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One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them
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Abstract

In this thesis we used the atomic force microscope (AFM) for the cre-
ation of complex mesoscopic devices with various geometries. The ba-
sis for our experiments were GaAs/AlGaAs-heterostructures with two-
dimensional electron gases (2DEG) 57 nm, 40 nm, and 34 nm below
the surface. We studied in detail controlled mechanical nanomachining
and local oxidation.

We fabricated ballistic quantum point contacts by engraving a con-
striction into a GaAs/AlGaAs-heterostructure with the tip of an AFM.
The devices were nanomachined using both a silicon tip and a diamond
tip to study the influence of the tip material. It turned out that a dia-
mond tip is almost perfect not only for a fast and simple processing but
also in forming proper potential profiles to observe ballistic electron
transport. The appearance of the 0.7 (2e2/h) conductance anomaly
confirms the high quality of diamond-engraved devices. We deduced
the depletion lengths induced by the different tips, yielding ∼ 200 nm
for diamond-engraved samples, which is roughly two times smaller than
typical depletion lengths in devices patterned with a Silicon tip.

A detailed study of the local oxidation with an AFM proved the
importance of the oxidation current for the controlled fabrication of
tunnelling barriers in 2DEGs. We found a linear dependence of the
barrier height on the oxidation current which is related to the depth of
the oxide lines. With these tunnelling barriers we fabricated a single-
electron transistor containing several hundred electrons well described
by the constant interaction model.

Further we demonstrated that the AFM-based nanolithography pro-
vides a relatively easy and controlled approach to create parallel quan-
tum dots. The double dot was stepwise fabricated with a combination
of controlled nanomachining and local oxidation. The dots were defined
by splitting a quasi-one-dimensional resonant tunnelling diode in two
separate zero-dimensional regions. Analysing of the transport measure-
ments of the two quantum dots allowed the identification of the specific
Coulomb-blockade oscillations of each dot. We showed that the current
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could be directed through both quantum dots separately by applying
high negative gate voltages to the respective in-plane gates. These ex-
periments proved that the combination of controlled nanomachining
and local oxidation with an atomic force microscope is a straightfor-
ward approach to fabricate robust mesoscopic devices.

In the remaining part of the thesis we investigated the transport
characteristic of a quantum ring defined by local oxidation in great
detail. We discussed the Aharonov-Bohm effect in this asymmetric
quantum ring with a diameter of below 450 nm. The analysis of the
data with Fourier transformation indicated only one interfering sub-
band in the ring. This led to a modulation of the conductance of more
than 50%. The electron orbit extracted from the periodicity of the
Aharonov-Bohm effects fits perfectly to the ring geometry. The at-
tached in-plane gates allow to tune the phase of the Aharonov-Bohm
effect at zero magnetic field and we observed the typical sharp phase
jumps by π that are related to the asymmetry of our device. Finally,
we showed that the line-shape of the resonances in the quantum ring
is controlled by an outer gate voltage and the magnetic field. This
fact was explained by interference between a resonant bound state and
directly submitted electrons. This led to a Fano like characteristic.

The attached in-plane gates of the quantum ring allowed to study the
same device in the Coulomb-blockade regime. With the observation of
spin flips in the addition spectrum in a perpendicular magnetic field we
determined the number of electrons to below ten in this voltage range.
The observation of a Kondo effect enabled to study the spin structure
of the measured quantum ring. The Kondo resonances vanished and
broadened with increasing temperature. The peak conductance follows
the universal curve and was used to estimate the Kondo temperature
of the device. Non-linear transport measurements showed an even-odd
behaviour of the Kondo effect. This result together with a Zeeman
splitting in a perpendicular magnetic field led to the conclusion that
the Kondo effect was induced by a single spin on the ring. The mag-
netic field dependence of the conductance in the Kondo valley could
be interpreted as ballistic transport of as few as five electrons.

At low magnetic fields we observed oscillations in the ground state
of the device with a periodicity related to the number of electrons on
the ring. This effect caused by strong electron-electron interactions was
attributed to the small number of electrons. We found Aharonov-Bohm
oscillations of the conductance in the Kondo regime as well. The finite
conductance due to the Kondo effect was used for an analysis of the
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phase evolution of this Aharonov-Bohm effect in the Coulomb-blockade
valley. The measurement yielded phase jumps by π at the Coulomb-
blockade resonances and a smooth shift of the Aharonov-Bohm maxima
in between.

The observation of the Kondo and Aharonov-Bohm effect shows the
wide range of possible research topics for these kind of devices. Due to
their smallness together with the few electrons and the exact control
of the sample parameters these devices are ideal systems to compare
the experimental results with theoretical predictions. With the AFM-
based lithography it should be possible to design novel geometries for
mesoscopic systems, which may show an unexpected variety of new
effects in transport experiments.

Keywords
nano fabrication, Kondo effect, Aharonov-Bohm effect

Schlagworte
Nanostrukturierung, Kondoeffekt, Aharonov-Bohm-Effekt
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1 Introduction

It has been always a dream for experimentalists to design artificial con-
finement potentials for electrons. In semiconductor physics these are
realized in quantum dots consisting of up to several hundred atoms [1].
These quantum dots are often called mesoscopic because they are much
smaller than macroscopic crystals but still larger than single atoms in
the microscopic world. A very successful approach to investigate excit-
ing effects like electron-electron interactions and interference phenom-
ena in these systems is transport spectroscopy, which allows to probe
the wave function of the confined electrons.

Two key concepts in solid state physics have enabled the direct fab-
rication of small quantum dots investigated in this thesis. The first
is the invention of modulation doped GaAs/AlGaAs-heterostructures
in 1978 allowing the production of high-quality two-dimensional elec-
tron gases (2DEG) [2]. The second milestone was the development of
the scanning tunnelling microscope in 1982 by Binnig and Rohrer [3],
which allowed the investigation of surfaces with atomic resolution and
even the displacement of single atoms [4] in the following years. In 1986
the invention of the atomic force microscope (AFM) [5] boosted the
development of the new field of nanotechnology in all natural sciences
ranging from biology to physics.

In this thesis we combine 2DEG and AFM lithography for a realiza-
tion of mesoscopic devices. For the observation of quantum mechanical
effects one has to shrink the dimensions of a quantum dot to the wave-
length of electrons in the material system. Within a 2DEG the typical
wavelength of the electrons lies around some ten nanometers which is
more than two orders of magnitude longer than in metals. The typ-
ical tip of an AFM has a radius of below ten nanometers which is
even smaller than the wavelength of the electrons. Therefore, an AFM
tip is a natural candidate for the local manipulation of the electronic
structure in a 2DEG.

The first demonstration of the depletion of a 2DEG with an AFM
was published in 1995 [6] almost one decade after the invention of
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1 Introduction

the AFM. In these experiments the AFM tip induced a local chemical
oxidation at the surface of a heterostructure. As a consequence the
band structure is distorted locally underneath the created oxide line
and the 2DEG is depleted. A completely different technique is the
removal of atoms from a surface with an AFM tip used as a nanoscopic
engraving tool. This is the most direct method of modifying a 2DEG
with an AFM.

The advantages of both techniques are obvious, no further processing
of the samples is needed, no photoresists, chemical etching, masks,
or metallizations. Additionally, there are no limitations to the device
geometry and the accuracy of the lithography lies in the range of a few
nanometers.

With the controlled nanomachining [7] and the local oxidation a real-
ization of quantum dots in a 2DEG is possible [8, 9, 10]. In addition, we
discuss the possibility to create multiple connected topologies with the
AFM like rings with an inner and outer boundary. These devices allow
to study interference phenomena like the Aharonov-Bohm effect [11]
in the Kondo regime [12, 13, 14, 15, 16, 17] where electron-electron
correlation effects dominate the transport characteristic.

Outline

Chapter 2 begins with a short description of electrons confined to
low dimensional conductors, namely two-, one-, and zero-dimensional
systems, respectively. As examples for transport phenomena we discuss
the ballistic transport through quantum point contacts and the tun-
nelling of electrons through potential barriers. The chapter ends with
a brief introduction to resonant tunnelling diodes based on 2DEG.

Chapter 3 contains a detailed overview of the GaAs/AlGaAs-hetero-
structures used as a basis for the realization of the mesoscopic devices.
With self-consistent calculations of the band structure of a 2DEG we
describe the depletion of heterostructures by defects induced only at
the surface. This is the underlying principle for the direct nanolithog-
raphy, that is described in Chapter 4. The chapter starts with an
introduction to the AFM as a tool for investigating surfaces. After-
wards, we describe the two AFM techniques used for the direct fabri-
cation of the mesoscopic devices, namely the controlled nanomachining
and the local oxidation. Of special interest is a comparison of diamond
and silicon as tip materials for the nanomachining of ballistic quantum
point contacts. The second part of the chapter reviews the creation
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of tunnelling barriers with local oxidation. We discuss the influence
of the writing parameters on the oxide growth at the surface of het-
erostructures. We show that the oxidation currents directly determines
the depth of the oxide lines.

In Chapter 5 we introduce the constant interaction model that is
used to describe a single-electron transistor, consisting of a quantum
dot with attached contacts and leads, in the Coulomb-blockade regime.
The model is compared with the results obtained from a quantum dot
defined with local oxidation. In the second part of the chapter we show
the stepwise fabrication of a parallel double quantum dot by cutting
a one-dimensional resonant tunnelling diode in quasi zero-dimensional
regions.

Chapter 6 describes measurements on a very small quantum ring
that was defined with local oxidation. We study the open transport
regime where the electrons are transmitted ballistically through the
ring structure. The ring acts as an interferometer and allows to ob-
serve the Aharonov-Bohm effect. With the attached in-plane gates we
tune the phase of the electronic wave function inside the ring arms.
The chapter ends with a short discussion of Fano-resonances in the
conductance through the ring that might be caused by an interference
of a resonant with a non-resonant transmitted state.

The thesis continues in Chapter 7 with measurements on a quan-
tum ring in the Coulomb-blockade regime. Of special interest is the
Kondo effect that leads to a finite conductance even for a constant
electron number on the ring. The non-linear transport measurements
on the quantum ring exhibit clear indications for a Kondo effect in-
duced by a single electron spin. The study of the addition spectrum
in high magnetic fields enables us to extract the exact number of elec-
trons on the ring in the Coulomb-blockade regime. Finally, we use the
Kondo effect to study the evolution of the Aharonov-Bohm effect in
the Coulomb-blockade valley.

A summary of the results is given in Chapter 8.
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2 Low-dimensional electron systems

In this chapter we review the basic principles of low-dimensional el-
ectron systems. We discuss the density of states of two- and one-
dimensional electron gases. An introduction to single-particle states
in a zero-dimensional potential well follows. The result is compared
to the magnetic field dependence of the ground state of a strictly
one-dimensional quantum ring. In the second part of the chapter we
describe two important transport phenomena for our thesis, namely
ballistic conductance through quantum point contacts and tunnelling
through potential barriers. The chapter ends with an introduction to
lateral resonant tunnelling through a double-barrier structure.

2.1 Confined electrons

2.1.1 Two-dimensional electron gas

Electrons in a three-dimensional periodic potential can be described
as plain waves with an energy

E(~k) =
~2

2m∗ (k2
x + k2

y + k2
z) . (2.1)

~k is the wave vector of the electron. Its components ki = 2π/λi are
the wave numbers and λi (i = x, y, z) the wavelength in all three
dimensions x, y, z. m∗ is the so-called effective mass of the electrons
that takes the specific band structure of the crystal into account. In
general m∗ is a tensor that is defined by the following expression(

1
m∗

)
ij

=
1
~2

∂2E(~k)
∂ki∂kj

. (2.2)

In a parabolic conduction band m∗ will not depend on the energy of
the electrons and

m∗ = m∗
xx = m∗

yy = m∗
zz .
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2.1 Confined electrons

A two-dimensional electron system is created by applying an ad-
ditional confinement potential V (z) along the z-direction in a crystal.
This leads to a quantization of the energy levels Ez(nz) where nz is the
number of the occupied levels. These levels will be named as subbands
in the following. Instead of equation 2.1 we get

E(kx, ky, nz) =
~2

2m∗ (k2
x + k2

y) + Ez(nz) . (2.3)

Apparently, the electrons can only move freely in the xy-plane perpen-
dicular to the potential V (z). One possible experimental realization
of a two-dimensional electron gas (2DEG) will be described in Chap-
ter 3.1.

The density of states Dnz
(E) in the specific subband nz in a 2DEG

does not depend on the energy

D(E) = 2
L2m∗

2π~2
,

here we use ~ = h/2π with h Planck’s constant and L the size of
the system. The factor two considers the electron spin. D(E) for a
system with several occupied subbands is just the sum of the Heaviside
function Θ

D(E) =
∑

i

Di(E) =
L2m∗

π~2

∑
i

Θ(E − Ei) . (2.4)

In the ~k-space this system is a disc with a radius of kF =
√

2πne

with ne the density of the electrons in the 2DEG. kF is defined as the
wave number at the Fermi energy EF at zero temperature. With this
relation we get for the Fermi energy in a 2DEG

EF =
π~2

m∗ ne . (2.5)

2.1.2 One-dimensional electron gas

With another confinement potential along the y-direction we can re-
strict further the free motion to the x-axis of the system. The energy
of the electrons is then quantized in the y and z-direction

E(kx, ny, nz) =
~2k2

x

2m∗ + Ey(ny) + Ez(nz) . (2.6)
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2 Low-dimensional electron systems

Each pair of ny and nz denotes a specific one-dimensional (1D) sub-
band in this system. To simplify we assume for the following consid-
erations that nz = 1 and the number of the occupied 1D-subbands
depends only on ny. The density of states D(E) has to be modified

D(E) = 2
L

π~

√
m∗

2E
. (2.7)

The main difference to the two-dimensional electron gas is that the
density of states is proportional to 1/

√
E instead of constant. We will

later see that this dependence has an important consequence for the
transport through such an 1D-system.

2.1.3 Zero-dimensional systems

Spectrum of a quantum dot

With a third confinement potential V (x) the electrons are bound to a
quasi zero-dimensional region of space. If V (x), V (y) and V (z) are of
the parabolic form the energy of the electron is quantized

E(nx, ny, nz) = ~ωx(nx +
1
2
) + ~ωy(ny +

1
2
) + ~ωz(nz +

1
2
) (2.8)

with ni = 0, 1, 2, .. the number of occupied levels in each direction and
~ωi the energy of the harmonic oscillator that denotes the separation
of the levels (i = x, y, z). All energies are discrete and thus the electron
is confined in the potential.

The density of states D(E) in a 0D-system is the sum over Dirac
δ-functions

D(E) ∝ 2
∑

nx,ny,nz

δ(E − E(nx, ny, nz)) . (2.9)

The pre-factor considers the two-fold degeneracy of each state due to
the electron spin.

In semiconductor physics such a system is often named quantum
dot (QD) or even artificial atom because of the similarities with the
energy spectrum of real atoms. In the following we neglect any influence
of interaction effects by assuming only one confined electron in the
system.
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2.1 Confined electrons

0 1 2 3 4

2

4

6

8

B (T)

E
 (

m
e

V
)

Figure 2.1: Magnetic-field dependence of the energy levels for one elec-
tron in a 2D parabolic confinement potential with ~ω0 = 1 meV.
The Zeeman energy is neglected.

We can create a quasi disc-like quantum dot by choosing ~ωz �
~ωx,y. For simplicity we assume ~ωx = ~ωy = ~ω0 and separate the
Hamiltonian Ĥg = Ĥ + Ĥz. Ĥ is given by

Ĥ =
1

2m∗ p̂2 +
1
2
m∗ω2

0r2 , (2.10)

where p̂ is the lateral momentum operator in the x, y-plane. Due to
the radial symmetry of this Hamiltonian it can be solved in polar
coordinates ~r = r exp(iϕ) which results in eigenvalues of the form

E(n, l) = (2n + 1 + |l|)~ω0 (2.11)

with the radial quantum number n = 0, 1, 2, .. and the angular mo-
mentum quantum number l = 0,±1,±2, .. . Please note, that in Carte-
sian coordinates ~r = (x, y) the ground state energy has the form
E(nx, ny) = ~ω0((nx + 1/2) + (ny + 1/2)).

When we apply a magnetic field B perpendicular to the plane of the
quantum dot the energy of the system has to be modified

E(n, l) = (2n + 1 + |l|)
√

(~ω0)2 + (~ωc/2)2 + (l/2)~ωc , (2.12)
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2 Low-dimensional electron systems

with the cyclotron frequency ωc = eB/m∗. This result first calculated
by Fock [18] is obtained by neglecting the influence of the electron spin,
which is reasonable for a system with only one electron.

The result of a calculation is shown in Figure 2.1. In the limit of very
high magnetic fields, i.e. ~ωc � ~ω0, equation 2.12 can be rewritten in
the following form

E(n, l) ≈ (2n + 1 + (|l|+ l)/2)~ωc . (2.13)

This result indicates the formation of Landau levels in the system
at very high magnetic fields. In the spectrum of the quantum dot in
Figure 2.1 this is visible by the ”bunching” of the electron states for
B > 2 T.

Spectrum of a quantum ring

These considerations are only valid for a quantum dot with a simple
connected topology. The characteristic changes completely for a quan-
tum ring with outer and inner boundary. In a model with a strictly
one dimensional geometry which encloses a magnetic flux of m flux
quanta φ0 = h/e the energy spectrum El,m of a single-mode ring can

0 1 2 3
f/f

0
f/f

0

0.0 0.25 0.50 0.75 1.0

E
 (

a
.u

.)

E
 (

a
.u

.)

(a) (b)

Figure 2.2: (a) Theoretical spectrum of a single mode one-dimensional
quantum ring as a function of the applied flux φ. Each state follows
a parabola with constant angular momentum quantum number
l = 0,±1,±2, .. . (b) Magnification of the region in the dashed
box shown in (a).
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2.2 One-dimensional ballistic transport

be calculated to [19]

El,m =
2~2

m∗d2
e

(m + l)2 . (2.14)

Here m∗ is the effective mass of the electron, l = 0,±1,±2, .. the
angular momentum quantum number, and de the diameter of the ring.

For every value of l the states lie on parabolas with the minimum at
a magnetic flux φ = mφ0 as depicted in Figure 2.2(a). An increase of
m by one leads to a change of the ground state of the ring from l = 0
to l = −1, see Fig.2.2(b). Therefore, the energy of the ground state is
oscillating with a period of h/e in a perpendicular magnetic field even
in a single-particle picture. This is in contrast to the results for the
quantum dot. The ground state of a quantum dot is always n = 0 and
l = 0, see Figure 2.1.

2.2 One-dimensional ballistic transport

One possibility to create a one-dimensional system is to cut a narrow
wire out of a 2DEG. On the left-hand side of Figure 2.3 a schematic
picture of a 1D-channel in a two-dimensional electron gas is depicted.
The solid black lines indicate insulating regions separating the gates
from the rest of the 2DEG depicted in grey. The density of the electrons
in the constriction and thus the electronic width w1D is controlled by
the voltages applied to the gates. Such a device works in principle like
a field-effect transistor that is laid out flat on a surface.

Inside a constriction in a 2DEG a quasi one-dimensional channel of
length l1D and width w1D might be formed. In the following we assume
that w1D is smaller compared to all other quantities. The channel is
directly coupled to the two-dimensional reservoirs. A qualitative micro-
scopic picture is shown in Figure 2.3(a)+(b). The transport character-
istic of such a system is classified in three different regimes: diffusive,
quasi-ballistic, or ballistic [20].

The system is diffusive if the mean free path le of the electrons is
smaller than the length of the channel: le � l1D, Figure 2.3(a). le is
governed by scattering of electrons on impurities (indicated by the grey
circles in Figure 2.3(a)) or a rough surface of the channel boundaries.
In a quasi-ballistic system le is larger than w1D but still smaller than
l1D. When impurities are absent in the channel and its boundaries are
smooth on the length scale defined by the Fermi wavelength of the

9



2 Low-dimensional electron systems

(a)

(b)

x

y

w1D

l1D

2
D

E
G

Gate

Gate

Figure 2.3: Microscopic picture of the channel between two gates: (a)
diffusive transport regime (le � l1D) (b) ballistic transport regime
(le � l1D).

electrons le � l1D follows. In this regime the electrons are ballistically
transmitted through the channel and the scattering at the boundaries is
specular, Figure 2.3(b). In other words, due to the absence of scatterers
all electrons that enter the channel will be transmitted through it which
results in a transmittance T = 1 of the channel.

In our experiments we will define very short channels of a few ten
nanometers length. These kind of devices are known as ballistic quan-
tum point contacts (QPC).

We will calculate the conductance G through a QPC. In a ballistic
regime, the conductance through a classical point contact was first
derived by Sharvin [21]:

G =
2e2

h

kF w1D

π
=

2e2

h

2w1D

λF
, (2.15)

where kF = 2π/λF is the Fermi wave vector and λF the Fermi wave-
length at EF . The conductance is limited by scattering of the incident
electrons at the entrance of the constriction and thus scales linearly
with w1D.

Quantum mechanical effects lead to deviations from a continuous de-
pendence of G on w1D when the Fermi wavelength λF of the electrons
is comparable to the width of the point contact w1D. As a consequence
one obtains a quantized conductance. In a typical GaAs/AlGaAs-hetero-
structure used here we get λF ∼ 50 nm, therefore the electronic width
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2.2 One-dimensional ballistic transport

G

En=1 n=2 n=3 n=4

4 e
h

2 e
h

6 e
h

8 e
h

n

2

2

2

2

T > 0

T = 0

Figure 2.4: Conductance G of a ballistic quantum point as a function
of the number of occupied subbands n at temperature T = 0 and
T > 0.

of a quantum point contact should be smaller than a few 100 nm to
observe quantization.

A simplified explanation for the quantization of G in units of 2e2/h is
the formation of discrete energy levels inside the quantum point contact
that are accessible for transport. By assuming a harmonic confinement
potential perpendicular to the current direction the eigenvalues of the
energy in the quantum point contact have the form [20]:

E(kx, ny) =
~2k2

x

2m∗ +
(

ny +
1
2

)
~ω0 , (ny = 0, 1, 2, ..) (2.16)

which contains a free-electron kinetic energy in the longitudinal x-
direction (parallel to the current flow). The energy levels are equally
spaced with ~ω0. Since the electrons can only move freely in the x-
direction this leads to quasi one-dimensional subbands. Each subband
is characterized by a specific transmission coefficient Tn. Electrons can
only pass the point contact if their energy matches the energy of the
occupied subbands in the QPC.

We calculate the net current I flowing through a point contact with
N occupied subbands at zero temperature. I is obtained by integrating
over all electronic states between the electrochemical potentials of the
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2 Low-dimensional electron systems

source and drain contacts µS , µD:

I = e
N∑

n=1

∫ µS

µD

dE
1
2

dNn

dE
vn(E)Tn(E) . (2.17)

Again Tn is the transmission probability of each subband that is ac-
cessible for the electrons. The product of the 1D-density of states
dNn/dE = 2/π · (dEn/dkx)−1 and the velocity of the electrons v =
1/~ · (dEn/dkx) yields (dNn/dEn) · vn = 4/h. Formula 2.17 is simpli-
fied with this result and we calculate the conductance G = I/V of the
QPC to

G =
2e2

h

N∑
n=1

Tn , (2.18)

which is the so-called two-terminal Landauer-formula. In the ballis-
tic regime the transmission probability is Tn = 1 for n = 1..N with
N the maximum number of populated subbands. According to these
considerations the conductance G is quantized

G =
2e2

h
N . (2.19)

The above considerations are valid at zero temperature (T = 0) and
lead to sharp steps in the conductance G through a QPC as a function
of the number of occupied subbands as shown in Figure 2.4 by the
dashed line. At finite T the steps are smeared out because of the Fermi-
Dirac distribution of the electrons in the contacts given by

f(E) =
1

exp
(

E−Ef

kBT

)
+ 1

, (2.20)

with kB the Boltzmann constant. An ideal characteristic at finite tem-
perature is shown by the solid line in Figure 2.4.

Scattering in the quantum point contact, either at rough boundaries
or impurities, lead to deviations from the ballistic case. If defects are
present in the constriction the Tn of the subbands will differ. This will
distort the characteristic and the clear quantization of the conductance
is lost.
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2.3 Tunnelling phenomena in low dimensional systems

2.3 Tunnelling phenomena in low dimensional
systems

After this short introduction to one-dimensional ballistic transport we
introduce the tunnelling through potential barriers.

2.3.1 Tunnelling barriers

A potential or tunnelling barrier is described by its energetic height Φ0

and the width w. A simple idealized example is shown in Figure 2.5.
A rectangular tunnelling barrier separates a continuum of electronic
states that contain electrons up to the electrochemical potential µ in-
dicated by the grey region, depicted at zero temperature T = 0 K. In
a classical picture all incident electrons with a certain energy E < Φ0

are reflected at the barrier. Classical particles can only pass the bar-
rier when their energy exceeds Φ0. In contrast, the quantum mechanical
calculation of the transmission coefficient t results in t > 0 for a barrier
with finite height even for electrons with E < Φ0: the electrons can
tunnel through the barrier. The calculation of t in dependence of Φ0

and w yields for E < Φ0 [22]:

t ∝ exp

(
−w

√
2m∗

~2
(Φ0 − E)

)
. (2.21)

This result is only valid if the wavelength of the electrons λ is much
shorter than the barrier width.

F
0

µ µ

w

x

E

Figure 2.5: Idealized tunnelling barrier shown for an electrochemical
potential µ � Φ0 in the contacts.
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2 Low-dimensional electron systems

We are interested in the current-voltage (IV ) characteristic of a real
tunnelling barrier as shown in Figure 2.6(a). In our case, a real barrier
situated in a realistic semiconductor will be distorted compared to
Figure 2.5 because free electrons will screen the potential. This leads
to an effective rounding of the barrier shape. This can be simulated
by self consistent calculations. Examples for real barriers in a two-
dimensional electron gas can be found e.g. in the work of Peck [23].

A real barrier with different applied bias voltages is shown in Fig-
ure 2.6. At zero bias (VSD = 0), the electrochemical potentials µs, µD

in the source and drain contacts are equal, Figure 2.6(a). By raising
VSD (µS > µD) a current will start to flow eventually through the
barrier, because empty states exist on the other side of the barrier,
Figure 2.6(b).

There is an additional effect for the real barrier: its effective height
Φeff above the electrochemical potential in the source contact µD is
reduced by an amount ∆Φ = αeVSD with e the elementary charge and
α a voltage-to-energy conversion factor. In general, the voltage drop
over the barrier will be linear and in the case of a symmetrical barrier
it follows α = 0.5. This is depicted in Figure 2.6(b). For an asymmetric
barrier α will be smaller than 0.5.

With even higher VSD, Φeff is further reduced (Figure 2.6(c)) and the
tunnelling current grows accordingly. If Φeff falls below zero, the barrier
is reduced to an Ohmic resistor with a resistance R = dVSD/dISD, and
the current grows according to Ohm’s law ISD = VSD/R linearly for
eVSD � Φ0, Figure 2.6(d).

The resulting IV -characteristic is shown in Figure 2.7 for two sym-
metric tunnelling barriers with the same width but different heights Φ0

as shown in the upper left inset. The dashed line depicts the character-
istic for the higher barrier, in which the tunnelling current is suppressed
over a wide voltage range around VSD = 0. In this region ISD is too
small to be detected with our measurement setups. This is different
for the smaller barrier because here a detectable tunnelling current
flows already around VSD = 0 (solid line in Figure 2.7). Φ0 can be
estimated by extending the linear region of the characteristic to VSD,0

at ISD = 0, as indicated in the lower right inset of Figure 2.7. For
a symmetrical tunnelling barrier (α = 0.5) VSD,0 will be identical for
both bias directions and thus

Φ0 = 0.5eVSD,0 . (2.22)

This is a very simplified method for the estimation of Φ0. For an exact
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(a)

(c) (d)

µS µD

F
eff

eVSD

eVSD

F    < 0
eff

F
eff

F
eff

eVSD

(b)

F0

Figure 2.6: Tunnelling current through a barrier at different source-
drain bias VSD. The effective barrier height Φeff and Φ0 change
both with variation of VSD.

determination of α and Φ0 temperature dependent measurements of
the tunnelling current are required, see e.g. Ref. [24].

2.3.2 2D-1D-2D resonant tunnelling

In Chapter 2.2 we discussed the transport features through a 1D-
system in the ballistic regime. What happens if we couple a one-
dimensional system like a quantum wire with two tunnelling barriers
to a 2DEG ?

A schematic picture of such a device is shown in Figure 2.8(a). The
tunnelling barriers that establish the tunnel coupling and define the
1D-wire are depicted. The length of the wire is determined by the
width of the 2DEG itself. µS,D denote the electrochemical potential
in the source and drain contacts. A system with two consecutive bar-
riers is often named double-barriers structure. The one-dimensional
wire in between may contain several energy levels depending on the
barrier heights and the barrier separation, here we depicted two levels
indicated by the horizontal lines.

This device is a 2D-1D-2D resonant tunnelling diode (RTD). Such a
RTD has similar properties as vertical 3D-2D-3D RTDs that were first
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VSD

ISD

F0

VSD,0

Figure 2.7: IV -characteristic of two tunnelling barriers with different
height Φ0.

demonstrated experimentally in 1974 by Chang, Esaki, and Tsu [25].
In Figure 2.8(b)+(c) a sketch of a RTD with an applied bias voltage

VSD is shown that induces a difference of the electrochemical potentials
µS − µD = eVSD. For the flow of a tunnelling current, energy and
momentum of the electrons have to be conserved and there have to be
free states across the barriers. Therefore, electrons can only tunnel if
their energy in the x-direction matches the energy of the subband E0

between the double barriers: ~2k2
x/2m∗ = E0, with m∗ as the effective

mass of the electrons in the material. In Figure 2.8(a) tunnelling is
forbidden, because kF =

√
2m∗µS/~2 < k0 as depicted in the graph

on the right-hand side. Please note, that in two dimensions there is
only a Fermi circle with radius kF in the kx, ky-plane.

The position of the subband relative to the electrochemical potential
can be controlled with the bias voltage VSD. With a voltage-to-energy
conversion factor α ∼ 0.5 for a symmetric structure we calculate the
energy of the subband Er relative to the band edge of the emitter

Er = E0 − αeVSD .

At VT applied to the structure, Er matches µS and kr if shifted into
the Fermi circle. All the electrons with a wave vector that ends on the
vertical line at kr in Figure 2.8(b) can pass the structure resonantly.
The number of electrons that may tunnel depends on the length of
the segment and with increasing VSD there are more states available.
Therefore, the current I will grow accordingly. This continues until Er

falls below the conduction band edge in the emitter. At this point there
is a sharp drop in I, because electrons with a kr < 0 are no longer
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Figure 2.8: (a)-(c) Sketch of a 2D-1D-2D resonant tunnelling diode
with varying bias voltage VSD. On the right hand side the Fermi
circle is shown with the resonant level at kr. Lower right: resulting
IV -characteristic.

transmitted. This leads to a peak in the IV -characteristic of every
resonant tunnelling device as indicated in the lower right picture in
Figure 2.8. At the sharp break down of the current there is a negative-
differential resistance (NDR), which is especially interesting for high-
frequency devices [26].
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3 Depletion of a two-dimensional
electron gas

In this chapter we describe the basis for all our experiments, namely
two-dimensional electron gases (2DEG) in GaAs/AlGaAs-heterostruc-
tures. We give a detailed overview about the three specific heterostruc-
tures used for fabricating mesoscopic devices.

In the second part we introduce the underlying principle of direct
writing of electronic structures with an atomic force microscope. For
one of the heterostructures we discuss the possibility of the controlled
depletion of a 2DEG.

3.1 Heterostructures

The starting point for all the experiments in this thesis are two dimen-
sional electron gases (2DEG). In Chapter 2.1.1 the basic properties
of 2DEGs are described. In the following paragraph an experimental
realization in a semiconductor crystal is discussed.

One possibility to fabricate a semiconductor heterostructure is the
growth by molecular-beam epitaxy (MBE). In general, a heterostruc-
ture consists of two or more semiconductors with different band gaps,
which are combined in a single crystal. With a correct layer and dop-
ing sequence one can create e.g. a triangular potential well along the
growth direction below the surface. The structure contains a two-
dimensional electron gas at liquid 4He-temperatures of 4.2 K. The
electrons are confined within the potential and can only move in the
plane perpendicular to the growth direction.

GaAs and AlGaAs are ideal candidates for the fabrication of het-
erostructures, because they have almost the same lattice constants but
different band gaps: aGaAs = 5.6533 Å and aAlAs = 5.6611 Å, [27].
The AlGaAs material system is preferred especially for the band-gap
engineering of 2DEGs for research applications because the band gap
of the ternary semiconductor Ga1−xAlxAs depends on the Al-content.
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3.1 Heterostructures

In the schematic picture in Figure 3.1 the formation of a 2DEG in
a GaAs/AlGaAs-heterostructure is shown. An intrinsic semiconductor
like GaAs with the Fermi energy EF in the middle of the band gap
between the valence band EV and the conduction band EC is shown. It
is brought into contact with a doped semiconductor with larger band
gap like AlGaAs. In equilibrium, EF has the same value throughout
the whole crystal and the band structure aligns itself self consistently.
At the interface there is a discontinuity in the conduction and the
valence band. The conduction band of the intrinsic semiconductor is
bent down and the conduction band of the doped material is bent up
(lower part of Figure 3.1). This leads to the formation of the triangular
potential well with quantized energy levels, often named as subbands.
By choosing a suitable doping concentration only the lowest subband
is occupied.

In general, there are two different approaches for the doping of
GaAs/AlGaAs-heterostructures. One possibility is the bulk modula-
tion doping where several 10 nm AlGaAs are doped with e.g. Si with
a typical concentration of about 1018 m−3. In contrast, wafers with a
δ-doping contain a layer of Si-donors with a thickness of only a few
Å sandwiched between two adjacent AlGaAs layers. The advantage of
both heterostructures is the spatial separation of the electrons from the
positively charged donors. This reduces the main scattering process at
low temperatures, which limits the mobility of the electrons, namely
the remote impurity scattering. Today, with the advancement of the
MBE-techniques it is possible to produce 2DEGs with exceptional high

EC

EF

EV

EC

EF

EV

EF

E

EC
EF

Subbands
2DEG

Figure 3.1: Formation of a triangular potential at the interface of two
semiconductors with different band gaps.
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7100081016

5 nm GaAs

5 nm AlGaAs

15 nm AlGaAs

500 nm GaAs

5 nm GaAs

8 nm AlGaAs

20 nm AlGaAs

100 nm GaAs

15 nm AlGaAs:Si

2DEG

1129

10 nm GaAs:Si

30 nm AlGaAs:Si

17 nm AlGaAs

600 nm GaAs

2DEG

2DEG

Si d-doping layer

Figure 3.2: Layer sequence of the wafers: 1129, 81016, and 71000. The
Silicon modulation-doped regions are marked with stripes. Please
note the δ-doping layer of wafer 71000.

electron mobilities of more than 3000 m2V−1s−1.
We use three different types of GaAs/AlGaAs-heterostructures in

this work. Two of them are modulation doped heterostructures: the
material 1129 was fabricated at the Lehrstuhl für Angewandte Physik
at the Ruhr-Universität Bochum. Wafer 81016 was grown at the Max-
Planck-Institut für Festkörperforschung in Stuttgart. The material sys-
tem 71000, a very shallow 2DEG with δ-doping, was provided by
the Walter Schottky Institut, München. All three layer sequences are

1129 81016 71000
Electron density ne (m−2) 4.07 · 1015 4.0 · 1015 4.3 · 1015

Electron mobility µe (m2V−1s−1) 107 23.0 42.1
Distance 2DEG - surface (nm) ∼ 57 ∼ 40 ∼ 34

Table 3.1: Characteristic values of the three heterostructures 1129,
81016, and 71000 at T = 4.2 K.
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3.2 Local depletion of heterostructures

shown in Figure 3.2. The distance between the surface and the 2DEG
is 57 nm (1129), 40 nm (81016), and 34 nm (71000), respectively. The
main characteristics of the substrates are summarized in Tab. 3.1.

3.2 Local depletion of heterostructures

In this thesis we will use the tip of an atomic force microscope (AFM)
for the direct manipulation of the electronic structure in a two-dimen-
sional electron gas inside a GaAs/AlGaAs-heterostructure. The actual
techniques for the direct nanolithography will be described in the next
Chapter 4. At this point we give a short introduction to the underlying
principle.

The band structure inside a GaAs/AlGaAs-heterostructure is very
sensitive to changes at the sample surface, especially the shallow 2DEGs
used here. As an example we want to demonstrate the influence of a
groove in the sample surface on the band structure of the wafer 81016.
In the following ”band structure” means the edge of the conduction
band in the sample parallel to the growth direction.

In Figure 3.3(a) the layer sequence of wafer 81016 is shown. For an
undisturbed surface we calculated the band structure of this wafer with

GaAs

5nm GaAs
5nm Ga    Al    As0.67 0.33

15nm Ga    Al    As:Si0.67 0.33

15nm Ga    Al    As0.67 0.33

Depletion

Groove

(1) (2)

2DEG

(1) (2)

EF EC

0.0 0.5
E   (eV)C

0

20

40

60

z 
(n

m
)

(a) (b)

Figure 3.3: (a) Layer sequence of wafer 81016 with a 9 nm deep groove.
(b) Simulated band diagram without � and with • the groove.
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3 Depletion of a two-dimensional electron gas

a self-consistent Poisson solver [28]. The result is depicted by the black
line marked with a square in Figure 3.3(b), the edge of the conduction
band is shown. Because the minimum of the band structure lies below
EF , a 2DEG is formed inside the triangular potential well.

To deplete the 2DEG, we can use a characteristic of the GaAs. At
the surface the Fermi energy EF is pinned near the middle of the band
gap of GaAs due to the formation of surface states. By removing a
small amount of material from the surface e.g. by scribing a groove
with an AFM tip. This moves the interface closer to the 2DEG and
because of the pinning of EF in the band-gap the triangular potential
well is lifted above EF and the 2DEG is depleted.

As an example for this process, we calculate the band structure of
wafer 81016 again with a groove that protrudes 9 nm into the sample,
shown by the white triangular area in Figure 3.3(a). As already men-
tioned the minimum of the band structure is shifted above EF and the
2DEG contains no longer any electrons. This process is similar to a
shallow etch process [29]. For this example, the simulation results in a
conduction band some 100 meV above EF (curve (2) in Figure 3.3(b)).
The raising of the conduction band underneath the defect is very sen-
sitive to the depth. This was shown in several studies [30, 24] and will
be used later in this thesis (see Chapter 4.3) to produce tunnelling
barriers with varying height in a well defined manner.

It is important to notice that the influence is only local underneath
the groove. As a consequence, it is possible to write insulating regions
directly into a 2DEG with a resolution depending only on the width
and the depth of the structures created at the surface. Another ad-
vantage is the spatial separation between the defect and the 2DEG.
This avoids the creation of additional inhomogeneities in the 2DEG,
because the ”defect” is situated only at the surface.

3.3 Conclusion

In this chapter we described the details of the GaAs/AlGaAs-hetero-
structures used in this thesis. With self-consistent calculations we ex-
plained the depletion of the 2DEG inside a heterostructure by removing
material from the surface. This is the underlying principle for fabri-
cating of mesoscopic devices with an atomic force microscope. In the
following chapter we give a detailed description of the processing of
the samples.
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4 Nanolithography with an atomic
force microscope

The atomic force microscope (AFM) is a powerful tool for produc-
ing mesoscopic devices directly in GaAs/AlGaAs-heterostructures. We
introduce two different fabrication techniques in which the tip of an
AFM is used for manipulating of the surface.

In the first part of this chapter we describe the controlled nanoma-
chining. The AFM tip is used as an engraving tool for a controlled
creation of grooves in surfaces of GaAs/AlGaAs-heterostructures. The
two-dimensional electron gas underneath a groove is depleted and thus
we can directly write insulating regions into the electronic system. We
use this technique for fabricating ballistic quantum point contacts.

An alternative approach is the local oxidation of a surface induced
by a negative voltage on a conducting AFM tip. This allows the pro-
duction of tunnelling barriers in the 2DEG of a heterostrcuture in a
controlled manner. We study the dependence of the oxide growth on the
writing parameters like tip velocity, relative humidity and the oxidation
current. The chapter ends with a comparison of both techniques.1

1Parts of this chapter are published in: E. Oesterschulze, A. Malavé, U. F. Keyser,
M. Paesler, and R. J. Haug, Diamond cantilever with integrated tip for nanoma-
chining, Diamond and Related Materials 11, 667 (2002). The main part of this
work is published in J. Regul, U. F. Keyser, M. Paesler, F. Hohls, U. Zeitler,
R. J. Haug, A. Malavé, E. Oesterschulze, D. Reuter, and A. D. Wieck, Fabri-
cation of quantum point contacts by engraving GaAs/AlGaAs heterostructures
with a diamond tip, Applied Physics Letters 81(11), 2023-2025 preprint: cond-
mat/0202402.
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4 Nanolithography with an atomic force microscope

4.1 Scanning probe microscopy

The invention of the scanning tunnelling microscope (STM) [3] and the
atomic force microscope (AFM) [5] was followed by a fast development
of new techniques for the imaging of surfaces like e.g. magnetic force
and friction measurements. Scanning probe microscopes (SPM) are
used in all fields of research, ranging from semiconductor physics to
life sciences. The idea for all SPMs is very simple: a sample is put onto
a piezo-resistive crystal that is deformed with sub-Ångstrom accuracy
in all three dimensions by applying a voltage for each direction [31].
In combination with SPM-tips that have a single atom at the tip-apex
it is possible to investigate single atoms or molecules on all kinds of
surfaces with different methods [32].

The various SPMs differ by the parameter used for the detection of
the tip-sample distance. For the operation of the STM a small voltage
is applied between the tip of the microscope, and the sample and the
tunnelling current is measured. Because this current is very sensitive
to the tip-sample distance it can be used as a feedback parameter to
obtain topographic images. However, the requirement of the tunnelling
current limits the STM to conducting surfaces.

This major drawback was overcome with the invention of the atomic
force microscope (AFM). The main difference between the STM and
the AFM is the parameter used for measuring the tip-sample interac-
tion. An AFM operates in the following way: the AFM tip is in direct
contact with the sample and measures the force between sample and
tip. Compared to the STM, this alternative approach to the feedback
is a major advantage for the AFM and enables the investigation of all
kinds of materials ranging from insulators to living cells. Due to these
capabilities the AFM became one of the most important tools for the
analysis of surfaces in research and industrial applications.

Contact mode

There are several different imaging modes to investigate a surface with
an AFM tip. In this thesis we are using the so-called contact mode
which is explained in this paragraph. The contact mode is used to ob-
tain a picture of sample surface and also for nanolithography described
as well.

A schematic picture of an AFM is shown with its important building
blocks in Figure 4.1. The AFM tip itself consists of a cantilever that
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4.1 Scanning probe microscopy

supports the tip. The cantilever is connected to a bulk region needed
for the handling of the AFM tips with tweezers. Normally the whole
system consisting of tip, cantilever, and bulk, is fabricated of the same
material, commonly silicon. In a simple picture, the cantilever is de-
scribed as a leaf spring with a characteristic spring constant k. In the
contact mode, a contact force FC is applied between the tip and the
surface during the scanning of the surface with a xyz-piezo-resistive
crystal (abbreviation: piezo). A simple idealized picture of this process
is shown in Figure 4.1. With the spring constant k of the cantilever the
force FC is easily calculated with Hooke’s law: FC = k∆z, where ∆z is
the deflection of the cantilever out of equilibrium. The AFM feedback
loop measures the contact force between the tip and the surface with
the help of a laser that is focused onto the cantilever. The laser beam
is reflected at the cantilever top and shines onto a photo detector. The
deflection and thus the change of the contact force is monitored by
measuring the voltage variation dV at the detector, Figure 4.1. The
height information is obtained by recording the voltages applied to the
z-piezo, which are needed to keep the signal of the photo detector con-
stant. Finally, the sample topography is visualized by converting the
voltage applied to the z-piezo into height information dz and plotting
the data array in a color-coded image.

The idea to keep FC minimal and constant reduces the probability
to damage the sample by an AFM tip, which is usually harder than the
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Figure 4.1: Schematic drawing of an AFM consisting of the tip, xyz
piezo-resistive crystal, photo detector, and laser. From left to right:
When the deflection of the cantilever and thus the contact force
changes, the crystal is moved by dz to compensate for the voltage
difference dV at the detector.
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4 Nanolithography with an atomic force microscope

substrate. When the force constant of the cantilever is exactly known,
the AFM can be used to detect ultra-low forces in the range of 10−18 N
or less [33]. These capabilities enabled to investigate e.g. the Casimir
force between an AFM tip and a surface [34].

4.2 Nanomachining of quantum point
contacts

4.2.1 Controlled nanomachining of heterostructures

We use the tip of an AFM as nanolithographic tool for engraving
grooves into the surface of a GaAs/AlGaAs-heterostructure. This re-
moval of material is the most direct approach to the manipulation
of surfaces. This technique is also known as mechanical nanomachin-
ing and was demonstrated by several groups on polymer films [35],
Langmuir-Blodgett films [36, 37], metals [38] and oxides [39]. The first
experiments to modify the electronic structure of a metal film were
done by Wendel et al. [40].

The nanomachining was also applied on a variety of relatively hard
semiconductor surfaces [41, 42, 43, 7]. For this technique it is essential
to use a tip consisting of a material with a higher hardness than that
of the substrate. An AFM tip will protrude into the surface and create
a hole when we apply a high contact force of several µN. This will lead
a pressure of several GPa at the tip apex due to the small tip radius,
which lies around 10 nm for standard commercial tips. This is depicted
schematically in Figure 4.2.

When the AFM tip is scanned over the surface with such high contact
forces we can create grooves or lines with any desired geometry, e.g.
on the surface of a GaAs/AlGaAs-heterostructure. In Chapter 3.2 we
already mentioned that a groove in a heterostructure is one possibility
to deplete the two-dimensional electron gas (2DEG).

The big advantage of the AFM is the small tip radius which allows
a line width to below 50 nm of an engraved line [44]. In principle
the minimal width of the groove depends only on outer experimental
parameters like e.g. the radius of the tip, the angle at the tip apex,
the contact force, and the number of times writing the same structure
with the tip.

A depletion of the 2DEG should result in an increase of the resistance
of the 2DEG. Thus we can control the engraving process with the mea-
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F

AFM tip

GaAs

Figure 4.2: Mechanical nanomachining of GaAs with an AFM tip.

surement of the 2DEG resistance R during the nanomachining. It was
shown that the room temperature resistance R of AFM-created lines
directly determines the low-temperature characteristic [7]. It turned
out, that a 2DEG is completely cut for R > 1 MΩ and shows a wide
region of suppressed current with a very high tunnelling resistance of
more than 50 GΩ at T < 4.2 K. The breakdown voltage of these high
tunnelling barriers lies typically above V = ±3 V. This characteristic
makes them ideally suitable for the definition of gates for mesoscopic
devices.

A schematic picture of the measurement setup for the controlled
nanomachining is shown in Figure 4.3. The AFM tip is scanned per-
pendicular over a Hall bar and depletes the 2DEG. The process is
monitored with Keithley 2000 multimeter, which measures the resis-
tance in situ during nanomachining the line. The AFM laser is disabled

 R

2DEGDepletion

 AFM tip

Figure 4.3: Schematic picture of the measurement setup for the con-
trolled nanomachining. The 2DEG is depleted underneath the
groove.
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4 Nanolithography with an atomic force microscope

with a relay during the lithography to suppress the generation of car-
riers in the sample that would hinder the resistance measurement. If
R exceeds some MΩ the scribing is stopped.

The fabrication of in-plane gates and single-electron transistors with
this controlled nanomachining of GaAs/AlGaAs-heterostructures was
recently shown [7, 45]. In this thesis we use this technique exclusively
for the nanomachining of in-plane gates with very high tunnelling re-
sistance.

4.2.2 AFM tips and samples

For the experiments presented here we use standard silicon tips fab-
ricated by Nanosensors and new all-diamond AFM tips. Both types
of tips have a relatively high force constants of more than 40 N/m.
The diamond-tips were grown by hot-filament chemical vapor deposi-
tion of polycrystalline diamond onto a prepatterned silicon substrate.
A scanning electron microscope (SEM) image of an all-diamond tip
is shown in Figure 4.4. Please note, that all components (cantilever,
tip, bulk) consist of diamond which is very unusual. Despite the rough
surface, the tip radius is still smaller than 50 nm. A magnification of
a tip apex is shown in the upper right inset in Figure 4.4. Please note
the different length scale of the pictures. Despite the rough surface
there are some very sharp peaks, which form the active tip used for
the nanomachining.

More details on the recently developed fabrication technique for
these all-diamond tips can be found in Ref. [46].

The samples used for this experiment are based on a modulation
doped GaAs/AlGaAs-heterostructure containing a two-dimensional el-
ectron gas (2DEG) 57 nm below the sample surface with a sheet den-
sity of 4.07×1015 m−2 and a mobility of 107 m2/Vs (wafer 1129, see
Chapter 3.1). We fabricated Hall bar geometries with standard photo
lithography, wet-chemical etching, and alloyed Au/Ge-contacts. A de-
tailed description of these standard processing steps can be found e.g.
in Ref. [47]. Afterwards the samples were bonded and mounted into
the AFM for the controlled engraving process.

Comparison of silicon- and diamond-tips for nanomachining

For the controlled nanomachining the AFM tip is repeatedly scanned
over the Hall bar with a scanning speed of 0.1 mm/s and a contact
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4.2 Nanomachining of quantum point contacts

force of several ten µN. The total depopulation of this specific 2DEG
is marked by an abrupt raise of the sample resistance to more than
3 MΩ.

For comparison, two typical resistance curves monitored during the
fabrication of an insulating line with a diamond and a silicon tip are
depicted in Figure 4.5(b). We applied a contact force of about 50 µN
for both experiments. The scribing of the lines was stopped when the
resistance R exceeded 3 MΩ. In Figure 4.5(b) R is plotted as a function
of the number of scan lines NScan for the silicon tip (dashed line) and
the diamond tip (solid line). With the Si-tip we have to repeat the
scribing for at least 40 times before the total depletion of the 2DEG is
accomplished. The onset is marked with an arrow in Figure 4.5. With
the all-diamond tip the depletion of the 2DEG is achieved already
within one single scan over the Hall bar.

Figure 4.6(a) shows an AFM image of a typical insulating engraved
line on a GaAs/AlGaAs- heterostructure that was scribed with a Si-tip
with the same parameters as described above. For this example the tip
was scanned ∼ 100 times over the surface to get an insulating line.
The resulting line has a width of 250 nm. The depth z ∼ 9 nm suffices
for the total depletion of the 2DEG underneath the groove for this
heterostructure.

30 µm

Cantilever

Diamond tip

100 nm

Figure 4.4: Scanning electron microscope image of an all-diamond AFM
tip. The inset shows a magnification of the tip that has a radius
smaller than a few ten nanometers (indicated by the circle).

29



4 Nanolithography with an atomic force microscope

R
 (

M
W

)

Diamond tip

Silicon tip

1 10

0.1

1.0

NScan
 R

2DEGDepletion

 AFM tip
(a) (b)

Figure 4.5: (a) Measurement setup for the controlled nanomachining
of heterostructures. (b) Sample resistance R as a function of the
number of scans Nscan during the fabrication of insulating lines
with a diamond tip and a silicon tip (dashed line).
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Figure 4.6: Results of the engraving with (a) a silicon tip and (b) a
diamond tip. Upper part: AFM micrograph of the grooves. Lower
part: depth profile along the white lines. (a) After ∼100 scans with
a silicon tip, (b) after one scan with a diamond tip.
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(a) (b)

500 nm 500 nm

Figure 4.7: SEM image of a silicon AFM-tip before (a) and after (b)
the nanomachining, the picture is taken from Ref. [24]. Please note
the different length scales.

We achieve much narrower lines of 90 nm width and the same depth
z ∼ 9 nm by using an all-diamond probe as shown in Figure 4.6(b).
The displayed groove was manufactured by scanning a diamond tip
similar to that shown in Figure 4.4 once over the surface with a similar
contact force as for Si. Compared to the former results in Figure 4.6(a)
the processing time for e.g. a 100 µm line is substantially reduced by
nearly two orders of magnitude from minutes to a few seconds. The
reduction of the line width from 250 nm to 90 nm is mainly explained
by the severe tip wear of the Si-tip during the writing process. After
the engraving we measured the radius of the Si-tip and the diamond-
tip by scanning electron microscopy (SEM). Whereas the Si-tip radius
increased by at least a factor of 10 to more than 100 nm [24], Figure 4.7,
images of the diamond tips yielded an unchanged radius of below 50 nm
before and after the fabrication.

As expected the tip wear for diamond is almost negligible. In fact,
we used this diamond tip for the fabrication of more than 40 devices
without any observation of tip degradation. In contrast, a silicon tip
can only be utilized once in most cases.

Comparison of the transport measurements

For comparison of the electronic properties of insulating lines fabri-
cated by the different tips we defined two short one-dimensional chan-
nels by engraving constrictions into the GaAs/AlGaAs-heterostructure.
The regions separated from the constriction by an insulating groove
serve as in-plane gates. In the upper left inset of Figure 4.8 an AFM
image of the completed structure is shown, which was written with a
Si-tip. The sample engraved with the all-diamond tip is depicted in the
upper left inset of Figure 4.9.
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Figure 4.8: Conductance G of the QPC nanomachined with a silicon
tip as a function of one in-plane gate voltage. The upper left inset
shows an AFM micrograph of the device. Lower left inset: mea-
surement setup.

This design defines a quantum point contact in the 2DEG. At low
temperatures we expect the conductance G through both devices to
be quantized in 2(e2/h) as described in Chapter 2.2. For the transport
measurement we used a standard lock-in technique with an excitation
voltage of VSD,ac = 60 µV at 13 Hz. The samples were set into a
3He-cryostat with a base temperature T = 350 mK. The conductance
curves presented here were recorded by varying one of the two in-
plane gates whereas the second gate was kept at a fixed potential. A
constant series resistance of the contacts and the 2DEG was subtracted.
A schematic picture of the measurement setup is shown in the lower
inset of Figure 4.8.

In Figure 4.8 the differential conductance dISD/dVSD of the sam-
ple patterned with a Si-tip is shown. In the following we will refer to
the sample just by mentioning the tip material. The conductance of
the silicon-patterned sample, shown in Figure 4.8, exhibits only a few
poorly resolved conductance plateaus. This indicates that there are
many scatterers inside the channel which obscure the ballistic trans-
port.
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Figure 4.9: Conductance G of the QPC nanomachined with the dia-
mond tip as a function of one in-plane gate voltage. The upper
left inset shows an AFM micrograph of the device. The vertical
lines are artifacts in this measurements. Lower left inset: the arrow
indicates the 0.7-anomaly.

In contrast, the curve in Figure 4.9 corresponding to the diamond-
patterned sample shows flat quantized plateaus at integer multiples of
2(e2/h). This indicates the formation of a clean ballistic quantum point
contact [48] formed by an adiabatic potential without any impurities.
The appearance of the nice conductance plateaus demonstrates that
the grooves scribed with the diamond tip define a smooth potential
without significant fluctuations.

The electronic width of the constriction wdia for the diamond tip
can be roughly estimated by using formula 2.15 for a point contact.
For the conductance and the carrier concentration, determined by
Shubnikov-de Haas measurements, wdia ∼ 100 nm is calculated at zero
gate voltage. By comparison with the geometric width of 500 nm an
estimation of the depletion width around the nanomachined barriers
wdepl,dia ∼ 200 nm is obtained. This value is nearly half the length of
wdepl,si ∼370 nm extracted for the silicon-patterned sample from the
measurement shown in Figure 4.8.

The larger depletion length of the grooves created with the silicon
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tip as well as the presence of significant potential fluctuations indicated
by the resonant structures and the lack of plateau flatness are probably
related to an enhanced formation of surface defects. These are caused
by the increased number of scans needed for the depletion of the 2DEG.
Additionally, the grooves scribed with the silicon tips are factor of two
wider than the diamond ones, which might explain the difference in
wdepl.

By inspection of the first conductance step in the right inset of Fig-
ure 4.9 we observe an additional shoulder close to 0.7 (2e2/h). This so-
called 0.7 anomaly [49] is an indicator for very clean one-dimensional
channels and is considered to be caused by electron-electron interac-
tions. The exact underlying mechanism of this structure is still not
clear but it is an intrinsic property of low-disorder quantum point con-
tacts. Together with the well resolved plateaus the appearance of the
0.7 anomaly shows that we scribed with the all-diamond tip a nearly
adiabatic constriction free from significant potential fluctuations.
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4.3 Local oxidation of heterostructures

4.3 Local oxidation of heterostructures

One way to create tunnelling barriers in a GaAs/AlGaAs- heterostruc-
ture is described already in the preceding part of this chapter. Another
possibility to deplete a two-dimensional electron gas is the oxidation of
the heterostructure in an electrolytic cell. The oxide grown during the
process protrudes into the surface and the band structure underneath
is lifted above the Fermi energy EF in the material very similar to
the controlled nanomachining. Despite the difference to the mechan-
ical removal of atoms from the surface this technique uses the same
underlying principles as described in Chapter 3. We will show in this
section that the local oxidation gives us a direct control over the height
of the tunnelling barriers.

In the semiconductor industry the anodic oxidation in macroscopic
electrolytic cells is a common technique to oxidize the surface of wafers
during the processing of integrated circuits [50]. For the chemical re-
action the wafer is mounted into a container in which a noble metal
serves as cathode and the wafer material as anode. Water or acids
(pH< 7) serve usually as the electrolyte. From the chemical analysis of
this macroscopic wet-chemical oxidation the reaction equation of GaAs
is known [50]:

2GaAs + 12h+ + 10OH− −→ Ga2O3 + As2O3 + 4H2O + 2H+ . (4.1)

Here, h+ stands for positively charged holes in the GaAs. This macro-
scopic process can be scaled down by using a conducting AFM tip to
induce an oxidation of the GaAs locally beneath the tip.

Using a conducting AFM tip with a diameter of a few nanometers

AFM tip

GaAs/AlGaAs

Water

_

+
I   ,Voxox

Oxide

Figure 4.10: Electrolytic nanocell for the local anodic oxidation.
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as cathode one can reduce the size of the above mentioned electrolytic
cell dramatically to a few 100 nm3. Under ambient conditions, there
is an adsorbed water layer on almost every surface and provides the
required electrolyte. The thickness of the water film depends on the
relative humidity of the surrounding air. In Figure 4.10 a schematic
picture of the electrolytic nanocell is shown. We oxidize the surface
with the AFM tip in the contact mode: the tip remains in contact
with the underlying heterostructure during the whole writing process.
With a Keithley source-meter model 2400 we apply a constant current
to the tip that is negatively biased with respect to the sample. The
oxide protrudes out of the surface because of the volume expansion
due to the incorporation of oxygen atoms.

The growth of the oxide in our experiments is determined by the
oxidation current Iox and the voltage Vox. In our experiments Iox is
kept constant throughout the oxidation process. Because of the low tip-
to-sample resistance of a few MΩ we can use |Vox| < 8 V. This reduces
the probability of electrostatic discharging that often destroys the tip
during the writing process. The oxidation in the constant current mode
extends the lifetime of an AFM tip [51].

Since the first experiments on the local oxidation of the surface of
silicon with an AFM, the electrochemical induced nanolithography be-
came an important tool for the fabrication of Si-based semiconductor
devices [52, 53, 54, 55]. After the pioneering work of Ishii and Mat-
sumoto [6] several groups began to utilize the so-called local anodic
oxidation for the direct patterning of the two-dimensional electron gas
(2DEG) in GaAs/AlGaAs-heterostructures [8, 56, 10, 57].

There were several studies on the reaction in this nanocell with sili-
con as anode [58, 59, 60]. Until now there exist several approaches to a
detailed microscopic model of this nanooxidation process on Si [61, 62,
63]. The process on GaAs, compared to Si a very complicated material
system, was only addressed by a study of Okada et al. [64], who investi-
gated the influence of a voltage modulation on the oxide growth. Little
is known about the exact reaction that takes place during the oxide
formation in the nanocell at the GaAs/AlGaAs-surface. Studies with
Auger-electron spectroscopy show that oxygen is incorporated into the
surface by the local oxidation on Si [65, 66, 67] and heavily p-doped
GaAs-wafers [68]. The reaction on heterostructures will be even more
complicated since the samples consist not only of GaAs but of AlGaAs
only a few nm below the surface as well (see Figure 3.2). The macro-
scopic reaction equation is no longer valid, leaving the exact form of
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Figure 4.11: Schematic drawing of the continuous flow system for con-
trolling the relative humidity for the local oxidation.

the equation unclear at this point of the experiments.

Experimental details

To learn more about the nanooxidation, the characteristics of the writ-
ing process on GaAs/AlGaAs, the influence of the oxidation current,
relative humidity, and writing speed on the oxide depth and height
will be discussed next. In all experiments highly n-doped tips with low
spring constants of less than 0.1 N/m fabricated by Nanosensors were
used. Controlling the thickness of the water film and thus the efficiency
of the oxidation process, was achieved with a continuous flow system
built around the AFM. A schematic picture is shown in Figure 4.11. A
brass cover with openings (inlet and outlet) for gaseous Nitrogen allows
an incessant gas stream during the scanning and oxidation. We supply
the Nitrogen from a pressure tank and control the relative humidity
by mixing dry N2 and N2 that was moistened with distilled water.
Additional openings enable the manipulation of the sample from the
outside. The relative humidity is measured by a commercial sensor that
is mounted inside the brass cover. Using this setup we can vary the rel-
ative humidity between 20% and 90%. It turned out that a constant
room temperature is essential to avoid a drift in the relative humidity
during the experiments. The installation of an air conditioning in the
laboratory solved this problem.
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Figure 4.12: (a) Section of the height/depth of an oxide line as a func-
tion of the position on the sample before/after a HCl etch. Writing
speed v = 250 nm/s and Iox = 100 nA. (b) AFM image of an oxide
line before and (c) after the HCl etch. (d) Depth D of the oxide
lines as a function of the relative humidity for two tip velocities
(vtip = 250 nm/s, vtip = 5.0 µm/s) at Iox = 100 nA. The lines
serve to guide the eyes.

Dependence on relative humidity and tip velocity

The depth of the oxide lines is the most important parameter for the
depletion of the heterostructures. We studied the dependence of the
oxide growth on the relative humidity by writing several oxide lines at
different relative humidities and with varying tip velocities. All exper-
iments were done with a constant oxidation current. Directly after the
oxidation the height of each line was measured using the same AFM
tip. The oxide depth can be determined by dipping the samples for
30 s in hydrochloric acid (17%) that selectively removes the oxide. Af-
ter the HCl treatment the sample was mounted again into the AFM
to analyze the depth of the remaining groove.

Figure 4.12(a) shows the height/depth profile of three oxide lines
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Figure 4.13: (a) Oxide height H and depth D as a function of the tip
velocity vtip (b) Average aspect ratio A = D/H as a function of
vtip for all humidities and currents. The lines serve as a guide to
the eye.

that were created at three different relative humidities of 30%, 50%,
and 70% with a writing velocity vtip = 250 nm/s and Iox = 100 nA with
the same AFM tip on wafer 81016. In the lower part of Figure 4.12(a)
the depth-profile of the three lines is shown. The profiles were obtained
by averaging ten consecutive scan lines in the middle of each oxide line
before and after the HCl-etch. Figure 4.12(b)+(c) displays two AFM
images of an oxide line at 70% relative humidity before (b) and after (c)
the HCl treatment. It is evident that the oxidation depth and height
increases with an increasing thickness of the water film on the surface.
In Figure 4.12(d) the depth D of oxide lines is shown as a function
of the relative humidity for Iox = 100 nA with vtip = 250 nm/s and
vtip = 5.0 µm/s. For both tip velocities the depth of the oxide increases
with growing humidity.

These results indicate that the depth of an oxide line written with a
constant oxidation current Iox depends directly on the relative humid-
ity. A similar behaviour was found in a study of Avouris et al. for the
local oxidation of Silicon as well [69].

To characterize the lines we define the aspect ratio A = D/H with
D the oxide depth and H the height of the lines. The influence of the
velocity on the aspect ratio A is shown in Figure 4.13(a) where we plot-
ted the depth D and height H at vtip = 250 nm/s, 1.0 µm/s, 5.0 µm/s,
10.0 µm/s (at constant relative humidity 70%, Iox = 100 nA). An in-
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creasing vtip leads to a reduction of the oxidation depth due to the
shorter reaction time.

From Figure 4.13(a) we can conclude that the oxide height is smaller
than the depth at every tip velocity. By analysing the data of 48 oxide
lines created at different relative humidities (30%, 50%, 70%), oxida-
tion currents (Iox = 100, 250, 500, 1000 nA) and four different writing
velocities (vtip = 0.25, 1.0, 5.0, 10.0 µm/s) we calculated A = D/H.
A is shown in Fig.4.13(b) as a function of vtip, the error bars reflect
the sometimes very rough oxide surface. At vtip = 0.25 µm/s we get
A ∼ 1.6 and with increasing vtip the aspect ratio grows to A ∼ 2.0.
Apparently, the oxide grows faster into the substrate than out of the
surface. This is in contrast to experiments on Si where A < 1 was
observed e.g. in [69]. The origin of this difference is not clear.

The faster oxide growth into the GaAs compared to Si allows in
principle to write narrower oxide lines that have the same depth. D
is the most important parameter for the depletion of the 2DEG in a
heterostructure. Thus one has to optimize the writing parameters to
get the desired oxide depth. In the following we will show that the
current during the oxidation determines D and thus the barrier height
Φ0.

4.3.1 Tunnelling barriers by local oxidation

After this short introduction to the chemistry of the local oxidation
with an AFM, we will focus on the main topic: the fabrication of
tunnelling barriers in the 2DEGs of the heterostructures. Of special
interest is the result of an earlier study which indicates that the elec-
tronic height Φ0 of a tunnelling barrier, respectively the depletion of
the 2DEG underneath an oxide line, depends linearly on the oxidation
current Iox [24, 10]. The exact origin of this experimental result was not
clear, although a higher Iox was believed to deepen the oxide [24, 69],
which would explain this effect.

To test this hypothesis 15 oxide lines were written at a relative hu-
midity of 70% with our typical writing velocity of vtip = 250 nm/s on
the wafer 81016. The oxidation current was varied between 10 nA<
Iox < 1000 nA. In Figure 4.14(a) we plotted the depth D of the 15
lines extracted from the AFM image after the removal of the oxide.
Several functions were fit to the data to determine the dependence of
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D on Iox. The best fit was obtained with the phenomenological form

D(Iox) ∝ I0.4±0.05
ox . (4.2)

The origin of this dependence could not be clarified up to now. The
finite oxidation voltage might be an explanation. This will be discussed
in more detail in a later paragraph.

The three data points for D > 6 nm indicate perhaps a change in
the kinetic of the oxide growth. This is possible, because this particular
heterostructure has a 5 nm thick GaAs-cap layer. Directly underneath
follows a layer of AlGaAs which might lead to another oxide growth.
However with only three data points this is very speculative.

As mentioned above, underneath the oxide a tunnelling barrier is
formed in the 2DEG, which is described by its electronic height Φ0

above the conduction band edge. In the inset of Figure 4.14(b) a sketch
of the conduction band with a tunnelling barrier is depicted. The re-
lation between the depth of the oxide lines and the depletion of the
2DEG is determined by calculating the band structure of wafer 81016
for oxide depths ranging from D = 1 nm to D = 9 nm. The result
is displayed in Figure 4.14(b). A fit with a similar phenomenological
function as in Figure 4.14(a) yielded

Φ0 ∝ D2.4±0.05 (4.3)

and is shown in Figure 4.14(b). In general, the exact dependence has
to be calculated for each heterostructure.
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Figure 4.14: (a) Oxide depth D as a function of oxidation current Iox.
(b) Change of the conduction band minimum as a function of D
calculated with SimWindows [28].
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Figure 4.15: (a) Calculated barrier height Φ0 from the data in Fig-
ure 4.14. (b) Measured barrier height Φm taken from Ref. [24].

For calculating the dependence of Φ0 on Iox we use formula 4.2 in
formula 4.3

Φ0 ∝ Iox. (4.4)

For this specific heterostructure the two results lead to a linear de-
pendence of Φ0 on Iox. The computed Φ0 with the deduced depth of
the oxide lines is plotted in Figure 4.15(a). We observe a linear de-
pendence with a slope of 0.15 ± 0.01 meV/nA. Figure 4.15(b) shows
the experimental results of the measured barrier heights Φm of six
oxide lines written on wafer 81016 taken from Ref. [24]. The slope is
0.14 ± 0.1 meV/nA which is in very good agreement with the value
extracted from the calculations.

The linear dependence of the barrier height on the oxidation current
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is especially interesting since we have control over Φ0 by adjusting
an external parameter that is easily controlled with a current source.
In Chapter 5.1 we will use this technique for the direct writing of a
single-electron transistor.

Remarks on the importance of the oxidation current

These results underline clearly the importance of the oxidation current
for the writing of tunnelling barriers with a constant oxidation current.
The experimentally found linear dependence of the barrier heights on
the oxidation current is in good agreement with the calculated values.
One should keep in mind that these extensive experiments were done
only on wafer 81016 and the origin for the dependence of the oxide
depth on the oxidation current is not totally clear. One possible expla-
nation for the saturation of the oxide depth at the higher currents is the
saturation of the oxidation voltage in our experiments. In several stud-
ies it was shown that the oxide depth is limited by the field strength
in the oxide [58] because the OH−-ions will no longer be transported
through the oxide and finally the reaction will cease to exist.

Compared to Si with an aspect ratio of A < 1 our results prove
that the current enhances the oxide growth into the GaAs which is
indicated by the high aspect ratios of oxide depth vs. oxide height.
This might be an indication for another mechanism of the oxidation.
Please note that more oxygen is incorporated in Si (two O-atoms per
Si-atom) than in GaAs (1.5 O for each Ga and As). This might explain
dhe different A found in the experiments. But the exact stoichiome-
try of the oxide growth is still unclear. It is known for instance that
these anodic oxides contain a finite amount of water that enhances the
volume expansion [50].

However, the exact influence of the oxidation current is still to be
clarified. For an oxide line with a depth of 6 nm, width of 100 nm,
length of 1 µm, and vtip = 250 nm/s an oxidation current of less
than 10−12 A would suffice to fulfill equation 4.1. In principle, we
need only 12 h+ to oxidize two Ga- and As-atoms. Thus we conclude
that the main part of the oxidation current is a direct (tunnelling)
current between tip and sample. The influence on the reaction might
be explained as follows. Avouris et al. demonstrated a current induced
local oxidation process in thin metallic films with current densities in
the order of 1011 Am−2 [58]. Our oxidation currents lead to densities
in the range of 1010 Am−2 which is one order of magnitude smaller.
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For this estimation we assumed a tip radius in the range of half the
typical line width. Further mechanisms that might play a role are a
local heating underneath the tip and an electromigration of atoms or
the OH−-ions. Actually, high currents through an AFM tip were used
to change the doping of a semiconductor [70].

Further studies are needed to learn more about the mechanism and
exact reaction of the oxidation with constant oxidation current. The
usage of durable AFM tips (e.g. diamond) and different heterostruc-
tures, would help to clarify the influence of the layer structures, the
different elements (Al, Ga, As, Si, ..), and the shape and doping of the
AFM tip on the local oxidation.

4.4 Comparison of local oxidation and
nanomachining

In Chapter 4.2 we described mechanical nanomachining as another
approach to fabricate tunnelling barriers. Both the nanomachining and
the local oxidation together with the flexibility of the AFM allow to
write directly almost every geometry with an AFM tip into the 2DEG.
Here we want to compare the two fabrication principles and comment
on the practicability of both techniques.

The major advantage of the nanomachining and the local oxida-
tion is the spatial separation between the created structures and the
2DEG which minimizes the possible formation of defects. Additionally,
we don’t need any further processing steps, masks, or photoresists to
complete our samples.

Both approaches have their distinct advantages. With the local ox-
idation we can controllably write tunnelling barriers with a specific
height into the 2DEG. But there are limitations to the maximum break-
down voltages to a few hundred meV. With the nanomachining we can
deplete 2DEGs that are more than 100 nm below the surface and create
insulating lines with breakdown voltages of several volts [71] but the
2DEG is depleted 200 nm around the nanomachined lines. This reduces
the steepness of the potential walls of devices defined by nanomachin-
ing compared to the local oxidation where the depletion length is only
a few ten nanometers long, see Chapter 5. Because of the limitation to
the oxide growth, the local oxidation is limited to 2DEGs that are less
than 50 nm below the surface [30]. Because of the water film needed

44



4.5 Conclusion

for the chemical reaction the local oxidation has to be performed under
ambient conditions. In contrast, the nanomachining of surfaces could
be utilized in principle in any environment, ranging from a cryostat
with temperatures of some Kelvin to applications in a ultra-high vac-
uum chamber for e.g. the in situ manipulation of samples grown with
molecular beam epitaxy. Which of the techniques is finally used for
fabricating mesoscopic devices depends on the desired characteristics.

4.5 Conclusion

In the first part of this chapter we introduced the controlled nanoma-
chining for the depletion of heterostructures. We fabricated quantum
point contact devices by engraving a constriction into a GaAs/AlGaAs-
heterostructure with the tip of an atomic force microscope. We scribed
devices using both a silicon tip and a diamond tip to study the influ-
ence of the tip material. It turned out that a diamond tip is almost
perfect not only on the basis of a fast and simple processing but also in
forming proper potential profiles to observe ballistic electron transport.
The appearance of the 0.7 (2e2/h) conductance anomaly confirms the
high quality of diamond-engraved devices. We deduced the depletion
lengths induced by the different tips, yielding wdepl,dia ∼ 200 nm for
diamond-engraved samples, which is roughly two times smaller than
typical depletion lengths in devices patterned with a Silicon tip.

In the second part of the chapter we introduced the local oxidation
with an AFM. With this alternative approach to the depletion of het-
erostructures we have a technique that gives us a direct control over
the height of the tunnelling barriers in a two-dimensional electron gas.
With the analysis of the oxidation process we proved that the oxidation
current determines the barrier height. We found a linear dependence
between the oxidation current and the barrier height on the investi-
gated wafer. With these tunnelling barriers we are able to fabricate a
single-electron transistor as we demonstrate in Chapter 5.
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5 Coulomb blockade in quantum dots

In this chapter we introduce the basic principles of the constant in-
teraction model that is used to describe the characteristics of single-
electron transistors. We develop the model and compare it with the re-
sults obtained from transport measurements on a single-electron tran-
sistor. This device was fabricated with local oxidation with an atomic
force microscope (AFM) in a GaAs/AlGaAs-heterostructure and is de-
scribed well within the framework of the model.

In the second part we demonstrate the stepwise fabrication of paral-
lel double quantum dots. First a 2D-1D-2D resonant tunnelling device
is fabricated with controlled nanomachining of the in-plane gates and
subsequent local oxidation of a double-barrier structure. The resonant
tunnelling device shows negative differential conductance in transport
measurements at low temperatures. After this characterization two
parallel quantum dots are created by cutting the 1D-wire again with
local oxidation into two small quasi zero-dimensional regions. The new
device shows Coulomb-blockade oscillations and diamonds with differ-
ent periods for each of the quantum dots.1

1Parts of this chapter were already published in U. F. Keyser, H. W. Schumacher,
U. Zeitler, R. J. Haug, and K. Eberl, Fabrication of quantum dots with scanning
probe nanolithography, physica status solidii (b) 224, 384 (2001) and U. F.
Keyser, M. Paesler, U. Zeitler, R. J. Haug, and K. Eberl, Direct fabrication
of parallel double quantum dots with an atomic force microscope, accepted for
publication in Physica E.
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5.1 Single charge tunnelling

5.1 Single charge tunnelling

A single-electron transistor consists of a small region of space, in semi-
conductor physics named quantum dot (QD), that is coupled to the
environment, source and drain contacts and a capacitively coupling
gate. In Figure 5.1(a) a schematic picture of such a single-electron
transistor (SET) is shown. There are many different possible realiza-
tions of these structures. A detailed description of these techniques
lies outside the scope of this thesis and can be found in the extensive
literature, see e.g. [1, 72].

The corresponding circuit diagram for a SET is depicted in Fig-
ure 5.1(b). W choose to depict a configuration with two gate electrodes
(G1 and G2) because this is a common feature for all our devices. Each
gate has a capacitance CG,x (x = 1, 2) to the QD. The tunnelling bar-
riers that separate the dot from the leads are characterized by their
tunnelling rates ΓS,D and the capacitances CS,D to the source and
drain contacts, respectively.

5.1.1 Constant interaction model

To start, we define the classical overall capacitance of a SET CΣ =∑
i Ci by the sum over the capacitances Ci of every attached contact

or gate. With these definitions and neglecting any influence from the
single-particle energy levels, the free energy F (N) of a QD is just the

QD

VSD

VG2VG1

(b)

CG2

CG1
C  , GD D

C  , GS S

(a)

Gate

Source DrainQD

Figure 5.1: (a) Single-electron transistor (SET): a quantum dot (QD)
is coupled to contacts, source and drain, and a gate electrode. (b)
Circuit diagram for an SET with two attached gates. Each contact
and gate is characterized by a specific capacitance Ci to the QD.
The tunnelling barriers are defined by the transparencies ΓS,D

47



5 Coulomb blockade in quantum dots

sum of the classical energy of a capacitor with CΣ and the outer gate
voltages:

F (N) =
(Ne)2

2CΣ
−
∑

i

Ne
Ci

CΣ
Vi (5.1)

where the sum over i is carried out over all outer voltages Vi. The
chemical potential µQD(N) of the QD is defined as the derivative of
F (N) with respect to N :

µQD(N) =
∂F (N)

∂N
=

e2

CΣ
N − 1

CΣ

∑
i

NCieVi . (5.2)

To add one electron to a QD with N electrons we have to pay the
charging energy U = µQD(N + 1)− µQD(N) = e2/CΣ. In this model
U is constant with respect to N if CΣ and all other capacitances are
independent of N , in general this is only true for metallic or semicon-
ductor QDs with N � 100.

With a slight modification of this model by adding the single-particle
levels Es inside the QD to F (N) we get the constant interaction model
which is the most simple description of a semiconductor quantum dot:

F =
N∑
1

Es +
(Ne)2

2CΣ
+ Ne

∑
i

ciVi. (5.3)

The energy difference ∆E needed to add an electron to the QD has to
include the energy difference of the single particle levels:

∆E =
e2

CΣ
+ EN+1 − EN . (5.4)

If the same state is filled consecutively with a spin up and a spin down
electron it follows that ∆E = U+EN+1−EN = U . For electrons added
to different states EN+1 6= EN , ∆E will be larger than U . In general, U ,
Ci, and the level structure will depend upon the gate voltages. In this
case the constant interaction model still describes the main features of
the transport characteristic of SETs but only in a small range of the
gate voltage.

Coulomb-blockade oscillations

After the definition of µQD(N) one can write down the relations that
have to be fulfilled to get a stable number of electrons N on a QD. With
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Figure 5.2: (a) Schematic picture of a QD between the tunnelling bar-
riers, with attached leads, and one gate. µS and µD denote the
electrochemical potential in the contacts. A small bias voltage is
applied which leads to ∆µ = µS − µD = eVSD. We show the ad-
dition spectrum. (b) Coulomb-blockade oscillations as a function
of the gate voltage at finite temperatures. After each peak the
electron number on the dot N increases by one.

µS , µD as the chemical potentials in the source and drain contacts these
are:

1. µS , µD < µQD(N + 1)

2. µS , µD > µQD(N)

3. µS , µD + kBT < µQD(N + 1) .

kBT is the thermal energy of the electrons in the leads, with kB

Boltzmann’s constant and T the absolute temperature. If the chem-
ical potentials in the contacts are higher than µQD(N) but lower
than µQD(N +1), because of energy conservation N is fixed (relations
(1)+(2)).

A typical charging energy U for our devices is in the range of 1 meV
which corresponds to a temperature range of T ∼ 10 K. An observation
of the charging effects requires U � kBT and thus the temperature T
of the device has to be T < 1 K to fulfill relation (3) and enable an
undistorted measurement of the Coulomb blockade.

A simple sketch of a quantum dot with the two tunnelling barriers
and energy levels equally spaced by U is shown in Figure 5.2(a) at
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5 Coulomb blockade in quantum dots

T = 0. One gate is depicted underneath the structure. Here we assume
that the level spacing EN+1 − EN is much smaller than U .

We can tune µQD by the outer gate voltages and thus N is di-
rectly controlled. We start our discussion with the configuration shown
in the left-hand picture in Figure 5.2(a). If only a small bias volt-
age eVSD � U is applied, no electrons are transported through the
QD if conditions (1)-(3) are met and there are N electrons on the
dot. By increasing VG the electrochemical potential is lowered until
µS ≥ µQD(N +1) ≥ µD. As soon as the level enters the small bias win-
dow, the charge on the QD fluctuates between N and N +1, right-hand
side in Figure 5.2(a). A sharp rise of the conductance G is the conse-
quence due to the electrons passing the QD. With a further increase
of VG it finally follows µQD(N + 1) < µD and the direct tunnelling of
electrons is once more blocked. G drops again to zero.

This behaviour leads to a peak in the G(VG) characteristic. A se-
quence of these peaks is often named as Coulomb-blockade oscillations.
After each peak the electron number on the QD is again constant but
with one additional charge confined on the dot. These considerations
are summarized in the schematic picture in Figure 5.2(a).

In Figure 5.2(b) we show the schematic characteristic for a semicon-
ductor quantum dot at finite temperatures. The peak heights reflect
the different overlap of the wave function on the dot with the contacts
due to distinct single-particle states. It should be mentioned again,
that kBT � U is required to observe these effects.

For a determination of the overall capacitance CΣ and thus an esti-
mate for the charging energy U we have to compare the level spacing
on the QD with a known energy like that of the injected electrons
E = αeVSD. Here α is again a lever factor (see Chapter 2.3.1) that
accounts for the voltage drop occurring partly at the first and the sec-
ond tunnelling barrier. We start with the configuration shown in Fig-
ure 5.3(a) with µS = µD = µQD(N + 1) + U/2. In this case, adding an
electron to a symmetric QD (α = 0.5) requires a source-drain voltage
VSD,U

VSD,U = 2 · 0.5
U

e
=

e

CΣ
. (5.5)

This is depicted on the right-hand side of Figure 5.3(a). In this config-
uration the charge on the dot fluctuates between N −1, N , and N +1.
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Figure 5.3: (a) Sketch of a quantum dot at zero and finite bias volt-
ages. (b) Ideal charge stability diagram of a quantum dot: the
conductance G(VG, VSD) is shown. The thick black lines denote
the position of the Coulomb-blockade peaks.

The charge stability diagram

The position of the energy levels on the dot depends on all outer gate
and bias voltages. Each voltage pair in the VSD, VG-plane where an
electron might be added to the dot defines a charge-degeneracy point.
At these points the electron number is not constant and a current can
flow through the quantum dot.

As explained in the former section, this is achieved by either applying
a sufficiently high VG or by increasing VSD, Figure 5.3(a). A condition
for the constant interaction model is that the capacitances are constant
and thus µQD depends linearly on all applied voltages. Therefore, the
regions in the VSD, VG-plane where N is stable have boundaries that
lie on straight lines when we plot the conductance G = ISD/VSD as a
function of VSD and VG, as shown in Figure 5.3(b). The gradients of
the peak shifts can be calculated to

∂V 1
SD

∂VG1
= −CGi

CS
(5.6)

∂V 2
SD

∂VG1
=

CGi

CΣ − CS
(5.7)
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5 Coulomb blockade in quantum dots

these lines border the so-called Coulomb-blockade rhombus or dia-
mond. A detailed description of the derivation of these formulae can be
found in Ref. [73]. The resulting graph is known as the charge stability
diagram and is depicted in the lower part of Figure 5.3(b).

Inside each diamond around zero bias the number of electrons on
the QD is stable and no transport takes place. In the diamonds with
their center at finite bias voltages the charge on the dot can fluctuate
which leads to a finite G. These diamonds are depicted in light grey.
The possible electron numbers on the dot are given in the circles in
each region with constant G in Figure 5.7(b). For example, in the
diamond marked with N and N + 1 the charge on the dot fluctuates
between these values. The arrows connect the dot configurations shown
in Figure 5.3(a) with the corresponding positions in the plot. As one
can see the maximum width of the diamonds in the VSD-direction gives
us an estimate for VSD,U .

In principle, this graph contains all the information needed to char-
acterize an SET with its capacitances. In our common measurement
setups the drain contact is grounded. Please note, that a direct mea-
surement of the drain capacitance CD is only possible by an exchange
of the contacts.

Remarks on the model

We want to emphasize that this model holds only for low tunnel cou-
pling between the QD and the leads. Low means in this context that
the tunnelling resistance RT of each barrier has to be much higher
than h/e2. This relation is obtained from the uncertainty relation
∆E∆t � h and the overall capacitance CΣ of the quantum dot that
defines a typical time scale ∆t = RT CΣ.

Transport through the dot in this coupling regime will occur as two
sequential tunnelling events of one electron. Higher order or correlated
tunnelling of more than one electron at a time will be suppressed with
a factor of (~Γ)n n = 2 being the number of tunnelling barriers and
Γ = ΓS +ΓD the barrier transparencies of the source and drain barrier.
ΓS,D measures the tunnelling rate of the electrons through the source
and drain barrier, respectively. Additionally, we assume that the energy
conservation is valid for all tunnelling events. Deviations from this
behaviour will be later discussed in this thesis.
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5.1 Single charge tunnelling

Local oxidation of a single-electron transistor

In the preceding paragraphs we discussed the constant interaction
model. In this section we compare the characteristics of a ”real” SET
with the model.

We fabricated our SET on wafer 81016 with the local oxidation tech-
nique described in Section 4.3. The 2DEG is 40 nm below the surface.
The exact layer sequence and important parameters of the 2DEG in
this GaAs/AlGaAs-heterostructure can be found in Chapter 3.1. An
AFM image of the completed SET is depicted in Figure 5.4. The in-
plane gates [74] (marked by IPG1 and IPG2 in the figure) were isolated
from the rest of the 2DEG by oxide lines defined on the surface with
an oxidation current of Iox = 1 µA. The oxide lines were written three
times to avoid any defects that could lead to a leaking gate. These de-
fine the boundaries of a 400 nm wide channel that connects the source
and drain contacts.

In the next step a quantum dot is defined by writing two tunnelling
barriers with a ten times lower current of Iox = 100 nA perpendicular
to the channel into the 2DEG. They have a distance of 300 nm. This
forms a small island of 400 × 300 nm2 with about 500 electrons. The
number was estimated from the electron density of the material 81016
(see Table 3.1). The two tunnelling barriers couple the quantum dot
between the IPGs to the source and drain contacts. With this config-

IPG1

IPG2

Drain

Source

500 nm

Figure 5.4: AFM image of a single-electron transistor on wafer 81016
fabricated with local oxidation. The island dimensions are 300 ×
400 nm2.
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uration the SET corresponds directly to the circuit diagram already
discussed in Figure 5.1(b).

Measurement of Coulomb-blockade oscillations

The Coulomb-blockade oscillations of our quantum dot measured at
T = 350 mK with a standard lock-in setup are shown in Figure 5.5 as a
function of VG1. The peak conductance increases because the tunnelling
barriers are also influenced by the in-plane gate voltage VG1, but the
distance between the peaks is constant over the whole gate voltage
range. This experimental finding indicates that the constant interaction
model is applicable for the description and N will be large in this
structure. The extracted gate capacitance CG1 = 28 aF is calculated
with

CGi =
e

∆VGi
(5.8)

with ∆VG1 the peak spacing of two consecutive Coulomb-blockade
peaks.

The symmetry of the gates is tested by measuring the gate-gate
characteristic of the QD in the linear transport regime VSD ∼ 0: One
gate (IPG1) is stepped while sweeping the other gate voltage (IPG2)
quasi continuously. The result is shown as a grey-scale plot of the con-
ductance G as a function of VG1, VG2 in Figure 5.6. Black stands for
high and white for low conductance. All Coulomb-blockade peaks move
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Figure 5.5: Measurement of the linear conductance G of the oxidized
SET as a function of the in-plane gate voltage VG1 at VG2 =
30 mV, T = 350 mK.
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Figure 5.6: Grey-scale plot of the measured linear conductance G as a
function of both in-plane gate voltages VG1, VG2.

parallel in the plane, which means that both gate capacitances are con-
stant. This is underlined by the parallel dashed lines that denote the
positions of four adjacent Coulomb-blockade peaks. From the symme-
try of the plot we can conclude already that the gates are almost sym-
metric. A calculation of the capacitance of IPG2 yields CG2 = 26 aF,
which is indeed very close to the value for IPG1. This indicates that
the gates are very symmetric as expected from the fabrication with the
same oxidation current. The extracted capacitances are summarized in
Table 5.1.

Charging Energy of the dot

In Figure 5.7 the differential conductance as a function of VSD and
VG1 is plotted as a grey-scale map. As usual in this thesis high conduc-
tance is displayed in black and low appears as white. The real device
behaves as expected and shows nice Coulomb-blockade diamonds over
the full voltage range. For clarity, one Coulomb-blockade diamond is
marked by white lines. The extracted charging energy U ∼ 0.9 meV re-
mains almost constant throughout the whole measurement. With this
result we calculate the overall capacitance CΣ ∼ 180 aF. The deduced
parameters are shown in Table 5.1.

Knowing the charging energy the electric diameter De of the quan-
tum dot can be estimated by assuming that the QD is a flat disk [75]:

Cd = 4ε0εrDe. (5.9)
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AFM image
Width 400 nm
Length 300 nm
N ∼ 500

Transport measurements
U ∼ 0.9 meV
C (aF)
CΣ ∼ 180
CG1 28
CG2 26
CS ∼ 110
CBG ∼ 0.08

Table 5.1: Parameters extracted for the SET in Figure 5.4(a).
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Figure 5.7: Differential conductance as a function of VSD and VG1 of the
SET shown in Figure 5.4(a), at VG2 = 0.0 mV and T = 350 mK.

56



5.2 Stepwise fabrication of parallel quantum dots

For GaAs with εr = 12.4 and CΣ = 180 aF the electric diameter
is De ∼ 400 nm which is a little bit larger than the geometrically
expected values. This discrepancy originates from the fact, that this
equation describes the capacitance of a disc without any attached in-
plane gates and neglecting any effects from the 2DEG. Here, the CG,i

are already only a factor of four smaller than the overall capacitance VΣ

and thus cannot be neglected. Despite the major simplification of this
calculation we can conclude, that the depletion length around the oxide
lines is definitely smaller than 100 nm and most probably in the range
of some ten nanometers. The values reported for the depletion length
e.g. of shallow etched structures lie in the range of several 100 nm [76].

This result indicates the almost perfect transfer of the pattern gen-
erated by the local oxidation to the 2DEG. The very short depletion
length was reported before in the literature but these structures were
equipped with a metallic top-gate electrode and fabricated in an even
shallower electron gas [56, 77]. Both features shorten the depletion
length further compared to our experiments.

5.2 Stepwise fabrication of parallel quantum
dots

We show the stepwise fabrication of two parallel quantum dots with an
AFM. First we produce in-plane gates (IPG) with controlled nanoma-
chining and subsequently a resonant tunnelling diode (RTD) with local
oxidation by writing a double-barrier structure between the IPGs. The
IPGs are fabricated with controlled nanomachining to achieve a wider
gate voltage range. For the tunnel coupling we choose to use oxide
barriers to have a maximum of control in the process.

The RTD shows negative differential resistance and especially the
form of the resonance peak is controlled with an outer gate voltage
applied to one of the IPGs. After the characterization of the device
we cut the one-dimensional wire in two parts also with local oxidation
which leads to the formation of two quasi zero-dimensional regions.
These parallel quantum dots are characterized again with transport
measurements and show Coulomb-blockade oscillations.

One interesting feature of parallel quantum dots is the possible for-
mation of coherent electronic states, see e.g. [1]. Several groups studied
extensively coupled quantum dots, but these experiments were per-
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formed on devices with dots in series [78, 79, 80, 81] or with only one
dot connected to the leads [82]. With the conventional lithographic
techniques the fabrication of two quantum dots in parallel both cou-
pled to the same contact pair is a very challenging problem. Very re-
cently a new fabrication scheme was demonstrated by Holleitner et al.
using elaborate electron beam lithography in combination with a cal-
ixarene layer [83]. The usage of AFM-based nanolithography provides
a major simplification and a direct, simple, and robust approach to the
manufacture of parallel double dots.

First step: Fabrication of an In-plane gate transistor

Our GaAs/AlGaAs-heterostructure was grown by molecular beam epi-
taxy with the following layer sequence from top to bottom: 10 nm GaAs
cap layer, 15 nm Si-doped AlGaAs, 15 nm undoped AlGaAs spacer,
and 500 nm of GaAs (wafer 81016, see Figure 3.2). This is the same
heterostructure as used for the SET described in the preceding section.

In the first fabrication step the controlled nanomachining is done by
applying a contact force of about 50 µN and scanning the tip over the
surface (vtip = 100 µm/s). Grooves are scribed with a tapping-mode
Si-tip into the GaAs/AlGaAs to deplete the 2DEG underneath and
write insulating lines as described in Section 4.2. During the fabrication
of the gates the sample resistance is monitored and as soon as the
resistance of a nanomachined line exceeds 3 MΩ the tip is retracted.
The low-temperature resistance of these lines is very high (R > 50 GΩ)
over a wide voltage range (at least ±3 V). The high resistance leads to
low leakage currents, therefore the nanomachined lines are suitable to
define gates for mesoscopic devices.

During the first step two in-plane gates (IPG) are nanomachined
which define a lateral field effect transistor [74]. In principle, this device
works like the quantum point contacts described in Section 4.2, but the
defined channel is 2.7 µm wide and 2 µm long which is too wide for the
observation of ballistic conductance in this heterostructure. After this
processing, the IPG-transistor is tested at T = 4.2 K to check whether
the gates have the expected high resistance to the constriction or not.
If the devices show the expected characteristic, the samples are again
mounted into the AFM for the further fabrication steps. Please note,
that in the following parts of this chapter all transport measurements
were performed in a 3He-cryostat at a temperature T = 350 mK if not
stated otherwise in the text.
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5.2 Stepwise fabrication of parallel quantum dots

Second step: Fabrication of a resonant tunnelling diode

The double-barrier structure is added to the IPG-channel by local ox-
idation with a conducting AFM tip. The AFM tip is negatively biased
with respect to the grounded sample and scanned over the surface with
a tip velocity of vtip = 250 nm/s. We work at a relative humidity of
60% and use the naturally formed water film on the sample as elec-
trolyte for the electrochemical oxidation of the sample. As shown in
Chapter 4.3 the height of the tunnel barriers Φeff depends linearly on
Iox [10].

The double-barrier structure was written across the IPG-channel
with a distance of 250 nm between the tunnel barriers and an constant
oxidation current of Iox = 150 nA. An AFM image of the structure
is shown in the inset of Figure 5.8. As mentioned above the gate-
gate separation is 2.7 µm. Taking into account the depletion length
of approximately 350 nm around the grooves made with a Si-tip (see
Section 4.2) the conductive region is about 2.0 µm wide. Thus we have
a lateral resonant tunnelling diode (RTD) consisting of an quasi one-
dimensional island with a width of 250 nm and a almost ten times
higher length of 2.0 µm.

The IV -characteristic of the device at T = 350 mK is depicted in
Figure 5.8. The 1D-subband in the structure is coupled to the 2D-
contacts by the two tunnelling barriers, and can be tuned by the IPGs
relative to the electrochemical potentials of source µS and drain µD.
Displayed is ISD as a function of the voltage applied across the struc-
ture VSD. The voltage of one IPG was stepped from -650 mV to -
680 mV with ∆VIPG = −10 mV from top to bottom. All four curves
show peaks in ISD with negative differential conductance and a peak-
to-valley ratio decreasing from 1.5:1 (-650 mV) to 1.1:1 (-680 mV).
This demonstrates the tunability of the position and shape of the res-
onance by an IPG-voltage. With the in-plane gate voltage we tune the
electrochemical potential of the contacts and thus the relative barrier
heights. Our device shows a similar characteristic to a lateral RTD
defined in a 2DEG with a negative biased metallic gate as shown by
several groups, see e.g. [84, 85, 23].

The RTD has almost symmetric tunnelling barriers as indicated by
the symmetric IV -characteristic in Figure 5.8. Both resonances have
a peak current of just below 1 nA and the position of the resonance is
almost the same for both bias directions Vres ∼ | − Vres|.
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Figure 5.8: Source-drain current ISD as a function of the source-drain
bias VSD for different in-plane gate voltages VIPG, at T = 350 mK.
Inset: AFM micrograph of the RTD. S and D mark the source-
drain contacts and IPG the in-plane gates.

Third step: Fabrication of the parallel quantum dots

After this characterization step the RTD was again mounted into the
AFM and another local oxidation was done to cut the 1D-wire into
two quantum dots. In the AFM micrograph (Figure 5.9(a)) the sam-
ple is shown after the second oxidation step. The tunnelling barrier
separating the dots was written with Iox = 300 nA. Compared to the
double-barrier structure this should lead to a lower tunnel coupling
between the two quantum dots than between the dots and the leads,
see Chapter 4.3.

The reduced tunnel coupling hinders the formation of a molecular
state between the two quantum dots. With this design the most im-
portant interaction between the two dots is of the Coulomb type. The
electrochemical potential of one dot may depend on the charging state
of the other one. From the transport measurements we find that this
is not important for the main characteristic of our device. These argu-
ments indicate that we have two single-electron transistors in parallel
that can be treated as individual devices. We apply the constant in-
teraction model that was described in the preceding Section 5.1 to
determine the capacitances of the QDs.

A simple circuit diagram of the device is displayed in Figure 5.11(b).
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Both dots share the same leads enabling parallel transport through
them. For clarity a configuration only with IPG1 is depicted. For the
other gates (IPG2, backgate) one has to add capacitances between each
gate and QD1 and QD2, respectively. The labels of the two quantum
dots were chosen according to the nearest in-plane gate. For complete-
ness we depict also a tunnelling barrier with a capacitive coupling
between the two dots, but the inter-dot coupling is so small in our
device that we can neglect it.

Transport measurements on the parallel quantum dots

We investigated the properties of this new sample with transport mea-
surements as well. In principle, the capacitance between the quantum
dot and one of the IPGs is determined by the size of the dot and the
relative distance. In the next paragraph we will identify the Coulomb-
blockade oscillations of the respective QD by measuring the gate-gate
characteristic of the device.

In Figure 5.10(a) the source-drain current ISD as a function of the
backgate voltage for two different IPG-voltages is depicted. In the up-
per curve (VIPG1 = −0.275 V, VIPG2 = −0.1 V) we observe a fast
oscillating Coulomb-blockade signal with a period ∆V ∼ 0.36 V that
is modulated with a much longer period of ∼ 6.3 V. In the lower
curve in Figure 5.10(a) the gate voltages were set to VIPG1 = −0.1 V
and VIPG2 = −1.0 V. The inset in Figure 5.10(a) shows a magni-
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Figure 5.9: (a) AFM image of the parallel quantum dots, the RTD in
Figure 5.8 was cut in the middle. The new oxide line is marked
by the two arrows. (b) Circuit diagram for one gate configuration
(IPG1).
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Figure 5.10: (a) Source-drain current ISD as a function VBG of the dou-
ble quantum dot for VIPG1 = −0.275 V, VIPG2 = −0.1 V (upper
curve) and VIPG1 = −0.1 V, VIPG2 = −1.0 V (lower curve). The
curves are offset for clarity. (b)+(c) Blockade of the current flow
through QD2 by applying a high negative gate voltage to IPG2.

fication of the region marked with the dashed box. At the second
gate voltage pair the modulation observed in the upper curve vanished
completely whereas the fast Coulomb-blockade oscillations remain un-
changed apart from a slight shift. If we assume that the oscillations with
the longer period belong to QD2, which is situated next to IPG2 and
the oscillations with the shorter period to QD1 we can totally deplete
and block the transport through QD2 by applying VIPG2 ∼ −1 V. This
circumstance is visualized in Figure 5.10(b)+(c). At high VIPG2 the
transport through both dots occurs simultaneously (Figure 5.10(b))
but with increasing negative VIPG2 the QD2 is finally depleted and
thus the transport is blocked, Figure 5.10(c).

In this context, IPG1 should control the adjacent QD1 in a similar
manner. In Figure 5.11 traces of the differential conductance dISD/dVSD

at VSD ≈ 0.0 mV as a function of the backgate voltage VBG are dis-
played. IPG2 was kept constant at -100 mV and IPG1 was stepped
from -250 mV to -650 mV with ∆V = −100 mV. In the topmost curve
(VIPG1 = −250 mV) we observe the fast Coulomb-blockade oscillations
with a period of ∆VBG ∼ 0.36 V. This corresponds to a gate capaci-
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Figure 5.11: Measured differential conductance dISD/dVSD as a func-
tion of VBG and stepwise variation of VIPG1 (from top to bot-
tom: −250 mV ≥ VIPG1 ≥ −650 mV, ∆VIPG1 = −100 mV,
VIPG2 = −100 mV, T = 350 mK). The Coulomb-blockade os-
cillations of QD2 are marked with arrows. The curves are offset
for clarity.

QD1 QD2
C (aF) Figure 5.10 + Figure 5.11

CBG (aF) 0.45 0.025
CIPG1 (aF) 10 0.9
CIPG2 (aF) 8 1.1

Figure 5.12
CS 90 40
CD ∼ 140 ∼ 28
CΣ 250± 10 70± 15

Table 5.2: Extracted capacitances for the double quantum dot.

63



5 Coulomb blockade in quantum dots

tance between this QD and the backgate of CBG,1 ≈ 0.45 aF. As above
we assume that this is the signal of QD1. By lowering VIPG1 (lower
curves) the onset of the fast oscillations is shifted to higher VBG and
at VIPG1 = −450 mV a new peak appears (marked with an arrow)
corresponding to adding of an electron to QD2. Finally at -650 mV
a second series of Coulomb-blockade peaks with a much longer pe-
riod of ∆VBG ∼ 6.3 V is observed already seen in the upper curve in
Figure 5.10(a). The corresponding capacitance is CBG,2 = e/∆V ∼
0.03 aF to the backgate. At VIPG1 ≥ −250 mV the conductance is
dominated by the fast oscillations and for VIPG1 ≤ −450 mV we mea-
sure the Coulomb-blockade signals of both dots. At VIPG1 = 650 mV
the fast oscillations are almost completely suppressed. From these re-
sults it is evident that IPG1 controls mainly the QD1 with its faster
Coulomb-blockade oscillations. With the period of ∆V ∼ 0.36 V we
extract the backgate capacitance of QD1 CBG,2 ∼ 0.45 aF. We can
conclude from these findings that we can control indeed the current
flow through both dots with the two in-plane gates.

The assignment of the Coulomb-blockade oscillations to the two
QDs can be checked by comparing the capacitances between the QDs
and the two in-plane gates. Apart from the size of the dots, the dis-
tance between dot and gate should determine CIPGx,y, with x = 1, 2
and y = 1, 2. The capacitance between QD1 and IPG1 CIPG1,1 ≈
10 aF is calculated from the shift of the Coulomb-blockade oscilla-
tions of QD1 by applying ∆VIPG1 = −0.1 V in Figure 5.11 with
CIPG1,1 = ∆CBG/∆CIPG1×CBG,1. For the capacitance between IPG1
and QD2 we get CIPG1,2 ≈ 0.9 aF. The capacitances CIPG2,1 ≈ 8 aF
and CIPG2,2 ≈ 1.1 aF were deduced from the measurements in Fig-
ure 5.10(a).

The comparison of the above values yields CIPG1,1 > CIPG2,1 and
CIPG1,2 < CIPG2,2. This indicates that the distance between QD1 and
IPG1 is smaller than between QD1 and IPG2 and vice versa for QD2.
With these results we can conclude, that we cut the 1D wire into two
quantum dots that are parallel to each other.

An interesting aspect are the different capacitances of the two quan-
tum dots to the in-plane gates and the backgate: CBG,1 ∼ 0.45 aF and
CBG,2 ∼ 0.03 aF. This indicates a different size of the quantum dots
which is in contrast to the AFM image of the completed device shown
in Figure 5.9(a). From the geometry at the sample surface both QD
should have the same size. Apparently QD1 is much larger than QD2
because the capacitance to the backgate depends mainly on the dot
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5.2 Stepwise fabrication of parallel quantum dots

areas. QD1 has probably the shape of a long box which is 200 nm wide
and several 100 nm long. In contrast the smaller QD2 has probably a
more circular form with a diameter of about 200 nm.

Measurement of the overall capacitances

To obtain the overall capacitances of the QDs in Figure 5.12 a greyscale-
plot of the absolute value of the source-drain current ISD of the device
in Figure 5.9(a) is shown. The backgate-voltage VBG and the source-
drain voltage VSD are varied and the IPGs constantly biased with
VIPG1 = −550 mV and VIPG2 = −330 mV. We choose this in-plane
gates voltages to achieve a high onset voltage VBG for the Coulomb-
blockade oscillations. In the grey-scale map Coulomb-blockade dia-
monds appear with two different sizes for QD1 and QD2. At high
backgate-voltage VBG > 16 V we observe many small diamonds – some
are marked with black lines. By analysing the maximal width VSD,max

we obtain the overall capacitance CΣ of QD1 with 2e2/CΣ = eVSD,max

to CΣ,1 ≈ 250 ± 10 aF. A large diamond at VBG < 16 V is marked
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Figure 5.12: Absolute value of the current ISD through the double-
dot as a function of the backgate voltage VBG and the source-
drain voltage VSD at VIPG1 = −550 mV, VIPG2 = −300 mV. At
VBG < 16 V the transport is dominated by QD2 (large coulomb-
blockade diamond, indicated by white line). At VBG > 16 V the
current flows through QD1 and QD2 (small diamonds, black lines).
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5 Coulomb blockade in quantum dots

by white lines. We can attribute this diamond to QD2 with CΣ,2 ≈
70 ± 15 aF. The capacitances differ by a factor of four. In Table 5.2
the results of the capacitance measurements are summarized.

However we can conclude that we succeeded in the stepwise fabri-
cation of two parallel quantum dots. Please note, that from another
point of view the subsequent fabrication of the device is also a diagnosis
tool. The cutting of the RTD enables us to determine the properties of
the 1D wire that showed the 2D-1D-2D resonant tunnelling. Here we
find that the wire was asymmetrical located in the IPG-channel which
leads us to the assumption that dislocations and inhomogeneities are
present in the structure. One possible explanation is a wider depleted
region around the groove defining IPG2 which is 3 nm deeper and
slightly wider than the groove of IPG1. As shown in Section 4.2 the
depletion width around the nanomachined lines increase with the depth
and width of the groove.

We do not observe any clear signs of a coupling between the dots
in the gate-gate characteristics in Figure 5.10(a) and Figure 5.11. The
absence of discontinuities in the peak shifts as a function of the gate
voltages underlines this assumption. The appearance of a sudden jump
in the position of the Coulomb-blockade peaks would indicate that the
electrochemical potential on one dot is changed by an additional charge
on the second dot. In Figure 5.12 there is a modulation of the transport
through QD2 with a period that would fit to the capacitively charging
of QD1. The exact origin of these structures remain unclear at the
moment.

As a consequence of our results we can conclude that QD1 corre-
sponds to an area that fits to the geometric size extracted from the
AFM image. The origin of the very small QD2 remains unclear. We al-
ready mentioned the wider depleted region around one of the nanoma-
chined grooves that could lead to a smaller dot. An additional effect
might be a local potential minimum induced by some disorder leading
to a dot with a rather small confinement potential and thus to a higher
charging energy.

As stated above, we can exclude that a quantum-dot molecule is
formed out of the two quantum dots since the tunnel coupling between
the dots is lower than their coupling to the contacts and the results of
the transport measurements. To observe a formation of a coherent state
a modification of the geometry of the device is necessary. The dot size
should be reduced to below one micron and the inter-dot separation
should be as low as possible to increase the interaction strength.
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5.3 Conclusion

In the first part of this chapter the constant-interaction model for
single-charge tunnelling has been introduced. As an example for a
single-electron transistor we fabricated a device with local oxidation.
The SET contains a few hundred electrons, which makes the constant
interaction model applicable for the description of the main features
observed in the transport characteristic. The SET shows the Coulomb-
blockade oscillations and the charge stability diagram with almost con-
stant parameters over a wide voltage range.

In the second part we demonstrated that the AFM-based nanolithog-
raphy provides an relatively easy and controlled approach to create par-
allel quantum dots. The device was stepwise fabricated with a combi-
nation of controlled nanomachining and local oxidation. The dots were
defined by splitting a quasi-one-dimensional resonant tunnelling diode
in two separate zero-dimensional regions. An analysis of the transport
measurements of the two quantum dots allowed the identification of the
specific Coulomb-blockade oscillations of each dot. We showed that the
current could be directed through both quantum dots separately with
applying high negative gate voltages to the respective in-plane gates.

These experiments show that the combination of controlled nanoma-
chining and local oxidation with an atomic force microscope is a straight-
forward approach to the fabrication of robust mesoscopic devices. The
shape and geometry of the gates and source-drain contacts is only
limited by the number of contacts to the Hall bar. The possibility to
change the device characteristic in a step-by-step process after each
transport measurement is very promising especially to study chaotic
cavities with complex geometries.
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6 Aharonov-Bohm effect in an open
quantum ring

In this chapter we will show measurements on a quantum ring with
a diameter of below 450 nm fabricated by nanolithography using an
atomic force microscope (AFM). With direct local oxidation by an
AFM tip a ring geometry was directly written into a GaAs/AlGaAs-
heterostructure. The exceptionally short circumference of the ring re-
duces decoherence due to scattering. Our transport measurements in
the open regime show only one transmitting mode and Aharonov-Bohm
oscillations with more than 50% modulation of the ring conductance.
In-plane gates are used to tune the Fermi wavelength in the arms of the
interferometer and thus to control the phase of the Aharonov-Bohm
effect.1

1Parts of this chapter have been already published in U. F. Keyser, S. Borck,
R. J. Haug, M. Bichler, G. Abstreiter, and W. Wegscheider, Aharonov-Bohm
oscillations of a tuneable quantum ring, Semiconductor Science and Technology
17, L22-L24 (2002), preprint: cond-mat/0202403.
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6.1 Aharonov-Bohm effect

6.1.1 Introduction

In quantum mechanics electrons are described by a wave function Ψ.
This leads to many phenomena unexpected from the classical descrip-
tion of electrons as point-like particles. One of the most striking effects,
tunnelling through a potential barrier, has been investigated in an ear-
lier section of this thesis, see Chapter 2. The wave nature of the elec-
trons has an even more surprising consequence. Electrons can interfere
with themselves if they are transmitted through a ring structure like
the one shown in Figure 6.1. Such a ring acts as a beam splitter for
the incident electronic wave function. Ψ will split into an upper and
a lower part that traverse the respective ring arms. If we assume that
the phase coherence length lφ is long compared to the circumference C
of the ring there will be an interference between the two parts at the
ring exit. For a perfectly symmetric ring the phase difference is zero
and thus we have constructive interference.

The relative phase in the ring arms is controlled by applying a per-
pendicular magnetic field ~B = ∇× ~A. The vector potential ~A leads to
an additional phase factor for the wave function in both arms [86]

exp
[
−i

e

~

∫
C

d~l · ~A

]
= exp

(
−i2π

φ

φ0

)
. (6.1)

φ =
∫

C
d~l · ~A is the magnetic flux through the ring and φ0 = h/e the

A

y

B

Figure 6.1: A ring structure splits the incident electronic wave function
Ψ into two parts that interfere at the ring exit if scattering is
absent. The vector potential ~A influences the relative phase of the
two parts of Ψ at the ring exit.
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Figure 6.2: Transmission t through a symmetric ring structure as func-
tion of the flux φ threading the ring. φ0 = h/e is the flux quantum.

flux quantum. According to formula 6.1 the wave traversing through
the lower part of the ring in Figure 6.1 picks up a phase πφ/φ0 whereas
the part in the upper arm changes its phase by the negative of the
above because it moves in the opposite direction relative to ~A. The
interference at the ring exit leads then to an oscillating phase between
0 and 1

exp(−iπφ/φ0) + exp(iπφ/φ0) = 2 cos(πφ/φ0). (6.2)

From this equation follows that the probability to find an electron at
the ring exit oscillates with cos2(πφ/φ0). According to this result the
transmission of the ring equals one if φ = nφ0, with n = 0, 1, 2, .. . This
means for a transport measurement that each time the magnetic flux
φ threading the ring is an integer multiple of φ0 the conductance G
will be maximal. This effect was predicted by Bohm and Aharonov in
1959 [11] and first experimentally observed by Chambers in an electron
beam diffraction experiment [87].

The first Aharonov-Bohm oscillations with a periodicity of h/e in a
condensed matter device were observed in a transport experiment on
very small Au-loops [88]. The high electron densities in metals lead
to an averaging of the Aharonov-Bohm oscillations of many different
modes and thus to a reduced amplitude. Even at mK temperatures
the magnitude of the Aharonov-Bohm oscillations lies below 1% of the
signal. Because of their relatively low carrier concentrations in the two-
dimensional electron gas, GaAs/AlGaAs-heterostructures were used as
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6.1 Aharonov-Bohm effect

a substrate for the fabrication of ring systems with only a few trans-
mitting modes, see e.g. [89, 90, 91, 92] and references therein. For pro-
cessing the samples usually well-established techniques like electron
beam lithography and wet-chemical etching were utilized. Recently
Aharonov-Bohm oscillation with an amplitude of 30% was observed
in a vertical interferometer [93]. Recent papers claim to have found
experimental evidence for a spin-induced Berry phase in rings realized
in other material systems [94, 95].

6.1.2 Transmission through a symmetric ring

In principle for all the above experiments the basic considerations of
the introduction can be applied. For a more accurate description of
(real) rings a calculation based on scattering matrix theory yields a
transmission probability t through a symmetric ring with no elastic
scattering:

t(χ,Φ, ε) =
4ε sin2 χ cos2(Φ)

[a2 + b2 cos2(Φ)− (1− ε) cos2χ]2 + ε2 sin2χ
, (6.3)

with Φ = πφ/φ0. ε measures the scattering at the ring exit and entrance
and χ = kfC/2 the product of the Fermi wave vector kF and the
circumference C of the ring. An exact derivation of the above equation
can be found e.g. in Ref. [96, 97]. a2 and b2 are coefficients that directly
result from the scattering matrix and depend on ε. In this chapter
we work with a device in the limit of open point contacts. For such
quantum point contacts in the ballistic regime we have to choose ε =
0.5 which results in a2 = 1/4 and b2 = 1/4 [97].

In Figure 6.2 a plot of the transmission t as a function of φ/φ0 is
shown. The phase coherence length lφ is infinite and χ was set to π/4.
t varies between t = 0 ⇔ G = min and t = 1 ⇔ G = max as a function
of the applied magnetic field. Please note the periodicity of the curve
with φ0.

6.1.3 Transmission through an asymmetric ring

For a realistic device equation 6.3 has to be modified because there
exists usually a length difference of the ring arms ∆L. This leads to
an additional phase difference δ between the two parts of the wave
function of δ = kF ∆L. Considering this in the model the transmission
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Figure 6.3: Transmission probability through an asymmetric biased
ring as function of the magnetic flux φ/φ0 for δ = 0, π/4, π/2
and χ = π/4. The curves are offset for clarity. The maximum at
φ = 0 for δ = 0 changes into a minimum for δ = π/2. Note the
frequency doubling and the reduction of the oscillation amplitude
for δ = π/4.

probability has to be modified to [98, 97]

t(χ,Φ, δ, ε) =
4ε [sin2χ cos2Φ + sin2Φ sin2δ − sin2χ sin2δ]

[a2 cos2δ + b2 cos2Φ− (1− ε) cos2χ]2 + ε2 sin2χ
. (6.4)

Please note that equation 6.3 is a special case of the above equation for
δ = 0. Equation 6.4 also applies when e.g. in a symmetric ring the Fermi
wave length is different in the ring arms. This can be achieved by e.g.
an outer gate voltage that couples to one ring arm. This changes the
Fermi wave length and thus the effective arm length. As a consequence
δ is controlled by an outer parameter.

The results of calculations with equation 6.4 for δ = 0, π/4, π/2 and
χ = π/4 are shown in Figure 6.3. As mentioned above, for δ = 0 we get
the same oscillations with a maximum at zero flux (upper curve) as for
the symmetric case in Figure 6.2. δ = π/4 leads to a signal with halved
period and a much smaller amplitude (central curve). Additionally the
maximum at zero magnetic field changes into a minimum indicating
a phase change of the wave function in the ring. This becomes even
more clear when looking at the third and lowest curve in Figure 6.3
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6.2 Sample fabrication

with δ = π/2. The original curve reappears but is shifted by half a
period. The occurrence of the phase jumps is periodic with a period
δ = π.

The tuning of the phase at zero magnetic field is sometimes called
electric or electrostatic Aharonov-Bohm effect. It seems as though one
can influence the phase of the wave function with the scalar potential of
an electric field. But the underlying process is completely different from
its magnetic pendant. Whereas the vector potential ~A changes directly
the phase factor in Ψ the electric field changes the Fermi energy and
thus the wave length and energy of the incident electron.

In the above equation the phase coherence length lφ is not consid-
ered. In a real device lφ will be finite because of scattering, finite tem-
peratures, and defects. If an electron is scattered during the passage
in one ring arm this can be considered as a ”which-path” measure-
ment. The interference pattern is destroyed [99] and leads to a reduced
oscillation amplitude of the conductance in the Aharonov-Bohm effect.

6.2 Sample fabrication

In this chapter we present data measured on an asymmetric quantum
ring with two tuneable point contacts. The ring was fabricated using
an atomic force microscope (AFM) as nanolithographic tool. With the
design of the quantum ring we are able to investigate the interplay
between electron interference and single-electron charging effects on
the same device. We focus on the ballistic regime, where the conduc-
tance of the point contacts G lies around 2(e2/h). The quantum ring
acts in this regime as an electron interferometer. Measurements in the
Coulomb-blockade regime with closed point contacts (G < 2(e2/h))
will be studied later in this thesis, see Chapter 7.

For the fabrication of the device we used a GaAs/AlGaAs-hetero-
structure consisting of a 5 nm thick GaAs cap layer, 8 nm of AlGaAs,
the Si-δ-layer, a 20 nm wide AlGaAs barrier and 100 nm of GaAs
(from top to bottom, wafer 71000, Figure 3.2). The two-dimensional
electron gas (2DEG) is located 34 nm below the surface with a density
of 4.3·1015 m−2 and a mobility of 42 m2/Vs. The mean free path of the
electrons is lφ ∼ 4.6 µm. A Hall-bar geometry was defined by standard
photolithography and wet-chemical etching.

By applying a negative voltage to a conducting AFM tip the GaAs is
oxidized. Underneath the oxide the 2DEG is totally depleted and thus
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6 Aharonov-Bohm effect in an open quantum ring

one can directly write electronic devices into the 2DEG. A detailed
description of the process is given in Chapter 4.3. An AFM image
of the completed ring structure is shown in Figure 6.4(a). The oxide
lines insulating the in-plane gates from the ring were written with an
oxidation current of 1 µA. The relevant geometric dimensions of the
ring are its outer diameter of 450 nm, measured from the inner edge of
the oxide lines across the ring, and the diameter of the central oxide
dot of 190 nm. The constrictions that connect the ring to the source
and drain contacts are both 150 nm wide, in the following these will
be addressed as point contacts.

The electrochemical potentials of the ring and the conductance through
the point contacts are tuned with the two in-plane gates (IPG) that are
marked in Figure 6.4(a) with IPGA and IPGB. Please note, that IPGA
has a much shorter boundary to the upper ring arm than IPGB to the
lower. From the AFM image one can directly see that the structure is
asymmetric.

Another important detail is the gate coupling to the point contacts.
Whereas IPGA directly influences both ring exits, IPGB controls only
the upper point contact. The device was characterized in a 3He-4He-
dilution cryostat. In the following we will keep VA (voltage applied to
IPGA) at a constant value of 95 mV. The cryostat was kept at a base
temperature of Tb = 30 mK throughout the measurements if not stated
otherwise in the text. The electronic temperature lies below 50 mK as
measurements in the Coulomb-blockade regime indicate.

A schematic picture of the ring is shown in Figure 6.4(b). The solid

500 nm
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IPG B
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D
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Point contact Depletion length

Figure 6.4: (a) AFM image of the ring-structure. IPGA, IPGB denote
the in-plane gates. (b) Schematic picture of the ring. The solid
lines indicate the insulating lines and the grey area the width of
the depleteion in the 2DEG. The dashed trajectory has a diameter
of de ∼ 300 nm.
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Figure 6.5: (a) Conductance G through the open quantum ring as
function of the magnetic field B at VA = 95 mV, VB = 120 mV.
(b) The Fourier transformation of the data shows one distinct peak
at 16± 1 T−1.

lines depict the oxide and the light grey areas around them the de-
pletion width of some ten nanometers in our structures (see Chap-
ter 5.1). We illustrate the expected electron path in the open transport
regime with the dashed lines. The diameter of this electronic path is
∼ 300 nm. Since the phase coherence length in the unstructured 2DEG
is lφ = 4.6 µm and the circumference of the ring is only C = 1.0 µm
we assume that the ring is in the ballistic regime and neglect effects of
inelastic scattering.

Figure 6.5(a) shows the conductance G(B) of the quantum ring in
the open regime with VA = 95 mV and VB = 120 mV (R < h/e2) in
a perpendicular magnetic field B. We observe Aharonov-Bohm oscilla-
tions with an oscillation amplitude of more than 50%. This exceptional
high value was not reported before in transport experiments in semi-
conductor rings. We extract a period ∆B ∼ 60 mT from the data in
Figure 6.5(a). The clear oscillations without any distortions together
with the high amplitudes indicate that we have very few conducting
channels in the ring.

For a further analysis of the periodicity we use a Fourier transfor-
mation of the data. The power spectrum of the measurement in Fig-
ure 6.5(a) as a function of the oscillation frequency f is shown in Fig-
ure 6.5(b). The dominating feature is at a frequency of 16/T. This cor-
responds to ∆B ∼ 60 mT and indicates that a flux quantum φ0 = h/e
enters the area enclosed by the electron paths every ∼ 60 mT. Each
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6 Aharonov-Bohm effect in an open quantum ring

additional flux quantum in the ring changes the phase by 2π and thus
we observe a full oscillation period. We estimate the diameter of the
electron orbit in our ring from the period of ∆B = 1/f

φ0 =
1
4
∆Bπd2

e ⇒ de = 2

√
h

πe∆B
. (6.5)

With ∆B ∼ 60 mT a flux quantum is added to the ring area and we
determine the diameter de of the dominating electron orbit in our ring
to de ∼ 300 nm. This fits perfectly the geometry of our device. The
observation of only one dominant frequency at 16/T indicates that
only a single conducting channel is present in this voltage regime.

6.3 Gate voltage dependence

6.3.1 Aharonov-Bohm oscillations

In this paragraph we will study the ring conductance in the range
of 70 mV < VB < 100 mV and VA = 95 mV. In Figure 6.6(a) we
show again ring conductance G(VB) at B = 0 as a function of VB . We
observe an oscillating signal which has about the same amplitude as
the Aharonov-Bohm oscillations depicted in Fig. 6.5(a).

The average peak-to-peak distance is ∆VB ∼ 3.5 mV. The grey-scale
plot in Figure 6.6(b) shows G as a function of B and VB . As usual,
black(white) stands for high(low) G. The arrow marks zero magnetic
field B = 0 that is the symmetry axis as expected for a two-terminal
measurement. The alternating pattern of high and low conductance as
a function of VB and B is due to the Aharonov-Bohm effect. A check
of the periodicity of the data in Figure 6.6(b) is obtained with Fourier
transformations over the whole gate voltage range. The resulting power
spectra are depicted in Figure 6.7 in a grey-scale map as a function
of VB and the frequency f . Here we chose a logarithmic scale for the
grey-scale. This makes the higher frequency components visible that
are suppressed by more than a factor of 103 compared to the leading
frequency of 16/T as known from Figure 6.5(b).

The dominating feature in Figure 6.7 is a vertical black line around
f0 ∼ 16/T. At 10/T, 26/T and ∼ 34/T there appear weaker frequency
components, the latter is probably the second harmonic of the base
frequency f0 where the electrons traverse the ring twice.
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Figure 6.6: (a) Conductance G through the open quantum ring at
B = 0 and VA = 95 mV. (b) Greyscale plot of G(VB , B) for the
device in a perpendicular magnetic field. The data in the upper
window was measured along the line indicated by the arrow.
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Figure 6.7: Logarithmic grey-scale plot of the power-spectrum of the
data in Figure 6.6(b) as a function of VB . We observe one dom-
inating frequency component at 16/T over the whole range. The
solid line at the top of the structure marks the boundaries for the
frequency defined by the device geometry. This is visualized in the
schematic pictures above. These show electron paths through the
ring with diameters de = 190 nm, de = 300 nm, and de = 450 nm.
The image in the center for de ∼ 300 nm corresponds to the base
frequency f =16/T.
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6.3 Gate voltage dependence

We estimate the lowest frequency component of 7/T by calculating
the expected periodicity with equation 6.5 for de = 190 nm. This re-
sult neglects any effects from the finite depletion length. There exists a
maximum frequency of 37/T defined by the maximal geometric diam-
eter of de = 450 nm. But electrons can also pass the ring twice which
doubles the enclosed area. We observe this effect only weakly in the
spectra of the ring in Figure 6.7. The black line depicted directly above
the grey-scale plot indicates these boundaries. For clarification three
schematic pictures of the ring with electron paths of different diame-
ters de are depicted. The picture in the center gives an impression for
the situation in the ring with de ∼ 300 nm which corresponds to the
base Aharonov-Bohm frequency of 16/T.

Following the discussion of asymmetric ring structures we expect to
observe phase jumps in the Aharonov-Bohm oscillations in our quan-
tum ring. A closer look at the grey-scale plot in Figure 6.6(b) already
indicates this. For a clear demonstration of this characteristic we de-
picted the magneto-conductance G(B) at four different gate voltages
VB =86.6, 89.4, 90.3, and 93.4 mV in Figure 6.8(a). At VB = 86.6 mV
(lowest curve) G has a maximum at B = 0 whereas at VB = 89.4 mV
the curve is shifted by half a flux quantum and shows a minimum at
B = 0. Thus the phase of the wave function changed by π by apply-
ing an outer gate voltage. The same occurs between each pair of the
four curves which leads to three phase jumps in this voltage range.
The corresponding conductance trace G(VB) at B = 0 is shown in
Figure 6.8(b). The gate voltages of the four traces in Figure 6.8(a) are
denoted by the squares. The phase jumps that occur at VB =88.6.,
90.0, and 91.7 mV are marked by the arrows.

We have shown in Chapter 6.1.3 that a phase jump comes along with
a frequency doubling and a damping of the Aharonov-Bohm oscilla-
tions. This latter characteristic should lead to a vanishing of the 16/T
peak at the gate voltages where we get δ = π/4. Indeed we observe
this behaviour for our ring in the power spectra shown in Figure 6.8(c).
The graph shows the power spectra of the magneto-conductance data
between 86 mV ≤ VB ≤ 94 mV. The huge peak corresponds again
to the 16/T oscillation of the 300 nm orbit. Both the phase jumps at
VB = 88.6 mV and VB = 91.7 mV lead to a suppression of the main
frequency component by almost a factor of 10. The phase ”jumps”
abruptly between two points of the measurements but the damping of
the oscillation already starts before. We observe the maximal signal at
the gate voltages of the measurements in Figure 6.8(a).
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Figure 6.8: (a) Conductance G as function of the magnetic field B at
four gate voltages VB = 86.6, 89.4, 90.3, 93.4 mV from bottom to
top. Between each curve pair the phase changes by π. The curves
are offset for clarity. (b) G at B = 0 as function of VB , the exact
positions of the phase jumps are marked by the arrows. The gate
voltages of the traces in (a) are marked by the black diamonds.
(c) Power spectra for all gate voltages of (b), the base frequency
of the ring 16/T vanishes or is suppressed at the phase jumps
indicated by the arrows at VB = 88.6, 90.0, 91.7 mV. The curves
are offset for clarity.
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Figure 6.9: (a) Grey-scale plot of the conductance G through the ring as
function of B and 86 mV < VB < 94 mV, VA = 95 mV. (b) Grey-
scale plot of the calculated transmission T (χ = π/4,Φ, δ, ε = 0.5)
for an asymmetric ring with varying δ (see text).

This is completely different for the situation at VB = 90.0 mV where
we see just a short reduction by a factor of two or three, Figure 6.8(c).
This is understood if we look back at the dependence of G on VB at
B = 0, Figure 6.8(b). Whereas there is a relatively smooth gradient
between the first maximum and the first minimum the rise to the
second maximum is rather fast. Thus the transition from a minimum
at B = 0 to a maximum has to be faster than during the other phase
changes. With a finer resolution of the gate voltage we should be able
to observe the damping at this phase jump as well.

We don’t observe a real frequency doubling in the Fourier spectra
because the amplitude of the Aharonov-Bohm oscillations is almost
totally suppressed at the phase jumps. The reason for this specific
characteristic of our ring will be discussed in the next paragraph. Before
we want to comment on the small dashed circles at B ∼ 50 mT in
Figure 6.8(a). They mark small dips in each of the conductance traces
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6 Aharonov-Bohm effect in an open quantum ring

G(B). The exact position barely shows any dependence on VB . At first
one could believe that we see a frequency doubling of the Aharonov-
Bohm signal. But the dip appears only at the first maximum and at
higher VB even in the minima of G(B). We attribute this to a specific
characteristic of the ring spectrum.

Modelling of the data

In Figure 6.9 again a grey-scale plot of G(VB) is shown. The voltage
range is the same as discussed above. The phase jumps observed in
Figure 6.8(a) are indicated by the alternating pattern of high and low
conductance in vertical direction. At the bottom we have a maximum
(black) at B = 0 that changes into a minimum (white) etc. With equa-
tion 6.4 we tried to reproduce the key features of the quantum ring in
this voltage regime in the strong coupling limit ε = 0.5. Since we vary
the in-plane gate voltage we will change the relative phase between
the two ring arms and thus introduce an effective length difference
∆L. This was taken into account by introducing the asymmetry pa-
rameter δ = kF ∆L/0.15 which leads to a rather strong dependence
of δ on the gate voltage. Figure 6.9(b) shows a grey-scale map of the
transmission probability of the ring calculated with formula 6.4. In the
depicted range there are three phase jumps and the signal starts with
a maximum. The absence of a frequency doubling of the Aharonov-
Bohm oscillation between the phase jumps in the calculated data is
related to the very fast change of δ.

Since we do not know the exact dependence of kF on VB we cannot
map the axis of the simulation to the data. Please note, that this is not
a fit but a mere phenomenological comparison of a measurement to an
idealized calculation. However, this allows to check whether we have
to consider any other effects to explain the behaviour of our device in
this regime. Apparently this is not necessary to understand the main
features of the transport in region 2.

6.3.2 Ring conductance at lower gate voltages

In Figure 6.10(a) G(VB) is depicted again at zero magnetic field B = 0
and VA = 95 mV. But in this case we reduce VB to 40 mV. Above
VB > 70 mV we observe the oscillating signal already discussed in the
preceding paragraph. But apparently G(VB) divides into two regions
which differ by the shape of the measured resonances.
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Figure 6.10: (a) Ring conductance G as a function of gate voltage VB at
VA = 95 mV, VSD = 0, B = 0, and T = 30 mK. Note the change
in the shape of the resonances in the two regions of the curve. (b)
Grey-scale plot of G as function of VB and B, for VB > 70 mV
we observe Aharonov-Bohm oscillations. These are only present
at the dips in the trace for VB < 70 mV.
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6 Aharonov-Bohm effect in an open quantum ring

Whereas for VB > 70 mV the peaks are smooth and rounded for
VB < 70 mV relatively sharp dips appear in the conductance with
almost the same period of ∆VB ∼ 3.5 mV. The transition between the
two regions at VB = 70 mV is accompanied by a fast decrease of G
from ∼ 1.7 e2/h to ∼ 0.8e2/h.

In Figure 6.10(b) a grey-scale plot of the magneto-conductance G
as a function of VB and B is shown, black indicates a maximum and
white a minimum in the conductance. Please note that this is the orig-
inal data. Because of the high oscillation amplitudes we don’t have to
subtract any slowly varying background. As expected from the mea-
surements at B = 0 this plot also consists of two regions. The data for
VB > 70 mV is depicted already in Fig. 6.6(b). Here we adjusted the
grey-scale to maximize the contrast for the whole plot.

For VB > 70 mV we observe Aharonov-Bohm oscillations for the
whole gate gate voltage range. But for VB < 70 mV these appear only
at the distinct gate voltages corresponding to the ”anti”-resonances
in Fig. 6.10(a). Between these dips G(B) barely depends on B which
leads to the large grey areas.

We further analyzed the ”anti”-resonances in the conductance by
performing Fourier transformations on the data. The corresponding
power spectra of G(B) in this voltage range are shown in Figure 6.11(a)
for 40 mV≤ VB ≤70 mV. The plot shows the expected maximum at
f0 ∼ 16/T only at the gate voltages corresponding to the minima
in the conductance. This coincidence is underlined by the adjacent
Figure 6.11(b) that shows G(VB) at B = 0. The gate axis was scaled
to fit the offset of the curves in Figure 6.11(a).

One possible explanation for the suppression of the Aharonov-Bohm
effect in this voltage regime might be the asymmetric gate bias. Be-
cause the voltage at VB < 70 mV is always smaller than the constant
VA = 95 mV applied to IPGA the electron trajectories concentrated in
the upper ring arm. The incident electrons can leave the ring directly
through the other point contact without passing the lower arm. This
focusing effect is known from point contacts in series [100]. However,
this model explains only the absence of the interference pattern. For
the ”anti”-resonances in G(VB) with their peculiar shape we have to
find another explanation.

From the analysis of the Aharonov-Bohm measurements we have
strong indications that only one subband is occupied – at least in the
lower ring arm. However, the conductance through the ring in region 1
is almost 2(e2/h) and even exceeds 2(e2/h) when we apply a perpendic-
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Figure 6.11: Fourier spectra of the measurements in Figure 6.8 for
86 mV < VB < 94 mV, VA = 95 mV. The curves are offset
for clarity. At VB ∼ 88.5 mV and 91.5 mV the peak at 16/T
vanishes almost completely, which indicates a phase jump by π.
At VB ∼ 90.0 mV we observe another phase jump but the power
spectrum shows only minor changes.

ular magnetic field, shown in Fig. 6.13(b). If we take into account that
we are performing two-terminal measurements we have to subtract a
series contact-resistance ranging from a few hundred Ω to 1 kΩ to get
the ”pure” conductance of our ring. The corrected conductance G′ ex-
ceeds 2(e2/h) which requires that more than one subband is occupied
because each subband has a conductance of 2(e2/h). This contradic-
tion to the results of the Aharonov-Bohm oscillations is overcome if we
assume that the upper arm transmits two subbands whereas the lower
arm contains only one subband. This is depicted in the diagram shown
in Figure 6.12(a).

The AFM image of the ring in Figure 6.4(a) provides us a possible
explanation for this assumption. It is barely visible but the oxide dot
is not perfectly centered in the ring and shifted some 10 nm wide to
the lower right. This reduces the width of the lower ring arm in com-
parison to the upper one. Additionally we will have more electrons in
the vicinity of the point contacts which further increases the electron
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6 Aharonov-Bohm effect in an open quantum ring

(b)(a)

Figure 6.12: (a) Schematic picture of the ring shows the paths of the
electrons in the ring that interact with the state around the center.
(b) Simplified picture of conducting channels that interact with a
bound state in the ring.

density in the shorter upper arm. The Fermi wave length λF ∼ 40 nm
in the unstructured 2DEG is roughly factor two smaller than the re-
duced arm width of the structure. The effective electronic width will
be smaller than 100 nm because of the depletion length in the range of
some ten nm. With the considerations of Chapter 4.2 for ballistic point
contacts we conclude that maximal two subbands can be occupied in
the ring.

With the above assumptions we can explain the appearance of the
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Figure 6.13: (a) Fano resonance for q = 0.5 (lower curve) and q = 2.0
upper curve as function of E − Eres. (b) Conductance G(VB) in
region 1 at B = 0 (lower curve) and B = 320 mT (upper curve).
The sharp dips change into maxima in the field. The curves are
offset for clarity.
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dips in G(VB) observed in Figure 6.10. In principle the picture in Fig-
ure 6.12(a) shows two interacting states that pass a resonant bound
state around the center of the ring. Whereas the upper channel is trans-
mitted directly through the structure the lower path is ”scattered” at
the ring center.

A better representation of this circumstance is depicted in Fig-
ure 6.12(b) by two channels passing a resonant state (depicted by the
circle), whereas one is transmitted directly or non-resonantly the other
may be in resonance with the circular state only if its energy matches
the resonant energy. Both channels will interfere/interact in the upper
ring arm which is depicted by the zig-zag line.

The dips in G(VB) appear at distinct gate voltages corresponding
to the resonances of the bound state. Whereas the phase of the non-
resonant state changes slowly with VB the lower channel will pick up a
phase shift by π every time it fits to a resonance on the ring. This phase
shift is an inherent characteristic of all resonant processes in physics.

The interference between a resonant and non-resonant state is known
from e.g. nuclear or atomic physics. In the latter one can observe res-
onances of an electron that is temporarily bound at an He-atom and
then decays [101]. The interference between two channels results in
spectra with resonant lines shaped similar compared to the ones in our
ring. In general these lines are described by the following expression
proposed by Fano in 1964 [102]

S ∝ (Ẽ + q)2

Ẽ2 + 1
. (6.6)

q is a parameter that describes the relative phase between the two
paths. Ẽ = (E − Eres)/(~Γ/2) is the dimensionless detuning of the
energy E of the incident electrons from the energy Eres of the resonant
state. ~Γ measures the line width of the resonance. The left-hand side
of Figure 6.13 depicts two so-called Fano resonances for q = 0.5 and
q = 2.0. The curves were normalized to their respective maximum
S0. The difference in q leads to a change from a dip to a peak. For
comparison with the resonances in region 1 we show a measurement
in Figure 6.13(b) at B = 0 (lower curve) and B = 320 mT (upper
curve). The curves were offset for clarity. Apparently the line shape is
adjustable in our experiment by variation of the outer magnetic field.
The ”anti”-resonances at B = 0 in Figure 6.13(b) evolve into maxima
at B = 320 mT. This is an indication that the above picture might be
applicable for the description of our system.
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6 Aharonov-Bohm effect in an open quantum ring

These so-called Fano resonances were studied in recent experiments
on quantum dots [103, 104]. But the authors could not explain the
exact nature of the non-resonant channel. Our design of the ring gives
us a better control over the relevant parameters, namely q. For further
investigations of the properties of this type of resonances one can for
example tune the coupling between the resonant and the non-resonant
state with the gate voltage applied to gate A.

In this context the transition at VB ∼ 70 mV between the two trans-
port regimes marks a fundamental change in the electronic structure of
the ring. The stronger the coupling grows this might lead to an overlap
and thus to strong interaction between the two subbands. The drop in
the conductance by almost 50% is probably caused by the longer stay
of the electrons in the device due to the longer path.

6.4 Conclusion

In this chapter we discussed the Aharonov-Bohm effect in an asym-
metric quantum ring with a diameter of below 450 nm. The analysis
of the data with Fourier transformation indicates that we have only
one interfering subband in the ring. This leads to a modulation of the
conductance of more than 50%, a value not reported before in trans-
port experiments in semiconductor rings. The electron orbit extracted
from the periodicity of the Aharonov-Bohm effects fits perfectly to the
ring geometry. The attached in-plane gates allow to tune the phase of
the Aharonov-Bohm effect at zero magnetic field and we observed the
typical sharp phase jumps by π that are related to the asymmetry of
our device.

Finally we showed that the line-shape of the resonances in the quan-
tum ring is controlled by an outer gate voltage. We found first indica-
tions for a resonant bound state that couples to the directly submitted
electrons and leads to a Fano like characteristic.
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A small quantum ring with less than 10 electrons was studied by trans-
port spectroscopy. For strong coupling to the leads a Kondo effect is
observed and used to characterize the spin structure of the system in
a wide range of magnetic fields. At small magnetic fields Aharonov-
Bohm oscillations influenced by Coulomb interaction appear. They ex-
hibit phase jumps by π at the Coulomb-blockade resonances. Inside the
Coulomb-blockade regime the Aharonov-Bohm oscillations can also be
studied due to the finite conductance caused by the Kondo effect. Inter-
estingly, the maxima of the oscillations show linear shifts with magnetic
field and gate voltage.1

1Parts of this chapter were published in U. F. Keyser, S. Borck, R. J. Haug, M.
Bichler, G. Abstreiter, and W. Wegscheider, Aharonov-Bohm oscillations of
a tuneable quantum ring, Semiconductor Science and Technology 17 L22-L24
(2002), preprint: cond-mat/0202403. The main part of this chapter is submitted:
U. F. Keyser, C. Fühner, S. Borck, R. J. Haug, M. Bichler, G. Abstreiter, and
W. Wegscheider, Kondo effect in a few-electron quantum ring, preprint: cond-
mat/0206262.
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7.1 Introduction

The characterization of semiconductor quantum dots by transport spec-
troscopy turned out to be an extremely successful approach to under-
stand the physics of interacting electrons confined to a quasi-zero di-
mensional potential well [1]. Until recently the only accessible shape
of the quantum dots was a tiny disc or box with a simple topology.
With new fabrication techniques it is possible to create multiple con-
nected topologies, namely small quantum rings with an outer and an
inner boundary. These novel devices allow to study experimentally in-
terference phenomena of electrons, like the Aharonov-Bohm effect [11]
where the electronic properties of the system show a periodicity with
the magnetic flux quanta threading the ring.

First quantum rings were fabricated by self-assembled growth of
InAs on GaAs [105, 106], but these structures were mainly used for
optical experiments. A completely different approach, the local oxi-
dation of GaAs/AlGaAs-heterostructures with an atomic force micro-
scope (AFM) [6], allows to write directly tuneable quantum rings into
a two-dimensional electron gas [107, 108]. These rings can be studied
by tunnelling experiments. For high tunnelling barriers charging ef-
fects and Coulomb blockade dominate the transport characteristics. In
the Coulomb-blockade regime the number of electrons on such a ring
can be controlled by an external gate voltage. Adding an electron to
the ring requires the Coulomb charging energy. This leads to a nearly
equally spaced sequence of Coulomb-blockade peaks as a function of
the applied gate voltage. For a quantum dot with a simple connected
geometry we already discussed these characteristics in chapter 5. Re-
cently, a quantum ring containing a few hundred electrons was studied
in the Coulomb-blockade regime [107]. These measurements showed
the Aharanov-Bohm effect and allowed to determine the energy spec-
tra [109] of such quantum rings. It turned out that the spectra can be
well described within single-particle physics [107], because of an effec-
tive screening of the electron-electron interaction by a metallic gate.

Here we are going to discuss a quantum ring in a totally different
regime. For a small number of electrons interactions dominate the spec-
tra in absence of a front gate. In addition, for a strong coupling to the
leads the spin structure of the system will strongly influence the tun-
nelling current. For a net spin of the system being 1/2 the ring can
be mapped to the Anderson model [110] in which the ring acts as a
magnetic impurity showing the so-called Kondo effect. This many body
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phenomenon describes the formation of a spin singlet consisting of an
electron on the ring and electrons in the contacts if the tunnel coupling
is sufficiently high. The Kondo effect gives rise to a finite density of
states at the Fermi level [111] and thus to a finite conductance around
zero bias voltage even for Coulomb blockade.

In this chapter we present measurements on a quantum ring, fabri-
cated by local oxidation with an AFM. We study our ring in a trans-
port regime with few electrons and strong coupling to the leads. In the
Coulomb-blockade regime we can tune the electron number between
three and seven. For odd electron numbers a Kondo effect [14, 15]
is observed and characterized with temperature dependent non-linear
transport measurements. In a magnetic field we find a splitting of the
Kondo resonance which, together with the even-odd behaviour, indi-
cates a spin-1/2 Kondo effect.

The small number of electrons allows to investigate the influence of
the electron-electron interaction on the level structure of our quan-
tum ring. A theoretical calculation predicts smaller Aharonov-Bohm
periods than in the multi-electron case, because the degeneracy be-
tween singlet and triplet states in a ring is lifted by the Coulomb
interaction [112]. We indeed find indications for this effect in our ring
at small magnetic fields. The finite Kondo conductance enables the
observation of the Aharonov-Bohm effect even between two Coulomb-
blockade peaks. We observe a smooth shift of these Aharonov-Bohm
oscillations in the Coulomb-blockade valley with magnetic field and
gate voltage.

We commence with a short introduction to Kondo physics in quan-
tum dots.

7.2 Kondo effect

In the late eighties theoretical studies predicted a Kondo effect for
a quantum dot with an unpaired electron in the topmost occupied
state. The tunnelling barriers of the device should become perfectly
transparent with a conductance of 2(e2/h) [12, 13]. The name Kondo
effect originates from the similarities between a single quantum dot
and the scattering of electrons in metals induced by diluted magnetic
impurities. The resistance of a metal is enhanced by an interaction
of the electrons with the spins at the magnetic impurities. This effect
was first explained by Kondo in 1964 in terms of correlations in the
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Figure 7.1: (a) Quantum dot with a singly occupied spin degenerate
level. The electron on the dot couples to electrons with opposite
spin in the source and drain contacts. This leads to the formation
of a spin singlet indicated by the dashed ellipse. (b) The resulting
density of states has a maximum pinned to the Fermi energy in
the contacts.

scattering of localized spins [113]. A quantum dot with a net spin of
1/2 acts as an ”impurity” as well, but the ”scattering” of electrons
from the contacts leads to an enhancement of the conductance.

The theoretical framework of a description of the Kondo effect in
quantum dots is the Anderson impurity model [110]. An exact deriva-
tion of the model is not necessary to understand the key features of
this effect and hence we only give a rather simple explanation.

In Figure 7.1(a) a quantum dot in the Coulomb-blockade regime
with N electrons is shown. It is coupled to electron reservoirs by two
tunnelling barriers. The topmost state of the dot contains one single
electron. It is necessary that the level is two-fold degenerate, in our
case due to the electron spin. In principle, we have to pay the charging
energy U to add an electron but if the coupling of the electron on the
dot to the leads is high enough, the interaction leads to the formation
of a spin singlet state at finite temperatures. This is indicated by the
dashed ellipse in Figure 7.1(a). Electrons from the leads and the dot
can change places by an exchange of their spins. The spin singlet state
gives rise to a finite conductance despite the charging energy and the
constant N . A recent experiment indeed gives an indication for a spin-
charge separation in the Kondo regime [114].

A more elaborate picture for the Kondo effect is shown in Fig-
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ure 7.1(b). Here we depicted the density of states in the quantum
dot. The broad peaks denote the positions of the single-particle levels
in the addition spectrum. The width of the peaks is determined by
the tunnel coupling to the leads given by the barrier transparencies
~Γ = ~(ΓS + ΓD). Γ measures the inverse lifetime of the electron on
the dot.

The striking fact is the appearance of a very narrow peak at the
electrochemical potential of the contacts [111]. This finite density of
states allows the transport of electrons through the structure as de-
scribed in the simple picture above. In the model a new temperature
scale appears named Kondo temperature TK . In some sense kBTK

measures the binding energy of the spin singlet state. Often the Kondo
temperature is defined by the following equation [115]

kBTK =
1
2

√
U~Γ exp

(
π

ε(U + ε)
~ΓU

)
(7.1)

for ε < 0 and U + ε > 0. ε is the energetic distance of the occu-
pied level below the electrochemical potential in the contacts. The
exponential dependence of TK on the inverse of the tunnel coupling
TK ∝ exp−1/~Γ explains the necessity for the observation of this ef-
fect to tune the system into a regime with a high Γ. Additionally the
Kondo temperature will be minimal in the middle of two Coulomb-
blockade peaks.

Some tests can prove whether there is indeed a Kondo effect in a spe-
cific sample or not. In general, the Kondo correlations are suppressed
when the outer energy scales exceed the binding energy of the spin sin-
glet. The most direct influence is the temperature T of the electronic
system in the leads. By increasing T to T > TK the finite Kondo
conductance in the Coulomb-blockade valley is reduced. The most im-
portant result of the theoretical calculations is the universal behaviour
of G as a function of the reduced Kondo temperature T/TK . In Chap-
ter 7.6.1 we discuss an empirical function that describes this charac-
teristic. An increase of the source drain bias voltage to eVSD > kBTK

leads to a similar effect. This dependence on VSD gives rise to the for-
mation of a zero bias resonance inside a Coulomb-blockade diamond.
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7 Kondo effect in a quantum ring

7.3 Description of our device

Before we discuss the measurements we give a short introduction to our
sample. We fabricated our quantum ring from a δ-doped GaAs/AlGaAs-
heterostructure containing a two-dimensional electron gas (2DEG) 34 nm
below the surface of wafer 71000. Details on the layer structure can be
found in Chapter 3.1. The 2DEG has an electron density of ne ∼
4 ·1015 m−2 and a mobility of µe ∼ 42 m2V−1s−1 at low temperatures.
After the fabrication of Hall bars the devices are mounted into an
atomic force microscope (AFM). Underneath the oxide lines, generated
with local oxidation at the sample surface [6], the 2DEG is depleted.
By applying high oxidation currents to the conducting AFM tip we
are able to create insulating regions in the 2DEG and write complex
structures directly into the electronic system with an accuracy better
than 10 nm. A detailed description on our fabrication scheme can be
found in Chapter 2.3.1.

An AFM image of the completed ring structure is shown in Fig-
ure 7.2(a). The two in-plane gates A and B are separated from the
ring by rough oxide lines. The ring is connected to the leads by two
150 nm wide point contacts. Both point contacts are tuned by gate A
whereas gate B couples only to the drain contact. The inner diameter
of the ring is 190 nm and the outer diameter 450 nm. In the follow-

B

A
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D

250nm

(a)

V    DC

(b) S

I    AC,DC

V    AC

V    A

V    B

Figure 7.2: (a) AFM image of the ring-structure. IPGA, IPGB denote
the in-plane gates, S and D the source and drain contacts. (b)
Schematic picture of our measurement setup. The tunnelling bar-
riers (indicated by the dashed lines) are induced by negative gate
voltages.
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7.4 Tuning of the tunnel coupling

ing experiments, gate A is kept at a constant voltage VA, and VB is
used to control the number of electrons on the ring. A schematic pic-
ture of our measurement setup is depicted in Figure 7.2(b), where the
gates are indicated by the grey areas. All transport measurements were
performed in a 3He/4He-dilution refrigerator with an AC-excitation
voltage of 5 µV, at 89 Hz, added to a variable DC-voltage VSD. The
base temperature during the experiments was Tb = 30 mK. From the
temperature dependence of the Coulomb-blockade peaks we deduce an
effective temperature of less than 50 mK for the electronic system.

In the open transport regime with VA, VB ≥ 0 mV, we obtain an
Aharonov-Bohm period ∆B ∼ 60 mT for electrons that are transmit-
ted ballistically through the ring. The observed periodicity corresponds
to a diameter for the electronic orbit of 300 nm, which fits perfectly to
the geometric values. An extensive study of the open transport regime
of this sample was already discussed in Chapter 6.

For the measurements in the Coulomb-blockade regime we have to
separate the ring from the contacts by tunnelling barriers (indicated
by the dashed lines in Figure 7.2(b)). These are induced by applying
VA, VB < −50 mV to the in-plane gates. In the Coulomb-blockade
regime, we extract a charging energy for our ring of U ∼ 1.5 meV by
analysing the Coulomb-blockade diamonds. The observation of excited
states in such measurements allows to estimate the single-particle level
spacing to δE ∼ 150 µeV, see Appendix A.

7.4 Tuning of the tunnel coupling

As already mentioned we can use the in-plane gates to induce tun-
nelling barriers at the point contacts. These separate the ring from the
source and drain contact. In Figure 7.3(a) a grey-scale plot of the linear
conductance G as a function of VA and VB is shown. For the measure-
ment VA was stepped from -250 mV to -50 mV with ∆VA = 5 mV and
VB varied continuously between -280 mV< VB <-100 mV. When the
electrochemical potential on the ring matches with the electrochemi-
cal potentials in the leads the number of electrons N on the ring is
increased by one. On every occurrence this leads to a peak in G indi-
cated by a black line in the plot. The peaks have a gradient because
of the finite capacitance of the gates. In this regime the ring exhibits
dot-like characteristics as observed for the single-electron transistor in
Chapter 5.
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Figure 7.3: (a) Grey-scale plot of the linear ring conductance G as
a function of both in-plane gate voltages VA, VB . Each time an
electron is added to the quantum ring a peak shown in black is
observed. (b) The Coulomb-blockade valleys (in (a) marked with
an asterisk) for VA = −200 mV (lower curve), VA = −150 mV
and VA = −80 mV (upper curve) show an increasing valley con-
ductance with VA.

Apart from the electrochemical potential the tunnel coupling in-
creases with VA. The data in Figure 7.3(b) depicts two Coulomb-
blockade peaks with an equal number of electrons at VA = −200,−150,
−80 mV from top to bottom. The positions of the shown Coulomb-
blockade valleys are marked in Figure 7.3(a) by the white asterisks. Be-
side the raise of the peak conductance by a factor of five to 0.8(e2/h)
the most striking result is the increase of the valley conductance in
between the peaks whereas it barely changes at the left and right
hand side. From the constant interaction model described in Chap-
ter 5 we would expect that the transport of electrons is suppressed in
a Coulomb-blockade valley because of the charging energy U . In the
regime with the higher tunnel coupling this simple picture is no longer
valid and we observe a finite valley conductance due to a Kondo-effect
as described in Chapter 7.2. In Chapter 7.6.1 we will investigate the
Kondo temperature and even-odd effects.
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7.5 Counting electrons on a quantum ring

7.5 Counting electrons on a quantum ring

First we focus on the addition spectrum of our ring in a perpendicular
magnetic field at high tunnel coupling with VA = −80 mV. The ad-
dition spectrum is shown in Figure 7.4 for magnetic fields up to 6 T.
The linear conductance G (VSD = 0) is plotted in a grey-scale as func-
tion of VB and the perpendicular magnetic field B at VA = −80 mV.
Each Coulomb-blockade peak appears as a black line which runs more
or less parallel to the B-axis. Signatures of non-vanishing conductance
between the Coulomb-blockade peaks can be seen and are attributed to
the Kondo effect. One example is marked by the arrow in Figure 7.4 at
VB = −230 mV. The Kondo effect shows a pattern of abrupt changes
between high (grey) and low (white) conductance regions for B < 2 T.
This pattern looks similar to the pattern obtained in a quantum dot de-
signed as a disc [116], presumably due to the similar importance of the
outer edge for transport in high magnetic fields. Whereas for disc-like
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Figure 7.4: Linear conductance G of the ring as a function of VB and
the magnetic field B at VA = −80 mV. The grey-scale plot shows
the addition spectrum of our quantum ring.
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7 Kondo effect in a quantum ring

quantum dots Hund’s rule was found [117], we observe an odd-even be-
haviour of the Kondo effect for the gate voltage range VB < −200 mV.

The alternating pattern of the valley conductance with magnetic
field is explained by a redistribution of the electrons between differ-
ent Landau levels (LL). For example, inside the Kondo valley marked
by the arrow in Figure 7.4 we obtain high conductance because of
an unpaired spin in the transport state at small magnetic fields. At
B ∼ 1.5 T an electron from the upper LL is transferred to the lower
LL which is indicated by the sharp boundary in the spectrum in Fig-
ure 7.5. The Kondo effect is suppressed because the transport level in
lowest and outermost LL n = 0 contains two electrons with opposite
spins (N =odd, spin-0 in n = 0). At B ∼ 2.0 T a second electron
is transferred to LL n = 0 and there is again an unpaired spin in the
transport state in LL n = 0 and the Kondo effect is restored. For higher
magnetic fields similar changes are not observed anymore and thus we
conclude that no further electrons are redistributed from LL n = 1 to
n = 0. Therefore, we assume that all electrons on our quantum ring
are in the lowest Landau level and the filling factor ν equals two at
B ∼ 2.0 T.

With a further increase of the magnetic field we observe small varia-
tions of the position and height of the Coulomb-blockade peaks. These
weaker features are highlighted in Figure 7.5 by the dashed lines. The
small wiggles in the peak position are only observed up to magnetic
fields of B ∼ 5.5 T for the Kondo valley marked in Figure 7.4. The
features are identified with spin flips of the electrons on the ring.

The spin of the electron is flipped from the up to the down state in
the lowest LL because of the increasing magnetic field [118, 119, 116].
N is determined by assuming that the electrons in the lowest LL are
totally spin-polarized for B > 5.5 T. This corresponds to a filling
factor ν = 1 of the quantum ring. Between ν = 2 (B = 2 T) and ν = 1
(B ∼ 5.5 T) we observe two spin flips for the Kondo valley marked
in Figure 7.5. Therefore, we conclude that there are four electrons on
the quantum ring. The same considerations apply for the consecutive
Coulomb-blockade valleys. We extract for these valleys N = 5 and
N = 6, respectively. This is underlined by the alternating occurrence
of the Kondo effect in the spectrum. As mentioned above, we observe
an even-odd behaviour at B = 0. In the next section, we investigate
this characteristic with non-linear conductance measurements.
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Figure 7.5: Logarithmic plot of the addition spectrum shown in Fig-
ure 7.4. The dashed lines mark the observed spin flips in the ring.
The boxes and arrows below denote the situation for N = 4 elec-
trons on the dot at the different magnetic fields. At B > 5.5 T
the dot has the filling factor ν = 1 and is fully spin polarized. The
sharp boundary between ν > 2 and ν < 2 at B ∼ 2.0 T marks the
depletion of Landau level 1 (LL 1).
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7 Kondo effect in a quantum ring

7.6 Non-linear transport measurements in the
Kondo regime

For a further analysis of the Kondo effect non-linear transport mea-
surements are shown in Figure 7.6 at B = 0. Figure 7.6(a) depicts the
differential conductance dISD/dVSD at a temperature of Tb = 30 mK
as a function of VB and VSD (VA = −80 mV, B = 0) in a grey-scale.
We show five consecutive Coulomb-blockade diamonds. The horizontal
line in the center diamond marks the valley with the arrow in Fig-
ure 7.4. Here a sharp zero-bias peak (Figure 7.6(c)) can be observed
whereas the valleys above and below show only low conductance due to
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Figure 7.6: Grey-scale plot of the differential conductance dISD/dVSD

as a function of the source-drain voltage VSD and in-plane gate
voltage VB at VA = −80 mV. The Kondo effect is only observed in
the diamonds with odd electron numbers: N = 3 marked with the
black arrow, N = 5 marked with the horizontal line, and N = 7
marked with the white arrow.

100



7.6 Non-linear transport measurements in the Kondo regime

the Coulomb-blockade charging energy. We observe also Kondo peaks
in the lowest and top-most diamonds. This is illustrated by the traces
shown in Figure 7.6(b)+(d), respectively. Please note the different scal-
ing of the conductance axis. We conclude that there is an even-odd
asymmetry of the Kondo effect. This is an indication that the charac-
teristic is due to a spin-1/2 Kondo effect.

In Figure 7.6(b) the resonance is shifted to finite bias voltages. This
behaviour is expected from the asymmetry of our device since with in-
creasing VB the upper tunnelling barrier is lowered. This behaviour was
reported by Simmel et al. [17] for a quantum dot with very asymmetric
barriers.

7.6.1 Temperature dependent measurements

Figure 7.7(a) depicts measurements at different temperatures at the
gate voltage marked in Figure 7.6 by the horizontal dashed line. The
zero-bias peak observed at Tb = 30 mK vanishes almost completely
when the temperature is increased to T ∼ 500 mK as predicted for
a Kondo resonance [111]. From these measurements we estimate the
Kondo temperature TK for our system by extrapolation of the peak
width ∆VSD (full width at half maximum) to T = 0 as depicted in
Figure 7.7(b) [111, 120], which results in TK ≈ 0.5e∆VSD(T = 0)/kB ∼
600 mK. A fit of the peak conductance at zero bias G0(T ) with the
empirical formula of Ref. [121, 120],

G(T ) = G0/
(
1 + (21/s − 1)(T/TK)2

)s

(7.2)

provides another estimate for TK , yielding TK ∼ 600 mK for s = 0.2.
s is a fit parameter that is related to the spin state of the impurity
that induces the Kondo effect. For a spin-1/2 system s ∼ 0.25 was
observed in an experiment by Goldhaber-Gordon et al. [121]. The
peak conductance scaled with the extracted TK and G0 ∼ 0.33e2/h is
shown together with the fit in Figure 7.7(c).

7.6.2 Splitting with magnetic field

A zero-bias peak of a spin-1/2 Kondo effect at B = 0 is expected to
split in a magnetic field with ∆Ez = gGaAsµBB (g-factor of GaAs 0.44,
µB Bohr’s magneton) due to the Zeeman effect [111]. The resulting
density of states is depicted in Figure 7.8(a). As a consequence, the
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Figure 7.7: (a) Differential conductance as a function of the source
drain voltage VSD for N = 5 electrons at VA = −80 mV for
temperatures between T = 30 mK (upper curve) and T = 500 mK
(lowest curve). The data is marked in Figure 7.6 by the horizontal
line. (b) Full width at half maximum (FWHM) of the Kondo peak
in (a) as a function of the temperature T . By extrapolating the
data to T = 0 the Kondo temperature is estimated to TK ∼
600 mK. (c) Peak conductance G/G0 as a function of T/TK . The
data was scaled with G0 = 0.33(e2/h) and TK ∼ 600 mK. The
line is a fit with the empirical function 7.2.

peak induced by the Kondo effect is split with ∆Ez. For the observation
of the spin singlet between both leads a non-zero bias voltage has to
be applied to compensate for the splitting.

We investigate the splitting of the Kondo resonance in the diamond
marked by the horizontal line in Figure 7.6 at high magnetic fields. In
Figure 7.8(b) the corresponding diamond is shown at B = 3 T. At non-
zero bias voltages two peaks appear, which are symmetrically located
around VSD = 0. A cut through the data along the line is depicted
in Figure 7.8(c). The different amplitudes of the two peaks have to
be related to the slight asymmetry in the coupling of the ring to the
contacts.

The peak positions in VSD of such split peaks extracted from several
of these measurements for 2 T< B < 4 T are plotted in Figure 7.8(d).
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7.6 Non-linear transport measurements in the Kondo regime

The lines in Figure 7.8(d) indicate the expected peak positions (for a
g-factor of 0.44). We observe a nice agreement between the measured
and expected spin splitting for B > 2 T which is another evidence for
a spin-1/2 Kondo effect. Between 1.5 T and 2.1 T the Kondo effect is
absent due to the paired spin configuration. For fields lower than 1.5 T
the peak splitting is not resolved, presumably due to the broadening
of the Kondo peak on the order of kBTK ∼ 50 µeV. In contrast to
the expected splitting a maximum of the Kondo conductance is even
observed for a magnetic field of around 1 Tesla which is related to a
decreased backscattering in the magnetic field.
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Figure 7.8: (a) Density of states at finite magnetic field. The Zeeman-
splitting Ez of the level in the dot leads to a splitting of the Kondo
resonance. (b) Coulomb-blockade diamond at B = 3 T showing
the split Kondo resonance. (c) Non-linear conductance along the
dashed line in (b). (d) Splitting of the Kondo resonance as a func-
tion of magnetic field. The lines denote the expected spin splitting.
For the peak positions at B < 1.5 T see text.
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7 Kondo effect in a quantum ring

7.7 Valley conductance at small magnetic
fields

In Figure 7.9(a) we show again the N = 5 Kondo valley for B < 1.5 T.
This part of the addition spectrum is marked by the dotted box in
Figure 7.4. As usual the Coulomb-blockade peaks are depicted as black
lines at VB ∼ −223 mV and VB ∼ −237 mV. In Figure 7.9(b) the non-
linear differential conductance dISD/dVSD is plotted as function of B
and VSD along the dashed line at VB = −229 mV in 7.9(a).

The zero-bias peak (black region around VSD = 0 mV) gets more
pronounced with increasing B. In Figure 7.9(c) we depict the corre-
sponding peak conductance G0 at VSD = 0 along the white dashed
line in (b). G0 doubles from 0.3 to 0.6(e2/h) at B ∼ 800 mT. This
is completely unexpected. With increasing perpendicular B the effec-
tive tunnel coupling is reduced which should lead to a suppression
of the Kondo effect. Indeed we observe this behaviour but only for
B > 800 mT. An increase of the Kondo temperature is probably ex-
cluded to cause the doubling of G0 because the peak width, and thus
TK , remains constant as displayed in Figure 7.9(d). We plotted the
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Figure 7.9: (a) Greyscale plot of the linear conductance G(VB , B) –
(b) greyscale plot of the nonlinear conductance g(VSD, B) along
the white dashed line in (a) – (c) G0 as a function of B at VB =
−229 mV and VSD = 0 – (d) scaled zero bias peaks at B = 200 mT
marked in (b) by • and � at B = 800 mT.
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(b)

B = 800 mT

(a)

B = 0

Figure 7.10: (a) Schematic picture of our ring in the Kondo valley for
B = 0. (b) Classical electron trajectories at finite B. Please note
the reduced backscattering at the ring center compared to (a).

zero-bias peak for B = 200 mT and B = 800 mT normalized to the
respective G0, both peaks have the same width and thus a similar TK .

For an ideally symmetric quantum dot the tunnelling barriers should
become transparent in the Kondo effect with a conductance of 2(e2/h).
This behaviour was reported for real quantum dots only recently [122,
120]. The asymmetry of our device prevents the observation of this
effect in this gate voltage regime. But transport through the device in
the Kondo regime might be ballistic.

In a classical picture an incident electron is scattered at the inner ring
boundary. Depending on the angle of incidence the electron is reflected
back into the contact, Figure 7.10(a). This backscattering leads to a
reduction of G0 at zero magnetic field. It is known that the scattering of
ballistic electrons at boundaries is specular, see e.g. [123]. We estimate
the cyclotron length lc for the ring at the maximum of G observed
at B ∼ 800 mT. With the electron density ne in the unstructured
2DEG ne ∼ 4 · 1015/m2 this yields lc = hkF /2πeB ∼ 100 nm at B =
800 mT, with h Planck’s constant and kF =

√
2πne is the wave number.

Since the reduced arm width lies in the same range because of the
finite depletion width around the oxide lines, G0 increases, because the
backscattering at the inner ring boundary is suppressed. In a classical
picture this is shown in Figure 7.10(b).

This reduced scattering is only one of the possible explanations for
the increasing valley conductance. There might be also a change in the
level structure of the ring in this magnetic field range. At least the
lower Coulomb-blockade peak in Figure 7.9(a) is moving upwards in
VB . Such a gradually change is could be due to a split state of the ring
at B = 0 induced by spin-orbit interaction.
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7 Kondo effect in a quantum ring

7.8 Aharonov-Bohm measurements in the
Kondo regime

With our quantum ring in the Kondo regime we are able to study the
influence of the magnetic field on the level structure as described in
Chapter 2. But the Coulomb-blockade peaks are broadened due to the
strong coupling in the Kondo regime. This obscures the observation of
small shifts in the peak positions as induced by the magnetic field. To
avoid this, the Kondo valley marked in Figure 7.4 is shown again in
Figure 7.11(a) at a slightly lower tunnel coupling with VA = −150 mV.
This reduces the conductance in the Kondo regime to below 0.1(e2/h).
Due to the finite capacitance between the ring and gate A, the valley
is shifted to VB ∼ −185 mV. Figure 7.11(b) shows the normalized
conductance G/G0 as a function of B for the gate voltages marked
by the symbols in Figure 7.11(a). The vertical dashed lines denote the
expected period of ∆B ∼ 60 mT of the Aharonov-Bohm oscillations
extracted from the measurements in the open regime, see Chapter 6.
It is immediately evident that we obtain a much shorter period. This
result is in contrast to the results of Fuhrer et al. [107], who obtained
the normal Aharonov-Bohm period for their ring with many electrons
and a front gate screening the electron-electron interaction.

The fast oscillations are also reflected by the movement of the Coulomb-
blockade peaks in the grey-scale plot of Figure 7.11(c) (the peak posi-
tions are marked by white dots). Each kink in the trace of the Coulomb-
blockade peaks indicates a change of the ground state in the quantum
ring.

We are investigating the N = 5 valley and observe a surprisingly
short period of around ∆B ∼ 13 mT. This corresponds to a four to
five times shorter period than in the open regime. This is unusual
because this would indicate that our ring has a five times larger area.

Interacting electrons in quantum rings

The model in Chapter 2 is only a simple approach to the description of
non-interacting electrons in a single-particle picture. A period halving
for the persistent current in a ring [124] because of the electron spin
was found even for non-interacting electrons [125]. But this effect does
not explain our higher frequencies.

We have already shown that there are less than ten electrons on our
ring in the Coulomb-blockade regime. The single-particle considera-
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Figure 7.11: (a) The N = 5-Kondo valley at a lower tunnel coupling at
VA = −150 mV and B = 0. �,�, •,N mark the gate voltages for
the Aharonov-Bohm measurements shown in (b). (b) Normalized
conductance G/G0 of the quantum ring as a function of magnetic
field B. The curves are offset for clarity. (c) G/G0(B, VB) as grey-
scale plot. (d) Position of the Aharonov-Bohm maxima extracted
from (c).

tions will no longer be valid and interaction effects have to be taken into
account. A theoretical calculation of the energy spectra of few-electron
rings with exact diagonalization by Niemelä et al. [112] indicate that
the Aharonov-Bohm period ∆B of the peak oscillation depends on
the number of interacting electrons on the ring. For N electrons ∆B
should be shortened by a factor of 1/N . Their results are explained
by the Coulomb interaction between the electrons. A result of calcula-
tions for two and three electrons on a ring is depicted in Figure 7.12.
All energies are measured in units of E0 = 2h2/m∗π2d2

e, with de the
diameter of the ring.

If no interaction is present the ground state of the ring is always
a spin-singlet and the first excited state is spin degenerated. For two
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Figure 7.12: The few low-lying energy states for a ring containing (a)
two non-interacting electrons, (b) two interacting electrons, (c)
three non-interacting electrons, and (d) three interacting electrons
as a function of the applied magnetic flux φ. This picture was taken
from Ref. [112].

non-interacting electrons the ground state changes like l = 0, 2, 4, ..
(Figure 7.12(a)) and thus we get a similar behaviour of the lowest state
as for the simple picture shown in Figure 2.2(b). With the Coulomb
interaction the degeneracy of the singlet-triplet state is lifted and the
triplet state comes down in energy with respect to the singlet due to
the exchange term in the Coulomb matrix element [112]. As a conse-
quence already for two interacting electrons a halving of the Aharonov-
Bohm period for the peak oscillation is expected because l changes with
0, 1, 2, 3, .. which leads to ∆B/2 as depicted in Figure 7.12(b).

These considerations are valid for three electrons as well. Without
interactions the ground state changes with l = 1, 2, 4, 5, .., see Fig-
ure 7.12(c). Here the oscillation period is already halved. The Coulomb
interaction leads to a sequence l = 0, 1, 2, 3, .. and thus the ground state
of the ring in the magnetic field changes more often than for the non-
interacting case as depicted in Figure 7.12(d).

As as consequence these results lead to a shortened Aharonov-Bohm
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period for the N -electron quantum ring of ∆B/N [112]. With these re-
sults in mind our shorter period has to be linked to the small number of
electrons on our ring. There might be some reasons for the deviations
from the reduced period. We expect a decrease of de with an increasing
negative gate voltage and thus ∆B will be higher than 60 mT which
would fit even better our observations. The deviations from perfect pe-
riodicity especially at small magnetic fields might be explained by the
influence of some residual disorder. There remain some open questions
because we were not able to obtain data in the next Coulomb-blockade
valley due to a spin blockade. At even higher tunnel couplings there
starts already the chaotic regime without regular Coulomb blockade,
see Figure 7.4. However, the good agreement of the data with the the-
oretical predictions gives a strong indication that our interpretation of
the data is correct.

7.8.1 Aharonov-Bohm effect in the Kondo valley

As mentioned above we investigate now the evolution of the Aharonov-
Bohm effect in the Kondo-valley. As depicted in the grey-scale plot in
Figure 7.11(c) there are oscillations with the correct frequency. But
the origin of the observed modulation of the Kondo conductance in
our quantum ring is not clear at the moment. One possible explana-
tion is the dependence of TK on the ground state from a singlet to a
triplet. Sasaki et al. [126] reported measurements on a vertical quan-
tum dot where a Kondo effect was achieved by tuning the degeneracy
of a singlet and a triplet state with an outer magnetic field. Excited
states interacting with the degenerate levels in the quantum ring could
as well play a role and modify the transport in the Kondo regime.

Of special interest is the evolution of the Aharonov-Bohm effect be-
tween the Coulomb-blockade peaks. The finite conductance in this
regime allows following the positions of the maxima as function of
the gate voltage VB and magnetic field B. For illustration of this re-
sult the position of each maximum in B as observed in Figure 7.11(c)
is marked by a dot in Figure 7.11(d). At the first Coulomb-blockade
peak (between VB = −191 mV and VB = −189 mV) we observe a
phase jump of π, indicated by the small kink at VB = −190 mV for all
magnetic fields. This is verified in Figure 7.11(b) – the oscillation at
B = 0 changes from a minimum to a maximum. The same behaviour
is observed at the next Coulomb-blockade resonance in Figure 7.11(b).
At this peak the signal at B = 0 changes from a minimum (trace at
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7 Kondo effect in a quantum ring

VB = −178 mV) to a maximum at VB = −176 mV. Both peaks show
a similar phase change by π.

This in-phase characteristic of consecutive Coulomb-blockade peaks
was also observed in a study on a dot in one arm of an Aharonov-Bohm
interferometer [127]. The origin of this effect in the Coulomb blockade
regime of quantum dots is still not clarified and extensively studied in
the literauture.

We now take a closer look on the evolution of the Aharonov-Bohm
oscillations as a function of gate voltage and magnetic field. In the
Coulomb valley the maxima show a smooth shift (Fig. 7.11(d)). These
linear shifts appear in our two-terminal measurement only at finite
magnetic field when the ring is threaded by at least half a flux quan-
tum. Linear shifts of normal Aharonov-Bohm oscillations were recently
reported by Ji et al. for a quantum dot in the Kondo regime embedded
in an Aharonov-Bohm interferometer [128]. Their four-terminal mea-
surement is interpreted in terms of smooth phase shifts by π across a
Kondo resonance. In our experiment we investigate the Kondo reso-
nance of a quantum dot which itself serves as the interferometer.

The exact mechanism for the observed linear shift of the Aharonov-
Bohm maxima is still to be clarified, but it might be connected to
the fact that the level structure of our small ring interferometer is
influenced by the gate voltage. For a detailed understanding further
theoretical work is necessary.

7.9 Conclusion

In conclusion, a small tuneable quantum ring with less than ten elec-
trons is studied in the Coulomb-blockade and in the Kondo regime.
The Kondo effect allows the study of the spin structure of the measured
spectrum. Zeeman splitting of the zero-bias anomaly indicates a spin-
1/2 Kondo effect. An analysis of the phase evolution of the Aharonov-
Bohm effect in the Kondo regime yielded phase jumps by π at the
Coulomb-blockade resonances and a smooth shift of the Aharonov-
Bohm maxima between the Coulomb-blockade peaks.
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8 Summary

In this thesis we used the atomic force microscope (AFM) for the cre-
ation of complex mesoscopic devices with various geometries. The ba-
sis for our experiments were GaAs/AlGaAs-heterostructures with two-
dimensional electron gases (2DEG) 57 nm, 40 nm, and 34 nm below
the surface. We studied in detail controlled mechanical nanomachining
and local oxidation.

We fabricated ballistic quantum point contacts by engraving a con-
striction into a GaAs/AlGaAs-heterostructure with the tip of an AFM.
The devices were nanomachined using both a silicon tip and a diamond
tip to study the influence of the tip material. It turned out that a dia-
mond tip is almost perfect not only for a fast and simple processing but
also in forming proper potential profiles to observe ballistic electron
transport. The appearance of the 0.7 (2e2/h) conductance anomaly
confirms the high quality of diamond-engraved devices. We deduced
the depletion lengths induced by the different tips, yielding ∼ 200 nm
for diamond-engraved samples, which is roughly two times smaller than
typical depletion lengths in devices patterned with a Silicon tip.

A detailed study of the local oxidation with an AFM proved the
importance of the oxidation current for the controlled fabrication of
tunnelling barriers in 2DEGs. We found a linear dependence of the
barrier height on the oxidation current which is related to the depth of
the oxide lines. With these tunnelling barriers we fabricated a single-
electron transistor containing several hundred electrons well described
by the constant interaction model.

Further we demonstrated that the AFM-based nanolithography pro-
vides a relatively easy and controlled approach to create parallel quan-
tum dots. The double dot was stepwise fabricated with a combination
of controlled nanomachining and local oxidation. The dots were defined
by splitting a quasi-one-dimensional resonant tunnelling diode in two
separate zero-dimensional regions. Analysing of the transport measure-
ments of the two quantum dots allowed the identification of the specific
Coulomb-blockade oscillations of each dot. We showed that the current
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8 Summary

could be directed through both quantum dots separately by applying
high negative gate voltages to the respective in-plane gates. These ex-
periments proved that the combination of controlled nanomachining
and local oxidation with an atomic force microscope is a straightfor-
ward approach to fabricate robust mesoscopic devices.

In the remaining part of the thesis we investigated the transport
characteristic of a quantum ring defined by local oxidation in great
detail. We discussed the Aharonov-Bohm effect in this asymmetric
quantum ring with a diameter of below 450 nm. The analysis of the
data with Fourier transformation indicated only one interfering sub-
band in the ring. This led to a modulation of the conductance of more
than 50%. The electron orbit extracted from the periodicity of the
Aharonov-Bohm effects fits perfectly to the ring geometry. The at-
tached in-plane gates allow to tune the phase of the Aharonov-Bohm
effect at zero magnetic field and we observed the typical sharp phase
jumps by π that are related to the asymmetry of our device. Finally,
we showed that the line-shape of the resonances in the quantum ring
is controlled by an outer gate voltage and the magnetic field. This
fact was explained by interference between a resonant bound state and
directly submitted electrons. This led to a Fano like characteristic.

The attached in-plane gates of the quantum ring allowed to study the
same device in the Coulomb-blockade regime. With the observation of
spin flips in the addition spectrum in a perpendicular magnetic field we
determined the number of electrons to below ten in this voltage range.
The observation of a Kondo effect enabled to study the spin structure
of the measured quantum ring. The Kondo resonances vanished and
broadened with increasing temperature. The peak conductance follows
the universal curve and was used to estimate the Kondo temperature
of the device. Non-linear transport measurements showed an even-odd
behaviour of the Kondo effect. This result together with a Zeeman
splitting in a perpendicular magnetic field led to the conclusion that
the Kondo effect was induced by a single spin on the ring. The mag-
netic field dependence of the conductance in the Kondo valley could
be interpreted as ballistic transport of as few as five electrons.

At low magnetic fields we observed oscillations in the ground state
of the device with a periodicity related to the number of electrons on
the ring. This effect caused by strong electron-electron interactions was
attributed to the small number of electrons. We found Aharonov-Bohm
oscillations of the conductance in the Kondo regime as well. The finite
conductance due to the Kondo effect was used for an analysis of the
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phase evolution of this Aharonov-Bohm effect in the Coulomb-blockade
valley. The measurement yielded phase jumps by π at the Coulomb-
blockade resonances and a smooth shift of the Aharonov-Bohm maxima
in between.

The observation of the Kondo and Aharonov-Bohm effect shows the
wide range of possible research topics for these kind of devices. Due to
their smallness together with the few electrons and the exact control
of the sample parameters these devices are ideal systems to compare
the experimental results with theoretical predictions. With the AFM-
based lithography it should be possible to design novel geometries for
mesoscopic systems, which may show an unexpected variety of new
effects in transport experiments.
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Deutsche Zusammenfassung

In dieser Arbeit wurde ein Rasterkraftmikroskop (englisch: Atomic
Force Microscope AFM) zur direkten Herstellung mesoskopischer Bau-
teile in zwei-dimensionalen Elektronengasen (2DEG) in GaAs/AlGaAs-
Halbleiterheterostrukturen verwendet. Es kamen zwei Strukturierungs-
verfahren mit dem AFM zum Einsatz: die mechanische Nanostruk-
turierung und die lokale Oxidation. Beide Techniken erlauben die kon-
trollierte Erzeugung von isolierenden Bereichen in einem 2DEG durch
Manipulation an der Probenoberfläche. Der große Vorteil beider Tech-
niken liegt in der räumlichen Trennung von strukturierten Bereichen
an der Oberfläche und dem elektronischen System. Diese Besonderheit
verhindert die Erzeugung von Defekten im 2DEG.

Bei der mechanischen Nanostrukturierung wird die AFM-Spitze wie
ein Pflug verwendet, der die Oberfläche der Heterostrukturen in kon-
trollierter Weise einritzt. Die Untersuchungen konzentrierten sich dabei
auf den Vergleich der Strukturierungseigenschaften von herkömmlichen,
aus Silizium bestehenden Spitzen und neuartigen Diamantspitzen. Im
Laufe der Experimente wurde gezeigt, daß die Diamantspitzen nicht
nur sehr viel haltbarer sind, sondern auch den Herstellungsprozeß um
ein Vielfaches beschleunigen. Zum Vergleich der elektronischen Eigen-
schaften der mit verschiedenen Spitzen hergestellten isolierenden Lin-
ien, wurden ballistische Quantenpunktkontakte erzeugt und bei tiefen
Temperaturen mit Transportspektroskopie vermessen. Während die
mit einer Si-Spitze hergestellten Proben nur eine schwach ausgeprägte
Quantisierung des Leitwerts zeigen, ergaben die Beobachtungen an mit
Diamantspitzen erzeugten Proben ballistischen Transport über einen
weiten Kennlinienbereich. Damit konnte gereigt werden, dass mit einer
Diamantspitze geschriebene Linien ein adiabatisches Einschlußpoten-
tial ohne nennenswerte Defekte definieren. Zudem halbiert sich die min-
imale Linienbreite genauso wie die Verarmungslänge im Vergleich zu
mit Si-Spitzen hergestellten Strukturen.

Außerdem wurde die lokale Oxidation von Heterostrukturen unter-
sucht. Hierfür wurde eine negative Spannung zwischen einer leitfähigen
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AFM-Spitze und der Heterostruktur angelegt. Durch den auf fast jeder
Probe existierenden Wasserfilm entstand so eine Elektrolytzelle mit
einer Ausdehnung von wenigen Nanometern. Auch mit dieser lokalen
Oxidation wurden verschiedene 2DEGs isloiert analog zur mechanis-
chen Strukturierung. Diese Technik bot zudem die Möglichkeit, durch
eine Regelung des Oxidationsstroms die Verarmung des 2DEGs ex-
akt einzustellen. Dies wurde für die Herstellung eines Einzelelektron-
transistors (SET) verwendet. Die Charakterisierung mit Transportmes-
sungen bei Temperaturen von 350 mK zeigte, dass das Bauteil mit
einem einfachen Modell für Einzelladungseffekte beschrieben werden
konnte. Von besonderem Interesse war insbesondere die Kombination
von Nanostrukturierung und lokaler Oxidation für die Herstellung von
zwei parallelen SETs, die ebenfalls demonstriert wurde.

Ein weiterer großer Vorteil der AFM-Strukturierung mit der lokalen
Oxidation ist die Möglichkeit, Proben mit mehrfach zusammenhängen-
der Topologie zu erzeugen. Als Beispiel wurde ein kleiner Quantenring
mit einem Durchmesser von nur 450 nm diskutiert. Die Transportmes-
sungen zeigten bei 30 mK und senkrecht zum Stromfluß angelegtem
Magnetfeldern Aharonov-Bohm-Oszillationen mit einer Leitwertsfluk-
tuation von mehr als 50%. Dieser quantenmechanische Intereferenzef-
fekt von Elektronen erlaubte die genaue Bestimmung der Länge der
Elektronenbahn im Quantenring. Es ergab sich eine hervorragende
Übereinstimmung der gemessenen Oszillationsfrequenz mit der erwar-
teten, die aus den AFM-Bildern der Struktur berechnet wurde. Die an
jedem Ringarm angebrachten lateralen Elektroden erlaubten zudem,
die Phase der elektronischen Wellenfunktion im Ring einzustellen. Bei
bestimmten Werten der Elektrodenspannung traten Fanoresoannzen
auf, deren Form vom Magnetfeld und der Elektrodenspannung bes-
timmt wurde.

Die spezielle Geometrie des Quantenrings erlaubte auch eine Charak-
terisierung im Coulombblockadebereich, in dem der Ring mit den Elek-
troden als SET betrieben wurde. Die Transportmessungen zeigten die
von einem solchen Bauteil erwarteten Einzelelektronenladeeffekte. Hier
fiel ein besonderes Augenmerk auf die Magnetfeldabhängigkeit der
elektronischen Zustände im Quantenring. Durch die Auswertung des
sogenannten Additionsspektrums in hohen Magnetfeldern bis zu 6 T
konnten die Elektronen im Ring genau abgezählt werden. Es ergab sich
eine Zahl von weniger als zehn im Bereich der Coulombblockade.

Bei kleinen Magnetfeldern änderte sich der Grundzustand periodisch,
jedoch sehr viel häufiger als erwartet. Dieser Effekt konnte durch den
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8 Summary

Einfluss der Coulombwechselwirkung zwischen den Elektronen erklärt
werden, die die Entartungen zwischen Zuständen mit verschiedenen
Drehimpulsquantenzahlen aufhebt.

Von besonderem Interesse war ausserdem die Charakterisierung von
Korrelationseffekten zwischen Elektronen auf dem Quantenring und
Elektronen aus den Kontakten bei hohen Tunnelankopplungen. Dabei
wurde ein Kondoeffekt beobachtet, hervorgerufen durch die Streuung
von Elektronen an einem einzelnen, ungepaarten Spin auf dem Quan-
tenring. Messungen zur Temperatur- und Magnetfeldabhängigkeit liefer-
ten die erwarteten Eigenschaften, wie z.B. die universelle Linienform
für die temperaturabhängige Leitfähigkeit.

In diesem Transportregime wurden auch Aharonov-Bohm-Oszilla-
tionen beobachtet aber in diesem Fall im Bereich der Coulombblock-
ade. Die beobachtete (höhere) Frequenz entsprach der oben beschriebe-
nen, die durch Wechselwirkungseffekte verursacht wurde. Daraus kon-
nte geschlossen werden, dass der Quantenring selbst als Interferometer
angesehen werden kann.

Aus diesem Grund erlaubten unsere Transportmessungen die Be-
stimmung der Phase der Elektronenwellenfunktion in diesem Regime.
An den Coulombblockaderesonanzen ergaben sich scharfe Phasensprün-
ge um π. Im Gegensatz dazu zeigten die Messungen zwischen den Res-
onanzen jedoch eine unerwartete lineare Verschiebung der Aharonov-
Bohm-Oszillationen in Abhängigkeit von der Elektrodenspannung und
vom Magnetfeld. Dieser Effekt trat erst auf, nachdem ein halbes Fluß-
quantum zur Ringfläche addiert wurde. Diese Beobachtung ist wohl
ebenfalls auf einen Wechselwirkungseffekt zurückzuführen. Ein tief-
eres Verständnis dieser Phänomene erfordert weitergehende theoretis-
che Untersuchungen zu Quantenringen im Kondoregime.
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A Inelastic cotunnelling in a quantum
ring

Inside a Coulomb-blockade diamond the number of electrons N a quan-
tum dot is constant, see Figure A.1(a). The dominant process leading
to transport through a quantum dot in this regime is elastic cotun-
nelling, see e.g. [129].

Cotunnelling is a second-order process, in which one electron tun-
nels into the dot and at the same time one electron leaves it, see Fig-
ure A.1(b). If the quantum dot is in an excited state after the tunnelling
event, this is called inelastic cotunnelling. A schematic picture is shown
in Figure A.1(c). These inelastic processes can only occur if an applied
source-drain bias VSD exceeds the level spacing of the states ∆E. As
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Figure A.1: (a) Coulomb-blockade diamond with N electrons on a
quantum dot. The dashed lines depict the source-drain voltage
corresponding to an excited state. (b) Elastic cotunnelling for
eVSD < ∆E and (c) inelastic cotunnelling for eVSD > ∆E.
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Figure A.2: (a) Coulomb-blockade diamond of our quantum ring with
N = 5 electrons. Depicted is the differential conductance as a
function of VSD and VB at VA = −80 mV. (b) Non-linear dif-
ferential conductance at VB = −229 mV, marked by the dashed
line in (a). We observe several steps and peaks indicating inelastic
cotunnelling.

a consequence this leads to a stepwise increase of the conductance in
the Coulomb-blockade diamond as depicted in Figure A.1(a) by the
light and dark grey regions at finite bias voltages separated by the
dashed lines. These denote the bias voltage for the onset of inelastic
cotunnelling.

We observe inelastic cotunnelling in our quantum ring and deter-
mine the typical level spacing. In Figure A.2(a) we show the diamond
corresponding to N = 5 electrons on our ring at VA = −80 mV. At
VSD = 0 mV the Kondo resonance appears as relatively sharp black
line. Please note the vertical grey lines that run parallel to the gate axis.
Each denotes the onset of inelastic cotunnelling through an additional
excited state. To underline this characteristic we depict a non-linear
conductance measurement in Figure A.2(b) at VB = −229 mV. We
observe several peaks and steps in the differential conductance which
correspond to an average ∆E ∼ 150 µeV. We conclude that the level
spacing lies around this value for our quantum ring.

In Figure A.3 we show the non-linear conductance as a function of
VSD and magnetic field B in a grey-scale map. The Kondo resonance
appears as vertical black region around VSD = 0. Interestingly, there
are diagonal lines in the plot that run from the lower left to the upper
right of the plot at low magnetic fields B < 200 mT. This is explained
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Figure A.3: Grey-scale plot of the non-linear conductance as a function
of VSD and magnetic field, the black region around VSD = 0 de-
picts the Kondo resonance at VB = −229 mV and VA = −80 mV.
Please note the diagonal lines that run from the lower left to the
upper right at low magnetic fields. The numbers denote the posi-
tions of the schematic pictures shown at the right-hand side.

by the tuning of the excited states of the quantum ring with the mag-
netic field.

With increasing B the states with higher angular momentum reduce
their energy and finally will be degenerated with the former ground
state, see Figure 2.2. At each level-crossing on the ring one of the lines
intersects with the central Kondo-resonance. In principle we expect a
symmetric behaviour of the system, which would result in a plot with
lines running from the lower right to the upper left. The grey-scale
map should exhibit a crisscross pattern. The absence of it is possibly
caused by the asymmetry of the ring in this gate voltage range.
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B Symbols and abbreviations

2DEG Two Dimensional Electron Gas
nD n-dimensional electron system
AFM Atomic Force Microscope
D Drain contact of a sample
FWHM Full Width at Half Maximum
IPG In-Plane Gate
LL Landau Level
MBE Molecular Beam Epitaxy
NDR Negative Differential Resistance
QD Quantum Dot
QPC Quantum Point Contact
rel. H. Relative humidity
RTD Resonant Tunnelling Diode
S Source contact of a sample
SEM Scanning Electron Microscope
SET Single-Electron Transistor
SPM Scanning Probe Microscope
STM Scanning Tunnelling Microscope

A = D/H Aspect ratio of an oxide line
~A Vector potential
a Lattice constant of a crystal
α Voltage to energy conversion factor
B Magnetic field
CΣ Overall capacitance of a quantum dot
Ci Capacitance between gate i and the quantum dot
CS Capacitance between source and quantum dot
CD Capacitance between drain and quantum dot
χ Arm length of an Aharonov-Bohm ring in multiples of π
D Depth of an oxide line
de Electronic diameter of an Aharonov-Bohm ring
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De Electronic diameter of a quantum dot
D(E) Density of states
E Energy for electrons
e Elementary charge
EC Conduction band edge
EF Fermi energy
Er Energy of a 1D-subband relative to EF

Es Single-particle energy level on a quantum dot
EV Valence band edge
∆Ez Zeeman splitting
ε Energetic distance between µQD(N) and µS

ε Coupling coefficient for a ring interefrometer
f Frequency of the Aharonov-Bohm oscillations
f(E) Fermi-Dirac distribution
f0 Ground frequency of our Aharonov-Bohm ring
FC Contact force between AFM tip and sample
Φ0 Height of a tunnelling barrier above EC

Φeff Effective barrier height above µS,D

φ0 = h/e Magnetic flux quantum
φ Magnetic flux
G Linear conductance through a sample (VSD = 0)
G0 Conductance at VSD = 0
gGaAs Landé g-factor of GaAs
Γ Barrier transparency, inverse lifetime
H Hight of an oxide line
h Planck constant
~ h/2π
ISD Source-drain current through a sample
Iox Oxidation current flowing between AFM tip and sample
k Spring constant of the cantilever
~k Wave vector of an electron
ki i-th component of the wave vector
kF Wave number at EF

δ = kF ∆L Phase difference between the ring arms
kB Boltzmann constant
∆L Length difference of the arms of an Aharonov-Bohm ring
l Angular momentum quantum number
λF Wavelength of the electrons at EF

l1D Length of a quantum wire
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B Symbols and abbreviations

le Mean-free pass of an electron
lφ Phase coherence length
m∗ Effective mass of an electron
µe Mobility of a 2DEG
µS Electrochemical potential in the source contact
µD Electrochemical potential in the drain contact
µQD(N) Electrochemical potential of a quantum dot
N Number of electrons on a quantum dot
ne Electron density in a 2DEG
NScan Number of scan lines for controlled nanomachining
ν Filling factor in a magnetic field
Ψ Electronic wave function
R Resistance of a sample
T Absolute temperature
Tn Transmission through the n-th subband of a QPC
t Transmission coefficient
Tb Base temperature of the dilution cryostat
TK Kondo temperature
Θ Heaviside function
U = eVSD,U Charging energy of a quantum dot
V Voltage applied to a sample
Vi Voltage applied to gate i
Vox Oxidation voltage applied to the AFM tip
VSD Source-drain voltage
vn Velocity of an electron in the n-th subband
vtip Tip velocity during the oxidation with an AFM
w Width of a tunnelling barrier
w1D Width or point contact
wdpl,x Depletion width for a nanomachined line
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[96] M. Büttiker, Y. Imry, and M. Y. Azbel, Phys. Rev. B 30, 1982
(1984).

[97] S. Pedersen, Aharonov-Bohm experiments in mesoscopic systems,
PhD thesis, Niels Bohr Institute, University of Copenhagen, Den-
mark, 1999.
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Thema wäre diese Arbeit nicht in dieser Form entstanden. Durch die
vielen Diskussionen besonders über die Darstellung wissenschaftlicher
Ergebnisse habe ich viel gelernt.
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schulze die Diamantspitzen entwickelt und gewachsen.

Meinem Kollegen Claus Fühner aus dem ”Kon+do”-Raum bin ich zu
besonderem Dank verpflichtet. Ohne die vielen Diskussionen, seine Fra-
gen, Hilfe und Aufmunterung hätte ich noch längst nicht die Möglich-
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