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Abstract

The description of few-nucleon systems in terms of a two-nucleon potential and a corresponding electroweak
current of one- and two-nucleon nature has been quite successful in general. Disagreements remain in detail.
They are indicators for necessary corrections of the employed dynamics. The standard hypothesis for resolving
those disagreements is the addition of a three-nucleon potential to the Hamiltonian and of corresponding parts to
the electroweak exchange current. This thesis follows that idea in a particular way: Beside nucleons the∆-isobar
degree of freedom is considered explicitly in the description, i.e., in the Hilbert space and by use of a two-baryon
coupled-channel potential and of a coupled-channel electroweak current. The∆ isobar is the lowest resonance of
the nucleon; it has spin and isospin3

2; it shows up in a pronounced way in pion-nucleon scattering. In the three-
nucleon system the∆ isobar mediates an effective three-nucleon force beside two-nucleon effects and yields
effective two- and three-nucleon contributions to the current. The thesis investigates to what extent mechanisms
due to the virtual excitation of a∆-isobar are able to remove the discrepancies existing between the standard
purely nucleonic description and experimental data. Three-nucleon hadronic reactions, i.e., elastic nucleon-
deuteron scattering and nucleon-deuteron breakup, and three-nucleon electromagnetic reactions, i.e., nucleon-
deuteron radiative capture and two- and three-body photo and electro disintegration of the three-nucleon bound
state, are considered. The available reaction energy remains below pion-production threshold.

A new realistic coupled-channel potential CD Bonn +∆ is constructed; it is an extension of the purely
nucleonic charge-dependent CD Bonn potential; itsχ2=datum= 1:02 is as good as for the best existing purely
nucleonic potentials. The employed electroweak current is adapted to the coupled-channel potential as much
as possible. In contrast to traditional irreducible three-nucleon forces and to irreducible two- and three-nucleon
contributions to the electroweak current, based solely on pion exchange, the effective nucleonic forces and
the effective nucleonic electroweak currents arising from the coupled-channel potential take exchanges of pion,
rho, omega and sigma mesons into account; the coupled-channel potential and the coupled-channel electroweak
current make all those effective nucleonic contributions mutually consistent.

A novel momentum-space technique for solving the three-baryon bound-state and scattering equations
exactly is developed. The technique is applicable to any two-baryon potential, however, not to Coulomb with
its long range. It is based on the expansion of the two-baryon transition matrix and of the deuteron wave
function in terms of Chebyshev polynomials. The Chebyshev expansion is found to be highly efficient, reliable
when used for interpolation and systematic.

The new coupled-channel potential and the new technique for solving three-particle equations are the theo-
retical backbone of the thesis. Selected results of calculations are compared with the available experimental data
of the three-nucleon bound state and of the considered three-nucleon reactions. The coupled-channel potential
yields additional binding in the three-nucleon bound state, but it remains unable to account for its binding in
full. In all reactions∆-isobar effects are very small at low energies, except for observables scaling with three-
nucleon binding. Thus, long-standing discrepancies like theAy-puzzle of elastic nucleon-deuteron scattering
around 10 MeV nucleon lab energy and the space star anomaly in nucleon-deuteronbreakup around 13 MeV nu-
cleon lab energy cannot be resolved. The∆-isobar effects become more visible at higher energies; they are often
beneficial for a satisfactory description of the experimental data, e.g., they significantly reduce the discrepan-
cies for the differential cross section and for the nucleon analyzing power of elastic nucleon-deuteron scattering
above 100 MeV nucleon lab energy, though their success is not a general one for all measured observables.

Keywords: Three-nucleon system, baryon-baryon interaction,∆-isobar excitation





Kurzzusammenfassung

Die Beschreibung von Wenignukleonen Systemen, basierend auf einem Zweinukleonen Potential und einem
entsprechenden elektroschwachen Strom von Ein- und Zweinukleonen Natur, ist im allgemeinen ziemlich er-
folgreich. Es gibt aber auch einige Ausnahmen, die auf die Notwendigkeit für Korrekturen in der benutzten
Dynamik hinweisen. Die übliche Korrektur ist die Ergänzung des Hamiltonoperators durch eine Dreinuk-
leonen Kraft und die Hinzunahme eines entsprechenden Strombeitrags. Diese Arbeit folgt dieser Idee auf
eine besondere Weise: Neben Nukleonen wird auch das∆-Isobar explizit berücksichtigt, d.h. im Hilbertraum,
durch Benutzung eines Zweibaryonen-Potentials mit Kanalkopplung und eines elektroschwachen Stroms mit
Kanalkopplung. Das∆-Isobar ist die niedrigste Resonanz des Nukleons; es hat Spin und Isospin3

2; es wird
besonders in der Pion-Nukleon Streuung sichtbar. Im Dreinukleonen System liefert das∆-Isobar eine ef-
fektive Dreinukleonen Kraft neben Zweinukleonen Effekten und effektive Zwei- und Dreinukleonen Beiträge
zum Strom. Diese Arbeit untersucht, inwieweit die existierenden Diskrepanzen zwischen der rein nukleoni-
schen Standardbeschreibung und experimentellen Daten durch die von dem∆-Isobar vermittelten effektiven
Kräfte und Ströme behoben werden können. Hadronische Dreinukleonen Reaktionen, d.h., elastische Nuk-
leon-Deuteron Streuung und Nukleon-Deuteron Aufbruch, sowie elektromagnetische Dreinukleonen Reaktio-
nen, d.h., Nukleon-Deuteron Strahlungseinfang und Zwei- und Dreikörper Photo- und Elektrodisintegration
des Dreinukleonen Bindungszustandes, werden betrachtet. Die Reaktionsenergien verbleiben unterhalb der
Pionenproduktionsschwelle.

Ein neues realistisches Potential mit Kanalkopplung CD Bonn +∆ ist in dieser Arbeit konstruiert; es ist eine
Erweiterung des rein nukleonischen ladungsabhängigen CD Bonn Potentials; sein Fehlerquadratχ2=datum=
1:02 ist so gut wie bei den besten rein nukleonischen Potentialen. Während die traditionellen irreduziblen
Dreinukleonen Kräfte und irreduziblen Zwei- und Dreinukleonen Ströme gewöhnlich auf den Austausch des
Pions beschränkt sind, berücksichtigen die von dem neuen Potential durch∆-Isobar Anregung vermittelten
effektiven nukleonischen Kräfte und die effektiven nukleonischen elektroschwachen Ströme den Austausch
von Pion, Rho, Omega und Sigma Mesonen. Das Potential mit Kanalkopplung und der elektroschwache Strom
mit Kanalkopplung machen alle effektiven nukleonischen Beiträge gegenseitig konsistent.

Ein neues Verfahren zur exakten Lösung der Dreibaryonen Gleichungen im Impulsraum ist in der vorliegen-
den Arbeit entwickelt. Das Verfahren ist anwendbar auf beliebige Zweibaryonen Potentiale, aber nicht auf das
langreichweitige Coulomb Potential. Das Verfahren basiert auf der Darstellung der Zweibaryonen Übergangs-
matrix und der Deuteron Wellenfunktion durch Chebyshev Polynome. Diese Darstellung erlaubt eine effiziente
und verläßliche Interpolation, und sie ist systematisch.

Das neue Potential mit Kanalkopplung und das neue Verfahren zur Lösung der Dreiteilchen Gleichungen
bilden das theoretische Rückgrat der Arbeit. Ausgewählte Ergebnisse der Rechnungen werden mit den experi-
mentellen Daten für Dreinukleonen Observable verglichen. Das Potential mit Kanalkopplung liefert zusätzliche
Bindung im Dreinukleonen Bindungszustand, kann aber trotzdem den experimentellen Wert der Bindungs-
energie nicht exakt reproduzieren. In allen Reaktionen sind die∆-Isobar Effekte sehr klein bei niedrigen Ener-
gien, bis auf die Observablen, die mit der Bindungsenergie skalieren. Somit können die schon seit langem beste-
henden Diskrepanzen, wie die sogenannteAy-puzzlein der elastischen Nukleon-Deuteron Streuung bei 10 MeV
Nukleon Laborenergie und dieSpace StarAnomalie im Nukleon-Deuteron Aufbruch bei 13 MeV Nukleon La-
borenergie, nicht behoben werden. Die∆-Isobar Effekte werden größer bei höheren Energien; sie verbessern
oft die Übereinstimmung zwischen den theoretischen Vorhersagen und den experimentellen Daten, z.B., sie
verringern merklich die Diskrepanz im differentiellen Wirkungsquerschnitt und in der Nukleon Analysierstärke
der elastischen Nukleon-Deuteron Streuung oberhalb 100 MeV Laborenergie des Nukleons. Es gibt jedoch
auch einige Observable, für die das∆-Isobar keine Verbesserung der Beschreibung liefert.

Schlagwörter: Dreinukleonen System, Baryon-Baryon Wechselwirkung,∆-Isobar Anregung
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1
Introduction

The three-nucleon system has played and still plays an important role in the development of under-
standing the forces between nucleons. Though from a present point of view quarks and gluons are the
elementary strongly-interacting particles which build mesons, nucleons and other baryons and though
the nuclear forces are believed to be effective interactions resulting from the fundamental quark-gluon
interaction, the underlying theory, i.e., quantum chromodynamics, has not yet been successfully ap-
plied for a quantitative explanation of low-energy nuclear phenomena in general and of nuclear forces
in particular. Instead, the construction of nuclear forces is based on effective non-fundamental inter-
actions, i.e., on meson exchange between the nucleons, supplemented by phenomenological assump-
tions. The resulting potential models for the nucleon-nucleon(NN) force contain a number of free
parameters which are fitted to the two-nucleon data; the three-nucleon system, being simple enough
to be solved exactly and at the same time being rich physicswise, provides an excellent field to test
such semi-phenomenological interaction models in a nontrivial way.

A mathematically rigorous three-particle quantum scattering theory was developed in 1960 by
L. D. Faddeev [1], who proposed a set of coupled integral equations with a compact kernel which
have an unique solution in contrast to earlier formulations based on the Lippmann-Schwinger formal-
ism; in addition, the Faddeev equations simplified also the solution of the three-particle bound-state
problem. Since then, a lot of calculations for the three-nucleon system have been carried out. Whereas
the first of them still involved various approximations, later on, with the advent of more advanced com-
puters, it has become possible to gain numerically exact solutions of the Faddeev or their equivalent
Alt-Grassberger-Sandhas (AGS) equations [2] both for the three-nucleon bound-state and recently
also for the three-nucleon continuum problem.

At the same time, more and more realisticNN-potential models have been developed; the most
refined of them, the so-called new-generation potentials [3–5], describe the two-nucleon data up to the
pion-production threshold almost perfectly, i.e., their values ofχ2=datum are close to one. Together
with the advanced numerical methods for solving few-particle equations, those potentials form a solid
basis to study few-nucleon systems. It was found that a nuclear Hamiltonian with thoseNN poten-
tials describes few-nucleon systems rather well. However, there are disagreements in detail which are
indicators for corrections of such a simple nuclear Hamiltonian. E.g., none of theNN potentials can
reproduce the experimental value of the three-nucleon binding energy; furthermore, all light nuclei
beyond the deuteron are systematically underbound [6]. With respect to low-energy nucleon-deuteron
(Nd) scattering, the theoretical description in terms of realistic two-nucleon potentials has been gen-
erally quite successful with few exceptions, i.e., some very-low-energy observables are correlated
with the underbinding of the three-nucleon bound-state and there are also long-standing discrepancies
in the nucleon and deuteron vector analyzing powers around 10 MeV nucleon lab energy [7, 8]. In
recent years experimental efforts have been made in getting high-precision data of nucleon-deuteron
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scattering at intermediate energies [9–13]. There, also clear discrepancies between the theoretical pre-
dictions and experimental data for a number of observables were found; the most famous one is the
underestimation of the differential cross section of elastic nucleon-deuteron scattering in the diffrac-
tion minimum region, the so-calledSagara discrepancy. An additional test of the nuclear Hamiltonian
and of the corresponding nuclear current can be done by investigating electroweak processes in the
three-nucleon system. Though the experimental data for electroweak reactions are much scarcer, some
of them also indicate possible discrepancies between theory and experiment.

One hypothesis for resolving those problems for hadronic processes is the addition of a three-nucle-
on force (3NF) to the nuclear Hamiltonian. The dominant part of most three-nucleon forces is based on
two-pion exchange with intermediate∆-isobar excitation, the so-called Fujita-Miyazawa force [14].
However, strictly speaking, most irreducible three-nucleon forces are an artefact of the theory; they
are created by freezing out degrees of freedom contained in a richer Hamiltonian of the same problem
under consideration. This fact suggests how one may learn some more physics from few-nucleon
systems: When beside the nucleon a new degree of freedom is introduced, i.e., it is allowed to become
active, it should be taken into account consistently in the two- and three-nucleon problem; in this
way, an irreducible three-nucleon force mediated by that new degree of freedom gets resolved into a
reducible effective one. That idea carries over to the exchange current in a corresponding way.

The work of this thesis follows that coupled-channel idea in a particular way: Beside the nucleon,
it considers also the∆ isobar explicitly in the Hilbert space, in a two-baryon coupled-channel potential
and in a coupled-channel current. The∆ isobar makes the dominant contribution to the pion-nucleon
resonance at 1232 MeV in theP33 partial wave. In a quark-model description, it has an internal
structure comparable to that of the nucleon: The∆ isobar has the same spatial quark distribution
with the same quark flavors as the nucleon, though its flavor-spin distribution is different, i.e., it has
spin and isospin3

2. Thus, the∆ isobar is a baryon which in the nuclear medium should be treated
on the same footing as the nucleon. Even at low energies it can virtually be excited by interactions.
In the three-nucleon system the∆ isobar mediates an effective three-nucleon force and contributes
to the effective two- and three-nucleon electroweak exchange current; they have different properties
compared to the corresponding irreducible ones. At intermediate energies the∆ isobar yields, in
principle, a mechanism for pion production and absorption. A non-covariant Hamiltonian with a
two-baryon coupled-channel potential allowing the∆ isobar a further coupling to pion-nucleon states
can therefore provide a common unifying basis [15] for nuclear phenomena at low and intermediate
energies. However, the description in this thesis is confined to processes below the pion-production
threshold; the coupling of the∆ isobar to pion-nucleon states is therefore omitted, and the∆ isobar is
considered a stable baryon of mass 1232 MeV.

Thus, the objective of this thesis is to investigate to what extent mechanisms due to∆-isobar
excitation, i.e., the effective three-nucleon force and the effective two- and three-nucleon exchange
current, are able to remove the existing discrepancies between theoretical description and experimental
data for elastic nucleon-deuteron scattering and for nucleon-deuteron breakup, i.e., for

N+d! N+d; (1.1a)

N+d! N+N+N; (1.1b)

for nucleon-deuteron radiative capture and for photo disintegration of the three-nucleon bound state,
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i.e., for

N+d! 3He(3H)+ γ; (1.2a)

γ+ 3He(3H)! N+d; (1.2b)

γ+ 3He(3H)! N+N+N; (1.2c)

and for inelastic electron scattering from the three-nucleon bound state, i.e., for

e+ 3He(3H)! e0+N+d; (1.3a)

e+ 3He(3H)! e0+N+N+N: (1.3b)

The Coulomb interaction between two protons is not taken into account; integral equations in mo-
mentum space are not suited for the long-range Coulomb interaction. The predictions of this thesis
were therefore without flaw for neutron-deuteron(nd) scattering and for electromagnetic (e.m.) re-
actions on3H. However, the comparison with data has mostly to be carried out with the much more
abundant and much more accurate data of proton-deuteron(pd) scattering and of e.m. reactions on
3He; thus, the charge-dependent description of thenpp system uses the proper proton-proton(pp)
and neutron-proton(np) potentials, though without Coulomb.

The∆-isobar effects in the three-nucleon system have been already investigated in the past. The
properties of the three-nucleon bound state were described in Ref. [16], elastic nucleon-deuteron
scattering and breakup in Refs. [17–19] and some inelastic e.m. reactions of the three-nucleon system
in Refs. [20, 21]. However, compared with those earlier calculations the present description is with
respect to the dynamic input and with respect to the scope of applications a substantial improvement:

� A new technique [22] for solving three-particle equations is developed; it is based on theCheby-
shev expansionof the two-baryon transition matrix; it is found highly reliable and efficient. The
new technique replaces the old one of Refs. [17–21] requiring aseparable expansionof the
two-baryon transition matrix; though also quite reliable, at least at low energies, the need for
a separable expansion made the old technique rather inflexible in applications. In contrast, the
new one allows to use directly any two-nucleon potential and any coupled-channel extension of
it as dynamic input for the description of the three-nucleon bound state and of the three-nucleon
continuum. Thus, whereas the results of Refs. [16–21] were limited to the rather old Paris
potential [23], the present calculations will use modern new-generationNN potentials [3–5].

� The old construction of the two-baryon coupled-channel potential with∆-isobar excitation, us-
ing the simple subtraction technique of Ref. [16], has a serious defect: It ensures phase equiv-
alence with the nucleonic reference potential at zero two-nucleon kinetic energy only; phase
inequivalence arises in general and increases with increasing two-nucleon scattering energy,
making the potential not a realistic one. That fact has been known for long [24], but was consid-
ered tolerable as long as only the properties of the three-nucleon bound state and of low-energy
three-nucleon reactions were in focus. However, that phase inequivalence becomes unaccept-
able, once three-nucleon processes at moderate energies up to the pion-production threshold are
discussed. This thesis repairs the coupled-channel part of the dynamic input for the description
of the three-nucleon hadronic and e.m. reactions; it develops a new, well-fitted coupled-channel
potential [25], corresponding to a given nucleonic reference potential fully in its realistic nature.

� The description of the considered reactions is extended to energies up to the pion-production
threshold, whereas the results of Refs. [16–21] were limited mostly to rather low energies.
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Furthermore, the description of three-body photo and electro disintegration of the three-nucleon
bound state with∆-isobar excitation and full final-state interaction is given for the first time.

Chapter 2 describes the three-baryon Hilbert space and the dynamics employed, i.e., the newly
developed two-baryon coupled-channel potential and the one- and two-baryon coupled-channel e.m.
current. Chapter 3 recalls the basic three-particle equations with channel coupling on which the theory
of this thesis rests; it indicates the calculational apparatus, relegating technical details to the appen-
dices. Chapter 4 presents the results for the three-nucleon bound state, Chapter 5 for elastic and
inelastic nucleon-deuteron scattering, Chapter 6 for three-nucleon photo reactions, and Chapter 7 for
three-nucleon electro disintegration. Chapter 8 discusses perturbation theory for nucleon-deuteron
scattering as a tool which may help to facilitate the physics understanding of three-nucleon processes.
Conclusions are given in Chapter 9.



2
Three-Nucleon Dynamics with∆-Isobar

Excitation

For notational convenience I use a system of units in which~ = c = 1; if needed, the expressions
containing~ andc can easily be recovered by dimensional analysis.

2.1 Hilbert Space

In the description of three-nucleon reactions I take the∆ isobar explicitly into account. Thus, the
three-baryon Hilbert space should be extended to contain beside the purely nucleonic sectorHN with
three nucleons also a sectors in which nucleons are excited to∆ isobars. Furthermore, the∆ iso-
bar makes the dominant contribution to the pion-nucleon resonance at 1232 MeV in theP33 partial
wave and it yields, in principle, a mechanism for pion production and absorption. A non-covariant
Hamiltonian with a two-baryon coupled-channel potential allowing the∆-isobar further coupling to
pion-nucleon states can therefore provide a common unifying basis [15] for nuclear phenomena at
low and intermediate energies. In this case the Hilbert space should include even a sectors with pi-
ons. However, since the inelasticities of two-nucleon scattering remain very small in isospin singlet
two-nucleon partial waves up to about 500 MeV center of mass (c.m.) energy and since the inelas-
ticities in the isospin triplet partial waves are in the same energy regime mostly due to single-pion
production, though energies may be well above two-pion threshold, the inelastic two-baryon chan-
nels are assumed to have single∆-isobar excitation at most [26]. Furthermore, the description is
confined at present to processesbelow the pion-production threshold. I therefore omit in this thesis,
as in Refs. [16–21], the coupling of the∆ isobar to pion-nucleon states and consider the∆ isobar a
stable baryon of mass 1232 MeV with spin and isospin3

2. Thus, the considered Hilbert space has two
sectors, i.e., the purely nucleonic oneHN and the sectorH∆ in which one nucleon is turned into a∆
isobar as displayed in Fig. 2.1.

The physical three-nucleon states have to be totally antisymmetric under the permutations of the
particles. In contrast, the Hilbert sectorH∆ contains states without any symmetry requirement for the
∆ isobar, since it is a baryon distinct from the nucleon. However, states with a∆ isobar do not have
life on their own; they couple to purely nucleonic, hence totally antisymmetric configurations. Since
the excitation of a nucleon to a∆ isobar is symmetric in the nucleons, only the totally antisymmetric
states with a∆ isobar couple and therefore need to be considered for the calculations of this thesis.

In the framework of the nonrelativistic quantum mechanics the c.m. and the internal motion can
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N N N N N ∆

�

HN H∆

Figure 2.1: Hilbert space considered. It consists of a purely nucleonic sectorHN and a sectorH∆ in
which one nucleon is turned into a∆ isobar, indicated by a thick vertical line.

be trivially separated by introducing Jacobi momenta

pα =
mγkβ�mβkγ

mβ +mγ
; (2.1a)

qα =
mα(kβ +kγ)� (mβ +mγ)kα

mα +mβ +mγ
; (2.1b)

K = kα +kβ +kγ; (2.1c)

with (αβγ) being cyclic permutations of (123);kα are the individual momenta,mα the particle
masses, withmα standing either for the averaged nucleon massmN = 938:9 MeV or for the mass
m∆ = 1232 MeV of the∆ isobar. The definition of Jacobi momenta (2.1) singles out baryonα which
is the spectator to the(βγ) particle pair. For the internal motion the partial-wave basis is employed,
i.e.,

jpqν(I j )iα = ∑
MI mj

∑
MT mt

jp(LS)IMI TMTBiαjq(ls) jmj tmtbiα

�hIMI jmj jJ MJ ihTMTtmt jT MT i:
(2.2)

The quantum numbers of the basis states are indicated in Fig. 2.2. The basis states (2.2) obviously do
not satisfy the full symmetry requirements of the physical states. They are antisymmetrized only in
the pair(βγ), i.e.,

jp(LS)IMI TMTBiα =
1p

2(1+B2)
(1�Pβγ)jp[L(sβsγ)S]IMI (tβtγ)TMTiαjbiβjbiγ; (2.3)

Pβγ being the permutation operator of the particlesβ and γ. The subscriptα at quantum numbers
is omitted, unless ambiguities could arise. The(I j ) coupling scheme is used. The orbital angular
momenta of the pairL and of the spectatorl are first coupled with their respective spinsS ands to
total pair and spectator angular momentaI and j which are then combined to total angular momentum
J with projectionMJ ; the parity quantum number can be derived according toΠ = (�)L(�)l . The
isospin coupling of the pair isospinT and of the spectator isospint is done correspondingly for total
isospinT with projectionMT . The additional quantum numbers(Bb) give the baryon characteris-
tics of the pair and of the spectator baryons,B = 1(0) standing for a two-nucleon (nucleon-∆) pair,
b = 1

2(�1
2) for a spectator nucleon (∆); baryon characteristics could be read off from the individ-

ual spin and isospin quantum numberss andt; the additional quantum numbers (Bb) are introduced
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γ

β

α

p[L(sβsγ)S]I(tβtγ)TB

q(ls) jtb

Figure 2.2: Three-baryon Jacobi momenta and discrete quantum numbers. The spectator baryon
is labeledα, the pair is made up of baryonsβ and γ. The Jacobi momenta are denoted byp and
q. The abbreviationν(I j ) for the employed partial-wave basis statesjpqν(I j )iα stands for the set�f[L(sβsγ)S]I(ls) jgJ MJ [(tβtγ)Tt]T MT Bb

	
of discrete quantum numbers.

for convenience. In Eq. (2.2) the sum is over the projection quantum numbersMI , mj , MT andmt

of the pair and spectator total angular momentum and of the pair and spectator isospin. The dis-
crete quantum numbers, distinct from the continuous Jacobi momentap andq, are abbreviated by
ν(I j ) =

�f[L(sβsγ)S]I(ls) jgJ MJ [(tβtγ)Tt]T MT Bb
	

. The practical calculations may suggest other
coupling schemes in intermediate steps, e.g., for the description of the trinucleon bound-state wave
function the(LS)-coupling scheme will be used in which the orbital angular momenta of the pairL
and of the spectatorl and their respective spinsSandsare coupled to the total orbital angular momen-
tum L and to the total spinS , respectively, and are then combined to total angular momentumJ , i.e.,
ν(LS ) =

�f(Ll)L [(sβsγ)Ss]SgJ MJ [(tβtγ)Tt]T MT Bb
	

. Another possibility is the channel-spin cou-
pling scheme in which the spectator orbital angular momentuml is coupled with the channel spinK,
consisting of the total pair angular momentumI and the spectator spins, to total angular momentum
J , i.e.,ν(lK) =

��
lf[L(sβsγ)S]IsgK

�
J MJ [(tβtγ)Tt]T MT Bb

	
. All those coupling schemes are related

to each other by unitary transformations.

2.2 Hamiltonian

The basis states (2.2) are the eigenstates of the free HamiltonianH0 which contains the rest mass
differencesδmα = mα�mN and kinetic energy operators of single baryons, i.e.,

H0 =
3

∑
α=1

h0(α): (2.4a)

It can be split up into the sum of kinetic energy operators of the three-baryon c.m. motionHc:m:
0 and

of the internal motion, i.e.,

H0 = Hc:m:
0 +hrel

0 (βγ)+hc:m:
0 (βγ)+hrel

0 (α); (2.4b)

with the internal motion contributionshrel
0 (βγ), hc:m:

0 (βγ) andhrel
0 (α) referring to the relative motion

of the pair(βγ), to the motion of the c.m. of the pair(βγ) and to the motion of the spectatorα
in the three-baryon c.m. system, respectively. The rest mass differences are attached tohrel

0 (βγ)
andhrel

0 (α). The H0 eigenvalue corresponding to the eigenstatejpqν(I j )iαjKi is δM + p2=2µα +
q2=2Mα +K2=2M with the reduced mass of the pairµα = mβmγ=(mβ +mγ) and of the spectator
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Mα = mα(mβ +mγ)=(mα +mβ+mγ) and with the full three-particle massM = mα +mβ+mγ, δM =
M �3mN being the full rest mass difference.

Assuming only pairwise interactions between the baryons the interaction partHI of the full Hamil-
tonianH = H0+HI takes the form

HI =
3

∑
α=1

vα (2.5)

with the potentialvα acting between the pair(βγ). In contrast to the free HamiltonianH0, HI couples
the two Hilbert sectorsHN andH∆. Since the interaction HamiltonianHI acts on relative coordinates
only, the eigenstates of the full HamiltonianH are products of states referring to the internal and c.m.
motion, i.e., the fully correlated three-nucleon bound statejΨBKi and scattering statesjΨ(�)

α (q)ναKi
andjΨ(�)

0 (pq)ν0Ki have the form

jΨBKi= jBijKi; (2.6a)

jΨ(�)
α (q)ναKi= jΨ(�)

α (q)ναijKi; (2.6b)

jΨ(�)
0 (pq)ν0Ki= jΨ(�)

0 (pq)ν0ijKi: (2.6c)

The internal parts of the states (2.6) and their quantum numbersνα and ν0 will be discussed in
Chapter 3.

2.3 Coupled-Channel Potential

The two-baryon coupled-channel potential is graphically defined in Fig. 2.3. In isospin-singlet partial
waves it is purely nucleonic. In addition, in isospin-triplet partial waves it has a transition poten-
tial from nucleonic to nucleon-∆ states and a diagonal potential between the latter ones. The cou-
pled-channel potential provides additional attraction between two nucleons by the virtual excitation
of a nucleon to a∆ isobar. Characteristic effective two-nucleon processes are shown in Fig. 2.4. An
instantaneous two-nucleon potential incorporates them, in an implicit average way, in its intermedi-
ate-range attraction, often modeled as sigma (σ) exchange by one-boson exchange (OBE) potentials.
Thus, the previous strategy [16, 27] for achieving approximate phase equivalence with an underlying
nucleonic reference potential, the so-called subtraction technique, amounted to taking these processes
out from the intermediate-range attraction in anenergy-independentway: The processes which the

(a) (b) (c) (d)

Figure 2.3: Two-baryon coupled-channel potential. A thin vertical line denotes a nucleon, a thick ver-
tical line a∆ isobar and a dashed horizontal line the instantaneous potential. The Hermitian-conjugate
of the transition process (b) is not shown.
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+ + + . . .

Figure 2.4: Contributions to the effective two-nucleon interaction. The processes up to third order in
the potential are shown.

explicit channel coupling provides in anenergy-dependentway, are subtracted at a physically impor-
tant reference energy, for which zero kinetic energy was chosen; at that energy, phase equivalence is
assured by construction. However, there is phase inequivalence at higher energies [24], it increases
with increasing energy, and that phase inequivalence renders a potential, constructed in this way, not
a realistic one. Changing the reference energy to higher values does not help much. Furthermore, I
notice a dependence of calculated three-nucleon scattering observables on the choice of that reference
energy. I therefore felt forced to create a new, this time well-fitted, coupled-channel potential, corre-
sponding to a given nucleonic reference potential. This section describes the chosen procedure and
the resulting interaction.

2.3.1 Fit of New Realistic Coupled-Channel Potential

I choose as underlying purely nucleonic reference potential the charge-dependent CD-Bonn poten-
tial [3]; it is an OBE model which includes single pion(π), rho (ρ) and omega(ω) exchanges; it
assumes vanishing coupling of the eta(η) meson to the nucleon. In addition, the OBE model typi-
cally introduces a scalar isoscalarσ meson which has to simulate multimeson exchanges, in particular
ππ andπρ exchanges with an intermediate∆ isobar; those multimeson exchanges are, however, not
of purely scalar isoscalar nature. Furthermore, the contributions ofππ andπρ exchanges cover rather
broad range that cannot be reproduced well by a single boson mass. The CD-Bonn potential therefore
introduces two effective scalar isoscalarσ mesons, denoted byσ1 andσ2, whose parameters are par-
tial-wave dependent. The potential form, meson parameters and regularizing hadronic form factors
of CD Bonn are given in Ref. [3]. I choose the isospin triplet components of its coupled-channel
extension in close correspondence to CD Bonn. The nucleonic part is taken over in form.

The transition potential of Fig. 2.3(b) from two-nucleon to nucleon-∆ states is based onπ andρ
exchange and is taken to have the contributions

hp0jv(NN! N∆;π)jpi=� fπNN fπN∆

(2π)3m2
π
�1 �T2

mN

(E0E)1=2

�1 �pE S2 �pE

p2
m+m2

π
FπN(p2

m) Fπ∆(p2
m); (2.7a)

hp0jv(NN! N∆;ρ)jpi=� fρNN fρN∆

(2π)3m2
ρ
�1 �T2

mN

(E0E)1=2

(�1�pE) � (S2�pE)

p2
m+m2

ρ
FρN(p2

m) Fρ∆(p2
m)

(2.7b)
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with the initial and final two-baryon relative momentap andp0,

E = (m2
N +p2)1=2; (2.8a)

E0 = (m2
N +p02)1=2; (2.8b)

pm = p0�p; (2.8c)

pE =
�
(E0+mN)(E+mN)

�1=2
� p0

E0+mN
� p

E+mN

�
(2.8d)

and the hadronic form factors

FξB(p2
m) =

Λ2
ξB�m2

ξ

Λ2
ξB+p2

m
; (2.8e)

� (� ) and S (T) being the nucleonic spin (isospin) operator and transition spin (isospin) operator
from nucleonic to∆-isobar states with the reduced matrix elements(1

2jj�jj12) = (1
2jj� jj12) =

p
6 and

(3
2jjSjj12) = (3

2jjTjj12) = 2. The nonlocality of the potential forms (2.7) arises from the fact thatpE 6=
pm and from the factormN=(E0E)1=2. In Eqs. (2.7) the second nucleon is turned into a∆ isobar;
of course, the symmetrized transition contribution is added. The form factor (2.8e) acts at purely
nucleonic vertices and at vertices with at least one∆ isobar; the subscriptB beingN or ∆ distinguishes
the two cases.

The exchange nucleon-∆ potential of Fig. 2.3(c) is based onπ andρ exchange and is taken to have
the contributions

hp0jv(∆N! N∆;π)jpi=� f 2
πN∆

(2π)3m2
π

T†
1 �T2

mN

(E0E)1=2

S†
1 �pE S2 �pE

p2
m+m2

π
F 2

π∆(p
2
m); (2.9a)

hp0jv(∆N! N∆;ρ)jpi=�
f 2
ρN∆

(2π)3m2
ρ

T†
1 �T2

mN

(E0E)1=2

(S†
1�pE) � (S2�pE)

p2
m+m2

ρ
F 2

ρ∆(p
2
m): (2.9b)

The direct nucleon-∆ potential of Fig. 2.3(d) is based onπ, ρ, ω andoneσ exchange and is taken to
have the contributions

hp0jv(N∆! N∆;π)jpi=� fπNN fπ∆∆

(2π)3m2
π
�1 ��∆2

mN

(E0E)1=2

�1 �pE �∆2 �pE

p2
m+m2

π
FπN(p2

m) Fπ∆(p2
m); (2.10a)

hp0jv(N∆! N∆;ρ)jpi=� fρNN fρ∆∆

(2π)3m2
ρ
�1 ��∆2

mN

(E0E)1=2

(�1�pE) � (�∆2�pE)

p2
m+m2

ρ
FρN(p2

m) Fρ∆(p2
m)

+
gρNNgρ∆∆

(2π)3 �1 ��∆2
FρN(p2

m) Fρ∆(p2
m)

p2
m+m2

ρ
; (2.10b)

hp0jv(N∆! N∆;σ)jpi=� gσNNgσ∆∆

(2π)3

FσN(p2
m)Fσ∆(p2

m)

p2
m+m2

σ
; (2.10c)

hp0jv(N∆! N∆;ω)jpi=� gωNNgω∆∆

(2π)3(2mN)2

mN

(E0E)1=2

(�1�pE) � (�∆2�pE)

p2
m+m2

ω
FωN(p2

m) Fω∆(p2
m)

+
gωNNgω∆∆

(2π)3

FωN(p2
m) Fω∆(p2

m)

p2
m+m2

ω
; (2.10d)

�∆ (�∆) being the∆-isobar spin (isospin) operator with the reduced matrix element(3
2jj�∆jj32) =

(3
2jj�∆jj32) = 2

p
15. The spin-independent terms are local, they do not involvepE and the correspond-

ing factormN=(E0E)1=2.
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As in Refs. [16–21] the potential forms (2.7), (2.9) and (2.10) are not derived cleanly from field
theory, but postulated [28] by substituting spin and isospin operators in nucleonic OBE potentials with
the corresponding transition and diagonal∆-isobar operators. However, the potential forms relating
to the∆ isobar differ from those [16–21, 28] used previously in several respects:

(1) They are made to have the same relativistic factors as CD Bonn, which is based upon the
relativistic Feynman amplitudes for meson exchange; i.e.,pE replacespm in the spin-dependent
vertex terms and the factorsmN=(E0E)1=2 are added appropriately; for simplicity no distinction
between nucleon and∆-isobar masses is made in those factors. Their nonlocal relativistic forms
are especially important for the tensor force; their local approximations change them drastically
off shell: Locality makes the tensor-force part substantially stronger off shell [29].

(2) The regularizing hadronic form factors are dipole ones for each meson exchange as in CD Bonn.

(3) The diagonal hadronic nucleon-∆ potential (2.9) – (2.10) is taken to be nonzero, in contrast to
the assumptions in Refs. [16–21].

The fit of the isospin triplet part of the two-baryon coupled-channel potential proceeds as follows
and thereby yields the following characteristics for the resulting potential:

1. The CD-Bonn potential form is adopted as nucleonic part. The parameters of theσ1 andσ2

exchanges are retuned. However, in the3P0 and3P1 partial waves the readjustment of theσ1

andσ2 parameters alone is not enough; there, also theω parameters have to be retuned slightly.
Thus, the readjustment of theσ1, σ2 andω exchanges is partial-wave dependent. The resulting
parameters are given in Table A.1 of Appendix A. I remind, theσ1, σ2 andω parameters of the
purely nucleonic CD Bonn are also partial-wave dependent.

2. In the potential parts referring to the∆ isobar the parameters, except for theσ coupling strength,
are chosen according to empirical values or quark counting rules; they are summarized in Ta-
ble A.2 of Appendix A. Since these parameters are not subjected to the fit, the fit is not allowed
to return to the purely nucleonic reference potential, i.e., to choose these parameters to vanish.
The coupling strength ofσ, in fact, the combinationgσNNgσ∆∆=4π, is the real fit parameter; it is
allowed to be partial-wave dependent as in CD Bonn; the resulting parameters ofσ exchange are
given in Table A.3 of Appendix A. The coupled-channel potential is charge dependent. How-
ever, the potential contributions related to the∆ isobar are chosen as charge independent; the
charge dependence of the complete coupled-channel potential results from its purely nucleonic
part.

3. The CD-Bonn potential can be considered to provide a very reliable energy-dependent phase-shift
analysis of nucleon-nucleon scattering data below 350 MeV, known up to the year 2000. It can
be considered an update of the corresponding Nijmegen phase-shift analysis [30] which is based
on data up to 1993. The coupled-channel potential is therefore tuned to the phase shifts of CD
Bonn; however, the resultingχ2 values are calculated with respect to the proper data as in
Ref. [3]. Furthermore, the actual fit sequence for the different charge states is the same as in
Ref. [3].

4. The point Coulomb interaction is added in the partial waves with two charged baryons, i.e., in
the coupled proton-proton(pp) andp∆+ partial waves and in thep∆� partial waves coupled to
the neutron-neutron(nn) partial waves. The long range Coulomb potential is cut off at a radius
R, outside the range of the hadronic potentials. In thepp partial waves the proper Coulomb
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boundary conditions are exactly restored from the cut-off ones; with respect to the cut off in
N∆ partial waves, the independence of results from that cut off for values ofR� 10 fm is
numerically established.

5. The fit aims first at thepp potential with channel coupling, since thepp data are the most
accurate ones. Thepp potential is fitted to the CD Bonnpp phase shifts, using the Nijmegen
pperror matrix [31] for determining an intermediateχ2. The subsequent direct comparison with
all experimentalpp data below 350 MeV, available in the year 2000, yieldsχ2=datum= 1:01,
very close to that of the original CD Bonn. Thus, there is no need for any further tuning of
parameters in the comparison with the properppdata.

6. The coupled-channel potential is charge dependent as CD Bonn. Its parameters in isospin
triplet partial waves with isospin projectionMT = 1, fitted in step 5., are transcribed to the
neutron-proton(np), i.e., MT = 0, and to thenn, i.e., MT = �1, parts in the same way as for
CD Bonn, i.e., omitting Coulomb, except in thep∆� channel coupled tonn, correspondingly
replacing the masses of the nucleons and adjusting the coupling constants of theσ1 and σ2

mesons such that the phase shift differences, predicted by the charge-independence and the
charge-symmetry breaking of CD Bonn, are reproduced. The subsequent direct comparison
with experimentalnpdata below 350 MeV, available in the year 2000, yieldsχ2=datum= 1:02,
again very close to that of the original CD Bonn. Thus, there is no need for any further tuning
of parameters in the comparison with the propernp data. Furthermore, the resulting1S0 nn
scattering length, i.e.,�18:95 fm, agrees well with the experimental one of Ref. [32], i.e., with
�18:9�0:4 fm, within the experimental error bars.

The meson parameters resulting from the fit are collected in the tables of Appendix A. The overall
fit yields aχ2=datum= 1:02. Thus, the new coupled-channel potential is as realistic as any of the
modern nucleonic potentials; it is phase equivalent with CD Bonn as nucleonic reference potential in
the limits of the fit. Nevertheless, a word of caution is appropriate: The fit is based on nucleon-nucleon
scattering data below pion-production threshold, whereas the nucleon-∆ channel is the remainder of
the description of inelasticity yielding single-pion production. Thus, those physics data, for which the
nucleon-∆ channel is most important, are not used yet for determining its properties. The developed
coupled-channel potential is applicable only for phenomena below pion-production threshold in the
same way as the nucleonic reference potential CD Bonn; both are unrealistic beyond pion-production
threshold. Of course, this fact is unfortunate, but its repair is far beyond the scope of this thesis; only
for reasons of curiosity, Appendix A also discusses characteristic predictions of the coupled-channel
potential for the energy domain, where single-pion inelasticity is important.

In the Chapters 4 to 7 I present results for the three-nucleon bound state, for nucleon-deuteron
scattering and for three-nucleon e.m. reactions derived from the new realistic coupled-channel poten-
tial with ∆-isobar excitation, denoted in the following as CD Bonn +∆. I shall give three additional
results for comparison. I shall give results for the nucleonic reference potential CD Bonn in order to
isolate∆-isobar effects. I shall also give results for coupled-channel potentials constructed according
to the old subtraction technique [16, 28] without fit; both are phase-equivalent at zero kinetic energy
only. One version, denoted in the following as CD Bonn +∆ (sub1), is based on the contributions (2.7)
- (2.10) with the parameters of Appendix A; itsχ2=datum= 6:34 is poor compared to the new cou-
pled-channel potential. The other version is the one employed in Ref. [22]; it will be denoted as CD
Bonn +∆ (sub2); it is based on a local transition potential without diagonal nucleon-∆ contributions;
its χ2=datum= 13:8 is even poorer. The partial and the completeχ2 values of all coupled-channel
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χ2=datum(pp) χ2=datum(np) χ2=datum(pp+np)
CD Bonn 1.01 1.02 1.02
CD Bonn +∆ 1.01 1.02 1.02
CD Bonn +∆ (sub1) 10.5 2.36 6.34
CD Bonn +∆ (sub2) 23.8 4.11 13.8

Table 2.1:χ2 values for the potentials used in this thesis. The coupled-channel potential CD Bonn +
∆ is the fitted one. The other coupled-channel potentials are constructed without fit.

potentials, used in this thesis, and of the nucleonic reference potential CD Bonn are collected in Ta-
ble 2.1.

2.3.2 Effective Phenomena in Three-Nucleon System

A virtual ∆-isobar excitation in the three-nucleon system yields an effective three-nucleon force which
simulates traditional irreducible three-nucleon forces in a reducible energy-dependent way. In lowest
order, i.e., in second order of the two-baryon interaction, the∆-isobar contribution to the effective
three-nucleon force displayed in Fig. 2.5 is of the Fujita-Miyazawa force [14] type; in contrast to that
irreducible three-nucleon force based solely on the two-pion exchange, the effective three-nucleon
force due to∆-isobar excitation takes alsoπρ and ρρ exchanges into account. In higher order the
coupled-channel potential simulates, among other processes, the three-pion ring parts of the Illinois
force [6] as shown in Fig. 2.6. Again, the effective three-nucleon force due to∆-isobar excitation takes

Figure 2.5: Contribution to the effective three-nucleon force arising from the coupled-channel poten-
tial in second order of the two-baryon interaction. It is of Fujita-Miyazawa force type.

(a) (b) (c) (d) (e) (f)

Figure 2.6: Contributions to the effective three-nucleon force arising from the coupled-channel poten-
tial in third order of the two-baryon interaction. The parts (a) and (b) are of the pion-ring type in the
Illinois three-nucleon force.
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into account the exchanges of all mesons included in the coupled-channel potential, i.e.,π, ρ, ω andσ.
The coupled-channel potential makes all contributions to the three-nucleon force mutually consistent,
what is not the case in Ref. [6]. However, there are some other processes included in irreducible
three-nucleon forces, e.g., the Tucson-Melbourne (TM) force [33], which are not accounted for by the
coupled-channel potential, e.g., pion-nucleonS-wave scattering.

2.4 Electromagnetic Interaction

The basic building block for the description of e.m. nuclear reactions is the e.m. Hamiltonian

He:m:
I = ep

Z
d3x Jµ(x)Aµ(x)

��
x0=0 (2.11)

which couples baryonic states to the photon (γ). ep is the positive elementary charge, i.e.,e2
p �

1=137:036. The operators in Eq. (2.11) depend on space-timex, but are to be used as Schrödinger
operators at timex0 = 0; the e.m. field operatorAµ(x) is parametrized in the form

Aµ(x) =
(4π)1=2

(2π)3=2

Z d3kγ

(2k0
γ )

1=2 ∑
λ

�
aλ(kγ)εµ(kγλ)e�ikγx+a†

λ(kγ)ε�µ(kγλ)eikγx
����

k0
γ=jkγj

: (2.12)

The polarizationsλ =�1 correspond to those of a real transverse photon;ε(kγλ) are the polarization
vectors, constrained bykµ

γ εµ(kγλ) =0. A single-photon state of definite momentumkγ and polarization
λ, δ-function normalized, isjkγλi= a†

λ(kγ)j0i. The polarizationsλ 6=�1 correspond to polarizations
of virtual photon needed for the description of electron scattering, i.e., to a photon with longitudinal
polarization and to a scalar photon. In that description the e.m. interaction is used in one-photon ex-
change, i.e., the HamiltonianHe:m:

I of Eq. (2.11) is to be supplemented by a coupling of the e.m. field
to electron currentl µ(x) and it is then applied in second order resulting in the standard current-current
coupling between charged particles. Thus, for electron scattering from hadrons the effective e.m.
interaction

He:m:
I eff =�e2

p

Z
d3x Jµ(x)

�Z
d4y

d4Q
(2π)4

4π e�iQ�(x�y)

Q2+ i0
lµ(y)

�����
x0=0

(2.13)

has to be used.
The e.m. current operatorJµ(x) acts in the baryonic Hilbert space with two sectorsHN andH∆

displayed in Fig. 2.1. I use the current operator in its Fourier-transformed form, i.e.,

Jµ(Q) =

Z
d3x eiQ�xJµ(x)

��
x0=0; (2.14)

and employ — specializing to a three-baryon system — a momentum-space representation, based on
the three-particle Jacobi momenta (2.1), i.e.,

hp0q0K 0jJµ(Q)jpqKi= δ(K 0�Q�K)hp0q0j jµ(Q;K+)jpqi: (2.15)

In Eq. (2.15)Q is the three-momentum transfer by the photon; it will take on particular values de-
pending on the considered reaction, e.g., in the photo reactions it is given by the momentumkγ of
the real photon. A total momentum conservingδ-function is split off; the remaining current operator
jµ(Q;K+) only acts on the internal momenta of the three-baryon system with a parametric dependence
on the combinationK+ = K 0+K of total momenta.
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2.4.1 Coupled-Channel One-Baryon and Two-Baryon Current

The current operator has one-baryon and two-baryon pieces, i.e.,Jµ(Q) = J[1]µ(Q) + J[2]µ(Q), the
latter term being called meson-exchange current (MEC). It arises — as does the baryon-baryon inter-
action itself — as a consequence of the elimination of mesonic degrees of freedom in the considered
Hamiltonian. In the underlying field theory mesons as well as baryons couple to the photons, i.e., carry
the e.m. current. However, in the restricted purely baryonic Hilbert space of Fig. 2.1 only the nucleon
and the∆ isobar couple explicitly to the photon by the one-body current. The frozen mesonic degrees
of freedom manifest themselves in many-baryon operators for charge and spatial current. The neces-
sity to introduce the MEC follows also from the continuity equation, which in the Fourier-transformed
form of the e.m. current reads

Q �J(Q) = [H0+HI ;ρ(Q)]: (2.16)

Accepting Siegert’s hypothesis [34], i.e., assuming the charge operatorρ(Q)� J0(Q) in nonrelativis-
tic approximation to be composed of one-baryon operatorsρ[1](Q) only, the continuity equation for
the e.m. current splits up into two parts, i.e.,

Q �J[1](Q) = [H0;ρ[1](Q)]; (2.17a)

Q �J[2](Q) = [HI ;ρ[1](Q)]: (2.17b)

Since the isospin-dependent or nonlocal potentialHI does not commute with the charge density
ρ[1](Q), a nonvanishing two-baryon spatial currentJ[2](Q) is required in order to fulfill current con-
servation. Beside the standard nucleonic current part there are additional parts involving the∆ isobar
which then make effective two- and three-nucleon contributions to the exchange current, the contribu-
tions being consistent with each other. I take one-baryon and two-baryon contributions into account,
shown in Figs. 2.7 - 2.9 and described in detail in the respective figure captions. The explicit ana-
lytic forms of the considered contributions are collected in Appendix B. The horizontal lines in the
diagrams indicate that the meson exchanges are instantaneous. The dominant meson-exchange contri-
butions arise fromπ andρ exchanges; note, that those are the only contributions of two-baryon nature
taken into account in the calculations of Refs. [35–37]. In my calculations also the meson-nondiagonal
ρπγ andωπγ contributions are taken into account for the currents of Figs. 2.7 and 2.8. The current of
Fig. 2.8 couples purely nucleonic states with states containing one∆ isobar. In contrast to Ref. [20],
the contributions between∆-isobar states of one- and two-baryon nature are kept as shown in Fig. 2.9,
though the corresponding two-baryon contributions will turn out to be quantitatively entirely irrele-
vant; I therefore take only the diagonalπ contribution into account. The e.m. current is derived by the
extendedS-matrix method of Refs. [38–41], which is based on the comparison ofS-matrix elements
resulting from relativistic quantum field theory and from the corresponding quantum-mechanical de-
scription. However, the e.m. current, as given in Appendix B, satisfies current conservation only
approximately with the correspondingπ andρ exchanges in the employed two-baryon interactionHI

of CD Bonn and CD Bonn +∆. The employed spatial current is systematically expanded up to first
order ink=mN, k being a characteristic baryon momentum. The charge density is used in zeroth order
in k=mN in the standard calculations.

In the photo reactions, i.e., in the reactions with real transverse photons, the photon couples only
to the transverse part of the spatial current. However, assuming current conservation, the dominant
contribution of the spatial current is replaced by the charge density which is less affected by two-body
effects according to Siegert’s hypothesis. This assumption results in the so-called Siegert form of the
current. In contrast, in the electron scattering from the trinucleon bound state the exchanged photon
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Figure 2.7: One- and two-baryon processes contained in the used e.m. current. In this figure only the
purely nucleonic processes are depicted. In nonrelativistic order the one-nucleon process contributes
to the charge density and to the spatial current, the two-nucleon processes only to the spatial current.
The meson-diagonal isovectorπ andρ exchanges are taken into account in the two-nucleon processes
as well as the meson-nondiagonalρπγ andωπγ contributions.

Figure 2.8: One- and two-baryon processes contained in the used e.m. current. In this figure pro-
cesses are depicted in which one nucleon is turned into a∆ isobar. The Hermitian-adjoint processes
are taken into account, but are not diagrammatically shown. In nonrelativistic order the one-baryon
and two-baryon processes contribute only to the spatial current. In the one-baryon current only the
magnetic dipole transition is kept. The meson-diagonal isovectorπ andρ exchanges are taken into
account in the two-baryon processes as well as the meson-nondiagonalρπγ andωπγ contributions.

Figure 2.9: One- and two-baryon processes contained in the used e.m. current. In this figure processes
are depicted which connect states with a∆ isobar. In nonrelativistic order the one-baryon process
contributes to charge density and spatial current, the two-baryon processes only to the spatial current.
Only the meson-diagonal isovectorπ exchange is taken into account in the two-baryon processes.

is virtual and couples to all components of the e.m. current which in addition has to carry e.m. form
factors. In this case, current conservation may be used in order to replace the longitudinal part of the
spatial current by the charge density.
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2.4.2 Effective Nucleonic Currents

In the same way as the coupled-channel potential yields the effective two-nucleon and three-nucleon
forces of Figs. 2.4 – 2.6, the coupled-channel current yields effective currents which are of two-nucleon
and of three-nucleon nature; the lowest order contributions are shown in Figs. 2.10 and 2.11, re-
spectively. Since the effective nucleonic forces and currents are built from the same two-baryon
coupled-channel potential and from the corresponding one-baryon and two-baryon coupled-channel
current, they are consistent with each other. The meson exchanges included in the coupled-channel
potential and in the coupled-channel current are contained also in the effective nucleonic forces and
in the effective nucleonic currents.

Figure 2.10: Contributions to the effective two-nucleon current arising from the coupled-channel
potential and the coupled-channel current at lowest order.

Figure 2.11: Contributions to the effective three-nucleon current arising from the coupled-channel
potential and the coupled-channel current at lowest orders.





3
Three-Particle Equations: Nucleons and Single

∆-Isobar Excitation

Since the c.m. and internal motion can be separated as described in Chapter 2.2, I consider in the
following only the internal motion, i.e., I consider the free Hamiltonian (2.4b) without the contribution
Hc:m:

0 from the three-particle c.m. motion.

3.1 Three-Nucleon Bound State

The three-nucleon internal bound statejBi, already introduced in Eq. (2.6a), with the binding energy
EB satisfies the Schrödinger equation

(H0+HI )jBi= EBjBi; (3.1a)

its integral form is

jBi= G0(EB)
3

∑
α=1

vαjBi (3.1b)

with the free resolventG0(Z) = (Z�H0)
�1, Z being a general complex number which for physical am-

plitudes becomes the energy of the three-nucleon system. The kernel of Eq. (3.1b) is non-connected.
In principle, it is possible to solve Eq. (3.1b) numerically, since the solution of the bound-state prob-
lem is well-behaved and square-integrable. However, it is much more advantageous to follow the
Faddeev procedure which leads to an integral equation with a kernel connected after iteration and
compact for short-ranged forces. I therefore decompose the bound-state wave functionjBi into its
Faddeev componentsjψαi= G0(EB)vαjBi, i.e.,

jBi=
3

∑
α=1

jψαi: (3.2)

The Faddeev components obey the following equations, i.e.,

jψαi=G0(EB)vα

3

∑
β=1

jψβi; (3.3a)

jψαi=[1�G0(EB)vα]
�1G0(EB)vα ∑

β6=α
jψβi; (3.3b)

jψαi=G0(EB)Tα(EB) ∑
β6=α

jψβi: (3.3c)
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In the last equation the two-baryon interaction between the pair(βγ) is summed up into the two-baryon
transition matrix

Tα(Z) = vα +vαG0(Z)Tα(Z) (3.4)

in the three-particle Hilbert space. Since the bound statejBi has to be totally antisymmetric under the
exchange of the three baryons, the relation between Faddeev components is

jψβi= PαβPβγjψαi; (3.5)

Pαβ being the permutation operator of the particlesα andβ. It is therefore sufficient to determine only
one of the Faddeev components according to

jψαi= G0(EB)Tα(EB)Pjψαi; (3.6)

where the permutation operatorP is defined to beP = PαβPβγ +PαγPβγ; in fact, P is the sum of the
cyclic and anticyclic permutations of three particles. The bound-state wave function is given by

jBi= (1+P)jψαi: (3.7)

It has to be normalized explicitly such thathB jBi= 1.

3.2 Three-Nucleon Scattering

Nucleon-deuteron scattering is considered. In the initial nucleon-deuteron channel state

jφα(q)ναi= jdI0MI T0MT0iαjqs0mst0mtb0iα (3.8)

the pair(βγ) of nucleons is bound as deuteron in the statejdI0MIT0MT0iα with the quantum numbers
I0 = 1 andT0 = MT0 = 0; the third nucleon is in a plane-wave state with definite spin and isospin
specification, the quantum numberss0, t0 andb0 being1

2; να abbreviates all discrete quantum numbers.
The statejφα(q)ναi is an eigenstate of the channel HamiltonianHα = H0+vα with the eigenvalue

Eα = ed +
q2

2Mα
; (3.9)

ed being the deuteron binding energy; since all three particles are nucleons,Mα = 2mN=3. Due to
their identity any pair of nucleons could be bound; I choose(βγ) as representative pair. The scattering
can be elastic, the deuteron bound state may get rearranged to another pair, unobservable for identical
particles, or it may break up into a state of three free nucleons, i.e.,

jφ0(pq)ν0i= 1p
2
(1�Pβγ)jpiαjsβmsβtβmtβbβijsγmsγtγmtγbγijqsmstmtbiα: (3.10)

The three particles in the final state are nucleons, i.e., alls= t = b= 1
2. All discrete quantum numbers

are summarized byν0. TheH0 eigenvalue corresponding to the breakup statejφ0(pq)ν0i is

E0 =
p2

2µα
+

q2

2Mα
(3.11)
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with µα = mN=2 andMα = 2mN=3. Any set of Jacobi momenta could be used; I choose as represen-
tative states those which have the baryons(βγ) as pair and the baryonα as spectator. Both types of
channel states,jφα(q)ναi andjφ0(pq)ν0i, are antisymmetrized with respect to the pair(βγ).

The stationary scattering states [42, 43] corresponding to the channel states (3.8) and (3.10) are
eigenstates of the full HamiltonianH = H0+HI ; they are obtained from the channel states using the
full resolventG(Z) = (Z�H0�HI)

�1, i.e.,

jψ(�)
α (q)ναi=� i0G(Eα� i0)jφα(q)ναi; (3.12a)

jψ(�)
0 (pq)ν0i=� i0G(E0� i0)jφ0(pq)ν0i; (3.12b)

they are not totally antisymmetric as required for physical states. Using the decomposition of the full
resolventG(Z) into channel resolventsGβ(Z) = (Z�H0�vβ)

�1, i.e.,

G(Z) = Gβ(Z)+Gβ(Z)(HI �vβ)G(Z); (3.13)

Eqs. (3.12) can be written as triads of Lippmann-Schwinger equations

jψ(�)
α (q)ναi= δβαjφα(q)ναi+Gβ(Eα� i0)(HI �vβ)jψ(�)

α (q)ναi; (3.14a)

jψ(�)
0 (pq)ν0i=

�
1+G0(E0� i0)Tβ(E0� i0)

�jφ0(pq)ν0i+Gβ(E0� i0)(HI �vβ)jψ(�)
0 (pq)ν0i

(3.14b)

with α being fixed andβ = 1;2;3; they are necessary and sufficient to define the statesjψ(�)
α (q)ναi

and jψ(�)
0 (pq)ν0i uniquely. However, in scattering problems it is more convenient to work with

the multichannel transition matrixUβα(Z) whose on-shell elements parametrize theS matrix. The
calculations of this thesis are based on the AGS version [2] of three-particle scattering theory. It
defines the multichannel transition matrixUβα(Z) between two-body channels by the decomposition
of the full resolventG(Z) into channel resolventsGα(Z) according to

G(Z) = δβαGα(Z)+Gβ(Z)Uβα(Z)Gα(Z): (3.15)

The multichannel transition matrixUβα(Z) describes elastic or rearrangement scattering; it is derived
from the integral equation

Uβα(Z) = (1�δβα)G
�1
0 (Z)+∑

γ
(1�δβγ)Tγ(Z)G0(Z)Uγα(Z): (3.16a)

The transition matrixU0α(Z) to final states with three free particles is obtained from the one between
two-body channels by quadrature, i.e.,

U0α(Z) = G�1
0 (Z)+∑

γ
Tγ(Z)G0(Z)Uγα(Z): (3.16b)

Equation (3.16b) follows from the decomposition of the full resolventG(Z) in the form (3.15) for
β = 0 andα = 1;2;3.

The physical nucleon-deuteron and three-free-nucleon scattering states of Eqs. (2.6) are obtained
from the states (3.12) by explicit antisymmetrization with respect to all baryons and by normalization,
i.e.,

jΨ(�)
α (q)ναi= 1p

3
(1+P)jψ(�)

α (q)ναi; (3.17a)

jΨ(�)
0 (pq)ν0i= 1p

3
(1+P)jψ(�)

0 (pq)ν0i: (3.17b)
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The corresponding symmetrized multichannel transition matrices for elastic nucleon-deuteron scat-
tering and nucleon-deuteron breakup are given by

U(Z)jφα(q)ναi=∑
γ

Uαγ(Z)jφγ(q)νγi; (3.18a)

U0(Z)jφα(q)ναi=∑
γ

U0γ(Z)jφγ(q)νγi: (3.18b)

The symmetrized multichannel transition matrixU(Z) satisfies the integral equation

U(Z) = PG�1
0 (Z)+PTα(Z)G0(Z)U(Z) (3.19a)

with a kernel connected after iteration and compact for short-ranged forces. The transition matrix
U0(Z), as its non-symmetrized version, is obtained from the one between two-body channelsU(Z) by
quadrature

U0(Z) = (1+P)G�1
0 (Z)+(1+P)Tα(Z)G0(Z)U(Z); (3.19b)

the term(1+P)G�1
0 (Z) does not contribute to the on-energy-shell matrix elements ofU0(Z) needed

for the calculation of observables. Though one ends up with one integral equation (3.19a), the geo-
metrical complexity of the three-nucleon problem is of course still present in the permutation operator
P, defined in Sec. 3.1. The solution of the integral equation (3.19a) is described in Appendix C.

TheSmatrix for elastic nucleon-deuteron scattering and nucleon-deuteron breakup is given by the
symmetrized on-shell transition matricesU(Z) andU0(Z), i.e.,

hφα(q f )να f jSjφα(qi)ναi i=δ(q f �qi)δνα f ναi

�2πi δ(Eα f �Eαi)hφα(q f )να f jU(Eαi + i0)jφα(qi)ναi i; (3.20a)

hφ0(p f q f )ν0f jSjφα(qi)ναi i=�2πi δ(E0f �Eαi)hφ0(p f q f )ν0f jU0(Eαi + i0)jφα(qi)ναi i: (3.20b)

When determining theSmatrix, the initial and final states are fully antisymmetrized and normalized
through(1+P)=

p
3 as in Eqs. (3.17); however, those symmetrization operators are incorporated into

the definition of the symmetrized transition matricesU(Z) andU0(Z) according to Eqs. (3.18); they
are defined to act between the channel states which are antisymmetrized only with respect to the pair
(βγ). The basis states (2.2) have the same symmetry properties as the channel states.

3.3 Three-Nucleon Electromagnetic Reactions

The dynamical quantities needed for the description of the three-nucleon e.m. processes are the matrix
elements of the e.m. nuclear current operator (2.15) between the three-nucleon bound and scattering
states, i.e.,hΨ(�)

α (q)ναj jµ(Q;K+)jBi andhΨ(�)
0 (pq)ν0j jµ(Q;K+)jBi. The bound state is calculated

explicitly from the Faddeev amplitudes in Eq. (3.7). The nucleon-deuteron and the three-free-nucleon
scattering states (3.17) can be given formally in terms of the multichannel transition matrixU(Z), i.e.,

jΨ(�)
α (q)ναi= 1p

3
(1+P)

�
1+G0(Eα� i0)Tα(Eα� i0)G0(Eα� i0)U(Eα� i0)

�jφα(q)ναi;
(3.21a)

jΨ(�)
0 (pq)ν0i= 1p

3
(1+P)

�
1+G0(E0� i0)Tα(E0� i0)G0(E0� i0)U(E0� i0)

�
� �1+G0(E0� i0)Tα(E0� i0)

�jφ0(pq)ν0i: (3.21b)
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The calculation of the nucleon-deuteron scattering state according to Eq. (3.21a) is possible and was
carried out tentatively in Ref. [20]. In contrast, Eq. (3.21b) needs highly singular off-shell elements
of U(Z) and therefore is unsuitable for the calculation of the scattering state with three free nucleons.
It is much more advantageous to calculate the scattering states (3.17) only implicitly when forming
the matrix elements of the e.m. current operator. For that purpose the multichannel transition matrix
(3.19a) is used in the form of its Neumann series

U(Z) =
∞

∑
n=0

�
PTα(Z)G0(Z)

�n
PG�1

0 (Z); (3.22)

yielding the corresponding Neumann series for the matrix elements of the e.m. current operator, i.e.,

hΨ(�)
α (q)ναj jµ(Q;K+)jBi

= hφα(q)ναj 1p
3

∞

∑
n=0

�
PTα(Eα + i0)G0(Eα + i0)

�n
(1+P) jµ(Q;K+)jBi; (3.23a)

hΨ(�)
0 (pq)ν0j jµ(Q;K+)jBi

= hφ0(pq)ν0j
�
1+Tα(E0+ i0)G0(E0+ i0)

�
� 1p

3

∞

∑
n=0

�
PTα(E0+ i0)G0(E0+ i0)

�n
(1+P) jµ(Q;K+)jBi: (3.23b)

The matrix elements (3.23) are calculated in two steps. First, I introduce the statejJµ(Z)i whose
Neumann series is in close correspondence with Eqs. (3.23), i.e.,

jJµ(Z)i=
∞

∑
n=0

[PTα(Z)G0(Z)]
n�1+P

�
jµ(Q;K+)jBi; (3.24a)

that Neumann series results from the following integral equation forjJµ(Z)i, i.e.,

jJµ(Z)i= �1+P
�

jµ(Q;K+)jBi+PTα(Z)G0(Z)jJµ(Z)i; (3.24b)

the dependence ofjJµ(Z)i on Q andK+ is suppressed in the notation for compactness. The integral
equation (3.24b) forjJµ(Z)i is analogous to (3.19a) for the symmetrized multichannel transition ma-
trix U(Z): Both equations have the same kernel, only their driving terms are different. Thus, they are
solved using the same numerical techniques as described in Appendix C. OncejJµ(Z)i is calculated,
the current matrix elements required for the description of two- and three-body photo and electro
disintegration of the trinucleon bound state are obtained according to

hΨ(�)
α (q)ναj jµ(Q;K+)jBi= 1p

3
hφα(q)ναjJµ(Eα + i0)i; (3.25a)

hΨ(�)
0 (pq)ν0j jµ(Q;K+)jBi= 1p

3
hφ0(pq)ν0j

�
1+P

��
jµ(Q;K+)jBi

+Tα(E0+ i0)G0(E0+ i0)jJµ(E0+ i0)i�: (3.25b)
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3.4 Charge-Dependent Two-Baryon Transition Matrix

Assuming charge independence, the trinucleon bound state and nucleon-deuteron scattering states are
pure states with total isospinT = 1

2; the three-free-nucleon scattering states have total isospinT = 1
2

and T = 3
2, but those parts are not dynamically coupled. If charge dependence is allowed for as

in the calculations of this thesis, the two-baryon transition matrixTα(Z) becomes dependent on the
projectionMT of the pair isospinT. Thus, its matrix elements in the three-particle basisjpqν(I j )iα
couple states of total isospinT = 1

2 andT = 3
2, i.e., with respect to the total isospinT the two-baryon

transition matrixTα(Z) in the isospin-triplet partial waves has the general structure

Tα(Z) = ∑
T 0T MT

jT 0MT iαT2T 02T ;2MT
(Z)αhT MT j (3.26a)

with the components

T11;1(Z) =
2
3

Tpp(Z)+
1
3

Tnp(Z); (3.26b)

T31;1(Z) =

p
2

3
[Tpp(Z)�Tnp(Z)]; (3.26c)

T13;1(Z) =

p
2

3
[Tpp(Z)�Tnp(Z)]; (3.26d)

T33;1(Z) =
1
3

Tpp(Z)+
2
3

Tnp(Z) (3.26e)

for theMT = 1
2, i.e., for thenppsystem, and

T11;�1(Z) =
2
3

Tnn(Z)+
1
3

Tnp(Z); (3.26f)

T31;�1(Z) =

p
2

3
[Tnp(Z)�Tnn(Z)]; (3.26g)

T13;�1(Z) =

p
2

3
[Tnp(Z)�Tnn(Z)]; (3.26h)

T33;�1(Z) =
1
3

Tnn(Z)+
2
3

Tnp(Z) (3.26i)

for the MT = �1
2, i.e., for thennp system. The calculation based on the full forms of Eqs. (3.26)

is calledexacttreatment of the charge dependence; it is especially important in the1S0 partial wave.
For higher isospin-triplet partial waves anapproximativetreatment of charge dependence without
coupling between the total isospinT = 1

2 andT = 3
2 states, i.e., withT31;2MT

(Z) = T13;2MT
(Z) = 0,

is usually sufficient. In hadronic reactions thatapproximativetreatment neglects alsoT = 3
2 com-

ponents, i.e.,T33;2MT
(Z) = 0. In contrast, the calculations of e.m. reactions require the total isospin

T = 3
2 components of scattering states inall considered isospin-triplet two-baryon partial waves, since

the e.m. current couples theT = 1
2 andT = 3

2 components strongly.
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The calculation is done separately for3He and3H since the dynamic input is charge dependent. Fur-
thermore, I include the point Coulomb interaction by cutting off its technically dangerous long tail
and adding that cutoff Coulomb to the hadronic potential; the independence of the results from the
cutoff radiusR for sufficiently large values is established; I findR= 12 fm large enough. The point
Coulomb interaction has to be included between the two protons in3He, but also in channels with
a ∆ isobar, i.e., in thenp∆+ channel of3He and in thepp∆� channel of3H. Partial waves up to
total two-baryon angular momentumI = 6 in purely nucleonic channels and up toI = 4 in nucleon-∆
channels are taken into account. The charge dependence of the nucleon-nucleon and the Coulomb po-
tentials is treated exactly in partial waves up toI = 2, yielding total isospinT = 3

2 channels; in other
two-baryon isospin-triplet partial waves the charge dependence is treated approximately as explained
in Sec. 3.4, i.e., without coupling toT = 3

2 states; in those higher partial waves the coupling toT = 3
2

states was checked to be quantitatively irrelevant. The results appear fully converged with all those
truncations on partial waves.

Results on binding energy contributions are collected in Table 4.1. One notices, as observed
and discussed already long ago [16], two sizable∆-isobar effects on binding which partially cancel
each other, i.e., the repulsive two-nucleon dispersion∆E2 and the attractive three-nucleon force ef-
fect ∆E3 proper; since the diagonal nucleon-∆ potential is strong, it contributes substantially to the
three-nucleon binding; only about 75% of∆E3 is due to the contribution of the Fujita-Miyazawa type,
arising solely from the transition potential according to Fig. 2.5. Though the purely nucleonic ref-
erence potential CD Bonn misses the three-nucleon binding by rather little and the∆-isobar effects
arising from the new coupled-channel potential are beneficial, still, they are unable to account for the
missing binding in full. The experimental3He - 3H binding-energy difference is 0.764 MeV; most of
it is due to the Coulomb interaction in3He. When calculating3H with a charge symmetric hadronic
interaction, i.e., with the same hadronic part forpp andnn, Coulomb alone yields a binding energy
difference of 0.685 MeV. The charge asymmetry of the coupled-channel potential makes an additional
contribution of 0.059 MeV and the kinematic effects due to thep-n mass difference add additional
0.012 MeV, yielding a total binding-energy difference of 0.756 MeV. That theoretical value agrees
quite well with the experimental one of 0.764 MeV.

The two constructions of coupled-channel potentials without fit, CD Bonn +∆ (sub1) and CD
Bonn +∆ (sub2), are unable to account for the three-nucleon binding energy with∆-isobar effects,
obtained for the well-fitted coupled-channel potential CD Bonn +∆, accurately enough; both fail
especially with respect to the two-nucleon dispersive repulsion∆E2, CD Bonn +∆ (sub2) also with
respect to wave function probabilityP∆ and to the momentum distribution of the∆ isobar as displayed
in Fig. 4.1 for3H, together with the nucleonic momentum distribution.
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EB ∆E2 ∆E3 PS PS0 PP PD P3=2 P∆
CD Bonn -8.004 91.621 1.307 0.047 7.020 0.0048
CD Bonn +∆ -8.297 0.513 -0.806 89.922 1.301 0.064 7.216 0.0045 1.493
CD Bonn +∆ (sub1) -8.515 0.353 -0.864 89.911 1.173 0.067 7.293 0.0047 1.552
CD Bonn +∆ (sub2) -8.271 0.648 -0.915 88.799 1.207 0.073 7.237 0.0045 2.680
Experiment -8.482
CD Bonn -7.258 91.403 1.538 0.046 7.002 0.0111
CD Bonn +∆ -7.541 0.483 -0.766 89.776 1.515 0.063 7.197 0.0104 1.439
CD Bonn +∆ (sub1) -7.752 0.328 -0.822 89.781 1.370 0.066 7.274 0.0105 1.499
CD Bonn +∆ (sub2) -7.521 0.601 -0.864 88.711 1.412 0.072 7.216 0.0102 2.579
Experiment -7.718

Table 4.1: Hadronic properties of3H (top) and3He (bottom). The∆-isobar effect on the binding
energyEB is split into the two-nucleon dispersion∆E2 and the effective three-nucleon force effect
∆E3. The probabilityPL , L being S, S0, P or D, refers to purely nucleonicT = 1

2 wave function
components with definite total three-nucleon orbital angular momentumL and definite permutation
symmetry according to Refs. [44, 45],P3=2 to theT = 3

2 wave function component arising from charge
dependence, andP∆ to the wave function components with∆-isobar configurations. All energies are
given in MeV, all probabilities are given in percent; always three digits are quoted, only for the very
small quantityP3=2 four digits are quoted; they appear converged.

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

0 1 2 3 4 5

M
om

en
tu

m
 D

is
tr

ib
ut

io
n 

 (
fm

3 )

k  (fm-1)

nN(k)

n∆(k)

Figure 4.1: 3H nucleon and∆-isobar momentum distributionsnN(k) and n∆(k) as functions of
the magnitude of the single-particle momentumk. The distributions are normalized such thatR ∞

0 dkk2[nN(k) +n∆(k)] = 3. Compared are predictions of the different coupled-channel potentials,
i.e., CD Bonn +∆ (solid curves), CD Bonn +∆ (sub1) (dashed-dotted curves), CD Bonn +∆ (sub2)
(dotted curves). The solid and dashed-dotted curves are almost indistinguishable in the plot. Results
for nN(k) based on the nucleonic CD Bonn potential without∆-isobar excitation are given by the
dashed curve.



5
Nucleon-Deuteron Scattering

The description of the hadronic dynamics in this thesis is nonrelativistic. Nevertheless, I like to
make the step to observables by starting out from the relativistic form of the cross section, since
other particles, i.e., electrons and photons, involved in the e.m. reactions to be described in the next
chapters, are relativistic; the nonrelativistic reduction of the relativistic form of the cross section for
hadrons can be easily done. Furthermore, the relativistic form of the cross section may enable me to
estimate the theoretical error bars due to the use of the nonrelativistic description.

5.1 Spin-Averaged and Spin-Dependent Cross Sections

I consider the general scattering process

i1+ i2! f1+ : : :+ fn: (5.1)

The differential cross section has the general form

dσi! f =
��h f jM jii

��2 dLips(ki1+ki2;fkf j j j = 1; : : : ;ng)
4
�
(ki1 �ki2)

2�m2
i1m

2
i2

� 1
2

; (5.2a)

where the Lorentz-invariant singularity-free matrix elementh f jM jii parametrizes the relativisticS
matrix, i.e.,

h f jS jii = h f jii� i(2π)4 δ(4)
� n

∑
j=1

kf j �ki1�ki2

�h f jM jii(2π)�
3
2(n+2)�2k0

i12k0
i2

n

∏
j=1

(2k0
f j
)
�� 1

2 ; (5.2b)

dLips(ki1+ki2;fkf j j j = 1; : : : ;ng) is the Lorentz-invariant phase-space element, i.e.,

dLips(ki1+ki2;fkf j j j = 1; : : : ;ng) = (2π)4 δ(4)
� n

∑
j=1

kf j �ki1�ki2

� n

∏
j=1

d3kf j

(2π)32k0
f j

; (5.2c)

and the factor 4
�
(ki1 �ki2)

2�m2
i1m

2
i2

� 1
2 contains the incoming flux, the target density and projectile and

target normalization factors; thekhj with h = i ( f ) are the relativistic four momenta of the involved

particles in the initial (final) states, i.e.,k0
hj
= (m2

hj
+k2

hj
)

1
2 .

Since the relativistic description of hadronic dynamics is not available, the Lorentz-invariant ma-
trix elementh f jM jii is calculated from nonrelativistic quantum mechanics. The quantum-mechanical
Smatrix can be written in the form

h f jSjii = h f jii�2πi δ(3)(Pf �Pi)δ(Ef �Ei)hsf jM(Eik f )jsii (5.3)
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with Pi (Pf ) andEi (Ef ) being the total initial (final) momentum and the total initial (final) energy.
hsf jM(Eik f )jsii is the quantum-mechanical transition amplitude; its dependence on the spin projec-
tions of the particles in the initial and final states, collectively described bysi andsf , on the available
initial energyEi and on the final particle momenta, collectively described byk f , is indicated explic-
itly. Equating the relativistic and nonrelativisticS matrices (5.2b) and (5.3) as in Refs. [20, 21], the
resulting matrix element

h f jM jii= (2π)
3
2nhsf jM(Eik f )jsii

�
2k0

i12k0
i2

n

∏
j=1

(2k0
f j
)
� 1

2 (5.4)

loses the property of being a Lorentz scalar. In contrast, the kinematical factors in Eq. (5.2a) can be
easily calculated relativistically; such a split calculational strategy, based on nonrelativistic dynamics
and on relativistic kinematics, was used in Refs. [20, 21] for e.m. reactions.

However, I use a different strategy for the standard calculations of this thesis: Since the quan-
tum-mechanicalSmatrix (5.3) represents the lowest order nonrelativistic reduction of the relativistic
Smatrix (5.2b), I consistently perform a corresponding nonrelativistic reduction forall quantities in
Eqs. (5.2) and (5.4), i.e.,

� the hadron energy factors 2k0
hj

are replaced by their rest masses 2mhj , and

� nonrelativistic hadron energiesk0
hj
= mhj +k2

hj
=2mhj are used for the energy conservingδ func-

tion and for the factor 4
�
(ki1 �ki2)

2�m2
i1m

2
i2

� 1
2 .

The obtained expressions for cross sections are identical to the ones, derived from quantum mechanics
directly, e.g., for reactions with hadrons only

dσi! f =
(2π)4

��hsf jM(Eik f )jsii
��2

jk i1=mi1�k i2=mi2j
δ(3)(Pf �Pi)δ(Ef �Ei)

n

∏
j=1

d3kf j : (5.5)

The form of the cross section (5.5) is consistent with the fit of the underlying baryonic potentials,
whereas the one based on Eqs. (5.2) and (5.4) is not. Furthermore, when total cross sections in
hadronic and e.m. reactions or inelastic response functions in electron scattering are calculated by
implicit integration over final states as described in Sec. 6.1.4 for the total photo cross section and
in Sec. 7.1.3 for inelastic response functions in electron scattering, the energy conservingδ function
is rewritten as imaginary part of the full resolvent and has to be made consistent with the employed
nonrelativistic dynamics. Thus, the split calculational strategy of Refs. [20, 21] cannot be carried
through for total cross sections of all reactions and later on for inelastic structure functions in e.m.
reactions.

5.1.1 Elastic Nucleon-Deuteron Scattering

Elastic nucleon-deuteron scattering is considered in the c.m. system. The nucleon-beam direction is
taken to define thez-axis, i.e.,̂z=�q̂i, qi being the Jacobi momentum defined in Eq. (2.1). The avail-
able scattering energyEi = ed + 3q2

i =4mN determines the magnitude of the final nucleon-deuteron
momentumqf by energy conservation, i.e.,qf = qi . The only independent continuous variable is
the direction�q̂ f of the scattered nucleon (or the directionq̂ f of the scattered deuteron). The quan-
tum-mechanical amplitude for the elastic nucleon-deuteron scattering can easily be read off from
Eq. (3.20a), i.e.,

hsf jM(Eiq f )jsii= hφα(q f )να f jU(Ei + i0)jφα(qi)ναi i; (5.6)
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the matrix element is calculated – by definition – in the c.m. system, since it refers to the internal
motion only and it is independent of the total momentaPi andPf . In Eq. (5.6) the initial and final
spin projections of nucleon and deuteron aresi = fmsi MIig andsf = fmsf MI f g. The spin-dependent
differential c.m. cross section (5.5) for the elastic nucleon-deuteron scattering takes the compact form

d2σi! f

d2q̂ f
=
��hsf jM(Eiq f )jsii

��2 fps (5.7a)

with the phase-space factor

fps= (2π)4(2mN=3)2: (5.7b)

The spin-averaged differential c.m. cross section is

d2σ
d2q̂ f

=
1
6 ∑

sf si

d2σi! f

d2q̂ f
; (5.8a)

d2σ
d2q̂ f

=
1
6

Tr[M(Eiq f )M
†(Eiq f )] fps; (5.8b)

whereM(Eiq f ) is treated as an operator in spin space. In the figures the spin-averaged differential
cross section is denoted bydσ=dΩ, the traditional notation.

The calculation of the spin-dependent cross sections and of various spin observables is described
in Appendix D.

5.1.2 Nucleon-Deuteron Breakup

Nucleon-deuteron breakup is considered in the lab system. The target deuteron is at rest, i.e., its
momentumkd = 0, the impinging nucleon has momentumkαi , which defines thez-axis, i.e.,ẑ= k̂αi .
The changes which arise when the deuteron impinges on a nucleon target are obvious. The nucleon
momentumkαi determines also the initial nucleon-deuteron momentumqi =�2

3kαi and the available
initial energy in the c.m. systemEi = ed +3q2

i =4mN. The quantum-mechanical amplitude for the
nucleon-deuteron breakup according to Eq. (3.20b) is

hsf jM(Eip f q f )jsii= hφ0(p f q f )ν0f jU0(Ei + i0)jφα(qi)ναi i; (5.9)

the matrix element again being calculated – by definition – in the c.m. system, since it refers to
the internal motion only and it is independent of the total momentaPi and Pf . In Eq. (5.9) the
initial and final spin projections aresi = fmsi MIig andsf = fms1ms2ms3g. The neutron and proton
nature of the nucleons(123) in the final state is notationally not indicated, but always determined by
experiment. The final-state Jacobi momentap f andq f are determined from the final single-nucleon
momentak1, k2, k3 according to Eqs. (2.1). Due to momentum conservationk3 = kαi �k1�k2, thus,
p f =

1
2(k1� k2) andq f = (k1 + k2)� 2

3kαi . Furthermore, energy conservation puts an additional
constraintEi = p2

f=mN+3q2
f =4mN, keeping only five independent continuous variables. For example,

if the momentumk1 and the direction̂k2 were measured, all three nucleon momenta are determined
in the final state, although not always uniquely. In practice, the two nucleon scattering angles with
respect to the beam direction(θ1;ϕ1) and(θ2;ϕ2), usually notationally shortened to(θ1;θ2;ϕ2�ϕ1),
and their kinetic energies without rest massesE1 andE2 are measured. Those energies are related by
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momentum and energy conservation and therefore lie on a fixed kinematical curve. The observables
are therefore given as function of the arclengthSalong that curve, i.e.,

S=
Z S

0
dS (5.10)

with dS=
q

dE2
1 +dE2

2 andE2 being considered a function ofE1 or vice versa depending on numer-
ical convenience; the arclength is always taken counterclockwise along the kinematical curve. The
normalization of the arclength value zero is chosen differently in different kinematical situations.

The spin-dependent fivefold differential lab cross section takes the compact form

d5σi! f

dSd2k̂1d2k̂2
=
��hsf jM(Eip f q f )jsii

��2 fps (5.11a)

with the phase-space factor

fps=(2π)4 mN

jkαi j
m2

Nk2
1k2

2

n
k2

1

�
2jk2j� k̂2 � (kαi�k1)

�2
+k2

2

�
2jk1j� k̂1 � (kαi�k2)

�2o�1=2
: (5.11b)

The spin-averaged fivefold differential lab cross section is

d5σ
dSd2k̂1d2k̂2

=
1
6

Tr[M(Eip f q f )M
†(Eip f q f )] fps: (5.12)

In the figures the spin-averaged fivefold differential cross section is denoted byd5σ=dSdΩ1dΩ2, the
traditional notation.

The calculation of the spin-dependent cross sections and of various spin observables is described
in Appendix D. A problem in the comparison of theoretical predictions and experimental data arising
in the case when the latter are analyzed using relativistic kinematics is discussed in Sec. D.2 of the
same appendix.

5.2 Calculational Advances

This section describes technical and physics improvements this thesis was able to achieve. First, it dis-
cusses the Chebyshev technique for expanding the dynamic input in form of the two-baryon transition
matrix and the deuteron wave function and compares it with alternative techniques. Second, it dis-
cusses the solution of three-particle equations without using separable potentials. Third, it discusses
the importance of a realistic dynamic input, i.e., of well-fitted purely nucleonic and coupled-channel
potentials, for reliable physics predictions.

5.2.1 Chebyshev Expansion

The two-baryon transition matrix and the deuteron wave function are expanded in terms of Cheby-
shev polynomials as motivated and described in Appendix C.1. The Chebyshev expansion for the
two-baryon transition matrix is given in Eqs. (C.4) and for the deuteron wave function in Eqs. (C.9).
It works equally well for both quantities. Figure 5.1 displays examples of the Chebyshev coefficients
Ti0i

η0η(χq;Z) of the two-baryon transition matrix and of the Chebyshev coefficientsdi
L of vαjdqχdiα;

their fast decrease with increasing order of the polynomial is impressive; the convergence appears
subgeometric as described in Appendix C.1.3; the expansion converges therefore rapidly as shown in
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Figure 5.1: Chebyshev coefficients Tr 0r
η0η(χq;Z) of the 1S0(NN)� 5D0(N∆) two-baryon transition

matrix for r = 1, q= 0 andZ= 100 MeV and Chebyshev coefficientsdr
L of the deuteron wave function

as functions of the orderr 0 or r of the Chebyshev polynomials.
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Figure 5.2: Convergence of the Chebyshev expansion. On the left side the real part of the
1S0(NN)� 5D0(N∆) two-baryon transition matrix is shown as function of the final momentump.
The transition1S0 ! 5D0 atq= 0 with the available energyZ = 100 MeV for the initial pair momen-
tum pi = 1 fm�1 is plotted. On the right side theL = 0 component of the deuteron wave function
ψL(p)� hp(LS)I0MIT0MT0BjdI0MI T0MT0i is shown. The dot-dashed, dotted, dashed and solid curves
correspond to Chebyshev interpolation using 12, 16, 24 and 48 polynomials, respectively. All curves
are indistinguishable in the resolution adopted for momenta up to 10 fm�1. Differences can only be
seen for momenta beyond 10 fm�1 with an especially fine resolution. The standard of reference is
spline interpolation with 48 spline functions. Most curves, based on much fewer Chebyshev polyno-
mials, turn out to be indistinguishable from those reference curves.

Fig. 5.2. Thus, the truncation of the Chebyshev expansion at the rather small orders 16 or 24 is well
justified, except for very large momenta, unimportant for three-nucleon scattering at the rather mod-
est available energies considered in this thesis. The Chebyshev expansion is systematic and efficient;
in contrast, when using spline interpolation for the same quantities all spline functions are of same
importance; there is no way for a corresponding systematic truncation of the spline expansion.
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5.2.2 Solution of Three-Particle Equations

I use the Chebyshev expansion of the two-baryon transition matrix and of the deuteron wave function
as interpolation scheme for solving the three-particle equations without further approximations with
respect to the dynamic input. I performed the following tests, in order to assure its technical reliability.
The numerical apparatus is described in Appendix C.1.

1. References [17–19, 46] employed the coupled-channel potential A2 [16] and the Paris poten-
tial [23] as its nucleonic reference potential in separable forms as dynamic input for calcula-
tions. I take those separable forms now as numerical test cases, but do not exploit their separable
structure. Instead, I apply a Chebyshev expansion for their separable forms and interpolate them
accordingly when solving integral equation (3.19a) with the technique of Appendix C.1. The
agreement with results derived from the explicit use of the separable expansion is so excellent
that differences cannot be documented in any plot. This fact is one indication that the new
technique of Appendix C.1.1 is reliable.

2. Figure 5.3 studies the convergence of sample physics observables with the number of Cheby-
shev polynomials employed. The convergence is impressively rapid. Understandably it is faster
for lower energies. Nevertheless, as an alternative, also spline interpolation is used, as usually
adopted in few-body numerics when solving the integral equation (3.19a). In both interpolation
schemes the basic integral (C.13) has the same general structure as discussed in Appendix C.3.
The results provided by both interpolation schemes are indistinguishable; however, spline inter-
polation reaches the same quality of results only with a considerably larger number of functions
than the corresponding Chebyshev expansion. The results of Fig. 5.3 confirm my previous con-
clusion: The Chebyshev expansion is systematic and efficient and thereby superior to spline
interpolation.All results given in the following are obtained with 24 Chebyshev polynomials.
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Figure 5.3: Fivefold differential cross section ofNd breakup at 190 MeV nucleon lab energy in the
collinear configuration(59:8Æ;59:8Æ;180:0Æ) and nucleon to nucleon polarization transfer coefficient
Kx0

z (NN) of elasticNd scattering at 190 MeV nucleon lab energy. The convergence of the Chebyshev
expansion is studied. The dotted and dashed curves are results obtained with 8 and 12 Chebyshev
polynomials, respectively, the solid curve corresponds to the indistinguishable results obtained with
16, 24 and 48 Chebyshev polynomials and with 48 spline functions; always more than 24 spline
functions are needed to reproduce the solid curve very well.
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Figure 5.4: Nucleon analyzing powerAy(N) of elasticNdscattering at 10 MeV nucleon lab energy and
deuteron to nucleon polarization transfer coefficientKz0

x (dN) of elasticNd scattering at 135 MeV nu-
cleon lab energy as function of the c.m. scattering angle. The separable expansion of the two-baryon
potential A2 with∆-isobar excitation is tested. The dashed curves are results of the separably ex-
panded potential form, the solid curves of the unexpanded form. The experimental data are from
Ref. [47].

3. The quality of the separable expansion employed in Refs. [17–19, 46] is well established for the
purely nucleonic Paris potential; for the two-baryon coupled-channel potential the separable ex-
pansion could be tested in the two-nucleon system and for the three-nucleon bound state and was
found to be quite accurate [46]. I am now able to complete the latter tests also for three-nucleon
scattering. Sample results based on the coupled-channel potential A2 of Refs. [17–19, 46] and
obtained with the technique of Appendix C.1 are compared in Fig. 5.4 with corresponding re-
sults for the separably expanded form of A2 derived either by the technique of Appendix C.1
or by the technique of Ref. [19]. Differences of results obtained for the separably expanded and
the unexpanded forms of A2 are discernible, but the separable expansion is again proven to be
quite reliable, enforcing the conclusions of Ref. [46].

5.2.3 Comparison of Different Potentials

Compared to the results of Refs. [17–19, 46] based on the Paris potential [23] and its coupled-channel
extension, most observables of elastic nucleon-deuteron scattering and of breakup get changed in
predictions based on modern potentials and their extensions. Two typical examples are shown in
Fig. 5.5, where predictions of CD Bonn [3], AV18 [5] and the Nijmegen potentials [4] are compared to
that of the Paris potential. The results of the modern potentials are very close to each other, but differ
markedly in detail from those of the Paris potential. The modern potentials incorporate the charge
dependence of the two-nucleon interaction and are fitted to the new and precise data, unavailable
when the Paris potential was created. Since the difference in fits is responsible for the difference
in predictions, Fig. 5.5 only shows results with purely nucleonic potentials. The difference in the
sample prediction for nucleon-deuteron breakup at 13 MeV nucleon lab energy reflects the charge
dependence of the modern potentials which is not taken into account in the Paris potential. The
difference in the sample prediction for elastic nucleon-deuteron scattering at 135 MeV nucleon lab
energy reflects the improved fit of the modern potentials to more recent data for spin observables of
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Figure 5.5: Comparison of observables derived from various purely nucleonic potentials, i.e.,
CD-Bonn (solid), AV18 (long-dashed), Nijmegen I (short-dashed), Nijmegen II (dotted) and Paris
(dashed-dotted). Differential cross section ofNd breakup at 13 MeV nucleon lab energy as function
of the arclengthS along the kinematical curve in collinear configuration(39:0Æ;75:5Æ;180:0Æ) and
deuteron analyzing powerAy(d) of elasticNd scattering at 135 MeV nucleon lab energy as function
of the c.m. scattering angle are shown. The results of the modern potentials cluster around each
other and are hardly distinguishable from each other in the plots. The experimental data are from
Refs. [11, 48].

two-nucleon scattering. Thus, the use of well-fitted potentials is important. This conclusion is also
confirmed by the comparison of the predictions based on the well-fitted coupled-channel potential CD
Bonn +∆ and on the two constructions without fit, i.e., CD Bonn +∆ (sub1) and CD Bonn +∆ (sub2).
At low energies, i.e., up to about 30 MeV nucleon lab energy,∆-isobar effects remain small; they
are at least qualitatively the same for all coupled-channel potentials discussed in the past and in this
thesis. However, at higher energies∆-isobar effects become more visible and there the realistic nature
of the employed coupled-channel potential becomes important. Figure 5.6 gives examples. There, the
coupled-channel potentials constructed according to the old subtraction scheme can overestimate the
∆-isobar effects sizably.

5.3 Results

This section presents results for spin-averaged and spin-dependent observables of elastic nucleon-deu-
teron scattering and breakup using the developed coupled-channel potential. The definitions of
spin-dependent observables are given in Appendix D. The calculations omit the Coulomb poten-
tial between charged baryons. However, the theoretical description is charge dependent. Forpd
processes theppandnpparts of the interaction are used, fornd processes thennandnpparts; except
for very low energies, where the omission of Coulomb is fatal anyhow, and except for some breakup
observables, both calculations yield results, indistinguishable in plots. The charge dependence of the
nucleon-nucleon interaction is treated exactly in the1S0 partial wave, yielding total isospinT = 3

2
channels; in the other two-baryon isospin-triplet partial waves up toI = 4 the charge dependence is
treated approximately as described in Sec. 3.4, i.e., without coupling toT = 3

2 states; in those higher
partial waves the coupling toT = 3

2 states was checked to be quantitatively irrelevant. Partial waves
up to total two-baryon angular momentumI =5 in purely nucleonic channels, up toI =4 in nucleon-∆
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Figure 5.6: Differential cross section ofNd breakup at 65 MeV nucleon lab energy as function of
the arclengthSalong the kinematical curve in the space star configuration(54:0Æ;54:0Æ;120:0Æ) and
differential cross section and deuteron analyzing powerAy(d) of elasticNd scattering at 190 MeV
nucleon lab energy as function of the c.m. scattering angle. Compared are predictions of different
coupled-channel potentials, i.e., CD Bonn +∆ (solid curves), CD Bonn +∆ (sub1) (dashed-dotted
curves), and CD Bonn +∆ (sub2) (dotted curves). Results for the nucleonic CD Bonn potential
without ∆-isobar excitation (dashed curves) are given as reference for an indication of the complete
∆-isobar effects.

channels and up to total three-baryon angular momentumJ = 31
2 are taken into account. The results

appear fully converged with respect to higher two-baryon angular momentaI , with respect to higher
three-baryon angular momentaJ , and with respect to∆-isobar coupling on the scale of accuracy which
present-day experimental data require with only one exception: Some breakup observables at 135 and
200 MeV nucleon lab energy still show, in some kinematical regimes, a residual dependence on the
cut off in I andJ ; the results presented in figures for breakup observables at those higher energies are
therefore based on the extended cut offsI = 6 andJ = 51

2 . Though the technical apparatus enables
me to calculate all observables in the considered energy regime, I concentrate on few most interesting
cases only; furthermore, I focus on the∆-isobar effects in observables.
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5.3.1 Elastic Nucleon-Deuteron Scattering

The theoretical description of elastic nucleon-deuteron scattering up to about 100 MeV nucleon lab
energy in terms of realistic two-nucleon potentials has been generally quite successful [7] with few
exceptions.

At very low energies some scattering observables and bound-state properties are correlated; thus,
an appropriate three-nucleon force has to be added to account for trinucleon binding and for those
scattering observables in full. Since the∆-isobar effects on the three-nucleon bound state are already
described in Chapter 4, I do not discuss anymore thosescalingeffects, which the∆ isobar yields due
to the resulting additional binding.

The description of proton-deuteron scattering at very low energies for most angles and at higher
energies predominantly in forward direction requires the inclusion of the Coulomb interaction be-
tween the protons; this has not yet been done in the momentum-space calculations based on realistic
potentials [7, 17–19], and it is not done in this thesis.

There are long-standing discrepancies in the nucleon and deuteron vector analyzing powersAy(N)
andAy(d) around 10 MeV nucleon lab energy, the so-calledAy-puzzle. All calculations based on re-
alistic two-nucleon potentials and complemented by a three-nucleon force, either by an irreducible
one or by an effective one as due to∆-isobar excitation, are unable to account for the experimental
height of the peak. Reference [49] discusses a three-nucleon force as possible remedy which has a phe-
nomenological spin-orbit component with rather long range. I therefore test an effective three-nucleon
force which obtains a microscopically motivated spin-orbit component arising from the spin-orbit part
of theρ-meson exchange mediating single∆-isobar excitation; that spin-orbit component is of rather
short range, its strength and range being predetermined by theρ parameters used in the other parts of
transition potential from two-nucleon to nucleon-∆ states. The predictions for the neutron analyzing
powerAy(n) of elastic neutron-deuteron scattering at 10 MeV nucleon lab energy are given in Fig. 5.7.
The obtained results are disappointing: The inclusion of the spin-orbit mechanism ofρ exchange does
not significantly decrease the long-standing discrepancy. Although the three-nucleon force effect is
quite significant, it is canceled by the dispersive effect, leaving the full∆-isobar effect small. A similar
small effect is found for the deuteron vector analyzing powerAy(d). The spin-orbit contribution to
∆-isobar effects is negligible for other observables.

In general, the∆-isobar effects in elastic nucleon-deuteron scattering at nucleon lab energies up to
about 100 MeV remain small and rather unimportant, and the overall agreement with the experimental
data is pretty good — with the few exceptions mentioned above.

I therefore concentrate on observables above 100 MeV nucleon lab energy; this is an energy
regime in which a number observables shows discrepancies between the experimental data and the
theoretical predictions based on two-nucleon potentials only and in which noticeable∆-isobar effects
are expected, in contrast to lower energies. Figures 5.8 and 5.9 study the evolution of the∆-isobar
effects on the spin-averaged differential cross section and on the nucleon analyzing power at 108,
120, 135, 150, 170 and 190 MeV nucleon lab energy. There is a clear disagreement in the diffraction
minima of the spin-averaged differential cross section between experiment and theory based on the
purely nucleonic CD-Bonn potential, theSagara discrepancy; the inclusion of the∆ isobar reduces
that discrepancy significantly, though it is unable to remove it in full. The discrepancy between the
different sets [10, 11] of experimental data is not understood yet. A corresponding beneficial∆-isobar
effects are also seen for the nucleon analyzing power.

Figure 5.10 shows deuteron vector and tensor analyzing powers at 100 and 135 MeV nucleon
lab energy, corresponding to 200 and 270 MeV deuteron lab energy in the real experiments with
a deuteron beam [11]. The∆-isobar effects are not always beneficial, e.g., for the deuteron tensor
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Figure 5.7: Neutron analyzing powerAy(n) of elasticnd scattering at 10 MeV neutron lab energy as
function of the c.m. scattering angle. Results of the coupled-channel potential with∆-isobar excitation
CD Bonn +∆ (sub2) including the spin-orbit interaction (solid curve) are compared with reference
results of the purely nucleonic CD-Bonn potential (dashed curve). On the right side the peak is shown
in finer resolution; there also the results for∆-isobar excitation without spin-orbit interaction (dotted)
are shown. The partial three-nucleon force effect arising from the∆-isobar excitation is also given for
comparison (dashed-dotted). The experimental data are from Ref. [47].

analyzing powerAyy at intermediate scattering angles.
Recently, a complete set of proton spin observables in�!p d elastic scattering at 250 MeV nucleon

lab energy has been measured [13]. Though the energy is already slightly above the pion-production
threshold, I apply the theory without pion production nevertheless, since the inelasticity remains small.
In Fig. 5.11 I show theoretical predictions for the differential cross section and for the nucleon to
nucleon polarization transfer coefficients. As in Fig. 5.8, the inclusion of the∆ isobar significantly
reduces the Sagara discrepancy in the differential cross section. The polarization transfer coefficient
Ky0

y (NN) also shows rather large∆-isobar effects, whereas other coefficients are affected only by little.
Nevertheless, even at this comparatively high energy the inclusion of the∆ isobar improves the general
agreement between theory and experiment rather significantly.

Figure 5.12 compares theoretical predictions with the preliminary experimental data [12] for
deuteron to nucleon polarization transfer coefficients. The∆-isobar effects are rather insignificant.

With respect to spin correlation coefficients, experimental data exist only forCy;y at 197 MeV
nucleon lab energy [51]; simultaneously also the deuteron vector analyzing powerAy(d) has been
measured. Figure 5.13 compares that data with theoretical predictions. The∆-isobar effects are
especially important forAy(d).

Instead of letting the∆ isobar yield an effective three-nucleon force beside other∆-isobar effects
as I do, Refs. [9, 11, 13, 52] add an irreducible three-nucleon force to the purely nucleonic two-nucleon
interaction. The two-pion exchange Tucson-Melbourne potential TM’ with revised parameters [53]
repairing a substantial violation of chiral symmetry, and the Urbana IX force [54] are the favorable
choices; their parameters are fitted to the trinucleon binding energy. When comparing the results of
this thesis with the predictions of Refs. [9, 11, 13, 52] for the observables of Figs. 5.8 - 5.13, I observe
an encouraging qualitative agreement for most of them. The agreement is almost quantitative for the
differential cross sections of Fig. 5.8. The most remarkable qualitative disagreement is found for the
deuteron analyzing powerAxx of Fig. 5.10; there the full∆-isobar effect and the effect of TM’ or
Urbana IX go into opposite directions; I observe that the∆-isobar effect is beneficial.
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Figure 5.11: Differential cross section and all nucleon to nucleon polarization transfer coefficients of
elasticNd scattering at 250 MeV nucleon lab energy as functions of the c.m. scattering angle. Results
of the coupled-channel potential with∆-isobar excitation (solid curves) are compared with reference
results of the purely nucleonic CD-Bonn potential (dashed curves). The experimental data are from
Ref. [13] and refer topd scattering.
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Figure 5.13: Deuteron analyzing powerAy(d) and nucleon-deuteron spin correlation coefficientCy;y

of elasticNd scattering at 197 MeV nucleon lab energy as function of the c.m. scattering angle.
Results of the coupled-channel potential with∆-isobar excitation (solid curves) are compared with
reference results of the purely nucleonic CD-Bonn potential (dashed curves). The experimental data
are from Ref. [51] and refer topd scattering.
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5.3.2 Nucleon-Deuteron Breakup

Experimental data for breakup in nucleon-deuteron scattering are scarcer than for elastic scattering.
All theoretical predictions and all experimental data refer to the situations in which the two detected
nucleons 1 and 2 have the same isospin projection, i.e., both detected nucleons 1 and 2 are protons in
the proton-deuteron breakup and neutrons in the neutron-deuteron breakup.

Results for spin-averaged and spin-dependent observables at 13 MeV nucleon lab energy are given
in Fig. 5.14. The disagreement between the theoretical predictions and the experimental data is most
striking for the differential cross section in the space star configuration of Fig. 5.14; the experimental
data for proton-deuteron and neutron-deuteron breakup are surprisingly far apart; neither data set is
accounted for by theory as has already been observed in previous calculations [7, 19]. The calculations
of Ref. [19] failed also in accounting for the differential cross section in the vicinity of final state
interaction (FSI) points; the correct treatment of charge dependence in the calculations of this thesis
resolves that problem. Examples are the collinear configurations of Figs. 5.5 and 5.14, where the
peaks aroundS= 8 MeV andS= 10 MeV are not far from the FSI points, and the FSI configuration
of Fig. 8.2 where the effect of the charge dependence is discussed in more detail in the context of
perturbation theory. In the studied low-energy observables the effects of the∆ isobar are irrelevant.

Results for deuteron analyzing powers of deuteron-proton scattering at 52 MeV deuteron lab en-
ergy are given in Fig. 5.15. The experimental data are still preliminary; they are given as function
of S=Smax, Smax being the full arclength of the kinematical curve; I follow that procedure also for the
theoretical predictions. The∆-isobar effects on the considered observables remain very small.

Results for spin-averaged and spin-dependent observables at 65 MeV nucleon lab energy are given
in Figs. 5.16 and 5.17. All experimental data refer to proton-deuteron scattering. The agreement
between theoretical predictions and experimental data is satisfactory.∆-isobar effects are small; they
appear to be most pronounced in space star and collinearity configurations, as already pointed out in
Ref. [19]. In contrast to Ref. [19], there are almost no∆-isobar effects in coplanar star and quasi-free
scattering (QFS) configurations; this is typical also for higher energies; I do not document the results
on that finding.

Though sizable effects, arising from the three-nucleon force and therefore giving information on
it, are hoped to be seen in nucleon-deuteron breakup [61], I am not able to confirm that expectation
using the coupled-channel potential as a theoretical tool. I do not repeat the impressive search for
three-nucleon force effects carried out in Ref. [61], where dramatic effects were seen in particular
kinematics regions. However, they were based on a Tucson-Melbourne potential violating chiral
symmetry; results obtained for CD Bonn together with the modified TM’ three-nucleon force and
for AV18 together with the Urbana IX three-nucleon force show much milder effects. The∆-isobar
effects of this thesis are pretty consistent with the latter ones. Examples of observables, likely to show
three-nucleon force effects according to Ref. [61] and showing rather modest∆-isobar effects, are
given in Fig. 5.18.
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Figure 5.14: Differential cross section and nucleon analyzing powerAy(N) of Nd breakup at 13 MeV
nucleon lab energy as function of the arclengthS along the kinematical curve for various con-
figurations: space star configuration(50:5Æ;50:5Æ;120:0Æ) on the top, collinearity configuration
(50:5Æ;62:5Æ;180:0Æ) in the middle, and QFS configuration(39:0Æ;39:0Æ;180:0Æ) on the bottom. Re-
sults of the coupled-channel potential with∆-isobar excitation (solid curves) are compared with ref-
erence results of the purely nucleonic CD Bonn potential (dashed curves). The experimental data are
from Ref. [48](2) referring tond scattering and from Ref. [55] referring topd scattering(�).
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Figure 5.16: Differential cross section and nucleon analyzing powerAy(N) of Nd breakup at 65 MeV
nucleon lab energy as function of the arclengthSalong the kinematical curve for collinear configura-
tions (from top to bottom)(20:0Æ;116:2Æ;180:0Æ), (30:0Æ;98:0Æ;180:0Æ), (45:0Æ;75:6Æ;180:0Æ), and
(59:5Æ;59:5Æ;180:0Æ). Results of the coupled-channel potential with∆-isobar excitation (solid curves)
are compared with reference results of the purely nucleonic CD-Bonn potential (dashed curves). The
experimental data are from Ref. [57] and refer topd scattering.
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Figure 5.17: Differential cross section and nucleon analyzing powerAy(N) of Nd breakup at 65 MeV
nucleon lab energy as function of the arclengthS along the kinematical curve for various configu-
rations (from top to bottom): Space star configuration(54:0Æ;54:0Æ;120:0Æ), coplanar star configu-
ration(35:2Æ;35:2Æ;180:0Æ), QFS configuration(44:0Æ;44:0Æ;180:0Æ), and nonspecific configuration
(20:0Æ;45:0Æ;180:0Æ). Results of the coupled-channel potential with∆-isobar excitation (solid curves)
are compared with reference results of the purely nucleonic CD-Bonn potential (dashed curves). The
experimental data are from Refs. [58–60] and refer topd scattering.



48 5. Nucleon-Deuteron Scattering

 0.0

 0.1

 0.2

 0.3

0 20 40 60 80

A
y(

N
)

S  (MeV)

ENlab = 65 MeV

-0.2

-0.1

0.0

0.1

0.2

0 20 40 60 80

A
yy

S  (MeV)

-0.2

0.0

0.2

0.4

0 40 80 120 160

A
y(

N
)

S  (MeV)

ENlab = 135 MeV

 0.0

 0.2

 0.4

0 40 80 120 160

A
yy

S  (MeV)

-0.2

0.0

0.2

0.4

0 40 80 120 160 200 240

A
y(

N
)

S  (MeV)

ENlab = 200 MeV

-0.3

-0.2

-0.1

0.0

0.1

0 40 80 120

A
yy

S  (MeV)

Figure 5.18: Left side: Nucleon analyzing powerAy(N) of Nd breakup as function of the ar-
clengthSalong the kinematical curve for three different nucleon lab energies: 65 MeV, configuration
(20Æ;20Æ;40Æ) on the top, 135 MeV, configuration(25Æ;25Æ;0Æ) in the middle, and 200 MeV, configu-
ration(25Æ;25Æ;0Æ) on the bottom. Right side: Deuteron analyzing powerAyy of Nd breakup as func-
tion of the arclengthSalong the kinematical curve for three different nucleon lab energies: 65 MeV,
configuration(40Æ;30Æ;140Æ) on the top, 135 MeV, configuration(15Æ;15Æ;20Æ) in the middle, and
200 MeV, configuration(45Æ;45Æ;0Æ) on the bottom. Results of the coupled-channel potential with
∆-isobar excitation (solid curve) are compared with reference results of the purely nucleonic CD-Bonn
potential (dashed curve).



6
Three-Nucleon Photo Reactions

The considered photo reactions are schematically shown in Fig. 6.1.

6.1 Spin-Averaged and Spin-Dependent Cross Sections

The starting point for calculating the cross sections of three-nucleon photo reactions is the general
form (5.2). The required matrix elementh f jM jii is calculated from the quantum-mechanical model.
In the perturbative spirit for the evolution of photo processes, the e.m. interactionHe:m:

I (2.11) acts
only once, whereas the hadronic interactionHI has to be taken into account exactly up to all orders.
Thus, the matrix elements of the e.m. interaction require fully correlated hadronic states (2.6). The
quantum-mechanicalSmatrix for photo reactions is parametrized in the form

h f jSjii =�2πi δ(3)(Pf �Pi)δ(Ef �Ei)
(4π)1=2

(2π)3=2 (2k0
γ )

1=2
hsf jMγ(Eik f )jsii: (6.1)

It is slightly different from the general form (5.3): The kinematical factors of the photon are taken
out fromhsf jMγ(Eik f )jsii explicitly. hsf jMγ(Eik f )jsii is then determined by the matrix element of the
e.m. nuclear current operator (2.15) between the three-nucleon bound and scattering states without
any additional factors and is given explicitly in the following subsections for all considered photo
reactions. I calculate that matrix element in the c.m. system using the following computational
strategy. The strategy is nonunique, since, according to Table 4.1, the model calculations, due to
dynamic limitations, miss the trinucleon binding energy; the necessary correction for that miss has
arbitrary features.

kd kN

kBkγ

kB kBkγ kγ

kN k1kd k2 k3

Figure 6.1: Schematic illustration of all considered three-nucleon photo reactions. The lines for the
two-baryon and three-baryon particles are drawn in a special form to indicate their compositeness.
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1. The experimental lab energyed + k2
N lab=2mN for radiative capture with nucleon beam and

jkγ labj+EB for photo disintegration determines the available internal energy, i.e., for radia-
tive captureEi = ed+3q2

i =4mN as for nucleon-deuteron scattering, and for photo disintegration
Ei = jkγ labj+EB� k2

γ lab=6mN; this step is done using the experimental trinucleon binding en-
ergy EB. I.e., the available internal energy is the true experimental one, and the experimental
two-body and three-body breakup thresholds are exactly reproduced.

2. The matrix elementhsf jMγ(Eik f )jsii is calculated in the c.m. system ason-energy-shell element
under nonrelativistic model assumptions. Under those assumptions the internal energyEi =
jkγj+EB + kγ

2=6mN determines the c.m. photon momentumkγ to be used for the current
matrix element in the c.m. system, i.e., the momentum transferQ = kγ andK+ = �kγ, since
the trinucleon bound state is moving with momentumkB =�kγ. This step uses the computed
trinucleon model binding energyEB. Since the model binding energyEB is not the experimental
one, neither for3He nor for3H, and since the c.m. contribution to the total three-nucleon energy
is assumed to be nonrelativistic with mass 3mN, that photon momentumkγ does not have the
experimental value.

Performing consistently a nonrelativistic reduction in Eqs. (5.2) for hadrons as described in
Sec. 5.1, I obtain the differential cross sections analytically given in the following subsections for
all considered photo reactions. In contrast to the matrix elementhsf jM(Eik f )jsii, the phase-space
factors are calculated using the experimental photon momentum.

6.1.1 Nucleon-Deuteron Radiative Capture

The initial state with spin characterizationsi is the same as in nucleon-deuteron scattering of Sec. 5.1.1
and does not need to be discussed anymore. The final state is characterized by the photon polarization
λ, by the spin projectionMB of the three-nucleon bound state, i.e.,sf = fλMBg, and by the direction
of the photon momentum, since its magnitude is determined by momentum and energy conservation
as described above. The resulting spin-dependent differential cross section in the c.m. system is

d2σi! f

d2k̂γ
=
��hsf jMγ(Eikγ)jsii

��2 fps (6.2a)

with the amplitude

hsf jMγ(Eikγ)jsii= ep hB j jµ(�kγ;�kγ)jΨ(+)
α (qi)ναi iε�µ(kγλ) (6.2b)

and the phase-space factor

fps= (2π)2 2mN

3

jkγj
jqi j : (6.2c)

The spin-averaged differential cross section, in the figures traditionally denoted bydσ=dΩ, is

d2σ
d2k̂γ

=
1
6

Tr[Mγ(Eikγ)M
†
γ (Eikγ)] fps: (6.3)

Since the radiative capture is time reversed reaction of two-body photo disintegration, the matrix
element (6.2b) is obtained from the one for two-body photo disintegration, defined later in Eq. (6.4b),
by time reversal as described in Ref. [20]. With respect to spin observables, I consider polarization in
the initial nucleon-deuteron system only; those spin observables are defined in Sec. D.1.3.
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6.1.2 Two-Body Photo Disintegration of Trinucleon Bound State

The photon momentumkγ defines thez-axis, i.e.,̂z= k̂γ and determines the internal three-nucleon en-
ergy as described above. The considered reaction is inverse to the nucleon-deuteron radiative capture;
thus, the initial and final states of Sec. 6.1.1 are just interchanged, i.e., the spin quantum numbers are
si = fλMBg andsf = fmsf MI f g. The magnitude of the final nucleon-deuteron momentumq f is deter-
mined by momentum and energy conservation, i.e.,Ei = ed+3q2

f =4mN. The resulting spin-dependent
differential cross section in the c.m. system is

d2σi! f

d2q̂ f
=
��hsf jMγ(Eiq f )jsii

��2 fps (6.4a)

with the amplitude

hsf jMγ(Eiq f )jsii= ephΨ(�)
α (q f )να f j jµ(kγ;�kγ)jBiεµ(kγλ) (6.4b)

and the phase-space factor

fps= (2π)2 2mN

3
jq f j
jkγj : (6.4c)

The spin-averaged differential cross section is

d2σ
d2q̂ f

=
1
4

Tr[Mγ(Eiq f )M
†
γ (Eiq f )] fps: (6.5)

6.1.3 Three-Body Photo Disintegration of Trinucleon Bound State

Since two-body photo disintegration is the time reversed reaction of radiative capture, it is also dis-
cussed in the c.m. system. In contrast, three-body photo disintegration is considered in the lab system,
i.e., in the rest system of the initial trinucleon bound state.

The photon momentumkγ lab defines thez-axis, i.e., ẑ = k̂γ lab and determines the internal
three-nucleon energy as described above. The initial and final states are already discussed in the
context of two-body photo disintegration and hadronic nucleon-deuteron breakup, i.e., the spin quan-
tum numbers aresi = fλMBg and sf = fms1ms2ms3g. The neutron and proton nature of the nu-
cleons(123) in the final state is notationally not indicated, but always determined by experiment.
The final-state Jacobi momentap f and q f are determined from the final single-particle momenta
k1, k2, k3 according to Eqs. (2.1). Due to momentum conservationk3 = kγ lab� k1� k2, thus,
p f =

1
2(k1� k2) andq f = (k1+ k2)� 2

3kγ lab. Furthermore, energy conservation puts an additional
constraintEi = p2

f=mN+3q2
f =4mN, keeping only five independent continuous variables as in hadronic

nucleon-deuteron breakup. Again, the scattering angles of two nucleons with respect to the beam di-
rection, i.e.,(θ1;ϕ1) and(θ2;ϕ2), notationally shortened to(θ1;θ2;ϕ2�ϕ1), and the arclengthSalong
that kinematical curve (5.10) are chosen as independent variables. The resulting spin-dependent five-
fold differential lab cross section takes the compact form

d5σi! f

dSd2k̂1d2k̂2
=
��hsf jMγ(Eip f q f )jsii

��2 fps (6.6a)

with the amplitude

hsf jMγ(Eip f q f )jsii= ep hΨ(�)
0 (p f q f )ν0f j jµ(kγ;�kγ)jBiεµ(kγλ) (6.6b)
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and the phase-space factor

fps=
(2π)2

k0
γ lab

m2
Nk2

1k2
2

n
k2

1

�
2jk2j� k̂2 � (kγ lab�k1)

�2
+k2

2

�
2jk1j� k̂1 � (kγ lab�k2)

�2o�1=2
: (6.6c)

The spin-averaged fivefold differential cross section is

d5σ
dSd2k̂1d2k̂2

=
1
4

Tr[Mγ(Eip f q f )M
†
γ (Eip f q f )] fps; (6.7)

in the figures it is denoted byd5σ=dSdΩ1dΩ2, the traditional notation.
The current matrix elements determining the amplitudes (6.4b) and (6.6b) for the two- and

three-body photo disintegration of the trinucleon bound state are calculated as described in Sec. 3.3.

6.1.4 Total Photo Disintegration Cross Section

The total photo disintegration cross section can be calculated performing the integration over all final
states implicitly, i.e.,

σ =
(2π)2e2

p

k0
γ

1
4 ∑

MBλ
ε�ν(kγλ)hB j[ jν(kγ;K+)]

†δ(Ei�H0�HI) jµ(kγ;K+)jBiεµ(kγλ); (6.8a)

σ =� (2π)2e2
p

4πk0
γ

∑
MBλ

Im
n

ε�ν(kγλ)hB j[ jν(kγ;K+)]
†G(Ei + i0) jµ(kγ;K+)jBiεµ(kγλ)

o
: (6.8b)

The auxiliary stateG(Ei + i0) jµ(kγ;K+)jBi of Eq. (6.8b) is related tojJµ(Ei + i0)i of Eqs. (3.24)
according to

G(Ei + i0) jµ(kγ;K+)jBi=1
3
(1+P)G0(Ei + i0)

�
jµ(kγ;K+)jBi

+Tα(Ei + i0)G0(Ei + i0)jJµ(Ei + i0)i�: (6.8c)

The total cross section is then obtained in the form

σ =� (2π)2e2
p

12πk0
γ

∑
MBλ

Im
n

ε�ν(kγλ)hB j[ jν(kγ;K+)]
†(1+P)G0(Ei + i0)

� � jµ(kγ;K+)jBi+Tα(Ei + i0)G0(Ei + i0)jJµ(Ei + i0)i�εµ(kγλ)
o
: (6.8d)

I note that Eqs. (6.8) perform the integration over all final states implicitly using the nonrelativistic
Hamiltonian. This is in contrast to the strategy of Ref. [20] which keeps the final state phase space
relativistic and therefore in principle does not allow to calculate the total cross section as described
above.
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6.2 Results

This section presents results for spin-averaged and spin-dependent observables of nucleon-deuteron
radiative capture and of three-nucleon photo disintegration; results of two-nucleon photo disintegra-
tion are transformed to corresponding ones of radiative capture. The results are derived from cal-
culations based on the purely nucleonic CD-Bonn potential [3] and its coupled-channel extension
constructed in Sec. 2.3. I describe first thestandard calculational procedure.

6.2.1 Standard Calculational Procedure

The hadronic interaction in purely nucleonic and in nucleon-∆ partial waves is taken into account up
to the total two-baryon angular momentumI = 4. The calculations omit the Coulomb potential be-
tween charged baryons. Nevertheless, the theoretical description is charge dependent as described in
Sec. 3.4. The charge dependence is treated in the1S0 partial wave exactly, and in all other partial waves
approximately. In contrast to hadronic reactions, that approximative treatment in e.m. reactions re-
quires total isospinT = 3

2 components of the hadronic scattering states inall considered isospin-triplet
two-baryon partial waves, since the e.m. current couples theT = 1

2 andT = 3
2 components strongly.

The three-particle equations for the trinucleon bound statejBi and for the corresponding scattering
states are solved as described in Chapter 3; in fact, the scattering states need to be calculated only
implicitly according to Sec. 3.3. The resulting binding energies of3He are -7.941 and -8.225 MeV
for CD Bonn and CD Bonn +∆, respectively. If the Coulomb interaction were taken into account, as
proper for3He, the binding energies shift to -7.261 and -7.544 MeV, whereas the experimental value is
-7.718 MeV. Nevertheless, I use the purely hadronic energy values and bound-state wave functions for
consistency when calculating the current matrix elements, since I am unable to include the Coulomb
interaction in the scattering states.

Whereas the hadronic interaction is considered up toI = 4, the e.m. current is allowed to act
between partial waves up toI = 6, the higher partial waves being created by the geometry of antisym-
metrization. The e.m. current is taken over from Refs. [38, 62] with some necessary modifications:

1. The e.m. current is richer than the one used in Refs. [20, 38, 62]; diagonal two-baryon current
connecting states with∆ isobar is taken into account.

2. More recent values for the e.m. couplings of the∆ isobar are used according to Refs. [63, 64].

3. Meson coupling constants, meson masses and hadronic form factors used in meson-exchange
currents are chosen consistently with the employed hadronic interactions CD Bonn and CD
Bonn +∆; they are listed in Appendix A.

The employed contributions to the e.m. current are collected in Appendix B. The current is ex-
panded in electric and magnetic multipoles as described in Appendix E. The technique for calculating
multipole matrix elements is described in Ref. [62]; a special stability problem [20] arising in the
calculation requires some modifications of that technique as discussed in Appendix E. The magnetic
multipoles are calculated from the one- and two-baryon parts of the spatial current. The electric mul-
tipoles use the Siegert form of the currentwithout long-wavelength approximation; assuming current
conservation, the dominant parts of the one-baryon convection current and of the diagonalπ- and
ρ-exchange current are taken into account implicitly in the Siegert part of the electric multipoles by
the Coulomb multipoles of the charge density; the remaining non-Siegert part of the electric multi-
poles not accounted for by the charge density is calculated using explicit one- and two-baryon spatial
currents. The charge density contributing to the Siegert term has diagonal single-nucleon and single-∆
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contributions only; the nucleon-∆ transition contribution as well as two-baryon contributions are of
relativistic order and are therefore omitted in the charge-density operator when calculating Coulomb
multipoles.

The number of considered current multipoles is limited by the maximal total three-baryon angu-
lar momentumJmax =

15
2 , taken into account for the hadronic scattering states. The results for the

considered photo reactions up to pion-production threshold appear fully converged with respect to
higher two-baryon angular momentaI , with respect to∆-isobar coupling and with respect to higher
three-baryon angular momentaJ on the scale of accuracy which present-day experimental data re-
quire.

That is the standard calculational procedure. Section 6.3 discusses the shortcomings of that
standard description. In the rest of this section I focus on∆-isobar effects in sample observables.

6.2.2 Nucleon-Deuteron Radiative Capture

Low-energy photo reactions with two-body initial and final states have been investigated in Ref. [20];
the effects of the∆ isobar were found to be small. My control calculations at low energies indicate
that the results of Ref. [20] do not get essential physics changes though the hadronic interaction and
the e.m. current are improved. The results therefore are not shown here; an example for low-energy
observable is given in Sec. 6.3.2 which discusses shortcomings of the standard description. I concen-
trate on energies well above those of Ref. [20], but still below pion-production threshold. Figures 6.2
and 6.3 present results for spin-averaged and spin-dependent observables of nucleon-deuteron radia-
tive capture at 100, 150 and 200 MeV nucleon lab energy. There are noticeable∆-isobar effects on
some of the considered observables, e.g., on differential cross section and nucleon analyzing power.
There is a disagreement between old [65] and new, still preliminary [66] differential cross section
data, especially in the maximum region; the new preliminary data are in good agreement with my
results including the∆ isobar. The nucleon and deuteron vector analyzing powersAy(N) andAy(d)
are quite well described with the inclusion of the∆ isobar, whereas deuteron tensor analyzing powers,
especiallyAxx, indicate a possible sizable discrepancy between theoretical predictions and experimen-
tal data; on the scale of that discrepancy the∆-isobar effects for deuteron tensor analyzing powers are
small.

The results of this thesis are qualitatively rather consistent with those of Refs. [35, 36], though the
calculations of Refs. [35, 36] are based a on different strategy, on a different hadronic potential with
explicit irreducible three-nucleon force and on a somehow different e.m. current operators.
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Figure 6.2: Differential cross section and analyzing powers ofpd radiative capture at 100 MeV
nucleon lab energy as functions of the c.m. nucleon-photon scattering angle. Results of the cou-
pled-channel potential with∆-isobar excitation (solid curves) are compared with reference results of
the purely nucleonic CD-Bonn potential (dashed curves). The experimental data are from Ref. [65]
(�) and from Ref. [66](2); the latter data are still preliminary.
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Figure 6.3: Differential cross section and nucleon analyzing powerAy(N) of pd radiative capture at
150 and 200 MeV nucleon lab energy as function of the c.m. nucleon-photon scattering angle. Results
of the coupled-channel potential with∆-isobar excitation (solid curves) are compared with reference
results of the purely nucleonic CD-Bonn potential (dashed curves). The experimental data are from
Ref. [65].
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6.2.3 Three-Body Photo Disintegration of Three-Nucleon Bound State

Experimental data for three-nucleon breakup are much scarcer than for two-body photo disintegration
or radiative capture. To the best of my knowledge, there are no fully exclusive experimental data
in the considered energy regime; I therefore show in Figs. 6.4 – 6.6 predictions for inclusive and
semi-exclusive observables and compare them with existing experimental data. Figure 6.4 shows
results for the total3H three-nucleon photo disintegration cross section in the low energy region; there
is no significant∆-isobar effect. In contrast, Ref. [37] sees a larger three-nucleon force effect for this
observable; this discrepancy is partly due to a larger three-nucleon force effect on trinucleon binding
and subsequent scaling and partly due to a different computational strategy when choosing kinematics
for a theoretically underbound three-nucleon bound state as discussed in Sec. 6.3.2. Figures 6.5 – 6.6
show semi-exclusive fourfold differential cross section of3He photo disintegration at higher energies;
it is obtained from the fivefold differential cross section (6.7) by integrating over the kinematical curve
S. Again, the∆-isobar effects for those particular observables appear rather small, smaller than the
experimental error bars. There is also disagreement between theoretical predictions and experimental
data in some kinematical regimes which in part may be caused by experimental conditions, e.g., by
finite geometry, not taken into account in my calculations.
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Figure 6.4: Total 3H three-nucleon
photo disintegration cross section as
function of the photon lab energyEγ.
Results of the coupled-channel po-
tential with ∆-isobar excitation (solid
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with reference results of the purely nucleonic CD-Bonn potential (dashed curve). The experimental
data are from Ref. [69].
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Figure 6.7: The fivefold differential cross section of three-nucleon photo disintegration at 120 MeV
photon lab energy as function of the arclengthS along the kinematical curve for configuration
(92:2Æ;91:4Æ;180:0Æ) on the left and(81:5Æ;90:8Æ;180:0Æ) on the right. Results of the cou-
pled-channel potential with∆-isobar excitation (solid curve) are compared with reference results of
the purely nucleonic CD-Bonn potential (dashed curve).

Finally, in Fig. 6.7 I show fully exclusive sample fivefold differential cross section of three-nucleon
photo disintegration at 120 MeV photon lab energy for two kinematical configurations which were
shown semi-exclusively in Fig. 6.6; even at that higher energy the∆-isobar effects are rather mild.
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6.3 Shortcomings of the Description

The present description of photo reactions is with respect to the dynamic input, i.e., with respect to the
hadronic interaction and to the e.m. current, and with respect to the scope of applications a substantial
improvement compared with Ref. [20]. But it is still not a unique and in itself consistent description.
I am unable to repair the existing deficiencies. However, this section points those shortcomings out
and tries at least to estimate their size. I identify three different problem areas.

6.3.1 Shortcomings of the Theoretical Form of the Cross Section

The standard strategy uses the nonrelativistic form (6.2) – (6.7) for cross sections; this choice appears
to be consistent with the underlying two-baryon dynamics, though inconsistent with the experimental
relativistic kinematics. I therefore compare results obtained from Eqs. (6.2) – (6.7) with correspond-
ing ones obtained from the relativistic form of the cross section (5.2) which uses relativistic kinetic
energies for the Lorentz-invariant phase space element and the kinematic locus (5.10) combined with
the matrix element obtained according to the strategy of Eq. (5.4) without further nonrelativistic re-
duction, i.e.,

h f jM jii= (2π)
3
2(n�1)hsf jMγ(Eik f )jsii

� 4π
2k0

γ

� 1
2 �

2k0
i12k0

i2

n

∏
j=1

(2k0
f j
)
� 1

2 : (6.9)

The comparison is possible for observables in fully exclusive reactions. The difference between those
aspects of relativistic and nonrelativistic kinematics is minor for all considered observables of radia-
tive capture, i.e., less than 1%, but more significant, i.e., up to order of 10%, for three-nucleon photo
disintegration as shown in Fig. 6.8. Of course, the indicated effect does not represent the true dif-
ference between nonrelativistic quantum-mechanical and fully relativistic quantum-field-theoretical
results, but it may indicate the order of magnitude of the shortcomings of nonrelativistic calculations.
In the light of the accuracy of present-day data of photo reactions, this shortcoming of the theoretical
description is rather inconsequential.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 20 40 60 80 100 120 140 160

d5 σ/
dS

 d
Ω

1 
dΩ

2 
 (

µb
 M

eV
-1

sr
-2

)

S (MeV)

Figure 6.8: Differential cross sec-
tion of three-nucleon photo disinte-
gration at 120 MeV photon lab en-
ergy as function of the arclengthS
along the kinematical curve for con-
figuration (91:7Æ;80:9Æ;180:0Æ). Re-
sults of the coupled channel potential
with ∆-isobar excitation based on the
nonrelativistic form of the cross sec-
tion (solid curve) are compared with re-
sults based on the relativistic form of
the cross section (dashed curve).
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6.3.2 Shortcomings of the Dynamics

Nonunique Choice of Kinematics

The computational strategy in choosing the kinematics for the matrix elementhsf jMγ(Eik f )jsii is
described in Sec. 6.1. In thisfirst option, suggested there,hsf jMγ(Eik f )jsii is calculated in the c.m.
system. I opt to let the experimental beam energy determine the energy of hadronic nucleon-deuteron
state in radiative capture and the energy of the hadronic two-body and three-body final states in photo
disintegration exactly. Since the trinucleon model binding energy is not the experimental one and the
kinematics is nonrelativistic for hadrons when calculatinghsf jMγ(Eik f )jsii, the energy of the photon
does not have the experimental value when assuming energy conservation. At very low energies,
i.e., at the two-body photo-disintegration threshold, the deviation of the photon energy can get as
large as 10%, whereas at higher energies considered in this thesis it remains around 1 - 2%. In
contrast, in asecondoption one could let the experimental beam energy determine the c.m. photon
energy exactly; then the energies of the hadronic nucleon-deuteron and three-nucleon states are not
experimental ones. Athird option may use experimental energies for both initial and final states, but
then the matrix element determining physical amplitudes is slightly off-shell; this is the computational
strategy of Refs. [36, 37]. The difference in results between those three choices is minor at higher
energies, i.e., above 100 MeV nucleon lab energy, for all considered observables in all considered
kinematical regimes. However, there are differences up to 10% for observables at low energies. There,
the observed∆-isobar effects depend strongly on the choice of computational strategy. An example is
shown in Fig. 6.9.
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Figure 6.9: Differential cross section ofpd radiative capture at 19.8 MeV deuteron lab energy as
function of the c.m. nucleon-photon scattering angle. Results of the coupled-channel potential with
∆-isobar excitation derived from the standard approach (solid curve) are compared with results of
option three which uses experimental energies for both initial and final states, but the matrix ele-
ment (6.2b) is off-shell (dashed-dotted curve). The results of option two are rather close to the solid
curve. In order to appreciate the effect of the nonunique choice of kinematics in relation to the size of
the∆-isobar effect, results of a standard calculation with the purely nucleonic reference potential are
also given as dashed curve. The experimental data are from Ref. [70].
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Omission of Coulomb Interaction between Protons

I am unable to include the Coulomb interaction in the calculation of the three-nucleon scattering
states. In contrast, the selected inclusion of the Coulomb interaction in the trinucleon bound state
is easily possible, as discussed in Chapter 4, but this inclusion creates an additional inconsistency:
Initial and final hadronic states become eigenstates of different Hamiltonians, and, strictly speaking,
the Siegert form of the current operator is not applicable. Nevertheless, I do such an inconsistent
calculation which Refs. [36, 37] chooses to do as their standard calculation, in order to estimate the
effect of the omitted Coulomb interaction at least partially. The inclusion of the Coulomb interaction
in the trinucleon bound state systematically reduces the spin-averaged cross sections; in contrast,
spin observables appear to be almost unaffected. A characteristic result is shown in Fig. 6.10. Even
at higher energies the observed Coulomb effect may be of the same order of magnitude as the full
∆-isobar effect; however, it is not clear in how far the indicated effect represents a true Coulomb
effect or in how far it just reflects the dynamic incompatibility between bound and scattering states.
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Figure 6.10: Differential cross section and deuteron analyzing powerAyy of pd radiative capture at
95 MeV deuteron lab energy as function of the c.m. nucleon-photon scattering angle. Results of the
coupled-channel potential with∆-isobar excitation derived from the standard approach (solid curve)
are compared with results including the Coulomb interaction in the three-nucleon bound state (dashed
curve). The experimental data are from Ref. [71].

6.3.3 Shortcomings of the e.m. Current

Lack of Current Conservation

The potentials CD Bonn and CD Bonn +∆ used in this thesis have nonlocal structures, whereas the
e.m. current, given explicitly in Appendix B, is employed in a local nonrelativistic form. Thus, the
continuity equation is not fulfilled for the current. As measure for this deficiency predictions are
compared based on two different approaches for the electric multipoles, i.e.,

(1) the standard calculation with the Siegert operator accounting for the two-baryon current implic-
itly by assumed current conservation, and

(2) the explicit use of the meson-exchange current also for all of the electric multipoles.
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Figure 6.11: Differential cross section ofpd radiative capture at 190 MeV nucleon lab energy as
function of the c.m. nucleon-photon scattering angle. Results of the coupled-channel potential with
∆-isobar excitation derived from the Siegert approach for electric multipoles (solid curve) are com-
pared with results based on the explicit use of meson-exchange current (dashed curve). In order
to appreciate the size of the two-baryon current contribution, the results of non-Siegert calculation
with one-baryon current only are also given as dashed-dotted curve. The experimental data are from
Ref. [72].

The discrepancy between those two calculations measures the importance of the existing lack of cur-
rent conservation; indeed, the violation can be significant as Fig. 6.11 proves. I believe that calcu-
lations with the Siegert form of the current operator repair the violation of current conservation in
part; I therefore employ the Siegert form of the current operator in the standard calculational strategy.
However, at this stage it is useful to discuss the lack of current conservation in more detail:

1. Theσ, ρ andω exchanges yield a spin-orbit interaction. That spin-orbit interaction makes, even
in local approximation and even for isoscalar-meson exchanges, a contribution to the continuity
equation (2.17b). Thus, there is a corresponding contribution to the exchange current; it is
used in local form [73]. There are also additional contributions to theρ-exchange current [39]
not listed in Appendix B and therefore not taken into account in standard calculations. All
those contributions are implicitly contained in the Siegert-part of the electric multipoles. In the
tentative calculations described in this paragraph they are used explicitly for the non-Siegert part
of the electric multipoles and for the magnetic multipoles. There, those additional contributions
yield only small corrections, of the order of 2% at most, for observables considered in this
thesis. I therefore conclude that spin-orbit contributions and additionalρ-exchange currents
can quite safely be neglected in the Siegert form of the current operator when calculating the
photo reactions of this thesis. However, they are more important for calculations based fully
and explicitly on the exchange current and they therefore make a non-negligible contribution to
the difference seen in Fig. 6.11.

2. The employed potentials have explicit nonlocal structures. That explicit nonlocality makes a
contribution to the two-baryon exchange current.

I compared the results of the following models for the purely nucleonic potential. The models
are based onπ, ρ andω exchanges and on a scalar isoscalar and ascalar isovectorσ exchange;
one model uses the nonlocal structures of CD-Bonn type and the other their local approxima-
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tions. Both models are tuned to deuteron binding and to1S0 and3S1� 3D1 phase shifts only.
Though non realistic models, both usually predict observables in qualitative agreement with the
realistic descriptions. When employing the local potential model I obtain very good agreement
between the results based on the Siegert form of the current operator and the results based on
explicit exchange-current contributions to all multipoles. However, when employing the non-
local potential model, the results can differ substantially; the difference can be as large as seen
in Fig. 6.11 for the coupled-channel potential CD Bonn +∆. I conclude: The explicit nonlo-
cality of the employed potentials is a significant source for current nonconservation. Future
calculations should attempt to design nonlocal exchange-current contributions consistent with
the nonlocality of the underlying baryon-baryon potentials.

3. The employed potentials have an implicit nonlocality and isospin dependence due to the general
partial-wave dependence of the meson exchanges. That partial-wave dependence is slight for
the π, ρ andω exchanges, but substantial for theσ exchange. That implicit nonlocality and
isospin dependence make a contributions to the two-baryon exchange current.

The nucleonic CD Bonn as well as CD Bonn +∆ show a small partial-wave dependence in
π and inρ exchange. Fitting CD Bonn with partial-wave-independentπ andρ exchanges de-
creases the quality of the fit to data only by very little;χ2=datum increases from 1.02 to 1.03.
When comparing observables of the hadronic processes and of the photo reactions of this thesis
for both potentials, no distinguishable difference is found in plots. I conclude: The implicit
nonlocality arising from the partial-wave dependence inπ andρ exchange of CD Bonn and CD
Bonn +∆ is of no consequence for the prediction of observables.

The local model used for the discussion of problem 2. is modified to simulate the partial-wave
dependence ofω exchange in the nucleonic CD Bonn, it is retuned as under 2. Theω exchange
is taken to be without hadronic cut off in the1P1 partial wave as in CD Bonn; this partial-wave
dependence violates current conservation. However, the observed difference between calcu-
lations based on the Siegert form of the current operator and calculations based on explicit
exchange-current contributions to all multipoles is much smaller than that shown in Fig. 6.11. I
conclude: The implicit nonlocality arising from the partial-wave dependence in theω-exchange
of CD Bonn and CD Bonn +∆ is of no real consequence for the prediction of observables.

With respect to the partial-wave dependence ofσ exchange the local model used for the discus-
sion of problem 2. is studied. I concentrate on the difference ofσ exchange between isospin
singlet and triplet partial waves, i.e., on the effective isovector nature of theσ meson intro-
duced in the model and in CD Bonn and CD Bonn +∆. Furthermore, even if theσ exchange
were truly an isoscalar one in the purely nucleonic potential, the explicit treatment of the∆
isobar in the coupled-channel extension introduces an isovector correction: The employed cou-
pled-channel potential CD Bonn +∆, acting in isospin-triplet partial waves, has a weakenedσ
exchange compared to the purely nucleonic CD Bonn; part of the intermediate-range attraction
simulated byσ exchange is taken over by∆-isobar excitation in the coupled-channel approach.
Thus, the∆-isobar current has to be supplemented by changedσ-exchange current. Omitting
theσ-meson contribution to the exchange current, quite significant differences, comparable to
that of Fig. 6.11, arise for observables of the photo reactions in this thesis between calculations
based on the Siegert form of the current and on the full explicit exchange-current contributions.
In contrast, the explicitσ-meson exchange-current contributions to the non-Siegert part of the
electric multipoles and to the magnetic multipoles remain small. I arrive to qualitatively the
same results when including theσ-meson exchange-current for CD Bonn and CD Bonn +∆
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with theσ-meson parameters ofSwaves. I conclude: Though the partial-wave dependence of
theσ-meson exchange is a significant source of current nonconservation, the standard calcula-
tion based on the Siegert form of the current for part of the electric multipoles and on explicit
exchange-current contributions to all other multipoles appears to be quite a reliable calculational
scheme.

4. The employed potentials are charge dependent. The charge dependence of the interaction is
due to the charge dependence of the parameters of exchangedπ, ρ and σ mesons in the nu-
cleonic part of the potentials and due to the charge dependence of the nucleonic masses. The
isospin structure of the charge-dependent potential contributions is given in terms of the bary-
onic isospin projections; thus, that isospin dependence, giving rise to charge dependence, does
not require an exchange current by itself; it only does so, if its potential forms are nonlocal.
In the case of the employed potentials it is so indeed, but that explicit nonlocality was already
discussed in problem 2. The diagonalπ- andρ-exchange contributions to the exchange current
should be built from the charged-meson parameters. The nondiagonalπ andρ exchanges are
carried by the mesons of all charges. However, the standard calculation uses averaged meson
parameters and an averaged nucleon masses for all meson-exchange currents; it was checked
that both calculational simplifications are without any consequence for the observables of this
thesis.

From this lengthy, but I think necessary discussion of the problems 1. to 4. I conclude for the cal-
culations of this thesis: When the Siegert form of the current is used for part of the electric multipoles
and explicit exchange-current contributions to all other multipoles in the operator form of Appendix B,
the implicit nonlocality of CD Bonn and CD Bonn +∆ arising from the partial-wave dependence of
the meson exchanges is without consequences for prediction. In contrast, the explicit nonlocality of
CD Bonn and CD Bonn +∆, also responsible for current nonconservation, is of serious concern; its
consequence on the non-Siegert parts of the current could not be estimated yet by any of the models.
Still, I believe that the standard calculation, based on the Siegert form of the current, effectively cor-
rects the current nonconservation and is therefore quite reliable for the observables of photo reactions
considered in this thesis.

Lack of Covariance

If a fully covariant description of dynamics were available, the matrix elementh f jM jii of Eq. (6.9)
were a Lorentz scalar and could therefore be calculated in any frame with identical results. However,
the description of hadron dynamics is nonrelativistic, and the results therefore are frame-dependent.
I investigate that frame dependence calculating the same matrix elementshsf jMγ(Eik f )jsii in lab and
in c.m. frames, i.e., in the rest frames of the initial and final three-nucleon systems. The two frames
differ by the sumK+ of three-nucleon total momenta and by the photon momentumkγ. A typical
result is shown in Fig. 6.12; I conclude that the frame dependence is minor and at present of no real
theoretical concern.

Higher Order Contributions to the Current Operator in (k=mN) Expansion

In the standard calculational scheme the Siegert form of the current operator is used together with
explicit meson-exchange contributions not accounted for by the Siegert part. The charge-density op-
erator in the Siegert part is of one-baryon nature and is taken to be nonrelativistic in the standard
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Figure 6.12: Differential cross section
of three-nucleon photo disintegration
at 142 MeV photon lab energy as
function of the arclengthS along the
kinematical curve for configuration
(82:3Æ;82:3Æ;180:0Æ). Results based
on matrix elementshsf jMγ(Eik f )jsii
calculated in c.m. (solid curve) and
in lab system (dashed curve) are
compared.

calculations. However, the one-baryon purely nucleonic charge-density operator has relativistic cor-
rections of order(k=mN)

2. Leading contributions to the nucleon-∆ transition charge density and to
the two-nucleon charge density, used in Ref. [41] for the calculation of trinucleon elastic charge form
factors, are both of the relativistic order(k=mN)

2; they are included in additional calculations test-
ing relativistic operator corrections. The resulting corrections reduce the cross sections; they appear
beneficial; a characteristic results are shown in Fig. 6.13. The effect shown there is dominated by
the one-nucleon charge-density correction; the two-nucleon charge-density, quite important for the
elastic trinucleon charge form factors [41], shows noticeable effects only in some spin observables,
whereas the nucleon-∆ transition charge appears to be insignificant for all calculated observables of
this thesis. Correspondly large corrections of the same origin were also found in photo reactions on
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Figure 6.13: Differential cross section and nucleon analyzing powerAy(N) of pd radiative capture at
150 MeV nucleon lab energy as function of the c.m. nucleon-photon scattering angle. Results of the
coupled-channel potential with∆-isobar excitation derived from the standard approach (solid curves)
are compared with results including relativistic one-nucleon charge corrections (dashed curves) and
with results including relativistic one- and two-baryon charge corrections (dotted curves). The exper-
imental data are from Ref. [65].
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the deuteron [74]. Thus, the results of this subsection are not surprising. The current corrections of
this subsection should be included in future calculations of photo reactions.



7
Electron Scattering from Trinucleon Bound State

The considered reactions of inelastic electron scattering are schematically shown in Fig. 7.1.

7.1 Spin-Averaged and Spin-Dependent Cross Sections

I start the cross section calculation from the general form (5.2); the matrix elementh f jM jii is obtained
with the help the quantum-mechanical model for hadronic interaction. The effective e.m. interaction
(2.13) is taken into account perturbatively, whereas the hadronic interactionHI has exactly to be taken
into account up to all orders. Thus, the matrix elements of the e.m. interaction require fully correlated
hadronic states (2.6). The quantum-mechanicalS matrix for the considered processes, i.e., for the
two- and three-body electro disintegration of the trinucleon bound state is parametrized in the general
form

h f jSjii= � iδ(3)(Pf �Pi)δ(Ef �Ei)
1

(2π)2

�
2k0

ei
2k0

ef

�� 1
2

4πe2
p

Q2 hsf jMe(Eik f )jsii; (7.1a)

hsf jMe(Eik f )jsii= ū(kef sef )γµu(kei sei )hΨ(�)
f j jµ(Q;K+)jBi; (7.1b)

jΨ(�)
f i standing for the fully correlated statesjΨ(�)

α (q f )να f i or jΨ(�)
0 (p f q f )ν0f i defined in Eqs. (3.17).

The initial and final electron four-momentakei andkef determine the four-momentum transfer to the

kB kB

Q Q

kei kei

kef kefkdkN k1 k2 k3

Figure 7.1: Schematic illustration of all considered reactions in inelastic electron scattering from the
trinucleon bound state. The lines for the two-baryon and three-baryon particles are drawn in a special
form to indicate their compositeness.
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three-nucleon systemQ = kei � kef . The spin quantum numbers of individual particles are collec-
tively denoted bysi = fsei MBg for the initial electron and the trinucleon bound state and bysf for all
spin projections of the final states.γν are the Dirac matrices andu(ks) is the electron Dirac spinor
with the normalization ¯u(ks0)u(ks) = meδs0s, with me being the electron mass. The matrix element
hsf jMe(Eik f )jsii is build up from the leptonic and hadronic e.m. currents and is given explicitly in the
following subsections for the considered reactions.

The inelastic electron scattering from the trinucleon bound state is considered in the lab frame,
i.e., in the rest frame of the initial three-nucleon system. The spatial components of the initial and
final electron momenta and the three-momentum transferQ = kei �kef determine the coordinate axes,
i.e., ẑ= Q̂, ŷ = kei � kef =jkei � kef j, andx̂ = ŷ� ẑ. The strategy for calculating the matrix element
of e.m. current operator is slightly different compared to photo reactions.

1. The experimental four-momentum transferQ determines the available internal energy of the fi-
nal three-nucleon system with total lab momentumQ, i.e.,Ei = Q0+EB�Q2=6mN; this step is
done using the experimental trinucleon binding energyEB. I.e., the energy of the three-nucleon
system is the true experimental one; the experimental two-body and three-body breakup thresh-
olds are exactly reproduced.

2. The current matrix element is calculated in the lab system ason-energy-shell elementunder
nonrelativistic model assumptions. Under those assumptions the internal energyEi = Q0 +
EB�Q2=6mN and the experimentalQ2 determine the momentum transferQ and the energy
transferQ0 to be used for the current matrix element in the lab system. This step uses the
computed trinucleon model binding energyEB. Since the model binding energyEB is not the
experimental one, neither for3He nor for3H, the components of the four-momentum transferQ
do not have the experimental values; however,Q2 has the experimental value by construction.

Performing consistently a nonrelativistic reduction in Eqs. (5.2) for hadrons as described in Sec. 5.1, I
obtain the differential cross sections analytically given in the following subsections for all considered
reactions. In contrast to the matrix elementhsf jMe(Eik f )jsii, the phase-space factors are calculated
using the experimental four-momentum transfer. The electron will always be highly relativistic, i.e.,
k0

ei
� jkei j �me andk0

ef
� jkef j �me.

7.1.1 Two-Body Electro Disintegration of Trinucleon Bound State

The initial state is already discussed above. The final electron, nucleon and deuteron state is character-
ized by the respective spin quantum numberssf = fsef msf MI f g and by the respective particle momenta
kef , kN andkd; due to momentum and energy conservation they are not all independent. Usually, the
experiment determines the final energy of the electronk0

ef
and its scattering angleθe=arccos(k̂ef � k̂ei ).

Measuring the direction of one momentum of the final two hadrons fixes alsokN andkd, although not
always uniquely. I chose thêkN as independent variable. The matrix elementhsf jMe(Eik f )jsii of
Eq. (7.1) is

hsf jMe(Eikef kN)jsii= ū(kef sef )γµu(kei sei )hΨ(�)
α (q f )να f j jµ(Q;K+)jBi; (7.2a)

hsf jMe(Eikef kN)jsii= ∑
λ
(�1)λū(kef sef )γ

νu(kei sei )ε
�
ν(Qλ)hΨ(�)

α (q f )να f j jµ(Q;K+)jBiεµ(Qλ)

(7.2b)

with the relative nucleon-deuteron momentumq f = (kd�2kN)=3. In Eq. (7.2b) the contraction of
the leptonic and hadronic currents is carried out by projecting them on the polarization vectorsε(Qλ)
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with λ = 0;�1 andQµεµ(Qλ) = 0; they are given explicitly in Appendix E. The hadronic e.m. current
in Eq. (7.2b) formally has the same structure as used in the photo reactions and is calculated according
to Appendix E. The resulting fivefold differential cross section is

d5σi! f

dk0
ef

d2k̂ef d
2k̂N

=
σMott

4k0
ei

k0
ef

cos2(θe=2)

��hsf jMe(Eikef kN)jsi
��2 fps (7.3a)

with the Mott cross section

σMott =

 
e2

p cos(θe=2)

2k0
ei

sin2(θe=2)

!2

(7.3b)

and the phase-space factor

fps=
2mNjkNj3

3k2
N�Q �kN

: (7.3c)

The spin averaged differential cross section is

d5σ
dk0

ef
d2k̂ef d

2k̂N
=

1
4 ∑

sf si

d5σi! f

dk0
ef

d2k̂ef d
2k̂N

: (7.4)

In the figures it is denoted byd5σ=dEedΩedΩN, the traditional notation. The spin-dependent observ-
ables are discussed in Sec. D.1.3.

7.1.2 Three-Body Electro Disintegration of Trinucleon Bound State

The final scattering state, composed of the electron and three free nucleons, is characterized by
the respective particle momentakef , k1, k2 and k3 and by the respective spin quantum numbers
sf = fsef ms1ms2ms3g; due to momentum and energy conservation the momenta are not all indepen-
dent. The final energy of the electronk0

ef
and its scattering angleθe = arccos(k̂ef � k̂ei ) are usu-

ally determined by the experiment. As in hadronic nucleon-deuteron breakup and in three-nucleon
photo disintegration, the two nucleon scattering angles with respect to the beam direction(θ1;ϕ1) and
(θ2;ϕ2) and the arclengthS along the kinematical curve (5.10) are chosen as independent hadronic
variables. However, since the coordinate axes are already determined by the electron kinematics, all
four angles(θ1;ϕ1;θ2;ϕ2) are required in order to specify the kinematical configuration of hadrons.
The neutron and proton nature of the nucleons(123) in the final state is notationally not indicated, but
also determined by the experiment.

The matrix elementhsf jMe(Eik f )jsii of Eqs. (7.1) is calculated in close analogy with the one (7.2)
for two-body electro disintegration, i.e.,

hsf jMe(Eikef p f q f )jsii= ū(kef sef )γµu(kei sei )hΨ(�)
0 (p f q f )ν0f j jµ(Q;K+)jBi; (7.5a)

hsf jMe(Eikef p f q f )jsii= ∑
λ
(�1)λū(kef sef )γ

νu(kei sei )ε
�
ν(Qλ)hΨ(�)

0 (p f q f )ν0f j jµ(Q;K+)jBiεµ(Qλ):

(7.5b)

The final-state Jacobi momentap f and q f are determined from the final single-particle momenta
k1, k2, k3 according to Eqs. (2.1). Due to momentum conservationk3 = Q� k1� k2, thus,p f =
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1
2(k1�k2) andq f = (k1+k2)� 2

3Q. Furthermore, energy conservation puts an additional constraint
Ei = p2

f =mN +3q2
f =4mN. The resulting eightfold differential cross section is

d8σi! f

dk0
ef

d2k̂ef dSd2k̂1d2k̂2
=

σMott

4k0
ei

k0
ef

cos2(θe=2)

��hsf jMe(Eikef p f q f )jsii
��2 fps (7.6a)

with the Mott cross section (7.3b) and the phase-space factor

fps= m2
Nk2

1k2
2

n
k2

1

�
2jk2j� k̂2 � (Q�k1)

�2
+k2

2

�
2jk1j� k̂1 � (Q�k2)

�2o�1=2
: (7.6b)

The spin averaged differential cross section is

d8σ
dk0

ef
d2k̂ef dSd2k̂1d2k̂2

=
1
4 ∑

sf si

d8σi! f

dk0
ef

d2k̂ef dSd2k̂1d2k̂2
: (7.7)

In the figures it is denoted byd8σ=dEedΩedSdΩ1dΩ2, the traditional notation.

7.1.3 Inclusive Electron Scattering from Trinucleon Bound State

When in the final state only the energy and scattering angle of the electron are measured, the in-
clusive spin averaged threefold differential cross section is obtained by integration of the differential
cross sections (7.4) and (7.7) over all final hadronic states. Usually it is parametrized in terms of the
longitudinal and transverse inclusive response functions [75], i.e.,

d3σ
dk0

ef
d2k̂ef

= σMott

"�
Q2

Q2

�2

RL(Q)+

�
� Q2

2Q2 + tan2 θe

2

�
RT(Q)

#
: (7.8)

The integration over all final states can be performed either explicitly or implicitly. The former option
for numerical convenience uses the Jacobi momenta as integration variables instead of single-particle
momenta, and the latter option uses the strategy of Sec. 6.1.4 for calculating the total cross section of
photo disintegration.

The longitudinal response functionRL(Q) is determined by the longitudinal component of the
spatial current and by the charge density. However, using the explicit expression for the longitudinal
polarization vectorεµ(Q0) given in Eq. (E.4) and assuming current conservation, the longitudinal
component of the spatial current is usually replaced by the charge density, i.e.,

hΨ(�)
α (q f )να f j jµ(Q;K+)jBiεµ(Q0) =

��Q2=Q2�1=2hΨ(�)
α (q f )να f j j0(Q;K+)jBi; (7.9a)

hΨ(�)
0 (p f q f )ν0f j jµ(Q;K+)jBiεµ(Q0) =

��Q2=Q2�1=2hΨ(�)
0 (p f q f )ν0f j j0(Q;K+)jBi: (7.9b)

The longitudinal response function is then calculated from the charge density only, i.e.,

RL(Q) =
1
2 ∑

MB

hB j[ j0(Q;K+)]
†δ(Ei�H0�HI) j0(Q;K+)jBi; (7.10a)

RL(Q) =� 1
2π ∑

MB

Im
n
hB j[ j0(Q;K+)]

†G(Ei + i0) j0(Q;K+)jBi
o
; (7.10b)

RL(Q) =� 1
6π ∑

MB

Im
n
hB j[ j0(Q;K+)]

†(1+P)G0(Ei + i0)

� � j0(Q;K+)jBi+Tα(Ei + i0)G0(Ei + i0)jJ0(Ei + i0)i�o: (7.10c)
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The transverse response functionRT(Q) is determined by the transverse components of the spatial
current; it is calculated according to

RT(Q) =
1
2 ∑

MB

∑
λ=�1

ε�ν(Qλ)hB j[ jν(Q;K+)]
†δ(Ei�H0�HI) jµ(Q;K+)jBiεµ(Qλ); (7.11a)

RT(Q) =� 1
2π ∑

MB

∑
λ=�1

Im
n

ε�ν(Qλ)hB j[ jν(Q;K+)]
†G(Ei + i0) jµ(Q;K+)jBiεµ(Qλ)

o
; (7.11b)

RT(Q) =� 1
6π ∑

MB

∑
λ=�1

Im
n

ε�ν(Qλ)hB j[ jν(Q;K+)]
†(1+P)G0(Ei + i0)

� � jµ(Q;K+)jBi+Tα(Ei + i0)G0(Ei + i0)jJµ(Ei + i0)i�εµ(Qλ)
o
: (7.11c)

7.2 Results

This section presents results for observables of two- and three-body electro disintegration of the tri-
nucleon bound state. The results are derived from calculations based on the purely nucleonic CD-Bonn
potential [3] and its coupled-channel extension constructed in Sec. 2.3. Thestandard calculational
procedureis taken over from Sec. 6.2.1 for the description of photo reaction with the following nec-
essary changes:

1. The e.m. current has to carry form factors, since the exchanged photon is virtual. The e.m. form
factors of the nucleon are parametrized according to Ref. [76]; the form factors for the∆-isobar
current are given explicitly in Appendix B.

2. The electric multipoles are calculated from the one- and two-baryon parts of the spatial current,
in contrast to the photo reactions where the Siegert form is employed. Current conservation is
assumed and always used for replacing the longitudinal component of the spatial current by the
charge, i.e., for replacing the longitudinal multipoles by the Coulomb multipoles.

3. The number of considered current multipoles is limited by the maximal total three-baryon an-
gular momentumJmax =

25
2 , taken into account for the hadronic scattering states;Jmax =

15
2

used for photo reactions is not sufficient for the full convergence of the results for exclusive
observables in electron scattering;Jmax =

25
2 is checked to be sufficient. However, some ob-

servables, not presented in the figures, show rather poor convergence with respect to the total
three-baryon angular momentum, indicating the need for calculating the first term of the series
(3.24a)withoutpartial-wave decomposition of the final hadronic state [77].

In contrast to the hadronic and photo reactions, the electron scattering from the trinucleon bound
state is not studied in all its details; I still see a number of possible extensions. However, the few exam-
ples given in this section demonstrate the potential of the developed technical apparatus. Furthermore,
the∆-isobar effects on the calculated sample observables are also discussed.

Figure 7.2 shows results for the spin-averaged fivefold differential cross section of the two-body
electro disintegration of3He with momentum and energy transferjQj = 250:2 MeV and Q0 =
113 MeV; the agreement with the experimental data is quite satisfactory; on the scale of the ex-
perimental error bars the∆-isobar effects are rather insignificant.

Figure 7.3 presents results for the spin-averaged eightfold differential cross section of the three-bo-
dy electro disintegration of3He with the electron kinematics of Fig. 7.2. In the shown kinematical
configurations the∆-isobar effects become more significant.
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Figure 7.2: Fivefold differential cross section of two-body electro disintegration of3He at 390 MeV
electron lab energy as a function of the nucleon lab scattering angle with respect to the direction of
the incoming electron. The electron scattering angle, the momentum and energy transfer areθe =
39:7Æ, jQj= 250:2 MeV and Q0 = 113 MeV, respectively. Results of the coupled-channel potential
with ∆-isobar excitation (solid curves) are compared with reference results of the purely nucleonic
CD-Bonn potential (dashed curves). The experimental data are from Ref. [78].
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Figure 7.3: Eightfold differential cross section of three-body electro disintegration of3He, i.e.,
3He(e;e0pp)n, at 390 MeV electron lab energy as a function of the arclengthS along the kine-
matical curve. The electron scattering angle, the momentum and energy transfer areθe = 39:7Æ,
jQj = 250:2 MeV and Q0 = 113 MeV, respectively. The observables refer to the configuration
(30Æ;180Æ;45Æ;180Æ) on the left side and to the configuration(30Æ;0Æ;120Æ;180Æ) on the right side,
the angles are given with respect to the direction of the incoming electron. Results of the cou-
pled-channel potential with∆-isobar excitation (solid curves) are compared with reference results
of the purely nucleonic CD-Bonn potential (dashed curves).
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Figure 7.4:3He and3H inclusive longitudinal and transverse response functionsRL andRT for the
momentum transferjQj = 300 MeV as functions of the energy transferQ0. Results of the cou-
pled-channel potential with∆-isobar excitation (solid curves) are compared with reference results of
the purely nucleonic CD-Bonn potential (dashed curves). The experimental data are from Ref. [79]
(�) and from Ref. [80](2).

Finally, Fig. 7.4 presents sample results for inclusive longitudinal and transverse response func-
tions of3He and3H. The overall agreement with the experimental data is rather good. The∆-isobar
effects are visible around the maximum of the longitudinal responseRL(Q); in the transverse response
RT(Q) the∆-isobar effects are about 5% aboveQ0 = 100 MeV, but they are not discernible in Fig. 7.4.
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7.3 Shortcomings of the Description

The theoretical shortcomings discussed in Sec. 6.3 for three-nucleon photo reactions are characteristic
also for inelastic electron scattering from the trinucleon bound state. I do not repeat the study of
Sec. 6.3 in full; I present only two examples.

The∆-isobar effects are small for the observables of Fig. 7.4. Figure 7.5 studies therefore the im-
portance of MEC and of the existing lack of current conservation in the purely nucleonic calculations;
it compares three theoretical predictions for the transverse response functionRT(Q); first predictions
derived from the standard calculations, i.e., based on the explicit use of the one- and two-baryon cur-
rent, second predictions derived from calculations using the Siegert form of the electric multipoles,
and third predictions derived from calculations based on the one-nucleon current only. The effect of
MEC is visible, though quantitatively it is far less important than for some photo reactions as shown
in Fig. 6.11. The lack of current conservation is inconsequential for the considered observable.

Also Fig. 7.6 presents a purely nucleonic calculation. In analogy to the rather sizable relativistic
effect of the one-nucleon charge in Fig. 6.13 for radiative capture, a corresponding effect is seen for
the longitudinal response functionRL(Q); the two-nucleon charge contributes only a little also in this
case.
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Figure 7.5: 3H inclusive transverse re-
sponse functionRT for the momentum
transfer jQj = 300 MeV as function of
the energy transferQ0. Results based on
the explicit use of MEC (solid curve) are
compared with results based on the Siegert
form of the electric multipoles (dashed
curve) and with results based on the
one-baryon current only (dashed-dotted
curve). Solid and dashed curves are almost
indistinguishable. All results use purely
nucleonic CD Bonn potential. The experi-
mental data are from Ref. [79].
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Figure 7.6: 3H inclusive longitudinal
response functionRL for the momentum
transfer jQj = 300 MeV as function
of the energy transferQ0. Results of
the purely nucleonic CD Bonn potential
derived from the standard approach
(solid curves) are compared with results
including relativistic one- and two-baryon
charge corrections (dashed curve). The
experimental data are from Ref. [79].



8
Perturbation Theory

The calculational achievements reported in the previous chapters of this thesis are quite encouraging:
The developed theoretical apparatus is based on realistic interactions; the computations are technically
sound; the account of the existing experimental data is rather good. However, in one respect the given
description of three-nucleon reactions is a bit disappointing: The description does not allow for an
immediate physics understanding of the predictions, since the steps from the baryonic interaction, the
calculational input, to the details of observables with and without polarization is clouded by highly
complicated and intransparent numerics.

I admit, I am unable to change that situation of theoretical intransparency; this situation is not par-
ticular for my calculational scheme; it appears to be the fate of the physics of few-nucleon systems.
However, this chapter is meant to supply a tool which may help to facilitate the physics understanding
of three-nucleon reactions, at least in part and at least for particular situations. The tool is perturbation
theory [81] of high calculational accuracy. Years ago, Ref. [82] developed a perturbative approach for
studying properties of the three-nucleon bound state. The approach helped to understand effects aris-
ing from ∆-isobar excitation better; it also clarified how the perturbative calculation of wave function
components with a∆ isobar and of exchange-current effects arising from the∆ isobar should be car-
ried out in a reliable fashion. This chapter extends and generalizes that approach to nucleon-deuteron
scattering; it will be used for∆-isobar coupling, for charge dependence and for the interaction in
the higher two-baryon partial waves. Though developed in this chapter only for nucleon-deuteron
scattering, I believe the approach can also be used for the description of e.m. reactions.

8.1 General Formalism of Perturbation Theory

Note: I leave out the dependence of operators on the three-particle available energyZ and the pair
subscript of the two-baryon transition matrix in the notation of this chapter, since they are not essential
for the considerations and the equations become more compact by that omission.

In the following, a perturbative approach is developed which takes into account one part of the
interaction exactly and the other part approximately. The two-baryon and three-baryon transition
matrices are decomposed into two parts, i.e., in Eqs. (3.19)T is replaced byT +∆T, U by U +∆U
andU0 by U0+∆U0. Here,U andU0 are defined to be exact solutions of the three-particle scattering
equations (3.19) with the unperturbed partT of the two-baryon transition matrix. The remaining
corrections∆U and∆U0 obey the following exact equations

∆U = PTG0∆U +P∆TG0(U +∆U); (8.1a)

∆U0 = (1+P)[TG0∆U +∆TG0(U +∆U)]: (8.1b)

The decompositions (8.1) can provide meaningful approximations, when the contribution of∆T to the
full multi-channel transition matrices is small compared to that ofT. In this case one can expect that
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∆U and∆U0 will be small and already their lowest-order approximations will account quite well for
the required corrections toU andU0, respectively. Equations (8.1) therefore are solved approximately
by iteration, i.e.,

∆U (n) = PTG0∆U (n)+P∆TG0(U +∆U (n�1)); (8.2a)

∆U (n) =UG0∆TG0(U +∆U (n�1)); (8.2b)

∆U (n)
0 = (1+P)[TG0∆U (n)+∆TG0(U +∆U (n�1))] (8.2c)

with ∆U (0) = ∆U (0)
0 = 0. The exact solutions of Eqs. (8.1) are recovered in the limit∆U =

limn!∞ ∆U (n) and ∆U0 = limn!∞ ∆U (n)
0 . I admit I do not give the termssmall and large, used in

connection with the operators∆T, ∆U and∆U0, a rigorous mathematical meaning.
Equation (8.2a) is an integral equation for∆U (n), analogous to that forU : Both equations have the

same kernel, containing the unperturbed partT of the two-baryon transition matrix, only the driving
terms being different. That integral equation should be solved, when the half-shell elements of∆U (n)

are used to compute the corresponding breakup transition matrix∆U (n)
0 according to Eq. (8.2c). If one

is interested in the on-shell elements of∆U (n) only, needed for elastic nucleon-deuteron scattering,
the quadrature (8.2b) is more convenient. The numerical solution of Eqs. (8.2) uses the Chebyshev
expansion of the perturbation∆T in the same way as the solution of the full scattering equation uses the
Chebyshev expansion of the unperturbed transition matrixT. I admit, the Eqs. (8.2) are not simpler to
solve than those for the corresponding exact dynamics; nevertheless, I hope the perturbative approach
to enable me in future to isolate important physics mechanisms better.

The perturbative approach developed in this section will be applied in the following to particular
physics cases. Always the lowest approximation ordern will be used in which the studied physics
effect shows up.

8.2 Validity of Perturbation Theory

In order to check the reliability of the developed perturbative approach I compare results for nu-
cleon-deuteron scattering observables obtained with the technique of this chapter to the corresponding
results of an exact calculation. I do so for both elastic and inelastic nucleon-deuteron scattering. The
step from the calculated perturbed transition matricesU +∆U andU0+∆U0 to the respective observ-
ables is done without any further approximation as in the full calculations. Of course, the predominant
perturbative corrections of observables are linear in∆U and∆U0; those linear relations are most use-
ful for a qualitative understanding, as discussed in Sec. 8.2.2. In general, however, I choose to keep
also the quadratic contributions of∆U and∆U0 to the observables; this choice turns out to improve
the reliability of the perturbative approach. Though this choice appears to be somehow inconsistent
with respect to the orders of perturbation, it seems to minimize a violation of the optical theorem: The
optical theorem connects linear and quadratic terms of scattering amplitudes in a delicate form, and a
violation of it is inherent in most perturbative approaches.

8.2.1 ∆-Isobar Degrees of Freedom

The effects of the∆ isobar on observables of elastic and inelastic nucleon-deuteron scattering are
studied in Chapter 5 exactly. This section investigates to what extent they can be accounted for using
the perturbative approach of Sec. 8.1.
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The employed two-baryon coupled-channel potential displayed in Fig. 2.3 yields a corresponding
transition matrix whose componentsT∆N andTN∆ couple the two Hilbert sectors in an obvious notation
or act in the additional Hilbert sectorH∆ throughT∆∆. But it also modifies the two-nucleon transition
matrix within the purely nucleonic Hilbert sector by∆TNN compared withTNN, the two-nucleon tran-
sition matrix derived from the purely nucleonic reference potential. In the notation of Sec. 8.1 the full
coupled-channel two-baryon transition matrixT +∆T is written as

T +∆T = TNN+∆TNN+T∆N +TN∆ +T∆∆: (8.3)

I identify TNN with the unperturbed transition matrixT, the corresponding multichannel three-nucleon
transition matrices being

UNN = PG0
�1+PTNNG0UNN; (8.4a)

U0NN = (1+P)G�1
0 +(1+P)TNNG0UNN: (8.4b)

The additional components of the two-baryon transition matrix∆TNN, T∆N, TN∆ andT∆∆ are generated
by ∆-isobar excitation and are therefore contained in∆T. I note that the componentsT∆N, TN∆ and
T∆∆ are in general not small quantities in comparison withTNN; this fact is borne out in Fig. 5 of
Ref. [46]; it is not surprising, since the corresponding components of the coupled-channel potential
have comparable structure and are quantities of the same order of magnitude. However,T∆N and
TN∆ enter the expressions for physical amplitudes together with the free resolventG0 in ∆-isobar
channels, which suppresses the contribution of the∆ isobar at the considered scattering energies quite
strongly, i.e., the dimensionless operatorsG0T∆N and TN∆G0 can be treated as small quantities in
comparison withTNNG0; on those small quantities the perturbative approach is based.T∆∆ shows up
in the combinationG0T∆∆G0 and therefore formally contributes in higher order only. In contrast to
TN∆, T∆N andT∆∆, the additional component∆TNN of the coupled-channel transition matrix is small in
comparison withTNN according to Ref. [81].

In order to calculate the observables of elastic and inelastic nucleon-deuteron scattering in the
lowest physically relevant order, only the components∆U (2)

NN, ∆U (2)
0NN and as an intermediate quantity

∆U (1)
∆N are needed, i.e.,

∆U (1)
∆N = PT∆NG0UNN; (8.5a)

∆U (2)
NN = PTNNG0∆U (2)

NN+P∆TNNG0UNN+PTN∆G0∆U (1)
∆N ; (8.5b)

∆U (2)
NN =UNNG0(∆TNN+TN∆G0PT∆N)G0UNN; (8.5c)

∆U (2)
0NN = (1+P)(TNNG0∆U (2)

NN+∆TNNG0UNN+TN∆G0∆U (1)
∆N); (8.5d)

∆U (2)
0NN = (1+P)[TNNG0∆U (2)

NN+(∆TNN+TN∆G0PT∆N)G0UNN]: (8.5e)

When deriving Eqs. (8.5) iteratively according to Eqs. (8.2), the termP∆TNNG0∆U (1)
NN

= P∆TNNG0UNNG0∆TNNG0UNN is neglected as being of second order in the small quantity∆TNN; all
remaining terms in Eqs. (8.5b) – (8.5e) are of first order in the corresponding small quantities; the
used labeln = 2 is technical in the iterative spirit of Eqs. (8.2), it does not reflect the order of small
quantities.

In Eqs. (8.5) one can clearly see two different∆-isobar effects, i.e., the two-nucleon dispersion
and the effective three-nucleon force, described by the first and second terms proportional to∆TNN

and toTN∆G0PT∆N in Eq. (8.5c). The corresponding characteristic processes are shown in Figs. 2.4
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Figure 8.1: Differential cross section and nucleon analyzing powerAy(N) of elasticNd scattering at
135 MeV nucleon lab energy as function of the c.m. scattering angle. On the left side the results of
the perturbative treatment of the∆ isobar (dash-dotted curves) are compared with results of the exact
calculation with the∆ isobar (solid curves). In order to appreciate the size of the∆-isobar effects
to be perturbatively accounted for, the reference results of the purely nucleonic CD-Bonn potential
are also given as dashed curves. On the right side the separated full two-nucleon (three-nucleon)
force effects of the∆ isobar are shown by the dotted (solid) curve around the horizontal zero line;
they are obtained forming differences of the results of full calculations. They are compared to the
corresponding perturbative results, calculated according to Eq. (8.5c). The perturbative two-nucleon
effect almost coincides with the exact one and is not shown separately. The perturbative three-nucleon
force effect is shown by dashed-dotted curves. The experimental data are from Refs. [9, 10] and refer
to pd scattering.

and 2.5. Sample results are presented in Fig. 8.1; the perturbative approach reproduces the∆-isobar
effects qualitatively rather well.

The right side of Fig. 8.1 studies the∆-isobar effects in more detail; it demonstrates the general
competition between the∆-isobar effects of the two-nucleon and of the three-nucleon nature, clearly
seen also in three-nucleon binding in Chapter 4. The∆-isobar effect of two-nucleon nature is perfectly
given by perturbation theory. In contrast, the∆-isobar effect of three-nucleon nature is described
qualitatively well, but not quantitatively accurate. This fact is right away understandable, since the
coupled-channel potential CD Bonn +∆ has a strong diagonal nucleon-∆ part which perturbation
theory in the lowest order does not account for properly; for its effect, perturbation theory has to be
carried to one order higher. I note that the perturbative calculations (8.5c) carried out in Ref. [81] with
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less realistic coupled-channel potential CD Bonn +∆(sub2) which has vanishing diagonal nucleon-∆
part, yield a perfect account for the∆-isobar effects of the two-nucleonand of the three-nucleon
nature.

8.2.2 Charge Dependence of Hadronic Interaction

The effect of charge dependence in the two-baryon interaction on observables of nucleon-deuteron
scattering is calculated exactly in this thesis; it is quite small, except in special kinematic situations
of breakup; this finding is consistent with other works, e.g., Ref. [7]. I therefore expect that it can be
accounted for well using the perturbative approach as discussed in Sec. 8.1.

Older force models for the two-nucleon interaction assume charge independence, i.e., in the
isospin-triplet partial wavespp, np and nn potentials are taken to be the same. The three-nucleon
bound state and the nucleon-deuteron scattering states, described without Coulomb interaction, only
have wave function components with total isospinT = 1

2. Charge dependence, allowed for in modern
potentials as CD Bonn, changes the wave function components with total isospinT = 1

2 and devel-
ops additional components with total isospinT = 3

2. This section tries to study those changes due to
charge dependence perturbatively.

Neutron-deuteron scattering is considered. The two-baryon transition matrixT in three-particle
Hilbert space has components (3.26) with respect to total isospinT , denoted byT2T 02T in this sec-
tion. The charge-independent starting point does not couple total isospin, i.e., the only nonvanishing
components areT11 andT33; I assume thepp interaction to be representative for the complete isospin
triplets, and thereforeT11=T33=Tpp. I take thepp interaction as charge-independent reference, since
most charge-independent potentials were based on a fit topp data, the exception being the family of
original Bonn potentials [83] which were tuned tonp data. Of course, the actual intermediate effects
of charge dependence are different when thenp interaction is used as charge-independent reference.

The coupled-channel potential CD Bonn +∆ is taken as example for a charge-dependent potential;
its full charge-dependent transition matrix has the form

T +∆T = ∑
T MT

jT MT iT2T 2T hT MT j+ ∑
T 0T MT

jT 0MT i∆T2T 02T hT MT j: (8.6)

The unperturbed transition matrixT has only the diagonal componentsT11 andT33 with T33= T11, the
corresponding multi-channel transition matrices being

U11 = PG0
�1+PT11G0U11; (8.7a)

U011= (1+P)G�1
0 +(1+P)T11G0U11: (8.7b)

The notationU2T 02T andU02T 02T makes the possible couplings of total isospin explicit. The initial
nucleon-deuteron channel state has total isospinT = 1

2; the charge-independent interaction cannot
couple to another total isospin component.

Charge dependence introduces isospin coupling into the two-baryon transition matrix as indicated
by ∆T2T 02T in Eq. (8.6). The arising perturbing components have the following explicit forms

∆T11 =
2
3

Tnn+
1
3

Tnp�Tpp; (8.8a)

∆T31 =

p
2

3
(Tnp�Tnn); (8.8b)

∆T13 = ∆T31; (8.8c)

∆T33 =
1
3

Tnn+
2
3

Tnp�Tpp (8.8d)
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for neutron-deuteron scattering. The perturbing components∆T2T 02T can be considered to be small
quantities compared with the unperturbedT. In order to calculate the observables of elastic and
inelastic neutron-deuteron scattering in the lowest physically relevant order, only the components
∆U (1)

11 for elastic scattering,∆U (1)
02T 01 for breakup and∆U (1)

31 as an intermediate quantity are needed,
i.e.,

∆U (1)
11 = PT11G0∆U (1)

11 +P∆T11G0U11; (8.9a)

∆U (1)
11 =U11G0∆T11G0U11; (8.9b)

∆U (1)
31 = PT33G0∆U (1)

31 +P∆T31G0U11; (8.9c)

∆U (1)
02T 01 = (1+P)(T2T 02T 0G0∆U (1)

2T 01+∆T2T 01G0U11): (8.9d)

It is best to use Eq. (8.9b) for the on-shell correction∆U (1)
11 of elastic neutron-deuteron scattering.

The on-shell breakup correction has transitions to total isospinT 0 = 3
2; the quadrature (8.9d) for that

correction requires half-shell elements of the two components∆U (1)
2T 01; they are best calculated from

the integral equations (8.9a) and (8.9c). The effect of charge dependence is most pronounced at low
energies; there the simultaneous∆-isobar effects are negligible and will not be discussed in this section
anymore.

Observables of elastic scattering are not documented in plots. For them the effect of charge de-
pendence is very small, also for the sensitive neutron analyzing powerAy(n) at 10 MeV neutron lab
energy. The effect of charge dependence is perfectly accounted for by perturbation theory and de-
creases with increasing energy. Furthermore, according to Eq. (8.9b) only total isospinT = 1

2 states
contribute to corrections of elastic scattering in lowest order of perturbation theory.

Observables of breakup at 13 MeV nucleon lab energy are shown in Fig. 8.2. Even on the fine
scale of the moderate effect of charge dependence the perturbative treatment of charge dependence is
highly reliable. The full treatment of charge dependence is crucial for the differential cross sections
in the vicinity of FSI peaks, as already pointed out in Ref. [7]. As illustrated in detail in Fig. 8.3, left
side, about23 of the effect of charge dependence in thenp FSI peak is due to the coupling to total
isospinT = 3

2, only 1
3 due to changes in∆T11; the effect arises almost exclusively from the charge

dependence in the1S0 two-baryon partial wave. The effect of charge dependence in the isospin triplet
P waves is negligible for the differential cross section; it contributes only to the much smaller effects
in characteristic spin observables.

The ratio 2
3 : 1

3 can be explained in the following way: Thenp FSI should be described rather
well — and, in fact, it is — using thenppotential for all two-nucleon interactions without any charge
dependence. Thus, when starting out with app potential for all, the correctionTnp�Tpp has to be
applied. However, allowing for charge dependence but keeping charge symmetry, Eq. (8.8a) yields

∆T11=
1
3(Tnp�Tpp); according to Eqs. (8.9a) and (8.9d) the correction∆U (1)

011 is proportional to∆T11.

Thus, assuming predominant linearity in∆U (1)
011 for the corrections to observables, the changes in the

T = 1
2 component yield only13 of the full charge dependent effect; theT = 3

2 component∆U (1)
031 has

to yield the remaining part, i.e.,23. Of course, the above consideration is valid only in the vicinity of
thenpFSI peak.

Depending on the assumed charge-independent reference, a model-dependent choice, the individ-
ual charge-dependent effects are of course different. If, in contrast to the strategy of this section, the
np interaction is taken as charge-independent representative for all isospin-triplet components, the
complete effect of charge dependence on the differential breakup cross section in thenpFSI kinemat-
ics of Fig. 8.2 is almost zero; thenpFSI is well described by a charge-independent reference based on
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Figure 8.2: Differential cross section and nucleon analyzing powerAy(N) of Nd breakup at 13 MeV
nucleon lab energy as function of the arclengthS along the kinematical curve in thenp FSI con-
figuration (39:0Æ;62:5Æ;180:0Æ). Results of the perturbative treatment of the charge dependence
(dashed-dotted curves) are compared with results of the exact treatment of charge dependence (solid
curves); they are not distinguishable in both plots. In order to appreciate the size of the effect to
be perturbatively accounted for, results of a calculation without charge dependence, i.e., with thepp
interaction in all components of the isospin-triplet two-baryon partial waves, are also given as dashed
curves. The experimental data are from Ref. [48] referring tond scattering(2) and from Ref. [55]
referring topd scattering(�).
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Figure 8.3: Model dependence of the charge-dependent effects on the assumed charge-independent
reference. The effects on the differential cross section ofNd breakup at 13 MeV nucleon lab en-
ergy in thenp FSI configuration(39:0Æ;62:5Æ;180:0Æ), which arise from the non-standardT = 3

2
component in the transition matrix (solid curves) and from changes in the standardT = 1

2 com-
ponent (dotted curves), are shown. The left (right) figure corresponds to thepp (np) interaction
as charge-independent reference. Full results of the perturbative treatment of charge dependence
(dashed-dotted curves) and results of a calculation without charge dependence (dashed curves) are
also given; they almost coincide in the right figure. The experimental data are from Ref. [48] referring
to nd scattering(2) and from Ref. [55] referring topd scattering(�).
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annppotential [7]. The effect due to the changes in the standardT = 1
2 component and the effect due

to the nonstandardT = 3
2 component almost cancel each other, though being sizable individually; this

fact is borne out in Fig. 8.3, right side. In fact, the theoretical explanation is the same as the reasoning
in the previous paragraph for the previous charge-independent choice, however,∆T11=�2

3(Tnp�Tpp)

in contrast to Eq. (8.8a); this is why the effect due to∆U (1)
011 is of doubled magnitude and opposite in

sign compared to that of the previous paragraph as shown in Fig. 8.3, left side. Correspondly, in thenn
FSI regions the complete effect of charge dependence is large, when thenp interaction is the assumed
reference; it was small before, when thepp interaction was the assumed reference [7]. Of course,
irrespectively how the charge-independent reference is chosen, the full charge-dependent results are
always the same; this fact can also be read off from Fig. 8.3.

8.2.3 Higher Two-Baryon Partial Waves

The contribution to the scattering amplitudes arising from the two-baryon interaction in higher partial
waves gets increasingly small. I therefore expect that a perturbative treatment of sufficiently high
partial waves is a reliable approximation.

The two-baryon interaction is split into two parts according to the total two-baryon angular mo-
mentumI : The interaction in the lower two-baryon partial waves consists of those withI � Il , and
the interaction in the higher two-baryon partial waves of those withIl < I � Ih, Ih being large enough
to accommodate all significant dynamic aspects of the considered reaction. The additional condi-
tion Il � 1 guarantees that the interaction in the asymptotic nucleon-deuteron states belongs to the
lower partial waves. The components of the two-baryon transition matrix in lower and higher partial
waves areTl andTh, respectively. In the perturbative approach of Eqs. (8.2) I choose the unperturbed
transition matrixT to beTl and the perturbing part∆T to beTh, i.e.,

T +∆T = Tl +Th: (8.10)

The solutions of the scattering equations (3.19) for the three-baryon transition matrices with the
two-baryon interactionTl in lower two-baryon partial waves only are

Ul = PG�1
0 +PTlG0Ul ; (8.11a)

U0l = (1+P)G�1
0 +(1+P)TlG0Ul : (8.11b)

The permutation operatorP couples three-baryon states with lower and higher two-baryon quantum
numbersI . Thus, the three-baryon transition matricesUl andU0l also have non-vanishing components
with lower and higher two-baryon angular momentaI . The components ofUl in partial waves with
lower I are obtained from the integral equation (8.11a), the components describing the transitions
to partial waves with higherI are derived from the same equation (8.11a) by quadrature. The latter
components are needed for the perturbative approach.

The perturbing part of the two-baryon transition matrix isTh; Th is considered small compared to
Tl . Thus, the approximations for∆U and∆U0 up to first order inTh are

∆U (1) = PTlG0∆U (1)+PThG0Ul ; (8.12a)

∆U (1) =Ul G0ThG0Ul ; (8.12b)

∆U (1)
0 = (1+P)(TlG0∆U (1)+ThG0Ul ): (8.12c)

With respect to observables of elastic and inelastic nucleon-deuteron scattering, it is obviously suf-
ficient to calculate the components of∆U (1) only between three-particle partial waves with low
two-baryon angular momentumI .
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Figure 8.4: Deuteron analyzing powerAxx of Nd scattering at 135 MeV nucleon lab energy for elastic
scattering on the left and for breakup in configuration(10Æ;10Æ;50Æ) on the right; it is given as function
of the c.m. scattering angle and of the arclengthSalong the kinematical curve, respectively. Results of
the perturbative treatment of the two-baryon partial waves with 3� I � 5 (dashed-dotted curves) are
compared with results of the exact calculation including two-baryon partial waves up toI = 5 (solid
curves); differences are only discernible for breakup observable. In order to appreciate the size of the
effect to be perturbatively accounted for, results of an exact reference calculation up toI = 2 are also
given as dashed curves. The experimental data are from Ref. [11] and refer topd scattering.

I emphasize that in this section the transition matricesTl andTh may refer to a purely nucleonic
potential or to a coupled-channel potential. Compared with Sec. 8.2.1 the perturbative treatment of the
∆ isobar is in the latter case slightly different: In Sec. 8.2.1 terms of the typeTN∆G0PT∆N may contain
transition matrices of the higher included partial waves twice, in this section the perturbatively treated
transition matricesT∆N or TN∆ of higher partial waves are included in first order only; furthermore,
alsoT∆∆ in higher partial waves contributes.

The contributions∆U and∆U0 to three-baryon transition matrices arising from the two-baryon
interaction in higher partial waves increase with increasing energy. I therefore present a comparison
for observables at higher energies only, i.e., at 135 MeV nucleon lab energy. The comparison is based
on a nonvanishing two-baryon interaction in partial waves up toI = 5, the isospin triplet partial waves
up to I = 4 being coupled to the∆ isobar. Beside the full calculation, a perturbative one is carried
out, the unperturbed interaction being the coupled-channel interaction in two-baryon partial waves up
to Il = 2, the coupled-channel interaction in partial waves withIl < I � Ih = 5 being considered the
perturbation. Selected results are compared in Fig. 8.4. The shown agreement between full and per-
turbative calculations is characteristic for all calculated observables; thus, the perturbative treatment
of the interaction in higher two-baryon partial waves is highly reliable.
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8.3 Use of Perturbation Theory

Though perturbation theory in lowest order cannot simulate all features of the∆-isobar effects of a full
calculation correctly, nevertheless it appears quite useful for a qualitative understanding of reaction
mechanisms mediated by the∆ isobar. It is highly accurate for other dynamic features, i.e., charge
dependence and higher partial waves. It can clearly be extended to higher orders, if need arises, and
also to e.m. processes.

As an example for application of perturbation theory, the convergence of theoretical predictions
with respect to the higher two-baryon partial waves is studied in Fig. 8.5 for going beyond the standard
approach. Perturbatively, also partial waves up toI = 8 are included. That study is done for the highest
energy reaction considered in this thesis, i.e., for the elastic nucleon-deuteron scattering at 250 MeV
nucleon lab energy. On the scale of accuracy required by present-day data the effect of partial waves
with I > 5 is small enough to be safely neglected. I found only few exceptions, e.g., the differential
cross section at very small angles and the nucleon to nucleon polarization transfer coefficientKy0

y (NN).
A sample result for the rapid convergence with respect to higher partial waves is given in Fig. 8.5; it
is characteristic for most studied observables; the one exceptional case is also given in Fig. 8.5.
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Figure 8.5: Nucleon analyzing powerAy(N) and nucleon to nucleon polarization transfer coefficient

Ky0

y (NN) of elasticNd scattering at 250 MeV nucleon lab energy as function of the c.m. scattering
angle. Results including the interaction in partial waves up to two-baryon total angular momentum
I = 8 (solid curves),I = 7 (dashed curves),I = 6 (dashed-dotted curves), andI = 5 (dotted curves) are
shown; differences are only discernible for the observableKy0

y (NN). The experimental data are from
Ref. [13] and refer topd scattering.



9
Conclusions

This thesis describes three-nucleon hadronic and e.m. reactions. The description allows for∆-isobar
excitation and therefore contains an effective three-nucleon force and an effective two- and three-nucle-
on exchange current. Compared to previous works [16–21], the description of this thesis has a number
of significant improvements.

There aretechnicalimprovements. They are very important for the applicability of coupled-chan-
nel dynamics, though their description in this thesis is mostly hidden in Appendix C: The ease of
reading the physics evolution of this thesis should not be endangered. The technical improvements
are:

� Exact solution of three-particle equations:
The most important technical improvement is a novel momentum-space technique for solving
the three-baryon bound-state and scattering equations as described in Appendix C.1. The tech-
nique is applicable to any two-baryon potential. It is based on the expansion of the two-baryon
transition matrix and of the deuteron wave function in terms of Chebyshev polynomials. The
Chebyshev expansion is found to be highly efficient and reliable when used for interpolation
and is found to be systematic in contrast to the separable expansion technique of Refs. [17–21].

� Treatment of singularities:
Other technical developments, important for the efficiency and reliability of the practical cal-
culations as described in Appendix C.2, refer to the real-axis integration method when dealing
with the singularities arising in the kernel of the three-particle scattering equations.

� Perturbation theory:
As a complement to the full calculations a perturbative approach for nucleon-deuteron scatter-
ing is developed in Chapter 8; it can easily be extended to the e.m. reactions. The perturba-
tive approach may help to isolate the effects of individual reaction mechanisms present in the
various observables and to facilitate the physics understanding of the three-nucleon reactions.
Furthermore, in particular situations it may even be a reliable and efficient substitute for full
calculations.

Due to the results of this thesis, there is an improvedphysicsunderstanding of the few-nucleon
systems. I have the following aspects of my thesis in mind:

� Improved dynamic description:
Whereas the results of Refs. [17–21], due to the need for a separable expansion, are derived
from rather outdated potential models, the Chebyshev-expansion technique allows to use di-
rectly any two-nucleon potential and any coupled-channel extension of it as dynamic input for
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the description of the three-nucleon system; the use of a well-fitted realistic potentials is im-
portant for quantitative predictions. The charge-dependent CD-Bonn potential [3] is chosen as
a purely nucleonic reference in the present calculations. Furthermore, a new coupled-channel
potential with single∆-isobar excitation [25] is developed in the present work. The new cou-
pled-channel potential CD Bonn +∆ is based on the exchange ofπ, ρ, ω andσ mesons as CD
Bonn. It is fitted to the two-nucleon scattering data up to 350 MeV nucleon lab energy. Since
scattering energies just touch the pion-production threshold, the∆ isobar is considered a sta-
ble baryon. Theχ2=datum resulting from the fit of the new coupled-channel potential is with
1.02 as good as for the best new-generation purely nucleonic potentials; within the limits of the
given χ2 the potentials CD Bonn and CD Bonn +∆ are phase equivalent. The developed new
coupled-channel potential is a substantial advance, compared with the traditional construction
of coupled-channel potentials with rather limited phase equivalence.

� Included dynamic processes:
In the three-nucleon system the∆ isobar mediates effective two-nucleon and three-nucleon
forces. The effective three-nucleon force, beside other contributions, simulates the two-pion
exchange Fujita-Miyazawa force [14] of Fig. 2.5 and the three-pion ring parts in the Illinois
forces [6] of Fig. 2.6 in a reducible energy-dependent form. In contrast to those irreducible
three-nucleon forces based solely onπ exchange employed by other groups [6, 52, 61] for
few-nucleon systems, the effective three-nucleon force arising from the coupled-channel po-
tential takesπ, ρ, ω andσ exchanges into account. The coupled-channel potential makes all
contributions to the three-nucleon forcemutually consistent.

The one-baryon and two-baryon coupled-channel current employed for the description of the
e.m. processes correspond to the hadronic interaction, though full current conservation could
not be achieved yet. The∆ isobar mediates contributions to the exchange current of effective
two-nucleon and three-nucleon nature; they arestructurally consistentwith the corresponding
hadronic contributions.

� ∆-isobar effects in three-nucleon bound state – beneficial or not?
The coupled-channel potential yields additional binding, but it remains unable to account for
three-nucleon binding in full. The competition between the∆-isobar effects of two-nucleon and
three-nucleon nature, observed already long ago [16], is confirmed.

� ∆-isobar effects in three-nucleon scattering – beneficial or not?
With respect to three-nucleon scattering,∆-isobar effects are very small at low energies. The
Ay-puzzle of elastic nucleon-deuteron scattering around 10 MeV nucleon lab energy cannot be
resolved by the inclusion of the∆ isobar, even if the∆-mediated three-nucleon force has a micro-
scopically motivated spin-orbit contribution; according to Ref. [49] a three-nucleon force with
phenomenological spin-orbit component of rather long range can resolve theAy-puzzle. How-
ever, the considered spin-orbit contribution due to∆-isobar excitation is of short range, since it
arises from the exchange of theρ-meson. Also the space star anomaly in the nucleon-deuteron
breakup cross section around 13 MeV nucleon lab energy cannot be resolved.

The ∆-isobar effects become more visible at higher energies; they are often beneficial for a
satisfactory description of the experimental data, e.g., they significantly reduce the discrepan-
cies for the differential cross section and nucleon analyzing power of elastic nucleon-deuteron
scattering above 100 MeV nucleon lab energy, though their success is not a general one for all
measured observables.
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� ∆-isobar effects in three-nucleon photo reactions – beneficial or not?
The ∆-isobar effects in three-nucleon photo reactions are also more pronounced at higher en-
ergies. It is found that other theoretical ingredients neglected in conventional calculations of
nuclear phenomena, e.g., the relativistic corrections of the e.m. current operator, may be even
more important than the∆-isobar contributions. In general, quite a satisfactory description of
photo reactions emerges given the scarcity of data, often still carrying large error bars.

� ∆-isobar effects in inelastic electron scattering from trinucleon bound state – beneficial or not?
This thesis presents only few results for the inelastic electron scattering from the trinucleon
bound state; the given examples demonstrate the potential of the developed technical appara-
tus also for electron scattering.∆-isobar effects appear not very important at the considered
kinematics for the few measured observables. Elastic form factors are not revisited. Moderate
∆-isobar effects are predicted for the exclusive differential cross section in particular kinemati-
cal regimes, which are not yet measured experimentally.

� ∆-isobar effects versus effects of irreducible three-nucleon force:
The theoretical predictions given in Refs. [9, 11, 13, 36, 37, 52, 61, 84] use several irreducible
three-nucleon forces, whose effects for some observables strongly disagree with each other.
They often used outdated forces; accepted standard are now the modified Tucson-Melbourne
TM’ and Urbana IX forces. The∆-isobar effects seen in this thesis quite often agree with the
effects of the latter three-nucleon forces qualitatively.

Compared to the results of Refs. [16–21] based on a coupled-channel potential with deficiencies,
the ∆-isobar effects seen in the results of this thesis based on a well-fitted coupled-channel
potential are qualitatively rather similar at low energies, but there are also cases with important
quantitative and even qualitative updates at higher energies.

Thus, I believe that the theoretical description of three-nucleon hadronic and e.m. reactions as
given in this thesis is numerically highly reliable and physically realistic. The explicit treatment of the
∆ isobar is important for three-nucleon bound state and for three-nucleon reactions at higher energies
and should remain to be included in future calculations of few-nucleon systems. However, at the end
of the thesis I also see clearly what my present calculations still miss and where further improvements
and developments are highly desirable.

� Model dependence study:
Various new-generation purely nucleonic potentials [3–5], i.e., CD Bonn, AV 18, Nijmegen I
and II, differ in their predictions for three-nucleon bound state properties and for some sensitive
spin observables. Coupled-channel extensions should be constructed for all of them as realisti-
cally as done in this thesis for CD Bonn in order to study the model dependence of the∆-isobar
effects.

� Dynamic improvements:
An irreducible three-nucleon force should be added in order to account for those processes not
contained in the effective three-nucleon force due to∆-isobar excitation and in order to at least
cure the three-nucleon underbinding. Furthermore, the used e.m. current should be improved
in order to satisfy the requirement of current conservation.

� Inclusion of pion production:
Though the quality of the fit of the new coupled-channel potential is gratifying, the low-energy
elastic nucleon-nucleon scattering data do not form a stringent physics basis to constrain special
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properties of the nucleon-∆ channel. The coupled-channel potential and the nucleonic reference
potential CD Bonn therefore are both only applicable to phenomena below pion-production
threshold. In future, the explicit∆-isobar coupling to the pion-nucleon states should be in-
cluded and the fit at intermediate energies should be improved by tuning simultaneously to
π-production data. This is a necessary step, since experimentalists move with their study of
hadronic and e.m. processes far above the pion-production threshold.

� Inclusion of Coulomb interaction:
Experimentalists prefer to work with charged particles; the experimental data fornppsystem,
i.e., for pd scattering and for e.m. reactions on3He are more abundant and much more ac-
curate than the corresponding data for thennp system. Comparison of thenpp data to theo-
retical predictions without the Coulomb force leaves an uncomfortable uncertainty, though the
Coulomb effects are believed to be very small at higher energies, except for some special kine-
matical regimes. Nevertheless, the inclusion of the Coulomb force in the description of the
three-nucleon continuum with two charged particles would be very welcome.

� Extension to weak processes:
The weak processes in the three-nucleon system, e.g., the muon(µ) capture by3He, should
also be studied. The developments of this thesis form a solid basis for the description of weak
processes, the only missing ingredient is the axial weak current.

� Extension to relativistic quantum mechanics:
At intermediate energies relativistic effects become nonnegligible. First, they are clearly seen
in the kinematics of the considered reactions. Second, I found that the relativistic corrections
of the e.m. current operator are important for a successful description of some three-nucleon
e.m. processes. However,all relativistic effects have to be taken into account consistently; this
calls for a formulation of the three-particle equations in the framework of relativistic quantum
mechanics, quite formidable undertaking.



A
Parameters and Special Properties of the

Coupled-Channel Potential

The force parameters of the fitted coupled-channel potential are collected in this appendix. They are
quoted with different accuracies. This fact is standard: The fit determines some parameters more
sensitively than others. For reasons of reproducibility, the parameters are given with all digits, used in
the practical calculations.

Table A.1 collects the retuned parameters of the nucleonic part of the coupled-channel potential;
the retuning is done for two exchangesσ1 andσ2 and, in the3P0 and3P1 partial waves, also for theω
exchange. Theσ exchange is phenomenological; CD Bonn uses it in a partial-wave dependent form;
its partial-wave dependent retuning is justified. The retuning of theω exchange is only minor; never-
theless, the retunedσ1, σ2 andω exchanges have more partial-wave dependence than the underlying
CD-Bonn potential. The force parameters determining the potential parts connected with the∆ isobar
are given in Tables A.2 and A.3. Table A.2 contains all parameters chosenbeforethe coupled-channel
potential is subjected to the fit. Table A.3 contains the only fit parameter, i.e.,gσNNgσ∆∆=4π; it refers
exclusively toσ meson exchange in the potential parts connected with the∆ isobar.

NN mσ1 mσ2

g2
σ1

(pp)

4π
g2

σ2
(pp)

4π
g2

σ1
(np)

4π
g2

σ2
(np)

4π
g2

σ1
(nn)

4π
g2

σ2
(nn)

4π
Λσ

g2
ω

4π
Λω

1S0 458 1225 1.92084 48.903 1.60887 55.844 1.93591 48.847 2000 20 1500
3P0 589 6.2318 6.1004 6.2528 1500 20 1800
3P1 376 1225 0.48685 0.0 0.50895 12.337 0.49778 2.6990 1500 22 2000
1D2 371 793 0.62970 8.8426 0.63628 8.9343 0.64134 8.8944 2500 20 1500
3P2 452 1225 2.8093 79.198 2.8354 78.622 2.8218 79.035 1600 20 1500
3F2 452 793 1.0511 51.447 1.1464 50.720 1.0755 51.406 1600 20 1500
3F3 600 793 6.9214 21.972 7.2132 21.697 7.2333 20.957 2500 20 1500
1G4 415 1.4793 1.4993 1.5019 2500 20 1500
3F4 431 2.4451 2.4544 2.4518 2500 20 1500
3H4 461 3.5415 3.5977 3.5736 2500 20 1500

Table A.1: Retunedσ1, σ2 andω parameters in the nucleonic part of the coupled-channel potential. A
blank indicates that the meson contribution is not considered. Meson massesmσi and cut-off parame-
tersΛσ = Λσ1 = Λσ2 andΛω are given in MeV; they andgω are chosen in a charge-independent form;
the coupling constantsgσi are charge-dependent. The mass of theω meson remains with 781.94 MeV
the physical one.
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ξ mξ

f 2
ξNN

4π
g2

ξNN

4π
ΛξN

f 2
ξN∆

4π
f 2

ξ∆∆

4π
Λξ∆

π 138.03 0.07348 13.6 1720 0.35 0.002939 1900
ρ 769.9 7.112 0.84 1310 33.786 0.2845 1500
ω 781.94 20.0 1500 1500

Table A.2: Meson parameters employed in the potential parts referring to the∆ isobar. Meson masses
mξ and cut off parametersΛξB are given in MeV. All parameters of this table are kept fixed during
the fit. The meson massesmξ and the other meson parametersfξNN, gξNN and ΛξN are taken over
from CD Bonn;gξNN andΛξN are identical togξ andΛξ of Ref. [3], whereasfπNN = (mπ=2mN)gπ
and fρNN = (mρ=2mN)gρ(1+ κρ) with κρ = fρ=gρ = 6:1 being the ratio of tensor/vector coupling
constants of theρ meson in CD Bonn. The coupling strengthfπN∆ is taken over from Ref. [16], the
others are chosen according to the quark counting rules, i.e.,fρN∆ = fρNN fπN∆= fπNN, fξ∆∆ = 1

5 fξNN,
andgξ∆∆ = gξNN. The cut off parametersΛξ∆ are assumed, they are also not subjected to the fit.

N∆ mσ
g2

σNN

4π
ΛσN

g2
σ∆∆
4π

Λσ∆
gσNNgσ∆∆

4π
5D0;

5P3� 3F3� 5F3;
5D4� 5G4;

3F4� 5F4 500 5.0 1500 5.0 1500 5.0
3P0;

3P1� 5P1� 5F1;
3P2� 5P2 500 0.0 1500 0.0 1500 0.0

5S2� 5D2� 5G2 500 8.7 1500 8.7 1500 8.7

Table A.3: Retunedσ exchange in the direct nucleon-∆ part of the coupled-channel potential. Note
that only the quantitygσNNgσ∆∆=4π is fitted. The massmσ and the cut off parametersΛσN andΛσ∆
are chosen beforehand and are kept fixed during the fit, the other columns are only shown separately
for reasons of correspondence to Table A.1.

The coupled-channel potential has an inelastic channel, the nucleon-∆ channel. Thus, the poten-
tial yields inelasticities; they are not realistic, since they are not pionic. Nevertheless, for reasons
of curiosity, Fig. A.1 shows the resulting1D2 and3F3 phase shifts and inelasticities also in the en-
ergy domain beyond the pion-production threshold not used for the fit. As expected, the produced
inelasticities do not account for the inelastic data. First, due to the neglect of the coupling to pion
states the inelastic threshold is wrong. Second, the1D2 nucleon-nucleon channel is coupled to the5S2

nucleon-∆ channel; without that coupling the nucleon-∆ potential supports a bound state; this is the
reason for the sharp phase shift increase which the coupling to pion states would efficiently smear out.
In contrast to1D2, the predictions for the3F3 phase shifts show some realistic features qualitatively.
In the energy domain of inelasticity the nucleonic CD-Bonn potential is also unrealistic.
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Figure A.1: 1D2 and 3F3 np phase shiftsδ and inelasticitiesρ as functions of nucleon lab energy.
Results of the coupled-channel potential with∆-isobar excitation (solid curves) are compared with
results of the CD-Bonn potential (dashed curves), for which the inelasticityρ is exactly zero. The
dots are the results of the partial-wave analysis of Ref. [85] without error bars. In the fit of this
thesis only the phase shifts below 350 MeV nucleon lab energy are considered; the pion-production
threshold is at 280 MeV.





B
Coupled-Channel Current Operators

Equation (2.15) defines the general momentum space form of the e.m. currentJµ(Q) = (ρ(Q);J(Q))
in the Jacobi coordinates of the three-particle basis. In contrast, this appendix gives its employed
one-baryon and two-baryon parts, i.e.,Jµ(Q) = J[1]µ(Q) + J[2]µ(Q), in respective one-particle and
two-particle bases. I keep the three-momentum transferQ and not the four-momentum transferQ as
independent variable since usuallyQ0 is determined by the three-momenta of the involved baryons.
Despite that strategy,Q2 =Q2�Q2

0 =�Q2 is used in all e.m. form factors; for photo reactionsQ2 = 0.
The step from the single-particle representation of the current contributions to the three-particle Jacobi
momenta is straightforward [62] and not repeated here. The objective of this appendix is the definition
of the used input for the current. Since the e.m. coupling constant, i.e., the positive elementary charge
ep, is explicitly introduced in the e.m. Hamiltonians (2.11) and (2.13), the e.m. currentJµ(Q) is given
in units ofep.

B.1 One-Baryon Operators in Nonrelativistic Order

The momentum-space matrix elements of the one-baryon current operator have the general form

hk 0b0jJ[1]µ(Q)jkbi= δ(k 0�Q�k) j [1]µb0b (Q;k 0;k) (B.1)

with k 0 (k) andQ being the final (initial) single-baryon momentum and the three-momentum trans-
fer by the photon, respectively, andb0 (b) being N or ∆ depending on the baryonic content of the

final (initial) state. All components ofj [1]µb0b (Q;k 0;k) are still operators in spin and isospin space; the
spin (isospin) operators of the nucleon,∆ isobar and the nucleon-∆ transition are denoted by� (� ),
�∆ (�∆) andS (T), respectively. The one-baryon charge density and spatial current operators, dia-
grammatically defined in Figs. 2.7 - 2.9 and used in the calculations of this thesis, are listed below:

ρ[1]
NN(Q;k 0;k) = e(Q2); (B.2a)

j [1]NN(Q;k 0;k) =
1

2mN

�
e(Q2)[k 0+k]+ [e(Q2)+κ(Q2)][i��Q]

	
; (B.2b)

j [1]∆N(Q;k 0;k) =
1

2m∆
gM1

∆N(Q
2)[iS�Q]Tz; (B.2c)

ρ[1]
∆∆(Q;k 0;k) = gE0

∆ (Q2); (B.2d)

j [1]∆∆(Q;k 0;k) =
1

2m∆

�
gE0

∆ (Q2)[k 0+k]+gM1
∆ (Q2)[i�∆�Q]

	
: (B.2e)
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The nucleonic e.m. form factors of Eqs. (B.2) are parametrized as linear combinations of the
isospin-dependent Dirac and Pauli form factorsf1(Q2) and f2(Q2), which at zero four-momentum
transferQ2 are the charge and the anomalous magnetic moment of the nucleon, i.e.,

e(Q2) =
1
2

�
f IS
1 (Q2)+ f IV

1 (Q2)τz
�
; (B.3a)

κ(Q2) =
1
2

�
f IS
2 (Q2)+ f IV

2 (Q2)τz
�
; (B.3b)

the superscripts IS and IV denote their isoscalar and isovector parts, respectively. For electron scatter-
ing four-momentum transferQ2 > 0 and the nucleonic e.m. form factors are parametrized according
to Ref. [76]. The e.m. form factors related to the∆ isobar are parameterized [16, 63, 64] by

gM1
∆N(Q

2) =
m∆

mN

µ∆N

(1+Q2=Λ2
∆N;1)

2(1+Q2=Λ2
∆N;2)

1=2
; (B.4a)

gE0
∆ (Q2) =

1
2

�
f IS
1 (Q2)+ f IV

1 (Q2)�Q2=(4m2
N)[ f

IS
2 (Q2)+ f IV

2 (Q2)]
	 1

2
(1+ τ∆z); (B.4b)

gM1
∆ (Q2) =

m∆

6mN

µ∆

(1+Q2=Λ2
∆)

2

1
2
(1+ τ∆z): (B.4c)

The values of the parameters areµ∆N = 3µN, µ∆ = 4:35µN, µN being the nuclear magneton,Λ∆N;1 =
Λ∆ = 0:84 GeV andΛ∆N;2 = 1:2 GeV.

B.2 Two-Baryon Operators in Nonrelativistic Order

The matrix elements of the two-baryon current operator have the general form

hk 01k 02B0jJ[2]µξ (Q)jk1k2Bi= δ(k 01+k 02�Q�k1�k2) j [2]µξB0B(Q;k 01�k1;k 02�k2) (B.5)

with k 0i (k i) being the final (initial) single-baryon momenta;ξ denotes the exchanged meson (or the
two mesons in case of nondiagonal currents); the baryonic contentsB0 andB beingN (∆) correspond

to the two-nucleon (nucleon-∆-isobar) states. All componentsj [2]µξB0B(Q;k 01� k1;k 02� k2) are still op-
erators in spin and isospin space. The two-baryon spatial current operators, diagrammatically defined
in Figs. 2.7 - 2.9, based onπ, ρ andω exchange and used in the standard calculations of this thesis,
are listed below:

j [2]πNN(Q;p1;p2) = � f IV
1 (Q2)

�
[i�1��2]zF

con
πNN(p

2
2)(p2 ��2)�1+(1$ 2)

	
+ f IV

1 (Q2)[i�1��2]zF
mes
πNN(p

2
1;p

2
2)(p1 ��1)(p2 ��2)(p1�p2); (B.6a)

j [2]ρNN(Q;p1;p2) = � f IV
1 (Q2)

�
[i�1��2]zF

con
ρNN(p

2
2)[(�2�p2)��1]+ (1$ 2)

	
+ f IV

1 (Q2)[i�1��2]zF
mes
ρNN(p

2
1;p

2
2)[(p1��1) � (p2��2)](p1�p2)

+ f IV
1 (Q2)[i�1��2]zF

mes1
ρNN (p2

1;p
2
2)(p1�p2)

� f IV
1 (Q2)[i�1��2]zF

mes
ρNN(p

2
1;p

2
2)Q� [(p1��1)� (p2��2)]; (B.6b)

j [2]ρπNN(Q;p1;p2) = � f IS
1 (Q2)

�
(�1 ��2)F

dis
ρπNN(p

2
1;p

2
2)(p2 ��2)[ip1�p2]+ (1$ 2)

	
; (B.6c)

j [2]ωπNN(Q;p1;p2) = � f IV
1 (Q2)

�
τ2zF

dis
ωπNN(p

2
1;p

2
2)(p2 ��2)[ip1�p2]+ (1$ 2)

	
; (B.6d)
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j [2]π∆N(Q;p1;p2) = � f IV
1 (Q2)

�
[i�1�T2]zF

con
π∆N(p

2
2)(p2 �S2)�1+(1$ 2)

	
� f IV

1 (Q2)
�
[iT1��2]zF

con
π∆N(p

2
2)(p2 ��2)S1+(1$ 2)

	
+ f IV

1 (Q2)
�
[i�1�T2]zF

mes
π∆N(p

2
1;p

2
2)(p1 ��1)(p2 �S2)(p1�p2)+(1$ 2)

	
;
(B.7a)

j [2]ρ∆N(Q;p1;p2) = � f IV
1 (Q2)

�
[i�1�T2]zF

con
ρ∆N(p

2
2)[(S2�p2)��1]+ (1$ 2)

	
� f IV

1 (Q2)
�
[iT1��2]zF

con
ρ∆N(p

2
2)[(�2�p2)�S1]+ (1$ 2)

	
+ f IV

1 (Q2)
�
[i�1�T2]zF

mes
ρ∆N(p

2
1;p

2
2)[(p1��1) � (p2�S2)](p1�p2)+(1$ 2)

	
� f IV

1 (Q2)
�
[i�1�T2]zF

mes
ρ∆N(p

2
1;p

2
2)Q� [(p1��1)� (p2�S2)]+ (1$ 2)

	
;

(B.7b)

j [2]ρπ∆N(Q;p1;p2) = � f IS
1 (Q2)

�
(�1 �T2)F

dis
ρπ∆N(p

2
1;p

2
2)(p2 �S2)[ip1�p2]+ (1$ 2)

	
; (B.7c)

j [2]ωπ∆N(Q;p1;p2) = � f IV
1 (Q2)

�
T2zF

dis
ωπ∆N(p

2
1;p

2
2)(p2 �S2)[ip1�p2]+ (1$ 2)

	
; (B.7d)

j [2]π∆∆(Q;p1;p2) = � f IV
1 (Q2)

�
[i�1��∆2]zF

con; d
π∆∆ (p2

2)(p2 ��∆2)�1+(1$ 2)
	

� f IV
1 (Q2)

�
[i�∆1��2]zF

con; d
π∆∆ (p2

2)(p2 ��2)�∆1+(1$ 2)
	

+ f IV
1 (Q2)

�
[i�1��∆2]zF

mes; d
π∆∆ (p2

1;p
2
2)(p1 ��1)(p2 ��∆2)(p1�p2)+(1$ 2)

	
� f IV

1 (Q2)
�
[iT†

1�T2]zF
con; e
π∆∆ (p2

2)(p2 �S2)S
†
1+(1$ 2)

	
� f IV

1 (Q2)
�
[iT1�T†

2]zF
con; e
π∆∆ (p2

2)(p2 �S†
2)S1+(1$ 2)

	
+ f IV

1 (Q2)
�
[iT†

1�T2]zF
mes; e
π∆∆ (p2

1;p
2
2)(p1 �S†

1)(p2 �S2)(p1�p2)+(1$ 2)
	
:
(B.8)

I note: The contribution to the two-nucleonρ-exchange current, proportional toFmes1
ρNN (p2

1;p
2
2)

Eq. (B.6b) is not contained in the standard collection of exchange currents of Refs. [20, 38, 41, 62],
used till now in the context of other potentials; it is necessitated in this thesis by the full form of the
ρ exchange implemented in the CD-Bonn potential. Other contributions arising from the fullρ ex-
change [39] are of higher order compared toFmes1

ρNN (p2
1;p

2
2) and are therefore neglected in the standard

calculations; however, their effect is discussed in Sec. 6.3.3.
The F functions used in the above expressions are potential-dependent. For meson-exchange

potentials they are built from meson-baryon coupling constants, hadronic form factors and meson
propagators. For contact currents theF-functions have the following forms:

Fcon
πNN(p

2) =
1

8π2m2
N

g2
πNN

4π
F 2

πN(p
2)

m2
π +p2 ; (B.9a)

Fcon
ρNN(p

2) =
1

8π2m2
N

g2
ρNN(1+κρ)

2

4π
F 2

ρN(p
2)

m2
ρ +p2 ; (B.9b)

Fcon
π∆N(p

2) =
1

8π2m2
N

g2
πNN

4π
fπN∆

fπNN

FπN(p2)Fπ∆(p2)

m2
π +p2 ; (B.9c)

Fcon
ρ∆N(p

2) =
1

8π2m2
N

g2
ρNN(1+κρ)

2

4π
fρN∆

fρNN

FρN(p2)Fρ∆(p2)

m2
ρ +p2 ; (B.9d)
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Fcon; d
π∆∆ (p2) =

1

8π2m2
N

g2
πNN

4π
fπ∆∆

fπNN

FπN(p2)Fπ∆(p2)

m2
π +p2 ; (B.9e)

Fcon; e
π∆∆ (p2) =

1

8π2m2
N

g2
πNN

4π
f 2
πN∆

f 2
πNN

F 2
π∆(p

2)

m2
π +p2 : (B.9f)

For meson in flight currents the corresponding expressions are

Fmes
ξB0B(p

2
1;p

2
2) = � 1

p2
1�p2

2

�
Fcon

ξB0B(p
2
1)�Fcon

ξB0B(p
2
2)
�
; (B.10a)

Fmes1
ρNN (p2

1;p
2
2) =

4m2
N

(1+κρ)2Fmes
ρNN(p

2
1;p

2
2); (B.10b)

Fmes; d(e)
π∆∆ (p2

1;p
2
2) = � 1

p2
1�p2

2

�
Fcon; d(e)

π∆∆ (p2
1)�Fcon; d(e)

π∆∆ (p2
2)
�
: (B.10c)

Finally, the functions for nondiagonal meson-exchange currents (also called dispersion currents) are
defined to be

Fdis
ξξ0NN(p

2
1;p

2
2) =

1

4π2m2
N

gξNNgξ0NN

4π
mN

mξ
gξξ0γ

FξN(p2
1)

m2
ξ +p2

1

Fξ0N(p2
2)

m2
ξ0 +p2

2

; (B.11a)

Fdis
ξξ0∆N(p

2
1;p

2
2) =

1

4π2m2
N

gξNNgξ0NN

4π
fπN∆

fπNN

mN

mξ
gξξ0γ

FξN(p2
1)

m2
ξ +p2

1

Fξ0∆(p2
2)

m2
ξ0 +p2

2

: (B.11b)

All hadronic parameters are collected in Table A.2. The hadronic form factorsFξB(p2) are defined in
Eq. (2.8e). The e.m. meson-photon coupling constants have the valuesgρπγ = 0:56 andgωπγ = 0:68
according to Ref. [86].

B.3 Operator Corrections of Lowest Relativistic Order

Operator corrections of relativistic order are given for the charge density. They are of one-baryon and
of two-baryon nature:

ρ[1] rc
NN (Q;k 0;k) = � e(Q2)+2κ(Q2)

8m2
N

�
Q2+[i�� (k 0+k)] �Q	; (B.12a)

ρ[1] rc
∆N (Q;k 0;k) = � 1

4mNm∆
gM1

∆N(Q
2)[iS� (k 0+k)] �Q Tz; (B.12b)

ρ[2] rc
πNN(Q;p1;p2) =

1
2mN

[ f IS
1 (Q2)�1 ��2+ f IV

1 (Q2)τ2z]F
con
πNN(p

2
2)(�1 �Q)(�2 �p2)+(1$ 2) (B.12c)

The contributions (B.12) are the Darwin-Foldy and spin-orbit corrections of the one-nucleon charge
density, the one-baryon correction due to nucleon-∆ transition and the two-nucleon correction due toπ
exchange, respectively; the two-nucleon contribution (B.12c) is local and therefore often exclusively
used; there are, however, other nonlocal two-nucleon contributions of the same order. The contribu-
tions (B.12) are used in this thesis in Sec. 6.3.3 for the Siegert form of the current. Since they are
relativistic corrections, they violate current conservation in the considered order. However, the cal-
culated trinucleon elastic charge form factors need all three contributions in order to become almost
quantitatively consistent with the experimental data [41].



C
Numerical Solution of Three-Particle Equations

The integral equations to be solved are (3.6) for the Faddeev componentjψαi of the bound state,
(3.19a) for the multichannel transition matrixU(Z) of elastic nucleon-deuteron scattering and (3.24b)
for the auxiliary statejJµ(Z)i of e.m. reactions. In contrast to the Schrödinger equation (3.1a) and the
Lippmann-Schwinger equations (3.14), they are suitable for numerical solution, since their kernels get
connected after iteration and are compact for short-range potentials. In the following I concentrate on
the equations (3.19a) and (3.24b). The breakup transition matrixU0(Z) and the nuclear current matrix
elements of e.m. reactions follow then by quadrature.

C.1 Chebyshev Interpolation

References [17–19] solved the three-nucleon equations with∆-isobar excitation by a separable ex-
pansion of the two-baryon transition matrix; the separable expansion made the dependence on the
continuous variablep, the relative pair momentum, discrete in an efficient way. Though the validity
of the separable expansion was checked in Ref. [46] and was confirmed to be quite reliable in the
context of the three-nucleon bound state and of low energy nucleon-deuteron scattering, the need for
a separable expansion made the calculational technique of Refs. [17–19] inflexible in applications.
In contrast, an alternative technique based on the Chebyshev expansion of the two-baryon transition
matrix [22] and allowing to use directly any two-nucleon potential and any coupled-channel exten-
sion of it as dynamic input for the description of the three-nucleon system is proposed and used in
calculations of this thesis.

I solve Eq. (3.19a) in the momentum-space partial-wave basis (2.2). The channel-states (3.8) and
(3.10) are expanded into the partial-wave coupled states according to

jφα(q)ναi= ∑
J MJ T MT jmj lml

jdqf[I0(ls0) j]J MJ (T0t0)T MT b0giαhI0MI jmj jJ MJ i

�hlmls0msj jmjihT0MT0t0mt jT MT iYl�
ml
(q̂); (C.1a)

jφ0(pq)ν0i= ∑
J MJ T MT

∑
LMLSMSIMI TMT

∑
lml jmj

jpq[(LS)I(lsα) j]J MJ (Ttα)T MT Bbiα

�hIMI jmj jJ MJ ihLMLSMSjIMI iYL�
ML

(p̂)hsβmsβsγmsγ jSMSihlml sαmsα j jmjiYl�
ml
(q̂)

�hTMTtαmtα jT MT ihtβmtβtγmtγ jTMTi
p

2 (C.1b)

with the abbreviationjdqχdiα for the partial-wave projected nucleon-deuteron state, i.e.,

jdqχdiα � jdqf[I0(ls0) j]J MJ (T0t0)T MT b0giα: (C.1c)
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In the notationjdqχdiα of the coupled state the symbolχd stands for the set(π0I0T0ls0 jt0b0) of quan-
tum numbers withπ0 = 1; there are two (three) distinct coupled states for each set of three-particle
quantum numbers(ΠJ MJ MT ) with J = 1

2 (J � 3
2); those three-particle quantum numbers are nota-

tionally suppressed injdqχdiα. The factor
p

2 arises in Eq. (C.1b), since the basis statesjpqν(I j )iα
are antisymmetrized in the pair(βγ) by (1�Pβγ)=2, whereasjφ0(pq)ν0i in Eq. (3.10) by(1�Pβγ)=

p
2.

According to the properties of the operators acting in the assumed Hilbert space I introduce the
following abbreviations for the sets of the discrete quantum numbers. Among them, three-particle
parity Π, total angular momentumJ with projectionMJ and, if charge independence of the interac-
tion is assumed, total isospinT with projectionMT , are conserved and can be fixed for the operators
once and for all; due to rotational symmetry all operators, except for the current operatorjµ(Q;K+),
are even independent ofMJ , in case of charge independence even independent ofMT ; I will therefore
often omit those quantum numbers(ΠJ MJ T MT ) in my explicit notation. The two-baryon transition
matrix in three-baryon spaceTα(Z) which carries the dynamics is – due to geometric reasons – diag-
onal with respect to all discretespectatorquantum numbers, indicated in Fig. 2.2, i.e., orbital angular
momentuml , spins, total angular momentumj, isospint and baryon characterb. With respect to pair
quantum numbers,Tα(Z) is – due to dynamic reasons – diagonal in the pair parityπ = (�)L, in the
total pair angular momentumI and in the total pair isospinT, but it can couple states with different
pair orbital angular momentumL, spinSand baryonic contentB. The abbreviationη = (LSB) stands
for all nonconserved quantum numbers, the abbreviationχ, i.e., χ = (πIT ls jtb), for all conserved
ones. Thus, there are three sets of discrete three-particle quantum numbers, which the notation will
distinguish, i.e.,ν(I j ) = [η;χ;(ΠJ MJ T MT )]. However, in contrast to the two-baryon transition ma-
trix Tα(Z) and to the free resolventG0(Z), the permutation operatorP couples not only the quantum
numbersη, but also the dynamically conserved quantum numbersχ.

If charge dependence is allowed for as in the calculations of this thesis, the two-baryon transition
matrix Tα(Z) couples states of total isospinT = 1

2 andT = 3
2 as described in Sec. 3.4. Thus, for the

case of charge dependence the discrete three-particle quantum numbers are therefore to be split up
into different sets, i.e.,ν(I j ) = [η;χ;(ΠJ MJ MT )], compared with charge independence. The total
isospinT has to be included among the nonconserved quantum numbersη = (LSBT ). Otherwise,
the formalism to be developed remains entirely unchanged.

The solutions of the integral equations (3.19a) and (3.24b) are constructed from the corresponding
Neumann series (3.22) and (3.24a) of finite order using the method of Padé approximants described
in Sec. C.4. Because of the permutation operatorP, at each iteration step in Eqs. (3.22) and (3.24a)
interpolation is required in at least two continuous variables, depending on the used representation of
P. The most convenient one is

αhp0q0ν0(I 0 j 0)jPjpqν(I j )iα =
Z +1

�1
dx

δ(p0� p̄0(q0;q;x))
p0L0+2

δ(p� p̄(q0;q;x))
pL+2 Gν0ν(q

0;q;x); (C.2)

the functions ¯p(q0;q;x), p̄0(q0;q;x) andGν0ν(q0;q;x) are given in Appendix A of Ref. [17]. Because
of the δ functions, the quantities to be interpolated in the context of Eqs. (3.22) and (3.24a) are the
two-baryon transition matrixTα(Z) with respect to both the initialp and finalp0 relative momenta of
the interacting pair and the deuteron wave functionjdI0MI T0MT0iα. Traditionally, cubic spline inter-
polation is used. However, in this work I present an alternative and, as I think, superior interpolation
technique in terms of Chebyshev polynomials. That novel interpolation technique will then yield a
novel technique for solving the three-particle equations.
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C.1.1 Two-Baryon Transition Matrix and Deuteron Wave Function

The two-baryon transition matrixTα(Z) in three-particle space is calculated using the full form of the
two-baryon potentialvα, but for further applicationsTα(Z) is rewritten in an approximate Chebyshev
representation, employed later on for an efficient interpolation.Tα(Z) is of the general structure

Tα(Z) = vα +vαG0(Z)Tα(Z); (C.3a)

Tα(Z) = vα +vαGα(Z)vα; (C.3b)

Tα(Z) =∑
ν0ν

Z
p02dp0

Z
q02dq0

Z
p2dp

Z
q2dq

�jp0q0ν0(I 0 j 0)iααhp0q0ν0(I 0 j 0)jTα(Z)jpqν(I j )iααhpqν(I j )j: (C.3c)

According to Eq. (C.3b) the dependence ofTα(Z) on the final and initial pair momentap0 and p
arises from the momentum dependence of the potentialvα; that dependence is represented in terms of
Chebyshev polynomials as follows:

Tα(Z)�∑
ν0ν

Z
q2dq

Z
p02dp0

Z
p2dp

�jp0qν0(I 0 j 0)iα
nc�1

∑
r 0;r=0

tr 0

L0(p0)δχ0χ Tr 0r
η0η(χq;Z) tr

L(p)αhpqν(I j )j; (C.4a)

Tα(Z)�∑
ν0ν

Z
q02dq0

Z
q2dq

nc�1

∑
r 0;r=0

jtr 0

q0ν0iα (r 0q0ν0jTα(Z)jrqν)αhtrqνj; (C.4b)

Tα(Z)�jtαiTα(Z)htαj: (C.4c)

The representation (C.4a) of the two-baryon transition matrix is only approximate, since the expansion
is in a finite numbernc of polynomials. The employed momentum functions

tr
L(p) =

pL

(p2+a2
L)

L=2
Tr(xc(p)) (C.5)

are related to the Chebyshev polynomialsTr(x) = cos(r arccosx), defined in the interval[�1;1].
xc(p) = (p2� a2)=(p2 + a2) is the function which maps the interval[0;∞) of the physical values
of momentump to the interval[�1;1]. The form of the mapping functionxc(p) and the parametersa
andaL are chosen beforehand by experience. The properties of the Chebyshev polynomials are dis-
cussed in detail in Sec. C.1.3. The parametersa andaL are taken to be the same for all polynomials.
Separating out factors of typepL=(p2+a2

L)
L=2 makes the remaining function, which is to be repre-

sented by Chebyshev polynomials, smoother and ensures correct asymptotic behavior of the expansion
for small momenta of the interacting pair. The expansion parameters are the Chebyshev coefficients
Tr 0r

η0η(χq;Z). They are independent of the pair labelα. They are calculated for(r 0; r) = 0; : : : ;N�1,
N � nc in Sec. C.1.3 from the exact matrix elements ofTα(Z) at the pair momentap0k and pk cor-
responding to all theN zeros ofTN(x), i.e., TN(xc(pk)) = 0. The representation (C.4a) is exact for
all those momentap0k and pk, providednc is chosen asnc = N for the number of Chebyshev polyno-
mials [87]; in this case the representation (C.4a) is a true interpolation between the momentap0k and
pk. If nc < N, the representation (C.4a) is an approximation also for the momentap0k and pk; I shall
usually choosenc < N, but nevertheless I shall call representation (C.4a) an interpolation scheme.

In Eq. (C.4b) the states

jtrqνiα :=
Z

p2dpjpqν(I j )iα tr
L(p) (C.6)
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are introduced for compact notation. They arise, when interchanging the order of the summation on
the Chebyshev labelr and the corresponding integration on the momentump; that interchange has to
be done with care; however, I note, that in all calculations only the componentsαhp0q0ν0(I 0 j 0)jtrqνiα
of those states together with well-behaved operators will be needed. In Eq. (C.4c) the statesjtrqνiα
are collected into the vectorjtαi whose components are to be differentiated by the Chebyshev labelr,
by the continuous variableq and by the discrete three-particle quantum numbersν. In the same spirit,
a matrix-element form is introduced in Eq. (C.4b) for the Chebyshev coefficients, i.e.,

(r 0q0ν0jTα(Z)jrqν) :=
δ(q0�q)

q2 δχ0χ Tr 0r
η0η(χq;Z): (C.7)

Those matrix elements are collected into the operatorTα(Z). Thus, Eq. (C.4c) is a concisely abbrevi-
ated form of the two-baryon transition matrix used for developing the integral equation to be solved in
practice; then, the operator dependence on the continuous variableq and on the discrete three-particle
quantum numbersν has to be recovered.

A similar expansion can be given for the nucleon-deuteron statesjdqχdiα; the most advantageous
form is

G�1
0 (E+i0)jdqχdiα = vαjdqχdiα; (C.8a)

G�1
0 (E+i0)jdqχdiα = ∑

ν

Z
p2dp

Z
q02dq0jpq0ν(I j )iααhpq0ν(I j )jvαjdqχdiα (C.8b)

with E = ed +q2=2Mα. The resulting expansion corresponding to the expansion of the two-baryon
transition matrix (C.4) is

G�1
0 (E+i0)jdqχdiα �∑

ν

Z
p2dpjpqν(I j )iα δχχd

nc�1

∑
r=0

tr
L(p)d

r
L; (C.9a)

G�1
0 (E+i0)jdqχdiα �∑

ν

nc�1

∑
r=0

jtrqνiαδχχd dr
L; (C.9b)

�
jdqχdiα

�
�G0(E+i0)jtαid: (C.9c)

The calculation of the Chebyshev coefficientsdr
L is also described in Appendix C.1.3. In Eq. (C.9c)

the compact notation of Eq. (C.4c) is taken over; the round brackets on the left hand side indicate that
all distinct coupled statesjdqχdiα are considered together; the matrixd abbreviates theδχχddr

L for all
those states.

The expansion (C.9) represents the dependence ofvαjdqχdiα on the pair momentum in the
same way as the corresponding expansion of the two-baryon transition matrixTα(Z). Furthermore,
vαjdqχdiααhdqχdjvα builds up the residue ofTα(Z) at the deuteron pole; at that pole the singular
factor is separated out analytically and the residue is expanded according to Eqs. (C.8) and (C.9), i.e.,
the Chebyshev coefficients of the two-baryon transition matrix (C.4a) at the deuteron pole are

Tr 0r
η0η(χd q;Z) =

dr 0

L0 dr
L

Z�ed�q2=2Mα
: (C.10)
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C.1.2 Three-Particle Equations

Three-Nucleon Continuum

Using the Chebyshev representation of the two baryon-transition matrix (C.4) both Neumann series
(3.22) and (3.24a) can be written as

jX(Ei+i0)i=
∞

∑
n=0

�
G0(Ei+i0)PjtαiTα(Ei+i0)htαj

�njX0(Ei+i0)i (C.11a)

with

jX(Ei+i0)i= G0(Ei+i0)U(Ei+i0)jdqiχdi iα; (C.11b)

jX0(Ei+i0)i= Pjdqiχdi iα (C.11c)

for nucleon-deuteron scattering with the available energyEi = ed +3q2
i =4mN, and with

jX(Ei+i0)i= G0(Ei+i0)jJµ(Ei+i0)i; (C.11d)

jX0(Ei+i0)i= G0(Ei+i0)(1+P) jµ(Q;K+)jBi (C.11e)

for e.m. reactions with the same available energyEi. The dependence ofjX(Ei+i0)i andjX0(Ei+i0)i
on the initial state parameters is suppressed in my notation. ThoughjX(Ei+i0)i is singular, the calcu-
lation of all observables in hadronic and e.m. reactions requires it in the regular formαhtiqνjX(Ei+i0)i
only. Thus, the Neumann series to be calculated is forhtαjX(Ei+i0)i, i.e.,

htαjX(Ei+i0)i=
∞

∑
n=0

htαjXn(Ei+i0)i; (C.12a)

htαjXn(Ei+i0)i= htαjG0(Ei+i0)PjtαiTα(Ei+i0)htαjXn�1(Ei+i0)i: (C.12b)

I note, that the structure of Eq. (C.12b) is formally the same as Eq. (A4) of Ref. [19]; it arises
there from the separable expansion of the two-baryon transition matrix.In fact, any discretization
of the two-baryon transition matrix Tα(Z), i.e., any interpolation scheme which assumes Tα(Z) to
be calculated for a finite set of initial and final momenta and which then interpolates Tα(Z) to any
desired momenta with the help of an expansion into a set of analytic functions, can formally be treated
as a separable expansion.However, in practical calculations the difference between the separable
expansion of Ref. [19] and the Chebyshev expansion of this thesis is enormous.

I now explain the technique for practically calculating the Neumann series (C.12); I make all
integrations and summations, hidden in the compact form (C.12b), explicit, i.e.,

αhtr 0

q0ν0jXn(Ei+i0)i

= ∑
rν

∑
r 00ν00

Z ∞

0
q2dq

Z 1

�1
dx

tr 0

L0(p̄0(q0;q;x))
p̄0L0

(q0;q;x)
Gν0ν(q0;q;x)

Ei+i0�δM � q02

2µα
� q2

2µ0

α
� q0q

mα
x

tr
L(p̄(q

0;q;x))
p̄L(q0;q;x)

�δχχ00Trr 00

ηη00(χq;Ei+i0) αhtr 00

qν00jXn�1(Ei+i0)i

(C.13)

for n� 1. The total baryon contentB+b is the same in the channelsν andν0. The integral (C.13)

contains singularities. The term(Ei + i0�δM � q02

2µα
� q2

2µ0

α
� q0q

mα
x)�1, arising from the free resolvent

G0(Ei+i0), develops so-calledmovingsingularities of kinematical origin above breakup threshold,
whereas the matrix of the Chebyshev coefficients Trr 00

ηη00(χq;Ei+i0) shows the deuteron bound state
pole (C.10). The treatment of those singularities is described in Sec. C.2. The first term in the
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Neumann series (C.12), i.e.,αhtr 0

q0ν0jX0(Ei+i0)i, is calculated according to

αhtr 0

q0ν0jX0(Ei+i0)i � αhtr 0

q0ν0jPjdqiχdi iα
= ∑

rν

Z 1

�1
dx

tr 0

L0(p̄0(q0;qi ;x))

p̄0L0

(q0;qi ;x)

Gν0ν(q0;qi ;x)

Ei� q02

mN
� q2

i
mN
� q0qi

mN
x

tr
L(p̄(q

0;qi ;x))
p̄L(q0;qi ;x)

δχχdi
dr

L
(C.14)

for nucleon-deuteron scattering and according to

αhtr 0

q0ν0jX0(Ei+i0)i � αhtr 0

q0ν0jG0(Ei+i0)(1+P) jµ(Q;K+)jBi

=

Z ∞

0
p02dp0

tr 0

L0(p0)

Ei+i0�δM 0� p02

2µ0

α
� q02

2M0

α

αhp0q0ν0(I j )j jµ(Q;K+)jBi

+∑
ν

Z ∞

0
q2dq

Z 1

�1
dx

tr 0

L0(p̄0(q0;q;x))
p̄0L0

(q0;q;x)
Gν0ν(q0;q;x)

Ei+i0�δM � q02

2µα
� q2

2µ0

α
� q0q

mα
x

1
p̄L(q0;q;x)

� αhp̄(q0;q;x)qν(I j )j jµ(Q;K+)jBi

(C.15)

for e.m. processes. The integrand of Eq. (C.14) is regular, whereas the one of Eq. (C.15) contains
integrable singularities; the first term of (C.15) is calculated using the standard subtraction technique,
and the singularities of the second term in (C.15) are themovingsingularities of Eq. (C.13). Ma-
trix elements of the e.m. currentαhp0q0ν0(I j )j jµ(Q;K+)jBi are calculated according to Appendix E.
Equation (C.15) needs interpolation of those matrix elements in the same way as the iteration step
(C.13) needs interpolation of the two-baryon transition matrix; in contrast to Eq. (C.13) I use in
Eq. (C.15) the spline interpolation described in Sec. C.3. Otherwise, compared to the iteration step
(C.13), Eqs. (C.14) and (C.15) in principle does not yield any new difficulties and therefore will not
be discussed separately.

The iterative calculation ofαhtr 0

q0ν0jXn(Ei+i0)i requires many matrix multiplications. Two op-
tions for this task are discussed in Ref. [22]. Thefirst optionwhich follows the strategy of Refs. [17,
19] for a separable expansion of the two-baryon transition matrix and which – after use of the sep-
arable expansion – keeps only theone-dimensionalintegration onq in Eq. (C.13), is very uneco-
nomical in case of a substantial number of Chebyshev polynomials in the adopted interpolation
scheme; that number is usually much larger than the corresponding ranks of the separable expan-
sion in Refs. [17–19, 46]. I therefore propose a different technique, calledsecond optionin Ref. [22].
The integrations and summations in Eq. (C.13) are carried out, whenever they arise, starting from
right to left. Though I am left withtwo-dimensionalintegrations, this is the natural order of matrix
multiplications taking advantage of the block-diagonal structure of the quantities entering Eq. (C.13).
This procedure reduces the number of required floating point operations considerably. Furthermore,
the actual computer time for the new technique depends only weakly on the number of Chebyshev
polynomials employed. That important logistic change constitutes the new technique of this thesis for
solving the three-particle equations, compared with the technique of separable expansion used before
in Refs. [17–19, 46].

Finally, the partial-wave projected matrix elements of Eqs. (3.19) needed for the calculation of the
observables of elastic and inelastic nucleon-deuteron scattering follow fromαhtrqνjX(Ei+i0)i in the
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forms

αhdqiχdf jU(Ei+i0)jdqiχdi iα = ∑
rν

δχχdf
dr

L αhtrqiνjX(Ei+i0)i; (C.16a)

αhpqν(I j )jTα(Ei+i0)G0(Ei+i0)U(Ei+i0)jdqiχdi iα
= ∑

r
tr
L(p)∑

r 0ν0

δχχ0 Trr 0

ηη0(χq;Ei+i0)αhtr 0

qν0jX(Ei+i0)i: (C.16b)

The on-shell elements of the symmetrized multichannel transition matrixU(Ei+i0) between two-body
channels (3.8) are obtained from the result (C.16a). The on-shell elements of the full symmetrized
breakup transition matrixU0(Ei+i0) are obtained from the result (C.16b) according to Eq. (3.19b); it
is advantageous to transform the matrix elements (C.16b) first to plane-wave basis and then to apply
also the permutation operatorP of the part(1+P) according to Eq. (3.19b) in that plane-wave basis.

The partial-wave projected matrix elements (3.25) needed for the calculation of the observables
of e.m. reactions, i.e.,αhdqf χdf jJµ(Ei+i0)i andαhpqν(I j )jTα(Ei+i0)G0(Ei+i0)Jµ(Ei+i0)i, follow
from αhtrqνjX(Ei+i0)i in close correspondence with Eqs. (C.16).

Three-Nucleon Bound-State

I solve the homogeneous integral equation for the Faddeev amplitude (3.6) using Lanczos method [88].
With respect to the permutation operatorP, I face the same problem as for three-particle scattering,
i.e., at each Lanczos-iteration step interpolation in two continuous variables is required. Again, I
use the Chebyshev representation (C.4a) of the two-baryon transition matrix. This immediately im-
plies that also the dependence of the Faddeev amplitude on the pair momentump is represented by
Chebyshev polynomials in the form

G�1
0 (EB)jψαi �∑

ν

Z
q2dq

nc�1

∑
r=0

jtrqνiα(rqνjψαi: (C.17)

The homogeneous integral equation (3.6) yields directly the Chebyshev coefficients(rqνjψαi of the
Faddeev amplitude, i.e.,

(r 0q0ν0jψαi= ∑
r 00ν00

∑
rν

Z ∞

0
q2dq

Z 1

�1
dxδχ0χ00Tr 0r 00

η0η00(χ0q0;EB)
tr 00

L00(p̄0(q0;q;x))
p̄0L00

(q0;q;x)

� Gν00ν(q0;q;x)

EB�δM � q02

2µα
� q2

2µ00

α
� q0q

mα
x

tr
L(p̄(q

0;q;x))
p̄L(q0;q;x)

(rqνjψαi:
(C.18)

Since Eq. (C.18) has no singularities, it is far simpler than the corresponding equation (C.13) for
three-particle continuum.
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C.1.3 Calculation of Chebyshev Coefficients

In this section some important properties of the Chebyshev expansion of functions are collected. More
details can be found in Ref. [87].

The Chebyshev polynomial of degreer is

Tr(x) = cos(r arccosx): (C.19)

The Chebyshev polynomials are orthogonal in the interval[�1;1] over the weight 1=
p

1�x2, i.e.,

Z 1

�1

Tr(x)Tk(x)p
1�x2

dx=
π
2

δrk(1+δr0): (C.20)

The Gauss-Chebyshev quadrature formula

Z 1

�1

f (x)p
1�x2

dx�
N

∑
k=1

wk f (xk); (C.21)

the abscissasxk = cos( π
N (k� 1

2)) being all theN zeros ofTN(x) and the weights beingwk =
π
N , were

exact, if the functionf (x) could be expressed as a linear combination of Chebyshev polynomials up
to degree 2N�1. Using Eqs. (C.20) and (C.21), it is easy to show that the Chebyshev expansion of
any arbitrary functionf (x), defined in the interval[�1;1], i.e.,

f (x) �
nc�1

∑
r=0

crTr(x) (C.22a)

with the Chebyshev coefficients

cr =
2

N(1+δr0)

N

∑
k=1

f (xk)Tr(xk); (C.22b)

is exact for allx equal to theN zeros ofTN(x), providednc = N.
What is the advantage of the Chebyshev expansion (C.22) for the interpolation of the function

f (x), in comparison with interpolation schemes based on other polynomial? SupposeN is so large that
the expansion (C.22a) withnc = N is probably a perfect representation off (x). That representation is
not necessarily more accurate than other polynomial expansions of the same orderN, exact on some
other set ofN points. However, the truncated Chebyshev expansion (C.22a) withnc = N<, N< being
considerably smaller thanN, may still be sufficiently accurate, since in typical cases the coefficients
cr are rapidly decreasing. In fact, iff (x) has no singularities in the interval[�1;1], the convergence
of the Chebyshev expansion (C.22) isgeometric, i.e., jcr j � exp(�γr) for sufficiently larger. Singu-
larities of f (x) in the complex plane can slow down that convergence, but they can never destroy it, as
demonstrated in Ref. [87]. The difference between the Chebyshev expansions (C.22) withnc = N and
nc = N< can be no larger than the sum of the absolute values of all neglected Chebyshev coefficients
∑N�1

r=N< jcr j, since alljTr(x)j � 1. In fact, the error is dominated bycN<TN<(x), an oscillatory function
with N< equal extrema distributed smoothly over the interval[�1;1]. This smooth spreading out of
the error is a very important property of the Chebyshev expansion (C.22): The Chebyshev expansion
is close to the representation by the so-calledminimax polynomial, which among all polynomials of
the same degree has the smallest maximum deviation from the true functionf (x). That minimax
polynomial is very difficult to find; the Chebyshev expansion is an efficient substitute for it.
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The Chebyshev expansion (C.22) can be extended to arbitrary intervals of definition by an
appropriate mapping of[�1;1] and to functions of several variables. When mapping to infinite
or semi-infinite intervals, the convergence may becomesubgeometric, i.e., jcr j � exp(�γrw) with
0 < w < 1 for sufficiently larger. However, the asymptotic rate of convergence will often be aca-
demic for practical applications anyhow: The expansion (C.22) may already be sufficiently accurate
for the desired accuracy of the problem even without reaching the asymptotic region.

Finally, I give the definition of the Chebyshev coefficients of the two-baryon transition matrix and
of the deuteron wave function as used in the calculations of this thesis, i.e.,

δχ0χ
δ(q0�q)

q2 Tr 0r
η0η(χq;Z) =

N

∑
k0;k=1

t̃ r 0

L0(pk0)αhpk0q0ν0(I 0 j 0)jTα(Z)jpkqν(I j )iα t̃ r
L(pk); (C.23a)

dr
L =

N

∑
k=1

t̃ r
L(pk)hpk(LS)I0MI T0MT0BjvαjdI0MIT0MT0i: (C.23b)

Here, the relative pair momentapk and pk0 correspond to all theN zeros ofTN(x), i.e.,TN(xc(pk)) =
TN(xc(pk0)) = 0. The functions̃tr

L(pk) are defined to be

t̃ r
L(pk) =

2
N(1+δr0)

(p2
k +a2

L)
L=2

pL
k

Tr(xc(pk)); (C.23c)

they are related to thetr
L(p) of Eq. (C.5) used in the Chebyshev expansions (C.4) and (C.9). Examples

for the convergence and accuracy of the Chebyshev expansion are given in Figs. 5.1 and 5.2.

C.2 Treatment of Singularities

This section deals with the singularities of the kernel of the three-particle scattering equations,
i.e., with the singularities in the integral (C.13). Since the matrix structure of Eq. (C.13) is al-
ready discussed in detail in Sec. C.1.2, for the clarity of explanations I adopt a compact notation
which explicitly indicates only the dependence on the continuous variables, e.g., all matrix elements

αhtr 0

q0ν0jXn(Ei+i0)i of Eq. (C.13) are abbreviated by the matrixX(q0). According to the singularity
structure I split the integral (C.13) into four contributions, i.e.,

X(q0) = Xsg(q
0)+Xd(q

0)+Xd̄(q
0)+X∆(q

0); (C.24)

being differentiated by the integration domain and by some of the three-baryon discrete quantum
numbers contained in the setν which is summed over.

� The contribution

Xsg(q
0) =

Z qsg

0
q2dq

Z 1

�1
dx

Fsg(q0;q;x)
mNEi + i0�q02�q2�q0qx

(C.25)

corresponds toall purely nucleonic channelsν with B+b = 3
2. The term(mNEi + i0�q02�

q2�q0qx)�1, arising from the free resolventG0(Ei+i0), develops so-calledmovingsingulari-
ties of kinematical origin above breakup threshold for momentaq0;q� qsg =

p
4mNEi=3; all

remaining factors are abbreviated by the regular matrixFsg(q0;q;x) which can be read off from
the Eq. (C.13). Forq0 � qsg the integrand is regular and the integral (C.25) can be calculated
numerically using the standard technique; I use Gauss-Legendre integration [89, 90]. Note that
the integration[qsg;∞) is contained in the contributionsXd(q0) andXd̄(q

0).
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� The matrix of the Chebyshev coefficients Trr 00

ηη00(χq;Ei+i0) in nucleon-deuteron channelsν with

χ 2 fχdg shows the deuteron bound-state pole of Eq. (C.10) atq = qi =
p

4mN(Ei�ed)=3>
qsg. The contribution of those channels is

Xd(q
0) =

Z ∞

qsg

q2dq
Z 1

�1
dx

Fd(q0;q;x)
q2

i + i0�q2
; (C.26)

again, the regular matrixFd(q0;q;x) can be read off from Eqs. (C.10) and (C.13). Thus, it is
convenient to split theq integration with the domain[0;∞) in Eq. (C.13) in two intervals[0;qsg]
and[qsg;∞), in order to separate the arising singularities of two different types.

� The termXd̄(q
0) corresponds to the contribution of the remaining purely nucleonic channels,

i.e., those withχ 62 fχdg, in the interval[qsg;∞); that integral contains no singularities and is
calculated numerically using the standard Gauss-Legendre integration.

� In the considered energy regime the integrand of Eq. (C.13) has no singularities in the nucleon-∆
channelsν with B+ b = 1

2. Thus, the corresponding contributionX∆(q0) is also calculated
numerically using the standard Gauss-Legendre integration.

The following subsections describe calculation of the integrals (C.25) and (C.26) containing integrable
singularities.

C.2.1 Deuteron Bound-State Pole

Integral (C.26) is the simpler case. Thex integration in Eq. (C.26) involves no singularities and can
be carried out resulting

Fd(q
0;q) =

Z 1

�1
dxFd(q

0;q;x): (C.27)

Using the identity

1
x+ i0

= P
1
x
� iπδ(x) (C.28)

and the subtraction technique for the principal part singularity, theq integration is regularized as
follows, i.e.,

Xd(q
0) =

Z ∞

qsg

dq
q2Fd(q0;q)�q2

i Fd(q0;qi)

q2
i �q2

�
�

iπ+ ln
qi +qsg

qi �qsg

�qi

2
Fd(q

0;qi): (C.29)

The integrand is now regular; thus, the principal-part singularity symbolP is not required anymore
and the integral (C.29) can be calculated numerically using standard Gauss-Legendre integration.

C.2.2 Kinematical Singularities

First I consider the integral (C.25) for one special case, i.e., forq0= 0. In that case the singularity in the
x integration disappear and the singularity in theq integration is a simple pole atq= q0 =

p
3=4qsg.

That pole can be treated in a similar way as the deuteron bound state pole, resulting

Xsg(0) =
Z qsg

0
dq

q2Fsg(0;q)�q2
0Fsg(0;q0)

q2
0�q2

�
�

iπ� ln
q0+qsg

qsg�q0

�q0

2
Fsg(0;q0) (C.30a)
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Figure C.1: The areaju(q0;q)j � 1 where the integrand of Eq. (C.25) has integrable singularities.

with

Fsg(0;q) =
Z 1

�1
dxFsg(0;q;x): (C.30b)

For 0< q0 < qsg and ju(q0;q)j � 1 with u(q0;q) = (mNEi �q02�q2)=q0q the singularities arise
already in thex integration; the areaju(q0;q)j � 1 is indicated in Fig. C.1. As will be demonstrated,
on the border of that area the singularities remain even after thex integration. I therefore introduce
an extended areaju(q0;q)j � 1+ ε with small positiveε, typically ε = 10�3; that area fully isolates
the singularities, i.e., outside it the integrand is regular. When calculating the integral (C.25) for
0 < q0 < qsg I use the identity (C.28) together with the subtraction technique for the principal part
singularity, this time, however, for thex integration, and I obtain

Xsg(q
0) =

Z qsg

0
q2dq

1
q0q

�Z 1

�1
dx

Fsg(q0;q;x)�Θ(1+ ε�ju(q0;q)j)Fsg(q0;q;u(q0;q))
u(q0;q)�x

�
h
iπΘ(1�ju(q0;q)j)�Θ(1+ε�ju(q0;q)j) ln

����1+u(q0;q)
1�u(q0;q)

���� iFsg(q
0;q;u(q0;q))

�
;

(C.31)

Θ(t) being the Heaviside step function. Thus, the only remaining singular term in the integrand
of Eq. (C.31) is the one proportional to lnj[1+u(q0;q)]=[1�u(q0;q)]j; it has integrable logarithmic
singularities atju(q0;q)j = 1. The corresponding integral is calculated numerically using the tech-
nique of thespecial weights, described in Sec. C.2.3. All other integrations are performed using the
Gauss-Legendre integration.

The set of mesh pointsfq0g at whichX(q0) is calculated and the sets of mesh pointsfqg used
for integration have to be chosen very carefully in order to ensure the stability of the results with a
relatively small number of the mesh points. The chosen distribution of the mesh points has to take
into account the behavior of the integrand, e.g., concentrating the mesh points in the intervals where
the integrand has rapid variations. Whereas for integralsXd(q0), Xd̄(q

0) and X∆(q0) I choose the
mesh pointsfqg such thatfqg � fq0g, the nature of the moving singularities requires a very special
distribution of the mesh pointsfqg for calculatingXsg(q0) as shown in Fig. C.2; in fact, for each
q0 a different setfqg has to be used. Thus, it is necessary to access the integrandFsg(q0;q;x), i.e.,
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Figure C.2: The distribution of mesh points for 0� q;q0 � qsg. One clearly sees more dense distribu-
tion of mesh points around singularities.

the part∑r 00ν00 δχχ00Trr 00

ηη00(χq;Ei+i0) αhtr 00

qν00jXn�1(Ei+i0)i in Eq. (C.13), at untabulated arguments
q in the interval[0;qsg]. Therefore, an interpolation scheme becomes mandatory which has to be
accurate and efficient at the same time, since it will be used frequently in the step (C.13). I use
cubic spline interpolation described in Sec. C.3 to accomplish this task. The advantage of the spline
interpolation compared to Chebyshev interpolation is more freedom in choosing the grid points. This
is important in the context of moving singularities; e.g., in my calculations an additional pointq0 = 0
is included among the grid pointsfq0g used for interpolation. My particular feature of interpolation
is the choice of different interpolation variables in different intervals, i.e.,q in the vicinity of 0 andq

q2
sg�q2 in the vicinity of qsg, the reason for the latter choice being the fact that the imaginary part

of the two-baryon transition matrix, thus, also the imaginary part of the matrixTα(Ei+i0) containing

the Chebyshev coefficients, behaves in that limit asconst
q

q2
sg�q2. Those special choices greatly

enhance the numerical accuracy. In the intermediate regime interpolation in any of these variables
works equally well.
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The above described particular features of the calculational scheme are indeed important for the
numerical stability of the results, especially for three-nucleon breakup reactions in the vicinity of
collinearity points, i.e., for small values ofq0. In this context, I note that some results of Ref. [61],
e.g., the deuteron analyzing powersAxx andAyy of nucleon-deuteron breakup at 135 MeV nucleon
lab energy, show rather strange rapid oscillations which, according to my experience, are numerical
instabilities and which I do not see in my results for the same observables as shown in Figs. 5.18 and
8.4.

C.2.3 Numerical Integration by Special Weights

The employed technique for calculating the integrals containing integrable singularities is taken over
from Refs. [19, 91]. It is described for an integral of the form

I =
Z b

a
dxw(x) f (x); (C.32a)

where f : [a;b] 7! R is a regular test function andw : [a;b] 7! R is a function which carries the inte-
grable singularities in(a;b). Here I use standard mathematics notation, though I have theq integration
of Eq. (C.31) in mind. For that integral (C.32a) I seek a simple integration rule

I �
N

∑
j=1

wj f (xj) (C.32b)

involving a given finite setfx1; : : : ;xNg of mesh points withweights wj to be determined. Note, that the
presence of the singular functionw(x) will be completely hidden in the weightswj of the integration
rule (C.32b). Thus, once the weights are calculated, all occurring singular integrals can be as easily
evaluated in the same way as the familiar Gauss-Legendre integration rule allows for regular functions.
The calculation of weightswj is described and the superiority of the integration rule (C.32b) over the
standard Gauss-Legendre quadrature with subtraction is demonstrated in Refs. [19, 91].

C.3 Spline Interpolation

I useChebyshev interpolationfor the two-baryon transition matrix and for the deuteron wave function.
I remind of its advantage: The two-baryon transition matrix and the deuteron wave function have to be
calculated onlyonce, they are expanded in Chebyshev polynomials and then thetruncatedexpansions
are used inall subsequent calculations.

The situation is completely different for other quantities to be interpolated as discussed below
under items 1. and 2.; I therefore usespline interpolationfor them. Though in principle the Chebyshev
interpolation could be used also for them and, in fact, this has been done in tentative calculations, I
found – as expected – that in those applications the Chebyshev interpolation loses its superiority over
the spline interpolation; furthermore, in particular cases the spline interpolation is numerically even
more accurate.

The spline interpolation has the general form

f (x) �∑
r

f (xr)Sr (x) (C.33)

with exact function valuesf (xr) at an appropriately chosen set of grid points and known functions
Sr(x) described in detail in Refs. [89, 92, 93]. A slightly different spline interpolation algorithm is
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proposed and used in Refs. [19, 91], more appropriate there. In the calculations of this thesis spline
interpolation is used in three different contexts:

1. The calculation of the integral (C.31) involving moving singularities requires interpolation of

the quantity∑r 00ν00 δχχ00Trr 00

ηη00(χq;Ei+i0) αhtr 00

qν00jXn�1(Ei+i0)i in the variablesq and
q

q2
sg�q2

as discussed in Sec. C.2.2. The spline interpolation provides more freedom in choosing the
grid points than the Chebyshev interpolation; this feature becomes important in the context of
moving singularities.

2. The calculation of the integral (C.15) requires interpolation of the quantity

αhpqν(I j )j jµ(Q;K+)jBi in the variablep.

3. Spline interpolation is used as alternative for the Chebyshev interpolation of the two-baryon
transition matrix and of the deuteron wave function in tentative calculations. Since the spline
interpolation (C.33) and the interpolation in terms of the Chebyshev polynomials (C.22) have
the same general structure, it is obvious that the numerical technique of this thesis for solving
Eqs. (C.13) and (C.18) can also be based on spline interpolation. The only difference is that the
functionstr

L(p) andt̄ r
L(pk) of Sec. C.1 are

tr
L(p) =

pL

(p2+a2
L)

L=2
Sr(p); (C.34a)

t̃ r
L(pk) =

(p2
k +a2

L)
L=2

pL
k

δrk (C.34b)

in case of spline interpolation. Of course, the grid pointspk are in this case not necessarily
chosen as the zeros of a Chebyshev polynomial.

C.4 Padé Summation

In this section I sum up the Neumann series (C.12) by the Padé method [94]. The matrix structure of
htαjX(Ei+i0)i, i.e., its dependence on the Chebyshev label, discrete quantum numbers and continuous
variables, is entirely irrelevant for the present consideration, since the Padé summation is carried
out for each element ofhtαjX(Ei+i0)i individually. I introduce a functionK(M)(λ) containing the
information on the firstM+1 terms of the Neumann series (C.12) in the form

K(M)(λ) =
M

∑
m=0

Kmλm (C.35)

with Km = αhtr 0

q0ν0jXm(Ei+i0)i. If the series (C.12) converges,K(M)(λ = 1) with M large enough
may be a good approximation forhtαjX(Ei+i0)i. However, the Neumann series might not be globally
convergent. The Padé method deals with the problem of non-convergence or slow convergence by
generating an approximating, better converging rational functionR(λ) = P(λ)=Q(λ) from the coeffi-
cientsfKmg according to two conditions:

� Improved convergence is achieved by requiring the order of the denominator polynomialQ(λ)
to be equal or at least close to the order of the numerator polynomialP(λ). The convergence of
the Neumann series is spoiled by poles in the complex plane. By introducing a rational approx-
imation, which generates isolated poles in the complex plane, the behavior of the underlying
function should be better approximated as by the Neumann series.
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� The rational functionR(λ) is required to be equivalent toK(M)(λ) up to the order inλ to which
K(M)(λ) is defined, i.e.,jR(λ)�K(M)(λ)j= O(λM+1).

I remind that all coefficientsfKmg are vectors with respect to their dependence on the discretized set
fq0g of the continuous spectator momentum, on the Chebyshev labelr 0 and on the discrete three-body
quantum numbersν0. Thus, the numerator and denominator polynomials are constructed separately
for each momentumq0 and for each of the discrete labels and quantum numbers. I assume, that
all coefficientsfKm jm= 1; : : : ;Mg are nonzero. In practice, this assumption is true except for the
momentumq0 = 0 and particular quantum numbers. However, in this exceptional caseall fKmg
vanish due to geometric reasons; thus, there is no need for a Padé resummation. In my use of the Padé
method, the approximating, better converging rational functionR(λ) is obtained in three steps.

Thefirst step rewritesK(M)(λ) in form of a continued fractionK(n)
cf (λ). Its definition is iterative,

where then-th iteration is given by

K(n)
cf (λ) = K0+

a1(λ)
1+

a2(λ)
1+

� � � an(λ)
1+ p(n)(λ)=q(n)(λ)

(C.36a)

with

an(λ) = αnλl(n) (C.36b)

being powers of orderl(n) in λ and p(n)(λ) andq(n)(λ) being polynomials inλ. The notation for a
continued fraction is a standard one, e.g., as given in Ref. [89]. The quantitiesan+1(λ), p(n+1)(λ)
andq(n+1)(λ) are obtained from the corresponding quantities in the previous iteration step.an+1(λ)
is the lowest order term ofp(n)(λ); p(n+1)(λ) andq(n+1)(λ) are obtained using the transformation of
Viskovatov [95]

p(n)(λ)
q(n)(λ)

=
an+1(λ)

q(n)(λ)
�
an+1(λ)=p(n)(λ)

�
=

an+1(λ)
1+q(n)(λ)

�
an+1(λ)=p(n)(λ)

��1

=
an+1(λ)

1+ p(n+1)(λ)=q(n+1)(λ)

(C.37)

with q(n+1)(λ) = p(n)(λ)=an+1(λ) andp(n+1)(λ) = q(n)(λ)�q(n+1)(λ). The lowest-order term of any
q(n)(λ) is always 1, the lowest-order term of anyp(n)(λ) is at least of power 1. The iteration is
started by puttingp(0)(λ) = K(M)(λ)�K0 andq(0)(λ) = 1; that starting step yieldsa1(λ), p(1)(λ) and

q(1)(λ) for the continued fractionK(1)
cf (λ) of lowest order. In each iteration stepK(n)

cf (λ) = K(M)(λ).
The iteration terminates after 2M steps at most, i.e.,p(2M)(λ) = 0 anda2M+1(λ) = 0. Since also

K(2M)
cf (λ) = K(M)(λ), the problem of non-convergence still persists.

The exercise of continued fraction is only required to provide the quantitiesan(λ) of Eq. (C.36b)
for n= 1; : : : ;M, which are needed for the latersecondstep of constructing the rational functionR(λ).
My algorithm for the coefficientsαn in an(λ) is derived from the continued fraction (C.36a) and runs
as follows: I assume that the coefficientsfαi j i = 1; : : : ;m�1g are determined from the coefficients
fKi j i = 1; : : : ;m�1g; the determination ofαm�1 requires auxiliary quantitiesfγi(m�1) j i = 2; : : : ;mg
which are saved for the determination ofαm. The step from(m�1) to m has the three sequences
(a)-(c):
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(a)

β1(m) = Km; (C.38a)

βi(m) = γi(m�1); i = 2; : : : ;m; (C.38b)

(b) The auxiliary quantitiesfγi(m) j i = 2; : : : ;m+1g are redefined by

γ2(m) = 0; (C.38c)

γi+1(m) =
βi�1(m)� γi(m)

αi�1
; i = 2; : : : ;m; (C.38d)

(c)

αm = βm(m)� γm+1(m): (C.38e)

The algorithm does not need to determine the powerl(n) of λ in an(λ) of Eq. (C.36b), since the
rational functionR(λ) will be considered only forλ = 1.

In thesecondstep the rational functionR(λ) is generated by a recurrence relation for the polyno-
mialsP(n)(λ) andQ(n)(λ), i.e.,

P(n)(λ) = P(n�1)(λ)+an(λ)P(n�2)(λ); (C.39a)

Q(n)(λ) = Q(n�1)(λ)+an(λ)Q(n�2)(λ); (C.39b)

which is started by

P(�1)(λ) = 1; Q(�1)(λ) = 0; (C.39c)

P(0)(λ) = K0; Q(0)(λ) = 1: (C.39d)

The recurrence relations (C.39) were first derived by J. Wallis in 1655 [96]. The recurrence uses
the functionsan(λ) of the continued fractionK(n)

cf (λ). It terminates atn= nmax whenanmax+1(λ) = 0.
However, if the natural termination of the continued fraction were used, i.e.,nmax= 2M (in exceptional
casesnmax < 2M), nothing would be gained; in that caseP(2M)(λ) = K(M)(λ) andQ(2M)(λ) = 1. If,
however, the continued fraction is terminated atnmax= M puttingaM+1(λ) = 0, the rational function
R(λ) satisfies the two desired properties, spelt out at the beginning of this subsection. The construction
of the rational functionR(λ) in the second step appears awkward, since it is based on the continued
fraction of the first step. However, it is chosen, since it is numerically stable, in contrast to other
possible techniques.

In the third step the convergence of the Padé summation is checked. I am satisfied with
the obtained approximating rational functionR(λ), if for a given orderM of the Neumann se-
ries the deviation of the complete vectors is small in successive orders, i.e.,jjP(M)(λ)=Q(M)(λ)�
P(M�1)(λ)=Q(M�1)(λ)jjλ=1 < ε, ε being the required accuracy. Computer economy calls for as small
a numberM as reasonable. The numberM is found by starting the accuracy check already forM = 1;
the Neumann series (C.35) is carried to a higher orderM +1, requiring a repetition of the steps one
to three only when that accuracy check fails. The actual numberM used depends on the scattering
energy as well as on the total three-baryon quantum numbersΠ andJ .



D
Scattering Observables

D.1 Spin-Dependent Observables

The differential cross sections of all considered reactions for transitions between pure spin states are
given in Chapters 5 – 7. However, in experiments the particles usually are not in pure spin states but
in a statistical mixtures of them. The spin dependence of the initially prepared states is described by
the Hermitian density matrixρi , normalized to Trρi = 1. The final-state polarization measurement is
described by the projection operatorρ f , i.e. ρ2

f = ρ f .

D.1.1 Elastic Nucleon-Deuteron Scattering

The density matrixρi of the initially prepared nucleon-deuteron states is the tensor product of density
matrices for the nucleon and the deuteron, i.e.,

ρi = ρN
ρd: (D.1)

The nucleon and deuteron density matrices are parameterized in the standard forms

ρN =
1
2

�
I (2)+n ���; (D.2a)

ρd =
1
3

h
I (3)+

3
2

nd �S+
1
3 ∑

i j

td i jSi j

i
: (D.2b)

Their spin dependence is carried for the spin-1
2 part by the operatorsI (2) and�, the two-dimensional

unity and the vector of Pauli matrices, and for the spin-1 part by the three-dimensional unityI (3),
by the vector of spin operatorsS for spin-1 particle and by the symmetric traceless Cartesian tensor
operatorSi j =

3
2(SiSj +SjSi)�δi j S2 of order two. For a compact description of the density matrices I

collectively combine the spin-1
2 operatorsfI (2);�g to the setfSa2g of four operators witha2 = 0; : : : ;3

and the spin-1 operatorsfI (3);S;Si j g to the setfSa3g of nine independent operators witha3 = 0; : : : ;8

which are defined asS0 = I (3), S1 =
q

3
2Sx, S2 =

q
3
2Sy, S3 =

q
3
2Sz, S4 =

q
2
3Sxy, S5 =

q
2
3Syz,

S6 =
q

2
3Sxz, S7 =

q
1
6(Sxx�Syy), S8 =

q
1
2Szz. In addition I form the set of product operators

fSag= fSa2 
Sa3g which are normalized by

Tr[SaSb] = 6 δab; (D.3)

the factor 6 being the dimension of the density matrixρi . It arises, since the individual operator sets
fSa2g andfSa3g are normalized in a corresponding way to their dimension. With the product operators
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Sa the density matrix gets the concise form

ρi =
1
6 ∑

a
Tr[ρSa]Sa: (D.4)

The parameters of density matrixρ aren, nd andtd, the polarization vector of the nucleon, the polar-
ization vector and the symmetric traceless polarization tensor of the deuteron; the characteristics of the
initially prepared channel states are contained in those parameters. If state is quantum-mechanically
pure, i.e.,ρ2 = ρ, the parameters are constrained byn2 = 1, n2

d = 1 andtd being determined bynd. If
state is statistical mixture, the constraints on the parameters get relaxed.

The final-state projection operatorρ f is the tensor product of the corresponding projection opera-
tors for the nucleon and the deuteron, i.e.,

ρ f = Nf ρN
ρd; (D.5)

with Nf = 21�NN 31�Nd , NN (Nd) being the number of polarization measurements of the nucleon
(deuteron). Equation (D.5) corrects the imprecise description of this point in Ref. [17].ρ f is normal-
ized to Trρ f = Nf . The operatorsρN andρd are parameterized in the form (D.2), i.e., with vanishing
values of parametersn, nd andtd in case of no polarization measurement and with the values of those
parameters corresponding to the pure states in case of an ideal polarization measurement. Thus, the
projection operatorρ f can be parametrized in terms of product operatorsfSag in the same way as the
initial-state density matrixρi , i.e.,

ρ f =
1
6 ∑

a
Tr[ρSa]Sa: (D.6)

In terms of the scattering amplitudeM(Eiq f ), of the initial-state density matrixρi and of the
final-state projection operatorρ f the spin-dependent differential cross section becomes

d2σ
d2q̂ f

= Tr[M(Eiq f )ρiM
†(Eiq f )ρ f ] fps: (D.7)

Using the spin-averaged differential cross sectiond2σ=d2q̂ f of Eq. (5.8) and the expansions (D.4) and
(D.6) for the initial-state density matrixρi and the final-state projection operatorρ f , the spin-dependent
differential cross section takes the form

d2σ
d2q̂ f

=
d2σ
d2q̂ f

1
6 ∑

aiaf

Tr[ρiS
ai ]Tr[ρ f S

af ]
Tr[M(Eiq f )Sai M†(Eiq f )Saf ]

Tr[M(Eiq f )M†(Eiq f )]
: (D.8)

Characteristic for the experimental setup of the studied reaction are the parameters in the ini-
tial-state density matrixρi and in the final-state projection operatorρ f which determine the expansion
coefficients Tr[ρiSai ]Tr[ρ f Saf ] in Eq. (D.8). Characteristic for the spin dependence of the reaction
mechanism is the way in which the spin operatorsSai of ρi andSaf of ρ f weigh the matrix elements
of the scattering amplitude. The experiment therefore aims at determining observables of the type
Tr[M(Eiq f )S

ai M†(Eiq f )S
af ]
Æ

Tr[M(Eiq f )M
†(Eiq f )]. A particular choice of the spin operatorsSai and

Sbf defines particular spin observables. Their notation is standardized in Ref. [97].
I give definitions of the nucleon-deuteron spin observables shown in the figures in Chapter 5. In

my notation I suppress their dependence on the initial energy and scattering angle.
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� Nucleon analyzing powers Ai(N) and deuteron vector and tensor analyzing powers Ai(d) and
Akl:

Ai(N) =
Tr[M(Eiq f )σiM†(Eiq f )]

Tr[M(Eiq f )M†(Eiq f )]
; (D.9a)

Ai(d) =
Tr[M(Eiq f )SiM†(Eiq f )]

Tr[M(Eiq f )M†(Eiq f )]
; (D.9b)

Akl =
Tr[M(Eiq f )SklM†(Eiq f )]

Tr[M(Eiq f )M†(Eiq f )]
: (D.9c)

� Nucleon to nucleon polarization transfer coefficients Kj 0

i (NN) and deuteron to nucleon vector-

vector and tensor-vector polarization transfer coefficients Kj 0

i (dN) and Kj 0

kl (dN) :

K j 0

i (NN) =
Tr[M(Eiq f )σiM†(Eiq f )σ j 0 ]

Tr[M(Eiq f )M†(Eiq f )]
; (D.10a)

K j 0

i (dN) =
Tr[M(Eiq f )SiM†(Eiq f )σ j 0 ]

Tr[M(Eiq f )M†(Eiq f )]
; (D.10b)

K j 0

kl (dN) =
Tr[M(Eiq f )SklM†(Eiq f )σ j 0 ]

Tr[M(Eiq f )M†(Eiq f )]
: (D.10c)

� Initial state nucleon-deuteron vector-vector spin correlation coefficients Ci; j

Ci; j =
Tr[M(Eiq f )σiSjM†(Eiq f )]

Tr[M(Eiq f )M†(Eiq f )]
: (D.11)

Other coefficients, e.g., nucleon to deuteron and deuteron to deuteron polarization transfer coeffi-
cients, can be defined correspondingly. In the final state the quantization axis for particle spin is the
direction of the particle momentum in the lab system. Usually, thex-z plane is defined to be the scat-
tering plane; in that case, due to the rotational invariance and parity conservation, only the observables
with even number of indicesx andzare nonzero, e.g., among all analyzing powers (D.9) onlyAy(N),
Ay(d), Axx, Ayy, Azz andAxz are nonzero.

D.1.2 Nucleon-Deuteron Breakup

The spin-dependent observables in the nucleon-deuteron breakup are defined in close correspondence
with elastic scattering. The spin dependence of the initially prepared states is described by the density
matrix (D.1). The final-state polarization measurement is described by the projection operatorρ f , i.e.,
ρ2

f = ρ f , which is the tensor product of corresponding projection operators for the three nucleons, i.e.,

ρ f = Nf ρN
ρN
ρN; (D.12)

with Nf = 23�N , N being the number of polarization measurements.ρ f is normalized to Trρ f = Nf .
The operatorsρN are parameterized in the form of the nucleon density matrix (D.2a). Their individual
spin-dependence is carried by the spin-1

2 operatorsSa2. The set of product operatorsfSaf g = fSa2 

Sa2
Sa2g is formed, which are normalized by

Tr[Saf Sbf ] = 8δaf bf : (D.13)
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With these product operatorsSaf the projection operatorρ f gets the concise form

ρ f =
1
8 ∑

af

Tr[ρ f S
af ]Saf : (D.14)

In terms of the scattering amplitudeM(Eip f q f ), of the initial-state density matrixρi and of the
final-state projection operatorρ f the spin-dependent differential cross section becomes

d5σ
dSd2k̂1d2k̂2

= Tr[M(Eip f q f )ρiM
†(Eiq f q f )ρ f ] fps: (D.15)

Using the spin-averaged differential cross sectiond5σ=dSd2k̂1d2k̂2 of Eq. (5.12) and the expansions
(D.4) and (D.14) for the initial-state density matrixρi and the final-state projection operatorρ f , the
spin-dependent differential cross section takes the form

d5σ
dSd2k̂1d2k̂2

=
d5σ

dSd2k̂1d2k̂2

1
8 ∑

aiaf

Tr[ρiS
ai ]Tr[ρ f S

af ]
Tr[M(Eip f q f )Sai M†(Eip f q f )Saf ]

Tr[M(Eip f q f )M†(Eip f q f )]
: (D.16)

The spin observables are defined as in Eqs. (D.9) – (D.11) just replacing the elastic scattering ampli-
tudeM(Eiq f ) by the corresponding oneM(Eip f q f ) for breakup.

D.1.3 Electromagnetic Reactions

The spin-dependent observables of the considered e.m. reactions can be defined in a similar way
as for nucleon-deuteron scattering. However, in the description of the e.m. reactions given in this
thesis I only consider polarization in the initial nucleon-deuteron state of radiative capture; the cal-
culated nucleon and deuteron analyzing powers are defined as in Eqs. (D.9) just replacing the elastic
nucleon-deuteron scattering amplitudeM(Eiq f ) by the corresponding oneMγ(Eikγ) for radiative cap-
ture. A detailed discussion of polarization observables in electron scattering from hadrons can be
found in Refs. [75, 98].

D.2 Problem in the Comparison of Theoretical Predictions and
Experimental Data for Breakup

The experimental setup for breakup usually works with two particle detectors at two fixed angles
measurinĝk1 andk̂2 and determines observables as functions of the arclengthSalong the kinematical
curve corresponding to the two kinetic energiesE1 andE2. A sound comparison requires the same
kinematical curve for the experimental interpretation of data and for the theoretical prediction. How-
ever, the experimental interpretation of data usually prefers relativistic kinematics, whereas theory
prefers nonrelativistic kinematics, since the description of dynamics is nonrelativistic anyhow. With-
out a relativistic treatment of the dynamics there is no fully consistent comparison of the experimental
data and of the theoretical prediction. Thus, approximative identification procedures have to be ap-
plied; a discussion of this point and a suggestion for identification is given in Ref. [57]. In order to
estimate the theoretical uncertainty due to the use of nonrelativistic kinematics I follow a somehow
different procedure. At the energies considered the resulting kinematical curves, defined in Eq. (5.10),
are often quite similar for relativistic and nonrelativistic kinematics, but there are special situations
with dramatic differences. Figures D.1 and D.2 give examples for either case at 135 MeV nucleon lab
energy and at 52 MeV deuteron lab energy, respectively.
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Figure D.1: Left side: Kinematical curves the for relativistic space star configuration
(53:4Æ;53:4Æ;120:0Æ) with relativistic (dashed) and nonrelativistic (dotted) kinematics and for the
nonrelativistic space star configuration(54:4Æ;54:4Æ;120:0Æ) with nonrelativistic kinematics (solid)
at 135 MeV nucleon lab energy; the total arc lengths are 131.5, 134.7 and 132.1 MeV, respectively.
The solid and dashed curves are almost indistinguishable in the plot. The dot indicates the position of
the exact space star point.
Right side: Differential cross section ofNd breakup at 135 MeV nucleon lab energy as function of the
arclengthSalong the kinematical curve in the space star configuration. As in all calculations of this
thesis, the results are obtained with a nonrelativistic arclengthS. Results for the nonrelativistic space
star configuration(54:4Æ;54:4Æ;120:0Æ) (solid curve) and for the relativistic space star configuration
(53:4Æ;53:4Æ;120:0Æ) (dotted curve) are compared.

Figure D.1 refers to the space star configuration at 135 MeV nucleon lab energy, which is realized
for relativistic and nonrelativistic kinematics at slightly different scattering angles. There are only
minor differences between the relativistic and nonrelativistic kinematical curves corresponding to the
same angles; however, the kinematical curves for slightly different angles corresponding to the exact
space star configuration with relativistic and nonrelativistic kinematics are even almost identical. The
right-hand side of Fig. D.1 shows a sample effect on observables, which arises from differences in the
kinematical curves; correspondence is obtained by scaling all considered kinematical curves to the
length of the relativistic arclength; the length of the kinematical curves before scaling is recorded in
the figure caption; the discrepancy between the results of different identification procedures is small.

The example of Fig. D.2 is more dramatic. It refers to the QFS configuration at 52 MeV deuteron
lab energy. Again, this special situation is with relativistic and nonrelativistic kinematics realized for
slightly different scattering angles. However, in this case there are quite large differences between
the relativistic and nonrelativistic kinematical curves corresponding to the same angles; the reason is
that the critical situation(42:26Æ;42:26Æ;180:0Æ), at which the relativistic locus collapses to a point,
is near and that in nonrelativistic kinematics that critical situation occurs at larger angles. In contrast,
the kinematical curves for slightly different angles corresponding to the exact QFS configuration with
relativistic and nonrelativistic kinematics are quite close. The right-hand side of Fig. D.2 shows a
sample effect on observables, which arises from differences in the kinematical curves; correspondence
is naturally achieved without scaling, since the experimental data at this energy are given as function of
S=Smax, Smax being the full arclength of the relativistic kinematical curve. The respective length of the
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Figure D.2: Left side: Kinematical curves for relativistic QFS configuration(42:16Æ;42:16Æ;180:0Æ)
with relativistic (dashed) and nonrelativistic (dotted) kinematics and for nonrelativistic QFS configu-
ration(42:32Æ;42:32Æ;180:0Æ) with nonrelativistic kinematics (solid) at 52 MeV deuteron lab energy;
total arc lengths are 9.22, 15.34 and 10.09 MeV, respectively. The dot indicates the position of the
exact QFS point.
Right side: Deuteron tensor analyzing powerAxx of Nd breakup at 52 MeV deuteron lab energy as
function of the fractional arclengthS=Smax along the kinematical curve in QFS configuration. As in all
calculations of this thesis, the results are obtained with a nonrelativistic arclengthS. Results for non-
relativistic QFS configuration(42:32Æ;42:32Æ;180:0Æ) (solid) and for relativistic QFS configuration
(42:16Æ;42:16Æ;180:0Æ) (dotted) are compared.

kinematical curves is recorded in the figure caption. The sensitivity on the chosen kinematical curve
is alarmingly large. This observation also implies, that the corrections arising from finite geometry
can become sizable in this kinematical configuration.

The predictions of the nucleon-deuteron breakup shown in Figs. 5.14 – 5.18 refer to the kinemat-
ical configurations which are quite far from such a critical situations. In the light of the accuracy of
present-day data, I therefore conclude that the theoretical uncertainty due to the use of nonrelativistic
kinematics is rather inconsequential.



E
Calculation of Current Matrix Elements

The computation of the e.m. current matrix elementshΨ(�)
α (q f )να f j jµ(Q;K+)jBi and

hΨ(�)
0 (p f q f )ν0f j jµ(Q;K+)jBi is based on the partial-wave decompositions of the initial and final

hadronic states, described in Appendix C, and on the multipole decomposition of the e.m. current to
be discussed in this appendix.

E.1 Multipole Decomposition of Current

The Coulomb (C) multipoles of the charge densityρ(Q;K+), which is the spherical tensor of rank
zero, i.e.,j(0)(Q;K+), and the electric (E), magnetic (M) and longitudinal (L) multipoles of the spatial
currentj(Q;K+) which is the spherical tensor of rank one, i.e.,j(1)(Q;K+), are defined by

T( j)
Cmj

(Q) = T([ j;0] j)
mj (Q); (E.1a)

T( j)
Emj

(Q) = �
s

j +1
2 j +1

T([ j�1;1] j)
mj (Q)�

s
j

2 j +1
T([ j+1;1] j)

mj (Q); (E.1b)

T( j)
M mj

(Q) = T([ j;1] j)
mj (Q); (E.1c)

T( j)
L mj

(Q) =

s
j

2 j +1
T([ j�1;1] j)

mj (Q)�
s

j +1
2 j +1

T([ j+1;1] j)
mj (Q) (E.1d)

with

T([I ;a] j)
mj (Q) =

1
4π

Z
d2Q̂

�
Y(I)(Q̂)
 j(a)(Q;K+)

	( j)
mj
; (E.1e)

Y(I)(Q̂) being the spherical tensor of the rankI corresponding to the spherical harmonicsYI
mI
(Q̂) and

Q= jQj. The multipoles (E.1e) are calculated either in c.m. system, i.e.,K+ =�Q, or in lab system,
i.e., K+ = Q. Thus, once the reference system is specified, the e.m. currentjµ(Q;K+) becomes
dependent on the momentum transferQ only; this is why I drop the dependence onK+ in the notation
of the current multipoles.

The continuity equation (2.17) in terms of multipoles (E.1) reads

QT( j)
L mj

(Q) = [H;T( j)
Cmj

(Q)]: (E.2a)

Thus, assuming current conservation, the longitudinal multipoles can be replaced by the Coulomb
multipoles according to Eq. (E.2a). Furthermore, using Eqs. (E.1d) and (E.2a) the dominant part
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of the electric multipoles, proportional toT([ j�1;1] j)
mj (Q), can be rewritten in terms of the Coulomb

multipoles and higher order contributionsT([ j+1;1] j)
mj (Q), resulting in the Siegert form of the electric

multipoles, i.e.,

T( j)
Emj

(Q) =�
s

2 j +1
j

T([ j+1;1] j)
mj (Q)�

s
j +1

j
1
Q
[H;T( j)

Cmj
(Q)]: (E.2b)

The spatial current and the charge density can be recovered by

ρ(Q;K+) = 4π ∑
jmj

T( j)
Cmj

(Q)Y j�
mj
(Q̂); (E.3a)

j(Q;K+) = 4π ∑
jmj I

T([I ;1] j)
mj (Q)

��
Y(I)(Q̂)
e(1)

	( j)
mj

��
(E.3b)

from the multipoles with the spherical unit vectorse(1)λ = δλ0ẑ�λ(x̂+ iλŷ)=
p

2.
It is most convenient to perform the calculations in the system withz-axis parallel to the momen-

tum transferQ, i.e.,Q = Qẑ. In that system the polarization vectorsε(Qλ) take the form

ε(Q�)
��
Q=Qẑ = � 1p

2
(0;1;�i;0); (E.4a)

ε(Q0)
��
Q=Qẑ =

1p
�Q2

(Q;0;0;Q0): (E.4b)

For photo reactions only the electric and magnetic multipoles are needed in the form

jµ(Q;K+)εµ(Qλ)
��
Q=Qẑ =

p
2π

∞

∑
j=1

p
2 j +1

�
T( j)

Eλ (Q)+λT( j)
M λ(Q)

�
(E.5a)

with λ =�1 corresponding to the polarizations of transverse photon. Calculation of electron scatter-
ing from the trinucleon bound state needs also Coulomb multipoles explicitly; under the assumption
Q = Qẑ the charge density of Eq. (E.3a) takes the form

ρ(Q;K+)
��
Q=Qẑ =

p
4π

∞

∑
j=0

p
2 j +1 T( j)

C0 (Q): (E.5b)

One notes that in matrix elements of the current operators (E.5) between the three-particle states with
definite total angular momentum and parity only a finite number of multipoles contributes.

E.2 Instability Problem in Calculation of Current Matrix Elements

The computation of the current multipoles (E.1e) is quite involved and will not be spelt out in de-
tail in this appendix; it is given in Ref. [62]. For computational purposes, each current contribution
j(a)(Q;K+) is tensorially recoupled as a tensor product of orbital, spin and isospin operators. The
advantage of that calculational scheme is that most angular integrations arising in the multipole de-
composition of the current can be performed analytically. However, that calculational scheme also has
numerical problems, similar to those of Ref. [99] when calculating matrix elements of the irreducible
three-nucleon force. The contributions arising from higher current multipoles and from higher angu-
lar momenta in the hadronic states get computationally split up into a series of rather large numbers
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with alternating signs, the full results being comparatively small; thus, the straightforward evaluation
of those series becomes instable. In order to avoid this problem, Ref. [20] neglected higher quantum
numbers of the decomposition; that approximation was found to be quite reliable for all previous cal-
culations. However, in this thesis I use an alternative treatment of instabilities, whose validity can be
monitored much better.

The source of instabilities is an integral of the type

Qρ(q
0;q;k) = q0q

Z
d2q̂0

Z
d2q̂ Yl 0�

m (q̂0)Yl
m(q̂)Yρ

0 (q̂�) δ(q��k) (E.6)

with q� = q0�q andk = 1
3jQj; the dependence ofQρ(q0;q;k) on the quantum numbersl 0, l andm

is suppressed. Using the standard decomposition of spherical harmonics into separateq̂ and q̂0 de-
pendences, the integration can be performed analytically; however, the result is a series of terms with
alternating sign proportional to(q=k)n(q0=k)ρ�n. For q andq0 large enough the occurring roundoff
errors become much larger than the full result. Thus, such a calculational scheme can be applied
safely only forq; q0 � qρmax(k). However, in the limitq; q0! ∞ the above mentioned integration can
again be performed analytically without using the decomposition formula for spherical harmonics,
the resultQρ∞(q0�q;k) � limq0;q!∞;jq0�qj�kQρ(q0;q;k) being proportional to the Legendre polyno-
mial Pρ((q0�q)=k) without any other dependence onq0 andq. The values ofQρ(q0;q;k) for finite
q; q0 > qρmax(k) with fixed q0�q are smooth and can therefore be easily and reliably obtained via a
one-dimensionalinterpolation between values atq= qρmax(k) andq! ∞, i.e.,

Qρ(q
0;q;k) � qρmax(k)

q
Qρ(qρmax(k)+q0�q;qρmax(k);k)

+
h
1� qρmax(k)

q

i
Qρ∞(q

0�q;k): (E.7)

The reliability of this approximation was confirmed by comparing it with the exact results obtained
using higher precision floating point arithmetics.
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