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Abbreviation list 

 

ACHE   :acetylcholin esterase 

AhR   :aryl hydrocarbon receptor 

aqua dest.   :Aqua destilatum (distilled water) 

CF   :condition factor 

CYP450  :cytochrome P450 

DDD   : 1,1-dichloro-2,2-bis(p-chlorophenyl) ethane 

DDE   : 1,1-dichloro-2,2-bis(chlorophenyl) ethylene 

DDT   : 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane 

DHR   :di-hydrorhodamin 

DMSO   :dimethylsulfoxide 

DNA   :desoxyribonucleic acid 

EROD   :Ethoxyresorufin-O-deethylase 

et al.   :et alii (and others) 

FACS   :Fluorescence accelerated cell scanner 

FITC   :flourescin-iso-thio-cyanate 

FSC   :forward scattered light (reflecting cell size) 

G6PDH  :glucose-6-phosphate dehydrogenase 

GST   :glutathione S-transferase 

H2O2   :hydrogen peroxide 

HCB   :hexachlorobenzene 

HCH   :hexachlorocyclohexan 

HKL   :head kidney leukocytes 

ICES   :International Council for the Exploration of the Sea 

IU   :international unit 

MAA   :macrophage aggregate area 

MAM   :macrophage aggregate activity 

n   :number of samples 

NBT   :nitro blue tetrazolium salt 

NR   :neutral red 

O2
-   :superoxide radical 

OD   :optical density 

p   :probability of error 
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PAH   :polycyclic aromatic hydrocarbon 

PBL   :peripheral blood leukocytes 

PBS   :phosphate buffered saline 

PCB   :polychlorinated biphenyls 

PMA   :phorbol-12-myristate-13-acetate 

ppm   :parts per million  

R   :coefficient of correlation 

ROS   :reactive oxygen species 

RPMI 1640  :Roswell Park Memorial Institute cell culture medium No 1640 

SI   :stimulation index 

SSC   :side scattered light (reflecting cell complexity) 

v/v   :volume per volume 
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Abstract 

Environmental pollution especially in aquatic ecosystems is a major problem of the 20th 

century. Industrial effluents mainly introduce a wide variety of xenobiotics into marine 

or limnetic ecosystems which can enter aquatic organisms by different routes, interact 

with metabolic pathways or act direct as toxicant. These substances finally induce 

stress, which results in limited distribution, low abundance and /or reduced reproductive 

potential of affected organisms and therefore can induce changes in the entire 

ecosystem. An attempt to assess the changes induced by environmental contaminants is 

to monitor so called biomarkers or bioindicators: molecular, cellular or physiological 

parameters of organisms which are modulated in response to xenobiotic challenge. 

These parameters in principle should be measured by simple and inexpensive 

techniques, they should be sensitive to sublethal concentration of xenobiotica in the 

environment, and when measured in biota they should indicate the effect of pollution on 

the organism. In the research presented here, we incorporated innate immune responses 

of flatfish into biological effect monitoring studies to assess the immunomodulatory 

influence of xenobiotics. An effect of single compounds or of mixtures of xenobiotica 

on innate immune response of fishes was previously shown in laboratory studies by 

others. 

As a prerequisite, we showed that the head kidney of flounder (Platichthys flesus L.) is 

the optimal target organ for the conduction of functional assays such as the generation 

of radical oxygen species (ROS) or endocytosis by granulocytes and macrophages/ 

monocytes. Head kidney derived leukocytes gave highest measurements when 

compared to cells from blood or spleen, even without further enrichment protocols. 

Thus, these cell suspensions can be used “under field situations” (chapter 2).  

When considering these innate immune responses as biomarkers or indicators for 

environmental degradation, pollution mediated effects have to be distinguished from 

natural fluctuations. The natural impact of hydrographical factors for instance can 

modulate immune responses in fish. As shown in this thesis (chapter 3) a decrease in 

ambient salinity from 32 to 16 ppm did not result in a redistribution of leucocyte subsets 

in the head kidney of the euryhaline flounder. Phagocyte functions of head kidney 

derived leucocytes, such a respiratory burst and pinocytosis activity as well as plasma 

lysozyme levels also were not altered upon the change in salinity. The findings here 

indicate that these parameters are not sensitive to salinity changes in brackish or 

estuarine environments.  
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The infection of flounder with different parasites did not result in alteration of innate 

immune response (chapter 5). Due to a high variability in infection status in addition to 

a high variability in immune functions, no dependencies were obvious. Our findings 

indicate that ectoparasitic copepods as the most abundant parasites had no major 

influence on the immune responses measured here, which means, that these parameters 

are not sensitive to sub-clinical parasite infection.  

In an integrated biomonitoring study (chapter 4) conducted in the German Bight, 

southern North Sea, ROS production and lysozyme activity in flounder were 

significantly affected by single xenobiotica and significant correlations of the 

immunological parameters applied here were found with ICES recommended 

biomarkers of xenobiotica exposure as EROD or DNA unwinding. Due to the moderate 

pollution gradient found in the German Bight no spatial trend between the sampling 

sites could be drawn by means of the immunological parameters. 

In an integrated study on dab (Limanda limanda L.), where a clear pollution gradient 

between the sampling sites had been described, the ability of granulocytes and 

macrophages/monocytes to generate ROS was lower in polluted sites. Lysozyme 

activity in blood was significant lower in polluted sites and also in individuals infected 

with the lymphocystis virus or with nematodes (chapter 6). 

The present study underlines that the chosen immune assays could be used in biological 

effect monitoring studies under field situations and can show a general modulatory 

effect of xenobiotica on fish immune responses under natural conditions. 
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General introduction 

 

About 70 % of the earth’s surface and more than 90 % of the earth’s biosphere is water. 

The aquatic environment is perceived to be at risk of several thousands of toxic 

chemicals, of both anthropogenic and natural origin. If they are not brought into the 

environment deliberately, hydrologic and atmospheric processes will disseminate these 

chemicals, referred to as xenobiotics, eventually depositing them into the aquatic 

ecosystem. As a result of the industrial revolution, more than 100 000 xenobiotic 

compounds are in commercial use in the 20th century (Depledge and Fossi 1994), and 

the ultimate sink for many of them is the aquatic environment. Many chemicals are no 

longer produced but nevertheless persist in the environment, and several hundreds of 

new chemicals are still introduced each year (Moriarty 1993). The xenobiotics (table 1) 

can enter the organisms by different routes, interact with metabolic pathways or act 

direct as toxicant and finely induce stress.  

 

Table 1: Ecotoxicants, which have been studied because of their potential to harm 
fish’s innate immune system (modified after Bols et al. 2001). Groups based on two 
properties: biological activity and chemical structure. 
 
 
Biological activity  
 
INSECTICIDES (TOXIC TO INSECTS) (subdivided on basis of chemical structure): 
• Organochlorines:  

 mirex, kepone, toxaphene, endosulfan, lindan, hexachloro-cyclohexane 

• Organophosphates: 

trichlorfon, dichlorvos 1-napthyl-N-methylcarbamate (carbaryl or methacid-50), 

malathion, methyl parathion 

• Pyrethroids:  

 esfenvalerate 

HERBICIDES (toxic to plants):  

 atrazine 

FUNGICIDES (toxic to fungi): 

 chlorothalonil 

ENVIRONMENTAL ESTROGENS (bind to estrogen receptor):  

 nonylphenol, nonoxynol 
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Table 1 (continued): 
 
 
Chemical structure 
 

POLYCYCLIC AROMATIC HYDROCARBONS (PAHs): 
benzo[a]pyrene (BaP), 3-methylcholanthrene (3MC),  
7,12-dimethylbenz[a]anthracene (DMBA) 
Dioxins and furans 210 congeners; two are 2,3,7,8-tetrachlorodibenzo-p-dioxin 
(TCDF) and 2,3,7,8-tetrachlorodibenzofuran (TCDD) 

 
POLYCHLORINATED BIPHENYLS (PCB): 

arochlor is a commercial PCB mixture, 209 possible congeners 
 
PHENOLS: 

phenol, pyrocatechol, hydroquinone, 2,4,6-trichlorophenol, pentachlorophenol 
(PCP) 

 
HEAVY METALS: 

cadmium, chromium, copper, lead, mercury, manganese, nickel and zinc 
Organometallics: tributyltin, dibutyltin (TBT, DBT) 

 

 

A population under stress due to some anthropogenic changes in its environment is 

frequently characterised by a limited distribution, low abundance and /or reduced 

reproductive potential. Thus, the ultimate expression of stress at the population level is a 

decrease in the absolute number of adults (Diamant and Westernhagen 1999) and on 

ecosystem level, a decline in biodiversity.  

To asses the impact of pollution on the environment, the xenobiotica load is correlated 

with contamination found in biota or organisms. Different methods have been 

introduced and applied in the field to monitor the xenobiotica load. Chemical 

monitoring focuses on a selected set of well-known contaminants, which are measured 

in abiotic environmental compartments like sediment or water, while bioaccumulation 

monitoring focuses on contaminant levels in biota. The effect of xenobiotica introduced 

into the environment on biota is difficult to assess. Both methods cannot answer the 

question of consequences for the biota which arise with the contamination load. 

Consequences at the ecosystem level normally display a long response time, and when 

effects eventually occur, it is usually to late for effective countermeasures to be taken. 

In addition interactions between different xenobiotics are also difficult to assess, but 

there are attempts to measure an overall effect of pollution, for instance by infection 

experiments with opportunistic pathogens.  
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In biological effect monitoring early adverse alterations that are partly or fully 

reversible (biomarkers) are determined in biota. A biomarker is defined as a sublethal 

biological measurement of response to, or effects of, pollutants in living organisms 

(Peakall 1994). These include a number of molecular, cellular and physiological 

parameters that, in principle, can be measured with simple and inexpensive techniques. 

Biomarkers have been identified as a powerful and cost-effective approach to obtain 

information on the state of the environment and the effects of pollution on living 

biological resources (McCarthy and Shugart 1990, Peakall 1994, Wester et al. 1994, 

Depledge et al. 1995). By the application of biomarker measurements, the use of 

expensive and complex analytical chemical equipment and expertise can be reduced, 

and analyses are relatively quick to perform. The response of these biomarker systems 

represents a sublethal response to toxic compounds, thus providing not only early 

warning indicators of degradation in environmental quality, but also specific measures 

of the biological availability of toxic, carcinogenic and mutagenic compounds in the 

environment (Goksoyr et al. 1996). The sequential order of responses to pollutant stress 

is visualised in Figure 1. Responses at higher levels (such as tissues, organisms) are 

obviously late effects following long term exposure, whereas early effects of pollution 

can be observed up to cellular level. For example biotransformation enzymes and 

products, oxidative stress parameters, stress proteins and metallothioneins, as well as 

haematological, immunological, reproductive, endocrine, genotoxic, physiological and 

morphological parameters provide biomarkers for early stages in stress responses (Van 

der Oost 1998). 

 

 

„early“ effects

molecular
subcellular (organelle)
cellular
tissue
systemic (organ)
organism
population
community
ecosystem

„late“ effects

pollutant
exposure

„early“ effects

molecular
subcellular (organelle)
cellular
tissue
systemic (organ)
organism
population
community
ecosystem

„late“ effects

pollutant
exposure

 
 
Figure 1: The sequential order of responses to pollutant stress within a biological 
system. Modified from Bayne et al. (1985) 
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It appears clear from a number of studies that the immune system is exquisitely 

sensitive for assessing toxic effects of chemicals of environmental concern (Luster et al. 

1988, Luster and Rosenthal 1993). Because of the responsivity of the immune system to 

chemicals at low levels and its importance for maintaining host resistance against 

disease, much emphasis has placed on the development of immune assays that can 

predict exposure to and/or effects from environmental chemicals (Zelikoff et al. 2000). 

These assays, originally developed in rodents, have been adapted for use in a variety of 

animal species (Weeks et al. 1992) including fish. The immune system in general can 

be divided into the innate immune system, which responses immediately and 

independent from previous exposure from a particular antigen, and the adaptive immune 

system, which responses upon antigen exposure. Among the entire immune system of a 

multicellular animal that can be monitored in ecotoxicology, the innate immune system 

has some unique attractive features. More than other biological processes, the innate 

immune system is directly concerned with the interaction of a species with other 

organism- an essential feature in ecology. Detrimental changes to innate immunity are 

of ecotoxicological concern because they have the potential to influence populations by 

affecting susceptibility of individuals to disease. Additionally, many components of the 

innate immunity appear to be evolutionary conserved (Hoffmann et al. 1999, Ulevitch 

2000). This could mean that the sensitivity of innate immune mechanisms to a particular 

contaminant is similar among species, which would make predicting the environmental 

impact of toxicant easier.  

Fish are an especially important animal group from the perspective of innate immunity 

and ecotoxicology. Impairment of innate immunity may be more significant in fish than 

in mammals, as mounting an adaptive or acquired immune response takes longer in fish 

(Alexander and Ingram 1992). Understanding changes in fish innate immunity are 

important for evaluating changes in the general health of the aquatic environment. Fish 

are the oldest and most diverse of the vertebrate groups and consist of more than 25,000 

different species occupying most aquatic niches. Thus, monitoring fish health gives 

insight into the condition of the aquatic environment (Zelikoff et al. 2000). An effect on 

fish innate immunity can serve as a warning of potential impact on human and 

ecosystem health because ecotoxicants (Table 1) are often released first into aquatic 

environments, an then, by a variety of routes, reach humans and other terrestrial animals 

(Zelikoff et al. 1998, Adams and Greesly 1999). 
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The immune system of fishes is quite varied and appears to be associated with fish 

phylogeny (Borysenko 1976). Although even the most advanced teleost species do not 

possess bone marrow or lymph nodes, fish contain functionally equivalent 

haematopoetic tissue primarily in areas of the kidney, spleen, and thymus. In addition, 

fish also have circulating white blood cells that are functionally and morphologically 

similar to mammalian lymphocytes, granulocytes, and monocytes (Ellis 1977, Zelikoff 

et al. 1991, Enane et al. 1993). Fish and mammalian species share a number of 

structural and functional characteristics important in the humoral, cell-mediated, and 

non-specific aspects of immune response (for review: Zelikoff 1994). Non-specific 

immune reactions in fish are general responses to injury and/or invasion by foreign 

organisms. As in their mammalian counterparts, phagocytosis and inflammation are two 

non-specific responses that appear to be universal in fish (Corbel 1975). Macrophages, 

along with neutrophils and non-specific cytotoxic cells (NCC), are the principal cell 

types associated with carrying out non-specific immune reactions in fish. White blood 

cell responses are assisted and/or heightened by a variety of non-specific factors found 

in fish serum, including complement, lysozyme, interferon, transferrin, C-reactive 

proteins and various natural haemolysins and haemagglutinins (Corbel 1975).  

One important fish group of indicator species for biomonitoring studies is represented 

by the flatfish family Pleuronectidae, living in close contact with and feeding on 

sediments. The two flatfish species applied in this study, the European flounder 

(Platichthys flesus L.) and dab (Limanda limanda L.), are widespread and prevalent in 

high abundance in the area and thus fulfil the criteria for an indicator species in 

biomonitoring studies. The flounder is common in coastal zones and estuaries up to 

freshwater areas in rivers in the North Sea and Baltic Sea. It typically prefers 

finegrained to sandy sediments, where it feeds mostly on benthic invertebrates. Most of 

the year, the flounder is a rather stationary species. The dab is also used as a monitoring 

organism in the North Sea and Baltic Sea, due its abundance, wide distribution, and 

susceptibility to environmental stressors (Lang and Dethlefsen 1996). Like the flounder, 

it also prefers finegrained to sandy sediments and feeds mostly on benthic invertebrates. 

Both species do migrate into deeper waters during the winter months for spawning and 

return to the same shallow waters during the summer period, which they left in winter. 

Therefore they have been applied in a variety of national and international monitoring 

programmes. For ecotoxicological studies the available data base on flounder and dab 

includes both baseline biological studies as well as studies on fish diseases and pollution 
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bioaccumulation and their physiological and pathological effects (Gokskoyr et al. 1996, 

Dethlefsen et al. 2000). 

The aim of the present investigation was to integrate innate immune responses of 

flatfishes as biomarkers into existing biological effect monitoring studies. Studies which 

correlate measurements of innate immune responses with data of somehow more 

established biomarkers of exposure such as EROD, Cytochrome P450 activity, DNA 

breakages or with bioaccumulation data from the same individual are scarce and in 

combination with long time monitoring studies they are novel. But this kind of studies 

offer additional information on the influence of xenobiotica at an individual level, about 

spatial or temporal patterns of response and might open the way to a multidimensional 

analysis (van der Oost et al. 1997). 

Here we chose those innate immune assays, which were held as the most promising for 

biomarkers due to results derived from exposure studies conducted in the laboratory, 

mesocosms or under field situation (for review: Bols et al. 2001). This were the ability 

of phagocytes to conduct endocytosis and to generate radical oxygen species (ROS), as 

part of the first line of defence in fish against pathogens, as well the activity of 

lysozyme in blood and the packed red blood cell volume. These parameters showed 

sensitivity against pollution and were influenced by xenobiotics (Bols et al. 2001). 

These innate immune parameters fulfil the criteria for biomarkers such as applicability 

in field situations, cost effectiveness, the use of no special/expensive equipment, a high 

trough put and the analysis can be performed relatively quickly. In an attempt to 

incorporate measurements of these innate immune responses into an integrated 

biological effect monitoring concept in flatfish, leucocytes initially were isolated from 

peripheral blood, head kidney and spleen and analysed for the presence of different 

leucocyte subsets, which were responsible for the phagocyte functions described above. 

As flatfish can live in habitats, which differ in hydrology, in chapter 3, we assessed the 

influence of the abiotic factor salinity on the innate immune parameters applied here in 

flounder. In a third set of experiments we integrated these innate immune parameters in 

a multibiomarker study, conducted on flounder in the North Sea. In this study additional 

chemical and bioaccumulation monitoring as well as established biomarkers of different 

levels of biological organisation (Figure 1) were applied, which were recommended by 

the International Council for the Exploration of the Sea (ICES 1996, 1999). The 

findings of the different monitoring methods are compared. Chapter 4 focusses on the 

influence of parasites on innate immune parameters, derived from flounder in the 
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multibiomarker study. Finally, innate immune functions were assessed from dab 

collected at various locations in the North Sea along a pollution gradient. In this study, 

biochemical biomarkers of pollution and grossly visible diseases as well as parasites 

were recorded from the same individuals according to ICES recommendations (ICES 

1996, 1999) and the findings of the different measurements were compared. By 

integrating measurements of innate immune response into biomarker studies we here 

tried to assess the overall immunomodulatory effect of xenobiotics on fish. 
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Chapter 2 
 

Measuring some flounder (Platichthys flesus L.) innate immune 
responses to be incorporated in effect biomonitoring concepts 
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Summary 

For an implementation of innate immune responses of flounder (Platichthys flesus L.) in 

an integrated biological effect monitoring concept, leukocytes were isolated from 

peripheral blood, head kidney and spleen and analysed for their capability of mounting a 

respiratory burst response upon phorbol ester stimulation. Responding cells were 

identified by reduced nitro-blue-tetrazolium salt deposits and by di-hydrorhodamine 

fluorescence in light microscopical and flow cytometric analysis. Responding cells were 

found in head kidney derived cell suspensions rather than in peripheral blood or spleen. 

Parallel cytometric and microscopic analysis indicated that responding cells had 

granulocyte or monocyte morphology, were alpha-naphtyl-esterase or myeloperoxidase 

positive and in flow cytometry exhibited characteristic forward and side scatter 

(FSC/SSC) pattern. These cells were present in head kidney derived cell suspensions in 

proportions of 30-40 % and in peripheral blood and spleen only in proportions of 4-5 %. 

In order to reduce sampling effort in field studies, leukocyte cell suspensions derived 

from flounder head kidney could be used in respiratory burst assays without further 

enrichment protocols. In addition, lysozyme activity could be recorded from flounder 

plasma in a simple turbidometric assay, which was evaluated by means of a microtiter 

plate reader. Both assays can be implemented in integrated field studies. 

 

Introduction 

Innate immune responses of fish and invertebrates are discussed as promising 

candidates for biomarkers in an assessment of the impact of pollutants or xenobiotics on 

aquatic biota (den Besten 1998, Bols et al. 2001, Dunier and Siwicki 1993). Innate 

immune responses protect organisms against infection without depending upon prior 

exposure to any particular microorganism. This could mean, that it directly reflects 

interactions of the species with other organisms. In addition, many components of 

innate immunity appear to be evolutionary conserved (Hoffmann et al. 1999, Ulevitch 

2000), which could indicate that the sensitivity of an innate immune mechanism to a 

particular contaminant is similar among species. This would make predictions of 

impacts of toxicants in the environment easier. Innate responses comprise biochemical 

and cellular processes, and in laboratory and field studies, many different parameters 

were monitored (reviewed by Dunier and Siwicki 1993, Bols et al. 2001). Promising 

candidates for use in environmental studies were lysozyme activity and production of 

reactive oxygen species by phagocytic leukocytes (Bols et al. 2001).  
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Lysozyme is an enzyme that disrupts the cell walls of bacteria (Yano 1996) and is found 

in various organs and secretions such as mucous layers or serum. In toxicological 

studies, lysozyme activity was measured by different methods in samples from various 

origins. In general, lysozyme activity levels were found to be susceptible to xenobiotics, 

but the results were found to depend on the origin of the sample and the method used 

for analysis, which makes comparative studies very difficult (reviewed by Bols et al. 

2001). As serum or plasma can be collected, frozen and evaluated later by an 

inexpensive assay, lysozyme activity can be incorporated in a monitoring program as a 

convenient parameter. For a comparison of measurements among studies, 

standardization of sample processing and analysis is required. 

For the assessment of impacts of xenobiotics on cellular responses, the activity of 

phagocytic leukocytes such as neutrophilic granulocytes or monocytes was monitored in 

various studies (Secombes et al. 1997, Zelikoff 1993, Zelikoff et al. 1997). 

Phagocytosis is a complex process which comprises various steps: migration, adhesion, 

ingestion of particles, degranulation and respiratory burst by the production of reactive 

oxygen radicals (ROS, English 1999). Most studies in ecotoxicology focus on the 

ingestion of particles (phagocytosis) or respiratory burst, which can be measured by 

means of flow cytometry or in colorimetric assays (Chilmonczyk et al. 1997, Secombes 

1990). The respiratory burst may be measured in several ways, which again can 

complicate comparison studies. In addition, cells can be collected from different organs 

and activated by various stimuli to trigger respiratory burst activity. As the respiratory 

burst appears to hold promise as a bioindicator for fish health (Rice et al. 1996) 

standardization of experimental protocols among research groups is considered to 

facilitate its use in environmental studies (Bols et al. 2001).  

In an attempt to incorporate measurements of innate immune responses in an integrated 

biological effect monitoring concept in flounder (Platichthys flesus L.), leukocytes were 

isolated from peripheral blood, head kidney and spleen and analysed for the presence of 

different leukocyte subsets. Cells from these tissues were assessed for their capability of 

mounting a respiratory burst response upon stimulation by the synthetic agonist 

phorbol-12-myristate-13-acetate (PMA). The analysis of cellular subsets and respiratory 

burst response was done using conventional microscopic and colorimetric methods as 

well as flow cytometric analysis. Flow cytometry-based applications have been used to 

study various aspects of fish genetics and immunology (Thuvander et al. 1992, 
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Verburg-van Kemenade et al. 1994) and only recently were applied in fish toxicology 

studies (Chilmonczyk et al. 1997). 

 

Material and methods 

Fish 

Flounder (Platichthys flesus L.) for this study was collected in the German Bight of the 

North Sea at a location in the Elbe estuary off Cuxhaven harbour during cruises with the 

research vessel “Uthörn” of the Alfred Wegener Institute. Sampling campaigns were 

conducted in April and September 1999 and 2000. Fishing was done with a bottom 

trawl (opening 1.5 m, mesh width in the cod end 40 mm stretched mesh). The fishing 

period was limited to 30 min to keep fish stress as low as possible. On board, the fish 

were sorted out immediately and kept in tanks with permanent seawater flow-through 

and aeration for up to 6 h until further processing took place. Only macroscopic healthy 

flounder of the size class 18-25 cm were used for this investigation. Some flounder were 

dissected on board of the research vessel, blood and tissue samples were taken and 

processed in the laboratory immediately as described below. Some flounder were 

brought to the laboratory and kept in 80 l plastic aquaria with recirculated and aerated 

artificial sea water (Tropic Marin) at 14 °C (±1.5) in the dark. The fish were fed daily ad 

libitum with frozen shrimps. All fish were acclimatized to laboratory conditions for 2 

weeks before they were used for tissue sampling. 

 

Examination procedure 

On board of the research vessel, body length and weight were measured from each of 

the fish and blood was drawn from the caudal vein into disposable syringes prefilled 

with a lithium-heparin bead (Sarstedt, Germany). The blood was transferred to 

centrifugation tubes and centrifuged at 2000 x g for 15 min at 4 °C. Then the 

supernatant plasma was collected and frozen at –80 °C. For flow cytometric analysis, 

blood was collected in the laboratory by caudal veni puncture into syringes prefilled 

with heparinised medium (RPMI medium, supplemented with 50 000 IU l-1 sodium 

heparin). Then the fish was killed, dissected and head kidney and spleen were removed 

and transferred into centrifugation tubes filled with wash medium (RPMI medium 

supplemented with 10 000 IU l-1 sodium heparin; chemicals: Sigma-Aldrich, Germany 

medium: Biochrom, Germany) and stored at 4 °C for up to 24 h for further processing.  
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Lysozyme activity  

Lysozyme activity of flounder plasma was determined by means of a turbidimetric 

assay according to Parry et al. (1965). A suspension of 0.2 g l-1 Micrococcus 

lysodeikticus (Sigma-Aldrich, Germany) in 0.05 M sodium phosphate buffer (pH 6.2) 

was mixed with 5, 10, and 25 µl of flounder plasma to give a final volume of 200 µl per 

well. The optical density was read in a spectrophotometer at 530 nm immediately after 

mixing, after 0.5 min, and then every 30 sec up to 6.5 min at a temperature of 20±2 °C. 

The decrease in absorbance was used to calculate lysozyme activity. A significant and 

linear decrease was observed over 4.5 min at a concentration of 25 µl of flounder 

plasma in 200 µl of M. lysodeikticus suspension. As an external standard, hen white egg 

lysozyme (Sigma-Aldrich, Germany) was used (Hutchinson and Manning 1996). One 

unit of lysozyme activity was defined as the amount of sample causing a decrease in 

absorbance of 0.001 OD min-1. 

 

Leukocyte isolation 

Media and cells were kept on ice and washing procedures were performed at 4 °C. 

Peripheral blood leukocytes (PBL) were separated from erythrocytes by centrifugation 

(30 min, 750 x g) over Lymphoprep (Nycomed, Oslo, Norway) as described by Miller 

and McKinney (1994). Cell suspensions of head kidney leukocytes (HKL) and spleen 

were prepared by forcing the tissues through a 100 µm nylon screen (Swiss Silk Bolting 

Cloth Mfg, Zürich, Switzerland). Isolated HKL, PBL and spleen leukocytes were 

washed three times with wash medium (10 min, 550 x g) and resuspended in cell culture 

medium: RPMI-1640 supplemented with 1 % [v/v] carp serum (serum from 15 

individual Cyprinus carpio L. was pooled, heat inactivated for 30 min at 56 °C, 0.2 µm 

filtered and stored at -20 °C until use), 100 000 IU l-1 penicillin, 100 mg l-1 streptomycin 

and 4 mM L-glutamine (all chemicals: Biochrom, Berlin, Germany). Numbers of viable 

cells were determined by trypan blue exclusion in a Neubauer haemocytometer.  

For density gradient centrifugation of flounder HKL and PBL, a gradient was 

established by the centrifugation of 20, 40 and 60 % Percoll solutions (Pharmacia, 

Sweden) at 30 000 x g for 30 min. 3 ml of HKL or PBL suspension were layered on top 

of the gradient and centrifuged for 30 min, at 750 x g. Fractions were collected 

separately into centrifugation tubes and washed two times with wash media. The cells 

were adjusted at a density of 106 cells per ml and cytospin preparations were made for 
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cytological staining and cytochemistry. In addition, samples of these cells were 

subjected to flow cytometric analysis. 

To lyse erythrocytes in cell suspension of spleen or peripheral blood, the cells were 

exposed to distilled water for 5 s, 10 s, 15 s, 20 s, 25 s and 30 s. Then the cell 

suspensions were analysed by means of a flow cytometer.  

 

Production of reactive oxygen species by flounder leukocytes 

Generation of reactive oxygen species (ROS) by flounder leukocytes was measured by 

means of the intra-cellular oxidation of fluorescent di-hydrorhodamine (DHR 123) and 

by the nitro blue tetrazolium salt (NBT) reduction assay. For the DHR-assay, PBL, 

HKL and spleen cells (106  cells ml-1) were incubated for 15 min in cell culture medium 

with DHR (1 mgl-1) and 0.15 mg l-1 phorbol-12-myristate-13-acetate (PMA, Sigma-

Aldrich, Germany) or without PMA in flow cytometer tubes in the dark. Morphology 

and fluorescence characteristics were recorded immediately after incubation, by means 

of flow cytometry. In addition, live cells were observed with a fluorescence microscope 

(Zeiss-Axiophot, Fa. Carl Zeiss, Germany), and micrographs were taken on Ilford Pan F 

50 film. For the NBT assay, head kidney leukocytes were incubated in 96-well flat-

bottom microtiter plates (106 cells in a final volume of 175 µl of cell culture medium). 

All set-ups were made at least in triplicate. Receptor-independent ROS production was 

induced by adding 0.15 mg l-1 PMA. The indicator NBT was added at 1 g l-1. Wells 

without PMA served to determine the spontaneous ROS generation of cells. After 

incubation for 2 h at 18 °C, the supernatants were removed and the cells were fixed by 

adding 125 µl of 100 % methanol. Each well was washed two times with 125 µl of 

70 % [v/v] methanol. Methanol was removed and the fixed cells were air dried over 

night and stored in the dark for up to two weeks. The reduced NBT (formazan) was 

dissolved in 125 µl 2 M KOH and 150 µl DMSO per well (All chemicals: Sigma-

Aldrich, Germany). The optical densities were recorded with a spectrophotometer at 

650 nm. Additional replicates with cells in NBT were taken for microscopic 

examination with a photo microscope („Zeiss-Axiophot“, Fa. Carl Zeiss, Germany).  

 

Cytochemistry  

Myeloperoxidase staining  

Air dried smears of HKL cell suspension were fixed for 30 s in a mixture of 37 % 

formalin and 95 % ethanol (relation 1:10, respectively), rinsed 2 min under tap water 
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and air dried in the dark (Kaplow, 1966). Activity of myeloperoxidase was visualized 

by means of diaminobenzidine (DAB, Fluka-Chemie AG, Switzerland), which in the 

presence of H2O2 is oxidized by the enzyme myeloperoxidase and gives a brown 

pigment (Lojda et al. 1976 modified from Graham and Karnovsky (1966)). Staining of 

nuclei was done with Harris`-haematoxylin-solution (Merck, Germany).  

 

Nonspecific Esterase activity 

Air dried smears from HKL cell suspension were fixed in a formalin saturated 

atmosphere for 2 min (Lin et al. 1998). A modified staining method with α-naphthyl 

acetate (Sigma-Aldrich, Germany) according to Davis and Ornstein (1959) was used to 

detect esterase activity (Romeis 1989). According to this method, α-naphthyl acetate in 

the presence of freshly formed diazonium salt of pararosaniline is enzymatically 

hydrolysed by the esterase, liberating free naphthol compounds. These then couple with 

the diazonium salt to give a red coloured deposit at the site of the enzyme. The nuclei 

were counterstained with Harris` haematoxylin solution (Merck, Germany).  

In addition, smears were air dried, fixed with methanol for 3 min and stained with 

Giemsa (Merck, Germany). 

Slides were observed with a photo-microscope („Zeiss-Axiophot“, Zeiss, Germany), 

and microphotographs were taken using an Ilford, Pan F film. 

 

Flow cytometric analysis of leukocytes  

Cell suspension of peripheral blood, head kidney and spleen were analysed with a flow 

cytometer (FACScan®, Becton Dickinson, Germany, single excitation wavelength of 

488 nm) immediately after isolation and after incubation with DHR. Plates with 

cultured cells were placed on ice (15 min), briefly shaken, then the whole content of 

each well was transferred to individual flow cytometer tubes and 2 mg l-1 propidium 

iodide (Calbiochem, Bad Soden, Germany) was added to each tube. Forward (FSC) and 

side scatter (SSC) characteristics of 10 000 events were acquired in linear mode, 

fluorescence intensities at wavelengths of 530 nm, and 650 nm were acquired at log 

scale. All flow cytometric data were analysed with the software WinMDI, version 2.8 

(Trotter 1998). Cellular debris with low FSC characteristics and propidium iodide-

positive, dead cells were excluded from further evaluation.  
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Statistics 

Correlations between leukocyte numbers and ROS readings were calculated with 

Pearson’s product moment correlation or with Spearman’s rank correlation. 

Correlations were considered to be significant at p<0.05. 

 

Results 

Lysozyme 

Lysozyme activity of flounder plasma could be measured by lysis of Micrococcus 

lysodeikticus in an assay adapted to a microplate reader. For a significant and linear 

decrease of optical density over a period of 4-5 min, 25 µl of flounder serum had to be 

mixed with 200 µl of M. lysodeikticus suspension. In contrast to Hutchinson and 

Manning (1996), who noted a sharp loss of lysozyme activity in dab serum upon storage 

at –20 °C, lysozyme activity of flounder plasma was retained after 1 and 4 weeks of 

storage (data not shown). 

 

Leukocyte typing and ROS-production 

Flow cytometric analysis of peripheral blood and spleen leukocytes of flounder yielded 

1 main population with small FSC/SSC profiles (Fig. 1 a, b, Region 1, R1). In parallel 

microscopic evaluation, these cells showed the morphology of lymphocytes (Fig. 2). 

Cells from the head kidney exhibited a more complex pattern (Fig. 1 c). Three major 

populations could be differentiated: cells with small FSC/SSC profiles in R1, a cell 

population with increased FSC/SSC characteristics in R2 and a third population with 

low SSC values but increased FSC values in R3 (Fig. 1c). 
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Figure 1: Flow cytometric characteristics of flounder leukocytes from (a) head kidney, 
(b) peripheral blood and (c) spleen. Note that cell suspensions derived from peripheral 
blood and spleen contained only 1 cell population (region 1, R1; small cells with low 
FCS/SSC characteristics), whereas cells from the head kidney had a more complex 
pattern with cells with increased FSC/SSC characteristics (R 2) and cells with increased 
cell size (R3).  
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In microscopical analysis, small lymphocytes with a condensed nucleus, and larger cells 

with an increased nucleus/ plasma ratio were observed. In Giemsa stained slides, these 

cells were identified as granulocytes and monocytes (Fig. 3). In addition, granulocyte 

type cells exhibited a strong myeloperoxidase activity (Fig. 4) and cells with monocyte 

morphology were positive for α-naphthyl-esterase activity (Fig. 5).  

In an attempt to analyse different leukocyte subsets from the head kidney for their 

ability to produce reactive oxygen species, cells were incubated in the presence of NBT 

or DHR. Microscopical observation revealed that granular cells had incorporated blue 

NBT formazan deposits (Fig. 6) and, upon DHR incubation, exhibited a clear green 

fluorescence (Fig. 7). Flow cytometric analysis (Fig. 8) showed that in HKL 

suspensions cells from the region R2 responded to PMA stimulation with ROS 

production. As ROS-production is a functional characteristic of granulocytes and 

monocytes (Secombes, 1996), it can be concluded, that these cells were found in the R2 

region in flounder HKL suspensions. 
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Figures 2-7: Platichthys flesus leukocytes from peripheral blood and head kidney. Fig. 
2: Peripheral blood derived lymphocytes. Figs. 3-7: Head kidney derived leukocytes. 
Fig. 3: lymphocytes (L), monocytes (M) Giemsa stain. Fig. 4: Myeloperoxidase 
reaction. Fig. 5: α-naphthyl-esterase reaction. Fig. 6: Nitro blue tetrazolium deposits in 
leukocytes. Fig. 7: Di-hydrorhodamine fluorescence. Fig. 7a: Phase contrast image of 3 
leukocytes Fig. 7b: The same cells under UV illumination: 2 cells exhibit a clear 
fluorescence.  
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Flow cytometric quantification of cellular subsets revealed that head kidney derived 

leukocytes consisted of about 30 % cells from R2, while in peripheral blood or spleen, 

these cells were present in a proportion of 1.5 to 4.5 % only (Table 1). Likewise, in 

HKL the numbers of ROS producing cells and spectrophotometric NBT readings were 

significantly higher than in PBL or spleen suspensions (Table 1). In cell suspensions, 

the number of ROS-producing cells as determined by DHR-fluorescence corresponded 

with the number of cells found in R 2 (R=0.982, p<0.001, n=9). In addition, the number 

of DHR-fluorescent cells corresponded to parallel readings using the colorimetric NBT 

assay (R=0.719, p<0.001, n=18). 
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Figure 8: Flow cytometric detection of respiratory burst activity in head kidney derived 
leukocytes. A: FSC/SSC scatter diagram of a head kidney cell suspension. B: Green 
fluorescence/SSC scatter diagram of the same cells after incubation with di-
hydrorhodamine and stimulated with the phorbol ester PMA. Measurements gated in R4 
were considered as fluorescent positive, which indicated respiratory burst activity. C: 
FSC/SSC profiles of green fluorescence positive cells from the region R4 are 
characteristic for cells from the region R2 in Fig. 1. 
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Table 1: Platichthys flesus, proportion of leukocyte subsets and ROS production in 
lymphoid organs. Cells were characterised in flow cytometric analysis by FSC/SSC 
scatter profiles according to Fig. 1. Cells from region R 1 were characterised by low 
FSC (cell size) and SSC (cell complexity) profiles, while cells from region R 2 had 
increased FSC/SSC characteristics (see Fig. 1). The ROS production of corresponding 
cell suspensions was measured by means of the colorimetric NBT assay and the 
percentage DHR-fluorescence positive (pos.) cells measured by flow cytometry. Data 
show mean and standard deviation of measurements from 4 individual flounder. 
Significant differences in cell distribution and ROS production were found between 
head kidney and peripheral blood or spleen measurements. 
 
Tissue % cells in the gate NBT (O2

-) DHR (H2O2) 
 R 1 R 2 (optical density)  (% pos. cells) 
 
head kidney 52.4(±2.7) 27.8(±3.3) 0.320(±0.109) 41.5(±11.1) 

peripheral blood 90.4(±4.3) 4.4(±2.2) 0.143(±0.101) 4.5(±3.3) 

spleen 93.9(±2.5) 1.5(±0.6) 0.033(±0.019) 1.5(±1.3) 

 
 

In an attempt to purify phagocytes from crude head kidney cell suspensions, HKL were 

centrifuged on continuous gradients prepared from 20, 40, and 60 % Percoll gradients. 

After centrifugation on a 60 % Percoll gradient, 3 populations were obtained, two major 

populations at a density of 1.05-1.06 g l-1 and a third minor population at a density of 

1.08-1.09 g l-1. Flow cytometric and microscopical analysis showed that lymphocyte, 

granulocyte and monocyte type cells were present in all 3 populations. While population 

1 mainly consisted of lymphocytes (50- 60 % of cells in region R1), population 2 was 

enriched for granulocyte/ monocyte type cells (50- 60 % of cells in region R2, Fig. 9). 

Population 3 consisted of a ratio of 50- 55 % of cells from R1 and 40- 45 % of cells 

from R 3 (n=3, Fig. 9). In cell lysis experiments, cells from R 3 were identified as 

erythrocytes (not shown).  
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Figure 9: FSC/SSC profiles of head kidney cells after centrifugation on a continuous 
gradient generated from a 60 % Percoll solution. A: freshly isolated suspension. B: 
population 1, at a density of 1.05 g l-1, C: population 2 at a density of approx. 1.06 g l-1, 
population 3 at a density of approx. 1.08 g l-1. Population 3 contained a high number of 
erythrocytes and was red in colour. 
 

Discussion 

European Flounder (Platichthys flesus L.) is frequently used in biomonitoring studies 

conducted in coastal environments of Northern Europe (Grinwis et al. 2000, Roose et 

al. 1998, Broeg et al. 1999). In these waters, the flounder is widely distributed, lives in 

close contact to the sediment and is tolerant to changes in salinity which enables the fish 

to invade estuaries as well. Studies in flounder focus on chemical (Grinwis et al. 2000), 

pathological and parasitological (Broeg et al. 1999) analysis but also comprise 

measurements of innate immune parameters (Boonstra et al. 1996, Pulsford et al. 1995, 

Grinwis 1998). Among these, serum lysozyme activity and responses of phagocytic 

cells were most promising candidates for biomarkers. These parameters were found to 

be susceptible to xenobiotics and can be measured in high through-put, inexpensive 

assays (Bols et al. 2001).  

For an implementation of these parameters in an environmental monitoring study we 

here analysed the capability of flounder leukocytes for their respiratory burst activity. 

NBT-formazan deposits as an indicator of intracellular secretion of superoxide anion 

were observed in leukocytes with a granulocyte or monocyte morphology. These cells 

also exhibited myeloperoxidase activity, which was found to be characteristic for 

granulocytes of many fish species (Hine et al. 1987, Lehmann et al. 1994). In flow 

cytometric analysis, only cells with increased FSC/SSC pattern exhibited respiratory 

burst activity. In carp (Verburg-van Kemenade et al. 1994) and rainbow trout 

(Chilmonczyk et al. 1997) cells with this FSC/SSC pattern and these functional 

characteristics were regarded as granulocytes and monocytes. Like in rainbow trout and 
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carp (Chilmonczyk et al. 1997, Scharsack et al. 2001), head kidney derived leukocytes 

of flounder contained increased proportions of cells with granulocyte or monocyte 

morphology and also showed increased respiratory burst activity. In peripheral blood 

and spleen, phagocytic cells were present in small numbers, and cell suspensions from 

these tissues gave only low respiratory burst measurements in response to phorbol ester 

stimulation. In field studies, collection of peripheral blood leukocytes is less invasive, 

but due to the low signal obtained, their respiratory burst activity is difficult to measure. 

In addition, a neutrophil influx into the peripheral blood is observed upon acute stress 

(Scharsack et al. 2001, Chilmonczyk et al. 1997) or infection (Scharsack et al. 2000), 

which will cause an increase in respiratory burst activity and thus interfere with 

pollution mediated effects. In head kidney, stress or infection related effects on 

proportion and activity of neutrophils can also be noticed when their respiratory burst 

activity is assessed (Chilmonczyk et al. 1997). Upon infection, most prominent effects 

were seen in basal ROS production (Scharsack et al. 2000), which, however is more 

likely to represent routine metabolic activity of cells than an immune response (Turrens 

and Boveris 1980). Thus it might be concluded that measurements of basal ROS 

production or calculation of ROS stimulation indices have no major relevance in 

pollution monitoring studies.  

Enrichment of ROS producing cells from crude head kidney cell suspensions was 

received by density gradient centrifugation. Crude suspensions contained 30- 40 % of 

ROS producing cells. After density gradient centrifugation, this proportion increased up 

to 60 %. In common protocols for isolation of macrophages or granulocytes (Secombes 

1990), density gradient centrifugation is followed by adhesion of cells to culture vessels 

and non adherent cells will be washed away. Attachment to surfaces, however, is a step 

in the process of phagocytosis (English 1999), which also could be modulated by 

xenobiotics. In experiments, where the ability of cells to attach to surfaces is impaired 

by xenobiotics, these cells would be lost during washing procedures, and respiratory 

burst activity would be measured only from those cells, which retained their ability to 

attach to surfaces. In result, the signal might be too low, because a significant number of 

cells would be lost, or it might be too high, because the purification procedure selected 

for less affected cells. To avoid losses of non-adherent ROS-producing cells, we 

measured respiratory burst activity of cells in suspension. In order to minimize sampling 

effort for application in a field study, crude cell suspensions were used. We are aware, 

that this procedure does not allow an adjustment of respiratory burst measurements 
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according to phagocyte numbers and might result in high variation of readings. Flow 

cytometric evaluation of ROS production allowed an identification and quantification of 

responding cells. In addition to cell function, it allows a simultaneous observation of 

cell morphology and changes in the proportion of cellular subsets, but it relies on the 

analysis of live cells (Scheffold and Radbruch 1998). The FSC/SSC characteristics of 

head kidney derived flounder leukocytes changed upon formalin fixation and storage, 

which did not allow morphometric analysis of cells at a later date (data not shown). The 

colorimetric NBT assay has to be performed with live cells as well. Methanol fixed, air 

dried plates could be stored for later analysis. 

 

In conclusion, respiratory burst active phagocytes could be isolated from the head 

kidney of flounder in sufficient numbers to give good readings of ROS production in 

flow cytometric as well as in colorimetric assays. The NBT assay and phorbol-ester 

stimulation of the cells gave reliable results. In addition, isolation and processing the 

cells could be implemented in a work schedule for an intergrated program in 

environmental monitoring.                                                                                      
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Chapter 3 
 

The effect of experimental salinity change in vivo on 
some innate immune responses of euryhaline 

European flounder (Platichthys flesus L.) 
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Summary 

A decrease in ambient salinity from 32 to 16 ppm did not result in a redistribution of 

leukocyte subsets in the head kidney of the euryhaline European flounder (Platichthys 

flesus L.). Phagocyte functions of head kidney derived leukocytes, such a respiratory 

burst and pinocytosis activity as well as plasma lysozyme levels also were not altered 

upon the change in salinity. The immune parameters considered here are regarded as 

promising indicators of chemical contaminant induced variation of piscine immune 

responses, which could be implemented in pollution monitoring programs. The findings 

here indicate that these parameters are not sensitive to salinity changes in brackish or 

estuarine environments. 

 

Introduction 

Chemical contaminant exposure has the potential of compromising immune functions 

that can lead to altered resistance of hosts to pathogens and to increased tumor 

susceptibility (Dean et al. 1986). In the mammalian system, alterations of immune 

responses and variation of disease resistance are very sensitive indicators, at least in 

part, of toxic insult to the immune system (Luster and Rosenthal 1993). To identify 

immune system changes upon exposure to chemicals, a panel of assays was developed 

and typically is used (Luster et al. 1988). These assays originally developed for rodents, 

have been adapted for use in fish species and are in use for an assessment of the 

immunotoxicology of different chemical classes in laboratory studies (Zelikoff 1998, 

Zelikoff et al. 2000). In a polluted environment, fish are exposed to a cocktail of largely 

unknown compounds for a not defined period. For pollution monitoring studies in the 

marine environment for instance, alteration of innate immune responses such as 

phagocyte functions or plasma lysozyme activity were considered  as most promising 

candidates for indicators of environmental pollution (Bols et al. 2001, den Besten 1998, 

Dunier and Siwicki 1993). 

In international monitoring programmes of biological effects of contaminants in coastal 

waters and estuaries bottom dwelling marine flatfish species as European flounder 

(Platichthys flesus L.) are frequently used as a sentinel species (ICES 1996, ICES 

1999). The flounder is widely distributed in different benthic habitats of the North and 

Baltic Sea. Due to its euryhaline nature, it migrates into estuaries and is also found in 

riverine freshwater habitats. While the effect of different ambient salinities on 

physiology (e.g. Waring et al. 1992) and biotransformation of xenobiotics (Schlenk et 
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al. 1996a, 1996b) was evaluated, knowledge about the impact of salinity changes on 

innate immune response considered as bioindicators for chemical exposure is lacking. 

Therefore, in this study cellular subsets, respiratory burst and phagocytosis activity of 

head kidney derived leukocytes of flounder were analysed in response to a decrease in 

salinity from 32 to 16 ppm over a period of 4 weeks. The aim of the present study was 

to evaluate the impact of a decreased salinity on the immune parameters assessed in a 

combined pollution monitoring program on flounder to mimic the situation of a 

brackish environment as it is found in estuaries or the Baltic Sea. 

 

Material and methods 

Fish 

Flounder (Platichthys flesus L.) for this study was collected in the German Bight of the 

North Sea at a location at Tiefe Rinne near Helgoland during cruises with the research 

vessel “Uthörn” of the Alfred Wegener Institute. Sampling campaigns were conducted 

in April and May 1999. Fishing was done with a bottom trawl (opening 1.5 m, mesh 

width in the cod end 40 mm stretched mesh). The fishing period was limited to 30 min 

to keep fish stress as low as possible. Flounder were brought to the laboratory and kept 

at 15 °C with permanent sea water flow-through and aeration. The fish were fed daily 

ad libitum with frozen mussels. All fish were acclimatized to laboratory conditions for 3 

weeks before they were used for the experiment. Flounder (n=100) were randomly 

divided in two groups. For one group the salinity was artificially decreased from 

32 ppm to 16 ppm within 24 h, by continuous dilution with freshwater, while the other 

group remained at 32 ppm during the whole experiment. 

 

Examination procedure 

At days 1, 3, 8, 15 and 29 after salinity change, 5-10 flounder individuals were collected 

from both groups. Body length and weight were measured from each individual and 

blood was drawn from the caudal vein into disposable syringes prefilled with a lithium-

heparin bead (Sarstedt, Germany). The blood was transferred to centrifugation tubes and 

centrifuged at 2000 x g for 15 min at 4 °C. Then the supernatant plasma was collected 

and frozen at –20 °C. The fish were killed, dissected and the head kidney was removed 

and transferred into centrifugation tubes filled with wash medium (RPMI medium 

supplemented with 10 000 IU l-1 sodium heparin; chemicals: Sigma-Aldrich, Germany, 

medium: Biochrom, Germany) and stored at 4 °C for up to 24 h for further processing. 
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From the morphological measurements, a whole body condition factor (CF) was 

determined for each individual according to the formula: 

CF= (body weight in g / body length in cm3) x 100 

and used as an allometric index for overall health (Busacker et al. 1990). Hepatosomatic 

index (HSI) was calculated according to Htun-han (1978) as follows: 

HSI = (liver weight in g/ whole body weight in g) x 100 

 

Lysozyme activity  

Lysozyme activity of flounder plasma was determined by means of a turbidimetric 

assay according to Parry et al. (1965). A suspension of 0.2 g l-1 Micrococcus 

lysodeikticus (Sigma-Aldrich, Germany) in 0.05 M sodium phosphate buffer (pH 6.2) 

was mixed with 25 µl of flounder plasma to give a final volume of 200 µl per well. The 

optical density was read in a spectrophotometer at 530 nm immediately after mixing, 

after 0.5 min, and then after 4.5 min at a temperature of 20±2 °C. The decrease in 

absorbance was used to calculate lysozyme activity. As an external standard, hen white 

egg lysozyme (Sigma-Aldrich, Germany) was used (Hutchinson and Manning 1996). 

One unit of lysozyme activity was defined as the amount of sample causing a decrease 

in absorbance of 0.001 OD min-1. 

 

Leukocyte isolation 

Leukocyte isolation was done as described previously (Chapter 2). Briefly, cell 

suspensions of head kidney leukocytes (HKL) were prepared by forcing the tissues 

through a 100 µm nylon screen (Swiss Silk Bolting Cloth Mfg, Zürich, Switzerland). 

Isolated HKL were washed three times with wash medium (10 min, 550 x g) and 

resuspended in cell culture medium: RPMI-1640 supplemented with 1% [v/v] carp 

serum (serum from 15 individual Cyprinus carpio L. was pooled, heat inactivated for 

30 min at 56 °C, 0.2 µm filtered and stored at -20 °C until use), 100 000 IU l-1 

penicillin, 100 mg l-1 streptomycin and 4 mM L-glutamine (all chemicals: Biochrom, 

Berlin, Germany). Numbers of viable cells in suspension were determined by means of 

flow cytometry. 

 

Production of reactive oxygen species by head kidney leukocytes 

Generation of reactive oxygen species (ROS) by head kidney leukocytes (HKL) was 

measured by means of the nitro blue tetrazolium salt (NBT, Sigma-Aldrich, Germany) 



                                                                                                                              Chapter 3 

 37 

reduction assay after cell isolation, as described above. Cells were incubated in 96-well 

flat-bottom microtiter plates (106 cells in a final volume of 175 µl of the respective 

culture medium). All set-ups were made at least in triplicate. Receptor-independent 

ROS production was induced by adding 0.15 mg l-1 phorbolmyristate acetate (PMA, 

Sigma-Aldrich, Germany). The indicator NBT was added at 1 g l-1. Wells without PMA 

served to determine the base line ROS generation of the cells. After incubation for 2 h at 

18°C, the supernatants were removed and the cells were fixed by adding 125 µl of 

100 % methanol. Each well was washed two times with 125 µl of 70 % [v/v] methanol. 

Methanol was removed and the fixed cells were air dried over night and stored in the 

dark for up to two weeks. The reduced NBT (formazan) was dissolved in 125 µl 

2 M KOH and 150 µl DMSO per well. The optical densities were recorded with a 

spectrophotometer at 650 nm. 

 

Endocytosis activity of head kidney phagocytes  

Endocytosis activity of head kidney phagocytes was measured by means of neutral red 

retention of isolated head kidney cells as described by (Mathews et al. 1990). This assay 

was adapted to microtiter plates. Briefly, 106 cells were incubated in a final volume of 

175 µl culture medium for 2.5 h at 18 °C with 10 mg l-1 neutral red (NR, Sigma-

Aldrich, Germany). All set-ups were made at least in triplicate. After incubation each 

well was washed two times with 125 µl phosphate buffered saline (PBS). After 

removing the PBS, the cells were air dried over night and frozen at -20 °C for up to two 

weeks. For spectrophotometric readings the cells were lysed with 100 µl acid ethanol 

(3 % HCl in 95 % Ethanol) and mixed with 100 µl PBS. The optical densities were 

recorded at 492 nm. 

 

Flow cytometric analysis of leukocytes  

Cell suspension of head kidney were analysed with a flow cytometer (FACScan®, 

Becton Dickinson, Germany, single excitation wavelength of 488 nm) immediately after 

isolation. They were transferred to individual flow cytometery tubes and 2 mg l-1 

propidium iodide (Calbiochem, Bad Soden, Germany) was added to each tube. Forward 

(FSC) and side scatter (SSC) characteristics of 10 000 events were acquired in linear 

mode, fluorescence intensities at wave lengths of 530 nm, and 650 nm were acquired at 

log scale. The number of viable cells was calculated by adding standard cells to each 

tube (assay modified after Pechold et al. 1994). Standard cells, paraformaldehyde-fixed 
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and FITC labelled bovine mononuclear cells (Schuberth et al. 1992, Hendricks et al. 

2000) were used for quantification of non-labelled vital test cells (viable HKL). All 

flow cytometric data were analysed with the software WinMDI, version 2.8 (Trotter 

1998). Cellular debris with low FSC characteristics was excluded from further 

evaluation. Standard cells (propidium iodide-positive, FITC positive) could be easily 

discriminated from viable cells (propidium iodide-negative, FITC negative). Total 

numbers of cells were calculated according to: 

N [vital cells] = Events [vital cells] x Number [standard cell] / events [standard cell] 

Different leukocyte subsets were identified according their characteristic forward and 

side scatter values (FSC/SSC profiles; chapter 2). 

 

Statistics 

Normality of data was tested with the Kolmogorov-Smirnow test. Differences between 

the two groups were analysed by Student’s t-test or Mann-Whitney’s rank sum test. 

Differences between the groups were considered to be statistically significant at p<0.05 

using SigmaStat software package (V2.03, SPSS Science Inc.). Correlation coefficients 

were calculated with the parametric Pearson’s Product Moment Correlation or with the 

non-parametric Spearman Rank Correlation. 

 

Results and conclusions 

Flow cytometric analysis of head kidney derived cell suspensions revealed three major 

leukocyte subpopulations, which were characterised by different forward- and sideward 

scatter (FSC/SSC) pattern (Fig. 1): cells with small FSC/SSC profiles (R1 in Fig 1, a 

cell population with increased FSC/SSC characteristics in region 2 (R2, in Fig 1) and a 

third population with increased FSC values but small SSC values (R3 in Fig 1). 
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Figure 1: Flounder, Platichthys flesus, flow cytometric characteristics of head kidney 
leukocytes. 
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The reduction of water osmolarity from 32 ppm to 16 ppm was not accompanied with a 

change in the proportions of head kidney derived leukocyte subsets (Table 1). An effect 

of salinity change could not be observed at individual sampling dates as well as at the 

end of the observation period, after 29 days of exposure. When respiratory burst and 

endocytosis activity of head kidney cells were observed, enhanced readings were 

obtained in assays with cells from flounder subjected to salinity change. Differences 

between the treatment groups could be seen in basal and PMA stimulated ROS 

production at day 3 of salinity change (Fig. 2). The endocytosis activity showed high 

individual variations among flounder from both treatment groups, which did not allow 

to discern differences between the groups (Fig. 3). 
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Figure 2a: Basal respiratory burst activity of flounder head kidney leukocytes. 
Indicated is (*): significant difference between individuals at 16 and 32 ppm salinity 
 

In chapter 2, cells with increased FSC/SSC characteristics from the region R2 (Fig. 1) 

were observed to generate reactive oxygen species, and respiratory burst readings 

obtained by the NBT reduction assay were correlated to the number of R2 cells (Chapter 

2). In the present investigation, this could be confirmed: 

The number of R2 cells present in HKL suspension was positively correlated with the 

basal (R=0.41, p<0.001, n=79), as well as PMA stimulated ROS production (R=0.42, 

p<0.001, n=79); and with the endocytosis activity (r=0.24, p<0.05, n=79) from the same 

individuals.  
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Table 2: Proportion of headkidney leukocyte populations in flounder after experimental 
salinity change. Cell populations among head kidney leukocytes were identified flow 
cytometrically based on their specific forward and side scatter characteristics (chapter 
2). Values are means ± SD. Number of fish is denoted in brackets. There are no 
significant differences between exposed and control groups  
 
Salinity Day  % cells in R1 % cells in R2 % cells in R3 
 
32 ppm 1 27 ± 7 (10) 32 ± 6 (10) 30 ± 7 (10) 
  3 29 ± 7 (10) 28 ± 5 (10) 29 ± 6 (10) 
  8 33 ± 9 (5) 29 ± 8 (5) 25 ± 7 (5) 
  15 24 ± 7 (5) 37 ± 4 (5) 25 ± 8 (5) 
  29 38 ± 6 (5) 27 ± 3 (5) 24 ± 4 (5) 
 
16 ppm 1 32 ± 4 (10) 30 ± 3 (10) 25 ± 4 (10) 
  3 35 ± 11 (10) 29 ± 7 (10) 24 ± 6 (10) 
  8 35 ± 7 (8) 28 ± 7 (8) 24 ± 6 (8) 
  15 27 ± 6 (8) 33 ± 7 (8) 26 ± 10 (8) 
  29 31 ± 8 (8) 28 ± 5 (8) 28 ± 7 (8) 
 
 

The plasma lysozyme activity in flounder did not show alterations which could be 

related to the salinity change (Fig. 4), but they were elevated day 3 and 5 post salinity 

change compared to day 29.  
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Fig. 2b: PMA stimulated ROS production of flounder head kidney leukocytes. 
Indicated is (*): significant difference between individuals at 16 and 32 ppm salinity 
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Figure 3: Endocytosis activity of flounder HKL. 
 

The immune measured here (plasma lysozyme activity, basal and PMA activated 

respiratory burst of head kidney leukocytes and pinocytosis activity of HKL) were not 

influenced by fish related parameters such as sex, length, weight, condition factor or 

hepatosomatic index of the flounder examined (data not shown). 
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Figure 4: Plasma lysozyme activity in flounder after a 50 % decrease in ambient 
salinity.  
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The overall effect of changes in ambient salinity in flounder was a higher energy 

expenditure associated with increased branchial Na+, K+ ATPase activity (Sampaino et 

al. 2002). This apparently did not induce a re-distribution of leukocytes subsets in the 

head kidney, or an alteration of other innate immune parameters measured here. After a 

period of acclimatisation for 8 days, no difference could be seen in plasma lysozyme 

content, endocytosis or respiratory burst activity of HKL between the two treatment 

groups. During the course of the experiment, at day 3 post salinity decrease the basal 

and PMA triggered production of ROS by HKL was increased in the group subjected to 

the salinity drop compared to individuals kept at stable salinity. This however, was not 

associated with a change in the proportion of ROS producing cells, as indicated by flow 

cytometric analysis. Other studies on sea bream (Sparus aurata L.) showed a decrease 

of respiratory burst active cells in the head kidney upon handling or anaesthesia induced 

stress (Ortuno et al. 2002). Most likely, these cells migrated from the head kidney into 

the peripheral blood, as observed in several fish species upon acute stress (Scharsack et 

al. 2001, Ortuno et al. 2001, Chilmonczyk et al. 1997). Stressed induced alterations in 

cell functions and humoral components were described by various authors for different 

stressors (Yin et al. 1995, Ortuno et al. 2001, 2002). From our findings we conclude 

that the decrease in salinity from 32 to 16 ppm did not significantly impact flounder 

innate immune responses. In exposure studies on flounder, the overall effect of reduced 

ambient salinity was a higher energy expenditure associated with increased branchial 

Na+, K+-ATPase activity (Sampaio et al. 2002). 

In conclusion, a reduction to ambient salinity by 50 % did not result in an alteration of 

cellular subsets of head kidney leukocytes and non specific immune functions in 

euryhaline flounder. Thus in a monitoring program, ambient salinity might not 

significantly impact measurements of the immune parameters considered here.  
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Chapter 4 
 

The use of innate immune responses as biomarkers in a  
program of integrated biological effects monitoring on flounder 

(Platichthys flesus L.) from the southern North Sea 
 



Chapter 4                                                                                                                               

 44 

Summary 

Immunological biomarkers that reflect the effects of exposure to environmental 

contaminants in coastal marine habitats were sought in European flounder (Platichthys 

flesus L.) from 5 locations in the German Bight with different anthropogenic impact. 

During a 2 years period of sampling, innate immune responses were monitored from a 

total of 331 individual flounder of a body length of 18 to 25 cm. From the fish, plasma 

lysozyme, phagocytosis and respiratory burst activity of head kidney leukocytes were 

analysed and implemented as part of an integrated biological effects monitoring 

program. As at some locations the measurements of the parameters applied here varied 

within wide ranges, spatial differences not always could be established, but some 

general trends could be drawn: Plasma lysozyme activity was decreased in flounder 

contaminated with DDT adducts and some PCBs, while cellular functions such as 

phagocytosis and respiratory burst were stimulated by some chlorinated hydrocarbons. 

Correlation analysis also revealed not only connections between the parameters applied 

here and some contaminants but also with some biochemical parameters used as 

biomarkers in pollution monitoring: In flounder with decreased integrity of lysosomal 

membranes of hepatocytes, immune functions also were impaired, and plasma lysozyme 

as well as phagocytosis activity of head kidney cells were impaired when the activity of 

cytochrome P450 1A was induced. The data presented here indicate that innate immune 

responses may be useful parameters to monitor cellular functions in a battery of 

biomarkers of different levels of biological organisation. 

 

Introduction 

In the last few decades, a possible influence of environmental pollution on the aquatic 

environment has gained considerable interest. Fish have become a favourable subject 

for research in this area, because temperature changes, habitat and water quality 

deterioration as well as aquatic pollution adversely affect fish health, which may result 

in mortalities and population decline. Among various biochemical, cellular and 

physiological systems, certain innate immune responses are considered as suitable 

biomarkers for monitoring biological effects of pollution (reviewed by Dunier and 

Siwicki 1993, Wester et al. 1994, Bols et al. 2001). Impairment of immune functions, 

which protect fish against invading pathogens, can lead to harmful consequences on 

individual level, as disease outbreak followed by death of the individual, and on the 

ecosystem level, as population reduces followed by the change of the entire ecosystem. 
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For fish populations, a link between environmental pollution and diseases has long been 

expected (Sinderman 1979, Sniezko 1974) and from studies carried out under defined 

conditions in laboratory, modulating influences of xenobiotics on immune responses of 

fishes were concluded (for review see Dunier and Siwicki 1993, Bols et al. 2001). 

Understanding the effect of toxicants on fish innate immunity supports the larger 

ecotoxicological goal of comprehending the actions of ecotoxicants on fish populations 

(Bols et al. 2001).  

Given that the non-specific immune system of fishes constitutes their first line of 

defence against pathogens (Ingram 1980), cellular and humoral reactions of the innate 

immune system are of great importance. They are unspecific but effective against 

pathogens, which try to invade the host. This leads on cellular level to activation and 

infiltration of one specialized type of leukocytes into the tissue, where invasion took 

place. These leukocyte subpopulation, which consists of granulocytes and macrophages, 

is able to ingest pathogens via endocytosis and to kill them intra- or extracellular by a 

process known as the respiratory burst (Halliwell and Gutteridge 1999). In fish it has 

been shown that this cell functions can be modulated by xenobiotics and suggested as 

most promising attempt for the use as an indicator of health (Bols et al. 2001). One 

important humoral component in the innate immune system is lysozyme (E.C.3.2.1.17), 

which attacks the peptidoglycan layer in the cell wall of predominantly Gram-positive 

bacteria, and to some extent, also Gram-negative bacteria. Lysozyme is localized in the 

lysosomes of neutrophils and macrophages and is released into the blood from these 

cells (Murray and Fletcher 1976). From previous studies it is known that lysozyme 

activity in fish blood is sensitive to environmental contaminants (Bols et al. 2001).  

Activity of phagocytic cells, such as endocytosis or respiratory burst and plasma 

lysozyme levels do not depend on a previous stimulation with a particular antigen. In 

addition, these responses can be measured in simple and inexpensive spectrophotometer 

based assay, which make them suitable for field studies.  

In the present study we implemented measurements of innate immune responses of fish 

in an integrated biological effect monitoring program on European flounder (Platichthys 

flesus L.) in the North Sea. The flounder is widely distributed in different habitats of the 

North and Baltic Sea. Like other marine flatfishes it lives in close contact to the 

sediment and feeds on various benthic organisms. Thus marine flatfish species are 

frequently used as a sentinel species in international monitoring programmes of 
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biological effects of contaminants in coastal waters and estuaries (ICES 1996, ICES 

1999).  

The data reported here are part of a monitoring program, which was conducted on 

flounder collected at several locations in the German Bight and which included the 

analysis of biochemical, pathological and parasitological parameters of the same 

individual in addition to the measurement of some innate immune responses. The study 

was supplemented with chemical analysis of chlorinated hydrocarbon residues in the 

muscle of the same individual fish used for an assessment of biological effects. In 

addition sediments and invertebrates (Mytilis edulis) were collected from the locations 

where the fish sampling took place. In the chapter here, findings of the immunological 

analysis were compared to chemical, biochemical and histochemical data for a more 

complete understanding of pollution impact on fish physiology. 

 

Material and methods 

Sampling 

Four sampling campaigns in the North Sea were conducted in April and September 

1999 and 2000. During these cruises with the research vessel “Uthörn” of the Alfred 

Wegener Institute, a total of 331 flounder (Platichthys flesus L.) were caught at five 

different locations (Elbe estuary, Inner Eider estuary, Outer Eider, Spiekeroog and Tiefe 

Rinne near Helgoland (table 1). The stations were determined by their geographical 

positions (Broeg et al., in press). Fishing was conducted with a bottom trawl (opening 

1.5 m, mesh width in the cod end 40 mm stretched mesh). Fishing period was limited to 

30 min to keep fish stress as low as possible. Fish were sorted out immediately and kept 

in tanks with permanent seawater flow-through and aeration for up to 6 h until further 

processing took place. Only macroscopic healthy flounder of the size class 18-25 cm 

were used for this investigation. A maximum of twenty fish per site and campaign were 

collected and prepared for analysis. 

 

Examination procedure 

On board of the research vessel, body length and weight from each were fish were 

measured, and macroscopic visible ectoparasites were collected. Blood was drawn from 

the caudal vein into disposable syringes prefilled with a lithium-heparin bead (Sarstedt, 

Germany). From the blood, the haematocrit was determined according to standard 

procedures (Houston 1990). The remaining blood then was transferred to centrifugation 
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tubes, centrifuged at 2000 x g for 15 min at 4 °C, and the supernatant plasma was 

collected and frozen at –80 °C. Then the fish was killed, dissected and the head kidney 

was removed and transferred into a centrifugation tube filled with wash medium (RPMI 

medium supplemented with 10 000 IU l-1 sodium heparin, medium: Biochrom, Berlin, 

Germany, heparin: Sigma-Aldrich, Germany) and stored at 4 °C for up to 24 h for 

further processing. In addition liver, kidney, intestine, gills and muscle samples were 

collected for parasitological, physiological and biochemical research as well as residual 

analysis. This was conducted by cooperating working groups from the Alfred Wegener 

Foundation in Bremerhaven, the Technical University Berlin and the School for 

Veterinary Medicine in Hannover. The results of these are reported in different 

publications (Dizer et al. submitted, Schmidt et al. submitted). From the morphological 

measurements, a whole body condition factor (CF) was determined for each fish 

according to the formula:  

CF= (body weight in g / body length in cm3) x 100 

and used as an allometric index for overall health (Busacker et al., 1990). 

 

Table 1: Summary of the sampling program on flounder (Platichthys flesus) for 
analysis of some innate immune parameter in 1999 to 2000. All parameter were 
measured from same individual.  
Fish: number of fish caught; Hem: haematocrit; Lys: plasma lysozyme activity, Pin: 
pinocytosis; ROS: basal reactive oxygen production; ROS PMA: production upon 
stimulation with phorbol-12-myristate-13-acetate (PMA) by head kidney leukocytes  
 
 
Campaign/ 
year 

Site Fish  Hem Pin ROS ROS 
PMA 

Lys 

Spring 1999 Elbe 20 20 15 16 16 20 
 Spiekeroog 9 9 8 9 9 9 
 Helgoland 20 20 20 20 20 20 
 Inner Eider 15 14 14 13 14 15 
 Outer Eider 19 18 18 19 19 17 

Autumn 1999 Elbe 20 20 14 20 20 20 
 Spiekeroog 20 19 19 20 20 19 
 Helgoland 20 19 20 20 20 18 
 Outer Eider 20 19 19 20 20 19 

Spring 2000 Elbe 20 20 17 19 19 20 
 Spiekeroog 9 9 8 9 9 9 
 Helgoland 20 20 16 18 18 20 
 Inner Eider 18 18 11 15 15 18 
 Outer Eider 20 20 9 17 17 20 

Autumn 2000 Elbe 20 20 20 20 20 20 
 Spiekeroog 20 20 7 7 7 20 
 Helgoland 20 20 20 20 20 20 
 Outer Eider 20 20 20 20 20 20 
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Lysozyme assay 

Lysozyme activity of flounder plasma was determined by means of a turbidimetric 

assay according to Parry et al. (1965). A suspension of 0.2 g l-1 Micrococcus 

lysodeikticus (Sigma-Aldrich, Germany) in 0.05 M sodium phosphate buffer (pH 6.2) 

was mixed with 25 µl of flounder plasma to give a final volume of 200 µl per well. The 

optical density was read in a spectrophotometer at 530 nm immediately after mixing, 

after 0.5 min, and after 4.5 min at a temperature of 20±2 °C. The decrease of 

absorbance was used to calculate lysozyme activity. One unit of lysozyme activity is 

defined as the amount of sample causing a decrease in absorbance of 0.001/min. Hen 

white egg lysozyme (Sigma-Aldrich, Germany) was used as external standard as 

described by Hutchinson and Manning (1996). 

 

Leukocyte isolation 

Leukocyte isolation was done as described previously (chapter 1). Briefly, cell 

suspensions of head kidney leukocytes (HKL) were prepared by forcing the tissues 

through a 100 µm nylon screen (Swiss Silk Bolting Cloth Mfg, Zurich, Switzerland). 

Isolated HKL were washed three times with wash medium at 550 x g for 10 min and 

resuspended in cell culture medium (RPMI-1640 supplemented with 100 000 IU l-1 

penicillin, 100 mg l-1 streptomycin and 4 mM L-glutamine and 1 % [v/v] carp serum 

(chemicals: Biochrom, Berlin, Germany; carp serum: serum from 15 individual 

Cyprinus carpio L. was pooled, heat inactivated for 30 min at 56 °C, 0.2 µm filtered and 

stored at -20 °C until use). Numbers of viable cells were determined by trypan blue 

exclusion in a Neubauer haemocytometer.  

 

Production of reactive oxygen species by head kidney leukocytes 

Generation of reactive oxygen species (ROS) by head kidney leukocytes (HKL) was 

measured by means of the nitro blue tetrazolium salt (NBT) reduction assay after cell 

isolation, as described earlier (chapter 2). Briefly, cells were incubated in 96-well flat-

bottom microtiter plates (106 cells in a final volume of 175 µl of cell culture medium) in 

triplicate and their ROS production was induced by adding 0.15 mg l-1 phorbolmyristate 

acetate (PMA). The indicator NBT was added at 1 g l-1. Wells without PMA served to 

determine the spontaneous ROS generation of cells. After incubation for 2 h at 18 °C, 

the supernatants were removed and the cells were fixed by adding 125 µl of 100 % 

methanol. Each well was washed two times with 125 µl of 70 % [v/v] methanol. 
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Methanol was removed and the fixed cells were air dried over night and stored in the 

dark for up to two weeks. The reduced NBT (formazan) was dissolved in 125 µl of 2 M 

KOH and 150 µl DMSO per well (All chemicals: Sigma-Aldrich, Germany). The 

optical densities were recorded with a spectrophotometer at 650 nm. From the 

measurements, a ROS stimulation index was calculated as followed: 

SI= (PMA triggered ROS [OD]) / (unstimulated ROS [OD]) 

 

Endocytosis activity of head kidney phagocytes  

Endocytosis activity of head kidney phagocytes was measured by means of neutral red 

retention of isolated head kidney cells as described by (Mathews et al. 1990). This assay 

was adapted to microtiter plates. Briefly, 106 cells were incubated in a final volume of 

175 µl culture medium for 2.5 h at 18 °C with 10 mg l-1 neutral red (NR, Sigma-

Aldrich, Germany). All set-ups were made at least in triplicate. After incubation each 

well was washed two times with 125 µl phosphate buffered saline (PBS). After 

removing the PBS, the cells were air dried over night and frozen at -20 °C for up to two 

weeks. For spectrophotometric readings the cells were lysed with 100 µl acid ethanol 

(3 % HCl in 95 % Ethanol) and mixed with 100 µl PBS. The optical densities were 

recorded at 492 nm. 

 

Analytical chemistry 

Residue analysis was conducted by a commercial laboratory that had undergone an 

intercalibration exercise (Labor für Fischgesundheit, Professor Harz, Bremerhaven). 

From the fish, ten muscle tissue samples per location were analysed for the contents of 

standard chlorinated hydrocarbons and heavy metals (Hg, Pb, Cd, Cu). In addition, 

samples from the sediment at all locations and samples from Mytilus edulis were taken 

from the inner Eider Estuary, Elbe Estuary and Helgoland and analysed for the same 

parameters. The methods and results of this work are presented by Dizer et al. 

submitted. 

 

Statistics 

Normality of the data was tested with the Kolmogorov-Smirnow test. To determine the 

significance between groups, data were compared by Student’s t-test, Mann-Whitney’s 

rank sum test, or by Kruskal-Wallis ANOVA and subsequent multiple comparison by 

means of the Student-Newman-Keuls method at a probability of error p<0.05. 
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Correlations between data sets were tested by Pearson’s product moment correlation test 

or by Spearman’s rank correlation test. Correlations were considered as significant at a 

probability of error p<0.05. 

 

Results 

Haematocrit 

The haematocrit of flounder blood was measured as a simple, non specific indicator for 

overall health (Blaxhall 1972, Anderson 1990). In the sample, measurements varied 

from 18-30 % and had a mean of 23 %. Male founder had a haematocrit of 24 (19–30) 

%, slightly higher than female with 22.5 (18-26) %. In spring, a much wider variation of 

haematocrits was observed at all locations when compared to autumn samples. 

Differences between sample sites, however, could not be discerned. This indicates that 

major differences in health aberrations such as infections with micro organisms or 

nutritional deficiencies did not occur between the locations of the study (Blaxhall 1972).  

 

 
Table 2: Summary of immune parameter of flounder (Platichthys flesus) collected from 
selected locations in the German Bight during 4 sampling campaigns during spring and 
autumn of 1999 and 2000. 
 
Parameter  Measurements[mean (range)]  
 
 summary male female spring autumn 
 
Haematokrit 23 24  22.5 23 23 
 [Vol %] (18-30) (19-30)  (18-26) (19-30) (18-27) 
 
Plasma lysozyme 1090 1139  996 975 1189 
 [Units ml-1] (606-1816) (600-1833) (628-1767) (484-1618) (743-1882) 
 
Endocytosis 0.046 0.042 0.047 0.057 0.023 
 [OD] (0.009-0.138) (0.009-0.016) (0.008-0.146) (0.014-0.153) (0.007-0.092) 
 
basal ROS 0.087 0.102 0.078 0.053 0.150 
 [OD] (0.025-0.499) (0.029-0.603) (0.025-0.489) (0.024-0.367) (0.036-0.618) 
 
PMA activated ROS  0.322 0.331 0.317 0.335 0.319 
 [OD] (0.095-0.825) (0.103-0.915) (0.079-0.694) (0.070-0.915) (0.166-0.683) 
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Plasma lysozyme activity 

With plasma lysozyme activity, no dependence on the sex of analysed flounder could be 

observed. It increased however with increasing size and weight of the fish with R=0.15, 

p< 0.006 in the size range examined here. Flounder collected in autumn had a lysozyme 

activity of 1189 (743-1882) units ml-1, significantly (p< 0.001) higher than flounder 

collected in April with 975 (484-1618) units ml-1. These seasonal differences were 

significant at the Elbe and Helgoland locations (Fig. 1) and were not seen at Spiekeroog 

and Outer Eider. Site related differences were found in both spring and autumn 

samplings between flounder from the Elbe and Helgoland location (Fig. 1). In spring 

flounder collected at Elbe and Inner Eider had significantly lower plasma lysozyme 

activity compared to flounder from Spiekeroog and Helgoland (Fig. 1). 

When muscle residues of flounder were compared to plasma lysozyme activity of the 

same individual, a positive correlation was found to residues of γ-HCH. The plasma 

lysozyme activity of flounder was negatively correlated with β-HCH, o,p’-DDD, PCB 

101 and PCB 118 residues in the muscle of the same individual (table 4).  

In addition, plasma lysozyme activity was correlated to PMA stimulated ROS 

production of HKL, lysosomal stability and activity of macrophage aggregations in the 

liver from the same individual. In individuals with increased induction of EROD 

activity in liver cells, the plasma lysozyme activity was decreased (table 5). 
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Figure 1: Plasma lysozyme activity in flounder (Platichthys flesus) collected at 5 
different sampling sites in spring and autumn sampling campaigns in 1999 and 2000. n: 
see table 1.  
Significant differences in spring: Spiekeroog vs. Elbe (p=0.003) and Inner Eider 
(p=0.023); Helgoland vs. Elbe (p<0.001) and Inner Eider (p=0.003); Outer Eider vs. 
Elbe (p=0.023). In autumn campaigns: Helgoland vs. Outer Eider (p<0.001), Elbe 
(p=0.007) and Spiekeroog (p=0.009). 
Key for box plots: boundary of the boxes: 25th and 75th percentile; line in the box: 
median; whiskers: 10th and 90th percentiles; dots: outliers 
 

While no correlation of plasma lysozyme activity was observed with the concentration 

of chlorinated hydrocarbons or heavy metals in the sediment, negative correlation of 

plasma lysozyme activity was seen with a standardized contamination load in Mytilus 

edulis collected from the sediments (Fig. 2, Spearman’s Rank Correlation, p<0.05). It 

has to be noted, that the n value for this correlation was very low (n=10), but 

nevertheless the contamination load of Mytilus might reflect the contamination of the 

food used by flounder at a particular location. 

 



                                                                                                                              Chapter 4 

 53 

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

standardized contamination load

200

300

400

500

600

700

800

900

Ly
s

  

Figure 2: Correlation between mean plasma lysozyme activity in flounder (Platichthys 
flesus) and mean standardized contamination load in Mytilus edulis collected at the 
Helgoland, Spiekeroog and Eider sites. The contamination load of mussel tissue was 
calculated from standardized mussel residues (data from Dizer et al. submitted). 
Spearman’s Correlation on Ranks coefficient R= -0.58, p<0.05, dotted lines: 95% 
confidence interval; Lys: int. Units lysozyme/ml plasma 
 

Cellular responses 

Endocytosis by head kidney phagocytes 

The base line endocytosis activity of head kidney phagocytes was not different in cells 

from male or female fish but increased with size (R=0.20, p<0.001). Cells isolated from 

flounder in April showed a higher neutral red uptake compared to cells from fish 

collected in September (p<0.001). In addition, the variation of measurements was much 

higher in the spring samples. This was most obvious at Spiekeroog, but also at the other 

locations, HKL phagocytes from some individual flounder were highly active compared 

to the mean. At the Elbe and Outer Eider locations, the wide variation of the 

measurements was not as pronounced. Here the majority of cells showed a very low 

endocytosis activity, significantly less than at the other locations (p<0.05, Fig. 3). In 

autumn the variation of pinocytosis measurements were not as pronounced. Again, the 

activity of cells from Elbe flounder was decreased, but this could not be ascertained by 
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statistical tests. At the other locations, the activity varied within similar ranges and no 

site specific differences could be detected (Fig. 3). 
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Figure 3: Endocytosis activity of head kidney derived leukocytes from flounder 
(Platichthys flesus) at 5 different sampling sites in spring and autumn sampling 
campaigns in 1999 and 2000. n: see table 1. The activity of the cells was measured by 
means of neutral red uptake. 
Cells from flounder collected at the Elbe location showed significantly lower 
endocytosis activity when compared to flounder from Spiekeroog, Inner Eider or Outer 
Eider (p<0.05). For key, see Fig. 1 
 

The pinocytosis activity of HKL was positively correlated to DDT metabolites, the sum 

of PCBs and Dieldrin residues in the muscle of same individual (table 2). The 

pinocytosis activity of head kidney cells was positively correlated to other cellular 

responses of the innate immune system: HKL from flounder with increased pinocytosis 

activity responded with increased ROS production to PMA stimulation, elevated 

activity of macrophage aggregations in the liver, higher lysosomal stability and 

increased cholin-esterase activity in neurons. In addition, individuals with decreased 

pinocytosis activity of HKL significantly more often had increased ratios of DNA 

fragmentation (table 5). 
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Production of reactive oxygen species 

The production of reactive oxygen species by head kidney leukocytes was not 

influenced by the sex of the specimen examined. It was, however, significantly 

influenced by the size of the fish: cells from larger fish had a higher base line as well as 

phorbol-ester-stimulated ROS production (R= 0.14, p<0.01). The base line respiratory 

burst was significantly (p<0.001) lower in spring compared to autumn samples (Fig. 4). 
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Figure 4: Basal production of reactive oxygen species by head kidney derived 
leukocytes collected from flounder (Platichthys flesus) at 5 different sampling sites in 
spring and autumn sampling campaigns in 1999 and 2000. n: see table 1. 
Differences in spontaneous ROS production between sites in spring and autumn 
(1999/2000).  
There were no significant differences between the sites. For key, see Fig. 1 
 

This difference was not observed in cells stimulated with the phorbol ester PMA (table 

2). In spring, mean values of stimulated ROS production were similar at Spiekeroog, 

Helgoland and Outer Eider, and higher than the means at Elbe and Inner Eider. Head 

kidney phagocytes from some flounder could not be stimulated by PMA, while in other 

individuals, the cells responded with a high NBT reduction upon stimulation (Fig. 5). At 

Helgoland and Outer Eider, this resulted in a high variation of measurements in the 

spring sampling campaigns. In autumn, this variation was much lower. Then, cells from 
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flounder collected at the Elbe location produced significantly less ROS compared to 

cells from fish at Helgoland and Spiekeroog sites (p<0.05). 
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Figure 5: Production of reactive oxygen species by head kidney derived leukocytes 
upon stimulation with PMA collected from flounder (Platichthys flesus) at 5 different 
sampling sites in spring and autumn sampling campaigns in 1999 and 2000. n: see table 
1.  
Autumn: sign. (p<0.05) lower values at Elbe compared with Helgoland and Spiekeroog. 
sign. (p<0.05) lower values at Inner Eider than Spiekeroog. 
Spring: no sign. differences between sites. For key, see Fig. 1 
 

When considering the ratio of ROS production upon stimulation versus base line ROS 

production, cells from flounder collected at both of the Eider locations had significantly 

higher ratios compared to Elbe flounder (Fig. 6).  

The respiratory burst activity of HKL was correlated to residues of several chlorinated 

hydrocarbons and to heavy metals in the muscle of the same individual examined. The 

base line ROS production was positively correlated with Dieldrin residues. The ROS 

response to phorbol ester stimulation was positively correlated to DDT and PCB 

residues in the muscle of the same individual, and there was a negative correlation to 

copper residues. The ratio of stimulated ROS versus base line ROS production showed a 

positive correlation to DDT, PCB and Hg residues, while this ratio was reduced along 

with increasing Cu residues. The PMA activated ROS production of HKL was 
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correlated to other indicators of innate immune response, such as activity of 

macrophage aggregates and lysosomal stability in the liver. Interestingly, base line ROS 

production was lower in individuals with increased induction of the EROD system in 

liver cell, while this was not seen in PMA-activated cells (table 5). 
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Figure 6: Production of reactive oxygen species by head kidney derived leukocytes 
from flounder (Platichthys flesus) at 5 different sampling sites in spring and autumn 
sampling campaigns in 1999 and 2000. Ratio of ROS production upon PMA 
stimulation / basal production. n: see table 1. 
Cells from flounder collected at Spiekeroog, Outer Eider and Inner Eider in spring had 
significantly higher values (p<0.05) than cells from Elbe flounder. In autumn no 
significant differences were observed. spr.: spring; aut.: autumn. For key, see Fig. 1 
 

 

Discussion 

From laboratory studies, it has become clear, that environmental contaminants indeed 

modulate immune responses in fish (for reviews see Dunier and Siwicki, 1993, Zelikoff 

1993, Bols et al. 2001). However, with attempts to extrapolate experimental data to 

“field” situations in monitoring studies, problems arise. In natural environments, fishes 

are exposed to an undefined cocktail of various substances for an unknown period of 

time. To gain knowledge about the actual contamination level of the individuals studied, 

the present study was substantiated by extensive analytical chemistry of sediment as 
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well as fish residues, which included chlorinated hydrocarbons and heavy metals (Broeg 

in preparation, Dizer et al. submitted). In a previous study (Broeg et al. 1999) on 

flounder from the same locations, a contamination gradient with respect to residues of 

chlorinated hydrocarbons was observed with highest values in fish from the Elbe 

estuary and lowest values in fish from the Tiefe Rinne near Helgoland. This gradient 

could be established when the residue data were based on the fat content of the liver, 

which is considered to reflect the chemical burden of the habitat (Broeg et al. 1999). 

From sediment analysis, however, such a clear gradient could not be established and 

when residue data from flounder based on wet weight were considered for analysis, 

individual flounder could not be related to different sample sites by means of residual 

analysis (Schmolke et al. 1999). This most probably is a consequence of a strong 

reduction of heavy metal as well as PCB influx into the southern North Sea during the 

last decade, which resulted in a decrease of heavy metal and PCB content in the 

sediment between 45 and 85 % (De Jong et al. 1999). In the German Bight of the 

southern North Sea residues of these substances now are far below previous levels and 

far below contamination levels of other marine sites such as the Mediterranean coast 

near Haifa in Israel (Kress et al. 1999).  

When considering heavy metal and chlorinated hydrocarbon contaminations in flounder 

muscle, very low residues were found in animals from all the sites, and there was no 

“clean” site with all the residues “below detection limit” (Schmolke et al. 1999, Broeg 

pers. communication). In this situation, when analysing immunological data in their 

response to pollution, clear differences between sampling locations which could be 

confirmed in all the sampling campaigns could not be established in the present study. 

This mainly was an effect of the high variation in plasma lysozyme level as well as for 

phagocyte activity at some of the locations. The variation of measurements most 

probably was a result of different contamination profiles of individual flounder: some 

correlations were found between chlorinated hydrocarbon levels of individual flounder 

and innate immune responses measured from the same individuals. It also has to be 

taken into account that contaminants may cause indirect effects such as elevated levels 

of cortisol, which have a marked modulatory potential of immune functions (Bennet and 

Wolke 1987 a, b). Stimulatory effects of contaminants, as observed in the present study, 

may also be a consequence of indirect effects of contaminants (Faisal et al. 1991). Some 

contaminants, however, such as copper in the present study, are clearly immunotoxic.  
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Cellular immune responses are considered as sensitive indicators of biological effects of 

pollutants (Secombes et al. 1997). Broeg et al. (1999) showed that the stability of 

hepatocyte lysosomes was modulated in a delicate manner. Thus the integrity of 

hepatocyte lysosomes provided valuable information for the interpretation of the 

expression of cytochrome P450 1A in liver cells of the same individual. Likewise, we 

found a correlation between lysosomal stability of liver cells and the activity of plasma 

lysozyme as well as head kidney phagocytes of the same individuals, indicating an 

overall impairment of cell functions with decreased lysosome stability.  

Experimental studies showed that flounder acquire contaminants with the food rather 

than by passive uptake via skin or gills (Mondon et al. 2001). Thus contaminant 

residues in benthic invertebrates such as Mytilus edulis, which serve as prey for 

flounder, most probably have a higher biological relevance than residue measurements 

from the sediment. This is supported by the finding, that flounder from a location with 

less contaminated Mytilus had a higher plasma lysozyme activity.  

In conclusion, the results presented here underline that biological effects of 

environmental contaminants can be monitored by means of immunological assays in the 

“field”. In a complex environment such as the German Bight of the North Sea, with a 

diffuse contamination of various compounds at a low level, it was however difficult to 

clearly separate polluted from less affected sites, most likely because contaminated 

individuals were found at all locations. When the contamination load of individual 

flounder were considered, it was possible to spot pollution mediated effects. The present 

study was part of an integrated monitoring program on flounder, which showed that in 

conjunction with other physiological data from the same individual, innate immune 

parameter also allowed to observe pollution effects. Cellular function such as uptake of 

neutral red was impaired in individuals with increased proportions of DNA adducts or 

decreased stability of lysosomes. The activity of plasma lysozyme also was decreased in 

individuals with impaired lysosome stability, and showed some correlation to 

cytochrome P 450 1A induction. This underlines that innate immune parameters such as 

plasma lysozyme activity or phagocyte functions form valuable parameters as parts of 

an integrated monitoring program.  
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Chapter 5 
 

The effect of parasite infection on the innate immune response 
of European flounder (Platichthys flesus L.) in the southern North Sea 
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Summary 

The infection of European flounder (Platichthys flesus L.) with different parasites did 

not result in alteration of innate immune response. Due to high variability in infection 

state and also high variability in immune function no dependencies were obvious. The 

data pointed out that the most abundant parasites show no influence on immune 

responses measured here, which indicates, that these parameters are not sensitive to 

parasite infection. The immune parameters considered here are regarded as promising 

indicators of chemical contaminant induced variation of piscine immune responses, 

which could be implemented in pollution monitoring programs.  

 

Introduction 

World-wide the aquatic environment is abused by the introduction of a high number of 

xenobiotic compounds derived from human activities in industry and agriculture. Many 

of these substances have the potential to impact on the ecosystem at relatively low 

concentrations (Conell et al. 1999). In order to assess the risk of contaminant exposure 

for organisms and to classify the environmental health of an ecosystem under challenge, 

innate immune responses in fish are recommended as bioindicators of xenobiotic 

exposure (Bols et al. 2001). In laboratory or mesocosm studies, the immunomodulatory 

potential of a wide variety of compounds, such as hydrocarbons or heavy metals was 

assessed (for review see Dunier and Siwicki 1993, Zelikoff et al. 2000). In these 

experiments hatchery or laboratory raised fish of known health status were exposed to 

specific compounds at defined concentrations for a limited period of time (e.g. Zelikoff 

et al. 2000, for review see Bols et al. 2001). In ‘real world’ monitoring programmes, 

fishes were collected at coastal or marine sites for an assessment of effects of a largely 

unknown mixture of contaminants (Secombes et al. 1997, Zelikoff et al. 1997). In many 

cases, biomarker responses varied within wide ranges, which made interpretation of 

biological effects difficult. Besides genetic heterogenicity, some variation might 

originate from differences in life history and parasite infection in individuals examined. 

In coastal or marine environments, most fish individuals harbour a very divers parasite 

fauna (Overstreet 1997 , Schmidt et al. submitted, Broeg et al. 1999), and infections 

with some species might result in a modulation of physiological or immune responses 

(Overstreet 1997), which are considered as indicators of biological effects of 

environmental contaminants. In most studies carried out in the past physiological or 

innate immune response were only evaluated in regard to chemical residues found in the 
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fish or at the sample site (Tahir et al. 1993, Secombes et al. 1995, 1997) and 

nonpathogenic infections with parasites for instance were not considered. In an 

integrated biological effect monitoring program on flounder, Platichthys flesus, in 

addition to some innate immune responses, the parasite fauna of the same individuals 

was assessed (Chapter 4, Schmidt et al. submitted). This allowed a correlation of 

immunological measurements to the parasitological findings. 

 

Material and methods 

Sampling 

In April and September 1999 and 2000 a total of 331 flounder (Platichthys flesus L.) 

were collected at five different locations in the German Bight (Elbe estuary, Inner Eider 

estuary, Outer Eider, Spiekeroog and Tiefe Rinne near Helgoland), during cruises with 

the research vessel “Uthörn” of the Alfred Wegener Institute. Details of sampling, 

examination of the flounder (Chapter 4) and collection of parasites were described 

elsewhere (Schmidt et al. submitted). For analysis only macroscopically healthy 

flounder of the size class 18-25 cm were used. 

 

Examination procedure 

On board of the research vessel, body length and weight from each were fish were 

measured, and macroscopic visible ectoparasites were collected. Blood was drawn from 

the caudal vein into disposable syringes prefilled with a lithium-heparin bead (Sarstedt, 

Germany). From the blood, the haematokrit was determined according to standard 

procedures (Houston 1990). The remaining blood then was transferred to centrifugation 

tubes, centrifuged at 2000 x g for 15 min at 4 °C, and the supernatant plasma was 

collected and frozen at –80 °C. Then the fish was killed, dissected and the head kidney 

was removed and transferred into a centrifugation tube filled with wash medium (RPMI 

medium supplemented with 10 000 IU l-1 sodium heparin, medium: Biochrom, Berlin, 

Germany, heparin: Sigma-Aldrich, Germany) and stored at 4° C for up to 24 h for 

further processing. In addition liver, kidney, intestine, gills and muscle samples were 

collected for parasitological, physiological and biochemical research as well as residual 

analysis. The methods and results of these are reported elsewhere (Broeg in preparation, 

Schmidt et al. submitted, Dizer et al. submitted). From the morphological 

measurements, a whole body condition factor (CF) was determined for each fish 

according to the formula:  
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CF= (body weight in g / body length in cm3) x 100 

and used as an allometric index for overall health (Busacker et al. 1990). 

 

Parasitological examination 

On board, the flounder were examined for ectoparasites. Specimen were collected from 

the skin and stored in 70 % ethanol for further counting and identification. Fresh smears 

were taken from skin, gills and nose cavity, gut and gall bladder epithelium and 

immediately examined for the presence of parasites by light microscopy. Then the fish 

were killed and dissected. Gills then were fixed in 4 % buffered (pH 7.2) formaldehyde 

solution. The gut was removed, opened and transferred to saline solution (0.9 % NaCl) 

and a drop of detergent was added. Under these conditions, parasites detached from the 

intestinal tissue and settled at the bottom of the vial. Then the supernatant fraction was 

discarded, the sediment resuspended in saline and again allowed to settle for a few 

minutes. After three washes organic waste was removed from the gut contents. The 

remaining parasites were fixed in 70 % ethanol for further investigation. Then gut, 

kidney, gall bladder and gills were fixed in 4 % buffered formaldehyde solution. 

Transverse sections of mid- and hind-gut as well as small parts of kidney were taken for 

histological investigation. Gills, gut and gut contents were examined for metazoan 

parasites with a dissection microscope. Parasites were collected, counted and stored 

separately for individual fish. Sections of gut and kidney were processed by standard 

histological procedures (Romeis 1989), stained by Giemsa’s technique and examined 

with a light microscope for tissue invading parasites.  

For identification of macroparasites, individuals were cleared in 80-90 % lactic acid, 

mounted in glycerine-jelly and observed with the microscope. Smears of Trichodina 

spp. were air dried and stained by Klein’s silver impregnation method (Lom and 

Dyková 1992). 

The identification of parasites was done using standard literature (Yamaguti 1959, 1963, 

1971, Kabata 1979) and with support by Dr. M. Køie (Marine Laboratory, Helsingør, 

Denmark) for trematodes, cestodes and acanthocephalans and by Dr. F. Moravec 

(Institute of Parasitology, Ceské Budejovice, Czechian Republic) for nematodes. 

All parasitological examinations were conducted by the working group of Prof. Dr. W. 

Körting (Tierärztliche Hochschule Hannover) and data were kindly shared for this 

analysis (for details: Schmidt et al. submitted). 
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Lysozyme assay 

Lysozyme activity of flounder plasma was determined by means of a turbidimetric 

assay according to Parry et al. (1965). A suspension of 0.2 g l-1 Micrococcus 

lysodeikticus (Sigma-Aldrich, Germany) in 0.05 M sodium phosphate buffer (pH 6.2) 

was mixed with 25 µl of flounder plasma to give a final volume of 200 µl per well. The 

optical density was read in a spectrophotometer at 530 nm immediately after mixing, 

after 0.5 min, and after 4.5 min at a temperature of 20±2 °C. The decrease of absorbance 

was used to calculate lysozyme activity. One unit of lysozyme activity is defined as the 

amount of sample causing a decrease in absorbance of 0.001 min-1. Hen white egg 

lysozyme (Sigma-Aldrich, Germany) was used as external standard as described by 

Hutchinson and Manning (1996). 

 

Leukocyte isolation 

Leucocyte isolation was done as described previously (chapter 2). Briefly, cell 

suspensions of head kidney leucocytes (HKL) were prepared by forcing the tissues 

through a 100 µm nylon screen (Swiss Silk Bolting Cloth Mfg, Zurich, Switzerland). 

Isolated HKL were washed three times with wash medium at 550 x g for 10 min and 

resuspended in cell culture medium (RPMI-1640 supplemented with 100 000 IU l-1 

penicillin, 100 mg l-1 streptomycin and 4 mM L-glutamine and 1% [v/v] carp serum 

(chemicals: Biochrom, Berlin, Germany; carp serum: serum from 15 individual 

Cyprinus carpio L. was pooled, heat inactivated for 30 min at 56 °C, 0.2 µm filtered and 

stored at -20 °C until use). Numbers of viable cells were determined by trypan blue 

exclusion in a Neubauer haemocytometer.  

 

Production of reactive oxygen species by head kidney leukocytes 

Generation of reactive oxygen species (ROS) by head kidney leukocytes (HKL) was 

measured by means of the nitro blue tetrazolium salt (NBT) reduction assay after cell 

isolation, as described earlier (Chapter 2). Briefly, cells were incubated in 96-well flat-

bottom microtiter plates (106 cells in a final volume of 175 µl of cell culture medium) in 

triplicate and their ROS production was induced by adding 0.15 mg l-1 phorbolmyristate 

acetate (PMA). The indicator NBT was added at 1 g l-1. Wells without PMA served to 

determine the spontaneous ROS generation of cells. After incubation for 2 h at 18 °C, 

the supernatants were removed and the cells were fixed by adding 125 µl of 100 % 

methanol. Each well was washed two times with 125 µl of 70 % [v/v] methanol. 
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Methanol was removed and the fixed cells were air dried over night and stored in the 

dark for up to two weeks. The reduced NBT (formazan) was dissolved in 125 µl of 2 M 

KOH and 150 µl DMSO per well (All chemicals: Sigma-Aldrich, Germany). The 

optical densities were recorded with a spectrophotometer at 650 nm.  

 

Endocytosis activity of head kidney phagocytes  

Endocytosis activity of head kidney phagocytes was measured by means of neutral red 

retention of isolated head kidney cells as described by (Mathews et al. 1990). This assay 

was adapted to microtiter plates. Briefly, 106 cells were incubated in a final volume of 

175 µl culture medium for 2.5 h at 18 °C with 10 mg l-1 neutral red (NR, Sigma-

Aldrich, Germany). All set-ups were made at least in triplicate. After incubation each 

well was washed two times with 125 µl phosphate buffered saline (PBS). After 

removing the PBS, the cells were air dried over night and frozen at -20 °C for up to two 

weeks. For spectrophotometric readings the cells were lysed with 100 µl acid ethanol 

(3 % HCl in 95 % Ethanol) and mixed with 100 µl PBS. The optical densities were 

recorded at 492 nm. 

 

Statistics 

Normality of the data was tested with the Kolmogorov-Smirnow test. To determine the 

significance between groups, data were compared by Student’s t-test, Mann-Whitney’s 

rank sum test, or by Kruskal-Wallis ANOVA and subsequent multiple comparison by 

means of the Student-Newman-Keuls method at a probability of error p<0.05. 

Correlations between data sets were tested by Pearson’s product moment correlation test 

or by Spearman’s rank correlation test. Correlations were considered as significant at a 

probability of error p<0.05. The analyses were carried out using SigmaStat® 2.0 and 

STATISTICA 6 (StatSoft) software packages. 

 
 

Results and conclusion 

A total of 17 parasite species/taxa were present at all sampling sites, but not all of them 

were found during both seasons or during each sampling campaign. A list of the 

parasites, their prevalence and abundance is shown in table 3, for details see Schmidt et 

al. (submitted).  

 
 



                                                                                                                              Chapter 5 

 69 

Table 1: Summary of the sampling program on flounder (Platichthys flesus) caught for 
analysis of innate immune parameter and parasites in 1999 to 2000. All parameter were 
measured from same individual. 
 
Site      /    campaign Spring 1999 Autumn 1999 Spring 2000 Autumn 2000 
Elbe 20 20 20 20 
Spiekeroog 9 20 9 20 
Helgoland 20 20 20 20 
Inner Eider 15 - 18 - 
Outer Eider 19 20 20 20 

 

Only 6 species/taxa were regularly present and sufficiently abundant over the whole 

sampling period: the Ciliophora Trichodina spp., the copepods Acanthochondria 

cornuta, Lepeophtheirus pectoralis and Lernaeocera branchialis, the helminths 

Zoogonoides viviparus and Cucullanus heterochrous. Thus the analysis in respect to a 

modulation of innate immune parameters was focussed on these species. Species of 

Microsporea, Myxozoa and Apicomplexa, which previously were reported to influence 

immune responses in fish (Munoz et al. 2000, Leiro et al. 2001, Steinhagen et al. 1998), 

were present in low infection intensities only but they also were considered for analysis.  

The examination of the parasite load of flounder revealed some relations among the 

parasite groups. Individuals with high numbers of helminth were significantly less 

infected with Trichodina sp. and Myxozoa (tab. 2). Infections with Epieimeria sp. 

(Apicomplexa) were concomitant with Trichodina infections and individuals infected 

with Myxozoa often were found associated with Microsporea and Trichodina (p<0.05, 

p<0.01 respectively, tab. 2).  

The presence or absence of parasites had a marked impact on several of the innate 

immune parameter measured here, but the pattern varied with the single parasite species 

(table 4). Individuals with Trichodina sp. infection had reduced plasma lysozyme levels 

with 990 (767-1348) IU ml-1 compared to 1172 (892-1519) IU ml-1 in non infected fish. 

In flounder with a renal myxosporidian infection, the basal ROS production was 

decreased with 0.039 (0.025-0.143) compared to 0.093 (0.044-0.262) OD values in not 

affected individuals. In individuals with high abundance of copepods (more than 20 

copepod individuals per fish, n=246) the plasma lysozyme activity and the basal as well 

as PMA triggered ROS production of HKL were significantly increased. Individuals 

with high copepod load had a plasma lysozyme activity of 1128 (856- 1461) IU ml-1, a 

basal ROS production of 0.0965 (0.045- 0.261) OD and a PMA stimulated ROS 

production of 0.342 (0.215-0.590) OD values. In individuals with low copepod load 

(<20 copepod individuals, n=56) the lysozyme activity was 875 (602- 1234) IU ml-1, 
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and the respiratory burst activity was 0.057 (0.029- 0.181) OD and 0.216 (0.103- 0.368) 

OD, respectively.  

In individuals with microsporidian infections or with Myxidium incurvatum, the innate 

immune responses monitored here appeared not to be affected when compared to 

measurement from individuals not infected by these parasites.  
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Table 3: List of parasites species, target organ/tissue, prevalence and infection intensity 
recovered from flounder (Platichthys flesus) in the German Bight during sampling 
campaigns in spring and autumn from 1999-2000 (data from Schmidt et al. submitted). 

 

Taxonomic group Parasite species 
Target organ/ 

tissue 
prevalence intensity 

Apicomplexa Epieimeria sp. gut 24.3±20.1  
Ciliophora Trichodina spp.  gills 54.2±31.8  
Microsporea Microsporea sp.1 kidney 30.3±10.3  
 Glugea stephani gut 0.7±2.0  
Myxozoa Myxozoa sp. 1 kidney 9.5±11.0  
 Myxidium incurvatum gall bladder 23.6±17.5  
Digenea Derogenes varicus gut 6.0±9.0 1.5±0.9 
 Brachyphallus crenatus gut 4.5±6.6 5.1±9.5 
 Zoogonoides viviparus gut 17.1±27.2 56.1±68.6 
 Lecithaster gibbosus gut 1.5±3.2  
 Podocotyle atomon gut 5.6±7.5 3.5±5.5 
 Metacercaria sp. 1 gills 60.7±22.6 52.5±132.8 
Cestoda Bothriocephalus spp.  gut 0.8±1.9 1.0±0 
 Proteocephalus sp.  gut 0.8±2.6 4.3±4 
 Cestoda larvae sp. 2 gut 0.3±1.2 5.0±0.0 
Nematoda Paracapillaria gibsoni gut 16.6±17.1 14.2±30.7 
 Cucullanus heterochrous gut 46.2±20.8 3.1±4.2 
 Dichelyne minutus gut 5.8±8.3 1.2±0.4 
 Goezia sp.  gut 1.4±3.8 1.8±0.8 
 Hysterothylacium aduncum gut, liver 12.9±12.0 2.9±5.5 
Acanthocephala Corynosoma sp. gut 3.7±4.2 1.4±1.4 
 Echinorhynchus gadi gut 3.8±12.0 1.3±0.5 
 Pomphorhynchus laevis gut 0.4±1.6 23±0.0 
Copepoda Acanthochondria cornuta gill cavity 67.8±28.1 7.8±6.4 
 Caligus elongatus skin  4.8±10.2 2.6±3.2 
 Holobomolochus confusus nose cavity 3.9±7.4 1.1±0.5 
 Lernaeocera branchialis gills 95.0±15.4 61.7±55.6 
 Lepeophtheirus pectoralis skin, fins 76.3±27.7 10.4±7.3  
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High infections with helminths, calculated as sum of all gut dwelling helminth parasites 

such as monogeneans, digeneans, cestodes, nematodes and acanthocephalan, had an 

impact on the innate immune response measured here (r=0.19, p<0.05), but when the 

data plots for this relation were analysed, a clear correlation could not be visualized. 

The majority of the flounder individuals harboured low sums of helminths only. In these 

individuals, the measurements of the immunological parameters already varied over the 

whole range. This picture could be generalized for other parasites in this study as well. 

The majority of the flounder individuals carried low infections, and in these individuals, 

the measurements of immune parameters varied in the same ranges as observed for 

flounder with high parasite loads. These findings indicate that in flounder individuals 

examined here a sub-clinical parasite infection most likely had a little impact only on 

the assessed immune parameters. This assumption is also supported by a multiple 

regression analysis. When the abundance of parasites was considered as influencing 

factors on the immune parameters applied here, haematocrit (p<0.01) and the plasma 

lysozyme activity (p<0.001) appeared to be mainly affected by the presence of gut 

dwelling helminths while head kidney phagocytes (pinocytosis and basal respiratory 

burst activity, p<0.01) were found to be mainly influenced by the presence of an 

Epieimeria-infection (table 5). It is surprising that parasites with low abundance such as 

Epieimeria or the sum of helminths in a multiple regression analysis appear as a 

significant explaining factor, while copepods as the most abundant parasite group does 

not seem to play a role as an influencing factor on the innate immune responses 

measured here. 

Taken together, the data presented here suggest that the sub-clinical parasite load of 

flounder caught from a marine site has no major modulatory impact on innate immune 

functions of the individual. Thus, when these immune parameters are considered as 

biomarkers for the immunomodulatory potential of environmental contaminants, sub-

clinical parasite infections most probably will not modulate the measurements. We are 

aware, that this only is true for those parasites found here and not for other pathogens 

such as bacteria, viruses or fungi. In the present investigation, most pathogenic species 

were excluded by selecting externally healthy individuals only. In conclusion, for an 

assessment of the immunomodulatory potential of environmental contaminants, 

clinically healthy fish show little alteration of innate immune responses by parasite 

infections. 
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Chapter 6 
 

Assessment of some innate immune response in dab  
(Limanda limanda L.) from the North Sea and the Baltic Sea as  

part of an integrated biological effect monitoring 
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Summary 

The marine flatfish dab (Limanda limanda L.) that comes into direct contact with 

contaminated sediments is frequently used as sentinel species in international 

monitoring programmes of biological effects of contaminants in coastal waters. As 

indicators of sublethal chronic effects of contaminants, in this study immune responses 

were recorded in addition to measurement of the induction of mono-oxygenase 

ethoxyresorufin O-deethylase (EROD) in liver cells, the inhibition of acetylcholin 

esterase (ACHE) in muscle and a recording of grossly visible diseases and parasites. In 

total 336 dab were analysed from 5 sampling areas in the North Sea, which included a 

location in the German Bight, the Dogger Bank, a location in the Firth of Forth, 

Scotland and 2 locations close to oil and gas platforms. When considering plasma 

lysozyme levels, pinocytosis and respiratory burst activity of head kidney leukocytes, a 

clear gradient could be observed with decreased measurements in individuals collected 

from the Firth of Forth and locations near the oil or gas platforms compared to dab from 

the Dogger Bank or the German Bight. Individuals with induced EROD activity 

displayed reduced lysozyme and respiratory burst activities. In dab infected with the 

lymphocystis virus or with nematodes, lysozyme levels also were reduced. The data 

obtained here indicate that the assessment of innate immune parameters in a monitoring 

programme provides supplementary information about immunomodulatory effects 

associated with exposure of fish to contaminants. Especially plasma lysozyme, which 

can be analysed in an easy and inexpensive assay, will be a good parameter in a battery 

of other bioindicators. 

 

Introduction 

World-wide the aquatic environment is abused by the introduction of a high number of 

xenobiotic compounds derived from human activities in industry and agriculture. Many 

of these substances have the potential to impact on ecosystem on relatively low 

concentrations (Conell et al. 1999). In order to assess risk of contaminant exposure for 

organisms and to classify the environmental health of an ecosystem under challenge, 

various monitoring techniques were used (Van der Oost et al. 1997). These biomarkers 

are biochemical, physiological, or histopathological indicators of exposure to 

anthropogenic substances which occur at exposure to concentrations less than those 

causing adverse toxicological effects. In various animals, the immune system appears to 

be exquisitely sensible to toxic effects of chemicals of environmental concern. In the 
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mammalian system, a battery of well-characterised immune assays to test for functional 

or histopathological parameters are available (Luster and Rosenthal 1993) and for fish, 

many of the same endpoints were used in laboratory studies to demonstrate chemically-

induced immunotoxicity in laboratory fish (recent reviews by Zelikoff et al. 2000, Bols 

et al. 2001).  

In field studies on “real-world” polluted aquatic environments, the international 

committee for the exploration of the sea (ICES) recommended monitoring programmes 

of biological effects of contaminants on coastal environments by means of biochemical 

parameters such as the induction of mono-oxygenase ethoxyresorufin O-deethylase 

(EROD) in liver cells or the inhibition of acetylcholin esterase (ACHE) in muscle in 

addition to grossly visible fish diseases and parasites (ICES 1996, 1999). As sentinel 

species, marine flatfishes are frequently used in international monitoring programmes. 

In the North Sea and the Baltic, this is dab (Limanda limanda L.) and European 

flounder (Platichthys flesus L.) mainly (Grinwis et al. 2000, Lang and Mellergard 1999, 

Lang et al. 1999, Secombes et al. 1997, Broeg et al. 1999). For immune function 

assessment, studies reveal that contaminants modulate immune parameters in fish 

(Arkoosh et al. 1994, Secombes et al. 1995), but integrated studies, which correlate 

immune functions to measurements of biochemical biomarkers, for instance are scarce.  

In the present study, innate immune functions were assessed from dab collected at 

various locations in the North Sea along a pollution gradient. From the same 

individuals, biochemical biomarkers of pollution and grossly visible diseases were 

recorded according to ICES recommendations (ICES 1996, 1999) and the findings of 

the different measurements were compared.  

 

Material and methods 

Sampling 

Sampling was carried out on board of the research vessel “Walther Herwig III” from the 

German Federal Research Centre for Fisheries during the 209th, 220th and 231st cruises, 

conducted in August and September 1999, 2000 and 2001. Fishing was carried out 

using standardised fishing methods (for details see Lang and Mellergaard 1999) at 6 

different locations in the North Sea and the Baltic Sea. The location of the sampling 

sites and their geographical positions are shown in Fig. 1. In the North Sea, regions at 

P01 and P02 are characterised by oil and gas platforms, station N06 is located in the 

Firth of Forth, N04 at the Dogger Bank and JMP near Helgoland in the German Bight. 
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In the Baltic Sea, dab were sampled at B01, in the Kiel Bight during the 1999 and 2000 

cruises. 

On board of the research vessel, fish were sorted out immediately and kept in tanks with 

permanent seawater flow-through and aeration. Further processing took place within 

one hour. In total, 336 female dab (Limanda limanda L.) of the size class 20-24 cm 

were used for this investigation. Per site and campaign a maximum of twenty fish were 

collected and processed. 

Sediment samples were taken during in 1999 during the 209th cruise at the six different 

sites and analysed for organic contaminants. Methods and results of this analysis are 

described in detail by Kammann et al. (2001). 
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Figure 1: Locations of sampling sites for dab (Limanda limanda) in the North Sea and 
Baltic Sea. P01 (55°20’ N- 56°00’ N, 04°20’E- 05°30’ E) and P02 (56°10’ N- 56°50’ N, 
02°40’E- 03°50’ E): Oil and gas platforms (“Ekofisk complex” and “Dan Oil field”); 
N04 (54°25’ N- 54°50’ N, 02°00’ E- 02°31’ E): Dogger Bank; N06 (56°15’ N- 56°25’ 
N, 01°50’ W- 02°10’W): Firth of Forth; JMP (54°15’N-54°30’N, 06°58’ E- 08°27’ E): 
German Bight; B01(54°30’ N- 54°45’ N, 10°13’ E- 10°50’ E): Kiel Bight.  
 

Examination procedure 

On board of the research vessel, body length and weight were measured from each fish. 

Blood was drawn from the caudal vein into disposable syringes prefilled with a lithium-
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heparin bead (Sarstedt, Germany). From the blood, the haematocrit was determined 

according to standard procedures (Houston, 1990). The remaining blood then was 

transferred to centrifugation tubes, centrifuged at 2000 x g for 15 min at 4 °C, and the 

supernatant plasma was collected and frozen at –20 °C. Then the fish were inspected for 

the presence of externally visible diseases and parasites using a standardised method as 

described by Lang et al. (1999). The presence or absence of following diseases and 

parasites was registered as described by Dethlefsen et al. (2000): lymphocystis, 

epithelial papilloma, acute or healing skin ulcer, pigmentary abnormality, infection with 

nematodes and acanthocephalans. The otoliths were prepared for age determination (see 

also Drevs et al. 1999).  

Then the fish were killed, dissected and the head kidney was removed and transferred 

into a centrifugation tube filled with wash medium (RPMI medium supplemented with 

10 000 IU l-1 sodium heparin, medium: Biochrom, Berlin, Germany, heparin: Sigma-

Aldrich, Germany) and stored at 4 °C for up to 24 h for further processing.  

In addition liver and muscle samples were collected from the same individuals for 

biochemical analysis.  

 

Biochemical parameters (EROD, CYP, ACTH, GST) 

The following biochemical parameters were measured in the framework of a routine 

biological effects monitoring conducted by the German Federal Fisheries Research 

Center on dab from this sampling area: 7-ethoxyresorufin-O-deethylase (EROD) 

activity, total protein and levels of cytochrome P450 1A (CYP1A) protein were 

measured in dab liver (for further analytical details see Kammann et al. 2001). From 

muscle tissue cholinesterase activity (ACHE) was measured colorimetrically according 

to Ellmann et al. (1961). Glutathion-4-S-transferase (GST) activity in liver was 

determined with the method described by Bressler et al. (1999). The total protein 

content of liver samples was measured according to Bradford et al. (1976).  

 

Leukocyte isolation 

Media and cells were kept on ice and washing procedures were performed at 4°C. Cell 

suspensions of head kidney leukocytes (HKL) were prepared by forcing the tissues 

through a 100 µm nylon screen (Swiss Silk Bolting Cloth Mfg, Zurich, Switzerland). 

Isolated HKL were washed 3 times with wash medium (10 min, 550 x g) and 

resuspended in cell culture medium (RPMI-1640 supplemented with 100 000 IU l-1 
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penicillin, 100 mg l-1 streptomycin, 4 mM L-glutamine and 1% [v/v] carp serum 

(chemicals: Biochrom, Berlin, Germany; carp serum: serum from 15 individual 

Cyprinus carpio L. was pooled, heat inactivated for 30 min at 56 °C, 0.2 µm filtered and 

stored at -20 °C until use). Numbers of viable cells were determined by trypan blue 

exclusion in a Neubauer haemocytometer.  

 

Production of reactive oxygen species by head kidney leukocytes 

Generation of reactive oxygen species (ROS) by head kidney leukocytes was measured 

by means of the nitro blue tetrazolium salt (NBT) reduction assay. Cell suspensions 

were incubated in 96-well flat-bottom microtiter plates (106 cells in a final volume of 

175 µl of cell culture medium) in triplicate and their ROS production was induced by 

adding 0.15 mg l-1 phorbol myristate acetate (PMA). The indicator NBT was added at 

1 g l-1. Wells without PMA served to determine the basal ROS generation of the cells. 

After incubation for 2 h at 18 °C, the supernatants were removed and the cells were 

fixed by adding 125 µl of 100 % methanol. Each well was washed two times with 

125 µl of 70 % [v/v] methanol. Methanol was removed and the fixed cells were air dried 

over night and stored in the dark for up to two weeks. The reduced NBT (formazan) was 

dissolved in 125 µl 2 M KOH and 150 µl DMSO per well (all chemicals: Sigma-

Aldrich, Germany). The optical densities were recorded with a spectrophotometer at 

650 nm.  

 

Endocytosis activity of head kidney phagocytes 

Endocytosis activity of HKL was measured by means of neutral red retention as 

described by (Mathews et al. 1990). This assay was adapted to microtiter plates. Briefly, 

106 cells were incubated in a final volume of 175 µl culture medium for 2.5 h at 18 °C 

with 10 mg l-1 neutral red (NR, Sigma-Aldrich, Germany). All set-ups were made at 

least in triplicate. After incubation each well was washed two times with 125 µl of 

phosphate buffered saline (PBS). After removing the PBS, the cells were air dried over 

night and frozen at -20 °C for up to two weeks. For spectrophotometric readings the 

cells were lysed with 100 µl acid ethanol (3 % HCl in 95 % Ethanol) and mixed with 

100 µl PBS. The optical densities were recorded at 492 nm. 
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Lysozyme assay 

Lysozyme activity of dab plasma was determined by means of a turbidimetric assay 

according to Parry et al. (1965). A suspension of 0.2 g l-1 Micrococcus lysodeikticus 

(Sigma-Aldrich, Germany) in 0.05 M sodium phosphate buffer (pH 6.2) was mixed with 

25 µl of dab plasma to give a final volume of 200 µl per well. The optical density was 

read in a spectrophotometer at 530 nm immediately after mixing, after 0.5 min, and 

after 4.5 min at a temperature of 20±2 °C. The decrease in absorbance was used to 

calculate lysozyme activity. One unit of lysozyme activity is defined as the amount of 

sample causing a decrease in absorbance of 0.001 OD min-1. Hen white egg lysozyme 

(Sigma-Aldrich, Germany) was used as external standard as described by Hutchinson 

and Manning (1996). 

 

Statistics 

Normality of the data was tested with the Kolmogorov-Smirnow test. To determine the 

significance of differences between groups, data were compared by Student’s t test, 

Mann-Whitney’s rank sum test, or by Kruskal-Wallis ANOVA and subsequent multiple 

comparison of means using the Student-Newman-Keuls method at a probability of error 

p<0.05. Correlations between data sets were tested with Pearson’s Product Moment 

Correlation test or with the Spearman Rank Correlation test. Correlations were 

considered as significant at a probability of error p<0.05. All calculations were done 

using the computer programme Sigma Stat (SPSS Science Inc.). 

 

Results 

Haematocrit 

The haematocrit of fish blood is considered to represent a simple, non specific indicator 

of overall health (Blaxhall 1972, Anderson 1990). Decreased haematocrits were found 

in fish with nutritional deficiencies, infections with micro organisms or other health 

aberrations (Blaxhall 1972). In the dab examined here, regional differences (p<0.05) 

were found between individuals from the North Sea with a haematocrit of 22.5 (18-

28) % and individuals from the Baltic with 39 (31-43) % (table 1).  
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Table 1: Summary of immune parameter of dab (Limanda limanda) collected from 6 
different sampling sites in the North Sea and the Baltic. ROS: production of reactive 
oxygen species by head kidney leukocytes with and without (basal) stimulation by the 
phorbol ester phorbol myristate acetate (PMA). Given are mean and range of the 
measurements. 
 
     
Parameter  North Sea  Baltic Sea 
  (n=289-300)  (n=32)  
 
Haematocrit  22.5  39  
 (Vol %)  (18-28)  (31-43)  
 
Plasma lysozyme  974  1254  
 Units ml-1  (562-1635)  (925-1899)  
 
Endocytosis  0.025  0.024  
 OD  (0.008-0.069)  (0.007-0.049)  
 
Basal ROS  0.119  0.100  
 OD  (0.041-0.556)  (0.031-0.412)   
 
PMA activated ROS  0.721  0.509  
 OD  (0.278-2.207)  (0.119-1.186)  
 
 

 

In both populations, length and age of fish did not affect the haematocrit, while a low, 

but significant (R= 0.29; p<0.05) influence of weight was noted. In the North Sea, 

individuals from JMP had higher haematocrits compared to dab from P02, N04 and N06 

sample sites (p<0.05) and individuals from P01 had higher haematocrits compared to 

N04 and N06 dab (p<0.05, Fig. 2). 
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Figure 2: Haematocrit in dab Limanda limanda collected at 6 different regions in North 
and Baltic Sea during 3 consecutive sampling campaigns in 1999 - 2001. For sampling 
locations see Fig. 1. Dab from the Baltic Sea (B01) had significant higher haematocrits 
than North Sea dab (p<0.05). In the North Sea, haematocrit was significantly higher in 
dab at P01 compared to individuals at P02, N06 and N04 (p<0.05). Dab JMP had also 
significantly higher haematocrit values than fish from P02, N06 and N04 (p<0.05). 
 

Lysozyme 

The lysozyme activity in the plasma of North Sea dab was with 974 (562-1635) IU ml-1 

significantly lower (p<0.05) than the plasma of dab caught in the Baltic Sea with an 

activity of 1254 (925-1899) IU ml-1 (table 1). In both populations, plasma lysozyme 

activity was not affected by weight, length or age of the individuals. Significant 

differences (p<0.05) in activity, however, were found between dab from oil- and gas 

platforms (P01 and P02) and dab collected from the German Bight (JMP, Fig. 3). Dab 

sampled at the Dogger Bank (N04) had significantly (p<0.05) higher plasma lysozyme 

levels than dab from P01 and N06 (Firth of Forth) locations (Fig. 3).  
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Figure 3: Plasma lysozyme activity in dab Limanda limanda collected at 6 different 
sites in North and Baltic Sea during 3 consecutive sampling campaigns in 1999 –2001. 
For sampling locations see Fig. 1. Individuals at JMP had significantly higher lysozyme 
levels compared to dab at P01, N06 and P02 (p<0.05) and at N04 individuals had 
significant higher lysozyme values than dab collected from P01 and N06 (p<0.05). 
 

Endocytosis by head kidney phagocytes 

The endocytosis activity of head kidney phagocytes was not different in dab from North 

Sea and Baltic Sea locations (table 1). It was also not affected by age or length of fish, 

but with increasing weight of the individuals, the endocytosis activity of their head 

kidney leukocytes increased (p<0.05). In the North Sea, head kidney derived 

phagocytes from dab collected at the JMP station showed a significant higher 

endocytosis activity when compared to individuals from P02 and N06 (p<0.05). In 

addition, cells from dab collected at N06 had significant lower endocytosis activity than 

individuals from N04 and P01 (p<0.05, data not shown).  

 

Production of reactive oxygen species 

The basal ROS production of head kidney derived leukocytes from North Sea dab was 

not different from measurements obtained from individuals collected at the sampling 

site in the Baltic Sea. Upon PMA stimulation, cells from individuals collected in the 
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North Sea responded with higher ROS production (p<0.05) than fish from Baltic (table 

1). Both basal and stimulated ROS production were significantly influenced by the age 

of fish (basal ROS production: R=0.19, p<0.05; PMA stimulated ROS production: 

R=0.40, p<0.01). Weight or length had no effect on basal ROS production of HKL, 

while the PMA stimulated ROS production of HKL was significantly (R=-0.20, p<0.01) 

influenced by fish weight.  

When dab from different areas in the North Sea were considered, clear differences in 

ROS production could be observed. Head kidney leukocytes from dab at the Dogger 

Bank (N04) had significantly higher (p<0.05) basal ROS production compared to 

individuals from the sites near gas or oil platforms (P01, P02) and at the Firth of Forth 

(N06). Cells obtained from dab collected near oil platforms at P01 also had significantly 

(p<0.05) lower basal levels of ROS production compared to dab from the German Bight 

at the location JMP (Fig. 4).  
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Figure 4: Basal production of reactive oxygen species (ROS) by head kidney cells 
derived from dab (Limanda limanda) at 5 different locations in the North Sea. For 
sampling locations see Fig 1. Dab from N04 had a significantly higher ROS production 
compared to individuals from P01, P02 and N06 (p<0.05). Head kidney leukocytes from 
JMP dab also showed a significantly higher ROS production than cells from individuals 
at P01 (p<0.05).  
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When HKL were stimulated with PMA, the cells responded with increased ROS 

production and showed slightly higher measurements in dab collected at the stations 

JMP and N04 compared to fish from the oil and gas platforms. These differences, 

however, could not be confirmed as statistically significant (Fig. 5). 
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Figure 5: Production of reactive oxygen species by head kidney derived dab (Limanda 
limanda) leukocytes upon stimulation with the phorbol ester PMA. The dab were 
collected at 5 different sampling sites in the North Sea during 3 sampling campaigns in 
1999 - 2001. Statistically significant differences were not found between the sampling 
locations. 
 

Cross correlation of innate immune responses with physiological biomarkers and 

grossly visible diseases 

Measurements of innate immune responses and the physiological biomarkers applied 

here were collected from the same individuals. When in a pooled data set plasma 

lysozyme levels of individual North Sea dab were compared to endocytosis and ROS 

production of HKL from the same individual, a positive correlation was found for 

pinocytosis and a negative correlation was seen for PMA stimulated ROS production 

(see table 2). Dab with decreased haematocrits also had lower plasma lysozyme levels 

(table 2).  
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When measurements of the physiological biomarkers applied were compared to plasma 

lysozyme levels, pinocytosis activity and ROS production of HKL of the same 

individual, the following correlations were found: dab with induced EROD activity had 

decreased plasma lysozyme levels and decreased ROS production (p<0.01, table 3) and 

individuals with impaired ROS production of HKL also had lower ACHE activity 

(p<0.01, table 3). Correlations between the haematocrits of individual dab and 

responses of physiological biomarkers were not found. 

The presence or absence of grossly visible diseases or parasites had a marked impact on 

several of the innate immune parameter measured, but the pattern varied with the 

disease or infection (see table 4). Individuals with a lymphocystis infection had reduced 

plasma lysozyme levels with 892 (628-1123) IU ml-1 compared to 1007 (797- 

1337) IU ml-1 in non infected fish. In dab with anomalies in pigmentation, haematocrits 

were decreased with 22 (19-24) % compared to 23 (20-27) % in not affected individuals 

and basal as well as PMA triggered ROS production of HKL from affected dab was 

increased with 0.156 (0.0985- 0.387) OD values basal and 1.085 (0.546-1.772) OD 

values PMA stimulated ROS versus 0.105 (0.062- 0.208) and 0.639 (0.375- 1.169), 

respectively in not affected individuals. In individuals with skin ulcers or epithelial 

papillomas, measurements of the innate immune responses monitored here were not 

different from not affected dab.  

Infections with nematodes were accompanied with significantly reduced haematocrits 

(mean 22, range 19-24 % in infected and 23, range 21-27 % in not infected dab), 

decreased plasma lysozyme levels (mean: 966 range: 694- 1189 IU ml-1 versus 991 

(797- 1369) IU ml-1), reduced basal ROS production but increased endocytosis activity 

of HKL. Infections of dab with gut dwelling acanthocephala were accompanied with 

reduced endocytosis activity of HKL. Multiple regression analysis indicated that from 

the immune parameters considered here, haematocrits and pinocytosis activity of HKL 

mainly were affected by nematode infections, plasma lysozyme levels by lymphocystis 

infection and ROS production of HKL by anomalies in pigmentation (table 5). 
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Discussion 

Numerous studies showed that water pollutants indeed have an impact on innate as well 

as on adaptive immune responses (recently reviewed by Zelikoff et al. 2000, Bols et al. 

2001). This became very clear when fish were exposed to various substances such as 

metals, pesticides or insecticides under laboratory conditions and could be confirmed 

when feral fish were collected from polluted sites. Thus several authors (Dunier and 

Siwicki, 1993, Wester et al. 1994, Zelikoff et al. 2000, Bols et al. 2001) recommended 

fish immune assays as indicators to predict toxicological risk associated with pollution 

in aquatic environments. Especially innate immune responses, which protect an 

organism against infections without depending upon prior exposure to any particular 

pathogens, are discussed as good candidates for biomarker as tools for assessing 

unfavourable biological effects (Wester et al. 1994). 

In feral fish, biological parameters such as enzyme activities or immune responses 

underlie natural fluctuations, and when considering these responses as biomarkers or 

indicators for environmental degradation, pollution mediated effects have to be 

distinguished from natural fluctuations. Therefore, a sufficiently large number of 

individuals of comparable size should be collected, most desirable in a long term study 

(Anderson 1990). Our findings here underline the significance of this notion: In total 

336 individuals were analysed during the 3 sampling campaigns in 3 consecutive years, 

and some variation of the measurements in all parameters were seen between the 

campaigns (data not shown). In addition, measurements of haematocrit, pinocytosis, 

basal and PMA stimulated ROS were significantly influenced by body weight and age 

of dab, even though the analysis was restricted to a defined size class of 20-24 cm. 

These findings are consistent with results from a field study on flounder (Chapter 5), 

Japanese medaka (Oryzias latipes, Duffy et al. in press) and from mammals where 

sensitivity to toxic insult decreases with increasing age (Parkinson and Safe 1987). In 

the present study, only female dab were collected during campaigns in August and 

September in order to reduce seasonal and sex related variations, which were described 

in detail by Hutchinson and Manning (1996). In addition, North Sea dab were collected 

at locations with similar characteristics in respect to salinity, temperature and water 

depth in order to reduce variations caused by these factors. The significance which 

genetic and/ or habitat differences might have on fish immune responses underline 

different haematocrits, plasma lysozyme levels and respiratory burst activity of head 
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kidney leukocytes of North Sea dab compared with individuals from the Baltic (table 1). 

Therefore, dab from the Baltic Sea were not considered for further analysis herein. 

 

When considering the North Sea sampling locations of the present study, a pollution 

gradient was discussed by Kammann et al. (2001) on basis of PAH contamination of the 

sediment. Highest contamination expressed as Σ of 16 PAHs was measured at stations 

P02 with 35.87 ng g-1 and N06 with 27.47 ng g-1 dry matter, followed by P01 with 

13.78 ng g-1. At the stations JMP (6.02 ng g-1) and N04 (5.79 ng g-1) lower levels of 

PAHs were analysed. Along with this pollution gradient, the plasma lysozyme level and 

the respiratory burst activity of head kidney phagocytes was reduced in individuals from 

higher polluted stations (see Figs. 3-5). In contrast, haematocrits and pinocytosis 

activity of HKL were not altered in dab from regions with increased PAH 

contamination. These findings substantiate observations from other studies on dab. In 

individuals caught after a major oil spill in the North Sea, serum lysozyme levels in dab 

were negatively correlated with the PAH level in the sediment (Secombes et al. 1997). 

Dab exposed to oil-contaminated sediment or sewage sludge had lower serum lysozyme 

levels (Tahir et al. 1993) and decreased ROS production by head kidney phagocytes 

relative to control groups (Secombes et al. 1991, Tahir et al. 1993). In vivo exposure of 

dab to different concentrations of cadmium also was related to a reduction of the ROS 

production by head kidney phagocytes when compared to unexposed individuals 

(Hutchinson and Manning 1996b).  

The work reported here was part of an integrated field study, which included a 

simultaneous assessment of other biomarkers recommended by the ICES (ICES 1996), 

such as the induction of mono-oxygenase ethoxyresorufin O-deethylase (EROD) or 

glutathion-4-S-transferase (GST) in liver cells, the inhibition of acetylcholin esterase 

(ACHE) in muscle, and grossly visible fish diseases and parasite infections. EROD is 

known as a sensitive indicator of the exposure to lipophilic compounds such as PAHs, 

dioxins and coplanar PCB congeners (Goksoyr and Förlin 1992, Boer et al. 1993, 

Sleiderink et al. 1995). Cholinesterase (ACHE) is widely used to estimate neurotoxic 

impact of pollutants on the cellular level of marine organisms (Galgani et al. 1992, 

Bressler et al. 1999) and the induction of glutathion-4-S-transferase (GST) activity 

indicates an adaptation of the organism to enhanced pollution stress (Bressler et al. 

1999). In the present study, responses of the innate immune system and these 

biomarkers were recorded from the same individual dab, which allowed to compare 
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responses of the different parameters on basis of individual fish. These comparisons 

showed that dab with induced EROD or GST activities also had lower lysozyme activity 

and decreased phagocytes responses, which indicates that in fish under pollution stress, 

several functional systems were affected. The observations of the present study on dab 

confirm findings on flounder from German Bight (Chapter 5), where in individuals with 

decreased integrity of hepatocyte lysosomes, the EROD system also was induced and 

innate immune responses were impaired. In the present study on dab, correlation 

coefficients between biomarkers and immune parameter were much higher compared to 

flounder (Chapter 5), most probably because a more pronounced pollution gradient was 

found between the sampling locations of the present study compared to the locations of 

the German Bight, where the xenobiota load decreased during the past decade (for 

details see De Jong et al. 1999) and a weak pollution gradient only was found 

(Schmolke et al. 1999). In addition, the present study concentrated on female dab which 

were collected during the same month in every year, which most probably reduced 

natural variation of the measurements.  

 

A link between impaired immune functions of fish and diseases susceptibility was 

suspected for long and formed the basis of programmes on a systematic recording of 

occurrence and prevalence of grossly visible diseases in dab in the North Sea, which 

was launched by ICES member countries since 1980 (Dethlefsen et al. 2000). In the 

present study, occurrence and prevalence of grossly visible diseases were recorded 

along with an analysis of some innate immune responses. Individuals infected with the 

lymphocystis virus, with nematodes or acanthocephala displayed altered plasma 

lysozyme or head kidney phagocyte activities compared to not affected dab. In parasite-

infected individuals, lysozyme and respiratory burst activities were decreased, while in 

dab with lymphocystis infection, non specific cellular responses appeared to be not 

affected, in contrast to observations on American plaice, Hippoglossoides platessoides 

(Fabricius), where head kidney cells displayed enhanced phagocytosis and respiratory 

burst activity in association with lymphocystis infection (Marcogliese et al. 2001). 

Other diseases, such as epidermal papilloma or skin ulcers were not observed to be 

associated with altered lysozyme or head kidney phagocyte activity.  

 

Taken together, the data presented here show that in dab plasma lysozyme and head 

kidney phagocyte activity display differences along with a pollution gradient. Innate 
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immune responses applied here were altered along with the physiological biomarkers 

GST or EROD, and with the occurrence of fish diseases such as lymphocystis. Innate 

immune parameters applied here can be easily integrated into a biological effects 

monitoring program and will provide supplementary information about 

immunomodulatory effects associated with exposure to contaminants. Especially 

plasma lysozyme, which can be analysed in an easy and inexpensive assay, will be a 

good parameter in a battery of other bioindicators. 
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General discussion 
 

Summary and conclusions 

In this thesis, innate immune responses of flatfishes were integrated as biomarkers into 

biological effect monitoring studies. The chosen assays, which previously were stated as 

sensitive to xenobiotic exposure in other studies (for review see: Bols et al. 2001) were: 

blood haematocrit, lysozyme activity in plasma as well as endocytosis activity and 

generation of radical oxygen species from granulocytes and macrophages/monocytes. 

For an implementation of these tests into monitoring programmes under field situations, 

leucocytes from different organs were tested for phagocyte responses. Head kidney 

derived leucocyte suspension contained the highest number of responding cells, while 

other tissues such as spleen or blood harboured minor percentage of these cells. 

Corresponding to the number of phagocytes, ROS and phagocytosis readings were low 

from peripheral blood and spleen leucocytes. Thus, head kidney derived leucocytes 

were used. In order to reduce sampling effort in field studies, these cell suspensions 

could be used in respiratory burst assays without further enrichment protocols. In 

addition, lysozyme activity could be recorded from flounder plasma in a simple 

turbidometric assay.  

These assays were applied in two different field studies, where they proved their 

applicability in the field. Up to 20 individuals could be processed for innate immune 

assays within a single day and from these individuals sufficient tissue material could be 

obtained to conduct the described assays, without interfering with other working groups, 

which had to collect tissues from the same individual as well. 

In addition to the immunological measurements, information about the pollution 

intensity in the sediment and biota as well as the effects of pollution on biota were 

derived in both studies by chemical, bioaccumulation and biological effect monitoring 

with existing biomarkers of chemical exposure (e.g. EROD or ACHE). The applied 

biomarkers to some extent were recommended for marine monitoring by international 

agencies, such as ICES (ICES 1996, 1999). 

In the study on flounder 5 different locations in the German Bight with different 

anthropogenic impact were sampled over a period of two years. When considering 

heavy metal and chlorinated hydrocarbon contaminations in sediment, only slight 

differences were found. Some xenobiotica were detected in all sites, while some were 

only found in single location, which has also been reported for this region earlier (Broeg 

et al. 1999, Schmolke et al. 1999). While no correlation of plasma lysozyme activity 
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was observed with the concentration of chlorinated hydrocarbons or heavy metals in the 

sediment, negative correlation of plasma lysozyme activity was seen with standardized 

contamination load in Mytilus edulis collected from the sediments. The contamination 

load in mussel exhibited a clear site specific pollution gradient, which might reflect the 

contamination of the food used by flounder at a particular location. The residues in 

flounder muscle did not reflect the same pollution burden found in the sediment for the 

same xenobiotica. The sediment or mussel residues reflect site specific contamination 

levels, while levels found in flounder reflect the pollutant exposure of the individual.  

At some locations, the measurements of the immune parameters applied here varied 

within wide ranges, which made it difficult to establish spatial differences, some general 

trends, however, could be drawn: The individual contamination pattern found in 

flounder had immunmodulatory impact on the parameter assessed here. Plasma 

lysozyme activity was decreased in flounder contaminated with DDT adducts and some 

PCBs, while cellular functions such as phagocytosis and respiratory burst were 

stimulated by some chlorinated hydrocarbons. The induction of ROS production in 

flounder with high PCB load shows the difficulty, by trying to assess the impact of 

xenobiotics by immunological measurements. Each congener from a chemical group 

might interfere with immune reactions in a different way. For mammals it is well 

known, that non-coplanar PCBs increases PMA stimulated ROS production in 

granulocytes (Narayanan et al. 1998; Fischer et al. 1998), while coplanar PCB 

congeners with high affinity for the aryl hydrocarbon receptor (AhR) do not activate 

neutrophils (Brown et al. 1998). In mammalian granulocytes, PCBs may induce an 

inhibition of superoxide dismutase (SOD) activity, which may result in oxidative stress 

and thus leads to an imbalance between production of free radicals and antioxidant 

defense mechanisms of the cell. This in turn can induce tissue damage and hasten the 

onset of granulocyte apoptosis (Narayanan et al. 1998). In flounder the AhR receptor 

has also been described (Besselink et al.1998) and mechanisms of cell activation might 

be similar to those reported for mammals, as we also found enhanced ROS production 

in flounder with high PCB 153 residues. The enhanced production of ROS in flounder 

from a contaminated region is also reported from Broeg (pers. communication), who 

found enhanced G6PDH activity in phagocytes. The increased G6PDH activity 

indicates higher oxidative stress in phagocytes, which reflects the strong influence of 

xenobiotics on immune competent cells. 
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A correlation analysis revealed not only interrelations between the parameters applied 

here and some contaminants but also with biochemical parameters, which are used as 

biomarkers in pollution monitoring: In flounder with decreased integrity of lysosomal 

membranes of hepatocytes, immune functions were impaired as well. This might 

indicate that hepatocytes and head kidney leucocytes exhibit a similar sensitivity to 

pollutants or pollution mediated oxidative stress in a way as described for mammalian 

cells (Narayanan et al. 1998). In addition, plasma lysozyme as well as phagocytosis 

activity of head kidney cells were impaired when the activity of EROD was induced, 

where EROD is a known indicator of exposure to the xenobiotics PAHs and planar 

PCBs (Broeg et al. 1999).  

In the flounder field study, a high variability of immunological parameters was found at 

some locations. This variability was concomitant with reports of others (Dizer et al. 

2001, Schmolke et al. 1999, Broeg et al. 1999). This inter-fish variability was often 

observed as a biological effect in ecotoxicology studies in vivo and in vitro 

(Chilmonczyk et al. 1997; Chilmonczyk et al. 1999; Dizer et al. 2001; Hansen et al. 

1999). The high heterogeneity of the results might reflect a different physiological or 

pathological status of the tested animals and can be assessed as an indicator for toxic 

impact (Schmolke et al. 1999). As shown for mussels by Dizer et al. (2001), some 

animals show a high pathologic response to a model xenobiotic, while others exposed to 

the same concentration of the toxicant only show low or moderate responses. Results, 

derived from targets species with a high inter group variability, are difficult to interpret 

and may mask modulatory effects of xenobiotics. This especially is true for immune 

responses.  

When considering innate immune responses as biomarkers or indicators for 

environmental degradation, pollution mediated effects have to be distinguished from 

natural fluctuations. Seasonal effects such as reproduction or hydrological factors can 

have a modulatory impact on immune responses in fish. In this thesis, a decrease in 

ambient salinity from 32 to 16 ppm, however, did not result in a redistribution of 

leucocyte subsets in the head kidney of the euryhaline flounder. Phagocyte functions of 

head kidney derived leucocytes, such the respiratory burst and pinocytosis activity as 

well as plasma lysozyme levels were not altered upon the change in salinity. The 

findings indicate that these parameters are not sensitive to salinity changes in brackish 

or estuarine environments. As seen in the field study, the seasonal impact on flounder 

can exhibit significant temporal differences. The influence of seasonality on lysozyme 
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content with significant low values, associated with reduced sea temperatures, time of 

spawning and poor condition factor was also observed for North Sea dab (Hutchinson 

and Manning 1996) and plaice (Fletcher and White 1976). In consequence, sampling 

strategies should be adjusted in a way that studies should be conducting in comparable 

seasons, or/and the a base line knowledge about temperature and reaction patterns of 

innate immune responses must be followed, to extrapolate the natural influences from 

the parameters measured in in this biomonitoring programme. 

In marine environments, moderate infections with ectoparasitic or gut dwelling 

organisms are widespread. Infections with these parasites might modulate specific as 

well as innate immune responses of their hosts (Overstreet 1997). In the present 

investigation, the infection of flounder with different parasites did not result in 

alteration of those innate immune response considered here. Due to the high variability 

in prevalence and abundance of parasite species, and the high variability in immune 

function no correlations could be observed. Our findings indicate that ectoparasitic 

crustaceans as the most abundant parasites did not influence the immune responses 

measured here. For the present study, it could be considered that these parameters were 

not sensitive to parasite infection.  

In a second integrated field study, we focussed on female dab (Limanda limanda L). 

The campaigns were carried out over a period of 3 years in the same month and at 

marine sites in the North Sea with comparable hydrological characteristics. In addition, 

a more pronounced pollution gradient was found between the sampling locations when 

this study on dab was compared to the locations in the study on flounder from the 

German Bight. In the study area of flounder, the xenobiota load had decreased during 

the past decade (for details see De Jong et al. 1999) and a weak pollution gradient only 

could be established between the sampling locations (Schmolke et al. 1999). By 

minimizing the natural fluctuations we were able to detect the impact of xenobiota on 

innate immune responses more precisely. This was most evident in spatial differences of 

lysozyme activity.  

In addition, the correlation coefficients between the response of physiological 

biomarkers and immune parameter were much higher in the study on dab when 

compared to flounder. This study, however, revealed a clear impact of infection on 

immune parameters: in dab infected with the lymphocystis virus or with nematodes, 

lysozyme levels also were reduced.  
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In conclusion, the results of this study show that xenobiotics found under natural 

conditions in fish are immunomodulatory. Some xenobiotica modulate immune 

reactions in comparable manner as physiological reactions like EROD. The xenobiotics 

interfere with the cell metabolism, can cause cell impairment, which is seen in 

decreased lysosomes stability and is concomitant with suppressed immune functions. 

The innate immune parameters analysed in this study show an influence of the 

xenobiotica, but these can affect immune functions in different ways and depend much 

more on the individual contamination load in fish than those found in sediment from the 

sampling site.  
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Zusammenfassung 

Die Verschmutzung der Umwelt, insbesondere in aquatischen Ökosystemen, stellt ein 

großes Problem des 20. Jahrhunderts dar. Eine große Anzahl unterschiedlichster 

Xenobiotika gelangt dabei meist über industrielle Abwässer in marine und limnische 

Habitate, und von dort aus auf unterschiedlichsten Wegen in Organismen, in denen sie 

mit Stoffwechselwegen interagieren oder direkt toxisch wirken können. Auf diese 

Weise induzieren diese Substanzen Stress in belasteten Organismen, was sich 

schließlich als abnehmende Abundanz und/oder reduzierte Reproduktionsfähigkeit der 

belasteten Biota auf organismischer Ebene äußert, und sich somit auf das gesamte 

Ökosystem auswirken kann. Ein Ansatz diese durch Umweltverschmutzung 

hervorgerufenen Veränderungen zu erfassen, stellt die Überwachung mit so genannten 

Biomarkern oder Bioindikatoren dar: molekulare, zelluläre oder physiologische 

Parameter eines Organismus, der durch die Belastung mit Xenobiotika moduliert wird. 

Diese Parameter sollten prinzipiell einfach und kostengünstig zu ermitteln sein, auch 

gegenüber sublethalen Dosen von Giftstoffen, wie man sie in der Umwelt misst, sensitiv 

reagieren und so einen Effekt der Kontamination auf den Organismus anzeigen. In der 

vorliegenden Studie wurden Reaktionen des unspezifischen Immunsystems von 

Plattfischen in ein Programm zum biologischen Effekte Biomonitoring integriert, um 

den immunmodulatorischen Einfluss von Xenobiotika abschätzen zu können. Dass 

einzelne Substanzen oder deren Mischungen immunologische Reaktionen von Fischen 

beeinflussen können, wurde bereits in Laborstudien von anderen Arbeitsgruppen 

nachgewiesen.  

Wir konnten zeigen, dass aus dem Pronephros der Flunder (Platichthys flesus L.) 

gewonnene Zellen optimal zur Gewinnung und Durchführung funktioneller Tests, wie 

der Sauerstoffradikalproduktions- oder Endozytosefähigkeit von Granulozyten und 

Monozyten/Makrophagen waren. Im Vergleich zu Leukozytensuspensionen, die aus 

Blut oder Milz gewonnen wurden, zeigten unangereicherte Kopfnierenzellsuspensionen 

die höchste Reaktivität. Daher können diese Zellsuspensionen auch bestens in 

Feldstudien eingesetzt werden.  

Um immunologische Reaktionen als Biomarker oder Bioindikator für 

Umweltbelastungen einsetzen zu können, muss der Einfluss natürlicher Parameter klar 

vom Effekt der Kontamination zu trennen sein. Natürliche Einflüsse, wie z.B. 

hydrografische Faktoren können Immunreaktionen im Fisch beeinflussen. Wie in dieser 

Studie gezeigt, hat eine Erniedrigung der Salinität von 32 auf 16 ‰ keinen Einfluss auf 
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die Verteilung von Leukozytensubpopulationen in der Kopfniere der euryhalinen 

Flunder. Die Funktionen von Phagozyten aus der Kopfniere, die als Pinozytoseaktivität 

und als Fähigkeit gemessen wurde, Sauerstoffradikale zu produzieren, sowie die 

Aktivität des im Plasma vorkommenden Lysozyms, wurden durch die 

Salinitätsänderung nicht beeinflusst. Diese Ergebnisse zeigen, dass die hier gemessen 

Parameter nicht sensitiv gegenüber Salinitätsänderungen in Brackwasser- oder 

Estuarbereichen sind. 

Eine subklinische Infektion von Flundern mit Parasiten hatte ebenfalls keinen Einfluss 

auf Faktoren des angeborenen Immunsystems. Unsere Ergebnisse ergaben, dass 

ektoparasitische Copepoden, die die höchsten Abundanzen der gefundenen Parasiten 

aufwiesen, keinen großen Einfluss auf Immunreaktionen hatten, und diese somit nicht 

sensitiv gegenüber subklinischen Parasiteninfektionen waren. 

In einer integrierten Biomonitoring Studie in der Deutschen Bucht waren die 

Lysozymaktivität und Sauerstoffradikalproduktion der Leukozyten von einzelnen 

Schadstoffen signifikant beeinflusst. Des Weiteren wurden signifikante Korrelationen 

mit vom ICES empfohlenen Biomarkern, die eine Schadstoffexposition anzeigen, wie 

EROD oder DNA-Strangbrüche, gefunden. Durch die schwachen regionalen 

Unterschiede in der Schadstoffbelastung der Deutschen Bucht konnten aber keine 

regionalen Trends anhand der immunologischen Parameter ermittelt werden.  

In einer weiteren integrierten Studie an Klieschen (Limanda limanda L.) in der Nordsee, 

in der ein klarer Verschmutzungsgradient zwischen den einzelnen Stationen beschrieben 

wurde, konnte gezeigt werden, dass die Fähigkeit von Granulozyten und 

Monzoyten/Makrophagen Sauerstoffradikale zu produzieren in den belasteten Gebieten 

deutlich verringert ist. Die Lysozymaktivität im Blut ist signifikant erniedrigt in 

Klieschen von hoch belasteten Stationen, genau wie in Individuen, die mit dem 

Lymphocystis Virus oder mit Nematoden infiziert waren.  

Die hier vorliegende Studie unterstreicht, dass die ausgewählten Immuntests im 

integrierten Biologischem Effekte Monitoring im Feld eingesetzt werden können und 

dabei in der Lage sind, generell modulatorische Effekte von Xenobiotika auf 

Funktionen des Immunsystems von Fischen unter natürlichen Bedingungen 

aufzuzeigen.
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