Chemischer Transport von Germanaten

Vom Fachbereich Chemie der Universität Hannover zur Erlangung des Grades

Doktor der Naturwissenschaften

– Dr. rer. nat. –

genehmigte Dissertation

von

Dipl.-Chem. Andrea Pfeifer

geboren am 8. Dezember 1972 in Celle

November 2001

Chemischer Transport von Germanaten

Vom Fachbereich Chemie der Universität Hannover zur Erlangung des Grades

Doktor der Naturwissenschaften

– Dr. rer. nat. –

genehmigte Dissertation

von

Dipl.-Chem. Andrea Pfeifer geboren am 8. Dezember 1972 in Celle

November 2001

Referent: Korreferent: Prof. Dr. M. Binnewies Prof. Dr. P. Behrens

Tag der mündlichen Prüfung: 12. November 2001

Inhaltsübersicht

In der vorliegenden Arbeit wird die Züchtung von ternären und quarternären Germanaten mit Hilfe des Chemischen Transports beschrieben.

Im System MnO/Co₃O₄/GeO₂ konnte mittels Chemischen Transports die Bildung der Mischkristallreihe (*Mn*, *Co*)*GeO*₃ beobachtet werden. Weitere Beispiele von Reihen mit vollständiger Löslichkeit sind (*Fe*, *Co*)₂*GeO*₄ und (*Ni*, *Co*)₂*GeO*₄. Darüber hinaus beobachtet man die Bildung von Phasen mit begrenzter Löslichkeit mit den Randphasen (*Ni*, *Co*)₂*GeO*₄ und (*Ni*, *Co*)*GeO*₃. Zwischen Zn₂GeO₄ und Co₂GeO₄ können lediglich auf der Cobalt-reichen Seite quarternäre Phasen gefunden werden, mit einem maximalen Zn²⁺-Gehalt von 25 %.

In den Systemen V₂O₃/In₂O₃/GeO₂ und Cr₂O₃/In₂O₃/GeO₂ existieren nur schmale Bereiche der Löslichkeit von bis zu 15 mol% V^{3+} bzw. 10 mol% Cr^{3+} in $In_2Ge_2O_7$. Der Einbau von V³⁺ führt zu einer braunen Farbe, das Chrom-dotierte Germanat zeichnet sich durch seine intensive Lilafärbung aus. Bei dem gemeinsamen Transport von Mn₂O₃, In₂O₃ und GeO₂ können drei Phasen gefunden werden: Mangan-reiches (*Mn*, In)₂*Ge*₂*O*₇ (In³⁺: 0 bis 35 mol%, braun), blaugefärbtes In₂Ge₂O₇:Mn³⁺ der Thortveitit-Struktur mit einem Mangangehalt von bis zu 52 mol% und eine weitere Phase der Summenformel (*Mn*, In)₇*GeO*₁₂, das dem Si-Analogon Braunit gleicht und maximal 6 mol% In³⁺ enthält. Das System Fe₂O₃/In₂O₃/GeO₂ zeigt eine nahezu vollständige Löslichkeit des Fe³⁺ im Germanat $M^{III}_2Ge_2O_7$. Ga₂O₃ und In₂O₃ bilden mit Germanium(IV)-oxid Germanate mit der Zusammensetzung $M^{III}_2Ge_2O_7$, in denen das jeweils andere Kation gelöst werden kann (< 35 mol% Ga³⁺bzw. < 5% In³⁺), die sich aber strukturell und auch optisch (Ga₂Ge₂O₇:In³⁺: Nadeln, In₂Ge₂O₇:Ga³⁺: kompakte Kristalle) von einander unterscheiden.

Im System MnO/ZnO/GeO₂ können zwei Mischkristallreihen mit unterschiedlichen Randphasen und begrenzten Löslichkeiten gefunden werden: $MnGeO_3:Zn^{2+}$ und $Zn_2GeO_4:Mn^{2+}$. Das Mn²⁺-dotierte Orthogermanat zeigt eine in seiner Intensität vom Mangangehalt abhängige UV-Lumineszenz.

Der Transport von V₂O₃, Ga₂O₃ und GeO₂ führt nur zur Ausbildung diskreter Phasen, sowohl mit Vanadium in den Oxidationstufen III und IV ($V_{1,5}Ga_{8,5}Ge_4O_{24}, V_5Ga_2Ge_2O_{16}$) als auch mit V³⁺: ($V_{0,66}Ga_{0,33}$)₂Ge₂O₇.

Schlagworte: Chemischer Transport Germanate Oxidische Mischphasen

Abstract

This thesis is dedicated to the formation of ternary and quarternary germanates via chemical vapor transport.

Studies in the system MnO/Co₃O₄/GeO₂ showed the deposition of solid solutions $(Mn, Co)GeO_3$. Further examples are $(Fe, Co)_2GeO_4$ and $(Ni, Co)_2GeO_4$. Only partial solubility can be observed in the systems $(Ni, Co)_2GeO_4 - (Ni, Co)GeO_3$ and $(Zn_xCo_{1-x})_2GeO_4$ Co_2GeO_4 . In the last example only the deposition of Co-rich quarternary germanates with x < 0,25 could be found.

The existance of a limited solubility was observed in the systems V₂O₃/In₂O₃/GeO₂ and Cr₂O₃/In₂O₃/GeO₂, with 15 % V^{3+} and 10 % Cr^{3+} in $In_2Ge_2O_7$, respectively, showing brown coloured material (Vanadium) or a purple colour of great intensity with Chromium. The chemical transport of Mn₂O₃, In₂O₃ and GeO₂ leads to the formation of three phases: Indium doped $(Mn_xIn_{1-x})_2Ge_2O_7$ (In³⁺: x > 0,65, brown crystals), bluish $In_2Ge_2O_7:Mn^{3+}$, showing thortveitit structure, with a maximum content of Manganese of 52 %, and $(Mn_xIn_{1-x})_7GeO_{12}$, with x > 0,94, structurally closely related to braunit. The system Fe₂O₃/In₂O₃/GeO₂ is another example showing full solubility, while in Ga₂O₃/In₂O₃/GeO₂ two different germanates of the general composition $M^{III}_2Ge_2O_7$ are deposited, with maximum amount of 35 % Ga³⁺ and 5 % In³⁺, respectively. The two phases can be distinguished both in crystal habitus ($Ga_2Ge_2O_7:In^{3+}$ needles, $In_2Ge_2O_7:Ga^{3+}$ compact crystals) and in structure.

Two sequences of solid solutions can be found in the system MnO/ZnO/GeO₂: $MnGeO_3$: Zn^{2+} and Zn_2GeO_4 : Mn^{2+} . The Mn²⁺-doped material shows UV luminescence, the intensity depending on the Mn²⁺ content.

No solid solutions but discrete phases are formed in the transport of V₂O₃, Ga₂O₃ and GeO₂. In these materials Vanadium is deposited either showing mixed oxidation states $(V_{1,5}Ga_{8,5}Ge_4O_{24}, V_5Ga_2Ge_2O_{16})$ or as V³⁺: $(V_{0,66}Ga_{0,33})_2Ge_2O_7$.

Keywords: chemical vapor transport germanates oxidic solid solutions

Die vorliegende Dissertation wurde im Zeitraum Januar 1999 bis November 2001 unter Betreuung von Herrn Prof. Dr. M. Binnewies am Institut für anorganische Chemie der Universität Hannover angefertigt.

An dieser Stelle möchte ich allen danken, die zum Gelingen der Arbeit beigetragen haben:

Herrn Prof. Dr. M. Binnewies danke ich für das Thema, aber insbesondere für die Betreuung während der vergangenen dreieinhalb Jahren.

Meinen "fleissigen Händen", den (Ex-)Hiwis Thomas Giesenberg, Sebastian Hein, Lena Müller und Thomas Burchardt, sei ganz besonders gedankt. Ihr habt mir enorm geholfen und einen tollen Einsatz gezeigt! Was hätte ich nur ohne Euch gemacht?

Meinen Kollegen Wibke Friedhoff, Thomas Giesenberg, Dagmar Grüne, Christoph Rose, Parand Saheed Fatim, Nils Schiefenhövel, Mike Schütte und Nicola Söger, sowie den "Ehemaligen", Sonja Locmelis, Stefanie Knitter, Thorsten Plaggenborg und Jörg Wirringa möchte ich ebenfalls einen großen Dank aussprechen für die vielen Dinge, die ihr getan habt, um mir zu helfen oder einfach nur das Zusammenarbeiten angenehm zu machen.

Weiter möchte ich verschiedenen Mitgliedern des Instituts danken, die mir auf unterschiedliche Art und Weise geholfen haben: Monika Hartl für die Betreuung der Argonbox, Clemens Kühn für seine Arbeiten am Pulverdiffraktometer und seine Erläuterungen zum Lumineszenz-Spektrometer, Frank Soetebier für seine Hilfen mit dem Programm Endeavour. Ganz besonders liegt mir am Herzen, den Laborantinnen Frau Bachthaler, Songül Altunay, Dagmar Grüne und Claudia Schulze für die gute Zusammenarbeit im Grundpraktikum zu danken – wie hätten wir das ohne diesen Erfahrungsschatz und den immer freundlichen Einsatz geschafft?

Vielen Dank auch an Herrn Pfeuffer: Sie haben mir meine Arbeit überhaupt nur möglich gemacht, und dabei bestimmt so manche Stunde länger gearbeitet. Ebenso gilt mein Dank der mechanischen und elektrischen Werkstatt.

Nicht zuletzt möchte natürlich meiner Familie danken: Meinen Eltern, dafür, dass sie mir diese Ausbildung ermöglicht haben, und meinem Bruder Henrik für Rat und Tat und seine Gesellschaft. Aber ganz besonders danke ich Euch dafür, dass Ihr stets für mich da ward!

Und das Wichtigste zum Schluss: Danke Robert für Deine Hilfe, Deine Ermunterungen und für so vieles mehr!

Inhaltsverzeichnis

1	Einleitung und Zielsetzung	1
2	Der Chemische Transport	5
	2.1 Die Chemische Transportreaktion	5
	2.2 Thermodynamische Grundlagen	6
	2.3 Thermodynamische Modellrechnungen	7
	2.3.1 Die K_p -Methode	7
	2.3.2 Die GMin-Methode	7
	2.4 Das Transportmittel	8
3	Allgemeine Versuchsdurchführung	10
	3.1 Herstellung der Transportampullen	10
	3.2 Der Transportprozess	11
	3.3 Aufbereitung	12
4	Analytische Methoden	13
	4.1 Röntgen-Pulverdiffraktometrie	13
	4.2 Röntgen-Strukturanalyse	14
	4.3 EDX und EDAX	14
	4.4 Röntgen-Fluoreszenz	15
	4.5 UV-Fluoreszenz	15
5	Chemischer Transport ternärer Germanate	17
	5.1 Literaturübersicht	17
	5.1.1 Bisherige Arbeiten zum Chemischen Transport von Germanaten	17
	5.1.2 Kristallstrukturen	18
	5.1.3 Thermodynamische Daten	22
	5.2 Chemischer Transport	25
	5.2.1 Chemischer Transport von Germanaten mit zweiwertigen Kationen	25
	5.2.2 Chemischer Transport von Germanaten mit dreiwertigen Kationen	35
	5.3 Zusammenfassung von Kapitel 5	39

6	Chemischer Transport im System M ^{II} O/CoO/GeO ₂	42
	6.1 Das System MnO/CoO/GeO ₂	42
	6.2 Das System FeO/CoO/GeO ₂	49
	6.3 Das System NiO/CoO/GeO ₂	54
	6.4 Das System ZnO/CoO/GeO ₂	59
	6.5 Zusammenfassung von Kapitel 6	63
7	Chemischer Transport im System M ^{III} ₂ O ₃ /In ₂ O ₃ /GeO ₂	64
	7.1 Das System V ₂ O ₃ /In ₂ O ₃ /GeO ₂	64
	7.2 Das System Cr ₂ O ₃ /In ₂ O ₃ /GeO ₂	67
	7.3 Das System Mn ₂ O ₃ /In ₂ O ₃ /GeO ₂	69
	7.4 Das System Fe ₂ O ₃ /In ₂ O ₃ /GeO ₂	73
	7.5 Das System Ga ₂ O ₃ /In ₂ O ₃ /GeO ₂	77
	7.6 Zusammenfassung von Kapitel 7	81
8	Chemischer Transport in den Systemen MnO/ZnO/GeO2 und	
	V ₂ O ₃ /Ga ₂ O ₃ /GeO ₂	82
	8.1 Das System MnO/ZnO/GeO ₂	82
	8.2 Das System V ₂ O ₃ /Ga ₂ O ₃ /GeO ₂	90
	8.3 Zusammenfassung von Kapitel 8	93
9	Zusammenfassung und Ausblick	94
10	Anhang	98
	10.1 Literatur	99
	10.2 Abbildungsverzeichnis	100
	10.3 Tabellenverzeichnis	102
	10.4 Chemikalienverzeichnis	104
	10.5 Geräteverzeichnis	105
	10.6 Abkürzungsverzeichnis	106
	10.7 Symbole häufig verwendeter physikalischer Größen	107

" Sagʻ es mir, und ich werde es vergessen. Zeige es mir, und ich werde mich daran erinnern. Beteilige mich, und ich werde es verstehen." Lao Tse

Für Papa, wir vermissen Dich!

1 Einleitung und Zielsetzung

Feste Lösungen ionischer Verbindungen zeigen häufig interessante physikalische Eigenschaften, welche die reinen Stoffe nicht oder nur bedingt aufweisen.¹ Zirkonium(IV)oxid, in dem Calcium- oder Yttriumoxid gelöst ist, ist ein guter Sauerstoffionenleiter.² Dieses Material findet deshalb Verwendung als Grundmaterial für die λ -Sonde.² Dotiertes ZnS, wie ZnS:(Cu, Al) oder ZnS:(Ag, Al), wird aufgrund seiner Lumineszenzeigenschaften als Leuchtstoff in Bildschirmen eingesetzt.³ In Industrie und Forschung sind solche Festkörper mit spezifischen physikalischen oder chemischen Merkmalen begehrte Werkstoffe. Aufgrund der Vielzahl von Anforderungen und Anwendungsmöglichkeiten ist daher eine große Zahl von Präparationsmethoden entwickelt worden, die ganz individuell auf das jeweilige Problem abgestimmt werden können. Entscheidende Faktoren für die Wahl der Syntheseroute können Zusammensetzung, Reinheitsgrad, Kristallgröße und -qualität sein, aber auch die thermodynamische Stabilität der Verbindung unter den Bedingungen, die während des Herstellungsprozesses oder bei der vorgesehenen Verwendung herrschen. Ebenso kann die Art der Verwendung einen entscheidenden Einfluss auf die Art der Darstellung haben.

Das Sol-Gel-Verfahren ist beispielsweise eine geeignete Methode für die Präparation von Stoffen mit definierter und konstanter Zusammensetzung, insbesondere bei der Synthese von dotierten Materialien und metastabilen Phasen.⁴ Schmelz- und Flußzüchtungsmethoden, zum Beispiel nach BRIDGEMAN oder CZOCHRALSKI, werden gemeinhin genutzt, um große Einkristalle und einen hohen Ordnungsgrad zu erzielen,⁵ wie sie für eine optimale Lichtausbeute lumineszierender Verbindungen erforderlich ist.⁶ Der Nachteil dieser Methoden ist allerdings die schwierige Kontrolle der Zusammensetzung. Der Chemische Transport bietet hierzu eine Alternative, die die Vorteile der vorherigen Strategien in sich vereinigt.

Prinzipiell sind die Grundlagen des Chemischen Transports seit den 50er Jahren bekannt.⁷ Bei dieser Methode wird ein oder werden mehrere Festkörper bei einer Temperatur T_Q mit Hilfe eines bei Reaktionstemperatur gasförmigen Transportmittels zu einer flüchtigen Verbindung umgesetzt. Die entstehende Gasmischung gelangt über Diffusion und Konvektion an einen Ort mit der Temperatur T_S , wo sie unter Bildung eines festen Bodenkörpers zersetzt wird. Von besonderer Bedeutung sind die Arbeiten von SCHÄFER und NITSCHE, die neben der präparativen Methode auch erste Modelle zur Beschreibung des Transportgeschehens auf der

Grundlage thermodynamische Berechnung von Gleichgewichtslagen der Chemischen Transportreaktionen entwickelten.^{7, 8}

Mit Hilfe des Chemischen Transports gelang es im Arbeitskreis BINNEWIES, Hannover, eine Vielzahl intermetallischer (GERIGHAUSEN⁹, NEDDERMANN¹⁰, DEICHSEL¹¹, PLAGGENBORG¹², WIRRINGA¹³), oxidischer (LOCMELIS¹⁴, PATZKE¹⁵), sulfidischer und selenidischer (KNITTER¹⁶) fester Lösungen gezielt herzustellen. Dabei ist neben dem Einfluß des Transportmittels und der Temperatur vor allem die Ausgangsbodenkörper-Zusammensetzung auf die entstehenden Phasen und deren Zusammensetzung von großem Interesse. Im Rahmen des Transports von Sauerstoffverbindungen gelang hier die kontrollierte Darstellung von binären Oxiden, aber auch von Verbindungen und festen Lösungen mit zwei, drei und sogar vier Kationen (LOCMELIS^{14, 17}, PATZKE¹⁸). Daran soll sich die vorliegende Arbeit zum Transport von Germanaten anschließen.

Bei den Germanaten handelt es sich um eine Substanzklasse mit sehr vielseitigen Eigenschaften und Anwendungen. Man findet eine breite Analogie zwischen den Sauerstoffverbindungen des Germaniums und den entsprechenden Siliciumverbindungen. So sind Silikate und Germanate häufig isotyp. Beim Germanium beobachtet man ebenfalls Zeolith-artige Strukturen¹⁹ und eine Neigung zur Glasbildung. Diese Materialien zeichnen sich durch eine hohe Durchlässigkeit im infraroten und sichtbaren Bereich aus.²⁰ Aufgrund ihres hohen Brechungsindexes werden sie beispielsweise für Weitwinkellinsen in der Photographie und für optische Mikroskope verwendet.²¹ Germaniumdioxid selbst ist ein guter UV-Absorber. Viele Germanate zeigen UV-Lumineszenz: (Sr, Ba)2(Mg, Zn)Ge2O7:Pb, blauviolett, Zn₂GeO₄:Mn, gelbgrün, MgGeO₃:Mn, tiefrot).^{22, 23, 24} Die wohl wichtigste Anwendung ist die des Bismuthgermanats Bi₄Ge₃O₁₂ (BGO) als Detektor für γ-Strahlung, zum Beispiel bei der Positron Emission Tomographie (PET).²⁵ Auch dabei wird das Prinzip der Lumineszenz genutzt, in diesem Fall handelt es sich um Radiolumineszenz. Cr⁴⁺-dotiert eignet sich dieses Material zudem für Laseranwendungen im nahen Infrarot.²⁶ Pr³⁺- und Eu³⁺dotierte Germanium-Granate (Ca₃Al₂Ge₃O₁₂) und Cr⁴⁺-dotiertes Calcium-ortho-Germanat zeigen Eigenschaften, aufgrund derer sie sich ebenfalls für die Nutzung als Lasermaterial eignen.^{27, 28, 29} Bleigermanat-Beimengungen in Keramiken generieren ein Material, das Halbleitereigenschaften aufweist³⁰ und als dünner Film auch als IR-Detektor³¹ verwendet wird. In der organischen Chemie finden Natrium- und Ammoniumgermanate Anwendung als Katalysatoren für die Polyestersynthese.³²

Diese Arbeit konzentriert sich vornehmlich auf die Untersuchung der Mischbarkeit der Germanate zwei- oder dreiwertiger 3-d-Metallkationen und der dreiwertigen Kationen von Gallium und Indium. Dabei sind zwei Fragen von zentraler Bedeutung:

- Inwiefern lässt sich die Bildung einer Mischkristallreihe aufgrund der Strukturen der Randphasen voraussagen?
- Welche Abhängigkeiten bestehen zwischen Ausgangszusammensetzung und der Zusammensetzung des transportierten Materials?

Im Rahmen der Germanate mit zweiwertigen Kationen soll hier zunächst das System M^{II}O-CoO-GeO₂ bearbeitet werden. Cobalt(II)-oxid ist als Matrixoxid in besonderem Maße geeignet, da zwei Germanat-Phasen mit guten Transportraten zugänglich sind (CoGeO₃ und Co₂GeO₄). Als zweiwertige Oxide M^{II}O werden Nickel(II)-oxid, Zink(II)-oxid, Mangan(II)oxid und Eisen(II)-oxid verwendet. Von besonderem Interesse sind Systeme mit strukturell unterschiedlichen Randphasen (Zn₂GeO₄-Co₂GeO₄, Mn₂GeO₄-Co₂GeO₄) und solche, die keine Entsprechung im anderen Germanat finden ("NiGeO₃"-CoGeO₃, "ZnGeO₃"-CoGeO₃). Die Germanate der dreiwertigen Kationen, namentlich Vanadium(III)-oxid, Chrom(III)-oxid, Mangan(III)-oxid, Eisen(III)-oxid und Gallium(III)-oxid, werden mit Indiumoxid kombiniert.

Die Germanate der dreiwertigen Metalle zeichnen sich durch eine größere Vielfalt bezüglich der Zusammensetzung und der Strukturen aus.

Literatur zu Kapitel 1 :

- ¹ G. Patzke, M. Binnewies, Chem. In unserer Zeit, 1999, 1, 33-44.
- ² A. Heintz, G. Reinhardt, *Chemie und Umwelt*, Vieweg, Braunschweig, **1990**.
- ³ T. Jüstel, H. Nikol, C. Ronda, Angew. Chem. **1998**, 110, 3250.
- ⁴ D. W. Johnson, Jr., Am. Ceram. Soc. Bull., **1985**, 64, 1597.
- ⁵ J. C. Brice, *Crystal Growth Processes*, Wiley, New York, **1986**.
- ⁶ G. Blasse, B. C. Grabmaier, *Luminscent materials*, Springer Verlag, Heidelberg, **1994**.
- ⁷ H. Schäfer, *Chemische Transportreaktionen*, Verlag Chemie, Weinheim, **1962**.
- ⁸ R. Nitsche, *Fortschr. Miner.*, **1967**, *44*, 231.
- ⁹ S. Gerighausen, *Dissertation*, Universität Hannover, **1996**.
- ¹⁰ R. Neddermann, *Dissertation*, Universität Hannover, **1997**.
- ¹¹ J. Deichsel, *Dissertation*, Universität Hannover, **1998**.
- ¹² T. Plaggenborg, *Dissertation*, Universität Hannover, **1999**.
- ¹³ J. Wirringa, *Dissertation*, Universität Hannover, **1999**.

- ¹⁴ S. Locmelis, *Dissertation*, Universität Hannover, **1998**.
- ¹⁵ G. R. Patzke, *Dissertation*, Universität Hannover, **1999**.
- ¹⁶ S. Knitter, *Dissertation*, Universität Hannover, **1999**.
- ¹⁷ S. Locmelis, M. Binnewies, Z. Anorg. Allg. Chem., **1999**, 625, 1573-7.
- ¹⁸ G. R. Patzke, *Dissertation*, Universität Hannover, **1999**.
- ¹⁹ Xianhui Bu, Pingyun Feng, G. D. Stucky, *Chem. Mater.*, **2000**, *12*, 1505-7.
- ²⁰ B. G. Aitken, D. W. Hall, M. A. Newhouse, Corning Inc. Corning, NY, Appl. 618939, US 5093288, 28. Nov. **1990**.
- ²¹ Germanium, *Ullmanns Encyklopädie der technischen Chemie*, 4. Aufl., Verlag Chemie, Weinheim, **1976**.
- ²² H. Koelmans, C. M. C. Verhagen, (North American Philips Co.,Inc.) US 30147878, 17. März 1960.
- ²³ Ando, T., Nishiguchi, K., Jpn. Kokai Tokkyo JP 01 60,671 [89 60,671] (Cl. C09D11/16), 07 Mar 1989, Appl. 87/217,760, 31 Aug **1987**.
- ²⁴ T. Kurachi, T. Shigeta, S. Horii, T. Matsuoka, (Matsushita Electric Industrial Co., Ltd., Japan) JP 11158464, Appl. 97/342264, 15. Juni 1999.
- ²⁵ J. S. Nagpal, S. C. Sabharwal, M. P. Chougaonkar, S. V. Godbole, Nucl. Instrum, Methods Phys. Res., Sect. A, 1999, 432(2-3), 496-500.
 - Y. Picard, C. J. Thompson, IEEE Trans. Nucl. Sci., 1994, 41(4, Pt. 1), 1464-8.
- ²⁶ D. Bravo, F. J. Lopez, Opt. Mater., **1999**, 13(1), 141-5.
- ²⁷ R. Balda, J. Fernandez, A. de Pablos, J. M. Fdez-Navarro, J. Phys.: Condens. Matter, **1999**, 11, 7411-21.
- ²⁸ Xiao Zhang, Jianhui Yuan, Xingren Liu, J. P. Jouart, G. Mary, J. Appl. Phys., **1997**, 82 (8), 3987-91.
- ²⁹ B. Xu, J. Evans, V. Petricevic, S. P. Guo, O. Maksimov, M. C. Tamargo, R. R. Alfano, *Appl. Opt.*, **2000**, *39*(27), 4975-8.
- ³⁰ D. A. Pane, S. M. Park, O. C. Jahnke, (University of Illinois Foundation, USA) BR 8103072, Appl. 81/3072, 28. Dez. **1982**.
- ³¹ Y. Shirakawa, Y. Yamamoto, (Tdk Elektronics Co Ltd, Japan) JP 07034241, Appl. 93-180463, 02. März 1995.
- ³² T. Kimura, M. Watanabe, S. Kobayashi, T. Sugita, K. (Mitsubishi Chemical Industries Co., Ltd., Japan). Japan. **1975**, JP 50031199, 08. Okt. 1975, Appl. JP 69-67393, 26. Aug. 1969.

2 Der Chemische Transport

1925 begann mit E. A. VAN ARKEL und J. H. DE BOER die gezielte Entwicklung des chemischen Transports als Verfahren zur Reindarstellung von Metallen. Sie setzten Titanschwamm in einer geschlossenen Apparatur mit Iod um und erwirkten an einem Glühdraht den Zerfall des Iodids unter Abscheidung des reinen Metalls.¹ In den siebziger Jahren wurde dieses Prinzip in der Industrie zur Darstellung hochreiner Schichten aus Silicium in der Halbleitertechnik verwendet.²

2.1 Die Chemische Transportreaktion

Das Prinzip des chemischen Transports besteht in der reversiblen Verflüchtigung eines Feststoffes (A) mit Hilfe eines geeigneten gasförmigen Transportmittels (B) unter Bildung eines oder mehrerer gasförmiger Reaktionsprodukte (C + ...). Die allgemeine Reaktionsgleichung kann folgendermaßen formuliert werden:

$$i A_{(s)} + k B_{(g)} = j C_{(g)} (+ l D_{(g)} + ...)$$
 (Gl. 2-1)

An einer Stelle mit veränderten Reaktionsbedingungen (Temperatur, Druck) scheidet sich nach Zersetzung der gebildeten gasförmigen Produkte der transportierte Feststoff A wieder ab.

Abb. 2-1 zeigt den schematischen Aufbau eines Transportexperiments. Man geht von zwei getrennten Reaktionsräumen aus: dem Quellenraum, in dem die thermodynamischen Bedingungen die Auflösung des Feststoffes ermöglichen (Hinreaktion), und dem

Senkenraum, in dem der Zerfall der gasförmigen Produkte stattfindet (Rückreaktion). In den beiden als getrennt betrachteten Reaktionsräumen stehen Gasphase und Bodenkörper jeweils miteinander im thermodynamischen Gleichgewicht, während zwischen Quelle und Senke ein Ungleichgewicht herrscht. Daraus resultiert ein Teilchenfluss der Gaskomponenten durch Diffusion oder Konvektion. Durch hinreichend kleine Drücke (1 mbar – 3 bar) und horizontale Lage der Ampulle während der Reaktion wird der Konvektionsanteil minimiert, so dass die Diffusion für den Transport bestimmend wird.

2.2 Thermodynamische Grundlagen

Stehen Gasphase und Bodenkörper miteinander im thermodynamischen Gleichgewicht, gilt:

$$\ln K = -\left[\frac{\Delta G^0_R}{RT}\right] = -\left[\frac{\Delta H^0_R}{RT} - \frac{\Delta S^0_R}{R}\right]$$
(Gl. 2-1)

Da im Quellenraum die Bildung des Produktes (Hinreaktion) und im Senkenraum dessen Zerfall (Rückreaktion) für den Chemischen Transport notwendig ist, darf keine extreme Gleichgewichtslage zugunsten des Eduktes oder des Produktes vorliegen. Der Transport findet deshalb unter optimalen Bedingungen statt, wenn K_p gleich eins ist.

Die Richtung des Transports wird von der Reaktionsenthalpie bestimmt. Verläuft die Auflösung des Feststoffes exotherm ($\Delta H^0_R < 0$), so findet der Transport von der kälteren zur heißeren Zone ($T_Q < T_S$) statt. Dies ist bei der Reinigung von Titanschwamm nach VAN ARKEL und DE BOER der Fall.¹ Man spricht hier von exothermen Transportprozessen. Der Transport von Oxiden mit Chlor oder HCl ist im allgemeinen ein endothermer Transport, die Abscheidung findet an der kälteren Seite statt.

Kann der chemische Transport durch

$$i A_{(s)} + k B_{(g)} = j C_{(g)} (+ l D(g) + ...)$$
 (Gl. 2-1)

beschrieben werden, so gelangt man mit dem Massenwirkungsgesetz zu einem Ausdruck, der die Gleichgewichtslage im System über die Partialdrücke der Gasphasenspezies beschreibt:

$$K_p = \frac{p^{1}(C)}{p^{k}(B)}$$
(Gl. 2-2)

Mit Hilfe der thermodynamischen Daten lassen sich über die Gleichgewichtskonstante *K* bei Kenntnis des Gesamtdruckes und der stöchiometrischen Faktoren die Partialdrücke der

einzelnen Gasspezies errechnen. Dies wird ausgenutzt, um eine Abschätzung der Transporteigenschaften eines Systems durchzuführen.

2.3 Thermodynamische Modellrechnungen

Ziel der thermodynamischen Modellrechnung ist es, anhand von thermodynamischen Daten und den Gleichgewichtsbeziehungen der zu berücksichtigenden Verbindungen eine Voraussage über den Transport zu treffen. Diese Berechnungen geben Aufschluss über die Erfolgsausichten, aber auch darüber, welcher Temperaturgradient oder welches Transportmittel gewählt werden soll und welche Transportrate zu erwarten ist.

Es gibt zwei verschiedene Verfahrensweisen der Modellrechnungen: die K_p -Methode und die GMin-Methode. Beiden gemeinsam ist, das sie von einem geschlossenen System mit konstanten Stoffmengen ausgehen, aber nur mit Hilfe der GMin-Methode können auch Aussagen über thermodynamisch stabilen festen Phasen im System gemacht werden.

2.3.1 Die *K*_p-Methode

Bei diesem Verfahren wird der Reaktionsraum über dem Ausgangsbodenkörper (ABK) als isothermes System betrachtet, das sich im thermodynamischen Gleichgewicht befindet. Die Gleichgewichtspartialdrücke der Gasphasenspezies über dem Bodenkörper werden anhand der thermodynamischen Daten, der stöchiometrischen Beziehungen und der bekannten Variablen wie Temperatur und Anfangsdruck des Transportmittels berechnet. Durch Berechnungen für verschiedene Temperaturen können Partialdruckkurven als Temperaturabhängige Funktionen dargestellt werden. Diese liefern Aussagen über ideale Transporttemperaturen, -gradienten und die Transportrichtung. Bei dieser Methode werden lediglich die Gleichgewichte über dem Bodenkörper beschrieben, welche Festkörper abgeschieden werden, kann hier aber nicht berechnet werden, eine mögliche Konvektion bleibt unberücksichtigt.

2.3.2 Die GMin-Methode

Die Grundlage der Modellberechnung nach der GMin-Methode ist die Minimierung der freien Enthalpie des gesamten Systems. Im Gegensatz zur K_p -Methode wird hier nichtstationär gerechnet, das heißt, die unterschiedlichen Bedingungen wie Stoffmenge, Temperatur und Partialdruck an Quell- und Senkenseite werden zunächst getrennt betrachtet und fließen anschließend in die Gesamtbetrachtung ein. Dabei werden auch die sich im Verlauf des Transportprozesses veränderenden Bodenkörper berücksichtigt und nach dem Kooperativen Transportmodell³ in die Rechnungen einbezogen. Für diese Arbeit wurde das Programm CVTrans verwendet. Die nähere Beschreibung sowie der Ablauf des Programms ist von KOHLMANN⁴ beschrieben worden.

2.4 Das Transportmittel

Für den Transport eines Feststoffes steht eine Vielzahl von Transportmitteln zur Verfügung. Insbesondere die Halogene und Halogenwasserstoffe finden eine breite Anwendung, aber auch Wasserstoff, Kohlenmonoxid sowie die Halogenide von Tellur, Quecksilber, Aluminium und Eisen werden genutzt.

Ein wichtiges Kriterium bei der Wahl des Transportmittels ist die ausreichend hohe Flüchtigkeit der gebildeten gasförmigen Produkte. Gleichzeitig darf dessen Stabilität nicht zu groß sein, damit eine Reversibilität der transportwirksamen Reaktionsgleichung gewährleistet bleibt.

Darüber hinaus ist die Möglichkeit unerwünschter Nebenreaktionen zu beachten. So kann es bei der Verwendung von Ammoniumchlorid zu einer partiellen Reduktion des zu transportierenden Feststoffes kommen, da sich das entstehende Ammoniak unter Transportbedingung in Wasserstoff und Stickstoff zersetzt.⁵ Chlor hingegen kann eine Oxidation bewirken. Der Transport von Zinkoxid, das einen schmalen Homogenitätsbereich ZnO_{1-x} aufweist, ist dafür ein gut untersuchtes Beispiel. Während bei der Verwendung von Chlor oder Brom ausschließlich ZnO der oberen Phasengrenzzusammensetzung erhalten wird, liefert der Transport mit NH₄Cl sauerstoffärmeres Zinkoxid.⁶

Die Wahl des Transportmittels kann auch für die Transportrichtung entscheidend sein. Als Beispiel dafür sei der Transport von Wolfram mit verschiedenen Halogen angeführt: Mit Chlor oder Brom verläuft der Transport exotherm von der kälteren zur heißeren Zone, mit Iod wird jedoch ein endothermer Transport beobachtet.⁷ Komplexbildner wie AlCl₃ oder GaCl₃ werden genutzt, um schwerflüchtige Halogenide leichter in die Gasphase zu überführen. Sie können auf zwei Arten in das Transportgeschehen eingreifen:

- durch Bildung von gemischten Halogenidkomplexen, oder
- als Halogenierungsmittel infolge ihrer Zersetzung bei hohen Temperaturen.

Im Regelfall wird durch ihre Zugabe die Löslichkeit des Bodenkörpers in der Gasphase erheblich erhöht, in einigen Fällen ist nur so ein Transport überhaupt möglich. Ein Transport von Palladium mit Iod oder Chlor ist beispielsweise nur in Anwesenheit eines Komplexbildners möglich. Die transportwirksame Gasphasenspezies ist dabei PdAl₂Cl_{8 (g)}.⁸

Literatur zu Kapitel 2:

- ¹ A. E. van Arkel, J. H. de Boer, Z. anorg. Allg. Chemie, **1925**, 148, 345.
- ² L. P. Hunt, E. Sirtl, J. Electrochem. Soc., **1972**, 119, N12, 1741.
- ³ R. Gruehn, H. J. Schweitzer, Angew. Chem., **1983**, 95, 80.
- ⁴ A. Kohlmann, *Diplomarbeit*, Universität Hannover, **1998**.
- ⁵ S. Locmelis, *Dissertation*, Universität Hannover, **1999**.
- ⁶ H. Oppermann, G. Stöver, Z. anorg. allg. Chemie, 1984, 511, 72.
- ⁷ M. Lenz, R. Gruehn, *Chem. Rev.*, **1997**, *97*, 2967.
- ⁸ H. Schäfer, M. Trenkel, Z. anorg. allg. Chemie, **1975**, 414, 137.

3 Allgemeine Versuchsdurchführung

Alle Transportexperimente wurden in geschlossenen Quarzampullen durchgeführt, wobei der Chemische Transport in Zwei-Zonen-Öfen stattfand, in die die Ampullen nach der Präparation eingeführt wurden. Die verwendeten Chemikalien sind im Anhang aufgeführt.

3.1 Herstellung der Transportampullen

Wenn nicht anders angegeben, wurden Standardampullen (s. Abb. 3-1) aus Quarzglas verwendet (Firma HERAEUS, Innendurchmesser 16 mm, Wandstärke ca. 1,5 mm, Länge ca. 20 cm, Volumen ca. 40 ml).

Abb. 3-1: Transportampulle.

Die mit einem Schliff versehenden Ampullen aus Quarzglas wurden vor Eingabe der Substanzen gereinigt und anschließend mindestens zwölf Stunden im Trockenschrank bei 100 °C getrocknet. Die Ausgangsbodenkörper wurden gemörsert, über Nacht bei 100 °C getrocknet und mit einem Trichter in die Ampullen eingefüllt. Anschließend folgte vorsichtiges Ausheizen mit einem Gebläsebrenner unter Vakuum (10⁻⁵ mbar), um an den Quarzwandungen anhaftendes Wasser¹ zu entfernen. Nach dem Abkühlen wurde das Transportmittel (HCl, Cl₂) einkondensiert. Die Transportmittelmenge wurde so gewählt, dass der Ampulleninnendruck bei Raumtemperatur 0,25 bar beträgt (ca. 0,5 mmol), die Dosierung erfolgte dabei über eine Apparatur mit definiertem Volumen und Druckmeßgerät (Vakuumapparatur, s. Abb. 3-2). Das verwendete Cl₂-Gas wurde zuvor durch eine Trocknungsapparatur, befüllt mit SICAPENT und konzentrierter Schwefelsäure, geleitet, das HCl-Gas in einer Kippschen Apparatur (s. Abb. 3-2) aus NH₄Cl und konzentrierter H₂SO₄ entwickelt. Nach dem Auskondensieren in der Ampulle mit Flüssigstickstoff erfolgte das Abschmelzen der Transportampulle mit einem Gebläsebrenner.

Abb. 3-2: *links*: Vakuumapperatur, *rechts*: Kippsche Apparatur.

3.2 Der Transportprozess

Die Transportexperimente fanden in Zwei-Zonen-Öfen mit zwei voneinander unabhängig regulierbaren Heizwicklungen aus Kanthaldraht statt. Die Temperaturmessung erfolgte mit Pt/Rh-Pt-Thermoelementen, die Steuerung über Regler der Firmen EUROTHERM und CAL CONTROLS.

Die Transportampulle wurde mittig und waagerecht in den Zwei-Zonen-Ofen eingeführt und die Thermoelemente an deren Enden plaziert. Eine schematische Darstellung der Transportanordnung ist in Abb. 3-3 dargestellt.

Vor dem eigentlichen Transport erfolgte ein "Klartransport" bei umgekehrten Temperaturgradienten (1 bis 2 Tage), um die Wandung der Quarzampulle von Kristallkeimen auf der Senkenbodenkörperseite zu befreien. Anschließend wurde der siebentägige Chemische Transport durchgeführt. Zur Beendigung des Versuches wurde zuerst die Quellenseite auf eine Temperatur 200 °C unter der an der Senke abgekühlt. Damit sollte erreicht werden, dass sich die in der Gasphase befindlichen Halogenide nicht auf dem transportierten Material niederschlagen und damit das Transportergebnis verfälschen.

Abb. 3-3: Schematische Darstellung der Transportanordnung.

3.3 Aufbereitung

Die Transportampullen wurden mittig mit einen Quarzschneider angeritzt und danach aufgebrochen. Der Senkenbodenkörper wurde zunächst mit $H_2O_{dest.}$ und danach mit Aceton gespült, getrocknet und anschließend gewogen.

Literatur zu Kapitel 3:

¹ G. Schmidt, R. Gruehn, J. Cryst. Growth, 1982, 57, 585.

4 Analytische Methoden

Als Analysemethoden wurden Röntgenpulverdiffraktometrie, Röntgen-Einkristalluntersuchungen, Rasterelektronenmikroskopie, EDX-Spektroskopie, Röntgenfluoreszenz und UV-Fluoreszenz herangezogen. Die Gerätedaten sind im Anhang (10.5) verzeichnet.

4.1 Röntgen-Pulverdiffraktometrie

Die Röntgen-Pulverdiffraktometrie dient der qualitativen Phasenanalyse und der Bestimmung der Gitterkonstanten der einzelnen kristallinen Phasen.

Das Prinzip dieser Analysemethode beruht auf der BRAGGschen Gleichung:

$$\boldsymbol{l} = 2 \cdot d_{\text{hkl}} \cdot \sin \boldsymbol{J} \tag{Gl. 4-1}$$

Routinemäßig wurden alle Proben dieser Arbeit, soweit die Menge ausreichte, mit einem Transmissions-Pulverdiffraktometer der Firma STOE mit automatischem Probenwechsler vermessen. Das Gerät arbeitet mit Cu-K_{α}-Strahlung. Es hat eine Guinier-Geometrie (Abb. 4-1), die gebeugte Strahlung wird mit einem linearen PSD (Position Sensitive Detector = ortsempfindlicher Zähler) gemessen. Der Anodenstrom betrug 30 mA, die Kathodenspannung 40 kV. Ein Ge-Kristall als Primärmonochromator unterdrückt die Cu-K_{β}-Reflexe und die Cu-K_{α 2}-Reflexe.

Abb. 4-1:Schematischer Strahlengang eines Transmissions-Pulverdiffraktometers (R: Röntgenröhre,
M: Primärmonochromator, P: Probe; PSD: ortsempfindlicher Zähler).

Alle Proben wurden auf Flachbettträgern präpariert. Dazu wurde die gemörserte Probe zwischen zwei röntgenamorphen Folien eingebettet. Vor jedem Meßlauf wurde mit einem externen Si-Standard geeicht. Die Aufnahmebedingungen stehen in Tab. 4-1. Die Auswertung der aufgenommenen Pulverdiffraktogramme erfolgte mit dem Programm WINXPOW der Firma STOE.

 Tab. 4-1: Meßparameter für Pulverdiffraktometeraufnahmen.

	Senkenbodenkörper	Quellenbodenkörper
Meßbereich	5 bis 70° 2 J	5 bis 70° 2 J
PSD-Step	0,5	0,5
Meßzeit/Step	60 s	15 s
Auflösung	0,01° 2 J	0,01° 2 J

4.2 Röntgenstrukturanalyse

Einzelne Kristalle wurden mit Einkristalldiffraktometern vermessen. Dabei wurden folgende Geräte verwendet:

- 1. STOE IPDS, Mo-K $_{\alpha}$ -Strahlung
- 2. STOE AED 2, Vierkreisdiffraktometer, Mo- K_{α} -Strahlung

4.3 Röntgenspektroskopie

Die EDX-Spektroskopie (energiedispersive Röntgen-Spektroskopie) ist ein Verfahren zur qualitativen und quantitativen Analyse von Feststoffen, bei der eine Substanz mittels Elektronenstrahlen zur Emission von charakteristischen Röntgenstrahlen angeregt wird. In Kombination mit einem Rasterelektronenmikroskop kann so die Abbildung des Kristalls mit der Analyse der Zusammensetzung der Oberfläche kombiniert werden.

Es wurde ein Rasterelektonenmikroskop der Firma LEO verwendet. Angeschlossen ist ein EDX-System zur quantitativen Elementanalyse der Firma OXFORD mit einem SiLi-Detektor. Die Auswertung und Bildverarbeitung erfolgte mit dem Programm LINK ISIS SUITE. Prinzipiell sind Elemente ab der Ordnungszahl Z = 6 analysierbar, da ja doch der Fehler bei

den Elementen der zweiten Periode sehr hoch ist, wurden lediglich die Metalle bestimmt und quantifiziert und das Material auf eine Verunreinigung mit Chloriden untersucht.

Zur Probenvorbereitung wurden die Kristalle mit klebenden Leittabs auf einem Aluminium-Probenträger befestigt und mit Graphit im Vakuum bedampft, um zu verhindern, das Aufladungserscheinungen der nichtleitenden Proben die Messungen verfälschen und die Bildaufnahme stören. Vor den quantitativen Analysen wurden Referenzmessungen mit Co durchgeführt.

4.4 Röntgenfluoreszenz

Das Analyseprinzip der Röntgenfluoreszenz-Messung ähnelt dem des EDX: qualitativ und quantitativ werden auch hier charakteristische Röntgenstrahlen ausgewertet, die von der Probe emittiert wurden. Die Anregung erfolgt allerdings mit Röntgenstrahlung. Daher ist auch das Bedampfen der Probe nicht notwendig, weil Aufladungserscheinungen wie bei der EDX-Analytik infolge des Elektronenbeschusses nicht auftreten können. Die Probenvorbereitung ist somit auf das Befestigen des zu analysierenden Kristalls auf einen geeigneten Träger beschränkt.

Die Messungen wurden mit einem Röntgenfluoreszenz-Spektrometer der Firma RÖNTGENANALYTIK MEßTECHNIK GMBH aufgenommen, die Auswertung erfolgte mit dem Programm VISION 32. Ebenso wie bei der EDX-Analyse sind auch hier Elemente ab Kohlenstoff prinzipiell quantifizierbar, aber aufgrund der hohen Standardabweichungen wurden gleichfalls nur die Metalle quantifiziert und der Chloridgehalt bestimmt.

4.5 UV-Fluoreszenz

Bei der UV-Fluoreszenz werden Proben auf ihre Lumineszenzeigenschaften im UV-VIS-Bereich untersucht. Dazu wird eine Probe mit einer Sequenz monochromatischer Strahlung des ultravioletten und optischen Spektrums bestrahlt und die Emission/Reflexion und ihre Intensität registriert.

Für die Messungen wurde ein Gerät der Firma PERKIN ELMER, für die Auswertung die Software FLWINLAB verwendet.

Literatur zu Kapitel 4:

¹ H. Krischner, B. Koppelhuber-Bitschau, *Röntgenstrukturanalyse und Rietveld-Methode*, Vieweg, Braunschweig, **1994**.

5 Chemischer Transport ternärer Germanate

In diesem Kapitel ist dem chemischen Transport der ternären Germanate gewidmet. Mit Hilfe der hier vorgestellten Experimenten sollen ideale Bedingungen gefunden werden, die dann auf den Chemischen Transport der Systeme quaternärer Germanate übertragen werden.

5.1 Literaturübersicht

5.1.1 Bisherige Arbeiten zum Chemischen Transport von Germanaten

Der Transport der den Germanaten zu Grunde liegenden binären Oxide wurde in der Vergangenheit gründlich untersucht: Mangan(II)-, Eisen(II)-, Cobalt(II, III)-, Nickel(II)-, Kupfer(II)- und Zink(II)-oxid sind mit Chlor^{1,2} und Chlorwasserstoff¹ endotherm ($T_Q > T_S$) transportierbar, ebenso wurde bei Verwendung von HCl^{1,3} und Cl₂^{1,4} die Abscheidung der Sesquioxide M^{III}₂O₃ von Vanadium, Chrom, Mangan, Eisen, Gallium und Indium in der kälteren Zone beobachtet. Bei Verwendung von Chlor ist auch GeO₂ endotherm transportierbar,⁵ mit HCl hingegen findet ein Transport nur in exothermer Richtung statt.⁶ Trotzdem wurden ternären Germanate selbst mit dem Transportmittel HCl stets in der kälteren Zone abgeschieden.^{4c,4f,7}

Über den Transport von Germanaten berichteten erstmals ROYEN und FORWERG, in dem sie die Züchtung der *meta*-Germanate von Mangan, Eisen und Cobalt mit dem Transportmittel NH₄Cl im Temperaturgradienten von 950 °C nach 650 °C beschrieben.⁸ Dabei kristallisierte das Mangan(II)-germanat in der *ortho*-Pyroxen-Struktur, Eisen(II)- und Cobalt(II)-germanat in der *ortho*-Pyroxen-Struktur, Eisen(II)- und Cobalt(II)-germanat in der *klino*-Pyroxenstruktur.⁹ PEREZ Y JORBA *et al.* berichtete über den Transport von Eisen(III)- (Fe₂GeO₅, und Fe₈Ge₃O₁₈, Transportmittel: HCl, TeCl₄)^{7a} und Gallium(III)-germanaten (Ga₂GeO₅ und Ga₄GeO₈, Transportmittel: HCl, I₂/S)^{7b}. Sie beschrieben erstmalig die Struktur von Fe₈Ge₃O₁₈, und klärten die Strukturen von Fe₂GeO₅ (Kyanit), Ga₂GeO₅ (Andalusit) und Ga₄GeO₈ (zwei Modifikationen, α–Tieftemperatur- und β–Hochtemperaturform). Im Arbeitskreis GRUEHN, Gießen, wurde der Transport von Germanaten in den Dissertationen von REDLICH^{4C} und KRUG^{4f} behandelt. Eine Übersicht über die jeweiligen Transportmittel und -ergebnisse ist Tab.5-1 gegeben. Eine erste quarternäre Verbindung im Gebiet der Germanium(IV)-granat (Mn₃Cr₂Ge₃O₁₂).¹⁰

Phase		Transportmittel	Literatur
MgGeO ₃	(ortho-Pyroxen, klino-Pyroxen)	Cl ₂	KRUG ^{4f}
Cr_2GeO_5	(Andalusit)	Cl ₂	KRUG ^{4f}
MnGeO ₄	(ortho-Pyroxen)	NH ₄ Cl	ROYEN, FORWEG ⁸
Fe ₂ GeO ₅	(Kyanit)	Cl ₂ , TeCl ₄	PEREZ Y JORBA <i>et al.</i> ^{7a}
Fe ₈ Ge ₃ O ₁₈		Cl ₂ , TeCl ₄	PEREZ Y JORBA <i>et al.</i> ^{7a}
$Fe_{3,2}Ge_{1,8}O_8$		Cl ₂	KRUG ^{4f}
$Fe_{15}Ge_8O_{36}$		Cl ₂	KRUG ^{4f}
FeGeO ₃	(klino-Pyroxen)	Cl ₂ , HCl, NH ₄ Cl	ROYEN, FORWEG, ⁸ KRUG ^{4f}
Fe ₂ GeO ₄	(Spinell)	Cl ₂ , HCl, NH ₄ Cl	KRUG ^{4f}
CoGeO ₃	(klino-Pyroxen)	Cl ₂ , PtCl ₂ , HCl, NH ₄ Cl	ROYEN, FORWEG, ⁸ KRUG ^{4f}
$Co_2 GeO_4$	(Spinell)	Cl ₂ , PtCl ₂ , HCl, NH ₄ Cl	KRUG ^{4f}
Ni_2GeO_4	(Spinell)	Cl ₂ , HgCl ₂ , NH ₄ Cl	REDLICH ^{4C} , KRUG ^{4f}
$Ni_3Ge_4O_{10}Cl_2$		Cl ₂	KRUG ^{4f}
Zn ₂ GeO ₄	(Phenakit)	Cl ₂	KRUG ^{4f}
Ga ₂ GeO ₅	(Andalusit, Mullit)	HCl, I ₂ /S, Cl ₂	PEREZ Y JORBA et al., ^{7b} REDLICH ^{4C}
Ga ₄ GeO ₈		HCl, I ₂ /S	PEREZ Y JORBA et al. ^{7b}
In ₂ Ge ₇ O ₇	(Thortveitit)	Cl ₂	KRUG ^{4f}

Tab. 5-1: Übersicht zum Transport von Germanaten.

5.1.2 Kristallstrukturen

Die Germanate zeigen eine große Vielfalt bezüglich ihrer Strukturen und Zusammensetzungen. Hier sollen nur die Strukturen beschrieben werden, die bereits zuvor oder in dieser Arbeit durch Chemischen Transport erhalten wurden. Eine Übersicht ist in Tab. 5-2 gegeben. Dabei kristallisieren die Germanate der zweiwertigen Metallkationen, die der Summenformel M^{II}GeO₃ folgen, bevorzugt in einer der drei Pyroxenstrukturen (ortho-Pyroxen, Mg, Mn, Abb. 5-1; klino-Pyroxen, Mg, Fe, Co, Abb. 5-2), CuGeO₃ in einer GeO₄-Kettenstruktur, die als Einerkette bezeichnet wird (Abb. 5-3), und Verbindungen der allgemeinen Zusammensetzung M^{II}₂GeO₄, je nach Kation, als Olivin (Mg, Mn), Spinell (Fe, Co, Ni, Abb. 5-4) oder Phenakit (Zn, Abb. 5-5). Die Strukturen der bisher erfolgreich transportierten Germanate dreiwertiger Kationen zeigen eine sehr viel größere Vielfalt. Die Germanate der Zusammensetzung M^{III}₂GeO₅ kristallisieren in der Andalusit- (Cr, Ga) oder Kyanitstruktur (Fe). Für M^{III}₂Ge₂O₇ ist die Thortveitit-Struktur bei In₂Ge₂O₇ bekannt, nicht aber für Mn₂Ge₂O₇ und Ga₂Ge₂O₇. Daneben existieren noch eigene Struktur-Typen für V₃GeO₇, Fe₈Ge₃O₁₈ und Ga₄GeO₈.

Abb. 5-1: Struktur von MnGeO₃ (*ortho*-Pyroxen).

Abb. 5-2: Struktur von FeGeO₃ bzw. CoGeO₃ (*klino*-Pyroxen).

Abb. 5-3: Struktur von CuGeO₃ (Einerkette).

Abb. 5-4: Struktur von Fe_2GeO_4 , Co_2GeO_4 , Ni_2GeO_4 (Spinell).

Abb. 5-5: Struktur von Zn_2GeO_4 (Phenakit).

Verbindung	Struktur-Typ Raumgruppe	<i>a</i> (pm) a	<i>b</i> (pm) b	c (pm) g	$V(\cdot 10^6\mathrm{pm}^3)$	Literatur
MgGeO ₃	ortho-Pyroxen Pbca	1881,0	894,8	534,5	14393,6	11
	klino-Pyroxen C2/c	960,1	893,2 101,0	515,9	1736,8	11
V ₃ GeO ₇		572 91,9	704 94,1	1288 109,7	1944,4	12
Cr ₂ GeO ₅	Andalusit	744,2 90,6	824,4 101,1	581,5 106,0	1339,2	13
MnGeO ₃	ortho-Pyroxen Pcba	1929	925	548	15644,8	14
Mn ₂ Ge ₂ O ₇	P21	523,9	927,2 96,7	1432,5	4146,6	15
FeGeO ₃	<i>klino-</i> Pyroxen C2/c	979,3	914,5 101,85	519,5	1820,8	16
Fe ₂ GeO ₄	Spinell Fd3m	840,8			1188,8	17
$Fe_{3,2}Ge_{1,8}O_8$	P2/c	849,0	834,0 117,83	929,9	2306,4	18
Fe ₈ Ge ₃ O ₁₈	P2/c	875,4 (4)	511,0 (4) 101,8	1428,0	1250,4	7a
Fe ₂ GeO ₅	Kyanit P-1	751,8 90,4	835,4 101,2	591,7 106,0	1398,8	7a
CoGeO ₃	klino-Pyroxen C2/c	967	900 101,4	517	1764	19
Co ₂ GeO ₄	Spinell Fd3m	831,8			1150,4	20
Ni ₂ GeO ₄	Spinell Fd3m	822,1			1111,2	21
CuGeO ₃	Pbmm	480,2	847,1	294,3	239,4	22
Zn ₂ GeO ₄	Phenakit R-3	1428,4		954,7	10027,8	23
Ga ₂ GeO ₅	Andalusit	812,9	829,4	581,8	1568,8	24
Ga ₄ GeO ₈	α-Modifikation C2/m	1217,6	300,7 125,1	941,8	282,2	24
	β - Modifikation P2 ₁	901,0	822,8 116,7	826,2	547,3	25
Ga ₂ Ge ₂ O ₇		785,6	801,9	301,3	284,7	26
In ₂ Ge ₂ O ₇	Thortveitit C2/m	665,8	878,4 102,5	492,7	281,2	27

Tab. 5-2: Übersicht über die Strukturen der durch Chemischen Transport dargestellten ternären Germanate.

5.1.3 Thermodynamische Daten

In der Literatur gibt es nur wenige thermodynamische Daten zu den Germanaten. Die wichtigsten Arbeiten stammen von NAVROTSKY.^{28a-c} In Tab. 5-3 sind die thermodynamischen Daten der Substanzen aufgeführt, die für die Modellrechnungen in dieser Arbeit verwendet wurden.

	Tab.	5-3:	Thermody	ynamische	Daten der	am Chem	ischen Trar	sport bete	eiligten	Substanzen.
--	------	------	----------	-----------	-----------	---------	-------------	------------	----------	-------------

Substanz	Т	ΔH^0_{um}	$\Delta H^0{}_{ m B}$	ΔS^0_{um}	$S^0_{\ B}$	$c_p = a +$	$-b \cdot 10^{-3} T + c$	$\cdot 10^5 T^{-2}$	Literatur
	(K)	(kJ/mol)	(kJ/mol)	(J/K·mol)	(J/K·mol)		$(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1})$		
						а	b	с	
Cl, g	298		121,29		165,18	21,80	0	0	29
Cl ₂ , g	298		0		233,08	36,61	1,80	-2,72	29
Co, s	298				30,00	19,13	20,47	-46,80	29
Co, s	700	0,40	11,70	0,70	54,30	4,47	29,99	2,52	29
Co, 1	1768	16,20	70,20	9,20	99,30	40,50			29
Co, g	298		426,70		179,50	23,05			29
Co ₂ Cl ₄ , g	298		-350,60		450,40	127,40			29
Co ₂ GeO ₄ ,	1363		-1187,06		128,20	146,54			28
Co ₃ O ₄ , s	298		-918,70		109,30	131,65	66,02	-24,8	29
CoCl, g									29
CoCl ₂ , s	298		-312,50		109,30	81,58	7,41	-4,70	29
CoCl ₂ , l	994	44,00	-209,60	44,20	254,50	96,23			29
CoCl ₂ , g	298		-93,70		298,50	60,73	2,82	-0,17	29
CoCl ₃ , g	298		334,20		87,61	-2,00	-0,96		29
CoGeO ₃ , s	1363		-815,00		107,95	117,23	18,42	-15,91	28
CoO, s	298		-237,70		53,00	45,26	10,69	6,00	29
Cr, s	298		0		23,60	24,51	2,05	-1,80	29
Cr ₂ O ₃ , s	298		-1140,60		81,20	109,65	15,46		29
CrCl ₂ , s	298		-395,40		115,30	71,36	13,00	-5,30	29
CrCl ₂ , l	1088	46,90	-286,30	43,00	258,20	100,42			29
CrCl ₂ , g	298		-136,30		308,00	61,12	1,36	-3,40	29
CrCl ₃ , s	298		-556,50		123,00	98,83	13,98	-10,00	29
CrCl ₃ , g	298		-352,20		317,70	83,35	3,16	-7,40	29
CrCl ₄ , g	298		-426,80		364,40	106,43	131,00	-9,50	29
CrO, g	298		188,30		239,30	35,42	1,41	-4,00	29
CrO ₂ , s	298		-597,90		51,00	99,70			29
CrO ₂ , g	298		75,30		269,20	52,84	2,75	-0,91	29

Substanz	Т	$\Delta H^0_{ m um}$	$\Delta H^0{}_{ m B}$	ΔS^{0}_{um}	$S^0_{\ B}$	$c_p = a +$	$-b \cdot 10^{-3} T + c$	$\cdot 10^5 T^{-2}$	Literatur
	(K)	(kJ/mol)	(kJ/mol)	(J/K·mol)	(J/K·mol)		$(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1})$		
						а	b	с	
CrO ₃ , s	298		-587,00		73,20	71,76	87,87	-16,70	29
CrO ₃ , g	298		-292,90		266,20	75,71	3,84	-18,50	29
CrO ₂ Cl ₂ , l	298		-579,50		221,8	156,90			29
CrO ₂ Cl ₂ , g	298		-538,60		329,00	105,31	1,33	-22,10	29
Cr ₂ GeO ₅	298		-1719,62		136,19	188,28	18,83	33,47	4f
Fe, s	298		0		27,28	14,95	28,08	1,55	29
Fe, s	800	0	15,57	0	56,88	26,44	20,68	0	29
Fe, s	1184	0,90	34,50	0,76	75,95	23,99	8,36	0	29
Fe ₂ Cl ₄ , g	298		-431,37		464,49	130,87	2,70	-5,15	29
Fe ₂ Cl ₆ , g	298		-660,49		537,13	182,54	0,24	-7,95	29
Fe ₂ GeO ₄ , s	298		-1068,45		792,35	552,71			30
Fe ₂ O ₃ , s	298		-823,41		87,45	98,28	77,82	-14,85	29
Fe ₂ O ₃ , s	950	0,67	-730,44	0,71	245,24	150,60	0	0	29
Fe ₂ O ₃ , s	1050	0	-715,38	0	260,31	132,67	7,36	0	29
Fe ₃ O ₄ , s	298		-1120,90		145,30	91,55	201,67	0	29
FeCl, g	298		251,04		257,58	40,39	-0,23	-1,88	29
FeCl ₂ , l	950	42,97	-244,55	45,23	258,24	102,09	0	0	29
FeCl ₂ , g	1293	68,66	-140,88	9,58	299,28	59,95	2,98	-2,89	29
FeCl ₂ , s	298		-341,62		117,95	78,26	9,95	-4,18	29
FeCl ₃ , s	298		-399,24		147,82	74,59	78,27	-0,88	29
FeCl ₃ , l	577	43,10	-325,93	74,69	293,22	133,89	0	0	29
FeCl ₃ , g	604	92,93	-229,39	107,58	400,80	82,88	0,159	-4,64	29
FeO, s	298		251,00		241,90	31,40	0	0	29
FeOCl, g	298		-408,36		76,57	69,04	26,82	0	29
Ge, s	298		0		31,09	23,35	3,90	-1,05	29
Ge, l	1210	36,94	60,65	30,53	97,33	27,61	0	0	29
GeCl, g	298		73,03		245,86	43,18	-2,23	-4,94	29
GeCl ₂ , g	298		-171,00		295,72	57,85	0,22	-3,68	29
GeCl ₃ , g	298		-320,85		335,09	82,72	0,26	-5,82	29
GeCl ₄ , l	298		-531,80		245,60	156,90	0	0	29
GeCl ₄ , g	298	32,62	-490,10	91,63	365,05	106,79	0,83	-9,87	29
GeO, g	298		-46,02		223,95	37,36	0,10	-5,73	29
GeO ₂ , s	298		-539,68		48,15	46,89	30,02		28
GeO ₂ , s	1306	21,77	-484,55	6,86	157,44	68,91	9,88	-17,70	28
H ₂ , g	298		0		130,58				29
H ₂ O, 1	298		-285,83		69,95	20,36	109,20	2,33	29

Substanz	Т	ΔH^0_{um}	$\Delta H^0{}_{ m B}$	ΔS^{0}_{um}	$S^0_{\ B}$	$c_p = a +$	$b \cdot 10^{-3} T + c$	$10^5 T^{-2}$	Literatur
	(K)	(kJ/mol)	(kJ/mol)	(J/K·mol)	(J/K·mol)		$(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1})$)	
						а	b	С	
H_2O, g	298		-241,86		188,82	34,38	7,84	-4,23	29
HCl, g	298		-92,31		186,90	26,53	4,60	1,09	29
Mn, s	298		0		32,01	25,19	12,75	-3,26	29
Mn, s	980	2,23	24,21	2,28	71,28	33,38	4,27	0	29
Mn ₂ Cl ₄ , g	298		-688,00		445,70	127,00	0	0	29
Mn ₂ GeO ₄	1363		1026,10		574,00	146,44			30
MnCl ₂ , s	298		-481,29		118,24	73,80	15,23	-4,73	29
MnCl ₂ , l	923	37,70	-392,74	40,84	249,61	94,37	0	0	29
MnCl ₂ , g	1509	147,36	-190,12	97,65	393,62	61,58	0,48	-4,10	29
MnO, s	298		-382,54		58,99	46,48	8,12	-3,68	29
Ni, s	298		0		29,90	19,36	22,46	0,20	29
Ni, l	1728	17,40	65,00	10,10	38,10				29
Ni, g	298		430,10		182,24	26,77	-2,04	-2,90	29
Ni ₂ Cl ₄ , g	298		-292,64		454,62	127,00			29
Ni ₂ GeO ₄ , s	1363		-1076,42		138,79	184,72	28,05	-36,43	28
NiCl ₂ , g	298		-73,85		294,02	58,10			29
NiO, s	298		-239,70		38,00	-6,32	131,24	10,20	29
NiO, g	298		309,60		241,40	39,82	1,54	-0,57	29
O, g	298		249,20		161,10	21,00	-0,25	0,88	29
O ₂ , g	298		0		205,15	29,15	6,48	-1,84	29
Zn, s	298		0		41,63	21,33	11,65	0,54	29
Zn, l	693	7,32	18,13	10,57	75,04	31,38			29
Zn, g	1179	115,37	148,75	97,85	189,56	20,79			29
Zn ₂ Cl ₄ , g	555	-107,90	-642,55	128,86	419,30	122,17			29
ZnO, s	298		-350,46		43,64	45,34	7,29	-5,73	29
$ZnCl_2$, s	298		-415,05		111,46	59,83	37,66		29
$ZnCl_2$, l	591	10,36	-382,27	17,53	180,96	100,83			29
ZnCl ₂ , g	1004	115,89	-224,74	115,42	349,82	61,71		-4,31	29
Zn_2GeO_4	1363		-1078,07		516,32				28

5.2 Chemischer Transport

Im Folgenden werden eigene Arbeiten zum Transport ternärer Germanate vorgestellt und erläutert, die als Vorbereitung für quarternäre Systeme aus Oxiden zwei- bzw. dreiwertiger 3d-Metalle (V – Zn) sowie der Hauptgruppenmetalle Ga und In durchgeführt wurden. Das Ziel dieser Experimente war die Bestimmung geeigneter Transportbedingungen für die weiteren Versuche zum Chemischen Transport quarternärer Germanate.

5.2.1 Chemischer Transport von Germanaten mit zweiwertigen Kationen

Tab. 5-4 zeigt eine Übersicht über die Transportbedingungen und -ergebnisse. Einführend einige Bemerkungen zu den Tabellen dieses Kapitels:

Die Spalten 2 bis 4 sind mehrzeilig angelegt. Die zweite Spalte (ABK) beschreibt Art und Zusammensetzung des Ausgangsbodenkörpers. Dabei ist in der ersten Zeile die Menge der Oxide verzeichnet, in der zweiten die Art der eingesetzten Oxide. Aus der nächsten Spalte erfährt man die genauen Bedingungen des Transportexperiments, und zwar Transportmittel und –menge, Transporttemperaturen sowie Transportdauer. In der vierten Spalte, SBK, sind die analytischen Ergebnisse verzeichnet (Phase, Zusammensetzung nach EDX/RFA, Transportrate), in der nächsten können die Gitterkonstanten des Senkenbodenkörpers abgelesen werden. Die letzten Spalte listet Kristallfarbe und weitere Bemerkungen auf.

5.2.1.1 MnO/GeO2

Ein erfolgreicher Transport war im System MnO/GeO₂ nur mit den Transportmitteln HCl und NH₄Cl möglich, wobei bei dem Transport mit Ammoniumchlorid ein starker Quarzangriff beobachtet wurde. Es wurde stets MnGeO₃ abgeschieden. Chlor bewirkte eine Oxidation des Oxids und Abscheidung von Braunstein (MnO₂) an der Senkenseite. Bei höheren Transporttemperaturen wurde mit vergleichsweise hohen Abscheidungsraten ein Material erhalten, dass im Pulverdiffraktogramm und mittels EDX bzw. RFA als MnGeO₃ identifiziert werden konnte, aber aufgrund seiner schlechten Kristallqualität nicht indizierbar war. Die besten Ergebnisse wurden mit dem Transportmittel HCl bei $T_Q = 900$ °C und $T_S = 700$ °C erzielt. Die Beobachtung, dass das *ortho*-Germanat über Transports von Mn₂GeO₄ ist mit einer Abscheidung von MnO und MnCl₂ und einem vollständigen Verbleib von GeO₂ an der

Quellenseite zu rechnen. Diese Ergebnisse wurden mit dem Programm CVTrans erhalten. Auf eine detaillierte Diskussion dieser Rechnungen wird im Rahmen dieser Arbeit verzichtet.

5.2.1.2FeO/GeO₂

Im System FeO/GeO₂ konnte in Abhängigkeit vom Fe/Ge-Verhältniss im ABK sowohl das *meta*- als auch das *ortho*-Germanat (FeGeO₃, braune Nadeln, Fe₂GeO₄, dunkle Oktaeder) gefunden werden. Dazu wurde HCl als Transportmittel und ein Temperaturgradient von $T_Q/T_S = 900/700$ °C verwendet. Simulationen mit CVTrans sagen voraus, dass ein Transport von Fe₂GeO₄ bei den gewählten Temperaturen mit HCl nicht möglich sein sollte, sondern vielmehr im umgekehrten Transportgradienten stattfinden sollte. Dieser Unterschied zwischen Rechnung und Experiment kann, setzt man die Eignung der Rechenmethode nach GMin voraus, nur auf die von KÖTHER und MÜLLER³⁰ bestimmte Bildungsenthalpie von Fe₂GeO₄ aus den Oxiden FeO und GeO₂ zurückgeführt werden. Da die Transportreaktion von Germanium(IV)-oxid bei Verwendung von HCl als Transportmittel exotherm ist, wird die Abscheidung an der heißeren Stelle der Ampulle deshalb vorhergesagt, weil der Wert für ΔH^0_B (Fe₂GeO₄) zu gering ist. Tatsächlich muss das ortho-Eisen(II)-germanat also eine deutlich exothermere Verbindung sein als bislang angenommen.

5.2.1.3 Co₃O₄/GeO₂

Die Darstellung der Cobaltgermanate CoGeO₃ und Co₂GeO₄ wurde sehr intensiv untersucht, da diese Verbindungen als Standard für die Untersuchungen zum Transport quarternärer Germanate der zweiwertigen 3d-Metallkationen verwendet werden sollten. Daher war es von besonderer Bedeutung, gezielt entweder das *meta*- oder das *ortho*-Germanat abscheiden zu können. Die Experimente zeigten, dass entscheidend dafür weniger die Transporttemperaturen waren, sondern das Verhältnis von Co zu Ge im Ausgangsbodenkörper: äquimolare Mischungen führten zu einer CoGeO₃-Bildung, während schon ein geringer Überschuss an Cobalt(II, III)-oxid zur ausschließlichen Abscheidung von Co₂GeO₄ führt. Dabei führt sowohl der Transport von $T_Q = 900$ °C nach $T_S = 700$ °C als auch $T_Q = 1000$ °C nach $T_S = 900$ °C zu gleichermaßen guten Ergebnissen in Bezug auf Transportrate, Reinheit und Kristallqualität. Es wurden dunkle lila-farbene Nadeln mit einer Länge von bis zu 2 mm (CoGeO₃) bzw. oktaedrische Kristalle von bis zu 2 mm Durchmesser gleicher Farbe (Co₂GeO₄) gefunden (s. Abb. 5-6). Auch bei höheren Transporttemperaturen (1100/1000 °C, 1050/950 °C) wurden vergleichbare Transportergebnisse erzielt, ebenso bei der Verwendung von Chlor anstelle von HCl (850/750 °C).

Abb. 5-6: Durch Chemischen Transport dargestelltes CoGeO₃ (links), Co₂GeO₄ (rechts).

Insgesamt ist die Bildung der Cobaltgermanate nicht von einer spezifischen Kombination von Transportmittel und Transportgradienten abhängig. Wird Chlor als Transportmittel verwendet, ist die Transportrichtung eindeutig: Sowohl Cobaltoxid als auch Germanaiumoxid werden unter diesen Bedingungen endotherm transportiert. Im Fall des HCl muss die Frage nach der Transportrichtung genauer betrachtet werden, da Cobalt(II)-oxid zwar endotherm, GeO₂ mit diesem Transportmittel aber exotherm transportiert wird. Eine thermodynamische Erörterung soll Aufschluss geben. Die zu berücksichtigenden Gleichgewichte müssen noch um eine weitere Komponente erweitert werden, da sich die gebildeten Chloride aus der Gasphase in Form von Germanaten und nicht als binäre Oxide abscheiden. In diesen Germanaten ist die Aktivität der Oxide verringert. Die Reaktionen sind daher folgendermaßen zu formulieren:

$$CoO(Co_2GeO_4)_s + 4 HCl_g \rightarrow 2 CoCl_{2,g} + 2 H_2O_g$$
 Gl. 5-1

$$GeO_2(Co_2GeO_4)_s + 4 HCl_g \rightarrow GeCl_{4,g} + 2 H_2O_g$$
Gl. 5-2

und:

 $CoO(CoGeO_3)_s + 2 HCl_g \rightarrow CoCl_{2,g} + H_2O_g$ Gl. 5-3

$$GeO_2(CoGeO_3)_s + 4 HCl_g \longrightarrow GeCl_{4, g} + 2 H_2O_g$$
Gl. 5-4
Die Bildung der Cobaltgermanate aus den Oxiden ist deutlich exotherm, die Reaktionsenthalpien wurden für das *meta*-Germanate mit -30,98 kJ·mol⁻¹ und für das *ortho*-Germanat mit -171,96 kJ·mol⁻¹ bestimmt.^{28a} Für eine sehr vereinfachte Rechnung, mit der man sich eine nur grobe Vorstellung über die Reaktionsenthalpie und Transportrichtung machen kann, werden die Gleichungen 5-1 und 5-2 sowie 5-3 und 5-4 jeweils zusammengefasst und vereinfacht:

$$Co_2 GeO_{4,s} + 8 HCl_g \rightarrow 2 CoCl_{2,g} + GeCl_{4,g} + 4 H_2O_g \qquad \Delta H^0_R = 262,27 \text{ kJ} \cdot \text{mol}^{-1} \qquad \text{Gl. 5-5}$$

$$CoGeO_{3,s} + 6 HCl_g \rightarrow CoCl_{2,g} + GeCl_{4,g} + 3 H_2O_g \qquad \Delta H^0_R = 39,17 \text{ kJ} \cdot \text{mol}^{-1} \qquad \text{Gl. 5-6}$$

Erwartungsgemäß werden für die Gesamtreaktionen positive Enthalpien gefunden.

Abb. 5-7: Partialdruckkurven, *links*: Transport von Co₂GeO₄, Transportmittel: HCl, *rechts*: Transport von CoGeO₃, Transportmittel: HCl.

Im Ausgangsbodenkörper wurde anstelle des zweiwertigen Cobalt(II)-oxides das gemischtvalente Co_3O_4 eingesetzt. Obwohl, wie KLEINERT^{1e} beschrieben hat, für dieses Oxid im Temperaturgradienten 900/700 °C ein Transportverlauf ohne Zersetzung gefunden wird, erhält man beim gemeinsamen Transport mit Germanium(IV)-oxid die ternären Verbindungen mit ausschließlich zweiwertigem Cobalt, das Cobalt(II, III)-oxid hingegen wird weder im Quellenbodenkörper noch auf der Senkenseite gefunden. Diese Beobachtung kann ebenfalls mit Hilfe thermodynamischer Rechnungen erklärt werden. Darin findet sich ein außergewöhnlich hoher O₂-Druck, obwohl HCl als nicht oxidierendes Transportmittel keine nennenswerte Sauerstoffbildung erwarten lässt, sowie eine beachtliche Menge an Chlor (s. Abb. 5-7).

Betrachtet man die Partialdruckkurven genauer, fällt auf, dass für den Transport von Co_2GeO_4 das berechnete Verhältnis von $GeCl_{4, g}$: $CoCl_{2, g}$ etwa 1 : 2 beträgt. Damit kann die postulierte Reaktionsgleichung Gl. 5-5 für dieses System als geeignete Vereinfachung angenommen werden. Im System CoGeO₃ ist das mit CVTrans berechnete Verhältnis der beiden Chloride nicht wie in Gl. 5-6 vorgeschlagen 1 : 1, die berechneten Partialdrücke liegen in Abhängigkeit von der Temperatur um eine bis vier Zehnerpotenzen auseinander. Hier entspricht die vereinfachte Rechnung der Realität also sehr viel weniger.

5.2.1.4 NiO/GeO₂

Abb. 5-9: Durch Chemischen Transport dargestelltes Ni₂GeO₄.

Nickelgermanat Ni₂GeO₄ kann sowohl mit HCl als auch mit Chlor als Transportmittel in Form von grünen oktaedrischen Kristallen geringer Größe (< 0,5 mm Durchmesser) abgeschieden werden (s. Abb. 5-9). Ammoniumchlorid eignet sich nicht als Transportmittel, da neben Nickeloxid metallisches Nickel und SiO₂, aber kein Germanat gefunden wird. Die Simulation mit CVTrans ergab einen Transport von Ni und NiO. Bei niedrigeren Transporttemperaturen ($T_m = 750$ °C) und äquimolaren Mengen an Nickeloxid und Germaniumoxid im Ausgangsbodenkörper (ABK) wird neben Ni₂GeO₄ eine Phase gefunden, die in ihrer mit RFA bestimmten Zusammensetzung (mol% (Ni/Ge/Cl): 33/47/19) als Oxidchlorid identifiziert werden kann. Das Pulverdiffraktogramm und die Zusammensetzung ähnelt dem von KRUG^{4f} beschriebenen Ni₃Ge₄O₁₀Cl₂ (Verhältnis Ni/Ge/Cl nach Elementaranalysen 33/44/22)^{4f}. Einkristalluntersuchungen zur exakten Analyse konnten aufgrund der schlechten Kristallqualität nicht durchgeführt werden.

5.2.1.5 CuO/GeO₂

Der Transport der Kupfergermanate stellte sich als eine präparative Herausforderung dar: Weder exotherm noch endotherm waren CuO und GeO₂ gemeinsam transportierbar. Kupfer(II)-oxid lässt sich mit ausgezeichneten Transportraten in endothermer Richtung mit HCl, Cl₂ und NH₄Cl transportieren,^{1g-i} Germanium(VI)-oxid hingegen in diese Richtung nur mit Chlor und bei wesentlich geringeren Transportraten; der Transport mit HCl verläuft hingegen von der kälteren in die heißere Zone. Um eine Reduktion zum Cu₂O auszuschliessen, wurde auf den Transport mit NH₄Cl und HCl verzichtet. Mit Chlor führt ein Transport in Abhängigkeit vom Transportmitteldruck zu unterschiedlichen Ergebnissen: Bei einer Menge von 0,5 mmol Cl₂ (250 mbar bei RT) wird größtenteils CuCl₂ gebildet, CuO entsteht nur in geringen Mengen, wohingegen GeO₂ auf der Quellenseite verbleibt. Verwendet man geringere Mengen Transportmittel, hier 0,125 mmol (entspricht etwa einem Viertel der üblicherweise verwendeteten Transportmittelmenge), um die Chloridabscheidung zu vermeiden, bleibt der Transport gänzlich aus.

Abb. 5-9: Skizze des Drei-Zonen-Transports.

Bei niedrigeren Transporttemperaturen (935/900 °C) verhindert man die Abscheidung von $CuCl_2$, aber auch hier konnte kein Transport von GeO_2 bzw. $CuGeO_3$ beobachtet werden. Auch bei Verwendung von Iod/Schwefel als Transportmittel wird kein Transport beobachtet. Deshalb wurde ein "Drei-Zonen-Transport" durchgeführt. Hierfür werden Kupfer(II)-oxid und Germanium(IV)-oxid getrennt voneinander an den Enden einer Ampulle eingeschmolzen und in die mittlere Zone transportiert (s. Abb. 5-9), dabei kann jeweils ein anderer

Transportgradient angelegt werden. Als Transportmittel wurde der leichteren Dosierbarkeit wegen HgCl₂ verwendet, das sich im Transportverhalten von Chlor nicht sehr unterscheidet. Auch dieser Versuch führte nicht zu dem erwünschten Ergebnis. Anstelle einer gemeinsamen Abscheidung aller Oxide und der Bildung des Germanats in die Mittelzone wurde wiederum nur CuO transportiert. Das Kupfer(II)-oxid wurde bis in die Heizzone 1, in der GeO₂ als Ausgangsbodenkörper vorlag, transportiert. Hier konnte CuGeO₃ gefunden werden. Dieser – über den gesamten Temperaturverlauf betrachtet – exotherme Transport ($T_{\text{Heizzone 3}} = 900$ °C, $T_{\text{Heizzone 1}} = 950$ °C) kann mit einer geringen Bildungsenthalpie des Germanats erklärt werden, so dass die Tendenz des GeO₂, exotherm transportiert zu werden, überwiegt.

5.2.1.6 ZnO/GeO2

Im Fall des Transports von Zink(II)-oxid mit Germanium(IV)-oxid ist bei den gegebenen Druck- und Temperaturverhältnissen lediglich mit der Bildung von Zn_2GeO_4 zu rechnen. Mit Hilfe der thermodynamischen Rechnungen konnten ein erfolgreicher Transport sowohl bei Verwendung von HCl als auch Cl₂ vorhergesagt und anschließend im Experiment bestätigt werden; die höheren Transportraten wurden dabei mit Chlorwasserstoff erzielt. Das Zinkgermanat kristallisiert in Form von gut ausgebildeten hexagonaler Nadeln und einer Länge von bis zu 2 mm (s. Abb. 5-10).

Abb. 5-10: Durch Chemischen Transport dargestelltes Zinkgermanat (Zn₂GeO₄).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, n (mmol)		(pm)	Bemerkung
		$T_{\rm Q}/T_{\rm S}(^{\circ}{\rm C})$	Zusammensetzung (mol%)		
		Trdauer (h)	Transportrate (mg·h ⁻¹)		
1	MnO/GeO_2	Cl ₂ , 0,5	MnO_2		Nadeln und Pulver,
	4/4	1050/950	100/0		braun
		157	0,1		
2	MnO/GeO_2	HCl, 0,5	MnGeO ₃	<i>a</i> : 1924(5)	unregelmäßig geformte
	3/3	900/700	50/50	<i>b</i> : 936(25)	Kristalle und Nadeln,
		160	0,1	<i>c</i> : 539(10)	braun, < 0,5mm
3	MnO/GeO_2	HCl, 0,5	MnGeO ₃	Indizierung nicht	dunkler Kristall;
	6/3	1050/950	53/47	möglich	Indizierung nicht
		168	0,3		moglich
4	MnO/GeO_2	$NH_4Cl, 0,5$	MnGeO ₃	a: 1923,7(8)	starker Quarzangriff;
	4/4	1050/950	51/49	<i>b</i> : 936,8(7)	Nadeln, braun,
		157	0,1	<i>c</i> : 538,8(8)	< 0,5mm
5	FeO/GeO ₂	HCl, 0,5	FeGeO ₃	a: 981,0(6)	braune Kristalle,
	3/3	900/700	42/58	<i>b</i> : 910,6(7), β =101,8°	oktaedrisch, 1mm,
		165	2,6	<i>c</i> : 520,0(5)	beigfarbener Belag
6	FeO/GeO_2	HCl, 0,5	Fe_2GeO_4	<i>a</i> : 843.9(4)	schwarze Kristalle,
	6/3	900/700	62/38		oktaedrisch, 1-2 mm,
		229,5	0,7		weißer Belag
7	Co ₃ O ₄ /GeO ₂	HCl, 0,5	CoGeO ₃	<i>a</i> : 964,2(9)	Plättchen, tieflila,
	1/3	1000/900	42/58	<i>b</i> : 896,5(7), β =101,6°	3*1,5 mm
		188,5	0,6	<i>c</i> : 515,7(5)	
8	Co ₃ O ₄ /GeO ₂	HCl, 0,5	$Co_2GeO_4?$	<i>a</i> : 832.1(5)	oktaedrische Kristalle
	1,25/3	1000/900	66/34		tieflila, 1 mm
		188,5	0,5		
9	Co_3O_4/GeO_2	HCl, 0,5	Co_2GeO_4	<i>a</i> : 831.5(3)	oktaedrische Kristalle
	1,5/3	1000/900	70/30		tieflila, 2 mm
		188,5	0,9		
10	Co_3O_4/GeO_2	HCl, 0,5	Co_2GeO_4	<i>a</i> : 831.1(3)	oktaedrische Kristalle
	1,75/3	1000/900	67/33		tieflila, 2 mm
		188,5	0,6		
11	Co_3O_4/GeO_2	HCl, 0,5	Co_2GeO_4	<i>a</i> : 831.6(3)	oktaedrische Kristalle
	2/3	1000/900	65/35		tieflila, 2 mm
		188,5	0,3		
12	Co_3O_4/GeO_2	HCl, 0,5	CoGeO ₃	<i>a</i> : 968,0(9)	Plättchen, tieflila,
	1/3	900/700	0/40/60	$b: 900,3(4), \beta=101,5^{\circ}$	3*1,5 mm
		108	1,5	c: 517, 6(3)	
13	Co ₃ O ₄ /GeO ₂	HCl, 0,5	CoGeO ₃	<i>a</i> : 968,0(5)	Plättchen, tieflila,
	1/3	900/700	42/58	<i>b</i> : 900,2(4), β =101,4°	< 1mm
		100,5	0,7	c: 517,4(21)	
14	Co_3O_4/GeO_2	HCl, 0,5	CoGeO ₃	<i>a</i> : 968,9(8)	Plättchen, tieflila,
	1/3	900//00	0.7	<i>b</i> : 900,0(4), β =101,5°	3*1,5 mm
		100	0,7	<i>c</i> : 517,9(0)	
15	Co_3O_4/GeO_2	HCl, 0,5	$Co_2 GeO_4$	<i>a</i> : 831.8(3)	oktaedrische Kristalle
	1,23/3	188 5	04/30 N 9		uenna, < 0,5 mm
		100,0	0,2		

 Tab. 5-4:
 Versuchsbedingungen und Ergebnisse zum Chemischen Transport ternärer Germanate mit zweiwertigem Kation.

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol)	Trmittel, n (mmol) T_Q/T_S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
16	Co ₃ O ₄ /GeO ₂ 1,5/3	HCl, 0,5 900/700 188,5	Co ₂ GeO ₄ 57/42 0,7	<i>a</i> : 830.7(4)	oktaedrische Kristalle tieflila, < 0,5 mm
17	Co ₃ O ₄ /GeO ₂ 1,75/3	HCl, 0,5 900/700 188,5	Co ₂ GeO ₄ 64/36 0,5	a: 832.6(5)	oktaedrische Kristalle tieflila, < 1 mm
18	Co ₃ O ₄ /GeO ₂ 2/3	HCl, 0,5 900/700 188,5	Co ₂ GeO ₄ 60/40 0,3	<i>a</i> : 831.7(4)	oktaedrische Kristalle tieflila, 2 mm
19	Co ₃ O ₄ /GeO ₂ 2/3	HCl, 0,5 900/700 229,5	Co ₂ GeO ₄ 0/62/37 0,5	<i>a</i> : 830.7(4)	oktaedrische Kristalle tieflila, 2 mm
20	Co ₃ O ₄ /GeO ₂ 2/3	HCl, 0,5 1100/1000 160	Co ₂ GeO ₄ 62/37 0,4	a: 830.7(5)	oktaedrische Kristalle tieflila, 2 mm
21	Co ₃ O ₄ /GeO ₂ 2/3	HCl, 0,5 1050/950 168	Co ₂ GeO ₄ 60/40 0,3	<i>a</i> : 831.8(5)	oktaedrische Kristalle tieflila, 2 mm
22	Co ₃ O ₄ /GeO ₂ 2/3	Cl ₂ , 0,5 850/750 172,25	Co ₂ GeO ₄ 55/45 0,7	<i>a</i> : 831.1(6)	oktaedrische Kristalle tieflila, 2 mm
23	Co ₃ O ₄ /GeO ₂ 2/6	HCl, 0,5 900/700 174	CoGeO ₃ 55/45 0,3	<i>a</i> : 967,5(7) <i>b</i> : 898,6(8), β: 101,8° <i>c</i> : 520,0(6)	Plättchen, tieflila, < 1 mm
24	NiO/GeO ₂ 3/3	HCl, 0,5 1000/900 165	Ni ₂ GeO ₄ 62/38 0,3	<i>a</i> : 822.4(7)	oktaedrische Kristalle, grün, < 0,5 mm
25	NiO/GeO ₂ 3/3	HCl, 0,5 900/700 168	Ni ₂ GeO ₄ 67/33 0,2	<i>a</i> : 822,7(5)	oktaedrische Kristalle, grün, < 0,5 mm
26	NiO/GeO ₂ 3/3	HCl, 0,5 800/700 187,5	(Ni ₃ Ge ₄ O ₁₀ Cl ₂), Ni ₂ GeO ₄ 33/47/19 _{Cl} , 68/32 0,6	Ni ₂ GeO ₄ a: 823,5(8)	2 Kristallisationszonen: 1. gelbe Kristalle, 2. grüne oktaedrische Kristalle , < 0,5 mm
27	NiO/GeO ₂ 6/3	Cl ₂ , 0,5 1050/900 168	Ni ₂ GeO ₄ 69/31 0,7	<i>a</i> : 822,7(5)	oktaedrische Kristalle, grün, < 0,5 mm
28	NiO/GeO ₂ 2/4	NH ₄ Cl, 0,5 900/750 168,5	NiO, Ni, SiO ₂ 100/0, 100/0, 0/0/100 _{Si} 1,8		metallische hexagonale Kristalle (Ni), dünne farblose Nadeln (SiO ₂); starker Quarzangriff
29	CuO/GeO ₂ 4/4	Cl ₂ , 0,5 1100/900 120	CuCl ₂ , CuO 40/0/60 _{Cl} 100/0 <i>quantitativ</i>		
30	CuO/GeO ₂ 4/4	Cl ₂ , 0,125 1100/900 120	kein Transport		
31	CuO/GeO ₂ 4/4	Cl ₂ , 0,5 935/900 120	CuO 96/0/4 _{Cl} , 94/0/4 _{Cl} quantitativ		

Exp.	ABK n (mmol)	Transportbedingungen: Trmittel, n (mmol) T_Q/T_S (°C) Trdauer (h)	SBK Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	Gitterkonstanten (pm)	Kristallfarbe, Bemerkung
32	CuO/GeO ₂ 4/4	HgCl ₂ , 0,5 950/900/1000	CuO: quantitativ GeO ₂ : kein Transport	<i>a</i> : 480,3(4) <i>b</i> : 848,1(10) <i>c</i> : 294,4(4)	Drei-Zonen-Transport: CuO wird vollständig transportiert und z. T. in der GeO ₂ -Zone abgeschieden (CuGeO ₃ - Bildung, schwarz)
33	CuO/GeO ₂ 4/4	I ₂ , 0,5 1100/900	kein Transport		
34	ZnO/GeO ₂ 4/4	Cl ₂ , 0,5 1000/900	kein Transport		
35	ZnO/GeO ₂ 4/4	Cl ₂ , 0,5 900/800	kein Transport		
36	ZnO/GeO ₂ 6/3	Cl ₂ , 0,5 850/750 172,25	$\begin{array}{c} Zn_2GeO_4 \ (Phenakit) \\ 64/36 \\ 0,4 \end{array}$	<i>a</i> : 1423,1(6) <i>c</i> : 952,3(5)	weißer, feinkristalliner Belag
37	ZnO/GeO ₂ 4/2	HCl, 0,5 1050/900 144	Zn ₂ GeO ₄ 64/36 0,1	<i>a</i> : 1419,5(9) <i>c</i> : 950,7(8)	farblose Kristalle, 1-2 mm
38	ZnO/GeO ₂ 8/4	HCl, 0,5 1050/900 120	Zn ₂ GeO ₄ 68/32 2,1	<i>a</i> : 1420,3(9) <i>c</i> : 950,1(7)	farblose Kristalle, 1-2 mm

5.2.2 Chemischer Transport von Germanaten mit dreiwertigen Kationen

Tab. 5-5 zeigt eine Übersicht über die Transportbedingungen und -ergebnisse.

5.2.2.1 V₂O₃/GeO₂

Der Transport von Vanadiumgermanat wird, ähnlich wie bei Kupfer(II)-oxid und Germanium(IV)-oxid, dadurch erschwert, dass die Vanadiumoxide mit wesentlich höheren Raten transportiert werden als GeO₂. Chlor eignet sich aufgrund der leichten Oxidierbarkeit des Vanadium(III)-oxids nicht als Transportmittel, weshalb HCl und NH₄Cl verwendet wurden. Mit Chlorwasserstoff gelingt im Gradienten $T_Q = 1000$ °C / $T_S = 900$ °C die Abscheidung von V₃GeO₇, einem gemischtvalenten Vanadium(III, IV)-germanat, das in klaren braunen Kristallen von etwa 0,5 – 1 mm Durchmesser anfällt. Die Kristalle sind in Abb. 5-11 abgebildet. Um der partiellen Oxidation entgegen zu wirken, wurde als Transportmittel auch Ammoniumchlorid verwendet, jedoch konnte so nur GeO₂ auf der Senkenseite erhalten werden.

Abb. 5-11: Durch Chemischen Transport dargestelltes V₃GeO₇.

5.2.2.2 Cr₂O₃/GeO₂

Bei früheren Transportexperimenten mit Chrom(III)-oxid und Germanium(IV)-oxid hat sich Chlor als einzig geeignetes Transportmittel herausgestellt.^{4f} Rechnungen zeigen ebenfalls, dass ein solcher Transport wahrscheinlich ist. Die Abscheidung von Chromgermanaten war

jedoch bei keinem der gewählten Transportgradienten möglich, lediglich im Quellenraum konnte grünes Cr₂GeO₅ gefunden werden, das sich dort als kristallines Material gebildet hatte.

5.2.2.3 Mn₂O₃/GeO₂

Das Sesquioxid von Mn^{3+} kann mit GeO₂ in guten Transportraten (1,5 mg·h⁻¹) bei $T_Q = 1000$ °C / $T_S = 800$ °C mit HCl unter Abscheidung von $Mn_2Ge_2O_7$ in Form von kleinen braunen Kristallen transportiert werden.

5.2.2.4 Fe₂O₃/GeO₂

Die bekannten Eisengermanate Fe_2GeO_5 und $Fe_8Ge_3O_{18}$ waren durch Transport nicht zugänglich, weder aus den Oxiden, noch aus durch Fällung^{7a} hergestelltem Fe_2GeO_5 . Statt dessen wird mit hohen Raten ein Transport von Hämatit beobachtet.

5.2.2.5 Ga₂O₃/GeO₂

 $Ga_2Ge_2O_7$ kann durch Transport von Gallium(III)-oxid und Germanium(IV)-oxid dargestellt werden. Es kristallisiert in Form von farblosen Nadeln. Die Abscheidung weiterer bereits transportierter Galliumgermanate (Ga₂GeO₅, Ga₄GeO₈)^{7b} konnten mit dem Transportmittel Chlor nicht reproduziert werden.

5.2.2.6 In₂O₃/GeO₂

Abb. 5-12: Struktur von In₂Ge₂O₇ nach PFEIFER, WARTCHOW, BINNEWIES.²⁷

Analog zum Transport der Cobaltgermanate wurde auch das System In-Ge-O näher untersucht, da das einzig gebildete Germanat, In₂Ge₂O₇, als Standard für die Untersuchungen zum Transport quarternärer Germanate der zweiwertigen 3d-Metallkationen verwendet werden sollte. Als Transportmittel eignet sich Chlor, dabei sind die Transporttemperaturen von geringerer Bedeutung, die Transportrichtung ist endotherm. Die gebildeten Kristalle sind farblos, die Struktur wurde im Rahmen dieser Arbeit in einer Einkristallmessung bestimmt und ist in Abb. 5-12 dargestellt. Mit HCl ist eine Abscheidung des Germanats nicht möglich.

Abb. 5-13: Durch Chemischen Transport dargestelltes In₂Ge₂O₇.

 Tab. 5-5:
 Versuchsbedingungen und Ergebnisse zum Chemischen Transport ternärer Germanate mit dreiwertigem Kation.

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol)	Trmittel, <i>n</i> (mmol) T_Q/T_S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
39	V ₂ O ₃ /GeO ₂ 1,5/3	HCl, 0,5 1100/1000 218	VO ₂ , V ₆ O ₁₁ 97/3 1,1		schwarze gut ausgebildete Kristalle, z.T. > 2 mm
40	V ₂ O ₃ /GeO ₂ 3/3	HCl, 0,5 1100/1000 168,5	VO ₂ , V ₆ O ₁₁ 96/4 1,3		dkl.graue Kristalle (schlecht krist.)
41	V ₂ O ₃ /GeO ₂ 3/3	HCl, 0,5 1000/900 187,5	V ₃ GeO ₇ 73/27 0,5	<i>a</i> : 575,2(10), α : 92,0 <i>b</i> : 704,9(14), β : 94,5 <i>c</i> : 1289,5(8), γ : 109,9	braune Kristalle, < 1mm
42	V ₂ O ₃ /GeO ₂ 3/3	NH ₄ Cl, 0,5 900/700 140,5	GeO ₂ 0/100 0,22		QBK: V3GeO7 kurze, dicke braune Nadeln
43	Cr ₂ O ₃ /GeO ₂ 3/3	Cl ₂ , 0,5 1100/1000 159	kein Transport		QBK: Cr ₂ GeO ₅
44	Cr ₂ O ₃ /GeO ₂ 3/3	Cl ₂ , 0,5 1000/900 187,5	kein Transport		QBK: Cr ₂ GeO ₅

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmor)	T_Q/T_S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Demerkung
45	Cr ₂ O ₃ /GeO ₂ 1,5/3	Cl ₂ , 0,5 950/850 169,5	GeO ₂ 0/100 0,2		farblose Kristalle, < 1 mm QBK: Cr ₂ GeO ₅
46	Mn ₂ O ₃ /GeO ₂ 1,5/3	HCl, 0,5 1000/800 205	Mn ₂ Ge ₂ O ₇ 40/60 1,5	<i>a</i> : 517,2(3) <i>b</i> : 934,6(14), β: 97,3 <i>c</i> : 1430,2(6)	klare braune Kristalle, z. T. belegt
47	Fe ₂ O ₃ /GeO ₂ 1,5/3	Cl ₂ , 0,5 840/780 169,5	Fe ₂ O ₃ , GeO ₂ 100/0, 82/18 1,4		schwarzer metallisch glänzender Kristall
48	Fe ₂ GeO ₅ 1,5	HCl, 2 1050/900 118	Fe ₂ O ₃ 100/0 1,8		schwarzer metallisch glänzender Kristall
49	Ga ₂ O ₃ /GeO ₂ 1,5/3	Cl ₂ , 0,5 1050/950 108	n:Ga ₂ Ge ₂ O ₇ +GeO ₂ n:63/36, m:75/20 1,1	<i>a</i> : 784,9(1) <i>b</i> : 803,6(3) <i>c</i> : 300,5(5)	farblose Oktaeder und Nadeln; runde Abscheidungen
50	In ₂ O ₃ /GeO ₂ 1,5/3	Cl ₂ , 0,5 1100/1000 187,5	In ₂ Ge ₂ O ₇ 49/51 2,0	<i>a</i> : 669,6(6) <i>b</i> : 880,2(5), β: 102,6 <i>c</i> : 491,9(4)	farblose Kristalle
51	In ₂ O ₃ /GeO ₂ 1,5/3	Cl ₂ , 0,5 1050/950 167	In ₂ Ge ₂ O ₇ 58/41 3,3	<i>a</i> : 667,9(6) <i>b</i> : 878,4(6), β: 102,4 <i>c</i> : 491,2(4)	farblose Kristalle, 1 – 2 mm, uneinheitlich
52	In ₂ O ₃ /GeO ₂ 1,5/3	Cl ₂ , 0,5 950/850 205	In ₂ Ge ₂ O ₇ 42/57 1,7	<i>a</i> : 668,9(6) <i>b</i> : 878,8(5), β: 102,5 <i>c</i> : 490,9(4)	farblose Kristalle, < 1 mm
53	In ₂ O ₃ /GeO ₂ 1,5/3	Cl ₂ , 0,5 840/780 169,5	In ₂ Ge ₂ O ₇ 51/49 1,8	<i>a</i> : 668,8(8) <i>b</i> : 878,8(5), β: 102,5 <i>c</i> : 491,0(4)	farblose Kristalle, < 1 mm
54	In ₂ O ₃ /GeO ₂ 1,5/3	HCl, 0,5 1100/1000 166	kein Transport		
55	In ₂ O ₃ /GeO ₂ 1,5/3	HCl, 0,5 1000/800 140,5	$0/0/100_{Si}$ >>0,1		SiO ₂
56	In ₂ O ₃ /GeO ₂ 3/3	HCl, 0,5 1100/1000 168,5	kein Transport		

5.3 Zusammenfassung von Kapitel 5

In Abhängigkeit von Transportmittel, Temperaturgradient und Ausgangsbodenkörper-Zusammensetzung konnten ganz unterschiedliche Ergebnisse erzielt werden. Sie sollen hier noch einmal kurz zusammengefasst werden.

Im System MnO/GeO₂ konnte von den beiden bekannten Phasen nur $MnGeO_3$ abgeschieden werden. Dabei wurden die höchsten Transportraten im Temperaturgradienten 1050/950 °C erzielt.

In Abhängigkeit vom Mischungsverhältnis der Oxide FeO und GeO₂ war es möglich, sowohl $FeGeO_3$ als auch Fe_2GeO_4 bei $T_Q = 900$, $T_S = 700$ °C abzuschieden.

Beim gemeinsamen Transport von Co_3O_4 und GeO_2 wurden stets Germanate von Cobalt der Oxidationsstufe +II erhalten. Je nach Zusammensetzung des Ausgangsbodenkörpers entstanden $CoGeO_3$ bzw. Co_2GeO_4 , unabhängig davon, ob HCl oder das oxidierend wirkende Cl_2 als Transportmittel Verwendung fand. Die Temperaturen hatten dabei keinen Einfluss auf das Transportverhalten.

Ausgehend von NiO und GeO₂ konnte mit HCl das einzig stabile Germanat, Ni_2GeO_4 , bei verschiedenen Temperaturen abgeschieden werden. Die Verwendung eines Gradienten 800/700 °C führte zusätzlich zum Ni-Ge-Oxidchlorid.

*CuGeO*₃ konnte durch Chemischen Transport nicht erhalten werden, auch ein "Drei-Zonen-Transport" führte zu keinem Erfolg.

 Zn_2GeO_4 konnte mit Chlor und HCl transportiert werden. Die höchste Transportraten wurden bei 1050/900 °C (Transportmittel: HCl) gefunden.

Im System V₂O₃/GeO₂ kann bei $T_Q = 1000$, $T_S = 900$ °C bei Verwendung des Transportmittels HCl V_3GeO_7 , mit Vanadium in den Oxidationsstufen +III und +IV, abgeschieden.

Weder Chrom- noch Eisengermanate konnten durch Chemischen Transport erhalten werden.

Mn₂Ge₂O₇ konnte unter Verwendung von HCl bei 1000/800 °C transportiert werden.

Mit dem Transportmittel Chlor gelang im System Ga_2O_3/GeO_2 nur die Abscheidung von $Ga_2Ge_2O_7$.

Literatur zu Kapitel 5 :

- ^{1a} H. Schäfer, *Chemische Transportreaktionen*, VCH, Weinheim **1964**.
- ^{1b} P. Kleinert, in J. W. Mitchell, R. C. DeVries, R. W. Roberts, P. Cannon, *Reactivity of Solids*, J. Wiley, **1969**.
- ^{1c} H. Schäfer, M. Trenkel, *unveröffentlichte Ergebnisse*, **1971**.
- ^{1d} F. P. Emmenegger, A. Petermann, J. Crystal Growth, **1968**, 2, 33.
- ^{1e} P. Kleinert, Z. Chem., **1963**, *3*, 353.
- ^{1f} W. Kleber, H. Raidt, R. Klein, *Kristall und Techn.*, **1970**, *5*, *4*, 479-88.
- ^{1g}L. Baldt, M. Spiess, R. Gruehn, Th. Kohlmann, Z. anorg. allg. Chem., 1985, 521, 97-110.
- ^{1h} L. Baldt, R. Gruehn, Z. anorg. allg. Chem., **1985**, 521, 97-110.
- ¹¹ C. van der Stolpe, J. Phys. Chem. Solids, **1966**, 27, 1952.
- ² W. Kleber, R. Mlodoch, Kristall und Techn., 1966, 1, 249.
- ^{3a} P. Kleinert, D. Schmidt, Z. anorg. allg. Chem., **1966**, 348, 142.
- ^{3b} P. Kleinert, Z. anorg. allg. Chem., **1970**, 378, 71.
- ^{3c} H. Schäfer. H. Jacob, K. Etzel, Z. anorg. allg. Chem., **1956**, 286, 27.
- ^{3d} A. Pajaczkowska, H. Juskowiak, J. Mat. Science, **1986**, 21, 3435.
- ^{3e} J. H. Witt, J. Cryst. Growth, **1972** 12(2), 183.
- ^{4a} H. Schäfer, B. Schwarzer, *unveröffentlichte Ergebnisse*, **1967**.
- ^{4b} A. Pajaczkowska, H. Juskowiak, J. Mat. Science, **1986**, 21, 3430.
- ^{4c} W. Redlich, *Dissertation*, Justus-Liebig-Universität Gießen **1975**.
- ^{4d} T. Kohlmann, *unveröffentlichte Ergebnisse*, Justus-Liebig-Universität Gießen, **1985**.
- ^{4e} Greta Patzke, *Dissertation*, Universität Hannover **1999**.
- ^{4f} B. Krug, *Dissertation*, Justus-Liebig-Universität Gießen, **1985**.
- ⁵^a W. Redlich, R. Gruehn, Z. anorg. allg. Chem., **1978**, 438, 25-36.
- ^{5b} G. Schmidt, R. Gruehn, Z. anorg. allg. Chem., **1985**, 528, 69-90.
- ⁶ T. L. Chu, J. R. Gavaler, J. Inorg. Nuclear Chem., **1965**, 27, 731.
- ^{7a} V. Agavnov, D. Michel, A. Kahn, M. Perez y Jorba, *Mat. Res. Bull.*, **1984**, *19*, 233-9.
- ^{7b} V. Agavnov, D. Michel, A. Kahn, M. Perez y Jorba, J. Crystal Growth, 1985, 71, 12-6.
- ⁸ P. Royen, W. Forwerg, *Naturwissenschaften*, **1962**, 49, 85.
- ⁹ P. Royen, W. Forwerg, Z. anorg. allg. Chem., **1963**, 326, 113-26.
- ¹⁰ A. Pajaczkowska, K. Majcher, J. Crystal Growth, **1985**, 71, 810-2.
- ¹¹ M. Ozima, Akimoto, Am. Mineral., **1983**, 68, 1199.
- ¹² B. Cros, C. R. Seances Acad. Sci., Ser. C, **1977**, 284, 529.

- ¹³ Langer, K., Sharma, J. Appl. Crystallogr., 1975, 8, 329.
- ¹⁴ Tauber, Kohn, Whinfrey, Babbage, Am. Mineral., 1963, 48, 555.
- ¹⁵ Jansen, C., Behruzi, M., Institut für Kristallographie, Aachen, ICDD Grant-in-Aid, **1986**.
- ¹⁶ Takayama, E., Kimizuka, J. Solid State Chem., **1981**, 39, 262-4.
- ¹⁷ Ottemann, Neuber, Neues Jahrb. Mineral., Monatsheft, **1972**, 263.
- ¹⁸ Takayama, E., Kimizuka, J. Solid State Chem., 1981, 38, 82.
- ¹⁹ Pistorius, Z. anorg. allg. Chem., **1964**, 330, 107,
- ²⁰ Natl. Bur. Stand. (U.S.), **1960**, *Circ. 539*, *10*, 27.
- ²¹ Natl. Bur. Stand. (U.S.), **1960**, *Circ. 539*, *9*, 43.
- ²² Breuer, Eysel, Mineralogisch-Petrographisches Institut, Universität Heidelberg, ICDD Grant-in-Aid, **1979**.
- ²³ A. Oribe, K. Tanaka, H. Morikawa, F. Marumo, **1987**, *12*, 7-12.
- ²⁴ Cinarz, Eysel, Mineralogisch-Petrographisches Institut, Universität Heidelberg, ICDD Grant-in-Aid, 1984.
- ²⁵ Heitz, Eysel, Mineralogisch-Petrographisches Institut, Universität Heidelberg, ICDD Grantin-Aid, **1989**.
- ²⁶ B. Mill, *Inorg. Mater.*, **1981**, *17*, 1216.
- ²⁷ A. Pfeifer, R. Wartchow, M. Binnewies, Z. Kristallogr., 2001, 216, 191-192.
- ^{28a} A. Navrotsky, J. Inorg. Nucl. Chem., **1971**, 33, 4035-50.
- ^{28b} A. Navrotsky, O. Kleppa, J. Inorg. Nucl. Chem., **1968**, 30, 479-98.
- ^{28c} A. Navrotsky, J. Inorg. Nucl. Chem., **1971**, 33, 1119-24.
- ²⁹ M. Binnewies, E. Milke, *Thermochemical Data of Elements and Compounds*, WILEY-VCH, Weinheim **1999**.
- ³⁰ W. Köther, F. Müller, Z. anorg. allg. Chem., **1978**, 444, 77-90.

6 Chemischer Transport in den Systemen M^{II}O/CoO/GeO₂

Als Ausgangsmaterial wurde neben den Oxiden zweiwertiger 3-d-Metall M^{II}O und Germanium(IV)-oxid, wie schon in den Versuchen zum Transport der ternären Germanate, Co₃O₄ anstelle von Cobalt(II)-oxid verwendet. Wiederum konnte weder an der Quell- noch an der Senkenseite die Abscheidung von Germanaten mit Cobalt der Oxidationsstufe +III beobachtet werden. Darum soll im Folgenden vereinfacht nur noch von Co2+ bzw. CoO die Rede sein. Einführend einige Bemerkungen zu den Tabellen dieses Kapitels: Die Spalten 2 bis 4 sind mehrzeilig angelegt. Die zweite Spalte (ABK) beschreibt Art und Zusammensetzung des Ausgangsbodenkörpers. Dabei ist in der ersten Zeile die Menge der Oxide verzeichnet, in der zweiten die Art der eingesetzten Oxide. Die in der zweiten Spalte als mol% (M^{2+}) bezeichnete Größe bezieht sich auf den prozentualen Anteil an der Gesamtmenge zweiwertiger des Ausgangsbodenkörpers. der Kationen Aus nächsten Spalte (Transportbedingungen) erfährt man die genauen Bedingungen des Transportexperiments, und zwar Transportmittel und -menge, Transporttemperaturen sowie Transportdauer. In der vierten Spalte, SBK, sind die analytischen Ergebnisse verzeichnet (Phase, Zusammensetzung nach EDX/RFA, Transportrate). Die Gitterkonstanten des Senkenbodenkörpers können in der nachfolgenden Spalte abgelesen werden. Die letzten Spalte listet Kristallfarbe und weitere Bemerkungen auf.

6.1 Das System MnO/CoO/GeO₂

Abb. 6-1: Phasendiagramm CoO-MnO.¹

MnO und CoO bilden in einem weiten Bereich eine lückenlose Mischkristallreihe (Abb. 6-1)¹. Das ist nicht weiter überraschend, da sich die Ionenradien von Mn^{2+} und Co^{2+} kaum unterscheiden und die Oxide isotyp in der NaCl-Struktur kristallisieren.

Die Bildung der Germanatreihen MnGeO₃–CoGeO₃ und Mn₂GeO₄–Co₂GeO₄ hingegen ist von besonderem Interesse, da sich jeweils die Mangan(II)-germanate von den entsprechenden Cobalt(II)-Verbindungen strukturell unterscheiden: MnGeO₃ kristallisiert orthorhombisch, CoGeO₃ monoklin (*ortho-* resp. *klino-*Pyroxen), die Struktur des Manganorthogermanats, Mn₂GeO₄ wird als Olivin beschrieben, während die entsprechende Cobaltverbindung die Spinellstruktur zeigt.

Die Vorversuche zum System Mn-Co-Ge-O bestätigten die Ergebnisse aus den Versuchen zum Transport der ternären Germanate (Kap. 5.2.1). Wie in Tab. 6-1 dargestellt, gelang der Transport des quarternären Germanats (Mn, Co)GeO₃ bei Verwendung von HCl im Temperaturgradienten $T_{\rm Q}$ = 900 °C / $T_{\rm S}$ = 700 °C mit Abscheidungen weitgehend einheitlicher Phasen.

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol)	Trmittel, n (mmol)		(pm)	Bemerkung
	mol% (Mn ²⁺)	$T_{\rm Q}/T_{\rm S}$ (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)		
57	3/1/6 MnO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/700 216	$(Mn_{0,4}Co_{0,6})GeO_{3}\\20/16/64\\0,1$	<i>a</i> : 974,2(24) <i>b</i> : 899,0(18), β=101,6° <i>c</i> : 519,9(11)	nadelförmige Kristalle, lila, < 0,5 mm, sehr festanhaftend
58	3/1/3 MnO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/650 216	$\begin{array}{c} (Mn_{1,6}Co_{1,4})O_4,\\ (Mn_{0,4}Co_{0,6})GeO_3\\ 44/49/7,\ 19/25/56\\ 1,6 \end{array}$		oktaedrische Kristalle, schwarz, weißer Belag in gesamter Ampulle
59	3/1/3 MnO/Co ₃ O ₄ /~ 50	HCl, 0,5 1050/950 168	Mn ₃ O ₄ , (Mn _{0,6} Co _{0,4})GeO ₄ 100/0/0, 44/34/22 1,4		oktaedrische Kristalle, lila, weißer Belag in Ampulleninnenraum, lila Belag an SBK, QBK
60	3/1/6 MnO/Co ₃ O ₄ /~ 50	HCl, 0,5 1050/950 168	kein Transport		

Tab. 6-1: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System MnO/CoO/GeO₂, Versuchsreihe 6-1; ($\sim = \text{GeO}_2$).

Bei einer Vergrößerung des Temperaturgefälles, etwa von 900 °C nach 650 °C, wurde neben geringen Mengen *meta*-Germanat vorwiegend $(Mn_xCo_{1-x})_3O_4$ abgeschieden. Bei höheren Temperaturen schied sich bei Verwendung eines Oxidgemisches, das die Kationen Mn²⁺ und Co²⁺ in äquimolaren Mengen enthält, außer Mangan(II,III)-oxid *ortho*-Germanat

 $(Mn_xCo_{1-x})_2GeO_4$ ab, Bei Verwendung eines relativen Kationen-Verhältnisses von 1:1:2 konnte kein Transport beobachtet werden.

Abb. 6-2: Durch Chemischen Transport dargestelltes (Mn, Co)GeO₃ der *klino*-Pyroxen-Struktur.

In den nachfolgenden Versuchsreihen wurden nur Transportversuche im Gradienten 900/700 °C bzw. 1050/950 °C durchgeführt.

Abb. 6-3: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System MnO/CoO/GeO₂, Versuchsreihe 6-2; • = Mn^{2+} im SBK (mol%), • = Gitterkonstante *a* (pm), K = *klino*-Pyroxen-Phase, O = *ortho*-Pyroxen-Phase, *klino*-Pyroxen-Phase, *ortho*-Pyroxen-Phase.

Unabhängig von der ursprünglichen Oxidgesamtmenge wurden bei den niedrigeren Transporttemperaturen (s. Tab. 6-2) ausschließlich *meta*-Germanate (M^{II}GeO₃) erhalten. Dabei konnte im Senkenbodenkörper eine den Verhältnissen im ABK entsprechende Abstufung im Mn²⁺:Co²⁺-Verhältnis gefunden werden, man spricht hier von einem kongruenten Transport. In Abb. 6-3 ist dieses Ergebnis illustriert. In der Darstellung ist der Anteil des Mn²⁺ (bezogen auf die zweiwertigen Kationen) im Senkenbodenkörper dem im Ausgangsbodenkörper gegenübergestellt. Überwiegt im abgeschiedenen Material der Mn²⁺-Anteil relativ zu Co²⁺, so findet man röntgenographisch die *ortho*-Pyroxen-Phase, wie sie auch im reinen Mangangermanat MnGeO₃ gefunden wird, und bei einem Überschuss an Cobalt(II)-Kationen erhält man eine monokline Phase, die als *klino*-Pyroxen identifiziert werden kann, der Struktur von CoGeO₃ (s. Abb. 6-2). Betrachtet man die Gitterkonstanten dieser Phasen, so stellt man fest, dass die Vegardsche Regel in erster Näherung gilt. Dies ist in Abb. 6-2 dargestellt.

Tab. 6-2: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System MnO/CoO/GeO₂, Versuchsreihe 6-2; (~ = GeO₂).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Mn ²⁺)	Trmittel, <i>n</i> (mmol) <i>T</i> _Q / <i>T</i> _S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
61	6/0/6 MnO/Co ₃ O ₄ /~ 100	HCl, 0,5 900/700 174	kein Transport		
62	5,4/0,2/6 MnO/Co ₃ O ₄ /~ 90	HCl, 0,5 900/700 174	kein Transport		
63	4,8/0,4/6 MnO/Co ₃ O ₄ /~ 80	HCl, 0,5 900/700 174	Mn _{0.7} Co _{0.3} GeO ₃ 41/9/50, 37/13/50 <0,1	Menge zu gering für Pulverdiffraktometrie- Untersuchungen	 helllila-farbene Kristalle, < 0,5 mm , lilafarben Kristalle, 0,5 – 1 mm
64	4,2/0,6/6 MnO/Co ₃ O ₄ /~ 70	HCl, 0,5 900/700 174	$\begin{array}{c} Mn_{0,7}Co_{0,3}GeO_{3}\\ 33/15/52\\ <\!0,\!1 \end{array}$	Menge zu gering für Pulverdiffraktometrie- Untersuchungen	hexagonale und oktaedrische Kristalle, lila
65	3,6/0,8/6 MnO/Co ₃ O ₄ /~ 60	HCl, 0,5 900/700 174	Mn _{0,5} Co _{0,5} GeO ₃ 26/19/54, 26/24/50 <<0,1	Menge zu gering für Pulverdiffraktometrie- Untersuchungen	unregelmäßig geformte Kristalle, lila
66	3/1/6 MnO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/700 174	kein Transport		
67	2,4/1,2/6 MnO/Co ₃ O ₄ /~ 40	HCl, 0,5 900/700 174	Mn _{0,3} Co _{0,7} GeO ₃ 18/20/62, 16/34/50 0,4	<i>a</i> : 973,3(6) <i>b</i> : 903,3(6), β=101,7° <i>c</i> : 519,9(25)	oktaedrische Kristalle, lila
68	1,8/1,4/6 MnO/Co ₃ O ₄ /~ 30	HCl, 0,5 900/700 174	Mn _{0,3} Co _{0,7} GeO ₃ 16/29/54, 13/37/50 0,4	<i>a</i> : 971,8(9) <i>b</i> : 905,0(12), β=101,4° <i>c</i> : 518,7(5)	z.T. nadelförmige lila Kristalle, < 0,5 mm

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, $n \pmod{T_n/T_n}$	Zusammensetzung (mol%)	(pm)	Bemerkung
	mol% (Mn ²⁺)	Trdauer (h)	Transportrate $(mg \cdot h^{-1})$		
69	1,2/1,6/6 MnO/Co ₃ O ₄ /~ 20	HCl, 0,5 900/700 174	Mn _{0,1} Co _{0,9} GeO ₃ * 67/43/50 0,5	<i>a</i> : 972,2(8) <i>b</i> : 903,7(8), β=101,6° <i>c</i> : 518,9(5)	lila Kristalle, < 0,5 mm
70	0,6/1,8/6 MnO/Co ₃ O ₄ /~ 10	HCl, 0,5 900/700 174	Mn _{0,1} Co _{0,9} GeO ₃ 7/51/42, 6/44/50 0,4	<i>a</i> : 968,9(7) <i>b</i> : 901,9(10), β=101,3° <i>c</i> : 517,7(4)	lila Kristalle, < 0,5 mm
71	0/2/6 MnO/Co ₃ O ₄ /~ 0	HCl, 0,5 900/700 174	CoGeO ₃ , kleiner 0/55/45 0,3	<i>a</i> : 967,5(7) <i>b</i> : 898,6(8), β=101,8° <i>c</i> : 520,0(6)	lila Plättchen und Nadeln
72	3/0/3 MnO/Co ₃ O ₄ /~ 100	HCl, 0,5 900/700 160	MnGeO ₃ 50/0/50 >>0,1	<i>a</i> : 1924(5) <i>b</i> : 936(25) <i>c</i> : 539(10)	unregelmäßig geformte Kristalle unterschiedlicher Farben, 0,5 mm
73	2,7/0,1/3 MnO/Co ₃ O ₄ /~ 90	HCl, 0,5 900/700 160	Mn _{0.9} Co _{0.1} GeO ₃ 44/6/50 0,1	<i>a</i> : 1925,0(5) <i>b</i> : 925,0(5) <i>c</i> : 565,2(4)	unregelmäßig geformte Kristalle, rosa, <1 mm
74	2,4/0,2/3 MnO/Co ₃ O ₄ /~ 80	HCl, 0,5 900/700 160	$\begin{array}{c} Mn_{0,8}Co_{0,3}GeO_{3}\\ 38/12/50\\ >0,1 \end{array}$	<i>a</i> : 1931,9(20) <i>b</i> : 952,4(13) <i>c</i> : 513,3(7)	tetragonale Nadeln, lila
75	2,1/0,3/3 MnO/Co ₃ O ₄ /~ 70	HCl, 0,5 900/700 160	$\frac{Mn_{0,6}Co_{0,4}GeO_3}{31/19/50}\\0,1$	<i>a</i> : 1943,0(8) <i>b</i> : 933,0(5) <i>c</i> : 558,2(17)	lilafarben Kristalle, < 0,5 mm
76	1,8/0,4/3 MnO/Co ₃ O ₄ /~ 60	HCl, 0,5 900/700 160	Mn _{0,5} Co _{0,5} GeO ₃ 27/23/50 >0,1	<i>a</i> : 1938,0(6) <i>b</i> : 927,9(21) <i>c</i> : 552,7(14)	hexonale und tetragonale Nadeln, lilafarben, < 1 mm
77	1,5/0,5/3 MnO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/700 160	Mn _{0,4} Co _{0,6} GeO ₃ 22/28/50 0,2	<i>a</i> : 975(7) <i>b</i> : 901(5), β=101,8° <i>c</i> : 529(10)	hexagonale Nadeln, blau und lilafarben, < 1 mm
78	1,2/0,6/3 MnO/Co ₃ O ₄ /~ 40	HCl, 0,5 900/700 160	Mn _{0,3} Co _{0,7} GeO ₃ 16/34/50 0,4	<i>a</i> : 973(3) <i>b</i> : 900,1(19), β=101,2° <i>c</i> : 520,4(16)	Nadel, lilafarben, < 1 mm
79	0,9/0,7/3 MnO/Co ₃ O ₄ /~ 30	HCl, 0,5 900/700 160	Mn _{0,3} Co _{0,7} GeO ₃ 13/37/50 1,6	<i>a</i> : 974,5(4) <i>b</i> : 905,4(3), β=101,6° <i>c</i> : 520,8(19)	hexonale Nadeln, lilafarben, < 1 mm
80	0,6/0,8/3 MnO/Co ₃ O ₄ /~ 20	HCl, 0,5 900/700 160	Mn _{0,2} Co _{0,8} GeO ₃ 9/41/50 0,9	<i>a</i> : 971,4(4) <i>b</i> : 902,9(3), β=101,6° <i>c</i> : 519,2(20)	hexonale Nadeln, lilafarben, 1 mm
81	0,3/0,9/3 MnO/Co ₃ O ₄ /~ 10	HCl, 0,5 900/700 160	Mn _{0,1} Co _{0,8} GeO ₃ 4/46/50 0,9	<i>a</i> : 968,9(5) <i>b</i> : 901,5(5), β=101,4° <i>c</i> : 518,8(3)	hexonale Nadeln, lilafarben, 1 mm
82	0/1/3 MnO/Co ₃ O ₄ /~ 0	HCl, 0,5 900/700 160	CoGeO ₃ 0/50/50 0,7	<i>a</i> : 968,9(8) <i>b</i> : 900,0(4), β=101,5° <i>c</i> : 517,9(6)	oktaedrische Kristalle, schwarz, 1 mm

Auch bei dem Transport von $T_{\rm S} = 1050$ °C nach $T_{\rm Q} = 950$ °C und $T_{\rm S} = 1100$ °C nach $T_{\rm Q} = 1000$ °C entsprechen die Verhältnisse von Co²⁺:Mn²⁺ in Senken- und Ausgangsbodenkörper (Tab. 6-3, Abb. 6-4). Jedoch konnten nur die Randphasen in Form von Germanaten

transportiert werden (MnGeO₃, Co₂GeO₄), bei Zusammensetzungen von 10 bis 90 mol% MnO im Ausgangsbodenkörper erhält man dagegen die Mischoxide (Mn, Co)₃O₄.

Abb. 6-4: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System MnO/CoO/GeO₂, Versuchsreihe 6-3; • = Mn^{2+} im SBK (mol%), Ox = Mischoxide (Mn, Co)₃O₄.

Tab. 6-3: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System MnO/CoO/GeO₂, Versuchsreihe 6-3; ($\sim = \text{GeO}_2$).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, n (mmol)		(pm)	Bemerkung
	mol% (Mn ²⁺)	T_Q/T_S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)		
83	6/0/3 MnO/Co ₃ O ₄ /~ 100	HCl, 0,5 1050/950 168	MnGeO ₃ 49/0/51 0,3	<i>a</i> : 1925,4(7) <i>b</i> : 926,2(4) <i>c</i> : 545,6(22)	unregelmäßig geformte Kristalle, schwarz
84	5,4/0,2/3 MnO/Co ₃ O ₄ /~ 90	HCl, 0,5 1050/950 168	kein Transport		
85	4,8/0,4/3 MnO/Co ₃ O ₄ /~ 80	HCl, 0,5 1050/950 168	(Mn, Co) ₃ O ₄ 80/20/0, 70/23/7 0,1		wenige große Kristalle (1 - 2 mm), unregelmäßig geformt, braun
86	4,2/0,6/3 MnO/Co ₃ O ₄ /~ 70	HCl, 0,5 1050/950 216	(Mn, Co) ₃ O ₄ 73/29/0, 55/33/11 0,1		wenige große Kristalle (1 - 2 mm), unregelmäßig geformt, braun
87	3,6/0,8/3 MnO/Co ₃ O ₄ /~ 60	HCl, 0,5 1050/950 216	(Mn, Co)O 66/34/0, 58/42/0 0,1		pyramidenförmige Kristalle, schwarz
88	3/1/3 MnO/Co ₃ O ₄ /~ 50	HCl, 0,5 1050/950 168	geringer Transport		viele Kristallkeime, nicht von der Quarzwand lösbar

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, n (mmol)		(pm)	Bemerkung
	mol% (Mn ²⁺)	T_Q/T_S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)		
89	2,4/1,2/3 MnO/Co ₃ O ₄ /~ 40	HCl, 0,5 1050/950 168	kein Transport		
90	1,8/1,4/3 MnO/Co ₃ O ₄ /~ 30	HCl, 0,5 1050/950 168	(Mn, Co) ₃ O ₄ 17/81/0, 21/63/15 1,3 [*]		verzerrt oktaedrische Kristalle, schwarz, 1 mm
91	1,2/1,6/3 MnO/Co ₃ O ₄ /~ 20	HCl, 0,5 1050/950 168	(Mn, Co) ₃ O ₄ 25/77/0, 23/63/14 0,9*		verzerrt oktaedrische Kristalle, schwarz, 1 mm
92	0,6/1,8/3 MnO/Co ₃ O ₄ /~ 10	HCl, 0,5 1050/950 168	(Mn, Co) ₃ O ₄ 33/69/0, 3/79/18, 26/61/10/3si 0,5		verzerrt oktaedrische Kristalle, schwarz, 1 mm
93	0/2/3 MnO/Co ₃ O ₄ /~ 0	HCl, 0,5 1050/950 168	Co ₂ GeO ₄ 0/60/40, 0/66/33 0,3	<i>a</i> : 831,8(5)	oktaedrische Kristalle, schwarz, 1 mm
94	6/0/3 MnO/Co ₃ O ₄ /~ 100	HCl, 0,5 1100/1000 160	kein Transport		
95	5,4/0,2/3 MnO/Co ₃ O ₄ /~ 90	HCl, 0,5 1100/1000 160	75/16/8 >>0,1	Menge zu gering für Pulverdiffraktometrie- Untersuchungen	unregelmäßig geformte Kristalle, schwarz
96	4,8/0,4/3 MnO/Co ₃ O ₄ /~ 80	HCl, 0,5 1100/1000 160	kein Transport		
97	4,2/0,6/3 MnO/Co ₃ O ₄ /~ 70	HCl, 0,5 1100/1000 160	kein Transport		
98	3,6/0,8/3 MnO/Co ₃ O ₄ /~ 60	HCl, 0,5 1100/1000 160	55/39/6 >>0,1	Menge zu gering für Pulverdiffraktometrie- Untersuchungen	unregelmäßig geformte Kristalle, schwarz
99	3/1/3 MnO/Co ₃ O ₄ /~ 50	HCl, 0,5 1100/1000 160	4/93/3 >0,1	Menge zu gering für Pulverdiffraktometrie- Untersuchungen	unregelmäßig geformte Kristalle, schwarz, braun
100	2,4/1,2/3 MnO/Co ₃ O ₄ /~ 40	HCl, 0,5 1100/1000 160	(Mn, Co) ₃ O ₄ 29/55/16 0,4		unregelmäßig geformte Kristalle, schwarz, wenige weinrot Kristalle, klar
101	1,8/1,4/3 MnO/Co ₃ O ₄ /~ 30	HCl, 0,5 1100/1000 160	(Mn, Co) ₃ O ₄ 32/55/13 0,8		schwarze Kristalle, z.T. groß (1-2 mm)
102	1,2/1,6/3 MnO/Co ₃ O ₄ /~ 20	HCl, 0,5 1100/1000 160	(Mn, Co) ₃ O ₄ 35/54/10 0,3		schwarze Kristalle, z.T. groß (1-2 mm)
103	0,6/1,8/3 MnO/Co ₃ O ₄ /~ 10	HCl, 0,5 1100/1000 160	(Mn, Co) ₃ O ₄ 35/52/14 0,1		oktaedrische Kristalle, lila
104	0/2/3 MnO/Co ₃ O ₄ /~ 0	HCl, 0,5 1100/1000 160	Co ₂ GeO ₄ 0/67/33 0,4	<i>a</i> : 830,7(5)	oktaedrische Kristalle, schwarz, 1 mm

6.2 Das System FeO/CoO/GeO₂

In Vorversuchen zum Transport des Eisen(II)-germanats (Kap. 5.2.1.2) konnte gezeigt werden, dass mit dem Transportmittel HCl und im Temperaturgradienten 900 / 700 °C sowohl für die *meta*- (FeGeO₃) als auch die *ortho*-Phase (Fe₂GeO₄) gleich gute Transportraten erzielt werden. Für die quarternären Verbindungen ergab sich hingegen, dass die *ortho*-Germanat-Phase unabhängig von den Transportbedingungen (Transportmittel, Temperaturgradient, ABK-Zusammensetzung und Transportdauer) bevorzugt gebildet wird (Tab. 6-4). Die Ergebnisse unterscheiden sich lediglich im Fe²⁺:Co²⁺-Verhältnis des SBK und in den Transportraten. Mit HCl im Temperaturgefälle von 900 nach 700 °C wurde ein kongruenter Transport gefunden, also die Abscheidung eines Materials, dessen Zusammensetzung der des ABK entsprach.

Tab. 6-4: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System FeO/CoO/GeO₂, Versuchsreihe 6-4; (~ = GeO₂).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, <i>n</i> (mmol)	-	(pm)	Bemerkung
	mol% (Fe ²⁺)	T_Q/T_S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg \cdot h ⁻¹)		
105	3/1/3 FeO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/700 168	(Co _{1,0} Fe _{1,0})GeO ₄ 38/42/20, 35/33/32 0,9	<i>a</i> : 835,6(3)	oktaedrische Kristalle, schwarz, 1 mm
106	3/1/3 FeO/Co ₃ O ₄ /~ 50	HCl, 0,5 1000/900 168	(Fe _{1,1} Co _{0,9})GeO ₄ 34/28/38 2,1	<i>a</i> : 834,2(7)	oktaedrische Kristalle, schwarz, 1 mm, Quarzangriff in gesamter Ampulle
107	3/1/3 FeO/Co ₃ O ₄ /~ 50	Cl ₂ , 0,5 900/830 168	$\begin{array}{c} ({\rm Co}_{0,7}{\rm Fe}_{1,3}){\rm GeO}_4 \\ 18/42/40, \ 30/41/29 \\ <\!\!0,\!1 \end{array}$	<i>a</i> : 832,3(5)	schwarze Kristalle, < 0,5 mm
108	3/1/3 FeO/Co ₃ O ₄ /~ 50	Cl ₂ , 0,5 900/800 216	$(Co_{0,6}Fe_{1,4})GeO_4 \\ 18/42/40 \\ 1,7$	<i>a</i> : 838,3(23)	oktaedrische Kristalle, schwarz, 1 mm
109	6/2/3 FeO/Co₃O₄/~ 50	Cl ₂ 0,5 900/830 216	(Co _{1,6} Fe _{0,4})GeO ₄ 53/12/34 1,1	<i>a</i> : 838,3(23)	oktaedrische Kristalle, schwarz, 1 mm, Quarzangriff in gesamter Ampulle
110	1,5/0,5/3 FeO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/700	Fe _{0.9} Co _{1.1} GeO ₄ 38/42/30	<i>a</i> : 836,2(2)	oktaedrische Kristalle, dunkel, 1 mm

Die Germanate Fe_2GeO_4 und Co_2GeO_4 sind isotyp und kristallisieren im Spinelltyp. Deswegen und aufgrund der Tatsache, das sich die Gitterkonstanten nur um 10 pm unterscheiden, ist es nicht überraschend, dass der Transport eine vollständige Mischbarkeit der Germanate zeigt. Dabei verläuft der Transport kongruent, wie sich sehr gut aus Abb. 6-6 erkennen läßt. Auch die Gitterkonstanten verändern sich mit der Zusammensetzung zwischen 840,7 pm des Eisengermanats und 830,7 pm des Co₂GeO₄. Es werden oktaedrische braun- bis schwarzgefärbte Kristalle mit Durchmessern von bis zu 2 mm abgeschieden (s. Abb. 6-5). Diese Kristalle zeigten ferromagnetisches Verhalten, in dem sie an eisenhaltigen Spateln oder Münzen haften blieben. Ein solches Verhalten ist von Ferriten, die ebenfalls eine Spinellstruktur haben, hinlänglich bekannt. Die einzelnen Versuchsbedingungen und -ergebnisse sind Tab. 6-5 zu entnehmen.

Abb. 6-5: Durch Chemischen Transport dargestelltes (Fe, Co)₂GeO₄.

Tab. 6	5: Versuchsbedingungen	und Ergebnisse zum	Chemischen Ti	ransport im System	FeO/CoO/GeO ₂ ,
Versuc	hsreihe 6-5; ($\sim = \text{GeO}_2$).				

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol)	Trmittel, n (mmol)		(pm)	Bemerkung
	mol% (Fe ²⁺)	$T_{\rm Q}/T_{\rm S}$ (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)		
111	6/0/3 FeO/Co ₃ O ₄ /~ 100	HCl, 0,5 900/700 229,5	Fe ₂ GeO ₄ 62/0/38, 66/0/33 0,7	<i>a</i> : 840,7(3)	oktaedrische Kristalle, braun-schwarz, 1-2 mm, weißer Belag
112	5,4/0,2/3 FeO/Co ₃ O ₄ /~ 90	HCl, 0,5 900/700 229,5	Fe _{1,8} Co _{0,2} GeO ₄ 51/6/41, 61/5/33 2,9	<i>a</i> : 840,1(3)	oktaedrische Kristalle, braun-schwarz, 1-2 mm, weißer Belag
113	4,8/0,4/3 FeO/Co ₃ O ₄ /~ 80	HCl, 0,5 900/700 229,5	Fe _{1,6} Co _{0,4} GeO ₄ 55/11/33, 53/13/33 2,7	<i>a</i> : 839,4(5)	oktaedrische Kristalle, braun-schwarz, 1-2 mm, weißer Belag
114	4,2/0,6/3 FeO/Co ₃ O ₄ /~ 70	HCl, 0,5 900/700 229,5	Fe _{1,4} Co _{0,6} GeO ₄ 46/20/33, 47/19/33 1,9	<i>a</i> : 837,5(5)	oktaedrische Kristalle, braun-schwarz, 1-2 mm

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Fe ²⁺)	Trmittel, <i>n</i> (mmol) <i>T</i> _Q / <i>T</i> _S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
115	3,6/0,8/3 FeO/Co ₃ O ₄ /~ 60	HCl, 0,5 900/700 229,5	Fe _{1,3} Co _{0,7} GeO ₄ 36/22/42, 42/24/33 1,7	<i>a</i> : 838,0(6)	oktaedrische Kristalle, braun-schwarz, 1-2 mm
116	3/1/3 FeO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/700 229,5	Fe _{1.2} Co _{0,8} GeO ₄ 48/33/18, 29/27/33 1,2	<i>a</i> : 836,7(4)	oktaedrische Kristalle, braun-schwarz, 1-2 mm
117	2,4/1,2/3 FeO/Co ₃ O ₄ /~ 40	HCl, 0,5 900/700 229,5	Fe _{0.7} Co _{1.3} GeO ₄ 7/61/32, 24/42/33 0,6	<i>a</i> : 837,8(4)	oktaedrische Kristalle, braun-schwarz, 1-2 mm
118	1,8/1,4/3 FeO/Co ₃ O ₄ /~ 30	HCl, 0,5 900/700 229,5	Fe _{0.4} Co _{1.6} GeO ₄ 7/79/14, 12/54/33 0,7	<i>a</i> : 836,3(24)	oktaedrische Kristalle, schwarz, 1 mm, brauner Belag; braune Nadeln
119	1,2/1,6/3 FeO/Co ₃ O ₄ /~ 20	HCl, 0,5 900/700 229,5	Fe _{0,2} Co _{1,8} GeO ₄ 11/50/38, 7/59/33 0,9	<i>a</i> : 833,7(5)	oktaedrische Kristalle, braun-schwarz, 1-2 mm
120	0,6/1,8/3 FeO/Co ₃ O ₄ /~ 10	HCl, 0,5 900/700 229,5	Fe _{0.2} Co _{1.8} GeO ₄ 3/57/40, 8/58/33 0,6	<i>a</i> : 832,2(4)	oktaedrische Kristalle, braun-schwarz, 1-2 mm
121	0/2/3 FeO/Co ₃ O ₄ /~ 0	HCl, 0,5 900/700 229,5	Co ₂ GeO ₄ 0/62/37, 0/66/33 0,5	<i>a</i> : 830,7(4)	oktaedrische Kristalle, braun-schwarz, 1-2 mm

Abb. 6-6: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System FeO/CoO/GeO₂, Versuchsreihe 6-5; • = Fe²⁺ im SBK (mol%), • = Gitterkonstante *a* (pm), S = Spinell.

Wie bei der $M_{2}^{II}GeO_{4}$ -Reihe sollte auch für die *meta*-Germanate eine lückenlose Mischkristallreihe zu erwarten sein. Verändert man das Verhältnis von $n(\text{Co}^{2+}+\text{Fe}^{2+}): n(\text{Ge}^{4+})$

entsprechend und verwendet äquimolare Mengen von zweiwertigen Kationen und Germanium, so wird auch teilweise die Bildung von *meta*-Germanaten beobachtet (s. Tab. 6-6). Diese treten jedoch nur bei Ausgangsbodenkörper-Zusammensetzungen nahe bei FeGeO₃ und CoGeO₃ als einzige Phasen auf, ansonsten nur im Gemisch mit (Fe, Co)₂GeO₄. Die Zusammensetzungen sind auch hier abhängig von der Zusammensetzung des Ausgangsbodenkörpers und zeigen keine nennenswerte Anreicherung eines der Kationen (Abb. 6-7).

Tab. 6-6: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System FeO/CoO/GeO₂, Versuchsreihe 6-6; (~ = GeO₂).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Fe ²⁺)	Trmittel, $n \pmod{T_Q/T_S}$ (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
122	3/0/3 FeO/Co ₃ O ₄ /~ 100	HCl, 0,5 900/700 170	FeGeO ₃ 54,8/0/45,2 2,5	<i>a</i> : 981,0(6) <i>b</i> : 910,6(7), β=101,8° <i>c</i> : 520,0(5)	dunkle Nadeln, braun durchscheinend, 1 mm
123	2,7/0,1/3 FeO/Co ₃ O ₄ /~ 90	HCl, 0,5 900/700 170	Fe _{1.8} Co _{0.2} GeO ₄ , Fe _{0.9} Co _{0.1} GeO ₃ 59/6/35, 50//6/44 2,3	(<i>Fe</i> , <i>Co</i>) <i>GeO</i> ₃ <i>a</i> : 980,4(5) <i>b</i> : 912,6(5), β=101,8° <i>c</i> : 520,1(6)	oktaedrische Kristalle und Nadeln, dunkel, brauner Belag, 1 mm
				$(Fe, Co)_2 GeO_4$ a: 840,2(2)	
124	2,4/0,2/3 FeO/Co ₃ O ₄ /~ 80	HCl, 0,5 900/700 170	Fe _{1,5} Co _{0,5} GeO ₄ , FeGeO ₃ 53/16/31 1,6	$(Fe, Co)GeO_3$ a: 978,4(6) $b: 913,7(9), \beta=101,9^{\circ}$ c: 519,9(6) $(Fe, Co)_2GeO_4$ a: 839,7(3)	oktaedrische Kristalle und Nadeln, dunkel, 1 mm
125	2,1/0,3/3 FeO/Co ₃ O ₄ /~ 70	HCl, 0,5 900/700 170	Fe _{1,4} Co _{0,6} GeO ₄ 43/18/39 1,1	(<i>Fe</i> , <i>Co</i>) <i>GeO</i> ₃ <i>a</i> : 977,3(13) <i>b</i> : 912,9(19), β=101,8° <i>c</i> : 520,3(7)	oktaedrische Kristalle und Nadeln, dunkel, 0,5 mm
				$(Fe, Co)_2 GeO_4$ a: 838,9(1)	
126	1,8/0,4/3 FeO/Co ₃ O ₄ /~ 60	HCl, 0,5 900/700 170	Fe ₂ GeO ₄ Keine Analyse möglich 0,3	<i>a</i> : 836,8(2)	pulverförmiges schwarzes Produkt
127	1,5/0,5/3 FeO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/700 170	Fe _{0,9} Co _{1,1} GeO ₄ 38/42/30 1,3	<i>a</i> : 836,2(2)	oktaedrische Kristalle, dunkel, 1 mm
128	1,2/0,6/3 FeO/Co ₃ O ₄ /~ 40	HCl, 0,5 900/700 170	Fe ₂ GeO ₄ Keine Analyse möglich 0,6	(<i>Fe</i> , <i>Co</i>) <i>GeO</i> ₃ <i>a</i> : 978,4(6) <i>b</i> : 913,7(9), β=101,9° <i>c</i> : 519,9(6)	pulverförmig, schwarz und metallisch glänzend
				(<i>Fe</i> , <i>Co</i>) ₂ <i>GeO</i> ₄ <i>a</i> : 837,6(6)	

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Fe ²⁺)	Trmittel, <i>n</i> (mmol) <i>T</i> _Q / <i>T</i> _S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
129	0,9/0,7/3 FeO/Co ₃ O ₄ /~ 30	HCl, 0,5 900/700 170	Fe _{0.5} Co _{1.5} GeO ₄ 17/41/32 0,5	<i>a</i> : 834,5(3)	unregelmäßig geformte Kristalle, schwarz und metallisch glänzend, < 0,5 mm
130	0,6/0,8/3 FeO/Co ₃ O ₄ /~ 20	HCl, 0,5 900/700 170	25/55/20 1,0	Indizierung nicht möglich	unregelmäßig geformte Kristalle, schwarz, < 0,5 mm
131	0,3/0,9/3 FeO/Co ₃ O₄/~ 10	HCl, 0,5 900/700 170	Fe _{0,1} Co _{0,9} GeO ₃ 5/47/48, 4/51/45 0,7	(<i>Co</i> , <i>Fe</i>) <i>GeO</i> ₃ , orthorhombisch: a: 1882,3(11) b: 897,6(6) c: 537,9(3) (<i>Co</i> , <i>Fe</i>) <i>GeO</i> ₃ , monoklin: a: 966,0 (50) b: 900,0(70), β=101,6°	Nadeln, schwarz, < 0,5 mm
132	0/1/3 FeO/Co ₃ O ₄ /~ 0	HCl, 0,5 900/700 170	CoGeO ₃ 0/55/45 0,8	<i>c</i> : 520,0(40) <i>a</i> : 967,1(3) <i>b</i> : 900,3(3), β=101,4° <i>c</i> : 517,0(1)	Nadeln, lila-schwarz, 1,5 mm

Abb. 6-7: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System FeO/CoO/GeO₂; Versuchsreihe 6-6, $\bullet = Fe^{2+}$ im SBK (mol%), S = Spinell, P = Pyroxen

6.3 Das System NiO/CoO/GeO₂

Wie in Tab. 6-7 zusammengestellt, bestimmten im System NiO/CoO/GeO₂ – anders als bei den Eisengermanaten (Kap. 6.2) – die Transportbedingungen, welche Phase abgeschieden wurde. Nur bei einem Transport mit HCl konnte ein Germanat erhalten werden, mit dem Transportmittel Chlor wurde statt dessen (Ni, Co)(II)-oxid transportiert, das GeO₂ verblieb im QBK. Diese Beobachtungen stehen im Gegensatz zu den Resultaten der Versuche zu ternären Nickelgermanaten (Kap. 5.2.1.4), wo eine Abscheidung von Ni₂GeO₄ mit beiden Transportmitteln erreicht werden konnte.

Für ein äquimolares NiO/CoO:GeO₂-Oxidgemisch wurde bei einem Transport von $T_Q = 900$ °C nach $T_S = 700$ °C die Bildung des *meta*-Germanats (Ni, Co)GeO₃ beobachtet, bei einem Ausgangsbodenkörper mit einem Mischungsverhältnis $n(Ni^{2+}+Co^{2+}):n(Ge^{4+})$ von 2:1 und einem Temperaturgradienten von 1000/900 °C wird die Abscheidung von (Ni, Co)₂GeO₄) gefunden. Dabei reicherte sich jeweils Cobalt relativ zu Nickel leicht im Senkenbodenkörper an.

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, $n \pmod{2}$		(pm)	Bemerkung
	mol% (Ni ²⁺)	T_Q/T_S (°C) Trdauer (h)	Transportrate (mg·h ⁻¹)		
133	3/1/3 NiO/Co ₃ O ₄ /~ 50	Cl ₂ , 0,5 900/800 216	(Ni, Co)O 52/37/0 2,2		oktaedrische Kristalle, dunkel, >1 mm, festanhaftend
134	3/1/6 NiO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/700 168	$(Ni_{0,4}Co_{0,6})GeO_{3} \\ 21/32/48 \\ 0,5$	<i>a</i> : 985(7) <i>b</i> : 897(3), β=102,0° <i>c</i> : 523(6)	nadelförmige Kristalle, dunkel
135	1,5/0,5/3 NiO/Co ₃ O ₄ /~ 50	HCl, 0,5 1000/900 165	Ni _{0,9} Co _{1,1} GeO ₄ 31/36/33 0,9	<i>a</i> : 829,2(8)	oktaedrische Kristalle dunkel, 0,5-1mm
136	3/1/3 NiO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/800 168	Ni _{1,2} Co _{0,8} GeO ₄ , CoGeO ₃ 29/42/29 0,4	Ni ₂ GeO ₄ a: 829,9(8) NiCoGeO ₂	oktaedrische und nadelförmige Kristalle, dunkel,
				a: 991,7(19) b: 896,1(9), β=101,5° c: 518,6(4)	geringer Quarzangriff

Tab. 6-7: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System NiO/CoO/GeO₂, Versuchsreihe 6-7; (~ = GeO₂).

(Co, Ni)O-Mischkristalle konnten bereits auch durch Chemischen Transport erhalten werden.² Auch für die ternären Germanate CoGeO₃ und "NiGeO₃" sowie Co₂GeO₄ und Ni₂GeO₄ ist eine gegenseitige Löslichkeit zu erwarten. Die Transportreihe zur Darstellung

eines *meta*-Germanats (Ni, Co)GeO₃ war von besonderem Interesse: Da das reine NiGeO₃ unbekannt ist, stellte sich die Frage, ob es in Form von Mischphasen stabilisiert werden kann.

Abb. 6-8: Durch Chemischen Transport dargestelltes (Ni, Co)₂GeO₄.

Abb. 6-9: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System NiO/CoO/GeO₂, Versuchsreihe 6-8; • = Ni²⁺ im SBK (mol%), • = Gitterkonstante *a* (pm), S = Spinell, K = klino-Pyroxen.

Die Bedingungen und Ergebnisse sind in Tab. 6-8 und Abb. 6-9 dargestellt. Es war nicht überraschend, dass bei einem Überschuss von Nickeloxid im ABK kein *meta*-Germanat, sondern statt dessen die Abscheidung eines *ortho*-Germanats $(Ni_xCo_{1-x})_2GeO_4$ beobachtet wurde. Bei einem Cobaltgehalt von 40 mol% im Ausgangsgemisch konnte erstmalig die

Bildung des $(Ni_xCo_{1-x})GeO_3$ festgestellt werden, in dem Cobalt zu 50 mol% eingebaut ist. Auch optisch kann der Übergang vom *ortho-* zum *meta-*Germanat festgestellt werden: Das Material der allgemeinen Zusammensetzung $(Ni_xCo_{1-x})_2GeO_4$ scheidet sich in Form von Plättchen mit hexagonaler Grundform oder Oktaedern ab, die je nach Nickelgehalt grün (x < 0,2) oder dunkellila gefärbt sind, wohingegen die Kristalle des $(Ni_xCo_{1-x})GeO_3$ nadelförmig und dunkel lialfarben sind. Kristalle der *ortho-*Phase sind in Abb. 6-8 dargestellt.

Tab. 6-8: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System NiO/CoO/GeO₂, Versuchsreihe 6-8; (~ = GeO₂).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Ni ²⁺)	Trmittel, $n \text{ (mmol)}$ $T_Q/T_S (^{\circ}C)$ Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
137	3/0/3 NiO/Co ₃ O ₄ /~ 100	HCl, 0,5 900/700 168	Ni ₂ GeO ₄ 67/0/33, 0,2	<i>a</i> : 822,7(5)	oktaedrische Kristalle, grün, < 0,5 mm
138	2,7/0,1/3 NiO/Co ₃ O ₄ /~ 90	HCl, 0,5 900/700 168	Ni _{1.7} Co _{0.3} GeO ₄ 50/8/36, 59/8/33, 0,9	<i>a</i> : 824,5(3)	oktaedrische Kristalle grün, 0,5-1mm
139	2,4/0,2/3 NiO/Co ₃ O ₄ /~ 80	HCl, 0,5 900/700 168	Ni _{1,5} Co _{0,5} GeO ₄ 48/11/41, 51/16/33 1,0	<i>a</i> : 825,2(6)	oktaedrische Kristalle dunkel, 0,5-1mm
140	2,1/0,3/3 NiO/Co ₃ O ₄ /~ 70	HCl, 0,5 900/700 168	Ni _{1,3} Co _{0,7} GeO ₄ 47/24/28, 43/24/33 1,0	<i>a</i> : 826,3(6)	dunkle Plättchen und braune Nadeln
141	1,8/0,4/3 NiO/Co ₃ O ₄ /~	HCl, 0,5 900/700	Ni _{0,9} Co _{1,1} GeO ₄ , 30/37/33	<i>Ni</i> ₂ <i>GeO</i> ₄ <i>a</i> : 825,7(16)	oktaedrische Kristalle, tieflila, 1 mm
	60	168	Ni _{0,5} Co _{0,5} GeO ₃ 24/21/55 1,3	NiCoGeO ₃ a: 962,8(6) b: 898,8(6), β=101,3° c: 516,6(4)	nadelförmige Kristalle, tieflila, < 1 mm
142	1,5/0,5/3 NiO/Co ₃ O ₄ /~ 50	HCl, 0,5 900/700 168	Ni _{0,3} Co _{0,7} GeO ₃ 17/33/50 1,3	<i>a</i> : 964,2(4) <i>b</i> : 896,1(3), β=101,2° <i>c</i> : 516,5(18)	nadelförmige Kristalle, tieflila, < 1 mm
143	1,2/0,6/3 NiO/Co ₃ O ₄ /~ 40	HCl, 0,5 900/700 168	Ni _{0,3} Co _{0,7} GeO ₃ 15/35/50 1,4	<i>a</i> : 964,4(8) <i>b</i> : 897,5(7), β=101,3° <i>c</i> : 517,6(25)	Nadelförmige Kristalle, tieflila, < 1 mm
144	0,9/0,7/3 NiO/Co ₃ O ₄ /~ 30	HCl, 0,5 900/700 168	Ni _{0,3} Co _{0,7} GeO ₃ 15/35/50 1,9	<i>a</i> : 964(3) <i>b</i> : 896(5), β=101,0° <i>c</i> : 520,8(15)	nadelförmige Kristalle, tieflila, < 1 mm
145	0,6/0,8/3 NiO/Co ₃ O ₄ /~ 20	HCl, 0,5 900/700 168	Ni _{0,2} Co _{0,8} GeO ₃ 11/39/50 1,5	<i>a</i> : 966,6(10) <i>b</i> : 898,2(14), β=101,1° <i>c</i> : 517,0(7)	nadelförmige Kristalle, tieflila, < 1 mm
146	0,3/0,9/3 NiO/Co ₃ O ₄ /~ 10	HCl, 0,5 900/700 168	$\begin{array}{c} Ni_{0,1}Co_{0,9}GeO_{3}\\ 6/44/50\\ 1,3\end{array}$	<i>a</i> : 966,2(6) <i>b</i> : 897,9(8), β=101,3° <i>c</i> : 516,8(3)	nadelförmige Kristalle, tieflila, < 1 mm

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Ni ²⁺)	Trmittel, <i>n</i> (mmol) <i>T</i> _Q / <i>T</i> _S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
147	0/1/3 NiO/Co ₃ O ₄ /~ 0	HCl, 0,5 900/700 168	CoGeO ₃ 0/50/50 1,5	<i>a</i> : 968,0(9) <i>b</i> : 900,3(4), β=101,5° <i>c</i> : 517,6(3)	nadelförmige Kristalle, tieflila, < 1 mm

Ähnliches wie für die *ortho*-Germanate des zweiwertigen Eisens und Cobalts kann auch für das System Ni-Co-Ge-O gesagt werden: Aufgrund der Isotypie und der ähnlichen Gitterkonstanten war auch hier vollständige Mischbarkeit, kongruenter Transport und die lineare Veränderung der Gitterkonstanten zu erwarten, wie in Tab. 6-9 und Abb. 6-10 illustriert. Bei hohen Nickelgehalten sind die oktaedrischen Kristalle grün gefärbt, zeigen aber mit zunehmendem Cobaltanteil eine dunklere und schließlich als Cobaltgermanat eine tiefe Lilafärbung.

Tab. 6-9: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System NiO/CoO/GeO₂, Versuchsreihe 6-9; (~ = GeO₂).

Exp.	ABK $n \text{ (mmol)}$	Transportbedingungen: Trmittel, <i>n</i> (mmol) $T_Q/T_S(^{\circ}C)$	SBK Zusammensetzung (mol%)	Gitterkonstanten (pm)	Kristallfarbe, Bemerkung
	mol% (N1 ²⁺)	Trdauer (h)	Transportrate (mg·h ⁻¹)		
148	3/0/3 NiO/Co ₃ O ₄ /~ 100	HCl, 0,5 1000/900 165	Ni ₂ GeO ₄ 66/0/33 0,3	<i>a</i> : 822,4(7)	oktaedrische Kristalle, grün, < 0,5 mm
149	2,7/0,1/3 NiO/Co ₃ O ₄ /~ 90	HCl, 0,5 1000/900 165	Ni _{1,6} Co _{0,4} GeO ₄ 55/12/33, Ni 0,3	<i>a</i> : 823,0(17)	oktaedrische Kristalle, grün, < 0,5 mm
150	2,4/0,2/3 NiO/Co ₃ O ₄ /~ 80	HCl, 0,5 1000/900 165	Ni _{1,6} Co _{0,4} GeO ₄ 38/11/51, 52/15/33 0,7	<i>a</i> : 825,4(6)	oktaedrische Kristalle dunkel, 0,5-1mm
151	2,1/0,3/3 NiO/Co ₃ O ₄ /~ 70	HCl, 0,5 1000/900 165	Ni _{1,3} Co _{0,7} GeO ₄ 45/22/33 0,9	<i>a</i> : 826,7(6)	plättchenf. Kristalle, tieflila, < 1 mm
152	1,8/0,4/3 NiO/Co ₃ O ₄ /~ 60	HCl, 0,5 1000/900 165	Ni _{1,2} Co _{0,8} GeO ₄ 39/28/33 0,3	<i>a</i> : 827,1(7)	plättchenf. Kristalle, tieflila, < 0,5 mm
153	1,5/0,5/3 NiO/Co ₃ O ₄ /~ 50	HCl, 0,5 1000/900 165	Ni _{0,9} Co _{1,1} GeO ₄ 31/36/33 0,9	<i>a</i> : 829,2(8)	oktaedrische Kristalle dunkel, 0,5-1mm
154	1,2/0,6/3 NiO/Co ₃ O ₄ /~ 40	HCl, 0,5 1000/900 165	Ni _{0,8} Co _{1,2} GeO ₄ 25/42/33 0,3	<i>a</i> : 828,5(21)	oktaedrische Kristalle dunkel, <0,5 mm
155	0,9/0,7/3 NiO/Co ₃ O ₄ /~ 30	HCl, 0,5 1000/900 165	Ni _{0,6} Co _{1,4} GeO ₄ 18/49/33 0,7	<i>a</i> : 829,4(14)	oktaedrische Kristalle dunkel,< 0,5 mm

Exp.	ABK n (mmol) mol% (Ni ²⁺)	Transportbedingungen: Trmittel, <i>n</i> (mmol) T_Q/T_S (°C) Trdauer (h)	SBK Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	Gitterkonstanten (pm)	Kristallfarbe, Bemerkung
156	0,6/0,8/3 NiO/Co ₃ O ₄ /~ 20	HCl, 0,5 1000/900 165	Ni _{0,4} Co _{1,6} GeO ₄ 13/54/33 0,8	<i>a</i> : 830,1(3)	oktaedrische Kristalle dunkel, 1 mm
157	0,3/0,9/3 NiO/Co ₃ O ₄ /~ 10	HCl, 0,5 1000/900 165	Ni _{0,2} Co _{1,8} GeO ₄ 8/59/33 0,4	<i>a</i> : 831,2(9)	oktaedrische Kristalle dunkel - lila, 1 mm
158	0/1/3 NiO/Co ₃ O ₄ /~ 0	HCl, 0,5 1000/900 165	Co ₂ GeO ₄ 0/67/33 0,4	<i>a</i> : 832,5(9)	oktaedrische Kristalle tieflila, 2 mm

Abb. 6-10: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System NiO/CoO/GeO₂, Versuchsreihe 6-9; \bullet = Ni²⁺ im SBK (mol%), \bullet = Gitterkonstante a (pm), S = Spinell.

6.4 Das System ZnO/CoO/GeO₂

Abb. 6-11: Phasendiagramm des Systems Mg₂GeO₄- Co₂GeO₄- Zn₂GeO₄ (1200 °C) nach HIROTA et al.^{4c}

Das Phasendiagramm des ZnO/CoO-Systems weist bei ca. 1100 K maximale Löslichkeiten von 5 mol% Co²⁺ in ZnO und bis zu 19 mol% Zn²⁺ in CoO auf.³ Ähnlich geringe Mischbarkeiten waren im quarternären System zu erwarten. Darüber hinaus, existiert im ternären System Zn-Ge-O bei Raumtemperatur und Normaldruck keine dem *meta*-Germanat entsprechende Phase, wohl aber ein *ortho*-Germanat Zn₂GeO₄, das jedoch nicht wie das Cobalt-*ortho*-Germanat in der Spinellstruktur sondern als Phenakit kristallisiert. Deshalb wurde die Frage nach der Mischbarkeit der beiden Randphasen auch schon gestellt.⁴ REINEN^{4a} und HIROTA *et al*^{4c} untersuchten das System Mg₂GeO₄-Co₂GeO₄-Zn₂GeO₄ mit den Randphasen Olivin, Spinell und Phenakit. Sie erstellten ein Phasendiagramm (Abb. 6-11), in dem dargestellt ist, dass sich in dem für diese Arbeit relevanten Bereich zwischen Co₂GeO₄ und Zn₂GeO₄ drei Phasen mit nicht unerheblicher Phasenbreite befinden: eine Cobalt-reiche Spinellphase (Co_{1-x}Zn_x)₂GeO₄, mit x < 0,20), ein inverser Spinell (0,30 < x < 0,45) mit Co²⁺ in Tetraeder- und Okteaderpositionen, und schließlich Phenakit bei Zinkgehalten von mehr als 80 mol% (x > 0,8).

In den Vorversuchen zum Transport des ternären Germanats Zn₂GeO₄ erwiesen sich sowohl relativ niedrige Temperaturen (850/750 °C) bei Verwendung von Chlor als auch das Transportmittel HCl bei höheren Transporttemperaturen (1050/900 °C) als geeignet. Beim gemeinsamen Transport mit Co₃O₄ hingegen führte nur Chlor und ein Gradient von $T_Q = 850$ °C nach $T_S = 750$ °C zur Abscheidung des Germanates, Versuche bei höheren Temperaturen

oder mit dem Transportmittel HCl resultierten statt dessen in der Abscheidung der Mischoxide (Zn, Co)₃O₄ (Fehler! Ungültiger Eigenverweis auf Textmarke.0).

Tab. 6-1: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System ZnO/CoO/GeO₂, Versuchsreihe 6-10; (~ = GeO₂).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol) mol% (Zn ²⁺)	Trmittel, $n \pmod{T_Q/T_S(^\circ C)}$ Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
159	3/1/3 ZnO/ Co ₃ O ₄ /~ 50	Cl ₂ , 0,5 850/750 216	Zn _{0,2} Co _{1,8} GeO ₄ 64/5/31 0,5	<i>a</i> : 831,4(3)	schwarze Kristalle blauer Belag an SBK., lilafarbener Belag am QBK.
160	6/2/3 ZnO/ Co ₃ O ₄ /~ 50	HCl, 0,5 1000/900 168	ZnCo ₂ O ₄ 26/73/0 0,5		dunkle Kristalle
161	6/2/3 ZnO/ Co ₃ O ₄ /~ 50	Cl ₂ , 0,5 900/800 216	$\begin{array}{c} ZnCo_{2}O_{4} \\ 18/82/0 \\ <0,1 \end{array}$		schwarze Kristalle, blauer Belag in gesamter Ampulle

Abb. 6-12: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System ZnO/CoO/GeO₂, Versuchsreihe 6-11; • = Zn^{2+} im SBK (mol%), • = Gitterkonstante *a* (pm), S = Spinell.

In der Reihe $Zn_2GeO_4 - Co_2GeO_4$ wurde nur eine der drei bekannten Phasen gefunden, die Cobalt-reiche Spinellphase $Zn_xCo_{2-x}GeO_4$. Ein Transport der gemischten Germanate konnte erst bei einer ABK-Zusammensetzung mit weniger als 50 mol% Zn^{2+} erreicht werden. Dabei wird eine starke Abreicherung des Zinkanteils im Senkenbodenkörper beobachtet. Bei einer ersten Versuchsreihe war die maximale Menge an gelöstem Zn^{2+} 10 mol% (x = 0,2). Die Versuche mit 60 - 40 mol% Zn²⁺-Gehalt wurden wiederholt, um auch die beschriebene inverse Spinellphase zu finden. Da ein Übergang zum regulären Spinell genau bestimmt werden soll, wurden zwischen die Ansätze noch zwei weitere eingefügt. Diese Versuche führten zu Germanaten mit höheren Zinkgehalten (25 mol%), die aber ebenfalls in der regulären Spinellstruktur kristallisierten (s. Abb. 6-12). Die Bedingungen und Ergebnisse sind in Tab. 6-11 verzeichnet.

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, <i>n</i> (mmol)		(pm)	Bemerkung
	$mol\% (Zn^{2+})$	$T_{\rm Q}/T_{\rm S}(^{\circ}{\rm C})$ Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg \cdot h ⁻¹)		
162	6/0/3	Cl ₂ , 0,5	Zn_2GeO_4 (Phenakit)	a: 1423 1(6)	Transport in Form you
	$ZnO/Co_3O_4/\sim$	850/750		c: 952,3(5)	weißem,
1.62	100	172,25	0,4		"kristallartigem" Belag
163	5,4/0,2/3 ZnO/Co ₃ O ₄ /~ 90	850/750 172,25	kein Transport		blauer, deckender Belag in gesamter Ampulle
164	4,8/0,4/3 ZnO/Co ₃ O ₄ /~ 80	Cl ₂ , 0,5 850/750 172,25	kein Transport		blauer, deckender Belag in gesamter Ampulle
165	4,2/0,6/3 ZnO/Co ₃ O ₄ /~ 70	Cl ₂ , 0,5 850/750 172,25	kein Transport		blauer, deckender Belag in gesamter Ampulle
166	3,6/0,8/3 ZnO/Co ₃ O ₄ /~ 60	Cl ₂ , 0,5 850/750 172,25	kein Transport		blauer, deckender Belag in gesamter Ampulle
167	3/1/3 ZnO/Co ₃ O ₄ /~ 50	Cl ₂ , 0,5 850/750 172,25	Zn _{0,2} Co _{1,8} GeO ₄ 4/55/41, 8/58/33 0,1	<i>a</i> : 831,7(9)	wenige dunkle Kristalle
168	2,4/1,2/3 ZnO/Co ₃ O ₄ /~ 40	Cl ₂ , 0,5 850/750 172,25	Zn _{0,2} Co _{1,8} GeO ₄ 8/58/33 0,3	<i>a</i> : 831,6(15)	wenige dunkle Kristalle, zunehmender Quarzangriff
169	1,8/1,4/3 ZnO/Co ₃ O ₄ /~ 30	Cl ₂ , 0,5 850/750 172,25	Zn _{0,2} Co _{1,8} GeO ₄ 7/58/33 0,6	<i>a</i> : 833,1(4)	dunkle Kristalle, 0,5 mm
170	1,2/1,6/3 ZnO/Co ₃ O ₄ /~ 20	Cl ₂ , 0,5 850/750 172,25	Zn _{0.2} Co _{1.8} GeO ₄ 6/59/35, 13/53/33 0,6	<i>a</i> : 833,1(4)	dunkle Kristalle, 0,5 mm, deckender Belag
171	0,6/1,8/3 ZnO/Co ₃ O ₄ /~ 10	Cl ₂ , 0,5 850/750 172,25	Zn _{0,1} Co _{1,9} GeO ₄ 2,6/56/41, 4/63/33 1,1	<i>a</i> : 831,2(3)	dunkle Kristalle, 0,5 mm, deckender Belag
172	0/2/3 ZnO/Co ₃ O ₄ /~ 0	Cl ₂ , 0,5 850/750 172,25	Co ₂ GeO ₄ 0/66/33 0,7	<i>a</i> : 831,1(6)	oktaedrische Kristalle dunkel, 2 mm

Tab. 6-11: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System ZnO/CoO/GeO₂, Versuchsreihe **6-11**; (~ = GeO₂).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Zn ²⁺)	Trmittel, <i>n</i> (mmol) <i>T</i> _Q / <i>T</i> _S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
173	3,6/0,8/3 ZnO/Co ₃ O ₄ /~ 60	Cl ₂ , 0,5 850/750 216	$\begin{array}{c} Zn_{0.5}Co_{1.5}GeO_4 \\ 17/50/33 \\ 0,1 \end{array}$	<i>a</i> : 833,3(3)	dunkle oktaedrische Kristalle
174	3,4/0,87/3 ZnO/Co ₃ O ₄ /~ 57	Cl ₂ , 0,5 850/750 216	Zn _{0,5} Co _{1,5} GeO ₄ 17/48/34 0,1	<i>a</i> : 832,7(4)	dunkle oktaedrische Kristalle
175	3,2/0,93/3 ZnO/Co ₃ O ₄ /~ 53	Cl ₂ , 0,5 850/750 216	$\begin{array}{c} Zn_{0,2}Co_{1,8}GeO_4\\ 8/56/34\\ 0,9\end{array}$	<i>a</i> : 832,5(12)	dunkle verzerrt- oktaedrische Kristalle
176	3/1/3 ZnO/Co ₃ O ₄ /~ 50	Cl ₂ , 0,5 850/750 216	Zn _{0,3} Co _{1,7} GeO ₄ 11/55/34 0,9	<i>a</i> : 834,2(25)	dunkle oktaedrische Kristalle
177	2,8/1,07/3 ZnO/Co ₃ O ₄ /~ 47	Cl ₂ , 0,5 850/750 216	Zn _{0,2} Co _{1,8} GeO ₄ 9/54/37 0,6	<i>a</i> : 831,1(7)	dunkle oktaedrische Kristalle
178	2,6/1,13/3 ZnO/Co ₃ O ₄ /~ 43	Cl ₂ , 0,5 850/750 216	Zn _{0,2} Co _{1,8} GeO ₄ 7/55/38 0,5	<i>a</i> : 831,6(4)	dunkle oktaedrische Kristalle, 0,5 mm
179	2,4/1,2/3 ZnO/Co ₃ O ₄ /~ 40	Cl ₂ , 0,5 850/750 216	Zn _{0,1} Co _{1,9} GeO ₄ 6/59/36 0,8	<i>a</i> : 829,1(5)	dunkle oktaedrische Kristalle

6.5 Zusammenfassung von Kapitel 6

Im System MnO/Co₃O₄/GeO₂ konnte mittels Chemischen Transports bei 900/700 °C die Bildung der Mischkristallreihe (*Mn*, *Co*)*GeO*₃ beobachtet werden. Diese Mischphasen werden unabhängig vom eingesetzten M^{2+}/Ge^{4+} -Verhältnis gebildet. Eine Reihe (Mn, Co)₂GeO₄ konnte nicht gefunden werden. Bei höheren Temperaturen wurden nur die Oxide (*Mn*, *Co*)₃O₄ abgeschieden.

Ein weiteres Beispiel für eine Reihe mit vollständiger Löslichkeit ist $(Fe, Co)_2 GeO_4$, wohingegen die Germanate FeGeO₃ und CoGeO₃ trotz gleicher Struktur und vergleichbarem Ionenradius von Fe²⁺ und Co²⁺ eine solche Mischkristallreihe nicht zeigten. Die Transportbedingungen waren die selben wie im vorherigen System.

Im System NiO/CoO/GeO₂ existiert zwischen Ni_2GeO_4 und Co_2GeO_4 eine vollständige Mischbarkeit ($T_Q = 900$ $T_S = 700$, Transportmittel: HCl). Bei äquimolaren Ausgangsbodenkörper-Zusammensetzungen, bezogen auf das Verhältnis $n(M^{2+})/n(GeO_2)$, beobachtet man die Bildung von Phasen mit begrenzter Löslichkeit und unterschiedlichen Randphasen: (Ni, Co)₂GeO₄ und (Ni, Co)GeO₃.

Zwischen Zn_2GeO_4 und Co_2GeO_4 konnten lediglich auf der Cobalt-reichen Seite quarternäre Phasen mit einem maximalen Zn^{2+} -Gehalt von 25 %gefunden werden.

Literatur zu Kapitel 6 :

- ¹ B. Bergman, J. Aagren, J. Am. Ceram. Soc., **1986**, 69 (10), 248-250.
- ² S. Locmelis, *Dissertation*, Universität Hannover, **1999**.
- ³ S Locmelis, M. Binnewies, Z. anorg. allg. Chem., **1999**, 625, 1573-7.
- ^{4a} D. Reinen, Z. anorg. allg. Chem., **1968**, 356, 172-181.
- ^{4b} Preudhomme, J., Tarte, P., J. Solid State Chem., **1980**, 35, 272–277.
- ^{4c} K. Hirota, M. Ohtani, N. Mochida, A. Ohtsuka, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, **1989**, 97(1), 8-15.
7 Chemischer Transport in den Systemen M₂^{III}O₃/In₂O₃/GeO₂

Als Ausgangsmaterial wurde hier neben dem jeweiligen Sesquioxid M^{III}₂O₃ Indium(III)-oxid und Germanium(IV)-oxid verwendet. Erläuternd sei darauf hingewiesen, dass bei der Angabe der Größe *mol% (M³⁺)* nur das Verhältnis der dreiwertigen Kationen berücksichtigt wurde, Ge⁴⁺ blieb dabei unberücksichtigt. Einführend einige Bemerkungen zu den Tabellen dieses Kapitels: Die Spalten 2 bis 4 sind mehrzeilig angelegt. Die zweite Spalte (ABK) beschreibt Art und Zusammensetzung des Ausgangsbodenkörpers. Dabei ist in der ersten Zeile die Stoffmenge der Oxide verzeichnet, in der zweiten die Art der eingesetzten Oxide, in der dritten der relative Anteil von M³⁺ an den dreiwertigen Kationen. Aus der nächsten Spalte (Transportbedingungen) erfährt man die genauen Bedingungen des Transportexperiments, und zwar Transportmittel und –menge, Transporttemperaturen sowie Transportdauer. In der vierten Spalte, SBK, sind die analytischen Ergebnisse verzeichnet (Phase, Zusammensetzung nach EDX/RFA, Transportrate). Die Gitterkonstanten des Senkenbodenkörpers können in der nachfolgenden Spalte abgelesen werden. Die letzten Spalte listet Kristallfarbe und weitere Bemerkungen auf.

7.1 Das System V₂O₃/In₂O₃/GeO₂

In den Versuchen zum Transport ternärer Verbindungen wurde die Abscheidung eines Vanadiumgermanats nur bei Verwendung von HCl als Transportmittel im Temperaturgradienten von $T_Q = 1000$ nach $T_S = 900$ °C beobachtet, doch genau bei diesen Bedingungen kann nach der Zugabe von Indium(III)-oxid zum Ausgangsbodenkörper nur noch Vanadiumoxid im Senkenbodenkörper Eine Erhöhung gefunden werden. der Transporttemperaturen um 100 °C führte zur Bildung des Indiumgermanats In₂Ge₂O₇, in dem Vanadium zu 17 mol% gelöst ist. Das Verhältnis der Stoffmengen an dreiwertigen Kationen zu Germanium(IV)-oxid hat zwischen 1:1 und 2:1 keinen Einfluss auf den Vanadium-Gehalt im abgeschiedenen (V, In)2Ge2O7. Die Bildung eines Germanates der Summenformel M^{III}₂GeO₅ wurde nicht beobachtet (s. Tab. 7-1).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol)	Trmittel, n (mmol)		(pm)	Bemerkung
	mol% (V ³⁺)	$T_{\rm Q}/T_{\rm S}$ (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)		
378	1,5/1,5/3 V ₂ O ₃ /In ₂ O ₃ /~	HCl, 0,5 1000/900	V-O 100/0/0 0,3		dunkle Kristalle
379	0,75/0,75/3 V ₂ O ₃ /In ₂ O ₃ /~ 50	HCl, 0,5 1100/1000 147	V-O, V _{0,3} In _{1,7} Ge ₂ O ₇ 81/1/15, 8/40/52 0,1	<i>In</i> ₂ <i>Ge</i> ₂ <i>O</i> ₇ <i>a</i> : 668,1(8) <i>b</i> : 877,4(15), β:102,7° <i>c</i> : 491,9(8)	dunkelbraune Kristalle, < 0,5 mm z.T. gut ausgebildete Nadeln
380	1,5/1,5/3 V ₂ O ₃ /In ₂ O ₃ /~	HCl, 0,5 1100/1000	V _{0,3} In _{1,7} Ge ₂ O ₇ 8/40/52 <i>0,1</i>	<i>a</i> : 660,7(1) <i>b</i> : 871,4(1), β:102,5° <i>c</i> : 488,4(1)	klare, gelbbraune kleine Kristalle

Tab. 7-1: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System $V_2O_3/In_2O_3/GeO_2$, Versuchsreihe 7-1; (~ = GeO₂).

Entsprechend den Ergebnissen der Vorversuche wurden zwei Versuchsreihen durchgeführt: Unter Verwendung von HCl und Anlegen eines Temperaturgradienten von $T_Q = 1100$, $T_S = 1000$ °C wurden 1:1- sowie 2:1-Gemische aus (V₂O₃+In₂O₃) und GeO₂ transportiert. Dabei wurden V₂O₃ und In₂O₃ in 10 mol%-Schritten gegeneinander ausgetauscht. Eine Abhängigkeit zwischen den Zusammensetzungen von Ausgangs- und Senkenbodenkörper konnte nicht gefunden werden. Lediglich bei vier Transportversuchen wurde bei einer sehr geringen Transportrate (bis max. 0,1 mg·h⁻¹) in Bezug auf das Germanat (s. Tab. 7-2) eine Abscheidung von (V, In)₂Ge₂O₇ beobachtet. Bei den übrigen Versuchen fand entweder kein Transport statt oder es wurden Vanadiumoxide anstelle von quarternären Verbindungen abgeschieden.

Tab. 7-2: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System $V_2O_3/In_2O_3/GeO_2$,Versuchsreihe 7-2; (~ = GeO_2).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol)	Trmittel, <i>n</i> (mmol) T_0/T_S (°C)	Zusammensetzung (mol%)	(pm)	Bemerkung
	mol% (V ³⁺)	Trdauer (h)	Transportrate $(mg \cdot h^{-1})$		
381	0/1,5/3 V ₂ O ₃ /In ₂ O ₃ /~ 0	HCl, 0,5 1100/1000 166	kein Transport		
382	0,15/1,35/3 V ₂ O ₃ /In ₂ O ₃ /~ 10	HCl, 0,5 1100/1000 166	V _{0,3} In _{1,7} Ge ₂ O ₇ 7/45/48, 6/45/47 <0,1	<i>a</i> : 666,9(13) <i>b</i> : 873,3(13), β:102,1° <i>c</i> : 489,2(7)	gelbbraune Kristalle, < 0,5 mm,

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, $n \pmod{2}$		(pm)	Bemerkung
	mol% (V ³⁺)	$T_Q/T_S(^{\circ}C)$ Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)		
383	0,3/1,2/3 V ₂ O ₃ /In ₂ O ₃ /~ 20	HCl, 0,5 1100/1000 166	V-O 92/0/5 0,2		dunkelbraune Kristalle, < 0,5 mm
384	0,45/1,05/3 V ₂ O ₃ /In ₂ O ₃ /~ 30	HCl, 0,5 1100/1000 166	V ₆ O ₁₁ 94/0/4, 92/3/5 0,3		dunkelbraune Kristalle, < 0,5 mm
385	0,6/0,9/3 V ₂ O ₃ /In ₂ O ₃ /~ 40	HCl, 0,5 1100/1000 166	V-O 96/0/0, 93/1/6 0,4		dunkelbraune Kristalle, < 0,5 mm
386	0,75/0,75/3 V ₂ O ₃ /In ₂ O ₃ /~ 50	HCl, 0,5 1100/1000 147	V-O, V _{0,3} In _{1,7} Ge ₂ O ₇ 81/1/15, 8/40/52 0,5	<i>a</i> : 668,1(8) <i>b</i> : 877,4(15), β:102,7° <i>c</i> : 491,9(8)	dunkelbraune Kristalle, < 0,5 mm z.T. gut ausgebildete Nadeln
387	0,9/0,6/3 V ₂ O ₃ /In ₂ O ₃ /~ 60	HCl, 0,5 1100/1000 166	V ₆ O ₁₁ 92/0/8, 93/1/6 0,7		dunkelbraune Kristalle, < 0,5 mm
388	1,05/0,45/3 V ₂ O ₃ /In ₂ O ₃ /~ 70	HCl, 0,5 1100/1000 166	V-O 83/4/14, 93/1/6 0,9		dunkelbraune Kristalle, < 0,5 mm z.T. gut ausgebildete Nadeln
389	1,2/0,3/3 V ₂ O ₃ /In ₂ O ₃ /~ 80	HCl, 0,5 1100/1000 166	V ₆ O ₁₁ 72/3/26, 79/1/20 0,8		dunkelbraune Kristalle, < 0,5 mm z.T. gut ausgebildete Nadeln
390	1,35/0,15/3 V ₂ O ₃ /In ₂ O ₃ /~ 90	HCl, 0,5 1100/1000 166	? 74/6/20, 91/1/8 1,0		dunkelbraune Kristalle, 0,5 mm, z. T. > 1 mm
391	1,5/0/3 V ₂ O ₃ /In ₂ O ₃ /~ 100	HCl, 0,5 1100/1000 218	97/0/3 1,1		dunkelbraune Kristalle, > 1 mm
392	0/3/3 V ₂ O ₃ /In ₂ O ₃ /~ 0	HCl, 0,5 1100/1000 168,5	Ampulle geplatzt		
393	0,3/2,7/3 V ₂ O ₃ /In ₂ O ₃ /~ 10	HCl, 0,5 1100/1000 168,5	Ampulle geplatzt		
394	0,6/2,4/3 V ₂ O ₃ /In ₂ O ₃ /~ 20	HCl, 0,5 1100/1000 168,5	Ampulle geplatzt		
395	0,9/2,1/3 V ₂ O ₃ /In ₂ O ₃ /~ 30	HCl, 0,5 1100/1000 168,5	V-O 91/1/8 0,5		anthrazitfarbene Kristalle
396	1,2/1,8/3 V ₂ O ₃ /In ₂ O ₃ /~ 40	HCl, 0,5 1100/1000 168,5	V-O 91/3/6 0,5		anthrazitfarbene Kristalle
397	1,5/1, 5/3 V ₂ O ₃ /In ₂ O ₃ /~ 50	HCl, 0,5 1100/1000 168,5	V-O, V _{0,2} In _{1,8} Ge ₂ O ₇ 95/1/4, 4/43/53 0,2	<i>In</i> ₂ <i>Ge</i> ₂ <i>O</i> ₇ <i>a</i> : 665,0(2) <i>b</i> : 876,9(2), β:102,5° <i>c</i> : 492,3(1)	Ampulle geplatzt z.T. glänzende Plättchen, anthrazit
398	1,8/1,2/3 V ₂ O ₃ /In ₂ O ₃ /~ 60	HCl, 0,5 1100/1000 168,5	V-O 72/5 _{Fe} /20/4 0,3		anthrazitfarbene Kristalle

Exp.	ABK n (mmol)	Transportbedingungen: Trmittel, <i>n</i> (mmol) $T_{\Omega}/T_{S}(^{\circ}C)$	SBK Zusammensetzung (mol%)	Gitterkonstanten (pm)	Kristallfarbe, Bemerkung
	mol% (V ³⁺)	Trdauer (h)	Transportrate $(mg \cdot h^{-1})$		
399	2,1/0,9/3 V ₂ O ₃ /In ₂ O ₃ /~ 70	HCl, 0,5 1100/1000 168,5	V-O 88/6 _{Fe} /1/5 0,6		anthrazitfarbene Kristalle
400	2,4/0,6/3 V ₂ O ₃ /In ₂ O ₃ /~ 80	HCl, 0,5 1100/1000 168,5	V-O 70/10 _{Fe} /1/2 0,8		anthrazitfarbene Kristalle
401	2,7/0,3/3 V ₂ O ₃ /In ₂ O ₃ /~ 90	HCl, 0,5 1100/1000 168,5	V-O, V _{0,1} In _{1,9} Ge ₂ O ₇ 97/1/2, 2/43/55 0,3	<i>In</i> ₂ <i>Ge</i> ₂ <i>O</i> ₇ <i>a</i> : 668,6(4) <i>b</i> : 877,2(4), β:102,6° <i>c</i> : 492,0(3)	Ampulle geplatzt dkl. anthrazitfarbene Kristalle, weiche Konsistenz
402	3/0/3 V ₂ O ₃ /In ₂ O ₃ /~ 100	HCl, 0,5 1100/1000 168,5	V-O 82/1/17 1,3		anthrazitfarbene Kristalle

7.2 Das System Cr₂O₃/In₂O₃/GeO₂

Da in den Versuchen zum Transport der ternären Germanate die Abscheidung eines Chromgermanates nicht gelang, wurde bei der Wahl der Transportbedingungen auf die Erfahrungen von KRUG¹ zurückgegriffen, der im Transportgradienten von $T_Q = 950$ °C nach $T_S = 850$ °C mit Chlor Cr₂O₃ und GeO₂ gemeinsam abscheiden konnte. Unter diesen Bedingungen konnte ein Transport des Indiumgermanats In₂Ge₂O₇ erreicht werden, daher sollte auch ein gemeinsamer Transport aller Komponenten möglich sein.

Abb. 7-1: Durch Chemischen Transport dargestelltes (In, Cr)₂Ge₂O₇.

Tatsächlich wurde bei allen Ausgangsbodenkörper-Zusammensetzungen, die Indium(III)-oxid enthielten, der Transport eines Germanates erzielt, lediglich die Randphase Chromgermanat konnte nicht erhalten werden. Die gelöste Menge an Cr^{3+} lag im gebildeten $(Cr_x In_{1-x})_2 Ge_2 O_7$ zwischen 0,034 und 0,052 (s. Abb. 7-2). Der Wert der Gitterkonstante *a* schwankt zwischen 662,9 und 664,8, damit unterscheidet sich der Wert deutlich von dem, der im reinen Indium(III)-germanat gefunden wird (668,9 pm). In der graphischen Darstellung, Abb. 7-2, sind diese Ergebnisse noch einmal illustriert. Auch optisch ist der Einbau von Chrom zu erkennen: Die abgeschiedenen Kristalle waren nicht farblos, sondern lila-durchscheinend, z. T. von oktaedrischer Gestalt, und häufig sternförmig an der Quarzwand zusammengewachsen (s.Abb. 7-1). Es wurden für diese Substanzklasse ungewöhnlich hohe Transportraten mit Werten von bis zu 2,1 mg·h⁻¹ gefunden.

Abb. 7-2: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System $Cr_2O_3/In_2O_3/GeO_2$, Versuchsreihe 7-3;• = Cr^{3+} im SBK (mol%), • = Gitterkonstante *a* (pm), T = Thortveitit-Phase.

Tab. 7-3: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System $Cr_2O_3/In_2O_3/GeO_2$,Versuchsreihe 7-3; (~ = GeO_2).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Cr ³⁺)	Trmittel, <i>n</i> (mmol) <i>T</i> _Q / <i>T</i> _S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
403	$0/1,5/3 \ Cr_2O_3/In_2O_3/\sim 0$	Cl ₂ , 0,5 950/850 205	In ₂ Ge ₂ O ₇ 0/42/57 1,7	<i>a</i> : 668,9(6) <i>b</i> : 878,8(5), β:102,5° <i>c</i> : 490,9(4)	farblose Kristalle, < 0,5 mm

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Cr ³⁺)	Trmittel, <i>n</i> (mmol) <i>T</i> _Q / <i>T</i> _S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
404	0,15/1,35/3 Cr ₂ O ₃ /In ₂ O ₃ /~ 10	Cl ₂ , 0,5 950/850 205	Cr _{0.1} In _{1.9} Ge ₂ O ₇ 2/40/58, 3/47/50 2,1	<i>a</i> : 663,4(2) <i>b</i> : 875,9(3), β:102,4° <i>c</i> : 491,9(1)	lilafarbene Kristalle, plättchenförmig, sternartig zusammengewachsen
405	$0,3/1,2/3 \\ Cr_2O_3/In_2O_3/\sim 20$	Cl ₂ , 0,5 950/850 205	Cr _{0.2} In _{1.8} Ge ₂ O ₇ 3/43/54, 5/45/50 1,4	<i>a</i> : 663,2(3) <i>b</i> : 875,9(3), β:102,4° <i>c</i> : 492,1(1)	lilafarbene Kristalle, plättchenförmig
406	0,45/1,05/3 Cr ₂ O ₃ /In ₂ O ₃ /~ 30	Cl ₂ , 0,5 950/850 169,5	$\begin{array}{c} Cr_{0,2}In_{1,8}Ge_{2}O_{7}\\ 0,1/48/52m,\ 2/46/52s,\\ 4/46/50\\ 1,5\ (m),\ 1,0(s) \end{array}$	<i>a</i> : 664,8(10) <i>b</i> : 877,4(9), β:102,5° <i>c</i> : 490,8(4)	lilafarbene Kristalle, z. T. oktaedrisch
407	0,6/0,9/3 Cr ₂ O ₃ /In ₂ O ₃ /~ 40	Cl ₂ , 0,5 950/850 169,5	Cr _{0.2} In _{1.8} Ge ₂ O ₇ , GeO ₂ 2/41/57, 4/46/50 1,8	<i>a</i> : 662,7(4) <i>b</i> : 875,5(3), β:102,4° <i>c</i> : 491,7(1)	lilafarbene Kristalle, plättchenförmig und oktaedrisch
408	0,75/0,75/3 Cr ₂ O ₃ /In ₂ O ₃ /~ 50	Cl ₂ , 0,5 950/850 205	Cr _{0,2} In _{1,8} Ge ₂ O ₇ 2/41/56, 4/46/50 1,4	<i>a</i> : 664,3(8) <i>b</i> : 877,2(7), β:102,5° <i>c</i> : 491,0(3)	lilafarbene Kristalle, plättchenförmig und oktaedrisch
409	0,9/0,6/3 Cr ₂ O ₃ /In ₂ O ₃ /~ 60	Cl ₂ , 0,5 950/850 216	Cr _{0.2} In _{1.8} Ge ₂ O ₇ , GeO ₂ 1,8/43/56, 4/46/50 1,0	<i>a</i> : 663,1(6) <i>b</i> : 875,0(4), β:102,5° <i>c</i> : 491,7(2)	lilafarbene Kristalle, plättchenförmig und oktaedrisch
410	1,05/0,45/3 Cr ₂ O ₃ /In ₂ O ₃ /~ 70	$\begin{array}{c} {\rm Cl}_2,0,5\\ 950/850\\ 205\end{array}$	$\begin{array}{c} Cr_{0,2}In_{1,8}Ge_{2}O_{7},GeO_{2}\\ 1/42/57,4/46/50\\ 0,9 \end{array}$	<i>a</i> : 663,8(3) <i>b</i> : 876,3(2), β:102,4° <i>c</i> : 492,1(1)	lilafarbene Kristalle
411	1,2/0,3/3 Cr ₂ O ₃ /In ₂ O ₃ /~ 80	Cl ₂ , 0,5 950/850 216	$\begin{array}{c} Cr_{0,2}In_{1,8}Ge_{2}O_{7},GeO_{2}\\ 7/48/46,4/46/50\\ 0,4 \end{array}$	<i>a</i> : 664,5(7) <i>b</i> : 876,7(4), β:102,4° <i>c</i> : 492,5(2)	lilafarbene Kristalle, weißer Belag in gesamter Ampulle
412	1,35/0,15/3 Cr ₂ O ₃ /In ₂ O ₃ /~ 90	Cl ₂ , 0,5 950/850 169,5	Cr _{0.2} In _{1.8} Ge ₂ O ₇ , GeO ₂ 0/0/100, 5/45/50 0,5	<i>a</i> : 662,9(25) <i>b</i> : 876,9(15), β:102,4° <i>c</i> : 490,9(6)	lilafarbene Kristalle, weißer Belag in gesamter Ampulle
413	1,5/0/3 Cr ₂ O ₃ /In ₂ O ₃ /~ 100	Cl ₂ , 0,5 950/850 169,5	GeO ₂ 0/0/100 0,2		farblose Kristalle

7.3 Das System Mn₂O₃/In₂O₃/GeO₂

In den Vorversuchen konnte gezeigt werden, dass im Temperaturgradienten 1000/800 °C mit HCl als Transportmittel und einer äquimolaren Mischung von Mn^{3+} und Ge^{4+} -Oxiden im Ausgangsbodenkörper an der Senkenseite das ternäre Germanat $Mn_2Ge_2O_7$ abgeschieden wird. Fügt man dem Oxid-Gemisch In_2O_3 zu, so erhält man In^{3+} -dotiertes $Mn_2Ge_2O_7$ (8 mol% In^{3+} -Gehalt) einerseits und darüber hinaus das entsprechende Mn^{3+} -dotierte Indiumgermanat ($Mn_xIn_{1-x})_2Ge_2O_7$ mit einer gelösten Manganmenge von x = 0,06. Im Temperatugradienten von T_Q = 900 nach T_S = 700 °C kann hingegen neben reinem Indiumgermanat nur die Mangan-reiche Phase gefunden werden. Die Versuchsbedingungen und Ergebnisse sind in Tab. 7-4 zusammengefasst.

Tab. 7-4: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System $Mn_2O_3/In_2O_3/GeO_2$,Versuchsreihe 7-4; (~ = GeO_2).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Mn ³⁺)	Trmittel, $n \pmod{T_Q/T_S}$ (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
414	1,5/1,5/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 50	HCl, 0,5 1000/800 168	$\begin{array}{c} Mn_{1,85}In_{0,15}Ge_{2}O_{7},\\ Mn_{0,13}In_{1,87}Ge_{2}O_{7}\\ 59/5/36,\ 4/56/37\\ 0 < \infty \end{array}$	Mn ₂ Ge ₂ O ₇ : nicht indizierbar; In ₂ Ge ₂ O ₇	klare braune und blaue Kristalle, < 0,5 mm
			0,6	<i>a</i> : 662,9(2) <i>b</i> : 874,7(2), β:102,5° <i>c</i> : 492,5(1)	
415	1,5/1,5/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 50	HCl, 0,5 900/700 168	Mn _{1,81} In _{0,19} Ge ₂ O ₇ , In ₂ Ge ₂ O ₇ 49/5/46, 0/52/48 0,2	nicht indizierbar	klare braune und farblose Kristalle, < 0,5 mm

Abb. 7-3: Durch Chemischen Transport dargestelltes (Mn, In)₂Ge₂O₇.

Um die Abhängigkeit der Löslichkeiten von In^{3+} und Mn^{3+} von den Zusammensetzungen der Ausgangsbodenkörper zu untersuchen, ist die Verwendung des größeren Temperaturgradienten besser geeignet. Es wurden zwei Versuchsreihen durchgeführt, eine mit einem M^{III}:Ge^{IV}-Verhältnis von 1:1, die zweite mit einem doppelt so hohen Anteil an dreiwertigen Kationen. Im Einklang mit den Versuchen zum Transport im ternären System In_2O_3/GeO_2 war bei diesen Bedingungen eine Abscheidung des Indiumgermanats nicht zu beobachten, erst oberhalb einer Mindestmenge von 20 mol% Mn³⁺ im Ausgangsbodenkörper

konnte ein Transport beobachtet werden. Dabei bewirkte die Erhöhung des Anteils der dreiwertigen Kationen den Transport von uneinheitlicherem Material und geringere Transportraten bei niedrigen Mangan(III)-oxid-Gehalten. Erst oberhalb eines Mn₂O₃/In₂O₃-Verhältnissses von 1:1 wurde eine Abscheidung von Kristallen gefunden. Es konnten Löslichkeiten von wenigen Prozent bis hin zu einer äquimolaren Verteilung der dreiwertigen Kationen im Senkenbodenkörper gemessen werden, aber eine Abhängigkeit von der ursprünglichen Zusammensetzung vor dem Transport war dabei nicht zu verzeichnen. Das Mn^{3+} -dotierte $In_2Ge_2O_7$ zeigte im Gegensatz zum braunen Mn_2GeO_7 eine blaue Farbe, wie in Abb. 7-3 dargestellt. Trotz der analogen Summenformel unterscheiden sich die beiden Phasen in ihrer Kristallstruktur: Mn₂Ge₂O₇ kristallisiert zwar ebenfalls monoklin. die Gitterkonstanten und Winkel unterscheiden sich aber wesentlich von denen des Indiumgermanats (a/b/c, β (Mn₂Ge₂O₇)²: 523,9/927,2/1432,5 pm, 96,7 °; a/b/c, β (In₂Ge₂O₇)³: 665,8/878,4/492,7 pm, 102,5 °), so dass sie im Pulverdiffraktogramm zu unterscheiden sind. Bei einigen Transportversuchen konnte noch eine weitere Phase gefunden werden, die sich vom Braunit (Mn₇SiO₁₂) ableiten läßt, (Mn, In)₇GeO₁₂ mit einem Indium-Gehalt von bis zu 10 mol%. Dieses Material zeigt einen Sauerstoffunterschuss, wenn man von dreiwertigen Kationen bzw. vierwertigem Germanium ausgeht und kann als 3·M^{III}₂O₃·M^{II}O·GeO₂ formuliert werden. Die Struktur ist tetragonal innenzentriert und gehört der Raumgruppe I 41/acd an. Optisch unterscheidet es sich kaum vom Indium-dotierten Mangangermanat Mn₂Ge₂O₇, lediglich die Braunfärbung ist etwas intensiver.

Tab. 7-5:	Versuchsbedingungen	und	Ergebnisse	zum	Chemischen	Transport	im	System	$Mn_2O_3/In_2O_3/$	GeO ₂ ,
Versuchsre	eihe 7-5; (~ = GeO ₂).									

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Mn ³⁺)	Trmittel, $n \pmod{T_Q/T_S(^\circ C)}$ Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
416	0/1,5/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 0	HCl, 0,5 1000/800 140,5	0/0/0/100 _{Si} >>0,1	Menge zu gering für Pulverdiff untersuchungen	starker Quarzangriff
417	0,15/1,35/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 10	HCl, 0,5 1000/800 140,5	0/50/50 >>0,1	Menge zu gering für Pulverdiff untersuchungen	klare blaue Kristalle, < 0,5 mm
418	0,3/1,2/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 20	HCl, 0,5 1000/800 205	$\begin{array}{c} Mn_{1,03}In_{0,97}Ge_{2}O_{7},\\ Mn_{0,08}In_{1,92}Ge_{2}O_{7}\\ 28/26/46,\ 2/50/48\\ 0,1 \end{array}$	<i>In</i> ₂ <i>Ge</i> ₂ <i>O</i> ₇ <i>a</i> : 665,1(2) <i>b</i> : 876,8(2), β:102,6° <i>c</i> : 491,4(2)	klare braune und blaue Kristalle, < 0,5 mm

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, <i>n</i> (mmol)	_	(pm)	Bemerkung
	mol% (Mn ³⁺)	T_Q/T_S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)		
419	0,45/1,05/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 30	HCl, 0,5 1000/800 205	$\begin{array}{c} In_2Ge_2O_7 \\ 0/50/50 \\ >0.1 \end{array}$	<i>a</i> : 665,2(2) <i>b</i> : 877,5(3), β:102,5° <i>c</i> : 492,5(1)	klare farblose Kristalle, < 0,5 mm
420	0,6/0,9/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 40	HCl, 0,5 1000/800 205	$\begin{array}{l} Mn_{1,31}In_{0,69}Ge_2O_7,\\ Mn_{0,08}In_{1,92}Ge_2O_7\\ 34/18/48,\ 2/48/50\\ >0,1 \end{array}$	nicht indizierbar	klare braune und blaue Kristalle, < 0,5 mm
421	0,75/0,75/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 50	HCl, 0,5 1000/800 216	50/0/50 >>0,1	Menge zu gering für Pulverdiff untersuchungen	klare braune und blaue Kristalle, < 0,5 mm
422	0,9/0,6/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 60	HCl, 0,5 1000/800 205	$\begin{array}{c} Mn_{0,13}In_{1,87}Ge_{2}O_{7},\\ 3/41/56\\ >0,1 \end{array}$	<i>a</i> : 665,1(2) <i>b</i> : 878,5(4), β:102,5° <i>c</i> : 491,5(1)	klare blaue Kristalle, < 0,5 mm
423	1,05/0,45/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 70	HCl, 0,5 1000/800 205	Mn ₂ Ge ₂ O ₇ 46/0/54 0,2	<i>a</i> : 519,7(14) <i>b</i> : 924,6(11), β:97,3° <i>c</i> : 1431,3(12)	klare braune Kristalle, winzig
424	1,2/0,3/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 80	HCl, 0,5 1000/800 205	$\begin{array}{c} Mn_{1,96}In_{0,04}Ge_{2}O_{7},\\ Mn_{1,7}In_{0,3}GeO_{12}\\ 49/1/50,\ 80/4/15\\ 0,4 \end{array}$	nicht indizierbar	klare braune Kristalle, < 0,5 mm
425	1,35/0,15/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 90	HCl, 0,5 1000/800 205	GeO ₂ , Mn _{1.6} In _{0.4} GeO ₁₂ 0/0/100, 78/5/17 >>0,1	nicht indizierbar	klare blaue und braune Kristalle, < 0,5 mm, weißer Belag und Quarzangriff
426	1,5/0/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 100	HCl, 0,5 1000/800 205	Mn ₂ Ge ₂ O ₇ 40/0/60 1,5	<i>a</i> : 517,2(3) <i>b</i> : 934,6(14), β:97,3° <i>c</i> : 1430,2(6)	klare braune Krise., belegt
427	0/3/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 0	HCl, 0,5 1000/800 161	Kein Transport		
428	0,3/2,7/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 10	HCl, 0,5 1000/800 161	Kein Transport		
429	0,6/2,4/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 20	HCl, 0,5 1000/800 161	Analysen nicht möglich << 0,1		blaue und schwarze Nadeln und Pulver, < 0,5 mm
					nicht isolierbar
430	0,9/2,1/3 Mn ₂ O ₃ /In ₂ O ₃ /~	HCl, 0,5 1000/800	Analysen nicht möglich	Menge zu gering für Pulverdiff untersuchungen	schwarzes Pulver
431	1.2/1.8/3	HCl. 0.5	Analysen nicht möglich	uniersuchungen	blaue und schwarze
	$Mn_2O_3/In_2O_3/~$	1000/800 161	<< 0,1		Nadeln und Pulver, < 0,5 mm nicht isolierbar
432	1,5/1,5/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 50	HCl, 0,5 1000/800 161	Mn ₂ Ge ₂ O ₇ 50/0/50 0,2	nicht indizierbar	blaue und schwarze Nadeln und Pulver, < 0,5 mm

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol)	Trmittel, $n \pmod{1}$	7 (10()	(pm)	Bemerkung
	mol% (Mn ³⁺)	$T_Q/T_S(^{\circ}C)$ Trdauer (h)	Transportrate (mg·h ⁻¹)		
433	1,8/1,2/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 60	HCl, 0,5 1000/800 161	$\begin{array}{l} Mn_{0,22}In_{1,78}Ge_{2}O_{7},\\ Mn_{1,7}In_{0,3}GeO_{12}\\ 7/55/38,\ 74/8/18\\ >0,1 \end{array}$	<i>Mn₇GeO₁₂:</i> <i>a</i> : 955 <i>c</i> : 1903	klare blaue Kristalle, wenige Nadeln
434	2,1/0,9/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 70	HCl, 0,5 1000/800 161	In ₂ Ge ₂ O ₇ 0/50/50 0,2	<i>a</i> : 668,4(10) <i>b</i> : 877,4(11), β:102,5° <i>c</i> : 490,1(5)	klare farblose Kristalle mit schwarzen Einschlüssen
435	2,4/0,6/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 80	HCl, 0,5 1000/800 161	Mn _{1,81} In _{0,19} Ge ₂ O ₇ 57/6/37 0,3	<i>a</i> : 526,8(15) <i>b</i> : 939,8(23), β:97,5° <i>c</i> : 1435(4)	klare braune Kristalle mit schwarzen Einschlüssen
436	2,7/0,3/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 90	HCl, 0,5 1000/800 161	Mn ₂ Ge ₂ O ₇ 50/0/50 0,8	<i>a</i> : 524,7(14) <i>b</i> : 924,5(21), β:97,3° <i>c</i> : 1436(4)	klare braune Kristalle mit schwarzen Einschlüssen
437	3/0/3 Mn ₂ O ₃ /In ₂ O ₃ /~ 100	HCl, 0,5 1000/800 161	50/0/50, 0/0/0/100 _{Si} 1,0	nicht indizierbar	klare braune und schwarze Kristalle, mit weißen Kristallen fest verwachsen

7.4 Das System Fe₂O₃/In₂O₃/GeO₂

In diesem System existiert ein bereits bekanntes quarternäres Germanat, FeInGe₂O₇⁴, das erstmalig in Untersuchungen von OROZCOS *et al.* zu Kristallstrukturen der Reihe FeRGe₂O₇⁵ beschrieben wurde (R = Seltenerdmetalle und Indium). Diese Arbeit war Anregung, das System (Fe, In)₂Ge₂O₇ daraufhin zu untersuchen, ob hier eine vollständige Mischbarkeit zwischen Fe₂Ge₂O₇ und In₂Ge₂O₇ existiert. Diese Vermutung liegt nahe, da es bei den Sesquioxiden von Eisen und Indium weite Bereiche von festen Lösungen gibt, sowohl auf der In³⁺-reichen Seite (mol% Fe³⁺< 45 %,) als auch bei Zusammensetzungen mit x(Fe³⁺) > 70 % (s. Abb. 7-4).

Abb. 7-4: Phasendiagramm In₂O₃-Fe₂O₃.

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, $n \pmod{2}$	-	(pm)	Bemerkung
	mol% (Fe ³⁺)	T_Q/T_S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)		
438	0,75/0,75/3 Fe ₂ O ₃ /In ₂ O ₃ /~ 50	Cl ₂ , 0,5 840/780 169,5	Fe _{1,2} In _{0,8} Ge ₂ O ₇ 24/26/50, 31/19/50 2,0	<i>a</i> : 651,5(3) <i>b</i> : 861,4(3), β:102,6° <i>c</i> : 489,7(1)	klare braune Kristalle
439	1,5/1,5/3 Fe ₂ O ₃ ∕In ₂ O ₃ ∕~ 50	Cl ₂ , 0,5 840/780 185	Fe ₂ O ₃ , Fe _{0,3} In _{1,7} Ge ₂ O ₇ 99/0/0, 11/57/32 2,0	<i>In</i> ₂ <i>Ge</i> ₂ <i>O</i> ₇ <i>a</i> : 662,0(18) <i>b</i> : 872,4(20), β:102,8° <i>c</i> : 490,5(7)	schwarze metallisch- glänzende Plättchen und klare braune Kristalle
440	1,5/1,5/3 Fe ₂ O ₃ ∕In ₂ O ₃ /~ 50	Cl ₂ , 0,5 980/860 185	Fe ₂ O ₃ , <i>99/0/0</i> 2,5		schwarze metallisch- glänzende Plättchen

Tab. 7-6: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System $Fe_2O_3/In_2O_3/GeO_2$, Versuchsreihe 7-6; (~ = GeO₂).

Die bekannten Eisen(III)-germanate, Fe_2GeO_5 und $Fe_8Ge_3O_{18}^{-6}$ konnten in den Versuchen zum Transport der ternären Verbindungen nicht dargestellt werden. Daher wurde auf die Erfahrungen in der Literatur zum Chemischen Transport von $Fe_2O_3^{-7a-b}$ und die Vorversuche im System In_2O_3/GeO_2 zurückgegriffen. In beiden Fällen konnte eine Abscheidung mit Cl_2 bereits bei mittleren Temperaturen deutlich unterhalb von $1000^{\circ}C$ ($In_2Ge_2O_7$: 840/780 °C und 950/850 °C; Fe_2O_3 : 980/860 °C) mit guten Raten (>1,7 mg·h⁻¹) beobachtet werden. Diese Temperaturgradienten schienen gleichermaßen geeignet für den gemeinsamen Transport aller drei Oxide.

Abb. 7-5: Durch Chemischen Transport dargestelltes (Fe, In)₂Ge₂O₇.

Abb. 7-6: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System $Fe_2O_3/In_2O_3/GeO_2$, Versuchsreihe 7-7; • = Fe^{3+} im SBK (mol%), • = Gitterkonstante *a* (pm), T = Thortveitit-Phase .

Diese Transportbedingungen wurden daher auch für die Reihenversuche verwendet. Setzt man ein Oxidgemisch ein, das in Analogie zum bekannten FeInGe₂O₇ die Kationen Fe³⁺/In³⁺/Ge⁴⁺ in einem Verhältnis 1/1/2 enthält, so wird bei Verwendung des niedrigeren Temperaturgradienten (840/780 °C) auch tatsächlich eine Phase gefunden, die im Pulverdiffraktogramm der Thortveititstruktur des In₂Ge₂O₇ gleicht. Die Untersuchung der Zusammensetzung mit EDX/RFA zeigt allerdings eine Anreicherung des Eisens im Senkenbodenkörper relativ zum Indium. Wie aus Tab. 7-6 abzulesen ist, führte eine Erhöhung des Indium- und Eisen(III)-oxid-Gehaltes im Ausgangsbodenkörper zu einer Abscheidung von schwarzem metallisch-glänzendem Eisen(III)-oxid neben Fe_{0.3}In_{1.7}Ge₂O₇, eine dem Mischungsverhältnis entsprechende Phase M^{III}_{2} GeO₅, wie sie im System Fe₂O₃/GeO₂ bekannt ist (Fe₂GeO₅), konnte hingegen nicht gefunden werden. Die Tatsache, dass ein Transport von Eisen(III)-oxid und eine Abreicherung des Eisens im Germanat beobachtet wurde, deutet darauf hin, dass das unter diesen Bedingungen mit hohen Transportraten (> 3,5 mg·h⁻¹) transportierte Hämatit zuerst abgeschieden wird und die zweite Phase erst später direkt aus der Gasphase gebildet wird. Damit kann auch erklärt werden, warum im Vergleich zu Versuch 438 der Eisengehalt wesentlich geringer ist, wenn man annimmt, dass eine Gleichgewichtseinstellung zwischen den beiden festen Phasen kinetisch gehemmt ist. Bei

einem Transport von 960 nach 860 °C konnte schließlich nur Hämatit an der Senkenseite gefunden werden.

Abgesehen von einer Randphase "Fe₂Ge₂O₇" konnte eine annähernd vollständige Mischbarkeit von Fe₂Ge₂O₇ und In₂Ge₂O₇ gefunden werden. EDX- und RFA-Messungen zeigen eine Verteilung der Zusammensetzungen im Senkenbodenkörper von 7 bis 94 mol% Fe³⁺, bezogen auf die dreiwertigen Kationen. Optisch lässt sich dieses Ergebnis mit bloßem Auge erkennen: In Abb.7-5 ist illustriert, wie die Kristalle vom farblosen reinen Indiumgermanat bis zum Germanat der Zusammensetzung (Fe_{0,95}In_{0,05})₂Ge₂O₇ zunehmend dunkler braun gefärbt sind.

Auch die Gitterkonstanten zeigen die erhebliche Abhängigkeit von der Zusammensetzung: Während für das reine In₂Ge₂O₇ der Wert der Gitterkonstante *a* mit 668,9 pm bestimmt werden konnte, führt der Einbau von zunehmenden Mengen Eisen(III)-kationen zu einer stetigen Abnahme bis zu einem Wert von 649,2 pm bei einem Feststoff mit $x(Fe^{3+}) = 0,76$. Abb. 7-6 zeigt eine eindeutige Korrelation zwischen Senkenbodenkörper-Zusammensetzung sowie Gitterkonstante *a* und der Zusammensetzung des Ausgangsbodenkörper. Die in dieser Arbeit gemessenen Werte für die Gitterkontanten stimmen allerdings nicht mit den Messungen von OROZCO *et al.* (*a/b/c* = 330,2/843,4/449,0 pm) überein, lediglich die bestimmten Winkel β sind mit 102,6 ° identisch.⁴

Tab. 7-7: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System $Fe_2O_3/In_2O_3/GeO_2$,Versuchsreihe 7-7; (~ = GeO_2).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol)	Trmittel, n (mmol)		(pm)	Bemerkung
	mol% (Fe ³⁺)	$T_{\rm Q}/T_{\rm S}$ (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)		
441	0/1,5/3 Fe ₂ O ₃ /In ₂ O ₃ /~ 0	Cl ₂ , 0,5 840/780 169,5	In ₂ Ge ₂ O ₇ 0/51/49, 0/50/50 1,8	<i>a</i> : 668,8(8) <i>b</i> : 878,8(5), β:102,5° <i>c</i> : 491,0(5)	farblose Kristalle, < 0,5 mm
442	0,15/1,35/3 Fe ₂ O ₃ /In ₂ O ₃ /~ 10	Cl ₂ , 0,5 840/780 169,5	Fe _{0,4} In _{1,6} Ge ₂ O ₇ 4/48/48, 11/39/50 3,0	<i>a</i> : 662,0(4) <i>b</i> : 874,6(3), β:102,5° <i>c</i> : 491,7(1)	klare helle gelbbraune Kristalle, < 0,5 mm
443	0,3/1,2/3 Fe ₂ O ₃ /In ₂ O ₃ /~ 20	Cl ₂ , 0,5 840/780 169,5	Fe _{0,3} In _{1,7} Ge ₂ O ₇ 4/47/49, 9/41/50 2,8	<i>a</i> : 661,9(4) <i>b</i> : 874,6(3), β:102,5° <i>c</i> : 492,1(2)	gelbbraune Kristalle, < 0,5 mm
444	0,45/1,05/3 Fe ₂ O ₃ ∕In ₂ O ₃ /~ 30	Cl ₂ , 0,5 840/780 166	Fe _{0.8} In _{1.2} Ge ₂ O ₇ 3/37/58, 18/37/47, 20/30/50 1.5	<i>a</i> : 658,7(4) <i>b</i> : 868,6(4), β:102,5° <i>c</i> : 490,4(2)	goldbraune Kristalle

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Fe ³⁺)	Trmittel, $n \pmod{T_Q/T_S}$ (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg·h ⁻¹)	(pm)	Bemerkung
445	0,6/0,9/3 Fe ₂ O ₃ /In ₂ O ₃ /~ 40	Cl ₂ , 0,5 840/780 166	Fe _{1,0} In _{1,0} Ge ₂ O ₇ 23/26/50+16/27/57, 25/25/50 2,6	<i>a</i> : 654,6(4) <i>b</i> : 864,4(3), β:102,6° <i>c</i> : 489,7(2)	goldbraune Kristalle
446	0,75/0,75/3 Fe ₂ O ₃ ∕In ₂ O ₃ ∕~ 50	Cl ₂ , 0,5 840/780 169,5	Fe _{1,2} In _{0,8} Ge ₂ O ₇ 24/26/50, 31/19/50 2,0	<i>a</i> : 651,5(3) <i>b</i> : 861,4(3), β:102,6° <i>c</i> : 489,7(1)	zunehmend dunklere goldbraune Kristalle
447	0,9/0,6/3 Fe ₂ O ₃ ∕In ₂ O ₃ ∕~ 60	Cl ₂ , 0,5 840/780 169,5	Fe _{1,4} In _{0,6} Ge ₂ O ₇ 30/21/49, 35/15/50 2,0	<i>a</i> : 649,6(4) <i>b</i> : 861,3(7), β:103,7° <i>c</i> : 488,9(3)	braune Kristalle, z.T. mit dunklen Einschlüssen
448	1,05/0,45/3 Fe ₂ O ₃ /In ₂ O ₃ /~ 70	Cl ₂ , 0,5 840/780 169,5	$\begin{array}{c} Fe_{1,4}In_{0,6}Ge_{2}O_{7},\ Fe_{2}O_{3}\\ 30/12/58,\ 35/14/52,\\ 36/14/50\\ 0,9 \end{array}$	<i>a</i> : 649,0(3) <i>b</i> : 863,5(15), β:103,6° <i>c</i> : 483,1(8)	braune Kristalle, z.T. mit dunklen Einschlüssen.
449	1,2/0,3/3 Fe₂O₃/In₂O₃/~ 80	Cl ₂ , 0,5 840/780 169,5	Fe _{1,5} In _{0,5} Ge ₂ O ₇ 28/16/55, 38/12/50 0,8	<i>a</i> : 649,0(5) <i>b</i> : 879,1(8), β:102,7° <i>c</i> : 479,3(4)	dunkle Kristalle mit braunen Aufwachsungen
450	1,35/0,15/3 Fe ₂ O ₃ ∕In ₂ O ₃ ∕~ 90	Cl ₂ , 0,5 840/780 169,5	Fe _{1.9} In _{0.1} Ge ₂ O ₇ ,Fe ₂ O ₃ 38/6/56, 47/3/50 2,7	nicht indizierbar	dunkle Kristalle
451	1,5/0/3 Fe ₂ O ₃ ∕In ₂ O ₃ ∕~ 100	Cl ₂ , 0,5 840/780 169,5	Fe ₂ O ₃ , GeO ₂ 100/0/0, 82/0/18, 50 1,4		schwarze "metallartige" Kristalle

7.5 Das System Ga₂O₃/In₂O₃/GeO₂

Abb. 7-7: Durch Chemischen Transport dargestelltes $Ga_2Ge_2O_7:In^{3+}$ (links) und $In_2Ge_2O_7:Ga^{3+}$ (rechts).

In den Versuchen zum Transport der ternären Systeme wurde festgestellt, dass im Temperaturgradienten T_Q = 950 nach T_S = 1050 °C unter Verwendung von Chlor die

jeweiligen Germanate $M^{III}_{2}Ge_{2}O_{7}$ in guten Transportraten (Ga: 1,1 mg·h⁻¹; In: 3,3 mg·h⁻¹) abgeschieden werden können. Diese Bedingungen waren also geeignet. PATZKE zeigte, dass die binären Oxide Ga₂O₃ und In₂O₃ eine begrenzte Löslichkeit haben: Die Analyse der mit Hilfe des Chemischen Transports dargestellten Oxide wiesen bis zu 9 mol% Ga³⁺ in In₂O₃ und bis zu 48 mol% In³⁺ in Ga₂O₃ nach.⁸ Beim Tempern von Ga₂O₃ und In₂O₃ bilden sich erst nach sehr langer Reaktionszeit die Mischphasen zwischen den Oxiden, sie liegen also lange Zeit in reiner Form nebeneinander vor. Das Verhältnis der Stoffmengen beeinflusst deren thermodynamische Aktivität zunächst nicht Vor diesem Hintergrund war das Ergebnis der System $Ga_2O_3/In_2O_3/GeO_2$ Versuchsreihe im auch nicht überraschend: Der Ausgangsbodenkörper hatte keinen Einfluss auf die Zusammensetzung der abgeschiedenen Phasen des Senkenbodenkörper (s. Tab. 7-8):

Abb. 7-8: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System $Ga_2O_3/In_2O_3/GeO_2$, Versuchsreihe 7-8; • = Ga^{3+} im SBK (mol%), • = Gitterkonstante *a* (pm), T = Thortveitit-Phase, G = $Ga_2Ge_2O_7$ -Phase, Zweiphasengebiet.

Wie in Abb. 7- dargestellt, konnten zwei Bereiche fester Lösungen gefunden werden, Ga₂Ge₂O₇:In³⁺, in dem Indium nur in geringen Mengen gelöst ist ((Ga_{1-x}In_x)₂Ge₂O₇, x < 0,05) und eine zweite Phase (In₂Ge₂O₇:Ga³⁺), das eine höhere Löslichkeit von Ga³⁺ aufwies ((Ga_{1-x}In_x)₂Ge₂O₇, x > 0,65). Auch anhand der Gitterkonstanten kann die Existenz von zwei unterschiedlichen Phasen belegt werden (Gitterkonstante *a*: Ga₂Ge₂O₇:In³⁺ = 687,0 bis 687,6 pm; In₂Ge₂O₇:Ga³⁺ = 659,1 bis 664,0 pm). Welche Phase abgeschieden wird, hängt von der Zusammensetzung des Ausgangsbodenkörpers ab. Bei einem Unterschuss von Gallium(III)oxid kristallisiert $In_2Ge_2O_7:Ga^{3+}$ auf den Senkenseite, nach Durchlaufen eines Zweiphasengebietes, in dem beide Germanate nebeneinander abgeschieden werden, findet man ab 80 mol% Ga^{3+} schließlich nur noch Indium-dotiertes $Ga_2Ge_2O_7$. Optisch können die beiden farblosen Phasen durch ihre äussere Form leicht unterschieden werden (s. Abb. 7-): Im Gegensatz zum Indiumgermanat der Thortveitit-Struktur bildet sich das $Ga_2Ge_2O_7$ in Form von nadelförmigen Kristallen. Ein wichtiger Grund dafür, dass keine vollständige Mischbarkeit gefunden werden kann liegt in den unterschiedlichen Radien und darin, dass sich die Strukturen der Wirtsgitter von einander unterschieden ($Ga_2Ge_2O_7$: orthorhombisch, $In_2Ge_2O_7$: monoklin, Thortveitit-Typ).

Tab. 7-8: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System $Ga_2O_3/In_2O_3/GeO_2$, Versuchsreihe 7-8; (~ = GeO₂).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, $n \pmod{2}$		(pm)	Bemerkung
	mol% (Ga ³⁺)	$T_Q/T_S(^{\circ}C)$ Trdauer (h)	Transportrate (mg·h ⁻¹)		
452	0/1,5/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 0	Cl ₂ , 0,5 1050/950 167	In ₂ Ge ₂ O ₇ 0/58/41, 0/50/50 3,3	<i>a</i> : 667,9(6) <i>b</i> : 878,4(6), β:102,4° <i>c</i> : 491,2(4)	klare farblose Kristalle
453	0,15/1,35/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 10	Cl ₂ , 0,5 1050/950 167	Ga _{0,2} In _{1,8} Ge ₂ O ₇ 7/43/52, 4/46/50 2,7	<i>a</i> : 664,0(2) <i>b</i> : 875,7(3), β:102,5° <i>c</i> : 492,0(1)	klare farblose Kristalle
454	0,3/1,2/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 20	Cl ₂ , 0,5 1050/950 167	Ga _{0,6} In _{1,4} Ge ₂ O ₇ 13/30/57, 15/35/50 1,5	<i>a</i> : 660,6(4) <i>b</i> : 872,1(3), β:102,6° <i>c</i> : 491,7(1)	klare farblose Kristalle
455	0,45/1,05/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 30	Cl ₂ , 0,5 1050/950 167	Ga _{0,3} In _{1,7} Ge ₂ O ₇ 16/30/54, 9/41/50 1,8	<i>a</i> : 659,9(4) <i>b</i> : 871,1(3), β:102,6° <i>c</i> : 491,0(1)	klare farblose Kristalle
456	0,6/0,9/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 40	$Cl_2, 0,5$ 1050/950 167	In ₂ Ge ₂ O ₇ 12/33/55, 81/1/17 1,8	<i>a</i> : 660,3(3) <i>b</i> : 871,0(2), β:102,6° <i>c</i> : 491,5(1)	klare farblose Kristalle, und einzelne Nadeln
457	0,75/0,75/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 50	Cl ₂ , 0,5 1050/950 167	k: Ga _{0,6} In _{1,4} Ge ₂ O ₇ , n:Ga ₂ Ge ₂ O ₇ k:12/30/58, n:57/0/43 2,7	$In_2Ge_2O_7$ a: 659,1(6) b: 871,3(4), β :102,6° c: 491,2(2) $Ga_2Ge_2O_7$ a: 787,4(9) b: 801,9(13) c: 301,4(6)	klare farblose längere Nadeln und Kristalle

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, <i>n</i> (mmol) $T_{\rm O}/T_{\rm s}$ (°C)	Zusammensetzung (mol%)	(pm)	Bemerkung
	mol% (Ga ³⁺)	Trdauer (h)	Transportrate $(mg \cdot h^{-1})$		
458	0,9/0,6/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 60	Cl ₂ , 0,5 1050/950 167	k: Ga _{0,4} In _{1,6} Ge ₂ O ₇ , n: Ga _{1,9} In _{0,1} Ge ₂ O ₇ k:9/34/57, n:58/2/37 2,0	$In_2Ge_2O_7$ a: 660,2(3) b: 871,3(4), β :102,6° c: 491,4(2) $Ga_2Ge_2O_7$ a: 787,0(4)	klare farblose längere Nadeln und Kristalle
				<i>b</i> : 803,7(5) <i>c</i> : 302,0(1)	
459	1,05/0,45/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 70	Cl ₂ , 0,5 1050/950 ~160	k: Ga _{0,7} In _{1,3} Ge ₂ O ₇ , n:Ga ₂ Ge ₂ O ₇ k:14/27/59, n:60/0/41 2,7	$In_2Ge_2O_7$ a: 659,8(3) b: 870,4(3), β :102,6° c: 491,1(1) $Ga_2Ge_2O_7$ a: 787,0(3) b: 803,3(4) c: 301,7(1)	klare farblose längere Nadeln und Kristalle
460	1,2/0,3/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 80	Cl ₂ , 0,5 1050/950 ~160	$\begin{array}{c} Ga_{1,96}In_{0,04}Ge_{2}O_{7}\!\!+\!GeO_{2}\\ 59/1/40,54/1/45\\ 2,5\end{array}$	Ga ₂ Ge ₂ O ₇ a: 787,5(6) b: 804,5(11) c: 301,6(5)	klare farblose längere Nadeln und Kristalle mit hexagonaler Grundform
461	1,35/0,15/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 90	Cl ₂ , 0,5 1050/950 108	Ga _{1.9} In _{0.1} Ge ₂ O ₇ +GeO ₂ 53/3/44 1,2	$Ga_2Ge_2O_7$ a: 787,6(3) b: 800,4(5) c: 302,0(2)	klare farblose längere Nadeln und Kristalle mit hexagonaler Grundform
462	1,5/0/3 Ga ₂ O ₃ /In ₂ O ₃ /~ 100	Cl ₂ , 0,5 1050/950 108	n:Ga ₂ Ge ₂ O ₇ +GeO ₂ n:63/0/37 1,1	Ga ₂ Ge ₂ O ₇ a: 786,6(3) b: 803,2(4) c: 300,9(2)	klare farblose längere Nadeln und Kristalle mit hexagonaler Grundform

7.6 Zusammenfassung von Kapitel 7

In den Systemen V₂O₃/In₂O₃/GeO₂ und Cr₂O₃/In₂O₃/GeO₂ wurden dotierte Phasen der Thortveitit-Struktur ($In_2Ge_2O_7:M^{3+}$) gefunden. Die Kationen V^{3+} bzw. Cr^{3+} wurden nur in einem relativ geringen Maß eingebaut: ($M^{3+}_x In_{1-x}$)₂Ge₂O₇, V^{3+} : x < 0,15, Cr^{3+} : x < 0,10. Durch den Einbau von V³⁺ wird ein braunes Material erhalten, das Chrom-dotierte Germanat zeichnet sich durch seine intensive Lilafärbung aus.

Bei dem gemeinsamen Transport von Mn_2O_3 , In_2O_3 und GeO_2 können drei Phasen gefunden werden: Mangan-reiches $(Mn_{1-x}In_x)_2Ge_2O_7$ (x = 0 bis 0,35, braun) der $Mn_2Ge_2O_7$ -Struktur, blaugefärbtes $(Mn_{1-x}In_x)_2Ge_2O_7$ mit Thortveitit-Struktur bei einem Mangangehalt von bis zu x = 0,48 und eine weitere Phase der Summenformel $(Mn, In)_7GeO_{12}$, einem Ge-Analogon des Braunit, das maximale Mengen von 6 mol% In^{3+} enthält.

Das System Fe₂O₃/In₂O₃/GeO₂ zeigt eine nahezu vollständige Löslichkeit des Fe³⁺ im Germanat $(Fe_{1-x}In_x)_2Ge_2O_7$ (x > 0,05), jedoch konnte die bisher unbekannte Randphase Fe₂Ge₂O₇ nicht gefunden werden. Diese breite Löslichkeit ist auch durch die mit steigendem Eisengehalt zunehmende Braunfärbung des im reinen Zustand farblosen In₂Ge₂O₇ zu erkennen.

 Ga_2O_3 und In_2O_3 bilden mit Germanium(IV)-oxid Germanate, die nicht isotyp sind und sich im Kristallhabitus ($Ga_2Ge_2O_7:In^{3+}$: Nadeln, $In_2Ge_2O_7:Ga^{3+}$: kompakte Kristalle) von einander unterscheiden. Das abgeschiedene Material hatte die allgemeine Zusammensetzung $(Ga_{1-x}In_x)_2Ge_2O_7$, das eingebaute Kation war jeweils in nur geringen Mengen gelöst (x < 0,05 bzw. > 0,65).

Literatur zu Kapitel 7 :

- ¹ B. Krug, *Dissertation*, Justus-Liebig-Universität, Gießen, **1986**.
- ² Jansen, C., Behruzi, M., Institut für Kristallographie, Aachen, ICDD Grant-in-Aid, **1986**.
- ³ A. Pfeifer, R. Wartchow, M. Binnewies, Z. Kristallogr., 2001, 216, 191-192.
- ⁴ A. Arzmendi, L. Bucio, P. Santiago, E. Orozco, *Electron Mikroscopy*, **1998**, *Symposium W, Vol II*, 409-10.
- ⁵ L. Bucio, C. Cascales, J. A. Alonso, I. Rasines, J. Phys. Condens. Matter, 1996, 8, 2641-53.
- ⁶ V. Agavnov, D. Michel, A. Kahn, M. Perez y Jorba, Mat. Res. Bull., 1984, 19, 233-9.
- ^{7a} H. Schäfer, *Chemische Transportreaktionen*, Weinheim, **1962**.
- ^{7b} F. P. Emmenegger, A. Petermann, J. Crystal Growth, **1968**, 2, 33.
- ⁸ G. Patzke, *Dissertation*, Universität Hannover, **1999**.

8 Chemischer Transport in den Systemen MnO/ZnO/GeO₂ und $V_2O_3/Ga_2O_3/GeO_2$

Erläuternd sei darauf hingewiesen, dass bei der Angabe der Größe $mol\% (Mn^{2+})$ bzw. $mol\% (V^{3+})$ nur das Verhältnis der zwei- resp. dreiwertigen Kationen berücksichtigt wurde, Ge⁴⁺ blieb dabei unberücksichtigt. Einführend einige Bemerkungen zu Tabellen dieses Kapitels: Die Spalten 2 bis 4 sind mehrzeilig angelegt. Die zweite Spalte (ABK) beschreibt Art und Zusammensetzung des Ausgangsbodenkörpers. Dabei ist in der ersten Zeile die Menge der Oxide verzeichnet, in der zweiten die Art der eingesetzten Oxide, in der dritten der relative Anteil von Mn²⁺ an den zweiwertigen bzw. von V³⁺ an den dreiwertigen Kationen. Aus der nächsten Spalte (Transportbedingungen) erfährt man die genauen Bedingungen des Transportexperiments, und zwar Transportmittel und –menge, Transporttemperaturen sowie Transportdauer. In der vierten Spalte, SBK, sind die analytischen Ergebnisse verzeichnet (Phase, Zusammensetzung nach EDX/RFA, Transportrate). Die Gitterkonstanten des Senkenbodenkörpers können in der nachfolgenden Spalte abgelesen werden. In der letzten Spalte sid Kristallfarbe und weitere Bemerkungen angegeben.

8.1 Das System MnO/ZnO/GeO₂

Das System MnO/ZnO/GeO₂ war von Interesse, da ein mögliches Produkt des Chemischen Transports von industrieller Bedeutung ist: Zn₂GeO₄:Mn²⁺ luminesziert, wenn es mit ultravioletter Strahlung (360 nm) angeregt wird, im gelbgrünen Bereich und wird für fluoreszierende Tinten verwendet.¹ Nach BLASSE und GRABMAIER ist die Emission auf einen ${}^{4}T_{1} \rightarrow {}^{6}A_{1}$ -Übergang zurückzuführen.²

Aufgrund der Kristallstrukturen der Oxide und Germanate ist eine Mischungslücke zu erwarten. Mn^{2+} wird bevorzugt oktaedrisch von Sauerstoff koordiniert, weshalb das binäre MnO in der Kochsalzstruktur, das Metagermanat MnGeO₃ in der *ortho*-Pyroxenstruktur und Mn₂GeO₄ in der Olivinstruktur kristallisiert.^{3a, b} Zn²⁺ hingegen strebt stets eine tetraedrische Koordination in seinen Verbindungen an (ZnO: Wurzit-Typ, Zn₂GeO₄: Phenakit).^{3, 4} Das Phasendiagramm der Oxide ZnO/MnO⁵ ist in Abb. 8-1 dargestellt.

Abb. 8-1: Phasendiagramm ZnO/MnO.⁵

LOCMELIS konnte in ihrer Dissertation zeigen, dass beim Chemischen Transport ternärer Oxide im System MnO/ZnO beide Mischphasen (MnO:Zn²⁺, ZnO:Mn²⁺) abgeschieden werden.^{3a} Für die Germanate mit ihren unterschiedlichen Strukturen ist die Existenz einer solchen Mischungslücke ebenfalls zu erwarten; dieses sollte auch bei der Darstellung durch Chemischen Transport bestätigt werden können. Im Falle der Metagermanate kommt zur unterschiedlichen (bevorzugten) Koordination noch hinzu, dass das "ZnGeO₃" unter Standardbedingungen metastabil ist, von seiner Bildung also nicht ausgegangen werden kann. Die Erwartungen für dieses System können in vier Punkten zusammengefasst werden:

- 1. Abscheidung von Zink- und Mangan-reichen *ortho*-Germanat-Mischkristallen nebeneinander.
- 2. Bildung lediglich des Zn^{2+} -reichen $Zn_2GeO_4:Mn^{2+}$.
- 3. Auf der Mn²⁺-reichen Seite wird anstelle des *ortho*-Germanats MnGeO₃:Zn²⁺ abgeschieden.
- Bei den Metagermanaten kann der Einbau von Zink nur bis zu einer Grenzzusammensetzung erfolgen, anschließend wird eine zweite, Zn²⁺-reichere, Phase abgeschieden.

In den Vorversuchen (Kap. 5.2.1) konnte gezeigt werden, dass mit HCl bei Temperaturen von $T_{\rm Q} = 1050$ nach $T_{\rm S} = 900$ °C in den ternären Systemen MnO/GeO₂ und ZnO/GeO₂ der gemeinsame Transport von M^{II}O und GeO₂ möglich ist. Die Vermutung, dass diese Bedingungen auch für die quarternären Germanate geeignet sind, wurde bestätigt. Das Transportmittel Ammoniumchlorid führte zu keiner Abscheidung an der Senkenseite.

Wie in Tab. 8-1 dargestellt, zeigten erste Versuche zum Transport im quarternären System MnO/ZnO/GeO₂, dass bei der Verwendung eines Zn^{2+} -reichen Gemisches (5 mol% MnO im Ausgangsbodenkörper) nur die Abscheidung des *ortho*-Germanats (Mn_xZn_{1-x})₂GeO₄ beobachtet werden kann, unabhängig vom M^{II}O:GeO₂-Verhältnis (Versuch 462 = 2:1, Versuch 463 = 1:1). Dabei wird Mn²⁺ im SBK angereichert (x = 0,09).

Tab. 8-1: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System $V_2O_3/In_2O_3/GeO_2$,Versuchsreihe 8-1; (~ = GeO_2).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, $n \pmod{T_{-}/T_{-}}$	Zusammensetzung (mol%)	(pm)	Bemerkung
	mol% (Mn ²⁺)	$T_Q/T_S(CC)$ Trdauer (h)	Transportrate (mg/h)		
462	0,2/3,8/2 MnO/ZnO/ ~ 5	HCl, 0,5 1050/900 144	Mn _{0,18} Zn _{1,82} GeO ₄ 6,5/64,5/29, 7/63/30 0,33	<i>a</i> : 1423,9(7) <i>c</i> : 947,6(8)	klare lichtgrüne Kristalle, < 0,5 mm, Lumineszenz
463	0,4/7,6/8 MnO/ZnO/ ~ 5	HCl, 0,5 1050/900 120	Mn _{0,18} Zn _{1,82} GeO ₄ 8/58/34, 6/64/30 2,2	<i>a</i> : 1421,3(12) <i>c</i> : 949,4(11)	klare lichtgrüne Kristalle, > 0,5 mm, Lumineszenz
464	0/4/2 MnO/ZnO/ ~ 0	NH ₄ Cl, 0,5 1050/900 144	kein Transport		
465	0,2/3,8/2 MnO/ZnO/ ~ 5	NH ₄ Cl, 0,5 1050/900 144	kein Transport		

Bei den anschließenden Reihenuntersuchungen wurden neben den stets verwendeten 10-mol%-Abstufungen der zweiwertigen Kationen im ABK ein besonderes Augenmerk darauf gelegt, wie sich die ZnO-reichen Zusammensetzungen bei den Transportexperimenten verhalten.

Bei der Verwendung eines äquimolaren Gemisches von $M^{II}O$ und GeO_2 (s. Tab. 8-2) konnte auf der Mangan-reichen Seite zunächst die Abscheidung des Metagermanats gefunden werden. Interessant sind die Farben: Das reine Mangangermanat ist blassrosa gefärbt; mit dem Einbau von Zn^{2+} ändert sich die Farbe bei Gehalten bis 25 mol% in hellblau, bei höheren Zn^{2+} -Gehalten erfolgte eine Abscheidung grüner Nadeln (s. Abb. 8-2). Dabei war ein annähernd kongruenter Transport zu beobachten (s. Abb. 8-4). Wie in den Erwartungen bereits formuliert, scheint tatsächlich eine Grenzzusammensetzung des Metagermanats zu existieren, die bei etwa 50 mol% Zn^{2+} im MnGeO₃: Zn^{2+} liegt. Im Einklang mit den Vorüberlegungen ist auch die Beobachtung, dass neben dem Metagermanat eine zweite Phase gebildet wurde, sobald der Zink-Gehalt im Ausgangsbodenkörper einen bestimmten Wert überstieg: Ab 70 mol% ZnO wird zusätzlich die gelbgrüne *ortho*-Germanat-Phase gefunden.

Abb. 8-2: *linkes Bild: ortho*-Pyroxen-Phase (im Uhrzeigersinn, beginnend oben/rechts: zunehmender Zn^{2+} -Gehalt); *rechtes Bild*: Phenakit-Phase (*links*: Zn_2GeO_4 , *rechts*: $(Mn_{0,09}Zn_{0,91})_2GeO_4$), im oberen Bild unter Tageslicht, im unteren Bild mit UV-Strahlung (360 nm) bestrahlt.

Abb. 8-3: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System MnO/ZnO/GeO₂, Versuchsreihe 8-2, Versuch 466 - 475; • = Mn^{2+} im SBK (mol%), • = Gitterkonstante *a* (pm); O = *ortho*-Pyroxen-Phase, P = Phenakit-Phase

Bei einem Mangananteil unter 10 mol% wurde ausschließlich die Phenakit-Phase $(Mn_xZn_{1-x})_2GeO_4$ abgeschieden. Für dieses *ortho*-Germanat scheint es ebenfalls eine Grenzzusammensetzung zu geben, die bei x = 0,09 liegt, und auch hier ist der Gehalt von dem des Ausgangsbodenkörpers abhängig. Die Gitterkonstanten sind von der Zusammensetzung des Senkenbodenkörpers abhängig: Mit steigendem Mn^{2+} -Gehalt nimmt auch Größe von a zu. Diese Zusammenhänge sind in Abb. 8-4 dargestellt. Auch die Farbe ändert sich mit der Zusammensetzung von zunächst gelbgrün (x = 0,035 – 0,065) bis farblos (x < 0,035). In Abhängigkeit vom M^{II}O:GeO₂-Verhältnis wurde ein unterschiedlicher Kristallhabitus gefunden: Werden die Oxide entsprechend den Verhältnissen im *ortho*-Germanat eingesetzt (M^{II}O:GeO₂ = 2:1), so erhält man gut ausgebildete Nadeln mit hexagonaler Grundform, bei allerdings wesentlich geringeren Transportraten (0,38-0,66 mg·h⁻¹) als bei den unregelmäßig geformten Kristallen, die bei Einsatz äquimolarer Mischungen abgeschieden werden (1,4-2,4 mg·h⁻¹). Sämtliche Ergebnisse sind in Tab. 8-2 zusammengestellt.

Abb. 8-4: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport im System MnO/ZnO/GeO₂, Versuchsreihe 8-2, Versuchsnummern 476 - 484; • = Mn^{2+} im SBK (mol%), • = Gitterkonstante *a* (pm); P = Phenakit-Phase

Nicht nur in ihrer Struktur, Farbe und Zusammensetzung unterscheiden sich die Manganreichen Metagermanate von den Zink-reichen *ortho*-Germanaten, sondern auch in ihren Lumineszenz-Eigenschaften. Nur $Zn_2GeO_4:Mn^{2+}$ zeigt bei Bestrahlung mit UV-Licht der Wellenlänge 360 nm eine Fluoreszenz im gelbgrünen Bereich (530 nm, Abb. 8-2), die, wie in Abb. 8-5 dargestellt ist, mit steigendem Mangan-Gehalt an Intensität zunimmt.

Abb. 8-5: Darstellung der Lumineszenzmessungen (x-Achse: Emission-, y-Achse: Anregungswellenlänge).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	n (mmol)	Trmittel, $n \pmod{2}$		(pm)	Bemerkung
	mol% (Mn ²⁺)	$T_Q/T_S(^{\circ}C)$ Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg/h)		
466	8/0/8 MnO/ZnO/ ~ 100	HCl, 0,5 1050/900 171	MnGeO ₃ 0/55/45 0,3	<i>a</i> : 1937(4) <i>b</i> : 935(7) <i>c</i> : 557,8(11)	klare rosafarbene Kristalle, < 0,5 mm
467	7,2/0,8/8 MnO/ZnO/~ 90	HCl, 0,5 1050/900 168	Mn _{0.92} Zn _{0.08} GeO ₃ 50/4/46 0,9	<i>a</i> : 1939(3) <i>b</i> : 935,2(18) <i>c</i> : 557,2(12)	klare blaue Kristalle, <0,5 mm, rosa Belag in gesamter Ampulle
468	6,4/1,6/8 MnO/ZnO/~ 80	HCl, 0,5 1050/900 168	Mn _{0,79} Zn _{0,21} GeO ₃ 44/11/45 1,9	<i>a</i> : 1938(9) <i>b</i> : 929(5) <i>c</i> : 556,8(19)	klare blaue Kristalle, <0,5 mm, rosa Belag in gesamter Ampulle
469	5,6/2,4/8 MnO/ZnO/~ 70	HCl, 0,5 1050/900 168	Mn _{0,73} Zn _{0,27} GeO ₃ 41/15/44 1,3	<i>a</i> : 1930(4) <i>b</i> : 929,1(16) <i>c</i> : 556,5(10)	klare blaue Kristalle, <0,5 mm, rosa Belag in gesamter Ampulle
470	4,8/3,2/8 MnO/ZnO/~ 60	HCl, 0,5 1050/900 168	Mn _{0,51} Zn _{0,49} GeO ₃ 28/27/45 1,8	<i>a</i> : 1917,0(25) <i>b</i> : 933,5(15) <i>c</i> : 557,8(10)	helle grüne bis blaue Nadeln
471	4/4/8 MnO/ZnO/~ 50	HCl, 0,5 1050/900 168	Mn _{0,52} Zn _{0,48} GeO ₃ 28/26/46 1,8	<i>a</i> : 1921(3) <i>b</i> : 935,0(9) <i>c</i> : 555,5(15)	grüne Nadeln
472	3,2/4,8/8 MnO/ZnO/~ 40	HCl, 0,5 1050/900 168	Mn _{0.52} Zn _{0.58} GeO ₃ 28/26/46 2,3	<i>a</i> : 1918,0(22) <i>b</i> : 932,8(8) <i>c</i> : 557,9(6)	grüne Nadeln
473	2,4/5,6/8 MnO/ZnO/~ 30	HCl, 0,5 1050/900 168	Mn _{0.58} Zn _{0.42} GeO ₃ Mn _{0.13} Zn _{1.87} GeO ₄ 32/23/45, 4/62/34 2,9	<i>MnGeO</i> ₃ <i>a</i> : 1919(3) <i>b</i> : 937,2(16) <i>c</i> : 557,9(10)	grüne Nadeln und gelbgrüne Kristalle in Ampullenspitze
				Zn_2GeO_4 a: 1425,0(8) c: 954,2(9)	
474	1,6/6,4/8 MnO/ZnO/~ 20	HCl, 0,5 1050/900 168	Mn _{0,13} Zn _{1,87} GeO ₄ 27/27/44, 3/64/33 3,7	<i>MnGeO</i> ₃ <i>a</i> : 1919,0(6) <i>b</i> : 930,3(20) <i>c</i> : 559,0(11)	grüne Nadeln und gelbgrüne Kristalle in Ampullenspitze
				Zn_2GeO_4 a: 1425,3(8) c: 954,6(6)	
475	0,8/7,2/8 MnO/ZnO/~ 10	HCl, 0,5 1050/900 168	Mn _{0,49} Zn _{0,51} GeO ₃ Mn _{0,11} Zn _{1,89} GeO ₄ 26/28/46, 3/62/35 2,3	<i>MnGeO</i> ₃ <i>a</i> : 1922(4) <i>b</i> : 936(3) <i>c</i> : 553,9(13)	grüne Nadeln und gelbgrüne Kristalle in Ampullenspitze
				Zn_2GeO_4 a: 1423,1(7) c: 955,1(6)	
476	0,5/7,5/8 MnO/ZnO/~ 6,25	HCl, 0,5 1050/900 170	Mn _{0,13} Zn _{1,87} GeO ₄ 3/70/27, 4/62/33 2,4	<i>a</i> : 1422,5(6) <i>c</i> : 948,6(4)	klare lichtgrüne Kristalle, <1 mm, Lumineszenz
477	0,4/7,6/8 MnO/ZnO/~ 5	HCl, 0,5 1050/900 170	Mn _{0,13} Zn _{1,87} GeO ₄ 3,5/58/38, 4/62/33 1,5	<i>a</i> : 1421,7(6) <i>c</i> : 948,7(4)	klare lichtgrüne Kristalle, <1 mm, Lumineszenz

Tab. 8-2: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System MnO/ZnO/GeO₂, Versuchsreihe 8-2; (~ = GeO₂).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (Mn ²⁺)	Trmittel, $n \pmod{T_Q/T_S}$ (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg/h)	(pm)	Bemerkung
478	0,8/15,2/8 MnO/ZnO/~ 5	HCl, 0,5 1050/900 144	Mn _{0.09} Zn _{1,91} GeO ₄ 3/64/33, 3/66/31 0,38	<i>a</i> : 1421,9(11) <i>c</i> : 948,9,5(12)	klare farblose Nadeln, hexagonale Grundform, <1 mm, Lumineszenz
479	0,3/7,7/8 ZnO/MnO/~ 3,75	HCl, 0,5 1050/900 168	Mn _{0.08} Zn _{1,92} GeO ₄ 2/64/34 2,7	<i>a</i> : 1423,0(13) <i>c</i> : 949,6(10)	gelbgrüne Kristalle in Ampullenspitze
480	0,2/7,8/8 MnO/ZnO/~ 2,5	HCl, 0,5 1050/900 170	Mn _{0,07} Zn _{1,93} GeO ₄ * 2/66/31, 2/65/33 1,8	<i>a</i> : 1422,7(9) <i>c</i> : 950,0(7)	farblose klare Kristalle, <1 mm, Lumineszenz
481	0,4/15,6/8 MnO/ZnO/~ 2,5	HCl, 0,5 1050/900 144	Mn _{0.06} Zn _{1,94} GeO ₄ 2/68/30, 2/67/31 0,40	<i>a</i> : 1422,3(7) <i>c</i> : 950,9(11)	klare farblose Nadeln, hexagonale Grundform, <1 mm, Lumineszenz
482	0,1/7,9/8 MnO/ZnO/~ 1,25	HCl, 0,5 1050/900 170	Mn _{0,05} Zn _{1,95} GeO ₄ ** 0,6/61/38, 1,7/67/31 2,6	<i>a</i> : 1422,5(5) <i>c</i> : 952,5(6)	klare farblose Kristalle, <1 mm, Lumineszenz
483	0,05/7,95/8 MnO/ZnO/~ 0,625	HCl, 0,5 1050/900 170	Mn _{0.02} Zn _{1.98} GeO ₄ 0/64/36, 0,7/66/33 2,1	<i>a</i> : 1421,9(7) <i>c</i> : 950,5(5)	klare farblose Kristalle, <1 mm, Lumineszenz
484	0,1/15,9/8 MnO/ZnO/~ 0,625	HCl, 0,5 1050/900 144	Mn _{0.02} Zn _{1,98} GeO ₄ 0,8/67/31, 0,5/65/34 0,66	<i>a</i> : 1421,8(4) <i>c</i> : 951,5(7)	klare farblose Nadeln, hexagonale Grundform, <1 mm, Lumineszenz

8.2 Das System V₂O₃/Ga₂O₃/GeO₂

In den Versuchen zum Transport der ternären Germanate erwies sich Chlor als geeignetes Transportmittel im System Ga₂O₃/GeO₂, V₂O₃ hingegen wird unter diesen Bedingungen oxidiert. Trotzdem wurde Cl₂ für Vorversuche im quarternären System V₂O₃/Ga₂O₃/GeO₂ verwendet. Bei Temperaturen von $T_Q = 950$ nach $T_S = 1050$ °C wurden Oxidgemische mit unterschiedlichen Zusammensetzungen transportiert. Dabei wurde nicht nur das V₂O₃:Ga₂O₃-Verhältnis variiert, sondern auch der Gesamtgehalt an dreiwertigen Oxiden im Ausgangsbodenkörper. Folgende Schlüsse können aus den Ergebnissen gezogen werden (s. Tab. 8-3): Liegt Ga⁺³ im Überschuss vor, so wird nur Gallium(III)-oxid abgeschieden, bei einem V³⁺-Überschuss hingegen scheiden sich V-Ga-Germanate in Form von schwarzen Nadeln ab (s. Abb. 8-6).

Abb. 8-6: Durch Chemischen Transport dargestelltes V-Ga-Germanat.

Tab. 8-3: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System $V_2O_3/Ga_2O_3/GeO_2$,Versuchsreihe 8-3; (~ = GeO_2).

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol) mol% (V ³⁺)	Trmittel, $n \pmod{T_Q/T_S(^\circ C)}$ Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg/h)	(pm)	Bemerkung
485	0,5/1,5/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 25	$\begin{array}{c} \text{Cl}_2,0,5\\ 1050/950\\ 185\end{array}$	Ga ₂ O ₃ 17/70/10 0,3		schwarze Nadeln, innen weiß
486	1,5/3/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 33	$\begin{array}{c} {\rm Cl}_2,0,5\\ 1050/950\\ 185\end{array}$	Ga ₂ O ₃ 1/97/0 0,2		schwarze Nadeln, innen weiß
487	1,5/1,5/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 50	$Cl_2, 0,5$ 1050/950 99,5	$(V_{0,66}Ga_{0,33})_2Ge_2O_7\\15/9/6/69\\0,1$	<i>a</i> : 1777 <i>b</i> : 299, β: 102,9 ° <i>c</i> : 1010	schwarze Nadeln, sowohl im QBK als auch im SBK
488	3/1/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 75	$\begin{array}{c} \text{Cl}_2,0,5\\ 1050/950\\ 185\end{array}$	V _{1,5} Ga _{8,5} Ge ₄ O ₂₄ 56/27/17 3,5	<i>a</i> : 1380 <i>b</i> : 300, β: 107° <i>c</i> : 1000	schwarze Nadeln

Abb. 8-7: Struktur von (V_{0,66}Ga_{0,33})₂Ge₂O₇.

nachfolgenden Untersuchungen (s. Bei den Tab. 8-4) betrug das Verhältnis n(M^{III}₂O₃):n(GeO₂) 2:1. Den Transportversuchen mit Chlor wurden solche mit HCl entgegengesetzt. Dabei wurde festgestellt, dass das Transportmittel keinen Einfluss auf die Art der Abscheidung hat und dass größere Bereiche der Löslichkeit im festen Zustand nicht existieren, sondern vielmehr diskrete Phasen abgeschieden werden, in denen das Vanadium zumeist gemischtvalent vorliegt (V_{1.5}Ga_{8.5}Ge₄O₂₄, V₅Ga₂Ge₂O₁₆). Eine Ausnahme ist das in 491 Versuch 487 und entstandene $(V_{0.66}Ga_{0.33})_2Ge_2O_7$, dessen Struktur durch Einkristallmessung bestimmt wurde und in Abb. 8-7 abgebildet ist. Das Ergebnis von Versuch 498, die Bildung schwarzer Kristalle mit Domänen von monokliner und hexagonaler Struktur, deutete daraufhin, dass bei der Abscheidungstemperatur eine Phasenumwandlung stattgefunden haben könnte. Deshalb wurde dieser Versuch zweimal wiederholt, dabei erfolgte das Abkühlen von Transport- auf Raumtemperatur einmal plötzlich, unter Abschrecken (Versuch 499), beim zweiten Versuch (500) im Verlauf von 36 Stunden. Jedoch führte keines dieser Experimente zur Abscheidung eines Materials, das indizierbar gewesen wäre.

Exp.	ABK	Transportbedingungen:	SBK	Gitterkonstanten	Kristallfarbe,
	<i>n</i> (mmol)	Trmittel, <i>n</i> (mmol) <i>T</i> _Q / <i>T</i> _S (°C) Trdauer (h)	Zusammensetzung (mol%) Transportrate (mg/h)	(pm)	Bemerkung
489	0,5/2,5/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 17	Cl ₂ , 0,5 1050/950 121,5	VO ₂ 35/43/22, 30/48/22 0,1		braune Nadeln, gelber Belag
490	1/2/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 33	$Cl_2, 0,5$ 1050/950 121,5	Ga ₂ O ₃ 3/97/0, 6/93/1 1,0		wenige schwarze Kristalle, z. T. >2 mm
491	1,5/1,5/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 50	Cl ₂ , 0,5 1050/950 99,5	$(V_{0,66}Ga_{0,33})_2Ge_2O_7\\15/9/6/69\\0,1$	<i>a</i> : 1777 <i>b</i> : 299, β: 102,9 ° <i>c</i> : 1010	schwarze Nadeln, sowohl im QBK als auch im SBK
492	2/1/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 66	Cl ₂ , 0,5 1050/950 99,5	VO ₂ 26/27/48, 87/0/13 2,3		kurze und lange dunkle Nadeln
493	2,5/0,5/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 83	$\begin{array}{c} \text{Cl}_2,0,5\\ 1050/950\\ 99,5 \end{array}$	VO ₂ , GeO ₂ 95/0/6, 48/0/52 1,2		kurze und lange dunkle Nadeln
494	0,5/2,5/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 17	HCl, 0,5 1050/950 121,5	0/0/0/100 _{Si} , 5/95/0 0,8	nicht indizierbar	farblose Kristalle
495	1/2/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 33	HCl, 0,5 1050/950 121,5	24/69/7, 18/64/18 0,6	nicht indizierbar	schwarze Kristalle
496	1,5/1,5/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 50	HCl, 0,5 1050/950 121,5	V _{1,5} Ga _{8,5} Ge ₄ O ₂₄ 42/23/35, 37/38/26 0,1	<i>a</i> : 1380 <i>b</i> : 300, β: 107° <i>c</i> : 1000	dunkelbraune Nadeln.
497	2/1/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 66	HCl, 0,5 1050/950 121,5	V ₅ Ga ₂ Ge ₂ O ₁₆ 46/29/25, 43/36/21 0,1	<i>a</i> : 1777 <i>b</i> : 299, β: 102,9 ° <i>c</i> : 1010	dunkelbraune Nadeln, Länge: 1 mm
498	2,5/0,5/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 83	HCl, 0,5 1050/950 121,5	55/16/29, 58/20/22 0,6	nicht indizierbar	schwarze Kristalle mit Domänen von monokliner und hexagonaler Struktur, s. 499, 500
499	2,5/0,5/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 83	HCl, 0,5 1050/950 167	73/5/22, 62/18/20 0,6	nicht indizierbar	Abkühlen unter Abschrecken
500	2,5/0,5/3 V ₂ O ₃ /Ga ₂ O ₃ /~ 83	HCl, 0,5 1050/950 167	49/12/40, 59/18/23 0,2	nicht indizierbar	Abkühlen unter Gleichgewichtseinstellung

Tab. 8-4: Versuchsbedingungen und Ergebnisse zum Chemischen Transport im System $V_2O_3/Ga_2O_3/GeO_2$,Versuchsreihe 8-4; (~ = GeO_2).

8.3 Zusammenfassung von Kapitel 8

Im System MnO/ZnO/GeO₂ kann eine Reihe mit unterschiedlichen Randphasen und begrenzter Mischbarkeit gefunden werden: $MnGeO_3:Zn^{2+} - Zn_2GeO_4:Mn^{2+}$. Das Mn²⁺- dotierte *ortho*-Germanat zeigt eine in seiner Intensität vom Mangangehalt abhängige UV-Lumineszenz.

Der Transport von V₂O₃, Ga₂O₃ und GeO₂ führt nur zur Ausbildung von Germanaten ohne Phasenbreite, sowohl mit gemischtvalent vorliegendem Vanadium ($V_{1,5}Ga_{8,5}Ge_4O_{24}$, $V_5Ga_2Ge_2O_{16}$) als auch ausschließlich mit Vanadium der Oxidationsstufe +III, hier ($V_{0,66}Ga_{0,33}$)₂Ge₂O₇. Eine Korrelation zwischen der Zusammensetzung von Senkenbodenkörper und eingesetztem Material oder dem Transportmittel konnte nicht gefunden werden.

Literatur zu Kapitel 8 :

- ¹ Ando, T., Nishiguchi, K., Jpn. Kokai Tokkyo JP 01 60,671 [89 60,671] (Cl. C09D11/16), 07 Mar 1989, Appl. 87/217,760, 31 Aug **1987**.
- ² G. Blasse, B. C. Grabmaier, *Luminescent Materials*, Springer Verlag, Heidelberg, **1994**.
- ^{3a} S. Locmelis, *Dissertation*, Universität Hannover, **1998**.
- ^{3b} A. Pajaczkowska, K. Majcher, J. Crystal Growth, 1985, 71, 810-2.
- ⁴ A. Oribe, K. Tanaka, H. Morikawa, F. Marumo, **1987**, *12*, 7-12.
- ⁵ C. H. Bates, W. B. White, R. Ray, J. Inorg. Nucl. Chem., **1966**, 28, 387.

9 Zusammenfassung und Ausblick

In dieser Arbeit konnten erfolgreich ternäre und quarternäre Germanate zwei- bzw. dreiwertiger Kationen mittels Chemischen Transports gezüchtet werden.

Ternäre Germanate:

Im System MnO/GeO₂ konnte von den beiden bekannten Phasen nur $MnGeO_3$ abgeschieden werden. Dabei wurden die höchsten Transportraten im Temperaturgradienten 1050/950 °C erzielt.

In Abhängigkeit vom Mischungsverhältnis der Oxide FeO und GeO₂ war es möglich, sowohl $FeGeO_3$ als auch Fe_2GeO_4 bei $T_Q = 900$, $T_S = 700$ °C abzuschieden.

Beim gemeinsamen Transport von Co_3O_4 und GeO_2 wurden stets Germanate von Cobalt der Oxidationsstufe +II erhalten. Je nach Zusammensetzung des Ausgangsbodenkörpers entstanden $CoGeO_3$ bzw. Co_2GeO_4 , unabhängig davon, ob HCl oder das oxidierend wirkende Cl_2 als Transportmittel Verwendung fand. Die Temperaturen hatten dabei keinen Einfluss auf das Transportverhalten.

Ausgehend von NiO und GeO₂ konnte mit HCl das einzig stabile Germanat, Ni_2GeO_4 , bei verschiedenen Temperaturen abgeschieden werden. Die Verwendung eines Gradienten 800/700 °C führte zusätzlich zum Ni-Ge-Oxidchlorid.

 $CuGeO_3$ konnte durch Chemischen Transport nicht erhalten werden, auch ein "Drei-Zonen-Transport" führte zu keinem Erfolg.

 Zn_2GeO_4 konnte mit Chlor und HCl transportiert werden. Die höchste Transportraten wurden bei 1050/900 °C (Transportmittel: HCl) gefunden.

Im System V₂O₃/GeO₂ kann bei $T_Q = 1000$, $T_S = 900$ °C bei Verwendung des Transportmittels HCl V₃GeO₇, mit Vanadium in den Oxidationsstufen +III und +IV, abgeschieden werden.

Weder Chrom(III)-germanate noch Eisen(III)-germanate konnten durch Chemischen Transport erhalten werden.

Mit dem Transportmittel Chlor gelang im System Ga_2O_3/GeO_2 nur die Abscheidung von $Ga_2Ge_2O_7$.

Quarternäre Germanate

Man kann die Ergebnisse in vier unterschiedliche Gruppen einteilen:

- Bildung von Mischphasen mit vollständigen Löslichkeiten : (Mn, Co)GeO₃, (Fe, Co)₂GeO₄, (Ni, Co)₂GeO₄, (Fe, In)₂Ge₂O₇
- Bildung von Mischphasen mit begrenzten Löslichkeiten:
 (Zn, Co)₂GeO₄, (Mn, Zn)₂GeO₄, (V, In)₂Ge₂O₇, (Cr, In)₂Ge₂O₇, (Mn, In)₂Ge₂O₇, (Mn, In)₇GeO₁₂
- Bildung von Mischphasen mit begrenzter Löslichkeit und unterschiedlichen Randphasen: (Ni, Co)₂GeO₄-(Ni, Co)GeO₃, (Mn, Zn)GeO₃-(Mn, Zn)₂GeO₄, (Ga, In)₂Ge₂O₇
- Bildung von diskreten Phasen
 (Mn, In)₇GeO₁₂, (V, Ga)_xGe_yO_z

Im System MnO/Co₃O₄/GeO₂ konnte mittels Chemischen Transports bei 900/700 °C die Bildung der Mischkristallreihe (*Mn*, *Co*)*GeO*₃ beobachtet werden. Diese Mischphasen werden unabhängig vom eingesetzten M^{2+}/Ge^{4+} -Verhältnis gebildet. Eine Reihe (Mn, Co)₂GeO₄ konnte nicht gefunden werden. Bei höheren Temperaturen wurden nur die Oxide (*Mn*, *Co*)₃O₄ abgeschieden.

Ein weiteres Beispiel für eine Reihe mit vollständiger Löslichkeit ist $(Fe, Co)_2GeO_4$, wohingegen die Germanate FeGeO₃ und CoGeO₃ trotz gleicher Struktur und vergleichbarem Ionenradius von Fe²⁺ und Co²⁺ eine solche Mischkristallreihe nicht zeigten. Die Transportbedingungen waren die selben wie im vorherigen System.

Im System NiO/CoO/GeO₂ existiert zwischen Ni_2GeO_4 und Co_2GeO_4 eine vollständige Mischbarkeit ($T_Q = 900$ $T_S = 700$, Transportmittel: HCl). Bei äquimolaren Ausgangsbodenkörper-Zusammensetzungen, bezogen auf das Verhältnis $n(M^{2+})/n(GeO_2)$, beobachtet man die Bildung von Phasen mit begrenzter Löslichkeit und unterschiedlichen Randphasen: (Ni, Co)₂GeO₄ und (Ni, Co)GeO₃.

Zwischen Zn_2GeO_4 und Co_2GeO_4 konnten lediglich auf der Cobalt-reichen Seite quarternäre Phasen mit einem maximalen Zn^{2+} -Gehalt von 25 %gefunden werden.

In den Systemen V₂O₃/In₂O₃/GeO₂ und Cr₂O₃/In₂O₃/GeO₂ wurden dotierte Phasen der Thortveitit-Struktur ($In_2Ge_2O_7:M^{3+}$) gefunden. Die Kationen V^{3+} bzw. Cr^{3+} wurden nur in einem relativ geringen Maß eingebaut: ($M^{3+}_x In_{1-x}$)₂Ge₂O₇, V^{3+} : x < 0,15, Cr^{3+} : x < 0,10. Durch den Einbau von V^{3+} wird ein braunes Material erhalten, das Chrom-dotierte Germanat zeichnet sich durch seine intensive Lilafärbung aus.

Bei dem gemeinsamen Transport von Mn_2O_3 , In_2O_3 und GeO_2 können drei Phasen gefunden werden: Mangan-reiches $(Mn_{1-x}In_x)_2Ge_2O_7$ (x = 0 bis 0,35, braun) der $Mn_2Ge_2O_7$ -Struktur, blaugefärbtes $(Mn_{1-x}In_x)_2Ge_2O_7$ mit Thortveitit-Struktur bei einem Mangangehalt von bis zu x = 0,48 und eine weitere Phase der Summenformel $(Mn, In)_7GeO_{12}$, einem Ge-Analogon des Braunit, das maximale Mengen von 6 mol% In^{3+} enthält.

Das System $Fe_2O_3/In_2O_3/GeO_2$ zeigt eine nahezu vollständige Löslichkeit des Fe^{3+} im Germanat $(Fe_{1-x}In_x)_2Ge_2O_7$ (x > 0,05), jedoch konnte die bisher unbekannte Randphase $Fe_2Ge_2O_7$ nicht gefunden werden. Diese breite Löslichkeit ist auch durch die mit steigendem Eisengehalt zunehmende Braunfärbung des im reinen Zustand farblosen $In_2Ge_2O_7$ zu erkennen.

 Ga_2O_3 und In_2O_3 bilden mit Germanium(IV)-oxid Germanate, die nicht isotyp sind und sich im Kristallhabitus ($Ga_2Ge_2O_7:In^{3+}$: Nadeln, $In_2Ge_2O_7:Ga^{3+}$: kompakte Kristalle) von einander unterscheiden. Das abgeschiedene Material hatte die allgemeine Zusammensetzung $(Ga_{1-x}In_x)_2Ge_2O_7$, das eingebaute Kation war jeweils in nur geringen Mengen gelöst (x < 0,05 bzw. > 0,65).

Im System MnO/ZnO/GeO₂ kann eine Reihe mit unterschiedlichen Randphasen und begrenzter Mischbarkeit gefunden werden: $MnGeO_3:Zn^{2+} - Zn_2GeO_4:Mn^{2+}$. Das Mn²⁺- dotierte *ortho*-Germanat zeigt eine in seiner Intensität vom Mangangehalt abhängige UV-Lumineszenz.

Der Transport von V₂O₃, Ga₂O₃ und GeO₂ führt nur zur Ausbildung von Germanaten ohne Phasenbreite, sowohl mit gemischtvalent vorliegendem Vanadium ($V_{1,5}Ga_{8,5}Ge_4O_{24}$, $V_5Ga_2Ge_2O_{16}$) als auch ausschließlich mit Vanadium der Oxidationsstufe +III, hier ($V_{0,66}Ga_{0,33}$)₂Ge₂O₇. Eine Korrelation zwischen der Zusammensetzung von Senkenbodenkörper und eingesetztem Material oder dem Transportmittel konnte nicht gefunden werden.

Ausblick

Die in dieser Arbeit untersuchten System haben gemeinsam, dass es sich mit Ausnahme des Systems $V_2O_3/Ga_2O_3/GeO_2$ jeweils um Germanate mit Kationen einer Wertigkeitsstufe handelt. Untersuchungen von KRUG am System Fe^{II}/Fe^{III}/Ge/O¹ sowie PAJACZKOWSKA und MAJCHER zur Darstellung von Mn₃Cr₂Ge₃O₁₂² zeigten, dass auch der Chemische Transport

von Germanaten mit Kationen unterschiedlicher Oxidationsstufen möglich ist. Es existiert eine große Anzahl an Systemen, in denen in Analogie zu den Arbeiten von KRUG Germanate mit Kationen derselben Atomsorte in unterschiedlichen Oxidationsstufen denkbar sind, wie beispielsweise Mn^{II}/Mn^{III}/Ge/O, Co^{II}/Co^{III}/Ge/O, Mo^{II}/Mo^{III}/Mo^{IV}/Ge/O, aber vorstellbar ist auch der Einbau von Kationen unterschiedlicher Atomsorten wie bei PAJACZKOWSKA und MAJCHER (u.a. Mn^{II}/(Fe^{III}/Ga^{III}/In^{III})/Ge/O; (Co^{II}/Ni^{II}/Zn^{II})/Fe^{III}/Ge/O, ...).

Ferner wäre der Einbau von Hauptgruppen-Elementen von Interesse, da einige Germanate interessante physikalischen Eigenschaften haben und daher von industriellem Nutzen sind, wie bereits in der Einleitung erwähnt.

Im System $(Zn, Co)_2 GeO_4$ wäre die Darstellung der von HIROTA *et al.*³ dargestellten aber in dieser Arbeit nicht erhaltenen Phasen mit höheren Zinkgehalten ein lohnendes Ziel. In derselben Arbeit untersuchte der Autor auch das System $(Zn, Ni)_2 GeO_4$, das sich ebenfalls für weitere Untersuchungen eignet.

Die magnetischen Eigenschaften der Spinelle (Fe, $Co)_2GeO_4$ sollten durch geeignete Messungen quantifiziert und der Zusammenhang mit der Zusammensetzung des Materials bestimmt werden.

Die Lumineszenz beim Mn²⁺-dotierten Zinkgermanat müsste näher untersucht werden und die Messungen mit denen von gesintertem bzw. gefälltem Material verglichen werden.

Die dargestellten Phasen im System $V_2O_3/Ga_2O_3/GeO_2$ könnten ebenfalls interessante physikalische Eigenschaften haben, da das Vanadium hier zumeist gemischtvalent vorliegt. Vorstellbar wären katalytische Effekte, aber auch Elektronen- oder Ionenleitung sind denkbar.

Literatur zu Kapitel 9 :

- ¹ B. Krug, *Dissertation*, Justus-Liebig-Universität, Gießen, **1986**
- ² A. Pajaczkowska, K. Majcher, J. Crystal Growth, 1985, 71, 810-2.
- ³ K. Hirota, M. Ohtani, N. Mochida, A. Ohtsuka, *Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi*, **1989**, *97*(*1*), 8-15.

Anhang

10.1 Literatur

Literatur zu Kapitel 1	3
Literatur zu Kapitel 2	9
Literatur zu Kapitel 3	12
Literatur zu Kapitel 4	16
Literatur zu Kapitel 5	40
Literatur zu Kapitel 6	63
Literatur zu Kapitel 7	81
Literatur zu Kapitel 8	93
Literatur zu Kapitel 9	97
10.2 Abbildungsverzeichnis

Abb. 2-1: Schematischer Aufbau einer Transportampulle.	5
Abb. 3-1: Transportampulle.	10
Abb. 3-2: Vakuumstern, Kippsche Apparatur.	11
Abb. 3-3: Schematische Darstellung der Transportanordnung.	12
Abb. 4-1: Schematischer Strahlengang eines Transmissions-Pulverdiffraktometers.	13
Abb. 5-1: Struktur von MnGeO ₃ (Orthopyroxen).	19
Abb. 5-2: Struktur von FeGeO ₃ bzw. CoGeO ₃ (Klinopyroxen).	19
Abb. 5-3: Struktur von CuGeO ₃ (Einerkette).	19
Abb. 5-4: Struktur von Fe ₂ GeO ₄ ,Co ₂ GeO ₄ , Ni ₂ GeO ₄ (Spinell).	20
Abb. 5-5: Struktur von Zn ₂ GeO ₄ (Phenakit).	20
Abb. 5-6: Durch Chemischen Transport dargestelltes CoGeO ₃ (links), Co ₂ GeO ₄ (rechts).	27
Abb. 5-7: Partialdruckkurven.	28
Abb. 5-8: Durch Chemischen Transport dargestelltes Ni ₂ GeO ₄	29
Abb. 5-9: Skizze des Drei-Zonen-Transports.	30
Abb. 5-10: Durch Chemischen Transport dargestelltes Zinkgermanat (Zn ₂ GeO ₄).	31
Abb. 5-11: Durch Chemischen Transport dargestelltes V ₃ GeO ₇ .	35
Abb. 5-12: Struktur von $In_2Ge_2O_7$.	36
Abb. 5-13: Durch Chemischen Transport dargestelltes In ₂ Ge ₂ O ₇ .	37
Abb. 6-1: Phasendiagramm CoO-MnO.	42
Abb. 6-2: Durch Chemischen Transport dargestelltes (Mn, Co)GeO ₃ der Klinopyroxen-	
Struktur.	44
Abb. 6-3: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport	
im System MnO/CoO/GeO ₂ , Versuchsreihe 6-2.	44
Abb. 6-4: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport	
im System MnO/CoO/GeO ₂ , Versuchsreihe 6-3.	47
Abb. 6-5: Durch Chemischen Transport dargestelltes (Fe, Co) ₂ GeO ₄ .	50
Abb. 6-6: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport	
im System FeO/CoO/GeO ₂ , Versuchsreihe 6-5.	51
Abb. 6-7: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transport	
im System FeO/CoO/GeO ₂ , Versuchsreihe 6-6.	53
Abb. 6-8: Durch Chemischen Transport dargestelltes (Ni, Co) ₂ GeO ₄	55

Abb. 6-9: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transp	port
im System NiO/CoO/ GeO ₂ , Versuchsreihe 6-8.	55
Abb. 6-10: Graphische Darstellung der Versuchsergebnisse zum Chemischen Tran	sport
im System NiO/CoO/ GeO ₂ , Versuchsreihe 6-9.	58
Abb. 6-11: Phasendiagramm des Systems Mg2GeO4- Co2GeO4- Zn2GeO4 nach HIR	ROTA
et al.	58
Abb. 6-12: Graphische Darstellung der Versuchsergebnisse zum Chemischen Tran	sport
im System ZnO/CoO/GeO ₂ , Versuchsreihe 6-11.	60
Abb. 7-1: Durch Chemischen Transport dargestelltes (In, Cr) ₂ Ge ₂ O ₇ .	67
Abb. 7-2: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transp	port
im System Cr ₂ O ₃ /In ₂ O ₃ /GeO ₂ , Versuchsreihe 7-3.	68
Abb. 7-3: Durch Chemischen Transport dargestelltes (Mn, In) ₂ Ge ₂ O ₇ .	70
Abb. 7-4: Phasendiagramm In ₂ O ₃ -Fe ₂ O ₃ .	73
Abb. 7-5: Durch Chemischen Transport dargestelltes (Fe, In) ₂ Ge ₂ O ₇ .	74
Abb. 7-6: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transp	port
im System Fe ₂ O ₃ /In ₂ O ₃ /GeO ₂ , Versuchsreihe 7-7.	75
Abb. 7-7: Durch Chemischen Transport dargestelltes Ga ₂ Ge ₂ O ₇ :In ³⁺ (links) und	
$In_2Ge_2O_7:Ga^{3+}$ (rechts).	77
Abb. 7-8: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transp	port
im System Ga ₂ O ₃ /In ₂ O ₃ /GeO ₂ , Versuchsreihe 7-8.	78
Abb. 8-1: Phasendiagramm ZnO/MnO.	83
Abb. 8-2: Orthopyroxen-Phase, Phenakit-Phase (Zn ₂ GeO ₄ , li., Mn _{0,09} Zn _{0,91} GeO ₄ , r	e.),
im oberen Bild unter Tageslicht, im unteren Bild mit UV-Strahlung (360	nm)
bestrahlt.	85
Abb. 8-3: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transp	port
im System MnO/ZnO/GeO2, Versuchsreihe 8-2, Versuch 466 - 475.	85
Abb. 8-4: Graphische Darstellung der Versuchsergebnisse zum Chemischen Transp	port
im System MnO/ZnO/GeO2, Versuchsreihe 8-2, Versuch 476 - 484.	86
Abb. 8-5: Darstellung der Lumineszenzmessungen.	87
Abb. 8-6: Durch Chemischen Transport dargestelltes V-Ga-Germanat.	90
Abb. 8-7: Struktur von (V _{0,66} Ga _{0,33}) ₂ Ge ₂ O ₇ .	91

10.3 Tabellenverzeichnis

Tab. 4-1: Meßparameter für Pulverdiffraktometeraufnahmen.	14
Tab. 5-1: Übersicht zum Transport von Germanaten.	18
Tab. 5-2: Übersicht über die Strukturen der durch Chemischen Transport dargestellten	
ternären Germanate.	21
Tab. 5-3: Thermodynamische Daten der am Chemischen Transport beteiligten	
Substanzen.	22
Tab. 5-4: Versuchsbedingungen und Ergebnisse zum Chemischen Transport ternärer	
Germanate mit zweiwertigem Kation.	32
Tab 5-5: Versuchsbedingungen und Ergebnisse zum Chemischen Transport ternärer	
Germanate mit dreiwertigem Kation.	37
Tab. 6-1: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
MnO/CoO/GeO ₂ , Versuchsreihe 6-1.	43
Tab. 6-2: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
MnO/CoO/GeO ₂ , Versuchsreihe 6-2.	45
Tab. 6-3: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
MnO/CoO/GeO ₂ , Versuchsreihe 6-3.	47
Tab. 6-4: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
FeO/CoO/GeO ₂ , Versuchsreihe 6-4.	49
Tab. 6-5: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
FeO/CoO/GeO ₂ , Versuchsreihe 6-5.	50
Tab. 6-6: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
FeO/CoO/GeO ₂ , Versuchsreihe 6-6.	52
Tab. 6-7: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
NiO/CoO/GeO ₂ , Versuchsreihe 6-7.	54
Tab. 6-8:Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
NiO/CoO/GeO ₂ , Versuchsreihe 6-8.	56
Tab. 6-9:Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
NiO/CoO/GeO ₂ , Versuchsreihe 6-9.	57
Tab. 6-10: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
ZnO/CoO/GeO ₂ , Versuchsreihe 6-10.	60

Tab. 6-11: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
ZnO/CoO/GeO ₂ , Versuchsreihe 6-11.	61
Tab. 7-1: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
V ₂ O ₃ /In ₂ O ₃ /GeO ₂ , Versuchsreihe 7-1.	65
Tab. 7-2: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
V ₂ O ₃ /In ₂ O ₃ /GeO ₂ , Versuchsreihe 7-2.	65
Tab. 7-3: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
$Cr_2O_3/In_2O_3/GeO_2$, Versuchsreihe 7-3.	68
Tab. 7-4: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
$Mn_2O_3/In_2O_3/GeO_2$, Versuchsreihe 7-4.	70
Tab. 7-5: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
$Mn_2O_3/In_2O_3/GeO_2$, Versuchsreihe 7-5.	71
Tab. 7-6: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
Fe ₂ O ₃ /In ₂ O ₃ /GeO ₂ , Versuchsreihe 7-6.	74
Tab. 7-7: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
Fe ₂ O ₃ /In ₂ O ₃ /GeO ₂ , Versuchsreihe 7-7.	76
Tab. 7-8: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
Ga ₂ O ₃ /In ₂ O ₃ /GeO ₂ , Versuchsreihe 7-8.	79
Tab. 8-1:Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
MnO/ZnO/GeO ₂ , Versuchsreihe 8-1.	84
Tab. 8-2: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
MnO/ZnO/GeO ₂ , Versuchsreihe 8-2.	88
Tab. 8-3: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
V ₂ O ₃ /Ga ₂ O ₃ /GeO ₂ , Versuchsreihe 8-3.	90
Tab. 8-4: Versuchsbedingungen und Ergebnisse zum Chemischer Transport im System	
V ₂ O ₃ /Ga ₂ O ₃ /GeO ₂ , Versuchsreihe 8-4.	92

10.4 Chemikalienverzeichnis

Cl ₂	Gerling, Holz Co.	99,8 %
Co_3O_4	E. Merck AG	chem. Rein
Cr ₂ O ₃	Koch-Light	99,999 %
CuO	Riedel-de-Haen AG	98 %
FeO	ChemPur	99,99 %
Fe ₂ O ₃	ChemPur	99,99 %
Ga ₂ O ₃	MaTecK	99,99 %
H_2SO_4	BASF	96 %
In_2O_3	ChemPur	99,99 %
MnO	ChemPur	99,99 %
Mn_2O_3	ChemPur	99,99 %
NH ₄ Cl (Pulver)	E. Merck AG	chem. rein
NH ₄ Cl (Stücke)	Ventron	chem. rein
NiO	ChemPur	99,99 %
V_2O_3	ChemPur	99,99 %
ZnO	Riedel-de-Haen AG	99,5 %

10.5 Geräteverzeichnis

Röntgenpulverdiffraktometrie

Stoe Pulverdiffraktometrie-System Stadi P mit PSD Cu K $_{\alpha}$ -Strahlung, Anodenstrom 30 mA, Anodenspannung 40 kV

Rasterelektronenmikroskop

LEO, Leica Stereoscan 360, Filament W, EHT = 20 kV, WD 12 mm EDX: OXFORD INSTRUMENTS, ISIS 300, Modell-Nr. 7060, Detektor: SiLi, Detect.area: 10 mm², Window: ATW2, Auflösung/5.9 V: 138 eV, WD = 25 mm Software: Link ISIS Suite Revision 3.2

Röntgenfluoreszenz

RÖNTGENANALYTIK MEßTECHNIK GMBH, EAGLE II μ-Probe
Röntgenröhre: OXFORD INSTRUMENTS, RSG2/ORBM-P, Target-Material: Mo,
Detektor: EDAX INTERNATIONAL, Typ: Eagle 149-5, Material: Si, Mn-K_α-Strahlung, Auflösung/5.9 V: 142,9 eV,
Analysator: PHÖNIX HX 1425
Software:Vision 32 Software 3.308

UV-VIS-Fluoreszenz

PERKIN ELMER, LS 50 B, E5

Quelle: Xenon-Entladungslampe, 20 kW, 8 μs, Pulsweite bei halber Pulshöhe <10 μs, Detektor: Photomultiplier mit modifizierter S5-Antwort bis 650 nm; rotempfindlicher Photomultiplier bis 900 nm,

Monochromator: Monk-Gillieson-Typ, Anregung: 200-800 nm, Emission: 200 – 900 Software: FLWinLab

10.6 Abkürzungsverzeichnis

Abb.	Abbildung
ABK	Ausgangsbodenkörper
Aufl.	Auflage
Bd.	Band
bzw.	beziehungsweise
ca.	Circa
chem.	chemisch
dest.	destilliert
dkl.	dunkel
RFA	Röntgenfluoreszenz-Analyse
EDX	energiedispersive Röntgen-Spektroskopie
et al	und Mitarbeiter
Gl.	Gleichung
IR	infrarot
Kap.	Kapitel
konz.	konzentriert
M^{2+}	zweiwertiges Kation
M^{3+}	dreiwertiges Kation
$M^{III}_{2}O_{3}$	Oxid eines dreiwertigen Metallkations
M ^{II} O	Oxid eines zweiwertigen Metallkations
plättchenf.	plättchenförmig
PSD	Position Sensitive Detector = ortsempfindlicher Zähler
Pulverdiffuntersuchungen	pulverdiffratometrische Untsuchungen
QBK	Quellenbodenkörper
resp.	respekitve
S.	siehe
SBK	Senkenbodenkörper
Tab.	Tabelle
Trdauer	Transportdauer
UV	Ultraviolett
z. T.	zum Teil

10.7 Symbole häufig verwendeter physikalischer Größen

a, b, c, a, b, g	Gitterparameter
<i>c</i> _p	spezifische Wärmekapazität bei konstantem Druck
ΔG^0	freie Standardenthalpie
$\Delta H^0_{\ B}$	Standardbildungsenthalpie
ΔH^0_{R}	Standardreaktionsenthalpie
$\Delta H^0{}_{ m um}$	Standardumwandlungsenthalpie
$\Delta S^0{}_{ m R}$	Standardreaktionsentropie
$\Delta S^0_{ m um}$	Standardumwandlungsentropie
Κ	Gleichgewichtskonstante
n	Stoffmenge
$p, p^{j}(C), p^{k}(D), p_{Q}/p_{S}$	Druck, Partialdruck, Gleichgewichtspartialdruck an QBK / SBK
R	allgemeine Gaskonstante
$S^0{}_B$	Standardbildungsentropie
s, l, g	Aggregatzustände
$T, T_{\rm m}, T_{\rm Q} / T_{\rm S}$	Temperatur, mittlere ~, ~ an QBK / SBK
V	Volumen

Lebenslauf

Andrea Pfeifer, geb. Kohlmann

Dipl. Chemikerin *08. Dez. 1972 in Celle Am Schlossgarten 14 97076 Würzbug

Familienstand

verheiratet, keine Kinder

Schulausbildung

	-		
79 – 83	Grundschule, Bergen		
83 - 85	Orientierungstufe, Bergen		
85 – 93	Gymnasium, Hermannsburg		
	Abitur 06/93, Gesamtnote: 1,5		
	Hochschulbildung	Universität Hannover	
93 - 98	Studium der Chemie Studienschwerpunkte: Makrom Abschluss: Diplom 11/98, Gesa	olekulare Chemie, Anorganische Chemie mtnote "sehr gut"	
05/98 – 11/98	Diplomarbeit zum Thema: <i>Chemische Transportreaktionen in Systemen einiger ternärer Oxide</i> – <i>ZnO/TiO</i> ₂ , <i>ZnO/GeO</i> ₂ , <i>MnO/GeO</i> ₂ , <i>Fe</i> ₂ <i>O</i> ₃ / <i>GeO</i> ₂ , <i>ZnO/MoO</i> ₃ , <i>ZnO/WO</i> ₃ – Institut für Anorganische Chemie, Arbeitskreis Prof. Dr. M. Binnewies Note "sehr gut"		
01/99 – 11/01	Promotion zum Thema: <i>Chemischer Transport von Germanaten</i> Institut für Anorganische Chemie, Arbeitskreis Prof. Dr. M. Binnewies Note "sehr gut"		
	Berufliche Tätigkeiten	MHH, Universität Hannover	
04/96 - 07/96	studentische Hilfskraft, Institut für Medizinische Chemie: Betreuung des Chemischen Praktikums für Studenten der Medizin und Zahnmedizin		
10/97 - 01/98	studentische Hilfskraft, Institut für Anorganische Chemie:		
	Unterstützung des wissenschaftlichen Personals in der Forschung (Chemischer Transport)		
09/98 – 12/98	studentische Hilfskraft, Institut für Anorganische Chemie: Betreuung des Chemischen Grundpraktikums		
seit 01/99	wissenschaftliche Mitarbeiterin, Institut für Anorganische Chemie Organisation und Betreuung des Chemischen Grundpraktikums/Übung, Betreuung von Analysegeräte		

	Praktische Tätigkeiten	Bergen, Hannover
91 – 98	Mitarbeit in der Gastronomie (Re Kohlmann, Bergen	ezeption, Restaurant), Hotel-Restaurant
98 – 99	Übersetzungstätigkeit, <i>Organische Chemie</i> , K. P. C. Vollhardt, 3. Aufl VCH, Weinheim, 2000.	
	Auslandsaufenthalte	
89 - 90	Highschool, Jasper, GA., USA	
96 – 97	Imperial College, London, GB, S Schwerpunktarbeiten zu den The Suspension polymerization and a Polymeric support for Vanadium Dept. of Organic Chmistry, Prof.	Sokrates-Stipendium emen: <i>amphiphilic resins</i> a-based olefin polimerization catalysts . V. C. Gibson

Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst und die verwendeten Hilfsmittel angegeben habe.

Hannover, 15. Oktober 2001

Andrea Pfeifer