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Abstract 

 

In order to achieve a significant reduction of environmental harmful nitrogen 

losses from agricultural soils or vegetable growing production systems, the 

calculation of N-fertilizer supply has to take into account not only  the crops 

nitrogen demand and the soils mineral N content, but also the amount of easily 

decomposable organic nitrogen compounds. The turnover of these compounds 

can be calculated by the use of simulation models. But the quantification of the 

organic compounds in the soil is mostly done by time-consuming and labour-

intensive incubation experiments. Their results often do not meet the needs of 

simulation models for parameterisation. Thus, they actually are rarely used for 

the prediction of nitrogen mineralisation in soils. A simple determination of these 

compounds is also necessary for the direct estimation of nitrogen release 

without the use of simulation models. 

 

Nowadays near infrared spectroscopy (NIRS) is a widely used tool for the 

Analysis of organic materials, since it is a rapid method for the simultaneous 

quantification of several organic components. Basis for these analyses is the 

development of calibrations with samples with the content of the searched 

substance known from mostly chemical reference methods. The calibrations are 

calculated using multiple linear regression algorithms. The objective of this work 

was to investigate, if NIRS is a suitable method for the determination of soil 

components relevant for N-mineralisation. 

 

For this purpose, NIR-spectra of soil samples from three different incubation 

experiments were taken. In the first study soils were examined, which had 

contents of organic matter varying in both amount and type due to the 

incorporation of different crop residues. Very different courses of mineralisation 

resulted in difficulties to develop accurate calibrations for net N-mineralisation 

rates. By restricting the number of samples to those, which were showing an 

approximately linear time-course of mineralisation, the estimation of the 

mineralisation rates determined for the evaluation dataset was improved 



significantly. Although the number of regression parameters was reduced 

clearly, the fraction of explained variance was rising from 48% to 88%. The 

reason for this change in accuracy is the non-linear relationship between the 

organic compounds determining the NIR-spectrum and the measured 

mineralisation rates. This non-linearity is caused by the coupling of C and N 

cycles. 

 

This problem can be reduced by the use of simulation models, since they are 

able to determine C and N pool sizes from the mineralisation course. The NIR-

spectra can be assumed to depend upon these pool sizes linearly. This concept 

was chosen in a second investigation and a very close relationship between 

simulated cellulose-content and the content as estimated by NIRS was found 

(r2=0.95). A comparison of the NIRS-equation determining the cellulose content 

in terms of important wavelengths and the spectrum of pure cellulose powder 

shows a good agreement of spectral features and thus underlines the 

usefulness of NIRS combined with simulation modelling.  

 

Varying fractions of mineral soil compartments such as sand, silt and clay can 

lead to non-linear relationships between concentrations of organic soil 

components and their impact on the spectra. These non-linearities can be 

compensated for by the use of weight scaling factors, which account for the 

different transparency of the individual mineral soil compartments. This way the 

use of multiple linear regressions makes sense again. A last investigation 

shows the positive influence of these weight scaling factors on the precision of 

NIRS-equations, which are determining organic contents in the soil. 

 

Keywords: Near infrared spectroscopy, N mineralisation, simulation models. 

 



Kurzfassung 

 

Um eine deutliche Reduktion von umweltschädlichen Stickstoffverlusten aus 

landwirtschaftlichen und gemüsebaulichen Produktionssystemen herbeizu-

führen, ist bei der Bemessung der Düngemengen nicht nur der Stickstoffbedarf 

der Kultur und der im Boden vorhandene mineralische Stickstoff zu berück-

sichtigen, sondern auch leicht umsetzbare organische Stickstoffverbindungen 

müssen Eingang in die Berechung finden. Die Umsetzung dieser Verbindungen 

kann durch den Einsatz von Simulationsmodellen abgebildet werden. Da aller-

dings die Quantifizierung der im Boden vorhandenen organischen Verbin-

dungen bisher meist nur durch zeit- und arbeitsaufwendige Bebrütungs-

versuche erfolgt, deren Ergebnisse oft nicht für die Parametrisierung von 

Simulationsmodellen ausreichen, werden diese bisher kaum für die tatsächliche 

Prognose der zu erwartenden Stickstoffmineralisation eingesetzt. Auch für eine 

direkte Abschätzung der Stickstofffreisetzung ohne den Einsatz von 

Simulationsmodellen ist eine Quantifizierung dieser Verbindungen erforderlich. 

 

Die Nah-Infrarot-Spektroskopie (NIRS) stellt heutzutage eine weitverbreitete 

Methode zur Analyse organischer Materialien dar. Ihre Vorzüge liegen in der 

schnellen simultanen Bestimmung mehrerer Inhaltsstoffe. Grundlage für solche 

Analysen ist die Entwicklung von geeigneten Kalibrationsgleichungen mit 

Proben, deren Gehalt an der zu bestimmenden Substanz durch 

Referenzmethoden bekannt ist. Diese Kalibration geschieht durch Anwendung 

multipler linearer Regressionsverfahren. Ziel dieser Arbeit war die 

Untersuchung, ob NIRS für die Bestimmung von mineralisations-relevanten 

Größen in Bodenproben geeignet ist. 

 

Dazu wurden NIR-Spektren von Bodenproben aus drei verschiedenen 

Inkubationsversuchen aufgenommen. Zuerst wurden Proben untersucht, deren 

organischer Anteil nach Einarbeitung verschiedener Ernterückstände in Art und 

Menge sehr stark variierte. Sehr unterschiedliche Mineralisationsverläufe 

führten zu erheblichen Schwierigkeiten bei der Kalibration auf Netto-



Mineralisationsraten. Durch die Beschränkung auf Proben, in denen die 

Mineralisation zeitlich annähernd linear verlief, konnte trotz deutlicher 

Reduzierung der Regressionsparameter die Abschätzung der Mineralisations-

rate durch NIRS erheblich präzisiert werden und zwar von 48% auf 88% 

erklärter Varianz im Validationsdatensatz. Der Grund für diese deutliche 

Änderung ist der nichtlineare Zusammenhang zwischen den das NIR-Spektrum 

bestimmenden Inhaltsstoffen und den ermittelten Mineralisationsraten aufgrund 

der Kopplung von C- und N-Kreislauf.  

 

Dieses Problem kann durch die Anwendung von Simulationsmodellen reduziert 

werden, da sie aus dem Mineralisationsverlauf C- und N-Poolgrößen schätzen 

können, von denen die NIR-Spektren linear abhängen. Dieser Ansatz wurde in 

einer weiteren Untersuchung gewählt und eine sehr enge Beziehung zwischen 

simulierten und mittels NIRS geschätzten Cellulose-Gehalten wurde ermittelt 

(r2=0.95). Ein Vergleich zwischen den in der NIR-Gleichung zur Cellulose-

Bestimmung stark gewichteten Wellenlängen und dem Spektrum reiner Cellu-

lose zeigt sehr deutliche Parallelen und untermauert somit die Anwendbarkeit 

der Kombination von NIRS mit mathematischen Simulationsrechnungen. 

 

Veränderliche Anteile des mineralischen Hintergrundes aus Sand, Schluff und 

Ton können zu nichtlinearen Zusammenhängen zwischen organischen 

Inhaltsstoffkonzentrationen und deren spektralen Auswirkungen führen. Diese 

Nichtlinearitäten können kompensiert werden, indem multiplikative 

Gewichtungsfaktoren die unterschiedliche Transparenz der mineralischen 

Fraktionen widerspiegeln. Auf diese Weise ist die Anwendung von multipler 

linearer Regression zur Erstellung von Kalibrationen wieder sinnvoll. Eine 

abschließende Untersuchung zeigt deutlich die positiven Auswirkungen solcher 

Gewichtungsfaktoren auf die Präzision von NIRS-Gleichungen zur Bestimmung 

organischer Gehalte  in Bodenproben.  

 

Schlagworte: Nah-Infrarot-Spektroskopie, N-Mineralisation, Simulationsmodelle. 
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1 Introduction 
 

Ecological aspects become more and more important in modern agriculture and 

horticulture. In addition to questions concerning biodiversity or pest 

management, high nitrate concentrations in soil and groundwater due to nitrate 

leaching have become a serious problem in this complex environment (Pang et 

al. 1998; Voss 1985). The reduction of harmful nitrogen flows to the 

environment without losses in crop yield and quality is a challenging task for the 

near future.  

 

 

1.1 Fertilizer recommendations 

 

For some greenhouse crops the goal of reducing nitrogen losses can be 

achieved by closed nutrient cycles. This can be realised by systems, in which all 

nutrient flows can be controlled, e.g. by growing plants in rockwool using drip 

irrigation with nutrient solution. But only a small fraction of crops can be 

cultivated under such controlled conditions. In field crops production, nitrogen 

supply and nitrogen demand have to be balanced carefully in order to avoid 

nutrient deficiency symptoms on one side and leaching of mineral nitrogen on 

the other. The N demand is known for the most important crops. If the N supply 

is supposed to match to these values as exactly as possible, fertilizer 

recommendations have to take into account not only the amount of mineral N in 

the soil at planting, but also the fraction of organic N, which can be mineralised 

until and during cultivation.  

 

Especially the field production of vegetables is often associated with high 

amounts of residual mineral N in the soil (Navarro Pedreno et al. 1996). Many 

vegetables are harvested in a physiological state of growth and high N-demand. 

Since they are qualitatively and quantitatively very sensitive to the amount of 

available mineral N (Booij et al. 1996), considerable reserve factors are 
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calculated in the fertilizer management, leading to high residual mineral N 

values in the soil by the time of harvesting (Everaarts and Gysi 1993; Everaarts 

et al. 1996; Rahn et al. 1992). Additionally, high amounts of crop residues, 

which often contain many mineralisable N-compounds like proteins, stay on the 

field and their mineralisation is a valuable source of nitrogen for the next crops. 

 

A prediction of this net N mineralisation has to consider several factors, namely 

weather, soil type, amount of mineralisable substances and the activity of the 

microbial biomass. Mathematical models can be used to calculate the 

mineralisation taking into account temperature, soil water content and other 

environmental factors. Many different models have been evaluated and were 

found to describe the course of mineralisation quite well (Jensen et al. 1996; 

Molina et al. 1997; Molina and Smith 1998). Most models use a number of 

different organic N pools in order to represent the differing decomposability of 

various N compounds. When predictions of the N-mineralisation are required, 

these models need to be initialised with starting values for the different nitrogen 

pools. Therefore the determination of the mineralisable N compounds in the soil 

is a prerequisite for any prediction of mineral N contents and in consequence for 

exact N fertilizer recommendations.  

 

 

1.2 Characterisation of organic N compounds in soils 

 

Biological, chemical or physical methods can be used for the measurement of 

mineralisable N (Olfs 1992). The most common method to determine a soil’s 

mineralisation potential is the incubation of the soil at temperatures and water 

contents, which are close to optimum for the microbial biomass. This 

accelerated mineralisation is then determined by measuring the accumulation of 

mineral N after a defined incubation time (Keeney 1982; Stanford 1982). With 

this procedure one can only determine the net N mineralisation in a certain 

period of time, but it is not possible to differentiate between organic N pools with 

varying decomposability. Different pools can only be determined, when the 
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course of mineralisation is known from continuous monitoring of the mineral N 

content during incubation. Incubation experiments are always labour-intensive 

and extremely time-consuming. Hence they cannot be used economically for 

routine predictions.  

 

The determination of organic soil compartments by various chemical extraction 

techniques (Bremner 1982) or by electro-ultra-filtration (EUF) (Nemeth 1985) is 

less time-consuming. Houba et al. (1986) compared extractions with CaCl2 

solution and EUF with standard extractions using KCl or NaCl solutions. High 

correlations were found between the results of EUF and these extraction 

methods. This means that subtraction of the results of two different extraction 

procedures does not deliver information about specific organic N fractions. 

There are no suggestions, how to retrieve information about the amount of 

different organic N compounds in the soil by EUF or extraction procedures. 

 

Like incubation procedures, EUF and methods such as extractions with e.g. 

CaCl2-solution are also labour -intensive due to the wet chemistry analyses, 

which have to be conducted. Another drawback of these methods is the fact, 

that extracts do not always appear to be useful N availability indices (Hossain et 

al. 1996; Köhler 1983), or that during incubation the amount of already 

mineralised N and the amount of extractable N are not always correlated clearly 

(Steffens et al. 1996). 

 

The physical fractionation into size or density classes using silica suspensions 

is another possibility to characterise the soil organic matter (Christensen 1992; 

Meijboom et al. 1995). Hassink (1995) suggests to divide the organic matter into 

four size and density classes in order to parameterise mathematical 

mineralisation models. In this case different pools of N compounds can be 

determined, but the physical fractionation also comes along with a large labour 

requirement. 
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Apart from the dead organic matter, the microbial biomass is an important part 

of the soil organic matter. On one side microbial biomass is the driving force in 

the biochemical turnover in the soil, on the other side it is an easily 

decomposable fraction itself. Its determination is even more sophisticated than 

the characterisation of other pools of organic matter in the soil. Mainly two 

methods are used for the determination of the microbial biomass. In the 

fumigation-extraction method (FEM) (Brookes et al. 1985) the total microbial 

biomass is measured, while the substrate-induced respiration (SIR) (Anderson 

and Domsch 1978; Heinemeyer et al. 1989) only measures the active part of 

the microbial biomass. 

 

A determination of different soil organic matter fractions such as easily 

decomposable and more recalcitrant compartments as well as the microbial 

biomass cannot be achieved economically by the methods listed above. Only 

special research interests might justify  such an investment of time and work.  

 

 

1.3 Near infrared spectroscopy 

 

Near infrared reflectance spectroscopy (NIRS) is widely used for the 

determination of organic compounds in e.g. cereals, forages, dairy products and 

pharmaceuticals. The principle of NIRS is that chemical bonds like N-H or C-H 

absorb electromagnetic radiation at characteristic wavelengths, which means 

that the absorption at this wavelength is determined by the concentration of the 

absorbing compound (Colthup et al. 1990). The reflectance of a sample is 

scanned in the near infrared radiation (1100 nm - 2500 nm) in steps of 2 nm 

and the reflectance of the sample is divided by the reflectance of a standard 

material at each wavelength. The resulting relative reflectance R is then used to 

calculate the concentration c of the absorbing substance. According to Lambert-

Beer’s law electromagnetic radiation decreases exponentially when passing an 

absorbing material. The fraction of light absorbed by the sample (A) can then be 

written as 
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)exp(1 xcA ⋅⋅−−= β  

 

where b is the effective cross section, a coefficient with the dimension of an 

area, depending on the probability of an energy transfer to the chemical bond 

and x is the path length in the material passed by the radiation. Assuming that 

the transmittance through the sample can be neglected (R = 1 - A), the 

concentration is then proportional to the logarithm of the reciprocal reflectance. 

 







=⋅⋅

R
xc

1
logβ  

 

The quantity )( xc ⋅⋅−β  at wavelength i is referred to as absorbance ai. A more 

detailed description of the theory of diffuse reflection in the NIR region is given 

by Olinger and Griffiths (1992). 

 

Absorption peaks in the near infrared region are broad and overlapping 

(Workman and Burns 1992), which means that in mixtures of absorbing 

materials the left-hand term of the equation has to be replaced by a sum for all 

substances absorbing at this wavelength. On the other hand a certain chemical 

bond shows multiple absorption peaks representing the vibrational overtones, 

that can be excited in this bond (Ciurczak 1992). 

 

Figure 1 shows spectra of three different crop residues. The differences 

between these spectra are quite evident. When incorporated into soil at a 

concentration of 3%, the spectral differences seem to vanish. The major 

difference between the soil spectra is a shift of the spectra to generally lower 

absorbance for finer soil textures. This effect, not helpful for the determination of 

organic soil constituents, can be reduced by the use of mathematical pre-

treatments like scatter corrections or the use of first or second derivatives of the 

spectra (Barnes et al. 1989). The differences caused by the crop residues are 

small, but the resolution of commercial NIR-spectrometers is high enough to 

detect these differences.  
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Figure 1  NIR-spectra of pure crop residues (large symbols) and residues incorporated (small symbols) in two different soil 
types (concentration 3%) 
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It is obvious, that the composition of a soil sample containing various organic 

compounds cannot be calculated directly from the spectrum. Calibrations have 

to be made using samples with a known concentration of the relevant 

compound.  

 

There are several algorithms to solve the multivariate regression problem 

encountered when calibrating NIR-spectra with multi-collinear absorbance 

values. Due to the overlapping of absorption peaks and the collinearity of the 

absorbance at different wavelengths, methods using single wavelengths are 

usually less successful than methods like principal component regression 

(PCR) or partial least squares regression (PLS), which utilise the whole 

spectrum to extract the spectral fingerprint of a chemical compound. Both 

methods reduce the spectrum containing 700 absorbance values to a small 

number of spectral features (factors), which account for most of the variance in 

the spectra contained in the calibration dataset.  

 

PCR only uses information of the spectra themselves to determine the factors 

(principal components). The covariance-matrix of the spectra is calculated 

containing the whole information of the variance among the spectra. The 

eigenvectors of this covariance matrix are the principal components. The first 

few principal components contain more than 99% of the variance, while the rest 

is negligible. A simple example is given in Figure 2. The absorbance at the 

wavelengths 1450nm and 1940nm, major absorption peaks of water, are highly 

correlated.  

 

The introduction of principal components is nothing but a trans formation of the 

coordinates to more useful directions. In the example the first principal 

component contains the whole information about the water content in the 

samples, while the second principal component is not used for the 

determination of the water content. Since they are eigenvectors of a matrix, the 

principal components are orthogonal (Mark 1992), which is an important 

prerequisite for their use as parameters in linear regressions. When changing 
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the coordinate system, the absorbances of a sample at the single wavelengths 

are replaced by the scores on the principal component axes.  
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Figure 2  Two -dimensional example for the generation of principal 

components (plot only for demonstration purposes, not actually 

measured values) 
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In Figure 3, principal component representations of the NIR-spectra are shown 

for 6 replicates of the soil samples, which have been graphed in Figure 1. The 

first three principal components contain information characterizing the two soils, 

as seen in perspective a. Looking from a different angle (perspective b), it 

becomes obvious that also the variation in the spectra caused by the different 

crop residues is contained in the first three principal components. 

 

Pure soil
Cauliflower stem
Cauliflower leaf
Wheatstraw

Pure soil
Cauliflower stem
Cauliflower leaf
Wheatstraw

 

Figure 3  Principle component (pc) presentation of the soil samples, which 

have been shown in Figure 1.  

 

 

PLS has similar properties as PCR for the introduction of PLS-factors is also a 

coordinate transformation to more useful axes than the absorbance at single 

wavelengths. The main difference is, that not only the NIR-spectra, but also the 

reference values, e.g. water content, of the calibration samples are used for the 

calculation of the PLS-factors (Bjørsvik and Martens 1992). PLS-factors are 

more difficult to interpret, but PLS-calibrations are faster and they usually need 

fewer factors for the explanation of the same variance than PCR-calibrations. 

perspective a) perspective b) 
pc 2 

pc 1 
pc 3 

pc 2 

pc 1 pc 3 

Soil 1: Soil 2: 



1. Introduction 

 - 12 - 

PLS-factors are also orthogonal due to the algorithm, which is used for their 

determination. A further improvement in the explanation of the variance can 

often be achieved with a modified PLS-algorithm (MPLS) as presented by 

Shenk and Westerhaus (1991). An illustrative comparison of principal 

components and PLS-factors is presented by Cowe et al. (1991). 

 

The spectra can now be represented by a small number of scores without 

loosing important spectral information. The factors (PLS-factors or principal 

components) can then be used as parameters in a multivariate linear 

regression, the actual calibration. Afterwards, the spectral factors are inserted 

into the resulting regression equation. Thus, the calibration ends up with a 

NIRS-equation in the following form (Workman 1992):  

 

∑+=
i

iibabc 0  

 

The concentration c of the searched ingredient in an unknown sample is then 

calculated from the measured absorbances ai  at each wavelength i, using the 

complementary coefficients bi , which are characteristic for each NIRS-equation.  

 

 

1.4 Cross validation and outlier detection 

 

The number of factors used in the calibration is restricted by cross-validations 

(Snee 1976; Stone 1974) during the calibration process firstly to get a measure 

for the quality of the calibration and secondly to limit the number of parameters 

(principal components or PLS-factors) in the calibration. This increases the 

robustness of the NIRS-equation, since ‘over-fitting’ is avoided.  

 

Also, outliers can be detected during the calibration process. There are spectral 

and regression outliers, which can be identified mathematically. If the spectrum 

of a sample cannot be described satisfactorily by the spectral factors, principal 
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components or PLS-factors, this sample is called a spectral outlier. Large 

residuals (> 3 ◊ standard error of calibration) in the analytical data, which are not 

modelled by the NIRS-equation derived from the calibration, indicate regression 

outliers. More details about outlier detection are given by Martens and Næs 

(1989). 

 

In the calibrations presented in this study, both spectral outliers and regression 

outliers were detected and eliminated from the calibration samples 

automatically in two successive outlier elimination stages. NIRS-calibrations 

were recalculated after each elimination stage. Regression statistics presented 

in this study therefore always belong to the final calibration after outlier 

elimination. In order to get a deeper understanding of their effects, spectral 

outliers are treated separately by manual elimination or outlier elimination is 

suppressed completely in some cases. This will be explained in the 

corresponding passages of the following chapters. 

 

 

1.5 NIRS in soil analysis / Objective of this study 

 

Recently, there is a growing interest in using NIRS for the analysis of soil 

(Malley 1998). The objective of this study was to evaluate the use of NIRS for 

the determination of soil organic matter, especially for the characterisation of 

easily decomposable fractions. A number of different aspects is associated with 

this scope. Several principal questions have to be answered in order to achieve 

this goal: 

 

• Can easily mineralisable organic substances in the soil principally be 

detected and by NIRS distinguished from more recalcitrant fractions such 

as humic compounds, i.e. do they absorb electromagnetic radiation in the 

near infrared wavelength area, resulting in a specific spectrum? 
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• What is the detection limit, the lowest detectable concentration of the 

searched substances? 

 

• Which mathematical pre-treatments and which regression algorithms are 

appropriate for the use of NIRS in soil analysis? 

 

• Which quantities describing the amount of mineralisable organic matter 

can be used as reference values in the calibration process? 

 

• How do the mineral soil fractions, especially silicates, influence the NIR-

spectra of soil samples? 

 

Other questions such as economic aspects of the NIRS-application in soil 

analysis or the accuracy, which can be reached, can be focused, when the 

questions listed above are answered. They will not be discussed intensively in 

this study. 

 

An answer to the question about the principal chances to detect mineralisable 

substances in soil can be derived from other publications. Many chemical 

compounds, which are part of the decomposable soil fractions have been 

incorporated into the soil in form of crop residues. Their major constituents such 

as carbohydrates, lignin or proteins have been subject to a wide variety of 

studies, in which forages or silages are examined with NIRS (Batten 1998; 

Marten et al. 1984; 1989; Redshaw et al. 1986). 

 

Also the successful use of NIRS as an analytical tool in litter decomposition 

studies has been reported (Couteaux et al. 1998; Gillon et al. 1999; McLellan et 

al. 1991). These investigations as well as NIRS-examinations of other materials 

used as soil amendments such as composts or cattle manure (Ben-Dor et al. 

1997; Horst et al. 1996; Reeves and Van Kessel 2000) are closely related to the 

detection of mineralisable substances in soils. The samples examined in these 

studies did not contain considerable amounts of mineral compartments such as 



1. Introduction 

 - 15 - 

sand or clay. Nevertheless, these publications are hints, that also in soils easily 

mineralisable organic substances might be detected by NIRS. 

 

Detection limits are very different for individual chemical compounds due to 

varying extinction coefficients b. Hence, the detection limits cannot be 

discussed generally, but only in combination with the kind of reference data 

used in a calibration. Also the third question focusing on the appropriate 

mathematical pre-treatment and suitable regression algorithms can only be 

answered individually for each calibration. This study will therefore be 

concerned primarily with the last two questions, the utilisation of different kinds 

of data as reference values for NIRS-analyses of soil and the influence of 

mineral soil compartments on the NIR-spectra and on the accuracy of NIRS-

calibrations. 

 

The most direct determination of decomposition is the measurement of CO2 or 

mineral N released from the soil in incubation experiments. Several authors 

used these quantities for calibrations (Nilsson et al. 1992; Palmborg and 

Nordgren 1993; Pietikainen and Fritze 1995; Reeves and Van Kessel 1999), but 

due to the coupling of C and N cycles, these net mineralisation values are not 

generally linearly correlated to the amounts of mineralisable compounds. 

Chapter 2 focuses on the use of mineralisation rates as reference values. 

Therefore other variation in the samples than different crop residues was kept 

small in the dataset used for this investigation. 

 

In order to examine the capability of NIRS to detect easily decomposable soil 

fractions, Chapter 3 is concerned with the question, if cellulose, the most 

important organic component in the biosphere, can be detected in soil, where it 

makes up only a small part of the organic C. The detection of cellulose in purely 

organic samples has been reported to be quite successful (Czuchajowska et al. 

1992; Langkilde and Svantesson 1995; Schultz and Burns 1990). 
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Silicates like sand, silt and clay are the major mineral constituents of soils. 

These are known not to absorb radiation in the near infrared wavelength area 

(Workman 1998). On the other hand the influence of mineral soil fractions on 

NIRS-calibrations for organic soil compartments has been pointed out in several 

publications (Krischenko et al. 1991; Morra et al. 1991; Zwanziger and Förster 

1998). Couillard et al. (1996) have shown, that the predictive quality of 

calibrations for different soil compartments is improved, when the different 

amounts of sand, silt, clay and organic matter are modified by weight scaling 

factors. An improvement in predictive accuracy due to this modification has not 

yet been reported, when applied to natural soil samples. 

 

In chapter 4 the influence of different soil textures on calibrations is focused. 

One soil type mixed with 20% quartz sand and 20% bentonite, respectively, was 

used in this investigation. Thus it was ensured, that the variance occurring in 

the two sample sets only derives from the mineral fraction of the soil. The 

modification developed by Couillard et al. (1996) is applied to the samples and 

its usefulness is discussed. 

 

In chapter 5 NIRS is applied to a datasets containing a wide variety of soil 

textures. Again the application of weight scaling factors is tested. Another scope 

of this chapter is the question of suitable reference values for NIRS-calibrations. 

The samples of these datasets have been examined by different extraction 

procedures and by EUF (Appel 1998). Also sizes of different N-pools as 

simulated by NCSOIL (Molina et al. 1997) were available. These pool sizes 

were also used for calibrations.  
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2 Correlating near infrared spectra with N mineralisation 
parameters 

 

Abstract 

The prediction of nitrogen mineralisation in agricultural or horticultural soils is a 

major problem when fertilizer recommendations have to be given. Methods to 

estimate N-mineralisation like incubation of soil samples under optimum 

conditions are laborious and time-consuming. Other methods like different 

extraction procedures do not give reproducible results. Near infrared reflectance 

spectroscopy (NIRS) is a tool widely used in the determination of organic 

constituents of agricultural products. The aim of our study was to investigate, if 

NIRS can be applied to soil samples in order to determine the content of 

mineralisable nitrogen. We correlated results of an incubation experiment with 

near infrared spectra of soil samples which were scanned prior to incubation. 

122 soil samples (sandy loam) from an experimental station and a nearby 

vegetable growing farm were collected. They contained crop residues varying in 

amount, time since incorporation and species of the residues. Total carbon and 

nitrogen in the samples were measured using an element analyser. The release 

of mineral nitrogen was measured by taking sub-samples 5 times during the 4 

week incubation. Only a third of the samples showed an approximately linear N-

mineralisation course. We used total contents of carbon and nitrogen as well as 

mineralisation rates at different stages of the incubation as reference values in 

the NIRS-calibration procedure. Half of the samples were used for calibration, 

the other half for validation purposes. For the total carbon and nitrogen content, 

the fraction of explained variance in the validation was r²=0.93 and r²=0.82, 

respectively. Applying the calibrations for mineralisation rates gave poor 

correlations (r²<0.48), when all samples were used. Using only the samples with 

roughly linear mineralisation curves clearly improved the prediction for e.g. net 

N-mineralisation in four weeks to r²=0.88. It can be concluded from these 

results, that only mineralisation rates in simple processes can be directly 

predicted by NIRS. 
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2.1 Introduction 

 

Due to high levels of fertilizer application, nitrogen leaching has become a major 

problem in agriculture and horticulture. Most N fertilizer recommendations are 

still based solely on the nutrient requirements of the crop and the mineral N 

content present in the soil. However, if N-mineralisation from the organic matter 

is not considered, N fertilising recommendations will be too high. Thus, to 

reduce N overdosing, one has to find a good estimation of the N-mineralisation 

in the soil. Conversely, N fertilizer recommendations cannot be more exact than 

the prediction of N mineralisation or immobilisation in the soil. Traditionally, the 

mineralisation potential of a soil is estimated by in vitro incubations followed by 

wet chemical analyses. This method is very labour intensive, time-consuming 

and expensive. 

 

In order to find methods suitable for monitoring purposes, attempts to avoid the 

incubation procedure have been made. Results of various extraction techniques 

like electro ultra filtration (Nemeth 1985) or CaCl2-extraction (Appel et al. 1995) 

were correlated with incubation results. These methods are less time-

consuming than incubation, but the wet chemistry is still labour -intensive. 

Additionally, it is shown, that the time courses of extractable organic N and 

mineralised N are not always well correlated (Köhler 1983, Steffens et al. 1996). 

 

In the last decades, near infrared spectroscopy (NIRS) has replaced a major 

part of wet chemical analyses as it allows the fast and simultaneous 

determination of different organic compounds in e.g. grains, forages and dairy 

products. The principle of NIRS is to determine the absorbance of a sample in 

the near infrared wavelengths region, which is caused by chemical bonds in the 

sample (Ciurczak 1992). 

 

Wavelength position and height of the spectral peaks cannot directly be used 

for determinations of chemical compositions, because spectra are too complex 

and peaks in the near infrared region are broad and overlapping (Workman and 
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Burns 1992). Instead, spectra have to be calibrated using samples in which the 

constituents of interest are known from reference methods. The multivariate 

regression problem, which is encountered when equations for one chemical 

substance have to be obtained from spectra with many collinear variables can 

be solved by e.g. partial least squares regression (PLS) or principal component 

regression (PCR) algorithms (Martens and Næs 1989; Shenk and Westerhaus 

1991). Both methods reduce the original spectra consisting of 700 data points to 

a small number of spectral features (factors), which account for most of the 

variance of the spectra. These factors are then used as parameters in a normal 

linear regression procedure giving a NIRS-equation. Once calibrated, such a 

NIRS-equation can then be applied to other samples in order to determine the 

specific organic compound for which the equation had been developed before. 

 

Recently there is a growing interest in using NIRS for soil analyses (Couillard et 

al. 1996; Malley 1998). Dalal and Henry (1986) measured organic C, total N and 

water content in soils. They divided the samples into two datasets, which were 

used for calibration and evaluation, respectively. They found fractions of 

explained variance between 0.85 and 0.94 for the separate evaluation dataset.  

 

Also, correlations between NIR-spectra and the soils mineralisation potential 

were found. Palmborg and Nordgren (1993) were able to explain up to 95% of 

the basal respiration and substrate induced respiration (SIR) of forest soils from 

NIR-spectra. Meyer (1996) used NIRS to classify soils from South African 

sugarcane farms in four levels of N mineralisation potential. The probability of 

deriving the right mineralisation class from NIR-spectra in this practical 

application was above 90%. 

 

Reeves and van Kessel (1999) correlated NIR-spectra with the accumulated 

soil inorganic nitrogen and the evolved CO2. They used soils amended with 

different kinds of manure as well as unmanured controls. The coefficients of 

determination for the calibration (all soil samples included) were 0.63 and 0.56 

for the evolved CO2 and the released inorganic N, respectively. 
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All these results are encouraging as they are showing the potential of NIRS in 

rapid and effective detection of the soil organic matter. On the other hand, one 

has to keep in mind, that the application of NIRS to soils has some specific 

problems. Most agricultural or horticultural soils contain only a relatively small 

organic fraction, while the silicate minerals such as sand, silt and clay make up 

for the biggest part of the soil. These silicates are transparent to near infrared 

radiation (Workman 1998), but they still are subject for scattering processes, 

which cannot be described analytically. So, soils have properties contrasting to 

those materials for which NIRS has been developed for, which are mostly 

organic and only contain small mineral fractions. 

 

Another difficulty rises from the fact, that the mineralisable fractions of the soil 

organic matter are usually very small and NIRS has not generally been found to 

perform very well for minor constituents in organic samples (Shenk and 

Westerhaus 1993). 

 

Observing the decay of mineralising substances in incubation experiments, one 

has to remember, that most reference measurements give quantities of 

substances evolved from the soil like CO2 or NO3
- (Reeves and van Kessel 

1999). By the time, when NIR-spectra are taken which is usually before 

incubation, the CO2 or nitrate is not yet produced. Hence, the measured entity 

cannot directly contribute to the NIR-spectrum of a soil sample. Instead, the 

spectral differences are caused by different contents of organic compounds like 

cellulose or proteins which are subject to the mineralisation process. The 

correlation of spectra and produced CO2 or nitrate is therefore indirect. This can 

lead to difficulties, if the organic sources for the mineralisation process in the 

unknown samples differ from those in the calibration samples. For instance, a 

calibration derived from samples containing different amounts of pig slurry will 

generally not be able to predict the nitrate release from samples containing 

vegetable residues.  
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The objective of this study was to investigate if mineralisation parameters of 

horticultural soils containing different amounts of crop residues can be directly 

correlated to their NIR-spectra and which conditions have to be fulfilled to get 

good prediction qualities. In addition it was investigated, if calibrations for total N 

and C can be developed even if very different amounts and kinds of organic 

substances are present in the soil samples.  

 

 

2.2 Material and methods 

 

Incubation 

Soil samples of ca. 2 kg fresh mass were taken from an experimental station 

(73 samples) in southern Lower Saxony and from a nearby vegetable growing 

farm (49 samples). The soil was a silt loam derived from loess. Each of the 122 

samples was taken from the top 20 cm of the soil collected from 3 different 

points of the same plot. The samples contained different kinds of crop residues  

The amounts of residues were not known. A detailed overview of the different 

residues is given in Table 1. 
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Table 1   Origin of the soil samples and type of plant residues incorporated 

Number of 
samples Type of plot Residue type Actual crop 

3 long-term experiment rye straw rye 

6 long-term experiment winter barley cauliflower 

6 long-term experiment winter wheat spinach 

6 long-term experiment faba beans none 

6 long-term experiment cauliflower cauliflower 

6 long-term experiment winter wheat mustard 

16 experimental plot cauliflower none 

6 experimental plot white cabbage + clover none 

6 experimental plot winter wheat none 

6 experimental plot chicory leaves none 

6 experimental plot lettuce none 

6 greenhouse cucumber roots cucumber 

14 greenhouse cucumber roots tomato 

6 field (11 days after 
ploughing) white cabbage none 

9 field, freshly ploughed white cabbage none 

9 field, freshly ploughed tomato plants from 
greenhouse none 

5 field, freshly ploughed pasture none 

 

 

The samples were hand-mixed thoroughly. Bigger parts of plant residues were 

thereby chopped to < 1 cm. Then the samples were divided into eight 

subsamples of 250 g each. These were used as follows: 

 

1.   measurement of mineral N (ammonium and nitrate), 

2.   NIRS-analysis after drying and milling, 

3.   drying, determination of soil dry matter, total N / total C content  

4.- 8. Incubation, sampling after 3, 7, 14, 21, 29 days, measurement of    

mineral N (ammonium and nitrate) at each sampling date 
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For incubation the subsamples were filled in polyethylene pots and placed in 

climate chambers at 20°C under aerobic conditions. Controlling and irrigating 

regularly ensured that the water content was kept above a value that 

corresponded to 50% of the water holding capacity of the original soil.  

 

Total C and N content were determined using an element analyser (vario EL, 

elementar Analysensysteme GmbH, Hanau, Germany). 

 

NIRS-analysis and calibration 

All subsamples dedicated for NIRS-analysis were dried at 105°C, milled to pass 

a 1mm-sieve and then spectrally analysed with a NIRSystems 5000 

spectrometer (FOSS NIRSystems Inc., Silver Spring, USA) in the wavelength 

range from 1100 to 2500 nm in 2 nm-steps. Also, the subsamples of the end of 

the incubation process were measured in the same way. 

 

The spectra were scatter corrected as described by Barnes et al. (1989). 

Calibrations were developed by using the first derivative of the original spectra. 

For the calibration process the PLS algorithm in the modified form presented by 

Shenk and Westerhaus (1991) was used. 

 

In order to evaluate each calculated calibration, we used the following 

procedure: The set of soil samples was divided into two parts by picking every 

other sample and keeping these as an independent evaluation data set. The 

other samples were then used for calibration. Additionally, cross validations 

(Snee 1976; Stone 1974) were calculated firstly to get a measure for the quality 

of the calibration and secondly to limit the number of parameters (PLS-factors) 

in the calibration. This way we were able to avoid “over-fitting” in the calibration 

process. 

 

Also, outliers are detected during the calibration process. There are spectral 

and regression outliers, which can be identified mathematically. If the spectrum 

of a sample cannot be described satisfactory by the spectral factors, principal 
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components or PLS-factors, this sample is called a spectral outlier. Large 

residuals in the analyte data, which are not modelled by the NIRS-equation 

derived from the calibration, indicate regression outliers. More details about 

outlier detection are given by Martens and Næs (1989). 

 

In our calibrations, only regression outliers were detected and eliminated from 

the calibration samples automatically in two successive outlier elimination 

passes. NIRS-calibrations were recalculated after each elimination pass. 

Regression statistics given in our results therefore always belong to the final 

calibration after outlier elimination. In order to get a deeper understanding of 

their effects, spectral outliers were treated separately by manual elimination. 

 

Apart from the NIRS-measurements of the unincubated samples, we also took 

spectra of the subsamples, which had been incubated for 29 days (last 

sampling date). Therefore these subsamples were divided in one half used for 

wet chemistry analyses and one half, which was dried and milled for NIRS-

analysis. Thus we were able to calculate the spectral difference of the samples 

before and after incubation. We also calculated calibrations for these difference 

spectra on the observed mineralisation, which can be regarded to be the direct 

counterpart to these difference spectra. 

 

 

2.3 Results 

 

Incubation and sample selection 

During incubation very different courses of mineral N content could be observed 

in the samples. Net immobilisation, linear and sigmoid mineralisation curves, 

exponential rise to maximum mineral N value or net mineralisation followed by a 

phase of net immobilisation were found. These curves indicated that different 

biochemical processes are prevailing in the different samples. The largest 

fraction (36 samples) were those with a linear course of mineralisation. A linear 
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approximation accounted for more than 90% of the variation in these samples. 

They will be referred to as linear samples. 
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Figure 4   Distribution of soil samples in mineralisation classes  

 

 

Over the whole incubation time of 29 days most samples (89 samples) showed 

a net mineralisation below 50 mg N kg-1 dry soil, while 15 samples had a net 

immobilisation (Figure 4). Two samples showed a very high net N-

mineralisation. These samples were taken from ploughed plots containing 

residues from white cabbage. Large pieces of plant material in these two 

samples are probably the reason for the very high mineralisation rates. Also, 

their values for total carbon and nitrogen content were higher than in the other 

samples from these plots, which also is an indicator for high amounts of plant 

mass in these two samples.  

 

Linear samples were found in all classes of samples showing net mineralisation. 

Especially all four samples with a net mineralisation higher than 150 mg N kg-1 

soil showed an approximately linear rise in mineral nitrogen. 



2. Correlating NIRS and N mineralisation  

 - 26 - 

NIRS-calibrations using all samples 

Irrespective of the mineralisation course, we correlated measured mineralisation 

properties to the spectra of all samples. Half of the samples (61 samples) were 

randomly picked for the calibration, the other half was used for evaluation. The 

best results, i.e. r²=0.48 for the linear regression of predicted vs. observed 

mineralisation rates of the evaluation, were achieved with the net N-

mineralisation in 29 days as reference value. The results achieved with this 

calibration as well as the results for calibrations on the mineralisation in the first 

seven days of incubation are presented in Table 2. Also, calibrations for the 

total C and N contents in the unincubated soil samples were calculated. These 

results are also shown in Table 2.  

 

 

Table 2   Results of calibrations wi th 61 samples and evaluations with the 

remaining other 61 samples 

Reference 
value 

Number of 
regression 

outliers 

Number of 
PLS-factors 

r2 
calibration 
samples  

r2 
cross 

validation 

r2 
evaluation 
samples 

Mineralisation 
in 29 days 2 3 0.50 0.60 0.48 

Mineralisation 
in 7 days 2 5 0.62 0.59 0.10 

Total C 
content 5 7 0.99 0.94 0.93 

Total N 
content 

4 8 0.96 0.93 0.87 

 

 

Prior to calibration, spectral outliers were detected among the soil samples. 

These spectral outliers are commonly eliminated from the calibration set. Table 

3 shows results of the calibration after elimination of the four outliers found in 

our study. The only improvement, that could be achieved, was a higher fraction 

of explained variance for the calibration samples and better results in the cross-

validation in respect to the net N-mineralisation during the whole incubation 

time. Since there is no improvement in terms of explained variance in the 
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evaluation dataset, we decided to concentrate on the results of the calibrations 

without elimination of spectral outliers. 

 

 

Table 3   Results of calibrations (57 samples) and evaluations (61 samples) 

after elimination of four spectral outliers from the calibration 

dataset 

Reference 
value 

Number of 
regression 

outliers 

Number of 
PLS-factors 

r2 
calibration 
samples 

r2 
cross 

validation 

r2  
evaluation 
samples 

Mineralisation 
in 29 days 2 6 0.79 0.68 0.44 

Mineralisation 
in 7 days 5 3 0.40 0.59 0.13 

Total C 
content 7 5 0.96 0.93 0.90 

Total N 
content 6 6 0.93 0.86 0.81 

 

 

Figure 5 shows the calibration and evaluation results for total carbon content in 

the soils. The regression outliers, which were eliminated in the calibration 

process (not spectral outliers) are included in Figure 5. As a consequence, the 

slope of the linear regression predicted vs. observed of the calibration dataset 

can differ from unity. The evaluation shows a slope very similar to the slope of 

the calibration and as for the calibration data set, the NIRS-equation explains 

more than 90% of the variation in total C content in the samples. 
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Figure 5   Comparison between NIRS-estimated and reference total C 

content as measured with element analyser 

 

 

Very similar results were found for the total nitrogen content (Figure 6). In this 

case the fraction of variance explained by the NIRS-estimation is slightly below 

90%. Again, there is only a very small difference between the slopes of the 

regression lines for calibration and evaluation samples. This indicates that both 

calibration and evaluation datasets are representative for the whole set of soil 

samples. Total C and total N content are explained by 7 and 8 PLS-factors, 

respectively. 
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Figure 6   Comparison between NIRS-estimated and reference total N 

content as measured with element analyser  

 

The results for the mineralisation rates are very poor compared to those 

presented above. The best results were achieved, when the net mineralisation 

during the total incubation time (29 days) was taken as reference value for the 

calibration. The mineralisation courses of several samples showed a 

development of mineral N content during the first days of incubation, which was 

not consistent to the net mineralisation during the rest of the time. This might be 

due to an extremely good aeration, when the samples were mixed. In order to 

find out whether such a “starting effect” was responsible for the poor results, the  

mineral N released on the first three days were subtracted from the 29 day 

values. However, the calibration derived from these new values showed only 

very small differences to the calibration for 29 day values (data not shown). 

There was also no improvement in calibration quality, when we used values of 
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the mineralisation in the first 14 or 21 days (data not shown). Therefore, we 

focused on the net mineralisation over the total time of 29 days as reference 

value. This calibration is presented in Figure 7.  
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Figure 7   Comparison of values for net N-mineralisation obtained from the 

incubation experiment and by NIRS-estimation 

 

 

NIRS-calibrations using only ‘linear’ samples 

In addition to the calibrations with all soil samples we calculated NIRS-

equations using only samples with an approximately linear course of 

mineralisation. The 36 linear samples were also divided in two subsets for 

calibration and evaluation containing 18 samples each. Elimination of 

regression outliers in the calibration process was suppressed due to the small 

number of samples. 
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The results in terms of fraction of explained variance of the total C and N 

content were as good as those of the calibrations with all samples (Table 4a). A 

major improvement could be achieved for the calibration on the net N-

mineralisation. 58% of the variance in the evaluation samples could be 

explained by three PLS-factors. 

 

As mentioned above, the two samples showing a very high net N-mineralisation 

of more than 250 mg N kg-1 dry soil (mineralisation outliers) were among the 

linear samples. We calculated new calibrations after eliminating these two 

samples from our set for they might have a predominant effect in a calibration 

process with such a small number of samples. Again there was a considerable 

improvement for the calibration on the net N-mineralisation (Table 4b). The new 

equation could explain 88% of the variance in the evaluation data set. For the 

linear samples we derived a mean daily mineralisation from the linear 

regression on the mineralisation data. This quantity was used as an additional 

reference value to calibrate on. For the calibration without elimination of the two 

samples showing the highest mineralisation, this calibration was somewhat 

better than the calibration on the total mineralisation, but after outlier elimination 

the calibration results were about the same (Table 4a,b). 
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Table 4   Results of calibrations and evaluations with linear samples only:  

  a) 18 samples each, including high mineralisation samples, b) 17 

  samples each, two high mineralisation samples eliminated 

a) 

Reference 
value 

Number of 
 PLS-factors r² calibration  r² cross 

validation r² evaluation 

Total C 
content 4 0.97 0.88 0.95 

Total N 
content 

4 0.94 0.80 0.90 

Mineralisation 
in 29 d  3 0.81 0.68 0.58 

Mean daily 
mineralisation 

3 0.84 0.73 0.66 

 

b) 

Reference 
value 

Number of  
PLS-factors r² calibration  r² cross 

validation r² evaluation 

Total C 
content 3 0.91 0.81 0.90 

Total N 
content 3 0.89 0.71 0.96 

Mineralisation 
in 29 d  3 0.87 0.72 0.88 

Mean daily 
mineralisation 

3 0.87 0.72 0.86 

 

 

From Table 4b) one can see, that the coefficient of determination as calculated 

from the cross validation, is not always a good predictor for how a calibration 

will perform on an independent evaluation dataset. Especially calibration 

datasets with a very low number of samples tend to give poor cross validation 

results, which may lead to an under-estimation of the predictive potential of the  

resulting NIRS-equation. 
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In Figure 8 the calibration and evaluation results for the mean daily 

mineralisation are pictured. The fraction of explained variance, the slope and 

the bias of the regression lines are almost identical. Three PLS-factors are used 

for this calibration.  
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Figure 8   Calibration and evaluation results for net N-mineralisation using 

only linear samples. The same dataset as in Table 4b was used. 

 

 

Difference spectra  

We subtracted the spectra of the subsamples incubated for 29 days from the 

spectra of the unincubated subsamples. The resulting difference spectra were 

used for calibrations like the original spectra. Again we divided the whole 
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dataset in two halves for calibration and evaluation purposes, respectively. The 

only reference value, for which an acceptable calibration could be made, was 

the net N-mineralisation in 29 days. In this case 75% of the variance in the 

evaluation could be explained by the spectral difference. This value is 

significantly higher than the corresponding coefficient of determination obtained 

from calibrations with the original spectra (Table 2). The fraction of explained 

variance of other quantities (total C content, total N content) can be derived 

from their correlation to the net mineralisation. Therefore it can be concluded 

that those calibrations are indirect.  

 

 

2.4 Discussion 

 

With our investigation we wanted to get answers on two major questions. Firstly 

it was to be investigated, if mineralisation parameters of horticultural soils 

containing different amounts of crop residues can be predicted from their NIR-

spectra and which conditions have to be fulfilled to get good prediction qualities. 

Secondly we wanted to see, if calibrations for total N and C can be developed 

even if very different amounts and kinds of are present in the soil samples. 

 

Our results showed, that NIRS is a promising tool in predicting total C and N 

content in soils. Calibrations for these parameters can be derived even from 

soils with low content of organic substances from varying sources. The 

predictive accuracy is lower than from element analyses, but satisfying for fast 

determinations. For many applications, NIRS has the potential to substitute 

other more labour -intensive measurements of total C and N content. 

 

The results for the C and N content imply that all kinds of organic compounds 

are detected by NIRS. From a theoretical point of view, there is no general 

restriction for the detection of organics in soils. A detection limit, i.e. a minimum 

detectable content of a specific substance can restrict the determination of 

specific compounds. As mentioned above the rapidly mineralisable organic 
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matter usually is only a small fraction of the total soil organic matter. Thus the 

differences in the NIR-spectra of soil samples are very small by nature, whereas 

noise in the spectra caused by the mineral soil compartments has an important 

influence. This signal/noise-ratio leads to a theoretical detection limit and makes 

calibrations difficult. Hence, results of mathematical algorithms like PLS or PCR 

(Martens and Næs 1989) have to be checked for plausibility especially when 

small fractions of the soil organic matter are subject to the calibrations. 

 

Apart from these detection limits, we assume, that all organic substances in 

soils are in principal detected by NIRS. On the other hand it seems to be quite 

difficult to develop calibrations for the mineralisation potential of soils. The 

calibrations for mineralisation rates, which are built upon all soil samples in our 

experiment only provide a very low predictive quality. There are various reasons 

for these difficulties: 

 

One problem has already been mentioned above. Each NIRS-equation is built 

up upon a certain calibration dataset containing variances in a special set of 

organic compounds. Only these substances can be taken into account correctly 

by the NIRS-equation, when it is applied to unknown samples. A solution for this 

problem might be a large database of samples, which vary in a large number of 

important organic substances. Then those samples can be used for calibration, 

which show spectra comparable to the spectrum of the unknown sample. This 

procedure has already been proposed by Shenk et al. (1997). These effects 

caused by different substances in calibration and evaluation datasets is 

probably not the origin of our problems to predict mineralisable N. We tried to 

get the same variance in both datasets, when samples for these two datasets 

had been picked.  

 

The major problem related to the calibration of NIR-spectra with incubation 

results is the fact that the amount of mineralisable substances detected by 

NIRS and the actual mineralisation in an incubation experiment are different 

and their relation is not generally linear. But linearity between the reference 
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values on one side and the spectral variations on the other side is a prerequisite 

for the linear regressions to give useful results. All practical applications of 

NIRS, in which the amount of organic compounds are estimated by NIRS, are 

based on this linear relationship. The spectral variance can be assumed to be 

linearly correlated to the amount of the varying organic substance. The actual 

net N-mineralisation on the other hand is not always linearly correlated to the 

amounts of mineralisable substances in the sample.  

 

Especially in horticultural soils with fresh vegetable residues like those used in 

our study there are physical factors like the size of the residue-particles, which 

have no effect on the NIR-spectra, but on the course of the decomposition. Two 

samples containing the same residues in different particle sizes thus have the 

same spectrum, when dried and milled like in our experiment. On the other 

hand they may give different values of net N-mineralisation after a specific time, 

since smaller particles can be accessed more easily by microbes. The variance 

in net N-mineralisation caused by these structural effects can neither be 

determined by NIRS, nor by any other chemical or spectroscopic type of 

measurement. 

 

Interactions of different organic compounds can be another reason for non-

linear relations between the amount of a certain substance and its effect on the 

actual mineralisation. For instance, easily accessible carbon pools like wheat 

straw can reduce the net N-mineralisation, but their impact is only linearly 

related to their amount, if enough nitrogen is available for immobilisation. If the 

accessible N-pools limit the immobilisation, the net N-mineralisation does not 

longer reflect the amount of these carbon sources. Their influence on the NIR-

spectra is still linear. 

 

Non-linearities can also arise from interactions of soil minerals with 

mineralisable organic compounds. Clay soils are known to reduce 

mineralisation rates compared to sandy soils. This effect can also not be 

considered by linear regression methods. The complex biochemical processes 
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in soils provide many more reasons for non-linearities. Growing or decreasing 

microbial populations are one of them. 

 

The very different courses of net mineralisation in our experiment indicate, that 

different limitations dominate the turnover of N and C in the samples. 

Interactions of several organic compounds can be assumed. These different 

situations in the samples might be the reason for the poor predictive quality of 

the calibration for net N-mineralisation, when all samples were used for 

calibrations of mineralisation parameters. 

 

Approximately linear courses of mineralisation can be found as start of a 

mineralisation following first order kinetics, when a large pool of mineralisable 

substance is available to microbes. The quantity, which then determines the 

rate of mineralisation, is simply a rate constant multiplied with the amount of 

available substrate. Hence, the two factors, which determine the mineralisation 

rate, amount and chemical composition of the substrate, are quantities, which 

can be expected to contribute to the NIR-spectrum of a soil sample. This 

influence of the single chemical components on the spectra is linear with 

respect to their influence on the mineralisation. This appears to be the reason 

for the good calibration, when only linear samples are used. 

 

In principle, the amount of N mineralised in a certain period can also be 

estimated by NIRS, when the mineralisation in the samples is following other 

kinetics as long as the samples in the calibration dataset follow the same 

kinetic. We could apply this procedure only to linear samples, since there was 

not a sufficient number of other samples showing a uniform course of 

mineralisation. However, practically this procedure is not useful, since NIRS-

estimations are not longer necessary, if the mineralisation course of a sample is 

already known. 

 

The calibration built upon the spectral differences before and after incubation 

leads to significantly better results in the estimation of mineralised N than 
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calibrations with all unincubated subsamples. This is another indicator for the 

assumptions made above. The difference spectra do not contain the spectral 

information of the total amounts of mineralisable organic compounds, but the 

information of the differences of these amounts before and after incubation. 

This means, they represent the actual chemical turnover during the incubation 

process. Thus, linearity between spectral variations and net N-mineralisation is 

given again. Like calibrations of samples with uniform mineralisation course, 

these calibrations also are not useful for practical NIRS-application, since 

difference spectra of the unknown samples are needed. Thus the samples 

would have to be incubated in order to get NIRS-estimations. 

 

Conclusion 

NIRS can be used for the estimation of quantities, which are linearly related to 

amounts of organic compounds in the samples. The direct calibration of spectra 

on the amount of mineralised N in a certain time gives unsatisfying results, 

because non-linear relations between the actual mineralisation and the amount 

of mineralisable substances cause problems in the linear regression. 

 

The potential of NIRS to estimate the amount of mineralisable organic 

compounds in soils can be utilized, when mineralisation courses of calibration 

samples are converted to amounts of mineralisable substances. This can be 

achieved by mathematical simulation of the mineralisation processes. More 

sampling dates and a longer incubation time are needed to determine the size 

of model pools with the necessary exactness. In the calibration process these 

model pools are then used as reference values. For unknown samples these 

pools can then be estimated by NIRS and the simulation model can predict the 

net N-mineralisation. Our further work will concentrate on this procedure. 
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3 Decomposition of plant residues as simulated by NCSOIL 
and measured by near infrared spectroscopy (NIRS) 

 

 

 

Abstract 

Plant residues are the major organic input to soils. Traditional methods 

monitoring the decay of plant residues in soils are time consuming and 

laborious. Once calibrated, the near infrared spectroscopy (NIRS) represents a 

rapid and inexpensive method to determine specific constituents in organic 

material. Cellulose is the most important organic component in the biosphere. 

Therefore, a method for monitoring the degradation of cellulose is expected to 

be a useful aid in studying the turnover of plant residues in soil. In order to 

prove whether the decay of cellulose in soil can be monitored by NIRS, we 

analysed soil samples from an incubation experiment using NIRS. A soil, one 

part amended with cellulose (2 g Cellulose kg-1 soil), the other without cellulose 

was incubated under aerobic conditions for 70 days in the dark at 15°C. Soil 

samples were taken at the beginning and twelve times within the incubation 

period. The decay of cellulose was simulated using the model NCSOIL. The soil 

samples were spectrally analysed with an NIR-spectrometer and the simulated 

cellulose content in the soil was used for the calibration of a NIRS-equation. 

Although the cellulose comprises only a very small part of the total organic 

carbon in the soil the decay of cellulose could be clearly monitored by NIRS. 

Ninety-five percent of the variation in the soil cellulose content as simulated by 

NCSOIL could be explained by the NIRS-equation (r2 = 0,95). 

 

We applied the NIRS-equation from the cellulose treatment to soil samples of 

another treatment (green manure using young leaves of endive salad mixed into 

the soil) which also had been scanned but not used for the calibration. The 

coefficient of determination for residual green manure in soil, predicted versus 

observed, was r2 = 0.84 and 0.94 for the sandy and the clay soil, respectively.
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We also analysed a sample of pure cellulose. For important wavelength 

regions, we found a parallel course of the NIRS-equation calibrated to describe 

the cellulose content in the soil and the NIR-spectrum of the pure cellulose 

powder. This result confirms that the NIRS-equation of the incubation 

experiment describes in fact the cellulose content in the soil and was not just 

the result of indirect correlations with other soil constituents. Hence, the NIRS-

method provides an aid for keeping track of a specific and relatively small 

organic fraction among the background of the large amount of the total soil 

organic matter. 

 

3.1 Introduction 

 

Plant residues are the primary source of energy for the soil microbes and 

cellulose is the major organic constituent of the biosphere on earth (Raven et al. 

2000). Generally, cellulose is rapidly decomposed in soils. Therefore, in a soil 

not recently amended with plant residues, cellulose contributes only negligibly 

to the total soil organic matter (designated in the following as “native soil 

organic matter”). Hence, keeping track of the decay of cellulose appears to be 

highly indicative for the decomposition of plant residues in soils. 

 

Near infrared reflectance spectroscopy (NIRS) is widely used as a tool for fast 

determination of different organic compounds in forages, grains, dairy products 

or other organic materials. Several publications show, that cellulose can be 

detected by NIRS in different organic materials (Czuchajowska et al. 1992; 

Langkilde and Svantesson 1995; Schultz and Burns 1990). Also in 

decomposing substances like leaf material or pine needles the cellulose content 

can be determined by NIRS (Couteaux et al. 1998; Gillon et al. 1999; McLellan 

et al. 1991). 

 

Recently, there is a growing interest in using NIRS for soil analyses (Couillard et 

al. 1996). The principle of NIRS is to determine the absorbance of a sample in 

the near infrared wavelengths region, which is caused by chemical bonds in the 
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sample. Before the reflectance spectra of a sample can be used to determine a 

specific organic compound, a calibration has to be developed for this 

compound. For this purpose a number of samples with different but known 

content of the specific organic compound need to be scanned by NIRS. The 

multivariate regression problem, which is encountered when equations for one 

chemical substance have to be obtained from spectra with many collinear 

variables can be solved by principle component regression (PCR) or partial 

least squares regression (PLS) algorithms (Burns and Ciurczak 1992; Martens 

and Næs 1989). Both methods reduce the original spectra consisting of 700 

data points to a small number of spectral features (factors), which account for 

most of the variance of the spectra. These factors are then used as parameters 

in a normal linear regression procedure giving a NIRS-equation. Once 

calibrated, such a NIRS-equation can then be applied to other samples in order 

to determine the specific organic compound for which the equation had been 

developed before. 

 

A major problem using NIRS in soil analysis is the low concentration of a single 

organic compound in the soil, since NIRS has not generally been found to 

perform well for minor organic components (Shenk and Westerhaus, 1993). 

Another problem is attributed to the disturbance caused by the mineral 

background of the soils.  

 

Although these problems make the use of NIRS difficult, there is a growing 

interest in using NIRS for soil analysis. Once calibrated, NIRS is a rapid and 

inexpensive method and therefore it is predestinated for the routine soil 

analysis. In the last years numerous authors have reported encouraging results 

detecting various substances in soils by NIRS. Numerous studies show, that the 

total amount of C and N in soils can be estimated by NIRS quite well (Dalal and 

Henry 1986; Morra et al. 1991; Reeves et al. 1999). Successful determination of 

certain fractions of these total amounts has also been reported (Malley et al. 

1999; Zwanziger and Förster 1998). But both publications deal with 

petrochemical pollutions in soils, which do not belong to the native soil organic 
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matter. Easily decomposable soil fractions have not yet been determined with 

NIRS. In most soils, the concentration of those fractions is much smaller than 

the fraction of recalcitrant soil organic matter. Palmborg and Nordgren (1993) 

were able to explain up to 95% of the basal respiration and substrate induced 

respiration (SIR) of forest soils from NIR-spectra.  

 

Trying to find NIRS-equations which can be used to predict mineralisation 

parameters or to calculate the content of a certain organic substance with 

known mineralisation characteristics gives additional problems. The direct 

chemical measurement of the decaying organic substances in the soil is either 

impossible or very difficult.  

 

The principle of the experiments cited above was to use a number of soils 

representing a wide range in total soil organic matter, measure a physical, 

chemical or biological soil parameter such as the mineralisation potential and 

then using such a soil parameter for the calibration of the NIRS-equation. A 

serious drawback of this procedure is that the soil parameters such as 

potentially mineralisable organic matter may be correlated with other spectral 

features than the spectra of the easily mineralisable compounds. Generally, 

soils with high organic matter content also have high mineralisation potential. 

For that reason not only the easily mineralisable fractions but also the total soil 

organic matter provides good correlations in most cases (Appel and Mengel, 

1998). Hence, the spectral features of all kinds of organics (not just of the easily 

mineralisable fractions) might contribute to a NIRS-equation when soils with a 

wide range in the content of total soil organic matter were used for the 

calibration. 

 

According to the problems described above, Appel and Mengel (1998) pointed 

out that a method providing an index for easily mineralisable soil organic matter 

must not only provide a good correlation when a wide range of different soils is 

used. The index must also be capable to indicate a change of the easily 

mineralisable substrate with time. The objective of our investigation was, 
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therefore, to test whether the change of a small and well defined fraction of the 

soil organic matter can be detected by NIRS during the period of its decay. 

 

Observing such a decay in incubation experiments, one has to keep in mind 

that most measures give quantities of substances evolved from the soil such as 

CO2. Once evolved from the soil, the CO2 carbon is no longer a constituent of 

the soil sample. Hence, the measured CO2 cannot directly contribute to a NIR-

spectra of a soil sample. Instead, the spectral variation in soil samples with time 

are caused by indirect correlations, either due to decreasing contents of organic 

compounds which are mineralised such as cellulose or proteins or due to 

temporarily increasing organic fractions such as microbial biomass. 

 

Reeves and van Kessel (1999) correlated NIR-spectra with the accumulated 

soil inorganic nitrogen and also with the evolved CO2. They used soils amended 

with and without different kinds of manure. The coefficients of determination for 

the calibration (all soil samples included) were r2 = 0.63 and 0.56 for the CO2 

and the inorganic N, respectively. However, NIRS-equations based on such 

indirect correlations might fail, particularly in cases when the mineralisation was 

caused by different organic sources. This may for example happen when soil 

samples manured with different amounts of pig slurry were used for the 

calibration and these calibrations were applied to recently green manured soils. 

Generally, in such a case a useful application of an NIRS-equation cannot be 

expected. 

 

In order to avoid these problems we simulated the decomposition of the plant 

residues in soil using a validated model. By this means we calculated the 

remaining amount of added organic material in each sample and used these 

values for the development of the NIRS-equation. 
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3.2 Material and methods 

 

Incubation 

The soil samples were taken from an incubation experiment carried out 7 years 

earlier. The samples had been dried at 40 °C and stored in the laboratory for 

later use. Details of the experimental procedure were reported by Appel et al. 

(1995). For the present paper we also used samples of another treatment of this 

experiment which is not mentioned in this article. The soil used had been 

derived from alluvium and was sampled in spring from a farmer’s field (0-20 cm) 

in Hessia, Germany (pHCaCl2:5.2; total organic C: 8.09 g kg-1; clay 11 %, sand 

81 %). The soil was sieved (4 mm) immediately after sampling and then hand-

mixed. 800 g portions were weighed and mixed either with 200 g bentonite 

(subsequently referred to as ‘clay soil’) or 200 g quartz sand (‘sandy soil’). Thus 

we achieved two soils consisting of the same organic matter but of different 

mineral backgrounds. This gives us the opportunity to study the effect of the soil 

texture on NIRS being not confounded by any effects produced by a possibly 

different organic background in different soils. For the NIRS-analysis we used 

treatments receiving 110 mg N kg-1 soil as NH4NO3 (all amendments referred 

on soil dry weight base) and 908 mg C kg-1 soil as cellulose powder. The 

mineral N and the organic C were thoroughly mixed with each soil portion prior 

to incubation. We also analyzed the soil samples which had received green 

manure in form of endive leaves (C:N ratio 15.9) as described by Appel et al. 

(1995). The fresh plant matter provided 109 mg N kg-1 soil and was mixed with 

the soil prior to incubation. Thirty-nine pots were prepared for each treatment 

with the sandy soil and the clay soil. For control further 39 pots were filled with 

soil portions of each soil type not amended with cellulose nor with mineral 

fertiliser or with green manure. The soils were incubated under aerobic 

conditions at 15 °C in the dark for 70 days during which soil moisture was kept 

at 60 % of maximum water holding capacity. Triplicate pots (a-, b- and c-

samples) from each treatment were sampled on day 0, 1, 2, 4, 7, 10, 14, 21, 28, 

35, 42, 56, 70 of incubation. These samples were then extracted and analysed 

for extractable organic and inorganic N fractions by wet chemical analyses.  
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Simulation 

The decay of the cellulose in the soil during the incubation period was 

calculated using the simulation model NCSOIL (Molina et al. 1997). The 

simulation with NCSOIL was conducted with the parameters in Table 5 as 

reported by Nicolardot and Molina (1994). The inorganic N accumulation in the 

control treatment (sandy soil) was used to adjust the initial values of pools 1 and 

2 (autochthonous soil microbial biomass: 244 mg C kg-1 and easily 

mineralisable soil carbon: 2300 mg C kg-1, respectively) as described by Appel 

(1999). These initial values from the control treatment were used for all other 

treatments. Another NCSOIL -parameter, however, needed to be adjusted 

differently for the treatments. This was the parameter describing the efficiency 

of the microbial population in using the plant residues for their growth.  

 
 

Table 5   NCSOIL-Parameters 

Parameter Cellulose Endive 
leaves 

Pools 

 (0 and 1)a) 
Pool(2)b) Pool(3)c) 

C:N-ratio 1000 15.9 6.0 10.0 calculatedd) 

rate constantse) [d-1] 0.2 0.3   1.0 · 10-5 

for rapidly 

decomposable 

fraction [d-1] 

  0.33 0.16  

for recalcitrant 

fraction [d-1] 
  0.04 0.006  

a) refers to the zymogeneous and autochthonous microbial biomass, 
respectively 

b) refers to the rapidly mineralisable soil organic fraction 

c) refers to the recalcitrant soil organic fraction 

d) calculated using the C-to-N-ratios of all other pools and the C-to-N-ratio 
measured for the total soil organic matter 

e) rate constant for the decomposition at 28° C and optimum soil moisture 
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NIRS-calibration 

Sixty-three of the samples (rest not enough soil left for analysis) with decreasing  

contents of cellulose were spectrally analyzed with a NIRSystems 5000 

spectrometer (FOSS NIRSystems Inc., Silver Spring, USA) in the wavelength 

range from 1100 to 2500 nm. Each soil sample was milled to pass a 1 mm 

sieve. 

 

We used both the PCR and the PLS algorithms for developing calibrations. The 

number of factors to explain the spectral variance in the samples was controlled 

by the cross-validation in order to avoid “over-fitting”. Calibrations with spectra 

of n wavelength end up in NIRS-equations of the form 

∑
=

⋅+=
n

i
ii abbc

1
0  

where ai are the measured absorptions at wavelength i and bi are the equations 

coefficients, which determine, to which extend a certain wavelength contributes 

to the calculation of the unknown concentration and c is this concentration, 

which has to be predicted from the spectra. The value b0 is an additive constant 

originating from the regression procedure. This form does not depend on the 

regression method used in the calibration procedure. 

 

All calibrations presented in this paper have been calculated with PCR and PLS 

as regression methods and with different mathematical pre-treatments of the 

raw spectra too, but the differences of the results were negligible. For the 

results presented in this article PLS using the first derivative of the spectra has 

been chosen as regression method, since it has become a very common 

method in NIRS analysis in the past years. The modified form described by 

Shenk and Westerhaus (1991) was used.  
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The NIRS-equation can be calibrated including all the samples. Alternative ly, 

subsets of samples can be used for the calibration. This offers the opportunity 

to evaluate the NIRS-equation by applying it to the spectra of the other samples 

not used for the calibration. We used the following subsets: 

 

a) One half of the soil samples were randomly picked for calibration, the rest 

taken for evaluation. 

b) The a- and b-samples of the incubation were used for calibration, the c-

samples for the evaluation. 

c) The c-samples were used for the calibration, while the a- and b-samples 

were used for the evaluation. 

d) The calibration was conducted with the sandy soil and the NIRS-equation 

was then applied to the clay soil. 

e) The clay soil was used for calibration and the NIRS-equation was then 

applied to the sandy soil. 

The last two subsets were supposed to show how the soil texture effects the 

calibration. 

 

As a last step, pure cellulose powder (without soil) was scanned in order to 

examine, whether the NIRS-equations from the incubation experiment were 

based primarily on the main spectral features of cellulose. Thereby we wished 

to exclude the possibility, that the NIRS-equations were developed upon indirect 

correlations originated from other chemical substances just correlating with the 

cellulose content in our experiment. 

 

 

3.3 Results and Discussion 

 

The simulation model NCSOIL describes the mineralisation of cellulose using 

first order kinetics (Figure 9). Therefore, during the early period of incubation 

the cellulose content decreased rapidly followed by a period of less intense 

degradation. The simulated cellulose content ranged between 130 and 908 mg 
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cellulose-C kg-1 soil. Only small differences were calculated by the model 

between the sandy and the clay soil. The difference was caused by the slightly 

different initial mineral nitrogen content in the sandy and the clay soil. During 

the period of intense N-immobilization the decay rate of the cellulose was 

presumably limited by the nitrogen available for immobilization. This was 

considered by NCSOIL. The model does not consider any further effect of the 

soil texture such as a stabilizing of small organic metabolites on the clay mineral 

surfaces. This behavior of NCSOIL is in agreement with the results obtained 

with the green manured soil samples (Appel et al. 1995). The accumulation of 

inorganic N caused by the mineralisation of the green manure was only slightly 

affected by the different soil texture. 

 

We used these simulated values as the reference for the calibration of the NIR-

spectra. In other words, we calibrated the NIRS using the simulated data. On 

first view this may appear exceptionally. However, we think that the data 

obtained from a well validated simulation model such as NCSOIL may be more 

reliable than those of a chemical analysis of the soil samples, particularly when 

inhomogeneous distribution of the cellulose in the small subsamples used for 

analysis have to be feared as a source of variance. A loss of accuracy in 

chemical analyses may also be caused by the relatively low cellulose 

concentrations in the samples compared to the immense amount of soil mineral 

particles and in addition the existence of a huge background concentration of 

other organic constituents provided by the native soil organic matter. 

 

Figure 9 shows that the cellulose content predicted by the NIRS-equation was 

very similar to those simulated by NCSOIL. Ninety-five percent of the variance 

in the cellulose content as simulated by NCSOIL was explained by the NIRS-

equation (r2 = 0.953). This close correlation between the simulated data and the 

NIR-spectra suggests twice, (1) the NIRS-method was capable to detect the 

cellulose in the soil matrix, and (2) the simulation by NCSOIL provides reliable 

data. The second suggestion comes out of the fact that associated to the 

simulated cellulose concentrations we found measurable counterparts        
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(NIR-spectra) in the soil samples. The course of the cellulose content as 

simulated by NCSOIL is not a simple exponential decay. Especially for the last 

sampling dates the decay is significantly slower. The calibration shown in Figure 

9 was done with all soil samples. The measure r2 in Figure 9 was calculated for 

the whole data set of 64 soil samples providing a NIRS-equation with 7 factors. 
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Figure 9   Cellulose remaining in the soil during incubation as simulated by 

NCSOIL and estimated by a NIRS-equation 

 

Further calibrations were done using different subsets of the whole sample 

collection in order to evaluate the NIRS-equation. The NIRS-equations gained 

from these subsets were then applied to the samples not used for the 

calibration (= evaluation). The coefficients of determination provided by these 

evaluations ranged between r2 = 0.80 and 0.86. The resulting slopes of the 

regression lines (predicted versus observed) did not significantly differ from 1.0 

on a 5%-level (Table 6).  
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These results suggest that the NIRS-equations provide a reliable prediction of 

the cellulose content in the soil samples. However, one has to keep in mind that 

we used a set of soil samples without any variation in the constituents and in 

the content of the native organic matter. Such a variation in the background 

organic matter may reduce the explainable variance in similar experiments.  

 

 

Table 6  Results for calibration and evaluation using different subsets of 

samples1) 

Calibration 

subset 

Evaluation 

subset 

Number 

of PLS-

factors 

r2 

(cross val.) 

r2  

(evaluation) 

Slope  

(evaluation) 

random2 
34 samples 

random1 
33 samples 4 0.89 0.86 1.10 

c-samples 
22 samples 

a + b samples 
45 samples 3 0.88 0.83 1.00 

a + b-samples 
45 samples 

c-samples 
22 samples 7 0.91 0.80 0.87 

1) For further explanation of subsets see material and methods section 

 

 

The NIRS-equations gained from the calibration with the cellulose amended 

soils were applied to the NIR-spectra of the soil samples of the green manure 

treatment. The NIRS-equations from the sample subsets of the clay and sandy 

soil were applied each to the corresponding soil type of the green manure 

treatment. The comparison of the cellulose content in the soils as estimated by 

NIRS and the green manure carbon in the soils as simulated by NCSOIL is 

shown in Figure 10. The green manure carbon decreased from 1733 mg C kg-1 

soil at the beginning of the experiment to 87 mg C kg-1 soil after 70 days of 

incubation. The coefficient of determination was r2 = 0.84 and 0.94 for the sandy 

and the clay soil, respectively, when the NIRS-estimated cellulose was 

regressed on the green manure carbon. This confirms our suggestion that the 
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NIRS can be used as a tool to analyse the decomposition of plant residues in 

soils. Assuming a hundred percent sensitivity of the NIRS-estimation for 

cellulose content of the endive leaves, the slope of the regression line can be 

interpreted as the portion of cellulose on the total green manure carbon. The 

slope of the regression line was about 0.2 indicating a cellulose content of 

approximately   20 % of the total carbon in the endive leaves, which is a 

plausible value (Herrmann 2001). We cannot prove this estimation, since the 

cellulose content of the green manure had not been analysed. 

 

 

Sandy soils:
y = 0.19x + 128

r2 = 0.84

Clay soil:
y = 0.23x + 26

r2 = 0.94

0

100

200

300

400

500

600

0 500 1000 1500 2000

NCSOIL-simulation
Green manure carbon [mg C kg-1soil]

N
IR

S
-e

st
im

at
io

n
C

el
lu

lo
se

 c
ar

bo
n 

[m
g 

C
 k

g-1
so

il]

Sandy soils
Clay soils
Linear (Sandy soils)
Linear (Clay soils)

 

Figure 10  Relationship between NIRS-estimated cellulose and NCSOIL 

calculated total green manure carbon in the clay and the sandy 

soils 
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Pure cellulose powder was scanned by NIRS in order to examine whether the 

NIRS-equation reflects the cellulose or just another substance correlated with 

the cellulose content in the soils. For this purpose the coefficients bi in the 

NIRS-equations can be plotted against the wavelengths λ in the same way as 

the spectra themselves. These coefficients show peaks at those wavelengths, 

which are determined by PLS-regression to be positively correlated to the 

cellulose content. In Figure 11 this was done for the NIRS-equation gained from 

the calibration with the sandy soil samples (NIRS-equation) using only two 

spectral factors for the explanation of the cellulose variation. It has to be 

mentioned, that the first derivation of the spectra were used for the calculation 

of the NIRS-equation. One possibility to allow a comparison would be to show 

the first derivative of the spectrum of pure cellulose. But since the derivatives 

are very hard to interpret visually,  not the actual bi are shown in this figure, but 

the integrated values Bi as calculated from the following equation, where λ1 is 

the minimum wavelength of the NIR-spectrum (1100 nm): 

 

This way, the slopes of the two plots given in figure 11 can be directly 

compared. The cellulose spectrum has passed the same scatter correction as 

the spectra used in the calibration. In this case, not the absolute values of the 

plots, but areas with a parallel course indicate, that the NIRS-equation actually 

represents the cellulose content. Wavelength areas, in which the Bi values do 

not show clear changes, are not important for the calculation of cellulose 

content with this NIRS-equation. Those wavelength areas, on the other side, 

where the Bi values show clear peaks, should correspond to peaks in the 

spectrum of pure cellulose. 

 

 

 

')(
1

∫ ⋅=
λ

λ

λλ dbB ii



3. Decomposition of residues: Simulation and NIRS 

 - 53 - 

-1,5

-1

-0,5

0

0,5

1

1,5

1100 1300 1500 1700 1900 2100 2300 2500

Wavelength λ [nm]

lo
g

 (1
/R

)

-30000

-20000

-10000

0

10000

20000

30000

B
i  

 (c
o

ef
fic

ie
n

ts
 o

f

 th
e 

N
IR

S
-e

q
u

at
io

n
)

Pure cellulose

NIRS-equation

 

Figure 11  Comparison of NIRS-equation for cellulose from calibration with 

sandy samples (eqa-sand) and spectrum of pure cellulose powder 

 

 

The major absorption bands of water are known to be around 1940 nm and 

1450 nm (Sadtler 1981; Shenk et al. 1992). The residual water content in the 

cellulose powder affects the cellulose spectrum at these bands. The NIRS-

equation does not show peaks in these areas. From 1100 to 1450 nm and from 

1700 to 1900 nm the equation roughly gives horizontal lines. This means that 

the equation coefficients are around zero (integrated form is shown), so these 

wavelength areas have only little effect on the calculated cellulose content. 

 

The parts of the spectrum, where absorption by water molecules is of 

importance, contribute only to a very low extend to the NIRS-equation for 

cellulose. The reason for this is, that peaks for water and cellulose are broad 

and overlapping in this part of the NIR-spectrum. Thus the absorption in the 

wavelength areas, which are influenced by both, water and cellulose, is not 

directly correlated to the cellulose content. Since regression algorithms as 
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simple mathematical instruments are not able to differentiate between water 

and cellulose effects, they only take into account wavelengths with clear 

correlations between the measured spectral variance and the variance of the 

searched chemicals. These clear correlations then lead to high coefficients bi in 

the NIRS-equation. 

In these other wavelength areas, particularly in those above 2000 nm, the 

cellulose spectrum and the NIRS-equation match quite well. Shenk et al. (1992) 

analysed the NIR-spectra of different organic substances. According to them, 

cellulose is characterized by a peak at 2336 nm. Scanning the pure cellulose 

we also found a characteristic peak at this wavelength (Figure 11). Calibrating 

the NIRS with the cellulose amended samples of the incubation experiment, the 

wavelengths of the coefficient peaks of the resulting NIRS-equation agree very 

well with those of the characteristic peaks from the pure cellulose (Table 7). The 

integrated NIRS-equation coefficients Bi do not show any major peaks at 

wavelengths other than those of cellulose (Figure 11, Table 8). This ensures 

that the NIRS-equation from the cellulose amended soil samples reflects 

principally the cellulose content in the soil and is not mainly caused by other soil 

constituents. 
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Table 7  Comparison of absorption peaks from water and pure cellulose 

with those of the NIRS-equation gained from the cellulose 

amended incubated soil samples 

 Wavelengths of peaks [nm] 

Peaks of pure 
cellulose according to 
literature1) 

1490 1780 1820 1930 2100 2270 2336 2352 2488 

Peaks of pure water1) 1450 1790 1790 1940      

Peaks measured with 
pure cellulose in our 
study 

1472 1762  1930 2094 2276 2336  2490 

Peaks of the NIRS-
equation gained from 
the incubated cellulose 
amended soil2)  

    2108 2268 2332 2348 2484 

1) (Shenk et al. 1992) 
2) Integrated coefficients Bi 

 

The resolution of the NIRS-method for cellulose in soil is clearly below 0.1%. 

Total soil carbon was about 1 % in the incubation experiment and the fraction of 

cellulose-carbon among the total soil carbon ranged from about 1 to 10%, 

assuming that cellulose was negligible in the native soil organic matter. Hence, 

the cellulose concentration in the soil matrix was always below 0.1 %. To our 

knowledge, no other method than NIRS offers the possibility to analyse a 

specific organic compound in soils with a comparably low intensity of analytical 

work. Cellulose is by far the quantitatively most important constituent in the 

biosphere and therefore highly indicative for the decay of plant residues in soil. 

The NIRS-method appears, therefore, to become a useful tool to study the 

decay of organic residues in soil.  
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4 Influence of soil texture on the use of near infrared 
spectroscopy (NIRS) in C- and N-mineralisation studies 

 

 

 

Abstract 

In the last years there is a growing interest in using NIRS in carbon- and 

nitrogen mineralisation studies. Here, a major problem is the unknown influence 

of soil texture on the spectra and thus on the prediction results. In our study we 

used soil samples from a 70-day incubation experiment with two different soil 

textures for the spectral analysis. These two soil textures were achieved by 

mixing the soil with 20% bentonite and 20% quartz sand, respectively. Four 

different fertilizer treatments with three repetitions had been prepared with each 

soil type. For our NIRS-investigation we used the treatments: a) NH4NO3 + 

Cellulose and  b) chopped endive leaves. Values simulated with NCSOIL were 

used as reference values in the calibration process. Calibrations derived from 

soils mixed with clay give different results for organic substances than those 

derived from sandy soils, which can lead to misinterpretations when calibrations 

are transferred to another soil type. Scaling of the reference values according to 

the soil mineral components can avoid this problem to some degree. 

 

 

4.1 Introduction 

 

Near infrared reflectance spectroscopy (NIRS) is widely used as a tool for fast 

determination of different organic compounds in forages, grains, dairy products 

or other organic materials. The principle of NIRS is to determine the absorbance 

of a sample in the near infrared wavelengths region, which is caused by 

chemical, especially organic bonds in the sample. A calibration for determining 

contents of various substances from the spectra is created using different 

multivariate regression methods like principle component regression (PCR) or 
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partial least squares regression (PLS) (Burns and Ciurczak, 1992; Martens and 

Næs 1989). Recently, there is a growing interest in using NIRS for soil analyses 

(Couillard et al. 1996). In the last years numerous authors have reported 

encouraging results detecting various substances in soils using NIRS. Dalal and 

Henry (1986) measured organic C, total N and water content in soils. They 

divided the samples into two datasets, which were used for calibration and 

evaluation, respectively. They found fractions of explained variance between 

0.85 and 0.94 for the separate evaluation dataset. Reeves and van Kessel 

(1999) correlated NIR-spectra with the accumulated soil inorganic nitrogen and 

the evolved CO2. They used soils amended with different kinds of manure as 

well as unmanured controls. The coefficients of determination for the calibration 

(all soil samples included) were 0.63 and 0.56 for the evolved CO2 and the 

released inorganic N, respectively. Quantities related to the soil texture like clay 

content, cation exchange capacity (CEC) and specific surface area (SSA) have 

been successfully determined by NIRS (Ben-Dor et al. 1991; Matsunaga and 

Uwasawa 1992; Sudduth and Hummel 1993). 

 

All these publications indicate that there are chances to detect mineralisable 

organic substances in soils by NIRS. However, one problem appears to be 

obviously associated with the disturbance caused by the soils mineral 

background. Different soil textures and particle sizes cause different scattering 

conditions among the mineral particles. This could be a serious restriction in the 

use of NIRS for soil analysis. The influence of mineral soil fractions on NIRS-

calibrations for organic soil compartments has been pointed out in several 

publications (Krischenko et al. 1991; Morra et al. 1991; Zwanziger and Förster 

1998). In these articles it is recommended to use calibrations derived from 

samples with the same soil type as the examined samples for the determination 

of organic substances. This would mean, that calibrations cannot be transferred 

to other sites and the usefulness of NIRS for soil analyses would be 

economically ambiguous due to an enormous labour requirement for a huge 

number of calibrations. 
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Artificial mixtures with different proportions of sand, silt and clay have been 

examined by Couillard et al. (1996). They found different influences of the 

different soil minerals on the NIR-spectra, e.g. a coating effect of clay, which 

could be compensated by a model using scaling factors for the different soil 

separates. Attempts to apply this model to natural samples failed, showing no 

improvement in prediction accuracy. Therefore, our interest was focused on 

how the soil texture affects NIRS-measurements in more natural samples. In 

order to get a deeper understanding of the mechanisms by which the soil 

texture may influence the NIRS-measurement, we attempted to restrict the 

variance in the samples to a very small set of parameters. This was possible by 

using soil samples from an incubation experiment where two different soil 

textures were prepared by mixing the soil with quartz sand or bentonite, 

respectively. Thus we got a dataset with a defined source of variance, offering 

the chance of interpretable results. 

 

 

4.2 Material and methods 

 

Incubation 

The soil samples analysed by NIRS were part of an incubation experiment 

carried out about 7 years earlier and stored after drying (40 °C) in the laboratory 

for later use. Details of the experimental procedure were reported by Appel et 

al. (1995) for the soils treated with and without green manure. The soil used 

was derived from alluvium and was sampled in spring from a farmer’s field (0-20 

cm) in Hessia, Germany (pHCaCl2:5.2; total organic C: 8.09 g kg-1; clay 11 %, 

sand 81 %). The soil was sieved (4 mm) immediately after sampling and then 

hand-mixed. 800 g portions were weighed and mixed either with 200 g 

bentonite (subsequently referred to as ‘clay soil’) or 200 g quartz sand (‘sandy 

soil’). This provided two soils consisting of the same organic but different 

mineral backgrounds. For the NIRS-analysis we used treatments receiving  
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a) 110 mg N kg-1 soil as NH4NO3 and 908 mg C kg-1 soil as cellulose 

powder (all amendments referred on soil dry weight base),  

b)  green manure (chopped endive leaves offering 1730 mg C kg-1 soil and 

109 mg N kg-1 soil)  

 

Thirty-nine pots were prepared for each treatment with the sandy soil and the 

clay soil. 

 

The soils were incubated under aerobic conditions at 15 °C in the dark for 70 

days during which soil moisture was kept at 60 % of maximum water holding 

capacity. Triplicate pots from each treatment were sampled on day 0, 1, 2, 4, 7, 

10, 14, 21, 28, 35, 42, 56, 70 of incubation. Aliquots of the soils were extracted 

and analysed for extractable organic and inorganic N fractions. The subsequent 

reference values for the cellulose content and the remaining content of green 

manure during the incubation were obtained from simulations with NCSOIL 

(Molina et al. 1997).  

 

NIRS-calibration 

128 samples were spectrally analysed with a NIRSystems model 5000 

spectrometer (FOSS NIRSystems Inc., Silver Spring, USA) in the wavelength 

range from 1100 to 2500 nm. The rest of the samples could not be examined, 

since the amount was not sufficient for NIRS-analysis. Each soil sample was 

dried and milled to pass a 1 mm sieve. Then three ring cups were filled with 

each soil sample. The spectra of these cups were averaged after a first outlier 

examination. Thus it was ensured that no effects like dirty cups or non-

representative sub-samples had disturbing influence on the spectra.  

 

There are several algorithms which can be used for solving the multivariate 

regression problem, which is encountered when equations for one chemical 

substance have to be obtained from spectra with many collinear variables 

(Burns and Ciurczak 1992). The most common methods are principle 

component regression (PCR) and partial least squares regression (PLS). Both 
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methods reduce the original spectra consisting of 700 data points to a small 

number of spectral features (factors), which account for most of the variance of 

the spectra. The number of factors to explain the spectral variance in the 

samples is controlled by the cross-validation during the calibration procedure in 

order to avoid “over-fitting”. In this study PLS in the modified form (MPLS) as 

described by Shenk and Westerhaus (1991) using the first derivative of the 

spectra was chosen as regression algorithm after comparing different 

regression methods. This comparison, which was conducted using all 63 

cellulose amended samples in the calibration, is summarized in Table 8. In 

addition to the number of factors used to explain the variance, Table 8 shows  

the coefficient of determination (r2) for the calibration and the cross-validation 

and the number of regression outliers. 

 

 

Table 8   Comparison of different regression methods and mathematical 

treatments with respect to the coefficent of determination and the 

number of regression outliers 

Regression 

method 

Derivative 

(0=original 

spectra) 

Number of 

PLS-factors 

r2 

calibration 

r2 

cross val. 

Number of 

regression 

outliers 

MPLS 1 7 0.96 0.89 1 

MPLS 0 7 0.95 0.94 1 

PLS 1 6 0.93 0.88 0 

PLS 0 7 0.95 0.94 4 

PCR 1 4 0.89 0.90 3 

PCR 0 8 0.95 0.94 4 

 

 

Calibrations with the raw spectra give higher coefficients of determination in the 

cross validation, but need more factors to explain the variance and more 

regression outliers have to be removed from the calibration dataset. MPLS is 
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giving the best results when no mathematical pre-treatment is applied to the 

spectra. Using a scatter correction (Barnes et al. 1989) and the first derivative of 

the spectra as pre-treatment, every regression method has got its own 

advantage: MPLS gives the best result in r2, normal PLS needs no outliers 

elimination and PCR needs only four factors to explain the variance. No 

regression method can be said to perform best on this dataset. We decided to 

use MPLS and the first derivative of the spectra for our further calculations. 

 

It has to be pointed out, that the NIRS-equations found in these calibrations can 

be shown to really predict the cellulose content in the soil samples. This cannot 

be concluded directly from the correlations of NIR-spectra and simulated 

cellulose contents, but from comparisons of NIRS-equations for cellulose-

content and the NIR-spectrum of pure cellulose-powder. A more detailed 

publication on this aspect is presented in chapter 3. 

 

Except building up a NIRS-equation by making use of all samples in the 

calibration procedure, different subsets of samples were used for calibration 

and evaluation purposes: a) One half of the samples were randomly picked for 

calibration, the rest taken for evaluation. b) samples of two repetitions of the 

incubation process were used for calibration, the third repetition for evaluation. 

c) calibration was conducted using the soil samples with sand addition, the 

equation gained with sand samples was evaluated using the soils with clay 

addition and vice versa. This last separation was supposed to show, to which 

extend a calibration can be used for soils with differing mineral background. 

 

4.3 Results  

 

Impact of soil texture on calibration for cellulose  

Five PLS-factors were necessary to explain more than 90 % of the variance in 

the cellulose content when both soils were used for the calibration of the NIRS-

equation (Figure 12).  
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Figure 12   Calibration using all 63 cellulose-amended soil samples and using    

7 spectral factors to explain the variance  

 

Using only a subset of the samples consisting only on the sandy soil or the clay 

soil, respectively, clearly reduced the number of factors needed for the 

explanation of cellulose variance. One obvious difference between the 

calibration with all samples and the calibrations with only one soil type can be 

seen from the proportion of variance described by the first PLS-factor         

(Figure 13). In calibrations with all soil samples the first factor explains less than 

20% of the variance, regardless which kind of mathematical treatment or which 

regression method is used.  



 

 

 

a) 

c) d) 

b) 

Figure 13   Quality of the calibration in terms of r² and 1-VR as related to the number of PLS-factors 
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This clearly indicates, that the main spectral variance is related to the difference 

of the mineral additions, clay and quartz sand. In the sandy soil, more than 80% 

of the cellulose variance can be explained with the 1st factor since there is no 

spectrally dominating variance by mineral additions. Using the clay soils in the 

calibration leads to more than 60% of the variance explained by the first factor 

(Figure 13). 

 

The NIRS-equation calibrated using the sandy soil samples was applied for 

predicting the cellulose clay soils and vice versa. By this cross evaluation about 

80 % of the variance in cellulose content was explained (r2 = 0.79 and 0.94, 

Table 9). However, the slope of the linear regression predicted versus observed 

was substantially different from one (Table 9). This difference is significant on a 

level of α = 1%. 

 

 

Table 9  Evaluation results for different subsets of samples used for 

calibration and evaluation 

Calibration 

subset 

Evaluation 

subset 

Number of 

PLS-factors 

r2 

(cross val.) 

r2  

(evaluation) 

Slope 

(evaluation) 

sand clay 2 0.93 0.79 0.41 

clay sand 6 0.98 0.94 2.03 

random2 random1 4 0.89 0.86 1.10 

repl. c repl. a+b 3 0.88 0.83 1.00 

repl. a+b repl. c 7 0.91 0.80 0.87 

 

 

This varying slope in the evaluation indicates a different “sensitivity” of the 

NIRS-equations for the searched substance caused by the different soil textures 

used in the calibration. Dividing the whole number of samples in either two 

fractions of randomly chosen samples or using the different replications of the 

incubation as data sets for calibration and evaluation, results in r2-values above 
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0.80 and slopes between 0.87 and 1.10. In these cases the calibration and 

evaluation data sets roughly show the same spectral variation, which leads to 

better evaluation results, i. e. slopes do not significantly diffe r from 1.0 (α = 5%). 

 

Impact of soil texture on calibration for green manure 

Very similar results like those obtained from cellulose calibrations are found 

when calibrations are done for the residual amount of a green manure. Again 

we divided the samples amended with green manure in sandy and clay-soils for 

calibration and validation. As above the calibration made up with the sandy soils 

underestimated the content in the clay soils and vice versa. The slopes of the 

regression lines in the validations were 0.40 and 1.60, respectively.  

 
The calibration and evaluation results are shown in Figure 13. The coefficient of 

determination is satisfactory (r2=0.88 and r2=0.69), but the slope and the 

intercept of the regression lines are affected when applying a NIRS-equation to 

another soil type. The slopes of the evaluation as presented in Figure 14 differ 

significantly from 1.0 on a 5%-level.  The equation derived from the clay-soils 

spectra not only over-estimates the slope but also the average content of the 

green manure in the sandy soils and vice versa. 
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Figure 13.  a) Calibration with sandy soils, evaluation with clay soils,              

  b) calibration with clay soils, evaluation with sandy soils. 

 

 

Application of modified reference values 

Couillard et al. (1996) suggest to modify the reference values when samples 

contain different soil mineral backgrounds. This modification is derived from 

results of investigations with artificial mixtures of sand, silt, clay and organic 

matter. Laboratory weight scaling factors are introduced and the different 

fractions of soils are supposed to be multiplied by these factors (Couillard et al. 

1996). Table 10 shows our unmodified values for the different soil 

compartments in the cellulose samples, the scaling factors according to 

Couillard et al. and our new values after the modification. Couillard et al. (1996) 

give scaling factors of 1.41 and 1.63 for kaolinite and montmorillonite clay, 

respectively. We used an average value of 1.52 for clay in our calculations. 
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After multiplying the contents with the weight scaling factors, we had to 

normalize the values to sum up to 100 % again.  

 

 

Table 10  Contents of soil separates as before and after the modification as 

suggested by Couillard et al. (1996) 

Original content [%] in Modified content [%] in Soil 

compartment sandy soil clay soil 

Scaling 

factor sandy soil clay soil 

Sand 83.7 63.7 0.15 41.8 16.6 

Silt 6.3 6.3 0.39 8.2 4.3 

Clay 8.7 28.7 1.52 43.8 75.8 

Organic matter 1.1 1.1 1.41 5.2 2.7 

cellulose 0.2 0.2 1.41 1.0 0.5 

 

 

After the modification the new reference values for cellulose as used for NIRS-

calibrations and evaluations differ clearly due to the different contents of sand 

and clay. Depending on the exact type of clay, the modified cellulose contents 

in the sandy soils are 1.87 to 1.96 times higher than in the clay soil samples. 

The same factor can be used, if the modification is applied to the samples, 

which received green manure. 

 

If calibrations are calculated with these new reference values, some 

improvements can be achieved. If soils of both types are used in the calibration, 

fewer PLS-factors are needed to explain the variance of the cellulose content. 

This fact is shown in Figure 13 part d). With three factors, both r2 values for 

calibration and cross validation already are above 0.95 and even with only two 

factors almost the same results can be achieved.  

 

When calibrations for cellulose are made using only samples from one soil type, 

calibration statistics stay the same as those without modification, since scaling 
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factors are uniform for each soil type. Applying the calibrations to the other soil 

type, mainly the slope of the regression line predicted vs. observed is changed. 

Contrary to the unmodified reference values, it does no longer differ significantly 

from 1.0 (α = 5%) in both cases as shown in Table 11. When other subsets of 

samples were used for calibration and evaluation (randomly chosen or different 

replicates), the proportion of explained variance is larger than when unmodified 

reference values are used. 

 

 

Table 11   Evaluation results for different subsets of samples used for 

calibration and evaluation using modified values for the cellulose 

content 

Calibration 

subset 

Evaluation 

subset 

Number 

of factors 

r2 

(cross val.) 

r2  

(evaluation) 

Slope 

(evaluation) 

Sand Clay 3 0.95 0.78 0.87 

Clay Sand 6 0.98 0.93 0.89 

Random1 Random2 6 0.95 0.97 0.89 

Rep a+b Rep c 3 0.95 0.96 1.18 

Rep c Rep a+b 4 0.97 0.96 0.91 

 

 

Similar results are achieved, when the modification is applied to samples 

containing green manure. Again, the slopes of the regression line predicted vs. 

observed does not significantly differ from 1.0 for the evaluation subsets (α = 

5%). In both cases, cellulose and green manure treatments, the intercept for the 

evaluation as seen in Figure 13 cannot be completely removed by the 

modification. However, it is smaller after the modification in all cases. 
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4.4 Discussion 

 

Spectral difference of sandy and clay soils 

Regarding the ability of the 1st factor to explain cellulose variance, it is obvious, 

that the spectral difference of sandy and clay soils dominates in the calibration 

with spectra from both soils. 

 

This spectral difference of the sandy and the clay soils cannot be simply 

explained by spectral features of sand or clay itself. Both are silicates, which 

have no absorption bands in the near infrared region (Workman 1998). So 

these mineral additions are “transparent” for NIR-radiation. Several other 

differences might contribute to different spectra. The larger mean particle size of 

sandy soils compared to soils with clay addition mainly shifts the spectra to 

generally higher absorptions. These differences are almost completely removed 

by scatter correction and application of the 1st derivative (Barnes et al. 1989). 

So the difference seen in the calibrations with sand and clay cannot be 

explained this way, since the calibrations use these mathematical treatments. 

Different water contents due to higher water adsorption at clay mineral surfaces 

can explain the spectral difference making the 1st factor in the calibration 

inefficient for explaining cellulose variance when samples from both soil types 

were considered. 

 

Different “sensitivities” of NIRS-equations 

The different “sensitivity” of the NIRS-equations from the sandy and the clay soil 

became obvious when they were applied to the other soil type and vice versa. 

This cannot be explained simply by the hygroscopicity of the clay. However, 

using the following physical analogy the effect becomes plausible. Both sand 

and clay are transparent to NIR-radiation, but like glass surfaces both reflect a 

part of the visible light, all surfaces of silicates, sand as well as clay scatter a 

fraction of the NIR-radiation. Smaller mean particle size is associated with a 

higher density of surfaces per unit volume which results in a lower penetration 
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depth for the NIR-radiation. This effect is similar to the higher transparency of 

big ice-cubes compared to “white” snow. Thus having two soils with the same 

concentration of organic material per kg dry soil, less information of this organic 

compounds will reach the detector in the soil with lower mean particle size. So if 

the NIR-spectrometer gets less spectral information from the cellulose in the 

clay soil, the coefficients bi in the NIRS-equation must be higher to explain the 

same cellulose variance as in the sandy soil. The NIRS-equation has to 

compensate the lower amount of spectral information from the organic 

compounds, it has to “react more sensitive”. This way the content of the 

predicted substance is over-estimated and the slope of the linear regression in 

the evaluation plot is too high in sandy soils when applying the equation gained 

from clay soils and vice versa. 

 

The size of clay particles has the same order of magnitude as the wavelength of 

the near infrared radiation. Thus other physical effects than reflection occur, 

when this radiation interacts with clay particles. So the analogy described above 

cannot be used for quantitative predictions. However, the principle effects can 

be represented qualitatively by this consideration. 

 

The intercept of the regression lines, which is caused by the transfer of a NIRS-

equation to a soil with another texture has mainly the same reason, but it cannot 

be interpreted that simply. Its absolute value is strongly influenced by the 

regression algorithm and the mathematical treatment of the spectra prior to 

calibration. Thus the bias cannot be corrected by addition of a soil texture 

depending value. 

 

One conclusion from this consideration is, that the detection limit for organic soil 

constituents is lower in sandy soils than in soils with a high content of clay,  i.e. 

lower concentrations of organic material can be detected in sandy soils. 
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Scaling of reference values 

Modification of the reference values by scaling of the different soil separates 

according to the scheme presented by Couillard et al. (1996) is a possibility to 

compensate the different visibility of the mineral soil size fractions. In this case 

the different soil components are weighted by their transparency in the sample. 

Thus spectral features of the soil samples and their reference values match 

better after the modification. This leads to several improvements in the 

calibrations: This compensation explains, why calibrations with both sand and 

clay samples only need fewer PLS-factors to explain the cellulose variance, 

than without the modification. Another effect is, that higher values of r2 can be 

reached for the evaluations, when calibration and evaluation datasets both 

consist of samples with different soil types. When the samples are divided in 

sandy and clay soils for calibration and evaluation, respectively, the slopes of 

the regression lines predicted vs. observed, which are related to the sensitivities 

of the NIRS-equations from different soil types, are shifted to be close to one by 

the modification. The bias, which is observed for the evaluation in this case, 

cannot be compensated by the modification. 

 

Conclusion 

Although silicates like sand and clay are transparent in the near infrared 

wavelength region, different soil textures have a considerable impact on the 

measured NIR-spectra. One possibility, how correct predictions can be made, is 

the use of a calibration dataset, in which the same soil textures are represented 

like in the samples with unknown organic content. The other possibility is the 

use of scaling factors depending on the transparency of the soil samples, which 

compensate the soil texture effect, when predicting organic contents.  

Experiments with a wider variety of soil textures may be helpful to determine, 

whether it is possible to calculate clay, silt and sand contents simultaneously 

with the organic material. In this case the scaling factors needed to correct the 

organic contents could be calculated from the same measurement and accurate 

predictions would be possible solely from NIR-spectra.  
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5 Near infrared spectroscopy (NIRS) for the characterisation 
of organic matter in soils with nonuniform texture 

 

 

 

Abstract 

The objective of this study was to investigate the influence of different soil 

texture on near infrared spectra and the development and application of 

calibrations on various soil constituents. The usefulness of weight scaling 

factors multiplied to the amount of mineral soil compartments in order to 

improve the accuracy of NIRS-estimations was tested. Another scope of this 

investigation was to evaluate the application of NIRS for the determination of 

different organic soil fractions.  

 

23 soils of an incubation experiment carried out earlier were scanned with a 

NIR-spectrometer. PLS-calibrations were conducted to develop NIRS-equations 

for the estimation of the analytical data from NIR-spectra. The results show that 

weight scaling factors are a simple method to achieve a significant improvement 

in the accuracy of NIRS-based determinations of organic matter in soils. These 

factors compensate for the effect of different soil textures on NIR-spectra 

caused by the different transparency of sand, silt and clay. Due to the small 

number of samples and partly high correlations among the reference data, 

interpretations of the calibration results for smaller organic soil fractions are 

nearly impossible. Indirect correlations between NIR-spectra and these organic 

matter fractions have to be considered. 
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5.1 Introduction 

 

The characterisation of decomposable organic soil compartments is important 

for the determination of soil fertility. Apart from the determination of organic 

matter content, incubation of soil samples combined with respiration 

measurements (Magliulo and Renella 1997; Nordgren 1988) or subsequent 

determination of released mineral N are common methods to gain information 

about organic compounds in the soil. Also various extraction methods (Dou et 

al. 2000; Houba et al. 1986; Keeney 1982) and electro ultra filtration (EUF) 

(Nemeth 1985) are used for this purpose. A further method is the physical 

fractionation into size and density classes (Christensen 1992; Meijboom et al. 

1995). All these methods are time-consuming and require a lot of work, which 

reduces their potential for monitoring purposes. Frequent determinations of soil 

characteristics would be expensive and economically ambiguous. 

 

In the last decades near infrared reflectance spectroscopy (NIRS) has been 

widely used for the determination of organic compounds of e.g. grains, dairy 

products, forages and pharmaceuticals. Once calibrated, NIRS is a rapid, non-

chemical, non-destructive technique for the simultaneous determination of 

various, mainly organic constituents in a wide variety of samples.  

 

There are only very few applications of NIRS in the routine analysis of soils 

(Meyer 1989), but its potential for soil analysis has been lined out in many 

publications (Couillard et al. 1997; Fox et al. 1993; Krischenko et al. 1991; 

Salgó et al. 1998). A serious difficulty is the influence of soil minerals on the 

NIR-spectra. These minerals, which are mainly silicates, do not absorb NIR-

radiation (Workman 1998), but they affect the scattering conditions in the 

sample. Several authors have pointed out, that the accuracy of NIRS-

calibrations for soil analysis is severely reduced, when applied to datasets 

containing soils with different textures, i.e. different contents of the 

compartments clay, silt and sand (Krischenko et al. 1991; Morra et al. 1991; 

Zwanziger and Förster 1998).  
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For artificial mixtures of soil separates Couillard et al. (1996) have shown, that 

this negative effect caused by different soil textures can be compensated to 

some degree by the introduction of weight scaling factors for the reference 

values of analyte contents. In chapter four the application of these weight 

scaling factors to the sand and clay content of soils with two different textures 

gave an improvement in predictive accuracy for the cellulose content in these 

samples. 

 

The aim of this study was to show, if the use of weight scaling factors has a 

generally positive effect on the calibration on various soil constituents in a 

dataset with a high natural variation in clay, silt and sand content. Another goal 

was to investigate, if the results of CaCl2-extractions and EUF-results can be 

estimated by NIRS. In addition to these values, pool sizes in these samples as 

estimated by NCSOIL (Molina et al. 1997) from results of incubation 

experiments were tested as reference values for NIRS. 

 

 

5.2 Material and methods 

 

Soil samples from an earlier incubation experiment were the basis for our 

investigations. This incubation experiment is described in detail elsewhere 

(Appel 1998, 1999). 23 soils from different locations had been prepared for 

incubation in six replicates. After drying and rewetting three replicates of each 

soil were prepared. Six polyethylene pots per replicate (one per sampling date) 

were filled with 200g soil and incubated at 25°C under aerobic conditions. 

 

Subsamples of all replicates were used for NIRS-analysis. All 138 samples, 

dedicated for NIRS-analysis were dried at 40°C, milled to pass a 1mm-sieve 

and then scanned with a NIRSystems 5000 spectrometer (FOSS NIRSystems 

Inc., Silver Spring, USA) in the wavelength range from 1100 to 2500 nm in 2 

nm-steps. Also, subsamples of the end of the incubation process were 

measured in the same way. Spectra of the three replicates were averaged for 
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further calculations. At the beginning of incubation, dried and rewetted soils and 

those without this treatment are equal when prepared for NIRS. Also the 

reference values are still the same. Hence, we averaged all the six replicates 

from the beginning. This gives a total number of 23 spectra for the start and 46 

spectra for the end of the incubation. 

 

The spectra were scatter corrected as described by Barnes et al. (1989). 

Calibrations were developed by using the first derivative of the original spectra. 

For the calibration process the partial least squares (PLS) (Høskuldsson 1988; 

Wold et al. 1983), algorithm in the modified form presented by Shenk and 

Westerhaus (1991) was used. When developing a calibration, cross validations 

(Snee 1976; Stone 1974) were calculated firstly to get a measure for the quality 

of the calibration and secondly to limit the number of parameters (PLS-factors) 

in the calibration. This way we were able to avoid “over-fitting” in the calibration 

process.  

 

Using results from sampling  dates 1 to 5, the mineralisation process was 

simulated with NCSOIL. Simulation parameters as reported by Nicolardot and 

Molina (1994) were used. The sizes of the two major organic pools in NCSOIL, 

the more rapidly decomposable pool 2 and the recalcitrant pool 3, were 

calculated for the starting date. Further details of these calculations have been 

described by Appel (1999) These pool sizes were then used for calibration 

purposes. Also, the mean mineralisation rate for the whole incubation period 

was used as a parameter to calibrate on. 

 

Prior to incubation CaCl2-extractions and EUF measurements were made with 

subsamples of the 23 soils (Appel et al. 1995). Both methods were conducted at 

two temperature levels, namely 20°C and 80°C. The N-fractions in mg N kg-1 

dry soil determined by these methods also were used as reference values for 

NIRS-calibrations. Other reference values were the soil pH and the soil content 

of organic C and organic and mineral N. 
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The amounts of sand, silt and clay in the soil were mainly used for the 

determination of the weight scaling factors, but also calibrations for these 

contents were calculated. The proportions of sand, silt and clay in the 23 soils 

are given in Table 12. Also the contents of organic C and N as well as the mean 

mineralisation rate are shown.  

 

The last column of Table 13 contains the values for optical density. This value is 

calculated from the contents of sand, silt and clay. These contents are 

multiplied by the weight scaling factors (sand: 0.15; silt: 0.39; clay: 1.52) as 

given by Couillard et al. (1996). The three products are then summed up to the 

optical density. Since the content of organic matter was rather small compared 

to the mineral soil compartments, we did not take it into account for the 

calculation of the optical density. 

 

All reference values were divided by the optical densities of the samples in 

order to represent the effect of different transparency of the soils. Calibrations 

were calculated for the modified as well as for the unmodified reference values. 

In practical applications, the analytical data as estimated by NIRS-equations 

based on such modified values have to be multiplied by the optical densities of 

the samples. 
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Table 12   Features of the 23 different soils used in the incubation experiment 

  described by Appel (1998). ‘Optical density’ means the sum of the 

  mineral soil separates each multiplied by the factor given by 

  Couillard et al. (1996). 

Sample 
Number 

Organic 
N 

[%] 

Organic 
C 

[%] 

Clay 

[%] 

Silt 

[%] 

Sand 

[%] 

Min. rate 

[mg N 
kg-1 d-1] 

Optical 
density 

1 0.120 1.24 18.6 50.6 30.8 0.91 52.6 

2 0.167 1.57 17.6 69.0 13.4 0.76 55.7 

3 0.159 1.66 13.4 64.8 21.8 0.98 48.9 

4 0.167 1.91 5.1 24.8 70.1 0.96 27.9 

5 0.146 1.52 4.5 24.2 71.3 0.89 27.0 

6 0.152 1.44 23.7 72.1 4.5 0.69 64.8 

7 0.153 1.30 24.6 68.6 6.8 1.01 65.2 

8 0.157 1.40 22.4 73.1 4.5 0.93 63.2 

9 0.156 1.30 21.2 74.6 4.2 0.94 61.9 

10 0.246 2.42 24.1 71.4 4.5 0.94 65.2 

11 0.111 1.16 13.5 32.1 54.4 0.46 41.2 

12 0.209 1.80 33.0 53.6 13.4 0.41 73.1 

13 0.087 0.87 16.8 70.7 12.5 0.20 55.0 

14 0.196 1.95 26.2 52.4 21.4 0.54 63.5 

15 0.233 2.13 22.9 68.1 9.0 0.74 62.7 

16 0.133 1.24 18.8 76.3 4.9 0.56 59.1 

17 0.096 1.03 14.0 77.6 8.4 0.55 52.8 

18 0.055 0.80 8.6 15.5 75.9 0.41 30.5 

19 0.095 1.05 14.2 73.4 12.4 0.55 52.1 

20 0.114 1.17 23.1 47.9 29.0 0.46 58.1 

21 0.122 1.26 13.6 50.6 35.8 0.56 45.8 

22 0.135 1.17 22.4 71.5 6.1 0.87 62.8 

23 0.108 1.05 15.5 79.5 5.0 0.63 55.3 
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5.3 Results 

 

First, we concentrated on the 23 spectra at the beginning of the incubation in 

order to test whether these spectra allow predictions of the reference values 

The major problem about the dataset in this investigation is the small number of 

samples.. So for the development of a first set of NIRS-equations we used all 

23 soils for calibrations. The results of these calibrations in terms of coefficient 

of determination for calibration and cross validation are presented in Figure 14 

and Figure 15, respectively. Up to five PLS-factors were used for the 

explanation of the variation in analytical data. 
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Figure 14   Coefficients of determination for calibrations upon unmodified and 

modified reference values using all 23 soils for the calibration 
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Figure 15  Cross-validation results in terms of r2 for calibrations upon 

unmodified and modified reference values using all 23 soils for the 

calibration 

 

The improvement achieved by the use of weight scaling factors to modify the 

reference values is obvious for most of the data depending on organic matter 

contents. There was no improvement in the determination of mineral soil 

compartments. These effects can already be seen from the coefficients of 

determination (Figure 14), but they are still more apparent in respect to the 

cross-validation results (Figure 15). Especially calibrations for silt content were 

much better without modifying the reference data. 

 

These results are even more obvious, when only 12 soils were used for the 

calibration and the remaining 11 soils for evaluation. In this case only up to 

three PLS-factors could be used in the regression. The coefficients of 

determination of the evaluation dataset is presented in Figure 16. The values 
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are very low for the unmodified reference values, whereas the differences to the 

calibration with modified values is bigger in this case. Apart from organic C and 

N contents those parameters gave good evaluation results, which can be 

associated with the mineralisable organic matter, not only the net N 

mineralisation rate, but also values from CaCl2-extraction, EUF and NCSOIL 

pool sizes. Again, the calibrations for mineral soil compartments are an 

exception. 
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Figure 16   Coefficients of determination for the evaluation of calibrations 

upon unmodified and modified reference values using all 12 soils 

for the calibration and 11 soils for evaluation. Coefficients of 

determination above 0.36 and 0.72 were significant on a level of 

α = 5% and α = 0.1%, respectively. 
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The results for the organic compartments have to be regarded critically due to 

the possibility of correlation to the total contents of C and N. The higher the 

correlation to one of these two values, the higher is the probability for indirect 

correlations as a basis for the calibration. The coefficients of correlation among 

the reference data except for sand, silt and clay are given in Table 13.  

 

The spectra of the incubated samples were used to calculate spectral 

differences before – after incubation (see also chapter 2). The difference 

spectra of the dried-rewetted samples on one side and the samples without this 

treatment on the other did not show significant differences (data not shown). 

The difference spectra were also used for the calibration of the mineralisation 

rate for they are the direct spectral counterparts to the chemical turnover during 

incubation. These calibrations did not provide any new information (data not 

shown). 

 

 

 



 

    

Table 13  Coefficients of correlation between reference values of the 23 soils 

(bold numbers: significant correlation on the 0.1%-level) 

Reference 
value 

Organic 
C 

Organic 
N 

Mineral 
N pH Miner. 

rate 
CaCl2 
20°C 

CaCl2 
80°C 

EUF 
20°C 

EUF 
80°C Pool2 Pool3 

Organic C — 0.953 0.445 0.248 0.437 0.703 0.725 0.687 0.774 0.785 0.941 

Organic N 0.953 — 0.447 0.463 0.45 0.693 0.811 0.822 0.84 0.81 0.994 

Mineral N 0.445 0.447 — 0.219 0.856 0.821 0.418 0.405 0.488 0.755 0.369 

pH 0.248 0.463 0.219 — 0.417 0.301 0.694 0.673 0.65 0.503 0.443 

Miner. rate 0.437 0.45 0.856 0.417 — 0.794 0.61 0.441 0.598 0.849 0.355 

CaCl2 20°C 0.703 0.693 0.821 0.301 0.794 — 0.617 0.696 0.626 0.849 0.632 

CaCl2 80°C 0.725 0.811 0.418 0.694 0.61 0.617 — 0.772 0.908 0.835 0.775 

EUF 20°C 0.687 0.822 0.405 0.673 0.441 0.696 0.772 — 0.785 0.692 0.814 

EUF 80°C 0.774 0.84 0.488 0.65 0.598 0.626 0.908 0.785 — 0.844 0.804 

Pool2 0.785 0.81 0.755 0.503 0.849 0.849 0.835 0.692 0.844 — 0.739 

Pool3 0.941 0.994 0.369 0.443 0.355 0.632 0.775 0.814 0.804 0.739 — 
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5.4 Discussion 

 

As an answer to one of the major goals of this investigation, the results show a 

considerable improvement achieved by the use of modified reference values 

according to Couillard et al. (1996). This can be seen from calibrations with all 

23 soils as well as from the evaluation results, when the dataset is divided for 

calibration and evaluation. This indicates, that the weight scaling factors are 

compensating to some degree the effects of different soil textures on the 

spectral information of soil organic matter. 

 

Contrary to the improvement achieved for the calibration on organic fractions in 

the soil, the results for the mineral soil compartments clay and especially silt are 

better without modification of the reference data. This does not contradict to the 

physical model presented in chapter 4. Assuming that scattering at the surface 

of silicate particle is the major reason for the effect of soil mineral composition 

on the NIR-spectra, it can be concluded, that the specific surface area (SSA), 

i.e. the silicate surface area per unit volume in the soil, regulates the 

transparency of the sample. Sandy samples with lower SSA are more 

transparent and thus more information about the organic matter can be 

detected by NIRS than in soils high in clay content. According to this model, 

information about the distribution of the silicate surfaces cannot be gained from 

NIRS. This means that NIRS will not differentiate between samples with the 

same SSA, i.e. silt can have the same effect on the NIR-spectrum as a mixture 

of clay and sand. Hence only sandy soils with a low SSA, which provide much 

information about their organic contents to NIRS, are not likely to be mixed up 

with other soil textures. Better calibration and evaluation accuracy for sand 

content than for silt and clay are consequence in this model. 

 

Another scope of this study was to investigate the usefulness of NIRS to 

estimate the size of organic N fractions in the soil determined by CaCl2-

extraction, EUF and NCSOIL-simulation. Due to the small number of samples in 

this investigation and the correlation of these fractions to the total contents of 
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organic C and N, which can be assumed to have a higher influence on the NIR-

spectra, clear answers on these questions would be very ambiguous, but the 

results of our calibrations do not contradict to the possibility to estimate these 

fractions by NIRS. The good calibration and evaluation results for the NIRS-

estimation of the net N-mineralisation rate cannot be explained simply by their 

correlation to total organic C and N contents. In this case the fraction of 

variance explained by NIRS is significantly higher than the correlation 

coefficients between N-mineralisation rate and organic C and N content (Figure 

17, Table 14).  

 

Conclusion 

This investigation clearly shows, that the negative influence of different soil 

textures on the NIRS-estimation of organic soil fractions can be significantly 

reduced by mathematical pre-treatment of the reference data. Weight scaling 

factors multiplied with the amount of sand, silt and clay in the soil samples are a 

simple possibility to improve the accuracy of NIRS-estimations. Investigations 

like this one, but with a larger number of soil samples would help to get more 

reliable information about the usefulness of NIRS to estimate the size of 

different fractions of the soil organic matter. 
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6 Final discussion 
 
Most N fertilizer recommendations take into account only the crop’s nitrogen 

demand and the mineral nitrogen content in the soil. Mineralisation from 

decomposing organic matter is often not considered and leads to a mismatch 

between supply and demand and in the consequence to environmental harmful 

N-leaching. This problem can only be reduced by quantitative estimations of the 

net N-mineralisation rates in the soil. One of the two main components for 

accurate estimations is a mathematical model of the mineralisation processes in 

the soil, which has to take into account the influence of environmental factors as 

temperature and water content as well as the decomposability of different 

organic compounds and interactions caused by the coupling of carbon and 

nitrogen cycles. The other major prerequisite is an analytical method for the fast 

and effective characterisation of the soil organic matter with a special focus on 

rapidly mineralisable fractions. This study was conducted to investigate the 

suitability of NIRS for these soil analyses. Therefore, soil samples with different 

textures and varying content and composition of organic material were 

examined by NIRS and by reference methods. 

 
NIRS-equations, by which constituents of samples can be determined from their 

NIR-spectra, are derived by calculating calibrations using samples with analyte 

data known from a reference method. Since multiple linear regression methods 

are used for such calibrations, linearity between the reference values and the 

spectral features is an important condition for accurate NIRS-equations. 

 
Two principle sources for non-linearities exist in the relationship between NIR-

spectral features and reference data of a sample: On one side there can be 

nonlinear relations between chemical concentrations and functional reference 

data, and on the other side non-linearities may be found in the relationship of 

NIR-spectra and the chemical concentrations, which are responsible for the 

spectra. In this study it was discovered that both kinds of non-linearities are 

likely to appear, when NIR-spectra are used for estimations in carbon or 

nitrogen mineralisation studies. 
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The first kind of non-linear relationships appears, when e.g. net N mineralisation 

rates are used as reference data in NIRS-calibrations, as shown in chapter 2. 

Causes for these non-linear effects are found in the coupling of carbon and 

nitrogen turnover in the soil. When ne t N mineralisation depends on both 

organic carbon compounds as energy sources and organic nitrogen sources, 

which both show individual effects on the NIR-spectra, linear correlations 

between spectral changes and changes in net N mineralisation rates can only 

occur in one of the following cases: Either only one source, carbon or nitrogen, 

limits the decomposition process in the soil or there is a linear relationship 

between the changes in both sources. These preconditions can usually not be 

assumed to be met in natural soils. NIRS-calibrations built up with a dataset, 

which fulfils these conditions, will fail, when the resulting NIRS-equations are 

applied to soils with other compositions of mineralisable compounds. 

 

In order to avoid the problems associated with the use of net N mineralisation 

rates as reference data in NIRS-calibrations, these values have to be converted 

to quantities, which are linearly correlated to the concentration of decomposable 

organic compounds in the soil. Therefore, mathematical simulation models are 

needed for the determination of organic pool sizes in the calibration samples. If 

interactions between carbon and nitrogen pools affect the course of net mineral 

nitrogen content in the soil, these effects have to be modelled from data such as 

CO2-respiration or released mineral nitrogen measured regularly during 

incubation experiments. There are several well-evaluated models, which seem 

to be suitable for this purpose (Powlson et al. 1996). In this case the calibration 

process is connected with time-consuming and labour -intensive incubation 

experiments followed by model calculations, but once calibrated, NIRS provides 

the information about the pool sizes in a fast scan without the need of chemical 

pre-treatment of the examined sample. Thus, NIRS might be a valuable tool for 

the prediction of N-mineralisation in soils, which contain large amounts of added 

organic material rich in nitrogen. 
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Especially vegetable growing is associated with high amounts of N-containing 

crop residues. Sequences of several crops each with a short time of cultivation 

on one hand require fast estimations of the forthcoming development of mineral 

N content in the soil, on the other hand residues of several succeeding crops 

can be present in the soil, which makes estimations of the decomposable 

organic material quite difficult. Hence, these horticultural soils appear to be an 

area, in which the use of NIRS for the estimation of net N-mineralisation might 

be very useful. 

 

The procedure of combining incubation experiments with mathematical 

modelling of decomposition processes has been used in the investigation 

described in chapter 3. It is shown that the content of cellulose remaining in the 

soil as simulated by NCSOIL could be estimated from NIR-spectra quite 

accurately. The spectral peaks of pure cellulose were compared with the 

spectral features, which have a very high importance in the determination of 

cellulose content according to the developed NIRS-equation. This comparison 

shows, that not indirect correlations depending on e.g. the mineral N content in 

soil, but the spectral information of actual cellulose content is responsible for the 

good calibration and evaluation results. This indicates, that the combination of 

NIRS with mathematical modelling of the mineralisation process can be a 

suitable tool for the description of the chemical turnover in soils. The 

mathematical modelling is needed for the conversion of non-linear relationships 

between spectra and functional reference data into linear relations between 

spectra and chemical concentrations in the soil. Cellulose as one of the most 

important organic compounds in the biosphere is a major energy source for the 

microbial community in all kinds of soils and thus deserves special attention 

when mineralisation processes in the soil have to be described. Hence, the 

positive results achieved in this investigation pronounce the possibility to 

determine organic fractions in the soil, which are quite important for 

decomposition processes. 
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The other source of non-linearities is the relationship between spectral features 

and chemical concentrations. Linearity between the spectra and the 

concentration of the absorbing chemical compound is the basis of NIRS-

applications and assumed by the use of Lambert-Beer’s law of the absorption of 

electromagnetic radiation. This law is an approximation of the scattering 

processes in absorbing media and can also be used for the NIRS-analysis of 

soil samples as long as the effect of soil minerals, mainly silicates, on the 

scattering conditions is equal for all samples. In chapter 4 and 5 it is shown, that 

this prerequisite for linearity is hurt by varying soil textures, i.e. varying amounts 

of sand, silt and clay. 

 

Due to the large amount of work and time, which has to be invested into the 

development of NIRS-equations, economic considerations do not allow 

individual calibrations for a wide variety of soil types. So the effect of different 

textures has to be reduced by other, simpler methods. A physical model 

presented in chapter 4 is able to explain the textural effect qualitatively. A 

quantitative estimation of this effect is given by Couillard et al. (1996). The 

application of weight scaling factors, derived from artificial mixtures of soil 

separates in their study, is examined for natural soils in chapter 5. It is shown, 

that this method is able to compensate for the textural effect to a considerable 

degree. 

 

These weight scaling factors have to be multiplied to the amount of sand, silt 

and clay in order to represent the different transparency of these minerals. 

Therefore, the amount of these minerals have to be determined, when this 

mathematical pre-treatment is used. Since soil types do not change on the time-

scale, which is important for biological processes in the soil, and their spatial 

variation is mostly far smaller than the variation of land use and organic 

composition of the soil, the additional determination of the soil mineral 

compartments is acceptable from the economic point of view.  
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A further simplification might be possible if the textural features of the soil, 

which have an influence on its NIR-spectrum can be derived from the spectrum 

itself. From the results presented in chapter five it can be seen that there exist 

difficulties in the determination of sand, silt and clay content from NIR-spectra, 

but according to the physical model described in chapter four, only information 

about the specific surface area (SSA) of the soil is needed to assess the 

influence on the NIR-spectra. Hints for the suitability of NIRS to determine the 

SSA already exist in the literature (Ben Dor et al. 1991). Assuming the suitability 

of NIRS to determine the SSA as well as the soil organic components, the 

additional input of soil texture information would not be necessary any more. 

Further work is needed to investigate the feasibility of this method. 

 

Since many mathematical models exist, which describe the chemical turnover in 

the soil (Plentinger and Penning de Vries 1996), further studies might also be 

concerned with the search for models, which can be combined with NIRS more 

efficiently. Most models divide the soil organic matter in more rapidly 

decomposable or recalcitrant pools, but the fractionation is quite different in the 

individual models (Molina and Smith 1998). NIRS-calibrations are less difficult, if 

reference data can directly be related to concentrations of individual compounds 

or chemical groups like carbohydrates or proteins, since important spectral 

features of such groups are likely to be very similar. Thus, very complex models 

might seem to be appropriate to meet the demands of NIRS. Some models use 

a large number of pools with sophisticated interrelations among these pools 

(Grant et al. 1993), but many of these pools such as several pools of microbial 

biomass are very small and concentrations of organic compounds characteristic 

for these pools are extremely low in soil samples. Thus, chances for a NIRS-

based determination of these pool sizes are questionable. 

 

An even more serious drawback of models using a lot of different pools is the 

extreme difficulty to extract reliable, reproducible pool sizes from e.g. incubation 

experiments for such a model. Hence, NIRS-calibrations for these pool sizes 

are very problematic. 
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Very simple models on the other hand are easier to parameterise using 

incubation results, but if they do not account for the major interactions of easily 

accessible and recalcitrant pools of carbon and nitrogen, they are not able to 

convert mineralisation data to quantities, which are linearly correlated with 

chemical concentrations in the soil. So the models suitable for a combination 

with NIRS have to be a compromise having regard to both kinds of arguments. 

 

Apart from focusing on sizes of model pools as reference data in NIRS-

calibrations, the determination of some important organic compounds such as 

proteins, cellulose or lignin in soil samples might help to estimate the chemical 

turnover during decomposition processes in the soil. Several studies show the 

suitability of NIRS to keep track of such decomposition processes in pure litter 

samples (Couteaux et al. 1998; Gillon et al. 1999; McLellan et al. 1991). The 

usefulness of NIRS for the determination of cellulose has been pointed out in 

chapter 3. The accuracy of this kind of calibrations can be improved, if the NIR-

spectrum of the pure analyte is known. Algorithms utilising this spectral 

information of pure analyte material in the calibration process have been 

developed (Schönkopf et al. 1991). 

 

Since chemical analyses of decomposing plant material as a small fraction in 

soil samples are very difficult, further experiments with a well-known variation of 

different organic soil amendments appear to be useful. This might be a 

promising way for a more detailed evaluation of the potential of NIRS for the 

estimation of carbon and nitrogen mineralisation in soils. 
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