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Abstract 
Flow between two cylinders located side-by-side in a stream of air is a very complicated 

phenomenon and has long been the subject of interest for fundamental studies in fluid 

dynamics. The aim of the present work is to solve and study the problem of the fluid flow and 

forced convection around two circular cylinders in a stream of air for the case of unsteady 

laminar flow with Reynolds number ranging from 100 to 500, constant heat flux dissipating 

from both cylinders, as well as constant wall temperature for both cylinders. Flow 

visualization as well as heat transfer correlations are considered. The results showed a good 

agreement between the present work and that found in the literature. The biased nature of the 

flows could be verified numerically and the results showed that this effect takes place for any 

pitch to diameter ratio smaller than 2.0. The heat transfer results showed that for both modes 

of heat transfer used the most configuration that optimizes the heat transfer process is to put 

the cylinders about two diameters away from each other. 
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Zusammenfassung 
Die Strömung um einen ruhenden Zylinder ist schon vielfältig behandelt worden, und es 

haben sich wichtige Resultate für verschiedene Anwendungsfälle ergeben. Das Ziel der 

vorliegenden Arbeit ist nun, die Strömung und den Wärmeübergang um zwei nebeneinander 

liegenden Zylinder numerisch zu untersuchen. Als Ergebnis ist von Bedeutung einmal der 

Widerstandskoeffizient. Er hängt entschieden von der Reynoldszahl und vom gegenseitigen 

Abstand der beiden Zylinder ab. Auch bei einer stationären Anströmung ergibt sich ab einer 

bestimmten Kombination der oben genanten Parameter zunächst eine oszillierende 

Abströmung. Die Mittellinie stellt dabei eine Symmetrielinie dar. Bei kleiner werdendem 

Abstand der beiden Zylinder verformt sich diese Symmetrielinie zu einer Art zeitlich irregulär 

schwankenden Mittellinie. Aus der Literatur weiß man, dass dieser Vorgang auch im 

Experiment nachgewiesen wurde. 

Das zweite Resultat betrifft den Wärmeübergangskoeffizienten. Es wurden die Fälle konstante 

Wandtemperatur und konstanter Wärmefluss an der Wand behandelt. Wenn der 

Zylinderabstand zu Zylinderdurchmesser um zwei liegt, stellt sich jedes Mal ein optimaler 

Wert ein.   
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Chapter 1 

Introduction 

1.1 Motivation 

low past a circular cylinder is a very complicated phenomenon and has long been the 

subject of interest for fundamental studies in fluid dynamics. This flow configuration is 

widespread in meteorology and astronomy as well as in engineering applications such as heat 

transfer surfaces in boilers, heat exchangers, and the like in various power generation plants 

and chemical plants. 

While there is a considerable amount of theoretical and experimental work devoted to the 

studies of different aspects of flow around a single cylinder, information about the flow 

around two and more cylinders is very limited and mostly experimental. 

The history of investigation of the flow around two circular cylinders is an example of 

unsystematic and fragmentary research, which has been carried out mainly to solve immediate 

practical problems. Industrial applications stimulated research projects appeared in various 

areas of engineering and science. Applications started in aeronautical engineering (twin struts 

to support wings), moved to hydronautical engineering (periscope, snorkel and radar mast 

vibrations), civil engineering (twin chimney stacks in wind, jetties and offshore structures in 

high seas), electrical engineering (twin-conductor transmission line vibration), mechanical 

engineering (in connection with heat exchanger tube vibrations) and chemical engineering 

(pipe-rack forces). 

It is common in practice to assume that two cylinders should behave in a flow similar, or even 

in an identical manner, to a single cylinder. This assumption is justified only when the two 

cylinders are sufficiently apart. Generally, the interference between two cylinders at close 

proximity drastically changes the flow around them, produces unexpected forces and pressure 

distributions, and intensifies or suppresses vortex shedding. These changes of the flow pattern 

are systematically described and analyzed in the present work. 

F
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All the possible arrangements of two cylinders are grouped into three sections: tandem, side- 

by side, and staggered. The possible flows around two circular cylinders may be classified in 

two categories: with and without interference. These two categories are divided by an 

interference boundary. The interference may be either partial, when only one cylinder is 

affected, or combined, when both mutually interfere. 

With the advent of powerful computers, computational methods have become widely used to 

study fluid flow problems. The numerical solution of unsteady incompressible Navier-Stokes 

equations using finite difference method has been reported in numerous studies, among which 

a great number of results were obtained concerning flow separation from a circular cylinder. 

The aim of the present work is to solve and study the problem of the fluid flow and forced 

convection around two circular cylinders in a Uniform Air-Stream for the case of unsteady 

laminar flow with Reynolds number ranging from 100 to 500, constant heat flux dissipating 

from both cylinders, as well as constant wall temperature for both cylinders. Flow 

visualization as well as thermal fields are considered. In addition, results will be shown when 

the interference between the two cylinders is weak or strong. The following information is 

specifically required:  

1. Solution of the flow field as a function of Reynolds number and the ratio between the 

transverse spacing between the cylinders s and the cylinder diameter d to give a 

numerical visualization of flow structure and to calculate pressure distribution, Strouhal 

number, drag coefficients and lift coefficients. 

2. Solution of the thermal field to find the variation of local and average Nusselt number as a 

function of both pitch to diameter ratio s/d and Reynolds number. 

This requires the solution of the full two-dimensional; unsteady Navier-Stokes and energy 

equations describing forced convection around the two cylinders. The numerical results 

provide detailed information about the velocity and thermal fields. 

One of the facts today is the existence of many commercial CFD programs in the market. 

Some of these programs have simplified the process of solving CFD problems to be 

something like CAD or CAM problems. The reason of the wide dispersal of such codes is that 

the computers today are more powerful and cheaper compared with the past.     
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For this reason, the commercial program STAR-CD [80] from Computational Dynamics 

Limited was chosen. Ability and accuracy of the program for solving similar problems will be 

tested. The problem under consideration is to be solved with the aid of this program 

implementing all the experience gained from the test phase (such as solution grid, 

descritization method, etc.) to optimize the solution process. 

The obtained results will help in understanding the relationship between the two cylinders and 

this will be very useful for some design aspects concerning heat exchangers and any 

application related to the flow around circular cylinders. Also this will answer some design 

related questions like the best spacing between cylinders to obtain the maximum heat transfer 

coefficient for a given value of Reynolds number. 

As stated before, two types of thermal boundary conditions will be considered: 

• The first type is the constant wall heat flux boundary condition, which mainly arises 

when electrical heating is to be considered. 

• The second type will be the constant wall temperature boundary condition, which 

mainly arises when heating, or cooling is to be done using condensing or boiling fluid. 

The heat transfer mode found in real applications is a combination of the two above modes 

and as a result, it is very important to study both of them. Although this problem is common 

to be found in the industry, no previous works at all are found that consider the heat transfer 

relation between the two cylinders as one unit with the fluid overtaking them.  

All the above questions will be answered in the upcoming chapters. First of all the relation 

between the two cylinders keeping Reynolds number constant is to be tested. The impression 

got from this step is to be verified for the whole rang of Reynolds numbers under 

investigation. Finally, heat transfer characteristics are to be studied for the whole range of 

Reynolds number under consideration to represent the relationship between Nusselt number 

and other problem parameters (i.e. Reynolds number and pitch to diameter ration). 



 4
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Chapter 2 

Problem Formulation 
2  

2.1 Geometry 

he geometry and the boundary conditions of the problem are given in Figure 2-1. The 

figure shows simply a domain of height h, length l with its third dimension (the width), 

which is very large compared to both h and l. The upper and lower sides of this domain 

represent the free stream conditions. A combination of two cylinders, each of diameter d, is 

centered between the upper and lower sides of the domain. The transverse spacing between 

the centers of cylinders is s. The center of the first cylinder is at a distance b from the entrance 

of the domain. The fluid used in the analysis is air with constant properties (no change with 

temperature). The flow is assumed laminar, incompressible and two-dimensional. The 

required Reynolds number is defined by choosing an appropriate combination of the entrance 

velocity u∞ and the cylinder diameter d.  

 

 

Figure 2-1 Geometry and boundary conditions of the flow around two cylinders in a 
channel. 
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2.2 Boundary and Initial Conditions  

2.2.1 Inlet Boundary Condition 

We assumed a free stream velocity profile at the entrance of the solution domain in the form: 

0)0()0( == ∞ t,y,v,ut,y,u . (2.1)  

The temperature of the fluid is given to be constant at the entrance of the solution domain i.e. 

 ∞=ϑϑ )0( t,y, . (2.2) 

2.2.2 Upper and Lower Boundary Conditions 

The free stream boundary conditions at the upper and lower sides of the solution domain were 

assumed valid. This means: 

∞∞

∞∞

===
===
ϑϑ
ϑϑ

)(x0)(x)(x
)0(x0)0(x)0(x

t,h,,t,h,v,ut,h,u
t,,,t,,v,ut,,u

. (2.3) 

At the cylinder walls, the temperature is kept constant or the wall heat flux is kept constant, 

and the no slip condition is applied. That is: 

 0)( )( == tvtu wallscylinderwallscylinder . (2.4) 

 In case of constant wall temperature: 

owallscylinder t ϑϑ =)( . (2.5) 

In case of constant wall heat flux: 

owallscylinder qtq =)( . (2.6) 

2.2.3 Outlet Boundary Conditions 

The distribution of the variables at the exit of the channel is determined by extrapolation from 

values on the current field points. It is assumed that the gradient of any variable is normally 
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alike to zero to the exit of the solution domain (zero-gradient condition). The value of any 

variable at the exit level is therefore equal to the value in the cell, which borders on the exit. 

That means: 

 

.
x

t,y,n
x

t,y,nv
x

t,y,u

0)(

0)(

0)(n

=
∂

∂

=
∂

∂

=
∂

∂

ϑ

 (2.7) 

2.2.4 Initial Conditions  

At the beginning of calculations, the free stream condition is assumed, i.e. all the velocities 

are equal to u∞ at first. The temperature is also assumed to be ϑ∞ allover the domain of 

solution. This can be expressed as follows: 

0)0()0( == ∞ ,y,xv,u,y,xu ,  

∞=ϑϑ )0( ,y,x . (2.8) 
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Chapter 3 

Literature Review 
3  

revious studies involving fluid flow will be reviewed first and followed by a review of 

studies involving heat transfer in addition to the fluid flow. After that a survey of studies 

involving two and more cylinders will be given. 

3.1 One Cylinder 

3.1.1 Fluid Flow 

Steady and transient fluid flow over a fixed cylinder is a classic problem that has been 

extensively studied for many years. 

Thom [1] gave the first successful numerical solution of the complete equations of motion in 

two dimensions for steady flow around a circular cylinder at ReD = 10, where D is the 

diameter of the cylinder. Later, Thom [2] improved his numerical method by a transformation 

of the physical plane and obtained a solution at ReD = 20 which agrees with earlier 

experimental results. Tomotika and Aoi [3] discussed the case of steady flow of a viscous 

fluid past a circular cylinder and found that two stationary eddies are always formed behind 

the cylinder. Further, it was found that such standing eddies are still formed even when the 

Reynolds number assumes very small values such as 0.05, 0.1, and 0.25, in dissension to the 

common view that for very small Reynolds numbers, in the neighborhood of unity, the two 

stagnant eddies are not formed.  

Allen and Southwell [6] used a relaxation technique to obtain solutions for ReD = 0, 1, 10, 

100, and 1,000. They found that the length of the vortices behind the cylinder starts to 

decrease for 10 ≤ ReD ≤ 100. At Reynolds number of 0.16, Taneda [7] found experimentally 

that the flow direction could hardly be deduced from the streamline pattern, because in the 

P
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limit of zero Reynolds number the flow past a solid body is reversible. At a Reynolds number 

of 1.24, the streamline pattern clearly lost the fore-and-aft symmetry. Taneda measured the 

length of the standing vortex pair behind a cylinder up to ReD = 57.7 and found that the down-

stream distance to the cores of eddies increases linearly with the Reynolds number. However, 

the lateral distance between the cores appears to grow more nearly as the square root of the 

Reynolds number.  

Batchelor [8] suggested a limiting solution (Euler flow, ν → 0) with a closed-cuspate wake of 

finite length, containing two regions with uniform vorticity associated with zero drag on the 

cylinder. Payne [9] obtained limiting steady-state solutions at ReD = 40 and 100 by using the 

vorticity and velocity components as the dependent variables instead of vorticity and stream 

function. He carried out a numerical integration of the time dependent equations of motion at 

ReD = 40 and at ReD = 100 but did not proceed far enough to reach steady state. Kawaguti 

[4,5] and Apelt [10] used slightly modified versions of Thom's [1, 2] method to carry out 

calculations at ReD = 40. Tritton [11] reported extensive data on drag coefficients for circular 

cylinders for 0.5 < ReD < 100.  

Fromm and Harlow [12] solved the time-dependent flow equations past a rectangular object 

"cylinder" or plate in a channel. Grove et al. [13] investigated experimentally the steady 

separated flow past a circular cylinder. The flow was artificially stabilized with a splitter 

plate. It was found that the pressure coefficient at the rear (base) of the cylinder remained 

unchanged for 25 ≤ ReD ≤ 177, that the circulation velocity within the wake approached a 

nonzero limit as ReD is increased, and that the wake length increased in direct proportion to 

ReD.  

Dennis and Shimshoni [14] reduced the equations of motion to a series of ordinary differential 

equations and solved these by a numerical method over the range of ReD from 0.01 to 102. 

Their results showed that the length of vortex wake behind the cylinder starts to decrease for 

10 ≤ ReD ≤100. Acrivos et al. [15] studied the steady-state problem on the assumption that the 

stagnant vortex region behind a cylinder should stretch out linearly with an increase in 

Reynolds numbers. They were able to stabilize the wake for Reynolds numbers up to 180 by 

placing a splitter plate in the wake of the cylinder, as was done by Grove et al. [13]. Based on 

these experiments they suggested that at an infinite Reynolds number the wake bubble is 

viscous, that it has an infinite length and a width of the order of the cylinder diameter, and 

that the pressure coefficient at the rear (base) stagnation point is approximately equal to 0.45.  



 11

Kawaguti and Jam  [16] reported numerical solutions of the time-dependent equations for ReD 

10, 20, 30, 40, 50, 60, and 100. They have shown that the limiting steady-state solutions of the 

problem exist at ReD = 10, 20, 30, 40, and 50, but solutions for ReD = 60 and 100 were 

discontinued after a large time and before a steady state was reached. 

A review by Roshko [17] indicates that as the ReD → ∞, there are two models of considerably 

different nature that have been suggested for the theoretical solution of a steady flow past a 

cylinder. The classical free-streamline model of Helmholtz-Kirchhoff as given in [4, 5, 8, 17, 

28] gives a finite drag on the cylinder as ReD → ∞, with an open wake of infinite length and 

zero velocity separated from an inviscid region by free streamlines. The second concept, that 

of Batchelor [8], gives a limiting solution (Euler flow, ν → 0) with a closed-cuspate wake of 

finite length, containing two regions with a uniform vorticity, associated with zero drag on the 

body. This result is known as D'Alembert's paradox. It seems that Batchelor was not aware of 

Taneda's experiments [7], which were published independently in the same year. 

Acrivos et al. [18] gave further results in a later study, in support of the model in [33]. 

Hamielec and Raal [19] have obtained numerical solutions at ReD up to 100. Their results also 

indicate a decrease in wake length as Reynolds number increases. Son and Hanratty [20] used 

an alternating-direction-implicit (ADI) method and symmetry of the flow in order to obtain 

limiting steady-state solutions of the transient problem at ReD = 40 and 200. The value of the 

steady-state drag coefficient at ReD = 500 was estimated by extrapolation. Their results 

showed that the length of the vortex wake behind the cylinder decreased for 200 ≤ ReD ≤ 500. 

Jain and Rao [22] removed the symmetry condition used by Kawaguti and Jam [16] in order 

to obtain numerical solutions at higher Reynolds numbers. They examined the flow at ReD = 

40, 60, 100, and 200, and found that the solutions for the unsteady problem approached those 

for the steady one at ReD = 40 and 60. Their results also showed that the length of the vortex 

wake behind the cylinder starts to decrease for ReD = 100. Thoman and Szewczyk [23] solved 

the time-dependent equations for 1 ≤ ReD ≤ 106 and presented solutions for both stationary 

and rotating cylinders in that range of Reynolds numbers.  

Steady-state solutions were obtained for long periods of times for ReD = 1 and for ReD = 30. 

At large Reynolds numbers, unsymmetrical disturbances were introduced after the solutions 

had been carried out to a certain dimensionless time. The disturbances caused alternate 

shedding of the vortices behind the cylinder and the formation of a vortex street. These 

authors besides Kawaguti and Jain [16] found it necessary to perturb the flow to promote 
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vortex shedding. Four techniques for such promotion used by Thoman and Szewczyk [23] 

included: 

1. Placing the cylinder unsymmetrical in the flow field.  

2. Purposely making the cylinder slightly eccentric.  

3. Introducing artificial vorticity into the flow field for a small period of time.  

4. Introducing a slight rotational velocity of the cylinder for a short period of time.  

This suggests that steady-state solutions at high Reynolds numbers may be valid although not 

realizable in experiments due to the very great difficulty in isolating the flow from minute 

disturbances. Takami and Keller [21] have done numerical calculations of the steady problem 

in the range of Reynolds numbers from 1 to 60. Their results indicate linear dependence of the 

wake length on ReD < 60.  

The results of Allen and Southwell [6], Dennis and Shimshoni [14], Hamielec and Raal [19], 

Jam and Rao [22], and Patel [27] are in disagreement with the experiments of Taneda [7] and 

therefore their calculations are doubtful but may have been helpful for later investigators. 

Dennis and Chang [24] obtained finite-difference solutions of the equation of motion for 

steady incompressible flow around a circular cylinder for the range 5 ≤ ReD ≤ 100. The wake 

length was found to increase approximately linearly with an increase in ReD. Collins and Den-

nis [25] have given an implicit and time-dependent scheme for solving the Navier-Stokes 

equations numerically. At Reynolds numbers higher than 100, this scheme failed to converge. 

At Reynolds numbers higher than 200, the divergence of the scheme occurred even earlier. 

Jam and Goel [26] showed the process of shedding of vortices by computing the unsteady 

fluid flow around a circular cylinder at ReD = 200. This was achieved by imposing the natural 

boundary conditions (no symmetry assumed). They obtained the shedding of the vortices by 

introducing some perturbation in the flow field as was done by Thoman and Szweczyk [23]. 

Patel [27] obtained semianalytical solutions of the impulsively started symmetrical unsteady 

flow past a circular cylinder for 60 ≤ ReD ≤ 600. Fornberg [29] obtained numerical solutions 

for steady viscous flow past a circular cylinder at Reynolds numbers up to 300. A symmetry 

boundary condition was imposed, as was done by Kawaguti and Jam [16], to increase stability 

for a much longer time. 
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3.1.2 Fluid Flow-Heat Transfer 

Numerous studies on forced-convective heat transfer apply to a single cylinder. A single 

cylinder placed normal to a fluid stream was investigated experimentally by Giedt [30], where 

the local Nusselt numbers were determined for 7.08 x 104 ≤ ReD ≤ 2.19 x 105. Eckert 

and Soehngen [32] measured the local Nusselt number around a cylinder for ReD = 23 to 597. 

Van der Hegge Zijnen [33] reviewed heat transfer by natural and by forced convection from 

horizontal cylinders to fluids. Experimental data of various origins were collected, and 

modified correlation formulas were derived from them.  

Corns and Williams [34] conducted experiments for heated wires for 0.01 ≤ ReD ≤ 140. Their 

results pointed out clearly that, except at the very lowest of the Reynolds numbers, there are 

substantial discrepancies between experiment and results derived from theoretical models at 

low Reynolds numbers. These models were based on the linearization of the heat transfer 

equation with the external stream velocity, after the manner of Oseen. Perkins and Leppert 

[35] investigated experimentally a heated cylinder in a cross-flow of water and ethylene 

glycol for ReD from 40 to 105 and Pr from 1 to 300. Kestin [42] and others [31, 37, 38, 40, 41, 

44, 45, 46] studied the effect of free-stream turbulence intensity on heat transfer rate. 

Most of the steady-state numerical studies were carried out for ReD ≤ 300, and a few included 

computation of heat transfer from a cylinder. Papers published on numerical calculations of 

heat transfer from a cylinder in steady flows at low Reynolds numbers are that of Harlow and 

Fromm [39], Dennis et al. [43], Jam and Goet [48], Apelt and Ledwich [49], and Ahmad and 

Qureshi [56]. Harlow and Fromm [39] presented a numerical study of the heat transfer in an 

incompressible fluid flow through a channel past a rectangular object "cylinder." Dennis et al. 

[43] discussed a theoretical study about a laminar forced convection in an incompressible 

steady fluid flow past a circular cylinder for 0.01 ≤ ReD ≤ 40. Jain and Goel [48] obtained a 

numerical solution of an unsteady, laminar forced convection from a circular cylinder. The 

Navier-Stokes equations and the energy equation were solved at Reynolds numbers 100 and 

200, and Nusselt numbers were reported at those Reynolds numbers.  

Apelt and Ledwich [49] studied a numerical solution of a heated circular cylinder in unsteady 

flows at Reynolds numbers of the range in which vortex shedding does not normally occur, 

i.e., ReD ≤ 40. Ahmad and Qureshi [56] reported an analysis of combined forced- and natural-

convection (mixed-convection) heat transfer from a horizontal cylinder dissipating a uniform 

heat flux in air by solving the full two-dimensional, steady-state Navier-Stokes and energy 
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equations. Flow fields and transport results were determined in the ranges of Reynolds 

numbers 1 ≤ ReD ≤ 60 and the modified Grashof numbers 0 ≤ GrD ≤ 1.6 x 104.  

An account of many experimental and theoretical results of forced-convection heat transfer 

from cylinders up to 1975 was given by Morgan [47]. Baughn et al. [53] presented 

experimental data for the local Nusselt number for a single cylinder, cylinders in tandem, and 

cylinders located in the entrance of an aligned and staggered tube bank. Local heat transfer 

measurements around a cylinder in an icing wind tunnel were made by Van Fossen et al. [51], 

Arimilli et al. [52], and Pais and Singh [54]. A horn-shaped ice accretion was formed on the 

forward side of the cylinder. The heat transfer results of uniform heat flux measurements, 

conducted by Papell [50], and by Baughn and Saniei [55], were compared directly to those of 

uniform surface temperature. 

3.2 Two and More Cylinders 

3.2.1 Fluid Flow 

Unlike flow past a single cylinder, the study of flow past two cylinders was unsystematic and 

fragmentory. Biermann and Herrnstein [57] carried out measurements of the drag force when 

two circular cylinders were arranged to face the wind side by side. They expressed the results 

through the interference drag coefficient. This drag was zero for all spacings greater than five 

diameters. The interference drag increased as the spacing decreased but only down to 2.25 

diameters. For smaller spacings, very odd changes occurred. 

Landweber [58] undertook a photographic study of the wake behind two cylinders side by 

side in water. The spacings chosen were: 1.0 (cylinders in contact), 1.25, 1.5, 2.0, 2.25, 3, and 

4. He observed a single vortex street for the first two spacings, “confused” four rows of 

vortices for the third, and two distinct vortex streets for the rest. He neglected the “confused 4 

rows” and devoted the rest of his paper to coupled vortex streets. 

Spivack [59] was the first to carry out systematic measurement of the vortex shedding 

frequency behind two cylinders in the side-by-side arrangement. He found for all transverse 

spacings, s greater than 2 diameters a single frequency in both wakes which, when reduced to 

Strouhal number, was the same as for the single cylinder. For transverse spacing less than 1.0, 

two different frequencies were recorded in both wakes. The upper frequency disappeared for 
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small spacings (about 1.4 dia) and only the lower one continued down to the cylinders in 

contact. The possible explanation for the existence of two different frequencies was due to 

two different wakes behind two cylinders, but why they were found in both wakes was left 

unexplained. A very low frequency was detected along the gap centerline (between the 

cylinders only) for spacings less than 1.4 

 Hori [60] measured the pressure distribution around two cylinders arranged one behind the 

other. He measured the surface pressure distribution around one of the two cylinders for 

various wind speeds, gaps between them and angles between the wind direction and the plane 

of the cylinders’ axes. It was approved that there is a discontinuous change of the base 

pressure coefficient for the side-by-side arrangement when the spacings were 1.2 and 2.0 dia. 

Hori carefully verified this by adding additional experimental points in front of and behind the 

location of the jump, and stated: “When the flow was normal to the cylinders’ axes and the 

gap is less than 2 diameter, there is a difference in base pressure coefficient 
bPC of the two 

cylinders, although the geometrical arrangement is symmetrical with respect to the stream.” 

Ishigai, et al. [61] used the Schlieren optical method and photographed the flow pattern 

around the two cylinders. He found that for the transverse spacing ratios 3 and 2.5, the vortex 

shedding is “coupled”. The vortex formation and shedding is markedly symmetric about the 

axis of the gap. For a transverse spacing of 2.0 dia, the vortex shedding was still coupled, but 

the gap flow is slightly deflected upwards. The vortex shedding becomes uncoupled and weak 

at a spacing of 1.5 dia and the gap flow is biased to one side. The same trend is continued at 

1.25 dia. The biased flow in the gap is bistable and intermittently changes over either 

downwards or upwards. 

Zdravkovich [62] stated that the discontinuity features of the vortex shedding observed by 

various authors are caused by the abrupt change from one stable flow pattern to another at the 

critical spacing of the two cylinders.  

Although the problem is of great importance in practice, it seems that it has been somewhat 

neglected in numerical simulation. This is probably due to the complexity of flow 

configurations. The studies known to us are those of Stansby [63] who studied flow past two 

cylinders at different arrangements by assuming that flow was potential. Chen et al. [64] 

obtained unsteady solution without vortex shedding. 



 16

Li, et al. [65] developed a finite element program in order to simulate the vortex shedding 

behind one or two circular cylinders in tandem arrangement for 500 ≤ Re. For the case of two 

cylinders in tandem arrangement, one value of Reynolds number was studied (Re = 100). 

Braun, et al. [66] examined numerically the fluid flow through a staggered array of cylinders. 

They have concentrated on the analysis of the physics of flow and pressure distribution in one 

row of cylinders and seven rows of cylinders. The numerical experiments were in transient 

mode at Reynolds numbers ranging from 86 to 869.  

Ichioka, et al. [67] studied numerically the fluid elastic vibration of cylinder arrays. During 

the analysis, they studied the case of two fixed parallel cylinders (which is very similar to our 

case). The numerical results showed good agreement with the previous experimental results. 

The fact that the peaks in the lift power spectrum are in a certain range of Strouhal numbers at 

a transverse ratio s/d < 2.0 was also agreed with the phenomenon produced by Ichioka’s 

work. 

3.2.2 Fluid Flow-Heat Transfer 

While there is a considerable amount of theoretical and experimental work devoted to the 

studies of different aspects of flow around a single cylinder, information about studies for the 

flow passed two parallel cylinders were very limited and mostly about the flow 

characteristics. No information was found that covers the heat transfer characteristics of the 

flow passed two cylinders. This was one of the reasons why we have decided to solve this 

problem. 
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Chapter 4 

Governing Equations 
4  

4.1 Conservation Principles 

onservation laws can be derived by considering a given quantity of matter or control 

mass (CM) and its extensive properties, such as mass, momentum and energy. This 

approach is used to study the dynamics of solid bodies, where the CM (sometimes called the 

system) is easily identified. In fluid flows, however, it is difficult to follow a parcel of matter. 

It is more convenient to deal with the flow within a certain spatial region, we call a control 

volume (CV), rather than in a parcel of matter which quickly passes through the region of 

interest. This method of analysis is called the control volume approach. 

The conservation law for an extensive property relates the rate of change of the amount of that 

property in a given control mass to externally determined effects. For mass, which is neither 

created nor destroyed in the flows of engineering interest, the conservation equation can be 

written: 

0=
dt
dm . (4.1) 

On the other hand, momentum can be changed by the action of forces and its conservation 

equation is Newton's second law of motion: 

∑= f
dt

)Vm(d . (4.2) 

These laws are to be transformed into a control volume form. The fundamental variables will 

be intensive rather than extensive properties; the former are properties, which are independent 

C
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of the amount of matter considered. Examples are density ρ (mass per unit volume) and 

velocity V  (momentum per unit mass). 

If φ is any conserved intensive property (for mass conservation, φ = 1; for momentum 

conservation, φ = V  and for conservation of a scalar, φ represents the conserved property per 

unit mass), then the corresponding extensive property Φ can be expressed as: 

∫
Ω

Ω=Φ
CM

dφρ , (4.3) 

where ΩCM stands for volume occupied by the CM. Using this definition, the left hand side of 

each conservation equation for a control volume can be written: 

∫∫ ∫ −+Ω=Ω
Ω Ω VCCM CV S

b dsn.VVd
dt
dd

dt
d )(φρφρφρ , (4.4) 

where ΩCV is the CV volume, SCV is the surface enclosing CV, n is the unit vector orthogonal 

to SCV and directed outwards, V  is the fluid velocity and bV is the velocity with which the CV 

surface is moving. For a fixed CV, bV  = 0 and the first derivative on the right hand side 

becomes a local (partial) derivative. This equation states that the rate of change of the amount 

of the property in the control mass, Φ, is the rate of change of the property within the control 

volume plus the net flux of it through the CV boundary due to fluid motion relative to CV 

boundary. The last term is usually called the convective (or sometimes, advective) flux of φ 

through the CV boundary. If the CV moves so that its boundary coincides with the boundary 

of a control mass, then V  = bV  and this term will be zero. 

4.2 Mass Conservation 

The integral form of the mass conservation (continuity) equation follows directly from the 

control volume equation, by setting φ  = 1: 

∫ ∫Ω
=+Ω

∂
∂

S
dSn.Vd

t
0ρρ . (4.5) 
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By applying the Gauss' divergence theorem to the convection term, one can transform the 

surface integral into a volume integral. Allowing the control volume to become infinitesimally 

small leads to a differential coordinate-free form of the continuity equation: 

 

0)(div =+
∂
∂ V

t
ρρ . (4.6) 

This form can be transformed into an equation specific to a given coordinate system by 

providing the expression for the divergence operator in that system. The law for the Cartesian 

coordinates in both tensor and expanded notation may be written as follows.  

0
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tdx
u

t
zyx

i

i ρρρρρρ , (4.7) 

where xi (i =1, 2, 3) or (x, y, z) are the Cartesian coordinates and ui or (ui, uy, uz) are the 

Cartesian components of the velocity vector V . 

4.3 Momentum Conservation 

There are several ways of deriving the momentum conservation equation. One approach is to 

use the control volume method described above; in this method, one uses Equs. (4.2) and 

(4.4) and replaces φ by V , e.g. for a fixed fluid-containing volume of space: 

∑∫ ∫ =+Ω
∂
∂

Ω
fdSn.VVdV

t S
ρρ . (4.8) 

To express the right hand side in terms of intensive properties one has to consider the forces, 

which may act on the fluid in a CV: 

• Surface forces (pressure, normal and shear stresses and surface tension etc.); 

• Body forces (gravity, electromagnetic forces, or any other forces which “act at a distance” 

on the fluid inside). 

The surface forces due to pressure and stresses are, from the molecular point of view, the 

microscopic momentum flux across a surface. If these fluxes cannot be written in terms of 
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properties whose conservation is governed by the above equations (density and velocity), the 

system of equations is not closed; because there will be fewer equations than dependent 

variables and the solution is not possible. This possibility can be avoided by making certain 

assumptions. The simplest assumption is that the fluid is Newtonian; fortunately, the Newto-

nian model applies to many actual fluids. 

For Newtonian fluids, the stress tensor T, which is the molecular rate of transport of 

momentum, can be written: 

Dµµ 2div
3
2 +






 +−= IVpT , (4.9) 

where µ is the dynamic viscosity, I is the unit tensor, p is the static pressure and D is the rate 

of strain (deformation) tensor: 

[ ]T)(
2
1 VgradVgrad +=D , (4.10) 

where the superscript T means transpose 

These two equations may be written, in index notation in Cartesian coordinates, as follows: 

ijij
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j
ij x

u
p Dµδµ 2
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∂
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2
1D , (4.12) 

where δij is Kronecker symbol (δij = 1 if i = j and δij = 0 otherwise). For incompressible flows, 

the second term in brackets in Equ. (4.11) is zero by virtue of the continuity equation. The 

following notation is used in the literature to describe the viscous part of the stress tensor: 

Vijijij div
3
22 µδµτ −= D . (4.13) 

With the body forces (per unit mass) being represented by bf, the integral form of the 

momentum conservation equation becomes: 



 21

∫∫ ∫ ∫ ΩΩ
Ω+=+Ω

∂
∂ dbdSndSnVVdV
t fS S

ρρρ .. T . (4.14) 

A coordinate-free vector form of the momentum conservation Equ. (4.14) is readily obtained 

by applying Gauss' divergence theorem to the convective and diffusive flux terms: 

 

fbVV
t
V ρρρ +=+

∂
∂ Tdiv)(div)( . (4.15) 

The corresponding equation for the ith Cartesian component is: 

ifii
i bvu

t
u ρρρ

+=+
∂

∂ tdiv)(div
)(

. (4.16) 

Since momentum is a vector quantity, the convective and diffusive fluxes of it through a CV 

boundary are the scalar products of second rank tensors ( VVρ and T) with the surface vector 

n dS. The integral form of the above equations is: 

∫∫ ∫ ∫ ΩΩ
Ω+=+Ω

∂
∂ dbdSndSnvudu
t ifS S iii ρρρ .. t . (4.17) 

where:  

iiii ivpi.vu 





 +−+= div

3
2)grad( grad T µµµt . (4.18) 

Here bi stands for the ith component of the body force, superscript T means transpose and ii is 

the Cartesian unit vector in the direction of the coordinate xi. In Cartesian coordinates, one can 

write the above expression as: 
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4.4 Conservation of Scalar Quantities 

The integral form of the equation describing conservation of a scalar quantity, φ, is analogous 

to the previous equations and reads: 

∑∫ ∫ =+Ω
∂
∂

Ω φρφρφ fdSn.Vd
t S

, (4.20) 

where fφ represents transport of φ by mechanisms other than convection and any sources or 

sinks of the scalar. Diffusive transport is always present (even in stagnant fluids), and it is 

usually described by a gradient approximation, e.g. Fourier's law for heat diffusion and Fick's 

law for mass diffusion: 

dSn.f
S

d φφ  grad∫Γ= . (4.21) 

Where Γ is the diffusivity for the quantity φ.  

If φ = h (enthalpy), the energy equation can be written as: 

∫∫∫ ∫ ∫ ΩΩΩ
Ω

∂
∂+Ω++=+Ω

∂
∂ dd)grad grad( grad p

t
v.p.vdSn.kdSn.hVdh

t S S
Sϑρρ . (4.22) 

Where ϑ is the temperature, k is the thermal conductivity, k = µ cp /Pr, and S is the viscous 

part of the stress tensor, Pr is the Prandtl number and cp is the specific heat at constant 

pressure. The source term represents work done by pressure and viscous forces; this term may 

be neglected in incompressible flows. A further simplification is achieved by considering a 

fluid with constant specific heat. In this case, a convection/diffusion equation for the 

temperature becomes: 

∫ ∫ ∫Ω
=+Ω

∂
∂

S S
dSn.

Pr
dSn.vd

t
ϑµρϑρϑ  grad . (4.23) 

It is useful to write the conservation equations in a general form, as all of the above equations 

have common terms. The discretization and analysis can then be carried out in a general 

manner; when necessary, terms peculiar to an equation can be handled separately. 

The integral form of the generic conservation equation will be: 
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Ω+Γ=+Ω
∂
∂

∫∫ ∫ ∫ ΩΩ
dq grad φφφρρφ

S S
dSn.dSn.vd

t
. (4.24) 

Where qφ is the source or sink of φ. The coordinate-free vector form of this equation is: 

φφφρφρ qv
t

+Γ=+
∂

∂ )grad(div)(div)( . (4.25) 

In Cartesian coordinates and tensor notation, the differential form of the generic conservation 

equation is: 

φ
φφρφρ q
xx

u
xt jj

j
j

+










∂
∂Γ

∂
∂=

∂
∂+

∂
∂ )()( . (4.26) 

In the next chapter, the numerical methods used to solve the previous conservation equations 

will be presented. It should be noticed that the solution Code STAR-CD uses the coordinate –

free vector form of the conservation equations. This is because of the ability of the program to 

use a general mesh system, i.e. the program can simulate any solution domain required. The 

fact that we gave the conservation equations here in the Cartesian coordinates is only to give 

an example of the form of these equations when using this type of coordinates. For more 

details, refer to the methodology part of the STAR-CD manual [80]. 
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Chapter 5 

Numerical Solution of the Governing 
Equations 
5  

5.1 General Formulation 

he differential equations governing the conservation of mass, momentum and energy 

within the fluid presented in the previous chapter were discretized by the finite volume 

(FV) method [69, 70, 71]. Thus, they are first integrated over the individual computational 

cells and over a finite time increment, in the case of transient problems and then approximated 

in terms of the cell-centered nodal values of the dependent variables. This approach has the 

merit, amongst others, of ensuring that the discretized forms preserve the conservation 

properties of the parent differential equations. 

For the purposes of the FV discretization, it is convenient to work with the following general 

coordinate-free form of the conservation equations: 

φφ φρφρφ qv
t

+Γ=+
∂

∂ )grad(div)(div)(  (5.1) 

An integral form of this equation may be written as:  

Ω+Γ=+Ω
∂
∂

∫∫ ∫ ∫ ΩΩ
d grad φS S

qSd.Sd.vd
t

φρφρφ φ . (5.2) 

If Ω and S are, respectively, taken to be the volume Ωp and discrete faces Sj (j = 1, Nf) of a 

computational cell, (see Figure 5-1) Equ. (5.2) becomes: 

 

T
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P  
N 

Sj 

Face j 

 

Figure 5-1 Illustration of typical cell with centered node P and neighbor cell with 
centered node N 

Ω=Γ−+Ω
∂
∂

∫∫ ∑∫ ΩΩ
d) grad( φ

j
S

qSd.vd
t p j

φρφρφ φ . (5.3) 

 T1 T2 T3 

To solve the previous equation numerically, approximations must be done. Thus, the first 

term T1 of the above form is discretized as: 

 
t

T
δ

φρφρ o
p

n
p

1

)()( Ω−Ω
≈ . (5.4) 

where the superscripts o and n refer to ‘old’ and ‘new’ time levels, respectively, separated by 

an interval δ t. 

The second term of Equ. (5.3) is split into the separate contributions Cj and Dj due to 

convection and diffusion, respectively, and each is expressed in terms of average values over 

cell faces, denoted by ( ) j: 

∑∑ ∑ ∑ −≡Γ−≈
j

j
j j j

jS.S.vT DCjj2 ) grad()( φφρ . (5.5) 

The diffusion terms Dj are approximated by face-centered expressions of the form  

{ } 



 −+−Γ≈ jPN

l
jPN

l
jj,j .fS.f dD φφφφφ gradgrad)( .  (5.6) 

where the first term in the brackets represents the normal diffusion between P and the 

neighboring cell-centered node N (see Fig. 5-1) and the second term within the curly brackets 

is the cross-diffusion. Terms fj are geometrical factors, PNd  is the distance vector between P 

and N, and j,φΓ  is the (interpolated) face diffusivity. 
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The approximation of the convective terms Cj is given in the next section entitled “spatial flux 

discretization”. 

The third term, T3, of Equ. (4.3) may in general contain components representing sources or 

sinks of the transported property, as well as additional flux terms; the exact form depends on 

the dependent variable and circumstances. Fluxes and other gradient-containing terms are 

approximated in a similar fashion to the Ci and Dj, while non-gradient quantities are evaluated 

using the cell-centered nodal quantities. For convenience, the result of this process is written 

in the general quasi-linear form 

pSST φ213 −= . (5.7) 

5.2 Spatial Flux Discretization 

The manner in which the convective and diffusive fluxes are expressed in terms of nodal φ 

values is one of the key factors determining accuracy and stability, for both steady-state and 

transient calculations. At the high Reynolds numbers often encountered in practice, the choice 

of convective flux approximation is particularly important. 

There are essentially two main classes of convective flux approximation in widespread use, 

namely: 

1. ‘Low-order’ schemes, which characteristically generate forms of discretized equation that 

are easy to solve, produce solutions which obey the expected physical bounds, but 

sometimes give rise to smearing out of gradients. The latter effect has come to be known 

as 'numerical diffusion' [72,73]. This is a form of truncation error that diminishes, as the 

grid is refined, but at an increased cost of calculation. 

2. ‘Higher-order’ schemes, which had better preserved steep gradients, but may result in 

equations that are more difficult to solve (in extreme cases, may provoke numerical 

instabilities) and/or have solutions exhibiting non-physical spatial oscillations ('wiggles'). 

These oscillations may, in some cases, lead to spurious values, e.g. negative species 

concentration or turbulent kinetic energy. This phenomenon is often termed ‘numerical 

dispersion’ [74]. It can be diminished too by grid refinement or by using monotone 

schemes (e.g. a blending methodology). 
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For this purpose, the Cj factors defined in Equ. (5.5) are written as 

jjj F φ=C . (5.8) 

and 

jrj S.uF )( ρ= . (5.9) 

is the mass flux through face J where j,ru  is the interpolated velocity at the centerline of face 

j whose area is jS . The average value at the face φj is effectively interpolated from selected 

nodal values in accordance with the scheme used. The face values of auxiliary properties, 

such as ρ and Γ are obtained by interpolation, usually linear. 

5.3 Temporal Discretization 

As already noted, the FV equation applies over an arbitrary time increment δt spanning the 

‘old’ and ‘new’ time levels. Two methods are available for temporal discretization. The first 

one is the fully implicit scheme. The second one is the second order Crank-Nicholson scheme. 

5.3.1 Fully Implicit 

Under this formulation, the fluxes prevailing over the time interval are calculated from the 

Figure 5-2 Difference ‘molecules’ for temporal discretization schemes. 

t 

x
(a) 

t 

x 
(b) 

x

Expansion point 

n+2  

n+1  

n  

n-1  

j-1  j j+2  j+1  
n+2  

n+1  

n  

n-1  

j-1  j j+2  j+1  



 29

 new time-level values of the variables. The difference scheme for a one-dimensional situation 

is illustrated in Figure 5-2 (a)  

As is well known [75], this practice avoids a stability-related time step restriction inherent in 

the otherwise attractive explicit approach, which becomes particularly onerous in regions of 

small mesh spacing and velocity or diffusion rate. 

5.3.2 Crank-Nicholson 

Whereas the fully implicit scheme is first-order accurate in time, the Crank-Nicholson scheme 

has a truncation error of order δ t2 and is hence second-order accurate in time. The difference 

scheme for this method is illustrated in Figure 5-2 (b) for a one-dimensional situation. The 

point n+1/2, j shown in the figure is used as the expansion point for the second-order 

formulation. The scheme is however liable (like all other higher-order difference schemes) to 

generate unbounded extrema (over- and under-shots). This trend can be ameliorated by the 

use of smaller δ t or by blending the scheme with the bounded fully implicit scheme using a 

manually selected blending factor. 

5.4 Convective Flux Formulation 

The formulation of Equ. (5.8) is valid for the default fully implicit scheme and assumes that 

the fluxes are obtained at the new time level, i.e. 

11 ++= n
j

n
jj F φC . (5.10) 

Under the Crank-Nicholson scheme the convection flux is discretized as 
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where  n
j

n
j φφ 1+   are interpolated at the cell faces according to the spatial discretization 

schemes described in the following section 

 2
1+n

jF   is the mass flux, evaluated at time level 
2
1+n  
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The expression used for mass flux is: 

( )n
j

n
j

n

j FFF +≡ ++ 12
1

2
1 . (5.12) 

As in the spatial central differencing (CD) scheme discussed on the next page, the 

Crank-Nicholson scheme produces lower numerical diffusion, but can be dispersive. Hence, 

an option is provided to blend it with the fully implicit scheme, in which case the convection 

flux is given by  

[ ]1)5.01(5.0 +−+= n
j

n
j

BD
jj F φγφγC . (5.13) 

and 

1)5.01(5.0 +−+= n
j

n
j

BD
j FFF γγ . (5.14) 

It can be seen that for γ = 1, Eqs. (5.13) and (5.14) result in the Crank-Nicholson scheme of 

Equ. (5.11), whereas for γ = 0 they result in the fully implicit scheme of Equ. (5.10). 

5.4.1 Low-Order Spatial Discretization Schemes 

5.4.1.1 Upwind differencing (UD) 

This low (first)-order scheme selects the nearest upwind neighbor value for φj (see Figure 5-

3), thus: 
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C . (5.15) 

This form of interpolation preserves the correct physical bounds on φ under all conditions, but 

can lead to numerical diffusion [72,73]. 
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Figure 5-3  Node labeling convention for flux discretization. 

5.4.2 Higher-Order Spatial Discretization Schemes 

5.4.2.1 Linear upwind differencing (LUD) 

This is a specially adapted; second-order accurate scheme formulated for non-structured 

meshes and derived from a scheme originally proposed for structured meshes [76]. It results 

in less numerical smearing than the UD scheme, but can produce solutions that are outside the 

physical bounds on φ (i.e. numerical dispersion). 

5.4.2.2 Central differencing (CD) 

The CD scheme, which is also second-order, simply interpolates linearly on nearest neighbor 

values, irrespective of flow direction, giving 

[ ]+++ −+= Npj
CD
j )f(fF φφ 1C . (5.16) 

where  +f  is the interpolation factor. 

This scheme also produces less numerical diffusion, but can be dispersive [74]. 



 32

5.4.2.3 Quadratic upstream interpolation of convective kinematics (QUICK) 

This is a third-order-scheme which fits a parabola through two points upstream and one point 

downstream to get an interpolated value (see Figure 5-3), giving: 





<−−++
≥−−++

=
+++++++++

+−++−−

01
01

jpNN
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φφφ
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C .     (5.17) 

where −f , +f  and ++f are quadratic interpolation factors. 

5.5 Final FV Equations 

The final form of the discrete finite volume equation is obtained by substituting the various 

approximated terms back into Equ. (5.3) and then invoking the discretized continuity 

equation, which can be written as: 

∑ =+Ω−Ω 0)()(
j

on

F
tδ

ρρ . (5.18) 

The Fj terms in the above equation are at time level n+1 for the fully-implicit scheme and at 

time level n+1/2 for the Crank-Nicholson scheme, as given by Equ. (5.12). For a blended 

scheme, the correct expression for these terms is given by Equ. (5.14). 

The result, in its most compact form, is 

∑ ++=
m

o
pp

n
mm

n
pp BsAA φφφ 1 . (5.19) 

where: 

• Am represents the effects of convection and/or diffusion 

• The summation is over all neighbor nodes used in the flux discretization 

• Bp  ≡ (ρ V)o/δ t. 

And 

∑ ++≡
m

pmp BsAA 2 . (5.20) 
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There exists an equation such as Equ. (5.19) for every computational cell (suitably modified, 

where necessary, to incorporate boundary conditions). 

5.6 Solution Algorithms 

Two different solution algorithms were used to solve the algebraic finite-volume Equ. (5.19) 

resulting from the discretization practices previously described. The SIMPLE algorithm was 

used to solve the steady state problem while the PISO algorithm was used for the transient 

one. They all have certain features in common, which described here before the individual 

algorithms are presented. The shared features are: 

All employ forms of predictor-corrector strategy, enabled by the use of operator splitting, to 

temporarily decouple the flow equations from each other so that they can be solved 

sequentially. 

Continuity is enforced with the aid of an equation set for pressure, which derived by 

combining the FV momentum and mass conservation equations. The solution sequence 

involves a predictor stage, which produces a provisional velocity field derived from the 

momentum equations and a provisional pressure distribution. The provisional fields are then 

refined in the corrector stage(s) by demanding simultaneous satisfaction, to some 

approximation, of both momentum and continuity balance. 

In iterative calculations to the steady state, the above sequence is repetitively executed, with 

embedded updating of field- dependent coefficient arising from coupling and nonlinearity, 

until the solution is reached. Under-relaxation is employed as a stabilizing measure in this 

process. Within the sequence, the operator-split equation sets involve, at any stage, only one 

of the field variables, i.e. the vector set of unknowns, is split into a sequence of scalar sets. 

The algebraic equation sets are solved by iterative means, although this is not an essential 

practice. 

5.6.1 The PISO Algorithm 

The intention here is to convey the essence of PISO without burdening the explanation with 

the many detailed issues that are involved in its implementation in the complex circumstances 

of the commercial program STAR-CD from Computational Dynamics Limited. Accordingly, 
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the algorithm is first outlined in the context of a fixed Cartesian mesh aligned with the 

Cartesian velocity directions, as in its original formulation [77]. Following this, mention is 

made of the nature of the modifications and extensions made for the general mesh system and 

flow conditions of the commercial program STAR-CD. 

5.6.1.1 Working equations 

For the presentation purpose, the FV momentum equations are extracted from the general 

transport Equ. (5.19) in the form 

)()( 1,,,
n
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n
NP

o
pi

o
P

n
mi

n
piP ppDsuBuHuA −+ −+++= . (5.21) 

Where 

∑≡
m

mimmi uAuH ,, )( . (5.22) 

The last term in Equ. (5.21) is the FV approximation to the pressure gradient ixp ∂∂ / , DP being 

a geometric coefficient (see Figure 5-4). 

 

Figure 5-4 Arrangement of variables and notation for PISO implementation on 
Cartesian mesh. 
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The FV continuity Equ. (5.18) is written here as: 

∑ =+−
j

j
n
j

no
P

n
P uBB 0)( Sρ . (5.23) 

where uj are the velocities normal to the cell faces and Sj are the corresponding face areas. 

In the collocated variable arrangement, the face velocities uj need to be expressed in terms of 

the nodal velocities (in order to calculate the mass fluxes) and neighboring pressures (to allow 

formulation of a suitable pressure equation). This is done by assembling a cell-face 

momentum equation of the form 

)()( 1
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n
jp ppDsuBuHuA +−+++= . (5.24) 

where the over bars denote a form of averaging on the nodal momentum coefficients 

appearing under them. This equation, when substituted into the continuity relation (5.23), 

yields a pressure equation of the form 

1spApA n
m

m
m

n
Pp += ∑ . (5.25) 

where the 'source' term s1 is a function of the nodal velocity fields ui
n, ui

o and other quantities. 

Thus, an equation set is produced from which the pressure may be calculated. 

5.6.1.2 Solution sequence 

Starting from initial values φ o of the variable fields, PISO advances through a time increment 

δt in the following sequence of steps. 

1. Predictor stage. Equs. (5.21) are assembled and solved in the following operator-split 

form for the provisional nodal velocity field )1(
iu : 

 )()( (0)(0)
1

(1)(1)
−+ −+++= NNP

o
p

o
Pm,ip,iP ppDsuBuHuA . (5.26) 

where p (0) corresponds to the pressure field at the start of the time step.  
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Following the solution of this equation, obtained by an iterative method, the 

provisional face velocities (1)
ju are calculated via Equ. (5.24), with the n

iu and 

np replaced by (1)
iu and op , respectively. 

2. First corrector stage. The operative nodal momentum equation is now taken to be 

)()( (1)(1)
1

(1)(2)
−+ −+++= NNP

o
p

o
Pm,ip,iP ppDsuBuHuA . (5.27) 

and the face momentum equations are likewise approximated by replacing n
iu and p in 

Equ. (5.24) by (2)
iu and (1)p , respectively. Correspondingly, the pressure equation in its 

approximated form reads 

 1
(1)(1) spApA m

m
mPp += ∑ . (5.28) 

where s1 is now a function of the (known) nodal velocities (1)
iu  and (o)

iu . 

Accordingly, these equations can be solved (here again by iteration) for the p (1) field, 

following which (2)
iu , and (2)

ju , can be obtained from Equ. (5.27) and its face 

counterparts. The resulting solution approximates that of the original Eqs. (5.21) and 

(5.23). 

3. Additional corrector stages. Further correctors are performed in the same manner as 

the first one, using the generalized equations 

)()( (q)(q)
1

(q)1)(q
−+

+ −+++= NNP
o
p

o
Pm,ip,iP ppDsuBuHuA . (5.29) 

1
(q)(q) spApA m

m
mPp += ∑ , (5.30) 

where q = 1, 2, ... is the corrector level. Note that the coefficients Ap are held constant. 

The solutions from the successive stages represent increasingly better approximations 

to the solution of the original equations, i.e. u (q+1) and p (q+l) tend towards un and pn 

with increasing q. 

After completion of the required number of correctors, judged according to practices 

described below, the solution produced is taken as the starting field for the next time step and 
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the sequence is repeated from Stage 1. If the calculation of scalar fields such as the 

temperature is required, it is performed in further steps executed after the final flow corrector.  

In the original version of PISO [77], the recommendation was to perform just two correctors, 

on the basis that the splitting error at this stage is of order δ t2 as compared with the order δt 

truncation error. However, in STAR-CD, the number of correctors executed is not 

predetermined; rather, it is judged from an internal measure of the splitting error. This 

enhances the accuracy and reliability of the algorithm and is necessary if the scalar fields are 

strongly coupled to the flow. 

The solution of the flow equations on the general form of mesh employed in STAR-CD is 

considerably more involved than for the Cartesian arrangement, for several reasons. First and 

foremost, the pressure calculation is complicated by the presence of additional pressure 

gradient terms in the momentum equations. The full expressions bear some similarity to the 

discretized diffusion flux expression given by Equ. (5.25) and the fact that the cell face mass 

fluxes Fi depend on all three Cartesian velocity components. Collectively, these features result 

in an extended form of pressure equation, the efficient solution of which has required 

extensive alterations to the PISO algorithm. For more detailed refer to STAR-CD User’s 

manual [80]. 
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Chapter 6 

Benchmarking Computations 
6  

6.1 The Benchmark Problem 

efore using any new commercial program, one must be nearly sure that this program is 

capable of satisfying the following conditions: 

• It must solve a standard-problem (benchmark), which is similar to the problem under 

consideration. 

• The solution of the standard-problem must be nearly right, in order to accept the solution 

of the new problem. 

For benchmarking purpose, the work of Schäfer et al. [78] concerning the flow around a 

circular cylinder in a channel is considered. This work gives a very good example for 

benchmarking purposes because it shows many results for the same problem obtained with 

different numerical techniques. In addition, it delivers upper and lower bounds for the values 

representing the benchmarking which make it easy to control the new code.  

6.2 Geometry and Boundary Conditions of the Problem 

The geometry and the boundary conditions are given in Figure 6-1.  

 

 

 

 

B
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Figure 6-1  Geometry and boundary conditions of the benchmark test. 

Some definitions are introduced to specify the values, which have to be computed. h = 0.41 m 

is the channel height and d = 0.1 m is the cylinder diameter. The Reynolds number is defined 

by 
ν
duRe = with the mean velocity 3202 /)t,/h,(u)t(u = . The drag and lift forces are:  
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With the following notations: circle S, normal vector n on S with x-component nx and y-

component ny. The drag and lift coefficient are: 
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ρ
= . (6.4) 

In Equs. (6.3) and (6.4) it is assumed that the width of the channel is 1.0. 

The length of recirculation is era xxL −= where xe = 0.25m is the x-coordinate of the end of 

the cylinder and xr is the x-coordinate of the end of the recirculation area. As a further 

reference value the pressure difference ),,(),,()( tyxPtyxPtPP eeaa −=∆=∆ is defined, with 

the front and end point of the cylinder (xa, ya) = (0.15, 0.2) and (xe, ye) = (0.25, 0.2), 

respectively.  

0,16m

0,10m

0,15m

0,15 2,2

0,41m

u = v =0 

u = v =0

Outlet Inlet 

0, 0 

0, h 

u = v =0 



 41

6.3  Test Cases 

The range of testing will be expanded to cover both steady and unsteady state flow (although 

the main problem is unsteady). It was thought that this makes the testing process more 

difficult and hence increases the program’s reliability to solve the main problem with an 

acceptable accuracy. It helps also in getting the necessary experience needed for the main 

problem (grid design, discretization method, ...etc.).     

6.3.1 Case a)  Steady Flow 

The in-flow condition is:  

0
4

0 2 =
−

= v,
h

)yh(yu)y,(u m . (6.5) 

with um = 0.3 m/s, yielding the Reynolds number Re = 20. The following quantities should be 

computed: drag coefficient cD; lift coefficient cL, length of recirculation zone La and pressure 

difference ∆P 

6.3.2 Case b)  Unsteady Flow 

The inflow condition is: 

0
4

0 2 =
−

= v,
h

)yh(yu)t,y,(U m . (6.6) 

with um = 1.5 m/s, yielding the Reynolds number Re = 100. The following quantities should 

be computed: drag coefficient CD, and lift coefficient CL as function of time for one period 

[to, to+1/f] (with f = f (CL) is the frequency of the lift coefficient), maximum drag coefficient 

CD max, maximum lift coefficient CL max, and pressure difference ∆P (t) at t = to+1/2f. The 

initial data (t = to) should correspond to the flow state with CL max. 
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6.4 Results 

6.4.1 Case a)  Steady Flow 

6.4.1.1 The numerical results 

If the configuration were fully symmetric, the steady flow would yield zero lift force on the 

cylinder. Due to the asymmetry, there is a small lift force, as the flow rate is different above 

and below the cylinder. Figure 6-2 shows the velocity vectors diagram of the flow around the 

cylinder. 

Figure 6-2 Velocity vectors in the laminar 2D flow around a circular cylinder in a 
channel. 

As seen in the figure, the wake behind the cylinder seems to be symmetric about the gap axes, 

although the cylinder is not in the center of the channel. The effect of the presence of the 

cylinder vanishes at about 10 diameters behind the cylinder and the velocity distribution 

retains its parabolic shape.  

Table 6-1 shows the results obtained from STAR-CD compared with the results found in [78]. 

It is clear that the results lay within the bounds of the benchmark results. In addition, the 

memory capacity and the calculation time were both acceptable. The conversion of the 

program was noticeably fast. It required only 1000 iterations to reach a change in the 

weighted residuals less than 10 -5, which was the conversion criterion of the program. 
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Upper bound 

[78] 

5.5700 0.0104 0.0842 0.1171 

Lower bound 

[78] 

5.5900 0.0110 0.0852 0.1176 

Current results 5.5842 0.0114 0.0842 0.1172 

Table 6-1 Results for the steady test case compared with the benchmark results. 

6.4.1.2 The gained experience during this test phase  

It took effort and too many trails to achieve these results. The affecting parameters that 

control the accuracy of the solution could be summarized as follows: 

6.4.1.2.1  The solution grid 

When constructing the mesh, the following parameters found to be very important: 

• The construction of the surface of the cylinder should be done with a sufficient number of 

faces to get an approximate cylindrical contour with acceptable accuracy. It was found 

that this parameter is very important to get accurate solution. For example, Niedergesäß 

[79] used a structured grid and took only 16 faces to define the cylindrical contour, and as 

a result, his computations deviated from the benchmark values of [78] by a factor of 7 % 

although a fine net was used to cover the solution domain (12760 cells). The best CD he 

FD 

FL 

La
Pa Pb 
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could get was 5,87704 which located outside the bounds defined by [78].  In order to 

obtain results within the prescribed benchmark, a much bigger number of cells should be 

used to define the cylindrical contour. To overcome this difficulty, an unstructured mesh 

was adapted to give an acceptable cylindrical contour, and in the same time keeps the total 

number of cells to a moderate value. With the aid of this unstructured grid, we could use 

240 faces to define the cylinder’s surface with a total number of cells of about 27000. 

Without using of such a grid the number of cells would be more than 100000, which 

exceeds the limits of the used computer.  

• The grid must be fine near the walls where the gradient of the velocities is very high. This 

condition could be satisfied easily using a non-linear mesh distribution. 

• All the calculations should be done using the double precision procedure. This was the 

only way to get inside the bounds defined by [78] 

• The maximum number of iterations assigned to solve the momentum equations should not 

be less than 100, while the number assigned to solve the pressure correction equation 

should be 10 times this value (i.e. 1000) 

Figure 6-3 illustrates a sample unstructured mesh (the actual one used is finer but this one is 

only for demonstration purpose).  

Figure 6-3 Part of sample unstructured mesh used to define the test-problem 
geometry. 
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6.4.1.2.2 The discretization scheme 

All the discretization schemes available in STAR-CD [80] have been tested. The only one, 

which gave us acceptable results, was the QUICK scheme described by Equ. (5.17). It really 

needs more computational time compared with the other schemes, but it is worth the time 

because the other schemes did not gave accurate enough results. 

6.4.1.3 Benchmark Test Extension 

6.4.1.3.1 Steady flow edge-Reynolds number. 

After this stage, an extended benchmark test was considered. The same problem will be 

solved for a Reynolds Numbers ranged from five until the limit of the steady state (i.e. until a 

converged solution exists). The purpose of this stage is to know the limit of the Reynolds 

number that gives steady state solution. Figure 6-4 shows the velocity vectors for Reynolds 

number until 40, which is the highest number could be reached.  

 
ReD = 5 

 
ReD = 25 

 
ReD = 10 

 
ReD = 30 

 
ReD = 15 

 
ReD = 35 

 
ReD = 20 

 
ReD = 40 

Figure 6-4  The development of the wake behind the cylinder with the increase of Re 
number for the benchmark problem. 

As can be seen, with the increase in Reynolds number the length of circulation La also 

increases. More than Re = 40, fluctuations begin to appear and the wake behind the cylinder 

loses its symmetry and the problem tends to be transient. No solution could be obtained after 

this value using the steady state techniques and therefore would not be given. 
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Figures 6-5 and 6-6 show the variation of drag and lift coefficient with Reynolds number for 

the benchmark problem. The effect of cylinder asymmetry about the centerline of the channel 

vanishes with the increase in Re. After Re = 30 the CL is almost 0.0. This is because the 

asymmetry force is very small compared to the term dU
2

ρ /2. 
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Figure 6-5  CD Versus Re for the benchmark problem. 
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Figure 6-6 CL Versus Re for the benchmark problem. 



 47

6.4.1.4 The ability to simulate the free flow condition 

One of the most interesting problems is the steady, free, two-dimensional incompressible and 

viscous flow past one circular cylinder. It would be very useful to test the programs ability to 

solve such a problem. As a reference work the paper of F. Nieustadt and H. B. Keller [81] has 

been selected which used the semi-analytical method of series truncation to solve this 

problem. The main problem for any FV program is that the domain of solution must be 

bounded. As the problem here concerning an infinite domain, the boundary condition should 

be chosen carefully to simulate the free stream conditions. J. Li et al. [65] solved the unsteady 

case of this problem (100 ≤ Re ≤ 500) and used the following geometrical and boundary 

conditions to simulate the problem as given in Figure 6-7: 

Figure 6-7 Computational domain and boundary conditions used to simulate free 
flow condition. 

The same domain and boundary conditions were used to solve the steady case (Re=20). 

Figure 6-8 shows the velocity distribution on the flow axis behind the cylinder. Here an 

unstructured mesh like the one used in the benchmark problem has been used but very much 

finer (47,000 elements instead of 27,000). The Figure shows a good agreement between 

current results and that of [81]. 
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Figure 6-8 Comparison between the current result and that of F. Nieuwstadt [81]. 

6.4.2 Case b) Unsteady Flow 

6.4.2.1 The numerical results 

When the Reynolds number is increased beyond a critical value (which for a cylinder in 

infinite stream is about 40), the flow becomes unsteady and vortices are shed from the 

cylinder. The same grid from the steady solution was used to solve the problem in the 

unsteady case. Table 6-2 shows a comparison between the current results and that of the 

benchmark test.    

 CD max  CL max  ∆P 

Lower bound [78]  3.2200  0.9900 2.4600 

Upper bound [78]  3.2400  1.0100 2.5000 

Current Results  3.2340  0.9950 2.4930 

Table 6-2 Results for unsteady test case compared with the benchmark results. 

The same problem was investigated by Muzaferija et al. [82]. They used a second-order three 

time-level implicit scheme for time integration. Starting impulsively from rest, the flow goes 

through a development stage and eventually becomes finally periodic. Due to vortex 
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shedding, both the drag and lift forces oscillate. Figures 6-9 and 6-10 show the oscillation of 

both the drag and lift coefficient of Muzaferija et al. [82] for the finest grid used (80,000 

CVs), compared with our results.  
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Figure 6- 9 Variation of the Drag Coefficient as a function of time. 
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Figure 6-10 Variation of the Lift Coefficient as a function of time. 

The drag and lift forces oscillate at different frequencies. The drag has twice the frequency as 

the lift. The reason is that the drag force has one maximum and one minimum during the 

growth and shedding of each vortex, while the sign of the lift force depends on the location of 
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the vortex i.e. whether it is above or below the cylinder. In case of a symmetric configuration, 

the lift   coefficient would oscillate around zero; in this case it oscillates between CL, min = -

1.0325 and CL, max = 0.9950 (Muzaferija et al. [82]. CL, min = -1.0210and CL, max = 0.9870). 

The drag coefficient oscillates between CD, min = 3.1705 and CD, max = 3.2340 (Muzaferija et 

al. [82]. CD, min = 3.1650 and CD, max = 3.2280).  

Figure 6-11 shows instantaneous isobars and velocity vectors. The closed pressure contours 

indicate the location of vortex centers, where the pressure has a local minimum. This figure is 

nearly the same as in [82] 

Figure 6-11 Instantaneous isobars (above) and velocity vectors (below) in the laminar 
2D flow around a circular cylinder in a channel at Re = 100.   

6.4.2.2 The gained experience during test phase 

6.4.2.2.1 Time step 

When choosing the time step, one should consider the Courant number Co as a dimensionless 

quantity given by: 

l
tv

Co
∆

=  (6.7) 

where v  and l are characteristic velocity and length, respectively. For optimum results, the 

user should calculate the Courant number in two ways: 
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1. Cell-wise, by setting v to an estimated local velocity and l to the corresponding local 

mesh dimension (e.g. cell diagonal). The time step should be chosen such that the 

maximum Courant number dose not exceeds 100. 

2. Globally, by setting v  to the estimated average velocity in the flow field and l to a 

characteristic overall dimension of the model (e.g. channel length in this case here). The 

time step should be chosen so that it is commensurate with the time scale of the physical 

process being modeled. In this case, the time step should be chosen such that the 

maximum Courant number derived from this criterion is typically in the range 100 to 500. 

Both Courant numbers (Cell-wise and Globally) are calculated every time step and the 

maximum Cell-wise Courant number is reported so the user has always the complete 

information about the time step used.  

It was found that the first Courant number (Cell-wise) plays the main role in choosing the 

time step. One should not expect an accurate solution if the local value of Courant number 

exceeds 100. For all calculations done in this work, the used time step produced a maximum 

cell-wise Courant number much less than 50. 

6.4.2.2.2   Temporal discretization 

Only the Crank-Nicholson scheme succeeded to give an accurate solution. The full implicit 

scheme failed to provide a solution that could compete with the solution of Crank-Nicholson 

scheme. It might be that is due to the complexity of the problem that requires a great level of 

accuracy.     

6.4.2.3 Benchmark test extension 

Like in the laminar case, an extension for the benchmark problem is intended to test the 

ability of STAR-CD to solve such a problem with higher Reynolds numbers. The main 

objective of this stage is to know the ability of STAR-CD to solve this problem for higher 

Reynolds numbers larger than the benchmark. Figure 6-12 shows the velocity vectors and 

pressure field for Reynolds number = 400. It is shown that the strength of the pressure change 

behind the cylinder is now stronger. One realizes that more isobars are now located near the 

cylinder. This is due to the increase in velocity resulted from the growth of Reynolds number. 

A solution until ReD  = 500 could be achieved with a reasonable CPU time.  
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Figure 6-12 Instantaneous isobars (above) and velocity vectors (below) in the laminar 
2D flow around a circular cylinder in a channel at Re = 400. 

Trial runs until ReD = 1000 are also done. But the CPU time is dramatically increased because 

a minor step (0.0001 sec) is used to achieve an adequate Courant number [80]. That means, 10 

real time seconds (the time used to simulate the problem) needs 100000 steps that means 

weeks of calculations on the available computer. 

From the entire above one can conclude that the described code has the ability to solve 

problems, which are similar to this benchmark with an acceptable accuracy.  

In the next chapter, the collected experience gained until now will be implemented to solve 

the main problem of this work. 
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Chapter 7 

Two Cylinders in a Uniform Stream. 
7  

7.1 Introduction 

n this section, the flow field between the two cylinders in a parallel fluid stream and the 

effect of changing s/d in the flow characteristics will be studied. The pitch to diameter ratio 

s/d will be changed from 3.0 to 1.5. Because of the high complexity of the problem, the value 

of Reynolds number will be fixed in this chapter at 500 and s/d will be the only parameter 

under consideration. The effect of changing Reynolds number will be discussed in a later 

chapter. All other parameters will not be changed. The domain of solution (Figure 2-1) will be 

that of Li et al. [65] (which has been taken for benchmark of the calculations in section 

6.4.2.2). The domain length to cylinder diameter ration n/d will be 55, i.e. 35 diameters more 

than that taken by Li to minimize the effect of the outlet as possible. The ratio of the height to 

cylinder diameter h/d is taken to be 12.0, not 10 because of the presence of the second 

cylinder. However, Li studied the effect of lateral boundary limits on the vortex shedding. It 

was found that, if the ratio of the lateral boundary width to the cylinder diameter is greater 

than five, the lateral effect could be neglected. The ratio b/d will get the same value of 5.0. 

As mentioned before, the fluid taken here is air. By setting the cylinder diameter to be 1.0 m, 

the required Reynolds number will be defined by selecting the corresponding value of the 

entrance velocity u∞.  

As a last test for the used code, variable combinations of u∞ and d have been taken to keep 

Reynolds number constant in each case. There were no changes in the obtained results. 

All the gained experience from the benchmark test was applied to the problem including grid 

structure, the discretization scheme, time step and temporal discretization scheme. Figure 7-1 

shows a mesh sample used to discretize the solution domain. A magnified part of the mesh is 

also illustrated and it shows how dense the mesh is near the walls. The number of cells was 

I
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about 46000 cells. The time step chosen was about 1/100 of the vortex shedding frequency to 

effectively capture the vortex shedding process keeping in mind the limit of Courant number 

discussed before. All calculations are performed using the double precision calculations 

option. 

 

 

Figure 7-1 A typical mesh used to discretize the solution domain for pitch to diameter 
ratio s/d=1.75. 

7.2 Normalizing the Results 

During the calculations phase, all the results are given in a dimensional form. This is because 

the used code (STAR-CD) accepts only dimensional quantities. To generalize the solution, 

one must represent the results in a non-dimensional form. Therefore, some dimensionless 

quantities should be defined, and all the results will be expressed in terms of it. Let us define: 
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d
x=X    as a normalized x distance,   

d
y=Y    as a normalized y distance, 

∞

=
u
uU   as a normalized velocity in x direction, 

∞

=
u
vV   as a normalized velocity in y direction, 

f
t=T    as a normalized time, where f is the vortex shedding frequency, 

2

2
1

∞∞

=
U

p

ρ
P   as a normalized pressure, 

∞

∞

−
−

=
ϑϑ
ϑϑ

o

Θ   as a normalized temperature in case of constant wall temperature, 

and 

k
dqo

∞−
=

ϑϑΘ   moreover, as a normalized temperature in case of constant wall heat 

flux. 

All the results will be expressed in terms of these quantities. 

The fluid flow results include: 1.) flow fields represented by velocity vectors; 2.) normalized 

pressure distribution P on cylinders’ surface; 3.) lift and drag  coefficients and  4.) Strouhal 

number. These results are discussed first, followed by a discussion of heat transfer results. 
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7.3 Fluid Flow Results 

7.3.1 The Vortex Shedding and Flow Pattern behind the Cylinders 

At the beginning, it is important to understand the flow pattern of the problem by observing 

the changes occurred in the velocity field behind the cylinders with respect to time. To clearly 

represent the interference between two cylinders, three case studies were chosen: 

1. the case of ReD = 500 and s/d = 3. 0, 

2. the case of ReD = 500 and s/d = 2.0, 

3. the case of ReD = 500 and s/d=1.5. 

This is because the flow behavior changes completely from the first case to the last one.  

Bearman et al. [68] have photographed the flow at this Reynolds number in a smoke channel. 

The flow behavior of the present problem will be compared with that of Bearman by using the 

velocity vectors obtained from the numerical solution and one will try to understand the flow 

pattern and make a comparison between current results and those of Bearman. 

Starting with the case of s/d = 3.0, Figures 7-2 show the velocity vectors for that case. As a 

result, for each time step, there is a magnified velocity-vectors diagram of the upper cylinder. 

It will help to understand the formation and shedding of vortices near the cylinders.  

At the beginning of the cycle (T = 0.0 Fig. 7-2-2a) there is almost one vortex behind each 

cylinder. The edge of the jet flow is directed towards the vortex streets. The flow changes its 

direction to form a second vortex (the blue color represents lower velocity magnitude). It is 

seen that the vortex street flow impacts with each other at a certain distance leading to a local 

increase in the velocity magnitude (the red color represents higher velocity magnitude). 

By increasing the time (T = 1/8 in Figure 7-2-2b), the vortex behind each cylinder is moved 

away from the jet flow (vertically) and advances horizontally. In addition, the whole velocity 

pattern advances to the right and the movement of the wake behind each cylinder seems to 

resist the separated flow from the separation point away from the jet flow.      
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At T = 2/8, it is seen that a new vortex is formed near the separation point away from the jet 

flow. The old vortex is now in its way to vanish. It is also seen that all the vortices are 

advancing in the downstream direction. 

By further increase in time (T = 3/8, 4/8 and 5/8), the newly formed vortex is moving in the 

opposite direction of the old vortex (to and not away from the jet flow). This is the supposed  

“phase change” of the vortex formation process.  

In the last two time steps, it is seen that a new vortex is formed near the separation point at the 

jet flow. This is the so-called old vortex found at time step T = 0.0. 

The vortex formation and shedding is markedly symmetric about the axis of the gap for both 

half cycles. One can realize the clear couple of the vortex shedding at each cylinder. The jet 

formed in the gap between cylinders gives flow to both streets, which decrease its velocity 

locally (the blue color represents lower velocity magnitude). This behavior is totally reversed 

when the shedding process changes its phase (i.e. when the lift coefficient reaches its 

minimum and starts to increase). That means, instead of giving flow to the streets, it receives 

flow from them.  

Proceeding to s/d =2.0, a magnified velocity-vectors diagram is not necessary because the 

two cylinders are now closer and the available space is sufficient to represent the velocity 

diagrams behind the cylinders. Figures 7-3 show the vortex shedding at this value of s/d. As 

can be seen, the vortex formation and shedding process is still similar to the previous case. 

The vortices in both streets are still coupled, but there is a slight asymmetry about the gap 

axis.  

Now the results of the case s/d =1.5 will be represented. Figures 7-4 show the velocity vectors 

behind the two cylinders. As seen in the figures, everything has been changed.  The flow in 

the gap between the cylinders is seen to be biased towards one of the cylinder. As seen in the 

figures, the flow would remain biased in this direction for some time before swapping to the 

other side. This is the so-called bistable nature of the biased flow.  

As mentioned before, the same Reynolds number was used for the photos of Bearman et al. 

[68]. There is a very good agreement between our results and those of Bearman. The same 

flow behavior was reported in [68] although the ratio s/d taken was 1.85. The bistable nature 

of the flow was found to take place even when s/d = 1.5. This agrees with the results of 

Bearman who found that the bistable nature of the flow takes place even at s/d = 1.85 but not 
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agree with the results of Ishigai, et al. [61], who said that the bistable nature of the flow is 

found to take place only when s/d = 1.25. This could be due to the different Reynolds 

numbers considered.  

There is a great degree of irregularity in the vortex street behind the cylinders. The flow is 

confused with no apparent dominant vortex structure. In addition, the swapping of the jet flow 

from one cylinder to the other is found to be irregular with the time. More details about this 

point will be given when discussing the Strouhal number.  

In addition, the ratios s/d = 1.25, 1.75, 2.25, and 2.5 have been studied. When s/d ≥ 2.0 the 

flow acts in a way similar to that described by Figures. 7-2 and 7-3, i.e. coupled vortices in 

both streets with symmetry about the gap axes. When s/d is less than 2.0, the bistable nature 

of the flow is found to take place and the irregularity of the flow behind the cylinders 

increases with the decrease of s/d. 

 

Figure 7-2-1 The vortex formation and shedding process for the case Re = 500 and s/d = 
3.0 (T = 0.0 Magnified). 
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7.3.2 Pressure Distribution  

7.3.2.1 Pressure field 

The pressure field gives a better understanding about the vortex streets behind the cylinders. 

The closed pressure contours indicate the location of vortices centers, where the pressure has 

local minimum.  

Figure 7-5 shows the instantaneous pressure field around the cylinders for a range of pitch to 

diameter ratios s/d. The time at which each figure is captured is selected to represent the main 

characteristics of the pressure field at the value of s/d. The red color represents the highest-

pressure value (positive), while the dark lily represents the lowest pressure value (negative). 

The closed blue pressure contours indicate the locations of vortex centers, where the pressure 

has a local minimum.   

As seen in the figure, for the case s/d = 3.0 there are two clearly defined vortex streets. The 

pressure reaches its maximum at the forward stagnation point. Behind the cylinders, -in the 

wake- the pressure takes a negative value. In the street, the core of each vortex is represented 

by a closed contour. There is also a clear symmetry around the gap centerline.  

This symmetry takes place until s/d = 2.25 (not shown). At a pitch to diameter ratio of 2.0, it 

is found that the symmetric situation starts to change specially behind the cylinders. After a 

certain distance from the cylinders, we can realize that the vortices are symmetric.  

Furthermore, by decreasing s/d until 1.75 we see that there is no more symmetry about the 

gap axes. Although there are two vortices shed from the cylinders, we see that after a certain 

distance the two streets join each other to form one street of vortices.  

By decreasing s/d more and more, we see that the vortices behind the cylinders join each other 

earlier than before. There are usually a large wake and small wake formed behind the 

cylinders. The same trend continues at s/d = 1.25. For that extreme case (s/d = 1.25), we 

cannot define any real vortex street at all. There is one big vortex behind one cylinder. This 

vortex changes its shape and position with the time. It can also seen that the vortex shedding 

becomes weak for the values of s/d ≤ 1.75. 
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s/d = 3.0 

 

s/d = 1.75 

 

s/d = 2.5 

 

s/d = 1.5 

 

s/d = 2.0 

 

s/d = 1.25 

Figure 7-5 Instantaneous pressure field variation with the change in s/d. 
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7.3.2.2 Normalized pressure distribution on the surface of the cylinders  

7.3.2.2.1 Instantaneous pressure variation 

The pressure distribution on the surface of the cylinders will be now analyzed. To represent 

the instantaneous pressure variation with time on different surface points, two cases will be 

studied: the case of s/d =2.5 and s/d =1.5. Nine surface points are considered where θ is the 

angle measured counter clockwise from the rear (base) point of the cylinder.  

For the first case (Figure 7-6-a), the pressure variation with time takes a sinusoidal form for 

all the points under consideration. At the base point (θ = 0°), the pressure variation has two 

maxima and two minima during a one CL cycle. By increasing θ we see that time variation of 

the pressure trends to have only one single maximum and one single minimum during one CL 

cycle. Furthermore, by increasing θ until reaching the forward base point (θ = 180°) we see 

that the time variation of the pressure is not so strong and we can consider it almost constant. 

For the second case (Figure 7-6-b), there is a difference in the zone between the two 

separation points. For example, at θ = 0° one cannot define a repetitive change of pressure. 

The pressure increases and decreases smoothly but not in a harmonic way. By increasing θ, 

the pressure variation seems to have a more wavy form and concedes with the trend of the 

previous case. Fare a way from the separation point, the pressure variation starts to have the 

wavy form with one maximum and one minimum for one cycle. 

The previous two cases represent the main pressure variation groups, which are found to take 

place in this work. Until s/d ≥ 2.0, the time change of pressure is similar to the first case. For 

s/d < 2.0 the change is similar to the second case.  

7.3.2.2.2 Mean pressure distribution on the surface of the cylinders 
We will now look at the mean pressure distribution on each surface of the cylinders. This 

view will help us to determine the effect of the presence of the second cylinder in the location 

of the forward stagnation point of each cylinder where the stagnation point is defined to be the 

point that has the maximum pressure on the surface.  Figure 7-7 shows the normalized 

pressure distribution on the surface of the upper cylinder for different ratios of s/d.  
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Figure 7-6 Instantaneous normalized pressure on different surface points of the lower 
cylinder for the cases s/d = 2.5 and s/d = 1.5. 
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Figure 7-7 Normalized mean pressure distribution on the surface of upper cylinder 
for a range of s/d.  

The angle θ is measured from the rear (base) point of the cylinder in clockwise direction. For 

all values of s/d, the flow is found to be symmetric about the front stagnation point in the 

region between the two separation points except for the cases s/d = 1.5 and s/d = 1.25 where 

there is a slight variation in the location of each separation point.  

The movement of the stagnation point due to the proximity of the other cylinder is represented 

in Figure 7-8. The angle α represents the location of the front stagnation point measured from 

the base point in a clockwise direction. The change of the location of the stagnation point due 

to the change in s/d is more rapid in the range s/d ≤ 2.0. By increasing s/d, the stagnation 

point moves toward its normal location (i.e. α = 180°). Also decreasing the gap between the 

cylinders until s/d = 0.0 will shift the stagnation point to be at α = 270°. 
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Figure 7-8 The movement of the front stagnation point due to proximity of the other 
cylinder. 

7.3.3 Lift, Drag Coefficients and Strouhal Number  

7.3.3.1 Lift coefficients 

The bistable nature of the flow around two cylinders means that in the range of spacings s/d ≤ 

2.0 there are two bistable forces experienced by the cylinders. Two different forces act on the 

two cylinders, only for some time, and change over. These forces should always be taken into 

account. There is an additional feature of the biased flow. The gap flow biased to one side will 

produce a resultant force on the cylinder, which is deflected relative to the free stream 

direction. Hence, there will be a component of the force acting perpendicular to the free 

stream direction, which could be called a lift force. 

Figure 7-9 shows the time variation of the lift coefficient for the cases s/d = 3.0, and 1.25. As 

seen in this graph, the time variation of lift coefficient for first case takes a sinusoidal form. 

There is a very small phase difference between the two cylinders. This may be due to a 
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numerical error because of the complexity of the problem. As could be seen, the time 

variation of CL for  
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Figure 7-9 Time history of lift coefficient fluctuation for the cases s/d = 3.0 and s/d = 
1.25. 
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the lower cylinder is a mirrored image of that for the upper cylinder. In addition, due to the jet 

flow in the gap, each time variation curve is not symmetric about the gap’s centerline.  

For the case s/d = 1.25 the variation is very different. The time variation of CL has two 

different peak values, and a repetitive cycle could only be found every two normal cycles of 

the case s/d = 3.0. For example, due to the biased nature of the flow, the lift coefficient of the 

upper cylinder takes a minimum value at about T = 0.88 and the other minimum is at T = 

1.79. 

7.3.3.2 Strouhal number  

For the cases s/d ≥ 2.0 the calculated Strouhal number was about 0.21. This agrees well with 

the data found in the literature for two cylinders arranged side by side. The Strouhal number is 

approximately equal to that of a single cylinder for the range s/d ≥ 2.0. These results also 

agree well with those of Ichioka et al. [67]. For the range s/d ≤ 2.0, we could not characterize 

a definite value for Strouhal number because the waveform of the lift fluctuation is greatly 

disturbed and the vortices discharged from the cylinders are no longer generated as a regular 

Karman vortex street because of the effect of the interference of the interaction between jet 

stream and vortices. 

7.3.3.3 Drag coefficients 

As seen in Figure 7-10 for the case s/d = 3.0, the drag and lift forces oscillate at different 

frequencies: the drag has twice the frequency as the lift. The reason (as mentioned before) is 

that the drag force has one maximum and one minimum during the growth and shedding of 

each vortex, while the sign of the lift force depends on the location of the vortex i.e. whether 

it is above or below the cylinder. As expected, for smaller values of s/d, the time variation of 

CD loses its waveform but for one cycle, there are usually two minima and two maxima. 

Figure 7-11 represents the variation of mean drag coefficient vs. s/d. The mean value for s/d ≤ 

2.0 is obtained by integration over a very long period. For other values of s/d, the integration 

is done for only one cycle. As seen in the graph, the drag coefficient reaches a minimum value 

at s/d ≅ 1.75. It increases again until s/d ≅ 2.0 and then decreases by increasing s/d. This trend 

coincides well with the results represented in [57]. 
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Figure 7-10 Time variation of the drag coefficient of the upper cylinder.     
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Figure 7-11 Mean drag coefficient vs. pitch to diameter ratio for the case Re = 500.   
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Chapter 8 

Heat Transfer Results 
8  

onvective heat transfer results are highly dependent on the quality of the predicted flow 

field. Therefore, a thermal field is a good verification of the accuracy of a predicted 

flow field, but not necessarily a guarantee.  It becomes guaranteed when a good comparison 

with existing experimental fidelity of the flow field is established. In this chapter, heat 

transfer results for the cases studied in chapter 7 will be represented as follows: 

1. Thermal fields shown by temperature contours; 

2. Instantaneous and mean local Nusselt number around the cylinders and 

3. Average Nusselt number for both cylinders as a one unit. 

All this results will be given as a function of s/d  

A temperature difference of 100 K is taken between the cylinders’ wall and the free stream in 

case of constant wall temperature, or a wall heat flux of 10 W/m2 in case of constant wall heat 

flux. This should not play any role because the properties of the fluid are taken to be constant. 

The solution of the energy equation could be done after getting a converged oscillating 

solution for the momentum equation. There is no need to solve all equations simultaneously.  

This will reduce the required total computation time because of the fact, that the flow field is 

the driver of the thermal field in this type of problems. 

C
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8.1 Constant Wall Heat Flux 

8.1.1 Thermal Field 

As known for forced convection problems, the thermal profile downstream of the cylinder is 

the legacy of the prediction of the flow profile. Thus, the movement of the thermal field is 

driven by the motion of the flow field. The reverse is true in the limiting case of natural 

convection, where the thermal field is the driver. The thermal field in mixed convection is 

adjusted according to the relative magnitudes of natural and forced convection.  

Figure 8-1 shows the normalized instantaneous thermal field as a function of time for one 

complete cycle of the lift coefficient for the case s/d = 3.0. As can be seen, the thermal 

boundary layer is thinnest at the forward stagnation point as expected. The hottest region is 

found to be between the two stagnation points. The shape of the forward part of the thermal 

boundary layer is almost constant with the time and only the part affected by the vortices is 

changing with time. There are usually three hot spots directly behind each cylinder. The 

location of two of these hot spots is almost constant with time and is found to be at each 

separation point. The location of the third hot spot changes its location according to the 

location of the active vortex behind the cylinder. The thermal field represents clearly the 

process of the vortex growth and shedding.  It is found to be symmetric about the gap 

centerline. As the used fluid is air (low thermal conductivity), the hot region in the thermal 

field is found to by very thin. 

Figure 8-2 represents the same results but this time for the case s/d = 2.0. The thermal field 

shows a slight asymmetry about the gap centerline. The three hot spots behind each cylinder 

are still found and behave like in the previous case.     

 The last case represented by Figure 8-3 shows the thermal field for the case s/d = 1.5. The 

thermal field represents very well the disturbance occurred in the Vortex Street and shows 

that the vortex shedding process is no longer coupled. There is no symmetry at all around the 

gap centerline. Sometimes two of the three hot spots disappear so one founds only one spot 

(e.g. T=1/8 at the upper cylinder), or one spot disappears so there are only two spots (e.g. 

T=4/8 at the upper cylinder). 
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Figure 8-1 Normalized instantaneous thermal field for s/d = 3.0. 
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Figure 8-2 Normalized instantaneous thermal field for s/d = 2.0. 
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Figure 8-3 Normalized instantaneous thermal field for s/d = 1.5. 
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8.1.2 Local Nusselt Number around the Cylinders 

8.1.2.1 Instantaneous local Nusselt number  

The local values of the Nusselt number were calculated as follows: 

),(
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kdq
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θθ
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===
∞
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Figure 8-4 (a) shows the time behavior of the local Nusselt number calculated at the surface 

of the lower cylinder for a pitch to diameter ration s / d = 2.5. The angle θ is measured from 

the rear (base) point in the counterclockwise direction. Starting from the point θ = 0°, it is 

seen that the time variation of the Nusselt number takes a wavy form with two maxima and 

two minima per one lift coefficient cycle. There is a difference in magnitude between the two 

maxima but the two minima are almost the same. By increasing θ, the Nusselt number has the 

same trend with larger deference in magnitude between the two maxima than that at the point 

θ = 0°. At the point where θ is about 20°, there is one Nusselt number cycle per one lift 

coefficient cycle with a decrease in the amplitude of fluctuation. This trend remains until the 

separation point. Then the Nusselt number reaches its minimum with an almost constant 

value. Going further behind the separation point, it is seen that a rapid increase in Nusselt 

number accompanied with decayed fluctuations takes place until reaching the forward 

stagnation point at which the Nusselt number is almost constant with time. By increasing θ 

more and more, it is found that the Nusselt number is almost symmetric between the two 

separation points (the upstream part of the cylinder). After reaching the second separation 

point (at the outer part of the lower cylinder), the change in Nusselt number with the time 

starts to reverse its trend and two Nusselt number cycles per one lift coefficient cycle take 

place. It is important to notice that the local values of Nusselt number in the range 290° < θ < 

360° are higher than that values in the range of 0° < θ < 70°. This is a direct effect of the 

presence of the second hot cylinder, which decreases the Nusselt number locally in its 

neighborhood.  

Figure 8-4 (b) shows the same results but this time for a pitch to diameter ration s / d = 1.5. 

As expected, the time variation of the Nusselt number at the points located between the two 

separation points behind the cylinder loses its wavy form. This is because of the flow pattern 

in this region   drives the   thermal   field as said   before. The values of Nusselt number at the  
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Figure 8-4 Instantaneous Nusselt number on the surface of the lower cylinder for the 
cases s/d = 2.5 and s/d = 1.5. 
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upstream part of the cylinder seems to be similar to the previous case but there is no 

symmetry about the forward stagnation point. There is an apparent deflection in the change in 

Nusselt number with θ towards the region behind the cylinder and near to the jet flow. This is 

because of the stagnation point displacement discussed before which as a result affects the 

Nusselt number distribution at the surface of the cylinder. 

 The same results for the upper cylinder will not be repeated. It was found that that for the 

case of s/d = 2.5 a symmetry about the gap axes takes place. For the case s/d = 1.5 the 

symmetry was found to take place only in the upstream part of the cylinder in the region 

between the two separation points. 

8.1.2.2 Mean local Nusselt number 

Now the distribution of the mean Nusselt number around the upper cylinder will be given. 

The mean value of Nusselt number is defined as: 

TT
T

d Nu)Nu
oT

D
o

mean,D  ),(1(
0

θθ ∫= . (8.2) 

where To is the integration time over which the NuD, mean is calculated. It is equal to 1.0 (i.e. 

one complete cycle of the lift fluctuation) in case of sinusoidal variation in NuD (θ, T). For the 

cases when the variation of lift coefficient loses its wavy time variation it is important to take 

as much time as possible when calculating the mean value of Nusselt number. Because of the 

limited computer facilities available, the time taken was 20.0 in all these cases. 

 It must be stated that the angle θ is measured as before and as a result, the region near the jet 

lies this time in the range 290° < θ < 360°. Figure 8-5 gives the distribution of the mean 

Nusselt number on the surface of the upper cylinder for the studied values of s /d.  

The cases of s /d in the range between 3.0 and 2.0 show no deference in Nusselt number for 

the points between the forward stagnation point (θ = 180°) and separation point away from 

the jet flow (θ ≅70°).  In the range θ > 180° there is a slight difference between the curves of 

Nusselt number until reaching the second separation point (θ ≅ 290°). The region between the 

base point (θ = 0°) and the separation point away of the jet flow  (θ ≅70°) shows an increase 

in the local values of Nusselt number as the value of s/d decreases. While in the range 

between the base point (θ = 0°) and the separation point near the jet flow  (θ ≅290°) there is 
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no significant change in the local values of Nusselt number with the change in s/d and as 

stated before, the presence of the second cylinder decreases the local Nusselt number in this 

region. 

As the jet flow becomes biased (i.e. s/d < 2.0), the dome shape of Nusselt number loses its 

symmetry and the effect of the presence of second cylinder becomes more dominant. For the 

extreme case (s/d = 1.25) there is a noticeable drop in the local values of Nusselt number in 

the region nearer to the second cylinder (i.e. 290° < θ < 360°) 
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Figure 8-5 Local values of the mean Nusselt number on the surface of the upper 
cylinder for different pitch to diameter ratios. 

8.1.2.3 Mean average Nusselt number 

Practically, it is impossible to distinguish between the first and the second cylinder in any 

practical situation. For the engineers, it is very important to handle both cylinders as one unit 

and to define NuD, average as the average total Nusselt number for both cylinders as one unit. It 

is defined as follows: 
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Figure 8-6 shows that the mean average Nusselt number reaches its peak value at a pitch to 

diameter ratio of a bout 2.0. This result is very important for engineering aspects because in 

this case the mean surface temperature of the cylinder surface will be minimum. It is also 

shown that in the range of s/d < 2.0 the change in NuD, average is very sensitive for the change 

in s/d, which is not that case when s/d > 2.0. 
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Figure 8-6 Average Nusselt number for both cylinders as one unit V.S. pitch to 
diameter ratio s/d. 

 

 

8.2 Isothermal Walls 

The second mode of heat transfer used in this analysis for the same case study (i.e. Re = 500 

and 1.25 ≤ s/d ≤ 3.0) will be discussed now. In this mode, the surface temperature of both 
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cylinders is kept constant during the entire computations. It is important to understand the 

difference between the two cases: 

• In the first case (constant wall heat flux), a certain amount of heat must be removed from 

the surface of the cylinder and this is done by an increase in the surface temperature over 

that of the cooling fluid. This increase in the surface temperature is a representation of the 

quality of the heat transfer process at each surface point (i.e. the higher the surface 

temperature, the lower heat transfer coefficient) 

• In the second case (constant surface temperature), the amount of heat removed from the 

cylinder is determined by the local values of the heat transfer coefficient (i.e. the higher 

the heat transfer coefficient, the higher the local heat flux at the surface of the cylinder). 

8.2.1 Thermal Field 

Like the previous case, we will start to discuss the thermal field at the beginning. Figure 8-7 

shows the normalized instantaneous thermal field in case of s/d = 3.0 for a one complete 

cycle of the lift coefficient. As discussed earlier, the flow field is also the driving force of the 

thermal field. The symmetry about the gap axes is well defined during the whole cycle. 

Because of the bad thermal properties of the fluid used (air with low thermal conductivity), it 

is seen that a thin thermal boundary layer is formed around the cylinder in the upstream side 

of its surface. In addition, the thermal field characterizes the vortex street very well. Also the 

process of vortices generation and shedding is clearly represented. Behind the cylinders it is 

seen also that there are three hot spots (like the previous case), two of them are fixed (at 

separation locations) and the position of the third is depending on the place of generation of 

the newborn vortex. Figures 8-8 and 8-9 show the thermal field for the rest two case studies 

(s/d = 2.0 and s/d = 1.5). As seen, the thermal field is found to be still driven from the flow 

field. For the three cases it can be seen that the thermal field behind the cylinders is closer to 

the highest temperature than that where the wall heat flux was constant. This is because of the 

deference between the two cases where in the case of constant wall temperature, the upstream 

part of the cylinder has also the highest temperature and this is not the situation when the wall 

heat flux was constant. 
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Figure 8-7 Normalized instantaneous thermal field for s/d = 3.0. 
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Figure 8-8 Normalized instantaneous thermal field for s/d = 2.0. 
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Figure 8-9 Normalized instantaneous thermal field for s/d = 1.5. 
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8.2.2 Local Nusselt Number around the Cylinders 

8.2.2.1 Instantaneous local Nusselt number  

The local values of the Nusselt number were calculated as follows: 

k
dT,hT,NuD

)()( θθ = . (8.4) 

Figure 8-10a shows the time behavior of the local Nusselt number calculated at the surface of 

the lower cylinder for a pitch to diameter ration s / d = 2.5. The angle θ is measured from the 

rear (base) point in the counterclockwise direction. Starting from the point θ = 0°, it is seen 

that the time variation of the Nusselt number has a wavy form with two maxima and two 

minima per one lift coefficient cycle. Unlike the case of constant wall heat flux, the two 

maxima are the same. By increasing θ, the Nusselt number has the same trend with two full 

symmetric cycles per one lift coefficient cycle but the second maximum starts to vanish. At 

the point where θ is about 20°, there is one Nusselt number cycle per one lift coefficient cycle 

with a decrease in the amplitude of fluctuation. Like the case of constant heat flux, this trend 

remains for the reset points. At the separation point, Nusselt number reaches its minimum 

value with an almost constant time variation. Comparing Figure 8-10a with Figure 8-4a we 

see that in case of constant wall surface temperature, the local values of Nusselt number 

around the separation points are lower than that in case of constant wall heat flux. 

Furthermore, increasing θ leads to a fast increase in Nusselt number accompanied with 

decrease in time oscillations. Reaching the forward stagnation point, the Nusselt number is 

almost constant with time and reaches its maximum. In addition, Nusselt number distribution 

between the two separation points at the upstream part of the cylinder is found to be 

symmetric about the forward stagnation point. The presence of the second cylinder seems to 

decrease the local values of Nusselt number in the region nearer to the cylinder. However, the 

value of the local Nusselt number in the downstream part is generally higher than that in case 

of constant wall heat flux.  

Figure 8-10b shows the same results but this time for a pitch to diameter ration s/d = 1.5. The 

time variation of the Nusselt number at the points located between the two separation points 

behind the cylinder loses its sinusoidal form. This is a direct reaction of the flow field in this 

region. The values of the Nusselt number at the upstream part of the cylinder seems      
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Figure 8-10 Instantaneous Nusselt number on the surface of the lower cylinder for the 
cases s/d = 2.5 and s/d = 1.5. 
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to be similar to the previous case but there is no symmetry about the forward stagnation point 

this time. There is a marked deflection in the change in Nusselt number with θ towards the 

region behind the cylinder and near to the jet flow. This is because of the stagnation point 

displacement discussed before. 

8.2.2.2 Mean local Nusselt number 

The mean Nusselt number around the upper cylinder is calculated using Equ. 8.2 and is 

represented in Figure 8.11. The same values of To are used like the case of constant wall heat 

flux. The angle θ is measured, as before starting from the base point behind the cylinder in a 

counterclockwise direction. The local Nusselt number distribution on the cylinder is almost 

symmetric about the forward stagnation point for the upstream part of the cylinder for s /d in 

the range between 2.0 and 3.0. A deflection in the distribution starts to take place by 

decreasing s/d to values less than 2.0. At s/d = 1.25 the deflection of the curve is very clear 

and the peak value of Nusselt number is reached at an angle of about 260°.  The jet flow 

enhances the heat transfer process at the part of the cylinder surface nearer to it. It is usually 

accompanied with a decrease in the local values of Nusselt number at the other side away 

from the jet flow.  

In the region behind the cylinder between the two separation points it could be realize that 

making the cylinders closer to each other usually has no effect till s/d = 2.0. Behind this 

value, it is seen that in the region nearer to the second cylinder  (i.e. 290° < θ < 360°) there is 

an increase in the local values of Nusselt number for that case s/d = 1.75. By decreasing s/d 

further more we see a drop in the local values of Nusselt number and it is most clearly 

represented in the case of s/d = 1.25. In the region behind the cylinder and a way from the jet 

flow (i.e. 0° < θ < 70°) it is realized that in the extreme case when s /d = 1.25 the local values 

of Nusselt number are higher than those of the other ratios of s /d. This is due to the fact that 

at this pitch to diameter ratio, more cold fluid prefers not to go through the gap between the 

cylinders due to the increased hydraulic resistance, which gives the part of the cylinder away 

from the jet better heat transfer conditions.    
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Figure 8-11 Local values of the mean Nusselt number on the surface of the upper 
cylinder for different pitch to diameter ratios. 

8.2.2.3 Mean average Nusselt number 

For the same reasons listed in 8.1.2.3, the average Nusselt number for both cylinders as one 

unit will be illustrated. Figure 8-12 gives the average Nusselt number for both cylinders as 

one unit vs. pitch to diameter ratio s/d. Like the previous case, the Nusselt number reaches its 

maximum value when s/d takes a value of about 2.0. The change in Nusselt number shows a 

little dependence on the change in s/d but for optimization reasons it is recommended to take 

s/d = 2.0 because at this value the heat transfer rate from the cylinders reaches its maximum.  
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Figure 8-12 Average Nusselt number for both cylinders as one unit V.S. pitch to 
diameter ratio s/d. 
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Chapter 9 

Effect of Reynolds Number on Heat 
Transfer Characteristics  
9  

n this chapter, the effect of Reynolds number on the heat transfer characteristics will be 

studied for both cases, the problem of constant wall heat flux and of isothermal walls. 

Again, the same range of pitch to diameter ratio s/d will be of interest. The thermal field as 

well as the Nusselt number will be calculated in order to explain the effect of Reynolds 

number on the heat transfer behavior of this problem.   

9.1 Constant wall heat flux 

9.1.1 Thermal Field 

Figure 9-1 shows the normalized instantaneous thermal field for the case of pitch to diameter 

ratio s/d = 3.0 and have Reynolds numbers ranging from 100 to 500. Starting with the case 

ReD = 100 it is seen that the wake behind the cylinders is relatively hot. The red-yellow 

regions prove this statement. The thermal field corresponds also to the flow field (the vortex 

street) and the coupled vortex shedding between the two streets is to be realized. By 

increasing the Reynolds number, the wake behind the cylinders becomes cooler in comparison 

to the previous case. By further increase of the Reynolds number, the effective hot region 

behind the cylinders becomes smaller. This can be shown particularly for the case of ReD = 

500 where the length of the first vortex attached to the cylinder is the shortest one. From the 

previous, the following statements could be summarize:   

1. The coupled vortex street takes place for the range of Reynolds numbers under study. 

2. The wakes behind the cylinders become colder by increasing the Reynolds number.  

I
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3.  

  

 

a) ReD = 100 

 

b) ReD = 200 

 

c) ReD = 300 

 

d) ReD = 400 

 

e) ReD = 500 

Figure 9-1 Normalized instantaneous thermal field for the cases s/d = 3.0 and ReD 
ranging from 100 to 500. 
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Figure 9-2 shows the thermal field when the pitch to diameter ratio s/d is reduced to 1.25. A 

very interesting result is found for the case a) when the Reynolds number takes a value of 

100. This diagram shows that the biased effect of the jet between the cylinders does not take 

place at this value of Reynolds number. Only a very weak jet between the cylinders can be 

seen and the rest of the flow prefers to surround the cylinders building a relatively hot region 

behind these bodies. The time dependent behavior of this thermal field (which is not 

illustrated) showed no big changes in the wake shape with the time.  

By increasing the Reynolds number to 200, the so-called biased flow starts to occur again. It 

is seen that the irregularity in the flow behind the cylinder begins and the cylinder surface get 

colder by rising the Reynolds number. Any growth in Reynolds number leads to a shorter hot 

wake behind the cylinders.  From the above results, the following statements could be 

summarize: 

1. At Reynolds number equals to 100, there is almost no biased jet flow between the 

cylinders and a large hot region behind the two cylinders is formed.  

2. By increasing Reynolds number, the biased flow becomes more dominant. 

3.  Any growth in Reynolds number is accompanied with a shorter hot wake behind the 

cylinders. 

4. For the whole range of Reynolds numbers under consideration -except that at 

Reynolds number of 100- there is an irregularity in the flow and no definite vortex 

street could be described. 

9.1.2 Mean Local Nusselt Number 

To study the effect of changing Reynolds number on the heat transfer phenomenon from the 

cylinders’ surfaces to the air stream, the local mean Nusselt number defined by Equ. (8.2) will 

be characterized in Figure 9-3. This figure represents the mean local Nusselt number 

calculated at the surface of the lower cylinder. The two bounding values of s/d were chosen 

and the whole range of Reynolds numbers under consideration is shown.  
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a) ReD = 100 

 

b) ReD = 200 

 

c) ReD = 300 

 

d) ReD = 400 

 

e) ReD = 500 

Figure 9-2 Normalized instantaneous thermal field for the cases s/d = 1.25 and ReD 
ranging from 100 to 500. 
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Figure 9-3 Local values of the mean Nusselt number on the surface of the lower 
cylinder for s/d =1.25 and 3.0 and Reynolds number ranging from 100 to 
500. 
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Starting with a Reynolds number of 100, it is seen that for the case of s/d = 3.0 the Nusselt 

number is almost symmetric between the two separation points in the upstream part of the 

cylinder. Behind the cylinder in the wake, the Nusselt number changes slightly from the value 

at the separation point till that at the rear (base) point. At s/d = 1.25 the Nusselt number 

distribution is shifted towards the jet due to the shift of the stagnation point. The Nusselt 

number is in general lower than that of s/d = 3.0 in the range away from the jet and higher 

near the jet. This is due to the enhancements in the heat transfer process associated with the 

increased jet velocity. 

By increasing the Reynolds number up to 200, there is a noticeable growth in Nusselt number. 

The improvement in Nusselt number is found to be non-linearly proportional all over the 

cylinder surface. For example, the increase in Nusselt number at the region around the 

stagnation point is found to be about 50% while that at the region near the separation point is 

found to be about 25%.  At the downstream part of the cylinders between the two separation 

points, there is an increase in Nusselt number toward the rear (base) point. This increase is 

more dominant due to the increased effect of vortex shedding on the heat transfer process by 

increasing the value of Reynolds number. The shift in the Nusselt number distribution toward 

the stagnation point in the case of s/d=1.25 is found to enhance the heat transfer process in 

this region (near the stagnation point). The rest of the cylinder surface away from the jet 

suffers from a low value of Nusselt number. 

By rising the value of Reynolds number the same trend continues. The noticeable change is 

found to take place in the region behind the cylinder. The increase of Reynolds number leads 

to a changing behavior of the Nusselt number distribution in this region. For example, in case 

of ReD = 100 there is a slight change in Nusselt number at the region of the cylinder surface 

between the two separation points behind the cylinders. At ReD = 500, there is a very 

noticeable change in Nusselt number in this region. In addition, as the cylinders get closer to 

each other, the peak value of Nusselt number in the region behind the cylinder does not occur 

at the rear (base) point but the position changes to be at: 

θ ≅ 332°  when ReD = 500, 

θ ≅ 338°  when ReD = 400 and 

θ ≅ 350°  when ReD = 200. 
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9.1.3 Mean Average Nusselt Number 

As previously defined in Chapter 8 by Equ. (8.3), this Nusselt number is of great interest for 

the design purposes. Figure 9-4 shows the average Nusselt number for both cylinders versus 

pitch to diameter ratio s/d for different values of Reynolds number (Equ. (8.3)). As seen, there 

is usually a local peak in Nusselt number at s/d ≅ 2.0 for the whole range of Reynolds number 

under consideration. The effect of increasing the distance between cylinders is more 

remarkable for larger values of Reynolds number. According to these results one can 

conclude that for design purposes, the most appropriate pitch to diameter ratio is to be around 

2.0 which gives the most effective heat transfer coefficient between the cylinders and the air 

stream. 
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Figure 9-4 Average Nusselt number for both cylinders as one unit versus pitch to 
diameter ratio s/d for different values of Reynolds number. 
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9.2 Isothermal Walls 

9.2.1 Thermal Field 

The thermal field results for the case of isothermal walls, s/d = 3.0, and different values of 

Reynolds number are represented in Figure 9-5. In case of Reynolds number equal to 100, the 

thermal boundary layer at the upstream part of the cylinder is clearly thinner than at the 

downstream part. The vortex streets are very well seen coupled and symmetric. At Reynolds 

number of 200, the thermal boundary layer at the upstream part of the cylinder becomes 

thinner. At the downstream part, the hot region behind the cylinders is smaller. The distance 

between the vortex centers in the street will be shorter. By increasing Reynolds number more 

and more until reaching the value of 500, it is very well seen that the thermal boundary layer 

at the upstream part is in its thinnest situation. At the downstream part, the hot region of the 

street is the shortest one. The enhancement of the heat transfer process in the downstream part 

of the cylinders is very will noticeable at the higher values of Reynolds numbers. This can be 

realized by comparing Figures 9-5-a and 9-5-e together. 

 Figure 9-6 show the thermal field but this time for s/d = 1.25. In case of Reynolds number 

100, the biased flow is found to have a minimum effect on the thermal properties of the field 

behind the cylinders. As seen in Figure 9-6-a, there are almost no vortex streets behind the 

cylinders. The hot region behind the upper cylinder changes its place with time to move 

towards the lower one. By increasing Reynolds number to 200, the irregularity in the flow 

field starts to take place. This is reflected directly on the thermal field. Increasing Reynolds 

number further more results in a strong presence of the biased flow. This could be noticed in 

Figure 9-6-d. At Reynolds number 500, it is also seen that the hot region behind the cylinders 

is now smaller compared to the previous cases. For all values of Reynolds numbers except 

100, there was an irregular flow pattern behind the cylinders. No vortex streets could be 

defined. 
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a) ReD = 100 
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Figure 9-5 Normalized instantaneous thermal field for the cases s/d = 3.0 and ReD 
ranging from 100 to 500. 
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a) ReD = 100 

 

b) ReD = 200 

 

c) ReD = 300 

 

d) ReD = 400 

 

e) ReD = 500 

Figure 9-6 Normalized instantaneous thermal field for the cases s/d = 1.25 and ReD 
ranging from 100 to 500. 
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9.2.2 Mean Local Nusselt Number 

Figure 9-7 represents local values of the mean Nusselt number on the surface of the lower 

cylinder as defined by Equ. (8.2) for the values of s/d =1.25 and 3.0, and Reynolds number 

ranging from 100 to 500. Starting with Reynolds number of 100 and s/d = 3.0, it is seen that 

the Nusselt number distribution between the two separation points at the upstream part of the 

cylinder takes a dome shape and it is symmetric about the forward stagnation point. At the 

downstream part, there is a rising trend in Nusselt number, which reaches its maximum value 

at an angle of about 350°. Making the two cylinders closer to each other (s/d = 1.25) the dome 

shape of the curve loses its symmetry as the stagnation point moves towards the jet flow. The 

jet flow enhances the heat transfer in its neighborhood (60° < θ < 120°). Except in this range, 

the Nusselt number is usually lower than before. 

Increasing Reynolds number to be 200 results in a direct enhance in the Nusselt number for 

both values of the studied pitch to diameter ratios. The two regions that mostly benefit from 

this growth were the forward stagnation point and the rear (base) point.  

At Reynolds number of 300, any decrease in the distance between the two cylinders enhances 

the heat transfer process, not only near the jet but also in the downstream part away from the 

jet flow (290° < θ <345°). This trend occurs also for Reynolds number of 400. 

It is well noticeable that the maximum value of Nusselt number for s/d = 1.25 at the 

downstream part of the cylinder is found to be in the region away from the jet flow  (290° < θ 

<345°). It moves towards the separation point by increasing the value of Reynolds number. 

Nevertheless, it occurs at almost the same position (θ ≅ 350°) when s/d = 3.0. 

For all values of Reynolds numbers, it is found that the position of the forward stagnation 

point depends only on the value of the pitch to diameter ratio. 
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Figures 9-7 Local values of the mean Nusselt number on the surface of the lower 
cylinder for s/d =1.25 and 3.0 and Reynolds number ranging from 100 to 
500. 
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9.2.3 Mean Average Nusselt Number 

Figure 9-8 gives the average Nusselt number for both cylinders versus pitch to diameter ratio 

s/d for different values of Reynolds number. It is very interesting to find that also for this 

mode of heat transfer (isothermal walls) there is always a peak value of Nusselt number at a 

pitch to diameter ratio of about 2.0 for the whole range of Reynolds number. Placing the 

cylinders approach to each other, this phenomenon becomes significant. At s/d larger than 2.5 

the change in Nusselt number versus s/d starts to fade away.  
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Figure 9-8 Average Nusselt number for both cylinders as one unit versus pitch to 
diameter ratio s/d for different values of Reynolds number. 

According to the previous results, one can say that also for this heat transfer mode, a pitch to 

diameter ratio of about 2.0 is the best value to be used in design purposes.  
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Chapter 10 

Conclusions and Future Work  
10  

10.1 Conclusions 

he following conclusions can be drawn on the behavior of two cylinders in a parallel 

stream of air: 

1. It was surprising to find that only the flow characteristics of this problem took 

attention in the literature and no work was found that concentrates on the heat transfer 

side of the problem although it is actually of great interest. 

2. The nature of the problem requires very careful treatment during the preparation of the 

solution process. Only higher order numerical schemes gave an acceptably accurate 

solution of the problem. When solving similar problems, one should keep in mind that 

the surface of the cylinder must be represented by sufficiently large number of 

polygons (more that 360 faces). 

3. According to the benchmarks utilized, the used program (STAR-CD) showed an 

excellent ability in solving similar problems to the problem of the current study. 

4. The numerical flow field obtained showed a transient behavior that agrees well with 

the results found in the literature. Until pitch to diameter ratio of 2.0, one can define 

two coupled vortex streets that show symmetry about the axis of the gap. The biased 

nature of the flow could be proven numerically and be found to take place for all pitch 

to diameter values lower than 2.0. The biased nature of the flow has no confined time 

behavior. The flow changes its direction in an irregular manner. The closer the two 

cylinders are from each other; the clearer is the biased nature of the flow. 

5. The numerical pressure field obtained showed that the pressure distribution around the 

cylinders loses its symmetry about the point θ = 180° for all the pitch to diameter 

T



 110

ratios smaller than 2.0. The forwarded stagnation point is shifted towards the jet flow. 

This movement of the stagnation point is inversely proportional to the pitch to 

diameter ratio. 

6. Until pitch to diameter ratio of 2.0, one can define a sinusoidal variation in lift 

coefficient with time. For values lower than 2.0, no wavy form of variation with time 

takes place because of the introduction of the biased flow. 

7. For the cases s/d ≥ 2.0 the calculated Strouhal number was about 0.21. This agrees 

well with the data found in the literature for two cylinders arranged side by side. For 

lower values of s/d because of the biased nature of the flow, no definite Strouhal 

number could be obtained. 

8. The calculated mean drag coefficient variation versus pitch to diameter ratio showed a 

good agreement with the results found in the literature. 

9. The calculated thermal field reflected clearly the flow characteristics of the problem. 

The thermal field is found to be completely driven by the flow field. 

10. The distribution of mean local Nusselt number around the cylinders is found to be 

symmetric about the forward stagnation point for all the values of pitch to diameter 

ratios ≥ 2.0. It loses its symmetry for all other values considered. Nusselt number is 

found to be maximal at the forward stagnation point and to be a minimum around the 

two separation points. These results are found to be valid for both heat transfer modes 

considered.  

11.  Mean average Nusselt number for both cylinders as on unit showed a local peak value 

at a pitch to diameter ratio of about 2.0 for both studied heat transfer modes. This is a 

very interesting result because it gives the best way to put the two cylinders together 

to get the most effective heat transfer coefficients from both of them. 

12. Decreasing Reynolds number from 500 to 100 showed no biased jet flow between the 

cylinders and a large hot region behind the two cylinders is formed from both heat 

transfer modes used. 

13. For the whole range of Nusselt number under consideration, the best way to obtain the 

most efficient heat transfer coefficient from the cylinders is to put the cylinders one 
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diameter apart from each other (i.e. pitch to diameter ratio of 2.0). This result was 

found to be valid for both heat transfer modes used. 

10.2 Future Work 

At the end of this work, it is useful to draw some lines for any extension research to the 

current study: 

1. It would be very practical to extend the range of the Reynolds number to cover the 

turbulent region (Reynolds number > 2000). It might be very interesting to study the 

validity of the result of the maximum average mean Nusselt number for both cylinders 

that occurs at a pitch to diameter ratio of about 2.0. To study something like this in the 

turbulent flow regime is really an important subject.  

2. The tandem and staggered arrangements of the two cylinders are also of great interest. 

The staggered distribution combines both tandem and side-by-side arrangement. It 

will be a very good extension to the current work if one considers studying these cases 

and searches for an optimum configuration for the two cylinders that optimizes the 

heat transfer process. 
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