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Abstract
We study the quantum melting of quasi-one-dimensional lattice models in which
the dominant energy scale is given by a repulsive dipolar interaction. By con-
structing an effective low-energy theory, we show that the melting of crystalline
phases can occur into two distinct liquid phases having the same algebraic decay
of density–density correlations but showing a different non-local correlation
function expressing string order. We present possible experimental realizations
using ultracold atoms and molecules, introducing an implementation based on
resonantly driven Rydberg atoms that offers additional benefits compared to a
weak admixture of the Rydberg state.

Keywords: quantum phase transition, dipolar interaction, Rydberg atoms

1. Introduction

The constrained scattering in one-dimensional (1D) quantum systems allows for their effective
description in terms of universal low-energy theories even when the microscopic model is not
exactly solvable [1]. The most prominent example is the Luttinger liquid, in which all
correlation functions decay algebraically according to a single parameter [2]. However, the
relation between the actual particles of interest and the low-energy quasiparticles is not always
trivial. In this article, we show that for quantum liquids with dominant long-range interactions,
the transformation between the two can be highly nonlocal, giving rise to a quantum phase
transition between Luttinger liquids differing by string order. Understanding such nonlocal or
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topological order is of immense interest as it is key to developing a more general theory of
phase transitions beyond the Landau symmetry breaking paradigm [3].

The observation of such exotic phase transitions is often tied to the presence of strong
tunable interactions; hence dipolar interactions found within polar molecules [4, 5] or Rydberg
atoms [6, 7] serve as ideal candidates and also allow for the combination with well-established
tools for studying 1D physics within ultracold quantum gases [8–13]. These recent
developments have led to to a wide range of theoretical studies investigating the ground
state properties of dipoles in 1D [14–29], giving rise to a plethora of novel many-body
phenomena. Of particular interest is the regime of strong repulsive interactions, in which the
dipole blockade excludes configurations having two particles in close proximity and leads to
strong frustration effects. In the absence of quantum fluctuations, the ground state of a dipole-
blockaded lattice gas is characterized by a devilʼs staircase of gapped crystalline phases
commensurate with the underlying lattice [30]. Generically, the quantum fluctuations induced
by movement of the particles result in commensurate–incommensurate transitions to a Luttinger
liquid [16, 22, 23]. Additional phases can occur pertaining to extended interaction potentials
[28] or quasi-1D geometries [25, 29].

In this article, we build on these earlier developments and study dipole-blockaded quantum
gases on a triangular ladder. We establish the ground state phase diagram by analyzing an
effective low-energy theory describing the dynamics of dislocation defects of the commensurate
crystals. Crucially, the melting of the commensurate crystals can be induced by motion either
along the direction of the ladder or along its rungs. This leads to the appearance of two distinct
floating solid phases (see figure 1), both of which can be described in terms of a Luttinger
liquid. Remarkably, we find that the two floating solids cannot be distinguished by merely
looking at correlation functions of local operators; instead one has to consider a highly nonlocal
observable describing string order. Finally, we comment on possible experimental realizations
using ultracold polar molecules or Rydberg atoms, including a novel approach for the latter
using laser-induced hopping of Rydberg excitations in an electric field gradient, which can be
also used to implement a large class of microscopic models with an unprecedented level of
control over hopping and interaction parameters.

Figure 1. Ground state phase diagram ( μ=U 4 ˜). Melting of the commensurate crystal
(CC) induced by nearest-neighbor hopping t1 and next-nearest neighbor hopping t2
result in two distinct floating solid phases (FS1 and FS2) differing by a nonlocal
operator characterizing string order. The dashed lines correspond to predictions from a
mean-field treatment of the low-energy theory.
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2. Hamiltonian description

We start our analysis based on the microscopic Hamiltonian in terms of an extended Hubbard
model with long-range dipolar interactions, with the setup of the system depicted in figure 2. In
the following, we treat the triangular ladder as a single chain having nearest and next-nearest
neighbor hoppings. We point out that the dipole blockade renders the distinction between
bosons and fermions irrelevant as the exchange of two particles occurs at very high energy
scales, which are unimportant for the low-energy properties of the system. The Hamiltonian is
given by

∑ ∑

∑ ∑μ

= − + − +

+ −

+ +

<
−

( ) ( )H t c c t c c

V n n n

H.c. H.c.
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Here, t1 and t2 are the strength of the nearest and next-nearest neighbor hopping, respectively,
−Vi j| | accounts for the repulsive dipolar interaction between sites i and j according to the particle

number =n c ci i i
† , and μ denotes the chemical potential. In the classical limit with = =t t 01 2 ,

the ground state again follows a complete devilʼs staircase structure of commensurate crystals as
the interaction potential is a convex function [30]. The most stable commensurate crystals occur
at rational fillings q1 with q being odd, i.e., the particles are located on the two legs of the
ladder in an alternating fashion (see figure 2). In the following, we will restrict our analysis to
densities close to these values. Here, we are interested in the dipole-blockaded regime with

≫q 1, which allows us to approximate many quantities of interest by performing expansions in
q1 [21]. For example, the center of the commensurate crystals with filling q1 occurs at a

chemical potential of μ ζ≈ V q32 (3)0 1
3, and the variation in chemical potential over which the

phase is stable is given by μ ζ≈ V q168 (5)w 1
4.

3. Effective low-energy theory

We now study the effects of quantum fluctuations induced by t1 and t2 within perturbation
theory, i.e., μ≪t t,1 2 [16, 21]. The low-energy excitations correspond to dislocation defects of
the commensurate crystal, given by the relation = − −+d r r qj j j1 , which measures the
deviation of the spacing between the particles j and +j 1 from the perfectly commensurate
case. Note that these defects are nonlocal quasiparticles, as their position in terms of the original
particles depends on the number of defects located at previous sites. Consequently, changing
the notation from real particles to defects is a highly nonlocal transformation. To denote this

Figure 2. Setup of the system. Dipolar particles are confined to a triangular ladder
structure, with hopping occuring along the direction of the ladder (t2) or along its rungs
(t1). Filled dots indicate the particle positions corresponding to the q = 7 commensurate
crystal.
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crucial distinction between lattice sites and defects, we will use the index i when referring to the
former and j for the latter. Depending on the sign of dj, defects occur as hole-like or particle-
like, i.e., they decrease or increase the total density, respectively. However, sufficiently far away
from the particle-hole symmetric point given by μ μ= 0, only one of these defects is relevant
[21]. Furthermore, the number of defects is a conserved quantity. As the energy cost rapidly
increases for >d| | 1j , and the hopping of defects does not exhibit bosonic enhancement, we
restrict the Hilbert space to the defect numbers =d 0, 1, 2j . Then the effective low-energy
Hamiltonian to first order in t1, t2 can be expressed using spin-1 variables as

∑

∑

∑ ∑μ

= − +

− +

+ + +

+
+

−

+ +
+

−
+

−

+ + − −

( )

( )

( )

H t S S

t S S S S

S U S S S S

H.c

H.c.

˜ 1 , (2)

j
j j

j
j j j j

j
j
z

j
j j j j

1 1

2 1 1

i.e., the next-nearest neighbor hopping t2 turns into a correlated hopping of the defects. Most
importantly, the strong dipolar interaction has been absorbed into the definition of the defects;
hence, the resulting low-energy Hamiltonian is purely local and can be further analyzed using
standard techniques. In addition to higher order processes in the perturbation series, we also
neglect the weak interaction between the defects. The energy cost associated with each defect is
given by μ μ μ μ= − + q˜ ( 2)w0 , and the repulsion of the defects can be calculated as

μ=U qw . Note that this model is equivalent to a Bose–Hubbard model with correlated hopping
and a three-body constraint [31].

If one of the hopping terms vanishes, the phase boundaries can be determined exactly by
mapping the problem onto free fermions [32]. For =t 02 , the on-site repulsion U is irrelevant at
the phase transition, which occurs at μ=t ˜ 21 between the n = 0 Mott insulator and a liquid
phase with finite defect density. Likewise, there is a second phase transition for =t 01 occuring
at μ= +t U˜ 22 . Remarkably, this second liquid has defects that always appear in pairs as the
single-defect sector is still protected by a gap of μ̃. In the following, we refer to the latter phase
as a ‘pair defect liquid,’ while calling the former a ‘single defect liquid.’ Based on the low-
energy Hamiltonian, equation (2), we map out the complete phase diagram using mean-field
theory and an exact density-matrix renormalization group (DMRG) method based on a matrix-
product state approach [33, 34]; see figure 1. The transition line between the two liquid phases
corresponds to the decay of the spin correlation function 〈 〉+ −S Sj k changing from algebraic to
exponential behavior, as shown in figure 3. Here, we determine the transition line from the
comparison of an algebraic and an exponential fit to the correlation function for a system of 30
spins. As noted previously [31], mean-field theory produces good qualitative agreement with
the DMRG results, and furthermore yields the correct values for the transition in the exactly
solvable cases.

In order to understand the transition between the two liquid phases in more detail, it is
instructive to represent the effective spin-1 model by two spin-1 2 degrees of freedom, which
then can be bosonized [35]. Then, sufficiently far away from the transition, we know from the
free fermion solution that the system is well described in terms of a single component Luttinger
liquid, i.e., the second bosonic field is massive, according to the effective Hamiltonian
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where Πj and ϕ j are bosonic fields corresponding to phase and density fluctuations. If the
fields with j = 1 are gapless, then the system is in the single defect liquid phase, while gapless
j = 2 fields correspond to the pair defect liquid. In the limit of low defect densities, we find

= =K K 1j for the Luttinger parameter, while the speed of sound is given by μ=v qa t˜ 21 1

and μ= +v qa U t(2 ˜ ) 22 2 , respectively. The transition between the single and the double
defect liquid is of the Ising universality class [36–38]. From the finite-size scaling behavior of
the underlying Ising transition [39], we can estimate the error in determining the phase
boundary between the two liquid phases in our DMRG calculation to behave as ∼ L1 ˜2, with L̃
being the number of bulk spins considered in the fitting procedure. Here, we have used a value
of =L̃ 18, corresponding to an error from the finiteness of the system of about 1 percent.

4. String order

Within the validity of our perturbative approach, the phase boundaries of the defect model (2)
corresponds to the phase boundaries of the microscopic Hamiltonian (1). However, we are
rather interested in describing the appearing quantum phases in terms of observables involving
the microscopic degrees of freedom, i.e., correlations between individual particles rather than
correlations between the defects. In the following, we apply Luttinger liquid theory to classify
the ground state phases in terms of the microscopic particles.

When mapping from the defect description to the real particles, we first note that the n = 0
Mott insulator for the defects corresponds to the commensurate crystal at filling q1 , in which
the density–density correlation 〈 〉n niq 0 exhibits true long-range order. In the two liquid phases,
we find the density–density correlations of the microscopic particles to asymptotically decay as
〈 〉 ∼ − +n n xx

K n q
0

2 ( )d
2
, where nd is the density of the defects [21]. Consequently, while the

existence of algebraically decaying correlations signals the melting of the commensurate crystal
phase, it is not possible to distinguish the two defect liquids. Thus, explaining the phase
diagram in terms of the microscopic particles requires the probing of nonlocal correlations.

Figure 3. Decay of spin correlations in the low-energy theory for a system of 30 spins
( μ=U 4 ˜, μ=t 0.6 ˜1 ). Upon increasing the pair hopping t2, the system undergoes a phase
transition from an atomic defect liquid with an algebraic decay ( μ=t 1.5 ˜2 , left) to a pair
defect liquid showing an exponential decay ( μ=t 3.0 ˜2 , right).
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However, we already know that the single defect correlation 〈 − − 〉S S(1 ) (1 )z z
j2 (0) 2 ( ) exhibits an

algebraic decay in the single defect liquid and an exponential decay in the pair defect liquid.
Remarkably, here we find that this behavior can be captured in terms of the microscopic
variables by introducing an observable measuring string order,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑π=

=
+ −O x i q n n( ) exp 2 / . (4)

k

x

k k qstring

0

1

Here, we have focused on the case of particle-like defects; an analogous expression for hole-like
defects follows by replacing + −nk q 1 by + +nk q 1. Most importantly, the term inside the
exponential is proportional to the number of single defects Nx occuring over a distance x. Then
the value of O x( )string simply follows from the characteristic function of the probability
distribution of Nx. In the pair defect liquid phase, the single defects are uncorrelated, meaning
Nx satisfies a Poisson distribution with a mean growing linearly with x. Consequently, O x( )string

decays exponentially with distance in the pair liquid phase. In the single defect liquid, however,
Nx is given by a discrete Gaussian distribution whose mean also grows linearly with x but
having a variance σ π= K x blog ( )2 2, where b is a short distance cutoff [21]. From its
characteristic function, we identify the leading term in the long distance limit decaying
according to an algebraic function, ∼ −O x x( ) K q

string
2 2

.
As the slowest decaying correlation function is still given by the microscopic

density–density correlations, both phases form a ‘floating solid’ on top of the underlying
lattice. We denote them by FS1 and FS2, respectively, with the former corresponding to the
single defect liquid and thus exhibiting an algebraic decay of the string correlations. Note that in
contrast to the phases exhibiting string order known as Haldane insulators [14, 40, 41], both
floating solid phases are gapless. The full phase diagram is shown in figure 1.

5. Experimental realization

Let us now turn to possible experimental implementations of the extended Hubbard model
introduced in equation (1). In any of the setups discussed in the following, the triangular lattice
structure is created using standard optical lattice beams [42]. Additionally, string order can be
measured by direct imaging of atoms or molecules in the lattice [12, 13].

5.1. Ultracold polar molecules

As a first possible implementation, we consider a setup based on ultracold polar molecules
[4, 5]. Here, the molecules are prepared in the rovibrational ground state and loaded into the
triangular lattice. The hopping matrix elements t1 and t2 follow from the tunneling of the
molecules in the lattice potential. The repulsive dipole–dipole interaction Vij can be realized
either by applying a strong electric field [43] or by microwave dressing of the rotational
excitations [44, 45]. For LiCs molecules having an electric dipole moment of =d 5.5 D, the
characteristic energy scale μ̃ close to the q = 7 commensurate crystal on a =a 532 nm lattice is
given by μ π≈ ℏ ×˜ 2 100 Hz, which is compatible with experimental timescales within these
systems.
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5.2. Rydberg atoms

Alternatively, our model can also be realized using ultracold Rydberg atoms [6, 7]. A
straightforward implementation would consist of a weak coupling Ω to a Rydberg state detuned
by Δr [46–48], where the strong repulsive interactions between Rydberg states create an
interaction potential asymptotically decaying as x1 3 for Rydberg states within the Stark fan.
However, the experimental parameters for such a Rydberg dressing are quite challenging: in
particular, the dipolar interaction is suppressed by a factor Ω Δ∼( )r

4, while the radiative decay
limiting the lifetime of the system only decreases as Ω Δ( )r

2. Therefore, we present here a
different route benefitting from resonant excitations to the Rydberg state. Initially, the atoms are
loaded into a deep optical lattice, forming a Mott insulator state with one atom per lattice site.
Then, the extended Hubbard model defined in equation (1) is realized by treating atoms in their
electronic ground state 〉g| as empty sites and atoms in a Rydberg state 〉r| as particles. Here, a
finite density of Rydberg excitations is created by adiabatically tuning the excitation lasers
[49–51], which will control the value of the chemical potential μ. Finally, an electric field
gradient is introduced, such that the difference in the Stark shift between different sites is
exactly canceled by the detuning between two excitation lasers (see figure 4), resulting in a
hopping of the Rydberg excitations. Note that this process crucially relies on the dipole
blockade between neighboring sites; for noninteracting particles the two paths via 〉+g g| i i 1 and

〉+r r| i i 1 interfere destructively. By introducing an additional laser, it is possible to satisfy this
resonance condition for both nearest-neighbor and next-nearest-neighbor distances. The
coupling constants t1 and t2 derived from the induced hoppings of the Rydberg excitations

Ω Ω Δ∼ 2a b can be controlled independently by the intensities of the excitation lasers. Here, we
find that for a Rydberg state with a principal quantum number of n = 43 in an μ=a 1 m lattice,
the liquid phases close to the q = 7 commensurate crystal form around a characteristic energy
scale of μ π≈ ℏ ×˜ 2 400 kHz, which is several orders of magnitude larger than the decay rate of
the Rydberg state. We would like to stress that this implementation procedure based on electric
field gradients is quite general and can readily be extended to a large class of extended Hubbard
models with tunable long-range hoppings and interactions.

Figure 4. Energy levels of two adjacent atoms for laser-induced hopping of Rydberg
excitations in an electric field gradient. The detuning between two Rydberg excitation
lasers compensates the differential Stark shift δ = −+d E E( )E z

i
z

i( 1) ( ) created by the field
gradient, while the 〉+r r| i i 1 state becomes far detuned through the dipolar interaction V1.
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6. Conclusions

In summary, we have shown that dipole-blockaded quantum gases on triangular ladders support
two distinct liquid phases, differing by string order. While the identical behavior of local
correlation functions would suggest that both liquids share an effective low-energy description
in terms of the same Luttinger liquid, the different nature of the quasiparticle excitations defies
this intuition. Our interpretation in terms of nonlocal quasiparticle excitations could also lead to
a better understanding of related models with long-range interactions [25, 28].
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