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Zusammenfassung 

Eine Steigerung der Aktivität photokatalytischer Systeme erfordert eine effiziente 

Reaktorauslegung und eine geeignete Standardmethode, um die Leistung verschiedener 

Systeme zu vergleichen. Bei allen Methoden wird die Reaktionsgeschwindigkeit durch 

die optischen Eigenschaften von Photokatalysatoren durch Reflexion und Streuung 

beeinflusst. Darüber hinaus erfordert die quantitative Beurteilung der Leistung von 

photokatalytischen Systemen die Messung der Anzahl der im Reaktor absorbierten 

Photonen. 

In der vorliegenden Arbeit wird ein Standardverfahren zum Vergleich verschiedener 

Photokatalysatoren unter Verwendung eines Schwarzkörperreaktors vorgeschlagen. In 

einem Schwarzkörperreaktor wird fast das gesamte in den Reaktor einfallende Licht von 

den Photokatalysatorteilchen absorbiert. Daher ist die volumen-gemittelte 

Reaktionsgeschwindigkeit nahezu unabhängig von den Streuungseigenschaften des 

Photokatalysators und die photokatalytische Aktivität kann durch Messungen der 

Reaktionsgeschwindigkeit verglichen werden. Für diese Arbeit wurde Dichloressigsäure 

(DCA) als Modellschadstoff ausgewählt; Titandioxide und einige andere halbleitende 

Oxide wurden als Photokatalysatoren eingesetzt. Experimentelle Parameter einschließlich 

der Anfangskonzentration des Modellschadstoffs (C0), der Beladung mit dem 

Photokatalysator (γ) und des Reaktionsvolumens (V) wurden variiert, um eine von den 

genannten Parametern unabhängige Methode für die vergleichende Bewertung von 

Photokatalysatoren bereitzustellen. Die Abbaurate von DCA, definiert als die 

umgewandelte Menge an Molekülen pro Zeiteinheit, erwies sich bei allen 

Reaktionsvolumina als konstant und unabhängig, wenn C0 und γ größer als 5 mM bzw. 1 

g L-1 waren. Es wurde festgestellt, dass das vorgestellte Verfahren allgemein für 

verschiedene Photokatalysatoren auf Titan- und Nicht-Titanbasis anwendbar ist. Darüber 

hinaus wurde zur Ermittlung der Reaktionsgeschwindigkeit eine kinetische Untersuchung 

sowohl für den Zerfall der Reaktanten als auch für die Produkterzeugung durchgeführt. 

Photonenfluss und Photonenflussdichte beeinflussen die Rekombination von 

Ladungsträgern sehr stark und haben somit auch Einfluss auf die 

Reaktionsgeschwindigkeit und die Quantenausbeute einer photokatalytischen Reaktion. 

Der Schwarzkörperreaktor wurde daher auch benutzt, um die Auswirkung der Geometrie 

des Lichteinlasses auf die Reaktionsgeschwindigkeit und die Quantenausbeute der 
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photokatalytischen DCA-Oxidation zu untersuchen. Mit einem Lichteinlass, der eine 

gleichmäßige Lichtverteilung und eine niedrige Photonenflussdichte ermöglichte, wurden 

konstante Quantenausbeuten ermittelt. Bei hoher Photonenflussdichte wurde jedoch eine 

Quadratwurzelkorrelation zwischen der Quantenausbeute und dem Photonenfluss 

beobachtet. 

Schlüsselwörter: Schwarzkörperreaktor, Quantenausbeute, Kinetik, heterogenes 

photokatalytisches System, Dichloressigsäure 
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Abstract 

An enhancement of the activity of photocatalytic systems requires an efficient reactor 

design and a suitable standard method to compare the performance of various systems. In 

almost all recommended measuring methods, the reaction rate is affected by the optical 

properties of photocatalysts through reflection and scattering. Moreover, the quantitative 

assessment of the performance of photocatalytic systems requires the determination of the 

amount of absorbed photons inside the photoreactor. 

In the present work, a standard method for the comparison of different photocatalysts is 

proposed employing a black body reactor. In a black body reactor almost the entire 

incident light will be absorbed by the photocatalyst particles. Therefore, the volume-

averaged reaction rate is almost independent from the scattering properties of the 

photocatalyst and the photocatalytic activity can be compared through reaction rate 

measurements. In this study, dichloroacetic acid (DCA) was chosen as the probe 

compound. Titanium dioxide and some other semiconducting oxides were applied as the 

photocatalysts. Variation of effecting parameters including the initial concentration of the 

probe molecule (C0), the photocatalyst loading (γ), and the reaction volume (V) were 

studied in order to provide a comparison method which is independent from the 

mentioned parameters. The degradation rate of DCA defined as the converted amount of 

molecules per unit time was found to be constant at all reaction volumes and independent 

when C0 and γ were larger than 5 mM and 1 g L-1, respectively. The presented method 

was found to be generally applicable for different titanium and non-titanium based 

photocatalysts. Moreover, to determine the reaction rate, a kinetic study was performed 

for both, reactants decay and product generation. 

Photon flux and photon flux density are known to strongly affect the charge carriers’ 

recombination and, consequently, the reaction rate and the quantum yield. The black body 

reactor was employed to investigate the impact of the geometry of the light inlet on the 

reaction rate and on the quantum yield of a photocatalytic reaction. Accordingly, 

employing a hollow sphere light inlet providing uniform light distribution and low photon 

flux density, the quantum yield was constant and independent from the photon flux. 

However, in systems with high photon flux density, a square root correlation between the 

quantum yield and the photon flux was observed. 
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1. Introduction and Objectives 

The accelerated growth of the world’s energy demand leading to an excessive 

consumption of fossil fuels and its disastrous effects on the environment, such as 

greenhouse gas emissions, global warming, and wastewater pollution have posed serious 

constraints in recent years. Consequently, concerns about alternative energy sources and 

attempts to move the world towards a green and sustainable energy pathway have 

increased during the past several decades. One of the most promising technologies 

considering green and renewable energy is photocatalysis, which represents a large 

potential in utilizing the abundant solar energy and addressing the environmental 

problems of fossil fuel combustion1–3. Photocatalysis was defined by the International 

Union of Pure Applied Chemistry (IUPAC) as the “change in the rate of a chemical 

reaction or its initiation under the action of ultraviolet, visible, or infrared radiation in the 

presence of a substance, the photocatalyst, that absorbs light and is involved in the 

chemical transformation of the reaction partners”4. In heterogeneous photocatalysis, as 

shown in Figure 1.1, semiconductor photocatalysts absorb light within a specific 

wavelength range, resulting in the excitation of electrons from the valence band to the 

conduction band. Every excitation of an electron to the conduction band generates a 

positive hole in the valence band5. The photo-generated electrons and holes which act as 

reasonably reductants and oxidants, respectively, can independently participate in 

different chemical reactions6. 

  

Figure 1.1. Schematic representation of semiconductor photo excitation 
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Generally, after generating the excited electrons and holes, a large number of electron-

hole pairs recombine before migrating to the semiconductor’s surface and dissipate the 

received energy in the form of heat or emitted light1. This is mainly because of the short 

life time of the photo generated charge carriers due to the small hole diffusion length7. 

Therefore, in most cases a bare semiconductor is not favorable for the separation of 

electron-hole pairs. Consequently, co-catalyst nanostructures are commonly employed to 

enable the holes to migrate to the surface1.  

Pursuing the pioneering work of Fujishima and Honda in 19728, who observed water 

splitting employing a TiO2 electrode in a photo-electrochemical cell, photocatalysis 

gained considerable attention. Intense investigations on the different polymorphs of TiO2 

have been performed to investigate the fundamental principles of photocatalysis6,9 and to 

enhance the photocatalytic efficiency of this group of oxides. Considering the large band 

gap of TiO2, UV radiation is required for its excitation. Since only 5 % of the sunlight 

consists of UV light, TiO2 cannot utilize the solar illumination properly10. Therefore, 

huge efforts have been dedicated to modify TiO2 and to increase its absorbance. 

Furthermore, a large number of studies have been carried out to apply the concept of 

photocatalysis in various areas11. The investigations of the photocatalytic technology are 

not limited to water splitting and producing molecular hydrogen as a fuel. Photocatalysis 

is indeed widely discussed and applied for the photo-decomposition or the photo-

oxidization of pollutants, for artificial photosynthesis, photo-induced super 

hydrophilicity, self-cleaning, and photo-electrochemical fuel synthesis1. The potential 

applications of photocatalytic processes continue to grow with the increase of the 

photocatalytic studies dealing with the development of new photocatalysts12–15. Despite 

the significant progress in the development of new photocatalysts, the efficiencies of most 

photocatalytic processes are still low. Thus, any success to enhance the efficiency of 

heterogeneous photocatalytic processes will move the application of this technology one 

step forward as an alternative technology for water purification or energy conversion and 

storage. 

The large scale application of photocatalysis is only achievable if an efficient 

photocatalyst can be merged with a proper photoreactor design. An ideal photoreactor 

should be able to harvest the light efficiently. Different types of photoreactors applied for 

heterogeneous systems are discussed in detail in Chapter 2. To be able to design a 
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photoreactor, initially, the catalyst’s efficiency in utilizing the absorbed photons, known 

as the quantum yield (Φ), needs to be determined accurately. 

The quantum yield of heterogeneous photochemical systems is described exactly 

following to the quantum yield definition in homogenous systems, as the number of 

defined events divided by the amount of photons absorbed by the catalyst at a specific 

wavelength (Equation 1.1-a)16. 

Φ = ������	(��
)	��	
���������/	����
��������
	
�����
����������	(��
)��	����
�������
	�������	��������	��	���	�����
���
��� = ����                 (1.1-a) 

This equation can also be written as a kinetic definition. The quantum yield can be 

defined as the ratio of the rate of conversion of molecules relatives to the absorbed photon 

flux at one specific wavelength (Equation 1.1-b)16. This concept enables the evaluation 

of the catalyst’s efficiency and the comparison of different photocatalysts.  

Φ = 	����	��	
���������	(��
/����)����	��	����
�������
	�������	��������	��	���	���
����	������	(��
/����) = ��/� ����/��    (1.1-b) 

The reaction rate can be easily determined experimentally by performing the reaction and 

following the concentration of reactants or products over time. 

However, as most types of photoreactors especially solar photoreactors are illuminated 

from their outside, it is not possible to measure the number of absorbed photons in these 

heterogeneous systems directly and only the upper limit for the number of absorbed 

photons which is the number of incident photons is known. This is mainly due to the 

extinction of radiation through reflection and scattering of the light out of the reactor by 

the photocatalyst particles17. 

Due to the above mentioned reasons, in addition to the quantum yield, the term photonic 

yield is used to determine the photocatalytic activity of the semiconductors. Photonic 

yield is defined in terms of the incident amount of photons of monochromatic light 

arriving at the internal surface of the irradiation window. In case of employing 

polychromatic light providing irradiation within a defined wavelength range, the term 

photonic efficiency is used. Therefore, according to IUPAC, photonic efficiency is 

defined as the “ratio of the rate of the photoreaction measured for a specified time interval 

(usually the initial conditions) to the rate of incident photons within a defined wavelength 

interval inside the irradiation window of the reactor”4. 
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On the other hand, in order to design a fully predictive photocatalytic reactor based on the 

lab-scale determinations, first the kinetic parameters of the proposed mechanistic model 

and the rate of photon absorption need to be calculated. Due to the noticeable variation of 

the rate of photon absorption along the photoreactor, in order to calculate the quantum 

yield (Φ) according to the Equation 1.2 at any position of the photoreactor, the local 

volumetric rate of photon absorption at all positions inside the reactor must be known. 

Φ =		 !"#$                                                                                                                             (1.2) 

in which r is the reaction rate (mol s-1) and %&' is the local volumetric rate of photon 

absorption (mol s-1). Therefore, solving the radiation transfer equation (RTE) is 

necessary. This equation considers the geometry and the boundary conditions 

corresponding to the power and the spectrum of the radiation source and the optical 

properties of the photocatalytically active material inside the reactor such as the spectral 

volumetric absorption coefficient, the spectral volumetric scattering coefficient, and the 

phase function17.  

As shown in Figure 1.2, the RTE is the balance between the incident radiation and the 

rates of absorption, emission, and in and out scattered light (Equation 1.3)
18. This 

equation will be discussed in more detail in Chapter 2. In a photoreactor, the number of 

absorbed photons at each position in the reactor is different. However, it can be calculated 

using the RTE, provided that the relevant parameters such as incident light intensity, rate 

of photon absorption, rate of photon emission, rate of photon in-scattering and rate of 

photon out-scattering per unit time, unit volume, unit solid angle, and unit frequency 

interval are known. 

1) *+,,.*/ + ∇. 3+,,.45 = 

                           −7,,.���������� +7,,.�������� + 7,,.��8�
�������9 − 7,,.���8�
�������9         (1.3) 
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Figure 1.2. Schematic representation of the absorption, emission and scattering phenomena in radiation 

transport19. Adapted from Ref 19 Copyright (1993) with permission from Elsevier 

 

All the mentioned source and sink terms are expressed by constitutive equations. To 

determine the absorption, the linear isotropic constitutive equations can be used: 

7,,.���������� = :&(;, /)+&(;, /)                                                                                        (1.4) 

where kλ is the spectral volumetric absorption coefficient (length-1), +& is the spectral 

radiation intensity defined as the amount of radiative energy per unit wavelength interval, 

per unit solid angle, per unit normal area, and per unit time, and λ, x and t represent the 

wavelength, position, and the time respectively. 

The emission of radiation is related to planck’s black-body radiation intensity20: 

7,,.�������� = :&(;, /)+&[=(;, /)]                                                                                     (1.5) 

Here kλ is the spectral volumetric absorption coefficient (length-1), +& is the black-body 

radiation intensity at temperature T. 

Linear constitutive equation is also used to represent the out-scattering of radiation: 

7,,.���8�
�������9 = ?&(;, /)+&(;, /)                                                                                  (1.6) 

where σλ is the spectral volumetric scattering coefficient and has the unit of length-1. 

However, the directional distribution of scattered radiation is not considered in Equation 

1.6 and can be described by using a phase function. Finally, the in-scattering term which 

represents the scattered light inside the reactor in all directions according to the phase 

function can be written as: 
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7,,&��8�
�������9 = @ABC ?&(;, /)	D&EF 34G → 45	+,,G &(;, t)d4G                                              (1.7) 

in which D&34G → 45 is the phase function describing the directional distribution of 

scattered radiation20,21. 

To simplify solving the RTE, it can be assumed that the factor 1/c is very low (in 

Equation 1.3), thus the first term on the left can be neglected. It can also be assumed that 

at a given time the radiation field reaches the steady state immediately20: 

KL 	MNO,#M 	≅ 0                                                                                                                      (1.8) 

Moreover, the term 7,,.�������� can also be neglected since in general, the radiation 

emission is not so significant at low temperatures. With these assumptions, the RTE can 

be given as: 

�NO,#(R, )�R =	 [:&(S, /) +	?&(S, /)]+,,&(S, /) +	T#(R, )EF 	C 	D&EF 34G → 45	+,,G &(S, t)d4G         (1.9) 

By determining the radiation field inside the reactor, the spectral incident radiation at any 

position of the system can be estimated. Through integration of these values along the 

whole photoreactor the volume-averaged values of the photon absorption in the reactor 

will be obtained which are then used to calculate the quantum yield. Therefore, in order to 

be able to design a photoreactor, having the volume-averaged values of quantum yield is 

essential. Considering the complexity and time consuming calculations of the volume-

averaged quantum yield, discovering a simple method to determine this term is of great 

importance. 

Moreover, enhancing the photocatalytic activity of photocatalysts initially requires a 

suitable way to compare the performance of different photocatalyst materials. Apart from 

the low photonic efficiency of the photocatalytic reactions (less than ~1 %)22, finding a 

standard method to compare the activity of photocatalytic nano materials is also a big 

challenge. 

The international standards organisation (ISO) and European committee for 

standardization (CEN/TC 386) have introduced a series of standards for quantification of 

performance ability of the semiconductors23–29. These standards include: air purification 

(specifically, the removal of NO, acetaldehyde and toluene), water purification (the 
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photobleaching of methylene blue and oxidation of DMSO), self-cleaning surfaces (the 

removal of oleic acid and subsequent change in water droplet contact angle), 

photosterilisation (specifically probing the antibacterial action of semiconductor 

photocatalyst films), and UV light sources for semiconductor photocatalytic ISO work30. 

CEN/TC 386 has also tried to address the need of evaluation of semiconductor 

photocatalysts by presenting irradiation conditions required for testing photocatalytic 

properties of semiconducting materials and for the measurement of these conditions31. 

These methods enable the quantitative measurement of photocatalytic activity of a 

material. However, each individual sub-test requires expensive analytical equipments32. 

In photoelectrochemical (PEC) systems, the so-called solar-to-hydrogen conversion 

efficiency (STH), defined as the ratio of chemical energy of the generated molecular 

hydrogen to the total incident light energy, is the most important term to calculate the 

overall efficiency of PEC devices33. The STH can, in principle, be obtained through 

integration of the respective quantum efficiencies over the entire wavelength range. Yet, 

significant attention should be paid to the fact that, depending on the incident wavelength, 

the values of energy efficiency and quantum efficiency do not provide the same 

information. As an example, in order to yield hydrogen (1.23 eV), more than half of the 

high energy of each UV photon (≥3.1 eV) will be dissipated34. On the other hand, to 

check a material’s intrinsic activities, applied bias photon to current efficiency (ABPE), 

external quantum efficiency expressed as the incident photon to current efficiency (IPCE) 

or internal quantum efficiency represented as the absorbed photon to current efficiency 

(APCE) are recommended to be measured33,35. 

The best practices for the determination of the intrinsic performance of photocatalysts are 

repeatedly discussed within the photocatalysis community. However, in heterogeneous 

photocatalytic systems, the comparison of the photocatalyst’s performances is still 

complicated, due to the contradictions in the reported results. According to a 

recommendation published by the IUPAC, the quantum yield should be used to quantify 

the efficiency of photocatalytic processes4. The quantum yield is one of the fundamental 

quantities for the comparison of photochemical reactions and for the activity of various 

photocatalysts36. 

Due to the above mentioned difficulties regarding the quantum yield measurements, in a 

large number of publications only rate constants are reported. In this case, it is almost 
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impossible to compare the photoactivity of various photocatalysts. The rate constants 

measured in different laboratories are thus not comparable due to their dependency on the 

respective temperature, reactant and product concentrations, photon flux, light path, 

extinction and absorption coefficients37. Presenting the photocatalytic activity 

alternatively as reaction rates per weight and surface area also does not reflect the true 

intrinsic photocatalytic activity of the materials. The rate per weight depends on the 

catalyst loading and it is not comparable even in the same photoreactor. The rate per 

surface area depends also on the catalyst loading. Although separation of charge carriers 

depends on the surface area, the rate per surface area does not yield the photocatalytic 

efficiency34. The specific surface area can affect the reaction rate from two points of 

view. An increase in surface area enhances the adsorption of substrates at the surface of 

the photocatalyst hence increasing the reaction rate. However, often an increase of the 

surface area also results in an increase of the surface defects leading to an increase of the 

recombination rate of the charge carriers, thus decrease the photocatalytic reaction rate38. 

To solve this problem for heterogeneous photoreactions, Kisch and Bahnemann proposed 

a method for the comparison of photocatalytic activities. They recommended that “for 

solid/liquid systems, that is, suspensions of semiconductor powders in dissolved 

substrate, optimal reaction rates should be measured with the same type of photoreactor 

under identical irradiation conditions”37. However, this proposed general procedure does 

not allow a comparison of data obtained in different laboratories with different 

experimental set-ups. Due to the difficulties of having the same external irradiation 

conditions, this method is actually only valid for the comparison of photocatalysts within 

one laboratory. Moreover, some factors such as effect of initial concentration of the probe 

molecule and reaction volume are still needed to be considered. Therefore, comparing the 

data obtained from different laboratories could be problematic. 

A quantitative methods for the comparison of the activities of photocatalysts using the 

principle of the turnover number was proposed by Serpone et al.
39. The application of the 

turnover number and other related terms such as turnover rate and turnover frequency in 

heterogeneous catalysis was reported for the first time by Boudart et al. in 196640. In 

photocatalysis, the turnover number is defined as the number of photoinduced 

conversions for a given period of time related to the number of photocatalytic sites41. The 

turnover rate represents the ratio of the number of the reacted or produced molecules to 
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the number of photocatalytic active centers in a system per unit time, while the turnover 

frequency is the number of converted molecules per active sites per unit time41,42. 

However, turnover quantities are not ideal parameters for the photoactivity comparison of 

different photocatalysts41 due to their dependency on temperature and concentration as 

mentioned by Laidler43. Moreover, the determination of the number of photocatalytically 

active sites is complicated, since internal shading leads to some dark spots in the system. 

Consequently, the real operating surfaces are not easy to determine4. Furthermore, the 

number of active sites may change upon illumination and new active sites on the 

semiconductor particles can be generated. A change of the number of absorbed/desorbed 

probe molecules during the irradiation is also possible39. Therefore, considering the light 

dependency of turnover terms, using this method to determine and compare the 

photocatalytic activities, requires light distribution calculations inside the photoreactor, 

which is time consuming. 

Maschmeyer and Che have also suggested ranking the photocatalysts according to the 

turnover rate at their optimum capacity (non-diffusion-limited regime). This parameter 

can then be expressed as moles of molecular hydrogen per hour and gram or per hour and 

square meter of catalyst surface, from which the photonic efficiencies are derived. This 

simple method is recommended to be applied towards comparable data of photonic 

efficiencies for molecular hydrogen production through a photocatalytic process44,45. 

They suggested to determine the photonic efficiency under a condition where the light 

absorption changes linearly with the catalyst loading (Figure 1.3, regime ׀)46, because 

only under this condition the intrinsic activity (turnover rate) of the photocatalysts and the 

optimum activity of their catalytically active sites can be measured46. In contrast, 

according to Kisch, the comparison of photocatalytic reactions at the onset range of the 

plateau region is more meaningful (Figure 1.3, regime ׀׀)45. This region is assumed to be 

representing catalyst loadings assuring constant and optimal light absorption. As reported 

by Kisch, “the underlying premise that in any heterogeneous catalytic reaction a doubling 

of the catalyst concentration leads to a doubling of the observable rate in the non-

diffusion-limited regime does not hold for a heterogeneous photocatalytic reaction”45. 

Since both the reaction rate and the amount of absorbed light depend strongly on the 

catalyst concentration, the comparison of activities needs to be conducted at zero order 

conditions regarding the catalyst loading. Once the observed reaction rate is found to be 

independent from the catalyst concentration, it can be assumed that the system has 
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reached its maximal level of light absorption and is also not restricted by any diffusion 

limitations45. Therefore, under these conditions the light absorption reaches an optimum 

point enabling the quantitative comparison of the photocatalytic activities of different 

catalysts. 

 

 

Figure 1.3. Photonic efficiency versus catalyst loading46. Reproduced with permission from Ref 46. 

Copyright (2010) Wiley-VCH Verlag GmbH & Co. KGaA  

 

Figure 1.4. Schematic illustrations of conventional photocatalytic setups 

 

As an exact measurement of the number of absorbed photons is usually difficult, it was 

suggested to calculate the photonic efficiency, which represents the number of converted 

molecules per number of incident photons within a defined wavelength range41. It was 

also recommended to apply the photonic efficiency defined as the ratio of the 
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photoreaction rate to the rate of incident photons at a specific wavelength range arriving 

at the internal surface of the irradiation window4,41. These definitions represent a lower 

limit of the quantum yield of the process since not all the incident irradiation will be 

absorbed by the catalysts. The incident irradiation can be easily measured by radiometric 

or actinometric procedures17. 

Some authors recommended to perform the photocatalytic experiments in setups with the 

illumination source outside the reactor as given in Figure 1.4
47–52 and measure the 

incident photon flux at the reactor window. However, all these setups have the 

disadvantage that only a fraction of the incoming light will be absorbed by the 

photocatalyst. A large fraction of the photons will be lost due to the light scattering by the 

photocatalyst inside the photoreactor and also due to the light reflection at the 

photoreactor window. Therefore, in the mentioned conventional reactors for 

heterogeneous systems, the amount of light loss due to the scattering and back reflections 

depends on optical properties of the photocatalyst and other parameters, varying between 

13 % to 76 % of the incoming light53. 

Hence, the photonic efficiency not only depends on the absorption and the scattering 

coefficients of the photocatalyst, but is also strongly affected by the absorption 

coefficients of the substrates, light sources, and reactor geometries. For instance, in 

photocatalytic dye degradation, the substrates or semiconductor-substrate surface 

complexes may also absorb the light37. Other experimental conditions such as pH and 

ionic strength also have a significant impact on the fraction of absorbed, reflected and 

scattered photon fluxes45,54,55. This is mainly because aggregation of nano particles in 

aqueous suspensions is a function of ionic strength and pH of the aqueous environments 

and the agglomerates affect significantly the optical properties of the system56. Therefore, 

the estimation of the amount of absorbed photons by the system requires the 

determination of the optical properties under the experimental conditions. The measured 

values of the two wavelength dependent parameters, kλ and σλ, for six different 

commercially available titanium dioxide suspensions in water by Cabrera et al. are 

summarized in Table 1.1 and Table 1.2
57

. 
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Table 1.1. Absorption coefficient for different titanium dioxide samples57. Reprinted with permission from 

Ref 57. Copyright (1996) American Chemical Society 

 

Table 1.2. Scattering coefficient for different titanium dioxide samples57. Reprinted with permission from 

Ref 57. Copyright (1996) American Chemical Society 

 

Therefore, a comparison of photonic efficiencies is only meaningful for reactions 

performed within the same photoreactor affording “relative photonic efficiencies”38. 

Since the absorption of incident light depends not only on the properties of the 

photocatalyst, but also on the reactor geometry, the photonic efficiency gives a general 
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idea about the efficiency of the whole system, while only the quantum yield provides the 

actual activity of the photocatalyst particles17. 

Considering that the photonic efficiency provides only the lower limit of the true quantum 

yield, Buriak et al. have suggested reporting the photonic efficiency with all related  

measurement conditions including the catalyst loading, the light source, the spectral 

distribution of the light source, the optical irradiance at the sample, and the substrate 

concentration58. Moreover, statistics and error analysis should also be included providing 

an idea concerning the claimed materials improvements and the experimental error58. 

Serpone et al. presented an alternative method for the comparison of the activity of 

different photocatalysts named “Relative Photonic Efficiency (U!)”59. This method uses 

cross-reference experiments and correlates the activity of the photocatalyst for a given 

system with a standard process, a standard photocatalyst, and a standard actinometer53. 

The efficiency of the given system is compared with the degradation of phenol as a 

standard secondary actinometer employing TiO2 Degussa P25 as the standard 

photocatalyst59,60. According to Rajeshwar et al. the comparison of photocatalyst 

performance for the test substrate with such a standard system solves some intrinsic 

problems regarding photon absorption, reactor geometry, and light source61. Therefore, 

this method is practical in case of reactors with complex geometries. 

Following the definition of the relative photonic efficiency, when a standard quantum 

yield for a certain photocatalyst and a certain substrate (Φ standard) is known, the quantum 

yield of the test system can be determined by the following equation:   

Φ =	ΦR 'WX'!X . U!                                                                                                      (1.10) 

where U! is the relative photonic efficiency, Φ standard is the quantum yield of a given 

photocatalyst (TiO2 Degussa P25) and a standard organic substrate (phenol) under similar 

conditions, and Φ is the quantum yield of the test system59. However, Ohtani et al. 

claimed that the composition of P25 was inhomogeneous and changed depending on the 

position of sampling from the same package62. Moreover, studies on photocatalytic 

properties of P25 and isolated pure anatase and rutile particles as a reference revealed that 

the photocatalytic activity of these materials changes considerably upon an isolation 

process including washing with water, ultrasonication and drying in air. These changes 
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can most probably be described through the aggregation of particles by inter-particle 

dehydration62. 

In the early 1970s, Solonitsyn and Basov have applied the concept of black bodies for 

quantum yield measurements in gas-solid heterogeneous reactors63,64. The concept of 

black bodies was presented for the first time by Gustav Kirchhoff in 186065: 

“The supposition that bodies can be imagined which, for infinitely small thicknesses, 

completely absorb all incident rays, and neither reflect nor transmit any. I shall call such 

bodies perfectly black, or, more briefly, black bodies.” 

A black body reactor is an idealized physical body with specific properties, which passes 

all the incoming light into the reactor without any loss of light through reflection. This 

reactor absorbs the entire incident light internally and the radiation energy will not be 

transmitted out from the reactor. Hence, the black body reactor is an ideal absorber for 

radiation from all incidence angles. 

According to the conservation law of energy, assuming negligible emission of radiation, 

the energy balance between the number of incoming photons, and the fraction of the 

absorbed, reflected, and transmitted light can be presented as shown in the following 

equation66: 

YZ,[W =	YZ,'\R + YZ,!"]^ +	YZ, !'WR				                                                                         (1.11) 

where np,in, np,abs, np,refl, and np,trans are the number of incoming, absorbed, reflected, and 

transmitted photons (mol). Therefore, in order to absorb all the incoming light, the 

amount of reflected and transmitted light outside of the reactor should be zero. To 

overcome this problem the concept of a black body reactor (a cavity with a small hole as 

the light inlet) was used by Solonitsyn and Basov as a model. Therefore, in order to 

minimize the back reflection of the light outside of the reactor, the light inlet area of the 

light beam was chosen to be much smaller than the area of the inner cavity. Moreover, to 

make sure that the loss by transmitted light is also negligible, the optical density of the 

solid/liquid system needs to be high enough to ensure that no light is transmitted to the 

outside of the reactor. 

 



1. Introduction and Objectives 
 
 

15 
 

 

Figure 1.5. Schematic illustration of the black body reactor designed for gas-solid heterogeneous 

systems63,64. Reprinted with permission from Ref 63. Copyright (2006) ACS 

 

The schematic illustration of the black body reactor design for gas-solid heterogeneous 

systems is illustrated in Figure 1.5. In this reactor the light was passed through an inlet 

window with a diameter of 2 mm, while the inner and outer diameters of the sphere were 

approximately 25 mm and 28-30 mm, respectively. The distance between the reactor 

walls was filled with the photocatalyst particles. Since the light entrance diameter was 

much smaller than the area of the inner cavity, it was assumed that the back reflection 

through the light inlet is approximately zero. The reactor space filled with the 

photocatalyst powder had a high optical density to ensure that almost no light is 

transmitted through the reactor outer walls. Consequently, all the incoming light through 

the small light inlet, after reflection and scattering within the reactor and the inner cavity, 

will eventually be absorbed by the photocatalyst. 

Emeline et al. have also reported an experimental application of the concept of a “black 

body” like reactor for quantum yield measurements in liquid-solid heterogeneous 

systems63. Figure 1.6 shows the schematic sketch and an actual photograph of this 

reactor. This reactor consisted of a glass beaker containing the reaction slurry and a cavity 

located in the center of the reaction slurry. The light was directed through an optical fiber 

into the cavity. The cross area of the optical fiber was small enough in comparison with 

the cavity area leading to negligible loss of light due to the back reflection. Furthermore, 

the loss by transmitted light through the reactor walls was also eliminated by increasing 
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the catalyst loading in the reaction slurry. A sufficiently high loading of the photocatalyst 

increases the optical density of the system resulting in a decrease in the absorption 

pathway. Therefore, at a suitable distance of the cavity from the reactor walls the 

transmitted light is approximately zero. 

 

  

Figure 1.6. (a) Schematic sketch of the black body reactor for liquid-solid heterogeneous systems. (b) 

Photograph of the black body reactor in liquid-solid heterogeneous systems63. Reprinted with permission 

from Ref 63. Copyright (2006) ACS 

 

Emeline et al. have demonstrated that the experimentally measured quantum yield of a 

photocatalytic reaction in a non-uniformly irradiated heterogeneous system was constant 

and the reaction rate correlated linearly to the photon flux. They have also studied the 

effect of the shape of inner cavities of the black body photoreactor. Accordingly, the 

quantum yield seems to be independent from the light distribution in solution and thus on 

the irradiated surface area of the photocatalyst63. 

Independency of the measured quantum yield from the photon flux in a black body 

photoreactor can be applied for the design of photoreactors. Having the volume-averaged 

quantum yield of the photocatalytic reaction in a photoreactor, simplifies the development 

of the kinetic model through calculation of the local reaction rate according the following 

equation. 

_̂ `L'^ = a^`L'^%&'                                                                                                          (1.12) 

in which Φlocal is the local quantum yield and %&' is the local volumetric rate of photon 

absorption (at each point inside the photoreactor). Since the quantum yield is constant and 
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it does not depend on the photon flux inside the photoreactor, the reaction rate at any 

position of the photoreactor can be calculated using the volume-averaged value of the 

quantum yield. 

Furthermore, considering the constant quantum yield inside the black body photoreactor 

and its independency from the photon flux, the idea of applying a blackbody photoreactor 

as a standard method to compare the activity of different photocatalyst is promoted. 

Nevertheless, apart from the independency of the quantum yield from the photon flux, it 

should also be independent from the other parameters such as the concentration of the 

probe molecule, the reaction volume, the catalyst loading, and the photon flux density 

inside the photoreactor. 

In the current study, a black body reactor was applied to investigate a photocatalytic 

process and to develop a method allowing the comparison of different photocatalysts. 

Herein, the photocatalytic reaction was performed in a black body reactor and the 

photocatalyst was excited by a monochromatic light source, resulting in the 

decomposition of the model compound dichloroacetic acid monitored through its 

respective peak in a chromatogram. Consequently, the reaction rate and the number of 

converted molecules were determined. In order to obtain the number of absorbed photons, 

actinometrical measurements were carried out.  

In this research TiO2 was chosen as a reference material since it is the most common 

photocatalyst reported in the literature and exhibits a high stability, low toxicity, and low 

cost. Among different bulk or nanocrystalline phases of TiO2, rutile (tetragonal), anatase 

(tetragonal), and brookite (orthorhombic) are most commonly known67. In comparison 

with anatase and brookite, rutile is the thermodynamically most stable phase at ambient 

temperature68. The anatase and brookite phases transform to the rutile phase at 

temperatures higher than 600 °C. TiO2 has a large band gap value, and, depending on its 

crystal structure, the band gap value can vary from 3.0 to 3.2 eV69,70. Anatase and 

brookite have a larger band gap energy (3.2 eV) than rutile (3.0 eV)71. Anatase is for most 

test reactions the photocatalytically most active phase of TiO2 suggesting that in the 

anatase phase the charge carrier mobility is higher and that it also has a higher number of 

surface hydroxyl groups72. Moreover, anatase has a low dielectric constant, and a more 

negative position of the Fermi level in comparison with the rutile phase68,73.  
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In order to determine the quantum yield of a light-induced reaction in a photocatalyst 

suspension, dichloroacetic acid (DCA) was chosen here as an organic probe compound. 

The photocatalytic conversion of this probe compound does not yield intermediates and 

products which could absorb the incoming light74. DCA presents some additional 

advantages for laboratory studies due to its low vapor pressure and high water 

solubility74. Another argument for the use of DCA as the probe compound is that its 

photocatalytic degradation according to  

CHCl2COO⁻ + O2→ 2 CO2 + H⁺ + 2 Cl⁻                                                                     (1.13) 

can be monitored not only by measuring the DCA concentration but also by following the 

concentration of the total organic carbon (TOC) content, as well as the evolved amounts 

of CO2, Cl⁻, and H⁺ (employing e.g. a pH-stat technique)74–77. 

Although the focus of this work was mainly on photocatalytic reactions with TiO2 used as 

the photocatalyst, in order to generalize a method for all kinds of catalysts and to 

introduce it as a standard measurement, the method should be able to be applied for 

different photocatalysts. Therefore, various titanium based materials such as SrTiO3, and 

BaTiO3 and non-titanium based materials, namely, WO3 and ZnO, as well as different 

commercial TiO2 powders including pure anatase, pure rutile, a mixture of anatase and 

rutile (P25) and pure brookite were investigated.  

The objective of this study was to simplify the photocatalytic reactor design through the 

development of a straightforward method to measure quantum yields (Φ) of 

photocatalytic reactions in liquid-solid heterogeneous systems. A critical property of a 

suitable method for comparing data obtained under different experimental conditions is 

its independency from the experimental parameters. Therefore, the particular focus of this 

study was directed towards the effect of different parameters on the reaction rate such as 

the initial concentration of the model compound, the catalyst loading and the reaction 

volume. 

Moreover, the kinetic behavior including both, reactant decay and product formation 

should also be considered in photocatalytic systems. Understanding the kinetics of the 

reactants’ conversion should pave the way for a meaningful mechanistic proposal that 

integrates all observations78. 
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Since light absorption is the first step in any photocatalytic process, the effect of the 

photon flux entering the reactor and of the types of the light inlet into the heterogeneous 

black body photoreactor were also studied. In a light induced reaction, following the 

absorption of light by the photocatalyst, electrons are excited from the valance band to the 

conduction band while holes remain in the valence band. A fraction of these generated 

charge carriers migrates to the surface of the photocatalyst particle where they participate 

in redox reactions, however, most of the electron-hole pairs recombine very fast limiting 

the photocatalytic efficiency71. The rate of this recombination process is assumed to be a 

function of the local volumetric rate of energy absorption18. Depending on the light 

distribution, the recombination rate and the quantum yield are different at different 

positions inside the photoreactor. Therefore, the effects of the light intensity and of the 

type of light inlets were also studied. 

Having a simple method for the quantitative assessment of the performance of 

photocatalytic systems and for the respective quantum yield determination paves the way 

for a predictive photoreactor design. According to Equation 1.9, scattering is the most 

complicated term in solving the RTE in heterogeneous systems. Therefore, the 

independency of the determination method from the scattering properties of the system 

simplifies the photoreactor design.  

Hence, the topics of this doctoral dissertation are presented in the following chapters. 

After giving a short introduction on the basic principles of photocatalytic reactor 

engineering in this chapter, the photoreactors which have so far been proposed and 

utilized for heterogeneous systems will be introduced in Chapter 2 within a book chapter 

entitled “Reactors for Artificial Photosynthesis in Heterogeneous Systems” submitted to 

be published in Artificial Photosynthesis, World Scientific Series in Current Energy 

Issues: Solar Energy, Volume 6 Since the lack of a practical comparison method of the 

efficiency of different photocatalysts is one of the major obstacles for the development of 

photocatalytic reactors, the main objective of this thesis is to identify and design a 

standard approach for the comparison of the photocatalyst activities in heterogeneous 

systems. This topic is discussed in detail in Chapter 3, in an article entitled “A Method to 

Compare the Activities of Semiconductor Photocatalysts in Liquid-Solid Systems” 

published in ChemPhotoChem 2018, 2, 948 –951. In the proposed method, the reaction 

rate is found to be independent from parameters such as probe molecule concentration, 
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catalyst loading, and reaction volume. The dependency of the quantum yield on the 

photon flux and on the geometrical characteristics of the light inlet is discussed in 

Chapter 4 in an article entitled “Determination of the Quantum Yield of Heterogeneous 

Photocatalytic Reactions Employing a Black Body Photoreactor” published in Catalysis 

Today 2019, doi:10.1016/j.cattod.2019.06.008. Furthermore, a detailed kinetic study and 

reaction rate evaluation of the photocatalytic dichloroacetic acid degradation in a black 

body reactor is presented in Chapter 5 which includes the manuscript entitled “Reaction 

Rate Study of Photocatalytic Degradation of Dichloroacetic Acid in a Black Body 

Reactor” submitted for publication to Catalysts. Finally, a summarizing discussion of all 

results discussed will be presented in Chapter 6. 
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2. Reactors for Artificial Photosynthesis in 

Heterogeneous Systems 

2.1. Foreword 

This chapter includes the book chapter Reactors for Artificial Photosynthesis in 

Heterogeneous Systems by Lena Megatif, Arsou Arimi, Ralf Dillert, and Detlef W. 

Bahnemann submitted for publication in Artificial Photosynthesis, World Scientific Series 

in Current Energy Issues: Solar Energy, Volume 6. Herein, an overview of the 

photoreactors in artificial photosynthesis and the recent developments made in this field 

has been provided. It has been shown that although significant progress has been made in 

development of new photocatalytic materials, designing an efficient solar photoreactor 

still remains a crucial challenge. Construction of a suitable solar photoreactor with the 

ability to harvest the light appropriately will drastically improve the overall performance 

of artificial photosynthesis processes. 

2.2. Introduction 

The conventional fossil fuels being coal, petroleum and natural gases are the main 

resources of the world’s energy supply. However, the accelerated growth of energy 

demands resulting from rapid development of industry and global population, has posed 

serious constraints during recent years. The global energy consumption has been 

predicted to increase in the next decades and the energy demand will raise 2.3 % per year 

on average1. Excessive consumption of fossil fuels and the pollution caused by them 

could irreparably harm the environment. According to the Environmental Protection 

Agency, the total amounts of U.S. greenhouse gas emissions have increased by 3.5 % 

from 1990 to 2015, while decreasing from 2014 to 2015 by 2.3 %. The decrease from 

2014 to 2015 was due to the reduction of CO2 emissions from fossil fuel combustion. The 

greenhouse gases insulate the planet, and could lead to potential catastrophic changes of 

the climate2. It is predicted that the average global temperature will increase by 6 oC by 

the end of this century3. Currently the hydrocarbon based sources of energy provide more 

than 86 % of the energy demand in the world and the remaining 14 % are comprised by 

alternative energy sources4. Due to the growing concern of quick exhaustion of fossil 

fuels which are non-renewable resources, mankind has focused on alternative sources 

such as wind and biomass, as well as tidal, nuclear, and solar energy during the past 
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several decades. Among these so-called “green energy resources”, solar energy is the 

most abundant renewable energy source and that makes the artificial photosynthesis one 

of the potential methods to solve the energy problems. Solar CO2 reduction and H2 

production could play a great role in addressing the climate change problem caused by 

fossil fuel combustion, coupled with the exhaustion of fossil fuel reservoirs.  

In previous chapters, an overview of artificial photosynthesis has been presented. 

Artificial photosynthesis, mimicking the photosynthesis process in nature, can be 

summarized as a production of energy from sunlight, water and CO2. Photolysis of water 

into molecular oxygen and H+ by sunlight is one of the main processes in photosynthesis. 

The generated H+ can be used for the reduction of CO2 yielding organic compounds and 

the released oxygen can be utilized for burning fuels. The production of hydrogen and 

carbon neutral fuels through water splitting and CO2 reduction are the most studied 

reactions in artificial photosynthesis5. Molecular hydrogen and molecular oxygen can also 

react yielding water in a fuel cell, providing electrical energy with a higher efficiency 

than conventional electrical generators6. Synthesis of various organic molecules and 

polymers is another way to harvest and store solar light and hydrogen in form of chemical 

bonds7. Organic compounds are able to produce energy by releasing the stored hydrogen. 

Photoreforming of organic species is also an efficient artificial photosynthetic process. In 

this process, photo-generated electrons and holes which act as strong reductants and 

oxidants, participate in hydrogen production and oxidation reactions of the organic 

species, respectively8. 

Artificial photosynthesis seems to be able to move the world towards a green and 

sustainable energy path. Therefore, over the past few decades, the development of new 

photocatalysts suitable for water splitting and CO2 reduction has made tremendous 

progresses. The potential of these approaches are unquestionably large but they are still 

not applicable in industrial scale due to their low efficiencies. Not only a highly efficient 

photocatalyst is required to increase the efficiency, but also the irradiation source, 

penetration depth, and reactor geometry can strongly influence the process yield9. Despite 

a wide range of research over several decades on artificial photosynthesis, it is still 

limited to lab scale studies and only a few scientific papers have discussed the design of 

photoreactors for hydrogen production or CO2 reduction 10. An ideal photoreactor is 

supposed to be highly efficient in utilizing the incident light for photocatalytic reactions. 
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This factor gets even more important in large scale and industrial applications, as a wide 

range of technical challenges and cost related issues also appear11. 

For an optimal photoreactor design, various parameters in particular light harvesting, 

reaction path, charge carrier recombination, the reactive surface area of a photocatalyst, 

flow behavior and heat-mass transfer have to be investigated and optimized12. In order to 

have a predictable large scale photoreactor design, several challenges such as breakages, 

washouts, and dead zones should also be taken into account; considering that at larger 

scales, these problems become more severe as the inhomogeneity in the hydrodynamics 

increases13. In this chapter, reactors for artificial photosynthesis in liquid-solid 

(semiconductor) heterogeneous systems will be discussed. 

2.3. Photoreactors for Heterogeneous Reactions 

Artificial photosynthesis can be performed through photoelectrochemical (PEC), 

photovoltaic electrolysis (PV-E) and photocatalytic methods. According to Sayama et 

al
14

., PV-assisted electrolysis is the most efficient system compared to the other two 

methods. However, it is also the most complex method, while the photocatalytic system is 

considered to be the simplest one. Therefore, this chapter focuses on heterogeneous 

photocatalytic systems for water splitting and carbon dioxide reduction in artificial 

photosynthesis. 

The design of a reactor in which photocatalytic reactions take place plays a crucial role in 

photocatalytic processes. Reactors for photocatalytic applications are basically 

conventional catalytic reactors which are modified in terms of mass transfer and photon 

transfer and which are considered for industrial integration15. In a photocatalytic reactor, 

the number of active sites on the photocatalyst surface, and the appropriate wavelength of 

the emitted photons are also factors which need to be considered16. Furthermore, the 

efficient and homogenous light distribution inside the reactor is a vital aspect in 

photoreactor design which is not taken into account when designing and optimizing 

conventional reactors (thermal or thermal-catalytic). Therefore, irradiation sources and 

their features such as the photonic output power, spectral distribution, shape, dimension, 

operating and maintenance requirements are of great importance. Moreover, the rector 

geometry should be designed based on the source of irradiation and its entrance path into 

the reactor, whether through mirrors, reflectors, or windows. The mode of operation, 
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construction materials, and cleaning procedures of these devices should also be 

considered17. Photocatalytic reactors for CO2 reduction and H2 production can be 

classified based on their design characteristics including: mode of operation (batch, semi-

batch or continuous), state of the photocatalyst (slurry or immobilized), and type of 

illumination (artificial UV and/or visible light source or solar light)16. 

2.4. Reactors based on Mode of Operation 

2.4.1. Batch Reactors 

The most popular photoreactors for hydrogen production and CO2 reduction are batch 

type reactors. Generally, batch reactors are operated for homogeneous liquid systems and 

heterogeneous liquid-solid systems in which isothermal conditions are required. In batch 

reactors, due to the suitable mixing ability, uniform chemical and thermal profiles can be 

achieved leading to a high degree of conversion. Batch photoreactors, are simple reactors 

which are only suitable for laboratory set-ups and small-scale or short-term 

productions18,19. In batch reactors, first all the reactants are inserted. Then the process will 

start and proceed for a certain period of time. After a given time the educts have been 

reacted, therefore the process is finished and the whole mixture of catalyst, solvent and 

products are completely removed from the reactor. Figure 2.1 shows the scheme of a 

typical batch type photoreactor. 

 

 

Figure 2.1. Schematic of a typical lab-scale batch-type photoreactor  
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In such a reactor, a magnetic stirrer is usually used to mix the reaction slurry. For keeping 

the temperature constant, water is circulated around the tank. In this case, the light is 

emitted from an artificial source through the quartz window of the reactor. 

In case of introducing the reactants gradually to the reactor or discharging the product 

progressively, the reactor is operated in a semi-batch mode. This type of operation 

enables the temperature control by a gradual addition or removal of one of the reaction 

components.  

2.4.2. Continuous Reactors 

Continuous reactors could be divided into two categories; namely, plug flow reactors and 

mixed flow reactors. In the following, these types of reactors are explained in details. 

2.4.2.1. Plug Flow Reactors 

In a plug flow reactor shown in Figure 2.2, the fluid is continuously added to the reactor 

and moves with a uniform velocity along the reactor. Therefore, the concentrations of the 

reactants and products are functions of distance and will change by further movement 

through the reactor. Due to the ideal mixing in the radial dimension, a uniform 

concentration is obtained at the cross section of the reactor19. The continuous operation 

and production of products inside this type of reactor makes it a good candidate for large 

scale applications. Owing to an appropriate heat transfer, it can be applied for both 

homogeneous and heterogeneous reactions at high temperatures. Although, in most cases, 

the photochemical reactors do not reach high temperatures, it is important to consider the 

temperature dependence of the reaction kinetics17. 

 

 

Figure 2.2. Schematic of a typical lab-scale plug flow photoreactor 
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2.4.2.2. Continuous Stirred-Tank Reactor (CSTR) 

This type of reactor is the most common one in industrial processing. The CSTR reactor 

is a mixed flow reactor in which uniform composition and temperatures throughout the 

reactor and the outlet stream are achieved. Hence, the concentration and temperature 

gradients are zero inside the reactor and a uniform reaction rate prevails at whole reactor 

tank. This reactor is usually operated at steady state conditions for heterogeneous systems 

in which the mixing process is the crucial aspect of improving mass and heat transfer19,20. 

2.5. Reactors based on State of the Photocatalyst 

Besides the mode of operation, photocatalytic reactors can also be categorized based on 

the state of the photocatalyst.  

2.5.1. Slurry Reactors 

In slurry reactors, the catalyst particles are dispersed in liquid phase with a proper mixing 

system resulting in a uniform mixture16. The most popular photocatalytic reactors for 

heterogeneous systems are slurry photoreactors21. In this type of reactor, the quantum 

efficiency of the catalyst, the absorption properties of the catalyst and the reactants and 

the light intensity determine the reaction rate22. In a slurry system, the entire external 

illumination surface is used for the reaction. It also has the benefit of high catalyst loading 

and simple structure design22. 

Due to their large available surface area, slurry systems were found to have higher 

photocatalytic efficiencies compared to immobilized photocatalytic reactors23. In addition 

to the high surface area to reactor volume ratio in slurry photoreactors, good mixing and 

uniform particle distribution, low pressure drop through the reactor, low probability of 

fouling effect and suitable mass transfer in the photoreactor can be mentioned as other 

advantages of slurry photoreactors. However, the major drawback of these types of 

reactors is the additional treatment step required to separate the photocatalyst from the 

suspension which is rather time and energy consuming. Another limitation of slurry 

photoreactors is that the suspended particles in the photoreactor strongly affect the light 

scattering and the adsorption capacity inside the reactor16,24. 
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2.5.2. Immobilized Reactors 

The immobilized-catalyst reactor design features a catalyst fixed on a support or coated 

on the reactor wall through a physical or chemical process. Photocatalytic reactors with 

an immobilized photocatalyst have the advantage that no extra catalyst regeneration and 

separation processes are required. Therefore, they can be continuously operated. 

However, limited mass transfer, low ratios of surface area to volume, considerable 

pressure drop throughout the reactor and the problems regarding the catalyst wash out can 

negatively affect the performance16. 

2.6. Reactors Based on the Light Source 

Conversion of light to chemical energy can be performed through different methods 

including CO2 reduction, water splitting, reformation or production of organic 

compounds. All these processes aim to imitate natural photosynthesis to generate energy. 

In case of applying artificial light, energy production can be accomplished by conversion 

of fossil fuels energy through thermodynamic processes to mechanical energy, followed 

by conversion to electricity by dynamo-electric processes25. The produced electrical 

energy can be utilized by an artificial light source to be converted to photonic energy. The 

electrical energy can also be obtained from mechanical energy of wind or tide or directly 

from solar energy by energy conversion in a photovoltaic system. However, considering 

the current performance of photocatalytically active semiconductors and the resulting low 

efficiency of the available photocatalytic water splitting or CO2 reduction processes, 

conversion of electrical energy into photonic energy by applying artificial light sources 

are not economically feasible. Therefore, due to the abundance of sunlight, employing 

direct solar energy could formulate photocatalytic fuel production as an efficient and 

economical method. In case of reformation of organic compounds, the conversion of 

electricity to photonic energy process could be reasonable.  

2.6.1. Solar Irradiation  

Solar energy is the preferable energy provider for artificial photosynthesis, considering 

the fact that sunlight is not only environmentally friendly but also economically 

beneficial. The sun delivers a power of 1.365 kW m-2 at the top of the earth's 

atmosphere26. Solar energy must be effectively collected, converted and stored as an 

alternative fuel in order to solve the issue of energy shortage. This energy can be 
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harvested and utilized in different forms such as electrical energy, thermal energy and 

chemical energy. Moreover, this clean energy can be applied in terms of water or 

wastewater treatment27. 

According to ASTM G173-03 reference spectra for global tilt irradiation28, the total 

number of photons as a function of wavelength has been calculated and is shown in 

Figure 2.3. The tilt irradiation contains a direct solar spectral radiation, sky diffused and 

diffused reflected from the ground on south facing surface tilted 37° from horizontal. In 

real applications, the efficiency value is very low. Therefore, the number of practicable 

photons for different solar to hydrogen conversion efficiencies (ƞ) is also shown in 

Figure 2.3. It is worth considering that most photocatalysts are only able to absorb UV 

light (λ < 400 nm) which is 5 % of the sunlight and the visible part of the sunlight cannot 

be utilized29.  
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Figure 2.3. Photon number of ASTM G173-03as a function of the wavelength 

 

2.6.1.1. Solar Photocatalytic Reactors 

To achieve a successful industrial scale photoreactor, efficiency and economic 

possibilities of artificial photosynthetic processes need to be considered. In most of the 

studies artificial light sources are applied for CO2 reduction and H2 production30–32. 

Utilizing artificial illumination for generating electron hole pairs increases the unit energy 

cost dramatically and makes the term “renewable energy” not reasonable. Therefore, 
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artificial-light based photosynthetic methods are not economically beneficial in terms of 

energy shortage. Due to high expenses of artificial light, it is important to assess solar 

radiation as a light source and develop systems that are able to reduce CO2 and produce 

H2 upon solar irradiation. By applying solar light, the energy required for artificial 

illumination is omitted. However, utilizing sun irradiation requires collectors and 

facilities for improving solar usage and concentrating the solar irradiation which could 

still be costly. Hence, improving the efficiency of energy generation from the solar 

irradiation needs to be advanced to reach an acceptable energy unit cost. Solar reactors 

can be categorized in two different systems regarding their ability to collect the solar 

irradiation; these two categories are concentrating and non-concentrating systems.  

Non-concentrating systems are simple, static and non-tracking solar collectors which 

utilize the direct and diffused solar energy with low efficiency. In this type of collectors, 

the solar energy collector and the absorber are the same and the system directly absorbs 

incident light on the surface33. Therefore, the non-concentrating systems are usually large 

and require a huge area. 

Despite the simplicity and low cost of the non-concentrating systems, they typically have 

a laminar flow regime, resulting in mass transfer limitations34. To improve the efficiency 

of photoreactors and to address the optical problems of non-concentrating solar collector 

systems, a light concentrating system with increased UV reflectivity can be developed35. 

Since the diffused UV light is only half of the incident UV light and the other half 

reaching the earth is direct radiation, by developing the light concentrating system, the 

direct rays of UV light can be employed. Therefore, providing high reflectivity in the UV 

spectrum, for example, by applying aluminum mirrors, leads to a more effective 

utilization of the UV range of the solar spectrum.  

In concentrating systems, reflective surfaces are used to concentrate the solar irradiation 

with the help of a tracking system to collect the direct radiation. Light concentrating 

systems are able to harvest and concentrate the solar light by reflection through a smaller 

surface area in comparison with non-concentrating systems. This enables the designer to 

build a reactor which can be operated at high pressure and flow rates without considerable 

effects on the overall costs24. 
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However, due to the reflective surfaces in concentrating systems, optical losses are larger 

than in non-concentrating systems. Another disadvantage of concentrating systems is 

their inability to operate under cloudy conditions; while non-concentrating systems could 

utilize the scattered diffused solar UV light in the environment which reaches up to 50 % 

of the total available UV light. Moreover, the efficiency of the photocatalytic processes in 

concentrating systems is lower than that of non-concentrating systems due to the higher 

UV energy flux density24.  

2.6.1.2.  Examples of Solar Reactors 

In this section, some examples of the solar photoreactors for CO2 reduction and hydrogen 

production are presented. 

2.6.1.2.1. Compound Parabolic Concentrator 

Compound parabolic concentrators (CPC) provide two connected parabolic mirrors added 

up to a reflective surface with an absorber tube in the focus, granting the most proficient 

light-harvesting optics for the systems (shown in Figure 2.4). In a CPC structure, 

adjusting the perpendicular position of the collector aperture plane to the incident sun 

rays, results in maximum reflection and concentration of sun light on the absorber tube24. 

In CPC systems absorber tubes with different configurations can be utilized such as 

tabular, flat, fin and inverted vee (shown in Figure 2.5)36. Due to the geometry of fin or 

tubular absorbers, all sides are illuminated. Therefore, compared to other kinds of 

absorbers, fewer amounts of the absorber materials are required which in turn results in 

less material costs. Moreover, due to the enhancement in transient response, the 

conductive losses to the back are decreased. The small back losses for these 

configurations can recompense their higher optical losses37.  

 

Figure 2.4. Geometric profile of a compound parabolic collecting reactor24. Reprinted from Ref 24 
Copyright (2000), with permission from Elsevier 
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Figure 2.5. CPC configurations with different absorbers: a) Inverted-vee, b) Tubular, c) Flat, and d) Fin 

 

Beside the simplicity, user friendliness and low capital costs, the CPC concentrator is able 

to gather almost all the UV light (direct and diffused) arriving at the collector from any 

direction and reflect it to the tubular reactor38. Hence, nearly every point in the tubular 

reactor is illuminated and almost one sun photoreactor (concentration ratio=1) is 

provided34. This collector is the most efficient one among other collectors39. Moreover, 

the superior performance of the system is also due to the turbulent regime inside the 

reactor which overcomes the mass transfer limitations and provides a sufficient mixing. 

CPC designs have also some disadvantages such as troubles in handling, big aperture due 

to the strong raise of height and a low optical efficiency resulting from the loss of a 

considerable fraction of the incoming radiation due to multiple reflections36. These 

collectors are commonly investigated at pilot plant scales40–44. 

Jing et al. have developed a reactor with a CPC design for photocatalytic hydrogen 

production by direct solar light which is shown in Figure 2.6 45. Since the suspension of 

the catalyst particles affects the light absorption, for the capture of maximum sunlight 

energy, the CPC reactor was coupled with an inner-circulated reactor and the aperture of 

d c 

a b 
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the CPC was placed perpendicular to the incident light. The set up consisted of a constant 

stirring tank, a re-circulation pump and a solar collector which was composed of four 

CPC modules placed in series and oriented at an angle from the horizontal equal to the 

local latitude for optimal solar photon collection over the course of the entire year. The 

plant was designed for an operation in a batch mode40. It should be noted that in 

heterogeneous systems, it is of high importance to keep the slurry uniform. Non-uniform 

slurry leads to non-uniform residence times which results in lower efficiencies. Moreover, 

a uniform slurry harvests the incident light more efficiently and avoids a loss of incoming 

light without intercepting with the particles in the slurry45. Therefore, an appropriate 

mixing system is necessary to prevent the photocatalyst particles from sedimentation and 

to provide turbulent flow inside the reactor34. The maximum hydrogen production rate of 

the system under optimum conditions with a CdS photocatalyst was reported to be 1.88 L 

h-1. The apparent energy conversion efficiency was obtained to be 0.47 % by having the 

formation rate of hydrogen, the Gibbs free energy of formed hydrogen, intensity of 

incident radiation and the radiation area by following equation:40 

dL	 = efghi jghklm × 100	%                                                                                                  (2.1) 

 

 

Figure 2.6. Direct solar photocatalytic hydrogen production reactor 45. Reprinted from Ref 45 Copyright 
(2010), with permission from Elsevier 

 

A CPC was also designed and studied by Wei et al. for solar photocatalytic hydrogen 

production44. They have investigated the important parameters influencing the CPC 

performance such as the reactor direction, the acceptance angle and the absorber tube 
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diameter. The pilot scale unit consisted of four rows (Figure 2.7). Each row had 19 single 

axis tracking truncated CPCs with a concentration ratio of 4.22 which were oriented in a 

specific angle. The unit had four different receiving angles with inclinations being 25°, 

35°, 45° and 55° due to the different positions of the sun during the year. Furthermore, in 

order to decrease the costs, usually the system was running under a natural circulation 

mode, with the buoyancy effect from the tower (shown in Figure 2.7.b). In this study 

NiSCdxZn1-xS was applied as a photocatalyst. According to the reported results the 

average value of produced hydrogen for the horizontal row with an angle of 25° in a 

typical summer day with the sun shining from 10:00 to 16:00 was 7.14 L h-1 and the 

conversion efficiency defined based on the received optical spectral energy was 

0.087 %44. 

 

  

 

Figure 2.7. a) The outdoor photoreactor with un truncated CPCs for photocatalytic hydrogen production, b) 
The outdoor layout of the designed system44. Reprinted from Ref 44 Copyright (2017), with permission 

from Elsevier 

 

2.6.1.2.2. A Solar Concentrator for Carbon Dioxide Reduction 

With the concept of energy production, continuous circular photoreactors were developed 

for photocatalytic CO2 reduction by Nguyen et al.
46. The photocatalyst applied in the 

proposed photoreactor was metal doped TiO2 sensitized with a ruthenium dye (RuII(2,2'-

bipyridyl-4,4'-dicarboxylate)2-(NCS)2 (N3 dye). In this study, a continuous circular 

photoreactor was designed as a pyrex glass reactor with a quartz window through which 

a) b) 
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the light irradiation could penetrate along the fibers in order to improve the light 

distribution. The optical fibers were coated with the named catalyst. The full absorption 

of visible light by N3-dye facilitated the photocatalytic reaction on the surface of the 

catalyst. The reactor was placed under natural sunlight. For an effective harvesting of the 

natural solar light, a solar concentrator was applied as shown in Figure 2.8. The 

reflection dish of the solar concentrator tracked the daily movement of the sun. The 

photocatalytic reaction could be carried out by sending out the collected sunlight through 

an optical cable and focusing it at the photoreactor window. To keep the reaction 

temperature in a constant state, a heating tape connected to a temperature controller was 

applied. The production rate of methane over N3-dye-Cu (0.5 wt%) – Fe (0.5 wt%) / TiO2 

catalyst coated on optical fiber measured under the sunlight was about 0.617 µmol g-1 h-1.  

 

 

Figure 2.8. The solar concentrator employed by Nguyen et al.46. Reprinted from Ref 46 Copyright (2008), 
with permission from Elsevier 

 

2.6.1.2.3. Single Bed Colloidal Suspension Reactor 

Single bed colloidal suspension reactors are massive continuous bags (baggies) filled with 

a photocatalytic suspension. These reactors are basically simple plastic bags with a 

transparent polyethylene (HDPE) film covered on the top. This layer transmits the solar 

radiation to the reactor slurry and provides a proper sealing to gather the gas products 

(Figure 2.9). The main advantage of these reactors is their low technology and low cost. 

However, due to their horizontal direction rather than being aimed towards the sun, the 

amount of produced hydrogen varies a lot during winter and summer. In these 
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photoreactors, the optical density of the photocatalytic slurry and the reactor depth are of 

high importance in absorption and utilization of incident solar photons. At a sufficiently 

high concentration of the particles, most of incoming photons will be absorbed in the 

upper layers of the bed, preventing the loss of photons due to the light transmition out of 

the reactor and it's penetration to the bottom of the bed47. 

Figure 2.9. End and top views of the baggie configuration47 

 

2.6.1.2.4. Other Solar Reactors 

Some of solar wastewater treatment systems are potential options for application in 

artificial photosynthesis. These two processes have a similar procedure from some points 

of view. For example in both cases the desired redox reactions are achieved under the 

contribution of the photocatalysts and solar light in reactors with desired mixing to 

overcome the mass transfer limitations. Nevertheless, there are some differences between 

solar photocatalytic water treatment and artificial photosynthesis reactors. The first 

obvious distinction is the necessity of the presence of molecular oxygen in photocatalytic 

water detoxification processes, while photocatalytic hydrogen production or CO2 

reduction should be performed in anaerobic conditions. Moreover, these two kinds of 

reactors are also different in separation procedures. In water treatment processes, the 

photocatalyst needs to be regenerated by one of post processing methods such as filtration 

or sedimentation. However, for example in case of hydrogen production, the separation of 

catalyst is not of high importance since water is the raw material in this process44. 

A proper sealing could be one of the most important modifications in wastewater 

treatment that should be considered and applied in practical systems in order to modify 

them to be utilized for artificial photosynthesis. For that matter, air-tight photoreactors are 

required to prevent the reaction of oxygen with reactants and also to avoid losses of gas 

compounds. In the following part, some types of wastewater photoreactors which have a 

potential to be applied in artificial photosynthesis will be introduced.  
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Parabolic Trough Reactors (PTR)  

A parabolic trough reactor is a concentrating solar unit which consists of a tubular reactor 

and a reflector with parabolic profile and can be utilized for heterogeneous artificial 

photosynthesis. This reactor needs a sun-tracking system in order to ensure the maximum 

light capturing. Therefore the aperture is always perpendicular to the sun36. In parabolic 

trough reactors, only direct radiation can be focused into the reactor24. The concentrated 

solar light in this reactor is in the range of 5 to 50 times larger than non-concentrating 

systems48. The parabolic trough collector was applied for water treatment in large scale in 

USA for the first time49. The same facility was also developed by Plataforma Solar de 

Almerıa (PSA) research centre in Spain35. This kind of reactor is able to collect the direct 

sun radiations efficiently. Furthermore, gathering a large amount of solar energy in a 

small volume of the reactor provides a considerable amount of thermal energy at the same 

time34. 

Thin film fixed bed configuration 

The thin-film fixed-bed reactor (TFFBR) was developed from a rectangular glass plate 

coated with a thin UV transmissive glazing. This reactor gets illuminated from the top50. 

The most important advantages of this type of reactor are the high optical efficiency, the 

ability of employing direct and diffused portion of the solar light, their simplicity, and 

utilizing the entire solar UV irradiation51. Furthermore, no extra separation processes are 

required for these reactors and their sealed system makes them a good candidate for H2 

production or CO2 reduction, as all the gas will be kept inside16. Generally, TFFBRs 

function under a laminar flow regime, since increasing the flow rate provides a thicker 

liquid film resulting in the solar light penetration limitation for colored wastewater. This 

limitation is responsible for UV-A absorption. However, in artificial photosynthesis this 

issue cannot pose any limitations, since in most cases the liquid film is colorless. 

Therefore, the flow rate and the film thickness should be adjusted to the mass transfer in 

the liquid film and to the absorption of the liquid phase52. Moreover, increasing the fluid 

flow rate decreases the residence time inside the reactor which in turn leads to lower 

efficiencies53. 
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Double skin sheet reactor (DSSR) 

Double skin sheet reactor (DSSR) comprises a flat transparent box framework 

constructed from poly methyl methacrylate (PMMA) and is applicable for heterogeneous 

artificial photosynthesis. The slurry of dispersed photocatalyst is circulated by pump 

throughout the reactor channels. After the process period is completed the slurry can be 

taken out. In this reactor the direct and diffused radiation of solar light can be utilized54. 

This reactor has a simple structure and its almost sealed structure prevents the liquid 

vaporization and loss of evolved gases. 

2.6.1.3. Economic Analysis in Solar Photoreactors 

In 2013, a technical and economical study was carried out for solar hydrogen production 

considering different types of photoreactors (Figure 2.10)55. The first type of system 

consisted of the semiconductor (slurry) in a plastic bag that allowed light penetration 

while holding the aqueous electrolyte. The plastic bags were made of high density 

polyethylene (HDPE) with 90 % optical transmission and they were impermeable to 

hydrogen. The low cost of these bags made their large sized application possible (323 m 

long and 12.2 m wide). The second considered reactor type was similar to the first one, 

but included also a porous membrane running through the entire length of the bags to 

separate the produced O2 and H2. This system could be operated in a safer mode 

compared to the prior one, as the gas separation processes were not required anymore. 

The third type of reactor was a plastic frame which contained an electrolyte and two 

electrodes with several photoactive layers in between in order to enhance the solar light 

usage and to provide the requisite voltage to split water55. This system was placed on 

fixed supports inclined 35° with respect to the horizontal plane. The last reactor type 

(Figure 2.10.d) was basically a linear photoelectrochemical (PEC) cell receiver coupled 

with a parabolic cylinder reflector in order to concentrate the solar light on a PEC cell. 

This system was able to collect the sunlight by tracking the sun trajectory. The 

concentrator array had 6 m width and 3 m height. 

Additionally, cost calculations for hydrogen production have been done according to the 

U.S. Department of Energy H2A model for 10 tons per day production scale and 300 psi 

at the plant gate. All capital, auxiliaries and operation costs were also considered. Among 

the four studied reactor types, the lowest cost calculated for energy production belongs to 
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Based on a comparative techno-economic analysis of renewable hydrogen production 

using solar energy for a system with even more than 20 % efficiency, solar hydrogen 

production is not economical in comparison to fossil-fuel14. The available energy 

provided by electricity powered through nuclear plants as well as fossil fuel energy is 

rather preferred in the market, compared to the high-cost fuel produced from solar energy. 

In order to make the energy produced by CO2 reduction and hydrogen production, cost 

competitive with thermochemical processes, a number of complications such as mass 

transfer limitations, low catalyst efficiencies, and feedstock costs need to be overcome14.  

Some economical design aspects for a solar hydrogen production system have been 

studied by Rodriguez et al. 56. According to this study, since the catalytic components 

have relatively low costs, the most significant cost-effective factor in solar hydrogen 

production system was found to be the light absorbing component to which more than 95 

% of the total cost can be allocated. However, applying a light concentrator would save 

the costs of the huge area required to absorb the solar light. Therefore, to make solar 

hydrogen production commercially viable, they suggested decreasing the capital cost of 

the solar concentrator. If this capital cost value could reach to less than the cost savings 

from the required area for a given fuel production with a highly efficient material, then a 

cost effective system will be achieved.  

2.6.2. Artificial light Sources 

As previously mentioned, the energy generation through artificial photosynthesis is still 

limited to lab scale. Therefore, the required light and radiation field for photocatalyst 

activation is usually provided by artificial lamps. Most of the studies in this field are 

limited to investigations on different types of photoreactor designs operated with artificial 

light sources. Different artificial light sources such as solar simulator31, xenon lamp57, 

mercury lamp30, halogen lamp32, and LED lamps are used for photocatalytic energy 

production. In this section different lab scale photoreactors used for artificial 

photosynthesis are presented. 

2.6.2.1. Slurry Photoreactors with Artificial Light Sources 

Generally, the simple geometry and facile operation of slurry photoreactors leads to their 

extensive application in bench scale experiments. Typically, the shape of these reactors 
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provides a symmetric irradiation field inside the reactor making them more attractive for 

lab scale studies. 

Huang et al. have discussed photocatalytic hydrogen production from aqueous 

ammonium sulfite solutions with CdS based photocatalysts in a batch reactor. They also 

have determined  the rates of hydrogen generation as a function of parameters such as 

reaction temperature, concentration of ammonium sulfite, depth of photolyte, 

photocatalyst loading and window materials 11. One example for overall system set-up of 

batch-type photoreactor is reported by Chen et al.58. As shown in Figure 2.11, Xe lamp 

(λ > 400 nm) projected visible light onto the Pyrex reactor side surface and the UV source 

in the center of the reactor provided the UV irradiation. This system was evacuated with 

high-purity argon gas and the gas content was checked by a GC (Gas Chromatography)58.  

 

 

Figure 2.11. Schematics of batch-type photoreactor overall system set-up58. Reprinted with permission 

from Ref 58 Copyright (2011) American Chemical Society 

 

Due to the high expenses, applying magnetic stirring within a photoreactor is impractical 

in large-scale usages. Hence, a design with facile mixing of the flow within the 

photoreactor which provides a completely sealed reactor is desired. 
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Inoue et al. have discussed photocatalytic reduction of CO2 from aqueous solutions and 

formation of organic compounds in a slurry reactor irradiated with Xe lamp in the end of 

1970s 59. Afterwards, slurry photoreactors were used for reduction of CO2 in a wide range 

of research cases 60. The most common photocatalyst reported in the literature is TiO2 

which benefits from its high stability, low toxicity and low cost. However, it can absorb 

only 5% of sunlight29. An ideal photocatalytic process should be able to utilize the 

abundant available solar energy in an efficient way. Over the last decades, a large number 

of visible-light photocatalysts have been developed. In order to exploit the photocatalysts 

responsive to visible-light irradiation the modification of TiO2 or development of a new 

material can be suggested61. Lee et al. have applied a slurry batch photoreactor for 

utilizing visible light irradiation by developing light-harvesting complexes (LHCII) 

attached to the surface of Rh-doped TiO2 (TiO2:Rh)62. The LHCII is the light absorber in 

the plants which makes the photosynthesis process to convert CO2 to sugars possible. 

Attaching this complex to Rh-doped TiO2 enhanced the yields of acetaldehyde and 

methyl formate ten and four times, respectively. 

In order to mimic the natural photosynthesis process, a twin slurry photoreactor 

containing two separated reaction chambers for H2 production and O2 evolution was 

demonstrated by Lee et al.
63. In this reactor, as illustrated in Figure 2.12 the undesired 

reaction of water formation was prevented by placing a membrane between the two 

compartments and isolating the produced O2. Hence, the generated hydrogen was 

facilitated to CO2 reduction. For the water splitting combined with CO2 photoreduction 

reaction, two systems were compared. In the first system, Pt/CuAlGaO4 was applied as a 

photocatalyst for both H2 production and CO2 reduction. The dual photocatalyst system 

using Pt/SrTiO3:Rh for H2 evolution and Pt/CuAlGaO4 for CO2 reduction were also 

applied. The results showed that the quantum efficiency of CO2 reduction in dual system 

was two times larger than the single system. 
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Figure 2.12. Schematic diagram of the twin reactor system63. Reprinted from Ref 63 Copyright (2013), 

with permission from Elsevier 

 

Skillen et al. have designed and investigated a fluidized photoreactor for the production 

of H2 under UV–Visible and natural solar illumination over two photocatalysts, Pt-C3N4 

and NaTaO3.La64. As can be seen in Figure 2.13, inside this tubular reactor a propeller 

was placed at the bottom to provide suitable mixing of catalyst powder. According to this 

study, the rotational speed of the propeller affects the light penetration and the 

photocatalytic activity of the system by influencing the mass transfer between the catalyst 

and the solution. By starting the propeller, cavitations appear which result in fluidization 

of catalyst particles and increase of interaction between the catalyst surface and the 

reaction components. Increasing the propeller speed enhances the dispersion of particles 

in the solution and forces the aqueous reaction medium towards the wall of the unit. 

Therefore, the required depth penetration of photons to the catalyst surface decreases and 

maximum exposure of the aqueous medium to the 360° irradiation array is provided64. 

The maximum hydrogen production rate reported in this system was 89 µmol h-1 g-1 over 

Pt-C3N4 
64. Nevertheless, this design illustrated a limitation in practical applications 

resulted from the corrosion of the propeller. The propeller was constructed from stainless 

steel 316 which reacted with the sacrificial agent, oxalic acid, leading to the formation of 

Fe2+ ions on the propeller surface and consequently hydrogen evolution. The level of 

corrosion depends on the concentration of Fe2+ and carbon content in the steel65. The 

amount of produced hydrogen was proportional to the level of corrosion. By increase of 

corrosion, the amount of produced hydrogen was also increased until Fe2+ ion made a 

temporary protective barrier and stopped the hydrogen production. 
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Figure 2.13. Fluidized photo reactor under UV–Visible irradiation 64. Reprinted from Ref 64 

 

A number of slurry reactor designs reported in the literature are shown in Figure 2.14 

including the annular photoreactor 66, rotating reactor 67, spinning disc reactor 68, fluidized 

bed reactor 69 and falling film reactor 70. 
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Figure 2.14. Different slurry reactor designs. (a) annular reactor66 Reprinted from Ref 66 Copyright (2007), 

with permission from Elsevier, (b) rotating annular reactor67 Reprinted from Ref 67 Copyright (2010), with 

permission from Elsevier, (c) spinning disc reactor68 Reprinted from Ref 68 Copyright (2001), with 

permission from Elsevier, (d) fluidized bed reactor69 Reprinted from Ref 69 Copyright (2004), with 

permission from Elsevier, (e) falling film reactor70 Reprinted from Ref 70 Copyright (2002), with 

permission from Elsevier 

 

2.6.2.2. Immobilized Photoreactor with Artificial Light Source 

A continuous flow quartz-fixed-bed reactor was utilized for the photocatalytic reduction 

of CO2 over Cu/CdS-TiO2/SiO2 catalyst upon UV light irradiation with a 125 W ultrahigh 

pressure mercury lamp, as shown in Figure 2.15
71. The pressure of reaction system was 

kept at 1 atm, and the temperature was not higher than 473 K. Shi et al. have observed 

direct synthesis of acetone from CO2 and CH4 over this photocatalyst with 0.74% and 

1.47% conversion for CO2 and CH4, respectively.  
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Figure 2.15. Schematic representative of photocatalytic reaction system: (1) thermocouple; (2) gas outlet; 

(3) aluminum foil; (4) sieve plate; (5) heater; (6) graphite plate; (7) mercury lamp; (8) catalyst inlet; (9) 

quartz reactor; (10) catalyst bed; (11) gas inlet; (12) fan 71. Reprinted from Ref 71 Copyright (2004), with 

permission from Elsevier 

 

Optical fiber photoreactors are another example of an immobilized design in which the 

light distribution inside the photoreactor can be controlled. The uniform annular tubes 

with tiny inner diameters of optical fibers enable them to guide and manipulate the 

photons accurately. In these kinds of photoreactors, crystalline semiconductors such as 

silicon or titania are deposited on the wall of the long and narrow optical fibers. In this 

way, the semiconductors can control the electron transfer by splitting the light to two 

beams because of a different refraction index between the semiconductor and the quartz 

core (Figure 2.16) 72,73. A fraction of the light gets absorbed by the semiconductor and 

excites it, while the other part of the light is reflected and transmitted along the fiber and 

gradually spreads and diminishes to the end of the fiber. 

 

 

Figure 2.16. The schematic of light transmission and spread of a TiO2 coated-optical fiber72. Reprinted 

from Ref 72 Copyright (2005), with permission from Elsevier 
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The photocatalytic reduction of CO2 with H2O was demonstrated by Wu et al. using a 

steady-state optical fiber photoreactor with Cu/TiO2 catalyst. This photoreactor which had 

a diameter of 3.2 cm and was 16 cm long contained about 120 fibers with 16 cm long. A 

Hg lamp with a wavelength of 365 nm and adjustable light intensity between 1 and 16 

W/cm2 was utilized as an irradiation source for this reactor. Inside this reactor, the light 

distribution was nearly uniform and the maximum methanol yield was 0.46 mmole gcat
-1 

h-1 upon UV irradiation72. This optical fiber photoreactor is illustrated in Figure 2.17. 

 

 

Figure 2.17. A photo of optical fiber photoreactor72. Reprinted from Ref 72 Copyright (2005), with 

permission from Elsevier 

 

They have also designed and assembled an optical fiber photoreactor for CO2 reduction 

with water in which, 216 catalyst-coated fibers with 11cm length were used to distribute 

the light homogeneously over the catalysts surface74. Schematics of optical fiber 

photoreactor and the photo reaction system are illustrated in Figure 2.18. A continuous 

stream of CO2 was passed through the reactor under UV irradiation. The optical fibers 

were homogeneously coated with TiO2, Cu/TiO2 and Ag/TiO2 films. The maximum 

obtained methanol production yield was about 4.12 µmole gcat
-1 h-1. Reduction of CO2 

with water under UVA light was also studied using Cu-Fe/TiO2 as a catalyst on optical 

fibers75. Methane and ethylene were reported as main products with similar quantum 

yields of 0.025 % and 0.024 %, respectively. According to this study, under a constant 

photon flux, implying higher number of optical fibers in a photoreactor leads to a higher 
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production rate of ethylene and consequently a higher quantum yield. This is mainly due 

to the increased amount of employed catalyst in the photoreactor and more efficient 

utilization of the incoming light. Moreover, applying optical fibers coated with the 

catalyst showed one order of magnitude higher yield in comparison with the glass plate 

counterpart. These results confirmed that the optical fiber photoreactor can utilize the 

light efficiently and the problem of non-uniform light distribution and dark spots in the 

reactor can be solved.  

 

   

 

 

Figure 2.18. Schematics of a) optical-fiber, b) photo reaction system74. Reprinted from Ref 74 Copyright 

(2008), with permission from Springer Nature 

 

Besides the high efficient photon distribution to the accessible high surface area of the 

catalyst, optical fiber photoreactors have the advantage of higher processing capacities76. 

Coating the photocatalyst on a large external area of optical fibers provides the ability of 

increasing the process capacity in a given reactor75. 

b) 

a) 
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Despite the proper light distribution inside the reactor, the optical fiber reactor faces 

several challenges. The first drawback is the non-uniform deposition of the 

semiconductor on the optical fibers leading to detachment of deposition as a result of 

severe liquid flow. Moreover, mass transfer in this reactor is slow compared to the 

conventional reactors and the light propagation is short which can result in local 

deactivation of the catalyst77. 

To enhance the reaction yield of CO2 reduction, the irradiated surface of the catalyst 

should be maximized. Applying monolith structures as distributors in optical fibers has 

attracted a lot of attention due to their three-dimensional structures containing multiple 

channels78–81. Low pressure drop and excellent mass transfer for gas/liquid systems are 

counted as the advantages of these structures over optical fiber reactors. Joo et al. have 

coated a monolith surface with polyaniline nanofibers in order to convert glucose to 

glucolactone82. This reactor achieved a yield of 83 % with a residence time of 2.0 min.  

A monolith photoreactor has also been presented by Liou et al. as shown in Figure 2.19, 

applying NiO/InTaO4 as a photocatalyst dip coated on the SiO2 sub-layer. In this 

configuration, CO2 was reduced photocatalytically to methanol under visible-light 

irradiation in a steady-state operation mode. The maximum achieved methanol 

conversion rate was 0.16 mmol gcat
-1 h-1 83. The major advantage of this reactor compared 

to the commonly used ones was the lower loss of light leading to higher quantum 

efficiencies. 

 

 

Figure 2.19. Schematics and photo of the monolith reactor and illumination fibers83. Reproduced by 

permission of The Royal Society of Chemistry 
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Tahir and Amin have studied the performance of a montmorillonite (MMT)/TiO2 coated 

monolith photoreactor for photocatalytic CO2 reduction 81. The main products were CO, 

CH4, C2H4, C2H6, C3H6 and C3H8 and the highest reaction yield belonged to CH4 

production with 139 µmole gcat
-1 h-1. As can be seen in Figure 2.20, the illuminated 

surface area in monolith photoreactor was larger than that of cell type photoreactor with 

dispersed catalyst leading to higher adsorption of gaseous species. Therefore, the light 

distribution was enhanced and utilized more efficiently compared to the cell type 

photoreactor which resulted in higher yield rates in monolith photoreactor. Due to this 

high ratio of surface area to reactor volume, even at high flow rates only a very low 

pressure drop was observed. Furthermore, in the monolith photoreactor the configuration 

can be easily modified76.  

 

 

Figure 2.20. Schematic of experimental setup for photocatalytic CO2 reduction with H2O vapors: (a) 

monolith photoreactor and (b) cell type photoreactor81. Reprinted from Ref 81 Copyright (2013), with 

permission from Elsevier 

 

To scale-up artificial photosynthetic photoreactors, immobilized batch-type photocatalytic 

systems have been modified to circulated reactors84. A configuration of experimental 

setup is depicted in Figure 2.21, which is designed according to three main aspects: the 

a) b) 
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gas generation system, the photocatalytic reactor, and the sampling and analytic system. 

First of all, the system gets evacuated through hydrogen gas flow by the gas generation 

system. Afterwards, the diaphragm pump starts to circulate and inject the reaction gas 

which is a mixture of CO2 with H2 to the photocatalytic reactor section. In order to adjust 

the moisture content of the reaction gas, nitrogen or hydrogen are bubbled into deionized 

water and controlled by a hydrometer. The circulated reactors require to be designed in a 

way to ensure homogeneous distribution of gas flow inside the reactor and to shorten the 

reaction time12. In the circulated system developed by Lo et al. (Figure 2.22), 

immobilized pyrex glass pellets with anatase titanium dioxide powder or zirconium oxide 

powder were packed84. The whole system was placed under UV irradiation, and gas 

products were collected from a port in the photoreactor and analyzed by gas 

chromatography. According to the experimental results, TiO2 with H2+H2O and ZrO2 

with H2 showed the highest yield for CO2 photoreduction. 

 

 

Figure 2.21. Schematic of circulated photocatalytic reaction system84. Reprinted from Ref 84 Copyright 

(2007), with permission from Elsevier 
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Figure 2.22. Schematic of a packed-bed photocatalytic reactor used in circulated system84. Reprinted from 

Ref 84 Copyright (2007), with permission from Elsevier 

 

Recently, Noji et al. have developed a nanoporous glass reactor with a considerable 

photoreduction of CO2 to formic acid using a photosensitizer, methyl viologen (MV2+), 

and formate dehydrogenase (FDH)85. In this design, porous glass plates (PGPs) have been 

chosen as the platform for the photoreaction to immobilize the ternary redox components. 

These are transparent plates in visible-NIR region which have penetrating nanopores. A 

photoreaction system which is tightly immobilized inside the nanopores, could reach to 

superior reaction efficiencies compared to a homogeneous solution system. The overall 

efficiency of this reactor was reported to be 14 times higher than that of the equivalent 

solution and the formic acid accumulation rate in 50 nm nanopores was found to be 83 

times faster compared to an equivalent solution. Therefore, this reactor design was 

suggested as an efficient artificial photosynthesis system to convert CO2 to fuel. Relevant 

examples of immobilized reactors are illustrated in Table 2.1. 
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Table 2.1. Summary of immobilized photoreactors in the literature 

Reactor name Catalyst Support 

Flat plate reactor 86 Titanium dioxide Borosilicate glass 

Micro reactors 87 Titanium dioxide Silicon chips 

Optical fiber reactor 88 Titanium dioxide Optical fiber 

Carberry reactor 89 Titanium dioxide Sodium glass 

Carbon foam-based 90 Titanium dioxide Carbon foam 

 

2.7. Photocatalytic Reactor Design 

One of the essential factors required to design a reactor is the knowledge of reaction 

kinetics. Since light absorption is the activation and first step in photocatalytic reactions, 

radiation distribution in the reactor needs to be well known in order to derive the local 

reaction rate and reaction kinetics. By having the knowledge of reaction rate, similar to 

the conventional reactors, designing photoreactors requires solving the conservation 

equations of momentum, energy and mass on the system. Moreover, in photoreactors the 

irradiative energy balance is of high importance91. Therefore, for designing a 

photoreactor, all associated radiation source specifications should be considered. These 

include the photon flux, the spectrum, the geometrical properties of the lamp, the distance 

from reaction system and the radiation entrance system into the reactor17. All these 

parameters affect the radiation field inside the reactor. Furthermore, in suspended solid 

heterogeneous systems, the light gets scattered due to the solid particles in slurry which 

act as a photocatalyst. Depending on the photocatalys, the amount of scattered light varies 

between 13 % to 76 % of the incoming light92. Not only the absorption coefficients of the 

photocatalyst, but also the absorption coefficients of the substrates, and reactor 

geometries can affect the amount of scattered light. Consequently, the irradiation field 

cannot be described by the well-known Lambert–Beer equation and it should be described 

with the complete radiative transfer equation93.  

Radiation field can be expressed as an amount of irradiative energy per unit wavelength, 

per solid angle, per unit normal area, and per unit time. Therefore the radiation intensity 

for a given wavelength is defined as Equation 2.2
94 

+&(;, 4, /) = Xp#XmL`RqX,X&X                                                                                                (2.2) 
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where x is the position, Ω is direction, and t is time. 

Considering photons coming from different directions to one point inside the photoreactor 

over the entire spherical space, the incident radiation can be written as Equation 2.3 

r& = C C C +&(;, s, t, /)uhuvqhqv sin s ztzs&h&v                                                                      (2.3) 

The energy due to the photon flux absorbed by each point in the reactor considering the 

direction, spatial, and spectral characterization can be calculated from the photon 

transport equation. Through this equation, the local volumetric rate of photon absorption 

(LVRPA) at any position of the system can be determined91. The LVREA is defined 

based on the radiation field inside the reactor which is not uniform due to the different 

light absorptions by present spices, physical and geometrical characteristics of the 

irradiation source. This term is defined as Equation 2.4. 

%&'(;, /) = C C C :&	(;, /)+&(;, s, t, /) sin s	zsztz{qhqvuhuv&h&v                                           (2.4) 

which is a function of position (x), time (t), wavelength (λ), direction (φ) and angle (θ).  

The radiation transfer equation (RTE) is the balance between  incident intensity and the 

rate of photon absorption, emission, in-scattered and out-scattered per unit time, unit 

volume, unit solid angle, and unit frequency interval (Equation 2.5, Figure 2.23)17. 

1) *+,,.*/ + ∇. 3+,,.45 = 

                          −7,,.'\R`!Z [`W + 7,,."|[RR[`W + 7,,.RL'  "![W}8[W − 7,,.RL'  "![W}8`~       (2.5) 

in which, +,,. is the incident intensity with direction Ω and frequency v. As the radiation 

field reaches the steady state almost instantaneously the first term on the left can be 

neglected. Depending on the system, some of the mentioned phenomena can be neglected 

as well. For example, scattering plays a significant role in heterogeneous solid-fluid or 

gas-liquid systems, however in homogenous systems it is approximately zero. Emission 

can also be negligible in the reactors. This is mainly because of the dependency of 

emission to temperature. Therefore, it is only important at high temperatures and as the 

photocatalytic reactions normally proceed at relatively low temperatures, this term can be 

assumed to be zero.  
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Figure 2.23. schematic representation of the absorption, emission and scattering phenomena in radiation 

transport for the wavelength λ. (1) incident intensity along s with direction Ω, (2) emission of radiation in 

the direction Ω, (3) intensity in a representative, arbitrary direction Ω′ to be scattered in the direction Ω, (4) 

absorbed intensity in the direction Ω, (5) scattered intensity in a representative, arbitrary direction Ω″ out of 

the direction Ω, and (6) emerging intensity along s in the direction Ω, after losses by absorption and out-

scattering and gains by emission and in-scattering17,95. Reprinted with permission from Ref 95 Copyright 

(1995) American Chemical Society and from Ref 17 Copyright (1998), with permission from Elsevier 

 

All the mentioned phenomena can be expressed by constitutive equations. Therefore, 

assuming to have an independent, multiple and elastic scattering93, the radiation transfer 

equation can be written as Equation 2.6: 

XN#(�,,)X� = −(:& + ?&)+&(;, �) + �&"(;, �) + �#ABC +&3;, �G 5	�AB� 	3�G → �5��G                (2.6)  

in which +&(;, �) is the spectral radiation intensity, λ, x and Ω represent the wavelength, 

position, and the solid angle, respectively. kλ is the absorption coefficient, σλ is the 

scattering coefficient and je
λ is the spontaneous emission by a body. p (�G → �) is the 

phase function describing the directional distribution of scattered radiation94,96. According 

to the presented equation, scattering and absorption are of considerable importance in 

radiative energy balance. The first term on the right represents the fraction of the 

extinction of incident radiation that is absorbed and scattered in all directions and 
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frequencies by the matter per unit length along the path of the beam, per unit time, per 

unit volume, per unit solid angle of incidence and per unit frequency. The last term on the 

right expresses the received energy in scattering phenomenon from all directions (�′) 

along the direction	�. The incoming photons can be scattered inside the reactor in all 

directions according to the phase function. Generally the phase function can be given as 

the following expression(Equation 2.7)97  

D(4) = ∑ �W�W�W�� (4), �� = 1		                                                                                   (2.7) 

in which, �W(�) presents the Legendre polynomials of order n and � and �W expresses the 

corresponding expansion coefficients. Choosing a suitable phase function model to 

represent scattering inside the reactor is a big challenge in solving the radiative equation. 

Assuming to have an isotropic scattering, simplifies the phase function to a unit value. 

However, the complicated model functions are normally the main reason of complexity in 

solving the radiative equation. The scattering model frequently described is the linear 

anisotropic model (Equation 2.8): 

D(s) = 1 + �� 	cos(s)                                                                                                   (2.8) 

with ao = 1, 0, −1 for forward, isotropic and backward scattering, respectively98.  

The complete radiative transfer equation should be solved considering the optical 

properties of the photocatalytic suspension and the boundaries conditions.  

The obtained radiative transfer equation enables the calculation of the local value of the 

radiation absorption rate. In solar systems, the boundary conditions can be obtained by 

determining the radiation flux on the reactor window. This evaluation should be done 

considering the geometry and variations of the light during the day and throughout the 

year. 

2.8. Conclusions 

This chapter has provided an overview of photoreactors for artificial photosynthesis in 

liquid-solid heterogeneous systems. Photocatalytic technologies for artificial 

photosynthesis applications, employing either artificial or solar light, should be 

developed. Scaling up the designed solar hydrogen production and CO2 reduction systems 

is of high importance. However, due to the low efficiency of these systems, the expenses 

of existing technologies do not allow the real application of artificial photosynthesis 
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based on semiconductor systems. Thus, essential advances in both solar-to-hydrogen 

conversion efficiency values and charges are required99. 
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3. A Method to Compare the Activities of Semiconductor 

Photocatalysts in Liquid-Solid Systems 

3.1.  Foreword 

Scattering is the main reason for the majority of the complexities associated with the 

analysis and design of suitable photoreactors for heterogeneous photocatalysis. This 

phenomenon is also responsible for the difficulties of the usual methods used to 

investigate the photocatalytic activity of semiconductors. Therefore, solving this obstacle 

in the photoreactor design requires the knowledge and thus the determination of absolute 

values of the quantum yield of photocatalytic processes employing semiconductor 

particles. As outlined in Chapter 1, in a black body reactor it can be assumed that all the 

incoming light is absorbed by the photocatalyst particles and that the fractions of reflected 

and transmitted light are insignificant due to the reactor geometry and the high optical 

density of the heterogeneous system. Therefore, considering the properties of a black 

body photoreactor, the scattering phenomenon in such a reactor can be neglected. 

Consequently, the regarding problems of scattering in photoreactors for the calculations 

related to the volume-averaged quantum yield can be solved as shown in this chapter.  

This chapter contains the article A Method to compare the activities of semiconductor 

photocatalysts in liquid-solid systems by Lena Megatif, Ralf Dillert, and Detlef W. 

Bahnemann, published in ChemPhotoChem 2018, 2, 948 –951. Herein, a standard method 

for the comparison of the intrinsic photocatalytic activity of various materials in liquid-

solid heterogeneous systems has been developed. The experimental application of the 

concept of a “black body” like reactor provides a simple method to measure the reaction 

rate as well as the respective quantum yield of photocatalytic reactions in heterogeneous 

liquid-solid systems without dealing with difficulties of the quantification of the amount 

of absorbed photons. Hence, the developed method presented in this paper plays a 

significant role in simplifying the photoreactor design through the calculation of the local 

reaction rate inside the photoreactor using the volume-averaged value of the quantum 

yield. 
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3.2. Abstract 

A method to determine the activity of semiconducting photocatalysts in liquid–solid 

systems is suggested employing a black body photoreactor. The reaction rates, defined as 

the converted amount of the probe molecule per unit time (dn/dt), in the presence of nine 

different photocatalysts, were found to be constant and not affected by the initial 

concentration of the probe compound dichloroacetic acid (C0), the mass concentration of 

the photocatalyst (γ), and the suspension volume (when C0 and γ are larger than 5 mM 

and 1 g L-1, respectively). The method presented here thus seems to be generally 

applicable to obtain experimental data allowing the comparison of the photocatalytic 

activities of different semiconductors. 

3.3. Keywords 

Photocatalysis, semiconductors, kinetics, black body photoreactor, liquid-solid system. 

3.4. Manuscript 

Semiconductor photocatalysis is considered to be one of the most effective techniques to 

harvest solar light for environmental remediation and to produce solar fuels1-5. 

Consequently, synthesis of new semiconductors designed for photocatalytic applications 

has attracted considerable attention6-9. Despite the progress in the development of 

photocatalysts, a standard method to compare the photocatalytic activities of different 

photocatalysts in liquid-solid heterogeneous systems has still not been established. 

Recently, Kisch and Bahnemann recommended in a very general way to compare the 

activities of photocatalysts in solid/liquid systems by measuring the reaction rates of a 

probe compound with the same type of photoreactor under identical irradiation 

conditions10. Although, the necessity of reaction rate measurements at an optimal catalyst 

concentration was mentioned, no discussion about the reaction rate unit, the suspension 

volume, and the effect of the initial concentration of the probe molecule was provided. 

The kinetics of a photocatalytic reaction is in most cases given by a rate law having the 

mathematical form. 

dc/dt = kKc/(1+Kc)                                                 (3.1)  
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where c is the molar concentration of the probe compound. The kinetic parameters k and 

K are the maximum reaction rate accessible under the given experimental conditions and 

a physical parameter which is usually attributed to be the adsorption constant, 

respectively11,12. In nearly all cases the comparative evaluation of the activities of 

photocatalysts is performed under experimental conditions where Kc << 1 holds. 

Consequently, the change of concentration of the probe molecule during irradiation 

follows an apparent first-order rate law, dc/dt = kKc = kappc. The analysis of published 

results reveals that the apparent first-order rate constant kapp is usually not independent 

from the concentration of the probe molecule thus indicating complex interactions 

between the photocatalyst surface and the probe molecule13-15. Therefore, the reaction rate 

dc/dt determined under the condition of apparent first-order kinetics seems not to be 

suitable as a measure to compare the activities of different photocatalysts.  

It was also not discussed in the paper of Kisch and Bahnemann that in the usual 

experimental procedure, in which the suspensions are irradiated through a window in the 

outer wall of the photoreactor from an external light source, the measured reaction rates 

also depend on the scattering properties of the photocatalyst16-20. The portion of photons 

that is not absorbed by the semiconductor but is scattered out of the reactor may be 

different for the photocatalysts to be compared. Measurements in which light losses occur 

due to the optical properties of the photocatalysts, which are cumbersome to quantify 

experimentally, permit only very limited statements concerning their activities. 

To ensure the comparability of the results of different laboratories, a method to determine 

photocatalytic activities in liquid-solid systems with a given probe compound at defined 

wavelength and photon flux should fulfill at least five conditions. (i) The reaction rates 

should not be affected by the scattering of photons out of the photoreactor. Additionally, 

the rates should be independent of (ii) the geometry of the photoreactor, (iii) the 

suspension volume, (iv) the concentration of the probe compound, and (v) the mass 

concentration of the photocatalyst. It can be shown that the conditions (i), (ii), and (iii) are 

fulfilled within the limits of experimental error when a black body photoreactor is 

employed as introduced by Emeline et al.21. In a black body reactor, the fractions of 

reflected and transmitted light are approximately zero due to the reactor geometry and the 

high optical density of the heterogeneous system. For this type of photoreactor, it can be 

assumed that all photons of suitable wavelengths emitted by the light source and entering 

the suspension are absorbed by the photocatalyst. Therefore, the reaction rate defined on 
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an amount basis (dn/dt) can be easily measured and compared for different systems. From 

the rate law of a photocatalytic reaction given above (Equation 3.1) it is readily deduced 

that the rate at a given mass concentration of the photocatalyst becomes independent from 

the concentration of the probe molecule provided that this concentration is sufficiently 

large (Kc >> 1) 22. The determination of reaction rates under this condition of apparent 

zero order kinetics therefore provides values (dn/dt = Vdc/dt = Vk) being constant over a 

wide range of concentrations of the probe compound, thus fulfilling condition (iv). 

Moreover, at sufficiently high photocatalyst concentration, the number of photons 

absorbed by the photocatalyst per unit time remains constant resulting in a reaction rate 

being independent from the mass concentration of the photocatalyst, thus fulfilling 

condition (v)10,23,24. 

In this study the effect of the initial concentration c0 of the probe molecule, the mass 

concentration γ of the heterogeneous photocatalyst, and the suspension volume V on the 

rate of the photocatalytic degradation of dichloroacetic acid (DCA) have been 

investigated. The rates were measured employing a black body photoreactor in which the 

light entrance is surrounded by a sufficient amount of suspension in all three spatial 

directions to guarantee the complete absorption of the entering photons. The reaction 

rates dc/dt obtained from the slopes of the concentration vs. time plots of the experimental 

runs have been used to calculate the rates on an amount basis (dn/dt = Vdc/dt). The thus 

calculated rates are presented in Figure 3.1. 

As can be seen from Figure 3.1a, the reacted amount of the probe compound per unit 

time is constant and the reaction rate is not affected by the initial concentration c0 of the 

probe molecule when c0 ≥ 2 mM. The average rate was calculated to be 1.91 ± 0.15 µmol 

min-1. Figure 3.1b and 3.1c reveal that the rates dn/dt are neither affected by increasing 

the catalyst concentration γ nor by changing the suspension volume V. Average reaction 

rates of 1.89 ± 0.10 µmol min-1 and 2.12 ± 0.15 µmol min-1 were calculated. The average 

value for the reaction rate of all experimental runs performed with UV 100 in this study 

(N = 12) was calculated to be 1.98 ± 0.18 µmol min-1. 
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Figure 3.1. Reaction rates dn/dt as a function of a) the initial concentration of DCA, b) the mass 

concentration of the Sachtleben Hombikat UV100 photocatalyst, and c) the suspension volume. The lines in 

a, b and c present the average value ± standard deviation of all experimental runs (N = 12) performed in this 

study. Experimental conditions: a) 2 mM ≤ c0 ≤ 20 mM, γ = 5 g L-1, V = 400 mL; b) c0 = 10 mM, 1 g L-1  ≤ 

γ ≤ 7 g L-1, V = 400 mL; c) c0 = 10 mM, γ = 5 g L-1, 80 mL ≤ V ≤ 900 mL. 
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To test whether the observed reaction rate independence from the initial concentration of 

the probe compound, the catalyst concentration, and the suspension volume also applies 

to other photocatalysts, a limited number of experimental runs was performed employing 

pure rutile, an anatase-rutile mixture (Evonik TiO2 Aeroxide P25), a commercially 

available surface-modified anatase (KRONOClean 7000), pure brookite, SrTiO3 and 

BaTiO3 nanopowders as well as bulk WO3 and ZnO as photocatalysts. The obtained 

reaction rates dn/dt are given in Figure 3.2. 

 

 

Figure 3.2. Reaction rates dn/dt of the photocatalytic degradation of DCA in the presence of rutile, Evonik 

TiO2 Aeroxide P25, KRONOClean 7000, brookite. SrTiO3, BaTiO3, WO3, and ZnO. The upper and lower 

values of the reaction rate obtained in the presence of Hombikat UV 100 are given for comparison. 

Experimental conditions: A) c0 = 5 mM, γ = 5 g L-1, V = 400 mL; B) c0 = 10 mM, γ = 5 g L-1, V = 400 mL; 

C) c0 = 10 mM, γ = 7 g L-1, V = 600 mL. 

 

The difference in the activities of Hombikat UV 100 and Aeroxide P25 found here is 

consistent with published results obtained with DCA as the probe compound25,26. In 

agreement with published results, the data presented in Figure 3.2 demonstrate the known 

low photocatalytic activity of rutile TiO2 and the high activity of brookite TiO2
27,28. Also, 

the low reaction rates obtained in the presence of SrTiO3, BaTiO3, WO3, and ZnO 

compared to Aeroxide P25 are consistent with published results. The alkaline earth 
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titanates SrTiO3 and BaTiO3 are known to have only a fairly weak activity in 

photocatalytic oxidation reactions of organic compounds in aqueous suspensions29-31. The 

semiconductors WO3 and ZnO have also long been known to have a significantly lower 

photocatalytic activity than TiO2
32. Reported photocatalytic reaction rates of different 

probe compounds in the presence of bulk ZnO revealed a 30 % to 50 % lower activity of 

bulk ZnO in comparison to Aeroxide P2533,34. 

According to the data presented in the Figures 3.1 and 3.2 the reaction rates dn/dt for a 

photocatalyst under consideration were found to be constant within the limits of the 

experimental error and not affected by the initial concentration of the probe compound, 

i.e., dichloroacetic acid, the mass concentration of the photocatalyst, and the suspension 

volume as long as the photoreactor meets the requirements for a black body reactor and 

the concentration of the probe compound is sufficiently high to ensure that the reaction 

kinetics are of zero order.  

The method presented here for determining photocatalytic degradation rates in a black 

body reactor seems to be generally applicable to obtain experimental data allowing the 

interlaboratory comparison of the photocatalytic activities of different semiconductors. 

By employing a black body reactor, it becomes technically very simple to measure 

reaction rates with the same type of photoreactor under identical irradiation conditions as 

requested by Kisch and Bahnemann3. It is only necessary to ensure that the position of the 

light entrance is surrounded by a sufficient amount of suspension in all three spatial 

directions (as far as technically feasible) to guarantee the complete absorption of the 

entering photons along the optical path to fulfil the requirement for a black body reactor. 

Applying a black body reactor ensures that the measured reaction rates are not diminished 

by the scattering of photons out of the photoreactor.  

3.5. Experimental Procedure 

Anatase TiO2 (Hombikat UV 100, Sachtleben Chemie, now Venator Materials PLC), 

anatase-rutile mixture (Aeroxide® TiO2 P25, Evonik Industries), a commercial surface 

modified anatase (KRONOClean 7000, Kronos), rutile (E3-231-034-007, Sachtleben 

Chemie), brookite, strontium titanate, barium titanate, tungsten(VI) oxide, and zinc oxide 

(Sigma–Aldrich) were used as the photocatalysts. All other chemicals purchased from 

reputable suppliers (Sigma–Aldrich, Merck, Fluka, Roth) were of analytical grade and 
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used as received. Ultrapure water (≧ 18.2 MΩ cm) was applied in all experimental runs. 

The suspensions were prepared by dissolving dichloroacetic acid and potassium nitrate in 

water resulting in solutions with 10 mM potassium nitrate and varying concentrations of 

the probe compound (2 mM to 20 mM). After adding the desired amount of the chosen 

photocatalyst, the resulting suspension was stirred in the dark and the pH was adjusted at 

pH 3 by addition of potassium hydroxide. The experimental determination of the 

activities of the photocatalysts in liquid-solid heterogeneous systems was performed in a 

glass bottle filled with the magnetically stirred suspension. The suspension was irradiated 

with a monochromatic light source (Omicron Laserage Laserprodukte GmbH, λmax = 365 

nm with full width at half maximum = 10 nm as determined with a B&W Tek 

SpectraRad® Xpress, photon flux = 12 µmol min-1 as determined by ferrioxalate 

actinometry) equipped with a suitable wave guide within a glass tube outer diameter = 11 

mm, inner diameter = 9 mm). The exit of the wave guide was placed in the center of the 

reactor. In all experimental runs, the suspension was stirred for 2 h in the dark in order to 

establish the adsorption equilibrium. Subsequently, the light source was switched on and 

the suspension was irradiated for 3 h. Samples were taken at 30 min intervals and 

centrifuged for 5 min at 13000 rpm. The supernatant solutions were filtered through 

syringe filters with 0.2 µm pore size and diluted 20 times. Quantitative analysis of 

dichloroacetic acid was performed by high performance ion chromatography (HPIC) 

employing a DIONEX ICS-1000 instrument equipped with an anion exchange column 

(Ion Pac AS9-HC 2 ×250 mm) in combination with a guard column (Ion Pac AG9-HC 2 

× 50 mm). The aqueous mobile phase contained 8 mM Na2CO3 and 1.5 mM NaHCO3. 

The flow rate of the mobile phase was set to 0.3 mL min-1, and the applied column 

temperature was 35 °C. 
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4. Determination of the Quantum Yield of a 

Heterogeneous Photocatalytic Reaction Employing a 

Black Body Photoreactor 

4.1. Foreword 

This chapter includes the article Determination of the Quantum Yield of a Heterogeneous 

Photocatalytic Reaction Employing a Black Body Photoreactor by Lena Megatif, Ralf 

Dillert, and Detlef W. Bahnemann, published in Catalysis Today 2019, 

doi:10.1016/j.cattod.2019.06.008. After introducing the concept of the black body reactor 

and its advantages for comparing the activities of various photocatalysts in liquid-solid 

heterogeneous systems, the effects of photon flux and photon flux density on the reaction 

rate and on the respective quantum yield are investigated herein. The appropriate design 

and scale-up of a photocatalytic reactor inevitably requires the knowledge of the quantum 

yield. Thus, the absorption of the radiant energy needs to be known. However, not all the 

absorbed photons lead to a photocatalytic reaction. The photo generated electron-hole 

pairs are likely to recombine and therefore will not be able to diffuse to the surface of the 

semiconductor particle. Therefore, the determination of photon flux and photon flux 

density is of great importance for designing a photoreactor, since both, the recombination 

rate of the electron-hole pairs and the photocatalytic reaction rate are strongly dependent 

on these two parameters. According to the Langmuir-Hinshelwood type rate law, the 

dependency of the photocatalytic reaction rate on the photon flux can be concluded from 

the following equation: 

� = ���� �(�)�@��(�)�                                                                                                             (4.a) 

where kr is the rate constant, K(I) is considered to be a light-intensity dependant factor, 

and C is the concentration. Furthermore, the photon flux can also affect the recombination 

rate of the electron-hole pairs. This can be concluded from the following correlations:  
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〈�〉(�) = 〈�〉�@�〈�〉����                                                                                                           (4.b) 

〈�〉(�) = 〈�〉� ���(−���)                                                                                               
(4.c) 

in which 〈�〉(�) is the average number of electron-hole pairs at time t, 〈�〉� at time t = 0 

and ��is the recombination rate constant. Accordingly, the recombination of the electron-

hole pairs follows the second order kinetics at high occupancy of the semiconductor 

particles (Equation 4.b), while at low occupancy it obeys the first order kinetics 

(Equation 4.c). Since the number of generated electron-hole pairs is proportional to the 

number of absorbed photons, it can be concluded that the charge carrier recombination 

depends on the photon flux. Hence, determining the experimental conditions in which the 

quantum yield is independent from the photon flux is an important factor that simplifies 

the process of designing an efficient photoreactor.  

4.2. Abstract 

Quantum yields of the photocatalytic DCA degradation in aqueous titanium dioxide 

suspensions (Hombikat UV100, Aeroxide P25) were determined employing a black body 

like photoreactor. The amounts of photons absorbed by the photocatalysts per unit time 

were determined by chemical actinometry varying the photon flux and the photon flux 

density. The photocatalytic DCA degradation experiments were performed under zero 

order conditions regarding the concentration of the probe compound. The obtained results 

suggest that the quantum yield of the photocatalytic DCA degradation depends on the 

photon flux density. Only the low flux density resulting from a large surface area of the 

light inlet seems to allow the determination of a quantum yield as a photocatalyst-inherent 

property. 

4.3. Keywords 

Black body photoreactor, dichloroacetic acid, heterogeneous photocatalysis, quantum 

yield, titanium dioxide. 
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4.4. Introduction 

Semiconductor photocatalysis is considered as one of the potent methods to utilize the 

solar energy for fuel production and environmental remediation. As photocatalytic 

reactions are light induced processes which need active materials to absorb the light, 

synthesis of new photocatalysts has generated a great interest in the last decades.1–8 In 

order to compare the activity of different photocatalysts, in addition to the reaction rate, 

the number of absorbed photons should be measured to obtain the quantum yield.9–13 

However, determining the absorbed photons in heterogeneous systems involves some 

difficulties. This is mainly because of scattering and reflection of the light by solid 

particles of the photocatalyst which results in a loss of photons.14 

In light-induced chemical reactions, the photons inevitably enter the fluid phase through a 

window. At the two interfaces of the window some photons are reflected. The portion of 

photons transmitted through the window enters the fluid phase where the photons then hit 

the photocatalyst particles and are absorbed or scattered by them. Losses by photon 

transmittance through the suspension can be completely avoided by an appropriate reactor 

geometry and by choosing a sufficiently high catalyst concentration along the optical path 

of sufficient length. 

For photoreactors having positive irradiation geometry, reflection at the interfaces of the 

window and scattering out of the suspension results in significant losses of photons which 

are therefore not available for the desired chemical reaction (Figure 4.1a). The photon 

losses by reflection and scattering can be reduced by using a photoreactor with negative 

irradiation geometry. The reason is that some of the reflected photons may enter the fluid 

phase elsewhere inside the photoreactor (Figure 4.1b). Ideally, as technically realized by 

the black body like photoreactor introduced by Emeline et al.,15 these photon losses are 

nearly zero (Figure 4.1c). All photons entering the suspension are absorbed by the 

photocatalyst particles, thus exciting electrons from the valance band into the conduction 

band. The conduction band electrons and valance band holes either recombine or they 

migrate to the particle surfaces where they can react with suitable electron acceptors and 

donors. 
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Figure 4.1. Reactor configurations according to the location of the light source: a) positive irradiation 

geometry, b) and c) negative irradiation geometry where c) describes the concept of a black body reactor. 

 

Employing the photoreactors depicted in Figure 4.1a and 4.1b for heterogeneous 

photocatalytic reactions results in the absorption of only a fraction of the incoming 

photons by the photocatalyst. The other fraction is lost due to scattering and reflection. 

This undesired loss of photons can vary between 13 % to 76 % of the incoming light.14 To 

address the problems related with the photoreactors depicted in Figure 4.1a and 4.1b, it 

was proposed to calculate the photonic efficiency and to use the amount of incident 

photons instead of the amount of photons absorbed by the photocatalyst.9,16 Hence, the 

assumption of equal absorbed photons of light for different photocatalysts will not be 

accurate due to the strong dependency of the scattered and absorbed light fractions on the 

surface properties of the window materials and the photocatalyst particles. Generally, the 

number of photons absorbed by the photocatalyst are not the same in different systems. 

This is mainly because of the variations in light sources, reactor geometries, absorption 

coefficients of the photocatalyst and substrates. Also overall experimental conditions are 

significantly influencing the fraction of back reflected and absorbed photon flux.10–12 In 

2006, Emeline et al. proposed a simple and practical way towards quantum yield 

measurements for photochemical reactions in heterogeneous systems15. By applying a 

black body reactor it can be assumed that the amount of reflected and transmitted light is 

negligible. Therefore, all the light will be absorbed by the photocatalyst. Considering this 

property of the black body reactor, comparison of the photocatalytic activity of various 

semiconductors is feasible under zero order kinetic conditions of reaction regarding the 

photocatalyst and model compound concentration.17 However, the quantum yield of the 

photocatalytic reactions depends also on the light intensity. Moreover, type and size of 

the light inlet in a black body reactor affect the ratio of back reflection or the light 

a) b) c) 
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distribution inside the reactor. Since the local volumetric rate of photon absorption 

depends on the light distribution inside the reactor, geometrical characteristics of the light 

inlet can affect the amount of absorbed photons and consequently the quantum yield.18  

In the present work, an experimental evaluation of the quantum yield applying various 

photon fluxes and light inlet types in a heterogeneous black body photoreactor was 

performed. Dichloroacetic acid (DCA) was applied as the probe compound. By 

measuring the absorbed photon flux via actinometry and the amount of degraded DCA, 

the quantum yield was calculated.  

4.5. Materials  

Aeroxide® TiO2 P25 and TiO2 Hombikat UV 100 were provided by Evonik Industries 

and Huntsman, respectively. Dichloroacetic acid (DCA), iron(ΙΙΙ)chloride, 1,10-

phenanthroline, sodium acetate, sulfuric acid and iron(II)sulfate were purchased from 

Sigma–Aldrich. Potassium hydroxide (KOH) and potassium nitrate were purchased from 

Fluka and Merck respectively. Potassium oxalate was provided from Carl Roth. All 

chemicals were of analytical grade and used without further purification. All experiments 

were carried out employing ultrapure water (≧ 18.2 MΩ cm). 

4.6. Experimental Procedure 

The photocatalytic degradation of dichloroacetic acid was carried out using Hombikat 

UV100 and P25 under monochromatic UV light. In all experimental runs, the initial pH 

and the initial ionic strength of the suspensions were adjusted by adding potassium 

hydroxide and potassium nitrate (pH 3, 10 mM KNO3).  

The experimental determination of the quantum yields was performed in a glass flask 

filled with the magnetically stirred photocatalyst suspension (400 ml, 10 mM DCA, 5 g L-

1 photocatalyst). The suspension was irradiated with a monochromatic light source 

(Omicron Laserage Laserprodukte GmbH, λmax = 365 nm with full width at half 

maximum = 10 nm as determined with a B&W Tek SpectraRad® Xpress) equipped with a 

suitable wave guide within a glass tube. The exit of the wave guide was placed in the 

center of the reactor to ensure that the position of the light entrance is surrounded by a 

sufficient amount of suspension in all three spatial directions to guarantee the complete 

absorption of the entering photons along the optical path. Three different types of light 
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inlet with different sizes were studied (Figure 4.2). The light inlet type 1 was a glass tube 

with an inner diameter of 9 mm and an outer diameter of 11 mm closed by a semicircle. 

Light inlet type 2 consisted of a glass tube with an inner diameter of 9 mm and an outer 

diameter of 11 mm and a hollow sphere at the end having an outer diameter of 16 mm. 

The light inlet type 3 was a glass tube with the same diameters as the other types but a 

closed sphere at the end with an outer diameter of 19 mm. 

In all experimental runs, the suspension was stirred for 2 h in the dark in order to establish 

the adsorption equilibrium. Subsequently, the light source was switched on and the 

suspension was irradiated for 3 h. The DCA concentration was measured by high 

performance ionic chromatography (HPIC) utilizing a DIONEX ICS-1000 instrument 

with an Ion Pac AS9-HC anion exchange column and Ion Pac AG9-HC guard column. A 

mixture of Na2CO3 and NaHCO3, with a flow rate of 0.3 mL min-1 was used as the mobile 

phase. More details of the experimental procedure have already been published.17 

 

 
Figure 4.2. Schemes of the experimental set-up and the three types of light inlet. Note the lens effect of 

light inlet type 3. 

 

The determination of the incident photon flux was performed using ferrioxalate 

[Fe(C2O4)3]
3-  as an actinometer.19 Potassium ferrioxalate was prepared by mixing a 

solution of 1.5 M K2C2O4 with a solution of 1.5 M FeCl3 in the ratio of 3 to 1. The mixed 

solution was recrystallized 3 times. After each step, the crystals were washed with water. 

The obtained K3Fe(C2O4)3.3H2O crystals were placed in a dark bottle and dried overnight 

in 45°C in the oven. It should be mentioned that all the procedure was done in a dark 

room under red light. The photolysis experiments were done by preparing 30 mM 



4. Determination of the Quantum Yield of a Heterogeneous Photocatalytic Reaction 
Employing a Black Body Photoreactor 

 
 

89 
 

ferrioxalate solution in 0.1 N H2SO4. The solution was placed in the glass flask used as 

the black body reactor and illuminated for 60 min. Samples were taken in 5 minutes’ time 

intervals. For analysis, the samples were mixed with a buffer solution with the ratio of 2 

to 1 and 2 mL 0.1 wt % 1,10-phenanthroline in a 20 mL volumetric flasks and made up to 

20 mL by adding water. Exactly after 60 min for each sample, the concentration of the 

complex of ferrous iron and 1,10-phenanthroline was measured with a UV-visible 

spectrophotometer at 510 nm. In order to interpret the obtained results, a standard curve 

was prepared. For this purpose, a solution of ferrous iron in 0.1 N H2SO4 was mixed with 

a buffer solution and 0.1 wt % 1,10-phenanthroline and left for 60 min so that the 

complex of ferrous iron and 1,10-phenanthroline could fully develop.  

4.7. Results 

The photocatalytic decomposition rate of dichloroacetic acid (DCA) in aqueous 

suspensions containing Hombikat UV100 and P25 was examined employing a black body 

photoreactor and varying the flux of UV photons (0.01 µmol s-1 – 0.2 µmol s-1) and the 

photon flux density. The photon flux density was varied by means of three light inlets of 

different geometry. The photon fluxes were measured employing ferrioxalate actinometry 

which is one of the classical tools for the determination of the photon flux in 

photochemical reactions recommended by IUPAC.20 The number of photons absorbed by 

the iron complex can easily be calculated by measuring the rate of the light-induced 

reduction of Fe3+ (Equation 4.1) for which the quantum yield is known. 

2 Fe(C2O4)3
3− + hν → 2 Fe2+ + 5 C2O4

2− + 2 CO2           (4.1) 

The concentration of Fe(II) is measured through monitoring the colored complex of this 

ion with 1,10-phenanthroline at 510 nm wavelength by means of a UV-vis 

spectrophotometer. 
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Figure 4.3. Photon fluxes determined inside the photoreactor by actinometry varying the output of the UV 

LED lamp and the light inlet type 1 (�), type 2 (), and type 3 (�). 

 

As shown in Figure 4.3, the photon fluxes emitted by the monochromatic UV LED 

source with various light intensities and light inlet types were measured. The light inlet 

type 1 was a closed tube with an outer diameter of 11 mm while light inlet type 2 was a 

tube with a hollow sphere with a diameter of 16 mm at the end. Light inlet type 3 has a 

closed sphere with a diameter of 19 mm. For the same photon flux, the photon flux 

density for geometric reasons (neglecting the possible scattering of photons at phase 

interfaces) is about 50 % lower in type 3 than in type 1. 

As becomes obvious from Figure 4.3, the photon flux increases linearly by increasing the 

energy output of the UV LED. According to the obtained data, size and type of the light 

inlet does not significantly affect the photon flux inside the photoreactor. The photon 

fluxes determined in this study are the average value of at least three measurements at 

each intensity. The average error of the measurements was found to be lower than 0.002 

µmol s-1.  

DCA was chosen as the reactant in the experimental runs since its self-oxidation is 

negligible and it is photocatalytically mineralized yielding CO2 and Cl– which do not 

undergo further reaction21. Furthermore, DCA is easily quantified using ion 

chromatography (HPIC). A single photon is considered to be required in the degradation 

of one DCA molecule. The experimental runs were performed holding the pH and the 

ionic strength of the suspension almost constant (pH 3, 10 mM KNO3). It has recently 

been shown by us, that the rate of the DCA degradation reaction and consequently the 

quantum yield was not affected by varying the initial DCA concentration between 2.5 

mM and 20 mM and the mass concentration of the photocatalyst between 1 g L-1 and 7 g 
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L-1 employing light inlet type 1 and a photon flux of approximately 2 µmol s-1. The 

kinetics of the photocatalytic DCA degradation was found to obey a zero order rate law 

under these experimental conditions. Quantum yields of 0.17 ± 0.02 and 0.08 ± 0.01 have 

been calculated for the photocatalytic degradation of DCA in the presence of Hombikat 

UV 100 and Aeroxide P25, respectively17. Therefore, an initial DCA concentration of 10 

mM and a catalyst mass concentration of 5 g L-1 were chosen. It should be emphasized 

that zero order kinetics was observed for the light-induced DCA degradation in all 

experimental runs performed in the present study.  

 

 

 
Figure 4.4. Reaction rate of the photocatalytic DCA degradation in the presence of Hombikat UV100 and 

Aeroxide P25 photocatalysts versus the photon flux for light inlet type 1 (�), type 2 (), and type 3 (�). 

The lines are to guide the eyes only. 

 

Figure 4.4 shows the experimentally obtained reaction rates of DCA in suspensions 

containing Hombikat UV100 and Aeroxide P25 versus the photon flux for the three 

different light inlet types. Since the measurements have been carried out in a black body 
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reactor, it is assumed that all photons which have entered the reactor were finally 

absorbed by the photocatalyst particles. Consequently, the amount of photons absorbed 

by the photocatalyst per unit time is equal to the photon flux determined by actinometry. 

The reaction rates as well as the photon fluxes are reported on an amount basis (µmol s-1). 

It becomes obvious that the degradation rates measured in the presence of P25 are always 

smaller than the rates measured in suspensions containing UV100 as the photocatalyst. 

The reaction rate increases with increasing photon flux. However, the rate depends in a 

non-linear way on the photon flux. Figure 4.4 also shows that for a given photocatalyst, 

the rate of the DCA degradation does not depend only on the photon flux but also on the 

geometry of the light inlet. The reaction rate was higher when the suspension was 

irradiated through the light inlet type 2 than under irradiation through the other two inlets. 

The reaction rate was lowest when the suspension was irradiated through inlet type 1. 

This suggests that the reaction rate depends not only on the photon flux but also on the 

light distribution (photon flux density) which in turn rely on the light inlet type.  

4.8. Discussion 

It is well-known that semiconductor photocatalysts absorb light with specific wavelength 

which results in the excitation of electrons from the valence band to the conduction band. 

Generally, after generating the excited electrons a large amount of the electrons and holes 

recombine and dissipate the received energy in form of heat or emitted light. The 

surviving electron and holes migrate to the photocatalyst surface and independently 

participate in different chemical reactions acting as reductant and oxidant7,8. The rate of a 

photocatalytic reaction is generally given by a Langmuir-Hinshelwood type rate law 

� = :!+W �(N) K��(N)                           (4.2) 

where kr is the rate constant, K(I) is considered to be a light-intensity dependant 

adsorption coefficient of the probe compound, and I = dnp/dt is the amount of photons 

being absorbed by the photocatalyst per unit time22,23. Here, I is assumed to be equal the 

photon flux emitted by the LED light source.  

As proposed for quantum yield measurements,24 the reaction rate was studied here at zero 

order kinetic conditions regarding the probe compound concentration C and the catalyst 

loading. Therefore, at K(I)C >> 1, the reaction rate can be written as: 
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� = :!+W                           (4.3) 

Since charge carrier recombination demonstrates second order kinetics at high photon 

flux conditions, the reaction rate has a square root correlation with the light intensity (R = 

kr I
 0.5) and the quantum yield  

a = jN = :!+W8K               (4.4) 

becomes proportional to I
 -0.5 25–29. On the other hand, the light limited reaction rate 

follows R = kr I at low intensities26,28,30. Hence, assuming the rate constant kr to be 

independent from the photon flux, the quantum yield will be constant and independent 

from the photon flux (Φ = kr).  

 

 

 
Figure 4.5. Log-log plot of the DCA degradation rates (R) versus the number of absorbed photons per unit 

time (I) in irradiated suspensions containing a) Hombikat UV 100, and b) Aeroxide P25 with light inlet type 

1 (�), type 2 (), and type 3 (�). 
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To determine the dependence of the reaction rate on the photon flux the data given in 

Figure 4.4 have been plotted in a log-log plot (Figure 4.5). As becomes obvious from 

this Figure the slopes of the graphs strongly depend on the type of light inlet and thus on 

the photon flux density at the interface between the suspension and the inlet window. In 

the case of UV100 the exponents n in Equation 4.3 were calculated to be 0.37 ± 0.04, 

0.90 ± 0.13, and 0.81 ± 0.08 for light inlet type 1, 2, and 3, respectively. When P25 was 

employed as the photocatalysts, the reaction rate decreased with decreasing photon flux 

with a slope of 0.56 ± 0.07, 1.16 ± 0.19, and 0.66 ± 0.10 for light inlet type 1, 2, and 3, 

respectively. 

Figure 4.6 shows plots of the quantum yield values for the photocatalytic DCA 

degradation versus the photon flux. The quantum yields were calculated using Equation 

4.4. In accordance with the data obtained from Figure 4.4, Figure 4.6 indicates that the 

quantum yield of the photocatalytic DCA degradation in the presence of UV100 

decreases for light inlets with spheres (type 2 and 3) with I -0.10 and I -0.19. However, in 

case of the smaller light inlet (type 1), it drops down with I -0.63. When P25 is applied as a 

photocatalyst, the quantum yield changes with I -0.44, I 0.16 and I -0.34 for light inlet type 1, 

type 2 and type 3, respectively.  

The observed non-linear dependence of the reaction rate (and consequently the quantum 

yield) on the amount of photons absorbed per unit time by the photocatalyst is in 

accordance with published results. Several authors have observed that depending on the 

irradiance intensity, the reaction rate can follow a linear or a square root trend in 

photoreactors25–28. A non-linear correlation between the reaction rate and the incident 

photon flux was reported for the photocatalytic degradation of phenol by Serpone et al.
31 

and of chloroform by Kormann et al.26. Lindner et al. have reported that the photonic 

efficiency of the light induced DCA degradation in the presence of UV100 decreases by 

increasing the light intensity and the reaction rate does not have a linear relationship with 

the number of photons impinging on the entrance window per unit time. At a low 

intensity the photonic efficiency correlated with I -0.12, while at a high intensity it changed 

with I -0.31 32. Bahnemann et al. reported a light intensity independent photonic efficiency 

for the mineralization of DCA in the presence of P25 at pH = 2.6, 7, and 11. 

Nevertheless, at pH 5 the photonic efficiency showed a non-linear behavior (I -0.5) with 

respect to the light intensity33. In another publication, Bahnemann et al. claimed a linear 
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correlation between the reaction rate of the photocatalytic degradation of DCA and the 

light intensity applying P25 at low intensities21. 

 

 

 

Figure 4.6. Quantum yields Φ of the photocatalytic DCA degradation versus the number of absorbed 

photons per unit time (I) in irradiated suspensions containing a) Hombikat UV 100, and b) Aeroxide P25 

with light inlet type 1 (�), type 2 (), and type 3 (�). The lines are to guide the eyes only. 

 

The observed differences in the light intensity dependence of the reaction rate (or the 

photonic efficiency or the quantum yield) between UV100 and P25 are possibly due to 

the different particle sizes. According to Gerischer, the quantum yield of a heterogeneous 

photocatalytic reaction increases by decreasing the particle size at a constant light 

intensity.34 Hence, considering the smaller particle sizes of UV100 (8 nm) in comparison 

with P25 (22 nm anatase and 35 nm rutile), it can be concluded that the P25 particles near 

the light inlet absorb a higher number of photons per unit time than UV100. This results 

in multiple excitations, a large number of electron-hole pairs in one photocatalyst particle, 

and consequently in a high recombination rate. Therefore, the recombination rate of 
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charge carriers is significantly higher in case of P25 than in UV100. In other words, the 

probability of the recombination reaction is lower in photocatalysts consisting small 

particles in comparison with photocatalysts having bigger particles.  

However, as the results shown in Figures 4.3 and 4.4 and the numerical values given in 

the text suggest, a high recombination rate appears to be the result of a high local photon 

flux density, as stipulated by the light inlet type 1. By increasing the area of the light inlet, 

the photon flux density is reduced, which becomes apparent in an approximation to a 

linear relationship between the reaction rate (or the quantum yield) and the amount of the 

photons being adsorbed per unit time. As mentioned above, the photon flux density at the 

same photon flux emitted by the LED is about 50 % lower with the light inlet type 2 than 

with the type 1 due to geometric reasons. The rate of the photocatalytic DCA degradation 

in the presence of both UV100 and P25 shows a linear dependence on the photon flux (R 

≈ I
 0.90±0.13 [Φ ≈ I

 -0.10] and R ≈ I
 1.16±0.19 [Φ ≈ I

 +0.16]) within the limits of experimental 

error.  

A small light inlet without a light-distributing sphere results in a non-uniform photon 

distribution inside the photoreactor. This type of light inlet causes regions in which 

photon flux densities are high, while other points inside the photoreactor have very low 

photon flux densities. This means that the reaction rate in regions of high photon flux 

densities exhibit a square root dependence upon the irradiance35. Hence, it can be 

concluded that a light inlet of bigger size with a hollow sphere is suitable to distribute the 

light properly in comparison to a small light inlet without sphere that focuses the light at 

some points of the reactor. Therefore, the rate of electron hole recombination decreases 

and the efficiency of the photocatalytic reactions becomes higher, and the quantum yield 

of DCA photodegradation increases36,37. The quantum yield of the photocatalytic DCA 

degradation in the presence of a given photocatalyst was found to be not a constant value 

but to depend on both the photon flux into the photoreactor and the photon distribution 

inside the photoreactor.  

4.9. Conclusions 

A black body like photoreactor has successfully applied to determine the quantum yield 

of the photocatalytic DCA degradation in aqueous titanium dioxide suspensions. Contrary 

to experimental results on the quantum yield of the photocatalytic phenol oxidation 

reported by Emeline et al.,15 a dependence of the quantum yield on the type of light inlet 
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was observed. The quantum yield of the photocatalytic DCA degradation seems to 

depend not only on the photon flux but also on the photon flux density. Only the low flux 

density resulting from a large surface area of the light inlet seems to allow the 

determination of a quantum yield as a photocatalyst-inherent property. 
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5. Reaction Rate Study of Photocatalytic Degradation of 

Dichloroacetic Acid in a Black Body Reactor 

5.1. Foreword 

This chapter includes the article Reaction Rate Study of Photocatalytic Degradation of 

Dichloroacetic Acid in a Black Body Reactor by Lena Megatif, Ralf Dillert, and Detlef 

W. Bahnemann, submitted for publication to Catalysts. Herein, the kinetics of the 

photocatalytic dichloroacetic acid degradation in a black body reactor have been studied. 

In particular, the optimal experimental conditions for the determination of the rate of 

conversion and of the quantum yield employing Hombikat UV 100 as photocatalyst are 

discussed and the validity of utilizing a black body photoreactor for the quantum yield 

determination and the comparison of various photocatalysts is confirmed. To select the 

operating conditions or to design a suitable photoreactor, it is convenient to work in terms 

of the volume-averaged quantum yield value. Thus, the intrinsic kinetic constants have 

been examined and the reaction rate and consequently the quantum yield as a function of 

the photocatalyst loading, the probe compound concentration, and the reaction volume 

have been studied. The obtained optimum values of the mentioned parameters are among 

the key factors for the photocatalytic reactor design as well as for its operation. The 

optimum value of the photocatalyst loading is essential for providing the minimum 

optical thickness giving the highest fractional use of photons to drive a reaction. The 

optimal reaction volume is also significant in order to avoid dark areas inside the 

photoreactor to minimize the extra construction costs. Moreover, performing the reaction 

at an optimal probe molecule concentration can ensure that this parameter is not the rate 

limiting factor. 

5.2. Abstract 

The light-induced degradation of dichloroacetic acid in aqueous suspensions containing 

the TiO2 photocatalyst Hombikat UV 100 was investigated. The reactions were performed 

in a black body reactor where the rate of conversion, defined as the time derivative of the 

extent of conversion, is not affected by the light scattering properties of the 

photocatalysts. At sufficiently high concentrations of both the probe compound and the 

photocatalyst the rate of conversion was found to be unswayed by the initial 

concentration of the probe compound, the mass concentration of the photocatalyst, and 
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the suspension volume. Thus, the chosen experimental conditions enable the 

determination of the rate of conversion and the quantum yield of the light induced 

degradation of dichloroacetic acid in aqueous photocatalyst suspension with sufficiently 

good reproducibility. The experimental procedure employed here seems to be generally 

applicable to determine rates of conversion and quantum yields that possibly allow a 

comparison of the activities of photocatalysts in aqueous suspensions. 

5.3. Keywords 

Black body photoreactor, Dichloroacetic acid, Heterogeneous photocatalysis, Quantum 

yield, Rate of conversion, Titanium dioxide. 

5.4. Introduction 

Heterogeneous photocatalysis in solid-liquid systems is considered as an effective method 

to harvest photons for the oxidative degradation of organic water pollutants, the 

generation of molecular hydrogen by water splitting or reforming of organic compounds, 

the fixation of carbon dioxide or molecular nitrogen, and the synthesis of organic 

compounds. Therefore, new photocatalysts and photocatalytically active composites are 

being synthesized and investigated with respect to possible applications in heterogeneous 

photocatalysis. Technically applicable photocatalysts must meet a number of 

requirements. It is crucial that the photocatalytically active solid is stable under the 

conditions of the desired light-induced chemical reaction, and that it has a high 

photocatalytic activity. Inevitably, the comparative assessment of the activities of 

semiconductors and composites designated as photocatalysts is required. 

Several methods have been proposed for this comparative assessment of photocatalytic 

activities in suspensions. For details on the proposed methods, the curious reader is 

referred to the recently published papers of Kisch and Bahnemann1, Qureshi and 

Takanabe2, Hoque and Guzman3, and the references given therein. Usually, the reaction 

rate at which a probe compound is photocatalytically converted, is used as the measure of 

the photocatalytic activity of the considered photocatalyst. The activities of different 

photocatalysts are then assessed by comparing these numerical values of the respective 

rates. Reaction rates are usually reported on a volume basis (converted amount of the 

probe compound per unit time and unit suspension volume), a mass basis (converted 
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amount per unit time and unit mass of photocatalyst), or an area basis (converted amount 

per unit time and unit area of photocatalyst). A photocatalytic reaction, however, takes 

place only in the small volume inside a photoreactor that is located directly in front of the 

light entrance. In this volume element, the photon flux decreases with increasing the 

distance from the entrance window. This, of course, is accompanied by a decrease in the 

reaction rate. So that at the most distant layers of the suspension, which are not penetrated 

by photons, the reaction rate becomes equal to zero. A reported reaction rate is therefore 

always a volume-averaged value. A prerequisite for the comparison of reaction rates is 

that the values were determined under identical reaction conditions1. However, most often 

the comparison of published values is impeded due to the lack of detailed information on 

the geometry of the photoreactor, the size of the entrance window, and the characteristics 

of the irradiation conditions. 

To avoid this draw-back, it has been proposed to calculate the ratio between the amounts 

of the probe compound reacted in a time interval and the photons impinging on the outer 

wall of the light entrance in this time interval. However, objections have been raised 

against this ratio, which is called the photonic efficiency (also known as quantum 

efficiency), as a measure of the photocatalytic activity of a material. In almost all 

published papers reporting comparative studies of photocatalysts in suspensions, 

experimental setups were used, in which the slurries were irradiated by an external light 

source through a window in the outer wall of the photoreactor. In such arrangement of 

photoreactor and light source (positive irradiation geometry), a fraction of the photons 

entering the suspension is not absorbed, but back-scattered out of the slurry and the 

reactor4-7. This undesired loss of photons can vary between 13 % and 76 % of the 

incoming light4. The ratio between absorbed and out-scattered photons depends, inter 

alia, on the photocatalyst composition, its particle size, and its mass concentration8-10. A 

reaction rate determined with an experimental set-up having positive irradiation geometry 

and, consequently, the resulting photonic efficiency thus also reflects the optical 

properties of the suspension and is, therefore, not a measure of the intrinsic activity of the 

photocatalyst under consideration. 

Recently, Emeline and co-authors have proposed a particular design of a reactor with 

negative irradiation geometry in which the light entrance is surrounded by the suspension 

in all three spatial directions (as far as technically feasible)11. The design of this 
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photoreactor ensures that almost all out-scattered photons re-enter the suspension 

elsewhere. Provided that no photons are transmitted through the suspension, all the 

photons with appropriate energy to excite the photocatalyst are absorbed inside the 

suspension. Although the reactor filled with the suspension behaves like a black body 

only in a finite wavelength range, it was termed as a black body-like reactor by Emeline 

et al.
11. 

Provided that the photocatalyst is the only light absorbing species and that the suspension 

is optically dense for photons having an energy greater than the band gap energy of the 

photocatalyst (i.e., no photons are transmitted through the reactor), all the photons with 

appropriate energy emitted by the light source are absorbed by the photocatalyst. All 

photons emitted by the light source are therefore available to initiate a photocatalytic 

reaction. The rate of a photocatalytic reaction as a measure of the photocatalytic activity 

is thus diminished only by the recombination of the photogenerated charge carriers and is 

independent from the scattering properties of the photocatalyst. The amount of photons 

emitted by the light source and entering the black body like photoreactor can easily be 

determined by chemical actinometry. When using a monochromatic light source, a 

quantum yield, as is usual for homogeneous photochemical reactions, can thus be 

calculated11. However, it must be emphasized that the quantum yield will only be 

meaningful if the photocatalyst is the only species that absorbs the photons entering the 

suspension. Therefore, in order to determine the quantum yield of a light-induced reaction 

in a photocatalyst suspension, the probe compound must be optically transparent. In 

addition, the photocatalytic conversion of the probe compound must not yield 

intermediates and products which could absorb the incoming light. 

Dichloroacetic acid (DCA) is an organic compound that meets these requirements when 

irradiated with visible and UV(A) light. DCA presents some additional advantages for 

laboratory studies due to its low vapor pressure and high water solubility12. It also speaks 

for the use of DCA as the probe compound that the photocatalytic reaction according to  

CHCl2COO⁻ + O2→ 2 CO2 + H⁺ +2 Cl⁻                                                                         (5.1) 

can be monitored not only by measuring the DCA concentration but also by12-16, the 

concentration of organic carbon (TOC)12,13,17, as well as the evolved amounts of CO2
18, 
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Cl⁻ 12,13,18,19, and H⁺ (employing e.g. a pH-stat technique19-22). However, for the direct 

comparison of the rates obtained by the measurements of these analytes, it is 

recommendable to use the rates of conversion as defined by the IUPAC23. The rate of 

conversion of species i is defined as the time derivative of the extent of reaction ξ(i) 

dξ(i)/dt = (1/ν(i))(dn(i)/dt) = (V/ν(i))(dC(i)/dt)                                                               (5.2) 

where n(i) and C(i) are the amount and the amount concentration (molarity), respectively, 

of this species at any time t, ν(i) is its stoichiometric coefficient, and V is the volume of 

the suspension. 

Equation 5.1 requires that dξ(DCA)/dt = dξ(CO2)/dt = dξ(Cl⁻)/dt. However, the 

evaluation of published data employing the rates of conversion suggests that the 

numerical values are slightly different for the different analytes12,13,18. Such differences in 

the rates of conversion would then have to be taken into account when comparing 

published data for one reactant but obtained with different analytes.  

This article reports on the photocatalytic oxidation of dichloroacetic acid in acidic 

aqueous suspensions employing a black body like reactor. The initial concentration of the 

dichloroacetic acid, the mass concentration of the photocatalyst TiO2 Hombikat UV 100, 

and the volume of the suspension were varied. The experimental conditions were chosen 

in such a way that the kinetics of the photocatalytic degradation of DCA could be 

described by a zero order rate law. This work was performed to answer two scientific 

questions: (i) How reproducible are the results of photocatalytic degradation experiments 

performed in a black body photoreactor? (ii) Are the rates of conversion for the reactant 

and the reaction product (here DCA and Cl⁻) the same within the limits of experimental 

error? 

5.5. Materials  

Dichloroacetic acid (DCA) was purchased from Sigma-Aldrich, while potassium 

hydroxide (KOH) and potassium nitrate were purchased from Fluka and Merck, 

respectively. All mentioned chemicals were of analytical grade and used without further 

purification. Hombikat UV 100 (Sachtleben Chemie, now Venator Germany GmbH), an 
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anatase TiO2 with a BET surface area of 280 m² g⁻¹ was used as the photocatalysts. 

Ultrapure water (≧	18.2 MΩ cm) was applied in all experimental runs. 

5.6. Experimental Procedure 

Stock solutions were prepared by dissolving potassium nitrate and DCA in water resulting 

in solutions with 10 mmol L-¹ potassium nitrate and varying DCA concentrations (2 mmol 

L⁻¹ to 20 mmol L⁻¹). Required amounts of TiO2 were added to these solutions resulting in 

mass concentrations of the photocatalyst varying between 1 g L⁻¹ and 10 g L⁻¹. The pH of 

the suspensions was adjusted at 3 by addition of potassium hydroxide. The photocatalytic 

runs were performed in glass bottles of suitable size containing different suspension 

volumes (80 mL, 100 mL, 250 mL, 400 mL, 600 mL and 900 mL) with a monochromatic 

light source (Omicron Laserage Laserprodukte GmbH, λmax = 365 nm with full width at 

half maximum = 10 nm as determined with a B&W Tek Spectra RadS Xpress, photon 

flux = 10.7 µmol min⁻¹ as determined by ferrioxalate actinometry24) equipped with a 

suitable wave guide within a glass tube (outer diameter = 11 mm, inner diameter = 9 

mm). The outlet of the wave guide was placed in the centre of the suspension to ensure 

that the light entrance is surrounded by the suspension in all three spatial directions.  

In all experimental runs, the suspension was magnetically stirred for 2 h in the dark in 

order to establish the adsorption equilibrium. Subsequently, the light source was switched 

on and the stirred suspension was irradiated for 3 h. Samples were taken every 30 min 

and centrifuged for 5 min at 13000 rpm. The supernatant solutions were filtered through 

syringe filters with 0.2 mm pore size and then diluted 1:20. Quantitative analysis of DCA 

and chloride was performed by high performance ion chromatography (HPIC) employing 

a DIONEX ICS-1000 instrument equipped with an anion exchange column (Ion Pac AS9-

HC 2V 250 mm) in combination with a guard column (Ion Pac AG9-HC 2V 50 mm). The 

column temperature was set to 35 °C. The mobile phase (flow rate = 0.3 mL min-¹) 

consisted of an aqueous solution of Na2CO3 (8 mmol L⁻¹) and NaHCO3 (1.5 mmol L⁻¹). 

5.7. Results 

The light induced degradation of dichloroacetic acid (DCA) in the presence of Hombikat 

UV 100 as the photocatalyst was studied varying the initial concentration of the probe 
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compound (2 mmol L⁻¹ ≤ Cs ≤ 20 mmol L⁻¹), the mass concentration of the photocatalyst 

(2 g L⁻¹ ≤ γ ≤ 20 g L⁻¹), and the suspension volume (80 mL ≤ V ≤ 900 mL). The photon 

flux into the suspension as well as the temperature, the concentration of dissolved 

oxygen, the pH, and the ionic strength was kept (almost) constant. After adding the 

photocatalyst to the aqueous DCA solution and pH adjustment, the suspensions were 

stirred in the dark for two hours prior to irradiation. In all experimental runs the DCA 

concentration was found to decrease during this dark period, i.e., the DCA concentration 

C0 at the time when the light source was switched on (t = 0) was always found to be lower 

than the DCA concentration Cs of the stock solution. 

 

Figure 5.1. Photocatalytic degradation of dichloroacetic acid (DCA) varying the initial concentration:(A) 

Concentration vs. time profile, (B) Reaction rates dC/dt (calculated from the slopes of the plots in (A)) vs. 

the concentration of the stock solution Cs. The line in (B) represents the average of the five data points. 

Experimental conditions: Hombikat UV 100, γ = 5 g L⁻¹, V = 400 mL, photon flux = 10.7µmol min⁻¹, pH 3, 

10 mmol L⁻¹ KNO3, air saturated, ambient temperature. 
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In a first set of experimental runs the impact of the amount concentration of DCA on the 

reaction rate was investigated. For that matter, the initial concentration of DCA was 

varied at a constant mass concentration of the photocatalyst (γ = 5 g L⁻¹) and a constant 

suspension volume (V = 400 mL). Figure 5.1A illustrates the change of the DCA 

concentration as determined by HPIC during UV(A) irradiation for experimental runs 

with DCA concentrations Cs varying between 2 mmol L⁻¹ and 20 mmol L⁻¹. It becomes 

obvious from this Figure, that the DCA concentration decreased linearly with time during 

UV(A) irradiation. The degradation rate defined as the time derivative of the amount 

concentration (dC/dt) is directly obtained from the slope of the graphs. The numerical 

values of the thus calculated degradation rates are given in Figure 5.1B. The rates were 

found to be constant within the limits of experimental error (dC/dt = 4.79 ± 0.56 µmol L⁻¹ 

min⁻¹) and not affected by the initial concentration of DCA at the experimental conditions 

employed here. The rate of conversion was calculated inserting the reaction rate, the 

suspension volume V, and the stoichiometric coefficient ν(DCA) = 1 into Equation 5.2. 

A mean value dξ(DCA)/dt = 1.92 ± 0.22 µmol min⁻¹ was obtained.  

In a second set of experimental runs the impact of the mass concentration of the 

photocatalyst on the DCA degradation rate was investigated. The initial concentration of 

DCA (Cs = 10 mmol L⁻¹) and the suspension volume (V = 400 mL) were kept constant 

during these experimental runs. The measured DCA concentrations are plotted versus the 

irradiation time in Figure 5.2A. Again linear concentration-time plots were obtained 

enabling the determination of the DCA degradation rates from the slopes of these plots. 

The degradation rates were found to be constant (dC/dt = 5.54 ± 0.43 µmol L⁻¹ min⁻¹) and 

not affected by the mass concentration γ of the photocatalyst Hombikat UV 100 (Figure 

5.2B). With this reaction rate, a mean rate of conversion dξ(DCA)/dt = 2.22 ± 0.17 µmol 

min⁻¹ is calculated employing Equation 5.2. 
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Figure 5.2. Photocatalytic degradation of dichloroacetic acid (DCA) varying the mass concentration of the 

photocatalyst Hombikat UV 100: (A) Concentration vs. time profile, (B) Reaction rates dC/dt (calculated 

from the slopes of the plots in (A)) vs. mass concentration γ. The line in (B) represents the average of the 

five data points. Experimental conditions: Cs = 10 mmol L⁻¹, V = 400 mL, photon flux = 10.7µmol min⁻¹, 

pH 3, 10 mmol L⁻¹ KNO3, air saturated, ambient temperature. 
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Figure 5.3. Photocatalytic degradation of dichloroacetic acid (DCA) varying the suspension volume: (A) 

Concentration vs. time profile, (B) Reaction rates dC/dt (calculated from the slopes of the plots in (A)) vs. 

the suspension volume V. The line in (B) was calculated with dC/dt = k/V and k = 1.82 µmol min⁻¹. 

Experimental conditions: Hombikat UV 100, γ = 5 g L⁻¹, Cs = 10 mmol L⁻¹, photon flux = 10.7 µmol min⁻¹, 

pH 3, 10 mmol L⁻¹ KNO3, air saturated, ambient temperature. 

In a third set of experimental runs the suspension volume was varied at constant initial 

concentration of DCA (Cs = 10 mmol L⁻¹) and constant mass concentration of the 

photocatalyst (γ = 5 g L⁻¹). Again, linear concentration-time plots were obtained (Figure 

5.3A). However, when the degradation rates determined from the slopes of these 

concentration-time plots are plotted versus the suspension volume, a non-linear decrease 

is observed (Figure 5.3B) as expected for the photocatalytic degradation of a probe 

compound in suspension. The reaction rates have been fitted using a regression curve 

dC/dt = k/V with k = 1.82 ± 0.04 µmol min⁻¹. Since the stoichiometric coefficient of DCA 

is unity, this value k corresponds directly to the rate of conversion dξ(DCA)/dt defined by 

Equation 5.2. The good agreement between the experimental and the fitted values clearly 
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indicate the independence of the rate of conversion from the suspension volume within 

the limits of experimental error. This also clearly demonstrates that the experimental set-

up employed here behaves like a black body reactor: with a given photocatalyst and under 

the condition of zero order kinetics with respect to the organic solute, constant photon 

fluxes result in constant rates of conversion! 

Finally, the impact of the photon flux was investigated employing varying the fluxes 

(0.54 µmol min⁻¹ ≤ dnp/dt ≤ 10.7 µmol min⁻¹). The initial concentration of DCA (Cs = 10 

mmol L⁻¹), the mass concentration of the photocatalyst (γ = 5 g L⁻¹), and the suspension 

volume (400 mL) were kept constant. The measured DCA concentrations are plotted 

versus the photon flux in Figure 5.4A. Linear concentration-time plots were obtained at 

all photon fluxes in the range mentioned above, thus indicating that the photon flux is not 

affecting the kinetics of the DCA degradation reaction. The rates calculated from the 

slopes of these plots are presented in Figure 5.4B. A non-linear relation between the 

calculated degradation rates and the photon fluxes becomes obvious. 
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Figure 5.4. Photocatalytic degradation of dichloroacetic acid (DCA) at varying photon fluxes: (A) 

Concentration vs. time profile, (B) Reaction rates dC/dt (calculated from the slopes of the plots in (A)) vs. 

the photon flux. The line in (B) was calculated with assuming a square root dependence of the reaction rate 

on the photon flux. Experimental conditions: Hombikat UV 100, γ = 5 g L⁻¹, Cs = 10 mmol L⁻¹, V = 400 

mL, pH 3, 10 mmol L⁻¹ KNO3, air saturated, ambient temperature. 

 

5.8. Discussion 

In all experimental runs performed here, a decrease of the DCA concentration with a 

simultaneous increase of the Cl⁻ concentration was observed during UV(A) irradiation of 

aqueous DCA-TiO2 slurries. No change in the concentrations was observed when 

irradiating homogeneous DCA solutions with UV(A) light as well as stirring DCA-

containing TiO2 suspensions in the dark (data not shown). Therefore, the observed 

changes in the DCA and Cl⁻ concentrations in UV(A) irradiated Hombikat UV 100 

suspensions can only be attributed to a photocatalytic degradation of the organic solute. A 
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possible reaction pathway for the photocatalytic DCA degradation at the acidic pH of the 

suspension employed here (pH 3) is given in Table 5.1. 

Table 5.1. Main reaction stepsduring the photocatalytic DCA degradation at pH 3 (adapted from Ref. 12 

and 13). 

Reaction step 
 

TiO2 + O2⇌ TiO2—O2 ads (5.3) 

TiO2 + CHCl2COO⁻ ⇌ TiO2—CHCl2COO⁻ads (5.4) 

TiO2—CHCl2COO⁻ads + h⁺ → TiO2—CHCl2COO●
ads (5.5) 

CHCl2COO●
ads→

●CHCl2 ads + CO2 (5.6) 

O2 ads + ●CHCl2 ads→
●OOCHCl2 ads (5.7) 

2 ●OOCHCl2 ads→ 2 COCl2 + H2O2 (5.8) 

COCl2 + H2O → CO2 + 2 H⁺ + 2 Cl⁻ (5.9) 

 

At pH 3, DCA is mainly present dissociated in its constituting ions (pKa(DCA) = 1.06)25 

resulting in the adsorption of negatively charged dichloroacetate ions at the positively 

charged TiO2 surface. The reaction pathway given in Table 5.1 takes into account that 

adsorbed dichloroacetateis attacked directly by a hole that is produced upon light 

excitation of a photocatalyst particle. The mechanism thus considers that, in acidic TiO2 

suspensions, direct attack of the organic adsorbate by holes is significantly more 

important than oxidation by OH radicals as clearly demonstrated in previous publications 

reporting the photocatalytic degradation of carboxylic acids12,13,26-36. The dichloroacetoxy 

radical formed by direct hole oxidation of adsorbed DCA (Equation 5.5) decarboxylates 

yielding a carbon-centered radical (photo-Kolbe reaction, Equation 5.6) which reacts 

with molecular oxygen in a subsequent reaction step (Equation 5.7). Two of the 

intermediate radicals react in a bimolecular reaction yielding hydrogen peroxide and 

phosgene (Equation 5.8) which is immediately hydrolyzed into CO2 and Cl⁻ (Equation 

5.9). According to this reaction mechanism the absorption of one photon by a 

photocatalyst particle is required to initiate the complete mineralization of one DCA 

yielding CO2, H⁺, and Cl⁻. If this mechanistic scheme is valid, then dξ(DCA)/dt = 

dξ(Cl⁻)/dt must hold. 



5. Reaction Rate Study of Photocatalytic Degradation of Dichloroacetic Acid in a Black 
Body Reactor 
 
 

114 
 

The kinetics of light-induced reactions of organic compounds in photocatalyst 

suspensions have been analyzed using a variety of different rate laws37. Some of these 

rate laws can be mathematically expressed by a Langmuir−Hinshelwood-type rate law, 

which is written here as 

dC/dt = χ1C/(χ2C + χ3)                                                                                                  (5.10) 

Depending on the underlying mechanistic assumptions, the physical meaning of the 

kinetic parameters χ1, χ2, and χ3 are different in the different rate laws38-43. 

It became obvious from the Figures 5.1A, 5.2A, and 5.3A that the kinetics of the 

photocatalytic DCA degradation can be described by a zero order rate law under the 

experimental conditions employed in this work. This suggests that the condition χ2C ≫	χ3 

holds. Consequently, Equation 5.11 simplifies resulting in  

dC/dt = χ1/χ2 = rmax                                                                                                       (5.11) 

with the maximum reaction rate rmax which depends on the time derivative of the 

adsorbed amount of photons dnp,abs/dt. 

It is known that the adsorption of carboxylic acids, such as acetic acid and dichloroacetic 

acid, from acidic aqueous solutions on TiO2 surfaces can be described by Langmuir 

adsorption isotherms44-46. This suggests that Equation 5.10 can be written as  

dC/dt = rmaxKC/(1+KC)                                                                                                (5.12) 

and the condition KC ≫ 1 holds, thus indicating the saturation of all adsorption sites on 

the TiO2 surface by adsorbed DCA molecules, i.e., the surface coverage θ = KC/(1+KC) 

is unity. The amount of adsorbed DCA per unit mass of the adsorbent q = (Cs−C0)/γ, 

which was calculated from the difference of the DCA amount concentrations Cs and C0, 

and the mass concentration γ of the photocatalyst, was found to be almost constant, thus 

supporting the latter proposition. However, the obtained value q= 150 µmol g⁻¹ is 

surprisingly low when compared with data published by Boehm and co-authors who have 

determined the amounts of OH groups being present on the amphoteric surface of anatase 

TiO2
44,45. For samples having surface areas of 56 m² g⁻¹ and 200 m² g⁻¹ values of 7.8 

µmol m⁻² and 7.3 µmol m⁻², respectively, have been reported. Approximately half of 
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these OH groups are basic and suitable to interact with anions at acidic pH. From the 

Langmuir adsorption isotherm of acetic acid adsorbed at the surface of a TiO2 sample 

with a surface area of 56 m² g⁻¹ the number of basic OH groups per unit mass was 

calculated to be 190 µmol g⁻¹ 44, which corresponds to 3.4 µmol m⁻². Using this value and 

the surface area of the photocatalyst employed in the present study (280 m² g⁻¹), a DCA 

loading of 950 µmol g⁻¹ is expected. However, Hufschmidt et al. reported DCA loadings 

of 45−60 µmol g⁻¹ and 70−90 µmol g⁻¹ for platinized anatase-rutile mixtures (Degussa P 

25, 50 m² g⁻¹) and platinized anatase (Hombikat UV 100, 300 m² g⁻¹), respectively, in 

aqueous suspensions at pH 3 47. From data published by Czili and Horváth for the 

adsorption of DCA at pH 3, values of ≈ 50 µmol g⁻¹, ≈ 20 µmol g⁻¹, and ≈ 20 µmol g⁻¹ are 

estimated for the anatase-rutile composite Degussa P25 (50 m² g⁻¹), anatase (9.6 m² g⁻¹), 

and rutile (9.7 m² g⁻¹), respectively48. Krivec et al. investigated the adsorption of DCA on 

Degussa P25 at pH 3 and observed Langmuir adsorption with a maximum amount of 

adsorbed DCA of 43 µmol g-¹. The maximum amount of adsorbed DCA decreased to 22 

µmol g-¹ in the presence of 0.5 mmol L⁻¹ Cl⁻. They reported a Langmuir adsorption 

constant for DCA of 1.64 mmol L⁻¹ unaffected by the presence of Cl⁻ 46. It seems likely 

that the significantly lower q obtained for DCA compared to acetate is due to the larger 

area required by the bulky DCA on the TiO2 surface. The length of the C−H and C−Cl 

and bonds are ≈ 0.11 nm and ≈ 0.18 nm, respectively49. The assumption of a larger space 

requirement of DCA compared to acetic acid is also supported by experimental 

observations. Thus, Czili and Horváth found that the loading of titanium dioxide surfaces 

with an adsorbate decreases in the order monochloroacetic acid > dichloroacetic acid > 

trichloroacetic acid48. The above comparison with published data should have shown that 

there are no reasons against the assumption of complete coverage of the Hombikat UV 

100 surface with adsorbed DCA at the experimental conditions employed in this study. 

Complete coverage of all adsorption sites at the photocatalyst surface then results in zero 

order kinetics (dC/dt = rmax) as observed here (cf. Figure 5.1A, 5.2A, 5.3A, and 5.4A). 

As already mentioned above, the maximum reaction rate rmax depends on the time 

derivative of the amount of absorbed photons dnp,abs/dt, and thus on the photon flux 

dnp,em/dt emitted by the light source. For a black body photoreactor as used here, to a 

good approximation, the photon flux emitted by the light source is equal to the photon 
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flux absorbed by the photocatalyst particles in the suspension (dnp,em/dt ≅ dnp,abs/dt). 

Following a suggestion by Turchi and Ollis50, the relation between the observed reaction 

rates and the employed photon fluxes is given by rmax = k(dnp,em/dt)m ≅ k(dnp,abs/dt)m. The 

power term m has values of 1 and 0.5 at low and high dnp,abs/dt values., respectively. 

Here, a non-linear dependence of rmax on the photon flux was observed (Figure 5.4B), 

which, however, can not be described by a power term m = 0.5. The non-linear regression 

of the experimental data presented in Figure 5.4B with two adjustable parameters gave 

m< 0.5 (data not shown), which is not within the mechanistic assumptions used to derive 

the rate law. The RODA model, recently proposed by Mills and co-authors37 and applied 

here in the modified form dC/dt = k1[-1 + {1 + k2(dnp/dt)}0.5] to apply to zero order 

kinetics, also did not fit the experimental data (not shown). Salvador and co-workers have 

emphasised that photocatalytic reactions at solid surfaces always occur by direct electron 

transfer from the organic solute to valance band holes and by indirect reaction between 

the organic solute and surface-trapped holes41-43. Both reactions proceed in parallel. Thus, 

the observed reaction rate is the sum of the reaction rates of the direct and the indirect 

reaction, i.e., dC/dt = (dC/dt)direct + (dC/dt)indirect. The analysis of the experimental data 

depicted in Figure 5.4 was based on the rate law for the direct-indirect mechanism as 

derived by Mills and co-authors37. Since zero order kinetics was observed in all 

experimental runs, it was possible to simplify the rate law given by Mills et al. resulting 

in dC/dt = [k3
2 + k4(dnp/dt)]0.5 – k3 + k5(dnp/dt). A good agreement between the 

experimental data and the calculated curve was obtained (data not shown). However, the 

numerical values of the three adjustable kinetic parameters were found to be physically 

meaningless. These results indicate that additional reactions of the organic solute (DCA) 

occur at the surface of the excited photocatalyst or inside the surrounding electrolyte, 

which are not considered in the discussed rate laws and the underlying reaction 

mechanisms. Here, the reduction reaction of adsorbed DCA by conduction band reactions 

as well as reactions between secondarily formed OH radicals and DCA in the aqueous 

phase should be considered. 

As discussed in the Introduction, the reaction rate dC/dt of a photocatalytic reaction in 

suspension is a volume-averaged value. Consequently, the values dC/dt = rmax reported in 

the Figure 5.1B, 5.2B, and 5.3B are also volume-averaged values. The absorbed photons 

result in the formation of electron-hole pairs. A fraction of the formed electrons and holes 
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recombine in a fast process. However, the remaining holes react with adsorbed 

dichloroacetate in a single electron transfer reaction according to Equation 5.5. The 

following equation applies 

dnp,em/dt  ≅ dnp,abs/dt = Φ⁻¹(dξ(DCA)/dt)                                                                       (5.13) 

 

 

Figure 5.5. Rates of conversion dξ(DCA)/dt and dξ(Cl⁻)/dt vs.(A) the photocatalyst mass concentration γ 

and (B) the suspension volume V. The lines represent the limits of experimental errors (= mean rate ± 

standard deviation) for DCA (solid lines) and Cl⁻ (dotted lines). 

 

The parameter Φ = dξ(DCA)/dnp,abs corresponds to the quantum yield of the 

photocatalytic degradation reaction under consideration23. In Figure 5.5, the rates of 

conversion dξ(DCA)/dt for all experimental runs at a photon flux of 10.7 µmol min-¹ are 

plotted versus both the mass concentration γ of the photocatalyst and the suspension 
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volume V. The average rate of DCA conversion was calculated as dξ(DCA)/dt = 2.02 ± 

0.24 µmol min⁻¹ (N = 13). With this average rate of conversion and the photon flux of 

10.7 µmol min⁻¹ emitted by the light source and determined by actinometry, the average 

quantum yield Φ of the photocatalytic DCA oxidation in the presence of Hombikat UV 

100 is calculated to be 0.189 ± 0.023. 

For the purpose of comparison, the rates of conversion of Cl⁻ are included in Figure 5.5. 

The average rate of conversion was calculated to be dξ(Cl⁻)/dt = 1.64 ± 0.48 µmol min⁻¹ 

(N = 13) which corresponds to an average quantum yield Φ = 0.153 ± 0.046 for the 

photocatalytic DCA oxidation in acidic suspension containing Hombikat UV 100. 

It becomes obvious from the data presented in Figure 5.4 that chloride is released slower 

than DCA is photocatalytically oxidized. The rate dξ(Cl⁻)/dt was found to be almost 20 % 

lower than dξ(DCA)/dt. Obviously, the relation dξ(DCA)/dt = dξ(Cl⁻)/dt, whose validity 

is mandatory if the DCA degradation follows the reaction path proposed in Table 5.1, 

does not hold. Chloride is known to be adsorbed on a TiO2 surface at acidic pH20,46. A 

Langmuir adsorption constant of 0.69 mmol L⁻¹ was reported for the adsorption of Cl⁻ on 

a Degussa P25 surface at pH 3 46. Certainly, the adsorbed fraction of the 

photocatalytically generated Cl⁻ is not available for the quantification by HPIC. Losses 

due to the evolution of molecular chlorine, which might be formed via hole oxidation of 

adsorbed Cl⁻ and subsequent dimerization of two Cl●, seems to be unlikely46. However, 

the formation of chloro-organic intermediates cannot be excluded. One possible reaction 

is the formation of tetrachloroethane by dimerization of two dichloromethyl radicals. The 

analogous formation of ethane by dimerization of two methyl radicals was demonstrated 

to occur during the photocatalytic reaction of acetic acid in O2-free33,34,51,52 and in O2-

containing TiO2 suspensions52. It should be mentioned that Chemseddine and Boehm, 

who have investigated the photocatalytic DCA degradation in aqueous slurries of 

Degussa P25 TiO2, reported a rate of CO2 evolution significantly lower than the rate of 

Cl⁻ formation. They emphasized, however, that almost all the chlorine bound in the 

reactant was released as chloride18. On the other hand, Ballari and co-authors, who have 

investigated the DCA degradation in the presence of an anatase TiO2, reported that 2 

moles of Cl⁻ are generated from 1 mole of degraded DCA, and that the 
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chromatographically determined DCA concentrations were almost equal to the 

concentrations calculated from corresponding TOC measurements. They concluded that 

no stable organic intermediates are formed during the photocatalytic degradation of 

DCA12. Zalazar et al. reported small differences between the measured concentrations of 

organic carbon (TOC) and Cl⁻ and the values expected from the measured DCA 

concentrations in the initial phase of the experimental runs. However, they claim that a 

statistical test does not indicate these deviations to be significant13. 

The rates of conversion dξ(DCA)/dt and dξ(Cl⁻)/dt were found to be constant within the 

limits of experimental error and not affected by the initial concentration of the probe 

compound dichloroacetic acid, Cs, the mass concentration of the photocatalyst Hombikat 

UV 100, γ, and the suspension volume V, when Cs and γ are larger than 2.5 mmol L⁻¹ and 

1 g L⁻¹, respectively. The deviations from the average values of dξ(DCA)/dt and 

dξ(Cl⁻)/dt were found to be about 12 % and 30 %, respectively. The larger experimental 

error in the determination of dξ(Cl⁻)/dt is attributed to the significantly lower 

concentrations of chloride formed during the photocatalytic degradation of DCA. 

Employing a black body photoreactor, rates of conversion can thus be determined with 

sufficiently good reproducibility. 

5.9. Conclusions 

The experimental results presented here clearly evince that the rate of a photocatalytic 

reaction in suspension can be determined unaffected by the scattering properties of the 

photocatalyst when a black body photoreactor is employed. It was shown that 

experimental conditions can be achieved under which the rate of the photocatalytic 

degradation reaction, defined as the time derivative of the extent of reaction, is constant 

within the limits of experimental error. It is assumed that the observed variance of the 

rates of conversion is due to inhomogeneities of the commercial Hombikat UV 100, as 

had already been reported for Degussa P25 (now Aeroxide TiO2 P25, Evonik)53. 

Employing a black body photoreactor, rates of conversion and quantum yields can thus be 

determined with sufficiently good reproducibility.  

Finally, some remarks (platitudes) on the comparative assessment of different 

photocatalysts may be given: 
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(i) For comparative measurements in suspensions, it should be ensured that the 

photocatalyst is the only light-absorbing species. The probe compound as well as 

intermediates and products formed during the photocatalytic reaction must therefore be 

optically transparent at the wavelength used for the excitation of the photocatalyst.  

(ii) The experimental conditions should allow the determination of the amount of photons 

absorbed by the photocatalyst. 

(iii) Comparative activity measurements with a set of photocatalysts should be performed 

under conditions of zero order kinetics with respect to the probe compound. This ensures 

the observed differences in rates of conversion or quantum yields are not due to 

differences in the coverage of the photocatalyst surface with the sample compound. 

(iv) As the measure of the activity of a solid photocatalyst, it is advisable to indicate the 

quantum yield or the rate of conversion of the probe compound obtained under the 

conditions of zero order kinetics. This enables the direct comparison of reported data 

without any necessary conversions of volume, mass or area related reaction rates. 

(v) It seems doubtful that rates of conversion that differ by less than 10 % indicate 

differences in photocatalytic activities. If necessary, a sufficiently high number of 

replicate measurements are to be performed demonstrating that differences between the 

determined activities of photocatalysts of less than 10 % are statistically significant. 
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6. Summarizing Discussion 

This chapter starts with the introduction of the possible mechanistic pathways of the 

photocatalytic dichloroacetic acid (DCA) degradation followed by a discussion of the 

kinetic study and the obtained reaction rates during the photocatalytic dichloroacetic acid 

(DCA) degradation in a black body reactor using anatase TiO2 nanoparticles (Hombikat 

UV 100) as photocatalyst upon UV irradiation. Hereby, the effect of the model compound 

concentration, the catalyst loading and the reaction volume on the reaction rate will be 

discussed in detail. Based on the kinetics of the DCA degradation and the Cl- formation, 

the respective mechanisms of the photocatalytic degradation of DCA are discussed. In the 

following, the quantum yield of the reaction and its dependency on the photon flux in a 

black body reactor are discussed. Furthermore, the role of the light density in a black 

body reactor and its effect on the reaction rate and the quantum yield is described. 

Finally, the activities of various photocatalysts measured in a black body reactor are 

compared and a new standard method for the comparison of the photocatalytic activities 

in heterogeneous systems is introduced. 

As mentioned in Chapter 1, the proper design of a photoreactor necessitates the 

determination of the volume-averaged quantum yield. Consequently, in addition to the 

reaction rates, the volume-averaged amount of photons that are absorbed by the 

photocatalyst per unit time is required. Therefore, an integration of the local volumetric 

rate of the photon absorption (LVRPA) for all possible positions inside the reactor is 

required. In turn, the LVRPA is calculated by solving the radiative transfer equation 

(RTE). To solve this equation, the scattering effects of solid particles in the reaction 

slurry must be studied and the best phase function for radiation scattering by the 

photocatalyst particles must be selected. As shown in Chapter 2, scattering is the most 

challenging issue in heterogeneous systems. Unavoidable intrinsic spatial variations of 

this phenomenon are responsible for the majority of the difficulties associated with the 

photoreactor analysis and design1. Hence, it would be a great simplification for the 

photoreactor design to find a way in which scattering does not have to be considered. The 

best solution to apply this appraoch is a method enabling the determination of the 

volume-averaged quantum yield in a system in which all the light is absorbed by the 

system and the light scattering is negligible. 
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Furthermore, as discussed in Chapter 1, the lack of a standard method to measure the 

activity of different photocatalysts in heterogeneous systems makes it difficult to compare 

the photocatalytic activity of various materials. Although it is recommended by the 

IUPAC to compare the activity of photocatalysts based on their respective quantum 

yield2, in most of the studies the activity is reported in terms of the reaction rate. The 

main obstacle in the quantum yield determination of heterogeneous systems is the 

measurement of the number of absorbed photons by the semiconductor particles which 

requires sophisticated and time consuming methods3,4. On the other hand, it should be 

taken into account that in heterogeneous photocatalytic systems, the reaction rate is 

always a volume-averaged value. The photocatalytic reaction only takes place in regions 

where light penetrates while in dark regions no photocatalytic reaction can occur. 

Therefore, many parameters such as the reaction volume, the reactor geometry, the 

catalyst loading, and the concentration of the probe molecule, have an impact on the 

reaction rate of the photocatalysts defined as the time derivative of the concentration.  

The choice of a proper model compound is an important issue in photocatalysis in order 

to find a straightforward procedure for the determination of the quantum yield. Many 

researchers employ dye molecules (e.g. methylene blue) as a probe compound to evaluate 

the kinetics or the mechanism of a photocatalytic process5–7. However, it has been 

discussed by mills et al. that the photobleaching of methylene blue sensitised by TiO2 in 

aqueous phase (commonly mistaken with its photocatalytic degradation), has a quite 

complicated mechanism. They have shown that the observed photobleaching of the dye, 

is not necessarily due its photocatalytic oxidation8. Phenol is another commonly 

investigated probe molecule which is not an ideal candidate for evaluation of 

photocatalytic systems. Upon its photocatalytic degradation, some stable intermediates 

such as catechol, hydroquinone, hydroxyl hydroquinone, and benzoquinone are 

produced9–11, thus part of the incoming photons might be absorbed by the intermediates. 

Other popular model compounds such as chlorophenol12 and its derivatives can be 

criticized with the same arguments. Therefore, DCA has been chosen in many studies as a 

simple compound for the comparison of different photocatalytic process13–21. 

6.1. Mechanism of the Photocatalytic Degradation of DCA  

As already mentioned, in this work DCA was chosen as a simple model compound which 

requires only one hole for a complete decomposition22. This compound only absorbs 
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radiation below 275 nm and its photocatalytic conversion does not yield intermediates, 

thus any unwanted absorption of the incoming light will be avoided18. Furthermore, its 

low vapor pressure and high water solubility make it a good choice for laboratory 

studies21. 

The reaction pathway and the primary steps of the photocatalytic degradation of DCA 

have a significant impact on the kinetics of this photocatalytic reaction. Therefore, to 

have a complete understanding of the kinetics of the DCA degradation, the underlying 

mechanism needs to be known. The photocatalytic decomposition of DCA takes place via 

two different reaction pathways; (І) direct mineralization in which the organic adsorbate 

is directly attacked by holes and, (П) indirect oxidation process by OH radicals (Figure 

6.1)23. 

 

Figure 6.1. Mechanisms of DCA degradation23 



6. Summarizing Discussion  
 
 

128 
 

In the direct oxidation pathway, excitation of electrons from the valence band to the 

conduction band occurs upon light absorption of the semiconductor photocatalyst within a 

specific wavelength range. The promotion of an electron to the conduction band leaves a 

positive hole in the valence band (Equation 6.1)24. The photo-generated electrons and 

holes either recombine or migrate to the photocatalyst surface, where they can act as 

reductants and oxidants, respectively25. In the pH range applied in this work (pH 3), the 

DCA molecule dissociates into dichloroacetate and is adsorbed on the surface of the 

photocatalyst (Equation 6.2)19. As reported by Bahnemann et al., the generated hole 

attacks the adsorbed DCA molecule and produces a dichloroacetate radical (Equation 

6.3)26. According to Bahnemann, this radical decomposes into carbon dioxide and a 

dichloro methyl radical (photo-Kolbe) which in turn reacts with adsorbed molecular 

oxygen producing a dichloro methyl peroxyl radical (Equations 6.4, 6.5)22. The 

bimolecular reaction of two dichloro methyl peroxyl radicals results in the formation of 

hydrogen peroxide and phosgene which hydrolyzes very fast yielding HCl and CO2 

(Equations 6.6, 6.7)18. According to this mechanism Zalazar et al. claimed that one hole 

is required for the complete mineralization of DCA, because during the degradation 

process a stable chloride reaction intermediate is not generated. Therefore, the 

decomposition of each mole of DCA leads to generation of stoichiometric ratios (two 

moles) of HCl27. 

Photocatalyst + hν → % £8 + ℎ¥£�                                                                                     (6.1) 

Site + CHCl2COO- → CHCl2COO-
ads                                                                            (6.2) 

h+ + CHCl2COO-
ads → CHCl2COO•                                                                                                                       (6.3) 

CHCl2COO• → HCl2C
• +CO2                                                                                        (6.4) 

HCl2C
• +O2ads → CHCl2OO•                                                                                          (6.5) 

CHCl2OO• + CHCl2OO• → 2COCl2 + H2O2                                                                  (6.6) 

COCl2 + H2O → CO2 + 2HCl                                                                                        (6.7) 

Besides the direct reaction pathway, DCA can also be decomposed through an indirect 

pathway involving •OH radicals formed at the surface of the photocatalyst. As described 

by Schuchmann et al.
28 for the •OH-induced formation of acetate, this mechanism 
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proceeds through a pathway which involves the following steps (Equations 6.8-6.12): 

formation of an electron-hole pair, transfer of the hole to the surface, reaction with an 

OH- ion or an adsorbed water molecule forming an •OH radical (Equation 6.8), hydrogen 

abstraction and production of a •CCl2COO- radical (Equation 6.9), formation of 
•OOCCl2COO- (Equation 6.10), bimolecular reaction of •OOCCl2COO- (Equation 

6.11)29 and hydrolysis of phosgene to produce hydrochloric acid and carbon dioxide 

(Equation 6.12)29. 

H2O + ℎ¥£�  → •OH + H+                                                                                                                                                  (6.8) 

•OH + CHCl2COO- → •CCl2COO- + H2O
                                                                                                         (6.9) 

•CCl2COO- +O2
 → •OOCCl2COO-                                                                               (6.10) 

•OOCCl2COO- + •OOCCl2COO- + 2H+ → 2COCl2 + 2CO2 + H2O2                           (6.11) 

COCl2 + H2O → CO2 + 2HCl                                                                                       (6.12) 

However, besides the above mentioned mechanism, Zalazar et.al have proposed another 

pathway in which the •OH radical attacks the negatively charged carboxyl group of the 

molecule which results in a neutral radical29,30.  

•OH + CHCl2COO- →CCl2HCOO• + HO-                                                                    (6.13) 

Through the Kolbe reaction the formed radical is decarboxylated as shown in Equation 

6.4
29. The formed dichloromethyl radical also reacts with molecular oxygen resulting in 

the formation of a dichloromethylperoxyl radical (Equation 6.5). In the next step, 

phosgene is formed by a bimolecular reaction (Equation 6.6). As in the first pathway, the 

formed phosgene is hydrolyzed in the solution (Equation 6.7). 

Nevertheless, considering the experimental conditions presented in this work, it is 

experimentally not possible to differentiate between these two reaction pathways, whether 

measuring DCA, Cl-, H+, TOC, etc. 

Furthermore, since the degradation pathway might affect the kinetics of the DCA 

degradation, the Cl- formation rate was also studied besides the DCA degradation rate. As 

illustrated in Figure 6.1, DCA can be degraded through the initial abstraction of the H 

atom or via the photo-Kolbe reaction pathway forming CO2 as reported by Lindner23. 
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Accordingly, in the current study, the combination of the experimental results from the 

Cl-formation and DCA- ion degradation may provide a better understanding of the 

photocatalytic degradation mechanism of DCA. Interestingly, it was found that the rate of 

chloride formation was constant with an average value of 1.64 ± 0.48 µmol min-1 (Figure 

5.5) which was slightly lower than the DCA degradation rate (2.02 ± 0.24 µmol min-1). 

These differences between the reaction rate of the DCA degradation and the Cl- formation 

suggest that Cl- is released more slowly than DCA is photocatalytically oxidized. 

Therefore, either the direct mechanism is not the only pathway of the photodegradation of 

DCA or part of the generated Cl- remains adsorbed on the photocatalyst surface.  

After the formation of HCl, the chloride ions compete with DCA for adsorption sites at 

the catalyst surface. According to the results reported by Piscopo et al. and Wang et al., 

the Cl- ions are strongly adsorbed on the TiO2 surface at pH 331,32. Therefore, considering 

that the adsorbed fraction of the generated Cl⁻ is not available for the quantification by 

HPIC, this small difference between the photocatalytic oxidation rate of DCA and the 

formation rate of Cl- can be explained by the strong adsorption of Cl- on the catalyst 

surface. 

As shown in Figure 6.1, DCA can be decomposed through different pathways resulting 

in various intermediates. These reactive intermediates can react with each other forming 

some stable intermediates leading to a decrease in the amount of Cl- in the solution. For 

example, according to Equation 6.4, the obtained dichloromethyl radical can dimerize 

yielding tetrachloroethene: 

2•CHCl2 → C2H2Cl4                                                                                                     (6.14) 

It has to be mentioned that this reaction only happens in the absence of molecular oxygen. 

The formed intermediates can result in differences between the DCA degradation rate 

according to the measured DCA ions and the generated chloride ions. Considering the 

physical properties such as volatility and low solubility of tetrachloroethene in water, this 

compound can evaporate after the formation. Therefore, detection of this compound is 

difficult in an open system. Nevertheless, the excess amount of molecular oxygen present 

in the system leads to a low conversion of this reaction. It should be mentioned that 

Zalazar et al. also reported lower values of Cl⁻	 than	 the	 values expected from the 
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measured DCA concentrations.	However, according to the performed statistical test no 

significant deviation was indicated18. 

6.2. Reaction Rate Study of Photocatalytic Degradation of DCA  

Regardless of the detailed microscopic mechanism of the photocatalyst, the rate of the 

photocatalytic DCA degradation is generally given by a form of the Langmuir-

Hinshelwood-type rate law having the mathematical form of (Equation 6.15)33–36. 

dC/dt = χ1C/(χ2C + χ3)              (6.15) 

where the physical meaning of the kinetic parameters χ1, χ2, and χ3 depends on the 

underlying mechanistic assumptions. This model is widely accepted and can fit many 

photocatalytic results. Although this model is just an apparent description of the 

photocatalytic kinetics, it is applied to interpret the kinetic data of the heterogeneous 

DCA degradation reaction due to a simple mathematical form37. According to this model 

when χ2C ≫	χ3, the reaction rate reaches its maximum value and becomes independent 

from the concentration following zero order kinetics regarding the concentration of the 

probe molecule (Equation 6.16). 

dC/dt = χ1/χ2 = rmax                                                                                                       (6.16) 

According to the kinetic experiments reported in Chapter 5 (Figure 5.1, 5.2, and 5.3), 

the kinetics of the photocatalytic DCA degradation can be described by a zero order rate 

law under the experimental conditions employed in this work which is expressed as 

follows (Equation 6.17). 

_ = X X = −:                                                                                                                 (6.17) 

The kinetic parameter k is the reaction constant, which under zero order kinetic conditions 

is equal to the maximum reaction rate. As shown in Figure 5.1, similar to the Langmuir-

Hinshelwood prediction, the observed rate constants for various initial concentrations of 

DCA (C0) seems to initially follow first order kinetics only at low initial concentrations 

(lower than 2 mM). However, by increasing the concentration, zero order kinetics are 

observed at higher DCA concentrations. According to the results shown in Chapter 5 in 

Figure 5.1, the average value of the reaction rate for initial concentrations higher than 5 

mM was 4.79 ± 0.56 µmol L-1 min-1. The experimental runs for various catalyst 
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concentrations of Hombikat UV 100, illustrated in Figure 5.2, also showed zero order 

kinetics. The reaction rate linearly increased upon an increase of the catalyst loading and 

after reaching an optimum catalyst concentration (1 g L-1), the reaction rate was found to 

be independent from the catalyst concentration and became constant.  

Therefore, considering the advantages of a black body reactor described in Chapter 1, it 

is proposed here to measure the photocatalytic activity of semiconductors under zero 

order kinetic conditions regarding the mentioned parameters, utilizing a black body 

reactor. A black body photoreactor ensures a complete absorption of the incoming 

photons by the photocatalyst. The small area of the light inlet in comparison to the whole 

reactor area leads to negligible back reflections through the inlet and the loss of light due 

to transmission is also omitted by increasing the catalyst loading surrounding the light. 

In the current study, in order to confirm the employed system as a real black body 

photoreactor, an experimental validation was performed through carrying out actinometry 

measurements in this system in the absence as well as in the presence of a light scattering 

particle (BaSO4 powder). It was observed that the photon flux inside the reactor is 

identical in both cases. 

However, the reaction rate defined as the time derivative of the amount concentration is a 

volume-averaged value. The experimental results presented in Figure 5.3, clearly evince 

that the reaction constants decrease with an increase of the reaction volume. This can be 

easily explained by the fact that the rate constant is defined as the change in concentration 

per time and as the reaction volume changes the reaction rate changes as well. In order to 

solve this issue, the current study recommends to convert the reaction rate to an amount 

based unit and to report it as a converted amount of the probe compound per time. 

Therefore, performing a reaction at the optimum concentration of the probe molecule and 

of the photocatalyst results in an independent reaction rate regarding these two parameters 

and by reporting the reaction rate on an amount basis, a constant reaction rate concerning 

the reaction volume will be achieved (as shown in Figures 5.1B, 5.2B, 5.5). 

According to the data discussed in Chapter 3 (Figure 3.1), providing a photoreactor 

which meets the requirements of a black body reactor, the DCA degradation rates on an 

amount basis (dn/dt) were found to be constant within the limits of experimental error and 

independent from the reaction volumes and the initial concentrations of the probe 



6. Summarizing Discussion 
 
 

133 
 

molecule (C0) and the photocatalyst (γ) when C0 ≥ 2 mM, γ ≥ 1g L-1. The average value 

of the reaction rate was 1.98 ± 0.18 µmol min-1 and the average quantum yield Φ of the 

photocatalytic DCA oxidation in the presence of Hombikat UV 100 was calculated to be 

0.189 ± 0.023. 

6.3. Evaluation of the Quantum Yield in a Black Body Photoreactor  

In order to compare the activity of different photocatalysts, in addition to the reaction 

rate, the number of absorbed photons should be measured to obtain the quantum yield. 

Therefore, to determine the photon flux of the LED-based light beam inside the black 

body reactor, actinometrical measurements were carried out. As the quantum yield value 

of potassium ferrioxalate photolysis at 365 nm is known to be independent from the light 

intensity (φ = 1.21) and the light absorber as well as the photoproduct are thermally 

stable38, potassium ferrioxalate was used to determine the incoming photon flux inside the 

reactor. After exposure of a ferrioxalate solution to UV irradiation, Fe3+ converts to Fe2+ 

forming a complex with 1,10-phenanthroline that absorbs light at 510 nm (ɛ = 1.10 × 104 

M-1 cm-1) which can be detected 39. By measuring the number of converted molecules, the 

number of absorbed photons can be determined. According to the obtained results shown 

in Figure 4.3, the photon flux measured for various light intensities confirms a linear 

dependency of the photon flux on the LED power output. 

The measured photon fluxes through different light inlets for various light intensities 

demonstrated that the shape and size of the light inlet into the black body reactor do not 

affect the photon flux inside the reactor. However, the light inlet types affect the photon 

flux density and the reaction rate inside the reactor. As can be seen in Figure 6.2, at a 

constant photon flux, the photon flux density was varied by means of three light inlets of 

different geometry. As an example, light inlet type 2 (hollow sphere) showed about 50 % 

lower photon density in comparison with type 1 (without sphere). As a result, the 

quantum yield of DCA decomposition revealed various correlations with the photon flux 

depending on the type of the light inlet. 
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Figure 6.2. Flux density of different light inlets a) type 2, b) type 3, c) type 1 

 

 

Figure 6.3. Light distribution of different light inlets: Note the lens effect of light inlet type 3. Note the lens 

effect of light inlet type 3 

 

According to the results shown in Figure 4.4, for a light inlet in the form of a hollow 

sphere, the reaction rates were found to be higher in comparison with the other two light 

inlets. In all cases, the reaction rate decreases by a decrease of the photon flux. However, 

as illustrated in Figure 4.4 a linear dependency on the photon flux could only be observed 

for the hallow sphere light inlet for both, Hombikat UV 100 and P25, as well as for the 

light inlet with a closed sphere for Hombikat UV 100. In other cases, the degradation rate 
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correlated with the square root of the photon flux. Assuming that the rate constant is 

independent from the light intensity, the rate of a photocatalytic reaction according to the 

Langmuir- Hinshelwood rate law is proportional to the light intensity.  

� = :!+W �(N) K��(N)                                                                                          (6.18) 

in which kr is the rate constant, K(I) is the adsorption coefficient of the probe compound 

which is dependent on the light intensity, and I = dnp/dt is the amount of photons being 

absorbed by the photocatalyst per unit time40,41. Here, I is assumed to be equal the photon 

flux emitted by the LED light source.  

As proposed by Serpone et al. 42, for quantum yield measurements the reaction rate was 

studied at zero order kinetic conditions regarding the probe compound concentration C 

and the catalyst loading. Therefore, at K(I)C >> 1, the reaction rate can be written as: 

� = :!+W                                                                                                     (6.19) 

Upon high illumination intensities, the recombination rate of charge carriers is described 

by second order reaction kinetics. Thus, this recombination results in a square root 

correlation between the photodegradation reaction rate and the photon flux (R = kr I
 0.5) 

which in turn leads to a linear dependency of the quantum yield (Φ ) on the inverse of the 

square root of the photon flux (i.e., Φ ∝ I-0.5) according to the following equation43–47. 

a = jN = :!+W8K                                   (6.20) 

However, at low light intensities the light limited reaction rate follows R = kr I revealing 

the linear dependency of the reaction rate on the photon flux 
44,46,48. Hence, assuming the 

rate constant kr to be independent from the photon flux, the quantum yield will be 

constant and independent from the photon flux (Φ = kr).  

Hence, the observed dependency of the quantum yield on the type of light inlet (Figure 

4.6) can be explained by the fact that the reaction rate and consequently the quantum 

yield depend strongly on the light distribution inside the reactor and the photon flux 

density at the interface between the suspension and the inlet window (Figure 6.3). 

Providing an appropriate light distribution inside the photoreactor might decrease the 

recombination rate of the photogenerated electron-holes pairs being the result of a 
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suitable light density at each point of the black body photoreactor keeping the photon 

density at different positions relatively low. 

Emeline et al. have tested cavities displaying three different shapes to confirm the 

independency of the quantum yield measured in a black body reactor from the light 

distribution in solution and thus from the irradiated surface area of the photocatalyst49. All 

three corresponding values of the quantum yield were found to be almost constant and 

independent from the cavity shape within experimental error. In comparison with the 

results obtained here and shown in Figure 4.4, this independency can be due to 

sufficiently big sizes of all cavities leading to a low photon density distribution inside the 

reactor and consequently to constant quantum yield values. 

A non-linear correlation between the reaction rate and the photon flux was also reported 

by Lindner et al.
20. At low photon fluxes, the photonic efficiency for the degradation of 

DCA over Hombikat UV 100 decreased with (I)-0.12 and at high photon fluxes with (I)-0.31. 

However, as reported by Bahnemann et al.
50 when P25 was used as a photocatalyst, the 

photonic efficiency of the DCA degradation showed an independency from the photon 

flux at pH = 2.6, 7, and 11. Nevertheless, at pH 5 the photonic efficiency exhibited a 

square root correlation with the light intensity. 

Therefore, it can be concluded that applying a black body reactor with a suitable type of 

light inlet through which the light is distributed properly inside the reactor, thus avoiding 

high photon density spots in the solution, leads to a light limited reaction rate and a 

quantum yield which is independent from the photon flux. Since the independency of the 

quantum yield from the photon flux is an important condition in order to characterize the 

intrinsic activity of the photocatalyst, it can be concluded that the proposed method of 

applying a black body reactor to compare the activities of different photocatalysts has 

significant advantages compared to other methods.  

However, it should be taken into account that for large scale applications, providing a low 

photon flux density throughout the whole photoreactor requires a large volume and 

consequently a large land area for its installation. This might result in extra costs for the 

photoreactor construction. Therefore, it is important to calculate the required illuminated 

reactor volume considering the technical and economical aspects51. 
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Finally, applying a light inlet with a closed sphere established a linear correlation between 

the photodegradation rate and the photon flux using Hombikat UV 100 as a photocatalyst. 

However, in case of P25 the degradation showed a square root dependency to the photon 

flux. These results can be explained by the dependency of the amount of absorbed 

photons on the solid state characteristics of the photocatalyst particles. 

 

 

Figure 6.4. Recombination of charge carriers in a particle with different sizes during illumination 

 

In principle, charge carriers should have average lifetimes long enough to diffuse to the 

surface. This can be affected by the particle size. The distance of the trapped electrons 

and holes to the surface of the photocatalyst in particles with smaller size is shorter. Thus, 

in smaller particles compared to the bigger particles the charge carriers can reach the 

surface more efficiently before they recombine and provided that the energetic 

requirements are fulfilled, they can be easily transferred to the electron and hole 

acceptors. As a result, the recombination rate of the photogenerated electrons and holes 

decreases with a decrease of the particle size and therefore, higher quantum yields 

compared to bigger particles are expected. The quantum yield of a photocatalytic reaction 

is a function of the transfer rate at the interface, the recombination rate inside the particle 

and the transit time52. Basically, the average transit time for the charge carrier trapping 

(ª !) within a particle with radius R is obtained from solving the Fick's law of diffusion as 

following53: 
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ª ! =	�«/¬«­                                                                                                              (6.21) 

in which D is the diffusion coefficient. The typical values of R and D are 10 nm and 0.1 

cm2 s-1, respectively. Considering these values, the average transit time will be about 1 ps. 

This value is much shorter than the recombination time of the charge carriers. Therefore, 

in particles with smaller size, most of the charge carriers can reach the surface before 

recombination52.  

Therefore, the small particle size (8 nm) of pure anatase in Hombikat UV 100 exhibits 

better utilization of light in comparison with P25 which has bigger particle sizes (22 

nm)54. Smaller particle sizes of Hombikat UV 100 can also result in a balance between 

the bulk and surface recombination of charge carriers leading to higher photonic 

efficiencies55. Zhang et al. have already shown that the particle size is a factor which 

plays a significant role for the charge carrier recombination and 10 nm seems to be an 

optimal size of pure TiO2 photocatalysts in liquid phase for the decomposition of 

chloroform56
. 

On the other hand, big particles of P25 are able to absorb a higher number of photons 

leading to high light intensity spots and superior recombination rates of charge carriers 

(Figure 6.4). The difference in the quantum yield of Hombikat UV 100 and P25 results 

from their different physicochemical properties such as the degree of crystallinity and the 

surface area. Hombikat UV 100 has a surface area of 280 m2 g-1 which is approximately 6 

times higher than that of P25. The high surface area can lead to higher adsorption of DCA 

on the surface. Since the rate of a surface reaction is proportional to the surface 

coverage57, according to the Langmuir-Hinshelwood rate law (Equation 6.22), for the 

particles with higher surface area higher reaction rates are expected. 

� � =	 ®	W¯°	W¯l¥ 																													                                                                               (6.22) 

C (mol L-1), t (s) and V (L) are receptively, the concentration of the probe molecule in the 

suspension, the time, and the total reaction volume. k (mol-1 s-1) is the rate constant of the 

photocatalytic reaction and nox (mol) and nos (mol) are the amount of oxidizing species at 

the photocatalyst surface and the amount of occupied sites, respectively.   

Furthermore, Otalvaro-Marin et al. have reported the average extinction coefficient (β) 

values of 5.71×104 cm2 g-1 and 2.64×104 cm2 g-1 between 280 to 395 nm for Degussa P25 

and Hombikat UV 100, respectively. Extinction coefficient (±) was defined as the sum of 
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the average values of the absorption coefficient (²) and the scattering coefficient (?). This 

parameter was used to calculate the scattering albedo coefficient (³ = ?average /±) which 

determines the fraction of dispersed energy. Hombikat UV100 was found to have a lower 

average absorption coefficient (²=1.17×103 cm2 g-1) and a higher scattering albedo 

coefficient (³=0.96) compared to P25. Accordingly, for Hombikat UV100 most of the 

photons are dispersed in a larger layer of the suspension with a photon absorption rate 

slower than P2558. 

6.4. A Standard Method for the Comparison of the Photocatalytic Activities of 

Semiconducting Materials  

The validity of the proposed idea of comparing the activity of different photocatalysts in a 

black body reactor with the reaction rate defined as the number of converted molecules 

per time, is also supported by measurements of the photocatalytic activity of nine other 

photocatalysts namely, anatase, rutile, a mixture of rutile and anatase (P25), brookite, 

surface modified anatase (KRONOClean 7000), SrTiO3, BaTiO3, WO3, and ZnO. The 

following experimental conditions were applied: I) c0 = 5 mM, γ = 5 g L-1, V = 400 mL; 

II) c0 = 10 mM, γ = 5 g L-1, V = 400 mL; III) c0 = 10 mM, γ = 7 g L-1, V = 600 mL. The 

results confirmed that for each of these catalysts the obtained quantum yield was constant 

and independent from the variation of the mentioned experimental conditions (Figure 

6.5). These investigations demonstrated that anatase (Hombikat UV 100) exhibits the 

highest photocatalytic activity for DCA degradation confirming the common notion of the 

high photocatalytic activity of anatase13,20. Hombikat UV 100 enhances the 

photodegradation of DCA due to its high surface area which favors the adsorption of 

polar molecules such as DCA on the surface. The activity of this catalyst was two times 

higher than that of P25. Rutile exhibited a low photocatalytic activity, which is in good 

agreement with the literature25,59. However, brookite revealed a better photocatalytic 

activity as compared with P25. Similar observations have been reported by Kandiel et 

al.
15. KRONOClean 7000, a visible-light active carbon modified anatase TiO2, showed 

almost a similar activity to P25 while SrTiO3 and BaTiO3 had lower activities than P25. 

In agreement with the obtained results, ZnO and WO3 are also known to be non-efficient 

photocatalysts in comparison with P2560–62. 

The obtained reaction rate confirmed that under sufficiently high optical density of the 

reaction slurry and suitably large concentrations of the probe molecule, the reaction rate 
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being defined on an amount basis is constant for each semiconductor. This value is 

independent from the mass concentration of the catalyst, from the initial concentration of 

DCA, and from the reaction volume.  

 

Figure 6.5. Average value of the quantum yield for different photocatalysts. Experimental conditions: A) c0 

= 5 mM, γ = 5 g L-1, V = 400 mL; B) c0 = 10 mM, γ = 5 g L-1, V = 400 mL; C) c0 = 10 mM, γ = 7 g L-1, V = 

600 mL. Photon flux = 10.7µmol min⁻¹, pH 3, 10 mmol L⁻¹ KNO3, air saturated, ambient temperature. 

 

Degradation of DCA at pH 3 was also investigated by Hufschmidt et al.
54. Assuming zero 

order kinetics for the degradation of DCA, photonic efficiencies of 12.2 % and 8.1 % 

were reported for pure Hombikat UV100 and P25, respectively. Comparing the obtained 

quantum yields for Hombikat UV100 (Φ = 18.9 %) and P25 (Φ = 9.4 %) by applying the 

proposed method in the current work confirms that the incident light is utilized more 

efficiently by a black body reactor than in reactors having a positive irradiation geometry. 

This is mainly because in a black body reactor almost all the light is absorbed by the 

photocatalyst and the loss of light due to the back reflection is almost zero. Consequently, 

the quantum yield in the black body reactor is approximately equal to the photonic 

efficiency which has a higher value in comparison with other photoreactors. Efficient 
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utilization of the incident light in a black body reactor can also be proved through 

comparison of the reported efficiencies by Menendez-Flores et al. and the obtained 

results through the black body reactor. They have examined P25 for the photodegradation 

of DCA at pH 3 reporting the photonic efficiency to be 2.83 %17. However, in the current 

study, the obtained quantum yield for P25 in a black body reactor was found to be about 

9.4 % which is approximately 3 times higher than the reported value.  

Lindner et al. have reported the photocatalytic activity of Hombikat UV 100 in terms of 

photonic efficiency to be about four times higher than P2520. Employing similar 

conditions as compared to our experimental work, the photonic efficiency of Hombikat 

UV 100 for DCA degradation was reported to be around 22 %, while P25 showed a 

maximum photonic efficiency of approximately 5 %. They also reported that in case of 

P25, the photonic efficiency showed constant behavior for catalyst concentrations higher 

than 0.5 g L-1. However, in case of Hombikat UV 100 the photonic efficiency was not 

independent from the catalyst concentration even at high concentrations of the catalyst 

(10 g L-1). This behavior of UV 100 is explained through aggregates of small particles of 

UV 100 which results in a blue shifted absorption spectrum at identical catalyst 

concentration due to the different absorptivity and scattering properties20.  

It should be mentioned that this difference between the obtained results and the reported 

data for DCA degradation can be due to the differences between the applied 

photocatalysts. Depending on the production batch of the photocatalyst and its position in 

a package, the reported results might differ between from different laboratories63. These 

variations can significantly influence the number of absorbed photons and the 

recombination rate of the charge carriers64. 

On the other hand, Minero and Vione have investigated the degradation of phenol 

employing two TiO2 photocatalysts, namely Degussa P25 and pure anatase named TiO2 

Wackherr. These authors observed a higher photocatalytic activity of pure anatase 

(Wackherr) by a factor of about 2 compared to the corresponding data of Degussa P25 

under similar conditions65. These observations are in good agreement with results 

obtained in the current work. The higher efficiency of pure anatase (Wackherr TiO2) was 

explained by Minero and Vione through slower surface charge-carrier-recombination 

processes, different chemical reactivity and a lower scattering coefficient of the Wackherr 

TiO2. An increase in radiation absorption of Wackherr TiO2 by increasing the 

photocatalyst loading was reported, implying that the photocatalyst loading and the 
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reactor geometry strongly affect the photocatalytic efficiency65. In contrast, in the current 

work, the efficiency of the photocatalyst was independent from the photocatalyst loading 

and the reactor geometry, since all experimental runs were performed in a black body 

reactor at sufficient high loadings of the photocatalyst and it revealed zero order kinetics 

and independent conditions. 

Comparison of the results obtained in the current study with literature values confirms the 

validity of the proposed method. For instance, higher activity of brookite as compared to 

P25 for the degradation of organic compounds has also been reported by Lin et al.
66 A 

composite of brookite and rutile was also used for the photocatalytic degradation of 

phenol under UV-irradiation by Cao et al., showing that the composite with the highest 

brookite content had a higher activity than composites with lower brookite content. The 

reaction rate of the composite with 72 % brookite was three times bigger than that of 

P2567. 

SrTiO3 and BaTiO3 catalysts are known not to be proper photocatalysts for the 

decomposition of organic compounds68,69. According to Ahuja et al., SrTiO3 does not 

show a high photocatalytic activity for the degradation of phenol upon UV irradiation. 

Reaction rates of phenol degradation were found to be extremely low and only about 5 % 

of phenol was degraded within 90 minutes of irradiation69. The photocatalytic activity of 

BaTiO3 was also reported to be very low for methyl orange and methylene blue removal 

upon UV illumination70. However, KRONOClean 7000 illustrated a slightly higher 

photocatalytic activity than P25 for degradation of hexane as reported by Moulis and 

Krysae71 which is similar to the observations of the current study. 

According to the research carried out by Liao et al., for the degradation of 

formaldehyde72, the reaction rate constant of ZnO was two orders of magnitude smaller 

than that of TiO2 confirming the validity of the obtained results from the current work. 

The decomposition rate of 4-chlorophenol per unit mass of catalyst by ZnO and P25 was 

also reported by Hariharan60. The photocatalytic activity of bulk ZnO was almost half of 

P25 and once again a similar result was observed in this work. 

Therefore, the outcome of the present study is essential for the comparison of the 

photocatalytic activities of different semiconductors. It is of high importance to measure 

the reaction rate under zero order conditions considering the initial concentration of the 

model compound, the photocatalyst loading, and the reaction volume. Based on the 

proposed idea, using a black body reactor, all the incoming photons are absorbed by the 
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photocatalyst and the reaction rate on an amount basis can be easily correlated under 

constant photon flux. This method is a simple and applicable approach to compare the 

photocatalytic activities of different semiconductors and it can answer some open 

questions in the field of semiconductor photocatalysis. 

A method proposed by Qureshi and Takanabe suggests to compare the intrinsic activities 

of various photocatalysts employing their photonic efficiencies considering the incident 

photon flux, the optimal rate, and the reaction rate73. These authors also highly 

recommend to report a list of factors including the reactant conversion rate or the product 

evolution rate, the incident photon flux as a function of the wavelength, the type of lamp 

and filters, the activities or the partial pressures of reactants and sacrificial reagents, the 

type of solution, the supporting electrolyte concentration, the pH, the amount of 

photocatalyst, the amount of co-catalyst, the amount of solution, the flow rate inside the 

reactor, the reactor volume and its dimensions (with photographs)73. 

Buriak et al. have also suggested to report the quantum efficiency together with all related  

measurement conditions including the catalyst loading, the light source, and the 

wavelength distribution, the optical irradiance at the sample and the substrate 

concentration74. Moreover, statistics and error analysis should also be included to provide 

an idea regarding the claimed materials improvements and the experimental error74. 

6.5. Photocatalytic Reactor Design  

In a photocatalytic reaction the photon absorption process is the main step which is 

proportional to the local volumetric rate of energy absorption (LVREA). Therefore, the 

initiation reaction can be defined as: 

�[W[ ,& = aZ![|,&	%&'                                                                                                      (6.23) 

in which %&' is the spectral local volumetric rate of photon absorption which presents the 

absorbed photons in an elementary volume of radiation absorption as following75: 

%&�(;, /) = 	´ :&(;, /)r&(;, /)d{&h
&v = 

																																					C C C :&(;, /)+&(;, s, t, /)qhqvuhuv SµYsdsdtd{	&h&v                            (6.24) 
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where :& is the absorption coefficient, λ is the wavelength, x is the position, and t is the 

time. Iλ, the radiation field, is the amount of radiative energy per unit wavelength interval, 

per unit solid angle, per unit normal area, and per unit time. For a given wavelength, I is a 

function of position (x), direction (Ω), and time (t) and can be presented as follows75: 

+&(;, 4, /) = 	 �p#�mL`Rq�,�&�                                                                                             (6.25) 

Gλ is the spectral incident radiation defined by Equation 6.26 which is a radiation 

property for the consideration of the radiation arriving at one point inside a photoreactor 

from all directions in space75: 

r&(;, /) = 	C +&(, ;, 4, /)d4 = 	C C +&(;, s, t, /)qhqvuhuv SµYsdsdt                               (6.26) 

In case of having a polychromatic radiation, an integration over the applicable range of 

wavelengths results in the polychromatic incident radiation G as following75: 

r&(;, /) = 	C C C +&(;, s, t, /)qhqvuhuv SµYsdsdtd{	&h&v                                                       (6.27) 

In order to calculate the LVREA, the concept of the photon transport equation must be 

introduced. Assuming an elemental volume V in space with an absorbing, emitting and 

scattering medium, the photons with a flight path lying within the solid angle of 

propagation dΩ which transport radiant energy of wavelength λ are called the Ω, λ 

photons. Accordingly the photon transport equation can be written as75: 

¶ Time	rate	of	change	of	4, {	photons	in	the	volume	À		 Á +	¶ Net	�lux	of	4, {photons	within	the	volume	À	acrossthe	surface	Å Á = 	 ¶ Net	gain	of	4, {	photonsowing	to	emission, absorption,inscattering	and	outscattering	in	the	volume	À Á             (6.28) 

Therefore, as mentioned in Chapter 1 the RTE equation can be written as follows75: 

1) *+,,.*/ + ∇. 3+,,.45 = 

                              −7,,.���������� +7,,.�������� + 7,,.��8�
�������9 − 7,,.���8�
�������9    (6.29) 

A simplifying assumption is that the factor 1/c is very low, thus the first term on the left 

in this equation can be neglected. Thus, at a given time the radiation field can reach the 

steady state instantaneously75: 
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KL 	MNO,#M 	≅ 0                                                                                                                    (6.30) 

Moreover, the term 7,,.�������� can also be neglected as the radiation emission is only 

significant at high temperatures. Therefore, the RTE can be given as75,76: 

�NO,#(R, )�R =	 [:&(S, /) +	?&(S, /)]+,,&(S, /)  
																																				+	T#(R, )EF 	C 	D&EF 34G → 45	+,,G &(S, t)d4G                                          (6.31) 

This equation can also be presented using the two common definitions of the spectral 

extinction coefficient (βλ) and the spectral albedo (ωλ). The extinction coefficient is the 

sum of the absorption coefficient and the scattering coefficient (Equation 6.32) and the 

spectral albedo is the ratio of the scattering coefficient to the extinction coefficient 

(Equation 6.33)
76. 

±&(;, /) = 	:&(;, /) +	?&(;, /)                                                                                     (6.32) 

³&(;, /) = 	 T#(�, )Ç#(�, )                                                                                                         (6.33) 

In a homogenous media, the radiation reaches any point in the reaction space from a light 

source emitting in all directions. Assuming to have no emission and no scattering, the 

RTE can be given as76: 

�N#(R,,, )�R =	−:&(S, /)+&(S, 4, /)                                                                                    (6.34) 

Under normal conditions radiation will reach a point at location (x) in the photoreactor 

following a light path characterized by the directional coordinate, S(;, s, È). Along its 

path, the radiation will be reduced by absorption. Radiation from the lamp reaches the 

reactor wall at a point where s = sR. Thus, considering this boundary condition at the 

entrance point76: 

+&(Sj , 4, /) = 	 +&�(4, /) = 	 +&�(s, È, /)                                                                           (6.35) 

By an integration of this equation from the entrance point at the reactor wall (s=sR) to the 

considered point (s=s) the following correlation will be derived76: 

+&(;, s, È, /) = +&�(s, È, /)	%;D É−C :&(S̅, /)zS̅R̅�R(�,q,Ë)R̅�RÌ Í                                            (6.36) 
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Therefore, the LVREA for a homogeneous system can be given as the following 

equation76: 

%&�(;, /) = 	:&(;, /) C +&(;, s, È, /)EF 	d4                                                                      (6.37) 

However, in photocatalytic heterogeneous systems, scattering is significant and cannot be 

neglected. Assuming that the changes in the direction of flight are the main scattering 

effects, a pseudo-homogeneous system can be considered76: 

�N#(R,,, )�R +	[:&(S, /) +	?&(S, /)]+&(S, 4, /) =  

																																														T#(R, )EF 	C 	+&3S, 4,G t5	DEF 34G → 45d4G 	                                    (6.38) 

By an integration of this correlation from the entrance point at the reactor wall (s=sR) to 

the considered point (s=s) the following equations will be derived76: 

+&(S, 4, /) = 	 +&�(Sj, 4, /)	%;D Î−C [	:&(S̅, /) + ?&(S̅, /)	]R̅�RR̅�RÌ zS̅Ï +   

   C ÉT#(R̅, )EF 		C 	+&3S̅, 4,G t5	DEF 34G → 45d4G 	ÍR̅�RR̅�RÌ 	%;D É−C [	:&(S̅, /) + ?&(S̅, /)	]R̅�RR̅�R̅ zS̅Í zS̅      (6.39) 

 

+&(;, s, È, /) = +&�(s, È, /)	%;D Î−C [:&(S̅, /) + ?&(S̅, /)]R̅�R(�,q,Ë)R̅�RÌ Ï zS̅ +  

   C ÉT#(R̅, )EF 	C zÈG 	C SµYsGzsGFqG 	+&3;̅, sG , ÈG , /5D Ðs, ÈGG → s, ÈÑ	«FË��G Í	R̅�R(�,q,Ë)R̅�RÌ   

                                                              exp Î−C [	:&(S̅, /) + ?&(S̅, /)	]R̅�R(�,q,Ë)R̅�R̅(�,q,Ë) zS̅Ï zS̅         (6.40) 

The first term in Equation 6.39 represents the extinction of the incoming radiation from 

the light source. The second term in this equation is the extinction of the radiation 

integrated into the direction Ω by in-scattering. 

Finally, the LVRAP in heterogeneous photocatalytic systems can be written as76: 

%&�(;, /) = :&(;, /)	ÎC +&�(Sj , 4, /),l %;D É−C (	:& + ?&)R(�,q,Ë)RÌ zS̅Í d4Ï +	  
:&(;, /)	C ÎC T#EF É	C 	C +&3;̅, 4G , /5D34G → 45d4GFqG 		EF Í	R(�,q,Ë)RÌ exp É−C (	:& +R(�,q,Ë)R̅(�,q,Ë)EF?&)	zS̅Í zS̅Ï	 d4	                                                                                                              (6.41) 
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%&�(;, /) = :&(;, /) C zÈ	 C zsqh(Ë)qv(Ë) SµYs	+&�(s, È, /)	ËhËv exp Î−C [:&(S̅, /) + ?&(S̅, /)]R(�,q,Ë)RÌ zS̅Ï  
+:&(;, /) C zÈ	 C SµYszsFq�� ÎC T#(R̅, )EF É	C zÈG 	C SµYsGzsGFqG �� 	+&3;̅, sG , ÈG , /5D Ðs, ÈGG →«FË��GR(�,q,Ë)RÌ«FË��s,È		exp−S(;,s,È)S(;,s,È)	:{S,/+?{S,/	zSzS		                                                       (6.42) 

For solving the RTE, several methods have been proposed such as the two-flux method, 

the exponential kernel approximation, the spherical harmonics method, and the six-flux 

method. However, the most common numerical techniques of solving the RTE are the 

discrete ordinate (DO) method, the Monte Carlo (MC) method and the finite volume (FV) 

method75. 

A simplified one-dimensional description with detailed calculations, gives a better idea 

for the understanding of the complex three-dimensional radiation field inside a 

photoreactor. Herein, the two-flux approximation is applied. The two-flux approximation 

method includes scattering and absorption phenomena. Nevertheless, it simplifies the 

related calculations by considering the scattering only in one direction, which is the 

direction opposite to the incident light. 

In this case the RTE can be solved considering the forward and backward light intensity 

as follows77: 

%' = 	±+��(Ò%Ç� +	)%8Ç�)                                                                                         (6.43) 

� = 	 [(1 + Ó)³]8K                                                                                                       (6.44) 

Ò = ÓÔ1 − ³ + (1 − ³«)K/«Õ                                                                                      (6.45) 

) = −1 + ³ + (1 − ³«)K/«                                                                                         (6.46) 

In these equations, a, b, and c are dimensionless coefficients dependent on the scattering 

albedo (ω) and the optical thickness (τ). This dependency is described as follows: 

 Ó = %8«ÖÔ−1 + (1 − ³«)K/«Õ/Ô1 + (1 − ³«)K/«Õ                                                      (6.47) 

The optical thickness defined as ª = ±× is a dimensionless parameter. The possible 

amount of scattering and absorption through the whole length of the reactor in the 

direction of incident photons (L) can be signified through this parameter. The light 

penetration outside the reactor (to the opposite side of the light source) is negligible in 
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case of having a thick reactor78. Therefore the term u and consequently the term b in 

Equation 6.43 will be approximately zero. Thus the resulting correlation resembles the 

common Lambert–Beer exponential decay.  

On the other hand, in a thin reactor the light not only scatters back to the light source but 

also scatters out to the opposite side of the light source through transmitting out of the 

reactor. Therefore the term b does not tend to zero and the equation will be more 

complicated. 

In a black body photoreactor, the back reflection of photons through the light inlet, as 

well as the transmitted light outside the photoreactor are negligible. Therefore, the 

Lambert– Beer law for the calculation of local volumetric rate of energy absorption in a 

black body photoreactor can be applied. 

For the development of kinetic analysis, in addition to the quantum yield, the rate of 

photon absorption per volume is also required (i.e., _ = a%&'). By using the volume-

averaged values of these parameters, the rate of the reaction can be derived from the 

experimental data. However, the gradient in rate of photon absorption inside the reactor 

has to be also taken into account. Therefore, the volume-averaged quantum yield value 

inside the photoreactor can be used for calculating the reaction rate in every position of 

the reactor volume. 

6.6. Conclusions  

For the development of new and highly active photocatalytic materials, a standard 

approach to evaluate their activities is essential. The results presented in this work 

describe a newly developed method for the comparison of the photoactivity of different 

photocatalysts in heterogeneous systems. Obviously, the common comparison methods 

are not only unable to measure the number of photons absorbed by the photocatalyst, but 

also require too many information and values to be reported. However, applying a black 

body photoreactor for the photocatalytic comparison, in addition to the simplicity and the 

sufficient utilization of the incident light, does not need so many further information since 

it is independent from effecting parameters such as the initial concentration of the model 

compound, the catalyst loading, the reaction volume, the reactor geometry, and the 

photon flux provided that the photon density inside the reactor is low. To summarize, in 
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order to compare the intrinsic activity of various photocatalyst materials between 

different laboratories, the following key factors are suggested to be considered: 

• Constant values of temperature, pH, ionic strength, and photon flux 

• Utilizing a black body reactor 

• Adequate loading of the catalyst providing no light transmission out of the reactor 

and reaction rates independent from the catalyst concentration 

• High enough initial concentrations of the probe molecule leading to zero order 

kinetics  

• Comparison of the reaction rates defined on an amount basis 

In case of a known photon flux, the quantum yield of various materials can also be easily 

evaluated. 

The purpose of this work was to provide a method with simple guidelines to be able to 

properly measure kinetic data and the absorbed amount of photons in photoreactors in 

order to determine the quantum yield. In contrast to the kinetic data of photoreactors that 

is usually leveled out by mixing, the rate of photon absorption is non-homogeneous and 

requires the time consuming calculation of RTE. Solving the RTE is complicated when 

the possibility of scattering in every direction at each position should be considered. 

However, considering the properties of the black body photoreactor suggested in this 

work, the amount of backscattered light out of the photoreactor is almost zero. Moreover, 

in this photoreactor almost no photons are transmitted out of the photoreactor. As a result, 

the Lambert–Beer (L–B) law adequately describes the local light intensity in the 

photoreactor, from which local volumetric rate of photon absorption is readily obtained as 

the gradient of light intensity in its direction of propagation. 

In all the photoreactors, the photon absorption in the area near to the light source is high 

and it decreases with increasing distance from the light source. These gradients are the 

main obstacles to use simple kinetic interpretations of the data. However, using the 

volume-averaged value of photon absorption is a useful simplification. Therefore, the 

optical reactor characteristics and the operation procedures which are appropriate for the 

measurement of the quantum yield and the development of kinetic expressions are 

needed. 
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Determination of quantum yields through the methods suggested in the present work, 

simplifies the design of photoreactors. Accordingly, the reaction rate at any position of 

the reactor can be calculated. This is possible by employing the volume-averaged 

quantum yield and the local volumetric rate of photon absorption. The local volumetric 

rate of photon absorption has to be computed through the resolution of the RTE, by 

having the optical properties of the semiconductor inside the reactor. The values of the 

quantum yield of the photocatalytic process are of high importance in optimization of the 

photoreactor. Therefore, the proposed method in this work contributes to the development 

of efficient photoreactor designs with further perspective of large applications. 

  



6. Summarizing Discussion 
 
 

151 
 

6.7. References 

(1)  Cassano, A. E.; Alfano, O. M. Design and Analysis of Homogeneous and 
Heterogeneous Photoreactors. In Chemical Engineering: Trends and 

Developments; Galán, M. A., Valle, E. M. del, Eds.; John Wiley & Sons, Inc., 
2005; Vol. 4, pp 125–169. 

(2)  Braslavsky, S. E.; Braun, A. M.; Cassano, A. E.; Emeline, A. V; Litter, M. I.; 
Palmisano, L.; Parmon, V. N.; Serpone, N. Glossary of Terms Used in 
Photocatalysis and Radiation Catalysis (IUPAC Recommendations 2011). Pure 

Appl. Chem. 2011, 83, 931–1014. 

(3)  Pareek, V.; Adesina, A. Light Intensity Distribution in Photocatalytic Reactors 
Using a Finite Volume Method. AIChE J. 2004, 50, 1273–1288. 

(4)  Brandi, R. J.; Alfano, O. M.; Cassano, A. E. Evaluation of Radiation Absorption in 
Slurry Photocatalytic Reactors. 2. Experimental Verification of the Proposed 
Method. Environ. Sci. Technol. 2000, 34, 2631–2639. 

(5)  Matos, J.; Ocares-Riquelme, J.; Poon, P. S.; Montaña, R.; García, X.; Campos, K.; 
Hernández-Garrido, J. C.; Titirici, M. M. C-Doped Anatase TiO2: Adsorption 
Kinetics and Photocatalytic Degradation of Methylene Blue and Phenol, and 
Correlations with DFT Estimations. J. Colloid Interface Sci. 2019, 547, 14–29. 

(6)  Luo, S.; Xu, J.; Li, Z.; Liu, C.; Chen, J.; Min, X.; Fang, M.; Huang, Z. Bismuth 
Oxyiodide Coupled with Bismuth Nanodots for Enhanced Photocatalytic 
Bisphenol A Degradation: Synergistic Effects and Mechanistic Insight. Nanoscale 
2017, 9, 15484–15493. 

(7)  Nair, R. G.; Mazumdar, S.; Modak, B.; Bapat, R.; Ayyub, P.; Bhattacharyya, K. 
The Role of Surface O-Vacancies in the Photocatalytic Oxidation of Methylene 
Blue by Zn-Doped TiO2: A Mechanistic Approach. J. Photochem. Photobiol. A 

Chem. 2017, 345, 36–53. 

(8)  Mills, A.; Wang, J. Photobleaching of Methylene Blue Sensitised by TiO2: An 
Ambiguous System? J. Photochem. Photobiol. A Chem. 1999, 127, 123–134. 

(9)  Hosseini, S. N.; Borghei, S. M.; Vossoughi, M.; Taghavinia, N. Immobilization of 
TiO2 on Perlite Granules for Photocatalytic Degradation of Phenol. Appl. Catal. B 

Environ. 2007, 74, 53–62. 

(10)  Wang, X.; Sun, Y.; Yang, L.; Shang, Q.; Wang, D.; Guo, T.; Guo, Y. Novel 
Photocatalytic System Fe-Complex/TiO2 for Efficient Degradation of Phenol and 
Norfloxacin in Water. Sci. Total Environ. 2019, 656, 1010–1020. 

(11)  Wu, C.; Liu, X.; Wei, D.; Fan, J.; Wang, L. Photosonochemical Degradation of 
Phenol in Water. Water Res. 2001, 35, 3927–3933. 

(12)  Kim, D.; Lee, D.; Monllor-Satoca, D.; Kim, K.; Lee, W.; Choi, W. Homogeneous 
Photocatalytic Fe3+/Fe2+ Redox Cycle for Simultaneous Cr(VI) Reduction and 
Organic Pollutant Oxidation: Roles of Hydroxyl Radical and Degradation 



6. Summarizing Discussion  
 
 

152 
 

Intermediates. J. Hazard. Mater. 2019, 372, 121–128. 

(13)  Lindner, M.; Theurich, J.; Bahnemann, D. W. Photocatalytic Degradation of 
Organic Compounds: Accelerating the Process Efficiency. Water Sci. Technol. 
1997, 35, 79–86. 

(14)  Dillert, R.; Cassano, A. E.; Goslich, R.; Bahnemann, D. Large Scale Studies in 
Solar Catalytic Wastewater Treatment. Catal. Today 1999, 54, 267–282. 

(15)  Kandiel, T. A.; Feldhoff, A.; Robben, L.; Dillert, R.; Bahnemann, D. W. Tailored 
Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as 
Highly Active Photocatalysts. Chem. Mater. 2010, 22, 2050–2060. 

(16)  Pupo Nogueira, R. F.; Guimarães, J. R. Photodegradation of Dichloroacetic Acid 
and 2,4-Dichlorophenol by Ferrioxalate/H2O2 System. Water Res. 2000, 34, 895–
901. 

(17)  Menéndez-Flores, V. M.; Friedmann, D.; Bahnemann, D. W. Durability of Ag-
TiO2 Photocatalysts Assessed for the Degradation of Dichloroacetic Acid. Int. J. 

Photoenergy 2008, 2008, 11 pages. 

(18)  Zalazar, C. S.; Romero, R. L.; Martín, C. A.; Cassano, A. E. Photocatalytic 
Intrinsic Reaction Kinetics I: Mineralization of Dichloroacetic Acid. Chem. Eng. 

Sci. 2005, 60, 5240–5254. 

(19)  Bahnemann, D. W.; Kholuiskaya, S. N.; Dillert, R.; Kulak, A. I.; Kokorin, A. I. 
Photodestruction of Dichloroacetic Acid Catalyzed by Nano-Sized TiO2 Particles. 
Appl. Catal. B Environ. 2002, 36, 161–169. 

(20)  Lindner, M.; Bahnemann, D. W.; Hirthe, B.; Griebler, W.-D. Solar Water 
Detoxification: Novel TiO2 Powders as Highly Active Photocatalysts. J. Sol. 

Energy Eng. 1997, 119, 120–125. 

(21)  Ballari, M. M. D. L.; Alfano, O. O.; Cassano, A. E. Photocatalytic Degradation of 
Dichloroacetic Acid. A Kinetic Study with a Mechanistically Based Reaction 
Model. Ind. Eng. Chem. Res. 2009, 48, 1847–1858. 

(22)  Bahnemann, D. W. Current Challenges in Photo Catalysis: Improved 
Photocatalysts and Appropriate Photoreactor Engineering. Res. Chem. Intermed. 
2000, 26, 207–220. 

(23)  Lindner, M. Optimierung Der Photokatalytischen Wasserreinigung Mit Titan- 
Dioxid : Festkörper- Und Oberflächenstruktur Des Photokatalysators, Hannover 
University, 1997. 

(24)  Mills, A.; Le Hunte, S. An Overview of Semiconductor Photocatalysis. J. 

Photochem. Photobiol. A Chem. 1997, 108, 1–35. 

(25)  Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental 
Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. 

(26)  Bahnemann, D. W.; Hilgendorff, M.; Memming, R. Charge Carrier Dynamics at 



6. Summarizing Discussion 
 
 

153 
 

TiO2 Particles: Reactivity of Free and Trapped Holes. J. Phys. Chem. B 1997, 101, 
4265–4275. 

(27)  Zalazar, C. S.; Martin, C. A.; Cassano, A. E. Photocatalytic Intrinsic Reaction 
Kinetics. II: Effects of Oxygen Concentration on the Kinetics of the Photocatalytic 
Degradation of Dichloroacetic Acid. Chem. Eng. Sci. 2005, 60, 4311–4322. 

(28)  Schuchmann, M. N.; Zegota, H.; Sonntag, C. von. Acetate Peroxyl Radicals, 
·O2CH2 CO2-: A Study on the γ-Radiolysis and Pulse Radiolysis of Acetate in 
Oxygenated Aqueous Solutions. Zeitschrift für Naturforsch. B 1985, 40, 215–221. 

(29)  Zalazar, C. S.; Labas, M. D.; Brandi, R. J.; Cassano, A. E. Dichloroacetic Acid 
Degradation Employing Hydrogen Peroxide and UV Radiation. Chemosphere 
2007, 66, 808–815. 

(30)  Chemseddine, A.; Boehm, H. P. A Study of the Primary Step in the Photochemical 
Degradation of Acetic Acid and Chloroacetic Acids on a TiO2 Phorocatalyst. J. 

Mol. Catal. 1990, 60, 295–311. 

(31)  Piscopo, A.; Robert, D.; Weber, J. V. Influence of pH and Chloride Anion on the 
Photocatalytic Degradation of Organic Compounds: Part I. Effect on the 
Benzamide and Para-Hydroxybenzoic Acid in TiO2 Aqueous Solution. Appl. Catal. 

B Environ. 2001, 35, 117–124. 

(32)  Wang, K. H.; Hsieh, Y. H.; Wu, C. H.; Chang, C. Y. The pH and Anion Effects on 
the Heterogeneous Photocatalytic Degradation of O-Methylbenzoic Acid in TiO2 
Aqueous Suspension. Chemosphere 2000, 40, 389–394. 

(33)  Turchi, C. S.; Ollis, D. F. Mixed Reactant Photocatalysis: Intermediates and 
Mutual Rate Inhibition. J. Catal. 1989, 119, 483–496. 

(34)  Turchi, C. S.; Ollis, D. F. Photocatalytic Degradation of Organic Water 
Contaminants: Mechanisms Involving Hydroxyl Radical Attack. J. Catal. 1990, 
122, 178–192. 

(35)  Sagawe, G.; Satuf, M. L.; Brandi, R. J.; Muschner, J. P.; Federer, C.; Alfano, O. 
M.; Bahnemann, D.; Cassano, A. E. Analysis of Photocatalytic Reactors 
Employing the Photonic Efficiency and the Removal Efficiency Parameters: 
Degradation of Radiation Absorbing and Nonabsorbing Pollutants. Ind. Eng. 

Chem. Res. 2010, 49, 6898–6908. 

(36)  Sagawe, G.; J. Brandi, R.; Bahnemann, D.; E. Cassano, A. Photocatalytic Reactors 
for Treating Water Pollution with Solar Illumination. I: A Simplified Analysis for 
Flow Reactors. Chem. Eng. Sci. 2003, 58, 2587–2599. 

(37)  Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata, K. Thermodynamic and 
Kinetic Analysis of Heterogeneous Photocatalysis for Semiconductor Systems. 
Phys. Chem. Chem. Phys. 2014, 16, 8751–8760. 

(38)  Hatchard, C. G.; Parker, C. A. A New Sensitive Chemical Actinometer. II. 
Potassium Ferrioxalate as a Standard Chemical Actinometer. Proc. R. Soc. A Math. 



6. Summarizing Discussion  
 
 

154 
 

Phys. Eng. Sci. 1956, 235, 518–536. 

(39)  Hasegawa, Y.; Takahashi, K.; Kume, S.; Nishihara, H. Complete Solid State 
Photoisomerization of Bis(Dipyrazolylstyrylpyridine) Iron(II) to Change Magnetic 
Properties. Chem. Commun. 2011, 47, 6846–6848. 

(40)  Ollis, D. F. Kinetics of Photocatalyzed Reactions: Five Lessons Learned. Front. 

Chem. 2018, 6, 1–7. 

(41)  Mills, A.; O’Rourke, C.; Moore, K. Powder Semiconductor Photocatalysis in 
Aqueous Solution: An Overview of Kinetics-Based Reaction Mechanisms. J. 

Photochem. Photobiol. A Chem. 2015, 310, 66–105. 

(42)  Serpone, N.; Emeline, A. V. Suggested Terms and Definitions in Photocatalysis 
and Radiocatalysis. Int. J. Photoenergy 2002, 4, 91–131. 

(43)  Meng, Y.; Huang, X.; Wu, Y.; Wang, X.; Qian, Y. Kinetic Study and Modeling on 
Photocatalytic Degradation of Para-Chlorobenzoate at Different Light Intensities. 
Environ. Pollut. 2002, 117, 307–313. 

(44)  Okamoto, K.; Yamamoto, Y.; Tanaka, H.; Itaya, A. Kinetics of Heterogeneous 
Photocatalytic Decomposition of Phenol over Anatase TiO2 Powder. Bulletin of the 

Chemical Society of Japan. 1985, pp 2023–2028. 

(45)  Bahnemann, D.; Bockelmann, D.; Goslich, R. Mechanistic Studies of Water 
Detoxification in Illuminated TiO2 Suspensions. Sol. Energy Mater. 1991, 24, 564–
583. 

(46)  Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. Photolysis of Chloroform and 
Other Organic Molecules in Aqueous TiO2 Suspensions. Environ. Sci. Technol. 
1991, 25, 494–500. 

(47)  Ollis, D. F. Photochemical Conversion and Storage of Solar Energy, IPS-8. In 
Solar-assisted photocatalysis for water purification: Issues, data, questions; 
Pelizzetti, E., Schiavello., M., Eds.; Palermo, Italy, 1990; pp 593–622. 

(48)  Salaices, M.; Serrano, B.; de Lasa, H. I. Photocatalytic Conversion of Organic 
Pollutants Extinction Coefficients and Quantum Efficiencies. Ind. Eng. Chem. Res. 
2001, 40, 5455–5464. 

(49)  Emeline, A. V.; Zhang, X.; Jin, M.; Murakami, T.; Fujishima, A. Application of a 
“Black Body” like Reactor for Measurements of Quantum Yields of Photochemical 
Reactions in Heterogeneous Systems. J. Phys. Chem. B 2006, 110, 7409–7413. 

(50)  Bahnemann, D. W.; Bockelmann, D.; Goslich, R.; Hilgendorff, M.; Weichgrebe, 
D. Photocatalytic Detoxification: Novel Catalysts, Mechanisms and Solar 
Applications. Photocatalytic Purif. Treat. Water Air 1993, 301–319. 

(51)  Alfano, O.; Bahnemann, D.; Cassano, A.; Dillert, R.; Goslich, R. Photocatalysis in 
Water Environments Using Artificial and Solar Light. Catal. today 2000, 58, 199–
230. 



6. Summarizing Discussion 
 
 

155 
 

(52)  Memming, R. Photoreactions at Semiconductor Particles. In Semiconductor 

Electrochemistry; WILEY‐VCH Verlag GmbH: Weinheim, 2000; pp 264–299. 

(53)  Graetzel, M.; Frank, A. J. Interfacial Electron-Transfer Reactions in Colloidal 
Semiconductor Dispersions. Kinetic Analysis. J. Phys. Chem. 1982, 86, 2964–
2967. 

(54)  Hufschmidt, D.; Bahnemann, D.; Testa, J. J.; Emilio, C. A.; Litter, M. I. 
Enhancement of the Photocatalytic Activity of Various TiO2 Materials by 
Platinisation. J. Photochem. Photobiol. A Chem. 2002, 148, 223–231. 

(55)  Alonso-Tellez, A.; Masson, R.; Robert, D.; Keller, N.; Keller, V. Comparison of 
Hombikat UV100 and P25 TiO2 Performance in Gas-Phase Photocatalytic 
Oxidation Reactions. J. Photochem. Photobiol. A Chem. 2012, 250, 58–65. 

(56)  Zhang, Z.; Wang, C.; Zakaria, R.; Ying, J. Y. Role of Particle Size in 
Nanocrystalline TiO2 -Based Photocatalysts. J. Phys. Chem. B 1998, 102, 10871–
10878. 

(57)  Friedmann, D.; Mendive, C.; Bahnemann, D. TiO2 for Water Treatment: 
Parameters Affecting the Kinetics and Mechanisms of Photocatalysis. Appl. Catal. 

B Environ. 2010, 99, 398–406. 

(58)  Otalvaro-Marin, H. L.; Mueses, M. A.; Machuca-Martinez, F. Boundary Layer of 
Photon Absorption Applied to Heterogeneous Photocatalytic Solar Flat Plate 
Reactor Design. Int. J. Photoenergy 2014, 2014, 8 pages. 

(59)  Karakitsou, K. E.; Verykios, X. E. Effects of Altervalent Cation Doping of Titania 
on Its Performance as a Photocatalyst for Water Cleavage. J. Phys. Chem. 1993, 
97, 1184–1189. 

(60)  Hariharan, C. Photocatalytic Degradation of Organic Contaminants in Water by 
ZnO Nanoparticles: Revisited. Appl. Catal. A Gen. 2006, 304, 55–61. 

(61)  Chantes, P.; Jarusutthirak, C.; Danwittayakul, S. Internation Conference on 
Biological, Environmental and Food Engineering. In A Comparison Study of 

Photocatalytic Activity of TiO2 and ZnO on the Degradation of Real Batik 

Wastewater; 2015; pp 8–12. 

(62)  Mrowetz, M.; Selli, E. Photocatalytic Degradation of Formic and Benzoic Acids 
and Hydrogen Peroxide Evolution in TiO2 and ZnO Water Suspensions. J. 

Photochem. Photobiol. A Chem. 2006, 180, 15–22. 

(63)  Ohtani, B.; Prieto-Mahaney, O. O.; Li, D.; Abe, R. What is Degussa (Evonic) P25? 
Crystalline Composition Analysis, Reconstruction from Isolated Pure Particles and 
Photocatalytic Activity Test. J. Photochem. Photobiol. A Chem. 2010, 216, 179–
182. 

(64)  Satuf, M. L.; Brandi, R. J.; Cassano, A. E.; Alfano, O. M. Experimental Method to 
Evaluate the Optical Properties of Aqueous Titanium Dioxide Suspensions. Ind. 

Eng. Chem. Res. 2005, 44, 6643–6649. 



6. Summarizing Discussion  
 
 

156 
 

(65)  Minero, C.; Vione, D. A Quantitative Evalution of the Photocatalytic Performance 
of TiO2 Slurries. Appl. Catal. B Environ. 2006, 67, 257–269. 

(66)  Lin, H.; Li, L.; Zhao, M.; Huang, X.; Chen, X.; Li, G.; Yu, R. Synthesis of High-
Quality Brookite TiO2 Single-Crystalline Nanosheets with Specific Facets 
Exposed: Tuning Catalysts from Inert to Highly Reactive. J. Am. Chem. Soc. 2012, 
134, 8328–8331. 

(67)  Cao, Y.; Li, X.; Bian, Z.; Fuhr, A.; Zhang, D.; Zhu, J. Highly Photocatalytic 
Activity of Brookite/Rutile TiO2 Nanocrystals with Semi-Embedded Structure. 
Appl. Catal. B Environ. 2016, 180, 551–558. 

(68)  Suri, R. P. S.; Liu, J.; Hand, D. W.; Crittenden, J. C.; Perram, D. L.; Mullins, M. E. 
Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in 
Water. Water Environ. Res. 1993, 65, 665–673. 

(69)  Ahuja, S.; Kutty, T. R. N. Nanoparticles of SrTiO3 Prepared by Gel to Crystallite 
Conversion and Their Photocatalytic Activity in the Mineralization of Phenol. J. 

Photochem. Photobiol. A Chem. 1996, 97, 99–107. 

(70)  Lin, X.; Xing, J.; Wang, W.; Shan, Z.; Xu, F. Photocatalytic Activities of 
Heterojunction Semiconductors Bi2O3 / BaTiO3 : A Strategy for the Design of 
Efficient Combined Photocatalysts. J. Phys. Chem. B 2007, 111, 18288–18293. 

(71)  Moulis, F.; Krysa, J. Photocatalytic Degradation of Several VOCs (n-Hexane, n-
Butyl Acetate and Toluene) on TiO2 Layer in a Closed-Loop Reactor. Catal. today 
2013, 209, 153–158. 

(72)  Liao, Y.; Xie, C.; Liu, Y.; Chen, H.; Li, H.; Wu, J. Comparison on Photocatalytic 
Degradation of Gaseous Formaldehyde by TiO2, ZnO and Their Composite. 
Ceram. Int. 2012, 38, 4437–4444. 

(73)  Qureshi, M.; Takanabe, K. Insights on Measuring and Reporting Heterogeneous 
Photocatalysis: Efficiency Definitions and Setup Examples. Chem. Mater. 2017, 
29, 158–167. 

(74)  Buriak, J. M.; Kamat, P. V.; Schanze, K. S. Best Practices for Reporting on 
Heterogeneous Photocatalysis. ACS Appl. Mater. Interfaces 2014, 6, 11815–11816. 

(75)  Alfano, O. M.; Cassano, A. E.; Marugan, J.; Grieken, R. van. Fundamentals of 
Radiation Transport in Absorbing Scattering Media. In Photocatalysis 

Fundamentals and perspectives; Schneider, J., Bahnemann, D., Ye, J., Puma, G. 
L., Dionysiou, D. D., Eds.; The Royal Society of Chemistry, 2016; pp 351–366. 

(76)  Cassano, A. E.; Martin, C. A.; Brandi, R. J.; Alfano, O. M. Photoreactor Analysis 
and Design: Fundamentals and Applications. Ind. Eng. Chem. Res. 1996, 34, 2155–
2201. 

(77)  Brucato, A.; Rizzuti, L. Simplified Modeling of Radiant Fields in Heterogeneous 
Photoreactors. 2. Limiting “Two-Flux” Model for the Case of Reflectance Greater 
Than Zero. Ind. Eng. Chem. Res. 1997, 36, 4748–4755. 



6. Summarizing Discussion 
 
 

157 
 

(78)  Motegh, M.; Cen, J.; Appel, P. W.; van Ommen, J. R.; Kreutzer, M. T. 
Photocatalytic-Reactor Efficiencies and Simplified Expressions to Assess Their 
Relevance in Kinetic Experiments. Chem. Eng. J. 2012, 207–208, 607–615. 

 

 
  



6. Summarizing Discussion  
 
 

158 
 

 



Publications 
 
 

159 
 

Publications 

Journal Publications 

 
Megatif, L.; Dillert, R.; Bahnemann, D. W., Reaction Rate Study of Photocatalytic 
Degradation of Dichloroacetic Acid in a Black Body Reactor, Catalysts 2019, Submitted 
 
Megatif, L.; Dillert, R.; Bahnemann, D. W., Determination of the Quantum Yield of 
Heterogeneous Photocatalytic Reactions Employing a Black Body Photoreactor, 
Catalysis Today 2019, in the press, doi:10.1016/j.cattod.2019.06.008 
 
Megatif, L.; Dillert, R.; Bahnemann, D. W., A Method to Compare the Activities of 
Semiconductor Photocatalysts in Liquid-Solid Systems, Chemphotochem, 2018, 2, 948-
951 
 
Arimi, A.; Megatif, L.; Granone, L. I.; Dillert, R.; Bahnemann, D. W., Visible-light 
Photocatalytic Activity of Zinc Ferrites, Journal of Photochemistry and Photobiology A: 

Chemistry 2018, 366,118-126 
 
Megatif, L.; Ghozatloo, A.; Arimi, A.; Shariati-Niasar, M., Investigation of Laminar 
Convective Heat Transfer of TiO2-CNT Hybrid Water Base Nano Fluid, Experimental 

Heat Transfer Journal 2016, 29 (1), 124-138 
 
Megatif, L.; Ghozatloo, A.; Shojaiee, M.; Shariati-Niasar, M., Comparison of Different 
Methods for the Synthesis of TiO2–CNT Hybrid Nanoparticles, Journal of Nanomeghias 
(in Persian), 2015, 1(4), 231-238 

 
Book Chapter 

 

Megatif, L.; Arimi, A.; Dillert, R.; Bahnemann, D. W., Reactors for Artificial 
Photosynthesis in Heterogeneous Systems, In Artificial Photosynthesis, World Scientific 
Series in Current Energy Issues: Solar Energy, Volume 6, Submitted   

 

Oral Presentations 

 

L. Megatif, R. Dillert, D.W. Bahnemann, “Method to Compare the Activities of 
Semiconductor Photocatalysts in Liquid Systems”, Russian-German Workshop, National 
University of St. Petersburg, October 2017, St. Petersburg, Russia. 

L. Megatif, R. Dillert, D.W. Bahnemann, “Comparison of the Photocatalytic Activity of 
Different Photocatalysts by Applying a “Black Body” Reactor”, 6th International 



Publications 
 
 

160 
 

Conference on Semiconductor Photochemistry (SP6), Carl von Ossietzky University, 
September 2017, Oldenburg, Germany. 

L. Megatif, R. Dillert, D.W. Bahnemann, “Photocatalytic Degradation of Dichloroacetic 
Acid in a Black Body Reactor as a Standard Method to Compare the Activities of 
Photocatalysts”, New Photocatalytic Materials for Environment, Energy and 
Sustainability 2 (NPM-2), July 2017, Ljubljana, Slovenia. 

L. Megatif, R. Dillert, D.W. Bahnemann, “Photocatalytically Active Adsorbent for Water 
Treatment”, Russian-German Workshop, Laboratorium für Nano- und 
Quantenengineering (LNQE), Leibniz University Hannover, November 2016, Hannover, 
Germany. 

 

Poster Presentations 

 

L. Megatif, R. Dillert, D.W. Bahnemann, “A Standard Method to Compare the Activities 
of Photocatalysts”, Nanoday 2017, Laboratorium für Nano- und Quantenengineering 
(LNQE), Leibniz University Hannover, September  2017, Hannover, Germany. 

L. Megatif, R. Dillert, D.W. Bahnemann, “Comparison of the Photocatalytic Activity of 
Different Photocatalysts by Applying a “Black Body” Reactor”, 6th International 
Conference on Semiconductor Photochemistry (SP6), Carl von Ossietzky University, 
September 11-14, 2017, Oldenburg, Germany. 

A. Arimi; L. Megatif; L.I. Granone, R. Dillert, D.W. Bahnemann, “Ferrites for 
Photoelectrochemical Water Splitting”, DFG SPP 1613 Summer School, Hotel Teikyo, 
September 2016, Berlin-Schmoeckwitz, Germany. 

 

  



Curriculum Vita 
 
 

161 
 

Curriculum Vitae 

Personal data 

Name   Megatif, Lena 

Address  Podbielskistrasse. 116, 30177 Hannover 

Date of birth  11.12.1986 

Place of birth  Shiraz, Iran 

Education 

Since 10/2015 PhD Student at the Leibniz University of Hannover, Institute of 
Technical Chemistry, Hannover, Germany 
PhD Thesis: “Development of New Reactors for the Solar 
Treatment of Polluted Aquifers by Photocatalytic Treatment” 

10/2010 – 02/2013 Master of Science in Chemical Engineering (M.Sc.Eng) at 
College of Engineering, University of Tehran, Tehran, Iran 
Major: Design of separation processes 
Master Thesis: “Fabrication of Nano-Fluids by Synthesis of Metal 
Oxide-Carbon Nanotube Hybrids” 

10/2006 – 09/2010 Bachelor of Science in Chemical Engineering (B.Sc.Eng) at 
School of Chemical and Petroleum Engineering, Shiraz  
University, Shiraz, Iran 
Major: Refinery, Petrochemical and Gas Industries 
Bachelor Thesis: “Enhance oil recovery (EOR) by CO2 injection” 

06/2005 Diploma and Pre-University at Haj Bahador (Grashi) High School 
(National Organization for Development of Exceptional Talents 
(NODET)) 
Major: Mathematical Sciences 
 

Work Experience  

11/2014 – 01/2015 Process engineer, Wastewater Treatment Plant of Sepahan Oil 
Company, Isfahan, Iran 

10/2013 – 10/2014 Adviser, Supervision of Master degree Thesis (Fabrication and 
characterization of the mixed matrix gas separation membranes 
containing carbon nanotubes-metal hybrids), University of 
Tehran, Tehran, Iran 

09/2012 – 12/2012 Intern, Federal Institute for Material Research and Testing 
(BAM), Berlin, Germany 

07/2010 – 09/2010 Intern, Petrochemical Industries Design & Engineering Company, 
Shiraz, Iran





 

 

 


