Die Diffusion von CO₂ in Natriumalumosilikatschmelzen: eine experimentelle Untersuchung zum Einfluss der Zusammensetzung auf die Diffusivität von CO₂

Von dem Fachbereich Geowissenschaften und Geographie

der Universität Hannover

zur Erlangung des Grades einer

DOKTORIN DER NATURWISSENSCHAFTEN Dr. rer. nat.

genehmigte Dissertation

von

Dipl. Min. Melanie Sierralta

geboren am 19.12.1972 in Hannover

2002

Referent: Prof. Dr. F. Holtz

Koreferent: PD Dr. M. Nowak

Tag der Promotion: 11. Juli 2002

Danksagung

Die vorliegende Arbeit habe ich am Institut für Mineralogie der Universität Hannover unter der Leitung von Herrn Prof. François Holtz durchgeführt. Die Arbeit entstammt dem Projekt im Schwerpunktprogramm der DFG von Herrn Dr. Marcus Nowak und Prof. Dr. Hans Keppler. Marcus Nowak möchte ich für die Betreuung dieser Arbeit, die zahlreichen Anregungen, die intensiven Diskussionen und die gute Zusammenarbeit herzlich danken. Weiterer Dank geht an Hans Keppler für die Übernahme des Koreferats, die Betreuung bei meinem Aufenthalt am Bayerischen Geoinstitut Bayreuth und die ständige Bereitschaft zum Korrekturlesen.

Mein Dank gilt weiterhin den Mitarbeitern der Werkstatt Willi Hurkuck, Bettina Aichinger, Manuel, Christina und Florian für die technische Unterstützung bei der Durchführung der Hochdruckexperimente. Bei Otto Diedrich bedanke ich mich ganz herzlich für die sorgfältige Anfertigung von vielen Dünnschliffen, IR-Präparaten und polierten Zylindern. Bei der Arbeit und der Reparatur der Gasdruckanlage wurde ich von Jasper, Susi und Dieter oft unterstützt. Vielen Dank dafür.

Herrn Dr. Jürgen Koepke und Matthias Hahn danke ich für die Unterstützung bei den Mikrosondenanalysen. Herr PD Dr. Claus Rüscher war bei Störungen an der IR-Spektroskopie immer zur Stelle. Herrn PD Dr. Harald Behrens möchte ich für seine immerwährende Aufmerksamkeit und sein offenes Ohr herzlich danken. Ferner gilt mein Dank allen Mitarbeitern des Instituts.

Mein Dank geht auch an: Astrid, Antje, Frank, Marcus F., Mario, Jasmin, Kerstin, Kevin, Regina und Roman, sowie Anselm, Christian, Dirk, Kai und Michael.

Abschließend gilt mein besonderer Dank meinem Mann Andi für seine Geduld und seinen Beistand während der gesamten Zeit und meinen Eltern für die Ermöglichung meines Studiums und ihre große Anteilnahme während meiner Promotion.

Inhaltsverzeichnis

1	Zus	ammenfassung / Abstract
2	Ein	leitung8
3	Exp	erimentelle und analytische Methoden10
	3.1	Synthese und Charakterisierung der Ausgangsmaterialien
	3.1.1	Natriumalumosilikatgläser
	3.1.2	Silberoxalat
	3.2	Vorbereitung der Hochtemperatur-Hochdruck-Synthesen
	3.2.1	Kapselpräparation zur Synthese volatilfreier Natriumalumosilikatgläser
	3.2.2	Kapselpräparation der Synthesen CO ₂ -haltiger Natriumalumosilikatgläser
	3.2.3	Kapselpräparation der Synthesen H ₂ O- und CO ₂ -haltiger Natriumalumosilikatgläser
	3.3	Hochtemperatur-Hochdruck-Synthesen in der intern beheizten Gasdruckanlage 14
	3.4	Vorbereitung von Speziationsuntersuchungen und Diffusionspaarexperimenten. 19
	3.5	Diffusionspaarexperimente
	3.6	Hochdruck-Experimente in der Stempel-Zylinder-Apparatur
	37	Die Infrarot-Snektroskonie 25
	371	Snektroskonische Untersuchungen im mittleren Infrarot
	372	Spektroskopische Untersuchungen im nahen Infrarot
	3.7.3	Bestimmung von CO ₂ - und H ₂ O-Gehalten in den Alumosilikatgläsern
	3.8	Spektroskopische Untersuchung und Auswertung der CO ₂ -Diffusionsprofile 30
	3.8.1	Der theoretische Ansatz zur Bestimmung von Diffusionskoeffizienten der CO ₂ -Diffusion in
	Silik	atschmelzen
	3.8.2	IR-Spektroskopie der Diffusionsproben
	3.8.3	Fehler der Diffusionskoeffizienten
	3.9	Spektroskopische Untersuchungen mit dem Heiztisch
4	Erg	ebnisse
	4.1	Probleme der Synthesen
	4.1.1	Lösung von CO ₂ in Alumosilikatgläsern
	4.1.2	Lösung von CO ₂ und H ₂ O in den Natriumalumosilikatgläsern

4.2	Infrarotspektroskopische Untersuchung	
4.2	2.1 Die Absorptionsbanden von gelöstem CO ₂ in Natriumalumosilikatglas im MIR	
4.2	2.2 Homogenität der CO ₂ -haltigen Gläser	40
4.2	2.3 Ergebnisse der Stempel-Zylinder-Experimente	
4.2	2.4 Das System AB + n Na ₂ O	44
4.2	2.5 Temperaturabhängige spektroskopische Untersuchung mit dem Heiztisch	45
4.3	Diffusionspaarexperimente	47
4.3	3.1 Trockene Natriumalumosilikatschmelzen bei 1523 K	47
4.3	3.2 Zeitabhängige Untersuchung der CO _{2,total} -Diffusion	50
4.3	3.3 Temperaturabhängigkeit der Diffusion von CO ₂	51
4.3	Die CO ₂ -Diffusion in H ₂ O-haltigen Schmelzen	55
5 Di	skussion	57
5.1	Zum Einfluss der Zusammensetzung auf die Diffusivität von CO2	57
5.2	Der Einfluss von H2O auf die Diffusivität von CO2	59
5.3	Der Diffusionsmechanismus	61
5.4	Applikationen der Diffusionsdaten	67
6 Li	teraturverzeichnis	70
7 Aı	1hang	76

1 Zusammenfassung

Die Diffusion von gelöstem CO₂ wurde in Natriumalumosilikatschmelzen der Zusammensetzung NaAlSi₃O₈ (AB) + n Na₂O (n = 0 - 6,06 Gew.-%) untersucht. Hierzu wurden Diffusionspaarexperimente bei Temperaturen von T = 1423 - 1623 K und 0,5 GPa in der intern beheizten Gasdruckanlage durchgeführt. Die Gehalte von Gesamt-CO₂ in den Ausgangsgläsern lagen zwischen 0 - 0,2 Gew.-%. Die symmetrischen Konzentrations-Distanz-Profile von Gesamt-CO₂ wurden mit der Mikro-Infrarotspektroskopie bestimmt. Eine Errorfunktion wurde an die gemessenen Profile angepasst und die Gesamt-CO₂-Diffusionskoeffizienten bestimmt. In der Reihe der untersuchten Zusammensetzungen steigt die Diffusivität von CO₂ exponentiell mit dem Na₂O-Gehalt und daher auch mit dem Depolymerisierungsgrad der Schmelze. Die Diffusivität von Gesamt-CO₂ bei 1523 K steigt von logD_{CO2} = -11,38 (D_{CO2} in m²/s) in AB-Schmelze auf logD_{CO2} = -10,92 in AB + 6,06 Gew.-% Na₂O-Schmelze. Es zeigt sich somit eine deutliche Abhängigkeit der Diffusivität von CO₂ vom Polymerisationsgrad der Schmelzen. Für die Abhängigkeit der CO₂-Diffusivität in AB-Schmelze von der Temperatur wurde folgende Beziehung bestimmt:

$$D_{\text{CO}_{2,\text{total}}} = 2,36 \cdot 10^{-5} \cdot e^{\left(\frac{-197500}{\text{RT}}\right)}$$

Die Aktivierungsenergie und der prä-exponentielle Faktor nehmen mit steigendem Na₂O-Überschuss der Schmelzen ab.

Weiterhin wurde der Einfluss von H_2O auf die Diffusivität von Gesamt- CO_2 untersucht. In AB-Schmelze mit 2 Gew.-% gelöstem H_2O ist die Diffusivität von CO_2 um eine halbe Größenordnung größer als die Diffusivität von CO_2 in trockener AB-Schmelze. Die Diffusivität von CO_2 in H_2O -haltigen Natriumalumosilikatschmelzen bei 1523 K lässt sich nach folgender Beziehung berechnen:

Die Diffusivität von CO₂ in Na₂O- und H₂O-haltiger AB-Schmelze steigt exponentiell mit steigendem Gehalt an Na₂O und H₂O in den Schmelzen.

Schlagworte: Diffusion, CO₂, Silikatschmelzen

1 Abstract

The bulk diffusivity of dissolved carbon dioxide was investigated experimentally in NaAlSi₃O₈ (AB) + n Na₂O (n = 0 – 6.87 wt%) melts using the diffusion couple technique. The experiments were performed in internally heated argon-pressure vessel at temperatures of 1423 - 1623 K and 0.5 GPa. CO₂ contents of the starting glass pairs varied between 0 and 0.2 wt%. Diffusion profiles of the CO₂ species (molecular CO₂ and CO₃²⁻) were measured by mid-infrared spectroscopy. The symmetrical diffusion profiles can be fitted well assuming constant CO₂ diffusivity. Apparent chemical bulk diffusion coefficients of CO₂ were calculated from fitparameter. In the investigated compositional range, the diffusivity of bulk CO₂ increases exponentially with Na₂O content and thus exponentially with the degree of depolymerization of the melt. The bulk CO₂ diffusivity increases from $logD_{CO2} = -11.38$ (D_{CO2} in m²/s) in AB-melt to $logD_{CO2} = -10.95$ in AB-melts with 6.06 wt% Na₂O excess. Therefore, the CO₂ diffusivity strongly depends on the degree of polymerization of the melt composition.

In the temperature range of investigation the influence of temperature on the diffusivity of bulk CO₂ was determined:

$$D_{\text{CO}_{2,\text{total}}} = 2,36 \cdot 10^{-5} \cdot e^{\left(\frac{-197500}{\text{RT}}\right)}$$

With increasing Na_2O excess in AB-melt, the activation energy and pre-exponential factor D_0 decrease.

Furthermore, the influence of H_2O on the diffusivity of bulk CO_2 was investigated. In ABmelt with 2 wt% dissolved H_2O the diffusivity of bulk CO_2 is increased by half an order of magnitude compared to diffusion of bulk CO_2 in dry AB-melt. The diffusivity of bulk CO_2 in depolymerised melts can be calculated by:

$$-\log D_{CO2} = 13,30594 \cdot X_{Na20, H20} - 11,39$$

The diffusivity of bulk CO_2 in depolymerised melts increases exponentially with increasing Na₂O and H₂O content of the melt.

Keywords: diffusion, carbon dioxide, silicate melts

2 Einleitung

In terrestrischen Magmen können große Mengen an volatilen Komponenten wie H₂O, CO₂, SO₂, H₂S, Halogene und Edelgase gelöst sein, die durch Vulkanismus aus dem Erdinneren an die Erdoberfläche transportiert werden. CO₂ ist nach H₂O die zweithäufigste volatile Komponente, die in den natürlichen Magmen gelöst ist. Beim Aufstieg der Magmen aus dem Erdinneren werden durch die Druckentlastung die Löslichkeiten der Volatile überschritten. Es kommt zur Blasenbildung und Entgasung der Magmen. Der CO₂-Anteil an freigesetzten Volatilen bei Vulkaneruptionen kann mehr als 40 mol% betragen (Symonds et al., 1994). Für das Verständnis dieses Stofftransports aus dem Erdinneren in die Hydrosphäre und Atmosphäre ist es wichtig, die Lösungsmechanismen der Volatile in den Magmen und die Transportprozesse zu kennen. Studien zur Löslichkeit und Kinetik von H₂O und dessen Einfluss auf die Rheologie von Silikatschmelzen sind bis heute Gegenstand zahlreicher experimenteller Untersuchungen. Im Hinblick auf Kinetik und Rheologie von CO₂-haltigen Schmelzen wurden bisher nur wenige Studien durchgeführt.

Löslichkeitsbestimmungen von Systemen mit H₂O und CO₂ in Silikatschmelzen (Eggler und Rosenhauer 1978, Holloway 1976, Dixon et al. 1988) haben gezeigt, dass sich die Löslichkeiten dieser Komponenten gegenseitig beeinflussen. Die Fluid-Sättigungsgrenze wird in Schmelzen mit gelöstem H₂O und CO₂ schon bei höheren Drücken erreicht als in Schmelzen mit nur gelöstem H₂O (Holloway, 1976). Eine tholeiitische Schmelze mit 1 Gew.-% H₂O erreicht bei 1200°C und ca. 150 bar die Fluid-Sättigungsgrenze. Im Gegensatz dazu fängt eine tholeiitische Schmelze bei gleicher Temperatur mit 1 Gew.-% H₂O und 0,05 Gew.-% CO₂ schon bei 1200 bar an zu entgasen (Dixon et al. 1995, Papale 1999)). Die Blasenbildung ist somit in Silikatschmelzen mit CO₂ und H₂O zu höherem Druck und in größere Tiefe verschoben (Papale und Polacci, 1999).

Die Lösungsmechanismen von CO_2 in Silikatschmelzen sind bisher weitgehend unverstanden. Aufgrund bisher durchgeführter Infrarot-, Raman- und Kern-Resonanz-Spektroskopie an CO_2 -haltigen Gläsern ist festgestellt worden, dass die Speziation von CO_2 (molekulares CO_2 oder Karbonat) sehr empfindlich von der Glasstruktur abhängt (Fine und Stolper 1985, Blank und Brooker 1994, Brooker et al. 2001a). In vollpolymerisierten rhyolitischen Gläsern ist nahezu alles CO_2 in Form von molekularem CO_2 gelöst, während in depolymerisierten basaltischen Gläsern das CO_2 als Karbonat gelöst ist. Intermediäre Zusammensetzungen wie Rhyodazit und Dazit weisen sowohl molekulares CO_2 als auch Karbonat auf (Ohlhorst, 2002). In vollpolymerisiertem Glas mit NaAlSi₃O₈-Zusammensetzung ist molekulares CO_2 die dominierende Spezies, während ein geringerer Teil des gelösten CO_2 als Karbonat vorliegt (Fine und Stolper 1985, Stolper et al. 1987).

Durch die Kombination von Löslichkeits-, Speziations- und Diffusionsdaten kann der Transportmechanismus von CO_2 und die Magmenentgasung besser verstanden werden. Im Gegensatz zur H₂O-Diffusion existieren bisher jedoch nur unzureichende Erkenntnisse zur CO_2 -Diffusion. Watson (1982, 1991, 1994) untersuchte die CO_2 -Diffusion in basaltischen und rhyolitischen Schmelzen mit Hilfe der ¹⁴C- β -track-Autoradiographie. Das Ergebnis dieser experimentellen Untersuchung war, dass die Diffusion von CO_2 unabhängig von der Schmelzzusammensetzung ist. Dies ist überraschend, da sich die CO_2 -Speziation in rhyolitischen und basaltischen Gläsern deutlich unterscheidet. In der vorliegenden Arbeit soll geklärt werden, ob eine Korrelation zwischen Speziation, Polymerisationsgrad und Mobilität von CO_2 in Natriumalumosilikatschmelzen besteht.

Für die Diffusion CO_2 in Natriumalumosilikatschmelzen von wurden Diffusionspaarexperimente in einer intern beheizten Argon-Gasdruckanlage durchgeführt Die systematische Untersuchung der CO₂-Diffusion und die Untersuchung der Speziation von CO₂ ist das System von NaAlSi₃O₈ (AB) + n Na₂O (n = 0 - 6,06 Gew.-%) gewählt worden. Durch die Zugabe von Na2O zu AB wird die vollpolymerisierte Struktur der AB-Schmelze aufgebrochen, da der Überschuss an Na₂O mit den $(Si,Al)O_4$ -Netzwerktetraedern reagiert und zur Bildung von nichtbrückenbildenden Sauerstoffen führt. Hierdurch wird der Polymerisationsgrad der Schmelze reduziert. Dieser Ansatz ermöglicht es, Aussagen über den Einfluss der Schmelzzusammensetzung und des Polymerisationsgrades auf die CO₂-Diffusion zu treffen. Somit wird eine breitere Basis von CO₂-Diffusionsdaten geschaffen, die Verwendung in bestehenden Modellierungen zur Blasenbildung und zum Entgasungsverhalten finden soll.

3 Experimentelle und analytische Methoden

3.1 Synthese und Charakterisierung der Ausgangsmaterialien

3.1.1 Natriumalumosilikatgläser

Als Ausgangsgläser wurden Natriumalumosilikatgläser aus Mischungen von SiO₂-(amorph, Balzers), Al₂O₃- (γ -Tonerde, Merck) und Na₂CO₃-Pulver (Merck, p.a.) synthetisiert. Da insbesondere Al₂O₃ sehr schnell H₂O adsorbiert, wurden alle Pulver für 24 h bei 423 K getrocknet, um das Oberflächenwasser zu entfernen. Anschließend wurden die Pulver eingewogen und in einem Schraubdeckelglas mit einem Rüttler 20 min lang homogenisiert. Ansätze der Synthesen waren 50 g Glas mit Albitzusammensetzung (AB = NaAlSi₃O₈), 50 g Natriumalumosilikatglas (ABNa4 = AB + 4 Gew.-% Na₂O) und je 10 g Natriumalumosilikatglas mit Überschüssen von 3 und 6 Gew.-% Na₂O (ABNa3, ABNa6). Die Mischungen der Oxid- und Karbonatpulver wurden in einem Platintiegel langsam mit 50 K pro Stunde auf 1273 K im Kammerofen aufgeheizt, um das Na₂CO₃ zu Na₂O und CO₂ zu zersetzen. Mit einer Rampe von 600 K pro Stunde wurden die Oxidmischungen weiter auf 1573 K erhitzt und bei dieser Temperatur für vier Stunden gehalten. Zum Austreiben der Blasen und zur besseren Homogenisierung wurde die Schmelze dann auf 1873 K erhitzt und auch hier für vier Stunden gehalten. Der Schmelztiegel wurde anschließend für die Glasbildung in einem Wasserbad abgeschreckt.

Die Bestimmung der genauen chemischen Zusammensetzung der Gläser erfolgte mit der Mikrosondenanalyse (Cameca Camebax, 15 kV Anregungsspannung, 18 nA Strahlstrom und 2–5 s Zählzeit je Element). Der Strahldurchmesser wurde auf 20 µm defokussiert, um die Messbedingungen für Natrium zu optimieren. Erste Analysen ergaben, dass nach der Synthese in den Gläsern noch Inhomogenitäten vorhanden waren. Der Gehalt von SiO2 schwankte um 5% zwischen 63 – 68 %. Um die Inhomogenitäten zu beheben, wurden die Gläser erneut aufgemahlen und ein zweites Mal im Kammerofen bei 1873 K 4 h lang aufgeschmolzen. Gläser dieser Synthesen waren im Rahmen des Messfehlers in ihrer Zusammensetzung homogen. Weitere Natriumalumosilikatgläser mit Na₂O-Überschuss von 1, 2 und 7 Gew.-% wurden aus einem AB-Glaspulver hergestellt, das mit entsprechenden Zugaben von Na₂CO₃ eingewogen, in der Kugelmühle aufgemahlen und anschließend mit dem zuvor beschriebenen Programm aufgeschmolzen wurde. Einwaagen und Analysen der Gläser mit der Elektronenstrahlmikrosonde sind in Tabelle 1 aufgelistet.

	Alle Angaben sind in Gew%.	
	Glaszusammensetzungen. 1	
,	Mikrosondenanalysen der	
	Tabelle 1: Einwaagen und	

	Albit	AB		ABNa1		ABNa2		ABNa3		ABNa4		ABNa6		ABNa7	
	ideal	Einwaage	Analyse	Einwaage	Analyse	Einwaage	Analyse	Einwaage	Analyse	Einwaage	Analyse	Einwaage	Analyse	Einwaage	Analyse
SiO_2	68,74	68,74	69,03(36)	67,61	68,87(20)	66,95	68,56(23)	66,71	68,43(36)	65,82	66,66(32)	64,81	65,38(34)	63,54	63,84(43)
AI_2O_3	19,44	19,44	19,33(13)	19,13	19,24(13)	18,94	18,58(16)	18,90	18,62(18)	18,62	18,63(14)	18,38	18,51(23)	17,98	18,62(29)
Na ₂ O	11,81	11,81	11,41(27)	13,26	12,45(28)	14,11	13,38(26)	14,38	13,92(14)	15,57	15,24(20)	16,81	15,94(48)	18,49	17,37(43)
S	100		99,77		100,56		100,52		100,97		100,53		99,83		99,83
#			11		16		14		15		11		16		18
NBO/T	0,000		0,000		0,016		0,046		0,056		0,086		0,104		0,137
Si / AI	3,00		3,03		3,03		3,14		3,11		3,03		3,00		2,91
Na_2O^*			-0,33		0,75		2,14		2,58		3,90		4,70		6,06
Anmerku Zablon iv	= # :bur	Anzahl der /	Analysen, I	NBO/T = ni	chtbrücken	bildende St	auerstoffe p	ro Tetraedei	r, * Na₂O-Ü∣	berschuss;					
Berechn	ung NB(D/T = 2*(? d	ler Sauerst	toffe O [in m	nol]-2*? d(er Tetraede	ır Si+Al [in n	1)/? der T	etraeder [in	i mol]					

3. Experimente

3.1.2 Silberoxalat

Für die Synthese von CO₂-haltigen Gläsern wurde Silberoxalat (Ag₂C₂O₄) als CO₂-Quelle verwendet. Ag₂C₂O₄ wurde durch Fällung mit Oxalsäure hergestellt (Gmelin 1975, Keppler 1988). Gleiche Volumina von 0,1 n-AgNO₃- und H₂C₂O₄- Lösungen wurden bei 313 K unter Rühren langsam zusammengegossen. Dabei fiel Ag₂C₂O₄ als weißes Pulver aus. Der Niederschlag wurde durch Dekantieren mit viel Wasser gewaschen und gefiltert. Das Filtrat wurde anschließend mit Methanol gewaschen und 18 h im Exsikkator über P₂O₅ unter Lichtabschluss getrocknet, da Ag₂C₂O₄ lichtempfindlich ist. Ca. 5 mg des synthetisierten Ag₂C₂O₄ wurden anschließend in einer Goldkapsel eingeschweißt und bei 773 K thermisch zersetzt. Hierbei findet folgende Reaktion statt:

$$Ag_2C_2O_4 \xrightarrow{T \ge 473K} 2Ag + 2CO_2$$
(1)

Anschließend wurde die Kapsel in flüssigem N_2 gekühlt, um Spuren von freiem H_2O einzufrieren und die Kapsel dann angestochen. Der Gewichtsverlust durch das entweichende CO₂-Gas wurde bestimmt und somit die Effektivität der CO₂-Quelle überprüft. Der Gewichtsverlust entspricht einer Effektivität des Silberoxalats von 98,2%.

3.2 Vorbereitung der Hochtemperatur-Hochdruck-Synthesen

3.2.1 Kapselpräparation zur Synthese volatilfreier Natriumalumosilikatgläser

Trockenes Ausgangsglas wurde in einem Stahlmörser zerstoßen, in einem Achatmörser gemahlen und auf eine Korngröße < 200 μ m gesiebt. Dieses Pulver wurde in mehreren Schritten in Platin- bzw. Gold-Palladium- (Au₈₀Pd₂₀) Kapseln (Länge = 40 mm, Durchmesser = 4 mm, Wandstärke = 0,2 mm) gefüllt. Während der Befüllung der Kapseln wurde das Pulver mehrmals mit Hilfe einer Edelstahlstange von 3,8 mm Durchmesser verdichtet, um so wenig Luft wie möglich in der Kapsel mit einzuschließen und bei der Hochtemperatur-Hochdruck-Synthese möglichst gleichmäßige, runde Zylinder zu erhalten. Die gefüllte, offene Kapsel wurde im Trockenschrank bei 378 K getrocknet, um das am Pulver anhaftende Oberflächenwasser zu entfernen. Anschließend wurde die wassergekühlte Kapsel durch Lichtbogenschweißen mit einer Graphitelektrode geschlossen.

3.2.2 Kapselpräparation der Synthesen CO₂-haltiger Natriumalumosilikatgläser

Trockene, gesiebte Pulver der Ausgangsgläser mit einer Korngröße < 200 μ m wurden mit Silberoxalat in Platin- bzw. Goldpalladium- (Au₈₀Pd₂₀) Kapseln (Länge = 40 mm, Durchmesser = 4 mm, Wandstärke = 0,2 mm) eingewogen. Das Silberoxalat wurde zunächst unter Berücksichtigung seiner Effektivität (98,2%) in einen kleinen Tiegel aus Ptbzw. Au₈₀Pd₂₀-Folie eingewogen und eingewickelt, da bei der Zersetzung von Ag₂C₂O₄ elementares Silber entsteht, das sich in der Schmelze kolloidal verteilen und das Glas gelblich bis bräunlich färben kann (Stolper et al., 1987). Der Ag₂C₂O₄-Container wurde in der einseitig zugeschweißten Kapsel am unteren Kapselende positioniert und die Kapsel dann wie zuvor beschrieben mit der berechneten Menge Glaspulver gefüllt und mehrfach kompaktiert. Die offenen Kapseln wurden anschließend im Trockenschrank bei 378 K getrocknet, um das am Pulver anhaftende Oberflächenwasser zu entfernen. Danach wurden die wassergekühlten Kapseln durch Lichtbogenschweißen geschlossen. Die Kapseln wurden dann für 3 h bei 473 K in den Trockenschrank gelegt, um das Silberoxalat vor der Hochtemperatur-Hochdrucksynthese zu zersetzen und eine gleichmäßige Verteilung des CO₂-Gases im Pulver zu erreichen.

3.2.3 Kapselpräparation der Synthesen H₂O- und CO₂-haltiger Natriumalumosilikatgläser Um den Einfluss von H₂O auf die Diffusion von CO₂ zu klären, wurden Synthesereihen von AB-Glas mit H₂O-Gehalten bis zu 2,0 Gew.-% H₂O durchgeführt (Tab. 2). Hierbei wurden zwei verschiedene Ansätze (A + B) für die Synthese der Diffusionspaarzylinder gewählt:

 Ansatz A: Trockenes AB-Pulver wurde in eine einseitig verschlossene Kapsel bis zur Hälfte gefüllt und dabei mehrmals verdichtet. Bidestilliertes H₂O wurde mit Hilfe einer Mikroliterspritze in die Kapsel eingefüllt und die Kapsel mit dem restlichen Pulver aufgefüllt. Unter Wasserkühlung wurde die Kapsel verschweißt. Bei der Synthese von Glaszylindern mit CO₂ wurde vor der Befüllung mit Glaspulver ein Ag₂C₂O₄-Container in die Kapsel gegeben. Zum Testen der Dichtigkeit, zur Zersetzung des Silberoxalats und zur homogenen Verteilung des H₂O wurde die geschlossene Kapsel für ca. 3 h bei 473 K in den Trockenschrank gelegt. Ansatz B: Eine größere Menge trockenes AB-Glas wurde in einer Pt-Kapsel mit bidestilliertem H₂O versetzt und eingeschweißt. Nach der Hochtemperatur-Hochdruck-Synthese (Abschnitt 3.3) wurde das entstandene Glas aus der Kapsel herauspräpariert und auf eine Korngröße $< 200 \,\mu m$ gemahlen und gesiebt. Dieses Pulver diente Ausgangsmaterial die dann als für Synthesen von Diffusionspaarzylindern mit und ohne CO₂. Dieser Ansatz B soll gewährleisten, dass die zueinander gehörenden Diffusionspaarzylinder den gleichen H₂O-Gehalt haben und bei der Durchführung der Diffusionspaarexperimente die CO₂-Diffusion von möglichen H₂O-Konzentrationsgradienten unbeeinflusst bleibt.

Mit Ansatz A wurden AB-Gläser mit 0,7 Gew.-% und 2 Gew.-% H_2O hergestellt. Im Ansatz B wurden 0,97 und 2 Gew.-% H_2O in AB-Glas gelöst.

3.3 Hochtemperatur-Hochdruck-Synthesen in der intern beheizten Gasdruckanlage

Alle Synthesen wurden in einer intern beheizten Argon-Gasdruckanlage (IHPV) durchgeführt. Der Versuchsdruck betrug bei allen Synthesen und Experimenten 0,5 GPa und die Versuchstemperaturen lagen zwischen 1373 und 1623 K (Tabelle 2 und 3). Die Druckmessung erfolgt über ein Dehnungs-Messstreifen-Manometer (DMS, ±5 MPa Fehler bei 0,5 GPa). Die Temperaturverteilung im Probenraum wird mit vier Thermoelementen im Abstand von je 10 mm gemessen. Zwei der Thermoelemente dienen als Steuerelemente des Programmreglers (Eurotherm-Controller 900 EPC), die anderen beiden Thermoelemente dienen zur Messung der Temperatur an der Probenposition. Der Temperaturgradient an der Probenposition über eine Länge von 3 cm beträgt durch diese Anordnung maximal 15 K. Für die Experimente in der IHPV sind zwei Probenhalter verfügbar:

- ein Probenhalter mit 4 Ni-CrNi- Mantelthermoelementen f
 ür bis zu drei Kapseln vom Durchmesser 6,4 mm mit einer langsamen Abk
 ühlrate (NQ = normal quench) von 200 K/min (Withers und Behrens, 2000) und
- ein Probenhalter mit einer Vorrichtung zum schnellen Abkühlen der Probe (RQ = rapid quench) unter Verwendung von Pt-PtRh10- Thermoelementen. In dieser Vorrichtung wird eine Kapsel ($\emptyset_{max} = 6,4$ mm) im oberen Bereich des Probenhalters an einem dünnen Pt-Draht aufgehängt. Der Draht wird durch einen

elektrischen Strom mit hoher Leistung geschmolzen, wobei die Kapsel in den kalten unteren Bereich des Probenhalters fällt. Die hierbei erreichte Abkühlrate liegt bei ca. 150 - 200 K/s (Benne, 2000).

Da die Löslichkeit von CO₂ in Silikatschmelzen mit zunehmender Temperatur steigt (Mysen und Virgo, 1980), kann es beim langsamen Abkühlen und somit Unterschreiten der Löslichkeit zur Blasenbildung kommen. Zur Vermeidung von Blasen wurden die meisten Synthesen mit Volatilen unter Verwendung der Vorrichtung zum schnellen Abkühlen der Probe durchgeführt.

Die Mindestversuchsdauer zur Homogenisierung der CO_2 -Verteilung wurde anhand von Diffusionsdaten für CO_2 abgeschätzt. Für die CO_2 -Diffusion in einer Natriumalumosilikatschmelze wurde von Watson et al. (1982) folgende Beziehung aufgestellt:

$$D_{co2} = 3.5 \cdot 10^{-4} e^{(-195000/RT)}$$
(2)

mit R = allgemeine Gaskonstante und T = Temperatur in K. Für 1523 K ergibt sich ein Diffusionskoeffizient D von $7,2*10^{-11}$ m²/s. Die Abschätzung der Versuchsdauer erfolgte mit folgender Beziehung für die Diffusion in Kugeln:

$$t = r^2 / 4D \tag{3}$$

bei einer Annäherung von 95% an das Gleichgewicht mit t = Zeit [s] und r = Radius [mm]. Bei einer maximalen Korngröße von 200 μ m ergibt sich nur eine Minute Diffusionszeit zum Erreichen des Gleichgewichts. Erfahrungen am Institut haben bei der Synthese von H₂O-haltigen Gläsern jedoch gezeigt, dass für eine homogene Verteilung des H₂O in einer längeren Kapsel (3 cm) mehrere Stunden Synthesezeit nötig sind. Aus diesem Grund wurde eine Mindestversuchsdauer von 15 h gewählt.

Berndt et al. (2002) beschreiben die Einheiten der IHPV-Anlage (Autoklav, Ofen, Probenhalter) mit ihrer Neuentwicklung zur Shaw-Membrantechnik im Detail. Die Shaw-Membrantechnik war für die hier durchgeführte Arbeit jedoch nicht nötig. Für Diffusionspaarexperimente bei Temperaturen = 1523 K musste aber der Ofen der IHPV modifiziert werden. Ein Hochtemperatureinsatz für Temperaturen bis $T_{max} = 1673$ K wurde durch folgende Modifizierungen des zuvor verwendeten Ofens entwickelt (Abb. A1 im Anhang):

- Der Heizdraht wurde auf ein Keramikrohr mit geringerem Durchmesser (Innen- \emptyset = 17 mm, Außen- \emptyset = 19 mm, statt innen = 20 mm, außen = 22 mm) gewickelt.
- Für den Heizdraht wurde ein dünnerer Molybdändraht von 0,4 mm Durchmesser (statt 0,5 mm) verwendet.
- Zum Schutz der Anschlüsse bei höheren Temperaturen im Ofenraum wurde eine zusätzliche Keramikscheibe von 1 cm Dicke verwendet. Aus diesem Grund wurde die Pyrophyllit-Halterung der Keramikscheibe und der Anschlüsse um 1 cm verlängert und das Keramikrohr für die Heizwicklung um 1 cm verkürzt. Das Verhältnis der Längen beider Heizwicklungen wurde beibehalten.
- Die Isolierung der Ofenwicklung wurde zur Erreichung des ursprünglichen Durchmessers um eine Lage Mullitwatte erweitert.
- Durch die Verringerung des Durchmessers vom Ofenrohr wurden auch Änderungen am Probenhalter notwendig: Die Keramikrohre des Probenhalters wurden alle um 1 cm gekürzt. Für beide Keramikrohre wurden Rohre mit dünneren Durchmessern und Wandstärken verwendet (Schutzrohr: 16 mm außen / 14,5 mm innen; Fallrohr: 10 mm außen / 9 mm innen).

Aufgrund dieser Modifizierungen ist es nun möglich, bei 0,5 GPa Temperaturen bis $T_{max} =$ 1873 K bei einer vergleichbaren elektrischen Leistung zu erreichen, ohne dass die Lebensdauer des Ofens verringert wird.

Kapsel	Ausgangs-	т	CO ₂ - Finwaage	H ₂ O- Finwaage	Versuchs-	Scheiben-	Bemerkungen
	giuo		Linnaago	Linnaago	uuuoi	aicke (IR)	
		[K]	[Gew%]	[Gew%]	[h]	[µm]	
Pt1	AB	1473			1	128	
Pt2	AB	1473	0,32		1	132	Blasen
Pt3	ABNa4	1473			12	114	
Pt8	AB	1473	0,27		5	n. b.	wenig Blasen
Pt9	AB	1473		4,0	5	120	
Pt11	AB	1473	0,30	4,0	12	n. b.	große Blasen
Pt12	ABNa4	1473	0,30	4,0	5	n. b.	Blasen
Pt13	AB	1523	0,20	4,0	15	n. b.	große Blasen
Pt14	ABNa4	1523	0,20		15	163	
Pt15	AB	1523	0,18		15	117	wenige Blasen
Pt16	ABNa4	1523	0,20	4,0	15	167	
Pt17	AB	1523		2,0	17	124	
Pt18	AB	1523	0,20	2,0	17	118	wenige Blasen

Tabelle 2a: Synthesen in Platinkapseln in der IHPV bei 0,5 GPa mit langsamer Abkühlrate.

Anmerkung: n. b. =Dicke wurde nicht bestimmt

Nr.		Zusammen- setzung	CO ₂ - Einwaage	т	Dauer	IR-Scheibe	Bemerkungen
			[Gew%]	[K]	[h]	Dicke [µm]	
AP1	NQ ¹	AB		1523	5	111	CO ₂ -Peak im IR
AP47	NQ	AB		1523	45,2	124	n. isobar abgekühlt
AP59	NQ	AB		1523	16	124	
AP74	NQ	AB		1473	18,5	119	
AP22	RQ	AB		1473	18	140	
AP5	NQ	AB	0,20	1523	18	113	Pt-Folie ²
AP27	RQ	AB	0,20	1523	15	109	
AP30	RQ	AB	0,20	1523	14,2	111	
AP48	RQ	AB	0,20	1523	45,5	101	
AP55	RQ	AB	0,20	1523	22,5	125	
AP73	RQ	AB	0,20	1523	18	101	
AP66	NQ	ABNa1		1523	16.5	103	
AP65	RQ	ABNa1	0.20	1523	17.5	110	
			-,				
AP61	NQ	ABNa2		1523	16	133	
AP68	NQ	ABNa2		1473	16	108	
AP63	RQ	ABNa2	0,20	1523	19	130	
AP71	RQ	ABNa2	0,20	1523	17	113	
AP35	NQ	ABNa3		1523	19	72	
AP52	NQ	ABNa3		1523	18	126	
AP33	RQ	ABNa3	0,20	1523	18	94	
AP57	RQ	ABNa3	0,20	1523	16,5	126	
AP2	NQ	ABNa4		1523	5	104	Pt-Folie ²
AP60	NQ	ABNa4		1523	16	99	
AP4	NQ	ABNa4	0.20	1523	5	111	Pt-Folie ²
AP11	RQ	ABNa4	0,23	1523	12	112	
AP21	RQ	ABNa4	0,20	1523	18	118	
AP29	RQ	ABNa4	0.20	1523	47.5	88	
AP70	RQ	ABNa4	0.21	1523	18.5	122	
AP36	NQ	ABNa6	- ,	1523	19	91	
AP51	NQ	ABNa6		1523	18	92	
AP34	RQ	ABNa6	0.20	1523	18.5	99	
AP58	RQ	ABNa6	0.20	1523	17	109	
AP62	NO	ABNo7		1522	16	107	
AF 02				1/70	10 19 F	120	
AP75			0.20	14/3	21.2	129	
AP64	RQ		0,20	1523	21,3	108	
AP69	RQ	ABNa7	0,20	1523	16,5	146	

Tabelle 2b: Synthesen CO₂-haltiger Natriumalumosilikatgläser in Au₈₀Pd₂₀-Kapseln in der IHPV bei 0,5 GPa. Anmerkungen s. Tabelle 2c.

Nr.		Zusammen- setzung	CO ₂₋ Einwaage	H₂O- Einwaage	т	Dauer	IR-Scheibe	Bemerkung
			[Gew%]	[Gew%]	[K]	[h]	Dicke [µm]	
AP14	NQ^1	AB		2,41	1250	18	74	
AP24	NQ	AB		2,00	1250	18	133	
AP80	NQ	AB		2,00	1250	20	1016	NIR
AP82	NQ	AB		0,97	1250	20	1016	NIR
AP77	NQ	AB		2,00	1200	15		Ansatz B in Pt ³
AP78	NQ	AB		0,97	1200	15		Ansatz B in Pt ³
AP13	RQ	AB	0,20	2,04	1250	18	86	
AP79	RQ	AB	0,33	2,00	1250	20	815	NIR
AP81	RQ	AB	0,20	0,97	1250	21	815	NIR

Tabelle 2c: Synthese H₂O-haltiger Gläser in Au₈₀Pd₂₀-Kapseln in der IHPV bei 0,5 GPa.

Anmerkungen: ¹) Methode der Abkühlung, NQ = `normal quench`, RQ = `rapid quench` (s. Text). ²) Silberoxalat wurde in Pt-Folie eingewickelt. ³) Synthese wurde in Pt-Kapsel durchgeführt (s. Text zu Ansatz B)

3.4 Vorbereitung von Speziationsuntersuchungen und Diffusionspaarexperimenten

Für die folgenden Speziationsuntersuchungen und Diffusionspaarexperimente wurde nach den Synthesen aus den Edelmetallkapseln am oberen und unteren Ende sowie in der Mitte je eine Scheibe herausgesägt. Die Scheiben wurden für die spektroskopische Untersuchung auf eine Dicke von $80 - 120 \,\mu\text{m}$ geschliffen und beidseitig poliert. Die Dicke wurde je nach Volatilgehalt so gewählt, dass die Absorptionen der charakteristischen Banden für CO₂ einen Wert von 1 nicht überschreiten. Bei Absorptionen größer 1 ist die Linearität zwischen eingestrahlter und gemessener Intensität durch den Detektor des IR-Spektrometers nicht mehr gewährleistet. Zur Berechnung der Probendicke wurde das Lambert-Beer´sche Gesetz verwendet:

$$c = A \cdot \frac{M}{r d e} \cdot 100$$
(4)

mit c = Konzentration [Gew.-%], M = Molekulargewicht, A = Absorption, ρ = Dichte, d = Dicke und ε = Extinktionskoeffizient. Die Stirnflächen der übrigen Pt- bzw. Au₈₀Pd₂₀ummantelten Kapselstücke, drei Zylinder von ca. 5 mm Länge, wurden für die Diffusionspaarexperimente einseitig mit 0,25 µm Diamantpulver poliert.

3.5 Diffusionspaarexperimente

Ein Diffusionspaar besteht aus einem Glaszylinderpaar gleicher Zusammensetzung, wobei ein Zylinder CO₂-frei und der andere Zylinder CO₂-haltig ist (Abb. 1).

Abbildung 1: Schematische Darstellung eines Diffusionspaares.

Für die Diffusionspaarexperimente wurden je zwei entsprechende Zylinder an ihren polierten Stirnflächen in einer Au₈₀Pd₂₀-Kapsel (Durchmesser 5,4 mm, Länge 1,5 cm) in Kontakt gebracht und eingeschweißt. Diese Versuchsanordnung ermöglicht die eindimensionale Diffusion von CO₂ in zwei unendliche Halbräume, solange die Versuchszeit kurz genug ist, sodass sich die Diffusionsfront nicht über die halbe Länge des Zylinders hinaus ausbreitet. Die Versuche wurden bei $T_{max} = 1623$ K und P = 0,5 GPa in der IHPV mit der Vorrichtung zum schnellen Abschrecken der Proben durchgeführt (s. Tabelle 3). Die Versuchszeit war in den meisten Fällen 1 h. Die Abhängigkeit der CO₂-Diffusion von der Zeit wurde durch zwei zusätzliche 20-Stunden-Experimente untersucht (s. Tabelle 3). Für die spektroskopischen Untersuchungen wurden nach den Versuchen aus der Mitte der Diffusionspaarkapsel eine dünne Scheibe parallel zur Diffusionsrichtung gesägt, auf 60 - 120 µm geschliffen, poliert und auf einem Objektträger über einem 2 mm breiten und 20 mm langen Schlitz aufgeklebt (Abb. 2).

Abbildung 2: Skizze eines IR-Präparates der Diffusionsproben. Die Probe ist in Epoxidharz eingebettet und über einem Schlitz in einem Glasobjektträger mit Wachs fixiert.

Nr.	Glas	 	tnominell	teffektiv	H ₂ 0 ¹	H ₅ 0 ²	Bemerkung	Dicke	D _{co2}	log D _{co2}		L 2
		[K]	[s]	[s]	[Gew%]	%] [Gew%]		[mu]	[m ² /s])		
5	AB	1373	3600	3774	0,20	0,07	A/B/C	132	6,94E-13	-12,16	(±0,13)	0,994
D51	AB	1423	3600	3754	0,18	0,17		113	2,00E-12	-11,70	(±0,13)	0,997
D4	AB	1523	3600	3802	0,20	0,09	B/C	117	4,12E-12	-11,38	(±0,12)	0,999
D50	AB	1523	72000	72176	0,19	0,17		113	2,33E-12	-11,63	(±0,12)	0,993
D52	AB	1523	3600	3776	0,15	0,15		120	5,06E-12	-11,30	(±0,12)	0,999
D22	AB	1613	3600	3796	0,76	0,69	А	109	7,72E-12	-11,11	(±0,12)	0,998
D24	AB	1613	3780	4005	0,78	0,79	B/D	118	1,06E-11	-10,97	(±0,12)	0,999
D13	AB	1623	3600	3798	0,19	0,08	A	113	9,90E-12	-11,00	(±0,12)	0,992
D46	ABNa1	1423	3600	3754	1		ш	123				
D41	ABNa1	1523	3600	3776	0,07	0,06	D	105	5,09E-12	-11,29	(±0,12)	0,996
D44	ABNa1	1613	3600	3825	0,07	0,06	а	112	1,70E-11	-10,77	(±0,12)	0,997
D40	ABNa2	1423	3840	3994	0,13	0,06		66	3,46E-12	-11,46	(±0,13)	
D35	ABNa2	1523	3660	3836	0,09	0,05	D	127	7,51E-12	-11,12	(±0,12)	0,998
D38	ABNa2	1523	3600	3776	0,11	0,05	D	105	6,01E-12	-11,22	(±0,12)	0,997
D55	ABNa2	1613	3600	3796	0,10	0,09		98	5,24E-12	-11,28	(±0,12)	0,998
D56	ABNa2	1613	3600	3825	0,13	0,12	В	111	5,48E-12	-11,26	(±0,12)	0,998

Anmerkungen s. Tabelle 3b

Fortsetzung	Tabelle 3.	a:										
Nr.	Glas	F	tnominell	t _{effektiv} 2	H_2O^3	H ₂ O ⁴	Anmerkung	Dicke	D _{co2}	log D _{co2}		۲2
		R	[s]	[8]	[Gew%]	[Gew%]		[mŋ]	[m²/s]			
D42	ABNa3	1423	3600	3777	0,09	0,05	B/D	114	3,89E-12	-11,41	(±0,13)	0.997
D15	ABNa3	1523	3780	3956	0,08	0,05	D	105	7,93E-12	-11,10	(±0,12)	0,999
D43	ABNa3	1613	3600	3796	0,09	0,05	D	112	1,40E-11	-10,86	(±0,12)	0,998
D48	ABNa4	1423	3600	3777	0,18	0,16	U	95	5,21E-12	-11,28	(±0,13)	0,997
D53	ABNa4	1523	72000	72176	0,21	0,26		73	1,24E-11	-10,91	(±0,12)	0,997
6 D	ABNa4	1523	3600	3776	0,17	0,14	D	91	7,70E-12	-11,11	(±0,12)	0,998
D18	ABNa4	1613	3600	3796	0,10	0,08	D	111	3,53E-11	-10,45	(±0,12)	0,996
D45	ABNa6	1423	3600	3754	0,12	0,08		84	3,92E-12	-11,41	(±0,13)	0,997
D17	ABNa6	1523	3600	3776	0,04	0,03	D	102	1,36E-11	-10,87	(±0,12)	0,997
D20	ABNa6	1623	3600	3798	0,11	0,06	D	91	1,63E-11	-10,79	(±0,12)	0,996
		CC1 1	2600	0761	ст с С	000		001	E 27E 12	40 F	(67.01)	0 005
1 t 4 0			0000	4010	0,12	0,00	ſ			12,11-	(c1, UΞ)	0,330
D36	ABNa7	1523	3600	3802	0,14	0,04	ш	108	1,58E-11	-10,80	(±0,12)	0,991
D37	ABNa7	1523	3600	3802	0,17	0,05	В	77	6,86E-12	-11,16	(±0,12)	0,994
D39	ABNa7	1523	3600	3776	0,17	0,06	D	06	1,21E-11	-10,92	(±0,12)	0,991
D54	ABNa7	1613	3600	3796	0,15	0,11	Ŀ	73	1,66E-11	-10,78	(±0,12)	0,996
D57	ABNa7	1613	3600	3796	0,13	0,08		86	3,39E-11	-10,47	(±0,12)	0,995
Anmerkunge	n s. Tabell€	e 3b										

22

Nr.	Glas	⊢	t _{nominell} 1	t _{effektiv} 2	H_2O^3	H₂O ⁴	Anmerkung	Dicke	D_{co2}	log D _{co2}	r²	
		X	[S]	[s]	[Gew%]	[Gew%]		[mu]	[m ² /s]			
Ansatz A												
D7, Pt	AB	1523	3600	3802	2,0*	2,0*	В		1,22E-11	-10,92	(±0,12) 0,981	
D10	AB	1523	3600	3776	2,0*	2,0*	A	92	9,72E-12	-11,01	(±0,12) 0,972	
D12	AB	1523	3600	3776	0,77*	0,71*	A	111	2,91E-12	-11,54	(±0,12) 0,991	
D25	AB	1523	3600	3776	0,73*	0,73*	D	118	4,64E-12	-11,33	(±0,12) 0,993	
Ansatz B												
D58	AB + 2,0 H ₂ O	1523	3600	3776	2,29	2,24	A/D		1,16E-11	-10,93	(±0,12) 0,994	
D59	AB + 2,0 H_2O	1423	3600	3776	2,29	2,24	A		5,51E-12	-11,26	(±0,13) 0,996	
D60	AB + 0,97 H ₂ O	1423	3600	3776	1,18	1,17	A		5,01E-12	-11,30	(±0,13) 0,977	
D61	AB + 0,97 H_2O	1523	3600	3776	1,18	1,17	A		5,12E-12	-11,29	(±0,12) 0,995	
Anmerkung	en: ¹) Versuchsdaue	er bei Ve	ersuchsten	nperatur, ²) korrigierte	Versuchszei	t (s. Text), ³) Wa	assergeha	It des CO ₂ -h	naltigen Dif	fusionszylinders;	
⁴) Wasserg Prohe: F =	shalt des CO ₂ -freien vristallisiert [.] F <u>=</u> Kan	Diffusion	h Versuch	rs; Bemerl	kungen: A = tr. r ² = Güte (Blasen; B = 4ec Profil-Fit	NQ, bzw. nicht (s mit Table Cun	jefallene F	^o robe; C = F H _c O-Gehalt	Pt-Kapsel; Her Finws	D = Risse in IR-	
Probe; E =	<pre>Kristallisien; r = Kap</pre>	sel nac	n Versucn	autgeplan	it; r = Gute (des Proni-Fit	s mit ladie Curv	/e Z.UZ, ")	H ₂ O-Genal	t der Einwa	age	

3.6 Hochdruck-Experimente in der Stempel-Zylinder-Apparatur

Für die Untersuchung der CO₂-Spezieskonzentration in Abhängigkeit vom CO₂-Gesamtgehalt wurden Gläser mit höheren CO2-Gehalten benötigt. Hierfür wurden am Bayerischen Geoinstitut in Bayreuth in 34" Stempel-Zylinder-Apparaturen Gläser mit Albitzusammensetzung und CO2-Gehalten bis zu 1 Gew.-% bei 1573 K - 1723 K, 1 - 2 GPa und 60 min synthetisiert (Tabelle 4). Das Ag₂C₂O₄ Pulver wurde in 25 µm dicke Pt-Folie eingewickelt und zusammen mit dem Glaspulver in einseitig zugeschweißte PtRh-Kapseln (Länge = 10 mm, Durchmesser = 5 mm, Wandstärke = 0,2 mm) gefüllt. Die Kapseln wurden dann mit einem Pt-Deckel für eine Stunde im Trockenschrank bei 378 K getrocknet und danach mit einer Graphitelektrode zugeschweißt. Anschließend wurde das Ag₂C₂O₄ in den Kapseln bei 473 K zersetzt. Die Probenkapseln wurden in "crushablealumina" Hülsen mit Fe₂O₃-Pulver eingebettet, um bei den Synthesen eine Reduktion des CO₂ zu Graphit zu vermeiden (Brooker, 1998). Die so präparierten Kapseln wurden dann in ¾" Talk-Pyrex-Zellen eingesetzt, in den Autoklaven auf Versuchsdruck komprimiert und isobar aufgeheizt. Die Temperaturkontrolle erfolgte über ein Pt-PtRh- Thermoelement, das dicht oberhalb der Versuchskapsel angeordnet war. Nach 60 min wurde die Stromversorgung des Ofens ausgeschaltet und die Proben isobar mit einer Rate von ca. 473 K/s abgekühlt. Für die IR-spektroskopische Untersuchung wurden aus diesen Kapseln Scheiben von 0,5 mm Dicke gesägt und auf eine Dicke von 30-60 µm geschliffen und poliert.

ProbenNr.	Ab02	CO ₂ Ab05	CO ₂ Ab06	CO ₂ Ab07	CO ₂ Ab08	CO ₂ Ab10	CO ₂ Ab11
P [GPa]	1 bar	1,0	1,0	1,0	1,2	1,5	2,0
T [K]	1873	1573	1573	1573	1573	1673	1673
t [min]	240	60	60	60	60	60	60
C _{CO2} , initial		0,10	0,20	0,27	0,34	0,52	0,70
A _{CO2,mol}		3,42	7,27	7,9	17,08	26,78	38,02
A _{CO32} - (1650 cm ⁻¹)		1,75	5,20	4,83	10,60	17,39	25,62
A _{CO32} - (1380 cm ⁻¹)		1,50	2,10	2,46	6,01	9,41	12,73
ΣA_{CO32}		3,25	7,30	7,29	16,61	26,80	38,35
c _{CO2,mol} berechnet		0,05	0,10	0,11	0,24	0,37	0,53
c _{CO32} - berechnet		0,022	0,067	0,062	0,136	0,223	0,33
c _{CO2} total		0,072	0,167	0,172	0,376	0,593	0,86

Tabelle 4: Versuchsbedingungen und IR-spektroskopische Auswertung von CO₂-haltigen AB-Gläsern synthetisiert in den Stempel-Zylinder-Apparatur.

3.7 Die Infrarot-Spektroskopie

3.7.1 Spektroskopische Untersuchungen im mittleren Infrarot

Beidseitig polierte Scheiben der Gläser aus den Synthesen wurden mit der Infrarot-Mikrospektroskopie untersucht. Für Transmissionsmessungen im mittleren Infrarot (MIR) wurde ein FTIR-Spektrometer Bruker IFS88 mit einem Globarstift als Lichtquelle und einem KBr-Strahlenteiler verwendet. Angeschlossen an das Spektrometer war das IR-Mikroskop A 590 bzw. das IRScope2 mit einem InSb-MCT-Sandwichdetektor. Der Messbereich erstreckt sich von 600 – 5000 cm⁻¹. Mit einer spektralen Auflösung von 2 cm⁻¹ ¹ wurden jeweils 200 Scans pro Analysepunkt akkumuliert. Eine Lochblende mit 0,6 mm Durchmesser gewährleistet eine lokale Auflösung von 50 µm. Die lokale Auflösung wurde durch Messungen nahe des Probenrands und der Messung von Intensitätsverlusten ermittelt. Bei dünnen Proben (< 160 µm) lässt sich die Lochblende bis auf 50 µm an den Probenrand ohne Intensitätsverlust annähern. Der gesamte interne Strahlengang des Spektrometers und der Mikroskope wurde mit trockener Luft gespült, um Störungen der Absorptionsmessungen durch Schwankungen des CO₂- und H₂O-Gehalts der Raumluft im Strahlengang zu minimieren. Als Referenz für die Probenmessungen wurde trockene Luft gemessen.

3.7.2 Spektroskopische Untersuchungen im nahen Infrarot

Für Transmissionsmessungen im nahen Infrarot (NIR) wurde das FTIR-Spektrometer Bruker IFS88 und das IRScope2 mit einer Wolfram-Lichtquelle, einem CaF₂-Strahlenteiler und einem MCT-Detektor verwendet. Der Messbereich erstreckte sich von $600 - 10000 \text{ cm}^{-1}$. Mit einer spektralen Auflösung von 4 cm⁻¹ wurden jeweils 200 Scans pro Spektrum aufgenommen. Eine Schlitzblende von 100 * 100 µm wurde verwendet. Als Referenz für die Probenmessungen wurde auch hierbei trockene Luft gemessen.

3.7.3 Bestimmung von CO₂- und H₂O-Gehalten in den Alumosilikatgläsern

Zur Bestimmung der Homogenität von CO₂-Gehalten in den Gläsern wurden beidseitig polierte Scheiben von 70 - 120 µm Dicke im mittleren Infrarot gemessen. Für die Gesamt-CO₂-Gehalten $(CO_{2,total})$ AB-Glas Bestimmung von in wurde die Absorptionsbande bei 2350 cm⁻¹ für molekulares CO_2 ($CO_{2,mol}$) und die CO_3^{2-} -Banden bei 1700 –1290 cm⁻¹ in untergrundkorrigierten Spektren verwendet. Wassergehalte in nominell trockenen Gläsern wurden anhand der Absorptionsbande der fundamentalen OH-Schwingung bei 3550 cm⁻¹ bestimmt. Die Auswertung erfolgte durch Anpassung und Subtraktion einer linearen Basislinie an die jeweilige Absorptionsbande und anschließender Bestimmung der Peakflächen (Abb. 3). Konzentrationen und Peakflächen stehen in folgender Beziehung:

$$c_{\text{CO2, mol}} = \frac{44,01 \cdot A_{2350}}{\text{d } r \ e_{2350}} \cdot 100$$
⁽⁵⁾

$$c_{\text{CO32-}} = \frac{44,01 \cdot A_{1650}}{d? e_{1650}} \cdot 100 + \frac{44,01 \cdot A_{1380}}{d? e_{1380}} \cdot 100$$
(6)

$$c_{H2O} = \frac{18,02 \cdot A_{3550}}{d \ r \ e_{3550}} \cdot 100$$
(7)

26

mit c = Konzentration der untersuchten Bande [Gew.-%], A= Peakfläche [cm⁻¹], d = Dicke der Probe [cm], ρ = Dichte der Probe [g/l] und ε = integraler Extinktionskoeffizient der verwendeten Absorptionsbande [l/mol*cm²]. Die Konzentration des gelösten CO_{2,total} ergibt sich aus der Addition von Gleichung 5 und 6:

$$\mathbf{C}_{\text{CO2,total}} = \mathbf{C}_{\text{CO2,mol}} + \mathbf{C}_{\text{CO}_3^{2^-}}$$
(8)

Die Konzentrationen von CO_2 und H_2O in nominell trockenem AB-Glas wurden mit einer Dichte von 2384 ± 5 g/l berechnet (Behrens et al., 1996). Folgende Extinktionskoeffizienten wurden verwendet:

Tabelle 5: Für die Auswertung der Absorptionsbanden im MIR verwendete Extinktionskoeffizienten ϵ .

Absorptionsbande	Extinktionskoeffizient ɛ	Quelle
$CO_{2,mol} (2350 \text{ cm}^{-1})$	$25200 \pm 2000 \; [l/mol*cm^2]$	Fine und Stolper, 1985
CO_3^{2-} (1650 cm ⁻¹)	$27300 \pm 2300 \; [l/mol*cm^2]$	Stolper et al., 1987
CO_3^{2-} (1380 cm ⁻¹)	$16300 \pm 1400 \; [l/mol*cm^2]$	Stolper et al., 1987
H_2O (3550 cm ⁻¹)	$34000 \pm 3000 \ [l/mol*cm^{2}]$	Behrens und Schmidt, 1998

Die Dicke der Proben wurde mit Hilfe eines digitalen Mikrometers (Fa. Mitutoyo) mit einer Genauigkeit von $\pm 2 \ \mu m$ gemessen. Der Fehler in der Absorption A wird durch die Schwankungen der CO₂- und H₂O-Gehalte der trockenen Luft und durch die Methode der Flächenbestimmung bestimmt. Wiederholte Messungen des Hintergrunds und der Probe ergaben einen Fehler von 0,8 cm⁻¹ für CO_{2,mol}, von 1,3 cm⁻¹ für CO₃²⁻ und von 2,0 cm⁻¹ für H₂O.

Abbildung 3: Absorptionsspektren von AB-Gläsern im mittleren Infrarot; (a) AB ohne CO₂, gemessen mit dem Mikroskop A590; (b) AB mit gelöstem CO₂, gemessen mit dem Mikroskop A590; (c) AB mit gelöstem CO₂, gemessen mit dem IRscope2. Die Spektren sind zum Vergleich auf eine Dicke von 100 μ m normiert. Das IRscope2 ermöglicht gegenüber dem Mikroskop A590 eine bessere Auflösung der Spektren, insbesondere im Bereich der CO₃²⁻-Banden.

Die Gehalte von H₂O-haltigen AB-Gläsern wurden durch Absorptionsbanden im nahen Infrarot bestimmt. Das NIR-Spektrum von H₂O-haltigem AB (Abb. 4) zeigt eine Absorptionsbande bei 4500 cm⁻¹, die durch die Kombination der Streck- und Biegeschwingung von X-OH Gruppen hervorgerufen wird, während die Kombination einer Streck- und Biegeschwingung von molekularem H₂O bei 3652 und 1594 cm⁻¹ eine Absorptionsbande bei 5200 cm⁻¹ bewirkt (Stolper 1982, Ihinger et al. 1994). Die Bestimmung von H₂O bzw. OH-Konzentrationen erfolgte mit dem Lambert-Beer´schen Gesetz:

$$c_{OH} = \frac{18,02 \cdot A_{4500}}{d \ r \ e_{4500}} \cdot 100$$
(9)

$$c_{H20} = \frac{18,02 \cdot A_{5200}}{d \ r \ e_{5200}} \cdot 100$$
(10)

Aus der Kombination beider Absorptionen lässt sich der Gesamtwassergehalt bestimmen:

$$\mathbf{C}_{\mathsf{H2O},\mathsf{total}} = \mathbf{C}_{\mathsf{H2O}} + \mathbf{C}_{\mathsf{OH}} \tag{11}$$

An die Absorptionsbande bei 5200 cm⁻¹ wurde eine lineare Basislinie angepasst (Abb. 4) und diese bis unter die Bande bei 4500 cm⁻¹ erweitert. Aus der Höhe der Absorptionsbanden wurden die Absorptionen bestimmt. Die Konzentrationen c_{OH} und c_{H2O} wurden mit dem Lambert-Beer´schen Gesetz (Gleichung 4) unter Verwendung der für Albitzusammensetzung gültigen Extinktionskoeffizienten $\varepsilon_{OH} = 1,28 \pm 0,05$ l/mol*cm⁻¹ und $\varepsilon_{H2O} = 1,49 \pm 0,02$ l/mol*cm⁻¹ (Behrens et al., 1996) und der gemessenen Dicke der Proben bestimmt. Die Dichte der AB-Gläser ist vom H₂O-Gehalt abhängig und wurde nach Behrens et al. (1996) berechnet ($\rho = 2384 - 13,8*c_{H2O}$). Die Wassergehalte der AB-Gläser sind in Tabelle 3 aufgeführt.

Abbildung 4: Absorptionsspektrum von AB-Glas mit 2,25 Gew.-% H_2O gemessen im nahen Infrarot mit einer Probendicke von 815 µm. Die gestrichelte Linie stellt die Basislinie dar, die für die Auswertung der Absorptionsbanden verwendet wurde. Die grauen Linien zeigen die Peakhöhen der Banden.

3.8 Spektroskopische Untersuchung und Auswertung der CO₂-Diffusionsprofile

3.8.1 Der theoretische Ansatz zur Bestimmung von Diffusionskoeffizienten der CO₂-Diffusion in Silikatschmelzen

Diffusion ist ein Materietransport bzw. eine relative Bewegung der Bestandteile eines Mediums. Der Strom von Teilchen lässt sich durch eine stoffspezifische Konstante und eine Richtung ausdrücken:

$$J_{i} = -D_{i} \frac{dc_{i}}{dx}$$
(12)

mit J_i = Fluss des Stoffes i, D_i = Diffusionskoeffizient der Komponente i, c_i = Konzentration der Komponente i und x = Ortskoordinate. Dieses 1. Ficksche Gesetz

für eindimensionale Diffusion beschreibt die Menge eines Stoffes, die bei einem vorhandenen Konzentrationsgefälle durch eine Bezugsfläche diffundiert.

Vorherige Arbeiten von Watson et al. (1982) und Watson (1991, 1994) haben gezeigt, dass die Diffusion von CO₂ unabhängig von der Gesamt-CO₂-Konzentration ist. Für die Berechnung von Diffusionskoeffizienten kann daher das 2. Ficksche Gesetz für eindimensionale Diffusion verwendet werden:

$$\frac{d\mathbf{c}_{i}}{d\mathbf{t}} = \frac{d}{d\mathbf{x}} \left(\mathsf{D}_{i} \frac{d\mathbf{c}_{i}}{d\mathbf{x}} \right)$$
(13)

wobei c die Konzentration der Diffusionskomponente, D die Diffusivität, x die Distanz und $\delta c/\delta x$ der Konzentrationsgradient ist. Dargestellt ist die Beziehung von zeitlicher und örtlicher Konzentrationsänderung bei einem konstanten Diffusionskoeffizienten.

Nach Crank (1975) ist eine Lösung dieser Differentialgleichung durch Differentiation die folgende Gleichung:

$$C = \frac{A}{t^{1/2}} \exp(-x^2/4Dt)$$
 (14)

wobei A eine beliebige Konstante ist. Durch Substitution von A = $M/2\sqrt{pD}$ leitet Crank (1975) die Lösung für eine zeitliche Entwicklung einer Punktquelle her:

$$C = \frac{M}{2(pDt)^{1/2}} \exp(-x^2/4Dt)$$
(15)

M stellt hierbei die Gesamtmenge eines diffundierenden Stoffes in einen Zylinder von unendlicher Länge mit $M = \int_{-\infty}^{\infty} C dx dar$. Die Überlagerung mehrerer solcher Punktquellen in einem Diffusionspaar lässt sich durch die Fehlerfunktion (Errorfunktion) darstellen:

$$erf(x) = \frac{2}{p^{1/2}} \int_{0}^{x} \exp(-?^{2}) d?$$
 (16)

$$1 - \operatorname{erf}(\mathbf{x}) = \operatorname{erfc}(\mathbf{x}) \tag{17}$$

mit $\eta = x/2vDt$. Die Werte dieser Funktion sind in tabellarischer Form in Crank (1975) gegeben.

Der experimentelle Ansatz in dieser Arbeit ist das Diffusionspaar, bei dem zwei Zylinder verschiedener Ausgangskonzentrationen eines Stoffes in Kontakt gebracht werden und bei Versuchsbedingungen die eindimensionale Diffusion des Stoffes in zwei unendliche Halbkörper stattfindet. Die folgende Beziehung beschreibt das Diffusionsprofil (Crank, 1975):

$$c_{x,t} - c_2 = \frac{c_1 - c_2}{2} \cdot \operatorname{erfc}\left(\frac{x}{\sqrt{4Dt}}\right)$$
(18)

mit $c_{x,t}$ der Konzentration zur Zeit t an einem Punkt mit der Distanz x von der Kontaktfläche, mit c_1 der oberen Ausgangskonzentration, mit c_2 der unteren Ausgangskonzentration und mit D dem Diffusionskoeffizienten.

3.8.2 IR-Spektroskopie der Diffusionsproben

Die für die IR-spektroskopische Analyse präparierten Scheiben der Diffusionspaare sind meist blasenfreie Gläser, in denen die Kontaktfläche durch einen leichten Absatz am Rand gut zu erkennen ist. Der Absatz im Diffusionspaar kommt durch die Präparation des Diffusionspaares in einer Kapsel mit größerem Innendurchmesser zustande und kann nicht immer vermieden werden. Die meisten Scheiben weisen Risse auf, die durch die schnelle Abkühlung in der speziellen Vorrichtung der IHPV entstanden sind (Abbildungen im Anhang). Beim schnellen Abschrecken werden im Glas starke Spannungen hervorgerufen, die durch die Rissbildung wieder abgebaut werden.

Mit der FTIR-Mikrospektroskopie wurden im mittleren Infrarot die Diffusionsprofile von CO_2 gemessen. Erste Diffusionsprofile wurden mit dem Mikroskop A 590, weitere mit dem Mikroskop IRScope2 aufgenommen. In beiden Mikroskopen wurde eine Schlitzblende von 15 µm Breite und 200 µm Höhe verwendet. Ein digitaler XY-Tisch ermöglichte die Verschiebung der Probe mit 10 µm Genauigkeit. Spektren mit 32 Scans je Analysepunkt wurden entlang der Diffusionsprofile im Abstand von 10-100 µm aufgenommen, bis an beiden Enden konstante Flächen der CO_2 -Absorptionspeaks und somit konstante CO_2 -Konzentrationen zu beobachten waren. Nach jeweils 5-8 Messungen wurde ein Referenzspektrum der Luft aufgenommen, um den Einfluss von atmosphärischen Veränderungen im H₂O- und CO_2 -Gehalt zu minimieren.

Zunächst erfolgte die Auswertung der Diffusionsprofile durch die Subtraktion eines Spektrums des Diffusionszylinders ohne CO_2 von allen gemessenen Spektren des Profils. In späteren Absorptionsmessungen erwies es sich als günstig, das Referenzspektrum direkt auf der Probe an einer festgelegten Position x des Diffusionszylinders ohne CO_2 aufzunehmen. Die sofortige Subtraktion dieses Referenzspektrums bei der Messung weiterer Profilspektren ermöglichte die direkte Bestimmung von geringfügigen Änderungen im CO₂-Gehalt und die vollständige Erfassung des Diffusionsprofils.

In den subtrahierten Spektren wurden die Flächen unter den Absorptionsbanden von $CO_{2,mol}$ und CO_3^{2-} durch eine einfache Basislinienkorrektur bestimmt. Das Diffusionsprofil wurde durch die Abhängigkeit der Flächen A_{CO2} bzw. A_{CO32-} vom Ort x dargestellt (Abb. 5). Hierbei wurden die Risse bei der Ermittlung der x-Werte berücksichtigt. Die Breite der Risse wurde mit einem Mikroskop vermessen. Die x-Werte wurden anschließend um die Breite der Risse korrigiert und die Probe rechnerisch zusammengeschoben (Abb. 5).

D20, ABNa6, 1613 K, RQ

Abbildung 5: Aufnahme einer IR-Diffusionsprobe D20 von ABNa6 nach dem Diffusionsexperiment in der IHPV bei 1613 K mit gemessenem Konzentrations-Diffusionsprofil. Der gemessene Bereich der Probe ist in der Mitte des Schlitzes im Probenhalter (Höhe = 200μ m). Die Pfeile deuten die Risskorrektur an.

Die folgende Errorfunktion (Crank, 1975) wurde an das symmetrische Diffusionsprofil von CO₂ angepasst (Table Curve 2D, Version 2.02):

$$Y = P_0 + P_1 \{ 1 - erf[(x - P_2)P_3] \}$$
(19)

Hierbei stellen Y die Konzentration an einer Position x, P_0 die untere Ausgangskonzentration, P_1 die Differenz zwischen den Ausgangskonzentrationen und P_2 die Verschiebung der ursprünglichen Kontaktebene dar. Aus dem Parameter P_3 lässt sich der Diffusionskoeffizient berechnen:

$$\mathsf{P}_3 = \frac{1}{2\sqrt{\mathsf{D}t}} \tag{20}$$

Die nominelle Diffusionszeit (Zeit des Experiments bei Versuchstemperatur) wurde um die Zeit der Aufheiz- und Abkühlphase durch ein iteratives Verfahren (s. Nowak und Behrens, 1997) korrigiert. Die Aufheiz- und Abkühlphasen wurden in Temperaturintervalle von 5 K unterteilt. Für die mittlere Temperatur dieser Intervalle wurde unter der Annahme einer konstanten Aktivierungsenergie von 195kJ/mol (Watson et al., 1982) der Diffusionskoeffizient D von CO₂ berechnet. Bei einer konstanten Aufheizphase von 30 K/min dauert das Aufheizen im gewählten Temperaturintervall 10 s (dt). Die Diffusionskoeffizienten wurden mit dem Diffusionskoeffizienten bei Versuchstemperatur $D_{T, exp}$ normiert und aufsummiert: $t_{eff} = ? Ddt/D_{T, exp}$ (Tab. 3). Mit dieser näherungsweise bestimmten, effektiven Diffusionszeit teff wurden die Profile erneut ausgewertet, eine neue Aktivierungsenergie bestimmt und die Zeit nochmals korrigiert.

3.8.3 Fehler der Diffusionskoeffizienten

Die Fehler in den Diffusionskoeffizienten sind Fehler in der Zeit, der Temperatur, dem Druck, der Distanz und den Flächen der CO_2 - und CO_3^{2} -Banden. Die Summe dieser Fehler lässt sich durch die Gauß`sche Fehlerfortpflanzung berechnen.

Der Fehler im Diffusionskoeffizienten durch den Fehler der Zeit basiert auf folgender Beziehung: $x^2 = 2Dt$. Der in die Endberechnung eingehende relative Fehler in der Zeit ist $\Delta t/t$. Der Fehler in der Diffusionszeit wurde auf 60 s geschätzt, etwa 1-2% der effektiven Diffusionszeit je nach Abkühlgeschwindigkeit bei den 1 h Experimenten.

Der Fehler in der Temperatur hat einen größeren Einfluss. Der Diffusionskoeffizient steht mit der Temperatur in einer Arrheniusbeziehung:

$$\mathsf{D} = \mathsf{D}_0 \cdot \mathsf{e}^{\left(\frac{\mathsf{E}_A}{\mathsf{RT}}\right)} \tag{21}$$

Wird diese Beziehung nach T abgeleitet, so erhält man:

$$\frac{dD}{dT} = D_0 \cdot e^{\left(\frac{E_A}{RT}\right)} \cdot \left(-\frac{E_A}{R}\right) \cdot \left(-\frac{1}{T^2}\right)$$
(22)

Der entsprechende Fehler für den Diffusionskoeffizienten ist:

$$\frac{\Delta D}{D} = \left(-\frac{E_{A}}{R}\right) \cdot \left(-\frac{1}{T^{2}}\right) \cdot \Delta T$$
(23)

Basierend auf der ermittelten Aktivierungsenergie für CO_2 von 197,5 kJ/mol*K (s. Abschnitt 4.3.3) ergibt sich für einen Fehler in der Temperatur von 10 K ein relativer Fehler im Diffusionskoeffizienten von 10% bei 1532 K. Hierbei wurde nur ein Fehler von 10 K berücksichtigt, da die Diffusionsproben kürzer sind als Synthesekapseln und sich in einem kleineren Temperaturgradienten (ca. 5 - 10 K) befinden, als zuvor beschrieben wurde (Abschnitt 3.3).

Ein weiterer Fehler liegt in der Bestimmung der Distanz x im Diffusionsprofil. Der Fehler in x wird durch die Genauigkeit des digitalen XY-Tisches von $10 \,\mu m$ bestimmt. Der entsprechende Fehler im Diffusionskoeffizienten hängt quadratisch vom Ort x ab:

$$\mathbf{x}^2 = 2\,\mathsf{D}\,\mathsf{t} \tag{24}$$

Der Fehler ist demnach:
$$\frac{2\Delta x}{x}$$
 (25)

Bei einer Profillänge von mindestens 900 µm beträgt der relative Fehler etwa 2%.

Ein zusätzlicher Fehler liegt in der Flächenbestimmung der $CO_{2,mol}$ - und $CO_3^{2^2}$ -Banden. Durch wiederholte Messungen wurde ein Fehler von 0,8 cm⁻¹ für $CO_{2,mol}$ und von 1,3 cm⁻¹ für $CO_3^{2^2}$ bestimmt. Die Abhängigkeit der Diffusion von $CO_{2,total}$ vom Druck ist nur gering (Watson et al., 1982). Der Fehler im Druck hat daher keinen signifikanten Einfluss auf die Diffusionskoeffizienten und kann somit vernachlässigt werden.

Der prozentuale Gesamtfehler des Diffusionskoeffizienten ist:

$$\frac{\Delta D}{D} = \sqrt{\left(\frac{\Delta t}{t}\right)^2 + \left(\frac{2 \cdot \Delta x}{x}\right)^2 + \left[\left(\frac{-E_A}{R}\right) \cdot \left(\frac{-1}{T^2}\right) \cdot \Delta T\right]^2 + \left(\frac{\Delta A}{A}\right)^2 \times 100$$
(26)

Der Gesamtfehler der Diffusionskoeffizienten ergibt sich aus der Kombination aller Fehler mit der Gauß´schen Fehlerfortpflanzung und liegt bei 25-30%.

3.9 Spektroskopische Untersuchungen mit dem Heiztisch

Durch MIR-spektroskopische Messungen mit dem Mikroskopheiztisch am IFS88 mit adaptiertem Mikroskop A590 soll an trockenem, CO_2 -haltigem AB-Glas geklärt werden, inwieweit sich Extinktionskoeffizienten der Absorptionsbanden von CO_2 und die Speziation im Glaszustand mit der Temperatur ändern. Die Heizzelle besteht aus einem Probenhalter aus Platin, der im Inneren eines Platinrohrs eingehängt ist, das als Widerstandsofen dient. Ein Pt-PtRh-Thermoelement an der Unterseite des Probenhalters ermöglicht die Temperaturkontrolle. Die Stromzufuhr wird durch eine digital regelbare Stromversorgung (HP 6572A) ermöglicht. Während des Heizexperiments wird die Heizzelle durch Wasser gekühlt.

Trockenes AB-Glas mit 0,18 Gew.-% CO₂ wurde in die Heizzone des Heiztisches eingebracht und unter dem Mikroskop A590 im Strahlengang positioniert. Ein Anfangsspektrum bei Raumtemperatur wurde aufgenommen. Als Referenz wurde in der Anordnung der Heizzelle ein Spektrum der Luft ohne Probe gemessen. Anschließend wurde die Stromzufuhr der Heizzelle manuell geregelt und die Probe bis auf 850°C erhitzt. Dabei wurde in 50°C-Schritten jeweils ein Spektrum aufgenommen. Während dieser Messreihe wurde nach signifikanten Änderungen des Spektrums durch einfaches Abschalten der Stromzufuhr innerhalb weniger Sekunden auf Raumtemperatur abgekühlt und erneut ein Spektrum aufgenommen. Der Vergleich zum Anfangsspektrum ermöglichte eine schnelle Kontrolle, ob sich die Probe während des Heizens veränderte und z.B. CO₂ freisetzte.
4 Ergebnisse

4.1 Probleme der Synthesen

4.1.1 Lösung von CO₂ in Alumosilikatgläsern

Die erste Synthese von AB-Glas mit 0,3 Gew.-% CO₂ wurde bei 1473 K und 5 GPa in einer Pt-Kapsel durchgeführt (Tabelle 2a). Das Ergebnis war ein AB-Glas mit wenigen Blasen in der Mitte der Probe. Ein weiterer Versuch zur Lösung von 0,3 Gew.-% CO₂ im AB-Glas zeigte wieder Blasen. Auffällig war, dass die Blasen in beiden Proben von gleicher Größe waren und nur in der Mitte der Proben auftraten. Diese Beobachtung lässt auf ein Problem der CO₂-Verteilung in der Schmelze oder auf ein Abkühl-Problem schließen.

Zu einer ungleichmäßigen Verteilung von CO_2 in der Probe kann es kommen, wenn zu Versuchsbeginn bei Raumtemperatur der Druck auf 0,5 GPa aufgebaut wird. CO_2 wird dann zwei Phasenübergängen ausgesetzt, von gasförmig zu flüssig und schließlich zur festen Phase (Abb. 6, Gmelin 1970). Die Kondensation und die anschließende Kristallisation können zu einer inhomogenen Verteilung von CO_2 in der Probe führen. Beim isobaren Aufheizen der Probe geht das feste CO_2 zwar in den überkritischen Zustand über, aber es ist durchaus möglich, dass die Durchlässigkeit des stark komprimierten Pulvers sehr reduziert ist.

Abbildung 6: Phasendiagramm von CO₂ nach Gmelin (1970)

Eine andere Erklärung für die Blasenbildung könnte ein Problem bei der Abkühlung der Probe sein. In der Albitschmelze kann es durch eine positive Abhängigkeit der CO₂-Löslichkeit von der Temperatur (Mysen und Virgo, 1980) dazu führen, dass die Löslichkeit von CO₂ in AB mit sinkender Temperatur überschritten wird und sich daher Blasen bilden. Um dieses Problem der Blasenbildung zu verhindern, wurden weitere Experimente in der IHPV unter Verwendung der Vorrichtung zum schnellen Abkühlen der Probe durchgeführt. Gläser dieser Synthesen blasenfrei und konnten für waren Diffusionspaarexperimente verwendet werden.

4.1.2 Lösung von CO₂ und H₂O in den Natriumalumosilikatgläsern

Bei Synthesen von Alumosilikatgläsern (AB, ABNa4) mit 0,3 Gew.-% CO₂ und 4,0 Gew.-% H₂O (Tabelle 2) traten in den Proben viele kleine und einige große Blasen auf. Anscheinend ist bei diesen Versuchsbedingungen die Löslichkeit beider Volatile überschritten. Die Verringerung der zu lösenden Menge CO₂ auf 0,2 Gew.-% und die Erhöhung der Versuchstemperatur auf 1523 K lieferten nahezu blasenfreie ABNa4-Gläser. Nur CO₂-haltiges AB-Glas mit 4,0 Gew.-% H₂O wies noch große Fluidblasen auf. Für Diffusionspaarexperimente wurden jedoch möglichst blasenfreie Glasblöcke benötigt. Um die Blasen zu vermeiden, wurden die folgenden Experimente bei 1523 K, CO₂-Gehalten von 0,2 Gew.-% und H₂O-Gehalten von 2,0 Gew.-% durchgeführt. Unter diesen Bedingungen wurden nahezu blasenfreie Gläser synthetisiert (Abbildungen der Syntheseprodukte sind im Anhang abgebildet).

4.2 Infrarotspektroskopische Untersuchung

4.2.1 Die Absorptionsbanden von gelöstem CO₂ in Natriumalumosilikatglas im MIR

In Abbildung 7 ist ein Vergleich der Spektren eines CO_2 -haltigen und eines CO_2 -freien ABNa1-Glases dargestellt. Ein Absorptionspeak bei 2352 cm⁻¹ ist im CO₂-haltigen ABNa1-Glas deutlich zu erkennen. Fine und Stolper (1985) schreiben diese Absorption der v_3 asymmetrischen Streckschwingung von molekular gelöstem CO_2 zu. Durch die Subtraktion des CO_2 -freien vom CO_2 -haltigen Spektrum lassen sich weitere Unterschiede

in den Spektren besser auflösen (Abb. 7). Auf diese Weise werden besonders die Unterschiede an der hochfrequenten Flanke der Si-O-Gerüstschwingung bei 1200 cm⁻¹ getrennt und etwas kleinere Absorptionspeaks bei 1680 – 1375 cm⁻¹ besser sichtbar. Diese Absorptionspeaks lassen sich auf die v₃ asymmetrische Streckschwingung von verzerrten CO_3^{2-} -Gruppen (Blank und Brooker, 1994) zurückführen. In Natriumalumosilikatglas ist gelöstes $CO_{2,total}$ sowohl als $CO_{2,mol}$ als auch als CO_3^{2-} eingebaut. Weiterhin ist eine breite Bande bei 3550 cm⁻¹ zu erkennen. Diese wird der O-H-Streckschwingung zugeschrieben (Stolper, 1982) und zeigt, dass das Glas trotz des Trocknens noch H₂O < 0,1 Gew.-% enthält.

Abbildung 7: Infrarot-Spektren von CO_2 -haltigen (a) und CO_2 -freiem (b) ABNa1-Glas mit normierter Dicke von 100 µm. Spektrum (c) wurde durch die Subtraktion (a) - (b) erzielt. Die Spektren sind für eine übersichtlichere Darstellung in y-Richtung verschoben. Die Beschreibung der Banden ist im Text gegeben. Die gestrichelten Linien in (c) zeigen die für die Auswertung der Absorptionsbanden verwendeten Basislinien.

4.2.2 Homogenität der CO₂-haltigen Gläser

Erste spektroskopische Messungen von CO_2 -haltigen AB-Gläsern, die in Pt-Kapseln bei 0,5 GPa und 1523 K synthetisiert wurden, zeigten Inhomogenitäten hinsichtlich der CO_2 -Gehalte. Vom Rand zur Mitte der Proben nimmt der Gehalt an molekularem CO_2 und CO_3^{2-} kontinuierlich zu, während der Gehalt an gelöstem H₂O abnimmt (Abb. 8a).

Abbildung 8a: Konzentrations-Distanz-Profil von CO_{2,total} und H₂O in AB-Glas synthetisiert in einer Pt-Kapsel.

Abbildung 8b: Konzentrations-Distanz-Profil von $CO_{2,total}$ und H_2O in AB-Glas synthetisiert in einer $Au_{80}Pd_{20}$ -Kapsel.

Abbildung 8c: Konzentrations-Distanz-Profil für CO_{2,total} in AB-Glas synthetisiert in Pt- und Au₈₀Pd₂₀-Kapseln in der IHPV bei 1523 K und 0,5 GPa.

Ein eben solches Verhalten beobachten Stolper et al. (1987) in Proben aus Stempel-Zylinder-Experimenten bei CO₂-ungesättigten Bedingungen und Sauerstofffugazitäten nahe des Hämatit-Magnetit Puffers. Die von Brooker (1998) vorgeschlagene Erklärung, dass während des Experiments Kohlenstoff aus dem Graphitofen der Stempel-Zylinder-Apparatur in die Kapsel diffundiert und dort das CO₂ reduziert, kann bei Experimenten in der IHPV nicht die Erklärung sein, da hierbei kein Graphitofen verwendet wird und somit die Quelle für den Kohlenstoff fehlt. Eine mögliche Erklärung für die inhomogene Verteilung von CO₂ scheint zu sein, dass das gelöste CO₂ der Schmelzen trotz der hohen oxidierenden, intrinsischen Bedingungen der IHPV (NNO + 3,7; Berndt et al. 2000) an der Pt-Kapselinnenwand durch hineindiffundierenden Wasserstoff reduziert wird. Der bei dieser Reaktion gebildete Kohlenstoff kann im Pt-Kapselmaterial gelöst werden (ca. 140 ppm C bei 1523 K und 0,5 GPa; Watson 1987) und das an der Kapselwandung gebildete H₂O diffundiert in die Schmelze hinein (Abb. 8a+c). Diese Versuche und Messungen haben gezeigt, dass Pt als Kapselmaterial für fluiduntersättigte Diffusionspaarexperimente ungeeignet ist. Erst bei der Verwendung von Au₈₀Pd₂₀ als Kapselmaterial wiesen die Syntheseprodukte keine signifikanten Konzentrationsgradienten von CO₂ mehr auf (Abb. 8b). Das Au₈₀Pd₂₀-Kapselmaterial ermöglicht die für die mathematische Auswertung der Diffusionsprofile geforderte eindimensionale Diffusion von CO₂. Daher wurden Au₈₀Pd₂₀-Kapseln für alle weiteren CO₂-haltigen Synthesen und Diffusionspaarexperimente verwendet.

Erste Diffusionspaarexperimente wurden ohne Kenntnis des zuvor beschriebenen Problems in Pt-Kapseln durchgeführt. Die Resultate dieser Experimente sind in die Ergebnisse miteinbezogen, da die Versuchszeit kurz war (1 h) und der Effekt der CO₂-Diffusion zum Kapselrand zu dieser Zeit noch klein ist. Die Profile wurden in der Mitte der Kapsel gemessen und waren typischerweise nicht länger als 2 mm. Bei einem Kapseldurchmesser von 4 mm reichen Desorptionsprofile maximal 1 mm vom Rand in die Kapsel hinein und lassen die Mitte der Kapsel auf 2 mm Breite unbeeinflusst. Die Ergebnisse sollten daher verlässlich sein, sie sind aber sicherlich mit einem etwas größeren Fehler von 30-35% behaftet.

4.2.3 Ergebnisse der Stempel-Zylinder-Experimente

Abbildung 9a zeigt die untergrundkorrigierten MIR-Absorptionsspektren von AB-Gläsern mit steigenden Gehalten von CO_2 aus der Mitte der Proben. Die Spektren zeigen den Absorptionspeak bei 2352 cm⁻¹ für die asymmetrische Streckschwingung von gelöstem $CO_{2,mol}$ und sehr kleine Absorptionspeaks bei 1660 cm⁻¹ – 1375 cm⁻¹ für die asymmetrische Streckschwingung von verzerrten CO_3^{2-} -Gruppen (Blank und Brooker, 1994). Mit steigendem Gehalt an gelöstem $CO_{2,total}$ nehmen sowohl die Absorptionsbande des gelösten $CO_{2,mol}$ als auch die Absorptionspeaks von CO_3^{2-} zu.

Abbildung 9a: Untergrundkorrigierte Absorptionsspektren von CO₂-haltigen AB-Gläsern, synthetisiert in der Stempel-Zylinder-Apparatur in Bayreuth. Die Spektren sind auf eine Probendicke von $100 \,\mu\text{m}$ normiert. Die Versuchbedingungen sind in Tabelle 4 aufgeführt.

Abbildung 9b: Gegenüberstellung der integrierten Absorptionen der AB-Gläser mit steigendem CO_{2,total}-Gehalt. Die Werte sind der Tabelle 4 entnommen.

In den untergrundkorrigierten Spektren wurden die Peakflächen der Absorptionsbanden von $CO_{2,mol}$ und $CO_3^{2^-}$ bestimmt. Durch die Auswertung der Peakflächen wurde festgestellt, dass das Verhältnis von $CO_{2, mol}$ zu $CO_3^{2^-}$ mit steigendem gelöstem $CO_{2,total}$ -Gehalt konstant bleibt (Abb. 9b). Diese Beobachtung machten auch schon Fine und Stolper (1985) bei der Untersuchung von Albit mit verschiedenen Gehalten von CO_2 . Stolper et al. (1987) zeigten, dass das Verhältnis der CO_2 -Spezies vom $CO_{2,total}$ -Gehalt bis zu mehreren Gew.-% unabhängig ist. Die Speziation wird durch die homogene Gleichgewichtsreaktion

$$CO_{2(Schmelze)} + O_{R}^{2-}_{(Schmelze)} = CO_{3}^{2-}_{(Schmelze)}$$
(27)

gesteuert (Fine und Stolper, 1985), wobei O_R^{2-} ein reaktiver Sauerstoff der Schmelze ist. Unter der Annahme eines idealen Systems, in dem alle CO_3^{2-} , CO_2 und O_R^{2-} gleichwertig sind, lässt sich die Gleichgewichtskonstante K der Reaktion wie folgt formulieren:

$$K = \frac{[CO_3^{2-}]}{[CO_2] \cdot [O_R^{2-}]}$$
(28)

oder:

$$\frac{[CO_3^{2-}]}{[CO_2]} = K \cdot [O_R^{2-}]$$
(29)

Dies gilt jedoch nur, wenn $[\,O_R^{2\text{-}}\,]$ relativ groß ist (~ 1) und sich in erster Näherung mit zunehmendem $CO_{2,total}$ -Gehalt nicht ändert. Das Verhältnis von CO_3^{2-} zu $CO_{2,mol}$ ist bei gegebenen Pund T-Bedingungen bei infolgedessen und gleicher Gesamtzusammensetzung konstant und unabhängig vom CO2.total-Gehalt. Aus diesem Grund sind die Absorptionen von jeder CO2-Spezies direkt proportional zum CO2.total-Gehalt und können daher unmittelbar für die Ermittlung von relativen Änderungen herangezogen werden. Für die Bestimmung von Diffusionsprofilen bedeutet dies, dass statt der Konzentrationen auch die Absorptionen als Funktion der Distanz aufgetragen werden können. Die Bestimmung von Konzentrationen basiert auf dem Lambert-Beer'schen Gesetz und führt zur Multiplikation der Absorptionen mit einer Konstanten (Gleichung 4). Hierbei bleiben aber die relativen Änderungen, die in Ficks zweitem Gesetz zur eindimensionalen Diffusion (Gleichung 13) eingehen, konstant. Die Bestimmung der absoluten CO₂-Konzentrationen ist daher bei der Ermittlung von Diffusionskoeffizienten nicht nötig. Mit dem konstanten Speziesverhältnis ist jedoch auch die Tatsache verbunden, dass zwischen der Diffusion von molekularem CO₂ und CO₃²⁻ nicht unterschieden werden kann. Das Gleichgewicht zwischen beiden Spezies wird bei der Diffusion in der Schmelze sofort eingestellt. Für die Diffusion von CO2 wird daher der Diffusionskoeffizient für CO_{2,total} bestimmt.

4.2.4 Das System $AB + n Na_2O$

Abbildung 10 zeigt untergrundkorrigierte Absorptionsspektren aller Alumosilikatgläser AB + n Na₂O normiert auf gleiche Dicke. Die Spektren zeigen, dass die CO₂-Speziation in den Gläsern von der Zusammensetzung abhängig ist. Das Spektrum von AB-Glas weist sowohl die Absorptionsbande von $CO_{2,mol}$ bei 2350 cm^{-1} als auch das Karbonatbandensystem bei 1700 – 1300 cm⁻¹ auf. Mit Zunahme des Na₂O-Überschusses nimmt die Höhe der CO_{2.mol}-Absorption ab (ABNa1-ABNa4), während die Absorption der Karbonatbanden steigt. Gläser mit einem Überschuss an Na₂O von mehr als 4 Gew.-% zeigen keine molekulare CO₂-Absorption mehr. Daraus lässt sich schließen, dass in diesen Gläsern CO₂ nur noch als Karbonat eingebaut ist. Die Auswertung der Karbonatbanden wird jedoch dadurch erschwert, dass sich das Karbonatsystem mit zunehmendem Na₂O-Überschuss deutlich ändert. Eine zusätzliche Bande bei 1460 cm⁻¹ ist in ABNa2 zu erkennen, die mit zunehmendem Na₂O-Überschuss deutlich ansteigt. Brooker et al. (2001a) führen diese Bande auf eine $CO_3^{2^2}$ -Gruppe zurück, die an nichtbrückenbildende Sauerstoffe gebunden ist. Die Änderung des CO₃²⁻-Bandensystems lässt auf eine mögliche Änderung der Extinktionskoeffizienten für die CO₃²-Banden mit zunehmendem Na₂O-Gehalt der Gläser schließen. Diese Annahme steht im Gegensatz zur Feststellung von Fine System NaAlO₂-SiO₂ keine und Stolper (1985),dass im Änderung der Extinktionskoeffizienten auftritt.

Abbildung 10: Untergrundkorrigierte Infrarotspektren der Gläser AB + n Na₂O gemessen in Diffusionspaaren an einer Position mit der Ausgangskonzentration von CO₂. Die Spektren sind auf eine Dicke von 100 μ m normiert und in y-Richtung verschoben. Die Beschreibung der Absorptionsbanden ist im Text zu finden. Der Pfeil markiert die zusätzlich auftretende Absorptionsbande im CO₃²⁻-Bandensystem (s. Text).

4.2.5 Temperaturabhängige spektroskopische Untersuchung mit dem Heiztisch

Abbildung 11a zeigt Spektren von AB während eines Heizexperiments von CO_2 -haltigem AB-Glas in der Heizzelle. Mit zunehmender Temperatur zeigt sich eine reversible kontinuierliche Änderung der asymmetrischen Streckschwingung von molekularem CO_2 bei 2350 cm⁻¹. Die Höhe des CO_2 -Peaks nimmt ab, verbunden mit einer Zunahme der Halbwertsbreite. Aus der Auswertung der Peakflächen und unter der Annahme eines konstanten $CO_{2,mol}$ -Gehaltes während des Heizexperiments, lassen sich für jede

Temperatur integrale Extinktionskoeffizienten bestimmen. Es zeigt sich, dass der integrale Extinktionskoeffizient für die CO₂-Streckschwingung exponentiell mit zunehmender Temperatur ansteigt (Abbildung 11b).

Abbildung 11a: Absorptionsspektren der molekularen CO_2 -Bande in AB-Glas mit steigender Temperatur während des Heizexperiments. Die Spektren sind mit einer Probendicke von 117 μ m gemessen und zur besseren Darstellung in x und y-Richtung verschoben.

Abbildung 11b: Änderung des integrale Extinktionskoeffizienten für CO_{2,mol} mit steigender Temperatur unter der Annahme von CO₂-Speziation. konstanter Kreise: Heizexperiment mit AB-Glas mit 0,15 Gew.-% CO₂. Rauten: Heizexperiment mit AB-Glas + 0,5 Gew.-% CO₂. Die Erklärung der Auswertung ist im Text gegeben.

Die Zunahme der Halbwertsbreite und des integralen Extinktionskoeffizienten mit steigender Temperatur ist vergleichbar mit der Temperaturabhängigkeit der CO₂-Bande in Cordierit (Aines und Rossman, 1984). Eine mögliche Erklärung für diese Beobachtung ist eine Zunahme der Rotationsbewegungen und somit der Mobilität der CO₂-Moleküle mit steigender Temperatur. Durch Summen- und Differenzkombination niederenergetischer Rotationsbanden mit der Streckschwingung von CO₂ kann die Zunahme der effektiven Halbwertsbreite und des integralen Extinktionskoeffizienten erklärt werden. Eine Änderung der Karbonatbanden zwischen 1660 cm⁻¹ und 1380 cm⁻¹ mit steigender Temperatur ist nicht zu beobachten. Nowak et al. (2002) zeigen, dass sich die Spezieskonzentrationen auch unterhalb von T_g ändern. Infolgedessen zeigt sich, dass die

Grundannahme für die Auswertung der Flächen wahrscheinlich nicht stimmt. Sowohl die Änderung der Extinktionskoeffizienten als auch die Änderung der Speziation mit steigender Temperatur sind denkbar.

4.3 Diffusionspaarexperimente

4.3.1 Trockene Natriumalumosilikatschmelzen bei 1523 K

Abbildung 12 zeigt ein typisches Diffusionsprofil für die Diffusion von Gesamt-CO₂ in AbNa2 bei 1523 K. Zum Vergleich ist das Gesamt-H₂O-Profil in dieser Probe dargestellt. Es besteht ein geringer Unterschied im Wassergehalt beider Diffusionszylinder aufgrund von anhaftendem Oberflächenwasser auf dem Silberoxalat bei der Synthese der CO₂haltigen Glaszylinder, aber er beeinflusst die Diffusion von Gesamt-CO₂ nicht, solange ein symmetrisches CO₂-Profil resultiert. Bei Diffusionsexperimenten mit größeren Unterschieden im Wassergehalt wurde vor der Bestimmung der Diffusionskoeffizienten die Symmetrie der Profile überprüft. In keinem Fall wurde eine Abweichung des Profils von der Symmetrie festgestellt und an alle Profile konnte die Errorfunktion (Gleichung 18) angepasst werden.

Abbildung 12: a Typisches Diffusionsprofil für CO_2 in ABNa2-Glas bei 1523 K und 0,5 GPa, dargestellt durch die Beziehung zwischen Peakfläche der Absorption zu Distanz. Die Kreise zeigen die gemessenen Datenpunkte. Die durchgezogene Linie zeigt den Fit mit der Errorfunktion. b Das H₂O-Konzentrations-Distanz-Profil dieser Probe ist zum Vergleich dargestellt.

Im Gegensatz zur CO₂-Diffusion ist die H₂O-Diffusion vom Gesamt-H₂O-Gehalt abhängig. H₂O-Diffusionsprofile sind infolgedessen asymmetrisch und die Auswertung solcher Profile erfolgt z.B. mit der Boltzmann-Matano-Analyse (Nowak und Behrens, 1997). Da im vorliegenden Fall der Unterschied der Diffusionspaarzylinder im H₂O-Gehalt jedoch sehr gering ist und daraus ein symmetrisches Diffusionsprofil resultiert, konnte unter der Annahme eines konstanten Diffusionskoeffizienten näherungsweise eine Auswertung durchgeführt werde. Das H₂O-Profil wurde mit der Errorfunktion angefittet und der Diffusionskoeffizient bestimmt. Der Diffusionskoeffizient von H₂O in ABNa2 bei 1523 K beträgt $5,33*10^{-12}$ m²/s.

Die Ergebnisse der Diffusionsexperimente bei 1523 K und 0,5 GPa sind in Abb. 13 Logarithmus der Diffusionskoeffizienten dargestellt. Der ist gegen den Polymerisationsgrad der Schmelzen aufgetragen. Als Ausdruck des Polymerisationsgrades ist der Parameter NBO/T gewählt worden. Ein Überschuss an Na₂O reagiert mit den Sauerstoffbrücken des vollverknüpften Netzwerkes (eckenverknüpfte Si-Al-Tetraeder) und nichtbrückenbildende Sauerstoffe (NBO). Pro Na₂O wird eine bildet dabei Sauerstoffbrücke aufgebrochen und zwei NBO entstehen (s. auch Tabelle 1). Die Schmelzstruktur wird depolymerisiert.

Abbildung 13: Diffusivitäten von CO_2 in AB + n Na₂O dargestellt als NBO/T bei 1523 K und 0,5 GPa. Experimente mit t_{nom} = 3600 s (Rauten), mit t_{nom} = 72000 s (Kreise). Die gestrichelte Linie zeigt den Trend der Daten bei 3600 s. Weitere Erklärungen zur Berechnung von NBO/T sind im Text gegeben.

Mit Zunahme der NBO/T bzw. Abnahme des Polymerisationsgrades steigt die Diffusivität von $CO_{2,total}$. Die Gesamt-CO₂ Diffusionskoeffizienten steigen von $logD_{CO2} = -11,38$ in AB-Schmelze auf $logD_{CO2} = -10,92$ in ABNa7-Schmelze. Etwa 7 Gew.-% Na₂O-Überschuss bewirken einen Anstieg der Diffusivität von $CO_{2,total}$ um 0,7 log-Einheiten.

4.3.2 Zeitabhängige Untersuchung der CO_{2,total}-Diffusion

Zwei Diffusionspaarexperimente wurden mit 20 h Versuchszeit durchgeführt, um zu zeigen, dass die CO₂-Diffusion zeitunabhängig ist. Für diesen Nachweis wurden ein ABund ein ABNa4-Diffusionspaar verwendet. Die Versuchstemperatur beider Experimente betrug 1523 K (Tab. 3). In Abbildung 13 sind die Ergebnisse dieser Untersuchung dargestellt.

Für AB-Schmelze wurde ein etwas kleinerer Diffusionskoeffizient ermittelt, während in ABNa4-Schmelze nach 20 h ein größerer Diffusionskoeffizient bestimmt wurde. Beide Werte liegen aber im Rahmen der Fehler. Ein direkter Vergleich von Diffusionsprofilen mit verschiedenen Diffusionszeiten ist durch die Normierung x/Vt möglich. In Abbildung 14 sind zwei normierte Diffusionsprofile von CO₂ in trockenem AB bei 1 und 20 h Versuchszeit dargestellt. Diese gute Übereinstimmung beider normierten Profile zeigt die Unabhängigkeit der Gesamt-CO₂-Diffusion von der Zeit.

Abbildung 14: Vergleich zweier Diffusionsprofile von CO_2 in AB normiert mit vt_{eff} . Experiment mit t_{eff} = 3776 s (Kreise); Experiment mit t_{eff} = 72176 s (Dreiecke). Die Linien stellen die gefitteten Errorfunktionen beider Profile dar.

4.3.3 Temperaturabhängigkeit der Diffusion von CO₂

Die Diffusion von Gesamt-CO₂ in den Natriumalumosilikatschmelzen wurde bei verschiedenen Temperaturen (1423, 1523 und 1613 K) untersucht. Die Ergebnisse sind in Abbildung 15 dargestellt. Mit zunehmender Temperatur steigt die Diffusivität von CO₂. In AB steigt die Diffusivität von CO₂ z.B. um 0,8 log-Einheiten bei einem Temperaturanstieg von 1423 K auf 1613 K. Auch in allen Zusammensetzung AB + n Na₂O bewirkt die Temperaturerhöhung einen ähnlich großen Anstieg der Diffusion von Gesamt-CO₂.

Abbildung 15: Übersicht aller Diffusionsdaten von $AB + n Na_2O$ bei 1423 K, 1523 K und 1613 K. Gestrichelte Linien sind lineare Regressionen der Diffusionsdaten einer Temperatur.

Eine einfache Arrheniusbeziehung beschreibt die Abhängigkeit der Diffusion von der Temperatur:

$$\mathbf{D} = \mathbf{D}_0 \cdot \mathbf{e}^{\left(\frac{-\mathbf{E}_A}{\mathbf{R}T}\right)} \tag{30}$$

$$\log D = \log D_0 + \left(\frac{-E_A}{R}\right) \cdot \frac{1}{T} \cdot \ln 10$$
(31)

mit dem prä-exponentiellen Faktor D₀, der Aktivierungsenergie E_A [J/mol], der allgemeinen Gaskonstante R [8,3144 J/mol·K] und der Temperatur T in [K]. Die Aktivierungsenergie ist eine Energie, die für die Bewegung von einem Mol Teilchen von einem Platz auf den nächsten in einer Struktur aufgebracht werden muss. Bei diesem Transport muss das Teilchen an einer Bindung der Netzwerkstruktur vorbeibewegt werden,

wobei dieser Zwischenzustand für das Teilchen energetisch ungünstiger ist und Energie erfordert.

Abbildung 16: Diffusivitäten von CO₂ in AB, ABNa3 und ABNa7 als Funktion der Temperatur. Die gestrichelten Linien sind lineare Regressionen zur Bestimmung der Aktivierungsenergie.

Abbildung 16 zeigt den Vergleich von drei Zusammensetzungen (AB, ABNa3 und ABNa7) im Arrheniusplot. Den Diffusionsdaten jeder Zusammensetzung wurde eine Gerade durch lineare Regression angepasst. Aus der Steigung der drei Geraden im Arrheniusplot lassen sich die Aktivierungsenergien E_A für die Diffusion von CO₂ für jede Zusammensetzung bestimmen (Tab. 6).

	E _A [in kJ/mol]	$D_0 [m^2/s]$	
AB	197,5	2,36*10 ⁻⁵	
ABNa3	127,3	1,83*10 ⁻⁷	
ABNa7	114,7	9,17*10 ⁻⁸	

Tabelle 6: Aktivierungsenergien E_A und prä-exponentielle Faktoren D_0 als Ergebnisse der Geradengleichungen im Arrheniusplot von AB, ABNa3 und ABNa7.

Für die Diffusion von Gesamt-CO₂ in Albit wurde folgende Arrheniusbeziehung bestimmt:

$$\mathsf{D}_{\rm CO2} = 2,36 \cdot 10^{-5} \cdot \mathrm{e}^{\left(\frac{-197500}{\mathsf{RT}}\right)}$$
(32)

Es zeigt sich, dass die Steigung der drei Geraden mit steigendem Na₂O-Überschuss abnimmt. Somit nehmen mit dem Na₂O-Überschuss sowohl die Aktivierungsenergien der CO_2 -Diffusion als auch die prä-exponentiellen Faktoren ab. Dies bedeutet, dass in einer depolymerisierten Struktur weniger Energie für den Diffusionsschritt aufgebracht werden muss. Die Geraden der drei Zusammensetzungen schneiden sich bei einer Temperatur von 1723 K. An diesem Punkt ist die Diffusion von Gesamt-CO₂ in allen drei Zusammensetzungen gleich groß. Bei höheren Temperaturen ist die Diffusion von Gesamt- CO_2 in AB schneller als in ABNa7.

In vielen kinetisch kontrollierten Prozessen (z.B. Diffusion, Entwässerungsreaktionen) zeigt sich eine Korrelation von prä-exponentiellem Faktor und der Aktivierungsenergie. Für den Anstieg vom prä-exponentiellen Faktor bei gleichzeitig ansteigender Aktivierungsenergie Zusammenhang wurde der folgende lineare formuliert: $logA_0 = a + b*E_A$ (Hart, 1980). Bisher wurde für diese Beobachtung noch keine zufrieden stellende Erklärung gefunden (Lasaga 1998, Schulze 2000). Auch die vorliegenden Daten E_A und D₀ der drei Zusammensetzungen zeigen im Arrheniusplot logD₀ gegen E_A diesen linearen Zusammenhang. Als Folge dieser Korrelation gibt es im vorliegenden System die universelle Temperatur von 1723 K, bei der die Diffusion von CO2 in den Schmelzen gleich groß ist (Hart, 1980).

4.3.4 Die CO₂-Diffusion in H₂O-haltigen Schmelzen

In zwei verschiedenen Ansätzen wurde der Einfluss von H₂O auf die Diffusion von CO₂ geprüft. Diese Ansätze A + B unterschieden sich in der Synthese der H₂O-haltigen Gläser (s. Abschnitt 3.4). Die Ergebnisse beider Ansätze unterscheiden sich zunächst durch das Auftreten von Blasen im Ansatz B (Bild im Anhang). Bei der gleichzeitigen Zugabe von CO₂ und H₂O zum trockenen Pulver (Ansatz A) wurden blasenfreie Gläser synthetisiert, während bei der Synthese von H₂O-haltigem Glas und der anschließenden Lösung von CO₂ (Ansatz B) Blasen auftraten. Der Vorteil von einer homogenen H₂O-Verteilung in den Zylindern wird durch die Blasen im CO₂-haltigen Glas und deren Störung der IR-spektroskopischen Messung wieder aufgehoben. Der CO₂-freie Teil des Diffusionspaares möglichst Bereiche mit wenigen Blasen gemessen. Der ermittelte Diffusionskoeffizient ist jedoch durch die nicht zu vermeidenden Störungen der spektroskopischen Messung und der anschließenden Absorptionsbestimmung mit einem höheren Fehler von 30 - 35% behaftet.

Abbildung 17: Übersicht der Diffusivitäten von CO_2 im trockenen System AB + n Na₂O und in wasserhaltigem AB bei 1423 und 1523 K.

Ergebnisse aus Diffusionspaarexperimenten des Ansatzes A sind in Abbildung 17 dargestellt. Der Parameter NBO/T von H₂O-haltiger AB-Schmelze wurde unter der Annahme berechnet, dass gelöstes H₂O mit brückenbildenden Sauerstoffen (BO) des Netzwerkes quantitatv zu OH reagiert. Durch den Einbau der OH-Gruppen wird die Anteil der BO reduziert und der Anteil an nichtbrückenbildenden Sauerstoffen (NBO) erhöht. Auf diese Weise wirkt H₂O wie ein Netzwerkwandler. Der Gesamt-CO₂-Diffusionskoeffizient von AB-Schmelze mit 0,7 Gew.-% H₂O beträgt logD_{CO2} = -11,33 bei 1523 K und 0,5 GPa. In AB-Schmelze mit 2,0 Gew.-% H₂O diffundiert CO₂ mit logD_{CO2} = -10,91. Verglichen mit der Diffusivität von CO₂ in trockener AB-Schmelze bewirkt die Zugabe von 2,0 Gew.-% H₂O einen Anstieg der Diffusivität von 0,4 log Einheiten (Abb. 17).

Die Unterschiede der Diffusionszylinder im H₂O-Gehalt in Ansatz A waren bis zu 1300 ppm groß (Tab. 3). Um zu untersuchen, welchen Einfluss die damit verbundene H₂O-Diffusion auf die CO₂-Diffusion hat, wurden Zylinder mit nahezu identischen H₂O-Gehalten eingesetzt (Ansatz B). Die Ergebnisse für die Diffusion von CO₂ in AB-Schmelze mit 2,0 Gew.-% H₂O fallen mit denen aus Ansatz A zusammen (Abb. 17). Die Diffusionskoeffizienten von CO₂ in AB-Schmelze mit 0,97 und 2,0 Gew.-% liegen auf dem Trend der trockenen Natriumalumosilikatschmelzen.

5 Diskussion

5.1 Zum Einfluss der Zusammensetzung auf die Diffusivität von CO₂

In vorangegangenen Arbeiten zur CO₂-Diffusion in depolymerisierten Schmelzen (Natriumalumosilikatschmelze und eisenfreier Haplobasalt) und vollpolymerisierten Schmelzen (rhyolitischer Obsidian und natürlicher Dazit) bestimmte Watson (1982, 1991, 1994) eine Unabhängigkeit der CO_{2,total}-Diffusion von der Schmelzzusammensetzung. Die Ergebnisse dieser Untersuchung zeigen hingegen, dass die Diffusivität von CO₂ deutlich von der Schmelzzusammensetzung abhängt. Sowohl AB als auch Rhyolith sind vollpolymerisierte Zusammensetzungen und weisen ähnliche Diffusivitäten von CO₂ auf. Die Diffusionsdaten für CO₂ in AB + n Na₂O lassen sich mit Diffusionskoeffizienten von CO₂ in Rhyolith vergleichen (Abb. 18). Blank (1993) bestimmte für die Diffusion von CO₂ in Rhyolith im Temperaturbereich von 723 – 1323 K bei einem Druck von 0,1 GPa folgende Arrheniusbeziehung:

$$D_{CO2} = 6.2^{+4.3}_{-2.6} \cdot 10^{-7} \exp(-144600 \pm 4100/\text{RT})$$
(33)

Bei einer Extrapolation der Daten nach 1523 K und einer Druckkorrektur auf 0,5 GPa unter Verwendung der von Watson (1982) ermittelten Druckabhängigkeit:

$$D_{CO2@P} = 4.2 \cdot 10^{-11} \exp\left[-P(1.1 \cdot 10^{-5})/(RT)\right]$$
(34)

ergibt sich für die Diffusion von CO_2 in Rhyolith ein Diffusionskoeffizient von $logD_{CO2} = -11,60$ (D in m²/s). Die Diffusion von Gesamt-CO₂ in einer einfachen Natrium-Alumosilikatschmelze der Zusammensetzung SiO₂ 60 Gew.-%, Al₂O₃ 10 Gew.-% und Na₂O 30 Gew.-% (Watson et al., 1982) ist bei 1523 K und 0,5 GPa deutlich schneller ($logD_{CO2} = -10,33$) als die CO₂-Diffusion in ABNa7 ($logD_{CO2} = -10,92$). Diese von Watson et al. (1982) gewählte Zusammensetzung entspricht in ihrem Polymerisationsgrad einem Basalt (NBO/T = 0,65). Der Polymerisationsgrad von ABNa7 ist mit einem NBO/T = 0,14 sehr viel größer und entspricht eher einem Dazit.

Fehler! Kein Thema angegeben.

Abbildung 18: Diffusivitäten von CO₂ in AB + n Na₂O als Funktion der Temperatur.

Vergleich mit Diffusivitäten von CO₂, Ar, und H₂O anderer Studien:

[1] trockene SiNaAlO-Schmelze, 0,6 GPa, Watson (1982)

[2] trockener Rhyolith, 1 GPa, Watson (1991)

[3] Rhyolith + 8 Gew.-% H₂O, 1 GPa, Watson (1991)

[4] grüne Linie, trockener Rhyolith, 0.1 GPa, Blank (1993)

[5] graue Quadrate, Argon in trockenem Albit, 0.5 GPa, (Behrens und Zhang, 2001)

[6] H₂O-Diffusion in AB mit 2 Gew.-% H₂O, 0.5 GPa, Nowak und Behrens (1997)

[7] blaue Linie, CO_2 in trockenem Rhyolith, Tamic (2002)

Watson (1994) verglich seine Diffusionsdaten von CO₂ in Basalt mit Daten von Fogel und Rutherford (1990) in Rhyolith. Er schlussfolgerte, dass die Diffusion von CO₂ unabhängig von der Gesamtzusammensetzung der trockenen Schmelze ist. Die Daten dieser Arbeit zeigen hingegen einen deutlichen Einfluss der Zusammensetzung auf die Diffusivität von CO₂. Diese widersprüchlichen Ergebnisse lassen sich durch die verschiedenen Bestimmungsmethoden der CO₂-Diffusionskoeffizienten erklären. Watson et al. (1982, 1991) verwendeten in ihren Studien die ¹⁴C-β-track-Autoradiographie (BTA), eine Radiotracer-Methode, bei der mit ¹⁴C angereichertes Silberoxalat verwendet wird und die auf der Messung von β -Partikeln aus dem Zerfall von ¹⁴C basiert. Ein Vergleich der BTA-Methode und der IR-Spektroskopie wurde von Tingle und Aines (1988) durchgeführt. Die Autoren stellten eine systematische Abweichung von absoluten C-Konzentrationen bei der Radiotracer-Methode fest. Bei Lösungsexperimenten von CO2 in Albit überschritten die gemessenen CO_{2,total}-Gehalte die eingewogenen Mengen um bis zu 10-50%. Die mit der IR-Spektroskopie ermittelten Gehalte stimmten mit den eingewogenen Gehalten gut überein. In Diopsid hingegen unterschritten die mit BTA gemessenen Gehalte die eingewogenen Gehalte um 10%. Tingle und Aines (1988) weisen darauf hin, dass der systematische Fehler von der Zusammensetzung und bzw. oder von der Dichte abhängig sein kann. Bisher sind die systematischen Abweichungen nur in den Systemen Albit und Diopsid bekannt. Es liegen keine weiteren Erkenntnisse über Basalt und Rhyolith vor. Dies bedeutet, dass der direkte Vergleich von BTA-Diffusionsdaten von Watson (1982, 1991) mit anderen Studien (IR; Fogel und Rutherford 1990, Blank 1993) nur unter der Berücksichtigung dieser Fehler möglich ist.

5.2 Der Einfluss von H₂O auf die Diffusivität von CO₂

Diffusionspaarexperimente mit H₂O-haltiger AB-Schmelze haben gezeigt, dass die CO₂-Diffusivität in H₂O-haltigen Schmelzen deutlich schneller ist. Die Zugabe von 2,25 Gew.-% H₂O (Ansatz B) bewirkt einen eben so großen Anstieg der CO₂-Diffusion wie die Zugabe von ~ 6 Gew.-% Na₂O (ABNa7; Abb. 17). Deutlicher zu sehen ist dieser Zusammenhang, wenn Na₂O-Überschuss und H₂O-Gehalt auf molarer Basis verglichen werden. ABNa7 weist einen Überschuss von 6,06 Gew.-% $Na_2O = 7,22$ mol% auf und in AB entsprechen 2,25 Gew.-% gelöstes H₂O 7,56 mol%. Diesen beschleunigenden Effekt von Wasser auf die Mobilität von CO₂ stimmt mit der Mobilität von anderen Kationen in wasserhaltigen Schmelzen überein. Watson (1982) zeigte, dass Ca und Cs in wasserhaltigen Schmelzen sehr viel mobiler sind als in trockenen. Weiterhin stellte Watson (1991) diesen Effekt von H₂O bei der Untersuchung der CO₂-Diffusion in wasserhaltiger Obsidianschmelze fest. Die Diffusivität von CO₂ in trockenem Obsidian bei 1373 K und 1 GPa steigt bei einer Zugabe von 8 Gew.-% H₂O um 1,5 Größenordnungen von -logD_{CO2} = 7,66 auf $-\log D_{CO2}$ = 6,01 an. Auch bei der Untersuchung der Argon-Diffusion in Abhängigkeit vom H₂O-Gehalt in einer rhyolitischen Schmelze (Behrens und Zhang, 2001) wurde festgestellt, dass die Diffusion von Argon in der wasserhaltigen Schmelze deutlich schneller war als in der trockenen. Nach der in dieser Arbeit vorgeschlagenen Gleichung zur Berechnung von Diffusionskoeffizienten für Argon entwickelte Tamic (2002) eine Gleichung zur Berechnung von CO₂-Diffusivitäten in Abhängigkeit von T [K], P [MPa] und dem Wassergehalt [X^{m}_{water} = Molenbruch von Wasser auf der Basis von einem Mol Sauerstoff der trockenen Schmelze] in rhyolitischen Schmelzen:

$$D_{CO2} = \exp\left[\frac{(14,992 - 18,692 \cdot X_{water}^{m}) + (-19047,5 + 70193 \cdot X_{water}^{m})/T - (0,632 + 7,543 \cdot X_{water}^{m})P/T\right]$$
(35)

Nach dieser Gleichung berechnete Diffusivitäten für CO₂ in AB sind im Vergleich mit den experimentell bestimmten Daten (AB + 0,7 - 2,0 Gew.-% H₂O) um ~0,5 log Einheiten schneller. Die Berechnung der Diffusivität von Gesamt-CO₂ ergibt z.B. in AB + 0,72 Gew.-% logD_{CO2} = -10,87 im Vergleich zu logD_{CO2} = -11,33 der experimentellen Bestimmung. Dieses Modell ist daher nicht ohne weiteres auf wasserhaltige Albitschmelze zu übertragen, trotz der guten Übereinstimmung von trockenem Albit und Rhyolith (Blank, 1993).

Ein Modell für Diffusivitäten von CO_2 in H_2O -haltiger Albitschmelze wurde in dieser Arbeit unter Verwendung der Diffusionsdaten von CO_2 in den depolymerisierten Schmelzen erstellt. Die Datenbasis für H_2O -haltige Schmelzen ist zwar gering, aber wie schon gezeigt wurde, haben H_2O und Na_2O auf molarer Basis den gleichen Effekt. Die Überschüsse an H_2O und Na_2O wurden als X^m_{H2O} und X^m_{Na2O} auf einfacher Sauerstoffbasis berechnet und sind in Abbildung 19 gegen den $logD_{CO2}$ dargestellt. Die Daten wurden mit einer Geraden angefittet und daraus folgende Beziehung bestimmt:

$$-\log D_{CO2} = 13,30594 \cdot X_{Na20, H20} - 11,39$$
(36)

Mit dieser Beziehung ist es möglich, die Diffusivität von CO_2 in H₂O-haltigen Schmelzen mit Albitzusammensetzung bis zu einem H₂O-Gehalt von 2 Gew.-% zu berechnen.

Abbildung 19: Darstellung aller Diffusionsergebnisse bei T = 1523 K als Funktion von X_{Na2O} bzw. X_{H2O} . Die gestrichelte Linie ist eine lineare Regression aller Daten.

5.3 Der Diffusionsmechanismus

Gelöstes CO_2 in Silikatschmelzen liegt in wenigstens zwei Spezies vor: molekulares CO_2 und $CO_3^{2^2}$. Es ist zu erwarten, dass beide Spezies mit unterschiedlichen Geschwindigkeiten diffundieren, wie es bereits für die Diffusion von H₂O als molekulares H₂O und als OH-Gruppe bekannt ist (Zhang et al. 1991, Nowak und Behrens 1997, Zhang 1999). Es existiert jedoch ein grundlegender Unterschied zwischen H₂O und CO₂. Wie zuvor schon beschrieben, ist die Speziation von CO₂ unabhängig vom Gesamt-CO₂-Gehalt. Die Wasserspeziation ändert sich hingegen sehr stark mit dem H₂O-Gehalt.

$$H_2O_{(Schmelze)} + O^{2-}_{(Schmelze)} = 2 OH^{-}_{(Schmelze)}$$
(37)

$$K = \frac{[OH]^2}{[H_2O] * [O^{2-}]}$$
(38)

Die Gleichung 38 zeigt, dass das Verhältnis von OH zu H₂O nicht konstant ist und die Konzentration der Spezies H₂O mit dem Quadrat der OH-Konzentration steigt. Diese Beziehung beschreibt die bekannte Situation, dass bei niedrigen Wassergehalten OH und bei hohen Wassergehalten molekulares H₂O die dominierende Spezies ist (Silver und Stolper 1989, McMillan 1994, Nowak und Behrens 1995). Da die Speziation von Wasser vom Gesamt-H₂O-Gehalt abhängt, lässt sich die Diffusion nicht über einen gemeinsamen konstanten Diffusionskoeffizienten beschreiben (Zhang et al. 1991, Nowak und Behrens 1997). Dies ist nur für CO₂ möglich, da hier die Speziation unabhängig vom CO_{2.total}-Gehalt ist (s. Gleichung. 29). Aus den durchgeführten Experimenten lassen sich weder CO_3^{2-} noch und individuelle Spezieskonzentrationen für molekulares CO_2 Diffusionsprozesses Diffusionskoeffizienten bestimmen. Während des wird das Gleichgewicht CO₂-Spezies lokal aufrechterhalten. der Außerdem sind die Gleichgewichtskonzentrationen in der Schmelze nicht auf Raumtemperatur abzuschrecken, wie eine Studie von Nowak et al. (2002) zeigte. Die Spezieskonzentrationen, die im Glas vorliegen, zeigen höchstens den Zustand der Speziesverteilung bei Tg und nicht den in der Schmelze.

Die Diffusion von $CO_{2,total}$ setzt sich aus den Diffusivitäten von $CO_{2,mol}$ und CO_3^{2-} zusammen:

$$J_{\text{CO2,total}} = J_{\text{CO2,mol}} + J_{\text{CO}_3^{2-}}$$
(39)

$$-\mathsf{D}_{\text{CO2,total}} \frac{d\,\mathsf{c}_{\text{CO2,total}}}{d\,\mathsf{x}} = -\mathsf{D}_{\text{CO2,mol}} \frac{d\,\mathsf{c}_{\text{CO2,mol}}}{d\,\mathsf{x}} - \mathsf{D}_{\text{CO3}^{2^-}} \frac{d\,\mathsf{c}_{\text{CO3}^{2^-}}}{d\,\mathsf{x}} \qquad \left|\cdot d \mathsf{x}\right|$$
(40)

$$-\mathbf{D}_{\text{CO2,total}} \cdot \boldsymbol{d} \, \mathbf{c}_{\text{CO2,total}} = -\mathbf{D}_{\text{CO2,mol}} \cdot \boldsymbol{d} \, \mathbf{c}_{\text{CO2,mol}} - \mathbf{D}_{\text{CO}_3^{2-}} \cdot \boldsymbol{d} \, \mathbf{c}_{\text{CO}_3^{2-}}$$
(41)

$$\mathsf{D}_{\mathsf{CO}_2,\mathsf{total}} = \mathsf{D}_{\mathsf{CO}_2,\mathsf{mol}} \cdot \frac{d \, \mathsf{c}_{\mathsf{CO}_2,\mathsf{mol}}}{d \, \mathsf{c}_{\mathsf{CO}_2,\mathsf{total}}} + \mathsf{D}_{\mathsf{CO}_3^{--}} \cdot \frac{d \, \mathsf{c}_{\mathsf{CO}_3^{--}}}{d \, \mathsf{c}_{\mathsf{CO}_2,\mathsf{total}}}$$
(42)

Wie schon in Abschnitt 4.2.3 gezeigt wurde, ist das Verhältnis der CO₂-Spezies unabhängig vom Gesamt-CO₂-Gehalt.

$$\operatorname{CO}_{2} + \operatorname{O}_{r}^{2-} \to \operatorname{CO}_{3}^{2-} \tag{43}$$

$$\mathsf{K} = \frac{\left[\mathsf{CO}_3^{2^-}\right]}{\left[\mathsf{CO}_2\right] \cdot \left[\mathsf{O}_r^{2^-}\right]} \tag{44}$$

$$K \sim \frac{\left[CO_3^{2-}\right]}{\left[CO_2\right]} \tag{45}$$

Dies bedeutet, dass durch das konstante Verhältnis der Spezies zueinander auch jegliche Änderung der Spezies konstant ist:

$$\frac{d c_{CO_2,mol}}{d c_{CO_2,total}} = A_1$$
(46)

$$\frac{d c_{CO_3^{2^-}}}{d c_{CO_2, \text{total}}} = A_2$$
(47)

$$A_2 = 1 - A_1 \tag{48}$$

Werden diese Konstanten nun in Gleichung 42 eingesetzt, so erhält man:

$$\mathbf{D}_{\mathrm{CO}_{2},\mathrm{total}} = \mathbf{D}_{\mathrm{CO}_{2},\mathrm{mol}} \cdot \mathbf{A}_{1} + \mathbf{D}_{\mathrm{CO}_{3}^{2-}} \cdot (\mathbf{1} - \mathbf{A}_{1})$$
(49)

$$A_{1} = \frac{D_{CO2,total} - D_{CO_{3}^{-}}}{D_{CO2,mol} - D_{CO_{3}^{-}}}$$
(50)

Die Diffusivitäten der einzelnen Spezies bleiben weiter unbekannt, wie auch die Konstante A₁. Die Bestimmung von Diffusivitäten der einzelnen Spezies kann nur durch weitere Annahmen erfolgen. So können z.B. Untersuchungen zur Ar-Diffusion in Zusammensetzungen mit verschiedenen Polymerisationsgraden Hinweise zum Verhalten von $CO_{2,mol}$ liefern, da sich Ar und $CO_{2,mol}$ in Rhyolith sehr ähnlich verhalten (Behrens und Zhang, 2001).

Aus der vorliegenden Untersuchung lassen sich jedoch einige qualitative Aussagen zum Diffusionsmechanismus von CO_2 treffen: die deutliche Änderung der Diffusionskoeffizienten für Gesamt- CO_2 mit der Zusammensetzung kann auf folgende zwei Effekte zurückzuführen sein:

- Die Änderung der CO₂-Speziation mit zunehmendem Depolymerisationsgrad
- Die Änderung der individuellen Diffusionskoeffizienten von molekularem CO₂ und CO₃²⁻ mit der Zusammensetzung.

Die Speziation in den untersuchten Gläsern ändert sich drastisch. Wie schon in Abbildung 10 gezeigt wird, dominiert molekulares CO₂ in AB-Glas, während in den depolymerisierten Gläsern ABNa6 und ABNa7 ausschließlich CO₃²⁻ vorliegt. Nach bisher vorgeschlagenen Modellen zur Speziation von CO₂ ist CO₃²⁻ auf verschiedene Weise an das Silikatnetzwerk gebunden. Kohn et al. (1991) beschreiben eine Karbonatgruppe, die durch die Bindung von molekularem CO₂ an einen brückenbildenen Sauerstoff (BO) hervorgeht, während Kubicki und Stolper (1995) und Brooker et al. (1999) einen nichtbrückenbildenen Sauerstoff (NBO) favorisieren. Nach Vorstellungen von Fine und Stolper (1985) wirkt CO_3^{2-} sogar als Netzwerkbildner (Abb. 20). Es ist daher einfach anzunehmen, dass die Mobilität von molekularem CO₂ in Zwischengitterplätzen deutlich größer ist als die Mobilität von CO_3^{2-} . (Behrens und Zhang, 2001) zeigten, dass die Diffusion von Argon in trockener rhyolitischer Schmelze mit der Diffusion von molekularem CO₂ vergleichbar ist, obwohl sich die durchschnittliche Größe der Moleküle deutlich unterscheidet. CO₂ ist ein langgestrecktes, zylindrisches Molekül mit einem Radius von 1,4 Å und einer halben Achsenlänge von 2,5 Å, während Argonatome einen Radius von 1,64 Å aufweisen. Hieraus lässt sich die Vorstellung ableiten, dass sich CO₂ hauptsächlich entlang seiner zylindrischen Achse durch das Netzwerk bewegt.

Abbildung 20: Schematische Darstellung einer Schmelzstruktur aus Si-Al-Tetraedern und der strukturelle Einbau von CO_2 nach Vorschlägen von Fine und Stolper (1985), Kohn et al. (1991) und Brooker et al. (2001).

Die Diffusion von Netzwerk- $CO_3^{2^-}$ (wirkt als Netzwerkbildner) sollte etwa so langsam sein, wie die Bewegung des Netzwerkes selbst. Die Diffusion von Si und Al wurde von (Baker, 1991) anhand von Interdiffusionsexperimenten von Rhyolith und Dazit bestimmt. Die Diffusionskoeffizienten für Si und Al liegen in der Größenordnung von 10^{-13} bis 10^{-14} m²/s. Die Diffusion von Netzwerk- $CO_3^{2^-}$ sollte also 2-3 Größenordnungen langsamer als die von $CO_{2,mol}$ sein. Die Eyring-Beziehung ermöglicht die Berechnung von `Eyring'-Diffusivitäten der Netzwerkbildner (Si und Al) aus Viskositätsdaten von Albit (Schulze, 2000):

$$\mathsf{D}_{\mathsf{calc}} = \frac{\mathsf{k}_{\mathsf{B}} \cdot \mathsf{T}}{\boldsymbol{I} \cdot \boldsymbol{h}} \tag{51}$$

mit k_B = Boltzmann-Konstante, λ = charakteristische Sprunglänge von Si (3,2 Å; Baker 1990) und η = Viskosität [Pa*s]. Abbildung 21 zeigt, dass die berechneten Diffusivitäten für Si in Albit (viskoses Fließen) bei 1523 K noch 1-2 Größenordnungen langsamer sind als die Diffusion von CO₂. Hierbei ist nach dem Modell von Hess und Dingwell (1995) der Einfluss von Na-Überschüssen auf die Viskosität berücksichtigt worden. Die Größenordnung des von den Autoren beschriebenen Effekts von Na₂O auf die Viskosität im System Haplogranit (HPG) wurde auf die berechneten `Eyring'-Diffusivitäten für Albit übertragen. Der Überschuss von 5 Gew.-% Na₂O bei 1523 K bewirkt z.B. eine Abnahme der Viskosität η um 2,6 log-Einheiten (log η = 6,2 für HPG, log η = 3,2 in HPG + 5 Na₂O, [η in Pa*s]).

Abbildung 21: Vergleich von CO₂-Diffusionsdaten (diese Arbeit) mit dem viskosen Fließen von AB-Schmelze bei 1523 K berechnet durch die Eyring-Beziehung nach Viskositätsdaten von AB (Schulze, 2000) unter Berücksichtigung des Einflusses von Na₂O-Überschüssen (Hess und Dingwell, 1995).

Aufgrund der eben beschriebenen Vorstellungen der Mobilität der CO_2 -Spezies sollte angenommen werden, dass die Diffusion von Gesamt- CO_2 während der Depolymerisierung der Schmelze drastisch herabgesetzt wird, da das schnell diffundierende molekulare CO_2 durch das weit langsamere CO_3^{2-} ersetzt wird. Diese Annahme steht im Widerspruch zu den Ergebnissen der durchgeführten Experimente. Hierfür gibt es zwei mögliche Erklärungen:

entweder besteht nur wenig Unterschied zwischen den Mobilitäten von molekularem CO₂ und CO₃²⁻,

und / oder

• die Speziation von CO_{2,total} in der Schmelze unterscheidet sich ganz wesentlich von der im Glas.

Es ist in der Tat sehr wahrscheinlich, dass sich die Mobilität von CO_2 und CO_3^{2-} nicht so sehr unterscheidet, wie zuvor angenommen wurde. Falls sich CO_3^{2-} wie im Modell von Fine und Stolper (1985) wie ein Netzwerkbildner verhält, dann hat es nur zwei brückenbildende Sauerstoffe im Gegensatz zu Si und Al mit vier brückenbildenden Sauerstoffen im vollpolymerisierten Netzwerk von Albit (Abb. 20). Folglich sollte die Aktivierungsenergie für die Diffusion von Netzwerk- CO_3^{2-} geringer sein als die für Netzwerk-Si und somit die Diffusion von CO_3^{2-} höher sein.

Weiterhin ist gezeigt worden, dass ein großer Anteil des CO32- im Glaszustand an nichtbrückenbildenden Sauerstoffe oder Alkaliionen gebunden ist (Brooker et al., 2001b), insbesondere in den peralkalinen Gläsern. Die Speziation in der Schmelze ist bisher jedoch noch unverstanden. Wie zuvor schon erwähnt zeigten Nowak et al. (2002), dass die Spezieskonzentrationen im Glas bestenfalls den Zustand der Speziesverteilung bei Tg zeigen und nicht den der Schmelze. Durch Extrapolation ihrer Daten für Albit zu sehr Temperaturen (T = 1523 K) ergibt sich für Gleichung 45 eine hohen Gleichgewichtskonstante K = 0,063. Dies bedeutet, dass bei hohen Temperaturen das Gleichgewicht der Speziesreaktion zu molekularem CO₂ hin verschoben ist. Infolgedessen Gesamt-CO₂-Diffusion ist der beobachtete Anstieg der mit abnehmendem Polymerisationsgrad der Schmelzen leicht zu verstehen, da der Diffusionsmechanismus nun von der schnelleren Spezies CO_{2,mol} bestimmt wird.

5.4 Applikationen der Diffusionsdaten

Während des Aufstiegs von Magmen kommt es zur Blasenbildung und Entgasung des Magmas. Hierbei können drei verschiedene Fraktionierungsprozesse der enthaltenen Volatile stattfinden. Zum einen erfolgt die Gleichgewichtsfraktionierung, die auf unterschiedlichen Löslichkeiten der Volatile in der Schmelze basiert. Hierbei wird bei der sehr langsamen Entgasung von Magmen das Gleichgewicht zwischen Blasen und Schmelze eingestellt. Im zweiten Prozess werden die Blasen während des dynamischen Entgasungsprozesses nach ihrer Nukleation abgeführt, der sogenannten Rayleigh-Fraktionierung. Der dritte Prozess ist die kinetische Fraktionierung, die durch unterschiedliche Diffusivitäten der Volatile hervorgerufen wird und auftritt, wenn der Entgasungsprozess sehr schnell abläuft, wobei das Gleichgewicht zwischen Blasen und Schmelze nur an der Blasenoberfläche besteht (Behrens und Zhang, 2001).

Die gängigen Modellierungen der Blasenbildung und des Blasenwachstums berücksichtigen viele Parameter wie anfängliche Blasengröße, Viskosität, Übersättigung der Schmelze, Oberflächenspannung, Wassergehalt und Diffusion von H₂O (Lyakhovsky et al. 1996, Proussevitch und Sahagian 1998, Navon et al. 1998, Liu und Zhang 2000). Die Diffusion von CO₂ wurde bisher immer vernachlässigt, sicherlich auch aus dem Grund, da bisher nur sehr wenige Daten zur CO₂-Diffusion existieren.

Watson et al. (1982) nutzten das unterschiedliche Diffusionsverhalten von CO_2 und H_2O bei 1523 K und modellierten Profile von CO_2 und H_2O , die in einer Basaltschmelze entstehen, wenn ein Kristall wächst. Hierbei nahmen sie an, dass CO_2 um eine Größenordnung schneller diffundiert als H_2O . Beide Profile wurden unter der Annahme von konstanten Diffusionskoeffizienten berechnet. Im System AB + H_2O zeigt sich jedoch, dass bei gleicher Temperatur die H_2O -Diffusion in Albitschmelze deutlich schneller ist als die Diffusion von Gesamt-CO₂. Weiterhin muss die Konzentrationsabhängigkeit der CO₂-Diffusion vom H_2O -Gehalt berücksichtigt werden.

In dieser Arbeit zur CO₂-Diffusion in H₂O-haltigen AB-Schmelzen ist bei 1523 K der Einfluss des H₂O auf die Diffusivität von CO₂ beschrieben (Gleichung 36). Die Diffusion von H₂O wurde von Nowak und Behrens (1997) in einer haplogranitischen Zusammensetzung untersucht. Sie stellten eine Beziehung für die Diffusion von H₂O in Abhängigkeit vom Wassergehalt auf:

$$\log D_{\text{H2O,total}} = \left(-4,81 - 0,045 \cdot C_{\text{H2O,total}} + 0,027 \cdot C_{\text{H2O,total}}^{2}\right) - (3378 - 483 \cdot C_{\text{H2O,total}} + 46,9 \cdot C_{\text{H2O,total}}^{2} + 47,5 \cdot P)/T$$
(52)

Hierbei ist die Diffusivität D in cm²/s, der H₂O-Gehalt in Gew.-%, die Temperatur T in K und der Druck P in kbar. Der Vergleich der CO₂-Diffusion und der H₂O-Diffusion als Funktion des H₂O-Gehalts bis zu 2 Gew.-% ist in Abbildung 22 dargestellt. Es ist deutlich zu sehen, dass die Diffusion von H₂O mit steigendem X_{H2O} der Schmelze schneller ist als die Diffusion von Gesamt-CO₂.

Abbildung 22: Vergleich der Beziehung für CO_2 in H_2O -haltiger AB-Schmelze mit der Beziehung von Nowak und Behrens (1997) für die Diffusion von H_2O in AOQ in Abhängigkeit vom H_2O -Gehalt.

Mit den Diffusivitäten für CO₂ und H₂O aus diesen Modellen lassen sich charakteristische Distanzen durch folgende Näherung berechnen:

$$\mathbf{x} = \sqrt{2\mathsf{D}\mathsf{t}} \tag{53}$$

Mit dieser Näherungslösung werden Distanzen eines Profils berechnet, an deren Ende die Ausgangskonzentration bis auf ca. 15% abgesunken ist.

Abbildung 23: Charakteristische Diffusionslängen von CO_2 und H_2O mit steigendem H_2O -Gehalt der Schmelzen bis zu 2 Gew.-% bei verschiedenen Diffusionszeiten. Eine detaillierte Beschreibung der Berechnung der Kurven ist im Text gegeben.

Abbildung 23 zeigt, in welche Tiefen einer Schmelze CO₂ und H₂O in drei verschiedenen Zeiträumen (1 h, 24 h und 3 d) hinein diffundieren können. Es ist deutlich zu sehen, dass bei gleicher Diffusionszeit und gleichem H₂O-Gehalt der Schmelze H₂O weiter diffundiert als CO₂. Außerdem wird deutlich, dass mit steigendem H₂O-Gehalt und längerer Diffusionszeit der Unterschied zwischen den Eindringtiefen von CO₂ und H₂O ansteigt. Dieser Ansatz kann Hinweise für die Modellierung der Fraktionierung von CO₂ und H₂O liefern und einen Beitrag für folgende Blasenbildungsmodellierungen darstellen.

6 Literaturverzeichnis

- Aines, R.D. und Rossman, G.R. (1984) The high temperature behavior of water and carbon dioxide in cordierite and beryll. American Mineralogist, 69, 319-327.
- Baker, D.R. (1991) Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination of dacitic enclaves. Contributions to Mineralogy and Petrology, 106, 462-473.
- Behrens, H. und Schmidt, M.O. (1998) Infrared spectroscopy of hydrous silicic glasses at temperatures up to 600°C, and implications for the incorporation and dynamics of water in glasses. Neues Jahrbuch Mineralogie Abhandlung, 172 (2/3), 203-226.
- Behrens, H. und Zhang, Y. (2001) Ar diffusion in hydrous silicic melts: implications for volatile diffusion mechanisms and fractionation. Earth and Planetary Science Letters, 192, 363-376.
- Behrens, H., Romano, C., Nowak, M., Holtz, F. und Dingwell, D.B. (1996) Nearinfrared spectroscopic determination of water species in glasses of the system MAlSi₃O₈ (M = Li, Na, K): an interlaboratory study. Chemical Geology, 128, 41-63.
- Benne, D. (2000) Wasserlöslichkeit haplobasaltischer Schmelzen und Phasenbeziehungen bei $p_{H2O} = 5$ kbar im Haplobasaltsystem. Diplomarbeit, Institut für Mineralogie. Universität, Hannover.
- Berndt, J., Koepke, J. und Holtz, F. (2000) Phase Relationships and Differentiation of MORB up to 0.2 Gpa: Experimental Outline and First Results. Eight International Symposium on Experimental Mineralogy, Petrology and Geochemistry, 5. Cambridge Publications, Bergamo.
- Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D., Hurkuck, W. und Koepke, J. (2002) A combined rapid-quench and H₂-membrane setup for internally heated pressure vessels: Description and application for water solubility in basaltic melts. American Mineralogist, in press.

- Blank, J.G. (1993) An experimental investigation of the behavior of carbon dioxide in rhyolitic melt. Dissertation California Institute of Technology, Pasadena, CA.
- Blank, J.G. und Brooker, R.A. (1994) Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behavior. In M.R. Carroll, und J.R. Holloway, Eds. Volatiles in Magmas, 30. Mineralogical Society of America, Washington D.C.
- Brooker, R.A. (1998) The effect of CO₂ saturation on immiscibility between silicate and carbonate liquids: an experimental study. Journal of Petrology, 39 (11/12), 1905-1915.
- Brooker, R.A., Kohn, S.C., Holloway, J.R., McMillan, P.F. und Carroll, M.R. (1999) Solubility, speciation and dissolution mechanism for CO₂ in melts on the NaAlO₂-SiO₂ join. Geochimica et Cosmochimica Acta, 63, 3549-3565.
- Brooker, R.A., Kohn, S.C., Holloway, J.R. und McMillan, P.F. (2001a) Structural controls on the solubility of CO₂ in silicate melts Part I: bulk solubility data. Chemical Geology, 174 (1-3), 225-239.
- . (2001b) Structural controls on the solubility of CO₂ in silicate melts Part II: IR characteristics of carbonate groups in silicate glasses. Chemical Geology, 174 (1-3), 241-254.
- Crank, J. (1975) The mathematics of diffusion. Clarendon Press, Oxford.
- Dixon, J.E., Stolper, E.M. und Delaney, J.R. (1988) Infrared spectroscopic measurements of CO₂ and H₂O in Juan de Fuca Ridge basaltic glasses. Earth and Planetary Science Letters, 90, 87-104.
- Dixon, J.E., Stolper, E.M. und Holloway, J.R. (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: Calibration and solubility models. Journal of Petrology, 36 (6), 1607-1646.
- Eggler, D.H. und Rosenhauer, M. (1978) Carbon dioxide in silicate melts: II. Solubilities of CO₂ and H₂O in CaMgSi₂O₆ (diopside) liquids and vapors at pressures to 40 kb. American Journal of Science, 278, 64-94.

- Fine, G. und Stolper, E. (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contributions to Mineralogy and Petrology, 91, 105-121.
- Fogel, R.A. und Rutherford, M.J. (1990) The solubility of carbon dioxide in rhyolitic melts: A quantitative FTIR study. American Mineralogist, 75, 1311-1326.
- Gmelin, L. (1970) Kohlenstoff. Handbuch der anorganischen Chemie, 14 Teil C1. Springer, Berlin, Heidelberg.
- -. (1975) Silber. Handbuch der anorganischen Chemie, 61 Teil B5. Springer, Berlin, Heidelberg.
- Hart, S.R. (1980) Diffusion compensation in natural silicates. Geochimica et Cosmochimica Acta, 45, 279-291.
- Hess, K.-U., Dingwell, D.B. und Webb, S.L. (1995) The influence of excess alkalies on the viscosity of a haplogranite melt. American Mineralogist, 80, 297-304.
- Holloway, J.R. (1976) Fluids in the evolution of granitic magmas: Consequences of finite CO₂ solubility. Geological Society American Bulletin, 87, 1513-1518.
- Ihinger, P.D., Hervig, R.L. und McMillan, P.F. (1994) Analytical methods for volatiles in glasses. In M.R. Carroll, und J.R. Holloway, Eds. Volatiles in Magmas, 30, p. 67-121. American Society of America, Washington DC.
- Keppler, H. (1988) Experimentelle Untersuchung von Modellsystemen für die Schmelzbildung in Krustengesteinen bei Gegenwart von H₂O-CO₂-Fluidphasen.
 Dissertation, Fakultät für Bio- und Geowissenschaften. Universität Karlsruhe.
- Kohn, S.C., Brooker, R.A. und Dupree, R. (1991) ¹³C MAS NMR: A method for studying CO₂ speciation in glasses. Geochimica et Cosmochimica Acta, 55, 3879-3884.
- Kubicki, J.D. und Stolper, E.M. (1995) Structural roles of CO_2 and $[CO_3]^{2-}$ in fully polymerized sodium aluminosilicate melts and glasses. Geochimica et Cosmochimica Acta, 59, 683-698.
- Lasaga, A.C. (1998) Kinetic theory in earth science. Princeton University Press, New Jersey.
- Liu, Y. und Zhang, Y. (2000) Bubble growth in rhyolitic melt. Earth and Planetary Science Letters, 181, 251-264.
- Lyakhovsky, V., Hurwitz, S. und Navon, O. (1996) Bubble growth in rhyolitic melt: experimental and numerical investigation. Bulletin of Volcanology, 58, 19-32.
- McMillan, P.F. (1994) Water solubility and speciation models. In M.R. Carroll, und J.R.Holloway, Eds. Volatiles in Magmas, 30, p. 131-156. Mineralogical Society of America, Washington, D.C.
- Mysen, B.O. und Virgo, D. (1980) The solubility of CO₂ in melts on the join NaAlSi₃O₈-CaAl₂Si₂O₈-CO₂ at high pressures and temperatures: a Raman spectroscopic study. American Mineralogist, 65, 1166-1175.
- Navon, O., Chekhmir, A. und Lyakhovsky, V. (1998) Bubble growth in highly viscous melts: theory, experiments, and autoexplosivity of dome lavas. Earth and Planetary Science Letters, 160, 763-776.
- Nowak, M. und Behrens, H. (1995) The speciation of water in granitic glasses and melts determined by in situ near-infrared spectroscopy. Geochimica et Cosmochimica Acta, 59, 3445-3450.
- -. (1997) An experimental investigation on diffusion of water in haplogranitic melts. Contributions to Mineralogy and Petrology, 126, 356-376.
- Nowak, M., Porbatzki, D. und Diedrich, O. (2002) Carbon dioxide speciation in silicate melts: A restart. Earth and Planetary Science Letters, submitted.
- Ohlhorst, S. (2002) Water and CO₂ solubilities in rhyolitic to basaltic melts: experimental determination and calibration for IR spectroscopy. Dissertation, Institut für Mineralogie. Universität Hannover.
- Papale, P. (1999) Modeling of the solubility of a two-component $H_2O + CO_2$ fluid in silicate liquids. American Mineralogist, 84, 477-492.
- Papale, P. und Polacci, M. (1999) Role of carbon dioxide in the dynamics of magma ascent in explosive eruptions. Bulletin of Volcanology, 60, 583-594.
- Proussevitch, A.A. und Sahagian, D.L. (1998) Dynamics and energetics of bubble growth in magmas: isothermal case. Journal of Geophysical Research, 103, 18223-18251.

- Schulze, F. (2000) Untersuchung zum Einfluß von Druck und gelöstem Wasser auf die Viskosität silikatischer Schmelze - Anwendung eines "parallel-plate"-Viskosimeters unter hohen Drücken. Dissertation, Institut für Mineralogie. Universität, Hannover.
- Silver, L. und Stolper, E. (1989) Water in albitic glasses. Journal of Petrology, 30, 667-709.
- Stolper, E. (1982) Water in silicate glasses: an infrared spectroscopic study. Contributions to Mineralogy and Petrology, 81, 1-17.
- Stolper, E., Fine, G., Johnson, T. und Newman, S. (1987) Solubility of carbon dioxide in albitic melt. American Mineralogist, 72, 1071-1085.
- Symonds, R.B., Rose, W.I., Bluth, G.J.S. und Gerlach, T.M. (1994) Volcanic-Gas studies: methods, results, and applications. In M.R. Carroll, und J.R. Holloway, Eds. Volatiles in Magmas, 30, p. 1-66. Mineralogical Society of America, Washington D.C.
- Tamic, N. (2002) Solubility of H₂O and CO₂ and diffusion of CO₂ in rhyolitic melts: an experimental study. Dissertation, Institut f
 ür Mineralogie. Universit
 ät, Hannover.
- Tingle, T.N. und Aines, R.D. (1988) Beta track autoradiography and infrared spectroscopy bearing on the solubility of CO₂ in albite melt at 2 GPa and 1450 °C. Contributions to Mineralogy and Petrology, 100, 222-225.
- Watson, E.B. (1982) Basalt contamination by continental cust: some experiments and models. Contributions to Mineralogy and Petrology, 80, 73-87.
- -. (1987) Diffusion and solubility of C in Pt. American Mineralogist, 72, 487-490.
- -. (1991) Diffusion of dissolved CO₂ and Cl in hydrous silicic to intermediate magmas. Geochimica et Cosmochimica Acta, 55, 1897-1902.
- (1994) Diffusion in volatile-bearing magmas. In M.R. Carroll, und J.R. Holloway, Eds. Volatiles in Magmas, 30, p. 371-411. Mineralogical Society of America, Washington, D.C.

- Watson, E.B., Sneeringer, M.A. und Ross, A. (1982) Diffusion of dissolved carbonate in magmas: experimental results and applications. Earth and Planetary Science Letters, 61, 346-358.
- Withers, A.C. und Behrens, H. (2000) Temperature induced changes in the NIR spectra of hydrous albitic and rhyolitic glasses: implications for hydrous species reaction. Physics Chemistry of Minerals, 27, 119-132.
- Zhang, Y. (1999) H₂O in rhyolitic glasses and melts: measurement, speciation, solubility, and diffusion. Reviews of Geophysics, 37 (4), 493-516.
- Zhang, Y., Stolper, E.M. und Wasserburg, G.J. (1991) Diffusion of a multi-species component and its role in oxygen and water transport in silicates. Earth and Planetary Science Letters, 103, 228-240.

7 Anhang

- 1: elektrische Ofenanschlüsse
- 2: Gaseinlass
- 3: Verschlussstück
- 4: Stahlkonus
- 5: Teflon-Isolierung
- 6: Pyrophyllit-Isolierung
- 7: Keramikplatte
- 8: obere Molybdänwicklung
- 9: Isolierung: Mullitwatte,

Quarzmatte, Stahlblech

- 10: Keramikrohr
- 11: untere Molybdänwicklung

Abbildung A1: Schematische Zeichnung des Hochtemperatureinsatzes für die IHPV-Anlage modifiziert nach Berndt et al. (2002). Die Veränderungen sind im Text beschrieben.

Abbildungen A2: Beispiele für Diffusionsproben

D4, AB, 1523 K, 1 h, NQ

D24, AB, 1613 K, 1 h, RQ, nicht gefallen

D25, AB + 0,7 Gew.- H_2O , 1523 K, 1 h, RQ

D35, ABNa2, 1523 K, 1 h, RQ

D50, AB, 1523 K, 20 h, RQ

D58, AB + 2,0 Gew.-% H_2O , 1523 K, 1h, RQ

D61, AB + 1,0 Gew.-% H₂O, 1523 K, 1h, RQ

Abbildungen A3 **a-l**: Fotos von Synthese-Produkten in Pt-Kapseln (#1, 2, 3, 9, 11, 12, 13, 14, 15, 16, 17, 18)

Tabellen der IR-spektroskopischen Auswertung aller Diffusionsprofile

7. Anhang

Profil D1		Profil D4		Fortset	tzung D)4
AB, 1373 K,	1h, NQ	AB, 1523 K,	1h, NQ	x	[mm]	A CO _{2 mol}
_					·12,05	0,133522
x [mm]	A CO _{2.mol}	x [mm]	A CO _{2,mol}		·11,90	0,225297
-0,50	19,5356	-14,60	14,3567		-11,85	0,400617
-0,30	19,816	-14,40	14,8421		-11,70	0,11587
-0,25	18,7826	-14,20	15,0507		-11,41	0,35085
-0,20	19,1726	-14,00	15,1989		·11,38	0,375625
-0,15	18,8526	-13,90	14,9586		·11,32	0,34348
-0,13	17,2005	-13,80	14,8961		·11,28	0,560725
-0,11	18,7207	-13,70	14,7945		·11,23	0,496252
-0,10	16,5314	-13,60	14,5226		·11,18	0,529704
-0,08	13,8174	-13,50	14,4352		·11,13	0,683431
-0,05	12,5305	-13,40	14,5637		·11,08	0,594052
-0,03	12,5447	-13,30	14,6872		·11,03	0,381646
0,00	7,12556	-13,20	14,7023		-11,01	0,461716
0,03	4,43993	-13,15	14,705		·10,98	0,531671
0,05	3,36892	-13,10	14,7599		·10,95	0,479437
0,08	2,10616	-13,08	14,6255		·10,93	0,600493
0,10	1,39003	-13,05	14,7384	-	·10,88	0,674327
0,11	0,654766	-13,00	14,6475		·10,83	0,588054
0,13	0,393412	-12,98	14,6381		·10,78	0,377926
0,15	0,677328	-12,95	14,2852		·10,73	0,13669
0,18	0,454397	-12,92	14,6035		·10,67	0,113041
0,20	0,497092	-12,90	14,1399		·10,63	0,231587
0,25	0,337165	-12,85	14,172		·10,58	0,232477
0,30	0,356178	-12,82	14,0465		·10,53	0,152943
0,35	0,348241	-12,80	13,9388		·10,48	-0,124888
0,40	0,359393	-12,78	13,8345		·10,38	-0,139671
		-12,75	13,5924		·10,28	-0,0727585
		-12,70	12,9696			
		-12,65	12,2778			
		-12,60	11,3934			
		-12,55	10,27			
		-12,50	8,38685			
		-12,50	8,36234			
		-12,44	6,46167			
		-12,40	5,14164			
		-12,35	3,81952			
		-12,30	2,5208			
		-12,25	1,60888			
		-12,10	0,352415			

7. Anhang

Profil D7 AB +2 H_2O , 1523 K, NQ Profil D9 ABNa4, 1523 K, RQ

x [mm]	A CO _{2,mol}
20,00	3,33174
19,90	4,74347
19,80	4,08304
19,60	4,441752
19,40	5,19074
19,20	4,05511
19,00	3,7636
18,90	4,23024
18,80	4,24992
18,60	4,02741
18,50	4,05536
18,40	3,65071
18,30	3,55825
18,20	3,31519
18,10	3,43581
18,00	3,67527
17,80	3,54459
17,75	2,93892
17,70	2,6757
17,60	2,16112
17,55	2,19672
17,50	1,58552
17,45	1,3665
17,40	1,00289
17,30	0,685452
17,20	0,550891
17,10	0,53534
17,00	0,454618

11020	, , , , , , , , , , , , , , , , , , ,
x [mm]	A CO3 ²⁻
22,01	11,696
23,01	11,7609
24,01	11,517
25,00	11,8002
25,52	12,4713
25,60	12,1748
25,70	11,8061
25,80	12,4456
25,90	11,9419
26,00	11,6295
26,10	10,602
26,13	10,2124
26,15	10,0049
26,18	9,57378
26,20	9,35032
26,22	8,97512
26,24	8,76143
26,26	8,08072
26,28	7,90735
26,30	7,39164
26,32	7,067
26,34	6,76661
26,36	6,29197
26,38	5,82378
26,40	5,46273
26,42	4,99607
26,44	4,51823
26,46	4,40806
26,48	3,94441
26,50	3,72232
26,52	3,59276
26,54	3,2965
26,56	2,89722
26,58	2,63471
26,60	2,39734

Fortsetzung D9	
26,65	1,86638
26,69	1,40305
26,79	0,614497
26,89	0,190197
26,99	0,346641
27,49	0,153437
27,99	0
28,49	0

Profil D10				
AB NQ	+ H ₂ O,	1523 K,		
	x [mm]	A CO _{2,mol}		
	2,49	7,0433		
	2,00	6,8024		
	1,90	6,8022		
	1,70	6,8531		
	1,50	7,6720		
	1,30	6,3158		
	1,10	6,1395		
	1,00	6,3307		
	0,90	6,7855		
	0,85	6,4664		
	0,80	7,5244		
	0,75	7,2028		
	0,70	6,7341		
	0,65	6,8994		
	0,60	7,7115		
	0,55	6,8227		
	0,50	6,1187		
	0,45	5,7485		
	0,40	5,6483		
	0,35	6,3065		
	0,30	6,6594		
	0,25	6,4148		
	0,20	4,8442		
	0,15	4,6899		
	0,10	4,5901		
	0,05	4,4104		
	0,00	3,6956		
	-0,05	3,1451		
	-0,10	2,2234		
	-0,15	1,9821		
	-0,20	1,8890		
	-0,25	1,8012		
	-0,30	1,0992		
	-0,35	0,5418		

Fortsetzung D10				
x [mm]	A CO _{2,mol}			
-0,40	0,4748			
-0,45	0,5553			
-0,50	1,7885			
-0,55	0,4611			
-0,60	0,4243			
-0,70	0,2968			
-0,80	0,2083			
-1,00	0,0740			
-1,50	0,0000			

Profil D12 AB + 0,7 H₂O, 1523 K, RQ

x [mm]	A CO _{2,mol}	A CO3 ²⁻
-2,25	-0,242027	-0,159501
-2,00	-0,452884	0,589686
-1,75	-0,62698	0,182418
-1,50	0,456029	1,1187
-1,25	0,824542	1,31657
-1,00	0,146746	0,301402
-0,50	0,103518	0,497361
-0,40	-0,33431	-0,64569
-0,30	-0,30075	-0,495881
-0,20	-0,682082	-1,08973
-0,10	-0,522952	-0,514818
0,00	0,205472	-0,270713
0,05	0,0244482	-0,466018
0,10	-0,0944248	-0,405097
0,15	-0,374289	-0,944737
0,20	-0,164815	0,289929
0,25	0,193915	0,882882
0,30	0,0112069	0,0913063
0,35	0,03426333	0,414401
0,40	-0,0237545	0,53135
0,45	0,0428779	0,35345
0,50	0,140364	0,697097
0,52	0,752567	1,38666
0,54	0,823593	1,54299
0,56	1,0481	1,31286
0,58	1,30889	1,26831
0,60	1,62099	1,911259
0,62	1,95726	2,6045
0,64	1,96227	2,4195
0,66	2,2168	2,68034
0,68	1,80794	1,97775
0,70	1,70718	1,67139
0,72	2,23886	2,18939
0,74	2,83465	2,89057
0,76	3,30155	2,7454
0,78	3,79011	3,42049
0,80	4,65431	4,11368
0,82	5,17798	4,40404
0,84	6,20332	5,29088
0,86	6,9963	5,97396

Fortsetzung D12				
x [mm]	A CO _{2,mol}	A CO3 ²⁻		
0,88	8,64629	6,83336		
0,90	9,27659	7,30136		
0,92	10,1773	8,27268		
0,94	10,659	8,48342		
0,96	11,7088	8,90452		
0,98	12,925	9,76342		
1,00	13,231	10,6359		
1,06	15,7978	12,0617		
1,11	16,1116	12,1893		
1,14	14,4438	11,596		
1,19	14,4114	11,5324		
1,25	14,9915	11,8746		
1,28	14,5913	11,4833		
1,32	15,1826	12,13		
1,34	15,2742	11,1482		
1,46	15,3979	11,94		
1,48	15,6503	11,4079		
1,52	16,6409	11,8143		
1,70	15,9813	11,5312		
1,78	15,663	11,1986		
1,93	16,7305	11,6016		
2,03	16,3872	11,5717		
2,30	15,632	11,8524		
2,38	15,943	13,1467		
2,79	16,3799	11,9733		

Profil D13		Fortsetzung D1	3	Profil D15	
AB, 1623 K, RQ		x [mm]	A CO _{2 mol}	ABNa3, 152	3 K, RQ
		1.50	15.1871		
x [mm]	A CO _{2 mol}	1,66	16,2592	x [mm]	A CO ₃ ²⁻
-1.996	0	1,70	15,4804	-2,474	51,4356
-1,746	0,183333	1,80	16,2848	-1,980	51,4656
-1,496	0,322758	1,89	16,9907	-1,780	51,0124
-1,246	0,441808	2,15	16,575	-1,480	50,7084
-0,996	0,484718	2,46	15,6563	-1,380	50,333
-0,746	0,696338	2,50	15,0492	-1,280	51,23
-0,25	1,49145	2,55	15,2137	-1,230	51,5836
0,00	0,591422	2,64	15,9028	-1,180	50,6981
0,10	0,118254	2,74	15,1695	-1,130	50,2065
0,20	0,226788	2,88	16,9926	-1,088	51,2098
0,30	0,640298	3,06	17,0924	-0,988	52,0453
0,40	0,0198259	3,19	16,2026	-0,888	50,7551
0,50	0,0842412	3,39	15,7352	-0,738	50,1277
0,60	1,8916	3,60	15,3447	-0,688	49,62
0,65	2,83378	4,05	14,3813	-0,588	49,1818
0,70	3,38755	4,28	14,9309	-0,388	47,303
0,75	4,45981	4,69	15,1265	-0,288	42,7534
0,80	4,83097			-0,278	42,7373
0,85	5,63002			-0,268	42,7669
0,90	6,95833			0,08	17,9676
0,95	7,36459			0,10	14,1925
1,00	8,53468			0,15	12,0867
1,02	9,60877			0,20	8,40388
1,04	9,48735			0,25	6,10139
1,06	9,96837			0,30	4,65249
1,08	10,8775			0,35	4,08177
1,10	11,2305			0,40	3,18567
1,12	11,5648			0,50	0,953445
1,14	12,1998			0,60	1,50953
1,16	12,3444			0,70	0,547913
1,18	12,7017			0,80	0,061196
1,20	12,8766			0,90	0,162094
1,25	13,6219			1,00	-0,0640333
1,30	14,8226			1,25	-0,20525
1,32	13,7481			1,50	-1,11683
1,43	14,9235			1,65	-0,049097
1,47	14,943			2,00	-0,68547

Profil D17 ABNa6, 1523 K, RQ

x [mm]	A CO3 ²⁻
-3,84	10,2331
-1,49	11,1783
-1,25	11,1064
-1,15	11,1205
-1,10	11,1175
-1,00	11,0728
-0,90	11,128
-0,75	11,0736
-0,70	11,1404
-0,60	11,0684
-0,50	11,1136
-0,40	11,0637
-0,30	11,0024
-0,20	10,8588
-0,10	10,7274
0,00	10,2331
-0,05	10,5309
-0,15	10,7752
0,05	9,9164
0,10	9,49044
0,15	9,08349
0,20	8,52882
0,25	7,88264
0,30	7,18058
0,35	6,51671
0,40	5,8197
0,50	4,49329
0,52	4,24032
0,54	3,91508
0,56	3,64641
0,58	3,52748
0,60	4,36579
0,66	3,61703
0,68	2,29414
0,70	1,82635
0,72	1,5376
0,90	0,657762

Fortsetzung D17				
x [mm]	A CO3 ²⁻			
0,95	0,501428			
1,00	0,410295			
1,15	0,149904			
1,19	0,133572			
1,49	0,0107957			
1,79	0			
2,49	0			

Profil D18 ABNa4, 1613 K, RQ

x [mm]	A CO3 ²⁻
-15.739	0
-15.489	-0.164736
-15.239	-0.946751
-14.989	-0.0328414
-14.789	0.421047
-14,589	0.857458
-14.489	0.859552
-14.289	1.81963
-14,239	1.87825
-14,189	2,48202
-14.139	2.673
-14.089	2.2338
-14.029	2.07639
-13.989	3.58124
-13.939	3.79105
-13,889	5.54006
-13,446	12,4427
-13.416	13.2082
-13,396	14.5784
-13.376	14,4323
-13.346	13.9862
-13.316	16.2377
-13,296	15,4449
-13.15	18.4077
-13.12	21.314
-13.10	21,1986
-13.06	23,7511
-13.02	21.8765
-12.92	26.0494
-12.90	26,1464
-12.88	26.8149
-12.85	27.3914
-12.82	27,7953
-12.80	27,5608
-12.78	29.2664
-12.75	29.5929
-12,72	30.0649
-12.70	30.1275
-12.68	30.4851
-12.65	27,0702
-12.60	30.8871
-12.55	30.6577

Fortsetzung D18	
x [mm]	$A\ \text{CO}_3^{\ 2^\text{-}}$
-12,50	32,0488
-12.45	31.1614
-12,40	31,4059
-12,35	31,3744
-12.30	32.1462
-12.25	32.0822
-12.20	32,1011
-12,10	32,7244
-12.00	33.2008
-11.90	33,8134
-11.80	33.7087
-11.59	35.1269
-11.40	33.7507

Profil D20 ABNa6, 1613 K, RQ

	0
x [mm]	A CO_3^{2-}
4,994	10,9929
3,75	12,3583
3,45	11,6152
3,25	11,482
3,00	11,6025
2,90	11,5863
2,80	11,7255
2,70	11,4502
2,60	12,0178
2,55	11,7072
2,50	12,0313
2,45	12,3677
2,40	11,6574
2,35	12,2468
2,30	11,9255
2,25	12,1176
2,22	11,0346
2,20	11,6024
2,18	10,3377
2,15	10,9216
2,12	10,1629
2,10	10,5589
2,08	9,64866
2,05	10,2621
2,02	9,39217
2,00	9,46554
1,98	9,53136
1,95	9,08202
1,92	8,97749
1,90	8,12435
1,88	8,19643
1,86	7,77448
1,84	7,96964
1,82	7,30142
1,80	7,09118
1,78	7,33815
1,76	6,5979

Fortsetzung D2	20
x [mm]	A CO32-
1,74	6,29339
1,72	6,00191
1,70	6,34148
1,68	5,9075
1,66	4,69943
1,64	4,65476
1,62	4,72836
1,60	4,69531
1,58	4,64166
1,56	4,3372
1,54	4,00011
1,52	3,41964
1,50	3,29406
1,48	3,22495
1,46	2,51035
1,44	2,76215
1,42	1,86149
1,40	2,44279
1,35	1,78968
1,30	1,24147
1,25	1,0355
1,20	0,727997
1,15	0,952351
1,10	0,0918902
1,05	0,327382
1,00	0,095155
0,75	0,593764
0,504	1,02916
0,254	0,658027
0,004	0,58534
-0,246	0,97335
-0,496	0,473884
-0,746	-0,227884
-0,996	0,334807
-1,246	0
-1,496	0,10087

Profil D22 AB, 1613 K, RQ

x [mm]	A CO _{2 mol}
4,40	0,0702491
4,30	0,0977581
4,25	0
4,15	0,0948817
4,10	0,613688
4,05	0,661966
4,00	0,0584927
3,95	0,466048
3,90	0,655844
3,85	0,864341
3,80	0,581445
3,74	0,406628
3,72	0,40539
3,70	0,289769
3,65	0,700405
3,60	1,23199
3,55	1,70471
3,50	2,64015
3,45	3,02876
3,42	3,56313
3,40	3,50544
3,38	4,12631
3,35	4,65691
3,32	4,97568
3,30	5,52873
3,28	6,28411
3,25	6,67537
3,22	7,29018
3,20	7,3819
3,18	7,81441
3,15	8,36324
3,12	9,08672
3,10	9,44344
3,08	10,1433
3,02	10,7283
3,00	10,9864
2,98	11,0513

Fortsetzung D22	
x [mm]	$A \; CO_{2,mol}$
2,95	11,8151
2,92	12,1078
2,90	12,0037
2,88	11,8907
2,85	12,0633
2,82	11,9048
2,80	12,0873
2,78	12,3612
2,75	12,3656
2,72	12,5711
2,70	12,8143
2,65	12,6401
2,60	12,5565
2,55	12,936
2,50	12,3829
2,22	12,6899
2,00	12,8969
1,75	12,8835
1,50	12,6981
1,22	12,8655
0,92	12,675

Profil D24 AB, 1613 K, RQ

x [mm]	A CO _{2,mol}
-5,002	14,8057
-5,502	14,6801
-5,952	14,7255
-6,102	14,8823
-6,202	14,5582
-6,302	14,5339
-6,402	14,3602
-6,502	14,1995
-6,602	14,279
-6,622	14,2502
-6,642	14,221
-6,662	14,1243
-6,682	14,0682
-6,70	14,1514
-6,72	14,1619
-6,75	14,027
-6,78	13,9655
-6,80	13,8945
-6,82	13,614
-6,85	13,7119
-6,88	12,9335
-6,90	13,2937
-7,00	12,2866
-7,02	12,4412
-7,04	12,2593
-7,06	11,9181
-7,08	11,674
-7,10	11,2554
-7,12	10,7418
-7,14	10,6086
-7,16	10,4156
-7,18	10,0804
-7,20	9,65494
-7,22	9,3224
-7,24	8,90466
-7,26	8,59384
-7,28	8,06127
-7,30	7,61663

Fortsetzung D2	4
x [mm]	A CO _{2,mol}
-7,32	7,45157
-7,34	6,94041
-7,36	6,46611
-7,38	6,19134
-7,40	5,70998
-7,42	5,44134
-7,44	5,01179
-7,46	4,60471
-7,48	4,12188
-7,50	3,83665
-7,52	3,57902
-7,54	3,27712
-7,56	3,09195
-7,58	2,72155
-7,60	2,53657
-7,62	2,37581
-7,64	2,03106
-7,66	2,08232
-7,68	1,87373
-7,70	1,72157
-7,72	1,55563
-7,74	1,33632
-7,76	1,21237
-7,78	1,18187
-7,80	1,11024
-7,82	0,83594
-7,84	0,812721
-7,86	0,684924
-7,88	0,609413
-7,90	0,517781
-7,95	0,354053
-8,00	0,315921
-8,05	0,362786
-8,10	0,53123
-8,20	0,303938
-8,30	0,309243
-8,40	0,270945
-8,50	0,0998657
-9,00	0

Profil D25 AB + 0,7 H₂O, 1523 K, RQ

x [mm]	A CO _{2,mol}
1,356	0,325821
1,546	0,234984
1,606	-0,463711
1,756	0,745753
1,806	-1,32851
1,906	0,494732
1,926	0,0800305
2,104	0,309677
2,304	0
2,504	0,162082
2,604	0,534712
2,654	0,875274
2,704	1,25743
2,754	1,37409
2,804	1,81228
2,844	1,04513
2,854	2,62569
2,864	1,37225
2,884	2,95735
2,904	3,78388
2,924	3,1413
2,944	3,7966
2,964	4,3966
2,984	4,706
3,004	5,45253
3,10	10,4993
3,14	12,0615
3,16	10,0641
3,18	10,4377
3,20	10,7026
3,22	11,0959
3,24	12,5491
3,26	13,3593
3,28	13,2426
3,30	13,7028
3,35	14,1937
3,40	14,3789

Fortsetzung D25		
x [mm]	A CO _{2,mol}	
3,45	15,0958	
3,50	14,9026	
3,55	15,7536	
3,60	15,5706	
3,65	15,5188	
3,70	15,3976	
3,75	16,7543	
3,80	14,947	
3,90	14,6451	
4,00	14,63	
4,20	15,3093	
4,39	15,9101	
4,65	14,4976	
4,80	13,7627	
5,00	13,6853	
5,26	14,2457	
5,26	14,2457	
5,494	15,1321	

Profil D35 ABNa2, 1523 K, RQ

x [mm]	A CO3 ²⁻
-1,491	22,2329
-1,241	22,0842
-0,991	21,341
-0,741	21,4173
-0,491	21,8771
-0,241	21,8337
0,009	21,6724
0,109	21,7395
0,209	21,2184
0,309	21,1208
0,409	21,274
0,459	21,2515
0,509	21,2613
0,559	21,0203
0,609	20,5335
0,659	20,6953
0,709	20,7238
0,759	19,6777
0,809	19,4382
0,829	19,1868
0,859	18,661
0,889	18,5276
0,909	18,2548
0,929	17,0679
0,959	16,969
0,989	16,5866
1,009	15,4745
1,029	14,6647
1,059	14,17
1,089	13,1206
1,109	12,0736
1,129	11,6298
1,149	10,2331
1,178	9,42855
1,208	8,15538
1,226	8,09694
1,256	6,15372

Fortsetzung D35	
x [mm]	A CO3 ²⁻
1,452	1,97904
1,48	2,309
1,50	1,21684
1,52	1,13536
1,55	1,4017
1,58	1,41054
1,60	1,66462
1,70	0,286714
1,80	0,28104
1,90	0,0726479
2,00	0,382767
2,25	0,359576
2,45	0,446832
2,596	-0,253784
2,706	-0,244695
2,956	0,0855572
3,206	-0,493951
3,456	0,395604
3,706	0
3,956	0,399831

7. Anhang

Profil D36 ABNa7, 1523 K, NQ

-

x [mm]	A CO32-
3,00	6,95628
2,75	6,83097
2,50	6,81799
2,40	6,94343
2,30	6,87122
2,25	6,82523
2,20	6,75407
2,15	6,59317
2,10	6,91666
2,08	6,90794
2,05	6,94524
2,02	6,7207
2,00	6,53282
1,98	6,84483
1,95	6,86689
1,92	6,50484
1,90	6,61184
1,88	5,49635
1,85	5,44117
1,80	4,99185
1,75	5,1713
1,70	4,93456
1,65	4,53131
1,60	4,39273
1,55	3,8742
1,50	3,2382
1,45	2,69449
1,40	2,62962
1,35	2,0788
1,30	1,71298
1,25	1,36495
1,22	0,921042
1,20	1,16697
1,18	1,72659
1,15	0,846936
1,12	0,179373
1,10	0,311865
1,08	0,437023

Fortsetzung D36		
x [mm]	A CO32-	
1,05	0,322143	
1,00	-0,172504	
0,90	-0,248282	
0,80	-0,0968434	
0,75	-0,543857	
0,50	-0,555201	
0,25	-0,559735	
0,00	-0,0323836	
-0,25	-0,0117909	
-0,50	-0,405415	
-0,75	-0,487204	
-1,00	0	

Profil D37 ABNa7, 1523 K, RQ

x [mm]	A CO3 ²⁻
-7,50	35,7266
-7,25	30,5599
-7,00	30,9807
-6,80	28,7544
-6,70	26,1918
-6,65	28,1445
-6,60	27,5595
-6,58	29,0329
-6,55	28,2019
-6,52	29,2663
-6,48	27,5785
-6,45	28,1262
-6,42	27,1673
-6,40	26,8112
-6,38	27,3137
-6,36	26,9241
-6,34	26,7878
-6,32	26,451
-6,30	25,2171
-6,28	24,5686
-6,25	22,6394
-6,22	21,7211
-6,20	21,4059
-6,18	21,4136
-6,15	19,8371
-6,12	17,2473
-6,10	15,8111
-6,08	16,4994
-6,05	13,5118
-6,02	13,7031
-6,00	11,0074
-5,98	10,7234
-5,95	9,08202
-5,90	8,02819
-5,88	7,77215
-5,85	4,78484
-5,82	4,79094

Fortsetzung D	37
x [mm]	A CO ₃ ²⁻
-5,80	5,63468
-5,78	4,35068
-5,75	3,8045
-5,72	3,02379
-5,70	2,1177
-5,65	2,36111
-5,60	0,026168
-5,55	1,30213
-5,50	0,711434
-5,40	1,77834
-5,30	1,33574
-5,10	1,20668
-5,00	-0,508345
-4,50	0,203513
-4,00	0

Profil D38 ABNa2, 1523 K, RQ

x [mm]	A CO32-
3,988	1,91404
3,738	4,83076
3,488	0
3,238	4,79983
2,990	4,22015
2,740	6,94122
2,630	0,0306985
2,440	2,13562
2,240	1,57852
2,00	2,08772
1,90	3,35062
1,80	1,70858
1,70	4,47645
1,60	7,92886
1,58	4,85479
1,55	2,80734
1,52	2,40263
1,50	5,85649
1,48	2,70302
1,45	4,8948
1,25	13,1693
1,22	14,5213
1,20	12,5006
1,17	14,3467
1,14	17,6011
1,12	14,5547
1,10	27,3813
1,08	23,875
1,06	30,3724
1,02	30,7102
1,00	26,4798
0,98	27,4299
0,95	34,2098
0,92	29,5674
0,90	35,3015
0,88	36,7848
0,85	37,4763

Fortsetzung D38	
x [mm]	A CO3 ²⁻
0,82	36,26
0,80	38,6618
0,75	41,6693
0,70	42,9863
0,65	39,5727
0,60	40,9795
0,55	40,2173
0,50	43,9556
0,45	42,203
0,40	39,1608
0,30	46,364
0,20	45,4016
0,10	41,4811
0,002	38,4948
-0,248	40,532
-0,498	43,2497
-0,742	44,2737
-0,992	41,2908
-1,242	45,0408
-1,492	46,7236

Profil D39 ABNa7, 1523 K, RQ

-

x [mm]	A CO3 ²⁻
6,95	8,79107
6,70	7,2229
6,45	6,97538
6,25	8,17927
6,15	8,56631
6,05	8,98181
5,95	8,75248
5,90	8,64931
5,85	8,16371
5,80	7,82288
5,75	8,35675
5,73	9,33863
5,70	8,71206
5,67	8,16418
5,65	8,66782
5,63	7,81911
5,60	8,13871
5,57	7,87693
5,25	5,67493
5,22	6,32923
5,20	5,48783
5,15	5,39798
5,10	4,92178
5,08	4,65587
5,06	4,69004
5,04	4,09765
5,02	3,42484
5,00	4,1611
4,98	3,39047
4,96	3,23958
4,94	2,69692
4,92	2,56047
4,90	2,28392
4,88	1,8934
4,86	2,08883
4,84	1,83679
4.82	2.06116

Fortsetzung D39	
x [mm]	A CO3 ²⁻
4,80	1,86394
4,75	1,75998
4,70	1,02802
4,65	0,833608
4,60	0,315913
4,55	0,679343
4,50	0,121971
4,45	0,746689
4,40	0,136354
4,20	0,215676
4,00	0
2,02	0,233466

7. Anhang

Profil D40 ABNa2, 1423 K, RQ

_

	~
x [mm]	A CO ₃ ²⁻
-5,002	34,4436
-5,502	33,0246
-6,002	34,613
-6,102	36,3382
-6,202	36,0297
-6,302	37,8027
-6,402	34,8737
-6,502	37,1024
-6,552	37,6204
-6,602	36,8848
-6,652	33,6338
-6,702	35,8041
-6,752	33,8612
-6,802	31,9139
-6,822	31,9385
-6,852	28,6851
-6,882	27,0812
-6,902	29,0603
-6,922	25,0942
-6,952	26,1751
-6,982	20,2453
-7,002	20,2039
-7,022	23,5588
-7,052	18,3972
-7,11	11,0205
-7,12	17,1956
-7,13	8,16432
-7,14	14,2357
-7,15	7,65285
-7,16	6,13031
-7,18	4,73656
-7,190	1,007
-7,210	8,22086
-7,240	5,35079
-7,270	7,15984
-7,290	2,87762
-7,340	1,68588

Fortsetzung D40)
x [mm]	A CO3 ²⁻
-7,820	5,16299
-7,950	3,64569
-7,990	0
-8,240	1,37332
-8,490	0

Profil D41 ABNa1, 1523 K, RQ

x [mm]	A CO _{2,mol}	A CO3 ²⁻
2,20	5,05258	16,1357
2,25	5,38995	16,4374
2,50	5,60082	17,0392
2,75	5,6982	17,0734
2,90	5,77452	16,6401
3,00	5,92802	16,8799
3,10	5,8664	17,161
3,20	5,86843	17,3123
3,30	5,80591	16,5198
3,40	5,76049	17,1657
3,50	5,47042	17,0864
3,60	5,54105	17,7169
3,70	5,6146	17,14
3,75	5,67329	18,0764
3,80	5,79439	17,4608
3,85	5,89674	17,3973
3,90	5,44984	17,685
3,95	5,35719	17,9192
4,00	5,30073	17,0998
4,05	5,07617	16,6403
4,10	4,9443	15,8989
4,12	4,80402	15,759
4,14	5,03651	15,5774
4,16	4,91443	14,5054
4,18	4,77997	14,1133
4,20	4,53173	14,0781
4,22	4,27145	13,8408
4,24	4,06063	13,2513
4,26	3,32522	12,3011
4,28	3,15459	11,5725
4,30	2,97947	10,9079
4,32	2,71334	10,6038
4,34	2,46112	10,0367
4,36	2,43403	9,41102
4,38	2,33045	9,6076
4,44	1,95016	6,45052
4,46	1,83531	6,32754

Fortsetzung D41		
x [mm]	A CO _{2,mol}	A CO32-
4,48	1,7634	5,90559
4,50	1,37667	5,11493
4,52	1,20177	5,15051
4,54	1,12698	3,98999
4,55	1,18977	4,21805
4,56	1,02637	4,60029
4,58	0,879495	4,3958
4,60	0,81195	3,23322
4,65	0,711005	2,58497
4,70	0,773188	1,84948
4,75	0,463904	1,84442
4,80	0,628004	1,38179
4,90	0,750935	1,46119
5,00	0,714673	1,10223
5,25	0,782997	1,76423
5,50	0,489668	1,425
5,75	-0,053781	0,978818
6,00	0,208863	0,399349
6,50	0	0

Profil D42 ABNa3, 1423 K, RQ

x [mm]	A CO32-
-21,994	52,1592
-21,894	54,3922
-21,824	53,6898
-21,794	53,0768
-21,644	53,1512
-21,50	52,7899
-21,30	53,8036
-21,15	53,1736
-21,00	55,1569
-20,90	53,7006
-20,80	53,3051
-20,70	52,6474
-20,60	52,4335
-20,55	54,0856
-20,50	52,6622
-20,45	54,2818
-20,40	54,3583
-20,35	53,1188
-20,30	53,8051
-20,28	53,083
-20,26	48,7766
-20,24	49,1888
-20,22	47,7288
-20,20	45,9871
-20,18	45,1644
-20,16	42,0633
-20,14	41,6243
-20,12	40,8476
-20,10	39,034
-20,08	37,0209
-20,06	30,5861
-20,04	28,6611
-19,96	17,898
-19,94	16,4252
-19,92	13,5788
-19,90	14,7762
-19,88	12,8084

Fortsetzung D42	
x [mm]	A CO3 ²⁻
-19,86	10,1664
-19,84	12,118
-19,82	9,55417
-19,80	8,24563
-19,78	7,64437
-19,76	6,84514
-19,74	5,87986
-19,72	6,99615
-19,70	6,18999
-19,68	5,60527
-19,66	4,99519
-19,64	6,02609
-19,62	3,14044
-19,60	3,50102
-19,55	1,79204
-19,50	2,82143
-19,40	5,28986
-19,20	2,86039
-19,00	1,27122
-16,85	0

Profil D43 ABNa3, 1613 K, RQ

x [mm]	A CO ₃ ²⁻
-17,608	44,801
-17,708	41,8708
-17,758	41,9844
-17,808	43,1193
-17,858	44,8303
-17,908	43,5972
-17,958	40,6942
-18,008	38,7563
-18,058	42,1693
-18,18	41,3629
-18,2	36,7232
-18,22	40,9666
-18,24	39,0219
-18,26	36,5535
-18,28	35,9025
-18,3	35,2815
-18,32	33,2936
-18,34	32,4344
-18,36	33,9223
-18,38	31,1866
-18,4	31,4379
-18,42	31,2344
-18,45	29,4457
-18,48	29,0716
-18,5	27,3695
-18,52	25,8255
-18,55	23,3572
-18,58	22,9907
-18,6	21,31
-18,62	19,52
-18,65	19,2084
-18,68	20,171
-18,7	19,8342
-18,72	17,3719
-18,75	17,4626
-18,78	16,9485
-18,8	15,0776

Fortsetzung D43	
x [mm]	A CO3 ²⁻
-18,82	14,153
-18,85	13,5866
-18,88	12,8163
-18,9	11,9774
-18,92	10,6241
-18,95	9,98133
-18,98	9,15479
-19	9,27964
-19,02	8,82355
-19,05	7,94851
-19,08	6,57455
-19,1	5,24983
-19,12	6,98786
-19,15	5,80348
-19,18	5,84302
-19,2	5,45924
-19,25	4,35822
-19,3	3,88614
-19,35	3,85842
-19,4	3,73907
-19,45	2,4369
-19,5	1,40952
-19,55	2,14505
-19,6	0,175094
-19,7	0
-19,8	0
-19,9	0
-20	0

Profil D44 ABNa1, 1423 K, RQ

x [mm]	A CO3 ²⁻
-17,50	41,5189
-17,80	40,4316
-17,90	44,5635
-18,00	41,0183
-18,10	42,4824
-18,20	42,2139
-18,25	41,0988
-18,30	39,7093
-18,35	38,6816
-18,40	37,9884
-18,45	37,8543
-18,50	37,7218
-18,55	36,3352
-18,58	36,1619
-18,60	34,7367
-18,62	34,5315
-18,64	34,2645
-18,66	32,9717
-18,68	32,7588
-18,70	32,9004
-18,72	32,216
-18,75	30,2662
-18,78	28,9372
-18,80	27,5591
-18,82	25,6
-18,85	24,6909
-18,88	23,8518
-18,90	23,9517
-18,92	23,8933
-18,94	21,8271
-19,02	17,9569
-19,04	17,5827
-19,07	15,8188
-19,09	15,8523
-19,11	13,3046
-19,14	11,8417
-19,17	11,0673

Fortsetzung D44	
x [mm]	A CO3 ²⁻
-19,19	9,4157
-19,21	9,46559
-19,24	8,28494
-19,27	7,25064
-19,29	6,99078
-19,31	6,49072
-19,34	6,29918
-19,37	5,33015
-19,39	3,37516
-19,41	3,78235
-19,44	3,76986
-19,47	2,99778
-19,49	2,605
-19,51	1,2726
-19,54	2,56899
-19,89	0
-19,99	0
-20,09	0
-20,19	0
-20,49	0
-20,69	0

7. Anhang

Profil D45 ABNa6, 1523 K, RQ

x [mm]	A CO3 ²⁻
3,998	38,7902
3,798	39,4116
3,598	42,4768
3,108	41,0834
3,048	40,6941
2,998	40,5141
2,898	40,8383
2,798	40,8837
2,698	40,5801
2,678	39,8137
2,658	39,5033
2,638	40,2767
2,618	40,1979
2,598	40,1902
2,548	38,0914
2,498	36,3603
2,448	34,0493
2,418	32,1653
2,398	29,9766
2,378	27,9814
2,348	25,2423
2,318	22,3973
2,298	18,1947
2,25	17,3223
2,23	15,4347
2,20	12,3693
2,18	11,2999
2,15	10,0286
2,10	6,34253
2,05	4,77805
2,00	3,56834
1,95	2,87306
1,90	2,153
1,85	1,73433
1,802	3,68334
1,722	2,8471
1,515	1,99456
1,455	0,5777

Fortsetzung D4	45
x [mm]	A CO32-
1,405	0,543498
1,355	0,64542
1,165	0,5508
1,015	0,674059
0,765	-0,040274
0,515	0,129885
0,015	1,58828

Profil D48 ABNa4, 1423 K, RQ

x [mm]	A CO3 ²⁻
3,75	52,6322
3,70	53,9615
3,60	53,9301
3,55	52,7008
3,50	51,6556
3,45	50,8481
3,40	51,2623
3,35	49,1679
3,30	50,1722
3,25	50,7042
3,20	48,6117
3,15	48,9776
3,12	48,1341
3,10	38,9441
3,05	44,7136
3,02	41,4658
3,00	38,8792
2,98	38,212
2,95	34,1921
2,92	29,6815
2,90	25,4636
2,85	23,3061
2,82	21,8446
2,80	18,8165
2,78	18,3514
2,75	15,4879
2,72	12,5455
2,70	10,8277
2,68	10,2789
2,65	6,61078
2,62	5,89594
2,60	5,63397
2,58	4,36857
2,55	4,23748
2,50	3,05403

Fortsetzung [048
x [mm]	A CO3 ²⁻
2,45	2,14408
2,40	1,92275
2,35	1,29458
2,30	1,37112
2,20	0,742388
2,10	1,11078
2,00	0,871558
1,75	0,457989
1,50	-0,0811441
1,25	-0,117661
1,00	-0,688156
Profil D49 ABNa7, 1423 K, RQ

x [mm]	A CO ₃ ²⁻
4,135	32,2923
3,985	31,7814
3,735	33,461
3,585	32,7185
3,485	34,0656
3,385	32,513
3,385	33,0347
3,285	31,593
3,235	34,7266
3,185	32,1342
3,185	32,5705
3,085	32,0944
2,985	32,3226
2,985	34,1124
2,935	32,1938
2,885	31,925
2,885	33,9638
2,835	33,0585
2,785	32,7563
2,735	32,2835
2,735	32,524
2,685	33,8807
2,685	33,4442
2,638	34,4748
2,618	33,496
2,598	32,1573
2,598	34,3444
2,578	34,4439
2,548	33,7555
2,548	35,1191
2,498	36,3587
2,368	33,3507
2,328	34,6616
2,298	31,9694
2,278	30,2402
2,248	29,4525
2,218	27,649
2,198	26,7752

Fortsetzung D49		
x [mm]	A CO3 ²⁻	
2,178	24,2436	
2,148	22,8719	
2,118	20,8853	
2,098	19,2098	
2,02	13,5077	
2	13,7085	
1,98	12,7647	
1,95	10,794	
1,92	9,2769	
1,9	7,8289	
1,88	7,70943	
1,85	6,32979	
1,82	6,42527	
1,8	5,6016	
1,78	5,65562	
1,76	5,57319	
1,338	2,02631	
1,308	1,13648	
1,288	0,00089857	
1,258	1,07942	
1,228	0,559477	
1,208	0,126436	
1,058	1,53035	
1,008	0,346314	
0,958	-0,128831	
0,888	0,856423	
0,078	1,33191	
0,008	-0,0223312	
0,008	0,67557	
-0,192	0,144829	
-0,242	-0,866738	
-0,392	-0,151002	
-0,492	-0,761897	
-0,592	0,127956	
-0,942	-0,373361	

Profil D50 AB, 1523 K, 20 h, RQ

x [mm]	A CO _{2,mol}
-6,711	7,50724
-6,461	7,64152
-5,629	7,92307
-5,519	7,67545
-5,479	8,02071
-5,379	7,97322
-5,279	7,89712
-5,179	7,81452
-5,079	7,63359
-4,979	7,287
-4,879	7,92371
-4,779	8,0471
-4,729	8,22369
-4,679	8,16369
-4,629	8,2011
-4,579	8,02382
-3,7	6,50042
-3,65	6,80476
-3,6	6,84583
-3,55	6,61897
-3,5	6,39573
-3,45	6,24171
-3,4	5,90661
-3,35	5,55176
-3,3	5,22073
-3,25	4,92701
-3,2	5,07584
-3,15	5,03187
-3,1	4,76485
-3,05	4,34622
-3	3,89671
-2,95	3,49139
-2,9	3,21789
-2,85	3,09404
-2,8	2,96386
-2,75	2,58941
-2,7	2,14771

Fortsetzung D50		
x [mm]	A CO _{2,mol}	
-2,65	2,1589	
-2,6	1,82376	
-2,55	1,7719	
-2,5	1,48403	
-2,45	1,37543	
-2,4	1,42831	
-2,35	1,05242	
-2,3	0,614232	
-2,26	0,201076	
-2,2	-0,0694439	
-2,15	0,273821	
-1,956	0,559711	
-1,906	0,811519	
-1,856	0,918763	
-1,806	0,750642	
-1,756	0,375369	
-1,706	0,982016	
-1,656	0,066559	
-1,606	0,244043	
-1,506	0,196816	
-1,406	-0,116361	
-1,306	-0,54696	
-1,206	0,134892	
-1,022	-0,339404	
-0,822	-0,165003	
-0,722	-0,871902	
-0,622	-0,202582	
-0,422	-0,411454	
-0,222	-0,562794	

Profil D51 AB, 1423 K, 1 h, RQ

x [mm]	A CO _{2,total}
4,00	39,0526
3,75	36,0713
3,60	37,02
3,50	36,265
3,40	35,7851
3,30	35,0775
3,25	34,6773
3,20	35,3456
3,10	35,2134
2,90	34,0022
2,80	32,1308
2,75	15,5479
2,70	15,7566
2,66	15,3923
2,55	15,183
2,50	31,6301
2,45	31,2432
2,40	31,4497
2,35	31,7508
2,30	31,4797
2,25	31,6292
2,20	31,8099
2,15	30,9795
2,10	29,3198
2,08	26,8015
2,05	25,1181
2,02	22,8553
2,00	20,95431
1,98	18,76971
1,95	16,04707
1,92	12,56733
1,90	11,89292
1,88	9,71605
1,85	7,59827
1,82	6,20679
1,80	5,040811
1,78	4,154018

Fortsetzung D51		
x [mm]	A CO _{2,total}	
1,75	3,714735	
1,72	2,810331	
1,70	2,6212548	
1,68	2,712907	
1,65	1,867974	
1,62	3,050125	
1,60	1,9960642	
1,55	1,971859	
1,50	2,587123	
1,40	2,83496	
1,20	2,80526	
1,10	2,3244095	
0,90	3,715525	
0,70	0,939061	
0,50	-0,7160202	
0,25	-0,676037	
0,00	-1,551141	
-0,49	-1,52235	

Profil D52 AB, 1523 K, RQ

x [mm]	A CO _{2,mol}	A CO3 ²⁻
-5,50	16,3811	14,7446
-5,25	16,6151	14,324
-5,00	16,4614	16,1534
-5,00	16,7539	14,1686
-4,90	16,7906	14,4764
-4,80	15,9058	15,9565
-4,80	16,7754	14,4853
-4,70	16,8881	13,0872
-4,60	17,0077	12,3128
-4,55	15,54	15,9581
-4,50	16,8001	12,3367
-4,45	16,2908	12,8634
-4,40	16,2968	13,5402
-4,35	16,392	13,1466
-4,30	14,5211	15,4872
-4,30	16,2843	12,801
-4,25	14,1708	15,6157
-4,25	16,0348	12,8668
-4,20	15,8266	12,8861
-4,15	14,05	15,4858
-4,15	15,3892	11,9684
-4,10	14,8514	11,1912
-4,05	13,9749	10,8088
-4,00	12,3031	10,4766
-3,95	11,1222	9,04993
-3,90	9,85959	8,34183
-3,85	7,95066	7,18121
-3,80	6,69723	4,64795
-3,75	5,26797	4,65228
-3,73	4,14437	6,31214
-3,70	3,47715	4,52821
-3,70	3,98825	2,3325
-3,68	3,21853	3,86452
-3,66	2,85677	3,80719
-3,66	2,62217	-0,591734

Fortsetzung	052	
x [mm]	A CO _{2,mol}	A CO3 ²⁻
-3,64	2,4045	2,79641
-3,61	1,64361	6,09002
-3,58	1,28716	4,75009
-3,56	0,903536	4,1053
-3,54	0,599143	3,66473
-3,52	0,32616	3,89088
-3,50	0,0744616	3,51499
-3,50	0,809159	
-3,48	0,143651	3,26949
-3,46	0,296844	3,3334
-3,44	0,41159	3,43541
-3,302	0,453779	3,74663
-3,282	0,423924	2,87053
-3,152	0,36692	1,05549
-3,102	0,461398	0,879461
-3,002	0,547102	1,03208
-2,902	0,469472	0,269824
-2,802	0,422316	0,290026
-2,702	0,305217	0,725278
-2,502	0,247473	-1,04869
-2,102	0,309485	1,38476
-1,804	-0,00904729	-1,76725
-1,604	-0,0695043	-1,44132
-1,504	-0,1159 <u>43</u>	0,793654

Profil D53 ABNa4, 1523 K, 20 h, RQ

x [mm]	A CO3 ²⁻	
-5,433	19,3264	
-5,233	19,4858	
-5,033	20,1169	
-4,863	19,922	
-4,613	20,6316	
-4,533	19,4263	
-4,493	20,5728	
-4,433	19,7415	
-4,333	19,2058	
-4,293	19,9431	
-4,233	19,7045	
-4,193	20,8838	
-4,133	19,2758	
-4,083	19,9697	
-4,033	19,8217	
-3,993	20,2947	
-3,993	19,7038	
-3,743	19,8833	
-3,493	19,2995	
-3,243	18,4925	
-3,093	17,874	
-2,90	18,1829	
-2,80	17,7805	
-2,70	17,0151	
-2,60	16,4842	
-2,50	16,8313	
-2,40	16,4539	
-2,30	16,036	
-2,20	15,327	
-2,10	15,1245	
-2,00	14,0476	
-1,90	13,7063	
-1,80	11,8923	
-1,70	12,2487	
-1,60	11,4482	
-1,50	10,6845	
-1,40	10,3413	

Fortsetzung D53			
x [mm]	A CO3 ²⁻		
-1,30	9,7415		
-1,20	9,60171		
-1,10	8,84871		
-1,00	8,82939		
-0,90	7,81311		
-0,80	7,10652		
-0,70	6,75653		
-0,60	6,72481		
-0,50	5,84433		
-0,40	5,18006		
-0,30	4,61194		
-0,20	4,6798		
-0,10	3,90633		
0,00	3,9869		
0,10	3,29817		
0,20	2,66675		
0,30	2,94812		
0,40	1,92984		
0,50	1,8433		
0,60	1,21836		
0,70	0,737102		
0,80	1,70413		
0,90	-0,108504		
1,092	1,65148		
1,192	0,14509		
1,222	0,207123		
1,292	0,361985		
1,392	0,209697		
1,492	0,305924		
1,592	0,145546		
1,692	-0,80101		
1,792	0,365796		
1,942	-0,0462118		
1,982	0,491756		
2,182	0		
2,282	0		
3,242	0,41887		
3,292	1,18849		
3,342	0,50136		

Profil D54 ABNa7, 1613 K, RQ

x [mm]	A CO32-
-0,95	31,7641
-1,00	30,6379
-1,10	31,3975
-1,25	31,0404
-1,50	29,4975
-1,50	29,364
-1,60	29,5929
-1,60	28,7803
-1,70	28,3165
-2,00	29,934
-2,00	29,5859
-2,10	30,8654
-2,10	29,9889
-2,20	32,8353
-2,20	31,9616
-2,25	31,6257
-2,30	32,8582
-2,30	32,0669
-2,35	31,967
-2,40	33,1185
-2,40	31,6854
-2,45	32,6651
-2,50	33,5817
-2,50	32,441
-2,60	32,0845
-2,70	32,3155
-2,80	31,7137
-2,85	30,4137
-2,90	28,4398
-2,95	28,094
-3,00	25,9635
-3,05	24,4621
-3,10	22,7425
-3,15	20,2095
-3,20	18,83
-3,25	16,4156
-3,30	15,0423
-3,35	14,463

Fortsetzung D54			
x [mm]	A CO3 ²⁻		
-3,40	12,5338		
-3,55	8,61285		
-3,60	7,62776		
-3,65	6,88289		
-3,70	5,74184		
-3,75	4,85822		
-3,80	3,27808		
-3,85	2,90776		
-3,90	1,89569		
-3,95	1,36166		
-4,00	0,611643		
-4,05	0,679441		
-4,10	1,07691		
-4,15	0,652454		
-4,20	0,408796		
-4,25	0,616427		
-4,30	0,260348		
-4,35	0,635175		
-4,40	1,6535		
-4,50	1,26407		
-4,55	0,215356		
-4,60	0,148511		
-4,70	-0,273779		
-4,75	-0,635218		
-5,00	-0,642758		

Profil D55 ABNa2, 1613 K, RQ

-

x [mm]	A CO32-
-2,495	32,9652
-2,585	33,0899
-2,695	32,204
-2,795	33,167
-2,895	33,735
-3,095	33,7021
-3,145	31,828
-3,255	32,4086
-3,295	31,952
-3,395	33,4966
-3,495	30,7602
-3,595	32,3143
-3,595	32,4683
-3,645	30,6515
-3,685	29,4056
-3,715	27,6385
-3,745	26,3313
-3,745	25,7628
-3,775	24,5837
-3,795	23,2452
-3,815	22,1994
-3,845	20,6279
-3,855	19,4653
-3,895	18,2606
-3,915	16,8205
-4,02	11,5825
-4,05	7,56132
-4,08	6,45464
-4,10	5,44755
-4,12	4,89901
-4,14	4,50015
-4,16	3,6797
-4,18	3,58776
-4,20	2,54125
-4,22	2,50623
-4,24	1,9096
-4,26	1,62173

Fortsetzung D55		
x [mm]	A CO3 ²⁻	
-4,28	1,34971	
-4,30	0,946501	
-4,35	0,733363	
-4,40	0,362081	
-4,45	0,357866	
-4,50	0,410527	
-4,59	0,119656	
-4,70	-0,044297	
-4,75	0,431433	
-4,80	0,0673446	
-4,90	0,739323	
-5,00	-0,0897893	
-5,20	0,324802	
-5,40	0,316172	
-5,60	-0,150536	

Profil D56 ABNa2, 1613 K, RQ

x [mm]	A CO32-
-17,00	44,037
-17,40	45,155
-17,60	44,7392
-18,00	43,6028
-18,20	43,4557
-18,30	43,3935
-18,40	45,0068
-18,55	42,7263
-18,60	45,05
-18,65	45,1107
-18,70	45,2333
-18,75	43,6969
-18,80	44,4998
-18,85	44,8455
-18,90	43,6726
-18,95	43,3801
-19,00	43,5654
-19,05	41,6948
-19,10	39,6881
-19,15	35,5705
-19,20	31,7076
-19,25	28,7032
-19,30	23,8339
-19,35	19,656
-19,41	15,0303
-19,45	12,8665
-19,50	8,99498
-19,55	6,85053
-19,60	4,93231
-19,65	3,45778
-19,70	2,72742
-19,75	2,10554
-19,80	0,752397
-19,85	1,36194
-19,90	1,18553
-19,95	0,95611
-20,00	0,87297
-20,05	0,982528

Fortsetzung D56	
x [mm]	A CO3 ²⁻
-20,10	0,972985
-20,20	1,71119
-20,30	0,366587
-20,40	1,13706
-20,50	1,10481
-20,70	0,381569
-20,90	0,0689921
-21,00	0,363255
-21,20	-0,604361
-21,40	-0,431516
-21,60	-0,952545
-22,00	-1,76129
-22,50	-2,13378

Profil D57 ABNa7, 1613 K, RQ

x [mm]	A CO32-
-17,604	28,5596
-17,754	30,6003
-18,304	29,278
-18,404	28,6491
-18,504	29,036
-18,504	27,7428
-18,554	28,5291
-18,604	28,8784
-18,604	29,013
-18,654	29,218
-18,704	29,7349
-18,704	29,6887
-18,754	29,1978
-18,804	30,2295
-18,804	30,7937
-18,854	30,2524
-18,904	29,3184
-18,904	30,153
-18,954	28,609
-19,004	28,3611
-19,004	28,3666
-19,054	28,4378
-19,104	28,0834
-19,154	23,5853
-19,204	26,6098
-19,254	27,0363
-19,304	26,1846
-19,354	25,0605
-19,404	25,0124
-19,454	24,6181
-19,504	23,5817
-19,554	22,876
-19,604	22,4077
-19,654	21,0938
-19,704	19,7715
-19,754	19,3848
-19,804	18,9516
-19,854	15,6073

Fortsetzung D57	
x [mm]	A CO3 ²⁻
-19,96	14,7431
-20,00	14,4324
-20,00	14,2082
-20,05	13,2655
-20,10	13,1904
-20,10	12,8605
-20,15	12,3903
-20,55	2,64666
-20,60	1,29736
-20,65	0,576501
-20,70	0,437631
-20,75	-0,493517
-20,80	-0,758252
-20,85	-1,1714
-20,90	-1,03879
-20,95	-1,0172
-21,00	-0,944164
-21,05	-1,43141
-21,10	-1,35369
-21,20	-1,6332
-21,30	-1,82412
-21,40	-1,65066
-21,50	-1,27349
-21,60	-1,45936
-21,70	-1,66402
-21,80	-1,24377
-21,90	-1,17681
-22,00	-0,392001
-22,20	0,769517
-22,40	-0,583308
-22,60	0,159204
-22,80	0,283082

Profil D58 AB, 2,2 H₂O, 1523 K, RQ

x [mm]	A CO ₃ ²⁻
-24,00	-0,0337045
-23,75	0,00735216
-23,50	0,10759
-23,40	0,256562
-23,20	-0,0634327
-23,10	-0,00802463
-23,00	-0,0934092
-22,90	-0,0332804
-22,80	0,0203605
-22,60	0,00825596
-22,50	0,137684
-22,40	0,476199
-22,30	1,14847
-22,25	1,44734
-22,20	1,90698
-22,18	2,01829
-22,15	2,31534
-22,12	2,67986
-22,10	2,76912
-22,08	3,22774
-22,05	3,8845
-22,00	3,92528
-21,98	4,34208
-21,95	4,73079
-21,92	5,20945
-21,90	5,50111
-21,88	5,54912
-21,85	5,83564
-21,82	5,71671
-21,74	6,04859
-21,68	6,51962
-21,65	6,54205
-21,60	6,54632
-21,58	6,90052
-21,54	6,99406
-21,49	7,21397
-21,42	7,23578
-21,31	7,54151

Fortsetzung D58	
x [mm]	A CO3 ²⁻
-21,27	7,5696
-21,20	7,6274
-21,11	7,68403
-20,92	7,93441
-20,88	8,11243
-20,67	8,18622
-20,62	8,14424
-20,42	7,97193
-20,35	7,99503
-20,11	7,74725
-20,08	7,78835
-19,892	7,93183
-19,692	7,79801
-19,652	7,50582
-19,622	7,69728
-19,502	7,46808
-19,462	7,62635

Fortsetzung D60	
x [mm]	A CO32-
-16,752	4,92305
-16,572	4,36192
-16,502	4,35159
-16,176	4,72927
-16,046	4,31566

Profil D60 AB, 1,0 H₂O, 1423 K, RQ

Profil D59

RQ

AB, 2,2 H₂O, 1423 K,

x [mm] -19,013

-19,363

-19,752

-19,902

-20,102

-20,302

-20,402

-20,55

-20,65

-20,70

-20,80

-20,85

-20,89

-20,95

-21,00

-21,05

-21,10

-21,15

-21,20

-21,25

-21,30

-21,35

-21,607

-21,677

-21,757

-21,797

-21,827 -21,877

-22,107

-22,167

-22,287

-22,447

-22,759

-23,089

-23,329

A CO ₃ ²⁻	x [mm]	A CO32-
-0,0164033	-20,048	-0,187346
-0,302444	-19,898	0,732253
-0,0917753	-19,798	-0,0102785
-0,0115552	-19,698	0,137482
0,15718	-19,598	0,108156
0,0973955	-19,398	0,0263233
-0,0519204	-19,298	0,114272
0,0545383	-19,248	0,0890906
0,112802	-19,198	0,370368
0,154727	-18,998	0,366741
0,251009	-18,798	0,494584
0,324038	-18,598	0,506771
0,555559	-18,398	0,743309
0,985625	-18,198	0,697688
1,63683	-18,148	0,916046
2,17537	-18,098	0,651039
2,7966	-18,04	1,26759
3,87326	-18,00	0,973973
4,57148	-17,95	1,05167
5,29197	-17,90	1,13121
5,79978	-17,85	1,4776
6,1521	-17,80	1,75654
6,91979	-17,75	2,33519
7,21782	-17,70	2,96555
7,41695	-17,65	3,60474
7,57267	-17,60	4,04174
7,613	-17,57	3,65144
7,65938	-17,55	4,59876
7,94688	-17,54	4,22032
7,97066	-17,46	4,08197
7,73857	-17,43	4,13906
8,03624	-17,40	4,19406
8,19296	-17,37	4,44519
7,72746	-17,33	4,37617
8,1417	-17,29	4,46264
	-17,15	4,62593
	-16,842	4,8533

Profil D61 AB, 1,0 H₂O, 1523 K, RQ

x [mm]	A CO3 ²⁻
-19,50	0,00812266
-19,40	0,0672961
-19,30	0,0226448
-19,20	0,244128
-19,10	0,0826213
-19,00	-0,0652097
-18,95	0,244671
-18,90	0,0376232
-18,85	0,526109
-18,80	0,633929
-18,75	0,869935
-18,65	1,57569
-18,60	1,87641
-18,55	2,20018
-18,50	2,66005
-18,45	3,32904
-18,40	3,62325
-18,35	3,98941
-18,33	3,9209
-18,30	4,12188
-18,22	4,23808
-18,142	4,16552
-18,092	4,19017
-18,062	4,22755
-18,022	4,16874
-17,952	4,41259
-17,902	4,2906
-17,852	4,50232
-17,802	4,6061
-17,752	4,54791
-17,702	4,63395
-17,592	4,54368
-17,572	4,60412
-17,502	4,48502

Fortsetzung D61	
x [mm]	A CO3 ²⁻
-17,452	4,27618
-17,342	4,39358
-17,152	4,3647
-17,106	4,37602
-17,056	4,31366
-17,006	4,52692
-16,826	4,45476
-16,726	4,68329

Lebenslauf

	Personalien
Name	Melanie Sierralta, geb. Braune-Frehse
Anschrift	Große Barlinge 53, 30171 Hannover
Telefon	0511 – 28 33 473
	0511 – 762 4753 (dienstlich)
e-mail	M.Sierralta@mineralogie.uni-hannover.de
Geburtsdatum	19.12.1972
Geburtsort	Hannover
Familienstand	verheiratet mit Andrés Sierralta
	Schulischer und akademischer Werdegang

1978 – 1983	Grundschule Aligse
1983 – 1985	Orientierungsstufe Lehrte Mitte
1985 – 1992	Gymnasium Lehrte
6/92	Abitur
10/92 – 7/98	Studium der Mineralogie an der Universität Hannover Abschluss: Diplom-Mineralogin
	Thema der Diplomarbeit: "Phasenbeziehungen und Schwefellöslichkeit in dazitischem Glas am Beispiel des Vulkan Unzen, Japan"
Seit 9/98	Wissenschaftliche Mitarbeiterin am Institut für Mineralogie, Universität Hannover und Durchführung der Promotion