of the F344/Crl(Por/98) substrain are indicated by 

asterisks (*p < .05 - **p < .01 - ***p < .001). 
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Fig. 4: Splenic NK cytotoxicity against MADB106 cells in DPPIV-deficient F344 rat 

substrains [F344/Crl(Ger/98/DPPIV-) and F344/DuCrj(98/DPPIV-)] compared to wildtype-

like F344/Crl(Por/98) rats [%]; NK cytotoxicity was measured in an assay for 51Cr release 

from labelled target cells after (A) 4 h incubation with IL2 and (B) 18 h incubation using 

syngeneic MADB106 tumor cells as targets. Assays were repeated twice. Data represent 

means ± SEM. 

 

 
 

 



 80 DPPIV deficiency and behavior: Physiol Behav 80. 2003. 123-34. 
 
 

 

 
Extreme reduction of dipeptidyl-peptidase IV activity 

in F344 rat substrains is associated with 

various behavioral differences 
 

 

 

Tim Karl1, Torsten Hoffmann2, Reinhard Pabst1, and Stephan von Hörsten1 

 

 

 
1 Department of Functional and Applied Anatomy, Hannover Medical School, 30623   

Hannover, Germany 
2 Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany 

 

 

 

 

 

 

 

 

 

Address for correspondence: Prof. Dr. S. von Hörsten, Medical School of Hannover, 

OE 4120, Department of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625 

Hannover, Germany, Phone: +49 511 532 2868, Fax: +49 511 532 8868, E-mail: 

Hoersten.Stephan.von@mh-hannover.de. 

 



 81 DPPIV deficiency and behavior: Physiol Behav 80. 2003. 123-34. 
 
 
 

Abstract 

The enzyme and binding protein dipeptidyl-peptidase IV (DPPIV; CD26) has a unique 

enzymatic specificity in cleaving dipeptides from neuropeptides, chemokines, and hormones. 

Thus, DPPIV is potentially involved in the regulation of functions of the nervous, endocrine, 

and immune systems. In the present study we compared DPPIV-deficient, mutant Japanese 

[F344/DuCrj(DPPIV-)] and German [F344/Crl(Ger/DPPIV-)] F344 rat substrains with a 

wildtype-like F344 substrain [F344/Crl(Por)] from the USA in a multi-tiered strategy using a 

great number of different behavioral tests. General health, neurological and motor functions, 

and sensory abilities of the different F344 substrains were not different. A reduced body 

weight and a reduced water consumption was observed in mutant animals. DPPIV-deficient 

rats exhibited increased pain sensitivity in a non-habituated hot plate test, indicative of a 

reduced stress-induced analgesia. In line with this finding, reduced stress-like responses in 

tasks like the open field, social interaction, and the passive avoidance test were found. 

Differences in DPPIV-like activity appear to be involved in neurophysiological processes 

because DPPIV-deficient animals were less susceptible to the sedative effects of ethanol. The 

varying phenotypes of the F344 substrains are likely to be mediated by differential 

degradation of DPPIV substrates such as substance P, glucagon-like peptide 1 (GLP-1), 

enterostatin, and especially neuropeptide Y. Potentially, DPPIV-deficient substrains represent 

an important tool for biomedical research, focusing on the involvement of DPPIV and its 

substrates in behavioral and physiological processes. 

 

 

 

Keywords: Dipeptidyl-peptidase IV - F344 rats – Substrain comparison - Basic behavioral 

phenotyping – Motor function - Nociception - Anxiety - Memory - Ethanol - Porsolt swim 

test - Prepulse inhibition – Feeding behavior 
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4.1 Introduction 

The enzyme and binding protein dipeptidyl-peptidase IV (DPPIV), which is identical to 

CD26, was discovered in 1966 (31) and is a member of the class of membrane-associated 

peptidases. Most vertebrate tissues contain this ectopeptidase, which is also in close contact 

with circulating hormones in the blood. In the adult nervous system, DPPIV cleaves 

neuropeptides mainly in the cerebrospinal fluid since it is found primarily in the 

circumventricular organs and on leptomeningeal cells in the central nervous system (CNS) 

(50). However, other DPPIV-like enzymes such as attractin may also contribute to these 

processes. DPPIV has a unique enzymatic specificity, cleaving dipeptides from peptides and 

proteins carrying Xaa-Pro or Xaa-Ala in their penultimate position (14). Many neuropeptides, 

chemokines and hormones have proline residues at specific positions in their amino acid 

sequence. Known substrates for DPPIV are growth-hormone-releasing-factor, glucagon-like 

peptide 1 (GLP-1), GLP-2, kentsin, enterostatin, substance P, peptide YY, and trypsinogen. 

Relevant substrates in immune reactions are chemokines as well as cytokines such as IL-2 

(28). In addition, it is known that DPPIV is involved in T-cell dependent immune responses 

(34) and in cell adhesion (50). The rapid degradation of Tyr-Pro dipeptides from the 

neurotransmitter neuropeptide Y (NPY) with high turnover rates by DPPIV (50) is of 

particular importance, because NPY is the most abundantly expressed neuropeptide within the 

CNS. NPY is involved in the central regulation of various neuroendocrine and behavioral 

functions like feeding, nociception, anxiety, and memory in rodents (35, 38, 85). Thus, 

DPPIV is both directly and indirectly involved in the regulation of nervous, endocrine, and 

immune functions. Despite these pleiotropic effects of DPPIV, no systematic investigations 

on the role of the DPPIV-like activity in the CNS have been conducted so far.  

Interestingly, a spontaneous mutation of the Dpp4 gene has been described in F344 rat 

substrains from breeding colonies of Charles River Laboratories (Crl) in Atsugi, Japan (77, 

84), and Sulzfeld, Germany (75). This mutation results in an almost complete loss of DPPIV 

activity in contrast to the wildtype-like F344 rats from Crl breeding colonies in Portage, USA 

(75, 79). Therefore, we considered the mutant Japanese and German F344 rat substrains to be 

similar to DPPIV “germline” knockout animals. Recently we were able to demonstrate an 

involvement of DPPIV in the substrains’ glucose homeostasis, which is most likely fine-tuned 

via DPPIV-dependent cleavage of the incretin GLP-1 in the periphery. These results validate 
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the relevance of the DPPIV-mutant F344 substrains for studying DPPIV-dependent processes 

(36). Obviously, these DPPIV-deficient F344 substrains may provide an interesting model to 

study the functional role of DPPIV in various other physiological processes, including various 

CNS-dependent behavioral processes. Specifically, the different enzymatic activity of DPPIV 

should result in a differential degradation of DPPIV substrates such as enterostatin or NPY, 

thereby having pronounced effects on the behavior of animals. 

Therefore, we compared DPPIV-deficient F344 substrains with the wildtype-like F344 

substrain. We applied a multi-tiered strategy for a behavioral and physiological 

characterization of an unknown phenotype in mice (11, 37) and modified this concept to the 

characterization of rats. General health, neurological and motor functions, and the sensory 

abilities of the rats were monitored. Furthermore, the effects of differential endogenous 

DPPIV-like activity on specific CNS-related behavioral domains such as feeding behavior, 

nociception, anxiety, learning and memory, and ethanol preference were investigated. 

Additionally, the neurophysiological role of DPPIV was evaluated in experiments screening 

for the sedative effect of ethanol and for symptoms related to human psychiatric disorders 

such as schizophrenia and depression. Since single tests for certain behavioral domains might 

not detect a specific defect, a large series of different tests for various behavioral domains 

were applied (Table 1). 
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4.2 Materials and methods 

Animals 

To ensure clarity of nomenclature, we coded animal groups as previously described (36): 

F344 rats derived from a breeding colony in Atsugi, Japan were coded as 

F344/DuCrj(DPPIV-), animals from a breeding colony in Sulzfeld, Germany, as 

F344/Crl(Ger/DPPIV-), and wildtype-like rats obtained from a colony in Portage, USA, as 

F344/Crl(Por). All animals were obtained from Charles River Laboratories in 1998. 

All F344 rats of the three different substrains were housed and bred at the Central Animal 

Facility of the Hannover Medical School (Ztm). Animals were maintained in a separated 

minimal barrier sustained facility and kept in Makrolon type III cages with standard bedding 

(Altromin GmbH, Lage, Germany). Food (Altromin Standard Diät 1320: Altromin GmbH) 

and water were available ad libitum. Environmental temperature was automatically regulated 

at 21 ± 2 °C and relative humidity was 55 ± 5% with an air change rate of 15 times per hour. 

The animal rooms were operated with a positive pressure of 0.6 Pa. Rats were maintained 

under a 12:12 h light regime (light onset at 4am) being further standardized in regard to their 

breeding conditions (littersize: 6, gender-ratio: 1:5 or 2:4), and number of animals per cage. 

Routine animal care was carried out once a week. Routine microbiologic monitoring 

according to FELASA recommendations (64) did not reveal any evidence of infection with 

common murine pathogens except for Pasteurella pneumotropica and Staphylococcus aureus. 

All research and animal care procedures were approved by the Review Board for the Care of 

Animal Subjects of the district government, Hannover, Germany, and performed according to 

international guidelines for the use of laboratory animals. 

 

Test sets of animals and phenotyping by determination of DPPIV-like 

activity 
To avoid major influences from the high number of different behavioral test paradigms 

applied to the animals, three independent sets of age-matched F344 rats of the three substrains 

were used for the present study (details see Fig. 1). One set of animals (experimental set II) 

was single-housed, whereas the two other sets of animals were group-caged (2 - 3 animals). 

Prior to the final experiments, these sets were single-housed for the ethanol-self-

administration task (experimental set I) and for the second feeding behavior task (feeding II – 
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experimental set III). All animals were characterized in regard to their DPPIV-like enzymatic 

activity as previously described (36) and were tested in the various behavioral paradigms in 

the animal room.  

 

Experimental design of the behavioral test paradigms 
General health and neurological examination 

Gross abnormalities that would interfere with further behavioral testing such as general 

health, sensory abilities, and neurological reflexes were controlled and compared between the 

different F344 substrains as described previously (11, 12, 37). Neuromuscular strength of the 

animals was tested in the wirehang test (69). Visual abilities were controlled by observing the 

response of the rat to an unknown object, a modified visual cliff task (59), and the so-called 

ring paradigm, in which the rat was dangled by the tail into the middle of a plastic ring 

(diameter: 20 cm) with three convexities. The occurrence of the rat´s reaching behavior with 

the forepaws in direction of one of the ring´s convexities was measured.  

Determination of motor functions 

This test of neuromotor performance is based on a motor-driven, rotating rod (33). An Ugo 

Basile accelerating rotarod (model 7750) for rats, supplied by Technical & Scientific 

Equipment GmbH (TSE GmbH), Bad Homburg, Germany, was used. During the four days of 

training session (onset 1 h after onset of the dark phase) animals were placed onto the 

apparatus at a constant speed of 20 rotations per minute (rpm) for 120 s. In the following four 

days of rotarod test session the animals were subjected for 1 min each to various increasing 

rotation speed levels (between 4 - 40 rpm) twice a day (intertrial interval: 1 h) for 1 min each. 

Afterwards, rats were tested for another four days (twice a day – intertrial interval: 1 h) in the 

accelerod test session, in which the rotation speed was constantly increased over a time period 

of 5 min. In both rotarod and accelerod test sessions, the latency to fall off the rod and the 

actual rotation speed were recorded (7). 

Feeding behavior 

The animals were housed either in groups (“Feeding I”) or singly in a cage (“Feeding II”). 

The observation period lasted 78 h each. The daily food and water consumption was 

measured. The consumption of the group-caged animals was recorded at the onset of the light 

and the dark cycle and 2 h after the onset of the dark cycle. The feeding behavior of the 

single-housed animals (“Feeding II”) was measured once a day at the onset of the light cycle. 

Multiple pairs of water tubes were monitored on empty cages to control for evaporation and 

accidental spillage (43). 
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Screening for differences in nociception 

Tail flick 

This test is based on the withdrawal of the tail in response to a noxious, cutaneous, thermal 

stimulation (17). A tail flick unit (TSE GmbH) was used. The rat was held on the apparatus 

top panel so that its tail received the infrared energy. Latency to flick the tail out of the path of 

the light beam was measured. In order to minimize possible tissue damage, different patches 

of tail skin were stimulated per trial (cut-off time: 15 s) (66). 

Hot plate 

The hot plate assay is one of the most commonly used tests for determining the analgesic 

efficacy of experimental drugs in rodents. A 30x30 cm hot plate analgesia meter (Columbus 

Instruments, Columbus, USA), maintained at 52.5 °C, was used for this experiment. Latency 

to lick or raise hindpaws was recorded. To prevent any tissue damage, the rat was removed 

from the hot plate if the animal did not respond within 20 s (56, 70). Animals were tested in a 

non-habituated task (“Hot plate I”) and after 5 days of habituation (placing the rat onto the 

inactivated apparatus daily for 3 min) in a habituated task (“Hot plate II”). 

Evaluation of anxiety 

In early studies various authors defined the open field and the elevated plus maze as tests for 

emotionality (1, 16, 83). The construct “emotionality” was defined by Denenberg with high 

defecation scores and low ambulation in the open field being indicators of high 

“emotionality” and vice versa. In more recent years, the same paradigms are discussed in 

regard to their potential to provide indicators of anxiety and the construct “emotionality” is 

less frequently used (24, 49, 63). This may mainly be due to the fact that the construct 

“emotionality” is likely to be confounded by effects, which primarily affect locomotor activity 

only. Therefore, we use the term “anxiety-like behavior” in regard to these tests. 

Open field (OF) 

Locomotor activity and anxiety of rats can be evaluated by placing the animal in an open field 

arena (16). This paradigm mimics the natural conflict between the tendency to explore a novel 

environment and the tendency to avoid a brightly lit, open area (15). The exploratory activity, 

the anxiety-like reactivity, or both different behavioral dimensions can influence the animal´s 

behavior (37). In this task an inverse relationship between exploration/defecation and the 

anxiety (emotionality) of rodents is described (16, 80). The apparatus used in this experiment 

has been described previously (80) and was dimly illuminated (10 lux). 1 h after onset of the 

dark phase animals were placed into the center of the open field arena (start area) and 

observed for 10 min in 2 min intervals. The latency to leave the start area, the latency and 
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frequency of self-grooming, rearing, and rearing at the wall, distance traveled (number of 

square entries), the ratio of distance traveled and time spent in the center and the periphery of 

the arena, and the defecation score were recorded (83). Exploration was measured by 

ambulation, latency and frequency of rearing and rearing at the wall, and latency to leave the 

start area. We used an increase in the ratio of traveled distance, in the time spent in the center 

of the arena and in ambulation and a decrease in the defecation score as indicators for 

anxiolytic-like behavioral responses (63), although the defecation score is discussed 

controversially in the literature (26, 68, 83). To avoid cohort removal effects, one animal per 

cage per day was tested (39).  

Elevated plus maze (EPM) 

The pharmacologically validated EPM deals with the preference of rodents for a dark, 

enclosed, small space over a brightly lit, large, open space (45, 54). The open and closed arms 

generate exploratory behavior and the avoidance of the elevated, open arms is an indication of 

the intensity of anxiety (29, 45). An elevated plus maze (TSE GmbH) was used as previously 

described (4). Illumination was dim (10 lux). 1 h after onset of the dark phase the animal was 

placed onto the center platform facing an open arm. In the following 5 min the time spent on 

open arms as well as the percentage of open arm entries were recorded. The number of closed 

and total arm entries were considered to provide indices of general motor activity (58) and an 

increase in the time spent on open arms and in the percentage of open arm entries is used as 

an indication of anxiolysis (22, 49, 58). In addition, rearing, self-grooming, and the 

defecation score were measured. To avoid cohort removal effects, one animal per cage per 

day was tested. 

Social interaction 

The rat social interaction test is used widely to measure anxiety-like behavior (21) and to 

detect anxiogenic and anxiolytic-like effects of drugs (39). Active social interaction (SI) time 

is inversely related to the anxiety of the animals (23), which is confirmed by the observation 

that the maximum active SI time is found when rats are tested in a familiar test arena with a 

low level of illumination (23). Furthermore, a decrease in SI time is correlated with an 

increase in other anxiety-like behaviors: defecation, freezing, and displacement activity (i.e. 

eating of non-edible objects by rats that are not food deprived). Therefore, the decrease in 

social behaviors is consistent with behavioral indications of increased arousal or anxiety and 

is not explained by any changes in other competing behaviors such as exploration (20, 21). 

The apparatus used for this study has been previously described (39). 1 h after onset of the 

dark phase two weight-matched rats of the similar substrain but from different cages were 
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exposed to the arena, which was brightly illuminated (180 lux). The total duration and the 

frequency of different behaviors like anal sniffing, following, allo grooming, walking over, 

crawling under, and nosing were recorded and summed during 10 min. Additionally, the 

motor activity of the rats was analyzed by recording distance traveled (counting the number of 

entries into squares). 

Learning and memory 

Radial maze 

The radial maze test, in which rodents are trained to visit a pattern of arms to receive a food 

reward (precision pellets for rodents: Campden Instruments LTD, Loughborough, England), is 

specific to measure spatial memory – which includes working and reference memory (71). 

We used an octagonal alley maze (automated radial arm maze: TSE GmbH), made of grey 

PVC. The apparatus was placed in a well-lit room (180 lux) containing 4 completely different 

structured walls (with different geometrical cues painted on each wall, which served as 

external cues). Food deprivation started one week before the experiment. The body weight 

was kept at 85-95% of the pre-test body weight by presenting food after the daily trials for 

only 2 h (13, 53). Animals were tested during the light phase as previously described (30, 81): 

Day 1-3: habituation of rats to the maze and baited food cups for 10 min;  

Day 4-11: the same four randomly chosen arms were baited in the naive sessions; animals 

were placed into alternate non-baited start arms and were tested twice a day for 5 min or until 

all pellets were collected; entries in already visited arms were recorded as working memory 

errors, whereas entries in never baited arms were counted as reference memory errors; 

Day 12-16: the previously unbaited arms were baited (and vice versa) in order to test the 

ability of the rats to relearn (reversal learning); 

Day 17: in the intratrial delay the rats were retained in the second visited arm after entering 

for 30 s to control the rats´ ability to bridge delays, which seems to rely on a functioning 

hippocampus and/or basal ganglia; 

 Day 23: in this intertrial delay session (after 5 days without testing the animals in the radial 

maze) similar arms were baited, as conducted six days prior; the animals´ ability to remember 

the prior baited arms is analyzed during this session. 

The number of working and reference memory errors, arm entries and right choices, the 

latency to leave the start area, the total duration for collecting all pellets, the sequence of arm 

entries, and the defecation score were analyzed. 
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Passive avoidance 

The passive avoidance task measures the response resulting from an associative learning 

process (8). The apparatus used was a Shuttle box system (TSE GmbH). In the training 

session (1 h after onset of the dark phase), the rat was placed for 10 s into a lightened 

chamber, after which the door to the dark compartment was opened. Instantly after entering 

the dark chamber, the door of the dark chamber was closed and a 0.8 mA footshock was 

delivered for 1 s. The animal remained in the dark compartment for further 10 s to allow the 

formation of an association between the location/surrounding and the footshock. In the 

retention test session 24 h later, the rat was placed into the light chamber again and the door to 

the dark chamber remained opened. The latency to enter the dark chamber (light-dark 

transversion time)  and the defecation score were measured (10) in the training and the 

retention test session (cut-off time: 300 s). Differences in the light-dark transversion time 

between the substrains in the retention session could be a hint for a different ability of the 

animals to remember the aversive stimulus received in the dark chamber 24 h earlier. In the 

training session the light-dark transversion time is discussed to be affected by anxiety, 

because rats exhibit an aversion of a brightly lit compartment (10) and diazepam decreased 

the latency to enter such a compartment (8). Therefore, we interpreted differences in the light-

dark transversion time in the training session as an indicator of anxiety in animals. 

Tests related to symptoms of human psychiatric disorders 

Prepulse Inhibition (PPI) 

Prepulse inhibition of a startle response is the phenomenon, in which a weak prepulse 

suppresses the response to a startling stimulus (57). Deficits in prepulse inhibition are 

common in schizophrenic patients (72). An automated startle system (TSE GmbH) was used. 

Animals were habituated to the startle chambers on five consecutive days for 5 min each. The 

test schedule was based on that used by Caine and coworkers (6), with minor modifications, 

and the animals were tested 1 h after the onset of the dark phase in two sessions (startle 

stimulus: 90/120 dB) with an intertrial interval of 48 h. The rat´s startle amplitude was 

recorded for each trial. 

Porsolt swim test 

Rats, when forced to swim, will eventually only make those movements, which are necessary 

to hold the head above the water (behavioral immobility). This behavioral immobility is taken 

as a state of “behavioral despair” and can be reduced by antidepressant treatment (3, 60). In 

this task the rat was plunged into a vertical plexiglass cylinder (height: 40 cm; diameter: 18 

cm) containing 15 cm of water maintained at 25 °C. The animal had to swim for 10 min. The 
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animal was then removed and allowed to dry for 15 min in a heated enclosure (32 °C). 24 h 

later the rat was tested again for 5 min. The latency and total duration of behavioral 

immobility was measured during both trials. 

Ethanol consumption and sensitivity 

Ethanol self-administration 

The two-bottle choice technique of assessing ethanol self-administration was established in 

1940 (65). Animals were housed individually. Two bottles were presented, one bottle 

containing tap water, while the other contained ethanol [96% (v/v)] of increasing 

concentrations [for three days each: 3%, 6%, 10%, and 20% (v/v)]. Daily fluid consumption 

was recorded 4 h after onset of the light phase. The bottles´ positions were alternated each 

day. Multiple pairs of water and ethanol tubes were monitored on empty cages to control 

evaporation and accidental spillage. Consumption of ethanol was expressed relative to total 

fluid consumption (ethanol preference ratio) and relative to body weight. 

Sedative effect of ethanol 

The time to regain the righting reflex after an ethanol injection was measured (73). Rats 

received an intraperitoneal (i.p.) injection of ethanol [2.37 g/kg body weight, 20% (v/v) mixed 

in isotonic saline]. At the onset of the ethanol-induced sedation (defined as loss of righting 

reflex: loss of the ability to stand on all four paws after being placed on the back; three times 

within 30 s) rats were placed on their back onto bedding material. The time that elapsed 

between the loss and the regain of the righting reflex was recorded. 

 

Statistical analysis 
Analysis of the various behavioral and physiological data was assessed either by applying 

repeated measures analysis of variance (ANOVA) on successive measurements or by one-way 

ANOVA. In repeated measures ANOVA the nominal independent variable “substrain” was 

used as the “between factors” (for the “between-subject effects”) and different continuous 

response variables within successive measurements were used as the “within-factors” (e.g. 

body weight over time; for the “within-subject effects”). In case of significant differences in 

regard to the “between factor”, this was followed by one-way ANOVAs (factor: “substrain”); 

split by the dimension of the continuous response variable. One-way ANOVAs were followed 

by the Fisher-PLSD-test for post hoc comparison to evaluate pairwise differences among 

levels of main effects. Differences were regarded as statistically significant if p < .05. The 

number of animals per substrain (n) was 10. Presenting the degrees of freedom indicates 

exceptions from this. Significant post hoc effects versus the control animals of the 
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F344/Crl(Por) substrain are indicated by asterisks (*p < .05; **p < .01; ***p < .001), whereas 

significant differences between the two DPPIV-deficient rat substrains F344/DuCrj(DPPIV-) 

and F344/Crl(Ger/DPPIV-) are shown by rhombs (#p < .05 - ##p < .01 - ###p < .001). All 

data are presented as means ± standard error of the mean (SEM).
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4.3 Results 

DPPIV-like activity 

One-way analysis of variance of the DPPIV-like activity of the test animals from the three 

different substrains revealed significant differences in the enzymatic activity [F(2, 55) = 

111.4; p < .001; Fig. 2]. A nearly 5-fold lower level of DPPIV-like activity was evident in the 

two mutant substrains F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) when compared to 

the enzymatic activity found in the wildtype-like rats from the F344/Crl(Por) substrain. 

 

Behavioral test paradigms 
General health and neurological examination 

Screening for general health, neurological reflexes, and sensory abilities established the good 

health, normal status of reflexes, good neuromuscular strength, and normal sensory abilities in 

all animals of all substrains (statistical analysis by one-way ANOVA). Interestingly, the body 

weight was significantly decreased in animals of the mutant substrains (Fig. 3) that were aged 

between 42 and 70 days [repeated measures ANOVA; “between factor”: F(2, 15) = 9.5; p = 

0.02], which was confirmed by separate one-way ANOVAs split by day [day 42: F(2, 15) = 

13.4; p = 0.0005; day 49: F(2, 15) = 8.2; p = 0.004; day 56: F(2, 15) = 6.3; p = 0.01; day 63: 

F(2, 15) = 10.8; p = 0.001; day 70: F(2, 15) = 9.1; p = 0.003]. Importantly, screening of body 

weight in older rats of all three substrains directly before each behavioral test did not reveal 

any significant differences in body weight anymore.  

Determination of motor functions 

No differences were found in neuromotor performance in the rotarod and accelerod paradigm 

(data not shown). 

Feeding behavior 

Monitoring the feeding behavior of group-caged rats (“Feeding I”) revealed no significant 

differences in food intake between the three different F344 substrains but a trend toward 

reduced fluid consumption in the DPPIV-deficient F344 substrains (data not shown). In 

single-housed rats (“Feeding II”) we again found no significant differences in food 

consumption (data not shown). However, significant differences in water intake were found 

[repeated measures ANOVA; “between factor”: F(2, 26) = 9.5; p = 0.0008 - followed by one-

way ANOVA: day 1: F(2, 26) = 4.5; p = 0.02; day 2: F(2, 26) = 7.8; p = 0.002; day 3: F(2, 
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26) = 5.0; p = 0.02; Fig. 4) with a reduced fluid consumption in F344/DuCrj(DPPIV-) and 

F344/Crl(Ger/DPPIV-].  

Screening for differences in nociception 

No significant differences in tail flick latency were observed in this type of pain measurement 

(data not shown). However, in the hot plate, repeated measures ANOVA revealed a 

significant substrain effect [“between factor”: F(2, 27) = 15.2; p < .001] and additionally, a 

significant substrain × habituation interaction [F(2, 27) = 16.7; p < .001; Fig. 5]. This 

interaction was due to the fact that in the first non-habituated hot plate (“Hot plate I”) the 

latency to respond reflected a “hyperalgesic-like response” (i.e. reduced latency to respond by 

approximately 40%) in the two mutant substrains [one-way ANOVA: F(2, 27) = 20.2; p < 

.001]. However, these differences in pain sensitivity disappeared [one-way ANOVA: F(2, 27) 

= 2.0; p = 0.1] when the same animals were habituated to the apparatus for five consecutive 

days (“Hot plate II”). 

Evaluation of anxiety 

Open field 

The distance traveled (number of square entries), the ratio of center to total square entries, and 

the defecation score of the three different F344 substrains did not differ significantly. 

Interestingly, a significantly decreased latency to rear up [one-way ANOVA: F(2, 24) = 9.1; p 

= 0.001; Fig. 6A] and a significantly increased frequency of this “exploratory-like” behavior 

[one-way ANOVA: F(2, 24) = 7.5; p = 0.003; Fig. 6B] was found in the DPPIV-deficient rats 

of both substrains. 

Elevated plus maze 

The ratio of open to total arm entries was similar in the three different F344 substrains 

[F344/Crl(Por): 27.2 ± 16.9; F344/DuCrj(DPPIV-): 21.0 ± 13.8 and F344/Crl(Ger/DPPIV-): 

21.7 ± 11.7]. We also found no significant differences regarding the motor activity (number of 

closed and total arm entries) of the animals (data not shown). 

Social interaction 

One-way ANOVA proved that the overall time spent on behaviors like anal sniffing, 

following, allo grooming, walking over, crawling under, and nosing was significantly 

increased in the F344/Crl(Ger/DPPIV-) animals compared to the wildtype-like F344/Crl(Por) 

rats [F(2, 27) = 4.5; p = 0.02]. The summed social interaction time of the 

F344/DuCrj(DPPIV-) substrain was not significantly increased (Fig. 7) compared to the 

control animals. Furthermore, one-way ANOVA exhibited a significant increase in the 

frequency of nosing [F(2, 27) = 5.0; p = 0.02] in the F344/Crl(Ger/DPPIV-) animals (32.1 ± 
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3.5) compared to the F344/DuCrj(DPPIV-) (21.6 ± 3.9) substrain and the wildtype-like 

F344/Crl(Por) animals (18.4 ± 2.1). 

Learning and memory 

Radial maze 

In the complex radial maze task, the learning and memory of the F344 rat substrains were not 

significantly different in the naive, reversal, and intratrial sessions (data not shown). In the 

intertrial session on day 23, the two DPPIV-deficient substrains showed a decreased retention 

ability compared with the wildtype-like substrain regarding the number of reference memory 

errors [F344/Crl(Por): 2 ± 0.3; F344/DuCrj(DPPIV-): 3 ± 0.2 and F344/Crl(Ger/DPPIV-): 2 ± 

0.1], although this failed to be statistically significant using parametric analysis. 

Passive avoidance 

In the passive avoidance task no differences in associative learning of the different substrains 

were found. Interestingly, we found a significant substrain × light-dark transversion time 

interaction [two-way ANOVA: F(2, 23) = 3.4; p = 0.05], which was due to the increased 

latency in the mutant F344/DuCrj(DPPIV-) (113.5 ± 40.9 s) and F344/Crl(Ger/DPPIV-) (79.6 

± 33.6 s) substrain compared to the control substrain F344/Crl(Por) (24.7 ± 4.3 s) in the 

training session. The difference was significant between F344/DuCrj(DPPIV-) and control 

rats in the training session [one-way ANOVA: F(2, 23) = 4.4; p = 0.03; Fisher-PLSD-test: p = 

0.02]. Additionally, none of the wildtype-like rats entered the dark compartment in the 

retention session. Furthermore, only the wildtype-like animals defecated in the training 

session [F344/Crl(Por): 2.2 ± 1.4]. 

Tests related to symptoms of human psychiatric disorders 

All animals showed a clear startle response, indicating normal hearing abilities. However, no 

significant differences in prepulse inhibition were found (data not shown). Also, the Porsolt 

swim test revealed no differences in the duration of behavioral immobility between the 

different F344 substrains (data not shown). 

Ethanol consumption and sensitivity 

The different substrains did not differ in their ethanol preference in the voluntary ethanol 

consumption task of different ethanol concentrations (data not shown). Interestingly, all 

substrains showed a significantly higher preference for ethanol than for tap water when 

ethanol concentrations of 3% [repeated measures ANOVA: F(2, 26) = 15.4; p = 0.0002] and 

6% [repeated measures ANOVA: F(2, 26) = 11.5; p = 0.001] were presented (Table 2). The 

sedative effect of ethanol, quantified by the duration of the loss of righting reflex, was 
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significantly shortened in both mutant substrains [one-way ANOVA: F(2, 15) = 5.5; p = 0.02; 

Fig. 8]. 
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4.4 Discussion 

The systematic phenotyping of F344 substrains with or without endogenous DPPIV-like 

enzymatic activity demonstrated an important involvement of the ectopeptidase DPPIV in 

several behavioral and physiological processes. The two DPPIV-deficient F344 substrains 

[F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-)] exhibited a significantly reduced body 

weight and water intake, a significant hyperalgesia in the non-habituated hot plate task, and a 

significantly differential response to the habituation for this experiment. In the OF we 

observed significantly increased exploratory-like behavior in these rats, while anxiety was 

significantly reduced in the F344/Crl(Ger/DPPIV-) rats in the social interaction test and in 

F344/DuCrj(DPPIV-) rats in the passive avoidance task. Interestingly, a reduced susceptibility 

to the sedative effect of ethanol was evident in the mutant F344 substrains. 

The observed differences in body weight in the different F344 substrains could be based on 

elevated endogenous levels of the DPPIV substrate enterostatin in young DPPIV-deficient 

rats. Enterostatin, which is stabilized by DPPIV inhibition with val-pro-asp-pro-arg (VPDPR) 

(50), produces a dose-dependent reduction in fat intake and a chronic decrease in body weight 

and body fat levels (19), which could be responsible for the initial differences in the body 

weight between the mutant and wildtype-like rats. 

DPPIV is the principal metabolizing enzyme for GLP-1. Studies with DPPIV knockout mice 

(48) and F344/DuCrj(DPPIV-) rats (42, 55) described the inactivating effect of DPPIV on 

active GLP-1 levels in vivo. GLP-1 functions as a potent inhibitor of water intake in rodents 

after intracerebroventircular (i.c.v.) administration, and stimulates urinary excretion of water. 

Furthermore, both i.p. and i.c.v.-injection of GLP-1 inhibit both basal- and angiotensin II-

induced drinking behavior (18). Therefore, the decreased water intake of DPPIV-deficient 

animals could be mediated via elevated levels of non-cleaved GLP-1 in both mutant 

substrains compared to the control animals. 

The hyperalgesic phenotype of F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) rats in the 

hot plate test could be related to the involvement of DPPIV substrates such as substance P and 

NPY in pain sensitivity. Analgesia in the hot plate task is proven to be elicited by low doses 

of intraventricularly or intrathecal administered substance P (61). On the other hand, high 

doses of this substance produce hyperalgesia (46). Therefore, differences in the degradation of 

substance P between the mutant and wildtype-like substrains could be involved in the 
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decreased pain threshold of the DPPIV-deficient F344/DuCrj(DPPIV-) and 

F344/Crl(Ger/DPPIV-) rats. Interestingly, the DPPIV substrate NPY is also involved in the 

mediation of nociception (2, 32). The neurotransmitter is known to increase the pain threshold 

in rats in the hot plate paradigm (5, 51) and selective NPY receptor agonists [Y2 agonist: N-

acetyl(Leu28, Leu31)NPY24-36 and Y1 agonist: (Leu31, Pro34)NPY] decrease thermal 

hyperalgesia (78). A further hypothesis for the differential pain sensitivity in the non-

habituated hot plate test is due to the fact that the wildtype-like F344/Crl(Por) exhibited a 

higher stress-associated behavioral response in tests for anxiety compared to DPPIV-deficient 

rats (as indicated by an increased SI time in the social interaction test, a high ambulation in 

the open field, and an increased light-dark transversion time and decreased defecation score in 

the passive avoidance task). Since a powerful stress response increases NPY release in the 

CNS (9, 62), the endogenous NPY level of the wildtype-like animals could be higher than the 

NPY levels of the mutant animals and therefore lead to a decrease in pain sensitivity in the 

control animals. Additionally, the higher stress response could increase the pain threshold of 

the control animals by the so-called stress-induced hypoalgesia (41, 52). This is confirmed by 

the significant differential response to the hot plate habituation between the substrains. In 

contrast, we were unable to find differences in the tail flick test. This could be based on 

differences between the two nociception schedules: the measurement of nociception in the hot 

plate test is significantly influenced by processes in the CNS, whereas the tail flick test 

measures predominantly spinal reflexes (44). Furthermore, we speculate, that only in the tail 

flick task the animal´s behavior is strongly influenced by the necessary handling procedure 

(fixation of the animal). 

In the open field we recorded earlier and more often exploratory-like behavior (rearing) of the 

mutant substrains than in the wildtype-like animals. It is commonly assumed that low 

ambulation indicates high anxiety and vice versa (1).  In additional tests for anxiety the lower 

anxiety of the DPPIV-deficient substrains is confirmed by a significantly increased social 

interaction time of the F344/Crl(Ger/DPPIV-) animals in the social interaction test and an 

increased light-dark transversion time of the F344/DuCrj(DPPIV-) rats in the passive 

avoidance task. Furthermore, the wildtype-like animals did not enter the dark compartment 

during the retention session in the second task (and defecated more often than the mutant 

animals). The pattern of these findings hints to a reduced behavioral stress response in the 

mutant F344 substrains. These differences in the level of arousal and/or anxiety between the 

different F344 substrains could be based on a differential degradation of NPY, the best 

peptide substrate for DPPIV (14), in the mutant and control animals, which has been reported 
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to reduce stress responsiveness in transgenic NPY overexpressing rats (76). Cleavage of NPY 

to NPY3-36 by DPPIV leads to a loss of Y1 receptor specificity. NPY3-36 has a considerably 

reduced activity at the NPY Y1 receptor subtype but still a high activity at the Y2 and Y5 

receptor subtypes (25). Therefore, the non-degraded, native NPY in DPPIV-deficient rats is a 

more potent activator of the Y1 receptor subtype than the degraded NPY3-36 in the wildtype-

like animals. Importantly, NPY administration increases the preference for open arms in an 

elevated plus maze test (5) and decreases anxiety in the social interaction test (40, 67). 

Furthermore, rats, antisense-treated to reduce NPY Y1 receptor density, show anxiogenic-like 

behavior in the elevated plus maze test (27, 82), suggesting that the anxiolytic-like effect of 

NPY is primarily mediated via the Y1 receptor subtype. Since the NPY catabolism of our 

mutant substrains and the wildtype-like animals is probably linked to DPPIV, the reduced 

anxiety of the DPPIV-deficient F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) animals 

could be based on elevated levels of non-cleaved NPY. The reduced stress-response of our 

DPPIV-deficient animals is also found in NPY overexpressing transgenic rats (76), which 

could be a further hint for the involvement of NPY in the reduced anxiety of our mutant F344 

substrains. Interestingly, DPPIV-cleaved cytokines like IL-2 could also be involved in the 

increased exploration of the mutant animals (86). The differences within the two DPPIV-

deficient substrains F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) in both the social 

interaction test and passive avoidance task could be due to different compensatory 

mechanisms during ontogeny, but further studies on this phenomenon are required.  

NPY-deficient mice showed increased ethanol consumption and are less susceptible to the 

sedative effect of ethanol, whereas NPY overexpressing mice exhibited an opposite 

phenotype (74). DPPIV-deficient rats should, in comparison to control animals, behave like 

NPY overexpressing mice because of higher levels of non-cleaved endogenous NPY. In 

addition to a comparable ethanol consumption of mutant and control F344 rats, the DPPIV-

deficient substrains exhibited a reduced susceptibility to the sedative effect of ethanol. This 

may be explained by several processes, but in regard to a possible involvement of the NPY 

system in this phenomenon, further investigations have to be conducted. Finally, we did not 

find significant differences between the mutant and wildtype-like animals in prepulse 

inhibition and the Porsolt swim test, although an influence of DPPIV on psychiatric and 

psychosomatic diseases has recently been proposed (47).  

In conclusion, the DPPIV-deficient F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) rats 

exhibited a reduced behavioral stress response in tests like the hot plate, social interaction, 

and passive avoidance. These findings suggest an involvement of DPPIV-like activity in the 



 99 DPPIV deficiency and behavior: Physiol Behav 80. 2003. 123-34. 
 
 
regulation of anxiety-like behaviors, and these effects are possibly mediated by differential 

degradation of as yet unspecified/alternative DPPIV substrates. Due to the pattern of 

behavioral differences between mutant and control animals, which are similar to transgenic 

NPY overexpressing rats, it seems as if a differential cleavage of NPY could especially 

explain several, but not all, of the described differences herein. We have demonstrated that 

significant variations in DPPIV-like activity among commercially available F344 rats from 

different breeding colonies of Crl appear to be associated with significant differences in the 

behavioral, anxiety-like, exploratory, and neurophysiological phenotype. The existence of 

substrains among the F344 genotype should be of considerable interest for many researchers. 

Our F344 substrains provide an interesting model to study the functional role of DPPIV in 

various physiological and behavioral processes. Overall, the present approach for detecting 

distinct differences in a rat´s phenotype is based on a systematic behavioral and physiological 

phenotyping. This includes a broad range of different behavioral tests, which are necessary for 

an extensive characterization and for detecting specific behavioral differences. This strategy 

for analysing mutant rodents is becoming an increasingly important and useful tool in 

biomedical research.  
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4.7 Tables and figures 
 

Table 1:  

Behavioral/Physiological domains Experimental tasks 

General health and neurological 

examination 

Response to an unknown approaching object 

Modified visual cliff 

Several reflexes (e.g. eye blink and ear twitch) 

Motor functions Rotarod and accelerod 

Feeding behavior Food and fluid consumption  

Nociception Tail flick 

Hot plate 

Anxiety Open field 

Elevated plus maze 

Social interaction 

(Passive avoidance) 

Learning and memory Radial maze 

Passive avoidance 

Tests related to symptoms of 

human psychiatric disorders 

Prepulse inhibition (schizophrenic-like) 

Porsolt swim test (depression-like) 

Ethanol consumption and 

sensitivity 

Ethanol self-administration 

Sedative effect of ethanol 

Behavioral/Physiological domains and the different corresponding experimental tasks
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Table 2: 

Ethanol 

concentration 

F344/Crl(Por) F344/DuCrj(DPPIV-) F344/Crl(Ger/DPPIV-) 

3%  64.9 ± 6.2 69.3 ± 6.5 67.2 ± 5.9 

6%  60.5 ± 8.4 60.0 ± 7.5 61.4 ± 8.4 

10%  43.1 ± 6.7 47.8 ± 6.8 45.9 ± 6.1 

20%  23.6 ± 5.6 22.5 ± 4.6 32.9 ± 6.5 

Ethanol self administration; ethanol preference ratio of single-housed rats was recorded for 

different ethanol concentrations (3%/6%/10%/20%) as total ethanol consumption relative to 

total fluid consumption (mean ± SEM) [%]. 
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Fig. 1: Test setting; test biography of the three different experimental sets of age-matched 

F344 rats (n = 10 per substrain); additionally, the animals´ age in the various behavioral tests 

is shown. 
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Fig. 2: DPPIV-like activity [mU/ml] of all test animals was screened; blood from the tail vein 

was sampled and analyzed. Data represent means + SEM and provide the p-values of the 

corresponding post hoc test (Fisher-PLSD-test). Significant effects versus the wildtype-like 

animals are indicated by asterisks (***p < .001). 
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Fig. 3: Body weight development [g] of the different substrains, aged between 42-70 days. 

Data represent means + SEM and provide the p-values of the corresponding post hoc test 

(Fisher-PLSD-test). Significant effects versus the wildtype-like animals are indicated by 

asterisks (*p < .05; **p < .01; ***p < .001). 
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Fig. 4: Water intake; the water intake was measured in single-housed animals for 3 

consecutive days; the consumption [ml] was recorded at the onset of the light phase of the 

light cycle. Data represent means + SEM and provide the p-values of the corresponding post 

hoc test (Fisher-PLSD-test). Significant effects versus the wildtype-like animals are indicated 

by asterisks (*p < .05; **p < .01; ***p < .001). 
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Fig. 5: Nociception was analyzed in the hot plate task; the non-habituated or habituated rat 

was placed onto the surface of the apparatus, which was maintained at 52.5 °C, and the 

latency to respond (lick or raise hindpaws) was recorded [s]. Data represent means + SEM 

and provide the p-values of the corresponding post hoc test (Fisher-PLSD-test). Significant 

effects versus the wildtype-like animals are indicated by asterisks (**p < .01; ***p < .001). 
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Fig. 6A: Exploratory behavior in the OF; the latency of rearing [s] was recorded during a 10 

min session; the task took place 1 h after onset of the dark phase; the group-caged animals 

were tested on two consecutive days to test only one animal per cage per day. Data represent 

means + SEM and provide the p-values of the corresponding post hoc test (Fisher-PLSD-test). 

Significant effects versus the wildtype-like animals are indicated by asterisks (**p < .01; ***p 

< .001). 
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Fig. 6B: Exploratory behavior in the OF; the frequency of rearing [n] was recorded during a 

10 min session; the task took place 1 h after onset of the dark phase; the group-caged animals 

were tested on two consecutive days to test only one animal per cage per day. Data represent 

means + SEM and provide the p-values of the corresponding post hoc test (Fisher-PLSD-test). 

Significant effects versus the wildtype-like animals are indicated by asterisks (*p < .05; ***p 

< .001). 
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Fig. 7: Anxiety; the time spent in active social interaction was recorded in the social 

interaction test [s]; two unfamiliar weight-matched rats of the same substrain were exposed to 

an open field 1 h after onset of dark phase for 10 min. Data represent means + SEM and 

provide the p-values of the corresponding post hoc test (Fisher-PLSD-test). Significant effects 

versus the wildtype-like animals are indicated by asterisks (**p < .01). 
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Fig. 8: Sedative effect of ethanol; the time to regain the righting reflex after an ethanol 

injection was measured [min]; rats received an intraperitoneal (i.p.) injection of ethanol [2.37 

g/kg body weight, 20%(w/v) mixed in isotonic saline]. Data represent means + SEM and 

provide the p-values of the corresponding post hoc test (Fisher-PLSD-test). Significant effects 

versus the wildtype-like animals are indicated by asterisks (*p < .05; **p < .01). 
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Abstract 

Dipeptidyl-peptidase IV (DPPIV; CD26) is involved in several physiological functions by 

cleavage of dipeptides with a Xaa-Pro or Xaa-Ala sequence of regulatory peptides such as 

neuropeptide Y (NPY). Cleavage of NPY by DPPIV results in NPY3-36, which lacks affinity 

for the Y1 but not for other NPY receptor subtypes. Among other effects, the NPY Y1 receptor 

mediates anxiolytic-like effects of NPY. In previous studies with F344 rat substrains lacking 

endogenous DPPIV-like activity we found a reduced behavioral stress response, which might 

be due to a differential degradation of NPY. Here we tested this hypothesis and administered 

intracerebroventricularly two different doses of NPY (0.0, 0.2, 1.0 nmol) in mutant and 

wildtype-like F344 substrains. NPY dose-dependently stimulated food intake and feeding 

motivation, decreased motor activity in the plus maze and social interaction test, and exerted 

anxiolytic-like effects. More important for the present hypothesis, NPY administration was 

found to be more potent in the DPPIV-negative substrains in exerting anxiolytic-like effects 

(increased social interaction time in the social interaction test) and sedative-like effects 

(decreased motor activity in the elevated plus maze). These data demonstrate for the first time 

a differential potency of NPY in DPPIV-deficient rats and suggest a changed receptor-

specificity of NPY, which may result from a differential degradation of NPY in this genetic 

model of DPPIV deficiency. Overall, these results provide direct evidence that NPY-mediated 

effects in the central nervous system are modulated by DPPIV-like enzymatic activity.  

 

 

 

Keywords: Dipeptidyl-peptidase IV – CD26 – Neuropeptide Y – F344 –– Social interaction 

test - Anxiety – Elevated plus maze - Sedation - Food intake - Feeding motivation  
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5.1 Introduction 

The enzyme and binding protein dipeptidyl-peptidase IV (DPPIV) belongs to a class of 

membrane-associated peptidases (De Meester et al., 1999). The ectopeptidase is identical to 

the leukocyte differentiation marker CD26 and is involved in T-cell dependent immune 

responses (Kahne et al., 1999) and in cell adhesion (Mentlein, 1999; Shingu et al., 2003). Due 

to its unique ability to liberate Xaa-Pro and Xaa-Ala dipeptides from the N-terminus of 

regulatory peptides, important substrates include neuropeptides such as neuropeptide Y 

(NPY), peptide YY (PYY), and endomorphin (Hildebrandt et al., 2000; Mentlein, 1999). 

Further substrates are glucagon-like peptide 1 (GLP-1), GLP-2, enterostatin, substance P, and 

various chemokines (De Meester et al., 2000). In the adult nervous system, DPPIV is found 

primarily in the circumventricular organ and on leptomeningeal cells. The enzyme has direct 

contact to neuropeptides such as NPY in the cerebrospinal fluid (Mentlein, 1999) and also to 

endothelial cells of blood vessels including those contributing to the blood brain barrier 

(Hildebrandt et al., 2000). In addition, a soluble form of DPPIV exists in the blood plasma 

(Mentlein, 1999). 

Because of these pleiotropic effects of DPPIV, we previously investigated the role of the 

DPPIV-like activity on behavioral and physiological processes in a mutant rat model of 

DPPIV deficiency. Spontaneous mutations in the Dpp4 gene of F344 substrains from 

breeding colonies of Charles River Laboratories (Crl) in Sulzfeld, Germany (Thompson et al., 

1991), and Atsugi, Japan (Tiruppathi et al., 1993; Watanabe et al., 1987) result in an almost 

complete lack of DPPIV-like activity in these animals. This DPPIV deficiency does not exist 

in wildtype-like F344 rats from Crl breeding colonies in Portage, USA (Karl et al., 2003a). In 

a systematical behavioral and physiological characterization of the different substrains, we 

observed differences in the mutant, DPPIV-deficient F344 rats showing increased water 

intake, improved glucose homeostasis, blunted natural killer cell function, reduced anxiety-

like behaviors, and increased sensitivity for the sedative effect of ethanol (Karl et al., 2003a; 

Karl et al., 2003b). We hypothesized that at least some of these differences may be due to a 

differential metabolism of NPY. 

The neurotransmitter NPY was discovered in 1982 (Tatemoto et al., 1982) and is a member of 

the pancreatic family of peptides. Significant NPY levels were found in most brain regions 

including the cerebral cortex, hippocampus, thalamus, hypothalamus, and brainstem (Allen et 
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al., 1983; Colmers and Wahlestedt, 1993). The neuropeptide is a 36 amino acid peptide with a 

large number of tyrosine residues. Based on this amino acid sequence, NPY is cleaved by 

DPPIV. It has a high affinity to the enzyme and is also metabolized in human serum by 

DPPIV (De Meester et al., 2000). Among several other physiological responses NPY 

especially affects feeding behavior and anxiety (Kalra et al., 1999; Kask et al., 2002; 

Wettstein et al., 1995). The neurotransmitter binds to several NPY receptor subtypes (Y1, Y2, 

Y4, and Y5) in rats, which belong to the large superfamily of G-protein-coupled receptors. 

They are widely distributed in the brain (Blomqvist and Herzog, 1997) and mediate regulatory 

effects of NPY (Parker and Herzog, 1999). The NPY Y1 receptor is one of the major receptor 

subtypes expressed in the rat brain (Dumont et al., 1998) and is particularly involved in the 

regulation of anxiety (Kask et al., 2002). Importantly, DPPIV removes the first two N-

terminal amino acid residues (Tyr-Pro) of NPY with high turnover rates and generates the C-

terminal fragment NPY3-36. NPY3-36 has a markedly reduced affinity to the NPY Y1 receptor 

subtype, while being as potent as the native peptide on the NPY Y2 and Y5 receptor subtypes. 

Possibly, the previously described behavioral and physiological differences of the two 

DPPIV-deficient F344 substrains from Japan, F344/DuCrj(DPPIV-), and Germany, 

F344/Crl(Ger/DPPIV-), on the one hand, and the wildtype-like substrain from USA, 

F344/Crl(Por), on the other hand (Karl et al., 2003b), could be due to a faster degradation of 

endogenous NPY to NPY3-36 in the control substrain. This would result in a relatively reduced 

endogenous NPY Y1 receptor-like tone. Such a mechanism could sufficiently explain the 

reduced anxiety-like behaviors in the mutant, DPPIV-deficient substrains. 

To test this hypothesis, it was investigated whether NPY applied intracerebroventricularly 

(i.c.v.) produces differential effects in the DPPIV-deficient substrains. Thus, we characterized 

the effect of i.c.v. administration of different doses of NPY in the F344/DuCrj(DPPIV-), 

F344/Crl(Ger/DPPIV-), and F344/Crl(Por) rats on various behavioral tasks aiming at a 

characterization of feeding behavior (food intake) and anxiety-like behaviors.  
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5.2 Materials and methods 

Animals 

For clarity, animal groups obtained in 1998 were coded as previously described (Karl et al., 

2003a): F344 rats derived from breeding colonies of Crl in Atsugi (Japan) were called 

F344/DuCrj(DPPIV-), animals from breeding colonies in Sulzfeld (Germany) 

F344/Crl(Ger/DPPIV-), and wildtype-like rats obtained from colonies in Portage (USA) 

F344/Crl(Por). 

All F344 rats of the three different substrains were housed and bred at the Central Animal 

Facility of the Hannover Medical School as previously described (Karl et al., 2003a). Animals 

were maintained in a separated minimal barrier sustained facility and kept in Macrolon type 

III cages with a standard bedding (Altromin GmbH, Lage, Germany). Food (Altromin 

Standard Diät 1320: Altromin GmbH) and water were available ad libitum. Environmental 

temperature was automatically regulated at 21 ± 2 °C and relative humidity was 55 ± 5% with 

an air change rate of 15 times per hour. The animal rooms were operated with a positive 

pressure of 0.6 Pa. Rats were maintained under a 12:12 h light regime (light onset at 4am). 

They underwent routine animal care once a week. Routine microbiologic monitoring 

according to FELASA recommendations (Rehbinder et al., 2000) did not reveal any evidence 

of infection with common murine pathogens except for Pasteurella pneumotropica and 

Staphylococcus aureus. All research and animal care procedures were approved by the 

Review Board for the Care of Animal Subjects of the district government, Hannover, 

Germany, and performed according to international guidelines for the use of laboratory 

animals. 

Determination of DPPIV-like enzymatic activity 

All test animals were characterized in regard to their DPPIV-like enzymatic activity as 

previously described (Karl et al., 2003a). For determination of plasma activity of F344 rats a 

microplate based fluorescence assay was used. EDTA-plasma samples were kept at –80 °C 

until use. DPPIV enzyme activity of the different rat substrains was determined by monitoring 

the release of 4-Amino-7-Methylcoumarin (AMC) from the substrate Gly-Pro-AMC at 

360/480 nm (Ex/Em) and 30 °C using the Novostar fluorescence microplate reader (BMG, 

Offenburg, Germany). The assay consists of 20 µl plasma sample, 100 µl H2O and 100 µl 

HEPES buffer pH 7.6 and 50 µl Gly-Pro-AMC. Activity was calculated from the linear slope 
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using a factor of 3.116*10-4 µmol/l calculated from an AMC standard curve and the sample 

dilution. One unit is defined as the enzyme activity, which cleaves 1 µmol Gly-Pro-AMC per 

minute. The assay is selective for DPPIV-like activities. It has been proven that the substrate 

is cleaved by DPPIV, by DP II, and by attractin. Probably, they are also substrates for DP8 

and DP9. Importantly, the chromophores are not released by other proline-specific peptidases, 

such as prolidase, prolyl endopeptidase, or aminopeptidase P. 

Surgery of i.c.v. cannulation 

For surgery, animals were anesthetized with intramuscular (i.m.) ketamine hydrochloride (0.1 

ml/100 g body weight; Albrecht, Aulendorf, Germany) and dormitor (0.01 ml/100 g body 

weight; Pfizer GmbH, Karlsruhe, Germany). The i.c.v. cannulation technique was identical to 

that outlined in a previous report (von Horsten et al., 1998a). After placement of the rat in a  

stereotactic apparatus (model 900: David Kopf Instruments, Tujunga, USA), the incisor bar 

was adjusted on position zero and the ear bars were adjusted to equal positions so that the 

rat´s head was fixed in the apparatus. The eyes were protected against drying with eye-

ointment (Bepanthen Augen- und Nasensalbe: Hoffmann-La Roche AG, Grenzach-Wyhlen, 

Germany). The skull was exposed by a midline incision, the periost was removed, the bone 

surface was dried, and the position of the bregma was identified. Three stainless steel anchor 

screws (Breitfeld & Schliekert, Karben, Germany) were secured to the skull and a stainless 

steel guide cannula (Plastics one, Roanoke, USA) was implanted in the right lateral ventricle 

and cemented in place with dental cement (Durelon Maxicap: Espe Dental AG, Seefeld, 

Germany). The coordinates for the lateral ventricle were 0.7 mm caudal and 1.6 mm lateral to 

the bregma, with the guide cannula (Plastics one) extending 3.4 mm ventral to the skull 

surface. Flow of small amounts of 0.9% saline (Braun Melsungen AG, Melsungen, Germany) 

through the protracted injection (internal) cannula (Plastics one) was used to verify that the 

guide cannula was positioned just above the ventricular system. The guide cannula was then 

fitted with a dummy cannula (Plastics one) of the same length to prevent leakage of 

cerebrospinal fluid. Animals were housed individually after surgery. The anatomical position 

of the cannula was verified by post mortem i.c.v. dye application (Berlin blue) and inspection 

of the stained third ventricle in randomly chosen rats. The animals of the three F344 

substrains F344/DuCrj(DPPIV-), F344/Crl(Ger/DPPIV-), and F344/Crl(Por) were operated at 

an age of 95 (±5) days. The observation of the animals’ behavior in different behavioral test 

paradigms (an overview is given in Fig. 1) commenced after a recovery phase of at least 10 

days. 
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Drugs, i.c.v. injections, and dosages 

A stock solution of human/rat NPY (2 mol; Polypeptide GmbH, Wolfenbüttel, Germany) was 

adjusted under sterile conditions to final concentrations (0.2 nmol/5 µl and 1.0 nmol/5 µl) 

using 0.9% saline. The final concentrations were made 24 h before the different experiments. 

For the i.c.v. administration animals were taken out of the home cage and the dummy cannula 

was replaced by the internal cannula. Peptide or 0.9% saline was injected i.c.v. in a volume of 

5 µl over 20 s through the internal cannula extending 4.4 mm ventral to the skull surface. The 

internal cannula was attached to a microsyringe (Hamilton Bonaduz AG, Bonaduz, 

Switzerland) with approximately 30 cm of polyethylene tubing (Plastics one), which allowed 

the animal to move freely during the i.c.v. injection. Then the internal cannula was replaced 

by the dummy cannula again and the rat was returned into the home cage. All experiments 

started 15 min after the administration procedure. For the procedure of i.c.v.-injection, 

animals were habituated to experimental handling daily within 7 days prior to the start of the 

first experiment. During this habituation phase the handling procedure was exactly the same 

except for the application of the compound.  

Two different doses of NPY were used for this study and a 3 (substrain) × 3 (treatment) 

experimental design was set up. Thus, F344 rats of each substrain were divided into three 

treatment groups each (n = 7), which were treated with 0.9% saline (vehicle: 0.0 nmol/5 µl), 

or two different doses of NPY (0.2 nmol/5 µl, or 1.0 nmol/5  µl).  

 

Experimental designs of the behavioral test paradigms 
Feeding behavior (food intake) 

The feeding response (latency to start eating and the overall food consumption) following an 

i.c.v administration of NPY were measured for 2 h. Two experiments were performed: in 

experiment I, the feeding response after i.c.v. treatment was recorded in the light phase; in 

experiment II, 60 h later, the same response was measured 1 h after onset of the dark phase 

(Kushi et al., 1998; Marsh et al., 1998). 

Anxiety 

In early studies various authors defined tasks like the open field and the elevated plus maze as 

tests for emotionality (Archer, 1973; Denenberg, 1969; Walsh and Cummins, 1976). In more 

recent years, the same paradigms have been discussed in regard to their potential to provide 

indicators of anxiety, and the construct “emotionality” has been less frequently used (File and 
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Seth, 2003; Mechiel Korte and De Boer, 2003; Prut and Belzung, 2003). Therefore, we use 

the term “anxiety-like behavior” in regard to these tests. 

Elevated plus maze 

The elevated plus maze (EPM) represents the natural conflict of rats between the tendency to 

explore a novel environment and the tendency to avoid a brightly lit, open area (Handley and 

Mithani, 1984; Montgomery, 1958). The behavior is also influenced by thigmotaxis and the 

fear of heights (Treit and Fundytus, 1988). The time spent on open arms of the EPM as well 

as the percentage of open arm entries (ratio of open to total arm entries) are inversely related 

to anxiety (Hogg, 1996; Pellow et al., 1985; Pellow and File, 1986). The number of enclosed 

and total arm entries reflects the general motor activity (File, 1986). An automated EPM (TSE 

GmbH, Bad Homburg, Germany) with ledges (Fernandes and File, 1996) for rats was used. 

The animal was placed onto the center platform facing an open arm. In the following 5 min 

the entries onto open/enclosed arms, the time spent on open/enclosed arms or on the center 

platform, behaviors like rearing and self-grooming, and the defecation score were recorded on 

video (Baldwin and File, 1986; Lister, 1987). Illumination was dim (10 lux) and the 

experiment started 1 h after onset of the dark phase. A rat was taken to have entered an arm 

when all four paws were on this arm. After each session the apparatus was cleaned with 70% 

ethanol. To avoid influences of the animals´ endogenous rhythm on behavioral activity, tests 

were performed on three consecutive days with the animals of all substrains being grouped by 

dose of i.c.v. NPY treatment. 

Social interaction 

Pairs of rats, placed in a novel environment, engage in active social interactions, which 

include a variety of social behaviors (File, 1988; File and Hyde, 1978). The rat social 

interaction test is used widely to measure anxiety-like behaviors (File, 1988) and to detect 

anxiogenic and anxiolytic-like effects of drugs (Kask et al., 2001a). The overall active social 

interaction (SI) time is inversely related to the anxiety of the animals (File, 1980; File and 

Hyde, 1978; Karl et al., 2003c), which is confirmed by the observation that the maximum 

active SI time is found when rats are tested in a familiar test arena with a low level of 

illumination (File and Hyde, 1978). Furthermore, a decrease in SI time is correlated with an 

increase in other behaviors indicating increased anxiety: defecation, freezing, and 

displacement activity (i.e. eating of non-edible objects by rats that are not food deprived or 

self-grooming). Therefore, the decrease in social behaviors is consistent with behavioral 

indications of increased arousal or anxiety and is not explained by any changes in other 

competing behaviors such as exploration (File, 1980; File, 1988). The apparatus used was a 
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squared steel open field (50x50x50 cm) that was placed inside a sound isolation box. The 

floor was divided into 25 squares by a cross grid (Kask et al., 2001a). Two unfamiliar rats of 

the  similar substrain and NPY treatment were exposed to the area. In the following 10 min 

the total duration and the frequency of the different behaviors anal sniffing, following, allo 

grooming, walking over, crawling under, and nosing of each rat were recorded. Additionally, 

the frequency of self-grooming and the motor activity (traveled distance - by recording the 

total number of square entries) were analyzed. The behavior was monitored online using a 

video camera placed above the open field inside the isolation box. The arena was brightly 

illuminated (180 lux) and experiments started 1 h after onset of the dark phase. After each 

session the apparatus was cleaned with 70% ethanol. As in the EPM test, rats were tested on 

three consecutive days to avoid influences of the rats´ endogenous rhythm. 

 

Statistical analysis 
The analysis of the various behavioral data was assessed using a two-way analysis of variance 

(ANOVA; factor: “substrain” × “treatment”) and by one-way ANOVA (factor: “substrain” or 

“treatment” - split by the corresponding factors) followed by the Fisher-PLSD-test for post 

hoc comparison, if appropriate. Differences were regarded as statistically significant if p < 

.05. In the results section present the degrees of freedom, F-values, and p-values of two- and 

one-way ANOVAs are given, while in the figures and tables the p-values of the corresponding 

post hoc tests (Fisher-PLSD-test) are provided. In most cases the number of animals per 

substrain and treatment group was n  = 7. Presenting the degrees of freedom indicates 

exceptions from this. Significant post hoc effects for the factor “substrain” versus the control 

animals of the F344/Crl(Por) substrain are indicated by asterisks (*p < .05; **p < .01; ***p < 

.001), whereas significant differences between the two DPPIV-deficient rat substrains 

F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) are shown by rhombs (#p < .05; ##p < .01; 

###p < .001). Significant post hoc effects for the factor “treatment” versus the vehicle-treated 

animals are indicated by crosses (+p < .05; ++p < .01; +++p < .001), whereas significant 

differences between the two different NPY doses 0.2 nmol and 1.0 nmol are shown by “x” (xp 

< .05; xxp < .01; xxxp < .001). All data are displayed as means ± standard error of the mean 

(SEM). 
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5.3 Results 

DPPIV-like activity 

One-way analysis of variance of the DPPIV-like activity of all animals exhibited significant 

differences between substrains (Fig. 2). An almost complete lack of enzymatic-like activity 

was found in the two mutant substrains [F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-)] 

and a wildtype-like pattern of DPPIV-like activity was found in the rats from the 

F344/Crl(Por) substrain [F (2; 61) = 400.4; p < .0001]. 

 

Behavioral test paradigms 
Feeding behavior (food intake) 

Two-way ANOVA revealed a significant treatment effect on food intake in the dark phase 

[factor “treatment”: F (2; 55) = 54.7; p < .0001] as well as in the light phase [factor 

“treatment”: F (2; 55) = 116.8; p < .0001]. Each of the different substrains exhibited a dose-

dependent increase of overall food consumption after i.c.v. administration of NPY (data not 

shown). Neither significant effects for the factor “substrain” nor any significant interactions 

were observed, although mutant, DPPIV-negative rats showed a trend for reduced food intake 

stimulation in the light phase. Similarly, two-way ANOVA revealed that i.c.v. treatment 

shortened significantly the latency to eat dose-dependently [factor “treatment”: in dark phase: 

F (2; 55) = 13.1; p < .0001; one-way ANOVA for F344/DuCrj(DPPIV-): F (2; 18) = 17.6; p < 

.0001 - in light phase: F (2; 55) = 26.9; p < .0001; one-way ANOVA for F344/Crl(Por): F (2; 

18) = 10.1; p = 0.001; one-way ANOVA for F344/DuCrj(DPPIV-): F (2; 18) = 4.8; p = 0.02; 

one-way ANOVA for F344/Crl(Ger/DPPIV-): F (2; 19) = 13.6; p = 0.0002]. However, neither 

significant differences for the factor “substrain” nor significant “substrain” × “treatment” 

interactions were found (Table 1). 

Anxiety 

Elevated plus maze 

Two-way ANOVA revealed no significant effect for the factor “substrain” on the ratio 

between open and total arm entries as an indicator of anxiety [F (2; 51) = 1.1; p = 0.3; Fig. 3], 

although this ratio increased dose-dependent significantly after i.c.v. treatment with NPY 

(factor “treatment”: F (2; 51) = 10.5; p < .0001). Additionally, NPY administration increased 

significantly the time spent on open arms [two-way ANOVA; factor “treatment”: F (2; 51) = 
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8.6; p = 0.0006; data not shown]. But since in both parameters no significant “substrain” × 

“treatment” interactions or significant substrain differences were found, these results indicate 

that the three substrains did not respond differentially to the anxiolytic-like effects of i.c.v. 

NPY as determined by the EPM. 

However, the motor activity (total arm entries) was significantly reduced in the mutant 

F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) animals [two-way ANOVA; factor 

“substrain”: F (2; 51) = 6.4; p = 0.003] compared to the wildtype-like rats after i.c.v. 

administration of 1 nmol NPY [one-way ANOVA for 1 nmol: F (2; 16) = 10.2; p = 0.001; 

Fig. 4A]. Overall, NPY treatment significantly decreased motor activity, especially in the 

DPPIV-deficient rats of both substrains [two-way ANOVA; factor “treatment”: F (2; 51) = 

4.9; p = 0.01].  In addition, the frequency of enclosed arm entries was significantly reduced 

after i.c.v. treatment with NPY [two-way ANOVA; factor “treatment”: F (2; 51) = 12.1; p < 

.0001; one-way ANOVA for F344/DuCrj(DPPIV-): F (2; 18) = 5.8; p = 0.01; one-way 

ANOVA for F344/Crl(Ger/DPPIV-): F (2; 19) = 4.7; p = 0.02; Table 2], although the 

differences between the substrains failed to be statistically significant [two-way ANOVA; 

factor “substrain”: F (2; 51) = 2.3; p = 0.11]. Furthermore, a significant “substrain” × 

“treatment” interaction regarding the time spent on open arms per entry was found [two-way 

ANOVA; “substrain” × “treatment”: F (2; 51) = 2.6; p < .05; Fig. 4B]. Although one-way 

ANOVA revealed no significant differences regarding the factor “substrain” within the 

differential NPY treatments, the animals, which lack DPPIV-like activity, were found to stay 

longer on the open arms per entry than the control F344/Crl(Por) rats (Fig. 4B). NPY 

treatment significantly increased the time spent on open arms per entry [two-way ANOVA; 

factor “treatment”: F (2; 51) = 7.7; p = 0.0012]. 

Social interaction 

Recording the time spent in active social interaction (SI) in pairs of rats of the same substrain 

and treatment as an indicator of anxiety revealed that the time spent in various behaviors was 

increased in F344/DuCrj(DPPIV-) rats (trend, not significant) as well as significantly 

increased in the F344/Crl(Ger/DPPIV-) animals of the 0.2 nmol NPY treatment group [two-

way ANOVA; factor “substrain”: F (2; 48) = 7.8; p = 0.001; one-way ANOVA for 0.2 nmol: 

F (2; 16) = 9.4; p = 0.002; Fig. 5A]. Furthermore, two-way ANOVA revealed a significant 

NPY-dependent increase in the social interaction time of all animals [factor “treatment”: F (2; 

48) = 11.3; p < .0001; Fig. 5A]. Additionally, we found a significant “substrain” × 

“treatment” interaction in the frequency of anal sniffing [two-way ANOVA; “substrain” × 
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“treatment” interaction: F (2; 48) = 3.0; p = 0.03], which was significantly increased in the 

F344/Crl(Ger/DPPIV-) rats after treatment with 0.2 nmol NPY [two-way ANOVA; factor 

“substrain”: F (2; 48) = 3.5; p = 0.04; one-way ANOVA for 0.2 nmol: F (2; 16) = 10.9; p = 

0.001; Fig. 5B]. The significantly decreased frequency of self-grooming in the DPPIV-

deficient substrains disappeared after i.c.v. treatment with 1 nmol NPY [two-way ANOVA; 

factor “substrain”: F (2; 48) = 7.6; p = 0.001; one-way ANOVA for vehicle: F (2; 18) = 4.2; p 

= 0.03; one-way ANOVA for 0.2 nmol: F (2; 16) = 4.2; p = 0.03; Fig. 5C]. Additionally, two-

way ANOVA revealed a significant reducing effect of NPY administration on the frequency 

of self-grooming [factor “treatment”: F (2; 48) = 3.8; p = 0.03]. Interestingly, the sum of 

frequencies of the various social behaviors (anal sniffing, following, allo grooming, walking 

over, crawling under, and nosing) exhibited no significant differences between the substrains 

[two-way ANOVA; factor “substrain”: F (2; 48) = 2.6; p = 0.09; Fig. 6], although the overall 

motor activity of the rats (measured by number of square entries) was significantly reduced by 

NPY [two-way ANOVA; factor “treatment”: F (2; 48) = 55.2; p < .0001]. 
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5.4 Discussion 

This study shows for the first time a differential response in rats that differ in their 

endogenous DPPIV-like enzymatic activity to i.c.v. administration of NPY. Namely, the 

different doses of NPY induced significantly more pronounced sedative-like effects on EPM 

behavior and anxiolytic-like effects on the rat social interaction test in the DPPIV-deficient 

F344 rats. The study provides further evidence for the orexigenic, potent sedative-, and 

anxiolytic-like effects of NPY and confirms previously described spontaneous mutation in the 

Dpp4 gene in the two F344 rat substrains, which leads to an extreme reduction of DPPIV-like 

activity in the F344/DuCrj(DPPIV-) and the F344/Crl(Ger/DPPIV-) animals (Karl et al., 

2003a; Tsuji et al., 1992). 

NPY, as a physiological appetite transducer (Kalra et al., 1999), is the only known peptide 

that can cause animals to eat until they are obese (Inui, 1999). Injections of NPY either in the 

third ventricle (Jolicoeur et al., 1991; Levine and Morley, 1984), the hypothalamus (Schwartz 

et al., 2000; Stanley et al., 1986), and especially into the paraventricular nucleus (PVN) (Brief 

et al., 1992; Merlo Pich et al., 1992) exert a powerful stimulatory effect on feeding and 

drinking behavior of rats. All animals of the different substrains exhibited a dose-dependent 

increase in food intake after i.c.v administration of NPY. In addition, for the first time this 

study proved a stimulating effect of i.c.v. administrated NPY on the latency to start eating, 

which could be discussed as an influence of NPY on the feeding motivation of rodents. 

However, in contrast to the proposed hypothesis, no pronounced differences in feeding 

behavior were found between the wildtype-like and mutant F344 substrains. This may be due 

to the fact that active DPPIV in the wildtype-like animals cleaves NPY to NPY3-36, which 

results in a loss of Y1 receptor subtype but not Y5 (and Y2) receptor subtype affinity. 

Importantly, the feeding behavior of rodents is very likely mediated via Y1 and Y5 receptors 

(Inui, 1999; Kalra et al., 1999; Turnbull et al., 2002) and possibly also via Y2 receptors 

(Sainsbury et al., 2002). Y5 agonists stimulate food intake (Bischoff and Michel, 1999) and 

inhibition of NPY-stimulated food intake has been observed upon central administration of 

antisense oligonucleotides directed against the Y5 receptor. Additionally, Y5 receptor mRNA 

was detected in abundance in the PVN and the lateral hypothalamus, areas that have been 

implicated in the control of feeding behavior (Gerald et al., 1996). Antisense oligonucleotides 

directed against the Y1 receptor were also reported to inhibit NPY-stimulated food intake 

(Bischoff and Michel, 1999), and treatment with Y1 receptor antagonists like BIBO3304 or 
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BIBP3226 blocked NPY-induced food intake (Bischoff and Michel, 1999; Inui, 1999). Also 

the Y2 receptor subtype seems to be involved in feeding and body weight regulation (Inui, 

2000). Y2 receptor knockout mice developed increased food intake and body weight 

(Naveilhan et al., 1999), which indicates an inhibitory role for this receptor subtype in the 

central regulation of these parameters. After all, the stimulating effect of NPY on feeding 

seems to be mediated via the Y1, Y5, and perhaps the Y2 receptor, although NPY, Y1, and Y5 

receptor knockout mice did not show expected impaired feeding and body weight loss 

(Erickson et al., 1996; Marsh et al., 1998; Pedrazzini et al., 1998). Therefore, it is not 

surprising that the food intake of all F344 substrains is similar because endogenous native 

NPY in the mutant substrains and cleaved NPY3-36 in the wildtype-like substrain are both 

potent mediators for feeding behavior.  

NPY is deeply involved in anxiety-like behaviors of rodents (Kask et al., 2002). I.c.v. 

administration of NPY and Y1 agonists decreased anxiety in the EPM (Broqua et al., 1995; 

Heilig et al., 1989) and the open field (von Horsten et al., 1998b). Furthermore, bilateral 

microinjections of NPY into the dorsocaudal septum increased the social interaction time in 

the social interaction test (Kask et al., 2001b). In addition, rats treated with antisense 

oligodeoxynucleotides blocking Y1 receptors displayed behavioral signs of anxiety 

(Wahlestedt et al., 1993) and the Y1 receptor antagonists BIBO3304 and BIBP3226 blocked 

anxiolytic-like effects of exogenously administered NPY (Kask et al., 2001b; Kask et al., 

1996; von Horsten et al., 1998b). These findings strongly suggest a role for the Y1 receptor in 

mediating the anxiolytic-like action of NPY (Heilig et al., 1989; Kask and Harro, 2000). But 

anxiolytic-like effects of NPY are not only mediated via NPY Y1 receptors in the amygdala 

(Sajdyk et al., 1999) and the dorsal periaqueductal gray matter (Kask et al., 1998a) but 

probably also via Y2 receptors in the locus coeruleus (Kask et al., 2001b; Kask et al., 1998b) 

and via Y5 receptors (Sajdyk et al., 2002). Importantly, also a dose-dependent sedative effect 

of NPY on locomotor activity in the plus maze has been reported (Broqua et al., 1995; Heilig 

et al., 1989). In addition, central NPY administration suppressed activity in the open field and 

in the homecage (Heilig and Murison, 1987), which was interpreted as sedation (Fuxe et al., 

1983). Also other studies proved a dose-dependent decrease in the motor activity of rats after 

i.c.v. administration of NPY (Jolicoeur et al., 1995) and NPY antibody treatment increased 

motor activity (Yamada et al., 1996). This suppression of activity is supposed to be mediated 

by Y1 receptors (Heilig et al., 1988; Kask et al., 1999; von Horsten et al., 1998b), which are 

also involved in the NPY-induced sensitization to sedation (Naveilhan et al., 2001). 
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In our study the NPY-treated mutant animals of F344/DuCrj(DPPIV-) and 

F344/Crl(Ger/DPPIV-) exhibited a dose-dependent reduction in motor activity in the EPM. 

The wildtype-like F344/Crl(Por) rats were unaffected by the sedative effect of NPY, probably 

because of differences in the NPY catabolism between the F344 substrains with a DPPIV-

dependent cleavage of NPY to the Y1 receptor unspecific NPY3-36 only in control rats. Also 

the dose-dependent increased time spent on open arms per entry in the mutant animals 

supports a probably Y1-mediated sedative-like effect of NPY. The differential response of the 

three F344 substrains to the different doses of NPY in regard to this parameter supports our 

hypothesis regarding the DPPIV-dependent differential NPY catabolism in wildtype-like and 

mutant animals. In addition, NPY had an anxiolytic-like effect in all substrains, which was 

detected by an increase in the ratio of open arm to total arm entries and in the total time spent 

on open arms. Notably, these possible anxiolytic-like effects of NPY on the total time spent 

on open arms could also be influenced by the sedative-like effect of NPY. At least in the F344 

genetic background, importantly, a very narrow pharmacological window between sedative-

like and anxiolytic-like effects of NPY especially in the EPM has to be considered in order to 

avoid false positive results. Therefore, not only the time spent on open arms should be 

recorded as a parameter for detecting anxiolytic-like behaviors in the EPM. Furthermore, 

various behavioral tests for anxiety have to be used for a complete screening of anxiety-like 

behaviors in rodents. Therefore, we also applied the social interaction test for recording 

anxiolytic-like effects of NPY. Interestingly, in this task, the DPPIV-deficient rats exhibited 

an increased anxiolytic-like response to the NPY administration compared to the wildtype-

like animals by an increased SI time. This is supported by the frequency of anal sniffing with 

a significant differential response of the substrains regarding the different NPY treatments. To 

check for possible sedative-like influences of NPY on the anxiety-like behaviors in this task, 

we analyzed the overall motor (number of square entries) and social-like (summed frequency 

of social behaviors) activity of our animals. Motor activity was dose-dependently reduced by 

NPY treatment, but despite the sedative effect on ambulatory activity, social-like behaviors 

remained unaffected by NPY. Thus, NPY exerts a clear effect on anxiety as exemplified by an 

increased SI time in the rat social interaction test in the mutant animals, which was further 

substantiated by a significantly reduced frequency of self-grooming (as a measurement for 

displacement activity) in the mutant substrains, which disappeared dose-dependently after 

NPY treatment. 

Overall, these data show the suggested differences between the wildtype-like and mutant 

F344 substrains regarding their NPY catabolism because of the more potent Y1 receptor-
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mediated anxiolytic-like and sedative-like effects of the neurotransmitter in the mutant, 

DPPIV-deficient animals. The differences within the two DPPIV-deficient substrains 

F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) in the social interaction test could be due to 

different compensatory mechanisms during ontogeny, but further studies are necessary 

focusing on this phenomenon.  

In conclusion, this study shows for the first time a differential potency and specificity of NPY 

between wildtype-like and DPPIV-deficient rat substrains and thereby supports the concept 

that these animals provide a useful model to study the various behavioral and physiological 

effects associated with DPPIV-enzymatic activity. Therefore, F344 rat substrains 

F344/Crl(Por), F344/DuCrj(DPPIV-), and F344/Crl(Ger/DPPIV-) indicate an excellent 

natural animal model to study the “DPPIV-NPY-axis”. In particular, the mutant animals 

exhibited an increased responsiveness to the sedative-like and anxiolytic-like effect of i.c.v.-

administered NPY, which is very likely mediated via a Y1 receptor-dependent mechanism. 

Since pharmacological inhibition of DPPIV-like activity has been demonstrated to potentiate 

the effects of NPY administration in vivo (Dimitrijevic et al., 2002), it seems possible that 

DPPIV inhibitors specifically targeting the CNS are useful modifiers of the centrally mediated 

effects of NPY.  
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5.7 Tables and figures 

 

Table 1:  

Latency to eat during the light phase [s] 

NPY F344/Crl(Por) F344/DuCrj(DPPIV-) F344/Crl(Ger/DPPIV-) 

             

Vehicle 

 

77.1 ± 20.4 

 

60.3 ± 21.2 

 

85.7 ± 18.2 

             

0.2 nmol  

 

    12.7 ±  2.3++ 

 

 12.7 ±  1.1+ 

 

      17.5 ±  3.3+++ 

             

1.0 nmol  

 

      10.6 ±  1.6+++ 

 

13.3 ±  4.3+ 

 

       8.0 ±  0.8+++ 

 

Latency to eat during the dark phase [s] 

NPY F344/Crl(Por) F344/DuCrj(DPPIV-) F344/Crl(Ger/DPPIV-) 

             

Vehicle 

 

51.6 ± 18.5 

 

80.6 ± 15.3 

 

54.3 ± 16.1 

             

0.2 nmol  

 

39.8 ± 14.8 

 

      17.5 ±  3.4+++ 

 

38.2 ± 14.0 

             

1.0 nmol  

 

10.3 ±  1.5 

 

      12.3 ±  1.3+++ 

 

14.2 ±  1.4 

Latency to start eating in F344 substrains; animals´ feeding behavior (food intake) was 

recorded [s] after receiving an i.c.v. injection of vehicle or NPY (0.2 nmol/1.0 nmol). Data 

represent means ± SEM. Significant post hoc effects for the factor “treatment” versus the 

vehicle-treated animals are indicated by crosses (+p < .05; ++p < .01; +++p < .001). 
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Table 2:  

NPY F344/Crl(Por) F344/DuCrj(DPPIV-) F344/Crl(Ger/DPPIV-) 

             

Vehicle 

 

4.3 ± 0.75 

 

3.9 ± 0.77 

 

3.8 ± 0.87 

             

0.2 nmol  

 

3.1 ± 0.51 

 

2.0 ± 0.85 

 

2.7 ± 0.68 

             

1.0 nmol  

 

2.4 ± 0.41 

 

    0.6 ± 0.31++ 

 

    1.0 ± 0.38++ 

Motor activity in the EPM [n]; the number of enclosed arm entries as an additional parameter 

for motor activity is presented [n]; animals were tested after receiving an i.c.v. injection of 

vehicle or NPY (0.2 nmol/1.0 nmol). Data represent means ± SEM. Significant post hoc 

effects for the factor “treatment” versus the vehicle-treated animals are indicated by crosses 

(++p < .01). 
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Fig. 1: Test setting; test biography of rats of the three different substrains F344/Crl(Por), 

F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-). The animals´ age in the various tests is 

shown. 
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Fig. 2: DPPIV-like activity; DPPIV-like activity [mU/ml] of all test animals was screened; 

blood from the tail vain was sampled and analyzed as described above. Data represent means 

+ SEM. Asterisks (***p < .001) reflect significant differences versus F344/Crl(Por) – 

detected in the Fisher-PLSD-test. 
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Fig. 3: Anxiolytic-like effects in the EPM; the number of arm entries of the test animal into 

open and enclosed arms were recorded for 5 min; the ratio of open arm entries to total arm 

entries serves as a measure for anxiety [%]; animals were tested after receiving an i.c.v. 

injection of vehicle or NPY (0.2 nmol/1.0 nmol). Data represent means + SEM.  
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Fig. 4A: Motor activity in the EPM; the total number of arm entries of the test animal was 

recorded for 5 min; the number of total arm entries serves as a measure for motor activity [n]; 

animals were tested after receiving an i.c.v. injection of vehicle or NPY (0.2 nmol/1.0 nmol). 

Data represent means + SEM. Asterisks (***p < .001; **p < .01) reflect significant 

differences versus F344/Crl(Por) – detected in the Fisher-PLSD-test.  
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Fig. 4B: Sedation in the EPM; the time spent on open arms per entry was recorded [s]; 

additionally, the overall time spent on open arms per entry in each substrain is presented; 

animals were tested after receiving an i.c.v. injection of vehicle or NPY (0.2 nmol/1.0 nmol). 

Data represent means + SEM. Asterisks (**p < .01) reflect significant differences versus 

F344/Crl(Por) – detected in the Fisher-PLSD-test. 
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Fig. 5A: Anxiolytic-like effects in the social interaction test; the time spent in active social 

interaction (SI) was recorded [s]; additionally, the overall effect of different doses of NPY on 

SI is presented; animals were tested after receiving an i.c.v. injection of vehicle or NPY (0.2 

nmol/1.0 nmol). Data represent means + SEM. Asterisks (***p < .001) reflect significant 

differences versus F344/Crl(Por), whereas double crosses (#p < .05) display significant 

differences between F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) – detected in the 

Fisher-PLSD-test. Significant post hoc effects for the factor “treatment” versus the vehicle-

treated animals are indicated by crosses (+p < .05; +++p < .001), whereas “x” (xp < .05) 

reflects significant differences between the two different NPY doses 0.2 nmol and 1.0 nmol - 

detected in the Fisher-PLSD-test. 
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Fig. 5B: Anal sniffing in the social interaction test; the frequency of anal sniffing was 

recorded during 10 min of observation [n]; rats of different substrains but of the same 

treatment group were compared; animals were tested after receiving an i.c.v. injection of 

vehicle or NPY (0.2 nmol/1.0 nmol). Data represent means + SEM. Asterisks (**p < .01) 

reflect significant differences versus F344/Crl(Por), whereas double crosses (###p < .001) 

display significant differences between F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) – 

detected in the Fisher-PLSD-test. 
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Fig. 5C: Self-grooming in the social interaction test; the frequency of self-grooming was 

recorded during 10 min of observation [n];  rats of different substrains but of the same 

treatment group were compared; animals were tested after receiving an i.c.v. injection of 

vehicle or NPY (0.2 nmol/1.0 nmol). Data represent means + SEM. Asterisks (*p < .05) 

reflect significant differences versus F344/Crl(Por) – detected in the Fisher-PLSD-test. 
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Fig. 6: Motor activity and social-like behaviors in the social interaction test; the summed 

frequency of social-like behaviors was recorded [n]; additionally, the overall effect of NPY on 

motor activity is presented by the total number of square entries after receiving an i.c.v. 

injection of vehicle or NPY (0.2 nmol/1.0 nmol). Data represent means + SEM. Significant 

post hoc effects for the factor “treatment” versus the vehicle-treated animals are indicated by 

crosses (+++p < .001), whereas “x” (xxxp < .001) reflects significant differences between the 

two different NPY doses 0.2 nmol and 1.0 nmol - detected in the Fisher-PLSD-test. 

 

 



 154 I.c.v. effect of NPY on nociception in DPPIV-deficient rats: in preparation. 
 
 

 

 
Effects of neuropeptide Y on nociception 

in dipeptidyl-peptidase IV-deficient 

F344 rat substrains  
 

 

 

Tim Karl1, Torsten Hoffmann2, Reinhard Pabst1, and Stephan von Hörsten1 

 

 

 
1 Department of Functional and Applied Anatomy, Hannover Medical School, 30623 

Hannover, Germany 
2 Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany 

 

 

 

 

 

 

 

 

 

Address for correspondence: Prof. Dr. S. von Hörsten, Medical School of Hannover, 

OE 4120, Department of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625 

Hannover, Germany, Phone: +49 511 532 2868, Fax: +49 511 532 8868, E-mail: 

Hoersten.Stephan.von@mh-hannover.de. 



 155 I.c.v. effect of NPY on nociception in DPPIV-deficient rats: in preparation. 
 
 
 

Abstract 

Dipeptidyl-peptidase IV (DPPIV; CD26) is involved in several physiological functions via 

cleavage of dipeptides with a Xaa-Pro or Xaa-Ala sequence of regulatory peptides such as 

neuropeptide Y (NPY). Cleavage of NPY by DPPIV results in NPY3-36, which lacks affinity 

for the Y1, but not for other NPY receptor subtypes. Among other effects, the NPY Y1 

receptor seems to be involved in analgetic-like effects of NPY. In this study we investigated 

whether intracerebroventricular (i.c.v.) administration of different doses of NPY (vehicle, 0.2, 

or 1.0 nmol) or of the DPPIV inhibitor isoleucyl-thiazolidide (Ile-Thia) (vehicle, 0.5, or 5.0 

nmol) modulates the behavioral response in the hot plate paradigm in wildtype-like and 

DPPIV-negative F344 substrains. Untreated non-habituated DPPIV-deficient animals, which 

display an anxiolytic-like phenotype, exhibited a reduced latency to respond to an aversive 

thermal stimulus in the hot plate, suggesting a process of reduced stress-induced analgesia. 

I.c.v. administration of NPY decreased the pain sensitivity of these animals but not of the 

wildtype-like F344 rats. DPPIV inhibition resulted in an increased nociception of the 

wildtype-like animals in the same paradigm. The differential response to i.c.v. administration 

of NPY confirms the recently described differential NPY catabolism within the different F344 

substrains. Furthermore, the study demonstrates for the first time that the modulation of 

nociception by NPY can be modified by DPPIV-like enzymatic activity. The differences in 

pain sensitivity are based on a more potent Y1 receptor-like tone in the DPPIV-deficient rats, 

which mediates the analgetic-like effect. 

 

 

 

Keywords: Dipeptidyl-peptidase IV – CD26 – Neuropeptide Y - Isoleucyl-thiazolidide – 

F344 rats –– Nociception – Stress-induced analgesia – Hot plate 
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6.1 Introduction 

The enzyme and binding protein dipeptidyl-peptidase IV (DPPIV) belongs to the class of 

membrane-associated peptidases (De Meester et al., 1999). The ectopeptidase is identical to 

the leukocyte differentiation marker CD26 and is involved in T-cell dependent immune 

responses (Kahne et al., 1999) and in cell adhesion (Mentlein, 1999; Shingu et al., 2003). Due 

to its unique ability to liberate Xaa-Pro and Xaa-Ala dipeptides from the N-terminus of 

regulatory peptides, important substrates include neuropeptides such as neuropeptide Y 

(NPY), peptide YY (PYY), and endomorphin (Hildebrandt et al., 2000; Mentlein, 1999). 

Further substrates are glucagon-like peptide 1 (GLP-1), GLP-2, enterostatin, substance P, and 

various chemokines (De Meester et al., 2000). Endomorphin-2, substance P, and especially 

NPY are discussed in regard to their analgetic-like effects in tests for nociception. 

We previously investigated the role of the DPPIV-like activity on behavioral and 

physiological processes in a mutant rat model for DPPIV deficiency. Spontaneous mutations 

in the Dpp4 gene of F344 substrains from breeding colonies of Charles River Laboratories 

(Crl) in Sulzfeld, Germany (Thompson et al., 1991), and Atsugi, Japan (Tiruppathi et al., 

1993; Watanabe et al., 1987), result in an almost complete lack of DPPIV-like activity in 

these animals. This DPPIV deficiency does not exist in wildtype-like F344 rats from Crl 

breeding colonies in Portage, USA (Karl et al., 2003a). In a systematical behavioral and 

physiological characterization of the different substrains, we observed differences in the 

mutant, DPPIV-deficient F344 rats showing reduced anxiety-like behaviors and increased 

nociception (Karl et al., 2003b). In another study (Karl et al., 2003c) we showed that the 

anxiolytic-like phenotype of the DPPIV-deficient substrains is based on a differential 

degradation of NPY, strongly suggesting that a more potent NPY Y1 receptor-like tone in the 

DPPIV-deficient F344 substrains causes these differences. 

Among several other physiological responses NPY especially affects anxiety and nociception 

(Kalra et al., 1999; Kask et al., 2002; Naveilhan et al., 2001; Wettstein et al., 1995) via the 

NPY Y1 receptor subtype, although the effect on pain sensitivity is discussed controversially. 

Some studies described an analgetic effect after NPY administration (Hua et al., 1991; Merlo 

Pich et al., 1990), some showed a hyperalgesic effect of the same neuropeptide (Broqua et al., 

1996; von Horsten et al., 1998b) and others did not find any influence of NPY on nociception 

processes (Heilig et al., 1993; Jolicoeur et al., 1991). We hypothesize that the hyperalgesic 
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phenotype of the two DPPIV-deficient F344 substrains from Japan [F344/DuCrj(DPPIV-)] 

and Germany [F344/Crl(Ger/DPPIV-)] (Karl et al., 2003b) compared to the wildtype-like rats 

could be due to a differential stress response along with a differential stress-induced 

analgesia. This could be based on the recently proven differential NPY metabolism within the 

different substrains (Karl et al., 2003c). Furthermore, we postulate an antinociceptive effect of 

NPY on pain sensitivity. Such processes could sufficiently explain the increased pain 

sensitivity in the mutant, DPPIV-deficient substrains. 

To test this hypothesis, we re-investigated the phenomenon of a differential stress-induced 

analgesia in different F344 substrains and tested whether NPY applied 

intracerebroventricularly (i.c.v.) produces differential effects in the different F344 substrains 

in regard to their pain sensitivity. Thus, we characterized the effect of i.c.v. administration of 

different doses of NPY in the F344/DuCrj(DPPIV-), F344/Crl(Ger/DPPIV-), and 

F344/Crl(Por) rats in the hot plate paradigm. To prove our hypothesis that the various 

behavioral and physiological differences between the different F344 substrains – especially 

the hyperalgesic phenotype of the mutant animals – is based on the DPPIV deficiency we also 

investigated pharmacologically the effect of i.c.v. DPPIV inhibition on the hot plate response 

of these animals.  
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6.2 Materials and methods 

Animals 

For clarity, animal groups were coded as previously described (Karl et al., 2003a): F344 rats 

derived in 1998 from breeding colonies of Crl in Atsugi (Japan) were called 

F344/DuCrj(DPPIV-), animals from breeding colonies in Sulzfeld (Germany) 

F344/Crl(Ger/DPPIV-), and wildtype-like rats obtained from colonies in Portage (USA) 

F344/Crl(Por). 

All F344 rats of the three different substrains were housed and bred at the Central Animal 

Facility of the Hannover Medical School as previously described (Karl et al., 2003a). Animals 

were maintained in a separated minimal barrier sustained facility and kept in Macrolon type 

III cages with a standard bedding (Altromin GmbH, Lage, Germany). Food (Altromin 

Standard Diät 1320: Altromin GmbH) and water were available ad libitum. Environmental 

temperature was automatically regulated at 21 ± 2 °C and relative humidity was 55 ± 5% with 

an air change rate of 15 times per hour. The animal rooms were operated with a positive 

pressure of 0.6 Pa. Rats were maintained under a 12:12 h light regime (light onset at 4am). 

They underwent routine animal care once a week. Routine microbiologic monitoring 

according to FELASA recommendations (Rehbinder et al., 2000) did not reveal any evidence 

of infection with common murine pathogens except for Pasteurella pneumotropica and 

Staphylococcus aureus. All research and animal care procedures were approved by the 

Review Board for the Care of Animal Subjects of the district government, Hannover, 

Germany, and performed according to international guidelines for the use of laboratory 

animals. 

Determination of DPPIV-like enzymatic activity 

All test animals were characterized in regard to their DPPIV-like enzymatic activity as 

previously described (Karl et al., 2003a). For determination of plasma activity of F344 rats a 

microplate based fluorescence assay was used. EDTA-plasma samples were kept at –80 °C 

until use. DPPIV enzyme activity of the different rat substrains was determined by monitoring 

the release of 4-Amino-7-Methylcoumarin (AMC) from the substrate Gly-Pro-AMC at 

360/480 nm (Ex/Em) and 30 °C using the Novostar fluorescence microplate reader (BMG, 

Offenburg, Germany). The assay consists of 20 µl plasma sample, 100 µl H2O and 100 µl 

HEPES buffer pH 7.6 and 50 µl Gly-Pro-AMC. Activity was calculated from the linear slope 
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using a factor of 3.116*10-4 µmol/l calculated from an AMC standard curve and the sample 

dilution. One unit is defined as the enzyme activity, which cleaves 1 µmol Gly-Pro-AMC per 

minute. The assay is selective for DPPIV-like activities. It has been proven that the substrate 

is cleaved by DPPIV, by DP II, and by attractin. Probably, they are also substrates for DP8 

and DP9. Importantly, the chromophores are not released by other proline-specific peptidases, 

such as prolidase, prolyl endopeptidase or aminopeptidase P. 

Surgery of i.c.v. cannulation 

For surgery, animals were anesthetized with intramuscular (i.m.) ketamine hydrochloride (0.1 

ml/100 g body weight; Albrecht, Aulendorf, Germany) and dormitor (0.01 ml/100 g body 

weight; Pfizer GmbH, Karlsruhe, Germany). The i.c.v. cannulation technique was identical to 

that outlined in a previous report (von Horsten et al., 1998a). After placement of the rat in a 

stereotactic apparatus (model 900: David Kopf Instruments, Tujunga, USA), the incisor bar 

was adjusted on position zero and the ear bars were adjusted to equal positions so that the 

rat´s head was fixed in the apparatus. The eyes were protected against drying with eye-

ointment (Bepanthen Augen- und Nasensalbe: Hoffmann-La Roche AG, Grenzach-Wyhlen, 

Germany). The skull was exposed by a midline incision, the periost was removed, the bone 

surface was dried, and the position of the bregma was identified. Three stainless steel anchor 

screws (Breitfeld & Schliekert, Karben, Germany) were secured to the skull and a stainless 

steel guide cannula (Plastics one, Roanoke, USA) was implanted in the right lateral ventricle 

and cemented in place with dental cement (Durelon Maxicap: Espe Dental AG, Seefeld, 

Germany). The coordinates for the lateral ventricle were 0.7 mm caudal and 1.6 mm lateral to 

the bregma, with the guide cannula (Plastics one) extending 3.4 mm ventral to the skull 

surface. Flow of small amounts of 0.9% saline (Braun Melsungen AG, Melsungen, Germany) 

through the protracted injection (internal) cannula (Plastics one) was used to verify that the 

guide cannula was positioned just above the ventricular system. The guide cannula was then 

fitted with a dummy cannula (Plastics one) of the same length to prevent leakage of 

cerebrospinal fluid. Animals were housed individually after surgery. The anatomical position 

of the cannula was verified by post mortem i.c.v. dye application (Berlin blue) and inspection 

of the stained third ventricle in randomly chosen rats. The animals of the three F344 

substrains F344/DuCrj(DPPIV-), F344/Crl(Ger/DPPIV-), and F344/Crl(Por) were operated at 

an age of 95 (±5) days. The observation of the animals’ behavior in the hot plate test 

commenced after a recovery phase of at least 10 days. 
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Drugs, i.c.v. injections, and dosages 

A stock solution of human/rat NPY (2 mol; Polypeptide GmbH, Wolfenbüttel, Germany) was 

adjusted under sterile conditions to final concentrations (0.2 nmol/5 µl and 1.0 nmol/5 µl) 

using 0.9% saline. A stock solution of the DPPIV inhibitor isoleucyl-thiazolidide (Ile-Thia) 

(Probiodrug AG, Halle, Germany) was adjusted under sterile conditions to final 

concentrations (0.5 nmol/5 µl and 5.0 nmol/5 µl) using 0.9% saline. The final concentrations 

of NPY and Ile-Thia were made 24 h before the different experiments.  

For the i.c.v. administration animals were taken out of the home cage and the dummy cannula 

was replaced by the internal cannula. Peptide, inhibitor or 0.9% saline was injected i.c.v. in a 

volume of 5 µl over 20 s through the internal cannula extending 4.4 mm ventral to the skull 

surface. The internal cannula was attached to a microsyringe (Hamilton Bonaduz AG, 

Bonaduz, Switzerland) with approximately 30 cm of polyethylene tubing (Plastics one), 

which allowed the animal to move freely during the i.c.v. injection. Then the internal cannula 

was replaced by the dummy cannula again and the rat was returned into the home cage. All 

experiments started 15 min after the administration procedure. For the procedure of i.c.v.-

injection, animals were habituated to experimental handling daily over 7 days prior to the start 

of the first experiment. During the habituation phase the handling procedure was exactly the 

same except for the application of the compound. 

Two different doses of NPY/Ile-Thia were used for this study and a 3 (substrain) × 3 

(treatment) experimental design was set up. Thus, F344 rats of each substrain were divided 

into three treatment groups each (n = 7), which were treated with 0.9% saline (vehicle: 0.0 

nmol/5 µl), or two different doses of NPY (0.2 nmol/5 µl, or 1.0 nmol/5 µl) or of Ile-Thia (0.5 

nmol/5 µl, or 5.0 nmol/5 µl). 

Nociception 

A 30x30 cm hot plate analgesia meter (Columbus Instruments, Columbus, USA) was used for 

this experiment, which was carried out during the light phase. The experiments were 

performed as previously described (Karl et al., 2003b; Stephan et al., 2002). The rat was 

placed on the surface of the apparatus, which was maintained at 52.5 °C. The latency to 

respond (lick or raise a hindpaw) was recorded. To prevent any tissue damage, the rat was 

removed from the hot plate if the animal did not respond within 20 s (Naveilhan et al., 2001; 

von Horsten et al., 1998b). Non-habituated animals were tested twice in the hot plate 

paradigm. In the first test (Hot plate I) rats (age: 111 ± 3 days) received an i.c.v injection of 

NPY (vehicle, 0.2, or 1.0 nmol/5 µl). Fifteen days later (Hot plate II) animals were tested 
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once more in this paradigm but this time rats were treated with the DPPIV inhibitor Ile-Thia 

(vehicle, 0.5, or 5.0 nmol/5 µl).  

 

Statistical analysis 
The analysis of the various behavioral data was assessed using a two-way analysis of variance 

(ANOVA; factor: “substrain” × “treatment”) and by one-way ANOVA (factor: “substrain” or 

“treatment” - split by the corresponding factors) followed by the Fisher-PLSD-test for post 

hoc comparison, if appropriate. Differences were regarded as statistically significant if p < 

.05. In the results section the degrees of freedom, F-values, and p-values of two- and one-way 

ANOVAs are given, while in the figures the p-values of the corresponding post hoc tests 

(Fisher-PLSD-test) are provided. In most cases the number of animals per substrain and 

treatment group was n  = 7. Presenting the degrees of freedom indicates exceptions from this. 

Significant post hoc effects for the factor “substrain” versus the control animals of the 

F344/Crl(Por) substrain are indicated by asterisks (*p < .05; **p < .01; ***p < .001), whereas 

significant differences between the two DPPIV-deficient rat substrains F344/DuCrj(DPPIV-) 

and F344/Crl(Ger/DPPIV-) are shown by rhombs (#p < .05; ##p < .01; ###p < .001). All data 

are displayed as means ± standard error of the mean (SEM). 
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6.3 Results 

DPPIV-like activity 

One-way ANOVA of the DPPIV-like activity of all animals exhibited significant differences 

between substrains (Fig. 1). An almost complete lack of enzymatic-like activity was found in 

the two mutant substrains F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) and a wildtype-

like pattern of DPPIV-like activity was found in the rats from the F344/Crl(Por) substrain [F 

(2; 61) = 400.4; p < .0001]. 

Nociception 

In the first hot plate experiment (Hot plate I) two-way ANOVA revealed a significantly 

reduced latency in the mutant F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) substrains to 

lick or raise a hindpaw [factor “substrain”: F (2; 55) = 10.1; p = 0.0002] after treatment with 

vehicle. This significant hyperalgesic effect of DPPIV deficiency in the mutant substrains 

[one-way ANOVA; factor “substrain” - vehicle-treated: F (2; 19) = 6.9; p = 0.006; Fig. 2A] 

disappeared after i.c.v. administration of NPY. In the second experiment (Hot plate II) using 

the DPPIV-inhibitor Ile-Thia, again, vehicle-treated DPPIV-deficient animals of 

F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) exhibited a significantly shortened latency 

to respond to the thermal stimulus of the hot plate [two-way ANOVA; factor “substrain”: F 

(2; 44) = 4.9; p = 0.01; one-way ANOVA; factor “substrain” – vehicle-treated: F (2; 18) = 

3.6; p = 0.049]. Injections of 0.5 nmol or 5.0 nmol Ile-Thia attenuated the differences in 

nociception between the different substrains. DPPIV-inhibition increased the pain sensitivity 

in control animals of the F344/Crl(Por) substrain (Fig. 2B). 
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6.4 Discussion 

The DPPIV-deficient animals of the F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) 

substrains exhibited hyperalgesia compared to control animals of the F344/Crl(Por) substrain. 

I.c.v. treatment with NPY had a dose-dependent hypoalgesic effect only in the mutant rats, 

whereas i.c.v. administration of the DPPIV inhibitor Ile-Thia had a hyperalgesic effect only in 

the wildtype-like animals.  

The effect of NPY on nociception is discussed controversially, although the presence of NPY-

immunoreactivity in some areas involved in pain modulation, such as the periaqueductal gray 

(PAG), locus coeruleus, amygdala, thalamus, or the dorsal horn of the spinal cord, suggests a 

role for NPY as a putative regulator of pain transmission and perception (Broqua et al., 1996; 

Jolicoeur et al., 1991). In the hot plate test i.c.v. administration of NPY to spontaneously 

hypertensive rats induced an elevation in the nociceptive threshold in the hot plate paradigm 

(Merlo Pich et al., 1990) and intrathecal administration of NPY produced a dose-dependent 

elevation in the nociceptive threshold (Hua et al., 1991). In other studies i.c.v. administration 

of very low doses of NPY induced hyperalgesia (Broqua et al., 1996; von Horsten et al., 

1998b), while some studies did not find any effect of NPY on nociception (Heilig et al., 1993; 

Heilig et al., 1992; Heilig et al., 1989; Jolicoeur et al., 1991). In our study an analgetic effect 

of i.c.v. administered NPY in the DPPIV-deficient F344 substrains in the hot plate test is 

obvious. Y1 receptor knockout mice develop hyperalgesia to acute thermal, cutaneous, and 

visceral chemical pain (Naveilhan et al., 2001). Therefore, it is concluded that the Y1 receptor 

is required for central physiological and pharmacological NPY-induced analgesia (Broqua et 

al., 1996; Wang et al., 2000), although another study described a Y2 receptor-mediated effect 

of NPY on thermal hyperalgesia (Tracey et al., 1995). Wildtype-like F344/Crl(Por) rats with a 

normal DPPIV-like activity lose the Y1 receptor subtype-specific affinity of endogenously 

released NPY more rapidly by DPPIV-dependent cleavage processes. This is based on the 

cleavage of NPY to the C-terminal fragment NPY3-36, which has a high affinity for the NPY 

Y2 and Y5 receptor subtypes but only a low affinity for the Y1 receptor subtype. This 

differential NPY catabolism could increase the pain sensitivity in these animals. Surprisingly, 

and in contrast to this hypothesis, hyperalgesia was detected in the vehicle-treated DPPIV-

deficient F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) animals. This phenotype could be 

based on recently reported reduced anxiety levels in the mutant animals (Karl et al., 2003b; 
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Karl et al., 2003c). Simililar to our wildtype-like animals, NPY-deficient mice appear to be 

hypoalgesic in the hot plate paradigm (Bannon et al., 2000) and exhibit an anxiogenic-like 

phenotype. This phenotype seems to be based on an extremely reduced Y1 receptor-like tone 

in the DPPIV-deficient rats and NPY-deficient mice. The increased anxiety of both mice and 

rats could increase the pain threshold in these animals by stress-induced analgesia, which is 

associated with or even triggered by a release of analgesia-inducing endogenous opioid 

peptides from central and peripheral sites (Kelley, 1986). In addition, stress based on anxiety 

increases the endogenous NPY-release so that the endogenous NPY level in our less anxious 

DPPIV-deficient rats could be reduced compared to the wildtype-like substrain. Therefore, a 

potent stress-induced NPY release in the wildtype-like animals paired with stress-induced 

analgesia could lead to the observed hypoalgesic phenotype. After i.c.v. administration of 

NPY the pain sensitivity in the mutant rats decreased dose-dependently, which is a strong 

indication of the antinociceptive effect of NPY. The effect is only present in DPPIV-deficient 

rats, which manifests the recently observed differences in the NPY catabolism between the 

mutant and wildtype-like substrains (Karl et al., 2003c). In the control animals NPY had no 

further analgetic effect, probably because of anxiogenic-induced already high endogenous 

levels of NPY in F344/Crl(Por). Furthermore, substance P, another substrate of the DPPIV, is 

involved in nociception. Similar to NPY, it could be cleaved differentially in the DPPIV-

deficient and the wildtype-like F344 substrains. This difference in substance P metabolism 

could influence the pain sensitivity of these animals as already shown for the DPPIV substrate 

NPY in our study. It has to be mentioned that another substrate of the DPPIV, endomorphin-

2, also seems to be involved in nociception processes. 

In addition, we investigated the effect of i.c.v. DPPIV inhibitor treatment in the F344 

substrains. As expected, no effects were observed in the DPPIV-deficient animals, but in the 

control animals DPPIV inhibition led to hyperalgesia. This could be based on DPPIV 

inhibition-caused reduced anxiety levels of the wildtype-like animals, which could be linked 

to a decreased endogenous NPY-release and a reduced stress-induced analgesia.  

Overall, these data confirm the suggested differences between the wildtype-like and mutant 

F344 substrains regarding their NPY catabolism because of the more potent Y1 receptor-

mediated analgetic-like effects of the neurotransmitter in the DPPIV-deficient animals. 

Furthermore, the various behavioral and physiological differences between the wildtype-like 

and DPPIV-deficient F344 substrains are exclusively based on the DPPIV deficiency because 

pharmacological inhibition of DPPIV in the control substrain results in a phenotype similar to 

the DPPIV-deficient animals. Most likely, the “DPPIV-NPY” axis represents an interesting 
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system for specific pharmacotherapy including but not limited to pain syndromes. Thus, this 

bidirectional up- and down-regulation of the latency to respond in the hot plate test by either 

NPY or DPPIV inhibitor in either the DPPIV-deficient or the wildtype-like animals strongly 

suggests a specific role of the “DPPIV-NPY” axis in the central pain perception and 

processing systems. 
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 169 I.c.v. effect of NPY on nociception in DPPIV-deficient rats: in preparation. 
 
 

6.6 Figures 

 

Fig. 1: DPPIV-like activity; DPPIV-like activity [mU/ml] of all test animals was screened; 

blood from the tail vain was sampled and analyzed as described above. Data represent means 

± SEM. Asterisks (***p < .001) reflect significant differences versus F344/Crl(Por) – 

detected in the Fisher-PLSD-test. 

 

 
 



 170 I.c.v. effect of NPY on nociception in DPPIV-deficient rats: in preparation. 
 
 
 

 

Fig. 2A: Nociception; pain sensitivity [s] was analyzed in the hot plate test; animals were 

tested after receiving an i.c.v. injection of vehicle or NPY (0.2 nmol or 1.0 nmol); the latency 

to respond (lick or raise a hindpaw) was recorded (Hot plate I). Data represent means ± SEM. 

Asterisks (*p < .05; **p < .01) reflect significant differences versus F344/Crl(Por) – detected 

in the Fisher-PLSD-test. 

 

 
 



 171 I.c.v. effect of NPY on nociception in DPPIV-deficient rats: in preparation. 
 
 
 

Fig. 2B: Nociception; pain sensitivity [s] was analyzed in the hot plate test; the rat was tested 

after receiving an i.c.v. injection of vehicle or Ile-Thia (0.5 nmol or 5.0 nmol); the latency to 

respond (lick or raise a hindpaw) was recorded (Hot plate II). Data represent means ± SEM. 

Asterisks (*p < .05) reflect significant differences versus F344/Crl(Por) – detected in the 

Fisher-PLSD-test. 
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7. Discussion 

In a first step of our study, we screened different F344 rat substrains obtained from breeding 

colonies of Charles River Breeding Laboratories in Portage and in Raleigh (USA), in Atsugi 

(Japan), and in Sulzfeld (Germany) for their DPPIV-like activity (Karl et al., 2003b). These 

substrains were purchased at different time points in the years 1998 and 2001. We observed 

that F344/DuCrj(DPPIV-) rat substrains from Atsugi (Japan) constantly exhibit an almost 

complete lack of DPPIV-like enzymatic activity, while rats of the F344/Crl(Ger) substrain 

from the breeding colony in Sulzfeld (Germany) only occasionally showed a lack of DPPIV-

like enzymatic activity [only in animals, which were obtained in 1998 from Crl: 

F344/Crl(Ger/98/DPPIV-)]. Recently, a genome wide screening of both DPPIV-deficient 

substrains (which were obtained in 1998) with anonymous microsatellite markers revealed 

that the genetic background between F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) is not 

identical (cooperation with Dr. D. Wedekind: Institute for Laboratory Animal Science and 

Central Animal Facility, Hannover Medical School, Germany - unpublished results). This 

finding suggests that segregation processes occurred in the F344/Crl(Ger/DPPIV-) colony, 

which were confirmed by the differences in the DPPIV-like activity between animals obtained 

from the German breeding colony of Crl (Sulzfeld) in 1998 and in 2001. Rats obtained from 

the Crl colony in Portage (USA) in 1998 [F344/Crl(Por/98)] and Raleigh (USA) in 2001 

[F344/Crl(Ral/01)] show the expected wildtype-like DPPIV activity. Surprisingly, animals of 

the Portage colony obtained in 2001 show gender-dependent differences in DPPIV-like 

enzymatic activity. The differences in the DPPIV-like activity among the F344 rat substrains 

from the different breeding colonies of a world-wide operating vendor at different intervals 

and the results of the microsatellite analyses of F344/DuCrj(98/DPPIV-) and 

F344/Crl(Ger/98/DPPIV-) clearly indicates a persisting segregation for the Dpp4 gene in 

some of these colonies (Portage, USA and Sulzfeld, Germany). Furthermore, the laboratory 

code of the substrains from the different breeding colonies in the USA and Germany does not 

differentiate between the various breeding locations. 

These findings on variation in DPPIV-like enzymatic activity in the different F344 substrains 

indicate that scientists, who obtain F344 rats from this vendor (which have originated from 

above described colonies) or who work on DPPIV-dependent physiological processes in these 

rats should screen their animals in regard to their DPPIV-like activity and should be aware of 

the origin of their F344 rat substrain. 
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Furthermore, the extreme differences in the DPPIV-like activity found between several other 

rat strains (such as LEW/Ztm, DA/Ztm, BN/Ztm) suggest that a screening of DPPIV-like 

activity is an important experimental step in case of research in regard to DPPIV-dependent 

physiological processes (the differential DPPIV-like activity among various rat strains could 

be attributed to differences among coding regions of the Dpp4 genes or to modifier genes of 

the respective genetic backgrounds). 

For all our experiments we used animals received from the breeding colonies in Portage 

[F344/Crl(Por)], Atsugi [F344/DuCrj(DPPIV-)], and Sulzfeld [F344/Crl(Ger/DPPIV-)] in 

1998 and screened every single test animal in regard to its DPPIV-like activity. Only the 

animals of the postulated DPPIV-deficient substrains exhibited the expected extreme 

reduction in the DPPIV-like activity (to nearly 0%). We assume that the deficiency in DPPIV-

like activity in F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) could be attributed to a 

spontaneous mutation previously described in F344/DuCrj(DPPIV-) (Tsuji et al., 1992) 

resulting in a null allele. Very recently, we were able to confirm this point mutation identified 

by Tsuji and coworkers (1992) also in F344/Crl(Ger/DPPIV-) and additionally found three 

other point mutations in the Dpp4 gene (in regard to the catalytic center of DPPIV) of both 

mutant substrains (cooperation with Dr. T. Hoffmann: Probiodrug AG, Halle, Germany - 

unpublished results).  

Using an SSLP marker located within the sequence of rat Dpp4 we were able to confirm the 

position of the Dpp4 gene on rat chromosome 3 (RNO3). Furthermore, we demonstrated that 

the Dpp4 gene is inherited in a semi-dominant fashion in the F344/DuCrj(DPPIV-) substrain. 

In these animals the DPPIV-like activity remains on an intermediate level in F344 rats 

heterozygous for the Dpp4 gene. Thus, out- and intercrosses between homozygous DPPIV-

deficient F344/DuCrj(DPPIV-) and homozygous wildtype-like F344/Ztm, F344/Crl(Por/98), 

or F344/Crl(Ral/01) animals could be a valuable tool to examine the impact of DPPIV-like 

activity on DPPIV-dependent physiological parameters. 

We analysed the glucose tolerance in the F344 substrains obtained in 1998 to proof the 

physiological relevance of this enzymatic system. DPPIV is reported to play an essential role 

in the physiological control of blood glucose. This is reflected by an improved glucose 

tolerance in the DPPIV-deficient F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) rats. 

DPPIV-inhibition improves the glucose tolerance (Ahren et al., 2000; Pederson et al., 1998) 

and also enhances the insulin secretion (Pauly et al., 1999). Furthermore, it is effective to 

suppress the degradation of incretins like GLP-1 (Deacon et al., 1998; Holst and Deacon, 

1998), which stimulates insulin gene expression, increases glucose-stimulated insulin 
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secretion (Ahren et al., 2000; Balkan et al., 1999), and inhibits glucagon secretion, all of 

which contribute to normalize elevated blood glucose levels (Holst and Deacon, 1998). Thus, 

active GLP-1 has a powerful influence on glucose tolerance. Inhibition of DPPIV results in 

increased levels of active GLP-1 and GIP (Kieffer et al., 1995) and an improved glucose 

tolerance. Therefore, the lack of DPPIV-like activity in the two DPPIV-deficient substrains 

seems to be responsible for the improved glucose tolerance by an incretin-mediated 

mechanism (Ahren et al., 2000). 

Furthermore, we demonstrated that an extreme reduction in DPPIV-like activity is associated 

with a decreased NK cell mediated lysis of tumor cells. This finding on blunted NK cell 

mediated cytotoxicity against syngenic tumor cell targets suggests that DPPIV is involved in 

mediating specific aspects of NK cell function. It seems to be involved in the regulation of 

NK cell proliferation, whereas natural cytotoxicity seems to be regulated independently 

(Buhling et al., 1994; Shingu et al., 2003). 

In conclusion, we present a gene linked SSLP marker, which allowed us to map Dpp4 to rat 

chromosome 3 (RNO3). We found considerable differences in the DPPIV-like enzymatic 

activity between various rat strains and within different F344 substrains. The DPPIV 

deficiency of two F344 substrains [F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-)] was 

found to be associated with an improved glucose tolerance and decreased NK cell function. 

Overall, the variations in DPPIV-like enzymatic activity reported here could act as 

confounding factors in biomedical research. The manipulation of plasma incretin 

concentrations by acute inhibition of DPPIV could be a therapeutic approach for improving 

the glucose tolerance and could prevent the transition to type 2 diabetes. Thus, our different 

F344 substrains may represent a useful tool for research focusing on glucose homeostasis (e.g. 

by developing a congene rat model with a Leprfa mutation on a DPPIV-deficient F344 

background). 

Differences in the DPPIV-like activity probably affects not only the NK cell function and the 

glucose tolerance but also the degradation and half-life of regulatory peptides such as 

enterostatin, GLP-1, substance P and especially NPY, which are substrates for the DPPIV (see 

1.2: Table 1). Therefore, in the second step of this study, the influence of DPPIV deficiency 

on behavioral and additional physiological topics (see 1.4: Table 2) was analyzed (Karl et al., 

2003c). The systematic phenotyping of F344 substrains with or without endogenous DPPIV-

like enzymatic activity demonstrated an important involvement of the ectopeptidase DPPIV in 

several behavioral and physiological processes, which are dependent on these regulatory 

peptides. The two DPPIV-deficient F344 substrains [F344/DuCrj(DPPIV-) and 
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F344/Crl(Ger/DPPIV-)] exhibited a significantly reduced body weight and water intake, a 

significant hyperalgesia in the non-habituated hot plate test, and a significant differential 

response to the habituation for this experiment. In the open field we observed significantly 

increased exploratory-like behavior in these rats, while the anxiety was significantly reduced 

in the F344/Crl(Ger/DPPIV-) rats in the social interaction test and in F344/DuCrj(DPPIV-) 

rats in the passive avoidance task. Interestingly, a reduced susceptibility to the sedative effect 

of ethanol was evident in the mutant F344 substrains. 

The observed differential body weight in the different F344 substrains could be based on 

elevated endogenous levels of the DPPIV substrate enterostatin in young DPPIV-deficient rats 

(Erlanson-Albertsson and York, 1997). Enterostatin, which is stabilized by DPPIV inhibition 

with val-pro-asp-pro-arg (VPDPR) (Mentlein, 1999), produces a chronic decrease in body 

weight and body fat levels (Erlanson-Albertsson and York, 1997). The decreased water intake 

of DPPIV-deficient animals could be mediated via enhanced levels of active GLP-1, which 

functions as a potent inhibitor of basal and angiotensin II-induced water intake (Drucker, 

1998). Studies with DPPIV knockout mice (Marguet et al., 2000) and F344/DuCrj(DPPIV-) 

rats (Kieffer et al., 1995; Nagakura et al., 2001) described already the inactivating effect of 

DPPIV on active GLP-1 levels in vivo. 

The hyperalgesic phenotype of F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) rats in the 

hot plate test could be related to the involvement of DPPIV substrates such as substance P and 

NPY in pain sensitivity (Bannon et al., 2000; Hua et al., 1991; Luttinger et al., 1984; Post and 

Paulsson, 1985). The neurotransmitter NPY is known to increase the pain threshold in rats 

especially in the hot plate paradigm (Broqua et al., 1996; Merlo Pich et al., 1993) and overall 

thermal hyperalgesia (Tracey et al., 1995). Since a powerful stress response increases NPY 

release in the CNS (Colmers and Wahlestedt, 1993; Pralong et al., 1993), the endogenous 

NPY level of the wildtype-like substrain with its higher stress-associated behavioral response 

in tests of anxiety could be elevated compared to mutant animals. Thus, increased levels of 

NPY could be responsible for a decrease in pain sensitivity in the wildtype-like animals. In 

addition, the anxiogenic-like phenotype of these rats could increase the pain threshold by 

stress-induced hypoalgesia (Kelley, 1986; Millan, 1999). 

The pattern of the findings in the anxiety-related paradigms strongly supports the concept of a 

reduced behavioral stress response in the mutant F344 substrains, which was associated with 

several indicators of reduced anxiety such as a high ambulation in the open field, an increased 

SI time, and an increased light-dark transversion time. These differences in the level of 

arousal and/or anxiety between the different F344 substrains could be based on a differential 
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degradation of NPY (De Meester et al., 2000). NPY administration decreases anxiety (Broqua 

et al., 1996; Kask et al., 2001b; Sajdyk et al., 1999; Thorsell et al., 2000) and has been 

reported to reduce stress responsiveness in transgenic NPY overexpressing rats (Thorsell et 

al., 2000). This anxiolytic-like effect of NPY is primarily mediated via the Y1 receptor 

subtype (Heilig, 1995; Wahlestedt et al., 1993). The non-degraded NPY in the DPPIV-

deficient rats is a more potent activator of the Y1 receptor subtype than the degraded NPY3-36 

in the wildtype-like animals (see 1.5.2: Fig. 1). Thus, differences in the NPY catabolism 

between the different F344 substrains, which are probably linked to DPPIV, seem to be 

responsible for the reduced anxiety of the DPPIV-deficient F344/DuCrj(DPPIV-) and 

F344/Crl(Ger/DPPIV-) substrains. The anxiolysis is probably due to elevated levels of non-

cleaved native NPY in these substrains.  

The DPPIV-deficient substrains exhibited a reduced susceptibility to the sedative effect of 

ethanol. But in regard to a possible involvement of the NPY system in this phenomenon, 

further investigations have to be conducted.  

In conclusion, in this second experimental step, the DPPIV-deficient F344/DuCrj(DPPIV-) 

and F344/Crl(Ger/DPPIV-) rats exhibited a reduced behavioral stress response in tests like the 

hot plate, social interaction, and passive avoidance. These findings suggest an involvement of 

DPPIV-like activity in the regulation of anxiety-like behaviors, and these effects are possibly 

mediated by a differential degradation of NPY and/or alternative DPPIV substrates. Overall, 

this part of the study was based on a systematic behavioral and physiological phenotyping 

(Karl et al., 2003a). This includes a broad range of different behavioral tests, which are 

necessary for an extensive characterization and for detecting specific behavioral differences. 

This strategy for analyzing mutant rodents is becoming an increasingly important and useful 

tool in biomedical research. 

To prove our hypothesis that the observed differences in behavior and physiology between the 

wildtype-like and mutant F344 rats could be based especially on differences in the 

metabolism of NPY, in the third experimental step of this study, we analyzed the effect of 

i.c.v. administration of different doses of NPY (0.0/0.2/1.0 nmol) in the wildtype-like 

[F344/Crl(Por)] and mutant [F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-)] rats on 

behavioral tasks like feeding (food intake), anxiety, and nociception (Karl et al., 2003d; Karl 

et al., 2003e). Furthermore, we administered singularly different doses of the DPPIV-inhibitor 

Ile-Thia (0.0/0.5/5.0 nmol) to confirm that the observed differences in the behavioral and 

physiological phenotype of our different substrains are based on the DPPIV deficiency of 

F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) and not on other genetic or physiological 
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differences between the DPPIV-deficient and wildtype-like substrains (Karl et al., 2003e). 

The study shows for the first time a differential response to i.c.v. administration of NPY in 

rats that differ in their endogenous DPPIV-like enzymatic activity. Namely, the different 

doses of NPY induced a significant stimulatory effect on the feeding behavior, a significantly 

more pronounced sedative-like effect on elevated plus maze behavior, a significantly more 

potent anxiolytic-like effect on the rat social interaction test, and a significant more potent 

analgetic-like effect in the hot plate test in the DPPIV-deficient F344 rats. Furthermore, 

treatment with Ile-Thia resulted in a hyperalgesic phenotype in the wildtype-like 

F344/Crl(Por) substrain. 

The stimulatory effect of NPY on the feeding behavior has already been described in 

literature (Brief et al., 1992; Jolicoeur et al., 1991; Levine and Morley, 1984; Merlo Pich et 

al., 1992; Schwartz et al., 2000; Stanley et al., 1986) and NPY, as a physiological appetite 

transducer (Kalra et al., 1999), is the only known peptide that can cause animals to eat until 

they are obese (Inui, 1999). The similarity in the feeding response to NPY administration 

between the different substrains is likely due to the affinity of cleaved NPY3-36 to Y5 and Y2 

receptor subtypes, which are, like the Y1 receptor subtype, involved in the feeding behavior of 

rodents (Bischoff and Michel, 1999; Inui, 1999; Inui, 2000; Kalra et al., 1999; Naveilhan et 

al., 1999; Sainsbury et al., 2002; Turnbull et al., 2002). Native NPY in the DPPIV-deficient 

and NPY3-36 in the wildtype-like rat substrains could both mediate potent orexigenic effects of 

similar power. 

A dose-dependent sedative effect of NPY on locomotor activity, which is interpreted as 

sedation (Fuxe et al., 1983), has been reported by several studies (Broqua et al., 1995; Heilig 

and Murison, 1987; Heilig et al., 1989; Jolicoeur et al., 1995). This suppression of activity is 

supposed to be mediated by Y1 receptors (Heilig et al., 1988; Kask et al., 1999; von Horsten et 

al., 1998a), which are also involved in the NPY-induced sensitization to sedation (Heilig et 

al., 1988; Kask et al., 1999; Naveilhan et al., 2001b; von Horsten et al., 1998a). In our study 

the NPY-treated mutant animals of F344/DuCrj(DPPIV-) and F344/Crl(Ger/DPPIV-) 

exhibited a dose-dependent reduction in motor activity. This effect in the DPPIV-deficient 

animals is based on the differences in the NPY catabolism between the F344 substrains with a 

DPPIV-dependent cleavage of NPY to the Y1 receptor unspecific NPY3-36 only in control rats. 

The dose-dependent differential response of the three F344 substrains with respect to this 

parameter supports our hypothesis regarding the DPPIV-dependent differential NPY 

catabolism in wildtype-like and mutant animals. 
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I.c.v. administration of NPY is also deeply involved in anxiety-like behaviors of rodents 

(Broqua et al., 1995; Heilig et al., 1989; Kask et al., 2002; von Horsten et al., 1998a). The 

results of several studies suggest a role for the Y1 receptor in mediating the anxiolytic-like 

action of NPY (Heilig et al., 1989; Kask and Harro, 2000; Kask et al., 2001a; Kask et al., 

1996; Wahlestedt et al., 1993), although also the Y2 (Kask et al., 2001a; Kask et al., 1998) and 

Y5 (Sajdyk et al., 2002) receptor subtype could be involved. 

NPY administration had an anxiolytic-like effect in all substrains in the elevated plus maze, 

which could be influenced also by the sedative-like effect of NPY. At least, a very narrow 

pharmacological window in the F344 genetic background between sedative-like and 

anxiolytic-like effects of NPY especially in the elevated plus maze has to be considered in 

order to avoid false positive results. Therefore, we also applied the social interaction test for 

recording the anxiolytic-like potency of NPY, in which the DPPIV-deficient rats exhibited an 

increased anxiolytic-like response (independent from the sedative-like effect) to the NPY 

administration compared to the wildtype-like animals. Motor activity was dose-dependently 

reduced by NPY treatment, but despite this sedative effect on ambulatory activity, social-like 

behaviors remained unaffected by NPY. Overall, these data show the suggested differences 

between the wildtype-like and mutant F344 substrains regarding their NPY catabolism 

because of the more potent Y1 receptor-mediated anxiolytic-like and sedative-like effects of 

the neurotransmitter in the mutant, DPPIV-deficient animals. The differences in anxiety levels 

in the social interaction test between the two DPPIV-deficient substrains F344/DuCrj(DPPIV-

) and F344/Crl(Ger/DPPIV-) are probably dependent on segregation-based differences in the 

genetic background between these substrains.  

Centrally injected NPY exerted a dose-dependent hypoalgesic effect only in the mutant rats, 

whereas i.c.v. administration of the DPPIV inhibitor Ile-Thia had a hyperalgesic effect in the 

wildtype-like animals. The effect of NPY on nociception is discussed controversially, 

although there is evidence for the presence of NPY-immunoreactivity in some areas of the 

CNS, which are involved in pain modulation (Broqua et al., 1996; Jolicoeur et al., 1991). 

I.c.v. or intrathecal administration of NPY in the hot plate paradigm produced a dose-

dependent elevation in the nociceptive threshold (Hua et al., 1991; Merlo Pich et al., 1990). In 

other studies NPY induced hyperalgesia (Broqua et al., 1996; von Horsten et al., 1998b) or 

did not have any effect on nociception (Heilig et al., 1993; Heilig et al., 1992; Heilig et al., 

1989; Jolicoeur et al., 1991). However, Y1 receptor knockout mice develop hyperalgesia to 

acute thermal pain (Naveilhan et al., 2001a). Therefore, it is concluded that the Y1 receptor is 
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required for central physiological and pharmacological NPY-induced analgesia (Broqua et al., 

1996; Wang et al., 2000). 

The results of our study could point towards a Y1 receptor-mediated analgetic-like effect of 

NPY. Wildtype-like F344/Crl(Por) rats with a normal DPPIV-like activity lost more rapidly 

the Y1 receptor subtype-specific affinity of exogenously administered NPY by DPPIV-

dependent cleavage processes than the DPPIV-deficient animals. In the mutant rats the 

exogenously administered native and non-cleaved NPY decreased their pain sensitivity, which 

is a strong hint for the antinociceptive effect of i.c.v. applied NPY. The hyperalgesic 

phenotype of the vehicle-treated DPPIV-deficient F344/DuCrj(DPPIV-) and 

F344/Crl(Ger/DPPIV-) animals was already discussed as an effect of the reduced anxiety 

levels and concomitant reduced stress-induced analgesia of these animals (Karl et al., 2003c). 

NPY-deficient mice appear to be hypoalgesic in the hot plate paradigm (Bannon et al., 2000). 

Also these mice exhibit an anxiogenic-like phenotype (such as F344/Crl(Por) rats). Their 

increased anxiety seems to increase their pain threshold probably by stress-induced analgesia, 

which is associated with or even triggered by a release of analgesia-inducing endogenous 

opioid peptides from central and peripheral sites (Kelley, 1986). This process could also occur 

in our wildtype-like rats. Furthermore, a potent stress-induced NPY release in the wildtype-

like animals paired with the described stress-induced analgesia could manifest in the observed 

hypoalgesic phenotype. In addition, substance P and endomorphin-2, two other substrates of 

the DPPIV are involved in nociception and could be differentially degraded in the different 

substrains. 

I.c.v. treatment with the DPPIV-inhibitor Ile-Thia exhibited no effects in the DPPIV-deficient 

animals but rather exerted an hyperalgesic effect in the control animals. This could be based 

on DPPIV inhibition-caused reduced anxiety levels in the wildtype-like animals, which could 

be linked to a decrease in endogenous NPY-release and a reduction in stress-induced 

analgesia.  

In conclusion, this third experimental step demonstrates for the first time a differential 

potency and specificity of exogenously administered NPY between wildtype-like and DPPIV-

deficient rat substrains (based on differential cleavage processes of NPY). Thereby, the study 

supports the concept that these animals provide a useful model to study the various behavioral 

and physiological effects associated with DPPIV-enzymatic activity. Furthermore, we could 

confirm the stimulatory effect of NPY on feeding behavior (food intake) and its sedative-like, 

anxiolytic-like, and probably also analgetic-like effect in rats. 
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In the present series of studies we found an overall wide range of differences between the 

wildtype-like and DPPIV-deficient F344 substrains. These differences seem to be based on a 

differential DPPIV-dependent cleavage of regulatory peptides such as enterostatin, GLP-1, 

and especially NPY. The results of the i.c.v. administration of NPY show that the mutant 

animals exhibited an increased responsiveness to the sedative-like, anxiolytic-like effect, and 

probably analgetic-like effect of i.c.v.-administered NPY, which is most likely mediated via 

increased and prolonged activation of NPY Y1 receptor-dependent pathways and mechanisms. 

Thus, a differential cleavage of NPY in our different substrains is strongly suggested and can 

be considered at least as one of the main reasons for the observed differences in behavior and 

physiology between wildtype-like and DPPIV-deficient rats. Our F344 substrains 

F344/Crl(Por), F344/DuCrj(DPPIV-), and F344/Crl(Ger/DPPIV-) represent an excellent and 

valid animal model to study the “DPPIV-NPY-axis” and other DPPIV-dependent behavioral 

and physiological processes. Furthermore, these animals could serve as a physiological and 

molecular model for behavioral modulations. Since pharmacological inhibition of DPPIV-like 

activity has been demonstrated to potentiate the effects of NPY administration in vivo 

(Dimitrijevic et al., 2002), it seems possible that DPPIV inhibitors specifically targeting the 

CNS are useful modifiers of centrally mediated effects of NPY. 



 181  
 
 
 

8. References 

Ahren, B, Holst, JJ, Martensson, H, Balkan, B. Improved glucose tolerance and insulin 

secretion by inhibition of dipeptidyl peptidase IV in mice. Eur J Pharmacol. 2000; 

404:239-45. 

Allen, YS, Adrian, TE, Allen, JM, Tatemoto, K, Crow, TJ, Bloom, SR, Polak, JM. 

Neuropeptide Y distribution in the rat brain. Science. 1983; 221:877-9. 

Balkan, B, Kwasnik, L, Miserendino, R, Holst, JJ, Li, X. Inhibition of dipeptidyl peptidase IV 

with NVP-DPP728 increases plasma GLP-1 (7-36 amide) concentrations and 

improves oral glucose tolerance in obese Zucker rats. Diabetologia. 1999; 42:1324-31. 

Bannon, AW, Seda, J, Carmouche, M, Francis, JM, Norman, MH, Karbon, B, McCaleb, ML. 

Behavioral characterization of neuropeptide Y knockout mice. Brain Res. 2000; 

868:79-87. 

Baraban, SC, Hollopeter, G, Erickson, JC, Schwartzkroin, PA, Palmiter, RD. Knock-out mice 

reveal a critical antiepileptic role for neuropeptide Y. J Neurosci. 1997; 17:8927-36. 

Bernard, AM, Mattei, MG, Pierres, M, Marguet, D. Structure of the mouse dipeptidyl 

peptidase IV (CD26) gene. Biochemistry. 1994; 33:15204-14. 

Biello, SM. Enhanced photic phase shifting after treatment with antiserum to neuropeptide Y. 

Brain Res. 1995; 673:25-9. 

Biello, SM, Janik, D, Mrosovsky, N. Neuropeptide Y and behaviorally induced phase shifts. 

Neuroscience. 1994; 62:273-9. 

Biello, SM, Mrosovsky, N. Blocking the phase-shifting effect of neuropeptide Y with light. 

Proc R Soc Lond B Biol Sci. 1995; 259:179-87. 

Bischoff, A, Michel, MC. Emerging functions for neuropeptide Y5 receptors. Trends 

Pharmacol Sci. 1999; 20:104-6. 

Blomqvist, AG, Herzog, H. Y-receptor subtypes--how many more? Trends Neurosci. 1997; 

20:294-8. 

Bouras, M, Huneau, JF, Luengo, C, Erlanson-Albertsson, C, Tome, D. Metabolism of 

enterostatin in rat intestine, brain membranes, and serum: differential involvement of 

proline-specific peptidases. Peptides. 1995; 16:399-405. 



 182  
 
 
Bouras, M, Huneau, JF, Tome, D. The inhibition of intestinal dipeptidylaminopeptidase-IV 

promotes the absorption of enterostatin and des-arginine-enterostatin across rat 

jejunum in vitro. Life Sci. 1996; 59:2147-55. 

Brief, DJ, Sipols, AJ, Woods, SC. Intraventricular neuropeptide Y injections stimulate food 

intake in lean, but not obese Zucker rats. Physiol Behav. 1992; 51:1105-10. 

Broqua, P, Wettstein, JG, Rocher, MN, Gauthier-Martin, B, Junien, JL. Behavioral effects of 

neuropeptide Y receptor agonists in the elevated plus-maze and fear-potentiated startle 

procedures. Behav Pharmacol. 1995; 6:215-22. 

Broqua, P, Wettstein, JG, Rocher, MN, Gauthier-Martin, B, Riviere, PJ, Junien, JL, Dahl, SG. 

Antinociceptive effects of neuropeptide Y and related peptides in mice. Brain Res. 

1996; 724:25-32. 

Buhling, F, Kunz, D, Reinhold, D, Ulmer, AJ, Ernst, M, Flad, HD, Ansorge, S. Expression 

and functional role of dipeptidyl peptidase IV (CD26) on human natural killer cells. 

Nat Immun. 1994; 13:270-9. 

Calza, L, Giardino, L, Zanni, M, Velardo, A, Parchi, P, Marrama, P. Daily changes of 

neuropeptide Y-like immunoreactivity in the suprachiasmatic nucleus of the rat. Regul 

Pept. 1990; 27:127-37. 

Clearly, J, Semotuk, M, Levine, AS. Effects of neuropeptide Y on short-term memory. Brain 

Res. 1994; 653:210-4. 

Colmers, WF, Wahlestedt, C eds. The biology of neuropepide Y and related peptides. Totowa 

and New Jersey: Humana Press; 1993. 

Crawley, JN. Behavioral phenotyping of transgenic and knockout mice: experimental design 

and evaluation of general health, sensory functions, motor abilities, and specific 

behavioral tests. Brain Res. 1999; 835:18-26. 

Crawley, JN, Paylor, R. A proposed test battery and constellations of specific behavioral 

paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. 

Horm Behav. 1997; 31:197-211. 

De Meester, I, Durinx, C, Bal, G, Proost, P, Struyf, S, Goossens, F, Augustyns, K, Scharpe, S. 

Natural substrates of dipeptidyl peptidase IV. Adv Exp Med Biol. 2000; 477:67-87. 

De Meester, I, Korom, S, Van Damme, J, Scharpe, S. CD26, let it cut or cut it down. Immunol 

Today. 1999; 20:367-75. 

Deacon, CF, Hughes, TE, Holst, JJ. Dipeptidyl peptidase IV inhibition potentiates the 

insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes. 

1998; 47:764-9. 



 183  
 
 
Dimitrijevic, M, Stanojevic, S, Vujic, V, Kovacevic-Jovanovic, V, Beck-Sickinger, A, 

Demuth, H, von Horsten, S. Effect of neuropeptide Y on inflammatory paw edema in 

the rat: involvement of peripheral NPY Y1 and Y5 receptors and interaction with 

dipeptidyl-peptidase IV (CD26). J Neuroimmunol. 2002; 129:35-42. 

Drucker, DJ. Glucagon-like peptides. Diabetes. 1998; 47:159-69. 

Dumont, Y, Jacques, D, Bouchard, P, Quirion, R. Species differences in the expression and 

distribution of the neuropeptide Y Y1, Y2, Y4, and Y5 receptors in rodents, guinea 

pig, and primates brains. J Comp Neurol. 1998; 402:372-84. 

Erickson, JC, Ahima, RS, Hollopeter, G, Flier, JS, Palmiter, RD. Endocrine function of 

neuropeptide Y knockout mice. Regul Pept. 1997; 70:199-202. 

Erickson, JC, Clegg, KE, Palmiter, RD. Sensitivity to leptin and susceptibility to seizures of 

mice lacking neuropeptide Y. Nature. 1996; 381:415-21. 

Erickson, RH, Suzuki, Y, Sedlmayer, A, Kim, YS. Biosynthesis and degradation of altered 

immature forms of intestinal dipeptidyl peptidase IV in a rat strain lacking the 

enzyme. J Biol Chem. 1992; 267:21623-9. 

Erlanson-Albertsson, C, York, D. Enterostatin--a peptide regulating fat intake. Obes Res. 

1997; 5:360-72. 

Flood, JF, Morley, JE. Dissociation of the effects of neuropeptide Y on feeding and memory: 

evidence for pre- and postsynaptic mediation. Peptides. 1989; 10:963-6. 

Fuxe, K, Agnati, LF, Harfstrand, A, Zini, I, Tatemoto, K, Pich, EM, Hokfelt, T, Mutt, V, 

Terenius, L. Central administration of neuropeptide Y induces hypotension bradypnea 

and EEG synchronization in the rat. Acta Physiol Scand. 1983; 118:189-92. 

Gehlert, DR. Multiple receptors for the pancreatic polypeptide (PP-fold) family: physiological 

implications. Proc Soc Exp Biol Med. 1998; 218:7-22. 

Gerald, C, Walker, MW, Criscione, L, Gustafson, EL, Batzl-Hartmann, C, Smith, KE, 

Vaysse, P, Durkin, MM, Laz, TM, Linemeyer, DL, Schaffhauser, AO, Whitebread, S, 

Hofbauer, KG, Taber, RI, Branchek, TA, Weinshank, RL. A receptor subtype 

involved in neuropeptide-Y-induced food intake. Nature. 1996; 382:168-71. 

Golombek, DA, Biello, SM, Rendon, RA, Harrington, ME. Neuropeptide Y phase shifts the 

circadian clock in vitro via a Y2 receptor. Neuroreport. 1996; 7:1315-9. 

Gossrau, R. Protease histochemistry of rats Fischer strain 344. Histochem J. 1990; 22:172-3. 

Heilig, M. Antisense inhibition of neuropeptide Y (NPY)-Y1 receptor expression blocks the 

anxiolytic-like action of NPY in amygdala and paradoxically increases feeding. Regul 

Pept. 1995; 59:201-5. 



 184  
 
 
Heilig, M, McLeod, S, Brot, M, Heinrichs, SC, Menzaghi, F, Koob, GF, Britton, KT. 

Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in amygdala, and 

dissociation from food intake effects. Neuropsychopharmacology. 1993; 8:357-63. 

Heilig, M, McLeod, S, Koob, GK, Britton, KT. Anxiolytic-like effect of neuropeptide Y 

(NPY), but not other peptides in an operant conflict test. Regul Pept. 1992; 41:61-9. 

Heilig, M, Murison, R. Intracerebroventricular neuropeptide Y suppresses open field and 

home cage activity in the rat. Regul Pept. 1987; 19:221-31. 

Heilig, M, Soderpalm, B, Engel, JA, Widerlov, E. Centrally administered neuropeptide Y 

(NPY) produces anxiolytic-like effects in animal anxiety models. 

Psychopharmacology (Berl). 1989; 98:524-9. 

Heilig, M, Wahlestedt, C, Widerlov, E. Neuropeptide Y (NPY)-induced suppression of 

activity in the rat: evidence for NPY receptor heterogeneity and for interaction with 

alpha-adrenoceptors. Eur J Pharmacol. 1988; 157:205-13. 

Heymann, E, Mentlein, R. Liver dipeptidyl aminopeptidase IV hydrolyzes substance P. FEBS 

Lett. 1978; 91:360-4. 

Hildebrandt, M, Reutter, W, Arck, P, Rose, M, Klapp, BF. A guardian angel: the involvement 

of dipeptidyl peptidase IV in psychoneuroendocrine function, nutrition and immune 

defence. Clin Sci (Lond). 2000; 99:93-104. 

Hildebrandt, M, Rose, M, Mayr, C, Schuler, C, Reutter, W, Salama, A, Klapp, BF. Alterations 

in expression and in serum activity of dipeptidyl peptidase IV (DPP IV, CD26) in 

patients with hyporectic eating disorders. Scand J Immunol. 1999; 50:536-41. 

Holst, JJ, Deacon, CF. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for 

type 2 diabetes. Diabetes. 1998; 47:1663-70. 

Hopsu-Havu, VK, Glenner, GG. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-

beta-naphthylamide. Histochemie. 1966; 7:197-201. 

Hua, XY, Boublik, JH, Spicer, MA, Rivier, JE, Brown, MR, Yaksh, TL. The antinociceptive 

effects of spinally administered neuropeptide Y in the rat: systematic studies on 

structure-activity relationship. J Pharmacol Exp Ther. 1991; 258:243-8. 

Inui, A. Neuropeptide Y feeding receptors: are multiple subtypes involved? Trends Pharmacol 

Sci. 1999; 20:43-6. 

Inui, A. Transgenic approach to the study of body weight regulation. Pharmacol Rev. 2000; 

52:35-61. 

Jolicoeur, FB, Bouali, SM, Michaud, JN, Menard, D, Fournier, A, St-Pierre, S. Structure-

activity analysis of the motor effects of neuropeptide Y. Brain Res Bull. 1995; 37:1-4. 



 185  
 
 
Jolicoeur, FB, Michaud, JN, Rivest, R, Menard, D, Gaudin, D, Fournier, A, St-Pierre, S. 

Neurobehavioral profile of neuropeptide Y. Brain Res Bull. 1991; 26:265-8. 

Kaga, T, Fujimiya, M, Inui, A. Emerging functions of neuropeptide Y Y(2) receptors in the 

brain. Peptides. 2001; 22:501-6. 

Kahne, T, Lendeckel, U, Wrenger, S, Neubert, K, Ansorge, S, Reinhold, D. Dipeptidyl 

peptidase IV: a cell surface peptidase involved in regulating T cell growth (review). 

Int J Mol Med. 1999; 4:3-15. 

Kalra, SP, Dube, MG, Pu, S, Xu, B, Horvath, TL, Kalra, PS. Interacting appetite-regulating 

pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999; 20:68-

100. 

Kamori, M, Hagihara, M, Nagatsu, T, Iwata, H, Miura, T. Activities of dipeptidyl peptidase 

II, dipeptidyl peptidase IV, prolyl endopeptidase, and collagenase-like peptidase in 

synovial membrane from patients with rheumatoid arthritis and osteoarthritis. 

Biochem Med Metab Biol. 1991; 45:154-60. 

Karl, T, Pabst, R, von Horsten, S. Behavioral phenotyping of mice in pharmacological and 

toxicological research. Exp Toxicol Pathol. 2003a; 55:69-83. 

Karl, T, Chwalisz, W, Wedekind, D, Hedrich, HJ, Hoffmann, T, Pabst, R, Von Horsten, S. 

Localization, transmission, spontaneous mutations, and variation of function of the 

Dpp4 (Dipeptidyl-peptidase IV; CD26) gene in rats. Regul Pept. 2003b; 115:81-90.  

Karl, T, Hoffmann, T, Pabst, R, Von Horsten, S. Extreme reduction of dipeptidyl-peptidase 

IV activity in F344 rat substrains results in major behavioral differences. Physiol 

Behav.  2003c; 80:123-134. 

Karl, T, Hoffmann, T, Pabst, R, Von Horsten, S. Behavioral effects of neuropeptide Y in F344 

rat substrains with a reduced dipeptidyl-peptidase IV activity. Pharmacol Biochem 

Behav. 2003d; 75:869-79. 

Karl, T, Hoffmann, T, Pabst, R, Von Horsten, S. Effects of neuropeptide Y on nociception in 

dipeptidyl-peptidase IV-deficient F344 rat substrains. 2003e; in preparation.  

Kask, A, Harro, J. Inhibition of amphetamine- and apomorphine-induced behavioural effects 

by neuropeptide Y Y(1) receptor antagonist BIBO 3304. Neuropharmacology. 2000; 

39:1292-302. 

Kask, A, Harro, J, von Horsten, S, Redrobe, JP, Dumont, Y, Quirion, R. The neurocircuitry 

and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci 

Biobehav Rev. 2002; 26:259-83. 



 186  
 
 
Kask, A, Kivastik, T, Rago, L, Harro, J. Neuropeptide Y Y1 receptor antagonist BIBP3226 

produces conditioned place aversion in rats. Prog Neuropsychopharmacol Biol 

Psychiatry. 1999; 23:705-11. 

Kask, A, Nguyen, HP, Pabst, R, Von Horsten, S. Neuropeptide Y Y1 receptor-mediated 

anxiolysis in the dorsocaudal lateral septum: functional antagonism of corticotropin-

releasing hormone-induced anxiety. Neuroscience. 2001a; 104:799-806. 

Kask, A, Rago, L, Harro, J. Anxiogenic-like effect of the neuropeptide Y Y1 receptor 

antagonist BIBP3226: antagonism with diazepam. Eur J Pharmacol. 1996; 317:R3-4. 

Kask, A, Rago, L, Harro, J. Anxiolytic-like effect of neuropeptide Y (NPY) and NPY13-36 

microinjected into vicinity of locus coeruleus in rats. Brain Res. 1998; 788:345-8. 

Kask, A, Vasar, E, Heidmets, LT, Allikmets, L, Wikberg, JE. Neuropeptide Y Y(5) receptor 

antagonist CGP71683A: the effects on food intake and anxiety-related behavior in the 

rat. Eur J Pharmacol. 2001b; 414:215-24. 

Kato, T, Nagatsu, T, Fukasawa, K, Harada, M, Nagatsu, I, Sakakibara, S. Successive cleavage 

of N-terminal Arg1--Pro2 and Lys3-Pro4 from substance P but no release of Arg1-

Pro2 from bradykinin, by X-Pro dipeptidyl-aminopeptidase. Biochim Biophys Acta. 

1978; 525:417-22. 

Kelley, DD. Stress-induced analgesia. Ann N Y Acad Sci. 1986; 467: 

Kelley, SP, Nannini, MA, Bratt, AM, Hodge, CW. Neuropeptide-Y in the paraventricular 

nucleus increases ethanol self-administration. Peptides. 2001; 22:515-22. 

Kieffer, TJ, McIntosh, CH, Pederson, RA. Degradation of glucose-dependent insulinotropic 

polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl 

peptidase IV. Endocrinology. 1995; 136:3585-96. 

Kushi, A, Sasai, H, Koizumi, H, Takeda, N, Yokoyama, M, Nakamura, M. Obesity and mild 

hyperinsulinemia found in neuropeptide Y-Y1 receptor-deficient mice. Proc Natl Acad 

Sci U S A. 1998; 95:15659-64. 

Larhammar, D, Wraith, A, Berglund, MM, Holmberg, SK, Lundell, I. Origins of the many 

NPY-family receptors in mammals. Peptides. 2001; 22:295-307. 

Lecci, A. Antinociceptive and pro-inflammatory roles for NPY Y(1) receptors. Trends 

Pharmacol Sci. 2001; 22:221. 

Levine, AS, Morley, JE. Neuropeptide Y: a potent inducer of consummatory behavior in rats. 

Peptides. 1984; 5:1025-9. 



 187  
 
 
Ludwig, K, Yan, S, Fan, H, Reutter, W, Bottcher, C. The 3D structure of rat DPPIV/CD26 as 

obtained by cryo-TEM and single particle analysis. Biochem Biophys Res Commun. 

2003; 304:73-7. 

Luttinger, D, Hernandez, DE, Nemeroff, CB, Prange, AJ, Jr. Peptides and nociception. Int 

Rev Neurobiol. 1984; 25:185-241. 

Maes, M, De Meester, I, Scharpe, S, Desnyder, R, Ranjan, R, Meltzer, HY. Alterations in 

plasma dipeptidyl peptidase IV enzyme activity in depression and schizophrenia: 

effects of antidepressants and antipsychotic drugs. Acta Psychiatr Scand. 1996; 93:1-8. 

Maes, M, De Meester, I, Vanhoof, G, Scharpe, S, Bosmans, E, Vandervorst, C, Verkerk, R, 

Minner, B, Suy, E, Raus, J. Decreased serum dipeptidyl peptidase IV activity in major 

depression. Biol Psychiatry. 1991; 30:577-86. 

Marguet, D, Baggio, L, Kobayashi, T, Bernard, AM, Pierres, M, Nielsen, PF, Ribel, U, 

Watanabe, T, Drucker, DJ, Wagtmann, N. Enhanced insulin secretion and improved 

glucose tolerance in mice lacking CD26. Proc Natl Acad Sci U S A. 2000; 97:6874-9. 

Marsh, DJ, Hollopeter, G, Kafer, KE, Palmiter, RD. Role of the Y5 neuropeptide Y receptor 

in feeding and obesity. Nat Med. 1998; 4:718-21. 

Mentlein, R. Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides. 

Regul Pept. 1999; 85:9-24. 

Merlo Pich, E, Solfrini, V, Marrama, P, Tiengo, M, Agnati, LF, Carani, C. Centrally 

administered neuropeptide Y fails to increase food intake but enhances hypoalgesia in 

spontaneously hypertensive rats. Neurosci Lett. 1993; 149:209-12. 

Merlo Pich, E, Zoli, M, Zini, I, Ferraguti, F, Solfrini, V, Tiengo, M, Fuxe, K, Agnati, LF. 

Effects of central administration of neuropeptide Y on vigilance and pain threshold in 

spontaneously hypertensive rats. Adv Pain Res Ther. 1990; 13:55-62. 

Merlo Pich, EM, Messori, B, Zoli, M, Ferraguti, F, Marrama, P, Biagini, G, Fuxe, K, Agnati, 

LF. Feeding and drinking responses to neuropeptide Y injections in the paraventricular 

hypothalamic nucleus of aged rats. Brain Res. 1992; 575:265-71. 

Michel, MC, Beck-Sickinger, A, Cox, H, Doods, HN, Herzog, H, Larhammar, D, Quirion, R, 

Schwartz, T, Westfall, T. XVI. International Union of Pharmacology 

recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic 

polypeptide receptors. Pharmacol Rev. 1998; 50:143-50. 

Millan, MJ. The induction of pain: an integrative review. Prog Neurobiol. 1999; 57:1-164. 

Morimoto, C, Schlossman, SF. The structure and function of CD26 in the T-cell immune 

response. Immunol Rev. 1998; 161:55-70. 



 188  
 
 
Morley, JE, Flood, JF. Neuropeptide Y and memory processing. Ann N Y Acad Sci. 1990; 

611:226-31. 

Nagakura, T, Yasuda, N, Yamazaki, K, Ikuta, H, Yoshikawa, S, Asano, O, Tanaka, I. 

Improved glucose tolerance via enhanced glucose-dependent insulin secretion in 

dipeptidyl peptidase IV-deficient Fischer rats. Biochem Biophys Res Commun. 2001; 

284:501-6. 

Nagata, T, al, e. Urinary dipeptidyl aminopeptidase IV (DAP IV) activity in patients with 

impaired glucose tolerance and diabetes mellitus. Journal of japanese diabetic society. 

1988; 31:169-71. 

Naveilhan, P, Canals, JM, Arenas, E, Ernfors, P. Distinct roles of the Y1 and Y2 receptors on 

neuropeptide Y-induced sensitization to sedation. J Neurochem. 2001a; 78:1201-7. 

Naveilhan, P, Hassani, H, Canals, JM, Ekstrand, AJ, Larefalk, A, Chhajlani, V, Arenas, E, 

Gedda, K, Svensson, L, Thoren, P, Ernfors, P. Normal feeding behavior, body weight 

and leptin response require the neuropeptide Y Y2 receptor. Nat Med. 1999; 5:1188-

93. 

Naveilhan, P, Hassani, H, Lucas, G, Blakeman, KH, Hao, JX, Xu, XJ, Wiesenfeld-Hallin, Z, 

Thoren, P, Ernfors, P. Reduced antinociception and plasma extravasation in mice 

lacking a neuropeptide Y receptor. Nature. 2001b; 409:513-7. 

Parker, RM, Herzog, H. Regional distribution of Y-receptor subtype mRNAs in rat brain. Eur 

J Neurosci. 1999; 11:1431-48. 

Pauly, RP, Demuth, HU, Rosche, F, Schmidt, J, White, HA, Lynn, F, McIntosh, CH, 

Pederson, RA. Improved glucose tolerance in rats treated with the dipeptidyl peptidase 

IV (CD26) inhibitor Ile-thiazolidide. Metabolism. 1999; 48:385-9. 

Pederson, RA, White, HA, Schlenzig, D, Pauly, RP, McIntosh, CH, Demuth, HU. Improved 

glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl 

peptidase IV inhibitor isoleucine thiazolidide. Diabetes. 1998; 47:1253-8. 

Pedrazzini, T, Seydoux, J, Kunstner, P, Aubert, JF, Grouzmann, E, Beermann, F, Brunner, 

HR. Cardiovascular response, feeding behavior and locomotor activity in mice lacking 

the NPY Y1 receptor. Nat Med. 1998; 4:722-6. 

Post, C, Paulsson, I. Antinociceptive and neurotoxic actions of substance P analogues in the 

rat's spinal cord after intrathecal administration. Neurosci Lett. 1985; 57:159-64. 

Pralong, FP, Corder, R, Gaillard, RC. The effects of chronic glucocorticoid excess, 

adrenalectomy and stress on neuropeptide Y in individual rat hypothalamic nuclei. 

Neuropeptides. 1993; 25:223-31. 



 189  
 
 
Redrobe, JP, Dumont, Y, Fournier, A, Quirion, R. The neuropeptide Y (NPY) Y1 receptor 

subtype mediates NPY-induced antidepressant-like activity in the mouse forced 

swimming test. Neuropsychopharmacology. 2002; 26:615-24. 

Reinhold, D, Kahne, T, Steinbrecher, A, Wrenger, S, Neubert, K, Ansorge, S, Brocke, S. The 

role of dipeptidyl peptidase IV (DP IV) enzymatic activity in T cell activation and 

autoimmunity. Biol Chem. 2002; 383:1133-8. 

Sainsbury, A, Schwarzer, C, Couzens, M, Fetissov, S, Furtinger, S, Jenkins, A, Cox, HM, 

Sperk, G, Hokfelt, T, Herzog, H. Important role of hypothalamic Y2 receptors in body 

weight regulation revealed in conditional knockout mice. Proc Natl Acad Sci U S A. 

2002; 99:8938-43. 

Sajdyk, TJ, Schober, DA, Gehlert, DR. Neuropeptide Y receptor subtypes in the basolateral 

nucleus of the amygdala modulate anxiogenic responses in rats. Neuropharmacology. 

2002; 43:1165-72. 

Sajdyk, TJ, Vandergriff, MG, Gehlert, DR. Amygdalar neuropeptide Y Y1 receptors mediate 

the anxiolytic-like actions of neuropeptide Y in the social interaction test. Eur J 

Pharmacol. 1999; 368:143-7. 

Schwartz, MW, Woods, SC, Porte, D, Jr., Seeley, RJ, Baskin, DG. Central nervous system 

control of food intake. Nature. 2000; 404:661-71. 

Shane, R, Wilk, S, Bodnar, RJ. Modulation of endomorphin-2-induced analgesia by 

dipeptidyl peptidase IV. Brain Res. 1999; 815:278-86. 

Shingu, K, Helfritz, A, Zielinska-Skowronek, M, Meyer-Olson, D, Jacobs, R, Schmidt, RE, 

Mentlein, R, Pabst, R, Von Horsten, S. CD26 expression determines lung metastasis in 

mutant F344 rats: involvement of NK cell function and soluble CD26. Cancer 

Immunol Immunother. 2003; in press.  

Stanley, BG, Kyrkouli, SE, Lampert, S, Leibowitz, SF. Neuropeptide Y chronically injected 

into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. 

Peptides. 1986; 7:1189-92. 

Tatemoto, K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl 

Acad Sci U S A. 1982; 79:5485-9. 

Tatemoto, K, Carlquist, M, Mutt, V. Neuropeptide Y--a novel brain peptide with structural 

similarities to peptide YY and pancreatic polypeptide. Nature. 1982; 296:659-60. 

Thiele, TE, Badia-Elder, NE. A role for neuropeptide Y in alcohol intake control: evidence 

from human and animal research. Physiol Behav. 2003; 79:95-101. 



 190  
 
 
Thiele, TE, Koh, MT, Pedrazzini, T. Voluntary alcohol consumption is controlled via the 

neuropeptide Y Y1 receptor. J Neurosci. 2002; 22:RC208. 

Thiele, TE, Marsh, DJ, Ste Marie, L, Bernstein, IL, Palmiter, RD. Ethanol consumption and 

resistance are inversely related to neuropeptide Y levels. Nature. 1998; 396:366-9. 

Thiele, TE, Miura, GI, Marsh, DJ, Bernstein, IL, Palmiter, RD. Neurobiological responses to 

ethanol in mutant mice lacking neuropeptide Y or the Y5 receptor. Pharmacol 

Biochem Behav. 2000; 67:683-91. 

Thompson, NL, Hixson, DC, Callanan, H, Panzica, M, Flanagan, D, Faris, RA, Hong, WJ, 

Hartel-Schenk, S, Doyle, D. A Fischer rat substrain deficient in dipeptidyl peptidase 

IV activity makes normal steady-state RNA levels and an altered protein. Use as a 

liver-cell transplantation model. Biochem J. 1991; 273:497-502. 

Thorsell, A, Michalkiewicz, M, Dumont, Y, Quirion, R, Caberlotto, L, Rimondini, R, Mathe, 

AA, Heilig, M. Behavioral insensitivity to restraint stress, absent fear suppression of 

behavior and impaired spatial learning in transgenic rats with hippocampal 

neuropeptide Y overexpression. Proc Natl Acad Sci U S A. 2000; 97:12852-7. 

Tracey, DJ, Romm, MA, Yao, NN. Peripheral hyperalgesia in experimental neuropathy: 

exacerbation by neuropeptide Y. Brain Res. 1995; 669:245-54. 

Tsuji, E, Misumi, Y, Fujiwara, T, Takami, N, Ogata, S, Ikehara, Y. An active-site mutation 

(Gly633-->Arg) of dipeptidyl peptidase IV causes its retention and rapid degradation 

in the endoplasmic reticulum. Biochemistry. 1992; 31:11921-7. 

Turnbull, AV, Ellershaw, L, Masters, DJ, Birtles, S, Boyer, S, Carroll, D, Clarkson, P, 

Loxham, SJ, McAulay, P, Teague, JL, Foote, KM, Pease, JE, Block, MH. Selective 

antagonism of the NPY Y5 receptor does not have a major effect on feeding in rats. 

Diabetes. 2002; 51:2441-9. 

Turton, MD, O'Shea, D, Gunn, I, Beak, SA, Edwards, CM, Meeran, K, Choi, SJ, Taylor, GM, 

Heath, MM, Lambert, PD, Wilding, JP, Smith, DM, Ghatei, MA, Herbert, J, Bloom, 

SR. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 

1996; 379:69-72. 

van West, D, Monteleone, P, Di Lieto, A, De Meester, I, Durinx, C, Scharpe, S, Lin, A, Maj, 

M, Maes, M. Lowered serum dipeptidyl peptidase IV activity in patients with anorexia 

and bulimia nervosa. Eur Arch Psychiatry Clin Neurosci. 2000; 250:86-92. 

Vanham, G, Kestens, L, De Meester, I, Vingerhoets, J, Penne, G, Vanhoof, G, Scharpe, S, 

Heyligen, H, Bosmans, E, Ceuppens, JL, et al. Decreased expression of the memory 



 191  
 
 

marker CD26 on both CD4+ and CD8+ T lymphocytes of HIV-infected subjects. J 

Acquir Immune Defic Syndr. 1993; 6:749-57. 

Vezzani, A, Civenni, G, Rizzi, M, Monno, A, Messali, S, Samanin, R. Enhanced neuropeptide 

Y release in the hippocampus is associated with chronic seizure susceptibility in kainic 

acid treated rats. Brain Res. 1994; 660:138-43. 

von Horsten, S, Exton, NG, Exton, MS, Helfritz, F, Nave, H, Ballof, J, Stalp, M, Pabst, R. 

Brain NPY Y1 receptors rapidly mediate the behavioral response to novelty and a 

compartment-specific modulation of granulocyte function in blood and spleen. Brain 

Res. 1998a; 806:282-6. 

von Horsten, S, Nave, H, Ballof, J, Helfritz, F, Meyer, D, Schmidt, RE, Stalp, M, Exton, NG, 

Exton, MS, Straub, RH, Radulovic, J, Pabst, R. Centrally applied NPY mimics 

immunoactivation induced by non-analgesic doses of met-enkephalin. Neuroreport. 

1998b; 9:3881-5. 

Wahlestedt, C, Pich, EM, Koob, GF, Yee, F, Heilig, M. Modulation of anxiety and 

neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science. 1993; 

259:528-31. 

Wang, JZ, Lundeberg, T, Yu, L. Antinociceptive effects induced by intra-periaqueductal grey 

administration of neuropeptide Y in rats. Brain Res. 2000; 859:361-3. 

Watanabe, Y, Kojima, T, Fujimoto, Y. Deficiency of membrane-bound dipeptidyl 

aminopeptidase IV in a certain rat strain. Experientia. 1987; 43:400-1. 

Wettstein, JG, Earley, B, Junien, JL. Central nervous system pharmacology of neuropeptide 

Y. Pharmacol Ther. 1995; 65:397-414. 

Williams, YN, Baba, H, Hayashi, S, Ikai, H, Sugita, T, Tanaka, S, Miyasaka, N, Kubota, T. 

Dipeptidyl peptidase IV on activated T cells as a target molecule for therapy of 

rheumatoid arthritis. Clin Exp Immunol. 2003; 131:68-74. 

Woldbye, DP, Larsen, PJ, Mikkelsen, JD, Klemp, K, Madsen, TM, Bolwig, TG. Powerful 

inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors. Nat Med. 

1997; 3:761-4. 

 

 



 192  
 
 

9. Curriculum vitae 

Present Address: 

Private:  Tim Karl  Office:  Dept. Functional and Applied  

   Fundstr. 3a    Anatomy 

   30161 Hannover   Hannover Medical School 

   Germany    Carl-Neuberg Str. 1 

   Tel: +49 511 8664739  30625 Hannover  

   Mobile: 01604000792  Germany 

   Email: tanda200973@yahoo.de Tel: +49 511 532 2871 

Fax: +49 511 532 8868 

 

Present Position: PhD-student for behavioral biology in a graduate programme of the 

German Research Foundation (DFG) at the Medical School of 

Hannover 

Nationality:  German 

Sex:   male 

20.9.1973:  born in Kirchhellen 

1980 - 1984:  primary school 

1984 - 1993:  secondary school and graduation from school (“Abitur”) 

1993 - 1994:  civil service in a children´s home and on a ward of the Department for 

Psychiatry of the St. Antonius Hospital in Bottrop-Kirchhellen 

1994 - 1999: study of biology and German for teaching in a secondary school at the 

Westfaelische Wilhelms-University (WWU) of Muenster 

1999:   graduation work: “Comparison of the mice strains AB/Gat,  

AB/Hal, and of the congene strain CS in their attack latency and in 

other physiological parameters” in the Department of Neurological and 

Behavioral Biology (Prof. Sachser) of the WWU Muenster  

June 2000:  graduation from university 

since 2001:  working as a PhD-student (for behavioral biology) at the Medical  

School of Hannover in the Department for Functional and Applied 

Anatomy (Prof. Pabst) under supervision of Prof. von Hoersten: 

 “Characterization of neuropeptide Y-mediated behavioral effects in 

F344 rat substrains with a differential dipeptidyl-peptidase IV 



 193  
 
 

(DPPIV; CD26) enzymatic activity” 

 

Additional education 

1996 – 1999:  working on a ward for handicapped women of the Stift Tilbeck  

in Havixbeck every second weekend; 

Nov. 1998:  scientist practicum in the animal station of the Department of 

Psychology (WWU Muenster) – observation of monkeys concerning 

their learning behavior 

1998 - 2000:  working as a tutor in the Department of Biology (WWU Muenster) 

1998 - 2001:  zoo guide in the “Westfälischer Zoologischer Garten Münster” –  

   organization of guided tours for the visitors 

 

Collaborations 

March 2002:  working as a visiting scientist at the Garvan Institute of Medical 

Research (Prof. Herzog) for 3 months - project: “Behavioral 

phenotyping of NPY Y1 knockout animals”  

Feb. 2003:  second visit of the Garvan Institute of Medical Research (Prof. Herzog) 

for 2 months - project: “Characterization of NPY Y1 and Y2 germline 

knockout and Y1 conditional knockout animals in regard to aggression”  

 

Conferences/Workshops 

July 1999:  participation in a behavioral biology workshop in the Department of  

Animal Physiology (University Bayreuth) (Prof. von Holst) 

Sept. 1999:  attendance at the 1. German Endocrine Brain Immune Network 

(GEBIN)-symposium in Essen (poster presentation) 

Sept. 2001:  attendance at the 2. GEBIN-symposium in Regensburg 

Aug. 2002:  attendance at the 1. European Conference on Behavioral  

Biology in Muenster 

Okt. 2003:  attendance at the 3. GEBIN-symposium in Munich (oral presentation) 

 

 

 

3.10.03 



 194  
 
 
10. Publication list: 

 

Original publications 

Karl, T., Chwalisz, W.T., Wedekind, D., Hedrich, H.J., Hoffmann, T., Jacobs, R., Pabst, R., 

and von Horsten, S.: Localization, transmission, spontaneous mutations, and variation of 

function of the Dpp4 (Dipeptidyl-peptidase IV ; CD26) gene in rats. Regul Pept 115. 2003. 

81-90. 

 

Karl, T., Hoffmann, T., Pabst, R., and von Horsten, S.: Extreme reduction of dipeptidyl-

peptidase IV activity in F344 rat substrains results in major behavioral differences. Physiol 

Behav 80. 2003. 123-134. 

 

Karl, T., Hoffmann, T., Pabst, R., and von Horsten, S.: Behavioral effects of neuropeptide Y 

in F344 rat substrains with a reduced dipeptidyl-peptidase IV activity. Pharmacol Biochem 

Behav 75. 2003. 869-79. 

 

Reviews and contributions to books 

Karl, T., Pabst, R., and von Horsten, S.: Behavioral phenotyping of mice in pharmacological 

and toxicological research. Exp Toxicol Pathol 55 (1). 2003. 69-83. 

 

Von Horsten, S., Hoffmann, T., Alfalah, M., Wrann, D.C., Karl, T., Pabst, R., and Bedoui, S.: 

Formation, storage, release and degradation of NPY, PYY and PP. In: Michel, M.C. (ed.): 

Handbook of Experimental Pharmacology: Neuropeptide Y and related peptides. Springer Verlag 

Berlin. 2003. In press. 

 

 

 



 195  
 
 
11. Erklärung 
Hiermit erkläre ich, Tim Karl, dass die hier vorliegende Dissertation von mir selbstständig 

verfasst wurde, alle benutzten Hilfsmittel und Quellen sowie die zur Hilfeleistung 

herangezogenen Institutionen vollständig angeben worden sind, und dass die Dissertation 

nicht schon als Diplomarbeit oder ähnliche Prüfungsarbeit verwendet worden ist. 

 

 

 

 

3.10.2003 

 

 



 196  
 
 
12. Danksagung 
Ich danke: 

Prof. Stephan von Hörsten für die hervorragende und über das normale Maß weit 

hinausgehende sehr persönliche Betreuung, für die Unterstützung meiner Australienpläne, für 

die Akzeptanz meiner Persönlichkeit, meiner ethischen Bedenken und für all die anderen 

Dinge, die hier jetzt nicht aufgezählt werden können und sollen – ich hoffe, dass die in den 

letzten 2,5 Jahren entstandene Freundschaft über die nächsten Jahre und über Sydney hinaus 

Bestand haben wird – privat wie beruflich! 

Prof. Pabst für die Möglichkeit, in seiner Abteilung meine Promotionsarbeit durchzuführen, 

für die Akzeptanz meines persönlichen Arbeitsstils und -outfits und vor allen Dingen für die 

ständige Möglichkeit, um Rat fragen zu können 

Susanne Kuhlmann und Susanne Faßbender für die bereitwillige und geduldige Hilfe bei 

meinen leicht chaotischen Einfällen ins Labor – und die persönliche Arbeitsatmosphäre 

Dr. Hama und Dr. Kruschinski dafür, dass sie Teil unserer Arbeitsgruppe sind/waren 

Sheila Fryk für das ständige Bemühen, mein Englisch zu optimieren 

der gesamten Abteilung für Funktionelle und Angewandte Anatomie für die äußerst 

angenehme und lockere Arbeitsatmosphäre – ich habe die letzten 2,5 Jahre sehr genossen 

PD Marie-Luise Enss für die sehr persönliche und fast schon mütterliche Unterstützung im 

Rahmen des Graduiertenkollegs 

Prof. Hedrich für die immer vorhandene Bereitschaft, 2 Minuten Zeit zu haben und 

Extrawünschen bzgl. Tierhaltung und Auslandsaufenthalten nachzukommen 

allen Mitarbeitern des Zentralen Tierlabors (speziell PD Michael Mähler, Dr. Wedekind, und 

Matthias Meyer), die immer Zeit für eine kurze Frage oder ein lockeres Gespräch hatten – 

trotz Auswärtssieg;-) 

allen Tierpflegern, die sich immer nach meinen speziellen Wünschen auch im Umgang mit 

meinen Ratten gerichtet haben (besonders Petra und Conny) 



 197  
 
 
Frau Lechte für ihre Freundlichkeit und ihre Hilfe bei „administrativen“ Schwierigkeiten 

allen beteiligte Kooperationspartnern 

Prof. Herzog and his team (especially Michelle and Dana) for the great time at the Garvan 

allen Mitgraduierten und –kollegiaten – speziell Robert Dallmann und Wojciech Chwalisz – 

für die lockere Atmosphäre und das fachliche Feedback 

Dirk Oldenbürger und Andreas Bösing, die mich bei der Entscheidung nach Hannover zu 

gehen und das Abenteuer Promotion zu wagen, unterstützt haben 

Nicole Schreiner für die Re-Orientierung nach Sydney 2003 und für die Ehre des Patenonkels 

Thomas Gebhardt und Andreas Kromer für den ständigen “social support” – mit Euch 

schmeckt Sahne doppelt so lecker;-) 

meiner Katze Tanda für ihr Dasein und das Nichtweglaufen seit 10 Jahren 

meinen Eltern, ohne deren finanzielle Unterstützung ich diesen (Traum-)Beruf nie hätte 

realisieren können – und dafür, dass in Kirchhellen immer eine Tür offensteht 

und zum Schluß natürlich all meinen Ratten, die an den Experimenten teilgenommen 

haben/teilnehmen mußten und ohne die diese Promotion nicht möglich gewesen wäre 

 


