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Abstract 

In horticultural production of potted ornamental plants N fertilizer is applied at high 

intensity. It was the aim of this research to investigate mechanisms and quantities of 

denitrification N loss from cultivation of potted ornamental plants.  

Measurements were conducted with planted substrate in a dynamic system (flow-

through chambers) and with unplanted substrate in a closed system (jars). N loss 

was determined as (N2+N2O)-N and as N2O-N by use of the acetylene inhibition 

method. Substrate was planted with Pelargonium zonale ‘Grand Prix’ or Euphorbia 

pulcherrima ‘Sonora Red’ . 

Denitrification in horticultural peat substrate proved to be mainly controlled by oxygen 

availability which decreased with increasing substrate water content. After flood 

irrigation, substrate water content was highest close to the pot bottom. Measurement 

of redox potential showed that N emissions originated from this substrate layer (up to 

2.5 cm from the pot bottom). N emissions only evolved after irrigation events and 

ceased when mean substrate water content dropped below a threshold value. The 

decrease of water content was driven by evapotranspiration which increased with 

rising vapour pressure deficit (vpd) and plant size (transpiring leaf area). Thus, high 

substrate water content as well as denitrification N loss were favored by low vpd. 

Also, compaction or sieving of substrate, and use of bigger pots increased N loss per 

irrigation event. In contrast, N emissions and substrate water content decreased 

when flood irrigation was shortened.   

Denitrification in planted and unplanted substrate was generally limited by carbon 

availability and increased after glucose-C amendment.  

Rising nitrate supply consistently increased the share of N2O emissions. (N2+N2O)-N 

loss, in contrast, was increased only relative to the unfertilized control treatment.  

Further, sources of variability of N loss, the effects of plant age, substrate sieving, 

daytime of irrigation, pot design, and substrate composition on denitrification as well 

as the contribution of production surfaces to N emissions were discussed.   

Summed up N loss in form of (N2+N2O)-N and N2O-N from cultivation of potted plants 

amounted to 6.9 kg ha-1 year-1 and 2.4 kg ha-1 year-1, respectively. The economical 

and ecological importance of N emissions were evaluated and possibilities for 

restriction of denitrification in horticultural production were summarized. 

 

Key words: denitrification, N loss, horticulture 
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Kurzfassung 
In der gartenbaulichen Topfpflanzenproduktion erfolgt eine intensive N-Düngung. Es 

war das Ziel dieser Arbeit, Mechanismen und Mengen der N-Verluste durch Denitri-

fikation in getopften Zierpflanzenkulturen zu ermitteln. Messungen wurden mit 

bepflanztem Substrat in dynamischen Versuchssystemen (Durchflußkammern) und 

mit unbepflanztem Substrat in geschlossenen Gefäßen durchgeführt. N-Verluste 

wurden mithilfe der Acetylen-Inhibierungsmethode als (N2+N2O)-N und als N2O-N 

bestimmt. Substrate wurden mit Pelargonium zonale ‘Grand Prix’ oder Euphorbia 

pulcherrima ‘Sonora Red’ bepflanzt.  

In gärtnerischem Torfsubstrat wurde die Denitrifikation überwiegend durch die O2 –

Verfügbarkeit kontrolliert, die mit steigendem Substratwassergehalt sank. Nach 

Anstaubewässerung war der Substratwassergehalt am Topfboden am höchsten. 

Messungen des Redoxpotentials zeigten, daß N-Emissionen aus der untersten 

Substratschicht bis 2,5 cm über Topfboden stammten. N-Emissionen entstanden nur 

nach Bewässerungsereignissen und endeten, wenn der Substratwassergehalt einen 

Schwellenwert unterschritt. Das Absinken des Wassergehalts wurde durch die 

Evapotranspiration angetrieben, die mit Anstieg von Wasserdampfdruckdefizit (vpd) 

und Pflanzengröße (transpirierender Blattfläche) zunahm. Somit wurden ein hoher 

Substratwassergehalt sowie N-Verluste durch Denitrifikation durch ein geringes vpd 

gefördert. Ebenso erhöhten die Verdichtung oder Siebung von Substrat, sowie die 

Verwendung größerer Töpfe die N-Emissionen pro Bewässerung. Wassergehalt und 

N-Verluste verminderten sich dagegen mit abnehmender Anstaudauer.  

In bepflanztem und unbepflanztem Substrat war die Denitrifikation im allgemeinen 

Kohlenstoff-limitiert und wurde durch Gabe von Glukose-C erhöht. Ein steigendes 

Nitratangebot erhöhte den N2O-Anteil der N-Emissionen. Der (N2+N2O)-N-Verlust 

wurde dagegen nur im Vergleich zur ungedüngten Kontrolle gesteigert. Desweiteren 

wurden Ursachen der Variabilität von N-Emissionen, Wirkungen von Pflanzenalter, 

Tageszeit der Bewässerung, Topfart und Substratzusammensetzung auf die 

Denitrifikation, sowie der Beitrag von Produktionsflächen zu N-Verlusten diskutiert. 

Der hochgerechnete N-Verlust als (N2+N2O)-N und N2O-N aus Topfpflanzenkulturen 

betrug 6,9 kg ha-1 Jahr-1 bzw. 2,4 kg ha-1 Jahr-1. Die ökonomische and ökologische 

Bedeutung der N-Emissionen wurde diskutiert und Möglichkeiten für die Begrenzung 

der Denitrifikation in der gartenbaulichen Produktion wurden zusammengefaßt. 

Stichwörter: Denitrifikation, N-Verlust, Gartenbau 
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NO nitric oxide Stickstoffmonoxid 
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T temperature Temperatur 
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1. Introduction 

Ornamental pot plants are generally produced in most intensive production systems 

characterized by high fertilizer input and frequent irrigations. Yet, only little 

information exists on denitrification N loss from horticultural growing systems based 

on peat substrate. 

In greenhouse production of cucumber plants in a soilless cultivation system, mean N 

losses due to denitrification amounted to about 180 kg N ha-1 year-1 (Daum and 

Schenk 1996). In intensive field production of vegetables high denitrification N loss of 

up to 5 kg ha-1 day-1 was observed after incorporation of crop residues (Schloemer 

1991), and N loss up to 2 and 3.6 kg ha-1 day-1 was reported from vegetable fields 

after irrigation or rainfall events, respectively (Ryden and Lund 1980). Also, highly 

fertilized grassland soils denitrified up to 3 kg N ha-1 day-1 under moist conditions 

following fertilizer application (De Klein and Van Logtestijn 1996).  

In all of these cases, N emissions were especially high because the conditions for 

denitrification were extraordinarily favorable. Availability of oxygen was low due to 

irrigation or rainfall events or oxygen consumption by root and microbial respiration. 

Supply of nitrate was high due to intensive fertilization, and so was availability of 

easily decomposable carbon derived from roots or from incorporation of organic 

material.  

In production of potted ornamental plants, conditions for denitrification were assumed 

to be comparably favorable. Frequent irrigation events could be expected to induce 

oxygen deficiency in the substrate, high availability of nitrate was granted by 

fertilization or fertigation, and easily available carbon was likely to be supplied by 

plant roots or by the growing medium itself. Consequently, high denitrification N loss 

was expected from this intensive production system. 

 

Oxygen deficiency, availability of nitrate and of carbon are the key factors of 

biological denitrification, which is the reduction of mineral nitrogen oxides (nitrate and 

nitrite) to N gases (NO, N2O, N2) by microbes. The main end products are molecular 

nitrogen (N2) and nitrous oxide (N2O), while the formation of nitric oxide (NO) during 

denitrification is considered to be comparatively low (Davidson 1993).  
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The reduction of N-oxides occurs mainly under conditions of oxygen deficiency when 

facultative anaerobic bacteria use nitrate instead of oxygen for electron transfer 

(Tiedje et al. 1989). Because of higher energy yield from oxygen relative to nitrate 

reduction nearly all respiratory denitrifiers prefer to use O2 as electron acceptor and 

only reduce N-oxides when O2 is not available (Tiedje et al. 1989). In soils oxygen 

deficiency was often reported to be induced by rainfall or irrigation events, which 

resulted in increased emission of N gases from soil. Emissions ceased when soil 

water content decreased and air and oxygen returned into soil pores. The degree of 

oxygen deficiency is affected by soil physical properties and higher N emissions were 

observed e.g. from compacted or fine textured soils (Torbert and Wood 1992, Bakken 

et al. 1987, Aulakh et al. 1991b, Sexstone et al. 1985a). 

In addition to oxygen deficiency, denitrification requires availability of nitrate (electron 

acceptor), which is generally granted in cultivated soils. Only in natural ecosystems 

denitrification is considered to be possibly limited by low nitrate availability (Myrold 

and Tiedje 1985).  

Readily available carbon is the source of energy for the reduction process (electron 

donator). It has shown high impact on the intensity of denitrification, e.g. after 

incorporation of crop residues (Schloemer 1991, Aulakh et al. 1991b) indicating that 

its availability is often limiting denitrification in cultivated soils. Easily decomposable 

carbon compounds may also be supplied by plant roots (Hütsch et al. 2002). Yet, 

denitrification was not always reported to be increased by the presence of plants 

(Haider et al. 1985, Haider et al. 1987, Qian et al. 1997).  

Additionally, denitrification is stimulated by high temperature (Stanford et al. 1975, 

Dobbie and Smith 2001), which increases microbial activity and accelerates oxygen 

consumption. 

 

Denitrification is considered to play a central role in the N cycle as it seems to 

balance nitrogen fixation by returning fixed nitrogen to the atmosphere (Tiedje et al. 

1989, Aulakh et al. 1992). Yet, it is of concern to agronomists and environmentalists 

because it causes loss of N fertilizer and it is also one of the most important sources 

of environmentally harmful nitrous oxide (N2O).  

N2O emissions are considered to effectively contribute to global warming and to the 

destruction of the ozone layer. In the troposphere, which reaches up to about 15 km 

from the Earth’s surface, N2O among other gases (e.g. CO2, CH4, H2O) is 
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responsible for the absorption of infrared radiation emitted by the Earth. This 

absorbed thermal radiation is partly sent back to the Earth leading to the surface 

warming which is necessary for life. Yet, increasing concentrations of infrared 

absorbing gases in the troposphere may lead to increased surface heating resulting 

in changes of climate (Mackay and Khalil 2000, Linak and Kramlich 1997). Although 

concentrations of N2O are very low (about 310 vppb), its global warming potential is 

estimated to be about 300 times that of CO2 over a 100 year horizon, which is due to 

the long atmospheric lifetime of N2O of more than 100 years (IPCC 2001, Gale et al. 

2000). The contribution of N2O to global warming is considered to be 5-6 % (IPCC 

1996, Rodhe 1990). In the stratosphere, which extends from about 15 to 50 km 

above the Earth’s surface, N2O plays an important role in the destruction of the 

ozone layer which protects our biosphere from harmful ultraviolet radiation (UV-B) 

(Aulakh et al. 1992, Crutzen 1981). There, photolysis of N2O leads to formation of 

excited oxygen (O) which reacts with nitrous oxide (N2O) to form nitric oxide (NO). 

Presence of NO leads to destruction of ozone (O3) as both react to form nitrite (NO2) 

and oxygen (O2). In contrast to ozone, NO is recycled by reaction of NO2 with O and 

it then returns to destroying O3. The net contribution of N2O to ozone destruction is 

not clear, yet it presumably is much lower than that of industrial compounds, like 

chlorofluorocarbons, hydrochlorofluorocarbons or halons (Crutzen 1981, IPCC 2001).  

 

The contribution of soils to emission of N2O is considered to be high. According to 

Bouwman et al. (1995) two-thirds of global N2O emissions originate from natural and 

cultivated soils, where N2O is formed mainly during microbial nitrification and 

denitrification. The contribution of agriculture alone to global N2O flux amounts to 

40 % (Oenema et al. 2001) and its share among anthropogenic sources of N2O was 

estimated to be about 80 % (Gale et al. 2000, Isermann 1994). 

Denitrification has been thoroughly investigated in laboratory and field studies. But 

still, much uncertainty exists in the assessment of nutrient loss and N2O production 

(Kroeze et al. 2003). This is mostly due to the many variable and interacting factors 

controlling not only total denitrification N loss but also the ratio N2O:N2 of N emissions 

(Firestone et al. 1979, Weier et al. 1993, Beauchamp 1997). Temporal variability of N 

emissions was attributed to temperature changes in soil during day (Blackmer et al. 

1982), to differences in time required for induction of anaerobiosis within a soil 

volume (Christensen et al. 1990b), and to the development of soil moisture and plant 
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growth over the growing period (Rudaz et al. 1999). Spatial variability of emissions 

was traced back to locally limited sources of easily available carbon (Christensen et 

al. 1990a, Parkin 1987). Inhomogeneous distribution of  carbon and nitrate, and only 

temporary occurrence of oxygen deficiency are common in soils as well as shifts in 

temperature over time. Consequently, variation of N emissions is usually high. 

Folorunso and Rolston (1984), for example, calculated variation coefficients from 

161 % to 508 % for (N2+N2O)-N emissions from a 3 m x 36 m area of field soil.  

 

Because of the many variable factors, accurate prediction of denitrification N loss and 

N2O emissions by modeling has not yet been achieved (Kaiser et al. 1996, Frolking 

et al. 1998, Parton et al. 1996, Potter et al. 1997). Measurement still seems the most 

reliable way of quantifying denitrification N loss at the small scale.  

Thus, it was the aim of this study to investigate denitrification by measurement of 

gaseous N loss from cultures of potted ornamental plants. Within this study it was 

intended 

 

o to develop and adjust an assay system for measurement of N2 and N2O 

emissions from potted plants, 

o to study factors controlling denitrification in unplanted horticultural substrate, 

o to investigate dynamics of denitrification in planted substrate,  

o to determine the effects of plant age and carbon supply on denitrification in 

planted substrate, 

o to investigate the effects of substrate physical characteristics on denitrification, 

o to localize denitrifying zones in potted and planted substrate, 

o to determine the influence of horticultural management practices on 

denitrification, and finally 

o to estimate the dimensions and to evaluate the economical and ecological 

importance of N2 and N2O emissions due to denitrification from horticultural pot 

plant production. 

 4



 

2. Assay system for measurement of denitrification 

2.1 Introduction 

Information on denitrification N loss from horticultural production systems is rare in 

literature, since research has focused on agricultural production. However, for 

vegetable production in the field and in soilless culture it was shown that gaseous N 

losses due to denitrification may reach from 0.024 to 5.2 kg N ha-1 day-1 (Ryden and 

Lund 1980, Schloemer 1991, Daum and Schenk 1996) compared to 0.002 to 0.42 kg 

N ha-1 day-1 in agricultural production (Ryden et al. 1979b, Kaiser et al. 1996). 

Reasons for the high denitrification potential in horticultural cropping systems are the 

more favorable conditions which are mainly due to high availability of carbon and 

nitrate, and frequently induced oxygen deficiency by irrigation. As fertilizer and 

irrigation are also intensively used in horticultural production of potted ornamental 

plants this production system was considered a potential high producer of 

denitrification N gases. 

To investigate denitrification N loss from potted ornamental plants, it was intended to 

use the acetylene (C2H2) inhibition technique. This method has extensively been 

used in field and lab experiments and was often described as an inexpensive, 

comparably simple, and sensitive method for quantification of denitrification N loss 

(Gross and Bremner 1992, Duxbury 1986, Keeney 1986, Tiedje et al. 1989, Yoshinari 

et al. 1977). The underlying mechanism of this technique is the inhibition of N2O 

reduction to N2 in presence of C2H2 (Yoshinari et al. 1977). In consequence, the final 

product of nitrate reduction is N2O which in contrast to N2 can readily be measured by 

gas chromatography. Additionally, the production of N2O in absence and presence of 

C2H2 allows calculation of the probable mole fraction of N2O in denitrification products 

(Yoshinari et al. 1977).  

Yet, application of C2H2 is not free of difficulties. An often described problem is the 

failure of C2H2 inhibition because of insufficient C2H2 distribution throughout the soil 

(Rolston 1986, Duxbury 1986, Tiedje 1988). Also, C2H2 application may lead to 

secondary effects through contaminants like acetone or ethylene (C2H4) (Hyman and 

 5



 

Arp 1987), which is a plant hormone and may change conditions for denitrification by 

affecting the plant.  

To trap gases produced by denitrification in soil with or without application of C2H2 

soil covers or chambers are installed in the field (Aulakh et al. 1991a, Hutchinson and 

Livingston 1993). Different chamber systems are discussed in literature, e.g. closed 

or open chambers with or without venting and with or without air exchange 

(Hutchinson and Mosier 1981, Jury et al. 1982, Ambus et al. 1993, Hutchinson and 

Livingston 1993). Furthermore, in chambers that do not include the plant shoot 

measurements may be biased by losses of N2O to the atmosphere through N2O 

transport and emission by the shoot (Ferch and Römheld 2001, Chang et al. 1998). 

While it is unanimously agreed upon the importance of the experimental setup for the 

quality of measurement, recommendations on methodology differ. 

 

So, before denitrification N loss itself could be measured from potted ornamental 

plants, the experimental setup had to be developed to guarantee nonbiased 

experimental results. Mainly three issues are discussed in this paper: 1. the 

application of acetylene for inhibition of N2O reduction, 2. side effects of C2H2 on 

plants, and 3. the choice of the experimental system, i.e. static (closed container) or 

dynamic (flow-through chamber). 

2.2 Materials and methods 

2.2.1 Experimental setup for denitrification measurement  

2.2.1.1 Closed system 

For denitrification measurement in a closed system 1.5 L glass jars (Weck) were 

used. The jars were closed by glass lids and rubber seals between rim and lid 

guaranteed air thightness. The lids were fixed to the jars by metal clips. To allow 

addition and withdrawal of gas from the jars septums were inserted into the lids.  

When planted substrate was investigated the complete plant (including 340 mL-

plastic pot, substrate and shoot) was closed into a jar like shown in Figure 1. 
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Unplanted substrate was evenly filled into 280 mL plastic pots according to its weight 

and pots were then put into jars. 

Before the start of the experiment substrates were pretreated with acetylene (C2H2) 

within the jars as described in Chapter 2.2.3.  

After pretreatment with C2H2 jars were opened and pots were flood irrigated within 

the jars with 100 mL or 150 mL of a solution containing 150 mg NO3 -N L-1. The 

amount of solution depended on pot size and water content of the substrate. It was 

uniform among replications of each experiment.  

After addition of nutrient solution the jars were closed, C2H2 was renewed and 

incubation at 26°C started (growth chamber). Air samples were taken with syringes 

from the jars after 24 h and 48 h of incubation. Only in the experiment comparing 

closed vs. dynamic system jars were incubated in a greenhouse and sampled at 

shorter time intervals (after 12, 24 and 30 hours of incubation). 

Fig. 1 Experimental setup for denitrification measurement  

using glass jars  
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The lid of each chamber had a hole in its center and was divided by half into one 

fixed and one replaceable part which allowed opening. Planted pots (volume 340 mL) 

were positioned so that the plant stem went through the hole in the lid and the shoot 

remained outside the chamber. Then the opening around the stem was sealed to 

avoid escape of N2O and the removable lid was fixed with adhesive tape to the 

chamber. 

Unplanted substrate was evenly filled into 280 mL plastic pots and closed into the 

chambers. The hole in the lid was sealed with adhesive tape during measurement. 

Before the start of the experiment substrates were pretreated with acetylene (C2H2) 

within the chambers as described in Chapter 2.2.3.  

After pretreatment with C2H2 pots were flood irrigated within the chambers with 1 L of 

a solution containing 150 mg NO3 -N L-1. Two hours later, the irrigation solution was 

released by an opening at the bottom of the chambers. 

The beginning of the irrigation event was defined start of the experiment. Air samples 

were taken with syringes topped with gauge needles from silicon tubes at the air 

outlet of the chambers every one to two hours until N2O emissions ceased.  

Fig. 2 Experimental setup for denitrification measurement  

using flow-through chambers  
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2.2.2 Experimental setup for measurement of N2O release by the plant shoot 

Plants of P. zonale and E. pulcherrima were used for measuring N2O release by the 

shoot. The pots of the plants were watered and then locked in small air tight plastic 

chambers made of PVC tubes and tube end pieces. The shoots were closed into 

chambers made of long tubes and transparent film like shown in Figure 3.  

While the lower compartment was meant to be closed to the atmosphere, the upper 

one was provided with an aeration system to control air humidity and thus allow 

transpiration and possibly N2O transport. The air exchange rate was adjusted to 

120 L h-1 by a flowmeter which was protected against air humidity by a molecular 

sieve.  

At the beginning of the experiment, pure N2O was added through a septum to the 

root chambers to reach concentrations of 0, 5, 50 and 500 vppm. Acetylene was 

added at 5 vol.% to avoid N2O reduction. During the experiment N2O concentrations 

in the root compartments were checked every 1.5 hours and corrected if necessary.  

Air samples were taken with syringes from the outflow of the shoot chambers every 

1.5 hours. 

Fig. 3 Experimental setup for measurement of N2O release  

by the plant shoot  

 

 

Spa

pump

Transpar
pla

 

 

 

 

 

 

 

 

 

 

inlet of air
m

cer 

ent 
stic 
outflow of air
Silicon tube
molecular 
 sieve 

flowmeter 
Septu
9



 

2.2.3 Application of acetylene (C2H2) 

C2H2 was applied for measurement of (N2+N2O)-N loss by denitrification. To 

guarantee immediate inhibition of N2O reductase since the start of each experiment, 

substrates were pretreated with C2H2 before irrigiation. In general the pretreatment 

with C2H2 lastet two hours. It differed only in two experiments dedicated to the 

determination of the optimum pretreatment duration. In one jar experiment substrate 

was pretreated with 5 vol.% C2H2 for 0, 2, 12, and 24 hours, respectively. In a flow-

through chamber experiment with planted substrate (P. zonale) pots were pretreated 

with 5 vol.% C2H2 for 12 h and 2 h, respectively. 

For determination of the optimum C2H2 concentration a jar experiment with unplanted 

peat substrate was conducted. Increasing concentrations of C2H2 (0, 1, 3 or 

10 vol.%) were added to the jar atmosphere at the beginning of the pretreatment and 

of the incubation which started after irrigation. In all other experiments 5 vol.% C2H2 

were applied. 

To reduce the acetone content of C2H2 gas emerging from a cylinder the gas was 

lead through two water traps (10 L and 2 L) in flow-through chamber experiments 

(Gross and Bremner 1992). The water of the traps was exchanged every six hours. 

2.2.4 Substrates 

Two kinds of unplanted substrate were used for experiments: a sieved peat substrate 

(5 mm) which had been used for cultivation of plants and contained decomposable 

organic matter (root residues), and a peat substrate amended with 1 mg L-1 dried and 

ground organic matter (Lolium westerwoldicum) to insure microbial activity. Both 

substrates were adjusted to pH6 and fertilized with a complete compound fertilizer. 

Only one of these substrates was used per experiment. 

In denitrification measurement planted substrate consisted of sieved peat (5 mm) 

which was adjusted to pH6 and fertilized with a complete compound fertilizer prior to 

planting. During cultivation plant (and substrate) were fertigated according to 

horticultural practice. 

Plants that were used for measurement of N2O release by the shoot were grown in a 

commercial, fertilized, peat based substrate at pH6. 
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2.2.5 Plant material 

Plants of Pelargonium zonale ‘Grand Prix’ and Euphorbia pulcherrima ‘Sonora Red’ 

were used for experiments. Plants were propagated by cuttings and rooted in small 

peat nuggets (Jiffy7) for two weeks. Then, plants were potted into 340 mL pots and 

cultivated for at least four weeks to guarantee rooting of the substrate.  

For the pretreatment experiment and for comparison of dynamic vs. static incubation 

system pots of P. zonale were used while N2O release from the shoot was measured 

from both species, P. zonale and E. pulcherrima.  

For each experiment plants of the same set were used, i.e. plants were of the same 

age and of similar growth. 

2.2.6 Analytical procedures 

2.2.6.1 N2O  

The analysis of N2O in all air samples was performed by a gas chromatograph 

(Chrompack 9001) with an electron capture detector (ECD) according to a method 

described by Mosier and Mack (1980).  

2.2.6.2 C2H2 

C2H2 was measured by means of a gas chromatograph (Carlo Elba) equipped with a 

flame ionization detector (FID). 

Plant damage by C2H2 application was scored by counting chlorotic, necrotic, and 

healthy leaves per plant after 0, 24, 48, 72, and 96 hours of treatment. 

2.2.6.3 Evapotranspiration and substrate water content 

Evapotranspiration was determined by weighing of planted pots every 12 hours for 

two days starting from irrigation and calculating decrease in weight over time. The 

shoot fresh matter was determined by cutting off and weighing of the plant shoot. It 

allowed calculation of evapotranspiration per unit shoot fresh matter. 
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2.2.6.4 Carbon content of substrate 

To investigate the effect of C2H2 application on carbon content of the substrate plants 

of P. zonale and E. pulcherrima were grown in fine-grained quartz sand for six weeks 

and treated for 24 hours with air and air + 5 vol.% C2H2, respectively. For extraction 

of carbon from the pots, 200 mL A. dest. were dripped onto the sand surface. The 

eluate was collected in polyethylene bottles and mixed with 2 mL HCl to avoid 

microbial digestion of C until analysis. The plants were harvested, root and shoot 

fresh matter were determined. The carbon content of the samples was analyzed by 

use of a total carbon analyzer (GO-TOC 100, Ultramat 5E - 2R, Fa. Gröger und Obst 

(Starnberger See)).  

2.2.7 Statistics 

Statistic calculations were performed by use of the SAS package. The number of 

replications for each treatment was usually five. Only the experiments comparing 

evapotranspiration +/- C2H2 treatment and closed vs. dynamic system had six 

replications in each treatment. 

2.3 Results 

2.3.1 Application of acetylene (C2H2) 

2.3.1.1 Optimum concentration of C2H2 

Figure 4 shows the amounts of N2O-N emitted from unplanted peat substrate at 

different C2H2 concentrations. Without addition of C2H2 measurable N emissions 

were very low. Independent of the incubation period, adding only 1 vol.% acetylene 

to the jar atmosphere already resulted in a significantly higher N2O accumulation and 

further increasing the C2H2 concentration up to 10 vol.% did not yield higher N2O 

emissions. A concentration of 5 vol.% acetylene was chosen for further experiments. 
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Fig. 4 N2O-N emissions from unplanted peat substrate as affected by C2H2 

concentration after 24 h / 48 h of incubation following flood irrigation (closed system) 
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2.3.1.2 Optimum duration of C2H2 pretreatment 

The effect of increasing durations of C2H2 pretreatment of unplanted substrate on the 

recovery of N2O was investigated (Fig. 5). After 24 h of incubation in a closed system 

there was a significant difference between the treatments 0 h and 2 h on one hand, 

and treatments 12 h and 24 h on the other hand. However, after 48 h of incubation 

there was no significant influence of pretreatment duration on N emissions. 

Additionally, the effect of C2H2 pretreatment on N emissions was examined with 

planted substrate (P. zonale) in flow-through chambers. In this system no significant 

difference in N emissions could be observed between the 2 h and 12 h treatment 

(Tab. 1), although the measurement lastet only 30 hours. This was contradictory to 

results obtained with the closed system after 24 hours of incubation (Fig. 5). The 

mean N losses per pot in flow-through chambers were comparable to the emissions 

found in the closed jar experiment after 24 h of incubation but the standard deviation 

in the flow-through chamber experiment was remarkably higher.  

Although these results do not prove its necessity, a pretreatment of 2 hours was 

chosen for the following experiments in order to exclude failure of C2H2 inhibition. 
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Fig. 5 N2O-N emissions from unplanted peat substrate as affected by duration of 

pretreatment with 5 vol.% acetylene C2H2 after 24 h and 48 h of incubation following 

irrigation (closed system) 
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*Differing letters indicate statistically significant effects between treatments 
 (pairwise comparison; α=0.05) 

 

Tab. 1 N2O-N emissions from pots of P. zonale in flow-through chambers with 2 h or 

12 h of pretreatment with 5 vol.% C2H2  

C2H2 pretreatment N2O-N emission [mg pot-1] 

2 h 0.253 a* 

12 h 0.214 a* 
 
 *Differing letters indicate statistically significant effects (t-Test, α=0.05) 

2.3.2 Side effects of C2H2  

2.3.2.1 Visible symptoms of C2H2 application on plants 

The application of C2H2 lead to visible symptoms on the plants. P. zonale showed 

chlorosis on all leaves after 48 hours of C2H2 application (Fig. 6, 7b). At 72 hours 

leaves started to develop necrosis and at 96 hours 2/3 of the plants were severely 

damaged. E. pulcherrima plants showed no chlorosis at all and only little necrosis 
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during C2H2 exposition. Instead, the leaves slightly bended downwards which was 

reversible at first and disappeared after a few days in C2H2 free air. After five days of 

C2H2 treatment leaves of E. pulcherrima wilted and curled (Fig. 6, 7a).  

Fig. 6 Leaf damage [%] on five plants of P. zonale and E. pulcherrima caused by 

 treatment with 5 vol.% C2H2 as affected by duration of treatment (flow-through 

system) 
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Fig. 7 Leaf damage of E. pulcherrima (A) and P. zonale (B) depending on duration of 

treatment with 5 vol.% C2H2  
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2.3.2.3 Availability of carbon in the substrate depending on C2H2 application 

Table 2 shows the results of the carbon extraction from pots of P. zonale and 

E. pulcherrima with and without C2H2 treatment. In case of both plant species the 

carbon yield was the same with and without exposition to C2H2.  

Tab. 2 Carbon extracted from sand planted with P. zonale and  

E. pulcherrima after 24h exposition to C2H2 (5 vol.%) 

Extracted C [µg / g root f.m.]  
Treatment P. zonale E. pulcherrima 

- C2H2 914 ± 297 734 ± 246 

+ C2H2 933 ± 154 852 ± 183 
 

2.3.3 Closed (static) vs. aerated (dynamic) system 

2.3.3.1 Denitrification measurement of planted and unplanted substrate 

Figure 9 shows the (N2+N2O)-N emissions following irrigation of unplanted peat in a 

dynamic (flow-through-chamber) and a static (closed jar) experimental system. 

Emissions from the closed system proved to be significantly higher than those of the 

dynamic system and the difference between both systems increased with time. The 

standard deviation was remarkably low for denitrification measurement and never 

exceeded 19 % of the mean value. It was especially low in the static system. After 32 

hours of incubation the experiment was interrupted as pots did not cease to emit N2O 

and an end of the denitrification process was not foreseeable. 

Similarly, it was observed that N emissions from planted pots were higher in the 

closed system compared to the dynamic system after 24 hours of incubation (Fig. 

10). At first, emission rates were similar in both incubation systems. They increased 

steeply shortly after irrigation and reached a maximum after 12 hours. Then, there 

was a clear decline of emissions in the dynamic system while only a slight decrease 

was observed in the closed system. It has to be mentioned that after 24 hours of 

incubation the jar experiment had to be interrupted because fungal growth was 
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observed on plants. This indicated that the flow-through chamber setup was more 

suitable for denitrification measurement of planted substrate. However, emitted N2O 

might be lost in this system by transport via the shoot to the atmosphere. 

Fig. 9 Influence of incubation system, closed vs. flow-through chamber, on (N2+N2O)-

N emissions from unplanted peat substrate following irrigation (5 vol.% C2H2) 
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Fig. 10 Influence of incubation system, closed vs. flow-through chamber, on 

(N2+N2O)-N emission rates from pots of P. zonale in peat substrate following 

irrigation (5 vol.% C2H2) 
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2.3.3.2 Emission of N2O by the plant shoot 

During denitrification measurement of planted substrate in flow-through chambers the 

plant shoot remained outside the chambers. Transport of N2O to the atmosphere by 

the shoot as observed with Helianthus annus (Ferch and Römheld 2001), Brassica 

napus and Hordeum vulgare (Chang et al. 1998) might lead to losses of N2O and 

thus compromise the assay system. Consequently, experiments were conducted to 

investigate N2O emissions from plant shoots of P. zonale and E. pulcherrima. N2O 

was added to the root chambers to reach concentrations of 5, 50, and 500 vppm. As 

N2O was on one hand consumed and on the other hand produced by the substrate, 

the intended values were not stable, but varied by about 30 % during incubation. All 

in all, only very low N2O concentrations which hardly exceeded the value for ambient 

air could be measured from the shoot chambers. The calculated emission rates were 

accordingly low (Fig. 11). In case of P. zonale emission rates from the shoot chamber 

showed no relation to N2O concentration in the root chamber. N2O emission rates of 

E. pulcherrima were much lower than of P. zonale but they increased with N2O 

concentration in the root chamber. As the measured N2O values were close to the 

detection limit and negligible compared to N2O production in the substrate, danger of 

falsifying denitrification measurement was estimated to be very low. 

Fig. 11 N2O-N emission from P. zonale and E. pulcherrima shoot depending on N2O 

concentration in root chamber (incubation 25.5h) 
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2.4 Discussion 

2.4.1 Application of acetylene (C2H2) 

2.4.1.1 Optimum concentration of C2H2  

The presented data show that a concentration of 1 vol.% C2H2 completely inhibited 

N2O reduction (Fig. 4). This coincides with observations described in literature, where 

in lab experiments C2H2 was found to be an efficient inhibitor of N2O reduction at very 

low concentrations of 0.1 vol.% or 1 vol.% (Yoshinari et al. 1977, Ryden et al. 1979a, 

Daum and Schenk 1997). Still, it was decided to use a higher concentration of about 

5 vol.% for both, closed and dynamic system, in order to ensure constant inhibition of 

N2O reduction since C2H2 concentrations fluctuated by ± 2 vol.% during measure-

ment in flow-through chambers. This resulted from slight changes in the amount of 

C2H2 released from the gas flasks in the greenhouse which was probably due to 

changes in pressure induced by variation of temperature and solar radiation during 

day.  

2.4.1.2 Optimum duration of C2H2 pretreatment 

Depending on the duration of incubation, C2H2 pretreatment from 0 to 24 hours 

produced different effects on N emissions (Fig. 5). After 24 hours of incubation 

overall differences were small between treatments but still, statistically significant 

differences were found between the 0 and 2 hour pretreatments on one hand and the 

12 and 24 hour pretreatments on the other hand. In contrast to this, after 48 hours of 

incubation there seemed to be a difference between unpretreated substrate and 

pretreated substrate independent of the length of preincubation.  

The relatively low N loss observed after 24 hours of incubation in the 0 and 2 hour 

pretreatment might have resulted from insufficient distribution of C2H2 within the 

substrate and subsequent incomplete inhibition of N2O reductase. Yet, pretreatment 

with C2H2 is also practised in field experiments and Ryden et al. (1979b) 

demonstrated that short periods of 15 to 30 minutes were sufficient for C2H2 diffusion 

into soil. Considering the high air filled pore space of peat relative to mineral soil it 

seems unlikely that two hours of pretreatment should not have been efficient in 

distributing C2H2 within the substrate. On the other hand, the reason for the observed 
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difference might not be due to suboptimal but to supra-optimal C2H2 application. In 

literature there are reports on promoting effects of C2H2 on denitrification. This was 

attributed to increased availability of carbon either from acetone, a contaminant of 

C2H2 gas (Gross and Bremner 1992) or from C2H2 decomposition (Payne 1984). In 

another case a promoting effect of C2H2 was observed but could not be related to 

carbon availability (Yeomans and Beauchamp 1982). Possibly, the 12 and 24 hour 

C2H2 pretreatments lead to a relative increase in carbon availability that resulted in 

slightly higher N emissions after 24 hours of incubation. 

After 48 hours of incubation N emissions from the unpretreated substrate were lower 

than from pretreated substrates. This difference in N loss was statistically non-

significant. Still, it indicated inferiority of incubation without pretreatment, possibly 

because of incomplete inhibition of N2O reduction, and equality of the 2, 12, and 24 

hour pretreatments with regard to N2O yield. Conformity between the 2 and 12 hour 

pretreatment was confirmed in a flow-through chamber experiment with planted 

substrate (Tab. 1). 

Consequently, it was decided to use C2H2 pretreatement for experiments. To reduce 

potential side effects of C2H2 a pretreatment period of 2 hours was chosen. 

2.4.2 Side effects of C2H2  

Application of C2H2 for more than 48 h lead to irreversible leaf damage on both, 

P. zonale and E. pulcherrima (Fig. 6, 7). P. zonale appeared to be the more sensitive 

species as it reacted sooner and more uniformly than E. pulcherrima. While P. zonale 

soon developed chlorosis during C2H2 application E. pulcherrima showed a slight leaf 

epinasty. Both symptoms are reported to be related to ethylene exposition (Abeles et 

al. 1992, Serek and Prabucki 1998, Serek and Reid 2000), and traces of ethylene 

were contained in the C2H2 gas that was available for denitrification experiments due 

to its production process (Linde, personal information). The ethylene content of this 

type of gas was reported to be 73 vppm (Hyman and Arp 1987), while the threshhold 

for physiological activity is reported to be about 0.01 vppm (Abeles et al. 1992). If 

plant reaction was caused by ethylene only or by acetylene which is an ethylene 

analogue is not known.  

In contrast to obvious shoot damage, an effect of C2H2 treatment on plant roots 

characterised by evapotranspiration (Fig. 8) and carbon content of the substrate 
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(Tab. 2) could not be observed. This is in agreement with Daum and Schenk (1997) 

who reported a significant increase in O2 consumption by roots of cucumber 

seedlings in nutrient solution only after four days of C2H2 treatment (10 vol.%). The 

denitrification event in planted peat needed less time and mainly took place during 

the first 24 hours of incubation. It was concluded that within the critical time period no 

increased O2 consumption occurred in P. zonale and E. pulcherrima.  

The results indicate that C2H2 should be applied only for short periods of one or two 

days to planted substrates to avoid irreversible damage of plants. Short-term 

application of C2H2 has been recommended often in literature, but with regard to 

incomplete blocking of N2O reductase due to decomposition of C2H2 or adaptation of 

microorganisms to C2H2 (Watanabe and De Guzman 1980, Yeomans and 

Beauchamp 1982, Rolston 1986) or with regard to stimulation of denitrification (Topp 

and Germon 1986). These problems occurred only after applying C2H2 for periods 

that were longer than necessary for denitrification measurement in planted 

horticultural substrates.  

2.4.3 Closed (static) vs. aerated (dynamic) system 

From the closed system higher amounts of gaseous N were recovered than from the 

dynamic flow-through system after incubation of unplanted peat (Fig. 9). The reason 

for this might be technical, as the glass jars used for static incubation were perfectly 

air tight and allowed no loss of N gases. The flow-through chambers in contrast had 

openings which might have allowed diffusion of N gases inspite of the air stream. 

Also, precise airflow depended on perfect and stable functioning of pumps and 

airflow meters. Maybe diurnal changes in the performance of technical equiment lead 

to variability of airflow. It can only be speculated if this might have lead to 

underestimation of N loss, but it is likely that it contributed to the higher standard 

deviation observed in the flow-through system (Fig. 9). A decrease of substrate water 

content which might have accounted for lower N emissions in flow-through chambers 

during incubation was not observed.  

While the closed system appeared to be superior for studying unplanted substrate, 

difficulties arose when planted substrate was incubated. Within 24 hours plants were 

infested with fungi which was probably due to high air humidity within the jars. 

Additionally, the course of N emissions was not the same in both systems. While 
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emissions from flow-through chambers decreased and finally ceased, they remained 

at a high level in closed jars (Fig. 10). The decline of N emissions in the flow-through 

system can be attributed to alleviation of oxygen deficiency within the substrate due 

to water uptake by the plant and subsequent diffusion of air into substrate pores (see 

Chapter 4). The lacking air exchange in the closed system inhibited transpiration, and 

thus hindered diffusion of air into the substrate. Therefore, closed jars lead to an 

overestimation of N emissions and were not suitable for incubation of planted 

substrate. Exclusion of the shoot from the closed compartment was not considered 

as it required openings in the jar which were likely to allow diffusion of accumulating 

N gases. 

When N2O emission from the shoots of P. zonale and E. pulcherrima plants was 

measured, only low values close to the detection limit of N2O were obtained (Fig. 11). 

While emissions from E. pulcherrima increased with N2O concentration in the root 

chamber, no such relationship could be observed with P. zonale. It was speculated if 

the observed N2O concentrations in the shoot chamber might result from diffusion of 

gas from the root chamber because sealing of both, shoot and root compartment, 

proved to be difficult. On the other hand, both chambers were separated by spacers 

so that diffusing N2O was more likely to spread in the room. Ferch and Römheld 

(2001) clearly documented transpiration driven N2O transport from root to shoot of 

Helianthus annuus, and the same was reported for Brassica napus and Hordeum 

vulgare by Chang et al. (1998). With regard to denitrification measurement in flow-

through chambers, release of N2O from the plant shoot would lead to loss of N2O 

from the assay system which excludes the plant shoot. In the presented study, it was 

not clear if the calculated emission rates truly represented N2O transport by the plant 

shoot, but the amounts of N2O measured in the shoot chambers were too small to 

compromise denitrification measurement in flow-through chambers. Like illustrated in 

Figure 10, N emission rates from peat substrate may reach 50 µg h-1 pot-1 whereas N 

emissions from the shoot hardly reached 1 µg h-1 pot-1.  

Thus, it was decided to use the dynamic flow-through system for investigation of 

denitrification from horticultural crops while the closed system was further used for 

incubation of unplanted substrate. 
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3. Factors controlling denitrification in unplanted peat 
substrate 

3.1 Introduction 

Denitrification causes loss of nitrogen from soils and leads to emission of 

environmentally harmful N2O to the atmosphere. Data of N losses by denitrification 

published in literature were gathered, e.g., by Nieder et al. (1989) and von 

Rheinbaben (1990) and ranged from zero to about 200 kg N ha-1 year-1 with highest 

emissions resulting from vegetable crops (Ryden and Lund 1980, Schloemer 1991). 

The contribution of N2O-N emitted from agriculture to global efflux of N2O to the 

atmosphere is estimated to amount to 40 % (Oenema et al. 2001). Consequently, 

denitrification in soils has been subject to thorough investigation by agricultural 

scientists for the past three decades. Only little attention has been paid to gaseous N 

losses from horticultural peat substrates, so it was the aim of this research to 

investigate denitrification N losses from substrates that are used for horticultural 

production of potted ornamental plants.  

Several factors are essential for denitrification and for the share of N2O among its 

end products. Denitrification requires oxygen deficiency and availability of nitrate and 

easily available carbon (Groffman 1991, Tiedje 1988, Rolston 1986). In natural soils 

these regulators of denitrification are influenced by a multitude of environmental 

factors (Tiedje 1988, Weiske et al. 1995). Oxygen availablity, e.g., depends on soil 

characteristics, climate (temperature, rainfall), cultivation system (irrigation) and 

metabolism of plant and soil microorganisms. Many factors interact and vary in time 

and space, causing extremely high variability of N emissions and making assessment 

of denitrification N losses difficult (Duxbury 1986, Tiedje et al. 1989).  

Although undisturbed soil samples are considered essential for measurement of 

natural N emission rates (Tiedje et al. 1989), use of homogenized soil samples is 

recommended for basic research on denitrification (Duxbury 1986). Incubation under 

controlled conditions reduces variability resulting from the dynamic nature of 

denitrification, and also allows simultaneous incubation of a comparably large 

number of samples (Davidson et al. 1986).  
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Accordingly, it was decided to incubate homogenized samples under standard 

conditions for investigation of the main factors controlling denitrification in horticultural 

peat substrates. The focus of research was on those factors which proved essential 

in field and lab incubations of soil: oxygen and carbon availability, N supply, and 

temperature. 

3.2 Materials and Methods 

3.2.1 Experimental setup for denitrification measurement  

All denitrification measurements were performed in closed systems and with 

unplanted peat substrate. Substrate was incubated in 250 mL glass bottles or in 1.5 L 

glass jars (Weck). 

3.2.1.1 Glass bottle incubation 

To investigate the influence of oxygen concentration on denitrification, 10 g of peat 

substrate were filled into glass bottles which were closed with silicon gaskets before 

incubation. Bottles were pretreated with C2H2 for measurement of (N2+N2O)-N 

emissions (Chapter 3.2.3). After pretreatment the atmosphere of the bottles was 

replaced by argon, argon/air mixtures or air as described in Chapter 3.2.2. Then, 

C2H2 was renewed only in bottles pretreated with C2H2 and incubation started. 

3.2.1.2 Jar incubation 

Except for the experiments mentioned above all measurements were carried out in 

1.5 L glass jars as described in Chapter 2.2.1.   

Before incubation substrate was weighed, evenly filled into 280 mL plastic pots and 

closed into jars. Then it was pretreated with acetylene (C2H2) (Chapter 3.2.3).  

After pretreatment jars were opened and pots were flood irrigated within the jars with 

a nutrient solution. The composition of the solution differed according to treatment as 

described in Chapter 3.2.4.  

After fertigation jars were closed, C2H2 was renewed and incubation started (growth 

chamber). Air samples were taken with syringes after 24 h and/or 48 h of incubation. 
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3.2.2 Incubation atmosphere 

In all jar experiments incubation atmosphere consisted of ambient air. In bottle 

experiments substrate was incubated at varying oxygen concentrations. To adjust the 

atmosphere, all bottles were evacuated with a vaccum pump and subsequently 

flushed either with argon to remove oxygen or with air if oxygen was not to be 

reduced. Filling and evacuating cycles were repeated three times. Then, bottles were 

filled with 280 mL of argon, argon/air mixture or air according to their treatment.  

In experiment 1, substrate was incubated either in argon atmosphere or ambient air.  

In experiment 2 substrate was incubated in argon/air mixtures resulting in oxygen 

concentrations of 0, 1.13, 2.25, 4.5, 9. and 18 vol.%.  

3.2.3 Application of acetylene (C2H2) 

C2H2 inhibits the reduction of N2O to N2  (Yoshinari et al. 1977) and was used for 

determination of (N2+N2O)-N emission by denitrification. It was applied at 

concentrations of 5 or 10 vol.% during measurements. Immediate inhibition of N2O 

reductase was obtained by pretreating substrates with C2H2 for two hours. 

3.2.4 Substrates 

For bottle incubation at reduced oxygen concentrations a commercial peat substrate 

(pH6, standard fertilization, salt content 1 g (L substrate)-1) was used. 

Two types of substrate were chosen for jar experiments: a sieved peat substrate 

(5 mm) that was used for cultivation of plants and contained decomposable organic 

matter (root residues) and a peat substrate amended with 1 mg L-1 dried and ground 

organic matter (Lolium westerwoldicum) to insure microbial activity. Both substrates 

were adjusted to pH6 and fertilized with a complete compound fertilizer unless their 

treatment required different fertilization (see Chapter 3.2.5). Only one of the two 

substrates was used per experiment. 

 26



 

3.2.5 Fertilization of substrate and composition of fertigation solution 

The volume of fertigation solution applied was 100 mL or 150 mL per pot and 

depended on substrate moisture. Equal amounts of solution were applied within each 

experiment. The solution was taken up by the substrate by capillary rise until 

saturation. To avoid waterlogging, excessive water was removed from the jars after 2 

hours of flooding. 

For demonstration of the irrigation effect on denitrification substrate was either 

fertigated with 100 mL of a solution containing 200 mg KNO3 -N L-1 or it was not 

irrigated but mixed with 20 mg NO3 -N (KNO3) before incubation. 

Substrate amended with glucose received 100 mL per pot of a solution containing 0, 

0.04, 0.16, 0.4, or 0.6 g glucose-C per litre. The glucose-C concentration per litre 

substrate thus corresponded to 0, 14, 71, 143, and 214 mg C. 

The effect of increasing nitrate supply on denitrification was investigated by 

incubating a substrate fertilized with all nutrients but N. At fertigation pots received 

150 ml of a solution containing 0, 50, 150, and 450 mg NO3 -N L-1, respectively. 

In the experiment with varying temperatures pots were fertigated with 150 mL of a 

solution containing 150 mg NO3 -N L-1. 

3.2.6 Incubation temperature 

Bottles were incubated at 30°C in an oven, while jars were incubated in a growth 

chamber at 26°C. Only in the experiment dedicated to the effect of temperature 

substrate was incubated at 17.8, 26 and 30°C.  

3.2.7 Analytical procedures 

The analysis of N2O in all air samples was performed by a gas chromatograph 

(Chrompack 9001) with an electron capture detector (ECD) according to a method 

described by Mosier and Mack (1980).  

Mineral nitrogen was extracted by shaking 50 g of substrate with 200 mL 0.1M KCL 

for one hour. The NO3 - and NH4 -N content of the extraction solution was determined 

photometrically (Technikon Autoanalyzer). 
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3.2.8 Statistics 

Statistic calculations were performed with the SAS package. The number of 

replications per treatment was three to five. 

3.3 Results 

3.3.1 Impact of oxygen availability on denitrification 

Horticultural peat substrates of good quality characteristically maintain high air filled 

pore space during cultivation. Still, lack of oxygen may occur during irrigation, when 

air within soil pores is replaced by water. Thus, the effect of irrigation on gaseous N 

emission from a peat substrate was investigated (Fig. 1). While the flood-irrigated 

substrate produced high (N2+N2O)-N emissions within 24 hours the non-irrigated peat 

hardly produced any. The irrigation event seemed to be essential with regard to 

denitrification since it reduced oxygen availability in the substrate. 

Fig. 1 Emission of (N2+N2O)-N from a sieved peat substrate depending on irrigation 

(incubation 24 h, 5 vol.% C2H2) 
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The importance of anaerobic conditions for denitrification was confirmed when 

substrate was incubated with and without oxygen (Fig. 2). Substrate incubated 

anaerobically (argon atmosphere) emitted tremendous amounts of (N2+N2O)-N while 
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under aerobic conditions only traces of gaseous N loss occurred. During anaerobic 

incubation high emissions of (N2+N2O)-N evolved from the substrate within the first 

four hours and increased only slightly during the following days. After four hours of 

incubation more than 90% of gaseous N loss consisted of N2O-N whereas later N2O 

could not be detected any more. Obviously it had been reduced to N2 in the 

meantime. 

Fig. 2 (N2+N2O)-N and N2O-N emissions from peat substrate incubated aerobically 

(+O2) and anaerobically (-O2) (0 or 10 vol.% C2H2)  
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Another experiment was conducted to investigate the effect of oxygen concentration 

on denitrification (Table 1). It is obvious that only at 0 % oxygen there was an 

immediate production of N2O. With rising oxygen concentration the time lag of N2O 

emission increased. As the flasks were not opened until the end of incubation, 

oxygen content was likely to decrease because of consumption by microorganisms. It 

seemed that soil bacteria were in fact exhausting oxygen and that only then 

abundant production of N2O was possible. 
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Tab. 1 (N2+N2O)-N emission from peat substrate at different concentrations of 

oxygen as affected by incubation time (10 vol.% C2H2) 

(N2+N2O)-N emission [µg (L substrate)-1]  
O2 concentration [%] 3.5 h 24 h 48 h 

0 650.8 4607.0 4997.9 

1.13 0.0 3030.7 3901.3 

2.25 0.9 11.9 4325.8 

4.5 0.0 0.2 24.6 

9 0.0 0.5 7.3 

18 0.6  0.3 2.9 

3.3.2 Influence of carbon availability on denitrification 

The effect of carbon application on denitrification N loss is shown in Figure 3. The 

peat substrate already contained organic material in form of root residues, so it 

produced noticeable amounts of N gases even without C fertilization. A clear rise in N 

gas production was observed with every increase in glucose supply up to the highest 

level, indicating that the potential of denitrification was enlarged by carbon supply. 

Fig. 3 Influence of glucose-carbon supply on (N2+N2O)-N emission from peat 

substrate (24 h incubation, 10 vol.% C2H2) 
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3.3.3 Effect of nitrate supply on denitrification 

The effect of increasing nitrate supply on (N2+N2O)-N emissions from peat substrate 

was investigated (Fig. 4). Total N loss showed no significant differences between 

nitrate levels after 24 hours of incubation, but after 48 hours emissions from fertilized 

pots were significantly higher than from unfertilized pots. Regardless of the amount of 

NO3 supplied, all fertilized pots produced nearly twice as much (N2+N2O)-N than 

unfertilized pots. In contrast, N2O emissions increased steadily with NO3 supply but 

were not affected by the duration of incubation. Only at the highest N level the N2O 

content had approximately doubled.  

The share of N2O-N was high after 24 hours and increased with increasing NO3 

supply. At the highest nitrate level four times more N2O-N than N2-N was emitted. 

After 48 hours of incubation shares of N2O-N were very small and even at the highest 

NO3 treatment they only reached 50% of N2 emission.  

Fig. 4 Influence of nitrate-N supply on (N2+N2O)-N and N2O-N emission from a peat 

substrate (A) and on the ratio N2O-N/N2 (B) (0 or 5 vol.% C2H2) 
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3.3.4 Influence of temperature on denitrification 

The increase of temperature from 17.8°C to 30°C resulted in a steady rise in 

(N2+N2O)-N and N2O-N emissions (Tab. 2). The Q10 value is the factor by which rate 

constants differ for a temperature interval of 10°C. For (N2+N2O)-N production it was 

2.4  and 1.6  from 17.8°C to 26°C and from 26°C to 30°C, respectively. The share of 

N2O-N increased with temperature. 

 

 

Tab. 2 Effect of incubation temperature on (N2+N2O)-N and N2O-N emissions from a 

peat substrate (24 h incubation, 0 % or 5 % C2H2) 

 
 N emission [mg (L substrate) -1] 
temperature [°C] (N2+N2O)-N N2O-N N2O-N : N2 

17.8 0.46 a 0.17 a 0.59 
26 1.10 b 0.47 b 0.73 
30 1.80 c 0.83 c 0.85 

 LSD = 0.11 LSD = 0.06 

* Different letters indicate statistically significant differences beween treatments 
  (T-test, α = 0.05) 

3.4 Discussion 

3.4.1 Oxygen availability and source of N emissions 

Anaerobic conditions were essential for production of N gases by denitrification 

(Fig. 2). Even low oxygen concentrations inhibited the denitrification process and 

reduced N emissions to zero during the first few hours of incubation (Tab. 1). Parkin 

and Tiedje (1984) and Firestone et al. (1979), too, reported drastic reductions of 

gaseous N loss by low oxygen concentrations of 3 vol.% and 1.7 vol.% relative to 

anaerobic incubation. Firestone et al. (1979) also observed a later increase in N loss 

inspite of low oxygen treatment and they pointed out that oxygen was consumed 

during incubation, thus inducing anaerobiosis. The same was assumed for the 

increasing N emissions during incubation of peat at low O2 concentrations (Tab. 1).  
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During air incubation of peat substrate, very small but steady accumulations of N2O-

N and (N2+N2O)-N were observed (Fig. 2). The source of these emissions was not 

clear. Denitrification was considered improbable as the incubated substrate was very 

dry (~12 vol.% H2O) which seemed to exclude existence of anaerobic zones. 

Sexstone et al. (1985b) investigated denitrification activity and oxygen profiles of soil 

aggregates and reported that denitrification was limited to aggregates with anaerobic 

zones. Still, there have been reports on aerobic denitrification (Robertson and 

Kuenen 1991) and many on N2O production by nitrification (Yoshida and Alexander 

1970, Bremner and Blackmer 1979, Bollmann and Conrad 1998, Davidson et al. 

1986, Skiba et al. 1993, Koops et al. 1997). Robertson & Tiedje (1987) observed N2O 

production from incubated forest soil which could not be attributed to denitrification 

nor to nitrification and they concluded that some other organisms, possibly fungi, 

might be its source. Whatever the cause, aerobic N emissions never exceeded 0.5 % 

of anaerobic N emissions (Fig. 2). Consequently they were considered insignificant 

and unlikely to compromise denitrification measurement in the presented system.  

Emission of gaseous N (N2+N2O) from horticultural substrate proved to result mainly 

from denitrification and was dependend on oxygen deficiency. During horticultural 

plant production irrigation is the only factor which frequently induces anaerobiosis in 

substrates, so, like indicated by Figure 1, N emissions seemed to be exclusively 

linked to irrigation. 

3.4.2 Influence of carbon availability on denitrification 

Denitrification in peat substrate seemed to be severely limited by carbon supply 

(Fig. 3). The availability of carbon has often been referred to as most limiting factor of 

denitrification in soils (Swerts et al. 1996, Drury et al. 1991, Drury et al. 1998, Weier 

et al. 1993). However, anaerobic incubation of peat substrate that was not amended 

with carbon (Tab. 1) produced N losses that were comparable to those emitted after 

addition of 143 mg C L-1 during aerobic incubation (Fig. 3). The importance of oxygen 

deficiency over C availablility has been pointed out by Christensen et al. (1990a) who 

observed a higher intensity of denitrification after flooding than after addition of 

glucose. Similarly, Kapp et al. (1990) observed higher denitrification potential during 

incubation at optimum conditions compared to field incubation. They concluded, like 

Burford and Bremner (1975), that under anaerobic conditions denitrification was 
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controlled by C supply. Consistently, the presented data indicate that denitrification in 

peat substrate depended predominantly on anaerobiosis. 

3.4.3 Effect of nitrate supply on denitrification 

Nitrate supply only affected (N2+N2O)-N emissions at extremely low levels after 48 

hours of incubation (Fig. 4). While N emissions were low when substrate was 

irrigated with water only, denitrification N loss was the same at all fertilization levels. 

This indicated that beyond a very low nitrate supply denitrification in peat substrate 

was not limited by nitrate, but by carbon. Ottow (1991) calculated exemplary that 

nitrate would only be the restricting factor if the ratio of NO3
- to H+ donator was 1:5 or 

even smaller. The equal N loss observed at all fertilized levels indicates that 

denitrification was independent of nitrate and that more NO3
- than H+ was available 

(Ottow 1991, Abou Seada and Ottow 1988). In literature, limitation of denitrification 

by NO3 supply is considered to be restricted to nitrogen poor, natural ecosystems 

and was often not observed in arable soils (Myrold and Tiedje 1985, Ryden and Lund 

1980, Drury et al. 1991, Weier et al. 1993).  

In contrast, N2O-N emissions increased with nitrate supply and consequently lead to 

rising N2O-N:N2 ratios. This increasing effect of nitrate availability on N2O emissions 

was often described in literature (Ryden and Lund 1980, Sahrawat and Keeney 1986, 

Firestone et al. 1979, Weier et al. 1993) and attributed to "preferential acceptance of 

electrons by NO3 over N2O" (Swerts et al. 1996). 

Nitrate supply in horticultural substrate is usually kept at a relatively high level by 

fertigation during cultivation. Thus, limitation of the denitrification process because of 

low nitrate availability is not to be expected in horticultural production. Increased 

nitrate fertilization is unlikely to promote denitrification in total, but it may lead to 

increased emission of environmentally harmful N2O.  

3.4.4 Influence of temperature on denitrification 

Increasing temperature showed a promoting effect on denitrification (Tab. 2), which is 

consistent with observations reported in literature (Stanford et al. 1975, Blackmer et 

al. 1982, Ottow 1991). According to von Bischopinck and Ottow (1985) Q10 values 

for denitrification in soil incubated anaerobically were 1.6 to 1.9 for temperatures from 
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10°C to 60°C. Stanford et al. (1975) reported a Q10 value of about 2 from 15 to 35°C 

for waterlogged soils of different types. The observed Q10 values from aerobically 

incubated peat ranged from 1.6 to 2.4 for temperatures from 17.8°C to 30°C. These  

comparatively high values in the aerobic incubation system were probably due to the 

effect of temperature on oxygen availability and spreading of anaerobic zones. This is 

confirmed by de Klein and van Logtestijn (1996) who observed a much stronger 

temperature effect on the denitrification rate of non-irrigated than of irrigated soil. 

They concluded that oxygen availability and anaerobiosis were more affected by 

increasing temperature in the non-irrigated soil.  

3.4.5 Summary 

The lab incubation showed that oxygen and carbon availablility were the factors 

which mainly controlled denitrification in horticultural peat substrates. Rising 

temperature increased total N emissions while NO3 availability only influenced total N 

loss at extremely low levels which are not likely to be found in fertilized substrates. 

The share of N2O from total N emissions was increased by both, increasing nitrate 

supply and temperature. The transferability of the presented results to planted 

substrate and greenhouse conditions will be discussed in the following chapters. 
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4. Dynamics of denitrification in planted peat substrate 

4.1 Introduction 

Nitrate is lost from plant production systems mainly by two ways: by denitrification 

and by leaching. The physiology of denitrification has become well known through 

laboratory research but still, knowledge of environmental parameters does not allow 

reliable prediction of denitrification activity at field scale (Groffman 1991, Mosier et al. 

1996). Although denitrification is mainly controlled by anaerobiosis and availability of 

nitrate and carbon, it is a very complex and dynamic process as it is affected by 

many interacting physical, chemical, and biological soil parameters (Groffman 1991, 

Tiedje et al. 1989). The sensitivity of the denitrification process to spatial or temporal 

changes in the soil environment causes the characteristically high variability of 

gaseous N emissions (Folorunso and Rolston 1984). Tracing back the causes of high 

variation in denitrification requires thorough analysis of the soil in question. 

Consequently, the transfer of knowledge on denitrifying activity from soil to soil or 

from soil to substrate is limited.  

Most research on denitrification has been carried out with agricultural soils, but it is 

the objective of this study to investigate denitrification in horticultural substrates and 

cultures of potted ornamental plants. In previous studies of denitrification unplanted 

peat substrate showed much commonness with agricultural soils (see Chapter 3). 

But, so far the plant had been left out of the assay system, as it exerted a strong 

influence on denitrification in the horticultural growing system (see Chapter 2). In 

literature, various effects of plants on denitrification are described. Stimulation of 

denitrifying activity in planted soils has been related to oxygen consumption by roots 

and to rhizodeposition, which both increase anaerobiosis and availability of carbon to 

denitrifiers (Mahmood et al. 1997, Wollersheim et al. 1987, Trolldenier 1989, Smith 

and Tiedje 1979). Reducing effects of plants on denitrification, on the other hand, 

were attributed to plant nitrate uptake and resulting substrate deficiency for nitrate 

respiration (Ryden 1983, Mahmood et al. 1997, Smith and Tiedje 1979).  

To clarify the influence of plants on denitrification in a horticultural growing system, 

denitrification was measured in planted peat substrate. The focus of research was 
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laid on plant and substrate characteristics and therefrom resulting sources of 

variability of denitrification N loss.   

4.2 Materials and methods 

4.2.1 Experimental setup for denitrification measurement  

Flow-through chambers like described in Chapter 2.2.2 were used for measurement 

of denitrification from planted substrate.  

Before the start of the experiment by flood irrigation, substrates were pretreated with 

acetylene (C2H2) within the chambers as described in Chapter 4.2.2.  

The irrigation event was defined start of the experiment. Air samples were taken with 

syringes topped with gauge needles from silicon tubes at the air outlet of the 

chambers every two to four hours until N2O emissions ceased.  

4.2.2 Application of C2H2  

For determination of (N2+N2O)-N emission by denitrification, 5 % C2H2 was added to 

the chamber atmosphere. To guarantee immediate inhibition of N2O reduction to N2  

substrates were pretreated for two hours with 5 vol.% C2H2 prior to irrigation. 

4.2.3. Duration of fertigation and composition of fertigation solution   

For denitrification measurement, pots were fertigated with 1 L of a solution containing 

150 mg NO3 -N L-1. The irrigation solution was released by an opening at the bottom 

of the chambers after two hours.  

To investigate the effect of permant flooding on denitrification the fertigation solution 

remained in the chambers throughout the whole experiment. 

During cultivation plants were fertigated with 1g L-1 of a full compound fertilizer 

(Flory3, Euflor) according to horticultural practice. 
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4.2.4 Substrates 

Peat based substrates were sieved (5 mm), limed (pH6) and mixed with 1 g L-1 of a  

full compound fertilizer (Flory3, Euflor) prior to planting. The peat content of the 

substrate was either 100 vol.% or 80 vol.%. Additional components were compost or 

cocopor.  

4.2.5 Plant material 

Experiments were conducted with plants of Pelargonium zonale ‘Grand Prix’ and 

Euphorbia pulcherrima 'Sonora Red'. Plants were propagated by cuttings and rooted 

in small peat nuggets (Jiffy7) for two weeks. Then plants were potted into 340 mL 

plastic pots and cultivated for at least four weeks to guarantee rooting of the 

substrate. For each experiment plants of the same species and set were used, i.e. 

plants were of the same age and of similar growth. 

 4.2.6 Inhibition of transpiration 

To reduce transpiration plants were covered with cut open plastic bags that allowed 

air exchange but still, increased relative humidity beneath the plastic cover. 

4.2.7. Analytical procedures 

4.2.7.1 N2O 

The analysis of N2O in all air samples was performed by a gas chromatograph 

(Chrompack 9001) with an electron capture detector (ECD) according to a method 

described by Mosier and Mack (1980).  

 

4.2.7.2 Water content 

During denitrification measurement every four to eight hours pots were taken from 

the chambers and weighed. At the end of the experiment plants were harvested, the 
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fresh weight of the shoot and of the rooted substrate was determined. Then, the 

substrate was dried at 105°C and weighed again. Water content (vol.%) was 

calculated from pot volume, fresh weight of shoot, dry weight of rooted substrate, and 

fresh weight during the experiment.  

The water content of unplanted potted substrate was determined by weighing the 

substrate before and after drying at 105°C . 

4.2.7.3 Air filled pore space 

The air filled pore space was calculated by substracting the water content (vol.%) 

from the total pore space. The total pore space was determined by means of the 

‘Quick-Method’ described by Wrede (2001).  

4.2.7.4 Vapour pressure deficit (vpd) 

Temperature and relative humidity were determined during denitrification 

measurements. Both values were used to calculate the vapour pressure deficit 

(Murray 1967, Malberg 2002):   

 

vpd = e°(T) - e 

e°(T) = 0.6108exp [17.27*T/(T+237.1)] 

e = e°(T) * rh/100 

 

vpd = vapour pressure deficit [kPa] e = vapour pressure [kPa] 

e°(T) = saturation vapour pressure [kPa] rh = relative humidity [%] 

T = Temperature [°C] 

4.2.7 Statistics 

Statistics were performed by use of the SAS package. Measurements were 

conducted with six replications per treatment.  
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4.3 Results 

When denitrification N loss was measured in flow-through chambers from planted 

pots, N emissions always followed the same pattern (Fig. 1). Two to four hours after 

irrigation N2O started to be emitted. Emissions increased more or less sharply until 

they reached a maximum and then decreased again towards zero. The end of 

emissions was often observed around 34 hours after irrigation. Although the pattern 

was the same, the height and also the width of the peaks differed amoung pots 

(Fig. 1). Thus, total N loss showed the characteristically high variability of 

denitrification measurements. In the following chapters causes of emission patterns 

and variability are investigated. 

Fig. 1 (N2+N2O)-N emissions from a peat substrate planted with  

P. zonale following irrigation (5 vol.% C2H2) 
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4.3.1 Influence of substrate air/water content on denitrification 

In Figure 2 (N2+N2O)-N emission rates as well as air and water content of a peat 

substrate after irrigation are shown. Mean N emissions out of six replicates followed a 

peak shaped curve and showed high variability. Mean water content of the substrate 

decreased steadily from the end of irrigation on and with time its standard deviation 
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increased. As the air content was the reflection of the water content, it steadily rose 

after irrigation.  

Fig. 2 (N2+N2O)-N emission rate, water and air content following irrigation of a peat 

substrate planted with P. zonale (5 vol.% C2H2) 
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When N emissions were related to substrate air content it resulted that below an 

average air content of  30 vol.% N was emitted at rates varying from 0 to 60 µg pot -1 

h-1 (Fig. 3). Yet, above 30 vol.% air no significant emissions occured at all. There 

seemed to be a threshold value above which denitrification was limited by presence 

of oxygen,  which is also discussed in Chapter 6.  

It was concluded that a decrease in N emission rate depended on a decrease of 

water content. To confirm this, N losses from planted pots were measured after 2 h 

and 52 h of irrigation (Fig. 4). After irrigation substrate water content of the control 

treatment steadily decreased, while that of the continuously irrigated substrate 

slightly increased. N emissions of both treatments did not differ much at first. But, 

after 22 hours emissions of the 2 h irrigated pots started to decrease while emissions 

of the permanently flooded pots further increased and never ceased until the end of 

the experiment. Thus, it seemed that the decrease of denitrification was primarily due 

to reduction of substrate water content and increased oxygen availability. 
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Fig. 3 (N2+N2O)-N emission rate depending on air filled pore space of a peat 

substrate planted with P. zonale (5 vol.% C2H2) 
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Fig. 4 (N2+N2O)-N emission rate and water content of peat substrate planted with 

E. pulcherrima following irrigation (2 h) or permanent flooding (5 vol.% C2H2) 
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4.3.2 Effect of transpiration on substrate air/water content and denitrification 

Air and oxygen availability within a substrate depend on water content which is a 

dynamic parameter. The decrease of water content after irrigation is mainly due to 

uptake and transpiration by plants. Thus, the influence of transpiration on N emission 

rates and water content of planted substrates was investigated (Fig. 5). At first, N 

emission rates of both treatments, with and without inhibition of plant transpiration, 

were similar. But when emissions of the control treatment decreased, those of the 

inhibition treatment still rose and only sank when the transpiration blockage was 

relieved after 28 hours. The water contents of the substrates behaved accordingly. In 

the control treatment it decreased rapidly, while in the inhibition treatment it sank only 

slightly until the end of transpiration blockage. 

In this experiment, transpiration proved to be an important factor influencing 

denitrification via water and air content of the substrate. The amount of water 

transpired by plants showed a close correlation to climatic factors, temperature and 

relative humidity, which are integrated in the vapour pressure deficit (vpd) (Fig. 6). 

The data was obtained during five denitrification measurements under different 

weather conditions and shows a strong increase of transpiration with increasing vpd.  

Fig. 5 (N2+N2O)-N emission rate and water content of a peat substrate planted with 

P. zonale following irrigation with or without blockage of transpiration (5 vol.% C2H2) 
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Fig. 6 Relationship of vapour pressure deficit and transpiration of P. zonale plants 
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When N loss of P. zonale pots from different measurements was related to vpd of the 

same dates, increases of vpd were indeed accompanied by decreases of N loss 

(Fig. 7). But still, there was some variation in N loss that did not correspond to vpd. 

Thus, it appeared that climate and transpiration were not the only factors controlling 

denitrification in planted substrates. 

Fig. 7 (N2+N2O)-N emissions by pots of P. zonale planted in peat substrate and 

vapour pressure deficit 
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4.3.3 Influence of substrate moisture on air/water content after irrigation  

During experiments it was observed that not only the drying of substrate after 

irrigation showed high variability, but that also the maximum water content that was 

reached after irrigation differed among pots (Fig. 8). The water content of pots varied 

strongly before irrigation and very dry substrates were included. After two hours of 

flooding water contents among pots still varied by up to 10 vol.%. With time variability 

grew stronger and often it were the same pots that maintained a very low or very high 

water content before and after irrigation. Consequently, the threshold value of water 

content for denitrification was reached after 10 hours or after 22.5 hours. This 

variability in duration of denitrifying activity was likely to be reflected in N loss. While 

variability of water content decrease after irrigation might be related to differences in 

plant size, the variability of maximum water content right after irrigation was probably 

due to substrate characteristics.  

To investigate the relationship between water content before and after irrigation, 

potted substrate with adjusted water contents ranging from 10 to 70 vol.% were flood-

irrigated (Fig. 9). Unplanted substrate was used to eliminate a possible influence of 

the plant. The positive relationship of water content before and after irrigation was 

very clear. 

Fig. 8 Water content of a peat substrate planted with P. zonale  before  

and after flood irrigation (2 h) 
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Yet, homogeneous water content and uniform distribution of water is unusual in 

planted substrate (Chapter 7). Still, when the experiment was repeated with planted 

substrate the positive relationship between water content before and after irrigation 

was the same as with unplanted substrate (Fig. 10). 

Fig. 9 Relationship of water content before and after flood irrigation (2 h)  

of a peat based culture substrate 

Water content [vol.%] before irrigation

0 10 20 30 40 50 60 70 80

W
at

er
 c

on
te

nt
 [v

ol
.%

] a
fte

r i
rr

ig
at

io
n

0

50

60

70

80

r 2 = 0.83

 

Fig. 10 Relationship of water content before and after flood irrigation (2 h)  

of a peat substrate planted with P. zonale 
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4.4 Discussion  

4.4.1 Effect of substrate air and water content on denitrification 

The flow-through system allowed to observe the dynamics of denitrification from 

undisturbed samples of planted substrate (Fig. 1, 2). N emissions were obviously 

related to the irrigation event as they increased significantly only a few hours after 

irrigation. The length or duration of the denitrification process seemed to be 

determined by oxygen availability. Right after irrigation the air filled pore space of the 

substrate was at its minimum, but it steadily increased during time following irrigation 

and N emissions were only observed as long as the average air content of the 

substrate was below a threshold value of 30 vol.% (Fig. 3). The dependency of 

denitrification on low air filled pore space was confirmed when return of air into the 

substrate was impeded by waterlogging (Fig. 4). Then, N emissions did not cease in 

contrast to emissions from the control treatment which decreased when substrate 

water content grew smaller after irrigation.  

The above observations are in accordance with literature. Highest peaks of N 

emissions from soil were recorded after rainfall or irrigation events (Ryden and Lund 

1980, Sexstone et al. 1985a, Bronson and Moiser 1993, Rolston et al. 1982) and 

denitrification N loss proved to be positively correlated with soil water content 

(Shelton et al. 2000, Weier et al. 1993, Linn and Doran 1984, Ryden 1983). Groffman 

and Tiedje (1988) used soil cores in a lab experiment to prove the promoting and 

inhibiting effect of wetting and drying cycles, respectively, on denitrification.  

Even more than in experiments with unplanted substrate (Chapter 3), oxygen 

availability seemed to be the crucial factor for denitrification in planted peat substrate. 

4.4.2 Threshold oxygen concentration 

Data of N emissions and air content of the substrate allowed deduction of a threshold 

value for denitrification (Fig. 3). Above a value of approx. 30 vol.% air, which 

corresponds to 68 % water filled pore space (wfps), denitrification seemed to be 

limited by presence of oxygen and no more N emissions occurred. Still, the threshold 

was not uniform for all peat substrates and it showed considerable variation (Chapter 

6). Also, it did not reflect air distribution within the substrate as it is only a mean value 
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of the substrate air content per pot. Consequently, deduction of the air content or 

oxygen level limiting denitrification at its very site of action was not possible.  

The sudden rise of denitrification N emissions at a certain water level has often been 

observed and various threshold values for water content increasing or limiting 

denitrification are reported in literature. Values were often presented as wfps as this 

unit was considered to ease comparison between soils of different texture (Aulakh et 

al. 1991b, de Klein and van Logtestijn 1996). Still, values from literature vary strongly 

and range from 62 to 90 % wfps (Ryden 1983, Shelton et al. 2000, Aulakh et al. 

1991b, de Klein and van Logtestijn 1996, Weier et al. 1993).  

Thus, the observed value of 68 % wfps, or 30 vol.% air content of substrate, fits well 

into the reported range of threshold values and confirms the superior importance of 

the highly dynamic air and water balance of peat substrate with regard to 

denitrification. The cause of the variability of threshold values which has been 

observed in denitrification studies is further investigated in Chapter 6.  

4.4.3 Influence of plant characteristics on denitrification 

The dynamic nature of denitrification N emissions, i.e. increasing emissions after soil 

wetting and decreasing emissions during drying later on, became very clear in the 

presented study (Fig.1, 2, 4, 5). As discussed above, the course of N emissions was 

mainly influenced by dynamics of substrate water content. Transpiration and water 

uptake by the plant reduced substrate water content, which resulted in a termination 

of N emissions (Fig. 5). Evapotranspiration of each plant was influenced itself by 

climate and plant size (leaf area) (Fig. 6), which are both variable parameters. So, at 

least part of the observed variability in denitrification N loss was probably linked to 

variability of those factors that affect evapotranspiration. 

The influence of the plant on denitrification presumably was especially high in this 

horticultural growing system, because plants only disposed of a very limited substrate 

volume (320 mL per plant). Within two to three weeks after planting of rooted cuttings 

the substrate volume was penetrated by roots and the degree of rooting further 

increased with time. Besides limiting denitrification by water uptake, plant roots likely 

promoted denitrification by consuming oxygen, especially when air exchange 

between substrate and atmosphere was inhibited by high water content (see also 

Chapter 5). 
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The promoting effect of plants on denitrification has been described in literature and 

was attributed to oxygen consumption and rhizodeposition (Smith and Tiedje 1979, 

Mahmood et al. 1997, Wollersheim et al. 1987, Prade and Trolldenier 1988). 

Limitation of denitrifying activity by plants was also observed, but it was ascribed to 

low nitrate availability in the rhizosphere due to nitrate uptake by plants (Ryden 1983, 

Smith and Tiedje 1979). There is only little information on the influence of plant water 

uptake on denitrification. Possibly this is because most research has been carried out 

in agricultural soils where under field conditions the influence of plants on soil water 

dynamics is less obvious than in the presented study.  

4.4.4 Influence of substrate characteristics on denitrification 

During denitrification experiments it was observed that the water content reached 

during flood irrigation varied between pots (Fig. 8). Still, the substrate volume per pot 

was the same, homogeneous substrates were used, and great care was taken at 

filling and planting of pots to avoid irregular compactions. Further investigations 

showed that a low water content before irrigation lead to a comparatively low water 

content after irrigation (Fig. 9, Fig. 10). It is likely that a low initial water content 

reduced the duration of denitrification, i.e. the time period until the threshold water 

content, below which denitrification was inhibited (Fig. 3), was reached (Fig. 8). Thus, 

inhomogeneity of substrate water content among pots was probable to be reflected in 

the variability of N loss. 

The influence of substrate moisture on water uptake during irrigation is presumably 

related to the wettability of peat. It is known that many peat substrates become 

hydrophobic once they have been air-dried (Michel et al. 1999, Valat et al. 1991) and 

that drying reduces their water retention capacities. While it could be demonstrated 

that peat substrate with a lower water content before irrigation emitted less N during 

denitrification measurement (Chapter 6), drying of soil is reported in literature to 

promote denitrification. Groffman and Tiedje (1988) observed a stimulation of 

denitrification by drying and rewetting of soil, and they attributed this to increased 

aerobic soil respiration and thus reduced soil O2 levels, and also to increased 

mineralization of C and N from dead microbial biomass. Patten et al. (1980) studied 

the effect of drying and air-dry storage of soils on the denitrification capacity. They 

incubated pretreated soils anaerobically and observed that drying increased the 
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denitrification capacity, which they ascribed to increased availability of soil organic 

matter. Studies by Lundquist et al. (1999) confirmed that sequential wetting and 

drying increased the amount of dissolved organic carbon in soil. As far as the author 

knows, there are no reports in literature on negative relationships between low soil 

water content before induction of denitrification and denitrification N loss. Yet, the 

problem of wettability is not restricted to peat, but has also been reported for soils 

(Wallis and Horne 1992). However, it might be more evident with peat because of its 

organic origin and its peculiar hydric behavior (Niggemann 1970, Valat et al. 1991). 
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5. Effect of plant age and carbon supply on denitrification 

5.1 Introduction 

Previous studies of denitrification from potted ornamental plants indicated that plants 

limited denitrification by decreasing substrate water content after irrigation and by 

thus relieving oxygen deficiency (Chapter 4). Yet, the influence of plant growth on the 

speed of water content decrease and on denitrification N loss during the growing 

period has not been investigated. Also, potted plants might have further effects on 

denitrification. While nitrate availability was considered granted by fertigation, it was 

estimated that carbon supply by plant roots may considerably increase denitrification. 

Studies with unplanted peat substrate indicated that carbon availability was a strong 

controller of denitrification in this growing medium (Chapter 3). 

In literature, positive as well as negative plant effects on denitrification in soil have 

been reported. Smith and Tiedje (1979) measured increased denitrification rates in 

the rhizosphere of plants relative to the bulk soil. Yet, they pointed out that nitrate 

deficiency due to uptake by roots might still decrease denitrification. Similarly, 

Mahmood et al. (1997) reported higher denitrification from planted than from 

unplanted soil as long as nitrate availabilty was high. They attributed this to increased 

carbon availability. While planted and unplanted soil were often compared in 

literature, little information exists on the effect of increasing plant age or growth on 

denitrification and on the resulting variability of N loss during cultivation. Haider et al. 

(1987) carried out denitrification measurements during the growth cycle of maize. 

They observed a stimulation of denitrification by plants at the end of the growing 

period when root biomass declined. Quian et al. (1997) in contrast, observed higher 

N loss from maize planted soil at an early growth stage of plants. They attributed this 

to high root exudation of young plants and to high availability of nitrate in soil.  

To clarify the influence of plant age on denitrification and to assess its contribution to 

variability of N loss during pot plant cultivation, experiments were conducted with four 

and eight week old plants of P. zonale as well as with and without glucose-C 

amendment of planted substrate. 
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5.2 Materials and methods 

5.2.1 Experimental setup for denitrification measurement  

Flow-through chambers like described in Chapter 2.2.2 were used for measurement 

of denitrification from planted substrate.  

Before the start of the experiment by flood irrigation, substrates were pretreated with 

acetylene (C2H2) within the chambers as described in Chapter 5.2.2.  

The irrigation event was defined start of the experiment. Air samples were taken with 

syringes topped with gauge needles from silicon tubes at the air outlet of the 

chambers every two to four hours until N2O emissions ceased.  

5.2.2 Application of C2H2  

For determination of (N2+N2O)-N emission by denitrification, 5 vol.% C2H2 was added 

to the chamber atmosphere. To guarantee immediate inhibition of N2O reduction to 

N2  substrates were pretreated for two hours with 5 vol.% C2H2 prior to irrigation. 

5.2.3. Duration of fertigation and composition of fertigation solution   

For denitrification measurement, pots were fertigated with 1 L of a solution containing 

150 mg NO3 -N L-1. To investigate the effect of carbon availability on denitrification, 

80 mg L-1  glucose-C were added to the nitrate solution. The irrigation solution was 

released by an opening at the bottom of the chambers after two hours.  

During greenhouse cultivation plants potted in peat substrate were fertigated with 

1g L-1 of a full compound fertilizer (Flory3, Euflor) according to horticultural practice. 

5.2.4 Substrates and plant material  

Substrates used for experiments were commercial, full fertilized white peat 

substrates. 

Denitrification measurements were done with potted plants of Pelargonium zonale 

‘Grand Prix’. Plants were propagated by cuttings and rooted in small peat nuggets 
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(Jiffy7) for two weeks. Then, plants were potted into 340 mL pots and cultivated for at 

least four weeks to guarantee rooting of the substrate.  

Generally, plants of the same set were used, i.e. plants were of the same age and of 

similar growth. The effect of plant age was investigated on four and eight week old 

plants. 

5.2.5 Analytical procedures 

5.2.5.1 N2O 

The analysis of N2O in all air samples was performed by a gas chromatograph 

(Chrompack 9001) with an electron capture detector (ECD) according to a method 

described by Mosier and Mack (1980).  

 

5.2.5.2 Water content 

During denitrification measurement every four to eight hours pots were taken from 

the chambers and weighed. At the end of the experiment plants were harvested, the 

fresh weight of the shoot and of the rooted substrate was determined. Then, the 

substrate was dried at 105°C and weighed again. Water content (vol.%) was 

calculated from pot volume, fresh weight of shoot, dry weight of rooted substrate, and 

fresh weight during the experiment.  

The water content of unplanted potted substrate was determined by weighing the 

substrate before and after drying at 105°C . 

5.2.5.4 Statistics 

Statistics were performed by use of the SAS package. The number of replicates was 

six per treatment. 
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5.3 Results 

5.3.1 Influence of plant age on denitrification N loss   

N emissions from pots of four and eight week old plants of P. zonale were measured 

simultaneously to investigate the influence of plant age on denitrification. After four 

and eight weeks of cultivation plants had reached a mean shoot fresh weight of 

13.8 g and 38.8 g, respectively. N loss tended to be higher from eight week old plants 

(Fig. 1). Yet, differences of mean emissions were non-significant.  

The course of N emissions, in contrast, showed noticeable differences (Fig. 2). 

Emissions from the older pots increased steeply after irrigation, reached a maximum 

after eight hours, and then declined just as steeply as they rose. No more N 

emissions could be found after 14 hours of incubation. The course of emissions from 

the four week old pots was more gentle, rise and decline were not as steep and the 

maximum emission rate was only half as high as of the older pots. But, emissions 

from the younger pots lasted for a longer period and ceased only 24 hours after 

irrigation.  

Fig. 1 Influence of plant age on (N2+N2O)-N and N2O-N emissions from potted 

P. zonale plants following irrigation (0 % and 5 vol.% C2H2) 
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Fig. 2 Influence of plant age on (N2+N2O)-N emissions and substrate water content of 

potted P. zonale plants following irrigation (5 vol.% C2H2)  
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The decrease of substrate water content was more rapid in eight than in four week 

old pots (Fig. 2). When N emissions were related to substrate water content (Fig. 3), 

the same threshold value was observed for both treatments: gaseous N emissions 

only evolved at water contents above 54 vol.%. 

Fig. 3 Influence of plant age on (N2+N2O)-N emissions and substrate water content of 

potted P. zonale plants following irrigation (5 vol.% C2H2) 
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Although the duration of denitrifying activity seemed to shorten with increasing plant 

age, the older pots still tended to emit more N than the younger pots. It was 

speculated that higher emissions from older plants might have been due to increased 

carbon availability. Thus, the effect of carbon supply on denitrification in planted 

substrate was investigated in the next experiment. 

5.3.2 Influence of carbon supply on denitrification N loss   

When pots of P. zonale were amended with glucose-C, denitrification N loss was two 

times higher than from unamended control pots (Tab. 1). The duration of denitrifying 

activity was about the same in both treatments, but N emission rates were higher 

from glucose treated substrate than from untreated substrate (Fig. 4). These results 

indicated that denitrification in planted substrate was generally limited by availability 

of carbon. 

Fig. 4 Influence of glucose supply on (N2+N2O)-N emissions from pots of P. zonale 

following irrigation (12 mg glucose-C per pot , 5 vol.% C2H2) 
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Tab. 1 Influence of glucose supply on denitrification N loss from pots of P. zonale 

following irrigation (12 mg glucose-C per pot , 5 vol.% C2H2) 

treatment (N2+N2O)-N [µg pot-1] 

+ glucose 87 ± 29 a* 

- glucose 42 ± 23 b* 
 

*Differing letters indicate statistically significant treatment effects (t-Test, α=0.05) 

5.4 Discussion 

N emission rates of eight week old pots increased sooner and reached a more than 

two times higher maximum than those of four week old pots (Fig. 2). The older plants 

had a nearly threefold higher shoot weight than the younger plants (Chapter 5.3.1), 

and it may be assumed that root mass also increased with plant age. Higher root 

mass might have lead to accelerated consumption of oxygen within the substrate and 

thus, to a faster increase of N emissions. Additionally, higher root mass might also 

have caused increased availability of carbon. 

The stimulating effect of glucose-C supply on N emissions (Fig. 4) indicated that in 

planted peat substrate denitrification was limited by carbon availability. The increase 

of N emissions due to plant age (Fig. 2) was similar to that after glucose amendment 

(Fig. 4). Thus, an increase of carbon availability possibly had contributed to higher N 

emission rates from older relative to younger plants. Yet, with and without glucose 

amendment the rise of N emissions began at the same time, while N emissions 

increased sooner from pots of eight than of four week old plants (Fig. 2). This might 

hint at accelerated oxygen consumption by older relative to younger plants. Still, the 

threshold value of substrate water content was the same independent of plant age 

(Fig. 3). 

In literature, there is clear evidence that denitrification in soil is promoted by low 

oxygen and high carbon availability (Parkin and Tiedje 1984, Weier et al. 1993). 

There is also evidence that plants may stimulate denitrification by increasing 

availability of carbon by rhizodeposition and by contributing to oxygen depletetion 

(Prade and Trolldenier 1988, Bakken 1988, Smith and Tiedje 1979). But, very little 
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information exists on plant effects on denitrification depending on age. Wollersheim 

et al. (1987) compared 7 and 14 day old plants and found no increase of N loss with 

plant age unless soil was compacted. Yet, the little difference in plant age might have 

reduced effects on denitrification. In other studies, denitrification was measured 

continuously during plant cultivation. But, these may not allow deduction of plant age 

effects because conditions for denitrification may change with time. Studies of Qian 

et al. (1997) and von Rheinbaben and Trolldenier (1984), e.g., indicated that changes 

of N emissions during plant growth might be due to changes in soil nitrate availability. 

Consequently, simultaneous measurement and uniform conditions for denitrification 

like in the presented study were considered necessary for evaluating the influence of 

plant age on denitrification.  

From the presented results it may be concluded that stimulating plant effects by 

P. zonale on denitrification increased with increasing plant age. Own attemps to 

quantify C availability depending on plant age have failed (data not shown). Thus, it 

can only be speculated that both, increased carbon availability and oxygen 

consumption may have contributed to higher N emission rates from pots of eight 

relative to four week old P. zonale plants.  

While eight week old plants produced higher N emission rates, the duration of 

denitrifying activity was about 10 hours shorter than that of four week old plants 

(Fig. 2). Bigger plant size and leaf area presumably lead to higher transpiration and 

thus, to the observed faster decrease of substrate water content in the older pots.  

In literature, the most often encountered negative plant effect on denitrification is 

nitrate consumption. As far as the author knows no studies have focused on water 

content reduction as affected by plant age and its effect on denitrification. In the 

presented cultivation system the substrate volume per plant was comparatively low 

(320 mL) and thus, plant effects on water content were presumably much more 

pronounced than in natural soils.  

This study confirmed, that plants exert positive as well as negative effects on 

denitrification, and it showed that these effects may change during plant growth. In 

the presented cultivation system, stimulating (oxygen consumption, C supply) as well 

as restricting effects (water consumption) on denitrification increased with plant age. 

The difference of summed up N loss between four and eight week old plants was 

small and statistically non-significant (Fig. 1). Thus, the contribution of plant age on 

variability of N emissions during cultivation of potted plants was considered to be low. 
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6. Physical substrate characteristics and denitrification 

6.1 Introduction 

N loss by denitrification is a factor which is often missing in N balances due to its 

difficult assessment. Apart from the requirement of technical equipment and 

elaboration of methodical practice, denitrification is typically subjected to high 

variability. This variability results from a multitude of variable, environmental factors 

which have an impact on the main controllers of the denitrification process, i.e. 

oxygen deficiency, availability of NO3 and carbon, temperature and soil pH. 

Benckiser (1994) elaborated a very descriptive and complex scheme presenting the 

many factors and interactions which affect denitrification in soil. Beside chemical soil 

characteristics, like content of mineral nutrients, organic matter and pH, also physical 

soil properties have shown impact on denitrification, mostly by influencing water and 

air balance of a soil. For example, increased bulk density or soil compaction was 

reported to enhance denitrification in agricultural soils (Torbert and Wood 1992, 

Ruser et al. 1998, Bakken et al. 1987). Soil texture was suggested to affect 

denitrification by determining water holding capacity and air filled pore space (Aulakh 

et al. 1991b, Sexstone et al. 1985b).  

These physical properties are also variable in horticultural substrates. The 

compaction of substrate is considered to be rather a product of potting practice of 

horticulturists, but there are more factors influencing physical substrate properties. 

Although they are mostly based on white peat, substrates vary in composition and 

quality. Often organic components like wood fibres and, to a lesser extent, rice husks 

are added to improve aeration of peat substrates. Also among peats there are 

differences in physical properties, depending e.g. on degree of decomposition, peat 

origin, and particle size (Uosukainen and Lötjönen 1997, Michiels et al. 1993). 

Especially the particle size has been repeatedly related to air and water balance of 

substrates (Scharpf 1997, Limbers and Rehme 1997, van Schie 1999, Verhagen 

1997). In previous experiments, it was observed that water content of substrates after 

irrigation was not uniform, but depended on substrate water content before irrigation. 
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This was attributed to the problem of wettability of dried peat (Niggemann 1970, Valat 

et al. 1991), which apparently had compromised water capacity (Chapter 4).  

As denitrification in horticultural peat substrates proved to be primarily controlled by 

water and air dynamics (Chapter 4), it was assumed that changes in physical 

substrate characteristics were reflected in denitrification N loss. To investigate the 

influence of physical substrate properties on denitrification, denitrification N loss was 

measured from planted substrate in flow-through chambers (Chapter 2). Additionally, 

changes in physical substrate properties which are most closely related to 

denitrification (pore space, air and water capacity), were surveyed by laboratory 

analysis (‘Quick’-method) of unplanted substrate (Wrede 2001) .  

The substrate treatments that were chosen for experiments were the following:  

 

1. Drying of substrate (reduction of wettability),  

2. Compaction of substrate (increased bulk density),  

3. Sieving of substrate (reduction / homogenization of particle size) and  

4. Substrate composition (addition of wood fibres or rice hulls to peat).  

 

Additionally, pore volume, air and water capacity of planted and unplanted substrates 

were analyzed to confirm transferability of laboratory results from unplanted substrate 

to planted substrate of denitrification measurement. 

6.2 Materials and methods 

6.2.1 Determination of pore volume, water capacity, and air capacity  

The ‘Quick’-method by Wrede (2001) was used to determine total pore volume, water 

capacity, and air capacity of substrates. Only a short description of the method is 

given here, for more detailed information it is referred to the original paper.  

The substrate to be analyzed was filled into test cylinders according to its volume 

weight (or in a higher density if required by the experimental aim). The volume weight 

was determined according to a standard method of VDLUFA (1991). Then, the 

cylinders were put into a basin filled with water and the substrate was left to saturate 

for 16 hours. After this, the cylinders were placed onto a water saturated layer of 
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sand contained in a riddled box. When water logging was removed from the sand, it 

exerted negative pressure on the substrate. Sand and substrate were left to 

equilibrate for eight hours. Then, shrinkage of the substrate volume and substrate 

water content were determined. 

The following formulas were used to calculate pore volume, air capacity and water 

capacity: 

 

Pore volume [vol.%] = (1- dBE [g cm-3] / dF [g cm-3])*100 

Water content [vol.%] = water content [weight %] * dBE [g cm-3]  

Air content [vol.%] = pore volume [vol.%] - water content [vol.%] 

 

dBE  = substrate density at the end of the experiment (considering shrinkage) 

dF = density of the substrate dry matter (includes determination of organic and 

mineral substrate components) 

 

dF [g cm-3] = 100 / (organic components [%]+ mineral components [%]) 

 1.65 [g cm-3] 2.65 [g cm-3] 

 

To investigate the effect of plant roots on substrate properties, modified test cylinders 

of 10 cm diameter (785 mL) were used instead of the recommended cylinders of 

7 cm diameter. 

6.2.2 Denitrification measurement 

6.2.2.1 Experimental setup  

Flow-through chambers like described in Chapter 2.2.2 were used for measurement 

of denitrification from planted substrate.  

Before the start of the experiment substrates were pretreated with acetylene (C2H2) 

within the chambers as described in Chapter 6.2.2.2.  

After pretreatment with C2H2 pots were flood irrigated within the chambers. 

The irrigation event was defined start of the experiment. Air samples were taken with 

syringes topped with gauge needles from silicon tubes at the air outlet of the 

chambers every two to four hours until N2O emissions ceased.  
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6.2.2.2 Application of C2H2  

For determination of (N2+N2O)-N production by denitrification, 5 vol.% C2H2 was 

added to the chamber atmosphere. For immediate inhibition of N2O reduction to N2  

substrates were pretreated for two hours with 5 vol.% C2H2 prior to irrigation. 

6.2.2.3. Duration of fertigation and composition of fertigation solution   

Pots were fertigated with 1 L of a solution containing 150 mg NO3 -N L-1. The 

irrigation solution was released by an opening at the bottom of the chambers after 

two hours of flooding.  

During cultivation plants were fertigated with 1 g L-1 of a full compound fertilizer 

(Flory3, Euflor) according to horticultural practice. 

6.2.2.4 Substrates and plant material  

Substrates used for experiments were commercial, full fertilized white peat substrates 

with and without cocopor.  

Additionally, some substrates were self prepared. Sieved (5 mm) or unsieved white 

peat substrates were limed (pH6) and mixed with a full compound fertilizer prior to 

planting. To investigate the effect of substrate composition on denitrification and 

substrate properties, mixtures of 70 vol.% sieved white peat and 30 vol.% rice husks, 

and 70 vol.% sieved white peat and 30 vol.% wood fibres were prepared. The 

substrates were adjusted to pH6 and fertilized with 1g L-1 of a full compound fertilizer. 

Denitrification measurements were done with plants of Pelargonium zonale ‘Grand 

Prix’ and Euphorbia pulcherrima ‘Sonora Red’. Plants were propagated by cuttings 

and rooted in small peat nuggets (Jiffy7) for two weeks. Then, plants were potted into 

340 mL plastic pots and cultivated for at least four weeks to guarantee rooting of the 

substrate.  

6.2.2.5 Analytical procedures 

6.2.2.5.1 N2O 

The analysis of N2O in all air samples was performed by a gas chromatograph 

(Chrompack 9001) with an electron capture detector (ECD) according to a method 

described by Mosier and Mack (1980).  
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6.2.2.5.2 Water content 

During denitrification measurement every four to eight hours pots were taken from 

the chambers and weighed. At the end of the experiment plants were harvested, the 

fresh weight of the shoot and of the rooted substrate was determined. Then, the 

substrate was dried at 105°C and weighed again. Water content (vol.%) was 

calculated from pot volume, fresh weight of shoot, dry weight of rooted substrate, and 

fresh weight during the experiment.  

For determination of water distribution within potted substrate, peat was filled into 

340 mL plastic pots. Pots were flood irrigated for two hours, then the substrate was 

divided into three horizontal layer starting from the pot bottom (0-2 cm, 2-4 cm, 4-

7 cm layer). After drying at 105°C the water content of the substrate layers was 

calculated from fresh weight, dry weight, and volume of layer.  

 

6.2.2.5.3 Statistics 

Statistical analyses were conducted using the SAS software package. Three to six 

and six replications per treatment were used for measurements of physical substrate 

properties and denitrification, respectively. 

6.3 Results 

6.3.1 Substrate moisture before irrigation 

6.3.1.1 Effect of substrate dryness on denitrification 

When denitrification N loss was measured from pots of E. pulcherrima that contained 

dry peat substrate (20 vol.% H2O), emissions were very low in comparison to those 

from moist peat (55 vol.% H2O). In total, emissions from dry substrate hardly reached 

1/3 of those from moist substrate (Fig. 1). Inspite of the rather long irrigation period of 

2 hours, the dry substrate reached a much lower water content than the moist 

substrate. Obviously the water repellency caused by drying of the peat prevented 

water uptake, and thus reduced denitrification to a large extent. Consequently, it was 

observed that in the dry substrate denitrification took place already at a mean water 
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content of 59 vol.%, while N emissions in the moist substrate required a mean water 

content of 68 vol.% (Fig. 2).  

Fig. 1 (N2 +N2O)-N emissions and water content of sieved peat substrate planted with 

E. pulcherrima with different substrate moistures before irrigation (5 vol.% C2H2) 

Time [h] after start of irrigation

0 5 10 15 20 25 30 35 40

(N
2+

N
2O

)-
N

 e
m

is
si

on
 [µ

g 
h-1

 po
t-1

]

0

5

10

15

20

25

W
at

er
 c

on
te

nt
 [v

ol
.%

] o
f s

ub
st

ra
te

0

20

40

60

80

N emission

water content

sum of N loss
(µg pot-1):

28
97

20 vol.% H2O
55 vol.% H2O

 

Fig. 2 (N2 +N2O)-N emissions depending on water content of sieved peat substrate 

planted with E. pulcherrima with different substrate moistures before irrigation 

(5 vol.% C2H2) 
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To investigate this difference in threshold values, water distribution within potted 

substrate was determined. When potted peat of low (20 vol.%) and high (60 vol.%) 

mean water content was divided into three horizontal layers after irrigation, it resulted 

that the water content of low and middle layer was only by about 3 vol.% lower in the 

dry substrate than in the moist substrate. Yet, the top layer of the dry substrate 

showed a significantly reduced water content which was 17 vol.% lower than that of 

the moist substrate (Fig. 3). Thus, the lower mean water content and threshold value 

of dry peat mainly resulted from decreased water content of the top substrate layer.  

Fig. 3 Water content of substrate layers after flood irrigation as affected by mean 

water content of potted peat substrate before irrigation 

Water content [vol.%] before irrigation

20 vol.% 60 vol%

W
at

er
 c

on
te

nt
 [v

ol
.%

] a
fte

r i
rri

ga
tio

n

0

20

40

60

80

100

pot mean:
62.3

pot mean:
71.2

low (0-2cm) middle (2-4cm) top (4-7cm)layer:

 
 

6.3.2 Substrate compaction 

6.3.2.1 Effect of substrate compaction on denitrification 

When denitrification was measured from compacted and uncompacted peat 

substrate planted with P. zonale, up to three times higher emissions resulted from the 

compacted treatment (Fig. 4). The compacted substrate reached a higher water 

content after irrigation than the control substrate. Although the water content of the 
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compacted substrate remained at a higher level throughout the experiment, the 

duration of denitrifying activity in both treatments was the same. In total, the 

compacted substrate produced two times higher N loss (Tab. 1). In contrast to higher 

(N2+N2O)-N emissions, the compacted substrate emitted less N2O than the control 

substrate (Tab. 1). The N2O:N2 ratio of the control substrate was more than four 

times higher than that of the compacted substrate. Both, the high (N2+N2O)-N loss 

and the low N2O emission indicate that anaerobiosis was stronger in the compacted 

substrate. 

When N emissions were related to water content (Fig. 5), it appeared that in the 

compacted substrate denitrification took place when its mean water content 

exceeded 80 vol.%, while the control substrate already emitted N at about 66 vol.%.  

When water distribution in compacted and uncompacted potted substrate was 

investigated, the compacted substrate showed higher water content in all substrate 

layers (Fig. 6). Thus, the higher mean water content of the compacted substrate 

presumably resulted from overall higher water capacity. To confirm this assumption, 

water and air capacity of compacted and uncompacted peat substrate were 

investigated. 

Fig. 4 (N2 +N2O)-N emissions and water content of pots of P. zonale as affected by 

compaction which increased bulk density by 1/3 following irrigation (5 vol.% C2H2) 
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Tab. 1 Sum of (N2 +N2O)-N and N2O-N emissions from pots of P. zonale with 

compacted and uncompacted substrate following irrigation (0 or 5 vol.% C2H2) 

 
treatment 

(N2 +N2O)-N emission  
[mg pot-1] 

N2O-N emission 
[mg pot-1] 

N2O:N2  
ratio 

control 0.148 ± 0.084 0.060 ± 0.021 0.68 

compacted 0.307 ± 0.122 0.040 ± 0.016 0.15 

Fig. 5 (N2 +N2O)-N emissions depending on water content of pots of P. zonale as 

affected by compaction which increased bulk density by 1/3 (5 vol.% C2H2) 
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Fig. 6 Water content of substrate layers after flood irrigation as affected by 

compaction which increased bulk density of potted substrate by 1/3 
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6.3.2.2 Effect of compaction on substrate characteristics 

Three peat substrates were used to study the effect of compaction on pore volume, 

water and air capacity. The substrate used for the previously described denitrification 

measurement (Fig. 4, 5, Tab. 1) was called ‘peat mix’. In all substrates the total pore 

space was hardly affected by compaction, while water and air capacity changed 

significantly (Fig. 7). Water capacity was increased by compaction, and air capacity 

was reduced. These results confirm the differences in water content between 

treatments that were observed during denitrification measurement (Fig. 4). 

Fig. 7 Pore volume, water capacity, and air capacity as affected by compaction which 

increased bulk density by one third 
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6.3.3 Sieving of substrate 

6.3.3.1 Effect of substrate sieving (5 mm) on denitrification 

 

Plants of P. zonale were cultivated in white peat substrate, which was sieved or not 

sieved prior to planting. When denitrification was measured from these pots, the 

sieved substrate produced higher N emissions than the unsieved substrate (Fig. 8). 

While the duration of denitrifying activity was similar in both treatments, N emissions 
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from the sieved substrate reached a higher maximum and started to decrease later 

than emissions from the unsieved substrate. Although the course of N emissions 

showed obvious differences, water contents of the substrates were about the same. 

The course of N emissions indicated that oxygen deficiency lasted longer in the 

sieved substrate because the decrease of emissions took place later than in the 

control substrate. 

When (N2 +N2O)-N emissions were related to water content of the substrate (Fig. 9), 

it appeared that emission of gaseous N from the unsieved substrate required a mean 

water content of about 71 vol. %, while the sieved substrate already denitrified at a  

mean substrate water content of 68 vol. %. Measurement of water distribution after 

irrigation in sieved and unsieved potted substrate showed similar water contents in 

each of the substrate layers independent of the treatment (Fig. 10). Thus, water 

distribution did not help to explain the observed differences in denitrification N loss. 

For further investigation, the effect of sieving on air and water capacity of peat 

substrate was analyzed. 

Fig. 8 (N2 +N2O)-N emissions from pots of P. zonale with sieved (5 mm) and 

unsieved substrate (brand 2) following irrigation (5 vol.% C2H2) 
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Fig. 9 (N2 +N2O)-N emissions depending on water content of sieved (5 mm) and 

unsieved substrate (brand 2) planted with P. zonale (5 vol.% C2H2) 
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Fig. 10 Water content of substrate layers after flood irrigation as affected  

by sieving of potted substrate 
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6.3.3.2 Effect of sieving (5mm) on substrate characteristics 

During measurement of physical substrate characteristics, it was observed that even 

peat substrates of the same brand were differently affected by sieving. To investigate 
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these differences, three sieved (5 mm) and unsieved white peat substrates of two 

brands were analyzed by ‘Quick’-method (Fig. 11). The peat substrate used for 

denitrification measurement (Fig. 8, 9) was of brand 2. The total pore volume was 

uniform between all peats and in all cases it was only marginally reduced by sieving. 

Water and air capacity remained nearly unchanged when peat of brand 1 bag 1 and 

brand 2 was sieved. Only small decreases in air capacity and increases in water 

capacity could be observed. Unsieved substrate from brand 1 bag 2, in contrast, 

showed an about 15 vol.% lower water capacity and a correspondingly higher air 

capacity than the other two substrates. After sieving this difference vanished. 

Presumably, peat from bag 2 was of a coarser type than the other peats and thus, it 

was more affected by sieving.  

Fig. 11 Pore volume, water capacity, and air capacity of unsieved and sieved (5 mm) 

peat substrate from three different bags 
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Although sieving hardly changed water and air capacity of the peat used for 

denitrification measurement (brand 2), denitrification N loss was strongly increased 

by sieving (Fig. 8). So, either the observed small changes in air and water capacity 

were enough to promote denitrification, or a change in substrate characteristics took 

place that could not be measured by the applied methodology.  
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6.3.4 Composition of substrate 

6.3.4.1 Effect of substrate composition on denitrification 

To investigate the effect of substrate composition on denitrification, measurements 

were conducted with pots of P. zonale grown in sieved peat mixed with rice husks 

(Fig. 12 a) and in sieved peat mixed with wood fibres (Fig. 12 b). In both cases, 

control treatments consisted of pure sieved peat. Addition of rice husks or wood 

fibres lead to about the same N loss than from pure peat substrate. The slight 

increases in N loss that were observed with the peat mixtures were statistically non-

significant and presumably a product of variability. These results were considered 

surprising as both materials, wood fibres and rice husks, were expected to improve 

substrate aeration and thus, decrease denitrification N loss. In case of rice husks, it 

was observed after denitrification measurement that the outer appearance of the 

husks had changed. Possibly, rice husks broke down during the cultivation period 

which lastet about 12 weeks in this experiment.  

To clarify the effect of wood fibres and rice husks on air capacity of peat substrate, 

substrate mixtures were analyzed in a laboratory experiment.  

Fig. 12 a+b (N2+N2O)-N emissions from pots of P. zonale planted in sieved peat and 

in  70 vol.% sieved peat and 30 vol.% rice hulls or wood fibres (5 vol.% C2H2) 
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6.3.4.2 Effect of additives on substrate characteristics of peat 

Inspite of similar denitrification N loss, air capacity of peat substrate was increased by 

both, wood fibres and rice husks (Fig. 13). The addition of wood fibres to sieved peat 

increased air capacity by about 5 vol.% relative to peat, while addition of rice husks 

increased air capacity even by one third (14 vol.%) compared to pure peat.  

These results do not correspond to the observed denitrification N loss, which was 

similar between peat and peat mixtures (Fig. 12 a+b). Like mentioned before rice 

husks, and maybe also wood fibres, were possibly decomposed during the cultivation 

period and thus, might have lost their positive effect on substrate air capacity. 

Fig. 13 Pore volume, water capacity, and air capacity of peat and peat mixtures 

(100 vol.% sieved peat; 70 vol.% sieved peat + 30 vol.% rice hulls or wood fibres) 
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6.3.5 Planting of substrate 

Laboratory measurements of pore volume, air and water capacity were done with 

unplanted substrate, while denitrification was measured from planted substrate. As 

treatment effects on denitrification N loss did not always correspond to those on 

substrate air capacity, it was questioned if planting altered substrate characteristics 
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and thus, limited transferability of results from laboratory to greenhouse, and vice 

versa.  

This speculation was encouraged by the observation that the dry matter per pot, 

which was determined after each denitrification measurement, slightly increased with 

time during cultivation, although pots were filled and planted uniformly on the same 

day (Fig. 14). It was suspected that this was an effect of root growth. To clarify if root 

growth affected substrate properties, pore volume, air and water capacity of planted 

and unplanted substrate were determined.  

Fig. 14 Increase of dry weight per pot during cultivation of P. zonale 
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6.3.4.1 Effect of plant growth on substrate characteristics 

Test cylinders with planted and unplanted peat substrate were cultivated in a 

greenhouse for eight weeks. After this period water and air capacity showed only little 

differences between treatments. The planted substrate showed a 4 vol.% lower air 

capacity relative to the unplanted substrate, while total pore space was the same in 

both treatments (Fig. 15). Plant roots increased the dry weight of the substrate by 

about 5 g and reduced shrinking of the substrate by 9 mL compared to the unplanted 

substrate (data not shown).  

All in all, changes in physical substrate properties by planting were considered small 

enough to transfer laboratory results obtained with unplanted substrate to planted 

substrate of greenhouse experiments. 
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Fig. 15 Pore volume, air capacity, and water capacity of unplanted and planted 

unsieved peat substrate after eight weeks of cultivation 
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6.4 Discussion 

6.4.1 Effect of substrate properties on denitrification 

6.4.1.1 Substrate moisture 

Denitrification N loss from dry peat was not even 1/3 of that from moist peat (Fig. 1). 

N emission rates were much lower and the denitrifying activity ended sooner in the 

dry than in the moist peat. This was attributed to the lower water content that was 

reached by the dry substrate after irrigation relative to the moist substrate (Fig. 1, 3). 

As a decrease in water filled pores corresponds to an increase in air filled pores, it is 

very likely that denitrification in drier substrate was repressed by oxygen availability. 

The effect of substrate moisture on water content after irigation was also discussed in 

Chapter 4. There, experimental results were presented which prove a close 

relationship between water content of peat substrates before and after irrigation. The 

problem of water repellency of dried peat was often described in literature 

(Niggemann 1970, Valat et al. 1991, Michel et al. 1999). It is reported to be related to 

chemical (humic polymers) as well as physical (shrinkage, adhesion) characteristics 

of peat. Hydrophobia after drying was also described for soils, where it is generally 

related to soil organic matter (Ellies et al. 2003, Wallis and Horne 1992, Ma'Shum et 
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al. 1988). Still, like discussed in Chapter 4, its effect on denitrification has not 

received much attention in literature.  

As differences in water content were shown to provoke differences in denitrification N 

loss, it was considered most important to conduct denitrification measurements only 

with substrates of homogenous water content. 

6.4.1.2 Substrate compaction 

Denitrification N loss from compacted substrate was significantly higher than from 

uncompacted substrate (Fig. 4, Tab. 1). In contrast to this, N2O-N emissions were 

lower from compacted than from uncompacted substrate. Already during 

denitrification measurement the compacted substrate showed higher water content 

than uncompacted substrate. The difference in water content was present throughout 

the substrate, irrespective of the height of substrate layers in pots (Fig. 6). This was 

confirmed by laboratory measurement, where compacted substrate proved to have 

decreased air capacity and increased water capacity relative to the control (Fig. 7).  

Reduction of air filled pores is a common consequence of soil or substrate 

compaction. Richard et al. (2001) analyzed pore size distribution of agricultural soils 

and showed that the total porosity was relatively little affected by soil compaction, 

because the amount of macropores destroyed was mostly compensated for by an 

increase of micropores. The same was stated by Kooistra and Tovey (1994). In their 

review on soil compaction and soil aeration, Stepniewski et al. (1994) presented 

many examples for reduced soil aeration due to compaction.  

Lack of oxygen is one of the crucial prerequisites for denitrification, consequently the 

promoting effect of soil compaction on denitrification has repeatedly been reported 

with regard to agricultural soils. Torbert and Wood (1992) investigated the effect of 

soil compaction on N loss and observed a more than 3-fold increase of N loss when 

the soil bulk density was increased from 1.4 to 1.8 Mg m-3 soil. They suggested that 

soil compaction reduced O2 diffusion by restricting continuity of air-filled pores and 

decreasing the amount of larger pores. Soil compaction by tractor traffic was found 

by Bakken et al. (1987) to cause 2 to 4-fold higher N emissions relative to 

uncompacted soil. Apart from observing increasing N loss at increasing soil 

compaction, Walenzik and Heinemeyer (1990) found that the emission of N2O also 

increased with compaction but that the ratio N2O:N2 decreased. The increased 

reduction of N2O in compacted soils may be related to the lower diffusion coefficient 
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of gases at high bulk density. When the escape of N2O from the site of reduction to 

the atmosphere is delayed, the chance for reduction to N2 is increased (Smith 1980). 

In general, it is assumed that the share of N2O decreases when conditions for 

denitrification, like oxygen deficiency, become more favorable (Tiedje 1988). 

6.4.1.3 Sieving of substrate 

Denitrification N loss from sieved (5 mm) peat substrate was higher than from 

unsieved peat substrate (Fig. 8). The water content of the substrates was nearly the 

same after irrigation, and also throughout the experiment. Yet, emissions from the 

sieved substrate lasted longer and reached a higher peak. This indicated increased 

oxygen deficiency in the sieved relative to the unsieved peat substrate. But, 

measurement of water distribution within the potted substrate showed no difference 

between sieved and unsieved substrate (Fig. 10). Also, water and air capacity of the 

peat substrate used for denitrification measurement (brand 2) showed no change 

after sieving (Fig. 11).  

In contrast to this, air capacity was described in literature to decrease when the 

fraction of small substrate particles increased (Scharpf 1997, Limbers and Rehme 

1997, van Schie 1999, Verhagen 1997). These controversial observations raised the 

question wether laboratory measurements with unplanted substrates were 

transferable to planted substrates cultivated under greenhouse conditions. Yet, when 

pore volume, air and water capacity of planted and unplanted substrate was 

compared, no significant differences could be found (Fig. 15). Thus, it was concluded 

that laboratory measurements of substrate characteristics were reliable.  

Still, other observations reported in literature might explain the high denitrification N 

loss of the sieved relative to the unsieved substrate. Prasad and O’Shea (1999) 

found out that the particle sizes of peat were related to the degree of its breakdown 

with fine peat breaking down more than coarse peat. During an incubation period of 

15 month they observed decreases of airspace and volume reductions especially in 

substrates of finer particle size. Michiels et al. (1993) observed higher shrinkage of 

fine substrate than of coarse substrate during nine month exposition to ebb/flood 

irrigation. So, possibly, sieved and unsieved substrate changed differently during the 

cultivation period, although the initial values for pore volume and air capacity were 

the same. This could explain the difference in denitrification N loss. Additionally, 

Torbert and Wood (1992) concluded that within the same level of water-filled pore 
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space changes in pore structure could contribute to an increase of anaerobic 

microsites. This, they referred to compacted soils, but it may also apply to sieved 

substrate. 

Curiously, the effect of substrate sieving was not uniform among substrates. In 

addition to the substrate used for denitrification measurement (brand 2), two more 

white peats were analyzed with and without sieving with regard to water and air 

capacity (Fig. 11). Only one of three tested substrates (brand 1 bag 2) showed 

changes after sieving. Its air capacity, which was significantly higher than that of the 

other two samples before sieving, was reduced by about half and thus, was about on 

one level with the other samples. Probably, the two substrates that showed little 

change in air capacity after sieving were of a finer type and were consequently not 

altered in the amount of water holding pores.  

6.4.1.4 Composition of substrate 

Different media are added to horticultural substrates, either to replace peat or to 

improve substrate characteristics. The effect of two of these, wood fibres and rice 

husks, on air capacity and denitrification of a peat substrate was investigated. The 

components, wood fibres or rice husks, were separately added to sieved white peat 

to achieve mixtures of 70 vol.% : 30 vol.%. Denitrification N loss of the mixes was  

about the same than that of plain peat (Fig. 12 a+b). This was surprising as both 

materials were expected to increase air capacity. This assumption was confirmed by 

measurement of air and water capacity, which showed that the substrate mixes had a 

significantly higher air capacity than the plain peat substrate, while the total pore 

volume was the same for all substrates (Fig. 13). As the outer appearance of rice 

husks had changed during cultivation, it was suggested that decomposition reduced 

the positive effect on air capacity and thus, denitrification was not reduced relative to 

plain peat substrate. For wood fibres the same might apply, as their breakdown 

during cultivation was repeatedly reported in literature. This lead to loss of volume, 

decrease of air capacity, and increase of water capacity (Prasad and O'Shea 1999, 

Leinfelder et al. 1995, Fischer et al. 1993, Rest et al. 2002). As water contents of the 

substrate mixtures were the same during denitrification measurement as of the pure 

peat (data not shown), it seemed that in the presented study the negative 

development of air capacity was either not present or it was equal to that of the 

sieved peat substrate. Like discussed in Chapter 6.4.2.3, the air capacity of sieved 
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peat presumably decreased during cultivation of plants. Apparently, wood fibres and 

rice husks were not able to compensate this negative development. 

Thus, the effect of substrate components on denitrification seemed to depend on 

their stability during the cultivation period. Breakdown or decomposition of growing 

media is likely to favor denitrification by decreased air capacity and increased carbon 

availability which accelerates oxygen consumption.  

6.4.2 Threshold values of mean substrate water content for denitrification 

In this chapter threshold values of mean water content have been presented below 

which denitrification was inhibited (Fig. 2, Fig. 5, Fig. 9). As water content is the 

counterpart of air content, it was assumed that return of air into the substrate and 

availability of oxygen put an end to denitrifying activity when water content decreased 

below a specific value. Such threshold values have also been reported for 

denitrification in soils (Ryden 1983, Shelton et al. 2000, Aulakh et al. 1991b, de Klein 

and van Logtestijn 1996, Weier et al. 1993).  

As oxygen deficiency in soil or substrate is unwanted, thresholds for denitrification 

could serve as indicators for substrate aeration. Unfortunately, threshold values of 

the presented study were not uniform, but influenced by physical substrate 

characteristics (Tab. 2).  

Tab. 2 Threshold values of substrate mean water content for denitrification as 

presented in this study 

Substrate Source Threshold value [vol.%] of 
mean water content 

Sieved white peat (5 mm mesh), moist Fig. 2 68 

Sieved white peat (5 mm mesh), dry Fig. 2 59 

Unsieved, uncompacted white peat Fig. 5 66 

Unsieved, compacted white peat Fig. 5 80 

Unsieved white peat Fig. 9 71 

Sieved white peat (5 mm mesh) Fig. 9 68 
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The substrate that was relatively dry before irrigation showed a lower threshold value 

than the substrate that was moist before irrigation (Fig. 2). The threshold value of 

mean water content for compacted peat was distinctly higher than that of non-

compacted peat (Fig. 5), but sieved substrate in contrast, showed a slightly lower 

threshold value than unsieved peat (Fig. 9). In case of compacted and dry substrate, 

water distribution within potted substrate showed that differences in mean water 

content after irrigation relative to the control treatment were mainly due to changes in 

water content of the top substrate layer (Fig. 3, 6). The top layer of the dry substrate 

had a 17 vol.% lower water content after irrigation than that of the moist substrate 

(Fig. 3). Substrate compaction increased the water content of the top layer after 

irrigation by 14 vol.% relative to the control treatment. Because of its high volume 

(about 145 mL per 340 mL pot), the water content of the top layer was well reflected 

in the mean water content per pot. Yet, in another study it was shown that 

denitrification mostly took place in the lower substrate layers (Chapter 7). Although 

the top layer of potted substrate did not contribute to denitrification N loss, it did 

influence mean water content and thus, cause shifts in threshold values for 

denitrification. 

In case of sieved and unsieved substrate, analysis of unplanted substrate did not 

reveal differences in water capacity (Fig. 11) or water distribution between layers of 

potted substrate (Fig. 10). It may be speculated that the difference of 3 vol.% in 

threshold values (Fig. 9) was caused by uneven mean water content of sieved and 

unsieved substrate before irrigation. Although the difference was very small, it 

proceeded throughout most of the denitrification measurement with sieved substrate 

showing up to 2.5 vol.% lower water content than unsieved substrate (Fig. 8). As 

threshold values were derived from mean water content, this difference was likely to 

be reflected in threshold values. Its effect on water capacity or water distribution 

could not be observed by analysis of unplanted substrate as for these measurements 

only substrate with homogenous water content was used.  

Thus, it was concluded that because of its high variability the mean water content 

was not apt for deduction of threshold values for denitrification. 

In literature, varying threshold values between soils were ascribed to soil texture, with 

finer texture causing lower threshold values (de Klein and van Logtestijn 1996). 

Aulakh et al. (1991b) showed that threshold values for differently textured soils were 

uniform when expressed as water filled pore space (wfps) instead of water content. 
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But here, the total pore volume of peat substrates usually remained unchanged, so 

differences were also present if values were expressed as wfps. Prade and 

Trolldenier (1988) found a higher threshold value of air content at increased soil 

organic matter content, which they related to increased oxygen consumption by 

microbia. So, also in soils there seem to be various factors that influence threshold 

values. Some authors consider measurement of gas diffusivity a better tool than air 

or water filled pore space for assessing the aeration status of a soil (Zausig et al. 

1993, Allaire-Leung et al. 1999). 

6.4.3 Summary 

The wettability of peat, which proved to depend on substrate water content, showed 

a strong effect on denitrification N loss. Dry substrate produced less N emissions 

after irrigation than comparatively moist substrate. Although the difference in water 

content between the substrates chosen for study was big, it is considered probable 

that also lesser differences in water content between substrates influence 

denitrification N loss and thus, complicate denitrification measurement. 

Sieving as well as compacting peat substrate increased denitrification N loss. This 

was mainly attributed to decreased air capacity. While the compacted peat showed 

increased water and decreased air capacity already before planting (‘Quick’-method), 

the sieved substrate presumably deteriorated during cultivation. 

Mixing sieved peat with rice husks or wood fibres (30 vol.%) increased air capacity as 

measured by ‘Quick’-method. Still, observed N emissions from the mixed substrate 

were at least as high as from plain peat. It was suggested that rice husks as well as 

wood fibres broke down and decomposed during the cultivation period and thus, lost 

their positive effect on substrate aeration. 

It was observed that threshold values of mean water content for denitrification 

changed with substrate characteristics. Thus, threshold values of mean water content 

were not considered usable as indicators of oxygen deficiency or denitrifying activity. 
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7. Localization of denitrifying sites 

7.1 Introduction 

The water content of the substrate and its dynamics proved to be most important for 

denitrification in potted and planted peat substrate (Chapter 4). Yet, water is not 

distributed uniformly within potted substrate. Modelling of water content showed that 

highest values are to be expected close to the pot bottom and that water content 

decreases with increasing distance of substrate layers from the bottom (Fonteno 

1989). In experiments with 18 cm high soil columns McCarty et al. (1999) found 

decreasing oxygen concentrations with increasing soil depth, especially when air 

porosity was reduced. They, as well as Shelton et al. (2000), observed higher N2O 

production near the bottom of soil cores than near the surface.  

Consequently, it was questioned if a gradient in water content lead to zones of 

differing denitrifying activity within potted substrate. For more precise evaluation of 

the denitrifying potential of substrate layers, measurement of redox potential was 

considered useful. The redox potential is a measure of the electron availability. It 

results from biochemical reduction processes and is closely related to the availability 

of oxygen. Under aerobic conditions, microbia generally use oxygen as electron 

acceptor, while during anaerobiosis oxidized inorganic soil components are being 

reduced. When oxygen is depleted, nitrate is used next as electron acceptor, 

followed by ferric iron and sulfate (Patrick and Mahapatra 1968). As the reduction of 

the oxides is more or less sequential, the level of redox potential can be used as an 

indicator for the electron acceptor that is currently being used (Ottow and Fabig 

1984). Thus, knowledge of redox potential is useful for localization of denitrifying 

sites, because nitrate reduction is accompanied by a decrease of redox potential 

(Flessa and Beese 1995, Ryden and Lund 1980). 

To localize the origin of gaseous N emissions within pots, experiments were 

conducted to investigate the dynamics of water distribution in potted and planted 

horticultural substrate. Further, a denitrification experiment was combined with 

measurements of redox potential to characterize zones of high denitrifying activity. 
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7.2 Materials and Methods 

7.2.1 Denitrification measurement 

7.2.1.1 Experimental setup 

Flow-through chambers like described in Chapter 2.2.2 were used for measurement 

of denitrification from planted substrate.  

Before the start of the experiment substrates were pretreated with acetylene (C2H2) 

within the chambers as described in Chapter 7.2.2.  

After pretreatment with C2H2 pots were flood irrigated within the chambers. 

The irrigation event was defined start of the experiment. Air samples were taken with 

syringes topped with gauge needles from silicon tubes at the air outlet of the 

chambers every one to four hours until N2O emissions ceased.  

7.2.1.2 Application of C2H2  

For determination of (N2+N2O)-N emissions by denitrification, 5 vol.% C2H2 was 

added to the chamber atmosphere. To guarantee immediate inhibition of N2O 

reduction to N2  substrates were pretreated for two hours with 5 vol.% C2H2 prior to 

irrigation. 

7.2.1.3. Duration of fertigation and composition of fertigation solution   

For denitrification measurement, pots were fertigated with 1 L of a solution containing 

150 mg NO3 -N L-1. The irrigation solution was released by an opening at the bottom 

of the chambers after two hours.  

During the cultivation period plants were fertigated with 1g L-1 of a full compound 

fertilizer (Flory3, Euflor) according to horticultural practice. 

7.2.1.4 Substrates 

A commercial, full fertilized white peat substrate was used to investigate the 

distribution of water within potted substrate. Denitrification and redox potentials were 

measured from pots of a commercial, full fertilized peat substrate composed of white 

peat and coir (peat mix).  
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7.2.1.5 Plant material 

Experiments were conducted with plants of Pelargonium zonale ‘Grand Prix’. Plants 

were propagated by cuttings and rooted in small peat nuggets (Jiffy7) for two weeks. 

Then plants were potted into plastic pots (340 mL) and cultivated for at least four 

weeks to guarantee rooting of the substrate. For each experiment plants of the same 

species and the same set were used, i.e. plants were of the same age and of similar 

growth. 

7.2.2 Measurement of redox potential 

7.2.2.1 Fabrication and testing of electrodes 

A 1 cm piece of platin/iridium wire (90:10; 0.4 mm diameter) was soldered to plastic 

coated copper wire. The joint was sealed with a two component adhesive and coated 

with shrinkable tubing. Both ends of the tubing were sealed with a two component 

glue. Prior to use all electrodes were tested in A. dest. and those showing variability 

in readings were discarded. 

7.2.2.2 Application of electrodes 

One day before the experiment, pots of P. zonale were each equipped with nine 

electrodes. The electrodes were carefully inserted into the substrate and it was aimed 

to position three of them at 1 cm, 3 cm, and 5 cm height from the pot bottom. The 

final position of the electrodes was verified and noted after the experiment. 

7.2.3. Analytical procedures 

7.2.3.1 N2O 

The analysis of N2O in all air samples was performed by a gas chromatograph 

(Chrompack 9001) with an electron capture detector (ECD) according to a method 

described by Mosier and Mack (1980).  
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7.2.3.2 Water content 

During denitrification measurement every one to four hours pots were taken from the 

chambers and weighed. At the end of the experiment plants were harvested, the 

fresh weight of the shoot and of the rooted substrate was determined. Then, the 

substrate was dried at 105°C and weighed again. Water content (vol.%) was 

calculated from pot volume, fresh weight of shoot, dry weight of rooted substrate, and 

fresh weight during the experiment.  

The water content of unplanted potted substrate was determined by weighing the 

substrate before and after drying at 105°C . 

7.2.3.3 Measurement of redox potential 

For measurement of redox potential from pots of P. zonale, a reference electrode 

(calomel) was inserted into the substrate surface. The potential difference between 

the reference electrode and the platin electrodes was read off a potentiometer (pH-

meter). To these values the potential of the reference electrode (247 mV) was added 

to calculate the redox potential (Eh) (Böttcher and Strebel 1985).  

7.2.3.4 Statistics 

Statistics were performed by use of the SAS package. All measurements were  

conducted with five replications per treatment. 

7.3 Results 

7.3.1 Distribution of water in potted and planted peat substrate 

To comprehend vertical distribution of water within potted substrates, peat substrate 

planted with P. zonale was harvested at different time intervals following flood 

irrigation and it was divided into three layers (Fig. 1). As pots were irrigated by 

flooding, the lowest substrate layer maintained the highest water content throughout 

the whole experiment. The lowest water content was always found in the top layer, 

while the water content of the middle layer stayed in between. Right after irrigation 
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the differences between layers were greatest and reached up to 16 vol.%, but then 

they decreased steadily until after 10 hours they amounted to less than 5 vol.%. 

Thus, the gradient of water content between substrate layers was dynamic and 

presumably resulted from plant water uptake. 

Fig. 1 Water content of planted peat substrate after irrigation depending on substrate 

layer in a 340 mL pot  
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Fig. 2 Gradient between water content [vol.%] of lower substrate layer (0-2cm from 

pot bottom) and mean substrate water content [vol.%] of peat planted with P. zonale 
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Because of its comparatively high water content, the lower substrate layer was 

thought to offer best conditions for denitrification. Its water content was permanently 

above the mean water content of the substrate (Fig. 2), especially at high mean water 

contents.  

With regard to denitrification measurement the presented results imply, that best 

conditions for denitrification were offered right after irrigation and by the lower 

substrate layer. There, strongest anaerobiosis was to be expected within the pot 

because of highest water content. To confirm these findings and to further localize 

sites of denitrifying activity, N emissions and redox potential were measured 

simultaneously from pots of peat mix substrate planted with P. zonale. 

7.3.2 Denitrification N emissions and redox potentials in planted peat substrate 
after irrigation 

When redox potential and denitrification were measured simultaneously from 

substrate planted with P. zonale, denitrification N loss showed the typical high 

variability between replications (Fig. 3). Still, the mean substrate water content, which 

proved to have a strong influence on denitrification in horticultural substrates 

(Chapter 4), was quite uniform. 

Fig. 3 Water content and (N2+N2O)-N loss from five pots of P. zonale planted in a 

peat mix substrate 
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The redox potentials in the substrate proved to be as individual as denitrification N 

loss. Compression of data was hardly possible without losing quality and so, it was 

decided to present redox potentials and denitrification N loss per pot (Fig. 4). In each 

pot, there were electrodes that maintained a stable reading throughout the 

experiment. In their vicinity there was obviously no change in redox potential and 

they were summarized as ‘non-reacting electrodes’. Mostly, these electrodes were 

located in upper substrate layers, but there were also some close to the pot bottom.  

The electrodes that did indicate changes in redox potential were all located close to 

the pot bottom and no farther than 2.5 cm from it. They mostly showed high 

synchrony with N emissions, especially at the onset of denitrification after 4 hours. 

The maximum of N emissions often coincided temporally with the minimum of redox 

potentials. Only at the end of denitrifying activity, the increase of redox potentials was 

quicker than the decrease of N emissions. This was probably due to incomplete 

control of all denitrifying sites by the few electrodes that were applied. The amount of 

reacting electrodes per pot showed high variability and did not necessarily 

correspond to the height of N emissions (e.g. Fig. 4, Pot 4). This indicates that 

positioning of the electrodes in a surrounding with changing redox conditions during 

measurement was a matter of random.  

All in all, the measurement of redox potential showed that within a substrate volume 

of only 340 mL, there was high variability of redox conditions. It also confirmed that in 

an ebb/flood irrigation system denitrification N loss was most likely to originate from 

the lower substrate layers.  
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Fig. 4 Redox potentials and (N2O+N2)-N emissions of a peat mix substrate planted with P. zonale following irrigation (5 vol.% C2H2) 

(electrode position measured from the pot bottom) 
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7.4 Discussion  

7.4.1 Distribution of water in potted and planted peat substrate 

Previous studies (Chapter 4 and 6) as well as many reports in literature (e.g. Shelton 

et al. 2000; de Klein and van Logtestijn 1996; Weier et al. 1993; Ryden and Lund 

1980) have emphasized the importance of soil or substrate water content on 

denitrification. It was observed that evolution of gaseous N emissions depended on 

the exceedance of a threshold water content, below which denitrification was 

apparently inhibited by presence of oxygen. Yet, threshold values of water content 

usually are mean values which do not consider gradients of water content within the 

investigated soil or substrate volume. 

The inhomogeneous distribution of water in potted and planted substrate is confirmed 

by the presented data (Fig. 1). As pots of P. zonale were irrigated by flooding, the 

water content of the substrate was highest in the lowest layer at the pot bottom and 

decreased with height. The difference in water content between the substrate layers 

was especially high shortly after irrigation. With time, water content in all layers 

decreased and differences between them grew smaller, which was obviously due to 

plant water uptake. Accordingly, the difference in water content between the lower 

layer and the mean of the whole substrate core decreased with decreasing mean 

water content (Fig.2).  

The decrease of substrate water content with increasing distance from the pot bottom 

was described by Fonteno (1989). 

So, at least for a certain time period after irrigation, the lower substrate layers of flood 

irrigated pots proved to possess the highest water content. Thus, it was suggested 

that these layers were mostly responsible for N2O emissions from potted substrate. 

The appropriateness of this assumption was confirmed by measurement of redox 

potential.   
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7.4.2 Denitrification and redox potential in planted peat substrate following 
irrigation 

The redox potential results from the biochemical (microbial) reduction processes that 

take place in a soil or substrate. During anaerobiosis, several oxidation-reduction 

systems are reduced which under aerobic conditions would be present in the 

oxidized form (Patrick and Mahapatra 1968). Once oxygen is consumed, e.g. during 

waterlogging of a soil, the redox potential decreases and nitrate is reduced as it is 

used next for microbial electron transfer (nitrate respiration).  

This could be well observed during simultaneous measurement of denitrification and 

redox potential in pots of P. zonale (Fig. 4). The course of N emissions was in many 

cases reflected by changes in redox potential. It was mostly the electrodes, that were 

placed close to the pot bottom, which indicated a decrease of redox potential at the 

same time as N emissions increased. While at the onset of denitrification there was 

high synchrony between decline of redox potential and rise of N emissions, redox 

potential tended to increase sooner than N emissions decreased. It is assumed that 

this resulted from increasing diffusion of air (and oxygen) into the substrate, which 

generally raised the redox potential but still allowed existence of denitrifying sites, 

which were not all reflected by the few electrodes that were applied. The observed 

synchrony of redox potential and N emissions at the start of the experiment indicates 

that time lags in the emission of N gas from the irrigated substrate did not occur. 

Delayed release of N emissions from soil has been reported in literature and was 

considered a possible hazard to denitrification measurement as it may lead to 

underestimation of total N gas production (McCarty et al. 1999; Clough et al. 2000). 

Presumably, the high porosity of the peat allowed escape of N gases from the 

substrate inspite of high water content. 

Although development of N emissions and redox potential were generally in 

accordance, the amount of electrodes per pot indicating a change in redox potential 

as well as their amplitude were highly variable and did not necessarily correspond to 

the height of N emissions (Fig. 4). This hints at inhomogeneity of reducing conditions 

inspite of the very limited substrate volume (340 mL). Even in the lower substrate 

layers there were electrodes that did not show changes in redox potential, although 

all electrodes that indicated a change were located close to the pot bottom. Possibly 

this can be related to observations made by Sexstone et al. (1985b), who 
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investigated oxygen profiles and denitrification in soil aggregates. They reported that 

denitrifying activity was restricted to aggregates with anaerobic centers, but not all 

aggregates with anaerobic zones denitrified. This they related to a possible lack of 

carbon or nitrate. Also in the presented study, the missing decrease of redox 

potential at some electrodes might be due to a local lack of carbon. As easily 

decomposable carbon is the source of electrons for microbial metabolism, its 

availability is a premise for reduction processes. In addition, availability of carbon 

increases microbial activity overall and thus, accelerates oxygen depletion. So, the 

amount of locally available carbon may be responsible for variability of redox 

potential. It might be related to plant roots, as indicated by literature.  

Decreasing redox potential has been observed at the root tip of various plant species 

cultivated in aerobic soils (Flessa and Fischer 1992; Fischer et al. 1989). This effect 

was attributed to oxygen uptake and release of root exudates, which have reducing 

properties or may serve as substrates for microorganisms. Also, decreasing redox 

potential was found in the proximity of dead roots (Fischer et al. 1989; Fischer and 

Schaller 1980) and close to incorporated sugar beet residues (Flessa and Beese 

1995). In all these cases, the decline of redox potential was locally very limited and 

the effect on redox potential was nullified within few millimeters of distance. In 

accordance with this, Parkin (1987) traced back 85 % of the denitrification activity of 

a 98 g soil core to 0.08 g of soil containing a piece of decaying plant material. The 

positive effect of carbon supply on denitrification was also observed in previous 

studies with potted plants (Chapter 5), which indicated that in this growing system 

denitrification was limited by carbon availability.   

Thus, the observed variability of redox potential in pots of P. zonale might result from 

growth (root tips) and decay of plant roots in combination with inhibited oxygen 

diffusion due to high water content. The electrodes per pot that indicated a decrease 

of redox potential were presumably positioned by chance at sites of high reducing  

potential. With regard to the origin of gaseous N emissions, the presented study 

confirmed that in the applied growing system the biggest part of denitrification N loss 

from potted substrate originated from the lower substrate layers.  
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8. Horticultural practice and denitrification 

8.1 Introduction 

In previous studies with cultures of potted ornamental plants denitrification in planted 

substrate proved to be mainly limited by substrate water content, which decreased 

after irrigation because of evapotranspiration (Chapter 4). Yet, it was suggested that 

the rate of decrease might also be influenced by the volume of water per plant, which 

was assumed to depend on irrigation practice, substrate volume, and pot type. 

Irrigation practice was considered likely to influence substrate water content, e.g. by 

the duration of flooding. While short irrigation periods of 15 to 40 minutes were 

recommended in literature to avoid waterlogging and root damage (Steffen 1989, 

Strauch 1989), longer time periods were reported to be common in horticultural 

production (Steffen 1989).  

Also, pot design was estimated to influence denitrification. There are various pot 

types available on the market which differ e.g. in size and amount of pot bottom 

holes. The pot size determines the substrate volume per plant and thus also the 

amount of water available for evapotranspiration. Pot bottom holes were considered 

to affect water uptake and drainage of substrate. As the substrate layer close to the 

pot bottom was the main source of denitrification N emissions (Chapter 7), it was 

suggested that pot bottom holes might also influence denitrification by affecting air 

exchange between denitrifying substrate and atmosphere. 

As the speed of decrease of substrate water content proved to be influenced by 

variable climate factors (temperature, vapour pressure deficit (vpd)) which change 

during day, it was assumed that the daytime of irrigation might affect denitrification. In 

unplanted substrate increase of temperature showed a clear positive effect on N 

emissions (Chapter 3). Yet, in planted substrate increase of vpd, which usually 

coincided with increase of temperature, reduced gaseous N loss by decreasing 

substrate water content through plant transpiration (Chapter 4). Thus, it was decided 

to investigate the effect of daytime of irrigation on denitrification N loss. 

So far, denitrification measurement had focused on potted and planted substrate. 

Yet, it was questioned if denitrification also took place on surfaces used for cultivation 
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of ornamental plants. As denitrification requires humidity (lack of oxygen) and 

availability of nitrate and carbon, it was suggested that denitrifying activity could 

develop in any place that offered these conditions, e.g. in irrigation mats. 

To prove all these assumptions the following treatments were analyzed with regard to 

denitrification N loss: 

 

1. Irrigation period of 2 hours and of 0.5 hours, 

2. Pot volume of 240 mL and of 550 mL, 

3. Four pot types differing in amount and size of bottom holes, 

4. Irrigation start in the morning (9 a.m.) and in the afternoon (3 p.m.), 

5. Incubation of irrigation mat used with and without plastic film cover. 

8.2 Materials and Methods 

8.2.1 Experimental setup for denitrification measurement  

Flow-through chambers like described in Chapter 2.2.2 were used for measurement 

of denitrification from planted substrate. Only for measurement of N emissions from 

irrigation mats closed glass jars were used (Chapter 2.2.2). 

Before the start of the experiment by flood irrigation substrates and mats were 

pretreated with acetylene (C2H2) within chambers or jars as described in Chapter 

8.2.2.  

The irrigation event was defined start of the experiment. Air samples were taken from 

chambers with syringes topped with gauge needles from silicon tubes at the air outlet 

every two to four hours until N2O emissions ceased. Closed jars were sampled with 

syringes after 48 hours of incubation. 

8.2.2 Application of C2H2  

For determination of (N2+N2O)-N emission by denitrification, 5 vol.% C2H2 was added 

to the chamber and jar atmosphere. To guarantee immediate inhibition of N2O 

reduction to N2 substrates and mats were pretreated for two hours with 5 vol.% C2H2 

prior to irrigation. 
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8.2.3 Duration of fertigation and composition of fertigation solution   

For denitrification measurement, pots were fertigated with 1 L of a solution containing 

150 mg NO3 -N L-1. At the end of irrigation the fertigation solution was released by an 

opening at the bottom of the chambers. Generally flood irrigation lasted two hours, 

only in one experiment it was varied from two to 0.5 hours. 

Pieces of irrigation mat were wettened with 10 mL of the above solution prior to 

incubation.  

During cultivation plants were fertigated with 1g L-1 of a full compound fertilizer 

(Flory3, Euflor) according to horticultural practice. 

8.2.4 Substrates 

Commercial, fertilized white peat substrates were used  for planting.  

8.2.5 Plant material 

Experiments were conducted with plants of Pelargonium zonale ‘Grand Prix’. Plants 

were propagated by cuttings and rooted in small peat nuggets (Jiffy7) for two weeks. 

Then plants were cultivated for at least four weeks to guarantee rooting of the 

substrate. For each experiment plants of the same set were used, i.e. plants were of 

the same age and of similar growth. 

 8.2.6 Pot types 

Plants were potted into 240 mL, 340 mL, 550 mL, or 650 mL plastic pots. If not 

mentioned differently, 340 mL pots of uniform dimensions were used. Pots of 650 mL 

volume varied in size and amount of bottom holes (Fig. 4). 

8.2.7 Irrigation mat 

Commercial irrigation mat (fleece material) topped with or without black plastic film 

was used for denitrification experiments. 
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8.2.8 Analytical procedures 

8.2.8.1 N2O 

The analysis of N2O in all air samples was performed by a gas chromatograph 

(Chrompack 9001) with an electron capture detector (ECD) according to a method 

described by Mosier and Mack (1980).  

8.2.8.2 Water content 

During denitrification measurement every four to eight hours pots were taken from 

the chambers and weighed. At the end of the experiment plants were harvested, the 

fresh weight of the shoot and of the rooted substrate was determined. Then, the 

substrate was dried at 105°C and weighed again. Water content (vol.%) was 

calculated from pot volume, fresh weight of shoot, dry weight of rooted substrate, and 

fresh weight during the experiment.  

The water content of unplanted potted substrate was determined by weighing the 

substrate before and after drying at 105°C . 

8.2.8.3 Vapour pressure deficit (vpd) 

Temperature and relative humidity were determined during denitrification 

measurements. Both values were used to calculate the vapour pressure deficit 

(Murray 1967, Malberg 2002):   

 

vpd = e°(T) - e 

e°(T) = 0.6108exp [17.27*T/(T+237.1)] 

e = e°(T) * rh/100 

 

vpd = vapour pressure deficit [kPa] e = vapour pressure [kPa] 

e°(T) = saturation vapour pressure [kPa] rh = relative humidity [%] 

T = Temperature [°C] 

8.2.8.4 Statistics 

Statistics were performed by use of the SAS package. Denitrification measurements 

were conducted with six replications per treatment.  
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8.3 Results 

8.3.1 Duration of flood irrigation 

8.3.1.1 Effect of irrigation duration on denitrification 

When P. zonale plants grown in white peat were flood irrigated for 0.5 hours and for 

2 hours, respectively, it resulted that the 2 hour irrigated pots emitted higher amounts 

of (N2+N2O)-N (Fig. 1). After 0.5 hours of flood irrigation, (N2+N2O)-N emissions were 

only half as high as after 2 hours of flood irrigation (Tab. 1). N2O emissions of the 

short irrigation period amounted only to 1/3 of the longer irrigation time. Thus, the 

ratio N2O-N:N2 was higher in the 2 hour irrigation treatment.  

While N loss was strongly affected by irrigation time, the mean substrate water 

content differed only slightly. The 0.5 hour treatment showed an on average 

1.5 vol.% lower mean water content than the 2 hour treatment during the experiment. 

For further investigation, water distribution in unplanted substrate was examined after 

0.5 hours and 2 hours of irrigation. 

 

 

Fig. 1 (N2+N2O)-N emissions and water content of a white peat substrate planted with 

P. zonale after 2 h and 0.5 h of flood irrigation (5 vol.% C2H2) 
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Tab. 1 Sum of (N2+N2O)-N and N2O-N emissions from pots of P. zonale planted in 

white peat after 2 h and 0.5 h of flood irrigation (+/-5 vol.% C2H2) 

Duration of 
flood irrigation 

(N2+N2O)-N 
(µg pot-1) 

N2O-N 
(µg pot-1) 

ratio 
N2O-N/N2  

0.5 h 29 ± 20 5 ± 2 0.19 

2 h 62 ± 24 14 ± 4 0.28 
 

8.3.1.2 Effect of irrigation duration on water distribution in potted peat substrate 

Like in denitrification measurement, mean substrate water content differed only by 

about 2 vol.% when potted and planted peat substrate was flood irrigated for 0.5 h 

and 2 h, respectively (Fig. 2). Yet, water content of the substrate layer at the pot 

bottom was more than 10 vol.% higher after 2 hours than after 0.5 hours of flooding. 

As this substrate layer had a relatively small volume (70 mL), its change in water 

content was hardly reflected in mean water content. 

Fig. 2 Water content of substrate layers after 0.5 hours and 2 hours of flood irrigation 

of potted peat substrate planted with P. zonale 
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8.3.2 Effect of pot size on denitrification 

The pot size determines the substrate volume per plant. To investigate its influence 

on denitrification, P. zonale were planted in 240 mL and 550 mL plastic pots. When 

denitrification N loss was measured, it resulted that N emissions from 550 mL pots 

were higher and lasted about four hours longer than from 240 mL pots (Fig. 3). In 

total, 550 mL pots emitted twice as much (N2+N2O)-N as 240 mL pots (Tab. 2). 

Production of N2O-N increased by nearly 60 % when 550 mL instead of 240 mL pots 

were used. Thus, it seemed that a higher substrate volume per plant lead to 

increased denitrification N loss. 

Fig. 3 (N2+N2O)-N emissions and water content of a white peat substrate planted with 

P. zonale as affected by pot size (240 mL vs. 550 mL) 
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Tab. 2 (N2+N2O)-N and N2O-N emissions of a white peat substrate planted with 

P. zonale as affected by pot size (240 mL vs. 550 mL) (+/- 5 vol.% C2H2) 
 

 N loss per pot 

Pot volume (N2+N2O)-N [µg] N2O-N [µg] 

240 mL 92 ± 41 a* 67 ± 36 a* 

550 mL 181 ± 88 b* 108 ± 40 a* 
 

*Different letters indicate statistically significant differences between treatments  

(α =0.05, t-Test) 
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8.3.3 Effect of pot type on denitrification 

To investigate the effect of pot design on denitrification, plastic pots with different 

numbers of bottom holes were used for denitrification measurement (Fig. 4). All pots 

except type 2 were of the same dimensions. Type 2 had a higher diameter (+8 mm) 

at the pot bottom and thus a more cylindrical form than the other models. Substrate 

water content after irrigation and also during denitrification measurement was not 

affected by pot type relative to the control. When denitrification N loss depending on 

pot type was determined, emissions from pot type 1 were nearly twice as high as 

those from the control pot (Fig. 5). Pot type 2 produced more than 40 % higher N loss 

than the control, and only pot type 3 showed lower N loss than the control (- 15 %). 

Because of high variability of N loss per pot, differences between all pot types and 

the control treatment were statistically non-significant (t-Test, α =0.05). 

Fig.4 Bottom design and diameter of pots used for denitrification measurement 
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Fig. 5 Relative (N2+N2O)-N loss after irrigation from pots of P. zonale planted in peat 

substrate as affected by pot type (5 vol.% C2H2) 

Pot type

Type 1 Type 2 Type 3

re
la

tiv
e 

(N
2+

N
2O

)-
N

 lo
ss

[%
 o

f c
on

tro
l]

0

50

100

150

200

 
 100



 

8.3.4 Time of day of irrigation 

When pots of P. zonale planted in white peat were irrigated for two hours at 9 a.m. 

and at 3 p.m., respectively, the course of N-emissions varied between treatments 

(Fig. 6). The pots that were irrigated in the morning showed a high maximum, and 

then a sharp decline of emissions in the afternoon. In contrast, N emissions from pots 

of the later irrigation time proceeded more evenly. They were comparatively lower, 

but lastet for a longer time relativ to the 9 a.m. treatment.  

Fig. 6 (N2+N2O)-N emissions and water content of a white peat substrate planted with 

P. zonale after 2 h of flood irrigation starting at 9 a.m. and 3 p.m. (5 vol.% C2H2) and 

greenhouse temperature and vapour pressure deficit (vpd) during measurement 
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Simultaneously, temperature and vapour pressure deficit (vpd) were high at midday 

and in the afternoon. Both decreased in the evening and maintained relatively 

constant values during night. 

Inspite of differences in the course of N emissions, pots from both treatments emitted 

about the same amount of N: 64 µg pot-1 in the 9 a.m. treatment, 60 µg in the 3 p.m. 

treatment. So, the high N emissions of the 9 a.m. treatment were apparently 

compensated for by the long duration of emissions in the 3 p.m. treatment. 

8.3.5. Denitrification N loss from irrigation mat 

To investigate gaseous N loss from horticultural production system beside potted 

substrate, irrigation mats that were used for the cultivation of potted plants with or 

without protection by plastic film were incubated for denitrification measurement. 

After 48 hours of incubation the mat without plastic film had emitted nearly 20 mg N 

m-2, while the mat that was covered with plastic film emitted only about 1 mg N m-2 

(Fig. 7). During cultivation of plants the unprotected mat was directly in contact with 

pots and the atmosphere. Thus, it was exposed to sunlight, spilled substrate and 

plant material. 

Fig. 7 (N2+N2O)-N emissions from irrigation mat with or without plastic film after 48 

hours of incubation (5 vol.% C2H2) 
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8.4 Discussion 

8.4.1 Duration of flood irrigation 

Denitrification N loss from potted peat substrate planted with P. zonale was reduced 

by half when irrigation time was shortened from 2 hours to 30 minutes (Tab. 1). The 

time length of N emissions was similar in both treatments, but pots of the 2 hour 

treatment showed much higher emission rates than those of the 0.5 hour treatment 

(Fig. 1). The big difference in emission rates and N loss was surprising because 

mean substrate water content was only about 1.5 vol.% higher after 2 hours of 

irrigation. However, the difference in water content of the lower substrate layer (0-2 

cm from pot bottom) was more than 10 vol.% higher in the 2 h treatment (Fig. 2). 

Thus, the higher N loss of the 2 h treatment might be due to this difference in water 

content, since the lower substrate layer proved to be the source of most of the 

denitrification N emissions per pot (Chapter 7). 

For horticultural practice the duration of flood irrigation is recommended to be 

between 15 to 40 minutes (Steffen 1989, Strauch 1989). Short and frequent flooding 

is considered to avoid root damage by water logging of the lowest substrate layer 

and also to prevent drying of substrate beyond rewettability (Strauch 1989). Yet, 

realization of short flooding periods depends on technical equipment, e.g. high flow 

rates of valves for quick filling of irrigation tables and high volume drains for rapid 

remove of irrigation water. The applied irrigation time in horticultural practice, 

including flooding and draining, was estimated to be one hour or more (Steffen 

1989).  

With regard to denitrification, short irrigation periods seem favorable to reduce 

gaseous N loss and oxygen deficiency within the substrate. In the presented study 

difference in water content was much smaller than difference in N loss, thus a 

mitigating effect on N emissions may be expected even if irrigation frequency was 

slightly increased to compensate for lower water content after irrigation. 

8.4.2 Effect of pot size on denitrification 

(N2+N2O)-N emissions from 550 mL pots were higher and lasted about four hours 

longer than from 240 mL pots (Fig. 3). Summed up (N2+N2O)-N loss from 550 mL 
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pots planted with P. zonale was twice as high as from 240 mL pots (Tab. 2). Also 

N2O production was by 40 % higher in 550 mL than in 240 mL pots. Plant size did not 

differ between treatments. Yet, it may be assumed that doubling of N emissions from 

550 mL pots relative to 240 mL pots was caused by nearly doubling of the substrate 

volume of the 0-2cm layer at the pot bottom. The volume of this substrate layer 

amounted to 64 mL in the smaller pots and 103 mL in the bigger pots. In previous 

studies, the lower substrate layer was found to be mostly responsible for denitrifying 

activity in potted and flood irrigated substrate (Chapter 7). 

In the presented study, pot size significantly increased N loss per irrigation event. 

Still, it was questioned if this difference in N loss persisted over the cultivation period. 

Although 550 mL pots showed lower water content [vol.%] after irrigation (Fig. 3), 

they contained more water [mL] because of higher volume and thus, they were less 

frequently irrigated than smaller pots. When calculations considered irrigation 

frequency as well as N loss per irrigation event, then there was no more significant 

difference between 240 mL and 550 mL pots (Tab. 3). The higher N loss of the 

bigger pots per irrigation event was compensated for by less frequent irrigations.  

Tab. 3 Estimation of (N2+N2O)-N loss from 240 mL and 550 mL pots considering N 

loss per irrigation event and irrigation frequency 

 240 mL pot 550 mL pot 
 

Water content of substrate after irrigation [vol.%] 76 69 

Threshold water content for irrigation [vol.%] 50 50 
 

Water content of substrate after irrigation [mL pot-1] 182 380 

Threshold water content for irrigation [mL pot-1] 120 225 

Delta /difference [mL] 62 155 
 

Evapotranspiration [ml h-1 plant -1] 1.8 1.8 

Time until threshold for irrigation is reached [h] 34.4 86.1 
 

N loss [µg (irrigation event)-1] 92 181 

Rate of N loss [µg h-1] during irrigation cycle 2.7 a* 2.1 a* 

*Similar letters indicate statistically non-significant differences (α =0.05, t-Test) 
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8.4.3 Effect of pot type on denitrification 

Denitrification in horticultural substrates depends on oxygen deficiency (Chapter 4). 

Consequently, it is restricted by factors that promote air exchange and oxygen 

diffusion into the substrate. The amount of pot bottom holes was considered to 

influence substrate water content, air exchange and the availability of oxygen at the 

very site of denitrification close to the pot bottom (Chapter 7). 

When pots with different sizes and numbers of bottom holes (Fig. 4) were used for  

denitrification measurement, substrate water content after irrigation did not differ 

between pot type 1, 2, 3, and the control treatment. Thus, number and size of pot 

bottom holes did not affect substrate water uptake. When pots were compared to the 

control pot type with regard to denitrification N loss, the influence of size and amount 

of bottom holes seemed to be rather low (Fig. 5). Only pot type 1 tended to produce 

higher N loss than the control treatment. As this pot type had two more bottom holes 

than the control pot, the amount of holes could not be responsible for the higher N 

loss. Further calculations revealed that the substrate volume of the 0-2 cm layer, in 

which most of the denitrifying activity took place (Chapter 7), was nearly one third 

higher in pot type 1 (150 mL) than in the control pot (115 mL). This difference in 

volume resulted from an 8 mm higher diameter at the pot bottom of type 1 relative to 

the control (Fig. 5). Pot type 2, which had only one centered bottom hole, produced 

about 40 % more N emissions than the control, while pot type 3 with its multi-hole 

bottom emitted 15 % less N than the control. In all cases, difference to the control 

treatment was statistically non-significant because of high variability of N loss per pot.  

Apparently, denitrification was more influenced by the shape of pots and by the 

resulting volume of the lower substrate layer than by the number of pot bottom holes. 

8.4.4 Time of day of irrigation 

The sum of denitrification N loss per pot was about the same wether pots were 

irrigated in the morning (9 a.m.) or in the afternoon (3 p.m.) (Chapter 8.3.4).  Yet, the 

course of N emissions varied between treatments (Fig. 6). Emissions from the early 

irrigated pots reached a high maximum 10 hours after irrigation and then rapidly 

declined within four hours towards zero. The late irrigated pots emitted N at relatively 

low rates, but over a longer period of 20 hours. The difference in the run of the 
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curves might be ascribed to climate factors. While high temperature around midday 

was likely to promote denitrification in early irrigated pots, the concurrently high 

vapour pressure deficit (vpd) was presumably responsible for a fast decrease of 

substrate water content. Thus, N emissions rose high and ceased rapidly. When 

denitrification started in the late irrigated pots, temperature declined soon and 

presumably it did not stimulate denitrification exceedingly. At the same time, vpd 

declined too, so substrate water content hardly decreased. Consequently, N 

emissions were not very high under these relatively stable conditions, but they lasted 

over a long time period. 

Stimulation of denitrifying activity by increasing temperature is well known in literature 

(Stanford et al. 1975, Smid and Beauchamp 1976, Aulakh et al. 1992, Dobbie and 

Smith 2001). Yet, most investigations focused on unplanted soils incubated in closed 

assay systems. The promoting effect of temperature on denitrification was also 

observed in previous studies of unplanted peat substrate incubated in closed jars 

(Chapter 3). There, the positive effect of increasing temperature on evolution of N 

gases was very clear, while in experiments with planted substrate the stimulating 

effect of temperature on denitrification was overlaid by the more dominant effect of 

substrate water content. The presented results hint at the ambiguity of temperature 

with regard to denitrification. On one hand, temperature stimulates denitrification by 

increasing overall microbial activity and accelerating oxygen consumption. On the 

other hand, high temperature shortens the duration of denitrifying activity by 

increasing vpd and thus, accelerating the decrease of substrate water content. 

8.4.5. Denitrification N loss from irrigation mat 

During denitrification measurement only N loss was recorded that originated from 

potted substrate. Yet, it was questioned if gaseous N emissions may also develop on 

surfaces used for production of potted ornamental plants. As irrigation mats are in 

close contact with potted plants and as they are still common in horticultural 

production, they were used for incubation studies.  

Denitrification N loss from irrigation mat depended strongly on wether it was used in 

combination with protective plastic film or not (Fig. 7). With plastic film N loss was 

comparatively low and hardly reached 1 mg N m-2 in 48 hours. Without plastic film N 

loss was more than 20 times higher and amounted to 19.3 mg N m-2 in 48 hours. 
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Presumably, this extremely high N loss resulted from increased microbial activity due 

to contamination of the unprotected mat with substrate and plant material (plant 

roots, algae growth). As the irrigation mat was kept humid during cultivation of plants 

and NO3 was frequently supplied by fertigation, conditions were likely to be favorable 

for microbial denitrification.  

These observations indicate that occurrence of humidity in combination with 

availability of nitrate and carbon anywhere in the cultivation system may be a source 

of gaseous N emissions. 
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9. Discussion 

9.1 Evaluation of denitrification N loss from potted ornamental 
plants 

9.1.1 Dimensions of denitrification N loss 

Mean N emissions from horticultural pot plant production were calculated using data 

of all denitrification measurements (control treatments) conducted within this study 

(Tab. 1). The absolute amounts of (N2+N2O)-N and N2O-N emissions calculated per 

hectare were based on the assumption of year-round production, a mean plant 

density of 24 plants m-2 (Rothenburger 1996), and three irrigation events per week 

(flood irrigation). Estimates are valid for cultivation in closed irrigation system only 

and do not include potential emissions from surfaces used for cultivation. Yet, it 

should be mentioned that open irrigation systems still exist in german horticulture as 

indicated by a survey of ZMP (2000). 

In comparison to (N2+N2O)-N loss from agricultural soils, emissions from horticultural 

pot plant production were rather low and only amounted to about 30 % of agricultural 

emissions (Tab. 1). Yet, the potential for denitrification in horticultural substrates was 

high. When calculations were based on soil volume per hectare considering a soil 

depth of 30 cm (3000 m3 soil), (N2+N2O)-N emissions from horticultural substrate 

rose to 191 kg year-1. Thus, the comparatively low N loss was due to the small 

substrate volume per surface area in pot plant production. 

N2O-N loss, in contrast, was comparable in both production systems. Apparently, a 

higher share of the environmentally harmful gas was emitted in horticultural than in 

agricultural production. Causes for this might be the high porosity of horticultural 

substrates which was considered to allow quick escape of gases from denitrifying 

sites (Chapter 7), and thus reduce the probability of further N2O reduction. 

Additionally, conditions in planted substrate often might not be totally anaerobic 

during denitrification, e.g. because of high substrate air capacity (Chapter 6) and 

quick changes of substrate water content after irrigation (Chapter 4). Imperfect 
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anaerobiosis has been reported to favour emission of N2O relative to N2 (Firestone et 

al. 1979, Mosier et al. 1998, Aulakh et al. 1992).  

The low relative N losses (N loss : N applied) from horticultural production likely 

resulted from the intensive application of fertilizer N in this growing system.  

Tab. 1 Average (N2+N2O)-N and N2O-N emissions due to denitrification from pot 

plant production as estimated from data of the presented study and from agricultural 

soils in temperate climate as reported in literature 

Emissions [kg ha-1 year-1] Emission [% of applied N]  

(N2+N2O)-N N2O-N (N2+N2O)-N N2O-N 

Hort. pot plant production 6.9 2.4 1.2 0.4 

Agricultural soils 20 – 30 * 1 - 3 ** ca. 10 * 0.8 – 1.5 **

*   source of data: Nieder et al. 1989; von Rheinbaben 1990 

** source of data: Bouwman and Boumans 2002; Beauchamp 1997; Kaiser and 

Ruser 2000; Skiba et al. 1996; Kaiser and Heinemeyer 1996; Mosier et al. 1996; 

Goossens et al. 2001 

9.1.2 Evaluation of denitrification N loss from the economic point of view 

According to the above estimate (Tab. 1) about 7 kg of N fertilizer per ha and year 

are lost from pot plant production. Balancing this loss of nitrogen by use of a common 

soluble full compound fertilizer would cause additional costs of about 50 Euro per ha 

and year. If N loss was compensated for by a soluble single compound fertilizer 

containing only nitrogen, then monetary loss would be reduced to about 18 Euro per 

ha and year.  

These additional costs due to N loss by denitrification are low and thus insignificant 

to pot plant producers from the economic point of view. This is confirmed by 

estimates based on calculations of Rothenburger (1996) which revealed that in pot 

plant production fertilizer costs hardly account for 1 % of total production costs. 

Still, multiplied by the area used for pot plant cultivation in Germany, denitrification N 

loss is estimated to amount to 38.7 tons per year.  

 109



 

9.1.3 Evaluation of denitrification N loss from the ecologic point of view 

The average share of N2O in (N2+N2O)-N emissions from pot plant cultivation as 

determined in this study amounted to 35 % (Tab. 1). So, relative N2O emission was 

much higher from horticultural substrate than from agricultural soils. Because of the 

comparably low production area, the absolute amount of N2O emitted from pot plant 

production in Germany only amounted to 21.4 t N2O year-1, which corresponds to 

0.03 % of estimated N2O emissions from agriculture (Fig. 1). Thus, the contribution of 

pot plant cultivation to total N2O emission in Germany is considered to be low.  

Fig. 1 Sources of N2O emissions in Germany as estimated by UBA (2000), 

supplemented by estimated values for pot plant production  
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9.2 Dynamics of denitrification and the effect of horticultural 
cultivation practice  

As discussed above (Chapter 9.1.2, 9.1.3), economic loss due to denitrification in 

horticultural pot plant production was estimated to be low, and so was the 

contribution of pot plant production to total N2O emission in Germany. Yet, studies 

showed that denitrification N emissions can vary strongly from the presented 

estimates due to variation of physical substrate properties (Chapter 6), or because of 

differences in horticultural practice (Chapter 8). Additionally, surfaces used for plant 

production may contribute considerably to N emissions. Studies indicated that 

denitrification may occur in any place that offered high moisture (low oxygen) as well 

as availability of nitrate (fertilizer) and carbon (e.g. plant residues). Especially the use 

of open irrigation systems leading to wetting of larger areas is considered to lead to 

considerable increase of estimated values. 

To keep denitrification at a low level, understanding its dynamics as well as the 

influence of horticultural management is necessary. Thus, the essence of the 

presented study regarding influencing factors of denitrification, sources of variability 

of N emissions, and possibilities to minimize denitrification by cultivation practice is 

presented in the following.  

9.2.1 Factors influencing denitrification in cultures of potted ornamental plants 
and sources of their variability 

9.2.1.1 Substrate water content and oxygen availability 

Water content proved to be the most dominant and also the most dynamic factor 

controlling denitrification (Fig. 2). Being the counterpart of air content, its effect on 

denitrification was attributed to restriction or permittance of oxygen diffusion into the 

substrate. Evolution of N gases could only be observed at high water content, 

corresponding to low air content, after irrigation. Thus, substrates of high air capacity 

and of high stability during cultivation were favorable for restricting denitrification by 

maintaining high substrate air content after irrigation events (Chapter 6). In contrast, 

stimulation of denitrification occured by reduction of air capacity, e.g. due to 

increased bulk density by compaction or shrinkage of substrate during cultivation 
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(Chapter 6). Similarly, substrate air content decreased and N emissions rose with 

increasing water volume retained by the substrate after irrigation. Higher water 

content after irrigation was reached with increasing duration of flooding (Chapter 4, 8) 

and with decreasing dryness of substrate before irrigation (Chapter 4, 6). Thus, 

adjusting frequency and duration of flood irrigation may serve to raise substrate air 

content and to limit denitrification. 

After flood irrigation substrate air content was lowest close to the pot bottom. 

Consequently, the lower substrate layer was the main source of N emissions 

(Chapter 7). Its volume changed with pot size and pot shape and affected the 

quantity of N emissions. Lower pot volume and smaller diameter at the pot bottom 

decreased the volume of denitrifying substrate as well as N emissions per irrigation 

event (Chapter 8). Thus, the choice of pot type may restrict denitrification unless 

reduction of N loss per irrigation event was compensated for by increased irrigation 

frequency. 

The decline and ending of N emissions from horticultural substrate began as soon as 

water content dropped below a threshold value (Chapter 4, 6). Yet, because of 

variability and dependance on substrate properties no universal threshold value of 

mean substrate water content for denitrification could be elaborated (Chapter 6). The 

decrease of substrate water content was driven by evapotranspiration, which 

depended on climate (vapour pressure deficit (vpd)) and on plant size (Chapter 4, 5). 

High N emissions could be related to low vpd causing low evapotranspiration, slow 

decrease of substrate water content, and long duration of denitrifying activity 

(Chapter 4). Thus, control of temperature and air humidity, which determine vpd, may 

allow to accelerate reaching of the threshold value for denitrification and thus, to 

reduce N emissions.  

In the presented study, like in commercial pot plant production, substrate and 

available water volume per plant were rather small. Consequently, substrate water 

content was in general sufficiently reduced within 20 to 34 hours after irrigation for 

denitrification to stop. Thus, within comparatively little time following each irrigation 

cycle the rise and decline of N emissions took place.  

9.2.1.2 Carbon availability 

Carbon availability proved to be the next important factor controlling denitrification 

following substrate water content (Fig. 2). In unplanted peat substrate denitrification 
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N loss was consistently increased by addition of rising concentrations of glucose-C 

(Chapter 3). This indicated that supply of easily available carbon was generally low in 

peat substrate and that there, denitrification was limited over a broad range by 

carbon deficiency. Similarly, supply of glucose-C increased denitrification N loss in 

planted substrate (Chapter 5). Apparently, the limitation persisted inspite of the 

presence of plants, although plants were known to serve as carbon suppliers to soil 

or substrate (von Rheinbaben and Trolldenier 1984).  

Limitation of denitrification by low carbon availability may be fortified by use of stable 

substrates of low biodegradability and by avoidance of waterlogging of plant roots as 

oxygen deficiency was reported to stimulate root exudation (Wollersheim et al. 1987). 

9.2.1.3 Nitrate availability 

Only in unfertilized peat substrate denitrification was limited by nitrate availability 

(Chapter 3). Even the lowest fertilization level allowed ‘maximum’ (N2+N2O)-N loss, 

which was not increased by further NO3 supply. In contrast to (N2+N2O)-N emissions, 

the share of N2O emissions did increase with rising NO3 supply.  

Thus, neither reduction nor stimulation of (N2+N2O)-N loss was likely to occur in 

horticultural growing systems where substrate nitrate content was permanently 

resupplied by fertigation. But, high NO3 fertilization could be expected to increase the 

emission of environmentally harmful N2O.  

9.2.1.4 Sources of variablility 

High spatial and temporal variability of N emissions is characteristic for denitrification 

in soil (Folorunso and Rolston 1984, Christensen et al. 1990b). The same may be 

stated for horticultural substrates. At first sight, this seemed surprising because in 

comparison to natural soils, horticultural white peat substrates were considered to be 

rather homogeneous regarding both, physical and chemical properties. In 

accordance with this assumption, variability of denitrification N loss in unplanted 

substrate was relatively low (Chapter 2). Still, whenever planted substrate was 

investigated variability of N emissions was high. In fact, several causes for variability 

of N loss could be related to plant factors and to their influence on denitrifying 

conditions (see also Fig. 2). All sources of variability that were discovered in the 

presented study are summarized in the following.  
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Fig. 2 Main factors influencing denitrification in cultures of potted ornamental plants 
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Temporal variability as observed between measurements that took place on different 

dates could mainly be related to climate and plant factors (Chapter 3, 4, 5). Vapour 

pressure deficit determined the intensity of evapotranspiration, the speed of decrease 

of substrate water content, and thus the duration of denitrifying activity. Temperature 

affected microbial activity and oxygen consumption by microbia as well as by roots. 

 

Measurement of redox potential indicated that spatial variability, i.e. variability of N 

emissions among replications of one and the same measurement, mainly resulted 

from inhomogeneity of denitrifying conditions within potted substrate (Chapter 7). 

Although the denitrifying substrate volume was small (ca. 90 mL per 340 mL pot), 
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high variability of redox conditions was observed. It was assumed that denitrification 

only took place when oxygen deficiency coincided with carbon availability granted by 

plant roots, and that both of them occurred only in locally very limited spots.  

Additionally, spatial variability resulted from variability of substrate moisture among 

pots before irrigation (Chapter 4). Drier substrate showed lower water content after 

irrigation than comparably wetter substrate. Consequently, the length of denitrifying 

activity was reduced.  

9.2.2 Restriction of denitrification by horticultural practice 

Many factors have shown impact on denitrification in the presented study (Fig. 2). 

While some of these are difficult or impossible to control from a practical point of 

view, like weather, rhizodeposition, or microbial activity, others do allow horticulturists 

to take influence on denitrification. Restriction of denitrification N emissions in a 

horticultural growing system as applied in this study may be obtained by the following 

strategies: 

 

1. Increase of substrate air content (Chapter 9.2.1.1) 

 choice of substrate: high air capacity + high stability during cultivation 

 choice of pot: low diameter at pot bottom (conic, v-shaped) 

 potting practice: avoidance of substrate compaction 

 irrigation practice: short flooding periods, avoidance of waterlogging 

 climate control: low air humidity esp. after irrigation to allow evapotranspiration 

2. Limitation of carbon availability in the substrate (Chapter 9.2.1.2) 

 composition of substrate: stable materials, high resistance to decomposition  

 irrigation practice: avoidance of waterlogging to reduce root exudation 

3. Reasonable use of NO3 fertilizer to reduce emission of N2O  (Chapter 9.2.1.3) 

4. Restriction of denitrifying zones in areas of plant production (Chapter 9.2) 

 cleanliness: removal of substrate and plant residues from irrigated areas 

 irrigation system: regular attendance, prevention of leakage or waterlogging 
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10. Summary 

Much research has been carried out on denitrification with regard to agricultural soils. 

In contrast, there is only little information available on denitrification from horticultural 

production of potted ornamental plants. Yet, conditions offered by greenhouse 

production seem favorable for denitrification because of frequent irrigation, steady 

NO3 supply by fertilization, high temperatures and organic substrates for plant 

production. Thus, it was the aim of this study to investigate the scale of denitrification 

N loss and its influencing factors from cultures of potted ornamental plants. 

Experiments were carried out in a dynamic assay system (flow-through chambers) 

with planted substrate and in a closed system with unplanted substrate taking 

advantage of the acetylene (C2H2) inhibition method. The following results were 

obtained: 

 

1. Acetylene (C2H2) application at 5 vol.% and substrate pretreatment for two 

hours before the experiment was found appropriate for immediate and 

complete inhibition of N2O reduction in this assay system. Under these 

conditions, plants of P. zonale and E. pulcherrima showed side-effects of C2H2 

after 48 h and 72 h, respectively. Yet, factors influencing denitrification, like 

evapotranspiration and carbon availability in the substrate, were unchanged. 

Because of this, and because denitrification in planted substrate usually ended 

within 34 hours after irrigation, side-effects of C2H2 application were 

considered not to compromise denitrification measurement. 

 

2. Studies of unplanted substrate indicated that denitrification and emission of 

N2O occurred at a noteworthy level only during oxygen deficiency. Oxygen 

deficiency could be induced by irrigation. Increasing N emissions at increasing 

glucose-C supply indicated that denitrification in peat substrate was limited by 

carbon availability. Nitrate supply only increased (N2+N2O)-N loss relative to 

unfertilized substrate. In contrast, the share of N2O emissions increased with 

rising NO3 supply. N emissions increased with temperature. 
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3. In planted substrate, substrate air and water content proved to be the most 

dominant factors controlling denitrification. After irrigation, at high water 

content, N emissions rose. The decline and end of emissions were due to the 

decrease of substrate water content below a threshold value. Plant and 

climate factors effected strong influence on substrate water content through 

evapotranspiration. Also, the moisture of substrate before irrigation affected 

water content after irrigation and thus, contributed to variability of N loss 

between replications. 

 

4. In planted substrate denitrification proved to be limited by C availability. With 

increasing plant age of P. zonale (4 and 8 weeks) the course of N emissions 

after irrigation changed. While the duration of denitrifying activity was 

shortened, the height of N emission rates increased with plant age. This was 

presumably due to faster decrease of substrate water content and to 

increased root respiration and C supply by older plants, respectively. 

Differences in summed up N loss depending on plant age were non-

significant. The contribution of increasing plant age to variability of N 

emissions during cultivation was considered to be low. 

 

5. Substrate properties affected denitrification through air and water capacity. N 

loss and water content after irrigation were decreased by dry relative to moist 

substrate before irrigation. Substrate compaction increased water content after 

irrigation and N loss relative to uncompacted substrate. Sieving of substrate 

increased N emissions although no difference in water content was observed. 

Thus, the increase in N loss was presumably due to changes in pore structure 

or increased shrinkage of the sieved substrate. Addition of wood fibres or rice 

husks to sieved peat (30 vol.% : 70 vol.%) did not significantly change N loss 

although both unplanted mixtures showed higher air capacity than pure peat. It 

was assumed that air capacity of the mixtures deteriorated because of 

decomposition and shrinkage during plant cultivation. 

 

6. Within potted substrate, the layer close to the pot bottom showed highest 

water content after irrigation and thus, offered best conditions for 

denitrification. This was confirmed by measurement of redox potential. Low 
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redox potential allowing denitrification was found only in the lower substrate 

layer and up to 2.5 cm from the pot bottom. Yet, not all electrodes placed 

close to the pot bottom showed decreasing potential after irrigation. It was 

assumed that supply of carbon by plant roots was necessary in addition to 

high water content to cause denitrifying activity and decrease of redox 

potential. Measurement of redox potential indicated that high variability of 

conditions for denitrification existed within one pot. This contributed to 

explaining the high variability of N loss. 

 

7. Horticultural practice / management influenced denitrification N loss to some 

extent. N emissions decreased when irrigation time was reduced from two 

hours to 30 minutes. The use of pots having a lower diameter at the pot 

bottom than at the top (conic, v-shaped) reduced N emissions relative to more 

cylindric or u-shaped pots. This was presumably due to the smaller volume of  

the lower substrate layer in the v-shaped pot. The same reason was assumed 

for higher N loss from 550 mL pots relative to 240 mL pots. But there, 

differences in N loss vanished when irrigation frequency was considered in 

addition to N loss per irrigation. Postponing irrigation from morning to 

afternoon changed the course of N emissions, but did not change total N loss. 

The amount of bottom holes only slightly affected N loss. In contrast, notable 

N emissions occurred from irrigation mat when used withouth protective 

plastic film.  

 

8. Extrapolated denitrification N loss (N2+N2O) from cultivation of potted plants in 

an ebb/flood irrigation system as presented in this study amounted to 

6.9 kg ha-1 year-1. N2O-N emissions were estimated to be 2.4 kg ha-1 year-1. 

Thus, monetary loss of N-fertilizer as well as the contribution of pot plant 

production to emission of environmentally harmful N2O from was considered to 

be low. 
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11. Zusammenfassung 

Viele Untersuchungen haben sich mit der Denitrifikation in landwirtschaftlichen 

Böden beschäftigt. Im Gegensatz dazu gibt es nur wenige Informationen über 

Denitrifikation in der gartenbaulichen Topfpflanzenproduktion. Die Bedingungen für 

die Denitrifikation im Unterglasanbau erscheinen jedoch günstig aufgrund regel-

mäßiger Bewässerung, kontinuierlicher NO3 -Versorgung durch Fertigation, hoher 

Temperatur und organischer Substrate für die Pflanzenanzucht. Daher war es das 

Ziel dieser Arbeit, Ausmaß und bestimmende Faktoren der N-Verluste durch Denitri-

fikation in getopften Zierpflanzenkulturen zu untersuchen. Mithilfe der Acetylen-

(C2H2)-Inhibierungsmethode wurden Experimente in dynamischen Versuchsanlagen 

(Durchflußkammern) mit bepflanztem Substrat, sowie in geschlossenen Versuchs-

gefäßen mit unbepflanztem Substrat durchgeführt. Folgende Ergebnisse wurden 

erzielt: 

1. Eine Acetylene-Konzentration von 5 vol.% und eine Vorbehandlungsdauer des 

Substrats von zwei Stunden erwiesen sich im gewählten Versuchssystem als 

geeignet für die sofortige und vollständige Hemmung der N2O-Reduktion. 

Hierbei zeigte C2H2 nach 48  bzw. 72 Stunden Nebenwirkungen auf die Ver-

suchspflanzen P. zonale und E. pulcherrima. Dagegen wurden keine Auswir-

kungen auf Einflußfaktoren der Denitrifikation beobachtet, wie z.B. Evapo-

transpiration oder Kohlenstoff-Verfügbarkeit im Substrat. Deshalb, und weil die 

Denitrifikation in bepflanztem Substrat üblicherweise innerhalb von 34 h 

endete, wurde von keiner Beeinträchtigung der Denitrifikationsmessungen 

durch Nebenwirkungen von C2H2 ausgegangen.  

2. Untersuchungen von unbepflanztem Substrat zeigten, daß Denitrifikation und 

Emission von N O nur bei Sauerstoffmangel in nennenswertem Umfang 

stattfanden. Sauerstoffmangel wurde durch Anstaubewässerung induziert. 

Steigende N Emissionen mit steigendem Glukose-C-Angebot deuteten auf 

eine C-Limitierung der Denitrifikation in Torfsubstrat. Das Nitrat-Angebot 

erhöhte (N +N O)-N-Verluste nur gegenüber der ungedüngten Kontrolle. Im 

Gegensatz dazu nahm der N O-Anteil der N-Emissionen mit steigendem NO  

Angebot zu. N-Emissionen stiegen mit der Temperatur. 

2

2 2

2 3
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3. In bepflanztem Substrat erwiesen sich Substratluft- bzw. -wassergehalt  als 

stärkste Einflußfaktoren der Denitrifikation. Nach Bewässerung, bei hohem 

Wassergehalt, stiegen die N Emissionen an. Ihr Sinken und Enden wurde auf 

das Absinken des Substratwassergehalts unter einen Schwellenwert zurück-

geführt. Pflanzen- und Klimafaktoren übten über die Evapotranspiration einen 

starken Einfluß auf den Substratwassergehalt aus. Auch die Substratfeuchte 

vor Bewässerung beeinflußte den Wassergehalt nach Bewässerung und trug 

damit zur Variabilität der N-Verluste innerhalb einer Messung bei.   

4. Die Denitrifikation war auch in bepflanztem Substrat C-limitiert. Mit steigendem 

Pflanzenalter von P. zonale (4 bzw. 8 Wochen) veränderte sich der Verlauf der 

N-Emissionen nach Anstau. Bei verkürzter Denitrifikationsdauer stieg die 

Höhe der N-Emissionen an. Dies lag vermutlich am schnelleren Absinken des 

Substratwassergehalts bzw. an der höheren Wurzelatmung und C-Abgabe 

durch ältere Pflanzen. Unterschiede im summierten N-Verlust in Abhängigkeit 

des Pflanzenalters waren nicht signifikant. Der Beitrag des Pflanzenalters zur 

Variabilität der N-Emissionen im Kulturverlauf wurde als gering eingeschätzt. 

5. Substrateigenschaften beeinflußten die Denitrifikation durch ihre Wirkung auf 

die Wasser- und Luftkapazität. N-Verluste und Wasserkapazität waren bei vor 

Bewässerung trockenem Substrat geringer als bei vor Bewässerung feuchtem 

Substrat. Substratverdichtung erhöhte sowohl Wassergehalt nach Anstau als 

auch N-Verluste im Vergleich zu unverdichteten Substrat. Das Sieben von 

Substrat steigerte die N-Emissionen, obwohl keine Veränderung im Wasser-

gehalt beobachtet wurde. Vermutlich war der Anstieg der N-Verluste auf Ver-

änderungen in der Porenstruktur oder auf erhöhtes Schrumpfen des gesiebten 

Substrats zurückzuführen. Die Beimischung von Holzfasern oder Reisspelzen 

zu gesiebtem Torf (30 vol.%:70 vol.%) bewirkte keine signifikante Reduktion 

der N-Verluste, obwohl die unbepflanzten Substratmischungen eine höhere 

Luftkapazität als reiner Torf aufwiesen. Es wurde angenommen, daß die Luft-

kapazität der Substratmischungen aufgrund von Zersetzung und Schrumpfung 

während der Kulturdauer abnahm.  

6. Innerhalb des getopften Substrats wies die unterste Schicht am Topfboden 

den höchsten Wassergehalt nach Anstaubewässerung auf und bot damit die 

besten Bedingungen für die Denitrifikation. Dies wurde durch Messungen des 
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Redoxpotentials bestätigt. Niedrige Redoxpotentiale wurden nur in der unteren 

Substratschicht bis 2,5 cm über dem Topfboden gemessen. Dennoch zeigten 

nicht alle nah am Topfboden positionierten Elektroden ein Absinken des 

Potentials nach Anstau. Vermutlich war zusätzlich zum hohen Wassergehalt 

die Verfügbarkeit von Kohlenstoff aus Pflanzenwurzeln notwendig, um ein Ab-

sinken des Redoxpotentials und Denitrifikation zu ermöglichen. Messungen 

des Redoxpotentials wiesen auf eine hohe Variabilität der Denitrifikations-

bedingungen innerhalb eines Topfes und trugen damit zur Erklärung der 

hohen Variabilität von N-Emissionen bei. 

7. Maßnahmen der gärtnerischen Kulturführung beeinflußten die Denitrifikation 

zum Teil. N-Emissionen sanken durch Kürzung der Bewässerungszeit von 

zwei Stunden auf 30 Minuten. Die Verwendung von Töpfen mit geringeren 

Durchmesser am Boden als am oberen Rand (konisch, v-förmig) im Vergleich 

zu zylindrischen oder u-förmigen Töpfen mit gleichem Fassungsvermögen 

reduzierte die N-Verluste. Dies lag vermutlich an dem geringeren Volumen der 

untersten Substratschicht in den v-förmigen Töpfen. Dieselbe Ursache wurde 

für höhere N-Verluste aus 550 mL- im Vegleich zu 240 mL-Töpfen vermutet. 

Hierbei unterschieden sich die Topfgrößen jedoch nicht, wenn zusätzlich zum 

N-Verlust pro Bewässerung die Bewässerungshäufigkeit berücksichtigt wurde. 

Die Verlegung der Bewässerung vom Morgen in den Nachmittag veränderte 

den Verlauf der N-Emissionen, aber nicht den gesamten N-Verlust. Die Anzahl 

der Topfbodenlöcher beeinflußte die N-Emissionen nur geringfügig. Dagegen 

wurden nennenswerte N-Emissionen aus Bewässerungsmatten, die ohne 

schützende Nadelfolie benutzt wurden, gemessen.   

8. Hochgerechnete N-Verluste durch Denitrifikation aus der Kultivierung von 

Topfpflanzen in einem Ebbe/Flut-System betrugen als (N2+N2O)-N 6,9 kg ha-1 

Jahr-1 und als N2O-N 2,4 kg ha-1 Jahr-1. Sowohl der monetäre Verlust von 

Düngerstickstoff als auch der Beitrag der Topfpflanzenproduktion zur Emission 

des umweltschädlichen N2O wurden als gering bewertet.  
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