Quantenchemische Untersuchung der Adsorption von Wassermolekülen an defekten NaCl(100)- und MgO(100)-Oberflächen

Vom Fachbereich Chemie der Universität Hannover zur Erlangung des Grades

Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

von

Dipl.-Chem. Bernd Ahlswede

geboren am 13. Januar 1967 in Hameln

1998

Referent:Prof. Dr. K. JugKorreferent:Prof. Dr. J. HeidbergTag der Promotion:28. Oktober 1998

Danksagungen

Mein erster Dank gilt meinen Eltern, die mich auf dem langen Weg meiner Ausbildung auch in schwierigen Zeiten stets unterstützt haben.

Herrn Prof. Dr. K. Jug danke ich für die Möglichkeit, diese Arbeit anzufertigen, und für die wertvollen Anregungen und Diskussionen.

Den Mitgliedern der Forschergruppe Adsorbatwechselwirkungen an Ionenkristallen und Metallen danke ich für die gute Zusammenarbeit und den Austausch wertvoller Informationen.

Meinen Kollegen Dr. Matthias Krack und Dr. Daniel Wichmann danke ich für das wunderbare Arbeitsklima in Raum 107 und für die vielen wertvollen Diskussionen und Hinweise.

Für die mühevolle Korrektur des Manuskripts danke ich Dr. Thomas Bredow, Dr. Gerald Geudtner und Dr. Daniel Wichmann.

Der gesamten Arbeitsgruppe danke ich für die angenehme und freundschaftliche Atmosphäre sowie für die wertvollen Diskussionen und Hinweise.

Die zur Erstellung dieser Arbeit notwendigen Berechnungen wurden am Regionalen Rechenzentrum Niedersachsen in Hannover auf einem Siemens-Nixdorf Vektorrechner VPP 300 sowie am Lehrgebiet für Theoretische Chemie an mehreren Workstations der Hersteller HP, IBM und Silicon Graphics durchgeführt.

Abstract

In der vorliegenden Arbeit wird die Auswirkung von Oberflächendefekten auf die Adsorption von Wassermolekülen an NaCl(100)- und MgO(100)-Oberflächen mit quantenchemischen Rechnungen untersucht. Die behandelten Defekte sind eine monoatomare Stufe sowie die Farbzentren F_s und M_s . Die Rechnungen werden mit der semiempirischen MO-Methode SINDO1 durchgeführt. Der Formalismus von SINDO1 wird zuvor in konsistenter Weise modifiziert und einheitlich für alle betrachteten Elemente gestaltet. Die anschließende Parameterisierung umfaßt die Elemente H, C, N, O, F sowie Na, Mg, Al, Si, P, S und Cl. Es wird dazu ein automatisches Parametrisierungsverfahren verwendet. Die Leistungsfähigkeit der neuen SINDO1-Version wird dokumentiert und mit der alten SINDO1-Version verglichen. Die Simulation von Oberflächen erfolgt durch Clustermodelle, die einen Ausschnitt aus dem Festkörper darstellen. Die Cluster werden hinsichtlich ihrer Eignung als Festkörpermodelle untersucht. Defekte werden durch Entfernen einzelner Atome aus diesen Clustern erzeugt. Für Farbzentren werden elektronische Absorptionsspektren berechnet, wobei die entsprechenden Cluster zur Eliminierung der Randeffekte in ein Feld von Pseudoatomen eingebettet werden. Die Adsorption von Wasser an Defekten wird anhand eines einzelnen H₂O-Moleküls betrachtet. Dabei wird zwischen molekularer und dissoziativer Adsorption unterschieden. Ermittelt werden Strukturdaten, Adsorptionsenergien und Schwingungsfrequenzen. Die Ergebnisse werden mit jenen der defektfreien Oberfläche und der Literatur verglichen.

Schlagwörter: SINDO1 Adsorption: H₂O/NaCl(100), H₂O/MgO(100) Oberflächendefekte

Abstract

In the present work the influence of surface defects on the adsorption of water molecules at NaCl(100) and MgO(100) surfaces is studied with quantum chemical calculations. The investigated defects are a monoatomic step as well as the color centers F_s and M_s. The calculations are performed with the semiempirical MO method SINDO1. In a first step the formalism of SINDO1 is modified in a consistent manner and built uniformly for all involved elements. The following parametrization includes the elements H, C, N, O, F and Na, Mg, Al, Si, P, S, Cl. For this parametrization an automatic procedure is used. The performance of the new SINDO1 version is documented and compared to the old SINDO1 version. The simulation of surfaces is done by using cluster models which represent cuts of the bulk. The clusters are investigated with respect to their reliability of describing bulk properties. Defects are generated by removing single atoms from these clusters. For color centers electronic absorption spectra are calculated whereby the clusters are embedded in a field of pseudoatoms in order to eliminate the effects of edges and corners. The adsorption of water at defects is studied by placing a single H_2O molecule at the defect site. In this study, both the molecular and the dissociative adsorption are considered. Structure data, adsorption energies and vibrational frequencies are calculated. The results are compared with those of the defect free surface and the literature.

Keywords: SINDO1 Adsorption: H₂O/NaCl(100), H₂O/MgO(100) Surface defects

Inhaltsverzeichnis

1	Ein	leitung	1
2	Gru	undlagen der Quantenchemie	3
	2.1	Schrödingergleichung	3
	2.2	Born-Oppenheimer-Näherung	4
	2.3	Hartree-Fock-Methode	4
	2.4	Roothaan-Hall-Gleichungen	7
3	Die	e semiempirische MO-Methode SINDO1	10
	3.1	INDO-Näherung	10
	3.2	Die Methode SINDO1	11
	3.3	Modifikation der Methode SINDO1	12
		3.3.1 Basissatz	12
		3.3.2 Rumpfmatrix	13
		3.3.3 Zweielektronenintegrale	16
		3.3.4 Orthogonalisierungskorrekturen	16
4	Par	rametrisierung	22
	4.1	Das automatische Parametrisierungsverfahren	22
	4.2	Optimierung der freien Parameter	26
	4.3	Bildungsenthalpien	29
	4.4	Optimierte Parameter für die Elemente H, C, N, O, F sowie Na, Mg, Al,	
		Si, P, S und Cl	30
	4.5	Statistische Auswertung der Fehler von SINDO1	33
5	\mathbf{Sim}	nulation von Oberflächen	38
	5.1	Cluster als Modell des Festkörpers	38
	5.2	Eigenschaften defekter Oberflächen	46

i

6	Ads	orptio	n von Wasser an defekten Oberflächen	58
	6.1	Durch	führung der Clusterrechnungen	59
	6.2	Adsor	ption an $NaCl(100)$	64
		6.2.1	Experimentelle und theoretische Grundlagen	64
		6.2.2	Defektfreie Oberfläche	66
		6.2.3	Monoatomare Stufe	68
		6.2.4	Farbzentren F_s und M_s	69
	6.3	Adsor	ption an $MgO(100)$	77
		6.3.1	Experimentelle und theoretische Grundlagen	77
		6.3.2	Defektfreie Oberfläche	78
		6.3.3	Monoatomare Stufe	83
		6.3.4	Farbzentren F_s und M_s	86
7	Zus	amme	nfassung und Ausblick	92
Α	Ato	m- un	d Moleküleigenschaften	95
\mathbf{Li}	terat	urverz	zeichnis	114

Tabellenverzeichnis

1	Wichtungsfaktoren für verschiedene Arten von Observablen	23
2	Optimierte and feste Parameter für Elemente der ersten Reihe in [a.u.].	31
3	Optimierte and feste Parameter für Elemente der zweiten Reihe in [a.u.].	32
4	Mittlere absolute Fehler für Grundzustandseigenschaften der Elemente	
	H, C, N, O und F. \ldots	35
5	Mittlere absolute Fehler für Grundzustandseigenschaften der Elemente	
	Na, Mg, Al, Si, P, S und Cl.	36
6	Extrapolierte Festkörpereigenschaften für NaCl und MgO. \ldots	39
7	Berechnete Bandlücken (eV) für NaCl und MgO.	43
8	Berechnete atomare Nettoladungen für NaCl und MgO	44
9	Optimierte Gitterkonstante R (Å) für die verwendeten Modell cluster. $% \mathcal{A}$.	61
10	Relaxationseffekte an der Oberfläche bei $\rm Na_{162}Cl_{162}$ und $\rm Mg_{162}O_{162}.$.	62
11	Strukturdaten R (Å), θ (°) und Dimerisierungssenergie D_e (kcal/mol)	
	für $(H_2O)_2$, $(NH_3)_2$ und $(HF)_2$	64
12	Strukturdaten R (Å), ϕ , θ , ϑ (°) und Adsorptionsenergie E_{Ads} (kcal/mol)	
	für H_2O an NaCl (defektfreie Oberfläche)	67
13	Strukturdaten R (Å), ϕ , θ , ϑ (°) und Adsorptionsenergie E_{Ads} (kcal/mol)	
	für H ₂ O an NaCl (monoatomare Stufe)	69
14	Strukturdaten R (Å), ϕ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) der	
	molekularen H ₂ O-Adsorption an einem NaCl-F _s -Zentrum	71
15	Strukturdaten R (Å), θ (°) und Adsorptionsenergie $E_{\rm Ads}$ (kcal/mol) der	
	dissoziativen H ₂ O-Adsorption an einem NaCl-F _s -Zentrum	71
16	Strukturdaten R (Å), θ (°) und Adsorptionsenergie $E_{\rm Ads}$ (kcal/mol) der	
	dissoziativen Wasserads orption an einem $M_{\rm s}\mbox{-}{\rm Zentrum}$	74
17	Berechnete Schwingungsfrequenzen adsorbierter Spezies an einem $\mathrm{F_{s}}\text{-}$	
	Zentrum in cm^{-1}	76

18	Strukturdaten R (Å), ϕ , θ , ϑ (°) und Adsorptionsenergie E_{Ads} (kcal/mol)		
	der molekularen H ₂ O-Adsorption an MgO (defekt freie Oberfläche). $\ .$.	81	
19	Strukturdaten R (Å), ϕ , θ , ϑ (°) und Adsorptionsenergie E_{Ads} (kcal/mol)		
	der dissoziativen $\mathrm{H_2O}\text{-}\mathrm{Adsorption}$ an MgO (defektfreie Oberfläche)	81	
20	Strukturdaten R (Å), ϕ , θ , ϑ (°) und Adsorptionsenergie E_{Ads} (kcal/mol)		
	für H_2O an MgO (monoatomare Stufe)	85	
21	Strukturdaten R (Å), θ (°) und Adsorptionsenergie $E_{\rm Ads}$ (kcal/mol) der		
	dissoziativen H ₂ O-Adsorption an einem MgO-F _s -Zentrum	88	
22	Strukturdaten R (Å), θ (°) und Adsorptionsenergie $E_{\rm Ads}$ (kcal/mol) der		
	dissoziativen H ₂ O-Adsorption an einem MgO-M _s -Zentrum	90	
23	Kennungen für verschiedene Arten von Observablen	95	
24	Atom- und Moleküleigenschaften der Elemente H, C, N, O und F $\ $	96	
25	Atom- und Moleküleigenschaften der Elemente Na, Mg, Al, Si, P, S und		
	Cl	104	

Abbildungsverzeichnis

1	Bindungsenergie pro Einheit $E_{\rm b}$ in Abhängigkeit von der relativen mitt-	
	leren Koordinationszahl k für NaCl	40
2	Gitterkonstante R in Abhängigkeit von der relativen mittleren Koordi-	
	nationszahl k für NaCl	40
3	Bindungsenergie pro Einheit $E_{\rm b}$ in Abhängigkeit von der relativen mitt-	
	leren Koordinationszahl k für MgO	41
4	Gitterkonstante R in Abhängigkeit von der relativen mittleren Koordi-	
	nationszahl k für MgO	41
5	Schematische Darstellung von NaCl-Oberflächenfarbzentren.	45
6	Schematische Darstellung verschiedener Absorptionsprozesse unter Be-	
	teiligung eines Farbzentrums [69]	47
7	MO-Diagramm eines $NaCl(7 \times 7 \times 6)$ -Clusters mit interner Chlorfehlstelle	
	(F _{b2} -Zentrum)	49
8	MO-Diagramm eines MgO(7×7×6)-Clusters mit interner Sauerstoffehl-	
	stelle (F _{b2} -Zentrum)	49
9	Atomare Spindichten eines NaCl-Oberflächenfarbzentrums	52
10	Berechnete elektronische Anregungsspektren für NaCl-Farbzentren (Os-	
	zillatorenstärke gegen Anregungsenergie)	53
11	Berechnete elektronische Anregungsspektren für MgO-Farbzentren (Os-	
	zillatorenstärke gegen Anregungsenergie.	56
12	Modellcluster für die glatte Oberfläche und eine monoatomare Stufe.	60
13	Darstellung einzelner Elemente in den Adsorbatstrukturen	60
14	Struktur der Adsorption von $\mathrm{H}_2\mathrm{O}$ an NaCl (defektfreie Oberfläche)	66
15	Struktur der Adsorption von ${\rm H_2O}$ an NaCl (monoatomare Stufe)	68
16	Struktur der Adsorption von ${\rm H_2O}$ an NaCl (Farbzentrum ${\rm F_s}).$	70
17	Struktur der Adsorption von ${\rm H_2O}$ an NaCl (Farbzentrum ${\rm M_s}).$	74
18	Struktur der Adsorption von H_2O an MgO (defektfreie Oberfläche)	80

19	Struktur der Adsorption von H_2O an MgO (monoatomare Stufe)	84
20	Struktur der Adsorption von ${\rm H_2O}$ an MgO (Farbzentrum ${\rm F_s}).$ $\ .$	87
21	Struktur der Adsorption von ${\rm H_2O}$ an MgO (Farbzentrum ${\rm M_s}).$	89

1 Einleitung

Experimentelle Untersuchungen an Isolatoren spielten lange Zeit eine untergeordnete Rolle, was ihrem wissenschaftlichen und technologischen Stellenwert nicht gerecht wurde. Ein Grund dafür ist sicherlich, daß Isolatoren bislang hauptsächlich Meßmethoden wie Heliumatomstrahlstreuung oder Infrarotspektroskopie zugänglich waren. Erst die Technik, Isolatoren in dünnen Schichten auf Metall- oder Halbleitersubstraten aufwachsen zu lassen, ermöglichte die Verwendung elektronenspektroskopischer Meßmethoden, da hierdurch störende Aufladungen der Probe weitgehend verhindert werden. Großes Interesse gilt dabei der Adsorption kleiner Moleküle an diesen Isolatoroberflächen, da wichtige Erkenntnisse über deren Beschaffenheit und Eigenschaften gewonnen werden. Die Ergebnisse können sich jedoch qualitativ ändern, wenn bestimmte Defekte an diesen Oberflächen vorhanden sind. Es wird beispielsweise bei NaCl-Oberflächen gefunden, daß Wasser im Gegensatz zur defektfreien Oberfläche an Anionenfehlstellen dissoziativ adsorbiert wird.

Jeder reale Kristall besitzt in irgend einer Form Defekte, wobei es sich in der Regel um unbesetzte Gitterplätze, überschüssige Atome oder chemische Verunreinigungen handelt. Wichtige Festkörpereigenschaften werden durch Defekte stark beeinflußt oder sogar bestimmt. Eine faszinierende Eigenschaft ist die Färbung vieler Kristalle durch Kristallfehler. Die optische Absorption ist dabei charakteristisch für den jeweiligen Kristall. Ein in Gegenwart von Natriumdampf erhitzter NaCl-Kristall ist z.B. gelb gefärbt. Die Ursache für die Absorption von Licht sind Elektronen, die an eine Anionenfehlstelle gebunden sind und als F-Zentren (Farbzentren) bezeichnet werden. Farbzentren können außerdem durch Röntgenstrahlung, Gammastrahlung oder Elektronenbeschuß erzeugt werden. Ihre Erforschung könnte deshalb auch in bezug auf die Verwendung von Salzstöcken als Endlager für radioaktive Abfälle von Bedeutung sein. Genaue Aussagen über Adsorptionsstrukturen und -energien und die Art der Bindungen zur Oberfläche können jedoch experimentell besonders bei der Anwesenheit lokaler Defekte nicht gewonnen werden, da man bei der Herstellung definierter und wohlgeordneter Defekte auf Probleme stößt. Diese Arbeit soll einen Beitrag zur Aufklärung dieser Fragestellungen leisten.

Semiempirische Methoden wie SINDO1 [1] sind in diesem Zusammenhang besonders geeignet, da zur Beschreibung von Ionenkristallen aufgrund der langreichweitigen Wechselwirkungen große Modelle erforderlich sind. Die Methode SINDO1 wird samt der ihr zugrunde liegenden Theorie beschrieben. Da mit der alten SINDO1-Version besonders die elektronischen Eigenschaften von Farbzentren bei NaCl und MgO nicht zufriedenstellend beschrieben werden konnten, wird eine konsistente Modifikation des Formalismus von SINDO1 vorgestellt. Die anschließende Parametrisierung der neuen SINDO1-Version für Elemente der ersten und zweiten Reihe des Periodensystems wird zusammen mit einer statistischen Auswertung der Genauigkeit im Vergleich zum Experiment und zur alten SINDO1-Version präsentiert. Eine detaillierte Beschreibung der neuen SINDO1-Version und ein Vergleich der Leistungsfähigkeit mit anderen semiempirischen Methoden liegen bereits vor [2,3]. Oberflächen werden mit Hilfe von Clustern simuliert, die einen Ausschnitt aus dem Festkörper darstellen. Die Eignung dieser Cluster als Festkörpermodell und die damit verbundene Wiedergabe der Eigenschaften defekter Oberflächen wird zunächst geprüft. Anschließend wird die Adsorption von Wasser an defekten NaCl(100)- und MgO(100)-Oberflächen untersucht und die Ergebnisse werden diskutiert. Eine Zusammenfassung mit Ausblick schließt diese Arbeit ab.

2 Grundlagen der Quantenchemie

2.1 Schrödingergleichung

In der klassischen Mechanik kann die Gesamtenergie eines Systems von N wechselwirkenden Teilchen als Funktionswert der Hamiltonfunktion H ausgedrückt werden, die als Summe der kinetischen Energie T und der potentiellen Energie V definiert ist [4]. Die kinetische Energie ist abhängig von den Impulsvektoren \mathbf{p} und die potentielle Energie von den Ortsvektoren \mathbf{q} . In Abwesenheit externer Felder gilt:

$$H(\mathbf{p}_1, \dots, \mathbf{p}_N; \mathbf{q}_1, \dots, \mathbf{q}_N) = T + V = \frac{1}{2} \sum_{j=1}^N \frac{1}{m_j} p_j^2 + V(\mathbf{q}_1, \dots, \mathbf{q}_N)$$
(2.1)

Nach dem Korrespondenzprinzip erfolgt die quantenmechanische Formulierung durch den Hamiltonoperator.

$$\hat{H} = H(\hat{\boldsymbol{p}}_1, \dots, \hat{\boldsymbol{p}}_N; \hat{\boldsymbol{q}}_1, \dots, \hat{\boldsymbol{q}}_N)$$
(2.2)

Die Operatoren \hat{p} und \hat{q} sind definiert als

m

$$\hat{p}_{k\mu} = \frac{\hbar}{i} \frac{\partial}{\partial q_{k\mu}}; \qquad \hat{q}_{j\nu} = q_{j\nu}$$
it
$$\mu, \nu = x, y, z; \qquad k, j = 1, 2, \dots, N$$

$$(2.3)$$

und erfüllen die Heisenbergschen kanonischen Vertauschungsrelationen.

$$\begin{bmatrix} \hat{q}_{k\mu}, \hat{q}_{j\nu} \end{bmatrix} = \begin{bmatrix} \hat{p}_{k\mu}, \hat{p}_{j\nu} \end{bmatrix} = 0$$

$$\begin{bmatrix} \hat{q}_{k\mu}, \hat{p}_{j\nu} \end{bmatrix} = i\hbar \,\delta_{\mu\nu} \delta_{kj}$$

$$(2.4)$$

Das zum Hamiltonoperator gehörige Eigenwertproblem

$$\hat{H}\Psi = E\Psi \tag{2.5}$$

mit dem Eigenwert E und dem Eigenvektor Ψ wird als zeitunabhängige Schrödingergleichung bezeichnet, wobei Ψ einen stationären Zustand des Systems repräsentiert. Der nichtrelativistische Hamiltonoperator eines Systems aus N Kernen und n Elektronen hat in atomaren Einheiten folgende Form:

$$\hat{H} = -\frac{1}{2} \sum_{A}^{N} \frac{1}{M_{A}} \nabla_{A}^{2} - \frac{1}{2} \sum_{i}^{n} \nabla_{i}^{2} - \sum_{i}^{n} \sum_{A}^{N} \frac{Z_{A}}{r_{iA}} + \sum_{i}^{n} \sum_{j>i}^{n} \frac{1}{r_{ij}} + \sum_{A}^{N} \sum_{B>A}^{N} \frac{Z_{A}Z_{B}}{R_{AB}} \quad (2.6)$$
$$(M = \text{Kernmasse}; Z = \text{Kernladung}; r, R = \text{Abstände})$$

2.2 Born-Oppenheimer-Näherung

Eine wichtige Näherung in der Quantenmechanik ist die Separation von Kern- und Elektronenbewegung. Aufgrund des großen Massenunterschieds von Kernen und Elektronen, werden Atome und Moleküle als hierarchische Systeme aufgefaßt, wobei sich die Elektronen einer jeden neuen Kernkonfiguration augenblicklich anpassen. Die Kerne dürfen näherungsweise als ruhend betrachtet werden. Mit der Annahme ruhender Kerne entfällt die kinetische Energie der Kerne in Gleichung (2.6) und man erhält den Operator \hat{H}^{BO} für ein starres Kerngerüst. Die Zustandsfunktion Ψ hängt in diesem Fall nur noch parametrisch von den Kernkoordinaten ab.

$$\hat{H}^{\rm BO}\Psi_{\rm R}({\bf r}) = E_{\rm R}^{\rm BO}\Psi_{\rm R}({\bf r})$$
(2.7)

 $E_{\mathbf{R}}^{\mathrm{BO}}$ ist der Energieeigenwert bei gegebener Kernkonfiguration **R**. Die Kern-Kern-Abstoßung ist hierbei eine Konstante, die separat betrachtet werden kann. Die verbleibenden Terme bilden den elektronischen Hamiltonoperator \hat{H}^{el} .

$$\hat{H}^{\text{el}} = -\frac{1}{2} \sum_{i}^{n} \nabla_{i}^{2} - \sum_{i}^{n} \sum_{A}^{N} \frac{Z_{A}}{r_{iA}} + \sum_{i}^{n} \sum_{j>i}^{n} \frac{1}{r_{ij}}$$
(2.8)

Alle in dieser Arbeit präsentierten Ergebnisse basieren auf der Lösung der elektronischen Schrödingergleichung bei fixierter Kernkonfiguration. Energien und Potentialflächen sind stets Darstellungen von $E_{\mathbf{R}}^{\mathrm{BO}}$.

$$\hat{H}^{\text{el}}\Psi_{\mathbf{R}}(\mathbf{r}) = E_{\mathbf{R}}^{\text{el}}\Psi_{\mathbf{R}}(\mathbf{r})$$
(2.9)
mit
$$E_{\mathbf{R}}^{\text{BO}} = E_{\mathbf{R}}^{\text{el}} + \sum_{A}^{N} \sum_{B>A}^{N} \frac{Z_{A}Z_{B}}{R_{AB}}$$

2.3 Hartree-Fock-Methode

Die elektronische Schrödingergleichung ist im allgemeinen nicht exakt lösbar. Wenn jedoch die Elektronenwechselwirkung in geeigneter Weise genähert wird, kann die Zustandsfunktion eines Mehrelektronensystems aus Funktionen aufgebaut werden, die jeweils nur von den Koordinaten eines Elektrons abhängen. Die Berücksichtigung des Elektronenspins führt zu den Spinorbitalen als Produkt einer Ortsfunktion $\varphi(\mathbf{q})$ und einer Spinfunktion $\omega(\sigma)$.

$$\psi_i(\mathbf{q}, \sigma) = \varphi_i(\mathbf{q})\omega_i(\sigma)$$

$$\omega(\frac{1}{2}) = \alpha \quad \text{und} \quad \omega(-\frac{1}{2}) = \beta$$
(2.10)

Elektronen sind physikalisch nicht unterscheidbar. Folglich muß der Erwartungswert einer physikalischen Größe unabhängig von der Numerierung der Elektronen sein. Zusätzlich fordert das Pauli-Prinzip, daß die Zustandsfunktion antisymmetrisch bezüglich der Vertauschung zweier Elektronen ist. Ein Ansatz, der diese Bedingungen erfüllt, wird als Slaterdeterminante Φ bezeichnet [5]. Für ein System mit *n* Elektronen ergibt sich:

$$\Phi = \frac{1}{\sqrt{(n!)}} \begin{vmatrix} \psi_1(\mathbf{q}_1, \sigma_1) & \dots & \psi_n(\mathbf{q}_1, \sigma_1) \\ \vdots & \ddots & \vdots \\ \psi_1(\mathbf{q}_n, \sigma_n) & \dots & \psi_n(\mathbf{q}_n, \sigma_n) \end{vmatrix}$$
(2.11)

Die Spinorbitale ψ_i müssen linear unabhängig sein und sollen paarweise orthonormal gewählt werden.

$$\langle \psi_i \mid \psi_j \rangle = \delta_{ij}; \qquad i, j = 1, 2, \dots, n$$
(2.12)

Die Slaterdeterminanten bilden eine Basis, d.h. die Zustandsfunktion kann entwickelt werden gemäß:

$$\Psi = \sum_{K=1}^{L} c_K \Phi_K \tag{2.13}$$

Die Näherung L = 1 ist Ausgangspunkt der Hartree-Fock-Methode, die Grundlage für alle in dieser Arbeit durchgeführten Rechnungen ist. Erzeugt man durch Vertauschen von besetzten und unbesetzten Spinorbitalen in der zuvor bestimmten Hartree-Fock-Determinante Φ_1 neue Determinanten, die ein- oder mehrfach angeregten Konfigurationen entsprechen, so spricht man von einer Konfigurationswechselwirkungs(CI)-Rechnung [6]. Elektronische Absorptionsspektren können näherungsweise durch CI-Rechnungen mit einfach angeregten Konfigurationen simuliert werden. Die Hartree-Fock-Energie ist durch den Erwartungswert des elektronischen Hamiltonoperators \hat{H}^{el} gegeben, den man zweckmäßigerweise als eine Summe von Ein- und Zweielektronenoperatoren schreibt.

$$\hat{H}^{\text{el}} = \sum_{i}^{n} \hat{h}_{i} + \sum_{i}^{n} \sum_{j>i}^{n} \frac{1}{r_{ij}}$$
mit $\hat{h}_{i} = -\frac{1}{2} \nabla_{i}^{2} - \sum_{A}^{N} \frac{Z_{A}}{r_{iA}}$
(2.14)

Für ein System mit geschlossenen Schalen, bei dem alle Ortsfunktionen mit zwei Elektronen entgegengesetzten Spins besetzt sind, erhält man:

$$E^{\rm HF} = \langle \Phi | \hat{H}^{\rm el} | \Phi \rangle = 2 \sum_{i}^{n/2} h_i + \sum_{i}^{n/2} \sum_{j}^{n/2} (2J_{ij} - K_{ij}) \qquad (2.15)$$

mit $h_i = \int \varphi_i^*(1) \hat{h}_i \varphi_i(1) d\mathbf{q}_1$
 $J_{ij} = \iint \varphi_i^*(1) \varphi_j^*(2) \frac{1}{r_{12}} \varphi_i(1) \varphi_j(2) d\mathbf{q}_1 d\mathbf{q}_2$
 $K_{ij} = \iint \varphi_i^*(1) \varphi_j^*(2) \frac{1}{r_{12}} \varphi_j(1) \varphi_i(2) d\mathbf{q}_1 d\mathbf{q}_2$

Die Variation der Energie bezüglich der Ortsfunktionen mit der Extremalbedingung

$$\delta E^{\text{HF}}[\varphi_1, \varphi_2, \dots, \varphi_{n/2}] = 0; \quad i = 1, 2, \dots, n/2$$
 (2.16)

unter der Einschränkung durch die Orthogonalität der Ortsfunktionen

$$\int \varphi_i^*(1)\varphi_j(1) \, d\mathbf{q}_1 = \delta_{ij} \tag{2.17}$$

führt zu dem Ergebnis, daß die energetisch besten Orbitale Eigenfunktionen eines effektiven Einelektronenoperators \hat{F} sind [7].

$$\hat{F}(1)\varphi_i(1) = \epsilon_i \varphi_i(1); \qquad i = 1, 2, \dots, n/2$$
 (2.18)

Das Variationsprinzip garantiert, daß die Hartree-Fock-Energie über der Energie des Grundzustands liegt.

$$E_0 \le E^{\rm HF} \tag{2.19}$$

Der Hartree-Fock-Operator \hat{F} hat die Form

$$\hat{F}(1) = \hat{h}_i + \hat{G} = \hat{h}_i + \sum_{j=1}^{n/2} \left[2\hat{J}_j(1) - \hat{K}_j(1) \right]$$
(2.20)

Der Coulombo
perator \hat{J} und der Austauschoperator \hat{K}
sind über Ortsfunktionen definiert.

$$\hat{J}_{j}(1)\varphi_{i}(1) = \int \varphi_{j}^{*}(2) \frac{1}{r_{12}} \varphi_{j}(2) d\mathbf{q}_{2} \varphi_{i}(1)$$

$$\hat{K}_{j}(1)\varphi_{i}(1) = \int \varphi_{j}^{*}(2) \frac{1}{r_{12}} \varphi_{i}(2) d\mathbf{q}_{2} \varphi_{j}(1)$$
(2.21)

Die Eigenwerte ϵ_i sind die resultierenden Orbitalenergien.

$$\epsilon_i = h_i + \sum_{j}^{n/2} (2J_{ij} - K_{ij})$$
 (2.22)

Auf jedes Elektron wirkt in diesem Modell der unabhängigen Teilchen das in \hat{h}_i enthaltene Potential der Kerne sowie ein effektives Potential \hat{G} , das die Coulomb- und Austauschwechselwirkung mit allen übrigen Elektronen beschreibt. Die Elektronenkorrelation ist in diesem Ansatz nicht berücksichtigt. Die Operatoren \hat{J}_j und \hat{K}_j sind dafür verantwortlich, daß der Fockoperator von den Lösungen φ_i des Eigenwertproblems abhängt. Diese Nichtlinearität führt dazu, daß die Hartree-Fock-Gleichungen nur iterativ gelöst werden können.

2.4 Roothaan-Hall-Gleichungen

Zur Bestimmung optimaler Molekülorbitale für das Hartree-Fock-Verfahren entwickelt man die Ortsfunktionen φ als Linearkombination eines Satzes von Einelektronenbasisfunktionen χ , die im allgemeinen als Atomorbitale gewählt werden [8].

$$\varphi_i = \sum_{\nu}^{l} c_{\nu i} \chi_{\nu} \tag{2.23}$$

Für eine exakte Lösung wird eine unendliche Anzahl linear unabhängiger Basisfunktionen benötigt. In der Praxis ist jedoch nur eine endliche Anzahl von Basisfunktionen realisierbar. Wenn die Entwicklungslänge l und die Funktionen χ geeignet gewählt sind, dann können die Ortsfunktionen mit vernachlässigbaren Fehlern beschrieben werden. Einsetzen von (2.23) in die Hartree-Fock-Gleichungen (2.18), Multiplizieren von links mit χ^*_μ und Integration führt zu den Roothaan-Hall-Gleichungen.

$$\sum_{\nu=1}^{l} F_{\mu\nu} c_{\nu i} = \sum_{\nu=1}^{l} S_{\mu\nu} c_{\nu i} \epsilon_{i}; \qquad \mu = 1, 2, \dots, l \qquad (2.24)$$

$$\mathbf{FC} = \mathbf{SC} \epsilon$$

mit $F_{\mu\nu} = \langle \chi_{\mu} \mid \hat{F} \mid \chi_{\nu} \rangle$
 $S_{\mu\nu} = \langle \chi_{\mu} \mid \chi_{\nu} \rangle$

Die Elemente der Fockmatrix **F** sind als Terme von Integralen über atomare Basisfunktionen χ definiert und stellen sich für ein System mit geschlossenen Schalen in folgender Form dar:

$$F_{\mu\nu} = H_{\mu\nu} + \sum_{\rho}^{l} \sum_{\sigma}^{l} P_{\rho\sigma} \left[(\mu\nu \mid \rho\sigma) - \frac{1}{2}(\mu\sigma \mid \rho\nu) \right]$$
(2.25)
mit
$$H_{\mu\nu} = \langle \chi_{\mu}(1) \mid \hat{h}_{i} \mid \chi_{\nu}(1) \rangle$$
$$(\mu\nu \mid \rho\sigma) = \iint \chi_{\mu}^{*}(1)\chi_{\rho}^{*}(2) \frac{1}{r_{12}} \chi_{\nu}(1)\chi_{\sigma}(2) d\mathbf{q}_{1} d\mathbf{q}_{2}$$
$$P_{\rho\sigma} = 2\sum_{i}^{n/2} c_{\rho i}^{*} c_{\sigma i}$$

Für die elektronische Energie folgt damit

$$E^{\rm HF} = \frac{1}{2} \sum_{\mu}^{l} \sum_{\nu}^{l} P_{\mu\nu} \left(H_{\mu\nu} + F_{\mu\nu} \right)$$
(2.26)

Die Lösung der Roothaan-Hall-Gleichungen erfolgt durch Transformation der atomaren Basisfunktionen in eine orthogonale Basis [9].

$$\lambda = \chi \mathbf{U} \qquad (2.27)$$
mit
$$\mathbf{U}^{\dagger} \mathbf{S} \mathbf{U} = \mathbf{1}$$

Bei Verwendung eines orthogonalen Basissatzes wird die Überlappungsmatrix zur Einheitsmatrix und die Roothaan-Hall-Gleichungen präsentieren sich in der einfacheren Form:

$$\mathbf{F}^{\lambda} \mathbf{C}^{\lambda} = \mathbf{C}^{\lambda} \boldsymbol{\epsilon}$$
(2.28)

mit
$$\mathbf{F}^{\lambda} = \mathbf{U}^{\dagger} \mathbf{F} \mathbf{U}$$

 $\mathbf{C}^{\lambda} = \mathbf{U}^{-1} \mathbf{C}$ (2.29)

Die Diagonalisierung von \mathbf{F}^{λ} erzeugt die Koeffizienten \mathbf{C}^{λ} , aus denen durch Umkehrung von Gleichung (2.29) die Koeffizienten \mathbf{C} in der nichtorthogonalen Basis entstehen. Mit den Koeffizienten \mathbf{C} kann wieder eine neue Fockmatrix \mathbf{F} erzeugt werden. Diese Prozedur wird solange wiederholt, bis die Änderung der Koeffizienten oder der Energie eine vordefinierte Schranke unterschreitet. Die Optimierung der Molekülorbitale erfolgt demnach durch Variation der Entwicklungskoeffizienten $c_{\nu i}$ in einem iterativen selbstkonsistenten Verfahren, dem SCF-Verfahren (Self Consistent Field).

3 Die semiempirische MO-Methode SINDO1

3.1 INDO-Näherung

Die weitaus größte Schwierigkeit bei der praktischen Anwendung des Hartree-Fock-Formalismus bereitet die Berechnung der Mehrzentrenzweielektronenintegrale, deren Zahl formal mit der vierten Potenz der Anzahl der Basisfunktionen anwächst. Eine wesentliche Reduktion wird durch die ZDO-Näherung erreicht, bei der die differentielle Überlappung zweier verschiedener Basisfunktionen χ vernachlässigt wird. Die Überlappungsmatrix wird zur Einheitsmatrix. Jedes Zweielektronenintegral kann dann folgendermaßen geschrieben werden:

$$(\mu\nu \mid \rho\sigma) = (\mu\mu \mid \rho\rho) \,\delta_{\mu\nu}\delta_{\rho\sigma} \tag{3.1}$$

Bei der strikten Anwendung der ZDO-Näherung, wie etwa in der CNDO-Methode [10], treten jedoch selbst bei der Beschreibung einfacher Systeme gravierende Mängel auf. So haben z.B. alle elektronischen Zustände eines Atoms, die sich aus einer bestimmten Elektronenkonfiguration ergeben, dieselbe Energie, was im Widerspruch zur experimentellen Erfahrung steht. Die Ursache dafür liegt insbesondere im Fehlen der wichtigen Beiträge der Austauschintegrale an einem Zentrum ($\mu_A \nu_A \mid \mu_A \nu_A$) begründet. Die INDO-Näherung ist eine teilweise Zurücknahme der ZDO-Näherung, wobei alle Integrale der Form ($\mu_A \nu_A \mid \rho_A \sigma_A$) erhalten bleiben. Die Einsparung von Mehrzentrenintegralen bleibt bei der INDO-Näherung im wesentlichen bestehen, verbunden mit einer besseren Wiedergabe atomarer elektronischer Eigenschaften. Die Fockmatrixelemente auf dieser Näherungsstufe sind für ein System mit geschlossenen Schalen bei Verwendung einer Basis mit *s*-, *p*- und *d*-Funktionen folgendermaßen definiert [11]:

$$F_{\mu_{A}\mu_{A}} = H_{\mu_{A}\mu_{A}} + \sum_{\rho_{A}} \sum_{\sigma_{A}} P_{\rho_{A}\sigma_{A}} \left[(\mu_{A}\mu_{A} \mid \rho_{A}\sigma_{A}) - \frac{1}{2}(\mu_{A}\sigma_{A} \mid \rho_{A}\mu_{A}) \right] + (3.2)$$

$$\sum_{B \neq A} \sum_{\rho_{B}} P_{\rho_{B}\rho_{B}} (\mu_{A}\mu_{A} \mid \rho_{B}\rho_{B})$$

$$F_{\mu_{A}\nu_{A}} = H_{\mu_{A}\nu_{A}} + \sum_{\rho_{A}} \sum_{\sigma_{A}} P_{\rho_{A}\sigma_{A}} \left[(\mu_{A}\nu_{A} \mid \rho_{A}\sigma_{A}) - \frac{1}{2}(\mu_{A}\sigma_{A} \mid \rho_{A}\nu_{A}) \right]$$

$$F_{\mu_{A}\nu_{B}} = H_{\mu_{A}\nu_{B}} - \frac{1}{2} P_{\mu_{A}\nu_{B}} (\mu_{A}\mu_{A} \mid \nu_{B}\nu_{B})$$

3.2 Die Methode SINDO1

SINDO1 [1] ist eine semiempirische SCF MO-Methode, die auf der INDO-Näherung basiert. Der Name leitet sich von einer genäherten Transformation zu symmetrisch orthogonalisierten Orbitalen nach Löwdin [12] ab. Bei Verwendung von Löwdin-Orbitalen kann die ZDO-Näherung eher gerechtfertigt werden. Es werden explizit nur Orbitale der Valenzschale berücksichtigt. Die Forderung der Orthogonalität der Valenzorbitale zu den inneren Schalen wird durch ein repulsives Pseudopotential nach Zerner [13] gewahrt. Die Rumpfintegrale U_{μ} , die eine Summe aus der kinetischen Energie und der Coulomb-Anziehung durch den Kern A für ein Elektron im Orbital μ_A darstellen, werden mit einem modifizierten CNDO/1-Formalismus [14] berechnet. Die Durchdringungsintegrale [15], für die unter Verwendung der ZDO-Näherung und der Annahme neutraler Atome gilt,

$$D_{\mu_A}^B = -Z_B \langle \mu_A \mid \frac{1}{r_B} \mid \mu_A \rangle + \sum_{\nu}^B n_{\nu} \left(\mu_A \mu_A \mid \nu_B \nu_B \right)$$
(3.3)
(Z = Kernladung; r = Abstand; n = Besetzungszahl)

werden in SINDO1 im Gegensatz zu den meisten semiempirischen Methoden nicht vernachlässigt, sondern analytisch berechnet. Somit kann auch die Kernabstoßung als analytische Coulomb-Wechselwirkung behandelt werden.

SINDO1 ist parametrisiert auf Eigenschaften von Molekülen in ihren Grundzuständen. Die Parametrisierung umfaßt die Elemente der ersten und zweiten Reihe des Periodensystems und die Übergangsmetalle der dritten Reihe. Angeregte Zustände werden auf CI-Niveau beschrieben. Für die Berücksichtigung langreichweitiger Wechselwirkungen steht ein Verfahren zur Einbettung in Pseudoatome zur Verfügung [16]. Eine umfassende Darstellung des SINDO1-Formalismus und eine Übersicht über aktuelle Anwendungen findet sich in [17].

3.3 Modifikation der Methode SINDO1

Die Eignung der Methode SINDO1 zur Beschreibung struktureller und energetischer Eigenschaften von Ionenkristallen der Systeme NaCl und MgO konnte zwar dokumentiert werden [18], es zeigte sich jedoch insbesondere bei der Wiedergabe elektronischer Eigenschaften von Fehlstellen im Festkörper, daß fundamentale Änderungen im Formalismus von SINDO1 notwendig waren. So wurde z.B. die niedrigste elektronische Anregungsenergie eines NaCl $(5 \times 5 \times 4)$ -Clusters mit interner Chlorfehlstelle um 1,4 eV niedriger bestimmt als der experimentelle Wert für ein Volumen-Farbzentrum von 2,77 eV [19]. Die Ursache dafür wurde in der Art der Orthogonalisierungskorrekturen für die Elemente der zweiten Reihe ausgemacht. Speziell wurden nichtorthogonale Rumpfmatrixelemente korrigiert, die in der INDO-Näherung keine Beiträge haben. Darüberhinaus traten in SINDO1 weitere Probleme auf, wie etwa die unbefriedigende Beschreibung konjugierter Kohlenwasserstoffe und die ungenaue Voraussage der Bildungsenthalpien hypervalenter Verbindungen. Zur Beseitigung dieser Mängel wurde der Formalismus von SINDO1 in konsistenter Weise überarbeitet und einheitlich für alle Elemente gestaltet. Eine detaillierte Darstellung des modifizierten Formalismus und eine statistische Auswertung der Genauigkeit der neuen SINDO1-Version 3.4 wurde bereits dokumentiert [2,3]. Im folgenden soll noch einmal eingehend der modifizierte Formalismus präsentiert und die Unterschiede zur alten Version 3.2 an den jeweiligen Stellen deutlich gemacht werden.

3.3.1 Basissatz

Es wird ein pseudominimaler Basissatz \mathbf{X} von Slater-Valenzorbitalen für die Elemente angesetzt:

1

$$\mathbf{X} = \begin{cases} \{1s\} & \text{für H} \\ \{2s, 2p\} & \text{für Li bis F} \\ \{3s, 3p\} & \text{für Na, Mg} \\ \{3s, 3p, 3d\} & \text{für Al bis Cl} \end{cases}$$

Verschiedene Sätze von Orbitalexponenten werden für Einzentren- (ζ^U) und Zweizentrenintegrale (ζ) verwendet. Alle Slater-Condon-Terme werden analytisch mit den entsprechenden Orbitalexponenten ζ^U berechnet. Im alten Formalismus wurde eine Kombination aus analytisch berechneten F^0 -Termen und experimentellen höheren Multipoltermen $(G^1, F^2, ...)$ verwendet. Diese Kombination wurde in der Literatur kritisiert [20], weil die experimentellen Werte Elektronenkorrelation enthalten, die analytisch berechneten dagegen nicht. Der neue Ansatz zeichnet sich vorwiegend durch verbesserte Ionisierungsenergien und Bildungsenthalpien aus. Mit den Slater-Condon-Termen werden die Einzentrenzweielektronenintegrale und die Rumpfintegrale U_{μ} ermittelt. Die verbleibenden Zweizentrenwechselwirkungen, also Überlappungsintegrale, Coulombintegrale, Kernanziehungsintegrale und Resonanzintegrale werden mit den entsprechenden Orbitalexponenten ζ berechnet. Die inneren Schalen werden implizit durch ein kurzreichweitiges Pseudopotential nach Zerner [13] berücksichtigt, wobei die Orbitalexponenten der inneren Schalen mit τ bezeichnet werden.

Ab Aluminium bis Chlor werden zusätzlich *d*-Orbitale hinzugefügt. Genauere Untersuchungen zeigten, daß der Einfluß der *d*-Orbitale für die Ergebnisse von Natrium- und Magnesiumverbindungen bei kleinen Molekülen vernachlässigbar ist. Bei großen Ionenclustern wurde ein unrealistisch großer Ladungstransfer in die *d*-Orbitale dieser Elemente beobachtet, so daß die Verwendung einer *sp*-Basis für Natrium und Magnesium vernünftiger erscheint. Die Verwendung von *d*-Orbitalen ist vornehmlich zur korrekten Wiedergabe der Eigenschaften hypervalenter Verbindungen von Bedeutung, das gilt besonders für das Element Chlor.

3.3.2 Rumpfmatrix

Die strenge ZDO-Näherung kann nicht auf die Rumpfmatrix angewendet werden. Insbesondere die Vernachlässigung der Zweizentrenterme $H_{\mu_A\nu_B}$ bedeutet den Verlust der Beschreibung der chemischen Bindung. Eine vollständige analytische Berechnung kann jedoch aufgrund der Näherungen im Zweielektronenanteil nicht vorgenommen werden. Vielmehr werden einige Terme vernachlässigt, andere aus experimentellen Daten entnommen oder durch Näherungsansätze ersetzt, die justierbare Parameter enthalten. Die Berechnung der Elemente der Rumpfmatrix über nichtorthogonale Basisfunktionen ist im wesentlichen unverändert [1,17]. Die Einzentrenelemente sind folgendermaßen definiert:

$$H_{\mu\mu} = U_{\mu} + \sum_{B \neq A} (V_{\mu}^{B} + V_{\mu}^{B, \text{corr}}) - \sum_{B \neq A} \sum_{\beta}^{B} S_{\mu\beta}^{2} \epsilon_{\beta} \qquad \mu \in \mathbf{X}_{A}$$
(3.4)
$$\mathbf{X}_{A} = \{s, p_{\sigma}, p_{\pi}, p_{\pi'}, d_{\sigma}, d_{\pi}, d_{\pi'}, d_{\delta}, d_{\delta'}\}$$

$$\text{mit} \quad V_{\mu}^{B} = -Z_{B}^{*} \langle \mu \mid \frac{1}{r_{B}} \mid \mu \rangle$$

$$V_{\mu}^{B, \text{corr}} = \sum_{\nu}^{B} n_{\nu} \langle \mu \mid J_{\nu} - J_{\nu}^{s} \mid \mu \rangle = \sum_{\nu}^{B} n_{\nu} \left[(\mu\mu \mid \nu^{s}\nu^{s}) - (\mu^{s}\mu^{s} \mid \nu^{s}\nu^{s}) \right]$$

$$(\epsilon_{\beta} = F_{\beta\beta}; r = \text{Abstand}; Z^{*} = \text{effektive Kernladung};$$

$$n = \text{Besetzungszahl}; J, J^{s} = \text{Coulomboperator})$$

Dabei bedeuten μ^s und ν^s , daß diese Funktionen als *s*-Orbitale behandelt werden. Die Rumpfintegrale U_{μ} werden über gemittelte Energien atomarer Konfigurationen bestimmt [21,22]. In der Literatur wurde diskutiert, daß die in Atomen unbesetzten 3d-Orbitale in bestimmten Molekülen unrealistisch große Besetzungszahlen haben [20]. Zur Erzielung vernünftiger Besetzungszahlen kann man einen Abschirmterm $K_{\rm sc}$ für die entsprechenden Rumpfintegrale einführen.

$$U'_{3d} = (1 - K_{sc})U_{3d}$$
 (3.5)
mit $K_{sc} = 0.15$

Der vorgeschlagene Wert für $K_{\rm sc}$ von 0,2 [20] wurde für ein besseres Zusammenwirken mit dem neuen Formalismus auf den angegebenen Wert in (3.5) verkleinert. Die Kernanziehungsintegrale V_{μ}^{B} enthalten die effektive Kernladung Z_{B}^{*} von Kern B, die durch die Anzahl der Valenzelektronen des neutralen Atoms gegeben ist. $V_{\mu}^{B,\rm corr}$ ist eine Richtungskorrektur zu V_{μ}^{B} , da richtungsabhängige Effekte im Zweielektronenanteil nicht berücksichtigt werden. Der Index ν läuft über die Valenzorbitale am Zentrum B und n_{ν} ist die konstante Besetzungszahl von Orbital ν , die den neutralen Atomen entnommen wird. Das Korrekturpotential ist darum nicht selbstkonsistent. J ist in diesem Zusammenhang ein Coulomboperator, wobei J_{ν} bewirkt, daß nur Orbital ν als *s*-Orbital behandelt wird und J_{ν}^{s} bewirkt, daß außerdem Orbital μ als *s*-Orbital behandelt wird. Dieses Verfahren geht über die INDO-Näherung hinaus, wo solche Richtungseffekte nicht vorkommen und führt daher zu einer besseren relativen energetischen Lage einzelner Molekülorbitale. Der letzte Term in Gleichung (3.4) ist ein Pseudopotential nach Zerner [13], das die Orthogonalität der Valenzorbitale μ zu den Rumpforbitalen β wahrt. ϵ_{β} ist das diagonale Fockmatrixelement des Rumpforbitals β . Mit der Annahme, daß sich dieser Wert in einer molekularen Umgebung nur geringfügig ändert, kann ϵ_{β} aus experimentellen Röntgendaten entnommen werden. Alle Beiträge werden zunächst in einem lokalen Koordinatensystem berechnet, wo zwischen σ -, π und δ -Symmetrie unterschieden werden kann. Sie werden anschließend in das globale Koordinatensystem transformiert, um Rotationsinvarianz zu erhalten.

Für Zweizentrenterme wird die Mulliken-Näherung [23] verwendet zuzüglich eines Korrekturterms $L_{\mu\nu}$, welcher der ungenügenden Beschreibung der kinetischen Energieintegrale $T_{\mu\nu}$ durch die Mulliken-Näherung Rechnung trägt.

$$H_{\mu\nu} = \frac{1}{2} S_{\mu\nu} (H_{\mu\mu} + H_{\nu\nu}) + L_{\mu\nu} \qquad \mu \in A, \nu \in B$$
(3.6)

Es wird angenommen, daß der Korrekturterm $L_{\mu\nu}$ proportional zu einer Funktion der Überlappung der Form $S_{\mu\nu}(1 - |S_{\mu\nu}|)$ ist. Im allgemeinen gelten die folgenden Beziehungen [1]:

$$L_{\mu\nu} = -\frac{1}{2} (\zeta_{\mu}^{2} + \zeta_{\nu}^{2}) \frac{S_{\mu\nu} (1 - |S_{\mu\nu}|)}{1 + \rho}$$
mit $\rho = \frac{1}{2} (\zeta_{\mu} + \zeta_{\nu}) R_{AB}$
(3.7)

Wenn μ oder ν 1*s*-Orbitale sind, dann wird $L_{\mu\nu}$ modifiziert, um die unterschiedliche Abhängigkeit der kinetische Energieintegrale $T_{\mu\nu}$ als Funktion der Überlappung für diese Orbitale zu berücksichtigen.

$$L'_{\mu\nu} = \frac{1}{2} \left(L_{\mu\nu} - \frac{S_{\mu\nu}(1 - e^{-\rho})}{1 + \rho} \right)$$
(3.8)

In der alten Version wurde Gleichung (3.8) nur im 1s-2s-Fall verwendet und der zweite Term in Klammern in Gleichung (3.8) im 1s-1s-Fall.

3.3.3 Zweielektronenintegrale

Die Behandlung der Zweizentrenzweielektronenintegrale bleibt unverändert. Die Berechnung erfolgt analytisch über *s*-Funktionen als Kombination von Basisladungsverteilungen nach Harris [24]. Es werden durchgehend die verschiedenen Exponenten ζ_s , ζ_p und ζ_d verwendet.

Einzentrenzweielektronenintegrale werden als Kombinationen von Slater-Condon-Termen bestimmt, wobei in Verbindung mit *d*-Funktionen zusätzlich einige Radialintegrale R benötigt werden [11,25]. Sämtliche Slater-Condon-Terme und Radialintegrale werden analytisch mit den Exponenten ζ_s^U , ζ_p^U und ζ_d^U berechnet. Wie schon in Abschnitt 3.3.1 beschrieben, unterscheidet sich dieser Ansatz deutlich von der alten Version, wo eine Kombination aus analytisch berechneten und experimentellen Werten benutzt wurde [1,26]. Wenn man annimmt, daß Korrelationseffekte teilweise in der Parametrisierung enthalten sind und daß diese Effekte an einem Zentrum ausgeprägter sind als für Zweizentrenterme, dann sollten die Beziehungen $\zeta_s^U < \zeta_s$, $\zeta_p^U < \zeta_p$, $\zeta_d^U < \zeta_d$ Gültigkeit besitzen [27].

3.3.4 Orthogonalisierungskorrekturen

Die Vernachlässigung einer Vielzahl bestimmter Integrale in der INDO-Näherung läßt es zunächst unverständlich erscheinen, warum solche drastischen Näherungen überhaupt zu brauchbaren Ergebnissen führen können. Eine Erklärung dafür ist die teilweise Kompensation der Fehler bei den vernachlässigten Integralbeiträgen. Viel wichtiger ist aber die Interpretation der Atomorbitalbasis, die nach Löwdin in eine symmetrisch orthogonalisierte λ -Basis transformiert werden kann [12].

$$\boldsymbol{\lambda} = \boldsymbol{\chi} \mathbf{S}^{-1/2} \tag{3.9}$$

Führt man die Transformation (3.9) für die Rumpfmatrix und die Zweielektronenintegrale durch, dann folgt:

$$\mathbf{H}^{\lambda} = \mathbf{S}^{-1/2} \mathbf{H} \mathbf{S}^{-1/2} \tag{3.10}$$

$$\sum_{\mu} \sum_{\nu} \sum_{\rho} \sum_{\sigma} (\mu\nu \mid \rho\sigma)^{\lambda} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} T_{\mu i} T_{\nu j} (ij \mid kl) T_{\rho k} T_{\sigma l}$$
(3.11)
mit $\mathbf{T} = \mathbf{S}^{-1/2}$

Die Form der Transformation der Zweielektronenintegrale macht deutlich, daß eine direkte Verwendung von (3.11) aufgrund der intensiven numerischen Anforderungen auszuschließen ist. Die Matrix $\mathbf{S}^{-1/2}$ kann in eine Reihe entwickelt werden.

$$\mathbf{S}^{-1/2} = (\mathbf{1} + \bar{\mathbf{S}})^{-1/2} = \mathbf{1} - \frac{1}{2}\bar{\mathbf{S}} + \frac{3}{8}\bar{\mathbf{S}}^2 - \frac{5}{16}\bar{\mathbf{S}}^3 + \dots$$
(3.12)

 $\bar{\mathbf{S}}$ ist die Überlappungsmatrix mit Nullelementen auf der Diagonale. Bricht man diese Reihe nach bestimmten Ordnungen der Überlappung ab, so läßt sich die Auswirkung einer genäherten Transformation in die λ -Basis qualitativ abschätzen [28]. Danach ergibt sich, daß die ZDO-Näherung in der λ -Basis gerechfertigt werden kann, weil dort die vernachlässigten Zweielektronenintegrale in der Regel betragsmäßig kleine Werte annehmen. Eine Bewertung des INDO-Formalismus besagt, daß dieser korrekt ist bis zur ersten Ordnung der Überlappung [28].

$$\mathbf{F}^{\text{INDO}} \approx \mathbf{F}^{\lambda} + O(S^2)$$
 (3.13)

In SINDO1 dienen die Beziehungen (3.12) und (3.13) als Ausgangspunkt einer genäherten Transformation der Rumpfmatrix in die λ -Basis, wobei nur Terme bis zur ersten Ordnung der Überlappung berücksichtigt werden.

$$\mathbf{H}^{\lambda} = (\mathbf{1} - \frac{1}{2}\bar{\mathbf{S}})\mathbf{H}(\mathbf{1} - \frac{1}{2}\bar{\mathbf{S}}) = \mathbf{H} - \frac{1}{2}\mathbf{H}\bar{\mathbf{S}} - \frac{1}{2}\bar{\mathbf{S}}\mathbf{H} + O(S^2)$$
(3.14)

Die Beiträge proportional zu S^2 werden zu dem Term $O(S^2)$ zusammengefaßt und vernachlässigt. Zusammen mit der Beziehung (3.6) und der Streichung aller Terme mit mehr als Zweizentrencharakter erhält man für die Einzentrenrumpfmatrixelemente mit

[17], wobei die verbleibenden Beiträge mit einem Korrekturfaktor $f^{B,\text{orth}}$ multipliziert werden:

$$H_{\mu\mu'}^{\lambda} = H_{\mu\mu'} - f^{B,\text{orth}} \frac{1}{2} \sum_{B \neq A} \sum_{\nu}^{B} (L_{\mu\nu} S_{\nu\mu'} + S_{\mu\nu} L_{\nu\mu'}) \quad \mu, \mu' \in A \quad (3.15)$$

$$H_{\mu\nu}^{\lambda} = H_{\mu\nu} = 0 \begin{cases} \mu = s \in A, \nu = p \in A \\ \mu = s \in A, \nu = d \in A \\ \mu = p \in A, \nu = d \in A \end{cases}$$

$$f^{B,\text{orth}} = \begin{cases} 1 & \text{für} \quad \mathbf{X}_{B} = \{s\} \\ \frac{3}{4} & \text{für} \quad \mathbf{X}_{B} = \{s, p\} \\ \frac{1}{2} & \text{für} \quad \mathbf{X}_{B} = \{s, p, d\} \end{cases}$$

Der Korrekturfaktor $f^{B,\text{orth}}$ kompensiert die unterschiedliche Zahl von Basisfunktionen an den Elementen und die Vernachlässigung höherer Ordnungen der Überlappung in Transformation (3.14). Der Bereich der Faktoren $f^{B,\text{orth}}$ wurde zu Beginn der Parametrisierung in mehreren Testläufen mit einem reduzierten Satz von Verbindungen ermittelt und anschließend in einer sinnvollen Sequenz in Abhängigkeit vom Basissatz an den Elementen fixiert. Dabei wurde auch darauf geachtet, daß sich die atomaren Ladungen der Elemente in verschiedenen Molekülen innerhalb vernünftiger Bereiche befanden. Gleichung (3.15) ist die zentrale Formel im neuen Formalismus. In dieser Form wird sie auf alle Elemente ohne Ausnahme angewendet. Das unterscheidet sich deutlich vom alten Formalismus, wo zusätzlich Beiträge proportional zu S^2 für Elemente der zweiten Reihe berücksichtigt wurden. Weiterhin wurden bei den Elementen der zweiten Reihe nichtorthogonale Rumpfmatrix
elemente $H_{\mu\nu}$ korrigiert, die in der INDO-Näherung verschwinden. Das ist immer der Fall, wenn μ und ν unterschiedliche Nebenquantenzahlen besitzen. Elektronische Anregungsenergien für Verbindungen der entsprechenden Elemente wurden durch diese Korrekturen ungünstig beeinflußt [3]. Als Beispiel wurde bereits in Abschnitt 3.3 die mangelhafte Wiedergabe der Anregungsenergie eines NaCl-Clusters mit interner Chlorfehlstelle erwähnt. Ein weiterer wichtiger Unterschied zur alten SINDO1-Version ist die Behandlung der Elemente $H^{\lambda}_{s_{A}s_{A}},$ für die früher nur Beiträge von anderen s-Orbitalen einbezogen wurden.

$$H_{s_A s_A}^{\lambda} = H_{s_A s_A} - \sum_{B \neq A} S_{s_A s_B} L_{s_A s_B}$$
(3.16)

Durch Verwendung von Gleichung (3.16) wurden die Elemente H_{pp}^{λ} and H_{dd}^{λ} im Vergleich zu H_{ss}^{λ} energetisch angehoben. Dies führte zu einem überproportional großen Anteil der *s*-Orbitale an der Bindung. Die relativen Lagen der σ - und π -Niveaus wurden dadurch nicht adäquat beschrieben, mit dem Resultat, daß z.B. die Bindungslängen in konjugierten Kohlenwasserstoffen nicht geeignet reproduziert werden konnten.

Die Zweizentrenelemente der orthogonalen Rumpfmatrix sind durch Transformation (3.14) und Gleichung (3.6) gegeben zuzüglich eines Korrekturterms $H_{\mu\nu}^{\text{corr}}$ [1]:

$$H^{\lambda}_{\mu\nu} = L_{\mu\nu} + H^{\text{corr}}_{\mu\nu} \qquad \mu \in A, \nu \in B$$
(3.17)

 $H_{\mu\nu}^{\text{corr}}$ ist ein empirischer Korrekturterm, der auf Kommutatorbeziehungen basiert [1, 29].

$$H_{\mu\nu}^{\text{corr}} = \frac{1}{4} (K_A + K_B) S_{\mu\nu} (f^{A,\text{shield}} h_{\mu\mu}^B + f^{B,\text{shield}} h_{\nu\nu}^A)$$
(3.18)
$$f^{A,\text{shield}} = 1 - e^{-\alpha_{AB}R_{AB}}$$

$$f^{B,\text{shield}} = 1 - e^{-\alpha_{BA}R_{AB}}$$

Der Grund für die Einführung dieses Korrekturterms ist einerseits die Verwendung der Mulliken-Näherung zur Berechnung der Zweizentrenrumpfmatrixelemente und andererseits die gegenseitige Kompensation von Termen proportional zu $S_{\mu\nu}$ während der Herleitung von Gleichung (3.17). Gleichzeitig enthält $H^{\text{corr}}_{\mu\nu}$ justierbare Parameter, die es ermöglichen, das Resonanzintegral an die jeweiligen Erfordernisse anzupassen. Die K-Werte sind Parameter, die jeweils nur von der Natur der Elemente abhängen. Sie werden nach σ -, π - und δ -Symmetrie unterschieden. Aufgrund des unterschiedlichen Bindungsverhaltens der 3*d*-Orbitale wurde für diese Orbitale ein separater K-Satz eingeführt.

$$K \equiv K_{\sigma}(K_s = K_{p\sigma}), K_{\pi}(K_{p\pi}), K_{d\sigma}, K_{d\pi}, K_{d\delta}$$
(3.19)

Der Faktor $K_{d\delta}$ wird zu null gesetzt, da in der zweiten Reihe keine δ -Bindungen erwartet werden. Um zu verhindern, daß sich die Atome zu stark durchdringen, wird ein Abschirmfaktor f^{shield} eingeführt, der außerdem das korrekte Abstandsverhalten des Korrekturterms $H^{\text{corr}}_{\mu\nu}$ sicherstellt. Die α -Parameter waren ursprünglich zweiatomige Bindungsparameter in der alten SINDO1-Version, die zum Teil eine starke Projektion auf die Eigenschaften der Moleküle im Parametrisierungssatz bewirkten. Erste Parametrisierungsläufe mit der neuen SINDO1-Version bestätigten diese Eigenschaft der zweiatomigen Bindungsparameter, die innerhalb der Verbindungen, die zur Justierung der Parameter verwendet wurden, immer die besten Resultate im Vergleich zu lediglich atomaren Parametern ergaben. Sobald jedoch ein Molekül hinzugefügt wurde, dessen Bindungseigenschaften nicht im ursprünglichen Satz von Verbindungen repräsentiert war, ergaben sich für das neue Molekül erhebliche Fehler. Zur Verbesserung der Übertragbarkeit der Parametrisierung wurden die α -Parameter auf atomare Parameter κ mit interperiodischer Abhängigkeit reduziert.

$$\kappa_P(E) \equiv \alpha_{EP} \qquad P = \text{Periode}, E = \text{Element}$$
(3.20)
mit $P = \begin{cases} 1 & \text{für H} \\ 2 & \text{für Li bis F} \\ 3_{\{s,p\}} & \text{für Na, Mg} \\ 3_{\{s,p,d\}} & \text{für Al bis Cl} \end{cases}$

Das bedeutet, daß einem Element E derselbe α -Wert zu allen Elementen der Periode P zugewiesen wird, die denselben Basissatz \mathbf{X} besitzen. Die Unterscheidung nach Perioden erscheint hierbei sinnvoll, da dann alle Beiträge des Korrekturterms $H_{\mu\nu}^{\text{corr}}$ (3.18), die mit derselben Hauptquantenzahl berechnet werden, auch in bezug auf das Abschirmverhalten gleich behandelt werden. Um ein unvernünftiges Anwachsen der Terme $h_{\mu\mu}^{B}$ und $h_{\nu\nu}^{A}$ mit der Molekülgröße in Gleichung (3.18) zu vermeiden, werden die Beiträge auf die Atome A und B beschränkt, z.B.

$$h^B_{\mu\mu} = U^A_\mu + V^B_\mu + V^{B,\text{corr}}_\mu - \sum^B_\beta S^2_{\mu\beta} \epsilon_\beta \qquad \mu \in A$$
(3.21)

Zweielektronenintegrale werden nicht transformiert, da in diesem Fall die Orthogonalisierungskorrekturen weniger ausgeprägt sind als bei der Rumpfmatrix. Es kann sogar gezeigt werden, daß bei Anwendung von Transformation (3.14), unter Annahme der Gültigkeit der Mulliken-Näherung, die folgenden Zweielektronenintegrale unverändert bleiben [28]:

$$\langle \mu_A \nu_A \mid \rho_A \sigma_A \rangle^{\lambda} = \langle \mu_A \nu_A \mid \rho_A \sigma_A \rangle + O(S^2)$$

$$\langle \mu_A \nu_A \mid \rho_B \sigma_B \rangle^{\lambda} = \langle \mu_A \nu_A \mid \rho_B \sigma_B \rangle + O(S^2)$$

$$(3.22)$$

Die Behandlung der Zweielektronenintegrale ist somit konsistent innerhalb der INDO-Näherung, wenn nur Terme bis zur ersten Ordnung der Überlappung berücksichtigt werden und ist äquivalent zu der Behandlung der Rumpfmatrix.

Es wird in der Literatur beschrieben, daß die Reihenentwicklung (3.12) im allgemeinen Fall divergieren kann [30]. Die Konvergenz kann aber durch eine Verschiebung des Ursprungs erreicht werden [31]. In der jetzigen Implementierung in SINDO1 wird die analytische Entwicklung (3.12) nur als Richtlinie verwendet, um die Rumpfmatrixelemente in der nichtorthogonalen Basis an ihre korrespondierenden Werte in der orthogonalen Basis anzupassen. Dazu werden für die Transformation nur Terme bis zur ersten Ordnung der Überlappung berücksichtigt und die Beiträge auf jene beschränkt, die ausschließlich Zweizentrencharakter besitzen. Dennoch sind höhere Ordnungen der Überlappung implizit durch die spezielle Form von $L_{\mu\nu}$ als Funktion der Überlappung enthalten (siehe Gleichung (3.7) und (3.8)).

4 Parametrisierung

Am Abschluß einer methodischen Weiterentwicklung steht immer eine Optimierung der freien Parameter des jeweiligen Formalismus. Die Güte der Parametrisierung entscheidet letztendlich über die Leistungsfähigkeit einer semiempirischen Methode im Rahmen der methodischen Näherungen. Dazu erfolgt eine Minimierung der Fehler eines gewählten Satzes berechneter Eigenschaften im Vergleich zu Referenzdaten. Gewöhnlich werden die Referenzdaten dem Experiment entnommen, soweit diese in ausreichender Genauigkeit zur Verfügung stehen. In Einzelfällen bieten hochgenaue ab initio-Rechnungen eine sinnvolle Ergänzung. Ihre Durchführbarkeit beschränkt sich allerdings auf sehr kleine Systeme.

Im Gegensatz zu früheren SINDO1-Versionen wurde die Parametrisierung mit einem automatischen Verfahren durchgeführt. Dieser Ansatz bietet wesentliche Vorteile gegenüber einer manuellen Justierung: Die Anzahl der Referenzdaten, deren Information direkt in die Parameter eingeht, kann wesentlich größer gewählt werden. Die Anpassung der zu optimierenden Parameter erfolgt gleichzeitig. Nach der Wahl eines geeigneten Startpunktes für die Parameter läuft das Verfahren völlig automatisch. Konvergenzprobleme des Algorithmus, d.h. der Abbruch mit einem relativ hohen Fehler, wurden selten beobachtet. Zum Ende einer Optimierung befindet man sich zumindest in einem lokalen Minimum bezüglich des Parametersatzes. Diese Eigenschaft war möglicherweise in früheren SINDO1-Versionen nicht gegeben.

4.1 Das automatische Parametrisierungsverfahren

Zur Optimierung der freien Parameter in SINDO1 wurde ein nichtlineares Minimierungsprogramm verwendet, das auf der Methode der kleinsten Quadrate beruht. Der dem Programm zugrunde liegende Algorithmus wurde von Bartels entwickelt [32]. Minimiert wird die Fehlerquadratsumme s des Differenzenvektors **d**, dessen Komponenten d_i die Differenzen der experimentellen Referenz-Observablen f_i^{ref} zu den berechneten

Art der Observable	Wichtungsfaktor
Bildungsenthalpie	$1 \text{ kcal}^{-1} \text{ mol}$
Bindungslänge	300 Å^{-1}
Bindungswinkel	$3,5 \text{ Grad}^{-1}$
Ionisierungsenergie	$10 \ eV^{-1}$
Dipolmoment	$7,5 \ \mathrm{D}^{-1}$

Tabelle 1: Wichtungsfaktoren für verschiedene Arten von Observablen

Observablen f_i^{cal} darstellen.

$$s = \sum_{i} d_{i}^{2} = \mathbf{d}^{\dagger} \mathbf{d}$$
(4.1)
mit
$$d_{i} = (f_{i}^{\text{ref}} - f_{i}^{\text{cal}}) \omega_{i}$$

Der Wichtungsfaktor ω_i dient zur Anpassung der verschiedenen Arten von Observablen wie Bildungsenthalpien, Bindungslängen, Bindungswinkel, Ionisierungsenergien und Dipolmomenten. Außerdem bietet der Wichtungsfaktor die Möglichkeit, einzelne Observable gemäß ihrer Bedeutung oder auch Zuverlässigkeit gesondert zu behandeln, indem man ω_i verglichen mit dem Standardwert ein höheres oder geringeres Gewicht verleiht. Standardwerte für die Wichtungsfaktoren sind in Tabelle 1 angegeben. Die Fehlerquadratsumme *s* ist eine nichtlineare Funktion bezüglich der zu optimierenden Parameter und kann deshalb nur mit einem iterativen Verfahren minimiert werden.

$$s(\mathbf{x}_{k+1}) \leq s(\mathbf{x}_k) \tag{4.2}$$

mit $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{p}$

Der klassische Ansatz zur Bestimmung des Suchvektors \mathbf{p} ist der Newton-Raphson-Algorithmus.

$$\mathbf{p} = -\mathbf{H}^{-1}\mathbf{g}$$
(4.3)
mit $g_n = \frac{\partial s}{\partial x_n}$

$$H_{mn} = \frac{\partial^2 s}{\partial x_m \partial x_n}$$

Angewendet auf die spezielle Form der Fehlerquadratsumme s benötigt man deren erste und zweite Ableitungen bezüglich der Parameter.

$$\mathbf{g} = 2\mathbf{J}^{\dagger}\mathbf{d} \tag{4.4}$$

$$\mathbf{H} = 2\left(\mathbf{J}^{\dagger}\mathbf{J} + \sum_{i} d_{i} \frac{\partial^{2} d_{i}}{\partial x_{m} \partial x_{n}}\right)$$
(4.5)

Die Elemente der Jacobi-Matrix **J** sind die partiellen Ableitungen der Differenzen d_i nach den Parametern x_n .

$$\mathbf{J} = \begin{pmatrix} \partial d_1(x) / \partial x_1 & \dots & \partial d_1(x) / \partial x_n \\ \vdots & \ddots & \vdots \\ \partial d_i(x) / \partial x_1 & \dots & \partial d_i(x) / \partial x_n \end{pmatrix}$$
(4.6)

Für den Suchvektor bedeutet das:

$$\mathbf{p} = -[\mathbf{J}^{\dagger}\mathbf{J} + \mathbf{B}]^{-1}\mathbf{J}^{\dagger}\mathbf{d}$$
(4.7)
mit
$$\mathbf{B} = \sum_{i} d_{i} \frac{\partial^{2} d_{i}}{\partial x_{m} \partial x_{n}}$$

Die Matrix **B** ist ein Maß für die Nichtlinearität der Funktion. Da es zu aufwendig wäre, diese Matrix exakt zu berechnen, kann man **B** entweder ganz vernachlässigen oder wie beim Levenberg-Marquardt-Verfahren [33,34] durch einen einfacheren Ausdruck ersetzen.

$$\mathbf{p} = -[\mathbf{J}^{\dagger}\mathbf{J} + \lambda \mathbf{E}]^{-1}\mathbf{J}^{\dagger}\mathbf{d}$$
(4.8)

E ist hierbei die Einheitsmatrix und λ ein konstanter Faktor. Für große λ zeigt **p** in Richtung der Methode des stärksten Abstiegs (steepest descent)

$$\mathbf{p} \simeq -\mathbf{J}^{\dagger}\mathbf{d} \tag{4.9}$$

und für kleine λ geht
p in den Gauss-Newton Schritt über.

$$\mathbf{p} \simeq -[\mathbf{J}^{\dagger}\mathbf{J}]^{-1}\mathbf{J}^{\dagger}\mathbf{d}$$
(4.10)

Die Schwierigkeit besteht darin, ein geeignetes λ zu finden. Bartels verwendet eine starre Kopplung an die Fehlerquadratsumme [32].

$$\lambda = s \tag{4.11}$$

Ein modifizierter Algorithmus wurde von Moré vorgeschlagen [35], der eine Restriktion bezüglich der Schrittweite eingeführt hat. Dieser Ansatz wurde letztendlich im Optimierungsprogramm implementiert.

$$\|\mathbf{Dp}\| = \Delta \tag{4.12}$$

Der Radius Δ legt die Schrittweite fest und ist entsprechend zu wählen. **D** ist eine Diagonalmatrix mit positiven Diagonalelementen und erlaubt eine individuelle Skalierung jedes einzelnen Parameters. Für die Parametrisierung der ersten Reihe hat sich folgender Ansatz bewährt:

$$D_{nn} = \sqrt{\left|\frac{\partial s}{\partial x_n}\right|} \tag{4.13}$$

Dadurch wird erreicht, daß die Schrittweite für Parameter mit großen Ableitungen vermindert wird. Für die Parametrisierung der Elemente der zweiten Reihe wurde **D** gleich der Einheitsmatrix gesetzt. λ wird nun in jedem Optimierungsschritt derart bestimmt, daß die Bedingung (4.12) exakt erfüllt ist. Für den Suchvektor ergibt sich damit:

$$\mathbf{p} = -[\mathbf{J}^{\dagger}\mathbf{J} + \lambda \mathbf{D}^{\dagger}\mathbf{D}]^{-1}\mathbf{J}^{\dagger}\mathbf{d}$$
(4.14)

Ausgehend von einem geeigneten Startwert, muß der Radius Δ nach jeder Iteration neu angepaßt werden, abhängig von dem Verhältnis zwischen der aktuellen Reduktion und der vorhergesagten Reduktion der Fehlerquadratsumme.

$$\rho(\mathbf{p}) = \frac{\|\mathbf{d}(\mathbf{x})\|^2 - \|\mathbf{d}(\mathbf{x} + \mathbf{p})\|^2}{\|\mathbf{d}(\mathbf{x})\|^2 - \|\mathbf{d}(\mathbf{x}) + \mathbf{J}\mathbf{p}\|^2}$$
(4.15)

 ρ zeigt die Übereinstimmung zwischen dem linearen Ansatz und der nichtlinearen Funktion. Bei guter Übereinstimmung ($\rho \rightarrow 1$) wird Δ vergrößert und bei schlechter Übereinstimmung ($\rho \rightarrow 0$) wird Δ verkleinert. Dieses Verfahren beruht darauf, daß
die Übereinstimmung mit dem linearen Ansatz für infinitesimale Auslenkungen exakt wird.

$$\rho \to 1 \quad \text{für} \quad \|\mathbf{p}\| \to 0 \tag{4.16}$$

Da der nächste Schritt in der Regel eine gute Übereinstimmung mit dem zugrunde liegenden linearen Ansatz aufweist, ist dies ein Fortschritt gegenüber dem ursprünglichen Levenberg-Marquardt-Verfahren. Zur Verbesserung des Konvergenzverhaltens schlagen Kolb und Thiel vor, die Jacobi-Matrix numerisch über einen Differenzenquotienten zu berechnen [36].

$$J_{in} = \frac{d_i(x_n + \Delta x) - d_i(x_n - \Delta x)}{2\Delta x}$$

$$(4.17)$$

Da zur Ableitung jedes Parameters der gesamte relevante Molekülsatz zweimal gerechnet werden muß, ist dies der zeitbestimmende Schritt des Verfahrens. In der Regel ist es aber nicht nötig, die Jacobi-Matrix in jedem Optimierungsschritt exakt zu berechnen. Stattdessen kann Broyden's Sekanten-Methode [37] verwendet werden, um **J** über den letzten Schritt und die Änderungen der Differenzen zu aktualisieren.

$$\mathbf{J}_{k+1} = \mathbf{J}_k - (\mathbf{J}_k \mathbf{q}_k - \mathbf{y}_k) \mathbf{q}_k^{\dagger} / \mathbf{q}_k^{\dagger} \mathbf{q}_k \qquad (4.18)$$

mit
$$\mathbf{q}_k = \mathbf{x}_k - \mathbf{x}_{k-1}$$
$$\mathbf{y}_k = \mathbf{d}_k - \mathbf{d}_{k-1}$$

In der Praxis hat es sich als ausreichend erwiesen, die Jacobimatrix nur alle 10 bis 20 Zyklen exakt zu berechnen oder wenn ein Schritt keine Verminderung der Fehlerquadratsumme bewirkte. Das Verfahren kann abgebrochen werden, wenn entweder zwei aufeinander folgende exakte Jacobi-Matrix Berechnungen keine Verminderung der Fehlerquadratsumme ergeben oder der Suchvektor selbst sehr klein wird.

4.2 Optimierung der freien Parameter

r

Aus praktischen Gründen erfolgte eine Unterteilung der Elemente in zwei Gruppen. In der ersten Gruppe wurden die Elemente H, C, N, O und F zusammengefaßt, die vorweg in einem separaten Ansatz parametrisiert wurden. In der anschließenden Parametrisierung der zweiten Gruppe, die aus den Elementen der zweiten Reihe gebildet wurde, verblieben die Parameter der ersten Gruppe bei den zuvor optimierten Werten. Innerhalb einer Gruppe wurden alle Elemente gleichzeitig optimiert, um den Parametern die Information über möglichst viele verschiedene Bindungstypen zu geben. Ein Nachteil dieser Unterteilung ist die fehlende Information für die Parameter der Elemente der ersten Reihe über Bindungen mit Elementen der zweiten Reihe. Der Ansatz einer gleichzeitigen Optimierung aller betrachteten Elemente war aber rechentechnisch nicht möglich und hätte außerdem die Fehler innerhalb der Elemente der ersten Reihe

Die Voraussetzung einer erfolgreichen Parametrisierung ist die Wahl eines geeigneten Startpunktes für die Parameter. Aufgrund des iterativen Charakters des Verfahrens besteht die Möglichkeit, in einem relativ hoch liegenden lokalen Minimum zu enden. Deshalb wurden mehrere Optimierungen mit unterschiedlichen Startpunkten durchgeführt. Dabei muß darauf geachtet werden, daß sich die Parameter in realistischen Größenordnungen befinden, da ihnen eine bestimmte mathematische oder physikalische Bedeutung innerhalb des Formalismus zugeordnet wird. Zusätzlich sollten bestimmte Klassen von Parametern einen konsistenten Trend innerhalb einer Periode aufweisen. Das gilt besonders für Orbitalexponenten ζ , ζ^U und τ , Ionisierungspotentiale I und Abschirmfaktoren κ . Folgende Strategie hat sich deshalb während der Parametrisierung bewährt: Zunächst wurden den Exponenten ζ und τ optimierte ab initio-Werte zugewiesen, die durch Energieminimierung der atomaren Grundzustände erhalten wurden [38,39]. Nach den Überlegungen in Abschnitt 3.3.3 wurden die korrespondierenden Exponenten ζ^U im Vergleich zu den ζ -Werten geringfügig verkleinert. Die Ionisierungspotentiale I für die Bestimmung der Rumpfintegrale U_{μ} wurden derart ermittelt, daß die Ionisierungsenergien der Atome möglichst genau reproduziert wurden. Die Werte der Abschirmfaktoren κ wurden in einer sinnvollen Abfolge festgelegt. Danach erfolgte eine Voroptimierung der K-Werte mit der Einschränkung $K_{\sigma} = K_{\pi}$ und $K_{d\sigma} = K_{d\pi}$.

Besondere Aufmerksamkeit wurde dabei dem Auffinden einer geeigneten Kombination von κ - und K-Werten gewidmet. Ausgehend von diesem Parametersatz wurde dann eine vollständige Optimierung gestartet. Der Parametersatz mit den ausgewogensten Ergebnissen wurde letztendlich ausgewählt. Dabei wurde nicht ausschließlich auf die besten Resultate bei den Fehlern der Eigenschaften geachtet, sondern auch auf die Konsistenz der entsprechenden Parameter in bezug auf die Überlegungen in diesem Abschnitt.

Im folgenden wird eine detaillierte Aufstellung und Klassifizierung aller benötigten Parameter eines Elements gegeben:

• Orbitalexponenten

H:	ζ_{1s}^U,ζ_{1s}
C–F:	$\zeta_{2s}^U,\zeta_{2p}^U,\zeta_{2s},\zeta_{2p}$
Na, Mg:	$\zeta^U_{3s},\ \zeta^U_{3p},\ \zeta_{3s},\ \zeta_{3p}$
Al–Cl:	$\zeta_{3s}^U, \zeta_{3p}^U, \zeta_{3d}^U, \zeta_{3s}, \zeta_{3p}, \zeta_{3d}$

• Ionisierungspotentiale

H:
$$I_{1s}$$

C-F: I_{2s}, I_{2p}
Na, Mg: I_{3s}, I_{3p}
Al-Cl: I_{3s}, I_{3p}, I_{3d}

• Pseudopotential-Parameter

C-F:
$$\epsilon_{1s}, \tau_{1s}$$

Na–Cl: $\epsilon_{1s}, \epsilon_{2s}, \epsilon_{2p}, \tau_{1s}, \tau_{2s}, \tau_{2p}$

• Resonanzintegral-Parameter

H: K_{σ} C-F: K_{σ}, K_{π} Na, Mg: K_{σ}, K_{π} Al-Cl: $K_{\sigma}, K_{\pi}, K_{d\sigma}, K_{d\pi}, K_{d\delta}$ Alle: $\kappa_1, \kappa_2, \kappa_{3,\{s,p\}}, \kappa_{3,\{s,p,d\}}$

4.3 Bildungsenthalpien

Die Bestimmung der Bildungsenthalpien in SINDO1 unterscheidet sich von den meisten anderen semiempirischen Methoden durch eine explizite Berücksichtigung der Nullpunktsenergien. Dieses Verfahren ist sehr rechenintensiv, zeichnet sich aber durch theoretisch besser fundierte Bindungsenergien aus. Darüber hinaus ist die Nullpunktsenergie keine lineare Funktion der Zahl der Atome in einem Molekül. Das ist besonders für große Systeme von Bedeutung. Es ist bekannt, daß die Schwingungsfrequenzen in einer SINDO1-Rechnung tendenziell zu große Werte annehmen [40]. Deshalb wurde die kartesische Kraftkonstantenmatrix mit einem konstanten Faktor von 0,7 skaliert. Dieser Ansatz verbesserte die Nullpunktsenergien beträchtlich, wobei der mittlere Fehler für kleine Moleküle weniger als 1 kcal/mol betrug. Gewöhnlich werden die experimentellen Daten bei Standardbedingungen ermittelt (298 K). Die Energien aus SINDO1 beziehen sich auf den absoluten Nullpunkt. Die benötigte Temperaturkorrektur der Enthalpien kann unter der Annahme eines idealen Gases gemäß der statistischen Thermodynamik entwickelt werden [41].

$$\Delta H_{\rm mol}(T) = H_{\rm trans}(T) + H_{\rm rot}(T) + \Delta H_{\rm vib}(T) + RT \qquad (4.19)$$

mit $H_{\rm trans}(T) = \frac{3}{2}RT$
 $H_{\rm rot}(T) = \begin{cases} RT & \text{für ein lineares Molekül} \\ \frac{3}{2}RT & \text{sonst} \end{cases}$
 $\Delta H_{\rm vib}(T) = H_{\rm vib}(T) - H_{\rm vib}(0) = N \sum_{i}^{n} h\nu_{i} e^{-h\nu_{i}/kT}$
wobei $T = \text{Temperatur}$
 $R = \text{Gaskonstante}$
 $N = \text{Loschmidtsche Konstante}$
 $h = \text{Plancksche Konstante}$
 $n = \text{Anzahl der Normalmoden}$

k = Boltzmann-Konstante

Die Nullpunktsenergie ist als Summe über die Frequenzen ν_i gegeben.

$$H_{\rm vib}(0) = \frac{1}{2} \sum_{i}^{n} h \,\nu_i \tag{4.20}$$

Für Atome vereinfacht sich (4.19) zu:

$$\Delta H_A(T) = H_{\text{trans}}(T) + RT \tag{4.21}$$

Zusammenfassend werden die Bildungsenthalpien in der neuen SINDO1-Version aus der Gesamtenergie des Moleküls $E_{\rm mol}$ durch Subtraktion der atomaren Energien E_A und durch Addition der experimentellen Bildungsenthalpien der Atome $\Delta_{\rm f} H_A^{\circ}$ [42], der Nullpunktsenergie und der Temperaturkorrektur erhalten.

$$\Delta_{\rm f} H^{\circ}_{\rm mol}(298 \text{ K}) = E_{\rm b} + \sum_{A}^{\rm Atome} \Delta_{\rm f} H^{\circ}_{A}(0 \text{ K}) + H_{\rm vib}(0) + \Delta H_{\rm mol}(298 \text{ K}) \quad (4.22)$$

mit $E_{\rm b} = E_{\rm mol} - \sum_{A}^{\rm Atome} E_{A}$
 $\Delta_{\rm f} H^{\circ}_{A}(0 \text{ K}) = \Delta_{\rm f} H^{\circ}_{A}(298 \text{ K}) - \Delta H_{A}(298 \text{ K})$

Die elektronischen Energien der Atome sind jene von eingeschränkten Eindeterminanten-Zustandsfunktionen innerhalb der SINDO1-Näherungen.

4.4 Optimierte Parameter für die Elemente H, C, N, O, F sowie Na, Mg, Al, Si, P, S und Cl

Eine komplette Aufstellung der Parameter für die Elemente H, C, N, O und F ist in Tabelle 2 gegeben. In dieser Gruppe von Elementen waren 4 Parameter für Wasserstoff und 9 Parameter für Kohlenstoff bis Fluor zu optimieren, zuzüglich zweier Abschirmfaktoren für alle diese Elemente. Die Parameter zeigen insgesamt eine vernünftige Abfolge innerhalb einer Periode. Hierbei ist zu bemerken, daß ein solcher Trend nicht für die K-Werte erwartet wird, da sie Teil eines Korrekturterms sind und daher durchaus unterschiedliche Vorzeichen annehmen können. Eine weitergehende Aufteilung des Parameters K_{σ} in K_s und $K_{p\sigma}$ wurde aufgrund der schlechten Übertragbarkeit bei Hinzunahme von Verbindungen mit Elementen der zweiten Reihe nicht vorgenommen. Die

	Н	С	Ν	0	F
ζ^U_s	1,0060	1,6266	1,8098	2,1109	2,3408
ζ_p^U		1,5572	1,7326	$1,\!9055$	2,2465
ζ_s	$1,\!1576$	1,7874	2,0423	2,3538	2,4974
ζ_p		$1,\!6770$	1,8161	$2,\!1559$	2,3510
I_s	0,5000	0,8195	1,0346	1,6838	2,0238
I_p		0,3824	0,4602	$0,\!5780$	0,6868
$-\epsilon_{1s}{}^a$		10,4300	14,7600	$19,\!5500$	25,1900
$ au_{1s}$		5,0830	6,8176	7,3271	8,6043
K_{σ}	0,1449	0,0867	0,1031	0,1242	0,1769
K_{π}		0,0478	0,0524	0,0760	0,0127
κ_1	0,3856	0,4936	0,2964	0,2485	0,1521
κ_2	0,5038	0,6776	0,3268	0,2246	0,1059
$\kappa_{3,\{s,p\}}$	0,8272	0,6605	0,3414	0,3269	0,2560
$\kappa_{3,\{s,p,d\}}$	0,5488	0,8180	0,3638	0,3222	0,2284

Tabelle 2: Optimierte and feste Parameter für Elemente der ersten Reihe in [a.u.].

^a fester Parameter [42]

Zusammenfassung gemäß K_s und K_p zeigte sich deutlich unterlegen im Vergleich zu der momentanen Verwendung von K_{σ} und K_{π} . Lediglich geringe Verbesserungen erbrachte die Optimierung des Pseudopotential-Parameters ϵ_{1s} . Diese Werte wurden deshalb dem Experiment entnommen und festgehalten. Änderungen der Beiträge des Pseudopotentials werden hauptsächlich durch die Variation der Exponenten der inneren Schalen τ beeinflußt.

Die Parameter der Elemente der zweiten Reihe sind in Tabelle 3 aufgelistet. Zu optimieren waren 10 Parameter für Natrium und Magnesium und 13 Parameter für Aluminium bis Chlor zuzüglich 4 Abschirmfaktoren für alle Elemente. Der Parameter κ_3 wurde unterteilt nach $\kappa_{3,\{s,p\}}$ und $\kappa_{3,\{s,p,d\}}$. Dies wurde notwendig, weil für Natrium

	Na	Mg	Al	Si	Р	S	Cl
ζ_s^U	0,9626	1,1022	1,1145	$1,\!4619$	1,6104	1,7898	1,9199
ζ_p^U	$0,\!9348$	1,0636	$1,\!0657$	$1,\!2963$	$1,\!5806$	1,7592	1,8786
ζ^U_d			1,0021	1,2644	$1,\!3972$	1,5881	1,6498
ζ_s	0,9892	$1,\!1378$	1,4629	$1,\!6395$	1,8931	$2,\!2375$	2,3813
ζ_p	0,9691	1,1154	1,3432	$1,\!5361$	1,6424	1,8308	2,0124
ζ_d			1,0021	1,2644	$1,\!3972$	1,5881	1,6498
I_s	0,1853	0,2812	0,4188	$0,\!6570$	0,8187	0,9482	1,0122
I_p	$0,\!0827$	0,1409	0,2186	$0,\!2757$	$0,\!3355$	$0,\!4297$	0,4938
I_d			0,0417	0,0645	$0,\!1510$	0,2079	0,2943
$-\epsilon_{1s}{}^{a,b}$	39,4000	47,9600	57,3100	67,5800	78,8400	90,8400	103,7200
$-\epsilon_{2s}{}^{a,b}$	$2,\!5300$	3,4900	4,3300	$5,\!4600$	6,9600	8,4200	9,9300
$-\epsilon_{2p}{}^{a,b}$	1,3400	2,0900	2,6900	$3,\!6500$	4,8600	6,0600	7,4100
$\tau_{1s}{}^{a,c}$	10,6260	11,6090	12,5910	$13,\!5750$	14,5580	15,5410	$16,\!5240$
$ au_{2s}$	$2,\!6979$	3,0264	3,4225	3,9602	4,6601	5,0758	5,2819
$ au_{2p}$	2,4241	2,8811	3,4225	3,9602	4,6601	5,0758	$5,\!2819$
K_{σ}	$0,\!1421$	$0,\!1053$	0,0685	0,0938	$0,\!0959$	0,0995	$0,\!1159$
K_{π}	0,0199	0,1590	0,0386	0,0068	0,0526	0,0591	0,1022
$K_{d\sigma}$			-0,1123	-0,2243	-0,2124	$-0,\!1889$	-0,0568
$K_{d\pi}$			-0,0944	-0,0627	-0,1261	-0,0473	-0,0108
$K_{d\delta}{}^a$			0,0000	0,0000	0,0000	0,0000	0,0000
κ_1	0,8426	0,8100	$0,\!3105$	0,3068	0,2216	$0,\!1374$	0,0840
κ_2	$1,\!3303$	$1,\!2167$	1,1116	0,7728	0,4666	$0,\!1995$	0,0362
$\kappa_{3,\{s,p\}}$	$1,\!3502$	$1,\!2499$	1,0100	0,7719	0,4851	0,2186	0,0624
$\kappa_{3,\{s,p,d\}}$	1,3496	1,2524	1,0100	0,7719	0,4851	0,2186	0,0785

Tabelle 3: Optimierte and feste Parameter für Elemente der zweiten Reihe in [a.u.].

^{*a*}fester Parameter, ^{*b*} [42], ^{*c*} [38]

und Magnesium im Gegensatz zu den anderen Elementen der zweiten Reihe keine d-Orbitale angesetzt wurden. Die zwei zusätzlich benötigten Abschirmfaktoren für Wasserstoff und die Elemente der ersten Reihe sind bereits in Tabelle 2 angegeben. Die Parameter zeigen insgesamt dieselbe konsistente Abfolge innerhalb einer Periode, wie für die Elemente der ersten Reihe beschrieben, mit Ausnahme der K-Werte. Keine Unterscheidung wurde für die Valenzexponenten ζ^U_{3d} und ζ_{3d} getroffen. Dasselbe gilt für die Exponenten der nächst inneren Schale τ_{2s} und τ_{2p} bei den Elementen Al bis Cl. Die Aufspaltung dieser Parameter führte lediglich zu geringen Verbesserungen und rechtfertigt nicht die Einführung eines neuen Parameters. Konstante Werte 38 wurden für den Exponenten der innersten Schale τ_{1s} für alle Elemente der zweiten Reihe verwendet. Der Beitrag der innersten Schale zum Pseudopotential ist klein im Vergleich zur nächsten inneren Schale. Äquivalent zu den Elementen der ersten Reihe wurden durchweg experimentelle Werte für die Pseudopotential-Parameter ϵ_{1s} , ϵ_{2s} und ϵ_{2p} verwendet. Die Notwendigkeit der Verwendung eines separaten Satzes von K-Werten für 3d-Orbitale unterstreichen die angegebenen Zahlen in Tabelle 3. Sowohl die absoluten Werte als auch das Vorzeichen unterscheiden sich im Vergleich zu den K-Werten für sund p-Orbitale.

4.5 Statistische Auswertung der Fehler von SINDO1

Der Satz der Referenzdaten und Moleküle für die Elemente der ersten Reihe wurde im wesentlichen früheren Parametrisierungen von SINDO1 entnommen [43,44]. Die entsprechenden experimentellen Werte der Referenzdaten wurden gemäß neuerer Literatur aktualisiert [45,46] mit Ausnahme der Ionisierungsenergien, die [47] entstammen. Für die Elemente der zweiten Reihe wurden Referenzdaten aus Thiels MNDO/d-Arbeiten verwendet [48–50]. Bei der Zusammenstellung der Referenzsätze mußten Kompromisse eingegangen werden. Der Grund dafür ist die explizite Berücksichtigung der Nullpunktsenergien zur Berechnung der Bildungsenthalpien in SINDO1. An einem gegebenen Parameterpunkt muß für jedes Molekül nach erfolgter Geometrieoptimierung eine komplette Hesse-Matrix berechnet werden. Besonders für den Aufbau der numerischen Jacobi-Matrix ist der Rechenaufwand immens. Die Wahl der Verbindungen erfolgte derart, daß zumindest alle wichtigen Bindungstypen eines Elements repräsentiert waren. Dies war natürlich nur soweit möglich, wie auch experimentelle Daten in ausreichender Genauigkeit zur Verfügung standen. Eine unangenehme Eigenschaft der alten SINDO1-Version war die schlechte Übertragbarkeit der Parametrisierung auf große Systeme. In einigen Fällen wie NaCl- und MgO-Clustern, die Gegenstand dieser Arbeit waren, mußte eine separate Justierung vorgenommen werden, um Bindungsenergien und Gitterkonstanten des Festkörpers zu reproduzieren [18]. Zur Verbesserung dieses Verhaltens wurden kleine Einheiten der Ionenkristalle in den Satz der Verbindungen mit aufgenommen. Da experimentelle Daten nur begrenzt zur Verfügung standen, wurden hochgenaue ab initio-Rechnungen herangezogen. Ausgewählt wurde Poples G2- [51] oder G2(MP2)- [52] Methode, die akkurate Atomisierungsenergien für Verbindungen aus Elementen der ersten und zweiten Reihe liefern. Möglich waren Rechnungen bis zu den Trimeren $(NaCl)_3$ und $(MgO)_3$. Verwendet wurde dazu das Programmpaket Gaussian 94 [53].

Eine ausführliche Untersuchung und Bewertung der Leistungsfähigkeit von SINDO1 im Vergleich zur alten Version und zu anderen bekannten semiempirischen Methoden wie MNDO [54], AM1 [55], PM3 [56] und MNDO/d [57] wurde bereits präsentiert [3]. Es konnte gezeigt werden, daß die neue SINDO1-Version einen großen Fortschritt in bezug auf alle untersuchten Eigenschaften gegenüber früheren Versionen darstellt. Im Vergleich mit anderen Methoden liefert SINDO1 jetzt mindestens vergleichbare Genauigkeiten. An dieser Stelle soll noch einmal ein ausführlicher Vergleich mit der alten SINDO1-Version erfolgen, um die erzielten Verbesserungen zu verdeutlichen. Die Grundlage für eine Parametrisierung bilden im allgemeinen Grundzustandseigenschaften wie Bildungsenthalpien $\Delta_{\rm f} H$, Bindungslängen R, Bindungswinkel θ , Ionisierungsenergien I und Dipolmomente μ . Die Ergebnisse wurden durch Eindeterminantenrechnungen ohne Konfigurationswechselwirkung erhalten. Für Systeme mit offenen Schalen

		SINDO1		
Eigenschaft	Vergleiche	neu (V 3.4)	alt $(V3.2)$	
$\Delta_{\rm f} H \; [\rm kcal/mol]$	89	$5,\!25$	8,83	
R [Å]	210	0,013	0,023	
$\theta \; [\mathrm{deg}]$	94	$1,\!69$	2,40	
$I \; [eV]$	83	0,43	0,77	
μ [D]	49	0,34	0,45	

Tabelle 4: Mittlere absolute Fehler für Grundzustandseigenschaften der Elemente H, C, N, O und F.

wurde die eingeschränkte Hartree-Fock-Methode (ROHF) verwendet. Ionisierungsenergien waren die ersten vertikalen Werte, berechnet nach dem Koopmans-Theorem. Die Dipolmomente wurden unter Annahme der ZDO-Näherung berechnet [58]. Dieser Ansatz ergab bessere Resultate gegenüber der alternativen Transformation der orthogonalen Dichte in die nichtorthogonale Basis und der Berücksichtigung der Zweizentrendipolintegrale. Wenn hier Verbesserungen erzielt werden sollen, so muß eine Transformationsmatrix gefunden werden, die in geeigneter Weise die angenommene orthogonale Dichte in SINDO1 in die nichtorthogonale Basis überführt. Das eigentliche Problem ist, daß die orthogonale Dichte in SINDO1 aufgrund der speziellen Hintransformation und der insgesamt vorgenommenen Näherungen nicht eindeutig definiert ist. Für beide SINDO1-Versionen wurden dieselben Eingabedateien und dasselbe Computerprogramm verwendet, um technische Schwierigkeiten zu vermeiden. Ursprünglich waren in der alten Version die Elemente der ersten Reihe auf Bindungsenergien und die Elemente der zweiten Reihe auf Bildungsenthalpien bei 0 K justiert worden. Sie wurden jedoch für diesen Vergleich mit denselben Annahmen behandelt, wie in Abschnitt 4.3 beschrieben.

In Tabelle 4 finden sich die Ergebnisse für Grundzustandseigenschaften von Verbindungen der Elemente H, C, N, O und F. Eine umfassende Aufstellung jeder einzelnen

		SINDO1		
Eigenschaft	Vergleiche	neu (V 3.4)	alt $(V3.2)$	
$\Delta_{\rm f} H \; [\rm kcal/mol]$	177	$6,\!67$	27,26	
R [Å]	233	0,027	0,051	
$\theta \; [\mathrm{deg}]$	133	2,55	4,34	
$I \; [eV]$	94	0,42	$0,\!53$	
μ [D]	59	0,50	0,64	

Tabelle 5: Mittlere absolute Fehler für Grundzustandseigenschaften der Elemente Na, Mg, Al, Si, P, S und Cl.

untersuchten Eigenschaft findet sich in Anhang A. Insgesamt werden die Fehler bei allen Eigenschaften deutlich reduziert. Besonders auffällig sind die Verbesserungen für Bildungsenthalpien, Bindungslängen und Ionisierungsenergien. Weniger ausgeprägt sind Verbesserungen für Dipolmomente. Hierbei könnte jedoch eine andersartige Berechnung der Dipolmomente, wie bereits in diesem Abschnitt vorgeschlagen, erfolgversprechender sein. Allerdings müßten dazu zusätzliche Parameter eingeführt werden. Systematische Fehler, wie z.B. die ungenügende Beschreibung konjugierter Kohlenwasserstoffe oder die ungenaue Vorhersage von Ionisierungsenergien der Verbindungen mit Wasserstoff, konnten deutlich verringert werden.

In Tabelle 5 sind die Ergebnisse für Grundzustandseigenschaften von Verbindungen der Elemente Na, Mg, Al, Si, P, S und Cl aufgelistet. Eine umfassende Aufstellung jeder einzelnen untersuchten Eigenschaft findet sich entsprechend der ersten Reihe in Anhang A. Die Fortschritte sind hier ebenso deutlich wie für die Elemente der ersten Reihe. Der Fehler der Bindungslängen konnte nahezu halbiert werden. Verbesserungen für Bildungsenthalpien sind sogar noch ausgeprägter, bedürfen aber einer näheren Erklärung. Durch Hinzunahme von mehr hypervalenten und ionischen Verbindungen, die in der alten Parametrisierung aus Gründen mangelnder Verfügbarkeit nicht berücksichtigt worden waren, wird das Ergebnis für die alte SINDO1-Version ungünstig verzerrt. Besonders deutlich sind hierbei die Verbesserungen für Dimere und Trimere von NaCl und MgO und für hypervalente Chlorverbindungen. Darüber hinaus haben sich in einigen Fällen die experimentellen Referenzdaten geändert. Nimmt man diese problematischen Verbindungen aus dem Vergleich heraus, so ist die Überlegenheit der neuen SINDO1-Version dennoch beeindruckend [2,3]. Auch die Voraussagen für Bindungswinkel sind wesentlich genauer. Die Verbesserungen für Ionisierungsenergien sind in der zweiten Reihe nicht so groß wie in der ersten Reihe, da die alte SINDO1-Version hier bereits gute Werte lieferte. Bei Dipolmomenten gilt ähnliches wie für die Elemente der ersten Reihe.

Zusammenfassend kann gesagt werden, daß die optimale Leistungsfähigkeit der Methode SINDO1 auf der vorgestellten Basis des Formalismus erreicht wurde. Selbst die Einführung weiterer Parameter würde zu keinem wesentlichen Fortschritt führen. Eine weitergehende Verbesserung kann nur durch eine konsequente Einschränkung der ZDO-Näherung in Richtung NDDO-Näherung erreicht werden. Bei Verwendung der NDDO-Näherung lassen sich einige prinzipielle Fehler der CNDO- und INDO-Methoden beseitigen. Zu nennen ist die mangelhafte Beschreibung gerichteter Wechselwirkungen zwischen π -Molekülorbitalen, wobei besonders bei der inneren Rotation konjugierter Moleküle falsche Konformationen vorhergesagt werden [59]. Der Defekt trifft auch auf Moleküle vom Typ H_mA-BH_n zu, bei denen ein oder zwei einsame Elektronenpaare an den Atomen A und B vorhanden sind.

5 Simulation von Oberflächen

5.1 Cluster als Modell des Festkörpers

Die Adsorption von Wassermolekülen an NaCl(100)- und MgO(100)-Oberflächen soll durch Clustermodelle simuliert werden. Daher ist es notwendig, die Eignung der Cluster als Festkörpermodell zu überprüfen. Dazu werden quaderförmige Ausschnitte des idealen kubischen Kochsalzgitters mit der Annahme gleicher Abstände R nächster Nachbarn gewählt. Als Nomenklatur wird die Form $n_x \times n_y \times n_z$ verwendet, wobei n_x , n_y , n_z die Anzahl der Atome in x-, y-, z-Richtung angeben. Die Bindungsenergie der Cluster wird bezüglich R minimiert. Die Näherung gleicher Abstände ist insbesondere für Kanten- und Eckenatome nur eingeschränkt gültig, da diese Atome aufgrund geringerer Koordination eine stärkere Relaxation erfahren. Randeffekte sind daher implizit in der optimierten Gitterkonstante R enthalten. Die Cluster selbst sollten in der Lage sein, Festkörpereigenschaften zu beschreiben. Mit Hilfe der relativen mittleren Koordinationszahl k können verschiedene Cluster korreliert werden [18]. Damit lassen sich die Gitterkonstante R oder die Bindungsenergie pro stöchiometrischer Einheit $E_{\rm b}$ gegen den Festkörper (k = 1) extrapolieren. Der relativ kleine Beitrag der Nullpunktsenergie pro stöch
iometrischer Einheit zur Atomisierungsenthalpie des Festkörper
s $\Delta H_{\rm a}$ wird bei diesem Verfahren vernachlässigt. Außerdem macht die Art der Optimierung der Cluster eine Berechnung der Nullpunktsenergien unmöglich, da im allgemeinen kein lokales Minimum für die Atompositionen vorliegt. Zur Abschätzung der Größenordnung der Nullpunktsenergie wurde für NaCl und MgO jeweils ein $4 \times 4 \times 4$ -Cluster vollständig relaxiert und anschließend eine Frequenzanalyse durchgeführt. Danach ergaben sich pro stöchiometrischer Einheit 1,2 kcal/mol für NaCl und 3,4 kcal/mol für MgO. Für die Auftragung wurden ausschließlich Cluster verwendet, die sich höchstens in einer Komponente n_x , n_y oder n_z um eine Einheit unterschieden und damit der idealen Würfelform am nächsten kamen. Die größten einbezogenen Cluster hatten 648 Atome $(9 \times 9 \times 8)$ für NaCl und 1000 Atome $(10 \times 10 \times 10)$ für MgO. Wie bereits in Abschnitt 4.5

		SIND	_	
		Vers. 3.4	Vers. 3.2 a	Exp. ^a
$\Delta H_{\rm a, NaCl}$	[eV]	$6,90 (6,86^b)$	$7,\!14$	$6,\!62$
$R_{\rm NaCl}$	[Å]	2,923	2,910	2,820
$\Delta H_{\rm a,MgO}$	[eV]	$10,83 \ (10,71^b)$	10,21	10,26
$R_{\rm MgO}$	[Å]	2,159	2,122	$2,\!104$

Tabelle 6: Extrapolierte Festkörpereigenschaften für NaCl und MgO.

^a [18,61], ^b mit Nullpunktkorrektur (siehe Text)

erwähnt, wurden zur Repäsentation dieser ionischen Systeme kleine Einheiten bis zu den Trimeren in die Parametrisierung aufgenommen. Diese Strategie hat sich letztendlich als entscheidend für die Qualität der Ergebnisse erwiesen. Ein Vergleich der mit der neuen SINDO1-Version extrapolierten Festkörperwerte mit der alten Version und dem Experiment findet sich in Tabelle 6. Die entsprechenden Abhängigkeiten der Gitterkonstanten und Bindungsenergien von der relativen mittleren Koordinationszahl k auf der Basis der neuen Parametrisierung sind in den Abbildungen 1 und 2 für NaCl bzw. in den Abbildungen 3 und 4 für MgO dargestellt, wobei experimentelle Werte durch unterbrochene Linien angezeigt werden. Obwohl in der alten SINDO1-Version in diesem Zusammenhang eine spezielle Justierung vorgenommen wurde [18], sind die Resultate im Verhältnis zur neuen Version von vergleichbarer Qualität, mit minimalen Nachteilen bei der neuen Version. Auffallend ist, daß, verglichen mit dem Experiment, sowohl bei NaCl als auch bei MgO die Atomisierungsenthalpien und die Gitterkonstanten zu groß reproduziert werden. Die relativen Abweichungen hingegen sind klein. Die Berücksichtigung der Nullpunktsenergien verbessert das Ergebnis für die Enthalpien geringfügig. Im Bereich der in dieser Arbeit als Oberflächenmodell verwendeten Cluster ($k \approx 0.85$) ist die Übereinstimmung für Enthalpien bei NaCl und für die Gitterkonstante bei MgO ausgezeichnet. Die Gitterkonstante für NaCl wird in diesem Bereich aber schon deutlich zu groß, was bei der Beurteilung der Adsorptionsenergien in Betracht gezogen Abbildung 1: Bindungsenergie pro Einheit $E_{\rm b}$ in Abhängigkeit von der relativen mittleren Koordinationszahl k für NaCl.

Abbildung 2: Gitterkonstante R in Abhängigkeit von der relativen mittleren Koordinationszahl k für NaCl.

werden muß. Der entscheidende Vorteil der neuen Version gegenüber der alten Version ist das korrekte Steigungsverhalten in den Abbildungen 1 bis 4. D.h., daß die neuen Parameter in der Lage sind, gleichzeitig die NaCl- bzw. MgO-Bindung im Einzelmolekül, wie auch in sehr großen Clustern zu beschreiben. Eine spezielle Anpassung der Bindungsparameter, wie in früheren Arbeiten geschehen [18,60], könnte in Einzelfällen Abbildung 3: Bindungsenergie pro Einheit $E_{\rm b}$ in Abhängigkeit von der relativen mittleren Koordinationszahl k für MgO.

Abbildung 4: Gitterkonstante R in Abhängigkeit von der relativen mittleren Koordinationszahl k für MgO.

Verbesserungen bringen. Dieser Ansatz verschiebt jedoch einerseits die Referenz der kleinen Systeme und ist andererseits bei der Adsorption von Molekülen an Fehlstellen problematisch, denn in diesem Fall ist, z.B. bei der Adsorption von Wasser an einer MgO-Oberfläche mit Sauerstoffehlstellen, die Zuordnung eines Sauerstoffatoms als Teil des Wassermoleküls oder als Teil der Oberfläche nicht mehr eindeutig.

Ein weiterer Vergleichspunkt mit dem Experiment ist die elektronische Struktur der untersuchten Ionenkristalle. In Verbindung mit Farbzentren bildet die Wiedergabe der experimentellen Bandlücke eine wichtige Grundlage, um die Güte der berechneten Anregungsenergien defekter Strukturen zu beurteilen. Als Modellsystem wurde für NaCl und MgO ein $7 \times 7 \times 6$ -Cluster verwendet. Um die Beeinflussung der Ergebnisse durch Randatome zu minimieren, wurde der Cluster in ein Feld von 674 Pseudoatomen eingebettet [16]. Da dieser Cluster als Referenzmodell für Oberflächendefekte dient, wurde entsprechend in Richtung einer Flächennormale des Clusters nicht eingebettet. Dem Einbettungsverfahren müssen die elektronischen Besetzungszahlen der Pseudoatome vorgegeben werden. Dazu wurden als Basis die aus einer Clusterrechnung bestimmten gemittelten Ladungen verwendet, jedoch für beide Systeme vergrößert. Dies war nötig, um die Anteile der Randatome an den MOs im HOMO-LUMO-Bereich einzuschränken. Die gewählten Ladungen entsprachen 0,6 Elektronen für NaCl und 1,2 Elektronen für MgO. Anschließend erfolgte die Optimierung der Gitterkonstanten R. Da die ausschließliche Vergrößerung der Besetzungszahlen für das Einbettungsverfahren den Einfluß der Randatome nicht befriedigend beseitigen konnte, mußten zusätzlich noch alle realen Clusteratome relaxiert werden, deren Koordination kleiner als die im Festkörper war. Das bedeutet, daß die innere $5 \times 5 \times 4$ -Einheit bei zuvor optimierter Geometrie R fixiert wurde und die darum liegende Hülle mit Hilfe einer kartesischen Geometrioptimierung relaxiert wurde. Da ein kartesisches Optimierungsverfahren im Programm nicht enthalten war, mußte dieses zuvor implementiert werden. Analytische erste Ableitungen der Energie bezüglich der kartesischen Koordinaten standen zur Verfügung. Programmiert wurde deshalb ein Newton-Raphson-Verfahren mit BFGS-Update der Hesse-Matrix [62]. Somit konnte weitgehend auf die Berechnung der zweiten Ableitungen verzichtet werden, was zu einer wesentlichen Steigerung der Effizienz führte. Die Berechnung der Bandlücke erfolgte über Konfigurationswechselwirkungs(CI)-Rechnungen mit ausschließlich Einfachanregungen (CIS) [63]. Maßgeblich ist die Energiedifferenz zwischen dem Grundzustand und dem niedrigsten angeregten Singulettzu-

	SII	SINDO1 (CIS)				
	10×10	20×20	30×30	Exp.		
NaCl	10,46	10,23	$10,\!15$	$9{,}0~^a$		
MgO	8,53	8,27	8,20	7,8 ^b		
a [64], b [65]						

Tabelle 7: Berechnete Bandlücken (eV) für NaCl und MgO.

stand nichtverschwindender Übergangswahrscheinlichkeit. In Tabelle 7 sind die mit der neuen SINDO1-Version berechneten Bandlücken für NaCl und MgO im Vergleich mit experimentellen Werten [64,65] gelistet. In Betracht gezogen werden muß die Abhängigkeit bzw. Konvergenz der Anregungsenergien von der Wahl des aktiven Raums einer CI-Rechnung. Als ausreichend erwies sich für diese Cluster ein aktiver Raum von 30 besetzten und 30 virtuellen Orbitalen (30×30) im unmittelbaren Bereich der HOMO-LUMO-Lücke. Die Anregungsenergien werden in beiden Fällen zu groß berechnet. Dies ist eine generelle Eigenschaft der Methode SINDO1. Auf Hartree-Fock-Niveau wird in der Regel die Größe der Bandlücke bei ionischen Systemen überschätzt. Die Zustände der Farbzentren liegen innerhalb der Bandlücke. Um die Anregungsenergien der Farbzentren E_{Def} besser mit den experimentellen Ergebnissen vergleichen zu können, wird eine empirische Korrektur E_{Korr} eingeführt, die vom Fehler der berechneten Bandlücke $E_{\text{B,Exp}} - E_{\text{B,Ber}}$ und von der relativen Lage der Defektzustände innerhalb der berechneten Bandlücke $E_{\text{Def}}/E_{\text{B,Ber}}$ abhängt.

$$E'_{\text{Def}} = E_{\text{Def}} + E_{\text{Korr}}$$
(5.1)
mit $E_{\text{Korr}} = \frac{E_{\text{Def}_1} (E_{\text{B},\text{Exp}} - E_{\text{B},\text{Ber}})}{E_{\text{B},\text{Ber}}}$
wobei $E_{\text{Def}_1} =$ niedrigste Anregungsenergie der Farbzentren
 $E_{\text{B},\text{Exp}}, E_{\text{B},\text{Ber}} =$ Experimentelle bzw. berechnete Bandlücke

Da die untersuchten Festkörper NaCl und MgO ionische Systeme darstellen, soll im folgenden kurz auf die berechneten atomaren Nettoladungen eingegangen werden. Es

NaCl	$\mathrm{Na}^{\mathrm{(III)}}$	$\mathrm{Cl}^{\mathrm{(III)}}$	Na ^(IV)	$\mathrm{Cl}^{(\mathrm{IV})}$	$Na^{(V)}$	$\mathrm{Cl}^{(\mathrm{V})}$	$\mathrm{Na}^{(\mathrm{VI})}$	$\mathrm{Cl}^{(\mathrm{VI})}$
Löwdin	$0,\!52$	-0,51	0,45	-0,45	0,40	-0,40	$0,\!36$	-0,36
Mulliken	0,72	-0,74	0,73	-0,76	0,75	-0,77	$0,\!79$	-0,79
MgO	$\mathrm{Mg}^{(\mathrm{III})}$	$O^{(III)}$	$\mathrm{Mg}^{(\mathrm{IV})}$	$O^{(IV)}$	$\mathrm{Mg}^{(\mathrm{V})}$	$O^{(V)}$	$\mathrm{Mg}^{(\mathrm{VI})}$	$\mathrm{O}^{(\mathrm{VI})}$
Löwdin	0,96	-0,99	1,01	-1,05	1,08	-1,10	1,16	-1,16
Mulliken	$1,\!05$	-1,18	1,19	-1,32	1,36	-1,43	$1,\!56$	-1,56

Tabelle 8: Berechnete atomare Nettoladungen für NaCl und MgO.

ist jedoch in diesem Zusammenhang Vorsicht geboten, denn atomare Besetzungszahlen sind keine Erwartungswerte. Somit unterliegt ihre Interpretation einer gewissen Willkür. Für einen bezüglich der Gitterkonstanten R optimierten $7 \times 7 \times 6$ -Cluster wurde jeweils eine Löwdin- und eine Mulliken-Populationsanalyse [66] durchgeführt. Für die Mulliken-Populationsanalyse mußte zuvor die Dichtematrix \mathbf{P} in der orthogonalen Basis mit Hilfe der exakten $S^{-1/2}$ -Matrix in die nichtorthogonale Basis transformiert werden. Die erhaltenen atomaren Nettoladungen für verschieden koordinierte Atompositionen sind in Tabelle 8 angegeben. Generell ist zu bemerken, daß die Mulliken-Analyse größere Absolutwerte für die Ladungen ergibt. Bei maximaler Koordination sind die Ladungen der Kationen und Anionen gleich, was für die Eignung des gewählten Modellclusters spricht. Beide Populationsanalysen unterscheiden sich für NaCl fundamental im Trend der Ladungen bezüglich der Koordination der Atomposition. Während die Löwdin-Ladungen mit steigender Koordination absolut gesehen kleiner werden, steigen die Mulliken-Ladungen an. Es ist vernünftig anzunehmen, daß die absoluten Ladungen der Atome im Festkörper aufgrund der größeren Madelungsumme nicht kleiner als an der Oberfläche sind. Die Mulliken-Populationsanalyse liefert diesbezüglich den besseren Trend.

Zur Beschreibung der Wechselwirkung adsorbierter Moleküle an Ionenkristallen sind endliche Systeme wie Cluster nur bedingt geeignet, da die langreichweitigen Coulomb-Wechselwirkungen in erster Potenz mit dem Abstand abfallen, die Anzahl der betei-

Abbildung 5: Schematische Darstellung von NaCl-Oberflächenfarbzentren.

ligten Teilchen dagegen in dritter Potenz ansteigt. In dieser Arbeit sollen daher die Modellsysteme möglichst groß gewählt werden, um die Fehler zu verringern. Dies geschieht auch im Hinblick auf die Verzerrung der Ergebnisse durch stärkere Wechselwirkungen adsorbierter Moleküle mit Randatomen geringerer Koordination. Je größer die Oberfläche, desto geringer werden die Ladungsunterschiede zwischen den einzelnen Oberflächenatomen und desto mehr energetisch äquivalente Adsorptionsplätze stehen zur Verfügung. Eine homogene Oberfläche trägt wesentlich zur besseren Interpretierbarkeit der Resultate für Energien und Strukturen bei. Als Basismodell für die glatte Oberfläche und das Oberflächenfarbzentrum F_s (neutrale Anionenfehlstelle) diente ein $9 \times 9 \times 4$ -Cluster. Die Ladungsunterschiede der Oberflächenatome der zentralen $3 \times 3 \times 1$ -Einheit dieses Clusters betragen lediglich 0,001 Elektronen bei NaCl und 0,002 Elektronen bei MgO. Für eine monoatomare Stufe wurde entsprechend eine 9×4×1-Einheit ausgeschnitten. Zur Beschreibung des Oberflächenfarbzentrums M_s (zwei unmittelbar benachbarte neutrale Anionenfehlstellen) wurde ein $10 \times 10 \times 4$ -Cluster verwendet. Eine schematische Darstellung der behandelten Farbzentren für NaCl findet sich in Abbildung 5. Äquivalente Strukturen leiten sich mit entsprechend anderen Formalladungen für MgO-Farbzentren ab.

5.2 Eigenschaften defekter Oberflächen

Im Mittelpunkt dieser Arbeit steht die Untersuchung des Einflusses von Defekten an Oberflächen auf die Adsorption von Wassermolekülen. Wenn dieser Einfluß von Bedeutung ist, dann sollten sich die Eigenschaften defektbehafteter Oberflächen von jenen ohne Defekte signifikant unterscheiden. Bei monoatomaren Stufen reduziert sich die Fragestellung auf die Auswirkung geringerer Koordination von Kantenatomen (IV) im Vergleich zur glatten Oberfläche (V). In Verbindung mit nichtstöchiometrischen Oberflächen, wie z.B. bei Anwesenheit von Farbzentren, sind zusätzlich die veränderten elektronischen Eigenschaften von Bedeutung.

Die experimentelle Darstellung von Farbzentren erfolgt entweder durch ionisierende Strahlung bzw. Elektronenbeschuß mit anschließender Desorption einzelner Atome oder durch Erhitzen eines Ionenkristalls mit einer jeweiligen Komponente im Überschuß. Das Ziel dieser Verfahren ist die Herstellung eines Überschusses einer der beteiligten Komponenten im Vergleich zum stöchiometrischen Kristall. Experimentelle Untersuchungsmethoden und theoretische Analysen sind ausführlich zusammengefaßt worden [19,67–69]. Der Prototyp des Farbzentrums besteht aus einem Elektron, das an eine Anionenfehlstelle gebunden ist. Komplexere Farbzentren, wie die sogenannten Aggregatzentren, aber auch geladene Spezies sind möglich. Die Bezeichnung Farbzentrum hat ihren Ursprung in der optischen Absorption dieser Defekte im sichtbaren Bereich des Lichts. Entscheidend sind hierbei die Energieübergänge zwischen dem Grundzustand und den angeregten Zuständen eines Farbzentrums. Für ein gegebenes Farbzentrum sind mehrere Übergänge möglich. Die Vorgänge sind vereinfacht in Abbildung 6 dargestellt. Die MOs der Farbzentren befinden sich in der verbotenen Zone zwischen Valenzund Leitungsband. Bei NaCl ist dieses MO mit einem Elektron besetzt. Der Grundzustand ist daher ein Dublett. Experimentelle Elektronenspinresonanz-Messungen zeigen, daß der Spinbeitrag dieses Elektrons dem eines relativ freien Elektrons entspricht [69]. Der Grundzustand bei MgO ist ein Singulett, wobei das MO in der Bandlücke mit zwei Elektronen besetzt ist. Eine Farbzentrenabsorption hebt die eingefangenen

Abbildung 6: Schematische Darstellung verschiedener Absorptionsprozesse unter Beteiligung eines Farbzentrums [69].

Elektronen entweder in das Leitungsband (K-Absorption) oder auf sogenannte Exzitonenniveaus unterhalb des Leitungsbands (F-Absorption). Durch β -Absorption kann ein einfach besetzter Defektzustand ein weiteres Elektron aus dem Valenzband einfangen. Die Breite der Absorptionsbanden wird durch die Gitterschwingungen der Ionen hervorgerufen. Das Exziton ist ein angeregtes Elektron-Loch-Paar. In Ionenkristallen sind Exzitonen in der Regel lokalisiert, d.h. der Abstand zwischen Elektron und Loch liegt in der Größenordnung einer Gitterkonstanten [70]. Bei der F-Absorption haben demnach auch die angeregten Zustände der Farbzentren einen relativ hohen lokalen Charakter, wobei sich die Ausdehnung der eingefangenen Elektronen immer noch auf die Nähe zur Anionenfehlstelle beschränkt, wenn auch diffuser als im Grundzustand. In der vorliegenden Arbeit sollen die experimentellen Spektren mit Hilfe von CI-Rechnungen simuliert werden. Dies kann natürlich nur im Rahmen der optimierten Molekülorbitale der Cluster erfolgen. Es wurde dazu generell die eingeschränkte Hartree-Fock-Methode (RHF und ROHF) verwendet, da die Zustandsfunktion der uneingeschränkten Hartree-Fock-Methode (UHF) im allgemeinen keine Eigenfunktion des Spinoperators \hat{S}^2 ist. Für die entsprechende Simulation der experimentellen Spektren wurden ausschließlich einfach angeregte Determinanten aus dem Defekt-MO in den Raum der virtuellen Orbitale berücksichtigt. Dabei ist zu bemerken, daß keine Information über experimentelle Spektren in die Parametrisierung eingegangen ist. Es können daher außer der generellen Uberschätzung der Anregungsenergien im voraus keine Aussagen über die Zuverlässigkeit der berechneten Spektren gemacht werden. Ein $7 \times 7 \times 6$ -Cluster diente als Modellsystem für das Oberflächenfarbzentrum F_s, für ein Volumenfarbzentrum in der ersten Schicht unter der Oberfläche F_{b1} und für ein Volumenfarbzentrum in der zweiten Schicht unter der Oberfläche F_{b2}. Weiterhin wurde ein 8×8×6-Cluster als Modell für das Oberflächenaggregatfarbzentrum M_s verwendet. Die Cluster wurden, wie in Abschnitt 5.1 beschrieben, in ein Feld von Pseudoatomen eingebettet und bezüglich der Gitterkonstanten R optimiert. Danach wurden die entsprechenden Farbzentren durch Entfernung von Chlor- bzw. Sauerstoffatomen erzeugt. Zum Abschluß erfolgte eine kartesische Optimierung der realen Clusteratome, die keine Festkörperumgebung hatten bei fixierter Geometrie aller anderen Atome. In die Optimierung wurden auch die Atome in unmittelbarer Nähe zur Fehlstelle einbezogen. Zur Veranschaulichung der elektronischen Struktur der defektbehafteten Cluster sind in Abbildung 7 für NaCl und in Abbildung 8 für MgO die MO-Diagramme eines Clusters mit interner Anionenfehlstelle (F_{b2}) dargestellt. Die virtuellen MOs sind dabei IVOkorrigiert (Improved Virtual Orbital) [71]. Auch die Energien der teilweise besetzten Orbitale wurden korrigiert [72]. Das Valenz- und Leitungsband dieser ionischen Systeme wird durch die hohe Zustandsdichte in den jeweiligen Bereichen charakterisiert. Augenscheinlich ist insbesondere für NaCl die qualitativ gute Übereinstimmung mit der schematischen Darstellung in Abbildung 6. Sowohl das MO des Farbzentrums als auch die MOs dicht unter dem Leitungsband haben ihre größten Beiträge an den Atomen,

Abbildung 7: MO-Diagramm eines $NaCl(7 \times 7 \times 6)$ -Clusters mit interner Chlorfehlstelle

Abbildung 8: MO-Diagramm eines $MgO(7 \times 7 \times 6)$ -Clusters mit interner Sauerstoffehlstelle (F_{b2} -Zentrum).

die in unmittelbarer Nähe zur Fehlstelle positioniert sind. Somit ist auch garantiert, daß der Grundzustand und die tiefsten angeregten Zustände eines Farbzentrums bezüglich der Ausdehnung der eingefangenen Elektronen einen hohen lokalen Charakter besitzen. Wird die kartesische Optimierung der Randatome nicht durchgeführt, so werden die virtuellen MOs der Farbzentren von den virtuellen MOs der Randatome verdeckt, da letztere MOs zu tieferen Energien verschoben sind.

Experimentelle Untersuchungen an epitaktisch gewachsenen Natriumchloridschichten auf Germanium(100)-Oberflächen wurden kürzlich von Zielasek durchgeführt [73]. Die Erzeugung von Farbzentren erfolgte durch Elektronenbeschuß. Bei Messungen mit Elektronenverlustspektroskopie (ELS-LEED) konnten vier Verlustbanden aufgelöst werden. Die Bande bei 2,69 eV wurde dem Volumenfarbzentrum F_b zugeordnet und die Bande bei 2,03 eV dem Oberflächenfarbzentrum F_s . Optische Messungen ergaben für diese Farbzentren zum Vergleich 2,75 eV bzw. 2,25 eV [74]. Die beiden niederenergetischen Banden bei 1,53 eV und 1,20 eV wurden Oberflächenaggregatfarbzentren (z.B. M_s) zugeordnet. Dabei wurde vermutet, daß möglicherweise auch höhere Aggregate als M_s existent sind, z.B. R_s -Zentren (3 unmittelbar benachbarte neutrale Anionenfehlstellen), wenn auch mit geringerer Wahrscheinlichkeit. Die Zuordnung der beiden niederenergetischen Banden ist im Gegensatz zu den höherenergetischen Banden experimentell nicht eindeutig geklärt. Es wurde von Zielasek vermutet, daß für das M_s -Zentrum wahrscheinlich auch ein Triplett-Grundzustand vorliegen könnte. Gewöhnlich geht man für dieses Farbzentrum von einem Singulett-Grundzustand aus.

Entsprechende theoretische Berechnungen auf ab initio-Niveau wurden von Ahlrichs et al. auf Alkalihalogenid-Cluster der Form $M_{n+1}X_n$ angewendet [75–78]. Zusammenfassend ergaben sich folgende Resultate: Die behandelten Cluster lassen sich gut auf Hartree-Fock-Niveau beschreiben. Korrelationseffekte sind für Strukturen und Anregungsenergien von untergeordneter Bedeutung. Das eingefangene Elektron ist vornehmlich im Bereich der Chlorfehlstelle lokalisiert. Wenn sich die Chlorfehlstelle an der Oberfläche oder an einer Ecke befindet, dehnt sich das eingefangene Elektron in den freien Raum aus. UHF-CIS- und UHF-RPA-Rechnungen unter Verwendung verschiedener Isomere eines Na₁₈Cl₁₇-Clusters konnten die experimentellen Absorptionsenergien der Farbzentren mit guter Übereinstimmung reproduzieren [78]. Die niedrigsten resonanten Übergänge wurden für ein Volumenfarbzentrum zu 2,80 eV und für ein Oberflächenfarbzentrum zu 2,18 eV berechnet.

In SINDO1 steht kein Programmteil zur Verfügung, der Isodichte-Diagramme erzeugt. Atomare Besetzungszahlen oder die Spindichte können aber auf die beteiligten Atome reduziert werden. Da es sich bei NaCl-Farbzentren um ein eingefangenes ungepaartes

Elektron handelt, bietet sich dieses System dazu an, die Aufenthaltswahrscheinlichkeit des ungepaarten Elektrons an den verschiedenen Clusteratomen darzustellen. Um den lokalen Charakter des eingefangenen Elektrons selbst für ein Oberflächenfarbzentrum bei NaCl zu verdeutlichen, werden in Abbildung 9 die atomaren Spindichten für den Grundzustand und den ersten angeregten Zustand gezeigt, wobei die Summe der schwarzen Flächen einem Elektron entspricht. Im Grundzustand ist die Ausdehnung des ungepaarten Elektrons hauptsächlich auf die 5 umgebenden Natriumatome begrenzt. Die größten Beiträge des Defekt-MOs werden von den 3s-Atomorbitalen und jenen 3p-Atomorbitalen der 5 nächsten Natriumatome gebildet, die direkt in Richtung der Fehlstelle zeigen. Die Vorzeichenstruktur der beteiligten MO-Koeffizienten zeigt an, daß auch in SINDO1 eine Tendenz besteht, das Elektron im Bereich der Fehlstelle zu lokalisieren. Im ersten angeregten Zustand ist die Ausdehnung des ungepaarten Elektrons deutlich größer, aber immer noch um den Bereich der Fehlstelle lokalisiert. Die mit SINDO1 berechneten Anregungsspektren für verschiedene NaCl-Farbzentren sind in Abbildung 10 angegeben. Die Spektren wurden unter Verwendung von Beziehung (5.1) korrigiert. E_{Korr} liegt dabei im Bereich von -0.2 eV bis -0.4 eV. Die niedrigsten Anregungsenergien für das Oberflächenfarbzentrum $\mathrm{F_s}$ von 2,33 eV und für die Volumenfarbzentren F_{b1} von 2,72 eV bzw. F_{b2} von 2,63 eV zeigen eine gute Übereinstimmung mit optischen Messungen [74]. Der experimentelle Abstand der Banden von 0,5 eV wird etwas zu klein wiedergegeben. Die Experimente von Zielasek [73] ergeben einen größeren Abstand dieser Banden von nahezu 0,7 eV und zeigen insbesondere für das F_s -Zentrum eine Diskrepanz zu optischen Messungen. Die berechneten Unterschiede zwischen F_{b1}- und F_{b2}-Zentrum sind klein. Obwohl beide Farbzentren Festkörperumgebung haben, hat das F_{b1}-Zentrum ein benachbartes Natriumatom an der Oberfläche, welches einen etwas höheren Spinanteil besitzt. Die Zuordnung für das Aggregatfarbzentrum M_s wird schwieriger. Für einen Singulett-Grundzustand (S_0) konnte keine Anregungsenergie unter 2 eV ermittelt werden, wie von Zielasek für diese Farbzentren vorausgesagt. Die niedrigste Anregungsenergie wurde zu 2,37 eV bestimmt. Erst

Abbildung 9: Atomare Spindichten eines NaCl-Oberflächenfarbzentrums.

1. angeregter Zustand (D_1)

bei Annahme eines Triplett-Grundzustands (T_0) wurden entsprechende Werte berechnet. Allerdings liegt dieser Triplett-Zustand in SINDO1 ohne Relaxation des Clusters etwa 1,3 eV über dem Singulett-Zustand. Die beiden niedrigsten Anregungsenergien für den Triplett-Zustand liegen bei 1,33 eV und 1,93 eV. Möglicherweise sind auch noch andere Aggregatfarbzentren beteiligt. So ist z.B. nach Zielasek auch ein anderer

Abbildung 10: Berechnete elektronische Anregungsspektren für NaCl-Farbzentren (Oszillatorenstärke gegen Anregungsenergie).

Typ M'_s -Zentrum vorstellbar, bei dem sich eine Chlorfehlstelle in der obersten Atomlage und die zweite in der darunter liegenden Atomlage befindet. Die entsprechenden niedrigten Anregungsenergien mit SINDO1 für einen Triplett-Grundzustand betragen 1,67 eV und 1,93 eV. Nach SINDO1 könnten also die experimentellen Verlustbanden unter 2 eV nur von M_s -Zentren in ihren Triplett-Zuständen hervorgerufen werden. Experimentelle Untersuchungen an ultradünnen Magnesiumoxidfilmen auf Silber(100)-

Oberflächen wurden gerade von Schröder abgeschlossen [79]. Farbzentren wurden durch bezüglich Sauerstoff unterstöchiometrisches Magnesiumoxid (MgO_{1-x}) erzeugt. Die Elektronenverlustspektroskopie-Messungen (EELS) ergaben zwei Verlustbanden bei 3.2 eV und 2.3 eV. Die Zuordnung der Banden konnte nicht endgültig geklärt werden. Es müssen jedoch Zustände existieren, die den gemessenen Verlustenergien entsprechende Abstände zum Leitungsband haben. Es wurde angenommen, daß die Farbzentren aufgrund der Präparationsbedingungen nur Sauerstoffehlstellen (F-Zentren) darstellen können. Weiterhin wurde angenommen, daß sich die Fehlstellen an der Oberfläche oder zumindest dicht unterhalb der Oberfläche befinden. Möglicherweise sind auch positiv geladene Farbzentren (F_s^+ -Zentren) existent. Untermauert werden diese Annahmen von Henrich et al. [80], die mit EELS-Messungen ebenfalls eine Verlustbande bei 2,3 eV finden. Der Verlust wird einem oberflächennahen Defekt zugeordnet und kann bei Angebot von Sauerstoff ausgeheilt werden [81]. Magnesiumoxideinkristalle, die in einer Mg-Atmosphäre getempert wurden, zeigen eine Absorption bei 5 eV und Lumineszenzlicht bei 3,2 eV und 2,3 eV [82]. Die Bande bei 5 eV wurde von Schröder nicht beobachtet, sie wird in der Literatur den Volumenfarbzentren zugeordnet. Wu et al. [83] führten EELS-Messungen an ultradünnen Magnesiumoxidfilmen auf Molybdän(100) durch und erhielten Verlustbanden bei 1,15 eV und 3,58 eV, wobei die erste Bande Oberflächenfarbzentren und die zweite Aggregatzentren zugeordnet wurde. Eine weitere Bande bei 5,33 eV wurde den Volumenfarbzentren zugewiesen.

Die Angaben von theoretischer Seite sind widersprüchlich. Kantorovich et al. [84] haben mit DFT-Rechnungen Energieabstände zum Valenzband von 2,7 eV für ein F_b -Zentrum und 2,3 eV für ein F_s -Zentrum berechnet. Verbunden mit der experimentellen Bandlücke von 7,8 eV finden sie eine gute Übereinstimmung mit der Bande bei 5 eV. Gibson et al. [85,86] finden dagegen mit Bandstruktur-DFT-Rechnungen die Defekt-Niveaus dicht unterhalb des Leitungsbands. Die Energieniveaus für das Volumen- und das Oberflächenfarbzentrum unterscheiden sich nur geringfügig. Gleiches gilt auch für die geladenen Farbzentren. Die Autoren finden weiterhin einen resonanten Übergang

der Farbzentren von etwa 4 eV weit in das Leitungsband, wo eine erhöhte Dichte von Mg-Zuständen mit *p*-Charakter vorliegt. Die angeregten Elektronen fallen strahlungslos zur Unterkante des Leitungsbands, worauf ein strahlender Übergang in den Grundzustand des Farbzentrums erfolgt. Einen Zustand von 2,5 eV unterhalb des Leitungsbands für ein neutrales F_s-Zentrum bei gleichzeitig geringer Farbzentrendichte finden auch Castanier und Noguera [87] mit einer periodischen CNDO-Rechnung. Illas und Pacchioni [88] bestimmen wiederum mit MRCI-Rechnungen an Cluster-Modellen die optischen Anregungen für Farbzentren im Volumen zu ungefähr 6 eV. Mit einer Korrektur von 1 eV wurden diese mit der experimentellen Bande bei 5 eV in Einklang gebracht. Für Oberflächenfarbzentren sind die Anregungsenergien um den Faktor 2 kleiner und liegen mit derselben Korrektur wie für die Volumenfarbzentren im Bereich der experimentellen Bande bei 2,3 eV. Aufgrund der Clustergröße und der Rechenmethode mußten aber Kompromisse bei der Wahl der Basisfunktionen eingegangen werden. Weiterhin wurden in der Fehlstelle nichtatomzentrierte Basisfunktionen angesetzt, die speziell auf die optischen Übergänge im Volumen angepaßt wurden. In einer anderen Arbeit untersuchten Ferrari und Pacchioni [89] die elektronische Struktur von MgO-Farbzentren. Sie bestimmten die Lage des Defekt-MOs für ein F_s-Zentrum ungefähr in der Mitte der Bandlücke. Für ein positiv geladenes F_s^+ -Zentrum verschiebt sich die Lage des MOs in Richtung des Leitungsbands. Für dieses Farbzentrum wird außerdem eine hohe Lokalisierung des ungepaarten Elektrons im Bereich der Fehlstelle gefunden.

Die mit SINDO1 berechneten Anregungsspektren für verschiedene MgO-Farbzentren finden sich in Abbildung 11. Dabei wurden auch geladene Spezies berücksichtigt. Die Spektren wurden wie bei NaCl mit Beziehung (5.1) korrigiert. E_{Korr} liegt hier im Bereich von -0,1 eV. Die Zuordnung einzelner Werte ist noch schwieriger als bei NaCl, denn sowohl das Experiment als auch theoretische Berechnungen ergeben keine übereinstimmenden Voraussagen. Zunächst fällt auf, daß die Volumenfarbzentren F_b neben den niedrigsten Übergängen im Bereich von 2,3 eV auch noch signifikante resonante Übergänge bei 5 eV aufweisen, die einer Anregung weit ins Leitungsband entsprechen.

Sie decken sich daher weitgehend mit dem Modell von Gibson et al. [85,86]. Die niedrigsten Werte von 2,28 eV für F_{b1} und 2,25 eV für F_{b2} passen eher zu den vermuteten Werten für Oberflächenfarbzentren. Die Oszillatorenstärken sind für die positiv geladenen F⁺_b-Zentren insgesamt weniger ausgeprägt. Das F⁺_{b1}-Zentrum zeigt eine geringe Rotverschiebung gegenüber dem F_{b1} -Zentrum. Interessant werden die Verhältnisse an der Oberfläche. Das F_s-Zentrum hat eine niedrigste Anregungsenergie bei 3,08 eV. Es kann daher nach SINDO1 nicht mit der experimentellen Verlustbande bei 2,3 eV in Verbindung gebracht werden, wohl aber mit der experimentellen Bande bei 3,2 eV [79]. Das $\mathrm{F_s^+}\text{-}\mathrm{Zentrum}$ hat dagegen die geringste Anregung bei 2,47 eV und zeigt daher eine bessere Übereinstimmung mit der experimentellen Bande bei 2,3 eV. Das einzige Farbzentrum mit einer Anregungsenergie unter 2 eV ist das M_s -Zentrum mit 1,53 eV. Dieser Wert stellt aber noch eine deutliche Diskrepanz zu dem gemessenen Wert bei 1,15 eV dar [83]. Die in derselben Arbeit gemessene Verlustbande bei 3,58 eV paßt recht gut zu den mit SINDO1 vorhergesagten Spektren für Aggregatzentren. Das M_s -Zentrum zeigt starke resonante Übergänge bei 3,13 eV und 3,28 eV und das schon bei NaCl vorgestellte M'_s-Zentrum bei 3,26 eV und 3,73 eV. Insgesamt müssen aber die hier vorgenommenen Zuordnungen und Vergleiche aufgrund der ungeklärten Verhältnisse sowohl auf experimenteller als auch auf theoretischer Seite als vorläufig angesehen werden.

6 Adsorption von Wasser an defekten Oberflächen

Die Adsorption kleiner Moleküle an defektfreien Isolatoroberflächen wie NaCl und MgO wurde gerade in den letzten Jahren intensiv erforscht [90]. Es liegt mittlerweile eine Vielzahl von Daten bezüglich Adsorptionsenergien und -strukturen vor. Über den Einfluß von Defekten werden dagegen allenfalls qualitative Aussagen gemacht, da sich die Herstellung definierter Defekte an Oberflächen als sehr schwierig erweist. Fehlstellen an Oberflächen, wie z.B. Farbzentren, erweisen sich als äußerst reaktiv und ändern das Verhalten einiger Adsorbatmoleküle von Physisorption zu Chemisorption. Dies gilt besonders für die Adsorption von Wasser an diesen Defekten. In diesem Abschnitt sollen daher die energetischen und strukturellen Effekte bei der Adsorption von H₂O-Molekülen an defekten Oberflächen untersucht werden. Die behandelten Defekte sind eine monoatomare Stufe sowie die Farbzentren F_s und M_s . Die Ergebnisse werden mit jenen der defektfreien Oberfläche verglichen.

Im folgenden Abschnitt wird zunächst die Durchführung der Clusterrechnungen beschrieben. Dabei wird speziell auf die Wahl der Cluster, die Relaxation der Oberfläche und die Berücksichtigung von Wasserstoffbrückenbindungen bei MgO eingegangen. Für die Adsorptionssysteme H₂O/NaCl und H₂O/MgO wird vor der Präsentation der eigenen Ergebnisse jeweils ein Überblick über vorhandene experimentelle und theoretische Veröffentlichungen gegeben. Die Rechnungen wurden mit der neuen SINDO1-Version unter Verwendung der in dieser Arbeit vorgestellten Parametrisierung durchgeführt. Festkörperoberflächen wurden dazu mit Clustermodellen simuliert, deren Eigenschaften bereits in Abschnitt 5 beschrieben wurden. Die Verwendung von Clustern erscheint hier besonders geeignet, da schon die Struktur relativ kleiner NaCl- und MgO-Cluster der des Festkörpers entspricht [75,91,92]. Experimentelle und theoretische Untersuchungen an Clustern bzw. Clustermodellen zur Beschreibung von Oberflächen- und Festkörperphänomenen wurden im Rahmen einer Konferenz zusammengefaßt [93]. Die Erweiterung von SINDO1 auf die Simulation von Oberflächen unter Verwendung von Clustermodellen wurde bereits von Jug [94] beschrieben.

6.1 Durchführung der Clusterrechnungen

In einer früheren Untersuchung der Adsorption von Wasser an MgO mit SINDO1 wurde als Modell ein $6 \times 6 \times 4$ -Cluster gewählt und dessen Größe in bezug auf die geeignete Beschreibung einer Oberfläche als ausreichend befunden [60]. Um den Einfluß der Randatome und den Fehler bei der Berücksichtigung der langreichweitigen Wechselwirkungen weiter zu minimieren, wurde in dieser Arbeit als Basismodell ein $9 \times 9 \times 4$ -Cluster (A₁₆₂B₁₆₂) verwendet. Eine Darstellung dieses Clusters sowie einer monoatomaren Stufe $(A_{144}B_{144})$, die durch Herausschneiden einer $9 \times 4 \times 1$ -Stufe entsteht, findet sich für NaCl in Abbildung 12. Die Art der Darstellung einzelner Elemente in den folgenden Abschnitten wird in Abbildung 13 gezeigt. In allen folgenden Abbildungen zur Adsorption von Wasser an NaCl- und MgO-Oberflächen dienen Bindungen zwischen den Atomen lediglich zur Veranschaulichung der Koordinationsverhältnisse und geben in der Regel nicht die realen Bindungsverhältnisse wieder. Dabei sind die Bindungen des Clusters zu den adsorbierten Atomen aber auch schwache Bindungen zwischen den adsorbierten Atomen durch unterbrochene Linien zu erkennen. Auf eine Einbettung der Cluster mit Pseudoatomen wurde in diesem Zusammenhang verzichtet, da die Adsorbatmoleküle in der Regel weit genug von den Randatomen entfernt sind. Stattdessen wurde die Anzahl der realen Clusteratome so groß wie möglich im Rahmen der zur Verfügung stehenden Rechnerkapazität gewählt. Bei der Simulation der Oberflächenfarbzentren wurde besonders deren lokale Symmetrie (C_{4v} für F_s und C_{2v} für M_s) berücksichtigt. Durch Entfernen des zentralen Anions auf einer Oberfläche des $9 \times 9 \times 4$ -Clusters kann ein F_s-Zentrum erzeugt werden (A₁₆₂B₁₆₁). Zur Simulation des M_s-Zentrums wurde ein $10 \times 10 \times 4$ -Cluster verwendet, wobei zwei unmittelbar benachbarte Anionen im zentralen Bereich einer Oberfläche entfernt wurden $(A_{200}B_{198})$.

Bei der Berechnung von Adsorptionsenergien und -strukturen wurde wie folgt vorgegangen: die gewählten Modellcluster wurden zunächst bezüglich der Gitterkonstante R optimiert. Optimierte Werte für die verwendeten Modellcluster sind in Tabelle 9 aufgeführt. Die berechnete Gitterkonstante der NaCl-Cluster ist im Vergleich zum Ex-

Abbildung 12: Modellcluster für die glatte Oberfläche und eine monoatomare Stufe.

 $9 \times 9 \times 4$ -Cluster (Na₁₆₂Cl₁₆₂)

 $9 \times 9 \times 4$ -Cluster mit $9 \times 4 \times 1$ -Stufe (Na₁₄₄Cl₁₄₄)

Abbildung 13: Darstellung einzelner Elemente in den Adsorbatstrukturen.

periment zu groß. Da die Adsorptionsenergien unter anderem von den Abständen der Clusteratome abhängen und speziell die dissoziative Adsorption durch eine größere Gitterkonstante begünstigt wird, werden bei NaCl auch die Adsorptionsenergien tendenziell zu groß sein. Der Einfluß der Gitterkonstante soll aber nicht näher untersucht werden, da die dissoziative Adsorption von Wasser an stöchiometrischen NaCl-Oberflächen ohnehin keine Rolle spielt. Die berechneten Gitterkonstanten der MgO-Cluster zeigen dagegen eine sehr gute Übereinstimmung mit dem Experiment. Nach Hinzufügen der

Cluster	NaCl	MgO
$9 \times 9 \times 4 (A_{162} B_{162})$	2,858	2,098
$9 \times 9 \times 4$ mit $9 \times 4 \times 1$ -Stufe (A ₁₄₄ B ₁₄₄)	2,851	2,093
$10 \times 10 \times 4 (A_{200}B_{200})$	2,860	2,100
Exp. (Festkörper) a	2,820	2,104
^a [18,61]		

Tabelle 9: Optimierte Gitterkonstante R (Å) für die verwendeten Modellcluster.

Wassermoleküle in molekularer oder dissoziativer Form erfolgte eine lokale Strukturoptimierung der zusätzlichen Atome zuerst ohne und dann mit Berücksichtigung der Oberflächenrelaxation des Clusters. Für die lokale Relaxation eines Clusters wurden jene Atome der Oberfläche optimiert, die mindestens drei Atompositionen vom Rand des Clusters entfernt waren. So wurde bei einem $9 \times 9 \times 4$ -Cluster die zentrale $5 \times 5 \times 1$ -Einheit der Oberfläche einbezogen. Bei einer monoatomaren Stufe wurden zusätzlich die Atome der Innenkante berücksichtigt, die formal Festkörperumgebung besitzen, da für diese Atome zumindest bei MgO signifikante Relaxationsbeiträge zu verzeichnen sind [95]. Bei Farbzentren (Anionenfehlstellen) wurden außerdem alle Kationen der ersten Koordinationssphäre einbezogen. Die Auswirkungen dieser Art der Relaxation auf einen NaCl $(9 \times 9 \times 4)$ - und MgO $(9 \times 9 \times 4)$ -Cluster sind in Tabelle 10 angegeben. Dabei bedeuten R_0 die optimierte Gitterkonstante des Clusters, r_{Kation} und r_{Anion} die gemittelten Abweichungen der Kationen bzw. Anionen von ihren Positionen in der ursprüglichen Oberfläche (0,0), R_1 den gemittelte Abstand der optimierten Atome zu der darunterliegenden Schicht, d die relative mittlere Verschiebung der Kationen und Anionen zu R_1 und E_{Rel} den Energiegewinn des Clusters durch die Relaxation. Zunächst ist zu bemerken, daß bei beiden Systemen sowohl die Kationen als auch die Anionen aus der Oberfläche herauskommen. Besonders auffällig ist jedoch das unterschiedliche Verhalten in bezug auf die relativen Bewegungen von Anionen und Kationen. Während bei NaCl die Anionen stärker aus der Oberfläche herauskommen, ist dies bei MgO ge-
	$\mathrm{Na}_{162}\mathrm{Cl}_{162}$	$\mathrm{Mg}_{162}\mathrm{O}_{162}$
R_0 [Å]	2,858	2,098
$r_{ m Kation}$ [Å]	0,043	0,168
$r_{\rm Anion}$ [Å]	0,121	0,089
R_1 [Å]	2,940	2,227
$\mid d \mid [\text{\AA}]$	0,039	0,040
$E_{\rm Rel} \; [\rm kcal/mol]$	4,4	44,3

Tabelle 10: Relaxationseffekte an der Oberfläche bei Na₁₆₂Cl₁₆₂ und Mg₁₆₂O₁₆₂.

nau umgekehrt. Insgesamt wurde dieses Verhalten bereits in der alten SINDO1-Version beobachtet [61] und steht bei MgO im Gegensatz zu experimentellen Befunden. Beiden Systemen gemeinsam ist die Vergrößerung von R_1 gegenüber R_0 , wobei die relativen Verschiebungen d in beiden Fällen nahezu gleiche Werte aufweisen. Energetische Effekte dagegen sind bei MgO deutlich stärker ausgeprägt als bei NaCl, was aufgrund der größeren Bindungsenergie für MgO verständlich erscheint. Wichtig wird die Berücksichtigung der Oberflächenrelaxation besonders bei der Dissoziation, wo stärkere Bindungen mit der Oberfläche eingegangen werden. Die berechneten Adsorptionsenergien ergeben sich schließlich aus der Differenz der Energie des Gesamtsystems und der isolierten Systeme. Da der isolierte lokal relaxierte Cluster durch die Optimierung der Atompositionen der relaxierten Oberflächenatome ebenfalls eine Egergieerniedrigung erfährt, kann es durchaus der Fall sein, daß sich mit Berücksichtigung der Relaxation der Oberfläche weniger stabilere Adsorptionsenergien ergeben als ohne Relaxation. In einigen Fällen wurden zur Abschätzung der Energiebarriere zwischen molekularer und dissoziativer Adsorption Übergangszustände berechnet, was sich teilweise als problematisch und sehr rechenintensiv erwies, da zumindest zu Beginn der Optimierung eine vollständige analytische Hesse-Matrix für die adsorbierten Atome berechnet werden mußte. Implementiert wurde hierzu ein Lokalisierungsverfahren für Übergangszustände nach Baker [96].

Für die Adsorption von H₂O auf MgO wurden zusätzlich *p*-Orbitale am Wasserstoff angesetzt, um möglichen Brückenbindungen zu Sauerstoffatomen der Oberfläche Rechnung zu tragen. Die Maßnahme liegt darin begründet, daß im allgemeinen Rechnungen mit dem normalen Basissatz am Wasserstoff eine zu kleine Wechselwirkungsenergie ergeben, wenn das System Wasserstoffbrückenbindungen enthält. Eine Präsentation des Formalismus und die Implementierung in SINDO1 liegt vor [97]. Da jedoch die erforderlichen Parameter aus der alten SINDO1-Version in Verbindung mit der neuen SINDO1-Version unbefriedigende Resultate ergaben, mußte eine Anpassung dieser Parameter vorgenommen werden. Grundlage dafür bildeten die drei Dimere $(H_2O)_2$, $(NH_3)_2$ und $(HF)_2$. In der üblichen Notation (Zitat [97], Gleichungen 1–7) ergaben sich in atomaren Einheiten:

$$\zeta_{2p}^{\text{H}} = 0.1270$$
 $I_{2p}^{\text{H}} = 0.1047$
 $a = 7/8 \ (p\sigma \in A)$ $a = 1/6 \ (p\pi \in A)$

Die mit diesen Parametern berechneten Eigenschaften der drei verwendeten Dimere im Vergleich zur alten SINDO1-Version und zum Experiment sind in Tabelle 11 zusammengefaßt. θ_A und θ_D bezeichnen dabei den Akzeptorwinkel bzw. Donorwinkel und D_e ist die Dimerisierungsenergie [97]. Beim H₂O-Dimer wird der OO-Abstand mit der neuen SINDO1-Version etwas zu klein wiedergegeben, dafür stimmt die Dimerisierungsenergie gut mit dem Experiment überein. Für die Dimerisierungsenergien sind Verbesserungen im Vergleich zur alten SINDO1-Version zu verzeichnen, Strukturdaten sind von vergleichbarer Qualität. Die Gegenüberstellung zeigt, daß mit der neuen SINDO1-Version Wasserstoffbrückenbindungen zuverlässig beschrieben werden. Allerdings traten bei MgO-Farbzentren unvernünftig große Besetzungszahlen der *p*-Orbitale am Wasserstoff auf, verbunden mit einem signifikanten Energiegewinn. Genauere Untersuchungen konnten diese Eigenschaft nicht beseitigen. Da jedoch die energetischen Effekte der Adsorption von H₂O an MgO-Farbzentren die energetischen Effekte durch Wasserstoffbrückenbindungen bei weitem überwiegen, wurden in diesen Fällen keine *p*-Orbitale am Wasserstoff verwendet. Für die Rechnungen mit NaCl wurden insgesamt

$(H_2O)_2$	$R_{\rm OO}$	$ heta_A$	θ_D	D_e
SINDO1 (Vers. 3.4)	2,93	122,3	$5,\!4$	-5,5
SINDO1 (Vers. 3.2) a	2,98	141,2	2,2	-4,4
Exp. b	2,98	122,0	1,0	-5,4
$(\mathrm{NH}_3)_2$	$R_{\rm NN}$	$ heta_A$	θ_D	D_e
SINDO1 (Vers. 3.4)	3,24	175,7	3,0	-3,0
SINDO1 (Vers. 3.2) a	$3,\!18$	176,7	$2,\!6$	-2,5
Exp. b	3,27		9,1	-3,8
$(\mathrm{HF})_2$	$R_{\rm FF}$	$ heta_A$	$ heta_D$	D_e
SINDO1 (Vers. 3.4)	2,79	114,4	$13,\!5$	-4,7
SINDO1 (Vers. 3.2) a	2,79	124,7	6,8	$-5,\!0$
Exp. ^b	2,72	117,0	10,0	-4,9

Tabelle 11: Strukturdaten R (Å), θ (°) und Dimerisierungssenergie D_e (kcal/mol) für $(H_2O)_2$, $(NH_3)_2$ und $(HF)_2$.

^a [97], ^b [97] (teilweise ab initio-Daten)

keine Wasserstoffbrückenbindungen angesetzt, da bei diesem System kaum Unterschiede durch die Verwendung von p-Orbitalen am Wasserstoff im Vergleich zum normalen Basissatz zu verzeichnen sind [61].

6.2 Adsorption an NaCl(100)

6.2.1 Experimentelle und theoretische Grundlagen

Die Adsorption von Wasser an NaCl(100)-Oberflächen ist mit verschiedenen Methoden unter Ultrahochvakuumbedingungen (UHV) untersucht worden. Sowohl Elektronenspektroskopie an epitaktischen Schichten [98,99] als auch Heliumatomstrahlstreuung (HAS) [100] bzw. Fourier-Transform-Infrarotspektroskopie (FTIR) [101,102] an Spaltkristallen finden bei tiefen Temperaturen eine zweidimensionale Kondensationsphase von Wasser. Es wurde ausschließlich molekulare Adsorption an der defektfreien Oberfläche beobachtet. Für die isostere Adsorptionsenergie einer Monolage ergaben sich fast übereinstimmende Werte von 15,5 kcal/mol an epitaktischen Schichten [98, 99] bzw. 13,9–15,0 kcal/mol an Spaltkristallen [100]. Molekulardynamik- [103] und DFT-Rechnungen mit Einbettung [104] ergaben zum Vergleich Adsorptionsenergien von 9,6 bzw. 9 kcal/mol für die Adsorption eines einzelnen H₂O-Moleküls über der Position eines Natriumatoms und eine Ausrichtung des Dipolmoments senkrecht zur Oberfläche. In der Monolage sind dagegen die Dipole der Wassermoleküle nahezu parallel zur Oberfläche ausgerichtet. Picaud und Girardet [105] berechneten mit klassischen Potentialen eine Adsorptionsenergie von 8,0 kcal/mol für ein Wassermolekül mit der molekularen Ebene nahezu parallel zur Oberfläche. Bruch et al. [100] folgerten ebenfalls aus klassischen Rechnungen zum Experiment, daß die Wassermoleküle in der Monolage parallel zur Oberfläche angeordnet sind. Gleichzeitig wurde jedoch der Wert von Wassermann et al. [103] für die Adsorptionsenergie eines einzelnen Wassermoleküls von 9,6 kcal/mol bezweifelt, da sich damit nicht die hohen gemessenen Werte für die Monolage erklären lassen. Mit Hilfe von optischen Messungen (FTIR) zur Adsorption von D_2O an Spaltkristallen beobachteten Heidberg und Häser [101,102] eine Rotverschiebung der Streckschwingungsbanden zu den Gasphasenwerten und begründeten dies mit Brückenbindungen, wobei nicht eindeutig geschlossen werden konnte, welcher Art die Brückenbindungen sind. Polarisationsabhängige Messungen deuten auf eine Neigung des Dipolmoments der asymmetrischen Streckschwingung zur Oberfläche, was im Widerspruch zum Strukturmodell von Bruch et al. [100] steht. Bei Anwesenheit von Oberflächendefekten in Form von Farbzentren wurde zusätzlich dissoziative Adsorption beobachtet [73,106], die über die Frequenzverschiebung der OH-Streckschwingung entdeckt wurde. Danach entstehen sogenannte OH⁻-Zentren, wobei eine OH-Gruppe den Platz einer Anionenfehlstelle einnimmt. Die OH-Streckschwingung der OH⁻-Zentren von 360 meV ist stark im Vergleich zum Gasphasenwert von 463 meV verschoben [73]. Es konnte weiterhin gezeigt werden, daß die OH-Bindung um etwa 40° gegenüber der Oberflächennormalen geneigt ist [107].

Abbildung 14: Struktur der Adsorption von H₂O an NaCl (defektfreie Oberfläche). Ausschnitt des Clusters Na₁₆₂Cl₁₆₂: molekulare H₂O-Adsorption (I, II).

6.2.2 Defektfreie Oberfläche

Die stabilste Struktur für die Adsorption eines einzelnen Moleküls wurde mit dem Sauerstoffatom über der Position eines Natriumatoms mit einer leichten Verschiebung in (110)-Richtung gefunden, wobei die beiden Wasserstoffatome auf benachbarte Chloratome gerichtet sind (I). Ein weiteres energetisch fast gleichwertiges Minimum (II) ergibt sich durch eine Drehung des Wassermoleküls von 45° um eine Achse senkrecht zur Oberfläche durch das adsorbierende Natriumatom. Das Sauerstoffatom ist hier etwas in (100)-Richtung verschoben. Die Energiebarriere zwischen den beiden Minima liegt deutlich unter 1 kcal/mol. Somit ist eine freie Drehbarkeit des Moleküls bei höheren Temperaturen als 0 K wahrscheinlich. Eine Darstellung der beiden Adsorptionsstrukturen findet sich in Abbildung 14. Die entsprechenden Strukturdaten und Adsorptionsenergien sind in Tabelle 12 aufgeführt. Dabei bedeutet R_{NaO} die Bindungslänge zum zentralen Natriumatom der Oberfläche, R_{OH} und ϕ_{HOH} sind die internen Koordinaten des Wassermoleküls, $\theta_{\rm NaO/n_s}$ ist der Winkel, den die NaO-Bindung mit der Oberflächennormalen $n_{\rm s}$ bildet und $\vartheta_{\rm C_2(H_2O)/n_s}$ der Winkel, den die C₂-Achse des Wassermoleküls mit der Oberflächennormalen einschließt. Die berechneten Strukturdaten entsprechen weitgehend der alten SINDO1-Version [61]. Für die OH-Bindung des Wassermoleküls ist eine minimale Vergrößerung im Vergleich zum isolierten Molekül zu verzeichnen,

$Na_{162}Cl_{162}$	Ι	II
$R_{ m NaO}$	2,377 (2,353)	2,376 (2,354)
$R_{\rm OH}$	0,961 (0,961)	0,961 (0,961)
$\phi_{ m HOH}$	104,9 (104,9)	104,9 (104,9)
$ heta_{ m NaO/n_s}$	2,7 (2,1)	2,4 (1,0)
$\vartheta_{\rm C_2(H_2O)/n_s}$	45,0 (45,0)	44,5 (43,6)
E_{Ads}	-12,0 $(-13,1)$	-12,0 $(-13,1)$

Tabelle 12: Strukturdaten R (Å), ϕ , θ , ϑ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) für H₂O an NaCl (defektfreie Oberfläche). ^{*a*}

^a Werte mit Relaxation der Oberfläche in Klammern

das gleiche gilt für den HOH-Winkel. Im Gegensatz zu anderen Rechnungen [103,105] ist die Ebene des Wassermoleküls um etwa 45° zur Oberfläche geneigt. Die mit der neuen SINDO1-Version berechneten Adsorptionsenergien sind deutlich größer im Vergleich zur alten SINDO1-Version und anderen Rechnungen [103–105]. Sie passen recht gut zu den experimentellen Werten für eine Monolage [100], wenn man annimmt, daß laterale Beiträge klein sind. Spürbare Auswirkungen durch die Relaxation der Oberfläche sind nur für die Adsorptionsenergien zu verzeichnen. Die interne Geometrie des Wassermoleküls bleibt nahezu unverändert. Dissoziative Adsorption an der defektfreien Oberfläche stellte sich energetisch als extrem ungünstig heraus. Es konnten daher keine stabilen Strukturen ermittelt werden. Entweder erfolgte sofortige Rekombination ohne Barriere zu molekularem Wasser oder der Energieverlust lag im Bereich der Bindungsenergie des Wassermoleküls. Bindungen der Dissoziationsprodukte zur Oberfläche werden demnach kaum ausgebildet. Erst nach Ansetzen eines Triplett-Grundzustands konnten Adsorptionsenergien von etwa +104 kcal/mol für die dissoziative Form ermittelt werden, die jedoch formal der Adsorption der Radikale ²OH und ²H entsprechen. Dieser Wert liegt knapp unter der Energie von +116.5 kcal/mol, die für die Spaltung einer OH-Bindung des Wassermoleküls aufzubringen ist. Die Differenz entspricht daAbbildung 15: Struktur der Adsorption von H₂O an NaCl (monoatomare Stufe). Ausschnitt des Clusters Na₁₄₄Cl₁₄₄: molekulare H₂O-Adsorption (III, IV).

bei ziemlich genau der Adsorptionsenergie von molekularem Wasser. Dissoziation von Wasser an der defektfreien Oberfläche kann auf der Grundlage dieser Ergebnisse mit Sicherheit ausgeschlossen werden.

6.2.3 Monoatomare Stufe

Die Adsorption eines H₂O-Moleküls an einer monoatomaren Stufe ist etwa um 10 kcal/mol gegenüber der Adsorption an der defektfreien Oberfläche begünstigt. Die stabilste Struktur liegt eindeutig auf der Unterseite der Stufe (III) mit dem Sauerstoffatom zwischen zwei Natriumatomen plaziert. Die Projektion der C₂-Achse des Wassermoleküls auf die Oberfläche liegt dabei entlang einer (100)-Richtung. Eine Darstellung dieser Struktur sowie einer Adsorption an der Oberseite der Stufe (IV) findet sich in Abbildung 15. Die entsprechenden Strukturdaten und Adsorptionsenergien sind in Tabelle 13 aufgeführt. R_{NaO} ist dabei der Abstand zum zentralen Natriumatom in der Oberkante der Stufe, R_{OH} und ϕ_{HOH} sind die internen Koordinaten des Wassermoleküls, θ_{NaO/n_s} ist der Winkel, den die NaO-Bindung mit der Oberflächennormalen n_s bildet und $\vartheta_{C_2(\text{H}_2\text{O})/n_s}$ ist der Winkel, den die C₂-Achse des Wassermoleküls mit der Oberflächennormalen einschließt. Die Vergrößerung der OH-Bindung und des HOH-Winkels gegenüber dem isolierten Molekül ist hier etwas ausgeprägter als an der defektfreien

$Na_{144}Cl_{144}$	III	IV
$R_{ m NaO}$	2,415 (2,429)	2,337 (2,326)
$R_{\rm OH}$	0,964 (0,964)	0,961 $(0,961)$
$\phi_{ m HOH}$	105,4 (105,2)	105,1 (105,1)
$ heta_{{ m NaO}/n_{ m s}}$	100,0 (96,9)	9,0 (18,8)
$\vartheta_{\rm C_2(H_2O)/n_s}$	44,2 (47,4)	36,2 (23,2)
$E_{\rm Ads}$	-23,6 ($-22,8$)	-15,0 $(-15,7)$

Tabelle 13: Strukturdaten R (Å), ϕ , θ , ϑ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) für H₂O an NaCl (monoatomare Stufe). ^{*a*}

^a Werte mit Relaxation der Oberfläche in Klammern

Oberfläche. Die Relaxation der Oberfläche hat darauf wie auch auf die Adsorptionsenergien kaum einen Einfluß. Entscheidend für die Bevorzugung der Adsorption an der Unterseite der Stufe ist die Wechselwirkung des Sauerstoffatoms mit zwei Natriumatomen in der Oberkante und auf der Unterseite der Stufe, so daß für den Sauerstoff eine verbrückte Anordnung entsteht. Dissoziation konnte an der Stufe aus den gleichen Gründen wie an der defektfreien Oberfläche nicht gefunden werden. Die Adsorptionsenergie für einen Triplett-Grundzustand, also die Adsorption der Radikale ²OH und ²H, liegt bei etwa +95 kcal/mol. Der Differenzbetrag dieser Energie zu der Energie, die aufgewendet werden muß, um eine OH-Bindung des Wassermoleküls zu spalten, entspricht auch hier fast übereinstimmend der Adsorptionsenergie für die molekulare Adsorption (III). Auch an der Stufe kann somit die dissoziative Adsorption von Wasser ausgeschlossen werden.

6.2.4 Farbzentren $F_{\rm s}$ und $M_{\rm s}$

Völlig veränderte Verhältnisse liegen bei Oberflächenfarbzentren vor. Sie erweisen sich mit SINDO1 als sehr reaktiv. Eine Darstellung der untersuchten Adsorptionsstrukturen an einem F_s -Zentrum findet sich in Abbildung 16. Die dazugehörigen Strukturdaten

- Abbildung 16: Struktur der Adsorption von H₂O an NaCl (Farbzentrum F_s). Ausschnitt des Clusters Na₁₆₂Cl₁₆₁: molekulare H₂O-Adsorption (V, VI), Übergangszustand (VII), dissoziative H₂O-Adsorption (VIII)^{*}, ²OH-Adsorption (IX), ²H-Adsorption (X).
 - * mit Oberflächen
relaxation

V

VI

VII

VIII

$\mathrm{Na}_{162}\mathrm{Cl}_{161}$	V	VI	VII
$R_{\mathrm{O,n_{s\perp}}}$	0,241 (0,227)	0,202 (0,262)	-0,411
$R_{\rm OH}$	0,987 (0,992)	0,987 (0,993)	$0,\!951$
$R_{\rm OH'}$	1,105 (1,098)	1,093 $(1,102)$	1,864
$\phi_{ m HOH}$	113,9 (113,0)	115,2 (116,5)	83,1
$E_{\rm Ads}$	-31,7 $(-39,9)$	-28,5 (-31,2)	-9,9

Tabelle 14: Strukturdaten R (Å), ϕ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) der molekularen H₂O-Adsorption an einem NaCl-F_s-Zentrum.^{*a*}

^a Werte mit Relaxation der Oberfläche in Klammern

Tabelle 15: Strukturdaten R (Å), θ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) der dissoziativen H₂O-Adsorption an einem NaCl-F_s-Zentrum. ^{*a*}

$Na_{162}Cl_{161}$	VIII	VIII IX	
$R_{\mathrm{O,n_{s\perp}}}$	$-0,506\ (-0,109)$	-0,500 $(-0,118)$	
$R_{\mathrm{H,n_{s\perp}}}$	4,616 (4,677)		-0,459 $(-0,210)$
$R_{\rm OH}$	0,946 (0,945)	0,946 (0,945)	
$R_{\rm OH'}$	6,574 (6,270)		
$ heta_{ m OH/n_s}$	44,1 (2,4)	43,6 (1,1)	
$E_{\rm Ads}$	-20,2 $(-40,7)$	-136,8 (-149,8)	-87,5 $(-99,6)$

^a Werte mit Relaxation der Oberfläche in Klammern

und Adsorptionsenergien sind in den Tabellen 14 und 15 angegeben. Hier bedeuten $R_{\text{O},n_{s\perp}}$ und $R_{\text{H},n_{s\perp}}$ die Abstände der Atome zur Oberfläche (negative Zahlen bedeuten, daß die Atome unterhalb der Oberfläche positioniert sind), R_{OH} und ϕ_{HOH} sind interne Koordinaten ($R_{\text{OH'}}$ ist bei der molekularen Adsorption die in die Fehlstelle gerichtete Bindungslänge und sonst die Bindungslänge zum abgespaltenen Wasserstoff) und $\theta_{\text{OH/ns}}$ ist der Winkel der OH-Bindung zur Oberflächennormalen n_{s} . Schon die molekulare Adsorption ist an F_{s} deutlich begünstigt gegenüber der Adsorption an der

defektfreien Oberfläche und an einer Stufe. Die stabilste Struktur ergibt sich, wenn eine OH-Bindung fast senkrecht zur Oberfläche steht und die Ebene des Moleküls parallel zur (110)-Richtung steht (V). Eine weitere energetisch etwas ungünstigere Struktur wurde gefunden, wenn die Ebene des Wassermoleküls parallel zur (100)-Richtung steht (VI). Sowohl die Bindungslängen als auch der Bindungswinkel sind in beiden Fällen deutlich gegenüber dem isolierten Molekül vergrößert, was auf eine Schwächung der internen Bindungen hinweist. Das isolierte Farbzentrum ist ein offenschaliges System. In Abschnitt 5.2 wurde gezeigt, daß die Spindichte des ungepaarten Elektrons nahezu vollständig an den die Fehlstelle umgebenden Natriumatomen lokalisiert ist. Nach der Adsorption eines Wassermoleküls ist die Spindichte überwiegend an den Atomen des Wassermoleküls lokalisiert, wobei das Wasserstoffatom, dessen Bindung in die Fehlstelle gerichtet ist, einen deutlich höheren Anteil besitzt als das andere, welches fast senkrecht zur Oberfläche steht. Auch die positiven Ladungen der Wasserstoffatome sind deutlich verringert im Vergleich zum isolierten Molekül. Da das Wassermolekül den Platz einer Anionenfehlstelle einnimmt, kann formal von einem H_2O^- ausgegangen werden. Der wesentliche Unterschied zur defektfreien Oberfläche und zur Stufe besteht aber darin, daß auch die dissoziative Adsorption an einem F_s-Zentrum (VIII) im Vergleich zu den isolierten Systemen möglich ist. Die Spindichte ist hier vollständig auf das abgespaltene Wasserstoffatom übergegangen, das selbst kaum Bindungen zur Oberfläche ausbildet, was aus dem großen Abstand zur Oberfläche ersichtlich wird. Ohne Berücksichtigung der Relaxation der Oberfläche konnte auch der entsprechende Übergangszustand (VII) zwischen der molekularen Form (V) und der dissoziativen Form (VIII) gefunden werden. Die Barriere liegt danach bei etwa 20 kcal/mol. Die molekulare Adsorption ist ohne Relaxation der Oberfläche energetisch noch bevorzugt, mit Relaxation der Oberfläche werden molekulare und dissoziative Adsorption fast gleichwertig mit einer minimalen Begünstigung der dissoziativen Adsorption. Der Energiegewinn durch die Relaxation der Oberfläche ist bei der dissoziativen Adsorption deutlich größer. An dieser Stelle stellt sich die Frage, welche Effekte den Energieverlust für die Spaltung der OH-Bindung des Wassermoleküls von +116,5 kcal/mol kompensieren. Dazu kann man sich die Spaltung des Wassermoleküls in ein OH-Radikal und ein H-Radikal vorstellen. Die Kombination dieser Radikale mit dem F_s-Zentrum (IX und X) ergibt in beiden Fällen einen beträchtlichen Energiegewinn, der mit Relaxation der Oberfläche noch größer wird. Eindeutig bevorzugt ist die Verbindung eines F_s-Zentrums mit einem OH-Radikal, so daß es wahrscheinlich ist, daß bei der Dissoziation von H₂O an einem F_s-Zentrum eine OH-Gruppe den Platz der Anionenfehlstelle einnimmt. Allein diese Verbindung ist ausreichend, um den Energieverlust zur Spaltung einer OH-Bindung des Wassermoleküls zu kompensieren. Formal kann auch hier von einem OH⁻ bzw. H⁻ ausgegangen werden, jedoch ist die OH-Bindung im Vergleich zum isolierten Radikal nicht verlängert, sondern verkürzt. Interessant ist die Auswirkung der Oberflächenrelaxation auf die Strukturen der adsorbierten Radikale. Ohne Relaxation tauchen die adsorbierten Atome sehr stark in die Fehlstelle ein und die OH-Bindung ist gegenüber der Oberflächennormalen in (110)-Richtung geneigt. Eine Neigung in dieser Größenordnung wird auch aus experimentellen Befunden angenommen [107]. Das adsorbierte Wasserstoffatom ist zentral in der Fehlstelle positioniert. Das Sauerstoffatom der OH-Gruppe ist dagegen etwas in (110)-Richtung von der Mittelposition verschoben und zwar derart, daß jetzt das Wasserstoffatom ungefähr über der zentralen Position der Fehlstelle angeordnet ist. Mit Relaxation verschieben sich die adsorbierten Atome wieder in Richtung der Oberfläche und sind zentral in der Fehlstelle angeordnet. Die OH-Bindung steht nunmehr senkrecht zur Oberfläche, was der Ausrichtung der OH-Bindung in Struktur (VIII) entspricht, wo ebenfalls Oberflächenrelaxation berücksichtigt wurde. Ein Grund dafür ist sicherlich, daß sich die Natriumatome in der ersten Koordinationssphäre zur Fehlstelle hin bewegen. Davon ist besonders das Natriumatom in der ersten Schicht unter der Oberfläche betroffen.

Ein weiteres mögliches Oberflächenfarbzentrum stellt das M_s -Zentrum dar. Die untersuchten Strukturen sind in Abbildung 17 angegeben und die entsprechenden Strukturdaten und Adsorptionsenergien sind in Tabelle 17 zusammengefaßt. Die Bedeutung der Symbole entspricht denen des F_s -Zentrums. Die Neigung der OH-Bindung (θ_{OH/n_s}) zeigt dabei stets in (110)-Richtung. In Betracht gezogen wurde ausschließlich Abbildung 17: Struktur der Adsorption von H₂O an NaCl (Farbzentrum M_s). Ausschnitt des Clusters Na₂₀₀Cl₁₉₈: dissoziative H₂O-Adsorption (XI, XII).

Tabelle 16: Strukturdaten R (Å), θ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) der dissoziativen Wasseradsorption an einem M_s-Zentrum. ^{*a*}

$\mathrm{Na}_{200}\mathrm{Cl}_{198}$	Х	XI	X	II
$R_{\mathrm{H,n_{s\perp}}}$	$-0,\!050$	(-0,247)	$-0,\!355$	(-0,259)
$R_{\mathrm{O,n_{s\perp}}}$	$-0,\!541$	(-0,041)	$-0,\!436$	(-0,048)
$R_{\rm OH}$	0,944	(0,947)	0,945	(0,947)
$R_{\rm HH}$	3,119	(3,972)	4,586	(3, 956)
$ heta_{ m OH/n_s}$	45,7	(2,9)	44,3	(2,5)
E_{Ads}	-89,5 (-	-100,0)	-85,4 (+	-99,9)

^a Werte mit Relaxation der Oberfläche in Klammern

die dissoziative Adsorption, da hier die Möglichkeit besteht, beide Spaltungsprodukte des Wassermoleküls in den Fehlstellen zu plazieren. Zudem dissoziierte ein zu Beginn an einem M_s -Zentrum molekular angesetztes Wassermolekül während der Strukturoptimierung ohne nennenswerte Barriere zu Struktur (XI), wobei die Relaxation der Oberfläche berücksichtigt wurde. Der Grundzustand des M_s -Zentrums ist ein Singulett. Nach SINDO1 ist es um 25 kcal/mol günstiger, aus zwei isolierten Anionenfehlstellen auf der Oberfläche ein M_s -Zentrum zu bilden. Die resultierenden Adsorptionsenergien zeigen, daß die Dissoziation an einem M_s -Zentrum stark exotherm ist, wenn sowohl die OH-Gruppe als auch das abgespaltene Wasserstoffatom in den Fehlstellen verbleiben (XI, XII). Der Energiegewinn ist mehr als doppelt so groß wie bei der Dissoziation an einem F_s -Zentrum (VIII). Für die Auswirkungen der Relaxation der Oberfläche gilt ähnliches wie beim F_s -Zentrum. Die Strukturen XI und XII werden dann identisch, da sich die OH-Bindung senkrecht zur Oberfläche ausrichtet. Offenbar wird die Begünstigung von Struktur XI gegenüber XII durch die Wechselwirkung des abgespaltenen partiell negativ geladenen Wasserstoffatoms mit dem anderen partiell positiv geladenen Wasserstoffatom der OH-Gruppe verursacht. Die Möglichkeit der Dissoziation von Wasser an einem M_s -Zentrum ist also viel eher gegeben als die Dissoziation an einem F_s -Zentrum, jedoch ist die experimentell bestimmte Anzahl von M_s -Zentren auf der Oberfläche kleiner als die der F_s -Zentren [73].

Zum Abschluß dieses Abschnitts erfolgt noch eine Untersuchung der Schwingungsfrequenzen adsorbierter Spezies an einem F_s-Zentrum. Experimentell wurde nach Adsorption von Wasser an einer Oberfläche, auf der zuvor Farbzentren erzeugt worden waren. neben den Verlustbanden für molekular adsorbierte Wassermoleküle, eine zusätzliche Verlustbande bei 360 meV (2904 cm⁻¹) beobachtet [73]. Es wurde angenommen, daß die zusätzliche Verlustbande durch OH⁻-Zentren hervorgerufen wird, wobei die OH-Streckschwingung eine sehr starke Rotverschiebung gegenüber dem Gasphasenwert aufweist. Inwieweit diese Annahme mit den mit SINDO1 berechneten Schwingungsfrequenzen übereinstimmt, wird in Tabelle 17 gezeigt. Es werden hier nur die internen Schwingungen angegeben. Zur besseren Vergleichbarkeit mit dem Experiment wurden die Werte zuvor derart skaliert, daß die berechnete Schwingungsfrequenz des isolierten OH-Radikals exakt mit dem experimentellen Wert von 3735 cm^{-1} übereinstimmte. Der Skalierungsfaktor ergab sich zu 0,721. Diese Skalierung ist notwendig, da im allgemeinen die mit SINDO1 berechneten Schwingungsfrequenzen zu große Werte annehmen, die relativen Verschiebungen bei Adsorptionen werden dagegen recht zuverlässig beschrieben [40]. Für das isolierte Wassermolekül ergeben sich mit diesem Skalierungsfaktor die berechneten Schwingungsfrequenzen in energetisch abfallender Reihenfolge zu 3705 $\rm cm^{-1}$,

Mode b		V	-	VI	-	IX		Х
$ u_1 $	3138	(3071)	3132	(3070)	3639	(3708)	621	(838)
ν_2	1567	(1658)	1703	(1657)				
$ u_3$	1231	(1241)	1254	(1211)				

Tabelle 17: Berechnete Schwingungsfrequenzen adsorbierter Spezies an einem $\rm F_{s}\textsc{-}$ Zentrum in cm^-1. a

^a Werte mit Relaxation der Oberfläche in Klammern

^b Bezeichnung in energetisch abfallender Reihenfolge

 3657 cm^{-1} und 1753 cm^{-1} . Die beiden Streckschwingungen zeigen eine gute Übereinstimmung mit den experimentellen Gasfrequenzen des Wassermoleküls von 3756 $\rm cm^{-1}$ und 3657 cm⁻¹. Dabei ist zu bemerken, daß die relative energetische Abfolge von asymmetrischer und symmetrischer Streckschwingung korrekt wiedergegeben wird. Die Winkelschwingung zeigt im Vergleich zum experimentellen Wert von 1595 $\rm cm^{-1}$ größere Abweichungen. Ein Fehler von 100 cm^{-1} entspricht etwa einer Energie von 0.3 kcal/mol. Bei den Schwingungsfrequenzen aus Tabelle 17 beschränkte sich die Berechnung der Hesse-Matrix lediglich auf die adsorbierten Atome. Aufgrund des Massenunterschieds zwischen adsorbierten Atomen und Oberflächenatomen erscheint diese Näherung gerechtfertigt. Das überraschende Ergebnis der berechneten Schwingungsfrequenzen ist, daß nach SINDO1 die experimentell gemessene stark rotverschobene Bande nicht von einem OH⁻-Zentrum stammen kann. Im Vergleich zum isolierten OH-Radikal ergibt sich für (IX) lediglich eine Rotverschiebung von wenigen Wellenzahlen. Die fundamentale Annahme, daß die Schwingungsfrequenz einer OH⁻-Gruppe durch Koordination mit einem Kation rotverschoben wird, ist nach Knözinger et al. [108] nicht richtig. Rotverschiebungen entstehen danach beispielsweise durch Wasserstoffbrückenbindungen. Die können bei NaCl aber keine Rotverschiebung von über 800 $\rm cm^{-1}$ erklären. H⁻-Zentren kommen auch nicht in Frage, da ihre Frequenzen zu klein sind. Die bei weitem beste Übereinstimmung zeigt das molekular adsorbierte Wasser (H_2O^-) mit 3071 cm^{-1} (V). Die beiden Streckschwingungen sind hier fast vollständig entkoppelt. Der Wert von 3071 cm^{-1} entspricht einer Schwingung der OH-Bindung senkrecht zur Oberfläche und der bei 1658 cm⁻¹ gehört zur OH-Bindung, die in die Fehlstelle gerichtet ist. Der Wert von 1241 cm⁻¹ kommt von der Winkelschwingung des Wassermoleküls, die ebenfalls stark rotverschoben ist. Möglicherweise wird die experimentell gemessene Verlustbande bei 2904 cm⁻¹ also nicht durch OH⁻-Zentren hervorgerufen, sondern durch an F_s -Zentren molekular adsorbierte Wassermoleküle.

6.3 Adsorption an MgO(100)

6.3.1 Experimentelle und theoretische Grundlagen

Die Adsorption von Wasser an MgO(100)-Oberflächen ist experimentell und theoretisch eingehend untersucht worden. Im Gegensatz zu NaCl, wo auf der defektfreien Oberfläche ausschließlich molekulare Adsorption beobachtet wurde, sind die Aussagen aus Experimenten bei MgO weniger übereinstimmend. Messungen mit Ultraviolett- (UPS) und Röntgenspektroskopie (XPS) an Einkristallen [109] sowie mit Infrarotspektroskopie an Rauch [110] bzw. an Einkristallen [111,112] geben keinen Hinweis auf dissoziative Adsorption. Auf der anderen Seite zeigen Experimente mit Elektronenverlustspektroskopie (HREELS) an Filmen auf Molybdän [113] und Infrarotspektroskopie an Pulvern [114], daß Hydroxylierung der Oberfläche eintritt. Die isostere Adsorptionsenergie für eine Monolage wurde mit Heliumatomstrahlstreuung (HAS) an Spaltkristallen zu 20,4 kcal/mol mit einer lateralen Wechselwirkung von 8,4 kcal/mol bestimmt [115, 116]. Folglich ergeben sich 12 kcal/mol als Adsorptionsenergie für ein einzelnes Molekül. Zum Vergleich berechneten Picaud et al. [105,117] mit klassischen Potentialen eine Adsorptionsenergie für ein einzelnes Molekül von 12,1 kcal/mol mit der Ebene des Wassermoleküls fast parallel zur Oberfläche und McCarthy et al. erhielten mit Kraftfeld-Rechnungen, deren Parameter an Daten aus periodischen Hartree-Fock-Rechnungen angepaßt worden waren, eine Adsorptionsenergie von 17,5 kcal/mol mit einer Neigung der Ebene eines Wassermoleküls um 105° zur Oberflächennormalen und der Ausrich-

tung der Wasserstoffatome auf nächste Sauerstoffatome der Oberfläche [118]. Heidberg et al. [111,112] führten optische Untersuchungen (FTIR) an Einkristallen durch und schlossen aus polarisationsabhängigen Messungen, daß die Ebenen adsorbierter Wassermoleküle in der Monolage nahezu parallel zur Oberfläche ausgerichtet sind. Aufgrund der starken Rotverschiebung und Verbreiterung der Streckschwingungsbanden im Vergleich zur Gasphase wurden starke Brückenbindungen zwischen den Wassermolekülen angenommen. Einzelne scharfe Banden wurden an Stufen adsorbierten Wassermolekülen oder freien OH-Valenzen zugeordnet. Temperaturabhängige Adsorptionsund Desorptionsexperimente an defekten Einkristallen deuten darauf hin, daß Wasser an defekten Oberflächen teilweise dissoziativ adsorbiert vorliegt [119]. Verschiedene theoretische Untersuchungen kommen zu einem einheitlichen Ergebnis. Danach dissoziiert Wasser an defekten Oberflächen, aber nicht an der defektfreien Oberfläche. Sowohl Goniakowski und Noguera [120] mit periodischen CNDO-Rechnungen als auch Scamehorn et al. [121] mit periodischen Hartree-Fock-Rechnungen schlossen Dissoziation an der glatten Oberfläche aufgrund der großen endothermen Hydroxylierungsenergie aus. Allerdings wurde in beiden Arbeiten die Geometrie der Dissoziationsprodukte mit der Einschränkung der Orthogonalität zur Oberfläche optimiert. Erst an einer Ecke oder Kante ist dissoziative Adsorption energetisch begünstigt [121]. Qualitativ gleiche Ergebnisse wurden auch von Langel und Parrinello [122] (Car-Parrinello-Methode) erhalten, wobei Dissoziation lediglich an einer Stufe gefunden wurde. Scamehorn et al. [121] untersuchten außerdem die Dissoziation in Abhängigkeit von der Gitterkonstanten und fanden, daß Dissoziation mit größerer Gitterkonstante energetisch günstiger wird. Sie versuchen damit die experimentell beobachtete Dissoziation an Filmen [113] zu erklären, bei denen der Unterschied der Gitterkonstanten zwischen Film und Unterlage zu einer leichten Vergrößerung der Gitterkonstanten des MgO-Films führt.

6.3.2 Defektfreie Oberfläche

Die Adsorption von Wasser an MgO unterscheidet sich in wesentlichen Aspekten von jener auf NaCl. Einerseits sind die formalen Ladungen von Kationen und Anionen bei

MgO doppelt so groß wie bei NaCl. Die MgO-Gitterkonstante ist viel kleiner als die NaCl-Gitterkonstante, so daß stärkere Brückenbindungen zur Oberfläche ausgebildet werden können. Und schließlich sind hier Sauerstoffatome sowohl im Adsorbat als auch im Adsorbens vorhanden. Sämtliche an der defektfreien Oberfläche untersuchten Strukturen der molekularen und dissoziativen Adsorption sind in Abbildung 18 dargestellt. Auskunft über die dazugehörigen Strukturdaten und Adsorptionsenergien geben die Tabellen 18 und 19. Dabei ist R_{MgO} der Abstand des adsorbierten Sauerstoffatoms zu einem benachbarten Magnesium
atom der Oberfläche, $R_{\rm OH}$ und $\phi_{\rm HOH}$ sind die internen Koordinaten des Wassermoleküls (bei der dissoziativen Adsorption bedeutet R_{OH} die OH-Bindung der adsorbierten OH-Gruppe, $R_{OH'}$ die OH-Bindung des abgespaltenen Wasserstoffatoms zum Sauerstoffatom der Oberfläche und $R_{OH''}$ der Abstand des Sauerstoffatoms der adsorbierten OH-Gruppe vom abgespaltenen Wasserstoffatom), θ_{OH/n_s} ist die Neigung der OH-Bindung zur Oberflächennormalen $n_{\rm s}$ und $\vartheta_{\rm C_2(H_2O)/n_s}$ der Winkel der C₂-Achse des Wassermoleküls zur Oberflächennormalen. Bei der Auffindung der lokalen Minima für die molekulare Adsorption spielte die Verwendung von p-Orbitalen am Wasserstoff eine entscheidende Rolle, denn nur bei deren Berücksichtigung existiert das stabilste gefundene Minimum (I), wobei die Strukturdaten weitgehend mit der alten SINDO1-Version [60] und auch mit ab initio-Rechnungen [118] übereinstimmen. Um Brückenbindungen zur Oberfläche ausbilden zu können, verschiebt sich der Sauerstoff des Wassermoleküls entlang einer (110)-Richtung und die Ebene des Wassermoleküls liegt fast parallel zur Oberfläche, wobei die Wasserstoffatome näher zur Oberfläche stehen und auf benachbarte Sauerstoffatome der Oberfläche ausgerichtet sind. Allerdings werden für die Adsorptionsenergien im Vergleich zur alten SINDO1-Version deutlich kleinere Werte erhalten [60]. Experimentelle Befunde zeigen jedoch ähnliche Resultate bei der Extrapolation zu kleinen Bedeckungsgraden [115,116]. Danach existieren starke laterale Wechselwirkungen mit dem Resultat, daß die Adsorptionsenergien bei geringen Bedeckungsgraden kleiner ausfallen als in der Monolage. Klassische Rechnungen unterstützen diese Befunde [105,117]. Im Vergleich zum Experiment werden jedoch die mit der neuen SINDO1-Version berechneten Adsorptionsenergien für die molekulare Abbildung 18: Struktur der Adsorption von H₂O an MgO (defektfreie Oberfläche). Ausschnitt des Clusters Mg₁₆₂O₁₆₂: molekulare H₂O-Adsorption (I, II), dissoziative H₂O-Adsorption (III–V)^{*}, Übergangszustand (VI)^{*}.

* mit Oberflächenrelaxation

III

V

IV

$\mathrm{Mg}_{162}\mathrm{O}_{162}$	Ι	II
$R_{ m MgO}$	2,236 (2,194)	2,335 (2,290)
$R_{\rm OH}$	0,969 (0,971)	0,960 (0,960)
$\phi_{ m HOH}$	108,9 (108,6)	104,9 (104,7)
$ heta_{\mathrm{MgO}/n_{\mathrm{s}}}$	19,1 (21,6)	2,1 (1,1)
$\vartheta_{\rm C_2(H_2O)/n_s}$	104,4 (106,9)	22,8 (28,7)
E_{Ads}	-6,0 $(-8,0)$	-4.8 (-6.4)

Tabelle 18: Strukturdaten R (Å), ϕ , θ , ϑ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) der molekularen H₂O-Adsorption an MgO (defektfreie Oberfläche). ^{*a*}

^{*a*} Werte mit Relaxation der Oberfläche in Klammern

Tabelle 19: Strukturdaten R (Å), ϕ , θ , ϑ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) der dissoziativen H₂O-Adsorption an MgO (defektfreie Oberfläche). ^{*a*}

$\mathrm{Mg}_{162}\mathrm{O}_{162}$	III	IV	V	VI
$R_{\rm MgO}$	(2,084)	(1,935)	1,896 (1,861)	(2,359)
$R_{\rm OH}$	(0,930)	(0,931)	0,922 (0,921)	(0,944)
$R_{\rm OH'}$	(0,952)	(0,955)	0,973 $(0,955)$	(1, 436)
$R_{\rm OH''}$	(1, 842)	(1, 863)	2,292 (2,253)	(1,036)
$ heta_{{ m OH}/n_{ m s}}$	(14,1)	(46,0)	$0,0\ ^{b}$ $(0,0)\ ^{b}$	(2,4)
$\theta_{{\rm OH}'/n_{ m s}}$	(5,1)	(10,7)	$0,0\ ^{b}$ $(0,0)\ ^{b}$	(17,2)
$E_{\rm Ads}$	(-26,0)	(-23,6)	+35,8 (+5,2)	(-0,6)

^{*a*} Werte mit Relaxation der Oberfläche in Klammern

^b Festgehaltene Werte

Adsorption geringfügig unterschätzt. Ein anderes höher liegendes Minimum für die molekulare Adsorption stellt Struktur (II) dar, die energetisch gleichwertig zu einer weiteren Struktur ist, die aus (II) durch eine Drehung von 45° um eine Achse durch das adsorbierende Magnesiumatom erzeugt werden kann und die symmetriegleich zu

(I) ist. Diese beiden höher liegenden Strukturen wurden mit nahezu identischen Adsorptionsenergien auch ohne p-Orbitale am Wasserstoff gefunden. Bei Struktur (I) ist eine beträchtliche Vergrößerung der internen Koordinaten im Vergleich zum isolierten Wassermolekül zu verzeichnen, dagegen bleiben bei (II) die internen Koordinaten fast unbeeinflußt. Die Ergebnisse bei der Untersuchung der dissoziativen Adsorption an der defektfreien Oberfläche unterstreichen die Bedeutung der Relaxation der Oberfläche bei einer Dissoziation von Wasser an MgO. Bei Vernachlässigung der Relaxation erfolgte sofortige Rekombination ohne Barriere zu molekularem Wasser, so daß sich in diesem Fall die dissoziative Adsorption als ungünstig herausstellt. Mit Relaxation der Oberfläche erweist sich dagegen die dissoziative Adsorption sogar als stabiler im Vergleich zur molekularen Adsorption. Das tiefste Minimum ergab eine verbrückte Anordnung für das Sauerstoffatom der OH-Gruppe zu zwei Magnesiumatomen der Oberfläche (III) mit einer Neigung beider OH-Bindungen in (110)-Richtung. Energetisch etwas höher liegt (IV). Bei beiden Strukturen (III) und (IV) deutet $R_{OH''}$ auf die Anwesenheit von Wasserstoffbrückenbindungen zwischen dem Sauerstoffatom der adsorbierten OH-Gruppe und dem abgespaltenen Wasserstoffatom hin. Struktur (V) dient zum Vergleich mit anderen Rechnungen [120,121], die eine senkrechte Anordnung der adsorbierten Spezies zur Oberfläche voraussetzten und Dissoziation aufgrund der positiven Hydroxylierungsenergie ausschlossen. Unter dieser Einschränkung erweist sich auch mit SINDO1 die dissoziative Adsorption als ungünstig gegenüber den isolierten Systemen. Dies gilt sowohl ohne als auch mit Relaxation der Oberfläche, wobei sich die Relaxation nur auf die beiden Atome der Oberfläche beschränkte, die an den Bindungen zu den adsorbierten Spezies beteiligt waren und für diese Oberflächenatome nur Bewegungen senkrecht zur Oberfläche berücksichtigt wurden. Hier sind auch sehr gut die Effekte einer lokalen Relaxation zu erkennen. Sowohl das Magnesiumatom als auch das Sauerstoffatom werden durch die Bindungen zu den adsorbierten Atomen im Vergleich zum isoliert relaxierten Cluster sehr stark aus der Oberfläche herausgezogen und zwar das Magnesiumatom um 0,31 Å bzw. das Sauerstoffatom um 0,53 Å. Struktur (V) ist aufgrund der unterschiedlichen Berücksichtigung der Oberflächenrelaxation nicht direkt mit (IV) vergleichbar. Bei Struktur (IV) bewegen sich nämlich das Sauerstoffatom der OH-Gruppe und das abgespaltene Wasserstoffatom aufeinander zu und die Oberflächenatome direkt darunter voneinander weg. Die OH-Bindung ist hier ungefähr in (100)-Richtung orientiert. Die Abstände R_{MgO} , R_{OH} und $R_{OH'}$ sind bei allen dissoziativen Strukturen im Vergleich zur molekularen Adsorption verkürzt. Das gilt besonders für den Abstand R_{OH} der adsorbierten OH-Gruppe. Der Übergangszustand (VI) korrespondiert eindeutig zu Struktur (III) und konnte nur mit Relaxation der Oberfläche gefunden werden, da nur dann die dissoziativen Formen Minima an benachbarten Adsorptionsplätzen besitzen. Danach liegt die Barriere bei 7–8 kcal/mol, wenn von der molekularen Struktur (I) ausgegangen wird.

6.3.3 Monoatomare Stufe

Die berechneten Adsorptionsenergien an einer monoatomaren Stufe bei MgO sind wesentlich größer als an der defektfreien Oberfläche. Dies gilt sowohl für die molekulare als auch für die dissoziative Adsorption. Die bevorzugten Adsorptionsplätze liegen wie bei NaCl auf der Unterseite der Stufe. Fast alle auf der Oberseite angesetzten Strukturen bewegten sich während der Optimierung zur Unterseite der Stufe. Aufgrund dieser Eigenschaft wurden Strukturen auf der Oberseite der Stufe nicht in die weitere Diskussion einbezogen. Die relevanten Strukturen sind in Abbildung 19 zu finden. Die entsprechenden Strukturdaten und Adsorptionsenergien sind in Tabelle 20 zusammengefaßt. R_{MgO} ist hier der Abstand des adsorbierten Sauerstoffatoms zum zentralen Magnesiumatom in der Oberkante der Stufe, R_{OH} und ϕ_{HOH} sind die internen Koordinaten des Wassermoleküls ($R_{OH'}$ ist die OH-Bindung zum verbrückten Wasserstoffatom und $R_{OH''}$ die OH-Bindung des Sauerstoffatoms in der Oberkante der Stufe zum verbrückten Wasserstoffatom), θ_{MgO/n_s} ist der Winkel, den die MgO-Bindung mit der Oberflächennormalen $n_{\rm s}$ bildet und $\vartheta_{\rm H_2O/n_s}$ ist der Winkel, den die Ebene des Wassermoleküls mit der Oberflächennormalen einschließt. Die Struktur mit der tiefsten Energie für die molekulare Adsorption besitzt eine verbrückte Anordnung für das Sauerstoffatom und ein Wasserstoffatom (VII), wobei die OH-Bindung des verbrückten Wasserstoffatoms fast parallel

- Abbildung 19: Struktur der Adsorption von H₂O an MgO (monoatomare Stufe). Ausschnitt des Clusters Mg₁₄₄O₁₄₄: molekulare H₂O-Adsorption (VII, VIII), Übergangszustand (IX), dissoziative H₂O-Adsorption (X)^{*}.
 - * mit Oberflächenrelaxation

IX

zur Kante der Stufe ausgerichtet ist. Ein anderes, deutlich höher liegendes Minimum ergibt eine verbrückte Anordnung nur für das Sauerstoffatom mit äquivalenten Wasserstoffatomen (VIII) und entspricht der Struktur (III) bei NaCl. In Struktur (VII) ist der interne Winkel des Wassermoleküls stark vergrößert, ebenfalls der Abstand $R_{OH'}$ zum verbrückten Wasserstoffatom. $R_{OH''}$ deutet auf Wasserstoffbrückenbindungen zu einem Sauerstoffatom in der Oberkante der Stufe hin. Die Strukturdaten von (VII) weisen auf eine Schwächung der internen Bindungen des Wassermoleküls zugunsten der Bindungen zur Oberfläche hin. Die Adsorptionsenergien mit Relaxation der Oberfläche fallen für die molekulare Adsorption geringer aus als ohne Relaxation, da die isolierte Stufe selbst eine starke Oberflächenrelaxation erfährt und der auftretende energetische Effekt

$\mathrm{Mg}_{144}\mathrm{O}_{144}$	VII	VIII	IX	Х
$R_{\rm MgO}$	2,145 (2,171)	2,168 (2,150)	2,068	1,948 (1,963)
$R_{\rm OH}$	0,952 (0,953)	0,962 (0,960)	0,943	0,931 (0,932)
$R_{\rm OH'}$	0,996 (0,997)		1,064	1,908 (2,048)
$R_{\rm OH''}$	1,888 (1,930)	2,938 (3,106)	1,434	0,958 (0,943)
$\phi_{ m HOH}$	110,7 (109,1)	106,3 (105,9)	114,8	
$ heta_{\mathrm{MgO}/n_{\mathrm{s}}}$	87,1 (87,9)	77,0 (44,9)	85,1	89,1 (89,0)
$\vartheta_{\rm H_2O/n_s}$	40,6 (37,6)	34,7 (0,9)	38,9	
$E_{\rm Ads}$	-27,7 (-21,3)	-16,1 $(-15,0)$	$-23,\!3$	-46,3 (-71,2)

Tabelle 20: Strukturdaten R (Å), ϕ , θ , ϑ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) für H₂O an MgO (monoatomare Stufe). ^{*a*}

^a Werte mit Relaxation der Oberfläche in Klammern

nicht durch die Optimierung der Bindungen zum Wassermolekül kompensiert werden kann. Die dissoziative Adsorption an der Stufe (X) ist eindeutig bevorzugt gegenüber der molekularen Adsorption. Für das Sauerstoffatom der adsorbierten OH-Gruppe entsteht wie bei der molekularen Adsorption eine verbrückte Anordnung zwischen zwei Magnesiumatomen. Das abgespaltene Wasserstoffatom, das an einem Sauerstoffatom in der Oberkante gebunden ist, richtet sich auf das Sauerstoffatom der adsorbierten OH-Gruppe aus. Beide OH-Bindungen zeigen ungefähr in (210)-Richtung. Im Gegensatz zur defektfreien Oberfläche konnte hier auch ohne Relaxation der Oberfläche die dissoziative Form gefunden werden. Mit Relaxation tritt nochmals ein signifikanter Energiegewinn ein, da in diesem Fall formale Bindungen zu den dissoziierten Spezies bestehen. Die Deformation der Stufe ist dabei klar in Abbildung 19 (X) zu erkennen. Dabei bewegen sich besonders die beiden bindenden Atome in der Oberkante der Stufe voneinander weg. Der Wert von $R_{OH'}$ deutet hier auf die Anwesenheit von Wasserstoffbrückenbindungen hin. Ein Übergangszustand (IX) zwischen den Strukturen (VII) und (X) konnte nur ohne Relaxation der Oberfläche gefunden werden. Danach beträgt die Barriere lediglich 4–5 kcal/mol. Möglicherweise wird diese Barriere mit Relaxation der Oberfläche sehr klein. Der Abstand $R_{OH'}$ ist bei Struktur (IX) nur wenig im Vergleich zu (VII) verlängert. Dagegen ist der Abstand $R_{OH''}$ zu einem Sauerstoffatom in der Oberkante deutlich verkürzt. Die monoatomare Stufe bei MgO erweist sich also mit SINDO1 als bevorzugter Adsorptionsplatz gegenüber der defektfreien Oberfläche. Die Dissoziation von Wasser an der Stufe ist dabei sehr wahrscheinlich.

6.3.4 Farbzentren F_s und M_s

Aufgrund ihrer hohen Reaktivität nehmen Farbzentren bei MgO in bezug auf die Adsorption von Molekülen eine Sonderstellung ein. Gibson et al. [85] berechneten die aufzubringende Energie für die Bildung einer Sauerstoffehlstelle an der Oberfläche zu 265 kcal/mol. Dieser Wert liegt knapp unter der experimentellen Bildungsenergie für ein Volumenfarbzentrum von 274 kcal/mol. Mit SINDO1 wird für die Bildung eines F_s-Zentrums unter Berücksichtigung der Relaxation der Oberfläche ein Energiebetrag von 281 kcal/mol benötigt. Die auftretenden Energieeffekte werden daher leicht überschätzt. Im Vergleich dazu beträgt die experimentelle Bindungsenergie des Wassermoleküls 233 kcal/mol [43]. Dies bedeutet, daß die freiwerdende Energie bei der Kombination des Sauerstoffatoms aus dem Wassermolekül mit der Fehlstelle zur Bildung einer defektfreien Oberfläche ausreicht, um das Wassermolekül komplett zu spalten. Wenn anschließend die beiden Wasserstoffatome noch zu molekularem Wasserstoff reagieren, dann ist insgesamt ein immenser Energiegewinn zu verzeichnen, der ohne Relaxation der Oberfläche 187,3 kcal/mol beträgt und mit Relaxation 162,0 kcal/mol. Diese Reaktion stellte sich mit Abstand als günstigste Variante an einem F_s-Zentrum heraus. Molekulare Adsorption an Farbzentren konnte überhaupt nicht gefunden werden. Entweder ergab die Optimierung die schon beschriebenen Produkte molekularer Wasserstoff und defektfreie Oberfläche oder es ergaben sich die Strukturen, die in Abbildung 20 gezeigt werden. Die entsprechenden Strukturdaten und Adsorptionsenergien sind in Tabelle 21 angegeben. Dabei ist R_{MgO} der Abstand des adsobierten Sauerstoffatoms zu den nächsten Magnesiumatomen der Oberfläche, $R_{O,s}$ und $R_{H,s}$ sind die Abstände Abbildung 20: Struktur der Adsorption von H₂O an MgO (Farbzentrum F_s). Ausschnitt des Clusters Mg₁₆₂O₁₆₁: Dissoziative H₂O-Adsorption (XI, XII),
 ²OH-Adsorption (XIII), ²H-Adsorption (XIV).
 Alle Strukturen mit Oberflächerelaxation

XIII

XIV

der Atome zur Oberfläche (negative Zahlen bedeuten, daß die Atome unterhalb der Oberfläche positioniert sind), $R_{\rm OH}$ ist der OH-Abstand der adsorbierten OH-Gruppe, $R_{\rm OH'}$ der OH-Abstand des Sauerstoffatoms der OH-Gruppe zum abgespaltenen Wasserstoffatom und $\theta_{\rm OH/n_s}$ ist die Neigung der OH-Gruppe zur Oberflächennormalen n_s . Die dissoziative Adsorption an einem F_s-Zentrum konnte bis auf Struktur (XI) nur mit Relaxation der Oberfläche gefunden werden. Bei allen anderen Strukturen ergaben sich ohne Oberflächenrelaxation die Produkte molekularer Wasserstoff und defektfreie Oberfläche. Bei Struktur (XII) werden die Auswirkungen der Relaxation besonders deutlich, bei der die adsorbierte OH-Gruppe und die durch die Adsorption des Was-

$\mathrm{Mg}_{162}\mathrm{O}_{161}$	XI		XII	XIII		XIV	
$R_{ m MgO}$	2,113	(2,164)	(2,190)				
$R_{\rm O,s}$	1,433	(1,770)	(0,270)	0,027	7 (0,179)		
$R_{\rm H,s}$	-0,035	(0,220)				0,809 (0,865)	
$R_{\rm OH}$	0,934	(0,933)	(0,961)	1,590) (1,509)		
$R_{\rm OH'}$	1,951	(2,205)	(3,590)				
$ heta_{ m OH/n_s}$	$28,\!6$	(19,4)	(8,5)	$0,\!5$	(0,1)		
$E_{\rm Ads}$	-99,2 (-	$-118,\!6)$	(-74,3)	$-192,\!3$	(-169, 9)	-74,4 (-77,6)	

Tabelle 21: Strukturdaten R (Å), θ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) der dissoziativen H₂O-Adsorption an einem MgO-F_s-Zentrum. ^{*a*}

^a Werte mit Relaxation der Oberfläche in Klammern

serstoffatoms an einem Sauerstoffatom der Oberfläche gebildete OH-Gruppe sehr stark aus der Oberfläche herauskommen. An dieser Stelle ist zu bemerken, daß im Prinzip die Adsorption von H_2O an einem Farbzentrum äquivalent zur Adsorption von H_2 an einer defektfreien Oberfläche ist. Sowohl bei Struktur (XI), als auch bei Struktur (XII) liegt eine gedachte Ebene durch die adsorbierten Atome parallel zur (110)-Richtung und es ergeben sich verbrückte Anordnungen für die OH-Gruppen zu zwei Magnesiumatomen, die sich auch schon an der defektfreien Oberfläche als stabil erwiesen haben. Interessante Erkenntnisse liefern vor allem die Strukturen (XIII) und (XIV), die eine Reaktion der Radikale ²OH bzw. ²H mit einem F_s -Zentrum darstellen. In beiden Fällen sind die adsorbierten Atome im zentralen Bereich der Fehlstelle positioniert. Da das F_s-Zentrum bei MgO einen Singulett-Grundzustand besitzt, ergeben sich für die genannten Systeme Dublett-Zustände. Es bietet sich daher an, hier die Verteilung des ungepaarten Elektrons zu untersuchen. Im Gegensatz zu Struktur (XIV), wo die Spindichte nur in geringem Maße am Wasserstoffatom zu finden ist und überwiegend auf die nähere Umgebung des Clusters übergegangen ist, ist die Spindichte in (XIII) fast vollständig an der OH-Gruppe lokalisiert, wobei der Wasserstoff den deutlich höherAbbildung 21: Struktur der Adsorption von H₂O an MgO (Farbzentrum M_s). Ausschnitt des Clusters Mg₂₀₀O₁₉₈: dissoziative H₂O-Adsorption (XV, XVI).

en Anteil besitzt. Die beträchtliche Verlängerung des OH-Abstands bei (XIII) weist auf eine Schwächung dieser Bindung hin. Eine Untersuchung der Bindungsvalenzen belegt, daß die OH-Bindung praktisch nicht mehr vorhanden ist. Das Sauerstoffatom der OH-Gruppe unterhält überwiegend Bindungen zu den benachbarten Magnesiumatomen. Die Tendenz zur Bildung einer defektfreien Oberfläche, unter Abspaltung von atomarem Wasserstoff, ist hier zu erkennen.

Für das M_s -Zentrum gelten grundsätzlich die gleichen Aussagen, wie für das eben behandelte F_s -Zentrum. Molekulare Adsorption von Wasser konnte auch hier nicht gefunden werden. Im Gegensatz zum F_s -Zentrum ist aber die Bildung von molekularem Wasserstoff unter gleichzeitiger Kombination des Sauerstoffatoms mit dem M_s -Zentrum zu einem F_s -Zentrum nicht die energetisch günstigste Reaktion. Für diese Reaktion beträgt der Energiegewinn ohne Relaxation der Oberfläche 180,9 kcal/mol und mit Relaxation 153,6 kcal/mol. Abbildung 21 zeigt Strukturen, in denen beide Fragmente des Wassermoleküls in den Fehlstellen positioniert sind. Die dazugehörigen Strukturdaten und Adsorptionsenergien stehen in Tabelle 22. Die Definitionen der Symbole entsprechen denen des F_s -Zentrums. Für die dissoziativen Strukturen (XV) und (XVI) liegt eine gedachte Ebene durch die adsorbierten Atome parallel zur (110)-Richtung. Bei beiden Strukturen sind sehr große Energiegewinne im Vergleich zu den isolierten Systemen zu verzeichnen. und es ergibt sich eine extreme Verlängerung der OH-Bindung. Eine

$Mg_{200}O_{198}$	XV		XVI	
$R_{\rm H,s}$	$0,\!150$	(0, 490)	0,666	6 (0,830)
$R_{\rm O,s}$	-0,132	(-0,004)	-0,151	(-0,013)
$R_{\rm OH}$	2,382	(2, 422)	2,344	(2,515)
$R_{\rm HH}$	$2,\!201$	(2,381)	4,473	8 (4,744)
$ heta_{ m OH/n_s}$	43,1	(39,2)	40,2	(41,8)
$E_{\rm Ads}$	-224,5 (*	-214,2)	-211,7	(-211, 4)

Tabelle 22: Strukturdaten R (Å), θ (°) und Adsorptionsenergie E_{Ads} (kcal/mol) der dissoziativen H₂O-Adsorption an einem MgO-M_s-Zentrum. ^{*a*}

^a Werte mit Relaxation der Oberfläche in Klammern

Betrachtung der Bindungsvalenzen zeigt, daß diese Bindung vollständig aufgebrochen ist. Das Sauerstoffatom der ursprünglichen OH-Gruppe bildet ausschließlich Bindungen zu benachbarten Magnesiumatomen und das entsprechende Wasserstoffatom Bindungen zu jeweils zwei benachbarten Magnesiumatomen. Dabei scheint es günstiger zu sein, wenn sich dieses Wasserstoffatom zentral über der Oberfläche zwischen den ehemaligen Fehlstellen anordnet (XV). Diese Anordnung führt wahrscheinlich auch dazu, daß das andere Wasserstoffatom in der Fehlstelle bei Struktur (XV) viel stärker in die Fehlstelle eintaucht als in (XVI). Im Gegensatz zum NaCl-M_s-Zentrum, wo das Wasserstoffatom der adsorbierten OH-Gruppe eine positive Partialladung trägt, besitzen hier alle adsorbierten Atome negative Partialladungen. Dies erscheint verständlich, wenn man bedenkt, daß bei MgO-Farbzentren formal zwei Elektronen an eine Anionenfehlstelle gebunden sind. Nebenbei ist auch hier wieder die formale Äquivalenz der Adsorption von H₂O an einem M_s-Zentrum mit der Adsorption von H₂ an einem F_s-Zentrum zu bemerken. Und in der Tat ergab die Optimierung eines zunächst an einem F_s-Zentrum molekular angesetzten H₂-Moleküls eine zu (XV) identische Struktur.

Aufgrund der mit SINDO1 erhaltenen Ergebnisse für relative Stabilitäten und der Tatsache, daß keine lokalen Minima für die molekulare Adsorption an einem F_s -Zentrum

bzw. M_s-Zentrum gefunden wurden, kann abschließend gesagt werden, daß Oberflächenfarbzentren in MgO bei Anwesenheit von Wasser nicht beständig sein können. Im Rahmen des verwendeten Modells erfolgt entweder Dissoziation von Wasser an der Fehlstelle oder die Bildung von molekularem Wasserstoff unter Ausheilung der Fehlstelle. Andere Rechnungen unterstreichen die auftretenden energetischen Effekte. Danach ist es energetisch begünstigt ein Sauerstoffmolekül zu spalten, um eine Sauerstoffehlstelle in MgO zu beseitigen [85]. Die Ergebnisse werden durch experimentelle Untersuchungen gestützt, da bei Angebot von Sauerstoff die Fehlstellen ausgeheilt werden können [81].

7 Zusammenfassung und Ausblick

In dieser Arbeit wurde die Auswirkung von Defekten an NaCl(100)- und MgO(100)-Oberflächen auf die Adsorption von H_2O untersucht. Die behandelten Defekte waren eine monoatomare Stufe sowie die Oberflächenfarbzentren F_s (Anionenfehlstelle) und M_s (zwei unmittelbar benachbarte Anionenfehlstellen). Die Rechnungen wurden mit der semiempirischen MO-Methode SINDO1 durchgeführt. Ermittelt wurden Strukturdaten, Adsorptionsenergien und Schwingungsfrequenzen. Die Ergebnisse wurden mit jenen an der defektfreien Oberfläche und mit experimentellen Befunden verglichen.

Durch eine konsistente Modifikation des Formalismus von SINDO1 konnten insbesondere die systematischen Fehler bei der Beschreibung der elektronischen Eigenschaften defektbehafteter NaCl- und MgO-Cluster beseitigt werden. Mit diesen Veränderungen, und trotz der Einschränkung auf ausschließlich atomare Parameter, konnte in der anschließenden Parametrisierung der Elemente H, C, N, O, F sowie Na, Mg, Al, Si, P, S und Cl die Genauigkeit von SINDO1 bei der Beschreibung von Grundzustandseigenschaften in erheblichem Maße gesteigert werden. Hilfreich war dabei die Entwicklung und Verwendung eines automatischen Parametrisierungsverfahrens, das eine wesentliche Vergrößerung des Datensatzes der direkt als Information in die Parameter eingehenden Eigenschaften ermöglichte. Durch Hinzunahme kleiner Einheiten der in dieser Arbeit untersuchten Systeme NaCl und MgO bis zu den Trimeren ist es erstmals gelungen, einen Parametersatz für diese Elemente zu erzeugen, der in der Lage ist, die Eigenschaften sowohl kleiner Moleküle als auch festkörperähnlicher Strukturen gleichermaßen zu beschreiben. Somit konnten ohne spezielle Anpassung der Methode an experimentelle Werte aus Festkörpermessungen Voraussagen für Adsorptionsstrukturen und -energien auf Grundlage der Datenbasis kleiner Systeme gemacht werden.

Die Extrapolation von Bindungsenergien und Gitterkonstanten gegen die Festkörperwerte ergibt eine sehr gute Korrespondenz zum Experiment, wobei jedoch die NaCl-Gitterkonstante speziell bei den in dieser Arbeit verwendeten Clustern etwas zu groß wiedergegeben wird. Elektronische Absorptionsspektren von Farbzentren wurden durch CI-Rechnungen mit ausschließlich Einfachanregungen genähert. Bei NaCl wurde dabei eine gute Übereinstimmung für F_b -Zentren (Volumenfarbzentren) und F_s -Zentren mit experimentellen Messungen gefunden. Verlustbanden unter 2 eV können nach SINDO1 nur durch M_s -Zentren in ihren Triplett-Grundzuständen hervorgerufen werden. Da bei MgO die Zuordnung experimentell gemessener Banden nicht eindeutig geklärt ist, wurde aufgrund der Rechnungen vorgeschlagen, daß eine Bande bei 2,3 eV durch F_b -Zentren und eine weitere bei 3,2 eV durch F_s -Zentren verursacht werden. Möglicherweise spielen hier aber auch M_s -Zentren eine Rolle.

Bei der Untersuchung der Adsorption von H_2O an NaCl(100) zeigte sich, daß an der defektfreien Oberfläche und an einer monoatomaren Stufe lediglich molekulare Adsorption möglich ist, wobei sich die Stufe als bevorzugter Adsorptionsplatz herausstellte. Adsorptionsenergien an der defektfreien Oberfläche zeigen eine gute Übereinstimmung mit dem Experiment, wenn die Energien wegen der zu großen Gitterkonstante bei NaCl-Clustern zu kleineren Werten korrigiert werden. Bei Anwesenheit von F_s-Zentren erwies sich die molekulare Adsorption als noch stabiler im Vergleich zur Stufe und zur defektfreien Oberfläche. Der wesentliche Unterschied bei Farbzentren besteht aber darin, daß auch die dissoziative Adsorption an einem F_s -Zentrum möglich, an einem M_s-Zentrum sogar wahrscheinlich ist. Dies steht im Einklang mit experimentellen Befunden. Die Berücksichtigung der Relaxation der Oberfläche ist speziell bei den dissoziativen Strukturen an Farbzentren von Bedeutung, wobei hauptsächlich die Atome in unmittelbarer Nähe zur Fehlstelle Beiträge leisten. Eine Frequenzanalyse mehrerer an einem F_s-Zentrum adsorbierter Spezies ergab, daß die experimentell gemessene starke Rotverschiebung einer OH-Streckschwingung nicht durch OH⁻-Zentren hervorgerufen werden kann, sondern dafür nur an F_s-Zentren molekular adsorbierte Wassermoleküle in Frage kommen.

Für die Berechnung der Adsorption von H_2O an MgO(100) kam der Berücksichtigung der Relaxation der Oberfläche eine entscheidende Bedeutung zu, wobei jedoch die relativen Bewegungen von Kationen und Anionen im Gegensatz zu experimentellen Befunden stehen. Während ohne Relaxation an der defektfreien Oberfläche nur molekulare Adsorption gefunden wurde, wird mit Relaxation die dissoziative Adsorption begünstigt gegenüber der molekularen Adsorption gefunden. An einer monoatomaren Stufe ist die dissoziative Adsorption in jeden Fall günstiger als die molekulare Adsorption. Insgesamt ist die Stufe als Adsorptionsplatz für molekulare und dissoziative Adsorption deutlich bevorzugt gegenüber der defektfreien Oberfläche. Farbzentren erwiesen als äußerst reaktiv. Dies wird verständlich, wenn man berücksichtigt, daß experimentell sehr große Energiebeträge aufgewendet werden müssen, um diese Defekte zu erzeugen. Molekulare Adsorption konnte an Farbzentren nicht gefunden werden, da entweder Dissoziation eines H₂O-Moleküls an der Fehlstelle erfolgte, oder die Fehlstelle unter Bildung von molekularem Wasserstoff ausgeheilt wurde. Letztere Reaktion ist an F_s -Zentren im Rahmen des verwendeten Modells eindeutig die günstigste Variante. An M_s-Zentren ist dagegen die dissoziative Adsorption bevorzugt, wenn die Fragmente des Wassermoleküls im unmittelbaren Bereich der Fehlstellen positioniert sind. Generell kann gesagt werden, daß Farbzentren an MgO-Oberflächen in Anwesenheit von Wasser nicht existieren können.

Die Eignung der neuen SINDO1-Version zur Behandlung defektbehafteter NaCl- und MgO-Oberflächen konnte unter Beweis gestellt werden. Für zukünftige Untersuchungen wäre beispielsweise die Betrachtung mehrerer Adsorbatmoleküle zu nennen und damit die Auswirkung von Defekten auf Überstrukturen. Die Berechnung von Schwingungsfrequenzen und optischen Absorptionsspektren könnte intensiver eingesetzt werden, um ein besseres Verständnis bei der Zuordnung experimenteller Spektren zu erlangen. Selbstverständlich kann die Betrachtung auch auf andere Adsorbatmoleküle wie z.B. CO oder CO₂ ausgedehnt werden. Da die Anwendung von hochgenauen ab initio-Programmen auf Systeme mit mehreren hundert Atomen nach wie vor nicht möglich ist, werden semiempirische Methoden wie SINDO1 auch weiterhin einen wichtigen Beitrag zur Aufklärung der Eigenschaften großer Systeme leisten.

A Atom- und Moleküleigenschaften

Um die Parametrisierung übersichtlicher zu gestalten, enthält das Minimierungsprogramm einen Ausgabeteil, der automatisch zum aktuellen Parametersatz die berechneten und experimentellen Eigenschaften der Referenzmoleküle in tabellarischer Form auflistet. Als Eingabe benötigt man eine Datei mit den entsprechenden Parametern und jeweils eine Datei mit den Molekülen und den experimentellen Referenzwerten, die bezüglich der Reihenfolge der Eigenschaften aufeinander abgestimmt sein müssen. Die Form der Tabellen stellt sich wie folgt dar: in der ersten Spalte steht nach der laufenden Nummer der Molekülname. Darauf folgend steht der Name der Observable. Die Art der Observable ergibt sich aus den ersten Zeichen dieses Namens. Die Kennungen für verschiedene Arten von Obsevablen sind in Tabelle 23 angegeben. Bei den Struk-

Kennung	Art der Observable		
LName	Bindungslänge		
WName	Bindungswinkel		
DName	Diederwinkel		
IP	Ionisierungsenergie		
М	Dipolmoment		
HF	Bildungsenthalpie		

Tabelle 23: Kennungen für verschiedene Arten von Observablen.

turparametern zeigen die nächsten Buchstaben die beteiligten Elemente an, wobei die Bezeichnung und Numerierung der Literatur entnommen ist [46,48–50]. Ergebnisse für die Elemente der ersten Reihe sind in Tabelle 24 gelistet und für die Elemente der zweiten Reihe in Tabelle 25. Die experimentellen Referenzdaten für die Elemente der ersten Reihe entstammen Referenz [46] mit Ausnahme der Ionisierungsenergien [47] und für die zweite Reihe den Referenzen [48–50]. Wo andere Daten herangezogen wurden, wird dies gesondert angezeigt.

	Observable	Vers. 3.4	Vers. 3.2	Exp.
1	H: IP	13.61	14.15	13.61
2	C: IP	11.30	11.24	11.26
3	N: IP	14.51	14.62	14.53
4	O: IP	13.54	14.11	13.62
5	F: IF H2· I.HH	17.40	17.63	17.42
7	H2: IP	17.61	17.80	15.98
8	H2: HF	0.5	4.0	0.0
9	CH: LCH	1.110	1.092	1.128
10	CH: IP	11.17	11.41	10.64
12		145.3	1 060	1 078
13	CH2: WHCH	134.7	135.1	136.0
14	CH2: IP	11.53	11.88	10.35
15	CH2: HF	85.7	91.1	93.0
16	CH3: IP	11.11	11.75	9.84
19		34.0	35.7	34.8
19	CH4: IP	14.59	15.89	13.60
20	CH4: HF	-15.9	-8.8	-17.8
21	C2H2: LCC	1.206	1.220	1.202
22	C2H2: LCH	1.055	1.053	1.063
23	C2H2: IP C2H2: WF	12.07	11.64	11.49
25	C2H2: HF C2H4: LCC	1.318	1.325	1.339
26	C2H4: LCH	1.082	1.077	1.087
27	C2H4: WCCH	122.6	122.3	121.3
28	C2H4: IP	11.40	11.76	10.50
29	C2H4: HF	16.5	13.9	12.5
31	C2H6: LCH	1.094	1.093	1.094
32	C2H6: WCCH	110.8	110.7	111.2
33	C2H6: IP	12.17	13.46	12.10
34	C2H6: HF	-18.9	-19.1	-20.0
35	C3H4 (PROPIN) : LCC1	1.449	1.470	1.459
37	C3H4 (PROPIN) : LCH1	1.088	1.094	1.105
38	C3H4 (PROPIN) : LCH2	1.049	1.051	1.056
39	C3H4 (PROPIN) : WCCH	109.4	109.6	110.2
40	C3H4 (PROPIN) : IP	10.38	10.42	10.37
41	C3H4 (PROPIN) : M C3H4 (PROPIN) · HF	1.09	0.52	0.78
43	C3H4 (ALLEN) : LCC	1.304	1.319	1.308
44	C3H4 (ALLEN) : LCH	1.069	1.074	1.087
45	C3H4 (ALLEN) : WHCH	118.2	118.7	118.2
46	C3H4 (ALLEN) : IP	9.96	10.45	10.20
47	C3H4 (ALLEN) : HF C3H4 (C-PROPEN) : I CC1	42.4	36.2	45.5
49	C3H4 (C-PROPEN) : LCC2	1.486	1.500	1.509
50	C3H4 (C-PROPEN) : LCH1	1.068	1.064	1.072
51	C3H4 (C-PROPEN) : LCH1	1.093	1.087	1.088
52	C3H4 (C-PROPEN) : WCCH1	151.9	149.6	149.9
53 54	C3H4 (C-PROPEN): WHCH $C3H4 (C-PROPEN) \cdot TP$	0 33 TTT'A	4 64 110.8	9 8K
55	C3H4 (C-PROPEN) : M	0.64	1.02	0.45
56	C3H4 (C-PROPEN) : HF	73.4	57.9	66.2
57	C3H6 (PROPEN) : LCC1	1.325	1.339	1.336
58	C3H6 (PROPEN) : LCC2	1.492	1.512	1.501
60	C3H6 (PROPEN) : LCH2	1.076	1.077	1.081
61	C3H6 (PROPEN) : LCH3	1.098	1.085	1.090
62	C3H6 (PROPEN) : LCH4	1.088	1.091	1.085
63	C3H6 (PROPEN) : LCH5	1.089	1.093	1.098
64 65	C3H6 (PROPEN) : WCCC	127.8 122 0	130.4	124.3
66	C3H6 (PROPEN) : WCCH2	122.2	121.9	120.5
67	C3H6 (PROPEN) : WCCH3	113.5	113.1	116.7
68	C3H6 (PROPEN) : WCCH4	112.1	112.1	111.2
69	C3H6 (PROPEN) : WHCH	108.8	109.1	106.2
	СЭНБ (PKOPEN): IP	TD.08	10.71	9.91

Tabelle 24: Atom- und Moleküleigenschaften der Elemente H, C, N, O und F

	Observable	Vers. 3.4	Vers. 3.2	Exp.	
71	C3H6 (PROPEN) : M	0.68	0.50	0.37	
72	C3H6 (PROPEN) : HF	4.2	5.3	4.8	
73	C3H6 (C-PROPAN) : LCC	1.493	1.509	1.510	
74	C3H6 (C-PROPAN) : LCH	1.088	1.084	1.074	
75	C3H6 (C-PROPAN) : WHCH	111.3	111.3	115.9	
76	C3H6 (C-PROPAN) : IP	10.92	11.90	10.54	
77	C3H6 (C-PROPAN) : HF	8.7	-0.5	12.7	
78	C3H8: LCC	1.524	1.543	1.526	
79	C3H8: LCHI	1.091	1.093	1.089	
80	C3H8: LCH2	1.091	1.092	1.094	
00 01	C3H8: LCH3	115 5	110.097	110 4	
02		115.5	110.2	112.4	
0.0		109 1	100.2	106 1	
25		106.1	107.0	107.3	
86		11 37	12 57	11 51	
87	C3H8 · M	0 21	0 00	0.08	
88	C3H8: HF	-25 3	-22 0	-25 0	
89	C4H2 (DIACETYLEN) : LCH	1.053	1.053	1.046	
90	C4H2 (DIACETYLEN) : LCC1	1,212	1.232	1.218	
91	C4H2 (DIACETYLEN) : LCC2	1.398	1.419	1.384	
92	C4H2 (DIACETYLEN) : IP	10.22	9.77	10.30	
93	C4H2 (DIACETYLEN) : HF	115.1	110.5	113.0	
94	C4H6 (DIMET-ACETY) : LCC1	1.451	1.471	1.467	
95	C4H6 (DIMET-ACETY) : LCC2	1.216	1.237	1.213	
96	C4H6 (DIMET-ACETY) : LCH	1.092	1.094	1.115	
97	C4H6 (DIMET-ACETY) : WCCH	109.6	109.7	110.7	
98	C4H6(DIMET-ACETY): IP	9.15	9.46	9.79	
99	C4H6(DIMET-ACETY): HF	29.0	20.6	34.8	
100	C4H6(C-BUTEN): LCC1	1.336	1.347	1.342	
101	C4H6 (C-BUTEN) : LCC2	1.517	1.541	1.517	
102	C4H6(C-BUTEN): LCH1	1.081	1.074	1.083	
103	C4H6 (C-BUTEN) : LCH2	1.095	1.089	1.094	
104	C4H6(C-BUTEN): WCCH1	135.5	134.2	133.5	
105	C4H6 (C-BUTEN) : LCC3	1.555	1.577	1.566	
106	C4H6(C-BUTEN): IP	9.69	10.18	9.43	
107	C4H6(C-BUTEN): M	0.31	0.09	0.13	
108	C4H6(C-BUTEN): HF	44.1	44.3	37.5	
109	C4H6 (BUTADIEN) : LCCI	1.328	1.340	1.348	
110	C4H6 (BUTADIEN) : LCC2	1.4/6	1.508	1.468	
110	C4H6 (BUTADIEN) : LCH	126 0	100 7	104 2	
112	C4H6 (BUTADIEN) : WCCC	126.0	128.7	124.3	
114	C4H6 (BUTADIEN): IP	9.43	9.89	9.03	
115	CANS (C_BUTANI) · ICC	1 520	1 562	20.5	
116	$C4H8(C-BUTAN) \cdot LCH$	1 097	1 090	1 109	
117	C4H8(C-BUTAN). LCH C4H8(C-BUTAN) WUCH	107 5	108 2	106 4	
118	C4H8(C-BUTAN) · TP	10 23	11 04	10 70	
119	C4H8(C-BUTAN): HF	-1.5	3.6	6.8	
120	C4H8(T2-BUTEN): LCC1	1.495	1.514	1.508	
121	C4H8(T2-BUTEN): LCC2	1.333	1.354	1.347	
122	C4H8(T2-BUTEN): WCCC	127.2	130.2	123.8	
123	C4H8 (T2-BUTEN) : IP	9.06	9.83	9.37	
124	C4H8(T2-BUTEN): HF	-4.9	-2.5	-2.7	
125	C4H8 (ISOBUTEN) : LCC1	1.505	1.545	1.508	
126	C4H8 (ISOBUTEN) : LCC2	1.337	1.356	1.342	
127	C4H8 (ISOBUTEN) : WCCC	119.0	119.2	122.2	
128	C4H8 (ISOBUTEN) : IP	9.21	10.06	9.41	
129	C4H8 (ISOBUTEN) : HF	-5.8	6.0	-4.0	
130	C4H10 (ISOBUTAN) : LCC	1.535	1.569	1.525	
131	C4H10 (ISOBUTAN) : WCCC	112.3	113.5	111.2	
132	C4H10 (ISOBUTAN) : IP	10.79	12.04	11.13	
133	C4H10 (ISOBUTAN) : HF	-31.1	-16.3	-32.1	
134	C5H6(C-P-DIEN): LCC1	1.345	1.362	1.345	
135	C5H6(C-P-DIEN): LCC2	1.485	1.522	1.468	
136	C5H6(C-P-DIEN): LCC3	1.516	1.554	1.506	
137	C5H6(C-P-DIEN): IP	8.76	9.21	8.61	
138	C5H6(C-P-DIEN): M	0.65	0.31	0.42	
	OFUC (O D DIEN) . UE	38 9	48 9	32 1	
139	CSH6(C-P-DIEN): HF	50.5	10.5	02.2	
	Observable	Vers. 3.4	Vers. 3.2	Exp.	
------------	--	----------------	----------------	----------------	---
141	C5H10 (C-PENTAN) : LCH	1.101	1.093	1.114	
142	C5H10 (C-PENTAN) : WCCH	110.7	110.5	111.7	
143	C5H10 (C-PENTAN) : IP	11.03	11.99	10.70	
144	C5H12 (NEOPENTAN) : LCC C5H12 (NEOPENTAN) : LCH	1.549	1.598	1.539	
146	C5H12 (NEOPENTAN) : WCCH	111.4	110.8	110.0	
147	C5H12 (NEOPENTAN) : IP	10.44	11.51	10.90	
148	C5H12 (NEOPENTAN) : HF	-33.5	-1.2	-40.2	
149	C6H6 (BENZOL) : LCC	1.396	1.424	1.397	
150	C6H6 (BENZOL) : LCH	1.087	1.081	1.083	
151	C6H6 (BENZOL): IP	9.48	9.67	9.24	
152	C6H0(BENZOL): HF $C6H10(C-HEXEN) \cdot LCC1$	1 502	28.7	1 504	
154	C6H10(C-HEXEN): LCC2	1.333	1.352	1.335	
155	C6H10 (C-HEXEN) : LCC3	1.536	1.572	1.515	
156	C6H10 (C-HEXEN) : DCCCC	-24.9	-20.3	-28.3	
157	C6H10(C-HEXEN): IP	9.19	9.96	9.12	
158	C6H10 (C-HEXEN) : HF	-9.0	1.5	-1.2	
159	02: LOO 02: TP	1.189	1.181	12 22	
161	02: IP 02: HF	-5 2	-8 9	12.33	
162	03: LOO	1.248	1.242	1.272	
L63	03: WOOO	118.1	122.2	117.8	
164	03: IP	11.80	10.87	12.73	а
165	03: M	1.14	0.81	0.53	
166	O3: HF	57.6	39.0	34.0	
167	OH: LOH	0.964	0.971	0.971	
169	OH: IF	5 2	5 1	93	
170	H2O: LOH	0.960	0.979	0.958	
171	H2O: WHOH	104.7	105.1	104.5	
L72	H2O: IP	13.68	14.03	12.62	
173	H2O: M	2.42	1.94	1.85	
175		-52.9	-46.1 1 3/9	-57.8	
176	H202: LOU	0 976	1.346	1.467	
.77	H2O2: WOOH	98.7	106.5	98.5	
78	H2O2: DHOOH	180.0	96.8	119.8	
79	H2O2: IP	11.55	12.56	11.70	
80	H2O2: HF	-44.1	-57.9	-33.5	
.81	CO: LCO	1.153	1.143	1.128	
183	CO: M	0.26	0 58	0 11	
84	CO: HF	-26.9	-27.2	-26.4	
185	CO2: LCO	1.187	1.191	1.160	
186	CO2: IP	13.44	12.14	13.78	
187	CO2: HF	-102.0	-76.9	-94.1	
180 180	H2CO: LCU	1.206	1.203	1.208	
190	H2CO: WOCH	122.3	123.4	121.8	
191	H2CO: IP	10.75	11.28	10.10	
192	H2CO: M	2.09	1.52	2.33	
193	H2CO: HF	-24.0	-16.9	-26.0	
194	CH3OH: LCO	1.419	1.393	1.421	
196		0.9/1	U.9/8 1 000	U.963 1 NG/	
197	CH3OH: WCOH	107.1	108.5	108.0	
198	CH3OH: WOCH1	103.1	105.5	106.3	
199	СНЗОН: WHCH	110.2	108.2	108.5	
200	CH3OH: IP	11.38	12.09	10.97	
201	CH3OH: M	1.92	1.67	1.70	
202	CH3OH: HE	-46.4 1 114	-51.4	-48.2	
204	HCOOH: LCO1	1 209	1,211	1,201	
205	HCOOH: LCO2	1.353	1,352	1.340	
206	HCOOH: LOH	0.969	0.977	0.969	
207	HCOOH: WHCO	126.1	123.8	123.3	
208	HCOOH: WOCO	127.1	128.7	124.8	
209	HCOOH: WCOH	109.4	110.4	106.6	
-		11 49	11 41	11 60	

	Observable	Vers. 3.4	Vers. 3.2	Exp.
211	HCOOH: M	1.06	0.79	1.41
212	HCOOH: HF	-90.1	-79.7	-90.5
213	CH3COOH: LCC	1.485	1.542	1.494
214	CH3COOH: LCOI	1.218	1.224	1.209
215	CH3COOH: LCO2	1.370	1.374	1.357
216	CH3COOH: LOH	0.964	0.976	0.970
21/	CH3COOH: WCCOI	127.8	125.9	126.2
210	CH3COOH: WCCOZ	10.3	10.9	10 04
219	CH3COOH: IP	1 05	1 00	1 74
220	CH3COOH: MF	_116 8	-91 5	_103 4
222	CH2CO (KETEN) · LCC	1 308	1 342	1 314
223	CH2CO (KETEN) : LCH	1.057	1.066	1.077
224	CH2CO(KETEN): LCO	1.184	1.182	1.161
225	CH2CO (KETEN) : WCCH	119.5	119.1	118.9
226	CH2CO (KETEN) : IP	9.36	9.22	9.64
227	CH2CO(KETEN): M	1.45	0.13	1.42
228	CH2CO (KETEN) : HF	-21.5	-11.0	-11.4
229	(CHO) 2 (T-GLYOXAL) : LCO	1.212	1.214	1.202
230	(CHO) 2 (T-GLYOXAL) : LCC	1.512	1.547	1.527
231	(CHO) 2 (T-GLYOXAL) : LCH	1.108	1.096	1.109
232	(CHO) 2 (T-GLYOXAL) : WOCC	123.5	125.9	121.2
233	(CHO) 2 (T-GLYOXAL) : WCCH	115.6	113.2	115.5
234	(CHO) 2 (GLYOXAL) : IP	9.83	9.91	10.60
235	(CHO) 2 (GLYOXAL) : HF	-53.2	-34.8	-50.7
236	(CH3) 20 (ETHER) : LCO	1.424	1.409	1.415
237	(CH3) 20 (ETHER) : WCOC	115.0	120.5	111.8
238	(CH3)20(ETHER): IP	10.22	11.10	10.00
239	(CH3)20(ETHER): M	1.53	1.45	1.30
240	(CH3) 20 (ETHER) : HF	-40.5	-45.9	-44.0
241	C2H4O (ACETALD) : LCC	1.486	1.519	1.515
242	C2H4O (ACETALD) : LCO	1.213	1.215	1.210
243	C2H4O (ACETALD) : LCH	1.120	1.098	1.107
244	C2H4O (ACETALD) : WCCO	126.5	128.1	124.1
245	C2H4O (ACETALD) : WCCH	115.0	112.7	115.3
246	C2H4O (ACETALD) : IP	9.96	10.45	10.23
247	C2H4O (ACETALD) : M	3.12	2.14	2.75
248	C2H4O (ACETALD) : HF	-47.0	-30.0	-39.7
249	C2H4O(OXIRAN): LCC	1.45/	1.492	1.400
250	C2H4O(OXIRAN): LCO	1.431	1.408	1.431
251	C2H4O(OXIRAN): LCH	112 0	112 5	116 6
252	C2H4O(OXIRAN): WHCH	10 00	112.5	10.5
255	C2H4O(OXIRAN): IP	1 65	1 52	1 90
255	C2H4O(OXIRAN). M	_17 9	-24 9	-12 6
256	$C2H4O2(M-FORM) \cdot I.CO1$	1 211	1 210	1 200
257	C2H402(M-FORM) : LC02	1 354	1 365	1 334
258	C2H4O2(M-FORM) · LOC	1 436	1 412	1 437
259	C2H4O2 (M-FORM) : WOCO	129.2	129.3	125.9
260	C2H4O2 (M-FORM) : WCOC	116.3	122.4	114.8
261	C2H4O2 (M-FORM) : IP	10.79	11.02	10.85
262	C2H4O2 (M-FORM) : M	1.65	1.13	1.77
263	C2H4O2 (M-FORM) : HF	-82.7	-74.9	-85.0
264	C3H2O (PROPINAL) : LCC1	1.445	1.480	1.445
265	C3H2O (PROPINAL) : LCC2	1.213	1.227	1.209
266	C3H2O (PROPINAL) : LCO	1.213	1.213	1.215
267	C3H2O (PROPINAL) : LCH1	1.112	1.097	1.106
268	C3H2O (PROPINAL) : LCH2	1.057	1.054	1.055
269	C3H2O (PROPINAL) : WCCO	125.6	127.3	123.9
270	C3H2O (PROPINAL) : WCCH	113.4	110.8	113.9
271	C3H2O (PROPINAL) : IP	10.76	10.95	10.70
272	C3H2O (PROPINAL) : M	2.66	1.99	2.74
273	C3H2O (PROPINAL) : HF	27.7	32.5	27.0
274	C3H4O (ACROLEIN) : LCC1	1.326	1.335	1.341
275	C3H4O (ACROLEIN) : LCC2	1.482	1.522	1.468
276	C3H4O (ACROLEIN) : LCO	1.215	1.214	1.215
277	C3H4O (ACROLEIN) : LCH	1.115	1.097	1.113
278	C3H4O (ACROLEIN) : WCCC	125.8	128.8	120.3
		124 7	126 4	122 0
279	C3H40 (ACROLEIN) : WCCO	124./	120.4	123.9

	Observable	Vers. 3.4	Vers. 3.2	Exp.
281	C3H4O (ACROLEIN) : IP	9.91	10.39	10.15
282	C3H4O (ACROLEIN) : M	3.03	2.03	3.12
283	(CH3) 2CO (ACETON) : LCO	1.223	1.229	1.214
284	(CH3) 2CO (ACETON) : LCC	1.503	1.552	1.520
285	(CH3) 2CO (ACETON) : WOCC	120.8	120.9	122.0
286	(CH3) 2CO (ACETON) : IP	9.21	9.77	9.71
287	(CH3) 2CO (ACETON) : M	3.65	2.43	2.88
288	(CH3) 2CO (ACETON) : HF	-66.0	-35.6	-51.9
209	C4H4O(FURAN): LCCI C4H4O(FURAN): LCCI	1.353	1.380	1.301
290	C4H4O(FURAN): LCC2 C4H4O(FURAN) · LCO	1 300	1 392	1 362
292	$C4H4O(FURAN) \cdot LCH1$	1 085	1 078	1 075
293	C4H4O (FURAN) · LCH2	1 076	1 072	1 077
294	C4H4O (FURAN) : WOCH	113.1	116.0	116.0
295	C4H4O (FURAN) : WCCH	125.8	126.9	127.8
296	C4H4O (FURAN) : IP	8.74	8.89	8.88
297	C4H4O (FURAN) : M	0.71	0.44	0.66
298	C4H4O (FURAN) : HF	7.5	8.0	-8.3
299	N2: LNN	1.097	1.088	1.098
300	N2: IP	15.19	15.22	15.58
301	N2: HF	4.7	5.9	0.0
302	NH2: LNH	1.019	1.014	1.024
303	NH2: WHNH	106.3	106.3	103.3
304	NH2: IP	12.85	13.62	12.00
305	NH2: HF	37.9	37.7	45.1
306	NH3: LNH	1.009	1.015	1.013
307	NH3: WHNH	108.3	106.9	107.1
308	NH3: IP	11.46	12.35	10.85
309	NH3: M	2.36	2.20	1.47
310	NH3: HF	-8.1	0.3	-11.0
311	N2H4: LNN	1.420	1.378	1.447
312	N2H4: LNH	1.029	1.029	1.015
313	N2H4: WNNH1	105.7	105.6	106.0
314	N2H4: WNNH2	113.0	112.4	112.0
315	NZH4: WHNH	105.5	104.4	106.6
310	N2H4: DHNNH	62.8	66.4 11 00	91.0
31/ 210	NZH4: IP N2H4: UF	10.10	11.08	8.98
319	N2n4. HF N20 · LNN	1 126	9.0 1 117	20.8
320	N2O: LNO	1 246	1 276	1 184
321	N20: IP	11.71	11.12	12.89
322	N2O: HF	41.7	41.2	19.6
323	HNO2: LNO1	1.171	1.179	1.170
324	HNO2: LNO2	1.399	1.342	1.432
325	HNO2: LOH	0.965	0.981	0.958
326	HNO2: WONO	112.4	113.3	110.7
327	HNO2: WNOH	105.7	106.0	102.1
328	HNO2: M	2.22	1.68	1.43
329	HNO2: HF	-18.9	-38.6	-18.3
330	HNO3: LNO1	1.219	1.247	1.210
331	HNO3: LNO2	1.217	1.246	1.203
332	HNO3: LNO3	1.370	1.352	1.406
333	HNO3: LOH	0.968	0.982	0.959
334	HNO3: WONO1	130.1	127.6	130.0
335	HNO3: WONO2	117.9	119.7	116.1
336	HNO3: WNOH	110.0	110.3	101.9
337	HNO3: IP	12.98	11.33	12.20
338	HNO3: M	2.67	2.51	2.17
339	HNO3: HF	-29.2	-29.2	-32.1
340	CN: LCN	1.166	1.161	1.172
341	UN: HF	101.3	10.8	104.0
342	HCN: LCH	1.054	1.058	1.063
343	HCN: LCN	1.162	12 27	1.153
44د ۲۸۲	HCN: IP	13.69	13.37	13.61
345	HCN: M	2.49	2.30	2.98
340	NCC2 (CYACCEN) + INC	29.0	41.U 1 160	32.3 1 1 E A
/	MZCZ (CIAUGEN): LNC	1 113	1 422	1,134
341	NICCO (CVROCENI) · TCC		1.4.32	1.369
347 348 349	N2C2 (CYAOGEN) : LCC	12 57	12 13	13 51

	Observable	Vers. 3.4	Vers. 3.2	Ехр.
351	CH2N2 (DIAZO-M) : LCN	1.295	1.349	1.300
352	CH2N2 (DIAZO-M) : LCH	1.060	1.065	1.075
353	CH2N2 (DIAZO-M) : LNN	1.138	1.128	1.139
354	CH2N2 (DIAZO-M) : WHCH	124.7	126.2	126.0
355	CH2N2 (DIAZO-M) : M	1.35	0.41	1.50
356	CH2N2 (DIAZO-M) : HF	75.6	83.5	71.0
357	CH3CN: LCC	1.454	1.469	1.462
358	CH3CN: LCH	1.088	1.092	1.095
359	CH3CN: LCN	1.172	1.158	1.157
360	CH3CN: WCCH	109.1	109.2	109.9
361	CH3CN: IP	11.69	11.88	12.46
362	CH3CN: HF	12.8	16.1	15.4
363	C2H5N (AZIRIDIN) : LCC	1.4/6	1.494	1.481
364	C2H5N (AZIRIDIN) : LCN	1.467	1.444	1.4/5
365	C2H5N (AZIRIDIN) : LNH	1.026	1.022	1.016
366	C2H5N (AZIRIDIN): IP	9.75	11.05	9.85
260	CLINN (AZIRIDIN) : HF	25.U 1 020	1 020	30.2
260	CH3NHZ: LNH	1.020	1.020	1.019
303	CH3NH2: LNC	110 3	109 2	111 5
370	CH3NH2 · WUNU	106.3	108.2	106 0
372		9.85	11 35	9 58
372	CH3NH2. IF	1 98	2 01	1 30
374	CH3NH2 · HF	-6 6	-3 7	-5 5
375	(CH3) 2NH: LCN	1.464	1.461	1.462
376	(CH3) 2NH: LNH	1.026	1.018	1.019
377	(CH3) 2NH: WCNC	116.5	118.0	112.2
378	(CH3) 2NH: IP	8.56	10.38	8.95
379	(CH3) 2NH: M	1.74	1.83	1.03
380	(CH3) 2NH: HF	-4.3	3.3	-4.4
381	N(CH3)3: LCN	1.473	1.486	1.458
382	N (CH3) 3: WCNC	113.1	112.6	110.9
383	N(CH3)3: IP	7.71	9.74	8.45
384	N(CH3)3: M	1.41	1.63	0.61
385	N(CH3)3: HF	-1.2	22.1	-5.7
386	C4H5N (PYRROL) : LNH	1.006	1.004	0.996
387	C4H5N (PYRROL) : LCN	1.393	1.419	1.370
388	C4H5N (PYRROL) : LCC1	1.375	1.395	1.382
389	C4H5N (PYRROL) : LCH1	1.080	1.075	1.076
390	C4H5N (PYRROL) : LCH2	1.078	1.073	1.077
391	C4H5N (PYRROL) : LCC2	1.442	1.478	1.417
392	C4H5N (PYRROL): 1P	8.21	8.63	8.23
393	C4H5N (PYRROL): M	1.81	1.73	1.74
205	CEHEN (PYRTOL) : HF	42.2	07.9	25.9
292	CENEN (PYRIDIN) : LCCI	1.390	1.420	1.392
390	C5H5N (PVPTDIN) · ICC2	1 . 598	1 000	1 000
397	C5H5N (PVPTDIN) · ICHI	1 004	1 002	1 002
399	C5H5N (PVRTDTN) · ICH2	1 094	1 077	1 093
400	C5H5N (PYRIDIN) · LCN	1 3/6	1 341	1 339
401	C5H5N (PYRIDIN) · TP	9 14	9 58	9 60
402	C5H5N (PYRIDIN) · M	1 96	1 87	2 22
403	C5H5N (PYRIDIN) · HF	31 3	44.7	33 6
404	F2: LFF	1.342	1.305	1.412
405	F2: IP	16.23	16.34	15.70
406	F2: HF	8.9	1.4	0.0
407	HF: LHF	0.914	0.910	0.917
408	HF: IP	17.01	17.22	16.12
409	HF: M	1.73	1.49	1.83
410	HF: HF	-64.5	-63.7	-65.1
411	HOF: LOH	0.977	0.985	0.964
412	HOF: LOF	1.368	1.342	1.442
413	HOF: WHOF	100.2	102.7	97.2
414	HOF: M	1.77	1.55	2.23
415	HOF: HF	-26.4	-16.7	-23.5
416	F20: LF0	1.358	1.334	1.405
417	F2O: WFOF	103.6	105.3	103.1
418	F20: IP	13.53	13.94	13.26
419	F2O: M	0.39	0.24	0.30
	E20. NE	-9.0	73	59

	Observable	Vers. 3.4	Vers. 3.2	Exp.	
421	NHF2: LNF	1.382	1.349	1.400	
122	NHF2: WFNH	103.2	104.5	102.9	
23	NHF2: M	1.61	1.57	1.92	
24	NHF2: HF	-17.7	-4.4	-16.0	
25	NF3: LNF NF3: WENE	1.375	1.344 104 2	1.365	
20 27	NES: WENE	103.2	12 40	12.3	h
28	NES: IP NES: M	13.35	13.40	0 24	D
29	NF3: HF	-35.6	-17.2	-29.8	
30	ONF: LNO	1.163	1.166	1.132	
31	ONF: LNF	1.388	1.353	1.517	
32	ONF: WONF	114.3	113.7	109.9	
33	ONF: M	0.98	0.70	1.81	
4	ONF: HF	-7.4	-7.0	-15.7	
35	C-N2F2: LNF	1.389	1.350	1.384	
36	C-N2F2: LNN	1.200	116 2	1.214	
30	C-N2F2: WFNN C-N2F2: M	110.8	110.3	114.5	
39	C-N2F2: HF	14 2	12 9	16 4	
40	T-N2F2: LNF	1.398	1.354	1.396	
41	T-N2F2: LNN	1.203	1.195	1.231	
42	T-N2F2: WFNN	106.7	107.7	105.5	
43	T-N2F2: HF	16.6	15.4	19.4	
44	HCF: LCH	1.134	1.110	1.138	
45	HCF: LCF	1.290	1.290	1.305	
46	HCF: WHCF	105.5	108.9	104.1	
47	HCF: HF	33.1	37.0	26.0	
48	CF2: LCF	1.311	1.305	1.300	
19 50	CF2: WFCF	106.6	108.5	-49 0	
50 51	CH3F · LFC	1 366	1 364	1 383	
52	CH3F: LCH	1.096	1.094	1.100	
53	CH3F: WFCH	107.6	109.0	108.3	
54	CH3F: IP	13.31	14.14	13.04	
55	CH3F: M	1.65	1.59	1.86	
56	CH3F: HF	-53.5	-51.9	-56.8	
7	CH2F2: LCF	1.355	1.356	1.351	
8	CH2F2: LCH	1.108	1.099	1.084	
59	CH2F2: WFCF	107.7	108.7	108.5	
50	CH2F2: WHCH	13.1	14 04	13 27	
52	CH2F2: M	1.80	1.78	1.98	
63	CH2F2: HF	-103.7	-104.4	-108.1	
64	CHF3: LCH	1.115	1.101	1.091	
65	CHF3: LCF	1.349	1.350	1.328	
66	CHF3: WFCH	110.4	109.8	108.6	
57	CHF3: IP	14.46	14.63	14.80	
68	CHF3: M	1.50	1.51	1.65	
69 70	CHF3: HF	-161.7	-164.8	-166.2	
171	CE4: LCF CE4: TP	1.344 16 61	1.346	1.319	
172	CF4: IP CF4: HF	10.01 _221 6	10.29 -232 5	±0.25 -223 1	
73	C2HF: LCF	-224.0	1 319	1 279	
74	C2HF: LCC	1.212	1.237	1.198	
75	C2HF: M	0.86	0.94	0.72	
76	C2HF: HF	27.8	31.8	30.0	
77	C2F4: LCC	1.338	1.380	1.311	
78	C2F4: LCF	1.338	1.349	1.319	
79	C2F4: WCCF	124.1	123.9	123.8	
80	C2F4: IP	10.58	10.72	10.69	
81	C2F4: HF	-153.0	-156.4	-157.5	
102	C2H3F3: LCC	1.500	1.554	1 240	
184		1.361	1 087	1 021	
85	C2H3F3· WCCF	112 9	112 5	111 9	
86	C2H3F3: WCCH	109 6	109 1	112 0	
87	C2H3F3: IP	13.29	13.40	12.90	
188	C2H3F3: M	2.98	2.48	2.35	
189	C2H3F3: HF	-188.2	-174.6	-178.0	
			1		

	Observable	Vers. 3.4	Vers. 3.2	Exp.
491	C2F6: LCF	1.355	1.361	1.326
492	C2F6: WCCF	111.1	110.7	109.8
493	C2F6: IP	13.30	13.04	14.40
494	C2F6: HF	-310.3	-308.1	-321.3
495	C6F6: LCC	1.404	1.446	1.401
496	C6F6: LCF	1.346	1.365	1.325
497	C6F6: IP	10.35	10.33	10.20
498	C6F6: HF	-227.7	-207.7	-228.3
499	FCN: LCF	1.296	1.313	1.262
500	FCN: LCN	1.176	1.159	1.159
501	FCN: IP	13.23	13.00	13.65
502	FCN: M	1.77	1.50	2.17
503	FCN: HF	1.2	3.9	8.6
504	HFCO: LCO	1.205	1.203	1.188
505	HFCO: LCF	1.333	1.342	1.346
506	HFCO: WOCF	122.1	122.2	122.3
507	HFCO: M	2.04	1.67	2.02
508	HFCO: HF	-83.4	-73.9	-90.0
509	F2CO: LCO	1.206	1.205	1.172
510	F2CO: LCF	1.325	1.335	1.316
511	F2CO: WOCF	125.7	125.2	126.2
512	F2CO: IP	13.73	13.45	13.60
513	F2CO: M	1.12	0.63	0.95
514	F2CO: HF	-146.2	-138.9	-152.9
515	CF3CN: LCC	1.479	1.524	1.461
516	CF3CN: LCF	1.354	1.361	1.335
517	CF3CN: LCN	1.168	1.156	1.153
518	CF3CN: WCCF	111.4	111.5	111.4
519	CF3CN: IP	13.91	13.90	14.30
520	CF3CN: M	0.21	0.15	1.26
521	CF3CN: HF	-130.6	-126.7	-119.0
522	CF3OF: LCO	1.400	1.392	1.395
523	CF3OF: LOF	1.371	1.349	1.421
524	CF3OF: LCF	1.347	1.353	1.319
525	CF3OF: WCOF	105.2	107.4	104.8
526	CF3OF: WFCF	108.5	108.2	109.4
527	CF3OF: M	0.10	0.21	0.33
528	CF3OF: HF	-192.1	-195.6	-182.8

 a [123], b [124].

I NA: IP 5.04 5.14 5.14 2 MG: IP 7.65 7.64 7.65 3 AL: IP 5.95 5.99 5.98 4 ST: IP 8.08 8.15 8.15 5 F: IP 10.13 10.02 10.36 6 S: IP 10.13 10.02 10.36 7 CL: INAH 1.851 1.778 1.887 1 NACH3: LNAH 6.12 7.11 6.00 10 NAH: HF 6.12 7.11 6.00 11 NACH3: WAACH 110.1 10.5 4.10 1 NACH3: WAACH 110.1 10.5 110.0 14 NACH3: WAACH 2.12 -2.4 2.397 a 15 NACN: WAACH 2.078 2.089 2.111 a 16 NACN: HF 2.071 14.6 22.5 17 17 NANE2: WAAN 2.078 2.067 a 2 NA20: LNAO 1.929 1.916 1.918 1.930 2 NA20: LNAO 1.929 1.916 1.918 1.		Observable	Vers. 3.4	Vers. 3.2	 Ехр.
2 MC: IP 7.65 7.64 7.65 3 AL: IP 5.95 5.99 5.98 4 SI: IP 8.08 8.15 8.15 5 F: IP 10.54 10.39 10.49 6 S: IP 10.51 10.26 12.97 8 NAH: MA 1.851 1.776 1.887 9 NAH: M 6.12 7.11 6.40 10 NAH: MF 22.10 2.250 2.337 11 NACH3: HF 21.2 -2.4 2.63 12 NACH3: HF 2.12 -2.4 2.63 13 NACH3: HF 2.078 2.89 1.2.3 14 NACH: HANC 7.65 1.6.4 1.0.0 15 NANU2: HF 12.07 8.39 1.2.3 16 NANU2: HF 12.02 1.0.2.6 1.1 17 NAC: INAC 1.929 1.916 1.920 18 NAD: INAC 1.		 NA· тр	5 04		5 14
3 AL: TP 5.95 5.95 5.95 4 SI: IP 8.06 8.15 8.15 5 P: IP 10.54 10.39 10.49 6 S: IP 10.13 10.02 10.36 7 CL: IP 12.60 12.62 12.97 8 NAH: NM 6.12 7.11 6.40 10 NAH: HF 2.56 41.1 2.97 11 NACR3: WAACH 110.1 10.54 110.0 13 NACR3: WAACH 110.1 10.54 110.0 14 NACR: MAACH 2.210 2.2244 2.284 2.397 15 NACR: WAACH 2.078 2.089 2.111 a 16 NACR: WANCN 77.6 86.4 67.9 a 10 NAH2: INAN 2.078 2.087 2.187 10 NAM2: WANN 12.57 80.3 8.16 21 NAO: HF -32.8 -51.8 -47.3	2	MG: IP	7.65	7.64	7.65
4 SI: IP 8.08 8.15 8.15 5 P: IP 10.54 10.39 10.49 6 S: IP 10.13 10.02 10.36 7 CL: IP 12.60 12.62 12.97 8 NAH: MARAH 1.851 1.778 1.887 9 NAH: M 6.12 7.11 6.40 10 NAR: HF 29.6 41.1 29.7 11 NACRIS: LMAC 2.210 2.250 2.337 12 NACRIS: HF 21.2 -2.4 26.3 13 NACRIS: HF 21.7 14.6 22.5 131 14 NANC: NACN 77.6 86.4 67.9 a 15 NACN: WAACN 77.6 86.4 67.9 a 16 NAN2: WAAN 2.078 2.089 2.111 a 17 NANE: HF 29.9 20.1 20.8 2 18 NANC: LNAO 1.929 1.916 1.960 21 NAO: LNAO 1.916 1.930 2.067 </td <td>3</td> <td>AL: IP</td> <td>5.95</td> <td>5.99</td> <td>5.98</td>	3	AL: IP	5.95	5.99	5.98
5 P: IP 10.54 10.39 10.49 6 S: IP 10.13 10.02 10.36 7 CL: IP 12.60 12.62 12.97 8 NAH: IMAH 1.851 1.778 1.887 9 NAH: IM 6.12 7.11 6.40 10 NAH: IMF 29.6 41.1 29.7 11 NACH3: IMAC 2.210 2.250 2.337 12 NACH3: IMAC 2.244 2.284 2.397 a 14 NACK: IMAC 2.078 2.089 2.111 a 15 NANE: IMAN 2.078 2.089 2.111 a 16 NACN: HF 29.9 20.1 20.82 1.950 20 NAO: IMAO 1.929 1.916 1.960 23 NA20: IMAO 1.929 1.916 1.926 21 NA20: IMAO 1.929 1.916 1.930 2.667 a 4.603 8.164 20 NAO: IMAO 1.916 1.918 1.930 2.2661 2.034 2.0	4	SI: IP	8.08	8.15	8.15
6 5: TP 10.13 10.02 10.38 7 CL: IP 12.60 12.62 12.97 8 NAH: LNAH 1.851 1.776 1.887 9 NAH: M 6.12 7.11 6.40 10 NAH: MF 29.6 41.1 29.7 11 NACR3: IMAC 2.210 2.250 2.337 12 NACR3: IMAC 2.210 2.244 2.397 a 13 NACRS: IMAC 7.6 86.4 67.9 a 15 NACN: WNACN 77.6 86.4 67.9 a 16 NACN: HF 27.7 14.6 22.5 111 a 18 NANH2: WRANN 1.22.7 83.9 124.3 a 19 NANH2: WRANN 1.22.7 83.9 124.3 a 10 NACD: INAO 1.029 1.916 1.806 20 NAC: INAO 1.229 1.916 1.806 21 NAC: INAO 1.216 1.918 1.936 22 NAC: INAO	5	P: IP	10.54	10.39	10.49
7 CL: IP 12.60 12.62 12.2 12.87 9 NAH: LNAH 1.851 1.778 1.887 9 NAH: HF 29.6 41.1 29.7 11 NACH3: LNAC 2.210 2.250 2.337 12 NACH3: WACH 110.1 105.4 110.0 13 NACH3: WACH 110.1 105.4 2.297 a 14 NACH3: WACH 21.2 -2.4 2.64 2.397 a 15 NACHS: LNAN 2.078 2.089 2.111 a 16 NACN: MACN 77.6 86.4 67.9 a 17 NANE2: LNAN 2.078 2.089 2.111 a 18 NANE2: HF 19.6 2.4.0 2.9 b 20 NAO: LNAO 1.929 1.916 1.980 2.067 a 21 NAO: HF -32.8 -53.8 -47.3 1.930 NA22 NA22 IANO 1.916 1.918 1.930 21 NAO: HF -32.8 -36.7	6	S: IP	10.13	10.02	10.36
8 NAH: LANH 1.851 1.778 1.864 10 NAH: HF 29.6 41.1 29.7 11 NACB: WNACH 110.1 105.4 110.0 13 NACB: WNACH 110.1 105.4 110.0 13 NACB: WNACH 110.1 105.4 110.0 13 NACB: WNACH 12.2 -2.4 2.637 14 NACN: NAC 2.244 2.264 2.397 15 NACN: WNACN 77.6 86.4 67.9 a 16 NANE: WNANH 2.078 2.089 2.111 a 18 NANE: WNANH 2.57 83.9 124.3 a 19 NANE: WNANH 2.023 1.958 2.067 a 20 NAC: LINAO 1.929 1.916 1.9018 1.932 21 NAO: HF -32.8 -53.8 -47.3 3 21 NAO: HF -32.8 -53.8 -47.3 3	7	CL: IP	12.60	12.62	12.97
9 NAH: H 6.12 7.11 6.40 10 NAH: HF 2.56 4.11 29.7 11 NACB3: LNAC 2.210 2.250 2.337 12 NACB3: MACH 110.1 105.4 110.0 13 NACR3: MACH 110.1 105.4 2.284 2.397 14 NACK: MACN 77.6 86.4 67.9 a 15 NANR: LINAN 2.078 2.089 2.111 a 16 NACK: MNANH 125.7 83.9 124.3 a 18 NANR2: HF 19.6 24.0 29.9 b 20 NAO: LMAO 2.023 1.958 2.061 1.960 23 NAO: HF -2.8 -9.8 -8.6 6 24 NAO: HF -3.94 1.818 1.930 1.916 1.918 1.930 25 NAF: HF -3.53.8 -47.3 3.073 3.231 3.078 C 26	8	NAH: LNAH	1.851	1.778	1.887
10 NAR: HF 23.6 41.1 23.7 11 NACB3: INFACH 110.1 105.4 110.0 13 NACB3: HF 21.2 -2.4 2.637 14 NACRS: LNAC 2.244 2.284 2.397 15 NACK: HNACN 77.6 86.4 67.9 a 16 NACK: HF 21.7 14.6 22.7 a 17 NANE2: INAN 2.078 2.089 2.111 a 18 NANE2: WNACH 1.56 24.0 29.9 b 20 NAO: LNAO 2.023 1.958 2.067 a 30 NAO: HF 2.023 1.958 2.067 a 21 NAO: HANO 1.929 1.916 1.960 a 30 NAF: LNAO 1.928 1.887 1.960 30 NAZE: WNAF 2.064 2.034 2.061 30 NAZE: WNAF 36.1 32.2 34.0 31 NAZE: WNAF 38.1 8.69 9.34 30 NAZE: HANA </td <td>10</td> <td>NAH: M</td> <td>6.12</td> <td>7.11</td> <td>6.40</td>	10	NAH: M	6.12	7.11	6.40
11 NACH:: 110.1 10.5.4 110.0 13 NACH:: 110.1 10.5.4 110.0 14 NACH:: 110.1 10.5.4 110.0 15 NACH:: 110.1 10.5.4 110.0 14 NACK:: LACK:: 21.2 -2.4 2.84 2.397 a 15 NACH:: LACK:: MACH:: 21.2 -2.44 2.84 2.397 a 16 NACK:: HNANE2:: LANN<	11	NAH: HE NACH2: INAC	29.6	41.1	29.1
13 NACH3: HFXC 21.2 -2.4 26.3 14 NACN: LNAC 2.244 2.284 2.397 a 15 NACN: WNACN 77.6 86.4 67.9 a 16 NACN: WNACN 77.6 86.4 67.9 a 17 NANE: MNANN 2.078 2.089 2.11 a 18 NANE: WNANN 125.7 83.9 124.3 a 19 NANE: WNANN 1.05.7 83.9 124.3 a 20 NAO: LNAO 2.023 1.958 2.067 a 21 NAO: HF 2.0 9 2.01 1.960 30 NAO: HF -2.8 -9.8 -8.6 6 24 NAO: HAF -7.44 8.03 8.16 8 25 NAOH: HF -46.9 -68.7 -69.4 3 30 NA2F2: HFNAF 2.064 2.034 2.081 3 31 NA2F2: HFNAF 2.361 3.231 3.078 6 31 NA2F2: HFNAF 2.36	12	NACH3: WNACH	110 1	105 4	110 0
14 NACN: LINAC 2.244 2.284 2.397 15 NACN: WNACN 77.6 86.4 67.9 a 16 NACN: WHACN 77.6 86.4 67.9 a 17 NANH2: LNAN 2.078 2.089 2.111 a 18 NANH2: WNANH 125.7 83.9 2.4.3 a 19 NANH2: WNANH 125.7 83.9 2.0.11 20.8 21 NAO: LINAO 2.023 1.956 1.960 3.9 22 NAO: HF -2.8 -58.8 -6.6 23 NA2O: HF -32.8 -53.8 -47.3 26 NAF: LINAF 1.954 1.887 1.926 27 NAF: HF -46.9 -68.7 -69.4 29 NA2F2: INAF 2.064 2.034 2.081 20 NA2F2: HFNF 86.1 84.9 94.7 31 NA2F2: HF -225.8 -363.5 -202.3 31 NA2F2: HF 36.1 32.2 34.0 32 NA2: HF	13	NACH3: HF	21.2	-2.4	26.3
15 NACN: WRACN 77.6 86.4 67.9 a 16 NACN: HF 27.7 14.6 22.5 17 NANH2: INIAN 2.078 2.089 2.111 a 18 NANH2: WIANH 125.7 83.9 124.3 a 19 NANH2: HF 19.6 24.0 29.9 b 20 NAO: HF 29.9 20.1 20.8 21 NAO: HF 29.9 1.916 1.960 23 NAO: HF -2.8 -5.8 -8.6 24 NAOH: HANO 1.916 1.918 1.920 25 NAOH: HANO 1.954 1.887 1.926 27 NAF: MAT -46.9 -68.7 -69.4 28 NAF: MAT 2.064 2.034 2.081 30 NA2F2: MFNAF 88.1 84.9 94.7 31 NA2F2: MFNAF 2.362 2.497 2.361 30 NA2F2: MFNAF 88.1 8.68 9.34 36 NACL: INACL 2.382 2.497 <t< td=""><td>14</td><td>NACN: LNAC</td><td>2.244</td><td>2.284</td><td>2.397 a</td></t<>	14	NACN: LNAC	2.244	2.284	2.397 a
16 NACN: HF 27.7 14.6 22.5 17 NANH2: IXANN 2.078 2.089 2.111 a 18 NANH2: INFANN 125.7 83.9 124.3 a 19 NAN12: INFANN 125.7 83.9 124.3 a 10 NAO: LINAO 2.023 1.958 2.067 a 21 NAO: LINAO 1.929 1.916 1.960 a 23 NA20: HF -2.8 -58 -6.6 a a 24 NAOH: HKO 1.916 1.930 1.926 a	15	NACN: WNACN	77.6	86.4	67.9 a
17 NANH2: WNANH 2.078 2.089 2.111 a 18 NANH2: WNANH 125.7 83.9 124.3 a 19 NANH2: WNANH 125.7 83.9 124.3 a 19 NAO: LNAO 2.023 1.958 2.067 a 21 NAO: HF 29.9 20.11 20.8 1.960 23 NA2O: LNAO 1.929 1.916 1.960 24 NAOH: LNAO 1.916 1.918 1.926 25 NAOH: LNAO 1.916 1.918 1.926 7 NAF: M 7.44 8.03 8.16 28 NAFT2: LNAF 2.064 2.034 2.081 30 NA2F2: WFNAF 88.1 84.9 94.7 31 NA2F2: WFNAF 86.1 32.2 34.0 34 NACL: INACL 2.382 2.497 2.361 35 NACL: INACL 2.382 2.497 2.361 36 NA2CL2: WFNAF 9.88 8.66 9.34 36 NA2CL2: INACL <t< td=""><td>16</td><td>NACN: HF</td><td>27.7</td><td>14.6</td><td>22.5</td></t<>	16	NACN: HF	27.7	14.6	22.5
18 NANH2: HF 125.7 83.9 124.3 9 NANH2: HF 19.6 24.0 29.9 b 20 NAC: LINAO 2.023 1.958 2.067 a 21 NAC: LINAO 1.929 1.916 1.960 23 NAZO: LINAO 1.929 1.916 1.960 23 NAZO: LINAO 1.916 1.918 1.930 25 NAOH: LINAO 1.916 1.918 1.926 26 NAF: LINAF -32.8 -53.8 -47.3 26 NAF: HF -32.8 -53.3 -47.7 20 NAZF2: INAF 2.064 2.034 2.081 21 NAZF2: HFAF 2.061 32.2 34.0 31 NAZF2: HF -22.382 2.497 2.361 35 NACL: INACL 2.382 2.497 2.361 36 NACL: HF -39.7 -45.8 -43.4 38 NAZCL2: INACL 100.7 100.1 101.4 40 NAZCL2: HF -139.0 -226.7 -135.3<	17	NANH2: LNAN	2.078	2.089	2.111 a
19 NANH2: HF 19.6 24.0 29.9 20.67 21 NAO: HF 29.9 20.1 20.8 21 NAO: HF 29.9 20.1 20.8 21 NAO: HF -2.8 -9.8 -8.6 23 NAZO: HF -2.8 -9.8 -47.3 25 NAOH: LNAO 1.916 1.918 1.930 25 NAOH: LNAF 1.954 1.887 1.926 27 NAF: MM 7.44 8.03 8.16 28 NAF: LNAF 2.064 2.034 2.081 30 NAZF2: WFNAF 88.1 84.9 94.7 31 NAZF2: WFNAF 88.1 84.9 94.7 33 NAZ: HF -22.8 -363.5 -202.3 34 NACL: LNACL 2.382 2.497 2.361 35 NACL: HF -39.7 -45.8 -45.4 36 NAZCL2: WCINACL 100.7 100.1 101.4 37 NAZCL2: WCINACL 100.7 100.1 101.4 38 <td>18</td> <td>NANH2: WNANH</td> <td>125.7</td> <td>83.9</td> <td>124.3 a</td>	18	NANH2: WNANH	125.7	83.9	124.3 a
21 NAC: LNAC 2.023 1.958 2.067 3 21 NAC: HF 20.9 1.916 1.960 23 NAZO: LNAC 1.929 1.916 1.960 23 NAZO: HF -2.8 -9.8 -8.6 24 NACH: LNAC 1.916 1.918 1.930 25 NACH: HF -32.8 -47.3 26 NAF: LNAF 1.954 1.887 1.926 27 NAF: MF 2.064 2.034 2.081 20 NAZF2: WFNAF 88.1 84.9 94.7 31 NAZF2: HF -225.8 -363.5 -202.3 32 NAZ: HF 36.1 32.2 34.0 34 NACL: INACL 2.382 2.497 2.361 35 NACL: INACL 2.569 2.657 2.584 36 NAZCL2: WICLNACL 100.7 100.1 101.4 40 NAZCL2: HF -39.0 -226.7 -135.3 41 NA3CL3: HF -223.8 -389.3 -220.4 d	19	NANH2: HF	19.6	24.0	29.9 b
21 NAO: HR 25.9 20.1 20.6 21 NAZO: HRO 1.929 1.916 1.960 23 NAZO: HF -2.8 -9.8 -8.6 24 NAOH: LNAO 1.916 1.918 1.930 25 NAOH: HF -32.8 -53.8 -47.3 26 NAF: HAF 1.954 1.887 1.926 27 NAF: M 7.44 8.03 8.16 28 NAF: HF -46.9 -68.7 -69.4 29 NAZF2: WFNAF 88.1 84.9 94.7 30 NAZF2: WFNAF 86.1 34.9 9.47 31 NAZF2: WFNAF 2.361 3.078 c 31 NAZCL: HF -36.1 32.231 3.078 c 31 NAZCL: MACL: 2.369 2.657 2.584 39 NAZCL: MACL: 100.7 100.1 101.4 40 MAZCL2: MACH	20	NAO: LNAO	2.023	1.958	2.06/ a
23 NACC: HFP -2.8 -8.6 24 NAOH: LINAG 1.916 1.918 1.930 25 NAOH: HF -32.8 -53.8 -47.3 26 NAF: LNAF 1.954 1.887 1.926 27 NAF: M 7.44 8.03 8.16 28 NAF: HF -46.9 -68.7 -69.4 29 NA2F2: LINF 2.064 2.034 2.081 30 NA2F2: HF 36.1 32.31 3.078 c 31 NA2: LINACL 2.382 2.497 2.361 34 NACL: HF 36.1 32.2.3 3.078 c 34 NACL: HF -39.7 -45.8 -43.4 35 NACL: HF -39.7 -45.8 -43.4 36 NACL: HF -223.8 -389.3 -220.4 d 41 NA3CL2: LINGH 1.755 1.616 1.730 d 42	22	NAO: HF NA2O: LNAO	29.9	20.1	20.8
24 NAOH: LNAO 1.916 1.918 1.930 25 NAOH: HF -32.8 -53.8 -47.3 26 NAF: LNAF 1.926 1.887 1.926 27 NAF: M 7.44 8.03 8.16 28 NAF: HF -46.9 -68.7 -69.4 29 NA2F2: LNAF 2.064 2.034 2.081 30 NA2F2: WFNAF 88.1 84.9 94.7 31 NA2F2: WFNAF 88.1 84.9 94.7 32 NA2: LNANA 3.173 3.231 3.078 34 NACL: MACL 2.382 2.497 2.361 35 NACL: M 7.83 9.82 9.00 37 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: WCLNACL 100.7 100.1 10.4 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: LMGH 1.755 1.616 1.730 d 43 MG(CH3) H: LMGC 2.034 1.940 2.100 <td>23</td> <td>NA20: HE</td> <td>-2 8</td> <td>-9.8</td> <td>-8.6</td>	23	NA20: HE	-2 8	-9.8	-8.6
25 NAOH: HF -32.8 -53.8 -47.3 26 NAF: LNAF 1.954 1.887 1.926 7 NAF: M 7.44 8.03 8.16 28 NAF: HF -46.9 -68.7 -69.4 200 NAZP2: LNAF 2.064 2.034 2.081 30 NAZP2: WFNAF 88.1 84.9 94.7 31 NAZP2: HFF -225.8 -363.5 -202.3 32 NA2: LNACL 2.382 2.497 2.361 35 NACL: LNACL 2.382 2.497 2.361 36 NACL: LMACL 2.382 2.497 2.361 37 NAZCL2: LNACL 2.569 2.657 2.584 39 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: WCLNACL 100.7 100.1 104.4 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: HF 56.4 56.3 57.1	24	NAOH: LNAO	1.916	1.918	1,930
26 NAF: LNAF 1.954 1.887 1.926 27 NAF: M 7.44 8.03 8.16 28 NAF: HF -46.9 -68.7 -69.4 29 NA2F2: WFNAF 88.1 84.9 94.7 31 NA2F2: WFNAF 88.1 84.9 94.7 32 NA2: LNANA 3.173 3.231 3.078 cd 33 NA2: HF 36.1 32.2 34.0 34 34 NACL: HF 2.382 2.497 2.361 35 NACL: HF -39.7 -45.8 -43.4 38 NA2CL2: LNACL 2.569 2.657 2.584 39 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: WCLNACL 100.7 100.1 101.4 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: LMGH 1.725 1.616 1.730 1.700 43 MGH2: HF 36.6 34.3 37.5 4 4.62 -11.0 44.7 <	25	NAOH: HF	-32.8	-53.8	-47.3
27 NAF: M 7.44 8.03 8.16 28 NAF: HF -46.9 -68.7 -69.4 29 NA2F2: LNAF 2.064 2.034 2.081 30 NA2F2: WFNAF 88.1 84.9 94.7 31 NA2F2: WFNAF 88.1 84.9 94.7 31 NA2F2: WFNAF 88.1 84.9 94.7 32 NA2: LHF -225.8 -363.5 -202.3 33 NA2: LHF 3.173 3.231 3.078 cd 34 NACL: INACL 2.382 2.497 2.561 35 NACL: HF -39.7 -45.8 -43.4 36 NACL2: HF -139.0 -266.7 2.584 39 NA2CL2: WCLNACL 100.7 100.1 10.4 40 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL3: HF -220.4 dd 42 MGH: HF 56.4 56.3 57.1 44 MGH2: HF 36.6 34.3 37.5 45 MG(26	NAF: LNAF	1.954	1.887	1.926
28 NAF: HF -46.9 -68.7 -69.4 29 NA2F2: INAF 2.064 2.034 2.081 30 NA2F2: WFNAF 88.1 84.9 94.7 31 NA2F2: HF -225.8 -363.5 -202.3 32 NA2: LNANA 3.173 3.231 3.076 c 33 NA2: LNANA 3.173 3.231 3.076 c 34 NACL: INACL 2.382 2.497 2.361 35 NACL: IP 9.88 8.68 9.34 36 NACL: M 7.83 9.82 9.00 37 NACL: MF -39.7 -45.8 -43.4 38 NA2CL2: KACL 2.569 2.657 2.584 9 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL2: HF -56.4 56.3 57.1 42 MGH: LMGH 1.726 1.573 1.700 43 MGH: LMGH 1.727 1.579 1.210 44 MG(CH3)H: LMGC 2.034 1.940 2.100	27	NAF: M	7.44	8.03	8.16
29 NA2F2: INAF 2.064 2.034 2.081 30 NA2F2: WFNAF 88.1 84.9 94.7 31 NA2F2: WFNAF 88.1 84.9 94.7 31 NA2F2: WFNAF 88.1 84.9 94.7 32 NA2: LHF 3.173 3.231 3.078 c 33 NA2: LHF 36.1 32.2 34.0 34 NACL: INACL 2.382 2.497 2.361 35 NACL: HF -9.88 8.68 9.34 36 NACL: HF -139.7 -45.8 -43.4 37 NACL2: WCINACL 100.7 100.1 101.4 40 NA2CL2: WCINACL 100.7 100.1 101.4 40 NA2CL2: WCINACL 100.7 100.1 101.4 40 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: HF 56.4 56.3 57.1 1.4 44 MGH2: HF 36.6 34.3 37.5	28	NAF: HF	-46.9	-68.7	-69.4
30 NA2F2: WFNAF 88.1 84.9 94.7 31 NA2F2: HF -225.8 -363.5 -202.3 32 NA2: LNANA 3.173 3.231 3.078 c 33 NA2: HF 36.1 32.23 34.0 4 NACL: INACL 2.382 2.497 2.361 35 NACL: IP 9.88 8.68 9.34 36 NACL: HF -39.7 -45.8 -43.4 37 NA2CL2: WCINACL 100.7 100.1 101.4 40 NA2CL2: WCINACL 100.7 100.1 101.4 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: LMGH 1.755 1.616 1.730 37.5 44 MGH2: LMGH 1.726<	29	NA2F2: LNAF	2.064	2.034	2.081
31 NA2F2: HF -202.8 -363.5 -202.3 32 NA2: LMANA 3.173 3.231 3.078 c 34 NACL: LNACL 2.382 2.497 2.361 35 NACL: LNACL 2.382 2.497 2.361 36 NACL: LNACL 2.382 2.497 2.361 37 NACL: HF 9.88 8.68 9.34 38 NA2CL2: LNACL 2.569 2.657 2.584 39 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL3: HF -223.8 -389.3 -220.4 4 42 MGH: LMGH 1.755 1.616 1.730 43 MGH2: HF 36.6 34.3 37.5 44 MGH2: HF 36.6 34.3 37.5 45 MG(CH3) H: LMGH 1.727 1.579 1.710 44 MGH2: HF 36.6 34.3 37.5 45 MG(CH3) H: LMGH 1.727 1.579 <	30	NA2F2: WFNAF	88.1	84.9	94.7
33 NA2: HF 36.1 32.2 34.0 34 NACL: INACL 2.382 2.497 2.361 35 NACL: IP 9.88 8.68 9.34 36 NACL: HF -39.7 -45.8 -43.4 38 NA2CL2: INACL 2.559 2.657 2.584 39 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: LMGH 1.755 1.616 1.730 43 MGH2: LMGH 1.726 1.573 1.700 44 MGH2: LMGH 1.726 1.952 2.120 47 MGCH3: HF 46.2 -11.0 44.7 48 MG(CH3)H: LMGH 1.727 1.579 1.710 50 MG(CH3)H: MGC 2.034 1.940 2.100 51 MG(CH3)H: MGGC 2.040 1.80.0 180.0 52 MG(CH3)E: LMGC 1.041.7 1.579 1.710<	31	NA2F2: HF	-225.8	-363.5	-202.3
34 NACL: INACL 2.382 2.497 2.361 35 NACL: IP 9.88 8.68 9.34 36 NACL: M 7.83 9.82 9.00 37 NACL: HF -39.7 -45.8 -43.4 38 NA2CL2: LNACL 2.569 2.657 2.584 39 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: LMGH 1.755 1.616 1.730 43 MGH2: HF 36.6 34.3 37.5 44 MGH2: HF 36.6 34.3 37.5 45 MGCH3: HE 46.2 -11.0 44.7 46 MGCH3) H: LMGC 2.034 1.940 2.100 49 MG(CH3) H: LMGC 2.040 1.947 2.100 51 MG(CH3) H: HF 24.0 -32.5 28.4 52 MG(CH3) 2: LMGC 180.0 180.0 180.0 <td>32</td> <td>NAZ: LNANA Na2: uf</td> <td>3.1/3</td> <td>3.231</td> <td>3.078 C</td>	32	NAZ: LNANA Na2: uf	3.1/3	3.231	3.078 C
35 NACL: IP 9.88 8.68 9.34 36 NACL: M 7.83 9.82 9.00 37 NACL: HF -39.7 -45.8 -43.4 38 NA2CL2: LNACL 2.569 2.657 2.584 39 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: HF 56.4 1.755 1.616 1.730 43 MGH: HF 56.4 3.57.1 1.700 45 MGH2: HF 36.6 34.3 37.5 46 MGCH3: HF 46.2 -11.0 44.7 48 MG(CH3)H: LMGC 2.034 1.940 2.100 49 MG(CH3)H: LMGC 2.040 1.80.0 180.0 51 MG(CH3)H: MCMGH 180.0 180.0 180.0 52 MG(CH3)H: HF 24.0 -32.5 28.4 52 MG(CH3)H: HF 13.6 -96.3	34	NACL · LNACL	2 382	2 497	2 361
36 NACL: M 7.83 9.82 9.00 37 NACL: HF -39.7 -45.8 -43.4 38 NA2CL2: LNACL 2.569 2.657 2.584 39 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL3: HF -223.8 -389.3 -220.4 dd 42 MGH: LMGH 1.755 1.616 1.730 43 MGH2: LMGH 1.726 1.573 1.700 45 MGH2: HF 36.6 34.3 37.5 46 MGCH3: HF 46.2 -11.0 44.7 48 MG(CH3)H: LMGC 2.034 1.940 2.100 49 MG(CH3)H: MGH 180.0 180.0 180.0 50 MG(CH3)H: MGCH 180.0 180.0 180.0 51 MG(CH3)2: HF 13.6 -96.3 15.3 53 MG(CH3)2: HF 13.6 -96.3 15.3 54 MG(CH3)2: HF 13.6 1.951 2.040	35	NACL: IP	9.88	8.68	9.34
37NACL: HF -39.7 -45.8 -43.4 38NA2CL2: WCLNACL 2.569 2.657 2.584 39NA2CL2: WCLNACL 100.7 100.1 101.4 40NA2CL2: HF -139.0 -226.7 -135.3 41NA3CL3: HF -223.8 -389.3 -220.4 42MGH: LMGH 1.755 1.616 1.730 43MGH: HF 56.4 56.3 57.1 44MGH2: IMGH 1.726 1.573 1.700 45MGCH3: HF 36.6 34.3 37.5 46MGCH3: HF 46.2 -11.0 44.7 48MG (CH3) H: LMGC 2.034 1.940 2.100 49MG (CH3) H: LMGC 2.034 1.940 2.100 50MG (CH3) H: WCMGH 180.0 180.0 180.0 51MG (CH3) H: WCMGH 180.0 180.0 180.0 53MG (CH3) 2: LMGC 2.040 1.947 2.100 53MG (CH3) 2: HF 13.6 -96.3 15.3 55MGHCCH: LMGC 1.976 1.951 2.040 57MGHCCH: LMGC 2.027 1.987 2.090 58MGHC2H3: LMGC 2.333 2.263 2.339 63MG (CSH5) 2: LMGC 2.031 1.944 2.066 64MG (CN) H: LMGC 2.011 1.964 2.060 65MG (CN) H: LMGC 2.033 2.263 2.339 63MG (CSH5) 2: LMGC 2.006 1.9	36	NACL: M	7.83	9.82	9.00
38 NA2CL2: LNACL 2.569 2.657 2.584 39 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: HF -56.4 56.3 57.1 44 MGH2: LMGH 1.726 1.573 1.700 45 MGH2: HF 36.6 34.3 37.5 46 MGCH3: LMGC 2.072 1.952 2.120 47 MGCH3: HF 46.2 -11.0 44.7 48 MG(CH3) H: LMGC 2.034 1.940 2.100 50 MG(CH3) H: HF 24.0 -32.5 28.4 52 MG(CH3) H: HF 24.0 -32.5 28.4 52 MG(CH3) 2: HGC 180.0 180.0 180.0 53 MG(CH3) 2: HGC 1.976 1.981 2.040 54	37	NACL: HF	-39.7	-45.8	-43.4
39 NA2CL2: WCLNACL 100.7 100.1 101.4 40 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: LMGH 1.755 1.616 1.730 43 MGH: LMGH 1.755 1.616 1.730 44 MGH2: HF 56.4 56.3 57.1 45 MGH2: HF 36.6 34.3 37.5 46 MGCH3: LMGC 2.072 1.952 2.120 47 MGCH3: HF 46.2 -11.0 44.7 48 MG (CH3) H: LMGC 2.034 1.940 2.100 49 MG (CH3) H: LMGH 1.727 1.579 1.710 50 MG (CH3) H: WCMGH 180.0 180.0 180.0 51 MG (CH3) 2: WCMGC 180.0 180.0 180.0 54 MG (CH3) 2: WCMGC 180.0 180.0 180.0 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 2.027 1.987 <td>38</td> <td>NA2CL2: LNACL</td> <td>2.569</td> <td>2.657</td> <td>2.584</td>	38	NA2CL2: LNACL	2.569	2.657	2.584
40 NA2CL2: HF -139.0 -226.7 -135.3 41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: LMGH 1.755 1.616 1.730 43 MGH: HF 56.4 56.3 57.1 44 MGH2: LMGH 1.726 1.573 1.700 45 MGH2: HF 36.6 34.3 37.5 46 MGCH3: LMGC 2.072 1.952 2.120 47 MGCH3: HF 46.2 -11.0 44.7 48 MG (CH3) H: LMGC 2.034 1.940 2.100 49 MG (CH3) H: LMGH 180.0 180.0 180.0 51 MG (CH3) 2: LMGC 2.040 1.947 2.100 53 MG (CH3) 2: MCGC 180.0 180.0 180.0 54 MG (CH3) 2: MCGC 180.0 180.0 180.0 55 MG(CH3) 2: MCGC 1.976 1.957 2.040 54 MG (CH3) 2: MCGC 1.976 1.957 2.040 55 MG(CH3) 2: MCGC 1.987 2.090	39	NA2CL2: WCLNACL	100.7	100.1	101.4
41 NA3CL3: HF -223.8 -389.3 -220.4 d 42 MGH: LMGH 1.755 1.616 1.730 43 MGH: HF 56.4 56.3 57.1 44 MGH2: LMGH 1.726 1.573 1.700 45 MGH2: HF 36.6 34.3 37.5 46 MGCH3: LMGC 2.072 1.952 2.120 47 MGCH3: HF 46.2 -11.0 44.7 48 MG(CH3)H: LMGC 2.034 1.940 2.100 49 MG(CH3)H: LMGC 2.040 180.0 180.0 50 MG(CH3)H: MGH 180.0 180.0 180.0 51 MG(CH3)2: LMGC 180.0 180.0 180.0 53 MG(CH3)2: MF 13.6 -96.3 15.3 54 MG(CH3)2: MGC 180.0 180.0 180.0 55 MGHCCH: LMGC 1.976 1.951 2.040 54 MG(CH3)2: HF 5.5 0 -32.6 57.6 61 MG(CSH5)2: LMGX 1.989 1.879	40	NA2CL2: HF	-139.0	-226.7	-135.3
42 MGH: LMGH 1.755 1.616 1.750 43 MGH2: LMGH 1.726 1.573 1.700 45 MGH2: LMGH 1.726 1.573 1.700 45 MGH2: LMGH 1.726 1.573 1.700 45 MGCH3: LMGC 2.072 1.952 2.120 47 MGCH3: HF 46.2 -11.0 44.7 48 MG(CH3)H: LMGC 2.034 1.940 2.100 49 MG(CH3)H: LMGH 1.727 1.579 1.710 50 MG(CH3)H: HF 24.0 -32.5 28.4 51 MG(CH3)2: LMGC 2.040 1.947 2.100 53 MG(CH3)2: MCMGC 180.0 180.0 180.0 54 MG(CH3)2: MCMGC 180.0 180.0 180.0 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 2.027 1.987 2.040 57 MGHCCH: LMGC 2.027 1.987 2.040 58 MGHCCH: HF 75.0 -32.6 57.6 <	41	NAJCLJ: HF	-223.8	-389.3	-220.4 d
44 MGH2: LMGH 1.726 1.573 1.700 45 MGH2: HF 36.6 34.3 37.5 46 MGCH3: LMGC 2.072 1.952 2.120 47 MGCH3: HF 46.2 -11.0 44.7 48 MG(CH3)H: LMGC 2.034 1.940 2.100 49 MG(CH3)H: LMGH 1.727 1.579 1.710 50 MG(CH3)H: MGH 180.0 180.0 180.0 51 MG(CH3)H: MGC 2.040 1.947 2.100 53 MG(CH3)2: LMGC 2.040 1.947 2.100 53 MG(CH3)2: MGC 180.0 180.0 180.0 54 MG(CH3)2: HF 13.6 -96.3 15.3 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: HF 75.4 26.3 80.3 58 MGHC2H3: HF 55.0 -32.6 57.6 61 MG(C5H5)2: LMGC 2.333 2.263 2.339	42	MGH: LMGH MCH· HF	1.755 56 A	56 3	57 1
45 MGH2: HF 36.6 34.3 37.5 46 MGCH3: LMGC 2.072 1.952 2.120 47 MGCH3: HF 46.2 -11.0 44.7 48 MG(CH3) H: LMGC 2.034 1.940 2.100 49 MG(CH3) H: LMGH 1.727 1.579 1.710 50 MG(CH3) H: WCMGH 180.0 180.0 180.0 51 MG(CH3) L: MGC 2.040 1.947 2.100 53 MG(CH3) 2: LMGC 2.040 1.947 2.100 53 MG(CH3) 2: MCMGC 180.0 180.0 180.0 54 MG(CH3) 2: HF 13.6 -96.3 15.3 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGH 1.719 1.576 1.700 57 MGHCCH: LMGC 2.027 1.987 2.040 58 MGHC2H3: LMGC 2.033 2.263 2.339 59 MGHC2H3: LMGC 2.333 2.263 2.339 61 MG(CSH5)2: LMGX 1.989 1.879 <	44	MGH2: LMGH	1.726	1.573	1.700
46 MGCH3: LMGC 2.072 1.952 2.120 47 MGCH3: HF 46.2 -11.0 44.7 48 MG(CH3)H: LMGC 2.034 1.940 2.100 49 MG(CH3)H: LMGH 1.727 1.579 1.710 50 MG(CH3)H: WCMGH 180.0 180.0 180.0 51 MG(CH3)2: LMGC 2.040 947 2.100 53 MG(CH3)2: MCMGC 180.0 180.0 180.0 54 MG(CH3)2: MCMGC 180.0 180.0 180.0 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: HF 75.4 26.3 80.3 58 MGHCCH3: HF 1.724 1.583 1.700 59 MGHC2H3: LMGC 2.033 2.263 2.339 61 MG(C5H5)2: LMGC 2.333 2.263 2.339 62 MG(CN)H: LMGC 2.011 1.964 <td< td=""><td>45</td><td>MGH2: HF</td><td>36.6</td><td>34.3</td><td>37.5</td></td<>	45	MGH2: HF	36.6	34.3	37.5
47 MGCH3: HF 46.2 -11.0 44.7 48 MG(CH3) H: LMGC 2.034 1.940 2.100 49 MG(CCH3) H: LMGH 1.727 1.579 1.710 50 MG(CH3) H: MGH 180.0 180.0 180.0 51 MG(CH3) H: WCMGH 180.0 -32.5 28.4 52 MG(CH3) 2: LMGC 2.040 1.947 2.100 53 MG(CH3) 2: WCMGC 180.0 180.0 180.0 54 MG(CH3) 2: HF 13.6 -96.3 15.3 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: HF 75.4 26.3 80.3 58 MGHC2H3: LMGC 2.027 1.987 2.090 59 MGHC2H3: HF 55.0 -32.6 57.6 61 MG(C5H5) 2: LMGC 2.333 2.263 2.339 63 MG(CSH5) 2: LMGC 2.011 1.964 2.060 64 MG(CN) H: LMGH 1.717 1.575	46	MGCH3: LMGC	2.072	1.952	2.120
48 MG (CH3) H: LMGC 2.034 1.940 2.100 49 MG (CH3) H: LMGH 1.727 1.579 1.710 50 MG (CH3) H: MCMGH 180.0 180.0 180.0 51 MG (CH3) H: HF 24.0 -32.5 28.4 52 MG (CH3) 2: LMGC 2.040 1.947 2.100 53 MG (CH3) 2: MCMGC 180.0 180.0 180.0 54 MG (CH3) 2: HF 13.6 -96.3 15.3 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGC 2.333 2.26 57.6 61 MG (C5H5) 2: LMGX 1.989 1.879 2.008 62 MG (CSH5) 2: LMGC 2.333 2.263 2.339 63 MG (CSH5) 2: HF 43.4 -167.3 31.2 64 MG (CN) H: LMGH 1.717	47	MGCH3: HF	46.2	-11.0	44.7
49 MG (CH3) H: LMGH 1.727 1.579 1.710 50 MG (CH3) H: WCMGH 180.0 180.0 180.0 51 MG (CH3) H: HF 24.0 -32.5 28.4 52 MG (CH3) 2: LMGC 2.040 1.947 2.100 53 MG (CH3) 2: LMGC 180.0 180.0 180.0 54 MG (CH3) 2: HF 13.6 -96.3 15.3 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: LMGC 2.027 1.987 2.090 58 MGHC2H3: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGC 2.333 2.263 2.339 61 MG (C5H5) 2: LMGX 1.989 1.879 2.008 62 MG (CN) H: LMGC 2.011 1.964 2.060 63 MG (CN) H: LMGH 1.717 1.575 1.690 64 MG (CN) 2: LMGC 2.006	48	MG(CH3)H: LMGC	2.034	1.940	2.100
50 MG (CH3) H: WCMGH 180.0 180.0 180.0 51 MG (CH3) H: HF 24.0 -32.5 28.4 52 MG (CH3) 2: LMGC 2.040 1.947 2.100 53 MG (CH3) 2: WCMGC 180.0 180.0 180.0 54 MG (CH3) 2: HF 13.6 -96.3 15.3 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: HF 75.4 26.3 80.3 58 MGHC2H3: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGH 1.724 1.583 1.700 60 MG (C5H5) 2: LMGX 1.989 1.879 2.008 62 MG (C5H5) 2: LMGC 2.333 2.263 2.339 63 MG (CN) H: LMGC 2.011 1.964 2.060 64 MG (CN) H: LMGH 1.717 1.575 1.690 65 MG (CN) 2: LMGC 2.006 1.965 2.040 68 MG (CN) 2: LMGC 2.006	49	MG(CH3)H: LMGH	1.727	1.579	1.710
51 MG (CH3) H: HF 24.0 -32.5 28.4 52 MG (CH3) 2: LMGC 2.040 1.947 2.100 53 MG (CH3) 2: WCMGC 180.0 180.0 180.0 54 MG (CH3) 2: WCMGC 180.0 180.0 180.0 55 MG (CH3) 2: HF 13.6 -96.3 15.3 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGC 2.027 1.987 2.090 59 MG (C5H5) 2: LMGK 1.989 1.879 2.008 61 MG (C5H5) 2: LMGX 1.989 1.879 2.008 62 MG (C5H5) 2: LMGC 2.011 1.964 2.060 64 MG (CN) H: LMGC 2.011 1.964 2.060 65 MG (CN) H: LMGH 1.717 1.575 1.690 66 MG (CN) H: HF 45.6 7.5 51.4 67 MG (CN) 2: LMGC 2.006	50	MG (CH3) H: WCMGH	180.0	180.0	180.0
52 MG (CH3) 2: MAGC 2.040 1.947 2.100 53 MG (CH3) 2: WCMGC 180.0 180.0 180.0 54 MG (CH3) 2: HF 13.6 -96.3 15.3 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGH 1.724 1.583 1.700 60 MGHC2H3: LMGH 1.724 1.583 1.700 60 MGHC2H3: LMGC 2.333 2.263 2.339 61 MG (C5H5) 2: LMGX 1.989 1.879 2.008 62 MG (C5H5) 2: LMGC 2.011 1.964 2.060 63 MG (CN) H: LMGC 2.011 1.964 2.060 65 MG (CN) H: LMGH 1.717 1.575 1.690 66 MG (CN) H: HF 45.6 7.5 51.4 67 MG (CN) 2: LMGC 2.006 1.965 2.040 68 MG (CN) 2: HF 57.0	51	MG(CH3)H: HF	24.0	-32.5	28.4
53 MG(CH3)2: HF 130.0 150.0 54 MG(CH3)2: HF 13.6 -96.3 15.3 55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: HF 75.4 26.3 80.3 58 MGHC2H3: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGH 1.724 1.583 1.700 60 MG(C5H5)2: LMGX 1.989 1.879 2.008 61 MG(C5H5)2: LMGC 2.333 2.263 2.339 63 MG(CSH5)2: HF 43.4 -167.3 31.2 64 MG(CN)H: LMGC 2.011 1.964 2.060 65 MG(CN)H: LMGH 1.717 1.575 1.690 66 MG(CN)H: HF 45.6 7.5 51.4 67 MG(CN)2: LMGC 2.006 1.965 2.040 68 MG(CN)2: HF 57.0 -14.1 60.5 69 MG(NH2)H: LMGH 1.714 1.576 1.700 <td>53</td> <td>MG(CH3)2. MCMCC</td> <td>180 0</td> <td>180 0</td> <td>180 0</td>	53	MG(CH3)2. MCMCC	180 0	180 0	180 0
55 MGHCCH: LMGH 1.719 1.576 1.700 56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: HF 75.4 26.3 80.3 58 MGHC2H3: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGH 1.724 1.583 1.700 60 MGHC2H3: LMGK 1.989 1.879 2.008 61 MG (C5H5)2: LMGX 1.989 1.879 2.008 62 MG (C5H5)2: LMGC 2.333 2.263 2.339 63 MG (C5H5)2: HF 43.4 -167.3 31.2 64 MG (CN)H: LMGC 2.011 1.964 2.060 65 MG (CN)H: HF 45.6 7.5 51.4 67 MG (CN)2: LMGC 2.006 1.965 2.040 68 MG (CN)2: HF 57.0 -14.1 60.5 69 MG (NH2)H: LMGH 1.714 1.576 1.700	54	MG(CH3)2: HF	13.6	-96.3	15.3
56 MGHCCH: LMGC 1.976 1.951 2.040 57 MGHCCH: HF 75.4 26.3 80.3 58 MGHC2H3: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGH 1.724 1.583 1.700 60 MGHC2H3: HF 55.0 -32.6 57.6 61 MG (C5H5)2: LMGX 1.989 1.879 2.008 62 MG (C5H5)2: LMGC 2.333 2.263 2.339 63 MG (C5H5)2: HF 43.4 -167.3 31.2 64 MG (CN)H: LMGC 2.011 1.964 2.060 65 MG (CN)H: HF 45.6 7.5 51.4 66 MG (CN)H: HF 45.6 7.5 51.4 67 MG (CN)2: LMGC 2.006 1.965 2.040 68 MG (CN)2: HF 57.0 -14.1 60.5 69 MG (NH2)H: LMGH 1.714 1.576 1.700	55	MGHCCH: LMGH	1.719	1.576	1.700
57 MGHCCH: HF 75.4 26.3 80.3 58 MGHC2H3: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGH 1.724 1.583 1.700 60 MGHC2H3: HF 55.0 -32.6 57.6 61 MG(C5H5)2: LMGX 1.989 1.879 2.008 62 MG(C5H5)2: LMGC 2.333 2.263 2.339 63 MG(C5H5)2: HF 43.4 -167.3 31.2 64 MG(CN)H: LMGC 2.011 1.964 2.060 65 MG(CN)H: LMGH 1.717 1.575 1.690 66 MG(CN)H: HF 45.6 7.5 51.4 67 MG(CN)2: LMGC 2.006 1.965 2.040 68 MG(CN)2: HF 57.0 -14.1 60.5 69 MG(NH2)H: LMGH 1.714 1.576 1.700	56	MGHCCH: LMGC	1.976	1.951	2.040
58 MGHC2H3: LMGC 2.027 1.987 2.090 59 MGHC2H3: LMGH 1.724 1.583 1.700 60 MGHC2H3: HF 55.0 -32.6 57.6 61 MG(C5H5)2: LMGX 1.989 1.879 2.008 62 MG(C5H5)2: LMGC 2.333 2.263 2.339 63 MG(C5H5)2: HF 43.4 -167.3 31.2 64 MG(CN)H: LMGC 2.011 1.964 2.060 65 MG(CN)H: LMGH 1.717 1.575 1.690 66 MG(CN)2: LMGC 2.006 1.965 2.040 68 MG(CN)2: HF 57.0 -14.1 60.5 69 MG(NH2)H: LMGH 1.714 1.576 1.900 70 MG(NH2)H: LMGH 1.714 1.576 1.700	57	MGHCCH: HF	75.4	26.3	80.3
59 MGHC2H3: LMGH 1.724 1.583 1.700 60 MGHC2H3: HF 55.0 -32.6 57.6 61 MG(C5H5)2: LMGX 1.989 1.879 2.008 62 MG(C5H5)2: LMGC 2.333 2.263 2.339 63 MG(C5H5)2: HF 43.4 -167.3 31.2 64 MG(CN)H: LMGC 2.011 1.964 2.060 65 MG(CN)H: LMGH 1.717 1.575 1.690 66 MG(CN)H: LMGC 2.006 1.965 2.040 68 MG(CN)2: HF 57.0 -14.1 60.5 69 MG(NH2)H: LMGN 1.890 1.769 1.900 70 MG(NH2)H: LMGH 1.714 1.576 1.700	58	MGHC2H3: LMGC	2.027	1.987	2.090
60 MGHC2H3: HF 55.0 -32.6 57.6 61 MG(C5H5)2: LMGX 1.989 1.879 2.008 62 MG(C5H5)2: LMGC 2.333 2.263 2.339 63 MG(C5H5)2: HF 43.4 -167.3 31.2 64 MG(CN) H: LMGC 2.011 1.964 2.060 65 MG(CN) H: LMGH 1.717 1.575 1.690 66 MG(CN) 2: LMGC 2.006 1.965 2.040 68 MG(CN) 2: HF 57.0 -14.1 60.5 69 MG(NH2) H: LMGH 1.714 1.576 1.700	59	MGHC2H3: LMGH	1.724	1.583	1.700
61 MG (C5H5) 2: LMGX 1.989 1.879 2.008 62 MG (C5H5) 2: LMGC 2.333 2.263 2.339 63 MG (C5H5) 2: HF 43.4 -167.3 31.2 64 MG (CN) H: LMGC 2.011 1.964 2.060 65 MG (CN) H: LMGH 1.717 1.575 1.690 66 MG (CN) H: HF 45.6 7.5 51.4 67 MG (CN) 2: LMGC 2.006 1.965 2.040 68 MG (CN) 2: HF 57.0 -14.1 60.5 69 MG (NH2) H: LMGH 1.714 1.576 1.700	60	MGHC2H3: HF	55.0	-32.6	57.6
62 MG (CSH5) 2: HF 2.333 2.203 2.339 63 MG (CSH5) 2: HF 43.4 -167.3 31.2 64 MG (CN) H: LMGC 2.011 1.964 2.060 65 MG (CN) H: LMGH 1.717 1.575 1.690 66 MG (CN) H: HF 45.6 7.5 51.4 67 MG (CN) 2: LMGC 2.006 1.965 2.040 68 MG (CN) 2: HF 57.0 -14.1 60.5 69 MG (NH2) H: LMGN 1.890 1.769 1.900 70 MG (NH2) H: LMGH 1.714 1.576 1.700	63 01	MG(CSHS)2: LMGX	1.989	1.8/9	2.008
64 MG (CN) H: LMGC 2.011 1.964 2.060 65 MG (CN) H: LMGH 1.717 1.575 1.690 66 MG (CN) H: HF 45.6 7.5 51.4 67 MG (CN) 2: LMGC 2.006 1.965 2.040 68 MG (CN) 2: HF 57.0 -14.1 60.5 69 MG (NH2) H: LMGH 1.890 1.769 1.900 70 MG (NH2) H: LMGH 1.714 1.576 1.700	63	MG(C5H5)2: HE	2.333 AR A	-167 3	2.339 31 2
65 MG (CN) H: LMGH 1.717 1.575 1.690 66 MG (CN) H: HF 45.6 7.5 51.4 67 MG (CN) 2: LMGC 2.006 1.965 2.040 68 MG (CN) 2: HF 57.0 -14.1 60.5 69 MG (NH2) H: LMGN 1.890 1.769 1.900 70 MG (NH2) H: LMGH 1.714 1.576 1.700	64	MG(CN)H: LMGC	2.011	1.964	2,060
66 MG (CN) H: HF 45.6 7.5 51.4 67 MG (CN) 2: LMGC 2.006 1.965 2.040 68 MG (CN) 2: HF 57.0 -14.1 60.5 69 MG (NH2) H: LMGN 1.890 1.769 1.900 70 MG (NH2) H: LMGH 1.714 1.576 1.700	65	MG(CN)H: LMGH	1.717	1.575	1.690
67 MG (CN) 2: LMGC 2.006 1.965 2.040 68 MG (CN) 2: HF 57.0 -14.1 60.5 69 MG (NH2) H: LMGN 1.890 1.769 1.900 70 MG (NH2) H: LMGH 1.714 1.576 1.700	66	MG(CN)H: HF	45.6	7.5	51.4
68 MG (CN) 2: HF 57.0 -14.1 60.5 69 MG (NH2) H: LMGN 1.890 1.769 1.900 70 MG (NH2) H: LMGH 1.714 1.576 1.700	67	MG(CN)2: LMGC	2.006	1.965	2.040
69 MG (NH2) H: LMGN 1.890 1.769 1.900 70 MG (NH2) H: LMGH 1.714 1.576 1.700	68	MG(CN)2: HF	57.0	-14.1	60.5
/U MG(NH2)H: LMGH 1.714 1.576 1.700	69	MG (NH2) H: LMGN	1.890	1.769	1.900
		MG(NHZ)H: LMGH	1.714	1.576	1.700

Tabelle 25: A	tom- und	Moleküleiger	nschaften d	ler Elemente	Na, Mg, A	Al, Si, F	P, S uno	d Cl
					/	/ /	/	

	Observable	Vers. 3.4	Vers. 3.2	Exp.	
71	MG (NH2) H: WNMGH	180.0	180.0	180.0	
72	MG(NH2)H: HF	7.0	-75.3	14.8	
73	MG (NH2) 2: LMGN	1.907	1.770	1.930	
74	MG (NH2) 2: HF	-9.7	-145.4	-6.2	
75	MGO: LMGO	1.698	1.678	1.749	
76	MGO: IP	10.15	9.01	9.70	
70	MGO: M MCO: HF	6.92 43 5	7.35	36 0	
79	MGO. HF MG202 · LMG0	1 854	1 794	1 900	2
80	MG202: WOMGO	94.0	95.9	100.5	a
81	MG202: HF	-47.7	-64.0	-60.4	d
82	MG303: HF	-173.8	-223.8	-167.3	d
83	MGOH: HF	-24.4	-54.3	-28.8	
84	MG(OH)H: LMGO	1.807	1.739	1.770	
85	MG(OH)H: LMGH	1.713	1.574	1.690	
86	MG (OH) H: WOMGH	174.2	176.7	180.0	
87	MG (OH) H: HF	-47.5	-77.1	-43.5	
88	MG(OH)2: HF	-121.4	-181.5	-130.5	e
89	MGHF: LMGH	1.708	1.5/1	1.690	
91	MGHE · WHMCF	180 0	180 0	180 0	
92	MGHF: HF	-69 0	-75 6	-70 3	
93	MG(CH3)F: LMGC	2.030	1.951	2.080	
94	MG(CH3)F: LMGF	1.772	1.692	1.780	
95	MG(CH3)F: WCMGF	180.0	180.0	180.0	
96	MG(CH3)F: HF	-78.8	-134.3	-74.6	
97	MGF2: LMGF	1.776	1.692	1.771	
98	MGF2: WFMGF	180.0	180.0	180.0	
99	MGF2: IP	13.82	13.35	13.50	
100	MGF2: HF	-158.6	-177.3	-173.0	_
101	MGZ: LMGMG	3.8/5	3.912	3.890	С
102		2 226	2 256	2 1 9 9	
104	MGCL: HF	-8 3	-13.8	-11 6	
105	MGCLF: LMGCL	2.220	2.250	2.180	
106	MGCLF: LMGF	1.773	1.690	1.760	
107	MGCLF: WCLMGF	180.0	180.0	180.0	
108	MGCLF: HF	-121.2	-133.7	-138.1	
109	MGCL2: LMGCL	2.216	2.242	2.186	
110	MGCL2: WCLMGCL	180.0	180.0	180.0	
	MGCL2: IP	11.73	11.39	11.60	
112	MGCLZ: HF	-83.7	-92.7	-93.8	
114	ALA. LALA ALU. TD	2.004	8 48	8 40	
115	ALH: HF	68 1	65 4	57 7	
116	ALH3: LALH	1.583	1.550	1.568	
117	ALH3: HF	32.6	52.3	29.1	
118	AL2H6: LALAL	2.596	2.571	2.593	
119	AL2H6: LALH1	1.771	1.704	1.718	
120	AL2H6: LALH2	1.579	1.554	1.561	
121	AL2H6: WALALH	119.5	117.8	116.3	
122	AL2H6: HF	5.7	-13.0	24.6	
123	ALC3H9: LALC	1.912	1.973	1.957	
124 12⊑	ALC3H9: WALCH	109.2 0 22	105.2	111.7	
126	ALC3H9. HF	د. و 18 ع	-28 /	9.70 -19.4	
127	ALO: LALO	-10.5	1.641	1.618	
128	ALO: IP	9.80	10.57	9.50	
129	ALO: HF	4.8	10.2	16.0	
130	AL20: LALO	1.682	1.633	1.730	
131	AL2O: HF	-39.9	-142.5	-34.7	
132	ALOH: HF	-39.5	-82.4	-43.0	
133	FALO: HF	-124.1	-80.3	-139.0	
134	CLALO: HF	-79.6	-32.2	-83.2	
	ALF: LALF	1.652	1.632	1.654	
135		0 01	10 36		
135	ALF: IP	9.01	10.50	9.80	
135 136 137	ALF: IP ALF: M ALF: NF	9.01 0.95 _54 0	0.89	1.53	
135 136 137 138	ALF: IP ALF: M ALF: HF ALF3: LALF	9.01 0.95 -54.0 1 650	0.89 -77.4 1.642	1.53 -63.5 1.633	

	Observable	Vers. 3.4	Vers. 3.2	Exp.
141 .	ALF3: HF	-288.4	-288.9	-289.0
142	ALCL: LALCL	2.101	2.129	2.130
143	ALCL: IP	8.95	9.66	9.50
144 .	ALCL: HF	-1/.8	-25.5	-12.3
146	ALCL3: IP	12.48	11.79	12.01
147	ALCL3: HF	-147.0	-139.6	-139.7
148	ALF2C1: HF	-240.3	-239.0	-238.8
149 .	ALFCL2: HF	-193.3	-188.9	-189.0
150	AL2: LALAL	2.412	2.440	2.470
151 .	AL2: IP	6.70	5.71	6.20
152 .	AL2: HF	123.7	117.2	116.4
153	SIH: LSIH STH: TD	1.525	1.400	1.520
155	SIN. IF STH· HF	92 7	98.9	90 0
156	SIH2: LHST	1.526	1.458	1.514
157	SIH2: WHSIH	97.2	100.7	92.1
158	SIH2: HF	70.7	83.3	65.2
159	SIH4: LHSI	1.478	1.421	1.481
160	SIH4: IP	13.45	14.53	12.82
161	SIH4: HF	8.1	-0.8	8.2
162	SIMeH3: LSIC	1.838	1.790	1.864
163	SIMeH3: LSIH	1.484	1.423	1.482
164	SIMEH3: WUSIH	111.7	114.0	110.4
166	SIMENS: WHSIN SIMeH3: ID	12 25	13 02	11 60
167	SIMeH3: M	1.64	1.81	0.73
168	SIMeH3: HF	-9.5	-19.9	-7.0
169	SIEnH3: LSIC	1.843	1.817	1.853
170	SIEnH3: LSIH	1.482	1.424	1.478
171	SIEnH3: WHSIH	107.9	105.7	109.2
172	SIEnH3: IP	10.88	11.38	10.40
173	SIEnH3: M	1.16	1.72	0.66
175	SIENH3: HF	25.2	1 000	1.0
176	SIMEZHZ: LSIC SIMe2U2: LSIC	1 499	1.000	1 /83
177	SIMe2H2: WCSIC	113 5	120 2	111 0
178	SIMe2H2: WHSIH	104.8	102.2	107.8
179	SIMe2H2: M	1.91	1.79	0.71
180	SIMe2H2: HF	-27.8	-34.3	-22.6
181	SIMe3H: LSIH	1.494	1.427	1.489
182	SIMe3H: LSIC	1.845	1.832	1.868
183	SIMe3H: WHSIC	107.4	104.9	107.9
184	SIMe3H: WCSIC	111.5	113.7	111.2
186	SIMESH: M SIMe3U· UF	-45 0	-42 7	-39 1
187	SIMeSH: HF	1.853	1.857	1.875
188	SIMe4: IP	10.16	11.03	10.23
189	SIMe4: HF	-60.3	-45.2	-55.7
190	SIH3NH2: HF	-3.4	-37.2	-10.0
191	SIO: LSIO	1.500	1.476	1.510
192	SIO: IP	12.01	11.69	11.60
193	SIO: M	2.87	1.99	3.10
194	SIO: HF	-29.0	-28.1	-24.0
195	SIAZO: AF	-10.0	-34.0	-110 6
197	H2ST (OH) 2 · HF	-155 9	-212 7	-149 0
198	SIO2: HF	-80.0	-71.5	-73.0
199	H3SIOH: HF	-67.3	-101.0	-67.5
200	SIMeO4: LSIO	1.639	1.597	1.614
201	SIMeO4: WOSIO1	116.1	114.6	115.5
202	SIMeO4: HF	-253.0	-371.2	-281.8
203	SIF: LSIF	1.591	1.610	1.601
204	SIF: IP	7.17	7.42	7.26
205	SIF: HF	-19.4	-3.7	-14.2
206	SIHJF: LFSI	1.608	1.599	1.595
202	агнув. меата Этирг: Тртн	1.4/9 100 2	1.410 110 /	102 2
209	SINGE. WESIN SINGE: IP	13 29	13 85	12 80
		13.23	10.00	

	Observable	Vers. 3.4	Vers. 3.2	Exp.
211	SIH3F: HF	-80.9	-88.4	-85.8
212	SIF2: LFSI	1.602	1.596	1.591
213	SIF2: WFSIF	99.7	109.4	100.8
214	SIF2: IP	11.12	10.30	11.08
215	SIF2: M	1.78	1.24	1.23
216	SIFZ: HF	-153.5	-128.8	-153.0
21/	SIHZFZ: LFSI	1.399	1.384	1.5//
210	SINZEZ: LSIN SINZEZ: WESTE	108 4	111 7	107 9
220	SIH2F2: WHSIH	112.1	108.6	114.6
221	SIH2F2: IP	13.40	13.68	12.90
222	SIH2F2: M	1.34	0.80	1.54
223	SIH2F2: HF	-179.6	-184.5	-186.3
224	SIF3: HF	-240.9	-225.4	-240.7
225	SIHF3: LHSI	1.465	1.391	1.447
226	SIHF3: LSIF	1.593	1.576	1.562
227	SIHF3: WHSIF	110.1	108.9	110.6
228	SIHF3: IP	14.59	14.50	14.48
229	SINFS: M Stuff: UF	-282 8	-284 7	-288 2
231	STF4 · LEST	1 586	1 570	1 554
232	STF4: TP	17 17	15 81	16 46
233	SIF4: HF	-388.1	-386.1	-386.0
234	SI2: LSISI	2.237	2.203	2.246
235	SI2: IP	7.88	7.70	7.40
236	SI2: HF	143.4	144.4	141.0
237	SI3: HF	168.1	146.5	154.3
238	SI3_T: HF	163.3	143.4	156.6
239	SI4: HF	152.4	148.4	158.5
240	SI5: HF	169.2	164.9	172.2
241	SI2H6: LSIH	1.482	1.433	1.487
242	SIZHO: LSISI	2.299	2.3/0	2.332
243	SIZHO: WSISIH	11 47	10.5	10.7
245	ST2H6: HF	2.9	26 3	19.00
246	SI2Me6: LSISI	2.370	2.599	2.340
247	SI2Me6: LSIC	1.871	1.864	1.877
248	SI2Me6: WSISIC	110.3	107.4	108.4
249	SI2Me6: WCSIC	108.6	111.4	110.5
250	SI2Me6: HF	-73.1	-28.0	-83.0
251	SI2OH6: LSIO	1.642	1.576	1.634
252	SI2OH6: LSIH1	1.482	1.412	1.486
253	SI2OH6: LSIH2	1.481	1.409	1.486
254	SIZOH6: WSIOSI	128.7	150.4	144.1
∠35 254	SIZONE: IP	11.86	12.33	11.19
250	STESOCES . 1910	U.83 1 2FF	U.U/ 1 EQ1	0.24
258	STHSOCHS. LSTO	120 1	117 6	120 6
259	SI2OF6: LSIO	1.594	1.547	1.580
260	SI2OF6: WSIOSI	163.8	180.0	155.7
261	SI3H9N: LSIN	1.760	1.684	1.734
262	SI3H9N: WSINSI	119.8	117.5	119.7
263	SI3H9N: IP	9.88	11.27	9.70
264	SICL: LSICL	2.010	2.091	2.058
265	SICL: HF	23.7	38.9	37.0
266	SICL2: LSICL	2.038	2.111	2.083
267	SICL2: WCLSICL	103.5	104.3	102.8
268	SICL2: HF	-58.9	-29.0	-40.3
269	SIH3CL: LSICL	2.036	2.101	2.048
270	SIH3CL: LSIH	1.480	1.418	1.481
271	SINGCL: WCLSIN	11 00	12 02	11 61
272	STHOLT: IN	11.89	1 26	1 20
273	STHSCL: M STHSCL: HF	-32 7	1.20 -37 0	_32 A
275	STH2CL2 · LSTCL	-32.7	2 102	2 034
276	SIH2CL2: LSTH	1.479	1.417	1.459
277	SIH2CL2: WCLSICL	107.6	110.2	109.8
278	SIH2CL2: WHSIH	111.9	108.0	110.0
270	SIH2CL2: IP	11.96	11.97	11.70
213				

	Observable	Vers. 3.4	Vers. 3.2	Exp.	
281	SIH2CL2: HF	-76.1	-73.9	-75.3	
282	SIHCL3: LSIH	1.476	1.416	1.464	
283	SIHCL3: LSICL	2.036	2.101	2.020	
284	SIHCL3: WHSICL	110.6	108.8	109.5	
285	SIHCL3: WCLSICL	108.4	110.1	109.4	
286	SINCL3: IP	12.42	1 22	11.94	
201	SINCLS: M	_110 /	-112 2	-110 2	
289	STICLS. HE ST (CH3) 2HCL: LSTCL	2 068	2 135	2 061	
290	SI (CH3) 2HCL: LSIH	1.487	1.422	1.478	
291	SI (CH3) 2HCL: LSIC	1.830	1.811	1.869	
292	SI (CH3) 2HCL: WCLSIC	108.2	109.5	109.9	
293	SI (CH3) 2HCL: WCSIH	110.4	107.8	113.8	
294	SI(CH3)2HCL: HF	-75.7	-70.9	-67.4	
295	SI(CH3)3CL: LSICL	2.086	2.154	2.022	
296	SI(CH3)3CL: LSIC	1.837	1.834	1.857	
297	SI (CH3) 3CL: WCLSIC	106.0	106.0	110.5	
298	SI (CH3) 3CL: HF	-94.7	-80.3	-84.6	
299	SI (CH3) HCL2: LSIH	1.481	1.418	1.442	
300	SI (CH3) HCL2: LSIC	2 050	2 115	2 041	
302	SI (CH3) HCL2: WHSTC	114 8	112.0	111.5	
303	SI (CH3) HCL2: WCSICL	111.3	114.5	109.7	
304	SI (CH3) HCL2: WCLSICL	105.8	105.5	108.7	
305	SI (CH3) HCL2: HF	-100.7	-94.3	-93.9	
306	SI (CH3) CL3: LSICL	2.050	2.113	2.026	
307	SI(CH3)CL3: LSIC	1.812	1.796	1.848	
308	SI(CH3)CL3: WCSICL	112.7	113.4	110.3	
309	SI (CH3) CL3: WCLSICL	106.1	105.3	108.6	
310	SI (CH3) CL3: M	3.59	3.59	1.91	
311 212	SI (CH3) CL3: HF	-145.7	-136.3	-136.0	
312	SICLA. IDICL	12 81	12 19	12 03	
314	SICL4: HF	-160.9	-157.1	-158.4	
315	SI2CL6: LSICL	2.049	2.115	2.009	
316	SI2CL6: LSISI	2.349	2.441	2.324	
317	SI2CL6: WCLSICL	107.0	108.6	109.7	
318	SI2CL6: HF	-232.7	-201.8	-240.0	
319	SI2OCL6: LSIO	1.616	1.556	1.592	f
320	SI2OCL6: LSICL	2.035	2.084	2.011	f
321 222	SIZOCL6: WSIOSI	148.9	180.2	1 002	I
322	PZ: LPP D2· TD	10 21	10 08	10 62	ь
324	P2. HF	29 9	51 0	34 3	
325	P4: LPP	2,215	2.221	2.223	
326	P4: HF	15.7	-30.7	14.1	
327	PH: LPH	1.425	1.413	1.422	
328	PH: HF	56.6	54.0	56.3	
329	PH2: LPH	1.428	1.420	1.418	
330	PH2: WHPH	97.5	94.2	91.7	
331	PH2: HF	32.4	30.2	33.1	
332	PH3: LPH	1.429	1.425	1.412	
333	PH3: WHPH DH3: TD	10 92	95.5 11 25	10 58	
335	PH3: M	0.68	1.39	0.57	
222	PH3: HF	1.9	1.9	1.3	
336			1 558	1.540	
336 337	HCP: LCP	1.534	1.000		
336 337 338	HCP: LCP HCP: M	1.534	1.55	0.39	
336 337 338 339	HCP: LCP HCP: M HCP: HF	1.534 1.03 59.7	1.55 18.5	0.39 52.7	
335 337 338 339 340	HCP: LCP HCP: M HCP: HF H2CPH: LCP	1.534 1.03 59.7 1.644	1.55 18.5 1.656	0.39 52.7 1.673	
336 337 338 339 340 341	HCP: LCP HCP: M HCP: HF H2CPH: LCP H2CPH: LPH	1.534 1.03 59.7 1.644 1.434	1.55 18.5 1.656 1.431	0.39 52.7 1.673 1.420	
336 337 338 339 340 341 342	HCP: LCP HCP: M HCP: HF H2CPH: LCP H2CPH: LPH H2CPH: WCPH	1.534 1.03 59.7 1.644 1.434 104.1	1.55 18.5 1.656 1.431 98.9	0.39 52.7 1.673 1.420 97.4	
336 337 338 339 340 341 342 343	HCP: LCP HCP: M HCP: HF H2CPH: LCP H2CPH: LCP H2CPH: UCPH H2CPH: WCPH H2CPH: HF	1.534 1.03 59.7 1.644 1.434 104.1 32.6	1.55 1.55 18.5 1.656 1.431 98.9 7.9	0.39 52.7 1.673 1.420 97.4 28.4	
336 337 338 339 340 341 342 342 343 342	HCP: LCP HCP: M HCP: HF H2CPH: LCP H2CPH: LPH H2CPH: WCPH H2CPH: HF CH3PH2: LPH CH3PH2: LPH CH3PH2: LPC	1.534 1.03 59.7 1.644 1.434 104.1 32.6 1.433	1.55 1.55 18.5 1.656 1.431 98.9 7.9 1.430	0.39 52.7 1.673 1.420 97.4 28.4 1.423 1.950	
336 337 338 339 340 341 342 343 344 345 345	HCP: LCP HCP: M HCP: HF H2CPH: LCP H2CPH: LPH H2CPH: WCPH H2CPH: HF CH3PH2: LPH CH3PH2: LPC CH3PH2: WCPH	1.534 1.03 59.7 1.644 1.434 104.1 32.6 1.433 1.826 101 9	1.55 1.55 18.5 1.656 1.431 98.9 7.9 1.430 1.820	0.39 52.7 1.673 1.420 97.4 28.4 1.423 1.858 96 5	
336 337 338 339 340 341 342 343 344 345 346 347	HCP: LCP HCP: M HCP: HF H2CPH: LCP H2CPH: LPH H2CPH: WCPH H2CPH: HF CH3PH2: LPH CH3PH2: LPC CH3PH2: WCPH CH3PH2: TP	1.534 1.03 59.7 1.644 1.434 104.1 32.6 1.433 1.826 101.8 9.45	1.55 18.5 1.656 1.431 98.9 7.9 1.430 1.820 98.8 10 53	0.39 52.7 1.673 1.420 97.4 28.4 1.423 1.858 96.5 9 63	
336 337 338 339 340 341 342 343 344 345 344 345 346 347	HCP: LCP HCP: M HCP: HF H2CPH: LCP H2CPH: LPH H2CPH: WCPH H2CPH: HF CH3PH2: LPH CH3PH2: LPC CH3PH2: IP CH3PH2: IP CH3PH2: M	1.534 1.03 59.7 1.644 1.434 104.1 32.6 1.433 1.826 101.8 9.45 1.32	1.55 1.656 1.656 1.431 98.9 7.9 1.430 1.820 98.8 10.53 1.70	0.39 52.7 1.673 1.420 97.4 28.4 1.423 1.858 96.5 9.63 1.10	
336 337 338 339 340 341 342 343 344 345 344 345 346 347 348 349	HCP: LCP HCP: M HCP: HF H2CPH: LCP H2CPH: LPH H2CPH: WCPH H2CPH: HF CH3PH2: LPH CH3PH2: LPC CH3PH2: IP CH3PH2: IP CH3PH2: HF	$\begin{array}{c} 1.534\\ 1.03\\ 59.7\\ 1.644\\ 1.434\\ 104.1\\ 32.6\\ 1.433\\ 1.826\\ 101.8\\ 9.45\\ 1.32\\ -7.2\end{array}$	1.55 1.55 1.656 1.431 98.9 7.9 1.430 1.820 98.8 10.53 1.70 -15.4	$\begin{array}{c} 0.39 \\ 52.7 \\ 1.673 \\ 1.420 \\ 97.4 \\ 28.4 \\ 1.423 \\ 1.858 \\ 96.5 \\ 9.63 \\ 1.10 \\ -4.1 \end{array}$	

	Observable	Vers. 3.4	Vers. 3.2	Ехр.
351	(CH3) 2PH: LPH	1.435	1.434	1.418
352	(CH3) 2PH: WCPC	105.6	106.1	99.8
353	(CH3) 2PH: IP	8.27	9.92	9.10
354	(CH3)2PH: M	1.47	1.87	1.23
355	(CH3) 3P: LPC	1.837	1.859	1.844
356	(CH3) 3P: WCPC	104.9	103.2	98.8
357	(CH3) 3P: IP	7.47	9.50	8.62
358	(CH3) 3P: M	0.95	1.84	1.19
359	(CH3) 3P: HF	-22.1	-35.4	-24.2
360	PN: LPN	1.477	1.476	1.491
361	PN: M	1.93	1.16	2.75
362	PN: HF	57.8	24.0	42.8
363	PO: LPO	1.462	1.484	1.4/6
364	PO: M	2.13	0.98	1.00
265		-0.2	-1.1	-5.6
360	P406: LPO	102 /	1.595	1.030
368	P406. NOFO	203.4 9.1 <i>1</i>	7 92	10 55
360	P400. IF P406. HF	-378 3	-582 9	-375 5
370	P4010: TP01	-378.3 1 477	1 497	1 429
371	P4010 · LP02	1 581	1 603	1 604
372	P4010: WOPO	99 1	101 5	101 6
373	P4010 · HF	-694 4	-614 2	-694 1
374	HPO: LPH	1.446	1.431	1.456
375	HPO: LPO	1.467	1.493	1.480
376	HPO: WHPO	107.2	105.1	103.5
377	HPO: HF	-21.3	-5.4	-20.9
378	PF3: LPF	1.587	1.579	1.561
379	PF3: WFPF	98.5	97.6	97.7
380	PF3: IP	11.65	12.08	12.23
381	PF3: M	2.49	1.79	1.02
382	PF3: HF	-228.7	-233.3	-228.8
383	PF2CL: LPF	1.587	1.585	1.571
384	PF2CL: LPCL	2.032	2.074	2.030
385	PF2CL: WFPF	97.7	98.1	97.3
386	PF2CL: WFPCL	101.5	97.3	99.2
387	PF2CL: M	2.34	1.88	0.89
388	PCL3: LPCL	2.027	2.080	2.043
389	PCL3: WCLPCL	102.5	96.3	100.1
390	PCL3: IP	10.49	10.64	10.52
391	PCL3: M	1.89	1.69	0.56
392	PCL3: HF	-88.4	-82.8	-68.4
292	PF5: LPFEQ	1.555	1.575	1.529
294	DEE. UE	-202 5	-205 1	1.3/0 -201 1
395	PES: HE DCI5: IDCIEC	-302.3	-305.1	-301.1
390	PCLS: LPCLEQ	2.033	2.009	2.017
308	PCLS. HE	-73 0	-79.6	-89 6
399	POF3: LPO	1 442	1 468	1 437
400	POF3: LPF	1 545	1 565	1,522
401	POF3: WOPF	117.6	118.7	116.8
402	POF3: WFPF	100 3	98.8	101.1
403	POF3: IP	14 66	14 13	13.50
404	POF3 · M	1 46	0 47	1 87
405	POF3: HF	-300.9	-265.0	-299.8
406	PSF3: LPS	1.941	1,919	1.849
407	PSF3: LPF	1.560	1.569	1.538
408	PSF3: WFPF	99.5	96.8	98.5
409	PSF3: M	1.67	0.15	0.63
410	POCL3: LPO	1.462	1.488	1.445
411	POCL3: LPCL	2.012	2.079	1.988
412	POCL3: WOPCL	115.6	117.7	114.9
413	POCL3: WCLPCL	102.7	100.1	103.7
414	POCL3: IP	12.78	11.77	11.90
415	POCL3: M	1.73	0.47	2.50
416	POCL3: HF	-116.6	-79.8	-133.8
417	PSCL3: LPS	1.967	1.968	1.885
418	PSCL3: LPCL	2.023	2.088	2.011
419	PSCL3: WCLPCL	102.0	98.1	101.8
-		=-=		· · · -

	Observable	Vers. 3.4	Vers. 3.2	Ехр.
421	PS: LPS	1.880	1.904	1.901
422	PS: HF	40.3	22.5	42.2
423	S2: LSS	1.869	1.891	1.889
424	S2: IP	9.73	8.61	9.55
425	SZ: HF	29.2	34./	30.7
420 127	50: 155 56: WSSS	108 2	103 2	102 6
428	S6: DSSSS	62 9	72 7	73.8
429	S6: HF	24.3	22.2	24.4
430	S8: LSS	2.046	2.053	2.055
431	S8: WSSS	111.1	107.2	108.2
432	S8: DSSSS	-94.9	-99.7	-98.5
433	S8: HF	21.2	28.8	24.5
434	SH: LSH	1.356	1.340	1.341
435	SH: M	0.94	1.05	0.76
430	SH: HF	30.4	33.L 1 247	33.3
437	HZS: LSH U2g• WUgu	1.355	94 9	92 1
439	H2S: TP	10 78	10 58	10 47
440	H2S: M	1.49	1.45	0.97
441	H2S: HF	-1.1	-3.6	-4.9
442	CH3SH: LSC	1.779	1.780	1.814
443	CH3SH: LSH	1.358	1.352	1.335
444	CH3SH: WCSH	103.6	98.7	96.5
445	CH3SH: IP	9.35	9.70	9.41
446	CH3SH: M	1.56	1.55	1.52
447	CH3SH: HF	-7.6	-2.1	-5.4
448	(CH3)2S: LSC	1.780	1.795	1.802
449	(CH3)2S: WCSC	108.6	107.2	98.8
450	(CH3)2S: IP	8.31	9.12	8.71
451	(CH3)2S: M	-12 0	1.54	1.55
432	(CH3)2S: HF	-13.9	1.9	-8.9
454	$C2H4S \cdot WCSC$	47 4	49 1	48 3
455	C2H4S: IP	8.85	9.16	9.00
456	C2H4S: M	1.92	1.86	1.84
457	C2H4S: HF	14.2	3.8	19.6
458	C4H4S: LCS	1.761	1.772	1.714
459	C4H4S: WCSC	91.1	93.5	92.2
460	C4H4S: IP	9.07	8.98	8.87
461	C4H4S: M	0.66	0.68	0.55
462	C4H4S: HF	44.2	50.7	27.5
463	SO: LSO	1.462	1.463	1.481
464	SO: IP	10.54	9.37	10.34
465		-8.1	-25.8	1.4
467	OCS: IP	10 84	9 97	11 18
468	OCS: M	0.92	1.42	0.71
469	OCS: HF	-40.7	-35.9	-33.9
470	CS2: LCS	1.577	1.584	1.553
471	CS2: IP	10.02	9.04	10.06
472	CS2: HF	26.0	9.6	27.9
473	SO2: LSO	1.438	1.423	1.431
474	SO2: WOSO	125.0	135.9	119.5
475	SO2: IP	11.16	10.45	12.50
476	SO2: M	2.14	0.80	1.63
477	SUZ: HF	-46.6	-/9.5	-70.9
11/0 170	550: 155 550: 155	1.889	1.901 1 446	1.885
4/3 480	220: T20	100 T	107 1	110 1
481	SO3 · T.SO	1 420	1 463	1 417
482	SO3: HF	-100.3	-75.3	-94.6
483	H2SO4: LSO1	1.423	1.468	1.422
484	H2SO4: LSO2	1.543	1.578	1.574
485	H2SO4: WOSO1	123.0	122.3	123.3
486	H2SO4: WOSO2	102.7	102.6	101.3
487	H2SO4: M	3.79	2.96	2.73
488	H2SO4: HF	-185.2	-187.4	-177.0
489	SOF2: LSF	1.562	1.588	1.585

	Observable	Vers. 3.4	Vers. 3.2	Exp.
491	SOF2: WFSF	96.1	91.1	92.8
492	SOF2: WOSF	111.1	112.0	106.8
493	SOF2: IP	11.63	11.55	12.62
494	SOF2: M	2.20	1.44	1.62
495	SSF2: LSF	1.572	1.594	1.59
496	SSF2: LSS	1.925	1.913	1.86
497	SSF2: WFSF	96.8	92.2	92.5
498	SSF2: WSSF	111.6	111.7	107.5
499	SSF2: HF	-70.1	-71.9	-71.0
500	SO2F2: LSO	1.420	1.453	1.40
501	SO2F2: LSF	1.528	1.593	1.53
502	SO2F2: WOSO	123.3	126.9	124.0
503	SO2F2: WESE	95.4	92.4	96.1
504	SO2F2: IP	14.69	13.25	13.75
505	SO2F2 · M	1 14	0 20	1 11
506	SO2F2. HF	_188 9	-155 7	_181 3
500	GE2. ICF	1 574	1 501	1 59
507	SFZ: LSF	1.574	1.591	1.50
508	SFZ: WESE	101.4	98.0	98.0
509	SFZ: M	1.42	1.25	1.05
510	SFZ: HF	-92.8	-89.9	-70.9
211	SF4: LSFEQ	1.562	1.585	1.54
512	SF4: LSFAX	1.583	1.600	1.64
513	SF4: WFSFEQ	104.6	100.2	101.6
514	SF4: WFSFAX	178.5	175.4	173.1
515	SF4: HF	-176.8	-182.8	-182.4
516	SOF4: LSFEQ	1.533	1.593	1.53
517	SOF4: LSFAX	1.564	1.622	1.59
518	SOF4: LSO	1.428	1.466	1.40
519	SOF4: WOSFEQ	123.8	127.8	123.6
520	SOF4: WOSFAX	97.5	96.8	97.7
521	SOF4: HF	-221.3	-191.6	-228.0
522	SF6: LSF	1.550	1.609	1.56
523	SF6: IP	17.44	15.90	15.69
524	SF6 · HF	-293 0	-274 5	-291 7
525	SCI.2 · LSCI	1 989	2 029	2 01
526	SCL2: MCLSCL	105 1	95 7	102 7
520	SCI2. WCLSCI	105.1	1 12	102.7
527	SCHZ. M	-0.03	-5 0	-4.7
520		-9.2	-3.0	-4.7
529	SOCLZ: LSCL	2.012	2.070	2.07
530	SOCLZ: LSO	1.451	1.454	1.42
531	SOCL2: WCLSCL	100.5	90.8	97.0
532	SOCL2: WCLSO	111.1	112.1	108.0
533	SOCL2: IP	10.94	10.34	11.12
534	SOCL2: M	2.01	1.97	1.45
535	SOCL2: HF	-39.2	-30.6	-50.8
536	SO2CL2: LSO	1.433	1.451	1.41
537	SO2CL2: LSCL	2.000	2.088	2.01
538	SO2CL2: WOSO	124.9	127.4	123.5
539	SO2CL2: WOSCL	107.6	107.4	108.0
540	SO2CL2: WCLSCL	98.2	95.1	100.3
541	SO2CL2: IP	12.74	11.04	12.41
542	SO2CL2: M	0.76	0.75	1.81
543	SO2CL2: HF	-63.8	-48.3	-86.2
544	CLH: LCLH	1 306	1 291	1 27
545	CLH: TP	12 79	12 75	12 75
546	CLH· M	1 44	0 72	1 11
547	CLH· HF	-03 7	_22 1	_22 1
510		-23.7 1 7/5	1 750	-22.1
548		1.745	11 50	11 00
549	CLCH3: IP	10.91	11.53	11.30
550	CLCH3: M	1.88	1.73	1.89
551	CLCH3: HF	-16.3	-11.6	-19.6
552	CL2CH2: LCCL	1.742	1.750	1.77
553	CL2CH2: WCLCCL	111.3	109.9	112.0
554	CL2CH2: IP	11.26	11.49	11.40
555	CL2CH2: M	1.88	1.96	1.60
556	CL2CH2: HF	-19.8	-18.7	-22.8
557	CL3CH: LCLC	1.745	1.751	1.75
558	CL3CH: WHCCT	108 5	108 9	111 2
559	CL3CH · TP	11 65	11 57	11 / 9
520		1 44	1 64	1 04
	CHOCH. M	1.44	1.04	1.04

	Observable	Vers. 3.4	Vers. 3.2	Exp.
 561	CL3CH: HF	-25.0	-31.0	-27.8
562	CL4C: LCLC	1.754	1.755	1.767
563	CL4C: IP	11.99	11.53	11.64
564	CL4C: HF	-31.3	-49.4	-22.9
565	CLC2H: LCLC	1.664	1.702	1.637
566	CLC2H: HF	64.7	63.7	51.0
567	CL4C2: LCCL	1.723	1.748	1.718
568	CL4C2: WCLCCL	112.7	112.6	111.6
569	CL4C2: IP	9.55	9.53	9.51
570	CL4C2: HF	4.8	-4.6	-2.6
571	CIS-CL2C2H2: LCCL	1.719	1.746	1.718
572	CIS-CL2C2H2: WCCCL	125.4	124.8	123.8
573	CIS-CL2C2H2: IP	9.76	10.05	9.93
574	CIS-CL2C2H2: HF	9.9	12.9	1.2
575	1,1-CL2C2H2: LCCL	1.727	1.751	1.727
576	1,1-CL2C2H2: WCLCCL	111.1	110.3	113.6
577	1,1-CL2C2H2: IP	10.41	10.43	10.00
578	1,1-CL2C2H2: HF	1.2	3.9	0.6
579	CLC2H3: LCCL	1.726	1.748	1.726
580	CLC2H3: WCCCL	123.4	124.9	122.3
281	CLC2H3: IP	10.32	10.65	10.18
582	CLC2H3: HF	9.5	13.3	8.9
583	CL6C2: LCCL	1.763	1.767	1.769
584	CL6C2: WCCCL	111.5	112.0	110.0
585	CL6C2: IP	11.35	10.96	11.20
586	CL6C2: HF	-35.5	-59.1	-34.3
58/	CL3C2H3: LCCL	1.769	1.774	100 4
200	CL3C2H3: WCLCCL	11 20	105.3	11 25
509		11.30	20 1	24 6
590		-42.1	-39.1	-34.0
591	CLC2H5: LCCL	112 0	114 9	110 7
592	CLC2H5: WCCCL	10 73	11 25	11 01
593	CLC2HJ. IF	-26.2	-20 4	-26 9
595		1 821	1 822	1 828
596	CLC4H9: WCLCC	105 9	106 5	111 7
597	CLC4H9: HE	-43.9	-14 5	_43 5
598		1 731	1 763	1 717
599		9 63	9 2 9	9 20
600	C16C6: HF	8.7	13.2	-8.5
601	CLCN: LCCL	1.669	1.704	1.629
602	CLCN: IP	11.85	11.84	12.37
603	CLCN: HF	37.1	39.2	32.9
604	CLNF2: LNCL	1.738	1.707	1.730
605	CLNF2: WCLNF	105.3	104.5	105.1
606	CLNF2: HF	-4.4	3.5	4.4
607	CL3N: LCLN	1.734	1.691	1.754
608	CL3N: WCLNCL	107.6	102.2	107.8
609	CL3N: M	0.05	0.44	0.39
610	CL3N: HF	46.8	28.4	49.3
611	CLNO: LNCL	1.761	1.735	1.976
612	CLNO: WCLNO	118.9	116.4	113.0
613	CLNO: IP	10.57	10.08	11.50
614	CLNO: HF	15.0	10.5	12.4
615	CLOH: LCLO	1.630	1.646	1.690
616	CLOH: WCLOH	102.2	99.8	102.4
617	CLOH: IP	11.19	11.57	11.22
618	CLOH: HF	-29.4	-10.4	-17.8
619	CL20: LCLO	1.634	1.643	1.696
620	CL2O: WCLOCL	111.6	101.3	110.9
621	CL2O: IP	11.01	10.95	11.02
622	CL2O: HF	-8.6	21.0	21.0
623	CL2CO: LCCL	1.730	1.758	1.744
624	CL2CO: WCLCCL	111.7	111.2	111.8
o25	CL2CO: IP	11.51	10.86	11.84
626	CL2CO: M	0.84	0.13	1.17
627	CL2CO: HF	-53.8	-46.8	-52.4
628	(CLCO) 2: LCLC	1.745	1.777	1.738
m '2 U	(CLCO) 2: WCLCC	112.6	113.6	111.7
620		10 50	0 72	11 00

	Observable	Vers. 3.4	Vers. 3.2	Exp.
631	(CLCO)2: HF	-79.3	-60.5	-80.3
632	CL3CF: LCCL	1.752	1.760	1.754
633	CL3CF: WCLCCL	110.5	109.4	111.0
634	CL3CF: IP	12.23	11.86	11.90
635	CL3CF: M	-73 6	-88 0	-64 0
637	CLOCE LCCL	1 751	1 764	1 744
638	CL2CF2: WCLCCL	111.3	109.5	112.6
639	CL2CF2: IP	12.49	12.23	12.30
640	CL2CF2: M	0.09	0.01	0.50
641	CL2CF2: HF	-119.8	-131.6	-114.1
642	CLCF3: LCCL	1.750	1.767	1.752
643	CLCF3: IP	13.54	13.50	13.08
644	CLCF3: M	170.05	0.02	0.50
645		-170.0	-1/9.8	1 628
647	CLF: IP	12.49	12.74	12.02
648	CLF: M	0.74	0.78	0.89
649	CLF: HF	-23.3	2.5	-12.0
650	CL2: LCLCL	1.992	2.000	1.988
651	CL2: IP	11.54	11.65	11.59
652	CL2: HF	13.4	3.2	0.0
653	CLO: LCLO	1.556	1.632	1.569
654	CLO: IP	11.02	11.69	10.95
655		14.5	39.Z 1 512	24.2
657		126 2	180 0	117 4
658	CLO2: IP	10.66	10.45	10.36
659	CLO2: HF	40.2	161.4	25.0
660	FCLO2: LCLO	1.460	1.413	1.420
661	FCLO2: LCLF	1.575	1.594	1.694
662	FCLO2: WOCLO	119.9	145.7	115.2
663	FCLO2: WFCLO	107.0	100.0	101.8
664	FCLO2: IP	11.91	11.62	12.41
665	FCLO2: M	127	0.90	-9 0
667	FCLOZ. HF F3CLO: LCLF1	1 573	1 584	-8.0
668	F3CLO: LCLF2	1.591	1.587	1.713
669	F3CLO: LCLO	1.467	1.505	1.405
670	F3CLO: WFCLO1	115.2	112.9	108.9
671	F3CLO: WFCLF1	88.2	87.8	87.9
672	F3CLO: WFCLF2	166.2	172.0	170.5
673	F3CLO: WFCLO2	96.8	94.0	94.7
674	F3CLO: HF	-20.3	30.2	-35.4
676	FCLOS: LCLF	1 439	1 472	1 404
677	FCLO3: WFCLO	103.4	101.6	100.8
678	FCLO3: IP	14.44	12.14	13.06
679	FCLO3: HF	5.7	157.9	-5.1
680	HCLO4: LCLO1	1.441	1.480	1.408
681	HCLO4: LCLO2	1.567	1.625	1.635
682	HCLO4: WOCLO1	104.4	103.5	105.8
683	HCLO4: WOCLO2	114.0	114.7	112.8
605	HCLO4: HF	U.I 1 591	1 634	1.2
686	CL207: LCL02	1.438	1.480	1.405
687	CL207: WOCLO	114.6	114.7	115.2
688	CL207: HF	67.9	361.8	65.0
689	CLF3: LCLF1	1.584	1.603	1.584
690	CLF3: LCLF2	1.591	1.576	1.703
691	CLF3: WFCLF	90.5	88.6	87.0
692	CLF3: IP	12.61	12.77	12.88
693	CLE'3: M	0.49	0.32	0.55
094 60=	CLES: HE CLES: ICLE1	-43.9	-29.U 1 570	-38.0
696	CLE5. LCLE2	1 584	1 580	1 669
	CLE5. WECLE	88.6	87 4	96.0
697		00.0	0/.1	00.0

^{*a*} CCSD(T) 6-311G* [53], ^{*b*} G2-Rechnung [51], ^{*c*} [125], ^{*d*} G2(MP2)-Rechnung [52], ^{*e*} G2-Rechnung aus [126], ^{*f*} [127], ^{*g*} [128], ^{*h*} [47].

Literaturverzeichnis

- [1] D. N. Nanda, K. Jug; Theor. Chim. Acta 57, 95 (1980).
- [2] B. Ahlswede, K. Jug; J. Comput. Chem., angenommen.
- [3] B. Ahlswede, K. Jug; J. Comput. Chem., angenommen.
- [4] H. Primas, U. Müller-Herold; Elementare Quantenchemie, 2. Aufl., S. 23, B. G. Teubner, Stuttgart 1990.
- [5] H. Primas, U. Müller-Herold; Elementare Quantenchemie, 2. Aufl., S. 214ff, B. G. Teubner, Stuttgart 1990.
- [6] A. Szabo, N. S. Ostlund; Modern Quantum Chemistry, S. 232ff, Macmillan Publishing Co., Inc, New York 1982.
- [7] I. N. Levine; Quantum Chemistry, 4th ed., S. 403, Prentice Hall, Englewood Cliffs, New Jersey 1991.
- [8] I. N. Levine; Quantum Chemistry, 4th ed., S. 404f, Prentice Hall, Englewood Cliffs, New Jersey 1991.
- [9] A. Szabo, N. S. Ostlund; Modern Quantum Chemistry, S. 142ff, Macmillan Publishing Co., Inc, New York 1982.
- [10] J. A. Pople, D. P. Santry, G. A. Segal; J. Chem. Phys. 43, 130 (1965).
- [11] J. Schulz, R. Iffert, K. Jug; Int. J. Quantum Chem. 27, 461 (1985).
- [12] P.-O. Löwdin; J. Chem. Phys. 18, 365 (1950).
- [13] M. C. Zerner; *Mol. Phys.* **23**, 963 (1972).
- [14] J. A. Pople, D. L. Beveridge; Approximate Molecular Orbital Theory, S. 69, McGraw-Hill Book Company, New York 1970.

- [15] M. Scholz, H. J. Köhler; Quantenchemie Bd. 3, S. 104ff, Hüthig, Heidelberg 1981.
- [16] T. Bredow, G. Geudtner, K. Jug; J. Chem. Phys. 105, 6395 (1996).
- [17] K. Jug, T. Bredow in Methods and Techniques in Computational Chemistry: METECC-95, S. 89, Ed. Clementi and G. Corongiu, STEF, Cagliari 1995.
- [18] K. Jug, G. Geudtner; Chem. Phys. Lett. 208, 537 (1993).
- [19] W. B. Fowler; Physics of Color Centers, Academic, New York 1968.
- [20] M. C. Böhm, R. Gleiter; *Theor. Chim. Acta* **59**, 127 (1981).
- [21] G. Karlsson, M. C. Zerner; Int. J. Quantum Chem. 7, 35 (1973).
- [22] A. D. Bacon, M. C. Zerner; *Theor. Chim. Acta* 53, 21 (1979).
- [23] R. S. Mulliken; J. Chim. Phys. 46, 497 (1949).
- [24] F. E. Harris; J. Chem. Phys. 51, 4770 (1969).
- [25] P. Pelikán, L. T. Nagy; Chem. zvesti 28 (5), 594 (1974).
- [26] K. Jug, R. Iffert, J. Schulz; Int. J. Quantum Chem. 32, 265 (1987).
- [27] W. Thiel, A. A. Voityuk; Theor. Chim. Acta 81, 391 (1992).
- [28] R. D. Brown, K. R. Roby; Theor. Chim. Acta 16, 175 (1970).
- [29] P. Coffey, K. Jug; J. Am. Chem. Soc. 95, 7575 (1973).
- [30] N. A. B. Gray, A. J. Stone; *Theor. Chim. Acta* 18, 389 (1970).
- [31] G. S. Chandler, F. E. Grader; *Theor. Chim. Acta* 54, 131 (1980).
- [32] R. H. Bartels; University of Texas, Center for Numerical Analysis, Report CNA-44, Austin, Texas (1972).
- [33] K. Levenberg; Quart. Appl. Math. 2, 164 (1944).

- [34] D. W. Marquardt; SIAM J. Appl. Math. 11, 431 (1963).
- [35] J. J. Moré; Lecture Notes in Mathematics 630, 105 (1978).
- [36] M. Kolb, W. Thiel; J. Comput. Chem. 14 (7), 775 (1993).
- [37] C. G. Broyden; *Math. Comp.* **19**, 577 (1965).
- [38] E. Clementi, D. L. Raimondi; J. Chem. Phys. 38, 2686 (1963).
- [39] E. Clementi, D. L. Raimondi; W. J. Reinhardt; J. Chem. Phys. 47, 1300 (1967).
- [40] K. Jug, B. Ahlswede, G. Geudtner; Int. J. Quantum Chem. 55, 411 (1995).
- [41] W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople; Ab Initio Molecular Orbital Theory, S. 259, John Wiley & Sons, New York 1986.
- [42] D. R. Lide; CRC Handbook of Chemistry and Physics, 72nd Edition, CRC Press, Boca Raton 1992.
- [43] K. Jug, D. N. Nanda; Theor. Chim. Acta 57, 107 (1980).
- [44] K. Jug, D. N. Nanda; Theor. Chim. Acta 57, 131 (1980).
- [45] M. Kolb, W. Thiel; J. Comput. Chem. 14 (7), 775 (1993).
- [46] M. Kolb; Dissertation, Wuppertal 1991.
- [47] S. G. Lias, R. D. Levin, S. A. Kafafi; Ion Energetics Data, in NIST Standard Reference Database Number 69, Eds. W.G. Mallard and P.J. Linstrom, National Institute of Standards and Technology, Gaithersburg MD 1997.
- [48] W. Thiel, A. A. Voityuk; J. Phys. Chem. 100, 616 (1996).
- [49] W. Thiel, A. A. Voityuk; J. Mol. Struct. **313**, 141 (1994).
- [50] W. Thiel, A. A. Voityuk; Int. J. Quantum Chem. 44, 807 (1992).

- [51] L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople; J. Chem. Phys. 94, 7221 (1991).
- [52] L. A. Curtiss, K. Raghavachari, J. A. Pople; J. Chem. Phys. 98, 1293 (1993).
- [53] Gaussian 94 (Revision D.2), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
- [54] M. J. S. Dewar, W. Thiel; J. Am. Chem. Soc. 99, 5231 (1977).
- [55] M. J. S. Dewar, E. G. Zoebisch, E. F. Healey, J. J. P. Stewart; J. Am. Chem. Soc. 107, 3902 (1987).
- [56] J. J. P. Stewart; J. Comput. Chem. 10, 209, 221 (1989).
- [57] W. Thiel, A. A. Voityuk; *Theor. Chim. Acta* **81**, 391 (1992).
- [58] M. Scholz, H. J. Köhler; Quantenchemie Bd. 3, S. 363ff, Hüthig, Heidelberg 1981.
- [59] M. Scholz, H. J. Köhler; Quantenchemie Bd. 3, S. 268ff, Hüthig, Heidelberg 1981.
- [60] V. A. Tikhomirov, G. Geudtner, K. Jug; J. Phys. Chem. B 101, 10398 (1997).
- [61] G. Geudtner; Dissertation, Hannover 1995.
- [62] R. Fletcher; Practical Methods of Optimization, 2nd ed., John Wiley & Sons, Chichester 1987.
- [63] M. Berrondo, J. F. Rivas-Silva; Int. J. Quantum Chem. 57, 1115 (1996).

- [64] L. J. Page, E. H. Hygh; *Phys. Rev. B* 17, 2537 (1970).
- [65] D. M. Roesler, W. C. Welker; *Phys. Rev.* **154**, 861 (1967).
- [66] J. Sadlej; Semi-Empirical Methods of Quantum Chemistry, S. 41f, Ellis Horwood Limited, Chichester 1985.
- [67] N. F. Mott, R. W. Gurney; Electronic Processes in Ionic Crystals, Oxford University Press 1950.
- [68] J. J. Markham; F-Centers in Alkali Halides, Solid St. Phys. Suppl. 8, Academic Press, New York 1966.
- [69] N. N. Greenwood; Ionenkristalle, Gitterdefekte und Nichtstöchiometrische Verbindungen, S. 162ff, Verlag Chemie, Weinheim 1973.
- [70] M. Henzler, W. Göpel; Oberflächenphysik des Festkörpers, S. 593f, B. G. Teubner, Stuttgart 1991.
- [71] S. Huzinaga, C. Arnau; J. Chem. Phys. 54, 1948 (1971).
- [72] J. Sauer, C. Jung, H. H. Jaffé, J. Singerman; J. Chem. Phys. 69, 495 (1978).
- [73] V. Zielasek; Dissertation, Hannover 1997.
- [74] R. St. C. Smart; Trans. Faradey Soc. 67, 1183 (1971).
- [75] R. Ahlrichs, C. Ochsenfeld; Ber. Bunsenges. Phys. Chem. 96, 1287 (1992).
- [76] P. Weiss, C. Ochsenfeld, R. Ahlrichs, M. M. Kappes; J. Chem. Phys. 97, 2553 (1992).
- [77] C. Ochsenfeld, R. Ahlrichs; J. Chem. Phys. 101, 5977 (1994).
- [78] C. Ochsenfeld, J. Gauss, R. Ahlrichs; J. Chem. Phys. 103, 7401 (1995).
- [79] K.-M. Schröder; Dissertation, Hannover 1998.

- [80] V. E. Henrich, G. Dresselhaus, H. J. Zeiger; *Phys. Rev. B* 22, 4764 (1980).
- [81] V. E. Henrich, R. L. Kurtz; J. Vac. Sci. Technol. 18, 416 (1981).
- [82] G. P. Summers, T. W. Wilson, B. T. Jeffries, H. T. Tohver, Y. Chen, M. M. Abraham; *Phys. Rev. B* 27, 1283 (1983).
- [83] M.-C. Wu, C. M. Truong, D. W. Goodman; *Phys. Rev B* 46, 12688 (1992).
- [84] L. N. Kantovich, J. M. Holender, M. J. Gillian; Surf. Sci. 343, 221 (1995).
- [85] A. Gibson, R. Haydock, J. P. LaFemina; Appl. Surf. Sci. 72, 285 (1993).
- [86] A. Gibson, R. Haydock, J. P. LaFemina; *Phys. Rev. B* 50, 2582 (1994).
- [87] E. Castanier, C. Noguera; Surf. Sci. 364, 1 (1996).
- [88] F. Illas, G. Pacchioni; J. Chem. Phys. 108, 7835 (1998).
- [89] A. M. Ferrari, G. Pacchioni; J. Phys. Chem. 99, 17010 (1995).
- [90] H. J. Freund, E. Umbach; Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, Springer, Berlin-Heidelberg 1993.
- [91] P. J. Zieman, A. W. Castleman, Jr.; J. Chem. Phys. 94, 718 (1991).
- [92] N. G. Phillips, C. W. S. Conover, L. A. Bloomfield; J. Chem. Phys. 94, 4980 (1991).
- [93] G, Pacchioni, P. S. Bagus, F. Parmigiani, Eds.; Cluster Models for Surface and Bulk Phenomena, Plenum, New York 1992.
- [94] K. Jug; Int. J. Quantum Chem. 58 283 (1996).
- [95] E. A. Colburn; Surf. Sci. Reports 15, 281 (1992).
- [96] J. Baker; J. Comput. Chem. 7, 385 (1985).
- [97] K. Jug, G. Geudtner; J. Comput. Chem. 14, 639 (1993).

- [98] S. Fölsch, A. Stock, M. Henzler; Surf. Sci. 264, 65 (1992).
- [99] S. Fölsch; Dissertation, Hannover 1991.
- [100] L. W. Bruch, A. Glebov, J. P. Toennies, H. Weiss; J. Chem. Phys. 103, 5109 (1995).
- [101] J. Heidberg, W. Häser; J. Electron. Spectrosc. Relat. Phenom. 54/55, 971 (1990).
- [102] W. Häser; Dissertation, Hannover 1992.
- [103] B. Wassermann, S. Mirbt, J. Reif, J. C. Zink, E. Matthias; J. Chem. Phys. 98, 10049 (1993).
- [104] E. V. Stefanovich, T. Truong; J. Chem. Phys. 104, 2946 (1996).
- [105] S. Picaud, C. Girardet; Chem. Phys. Lett. 209, 340 (1993).
- [106] S. Fölsch, M. Henzler; Surf. Sci. 247, 269 (1991).
- [107] U. Malaske, H. Pfnür, M. Bäßler, M. Weiß, E. Umbach; *Phys. Rev. B* 53, 13115 (1996).
- [108] E. Knözinger, K.-H. Jacob, S. Singh, P. Hofmann; Surf. Sci. 290, 388 (1993).
- [109] H. Onishi, C. Egawa, T. Aruga, Y. Iwasawa; Surf. Sci. 191, 479 (1987).
- [110] C. F. Jones, R. A. Reeve, R. Rigg, R. C. Segall, R. S. C. Smart, P. S. Turner; J. Chem. Soc. Faraday Trans. 1 80, 2609 (1984).
- [111] J. Heidberg, B. Redlich, D. Wetter; Ber. Bunsenges. Phys. Chem. 99, 1333 (1995).
- [112] D. Wetter; Dissertation, Hannover 1996.
- [113] M.-C. Wu, C. A. Estrada, J. S. Corneille, D. W. Goodman; J. Chem. Phys. 96, 3892 (1992).

- [114] S. Coluccia, S. Lavagnino, L. Marchese; *Mater. Chem. Phys.* 18, 445 (1988).
- [115] D. Ferry, A. Glebov, V. Senz, J. Suzanne, J. P. Toennies, H. Weiss; J. Chem. Phys. 105, 1697 (1996).
- [116] D. Ferry, A. Glebov, V. Senz, J. Suzanne, J. P. Toennies, H. Weiss; Surf. Sci. 377-379, 634 (1997).
- [117] S. Picaud, P. N. M. Hoang, C. Girardet; Surf. Sci. 278, 339 (1992).
- [118] M. I. McCarthy, G.K. Schanter, C. A. Scamehorn, J. B. Nicholas; J. Phys. Chem. 100, 16989 (1996).
- [119] M. J. Stirniman, C. Huang, R. Scott Smith, S. A. Joyce, B. D. Kay; J. Chem. Phys. 105, 1295 (1996).
- [120] J. Goniakowski, C. Noguera; Surf. Sci. 330, 337 (1995).
- [121] C. A. Scamehorn, N. M. Harrison, M. I. Mc Carthy; J. Chem. Phys. 101, 1547 (1994).
- [122] W. Langel, M. Parrinello; J. Chem. Phys. 103, 3240 (1995).
- [123] S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin, W.G. Mallard; Ion Energetics Data, in NIST Standard Reference Database Number 69, Eds. W.G. Mallard and P.J. Linstrom, National Institute of Standards and Technology, Gaithersburg MD 1997.
- [124] H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron; Ion Energetics Data, in NIST Standard Reference Database Number 69, Eds. W.G. Mallard and P.J. Linstrom, National Institute of Standards and Technology, Gaithersburg MD 1997.
- [125] M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, A. N. Syverud; JANAF Thermochemical Tables (Third Edition), J. Phys. Chem. Ref. Data 14, Suppl. 1 1985.

- [126] P. J. Gardner, S. R. Preston, R. Siertsema, D. Steele; J. Comput. Chem. 14, 1523 (1993).
- [127] W. Airley, C. Glidewell, A. G. Robiette, G. M. Sheldrick; J. Mol. Struct. 8, 413 (1971).
- [128] A. Almenningen, O. Bastiansen, V. Ewing, K. Hedberg, M. Tretteberg; Acta Chem. Scand. 17, 2455 (1963).

Lebenslauf

Bernd Ahlswede

13. Jan. 1967	geboren in Hameln
	Eltern: Friedrich Wilhelm und Heide-Gret Ahlswede,
	geb. Ordemann
Aug. 1973 – Jun. 1977	Grundschule, Volksschule Börry
Aug. 1977 – Jun. 1986	Gymnasium, Viktoria-Luise-Gymnasium, Hameln
06. Jun. 1986	Erwerb des Abiturs
Okt. 1986 – Dez. 1987	Wehrdienst, ab Okt. 1987 beurlaubt
1987 - 1993	Chemiestudium an der Universität Hannover
Feb. 1993	Diplomprüfung
Feb. 1993 – Sep. 1993	Diplomarbeit, Thema:
	Untersuchung von Molekülschwingungen mit
	semiempirischen Molekülorbitalmethoden
seit Sep. 1993	wissenschaftlicher Mitarbeiter am Lehrgebiet für
	Theoretische Chemie

Publikationen

- K. Jug, B. Ahlswede, G. Geudtner; *SINDO1 Calculations of Vibrational Frequencies of Adsorbed Molecules*, Intern. J. Quant. Chem. **55**, 411 (1995).
- B. Ahlswede, K. Jug; Consistent Modifications of SINDO1 I. Approximations and Parameters, J. Comput. Chem., angenommen.
- B. Ahlswede, K. Jug; Consistent Modifications of SINDO1 II. Applications to First- and Second-Row Elements, J. Comput. Chem., angenommen.