Neue Wege für die Aufarbeitung nachwachsender Rohstoffe

Vom Fachbereich Chemie der Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

- Dr. rer. nat. -

genehmigte Dissertation

von

Dipl.-Chem. Tanja Koop

geboren am 14. Juli 1973 in Nienburg

Hannover 2002

Referent: Prof. Dr. Thomas Scheper Korreferent: PD Dr. Bernd Hitzmann Tag der Promotion: 3. Juli 2002

DANKSAGUNGEN

Die vorliegende Arbeit wurde in der Zeit von Februar 1999 bis Mai 2002 am Institut für Technische Chemie der Universität Hannover unter der Leitung von Prof. Dr. Thomas Scheper durchgeführt. Ihm danke ich für die interessante Themenstellung, die freundliche Unterstützung und die mir gebotenen Arbeitsmöglichkeiten.

Ich danke PD Dr. Bernd Hitzmann für die Übernahme des Korreferats und die Hilfestellung bei Problemen mit CAFCA.

Für die Korrektur dieser Arbeit und die hilfreichen Ratschläge möchte ich mich bei Dr. Roland Ulber und Kerstin Plate bedanken.

Den Mitarbeitern des Instituts für Technische Chemie danke ich für die netten Scherze und die interessanten Unterhaltungen beim Mittagessen, die für ein gutes Arbeitklima gesorgt haben.

Kirsten Hantelmann und all den namenlosen Schülern danke ich für die Unterstützung meiner Arbeit und das Erleichtern des unendlichen Abwiegens.

Bei Martina Weiß möchte ich mich für die grenzenlose Hilfsbereitschaft, die HPLC-Analytik und die geduldige Beantwortung aller möglichen und unmöglichen Fragen zu CorelDraw ganz herzlich bedanken.

Dr. Faurie von der AMINO GmbH danke ich für die vielfältige Unterstützung.

Für die Zeolith-Proben sei der Industrie, besonders der Süd-Chemie AG gedankt.

Mein Dank gilt meinen Eltern, die mir dieses Studium ermöglicht haben. Auch bei meinen Großeltern möchte ich mich für die Unterstützung bedanken.

Der größte Dank gebührt meinem Mann Hans-Joachim Bongartz, der mir mit seinem Verständnis und seiner Liebe über alle schwierigen Situationen hinweggeholfen hat und der mir auch oft genug einen "Tritt" versetzte, damit diese Arbeit ein glückliches Ende nahm.

II

INHALTSVERZEICHNIS

D	anksa	gungen		I				
Inhaltsverzeichnis III								
A	bstrac	:t		VII				
1	Einle	eitung und Aufgabenstellung1						
2	Theo	oretische Grundlagen						
	2.1	Amin	osäuren	5				
		2.1.1	Allgemeine Struktur und Einteilung der Aminosäuren	5				
		2.1.2	Chemische Eigenschaften von Aminosäuren	7				
		2.1.3	Produktion von Aminosäuren	8				
		2.1.4	Verwendung von Aminosäuren	10				
	2.2	Bioser	nsoren	12				
		2.2.1	Fließinjektionsanalyse	14				
		2.2.2	Verwendete Enzyme	15				
		2.2.3	Transducer	17				
			2.2.3.1 Amperometrische Sauerstoffelektrode	18				
		2.2.4	Immobilisierung von Enzymen	19				
	2.3	Zeolit	he	20				
		2.3.1	Struktur von Zeolithen	21				
		2.3.2	Synthese von Zeolithen	22				
			2.3.2.1 Modifizierung von Zeolithen	23				
		2.3.3	Einsatz von Zeolithen	24				
		2.3.4	Adsorption an Zeolithen	24				
			2.3.4.1 Adsorption von Aminosäuren an Zeolithen	25				
	2.4	Flüssi	gphasenadsorption	26				
		2.4.1	Grundlagen der Adsorption	26				
		2.4.2	Adsorptionsgleichgewicht und Adsorptionsisothermen	28				

3	Entv	vicklung	g eines Biosensors zur Detektion des Hydrolysegrades
	3.1	Stabil	isierung der L-Aminosäure-Oxidase mit Catalase
		3.1.1	Optimierung des Biosensors L-Aminosäure-Oxidase/Catalase
			3.1.1.1 Temperatur-Optimum des Biosensors L-AAOD/Catalase3
			3.1.1.2 pH-Optimum des Biosensors L-AAOD/Catalase
			3.1.1.3 Einfluß von Pufferadditiven auf den Biosenso L-AAOD/Catalase
		3.1.2	Querempfindlichkeit des Biosensors L-AAOD/Catalase gegenübe anderen L-Aminosäuren
		3.1.3	Test des Biosensors L-AAOD/Catalase an Realmedien
		3.1.4	Langzeitstabilität des Biosensors L-AAOD/Catalase4
	3.2	Stabil	isierung der L-Aminosäure-Oxidase mit Peroxidase4
		3.2.1	Optimierung des Biosensors L-Aminosäure-Oxidase/Peroxidase42
			3.2.1.1 Temperatur-Optimum des Biosensors L-AAOD/POD
			3.2.1.2 pH-Optimum des Biosensors L-AAOD/POD
			3.2.1.3 Einfluß von Pufferadditiven auf den Biosensor L-AAOD POD
		3.2.2	Querempfindlichkeiten des Biosensors L-AAOD/POD gegenübe anderen L-Aminosäuren
		3.2.3	Test des Biosensors L-AAOD/POD an Realmedien4
		3.2.4	Langzeitstabilität des Biosensors L-AAOD/POD4
		3.2.5	Test des Biosensors L-AAOD/POD in Gradientenmischerversuchen4
			3.2.5.1 Funktionsweise eines Gradientenmischers
			3.2.5.2 Gradientenmischerversuche mit L-Leucin-Lösungen
	3.3	Zusan	nmenfassung
4	Ads	orption	von L-Aminosäuren an Zeolithen5.
	4.1	Screen	ning nach zur Adsorption von L-Aminosäuren geeigneten Zeolithen5
		4.1.1	Adsorption aus wäßriger Lösung

		4.1.2	Adsorption aus wäßrig-alkoholischer Lösung	58
		4.1.3	Fazit	59
	4.2	Adsor	ption von L-Tryptophan und L-Phenylalanin an DAY 15	60
		4.2.1	Versuche mit Ein-Stoff-Lösungen	62
		4.2.2	Versuche mit Zwei-Stoff-Lösungen	63
	4.3	Adsor	ption von L-Tryptophan und L-Phenylalanin an FAU 1	64
		4.3.1	Versuche mit Ein-Stoff-Lösungen	64
		4.3.2	Versuche mit Zwei-Stoff-Lösungen	65
		4.3.3	Einfluß des pH-Wertes	67
	4.4	Adsor	ption von L-Tryptophan und L-Phenylalanin an H-MFI 120	68
		4.4.1	Versuche mit Ein-Stoff-Lösungen	68
		4.4.2	Versuche mit Zwei-Stoff-Lösungen	69
		4.4.3	Einfluß des pH-Wertes	72
	4.5	Desorj H-MF	ption von L-Tryptophan und L-Phenylalanin vom FAU 1 I 120	und
	4.6	Adsor	ption von L-Isoleucin und L-Leucin an H-MFI 120	76
		4.6.1	Versuche mit Ein-Stoff-Lösungen	76
		4.6.2	Versuche mit Zwei-Stoff-Lösungen	77
		4.6.3	Einfluß des pH-Wertes	78
	4.7	Desor	ption von L-Isoleucin und L-Leucin vom H-MFI 120	79
	4.8	Unters	suchungen zur Mehrfach-Ad- und Desorption	80
	4.9	Ad- ur	nd Desorption aus Real-Lösungen	82
	4.10	Ad- ur	nd Desorption in der Säule	85
	4.11	Zusam	nmenfassung	89
5	Schlu	ıßbetra	chtung	91
6	Anha	ng		97
	6.1	Abkür	zungsverzeichnis	97

V

		6.1.1	Allgemeine Abkürzungen	97				
		6.1.2 Abkürzungen Aminosäuren						
	6.2							
		6.2.1	Enzyme	98				
		6.2.2	L-Aminosäuren	98				
		6.2.3	Sonstige	99				
	6.3	Geräte	liste	99				
	6.4	Immobilisierung der L-Aminosäure-Oxidase auf VA-Epoxy100						
	6.5	Versuchsbedingungen bei der Aufnahme von Adsorptionsisothermen100						
	6.6	High Performance Liquid Chromatography (HPLC)100						
	6.7	Vorhandene Zeolithe						
	6.8	Screer	ningergebnisse	103				
7	Liter	atur		127				

ABSTRACT

Eine neue Darstellungsmethode für L-Aminosäuren bietet die enzymatische Hydrolyse von nachwachsenden Protein-Wertstoffen. Bei diesem Prozeß ist eine schnelle Analytik für eine optimale Kontrolle und Regelung unverzichtbar. Es ist deshalb ein Biosensor entwickelt worden, der diese Aufgabe übernimmt. Dazu wurde das Enzym L-Aminosäure-Oxidase immobilisiert und zusammen mit einer amperometrischen Sauerstoffelektrode in ein Fließinjektionsanalyse-System integriert.

Eine Stabilisierung der L-Aminosäure-Oxidase wird durch Coimmobilisierung mit Peroxidase erreicht, die das im ersten Reaktionsschritt entstehende Wasserstoffperoxid abfängt und zersetzt. Das Zwei-Enzym-System ist in Hinblick auf Temperatur und pH-Wert sowie mögliche Pufferadditive optimiert worden. Mit dem Biosensor können Realmedien vermessen und ein durch Gradientenmischerversuche simulierter Hydrolyseverlauf gut verfolgt werden.

Für die Isolierung der L-Aminosäuren aus den Hydrolysaten werden Zeolithe als selektive Adsorberkomponenten in den Prozeß integriert. Dadurch wird es möglich, einige L-Aminosäuren ohne die herkömmlichen, abwasserintensiven Ionenaustauscherund Kristallisationsverfahren aus dem Prozeß zu entfernen.

Die selektive Adsorption einiger L-Aminosäuren an Zeolithen bei pH-Werten um und unterhalb ihres isoelektrischen Punkts ist möglich. Dabei kann der Zeolith FAU 1 dazu genutzt werden, L-Tryptophan und L-Phenylalanin aus Hydrolysegemischen zu entfernen. Diese beiden L-Aminosäuren können anschließend an dem Zeolithen H-MFI 120 getrennt werden, ebenso L-Isoleucin und L-Leucin. Auch die Desorption der L-Aminosäuren mit Natronlauge bei pH-Werten oberhalb ihres isoelektrischen Punktes ist möglich. Dabei kann die Desorption vom H-MFI 120 noch verbessert werden. Bei der statischen Adsorption im Batch-Versuch kommt es beim Scale-up zu Schwierigkeiten bei der Abtrennung der L-Aminosäure-Lösung vom Zeolithen. Im Vergleich mit der dynamischen Adsorption in der Säule weist sie jedoch eine höhere Trennwirkung auf.

Durch den Einsatz eines Biosensors zur In-time-Analytik bei der enzymatischen Hydrolyse und durch die Adsorption von L-Aminosäuren an Zeolithen bietet sich für die Zukunft eine umweltschonende Alternative zu herkömmlichen Produktionsverfahren.

Schlagwörter: Aminosäuren, Hydrolyse, Biosensor, Aufreinigung, Zeolithe

ABSTRACT

A new production process for L-amino acids is the enzymatic hydrolysis of renewable protein substrates. A fast analysis is necessary for an optimised control and regulation of this process. For this application a biosensor has been developed. The immobilised enzyme L-amino acid oxidase and an amperometric oxygen electrode were integrated in a flow-injection-analysis-system.

The L-amino acid oxidase is stabilised by a coimmobilisation with the enzyme peroxidase. This enzyme decomposes the hydrogen peroxide produced in the first reaction step. The temperature, pH-value and possible buffer additives have been optimised for this two-enzyme-system. The biosensor can analyse real samples from hydrolysation processes and is able to pursue the trend of the amino acid concentration during a hydrolysis which was simulated in a gradient mixer experiment.

Zeolites are used for the separation of L-amino acids from hydrolysates as a selective adsorbent material. Therefore the amino acids can be isolated from hydrolysates without ion-exchange and crystallisation techniques which make conventional acid hydrolysation processes environmentally problematic.

It is possible to adsorb some L-amino acids on zeolites by a pH that is similar or slightly lower the isoeletric point of the amino acids. The zeolite FAU 1 can be used to remove L-tryptophane and L-phenylalanine from hydrolysis mixtures. Afterwards these two amino acids can be separated by the zeolite H-MFI 120. In the same way one can separate L-isoleucine and L-leucine. The desorption of the L-amino acids is possible at a pH higher than their isoelectic point. However the desorption from the H-MFI 120 can still be improved. The filtration of the zeolite powder from the amino acid mixture is a problem when scaling up the static batch experiments. In comparison to the dynamic adsorption in a column the static batch adsorption shows a better separation effect.

The use of a biosensor for the in-time analysis by the enzymatic hydrolysis and the adsorption of L-amino acids on zeolites offer an environmentally interesting alternative to the conventional production techniques.

Keywords: amino acids, hydrolysis, biosensor, separation, zeolites

X

1 Einleitung und Aufgabenstellung

Aminosäuren sind interessante und wertvolle Rohstoffe für die Nahrungsmittel-, Futtermittel- und pharmazeutische Industrie. Ihre große ökonomische Bedeutung zeigt die Entwicklung des Aminosäure-Marktes. So betrug die Gesamtproduktion an Aminosäuren im Jahre 1986 weltweit etwa 650.000 t mit einem geschätzten Wert von 2 Milliarden US\$^[1]. Zehn Jahre später, für das Jahr 1996, wurde der Markt auf 3 Mrd. US\$ geschätzt^[2]. Einhergehend damit ist der Anstieg der ökologischen Bedeutung bei der Produktion von Aminosäuren.

Etwa die Hälfte der Gesamtproduktion wird nach wie vor in der Nahrungsmittelindustrie benötigt. Den Hauptanteil der umgesetzten Aminosäuren stellt dabei Natriumglutamat, das als Geschmacksverstärker eingesetzt wird und dessen weltweite Jahresproduktion 1996 über 800.000 t betrug ^[2]. Weiterhin finden beispielsweise L-Asparaginsäure und L-Phenylalanin als Geschmacksverstärker sowie das L-Phenylalaninderivat L-Aspartyl-L-phenylalanin (Aspartam) als synthetischer Süßstoff Verwendung ^[3].

Weitere 30 % der produzierten Aminosäuren werden in der Tierernährung als Futtermitteladditive verwendet, insbesondere die essentiellen Aminosäuren L-Methionin, L-Lysin und L-Threonin. Die restlichen 20 % benötigt die pharmazeutische Industrie, zum Beispiel für Infusionslösungen für prä- oder postoperative parenterale Ernährung. Ein weiteres, jüngeres Anwendungsgebiet ist die Kosmetikindustrie.

Gerade im "Health Food"-Bereich wurden in den letzten Jahren große Zuwachsraten durch wachsendes Gesundheitsbewußtsein in der Bevölkerung erzielt. Deswegen sind die höchsten Wertschöpfungen in den Bereichen Pharma und Nahrungsmittel zu finden.

Aminosäuren werden hauptsächlich aus pflanzlichen und tierischen Rohstoffen (Proteinen) durch saure Hydrolyse dargestellt. Dabei werden mit Hilfe von Säuren die Proteine in ihre einzelnen Aminosäurebausteine zerlegt, welche durch Adsorption, Extraktion oder Kristallisation aufgereinigt werden. Problematisch bei dieser Methode sind der hohe Chemikalieneinsatz und der hohe Energieaufwand. Außerdem entstehen große Mengen Salz- und Stickstofffrachten sowie schwer zu entsorgende Hydrolysatrückstände.

Im Hinblick auf die Umweltproblematik hat die Amino GmbH, Frellstedt in Zusammenarbeit mit der Universität Hannover und der Technischen Universität Hamburg-Harburg ein Forschungsprojekt gestartet, das als Alternative zur sauren Hydrolyse ein enzymatisches Verfahren etablieren soll. Am Institut für Technische Chemie der Universität Hannover sollen in dem Zusammenhang zwei Verfahrensschritte entwickelt und optimiert werden: eine enzymatische Hydrolyse unter Einsatz von Proteasen sowie die Aufarbeitung des Hydrolysats.

Im ersten Teil der Arbeit soll eine In-Time-Analytik zur Bestimmung des Hydrolysegrades entwickelt werden. Dabei soll ein Biosensor zum Einsatz kommen. Biosensoren haben sich in den letzten Jahren als Analysensysteme für viele Substanzen bewährt. Der Weltmarkt wurde 1996 auf 508 Millionen US\$ geschätzt, wobei allerdings 90 % des Umsatzes auf Glucose-Sensoren für den medizinischen Bereich entfielen ^[4]. Andere Anwendungen finden Biosensoren zum Beispiel in der Prozeßkontrolle bei Fermentationen ^[5], als Detektoren in der Lebensmittelindustrie ^[6] und im Umweltbereich als Indikator für Schadstoffbelastungen ^[7]. Die Eigenschaften, die auch das Zukunftspotential der Biosensoren als Analysensysteme ausmachen, sind Schnelligkeit, einfache Handhabung, hohe Nachweisselektivität und Reproduzierbarkeit sowie sehr geringe Nachweisgrenzen.

Für die Entwicklung des Biosensors zur Bestimmung des Hydrolysegrades muß zuerst ein Enzym gefunden werden, welches Aminosäuren in einer nachweisbaren Reaktion umsetzt und welches auf dem Markt erhältlich ist. Dann muß ein passender Transducer gefunden werden, der die enzymatische Reaktion in ein elektrisches Signal umwandelt, das ausgewertet werden kann. Das ganze System soll zur Automatisierung mit einem Fließinjektionsanalyse-System gekoppelt und optimiert werden. Es fallen also folgende Arbeitsschritte an.

- Suche nach einem geeigneten Enzym
- Suche nach einem geeigneten Transducer
- Automatisierung durch Kopplung mit einem Fließinjektionsanalyse-System
- Stabilisierung des Enzyms
- Temperatur-Optimierung
- pH-Wert-Optimierung
- Optimierung der Pufferzusammensetzung
- Überprüfung des Biosensors an Realmedien und in Gradientenmischerversuchen

Der zweite Verfahrensschritt des Projektes beschäftigt sich mit der Aufarbeitung des Hydrolysats. Als klassische Trennverfahren stehen bei der Aufreinigung von Hydrolysegemischen Kristallisation, Extraktion oder Adsorption sowie eine Kombination dieser Verfahrensschritte zur Verfügung. Bewährt hat sich dabei die Anreicherung bzw. Adsorption von Aminosäuren an sulfonsauer funktionalisierten Polymeren (Ionenaustauscherharze) und an makroporösen Polymeren mit hydrophober Oberfläche (Adsorberharze). Diese Harze besitzen jedoch den Nachteil, daß sie regeneriert werden müssen, was zu Abwasserproblemen führt.

Eine Anreicherung von Aminosäuren findet auch an anorganischen Materialien wie etwa natürlich vorkommenden Zeolithen statt ^[8,9]. Sie besitzen im Gegensatz zu den oben genannten Polymeren eine streng einheitliche Porenstruktur. Die Anwendung der Zeolithe als Adsorbens gelöster organischer Stoffe wurde jedoch durch die Erfindung der synthetischen polymeren Ionenaustauscher- und Adsorberharze zurückgedrängt. Daneben wurde aber durch den erfolgreichen Einsatz der Zeolithe als Adsorbentien und Katalysatoren in der Petrochemie die Entwicklung neuer synthetischer Zeolithe vorangetrieben. Diese synthetischen Zeolithe wurden unter anderem auch hinsichtlich ihrer Fähigkeit zur chromatographischen Trennung von Kohlehydraten ^[10] und Aminosäuren ^[11] sowie zur Anreicherung von Aminosäuren ^[12,13] untersucht.

In dieser Arbeit sollen nun Zeolithe gesucht werden, die selektiv nur wenige Aminosäuren adsorbieren. Diese sollen durch Aufnahme von Adsorptions- und Desorptionsisothemen charakterisiert und auf ihre Tauglichkeit im Einsatz in einer Zeolith-Kaskade untersucht werden. Es fallen also folgende Arbeitsschritte an:

- Screening nach zur Adsorption von Aminosäuren geeigneten Zeolithen
- Aufnahme von Adsorptionsisothermen aus Ein- und Zwei-Stoff-Lösungen
- Untersuchungen zum Einfluß des pH-Wertes bei der Adsorption
- Aufnahme von Desorptionsisothermen
- Untersuchungen zur Mehrfach-Ad- und Desorption
- Ad- und Desorption aus Real-Lösungen
- Untersuchungen zur Ad- und Desorption in der Säule

2 Theoretische Grundlagen

2.1 Aminosäuren

Diese Arbeit beschäftigt sich mit der Gewinnung von L-Aminosäuren. Deswegen sollen in diesem Kapitel ihre chemischen Eigenschaften, ihre Herstellung und ihre Verwendung vorgestellt werden.

Aminosäuren bilden eine wichtige Klasse stickstoffhaltiger Naturstoffe. Sie fungieren in der Biosynthese hauptsächlich als Monomere zum Aufbau von Peptiden und Proteinen. In der Neurochemie erfüllen Aminosäuren und ihre Derivate wichtige Aufgaben als Neurotransmitter. Während Pflanzen alle Aminosäuren aus einfachen Vorstufen synthetisieren, können Mensch und Tier nur die sogenannten nicht-essentiellen Aminosäuren L-Alanin, L-Arginin, L-Asparagin, L-Asparaginsäure, L-Cystein, L-Glutamat, L-Glutamin, Glycin, L-Prolin, L-Serin und L-Tyrosin selbst darstellen. Die essentiellen Aminosäuren L-Histidin, L-Isoleucin, L-Leucin, L-Lysin, L-Methionin, L-Phenylalanin, L-Threonin, L-Tryptophan und L-Valin müssen mit der Nahrung aufgenommen werden ^[14,15].

2.1.1 Allgemeine Struktur und Einteilung der Aminosäuren

Die am häufigsten natürlich vorkommenden Aminosäuren sind die α -Aminosäuren. Sie bestehen aus einer Carbonsäure-Gruppe und einer Amino-Gruppe am α -C-Atom. Außerdem ist ein Wasserstoff-Atom und eine andere Seitenkette an das α -C-Atom gebunden. Anhand dieser Seitenkette können die zwanzig proteinogenen Aminosäuren in unterschiedliche Klassen eingeteilt werden. Eine Möglichkeit ist in Tab. 2.1 dargestellt.

Tab. 2.1: Einteilung der zwanzig proteinogenen α -Aminosäuren ^[16,17]

2.1.2 Chemische Eigenschaften von Aminosäuren

Ein besonderes Strukturmerkmal der Aminosäuren ist ihre Bifunktionalität aufgrund der Carbonsäure- und Amino-Gruppe. Durch das sowohl saure als auch basische Verhalten handelt es sich um Ampholyte, die als innere Salze existieren. In sauren Medien liegen sie als Kationen, im basischen Medium als Anionen vor. Am isoelektrischen Punkt pI ist ausschließlich das Zwitterion in Lösung vorhanden. Im Bereich ihrer pK_S-Werte wirken die Aminosäuren als Puffer^[18].

Abb. 2.1: Protonierungsgrad von α-Aminosäuren in Abhängigkeit vom pH-Wert

Das Vorliegen der Aminosäuren als Zwitterionen bewirkt eine starke Polarität dieser Substanzen. Aufgrund ihrer elektrostatischen Anziehung führt dies zu sehr stabilen Kristallgitterstrukturen; anstatt zu schmelzen, zersetzen sie sich daher zumeist. Die Zersetzungspunkte liegen zwischen 200 °C und 300 °C.

Diese intermolekularen Kräfte bewirken auch, daß die meisten Aminosäuren nur wenig in polaren Lösungsmitteln und gar nicht in unpolaren Lösungsmitteln löslich sind. Ausnahmen hiervon sind Glycin, Alanin, Lysin und Arginin, welche dank kurzer unpolarer Reste bzw. basischer Seitenketten gut wasserlöslich sind. Prolin hingegen ist wegen seiner sekundären anstelle einer primären Aminogruppe in Alkoholen löslich. Die Löslichkeit in Wasser ist pH-abhängig. Die geringste Löslichkeit liegt am isoelektrischen Punkt vor, der eine physikalische Konstante für jede Aminosäure darstellt.

Aminosäure	pI	Löslichkeit [g/L H ₂ O, 20 °C]	Aminosäure	pI	Löslichkeit [g/L H ₂ O, 20 °C]
Alanin	6,1	160	Leucin	6,0	22,4
Arginin	10,8	149	Lysin	9,7	ca. 2000
Asparagin	5,5	20	Methionin	5,8	53,7
Asparaginsäure	3,0	4,3	Phenylalanin	5,9	25,1
Cystein	5,0	160	Prolin	6,3	1550
Glutamin	5,7	34,9	Serin	5,7	360
Glutaminsäure	3,1	7,5	Threonin	5,6	90,3
Glycin	6,1	225	Tryptophan	5,9	10,6
Histidin	7,6	38,2	Tyrosin	5,7	0,4
Isoleucin	6,0	32,1	Valin	5,7	56,1

Tab. 2.2: Löslichkeiten und isoelektrische Punkte der zwanzig proteinogenen α -Aminosäuren^[19,20]

2.1.3 Produktion von Aminosäuren

Als Produktionsverfahren für Aminosäuren finden folgende technische Verfahren Anwendung:

- Extraktion (aus Proteinhydrolysaten oder anderen natürlichen Quellen)
- Chemische Synthese
- Produktion mit Hilfe von Mikroorganismen
- Enzymatische Katalyse

Durch Extraktion aus Proteinhydrolysaten lassen sich beinahe alle L-Aminosäuren gewinnen. Rohstoffe hierfür sind proteinreiche Produkte, wie z.B. Keratin, Federn oder Kartoffelprotein. Bei der industriellen Herstellung von Ölen aus Ölsaaten von Raps, Hanf und Soja fallen überdies Rückstände an, die zu ca. 30 % aus Proteinen bestehen. Die Hydrolyse von Eiweiß läßt sich durch Kochen mit Salz- (Maggi-Prozeß) oder Schwefelsäure, durch Einwirkung eiweiß-spaltender Enzyme (Pepsin, Trypsin) oder durch Kochen mit Alkalien ausführen.

Bei der sauren Hydrolyse werden die Säureamide Glutamin und Asparagin sowie Cystein und Tryptophan größtenteils zerstört und sind deshalb nicht zugänglich. Somit müssen für einige Aminosäuren entweder sehr schonende Hydrolysen unter Schutzgasatmosphäre und Zusatz von Antioxidantien gewählt, oder falls der Gehalt im Rohstoff sehr klein ist (Methionin, Tryptophan), alternative synthetische Verfahren (chemisch oder biotechnologisch) zu deren Herstellung verwendet werden. ^[21,22].

Im Prinzip lassen sich alle Aminosäuren auch auf dem konventionellen synthetischen Weg gewinnen. Die Strecker Synthese und ihre Varianten führen, ausgehend von einfachen Ausgangssubstanzen, zu racemischen Gemischen der α -Aminosäuren bzw. zum achiralen Glycin.

$$\begin{array}{c} H \\ R \xrightarrow{I} O \end{array} \xrightarrow{H + HCN} R \xrightarrow{I} O \xrightarrow{H} O \xrightarrow{H + NH_3} R \xrightarrow{H} O \xrightarrow{H} H_2 \xrightarrow{H} O \xrightarrow{H} H_2 \xrightarrow{H} O \xrightarrow{H} H_2 \xrightarrow{H} O \xrightarrow{$$

Abb. 2.2: Strecker-Synthese der α -Aminosäuren^[23]

Die durch Addition von Blausäuren an Aldehyde zugänglichen Cyanhydrine gehen mit Ammoniak in Aminonitrile über, aus denen bei der Hydrolyse mit konzentrierten Mineralsäuren α -D,L-Aminosäuren entstehen ^[23]. Die anschließende Stereoisomeren-Trennung läßt sich mittels eines Kristallisationsverfahrens oder unter Einsatz einer enzymatischen Verfahrenstechnik durchführen. Zur Nutzung des D-Enantiomers muß dieses racemisiert und erneut aufgereinigt werden. Diese beiden zusätzlichen Verfahrensschritte sind ein schwerwiegender Nachteil für die chemische Synthese im Verhältnis zur fermentativen Darstellung der L-Aminosäuren.

Durch die Verwendung von Mikroorganismen in Fermentationsprozessen lassen sich optisch reine Aminosäuren darstellen. Als Kohlenstoffquelle werden hier Saccharose (aus Melasse) oder Glucose (aus Stärkehydrolysat) eingesetzt. Die Stickstoffquelle bildet entweder Harnstoff oder Ammoniumsulfat. Wildstämme führen zu folgenden Aminosäuren: Glutaminsäure, Alanin und Valin ^[24]. Durch Mutanten zugänglich sind: Lysin, Threonin, Arginin, Citrullin, Ornithin, Homoserin, Tryptophan, Phenylalanin, Histidin. Der Zusatz von Precursoren zur Fermentation liefert Threonin, Isoleucin und Tryptophan.

Zur enzymatischen Katalyse werden entweder ganze Zellen, aktive Zellkomponenten (welche die entsprechenden Enzyme enthalten) oder die Enzyme direkt eingesetzt. Bei kontinuierlicher Durchführung ist noch eine Immobilisierung der Biokatalysatoren nötig. Zugänglich sind durch diese Methode unter anderem Lysin, Asparaginsäure, Alanin, D-p-Hydroxyphenylglycin und Tryptophan.

2.1.4 Verwendung von Aminosäuren

Die Gesamtproduktion an Aminosäuren ist in den letzten zwanzig Jahren erheblich gestiegen (siehe Tab. 2.4). Die Anwendungen verteilen sich dabei auf folgende Industriezweige:

Tab. 2.3: Marktvolumen und -anteil, aufgeschlüsselt nach Verwendungszweck^[25]

Verwendung	Menge (%)	Marktanteil (%)
Menschliche Ernährung	66	52
Futtermittelzusätze	33	30
Pharmazeutika, Kosmetika, Agrochemi- kalien, Industrielle Anwendungen	1	18
Gesamt	100 = 455.000 t/a	100 = 1.150 Mrd \$/a

Nahrungsmittelindustrie:

Die meisten Aminosäuren haben fast keinen Eigengeschmack, trotzdem tragen sie zum spezifischen Geruch und Geschmack eines Lebensmittels erheblich bei. Oft haben Aminosäuren geschmacksverstärkende Wirkung, eine Eigenschaft, die sie für die Herstellung natürlicher Aromen interessant werden läßt. Der Hauptanteil wird dabei von Natriumglutamat gestellt. Zusätzlich werden L-Asparaginsäure, L-Phenylalanin und L-Cystein als Geschmacksverstärker eingesetzt, L-Aspartyl-L-phenylalanin (Aspartam) findet als synthetischer Süßstoff Verwendung. Dabei muß auch auf Enantiomerenreinheit geachtet werden, da beispielsweise D-Asparagin bitter, L-Asparagin jedoch süßlich schmeckt.

Futtermittelindustrie:

Für einige Tiere wie z.B. Schweine und Geflügel, ist die Hälfte der proteinogenen Aminosäuren essentiell. Da in den herkömmlichen Futtermitteln wie Fischmehl, Soja und Getreideprodukten einige der essentiellen Aminosäuren (D,L-Methionin, L-Lysin, L-Threonin) nicht in ausreichenden Mengen vorhanden sind, ist die Zufütterung dieser Aminosäuren erforderlich.

Pharmazeutischen- und Kosmetischen Industrie:

In der Pharmazeutischen Industrie werden Aminosäuren von höchster Reinheit benötigt. Ein sehr wichtiges Beispiel ist die Verwendung für parenterale Ernährung. Eine Standard-Infusionslösung beinhaltet zum Beispiel die acht für den Menschen essentiellen Aminosäuren (L-Methionin, L-Phenylalanin, L-Threonin, L-Tryptophan, L-Lysin, L-Isoleucin, L-Leucin und L-Valin) und außerdem auch einige nichtessentielle Aminosäuren, z.B. Glycin, L-Glutaminsäure, L-Serin, L-Prolin und L-Alanin. L-Tryptophan wird wegen seiner sedativen Eigenschaften als Beruhigungsmittel angewendet. Da diese Aminosäuren sehr rein vorliegen müssen, ist ihr Marktanteil im Gegensatz zur produzierten Menge sehr hoch (s. Tab. 2.3).

In der Kosmetikindustrie dienen Aminosäuren u.a. als Ausgangssubstanzen für die Herstellung hochwertiger Hautcremes.

Aminosäure		Produktionsmethoden x = 1986, o = 1996						
	1982	1986	1996	F	Е	С	C+R	Ex
Glycin	6.000	6.000	8.000-100.000			X, 0		
L-Alanin	130	150	100-1.000		X, 0		х	
DL-Alanin	2.000	1.500				х		
L-Asparaginsäure	450	4.000	8.000-100.000		X, 0			
L-Asparagin	50	30	100-1.000		х			X, 0
L-Arginin	500	1.000	1.000-8.000	X, 0				x, 0
L-Cystein	700	1.000	1.000-8.000		х	0		x, 0
L-Glutarsäure	340.000	340.000	100.000-800.000	X, 0				
L-Glutamin	500	850	100-1.000	x, 0				0
L-Histidin	200	250	100-1.000	X, 0				0
L-Isoleucin	150	200	100-1.000	X, 0				0
L-Leucin	150	200	100-1.000	0				X, 0
L-Lysin	34.000	70.000	100.000-800.000	X, 0	х			
L-Methionin	150	150	100-1.000		0		х	
DL-Methionin	110.000	250.000	100.000-800.000			X, 0		
L-Ornithin	50	70		Х				
L-Phenylalanin	150	3.000	8.000-100.000	X, 0			х	
L-Prolin	100	150	100-1.000	x, 0				X, 0
L-Serin	50	60	100-1.000	x, 0				X, 0
L-, DL-Threonin	160	200	8.000-100.000	x, 0		х		
L-, DL-Tryptophan	200	250	1.000-8.000	X, 0	х	х	х	Х
L-Tyrosin	50	60	100-1.000					X, 0
L-Valin	150	200	100-1.000	x, 0	0		X	

Tab. 2.4:Jahresproduktion weltweit an Aminosäuren 1982 [26], 1986 [1], 1996 [2] und
deren Produktionsmethoden

(F) Fermentation, (E) Enzymatisch, (C) Chemische Synthese, (R) Enantiomerentrennung, (Ex) Extraktion

2.2 Biosensoren

Ein Ziel dieser Arbeit ist die Entwicklung eines Biosensors zur Bestimmung des Gesamthydrolysegrades. Deswegen werden in diesem Kapitel die Grundlagen von Biosensoren näher erläutert. Das Biosensoren auch heute ein in der Öffentlichkeit beobachtetes Forschungsgebiet sind, zeigt ein Artikel der im Januar 2001 in einer großen deutschen Tageszeitung erschien:

"Nirgends werden Stoffe in so winzigen Konzentrationen schnell und äußerst präzise registriert wie in der Natur. Es war daher nur konsequent, auf natürlichen organischen Prinzipien beruhende Meßverfahren, sogenannte Biosensoren, auch für die Analytik zu entwickeln. Inzwischen werden Biosensoren immer beliebter, in der medizinischen Diagnostik, der Lebensmittelprüfung, der Umweltanalytik und der Prozeßtechnik. Kombiniert mit Mikroprozessoren können Biosensoren sehr schnell genaue Informationen über die Anwesenheit eines bestimmten Stoffes liefern. Einer der ersten Biosensoren, das vor mehr als fünfundzwanzig Jahren entwickelte Meßgerät zur Bestimmung des Blutzuckers, ist noch immer ein Renner auf dem Markt, mit dem weltweit ein Umsatz von mehr als vierhundert Millionen DM erzielt wird."^[27]

Biosensoren sind nach einem vorläufigen Nomenklaturvorschlag der IUPAC miniaturisierte Meßwertfühler, die in Verbindung mit einer biologischen Komponente chemische Verbindungen oder Ionen selektiv und reversibel erfassen und dabei konzentrationsabhängige Signale liefern ^[28]. Eine erweiterte Definition geht davon aus, daß die biologische Komponente in direktem Kontakt mit dem Meßwandler steht ^[29].

Bei der Entwicklung von Biosensoren werden zwei äußerst unterschiedliche Fachgebiete miteinander verknüpft. Die Biotechnologie stellt die biologische Komponente, die möglichst selektiv nur mit der zu analysierenden Substanz reversibel reagiert. Dafür können Enzyme, Mikroorganismen, Zellen, Antikörper oder sonstige Rezeptoren benutzt werden. Bei dieser Reaktion ändert sich eine chemische oder physikalische Größe, die mit Hilfe von geeigneten Elektroden oder Sensoren der Mikroelektronik in auswertbare Signale umgewandelt wird. Dieser Teil des Biosensors wird deswegen Meßwandler (Transducer, siehe Kapitel 2.2.3) genannt ^[30,31,32]. Die Selektivität des Biosensors wird dabei von der Spezifität des eingesetzten Rezeptors bestimmt, während seine Sensitivität sowohl vom Rezeptor als auch vom Transducer abhängt.

Abb. 2.3: Funktionsprinzip eines Biosensors^[30]

Aufgrund der Reaktion oder Wechselwirkung des Analyten mit dem Rezeptor werden verschiedene Typen von Biosensoren unterschieden:

Bioaffinitäts-Sensoren nutzen die bei der Komplexbildung eintretende Veränderung (z. B. Elektronendichte, Schichtdicke, Lichtabsorption, Brechungsindex).

Metabolismus-Sensoren beruhen auf der spezifischen Erkennung und Umsetzung von Substraten. Dabei können isolierte Enzyme, Organellen, Gewebeschnitte oder ganze Zellen eingesetzt werden, die als Biokatalysatoren fungieren.

Biomimetische Sensoren simulieren die Funktion von Sinnesorganen. Durch Beeinflussung der Wechselwirkungen von Träger und bioaktiven Material werden physikalische Signale (Schall, Dehnung, Licht) in chemische Signale umgewandelt^[33].

Die hohe chemische Selektivität, die bequeme, direkte und kontinuierliche Messung, die breite Anwendungsmöglichkeit, die relativ kurze Antwortzeit und die Möglichkeit der Messung in gefärbten und trüben Proben zählen zu den Vorteilen von Biosensoren.

Sie finden Anwendung in den verschiedensten Bereichen der Analytik, insbesondere in der klinisch-chemischen Laboratoriumsdiagnostik, sowie zur Kontrolle und optimalen Regelung biotechnologischer Produktionsprozesse (bisher wurden Biosensoren für über 150 verschiedene Analyten betrieben) ^[34]. Zusätzlich werden sie zunehmend für medizinische Analysen (Bestimmung von Blutzucker, Milchsäure, Cholesterin) und Lebensmittel-Kontrollen (Fisch-Frische-Sensor *Freshness Sensor*TM) eingesetzt und gewinnen auch in der Umweltanalytik an Bedeutung (Nitrat-Bestimmung im Trinkwasser) ^[35,36].

Nachteilig ist vor allem die begrenzte Haltbarkeit und die Empfindlichkeit gegenüber äußeren Einflüssen ^[37,38]. Aufgrund der höheren Stabilität und der Wiederverwertbarkeit werden die Biorezeptoren meist auf Trägermaterialien immobilisiert ^[39]. Zur Automatisierung wird das Biosensor-System mit einem Fließinjektionsanalyse-System kombiniert.

2.2.1 Fließinjektionsanalyse

Das Grundprinzip der <u>Fließinjektionsa</u>nalyse (FIA), die Mitte der siebziger Jahre von *Ruzicka* und *Hansen* ^[40] vorgestellt wurde, beruht auf der Injektion eines Probensegments (20-100 μ L) in einen kontinuierlichen Trägerstrom (0,1-3,0 mL/min). Dieser transportiert die Probe zur nachgeschalteten Reaktionszone und die Reaktionsprodukte weiter zu einem Detektorsystem. Bei Einsatz von Biosensoren in FIA-Systemen erfolgt die Reaktion beispielsweise in einer Kartusche mit dem immobilisierten Enzym. Die Konzentrationsbestimmung kann wahlweise über die Abnahme der Edukte, die Zunahme der Produkte oder über andere unmittelbar an der Reaktion beteiligte Substanzen erfolgen.

Ein FIA-System besteht im wesentlichen aus einem Selektor, einer Peristaltikpumpe sowie einem Injektor, kann aber je nach Bedarf um verschiedene Bauteile beispielsweise zur Probenbearbeitung erweitert werden. Durch die Automatisierung lassen sich Genauigkeit und Reproduzierbarkeit der Analyse erhöhen, weiterhin ist im Fließsystem keine Gleichgewichtseinstellung nötig, so daß bei nur geringen Probenmengen kurze Antwortzeiten resultieren ^[41].

In dieser Arbeit wird das FIA-System EVA-Line der Firma Eppendorf (Hamburg) verwendet. Die Steuerung der FIA-Module erfolgt durch eine A/D-D/D-Karte über <u>Transistor-Transistor-Logik-Impulse</u> (TTL-Impulse). Sowohl für die Steuerung als auch für die Datenerfassung und Auswertung dient die speziell auf Fließinjektions-Anlagen zugeschnittene Software CAFCA (<u>Computer Assisted Flow Control & A</u>nalysis), Version 2.0.

Der vollständige Aufbau der verwendeten FIA-Anlage ist schematisch in Abb. 2.4 dargestellt.

Abb. 2.4: Schematische Darstellung des FIA-Systems mit Biosensor

2.2.2 Verwendete Enzyme

Als biologische Komponente wird in dieser Arbeit L-Aminosäure-Oxidase (<u>L-A</u>mino-<u>acid-Oxid</u>ase, L-AAOD) verwendet. Sie ist ein Flavoprotein, das aus zwei aktiven Untereinheiten mit je einem Molekül FAD (<u>Flavina</u>denin-<u>D</u>inucleotid) als prosthetische Gruppe aufgebaut ist. Am weitesten verbreitet sind L-Aminosäure-Oxidasen, die aus Schlangengift gewonnen werden und ein Molekülgewicht von ungefähr 140.000 g/mol haben ^[42,43]. Die in dieser Arbeit verwendete L-AAOD stammt aus der Quelle *Crotalus atrox*, eine Texasklapperschlange aus dem Südosten der USA. L-Aminosäure-Oxidasen sind spezifisch für L-Aminosäuren, allerdings nicht sehr selektiv bezüglich der Seitenketten ^[44]. Die Oxidation der L-Aminosäuren findet als Desaminierung nach folgender Bruttogleichung statt:

$$R \xrightarrow{\text{NH}_{3}^{+}}_{\text{O}} + O_{2} + H_{2}O \xrightarrow{\text{L-AAOD}} R \xrightarrow{\text{O}}_{\text{O}} + NH_{4}^{+} + H_{2}O_{2}$$

L-Aminosäure α -Ketosäure Gl. 2.1

Ein genauerer Mechanismus wurde von *Massey* und *Curti* ^[45] vorgeschlagen und verläuft über zwei Schritte. Im ersten wird über einen ternären Komplex aus Aminosäure, Sauerstoff und Enzym eine Iminosäure gebildet, die im zweiten Schritt zur Ketosäure hydrolysiert ^[46].

Charakteristisch für die L-AAOD ist die Inhibition durch hohe Konzentrationen bestimmter Substrate wie zum Beispiel L-Leucin, L-Methionin, L-Prolin und L-Asparagin. Die größte Affinität besteht zu den L-Isomeren von Leucin, Phenylalanin, Methionin und Tryptophan (K_M-Werte [mM] alle $< 1^{[47]}$), wogegen L-Serin, L-Threonin, L-Glutamat und Glycin überhaupt nicht umgesetzt werden ^[48]. Weitere Inhibitoren sind beispielsweise Iodessigsäure, verschiedene aromatische Verbindungen und die Salze einiger Metalle (z. B.: Cu, Cd, Co, Ni, Na, Mg) ^[47].

Die Literaturangaben für Temperatur- und pH-Optimum der L-AAOD variieren je nach Substrat und Quelle des Enzyms. Messungen mit immobilisierter L-AAOD wurden zwischen 25°C und 30°C ausgeführt ^[44,48], für das pH-Optimum für die Umsetzung von L-Leucin findet man Werte zwischen 7,0 ^[49] und 8,7 ^[50].

In der Literatur sind Arbeiten dokumentiert, in denen L-Aminosäuren mittels L-AAOD direkt über das in obiger Reaktion entstehende Ammonium ^[51] oder Peroxid ^[52] detektiert werden. Letzteres ist problematisch, da das H₂O₂ während der enzymatischen Reaktion gleichzeitig wieder verbraucht wird.

So reagiert es zum Beispiel mit der entstehenden α -Ketosäure nach:

$$RCOCOO^{-} + H_2O_2 \implies RCOO^{-} + CO_2 + H_2O$$

Gl. 2.2

Die Detektion des Sauerstoffverbrauchs hat sich in dieser Hinsicht als genauer erwiesen^[44].

Ein Problem des Biosensors besteht darin, daß Wasserstoffperoxid wahrscheinlich die L-AAOD deaktiviert, wie es zum Beispiel auch für D-Aminosäure-Oxidase dokumentiert ist ^[53]. Hier kann zur Abhilfe Catalase zugesetzt werden, die das Peroxid nach Gl. 2.3 zersetzt.

$$2 H_2O_2 \xrightarrow{\text{Catalase}} 2 H_2O + O_2$$

Gl. 2.3

Bei der Zersetzung entsteht jedoch Sauerstoff, wodurch der Meßeffekt verringert wird. Um dieses zu vermeiden, wäre der Einsatz von <u>Peroxid</u>ase (POD) geeigneter.

$$H_2O_2 + DH_2 \xrightarrow{POD} 2 H_2O + D$$

Gl. 2.4

Das System L-AAOD/Catalase eignet sich allerdings besser, da die pH-Optima ähnlich sind. Aus diesem Grund werden in dieser Arbeit beide Enzym-Systeme auf ihren Nutzen und hinsichtlich einer Coimmobilisierung getestet.

Enzym	pH _{opt}	T _{opt}	M [g/mol]	Aktivität [U/mg] [*]	Quelle	Hersteller
L-Aminosäure- Oxidase EC 1.4.3.2	7,0-8,7	25-30	140.000	0,26	Crotalus atrox	Sigma
Catalase EC 1.11.1.6	7,0	25-30	250.000	2700	Rinderleber	Sigma
Peroxidase EC 1.11.1.7	4,7-7,0	25-30	40.000	693	Meerrettich	Fluka

Tab. 2.5: Verwendete Enzyme

*Herstellerangaben

2.2.3 Transducer

Die Wahl des Transducers richtet sich nach der Reaktion der biologischen Komponente und den daraus resultierenden Änderungen im System. In der Literatur sind eine Reihe von Transducern beschrieben, die nach unterschiedlichen Prinzipien arbeiten. Gebräuchlich sind Transducer auf elektrochemischer, elektrischer oder optischer Basis. Massensensitive Meßwandler werden zur Detektion von Bindungen auf Oberflächen oder Antikörpern verwendet. In sogenannten Thermistoren können Änderungen der Temperatur detektiert werden^[54].

2.2.3.1 Amperometrische Sauerstoffelektrode

Zu den am häufigsten verwendeten Transducern zählt die Clark-Elektrode ^[55], die in der Bauart der spezifischen Anwendung angepaßt werden kann. Zu diesem Typ zählt auch die in dieser Arbeit verwendete Gelöstsauerstoffelektrode der Firma Anasyscon (Hannover). Sie besteht aus einer Platin-Kathode und einer Silber-Anode, die über eine Elektrolytlösung leitend verbunden sind. Der Sauerstoff diffundiert durch die gaspermeable Teflonmembran in den Elektrolyten und wird an der Kathodenoberfläche reduziert. Dabei laufen an den Elektroden folgende Reaktionen ab:

Kathode:
$$O_2 + 2 H_2O + 4 e^- \rightarrow 4 OH^-$$

Anode: $4 Ag + 4 CI^- \rightarrow 4 AgCl + 4 e^-$
Gl 2.5

Der aus dieser Redoxreaktion resultierende elektrische Strom ist dem Sauerstoffpartialdruck proportional. Die Auswertung der Meßsignale erfolgt nach einer internen Verstärkung mit Hilfe der Software CAFCA. Die Stromstärke I wird nicht nur durch den Sauerstoffgehalt der Probe bestimmt. Der Strom beträgt im stationären Bereich:

$$I = n \cdot F \cdot \alpha_{m} \cdot pO_{2} \cdot (D_{m}/b)$$
Gl. 2.6

mit:	n	=	Anzahl der Elektronen
	F	=	Faraday-Konstante
	α_{m}	=	Löslichkeit von Sauerstoff in der Membranphase
	$pO_2 =$		Sauerstoffpartialdruck der Probe
	D_{m}	=	Diffusionskoeffizient durch die Membran
	b	=	Membranstärke

Neben Parametern wie Membranmaterial und -dicke hängt der Stromfluß ebenfalls von Größe und Bauart der Elektrode und von den Strömungsverhältnissen ab. Untersuchungen über die Temperaturabhängigkeit haben gezeigt, daß deutliche Signalschwankungen im Temperaturbereich von 15 °C bis 23 °C auftreten ^[56].

Abb. 2.5: Schematischer Aufbau der amperometrischen Sauerstoffelektrode^[54]

2.2.4 Immobilisierung von Enzymen

Die als biologische Komponenten verwendeten Enzyme werden sowohl nativ eingesetzt als auch auf einem Trägermaterial immobilisiert und in einer Kartusche in das FIA-System integriert. Die Immobilisierung dient der Wiederverwertbarkeit der Enzyme und so der Kostensenkung. Außerdem verspricht man sich eine Erhöhung der Lager- und Langzeitstabilität. Das wiegt den Nachteil der geringeren Reaktionsgeschwindigkeit durch die Diffusionshemmung sowie den Aktivitätsverlust durch die Fixierung wieder auf. In dieser Arbeit wurden die Enzyme auf dem Polymerträger VA-Epoxy immobilisiert.

Der Polymerträger VA-Epoxy ist ein synthetisches Copolymerisat aus Vinylacetat und N,N'-Divinylethylenharnstoff, bei dem man durch gezielte Hydrolyse den Gehalt an Oxirangruppen einstellen kann. Diese Oxirangruppen reagieren, wie in Abb. 2.6 gezeigt, mit den freien Aminogruppen des Enzyms und bilden so eine kovalente Bindung aus^[57].

Die richtige Anzahl an Epoxygruppen auf der Trägeroberfläche ist sehr wichtig, da bei zu hoher Anzahl das Enzym an mehreren Stellen koppelt und so seine Konformation ändert. Als Folge dieser Konformationsänderung kann das Substrat nicht mehr zum aktiven Zentrum des Enzyms gelangen und umgesetzt werden, d. h. die Aktivität des Enzyms nimmt ab. Bei einer zu geringen Anzahl wird zu wenig Enzym gebunden.

Abb. 2.6: Kopplungsmechanismus zwischen Enzym und VA-Epoxy-Träger

2.3 Zeolithe

Ein anderer Teil dieser Arbeit beschäftigt sich mit der Adsorption von Aminosäuren an Zeolithen. Aus diesem Grund wird in diesem Kapitel auf die allgemeinen Eigenschaften von Zeolithen, auf ihre Struktur, ihre Synthese und auf ihre Verwendung eingegangen. Dabei wird besonders die Adsorption berücksichtigt.

Der Name Zeolith ist griechischen Ursprungs und heißt "kochender Stein". Er hat seinen Ursprung darin, daß natürliche Zeolithe beim Erhitzen Wasser abgeben. Eine heutige Definition beschreibt Zeolithe als kristalline, wasserhaltige Alumosilicate von Alkali- oder Erdalkalielementen mit dreidimensionalen Netzwerkstrukturen aus AlO₄⁻⁻ und SiO₄-Tetraedern, die über gemeinsame Sauerstoffatome verknüpft sind ^[58]. Allgemein können Zeolithe durch folgende Formel beschrieben werden:

$$x [(M^{I}, M^{II}_{1/2}) \cdot AlO_{2}] \cdot y SiO_{2} \cdot z H_{2}O$$

mit: $M^{I} = Na, K, usw.$
 $M^{II} = Mg, Ca, usw.$
Gl. 2.7

Zeolithe sind gekennzeichnet durch große innere Oberflächen von 800-1200 m²/g, starke elektrostatische Felder im Kristallgitter und durch ein spezifisches Schüttgewicht von ca. 750 kg/m³. Sie haben ein definiertes SiO₂/Al₂O₃-Verhältnis, das Modul genannt wird. Hydrophobizität, Temperatur- und Säurebeständigkeit der Zeolithe nehmen mit steigendem Modul zu. Zeolithe sind ungiftig, unbrennbar und kommen in großen Mengen in der Natur vor. Es sind ca. 40 natürliche und über 150 synthetische Zeolith-Strukturen bekannt ^[59,60].

2.3.1 Struktur von Zeolithen

Die Grundeinheiten der Zeolithe, die sogenannten primary building units, bilden die AlO_4^- - und SiO_4 -Tetraeder. Aus diesen Tetraedern lassen sich durch Eckenverknüpfung <u>s</u>econdary <u>b</u>uilding <u>u</u>nits (SBU) aufbauen^[61].

Abb. 2.7: Secondary building units [62]

Diese SBU's lassen sich wiederum durch Sauerstoffbrücken zu tertiary building units und diese weiter zu dreidimensionalen Netzwerkstrukturen aufbauen. Ein Beispiel für diese tertiären Einheiten ist ein Kubooktaeder, der aus Vier- und Sechs-Ringen besteht. Verknüpft man Kubooktaeder an ihren hexagonalen Flächen über Sauerstoffbrücken, so erhält man die in Abb. 2.8 links zu sehende FAU-Struktur.

Abb. 2.8: FAU- und MFI-Struktur^[63,64]

2.3.2 Synthese von Zeolithen

Zur Herstellung von Zeolithen geht man von wäßrig-alkalischen Lösungen reaktionsfähiger Silicium- und Aluminiumverbindungen aus. Man unterscheidet drei Synthesetypen:

• Gelsynthese

- Umsetzung von Mineralien oder Gläsern
- Synthese in Gegenwart organischer Kationen

Die technisch größte Bedeutung stellt dabei die Gelsynthese dar, auf die deswegen noch weiter eingegangen wird. Die Synthese in Gegenwart organischer Kationen ist ein Sonderfall der Gelsynthese, die für die Herstellung bestimmter Zeolith-Strukturen (z. B. ZSM 5) genutzt wird. Die Umsetzung von Mineralien und Gläsern spielt technisch keine Rolle ^[65].

Die Gelsynthese von Zeolithen erfolgt durch hydrothermale Kristallisation von Gelen, die aus wäßrigen, stark alkalischen Silikat- und Aluminatlösungen gebildet werden. Geeignete silikatische Ausgangsmaterialien sind Wasserglas sowie aktives, amorphes SiO₂ in Form von Kieselsolen oder -gelen. Die Aluminatlösung wird in der Regel durch Auflösen von Aluminiumoxidhydraten in Alkalihydroxidlösung hergestellt. Als Rohstoff eignet sich Kaolin und als Alkalihydroxidlösungen werden wäßrige NaOHund KOH-Lösungen eingesetzt ^[66]. Welche Struktur bei der Synthese gebildet wird, hängt von folgenden Faktoren ab:

- dem SiO₂/Al₂O₃-Verhältnis im Syntheseansatz
- der Art und Konzentration der Alkali-Kationen
- sofern vorhanden, der Art und Konzentration der organischen Amine bzw. Ammoniumionen
- Kristallisationsdruck und -temperatur sowie Temperaturführung
- der Intensität der mechanischen Bewegung
- Kristallkeime

Auch die Teilchengröße und deren Verteilung werden von diesen Parametern beeinflußt.

2.3.2.1 Modifizierung von Zeolithen

Die bekannteste und technisch wichtigste Möglichkeit zur Modifizierung von Zeolithen ist der Ionenaustausch. Die Alkali-Kationen sind nur locker an das Alumosilicat-Gerüst gebunden und können leicht ausgetauscht werden.

Dabei bewirkt der Austausch des Kations oft eine Veränderung der Porengröße des Zeolithen. So wird z. B. durch den partiellen Ersatz der Natrium-Ionen im Zeolith A durch Kalium-Ionen der Porendurchmesser von 4 Å auf 3 Å verkleinert.

Der Ionenaustausch wird in der Regel durch Behandlung der Zeolithe mit entsprechenden wäßrigen Salzlösungen vorgenommen. Da die Selektivitäten der einzelnen Ionen unterschiedlich sind, muß der Austauschschritt gegebenenfalls mehrfach wiederholt werden.

Die Herstellung von Zeolithen mit Wasserstoffbelegung ist nur bei Zeolithen mit einem großen Modul direkt über eine Behandlung mit Mineralsäuren möglich. Bei Zeolithen mit einem SiO₂/Al₂O₃-Verhältnis kleiner sechs führt eine Säurebehandlung dazu, daß ein Teil des Aluminiums aus dem Gitter herausgelöst und damit die Struktur zerstört wird. Bei solchen Zeolithen kann der Umweg über die thermische Zersetzung der Ammoniumform genommen werden.

Dieser Umweg kann auch dazu genutzt werden, einen Teil des Aluminiums aus dem Gitter zu entfernen. Dazu wird ein Großteil der Natrium-Ionen gegen Ammonium ausgetauscht, welches dann kontrolliert thermisch zersetzt wird. Dabei wechselt ein Teil des Aluminiums unter Hydrolyse aus dem Gitter auf die Kationenplätze. Durch einen erneuten Ammonium-Austausch werden das freigesetzte Aluminium und das restliche Natrium entfernt.

Von Interesse für katalytische Prozesse sind Zeolithe, die Übergangsmetalle in metallischer Form enthalten. Die Herstellung solcher Zeolithe erfolgt meist über Ionenaustausch mit den betreffenden Übergangsmetall-Ionen und deren anschließender Reduktion bei höheren Temperaturen im Wasserstoffstrom. Sie kann aber auch durch Adsorption und anschließende thermische Zersetzung der entsprechenden Carbonyle erfolgen ^[66,67,68].

2.3.3 Einsatz von Zeolithen

Zeolithe werden in drei großen Einsatzgebieten verwendet: Ionenaustausch, Katalyse und Adsorption. Auf die ersten beiden Verwendungsmöglichkeiten wird hier nur kurz eingegangen. Der Einsatz von Zeolithen in der Adsorption wird in Kapitel 2.3.4 ausführlich behandelt.

Das größte Einsatzgebiet für Zeolithe ist die Verwendung in Waschmitteln. Grundlage dieses Anwendungsgebietes ist, daß Zeolith A ein ähnliches Calcium-Bindevermögen besitzt wie Pentanatriumtriphosphat und so dieses ersetzen kann. Außerdem finden sie noch Anwendung bei der Gewinnung von Cäsium- und Strontium-Radioisotopen aus Abwässern.

Zeolith-Katalysatoren kommen vor allem in der Raffinerietechnik und in der Petrochemie zum Einsatz. Sie werden überwiegend zum Cracken schwerer Öle zur Herstellung von Crack-Benzin und Flüssiggas verwendet ^[66].

2.3.4 Adsorption an Zeolithen

Zeolithe besitzen aufgrund ihrer Hohlraumstruktur eine hohe innerkristalline Oberfläche. Sie ist polar und adsorbiert daher bevorzugt polare gegenüber unpolaren Molekülen. Ebenfalls durch das elektrostatische Feld gefördert ist die Adsorption von polarisierbaren Molekülen. Außerdem haben Zeolithe eine definierte Porenstruktur. Es treten daher nur Moleküle durch die Zeolithporen in die Adsorptionshohlräume, deren Querschnitt kleiner als der effektive Porendurchmesser ist. Unter Ausnutzung dieses Siebeffekts lassen sich Moleküle unterschiedlicher Größe voneinander trennen.

In der Verfahrenstechnik unterscheidet man die statische und die dynamische Adsorption. Von statischer Adsorption spricht man bei abgeschlossenen Systemen, z. B. bei der Trocknung von Luft, SF_6 oder Edelgasen in den Zwischenräumen von Mehrscheiben-Isolierglasfenstern und bei der Trocknung von Kältemitteln in Kühlaggregaten.

Die dynamische Adsorption ist wesentlich häufiger anzutreffen. Man unterscheidet zwischen Trocknungsprozessen, zu denen das Entfernen von Wasser aus Gasen und Flüssigkeiten zählt, und Reinigungsprozessen, bei denen Spuren von Verunreinigungen aus den Gas- bzw. Flüssigkeitsströmen entfernt werden. Beide Prozeßarten kommen hauptsächlich in der petrochemischen Industrie und bei Raffinerien vor.
Die Adsorptionseigenschaften der Zeolithe kann man aber auch für andere Trennprozesse nutzen. Mit Hilfe des Molekularsiebeffekts lassen sich z. B. n- und iso-Paraffine sowie Leucin und Isoleucin trennen. Als Beispiele für Trennverfahren, die auf der Adsorption unterschiedlich polarisierbarer Moleküle beruhen, können die Abtrennung von Olefinen aus gesättigten Kohlenwasserstoffen und die Luftzersetzung angeführt werden ^[65,66,69].

Bei einer Adsorption aus der Flüssigphase spielt die Wahl des Lösungsmittels eine große Rolle. Das Lösungsmittel sollte eine hohe Löslichkeit für das Stoffgemisch aufweisen und möglichst nicht die Adsorption der zu isolierenden Substanz am Zeolith reduzieren. Um die Adsorption günstig zu beeinflussen, sollte man folgendes beachten:

- Polare bis mittelpolare Substanzen sollten nach Möglichkeit aus Wasser adsorbiert werden. Zeolithe mit hohem Modul eignen sich hierbei besonders.
- Unpolare Substanzen sollten nach Möglichkeit aus unpolaren Kohlenwasserstoffen adsorbiert werden. Hierfür eigenen sich besonders Zeolithe mit kleinem Modul. Eignet sich jedoch kein unpolares Lösungsmittel, sollte aus Lösungsmitteln adsorbiert werden, die zu groß für das Porensystem des Zeolithen sind ^[70].

2.3.4.1 Adsorption von Aminosäuren an Zeolithen

Bei der Adsorption von Aminosäuren sind mehrere Einflußfaktoren zu erwarten. Aufgrund der pH-Abhängigkeit des Protonierungsgrades von Aminosäuren und der unterschiedlichen Natur ihrer Seitenketten sind sowohl polare als auch unpolare Wechselwirkungen möglich. Auch die Porengröße sowie das Modul des eingesetzten Zeolithen sind Faktoren, welche die Adsorption beeinflussen.

Während bei kleinen Modulen durch den höheren Anteil an Aluminiumzentren sowohl polare als auch unpolare Wechselwirkungen auftreten können, werden bei hohen Modulen durch die starke Hydrophobizität nur unpolare Wechselwirkungen erwartet.

Aus den theoretischen Überlegungen und aus Untersuchungen zur Adsorption von Aminosäuren an Zeolithen gehen einige allgemeine Aussagen hervor^[12,13,62,69]:

 Unpolare Aminosäuren können aus wäßrigen Lösungen an Zeolithen mit großem Modul bei pH-Werten unterhalb ihres isoelektrischen Punktes adsorbiert werden (unpolare Wechselwirkungen).

- Saure, basische und polare Aminosäuren können aus wäßrigen Lösungen an Zeolithen mit kleinem Modul bei pH-Werten ähnlich ihres isoelektrischen Punktes adsorbiert werden (polare Wechselwirkungen).
- Die Desorption der Aminosäuren ist bei pH-Werten oberhalb ihres isoelektrischen Punktes möglich.
- Die Adsorptionskapazität steigt mit Zunahme des Molekulargewichts der Aminosäure (vorausgesetzt, die Porengröße des Zeolithen ist nicht limitierend).
- Bei gleichem Zeolith-Typ steigt die Adsorptionskapazität für Aminosäuren mit sinkendem Modul.
- Je kleiner die Aminosäure, desto größer ist die Abnahme der Adsorptionskapazität bei steigendem Modul.
- Die Adsorption zeichnet sich durch eine schnelle Adsorptionskinetik und steile Adsorptionsisothermen aus, d. h. auch geringe Konzentrationen können effektiv entfernt werden.
- Neben der Ladung der Aminosäure kann die Molekülgröße als Trennfaktor genutzt werden (Molekularsiebeffekt).
- Sterische Effekte von Molekülen können zur Trennung genutzt werden (z. B. Leucin/Isoleucin).

2.4 Flüssigphasenadsorption

2.4.1 Grundlagen der Adsorption

In diesem Kapitel sollen kurz die Grundlagen der Flüssigphasenadsorption vorgestellt werde, da die Adsorption von Aminosäuren aus wäßriger Phase an Zeolithen einer Flüssigphasenadsorption entspricht.

Sammeln sich Teilchen an einer Oberfläche, spricht man von Adsorption. Das adsorbierende Material wird Adsorbens, die zu adsorbierende Substanz Adsorptiv und die adsorbierte Substanz Adsorbt genannt. Adsorbens und Adsorbt bilden zusammen den als Adsorbat bezeichneten Adsorptionskomplex. Die Umkehrung der Adsorption nennt man Desorption. Der Bedeckungsgrad Θ ist definiert als:

$$\Theta = \frac{n_i}{n_{i,S}} = \frac{q_i}{q_{i,S}}$$
Gl. 2.8
mit: n_i = Anzahl der besetzten Adsorptionsplätze

mit: n_i = Anzahl der besetzten Adsorptionsplätze $n_{i,S}$ = Anzahl der vorhandenen Adsorptionsplätze q_i = Adsorbensbeladung $q_{i,S}$ = Sättigungsbeladung

In vielen Fällen wird davon ausgegangen, daß die aktiven Zentren der Adsorbensoberfläche zur Bindung nur eines Adsorptivs zur Verfügung stehen. Diese Annahme ist stark vereinfacht und nur näherungsweise richtig. Meist konkurrieren verschiedene Inhaltsstoffe der fluiden Phase um die verfügbaren Adsorptionsplätze.

Weist der gelöste Stoff im Vergleich zum Lösemittel eine stärkere Wechselwirkung zum Adsorbens auf, ist seine Konzentration in den Poren höher als in der Außenlösung. Um die Beladung q_i zu bestimmen, benötigt man unter anderem die Konzentration des gelösten Stoffes innerhalb der Poren. Da diese nicht direkt bestimmbar ist, wird die Exzeßbeladung $q_{i,ex}$ benutzt. Sie berechnet sich aus der Konzentrationsänderung der Außenlösung unter Vernachlässigung der Adsorption des Lösemittels:

$$q_{i,ex} = \frac{(c_{i,0} - c_{i,G})}{m_{Ads}} \cdot V_L$$

Gl. 2.9

mit: $c_{i,0}$ = Ausgangskonzentration $c_{i,G}$ = Konzentration im Gleichgewicht m_{Ads} = Masse des Adsorbens V_L = Volumen der Lösung

Wird der gelöste Stoff i wesentlich stärker adsorbiert als das Lösemittel, ist die Differenz zwischen der Exzeßbeladung und der wahren Beladung vernachlässigbar. Die Beladung wird üblicherweise in Millimol (Milligramm) Adsorbt pro Gramm Adsorbens angegeben.

Entsprechend der Gibbs-Helmholtz-Gleichung erfordert die Adsorption als freiwillig ablaufender Vorgang ein negatives Vorzeichen der freien Reaktionsenthalpie ΔG_{ads} .

$$\Delta G_{ads} = \Delta H_{ads} - T \cdot \Delta S_{ads} < 0$$
G1. 2.10

mit: ΔH_{ads} = Adsorptionsenthalpie T = Temperatur ΔS_{ads} = Adsorptionsentropie

Die Moleküle des Adsorptivs werden während der Adsorption in einem relativ geordneten Zustand an der Adsorbensoberfläche fixiert. Daraus resultieren im allgemeinen negative Werte der Adsorptionsentropie. Ausnahmen sind zu erwarten, wenn beispielsweise die Adsorption eines Moleküls von einer Dissoziation an der Oberfläche begleitet wird. Aus Gl. 2.10 geht hervor, daß die Adsorption fast immer ein exothermer Prozeß ist.

Der Absolutbetrag der Adsorptionsenthalpie gibt einen Anhaltspunkt für die Unterscheidung zwischen physikalischer Adsorption (Physisorption) und chemischer Adsorption (Chemisorption). Ersteres ist auf van der Waalssche Wechselwirkungen zurückzuführen und erreicht selten Werte über 40 kJ/mol. Bei der Chemisorption liegen die Adsorptionsenthalpien im Bereich von 60 - 450 kJ/mol, was auf chemische Reaktionen zurückzuführen ist ^[71,72].

2.4.2 Adsorptionsgleichgewicht und Adsorptionsisothermen

Zwischen dem frei beweglichen Adsorptiv und dem gebundenen Adsorbt bildet sich ein dynamisches Gleichgewicht aus. Dieses Adsorptionsgleichgewicht wird durch die Adsorptivkonzentration, die adsorbierte Stoffmenge und die Temperatur bestimmt. Experimentell werden Gleichgewichtsdaten über die Abhängigkeit der Adsorbensbeladung q_i von der Adsorptivkonzentration c_i bestimmt und mathematisch als Adsorptionsisotherme $q_i = f(c_i)$ beschrieben. Die Lage des Gleichgewichtes ist von den Adsorptiv-Adsorbens-Wechselwirkungen abhängig und wird von den Eigenschaften der wäßrigen Lösung, des Adsorptivs und des Adsorbens beeinflußt.

Zur mathematischen Beschreibung des Isothermenverlaufs durch eine Isothermengleichung existieren eine Reihe verschiedener Ansätze. Sie sind entweder auf der Basis theoretischer Modellvorstellungen hergeleitet worden oder empirischer Natur.

Ein häufig genutztes Modell zur Beschreibung der Adsorption aus verdünnten Lösungen ist die Langmuirsche Adsorptionsisotherme:

$$\Theta = \frac{\mathbf{q}_{i}}{\mathbf{q}_{i,S}} = \frac{\mathbf{k}_{i} \cdot \mathbf{c}_{i,G}}{1 + \mathbf{k}_{i} \cdot \mathbf{c}_{i,G}}$$
Gl. 2.11

Der Wert k_i ist definiert als k_{ads}/k_{des} , dem Quotienten der Reaktionsgeschwindigkeitskonstanten der Ad- und Desorption im Gleichgewicht. Die Langmuir-Gleichung gilt nur unter bestimmten Vorraussetzungen:

- Das Adsorptiv wird an einer festen Anzahl wohldefinierter Adsorptionsstellen auf dem Adsorbens adsorbiert.
- Es liegt eine monomolekulare Bedeckung vor, direkt auf der Adsorbensoberfläche.
- Die Adsorptionsenergie ist an allen Adsorptionsstellen gleich.
- Zwischen den adsorbierten Molekülen gibt es keine Wechselwirkungen.

Formt man Gl. 2.11 nach q_i um, so erhält man Gl. 2.12, aus der zu sehen ist, daß sich die Beladung mit zunehmender Konzentration asymptotisch der Sättigungsbeladung nähert.

$$q_{i} = \frac{k_{i} \cdot q_{i,S} \cdot c_{i,G}}{1 + k_{i} \cdot c_{i,G}}$$
Gl. 2.12
$$\lim_{c_{i,G} \to \infty} (q_{i}) = q_{i,S}$$
Gl. 2.13

Im Bereich kleiner Konzentrationen verhält sich q_i proportional zur Gleichgewichtskonzentration $c_{i,G}$. Die Langmuir-Isotherme geht in diesen Bereich in eine Henry-Isotherme über ^[71,72,73].

3 Entwicklung eines Biosensors zur Detektion des Hydrolysegrades

Ein Aspekt dieser Arbeit ist die Entwicklung eines Biosensors, mit dem der Fortschritt der enzymatischen Hydrolyse in time überwacht werden kann, d. h. das Ergebnis muß so schnell vorliegen, daß regelnd in den Prozeß eingegriffen werden kann. Mit den bisherigen Analysemethoden, wie z. B. der HPLC ist dies nicht möglich. Das umweltschonende enzymatische Hydrolyseverfahren soll durch die schnelle Prozeßanalytik marktwirtschaftlich interessanter gemacht werden.

Zur Entwicklung dieses Biosensors muß ein Enzym gefunden werden, das auf dem Markt erhältlich und spezifisch bezüglich L-Aminosäuren, aber unspezifisch bezüglich ihrer Seitenketten ist. Die durch dieses Enzym katalysierte Reaktion muß mit physikalischen Meßgeräten verfolgbar sein und das Enzym selbst muß ausreichend stabil sein.

Zu diesem Zweck wurde die L-Aminosäure-Oxidase (<u>L-Aminoacid-Oxidase</u>, L-AAOD) als biologische Komponente ausgewählt. Sie oxidiert sehr spezifisch L-Aminosäuren, ist aber unselektiv bezüglich der Seitenketten. Die Oxidation findet als Desaminierung unter Verbrauch von Sauerstoff statt (s. Kapitel 2.2.2). Der Sauerstoffverbrauch wird mit einer amperometrischen Sauerstoffelektrode verfolgt. Durch die Kombination mit einer Fließinjektionsanalyse kann das System automatisiert werden und es ergibt sich in einem bestimmten Konzentrationsbereich ein linearer Zusammenhang zwischen der Gesamt-Aminosäure-Konzentration und der Peakhöhe.

Der entwickelte Biosensor soll hinsichtlich seiner Stabilität und seiner Temperatur- und pH-Optima sowie auf den Einfluß verschiedener Pufferadditive untersucht werden. Abschließend soll er durch Messung von Realproben auf seine Praxistauglichkeit getestet werden.

3.1 Stabilisierung der L-Aminosäure-Oxidase mit Catalase

Zunächst wurde untersucht, ob und wie sich die Aktivität der L-AAOD in Gegenwart des entstehenden Wasserstoffperoxids verändert. Dazu wurden 20 U L-AAOD in einer Enzymkartusche immobilisiert (s. Anhang 6.4). Die Messungen wurden mit einer 10 g/L L-Leucin-Lösung bei Raumtemperatur durchgeführt. Als Trägerstrom diente 0,1 M Kaliumphosphat-Puffer (KPP-Puffer) mit einem pH-Wert von 7,5, die Pumpengeschwindigkeit betrug 1,0 mL/min und als Temperatur wurden 28 °C gewählt. Bei

allen Versuchen betrug das Probenvolumen 75 μ L und die Auswertung erfolgte über die Peakhöhe. Es zeigte sich jedoch, daß die Aktivität der L-AAOD schon nach wenigen Messungen abnahm.

Um den Aktivitätsverlust zu verhindern, wurde dem System Catalase zugesetzt (s. Kapitel 2.2.2). Aus Kostengründen wurden Messungen mit einem Coimmobilisat aus L-AAOD (20 U) und Catalase (20 U) durchgeführt. Da bei der durch Catalase katalysierten Zersetzungsreaktion Sauerstoff entsteht, zur Detektion der Aminosäure aber der Verbrauch gemessen wird, war die Peakhöhe bei diesen Messungen wie erwartet geringer. Allerdings konnte auch mit diesem System keine Stabilisierung der L-AAOD erreicht werden. Das liegt wahrscheinlich an der räumlichen Trennung zwischen der L-AAOD, dem Entstehungsort des Wasserstoffperoxids und der Catalase, dem Abbauort des Wasserstoffperoxids. Auch durch Einsatz größerer Mengen Catalase (30 und 100 U) wurden keine besseren Ergebnisse erzielt.

Eine weitere Möglichkeit zur Stabilisierung der L-AAOD besteht in der Zugabe nativer Catalase zur Substratlösung. Es wurden zunächst 100 U pro Messung zugesetzt und die Aktivität der L-AAOD blieb erhalten.

Abb. 3.1: Aktivitätsverlust der L-AAOD; 10 g/L L-Leucin, 20 U L-AAOD, 100 U Catalase, 0,1 M KPP-Puffer, T = 28 °C, pH 7,5, v = 1,0 mL/min, $V_P = 75 \ \mu L$

Da die Catalase nativ zugegeben werden muß, was im Vergleich zur Coimmobilisierung kostenaufwendiger ist, wurde im folgenden versucht, die notwendige Catalasemenge auf ein Minimum zu begrenzen. Die Sensorsignale wurden mit abnehmender Catalase-Konzentration wie erwartet immer höher. Ab einer Konzentration von 20 U Catalase/ Messung war jedoch ein Aktivitätsverlust zu erkennen (s. Tab. 3.1), so daß für alle weiteren Messungen eine Catalase-Konzentration von 30 U/Messung verwendet wurde. Damit war für dieses System ein Optimum der Catalase-Konzentration gefunden: Hoch genug, um die L-AAOD zu stabilisieren, aber auch klein genug, um das Sensorsignal nicht zu stark abzuschwächen und um kostengünstig zu sein.

Tab. 3.1: Aktivitätsverlust der L-AAOD in Abhängigkeit von der Catalase-Konzentration; 10 g/L L-Leucin, 20 U L-AAOD, 0,1 M KPP-Puffer, pH 7,5, $v = 1,0 \text{ mL/min}, V_P = 75 \mu L^{[74]}$

Messung	Sensorsignal [mV]			
	30 U Catalase	20 U Catalase	10 U Catalase	
1	159	155	166	
2	158	153	164	
3	159	154	162	
4	158	152	158	
5	160	149	157	

3.1.1 Optimierung des Biosensors L-Aminosäure-Oxidase/Catalase

3.1.1.1 Temperatur-Optimum des Biosensors L-AAOD/Catalase

Bei enzymatischen Reaktionen durchläuft die Aktivität als Funktion der Temperatur ein Maximum. Mit der Temperatur steigt zunächst die Reaktionsgeschwindigkeit, bei hohen Temperaturen setzt dann jedoch die Denaturierung der Proteine ein und die Aktivität sinkt.

Die Temperatur-Optima der beiden Enzyme liegen laut Literatur zwischen 25 und 30 °C. Es mußte daher untersucht werden, welche Temperatur für die Kombination beider Enzyme optimal ist. Dafür wurden im gegebenen Temperaturbereich jeweils fünf Messungen durchgeführt und gemittelt.

Abb. 3.2: Temperaturabhängigkeit der Enzymaktivität; 10 g/L L-Leucin, 20 U L-AAOD, 30 U Catalase, 0,1 M KPP-Puffer, pH 7,5, v = 1,5 mL/min, $V_P = 75 \ \mu$ L; bei T = 32 °C sind zusätzlich die Einzelmessungen gezeigt

Bei diesen Versuchen zeigte sich ein Temperatur-Optimum von 30 °C für das Enzymsystem L-AAOD/Catalase. Bei der Betrachtung der Einzelmessungen für 32 °C zeigt sich eine Abnahme der Enzymaktivität, die durch die einsetzende Denaturierung verursacht wird.

3.1.1.2 pH-Optimum des Biosensors L-AAOD/Catalase

Ein weiterer wichtiger Parameter für die Enzymaktivität ist der pH-Wert der Pufferlösung. Analog zur Temperatur existiert auch hier ein Optimum, welches auf die unterschiedlich ausgeprägte Protonierung bzw. Deprotonierung einzelner funktioneller Gruppen im Enzym zurückzuführen ist. Zur Optimierung des Systems L-AAOD/ Catalase wurden daher jeweils fünf Messungen bei verschiedenen pH-Werten durchgeführt und gemittelt.

Abb. 3.3: pH-Abhängigkeit der Enzymaktivität; 10 g/L L-Leucin, 20 U L-AAOD, 30 U Catalase, 0,1 M KPP-Puffer, T = 30 °C, v = 1,5 mL/min, $V_P = 75 \mu L$

Aus dieser Meßreihe ist zu erkennen, daß das pH-Optimum für das System L-AAOD/ Catalase bei 8,0 liegt.

3.1.1.3 Einfluß von Pufferadditiven auf den Biosensor L-AAOD/Catalase

Frühere Untersuchungen haben gezeigt ^[56], daß sich die Aktivität von Enzymen auch durch Pufferzusätze erhöhen läßt. Im Fall der L-AAOD kommt hierfür der Komplexbildner EDTA in Betracht, der beispielsweise hemmende Metallkationen binden kann. Bezüglich der Sauerstoffelektrode hat sich NaCl zur Erhöhung der Leitfähigkeit bewährt. Hierbei ist der positive Einfluß allerdings fraglich, da Natriumsalze Inhibitoren der L-AAOD sind (s. Kapitel 2.2.2).

Deshalb wurden folgende Puffersysteme getestet: Ein 0,1 M KPP-Puffer ohne weitere Zusätze, einer mit Zusatz von 5 mmol/L EDTA, einer mit Zusatz von 5 mmol/L NaCl und ein 0,1 M KPP-Puffer mit je 5 mmol/L EDTA und NaCl. Es wurden jeweils fünf Messungen mit den unterschiedlichen Puffern durchgeführt und gemittelt.

Abb. 3.4: Abhängigkeit der Enzymaktivität von Pufferzusätzen; 10 g/L L-Leucin, 20 U L-AAOD, 30 U Catalase, pH 8,0, T = 30 °C, v = 1,5 mL/min, $V_P = 75 \ \mu L$

Sowohl der Zusatz von NaCl als auch der Zusatz von EDTA wirken sich positiv aus. Als Folge davon sollte der gemeinsame Zusatz von NaCl und EDTA den größten Effekt haben. Das ist aber nicht der Fall, und den optimalen Effekt hat der alleinige Zusatz von EDTA. Aufgrund der geringen Unterschiede, ist dieses Ergebnis jedoch nicht zu stark zu bewerten, so daß man im allgemeinen sagen kann, daß die Zusätze kaum eine Wirkung zeigen.

Die Optimierungsergebnisse sind zur besseren Übersicht in Tab. 3.2 zusammengefaßt.

Tab. 3.2: Optima des Biosensors L-AAOD/Catalase

	Temperatur [°C]	pH-Wert	Pufferadditive
Meßbereiche	26/28/30/32	6,5/7,0/7,5/8,0/8,5	ohne/+ NaCl/+ EDTA/ +NaCl + EDTA
Optimum L-AAOD	25-30	7,0-8,7	NaCl Inhibitor
Optimum Catalase	25-30	7,0	k. A.
Optimum L-AAOD/Cat.	30	8,0	+ EDTA

3.1.2 Querempfindlichkeit des Biosensors L-AAOD/Catalase gegenüber anderen L-Aminosäuren

Bevor Messungen an Medien komplexer Zusammensetzung durchgeführt werden sollten, wurde zunächst überprüft, wie sich das System bei binären Aminosäurelösungen verhält. Da bekannt ist, daß einige Substrate dieser Klasse hemmend auf die L-AAOD wirken (s. Kapitel 2.2.2), wurden L-Aminosäure-Lösungen aus L-Leucin und jeweils einer anderen L-Aminosäure mit einer Konzentration von jeweils 5 g/L angesetzt.

Abb. 3.5: Querempfindlichkeit des Enzymsystems L-AAOD/Catalase; $c_{(AS)} = 5$ g/L, 20 U L-AAOD, 30 U Catalase/Messung, 0,1 M KPP-Puffer + 5 mM EDTA, pH 8,0, T = 30 °C, v = 1,5 mL/min, V_P = 75 µL

Es ist deutlich zu erkennen, daß bis auf L-Asparagin und L-Glutamin alle L-Aminosäuren eine Erhöhung des Sensorsignals bewirken. Am stärksten wird dabei neben L-Leucin L-Tryptophan umgesetzt, was zu einer Erhöhung des Meßsignals um 28 % führt. Diese Ergebnis stimmt gut mit den Literaturangaben überein. So werden neben L-Leucin bevorzugt L-Methionin, L-Phenylalanin und L-Tryptophan umgesetzt. Hemmend dagegen wirkt sich L-Asparagin aus ^[47,48].

3.1.3 Test des Biosensors L-AAOD/Catalase an Realmedien

Nach den oben genannten Optimierungen sollte getestet werden, ob der Biosensor auch Realmedien messen kann. Dazu wurde der Biosensor mittels eines L-Aminosäuregemischs kalibriert und eine Kartoffelprotein-Hydrolysat-Probe wurde vermessen. Die Zusammensetzung des Hydrolysats (Bestimmung mittels HPLC) und die des L-Aminosäure-Standards sind in Tab. 3.3 wiedergegeben. Der L-Aminosäure-Standard wurde für die Kalibration weiter verdünnt.

Aminosäure	Hydr	olysat	L-Aminosäure-Standard	
	c [g/L]	Gew. %	c [g/L]	Gew. %
L-Asparaginsäure	0,01	0,3	0,02	0,4
L-Glutamin	0,27	7,2		
L-Asparagin	0,01	0,3	0,02	0,4
L-Histidin	0,11	2,9	0,40	7,5
Glycin	0,12	3,2		
L-Threonin	0,11	2,9		
L-Arginin	0,02	0,5	0,08	1,5
L-Alanin	0,07	1,9		
L-Tyrosin	0,35	9,4		
L-Methionin	0,15	4,0	0,60	11,3
L-Valin	0,39	10,5		
L-Tryptophan	0,15	4,0	0,60	11,3
L-Phenylalanin	0,43	11,5		
L-Isoleucin	0,35	9,4	1,40	26,3
L-Leucin	0,57	15,3	2,20	41,4
L-Lysin	0,62	16,6		
Gesamt	3,73	100	5,32	100

Tab. 3.3: Zusammensetzung des L-Aminosäure-Standards und des Hydrolysats

Für die Messung mußte die Hydrolysat-Lösung (pH 6,9) gepuffert werden. Sie wurde daher 1:1 mit dem Arbeitspuffer verdünnt. Das entsprach einer Aminosäure-Konzentration von 1,86 g/L. Diese Lösung wurde nach Zusatz der Catalase fünfmal vermessen. Die Standardabweichung betrug 5 %.

Abb. 3.6: Kalibrationsgerade für L-AAOD mit Hydrolysat; 20 U L-AAOD, 30 U Catalase/Messung, 0,1 M KPP-Puffer + 5 mM EDTA, pH 7,5, T = 30 °C, $v = 1,5 \text{ mL/min}, V_P = 75 \mu L^{[74]}$

Nach der Kalibration entspricht das für das Hydrolysat gemessene Signal von 50 mV einer L-Aminosäure-Konzentration von 1,18 g/L. Die mit dem Biosensor gemessene Konzentration ist damit deutlich geringer als die von der HPLC bestimmten 1,86 g/L.

Dieses Ergebnis läßt sich dadurch erklären, daß der prozentuale L-Leucin-Anteil im Hydrolysat kleiner ist als in dem L-Aminosäure-Standard. Auch der Anteil von L-Methionin, L-Tryptophan und L-Phenylalanin ist geringer. Dafür sind andere L-Aminosäuren vorhanden, deren Einfluß noch nicht untersucht wurde. Weiterhin ist zu berücksichtigen, daß im Hydrolysat auch L-Aminosäuren vorhanden sind, die nicht umgesetzt werden oder aber sogar inhibierend auf die L-AAOD wirken, wie z. B. Glycin und L-Threonin^[47,48].

Der Biosensor soll jedoch nicht dazu eingesetzt werden, die genaue L-Aminosäure-Konzentration zu bestimmen, sondern um den zeitlichen Verlauf einer Hydrolyse zu verfolgen. Da während der Hydrolyse auch die L-Leucin-Konzentration stark ansteigt, ist dies gut möglich.

3.1.4 Langzeitstabilität des Biosensors L-AAOD/Catalase

Nachdem mit dem Biosensor prinzipiell der Verlauf der Hydrolyse verfolgt werden kann, sollte nun untersucht werden, wie sich die Stabilität des Biosensors L-AAOD/Catalase über einen längeren Zeitraum verhält. Dazu wurde über einen Zeitraum von acht Stunden alle zehn Minuten eine Messung vorgenommen. Das Ergebnis ist in Abb. 3.7 zu sehen.

Abb. 3.7: Langzeitstabilität der L-AAOD mit und ohne Catalase; 5 g/L L-Leucin, 20 U L-AAOD, 30 U Catalase/Messung, 0,1 M KPP-Puffer + 5 mM EDTA, pH 8,0, T = 30 °C, v = 1,5 mL/min, $V_P = 75 \mu L$

Es ist ein deutlicher Unterschied zwischen der Messung ohne und mit Catalase zur Stabilisierung zu erkennen, was sich schon in den ersten Experimenten abzeichnete. Bei der stabilisierten L-AAOD ist eine Abnahme von 18 % in der Signalhöhe zu erkennen. Diese Abnahme kann durch eine neue Kalibration ausgeglichen werden, ohne daß die Genauigkeit des Biosensors darunter leidet.

3.2 Stabilisierung der L-Aminosäure-Oxidase mit Peroxidase

Obwohl die Versuche mit Catalase zur Stabilisierung der L-AAOD sehr vielversprechend waren, wurde der Einfluß von Peroxidase (POD) untersucht. Trotz des geringeren pH-Optimums von POD wurden höhere Meßwerte und damit eine gesteigerte Empfindlichkeit des Biosensors erwartet, da bei der durch Peroxidase katalysierten Zersetzungsreaktion des Wasserstoffperoxids Wasser und kein Sauerstoff entsteht.

Bei allen Versuchen wurde als Standard eine 10 g/L L-Leucin-Lösung verwendet. Der Laufpuffer war 0,1 M Kaliumphosphat-Puffer mit einem pH-Wert von 7,0. Der pH-Wert wurde niedriger eingestellt als bei dem Biosensors L-AAOD/Catalase, da das pH-Optimum von POD niedriger liegt als das von Catalase. Die Strömungsgeschwindigkeit betrug 1,5 mL/min. In der Enzymkartusche wurden 20 U L-AAOD immobilisiert.

Abb. 3.8: Aktivitätsverlust der L-AAOD; 10 g/L L-Leucin, 20 U L-AAOD, 20 U POD, 0,1 M KPP-Puffer, T = 30 °C, pH 7, v = 1,5 mL/min, $V_P = 75 \mu L$

Es wurden Versuche mit nativen Zusatz von POD (20 U/Messung) und als Coimmobilisat (20 U L-AAOD + 20 U POD) durchgeführt. Beide Systeme waren wesentlich stabiler als die L-AAOD ohne Stabilisierung und zeigten untereinander keinen Unterschied. Deswegen wurde bei den weiteren Versuchen ein Coimmobilisat von L-AAOD/POD benutzt.

3.2.1 Optimierung des Biosensors L-Aminosäure-Oxidase/Peroxidase

3.2.1.1 Temperatur-Optimum des Biosensors L-AAOD/POD

Bei der Temperaturoptimierung wurde wie in Kapitel 3.1.1.1 bei einer Temperatur von 26 °C begonnen, da die Temperatur-Optima aller drei Enzyme zwischen 25 und 30 °C liegen.

Abb. 3.9: Temperatur-Optimum des Systems L-AAOD/POD; 20 U L-AAOD/POD, 10 g/L L-Leucin, 0,1 mol/L KPP-Puffer, pH 7, v = 1,5 mL/min, V_P = 75 µL; bei T = 32 °C sind zusätzlich die Einzelmessungen gezeigt

Auch bei diesen Messungen zeigte sich der für ein Enzym typische Temperaturverlauf. Das Temperatur-Optimum für das Enzymsystem L-AAOD/POD liegt bei 34 °C und damit deutlich höher als die in der Literatur angegebenen Werte und höher als das Optimum für den Biosensor L-AAOD/Catalase (30 °C). Bei 36 °C ist eine deutliche Abnahme der Enzymaktivität zu sehen, die auf die Denaturierung der L-AAOD zurückzuführen ist. Es ist ebenfalls zu erkennen, daß die Meßwerte wesentlich höher sind als bei dem Biosensor L-AAOD/Catalase.

3.2.1.2 pH-Optimum des Biosensors L-AAOD/POD

Ein weiterer wichtiger Parameter für die Enzymaktivität ist der pH-Wert der Pufferlösung. Zur Optimierung des Systems L-AAOD/POD wurden Messungen mit pH-Werten zwischen 6,0 und 8,0 durchgeführt. Das Hauptaugenmerk wurde auf das pH-Optimum der L-AAOD gelegt, da eine geringere Aktivität der POD durch eine höhere Konzentration kostengünstig ausgeglichen werden kann. Trotzdem wurde die Optimierung bei einem geringeren pH-Wert begonnen als bei dem Biosensor L-AAOD Catalase.

Abb. 3.10: pH-Abhängigkeit der Enzymaktivität; 10 g/L L-Leucin, 20 U L-AAOD/ POD, 0,1 M KPP-Puffer, T = 34 °C, v = 1,5 mL/min, V_P = 75 µL

Aus dieser Meßreihe ist zu erkennen, daß das pH-Optimum für den Biosensor L-AAOD/POD bei 7,0 liegt und damit wie erwartet niedriger ist als das pH-Optimum des Biosensors L-AAOD/Catalase (8,0).

3.2.1.3 Einfluß von Pufferadditiven auf den Biosensor L-AAOD/POD

Hier gilt das gleiche wie in Kapitel 3.1.1.3. Es wurden auch die gleichen Zusätze getestet. Nur die Temperatur wurde auf 34 °C und der pH-Wert auf 7,0 eingestellt. Die Versuchsbedingungen entsprachen so den vorher gefundenen Optima.

Abb. 3.11: Abhängigkeit der Enzymaktivität von Pufferzusätzen; 10 g/L L-Leucin, 20 U L-AAOD/POD, pH 7,0, T = 34 °C, v = 1,5 mL/min, $V_P = 75 \mu L$

Der Zusatz von EDTA wirkte sich positiv aus, den besten Effekt hat jedoch der alleinige Zusatz von NaCl. Wie bei dem Biosensor L-AAOD/Catalase hatte auch hier die Kombination EDTA/NaCl nicht den besten Effekt. Im Gegensatz zu diesem System hatte der Zusatz von EDTA, der die L-AAOD vor Schwermetall-Ionen schützen soll, nicht den erwartet guten Einfluß, sondern die Zugabe von NaCl, das die Leitfähigkeit der Sauerstoffelektrode erhöhen soll. Das kann durch den höheren Strom erklärt werden, bei dem sich eine prozentuale Verstärkung deutlicher bemerkbar macht.

Zur besseren Übersicht sind in nachfolgender Tabelle noch mal die Optimierungsergebnisse zusammen gefaßt.

	Temperatur [°C]	pH-Wert	Pufferadditive
Meßbereiche	26/28/30/32/34/36	6,0/6,5/7,0/7,5/8,0	ohne/+ NaCl/+ EDTA/ +NaCl + EDTA
Optimum L-AAOD	25-30	7,0-8,7	NaCl Inhibitor
Optimum POD	25-30	4,7-7,0	k. A.
Optimum L-AAOD/Cat.	34	7,0	+ NaCl

Tab. 3.4: Optima des Biosensorsystems L-AAOD/POD

3.2.2 Querempfindlichkeiten des Biosensors L-AAOD/POD gegenüber anderen L-Aminosäuren

Auch für diesen Biosensor wurden noch mal die Querempfindlichkeiten gegenüber anderen L-Aminosäuren getestet. Dabei wurde ein Ergebnis erwartet, das dem in Kapitel 3.1.2 entspricht. Die Versuchsbedingungen waren die Optima aus Tab. 3.4.

Abb. 3.12: Querempfindlichkeit des Enzymsystems L-AAOD/POD; $c_{(AS)} = 5$ g/L, 20 U L-AAOD/POD, 0,1 M KPP-Puffer + 5 mM NaCl, pH 7,0, T = 34 °C, v = 1,5 mL/min, $V_P = 75$ µL

Bis auf einen kleinen Unterschied bei den Aminosäuren L-Methionin und L-Arginin war das Ergebnis das erwartete. Es zeigt sich auch hier wieder, daß nach L-Leucin L-Tryptophan am stärksten umgesetzt wird.

3.2.3 Test des Biosensors L-AAOD/POD an Realmedien

Obwohl das System L-AAOD/Catalase schon gezeigt hat, daß der Biosensor prinzipiell zum Online-Monitoring der Hydrolyse geeignet ist, ist dieser Versuch mit dem Biosensor L-AAOD/POD wiederholt worden. Mit diesem Biosensor wird ein deutlich besseres Ergebnis erwartet, da der Sensitivitätsverlust durch die Sauerstofffreisetzung der Catalase hier nicht gegeben ist. Für diesen Versuch wurde wieder der L-Aminosäure-Standard aus Tab. 3.3 benutzt.

Abb. 3.13: Kalibrationsgerade für L-AAOD mit Hydrolysat; 20 U L-AAOD/POD, 0,1 M KPP-Puffer + 5 mM NaCl, pH 7,0, T = 34 °C, v = 1,5 mL/min, $V_P = 75 \ \mu L$

Für das Hydrolysat wurde ein Signal von 0,23 V mit einer Standardabweichung von 2 % gemessen. Das ergibt eine L-Aminosäure-Konzentration von 1,28 g/L und entspricht damit in etwa dem Ergebnis in Kapitel 3.1.3.

Die mit der HPLC gemessene Gesamt-L-Aminosäure-Konzentration von 1,86 g/L wurde aufgrund des prozentual gesehen geringeren L-Leucin-Anteils auch bei dieser Messung nicht erreicht, kann aber durch die Wahl eines anderen Kalibrations-Standards oder eine Offset-Korrektur ausgeglichen werden. Durch die höheren Signale wurde die Messung jedoch genauer und die Standardabweichung sank von 5 % auf nur noch 2 %.

3.2.4 Langzeitstabilität des Biosensors L-AAOD/POD

Der Biosensor L-AAOD/POD eignet sich aufgrund seiner höheren Sensitivität und Genauigkeit besser zur Bestimmung des Gesamthydrolysegrades. Deswegen mußte überprüft werden, ob er über einen längeren Zeitraum ebenso stabil ist wie der Biosensor L-AAOD/Catalase. Aus diesem Grund wurde über einen Zeitraum von ca. acht Stunden alle zehn Minuten eine Messung aufgenommen.

Abb. 3.14: Langzeitstabilität der L-AAOD mit und ohne POD; 5 g/L L-Leucin, 20 U L-AAOD/POD, 0,1 M KPP-Puffer + 5 mM NaCl, pH 7,0, T = 34 °C, v = 1,5 mL/min, V_P = 75 µL

Obwohl bei der Messung mit reiner L-AAOD ohne Stabilisierung durch POD nach etwas über drei Stunden abgebrochen werden mußte, zeigt sich deutlich, daß die Stabilisierung mit POD wirkt. Der Aktivitätsverlust betrug über einen Zeitraum von acht Stunden 20 %. Der Aktivitätsverlust ist damit geringfügig höher als bei dem Biosensor L-AAOD/Catalase (18 %), der Biosensor L-AAOD/POD hat dem gegenüber aber den Vorteil, daß beide Enzyme immobilisiert vorliegen.

3.2.5 Test des Biosensors L-AAOD/POD in Gradientenmischerversuchen

Um den Verlauf einer Hydrolyse zu simulieren, wird der Biosensor L-AAOD/POD im Gradientenmischerversuch getestet.

3.2.5.1 Funktionsweise eines Gradientenmischers

Ein Gradientenmischer ist ein Rührkesselreaktor, der einen Zulauf am unteren Teil des Behälters aus einem nachfolgenden Vorratsbehälter besitzt. Aus dem Reaktor wird ein kontinuierlicher Probenstrom gezogen, so daß ein Konzentrationsgradient entsteht.

Abb. 3.15: Aufbau eines Gradientenmischers

Der Konzentrationsverlauf des Gradientenmischers läßt sich berechnen. Durch Lösen der beiden folgenden Differentialgleichungen erhält man Gl. 3.3.

$$\frac{dV(t)c(t)}{dt} = V c_0 - 2 V c(t)$$
Gl. 3.1
$$\frac{dV(t)}{dt} = V - 2 V = -V$$
Gl. 3.2

$$c(t) = c_0 \frac{V t}{V}$$
Gl. 3.3

Mit:
$$c(t) = Konzentration zur Zeit t$$

 $c_o = Konzentration zur Zeit t = 0$
 $V = Strömungsgeschwindigkeit; 1 mL/min$
 $V = Reaktorvolumen; 300 mL$
 $t = Zeit [min]$

3.2.5.2 Gradientenmischerversuche mit L-Leucin-Lösungen

Zuerst wurde der Biosensor im Bereich von 1-5 g/L L-Leucin kalibriert. Dann wurde der Versuch mit einer Anfangskonzentration im Vorratsgefäß von 5 g/L gestartet. Alle zehn Minuten wurde eine Messung vorgenommen.

Abb. 3.16: Simulation einer Hydrolyse mittels L-Leucin-Gradient; 20 U L-AAOD/ POD, 0,1 M KPP-Puffer + 5 mM NaCl, pH 7,0, T = 34 °C, v = 2,0 mL/min, $V_P = 75 \ \mu L, c_0 = 5 \ g/L$

Es ist zu erkennen, daß die gemessenen und berechneten Werte gut übereinstimmen. Aus diesem Grund wurde der Versuch in einem niedrigeren Konzentrationsbereich wiederholt.

Abb. 3.17: Kalibrationsfunktion für L-Leucin; 20 U L-AAOD/ POD, 0,1 M KPP-Puffer + 5 mM NaCl, pH 7,0, T = 34 °C, v = 2,0 mL/min, V_P = 100 µL

Dazu mußte die Probenschleife von 75 auf 100 μ L vergrößert werden. Die Kalibration wurde von 0,2 – 1 g/L L-Leucin durchgeführt und die Anfangskonzentration im Vorratsgefäß betrug diesmal 1 g/L.

Abb. 3.18: Simulation einer Hydrolyse mittels L-Leucin-Gradient; 20 U L-AAOD/ POD, 0,1 M KPP-Puffer + 5 mM NaCl, pH 7,0, T = 34 °C, v = 2,0 mL/min, $V_P = 100 \ \mu$ L, $c_0 = 1 \ g/L$

Auch in dem geringeren Konzentrationsbereich stimmen die gemessenen und berechneten Werte sehr gut überein. Der Biosensor ist also in der Lage, die Änderungen in der L-Leucin-Konzentration während einer Hydrolyse zu verfolgen. Dabei sind Meßzeiten von unter zehn Minuten möglich.

3.3 Zusammenfassung

Ziel dieser Arbeit war es, einen Biosensor zur Messung des Gesamthydrolysegrades bei der enzymatischen Hydrolyse zu entwickeln. Dazu wurde die L-AAOD immobilisiert und zusammen mit einer amperometrischen Sauerstoffelektrode in ein Fließinjektionsanalyse-System integriert.

Zum Schutz des Enzyms vor dem entstehenden Wasserstoffperoxid wurde der Zusatz von Catalase und Peroxidase getestet. Es zeigte sich, daß POD trotz des geringeren pH-Optimums zur Stabilisierung verwendet werden kann. Dabei kann sogar ein Coimmobilisat aus L-AAOD und POD verwendet werden, was zu weiterer Kostenersparnis führt.

Mit beiden Systemen konnten bei 20 U immobilisierter L-AAOD L-Aminosäure-Konzentrationen von 1-5 g/L gut bestimmt werden. Ebenfalls konnte mit beiden Systemen ein Hydrolysat vermessen werden. Dabei war das System L-AAOD/POD aufgrund seiner höheren Sensitivität genauer. Bei beiden Biosensor-Systemen war die gemessene L-Aminosäure-Konzentration jedoch zu gering. Für die Prozeßkontrolle ist aber nicht die genaue L-Aminosäure-Konzentration, sondern nur die zeitliche Zunahme an L-Aminosäuren wichtig. Diese kann durchaus mit dem Biosensor verfolgt werden, wie die Gradientenmischerversuche zeigen.

Die Meßdauer des Biosensors konnte auf fünf Minuten reduziert werden, was im Vergleich zu konventionellen Methoden wie der HPLC-Analyse (70 min Dauer) deutlich schneller ist. Dabei betrug die mittlere Standardabweichung bei dem Biosensor L-AAOD/POD bei der Vermessung einer Realprobe nur 2 %.

Auch die Langzeitstabilität der L-AAOD konnte durch Zugabe von POD deutlich gesteigert werden. So können 50 oder mehr Messungen vorgenommen werden.

Der entwickelte Biosensor ist also in der Lage, den Verlauf der L-Aminosäure-Konzentration während einer Hydrolyse mit einer sehr kurzen Meßzeit sehr genau zu bestimmen. Ein weiterer Vorteil ist, daß bis auf die Abpufferung keine weitere Probenvorbehandlung nötig ist.

4 Adsorption von L-Aminosäuren an Zeolithen

Der zweite Teilaspekt dieser Arbeit ist die Entwicklung eines innovativen Verfahrens, mit dem einzelne Aminosäuren aus den Hydrolysaten isoliert werden können. Hier soll nun der Einsatz von Zeolithen als selektives Adsorbens untersucht werden. Dieser Verfahrensschritt soll zu einer verbesserten Ökobilanz im Vergleich zu den herkömmlichen Ionenaustauscher- und Umkristallisations-Verfahren führen, bei denen hohe Energiekosten und hohe Salzfrachten im Abwasser auftreten.

Zuerst muß ein Screening durchgeführt werden, um Zeolithe zu finden, die selektiv nur wenige L-Aminosäuren adsorbieren. Diese Zeolithe müssen anschließend näher charakterisiert werden. Dazu eignen sich die Aufnahme von Adsorptionsisothermen aus Ein- und Zwei-Stoff-Lösungen und Untersuchungen zum Einfluß des pH-Wertes auf die Adsorption. Dann soll die Desorption, sowie die Möglichkeit einer Mehrfach-Ad- und Desorption untersucht werden. Auch die Ad- und Desorption aus Real-Lösungen soll getestet werden. Abschließend gilt es, das dynamische Adsorptionsverhalten von Zeolith-Formkörpern in der Säule zu charakterisieren.

4.1 Screening nach zur Adsorption von L-Aminosäuren geeigneten Zeolithen

4.1.1 Adsorption aus wäßriger Lösung

Für die Screening-Versuche wurden 24 der 28 in Anhang 6.7 aufgeführten Zeolithe getestet. Dazu wurden jeweils 20 mg Zeolith mit 1 mL einer wäßrigen L-Aminosäure-Lösung mit einer Konzentration von 2 g/L versetzt und für 24 Stunden bei RT mit 1500 rpm geschüttelt. Der pH-Wert wurde mit Hilfe von verdünnter Salzsäure und Natronlauge auf mindestens 0,5 Einheiten unter den isoelektrischen Punkt (pI) der jeweiligen L-Aminosäure eingestellt und wurde nach 1, 3 und 24 Stunden überprüft und ggf. durch Salzsäurezugabe nachreguliert. Anschließend wurde der Zeolith abzentrifugiert und die L-Aminosäure-Konzentration des Überstandes wurde mit Hilfe der HPLC bestimmt. Der Verlauf des pH-Wertes sowie die Adsorptionsergebnisse sind in Tab. 6.1 und Tab. 6.2 im Anhang 6.8 zu sehen.

Alle in diesem Kapitel angegebenen Beladungen sind Exzeßbeladungen $q_{i,ex}$, die nach Gl. 2.9 berechnet wurden:

$$q_{i,ex} = \frac{(c_{i,0} - c_{i,G})}{m_{Ads}} \cdot V_{L}$$
Gl. 2.9
mit: $c_{i,0} = Ausgangskonzentration$
 $c_{i,G} = Konzentration \text{ im Gleichgewicht}$
 $m_{Ads} = Masse \text{ des Adsorbens}$
 $V_{L} = Volumen \text{ der Lösung}$

Bei diesen Versuchen zeigte sich, daß Zeolithe mit einer MFI- und FAU-Struktur Aminosäuren gut adsorbieren, während Zeolithe mit einer MOR-Struktur diese schlecht oder gar nicht adsorbieren. Zur Verdeutlichung sind in Abb. 4.1 die Beladungen der Zeolithe SH 27 (MFI-Struktur), FAU 2 (FAU-Struktur) und MSH-15 (MOR-Struktur) gegenüber gestellt.

Abb. 4.1: Abhängigkeit der Beladung von der Struktur des Zeolithen; 2 g/L AS, 20 g/L Zeolith, 24 h, RT, 1500 rpm

Um Aussagen über den Einfluß der Kationen-Belegung des Zeolithen auf die Adsorptionsfähigkeit zu treffen, werden die Zeolithe SH 27, SN 27 und SM 27 der SX-Reihe verglichen. Bei dieser Reihe steht das H für eine Belegung mit Wasserstoff-Ionen, das N für Natrium-Ionen und das M für Ammonium-Ionen.

In Abb. 4.2 ist zu erkennen, daß die Wasserstoff-Ionen-Belegung am günstigsten ist und daß die Beladung mit größer werdendem Kation abnimmt. Diese Tendenz ist bei den

unpolaren Aminosäuren am stärksten ausgeprägt, die im Gegensatz zu den basischen, sauren und polaren Aminosäuren schwächer adsorbiert werden.

Bei L-Tryptophan kann man den einsetzenden Molekularsiebeffekt erkennen. So wird es nur noch adsorbiert, wenn die Poren aufgrund des kleinsten Kations im Zeolithgitter für das Molekül noch passierbar sind.

Abb. 4.2: Abhängigkeit der Beladung von der Kationen-Belegung des Zeolithen SX 27; 2 g/L AS, 20 g/L Zeolith, 24 h, RT, 1500 rpm

Es ist außerdem gut zu erkennen, daß die Beladung innerhalb einer Gruppe von Aminosäuren (basisch, sauer, polar, unpolar) mit Zunahme des Molekulargewichtes ansteigt.

In der Theorie wurde auch die Aussage getroffen, daß die Adsorptionskapazität für Aminosäuren bei gleichem Zeolith-Typ mit sinkendem Modul ansteigt (siehe Kapitel 2.3.4.1). Diese wird durch den direkten Vergleich der SH-Zeolithe mit unterschiedlichen Modulen bestätigt (s. Abb. 4.3).

Abb. 4.3: Abhängigkeit der Beladung vom Modul des Zeolithen SH X; 2 g/L AS, 20 g/L Zeolith, 24 h, RT, 1500 rpm

Diese Theorie wird auch durch einen anderen Zeolithen mit MFI-Struktur unterstützt, dem ZSM 5. Dort sind die Beladungsunterschiede aufgrund der größeren Modulunterschiede stärker ausgeprägt.

Abb. 4.4: Abhängigkeit der Beladung vom Modul des Zeolithen ZSM 5; 2 g/L AS, 20 g/L Zeolith, 24 h, RT, 1500 rpm

Die Aussage, daß die Abnahme der Adsorptionskapazität bei steigendem Modul um so größer ist, je kleiner die Aminosäure ist, kann nicht bestätigt werden. Gerade beim ZSM 5-M28 kann man jedoch wiederum sehr gut erkennen, daß die Beladung mit Zunahme des Molekulargewichtes ansteigt.

Bei den vorhandenen Zeolithen und den vorliegenden Ergebnissen kann keine Aussage getroffen werden, welche Wechselwirkungen bei der Adsorption von Aminosäuren an Zeolithen mit unterschiedlichen Modulen auftreten. Dazu müßten Zeolithe mit kleinerem Modul verfügbar sein. Aufgrund der Tatsache, daß verstärkt basische, saure und andere polare Aminosäuren adsorbiert wurden, kann man jedoch von überwiegend polaren Wechselwirkungen ausgehen.

Aus allen Zeolithen wurden im Hinblick auf die Trennprobleme und die Verfügbarkeit auf dem Markt drei Zeolithe ausgesucht. Der Zeolith DAY 15 zeigt bei L-Phenylalanin eine Adsorption von 49 % und bei L-Tryptophan von 65 % in Bezug auf die Ausgangskonzentration.

Der Zeolith FAU 1 zeigt ebenfalls bei L-Phenylalanin und L-Tryptophan eine Adsorption von 38 und 63 %. Bei L-Histidin zeigt sich eine Abnahme von 49%. Histidin sollte aber über eine Änderung des pH-Wertes von den beiden aromatischen Aminosäuren abgetrennt werden können. L-Phenylalanin und L-Tryptophan jedoch können an diesem Zeolithen nicht mehr getrennt werden.

Für eine Trennung dieser beiden Aminosäuren kann jedoch der H-MFI 120 benutzt werden. Er adsorbiert L-Phenylalanin wesentlich besser (57 %) als L-Tryptophan (5 %). Dieser Zeolith ist auch für die Trennung von L-Leucin und L-Isoleucin geeignet. L-Leucin wird mit 28 % stärker adsorbiert als L-Isoleucin mit 9 %.

Für die Abtrennung von L-Tryptophan und L-Phenylalanin aus einem Hydrolysegemisch wäre folgende Zeolith-Kaskade denkbar:

Abb. 4.5: Theoretische Zeolith-Kaskade zur Abtrennung von L-Tryptophan und L-Phenylalanin aus einem Hydrolysegemisch

Um diese Zeoltih-Kaskade zu erreichen, muß die Ad- und Desorption von L-Tryptophan und L-Phenylalanin an den Zeolithen FAU 1 und H-MFI 120 genau charakterisiert werden. Es sollen daher Adsorptionsisothermen aus Modellösungen, die entweder nur eine oder beide Aminosäuren enthalten, aufgenommen werden.

4.1.2 Adsorption aus wäßrig-alkoholischer Lösung

Die Theorie beschreibt, daß unpolare Substanzen aus unpolaren Lösungsmitteln adsorbiert werden sollten. Zur Überprüfung der Theorie und weil sich einige sehr hydrophobe Zeolithe optisch schlecht mit den wäßrigen Lösungen gemischt haben, wurden die Screening-Versuche mit wäßrig-alkoholischer Lösung wiederholt. Die Bedingungen waren die gleichen wie in Kapitel 4.1.1, nur wurde als Lösungsmittel für die Aminosäuren eine 1:1 Mischung aus Wasser und Ethanol verwendet. Die pH-Verläufe und die Beladungen sind im Anhang in Tab. 6.3 und Tab. 6.4 zu finden.

Abb. 4.6: Abhängigkeit der Beladung des ZSM 5-M28 vom Lösungsmittel; 2 g/L AS, 20 g/L Zeolith, 24 h, RT, 1500 rpm

Im allgemeinen läßt sich sagen, daß die Adsorption aus wäßrig-alkoholischer Lösung geringer ist als aus wäßriger Lösung.

Es ist allerdings zu beobachten, daß die Beladung der unpolaren Aminosäuren aus wäßrig-alkoholischer Lösung teilweise höher ist als die der polaren Aminosäuren. Das bestätigt die allgemeine Aussage, daß unpolare Substanzen aus unpolaren Lösungsmitteln adsorbiert werden sollen.

4.1.3 Fazit

Die Screening-Versuche ergaben die Möglichkeit, L-Tryptophan und L-Phenylalanin aus Hydrolysegemischen abzutrennen. Dazu stehen zwei Zeolithe zur Auswahl, der DAY 15 und der FAU 1. Eine Trennung der beiden Aminosäuren ist ebenfalls mit einem anderen Zeolithen, dem H-MFI 120, möglich. Deswegen konzentrierten sich die folgenden Arbeiten auf die Adsorption aus Ein- und Zwei-Stoff-Lösungen, um den Einfluß der beiden L-Aminosäuren untereinander bei der Adsorption zu untersuchen. Zusätzlich wurde der Einfluß des pH-Wertes auf die Adsorption getestet, um eine maximale Beladung der Zeolithe zu erreichen. Zur Gewinnung der Aminosäuren ist eine anschließende Desorption vom Zeolithen notwendig. Der gleiche Zeolith, der zur Trennung von L-Tryptophan und L-Phenylalanin geeignet ist, kann auch zur Trennung von L-Isoleucin und L-Leucin eingesetzt werden. Aus diesem Grund wurden auch die verschiedenen Möglichkeiten der Ad- und Desorption von L-Isoleucin und L-Leucin am H-MFI 120 getestet.

4.2 Adsorption von L-Tryptophan und L-Phenylalanin an DAY 15

Zuerst sollte untersucht werden, wie schnell sich das Adsorptionsgleichgewicht einstellt. Dazu wurden L-Tryptophan und L-Phenylalanin-Lösungen mit unterschiedlichen Konzentrationen hergestellt, mit Zeolith versetzt und die zeitliche Abnahme der Konzentration verfolgt.

Abb. 4.7: Zeitlicher Verlauf der Adsorption von L-Trp an DAY 15; 20 g/L Zeolith, pH 5, RT, 1500 rpm

Sowohl bei der Adsorption von L-Tryptophan als auch bei der von L-Phenylalanin ist das Adsorptionsgleichgewicht schon nach einer Stunde erreicht. Aus diesem Grund wurde die Adsorptionszeit bei allen weiteren Versuchen auf drei Stunden verkürzt.

Abb. 4.8: Zeitlicher Verlauf der Adsorption von L-Phe an DAY 15; 20 g/L Zeolith, pH 5, RT, 1500 rpm

Die Anfangsgeschwindigkeit der Adsorption ist aus den Steigungen zwischen 0 und 0,5 h der Abb. 4.7 und Abb. 4.8 berechnet und gegen die Anfangskonzentration aufgetragen worden. In der Abb. 4.9 erkennt man, daß es sich bei der Adsorption von L-Tryptophan und L-Phenylalanin am DAY 15 um eine Reaktion 1. Ordnung handelt.

Abb. 4.9: Adsorptionsgeschwindigkeiten von L-Trp und L-Phe an DAY 15; 20 g/L Zeolith, pH 5, RT, 1500 rpm

Bei der Hydrolyse werden nur geringe Konzentrationen an L-Aminosäuren erwartet. Deshalb wurde die Beladung/Zeit für eine Konzentration von 2 g/L berechnet. Sie beträgt 127 mg L-Trp/g DAY 15 · h und 91 mg L-Phe/g DAY 15 · h.

4.2.1 Versuche mit Ein-Stoff-Lösungen

Die Adsorptionsisothermen wurden mit der in Anhang 6.5 beschriebenen Methode aufgenommen.

Der pH-Wert wurde während des Versuches nicht mehr kontrolliert, da bei den Screening-Versuchen deutlich geworden war, daß er sich aufgrund der Protonen-Belegung des Zeolithen geringfügig nach unten ändert (s. Tab. 6.1).

Abb. 4.10: Adsorptionsisothermen von L-Trp und L-Phe an DAY 15; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Es ist zu erkennen, daß L-Tryptophan bei geringeren Konzentrationen geringfügig besser adsorbiert wird als L-Phenylalanin. Durch höhere Konzentrationen ist aber keine Steigerung der Beladung zu erreichen, da sich die Adsorptionsisotherme einer Sättigungsbeladung nähert. Aus diesen Versuchen erhält man eine maximale statische Beladung von ca. 120 mg L-Trp/g DAY 15 (0,59 mmol L-Trp/g DAY 15). Bei L-Phenylalanin zeigt sich ein anderes Bild. Hier wird durch eine Erhöhung der Konzentration eine deutliche Steigerung der Beladung erreicht. Eine Beladung von über 165 mg Phe/g DAY 15 (1 mmol L-Phe/g DAY 15) ist möglich.

4.2.2 Versuche mit Zwei-Stoff-Lösungen

Weiterhin wurde der Einfluß der beiden L-Aminosäuren untereinander auf die Adsorption untersucht. Dazu wurden Adsorptionsisothermen aus L-Tryptophan/L-Phenylalanin-Gemischen aufgenommen.

Abb. 4.11: Adsorptionsisothermen von L-Trp an DAY 15 aus Trp/Phe-Gemischen; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Bei diesen Versuchen zeigte sich, daß die Beladung mit einer Aminosäure von der Konzentration der jeweils anderen Aminosäure abhängt. Die Adsorption von L-Phenylalanin wird dabei stärker beeinflußt. Das läßt den Schluß zu, daß L-Tryptophan gegenüber L-Phenylalanin am DAY 15 bevorzugt adsorbiert wird, wie es auch in Abb. 4.10 bei kleinen Konzentrationen zu erkennen ist. Außerdem wird die maximale Beladung von L-Tryptophan eher erreicht, so daß es bei der Adsorption von L-Phenylalanin an DAY 15 auch bei geringen L-Tryptophan-Konzentrationen zu Konkurrenzreaktionen kommt.

Abb. 4.12: Adsorptionsisothermen von L-Phe an DAY 15 aus Trp/Phe-Gemischen; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Diese Beobachtungen können dadurch erklärt werden, daß der DAY 15 eine FAU-Struktur und damit sehr große Poren hat. Die Größe der Aminosäure ist also kein Trennkriterium. Allerdings ist das L-Tryptophan-Molekül größer als das L-Phenylalanin-Molekül und hat ein weiteres Stickstoffatom, so daß die elektrostatischen Wechselwirkungen größer sind.

4.3 Adsorption von L-Tryptophan und L-Phenylalanin an FAU 1

4.3.1 Versuche mit Ein-Stoff-Lösungen

Wie oben beschrieben soll der FAU 1 in einer Zeolith-Kaskade zur Abtrennung von L-Tryptophan und L-Phenylalanin aus einem Hydrolysegemisch benutzt werden. Zur Charakterisierung wurden die Adsorptionsisothermen aus Ein-Stoff-Lösungen und anschließend aus Zwei-Stoff-Lösungen aufgenommen. Die Durchführung ist in Anhang 6.5 beschrieben.

Abb. 4.13: Adsorptionsisothermen von L-Trp und L-Phe an FAU 1; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Der Zeolith FAU 1 hat gegenüber dem DAY 15 den Vorteil, daß keine Sättigung erreicht wird. Außerdem ist die Beladung höher. Damit ist eine effektivere Adsorption aus Hydrolysegemischen gegeben. L-Tryptophan wird bei kleinen Konzentrationen stärker adsorbiert als L-Phenylalanin. Bei höheren Konzentrationen gleichen sich die Adsorptionsisothermen jedoch an. Beladungen von über 1 mmol AS/g FAU 1 sind so möglich.

4.3.2 Versuche mit Zwei-Stoff-Lösungen

Auch für den FAU 1 wurden wie für den DAY 15 in Kapitel 4.2.2 beschrieben, Adsorptionsisothermen aus L-Tryptophan/L-Phenylalanin-Lösungen aufgenommen.

Beim FAU 1 zeigt sich im Gegensatz zum DAY 15 fast keine Abhängigkeit der Beladung von der Konzentration der jeweils anderen L-Aminosäure. Eine Erklärung dafür ist, daß der FAU 1 eine höhere Beladungskapazität als der DAY 15 hat. In der Abb. 4.13 zeigt sich sowohl für L-Tryptophan als auch für L-Phenylalanin ein linearer Verlauf der Beladung und keine Sättigung.

Abb. 4.14: Adsorptionsisothermen von L-Trp an FAU 1 aus Trp/Phe-Gemischen; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Abb. 4.15: Adsorptionsisothermen von L-Phe an FAU 1 aus Trp/Phe-Gemischen; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Der FAU 1 hat gegenüber dem DAY 15 mehrere Vorteile. Es kommt bei der Adsorption am FAU 1 zu keiner Konkurrenzreaktion zwischen L-Tryptophan und L-Phenylalanin, weil der Zeolith eine höhere Beladungskapazität als der DAY 15 hat. Außerdem liegt der FAU 1 als Formkörper vor und kann somit direkt in einer Säule eingesetzt werden.

4.3.3 Einfluß des pH-Wertes

Nach der Charakterisierung soll untersucht werden, welchen Einfluß der pH-Wert auf die Adsorption hat und ob sich die Beladung durch Änderung des pH-Wertes steigern läßt. Dazu wurden Versuche mit den Bedingungen aus Kapitel 4.3.1 mit variablen pH-Werten durchgeführt.

Abb. 4.16: Abhängigkeit der Beladung vom pH-Wert bei der Adsorption von L-Trp und L-Phe an FAU 1; 25 mmol/L AS, 10 g/L Zeolith, 3 h, RT, 1500 rpm

Es zeigt sich, daß die Beladung am höchsten bei pH-Werten gleich dem pI der Aminosäuren (bei beiden 5,9) ist. Aber auch bei pH-Werten leicht unter dem pI, wie sie zur Aufnahme der Adsorptionsisothermen benutzt wurden, ist die Beladung noch sehr gut. Erst bei weiterer Absenkung des pH-Wertes oder beim Anstieg über den pI geht die Beladung stark zurück.

Beide L-Aminosäuren zählen zu den unpolaren Aminosäuren und sollten deshalb aufgrund von unpolaren Wechselwirkungen bei pH-Werten unterhalb ihres pI adsorbiert werden. Da sie jedoch am besten in der Nähe des pI adsorbiert werden, ist anzunehmen, daß bei der Adsorption sowohl polare als auch unpolare Wechselwirkungen eine Rolle spielen.

4.4 Adsorption von L-Tryptophan und L-Phenylalanin an H-MFI 120

4.4.1 Versuche mit Ein-Stoff-Lösungen

Zur Trennung von L-Tryptophan und L-Phenylalanin soll der H-MFI 120 eingesetzt werden. Zur Charakterisierung wird die Adsorption der beiden Aminosäuren aus idealen Ein-Stoff-Lösungen untersucht.

Abb. 4.17: Adsorptionsisothermen von L-Trp und L-Phe an H-MFI 120; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Wie in den Screening-Versuchen zu erkennen war (s. Tab. 6.2), ist die Adsorption von L-Tryptophan und L-Phenylalanin am H-MFI 120 sehr unterschiedlich. L-Tryptophan wird so gut wie gar nicht adsorbiert, da das Molekül mit seiner Hydrathülle zu groß für die Poren des Zeolithen ist und nur an der Oberfläche adsorbiert werden kann. So wird L-Phenylalanin bei niedrigen Konzentrationen etwa fünf mal stärker und bei höheren Konzentrationen etwa doppelt so stark wie L-Tryptophan adsorbiert. Die Beladung ist insgesamt zwar niedriger als beim FAU 1, dafür ist aber eine Auftrennung der beiden Aminosäuren möglich. Da in den Hydrolysegemischen meist niedrige Konzentrationen vorkommen, wurde der Trennfaktor für eine Konzentration von 15 mmol/L berechnet; er beträgt 1:5,6.

4.4.2 Versuche mit Zwei-Stoff-Lösungen

Der H-MFI 120 soll später in der Zeolith-Kaskade mit einem Gemisch der beiden L-Aminosäuren versetzt werden. Deswegen muß der Einfluß, den die beiden Aminosäuren untereinander auf die Adsorption haben, untersucht werden. Dazu wurden Adsorptionsisothermen aus L-Tryptophan/L-Phenylalanin-Gemischen aufgenommen.

Abb. 4.18: Adsorptionsisothermen von L-Trp an H-MFI 120 aus Trp/Phe-Gemischen; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

In Abb. 4.18 ist gut zu erkennen, daß die Anwesenheit von L-Phenylalanin einen Einfluß auf die Adsorption von L-Tryptophan hat. Die eigentliche L-Phenylalanin-Konzentration spielt dabei keine Rolle. Dieses Ergebnis war zu erwarten, da L-Tryptophan bei diesen Konzentrationen wesentlich geringer adsorbiert wird als L-Phenylalanin.

Abb. 4.19: Adsorptionsisothermen von L-Phe an H-MFI 120 aus Trp/Phe-Gemischen; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Umgekehrt ist bei der Adsorption von L-Phenylalanin in Gegenwart von unterschiedlichen L-Tryptophan-Konzentrationen (siehe Abb. 4.19) ein lineare Abhängigkeit zu erkennen. Auch das war aufgrund der geringen Adsorption von L-Tryptophan zu erwarten.

Die Trennwirkung ist immer noch annähernd so gut wie in idealen Ein-Stoff-Lösungen. So beträgt der Trennfaktor bei einer Konzentration von jeweils 15 mmol/L AS immer noch 1:4,8.

Anstelle der asymptotischen Langmuir-Auftragung nach Gl. 2.12 kann man auch analog zur Michaelis-Menten-Kinetik eine reziproke Auftragung der Werte in Anlehnung an Lineweaver-Burk wählen^[16]:

$$\frac{1}{q_{i}} = \frac{1}{k_{i} \cdot q_{i,S}} \cdot \frac{1}{c_{i,G}} + \frac{1}{q_{i,S}}$$
Gl. 4.1

mit: q_i = Adsorbensbeladung $q_{i,S}$ = Sättigungsbeladung k_i = Quotient der Reaktionsgeschwindigkeiten $c_{i,G}$ = Konzentration im Gleichgewicht

Abb. 4.20: Adsorption von L-Phe an H-MFI 120 mit und ohne Konkurrenz durch L-Trp, Auftragung nach Lineweaver-Burk; 25 mmol/l Trp, 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Es ist nicht zu empfehlen, aus der reziproken Auftragung (s. Gl. 4.1) die Sättigungsbeladung zu berechnen, da der Fehler durch die doppelt reziproke Auftragung zu groß ist. Man kann allerdings einen weiteren Vergleich zur Enzymkinetik ziehen. So entspricht die Konkurrenz zwischen L-Tryptophan und L-Phenylalanin bei der Adsorption einer kompetitiven Hemmung. Bei der Auftragung nach Lineweaver-Burk sollte deshalb der Achsenabschnitt gleich bleiben und die Gerade mit zunehmender Hemmung steiler werden.

Der Achsenabschnitt verschiebt sich zwar wegen der Meßungenauigkeit, aber der Unterschied in der Steigung wird sehr deutlich, wenn man zum Vergleich Abb. 4.21 betrachtet, in der die Adsorption von L-Phenylalanin am FAU 1 gezeigt wird, die wenig von L-Tryptophan beeinflußt wird (s. Abb. 4.15).

Abb. 4.21: Adsorption von L-Phe an FAU 1 mit und ohne Konkurrenz durch L-Trp, Auftragung nach Lineweaver-Burk; 25 mmol/l Trp, 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

4.4.3 Einfluß des pH-Wertes

Der Einfluß des pH-Wertes auf die Adsorption am H-MFI 120 sollte dem Einfluß bei der Adsorption am FAU 1 gleichen (s. Abb. 4.16 in Kapitel 4.3.3).

Wie erwartet zeigt sich in Abb. 4.22 ein ähnliches Bild. Bei L-Tryptophan kann man einen direkten Zusammenhang erkennen. Hier ist die Adsorption bei einem pH-Wert, der etwas geringer ist als der pI, am stärksten. Bei L-Phenylalanin zeigt sich bis auf eine Abweichung bei pH 7 die gleiche Tendenz.

Der Vergleich mit dem FAU 1 läßt den Schluß zu, daß bei der Adsorption am H-MFI 120 aufgrund der größeren Beladung unterhalb des pI die unpolaren Wechselwirkungen überwiegen. Das läßt sich durch das größere Modul des H-MFI 120 erklären. Je größer das Modul, desto weniger Aluminium enthält der Zeolith und desto geringer sind die elektrostatischen Wechselwirkungen im Gitter.

Abb. 4.22: Abhängigkeit der Beladung vom pH-Wert bei der Adsorption von L-Trp und L-Phe an H-MFI 120; 25 mmol/L AS, 10 g/L Zeolith, 3 h, RT, 1500 rpm

Abschließend kann man sagen, daß die Adsorption der beiden unpolaren Aminosäuren L-Tryptophan und L-Phenylalanin an den beiden Zeolithen FAU 1 und H-MFI 120 bei pH-Werten zwischen 5 und 6 am größten ist. Die Desorption sollte aufgrund der Ergebnisse bei hohen pH-Werten möglich sein, was im nächsten Kapitel untersucht wurde.

4.5 Desorption von L-Tryptophan und L-Phenylalanin vom FAU 1 und H-MFI 120

Für die Gewinnung der Aminosäuren ist es notwendig, diese auch wieder zu desorbieren. In den theoretischen Überlegungen wurde schon gesagt, daß eine Desorption bei pH-Werten größer als der pI möglich sein sollte, was auch durch die pH-Abhängigkeit bei der Adsorption bestätigt wurde.

Es wurden deshalb die jeweils 10 mg Zeolith nach der Adsorption mit 1 mL 0,1 M NaOH versetzt und für 3 h bei RT und 1500 rpm geschüttelt. Anschließend wurde der Zeolith abzentrifugiert und die Aminosäure-Konzentration im Überstand mittels HPLC bestimmt. Bei der Berechnung der Desorption wurde ein Korrekturfaktor verwendet, der berücksichtigt, daß nicht die gesamte L-Aminosäurelösung nach der Adsorption entfernt werden konnte.

Abb. 4.23: Ad- und Desorption von L-Trp an FAU 1; 10 g/L Zeolith, 3 h, RT, 1500 rpm, Adsorption: pH 5, Desorption: 0,1 M NaOH

Abb. 4.24: Ad- und Desorption von L-Phe an FAU 1; 10 g/L Zeolith, 3 h, RT, 1500 rpm, Adsorption: pH 5, Desorption: 0,1 M NaOH

Wie sich in Kapitel 4.3.1 zeigte, verläuft die Adsorption von L-Tryptophan am FAU 1 annähernd linear. Die Desorption ist mit durchschnittlich 90 % nahezu vollständig. Das gleiche Bild erhält man auch bei L-Phenylalanin. Dort wurden sogar durchschnittlich 95 % der L-Aminosäure wieder desorbiert.

c ₀	L-Tryptophan		L-Phenylalanin	
[mmol/L]	[mmol Trp/g H-MFI 120]	[%]	[mmol Phe/g H-MFI 120]	[%]
5	0,017	80	0,179	92
10	0,052	88	0,201	89
15	0,041	94	0,223	90
20	0,077	60	0,227	80
25	0,061	22	0,240	72
50	0,112	37	0,339	61

Tab. 4.1:Desorption von L-Trp und L-Phe an H-MFI 120; 0,1 M NaOH, 10 g/LZeolith, 3 h, RT, 1500 rpm

Beim H-MFI 120 zeigt sich das gleiche Bild, allerdings ist die Desorption schwächer, besonders bei hohen Beladungen. So werden bei einer Ausgangskonzentration von 25 mmol/L nur noch 72 % des adsorbierten L-Phenylalanins desorbiert und bei 50 mmol/L nur noch 61 %.

Die Versuche zur Adsorption von L-Tryptophan und L-Phenylalanin am FAU 1 zeigten eine schnelle und hohe Beladung des Zeolithen, was zu einer effektiven Abtrennung der beiden L-Aminosäuren aus einem Hydrolysegemisch führt. Anschließend können die beiden L-Aminosäuren fast quantitativ desorbiert werden.

Die Versuche zur Adsorption von L-Tryptophan und L-Phenylalanin am H-MFI 120 zeigten, daß eine Trennung der beiden L-Aminosäuren möglich ist. Bei hohen Beladungen erweist sich die Desorption der beiden L-Aminosäuren als schwierig. Da in den Hydrolysaten aber geringe Konzentrationen von 5-10 mmol/L und somit auch geringe Beladungen erwartet werden, ist eine Zeolith-Kaskade zur Abtrennung von L-Tryptophan und L-Phenylalanin aus Hydrolysegemischen ohne große Verluste bei der Desorption denkbar.

4.6 Adsorption von L-Isoleucin und L-Leucin an H-MFI 120

4.6.1 Versuche mit Ein-Stoff-Lösungen

Abgesehen von der Abtrennung von L-Tryptophan und L-Phenylalanin aus Hydrolysegemischen ergab sich aus den Screening-Versuchen die Möglichkeit der Trennung von L-Isoleucin und L-Leucin. Diese Trennung ist besonders interessant, da L-Isoleucin und L-Leucin aufgrund ihrer sehr ähnlichen physikalischen und chemischen Eigenschaften nur schwer zu trennen sind. In der Literatur findet man ebenfalls Hinweise auf die Trennung von L-Isoleucin und L-Leucin an Zeolithen mit MFI-Struktur ^[75,76,77]. Deswegen wurde wie oben vorgegangen und zur Charakterisierung wurden die Adsorptionsisothermen aus Ein-Stoff-Lösungen aufgenommen.

Abb. 4.25: Adsorptionsisothermen von L-Ile und L-Leu an H-MFI 120; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Der H-MFI 120 ist für die Trennung von L-Isoleucin und L-Leucin sehr gut geeignet. Dabei ist der Trennfaktor mit 1:7,6 bei 15 mmol/L wesentlich besser als bei dem System L-Tryptophan/L-Phenylalanin, da L-Leucin sehr gut und L-Isoleucin fast gar nicht adsorbiert wird. Für weitere Aussagen mußte aber das Adsorptionsverhalten in Zwei-Stoff-Systemen untersucht werden.

4.6.2 Versuche mit Zwei-Stoff-Lösungen

Um die gegenseitige Beeinflussung der beiden Aminosäuren L-Isoleucin und L-Leucin bei der Adsorption am H-MFI 120 zu untersuchen wurden Adsorptionsisothermen nach den in Anhang 6.5 beschriebenen Bedingungen aufgenommen.

Abb. 4.26: Adsorptionsisothermen von L-Ile an H-MFI 120 aus Ile/Leu-Gemischen; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Abb. 4.27: Adsorptionsisotherme von L-Leu an H-MFI 120 aus Ile/Leu-Gemischen; 10 g/L Zeolith, 3 h, pH 5, RT, 1500 rpm

Bei der Untersuchung der Adsorption von L-Isoleucin in Abhängigkeit von der L-Leucin-Konzentration wird keine gegenseitige Beeinflussung deutlich, da die Konzentrationsänderungen zu gering im Vergleich zum Meßfehler sind (siehe Abb. 4.26).

In der Abb. 4.27 kann man bei der Adsorption von L-Leucin in Gegenwart von L-Isoleucin einen geringen Einfluß erkennen. Auch bei Verringerung der Adsorption hat man bei einer Aminosäure-Konzentration von jeweils 15 mmol/L immer noch einen Trennfaktor von ca. 1:6,4. Insgesamt zeigt sich hier das gleiche Bild wie bei der Trennung von L-Tryptophan und L-Phenylalanin am H-MFI 120.

Das die Adsorption von L-Leucin kaum von der Gegenwart von L-Isoleucin beeinflußt wird, ist vorteilhaft, da vorrangig L-Leucin aus der Lösung adsorbiert wird, während L-Isoleucin in der Lösung verbleibt und dort angereichert wird.

4.6.3 Einfluß des pH-Wertes

Auch der Einfluß des pH-Wertes bei der Adsorption von L-Isoleucin und L-Leucin am H-MFI 120 sollte zur genaueren Charakterisierung untersucht werden. Da beide Aminosäuren wie L-Tryptophan und L-Phenylalanin unpolar sind und annähernd den gleichen pI haben (6,0 bei Ile und Leu), wurde auch der gleiche Trend bei der Adsorption erwartet.

Abb. 4.28: Abhängigkeit der Beladung vom pH-Wert bei der Adsorption von L-Ile und L-Leu an H-MFI 120; 25 mmol/L AS, 10 g/L Zeolith, 3 h, RT, 1500 rpm

Es zeigte sich dann auch eine verstärkte Adsorption bei einem pH-Wert um und unter dem pI, die auf polare und unpolare Wechselwirkungen bei der Adsorption schließen läßt. Man kann bei diesen Versuchen auch sehr deutlich die unterschiedlich starke Beladung der beiden L-Aminosäuren erkennen. Dabei ist die Trennwirkung unabhängig vom pH-Wert. Außerdem deutet das Ergebnis an, daß eine Desorption der beiden L-Aminosäuren bei hohen pH-Werten möglich sein sollte.

4.7 Desorption von L-Isoleucin und L-Leucin vom H-MFI 120

Auch für die Gewinnung von L-Isoleucin und L-Leucin ist die Desorption ein wichtiger Schritt. Die Versuche wurden mit den in Kapitel 4.5 beschrieben Bedingungen durchgeführt.

Abb. 4.29: Ad- und Desorption von L-Leu an H-MFI 120; 10 g/L Zeolith, 3 h, RT, 1500 rpm, Adsorption: pH 5, Desorption: 0,1 M NaOH

Bei der Desorption von L-Isoleucin und L-Leucin vom H-MFI 120 treten Schwierigkeiten auf. So werden durchschnittlich nur 35 % und bei höheren Konzentrationen sogar nur 19 % des L-Leucins desorbiert. Beim L-Isoleucin zeigt sich das gleiche Bild.

c ₀	Adsorption	Desorption		
[mmol/L]	[mmol Ile/g H-MFI 120]	[mmol Ile/g H-MFI 120]	[%]	
5	0,068	0,015	22	
10	0,105	0,041	39	
15	0,105	0,050	48	
20	0,099	0,076	77	
25	0,158	0,090	57	
50	0,318	0,088	28	

Tab. 4.2:Ad- und Desorption von L-Ile an H-MFI 120; 10 g/L Zeolith, 3 h, RT,1500 rpm, Adsorption: pH 5, Desorption: 0,1 M NaOH

Um den Zeolithen dennoch für die Trennung von L-Isoleucin und L-Leucin zu benutzen, wurde versucht, die Desorption mit höheren Natronlauge-Konzentrationen zu forcieren. Die Versuche wurden mit 0,1 M, 1 M und 5 M NaOH durchgeführt. Es zeigte sich, daß die Desorption jedoch kaum abhängig von der Natronlauge-Konzentration und daß sie bei 0,1 M NaOH am stärksten ist. Erste Versuche lassen darauf schließen, daß wäßriger Ammoniak als Elutionsmittel auch keine bessere Desorption ergibt.

Bei der Adsorption wird L-Leucin auf dem Zeolithen adsorbiert, während sich L-Isoleucin in der Lösung anreichert. Mit den industriell relevanten Elutionsmitteln konnte keine befriedigende Desorption von L-Leucin erzielt werden. Deswegen kann bei der Trennung der beiden L-Aminosäuren am H-MFI 120 nur L-Isoleucin gewonnen werden.

4.8 Untersuchungen zur Mehrfach-Ad- und Desorption

Um eine Abtrennung von L-Aminosäuren aus Hydrolysegemische mit Zeolithen wirtschaftlich zu machen, ist es nötig, die Zeolithe mehrfach einzusetzen. Also wurden Versuche durchgeführt, in denen der Zeolith wiederholt be- und entladen wurde.

Bei den ersten Versuchen zur Mehrfach-Ad- und Desorption wurde festgestellt, daß eine Regeneration mit 0,1 M Salzsäure notwendig ist, um die Wasserstoffbelegung der Zeolithe wieder herzustellen. Der FAU 1 zeigte im Batch-Versuch bei den starken pH-Änderungen schon nach der ersten Regeneration Stabilitätsprobleme. Diese zeigten sich sowohl optisch in einer Trübung der Lösung als auch an den schlechten Beladungswerten bei der zweiten und dritten Adsorption. Als Beispiel ist hier die Ad-, Desorption und Regeneration von L-Tryptophan am FAU 1 gezeigt (s. Abb. 4.30). Die Werte für die Regeneration wurden aus den L-Aminosäure-Konzentrationen in der Salzsäure nach der Regeneration berechnet.

Abb. 4.30: Ad-, Desorption und Regeneration von L-Trp an FAU 1; 10 g/L Zeolith, 3 h, RT, 1500 rpm, Adsorption: 25 mmol/L Trp, pH 6, Desorption: 0,1 M NaOH, Regeneration: 0,1 M HCl

Abb. 4.31: Ad-, Desorption und Regeneration von L-Phe an H-MFI 120; 10 g/L
Zeolith, 3 h, RT, 1500 rpm, Adsorption: 25 mmol/L Phe, pH 6, Desorption: 0,1 M NaOH, Regeneration: 0,1 M HCl

Besser ist die Mehrfach-Ad- und Desorption am H-MFI 120. Dieser Zeolith-Typ ist aufgrund seines größeren Moduls stabiler gegenüber Mineralsäuren.

Allerdings sieht man auch hier eine Abnahme der Beladungskapazität mit steigender Anzahl der Durchläufe. Das beste Ergebnis erhält man bei der Mehrfach-Ad- und Desorption von L-Leucin am H-MFI 120. Diese zeigt keinerlei Beeinträchtigung.

Abb. 4.32: Ad-, Desorption und Regeneration von L-Leu an H-MFI 120; 10 g/L
Zeolith, 3 h, RT, 1500 rpm, Adsorption: 25 mmol/L Leu, pH 6, Desorption: 0,1 M NaOH, Regeneration: 0,1 M HCl

4.9 Ad- und Desorption aus Real-Lösungen

Trotz der oben genannten Schwierigkeiten sollte das Ad- und Desorptionsverhalten der Zeolithe aus Real-Lösungen untersucht werden. Zur Verfügung stand dafür eine L-Aminosäure-Mischung (ASMi) der Firma AMINO GmbH, Frellstedt. Diese hatte folgende Zusammensetzung:

Substanz	Gehalt [g/100 g Fraktion]	Gehalt [mmol/100 g Fraktion]
Gly	0,18	2,40
Ala	2,49	27,95
Val	4,82	41,16
Ile	30,2	230,18
Leu	39,6	301,83
Phe	1,74	10,53
Rohasche	16,9	_

Tab. 4.3: Zusammensetzung ASMi, Charge 01062

Mit dieser L-Aminosäure-Mischung wurde die Ad- und Desorption am FAU 1 und H-MFI 120 untersucht. Dabei wurden unterschiedliche Vorbehandlungen getestet. So wurde die ASMi einmal mit verdünnter Salzsäure von pH 6 auf pH 5 angesäuert oder sie wurde vor der Adsorption filtriert. Auch unterschiedliche Konzentrationen wurden getestet.

Abb. 4.33: Beladungsvergleich bei der Adsorption von ASMi an FAU 1 in Abhängigkeit vom pH-Wert; 1 g/L ASMi, filtriert, 10 g/L Zeolith, 3 h, RT, 1500 rpm

Dabei zeigte sich, daß sich eine Vorbehandlung vorteilhaft auf die Adsorption auswirkt. So ist die Beladung am höchsten, wenn die Lösung vor der Adsorption filtriert und auf pH 5 angesäuert wird (s. Abb. 4.33 und Abb. 4.34). Da wesentlich mehr L-Isoleucin und L-Leucin als L-Phenylalanin in der ASMi enthalten sind, werden diese auch verstärkt adsorbiert. Beim Vergleich von Abb. 4.33 und Abb. 4.34 sieht man außerdem, daß bei einer Erhöhung der Anfangskonzentration erwartungsgemäß die Beladung ebenfalls ansteigt.

Abb. 4.34: Beladungsvergleich bei der Adsorption von ASMi an FAU 1 abhängig von der Filtration; 10 g/L ASMi, pH 5, 10 g/L Zeolith, 3 h, RT, 1500 rpm

Abb. 4.35: Beladungsvergleich bei der Adsorption von ASMi an H-MFI 120 in Abhängigkeit von der Ausgangskonzentration; filtriert, pH 5, 10 g/L Zeolith, 3 h, RT, 1500 rpm

Der H-MFI 120 sollte zur Trennung von L-Isoleucin und L-Leucin verwendet werden. Auch bei der Adsorption aus einer Real-Lösung ist diese Trennung noch gegeben. Der Trennfaktor wird mit zunehmender Ausgangskonzentration jedoch geringer (s. Abb. 4.35).

Sowohl bei den Adsorptionsversuchen aus Zwei-Stoff-Lösungen als auch bei den Versuchen aus Real-Lösungen zeigten sich die gleichen Ergebnisse. Bei niedrigen Konzentrationen ist die Trennung von L-Isoleucin und L-Leucin deutlich besser als bei höheren.

Eine Ausgangskonzentration in der Real-Lösung von 1 g/L ASMi entspricht mit ca. 3 mmol/L L-Leu den kleinsten Konzentrationen der Adsorptionsversuche in Kapitel 4.6.2. In den Zwei-Stoff-Lösungen wurde ein Trennfaktor von 1:6,4 erreicht und bei der Adsorption aus Real-Lösungen beträgt er 1:6,0. Die Ergebnisse bezüglich der Trennwirkung aus den Versuchen mit Zwei-Stoff-Lösungen lassen sich also auf Real-Lösungen umsetzen.

4.10 Ad- und Desorption in der Säule

Abschließend sollte das dynamische Adsorptionsverhalten der Zeolithe in der Säule im Vergleich zum statischen im Batch-Versuch getestet werden. Dazu wurde eine Säule mit 30 g Zeolith-Formkörpern gefüllt, die zuvor 24 h gewässert wurden. Die Säule hatte einen Durchmesser von 1,5 cm und die Füllhöhe betrug 12,3 cm. Das <u>Bettv</u>olumen (BV) berechnet sich somit auf 22 mL. Als Volumenstrom wurden 30 BV/h eingestellt und alle 50 mL wurde eine Probe gezogen. Als Eluat wird hier der Ausgangsstrom der Säule bezeichnet.

Für die Adsorption wurden Lösungen aus jeweils 50 mM L-Trp und L-Phe, sowie aus jeweils 50 mmol L-Ile und L-Leu, pH 5 hergestellt. Für die Desorption wurde 0,1 M Natronlauge verwendet.

Wie aus den vorherigen Versuchen erwartet, zeigten sich bei der Ad- und Desorption von L-Tryptophan und L-Phenylalanin am FAU 1 kaum Unterschiede zwischen den beiden Aminosäuren. Zu Beginn wird ein Teil der L-Aminosäuren auf dem Zeolithen adsorbiert, deswegen ist die Konzentration im Eluat am Anfang niedrig. Wenn sich die Kapazität des Zeolithen langsam erschöpft, können weniger Aminosäuren adsorbiert werden und die Konzentration im Eluat steigt an, bis die Aufgabekonzentration erreicht ist. An diesem Punkt spricht man vom Durchbruch, d. h. es kann nichts mehr auf der Säule adsorbiert werden, da alle Adsorptionsstellen im Zeolith-Gitter belegt sind.

Abb. 4.36: Ad- und Desorption von L-Trp und L-Phe an FAU 1 in der Säule; RT, v = 30 BV/h, Adsorption: 50 mmol/L Trp, 50 mmol/L Phe, pH 5, Desorption: 0,1 M NaOH

Abb. 4.37: Ad- und Desorption von L-Trp und L-Phe an H-MFI 120 in der Säule; RT, v = 30 BV/h, Adsorption: 50 mmol/L Trp, 50 mmol/L Phe, pH 5, Desorption: 0,1 M NaOH

Anders sieht es bei der Ad- und Desorption von L-Tryptophan und L-Phenylalanin am H-MFI 120 aus. Dieser Zeolith adsorbiert L-Phenylalanin besser als L-Tryptophan, was man an den niedrigeren Eluat-Konzentrationen von L-Phenylalanin erkennen kann. Dementsprechend wird L-Phenylalanin auch stärker desorbiert, d. h. dort ist die Eluat-Konzentration höher (s. Abb. 4.37).

Abb. 4.38: Ad- und Desorption von L-Ile und L-Leu an H-MFI 120 in der Säule; RT, v = 30 BV/h, Adsorption: 50 mmol/L Ile, 50 mmol/L Leu, pH 5, Desorption: 0,1 M NaOH

Das gleiche Bild, nur stärker ausgeprägt, sieht man bei der Ad- und Desorption von L-Isoleucin und L-Leucin am H-MFI 120, d. h. die Trends der statischen Adsorption bleiben bei der dynamischen erhalten.

Zum direkten Vergleich wurden die Kurven integriert. Die Fläche von 0-1 L Eluatvolumen entspricht dabei der nicht adsorbierten Stoffmenge und wird von der insgesamt aufgetragenen Stoffmenge subtrahiert, um die adsorbierte Stoffmenge zu erhalten. Durch Division mit der Masse des Zeolithen im Säulenbett erhält man eine zu den statischen Versuchen vergleichbare Beladung. Die desorbierte Stoffmenge erhält man direkt durch Integration zwischen 1 und 2 L Eluatvolumen. Die Ergebnisse sind in Tab. 4.4 - Tab. 4.6 zu sehen. Es wird erwartet, daß die Werte für die dynamische Adsorption schlechter sind als die für die statische.

Tab. 4.4:Vergleich von statischer und dynamischer Ad- und Desorption von L-Trp
und L-Phe an FAU 1

statisch			dynamisch				
Adsorption Desorption		Adsorption Desorption		ion			
[mmol AS/ g FAU 1]	%	[mmol AS/ g FAU 1]	%	[mmol AS/ g FAU 1]	%	[mmol AS/ g FAU 1]	%
L-Tryptopha	L-Tryptophan						
0,97	17,8	0,80	81,9	0,48	28,6	0,2	48,9
L-Phenylalanin							
0,71	14,3	0,62	87,2	0,46	38,9	0,2	43,0

Tab. 4.5:Vergleich von statischer und dynamischer Ad- und Desorption von L-Trp
und L-Phe an H-MFI 120

statisch				dynamisch			
Adsorption Desorption		Adsorption Desorption			ion		
[mmol AS/g H-MFI 120]	%						
L-Tryptophan							
0,30	5,8	0,11	37,3	0,31	18,9	0,1	25,0
L-Phenylalanin							
0,56	11,1	0,34	60,6	0,33	24,1	0,1	32,2

Tab. 4.6:Vergleich von statischer und dynamischer Ad- und Desorption von L-Ile
und L-Leu an H-MFI 120

statisch				dynamisch			
Adsorption Desorption		Adsorption Desorption			ion		
[mmol AS/g H-MFI 120]	%						
L-Isoleucin							
0,32	6,2	0,09	27,7	0,34	20,4	0,1	22,4
L-Leucin							
1,95	28,6	0,38	19,4	0,49	36,8	0,2	38,3

Für alle L-Aminosäure/Zeolith-Paare läßt sich sagen, daß die statische Beladung höher ist als die dynamische. Daß die prozentualen Angaben bei der dynamischen Adsorption

höher sind, liegt an dem kleineren L-Aminosäure-Zeolith-Verhältnis. Auch die Desorption ist im Batch-Versuch besser. Das sind alles Eigenschaften, die auch erwartet wurden. Leider führt das dazu, daß auch die Trenneigenschaften teilweise verloren gehen.

4.11 Zusammenfassung

Das Screening nach Zeolithen ist abgeschlossen und es haben sich zwei Zeolithe von der Süd-Chemie AG herauskristallisiert, mit denen theoretisch L-Tryptophan und L-Phenylalanin aus Hydrolysegemischen gewonnen und mit denen L-Isoleucin/L-Leucin-Lösungen aufgetrennt werden können.

Diese Trennungen sind durch Adsorptionsisothermen aus Ein- und Zwei-Stoff-Gemischen charakterisiert worden. Außerdem wurde das dynamische Adsorptionsverhalten in Säulenversuchen überprüft. Dabei ergaben sich für eine Konzentration von 50 mmol/l L-Aminosäure folgende Trennfaktoren:

	Trennfaktor		
Trennproblem	statisch	dynamisch	
L-Tryptophan von L-Phenyalanin	1:1,9	1:1,3	
L-Isoleucin von L-Leucin	1:4,6	1:1,8	

Tab. 4.7: Zusammenfassung der Trennfaktoren am H-MFI 120

Es zeigt sich, daß die Auftrennung in den Batch-Versuchen deutlich höher ist. Allerdings wird beim Einsatz der Zeolithe in Säulen ein Problem umgangen, das sich beim Scale-Up gezeigt hat. Es erwies sich nämlich als schwierig, das Zeolithpulver im größeren Maßstab von der Aminosäure-Lösung zu trennen. Die Abtrennung an sich ist möglich, nur dauert sie im 1 L-Liter Maßstab ungefähr eine Stunde und ist somit nicht mehr rentabel, wenn man bedenkt, daß die Gleichgewichtseinstellung bei der Ad- und Desorption ebenfalls nur eine Stunde dauert. So verdoppeln sich die Laufzeiten. Außerdem geht bei der Filtration der Zeolith verloren. Dieses Verfahren würde sich nur eignen, wenn der Zeolith sehr günstig ist und wenn eine unerwünschte L-Aminosäure abgetrennt werden muß.

Auch die Desorptionen dieser Systeme sind untersucht worden. Dabei ergaben sich jedoch bei dem H-MFI 120 Probleme. Bei der Trennung von L-Tryptophan/ L-Phenyl-

alanin muß man einen Verlust von ca. 39 % L-Phenylalanin einrechnen. Bei der Trennung von L-Isoleucin/L-Leucin sind die Verluste sogar noch höher. Eine Erhöhung der Natronlauge-Konzentration hat dabei keine Verbesserung gebracht. Will man in Zukunft Zeolithe für die Trennung und Aufreinigung von L-Aminosäuren einsetzen, dann muß die Desorption durch Wahl anderer Elutionsmedien oder Desorptionsbedingungen verbessert werden.

Auch bei den Versuchen zur Mehrfachbenutzung der Zeolithe zeigten sich Schwächen. Es konnte gezeigt werden, daß zwischen der Desorption und der erneuten Adsorption nur ein Regenerationsschritt mit verdünnter Salzsäure nötig ist. Der FAU 1 weist jedoch bei den wechselnden pH-Bedingungen und den mechanischen Beanspruchungen im Batch-Versuch Stabilitätsprobleme auf. Dieses Problem ist beim Einsatz in der Säule nicht so gravierend, da die mechanische Belastung deutlich geringer ist. Allerdings würde sich auch da der Säulendruck durch Abrieb erhöhen.

5 Schlußbetrachtung

Das Institut für Technische Chemie und das Institut für Ordnungs- und Prozeßpolitik der Universität Hannover, sowie die Abteilung für Technische Mikrobiologie der Technischen Universität Hamburg-Harburg und die AMINO GmbH, Frellstedt haben sich zu einer Forschungskooperation zusammengeschlossen, deren Ziel es war, eine neuartige Darstellungsmethode für L-Aminosäuren zu entwickeln. Am Institut für Technische Chemie sollte die Hydrolyse von Proteinsubstraten mittels Enzymen und speziell mittels Extremozymen sowie die Aufreinigung der Hydrolysate untersucht werden.

Ein Ziel der vorliegenden Arbeit war es, einen Biosensor zur Messung des Gesamthydrolysegrades bei der enzymatischen Hydrolyse zu entwickeln. Dazu wurde als biologische Komponente das Enzym L-Aminosäure-Oxidase (<u>L-Aminoacid-Oxidase</u>, L-AAOD) und als Transducer eine amperometrische Sauerstoffelektrode ausgewählt. Nach der Immobilisierung des Enzyms konnten beide Komponenten in ein Fließinjektionsanalyse-System integriert werden.

Bei den ersten Versuchen zeigte sich, daß die Aktivität der L-AAOD durch das bei der katalysierten Reaktion entstehende Wasserstoffperoxid verringert wurde. Zum Schutz der L-AAOD wurde ein zweites Enzym zugesetzt, das das entstehende Wasserstoffperoxid zersetzen sollte.

Zuerst wurde der Zusatz von Catalase getestet, da sich die pH- und Temperatur-Optima dieser beiden Enzyme sehr ähnlich sind. Es konnte gezeigt werden, daß das Enzym-System L-AAOD/Catalase stabil ist. Allerdings ergaben sich zwei Nachteile. Zum einen entsteht bei der durch Catalase katalysierten Zersetzung des Wasserstoffperoxids Sauerstoff, dessen Verbrauch detektiert wurde. Es kam zu einer Verringerung der Meßempfindlichkeit. Zum anderen konnten die beiden Enzyme nicht coimmobilisiert werden, so daß die Catalase nativ zu jeder Probe gegeben werden mußte, was zu einem erhöhten Arbeits- und Kostenaufwand führt.

Als Alternative bot sich das Enzym <u>Peroxidase</u> (POD) an. Es katalysiert die Zersetzung von Wasserstoffperoxid in Gegenwart eines Protonendonators zu Wasser. Da die L-AAOD durch den Zusatz von POD stabilisiert werden konnte, ist davon auszugehen, daß die in der Lösung vorhandenen L-Aminosäuren als Protonendonatoren ausreichen. Auch die unterschiedlichen pH-Optima der beiden Enzyme wirken sich nicht negativ

aus. Außerdem ist eine Coimmobilisierung der beiden Enzyme möglich, was die Handhabung wesentlich vereinfacht.

Das Enzym-System L-AAOD/POD wurde in Bezug auf Temperatur, pH-Wert und Pufferzusätze optimiert und die Querempfindlichkeiten zu anderen L-Aminosäuren wurden bestimmt. Beim Vermessen einer Realprobe zeigte sich, daß die mit dem durch L-Leucin kalibrierten Biosensor gemessenen Werte kleiner als die HPLC-Ergebnisse waren. Für die Prozeßkontrolle ist aber nicht die genaue L-Aminosäure-Konzentration, sondern nur die zeitliche Zunahme an L-Aminosäuren wichtig. Um eine Hydrolyse zu simulieren, wurden Versuche mit einem Gradientenmischer durchgeführt. Der Biosensor war sowohl in einem Konzentrationsbereich von 0-5 g/L L-Leucin als auch in einem Bereich von 0-1 g/L in der Lage, die L-Leucin-Zunahme zu verfolgen.

Die Meßdauer des Biosensors L-AAOD/POD konnte auf fünf Minuten reduziert werden, was im Vergleich zu konventionellen Methoden wie der HPLC-Analyse (70 min Dauer) deutlich schneller ist. Mit dem Biosensor ist man in der Lage, die Prozeßbedingungen während der Hydrolyse zu regeln. Dabei betrug die mittlere Standardabweichung nur 2 %.

Der entwickelte Biosensor ist in der Lage, den Verlauf der L-Aminosäure-Konzentration während einer Hydrolyse mit einer sehr kurzen Meßzeit sehr genau zu bestimmen. Dazu ist bis auf eine Abpufferung der Probe keine weitere Vorbehandlung nötig.

Basierend auf dieser Arbeit ergeben sich weitere Forschungsmöglichkeiten. So muß der Biosensor in den Hydrolyseprozeß mittels Bypass integriert und unter Realbedingungen getestet werden. Für einen Dauereinsatz muß die Langzeitstabilität unter Realbedingungen und die Lagerstabilität des Coimmobilisats untersucht werden.

Der zweite Teil der vorliegenden Arbeit beschäftigte sich mit der Aufreinigung der Hydrolysate. Dazu sollten einige L-Aminosäuren aus den Hydrolysegemischen gezielt an Zeolithen adsorbiert und dann in reiner Form desorbiert werden. Es wurde ein Screening durchgeführt, in dem die Zeolithe auf ihre Fähigkeit hin geprüft wurden, selektiv nur wenige L-Aminosäuren zu adsorbieren.

Das Screening führte zu der Aussage, daß Zeolithe mit einer FAU- oder einer MFI-Struktur L-Aminosäuren wesentlich besser adsorbieren als Zeolithe mit einer MOR- Struktur. Auch einige theoretische Aussagen konnten bestätigt werden: So werden polare L-Aminosäuren aus einem polaren Lösungsmittel wie Wasser gut adsorbiert. Unpolare L-Aminosäuren werden zwar auch vorzugsweise aus Wasser adsorbiert, aber im Gegensatz zu den polaren lassen sie sich auch aus einem weniger polaren Wasser/ Ethanol-Gemisch adsorbieren. Die Fähigkeit zur Adsorption steigt mit Zunahme des Molekulargewichts der Aminosäure und mit sinkendem Modul bei gleichem Zeolith-Typ an. Die Ausnutzung der Molekülgröße als Trennfaktor kann bei der Adsorption von L-Tryptophan beobachtet werden, das aufgrund seiner Größe an kleinporigen Zeolithen nur adsorbiert werden kann, wenn die Poren nicht durch große Kationen versperrt werden. Das Adsorptionsgleichgewicht stellt sich nach spätestens einer Stunde ein.

Das Screening führte zu zwei Zeolithen von der Süd-Chemie AG, die für folgende Trennprobleme eingesetzt werden können:

Trennproblem	Zeolith	Trennfaktor*
L-Tryptophan + L-Phenylalanin vom Hydrolysegemisch	FAU 1	
L-Tryptophan von L-Phenylalanin	H-MFI 120	1:5,6/1:4,8
L-Isoleucin von L-Leucin	H-MFI 120	1:7,6/1:6,4

Tab. 5.1: Trennprobleme und geeignete Zeolithe

* aus Ein-Stoff/Zwei-Stoff-Lösungen bei einer Konzentration von 15 mmol/L

Diese Trennungen sind durch Adsorptionsisothermen aus Ein- und Zwei-Stoff-Gemischen charakterisiert worden. Dabei ergeben sich für die Trennung von L-Tryptophan/L-Phenylalanin und L-Isoleucin/L-Leucin mit 1:5,6 und 1:7,6 sehr gute Trennfaktoren, die auch in den Zwei-Stoff-Gemischen nur wenig abnehmen.

Außerdem ist die Abhängigkeit der Adsorption vom pH-Wert bei diesen L-Aminosäure/ Zeolith-Paaren untersucht worden. Die Adsorption war immer bei pH-Werten etwas unterhalb und um den isoelektrischen Punkt der Aminosäuren am stärksten. Dieses läßt auf polare und unpolare Wechselwirkungen in Abhängigkeit vom pH-Wert bei der Adsorption schließen. Auch die Möglichkeit einer Desorption bei pH-Werten größer dem isoelektrischen Punkt der entsprechenden L-Aminosäure ist durch diese Versuche bestätigt worden.

Zur Gewinnung der L-Aminosäuren wurde auch die Desorption dieser Systeme untersucht. Dabei ergaben sich jedoch bei dem H-MFI 120 Probleme. Bei der Trennung von L-Tryptophan und L-Phenylalanin muß man einen Verlust von ca. 39 % L-Phenylalanin einrechnen. Bei der Trennung von L-Isoleucin und L-Leucin sind die Verluste sogar noch höher. Eine Erhöhung der Natronlauge-Konzentration hat dabei keine Verbesserung gebracht. Auch die Wahl von Ammoniak als Desorptionsmittel wurde ausgeschlossen.

Weitere Schwächen der Zeolithe zeigten sich beim mehrfachen Einsatz. So sollten die Zeolithe aus Kostengründen in einem späteren Verfahren mehrfach benutzt werden. Bei den Versuchen zur Mehrfachbeladung der Zeolithe konnte zwar gezeigt werden, daß eine Mehrfach-Ad- und Desorption mit nur einem Regenerationsschritt möglich ist, jedoch weist der FAU 1 bei den wechselnden pH-Bedingungen und den mechanischen Beanspruchungen im Batch-Versuch schon nach dem ersten Durchlauf Stabilitätsprobleme auf.

Beim Scale-up der Batch-Versuche zeigte sich ein weiteres Problem. Es erwies sich als äußerst schwierig, das Zeolithpulver im größeren Maßstab von der Aminosäure-Lösung zu trennen. So würde die Abtrennung durch Filtration im 1 L-Liter Maßstab die Zeit für die Adsorption von einer auf zwei Stunden verdoppeln. Als Lösung des Problems bietet sich die dynamische Adsorption in der Säule an, da beide Zeolithe als Formkörper vorliegen. Die mechanische Belastung wäre deutlich geringer als im Batch-Versuch, was zu einer längeren Lebensdauer der Zeolithe führen könnte.

Bei den Versuchen zur dynamischen Adsorption in der Säule zeigte sich dann erwartungsgemäß ein ähnliches Adsorptionsverhalten wie in den statischen Batch-Versuchen, nur daß die Beladung und die Desorption geringer waren. Das führte dazu, daß die Trennwirkung nachließ. Das lag zum einen an den kleineren Beladungen, zum anderen daran, daß für die Säulenversuche höhere L-Aminosäure-Konzentrationen gewählt worden waren, was schon in den Batch-Versuchen zu einer geringeren Trennung führte. Vergleicht man die Trennfaktoren für die entsprechende Konzentration von 50 mmol/L AS, so sinkt der Faktor für die Trennung von L-Tryptophan und L-Phenylalanin von 1:1,9 auf 1:1,3 und der für die Trennung von L-Isoleucin und L-Leucin von 1:4,6 auf 1:1,8.

Insgesamt läßt sich sagen, daß Zeolithe für die Aufreinigung von Aminosäuren durch selektive Adsorption genutzt werden können. Es muß nur ein Zeolith gefunden werden, der die positiven Eigenschaften der hier vorgestellten Zeolithe vereinigt.

Für die Zukunft steckt in diesem Forschungsgebiet noch viel Potential. So gibt es noch etliche synthetische Zeolithe aus der Katalyse, die auf ihre Adsorptionseigenschaften

hin getestet werden können. Die Stabilität der Zeolithe kann durch Erhöhung des Moduls verbessert werden oder es können bei der Bildung von Zeolith-Formkörpern stabilisierende Binder eingesetzt werden. Eine Erhöhung der Trennwirkung bei der dynamischen Adsorption könnte durch veränderte Säulencharakteristika erreicht werden.

Da das Potential noch lange nicht ausgeschöpft ist, eröffnen "Tailor-Made"-Zeolithe die Möglichkeit, selektiv L-Aminosäuren aus Hydrolysegemischen nachwachsender Rohstoffe zu entfernen.
6 Anhang

6.1 Abkürzungsverzeichnis

6.1.1 Allgemeine Abkürzungen

μL	Mikroliter	М	molar, Molmasse
μm	Mikrometer	MCE	Mercaptoethanol
Abb.	Abbildung	mg	Milligramm
AS	Aminosäure	min	Minuten
BV	Bettvolumen	mL	Milliliter
c	Konzentration	mmol	Millimol
CAFCA	Computer Assisted FIA	Mrd.	Milliarde
	Control & Analysis	Ν	normal
cm	Zentimeter	nm	Nanometer
EDTA	Ethylendiamintetraacetat	OPA	ortho-Phthaldialdehyd
FAD	Flavinadenin-Dinucleotid	pI	isoelektrischer Punkt
FIA	Fließinjektionsanalyse	POD	Peroxidase
g	Gramm	rpm	rounds per minute
Gew. %	Gewichtsprozent	RT	Raumtemperatur
Gl.	Gleichung	Т	Temperatur
h	Stunden	t	Tonne
HPLC	High Performance Liquid	Tab.	Tabelle
	Chromatography	THF	Tetrahydrofuran
KPP-Puffer	Kaliumhydrogenphosphat-	U	Units
T	Liter	UV	Ultraviolett
	L Amino Acid Ovidase	v	Volumengeschwindigkeit
L-AAUD	L-Aminosäure-Oxidase	V_P	Probenvolumen
m	Meter		

Ala	Alanin	Leu	Leucin
Arg	Arginin	Lys	Lysin
Asn	Asparagin	Met	Methionin
Asp	Asparaginsäure	Phe	Phenylalanin
Cys	Cystein	Pro	Prolin
Gln	Glutamin	Ser	Serin
Glu	Glutaminsäure	Thr	Threonin
Gly	Glycin	Trp	Tryptophan
His	Histiden	Tyr	Tyrosin
Ile	Isoleucin	Val	Valin

6.1.2 Abkürzungen Aminosäuren

6.2 Verwendete Chemikalien

6.2.1 Enzyme

L-Aminosäure-Oxidase	Sigma	A-5147
Catalase	Sigma	C-9322
Peroxidase	Fluka	77333

6.2.2 L-Aminosäuren

L-Alanin	Serva	11482	L-Isoleucin	Fluka	58879
L-Arginin	Fluka	11010	L-Leucin	Fluka	61819
L-Asparagin	Fluka	11150	L-Methionin	Fluka	64320
L-Asparaginsäure	Serva	14180	L-Phenylalanin	Fluka	78019
L-Glutamin	Sigma	G-3126	L-Serin	Fluka	84959
L-Glutaminsäure	Fluka	49449	L-Threonin	Fluka	89179
Glycin	Sigma	G-7126	L-Tryptophan	Sigma	T-8659
L-Histidin	Fluka	53319	L-Valin	Fluka	94619

6.2.3 Sonstige

di-Kaliumhydrogenphosphat	Merck	105101
EDTA	Fluka	03609
Ethanol	Fluka	02870
Kaliumdihydrogenphosphat	Merck	104871
Kaliumhydroxid	Merck	105012
Natriumchlorid	Merck	101540
Natriumhydroxid	Fluka	71692
Polymerträger VA-Epoxy	Fluka	81337
Salzsäure	Riedel-de Haën	30720

6.3 Geräteliste

Computer	486 DX/2-66
FIA-Anlage	EVA Linie, Eppendorf, Nethler & Hinz, Hamburg
Magnetrührer	Ikamag RCT
pH-Elektrode	U 402-M6, Ingold
pH-Meter	Knick Typ 742
Pipetten	Eppendorf, Nethler & Hinz, Hamburg
Sauerstoffelektrode	ANASYSCON, Hannover
Schüttler	Eppendorf, Nethler & Hinz, Hamburg
Thermostat	Braun, Thermomix Me

6.4 Immobilisierung der L-Aminosäure-Oxidase auf VA-Epoxy

Zur Immobilisierung wurden 74 mg (20 U) L-AAOD in 1 mL 1 M KPP-Puffer, pH 7 gelöst. Mit dieser Lösung wurden 200 mg des Polymerträgers VA-Epoxy aufgeschlämmt. Die Immobilisierung erfolgte über einen Zeitraum von 24 h bei Raumtemperatur. Dann wurde das Immobilisat vor dem ersten Gebrauch in eine Enzymkartusche geschlämmt und 60 min mit dem zur Messung bestimmten Puffer gespült.

Bei einer Coimmobilisierung wurde eine entsprechende Lösung mit L-AAOD und Catalase oder POD angesetzt. Die Lagerung der Kartuschen erfolgte bei 4-8 °C.

6.5 Versuchsbedingungen bei der Aufnahme von Adsorptionsisothermen

Es wurden L-Aminosäure-Lösungen mit unterschiedlichen Konzentrationen und einem pH-Wert von 5 hergestellt. 10 mg Zeolith wurden mit jeweils 1 mL L-Aminosäure-Lösung versetzt und für drei Stunden bei RT mit 1500 rpm geschüttelt. Anschließend wurde der Zeolith abzentrifugiert und die L-Aminosäure-Konzentration des Überstandes wurde mit Hilfe der HPLC bestimmt. Wenn der Zeolith als Formkörper vorlag, wurde er zuvor gemörsert.

6.6 <u>High Performance Liquid Chromatography (HPLC)</u>

Das in dieser Arbeit verwendete Hydrolysat wurde nach der HPLC-OPA-Methode analysiert ^[78]. Hierbei wird die Probe zunächst, wenn nötig, 1:5 mit Methanol verdünnt, um restliche Peptide zu fällen. Mit 0,4 N Boratpuffer erfolgt anschließend die Einstellung der endgültigen Verdünnung auf einen Aminosäuregehalt von 5-50 µmol/L. Die HPLC-OPA-Methode umfaßt eine Vorsäulenderivatisierung, bei der die Probe 1,5 min mit OPA-Reagens umgesetzt wird. Die Elution wird über einen linearen Gradienten von Eluent A zu Eluent B durchgeführt. Die gesamte Analyse dauert 67 min.

- Eluent A: 0,05 M NaOCOCH₃ + 0,05 M NaH₂PO₃, pH 7 + 2 % THF + 2 % Methanol
- Eluent B: 54 % Methanol + 46 % H₂O (bidest.)

- OPA-Reagenz: 270 mg ortho-Phthaldialdehyd (OPA) in 5 mL Ethanol p. A. auflösen. 200 μL Mercaptoethanol (MCE) zufügen und mit 0,4 M Boratpuffer, pH 9,5 auf 50 mL auffüllen. Die Lösung 24 h "altern" lassen. Jede Woche ca. 20 μL MCE als Oxidationsschutz zugeben. Die Lösung ist ca. 4 Wochen haltbar.
- Derivatisierung: 15 μ L Probe werden mit 50 μ L OPA-Reagenz versetzt und gemischt. Nach 1,5 min Inkubationszeit werden 10 μ L auf die Säule gegeben.
- Laufbedingungen: Fluß: 1 mL/min Temperatur: 30 °C Säule: Waters Resolve C18, 5 µm, 3,9 x 150 mm Detektion: Fluoreszenz, Ex 330, Em 420 Techlab LCP4100 Geräte: Pumpe: Detektor: Fluoreszenzdetektor Shimadzu RF-10AxL Autosampler: Triathlon von Spark, Holland Degasser: 3-Kanal-Degasser von Sykam Säulenofen: Techlab T-1 Datensystem: Andromedar von DataApex Ltd.

6.7 Vorhandene Zeolithe

Bezeichnung	Hersteller	Struktur	Modul	Belegung
DK-Sil, mesh 60*	Dr. Küke GmbH			
DK-Sil, mesh 80*	Dr. Küke GmbH			
DAY 15*	Degussa	FAU	>100	Wasserstoff
DAY 200*	Degussa	FAU	>100	Wasserstoff
ZSM 5-M28*	Degussa	MFI	28	Wasserstoff
ZSM 5-M40	Degussa	MFI	40	Wasserstoff
ZSM 5-M150*	Degussa	MFI	150	Wasserstoff
ZSM 5-M1000*	Degussa	MFI	1000	Wasserstoff
ZSM 5-M>1000	Degussa	MFI	>1000	Wasserstoff
ZSM 5-M28, Al-gebund. FK	Degussa	MFI	28	Wasserstoff
ZSM 5-M45, Al-gebund. FK	Degussa	MFI	45	Wasserstoff

Bezeichnung	Hersteller	Struktur	Modul	Belegung
SN 27*	Alsi-Penta Zeolithe GmbH	MFI	22-25	Natrium
SM 27*	Alsi-Penta Zeolithe GmbH	MFI	22-25	Ammonium
SH 27*	Alsi-Penta Zeolithe GmbH	MFI	22-25	Wasserstoff
SN 55*	Alsi-Penta Zeolithe GmbH	MFI	40-48	Natrium
SM 55*	Alsi-Penta Zeolithe GmbH	MFI	40-48	Ammonium
SH 55*	Alsi-Penta Zeolithe GmbH	MFI	40-48	Wasserstoff
MSN-15*	Alsi-Penta Zeolithe GmbH	MOR	13-15	Natrium
MSM-15*	Alsi-Penta Zeolithe GmbH	MOR	13-15	Ammonium
MSH-15*	Alsi-Penta Zeolithe GmbH	MOR	13-15	Wasserstoff
FAU 1, 1/16" Extr.*	Süd-Chemie AG	FAU	30	Wasserstoff
FAU 2, 1/8" Extr.*	Süd-Chemie AG	FAU	5	Wasserstoff
H-MFI-90, 1/16" Extr.*	Süd-Chemie AG	MFI	90	Wasserstoff
H-MFI-120, 1/16" Extr.*	Süd-Chemie AG	MFI	120	Wasserstoff
H-MFI-240, 1/16" Extr.*	Süd-Chemie AG	MFI	240	Wasserstoff
H-MFI-400, 1/10" CDS Extr.*	Süd-Chemie AG	MFI	400	Wasserstoff
CM 1100 DR*	Purolite			
CM 1500 DR*	Purolite			

* im Screening-Versuch getestet

6.8 Screeningergebnisse

Zeo	olith			DAY 15]	DAY 200)	
			I	oH-Wert	e			r	H-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1					4,7	4,8	_	4,8	_	4,8
Arg	10,8					8,4	9,6	_	9,5	_	9,4
Asn	5,5					5,3	4,9	_	4,9	_	4,8
Asp	3,0					3,1	2,6	_	2,6	_	2,6
Gln	5,7					5,3	6,1	3,1	3,1	_	3,2
Glu	3,1					3,2	2,6	_	2,6	_	2,6
Gly	6,1					5,3	5,1	_	5,1	_	5,0
His	7,6					7,3	7,3	_	7,4	_	7,4
Ile	6,0					5,9	6,2	3,2	3,2	_	3,2
Leu	6,0					5,8	6,2	3,1	3,2	_	3,2
Met	5,8					5,7	6,2	3,0	3,0	-	3,1
Phe	5,9					5,9	6,6	3,0	3,0	_	3,0
Ser	5,7					5,5	5,4	_	5,3	_	5,3
Thr	5,6					5,3	5,6	3,7	3,8	-	3,8
Trp	5,9					6,1	6,9	2,9	3,0	_	3,0
Val	5,7					5,7	6,0	3,4	3,4	_	3,4
Zeo	olith		Z	SM 5-M2	28			ZS	SM 5-M1	50	
			1	oH-Wert	e			r	H-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	27			_						
Aro		3,1	-			3,6	4,6	-	-	—	4,6
1115	10,8	3,7 9,2	-	-	_	3,6 8,3	4,6 9,9	-	-	-	4,6 9,7
Asn	10,8 5,5	3,7 9,2 3,6	_ _ _	-	-	3,6 8,3 3,6	4,6 9,9 4,3	- - -		_ _ _	4,6 9,7 4,5
Asn Asp	10,8 5,5 3,0	3,7 9,2 3,6 2,4	- - -		-	3,6 8,3 3,6 2,4	4,6 9,9 4,3 2,5	- - -	_ _	- - -	4,6 9,7 4,5 2,5
Asn Asp Gln	10,8 5,5 3,0 5,7	3,7 9,2 3,6 2,4 3,6		-	_ _ _ _	3,6 8,3 3,6 2,4 3,5	4,6 9,9 4,3 2,5 5,6	- - - 3,3	_ 		4,6 9,7 4,5 2,5 3,5
Asn Asp Gln Glu	10,8 5,5 3,0 5,7 3,1	3,7 9,2 3,6 2,4 3,6 2,3	- - - -	-	- - - -	3,6 8,3 3,6 2,4 3,5 2,3	4,6 9,9 4,3 2,5 5,6 2,5	- - - 3,3 -	- - - - -	- - - -	4,6 9,7 4,5 2,5 3,5 2,5
Asn Asp Gln Glu Gly	10,8 5,5 3,0 5,7 3,1 6,1	3,7 9,2 3,6 2,4 3,6 2,3 3,9	- - - - -	- - - - -	- - - -	3,6 8,3 3,6 2,4 3,5 2,3 3,9	4,6 9,9 4,3 2,5 5,6 2,5 4,8	- - 3,3 - -	- - - - - -	- - - - -	4,6 9,7 4,5 2,5 3,5 2,5 4,8
Asn Asp Gln Glu Gly His	10,8 5,5 3,0 5,7 3,1 6,1 7,6	3,7 9,2 3,6 2,4 3,6 2,3 3,9 6,9	- - - - - - -	- - - - - - -	- - - - -	3,6 8,3 3,6 2,4 3,5 2,3 3,9 7,0	4,6 9,9 4,3 2,5 5,6 2,5 4,8 7,2	- - - 3,3 - - -	- - - - - - - -	- - - - - - -	4,6 9,7 4,5 2,5 3,5 2,5 4,8 7,3
Asn Asp Gln Glu Gly His Ile	10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0	3,7 9,2 3,6 2,4 3,6 2,3 3,9 6,9 4,0	- - - - - - - - -	- - - - - - - -	- - - - - -	3,6 8,3 3,6 2,4 3,5 2,3 3,9 7,0 3,9	4,6 9,9 4,3 2,5 5,6 2,5 4,8 7,2 4,4	- - 3,3 - - - -	- - - - - - - - - -	- - - - - - - - -	4,6 9,7 4,5 2,5 3,5 2,5 4,8 7,3 4,4
Asn Asp Gln Glu Gly His Ile Leu	10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0	3,7 9,2 3,6 2,4 3,6 2,3 3,9 6,9 4,0 3,9	- - - - - - - - - - - -		- - - - - - - - -	3,6 8,3 3,6 2,4 3,5 2,3 3,9 7,0 3,9 3,8	4,6 9,9 4,3 2,5 5,6 2,5 4,8 7,2 4,4 4,5	- - - 3,3 - - - - - - -	- - - - - - - - - -	- - - - - - - - - - -	4,6 9,7 4,5 2,5 3,5 2,5 4,8 7,3 4,4 4,5
Asn Asp Gln Glu Gly His Ile Leu Met	10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8	3,7 9,2 3,6 2,4 3,6 2,3 3,9 6,9 4,0 3,9 3,7	- - - - - - - - - - - -		- - - - - - - - - -	3,6 8,3 3,6 2,4 3,5 2,3 3,9 7,0 3,9 3,8 3,7	4,6 9,9 4,3 2,5 5,6 2,5 4,8 7,2 4,4 4,5 4,8	- - - 3,3 - - - - - - - -	- - - - - - - - - - - - -		4,6 9,7 4,5 2,5 3,5 2,5 4,8 7,3 4,4 4,5 5,6
Asn Asp Gln Glu Gly His Ile Leu Met Phe	10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9	3,7 9,2 3,6 2,4 3,6 2,3 3,9 6,9 4,0 3,9 3,7 3,7				3,6 8,3 3,6 2,4 3,5 2,3 3,9 7,0 3,9 3,8 3,7 3,6	4,6 9,9 4,3 2,5 5,6 2,5 4,8 7,2 4,4 4,5 4,8 4,4	- - - 3,3 - - - - - - - - - -	- - - - - - - - - - - - - - - -		4,6 9,7 4,5 2,5 3,5 2,5 4,8 7,3 4,4 4,5 5,6 4,5
Asn Asp Gln Glu Gly His Ile Leu Met Phe Ser	10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7	3,7 9,2 3,6 2,4 3,6 2,3 3,9 6,9 4,0 3,9 3,7 3,7 3,7				3,6 8,3 3,6 2,4 3,5 2,3 3,9 7,0 3,9 3,8 3,7 3,6 3,7	4,6 9,9 4,3 2,5 5,6 2,5 4,8 7,2 4,4 4,5 4,8 4,4 4,5 4,4 4,5	- - - - 3,3 - - - - - - - - - - - - -			4,6 9,7 4,5 2,5 3,5 2,5 4,8 7,3 4,4 4,5 5,6 4,5 4,5 4,5
Asn Asp Gln Glu Gly His Ile Leu Met Phe Ser Thr	10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9 5,7 5,6	3,7 9,2 3,6 2,4 3,6 2,3 3,9 6,9 4,0 3,9 3,7 3,7 3,7 3,7 3,7 3,7 3,7				3,6 8,3 3,6 2,4 3,5 2,3 3,9 7,0 3,9 3,8 3,7 3,6 3,7 3,7 3,7	4,6 9,9 4,3 2,5 5,6 2,5 4,8 7,2 4,4 4,5 4,8 4,4 4,5 4,6	- - - 3,3 - - - - - - - - - - - - -			4,6 9,7 4,5 2,5 3,5 2,5 4,8 7,3 4,4 4,5 5,6 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,8
Asn Asp Gln Glu Gly His Ile Leu Met Phe Ser Thr Trp	10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9 5,7 5,6 5,9	3,7 9,2 3,6 2,4 3,6 2,3 3,9 6,9 4,0 3,9 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,8				3,6 8,3 3,6 2,4 3,5 2,3 3,9 7,0 3,9 3,8 3,7 3,6 3,7 3,8	4,6 9,9 4,3 2,5 5,6 2,5 4,8 7,2 4,4 4,5 4,8 4,4 4,5 4,6 4,4	- - - 3,3 - - - - - - - - - - - - - - -			4,6 9,7 4,5 2,5 3,5 2,5 4,8 7,3 4,4 4,5 5,6 4,5 4,5 4,5 4,5 4,4 4,5 4,5 4,5 4,5 4,5 4,4 4,5 4,5 4,5 4,4 4,5 4,4 4,5

Tab. 6.1: pH-Verlauf bei der Adsorption aus wäßriger Lösung

Zeo	olith		ZS	M 5-M1	000				SN 27		
			I	oH-Wert	e			I	oH-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	8,6	3,6	3,9	-	4,2	8,4	4,7	6,5	4,4	4,4
Arg	10,8	10,3	_	10,4	-	10,2	11,6	10,1	10,7	8,8	8,8
Asn	5,5	8,0	3,7	3,9	_	4,1	7,8	5,0	5,5	4,0	4,0
Asp	3,0	2,6	_	2,7	_	2,7	3,3	2,6	2,7	2,5	2,6
Gln	5,7	8,3	4,0	5,5	3,4	3,7	8,1	4,8	5,1	_	4,4
Glu	3,1	2,7	_	2,7	_	2,8	3,6	2,8	3,0	2,7	2,8
Gly	6,1	8,4	3,6	3,9	_	4,3	8,4	5,3	5,7	_	5,7
His	7,6	8,2	6,9	7,1	_	7,3	8,9	7,0	8,0	6,5	6,9
Ile	6,0	8,6	3,4	3,7	_	4,0	8,6	3,8	5,0	_	6,1
Leu	6,0	8,7	3,4	3,6	_	3,8	8,7	3,8	5,9	3,7	3,7
Met	5,8	8,2	3,2	3,4	_	3,6	8,3	4,3	6,7	4,0	4,4
Phe	5,9	8,4	3,4	3,6	_	3,9	8,7	4,3	6,0	3,5	3,6
Ser	5,7	8,2	3,6	4,0	_	4,6	8,1	3,7	3,8	_	3,8
Thr	5,6	8,1	3,4	3,6	_	4,1	8,0	4,5	4,9	_	4,9
Trp	5,9	8,7	3,3	3,6	_	4,0	8,6	3,4	3,6	_	3,6
Val	5,7	8,6	3,4	3,7	_	4,0	8,5	5,0	6,5	3,9	3,9
Zeo	olith			SM 27					SH 27		
Zeo	olith		1	SM 27 oH-Wert	e			I	SH 27 oH-Wert	e	
Zeo	olith pI	1 h	HCl	SM 27 oH-Wert 3 h	e + HCl	24 h	1 h	I + HCl	SH 27 oH-Wert 3 h	e + HCl	24 h
Zeo AS Ala	pI 6,1	1 h 6,9	HCI 4,5	SM 27 oH-Wert 3 h 4,7	e + HCl -	24 h 4,7	1 h 3,9	I + HCl -	SH 27 oH-Wert 3 h _	e + HCl -	24 h 3,8
Zeo AS Ala Arg	pI 6,1 10,8	1 h 6,9 10,4	I + HCl 4,5 -	SM 27 bH-Wert 3 h 4,7 10,4	e + HCl - -	24 h 4,7 10,4	1 h 3,9 9,8	I + HCl - -	SH 27 pH-Wert 3 h - -	e + HCl - -	24 h 3,8 9,1
AS Ala Arg Asn	pI 6,1 10,8 5,5	1 h 6,9 10,4 6,9	HCI 4,5 - 4,3	SM 27 bH-Wert 3 h 4,7 10,4 4,5	e + HCl - - -	24 h 4,7 10,4 4,5	1 h 3,9 9,8 3,9	I + HCl - - -	SH 27 pH-Wert 3 h - - -	e + HCl - - -	24 h 3,8 9,1 4,0
AS Ala Arg Asn Asp	pI 6,1 10,8 5,5 3,0	1 h 6,9 10,4 6,9 3,0	+ HCl 4,5 - 4,3 2,5	SM 27 bH-Wert 3 h 4,7 10,4 4,5 2,6	e + HCl - - - -	24 h 4,7 10,4 4,5 2,6	1 h 3,9 9,8 3,9 2,6	I + HCl - - - -	SH 27 oH-Wert 3 h - - - -	e + HCl - - - -	24 h 3,8 9,1 4,0 2,5
Zeo AS Ala Arg Asn Asp Gln	pI 6,1 10,8 5,5 3,0 5,7	1 h 6,9 10,4 6,9 3,0 7,2	+ HCl 4,5 - 4,3 2,5 4,7	SM 27 DH-Wert 3 h 4,7 10,4 4,5 2,6 4,8	e + HCl - - - - - -	24 h 4,7 10,4 4,5 2,6 4,8	1 h 3,9 9,8 3,9 2,6 4,2	HCl 	SH 27 DH-Wert 3 h - - - - - - - -	e + HCl - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2
AS Ala Arg Asn Asp Gln Glu	pl 6,1 10,8 5,5 3,0 5,7 3,1	1 h 6,9 10,4 6,9 3,0 7,2 3,2	HCl 4,5 - 4,3 2,5 4,7 2,8	SM 27 DH-Wert 3 h 4,7 10,4 4,5 2,6 4,8 2,9	e + HCl - - - - 2,7	24 h 4,7 10,4 4,5 2,6 4,8 2,7	1 h 3,9 9,8 3,9 2,6 4,2 2,6	I + HCl - - - - - - - -	SH 27 DH-Wert 3 h - - - - - - - - - -	e + HCl - - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2 2,5
Zeo AS Ala Arg Asn Asp Gln Glu Gly	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1	1 h 6,9 10,4 6,9 3,0 7,2 3,2 7,2	I + HCl 4,5 - 4,3 2,5 4,7 2,8 4,5	SM 27 DH-Wert 3 h 4,7 10,4 4,5 2,6 4,8 2,9 4,5	e + HCl - - - - 2,7 -	24 h 4,7 10,4 4,5 2,6 4,8 2,7 4,5	1 h 3,9 9,8 3,9 2,6 4,2 2,6 4,3	I + HCl - - - - - - - - - - -	SH 27 DH-Wert 3 h - - - - - - - - - - - - -	e + HCl - - - - - - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2 2,5 4,2
Zeo AS Ala Arg Asn Asp Gln Glu Gly His	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6	1 h 6,9 10,4 6,9 3,0 7,2 3,2 7,2 8,5	HCl 4,5 - 4,3 2,5 4,7 2,8 4,5 6,9	SM 27 DH-Wert 3 h 4,7 10,4 4,5 2,6 4,8 2,9 4,5 7,5	e + HCl - - - 2,7 - 6,9	24 h 4,7 10,4 4,5 2,6 4,8 2,7 4,5 7,2	1 h 3,9 9,8 3,9 2,6 4,2 2,6 4,3 7,0	+ HCl - - - - - - - - - - - - -	SH 27 DH-Wert 3 h - - - - - - - - - - - - -	e + HCl - - - - - - - - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2 2,5 4,2 6,9
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0	1 h 6,9 10,4 6,9 3,0 7,2 3,2 7,2 8,5 7,5	HCl 4,5 - 4,3 2,5 4,7 2,8 4,5 6,9 3,4	SM 27 DH-Wert 3 h 4,7 10,4 4,5 2,6 4,8 2,9 4,5 7,5 3,8	e + HCl - - - 2,7 - 6,9 -	24 h 4,7 10,4 4,5 2,6 4,8 2,7 4,5 7,2 4,7	1 h 3,9 9,8 3,9 2,6 4,2 2,6 4,3 7,0 4,3	I + HCl - - - - - - - - - - - - - -	SH 27 DH-Wert 3 h - - - - - - - - - - - - -	e + HCl - - - - - - - - - - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2 2,5 4,2 6,9 4,2
Zeo AS Ala Arg Asn Gln Glu Gly His Ile Leu	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0	1 h 6,9 10,4 6,9 3,0 7,2 3,2 7,2 8,5 7,5 8,0	HCl 4,5 - 4,3 2,5 4,7 2,8 4,5 6,9 3,4 3,5	SM 27 DH-Wert 3 h 4,7 10,4 4,5 2,6 4,8 2,9 4,5 7,5 3,8 5,4	e + HCl - - - 2,7 - 6,9 - 3,6	24 h 4,7 10,4 4,5 2,6 4,8 2,7 4,5 7,2 4,7 4,5	1 h 3,9 9,8 3,9 2,6 4,2 2,6 4,3 7,0 4,3 4,3	HCI + HCI - - - - - - - - - - - - - - - -	SH 27 DH-Wert 3 h - - - - - - - - - - - - -	e + HCl - - - - - - - - - - - - - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2 2,5 4,2 6,9 4,2 4,3
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8	1 h 6,9 10,4 6,9 3,0 7,2 3,2 7,2 8,5 7,5 8,0 7,8	HCl 4,5 - 4,3 2,5 4,7 2,8 4,5 6,9 3,4 3,5 5,5	SM 27 DH-Wert 3 h 4,7 10,4 4,5 2,6 4,8 2,9 4,5 7,5 3,8 5,4 5,9	e + HCl - - - 2,7 - 6,9 - 3,6 4,2	24 h 4,7 10,4 4,5 2,6 4,8 2,7 4,5 7,2 4,7 4,5 4,5	1 h 3,9 9,8 3,9 2,6 4,2 2,6 4,3 4,3 4,2	I + HCl 	SH 27 DH-Wert 3 h - - - - - - - - - - - - -	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2 2,5 4,2 2,5 4,2 6,9 4,2 4,3 4,4
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met Phe	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9	1 h 6,9 10,4 6,9 3,0 7,2 3,2 7,2 8,5 7,5 8,0 7,8 7,3	I + HCl 4,5 - 4,3 2,5 4,7 2,8 4,5 6,9 3,4 3,5 5,5 3,4	SM 27 bH-Wert 3 h 4,7 10,4 4,5 2,6 4,8 2,9 4,5 7,5 3,8 5,4 5,9 4,0	e + HCl - - - 2,7 - 6,9 - 3,6 4,2 -	24 h 4,7 10,4 4,5 2,6 4,8 2,7 4,5 7,2 4,7 4,5 4,5 4,5 4,8	1 h 3,9 9,8 3,9 2,6 4,2 2,6 4,3 7,0 4,3 4,2 4,2	+ HCl 	SH 27 DH-Wert 3 h - - - - - - - - - - - - -	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2 2,5 4,2 6,9 4,2 4,3 4,4 4,1
Zeo AS Ala Arg Asn Gln Glu Glu Gly His Ile Leu Met Phe Ser	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7	1 h 6,9 10,4 6,9 3,0 7,2 3,2 7,2 8,5 7,5 8,0 7,8 7,3 7,1	HCl 4,5 - 4,3 2,5 4,7 2,8 4,5 6,9 3,4 3,5 5,5 3,4 3,8	SM 27 DH-Wert 3 h 4,7 10,4 4,5 2,6 4,8 2,9 4,5 7,5 3,8 5,4 5,9 4,0 4,0	e + HCl - - - 2,7 - 6,9 - 3,6 4,2 - -	24 h 4,7 10,4 4,5 2,6 4,8 2,7 4,5 7,2 4,7 4,5 4,5 4,5 4,5 4,8 4,0	1 h 3,9 9,8 3,9 2,6 4,2 2,6 4,3 7,0 4,3 4,2 4,2 4,2 4,2 4,2 4,2	HCI + HCI - - - - - - - - - - - - - - - - - - -	SH 27 DH-Wert 3 h - - - - - - - - - - - - -	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2 2,5 4,2 2,5 4,2 6,9 4,2 4,3 4,4 4,1 4,1
Zeo AS Ala Arg Asn Asp Gln Glu Glu Glu His Ile Leu Met Phe Ser Thr	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9 5,7 5,6	1 h 6,9 10,4 6,9 3,0 7,2 3,2 7,2 8,5 7,5 8,0 7,8 7,3 7,1 7,1	HCI 4,5 - 4,3 2,5 4,7 2,8 4,5 6,9 3,4 3,5 5,5 3,4 3,8 3,8	SM 27 DH-Wert 3 h 4,7 10,4 4,5 2,6 4,8 2,9 4,5 7,5 3,8 5,4 5,9 4,0 4,0 4,0	e + HCl - - - 2,7 - 6,9 - 3,6 4,2 - - -	24 h 4,7 10,4 4,5 2,6 4,8 2,7 4,5 7,2 4,7 4,5 4,5 4,5 4,5 4,8 4,0 4,0	1 h 3,9 9,8 3,9 2,6 4,2 2,6 4,3 4,3 4,2 4,2 4,2 4,2 4,3 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,3	HCI + HCI - - - - - - - - - - - - - - - - - - -	SH 27 pH-Wert 3 h - - - - - - - - - - - - -	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2 2,5 4,2 6,9 4,2 4,3 4,4 4,1 4,1 4,2
Zeo AS Ala Arg Asn Gln Glu Gly His Ile Leu Met Phe Ser Thr Trp	pl pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7 5,6 5,9	1 h 6,9 10,4 6,9 3,0 7,2 3,2 7,2 8,5 7,5 8,0 7,8 7,1 7,3	HCl 4,5 - 4,3 2,5 4,7 2,8 4,5 6,9 3,4 3,5 5,5 3,4 3,8 3,4 3,8 3,4	SM 27 DH-Wert 3 h 4,7 10,4 4,5 2,6 4,8 2,9 4,5 7,5 3,8 5,4 5,9 4,0 4,0 4,0 3,5	e + HCl - - - 2,7 - 2,7 - 6,9 - 3,6 4,2 - - - - - - -	24 h 4,7 10,4 4,5 2,6 4,8 2,7 4,5 7,2 4,7 4,5 7,2 4,7 4,5 4,5 4,5 4,5 4,8 4,0 4,0 3,5	1 h 3,9 9,8 3,9 2,6 4,2 2,6 4,3 7,0 4,3 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2	HCI + HCI - - - - - - - - - - - - - - - - - - -	SH 27 DH-Wert 3 h - - - - - - - - - - - - -	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 3,8 9,1 4,0 2,5 4,2 2,5 4,2 6,9 4,2 4,3 4,4 4,1 4,1 4,2 4,0

Tab. 6.1: pH-Verlauf bei der Adsorption aus wäßriger Lösung

Zeo	olith			SN 55					SM 55		
			1	oH-Wert	e			k	H-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	8,9	5,0	5,4	_	5,4	7,7	4,8	5,0	_	5,0
Arg	10,8	11,5	10,0	10,5	9,8	10,2	10,4	_	10,3	_	10,3
Asn	5,5	8,3	4,6	5,0	_	5,1	7,5	4,5	4,9	_	4,9
Asp	3,0	3,7	2,7	2,8	2,5	2,5	3,1	2,7	2,8	_	2,9
Gln	5,7	8,5	5,3	5,6	4,0	4,5	7,7	5,2	5,3	_	5,4
Glu	3,1	4,2	2,7	2,8	_	2,8	3,4	2,9	3,0	2,8	2,8
Gly	6,1	8,8	5,0	5,2	_	5,2	7,9	4,8	4,8	_	4,8
His	7,6	8,9	7,0	7,9	7,1	7,4	8,5	6,7	7,1	_	7,1
Ile	6,0	9,0	3,7	3,8	_	3,8	8,2	3,6	3,8	_	4,0
Leu	6,0	9,0	3,9	5,3	_	6,7	8,4	3,7	5,7	3,5	5,5
Met	5,8	8,7	5,0	6,9	3,0	4,6	8,2	2,9	4,5	_	4,6
Phe	5,9	8,6	3,6	3,8	_	4,3	7,9	3,5	4,1	_	5,6
Ser	5,7	8,4	3,9	4,4	_	4,4	7,7	4,0	4,1	_	4,2
Thr	5,6	8,4	3,6	4,9	_	5,0	7,7	3,9	4,5	_	4,5
Trp	5,9	9,0	3,6	3,6	_	3,6	8,1	3,6	3,8	_	3,9
Val	5,7	8,9	3,6	3,9	_	4,5	8,1	3,6	4,3	-	5,5
Zeo	olith			SH 55		-4,5 8,1 3,0 4,3 -5					
				511 55					WISIN-13		
			I	oH-Wert	e			Į	oH-Wert	e	
AS	pI	1 h	HCl	oH-Wert 3 h	e + HCl	24 h	1 h	HCl	oH-Wert 3 h	e + HCl	24 h
AS Ala	pI 6,1	1 h 4,0	 + HCl -	oH-Wert 3 h _	e + HCl -	24 h 3,9	1 h 8,8	HCl 4,4	H-Wert 3 h 4,7	e + HCl -	24 h 4,6
AS Ala Arg	pI 6,1 10,8	1 h 4,0 9,7	 + HCl _ _	oH-Wert 3 h _	e + HCl - -	24 h 3,9 9,4	1 h 8,8 11,0	HCl 4,4 10,1	H-Wert 3 h 4,7 10,3	e + HCl - 10,0	24 h 4,6 10,0
AS Ala Arg Asn	pI 6,1 10,8 5,5	1 h 4,0 9,7 3,9	 + HCl - - -	oH-Wert 3 h - - -	e + HCl - - -	24 h 3,9 9,4 3,8	1 h 8,8 11,0 8,0	H + HCl 4,4 10,1 4,8	bH-Wert 3 h 4,7 10,3 5,1	e + HCl - 10,0 4,2	24 h 4,6 10,0 4,5
AS Ala Arg Asn Asp	pI 6,1 10,8 5,5 3,0	1 h 4,0 9,7 3,9 2,5	 + HCl - - - -	SH 33 DH-Wert 3 h - - - - - - - - - - -	e + HCl - - - -	24 h 3,9 9,4 3,8 2,5	1 h 8,8 11,0 8,0 3,2	HCl 4,4 10,1 4,8 2,9	Misiv-13 DH-Wert 3 h 4,7 10,3 5,1 2,9	e + HCl - 10,0 4,2 2,6	24 h 4,6 10,0 4,5 2,8
AS Ala Arg Asn Asp Gln	pI 6,1 10,8 5,5 3,0 5,7	1 h 4,0 9,7 3,9 2,5 4,1	I + HCl - - - - -	5H 55 bH-Werti 3 h - - - - - -	e + HCl - - - - -	24 h 3,9 9,4 3,8 2,5 3,9	1 h 8,8 11,0 8,0 3,2 8,4	HCl 4,4 10,1 4,8 2,9 4,7	Historia bH-Wert 3 h 4,7 10,3 5,1 2,9 5,0	e + HCl - 10,0 4,2 2,6 -	24 h 4,6 10,0 4,5 2,8 5,1
AS Ala Arg Asn Asp Gln Glu	pI 6,1 10,8 5,5 3,0 5,7 3,1	1 h 4,0 9,7 3,9 2,5 4,1 2,5	I + HCl - - - - - - -	SH 33 DH-Wert 3 h - - - - - - - - - - - - - - - - -	e + HCl - - - - - - - - -	24 h 3,9 9,4 3,8 2,5 3,9 2,5	1 h 8,8 11,0 8,0 3,2 8,4 3,4	HCl 4,4 10,1 4,8 2,9 4,7 2,8	Misiv-13 bH-Wert 3 h 4,7 10,3 5,1 2,9 5,0 2,9	e + HCl - 10,0 4,2 2,6 - 2,6	24 h 4,6 10,0 4,5 2,8 5,1 2,7
AS Ala Arg Asn Asp Gln Glu Gly	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1	1 h 4,0 9,7 3,9 2,5 4,1 2,5 4,1	HCI - - - - - - - - - -	SH 33 DH-Wert 3 h -	e + HCl - - - - - - - - - -	24 h 3,9 9,4 3,8 2,5 3,9 2,5 4,0	1 h 8,8 11,0 8,0 3,2 8,4 3,4 8,6	HCl 4,4 10,1 4,8 2,9 4,7 2,8 5,3	Misiv-13 DH-Wert 3 h 4,7 10,3 5,1 2,9 5,0 2,9 5,7	e + HCl - 10,0 4,2 2,6 - 2,6 4,5	24 h 4,6 10,0 4,5 2,8 5,1 2,7 4,7
AS Ala Arg Asn Asp Gln Glu Gly His	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6	1 h 4,0 9,7 3,9 2,5 4,1 2,5 4,1 6,8	I + HCl - - - - - - - - - - -	SH 33 DH-Wert 3 h - <	e + HCl - - - - - - - - - - -	24 h 3,9 9,4 3,8 2,5 3,9 2,5 4,0 6,7	1 h 8,8 11,0 8,0 3,2 8,4 3,4 8,6 8,6	HCl 4,4 10,1 4,8 2,9 4,7 2,8 5,3 6,8	Misiv-13 DH-Wert 3 h 4,7 10,3 5,1 2,9 5,0 2,9 5,7 7,0	e + HCl - 10,0 4,2 2,6 - 2,6 4,5 -	24 h 4,6 10,0 4,5 2,8 5,1 2,7 4,7 7,1
AS Ala Arg Asn Asp Gln Glu Gly His Ile	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0	1 h 4,0 9,7 3,9 2,5 4,1 2,5 4,1 6,8 3,8	I + HCl 	SH 33 DH-Wert 3 h - <	e + HCl - - - - - - - - - - - - -	24 h 3,9 9,4 3,8 2,5 3,9 2,5 4,0 6,7 3,7	1 h 8,8 11,0 8,0 3,2 8,4 3,4 8,6 8,9	HCl 4,4 10,1 4,8 2,9 4,7 2,8 5,3 6,8 4,3	Historia 3 h 4,7 10,3 5,1 2,9 5,0 2,9 5,7 7,0 5,0	e + HCl - 10,0 4,2 2,6 - 2,6 4,5 - - -	24 h 4,6 10,0 4,5 2,8 5,1 2,7 4,7 7,1 5,1
AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0	1 h 4,0 9,7 3,9 2,5 4,1 2,5 4,1 6,8 3,8 4,0	I + HCl - - - - - - - - - - - - - - - -	SH 33 DH-Wert 3 h - <	e + HCl - - - - - - - - - - - - - -	24 h 3,9 9,4 3,8 2,5 3,9 2,5 4,0 6,7 3,7 3,9	1 h 8,8 11,0 8,0 3,2 8,4 3,4 8,6 8,6 8,9 8,8	HCl 4,4 10,1 4,8 2,9 4,7 2,8 5,3 6,8 4,3 4,3	Historia 3 h 4,7 10,3 5,1 2,9 5,0 2,9 5,7 7,0 5,0 4,8	e + HCl - 10,0 4,2 2,6 - 2,6 4,5 - - - - -	24 h 4,6 10,0 4,5 2,8 5,1 2,7 4,7 7,1 5,1 4,9
AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8	1 h 4,0 9,7 3,9 2,5 4,1 2,5 4,1 6,8 3,8 4,0 3,9	I + HCl - - - - - - - - - - - - - - - -	SH 33 DH-Wert 3 h - <	e + HCl - - - - - - - - - - - - - - - -	24 h 3,9 9,4 3,8 2,5 3,9 2,5 4,0 6,7 3,7 3,9 3,9 3,9	1 h 8,8 11,0 8,0 3,2 8,4 3,4 8,6 8,6 8,9 8,8 8,4	HCl 4,4 10,1 4,8 2,9 4,7 2,8 5,3 6,8 4,3 4,4	Misiv-13 DH-Wert 3 h 4,7 10,3 5,1 2,9 5,0 2,9 5,7 7,0 5,0 4,8 4,9	e + HCl - 10,0 4,2 2,6 - 2,6 4,5 - - - - - - - -	24 h 4,6 10,0 4,5 2,8 5,1 2,7 4,7 7,1 5,1 4,9 4,9 4,9
AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met Phe	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9	1 h 4,0 9,7 3,9 2,5 4,1 2,5 4,1 6,8 3,8 4,0 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9	I + HCl - - - - - - - - - - - - - - - - - -	SH 33 DH-Wert 3 h - <	e + HCl - - - - - - - - - - - - - - - -	24 h 3,9 9,4 3,8 2,5 3,9 2,5 4,0 6,7 3,7 3,9 3,9 3,9 3,7	1 h 8,8 11,0 8,0 3,2 8,4 3,4 8,6 8,6 8,9 8,8 8,4 8,4	+ HCl 4,4 10,1 4,8 2,9 4,7 2,8 5,3 6,8 4,3 4,4 4,3	Historia 3 h 4,7 10,3 5,1 2,9 5,0 2,9 5,7 7,0 5,0 4,8 4,9 5,0	e + HCl - 10,0 4,2 2,6 - 2,6 4,5 - - - - - - - -	24 h 4,6 10,0 4,5 2,8 5,1 2,7 4,7 7,1 5,1 4,9 4,9 5,2
AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met Phe Ser	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7	1 h 4,0 9,7 3,9 2,5 4,1 2,5 4,1 6,8 3,8 4,0 3,9 3,9 4,0 3,9 4,0	I + HCl - - - - - - - - - - - - - - - - - - -	SH 33 DH-Wert 3 h - <	e + HCl - - - - - - - - - - - - - - - - -	24 h 3,9 9,4 3,8 2,5 3,9 2,5 4,0 6,7 3,7 3,9 3,9 3,9 3,7 3,8	1 h 8,8 11,0 8,0 3,2 8,4 3,4 8,6 8,6 8,6 8,6 8,8 8,4 8,3	HCl 4,4 10,1 4,8 2,9 4,7 2,8 5,3 6,8 4,3 4,4 4,3 4,4	Historia 3 h 4 ,7 10,3 5,1 2,9 5,0 2,9 5,7 7,0 5,0 4,8 4,9 5,0 4,9	e + HCl - 10,0 4,2 2,6 - 2,6 4,5 - - - - - - - - - - -	24 h 4,6 10,0 4,5 2,8 5,1 2,7 4,7 7,1 5,1 4,9 4,9 5,2 4,9
AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met Phe Ser Thr	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9 5,7 5,6	1 h 4,0 9,7 3,9 2,5 4,1 2,5 4,1 6,8 3,8 4,0 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9	I + HCl - - - - - - - - - - - - - - - - - - -	SH 33 DH-Wert 3 h - <	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 3,9 9,4 3,8 2,5 3,9 2,5 4,0 6,7 3,7 3,9 3,7 3,9 3,7 3,8 3,8 3,8	1 h 8,8 11,0 8,0 3,2 8,4 3,4 8,6 8,6 8,9 8,8 8,4 8,4 8,5 8,6 8,9 8,8 8,4 8,3 8,2	HCl 4,4 10,1 4,8 2,9 4,7 2,8 5,3 6,8 4,3 4,4 4,3 4,4 4,5	Historia 3 h 4,7 10,3 5,1 2,9 5,0 2,9 5,7 7,0 5,0 4,8 4,9 5,0 4,8 4,9 4,8	e + HCl - 10,0 4,2 2,6 - 2,6 4,5 - - - - - - - - - - - - - - - - -	24 h 4,6 10,0 4,5 2,8 5,1 2,7 4,7 7,1 5,1 4,9 4,9 5,2 4,9 4,8
AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met Phe Ser Thr Trp	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7 5,6 5,9	1 h 4,0 9,7 3,9 2,5 4,1 2,5 4,1 6,8 3,8 4,0 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,8	I + HCl - - - - - - - - - - - - - - - - - - -	SH 30 DH-Wert 3 h -	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 3,9 9,4 3,8 2,5 3,9 2,5 4,0 6,7 3,7 3,9 3,9 3,9 3,7 3,8 3,8 3,8 3,7	1 h 8,8 11,0 8,0 3,2 8,4 3,4 8,6 8,6 8,6 8,9 8,8 8,4 8,3 8,2 8,8	HCl 4,4 10,1 4,8 2,9 4,7 2,8 5,3 6,8 4,3 4,4 4,3 4,4 4,3 4,4 4,3 4,4 4,3 4,4 4,3 4,4 4,3 4,4 4,3 4,4 4,3	Historia DH-Wert 3 h 4,7 10,3 5,1 2,9 5,0 2,9 5,7 7,0 5,0 4,8 4,9 5,0 4,8 4,9 4,8 4,8 4,8 4,8 4,8 4,8 4,8	e + HCl - 10,0 4,2 2,6 - 2,6 4,5 - - - - - - - - - - - - - - - - - -	24 h 4,6 10,0 4,5 2,8 5,1 2,7 4,7 7,1 5,1 4,9 4,9 4,9 5,2 4,9 4,8 5,0

Tab. 6.1:pH-Verlauf bei der Adsorption aus wäßriger Lösung

Zeo	lith			MSM-15	5				MSH-15		
				oH-Wert	e			I	oH-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	7,3	3,6	3,8	_	3,9	3,5	_	-	_	3,5
Arg	10,8	10,3	_	10,3	_	10,3	10,2	_	-	_	10,0
Asn	5,5	7,1	3,7	3,9	_	4,1	3,8	_	-	-	3,8
Asp	3,0	2,9	2,7	2,7	_	2,7	2,6	_	-	_	2,6
Gln	5,7	7,4	3,6	3,9	_	4,0	4,0	_	-	_	3,8
Glu	3,1	3,0	2,7	2,8	_	2,8	2,7	_	-	_	2,7
Gly	6,1	7,4	3,9	4,2	_	4,2	4,1	_	-	_	4,0
His	7,6	8,0	6,7	7,0	-	7,0	7,4	-	-	_	7,3
Ile	6,0	7,7	3,6	4,2	_	4,3	4,4	_	-	_	4,4
Leu	6,0	7,7	3,6	4,0	_	4,1	4,5	_	_	_	4,4
Met	5,8	7,4	3,6	4,1	-	4,2	4,3	-	-	_	4,3
Phe	5,9	7,5	3,6	4,3	-	4,5	4,5	-	-	_	4,4
Ser	5,7	7,3	3,7	3,9	_	4,0	4,4	_	-	_	4,4
Thr	5,6	7,3	3,6	4,0	-	4,1	4,5	-	-	_	4,4
Trp	5,9	7,8	3,5	4,1	-	4,4	4,4	-	-	_	4,4
Val	5,7	7,6	3,7	4,2	-	4,3	4,6	_	-	-	4,5
Zeo	olith			FAU 1					FAU 2		
Zeo	lith		1	FAU 1 oH-Wert	e			I	FAU 2 oH-Wert	e	
Zeo	olith pI	1 h	HCl	FAU 1 oH-Wert 3 h	e + HCl	24 h	1 h	HCl	FAU 2 oH-Wert 3 h	e + HCl	24 h
Zeo AS Ala	blith pI 6,1	1 h 4,6	 + HCl _	FAU 1 pH-Wert 3 h 4,6	e + HCl -	24 h 4,6	1 h 8,8	I + HCl 5,1	FAU 2 oH-Wert 3 h 6,0	e + HCl 4,2	24 h 5,5
Zeo AS Ala Arg	pI 6,1 10,8	1 h 4,6 8,4	 + HCl - -	FAU 1 pH-Wert 3 h 4,6 8,1	e + HCl - -	24 h 4,6 7,6	1 h 8,8 10,7	HCI 5,1 10,3	FAU 2 bH-Wert 3 h 6,0 10,4	e + HCl 4,2 -	24 h 5,5 10,5
AS Ala Arg Asn	pl 6,1 10,8 5,5	1 h 4,6 8,4 4,4	 + HCl - - -	FAU 1 DH-Wert 3 h 4,6 8,1 4,4	e + HCl - - -	24 h 4,6 7,6 4,5	1 h 8,8 10,7 8,0	HCI 5,1 10,3 4,8	FAU 2 DH-Wert 3 h 6,0 10,4 6,8	e + HCl 4,2 - 4,8	24 h 5,5 10,5 5,3
Zeo AS Ala Arg Asn Asp	pI 6,1 10,8 5,5 3,0	1 h 4,6 8,4 4,4 3,2	+ HCl - - 2,6	FAU 1 DH-Wert 3 h 4,6 8,1 4,4 3,0	e + HCl - - 2,4	24 h 4,6 7,6 4,5 3,0	1 h 8,8 10,7 8,0 4,4	HC1 5,1 10,3 4,8 2,6	FAU 2 DH-Wert 3 h 6,0 10,4 6,8 3,3	e + HCl 4,2 - 4,8 2,6	24 h 5,5 10,5 5,3 3,2
Zeo AS Ala Arg Asn Asp Gln	pI 6,1 10,8 5,5 3,0 5,7	1 h 4,6 8,4 4,4 3,2 4,8	+ HCl - - 2,6 -	FAU 1 DH-Wert 3 h 4,6 8,1 4,4 3,0 4,8	e + HCl - - 2,4 -	24 h 4,6 7,6 4,5 3,0 4,7	1 h 8,8 10,7 8,0 4,4 8,4	I + HCl 5,1 10,3 4,8 2,6 4,3	FAU 2 DH-Wert 3 h 6,0 10,4 6,8 3,3 5,2	e + HCl 4,2 - 4,8 2,6 -	24 h 5,5 10,5 5,3 3,2 5,7
Zeo AS Ala Arg Asn Asp Gln Glu	pI 6,1 10,8 5,5 3,0 5,7 3,1	1 h 4,6 8,4 4,4 3,2 4,8 3,2	+ HCl - - 2,6 - 2,6	FAU 1 5H-Wert 3 h 4,6 8,1 4,4 3,0 4,8 3,0	e + HCl - - 2,4 - 2,5	24 h 4,6 7,6 4,5 3,0 4,7 3,2	1 h 8,8 10,7 8,0 4,4 8,4 4,5	HCI 5,1 10,3 4,8 2,6 4,3 2,7	FAU 2 bH-Wert 3 h 6,0 10,4 6,8 3,3 5,2 3,6	e + HCl 4,2 - 4,8 2,6 - 2,6	24 h 5,5 10,5 5,3 3,2 5,7 3,3
Zeo AS Ala Arg Asn Asp Gln Glu Gly	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1	1 h 4,6 8,4 4,4 3,2 4,8 3,2 4,8	+ HCl - - 2,6 - 2,6 -	FAU 1 3 h 4,6 8,1 4,4 3,0 4,8 3,0 4,8	e + HCl - - 2,4 - 2,5 -	24 h 4,6 7,6 4,5 3,0 4,7 3,2 4,8	1 h 8,8 10,7 8,0 4,4 8,4 4,5 8,6	H + HCl 5,1 10,3 4,8 2,6 4,3 2,7 5,0	FAU 2 DH-Wert 3 h 6,0 10,4 6,8 3,3 5,2 3,6 5,8	e + HCl 4,2 - 4,8 2,6 - 2,6 4,6	24 h 5,5 10,5 5,3 3,2 5,7 3,3 5,8
Zeo AS Ala Arg Asn Asp Gln Glu Gly His	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6	1 h 4,6 8,4 4,4 3,2 4,8 3,2 4,8 6,9	+ HCl - - 2,6 - 2,6 - -	FAU 1 pH-Wert 3 h 4,6 8,1 4,4 3,0 4,8 3,0 4,8 6,9	e + HCl - - 2,4 - 2,5 - -	24 h 4,6 7,6 4,5 3,0 4,7 3,2 4,8 6,8	1 h 8,8 10,7 8,0 4,4 8,4 4,5 8,6 8,7	I + HCl 5,1 10,3 4,8 2,6 4,3 2,7 5,0 7,1	FAU 2 5H-Wert 3 h 6,0 10,4 6,8 3,3 5,2 3,6 5,8 7,6	e + HCl 4,2 - 4,8 2,6 - 2,6 4,6 6,9	24 h 5,5 10,5 5,3 3,2 5,7 3,3 5,8 7,4
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0	1 h 4,6 8,4 4,4 3,2 4,8 3,2 4,8 5,2	+ HCl - - 2,6 - 2,6 - - - - -	FAU 1 3 h 4,6 8,1 4,4 3,0 4,8 3,0 4,8 6,9 5,2	e + HCl - - 2,4 - 2,5 - - -	24 h 4,6 7,6 4,5 3,0 4,7 3,2 4,8 6,8 5,0	1 h 8,8 10,7 8,0 4,4 8,4 4,5 8,6 8,7 8,9	HCl 5,1 10,3 4,8 2,6 4,3 2,7 5,0 7,1 5,1	FAU 2 5H-Wert 3 h 6,0 10,4 6,8 3,3 5,2 3,6 5,8 7,6 6,1	e + HCl 4,2 - 4,8 2,6 - 2,6 4,6 6,9 4,9	24 h 5,5 10,5 5,3 3,2 5,7 3,3 5,8 7,4 6,0
Zeo AS Ala Arg Asn Gln Glu Gly His Ile Leu	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0	1 h 4,6 8,4 4,4 3,2 4,8 3,2 4,8 5,2 5,4	+ HCl - - 2,6 - 2,6 - - - - - -	FAU 1 3 h 4,6 8,1 4,4 3,0 4,8 3,0 4,8 6,9 5,2 5,3	e + HCl - - 2,4 - 2,5 - - - - -	24 h 4,6 7,6 4,5 3,0 4,7 3,2 4,8 6,8 5,0 5,2	1 h 8,8 10,7 8,0 4,4 8,4 4,5 8,6 8,7 8,9 8,9	I + HCl 5,1 10,3 4,8 2,6 4,3 2,7 5,0 7,1 5,1 5,1	FAU 2 3 h 6,0 10,4 6,8 3,3 5,2 3,6 5,8 7,6 6,1 6,0	e + HCl 4,2 - 4,8 2,6 - 2,6 4,6 6,9 4,9 4,9	24 h 5,5 10,5 5,3 3,2 5,7 3,3 5,8 7,4 6,0 6,0
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8	1 h 4,6 8,4 4,4 3,2 4,8 3,2 4,8 6,9 5,2 5,4 5,3	+ HCl - - 2,6 - 2,6 - - - - - - - -	FAU 1 3 h 4,6 8,1 4,4 3,0 4,8 3,0 4,8 6,9 5,2 5,3 5,2	e + HCl - - 2,4 - 2,5 - - - - - - -	24 h 4,6 7,6 4,5 3,0 4,7 3,2 4,8 6,8 5,0 5,2 5,1	1 h 8,8 10,7 8,0 4,4 8,4 4,5 8,6 8,7 8,9 8,4		FAU 2 3 h 6,0 10,4 6,8 3,3 5,2 3,6 5,8 7,6 6,1 6,0 5,9	e + HCl 4,2 - 4,8 2,6 - 2,6 4,6 6,9 4,9 4,9 4,9 4,9	24 h 5,5 10,5 5,3 3,2 5,7 3,3 5,8 7,4 6,0 6,0 6,0
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met Phe	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9	1 h 4,6 8,4 4,4 3,2 4,8 3,2 4,8 5,2 5,4 5,3 5,8	+ HCl - - 2,6 - 2,6 - 2,6 - - 5,4	FAU 1 3 h 4,6 8,1 4,4 3,0 4,8 3,0 4,8 5,2 5,3 5,2 4,9	e + HCl - - 2,4 - 2,5 - - - - - - - - - -	24 h 4,6 7,6 4,5 3,0 4,7 3,2 4,8 6,8 5,0 5,2 5,1 4,7	1 h 8,8 10,7 8,0 4,4 8,4 4,5 8,6 8,7 8,9 8,9 8,4 8,5	I + HCl 5,1 10,3 4,8 2,6 4,3 2,7 5,0 7,1 5,1 5,1 5,1 4,9	FAU 2 3 h 6,0 10,4 6,8 3,3 5,2 3,6 5,8 7,6 6,1 6,0 5,9 5,9	e + HCl 4,2 - 4,8 2,6 - 2,6 4,6 6,9 4,9 4,9 4,9 4,9 4,8	24 h 5,5 10,5 5,3 3,2 5,7 3,3 5,8 7,4 6,0 6,0 6,0 6,0
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met Phe Ser	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7	1 h 4,6 8,4 4,4 3,2 4,8 3,2 4,8 5,2 5,4 5,3 5,3	+ HCl - - 2,6 - 2,6 - - - - - - 5,4 -	FAU 1 3 h 4,6 8,1 4,4 3,0 4,8 3,0 4,8 6,9 5,2 5,3 5,2 4,9 5,2	e + HCl - - 2,4 - 2,5 - - - - - - - - - - - -	24 h 4,6 7,6 4,5 3,0 4,7 3,2 4,8 6,8 5,0 5,2 5,1 4,7 5,0	1 h 8,8 10,7 8,0 4,4 8,4 4,5 8,6 8,7 8,9 8,4 8,5 8,3		FAU 2 3 h 6,0 10,4 6,8 3,3 5,2 3,6 5,8 7,6 6,1 6,0 5,9 5,9 6,0	e + HCl 4,2 - 4,8 2,6 - 2,6 4,6 6,9 4,9 4,9 4,9 4,9 4,8 4,8	24 h 5,5 10,5 5,3 3,2 5,7 3,3 5,8 7,4 6,0 6,0 6,0 6,0 6,0
Zeo AS Ala Arg Asn Asp Gln Glu Glu Glu His Ile Leu Met Phe Ser Thr	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7 5,6	1 h 4,6 8,4 4,4 3,2 4,8 3,2 4,8 5,2 5,4 5,3 5,2 5,3 5,2	+ HCl - - 2,6 - 2,6 - 2,6 - 5,4 - - 5,4 -	FAU 1 3 h 4,6 8,1 4,4 3,0 4,8 3,0 4,8 5,2 5,3 5,2 4,9 5,2 5,1	e + HCl - - 2,4 - 2,5 - - - - - - - - - - - - -	24 h 4,6 7,6 4,5 3,0 4,7 3,2 4,8 6,8 5,0 5,2 5,1 4,7 5,0 5,0 5,0	1 h 8,8 10,7 8,0 4,4 8,4 4,5 8,6 8,7 8,9 8,9 8,4 8,5 8,3 8,3		FAU 2 3 h 6,0 10,4 6,8 3,3 5,2 3,6 5,8 7,6 6,1 6,0 5,9 5,9 6,0 5,9 5,9	e + HCl 4,2 - 4,8 2,6 - 2,6 4,6 6,9 4,9 4,9 4,9 4,9 4,8 4,8 4,8 4,9	24 h 5,5 10,5 5,3 3,2 5,7 3,3 5,8 7,4 6,0 6,0 6,0 6,0 6,0 5,9
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met Phe Ser Thr Trp	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7 5,9	1 h 4,6 8,4 4,4 3,2 4,8 3,2 4,8 5,2 5,4 5,3 5,3 5,2 5,9	+ HCl - - 2,6 - 2,6 - 2,6 - 5,4 - 4,7	FAU 1 3 h 4,6 8,1 4,4 3,0 4,8 3,0 4,8 5,2 5,3 5,2 4,9 5,2 4,9 5,2 4,9 5,2 4,8	e + HCl - - 2,4 - 2,5 - - - - - - - - - - - - - - - - - - -	24 h 4,6 7,6 4,5 3,0 4,7 3,2 4,8 6,8 5,0 5,2 5,1 4,7 5,0 5,0 4,7	1 h 8,8 10,7 8,0 4,4 8,4 4,5 8,6 8,7 8,9 8,9 8,4 8,5 8,3 8,8	$ \begin{array}{r} \mathbf{I} \\ + \mathbf{HCl} \\ 5,1 \\ 10,3 \\ 4,8 \\ 2,6 \\ 4,3 \\ 2,7 \\ 5,0 \\ 7,1 \\ 5,1 \\ 5,1 \\ 5,1 \\ 5,0 \\ 4,9 \\ 5,0 \\ $	FAU 2 3 h 6,0 10,4 6,8 3,3 5,2 3,6 5,8 7,6 6,1 6,0 5,9 5,9 5,9 5,9 5,9 5,9 5,9	e + HCl 4,2 - 4,8 2,6 - 2,6 4,6 6,9 4,9 4,9 4,9 4,9 4,8 4,8 4,8 4,9 4,8	24 h 5,5 10,5 5,3 3,2 5,7 3,3 5,8 7,4 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0

Tab. 6.1: pH-Verlauf bei der Adsorption aus wäßriger Lösung

Zeo	lith		I	H-MFI-9	0			Н	-MFI-12	20	
			I	oH-Wert	e			ŗ	H-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	5,0	_	5,2	_	4,9	4,9	_	4,9	_	4,9
Arg	10,8	9,2	-	9,0	_	8,9	9,1	_	9,1	_	9,0
Asn	5,5	4,7	_	4,6	_	4,7	4,6	_	4,7	_	4,7
Asp	3,0	3,1	2,4	2,7	2,5	3,1	2,8	2,6	2,8	2,6	3,0
Gln	5,7	5,2	_	5,2	_	5,1	5,2	_	5,2	_	5,1
Glu	3,1	3,1	2,5	2,9	2,5	3,4	3,0	2,7	3,0	2,7	3,4
Gly	6,1	5,1	_	4,9	_	4,9	5,0	_	5,0	_	5,0
His	7,6	7,1	_	7,0	_	7,0	7,0	-	7,0	_	7,0
Ile	6,0	4,5	_	4,4	_	4,6	4,5	_	4,5	_	4,6
Leu	6,0	5,5	_	5,7	_	5,8	5,0	_	5,7	4,8	5,2
Met	5,8	5,8	3,5	4,1	_	4,3	6,0	4,2	4,6	_	4,6
Phe	5,9	5,2	_	5,2	_	5,5	4,9	_	5,0	_	5,6
Ser	5,7	5,4	_	5,0	_	4,9	5,1	_	5,1	_	5,1
Thr	5,6	5,2	_	5,0	_	4,9	5,1	_	5,1	_	5,0
Trp	5,9	5,0	_	4,8	_	4,7	4,9	_	4,9	_	4,8
Val	5,7	5,3	_	5,1	_	5,3	5,1	_	5,0	_	5,1
Zeo	lith		H	[-MFI-24	10			Н	-MFI-40	0	
			I	oH-Wert	e			F	oH-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	5,3	-	5,5	_	5,6	5,9	4,8	5,3	_	5,2
Arg	10,8	9,2	_	9,1	_	9,1	9,4	_	9,3	_	9,1
Asn	5,5	5,4	4,8	5,2	4,7	5,2	5,9	4,7	5,2	4,7	5,1
Asp	3,0	3.1	27	2.0	• •						
Gln		,	2,7	2,9	2,6	3,4	3,1	2,6	2,8	2,5	3,2
	5,7	5,8	4,5	2,9 4,9	2,6	3,4 5,1	3,1 5,7	2,6 5,0	2,8 5,3	2,5 4,8	3,2 5,0
Glu	5,7 3,1	5,8 3,2	2,7 4,5 2,5	2,9 4,9 3,1	2,6 - 2,7	3,4 5,1 3,6	3,1 5,7 3,2	2,6 5,0 2,6	2,8 5,3 2,8	2,5 4,8 2,5	3,2 5,0 3,4
Glu Gly	5,7 3,1 6,1	5,8 3,2 5,5	2,7 4,5 2,5 -	2,9 4,9 3,1 5,5	2,6 - 2,7 -	3,4 5,1 3,6 5,7	3,1 5,7 3,2 5,7	2,6 5,0 2,6 -	2,8 5,3 2,8 5,7	2,5 4,8 2,5 -	3,2 5,0 3,4 5,6
Glu Gly His	5,7 3,1 6,1 7,6	5,8 3,2 5,5 7,1	2,7 4,5 2,5 - -	2,9 4,9 3,1 5,5 7,1	2,6 - 2,7 - -	3,4 5,1 3,6 5,7 7,2	3,1 5,7 3,2 5,7 7,2	2,6 5,0 2,6 - -	2,8 5,3 2,8 5,7 7,2	2,5 4,8 2,5 - -	3,2 5,0 3,4 5,6 7,1
Glu Gly His Ile	5,7 3,1 6,1 7,6 6,0	5,8 3,2 5,5 7,1 5,0	2,7 4,5 2,5 - - -	2,9 4,9 3,1 5,5 7,1 5,0	2,6 - 2,7 - - -	3,4 5,1 3,6 5,7 7,2 5,3	3,1 5,7 3,2 5,7 7,2 5,1	2,6 5,0 2,6 - -	2,8 5,3 2,8 5,7 7,2 5,1	2,5 4,8 2,5 - -	3,2 5,0 3,4 5,6 7,1 5,2
Glu Gly His Ile Leu	5,7 3,1 6,1 7,6 6,0 6,0	5,8 3,2 5,5 7,1 5,0 5,5	2,7 4,5 2,5 - - - -	2,9 4,9 3,1 5,5 7,1 5,0 5,7	2,6 - 2,7 - - 5,1	3,4 5,1 3,6 5,7 7,2 5,3 6,1	3,1 5,7 3,2 5,7 7,2 5,1 5,6	2,6 5,0 2,6 - - -	2,8 5,3 2,8 5,7 7,2 5,1 6,1	2,5 4,8 2,5 - - 4,8	3,2 5,0 3,4 5,6 7,1 5,2 5,1
Glu Gly His Ile Leu Met	5,7 3,1 6,1 7,6 6,0 6,0 5,8	5,8 3,2 5,5 7,1 5,0 5,5 6,4	2,7 4,5 2,5 - - - 4,9	2,9 4,9 3,1 5,5 7,1 5,0 5,7 5,4	2,6 - 2,7 - - 5,1 -	3,4 5,1 3,6 5,7 7,2 5,3 6,1 5,7	$\begin{array}{r} 3,1 \\ 5,7 \\ 3,2 \\ 5,7 \\ 7,2 \\ 5,1 \\ 5,6 \\ 6,2 \end{array}$	2,6 5,0 2,6 - - - 4,9	2,8 5,3 2,8 5,7 7,2 5,1 6,1 5,3	2,5 4,8 2,5 - - 4,8 -	3,2 5,0 3,4 5,6 7,1 5,2 5,1 5,3
Glu Gly His Ile Leu Met Phe	5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9	5,8 3,2 5,5 7,1 5,0 5,5 6,4 5,6	2,7 4,5 2,5 - - - 4,9 -	2,9 4,9 3,1 5,5 7,1 5,0 5,7 5,4 5,4	2,6 - 2,7 - - 5,1 - -	3,4 5,1 3,6 5,7 7,2 5,3 6,1 5,7 5,7	$\begin{array}{r} 3,1 \\ 5,7 \\ 3,2 \\ 5,7 \\ 7,2 \\ 5,1 \\ 5,6 \\ 6,2 \\ 5,7 \\ \end{array}$	2,6 5,0 2,6 - - 4,9 4,7	2,8 5,3 2,8 5,7 7,2 5,1 6,1 5,3 4,9	2,5 4,8 2,5 - - 4,8 - -	3,2 5,0 3,4 5,6 7,1 5,2 5,1 5,3 5,0
Glu Gly His Ile Leu Met Phe Ser	5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9 5,7	5,8 3,2 5,5 7,1 5,0 5,5 6,4 5,6 5,6	2,7 4,5 2,5 - - - 4,9 - 4,7	$\begin{array}{r} 2,9 \\ 4,9 \\ 3,1 \\ 5,5 \\ 7,1 \\ 5,0 \\ 5,7 \\ 5,4 \\ 5,4 \\ 5,0 \\ \end{array}$	2,6 - 2,7 - - 5,1 - - - - -	3,4 5,1 3,6 5,7 7,2 5,3 6,1 5,7 5,7 5,7 5,1	$\begin{array}{r} 3,1 \\ 5,7 \\ 3,2 \\ 5,7 \\ 7,2 \\ 5,1 \\ 5,6 \\ 6,2 \\ 5,7 \\ 5,7 \\ 5,7 \end{array}$	2,6 5,0 2,6 4,9 4,7 4,7	2,8 5,3 2,8 5,7 7,2 5,1 6,1 5,3 4,9 4,9	2,5 4,8 2,5 - - 4,8 - - - -	3,2 5,0 3,4 5,6 7,1 5,2 5,1 5,3 5,0 4,9
Glu Gly His Ile Leu Met Phe Ser Thr	5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9 5,7 5,6	5,8 3,2 5,5 7,1 5,0 5,5 6,4 5,6 5,7	2,7 4,5 2,5 - - 4,9 - 4,7 4,7	$\begin{array}{c} 2,9 \\ 4,9 \\ 3,1 \\ 5,5 \\ 7,1 \\ 5,0 \\ 5,7 \\ 5,4 \\ 5,4 \\ 5,0 \\ 5,1 \\ \end{array}$	2,6 - 2,7 - 5,1 - - - - - -	3,4 5,1 3,6 5,7 7,2 5,3 6,1 5,7 5,7 5,7 5,1 5,2	$\begin{array}{r} 3,1\\ 5,7\\ 3,2\\ 5,7\\ 7,2\\ 5,1\\ 5,6\\ 6,2\\ 5,7\\ 5,7\\ 5,6\\ \end{array}$	2,6 5,0 2,6 4,9 4,7 4,7 4,6	2,8 5,3 2,8 5,7 7,2 5,1 6,1 5,3 4,9 4,9 4,9	2,5 4,8 2,5 - - 4,8 - - - - -	3,2 5,0 3,4 5,6 7,1 5,2 5,1 5,3 5,0 4,9 4,9 4,9
Glu Gly His Ile Leu Met Phe Ser Thr Trp	5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9 5,7 5,6 5,9	5,8 3,2 5,5 7,1 5,0 5,5 6,4 5,6 5,7 5,5	2,7 4,5 2,5 - - 4,9 - 4,7 4,7 4,7 -	$\begin{array}{r} 2,9 \\ 4,9 \\ 3,1 \\ 5,5 \\ 7,1 \\ 5,0 \\ 5,7 \\ 5,4 \\ 5,4 \\ 5,0 \\ 5,1 \\ 5,5 \\ \end{array}$	2,6 - 2,7 - - 5,1 - - - - - - - - - - - - -	3,4 5,1 3,6 5,7 7,2 5,3 6,1 5,7 5,7 5,7 5,1 5,2 5,6	$\begin{array}{r} 3,1 \\ 5,7 \\ 3,2 \\ 5,7 \\ 7,2 \\ 5,1 \\ 5,6 \\ 6,2 \\ 5,7 \\ 5,7 \\ 5,7 \\ 5,6 \\ 5,5 \\ \end{array}$	$\begin{array}{c} 2,6 \\ 5,0 \\ 2,6 \\ - \\ - \\ - \\ 4,9 \\ 4,7 \\ 4,7 \\ 4,6 \\ - \\ \end{array}$	2,8 5,3 2,8 5,7 7,2 5,1 6,1 5,3 4,9 4,9 4,9 5,4	2,5 4,8 2,5 - - 4,8 - - - - - - - -	3,2 5,0 3,4 5,6 7,1 5,2 5,1 5,3 5,0 4,9 4,9 5,4

Tab. 6.1:pH-Verlauf bei der Adsorption aus wäßriger Lösung

Zeo	colith CM 1100 DR CM 1500 DR										
			I	oH-Wert	e			I	oH-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	4,1	_	4,2	_	4,1	4,2	_	4,1	_	3,8
Arg	10,8	9,9	-	9,8	_	9,7	9,8	_	9,8	_	9,6
Asn	5,5	4,0	-	3,9	_	3,8	3,8	_	3,8	_	3,5
Asp	3,0	2,5	_	2,5	_	2,6	2,6	_	2,6	_	2,5
Gln	5,7	3,7	-	3,7	_	3,6	3,7	_	3,7	_	3,5
Glu	3,1	2,4	_	2,4	_	2,5	2,5	_	2,5	_	2,4
Gly	6,1	4,1	_	4,0	_	3,9	4,1	_	4,0	_	3,8
His	7,6	6,9	_	6,9	_	6,8	7,0	_	6,9	_	6,8
Ile	6,0	3,9	-	3,8	_	3,7	3,9	_	3,8	_	3,6
Leu	6,0	3,8	_	3,7	-	3,7	3,8	-	3,8	-	3,6
Met	5,8	3,7	-	3,6	_	3,5	3,7	_	3,6	_	3,4
Phe	5,9	3,7	_	3,6	_	3,5	3,7	_	3,6	_	3,4
Ser	5,7	3,8	_	3,7	_	3,6	3,7	_	3,7	_	3,5
Thr	5,6	3,8	_	3,7	_	3,6	3,7	_	3,7	_	3,5
Trp	5,9	3,7	_	3,6	_	3,5	3,7	_	3,6	_	3,4
Val	5,7	3,9	_	3,8	_	3,6	3,8	_	3,7	_	3,5

Tab. 6.1: pH-Verlauf bei der Adsorption aus wäßriger Lösung

Zeolith	DK-Sil,	mesh 60	DK-Sil,	mesh 80
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0,390 / 15,6	19,5	0,168 / 6,7	8,4
Arg	0,682 / 30,9	34,1	0,646 / 29,2	32,3
Asn	0,044 / 1,8	2,2	0 / 0	0
Asp	0,154 / 7,9	7,7	0 / 0	0
Gln	0,000 / 0,0	0,0	0 / 0	0
Glu	0,098 / 5,0	4,9	0 / 0	0
Gly	0,048 / 2,5	2,4	0 / 0	0
His	0,544 / 28,1	27,2	0,350 / 18,1	17,5
Ile	0 / 0	0	0 / 0	0
Leu	0 / 0	0	0,010 / 0,5	0,5
Met	0 / 0	0	0 / 0	0
Phe	0,402 / 15,7	20,1	0,446 / 17,4	22,3
Ser	0 / 0	0	0 / 0	0
Thr	0,006 / 0,3	0,3	0 / 0	0
Trp	0 / 0	0	0,518 / 25,6	25,9
Val	0 / 0	0	0,174 / 9,1	8,7
Zeolith	DA	Y 15	DAY	200
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0,026 / 1,6	1,3	0 / 0	0
Arg	1,747 / 94,7	87,4	1,340 / 68,5	67,0
Asn	0,282 / 14,6	14,1	0,079 / 3,9	3,9
Asp	0,184 / 10,4	9,2	0,092 / 4,7	4,6
Gln	0,531 / 16,7	26,6	0,214 / 10,0	10,7
Glu	0,303 / 17,8	15,2	0,054 / 2,3	2,7
Gly	0,193 / 11,9	9,7	0 / 0	0
His	1,290 / 71,0	64,5	0,044 / 2,1	2,2
Ile	0,519 / 28,8	26,0	0,175 / 9,0	8,8
Leu	0,604 / 32,3	30,2	0,199 / 10,1	10,0
Met	0,489 / 25,5	24,5	0,310 / 13,3	15,5
Phe	0,852 / 48,4	42,6	0,358 / 18,1	17,9
Ser	0,319 / 17,6	16,0	0 / 0	0
Thr	0,134 / 8,5	6,7	0,054 / 2,4	2,7
Trp	1,277 / 64,9	63,9	0,839 / 28,1	42,0
Val	0,195 / 11,1	9,8	0,126 / 6,4	6,3

Tab. 6.2: Beladung bei der Adsorption aus wäßriger Lösung

Zeolith	ZSM	5-M28	ZSM 5	5-M150
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0,836 / 42,4	41,8	0,018 / 0,9	0,9
Arg	1,803 / 92,2	90,2	0,822 / 42,0	41,1
Asn	1,278 / 62,7	63,9	0,196 / 9,6	9,8
Asp	0,973 / 49,7	48,7	0,211 / 10,8	10,6
Gln	1,538 / 72,1	76,9	0,381 / 17,9	19,1
Glu	1,626 / 67,8	81,3	0,425 / 17,7	21,3
Gly	0,722 / 31,6	36,1	0 / 0	0
His	1,605 / 77,5	80,3	0,676 / 32,7	33,8
Ile	0,718 / 37,1	35,9	0,031 / 1,6	1,6
Leu	1,218 / 62,0	60,9	0,206 / 10,5	10,3
Met	1,858 / 79,5	92,9	0,828 / 35,4	41,4
Phe	1,316 / 66,5	65,8	0,135 / 6,8	6,8
Ser	0,871 / 37,8	43,6	0,562 / 24,4	28,1
Thr	1,129 / 49,6	56,5	0,852 / 37,5	42,6
Trp	0,126 / 4,2	6,3	0,003 / 0,1	0,2
Val	1,072 / 54,3	53,6	0,060 / 3,0	3,0
Zeolith	ZSM 5-	M 1000	SN	27
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0,123 / 6,2	6,2	0,427 / 25,5	21,4
Arg	0,042 / 2,1	2,1	1,365 / 74,0	68,3
Asn	0,254 / 12,5	12,7	0,797 / 41,3	39,9
Asp	0 / 0	0	0,730 / 41,3	36,5
Gln	0,256 / 12,0	12,8	1,341 / 42,1	67,1
Glu	0,148 / 6,2	7,4	0,976 / 57,4	48,8
Gly	0,444 / 19,5	22,2	0,167 / 10,3	8,4
His	0,181 / 8,7	9,0	1,289 / 70,9	64,5
Ile	0,080 / 4,1	4,0	0,304 / 16,9	15,2
Leu	0,160 / 8,2	8,0	0,840 / 44,9	42,0
Met	0,159 / 6,8	8,0	1,080 / 56,3	54,0
Phe	0,028 / 1,4	1,4	0,618 / 35,1	30,9
Ser	0,280 / 12,1	14,0	0,368 / 20,4	18,4
Thr	0,440 / 19,3	22,0	0,029 / 1,8	1,5
Trp	0 / 0	0	0 / 0	0
Val	0,044 / 2,2	2,2	0,551 / 31,3	27,6

Tab. 6.2:Beladung bei der Adsorption aus wäßriger Lösung

Zeolith	SN	1 27	SI	I 27
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0,060 / 3,6	3,0	0,543 / 30,5	27,2
Arg	1,176 / 63,8	58,8	1,445 / 81,1	72,3
Asn	0,275 / 14,3	13,8	0,677 / 38,5	33,9
Asp	0,529 / 29,9	26,5	0,551 / 32,1	27,6
Gln	0,147 / 4,6	7,3	0,199 / 10,9	10,0
Glu	0,792 / 46,6	39,6	0,954 / 52,4	47,7
Gly	0,112 / 6,9	5,6	0,867 / 41,2	43,4
His	0,788 / 43,4	39,4	1,218 / 69,5	60,9
Ile	0,283 / 15,7	14,2	0 / 0	0
Leu	0,577 / 30,9	28,9	0,781 / 39,7	39,1
Met	0,805 / 41,9	40,3	1,741 / 74,8	87,1
Phe	0,336 / 19,1	16,8	0,571 / 30,0	28,6
Ser	0,024 / 1,3	1,2	1,557 / 86,2	77,9
Thr	0,086 / 5,5	4,3	0,703 / 41,5	35,2
Trp	0 / 0	0	0,871 / 29,1	43,6
Val	0,169 / 9,6	8,5	0,556 / 28,6	27,8
Zeolith	SN	N 55	SN	1 55
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0,127 / 7,6	6,4	0,106 / 6,3	5,3
Arg	1,118 / 60,6	55,9	1,156 / 62,7	57,8
Asn	0,453 / 23,5	22,7	0,336 / 17,4	16,8
Asp	0,765 / 43,3	38,3	0,698 / 39,5	34,9
Gln	1,409 / 44,2	70,5	0,057 / 1,8	2,9
Glu	0,946 / 55,6	47,3	0,914 / 53,7	45,7
Gly	0,118 / 7,3	5,9	0,020 / 1,2	1,0
His	0,827 / 45,5	41,4	0,789 / 43,4	39,5
Ile	0,086 / 4,8	4,3	0,220 / 12,2	11,0
Leu	0,388 / 20,7	19,4	0,705 / 37,7	35,3
Met	1,075 / 56,0	53,8	1,020 / 53,1	51,0
Phe	0,292 / 16,6	14,6	0,387 / 22,0	19,4
Ser	0,116 / 6,4	5,8	0 / 0	0
Thr	0,078 / 4,9	3,9	0 / 0	0
r				
Trp	0 / 0	0	0 / 0	0

Tab. 6.2:Beladung bei der Adsorption aus wäßriger Lösung

Zeolith	SH	55	MS	N-15
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0,384 / 21,5	19,2	0 / 0	0
Arg	0,846 / 47,5	42,3	0,362 / 19,6	18,1
Asn	0,436 / 24,8	21,8	0,156 / 8,1	7,8
Asp	0,425 / 24,8	21,3	0,145 / 8,2	7,2
Gln	0,633 / 34,6	31,7	0 / 0	0
Glu	0,326 / 17,9	16,3	0,222 / 13,1	11,1
Gly	0 / 0	0	0,255 / 15,7	12,8
His	0,678 / 38,7	33,9	0,476 / 26,2	23,8
Ile	0,014 / 0,7	0,7	0,156 / 8,7	7,8
Leu	0,233 / 11,8	11,7	0,208 / 11,1	10,4
Met	1,076 / 46,2	53,8	0,130 / 6,8	6,5
Phe	0,079 / 4,2	4,0	0,131 / 7,4	6,6
Ser	0,020 / 1,1	1,0	0,013 / 0,7	0,7
Thr	0,279 / 16,5	14,0	0,040 / 2,5	2,0
Trp	0,152 / 5,1	7,6	0,017 / 0,9	0,9
Val	0,051 / 2,6	2,6	0,074 / 4,2	3,7
Zeolith	MSI	M-15	MS	H-15
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0 / 0	0	0,011 / 0,6	0,5
Arg	0,432 / 23,4	21,6	0,190 / 10,7	9,5
Asn	0 / 0	0	0,029 / 1,6	1,5
Asp	0,167 / 9,5	8,3	0 / 0	0
Gln	0 / 0	0	0 / 0	0
Glu	0,183 / 10,8	9,2	0,063 / 3,5	3,2
Gly	0,015 / 0,9	0,8	0,191 / 9,1	9,5
His	0,291 / 16,0	14,6	0,089 / 5,1	4,5
Ile	0,190 / 10,5	9,5	0,060 / 3,1	3,0
Leu	0,145 / 7,8	7,3	0,064 / 3,3	3,2
Met	0,150 / 7,8	7,5	0,139 / 6,0	6,9
Phe	0,206 / 11,7	10,3	0,047 / 2,5	2,4
Ser	0 / 0	0	0 / 0	0
Thr	0 / 0	0	0 / 0	0
Trp	0,234 / 11,9	11,7	0,226 / 7,5	11,3
Val	0 122 / 6 9	61	0.052 / 2.7	2.6

Tab. 6.2:Beladung bei der Adsorption aus wäßriger Lösung

Zeolith	FA	U 1	FA	U 2
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0 / 0	0	0 / 0	0
Arg	0,882, 48,4	44,1	0,541 / 29,7	27,1
Asn	0,490, 21,4	24,5	0,832 / 36,4	41,6
Asp	0,455, 23,3	22,8	0,505 / 25,8	25,2
Gln	0,386, 16,3	19,3	0,132 / 5,6	6,6
Glu	0,375, 19,6	18,8	0,609 / 31,9	30,4
Gly	0,235, 8,1	11,8	1,374 / 47,6	68,7
His	0,961, 49,2	48,1	0,908 / 46,5	45,4
Ile	0,397, 20,1	19,9	0,111 / 5,6	5,5
Leu	0,445, 20,5	22,3	0,380 / 17,5	19,0
Met	0,275, 13,0	13,8	0,246 / 11,7	12,3
Phe	0,937, 38,4	46,9	0,394 / 16,9	19,7
Ser	0,211, 9,8	10,6	0,354 / 16,4	17,7
Thr	0,112, 6,3	5,6	0 / 0	0
Trp	1,250, 63,1	62,5	0,099 / 5,1	5,0
Val	0,306, 13,6	15,3	0,421 / 18,7	21,0
Zeolith	H-M	FI 90	H-MI	FI 120
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0 / 0	0	0,240 / 13,4	12,0
Arg	0,602 / 33,0	30,1	0,344 / 18,9	17,2
Asn	1,037 / 45,3	51,9	0,945 / 41,3	47,2
Asp	0,675 / 34,5	33,8	0,621 / 31,8	31,1
Gln	0,988 / 41,8	49,4	0,377 / 16,0	18,8
Glu	0,759 / 39,7	38,0	0,777 / 40,7	38,8
Gly	1,514 / 52,5	75,7	1,522 / 52,7	76,1
His	0,647 / 33,1	32,3	0,450 / 23,0	22,5
Ile	0,298 / 15,1	14,9	0,177 / 9,0	8,9
Leu	0,822 / 37,9	41,1	0,578 / 27,7	28,9
Met	0,773 / 36,7	38,7	0,676 / 32,1	33,8
Phe	0,668 / 27,3	33,4	1,153 / 57,2	57,7
Ser	0,627 / 29,1	31,4	0,605 / 28,1	30,2
Thr	0,382 / 21,5	19,2	0,370 / 18,1	18,5
r				
Trp	0,083 / 4,2	4,2	0,089 / 4,6	4,5

Tab. 6.2:Beladung bei der Adsorption aus wäßriger Lösung

Zeolith	H-MI	FI 240	H-M	FI 400
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0 / 0	0	0 / 0	0
Arg	0,048 / 2,6	2,4	0,358 / 19,6	17,9
Asn	0,876 / 38,3	43,8	0,779 / 34,0	38,9
Asp	0,858 / 43,9	42,9	0,702 / 35,9	35,1
Gln	0,597 / 25,3	29,9	0 / 0	0
Glu	0,805 / 42,2	40,3	0,694 / 36,4	34,7
Gly	1,503 / 52,1	75,1	1,428 / 49,5	71,4
His	0,241 / 12,3	12,0	0,131 / 6,7	6,6
Ile	0,105 / 5,3	5,3	0,141 / 7,1	7,0
Leu	0,382 / 17,6	19,1	0,294 / 13,5	14,7
Met	0,268 / 12,7	13,4	0,362 / 17,2	18,1
Phe	0,733 / 31,6	36,7	0,444 / 19,1	22,2
Ser	0,537 / 24,9	26,9	0,584 / 27,1	29,2
Thr	0,161 / 7,9	8,1	0,032 / 1,8	1,6
Trp	0,133 / 6,8	6,7	0,077 / 3,9	3,9
Val	0,627 / 27,9	31,4	0,194 / 8,2	9,7
Zeolith	CM 11	100 DR	CM 15	500 DR
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0,072 / 4,0	3,6	0 / 0	0
Arg	0 / 0	0	0,092 / 5,1	4,6
Asn	0,795 / 34,7	39,7	0,314 / 13,7	15,7
Asp	0,381 / 19,5	19,0	0,438 / 22,4	21,9
Gln	0,362 / 15,3	18,1	0,637 / 27,0	31,8
Glu	0,395 / 20,7	19,8	0,075 / 3,9	3,7
Gly	1,978 / 68,6	98,9	0,985 / 34,1	49,2
His	0,133 / 6,8	6,6	0,225 / 11,5	11,2
Ile	0,021 / 1,1	1,0	0,031 / 1,6	1,5
Leu	0,097 / 4,5	4,9	0,097 / 4,5	4,8
Met	0,196 / 9,3	9,8	0,002 / 0,1	0,1
Phe	0,171 / 7,4	8,6	0,251 / 10,8	12,6
Ser	0,024 / 1,1	1,2	0,545 / 25,3	27,3
Thr	0,296 / 16,6	14,8	0,072 / 4,1	3,6
Trp	0,093 / 4,7	4,6	0,141 / 7,2	7,1
1				10.5

Tab. 6.2:Beladung bei der Adsorption aus wäßriger Lösung

Zeo	olith			DAY 15]	DAY 200)	
			F	oH-Wert	e			ŀ	oH-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	5,3	_	5,0	_	4,9	5,3	_	5,3	_	5,3
Arg	10,8	9,0	_	8,9	_	8,6	10,1	_	10,0	_	10,0
Asn	5,5	5,2	_	5,2	_	5,1	5,0	_	4,9	_	4,8
Asp	3,0	2,9	2,6	2,7	_	2,9	2,6	_	2,6	_	2,6
Gln	5,7	5,0	_	5,1	_	5,0	5,0	_	4,9	-	4,7
Glu	3,1	2,8	2,5	2,7	_	2,8	2,6	_	2,6	_	2,6
Gly	6,1	5,3	_	5,3	_	5,3	5,3	_	5,2	_	5,1
His	7,6	7,0	_	7,0	_	6,9	7,2	_	7,1	_	7,0
Ile	6,0	5,7	5,4	5,4	_	5,4	5,8	5,1	5,1	_	5,1
Leu	6,0	5,7	5,4	5,4	_	5,3	5,9	5,2	5,2	_	5,2
Met	5,8	5,6	5,3	5,4	_	5,3	6,0	4,9	5,0	_	4,9
Phe	5,9	5,6	5,2	5,3	_	5,3	6,0	5,0	5,0	_	5,0
Ser	5,7	5,3	_	5,3	_	5,3	5,4	_	5,3	-	5,3
Thr	5,6	5,4	5,0	5,1	_	5,1	5,6	5,0	5,0	_	5,0
Trp	5,9	5,5	_	5,4	_	5,4	6,0	5,3	5,2	-	5,1
Val	5,7	5,5	5,2	5,2	_	5,2	5,7	5,3	5,3	_	5,2
						,					
Zeo	olith		Z	SM 5-M2	28			ZS	SM 5-M1	50	,
Zeo	olith		Z	SM 5-M2 oH-Wert	28 e			ZS	SM 5-M1 oH-Wert	50 e	
Zeo	olith pI	1 h	Z I + HCl	SM 5-M2 oH-Wert 3 h	28 e + HCl	24 h	1 h	ZS H + HCl	5M 5-M1 0H-Wert 3 h	50 e + HCl	24 h
Zeo AS Ala	plith pI 6,1	1 h 4,4	Z H + HCl -	SM 5-M2 oH-Wert 3 h 4,1	28 e + HCl -	24 h 3,9	1 h 4,8	ZS H + HCl -	5M 5-M1 5H-Wert 3 h 4,7	50 e + HCl -	24 h 4,6
Zeo AS Ala Arg	pI 6,1 10,8	1 h 4,4 10,2	Z H + HCl - -	SM 5-M2 bH-Wert 3 h 4,1 9,8	28 e + HCl - -	24 h 3,9 9,7	1 h 4,8 10,0	ZS + HCl - -	5M 5-M1 bH-Wert 3 h 4,7 9,9	50 e + HCl - -	24 h 4,6 9,8
AS Ala Arg Asn	pl 6,1 10,8 5,5	1 h 4,4 10,2 4,2	Z + HCl - - -	SM 5-M2 pH-Wert 3 h 4,1 9,8 4,0	28 e + HCl - - -	24 h 3,9 9,7 3,9	1 h 4,8 10,0 4,4	ZS + HCl - - -	5M 5-M1 DH-Wert 3 h 4,7 9,9 4,2	50 e + HCl - - -	24 h 4,6 9,8 5,1
Zeo AS Ala Arg Asn Asp	pI 6,1 10,8 5,5 3,0	1 h 4,4 10,2 4,2 2,4	Z + HCl - - - -	SM 5-M2 DH-Wert 3 h 4,1 9,8 4,0 2,4	28 e + HCl - - - -	24 h 3,9 9,7 3,9 2,4	1 h 4,8 10,0 4,4 2,5	ZS + HCl - - - -	5M 5-M1 5H-Wert 3 h 4,7 9,9 4,2 2,5	50 e + HCl - - - -	24 h 4,6 9,8 5,1 2,5
Zeo AS Ala Arg Asn Asp Gln	pI 6,1 10,8 5,5 3,0 5,7	1 h 4,4 10,2 4,2 2,4 4,2	Z + HCl - - - - -	SM 5-M2 pH-Wert 3 h 4,1 9,8 4,0 2,4 4,1	28 e + HCl - - - - - -	24 h 3,9 9,7 3,9 2,4 4,0	1 h 4,8 10,0 4,4 2,5 4,5	ZS + HCl - - - - -	5M 5-M1 DH-Wert 3 h 4,7 9,9 4,2 2,5 4,2	50 e + HCl - - - - - -	24 h 4,6 9,8 5,1 2,5 4,1
Zeo AS Ala Arg Asn Asp Gln Glu	pI 6,1 10,8 5,5 3,0 5,7 3,1	1 h 4,4 10,2 4,2 2,4 4,2 2,5	Z + HCl - - - - - -	SM 5-M2 bH-Wert 3 h 4,1 9,8 4,0 2,4 4,1 2,5	28 e + HCl - - - - - - -	24 h 3,9 9,7 3,9 2,4 4,0 2,5	1 h 4,8 10,0 4,4 2,5 4,5 2,6	ZS + HCl - - - - - -	5M 5-M1 5H-Wert 3 h 4,7 9,9 4,2 2,5 4,2 2,6	50 e + HCl - - - - - - -	24 h 4,6 9,8 5,1 2,5 4,1 2,5
Zeo AS Ala Arg Asn Asp Gln Glu Gly	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1	1 h 4,4 10,2 4,2 2,4 4,2 2,5 5,0	Z + HCl - - - - - - - - - -	SM 5-M2 DH-Wert 3 h 4,1 9,8 4,0 2,4 4,1 2,5 4,7	28 e + HCl - - - - - - - - - - -	24 h 3,9 9,7 3,9 2,4 4,0 2,5 4,6	1 h 4,8 10,0 4,4 2,5 4,5 2,6 5,1	ZS + HCl - - - - - - - - - -	5M 5-M1 3 h 4,7 9,9 4,2 2,5 4,2 2,6 5,0	50 e + HCl 	24 h 4,6 9,8 5,1 2,5 4,1 2,5 4,9
Zeo AS Ala Arg Asn Asp Gln Glu Gly His	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6	1 h 4,4 10,2 4,2 2,4 4,2 2,5 5,0 7,2	Z + HCl - - - - - - - - - - - - -	SM 5-M2 bH-Wert 3 h 4,1 9,8 4,0 2,4 4,1 2,5 4,7 7,0	28 e + HCl - - - - - - - - - - -	24 h 3,9 9,7 3,9 2,4 4,0 2,5 4,6 6,9	1 h 4,8 10,0 4,4 2,5 4,5 2,6 5,1 7,1	ZS + HCl - - - - - - - - - - - -	SM 5-M1 DH-Wert 3 h 4,7 9,9 4,2 2,5 4,2 2,6 5,0 7,1	50 e + HCl - - - - - - - - - - - -	24 h 4,6 9,8 5,1 2,5 4,1 2,5 4,9 7,0
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0	1 h 4,4 10,2 4,2 2,4 4,2 2,5 5,0 7,2 5,1	Z + HCl - - - - - - - - - - - - -	SM 5-M2 pH-Wert 3 h 4,1 9,8 4,0 2,4 4,1 2,5 4,7 7,0 5,0	28 e + HCl - - - - - - - - - - - - -	24 h 3,9 9,7 3,9 2,4 4,0 2,5 4,6 6,9 4,9	1 h 4,8 10,0 4,4 2,5 4,5 2,6 5,1 7,1 5,1	ZS + HCl - - - - - - - - - - - - -	SM 5-M1 DH-Wert 3 h 4,7 9,9 4,2 2,5 4,2 2,6 5,0 7,1 5,0	50 e + HCl - - - - - - - - - - - - - - -	24 h 4,6 9,8 5,1 2,5 4,1 2,5 4,9 7,0 4,9
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0	1 h 4,4 10,2 4,2 2,4 4,2 2,5 5,0 7,2 5,1 5,3	Z + HCl - - - - - - - - - - - - - - -	SM 5-M2 pH-Wert 3 h 4,1 9,8 4,0 2,4 4,1 2,5 4,7 7,0 5,0 5,2	28 e + HCl - - - - - - - - - - - - - - -	24 h 3,9 9,7 3,9 2,4 4,0 2,5 4,6 6,9 4,9 4,8	1 h 4,8 10,0 4,4 2,5 4,5 2,6 5,1 7,1 5,1 5,4	ZS + HCl - - - - - - - - - - - - - - -	5M 5-M1 3 h 4,7 9,9 4,2 2,5 4,2 2,6 5,0 7,1 5,0 5,1	50 e + HCl 	24 h 4,6 9,8 5,1 2,5 4,1 2,5 4,9 7,0 4,9 5,0
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8	1 h 4,4 10,2 4,2 2,4 4,2 2,5 5,0 7,2 5,1 5,3 4,7	Z + HCl - - - - - - - - - - - - - - -	SM 5-M2 3 h 4,1 9,8 4,0 2,4 4,1 2,5 4,7 7,0 5,0 5,2 4,6	28 e + HCl - - - - - - - - - - - - - - - -	24 h 3,9 9,7 3,9 2,4 4,0 2,5 4,6 6,9 4,9 4,8 4,5	1 h 4,8 10,0 4,4 2,5 4,5 2,6 5,1 5,1 5,4 5,1	ZS + HCl - - - - - - - - - - - - - - -	5M 5-M1 3 h 4,7 9,9 4,2 2,5 4,2 2,6 5,0 7,1 5,0 5,1 5,0	50 e + HCl - - - - - - - - - - - - - - - - -	24 h 4,6 9,8 5,1 2,5 4,1 2,5 4,9 7,0 4,9 5,0 4,9
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met Phe	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9	1 h 4,4 10,2 4,2 2,4 4,2 2,5 5,0 7,2 5,1 5,3 4,7 4,8	Z + HCl - - - - - - - - - - - - - - - - -	SM 5-M2 pH-Wert 3 h 4,1 9,8 4,0 2,4 4,1 2,5 4,7 7,0 5,0 5,2 4,6 4,7	28 e + HCl - - - - - - - - - - - - - - - - - -	24 h 3,9 9,7 3,9 2,4 4,0 2,5 4,6 6,9 4,9 4,8 4,5 4,6	1 h 4,8 10,0 4,4 2,5 4,5 2,6 5,1 7,1 5,1 5,1 5,1 5,0	ZS + HCl - - - - - - - - - - - - - - - - -	SM 5-M1 DH-Wert 3 h 4,7 9,9 4,2 2,5 4,2 2,6 5,0 7,1 5,0 5,1 5,0 4,9	50 e + HCl 	24 h 4,6 9,8 5,1 2,5 4,1 2,5 4,9 7,0 4,9 5,0 4,9 4,8
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met Phe Ser	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7	1 h 4,4 10,2 4,2 2,4 4,2 2,5 5,0 7,2 5,1 5,3 4,7 4,8 4,8	Z + HCl - - - - - - - - - - - - -	SM 5-M2 3 h 4,1 9,8 4,0 2,4 4,1 2,5 4,7 7,0 5,0 5,2 4,6 4,7 4,7 4,7	28 e + HCl - - - - - - - - - - - - - - - - - - -	24 h 3,9 9,7 3,9 2,4 4,0 2,5 4,6 6,9 4,9 4,8 4,5 4,6 4,6	1 h 4,8 10,0 4,4 2,5 4,5 2,6 5,1 7,1 5,1 5,1 5,1 5,1 4,9	ZS + HCl - - - - - - - - - - - - -	SM 5-M1 DH-Wert 3 4,7 9,9 4,2 2,5 4,2 2,6 5,0 7,1 5,0 5,1 5,0 4,9 4,9 4,8	50 e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,6 9,8 5,1 2,5 4,1 2,5 4,9 7,0 4,9 5,0 4,9 4,8 4,8
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met Phe Ser Thr	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7 5,6	1 h 4,4 10,2 4,2 2,4 4,2 2,5 5,0 7,2 5,1 5,3 4,7 4,8 4,9	Z + HCl - - - - - - - - - - - - - - - - - - -	SM 5-M2 pH-Wert 3 h 4,1 9,8 4,0 2,4 4,1 2,5 4,7 7,0 5,0 5,2 4,6 4,7 4,7 4,7 4,8	28 e + HCl - - - - - - - - - - - - - - - - - - -	24 h 3,9 9,7 3,9 2,4 4,0 2,5 4,6 6,9 4,9 4,8 4,5 4,6 4,6 4,6 4,7	1 h 4,8 10,0 4,4 2,5 4,5 2,6 5,1 5,1 5,4 5,1 5,0 4,9 5,0	ZS + HCl - - - - - - - - - - - - -	SM 5-M1 DH-Wert 3 h 4,7 9,9 4,2 2,5 4,2 2,5 4,2 2,6 5,0 7,1 5,0 5,1 5,0 4,9 4,8 4,9 4,8 4,9	50 e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,6 9,8 5,1 2,5 4,1 2,5 4,9 7,0 4,9 5,0 4,9 4,8 4,8 4,8 4,9
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met Phe Ser Thr Trp	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7 5,6 5,9	1 h 4,4 10,2 4,2 2,4 4,2 2,5 5,0 7,2 5,1 5,3 4,7 4,8 4,9 4,9	Z + HCl - - - - - - - - - - - - - - - - - - -	SM 5-M2 pH-Wert 3 h 4,1 9,8 4,0 2,4 4,1 2,5 4,7 7,0 5,0 5,2 4,6 4,7 4,7 4,7 4,8 4,8 4,8	28 e + HCl 	24 h 3,9 9,7 3,9 2,4 4,0 2,5 4,6 6,9 4,9 4,8 4,5 4,6 4,6 4,6 4,7 4,6	1 h 4,8 10,0 4,4 2,5 4,5 2,6 5,1 7,1 5,1 5,4 5,0 4,9 5,0	ZS + HCl - - - - - - - - - - - - -	SM 5-M1 3 h 4,7 9,9 4,2 2,5 4,2 2,6 5,0 7,1 5,0 5,1 5,0 4,9 4,8 4,9 4,9	50 e + HCl 	24 h 4,6 9,8 5,1 2,5 4,1 2,5 4,9 7,0 4,9 5,0 4,9 5,0 4,8 4,8 4,8 4,8

Tab. 6.3:pH-Verlauf bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeo	lith		ZS	M 5-M1	000				SN 27		
			I	oH-Wert	e			I	oH-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	8,6	5,4	7,5	4,3	5,2	8,8	5,7	6,1	5,7	5,8
Arg	10,8	10,1	_	10,1	_	10,2	11,2	10,3	10,6	10,4	10,8
Asn	5,5	8,4	4,5	7,0	3,5	4,1	8,7	4,8	5,0	_	5,0
Asp	3,0	2,8	2,5	2,6	_	2,6	3,6	2,6	2,3	_	2,7
Gln	5,7	8,4	4,6	6,8	3,9	4,3	8,4	4,9	5,2	_	5,2
Glu	3,1	2,8	2,6	2,6	_	2,7	3,3	2,6	2,6	_	2,7
Gly	6,1	8,4	5,6	7,5	4,4	5,8	8,6	5,6	5,6	_	5,6
His	7,6	8,1	7,1	7,5	6,9	7,3	8,8	7,2	8,0	6,8	7,5
Ile	6,0	8,6	5,2	7,5	4,3	5,0	8,8	4,7	5,0	_	5,1
Leu	6,0	8,6	5,0	7,1	4,3	5,0	8,8	4,7	5,1	_	5,2
Met	5,8	8,2	5,1	7,3	4,2	5,8	8,4	4,8	5,5	5,4	5,4
Phe	5,9	8,2	5,4	7,3	4,1	5,7	8,4	4,7	4,9	-	5,0
Ser	5,7	8,2	5,1	7,3	4,1	5,2	8,3	5,0	5,2	_	5,2
Thr	5,6	8,1	4,9	7,3	4,1	5,0	8,3	4,8	5,1	_	5,1
Trp	5,9	8,4	4,9	7,3	4,0	4,9	8,7	4,6	4,8	-	4,8
Val	5,7	8,4	5,0	7,3	4,2	5,0	8,7	4,8	5,2	-	5,3
Zeo	lith			SM 27					SH 27		
Zeo	olith		1	SM 27 oH-Wert	e			I	SH 27 oH-Wert	e	
Zeo	olith pI	1 h	HCl	SM 27 pH-Wert 3 h	e + HCl	24 h	1 h	HCl	SH 27 oH-Wert 3 h	e + HCl	24 h
Zeo AS Ala	pl 6,1	1 h 7,3	HCl 5,6	SM 27 pH-Wert 3 h 5,7	e + HCl -	24 h 5,8	1 h 4,4	 + HCl -	SH 27 oH-Wert 3 h 4,2	e + HCl -	24 h 4,2
Zeo AS Ala Arg	pI 6,1 10,8	1 h 7,3 9,9	+ HCl 5,6 -	SM 27 DH-Wert 3 h 5,7 9,8	e + HCl - -	24 h 5,8 9,8	1 h 4,4 9,3	I + HCl - -	SH 27 DH-Wert 3 h 4,2 9,3	e + HCl - -	24 h 4,2 9,2
Zeo AS Ala Arg Asn	pI 6,1 10,8 5,5	1 h 7,3 9,9 7,2	+ HCl 5,6 - 4,9	SM 27 bH-Wert 3 h 5,7 9,8 5,1	e + HCl - - -	24 h 5,8 9,8 5,3	1 h 4,4 9,3 4,4	I + HCl - - -	SH 27 DH-Wert 3 h 4,2 9,3 4,2	e + HCl - - -	24 h 4,2 9,2 4,0
Zeo AS Ala Arg Asn Asp	pl 6,1 10,8 5,5 3,0	1 h 7,3 9,9 7,2 3,1	HCl 5,6 - 4,9 2,6	SM 27 pH-Wert 3 h 5,7 9,8 5,1 2,6	e + HCl - - -	24 h 5,8 9,8 5,3 2,7	1 h 4,4 9,3 4,4 2,5	I + HCl - - - -	SH 27 DH-Wert 3 h 4,2 9,3 4,2 2,4	e + HCl - - - -	24 h 4,2 9,2 4,0 2,4
Zeo AS Ala Arg Asn Asp Gln	pI 6,1 10,8 5,5 3,0 5,7	1 h 7,3 9,9 7,2 3,1 6,8	+ HCl 5,6 - 4,9 2,6 5,1	SM 27 DH-Wert 3 h 5,7 9,8 5,1 2,6 5,3	e + HCl - - - - - -	24 h 5,8 9,8 5,3 2,7 5,3	1 h 4,4 9,3 4,4 2,5 4,3	I + HCl - - - - - - -	SH 27 DH-Wert 3 h 4,2 9,3 4,2 2,4 4,1	e + HCl - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0
Zeo AS Ala Arg Asn Asp Gln Glu	pI 6,1 10,8 5,5 3,0 5,7 3,1	1 h 7,3 9,9 7,2 3,1 6,8 3,0	+ HCl 5,6 - 4,9 2,6 5,1 2,7	SM 27 pH-Wert 3 h 5,7 9,8 5,1 2,6 5,3 2,7	e + HCl - - - - - - -	24 h 5,8 9,8 5,3 2,7 5,3 2,8	1 h 4,4 9,3 4,4 2,5 4,3 2,5	I + HCl - - - - - - -	SH 27 oH-Wert 3 h 4,2 9,3 4,2 2,4 4,1 2,5	e + HCl - - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0 2,5
Zeo AS Ala Arg Asn Asp Gln Glu Gly	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1	1 h 7,3 9,9 7,2 3,1 6,8 3,0 7,1	HCI 5,6 - 4,9 2,6 5,1 2,7 5,7	SM 27 pH-Wert 3 h 5,7 9,8 5,1 2,6 5,3 2,7 5,7	e + HCl - - - - - - - - - - - -	24 h 5,8 9,8 5,3 2,7 5,3 2,8 5,7	1 h 4,4 9,3 4,4 2,5 4,3 2,5 4,9	I + HCl - - - - - - - - - - - -	SH 27 DH-Wert 3 h 4,2 9,3 4,2 2,4 4,1 2,5 4,8	e + HCl - - - - - - - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0 2,5 4,7
Zeo AS Ala Arg Asn Asp Gln Glu Gly His	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6	1 h 7,3 9,9 7,2 3,1 6,8 3,0 7,1 8,2	I + HCl 5,6 - 4,9 2,6 5,1 2,7 5,7 7,2	SM 27 pH-Wert 3 h 5,7 9,8 5,1 2,6 5,3 2,7 5,7 7,5	e + HCl - - - - - - - - - - 6,9	24 h 5,8 9,8 5,3 2,7 5,3 2,8 5,7 7,4	1 h 4,4 9,3 4,4 2,5 4,3 2,5 4,9 7,1	I + HCl - - - - - - - - - - - -	SH 27 DH-Wert 3 h 4,2 9,3 4,2 2,4 4,1 2,5 4,8 7,0	e + HCl - - - - - - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0 2,5 4,7 6,9
Zeo AS Ala Arg Asn Asp Gln Glu Glu His Ile	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0	1 h 7,3 9,9 7,2 3,1 6,8 3,0 7,1 8,2 7,0	I + HCl 5,6 - 4,9 2,6 5,1 2,7 5,7 7,2 5,2	SM 27 pH-Wert 3 h 5,7 9,8 5,1 2,6 5,3 2,7 5,7 7,5 5,4	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 5,8 9,8 5,3 2,7 5,3 2,8 5,7 7,4 5,6	1 h 4,4 9,3 4,4 2,5 4,3 2,5 4,9 7,1 4,9	I + HCl - - - - - - - - - - - - - -	SH 27 3 h 4,2 9,3 4,2 2,4 4,1 2,5 4,8 7,0 4,8	e + HCl - - - - - - - - - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0 2,5 4,7 6,9 4,8
Zeo AS Ala Arg Asn Gln Glu Gly His Ile Leu	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0	1 h 7,3 9,9 7,2 3,1 6,8 3,0 7,1 8,2 7,0 7,0	I + HCl 5,6 - 4,9 2,6 5,1 2,7 5,7 7,2 5,2 5,2	SM 27 3 h 5,7 9,8 5,1 2,6 5,3 2,7 5,7 7,5 5,4 5,6	e + HCl - - - - - - - - - - - 6,9 - -	24 h 5,8 9,8 5,3 2,7 5,3 2,8 5,7 7,4 5,6 5,8	1 h 4,4 9,3 4,4 2,5 4,3 2,5 4,9 7,1 4,9 5,1	I + HCl - - - - - - - - - - - - - - - - -	SH 27 3 h 4,2 9,3 4,2 2,4 4,1 2,5 4,8 7,0 4,8 4,9	e + HCl - - - - - - - - - - - - - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0 2,5 4,7 6,9 4,8 4,8
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8	1 h 7,3 9,9 7,2 3,1 6,8 3,0 7,1 8,2 7,0 7,1	I + HCl 5,6 - 4,9 2,6 5,1 2,7 5,7 7,2 5,2 5,3	SM 27 pH-Wert 3 h 5,7 9,8 5,1 2,6 5,3 2,7 5,7 7,5 5,4 5,6 5,8	e + HCl - - - - - - - - - - - - - - 5,2	24 h 5,8 9,8 5,3 2,7 5,3 2,8 5,7 7,4 5,6 5,8 5,5	1 h 4,4 9,3 4,4 2,5 4,3 2,5 4,9 7,1 4,9 5,1 4,8	I + HCl - - - - - - - - - - - - - - - - - -	SH 27 3 h 4,2 9,3 4,2 2,4 4,1 2,5 4,8 7,0 4,8 4,9 4,6	e + HCl - - - - - - - - - - - - - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0 2,5 4,7 6,9 4,8 4,8 4,5
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met Phe	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9	1 h 7,3 9,9 7,2 3,1 6,8 3,0 7,1 8,2 7,0 7,1 7,0 7,1 7,0 7,1 7,0 7,0	HCI 5,6 - 4,9 2,6 5,1 2,7 5,7 7,2 5,2 5,2 5,3 5,1	SM 27 3 h 5,7 9,8 5,1 2,6 5,3 2,7 5,7 7,5 5,4 5,6 5,8 5,3	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 5,8 9,8 5,3 2,7 5,3 2,8 5,7 7,4 5,6 5,8 5,5 5,5	1 h 4,4 9,3 4,4 2,5 4,3 2,5 4,9 7,1 4,9 5,1 4,8 4,8	I + HCl - - - - - - - - - - - - - - - - - - -	SH 27 3 h 4,2 9,3 4,2 2,4 4,1 2,5 4,8 7,0 4,8 4,9 4,6 4,6	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0 2,5 4,7 6,9 4,8 4,8 4,5 4,6
ZeoASAlaArgAsnAspGlnGluGlyHisIleLeuMetPheSer	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7	1 h 7,3 9,9 7,2 3,1 6,8 3,0 7,1 8,2 7,0 7,1 7,0 7,1 6,8	I + HCl 5,6 - 4,9 2,6 5,1 2,7 5,7 7,2 5,2 5,3 5,1 5,3	SM 27 pH-Wert 3 h 5,7 9,8 5,1 2,6 5,3 2,7 5,7 7,5 5,4 5,6 5,8 5,3 5,4 5,4	e + HCl - - - - - - - - - - - - 5,2 - - -	24 h 5,8 9,8 5,3 2,7 5,3 2,8 5,7 7,4 5,6 5,8 5,5 5,5 5,5 5,5	1 h 4,4 9,3 4,4 2,5 4,3 2,5 4,9 7,1 4,9 5,1 4,8 4,7	I + HCl - - - - - - - - - - - - - - - - - - -	SH 27 3 h 4,2 9,3 4,2 2,4 4,1 2,5 4,8 7,0 4,8 4,9 4,6 4,6 4,6	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0 2,5 4,7 6,9 4,8 4,8 4,5 4,6 4,5
Zeo AS Ala Arg Asn Asp Gln Glu Glu Glu His Ile Leu Met Phe Ser Thr	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7 5,6	1 h 7,3 9,9 7,2 3,1 6,8 3,0 7,1 8,2 7,0 7,1 7,0 7,1 6,8 6,8 6,8 6,8	I + HCl 5,6 - 4,9 2,6 5,1 2,7 5,7 7,2 5,2 5,3 5,1 5,2 5,3 5,2 5,2	SM 27 pH-Wert 3 h 5,7 9,8 5,1 2,6 5,3 2,7 5,7 7,5 5,4 5,6 5,8 5,3 5,4 5,5	e + HCl - - - - - - - - - - - - 5,2 - - 5,2	24 h 5,8 9,8 5,3 2,7 5,3 2,8 5,7 7,4 5,6 5,8 5,5 5,5 5,5 5,5 5,3	1 h 4,4 9,3 4,4 2,5 4,3 2,5 4,9 7,1 4,9 5,1 4,8 4,7 4,8	I + HCl - - - - - - - - - - - - - - - - - - -	SH 27 3 h 4,2 9,3 4,2 2,4 4,1 2,5 4,8 7,0 4,8 4,9 4,6 4,6 4,5	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0 2,5 4,7 6,9 4,8 4,8 4,5 4,6 4,5 4,4
Zeo AS Ala Arg Asn Gln Glu Gly His Ile Leu Met Phe Ser Thr Trp	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7 5,9	1 h 7,3 9,9 7,2 3,1 6,8 3,0 7,1 8,2 7,0 7,1 7,0 7,1 6,8 6,8 6,8 7,0 7,1	I + HCl 5,6 - 4,9 2,6 5,1 2,7 5,7 7,2 5,2 5,3 5,1 5,3 5,2 5,3 5,1 5,2 5,3 5,1 5,2 5,1	SM 27 pH-Wert 3 h 5,7 9,8 5,1 2,6 5,3 2,7 5,7 7,5 5,4 5,6 5,8 5,3 5,4 5,5 5,2	e + HCl - - - - - - - - - - - - - - - 5,2 - - 5,2 -	24 h 5,8 9,8 5,3 2,7 5,3 2,8 5,7 7,4 5,6 5,8 5,5 5,5 5,5 5,5 5,5 5,3 5,4	1 h 4,4 9,3 4,4 2,5 4,3 2,5 4,9 7,1 4,9 5,1 4,8 4,7 4,8 4,8 4,8 4,8	I + HCl - - - - - - - - - - - - - - - - - - -	SH 27 DH-Wert 3 h 4,2 9,3 4,2 2,4 4,1 2,5 4,8 7,0 4,8 4,9 4,6 4,6 4,5 4,7	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,2 9,2 4,0 2,4 4,0 2,5 4,7 6,9 4,8 4,8 4,8 4,5 4,6 4,5 4,6

Tab. 6.3: pH-Verlauf bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeo	lith			SN 55					SM 55		
200	iitii		r	H-Wert	e			r	H-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	9,1	5,0	5,7	_	5,8	8,3	5,6	5,9	5,6	5,7
Arg	10,8	10,7	9,9	10,0	_	10,3	9,8	_	9,8	_	9,8
Asn	5,5	9,0	4,9	6,4	5,1	5,8	8,1	4,9	5,2	_	5,1
Asp	3,0	4,1	2,6	2,7	_	2,8	3,1	2,7	2,7	_	2,8
Gln	5,7	8,7	5,3	6,3	5,1	5,7	8,0	5,4	5,1	_	5,3
Glu	3,1	3,5	2,6	2,7	_	2,8	3,0	2,7	2,7	_	2,7
Gly	6,1	8,8	5,5	6,0	5,5	6,0	8,1	5,7	5,6	-	5,6
His	7,6	8,7	6,9	7,3	7,1	7,7	8,1	6,8	7,1	-	7,3
Ile	6,0	9,1	5,4	6,7	5,4	6,4	8,4	5,2	5,2	-	5,3
Leu	6,0	9,1	5,3	6,7	5,3	6,5	8,4	5,2	5,4	_	5,7
Met	5,8	8,7	5,4	6,6	5,2	6,5	8,1	5,3	5,8	5,2	5,6
Phe	5,9	8,7	5,3	6,4	5,1	6,2	8,0	5,1	5,2	_	5,4
Ser	5,7	8,6	4,8	5,9	4,9	5,6	8,0	5,2	5,3	_	5,4
Thr	5,6	8,6	5,0	6,4	5,0	5,8	7,9	5,2	5,3	-	5,4
Trp	5,9	9,1	5,2	6,5	5,0	5,9	8,3	5,3	5,3	-	5,4
Val	5,7	9,0	4,9	6,0	5,0	5,7	8,3	5,1	5,3	_	5,5
Zeo	lith			SH 55					MSN-15		
Zeo	lith		I	SH 55 oH-Wert	e			ŀ	MSN-15 oH-Wert	e	
Zeo	lith pI	1 h	HCl	SH 55 oH-Wert 3 h	e + HCl	24 h	1 h	F + HCl	MSN-15 oH-Wert 3 h	e + HCl	24 h
Zeo AS Ala	pl 6,1	1 h 4,3	I + HCl -	SH 55 DH-Wert 3 h 4,3	e + HCl -	24 h 4,3	1 h 8,8	+ HCl 5,2	MSN-15 DH-Wert 3 h 5,3	e + HCl -	24 h 5,4
Zeo AS Ala Arg	pI 6,1 10,8	1 h 4,3 9,1	I + HCl - -	SH 55 oH-Wert 3 h 4,3 9,1	e + HCl - -	24 h 4,3 9,2	1 h 8,8 10,6	+ HCl 5,2 10,0	MSN-15 DH-Wert 3 h 5,3 10,0	e + HCl - -	24 h 5,4 10,0
Zeo AS Ala Arg Asn	pI 6,1 10,8 5,5	1 h 4,3 9,1 3,9	HCl - - -	SH 55 DH-Wert 3 h 4,3 9,1 3,9	e + HCl - - -	24 h 4,3 9,2 3,9	1 h 8,8 10,6 8,8	+ HCl 5,2 10,0 5,0	MSN-15 DH-Wert 3 h 5,3 10,0 5,3	e + HCl - - 5,0	24 h 5,4 10,0 5,1
Zeo AS Ala Arg Asn Asp	lith pI 6,1 10,8 5,5 3,0	1 h 4,3 9,1 3,9 2,4	+ HCl - - - -	SH 55 DH-Wert 3 h 4,3 9,1 3,9 2,3	e + HCl - - - -	24 h 4,3 9,2 3,9 2,4	1 h 8,8 10,6 8,8 3,2	F + HCl 5,2 10,0 5,0 2,6	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7	e + HCl - 5,0 2,5	24 h 5,4 10,0 5,1 2,7
Zeo AS Ala Arg Asn Asp Gln	lith pI 6,1 10,8 5,5 3,0 5,7	1 h 4,3 9,1 3,9 2,4 4,0	I + HCl - - - - - -	SH 55 DH-Wertt 3 h 4,3 9,1 3,9 2,3 4,0	e + HCl - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0	1 h 8,8 10,6 8,8 3,2 8,6	HCI 5,2 10,0 5,0 2,6 5,1	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4	e + HCl - 5,0 2,5 5,2	24 h 5,4 10,0 5,1 2,7 5,3
ZeoASAlaArgAsnAspGlnGlu	lith pI 6,1 10,8 5,5 3,0 5,7 3,1	1 h 4,3 9,1 3,9 2,4 4,0 2,4	+ HCl 	SH 55 JH-Wertt 3 h 4,3 9,1 3,9 2,3 4,0 2,4	e + HCl - - - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0 2,5	1 h 8,8 10,6 8,8 3,2 8,6 6,1	F + HCl 5,2 10,0 5,0 2,6 5,1 2,6	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4 2,6	e + HCl - 5,0 2,5 5,2 -	24 h 5,4 10,0 5,1 2,7 5,3 2,8
Zeo AS Ala Arg Asn Asp Gln Glu Gly	lith pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1	1 h 4,3 9,1 3,9 2,4 4,0 2,4 4,3	F HCl 	SH 55 JH-Wertt 3 h 4,3 9,1 3,9 2,3 4,0 2,4 4,2	e + HCl - - - - - - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0 2,5 4,3	1 h 8,8 10,6 8,8 3,2 8,6 6,1 8,7	F + HCl 5,2 10,0 5,0 2,6 5,1 2,6 5,7	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4 2,6 5,9	e + HCl - 5,0 2,5 5,2 - 5,6	24 h 5,4 10,0 5,1 2,7 5,3 2,8 5,7
Zeo AS Ala Arg Asn Asp Gln Glu Gly His	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6	1 h 4,3 9,1 3,9 2,4 4,0 2,4 4,3 6,6	+ HCl 	SH 55 JH-Wertt 3 h 4,3 9,1 3,9 2,3 4,0 2,4 4,2 6,5	e + HCl - - - - - - - - - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0 2,5 4,3 6,5	1 h 8,8 10,6 8,8 3,2 8,6 6,1 8,7 8,7	HCl 5,2 10,0 5,0 2,6 5,1 2,6 5,7 7,0	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4 2,6 5,9 7,4	e + HCl - 5,0 2,5 5,2 - 5,6 7,1	24 h 5,4 10,0 5,1 2,7 5,3 2,8 5,7 7,3
Zeo AS Ala Arg Asn Gln Glu Glu His Ile	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0	1 h 4,3 9,1 3,9 2,4 4,0 2,4 4,3 6,6 4,4	+ HCl 	SH 55 JH-Wert 3 h 4,3 9,1 3,9 2,3 4,0 2,4 4,2 6,5 4,3	e + HCl - - - - - - - - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0 2,5 4,3 6,5 4,3	1 h 8,8 10,6 8,8 3,2 8,6 6,1 8,7 8,9	HCl 5,2 10,0 5,0 2,6 5,1 2,6 5,7 7,0 4,9	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4 2,6 5,9 7,4 5,9	e + HCl - 5,0 2,5 5,2 - 5,6 7,1 5,4	24 h 5,4 10,0 5,1 2,7 5,3 2,8 5,7 7,3 5,7
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0	1 h 4,3 9,1 3,9 2,4 4,0 2,4 4,3 6,6 4,4 4,4	I + HCl 	SH 55 JH-Wertt 3 h 4,3 9,1 3,9 2,3 4,0 2,4 4,2 6,5 4,3 4,3	e + HCl - - - - - - - - - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0 2,5 4,3 6,5 4,3 4,4	1 h 8,8 10,6 8,8 3,2 8,6 6,1 8,7 8,7 8,9 8,9	+ HCl 5,2 10,0 5,0 2,6 5,1 2,6 5,7 7,0 4,9 5,0	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4 2,6 5,9 7,4 5,9 5,5	e + HCl - 5,0 2,5 5,2 - 5,6 7,1 5,4 -	24 h 5,4 10,0 5,1 2,7 5,3 2,8 5,7 7,3 5,7 5,7
Zeo AS Ala Arg Asn Gln Glu Gly His Ile Leu Met	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8	1 h 4,3 9,1 3,9 2,4 4,0 2,4 4,3 6,6 4,4 4,2	+ HCl 	SH 55 JH-Wertt 3 h 4,3 9,1 3,9 2,3 4,0 2,4 4,2 6,5 4,3 4,3 4,3	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0 2,5 4,3 6,5 4,3 4,4 4,2	1 h 8,8 10,6 8,8 3,2 8,6 6,1 8,7 8,7 8,9 8,9 8,5	HCl 5,2 10,0 5,0 2,6 5,1 2,6 5,7 7,0 4,9 5,0 4,9	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4 2,6 5,9 7,4 5,9 7,4 5,9 5,5 5,5 5,5	e + HCl - 5,0 2,5 5,2 - 5,6 7,1 5,4 - 5,2	24 h 5,4 10,0 5,1 2,7 5,3 2,8 5,7 7,3 5,7 5,7 5,5
Zeo AS Ala Arg Asn Asp Gln Glu Glu Gly His Ile Leu Met Phe	lith pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9	1 h 4,3 9,1 3,9 2,4 4,0 2,4 4,3 6,6 4,4 4,2 4,2	+ HCl 	SH 55 JH-Wert 3 h 4,3 9,1 3,9 2,3 4,0 2,4 4,2 6,5 4,3 4,3 4,1 4,1	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0 2,5 4,3 6,5 4,3 4,4 4,2 4,2	1 h 8,8 10,6 8,8 3,2 8,6 6,1 8,7 8,7 8,9 8,9 8,5 8,5	+ HCl 5,2 10,0 5,0 2,6 5,1 2,6 5,7 7,0 4,9 5,0 4,9 4,8	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4 2,6 5,9 7,4 5,9 5,5 5,5 5,7	e + HCl - 5,0 2,5 5,2 - 5,6 7,1 5,4 - 5,2 5,2 5,5	24 h 5,4 10,0 5,1 2,7 5,3 2,8 5,7 7,3 5,7 5,7 5,7 5,5 5,8
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Leu Met Phe Ser	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9 5,7	1 h 4,3 9,1 3,9 2,4 4,0 2,4 4,3 6,6 4,4 4,2 4,2 4,2 4,2	I + HCl - - - - - - - - - - - - - - - - - -	SH 55 JH-Wertt 3 h 4,3 9,1 3,9 2,3 4,0 2,4 4,2 6,5 4,3 4,1 4,1 4,1	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0 2,5 4,3 6,5 4,3 4,4 4,2 4,2 4,2	1 h 8,8 10,6 8,8 3,2 8,6 6,1 8,7 8,7 8,7 8,9 8,5 8,5 8,4	+ HCl 5,2 10,0 5,0 2,6 5,1 2,6 5,7 7,0 4,9 5,0 4,9 5,0 4,8 5,1	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4 2,6 5,9 7,4 5,9 5,5 5,5 5,5 5,7 5,4	e + HCl - 5,0 2,5 5,2 - 5,6 7,1 5,4 - 5,2 5,5 5,2 5,2	24 h 5,4 10,0 5,1 2,7 5,3 2,8 5,7 7,3 5,7 5,7 5,7 5,5 5,8 5,8 5,3
Zeo AS Ala Arg Asn Gln Glu Glu Gly His Ile Leu Met Phe Ser Thr	lith pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9 5,7 5,6	1 h 4,3 9,1 3,9 2,4 4,0 2,4 4,0 2,4 4,3 6,6 4,4 4,2 4,2 4,2 4,2 4,2 4,2	+ HCl 	SH 55 JH-Wertt 3 h 4,3 9,1 3,9 2,3 4,0 2,4 4,2 6,5 4,3 4,1 4,1 4,1 4,1	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0 2,5 4,3 6,5 4,3 4,2 4,2 4,2 4,2 4,2	1 h 8,8 10,6 8,8 3,2 8,6 6,1 8,7 8,7 8,9 8,5 8,5 8,4 8,3	HCl 5,2 10,0 5,0 2,6 5,1 2,6 5,7 7,0 4,9 5,0 4,9 5,1 5,2	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4 2,6 5,9 7,4 5,9 7,4 5,5 5,5 5,7 5,4 5,9	e + HCl - 5,0 2,5 5,2 - 5,6 7,1 5,4 - 5,2 5,2 5,2 5,2 5,2 5,2	24 h 5,4 10,0 5,1 2,7 5,3 2,8 5,7 7,3 5,7 5,7 5,7 5,5 5,8 5,8 5,3 5,6
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Het Phe Ser Thr Trp	PI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,8 5,9 5,7 5,6 5,9	1 h 4,3 9,1 3,9 2,4 4,0 2,4 4,3 6,6 4,4 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2	+ HCl - - -	SH 55 JH-Wert 3 h 4,3 9,1 3,9 2,3 4,0 2,4 4,2 6,5 4,3 4,1 4,1 4,1 4,1 4,1 4,1	e + HCl - - - - - - - - - - - - - - - - - - -	24 h 4,3 9,2 3,9 2,4 4,0 2,5 4,3 6,5 4,3 4,4 4,2 4,2 4,2 4,2 4,2 4,2 4,1	1 h 8,8 10,6 8,8 3,2 8,6 6,1 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,8 8,8 8,8 8,5 8,4 8,3 8,8	+ HCl 5,2 10,0 5,0 2,6 5,1 2,6 5,7 7,0 4,9 5,0 4,9 5,1 5,2 5,1 5,2 5,1 5,2 5,1 5,2 5,1 5,2 5,1 5,2 5,1	MSN-15 DH-Wert 3 h 5,3 10,0 5,3 2,7 5,4 2,6 5,9 7,4 5,9 5,5 5,5 5,5 5,7 5,4 5,9 5,5 5,5 5,7 5,4 5,9 5,5 5,5 5,7 5,4 5,9 5,5 5,5 5,5 5,5 5,5 5,5 5,5	e + HCl - 5,0 2,5 5,2 - 5,6 7,1 5,4 - 5,2 5,5 5,2 5,2 5,2 5,2 5,2 -	24 h 5,4 10,0 5,1 2,7 5,3 2,8 5,7 7,3 5,7 7,3 5,7 5,7 5,7 5,7 5,5 5,8 5,8 5,3 5,6 5,8

Tab. 6.3: pH-Verlauf bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeo	olith	MSM-15 MSH-15									
			1	oH-Wert	e			I	oH-Wert	e	
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	7,3	5,7	5,8	-	6,0	4,3	-	4,2	-	4,2
Arg	10,8	9,6	_	9,6	_	9,6	9,3	_	9,3	_	9,4
Asn	5,5	7,3	5,0	5,6	5,0	5,6	4,4	_	4,2	_	4,1
Asp	3,0	2,8	2,6	2,7	_	2,7	2,4	-	2,4	_	2,5
Gln	5,7	6,9	5,2	5,4	5,0	5,3	4,3	-	4,2	-	4,1
Glu	3,1	2,8	2,6	2,7	-	2,7	2,5	-	2,5	-	2,6
Gly	6,1	7,1	5,6	5,6	_	5,7	5,1	-	5,0	_	4,9
His	7,6	8,1	7,1	7,4	7,1	7,3	7,2	-	7,1	_	7,1
Ile	6,0	7,2	5,3	6,0	5,3	5,9	5,0	-	4,9	-	4,9
Leu	6,0	7,1	5,2	5,7	5,3	5,8	5,2	-	5,2	_	5,1
Met	5,8	7,1	5,0	5,6	5,1	5,7	5,0	-	5,0	-	4,9
Phe	5,9	7,1	5,1	5,9	5,3	6,0	4,9	-	4,9	-	4,8
Ser	5,7	6,6	5,2	5,5	5,3	5,7	4,8	-	4,8	_	4,8
Thr	5,6	7,0	5,1	5,6	5,0	5,5	5,0	_	4,9	-	4,9
Trp	5,9	7,2	5,1	5,8	5,0	5,9	4,9	-	4,8	-	4,8
Val	5,7	6,9	5,3	5,8	5,2	5,7	5,1	_	5,0	-	4,9
Zeo	olith			FAU 1					FAU 2		
			I	oH-Wert	e			I	oH-Wert	e	
AS	pI			3 h			1 h	+ HCI	2 h		24 h
	-	1 h	+ HCI	511	THU	24 h	111	+ IICI	5 11	+ HCI	24 11
Ala	6,1	1 h 5,0	+ HCI -	3 n 4,9	- The	24 h 4,9	8,9	5,2	5 n 6,5	+ HCI 4,8	6,4
Ala Arg	6,1 10,8	1 h 5,0 8,7	+ HCI - -	4,9 8,7	- -	24 h 4,9 8,6	8,9 10,6	5,2 9,9	6,5 10,1	+ HCl 4,8 -	6,4 10,4
Ala Arg Asn	6,1 10,8 5,5	1 h 5,0 8,7 4,8	+ HCI - - -	4,9 8,7 4,7		24 h 4,9 8,6 4,6	8,9 10,6 8,8	5,2 9,9 4,9	6,5 10,1 6,8	+ HCl 4,8 - 4,6	6,4 10,4 6,4
Ala Arg Asn Asp	6,1 10,8 5,5 3,0	1 h 5,0 8,7 4,8 2,8	+ HCl - - 2,6	4,9 8,7 4,7 2,8	 - 2,6	24 h 4,9 8,6 4,6 3,1	8,9 10,6 8,8 4,4	5,2 9,9 4,9 2,6	6,5 10,1 6,8 3,4	+ HCl 4,8 - 4,6 2,6	6,4 10,4 6,4 3,4
Ala Arg Asn Asp Gln	6,1 10,8 5,5 3,0 5,7	1 h 5,0 8,7 4,8 2,8 4,7	+ HCI - - 2,6 -	4,9 8,7 4,7 2,8 4,6	2,6 -	24 h 4,9 8,6 4,6 3,1 4,6	8,9 10,6 8,8 4,4 8,5	5,2 9,9 4,9 2,6 5,0	6,5 10,1 6,8 3,4 5,7	+ HCl 4,8 - 4,6 2,6 4,5	6,4 10,4 6,4 3,4 6,0
Ala Arg Asn Asp Gln Glu	6,1 10,8 5,5 3,0 5,7 3,1	1 h 5,0 8,7 4,8 2,8 4,7 2,8	+ HCI - - 2,6 - 2,6	4,9 8,7 4,7 2,8 4,6 2,8	2,6 - 2,6	24 h 4,9 8,6 4,6 3,1 4,6 3,1	8,9 10,6 8,8 4,4 8,5 4,0	5,2 9,9 4,9 2,6 5,0 2,7	3 n 6,5 10,1 6,8 3,4 5,7 3,3	+ HCl 4,8 - 4,6 2,6 4,5 2,7	6,4 10,4 6,4 3,4 6,0 3,2
Ala Arg Asn Asp Gln Glu Gly	6,1 10,8 5,5 3,0 5,7 3,1 6,1	1 h 5,0 8,7 4,8 2,8 4,7 2,8 5,2	+ HCI - - 2,6 - 2,6 -	4,9 8,7 4,7 2,8 4,6 2,8 5,0		24 h 4,9 8,6 4,6 3,1 4,6 3,1 5,1	8,9 10,6 8,8 4,4 8,5 4,0 8,7	5,2 9,9 4,9 2,6 5,0 2,7 5,0	5 n 6,5 10,1 6,8 3,4 5,7 3,3 5,8	+ HCl 4,8 - 4,6 2,6 4,5 2,7 4,8	6,4 10,4 6,4 3,4 6,0 3,2 5,9
Ala Arg Asn Gln Glu Gly His	6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6	1 h 5,0 8,7 4,8 2,8 4,7 2,8 5,2 7,0	+ HCI - - 2,6 - 2,6 - - -	3 n 4,9 8,7 4,7 2,8 4,6 2,8 5,0 7,0	2,6 - 2,6 	24 h 4,9 8,6 4,6 3,1 4,6 3,1 5,1 7,0	8,9 10,6 8,8 4,4 8,5 4,0 8,7 9,0	5,2 9,9 4,9 2,6 5,0 2,7 5,0 7,0	3 n 6,5 10,1 6,8 3,4 5,7 3,3 5,8 7,6	+ HCl 4,8 - 4,6 2,6 4,5 2,7 4,8 7,2	6,4 10,4 6,4 3,4 6,0 3,2 5,9 7,7
Ala Arg Asn Asp Gln Glu Glu His Ile	$\begin{array}{c} 6,1 \\ 10,8 \\ 5,5 \\ 3,0 \\ 5,7 \\ 3,1 \\ 6,1 \\ 7,6 \\ 6,0 \\ \end{array}$	1 h 5,0 8,7 4,8 2,8 4,7 2,8 5,2 7,0 5,3	+ HCI - - 2,6 - 2,6 - - - - - -	3 n 4,9 8,7 4,7 2,8 4,6 2,8 5,0 7,0 5,1	2,6 - 2,6 - 2,6 	24 h 4,9 8,6 4,6 3,1 4,6 3,1 5,1 7,0 5,2	10,6 8,9 10,6 8,8 4,4 8,5 4,0 8,7 9,0 9,0	5,2 9,9 4,9 2,6 5,0 2,7 5,0 7,0 4,9	3 n 6,5 10,1 6,8 3,4 5,7 3,3 5,8 7,6 6,2	+ HCl 4,8 - 4,6 2,6 4,5 2,7 4,8 7,2 4,6	$\begin{array}{c} 24.1 \\ 6,4 \\ 10,4 \\ 6,4 \\ 3,4 \\ 6,0 \\ 3,2 \\ 5,9 \\ 7,7 \\ 6,2 \end{array}$
Ala Arg Asn Gln Glu Gly His Ile Leu	$\begin{array}{c} 6,1 \\ 10,8 \\ 5,5 \\ 3,0 \\ 5,7 \\ 3,1 \\ 6,1 \\ 7,6 \\ 6,0 \\ 6,0 \\ 6,0 \\ \end{array}$	1 h 5,0 8,7 4,8 2,8 4,7 2,8 5,2 7,0 5,3 5,4	+ HCI - - 2,6 - 2,6 - - - - - - -	3 n 4,9 8,7 4,7 2,8 4,6 2,8 5,0 7,0 5,1 5,3		24 h 4,9 8,6 4,6 3,1 4,6 3,1 5,1 7,0 5,2 5,3	10,6 8,9 10,6 8,8 4,4 8,5 4,0 8,7 9,0 8,9	5,2 9,9 4,9 2,6 5,0 2,7 5,0 7,0 4,9 5,0	3 n 6,5 10,1 6,8 3,4 5,7 3,3 5,8 7,6 6,2 6,0	+ HCl 4,8 - 4,6 2,6 4,5 2,7 4,8 7,2 4,6 4,6	$\begin{array}{c} 24 \\ \hline 6,4 \\ \hline 10,4 \\ \hline 6,4 \\ \hline 3,4 \\ \hline 6,0 \\ \hline 3,2 \\ \hline 5,9 \\ \hline 7,7 \\ \hline 6,2 \\ \hline 6,2 \\ \hline 6,2 \\ \end{array}$
Ala Arg Asn Gln Glu Gly His Ile Leu Met	$\begin{array}{c} 6,1 \\ 10,8 \\ 5,5 \\ 3,0 \\ 5,7 \\ 3,1 \\ 6,1 \\ 7,6 \\ 6,0 \\ 6,0 \\ 5,8 \end{array}$	I h 5,0 8,7 4,8 2,8 4,7 2,8 5,2 7,0 5,3 5,4 5,3	+ HCI - - 2,6 - 2,6 - 2,6 - - - - - - - - - - - - -	4,9 4,7 2,8 4,6 2,8 5,0 7,0 5,1 5,3 5,2		24 h 4,9 8,6 4,6 3,1 4,6 3,1 5,1 7,0 5,2 5,3 5,2	1 1 8,9 10,6 8,8 4,4 8,5 4,0 8,7 9,0 9,0 8,9 8,5 8,5	5,2 9,9 4,9 2,6 5,0 2,7 5,0 7,0 4,9 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0	3 n 6,5 10,1 6,8 3,4 5,7 3,3 5,8 7,6 6,2 6,0 6,0	+ HCl 4,8 - 4,6 2,6 4,5 2,7 4,8 7,2 4,6 4,6 4,6 4,5	$\begin{array}{c} 24 \\ \hline 6,4 \\ \hline 10,4 \\ \hline 6,4 \\ \hline 3,4 \\ \hline 6,0 \\ \hline 3,2 \\ \hline 5,9 \\ \hline 7,7 \\ \hline 6,2 \\ \hline 6,2 \\ \hline 6,1 \\ \end{array}$
Ala Arg Asn Gln Glu Gly His Ile Leu Met Phe	6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9	1 h 5,0 8,7 4,8 2,8 4,7 2,8 5,2 7,0 5,3 5,4 5,3 5,3	+ HCI - - 2,6 - 2,6 - 2,6 - - - - - - - - - - - - -	3 n 4,9 8,7 4,7 2,8 4,6 2,8 5,0 7,0 5,1 5,3 5,2 5,2	2,6 2,6 2,6 	24 h 4,9 8,6 4,6 3,1 4,6 3,1 5,1 7,0 5,2 5,3 5,2 5,2 5,2	8,9 10,6 8,8 4,4 8,5 4,0 8,7 9,0 8,9 8,5 8,5 8,5 8,5	5,2 9,9 4,9 2,6 5,0 2,7 5,0 7,0 4,9 5,0 7,0 4,9 5,0 4,9 5,0 4,9 5,0 4,9	5 n 6,5 10,1 6,8 3,4 5,7 3,3 5,8 7,6 6,2 6,0 5,7	+ HCl 4,8 - 4,6 2,6 4,5 2,7 4,8 7,2 4,6 4,6 4,5 4,6 4,5 4,6	$\begin{array}{c} 2+1\\ 6,4\\ 10,4\\ 6,4\\ 3,4\\ 6,0\\ 3,2\\ 5,9\\ 7,7\\ 6,2\\ 6,2\\ 6,2\\ 6,1\\ 6,2\\ \end{array}$
Ala Arg Asn Gln Glu Gly His Ile Leu Met Phe Ser	$\begin{array}{c} 6,1 \\ 10,8 \\ 5,5 \\ 3,0 \\ 5,7 \\ 3,1 \\ 6,1 \\ 7,6 \\ 6,0 \\ 6,0 \\ 5,8 \\ 5,9 \\ 5,7 \\ 5,7 \\ \end{array}$	1 h 5,0 8,7 4,8 2,8 4,7 2,8 5,2 7,0 5,3 5,4 5,3 5,1	+ HCI - - 2,6 - 2,6 - - - - - - - - - - - - -	3 n 4,9 8,7 4,7 2,8 4,6 2,8 5,0 7,0 5,1 5,3 5,2 5,0 5,0		24 h 4,9 8,6 4,6 3,1 4,6 3,1 5,1 7,0 5,2 5,3 5,2 5,2 5,2 5,0	1 1 8,9 10,6 8,8 4,4 8,5 4,0 8,7 9,0 9,0 8,9 8,5 8,5 8,5 8,4	5,2 9,9 4,9 2,6 5,0 2,7 5,0 7,0 4,9 5,0 5,0 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9	3 n 6,5 10,1 6,8 3,4 5,7 3,3 5,8 7,6 6,2 6,0 5,7 5,9	+ HCl 4,8 - 4,6 2,6 4,5 2,7 4,8 7,2 4,6 4,6 4,5 4,6 4,6 4,6	$\begin{array}{c} 2.4 \text{ n} \\ 6,4 \\ 10,4 \\ 6,4 \\ 3,4 \\ 6,0 \\ 3,2 \\ 5,9 \\ 7,7 \\ 6,2 \\ 6,2 \\ 6,1 \\ 6,2 \\ 6,1 \\ 6,2 \\ 6,1 \end{array}$
Ala Arg Asn Gln Glu Gly His Ile Leu Met Phe Ser Thr	$\begin{array}{c} 6,1 \\ 10,8 \\ 5,5 \\ 3,0 \\ 5,7 \\ 3,1 \\ 6,1 \\ 7,6 \\ 6,0 \\ 6,0 \\ 5,8 \\ 5,9 \\ 5,7 \\ 5,6 \\ \end{array}$	1 h 5,0 8,7 4,8 2,8 4,7 2,8 5,2 7,0 5,3 5,4 5,3 5,1 5,2	+ HCI - - 2,6 - 2,6 - 2,6 - - - - - - - - - - - - -	4,9 4,9 8,7 4,7 2,8 4,6 2,8 5,0 7,0 5,1 5,2 5,2 5,0 5,0 5,2 5,0 5,0 5,0		24 h 4,9 8,6 4,6 3,1 4,6 3,1 5,1 7,0 5,2 5,3 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,1	10,6 8,9 10,6 8,8 4,4 8,5 4,0 8,7 9,0 9,0 8,9 8,5 8,5 8,5 8,4 8,4	$\begin{array}{c} 5,2 \\ 9,9 \\ 4,9 \\ 2,6 \\ 5,0 \\ 2,7 \\ 5,0 \\ 7,0 \\ 4,9 \\ 5,0 \\ 5,0 \\ 5,0 \\ 4,9 \\ 4,9 \\ 4,9 \\ 4,9 \\ 4,9 \\ 4,9 \\ 4,9 \\ \end{array}$	3 n 6,5 10,1 6,8 3,4 5,7 3,3 5,8 7,6 6,2 6,0 5,7 5,9 5,9	+ HCl 4,8 - 4,6 2,6 4,5 2,7 4,8 7,2 4,6 4,6 4,5 4,6 4,5 4,6 4,5	$\begin{array}{c} 24 \\ \hline 0,4 \\ \hline 10,4 \\ \hline 6,4 \\ \hline 3,4 \\ \hline 6,0 \\ \hline 3,2 \\ \hline 5,9 \\ \hline 7,7 \\ \hline 6,2 \\ \hline 6,2 \\ \hline 6,1 \\ \hline 6,2 \\ \hline 6,1 \\ \hline 6,1 \\ \hline 6,1 \\ \end{array}$
Ala Arg Asn Gln Glu Gly His Ile Leu Met Phe Ser Thr Trp	$\begin{array}{c} 6,1\\ 10,8\\ 5,5\\ 3,0\\ 5,7\\ 3,1\\ 6,1\\ 7,6\\ 6,0\\ 6,0\\ 5,8\\ 5,9\\ 5,7\\ 5,6\\ 5,9\\ 5,9\\ 5,9\\ 5,9\\ \end{array}$	1 h 5,0 8,7 4,8 2,8 4,7 2,8 5,2 7,0 5,3 5,4 5,3 5,1 5,2 5,3	+ HCI - - 2,6 - 2,6 - - - - - - - - - - - - -	3 n 4,9 8,7 4,7 2,8 4,6 2,8 5,0 7,0 5,1 5,3 5,2 5,0 5,0 5,0 5,2 5,0 5,2 5,2		24 h 4,9 8,6 4,6 3,1 4,6 3,1 5,1 7,0 5,2 5,3 5,2 5,2 5,0 5,1 5,1 5,1	10,6 8,9 10,6 8,8 4,4 8,5 4,0 8,7 9,0 9,0 8,9 8,5 8,5 8,5 8,4 8,8	$\begin{array}{c} 5,2 \\ 9,9 \\ 4,9 \\ 2,6 \\ 5,0 \\ 2,7 \\ 5,0 \\ 7,0 \\ 4,9 \\ 5,0 \\ 5,0 \\ 4,9 \\ 4,9 \\ 4,9 \\ 4,9 \\ 5,0 \\ 5,0 \\ \end{array}$	3 n 6,5 10,1 6,8 3,4 5,7 3,3 5,8 7,6 6,2 6,0 5,7 5,9 5,9 5,9 5,9	+ HCl 4,8 - 4,6 2,6 4,5 2,7 4,8 7,2 4,6 4,6 4,5 4,6 4,5 4,6 4,5 4,6 4,5 4,6	$\begin{array}{c} 2.4 \text{ n} \\ 6,4 \\ 10,4 \\ 6,4 \\ 3,4 \\ 6,0 \\ 3,2 \\ 5,9 \\ 7,7 \\ 6,2 \\ 6,2 \\ 6,1 \\ 6,2 \\ 6,1 \\ 6,1 \\ 6,1 \\ 6,1 \end{array}$

Tab. 6.3: pH-Verlauf bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeolith			F	H-MFI-9	0			Н	-MFI-12	20	
200	iitii	nH-Werte				pH-Werte					
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	5,0	_	4,9	_	5,0	5,0	_	5,1	_	4,8
Arg	10,8	9,1	_	9,0	_	9,0	8,9	_	8,9	_	8,9
Asn	5,5	4,9	_	4,8	_	4,5	4,9	_	4,8	_	4,6
Asp	3,0	2,9	2,5	2,6	_	3,0	2,8	2,4	2,5	_	2,9
Gln	5,7	4,8	_	4,7	_	4,6	4,7	_	4,7	_	4,5
Glu	3,1	2,9	2,6	2,7	_	2,9	2,7	_	2,8	2,6	2,9
Gly	6,1	5,4	-	5,3	_	5,3	5,4	-	5,3	-	5,3
His	7,6	7,2	-	7,1	_	7,1	7,1	-	7,1	-	7,1
Ile	6,0	5,4	_	5,4	_	5,3	5,3	_	5,2	_	5,2
Leu	6,0	5,6	_	5,5	_	5,5	5,5	_	5,5	_	5,4
Met	5,8	5,6	4,8	5,0	-	5,0	5,4	_	5,4	_	5,4
Phe	5,9	5,4	_	5,3	_	5,2	5,3	_	5,3	_	5,3
Ser	5,7	5,3	_	5,2	_	5,2	5,2	_	5,1	_	5,1
Thr	5,6	5,4	5,0	5,1	_	5,0	5,2	-	5,2	-	5,2
Trp	5,9	5,3	-	5,3	_	5,2	5,2	-	5,1	-	5,1
Val	5,7	5,5	5,2	5,2	-	5,2	5,3	—	5,3	-	5,3
Zeo	olith		Н	[-MFI-24	0			H	-MFI-40	0	
Zeo	olith		H	I-MFI-24 oH-Wert	e			F F	-MFI-40 oH-Wert	00 e	
Zeo	olith pI	1 h	H F HCl	I-MFI-24 oH-Wert 3 h	e + HCl	24 h	1 h	H F + HCl	-MFI-40 oH-Wert 3 h	00 e + HCl	24 h
AS Ala	pl 6,1	1 h 5,6	H + HCl -	I-MFI-24 DH-Wert 3 h 5,6	e + HCl -	24 h 5,6	1 h 5,9	H + HCl 5,6	-MFI-40 oH-Wert 3 h 5,6	00 e + HCl -	24 h 5,7
AS Ala Arg	pI 6,1 10,8	1 h 5,6 9,0	H + HCl - -	-MFI-24 oH-Wert 3 h 5,6 9,1	e + HCl - -	24 h 5,6 9,1	1 h 5,9 9,0	H + HCl 5,6 -	-MFI-40 oH-Wert 3 h 5,6 9,1	e + HCl - -	24 h 5,7 9,1
AS Ala Arg Asn	pl 6,1 10,8 5,5	1 h 5,6 9,0 5,7	H + HCl - 4,9	I-MFI-24 DH-Wertt 3 h 5,6 9,1 5,0	0 e + HCl - - -	24 h 5,6 9,1 5,1	1 h 5,9 9,0 5,7	H + HCl 5,6 - 4,8	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0	e + HCl - - -	24 h 5,7 9,1 5,0
AS Ala Arg Asn Asp	pI 6,1 10,8 5,5 3,0	1 h 5,6 9,0 5,7 2,9	H + HCl - 4,9 2,4	-MFI-24 DH-Wert 3 h 5,6 9,1 5,0 2,6	0 e + HCl - - - -	24 h 5,6 9,1 5,1 3,0	1 h 5,9 9,0 5,7 2,9	H + HCl 5,6 - 4,8 2,5	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6	e + HCl - - - -	24 h 5,7 9,1 5,0 3,0
Zeo AS Ala Arg Asn Asp Gln	pl 6,1 10,8 5,5 3,0 5,7	1 h 5,6 9,0 5,7 2,9 5,3	H + HCl - 4,9 2,4 -	-MFI-24 DH-Wertt 3 h 5,6 9,1 5,0 2,6 5,2	0 e + HCl - - - - - -	24 h 5,6 9,1 5,1 3,0 5,2	1 h 5,9 9,0 5,7 2,9 5,3	H + HCl 5,6 - 4,8 2,5 -	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3	e + HCl 	24 h 5,7 9,1 5,0 3,0 5,2
Zeo AS Ala Arg Asn Asp Gln Glu	pI 6,1 10,8 5,5 3,0 5,7 3,1	1 h 5,6 9,0 5,7 2,9 5,3 2,8	H + HCl - 4,9 2,4 - 2,6	-MFI-24 3 h 5,6 9,1 5,0 2,6 5,2 2,7	0 e + HCl - - - - - - -	24 h 5,6 9,1 5,1 3,0 5,2 3,0	1 h 5,9 9,0 5,7 2,9 5,3 2,9	H + HCl 5,6 - 4,8 2,5 - 2,6	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7	00 e + HCl - - - - - - -	24 h 5,7 9,1 5,0 3,0 5,2 2,9
Zeo AS Ala Arg Asn Asp Gln Glu Gly	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1	1 h 5,6 9,0 5,7 2,9 5,3 2,8 5,8	H + HCl - 4,9 2,4 - 2,6 5,4	-MFI-24 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,2 2,7 5,5	0 e + HCl - - - - - - - - -	24 h 5,6 9,1 5,1 3,0 5,2 3,0 5,6	1 h 5,9 9,0 5,7 2,9 5,3 2,9 5,8	H + HCl 5,6 - 4,8 2,5 - 2,6 5,3	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7 5,3	00 e + HCl - - - - - - - - - -	24 h 5,7 9,1 5,0 3,0 5,2 2,9 5,4
Zeo AS Ala Arg Asn Asp Gln Glu Gly His	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6	1 h 5,6 9,0 5,7 2,9 5,3 2,8 5,8 7,2	H + HCl - 4,9 2,4 - 2,6 5,4 -	-MFI-24 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,2 2,7 5,5 7,2	0 e + HCl - - - - - - - - - - - -	24 h 5,6 9,1 5,1 3,0 5,2 3,0 5,6 7,2	1 h 5,9 9,0 5,7 2,9 5,3 2,9 5,8 7,2	H + HCl 5,6 - 4,8 2,5 - 2,6 5,3 -	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7 5,3 7,1	e + HCl 	24 h 5,7 9,1 5,0 3,0 5,2 2,9 5,4 7,1
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0	1 h 5,6 9,0 5,7 2,9 5,3 2,8 5,8 7,2 5,7	H + HCl - 4,9 2,4 - 2,6 5,4 - 5,3	-MFI-24 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,2 2,7 5,5 7,2 5,5	0 e + HCl - - - - - - - - - - - - -	24 h 5,6 9,1 5,1 3,0 5,2 3,0 5,6 7,2 5,6	1 h 5,9 9,0 5,7 2,9 5,3 2,9 5,8 7,2 5,7	H + HCl 5,6 - 4,8 2,5 - 2,6 5,3 - 5,3	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7 5,3 7,1 5,4	00 e + HCl - - - - - - - - - - - - - - -	24 h 5,7 9,1 5,0 3,0 5,2 2,9 5,4 7,1 5,4
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0	1 h 5,6 9,0 5,7 2,9 5,3 2,8 5,8 7,2 5,7 6,0	H + HCl - 4,9 2,4 - 2,6 5,4 - 5,3 5,4	-MFI-24 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,2 2,7 5,5 7,2 5,5 5,5 5,5	0 e + HCl - - - - - - - - - - - - -	24 h 5,6 9,1 5,1 3,0 5,2 3,0 5,6 7,2 5,6 5,6 5,6	1 h 5,9 9,0 5,7 2,9 5,3 2,9 5,8 7,2 5,7 5,9	H + HCl 5,6 - 4,8 2,5 - 2,6 5,3 - 5,3 5,5	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7 5,3 7,1 5,4 5,6	e + HCl - - - - - - - - - - - - -	24 h 5,7 9,1 5,0 3,0 5,2 2,9 5,4 7,1 5,4 5,6
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met	pI 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8	1 h 5,6 9,0 5,7 2,9 5,3 2,8 5,8 7,2 5,7 6,0 6,0	H + HCl - 4,9 2,4 - 2,6 5,4 - 5,3 5,4 5,3	-MFI-24 DH-Wertt 3 h 5,6 9,1 5,0 2,6 5,2 2,7 5,5 7,2 5,5 5,5 5,5 5,6	.0 e + HCl - 5,2 <td>24 h 5,6 9,1 5,1 3,0 5,2 3,0 5,6 7,2 5,6 5,6 5,5</td> <td>1 h 5,9 9,0 5,7 2,9 5,3 2,9 5,8 7,2 5,7 5,9 6,0</td> <td>H + HCl 5,6 - 4,8 2,5 - 2,6 5,3 - 5,3 5,5 5,2</td> <td>-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7 5,3 7,1 5,4 5,6 5,5</td> <td>e + HCl - - - - - - - - - - - - 5,0</td> <td>24 h 5,7 9,1 5,0 3,0 5,2 2,9 5,4 7,1 5,4 5,6 5,2</td>	24 h 5,6 9,1 5,1 3,0 5,2 3,0 5,6 7,2 5,6 5,6 5,5	1 h 5,9 9,0 5,7 2,9 5,3 2,9 5,8 7,2 5,7 5,9 6,0	H + HCl 5,6 - 4,8 2,5 - 2,6 5,3 - 5,3 5,5 5,2	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7 5,3 7,1 5,4 5,6 5,5	e + HCl - - - - - - - - - - - - 5,0	24 h 5,7 9,1 5,0 3,0 5,2 2,9 5,4 7,1 5,4 5,6 5,2
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met Phe	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9	1 h 5,6 9,0 5,7 2,9 5,3 2,8 5,8 7,2 5,7 6,0 5,8 5,8	H + HCl - - 4,9 2,4 - 2,6 5,4 - 5,3 5,4 5,3 5,1	-MFI-24 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,2 2,7 5,5 7,2 5,5 5,5 5,5 5,6 5,3	i0 e + HCl - - - - - - - - - - - - - - - - - 5,2 -	24 h 5,6 9,1 5,1 3,0 5,2 3,0 5,6 7,2 5,6 5,6 5,6 5,5 5,4	1 h 5,9 9,0 5,7 2,9 5,3 2,9 5,8 7,2 5,7 5,9 6,0 5,7	H + HCl 5,6 - 4,8 2,5 - 2,6 5,3 - 5,3 5,5 5,2 5,3	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7 5,3 2,7 5,3 7,1 5,4 5,6 5,5 5,4	0 e + HCl -	24 h 5,7 9,1 5,0 3,0 5,2 2,9 5,4 7,1 5,4 5,6 5,2 5,5
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met Phe Ser	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7	1 h 5,6 9,0 5,7 2,9 5,3 2,8 5,8 7,2 5,7 6,0 5,8 5,8 5,8 5,6	H + HCl - 4,9 2,4 - 2,6 5,4 - 5,3 5,4 5,3 5,1 5,1	-MFI-24 DH-Wertt 3 h 5,6 9,1 5,0 2,6 5,2 2,7 5,5 7,2 5,5 5,5 5,5 5,5 5,6 5,3 5,3	•0 e + HCl -	24 h 5,6 9,1 5,1 3,0 5,2 3,0 5,6 7,2 5,6 5,6 5,6 5,5 5,4 5,3	1 h 5,9 9,0 5,7 2,9 5,3 2,9 5,8 7,2 5,7 5,9 6,0 5,7 5,6	H + HCl 5,6 - 4,8 2,5 - 2,6 5,3 - 5,3 5,5 5,2 5,2 5,3 5,0	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7 5,3 7,1 5,4 5,6 5,5 5,4 5,2	e + HCl -	24 h 5,7 9,1 5,0 3,0 5,2 2,9 5,4 7,1 5,6 5,2 5,5 5,2
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met Phe Ser Thr	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 5,8 5,9 5,7 5,6	1 h 5,6 9,0 5,7 2,9 5,3 2,8 5,8 7,2 5,7 6,0 5,8 5,6 5,6 5,6	H + HCl - - 4,9 2,4 - 2,6 5,4 - 5,3 5,4 5,3 5,1 5,1 5,1 5,0	-MFI-24 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,2 2,7 5,5 7,2 5,5 5,5 5,5 5,6 5,3 5,3 5,3 5,3	•0 e + HCl - - - - - - - - - - - - - - - - 5,2 - 5,0	24 h 5,6 9,1 5,1 3,0 5,2 3,0 5,6 7,2 5,6 5,6 5,6 5,5 5,4 5,3 5,1	1 h 5,9 9,0 5,7 2,9 5,3 2,9 5,8 7,2 5,7 5,9 6,0 5,7 5,6 5,7	H + HCl 5,6 - 4,8 2,5 - 2,6 5,3 - 5,3 5,5 5,2 5,2 5,3 5,0 5,0 5,0	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7 5,3 7,1 5,4 5,6 5,5 5,4 5,5 5,4 5,2 5,2	e + HCl - - - - - - - - - - - - - - - - - - 5,0 - - - - - - - - - -	24 h 5,7 9,1 5,0 3,0 5,2 2,9 5,4 7,1 5,4 5,6 5,2 5,5 5,2 5,5 5,2 5,3
Zeo AS Ala Arg Asn Asp Gln Glu Gly His Ile Leu Met Phe Ser Thr Trp	pl 6,1 10,8 5,5 3,0 5,7 3,1 6,1 7,6 6,0 6,0 5,9 5,7 5,6 5,9	1 h 5,6 9,0 5,7 2,9 5,3 2,8 5,8 7,2 5,7 6,0 6,0 5,8 5,6 5,8 5,6 5,6 5,6 5,8	H $+ HCl$ $-$ $-$ $4,9$ $2,4$ $-$ $2,6$ $5,4$ $-$ $5,3$ $5,4$ $5,3$ $5,1$ $5,1$ $5,1$ $5,0$ $5,1$	-MFI-24 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,2 2,7 5,5 7,2 5,5 5,5 5,5 5,5 5,6 5,3 5,3 5,3 5,3 5,3	•0 e + HCl -	24 h 5,6 9,1 5,1 3,0 5,2 3,0 5,6 7,2 5,6 5,6 5,6 5,6 5,5 5,4 5,3 5,1 5,4	1 h 5,9 9,0 5,7 2,9 5,3 2,9 5,8 7,2 5,7 5,9 6,0 5,7 5,6 5,7	H + HCl 5,6 - 4,8 2,5 - 2,6 5,3 - 5,3 5,5 5,2 5,3 5,0 5,0 5,0 5,3	-MFI-40 DH-Wert 3 h 5,6 9,1 5,0 2,6 5,3 2,7 5,3 7,1 5,4 5,6 5,5 5,4 5,5 5,4 5,2 5,2 5,4	e + HCl -	24 h 5,7 9,1 5,0 3,0 5,2 2,9 5,4 7,1 5,4 5,6 5,2 5,5 5,2 5,5 5,2 5,5 5,5

Tab. 6.3:pH-Verlauf bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeolith		CM 1100 DR				CM 1500 DR					
		pH-Werte				pH-Werte					
AS	pI	1 h	+ HCl	3 h	+ HCl	24 h	1 h	+ HCl	3 h	+ HCl	24 h
Ala	6,1	4,6	_	4,5	-	4,3	4,7	_	4,5	_	4,4
Arg	10,8	9,2	_	9,2	-	9,1	9,2	_	9,1	_	9,1
Asn	5,5	3,8	_	3,7	_	3,5	3,9	_	3,8	_	3,6
Asp	3,0	2,4	_	2,3	_	2,3	2,4	_	2,3	_	2,4
Gln	5,7	4,1	_	4,0	_	3,9	4,2	_	4,1	_	4,0
Glu	3,1	2,4	_	2,4	_	2,4	2,5	_	2,4	_	2,5
Gly	6,1	4,4	_	4,3	_	4,2	4,5	_	4,3	_	4,2
His	7,6	6,8	_	6,7	_	6,6	6,8	_	6,7	_	6,7
Ile	6,0	4,5	-	4,4	-	4,2	4,6	-	4,5	_	4,4
Leu	6,0	4,4	_	4,3	_	4,2	4,5	_	4,4	_	4,3
Met	5,8	4,2	-	4,1	-	3,9	4,2	-	4,1	_	4,0
Phe	5,9	4,1	_	4,0	-	3,8	4,1	_	4,0	_	3,9
Ser	5,7	4,2	_	4,1	_	3,9	4,2	_	4,2	_	4,1
Thr	5,6	4,2	_	4,0	-	3,9	4,2	_	4,1	_	4,0
Trp	5,9	4,2	_	4,1	_	3,9	4,2	_	4,1	_	4,0
Val	5,7	4,4	_	4,3	_	4,1	4,4	_	4,3	_	4,2

Tab. 6.3: pH-Verlauf bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeolith	DA	Y 15	DA	Y 200	
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	
Ala	0,288 / 14,5	14,4	0,057 / 2,8	2,8	
Arg	1,704 / 83,3	85,2	0,211 / 10,3	10,5	
Asn	0,165 / 15,0	8,3	0 / 0	0	
Asp	0,094 / 13,5	4,7	0,150 / 21,6	7,5	
Gln	0,350 / 16,6	17,5	0,012 / 0,6	0,6	
Glu	0 / 0	0	0,046 / 3,9	2,3	
Gly	0,379 / 23,3	19,0	0,056 / 3,4	2,8	
His	1,224 / 62,8	61,2	0,025 / 1,3	1,2	
Ile	0,385 / 18,6	19,2	0,114 / 5,5	5,7	
Leu	0,125 / 6,7	6,2	0 / 0	0	
Met	0,644 / 32,3	32,2	0,253 / 12,7	12,6	
Phe	0,920 / 42,4	46,0	0,277 / 12,7	13,8	
Ser	0,372 / 20,5	18,6	0,132 / 7,3	6,6	
Thr	0,312 / 17,5	15,6	0,097 / 5,4	4,8	
Trp	0,747 / 36,9	37,4	0,057 / 2,8	2,9	
Val	0,677 / 28,1	33,9	0,141 / 5,8	7,0	
Zeolith	ZSM	5-M28	ZSM 5-M150		
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	
Ala	0,803 / 40,2	40,1	0,102 / 5,1	5,1	
Arg	1,094 / 53,4	54,7	0,283 / 13,8	14,2	
Asn	0,216 / 19,6	10,8	0,346 / 31,4	17,3	
Asp	0,185 / 26,6	9,3	0,292 / 42,1	14,6	
Gln	0,405 / 19,2	20,2	0,137 / 6,5	6,8	
Glu	0 / 0	0	0 / 0	0	
Gly	0,596 / 36,6	29,8	0,165 / 10,1	8,3	
His	0,798 / 41,0	39,9	0,440 / 22,6	22,0	
Ile	0,243 / 11,7	12,2	0 / 0	0	
Leu	0,242 / 13,1	12,1	0 / 0	0	
Met	0,845 / 42,4	42,2	0,200 / 10,0	10,0	
Phe	0,351 / 16,1	17,5	0,053 / 2,5	2,7	
Ser	0,443 / 24,5	22,2	0,260 / 14,3	13,0	
The		1		6.0	
Inr	0,305 / 17,1	15,3	0,127 / 7,1	6,3	
Trp	0,305 / 17,1 0,015 / 0,7	15,3 0,7	0,127 / 7,1	6,3	

Tab. 6.4: Beladung bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeolith	ZSM 5-	M 1000	SN 27		
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	
Ala	0,010 / 0,5	0,5	0,086 / 4,3	4,3	
Arg	0,105 / 5,1	5,2	0,502 / 24,5	25,1	
Asn	0,284 / 25,8	14,2	0,382 / 34,7	19,1	
Asp	0,241 / 34,8	12,1	0,494 / 71,2	24,7	
Gln	0,114 / 5,4	5,7	0,200 / 9,5	10,0	
Glu	0,054 / 4,6	2,7	0 / 0	0	
Gly	0,115 / 7,0	5,7	0,185 / 11,3	9,2	
His	0,057 / 2,9	2,8	0,585 / 30,0	29,2	
Ile	0,117 / 5,6	5,9	0,190 / 9,1	9,5	
Leu	0 / 0	0	0 / 0	0	
Met	0,141 / 7,1	7,0	0,241 / 12,1	12,0	
Phe	0,156 / 7,2	7,8	0,263 / 12,1	13,2	
Ser	0,099 / 5,5	4,9	0,219 / 12,1	10,9	
Thr	0 / 0	0	0,052 / 2,9	2,6	
Trp	0,087 / 4,3	4,4	0 / 0	0	
Val	0,030 / 1,3	1,5	0,260 / 10,8	13,0	
Zeolith	SM	27	SH	27	
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	
Ala	0 / 0	0	0,519 / 26,0	25,9	
Arg	0,428 / 20,9	21,4	0,536 / 26,2	26,8	
Asn	0,393 / 35,7	19,6	0,368 / 33,5	18,4	
Asp	0,253 / 36,5	12,7	0,275 / 39,6	13,8	
Gln	0,203 / 9,6	10,2	0,310 / 14,7	15,5	
Glu	0,113 / 9,7	5,7	0 / 0	0	
Gly	0 / 0	0	0,366 / 22,4	18,3	
His	0,363 / 18,6	18,2	0,656 / 33,7	32,8	
Ile	0,117 / 5,6	5,8	0,135 / 6,5	6,7	
Leu	0 / 0	0	0 / 0	0	
Met	0,265 / 13,3	13,3	0,683 / 34,3	34,2	
Phe	0,221 / 10,2	11,1	0,244 / 11,2	12,2	
Ser	0,147 / 8,1	7,3	0,324 / 17,9	16,2	
Thr	0,156 / 8,7	7,8	0 / 0	0	
Trp	0 / 0	0	0 / 0	0	
Val	0,178 / 7,4	8,9	0,214 / 8,9	10,7	

Tab. 6.4: Beladung bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeolith	SN	55	SM	[55
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0 / 0	0	0 / 0	0
Arg	0,381 / 18,6	19,1	0,351 / 17,2	17,6
Asn	0,267 / 24,3	13,4	0,348 / 31,6	17,4
Asp	0,288 / 41,5	14,4	0,250 / 36,0	12,5
Gln	0 / 0	0	0 / 0	0
Glu	0 / 0	0	0 / 0	0
Gly	0,043 / 2,6	2,2	0,121 / 7,4	6,0
His	0,300 / 15,4	15,0	0,327 / 16,8	16,3
Ile	0,144 / 7,0	7,2	0 / 0	0
Leu	0,077 / 4,2	3,9	0 / 0	0
Met	0,092 / 4,6	4,6	0,097 / 4,9	4,9
Phe	0 / 0	0	0,236 / 10,8	11,8
Ser	0,152 / 8,4	7,6	0,118 / 6,5	5,9
Thr	0,054 / 3,0	2,7	0,068 / 3,8	3,4
Trp	0,041 / 2,0	2,0	0,039 / 1,9	2,0
Val	0,205 / 8,5	10,2	0,060 / 2,5	3,0
Zeolith	SH	55	MSI	N-15
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]
Ala	0 / 0	0	0 / 0	0
Arg	0,185 / 9,0	9,2	0,638 / 31,2	31,9
Asn	0,494 / 44,9	24,7	0,267 / 24,3	13,4
Asp	0,298 / 42,9	14,9	0,286 / 41,1	14,3
Gln	0,108 / 5,1	5,4	0,286 / 13,6	14,3
Glu	0 / 0	0	0,022 / 1,8	1,1
Gly	0,268 / 16,4	13,4	0,037 / 2,3	1,9
His	0,511 / 26,2	25,5	0,433 / 22,2	21,7
Ile	0,014 / 0,7	0,7	0,108 / 5,2	5,4
Leu	0 / 0	0	0 / 0	0
Met	0,379 / 19,0	19,0	0,198 / 9,9	9,9
Phe	0,139 / 6,4	6,9	0,192 / 8,8	9,6
Ser	0,253 / 14,0	12,7	0,091 / 5,0	4,6
Thr		12.0	0.059/2.2	2.0
1 111	0,240 / 13,5	12,0	0,058 / 3,5	2,9
Trp	0,240 / 13,5	0	0,038 / 3,3	0,2

Tab. 6.4: Beladung bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeolith	MSI	M-15	MSH-15		
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	
Ala	0,136 / 6,8	6,8	0,056 / 2,8	2,8	
Arg	0,516 / 25,2	25,8	0,014 / 0,7	0,7	
Asn	0,402 / 36,5	20,1	0,448 / 40,7	22,4	
Asp	0,290 / 41,8	14,5	0,200 / 28,7	10,0	
Gln	0 / 0	0	1,049 / 49,8	52,5	
Glu	0 / 0	0	0 / 0	0	
Gly	0,174 / 10,6	8,7	0,149 / 9,1	7,4	
His	0,240 / 12,3	12,0	0,119 / 6,1	6,0	
Ile	0,075 / 3,6	3,8	0,007 / 0,3	0,4	
Leu	0 / 0	0	0 / 0	0	
Met	0,187 / 9,4	9,3	0,127 / 6,4	6,4	
Phe	0,142 / 6,5	7,1	0,132 / 6,1	6,6	
Ser	0,014 / 0,7	0,7	0,065 / 3,6	3,2	
Thr	0,138 / 7,7	6,9	0,120 / 6,8	6,0	
Trp	0 / 0	0	0,039 / 1,9	1,9	
Val	0,072 / 3,0	3,6	0,037 / 1,5	1,8	
Zeolith	FA	U 1	FA	U 2	
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	
Ala	0,210 / 10,5	10,5	0,180 / 9,0	9,0	
Arg	1,222 / 59,7	61,1	1,169 / 57,1	58,5	
Asn	0,127 / 11,5	6,3	0,189 / 17,2	9,5	
Asp	0,312 / 44,9	15,6	0,370 / 53,2	18,5	
Gln	0,524 / 24,9	26,2	0,648 / 30,7	32,4	
Glu	0 / 0	0	0 / 0	0	
Gly	0 / 0	0	0 / 0	0	
His	1,146 / 58,8	57,3	1,265 / 64,9	63,2	
Ile	0,574 / 27,7	28,7	0,150 / 7,2	7,5	
Leu	0,485 / 26,2	24,2	0 / 0	0	
Met	0,549 / 27,5	27,4	0,177 / 8,9	8,9	
Phe	0,563 / 25,9	28,2	0,070 / 3,2	3,5	
Ser	0,016 / 0,9	0,8	0,087 / 4,8	4,4	
Thr	0,118 / 6,6	5,9	0 / 0	0	
Trp	0,745 / 36,8	37,2	0,202 / 10,0	10,1	
Val	0,495 / 20,5	24,8	0,248 / 10,3	12,4	

Tab. 6.4: Beladung bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeolith	H-M	FI 90	H-MFI 120		
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	
Ala	0,247 / 12,4	12,4	0,216 / 10,8	10,8	
Arg	0,715 / 35,0	35,8	0,602 / 29,4	30,1	
Asn	0,246 / 22,3	12,3	0,300 / 27,3	15,0	
Asp	0,394 / 56,8	19,7	0,409 / 58,9	20,4	
Gln	0,619 / 29,4	31,0	0,579 / 27,4	28,9	
Glu	0 / 0	0	0 / 0	0	
Gly	0 / 0	0	0 / 0	0	
His	0,962 / 49,4	48,1	0,925 / 47,5	46,2	
Ile	0,210 / 10,1	10,5	0,180 / 8,7	9,0	
Leu	0,283 / 15,3	14,1	0,180 / 9,7	9,0	
Met	0,390 / 19,6	19,5	0,498 / 25,0	24,9	
Phe	0,230 / 10,6	11,5	0,088 / 4,0	4,4	
Ser	0 / 0	0	0,011 / 0,6	0,5	
Thr	0,025 / 1,4	1,3	0,008 / 0,5	0,4	
Trp	0,280 / 13,8	14,0	0,228 / 11,2	11,4	
Val	0,252 / 10,4	12,6	0,277 / 11,5	13,9	
Zeolith	H-MI	FI 240	H-MI	FI 400	
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	
Ala	0 / 0	0	0 / 0	0	
Arg	0,449 / 21,9	22,5	0,360 / 17,6	18,0	
Asn	0.333 / 30.2				
Asp	• ;• • • • • ;=	16,6	0,272 / 24,7	13,6	
- F	0,422 / 60,8	16,6 21,1	0,272 / 24,7 0,454 / 65,4	13,6 22,7	
Gln	0,422 / 60,8 0,561 / 26,6	16,6 21,1 28,1	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3	13,6 22,7 19,3	
Gln Glu	0,422 / 60,8 0,561 / 26,6 0 / 0	16,6 21,1 28,1 0	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3 0 / 0	13,6 22,7 19,3 0	
Gln Glu Gly	0,422 / 60,8 0,561 / 26,6 0 / 0 0 / 0	16,6 21,1 28,1 0 0	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3 0 / 0 0 / 0	13,6 22,7 19,3 0 0	
Gln Glu Gly His	0,422 / 60,8 0,561 / 26,6 0 / 0 0 / 0 0,850 / 43,6	16,6 21,1 28,1 0 0 42,5	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3 0 / 0 0 / 0 0,771 / 39,6	13,6 22,7 19,3 0 0 38,5	
Gln Glu Gly His Ile	0,422 / 60,8 0,561 / 26,6 0 / 0 0 / 0 0,850 / 43,6 0,314 / 15,1	16,6 21,1 28,1 0 42,5 15,7	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3 0 / 0 0 / 0 0,771 / 39,6 0,147 / 7,1	13,6 22,7 19,3 0 0 38,5 7,4	
Gln Glu Gly His Ile Leu	0,422 / 60,8 0,561 / 26,6 0 / 0 0 / 0 0,850 / 43,6 0,314 / 15,1 0,085 / 4,6	16,6 21,1 28,1 0 42,5 15,7 4,3	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3 0 / 0 0 / 0 0,771 / 39,6 0,147 / 7,1 0,120 / 6,5	13,6 22,7 19,3 0 0 38,5 7,4 6,0	
Gln Glu Gly His Ile Leu Met	0,422 / 60,8 0,561 / 26,6 0 / 0 0 / 0 0,850 / 43,6 0,314 / 15,1 0,085 / 4,6 0,324 / 16,2	16,6 21,1 28,1 0 42,5 15,7 4,3 16,2	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3 0 / 0 0 / 0 0,771 / 39,6 0,147 / 7,1 0,120 / 6,5 0 / 0	13,6 22,7 19,3 0 38,5 7,4 6,0 0	
Gln Glu Gly His Ile Leu Met Phe	0,422 / 60,8 0,561 / 26,6 0 / 0 0 / 0 0,850 / 43,6 0,314 / 15,1 0,085 / 4,6 0,324 / 16,2 0,131 / 6,0	16,6 21,1 28,1 0 0 42,5 15,7 4,3 16,2 6,5	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3 0 / 0 0 / 0 0,771 / 39,6 0,147 / 7,1 0,120 / 6,5 0 / 0 0,073 / 3,3	13,6 22,7 19,3 0 38,5 7,4 6,0 0 3,6	
Gln Glu Gly His Ile Leu Met Phe Ser	0,422 / 60,8 0,561 / 26,6 0 / 0 0 / 0 0,850 / 43,6 0,314 / 15,1 0,085 / 4,6 0,324 / 16,2 0,131 / 6,0 0,055 / 3,0	$ \begin{array}{r} 16,6 \\ 21,1 \\ 28,1 \\ 0 \\ 0 \\ 42,5 \\ 15,7 \\ 4,3 \\ 16,2 \\ 6,5 \\ 2,7 \\ \end{array} $	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3 0 / 0 0 / 0 0,771 / 39,6 0,147 / 7,1 0,120 / 6,5 0 / 0 0,073 / 3,3 0 / 0	13,6 22,7 19,3 0 0 38,5 7,4 6,0 0 3,6 0	
Gln Glu Gly His Ile Leu Met Phe Ser Thr	0,422 / 60,8 0,561 / 26,6 0 / 0 0 / 0 0,850 / 43,6 0,314 / 15,1 0,085 / 4,6 0,324 / 16,2 0,131 / 6,0 0,055 / 3,0 0 / 0	$ \begin{array}{r} 16,6 \\ 21,1 \\ 28,1 \\ 0 \\ 0 \\ 42,5 \\ 15,7 \\ 4,3 \\ 16,2 \\ 6,5 \\ 2,7 \\ 0 \\ 0 \end{array} $	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3 0 / 0 0 / 0 0,771 / 39,6 0,147 / 7,1 0,120 / 6,5 0 / 0 0,073 / 3,3 0 / 0 0 / 0	13,6 22,7 19,3 0 0 38,5 7,4 6,0 0 3,6 0 0 0	
Gln Glu Gly His Ile Leu Met Phe Ser Thr Trp	0,422 / 60,8 0,561 / 26,6 0 / 0 0 / 0 0,850 / 43,6 0,314 / 15,1 0,085 / 4,6 0,324 / 16,2 0,131 / 6,0 0,055 / 3,0 0 / 0 0,285 / 14,1	$ \begin{array}{r} 16,6\\ 21,1\\ 28,1\\ 0\\ 0\\ 42,5\\ 15,7\\ 4,3\\ 16,2\\ 6,5\\ 2,7\\ 0\\ 14,2\\ \end{array} $	0,272 / 24,7 0,454 / 65,4 0,386 / 18,3 0 / 0 0 / 0 0,771 / 39,6 0,147 / 7,1 0,120 / 6,5 0 / 0 0,073 / 3,3 0 / 0 0 / 0 0,241 / 11,9	$ \begin{array}{r} 13,6 \\ 22,7 \\ 19,3 \\ 0 \\ 0 \\ 38,5 \\ 7,4 \\ 6,0 \\ 0 \\ 3,6 \\ 0 \\ 0 \\ 12,1 \\ \end{array} $	

Tab. 6.4: Beladung bei der Adsorption aus wäßrig-alkoholischer Lösung

Zeolith	CM 11	100 DR	CM 1500 DR		
AS	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	Abnahme [g/L] / [%]	Beladung [mg AS/g Zeolith]	
Ala	0 / 0	0	0 / 0	0	
Arg	0,032 / 1,5	1,6	0,096 / 4,7	4,8	
Asn	0,323 / 29,3	16,1	0,085 / 7,7	4,3	
Asp	0,178 / 25,6	8,9	0,228 / 32,9	11,4	
Gln	0 / 0	0	0,405 / 19,2	20,2	
Glu	0 / 0	0	0 / 0	0	
Gly	0 / 0	0	0 / 0	0	
His	0,033 / 1,7	1,7	0,689 / 35,4	34,5	
Ile	0,014 / 0,7	0,7	0,083 / 4,0	4,1	
Leu	0 / 0	0	0 / 0	0	
Met	0 / 0	0	0,132 / 6,6	6,6	
Phe	0,105 / 4,8	5,3	0,041 / 1,9	2,0	
Ser	0,110 / 6,0	5,5	0 / 0	0	
Thr	0 / 0	0	0 / 0	0	
Trp	0 / 0	0	0,232 / 11,5	11,6	
Val	0,062 / 2,6	3,1	0,076 / 3,1	3,8	

Tab. 6.4: Beladung bei der Adsorption aus wäßrig-alkoholischer Lösung

7 Literatur

- K. Akashi, H. Enei, K. Yokozeki; Recent progress in microbial production of amino acids; Japanese techology reviews; Gordon and Breach science publishers (1989)
- W. Leuchtenberger; Amino acids Technical production and use; in: H. J. Rehm,
 G. Reed (eds.); Biotechnology; VCH; <u>6</u> (1996)
- [3] http://www.ibvt.uni-stuttgart.de/metabolic.engineering/sld314.htm
- [4] http://www.cranfield.ac.uk/biotech/biomark.htm
- K. Schügerl, A. Lübbert, T. Scheper; On-line-Prozeßanalyse in Bioreaktoren; Chem. Ing. Tech.; <u>59</u>; Nr. 9 (1987) 701-714
- [6] H. Okuma, H. Takahashi, S. Yazawa, S. Sekimukai, E. Watanabe; Development of a system with double enzyme reactors for the determination of fish freshness; Anal. Chim. Acta; <u>260</u> (1992) 93-98
- [7] P. Skládal, L. Macholáan, M. Petrivalský, I. Pluhacek, L. Staancic; Sensing of insecticides using amperometric enzyme biosensors; GIT; <u>7</u> (1993) 606-608
- [8] R. J. Block; The separation of amino acids by ion-exchange chromatography; in:
 F. C. Nachod; Ion-exchange; Academic Press; N.Y. (1949) 295
- [9] A. Pawar, K. Srinivasulu; Zeolite as an adsorbent for thin layer chromatography separation of some carbohydrates and catecholamines on heulandite; J. Indian Chem. Soc. <u>69</u> (1992) 94-96
- [10] J. D. Sherman, C. C. Chao; Carbohydrate separations using zeolite molecular sieves; Stud. Surf. Sci. Catal.; <u>28</u> (1986) 1025-1032
- [11] C. B. Ching, K. Hidajat, M. S. Uddin; Evaluation of equilibrium and kinetic parameters of smaller molecular size amino acids on KX zeolite crystals via liquid chromatographic techniques; Sep. Sci. Technol.; <u>24</u> (1989)
- [12] DE 42 17 203 A1
- [13] W. Schäfer-Treffenfeldt; Verfahren zur Trennung von Aminosäuren und Peptiden durch Adsorption an Zeolithpulver; Dechema Tagung "Verfahrenstechnische Grundlagen und Modellierung von Bioprozessen"; 5-6.Mai 1997

- [14] C. J. Orella, D. J. Kirwan; Löslichkeiten von Aminosäuren in Mischungen aus Wasser und aliphatischen Alkoholen; Biotechnology Progress; Nr. 3; <u>5</u> (1989) 89
- [15] EP 0 251 852 B1
- [16] D. Voet, J. G. Voet; Biochemie; VCH; 1. Aufl. (1994)
- [17] L. Stryer; Biochemie; Spektrum Akademischer Verlag; 4. Aufl. (1999)
- [18] Breuer, Kowalewski; Aminosäuren; Thieme Verlag; Stuttgart (1981)
- [19] CRC; Handbook of Chemistry and Physics
- [20] Folienserie des Fonds der Chemischen Industrie; Textheft 11; Aminosäuren –
 Bausteine des Lebens (1993) 7
- [21] F. J. Dechow; Separation & Purification Techniques in Biotechnology; Noyes Publications; New Jersey (1989)
- [22] G. C. Barrett; Chemistry & Biochemistry of the Amino Acids; Chapmann and Hal; New York (1985)
- [23] H. R. Christen, F. Vögtle; Grundlagen der organischen Chemie; Otto Salle Verlag; Frankfurt a.M. (1989) 509
- [24] K. Aida et al.; Biotechnology of amino acid production; Progress in industrial microbiology; Elsevier (1986)
- [25] Ullmanns Encyclopedia of industrial chemistry; <u>2a</u> (1985)
- [26] T. Akashi; Amino acid production and use to improve nutrition of foods and feeds; Chemrawn II conference; Manila (1982)
- [27] Frankfurter Allgemeine Zeitung, 2. Januar 2001
- [28] A. Hulanicki, S. Glab, F. Ingman; IUPAC Discussion Paper; Commission V.I. (1989)
- [29] F. W. Scheller, F. Schubert, J. Fedrowitz; Present state and frontiers in biosensors; in: F. W. Scheller, F. Schubert, J. Fedrowitz (eds.); Frontiers in biosensorics I; Birkhäuser Verlag; Berlin (1997) 1-12
- [30] Folienserie des Fonds der Chemischen Industrie; Biotechnologie/Gentechnik; Textheft 20 (1996) 63-64

- [31] A. Hulanicki, S. Glab, F. Ingman; IUPAC Discussion Paper; Commission VII.III., <u>07</u> (1989)
- [32] K. Camman, U. Lemke, A. Rohen, J. Sander, H. Wilken, B. Winter; Chemo- und Biosensoren, Grundlagen und Anwendung; Angew. Chem.; <u>103</u> (1991) 519-541
- [33] Römpp-Lexikon Biotechnologie; Gentechnik; 2., völlig überarb. Aufl.; Thieme Verlag; Stuttgart (1999)
- [34] A. Gese; Lexikon der Chemie; Bd. I; Spektrum Akademischer Verlag; Heidelberg (1998)
- [35] http://www.diabeticus.de/infos/technik/biosensort.html
- [36] Römpp-Lexikon Umwelt; 2. Aufl.; Thieme Verlag; Stuttgart (2000)
- [37] R. Ulber; Optimierung von Sensorsystemen f
 ür die Biotechnologie; Dissertation; Universit
 ät Hannover (1996)
- [38] C. Menzel; Entwicklung eines Biosensor-Systems auf der Basis fluoridsensitiver Halbleiterstrukturen; Fortschr. Ber. VDI-Reihe 8; Nr. 487; VDI-Verlag (1995)
- [39] W. Hartmeier; Immobilisierte Biokatalysatoren; Springer Verlag (1986)
- [40] J. Ruzicka, E. Hansen; Flow-Injection Analysis; 2nd Ed.; John Wiley & Sons (1988)
- [41] B. Weigel; Entwicklung von Enzym-Kartuschen und FIA-Methoden zur On-line-Analytik in Biomedien; Dissertation; Universität Hannover (1995)
- [42] A. Meister, D. Weller; in: P. D. Boyer, H. Lardy, K. Myrbäck (eds.); The Enzymes; 2nd Ed.; Vol. 7; Academic Press; N.Y. (1963) 609
- [43] H. J. Bright, D. J. T. Porter; in: P. D. Boyer (eds.); The Enzymes; 3rd Ed.; Vol. 12;
 Academic Press; N.Y. (1975) 456
- [44] M. Nanjo, G. G. Guilbault; Enzyme Electrode for L-Amino Acids and Glucose; Anal. Chim. Acta; <u>73</u> (1974) 367-373
- [45] V. Massey, B. Curti; J. Biol. Chem.; 242 (1967)1259
- [46] J. C. Gray; Enzym-katalysierte Reaktionen; Gustav Fischer Verlag (1976)
- [47] Enzyme Handbook; Springer Verlag (1993)

- [48] D. Pfeiffer, U. Wollenberger, A. Makower, F. Scheller; Amperometric Amino Acid Electrodes; Electroanalysis; <u>2</u> (1990) 517-523
- [49] M. Ueda, C. C. Chang, M. Ohno; Toxicon; <u>26</u> (1988) 695-706
- [50] M. Nakano, T. S. Danowski; Methods Enzymol.; <u>17B</u> (1971) 601-605
- [51] G. G. Guilbault, E. Hrabankova; Anal. Chim. Acta; <u>56</u> (1971) 285
- [52] G. G. Guilbault, G. J. Lubrano; Anal. Chim. Acta; <u>69</u> (1974) 183
- [53] E. S. Dey, S. Flygare, K. Mosbach; Stabilization of D-Amino Acid Oxidase from Yeast *Trigonopsis variabilis* used for Production of Glutaryl-7-Aminocephalosphoranic Acid from Cephalosphorin C; Applied Biochem. and Biotech.; 27 (1991) 239
- [54] P. Sosnitza; Biosensoren f
 ür die Aufarbeitung in der Biotechnologie; Dissertation; Universit
 ät Hannover (1999)
- [55] L. C. Clark, C. Lyons; Anm. N. Y. Acad. Sci.; <u>102</u> (1962) 29
- [56] P. Sosnitza; Amperometrische und potentiometrische Biosensoren; Diplomarbeit; Universität Hannover (1996)
- [57] H. Jürgens; Charakterisierung von Enzymkartuschen in einem FIA-System; Dissertation; Universität Hannover (1994)
- [58] D. W. Breck; Zeolite Molecular Sieves; Ed.: J. Wiley & Sons (1974)
- [59] G. Reiss; Die Verwendung von Molekularsieb-Zeolithe in der Adsorptionstechnik; Periodica Polytechnica; <u>19</u>; 1-2 (1975)137-164
- [60] http://home.t-online.de/home/zeolith/htm/d/d_grund2.htm
- [61] http://www.zeolites.ethz.ch/Zeolites/Explanations.htm
- [62] A. Perlberg; Anreicherung von Aminosäuren an Zeolith Beta; Diplomarbeit; Braunschweig (1999)
- [63] http://www.zeolites.ethz.ch/zeolites/FMPro?-db=Atlas_main.fp5&-lay=web%20 layout&-format=FWtopology.htm&STC=FAU&-find
- [64] http://www.zeolites.ethz.ch/zeolites/FMPro?-db=Atlas_main.fp5&-lay=web%20 layout&-format=FWtopology.htm&STC=MFI&-find

- [65] L. Puppe; Zeolithe Eigenschaften und technische Anwendungen; Chemie in unserer Zeit; 20. Jahrg.; <u>4</u> (1986) 117-127
- [66] L. Puppe, W. Büchner; Zeolithe Strukturen, Synthesen, Anwendungen; Naturwissenschaften; <u>71</u> (1984) 192-198
- [67] R. M. Barrer; Zeolites and clay minerals as sorbents and molecular sieves; Academic Press; London (1978)
- [68] M. Mengel; Molekularsieb Zeolithe; Fortschritte der Verfahrenstechnik; <u>23c</u> (1985) 271-292
- [69] DE 43 32 464 A1
- [70] S. Marmé, K. Unger; Zeolithe als Adsorbentien für die Trennung, Reinigung und Konzentrierung von organischen Wertprodukten in der präparativen Säulen-Flüssig-Chromatographie; Chem.-Ing.-Tech.; Nr. 5; <u>67</u> (1995) 580-582
- [71] R. Kümmel, E. Worch; Adsorption aus wäßrigen Lösungen; VEB Deutscher Verlag für Grundstoffindustrie; Leipzig (1990)
- [72] P. W. Atkins; Physikalische Chemie; VCH; Weinheim; 2. Aufl. (1996)
- [73] D. M. Ruthven; Principles of Adsorption and Adsorption Processes; J. Wiley & Sons; N.Y. (1984)
- [74] K. Hantelmann; Entwicklung eines Biosensors zum On-line-Monitoring des Gesamt-Hydrolysegrades bei der enzymatischen Hydrolyse; Protokoll zum Schwerpunktpraktikum; Hannover (2000)
- [75] EP 645371 A1
- [76] E. Schwabe; Optimierung neuartiger Aufreinigungsverfahren in der Aminosäuredarstellung am Beispiel Leucin und Isoleucin; Dissertation; Universität Hannover (2000)
- [77] N. Sokolnikova; Trennung von L-Leucin und L-Isoleucin an Zeolithen; Diplomarbeit; Universität Hannover (2000)
- [78] J. D. H. Cooper, G. Odgen, J. McIntosh, D. C. Turnell; The stability of o-phthaldehyd/2-mercaptoethanol derivates of amino acids: an investigation using high-pressure liquid chromatography with a precolumn derivatisation technique; Anal. Biochem. <u>142</u> (1984) 98-102