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Abstract

This thesis contains five essays on fractional cointegration, seasonal fractional cointegra-
tion and seasonal long memory. After an introduction in the first Chapter, Chapter 2
reviews competing tests for fractional cointegration, since no standard approach emerged
so far. It provides a synthesis of the literature and a detailed comparative Monte Carlo
study to guide empirical researchers in their choice of appropriate methodologies. Special
attention is paid to empirically relevant issues such as assumptions about the form of
the underlying process and the ability to distinguish between short-run correlation and
long-run equilibria. It is found that several approaches are severely oversized in presence
of correlated short-run components and that the methods show different performance in
terms of power when applied to common-component models instead of triangular systems.

In Chapter 3, the previously analyzed methods are applied in the context of the Eu-
ropean government bond market. It is commonly found that the markets for long-term
government bonds of EMU countries were highly integrated prior to the subprime mort-
gage and EMU debt crisis. In contrast to this, it is shown that there were periods of
integration and disintegration that coincide with bull- and bear-market periods in the
stock market. This finding is based on the interrelation between market integration and
fractional cointegration in the context of the common currency area. An econometric ar-
gument about the spectral behavior of long-memory time series leads to the conclusion
that there is a stronger differentiation with respect to default risks during periods of dis-
integration, so that the dynamics of the yields implied the possibility of macroeconomic
and fiscal divergence between the EMU countries before the crisis periods.

Chapter 4 deals with possible breaks in the persistence structure of a fractional coin-
tegrating relationship. It introduces test procedures for no fractional cointegration that
are robust for such a break. They are based on the supremum of the Hassler and Brei-
tung (2006) test statistic for no cointegration over possible breakpoints in the long-run
equilibrium that are shown to converge to the supremum of a chi-squared distribution if
correctly standardized, and that this convergence is uniform. An empirical application to
European benchmark government bonds shows the dissolution of fractional cointegrating
relationships with the beginning of the European debt crisis.

The following Chapters 5 and 6 consider another phenomenon in time series, namely
seasonality, in particular seasonal long memory. Chapter 5 examines multivariate seasonal
data and the concomitant possibility of seasonal fractional cointegration. It proposes two
multivariate seasonal long-memory models and derives a seasonal multiple local Whittle
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estimator for the seasonal memory parameters and the seasonal cointegrating vector based
on Robinson et al. (2008). Finally, in an application to financial high frequency data,
seasonal fractional cointegration between realized volatility and trading volume for a daily
cycle is found.

Chapter 6 takes a different perspective and deals with univariate seasonal time se-
ries. Seasonal behavior often is modeled with dummy variables or deterministic functions
disregarding stochastic components. Therefore, a test for seasonal long memory with a
known frequency is proposed. Based on this test, it is found that deterministic seasonality
is an accurate model for the Dow Jones Industrial Average (DJIA) index but not for the
component stocks. These still exhibit significant and persistent periodicity after seasonal
de-meaning so that more evolved seasonal long-memory models are required to model
their behavior.

Keywords: Fractional Cointegration, Semiparametric Estimating and Testing, Seasonal
Long Memory, EMU Government Bonds, Volatility



Zusammenfassung

Diese Arbeit enthält fünf Aufsätze über fraktionale Kointegration, saisonale fraktionale
Kointegration und saisonales langes Gedächtnis. Nach einer Einführung im ersten Kapitel
behandelt Kapitel 2 konkurrierende Tests für fraktionale Kointegration, da sich bisher kein
Standardansatz herausgestellt hat. Es bietet eine Zusammenfassung der Literatur und eine
detaillierte Monte Carlo Studie, um Forscher bei der Auswahl geeigneter Methoden zu un-
terstützen. Besonderes Augenmerk wird auf empirisch relevante Fragestellungen gelegt,
wie z.B. Annahmen über die Form des zugrunde liegenden Prozesses und die Fähigkeit
der Verfahren, zwischen kurzfristiger Korrelation und langfristigen Gleichgewichten zu
unterscheiden. Es wird festgestellt, dass mehrere Ansätze bei korrelierten Kurzzeitkom-
ponenten ihr Signifikanzniveau nicht einhalten und dass die Methoden unterschiedliche
Gütemerkmale aufweisen, wenn sie auf "common-component models" anstelle von "trian-
gular systems" angewendet werden.

In Kapitel 3 werden die zuvor analysierten Methoden im Kontext des europäischen
Staatsanleihenmarktes angewendet. Es wird allgemein angenommen, dass die Märkte für
langfristige Staatsanleihen der EWU-Länder vor der Subprime-Hypotheken- und europä-
ischen Schuldenkrise stark integriert waren. Im Gegensatz dazu zeigt sich, dass es Phasen
der Integration und Desintegration gab, die mit Bullen- und Bärenmarktphasen am Ak-
tienmarkt zusammenfallen. Diese Feststellung beruht auf dem Zusammenhang zwischen
Marktintegration und fraktionaler Kointegration im Rahmen des gemeinsamenWährungs-
raums. Ein ökonometrisches Argument über die Spektraldichte von Long-Memory Zeitrei-
hen führt zu dem Schluss, dass es eine stärkere Differenzierung zwischen Anleihen mit
unterschiedlichen Ausfallrisiken in Zeiten der Desintegration gibt, sodass die Dynamik
der Renditen die Möglichkeit makroökonomischer und fiskalischer Divergenzen zwischen
den EWU-Ländern vor den Krisenzeiten implizierte.

Kapitel 4 befasst sich mit möglichen Brüchen in der Persistenzstruktur einer frak-
tionalen Kointegrationsbeziehung. Es führt Testverfahren für fraktionale Kointegration
ein, die für einen solchen Bruch robust sind. Die vorgeschlagenen Tests basieren auf dem
Supremum der Hassler and Breitung (2006) Teststatistik für keine Kointegration über
mögliche Bruchpunkte im langfristigen Gleichgewicht. Sie konvergieren, korrekt standar-
disiert, gleichmäßig zum Supremum einer Chi-Quadrat-Verteilung. In einer empirischen
Anwendung der Tests auf europäische Staatsanleihen wird die Auflösung von fraktional
kointegrierenden Beziehungen mit Beginn der europäischen Schuldenkrise gezeigt.
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Die nachfolgenden Kapitel 5 und 6 betrachten ein weiteres Phänomen in Zeitreihen,
nämlich die Saisonalität, insbesondere das saisonale lange Gedächtnis. In Kapitel 5 wer-
den multivariate saisonale Daten und die damit verbundene Möglichkeit der saisonalen
fraktionalen Kointegration betrachtet und zwei multivariate saisonale long-memory Mo-
delle vorgeschlagen. Zudem wird ein saisonaler multipler local-Whittle Schätzer für die
saisonalen Gedächtnisparameter und den saisonalen Kointegrationsvektor basierend auf
Robinson et al. (2008) hergeleitet. Schließlich zeigt eine Anwendung auf Hochfrequenz-
daten im Finanzbereich saisonale fraktionale Kointegration zwischen realisierter Volatili-
tät und Handelsvolumen für einen täglichen Zyklus.

Kapitel 6 nimmt einen anderen Blickwinkel ein und beschäftigt sich mit univariaten
saisonalen Zeitreihen. Das saisonale Verhalten wird oft mit Dummy-Variablen oder de-
terministischen Funktionen modelliert, ohne Berücksichtigung stochastischer Komponen-
ten. Daher wird ein Test für saisonales langes Gedächtnis an einer bekannten Frequenz
vorgeschlagen, mit dem gezeigt wird, dass deterministische Saisonalität ein treffendes
Modell für den Dow Jones Industrial Average (DJIA) Index ist, nicht aber für die Kom-
ponentenaktien. Diese weisen nach der Entfernung deterministischer Saisonalität immer
noch eine signifikante und persistente Periodizität auf, sodass fortgeschrittene saisonale
long-memory Modelle erforderlich sind, um ihr Verhalten zu modellieren.

Schlagwörter: Fraktionale Kointegration, Semiparametrisch Schätzen und Testen, Saiso-
nales langes Gedächtnis, EWU Staatsanleihen, Volatilität
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Chapter 1

Introduction

With time series data, it is important to gain an understanding of the dependence struc-
ture. In cases where data is more persistent than can be captured with standard linear
short-memory processes, an alternative model is required. One popular extension is frac-
tional integration or long memory which is the focus of this thesis. It is characterized by
a hyperbolical decay of autocorrelations (in contrast to the exponential decay in short-
memory models) and unbounded spectral peaks, and it is common practice to base in-
ference on the latter. Hence, long-memory is mostly analyzed in the frequency domain
and exploits the relation f(λ) ∼ G|λ|−2d as λ → 0 where f(λ) is the (pseudo) spectral
density of a time series depending on the frequencies λ, G is a finite constant, and d is
the long-memory parameter (e.g. Beran et al. (2013)). This definition focuses only on
the long-memory parameter so that semiparametric inference methods are suitable. They
have the advantage of disregarding all short-run dynamics and avoiding misspecifications.
Popular examples of such semiparametric memory estimates in univariate systems in-
clude the (exact) local Whittle or Gaussian semiparametric estimation by Künsch (1986),
Robinson (1995a), and Shimotsu and Philips (2005), and the log-periodogram regression
or GPH estimation by Geweke and Porter-Hudak (1983).

Examples where data is strongly-dependent includes on the one hand natural science
such as meteorology and hydrology (Gil-Alana (2008), Montanari et al. (1997) among
many others), and is on the other hand found in economics as well. This includes for
example volatility of equity or exchange rates, inflation rates, interest rates, real output,
consumption, and income (Diebold and Rudebusch (1989), Cheung (1993), Baillie et al.
(1996), Tsay (2000), and Gil-Alana (2006) among many others).

Moving to multivariate data broadens the range of possible phenomena, in particular
concerning the interdependence of data. The basic and most obvious concept is correlation,
but a more advanced quantity of connection is cointegration. It became popular with the
seminal paper of Engle and Granger (1987) and finds many applications with exchange
rates (e.g. purchasing power parity, forward premium (Cheung and Lai (1993), Baillie and
Bollerslev (1994)), stock market volatility (Christensen and Nielsen (2006), Morana and
Beltratti (2008)) and inflation rates (Chen and Hurvich (2003), Nielsen (2010)).

Murray (1994) explains standard cointegration with a vivid example. The paths of a
curious puppy and its drunken owner can be described as random walks, and both walk
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independently of each other but roughly in the direction of their home. The dog is not
bound to its owner by a leash at a fixed distance. This part describes the cointegration,
i.e. the long-term equilibrium relationship. Occasionally the owner calls for her dog and
it barks as an answer. In order not to increase the distance (i.e., the linear combination
of their paths) between each other too much, both adjust their paths and close the gap a
little. This shows that cointegration is an equilibrium concept describing the co-movement
of multivariate time series. If variables are cointegrated, they are driven by the same
(non-observable) common stochastic trend; in the dog-example this is captured by the
two trying to get home. Formally, the example refers to time series integrated of order
one and a linear combination of the series that is integrated of order zero. A more relaxed
definition of cointegration does not require integer integration. Hence, the processes only
need to be integrated by some fractional order that is identical in all of them, and the
linear combination needs to have a lower order of (fractional) integration. This concept is
referred to as fractional cointegration and the subject of the Chapters 2 to 4.

Chapter 2 and 3 deal with semiparametric tests for no fractional cointegration and rank
estimation procedures. First, Chapter 2 reviews the methods that were introduced during
the past 15 years. However, no standard approach prevails so far. The essay addresses
this lack of comparison and discusses two issues regarding the performance of the tests
depending on the data generating process based on a comprehensive Monte Carlo study.
First, how does correlation in the short-run components influence the size of the tests?
This is an important question for practical applications since one usually only suspects
cointegration in cases when there is obvious correlation in the data. However, we find that
some methods tend to mistake correlation for cointegration so that they do not hold the
nominal size level. This includes the rank estimation of Robinson and Yajima (2002) and
Nielsen and Shimotsu (2007) that is one of the more popular procedures, and Marmol
and Velasco (2004) and Hualde and Velasco (2008). Second, how does the model structure
influence the power of the tests? There are mainly two possibilities in the literature: In a
bivariate context, one variable is considered to be the common stochastic trend and the
other is a perturbation of it (triangular model) or both variables are perturbations of the
common trend. Furthermore, some tests are restrictive in their assumptions decreasing the
range of applicability. It is therefore recommended to carefully choose the tests applied in
empirical applications. Overall, we recommend to use the tests of Chen and Hurvich (2006)
and Souza et al. (2018), since they are not sensitive to correlated short-term dynamics,
are applicable in most scenarios and have good power properties.

Chapter 3 applies the previously analyzed tests to the European government bond
market. This is motivated by a definition of market integration that is based on the law
of one price which requires equality or, in a less strict sense, an equilibrium of the prices.
It is commonly assumed that the introduction of the euro led to complete government
bond market integration. According to the employed definition of market integration, this
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requires the existence of cointegrating relationships. By testing this, we find periods of
integration and disintegration that correspond to bull- and bear-market periods on the
stock market. Further regression analyses confirm this finding and show that market risk
is a relevant driver as well. An economic argument shows that the yield spreads are the
cointegrating residuals of a potential cointegrating relationship between the yields, and an
econometric argument indicates that default risk dominates liquidity risk in determining
the persistence of the yield spreads. This leads to the conclusion that there is a stronger
differentiation between the default risks of government bonds during bear-market periods.
Furthermore, the partial absence of cointegration indicates, at least during bear markets,
the possibility of macroeconomic and fiscal divergence of the EMU countries although the
overall low level of the spreads implies a very low probability of this scenario.

The essay in Chapter 4 uses the same EMU government bond data set as the previ-
ous Chapter and partially builds on its results. These were that fractional cointegrating
relationships do not need to be constant over time which is also in line with the literature
on changing persistence. This chapter abandons the semiparametric world and considers
parametric tests for cointegration that are robust if not the full sample is cointegrated
but potentially only parts of it. It is based on the test of Hassler and Breitung (2006) and
combines it with subsample testing procedures introduced by Davidson and Monticini
(2010). The asymptotic properties are derived and shown to be standard. In addition,
we suggest an estimator that is able to determine the location of the break from a coin-
tegrated subsample towards a non-cointegrated subsample. The application to the EMU
data shows that the Dutch and Finish yields might be permanently cointegrated with the
German one. In contrast, the other countries are only cointegrated in some part of the
considered period and in particular seem to disintegrate during the European debt crisis.

The last two Chapters consider seasonality in addition to long memory and fractional
cointegration. Seasonality is relevant, for example, in macroeconomic data like unemploy-
ment on a monthly level, but it also becomes more and more important in financial data.
This seasonality might be modeled accurately with deterministic structures but there is
also evidence of stochastic seasonal components. In this context seasonal long memory
comes into play which is found for example in inflation rates (Arteche (2012), Peiris and
Asai (2016) among others), unemployment (e.g. Gil-Alana (2007)) and intraday volatility
(e.g. Deo et al. (2006)). Technically, seasonal long memory can be defined by an analo-
gous spectral property f(λ±ω) ∼ Cωλ

−2d as λ→ 0 that describes an unbounded spectral
peak not at the origin but at a specific frequency ω. Again, f(λ + ω) is the (pseudo)
spectral density and Cω is a finite constant. Common models are the seasonally fraction-
ally integrated model (SARFIMA) by Porter-Hudak (1990) and the k-factor Gegenbauer
(GARMA) process by Woodward et al. (1998) where the latter became popular in the
context of volatility.
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Chapter 5 is situated in a bivariate setting, like the previous chapters, and examines
seasonal fractional cointegration. The essay defines the concept, proposes two models that
can generate multivariate seasonal long memory as well as seasonal fractional cointegra-
tion, and examines the relevant spectral properties for estimation. Next, it introduces
a semiparametric multiple seasonal local Whittle estimator that estimates the seasonal
long memory parameters and the seasonal cointegrating relationship, and it derives the
asymptotic properties. By estimating the asymptotic variance, asymptotic confidence in-
tervals and tests become feasible. Both, the estimate and the asymptotic Wald test exhibit
good finite sample properties shown by a Monte Carlo study. Finally, seasonal fractional
cointegration is not only a possible theoretical framework, but an empirical application
to intraday realized volatility and trading volume finds evidence of seasonal fractional
cointegration with a daily cycle.

The last essay in Chapter 6 is based on the same data set as the previous Chapter
and focuses on seasonal long memory in a univariate context. It addresses the increasing
availability of high-frequency data, the thereby induced seasonality on an intraday basis,
and the potentially different nature of seasonality, i.e. deterministic seasonal patterns ver-
sus stochastic ones. The essay investigates the question whether it is suitable to assume
deterministic seasonality in intraday trading volume and realized volatility. Therefore, it
proposes a semiparametric test for seasonal long memory, i.e., stochastic seasonality, at a
specific frequency having the advantage of not assuming a certain model structure. Simu-
lations show that the test works well in finite samples. The main finding of the empirical
application is that deterministic seasonality might be suitable for index data, but single
stock data tends to exhibit stochastic seasonal structures in addition to deterministic
patterns.



Chapter 2

A Comparison of Semiparametric Tests for
Fractional Cointegration

Co-authored with Christian Leschinski and Philipp Sibbertsen.

2.1 Introduction

The concept of cointegration derives its popularity from the fact that it allows to model
equilibrium relationships between non-stationary time series. In practice, however, stan-
dard cointegration analysis can often not be applied, since the I(1)/I(0) framework is
too restrictive. For example, the series of interest may be persistent but not have a unit
root, or the deviations from the equilibrium may be more persistent than the I(0) model
allows.

Fractional cointegration overcomes these shortcomings, by allowing for non-integer
integration orders of the variables in the system and any (possibly non-zero) memory
order in the cointegrating residuals as long as it is reduced compared to the original
system. Consequently, fractional cointegration promises to facilitate the modeling of a
larger number of equilibrium relationships compared to standard cointegration.

This has led to the development of various testing and rank estimation procedures to
determine whether fractional cointegration is present in a multivariate time series.

Parametric approaches include Johansen (2008), Łasak (2010), Johansen and Nielsen
(2012), Łasak and Velasco (2015), and Johansen and Nielsen (2019), among others, who
consider fractional extensions of the cointegrated VAR model of Johansen (1988). Further-
more, Breitung and Hassler (2002) introduce a trace test to determine the cointegrating
rank, Avarucci and Velasco (2009) suggest rank estimation in a regression framework,
and Hassler and Breitung (2006) develop a time domain residual-based test for fractional
cointegration.

Semiparametric approaches, on the other hand, have the advantage that they allow
the researcher to focus on the long-run relationship between the series and do not require
the specification of short-run dynamics. This literature encompasses the spectral-based
rank estimation procedure of Robinson and Yajima (2002) and its extension by Nielsen
and Shimotsu (2007), a Hausmann-type test based on the multivariate local Whittle
estimator introduced by Robinson (2008), a number of residual-based tests for the null
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hypothesis of no fractional cointegration developed by Marmol and Velasco (2004), Chen
and Hurvich (2006), Hualde and Velasco (2008), and Wang et al. (2015), a variance-ratio
test proposed by Nielsen (2010), a test based on a GPH-type estimate of the cointegration
strength introduced by Souza et al. (2018) and a rank estimation procedure based on an
eigenanalysis of the autocovariance function from Zhang et al. (2019).

Unfortunately, the domain of applicability of most of these procedures is much more
restrictive than the definition of fractional cointegration. Some are only applicable in
stationary systems — some only in non-stationary systems. Some procedures require
the reduction in memory to be more than 1/2 — some only require the memory of the
cointegrating residuals to be less than 1/2.

Furthermore, there are different assumptions about the form of the fractionally coin-
tegrated system. Some approaches assume that one of the observed series itself is an
observation of the common underlying trend. Other approaches assume an unobserved
common underlying trend. We refer to these models as the triangular system and the
common-components model. Which of these assumptions is more suitable in practice de-
pends on the specific application. On the one hand, it may be appropriate to think of
the risk-free interest rate as an observed common component that is perturbed by risk
premia if the yields of risky bonds are realized so that a triangular model can be used. For
cointegrated pairs of stocks, on the other hand, it is unclear why the price of one stock
should be interpreted as a perturbed version of another stock price so that a common-
components model is more appropriate. Finally, even though the development of each of
these procedures to determine whether fractional cointegration is present is a major theo-
retical contribution, relatively little effort has been devoted to analyze how they perform
compared to each other.

Here, we try to address these issues by providing a survey of all the rank estimation and
testing procedures discussed above. To study the relative performance of the competing
approaches, we conduct an extensive Monte Carlo analysis of their size and power prop-
erties. It is found that several procedures - namely those of Nielsen and Shimotsu (2007)
or Robinson and Yajima (2002), Marmol and Velasco (2004), and Hualde and Velasco
(2008) show severe finite sample size distortions in multivariate systems with correlated
short-run components. The relative performance in terms of power depends on the form
of the system under considerations. For triangular systems and non-stationary common-
components models the test of Souza et al. (2018) performs best overall, whereas the test
of Chen and Hurvich (2006) is preferable for stationary common-components models.

The rest of the paper is structured as follows. The next Section gives the definition
and model of fractional cointegration we adopt and briefly reviews the basic estimation
methods required by the tests. Section 2.3 is divided into two subsections describing two
types of tests, 2.3.1 containing the tests based on a spectral matrix and 2.3.2 summarizing
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the tests based on cointegrating residuals, Section 2.4 presents finite sample results, and
Section 2.5 concludes.

2.2 Fractional Cointegration — Models and Defini-
tions

A p-dimensional vector-valued time seriesXt has long memory if its spectral density fulfills

fX(λ) ∼ Λj(d)GΛj(d), as λ→ 0+, (2.1)

where G is a real, symmetric and non-negative definite matrix, Λj(d) = diag
(
λ−d1eiπd1/2,

..., λ−dpeiπdp/2
)
is a p × p diagonal matrix, Λj(d) is its complex conjugate transpose and

‘∼’ implies that for each element the ratio of real and imaginary parts on the left- and
right-hand side tends to one.

The element in the a-th row and b-th columns of the spectral matrix fX(λ) is denoted
by fab(λ) ∼ gabλ

−2d for a, b ∈ {1, ..., p} where gab denotes the respective element of G.
The periodogram of Xt at the Fourier frequencies is given by

IX(λj) = wX(λj)wX(λj), (2.2)

with wX(λ) = 1√
2πT

∑T
t=1Xte

iλt, and λj = 2πj/T , for j = 1, ..., bT/2c, where b·c denotes
the greatest integer smaller than the argument.

There is a number of different definitions of fractional cointegration in the literature.
The most common one goes back directly to Engle and Granger (1987). According to this
definition the p-dimensional vector-valued time series Xt is cointegrated of rank r, if all
components of Xt are integrated of order d (denoted by I(d)), and there exists a non-
singular matrix β so that the r linear combinations vt = β′Xt are I(d− ba) = I(dva) with
d > ba > 0 for all a = 1, ..., r. The matrix β is called the cointegrating matrix and each of
its columns is a cointegrating vector. The elements of the vector vt are the cointegrating
residuals. Other definitions are given by Johansen (1995), Flôres Jr and Szafarz (1996),
Marinucci and Robinson (2001), and Robinson and Yajima (2002) who also provide a
discussion of the implications of the different definitions.

Standard cointegration is a special case of the definition above where d = 1 and dva = 0
for all a. In this setup the system is non-stationary, whereas the cointegrating residuals are
stationary. In contrast to that, fractional cointegration allows for a more flexible model so
that several cases can be distinguished: weak cointegration (b < 0.5), strong cointegration
(b > 0.5), stationary cointegration (0 < dv < d < 0.5), or non-stationary cointegration
(0.5 < dv < d).
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In general, (fractional) cointegration is an equilibrium concept where the persistence of
the cointegrating residual dv determines the speed of adjustment towards the cointegration
equilibrium β′Xt, and shocks have no permanent influence on the equilibrium as long as
dv < 1 holds.

As an example, consider the fractionally (co-)integrated bivariate model with Xt =
(X1t, X2t)′, where

X1t = c1 + ξ1Yt + ∆−(d−b1)u1t1(t > 0) (2.3)

X2t = c2 + ξ2Yt + ∆−(d−b2)u2t1(t > 0) (2.4)

and Yt = ∆−det1(t > 0). (2.5)

Here ut = (u1t, u2t)′ is a weakly-dependent zero-mean process with constant covariance
matrix Ωu and spectral density matrix fu(λ), et (with variance σ2

e and spectral density
fe(λ)) is a univariate weakly-dependent zero-mean process that is allowed to be correlated
with ut, and L denotes the lag-operator so that LYt = Yt−1. The fractional difference
operator ∆d = diag

{
(1− L)d, ..., (1− L)d

}
is defined in terms of the binomial expansion

so that (1−L)d = ∑∞
k=0

(
d
k

)
(−1)kLk, with

(
d
k

)
= d(d−1)(d−2)...(d−(k−1))

k! , and it is of the same
dimension as the process that it is applied to. Furthermore, 1(·) denotes the indicator
function that takes the value one if its argument is true and is zero, otherwise. Finally, it
is assumed that d ∈ (0, 1] and d ≥ b1, b2 ≥ 0.

The truncated processes ∆−(d−ba)uat1(t > 0) are fractionally-integrated processes of
type-II, which means they are only asymptotically stationary for d < 1/2, but in contrast
to type-I processes they are still defined for d > 1/2. For a detailed discussion cf. Marinucci
and Robinson (1999).

In this bivariate model there can be at most one cointegrating relationship. In this case
r = 1 and β itself is a cointegrating vector. Obviously, if the linear combination β′Xt = vt

has reduced memory, the same is true for every scalar multiple of it. To identify the
cointegrating vector, it is therefore customary to apply some kind of normalization such
as setting the first element of the vector to unity. In Equations (2.3) to (2.5), fractional
cointegration arises if ξ1, ξ2 6= 0, and b1, b2 > 0. In this case the normalized cointegrating
vector is β =

(
1,− ξ1

ξ2

)′
=
(
1,−β̃

)′
and the cointegrating residual vt is I(d − b) = I(dv),

where b = min(b1, b2).
Note that this model is a common-components model, but it also nests a triangular

system. This is obtained as a special case if Ωu,22 = 0 so that X2t is a direct (rescaled) ob-
servation of the underlying common trend and only X1t is perturbed with a cointegration
error so that b = b1.

Standard cointegration in the I(1)/I(0) framework is obtained as a special case if d = 1
and b1 = b2 = 1. It is also possible to have ξ1, ξ2 6= 0, so that both X1t and X2t contain
the common component Yt, but they are not cointegrated. This is the case if b1 = b2 = 0.
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2.3 Tests for no Fractional Cointegration

In the following, we provide a comprehensive review of semiparametric tests and estima-
tion procedures that can be used to determine the order of fractional cointegration in a
p-dimensional vector-valued time series Xt. According to the definition discussed above,
this requires that the components of Xt are integrated of the same order.

In practice, this can either be assumed based on domain specific knowledge, or it can
be tested with tests for the equality of memory parameters that allow for cointegration
introduced by, for example, Robinson and Yajima (2002), Nielsen and Shimotsu (2007),
Hualde (2013), and Wang and Chan (2016). In particular Robinson and Yajima (2002)
discuss in detail how to partition a vector-valued time series into subvectors with equal
memory parameters. These can then be used for further cointegration analysis.

In the following, it will be assumed that all components of Xt are I(d), which means
we abstract from these pre-testing issues to focus on the actual tests for the null of no
fractional cointegration. For all tests the hypotheses are defined by

H0: Xt is not fractionally cointegrated (d = dv),
H1: Xt is fractionally cointegrated (d > dv).

In contrast to standard I(1)/I(0) cointegration, the memory parameter d is unknown
in fractionally cointegrated systems and has to be estimated. Since we are in a setting that
potentially entails cointegration, multivariate memory estimation might not be feasible
so that the memory parameters are estimated univariately. If not stated otherwise, the
estimates involved in the tests are the means of the univariate memory estimates for the
components of the system.

The tests presented in this Section apply the most common estimators: the log-
periodogram estimator d̂GPH of Geweke and Porter-Hudak (1983) and Robinson (1995b),
the local Whittle estimator d̂LW of Künsch (1987) and Robinson (1995a), or the exact
local Whittle estimator d̂ELW of Shimotsu and Philips (2005) and Shimotsu (2010). All
of these estimators are periodogram based and employ the first m Fourier frequencies.
The general requirement is that m < bT/2c tends to infinity more slowly than T , so that
1
m

+ m
T
→ 0 as T → ∞ and even the largest frequency 2πm/T is asymptotically local to

the zero frequency.
To estimate the cointegrating relationship β′Xt = vt when r = 1, the vector is parti-

tioned such that Xt = (yt, xt), where yt is a scalar and xt is (p− 1)× 1. By doing so, the
focus is on one possible cointegrating relation yt = β̃xt+vt where β̃ is (p−1)-dimensional.

As in standard cointegration analysis the vector β̃ can be estimated with ordinary
least squares (OLS) as long as d > 1/2 so that the series remains non-stationary. In
stationary long-memory time series, OLS is inconsistent in presence of correlation between
the stationary regressors and the innovation term vt (cf. Robinson (1994)).
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Robinson (1994) and Robinson and Marinucci (2001) introduce an alternative estima-
tor of the cointegrating vector that is based on the periodogram local to the zero frequency.
In contrast to OLS, this narrow-band frequency domain least squares (NBLS) estimator is
consistent under cointegration for all values of d and has a non-normal limiting distribu-
tion in the non-stationary region. Christensen and Nielsen (2006) extend the asymptotic
results to the stationary region where the estimate follows an asymptotic normal distri-
bution and Nielsen and Frederiksen (2011) provide a correction of the asymptotic bias
under weak fractional cointegration.

Estimating the linear cointegrating relationship with NBLS requires calculating the
averaged cross-periodogram of xt with itself and yt by Iavxx(λj) = 2π

T

∑m
j=1 ωx(λj)ωx(λj)

and Iavxy (λj) = 2π
T

∑m
j=1 ωx(λj)ωy(λj). The NBLS estimate of β̃ is then defined by

β̂m = Iavxx(λj)−1Iavxy (λj). (2.6)

The bandwidthm has to fulfill the usual local-to-zero condition as T →∞. If not specified
otherwise, this is the estimator we employ to estimate the cointegrating vector. Other
estimators suggested in the literature include estimation based on the eigenvectors of a
version of IavX (λj) (cf. Chen and Hurvich (2006)) and joint estimation with the memory
parameters in multivariate local Whittle approaches such as those of Robinson et al.
(2008) and Shimotsu (2012).

The following review is divided into tests based on the spectral density local to the
origin (Section 2.3.1) and tests based on estimates of the cointegrating residuals (Section
2.3.2). Of course, this distinction is not clear cut, since some of the residual-based ap-
proaches also use the spectral properties of the potential cointegrating residuals and for
example the test of Nielsen (2010) is presented as a variance-ratio test. Many different
categorizations would be possible. Here, we refer to those approaches as "spectral-based"
that rely on the properties of the spectrum of the observed series Xt itself, and those that
rely on the spectrum of the cointegrating residual are called "residual-based".

2.3.1 Tests based on the Spectral Matrix

A number of procedures to determine the fractional cointegrating rank of the p-dimen-
sional time series Xt are based on properties of the rescaled spectral matrix local to the
zero frequency. This is denoted by G in Equation (2.1) and has reduced rank if and only
if Xt is fractionally cointegrated. If fractional cointegration is present, the number of
eigenvalues that are equal to zero corresponds to the cointegrating rank r and therefore
to the number of cointegrating relationships.

Based on this property Robinson and Yajima (2002) introduce an information criterion
to determine the fractional cointegration rank that is extended to non-stationary processes
by Nielsen and Shimotsu (2007).
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To obtain an estimate Ĝ of G, the first step of the procedure consists in applying the
univariate exact local Whittle estimator of Shimotsu and Philips (2005) and Shimotsu
(2010) to each component of Xt separately, using bandwidth m. In contrast to a multi-
variate local Whittle estimate that has the inverse of Ĝ in its objective function and is
therefore not consistent under fractional cointegration, each of the univariate estimates is
consistent for the memory order d of Xt. The memory order d is therefore estimated by
the pooled estimator d̂ELW that is the arithmetic mean of the univariate estimates. The
estimate of Ĝ(d̂ELW ) is then defined by

Ĝ(d̂ELW ) = 1
m1

m1∑
j=1

Re I∆d(λj),

where I∆d is the periodogram of ∆d̂ELWXt. The bandwidths have to fulfill m1
m
→ 0 in order

to ensure faster convergence of d̂ELW than of Ĝ(d̂ELW ).1 Denote the empirical eigenvalues
calculated from Ĝ(d̂ELW ) and sorted in descending order by δ̂a,G for a = 1, ..., p. The
cointegrating rank can then be estimated using a model selection criterion that is based
on the partial sum of the sorted eigenvalues

r̂NS = arg min
k=0,...,p−1

n(T )(p− k)−
p−k∑
a=1

δ̂a,G

 , (2.7)

where n(T ) is a function which fulfills n(T ) + 1√
m1 n(T ) → 0 as T → ∞ so that n(T )

goes to zero but more slowly than the estimation error in the eigenvalues that is of order
OP

(
m
−1/2
1

)
. Asymptotically, the expression is therefore minimal if only estimates of non-

zero eigenvalues are included in the sum.
To deal with situations in which the scales of the components in Xt are different,

Nielsen and Shimotsu (2007) suggest to base the procedure on the correlation matrix
P̂ (d̂ELW ) = R̂(d̂ELW )−1/2Ĝ(d̂ELW )R̂(d̂ELW )−1/2 instead of Ĝ, where R̂(d̂ELW ) = diag (ĝ11,

..., ĝpp) contains the diagonal elements of Ĝ(d̂ELW ). This is admissible since the rank of
P̂ is the same as that of Ĝ in the limit. Nielsen and Shimotsu (2007) point out that
this approach works better in simulations and also recommend to use the bandwidth
n(T ) = m−0.3

1 . The cointegrating rank estimate is consistent for r ∈ {0, ..., p − 1}. It is
applicable for systems of dimension p ≥ 2, and it does not impose restrictions on d and b.

A similar rank estimation procedure based on the average of finitely many tapered
periodogram ordinates local to the origin was also proposed by Chen and Hurvich (2003).

The aforementioned inconsistency of the multivariate local Whittle estimator under
fractional cointegration is the basis for a test procedure originally proposed by Marinucci
and Robinson (2001). They suggest a Hausman-type test that compares multivariate

1We follow the notation of Nielsen and Shimotsu (2007) and use m1 for the bandwidth in the estimation
of G(d) and m for that of d. Note that Robinson and Yajima (2002) chose the opposite notation.
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and univariate local Whittle estimates. Under the null hypothesis of no cointegration the
multivariate estimator is efficient and both estimators are consistent. Under the alternative
of fractional cointegration, on the other hand, the univariate estimator remains consistent,
whereas the multivariate one does not.

This idea is formalized by Robinson (2008). The test statistic is based on the objective
function of the multivariate local Whittle estimator (cf. Lobato (1999), Shimotsu (2007))

S(d) = log det Ĝ∗(d)− 2pd
m

m∑
j=1

log λj with Ĝ∗(d) = 1
m

m∑
j=1

IX(λj)λ2d
j

and its derivative

s∗ (d) = tr
(
Ĝ∗(d)−1Ĥ∗(d)

)
(2.8)

with Ĥ∗(d) = 1
m

m∑
j=1

νjIX(λj)λ2d
j and νj = log j − 1

m

m∑
k=1

log k.

Similar to the previous procedure, the memory parameter d is estimated by pooling the
univariate estimates obtained by applying the local Whittle estimator to each of the
component series. The equally weighted average is denoted by d̂LW .

To obtain a test statistic, the derivative s∗(d) from (2.8) is evaluated at this averaged
univariate estimate:

W ∗
Rob = ms∗(d̂LW )2

N2tr(F̂ ∗2)− p
; (2.9)

F̂ ∗ = R̂∗
−1/2

Ĝ∗(d̂LW ) R̂∗−1/2
, R̂∗ = diag(ĝ∗11, ..., ĝ

∗
pp),

where ĝ∗aa, a = 1, ..., p, are the diagonal elements of Ĝ∗(d̂LW ). The scaled derivative
m1/2s∗(d̂LW ) is asymptotically normal so that the test follows a χ2

1-distribution if ap-
propriately standardized by the term in the denominator.

The test generates power because G(d) is singular under the alternative of fractional
cointegration so that the inverse Ĝ∗(d̂LW )−1 of the estimate and consequently the trace
s∗
(
d̂LW

)
become large.

This is a score-type test that avoids the calculation of the multivariate local Whittle
estimator that can be numerically expansive. Since the efficiency of the multivariate es-
timate is obtained with a single Newton step from the univariate estimate in direction
of the multivariate one, s∗

(
d̂LW

)
is directly proportionate to the difference between the

efficient and the inefficient estimate.
This test allows series of dimensions larger than two, but it is restricted to processes

with d ∈ (−1/2, 1/2) and focuses on the empirically relevant range d ∈ (0, 1/2). Hence,
non-stationary processes are not allowed. An extension based on a trimmed version of
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the local Whittle estimator is proposed, but the size properties of this test in simulations
appear to depend heavily on the sample size.2

An alternative way to allow for non-stationary processes would be to base the test on
the objective function of the multivariate exact local Whittle estimator (as in Shimotsu
(2012), but without allowing for fractional cointegration) and univariate ELW estimates.
Since the exact local Whittle estimates have the same asymptotic properties as the local
Whittle estimate for d ∈ (−1/2, 1/2), the test would have the same limiting distribution.

For a bivariate process with known d ∈ (0, 1], Souza et al. (2018) propose a test based
on an estimate of b obtained from the determinant of the trimmed and truncated spectral
matrix of the fractionally differenced process via a log-periodogram regression.

Denote the fractionally differenced process by ∆dXt = (∆dX1t,∆dX2t)′ with spectral
density matrix f∆d(λ), then the determinant D∆d(λ) of f∆d(λ) depends on the memory
reduction parameter b ∈ [0, d] and can be approximated by

D∆d(λ) ∼ g̃|1− e−iλ|2b, as λ→ 0+, (2.10)

where g̃ is a constant and finite scalar.
Under cointegration, f∆d(λ) does not have full rank near the origin (like G in (2.1))

so that its determinant D∆d(λ) approaches zero as λ→ 0+. The memory reduction b can
be estimated from the logged version of Equation (2.10) using a log-periodogram type
regression,

logD∆d(λ) ∼ log g̃ + 2b log |1− e−iλ|+ log g̃
∗(λ)
g̃

, as λ→ 0+,

where limλ→0+ g̃∗(λ) = g̃.
In order to make the estimation of b feasible, the empirical determinant D̂∆d(λ) has to

be calculated from an estimate f̂∆d(λ) of the spectral density at the Fourier frequencies
with order numbers j = l, l+ (2l− 1), l+ 2(2l− 1), ...,m− (2l− 1),m with l+ 1 < m < T .
The latter is obtained from the locally averaged periodogram

f̂∆d(λj) = 1
2l − 1

j+(l−1)∑
k=j−(l−1)

I∆d(λk),

where I∆d(λk) is the periodogram of ∆dXt. At each j the estimate f̂∆d(λj) is thus a local
average of the periodogram at frequency j and the l + 1 frequencies to its left and right
and the λj are spaced so that the local averages are non-overlapping.

2These results are available from the authors upon request.
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The resulting estimator for the cointegrating strength b is given by

b̂GPH =
 m∑
j=l+1

Z̃∗2j

−1
m∑

j=l+1
Z̃∗j log D̂∆d(λj),

where Z̃∗j = Z∗j − Z̄∗, Z∗j = log |1 − eiλ| = log(2 − 2 cos(λj)), and Z̄∗ is the mean of the
Z∗j .

Under the null hypothesis of no fractional cointegration we have b = 0. Under this
condition, and assuming that l and m fulfill the condition l+1

m
+ m

T
+ 1

m
+ logm

m
→ 0 as

T → ∞, the estimate b̂GPH is consistent and asymptotic normal with variance σ2
b =

1
m

(Ψ(1)(2l + 1) + Ψ(1)(2l)), where Ψ(1)(x) = δ2 log Γ(x)
δx2 is the polygamma function of order

1 and Γ(·) denotes the gamma function.
The null hypothesis of no fractional cointegration can thus be tested using a simple

t-test:

WSRFB = b̂GPH
σb

d→ N(0, 1). (2.11)

The method has no restrictions regarding the range of d and b but is only applicable to
bivariate processes. For practical purposes, d is usually unknown and has to be estimated,
but as shown in our simulation study in Section 2.4 this has no severe implications for
the quality of the test. However, a thorough theoretical examination of this aspect would
be interesting for further research.

2.3.2 Tests based on Cointegrating Residuals

By the definition of fractional cointegration the memory dv of the linear combination
vt = β′Xt is lower than that of Xt itself. Under the null hypothesis of no fractional
cointegration one can still write vt = β′Xt = yt − β̃xt, since yt can still depend on the
values of the other components of Xt. The difference to the cointegrated case is only that
dv = d. It is therefore natural to test for fractional cointegration by testing dv = d (or
b = 0) versus dv < d (or b > 0) based on an estimate v̂t of the potential cointegrating
residual.

Under weak non-stationary fractional cointegration so that d > dv > 1/2, Marmol
and Velasco (2004) suggest a Hausman (1978)-type F-test that compares the OLS esti-
mate β̂OLS of the cointegrating vector with an alternative estimate β̂NB with opposite
consistency characteristics.

The OLS estimator β̂OLS is consistent for β̃ under the alternative (as long as d >

1/2) but inconsistent under the null hypothesis. Marmol and Velasco (2004) propose an
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alternative estimator β̂NB that is consistent for the vector β̃ under the null hypothesis
but inconsistent under the alternative. The estimator is given by

β̂NB(d̂x, d̂v) = ĜMV
xx (d̂x)−1ĝMV

xy (d̂v),

where ĜMV
xx (d) = 2π

m2

m2∑
j=1

Λ̃j(d)−1Re {Ixx(λj)} Λ̃−1
j (d),

ĝMV
xy (d) =

m2∑
j=1

Re Ixy(λj)λ2(d−1)
j ,

Λ̃j(d) = diag(λ1−d
j , ..., λ1−d

j ) and where Ixx(λj) and Ixy(λj) are the respective elements of
the periodogram I∆X∆X(λj) of the differenced process ∆Xt and m2 is subject to the usual
bandwidth conditions.

The estimator is closely related to the narrow band least squares estimator β̂m from
(2.6) but uses a rescaled version of the periodogram. In fact, β̂NB(0, 0) would be equivalent
to the NBLS estimate based only on the real part of the periodogram.

Inconsistency under the alternative is only obtained through the choice β̂NB(d̂x, d̂v),
where d̂v is estimated from the OLS residuals. Since under the alternative v̂OLSt is a
consistent estimate of the cointegrating residual, d̂v → dv < d, whereas d̂x is estimated
from the original series and is consistent for d. Under the null hypothesis, on the other
hand, β̂OLS is inconsistent so that v̂OLSt is just some linear combination of I(d) series,
d̂v → d, and β̂NB(d̂x, d̂v) is consistent for β̃.

Since the process is non-stationary, the memory is estimated by local Whittle from
the differenced process. ALternatively, d could be estimated using a tapered local Whittle
estimator, or by the exact or fully extended local Whittle estimator.

The test statistic compares both estimates of β̃ where the normalizing variance V̂ MV

is estimated from the periodogram of the OLS residuals v̂OLSt and that of xt so that

V̂MV =
 m∑
j=−m

Ixx(λj)
−1

m∑
j=−m

Ixx(λj)Iv̂v̂(λj)
 m∑
j=−m

Ixx(λj)
−1

.

This leads to the test statistic

WMV = 1
p− 1

(
β̂OLS − β̂NB

)′
V̂ −1
MV

(
β̂OLS − β̂NB

)
. (2.12)

The choices ofm andm2 are not linked, but both have to satisfy the condition (md−2 +
mγ−1 log T ) log2 T + m

T
→ 0 as T →∞, with γ > 0 which is fulfilled if m ∼ T η, η ∈ (0, 1).
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The asymptotic distribution is non-standard and depends on the memory parameter
d. It is given by

WMV
d→ 1
p− 1

ˆ 1

0
Wy(d; r)Wx(d; r)′drV −1

ˆ 1

0
Wx(d; r)Wy(d; r)dr,

with V =
ˆ 1

0
γR(s) {γxx(s) + γ′xx(s) + γxx(1− s) + γ′xx(1− s)} ds,

γR(s) =
ˆ 1−s

0
Wy(d; r)Wy(d; r + s)dr,

and γxx(s) =
ˆ 1−s

0
Wx(d; r)Wx(d; r + s)′dr,

where Wy(d; r) is a fractional Brownian bridge, and Wx(d; r) is a p× 1 vector of indepen-
dent fractional Brownian bridges.

Critical values are tabulated in Marmol and Velasco (2004) for dimensions up to p = 5
and different forms of detrending that affect the type of the fractional Brownian bridges.
The test statistic WMV diverges under the alternative since both β̂NB and V̂ −1

MV diverge
under fractional cointegration.

Although the consistency of the test is derived assuming d > dv > 0.5, Marmol and
Velasco (2004) state that the test remains consistent if the stationarity border is crossed
by the cointegrating residuals, i.e. d > 0.5 > dv. Our simulations in Section 2.4 confirm
this.

A direct residual based test is proposed by Chen and Hurvich (2006) who estimate
the possible cointegrating subspaces using eigenvectors of the averaged periodogram local
to the zero frequency. The process Xt is assumed to be stationary after taking (q − 1)
integer differences which allows d ∈ (q − 1.5, q − 0.5). In order to account for possible
over-differentiation the complex-valued taper ht = 0.5(1 − ei2πt/T ) of Hurvich and Chen
(2000) is applied to the data. The tapered discrete Fourier transform and periodogram of
Xt are defined by

wtapX (λj) = 1√
2π∑t |h

(q−1)
t |2

T∑
t=1

h
(q−1)
t Xte

iλjt,

I tapX (λj) = wX(λj)wX(λj).

Next, define the averaged periodogram matrix of Xt by

IavX (λj) =
m3∑
j=1

Re
(
I tapX (λj)

)
,

where m3 is a fixed positive integer fulfilling m3 > p + 3. The eigenvalues of IavX (λj)
sorted in descending order are denoted by δ̂a,IavX and the corresponding eigenvectors are
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given by χ̂a,IavX , for a = 1, ..., p. Under the alternative hypothesis, if there are r > 0
cointegrating relationships, the matrix consisting of the first r eigenvectors provides a
consistent estimate of the cointegrating subspace.

To construct a test for the null hypothesis of no fractional cointegration the potential
cointegrating residuals vt are estimated by multiplying Xt with the eigenvectors χ̂a,IavX so
that v̂avat = χ̂′a,IavX Xt, for a = 1, ..., p.

The memory of the p residual processes is estimated with the local Whittle estimator
using bandwidth m but calculated using shifted Fourier frequencies λj̃ with j̃ = j + (q −
1)/2 to account for the tapering of order q. These estimates are denoted by d̂

va,L̃W
, and

they remain consistent and asymptotic normal.
Since there can be at most p − 1 cointegrating relationships in a p-dimensional time

series, the first residual corresponding to the largest eigenvalue cannot be a cointegrating
residual. Its memory must therefore equal the common memory d of Xt. The last residual
v̂avpt corresponding to the smallest eigenvalue, on the other hand, is most likely to be a
cointegrating residual if there is cointegration so that its memory is reduced by b under
cointegration.

The test idea of Chen and Hurvich (2006) is therefore to compare the estimated
memory orders from the residual series v̂av1t and v̂avpt . Hence, the test compares the estimated
memory parameters d̂ (first residual) and d̂v (last residual). Chen and Hurvich (2006) show
that

√
m
(
d̂
va,L̃W

− d̂
vb,L̃W

)
d→ N

(
0, VCH,q

(
1− G2

ab

GaaGbb

))

with VCH,q = 1
2

Γ(4q − 3)Γ4(q)
Γ4(2q − 1) .

A conservative test statistic is therefore given by

WCH =
√
m

(
d̂
v1,L̃W

− d̂
vp,L̃W

)
√
VCH,q

. (2.13)

The tests rejects if WCH is larger than the standard normal quantile z1−α/2. It is very
versatile, since it does not impose restrictions on the cointegration strengh b and can be
applied to stationary as well as non-stationary long memory processes, but it requires a
priori knowledge about the location of d in the parameter space to determine the order
of differencing.

Hualde and Velasco (2008) propose another testing strategy in a residual-based regres-
sion framework. As before, the series Xt is partitioned such that Xt = (yt, x′t)′ and they
consider the single-equation regression yt = β̃xt + vt.

The test idea is based on the observation that the fractionally differenced residual
∆dxvt is unrelated to the long-run level of xt under the null hypothesis. This is because
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∆dxvt is I(0) and xt is I(d). The cross-spectrum of xt and ∆dxvt should therefore be
zero at frequencies local to zero. Possible dependence between the short-run components
ut and et in (2.3) would manifest itself in form of a non-zero cross-spectrum at higher
frequencies.

The test statistic of Hualde and Velasco (2008) is therefore based on the quantity τ̂m
defined as

τ̂m =
m∑
j=1

wx(−λj)ζ(λj)w∆dv,dX(λj)

where ∆dv ,dXt =
(
∆d̂vyt,∆d̂x′t

)′
and ζ(λj) = (1, 0′p−1) f̂X(λj)−1. The projection vector

ζ(λj) estimates the discrete Fourier transform (DFT) of the residual process vt from
w∆dv,dX(λj) — the DFT of the fractionally differenced process ∆dv ,dXt. As usual for these
semiparametric approaches, it is assumed that m ≤ T/2 and m/T → 0, as T →∞.

This leads to the test statistic

WHV = τ̂ ′mV̂
−1
HV τ̂m (2.14)

with V̂HV =
m∑
j=0

aj Re κ(λj)IXX(λj),

and κ(λj) = (1, 0′p−1) f̂X(λj)−1 (1, 0′p−1)′ = ζ(λj) (1, 0′p−1)′,

where the weights are defined by aj = 1 if j ∈ {0, T/2} and aj = 2 otherwise. Under
the null hypothesis this test statistic follows an asymptotic χ2

p−1-distribution. Under the
alternative the test develops power, since dv is estimated from the NBLS estimate of
the cointegrating residuals. Since these have reduced memory under the alternative, the
first component of ∆dv ,dXt (yt) is I(b) instead of I(0) and the cross spectrum of the
underdifferenced estimate of vt and xt in τ̂m becomes non-zero. As before, the memory
orders are estimated using consistent estimators that account for the (possible) non-
stationarity of the data — for example the exact local Whittle estimator of Shimotsu and
Philips (2005).

A modified test with more power in bivariate systems Xt = (X1t, X2t)′ is calculated
with τ̃m instead of τ̂m:

τ̃m =
m∑
j=0

aj

Re
(
I∆d̂vX1,X2

(λj)− f̃12(λj)
f̂22(λj)

I∆d̂vX2,X2
(λj)

)
f̂11(λj)− f̂12(λj)f̂21(λj)

f̂22(λj)

,

with f̂∆d̂
(λj) = 1

2m+ 1

j+m∑
k=j−m

I∆d̂X
(λk) and f̃∆d̂v

(λj) = 1
2m+ 1

j+m∑
k=j−m

I∆d̂vX
(λk).
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Here, the respective elements of the spectral matrices are denoted by f̂ab(λj) and f̃ab(λj)
with a, b ∈ {1, 2}. This is the same as τ̂m but with f̂12(λj) replaced by f̃12(λj) that
is constructed using d̂v so that it also diverges under the alternative and constitutes
an additional source of power. The asymptotic χ2

p−1-distribution is unaffected by this
modification.

It is not necessary to impose any restrictions on the range of d and dv except for
those implied by fractional cointegration, and processes of dimensions higher than two are
allowed. The asymptotic χ2

p−1 distribution depends only on the dimension of the process.
Furthermore, the memory parameters are allowed to differ as long as two components of
Xt share the same memory parameter and the vector is sorted so that the component
with the highest memory comes first.

Nielsen (2010) introduces a sequential testing approach in order to test the null hypoth-
esis of no fractional cointegration and to determine the cointegrating rank. The method is
based on a variance-ratio statistic and imposes the assumption that the process Xt is non-
stationary and the potential cointegrating residual process is stationary with dv < 0.5 < d.
Denote the demeaned process by Zt = Xt − Xt, where Xt is the vector of arithmetic
means of the component series. The fractionally integrated version of Zt is denoted by
Z̃t = ∆−εZt. Then the variance ratio is given by

KT (ε) = ATC
−1
T ,

with AT =
T∑
t=1

ZtZ
′
t, and CT =

T∑
t=1

Z̃tZ̃t.

Taking the ratio has the advantage of eliminating the processes’ variance from the asymp-
totic distribution. The eigenvalues of KT (ε) sorted in ascending order are denoted by δ̂a,K
with a = 1, ..., p.

Similar to the spectral matrix G, the rank of KT (ε) is reduced to p−r under fractional
cointegration. This leads to a non-parametric trace statistic whose structure is similar to
the trace statistic of Johansen and Juselius (1990) in the parametric context

WNiel(ε) = T 2ε
p−r∑
k=1

δ̂k,K , r = 1, ..., p− 1, (2.15)

where r is the number of cointegrating relations under the null hypothesis. Using (2.15)
the cointegrating rank can be determined by a sequence of tests of the null hypothesis
H0: r = r0 vs. H1: r > r0.

The limiting distribution is given by

WNiel(ε) d→ tr


ˆ 1

0
Wn−r(d; s)Wn−r(d; s)′ds

(ˆ 1

0
W̃n−r(d+ ε; s)W̃n−r(d+ ε; s)′ds

)−1
 ,
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where Wn−r(d, u) = Bn−r
d (u) −

´ 1
0 B

n−r
d (v)dv, W̃n−r(d + ε;u) = Bn−r

d+ε (u) −
´ u

0
(u−v)ε−1

Γ(ε) dv´ 1
0 B

n−r
d+ε (v)dv, Bn−r

d is a n− r dimensional vector of mutually independent standard frac-
tional Brownian motions of type II, and the Brownian motions driving the fractional
Brownian motions Bn−r

d and Bn−r
d+ε are identical.

This asymptotic distribution is non-standard and depends on the dimension p, the
cointegrating rank r, the order of fractional integration ε and d. In practice d can be
estimated consistently, and the other parameters are known. Critical values for d = 1,
ε = 0.1, and p−r = 1, 2, ..., 8 are given by Nielsen (2010), who recommends to use ε = 0.1
to integrate the process because it leads to higher power than larger values whereas
smaller values improve power slightly but lead to size distortions at the same time. For
more details confer Nielsen et al. (2009). Note that choosing a different order of fractional
summation changes the limiting distribution which implies that the test performance is
free from user-chosen tuning parameters.

To see why this test can be considered to be residual-based, note that

δ̂a,K = η̂a
′AT η̂a

η̂a
′CT η̂a

=
∑T
t=1 v̂

2
t∑T

t=1 ṽ
2
t

,

where η̂a denotes the eigenvector corresponding to the ath eigenvalue. Since the first r
eigenvectors are consistent estimates of the cointegrating space (cf. Theorem 3 in Nielsen
(2010)), the first r eigenvalues are thus given by the ratio of the sum of the squared
cointegrating residuals and the sum of squares of their ε times integrated version ṽt.

Here the squares are estimators of the respective process variances and it is assumed
that d > 1/2 > dv. Therefore, under the null hypothesis of no fractional cointegration the
enumerator grows with rate OP (T 2d) and the more persistent denominator grows with
rate OP (T 2(d+ε)), so that the eigenvalue has rate OP (T−2ε).

Under the alternative of fractional cointegration with dv < 1/2, the process vt is
stationary so that the process variance is finite and the enumerator grows with rate
OP (T ). The denominator that may or may not be stationary due to the integration with
ε is OP (Tmax{1/2,d−b+ε}). Consequently, the eigenvalue is OP (Tmin{0,1−2(d−b+ε)}), so that it
goes to zero more slowly than under the null hypothesis.

The test is restrictive in that it requires non-stationary processes and, preferably,
stationary residual processes, but as shown by his Monte Carlo simulation the test still
exhibits power if dv > 0.5 and b > 0. Furthermore, it is applicable to multivariate systems
and is able to estimate the number of cointegrating relations.

Wang et al. (2015) propose a simple residual-based test in a bivariate setting, where
Xt = (X1t, X2t)′. The test statistic is based on the partial sum of ∆dvZ2t, which is the
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demeaned second component series fractionally differenced with the memory order of the
potential cointegrating residual vt. It is given by

WWWC = T−1/2
∑T
t=1 ∆d̂vZ2t√
2πf̂22(0)

,

where f22 is the spectral density of either u2t or et in (2.3), depending on whether a
triangular model or a common-components model is assumed.

Under the null hypothesis dv = d so that ∆dvZ2t is I(0) and the appropriately rescaled
sum is asymptotically standard normal. Under the alternative ∆dvZ2t is I(b), so that the
test statistic diverges with rate OP (T b).

To make this test statistic feasible the spectral density f22 can be estimated from
the periodogram of the fractionally differenced process ∆d̂Z2t following the approach of
Hualde (2013):

f̂22(0) = 1
(2m+ 1)

m∑
j=−m

I∆d̂Z2
(λj),

where I∆d̂Z2
(λj) is the periodogram of ∆d̂Z2t.

While Wang et al. (2015) are agnostic about the method that is used for the estimation
of the memory parameters d and dv, they assume that d > 1/2 so that the cointegrating
vector can be estimated using ordinary least squares. The memory orders can then be
estimated from v̂OLSt and Z2t using any of the common semiparametric estimates such as
ELW with bandwidth m as in f̂22 that fulfills the usual bandwidth conditions.

The method does not impose any restrictions on the fractional cointegrating strength
b. As the Monte Carlo simulations below show, the non-stationarity requirement (d > 1/2)
can be circumvented if the cointegrating residual vt is based on the NBLS estimate of the
cointegrating vector instead of the OLS estimate.

Zhang et al. (2019) propose an alternative estimator of the cointegrating space that is
based on the eigenvectors of the non-negative matrix

M̂ =
j0∑
j=0

Ω̂Z(j)Ω̂Z(j)′,

where Ω̂Z(j) = 1
T

∑T−j
t=1 Zt+jZ

′
t is the autocovariance matrix at lag j and j0 is a fixed

integer. The matrix M̂ is thus the sum of the outer products of the first j0 autocovariance
matrices with themselves. The outer product is used instead of the covariance matrices
Ω̂Z(j) to ensure that there is no information cancellation over different lags in M̂ . It is
assumed that d > 0.5 and dv < 0.5.

The eigenvalues of M̂ in descending order are denoted by δ̂a,M for a = 1, ..., p and the
corresponding eigenvectors are denoted by χ̂a,M . Similar to the matrix G in (2.1), the first
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p− r eigenvalues of M are non-zero, whereas the remaining r are zero. For known r the
eigenvectors corresponding to the r smallest eigenvalues provide a consistent estimate of
the cointegrating space.

If r is unknown, the p potential cointegrating residuals are estimated using the eigen-
vectors so that v̂Mat = χ̂′a,MXt. By the same argument as in the procedure of Chen and
Hurvich (2006), the residual corresponding to the smallest eigenvalue is most likely a
cointegrating residual with reduced memory of dv = d− b and the residual corresponding
to the largest eigenvalue is I(d).

The cointegrating rank can be estimated using a simple criterion based on the summed
autocorrelations of the potential cointegrating residuals. Define

Qa(k0) =
k0∑
k=1

ρ̂a(k),

with ρ̂a(k) =
1

T−k
∑T−k
t=1 (v̂Ma,t+k − v̂Mat )(v̂at − v̂Mat )′

1
T

∑T
t=1(v̂Mat − v̂Mat )2

,

where v̂Mat is the mean of v̂Mat . The cointegrating rank estimator counts the instances when
the averaged autocorrelation is smaller than a threshold c0 ∈ (0, 1):

r̂ZRY =
p∑
a=1

1

{
Qa(k0)
k0

< c0

}
. (2.16)

If the residual v̂Mat is stationary (dv < 1/2), the rescaled sum of autocorrelations Qa(k0)/k0

converges to zero asymptotically for k0 →∞, since the autocorrelations are asymptotically
proportionate to k2dv−1. Under certain regularity conditions this estimate is consistent.
Even though the consistency is only proven for r ≥ 1 in Theorem 4.2 of Zhang et al.
(2019), our simulations below show that it also works well in discriminating between
r = 0 and r = 1.

It should be noted that the authors define r = p if all components of Xt are I(0).
This leads to some abuse of notation and r cannot be interpreted as the cointegrating
rank in a narrow sense. Based on their simulations Zhang et al. (2019) recommend to use
j0 = 5, k0 = 20 and c0 = 0.3. The estimator is easy to implement and applicable to higher
dimensional processes. However, the requirement of d > 0.5 and dv < 0.5 is restrictive.

2.4 Monte Carlo Study

The asymptotic properties of all tests and rank estimates presented in Section 2.3 are
derived by the respective authors, and some of them also present simulations to explore
the finite sample results of the test statistics. This however is not the case for all tests and
a comprehensive comparative study suited to guide the choice of appropriate methods in
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practical applications is entirely missing. To close this gap, we conduct an extensive Monte
Carlo study. In addition to general results, we are particularly interested in answering two
empirically motivated questions.

i.) How does correlation between the underlying short-run components influence the
size of the tests? This question is particularly important, since applied researchers will
generally want to test for fractional cointegration if two related series seem to be co-
moving. Similar trajectories however, can also be generated by persistent processes with
highly correlated innovations. Tests for the null hypothesis of no fractional cointegration
should therefore be robust to a relatively high degree of correlation between the short-run
components of the series.

ii.) Is there a notable difference in the power of the tests depending on whether the
data is generated from a triangular model or from a common-components model? Both
models are used in the literature to motivate and construct testing procedures, but to
our knowledge simulation results are typically based on the triangular representation. In
practice, either model could be justified — depending on the application. For example, if
one is considered with potential fractional cointegrating relationships between stock prices,
it is not clear why one of the stock prices should be seen as a perturbed version of the other
one (as it is the case in the triangular model that treats the series in an asymmetric way)
so that the common-components model is more suitable. In contrast to that, in the case of
the potential parity between implied volatility and the expected average realized volatility
over the next month (the so-called implied-realized parity analyzed by Christensen and
Prabhala (1998), Christensen and Nielsen (2006), and Nielsen (2007), among others),
there is theoretical reason to assume that the implied volatility is a perturbed version of
the expected average future realized volatility, since it contains a variance-risk premium
(cf. Chernov (2007)). Therefore, a triangular model is more suitable.

We focus on three data generating processes (DGPs) based on the general model from
equations (2.3) to (2.5). For simplicity we set c1 = c2 = 0 and b = b1 = b2, so that the
processes are mean zero and have a common memory reduction parameter.

A simple bivariate model without fractional cointegration is constructed by setting
ξ1 = ξ2 = 0. This model - referred to as DGP1 - is given by

X1t = ∆−du1t1{t > 0}, (2.17)

X2t = ∆−du2t1{t > 0}, (2.18)

where correlation between u1t and u2t is allowed. This is our size-DGP.
For the power simulations, we consider a triangular model and a common-components

model. In both cases we set ξ1 = ξ2 = 1, which implies a cointegrating vector of β =
(1,−1)′.



2.4 Monte Carlo Study 24

The triangular model DGP2 is given by

X1t = Yt + ∆−(d−b)u1t1{t > 0}, (2.19)

X2t = Yt, (2.20)

and the common-components model DGP3 is defined by

X1t = Yt + ∆−(d−b)u1t1{t > 0}, (2.21)

X2t = Yt + ∆−(d−b)u2t1{t > 0}. (2.22)

In both DGP2 and DGP3 we have Yt = ∆−det1{t > 0}. The underlying short-run com-
ponents u1t and u2t, or u1t and et — depending on the DGP — have unit variance and
correlation ρ.

We consider sample sizes of T ∈ {100, 500, 1000, 2500} and values of d ∈ {0.4, 0.7, 1}
in the stationary and non-stationary region. Under fractional cointegration, the memory
reduction b is linked to the value of d so that b ∈ {d/3, d}. Consequently, there is either
a memory reduction to 0 if b = d or a weaker form of cointegration if b = d/3. In order
to examine the impact of correlation between the short-run components, we consider
ρ ∈ {0, 0.45, 0.9, 0.99}.

The semiparametric nature of the tests and rank estimates requires several bandwidth
choices. The memory estimation with (E)LW estimators involved in all methods is based
on the bandwidthm that determines the number of frequencies included in the estimation.
We usem = bT δmc with δm = {0.65, 0.75} to account for sensitivities regarding bandwidth
choice. With regard to the other bandwidth choices, we follow the recommendations by the
authors: m1 = bT δm−0.1c and p(T ) = m−0.3

1 for Nielsen and Shimotsu (2007) or Robinson
and Yajima (2002), l = 1 for Souza et al. (2018), m3 = 25 for Chen and Hurvich (2006),
c0 = 0.3, j0 = 5 and k0 = 20 for Zhang et al. (2019), and for Marmol and Velasco (2004)
we set m = bT 2/3c and m2 = bT δmc. All tests are carried out allowing for a non-zero
mean.

The results presented are based on 5000 replications and a nominal significance level
of α = 0.05. Since the tests impose different conditions on d and dv, we mark the cells
in the tables in gray where the methods have well-defined asymptotic properties and
are supposed to deliver good results. In some cases the methods give satisfactory results
beyond these limitations. For example, we implement the method of Wang et al. (2015)
using a NBLS estimate of the cointegrating vector instead of the OLS estimate. This
makes the test applicable in stationary time series as well as in non-stationary ones.

Since the limiting distributions of the non-pivotal test statistics of Marmol and Velasco
(2004) and Nielsen (2010) depend on d and it is assumed that d > 1/2, it is unclear which
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

NS07* 100 0.000 0.000 0.014 0.130 0.138 0.241 1.000 1.000 0.998 1.000 1.000 1.000
500 0.000 0.000 0.001 0.000 0.000 0.049 1.000 1.000 0.994 1.000 1.000 1.000
1000 0.000 0.000 0.000 0.000 0.000 0.021 1.000 1.000 0.989 1.000 1.000 1.000
2500 0.000 0.000 0.000 0.000 0.000 0.006 1.000 1.000 0.976 1.000 1.000 1.000

CH06 100 0.219 0.119 0.021 0.105 0.073 0.029 0.077 0.040 0.032 0.075 0.033 0.033
500 0.177 0.058 0.032 0.076 0.031 0.021 0.060 0.026 0.017 0.064 0.027 0.020
1000 0.136 0.051 0.031 0.064 0.025 0.018 0.045 0.018 0.018 0.046 0.020 0.017
2500 0.129 0.044 0.023 0.059 0.023 0.015 0.039 0.018 0.012 0.040 0.017 0.012

HV08 100 0.001 0.008 0.015 0.017 0.022 0.024 0.128 0.098 0.058 0.312 0.263 0.130
500 0.002 0.018 0.020 0.027 0.029 0.022 0.309 0.141 0.028 0.764 0.440 0.098
1000 0.003 0.023 0.022 0.039 0.029 0.021 0.399 0.128 0.028 0.805 0.501 0.076
2500 0.003 0.027 0.022 0.060 0.035 0.021 0.494 0.140 0.024 0.835 0.535 0.057

SRFB18 100 0.114 0.117 0.101 0.107 0.111 0.110 0.112 0.121 0.114 0.109 0.115 0.105
500 0.054 0.054 0.049 0.049 0.052 0.052 0.046 0.055 0.046 0.056 0.052 0.045
1000 0.041 0.047 0.042 0.043 0.043 0.040 0.044 0.047 0.048 0.045 0.043 0.044
2500 0.037 0.039 0.029 0.035 0.037 0.037 0.036 0.036 0.034 0.033 0.035 0.035

R08 100 0.174 0.183 0.092 0.050 0.059 0.066 0.036 0.048 0.039 0.042 0.045 0.039
500 0.233 0.254 0.104 0.049 0.080 0.063 0.052 0.066 0.041 0.049 0.062 0.043
1000 0.239 0.275 0.090 0.053 0.080 0.064 0.051 0.076 0.046 0.057 0.074 0.042
2500 0.265 0.304 0.084 0.055 0.094 0.056 0.054 0.084 0.039 0.050 0.084 0.040

WWC15 100 0.080 0.095 0.090 0.079 0.087 0.094 0.081 0.096 0.098 0.078 0.091 0.094
500 0.069 0.068 0.075 0.068 0.068 0.074 0.065 0.074 0.074 0.072 0.072 0.068
1000 0.066 0.064 0.067 0.069 0.062 0.066 0.065 0.056 0.067 0.055 0.060 0.068
2500 0.057 0.059 0.056 0.059 0.052 0.061 0.060 0.057 0.059 0.055 0.049 0.061

ZRY18* 100 0.101 0.644 0.652 0.071 0.597 0.627 0.057 0.560 0.573 0.062 0.565 0.576
500 0.401 0.058 0.000 0.288 0.043 0.000 0.270 0.036 0.000 0.281 0.030 0.000
1000 0.548 0.000 0.000 0.410 0.000 0.000 0.408 0.000 0.000 0.401 0.000 0.000
2500 0.677 0.000 0.000 0.517 0.000 0.000 0.505 0.000 0.000 0.510 0.000 0.000

N10 100 0.035 0.059 0.041 0.061 0.053 0.053 0.058 0.063
500 0.048 0.055 0.048 0.052 0.064 0.057 0.060 0.055
1000 0.057 0.056 0.056 0.055 0.070 0.060 0.064 0.055
2500 0.067 0.054 0.078 0.056 0.078 0.056 0.076 0.053

MV04 100 0.034 0.057 0.036 0.066 0.104 0.101 0.332 0.219
500 0.041 0.052 0.047 0.056 0.158 0.092 0.496 0.234
1000 0.039 0.052 0.047 0.055 0.141 0.081 0.490 0.224
2500 0.036 0.052 0.045 0.056 0.127 0.069 0.442 0.197

Table 2.1: Size (*rank estimation) based on DGP1 with δm = 0.75. We abbreviate the
methods with the initial letters of the authors’ names and the year of publi-
cation.

critical values would be used in the stationary region. The respective fields are therefore
left blank.
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It should be noted that the methods of Nielsen and Shimotsu (2007) (or Robinson
and Yajima (2002)) and Zhang et al. (2019) are not tests but rank estimates. Instead of
the rejection frequency, we therefore report the ratio of correctly estimated cointegrating
ranks. Therefore, the results cannot be interpreted as size or power and in the size table
and graphs the estimates should yield 0 instead of 0.05.

Table 2.1 displays size results based on DGP 1 with δm = 0.75 and a nominal size level
of 5%. The methods that have well defined asymptotic properties across all parameter
constellations covered in the table are those of Nielsen and Shimotsu (2007), Chen and
Hurvich (2006), Hualde and Velasco (2008), and Souza et al. (2018). It can be observed
that all of these methods achieve good size properties for ρ = 0, except for the test of
Chen and Hurvich (2006), when d = 0.4. If ρ increases, however, only the tests of Souza
et al. (2018) and Chen and Hurvich (2006) do not over-reject.3 For low values of d the test
of Hualde and Velasco (2008) already becomes oversized for ρ = 0.45 and as ρ increases it
becomes oversized for higher values of d, too. The rank estimation procedure of Robinson
and Yajima (2002) and Nielsen and Shimotsu (2007) is even more affected and estimates
a cointegrating rank of one in nearly all cases if ρ ≥ 0.9.

In addition to the tests of Souza et al. (2018) and Chen and Hurvich (2006), the
modified version of the test by Wang et al. (2015) that is based on the NBLS estimator
instead of OLS also maintains satisfactory size properties across all values of ρ and d.

The group of procedures that is only applicable to non-stationary systems consists of
Marmol and Velasco (2004), Nielsen (2010), and Zhang et al. (2019). It can be observed
that the procedure of Marmol and Velasco (2004) behaves similar to that of Hualde and
Velasco (2008) in the sense that it is very liberal for higher values of ρ and lower values of
d. Zhang et al. (2019) estimate the cointegrating rank based on the mean autocorrelation
of the residuals under the assumption that the original processes are non-stationary and
the residual process is stationary. For non-stationary series and larger sample sizes the
procedure correctly estimates the cointegrating rank to be zero — independently of the
degree of correlation. The variance-ratio statistic of Nielsen (2010) turns out to be slightly
liberal for d = 0.7 in larger samples, but this effect is independent of the degree of
correlation.

Finally, the test of Robinson (2008) is only applicable for stationary systems. Here,
it can be observed that the test does not hold its size for ρ = 0. This is because the
Hausman-testing principle requires one of the estimates of the memory parameter to be
more efficient than the other one, but the multivariate estimate is not more efficient in
absence of correlation. For other values of ρ, however, the test has good size properties.
Interestingly, the test also has good size properties if d = 1, even though it assumes
stationarity. The intermediate value of d = 0.7, on the other hand, leads to a moderately
oversized test.

3The test of Chen and Hurvich (2006) is conservative by construction as discussed in the previous section.
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Figure 2.1: Size (*rank estimation) based on DGP1 depending on correlation ρ ∈
{0, 0.99} and bandwidth δm ∈ {0.65, 0.75} with T = 1000.

Figure 2.1 analyzes the interaction between the degree of correlation ρ and the choice
of the bandwidth δm. It shows the size of the tests in scatterplots where the results with
high correlation (ρ = 0.99) are plotted against results with no correlation (ρ = 0). On
the left-hand side only tests that allow for stationary processes (with d = 0.4) and on
the right-hand side (where d = 1) the non-stationarity-robust tests, i.e. all except that of
Robinson (2008) are displayed. The dashed lines mark the nominal size level of 0.05, so
that ideally all points would lie on the intersection between these two lines. The dotted
line is the bisector implying that methods above the bisector do better with correlation
and methods below the bisector do better without. Black symbols give results with a
bandwidth parameter of δm = 0.75 and gray symbols with δm = 0.65.

Overall, it can be observed that the bandwidth choice has a limited effect on the
performance of the procedures. A notable exception is the test byWang et al. (2015), where
the size improves considerably as the bandwidth is increased. In general, correlation in
the underlying short-run component is mistaken for cointegration more often in stationary
systems than in non-stationary ones.

As a robustness check for the finite sample analysis of the size properties conducted
here, we consider two alternative size DGPs in Tables A.1 and A.2 in the appendix A.
These results are obtained from DPG2 and DGP3 where we set b = 0, so that the
time series are not cointegrated. In this case, the processes share a common trend Yt,
but the linear combination vt = X1t − X2t does not have reduced memory so that the
definition of cointegration is not fulfilled. The results show that the tests that are already
heavily affected by correlation show even more distorted size results if there is a common
component in the DGP. The general picture, however, remains unaffected.
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

dv 0 0 0 0 0 0 0 0 0 0 0 0

NS07* 100 0.989 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH06 100 0.556 0.349 0.337 0.317 0.291 0.110 0.046 0.205 0.020 0.007 0.179 0.010
500 0.998 0.443 1.000 0.991 0.179 1.000 0.999 0.081 1.000 1.000 0.071 1.000
1000 1.000 0.811 1.000 1.000 0.518 1.000 1.000 0.277 1.000 1.000 0.241 1.000
2500 1.000 0.998 1.000 1.000 0.972 1.000 1.000 0.869 1.000 1.000 0.833 1.000

HV08 100 0.788 0.989 1.000 0.882 0.998 1.000 0.958 1.000 1.000 0.959 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SRFB18 100 0.720 0.976 0.999 0.709 0.982 0.999 0.642 0.928 0.993 0.259 0.586 0.914
500 0.993 1.000 1.000 0.994 1.000 1.000 0.983 1.000 1.000 0.794 0.961 0.993
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.949 0.994 0.999
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000

R08 100 0.044 0.245 0.572 0.009 0.023 0.200 0.049 0.060 0.065 0.671 0.463 0.147
500 0.870 1.000 1.000 0.368 0.869 0.998 0.202 0.239 0.454 1.000 0.957 0.599
1000 0.997 1.000 1.000 0.799 0.999 1.000 0.347 0.343 0.573 1.000 0.991 0.709
2500 1.000 1.000 1.000 0.999 1.000 1.000 0.576 0.486 0.707 1.000 1.000 0.804

WWC15 100 0.634 0.896 0.966 0.618 0.887 0.970 0.426 0.855 0.965 0.307 0.832 0.959
500 0.829 0.967 0.993 0.807 0.968 0.994 0.694 0.961 0.993 0.630 0.956 0.995
1000 0.867 0.982 0.998 0.850 0.979 0.998 0.763 0.977 0.997 0.695 0.978 0.997
2500 0.917 0.992 0.998 0.896 0.988 0.999 0.817 0.990 0.999 0.787 0.990 0.999

ZRY18* 100 0.020 0.403 0.797 0.007 0.339 0.780 0.006 0.289 0.770 0.008 0.289 0.764
500 0.082 0.983 1.000 0.032 0.974 1.000 0.016 0.953 1.000 0.010 0.954 1.000
1000 0.119 1.000 1.000 0.042 1.000 1.000 0.011 0.998 1.000 0.011 0.998 1.000
2500 0.200 1.000 1.000 0.049 1.000 1.000 0.013 1.000 1.000 0.007 1.000 1.000

N10 100 0.431 0.978 0.356 0.965 0.270 0.950 0.262 0.954
500 0.996 1.000 0.988 1.000 0.981 1.000 0.974 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MV04 100 0.481 0.974 0.748 0.994 0.854 0.998 0.866 0.999
500 0.985 1.000 0.993 1.000 0.997 1.000 0.997 1.000
1000 0.997 1.000 0.999 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2.2: Power (*rank estimation) with b = d and δm = 0.75 for the triangular model
(DGP2).

Overall, in terms of size for bivariate systems and taking the range of admissible
parameter values into account, we find that the test of Souza et al. (2018) has the best
performance, followed by those of Chen and Hurvich (2006) and Wang et al. (2015).
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To analyze the power of the procedures, we focus on the triangular representation in
DGP2 with b = d so that the memory reduces to zero in the cointegrating relation. Again
δm is set to 0.75. The results are shown in Table 2.2. In the following, we focus on the
results for parameter constellations for which the tests have reasonable size properties.
It should be noted that the procedure of Marmol and Velasco (2004) is not theoretically
justified for any of the parameter constellations considered, since it assumes that the series
are non-stationary, and dv > 1/2.

It can be seen that the rank estimate of Nielsen and Shimotsu (2007) correctly identifies
the presence of fractional cointegration even in relatively small samples. Since the estimate
works well under the null hypothesis if ρ is low, it clearly outperforms its competitors in
this situation. The power of the test of Hualde and Velasco (2008) is also high, but it
suffers from similar size issues in case of strongly correlated short-run components.

Among the tests that are more widely applicable the approach of Souza et al. (2018)
generates higher power than that of Wang et al. (2015) (except for ρ = 0.99), which in
turn outperforms the approach of Chen and Hurvich (2006). Furthermore, it can be seen
that the test of Souza et al. (2018) also outperforms more restrictive approaches such as
those of Robinson (2008) and Nielsen (2010). For the test of Chen and Hurvich (2006) we
can observe that the power is lower for d = 0.7 than for other values of d. Furthermore,
the power becomes non-monotonic in T in some cases. This effect is likely to be caused
by the fact that the order of differentiation required may be estimated incorrectly for
intermediate values of d. The approach of Zhang et al. (2019) performs similar to that of
Nielsen (2010).

With regard to the test of Robinson (2008), it is noteworthy that the power is consid-
erably lower for ρ = 0.9 than it is for ρ = 0.45 or ρ = 0.99. Further simulation results on
this V-shaped dependence pattern between the power of the test and ρ (not reported here)
show that the test has no power if ρ = 0.8 and its power is very low in a neighborhood of
this point. The size of this neighborhood shrinks to zero as the sample size increases.

The test of Marmol and Velasco (2004) develops good power for non-stationary values
of d, even though its theoretical properties are not derived under this alternative.

Overall, we find that the rank estimation of Nielsen and Shimotsu (2007) performs
best in identifying the correct order of fractional cointegration if the correlation between
the series is low. Among the more broadly applicable methods the test of Souza et al.
(2018) clearly performs best in terms of size and power.

The same experiment is repeated for a weakly cointegrated scenario where we set
b = d/3. In this case the test of Marmol and Velasco (2004) becomes applicable for d = 1
and those of Nielsen (2010) and Zhang et al. (2019) are no longer applicable for d = 1.
Table A.3 in the appendix A shows the results. It can be seen that the general ordering
of the tests in terms of power remains the same in the weakly cointegrated case.
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

dv 0 0 0 0 0 0 0 0 0 0 0 0

NS07* 100 0.624 0.866 0.968 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 0.658 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.688 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 0.803 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH06 100 0.646 0.912 0.696 0.599 0.896 0.628 0.530 0.872 0.547 0.532 0.873 0.524
500 0.995 0.756 1.000 0.991 0.661 1.000 0.985 0.611 0.999 0.981 0.592 1.000
1000 1.000 0.783 1.000 1.000 0.592 1.000 1.000 0.437 1.000 1.000 0.423 1.000
2500 1.000 0.988 1.000 1.000 0.950 1.000 1.000 0.871 1.000 1.000 0.847 1.000

HV08 100 0.172 0.711 0.986 0.387 0.875 0.994 0.725 0.977 1.000 0.887 0.995 1.000
500 0.883 1.000 1.000 0.986 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
1000 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SRFB18 100 0.366 0.775 0.979 0.417 0.837 0.986 0.467 0.868 0.990 0.474 0.874 0.990
500 0.800 1.000 1.000 0.856 1.000 1.000 0.895 1.000 1.000 0.904 1.000 1.000
1000 0.964 1.000 1.000 0.983 1.000 1.000 0.992 1.000 1.000 0.991 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R08 100 0.109 0.533 0.860 0.054 0.368 0.770 0.018 0.183 0.601 0.013 0.158 0.573
500 0.950 1.000 1.000 0.904 1.000 1.000 0.837 1.000 1.000 0.816 1.000 1.000
1000 0.999 1.000 1.000 0.999 1.000 1.000 0.996 1.000 1.000 0.996 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

WWC15 100 0.391 0.769 0.933 0.477 0.798 0.939 0.500 0.835 0.939 0.509 0.833 0.942
500 0.634 0.928 0.989 0.688 0.942 0.988 0.733 0.943 0.989 0.742 0.945 0.990
1000 0.721 0.959 0.992 0.761 0.968 0.994 0.806 0.966 0.990 0.802 0.970 0.993
2500 0.807 0.979 0.997 0.826 0.982 0.997 0.856 0.983 0.999 0.873 0.982 0.998

ZRY18* 100 0.015 0.363 0.785 0.010 0.347 0.770 0.005 0.308 0.754 0.006 0.300 0.756
500 0.045 0.978 1.000 0.029 0.966 1.000 0.016 0.958 1.000 0.014 0.955 1.000
1000 0.072 1.000 1.000 0.035 0.999 1.000 0.017 0.999 1.000 0.014 0.998 1.000
2500 0.091 1.000 1.000 0.042 1.000 1.000 0.018 1.000 1.000 0.015 1.000 1.000

N10 100 0.151 0.879 0.175 0.887 0.202 0.881 0.201 0.874
500 0.962 1.000 0.965 1.000 0.966 1.000 0.967 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MV04 100 0.162 0.439 0.141 0.611 0.297 0.919 0.548 0.975
500 0.217 0.999 0.553 1.000 0.911 1.000 0.953 1.000
1000 0.491 1.000 0.872 1.000 0.992 1.000 0.993 1.000
2500 0.952 1.000 0.996 1.000 1.000 1.000 1.000 1.000

Table 2.3: Power (*rank estimation) with b = d and δm = 0.75 with the common-
component model (DGP3).

Both tables so far are generated based on the triangular model (DGP2), but we are
also interested in the performance based on the common-components model (DGP3).
Those results are displayed in Table 2.3. It can be seen that there is a number of striking
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Figure 2.2: Power (*rank estimation) depending on model specification (DGP2 or
DGP3) and bandwidth δm ∈ {0.65, 0.75} with T = 1000, ρ = 0.45, and
b = d/3.

differences in the relative performance of the tests. For low values of d, the rank estimation
procedure of Nielsen and Shimotsu (2007)/Robinson and Yajima (2002) loses precision.
At the same time, the test of Chen and Hurvich (2006) becomes more powerful, so that
overall the two procedures become comparable in terms of their ability to identify the
correct rank. Unfortunately, the non-monotonicity of the test of Chen and Hurvich (2006)
for intermediate values of d becomes even more apparent.

The test of Souza et al. (2018) still performs relatively well - especially for larger values
of d. The same holds true for that of Wang et al. (2015) which reaches a relatively high
power in smaller samples but approaches 1 only slowly.

With respect to the other tests, it can be seen that the variance ratio approach of
Nielsen (2010) needs larger samples to develop power, but the test of Hualde and Velasco
(2008) has very good power properties — also for low values of ρ where it maintains its
size. The procedure of Zhang et al. (2019) turns out to perform better than that of Nielsen
(2010) in very small samples.

As for the triangular model, the same analysis is repeated for a weakly cointegrated
common-components model where b = d/3. The results are shown in Table A.4 in the
appendix A. As before, the general ordering remains the same. However, it can be seen
that the non-monotonicity of the Chen and Hurvich (2006) test for d = 0.7 disappears.
This means the appearance of the effect depends on the cointegrating strength. In addition
to that, the rank estimation procedure of Nielsen and Shimotsu (2007) completely loses
its ability to identify the cointegrating relationship for low values of ρ.

To analyze the effect of the bandwidth choice on the power of the procedures, we
conduct a similar analysis to that for the size in Figure 2.2. As before, black symbols
represent results with δm = 0.75 and gray symbols represent δm = 0.65. The values of
d and b are selected so that the power of the procedures tends to be low and changes
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in their behavior are easier to identify. While an increase of the bandwidth leads to a
considerable power gain for the tests of Chen and Hurvich (2006), Robinson (2008), and
Souza et al. (2018), the approaches of Marmol and Velasco (2004), Hualde and Velasco
(2008) and Nielsen and Shimotsu (2007) have higher power with a smaller bandwidth —
at least in the common-components model. This, however, might be due to the larger
size distortions visible in Figure 2.1. The performance of the other approaches of Nielsen
(2010) and Wang et al. (2015) is relatively independent of the bandwidth choice. For the
test of Nielsen (2010) this is explained by the fact that the bandwidth only influences
the estimate of d that determines the correct set of critical values. The test statistic itself
does not depend on the bandwidth.

To explore the behavior of the tests in higher dimensional systems, we conduct another
set of simulations in a triangular system of dimension p = 3 to determine the size, the
power and the precision of estimates of the cointegrating rank r. The results are shown
in Tables A.5, A.6 and A.7 in the appendix A. In general, it can be seen that general
patterns observed for p = 2 are magnified. For example, the test of Chen and Hurvich
(2006) becomes oversized in stationary systems also if the series are correlated. Noteworthy
is that the test of Robinson (2008) shows very good size properties across all sample sizes,
but requires larger sample sizes to accurately estimate the rank if r > 0, and it does
overestimate the rank if r = 1 and ρ = 0.99. Furthermore, in larger samples of T = 1000 or
more the rank estimation procedure of Zhang et al. (2019) shows a very good performance
for all values of r.

Overall, in the bivariate setup we find that the methods of Robinson and Yajima
(2002) and Hualde and Velasco (2008) have the highest power but they have size issues in
case of strongly correlated short-run components. The test of Souza et al. (2018) tends to
have the best power among the methods that have satisfactory size properties across all
scenarios. In stationary systems with common components the test of Chen and Hurvich
(2006) also has good power properties. For p = 3, where the test of Souza et al. (2018) is
no longer applicable and that of Chen and Hurvich (2006) becomes liberal in stationary
(triangular) systems, especially the rank estimation procedure of Zhang et al. (2019) for
non-stationary systems can be recommended due to its robustness.

2.5 Conclusion

This review is written with the objective to provide guidance for the selection of methods
in practical applications. We judge the methods based on i.) the range of values of d
and b that are allowed, ii.) the ability to distinguish correctly between common trends
and correlated innovations, and iii.) the performance across different DGPs — namely
triangular systems as well as common-components models.
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Based on our Monte Carlo studies, we find that some of the proposed approaches
have weaknesses in their finite sample behavior in some empirically relevant scenarios
— especially in presence of correlated short-run components. This concerns mostly the
methods of Nielsen and Shimotsu (2007) (or Robinson and Yajima (2002)), Marmol and
Velasco (2004), and Hualde and Velasco (2008). With regard to iii.), we find that the
size properties of the tests in the triangular case and the common-components model is
generally comparable. For the power of the tests, however, there are important differences
between the two cases. In particular, the test of Chen and Hurvich (2006) has much better
power for stationary systems under the common components specification, whereas the
methods of Robinson and Yajima (2002) and Hualde and Velasco (2008) become worse in
their ability to detect fractional cointegration.

Overall, we conclude that the test of Souza et al. (2018) for bivariate systems has the
best properties, both theoretically and empirically, and is a good choice for the applied
econometrician. It allows for the whole empirically relevant range of d and b, it is robust
to correlation, and it provides comparable performance in both — triangular systems and
common-components models.

Although the methods of Robinson (2008), Nielsen (2010), and Zhang et al. (2019)
turn out to be robust to short-run correlation and are appealing due to their simplicity,
they impose practically relevant restrictions on the permissible range of d and b, and they
are outperformed by their competitors in terms of power in bivariate systems.

In higher dimensional systems, however, the test of Souza et al. (2018) is no longer
applicable and that of Chen and Hurvich (2006) turns out to be liberal in finite samples
from stationary processes. Here the test of Robinson (2008) can be recommended for
stationary processes and the rank estimation procedure of Zhang et al. (2019) should be
preferred for non-stationary systems if the cointegrating residuals can be expected to be
stationary.
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model triangular common component noise
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

NS07* 100 1.000 0.999 0.985 0.924 0.920 0.849 0.133 0.133 0.240
500 1.000 1.000 0.963 0.712 0.684 0.644 0.000 0.000 0.049
1000 1.000 1.000 0.937 0.335 0.345 0.448 0.000 0.000 0.027
2500 1.000 1.000 0.883 0.009 0.013 0.241 0.000 0.000 0.008

CH06 100 0.076 0.049 0.035 0.089 0.048 0.028 0.093 0.087 0.027
500 0.057 0.022 0.018 0.058 0.026 0.020 0.081 0.036 0.025
1000 0.049 0.021 0.016 0.054 0.020 0.017 0.068 0.029 0.016
2500 0.040 0.017 0.016 0.043 0.020 0.013 0.050 0.025 0.020

HV08 100 0.137 0.113 0.099 0.088 0.091 0.079 0.030 0.052 0.059
500 0.251 0.121 0.072 0.130 0.078 0.062 0.041 0.048 0.053
1000 0.334 0.133 0.065 0.186 0.075 0.062 0.051 0.054 0.060
2500 0.413 0.121 0.057 0.238 0.077 0.057 0.069 0.052 0.054

SRFB18 100 0.108 0.113 0.143 0.115 0.114 0.140 0.112 0.119 0.146
500 0.050 0.054 0.067 0.054 0.057 0.072 0.053 0.051 0.072
1000 0.039 0.047 0.055 0.041 0.046 0.065 0.045 0.046 0.059
2500 0.030 0.038 0.052 0.034 0.033 0.049 0.034 0.041 0.051

R08 100 0.044 0.045 0.040 0.038 0.050 0.039 0.053 0.059 0.075
500 0.050 0.066 0.038 0.045 0.069 0.047 0.053 0.078 0.053
1000 0.050 0.070 0.040 0.055 0.072 0.046 0.054 0.080 0.056
2500 0.048 0.082 0.043 0.052 0.090 0.048 0.056 0.091 0.056

WWC15 100 0.077 0.090 0.095 0.083 0.093 0.095 0.082 0.092 0.099
500 0.070 0.078 0.075 0.065 0.073 0.077 0.064 0.071 0.079
1000 0.059 0.064 0.073 0.056 0.068 0.064 0.066 0.064 0.069
2500 0.056 0.059 0.057 0.060 0.054 0.061 0.053 0.061 0.060

ZRY18* 100 0.061 0.565 0.577 0.067 0.564 0.594 0.068 0.591 0.615
500 0.295 0.029 0.000 0.281 0.032 0.000 0.281 0.039 0.000
1000 0.413 0.000 0.000 0.407 0.000 0.000 0.401 0.000 0.000
2500 0.511 0.000 0.000 0.503 0.000 0.000 0.526 0.000 0.000

N10 100 0.055 0.063 0.046 0.059 0.044 0.057
500 0.050 0.054 0.056 0.058 0.046 0.057
1000 0.062 0.056 0.063 0.057 0.056 0.056
2500 0.073 0.054 0.071 0.063 0.068 0.052

MV04 100 0.081 0.082 0.053 0.068 0.036 0.067
500 0.132 0.080 0.084 0.067 0.051 0.062
1000 0.117 0.067 0.073 0.061 0.040 0.057
2500 0.093 0.062 0.068 0.052 0.044 0.049

Table A.1: Size (*rank estimation) with DGP2 (b = 0), DGP3 (b = 0), DGP1, ρ = 0.45,
and δm = 0.75.
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model triangular common components noise
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

NS07* 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.976

CH06 100 0.075 0.036 0.032 0.078 0.035 0.028 0.078 0.041 0.035
500 0.052 0.023 0.018 0.057 0.022 0.019 0.051 0.027 0.021
1000 0.046 0.021 0.016 0.056 0.024 0.018 0.053 0.019 0.013
2500 0.040 0.018 0.012 0.037 0.019 0.013 0.045 0.017 0.012

HV08 100 0.318 0.249 0.164 0.235 0.183 0.122 0.165 0.135 0.106
500 0.630 0.336 0.110 0.491 0.226 0.091 0.349 0.156 0.076
1000 0.693 0.352 0.098 0.584 0.251 0.074 0.418 0.164 0.063
2500 0.753 0.385 0.077 0.655 0.257 0.066 0.517 0.169 0.059

SRFB18 100 0.103 0.123 0.131 0.109 0.122 0.132 0.114 0.119 0.138
500 0.057 0.053 0.078 0.052 0.057 0.070 0.052 0.052 0.069
1000 0.043 0.047 0.057 0.043 0.046 0.064 0.043 0.040 0.058
2500 0.036 0.036 0.049 0.035 0.044 0.051 0.035 0.039 0.052

R08 100 0.044 0.043 0.035 0.045 0.045 0.040 0.044 0.045 0.040
500 0.048 0.066 0.039 0.052 0.061 0.044 0.049 0.068 0.035
1000 0.052 0.072 0.041 0.052 0.074 0.035 0.054 0.072 0.043
2500 0.054 0.084 0.041 0.047 0.090 0.042 0.049 0.082 0.043

WWC15 100 0.080 0.099 0.095 0.080 0.094 0.098 0.080 0.090 0.095
500 0.065 0.071 0.076 0.069 0.073 0.070 0.071 0.074 0.078
1000 0.064 0.061 0.067 0.064 0.067 0.074 0.062 0.063 0.067
2500 0.060 0.059 0.065 0.055 0.053 0.069 0.055 0.059 0.057

ZRY18* 100 0.062 0.549 0.566 0.064 0.557 0.577 0.066 0.548 0.565
500 0.282 0.031 0.000 0.277 0.026 0.000 0.285 0.035 0.000
1000 0.400 0.000 0.000 0.418 0.000 0.000 0.400 0.000 0.000
2500 0.529 0.000 0.000 0.513 0.000 0.000 0.512 0.000 0.000

N10 100 0.056 0.063 0.049 0.059 0.055 0.069
500 0.060 0.059 0.050 0.060 0.053 0.064
1000 0.064 0.056 0.061 0.057 0.059 0.052
2500 0.071 0.050 0.080 0.048 0.069 0.052

MV04 100 0.222 0.153 0.159 0.126 0.103 0.100
500 0.344 0.150 0.232 0.117 0.157 0.092
1000 0.321 0.148 0.231 0.107 0.145 0.078
2500 0.298 0.123 0.197 0.096 0.130 0.070

Table A.2: Size (*rank estimation) with DGP2 (b = 0), DGP3 (b = 0), DGP1, ρ = 0.9,
and δm = 0.75.
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

dv 0.267 0.467 0.667 0.267 0.467 0.667 0.267 0.467 0.667 0.267 0.467 0.667

NS07* 100 0.946 0.973 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 0.921 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.848 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 0.585 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH06 100 0.163 0.091 0.179 0.132 0.048 0.075 0.076 0.023 0.010 0.009 0.030 0.003
500 0.347 0.353 0.868 0.258 0.178 0.660 0.345 0.057 0.404 0.771 0.025 0.284
1000 0.524 0.718 0.990 0.401 0.487 0.947 0.645 0.302 0.924 0.995 0.292 0.953
2500 0.815 0.983 1.000 0.728 0.925 1.000 0.961 0.918 1.000 1.000 0.932 1.000

HV08 100 0.192 0.354 0.433 0.342 0.585 0.679 0.649 0.944 0.962 0.863 0.988 0.991
500 0.691 0.883 0.926 0.872 0.987 0.990 0.976 1.000 1.000 0.992 1.000 1.000
1000 0.888 0.979 0.992 0.971 0.999 1.000 0.997 1.000 1.000 0.999 1.000 1.000
2500 0.991 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SRFB18 100 0.246 0.432 0.600 0.250 0.431 0.605 0.236 0.377 0.621 0.162 0.208 0.605
500 0.352 0.748 0.952 0.352 0.766 0.957 0.349 0.715 0.967 0.247 0.449 0.942
1000 0.506 0.926 0.999 0.491 0.924 0.997 0.488 0.901 0.997 0.364 0.668 0.991
2500 0.774 0.997 1.000 0.784 0.999 1.000 0.766 0.996 1.000 0.666 0.909 1.000

R08 100 0.018 0.017 0.029 0.017 0.012 0.012 0.027 0.025 0.017 0.252 0.354 0.141
500 0.095 0.391 0.765 0.046 0.157 0.479 0.029 0.055 0.224 0.880 0.948 0.448
1000 0.244 0.746 0.980 0.109 0.384 0.810 0.030 0.091 0.383 0.990 0.995 0.600
2500 0.596 0.985 1.000 0.337 0.803 0.990 0.034 0.180 0.560 1.000 1.000 0.748

WWC15 100 0.225 0.401 0.557 0.244 0.419 0.565 0.194 0.420 0.640 0.081 0.421 0.644
500 0.350 0.579 0.750 0.326 0.595 0.759 0.328 0.663 0.828 0.279 0.737 0.863
1000 0.380 0.647 0.810 0.383 0.652 0.810 0.375 0.755 0.872 0.363 0.808 0.898
2500 0.458 0.712 0.847 0.461 0.737 0.865 0.461 0.825 0.909 0.456 0.873 0.925

ZRY18* 100 0.026 0.442 0.738 0.020 0.395 0.720 0.016 0.379 0.723 0.017 0.363 0.736
500 0.097 0.626 0.053 0.069 0.626 0.052 0.053 0.623 0.052 0.051 0.606 0.046
1000 0.123 0.348 0.001 0.093 0.359 0.000 0.066 0.357 0.001 0.065 0.340 0.000
2500 0.189 0.062 0.000 0.134 0.057 0.000 0.087 0.063 0.000 0.072 0.058 0.000

N10 100 0.115 0.215 0.122 0.220 0.013 0.134 0.302 0.172 0.404
500 0.303 0.355 0.297 0.372 0.438 0.531 0.598 0.680
1000 0.468 0.414 0.474 0.412 0.678 0.614 0.855 0.732
2500 0.706 0.463 0.715 0.469 0.906 0.685 0.983 0.806

MV04 100 0.139 0.368 0.328 0.580 0.664 0.865 0.789 0.948
500 0.644 0.861 0.882 0.963 0.990 1.000 0.996 1.000
1000 0.861 0.968 0.974 0.996 0.998 1.000 1.000 1.000
2500 0.984 0.999 0.999 1.000 1.000 1.000 1.000 1.000

Table A.3: Power (*rank estimation) under with b = d/3 and δm = 0.75 for the triangu-
lar model (DGP2).



A Appendix 37

ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

dv 0.267 0.467 0.667 0.267 0.467 0.667 0.267 0.467 0.667 0.267 0.467 0.667

NS07* 100 0.347 0.490 0.707 0.963 0.984 0.994 1.000 1.000 1.000 1.000 1.000 1.000
500 0.017 0.147 0.661 0.951 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.000 0.029 0.636 0.895 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 0.000 0.000 0.599 0.664 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH06 100 0.221 0.251 0.298 0.181 0.212 0.288 0.171 0.153 0.262 0.154 0.150 0.259
500 0.389 0.481 0.903 0.317 0.345 0.875 0.288 0.268 0.837 0.267 0.245 0.822
1000 0.539 0.715 0.994 0.461 0.595 0.987 0.393 0.454 0.978 0.394 0.443 0.980
2500 0.805 0.981 1.000 0.723 0.956 1.000 0.649 0.905 1.000 0.632 0.896 1.000

HV08 100 0.042 0.080 0.151 0.101 0.170 0.239 0.317 0.418 0.511 0.548 0.661 0.757
500 0.130 0.237 0.479 0.353 0.533 0.698 0.745 0.892 0.946 0.926 0.976 0.993
1000 0.215 0.431 0.731 0.523 0.777 0.895 0.856 0.981 0.995 0.960 0.996 1.000
2500 0.423 0.796 0.965 0.786 0.975 0.995 0.963 1.000 1.000 0.991 1.000 1.000

SRFB18 100 0.167 0.204 0.324 0.149 0.241 0.356 0.171 0.256 0.395 0.170 0.248 0.402
500 0.134 0.326 0.663 0.151 0.387 0.721 0.170 0.456 0.774 0.170 0.454 0.782
1000 0.159 0.489 0.889 0.185 0.580 0.919 0.218 0.635 0.943 0.225 0.649 0.952
2500 0.262 0.805 0.996 0.322 0.875 1.000 0.385 0.916 1.000 0.402 0.930 1.000

R08 100 0.021 0.035 0.060 0.018 0.017 0.032 0.016 0.010 0.013 0.016 0.008 0.013
500 0.132 0.504 0.845 0.081 0.392 0.777 0.061 0.305 0.700 0.050 0.279 0.685
1000 0.294 0.848 0.988 0.209 0.762 0.980 0.156 0.659 0.966 0.138 0.643 0.964
2500 0.668 0.995 1.000 0.545 0.988 1.000 0.447 0.972 1.000 0.420 0.973 1.000

WWC15 100 0.142 0.255 0.401 0.146 0.271 0.426 0.168 0.272 0.425 0.171 0.275 0.432
500 0.187 0.407 0.619 0.211 0.430 0.632 0.225 0.458 0.632 0.226 0.431 0.635
1000 0.209 0.479 0.708 0.240 0.505 0.712 0.261 0.514 0.697 0.253 0.513 0.703
2500 0.249 0.577 0.778 0.282 0.580 0.778 0.293 0.595 0.784 0.317 0.606 0.785

ZRY18* 100 1.973 1.562 1.030 1.979 1.590 1.053 1.979 1.602 1.073 1.985 1.621 1.068
500 1.909 0.656 0.046 1.931 0.651 0.042 1.951 0.647 0.050 1.948 0.663 0.046
1000 1.878 0.356 0.001 1.907 0.353 0.001 1.933 0.352 0.000 1.942 0.341 0.001
2500 1.806 0.062 0.000 1.881 0.054 0.000 1.923 0.064 0.000 1.924 0.065 0.000

N10 100 0.060 0.161 0.077 0.177 0.096 0.179 0.096 0.183
500 0.197 0.297 0.204 0.285 0.230 0.304 0.241 0.301
1000 0.341 0.341 0.359 0.345 0.369 0.352 0.374 0.343
2500 0.586 0.392 0.605 0.396 0.602 0.405 0.610 0.401

MV04 100 0.043 0.129 0.058 0.196 0.234 0.452 0.559 0.751
500 0.080 0.300 0.200 0.529 0.707 0.901 0.901 0.986
1000 0.100 0.474 0.353 0.751 0.865 0.979 0.963 0.999
2500 0.195 0.811 0.665 0.960 0.979 1.000 0.996 1.000

Table A.4: Power (*rank estimation) with b = d/3 and δm = 0.75 with the common-
component model (DGP 3).



A Appendix 38

ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1
NS07* 100 0.002 0.003 0.059 0.375 0.385 0.498 1.000 1.000 0.993 1.000 1.000 1.000

500 0.000 0.000 0.001 0.000 0.001 0.107 1.000 1.000 0.980 1.000 1.000 1.000
1000 0.000 0.000 0.000 0.000 0.000 0.057 1.000 1.000 0.967 1.000 1.000 1.000
2500 0.000 0.000 0.000 0.000 0.000 0.022 1.000 1.000 0.928 1.000 1.000 1.000

CH06 100 0.477 0.238 0.016 0.214 0.139 0.020 0.183 0.066 0.023 0.170 0.058 0.024
500 0.472 0.094 0.050 0.181 0.049 0.031 0.147 0.034 0.031 0.143 0.035 0.030
1000 0.404 0.090 0.052 0.164 0.041 0.033 0.126 0.033 0.028 0.122 0.033 0.022
2500 0.300 0.081 0.044 0.128 0.035 0.025 0.098 0.029 0.021 0.095 0.031 0.019

HV08 100 0.005 0.046 0.104 0.040 0.096 0.154 0.488 0.549 0.484 0.883 0.889 0.853
500 0.002 0.034 0.079 0.043 0.077 0.103 0.562 0.508 0.356 0.891 0.900 0.799
1000 0.002 0.037 0.075 0.061 0.068 0.096 0.596 0.501 0.299 0.901 0.882 0.756
2500 0.003 0.030 0.066 0.065 0.060 0.080 0.614 0.481 0.250 0.906 0.885 0.727

R08 100 0.114 0.109 0.052 0.036 0.047 0.030 0.034 0.038 0.035 0.035 0.040 0.033
500 0.192 0.190 0.060 0.050 0.062 0.038 0.047 0.060 0.039 0.046 0.064 0.041
1000 0.213 0.224 0.049 0.056 0.064 0.043 0.049 0.065 0.036 0.049 0.072 0.039
2500 0.232 0.259 0.050 0.049 0.083 0.040 0.050 0.083 0.039 0.053 0.088 0.039

ZRY18* 100 0.003 0.161 0.528 0.002 0.157 0.528 0.006 0.156 0.512 0.012 0.165 0.385
500 0.061 0.209 0.002 0.067 0.155 0.001 0.053 0.129 0.001 0.072 0.091 0.001
1000 0.134 0.004 0.000 0.151 0.002 0.000 0.149 0.001 0.000 0.141 0.001 0.000
2500 0.356 0.000 0.000 0.372 0.000 0.000 0.373 0.000 0.000 0.325 0.000 0.000

MV04 100 0.036 0.054 0.042 0.065 0.126 0.124 0.382 0.272
500 0.030 0.053 0.047 0.055 0.152 0.089 0.467 0.247
1000 0.036 0.049 0.050 0.054 0.129 0.078 0.461 0.211
2500 0.035 0.053 0.042 0.055 0.122 0.075 0.428 0.188

N10 100 0.033 0.048 0.038 0.058 0.053 0.061 0.058 0.065
500 0.048 0.059 0.049 0.049 0.062 0.059 0.063 0.052
1000 0.056 0.060 0.063 0.055 0.068 0.054 0.073 0.061
2500 0.075 0.053 0.075 0.059 0.089 0.058 0.083 0.053

Table A.5: Size (*rank estimation) based on DGP1 with p = 3 and δm = 0.75.
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

r = 1
CH06 100 0.650 0.407 0.249 0.408 0.358 0.082 0.083 0.182 0.009 0.027 0.005 0.004

500 0.999 0.491 1.000 0.997 0.259 1.000 0.999 0.171 1.000 0.254 0.059 0.561
1000 1.000 0.853 1.000 1.000 0.616 1.000 1.000 0.525 1.000 0.815 0.323 0.991
2500 1.000 0.998 1.000 1.000 0.987 1.000 1.000 0.969 1.000 0.996 0.957 1.000

HV08 100 0.691 0.985 1.000 0.721 0.979 1.000 0.695 0.980 1.000 0.616 0.982 1.000
500 0.999 1.000 1.000 0.999 1.000 1.000 0.995 1.000 1.000 0.994 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R08 100 0.039 0.133 0.212 0.010 0.014 0.039 0.047 0.065 0.038 0.285 0.188 0.073
500 0.686 0.960 0.989 0.123 0.324 0.766 0.192 0.230 0.159 0.971 0.762 0.279
1000 0.955 0.998 1.000 0.325 0.712 0.981 0.308 0.325 0.286 0.999 0.912 0.415
2500 0.999 1.000 1.000 0.767 0.984 1.000 0.565 0.499 0.443 1.000 0.988 0.597

MV04 100 0.454 0.977 0.686 0.991 0.762 0.994 0.771 0.992
500 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

N10 100 0.214 0.832 0.149 0.785 0.110 0.712 0.109 0.716
500 0.911 1.000 0.833 1.000 0.756 1.000 0.726 1.000
1000 0.999 1.000 0.996 1.000 0.994 1.000 0.994 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

r = 2
CH06 100 0.565 0.900 0.508 0.437 0.891 0.482 0.402 0.832 0.545 0.401 0.829 0.559

500 0.994 0.753 1.000 0.969 0.842 0.997 0.926 0.936 0.985 0.927 0.952 0.982
1000 1.000 0.762 1.000 0.999 0.651 1.000 0.997 0.809 1.000 0.996 0.828 1.000
2500 1.000 0.983 1.000 1.000 0.642 1.000 1.000 0.449 1.000 1.000 0.464 1.000

HV08 100 0.604 0.941 0.997 0.729 0.946 0.997 0.924 0.987 0.999 0.982 0.999 1.000
500 0.997 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

R08 100 0.052 0.345 0.780 0.006 0.028 0.290 0.009 0.002 0.086 0.132 0.024 0.067
500 0.934 1.000 1.000 0.422 0.964 1.000 0.037 0.009 0.620 0.865 0.342 0.508
1000 0.999 1.000 1.000 0.871 1.000 1.000 0.059 0.015 0.793 0.989 0.550 0.636
2500 1.000 1.000 1.000 1.000 1.000 1.000 0.110 0.038 0.988 1.000 0.806 0.757

MV04 100 0.366 0.879 0.465 0.934 0.841 0.993 0.994 1.000
500 0.763 0.999 0.813 0.999 0.982 1.000 1.000 1.000
1000 0.847 1.000 0.879 1.000 0.998 1.000 1.000 1.000
2500 0.915 1.000 0.936 1.000 1.000 1.000 1.000 1.000

N10 100 0.190 0.860 0.066 0.690 0.037 0.527 0.035 0.504
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table A.6: Power with p = 3, b = d, and δm = 0.75 for the triangular model.
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ρ 0 0.45 0.9 0.99
method T/d 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1 0.4 0.7 1

r = 1
NS07 100 0.991 0.997 0.998 0.958 0.966 0.903 0.000 0.000 0.009 0.000 0.000 0.000

500 1.000 1.000 1.000 1.000 1.000 0.989 0.000 0.000 0.027 0.000 0.000 0.000
1000 1.000 1.000 1.000 1.000 1.000 0.995 0.000 0.000 0.044 0.000 0.000 0.000
2500 1.000 1.000 1.000 1.000 1.000 0.999 0.000 0.000 0.077 0.000 0.000 0.000

CH06 100 0.597 0.330 0.247 0.390 0.321 0.089 0.098 0.180 0.036 0.039 0.280 0.032
500 0.948 0.468 0.981 0.984 0.249 0.990 0.910 0.125 0.743 0.748 0.128 0.439
1000 0.951 0.841 0.982 0.989 0.612 0.987 0.888 0.423 0.835 0.186 0.174 0.016
2500 0.969 0.985 0.987 0.996 0.982 0.994 0.879 0.860 0.852 0.005 0.018 0.003

R08 100 0.190 0.247 0.263 0.041 0.085 0.113 0.054 0.098 0.074 0.317 0.183 0.079
500 0.524 0.568 0.839 0.187 0.615 0.883 0.205 0.279 0.370 0.039 0.070 0.186
1000 0.527 0.522 0.844 0.567 0.837 0.903 0.305 0.338 0.415 0.002 0.019 0.212
2500 0.446 0.463 0.861 0.879 0.832 0.902 0.425 0.409 0.460 0.000 0.001 0.207

ZRY18 100 0.001 0.053 0.308 0.000 0.053 0.299 0.008 0.049 0.285 0.003 0.054 0.263
500 0.008 0.939 1.000 0.003 0.937 1.000 0.014 0.751 1.000 0.001 0.943 0.858
1000 0.028 0.999 1.000 0.007 0.999 1.000 0.010 0.925 1.000 0.007 0.999 0.933
2500 0.091 1.000 1.000 0.023 1.000 1.000 0.012 0.994 1.000 0.013 0.996 0.999

N10 100 0.201 0.810 0.143 0.767 0.107 0.700 0.105 0.706
500 0.900 0.973 0.827 0.979 0.754 0.983 0.723 0.983
1000 0.982 0.974 0.988 0.972 0.990 0.975 0.991 0.974
2500 0.970 0.962 0.982 0.967 0.991 0.972 0.991 0.974

r = 2
NS07 100 0.761 0.918 0.981 0.994 0.996 0.993 1.000 1.000 1.000 1.000 1.000 1.000

500 0.822 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.867 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 0.943 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH06 100 0.266 0.834 0.321 0.058 0.607 0.375 0.002 0.290 0.479 0.000 0.226 0.494
500 0.978 0.745 1.000 0.888 0.838 0.997 0.882 0.932 0.985 0.918 0.949 0.982
1000 1.000 0.757 1.000 0.998 0.645 1.000 0.997 0.805 1.000 0.996 0.823 1.000
2500 1.000 0.983 1.000 1.000 0.639 1.000 1.000 0.443 1.000 1.000 0.457 1.000

R08 100 0.002 0.011 0.088 0.001 0.000 0.006 0.021 0.077 0.058 0.618 0.565 0.213
500 0.438 0.995 1.000 0.019 0.204 0.854 0.173 0.619 0.362 1.000 0.993 0.527
1000 0.940 1.000 1.000 0.188 0.845 0.999 0.324 0.858 0.536 1.000 1.000 0.656
2500 1.000 1.000 1.000 0.831 1.000 1.000 0.657 0.988 0.660 1.000 1.000 0.763

ZRY18 100 0.012 0.342 0.769 0.003 0.233 0.746 0.007 0.169 0.705 0.020 0.153 0.701
500 0.034 0.973 1.000 0.003 0.918 1.000 0.002 0.826 1.000 0.023 0.824 1.000
1000 0.045 0.999 1.000 0.003 0.994 1.000 0.001 0.980 1.000 0.007 0.975 1.000
2500 0.061 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

N10 100 0.048 0.575 0.010 0.314 0.005 0.180 0.005 0.164
500 0.806 1.000 0.611 1.000 0.490 0.999 0.475 0.999
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table A.7: Fraction of correct rank estimation with p = 3, b = d, and δm = 0.75 for the
triangular model.



Chapter 3

Fractional Cointegration and EMU Govern-
ment Bond Market Integration

Co-authored with Christian Leschinski and Philipp Sibbertsen.

3.1 Introduction

We show that even though the yields on long-term government bonds of the major EMU
countries were largely co-moving prior to the crisis, the degree of market integration ex-
hibited considerable variation over time. This time variation is related to the stock market
sentiment. During bear-market periods, there was no equilibrium mechanism between the
yields that would have ensured the subsistence of a stable relationship.

In contrast to our findings, it is nearly universally accepted in the literature on the
integration of EMU bond markets that the introduction of the Euro led to essentially
complete integration of EMU bond markets that ended with the advent of the subprime
mortgage crisis. This was found empirically by contributions such as Ehrmann et al.
(2011), Baele et al. (2004), Pozzi and Wolswijk (2012), Christiansen (2014), and Ehrmann
and Fratzscher (2017) and is also implicitly assumed by studies on the determinants of
yield spreads between government bonds in the euro area, such as Beber et al. (2008),
who treat the yield spreads as stationary variables.

The difference between these studies and ours is rooted in the fact that we take a very
different perspective from previous contributions to the literature. Instead of focusing on
the shock transmission among the spreads or the relative importance of global and local
factors, we test for the existence of an equilibrium among the interest rates themselves.
Our study adopts a definition of market integration that is widely used in other areas such
as the analysis of commodity markets. This definition is directly based on the law of one
price and closely connected to the existence of a (fractional) cointegrating relationship.
Using it enables us to draw conclusions about market equilibria by applying a wide set of
modern methods for the analysis of fractionally cointegrated systems.

Utilizing this direct correspondence between economic theories and statistical concepts
allows us to make several major contributions. First, we establish that the EMU bond
markets were integrated during bull markets but disintegrated in bear markets. This is
achieved directly by testing for pairwise fractional cointegration among the yields and in-
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directly by considering the persistence of the yield spreads. The yield spreads between the
countries are the cointegrating residuals obtained by imposing the cointegrating vector
(1,−1)′ on the yields. The persistence of the spreads is therefore directly related to the
existence of an equilibrium relationship among the yields. Further insights into the dy-
namics of integration and disintegration in the EMU bond markets are therefore obtained
from a rolling window analysis of the memory of the spreads.

The second contribution is to provide insights into the sources of the time-varying
persistence in the spreads. To this end, the estimated degree of persistence is regressed on
a set of variables that proxy for market sentiment, risk, and risk aversion. The analysis
not only confirms the relationship between integration and bull and bear markets, but
also shows that the degree of market integration is driven by market risk.

Finally, the third contribution is to provide insights into the possible economic origins
of the observed time variation in market integration. Here, we make use of the fact that
the yields are the sum of the risk-free rate, the default risk premium, and the liquidity
risk premium of the respective country. Due to the special situation in the EMU where
(due to the common currency area) the risk-free rate is the same for all countries and
Germany is typically assumed to be risk-free, the spreads relative to Germany are solely
determined by the default risk premium and the liquidity risk premium. Standard results
on the properties of linear combinations of long-memory time series from Chambers (1998)
then give rise to two possible mechanisms that can generate the observed time variation
in the persistence of the spreads. The first one is that markets expect economic and
fiscal divergence within the EMU area in bear markets, whereas they are optimistic about
convergence within the euro area in bull markets. The second possible explanation is
that markets always assume that divergence is a possibility, but the default risk premium
exhibits so little variation in good times that the persistence of the spreads is dominated
by the liquidity premium. In contrast to that, in bad times, when risk and risk aversion
are high, the persistence of the spreads is dominated by the default risk premium, due to
its increased variability.

Both of these arguments lead to the conclusion that (at least in crisis times) the pricing
of EMU government bonds implied the possibility of macroeconomic and fiscal divergence
between the EMU countries, long prior to the EMU debt crisis. Also, differences between
the core and periphery countries are already visible during previous bear-market periods.

The rest of the paper is structured as follows. Section 3.2 provides a discussion of mar-
ket integration and a discussion of fractional integration and cointegration. Subsequently,
Section 3.3 describes the data set and discusses the definition of bull and bear markets.
Section 3.4 contains the empirical analysis including formal tests for market integration
separately for bull and bear markets, rolling window estimates of the persistence of the
spreads, and an analysis of the drivers of the degree of market integration. Finally, Section
3.5 concludes.
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3.2 Market Integration, Fractional Integration, and
Fractional Cointegration

In international finance, measures for market integration are typically based on factor
models for the returns. The most widely adopted approaches in recent years are those
of Bekaert and Harvey (1995) and Pukthuanthong and Roll (2009). Bekaert and Harvey
(1995) consider two markets to be integrated if their movement is completely determined
by global factors, whereas local factors (that are specific to individual countries) are not
priced. Similarly, Pukthuanthong and Roll (2009) consider the explanatory power of a
multifactor model as a measure for market integration. While both of these measures are
intuitive for asset returns, they lack a rigorous foundation in economic theory and they
are not readily applicable to bond yields that are typically found to have unit roots.

Here, we therefore consider a different definition that is commonly used for the analysis
of commodity markets. According to this definition markets for different goods that are
close substitutes, or markets for the same good that are spatially separated are considered
to be (economically) integrated with each other if the law of one price (LOP) applies. In
the strict sense, the LOP requires that there is a correction mechanism (such as arbitrage)
in place that enforces the stability of an equilibrium relationship, and that the form of
this equilibrium is such that prices in both markets are exactly the same. The weaker
definition of partial market integration only requires the existence of a stable equilibrium
relationship but not exact equality between the prices.

For non-stationary prices, this definition is often tied to the concept of cointegration
(cf. Ravallion (1986), Ardeni (1989)), since cointegration implies the existence of an equi-
librium relationship between unit root processes. In the classical I(0)/I(1) framework,
deviations from this equilibrium have to be weakly persistent in the sense that they are
stationary and have short memory. This, however, is an unnecessary restriction, since an
equilibrium relationship only requires deviations from the mean to be transitory in the
sense that they are mean reverting.

We therefore allow for fractional cointegration when testing for (partial) market inte-
gration and consider a bivariate system of the form

X1t = c1 + ξ1Yt + ∆−(d−b1)u1t1{t>0} (3.1)

X2t = c2 + ξ2Yt + ∆−(d−b2)u2t1{t>0} (3.2)

Yt = ∆−det1{t>0}, (3.3)
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where the coefficients c1, c2, ξ1, and ξ2 are finite, 0 ≤ b1, b2 ≤ d, L is the lag-operator,
the fractional differences ∆dYt = (1− L)dYt are defined in terms of generalized binomial
coefficients such that

(1− L)d =
∞∑
k=0

(
d

k

)
(−1)kLk =

∞∑
k=0

πkL
k,

with
(
d

k

)
= d(d− 1)(d− 2) . . . (d− (k − 1))

k! ,

and et and ut = (u1t, u2t)′ are martingale difference sequences. The memory of both X1t

and X2t is determined by Yt so that they are integrated of the same order d, denoted by
Xt ∼ I(d), where the memory parameter is restricted to d ∈ (0, 1] and Xt = (X1t, X2t)′.
Since it is assumed that u1t = u2t = et = 0 for all t ≤ 0, the processes under con-
sideration are fractionally integrated of type-II. For a detailed discussion of type-I and
type-II processes confer Marinucci and Robinson (1999). The spectral density of Xt can
be approximated by

fX(λ) ∼ Λj(d)GΛj(d), as λ→ 0+, (3.4)

where G is a real, symmetric, finite, and positive definite matrix, Λj(d) = diag
(
λ−deiπd/2,

λ−deiπd/2
)
is a 2 × 2 diagonal matrix and Λj(d) is its complex conjugate transpose. The

periodogram of a process Xt is defined through the discrete Fourier transform wX(λj) =
1√
2πT

∑T
t=1Xte

iλjt as IX(λj) = wX(λj)wX(λj), with Fourier frequencies λj = 2πj/T for
j = 1, ..., bT/2c, where the operator b·c returns the integer part of its argument.

The two series X1t and X2t are said to be fractionally cointegrated, if there exists a
linear combination

β′Xt = vt,

so that the cointegrating residuals vt are fractionally integrated of order I(d− b) for some
0 < b ≤ d. Obviously, for the model in equations (3.1) to (3.3), this is the case for every
multiple of the vector

(
1,− ξ1

ξ2

)′
and b = min(b1, b2).

Here, we conclude that markets for EMU government bonds that could be considered
as close substitutes are (partially) economically integrated if the yields are fractionally
cointegrated with each other. From the definition above, this is the case if there exists
an equilibrium relationship between the yields (X1t and X2t) so that the persistence
of deviations from the equilibrium denoted by vt is reduced compared to that of the
individual series.4

4A similar approach that uses fractional cointegration to test for market integration was recently adopted
by García-Enríquez et al. (2014).
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In the following, we will test this hypothesis in two different ways. First, we apply a
number of tests for the null hypothesis of no fractional cointegration among the yields
of long-term EMU government bonds. The methods used are semiparametric and do
not impose any assumptions on the short-run behavior of the series, apart from mild
regularity conditions. This approach has the advantage that we can avoid spurious findings
that might arise due to misspecifications. Research on semiparametric tests for fractional
cointegration has been an active field in recent years and there is a variety of competing
approaches.

The first group of tests is based on the fact that the rank of the matrix G in (3.4) is
reduced for fractionally cointegrated systems. This property is used by the rank estimation
criterion of Nielsen and Shimotsu (2007) that extends the approach of Robinson and
Yajima (2002) to nonstationary processes, the spectral regression approach of Souza et al.
(2018), and the Hausman-type test of Robinson (2008). Robinson and Yajima (2002) and
Nielsen and Shimotsu (2007) use the singularity of the G matrix in case of cointegration
to propose an information criterion that is based on the eigenvalues of an estimate Ĝ.

Souza et al. (2018) use the fractionally differenced process ∆dXt and the fact that
the determinant D∆d(λ) of f∆dX(λ) is of the form D∆d(λ) ∼ G̃|1 − e−iλ|2b, where G̃ is
a scalar constant and 0 < G̃ < ∞. An estimate of b can therefore be obtained via a
log-periodogram regression and the hypothesis that b = 0 can be tested based on the
resulting estimate.

The test of Robinson (2008) is based on the fact that univariate estimates of d for the
component series X1t and X2t are consistent both in the absence and in the presence of
fractional cointegration. In contrast to that, the objective function of multivariate local
Whittle estimates for the memory in Xt depends on the inverse of G, so that the estimator
is inconsistent under fractional cointegration. On the other hand, the estimator is more
efficient in absence of fractional cointegration, due to its multivariate nature. This provides
the basis for a Hausman-type test.

A second group of tests is residual-based, since the cointegrating residuals vt have
reduced memory of order d − b instead of d if a fractional cointegrating relationship
exists. Chen and Hurvich (2006) and Wang et al. (2015) provide tests that rely on this
property.

The test of Wang et al. (2015) is based on the sum over the fractionally differenced
process ∆d̂vX2t, where d̂v is an estimate of the memory from the cointegrating residuals
obtained using a consistent estimator for the cointegrating vector β such as the narrow-
band least squares estimator of Robinson (1994), Robinson and Marinucci (2003), and
Christensen and Nielsen (2006), among others. In contrast to that, the test of Chen and
Hurvich (2006) is directly based on d̂v, but the cointegrating space is estimated by the
eigenvectors of the averaged and tapered periodogram matrix local to the origin.
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A third group of tests proposed by Marmol and Velasco (2004) and Hualde and Ve-
lasco (2008) relies on the behavior of pairs of estimators for the cointegrating vector β.
These pairs include one estimator that is only consistent under the null hypothesis of no
fractional cointegration and one estimator that is only consistent under fractional coin-
tegration. While the test of Marmol and Velasco (2004) has a non-standard distribution,
the test of Hualde and Velasco (2008) utilizes the GLS estimates of Robinson and Hualde
(2003) and has a chi-square distribution.

Finally, Nielsen (2010) suggests a variance ratio test. The test statistic is based on
the sum of the eigenvalues of the variance-covariance matrix of the series multiplied with
the inverse of the variance-covariance matrix of the fractionally differenced series. This is
because the eigenvalues associated with eigenvectors that are in a cointegrating direction
are OP (1), whereas the eigenvalues corresponding to eigenvectors in non-cointegrating
directions are oP (1), for d− b < 1/2.

If a cointegrating relationship is found with one of these procedures, the degree of
(market) integration corresponds to b — the strength of the relationship. This is because
b determines the speed of adjustment towards the equilibrium. The higher b, the stronger
the degree of integration and the faster is the adjustment after shocks that cause deviations
from the equilibrium. In the cases of Nielsen and Shimotsu (2007) and Robinson (2008),
where the methods themselves do not produce an estimate of the cointegrating strength,
we estimate it by the difference between the memory of the yields and the memory of the
spread. This is because the spreads are the cointegrating residuals obtained by imposing
the cointegrating vector (1,−1)′, as discussed in detail below.

Using domain specific knowledge about the behavior of the yields in the common
currency area also allows us to adopt a second approach and test for cointegration based
on simple estimations of the memory parameters in the yield spreads. We denote the
interest rate yield on bonds of country i in period t by yit for i = 1, ..., N and t = 1, ..., T .
The spreads sit are usually formed relative to the yield of the German bonds

sit = yit − yGERt . (3.5)

It is commonly assumed that the interest rates of country i can be decomposed into

yit = rft + δit + lit, (3.6)

where rft is the risk-free interest rate, and δit and lit are the risk premiums for the default
risk and liquidity risk of country i. The risk-free rate is the same across countries due to
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the common currency area. If Germany — the benchmark country — is assumed to have
no default risk and no liquidity risk, so that yGERt = rft , it follows that

sit = δit + lit. (3.7)

Therefore, the spreads are the risk premiums associated with the liquidity and default
risk of the respective country. If Germany is not assumed to be risk-free, δit and lit are
interpreted as risk premium differentials between the respective country and Germany.
However, if the risk of Germany and its variation are low compared to that of the respective
country, the behavior of the differentials will still be dominated by the risk premiums of
the country. We therefore maintain the assumption that Germany is risk-free to simplify
the verbal description of the results.

The risk-free interest rate rft in (3.6) is driven by expected macroeconomic factors
such as GDP-growth, inflation rates, and interest rates, and it is widely found to be I(1)
(cf. for example Stock and Watson (1988), Mishkin (1992), Chen and Hurvich (2003) and
Nielsen (2010))5. That means yit and yGERt can only be cointegrated if rft is removed from
the linear combination β′(yit, yGERt )′, as it is the case in the spreads in (3.7). Forming the
spreads according to (3.5) therefore means to impose the cointegrating vector β = (1,−1)′

on the yields, which is the only possible cointegrating direction according to the theoretical
arguments outlined above. The spreads are therefore the cointegrating residuals. Since in
this case the cointegrating residuals are not affected by estimation error, we can apply a
simple test for the null hypothesis that the memory d(sit) of the spread sit of country i at
time t is equal to one to test for the null hypothesis of no fractional cointegration among
the yields. Formally, we test

H0 : d(sit) = 1

versus H1 : d(sit) < 1,

for all i and t. If this hypothesis can be rejected, this is statistical evidence for market
integration.

To gain a deeper economic understanding of the mechanisms driving market integra-
tion and disintegration, reconsider the decomposition of the spreads in equation (3.7).
Since the spreads are the cointegrating residuals between the yields, their persistence de-
termines whether there is an equilibrium or not. According to equation (3.7), the spreads
consist of two components — the liquidity risk premium lit and the default risk premium
δit. Since credit default swap data is not available for most of the time period before the

5Since it is implausible from an economic perspective that interest rates should become very large or very
negative, they are often treated as being I(0). Since this is not supported by the finite sample behavior
of the yield series, imposing such an assumption will provide an imprecise asymptotic approximation
and likely invalid statistical inference.
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subprime mortgage crisis, we cannot use this information to disentangle the default and
liquidity risk premiums as for example in Longstaff et al. (2005).

We can, however, draw some conclusions based on properties of long-memory processes.
Denote the memory of the default risk premium for country i at time t by d(δit) and let
d(lit) denote the memory of the liquidity risk premium. To see how the persistence of the
aggregate sit relates to the components δit and lit, the properties of linear combinations of
long-memory time series have to be considered. With constant unconditional mean and
variance of the component series, it was shown by Chambers (1998) that the memory of a
linear combination of long-memory processes is determined by the most persistent series
in the combination. For two long-memory series at and bt with memory parameters da and
db this means that ct = at + bt has long memory of order dc = max{da, db}. The memory
of the spreads sit is therefore either d(δit), or d(lit), according to which is larger.

The reasoning behind this result of Chambers (1998) is as follows. If at and bt are
mutually independent, the spectral density of ct local to the origin is given by

fc(λ) ∼ Ga|λ|−2da +Gb|λ|−2db ,

as λ→ 0. Here, Ga and Gb denote the long-run variance of the short-memory components
in the respective series. Obviously, both of the components on the right-hand side generate
poles and the smaller one is dominated by the larger one.6

These results are based on the assumption thatGa andGb are fixed, finite, and positive.
In practice, however, there could arise situations in which one of the components is very
small compared to the other one. A more fitting theoretical framework for such a situation
would be to assume that Ga/Gb → 0, as T → ∞. In this case, the ratio of the long-run
variances of the short-memory components depends on the sample size and goes to zero.
More formally, let ct = at + bt, with da > db and Ga(T )/Gb(T ) = o

(
T−2(da−db)

)
, then

dc = db, asymptotically. This implies that in practice the estimated degree of persistence
in the spreads sit will be a convex combination of d(lit) and d(δit) that depends on the
relative scale of the variation of the two risk premiums.

Most importantly, if the persistence of the spreads is high and that of the liquidity
premium is low, than the behavior of the default premium δit has to be the main driver
of the spreads.

3.3 Data and Definition of Bull and Bear Markets

Our analysis is based on the daily interest rates on 10-year maturity benchmark gov-
ernment bonds of eleven EMU countries. As is customary in the literature, we refer to

6If at and bt are dependent, there is also an interaction term in fc(λ), but the mechanism remains the
same.
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Figure 3.1: Development of the Eurostoxx stock market index and timing of bull and
bear markets.

Begin Index End
Bull 1 01/01/1999 313.92 03/05/2000
Bear 1 03/06/2000 466.24 03/11/2003
Bull 2 03/12/2003 165.43 05/31/2007
Bear 2 06/01/2007 442.87 03/08/2009
Crisis 03/09/2009 169.38 08/08/2017

Table 3.1: Definition of bull- and bear-market periods.

Spain, Italy, Portugal, Ireland, and Greece as the periphery countries. Belgium, Austria,
Finland, the Netherlands, and France are called the core countries. The data set contains
daily (bid) yields on benchmark bonds for these ten countries and for Germany as well
as a range of explanatory variables. All series are obtained from Thomson Reuters Eikon
and observed between January 1, 1999 and August 8, 2017.

As discussed in the introduction, one of the main objectives of this paper is to show
that the degree of EMU bond market integration differs between bull and bear markets.
To do so, we need to define which periods are regarded as bull markets and which ones
are regarded as bear markets. Since there is no universally accepted definition of bull and
bear markets, we simply rely on a visual inspection of the trajectory of the Eurostoxx
index. Every bull-market period begins with a local minimum and every bear-market
period begins with a local maximum. The timing of these local extrema is indicated by
vertical dashed lines in Figure 3.1, and the exact definitions along with the index values
at the starting date of the respective series is given in Table 3.1. The first two periods
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ES IT PT IE GR BE AT FI NL FR GER (s.e.)

Bull 1 1.00 1.02 0.96 1.01 1.00 1.03 1.02 0.94 0.99 0.98 1.01 (0.07)
Bear 1 0.95 0.95 0.94 0.97 0.95 0.95 0.96 0.97 0.95 0.94 0.97 (0.05)
Bull 2 1.05 1.07 1.04 1.07 1.06 1.04 1.04 1.06 1.05 1.05 1.06 (0.04)
Bear 2 0.99 0.91 0.93 1.01 0.91 0.94 0.88 0.95 0.97 0.97 1.01 (0.06)
Crisis 0.89 0.92 0.97 1.02 0.95 0.95 1.00 0.97 0.99 0.99 0.95 (0.03)
Full sample 0.99 1.03 0.96 1.00 0.93 0.93 0.99 1.05 0.98 0.96 1.00 (0.02)

Table 3.2: Memory estimates of the yields for different subperiods. In the Bull 2 period
the standard error of the estimate for Ireland is 0.05. The exact definition of
the market phases can be found in Table 3.1.

are determined by the Dot-com bubble and the subsequent crash starting on March 6,
2000. The recovery and boom thereafter lasted from March 12, 2003, until May 31, 2007,
when the subprime mortgage crisis began. This bear market lasted until March 8, 2009.
In the recovery after that, it could be argued that there were several shorter bull- and
bear-market periods. However, it can be expected that the mechanisms driving the pricing
of EMU government bonds changed permanently with the onset of the EMU debt crisis in
October 2009, when the Greek government revised its deficit figures. This is also confirmed
empirically by previous studies such as Pozzi and Wolswijk (2012), Christiansen (2014),
and Ehrmann and Fratzscher (2017). We therefore focus on the previous bull and bear
markets and refer to the post-2009 period as the crisis period.

Estimates of the memory parameters of the yields in each subsample are given in
Table 3.2. Here and hereafter, all memory parameters are estimated using the exact local
Whittle estimator of Shimotsu (2010) and a bandwidth of m = bT 0.7c. The estimator
is a direct extension of that suggested in Shimotsu and Philips (2005), but allowing for
non-zero means. It is given by

d̂ELW = arg min−1<d<3.5

log Ĝm(d)− d
 2
m

m∑
j=1

log λj

 ,
where λj = 2πj/T , Ĝm(d) = m−1∑m

j=1 I∆dx(λj), and I∆dx(λ) denotes the periodogram of
the fractionally differenced process (1 − L)d(Xt −X1). Under mild regularity conditions
Shimotsu (2010) show that

√
m
(
d̂ELW − d

)
d→ N(0, 1/4).

As can be seen in Table 3.2, the estimated memory parameters are statistically indis-
tinguishable from one, so that it is reasonable to assume that the interest rates follow a
stochastic trend. This is also supported by formal tests.
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3.4 Empirical Analysis

Using the definition of bull and bear markets from the previous section, we now analyze
the dynamics of integration and disintegration in EMU government bond markets using
several approaches. First, we test for fractional cointegration among the yields, separately
for bull and bear markets. Second, to determine the robustness of our findings to the
definition of the subperiods, we use the second approach and test in a rolling window
whether the order of integration in the spreads is equal to one, so that we do not impose
any restrictions on the timing of periods of integration and disintegration. Finally, we
conduct a regression analysis to gain further insights into the forces driving these results.

3.4.1 Testing for Market Integration among the Yields

As discussed in Section 3.2, integration in the market for EMU government bonds requires
the yields to be pairwise fractionally cointegrated. Since the German government bonds
are considered to be the most liquid and essentially risk free, it is customary to use
Germany as the base country and to analyze the pairwise relationship of each country
with Germany. We therefore adopt this approach and start our analysis by applying
tests for the null hypothesis of no fractional cointegration on these pairs in each of the
subsamples. The results of this exercise are given in Table 3.3. Empty fields indicate the
absence of a significant fractional cointegrating relationship at the 5%-level. Non-empty
fields give an estimate of b — the strength of the cointegrating relationship. Larger values
of b indicate a stronger equilibrium relationship.

The tests from Section 3.2 are abbreviated by the authors’ names and the year of pub-
lication. Since the methods employed are based on very different properties of fractionally
cointegrated systems, it is not surprising that there is some variation in the findings. How-
ever, overall the results show that the majority of interest rates were indeed cointegrated
with the German rate during the bull-market periods but not during the bear-market pe-
riods. A notable exception is Greece in the first bull market, since it only joined the EMU
in 2001, which is during our first bear-market period. When comparing the bull-market
periods and bear-market periods, it is immediately noticeable that the tests reject the
null hypothesis less often during the bear markets than during the bull markets. Evidence
for the existence of an equilibrium relationship during the bear-market periods is mainly
found for the core countries. Furthermore, when comparing the strength of the cointe-
grating relationships that persist during bull and bear markets, we can observe that the
strength declines in bear-market periods.

If we consider Finland, for example, deviations from the equilibrium have a memory
of approximately 1 − b8 = 0.25 in the first bull market. This increases to nearly 0.65 in
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ES IT PT IE GR BE AT FI NL FR

Bull 1

NS07 0.60 0.38 0.41 0.45 0.58 0.54 0.75 0.64 0.62
SRF16 0.47 0.29 0.45 0.45 0.41 0.59 0.86 0.59 0.71
MV04 0.60 0.38 0.46 0.53 0.60 0.70 0.75 0.67 0.69
WWC15 0.60 0.38 0.47 0.53 0.07 0.60 0.70 0.75 0.67 0.69
CH06 0.58 0.38 0.47 0.50 0.60 0.68 0.74 0.67 0.69
R08 0.60 0.38 0.41 0.45 0.58 0.54 0.75 0.64 0.62
HV08 0.60 0.38 0.47 0.53 0.60 0.70 0.75 0.67 0.69
N10 0.46 0.52 0.54 0.70 0.62 0.65 0.69

Bear 1

NS07 0.16 0.07 0.11 0.14 0.09 0.16 0.15 0.35 0.22 0.34
SRF16 0.32 0.29 0.29 0.30 0.43 0.29 0.39
MV04 0.15 0.35 0.17 0.31
WWC15 0.11 0.15 0.10 0.35 0.17 0.31
CH06 0.14 0.14 0.35 0.22 0.35
R08 0.35 0.34
HV08 0.15 0.35 0.17 0.31
N10

Bull 2

NS07 0.49 0.14 0.37 0.46 0.39 0.22 0.46 0.44 0.46 0.32
SRF16 0.45 0.28 0.43 0.34 0.19 0.36 0.18 0.29 0.28
MV04 0.49 0.37 0.47 0.39 0.21 0.45 0.48 0.47 0.32
WWC15 0.49 0.37 0.47 0.39 0.21 0.45 0.48 0.47 0.32
CH06 0.48 0.14 0.37 0.47 0.39 0.21 0.43 0.46 0.46 0.32
R08 0.49 0.37 0.46 0.39 0.46 0.44 0.46 0.32
HV08 0.49 0.37 0.47 0.39 0.21 0.45 0.48 0.47 0.32
N10 0.49 0.46 0.46 0.44 0.46 0.32

Bear 2

NS07 0.05 0.06 -0.02 -0.04 -0.02 0.15 0.08 0.12
SRF16 0.26 0.34 0.28
MV04 0.14 0.09 0.13 0.20 0.15 0.22
WWC15 0.14 0.13 0.20 0.15 0.22
CH06 0.16 0.23 0.16 0.23
R08 0.12
HV08 0.13 0.20 0.15 0.22
N10

Crisis

NS07 0.10 0.10 0.17 0.09
SRF16 -0.15
MV04
WWC15
CH06 0.11 0.19
R08 0.04 0.07 0.10 0.17
HV08 0.19
N10

Table 3.3: Strength of the fractional cointegration relationship between the yields of
bonds of the respective country and Germany. The exact definition of the
market phases can be found in Table 3.1.

the first bear market, before dropping to 0.5 in the second bull market, and rising again
to about 0.85 in the second bear market.

When we consider the results for the EMU crisis period, we find that there is no evi-
dence for the existence of an equilibrium relationship for the periphery countries anymore.
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Among the core countries some weak evidence is found, but mostly for the Netherlands
and Finland. The overwhelming majority of the tests are unable to detect any evidence
for market integration during this period.
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Figure 3.2: Heatmaps for the strength of all pairwise cointegration relationships. The
test for the existence of a cointegrating relationships and the estimation of
their strength is carried out for different subperiods using the method of
Chen and Hurvich (2006). The exact definition of the market phases can be
found in Table 3.1.

To gain further insights into the dynamics of market integration between all possible
country pairs, we repeat the same analysis using the method of Chen and Hurvich (2006).
The results are presented in heatmaps in Figure 3.2. Here, a darker color indicates a
strong equilibrium relationship. Clearly, there is much more evidence for pairwise market
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integration between the countries during the bull-market periods, which are shown on the
left-hand side, than during the bear-market periods depicted on the right-hand side.

We observe that, during the bull markets, there is a larger number of cointegrating
relationships among the core countries than there is among the periphery countries. During
the first bear market, Finland is a notable exception, since it appears to be fractionally
cointegrated with all of the core countries and with all of the periphery countries, except
for Greece. In the second bear market Italy is an exception, since it is in equilibrium with
the majority of core countries. We can also observe that there is a tendency of Portugal,
Italy, and Spain to remain in equilibrium with each other during the bear markets. Finally,
we observe a clear distinction between periphery countries and core countries during the
crisis period. Here, the core countries tend to remain (weakly) integrated with each other,
whereas the periphery countries disintegrate completely.

Taken together, we find that there are periods of integration and periods of disintegra-
tion associated with bull and bear markets. We can observe that there is stronger market
integration between the core countries than between the core and the periphery during
bear markets. Finally, we observe a disintegration of the yields for all countries during
the crisis. Considering the behavior of the Eurostoxx, the EMU crisis could be regarded
as a bull-market period, which usually is a period of integration. The cyclical relationship
with periods of integration and disintegration therefore breaks down with the advent of
the EMU debt crisis.

An obvious extension of this analysis would be to model the system as a whole and
to determine the number of common trends driving it. However, this is econometrically
challenging. Methods to determine the cointegrating rank tend to become more unstable
as the dimension of the system increases, when the cointegrating strength decreases, and
when the correlation of the short memory components increases. Since we are dealing with
a system of 11 strongly correlated series that appears to be weakly cointegrated, such an
analysis is unlikely to produce reliable results.

3.4.2 Testing for Market Integration among the Yield Spreads

As discussed in Section 3.2, a second approach to test for fractional cointegration is to
consider the persistence of the spreads directly. Figure 3.3 shows the spreads for the bull-
and bear-market subperiods. Visually, the spreads appear to be less persistent during bull
markets than during bear markets. This is also confirmed by the memory estimates in
Table 3.4. These findings clearly support those from the previous section. Furthermore, it
can be seen that there is little evidence for market integration if the whole sample period
is considered.

However, in this context we no longer need to impose specific time periods that are
defined to be bull or bear markets. We can therefore gain further insights into the dynamics
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Figure 3.3: Interest rate yield spreads sit relative to Germany. The exact definition of
the market phases can be found in Table 3.1.

of economic integration and disintegration among the interest rates in the euro area, by
adopting a semiparametric approach and testing for d(sit) = 1 in a rolling window. The
window size is set to 250 observations, which corresponds to one year, and provides a
good trade-off between bias and sampling variation of the estimate.

The results of this exercise are shown in Figure 3.4 for the core countries and in Figure
3.5 for the periphery countries. Each point represents the estimated memory parameter
d̂(sit) from the window that ends on this date. The horizontal dashed lines represent a
95% confidence band centered around d(sit) = 1, based on 1.96/

(
2
√∑m

j=1 ν
2
j

)
, where νj =

log λj−m−1∑m
j=1 log λj and λj = 2πj/250. This is the typical finite sample correction for

the variance of the estimator that is based on its Hessian (cf. Hurvich and Beltrao (1994),



3.4.2 Testing for Market Integration among the Yield Spreads 56

ES IT PT IE GR BE AT FI NL FR (s.e.)
Bull 1 0.42 0.63 0.58 0.59 0.89 0.42 0.42 0.24 0.30 0.26 (0.07)
Bear 1 0.81 0.90 0.84 0.83 0.71 0.80 0.82 0.62 0.75 0.61 (0.05)
Bull 2 0.56 0.94 0.68 0.61 0.68 0.86 0.59 0.62 0.59 0.76 (0.04)
Bear 2 0.90 0.83 0.96 1.05 0.99 0.95 0.92 0.78 0.86 0.81 (0.06)
Crisis 0.87 0.90 0.95 0.96 0.95 0.88 0.92 0.87 0.84 0.89 (0.03)
Full sample 0.92 0.99 0.93 0.95 0.93 0.81 0.86 1.00 0.79 0.94 (0.02)

Table 3.4: Memory estimates of the spreads sit relative to Germany for different subpe-
riods. In the Bull 2 period the standard error of the estimate for Ireland is
0.05 and in the full sample the standard error of the estimate for Greece is
0.03. The exact definition of the market phases can be found in Table 3.1.
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Figure 3.4: Rolling window estimates of the memory d(sit) in the spreads of the core
countries.

Lemma 1). It is well known that these tests remain liberal even despite the correction. We
therefore might reject the hypothesis of no fractional cointegration too often. As before,
the vertical dashed lines mark the start and endpoints of the bull- and bear-market periods
defined as before.

Considering the results for the core countries in Figure 3.4, we can make several
observations. When we move from a bull-market period to a bear-market period, the
estimated memory parameter increases as new observations enter the estimation window.
Conversely, when we enter a bull market after a bear market, the new observations entering
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ery countries.

the estimation window tend to decrease the estimated memory parameter. A similar
pattern can be observed for the periphery countries in Figure 3.5, although they are a bit
less homogeneous.

Around the end of the first bear market in 2003, there is an extended period during
which the estimated memory parameters indicate the absence of a fractional cointegrating
relationship and thus no evidence for market integration.

In both groups there are some deviations from the general pattern. Among the core
countries the persistence of the Belgian and French spreads keeps increasing in the initial
phase of the second bull market. Similarly, the persistence of the Greek and Italian spreads
remains high in the same period. Finally, Ireland shows a somewhat different behavior
during the first bull and bear market.

After the second bear market — with the advent of the EMU debt crisis — the
relationship breaks down. The estimates of the d(sit) are close to 1, and well within the
confidence bands, indicating that there is no equilibrium relationship. A notable exception
is a short dip in the level of the persistence after April, 2010 when the European Financial
Stability Facility (EFSF) was first established. Here, the estimated memory parameters
are close to the lower confidence band. However, this period ended quickly thereafter,
which implies that the EFSF as a policy measure was not sufficient to effectively calm
the market and re-establish an equilibrium.
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Overall, the results are clearly in line with those in the previous section that show
that there are periods of integration and periods of disintegration that are related to bull
markets and bear markets.

3.4.3 Drivers of Market Integration and Disintegration

To gain further insights into the determinants of EMU bond market integration, we con-
duct a regression analysis of the sources of variation in the estimated memory parameters
from Section 3.4.2. The main objective of this analysis is to determine whether the ob-
served time variation in the persistence of the spreads can be explained by factors such
as market risk or risk aversion that might also drive bull and bear markets.

Typical measures for market risk or "uncertainty" include realized and implied volatil-
ity. Let there beN intraday returns rit observed at trading day t, then the realized variance
is given by

RVt =
N∑
i=1

r2
it,

which provides a consistent estimate of the quadratic variation of the respective asset as
N →∞. We therefore consider the realized volatility of the Eurostoxx index as a measure
of current market risk. The implied volatility measured by the VIX and its European
equivalent, the VSTOXX, is a forward-looking measure that extracts the expected average
volatility over the next 22 trading days from a panel of option prices, assuming that market
participants are risk-neutral. As discussed in detail in Chernov (2007), the VSTOXX can
therefore be decomposed into the expected average volatility over the next month and a
risk premium according to

V STOXXt = Et[RV (22)
t+22] + V Pt,

where RV (H)
t = H−1∑H−1

h=0 RVt−h. Under the assumption of rational expectations, we can
obtain an ex post estimate of V Pt via

V P t = V STOXXt −RV (22)
t+22.

It is typically found that the VSTOXX has explanatory power for the flight-to-quality
effect (cf. for example Connolly et al. (2005)). Due to the persistence of RVt and the
relationships discussed above, it is unclear whether this explanatory power is due to the
current level of market risk RVt, the expected change in the average market risk over the
next month

∆RVt = RV
(22)
t+22 −RVt,
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or the variance premium V Pt.
The variance premium V Pt has received a lot of attention in the recent literature, since

it is related to the degree of risk aversion. Bollerslev et al. (2009) and Bollerslev et al.
(2013), for example, show theoretically and empirically that it has some explanatory power
for future stock returns, and Bekaert and Hoerova (2014) show that it improves forecasts
of future realized volatility.

Instead of including the VSTOXX itself, we therefore consider RVt, ∆RVt, and V P t

separately so that it is possible to distinguish the effect of current market risk from that
of (expected) future risk and that of changes in risk pricing.

To formally test the hypothesis that the existence and strength of equilibrium rela-
tionships between the bonds of the respective country and Germany are driven by bull-
and bear-market periods, we include the bull-market indicator (1bull,t) that corresponds
to the market phases defined in Section 3.3. Due to the special interest in this variable, we
include interaction terms between the bull-market indicator and all market-uncertainty
measures.

As additional control variables, the daily return of the Eurostoxx (rt), the spread be-
tween BBB-rated US corporate bonds and AAA-rated US government bonds (BBBt) as
a measure for global risk aversion, and the 3-month Euribor rate (Euribort) are included.
This is motivated by the finding of Ang and Longstaff (2013), who show that financial
variables have higher explanatory power than macroeconomic variables at a daily fre-
quency.

For a better approximation by the normal distribution, we consider the log of RVt and
V Pt. Furthermore, due to the different levels of persistence among these variables, the
regressors RVt, ∆RVt, V Pt, BBBt and Euribort are fractionally differenced to achieve
balanced regressions. Finally, the regressors are standardized to have zero mean and unit
variance to facilitate the interpretation of the regression coefficients. This leads to the
regression equation

d̂t+125(sit) = β0 + β1 1bull,t + β2 RVt + β3 ∆RVt + β4 V Pt + β5 rt + β6BBBt

+ β7 Euribort + β8 1bull,t ×RVt + β9 1bull,t ×∆RVt + β10 1bull,t × V Pt + vt,

(3.8)

where vt is the innovation term. To achieve the best possible estimation of the respective
memory parameters, the dependent variable at time t is the rolling window estimate from
period t + 125 so that the day of interest is in the middle of the estimation window.
We observed in the previous sections that the relationship between market sentiment and
persistence of the spreads breaks down in the EMU crisis period. Here, the spreads remain
persistent despite the bullish environment due to investors’ concerns about sovereign
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default risks. Our estimation period is therefore restricted to the period up to March 8,
2009 — the end of the second bear market.

An econometric complication lies in the fact that our dependent variable itself is
estimated in a rolling window of 250 observations, which induces a long autocorrelation
structure. This issue is similar to the problems incurred in long-horizon regressions that
test stock return predictability for overlapping time periods. However, in our case the
plausible dependence structure is more general than that of asset returns. The dependent
variable is not directly observable, and the overlap concerns also past variables. Typical
approaches to address this problem, such as those of Hansen and Hodrick (1980) and
its extensions by Richardson and Smith (1991) and Hodrick (1992), can therefore not be
applied in our setup.

Another common approach is to use HAC estimators with a long lag structure, as for
example in Bekaert and Hoerova (2014). This is also the approach we follow here. To
account for the autocorrelation caused by the rolling window estimation of the dependent
variable, we use a Newey-West estimator with 500 lags. Since this number of lags is
relatively large in proportion to the sample size, we cannot resort to standard asymptotics
when conducting hypothesis tests. Instead we use so-called fixed-b asymptotics introduced
by Kiefer and Vogelsang (2005). Denote the standard HAC estimator based on the first B
autocovariances by V̂HAC . Standard asymptotic theory is based on the assumption that
B/T → 0, as T → ∞, so that V̂HAC is consistent for the true variance V . In contrast
to this, Kiefer and Vogelsang (2005) assume that B/T → bHAC , where bHAC ∈ (0, 1] is a
fixed non-zero constant. In this case V̂HAC is no longer consistent, but converges to the
true variance V multiplied by a functional of a Brownian bridge process Q(k, bHAC). The
corresponding t-statistic tFB has a non-standard limiting distribution that depends on
both the kernel k used by the HAC estimator and bHAC . Here, tFB ⇒ W (1)√

Q(k,bHAC)
, where

W (r) is a standard Brownian motion on r ∈ [0, 1] and for the Bartlett kernel Q(k, bHAC)
is given by

Q(k, bHAC) = 2
bHAC

(ˆ 1

0
W̃ (r)2dr −

ˆ 1−bHAC

0
W̃ (r + bHAC)W̃ (r)dr

)
,

with W̃ (r) = W (r)−rW (1) denoting a standard Brownian bridge. This approach typically
provides better size control in persistent time series and can be particularly useful in our
setup, where the number of lags employed by the Newey-West estimator is very large.

The results of this exercise are shown in Table 3.5. It can be seen that the estimated
memory parameters are indeed significantly lower in bull markets. The estimated coeffi-
cients of the bull-market indicator are negative for all countries but France and significant
in 6 out of 10 cases. The reduction in memory in these cases ranges from -0.16 for Fin-
land to -0.32 for Ireland. We also find a significant impact of current risk and future
risk changes for the core countries, as well as a number of significant interaction terms
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const 0.68 ∗ ∗ 0.80 ∗ ∗ 0.80 ∗ ∗ 0.77 ∗ ∗ 0.67 ∗ ∗ 0.74 ∗ ∗ 0.73 ∗ ∗ 0.60 ∗ ∗ 0.63 ∗ ∗ 0.60 ∗ ∗
1bull,t −0.24 ∗ ∗ −0.00 −0.23 ∗ ∗ −0.32 ∗ ∗ −0.10 −0.05 −0.29 ∗ ∗ −0.16 ∗ ∗ −0.20 ∗ 0.06
RVt 0.17 0.14 ∗ 0.12 0.30 0.18 0.25 ∗ 0.19 ∗ ∗ 0.13 0.27 0.22 ∗ ∗
∆RVt 0.18 0.14 ∗ 0.12 0.29 0.18 0.25 ∗ 0.19 ∗ ∗ 0.13 0.27 0.22 ∗ ∗
V Pt −0.01 −0.01 ∗ ∗ −0.00 −0.01 −0.01 −0.01 ∗ ∗ −0.00 −0.01 ∗ −0.01 −0.01 ∗ ∗
rt −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 ∗ −0.01 ∗ −0.01 ∗ −0.02 ∗ ∗ −0.01 ∗
BBBt −0.00 −0.00 −0.00 −0.00 0.00 −0.00 −0.00 −0.00 ∗ −0.00 −0.00
Euribort −0.01 −0.00 −0.01 −0.00 −0.00 −0.01 −0.01 −0.01 ∗ −0.01 −0.00
1bull,t ×RVt −0.46 ∗ ∗ −0.18 −0.20 −0.50 ∗ −0.33 ∗ −0.07 −0.40 ∗ ∗ −0.31 ∗ ∗ −0.32 ∗ −0.19
1bull,t ×∆RVt −0.46 ∗ ∗ −0.18 −0.19 −0.50 ∗ −0.33 ∗ −0.07 −0.39 ∗ ∗ −0.31 ∗ ∗ −0.31 ∗ −0.18
1bull,t × V Pt −0.01 0.00 −0.01 ∗ −0.00 0.01 ∗ 0.00 −0.02 ∗ −0.00 −0.01 0.00

R2
adj. 0.36 0.02 0.38 0.36 0.08 0.08 0.37 0.22 0.21 0.03

bHAC 0.20 0.20 0.20 0.23 0.21 0.20 0.20 0.20 0.20 0.20
crit0.975 2.55 2.55 2.55 2.66 2.59 2.55 2.58 2.55 2.55 2.55
crit0.95 2.08 2.08 2.08 2.16 2.11 2.08 2.10 2.08 2.08 2.08

Table 3.5: Dependence between bond market integration and ex post determined stock
market sentiment. The estimation is carried out for the period 01/01/1999–
03/08/2009. The symbols ∗ and ∗∗ indicate significance at the 10% level and
5% level, respectively.

between the bull-market dummies and the risk variables. In bear markets a one standard
deviation increase in the fractionally differenced realized volatility leads to an increase
of the memory parameter of about 0.2, whereas the effect is offset or even reversed in
bull markets where the interaction terms come into effect. The variance risk premium
does not generally have a significant effect, and where it does, the size of the effect is not
economically meaningful. With regard to the quality of the models, the R2

adj. is about 0.35
for Spain, Portugal, Ireland, and Austria and it is around 0.2 for the Netherlands and
Finland. For Belgium and Greece the explanatory power is lower and the model fails to
explain the time variation in the persistence of the spreads of France and Italy.

The bull- and bear-market periods defined in Section 3.3 are ex post, since they require
the knowledge of subsequent highs and lows of the index. This information is not available
to market participants in real time. Instead, they can consider a nowcast of the probability
of being in a bull market that is based on past returns. Furthermore, even though the
results in Table 3.5 clearly indicate that the market periods specified in Section 3.3 are
meaningful for the degree of integration, the regression analysis conducted here does not
require long uninterrupted bull- and bear-market periods.

We therefore consider an alternative specification of the bull- and bear-market model,
where the state of the Eurostoxx index is determined endogenously, and the bull- and
bear-market periods are allowed to be short-lived. This is achieved by using a Markov-
switching mean and variance model, where

rt = µst + σstηt, (3.9)
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const. 0.78 ∗ ∗ 0.86 ∗ ∗ 0.87 ∗ ∗ 0.83 ∗ ∗ 0.79 ∗ ∗ 0.81 ∗ ∗ 0.87 ∗ ∗ 0.72 ∗ ∗ 0.74 ∗ ∗ 0.63 ∗ ∗
st|t −0.28 ∗ ∗ −0.03 −0.25 ∗ ∗ −0.26 ∗ ∗ −0.17 −0.08 −0.37 ∗ ∗ −0.25 ∗ ∗ −0.28 ∗ ∗ 0.03
RVt 0.07 0.02 0.09 0.19 0.08 0.14 0.03 −0.01 0.13 0.09
∆RVt 0.07 0.02 0.10 0.19 0.07 0.14 0.04 −0.00 0.14 0.09
V Pt −0.01 −0.00 −0.01 −0.00 −0.01 ∗ ∗ 0.00 −0.01 −0.00 0.00 0.00
rt −0.02 ∗ ∗ −0.01 −0.01 ∗ ∗ −0.02 ∗ ∗ −0.01 −0.01 −0.01 ∗ −0.01 ∗ −0.01 ∗ −0.01
BBBt −0.00 −0.00 −0.00 −0.01 0.00 −0.00 −0.00 −0.00 ∗ ∗ −0.00 −0.00
Euribort −0.01 ∗ −0.00 −0.00 −0.01 −0.01 −0.00 −0.00 −0.01 −0.01 −0.01
st|t ×RVt −0.25 ∗ ∗ 0.07 −0.16 ∗ −0.18 −0.26 0.10 −0.18 −0.13 −0.19 0.09
st|t ×∆RVt −0.26 ∗ ∗ 0.07 −0.16 ∗ −0.19 −0.26 0.10 −0.18 −0.14 −0.19 0.09
st|t × V Pt −0.00 −0.01 0.00 −0.01 0.01 ∗ −0.01 0.00 −0.01 −0.02 −0.01

R2
adj. 0.28 0.03 0.28 0.18 0.13 0.10 0.35 0.25 0.24 0.01

bHAC 0.20 0.20 0.20 0.23 0.21 0.20 0.20 0.20 0.20 0.20
crit0.975 2.55 2.55 2.55 2.66 2.59 2.55 2.58 2.55 2.55 2.55
crit0.95 2.08 2.08 2.08 2.16 2.11 2.08 2.10 2.08 2.08 2.08

Table 3.6: Dependence between bond market integration and a nowcast of the stock
market sentiment. The estimation is carried out for the period 01/01/1999–
03/08/2009. The symbols ∗ and ∗∗ indicate significance at the 10% level and
5% level, respectively.

with ηt iid∼ (0, 1). Here st ∈ {1, 2} is a Markov chain with transition probabilities p12 and
p21. For identification purposes, we assume µ1 > µ2 and call regime one the "bull-market
regime". Let st|t = P (st = 1|rt, rt−1, ...) denote the probability of a bull market at time
t conditional on the observations up to time t estimated on the basis of the Markov-
switching model. We will refer to st|t as the market sentiment.

When the model is applied to the Eurostoxx returns, we can observe that the bull-
market regime is associated with a positive mean µ̂1 = 0.0008 and a low standard deviation
σ̂1 = 0.0089, whereas the bear market regime has a negative mean of µ̂2 = −0.0014 and a
larger standard deviation. The probability to stay in the bull-market regime is estimated
to be 0.9884, whereas the probability of staying in the bear-market regime is 0.9746.
Therefore both regimes are persistent, but the average bear market is shorter than the
average bull market.

The filtered state probabilities st|t for a bull market are shown in Figure B.2 in the
appendix, with the previous dating of bull and bear markets indicated by vertical dashed
lines. It can clearly be seen that the bull-market probability seems to be higher during
those periods that were previously classified as bull markets. However, in the nowcast
there is much more uncertainty about the market environment.

The regression results for 1bull,t replaced with st|t are shown in Table 3.6. When com-
paring the results with those in Table 3.5, we find that RVt and ∆RVt are no longer
significant. This indicates that the bull-market state probability carries all necessary in-
formation about the volatility. The reduction of the memory in bull markets compared to
bear markets appears to be even higher, but the overall fit of the model is reduced when
compared to the specification with the bull-market dummy 1bull,t in Table 3.6.
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Since the Markov-switching model gives a non-constant bull-market probability for
the EMU-crisis period as well, we can analyze the change of the relationship in the bull
market during the EMU crisis. As can be seen in Table B.2 in the appendix, the relation-
ship between the bull-market probability and the persistence of the spreads breaks down
completely and the model loses its explanatory power.

Since the regression problem with rolling window estimates of the dependent variable
is non-standard, we conduct a further robustness check, where we estimate the memory
parameters d(sit) separately for each quarter. Similarly, we form quarterly means of the
explanatory variables before taking fractional differences of all persistent regressors and
standardizing. The results of this exercise are given in Tables B.3 and B.4 in the ap-
pendix. The estimated coefficients for the bull-market dummy as well as the model fit
are comparable in their magnitude, even though fewer of the estimated coefficients are
statistically significant. This can be attributed to the lower number of observations. All
evidence for a positive effect of increased risk disappears. Similarly, when using nowcasts
of the bull-market probability instead of the bull-market dummy, the effect of the bull-
market probability is estimated to be even higher in magnitude and statistically significant
in most cases. Again, the evidence for a positive effect of the risk and future risk variable
disappears.

Overall, however, we find that the time variation in the estimated memory parameters
is well explained by a bull-market indicator and the evolution of current and future risk.
This finding holds true for ex post defined bull and bear markets as well as an endogenously
determined nowcast of the bull-market probability.

As discussed in Section 3.2, the persistence of the spreads may be driven by that
of the default risk premium or that of the liquidity risk premium. Unfortunately, since
there were no credit default swaps during the period of interest, we cannot draw any direct
conclusions about the memory of the default risk premium. We can, however, consider the
bid-ask spreads of the benchmark bonds (bait) as a proxy for liquidity. Estimates of their
memory parameters are provided in Table 3.7, along with estimates of the memory in the
yield spreads for the same period. It can be observed that the level of persistence in the
bid-ask spreads is much lower than that in the yield spreads. From the theoretical results
on the memory of linear combinations discussed above, the persistence of the spreads and
thus the periods of integration and disintegration therefore could not have been caused by
changes in the persistence of the liquidity risk premium. This would require the persistence
of the bid-ask spreads to be as high as that of the spreads. Instead, it has to be caused
by changes of the persistence or relative variability of the default risk premium. Further
support of this argument is provided by rolling window estimates of the memory in the
bid-ask spreads in Figures B.3 and B.4 in the appendix. Here, the estimated memory
parameters for the core countries are mostly in the lower stationary region — with the
exception of a brief period during the EMU debt crisis, where they reach values around
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d̂(sit) 0.90 0.88 0.94 1.03 0.95 0.94 0.90 0.84 0.85 0.90 (0.04)
d̂(bait) 0.27 0.29 0.06 0.55 0.24 0.09 0.41 0.24 0.13 0.26 (0.04)

Table 3.7: Memory estimates for the yield spreads sit and the bid-ask spreads bait. The
estimation is carried out for the period from 12/01/2001–03/08/2009. The
standard error of the estimate for the bid-ask spread of Ireland is 0.05.

0.6. Similarly, the bid-ask spreads of the majority of periphery countries show low and
stable persistence prior to the EMU crisis and higher levels afterwards.

Based on these results, it seems reasonable to assume that d(δit) ≥ d(lit) for all i =
1, ..., N and t = 1, ..., T . Hence, the theoretical arguments discussed above give rise to two
mechanisms that generate the observed time variation in the memory of the spreads that
tends to be one in bear markets but much lower in bull markets: (i) breaks in d(δit) from
d(δit) < 1 to d(δit) = 1 and vice versa, or (ii) d(δit) = 1, for all t, but the relative scale of
variations in δit compared to lit differs for bull and bear markets.

Since the default risk is driven by the macroeconomic and fiscal conditions in the
respective country, mean reverting default risk premiums imply the existence of a stable
equilibrium relationship between the countries’ default risk and the default risk of the
benchmark country (Germany). In contrast to that, integrated default risk premiums
imply the possibility of divergence between the respective country and Germany, since
the variance of integrated series grows linearly with time.

The conclusion in situation (i) would therefore be that market participants considered
the possibility of economic and fiscal divergence within the EMU area in bear markets,
whereas they expected economic convergence within the currency area in bull markets.
In situation (ii), market participants would permanently anticipate the possibility of eco-
nomic and fiscal divergence between the EMU countries, but the level and variability of
the default risk premium is so low during bull markets that the memory properties are
dominated by those of the less persistent liquidity risk premium. Conversely, during bear
markets risk and risk aversion are high so that the variability of the default risk premium
increases relative to that of the liquidity risk premium and the persistence of the spreads
is dominated by that of the default risk premium.

These findings provide clear support for the assertion that the persistence of the
spreads can be attributed to time variation in either the persistence of the default risk
premium or its variability. Both of these arguments ((i) and (ii)) lead to the conclusion
that (at least in crisis times) the pricing of EMU government bonds implied the possibility
of macroeconomic and fiscal divergence between the EMU countries.
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3.5 Conclusion

The analysis in this paper is based on the application of a wide array of modern methods
for the analysis of fractionally cointegrated time series, coupled with a careful consid-
eration of the interrelations between the dynamics driving long-term interest rates and
spreads, the persistence of these series, and the implications of the relationships for the
existence or non-existence of equilibria in the EMU government bond market.

Contrary to previous results in the literature, we find that EMU government bond
markets are not continually integrated prior to the EMU debt crisis. Even though the
level of the spreads was very small compared to that of the yields, we establish that there
were periods during which the spreads became unit root processes so that there was no
correction mechanism that would drive the yields back to their equilibrium relationship.
This is a critical component of the law of one price, which was therefore not fulfilled.
These periods of disintegration tended to coincide with bear-market periods, whereas
EMU bond markets tended to be economically integrated if stock markets were bullish.
Furthermore, the integration among the core countries used to be more intense than that
among the periphery countries and especially the degree of integration between the core
and the periphery countries was already low in periods prior to the EMU debt crisis.

Altogether, these results imply that investors do not only shift their portfolios from
(comparatively) risky stocks to safer bonds in bear markets as described by flight-to-
quality effects, there is also a stronger differentiation between sovereign default risks
during these periods. As discussed in the previous section, the nature of this differentiation
between the default risks of the different countries implies that at least in bear markets
investors did consider the possibility of macroeconomic and fiscal divergence between
the EMU countries, even though the low magnitude of the spreads shows that this was
considered very unlikely.
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Bull 1

NS07 0.56 0.31 0.64 0.54 0.65 0.50 0.64 0.65 0.64
SRF16 0.50 0.54 0.49 0.42 0.56 0.81 0.61 0.65
MV04 0.63 0.30 0.67 0.59 0.66 0.52 0.75 0.67 0.71
WWC15 0.63 0.31 0.67 0.59 0.09 0.66 0.52 0.75 0.67 0.71
R08 0.56 0.31 0.64 0.54 0.65 0.50 0.64 0.65 0.64
CH06 0.59 0.31 0.67 0.54 0.67 0.52 0.74 0.66 0.71
HV08 0.63 0.31 0.67 0.59 0.66 0.52 0.67 0.71
N10 0.66 0.58 0.52 0.55 0.63 0.71

Bear 1

NS07 0.22 0.12 0.12 0.10 0.10 0.20 0.17 0.38 0.25 0.33
SRF16 0.32 0.26 0.22 0.30 0.37 0.26 0.31
MV04 0.25 0.12 0.13 0.14 0.22 0.23 0.40 0.27 0.28
WWC15 0.25 0.12 0.13 0.14 0.14 0.22 0.23 0.40 0.27 0.29
R08 0.22 0.20 0.17 0.38 0.25 0.33
CH06 0.26 0.24 0.39 0.25 0.33
HV08 0.25 0.22 0.23 0.40
N10 0.26

Bull 2

NS07 0.52 0.08 0.38 0.49 0.41 0.29 0.46 0.43 0.55 0.32
SRF16 0.53 0.36 0.43 0.30 0.22 0.44 0.27 0.38 0.25
MV04 0.52 0.38 0.50 0.40 0.28 0.45 0.46 0.57 0.32
WWC15 0.52 0.37 0.50 0.40 0.28 0.45 0.46 0.57 0.32
R08 0.52 0.38 0.49 0.41 0.29 0.46 0.43 0.55 0.32
CH06 0.52 0.38 0.50 0.41 0.28 0.45 0.46 0.56 0.32
HV08 0.52 0.40 0.45 0.46 0.57
N10 0.52 0.49 0.29 0.46 0.43 0.55 0.32

Bear 2

NS07 0.15 0.14 0.06 -0.04 -0.02 0.10 0.34 0.29 0.15
SRF16 0.33 0.33 0.34 0.25
MV04 0.17 0.07 0.18 0.33 0.31
WWC15 0.17 0.18 0.33 0.31 0.26
R08 -0.04 0.34 0.29 0.15
CH06 0.35 0.32 0.26
HV08 0.26
N10

Crisis

NS07 0.18 0.09 0.12 0.07 0.11
SRF16 0.14
MV04 0.17
WWC15
R08 0.08 0.02 0.18
CH06 0.18
HV08
N10

Table B.1: Strength of the fractional cointegration relationship between the yields of
bonds of the respective country and France. Empty fields indicate the ab-
sence of a significant fractional cointegrating relationship at the 5%-level.
Non-empty fields give an estimate of b — the strength of the cointegrating
relationship. Larger values of b indicate a stronger equilibrium relationship.
The exact definition of the market phases can be found in Table 3.1.
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0.3 0.6 0.49 0 0.68 0.41 0.69 0.7 0.56 0.62

0.3 0.37 0.47 0 0.41 0.35 0.55 0.32 0.31 0.38

0.6 0.37 0.5 0 0.62 0.6 0.6 0.59 0.64 0.48

0.49 0.47 0.5 0 0.37 0.46 0.45 0.31 0.54 0.49

0 0 0 0 0 0 0 0 0 0

0.68 0.41 0.62 0.37 0 0.6 0.72 0.72 0.65 0.6

0.41 0.35 0.6 0.46 0 0.6 0.57 0.65 0.5 0.55

0.69 0.55 0.6 0.45 0 0.72 0.57 0.65 0.64 0.77

0.7 0.32 0.59 0.31 0 0.72 0.65 0.65 0.65 0.69

0.56 0.31 0.64 0.54 0 0.65 0.5 0.64 0.65 0.64

0.62 0.38 0.48 0.49 0 0.6 0.55 0.77 0.69 0.64
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scale

[0.7,0.8)

[0.6,0.7)

[0.5,0.6)

[0.4,0.5)

[0.3,0.4)

[0.2,0.3)

[0,0.1)

Cointegration Strength Bull 1

0.2 0.28 0.13 0.1 0.2 0.26 0.36 0.16 0.22 0.14

0.2 0.25 0.11 0.1 0.13 0.24 0.25 0.06 0.12 0.05

0.28 0.25 0.07 0.1 0.15 0.18 0.32 0.04 0.12 0.1

0.13 0.11 0.07 0.09 0.14 0.07 0.25 0.01 0.1 0.12

0.1 0.1 0.1 0.09 0.1 0.08 0.1 0.09 0.1 0.08
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Figure B.1: Heatmaps for the strength of all pairwise cointegration relationships. The
test for the existence of a cointegrating relationship and the estimation of
their strength are carried out for different subperiods using the method
of Nielsen and Shimotsu (2007). Dark fields indicate a strong equilibrium
relationship between the countries. The exact definition of the market phases
can be found in Table 3.1.
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Figure B.2: Nowcast of the market sentiment. The graph shows the filtered probabilities
st|t for a bull-market regime in the Markov-switching mean-variance model
(3.9) estimated for the Eurostoxx index. Vertical dashed lines indicate the
beginning of a new bull- or bear-market period according to the previous
definition as listed in Table 3.1.

ES IT PT IE GR BE AT FI NL FR

const. 0.88 ∗ ∗ 0.89 ∗ ∗ 0.95 ∗ ∗ 1.01 ∗ ∗ 0.94 ∗ ∗ 0.95 ∗ ∗ 0.93 ∗ ∗ 0.87 ∗ ∗ 0.87 ∗ ∗ 0.92 ∗ ∗
st|t −0.01 −0.00 0.01 −0.02 0.01 −0.02 −0.07 ∗ ∗ −0.01 −0.01 0.01
RVt −0.11 0.00 −0.02 −0.07 −0.00 −0.05 0.01 0.16 ∗ ∗ −0.09 0.12 ∗ ∗
∆RVt −0.10 0.00 −0.01 −0.05 0.01 −0.05 0.02 0.16 ∗ ∗ −0.08 0.12 ∗ ∗
V Pt 0.00 −0.00 −0.00 0.00 −0.00 0.00 −0.00 −0.00 ∗ 0.00 −0.00
rt −0.01 −0.00 −0.00 ∗ −0.00 −0.01 −0.01 ∗ −0.00 0.00 −0.00 ∗ −0.00 ∗
BBBt −0.01 ∗ ∗ −0.01 ∗ ∗ −0.01 ∗ ∗ 0.00 −0.01 −0.01 ∗ −0.01 ∗ ∗ 0.00 −0.01 ∗ ∗ −0.01 ∗
Euribort −0.00 −0.00 −0.01 ∗ ∗ 0.00 −0.00 −0.01 −0.02 −0.02 ∗ ∗ −0.02 ∗ −0.01
st|t ×RVt 0.05 −0.06 −0.00 0.06 −0.09 0.05 −0.01 −0.09 0.09 −0.16
st|t ×∆RVt 0.04 −0.06 −0.01 0.04 −0.10 0.04 −0.03 −0.09 0.08 −0.16 ∗
st|t × V Pt −0.01 0.00 0.00 −0.00 0.01 0.00 0.01 ∗ 0.01 0.00 0.01

R2
adj. 0.09 0.01 0.04 0.01 0.02 0.07 0.10 0.08 0.09 0.03

bHAC 0.25 0.25 0.25 0.25 0.25 0.25 0.26 0.25 0.25 0.25
crit0.975 2.72 2.72 2.72 2.73 2.73 2.72 2.74 2.73 2.72 2.72
crit0.95 2.20 2.21 2.20 2.21 2.22 2.20 2.22 2.21 2.20 2.20

Table B.2: Dependence between bond market integration and a nowcast of the stock
market sentiment during the crisis periods. The estimation is carried out for
the period 03/09/2009–08/08/2017. The symbols ∗ and ∗∗ indicate signifi-
cance at the 10% level and 5% level, respectively.
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ES IT PT IE GR BE AT FI NL FR

const. 0.54 ∗ ∗ 0.81 ∗ ∗ 0.66 ∗ ∗ 0.59 ∗ ∗ 0.62 ∗ ∗ 0.70 ∗ ∗ 0.57 ∗ ∗ 0.50 ∗ ∗ 0.50 ∗ ∗ 0.52 ∗ ∗
1bull,t −0.18 −0.03 −0.25 ∗ ∗ −0.27 ∗ −0.17 −0.03 −0.26 ∗ −0.21 ∗ ∗ −0.18 0.13
RVt −0.05 −0.01 −0.01 −0.13 −0.02 −0.12 −0.07 −0.11 −0.05 0.10
∆RVt 0.00 −0.01 0.05 0.00 −0.11 −0.06 −0.08 −0.19 ∗ −0.06 0.14
V Pt −0.09 −0.13 −0.02 −0.13 −0.19 −0.09 −0.06 −0.13 −0.06 −0.06
rt −0.13 ∗ −0.05 −0.15 ∗ −0.14 ∗ 0.06 −0.06 −0.06 −0.02 −0.08 −0.16 ∗ ∗
BBBt 0.14 ∗ 0.12 ∗ 0.07 0.15 ∗ 0.17 ∗ 0.13 ∗ 0.11 0.10 0.09 0.06
Euribort −0.09 −0.11 ∗ ∗ −0.01 −0.06 −0.13 ∗ −0.14 ∗ ∗ −0.06 −0.03 −0.08 −0.06
1bull,t ×RVt 0.04 0.42 ∗ ∗ −0.05 −0.11 −0.20 0.60 ∗ ∗ 0.10 0.19 0.15 0.13
1bull,t ×∆RVt −0.07 0.09 −0.07 −0.09 −0.24 0.21 0.06 0.16 0.11 −0.05
1bull,t × V Pt −0.16 −0.05 −0.21 0.08 0.10 −0.06 −0.24 0.09 0.05 −0.08

R2
adj. 0.31 0.15 0.26 0.29 0.21 0.25 0.18 0.20 0.11 0.04

Table B.3: Dependence between bond market integration and ex post determined stock
market sentiment using quarterly estimates. The estimation is carried out for
the period 01/1999–01/2009. The symbols ∗ and ∗∗ indicate significance at
the 10% level and 5% level, respectively.

ES IT PT IE GR BE AT FI NL FR

const. 0.67 ∗ ∗ 0.76 ∗ ∗ 0.88 ∗ ∗ 0.69 ∗ ∗ 0.67 ∗ ∗ 0.63 ∗ ∗ 0.73 ∗ ∗ 0.56 ∗ ∗ 0.62 ∗ ∗ 0.54 ∗ ∗
st|t −0.50 ∗ ∗ 0.01 −0.79 ∗ ∗ −0.56 ∗ ∗ −0.25 0.04 −0.61 ∗ ∗ −0.37 ∗ ∗ −0.53 ∗ ∗ 0.12
RVt 0.03 −0.08 −0.0001 −0.09 −0.05 −0.17 −0.01 −0.10 −0.02 0.07
∆RVt 0.11 −0.05 0.12 0.13 −0.01 −0.06 0.09 −0.05 0.06 0.19
V Pt −0.06 −0.11 −0.002 0.05 −0.07 −0.06 −0.09 −0.03 0.08 0.03
rt −0.12 ∗ −0.09 −0.09 ∗ −0.13 ∗ 0.04 −0.12 ∗ −0.07 −0.06 −0.07 −0.15 ∗ ∗
BBBt 0.10 0.12 0.06 0.05 0.12 0.12 0.12 0.04 0.01 0.02
Euribort −0.07 −0.11 ∗ −0.05 −0.09 −0.15 ∗ ∗ −0.13 ∗ ∗ −0.07 −0.04 −0.10 −0.06
st|t ×RVt −0.10 0.71 ∗ ∗ 0.21 0.16 0.01 0.84 ∗ ∗ 0.04 0.36 0.33 0.31
st|t ×∆RVt −0.18 0.25 0.10 −0.09 −0.39 0.27 −0.15 0.06 0.14 −0.16
st|t × V Pt −0.14 −0.29 −0.20 −0.43 −0.11 −0.33 −0.004 −0.18 −0.32 −0.43

R2
adj. 0.49 0.08 0.63 0.43 0.23 0.13 0.42 0.21 0.27 0.08

Table B.4: Dependence between bond market integration and a nowcast of the stock
market sentiment using quarterly estimates. The estimation is carried out
for the period 01/1999–01/2009. The symbols ∗ and ∗∗ indicate significance
at the 10% level and 5% level, respectively.
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Figure B.3: Memory estimates for the bid-ask spreads of the core countries. In analogy
to Figures 3.4 and 3.5, the estimates of d are obtained using the exact
local Whittle estimator of Shimotsu and Philips (2005) with a bandwidth
ofm = bT c0.7 in a rolling window of 250 observations. Every value represents
the estimated memory parameter from the sample ending on the respective
day. Vertical dashed lines indicate the timing of bull and bear markets as
defined in Table 3.1 and horizontal dashed lines mark pointwise critical
values for a test of H0 : d(bait) = 1.
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Figure B.4: Memory estimates for the bid-ask spreads of the periphery countries. In
analogy to Figures 3.4 and 3.5, the estimates of d are obtained using the
exact local Whittle estimator of Shimotsu and Philips (2005) with a band-
width of m = bT c0.7 in a rolling window of 250 observations. Every value
represents the estimated memory parameter from the sample ending on the
respective day. Vertical dashed lines indicate the timing of bull and bear
markets as defined in Table 3.1 and horizontal dashed lines mark pointwise
critical values for a test of H0 : d(bait) = 1.



Chapter 4

Testing for Breaks in the Cointegrating Re-
lationship: On the Stability of Government
Bond Markets’ Equilibrium

Co-authored with Paulo M. M. Rodrigues and Philipp Sibbertsen.

4.1 Introduction

Since the seminal works of Engle and Granger (1987) and Johansen (1988) cointegration
testing has become an important topic of research, both theoretically as well as empiri-
cally. The equilibrium relationship between economic and financial variables postulated by
many economic theories is typically assumed to be constant over time, i.e., cointegrating
relationships do not change. However, this assumption may be too restrictive.

A constant long-run equilibrium may be questionable in light of the growing empirical
evidence that economic and financial time series may display persistence changes over time
(see, inter alia, Kim (2000), Kim et al. (2002), Busetti and Taylor (2004), and Harvey
et al. (2006), for tests when the order of integration is integer; and Giraitis and Leipus
(1994), Beran and Terrin (1996), Beran and Terrin (1999), Sibbertsen and Kruse (2009),
Hassler and Scheithauer (2011), Hassler and Meller (2014), and Martins and Rodrigues
(2014), for tests when the order of integration is some real number). Hence, it is natural
to expect that changes in the persistence of economic and financial time series may also
originate changes in the long-run equilibrium. This has been substantiated in recent years
by a vast literature documenting changes in the historical behaviour of economic and
financial variables; see among others, McConnell and Perez-Quiros (2000), Herrera and
Pesavento (2005), Cecchetti et al. (2006), Kang et al. (2009) and Halunga et al. (2009).

The impact of structural breaks in the deterministic kernels on cointegration has been
widely analysed (see e.g. Hansen (1992), Quintos and Phillips (1993), Hao (1996), Andrews
et al. (1996), Bai and Perron (1998), Kuo (1998), Inoue (1999), Johansen et al. (2000), and
Lütkepohl et al. (2003), but less attention has been given to the impact of changes in the
actual long-run equilibrium (see Martins and Rodrigues (2018)). The focus of this paper is
to propose new tests capable of detecting changes in fractional cointegration relationships.
We introduce procedures designed to detect changes in the long-run equilibrium between
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macroeconomic or financial variables based on rolling, recursive forward and recursive
reverse estimation of the Hassler and Breitung (2006) test, in the spirit of the approaches
proposed by e.g. Davidson and Monticini (2010). Asymptotic results are derived and the
performance of the new tests evaluated in an in-depth Monte Carlo exercise. In particular,
special attention is devoted to the case of unknown orders of integration of the variables
involved due to its empirical relevance. Furthermore, we apply the new test statistics to
the government bond market of the European Monetary Union (EMU) finding evidence
of segmented fractional cointegration with breaks at the beginning of the European debt
crisis.

This paper is organized as follows. Section 2 presents the model specification and
assumptions; Section 3 introduces the tests for no cointegration under persistence breaks,
a break point estimator, and corresponding asymptotic theory; Section 4 discusses the
results of an in-depth Monte Carlo analysis on the finite sample properties of the new
tests; Section 5 illustrates the application of the new procedures to the EMU government
bond market; Section 6 concludes the paper and finally, an appendix collects all the proofs.

4.2 Model Specification and Assumptions

Consider an m-dimensional process xt integrated of order d, I(d), and let yt be an one-
dimensional I(d) process as well. The processes xt and yt are said to be fractionally
cointegrated if, considering the regression,

yt = x′t β + ut, t = 1, . . . , T, (4.1)

ut is integrated of order I(d− b) with b > 0.
In what follows the focus is on testing the null hypothesis of no fractional cointegra-

tion, H0 : b = 0. The usual alternative in this setting is to have fractional cointegration
over the whole range of observations, H1 : b > 0. However, we are interested in testing for
segmented fractional cointegration. This means that the fractional cointegration relation-
ship may hold only in subsamples of the period under analysis. Therefore, our alternative
hypothesis is H1 : bt > 0, for t = bλ1T c+ 1, . . . , bλ2T c and bt = 0 elsewhere, with
0 ≤ λ1 < λ2 ≤ 1.

The test statistics that will be proposed are based on the approach of Hassler and
Breitung (2006), who provide a regression-based test for the null of no fractional coin-
tegration on the residuals, ût, of a model as in (1). Before presenting the relevant test
statistics let us make the following assumptions:

Assumption 1: Let yt and xt be fractionally integrated of orders d1 and d2, respectively
with yt = 0 and xt = 0 for t ≤ 0.
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Assumption 2: The vector v′t := (v1,t,v′2,t) = (∆d1
+ yt, ∆d2

+ x′t), is a stationary vector
autoregressive process of order p of the form

vt = A1vt−1 + · · ·+ Apvt−p + εt (4.2)

where ∆d1
+ yt := (1 − L)d1ytI(t > 0), ∆d2

+ xt := (1 − L)d2xtI(t > 0), I(·) is the indicator
function, L denotes the usual backshift or lag operator and the error process εt is assumed
to be independent and identically distributed (iid) with mean zero and covariance matrix,

Σ :=
 σ2

11 σ
′
21

σ21 Σ22

 .

4.3 Testing for no Cointegration under Persistence
Breaks

As in Hassler and Breitung (2006) the cointegrating vector β is not identified under the
null hypothesis of no cointegration. Thus, considering that d1 = d2 = d, we define the
following regression model,

∆d
+yt = ∆d

+x′t β + et, β := Σ−1
22 σ21 (4.3)

where et := v1,t − v′2,tΣ−1
22 σ21.

The LM test for no cointegration is then applied to the OLS residuals, êt, obtained
from (4.3), i.e.,

∆d
+yt = ∆d

+x′tβ̂ + êt

where

êt := et −
T∑
t=1

v′2,tet
(

T∑
t=1

v2,tv
′

2,t

)−1

v2,t.

Specifically, to implement the tests proposed by Hassler and Breitung (2006) and
Demetrescu et al. (2008), which is the approach followed in this paper, a regression frame-
work is considered, viz.,

êt = φê∗t−1 +
p∑
i=1

γiêt−i + at, t = 1, ..., T, (4.4)

where ê∗t−1 := ∑t−1
j=1 j

−1êt−j and at is a martingale difference sequence. Equation (4.4) is
used to test the null H0 : φ = 0 (b = 0) against the alternative H1 : φ < 0 (b > 0).
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Remark 3.1: Under local alternatives of the form H1 : b = c/
√
T with a fixed c > 0, it

can be shown that φ = −c/
√
T +O (T−1) and that {at} is a fractionally integrated noise

component. As a result, the heterogeneous behavior of φ and the different stochastic prop-
erties of at provide a sound statistical basis to identify the order of fractional integration
of {êt}. Despite the apparent theoretical simplicity of this framework, the fact that ê∗t−1

converges in mean square sense to e∗∗t−1 := ∑∞
j=1 j

−1et−j,d under the null hypothesis and As-
sumption 1, with

{
e∗∗t−1

}
being a stationary linear process with non-absolutely summable

coefficients, is a source of major technical difficulties for the asymptotic analysis in this
context; see e.g. Hassler et al. (2009). �

Remark 3.2: Demetrescu et al. (2008) and Hassler et al. (2009) derive the asymptotic
theory of the fractional integration tests under least-squares (LS) estimation of the set
of parameters κ := (φ, γ1, ..., γp)′ of a regression as in (4.4), and show that these are√
T -consistency and asymptotic normal under fairly general conditions. As a result, in

a conventional setting as in (4.4) H0 : φ = 0 can be tested by means of a standard
t-ratio, or some measurable transformation such as its squares. If our assumptions are
strengthened such that at ∼ iidN (0, σ2), the specific harmonic weighting upon which{
e∗t−1

}
is constructed in (4.4) also ensures efficient testing. �

In this paper we concentrate on the case of iid errors, et, (p = 0 in (4.4)) although it is
also possible to allow for serial correlation in the innovations. Following Demetrescu et al.
(2008) this can be accommodated through parametric augmentation as in (4.4) allowing
for p > 0.

4.3.1 The Test Statistics

As we are interested in testing for no fractional cointegration against the alternative of
segmental fractional cointegration, we apply the Hassler and Breitung (2006) test on a
subinterval defined by the truncation points λ1 and λ2 with 0 ≤ λ1 < λ2 ≤ 1. Thus, for
λ1 and λ2 fixed we consider the statistic,

t(ê(λ1, λ2)) =

√
bλ2T c − bλ1T c

∑bλ2T c
t=bλ1T c+1 êt(λ1, λ2)ê∗t−1(λ1, λ2)√∑bλ2T c

t=bλ1T c+1 ê
∗2
t−1(λ1, λ2)

√
1

T−1
∑bλ2T c
t=bλ1T c+1 ê

2
t (λ1, λ2)

(4.5)

where êt(λ1, λ2) are the subsample based residuals and ê∗t−1(λ1, λ2) the corresponding
harmonic weighted residuals as defined in (4.4).
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However, since the breakpoints, λ1 and λ2, are usually unknown we adopt the split
sample testing approach proposed by Davidson and Monticini (2010), and define the
following sets on which the tests will be performed:

ΛS =
{{

0, 1
2

}
,
{1

2 , 1
}}

(4.6)

Λ0f = {{0, s} : s ∈ [λ0, 1]} (4.7)

Λ0b = {{s, 1} : s ∈ [0, 1− λ0]} (4.8)

Λ0R = {{s, s+ λ0} : s ∈ [0, 1− λ0]} (4.9)

where ΛS represents a simple split sample with just two elements; Λ0f and Λ0b denote
forward- and backward-running incremental samples, respectively of minimum length
bλ0T c and maximum length T; Λ0R defines a rolling sample of fixed length bλ0T c, and
finally λ0 ∈ (0, 1) is fixed and needs to be chosen by the practitioner. Davidson and Mon-
ticini (2010) consider two additional sets, namely Λ∗S = ΛS∪{0, 1} and Λ∗0R = Λ0R∪{0, 1}.

Therefore, considering the sets in (6) to (9), our proposed test procedures against
breaks in the fractional cointegration relation are the split sample tests,

TS := max
{λ1,λ2}∈ΛS

t2(ê(λ1, λ2)); (4.10)

T ∗S := max
{λ1,λ2}∈Λ∗S

t2(ê(λ1, λ2)); (4.11)

the incremental (recursive) tests

TIf (λ) := max
λ0≤λ≤1

t2(ê(0, λ)); (4.12)

TIb(λ) := max
0≤λ≤1−λ0

t2(ê(λ, 1)); (4.13)

the rolling sample test

TR(λ) := max
0≤λ≤1−λ0

t2(ê(λ, λ+ λ0)); (4.14)

T ∗R (λ) := max
{λ1,λ2}∈Λ∗0R

t2(ê(λ1, λ2)). (4.15)

We can state these statistics in general form as,

TK(λ1, λ2) := max
λ1∈Λ1,λ2∈Λ2

t2(ê(λ1, λ2)), K = S, S∗, If , Ib, R,R
?. (4.16)

4.3.2 Asymptotic Results

To characterize the asymptotic behavior of the test statistics in (4.10) - (4.15), consider
first Theorem 1 provided next, which states the asymptotic normality of the test statistic
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in (4.5) and which is the main building block of the test statistics TK(λ1, λ2), K =
S, S∗, If , Ib, R,R

?.

Theorem 4.3.1. Assuming that the data is generated from (4.1) and that Assumptions
1 and 2 hold, it follows under the null hypothesis of no fractional cointegration that, as
T →∞,

t(ê(λ1, λ2))⇒ N(0, 1), (4.17)

where ⇒ denotes weak convergence.

Hence, based on the result of Theorem 1 we can now state the limit results for the
test statistics introduced in (4.10) - (4.15).

Theorem 4.3.2. Assuming that the data is generated from (4.1) and that Assumptions 1
and 2 hold, under the null hypothesis of no fractional cointegration it follows, as T →∞,
that

TK(λ1, λ2)⇒ sup
λ1∈Λ1,λ2∈Λ2

χ2
1, K = S, S∗, If , Ib, R,R

∗. (4.18)

As a next step we provide an estimator of the break point τ under the alternative. The
estimator basically consists of minimizing the sum of squared residuals of a regression as
in (4.3). Thus, our break point estimator is

τ̂ = arg inf
τ∈∆

[τT ]−2d̂
[τT ]∑
t=1

ê2
t (τ) (4.19)

where, ∆ := (δ; (1 − δ)) and 0 < δ < 0.5 is an interval eliminating the first and last
observations to have enough observations at hand for the break point estimation. For this
statistic, the following consistency result can be stated:

Theorem 4.3.3. Assuming that the break is from the cointegrated subsample to the
non-cointegrated subsample and that Assumptions 1 and 2 hold, as T →∞, than

τ̂ → τ0. (4.20)

where τ0 denotes the true break fraction.

Remark 3.3: If the break is from the non-cointegrated to the cointegrated sample then the
reversed sum of squared residuals, from T to bτT c, can be used to consistently estimate
the break fraction τ0. �
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4.4 Monte Carlo Study

In this Section, we analyze the finite-sample properties of the residual-based tests for
segmented fractional cointegration introduced above by means of Monte Carlo simulation.
The data generation process (DGP) considered for the empirical size and power analysis
is

yt = xt + et, t = 1, ..., T (4.21)

xt = xt−1 + vt, (4.22)

(1− L)(1−bt)et = at, (4.23)

where  vt

at

 ∼ iidN

 0
0

 ,
 1 ρ

ρ 1

 .
For ρ = 0, xt is strictly exogenous whereas for ρ 6= 0, xt is correlated with et (i.e.
endogenous).

For implementation of the tests we compute the OLS residuals,

êt = yt − α̂− β̂xt, (4.24)

run the test regression in (4) on these residuals (êt) and compute the different test statistics
introduced in the previous section, i.e., T ∗S , TIf (λ0), TIb(λ0), and TR(λ0), as well as the full
sample test proposed by Hassler and Breitung (2006), which we denote as THB. All results
reported are for a 5% significance level and are based on 5000 Monte Carlo replications.
We present results for sample sizes T = {250, 500}.

For benchmarking purposes, we consider the test statistics computed either for iid
innovations as in Breitung and Hassler (2002) or using Eicker-White’s correction against
heteroskedasticity as in Demetrescu et al. (2008).

To compute the critical values for the tests we generate data from

yt = xt + et, t = 1, ..., T (4.25)

(1− L)d1xt = vt, (4.26)

(1− L)d1et = at, (4.27)

with d1 = {0.5, 0.6, ..., 1} and computed the critical values as the average of the critical
values obtained for each d1 considered at a specific significance level (see Table 4.1).
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T ∗S TIf (λ0) TIb(λ0) TR(λ0)

T = 250
1% 9.438 7.722 7.699 7.172
5% 5.960 4.458 4.471 4.112
10% 4.470 3.130 3.133 2.867

T = 500
1% 8.888 7.387 7.405 6.862
5% 5.737 4.293 4.296 3.955
10% 4.381 3.000 3.006 2.767

Table 4.1: Critical values for subsample tests. For implementation of the tests we con-
sidered λ0 = 0.5 and all results are based on 5000 Monte Carlo replications.

4.4.1 Empirical Rejection Frequencies

For the analysis of the finite sample rejection frequencies under the null and alternative
hypothesis, we consider three experiments:

Experiment 1: Constant cointegration relation over the whole sample.

Experiment 2: Spurious regime in the first part of the sample and a fractional cointe-
grated regime in the second part, i.e., bt = 0 for t = 1, ..., bλT c

bt > 0 for t = bλT c+ 1, ..., T
. (4.28)

Experiment 3: Fractional cointegrated regime in the first part of the sample and a
spurious regime in the second part of the sample, i.e., bt > 0 for t = 1, ..., bλT c

bt = 0 for t = bλT c+ 1, ..., T
(4.29)

with λ ∈ {0.3, 0.5, 0.7} in both experiments 2 and 3.
In the case of Experiment 1, data is generated from (4.21) - (4.23), where yt and

xt are both I(1) variables and bt = b = {0, 0.05, 0.10, ..., 0.50} which allows us to look
at the empirical rejection frequencies under the null hypothesis (empirical size, b = 0)
as well as under the alternative (finite sample power, bt > 0). The first observation we
can make from the upper panel of Table 4.2 is that for T = 250, with the exception
of THB (which displays an empirical size of 8.4%), all other tests have acceptable finite
sample size (ranging between 5.2% and 6.1%). As the sample size increases to T = 500 all
tests improve in size (for THB the empirical rejection frequency under the null hypothesis
reduces to 6.4% whereas for the other subsample tests it ranges between 4.5% and 4.9%).
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ρ = 0

T = 250 T = 500
b T ∗S TIf (λ0) TIb(λ0) TR(λ0) THB T ∗S TIf (λ0) TIb(λ0) TR(λ0) THB

0.00 0.061 0.061 0.058 0.052 0.084 0.049 0.046 0.045 0.048 0.064
0.05 0.153 0.182 0.181 0.115 0.225 0.208 0.251 0.255 0.158 0.306
0.10 0.384 0.444 0.448 0.258 0.514 0.624 0.694 0.692 0.434 0.752
0.15 0.690 0.756 0.757 0.485 0.811 0.932 0.959 0.959 0.758 0.969
0.20 0.899 0.938 0.939 0.697 0.960 0.995 0.998 0.998 0.943 0.999
0.25 0.987 0.995 0.995 0.879 0.996 0.999 1 1 0.995 1
0.30 1 1 1 0.957 1 1 1 1 0.999 1
0.35 1 1 1 0.992 1 1 1 1 1 1
0.40 1 1 1 0.998 1 1 1 1 1 1
0.45 1 1 1 1 1 1 1 1 1 1
0.50 1 1 1 1 1 1 1 1 1 1

ρ = 0.8

T = 250 T = 500
b T ∗S TIf (λ0) TIb(λ0) TR(λ0) THB T ∗S TIf (λ0) TIb(λ0) TR(λ0) THB

0.00 0.048 0.053 0.051 0.039 0.080 0.051 0.055 0.055 0.047 0.066
0.05 0.159 0.199 0.205 0.094 0.263 0.314 0.374 0.365 0.149 0.403
0.10 0.454 0.546 0.548 0.217 0.625 0.796 0.852 0.850 0.426 0.862
0.15 0.798 0.871 0.868 0.418 0.907 0.983 0.988 0.989 0.747 0.989
0.20 0.964 0.980 0.979 0.630 0.987 0.999 0.999 0.999 0.938 0.999
0.25 0.996 0.999 0.998 0.789 0.999 1 1 1 0.988 1
0.30 1 1 1 0.915 1 1 1 1 0.998 1
0.35 1 1 1 0.967 1 1 1 1 0.999 1
0.40 1 1 1 0.986 1 1 1 1 1 1
0.45 1 1 1 0.994 1 1 1 1 1 1
0.50 1 1 1 0.999 1 1 1 1 1 1

Table 4.2: Rejection frequencies of tests in Experiment 1 with λ0 = 0.5.

Also in terms of power an improvement is observed. In the lower panel with endogenous
xt, we observe lower empirical sizes for T = 250 compared to the exogenous case and
slightly higher sizes for T = 500. The power is always better than with exogenous xt.
Overall, all tests are relatively robust to endogeneity. Note, that of the set of sequential
tests proposed, the best performing in both cases are the recursive tests, TIf (λ0) and
TIb(λ0), although, as expected, THB displays in the case of Experiment 1 the overall best
performance.

In the case of Experiment 2, the sample is divided into two sub-periods where in the
first sub-period there is no cointegration (b = 0) and in the second the variables are
cointegrated (b > 0). We allow the change into the cointegrated regime to be early in the
sample (λ = 0.3), in the middle of the sample (λ = 0.5) and late in the sample (λ = 0.7).
We consider a similar exercise in Experiment 3 except that the first sub-period corresponds
to cointegration (b > 0) and the second to a spurious regression (b = 0). From Table 4.3
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T = 250 T = 500
b T ∗S TIf (λ0) TIb(λ0) TR(λ0) THB T ∗S TIf (λ0) TIb(λ0) TR(λ0) THB

λ = 0.3
0.00 0.055 0.058 0.061 0.054 0.076 0.058 0.055 0.056 0.056 0.065
0.05 0.079 0.077 0.079 0.051 0.104 0.082 0.083 0.083 0.057 0.096
0.10 0.101 0.100 0.103 0.050 0.128 0.133 0.125 0.136 0.052 0.141
0.15 0.134 0.129 0.144 0.051 0.166 0.189 0.173 0.182 0.053 0.191
0.20 0.161 0.151 0.167 0.054 0.189 0.254 0.222 0.238 0.051 0.243
0.25 0.202 0.178 0.194 0.053 0.221 0.311 0.265 0.272 0.052 0.293
0.30 0.237 0.210 0.230 0.050 0.257 0.375 0.325 0.339 0.050 0.351
0.35 0.281 0.247 0.262 0.051 0.298 0.453 0.393 0.410 0.052 0.420
0.40 0.310 0.275 0.293 0.056 0.324 0.499 0.424 0.437 0.052 0.454
0.45 0.353 0.307 0.313 0.049 0.359 0.537 0.467 0.473 0.058 0.493
0.50 0.397 0.341 0.353 0.055 0.393 0.594 0.514 0.527 0.052 0.543

λ = 0.5
0.00 0.051 0.060 0.060 0.048 0.078 0.054 0.059 0.057 0.054 0.069
0.05 0.092 0.094 0.099 0.063 0.126 0.114 0.115 0.118 0.090 0.132
0.10 0.159 0.147 0.155 0.091 0.182 0.279 0.224 0.239 0.164 0.248
0.15 0.269 0.207 0.227 0.142 0.260 0.474 0.331 0.345 0.228 0.361
0.20 0.411 0.285 0.298 0.204 0.336 0.658 0.426 0.436 0.283 0.454
0.25 0.530 0.345 0.358 0.240 0.400 0.775 0.532 0.531 0.344 0.560
0.30 0.640 0.409 0.418 0.267 0.463 0.832 0.593 0.594 0.373 0.619
0.35 0.727 0.462 0.473 0.297 0.518 0.871 0.657 0.654 0.404 0.676
0.40 0.770 0.515 0.518 0.325 0.565 0.894 0.707 0.700 0.425 0.727
0.45 0.811 0.565 0.566 0.328 0.618 0.906 0.739 0.732 0.432 0.757
0.50 0.832 0.611 0.612 0.348 0.653 0.924 0.766 0.766 0.452 0.783

λ = 0.7
0.00 0.060 0.062 0.058 0.053 0.085 0.056 0.056 0.058 0.054 0.066
0.05 0.114 0.128 0.133 0.072 0.166 0.154 0.167 0.178 0.080 0.188
0.10 0.207 0.216 0.232 0.090 0.266 0.342 0.360 0.364 0.119 0.386
0.15 0.346 0.344 0.347 0.105 0.398 0.583 0.546 0.538 0.137 0.572
0.20 0.509 0.465 0.467 0.125 0.518 0.739 0.657 0.646 0.181 0.679
0.25 0.625 0.534 0.542 0.145 0.592 0.847 0.741 0.724 0.210 0.757
0.30 0.726 0.619 0.613 0.159 0.660 0.887 0.780 0.766 0.239 0.796
0.35 0.798 0.669 0.664 0.177 0.714 0.912 0.818 0.810 0.279 0.831
0.40 0.837 0.710 0.700 0.197 0.738 0.927 0.837 0.825 0.311 0.850
0.45 0.871 0.742 0.735 0.227 0.774 0.933 0.843 0.832 0.336 0.854
0.50 0.884 0.761 0.751 0.237 0.789 0.946 0.868 0.854 0.369 0.878

Table 4.3: Rejection frequencies of tests in Experiment 2 with λ0 = 0.5.

we observe first that the overall best performing test of the sequential tests introduced
is T ∗S followed by TIf (λ0). The overall test THB, although slightly oversized, also displays
interesting power performance. The good behavior of T ∗S is clearly observable in the larger
sample (T = 500) where it stands out particularly for λ = 0.5 and λ = 0.7. For λ = 0.3
the difference of T ∗S with regards to THB is not as marked.

Table 4.4 reports results for the case where there is cointegration in the first sub-period
and in the second sub-period the results are spurious. In this case the rolling approach
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TR(λ0) displays interesting behavior, particularly for bt > 0.15 and T = 250 and for
bt > 0.1 when T = 500. The T ∗S statistic also displays good power performance.7

T = 250 T = 500
b T ∗S TIf (λ0) TIb(λ0) TR(λ0) THB T ∗S TIf (λ0) TIb(λ0) TR(λ0) THB

λ = 0.3
0.00 0.061 0.061 0.058 0.052 0.084 0.058 0.055 0.054 0.050 0.076
0.05 0.111 0.137 0.128 0.115 0.171 0.152 0.169 0.165 0.162 0.208
0.10 0.257 0.273 0.270 0.258 0.326 0.399 0.401 0.394 0.416 0.462
0.15 0.438 0.432 0.426 0.479 0.504 0.709 0.661 0.655 0.753 0.717
0.20 0.653 0.617 0.603 0.682 0.677 0.915 0.832 0.832 0.934 0.868
0.25 0.830 0.741 0.735 0.863 0.788 0.980 0.910 0.908 0.988 0.929
0.30 0.927 0.828 0.819 0.940 0.864 0.995 0.939 0.937 0.998 0.954
0.35 0.962 0.873 0.865 0.978 0.899 0.998 0.958 0.954 0.998 0.966
0.40 0.986 0.908 0.902 0.993 0.933 1.000 0.974 0.973 1.000 0.979
0.45 0.995 0.926 0.920 0.997 0.944 0.999 0.982 0.980 1.000 0.986
0.50 0.997 0.948 0.943 0.998 0.961 0.999 0.981 0.979 1.000 0.986

λ = 0.5
0.00 0.058 0.059 0.061 0.057 0.081 0.049 0.048 0.050 0.051 0.069
0.05 0.097 0.095 0.093 0.230 0.123 0.115 0.112 0.114 0.360 0.152
0.10 0.193 0.169 0.163 0.509 0.222 0.311 0.237 0.229 0.686 0.288
0.15 0.350 0.250 0.243 0.726 0.305 0.591 0.365 0.363 0.879 0.425
0.20 0.529 0.344 0.334 0.845 0.406 0.823 0.495 0.494 0.962 0.556
0.25 0.702 0.430 0.413 0.926 0.494 0.934 0.602 0.593 0.987 0.651
0.30 0.828 0.516 0.504 0.965 0.574 0.970 0.678 0.675 0.997 0.724
0.35 0.888 0.560 0.551 0.983 0.623 0.980 0.752 0.746 0.996 0.789
0.40 0.937 0.633 0.623 0.991 0.684 0.989 0.780 0.773 0.998 0.820
0.45 0.953 0.673 0.664 0.994 0.721 0.989 0.813 0.817 0.998 0.845
0.50 0.967 0.711 0.703 0.996 0.756 0.991 0.849 0.848 0.999 0.877

λ = 0.7
0.00 0.058 0.057 0.055 0.057 0.080 0.051 0.052 0.050 0.054 0.076
0.05 0.071 0.079 0.072 0.079 0.104 0.077 0.085 0.077 0.095 0.113
0.010 0.108 0.107 0.104 0.123 0.139 0.120 0.123 0.117 0.155 0.154
0.15 0.136 0.135 0.129 0.158 0.172 0.181 0.165 0.154 0.223 0.206
0.20 0.163 0.161 0.155 0.197 0.202 0.241 0.222 0.208 0.292 0.269
0.25 0.205 0.191 0.183 0.238 0.245 0.285 0.262 0.250 0.340 0.314
0.30 0.230 0.217 0.212 0.268 0.272 0.351 0.310 0.296 0.411 0.357
0.35 0.263 0.249 0.241 0.306 0.306 0.402 0.359 0.353 0.456 0.418
0.40 0.291 0.274 0.265 0.341 0.328 0.436 0.398 0.388 0.485 0.462
0.45 0.347 0.321 0.314 0.386 0.376 0.496 0.447 0.444 0.543 0.504
0.50 0.368 0.341 0.332 0.413 0.401 0.527 0.484 0.482 0.566 0.543

Table 4.4: Rejection frequencies of tests in Experiment 3 with λ0 = 0.5.

We also apply the break point estimator to data from Experiment 3 and residuals
from a regression without constant in order to detect a break from cointegration to no

7We have also performed simulations with EW corrected statistics, however since the results are qualita-
tively similar to those reported in Tables 4.2 - 4.4 we have decided not to include them in the paper for
the sake of space. These can however be obtained from the authors.
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cointegration. Table 4.5 shows the estimated break fraction for different choices of δ. This
choice does not have any influence on the results. Therefore for practical purposes, a small
δ is recommended in order to keep a large part of the data in the analysis. With small b,
there is a tendency to locate the break in the middle of the sample, but the results improve
as the cointegrating strength b increases and for the largest b the accuracy is good. Hence,
with strong cointegrating relations, the break point estimator delivers reliable results. If
there is permanent cointegration, the break is estimated at the end of the admissible
window. If the data is generated from Experiment 2, the regression residuals are reversed
before applying the break point estimator. The results remain the same and are available
upon request.

δ 0.05 0.1 0.15
b\λ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

0.10 0.564 0.604 0.688 0.559 0.598 0.676 0.550 0.589 0.659
0.15 0.503 0.558 0.667 0.509 0.560 0.666 0.514 0.559 0.665
0.20 0.461 0.526 0.661 0.458 0.526 0.658 0.472 0.524 0.660
0.25 0.424 0.499 0.655 0.437 0.501 0.657 0.436 0.503 0.658
0.30 0.410 0.483 0.654 0.412 0.488 0.656 0.414 0.494 0.659
0.35 0.389 0.470 0.653 0.397 0.473 0.656 0.404 0.478 0.656
0.40 0.373 0.458 0.655 0.381 0.461 0.655 0.392 0.470 0.656
0.45 0.365 0.446 0.648 0.374 0.457 0.651 0.387 0.463 0.653
0.50 0.358 0.448 0.647 0.375 0.453 0.648 0.380 0.458 0.653

no break 0.938 0.890 0.842

Table 4.5: Break point estimates with T = 1000 and 5000 Monte Carlo replications.

4.5 Empirical Application

In this Section, we apply the tests introduced in Section 4.3 to benchmark government
bonds of countries that are part of the European Monetary Union (EMU). The analysis is
based on daily observations between 01.01.1999 and 08.08.2017 (about 4,800 observations
per country) of 10-year-to-maturity benchmark government bonds of eleven EMU coun-
tries (Spain, Italy, Portugal, Ireland, Greece, Belgium, Austria, Finland, the Netherlands,
France and Germany). The data is obtained from Thomson Reuters Eikon.

According to Leschinski et al. (2018), market integration requires the existence of a
(fractional) cointegrating relationship among the goods of the market under considera-
tion. Regarding the European bond market, it is generally accepted that the market is
integrated after the introduction of the Euro and prior to the EMU debt crisis or at least
up to the subprime mortgage crisis (Baele et al. (2004), Ehrmann et al. (2011), Pozzi and
Wolswijk (2012), Christiansen (2014), and Ehrmann and Fratzscher (2017), among oth-
ers) so that we would expect fractional cointegration during this period. This conclusion
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Figure 4.1: Yields of EMU government bonds.

is supported by Figure 4.1 that shows how the bond yields co-move in the beginning.
When the crisis began in 2008-2010, they drift apart so that no market integration and
no cointegration is assumed any longer. Therefore, it is likely that testing for no cointe-
gration over the full sample does not allow us to reject the null hypothesis. However, with
the new tests introduced in this paper we expect to be able to detect cointegration with
breaks in the cointegrating relationship in the sense that under the alternative we have
fractional cointegration in a certain subsample and no cointegration elsewhere.

ES IT PT IE GR BE AT FI NL FR GER
ADF 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93
KPSS 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 4.6: p-values of ADF- and KPSS-tests.

The order of integration of our data is unknown so that we apply unit root and sta-
tionarity tests (Table 4.6). The ADF-test, augmented based on the Schwert’s rule and
including a drift, cannot reject the unit root and the KPSS-test rejects stationarity for
all countries leading to the conclusion that di = 1 for all countries’ yields. This might
be implausible from an economic perspective. However, the finite sample behavior sug-
gests a unit root which is consistent with results available in the literature on fractional
cointegration, confer for example Chen and Hurvich (2003) and Nielsen (2010). The coin-
tegrating regressions are carried out in a bivariate setting where the yield of country i,
yit, is regressed on the German yield, yGER,t:

yit = β0 + β1yGER,t + et, for i = 1, ..., 10. (4.30)
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The residuals obtained from the regressions in (4.30) are used for testing in the split,
incremental and rolling sample versions of the test where λ0 is set to 0.2 and 0.5, re-
spectively. The Hassler-Breitung test is applied to the full sample. In order to account
for autocorrelation, we augment the lagged regression (4.4) using the Schwert’s rule as
suggested in Demetrescu et al. (2008), and we use Eicker-White (EW) heteroscedasticity-
robust standard errors as it is more suitable in our empirical setting. The results are given
in Table 4.7 and bold numbers indicate rejection at the 5% significance level.

THB T ∗S TIf (0.2) TIb(0.2) TR(0.2) TIf (0.5) TIb(0.5) TR(0.5)

ES 0.05 0.05 1.85 0.70 8.02 1.85 0.04 1.66
IT 0.31 0.31 2.51 1.88 15.31 2.51 0.79 1.87
PT 2.46 2.46 2.55 3.26 14.87 2.55 2.66 2.14
IE 0.04 0.04 4.90 4.09 28.71 4.90 0.09 2.65
GR 0.29 0.55 3.18 2.21 5.65 3.18 2.21 2.70
BE 0.45 1.67 8.30 2.20 15.68 8.30 0.66 6.52
AT 2.91 4.20 11.45 8.77 37.06 4.57 4.22 6.38
FI 3.43 28.03 33.84 5.98 24.43 29.30 5.00 28.92
NL 11.42 11.42 19.34 11.15 23.19 11.60 11.15 11.36
FR 2.91 2.91 11.99 5.53 11.92 11.99 5.45 9.18

Table 4.7: Values of test statistic with λ0 = 0.2 and λ0 = 0.5 with EW heteroscedasticity-
robust standard errors, and parametric augmentation to correct for autocor-
relation (Schwert’s rule).

The Hassler-Breitung test does not reject the null of no cointegration on the full sample
for all countries except for the Dutch yield, and the split sample test finds cointegration
between the German and Dutch and the German and Finnish yields. The incremental
tests with λ0 = 0.2 reject the null hypothesis for Austria, Finland, the Netherlands and
France in the backward-rolling window and additionally for Ireland and Belgium in the
forward-rolling window. Thus, segmented cointegration is found for countries that were
less affected by the financial crisis and no cointegration for those more strongly affected.
The rolling sample tests rejects the null of no cointegration for all regression pairs. Overall,
the results meet the expectation that the European yields are not cointegrated over the
whole period. With the new tests for segmented cointegration, we find that the European
yields were cointegrated in at least part of the sample.

Davidson and Monticini (2010) recommend the use of λ0 = 0.5 because a break must
occur in either the first half of the sample or the second. Nonetheless, choosing λ0 = 0.2
leads neither to disadvantages nor to advantages which was also confirmed in the Monte
Carlo exercise. With λ0 = 0.5, the results for the incremental tests are very similar to
those with λ0 = 0.2, but we get less rejections with the rolling sample test. This could
imply that a shorter period than 50% of the sample is fractionally cointegrated or, at
least, that the evidence for segmented fractional cointegration for the countries that were
most affected by the financial crisis is ambiguous.
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The finding of segmented cointegration for the Netherlands does not contradict the
rejection of the Hassler-Breitung test as it also has power, albeit less, in the presence of
segmented cointegration. The other way round, the tests for segmented cointegration also
have power if the cointegrating relation is permanent as they include the full sample as
well.

ES IT PT IE GR
05.05.2010 24.05.2010 27.04.2010 28.04.2010 22.04.2010

15.08.2014∗

BE AT FI NL FR
21.11.2008 14.12.2001 06.12.2002 21.10.2002 21.11.2008

Table 4.8: Break date estimates with δ = 0.05.

In order to gain a deeper understanding of the dynamics, we estimate the break date
with the break point estimator proposed in (4.19) based on the regression residuals (with-
out constant). We set δ = 0.05 and impose a minimum length of b0.1T c between the
sequentially estimated breaks. The results are given in Table 4.8. The breaks for Spain,
Italy, Portugal, Ireland and Greece are estimated in April and May of 2010, hence shortly
after the start of the European debt crisis. For France and Belgium we obtain the exact
same date in November 2008, i.e. two years earlier than for the previous countries. For
Austria, Finland and the Netherlands the breaks are located at the end of 2001 and 2002.
We also look at reversed residuals in order to identify potential breaks from no cointe-
gration to cointegration that are indicated by an asterisk. There is one found for Ireland
implying that the Irish yield is cointegrated with the German one until 2010, then the
cointegrating relationship temporarily dissolves and reemerges in 2014.

If we consider the sample starting 1999 up to the first break, there is still evidence
of unit roots in the data and we find the breaks given in Table 4.9. As they are also
’forward’-breaks implying the dissolution of cointegration, they contradict the first found
break dates. In the sample between the break date estimates, we do not find ’backward’-
breaks that would justify the first break, except for Italy. For Italy, it implies a short period
of no cointegration between 2002 and 2004. For the other countries, the ’backward’-break
might be too small to be detected or there is a smooth transition. Therefore, it is not
clear for Spain, Portugal, Ireland and Greece at which point exactly the relationship with
Germany dissolves. The test results in Table 4.7 suggest a short period of cointegration
because the rolling test rejects with λ0 = 0.2 but not with λ0 = 0.5 for these countries.

Strictly speaking, the direction of the estimated break dates for Finland and the
Netherlands in 2000 and 2002 imply no cointegration for most of the sample. This contra-
dicts the findings of the tests in Table 4.7 that state rather strong evidence of cointegra-
tion, in particular for the Dutch yield. Therefore, we conclude that they are permanently
cointegrated.
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ES IT PT IE GR
04.03.2002 16.10.2002 10.12.2001 30.09.2008 30.10.2008

BE AT FI NL FR
— 05.01.2001 08.05.2000∗ 11.02.2000∗ 13.12.2007

Table 4.9: Break dates with δ = 0.05 before the first break in Table 4.8.

Considering the sample from the first break date until 2017, we estimate the break
dates in Table 4.10. Those are ’backward’-breaks implying the emergence of a fractional
cointegrating relation. They are located in 2012 and 2013 for most of the countries. For
Austria, there is another ’forward’-break in 2008, but after that we also find a ’backward’-
break on 05.09.2012.

ES IT PT IE GR
24.05.2013∗ 02.05.2013∗ 12.12.2012∗ 11.12.2014∗ 12.10.2012∗

BE AT FI NL FR
11.12.2012∗ 30.10.2008 — — 05.09.2012∗

Table 4.10: Break dates with δ = 0.05 after the first break in Table 4.8.

In Table C.1 in the appendix, all found break dates from sequential estimation are
collected, and in all subsamples the data still exhibits unit roots. The table contains
further break dates for some countries in 2000 and in 2016 that imply no cointegration at
the edges of the sample. However, the dates are very close to the edges, and the Monte
Carlo simulation showed estimates very close to the margins in the case of permanent
cointegration. Therefore, the validity of the breaks in the small subsamples close to the
edges is doubtful and we rather suspect continuous cointegration in the border-subsamples.

All in all, based on the co-movements in Figure 4.1 and the rejections in Table 4.7, we
conclude that the yields of the countries were fractionally cointegrated with that of Ger-
many after the introduction of the euro until the European debt crisis. The break point
estimates point to the dissolution of fractional cointegrating relationships and market in-
tegration at the beginning of the European debt crisis in 2010 although the breaks might
have occurred earlier for Spain, Italy, Portugal and Ireland. In 2012/2013 the cointegrat-
ing relationships are reestablished. For Finland and the Netherlands the results indicate
permanent cointegration.

4.6 Conclusion

In this paper, we present tests for the null of no fractional cointegration against the al-
ternative of segmented fractional cointegration. To do this we develop new tests based on
the procedure of Hassler and Breitung (2006) combined with ideas from Davidson and
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Monticini (2010). We introduce split sample, forward- and backward-running incremental
sample and rolling sample tests for segmented cointegration. We show that the limit dis-
tribution of all of these statistics converge to the supremum of a chi-squared distribution.
Furthermore, a break point estimator based on minimizing the sum of squared residuals
is also proposed.

An in-depth Monte Carlo analysis shows the satisfying size and power properties of our
tests in various situations. However, it turns out that the split sample test performs best
in terms of power when the break occurs from the spurious to the fractionally cointegrated
regime wherever the breakpoint is. On the other hand, if the break is from the fractionally
cointegrated regime to the spurious regime, the rolling window test has the best power
properties for all possible breakpoints. Therefore, we recommend application of both the
split sample and the rolling window tests.

As segmented fractional cointegration is a very likely empirical situation we investigate
daily EMU government bonds between January 1999 and August 2017. We find constant
fractional cointegration for the Dutch and Finish government bond yields with Germany.
For the other countries, namely Spain, Italy, Portugal, Greece, Ireland, Belgium, and
France we find segmented fractional cointegration with a period of no fractional cointe-
gration during the European debt or financial crisis.
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C Appendix

Before we prove the Theorems define

e′(λ1, λ2) := (ebλ1T c+2, . . . , ebλ2T c)

and
e∗′(λ1, λ2) := (e∗bλ1T c+1, . . . , e

∗
bλ2T c).

Proof of Theorem 1:
From Lemma A in Hassler and Breitung (2006) we have directly:

1
bλ2T c − bλ1T c

e′(λ1, λ2)e(λ1, λ2) P→ σ2 (31)

1
(bλ2T c − bλ1T c)1/2 e′(λ1, λ2)e∗(λ1, λ2) ⇒ N

(
0;σ4π

2

6

)
1

bλ2T c − bλ1T c
e∗′(λ1, λ2)e∗(λ1, λ2) P→ σ2π

2

6 .

The rest of the proof follows exactly the lines of the proof of proposition 3 in Hassler and
Breitung (2006) with the only difference that we localize their arguments to the interval
t = bλ1T c+ 1, . . . , bλ2T c. For ease of readability we recall their arguments here.
Defining êt(λ1, λ2) = et(λ1, λ2) − e′(λ1, λ2)V2(λ1, λ2)(V′

2(λ1, λ2)V2(λ1, λ2))−1v2,t(λ1, λ2)
and ê∗t−1(λ1, λ2) = e∗t−1(λ1, λ2)−e′(λ1, λ2)V2(λ1, λ2)(V′

2(λ1, λ2)V2(λ1, λ2))−1v∗2,t−1(λ1, λ2)
we have

ê′(λ1, λ2)ê(λ1, λ2) = e′(λ1, λ2)e(λ1, λ2)− r′TV′2(λ1, λ2)e(λ1, λ2),

ê∗′(λ1, λ2)ê∗(λ1, λ2) = e∗′(λ1, λ2)e∗(λ1, λ2)− 2r′TV∗′2 (λ1, λ2)e∗(λ1, λ2)

+r′TV∗′2 (λ1, λ2)V∗2(λ1, λ2)rT ,

ê∗′(λ1, λ2)ê(λ1, λ2) = e∗′(λ1, λ2)e(λ1, λ2)− r′TV∗′2 (λ1, λ2)e(λ1, λ2)

−r′TV′2(λ1, λ2)e∗(λ1, λ2) + r′TV∗′2 (λ1, λ2)V2(λ1, λ2)rT ,

with rT = (V′2(λ1, λ2)V2(λ1, λ2))−1V′2(λ1, λ2)e(λ1, λ2), V2 =
(
V′2,2, ...,V′2,T

)
. By As-

sumption 2 and the iid assumption for vt it holds

V′2(λ1, λ2)e(λ1, λ2) = OP (T 1/2),

rT = OP (T−1/2),

V∗′2 e∗ = OP (T ),
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and

1
bλ2T c − bλ1T c

V∗′2 (λ1, λ2)e(λ1, λ2) → 0,

1
bλ2T c − bλ1T c

V′2(λ1, λ2)e∗(λ1, λ2) → 0.

From (31) we now have:

1
bλ2T c − bλ1T c

ê′(λ1, λ2)ê(λ1, λ2)

= 1
bλ2T c − bλ1T c

e′(λ1, λ2)e(λ1, λ2) + oP (1) P→ σ2

1
(bλ2T c − bλ1T c)1/2 ê′(λ1, λ2)ê∗(λ1, λ2)

= 1
(bλ2T c − bλ1T c)1/2 e′(λ1, λ2)e∗(λ1, λ2) + oP (1)⇒ N

(
0;σ4π

2

6

)
1

bλ2T c − bλ1T c
ê∗′(λ1, λ2)ê∗(λ1, λ2)

= 1
bλ2T c − bλ1T c

e∗′(λ1, λ2)e∗(λ1, λ2) + oP (1) P→ σ2π
2

6

which proves the theorem. �

Proof of Theorem 2:
The proof follows directly from the results in Theorem 1 and the arguments in Davidson
and Monticini (2010). �

Proof of Theorem 3:
Assume that the break is from cointegration to non-cointegration. This is before the break
the residuals are of integration order d − b whereas they are of order d after the break.
Denote by d̂ the estimated integration order based on the whole sample. Then we have
d− b ≤ d̂ ≤ d.
We thus have

bτT c−2d̂
bτT c∑
t=1

ê2
t (τ) = OP (T (d−b)−d̂)1[τ≤τ0] +∞1[τ>τ0]

which proves the theorem. �
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ES IT PT IE GR BE AT FI NL FR

1999

2000 23.03.2000 31.01.2000 09.05.2000 03.02.2000 25.01.2000 08.05.2000 11.02.2000

2001 10.04.2001 10.12.2001 14.12.2001 19.04.2001

2002 04.03.2002 16.10.2002 06.12.2002 21.10.2002

2003 04.07.2003

2004 30.04.2004

2005

2006

2007 13.12.2007

2008 05.09.2008 05.09.2008 15.09.2008 30.09.2008 30.10.2008 21.11.2008 30.10.2008 21.11.2008

2009

2010 05.05.2010 24.05.2010 27.04.2010 28.04.2010 22.04.2010

2011

2012 12.12.2012 02.08.2012 12.10.2012 11.12.2012 05.09.2012 05.09.2012

2013 24.05.2013 02.05.2013

2014 15.08.2014 29.12.2014

2015 24.06.2015

2016 29.01.2016 02.02.2016 29.01.2016 08.02.2016 08.02.2016 06.01.2016

2017

Table C.1: All break dates in pairwise cointegrating regressions with the German yield. Bold dates indicate ’forward’-breaks and italic
dates indicate ’backward’-breaks.



Chapter 5

Seasonal Fractional Cointegration

Co-authored with Philipp Sibbertsen.

5.1 Introduction

It is well known that high-frequency time series like intraday stock returns, realized volatil-
ities or trading volumes often exhibit long memory as well as periodic behavior. Univari-
ately, especially the volatility series have been modelled with seasonal long-memory pro-
cesses such as k-factor Gegenbauer processes (Gray et al. (1989), Woodward et al. (1998))
or with seasonally fractionally integrated processes (Porter-Hudak (1990), Ray (1993)).
In this paper, we examine these concepts in a multivariate context.

Univariately, the above-mentioned models can be estimated with seasonal versions
of popular long memory estimators, i.e., log-periodogram regression or Gaussian semi-
parametric estimation. Arteche and Robinson (2000) propose both types of estimators
in asymmetric seasonal long memory models that require trimming of periodogram or-
dinates. Further literature includes Hassler (1994) and Reisen et al. (2006) who both
suggest alternative forms of log-periodogram regression. Arteche and Robinson (2000)
also introduce a test for asymmetry that compares the memory estimates before and after
the seasonal spectral pole, and Arteche (2002) proposes a test for equality of seasonal
memory parameters in k-factor GARMA models.

This shows that seasonal long memory has mostly been analyzed univariately, so far.
Exceptions are for example Gil-Alana (2005) who analyzes consumption and income find-
ing potential evidence of seasonal fractional cointegration, and Gil-Alana (2010) who
applies a seasonal fractional multivariate model to GDP and unemployment without al-
lowing cointegration. Standard seasonal cointegration was introduced quickly after the
seminal paper of Engle and Granger (1987) by Hylleberg et al. (1990) in the context of
seasonal unit roots and the I(1)/I(0)-framework. We extend this to non-integer orders
of integration and introduce multivariate seasonal long memory models that are able to
capture seasonal fractional cointegration. Furthermore, we propose a seasonal version of
the multiple local Whittle estimator by Robinson et al. (2008) that is able to estimate
seasonal memory parameters and the seasonal cointegrating relation at the same time.
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Since this estimator is semiparametric and in the frequency domain, we focus on spectral
properties of our models as well.

The existing literature also includes some empirical applications of seasonal long mem-
ory. For example, Arteche (2007) and Arteche (2012) analyze Spanish inflation volatility.
They find no general evidence of asymmetry but of seasonal long memory in absolute
and squared inflation values in addition to standard long memory which is also found
by Arteche and Robinson (2000) for British inflation. In this paper, we take a different
perspective and apply our estimator to financial data. Realized volatilities and trading
volume exhibit standard long memory and, on an intraday basis, seasonality as well. This
seasonality is usually well-described by seasonal long memory, and we find evidence in
favor of seasonal fractional cointegration in daily and half-daily cycles.

The rest of the paper is organized as follows: Section 5.2 briefly reviews the univariate
SARFIMA and GARMA models and provides bivariate extensions including their spectral
properties; Section 5.3 deals with the definition of seasonal fractional cointegration and
how it can be captured in the models from the previous Section 5.2. Section 5.4 introduces
the seasonal multiple local Whittle estimator and corresponding asymptotic theory. The
following Section 5.5 analyzes the finite sample properties of the estimator and asymptotic
Wald tests, Section 5.6 applies the method to trading volume and realized volatility of
Dow Jones component stocks, and Section 5.7 concludes the paper.

5.2 Seasonal Long Memory Models

Porter-Hudak (1990), Ray (1993), Ooms (1995) introduce the seasonally fractionally in-
tegrated SARFIMA model which is constructed as

Yt = (1− LS)−dεt,

where εt is a short-memory process with continuous, bounded, and positive spectral den-
sity fε(λ), L is the lag-operator,

(
1− LS

)d
= ∑∞

h=0

(
d
h

) (
−LS

)h
is the seasonal fractional

differencing operator with seasonal long memory parameter d ∈
(
−1

2 ,
1
2

)
, and S is the

seasonal periodicity. It determines the number of seasonal frequencies ωs = 2πs
S

with
s = 1, ..., bS/2c where b·c denotes the largest integer smaller than the argument. By con-
struction, a process generated from this model has the same memory parameter d at all
seasonal frequencies. The corresponding spectral density is given by

fY (λ) = fε(λ)
(

2
(
1− cos(Sλ)

))−d
= fε(λ)

(
2 sin

(
Sλ

2

))−2d

(5.1)

with a local approximation fY (λ± ωs) ∼ C1λ
−2dωs for λ→ 0 with 0 < C1 <∞. Further

properties of SARFIMA models are summarized comprehensibly for example by Bisognin
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and Lopes (2009). Here and in the following, we focus on seasonal frequencies and neglect
standard long memory at the zero frequency. However, it can easily be included in the
following models by multiplying the noise process with (1− L)−d0 .

The k-factor Gegenbauer ARMA (GARMA) model from Gray et al. (1989), Giraitis
and Leipus (1995), and Woodward et al. (1998) is given by

Xt =
k∏
l=1

(1− 2 cosωlL+ L2)−dlεt,

where (1− 2ulL+ L2)−dl with ul = cosωl is the Gegenbauer polynomial

(
1− 2ulL+ L2

)−dl =
∞∑
h=0

C
(dl)
h (ul)Lh

with C(dl)
h (ul) =

bh/2c∑
k=0

(−1)k(2ul)h−2kΓ(dl − k + h)
k!(h− 2k)!Γ(dl)

,

where Γ(·) denotes the gamma function and ωl ∈ [0, π], l = 1, ..., k are seasonal frequencies.
This implies k seasonal frequencies ωl each having an individual memory parameter dl
so that there are peaks of different magnitude at the frequencies ωl in the spectrum.
The Gegenbauer polynomial requires dl ∈

(
−1

2 ,
1
2

)
for 0 < ωl < π and dl ∈

(
−1

4 ,
1
4

)
for

ωl ∈ {0, π} for stationarity and invertibility of the model. The spectral density of the
GARMA model is given by

fX(λ) = fε(λ)
k∏
l=1
|2(cosλ− cosωl)|−2dl (5.2)

with a local approximation fX(λ ± ωl) ∼ C2λ
−2dl as λ → 0, where 0 < C2 < ∞. If

k > 1, C2 includes the interaction of the considered frequency ωl with the remaining k−1
seasonal frequencies (for details confer Hassler (1994) and Giraitis and Leipus (1995)).

The local spectral approximation of both models can be rewritten to

f(λ± ω) ∼ Cλ−2dω as λ→ 0

according to Arteche and Robinson (2000) where 0 < C <∞.
We introduce bivariate extensions of the above-mentioned models. Here, the focus is

on bivariate models that benefit from the advantage of having no issue of identification
so that they are most popular in empirical fractional cointegration analyses.
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The basic model structure is Zt = ∆(d) εt or Zt = Φ(d) εt where ∆(d) and Φ(d)
are bivariate diagonal matrices containing the seasonal fractionally integration and the
Gegenbauer filter respectively

∆(d) = diag
(
(1− LS)−d1 , (1− LS)−d2

)
, (5.3)

Φ(d) = diag
(

k∏
l=1

(1− cosωlL+ L2)−d1l ,
k∏
l=1

(1− cosωlL+ L2)−d2l

)
, (5.4)

and εt is defined as a bivariate short-memory process with continuous, bounded, and
positive definite spectral density matrix fε(λ) for the rest of the paper. For ease of notation,
we assume that both GARMA series share the same seasonal frequencies so that we have
the same k in both processes. The corresponding spectral density matrices are given by

fZ(λ) = Ξ(d)fε(λ)Ξ∗(d) or fZ(λ) = Ψ(d)fε(λ)Ψ∗(d)

with

Ξ(d) = diag
(
(1− e−iSλ)−d1 , (1− e−iSλ)−d2

)
,

Ψ(d) = diag
(

k∏
l=1

(1− 2 cosωle−iλ + e−2iλ)−d1l ,
k∏
l=1

(1− 2 cosωle−iλ + e−2iλ)−d2l

)

for the bivariate SARFIMA based on (5.3), and the bivariate GARMA based on (5.4).
In both cases ∗ indicates complex conjugation and transposition. Auto-spectra, fZ11(λ),
fZ22(λ), collapse to the real-valued univariate versions in (5.1) and (5.2). In contrast,
the off-diagonal elements are complex-valued and yield a phase shift γ if the memory
parameters of the series are different. In the SARFIMA setting the upper cross spectral
density is given by

fZ12(λ) = fε12(λ)
(

2 sin
(
Sλ

2

))−(d1+d2)

e−iπ
(d2−d1)

2

where the phase shift is analogous to the standard fractionally integrated model γ =
π (d2−d1)

2 (confer for example Kechagias and Pipiras (2015)). In the GARMA setting, the
cross spectral density is given by

fZ12(λ) = fε12(λ)
k∏
l=1
|2(cosλ− cosωl)|−(d1l+d2l)e−iπ(d2l−d1l)

where the phase shift is γl = π(d2l − d1l). The phase shift tied to the Gegenbauer filter is
thus twice the phase shift tied to the fractional integration filter. The difference between
the model-specific phase shifts is intuitive because, at frequencies ω ∈ {0, π}, the Gegen-
bauer filter is a squared version of the fractional integration filter, namely (1 − L)2 for
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ωl = 0 and (1 + L)2 for ωl = π. This can also be seen in the univariate spectral densities
of the models, since for ω = 0 the GARMA spectral density collapses basically to the
squared SARFIMA equation. This square cancels the 1

2 in the phase shift.
For the purpose of estimating long memory semiparametrically, only the spectral den-

sity matrix local to the frequency of interest ω is important. Under the assumption of
symmetric poles, we approximate the spectral density matrix of both models by

fZ(ω ± λ) ∼ Λ(dω)CωΛ∗(dω),

Λ(dω) = diag
(
λ−d1ωe−id1ωπ/2, λ−d2ωe−id2ωπ/2

)
as λ→ 0, (5.5)

where Cω is a real, symmetric, finite, and positive-definite matrix, ω ∈ (0, π), and
d1ω, d2ω ∈ (−1/2, 1/2).8

5.3 Seasonal Fractional Cointegration

In line with the standard definition of cointegration and earlier definitions of seasonal
cointegration (cf. Engle et al. (1989), Hylleberg et al. (1990), Arteche (1998)) we define
seasonal fractional cointegration in the following way:

A p-dimensional long-memory vector time series Zt where each component is associ-
ated with the long-memory parameter dω at frequency ω is said to be seasonally fraction-
ally cointegrated if there exists a vector βω 6= 0 such that vt = β′ωZt has long-memory
parameter dω − bω at frequency ω, bω > 0.

Strictly speaking, the term "cointegrated" is based on the concept of integration so
that the Gegenbauer filter would not fall into this category. A more general term could
be "common cyclical long memory". However, we here stick to the generally-used term
"cointegration".

This definition is quite general as it allows for cointegration at specific frequencies
ω without assuming cointegration at other frequencies. Furthermore, the cointegrating
relations βω and the memory reductions bω are frequency-specific. However, as usual with
cointegration, we require the same memory parameter dω in both time series and we ex-
clude the possibility of cointegration across frequencies. Cointegration across frequencies
would imply a long-term relationship between a daily cycle and a weekly cycle, for ex-
ample. Even if this is an interesting aspect, we consider its importance to be rather low.
Moreover, it might be hard to identify and estimate such a relationship.

8With this approximation Λ(dω), we ignore the correct phase specification for GARMA models which
leads to a slightly higher approximation error. However, for practical purposes this error is negligible,
as shown in our simulations in Section 5.5. Furthermore, it is natural not to assume a particular data
generating process in semiparametric estimators.
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We consider the bivariate system

BZt = vt with B =
1 −β

0 1

 , (5.6)

where we observe Zt, and vt is the unobservable underlying process. By construction,
all cointegrating relations are subject to the same cointegrating vector (1,−β), and the
first element in vt can be referred to as the cointegrating residual. First, let us consider
bivariate SARFIMA time series with

vt =
(1− LS)−(d−b)ε1t

(1− LS)−dε2t

 .
If β 6= 0 and b > 0, Zt is cointegrated and both observed time series have the same mem-
ory parameter d at all seasonal frequencies ωs = 2πs

S
. Hence, the model is cointegrated

at all seasonal frequencies ωs with the same strength b. By allowing for a more complex
multiplicative model structure, like (1− LS1)−d1(1− LS2)−d2 , it is possible to have differ-
ent memory parameters at different frequencies. This feature is already contained in the
GARMA model. Assume

vt =
∏k

l=1(1− cosωlL+ L2)−(dl−bl)ε1t∏k
l=1(1− cosωlL+ L2)−dlε2t

 .
Here, each frequency ωl is tied to a specific memory parameter so that the cointegrating
strength bl can differ across the frequencies. By setting bl = 0, the series are not cointe-
grated at that frequency without the need of changing β. Further it is not necessary, that
all ωl are identical, only the ones that are cointegrated must be. This structure allows for
a lot of flexibility as each frequency and the behavior at that frequency can be addressed
individually.

Note that we focus on bivariate data because higher dimensional cointegration models
are always confronted with problems of identification, and ambiguous decisions and re-
sults. In addition, bivariate models cover the usual empirical applications in the context of
cointegration, like for example income-consumption or volatility-trading volume relations.

5.4 A Seasonal Multiple Local Whittle Estimator

In order to estimate the seasonal memory parameters and cointegrating relation in (5.6),
we combine the semiparametric frequency-domain approach of Robinson et al. (2008),
Shimotsu (2012), Arteche (1998), and Arteche and Robinson (2000) assuming a fixed
phase shift γ = π (d2ω−d1ω)

2 . We define the parameter vector θω = (d1ω, d2ω, βω), and the
spectral density of vt, fv(ω ± λ) ∼ Λ(dω)CωΛ∗(dω) as λ → 0 with Λ(dω) as in (5.5).
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Note that the memory parameters d1ω, d2ω are not associated with the observed data
Zt but with the underlying noise processes vt. For cointegration we need d1ω < d2ω and
βω 6= 0. In this case Z1t and Z2t both share the memory parameter d2ω, and the unobserved
cointegration residual v1t has the reduced memory parameter d1ω.

The local Whittle log-likelihood function after the spectral pole is given by

Q(θω, Cω) = 1
m

m∑
j=1

{
log det

(
Λj(dω)Cω Λ∗j (dω)

)
+ tr

(
(Λj(dω)Cω Λ∗j (dω))−1B Iv(ω + λj)B′

)}
.

Here, Λj(dω) = diag
(
λ−d1ω
j e−iπd1ω/2, λ−d2ω

j e−iπd2ω/2
)
with Fourier frequencies λj = 2πj/T

for j = 1, ..., bT/2c. The periodogram matrix is defined by Iv(ω±λj) = wv(ω±λj)w∗v(ω±
λj) through the discrete Fourier transform wv = 1√

2πT
∑T
t=1 vte

it(ω±λj)t. We obtain the
estimate

Ĉω(θω) = Re

 1
m

m∑
j=1

Λj(dω)−1B Iv(ω + λj)B′ Λ∗j(dω)−1

 ,
and the objective function to minimize

R(θω) = log det
(
Ĉω(θω)

)
− 2(d1ω + d2ω) 1

m

m∑
j=1

log λj

with i ∈ {1, 2}. The estimator is defined as

θ̂ω = arg min
θω

R(θω). (5.7)

In order to show consistency and asymptotic normality we need to introduce the
following assumptions.

Assumption 5.4.1. For α ∈ (0, 2]:

f(ω ± λ) = Λ(dω)CωΛ∗(dω) (1 +O(λα))

and 0 < d1ω, d2ω < 0.5.

Assumption 5.4.2. In a neighborhood (−δ, 0) ∪ (0, δ) of ω, faa(λ) is differentiable and
∣∣∣∣∣ ddλfaa(ω ± λ)

∣∣∣∣∣ = O(λ−1−2da), λ→ 0+

for a = 1, 2.

Assumption 5.4.3. zt = Ez0 +∑∞
j=0Ajεt−j where εt is a martingale difference sequence

with E‖εt‖ <∞, E[εtε
′
t|Ft−1] = R where the diagonal elements of R are equal to 1, Ft−1

is the σ-field generated by εs, s ≤ t− 1 and εt and εtε
′
t −R are uniformly integrable.
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Assumption 5.4.4. θω ∈ Θ for a compact set Θ ∈ R3 such that Θ = Θβ ×Θd, with Θβ

and Θd chosen as follows. Take Θd = {dω : −η1 ≤ d1ω ≤ d2ω − η2 ≤ 1
2 − η2 − η3}, where

ηi are arbitrarily small positive numbers satisfying 0 < η1 < min(η2, η3) and η2 + η3 <
1
2 .

This includes the short-memory case d1ω = 0 and allows for some d1ω < 0. Θβ can be
taken to be an arbitrarily large interval including {0}.

Assumption 5.4.5.
1
m

+ m

T
→ 0, T →∞.

Theorem 5.4.1 (Consistency). Under Assumptions 5.4.1 to 5.4.5 and with ν = d2ω−d1ω

d̂ω
P→ dω, β̂ω = βω + oP

((
m

T

)ν)
, T →∞.

Proof. The proof follows very closely the lines of Theorem 3 in Robinson (2008) where
we only need to replace Iv(λj) by Iv(ω + λj).

Note that the convergence rate of the cointegrating relation β̂ω depends on the differ-
ence of the memory parameters. To prove asymptotic normality we need the following set
of assumptions:

Assumption 5.4.6. Let A(λ) = (A1(ω + λ), A2(ω + λ))′ where Aa(λ) = ∑∞
j=0 daje

ij(λ) =
(A1

a(λ), A2
a(λ)). Assume

d

dλ
Aka(ω ± λ) = O

(
Aka(ω ± λ)

λ

)
, λ→ 0+

for a, k = 1, 2.

Assumption 5.4.7. Assumption 5.4.3 holds and E[εa(t)εb(t)εc(t)‖Ft−1] = µabc with
‖µabc‖ < ∞. For the fourth moment we have E[εa(t)εb(t)εc(t)εd(t)‖Ft−1] = 3 + κabcd

with ‖κabcd‖ <∞ for a, b, c, d = 1, 2.

Assumption 5.4.8. θω is an interior point of Θ.

Assumption 5.4.9. For any c <∞ and b ∈ (0, 2]

(log T )c
m

+ m1+2b(logm)2

T 2b → 0, T →∞.

Theorem 5.4.2 (Normality). Under Assumption 5.4.1 and 5.4.6 to 5.4.9

m1/2∆T (θ̂ω − θω) dω→ N(0,Σ−1
ω ), T →∞
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with ∆T = diag(λ−νm , 1, 1) and where the elements of Σω are defined by

Σ11 = 2µ
(
(1− 2ν)−1 − (1− ν)−2 cos2(γ)

)
C22/C11,

Σ22 = Σ33 = 4 +
(
π2/4− 1

)
2µρ2

Σ23 = Σ32 = −
(
π2/4− 1

)
2µρ2,

Σ12 = Σ21 = −2µν(1− ν)−2 cos(γ)C12/C11 + πµ(1− ν)−1 sin(γ)C12/C11,

Σ13 = Σ31 = −Σ12

with µ = (1 − ρ2)−1, ρ = C12/(C11C22)1/2 where Caa are the respective elements of Cω,
and γ = νπ/2.

Proof. The proof follows very closely the lines of the proof of Theorem 4 in Robinson
et al. (2008) and Theorem 2 in Shimotsu (2012) only that the periodogram Iv(λj) needs
to be replaced by Iv(ω + λj) wherever it appears and we fix γ = νπ/2 as in Shimotsu
(2012).

5.5 Monte Carlo Study

In order to analyze the finite sample performance of the estimator, we consider the basic
DGP as in (5.6)

BZt = vt with B =
1 −β

0 1

 ,
and distinguish SARFIMA time series with S = 13

vt =
(1− L)−(d−b)(1− L13)−(d−b)ε1t

(1− L)−d(1− L13)−dε2t

 , (5.8)

and GARMA time series with k1 = k2 = 7 and ωl ∈
{

0, 2π
13 ,

4π
13 ,

6π
13 ,

8π
13 ,

10π
13 ,

12π
13

}

vt =
∏7

l=1(1− cosωlL+ L2)−(dl−bl)ε1t∏7
l=1(1− cosωlL+ L2)−dlε2t

 . (5.9)

In both cases εt = (ε1t, ε2t)′ is bivariate and uncorrelated white noise. By setting S = 13,
we obtain the same seasonal frequencies in the SARFIMA model as in the GARMAmodel,
and we also reproduce the situation from the empirical application in the next Section. As
an example, we state the estimation results θ̂ = (d̂1, d̂2, β̂) for the first seasonal frequency,
i.e. ω = ω2 = 2π

13 ≈ 0.48, and we drop the index ω2 for ease of readability.
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The following parameter grids are regarded: cointegration and noncointegration by
β ∈ {0, 1}, stationary long memory parameters d, dl ∈ {0.2, 0.4}, and b, bl ∈ {0.5d, d}.
Here, b = d implies a memory reduction to zero so that the cointegrating residual has short
memory, and b = 0.5d is a reduction to 0.2 (0.1 respectively), i.e., a weaker cointegrating
relation where the residual still exhibits long memory. In the GARMA model, all memory
parameters are identical, i.e., dl = d and bl = b ∀l. Note that these definitions translate
as d1 = d− b and d2 = d into the estimation. Furthermore, we set T ∈ {500, 1000, 2000}
and m = b1 + T δmc with δm ∈ {0.55, 0.6, 0.65}. The bandwidth choice is crucial for
semiparametric estimation of seasonal long memory. If the bandwidth is too large, the
estimation comprises periodogram ordinates that belong to the neighboring seasonal peak
so that the results are biased. Here, we take a look at the first seasonal peak at frequency
ω ≈ 0.48. This frequency belongs to the j = ωT

2π -th periodogram ordinate and is also equal
to the spacing between the poles. With δm = 0.55 we do not have any interference for our
considered numbers of observations, but with δm = 0.6 there is a collision if T = 500, and
with δm = 0.65 additionally if T = 1000.

The optimization intervals are set to Θβ = [−5, 5] and Θd = {d : −0.001 ≤ d1 ≤ d2

−0.002 ≤ 0.496}. Hence, we include short-memory and require a minimum difference of
0.002 between the memory estimates.

Table 5.1 gives the bias and RMSE of θ̂ = (d̂1, d̂2, β̂) in (5.7) when d2 is set to 0.4. The
upper panel is based on SARFIMA time series from (5.8) and the lower on GARMA time
series from (5.9). In both cases, as explained in the previous Sections, the phase shift is
implicitly set to γ = π d2−d1

2 by the definition of Λj(d).
The bias of the memory parameters is rather small and always negative, i.e., the true

memory is underestimated. Furthermore, it is interesting that the bias of d̂2 is always
larger than that of d̂1. If d1 = 0, the bias of d̂1 turns positive and becomes larger (around
0.06). Although the optimization interval includes zero, the interval border (−0.001) is
too close to the true value 0 yielding a positive bias. To obtain more precise estimates
if d1 = 0, the optimization interval has to be altered. For example, η1 = 0.1 reduces the
bias by half although it is still positive. However, this does not fulfill Assumption 5.4.4
anymore because increasing η1 requires increasing η2, η3 as well so that the upper limit of
the interval shrinks and the minimum distance between d1 and d2 grows. As we want to
focus on long memory, we prioritize reliable results in the long memory case and accept the
bias in case of short-memory cointegrating errors. In contrast to univariate local Whittle
estimation, both estimates are insensitive to the existence or nonexistence of cointegration
because of the simultaneous estimation of β. The bias of β is smaller than that of the
memory parameters and also negative in most cases. Further, it is smaller if β = 0 than if
β = 1. Table D.2 in the appendix contains the analogous results with d2 = 0.2. It shows
that d1 = 0.1 leads to positive bias as well because 0.1 is still close to the optimization
interval border. The remaining results are similar to Table 5.1.
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δm 0.55 0.6 0.65
d1 0.2 0 0.2 0 0.2 0

β T d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂

SARFIMA
Bias

0
500 -0.033 -0.090 -0.007 0.084 -0.094 0.006 -0.106 -0.304 0.011 0.074 -0.304 0.004 -0.107 -0.286 0.001 0.059 -0.288 -0.006
1000 -0.015 -0.030 0.012 0.067 -0.031 -0.002 -0.047 -0.084 0.021 0.054 -0.088 0.000 -0.128 -0.315 0.009 0.045 -0.315 0.008
2000 -0.005 -0.006 -0.010 0.053 -0.007 -0.001 -0.015 -0.022 -0.001 0.042 -0.023 -0.002 -0.062 -0.117 0.004 0.034 -0.118 0.000

1
500 -0.032 -0.092 -0.015 0.083 -0.096 -0.009 -0.105 -0.303 -0.061 0.073 -0.303 -0.026 -0.106 -0.287 -0.042 0.058 -0.288 -0.025
1000 -0.015 -0.031 -0.020 0.065 -0.035 -0.002 -0.045 -0.082 -0.013 0.055 -0.085 0.002 -0.128 -0.317 -0.071 0.045 -0.314 -0.051
2000 -0.004 -0.007 -0.018 0.052 -0.008 -0.002 -0.015 -0.021 -0.004 0.043 -0.024 -0.001 -0.062 -0.116 -0.001 0.035 -0.118 0.000

RMSE

0
500 0.100 0.136 0.842 0.106 0.137 0.559 0.124 0.312 1.154 0.092 0.311 0.973 0.122 0.295 1.112 0.074 0.296 0.984
1000 0.087 0.083 0.630 0.084 0.082 0.222 0.083 0.111 0.609 0.068 0.114 0.236 0.136 0.320 1.106 0.056 0.320 0.882
2000 0.071 0.062 0.438 0.066 0.062 0.110 0.058 0.059 0.313 0.053 0.059 0.094 0.077 0.126 0.419 0.043 0.127 0.110

1
500 0.102 0.136 0.831 0.105 0.139 0.581 0.123 0.311 1.158 0.092 0.311 1.001 0.121 0.296 1.106 0.073 0.296 0.938
1000 0.087 0.084 0.632 0.082 0.086 0.224 0.082 0.108 0.573 0.069 0.112 0.231 0.136 0.321 1.135 0.056 0.319 0.946
2000 0.070 0.062 0.439 0.065 0.064 0.124 0.060 0.059 0.338 0.054 0.061 0.096 0.077 0.126 0.387 0.044 0.127 0.109

GARMA
Bias

0
500 -0.033 -0.098 -0.013 0.085 -0.099 0.002 -0.108 -0.293 0.003 0.073 -0.293 0.010 -0.109 -0.273 -0.001 0.059 -0.271 0.014
1000 -0.014 -0.031 0.005 0.067 -0.033 -0.003 -0.047 -0.082 -0.009 0.054 -0.086 0.002 -0.129 -0.304 -0.029 0.045 -0.304 0.013
2000 -0.001 -0.005 0.010 0.053 -0.007 -0.002 -0.015 -0.022 0.000 0.043 -0.022 0.003 -0.062 -0.115 0.004 0.036 -0.116 -0.001

1
500 -0.031 -0.099 -0.036 0.084 -0.100 -0.023 -0.108 -0.295 -0.040 0.072 -0.291 -0.043 -0.108 -0.270 -0.049 0.059 -0.272 -0.004
1000 -0.014 -0.032 -0.012 0.066 -0.033 -0.003 -0.047 -0.083 -0.011 0.055 -0.086 -0.003 -0.130 -0.306 -0.028 0.045 -0.305 -0.019
2000 -0.002 -0.005 -0.010 0.053 -0.007 -0.001 -0.015 -0.021 -0.003 0.042 -0.021 0.001 -0.061 -0.115 -0.005 0.035 -0.116 -0.002

RMSE

0
500 0.101 0.142 0.812 0.107 0.142 0.581 0.126 0.302 1.136 0.091 0.301 0.953 0.124 0.283 1.062 0.073 0.280 0.933
1000 0.085 0.084 0.592 0.084 0.086 0.249 0.083 0.109 0.626 0.068 0.113 0.244 0.137 0.309 1.085 0.057 0.309 0.844
2000 0.071 0.061 0.442 0.067 0.063 0.111 0.059 0.060 0.344 0.053 0.060 0.099 0.077 0.124 0.405 0.045 0.125 0.109

1
500 0.101 0.143 0.804 0.106 0.143 0.590 0.125 0.303 1.090 0.090 0.299 0.957 0.123 0.280 1.028 0.073 0.281 0.870
1000 0.085 0.085 0.630 0.083 0.085 0.230 0.082 0.110 0.599 0.068 0.113 0.236 0.137 0.311 1.080 0.056 0.310 0.868
2000 0.070 0.062 0.457 0.066 0.062 0.109 0.059 0.058 0.332 0.053 0.058 0.093 0.076 0.124 0.404 0.043 0.126 0.108

Table 5.1: Bias and RMSE of parameter estimates θ̂ when d2 = 0.4. The upper panel shows results for SARFIMA time series and the
lower panel shows results for GARMA time series. In both cases the phase shift is set to γ = π d2−d1

2 .
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The RMSE’s for d̂1 and d̂2 in Table 5.1 are similar and smaller than 0.1 in large samples.
For β̂ it is much larger (in small samples around 1), but it decreases to below 0.5 in large
samples. This implies that the variability of β̂ is larger than that of the memory estimates
and it also indicates a slight instability of the estimate, but the stronger the cointegrating
relation, the more stable the results become. For example, if the cointegrating residual is
short-memory (d̂1 = 0) in the largest sample, the RMSE decreases to the same level as
for the memory estimates (around 0.1).

These observations hold for both DGPs, SARFIMA and GARMA. This is partic-
ularly interesting for the GARMA-case where the time series are estimated with an
incorrectly-specified spectral density. However, the results are very similar to those based
on SARFIMA time series. Table D.3 (and D.4) in the appendix contains the results when
γ is fixed to π(d2 − d1). The memory results are unaffected by this choice. For β̂ the
results change slightly, but it is hard to tell in which direction because of the instability
of the estimation. Therefore, for practical purposes in finite samples, the specification of
the phase parameter seems not too important.

As expected from the discussion of bandwidth, all estimates are biased if the bandwidth
choice leads to inclusion of the neighboring peak. While β̂ has a slightly higher bias (and
doubled RMSE), it is particularly influencing the memory estimates that become zero
if too many periodogram ordinates that already belong to the next seasonal peak are
included. Therefore, we recommend to choose the bandwidth carefully and to resort to
rather small bandwidths.

δm 0.55 0.65
d1 0.5 d2 0 0.5 d2 0

β T d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂

d2 = 0.2

0
500 0.279 0.560 0.044 0.134 0.567 0.045 0.207 0.332 0.025 0.113 0.320 0.019

1000 0.344 0.779 0.043 0.106 0.765 0.046 0.186 0.290 0.021 0.101 0.291 0.015
2000 0.420 0.905 0.049 0.082 0.898 0.058 0.423 0.916 0.036 0.073 0.921 0.041

1
500 0.287 0.551 0.407 0.128 0.550 0.458 0.209 0.321 0.310 0.105 0.325 0.312

1000 0.342 0.762 0.495 0.102 0.757 0.619 0.177 0.302 0.297 0.099 0.293 0.295
2000 0.415 0.905 0.587 0.076 0.902 0.789 0.449 0.916 0.566 0.075 0.912 0.783

d2 = 0.4

0
500 0.464 0.907 0.082 0.114 0.906 0.091 0.321 0.458 0.064 0.109 0.425 0.018

1000 0.670 0.993 0.094 0.086 0.996 0.129 0.299 0.414 0.056 0.090 0.387 0.012
2000 0.854 1.000 0.091 0.069 1.000 0.143 0.882 1.000 0.056 0.055 1.000 0.046

1
500 0.468 0.904 0.617 0.111 0.900 0.792 0.325 0.437 0.463 0.101 0.420 0.472

1000 0.671 0.995 0.761 0.077 0.995 0.968 0.307 0.402 0.442 0.098 0.390 0.482
2000 0.851 1.000 0.873 0.068 1.000 0.997 0.879 1.000 0.888 0.055 1.000 0.998

Table 5.2: Parameter significance tests with the SARFIMA-model and γ = π d2−d1
2 . The

significance level is set to α = 0.05.
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By estimating the asymptotic variance Σ, we are able to construct asymptotic con-
fidence intervals for the parameter estimates and test hypotheses. We can address, for
example, the question whether cointegration exists by testing H0 : β = 0 vs. H1 : β 6= 0.
The second condition for cointegration, d1 < d2, is fulfilled by construction of the opti-
mization interval. We are also able to test whether the cointegrating error is short-memory
by formulating the hypotheses H0 : d1 = 0 vs. H1 : d1 6= 0. Table 5.2 gives such Wald test
rejection frequencies at the 5%-significance level for SARFIMA time series. The upper
panel shows results for d2 = 0.2, and the lower panel for d2 = 0.4. Gray-colored cells
contain size results and non-colored cells are power results.

First, we consider the results for β̂. If d2 = 0.2, the empirical size is close to the nominal
level, but if d2 = 0.4, the test becomes liberal. This is associated with lower power when
d2 = 0.2 than when d2 = 0.4. In contrast, the power is higher if the cointegrating error is
short-memory which can be explained by less biased β estimation in this case.

Testing short-memory cointegrating errors is rather liberal. The main reason is prob-
ably due to biased estimation if d1 = 0 and this bias impedes the test performance.
However, the test approaches the nominal significance level with growing sample size. Of
course, the larger d is, the higher the power. With d1 = 0.1, power is around 0.4 but
doubles to 0.8 to 0.9 if d = 0.2. For d = 0.4, the power properties are very good. Again, as
in the estimation setting, the performance of testing d is not affected by the existence or
nonexistence of cointegration. Overall, the test properties are good if the sample is large
enough. This is not surprising because we employ an estimate of the asymptotic variance.

Table D.1 in the appendix displays analogous results based on GARMA time series
which are basically the same as in Table 5.2.

5.6 Application to Trading Volume and Realized Vo-
latility

In this Section, we apply the estimation method from Section 5.4 to intraday trading
volume and realized volatility of the component stocks of the Dow Jones Industrial Average
(DJIA) index obtained from the Thomson Reuters Tick Database as five-minute data for
a time period starting January 2014 and ending December 2015. We use aggregated half-
hourly logarithmic data in the regular trading hours 9:30 to 16:00, i.e., 13 observations
per day, so that the seasonal periodicity is set to S = 13.

For this type of data, trading volume and return volatility, there is much literature on
the contemporaneous relation and high positive correlation, cf. for example Chen et al.
(2001) and Mougoué and Aggarwal (2011) among many others. A possible theoretical
explanation for this observation is the mixture-of-distribution hypothesis (MDH) that
states that price changes and trading volume are driven by the same latent information
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arrival process (Clark (1973), Tauchen and Pitts (1983), Andersen (1996), Bollerslev et al.
(2018)) in the sense that (unexpected) good (or bad) news increase (or decrease) the
price through higher trading activity. This could imply cointegration in the context of a
common components model, i.e., one underlying stochastic trend, the information arrival.
Bollerslev and Jubinski (1999) address this potential long-run dynamic relationship and
find evidence in favor of this hypothesis.

Our setting is a triangular model so that we must decide how to normalize the data.
From theoretical considerations it is not clear whether RVt should be the dependent or
driving variable in the cointegrating relation, and the literature pursues differing orders
as well.

For example, Bollerslev et al. (2018) use the differences-of-opinion model9 of Kandel
and Pearson (1995) and reformulate it to the equilibrium equation Volume = |β0 + β1 ·
Price Change|. The absolute price change is equal to the absolute return that in turn is an
estimate of the volatility. Hence, this equilibrium equation implies cointegration between
trading volume and volatility which we approximate through realized volatility as it is the
natural estimate on an intraday basis. Our cointegration model from (5.6) can capture
this by setting Z1t = V olt and Z2t = RVt so that

V olt = v1t + β ·RVt
RVt = v2t.

In contrast, Bollerslev and Jubinski (1999) use (RVt, V olt)′ in a log-periodogram re-
gression analysis as well as Fleming and Kirby (2011) in multivariate linear regression.
This suggests the order Z1t = RVt and Z2t = V olt so that our setting is

RVt = v1t + β · V olt
V olt = v2t.

Furthermore, Mougoué and Aggarwal (2011), as well as Chen et al. (2001), find bi-
directional Granger causality which can be interpreted as a hint for cointegrating relations.
This again leaves room for different interpretations of the normalization of Zt.

So far, the relationship between realized volatility and trading volume is most often
analysed with daily data or even coarser sampling frequencies (for an exception con-
fer Bollerslev et al. (2018)). Here, we deal with intraday data that exhibits seasonality.
Therefore, we want to examine whether the MDH-implied cointegrating relation holds at
seasonal frequencies. As it is not clear, how the time series should be ordered we consider
both possibilities.

9The difference-of-opinion model describes how new information is processed in the different ways by
the traders, since they disagree on the expected payoff and interpret, for examples, announcements in
different manners.
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The Monte Carlo results suggest to use a rather small bandwidth, i.e., δm = 0.55.
However, it is always important to consider the number of observations at hand. Here,
all time series have more than 6,500 observations each so that employing δm = 0.55
means that 125 periodogram ordinates are included when there are about 500 periodogram
ordinates between the poles. Therefore, δm = 0.65 (300 ordinates) is a valid choice as well
that excludes neighbouring peaks and includes almost no contradictory information.

We only state the results for the first two seasonal frequencies that correspond to
a daily (ω2 = 0.48) and half-daily (ω2 = 0.96) cycle. Fractional cointegration at larger
seasonal frequencies corresponding to shorter cycles implies an equilibrium, for example,
at a-sixth-daily (equal to about one hour) cycle. This is a very short time horizon so that it
is not surprising that we find very few significant results at the large seasonal frequencies.

Table 5.3 contains the estimation results with bandwidth δm = 0.55 for the seasonal
frequencies ω2 = 0.48 (daily cycle) and ω3 = 0.96 (half-daily cycle), and the normalization
Zt = (RVt, V olt)′. The small numbers below the estimates represent the deviation in
asymptotic 95% confidence intervals. If zero is not included, we can reject the hypothesis
H0 : β = 0, and in order to make identification easier we mark the cells in gray when the
hypothesis is rejected at the 5% significance level.

The (common) memory parameters d̂2 at the daily frequency are between 0.3 and
the upper bound, except for Apple where it is much lower (around 0.07). The memory
parameters of the potential cointegrating relation d̂1 are lower and lie between 0.15 and
0.4 implying a memory reduction for example close to the lower bound (0.003 for Verizon),
around 0.17 for JPMorgan Chase and 0.25 for Travelers Companies Inc. The cointegrating
relation β̂ is significant in all cases and always positive except for the index. Most values
are around 1.4 to 2.4, only some are larger (3 to 5).

At the half-daily frequency, memory parameters are lower (d̂2: 0.15 to 0.3) except for
Apple where it is slightly larger than at the daily frequency. The memory parameters
d̂1 are lower (0.05 to 0.25) than at the daily frequency as well, and in all cases the
memory reduction is smaller. For example, the relation d̂1 < d̂2 for Travelers Companies
Inc and United Technologies is probably only enforced by the optimization interval and
the true memory parameters might not obey this constraint. Consequently, we do not
get significant β-estimates. As the difference of the memory parameters influences the
estimation of β, the standard error becomes very large if the difference is too small. The
remaining d̂1 range between 0.003 for Microsoft (where we cannot reject a short-memory
cointegrating error) and 0.17 for Exxon Mobil. The β estimates are in a similar range as
at the daily frequency.

Overall, we find evidence in favor of seasonal fractional cointegration. Hence, the equi-
librium (long-run) relation postulated by the MDH holds in seasonal structures and im-
plies a daily, and partially also half-daily, equilibrium towards that trading volume and
realized volatility are driven.
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ω2 = 0.48 ω3 = 0.96 ω2 = 0.48 ω3 = 0.96
d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂

.DJI 0.415 0.496 0.106 0.193 0.331 -0.044 KO 0.231 0.496 1.390 0.162 0.250 1.367
0.084 1.591 0.085 0.819 0.084 0.356 0.085 1.602

AAPL.O 0.034 0.069 3.546 0.043 0.109 2.261 MCD 0.286 0.496 1.800 0.157 0.227 2.303
0.068 2.677 0.081 1.831 0.078 0.460 0.074 1.999

AXP 0.257 0.496 1.835 0.179 0.247 0.639 MMM 0.228 0.496 1.833 0.126 0.224 1.708
0.079 0.436 0.088 2.594 0.081 0.398 0.080 1.427

BA 0.291 0.335 4.749 0.188 0.260 3.478 MRK 0.235 0.496 1.593 0.208 0.245 3.694
0.064 2.257 0.069 1.804 0.081 0.411 0.070 4.236

CAT 0.317 0.496 1.837 0.190 0.229 3.325 MSFT.O 0.167 0.292 2.042 0.044 0.211 1.585
0.077 0.487 0.070 3.704 0.073 0.729 0.076 0.518

CSCO.O 0.337 0.438 2.297 0.189 0.241 4.975 NKE 0.340 0.381 5.000 0.244 0.296 4.486
0.068 0.869 0.065 2.367 0.064 2.336 0.067 2.751

CVX 0.383 0.441 3.756 0.219 0.279 4.165 PFE 0.251 0.301 3.076 0.105 0.144 4.847
0.065 1.803 0.068 2.535 0.066 1.831 0.066 3.323

DD 0.238 0.382 2.106 0.124 0.161 2.988 PG 0.274 0.355 3.197 0.142 0.188 5.000
0.072 0.672 0.070 3.767 0.066 1.254 0.066 3.034

DIS 0.272 0.372 3.004 0.119 0.164 5.000 TRV 0.249 0.496 1.898 0.190 0.192 0.495
0.068 0.968 0.065 2.774 0.079 0.467 0.088 83.501

GE 0.305 0.421 2.017 0.161 0.229 1.962 UNH 0.289 0.496 1.671 0.132 0.185 4.638
0.071 0.758 0.073 1.561 0.081 0.540 0.067 2.987

GS 0.282 0.496 1.763 0.149 0.196 2.750 UTX 0.268 0.496 2.103 0.214 0.216 0.661
0.081 0.459 0.077 3.490 0.078 0.486 0.088 76.631

HD 0.292 0.496 1.732 0.232 0.297 3.149 V 0.232 0.496 1.742 0.185 0.238 3.592
0.078 0.485 0.070 2.095 0.078 0.350 0.069 2.865

IBM 0.292 0.468 1.726 0.083 0.174 1.673 VZ 0.289 0.322 4.935 0.164 0.218 3.113
0.077 0.567 0.079 1.381 0.064 3.281 0.071 2.679

INTC.O 0.281 0.324 4.423 0.087 0.255 1.429 WMT 0.294 0.336 4.774 0.112 0.187 3.124
0.064 2.326 0.082 0.724 0.064 2.504 0.072 1.722

JNJ 0.317 0.457 2.418 0.167 0.230 3.790 XOM 0.346 0.496 1.547 0.132 0.306 1.691
0.071 0.790 0.068 2.328 0.080 0.641 0.079 0.622

JPM 0.299 0.473 1.910 0.106 0.155 2.482
0.073 0.559 0.071 2.541

Table 5.3: Estimation results for Zt = (RVt, V olt)′ with bandwidth δm = 0.55 and γ =
π d2−d1

2 . The small numbers below the estimates represent the deviation in
asymptotic 95% confidence intervals.

Table D.5 in the appendix contains the results for δm = 0.65, i.e. when including
more periodogram ordinates. In this case, the memory estimates become smaller which
is already indicated by the Monte Carlo results where we observe a larger negative bias
with larger bandwidths. We further get slightly less significant β̂-results and in general
also smaller values. One exception is the index where we now obtain significant results in
contrast to the results with δm = 0.55 and, surprisingly, β̂ is negative whereas we have
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positive estimates in single stock data. This underlines the potentially different nature of
index-data in comparison to individual stock data.

As discussed above, the normalization of the data is not clear in advance and we
consider Zt = (V olt, RVt)′ as well. These results are given in Table D.6 in the appendix. We
observe similar memory parameter estimates but almost no significant β̂. This emphasizes
the importance of how data is sorted in cointegration analyses.

Furthermore, the nature of seasonality is not always clear and stochastic and deter-
ministic models compete. Here, we consider a purely stochastic model, but it is possible
to include deterministic components, for example by seasonally demeaning the data be-
forehand. By doing so, we still obtain significant long memory estimates but there are
hardly any significant non-zero β estimates.

5.7 Conclusion

This paper deals with multivariate extensions of seasonal long memory. We formulate
two bivariate models that capture fractional seasonality as well as seasonal fractional
cointegration and provide a suitable estimator for the seasonal memory parameters and the
seasonal cointegrating relation based on the multiple local Whittle estimator by Robinson
et al. (2008).

Our Monte Carlo analysis shows the reliability of the estimation results and a satisfac-
tory performance in asymptotic Wald tests. The semiparametric nature of the method has
the advantage of disregarding short-run dynamics and avoiding misspecification. However,
the bandwidth has to be chosen carefully in order to avoid interference of neighboring sea-
sonal poles. Therefore, we recommend to examine the location of seasonal poles (based on
theoretical considerations or empirical estimation methods) and to chose a rather small
bandwidth.

The empirical application shows the importance of how data is organized in the context
of cointegration. Depending on the specification, we find evidence in favor of seasonal
fractional cointegration between realized volatility and trading volume of all Dow Jones
component stocks. This is a phenomenon postulated by the MDH in the long-run that
appears to hold in daily cycles as well.

Our estimator disregards the possibility of asymmetric spectral poles that might arise
at seasonal peaks, but they might be accommodated by trimming as in Arteche (2002). In
his case the asymptotic theory has to be reexamined which we leave for future research.
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D Appendix

δm 0.55 0.65
d1 0.5 d2 0 0.5 d2 0

β T d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂

d2 = 0.2

0
500 0.300 0.545 0.044 0.124 0.560 0.045 0.196 0.322 0.024 0.115 0.313 0.020

1000 0.348 0.761 0.046 0.100 0.765 0.049 0.190 0.294 0.019 0.104 0.303 0.016
2000 0.426 0.905 0.048 0.087 0.910 0.051 0.421 0.923 0.031 0.070 0.919 0.040

1
500 0.279 0.552 0.409 0.132 0.551 0.442 0.197 0.349 0.315 0.118 0.320 0.305

1000 0.351 0.765 0.507 0.102 0.762 0.621 0.185 0.307 0.279 0.102 0.297 0.309
2000 0.423 0.909 0.590 0.073 0.900 0.794 0.437 0.920 0.569 0.061 0.915 0.782

d2 = 0.4

0
500 0.470 0.894 0.082 0.116 0.901 0.096 0.308 0.525 0.059 0.107 0.521 0.027

1000 0.677 0.992 0.093 0.083 0.994 0.125 0.296 0.491 0.049 0.093 0.466 0.011
2000 0.860 1.000 0.082 0.073 0.999 0.137 0.880 1.000 0.056 0.064 1.000 0.044

1
500 0.478 0.890 0.616 0.113 0.893 0.792 0.310 0.546 0.486 0.106 0.514 0.536

1000 0.677 0.993 0.761 0.076 0.994 0.971 0.290 0.480 0.462 0.094 0.464 0.519
2000 0.865 1.000 0.877 0.069 1.000 0.997 0.887 1.000 0.885 0.054 1.000 0.998

Table D.1: Parameter significance tests with the GARMA-model and γ = π d2−d1
2 . The

significance level is set to α = 0.05.
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δm 0.55 0.6 0.65
d1 0.1 0 0.1 0 0.1 0

β T d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂

SARFIMA
Bias

0
500 0.022 -0.019 0.025 0.085 -0.016 -0.012 -0.017 -0.108 -0.013 0.074 -0.108 -0.012 -0.024 -0.105 -0.015 0.059 -0.105 -0.011

1000 0.013 -0.002 0.004 0.066 -0.001 0.019 -0.007 -0.038 0.001 0.053 -0.040 0.016 -0.042 -0.129 0.023 0.045 -0.127 -0.010
2000 0.006 0.006 0.002 0.052 0.001 0.017 -0.003 -0.010 -0.021 0.042 -0.012 -0.004 -0.027 -0.058 0.000 0.034 -0.058 0.000

1
500 0.021 -0.021 -0.047 0.084 -0.018 -0.057 -0.017 -0.108 -0.120 0.074 -0.107 -0.079 -0.024 -0.107 -0.046 0.059 -0.104 -0.049

1000 0.012 -0.003 -0.035 0.065 -0.004 -0.029 -0.009 -0.039 -0.047 0.054 -0.037 0.003 -0.043 -0.128 -0.039 0.046 -0.127 -0.074
2000 0.005 0.004 -0.028 0.052 0.002 -0.009 -0.006 -0.012 -0.017 0.043 -0.012 -0.008 -0.025 -0.059 -0.004 0.035 -0.059 -0.007

RMSE

0
500 0.085 0.097 1.089 0.108 0.093 1.003 0.063 0.125 1.215 0.092 0.125 1.207 0.058 0.120 1.240 0.074 0.120 1.169

1000 0.070 0.082 0.979 0.083 0.082 0.819 0.058 0.078 0.973 0.066 0.077 0.802 0.057 0.137 1.274 0.057 0.135 1.157
2000 0.060 0.070 0.831 0.065 0.068 0.554 0.049 0.058 0.829 0.053 0.057 0.441 0.048 0.074 0.893 0.043 0.073 0.550

1
500 0.086 0.096 1.038 0.107 0.095 1.023 0.063 0.125 1.237 0.093 0.124 1.166 0.057 0.121 1.247 0.073 0.119 1.158

1000 0.070 0.085 0.962 0.083 0.081 0.778 0.058 0.079 0.966 0.067 0.076 0.781 0.058 0.135 1.213 0.057 0.134 1.162
2000 0.059 0.069 0.852 0.064 0.068 0.527 0.051 0.058 0.761 0.054 0.057 0.469 0.047 0.075 0.888 0.044 0.074 0.583

GARMA
Bias

0
500 0.022 -0.020 -0.003 0.083 -0.018 0.017 -0.016 -0.110 -0.026 0.073 -0.107 -0.009 -0.026 -0.106 0.012 0.060 -0.106 0.005

1000 0.014 -0.005 -0.004 0.066 -0.003 -0.005 -0.009 -0.039 -0.033 0.052 -0.038 -0.002 -0.042 -0.128 0.001 0.046 -0.126 0.001
2000 0.006 0.005 0.002 0.053 0.005 0.003 -0.004 -0.009 -0.009 0.043 -0.010 0.012 -0.027 -0.058 -0.003 0.034 -0.057 0.018

1
500 0.019 -0.019 -0.065 0.085 -0.021 -0.047 -0.018 -0.108 -0.092 0.073 -0.109 -0.067 -0.025 -0.103 -0.039 0.060 -0.105 -0.058

1000 0.013 -0.002 -0.053 0.066 -0.002 -0.035 -0.008 -0.039 -0.038 0.052 -0.037 -0.020 -0.042 -0.126 -0.060 0.046 -0.127 -0.062
2000 0.007 0.005 -0.028 0.052 0.005 -0.023 -0.005 -0.008 -0.018 0.043 -0.009 0.004 -0.026 -0.058 -0.027 0.034 -0.059 -0.012

RMSE

0
500 0.087 0.097 1.076 0.105 0.095 1.034 0.062 0.126 1.224 0.092 0.123 1.174 0.058 0.121 1.226 0.074 0.120 1.204

1000 0.072 0.083 0.982 0.082 0.081 0.771 0.057 0.078 1.003 0.066 0.077 0.797 0.058 0.136 1.227 0.057 0.134 1.143
2000 0.060 0.069 0.841 0.066 0.068 0.562 0.049 0.057 0.799 0.053 0.058 0.472 0.049 0.074 0.846 0.043 0.073 0.532

1
500 0.084 0.098 1.032 0.108 0.094 1.002 0.061 0.125 1.288 0.091 0.126 1.204 0.057 0.119 1.205 0.075 0.119 1.175

1000 0.072 0.084 0.956 0.083 0.083 0.793 0.056 0.080 1.009 0.066 0.075 0.791 0.057 0.134 1.244 0.058 0.134 1.165
2000 0.060 0.069 0.808 0.065 0.070 0.590 0.049 0.056 0.770 0.054 0.056 0.450 0.047 0.074 0.870 0.042 0.074 0.529

Table D.2: Bias and RMSE of parameter estimates when d2 = 0.2. The upper panel shows results for the SARFIMA-model and the
lower panel shows results for the GARMA-model. In both cases the phase shift is set to γ = π d2−d1

2 .
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δm 0.55 0.6 0.65
d1 0.2 0 0.2 0 0.2 0

β T d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂

SARFIMA
Bias

0
500 -0.030 -0.090 0.000 0.086 -0.093 0.001 -0.103 -0.303 -0.026 0.076 -0.304 0.005 -0.104 -0.286 -0.009 0.061 -0.288 -0.002
1000 -0.013 -0.030 0.010 0.069 -0.030 0.003 -0.045 -0.084 0.004 0.055 -0.088 -0.003 -0.126 -0.314 0.013 0.046 -0.315 0.008
2000 -0.004 -0.006 0.009 0.053 -0.007 -0.001 -0.014 -0.022 -0.005 0.043 -0.022 -0.001 -0.062 -0.117 0.005 0.035 -0.117 0.000

1
500 -0.028 -0.093 -0.037 0.085 -0.096 -0.033 -0.101 -0.302 -0.106 0.076 -0.303 -0.095 -0.103 -0.287 -0.102 0.060 -0.288 -0.054
1000 -0.013 -0.032 -0.027 0.066 -0.034 -0.002 -0.044 -0.082 -0.021 0.056 -0.085 -0.002 -0.126 -0.316 -0.041 0.046 -0.314 -0.045
2000 -0.003 -0.007 -0.010 0.053 -0.008 -0.003 -0.014 -0.021 -0.004 0.044 -0.024 0.000 -0.061 -0.116 -0.010 0.036 -0.118 0.000

RMSE

0
500 0.100 0.136 0.961 0.108 0.137 0.629 0.122 0.311 1.556 0.095 0.312 1.361 0.120 0.294 1.477 0.076 0.296 1.184
1000 0.087 0.083 0.608 0.085 0.082 0.187 0.082 0.111 0.626 0.069 0.114 0.185 0.134 0.319 1.308 0.057 0.320 1.044
2000 0.071 0.062 0.402 0.067 0.063 0.071 0.058 0.059 0.279 0.053 0.059 0.064 0.077 0.126 0.396 0.044 0.127 0.071

1
500 0.101 0.137 1.156 0.108 0.140 0.765 0.121 0.310 1.559 0.094 0.311 1.393 0.118 0.296 1.508 0.074 0.296 1.228
1000 0.087 0.085 0.798 0.083 0.086 0.249 0.081 0.109 0.708 0.070 0.112 0.228 0.134 0.321 1.333 0.057 0.319 1.043
2000 0.070 0.062 0.495 0.066 0.064 0.111 0.059 0.059 0.309 0.055 0.061 0.064 0.077 0.126 0.399 0.044 0.127 0.070

GARMA
Bias

0
500 -0.030 -0.098 0.027 0.087 -0.100 0.010 -0.105 -0.293 0.004 0.076 -0.293 -0.004 -0.106 -0.273 -0.004 0.061 -0.271 0.006
1000 -0.012 -0.031 0.007 0.068 -0.033 -0.002 -0.045 -0.082 0.006 0.055 -0.086 -0.001 -0.127 -0.304 0.007 0.047 -0.304 0.010
2000 0.000 -0.005 0.002 0.054 -0.006 0.000 -0.014 -0.022 0.005 0.043 -0.022 0.002 -0.061 -0.115 0.007 0.036 -0.116 0.000

1
500 -0.028 -0.099 -0.079 0.086 -0.100 -0.023 -0.104 -0.294 -0.088 0.074 -0.291 -0.100 -0.105 -0.270 -0.061 0.061 -0.272 -0.034
1000 -0.012 -0.033 -0.033 0.067 -0.033 0.002 -0.045 -0.083 -0.020 0.056 -0.086 -0.005 -0.127 -0.305 -0.062 0.046 -0.305 -0.025
2000 -0.001 -0.005 -0.015 0.054 -0.007 0.000 -0.014 -0.021 -0.005 0.043 -0.021 0.001 -0.060 -0.115 0.002 0.035 -0.116 -0.001

RMSE

0
500 0.100 0.142 1.064 0.109 0.142 0.692 0.122 0.302 1.498 0.094 0.302 1.280 0.121 0.282 1.432 0.075 0.281 1.161
1000 0.085 0.084 0.708 0.085 0.086 0.262 0.082 0.110 0.696 0.069 0.113 0.188 0.135 0.309 1.284 0.058 0.309 0.946
2000 0.070 0.061 0.458 0.068 0.063 0.101 0.059 0.060 0.334 0.054 0.060 0.065 0.077 0.124 0.391 0.045 0.125 0.099

1
500 0.101 0.143 1.148 0.109 0.144 0.831 0.122 0.303 1.540 0.092 0.299 1.341 0.120 0.280 1.358 0.075 0.281 1.090
1000 0.085 0.085 0.879 0.084 0.085 0.280 0.082 0.110 0.685 0.069 0.113 0.221 0.135 0.311 1.275 0.057 0.310 0.973
2000 0.071 0.062 0.512 0.067 0.062 0.090 0.059 0.058 0.313 0.054 0.058 0.062 0.075 0.124 0.333 0.044 0.126 0.070

Table D.3: Bias and RMSE of parameter estimates when d2 = 0.4. The upper panel shows results for the SARFIMA-model and the
lower panel shows results for the GARMA-model. In both cases the phase shift is set to γ = π(d2 − d1).



D
A
ppendix

111

δm 0.55 0.6 0.65
d1 0.1 0 0.1 0 0.1 0

β T d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂

SARFIMA
Bias

0
500 0.024 -0.019 -0.005 0.087 -0.017 -0.022 -0.015 -0.108 -0.013 0.076 -0.108 -0.010 -0.023 -0.105 -0.004 0.061 -0.105 -0.003

1000 0.014 -0.002 -0.003 0.067 -0.002 0.018 -0.005 -0.038 -0.037 0.054 -0.040 0.023 -0.041 -0.129 0.011 0.047 -0.127 0.007
2000 0.007 0.005 0.012 0.053 0.001 -0.002 -0.002 -0.010 -0.008 0.043 -0.012 0.004 -0.026 -0.059 0.007 0.035 -0.058 0.009

1
500 0.024 -0.022 -0.090 0.086 -0.019 -0.079 -0.015 -0.108 -0.085 0.076 -0.107 -0.120 -0.023 -0.107 -0.101 0.060 -0.104 -0.082

1000 0.014 -0.003 -0.054 0.067 -0.004 -0.069 -0.007 -0.040 -0.050 0.055 -0.038 -0.008 -0.042 -0.128 -0.076 0.047 -0.127 -0.046
2000 0.007 0.004 -0.042 0.053 0.002 -0.007 -0.004 -0.012 -0.038 0.044 -0.012 -0.012 -0.024 -0.059 -0.041 0.036 -0.059 -0.012

RMSE

0
500 0.086 0.097 1.347 0.109 0.094 1.202 0.062 0.124 1.428 0.094 0.125 1.468 0.057 0.120 1.349 0.075 0.120 1.298

1000 0.070 0.082 1.146 0.084 0.082 0.888 0.057 0.078 1.066 0.067 0.077 0.807 0.057 0.136 1.291 0.057 0.135 1.221
2000 0.060 0.070 0.891 0.066 0.069 0.538 0.049 0.058 0.854 0.054 0.057 0.396 0.047 0.074 0.839 0.044 0.073 0.480

1
500 0.087 0.096 1.403 0.109 0.095 1.333 0.062 0.125 1.420 0.094 0.124 1.502 0.056 0.121 1.446 0.074 0.119 1.301

1000 0.071 0.084 1.197 0.085 0.082 1.043 0.057 0.079 1.110 0.068 0.076 0.874 0.057 0.135 1.280 0.057 0.134 1.245
2000 0.059 0.069 0.990 0.065 0.068 0.583 0.051 0.058 0.841 0.055 0.057 0.445 0.047 0.075 0.884 0.044 0.074 0.547

GARMA
Bias

0
500 0.024 -0.020 -0.012 0.085 -0.018 0.039 -0.014 -0.110 -0.012 0.075 -0.107 0.000 -0.024 -0.106 -0.025 0.061 -0.106 -0.035

1000 0.016 -0.006 0.017 0.067 -0.003 -0.014 -0.007 -0.039 -0.008 0.053 -0.038 0.025 -0.041 -0.128 -0.014 0.047 -0.126 -0.006
2000 0.008 0.005 0.023 0.054 0.005 0.009 -0.003 -0.009 -0.011 0.043 -0.010 0.001 -0.027 -0.058 -0.006 0.035 -0.057 -0.004

1
500 0.022 -0.020 -0.068 0.088 -0.022 -0.100 -0.015 -0.108 -0.129 0.075 -0.109 -0.118 -0.023 -0.103 -0.071 0.061 -0.105 -0.094

1000 0.016 -0.002 -0.083 0.068 -0.003 -0.070 -0.006 -0.040 -0.045 0.054 -0.037 -0.014 -0.041 -0.126 -0.072 0.047 -0.127 -0.052
2000 0.008 0.004 -0.034 0.053 0.005 -0.012 -0.004 -0.008 -0.024 0.044 -0.009 0.003 -0.025 -0.058 -0.033 0.035 -0.059 -0.013

RMSE

0
500 0.087 0.097 1.338 0.107 0.095 1.242 0.061 0.126 1.481 0.094 0.123 1.387 0.056 0.121 1.427 0.076 0.120 1.351

1000 0.072 0.083 1.128 0.084 0.081 0.869 0.057 0.078 1.060 0.067 0.077 0.869 0.057 0.135 1.254 0.058 0.134 1.192
2000 0.060 0.069 0.957 0.067 0.068 0.521 0.049 0.057 0.802 0.054 0.058 0.376 0.048 0.074 0.811 0.044 0.073 0.483

1
500 0.085 0.097 1.356 0.110 0.094 1.366 0.060 0.125 1.591 0.092 0.126 1.565 0.056 0.119 1.407 0.076 0.120 1.354

1000 0.073 0.084 1.176 0.085 0.083 0.989 0.056 0.080 1.165 0.067 0.075 0.894 0.057 0.134 1.282 0.059 0.134 1.189
2000 0.060 0.069 1.001 0.066 0.070 0.601 0.049 0.056 0.807 0.055 0.056 0.447 0.047 0.074 0.830 0.043 0.074 0.470

Table D.4: Bias and RMSE of parameter estimates when d2 = 0.2. The upper panel shows results for the SARFIMA-model and the
lower panel shows results for the GARMA-model. In both cases the phase shift is set to γ = π(d2 − d1).
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ω2 = 0.48 ω3 = 0.96 ω2 = 0.48 ω3 = 0.96
d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂

.DJI 0.321 0.393 -1.526 0.110 0.235 -0.905 KO 0.179 0.424 1.224 0.122 0.174 0.869
0.054 1.242 0.056 0.630 0.055 0.282 0.056 1.682

AAPL.O 0.076 0.078 0.601 0.042 0.111 0.841 MCD 0.230 0.415 1.354 0.119 0.188 1.253
0.056 24.534 0.056 1.112 0.053 0.409 0.053 1.334

AXP 0.201 0.419 1.384 0.107 0.133 1.999 MMM 0.184 0.379 1.874 0.087 0.148 1.337
0.055 0.366 0.053 4.323 0.052 0.411 0.054 1.503

BA 0.233 0.287 2.899 0.111 0.195 1.702 MRK 0.215 0.403 1.696 0.126 0.169 2.959
0.044 1.372 0.052 0.984 0.051 0.429 0.047 2.428

CAT 0.233 0.421 1.570 0.139 0.172 3.412 MSFT.O 0.097 0.236 1.429 0.033 0.187 1.072
0.051 0.360 0.045 2.828 0.052 0.471 0.054 0.420

CSCO.O 0.262 0.353 1.743 0.153 0.188 3.351 NKE 0.257 0.319 2.436 0.175 0.247 1.763
0.047 0.704 0.044 2.382 0.045 1.137 0.051 1.259

CVX 0.279 0.337 2.646 0.164 0.221 2.633 PFE 0.192 0.247 1.923 0.063 0.121 2.350
0.044 1.247 0.048 1.717 0.045 1.182 0.049 1.440

DD 0.200 0.326 1.822 0.095 0.125 1.071 PG 0.230 0.295 2.172 0.089 0.147 2.199
0.048 0.578 0.053 2.791 0.045 1.153 0.049 1.574

DIS 0.220 0.333 1.834 0.118 0.156 2.715 TRV 0.232 0.394 1.723 0.146 0.148 0.498
0.049 0.630 0.046 2.234 0.053 0.527 0.056 50.403

GE 0.203 0.327 1.640 0.097 0.177 0.341 UNH 0.255 0.396 1.623 0.125 0.153 3.245
0.048 0.508 0.056 0.793 0.052 0.56 0.046 3.701

GS 0.209 0.401 1.476 0.123 0.168 1.534 UTX 0.208 0.402 1.819 0.135 0.137 0.492
0.054 0.363 0.055 2.142 0.052 0.413 0.056 49.891

HD 0.210 0.413 1.309 0.175 0.216 3.354 V 0.197 0.395 1.508 0.133 0.175 2.235
0.054 0.358 0.045 2.207 0.052 0.363 0.049 2.318

IBM 0.228 0.344 1.716 0.075 0.132 0.706 VZ 0.187 0.264 2.259 0.096 0.167 1.248
0.050 0.637 0.056 1.383 0.046 0.996 0.054 1.243

INTC.O 0.252 0.289 1.684 0.112 0.181 1.462 WMT 0.256 0.303 3.025 0.053 0.161 1.496
0.047 1.840 0.053 1.191 0.043 1.526 0.055 0.778

JNJ 0.278 0.360 2.596 0.131 0.199 1.800 XOM 0.236 0.385 1.408 0.122 0.230 1.131
0.045 1.002 0.050 1.386 0.053 0.452 0.055 0.684

JPM 0.240 0.355 1.799 0.067 0.137 0.781
0.049 0.622 0.054 1.067

Table D.5: Estimation results for Zt = (RVt, V olt)′ with bandwidth δm = 0.65 and
γ = π d2−d1

2 . The small numbers below the estimates represent the deviation
in asymptotic 95% confidence intervals.
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ω2 = 0.48 ω3 = 0.96 ω2 = 0.48 ω3 = 0.96
d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂ d̂1 d̂2 β̂

.DJI 0.481 0.483 0.797 0.232 0.249 -4.253 KO 0.471 0.480 4.045 0.216 0.218 0.500
0.068 19.073 0.062 2.380 0.063 4.774 0.079 16.373

AAPL.O -0.001 0.117 0.300 0.076 0.078 0.543 MCD 0.466 0.468 0.553 0.196 0.203 -3.788
0.086 0.269 0.081 15.019 0.082 19.625 0.063 5.767

AXP 0.469 0.471 0.449 0.217 0.221 2.177 MMM 0.470 0.474 3.711 0.179 0.183 -3.524
0.083 16.730 0.063 8.528 0.062 10.846 0.063 9.256

BA 0.338 0.401 0.224 0.234 0.251 -1.354 MRK 0.485 0.487 0.527 0.231 0.243 -2.547
0.086 0.835 0.066 2.650 0.079 17.332 0.063 3.759

CAT 0.440 0.496 0.374 0.208 0.220 -2.636 MSFT.O 0.226 0.302 0.252 0.157 0.163 -1.444
0.087 0.672 0.063 4.151 0.088 0.587 0.067 9.400

CSCO.O 0.445 0.461 2.167 0.236 0.268 -0.700 NKE 0.392 0.463 0.727 0.296 0.305 -3.290
0.066 4.267 0.074 1.530 0.078 0.830 0.063 4.923

CVX 0.465 0.477 2.606 0.263 0.277 -2.029 PFE 0.306 0.314 2.820 0.100 0.152 -0.282
0.064 4.909 0.064 3.143 0.065 8.432 0.076 0.722

DD 0.375 0.377 0.498 0.129 0.146 -2.872 PG 0.389 0.391 0.519 0.156 0.235 -0.093
0.083 22.885 0.063 2.890 0.080 26.79 0.086 0.464

DIS 0.342 0.428 -0.016 0.132 0.199 -0.388 TRV 0.471 0.473 -0.364 0.165 0.216 -0.215
0.086 0.519 0.081 0.662 0.075 16.999 0.081 0.542

GE 0.414 0.458 1.064 0.211 0.213 -0.280 UNH 0.490 0.496 3.251 0.158 0.168 -4.294
0.074 1.359 0.084 24.616 0.063 7.150 0.062 4.264

GS 0.476 0.478 0.550 0.182 0.184 0.509 UTX 0.494 0.496 0.526 0.162 0.261 -0.014
0.082 16.492 0.078 15.838 0.080 16.109 0.086 0.272

HD 0.491 0.493 0.555 0.276 0.285 -3.381 V 0.491 0.493 0.547 0.226 0.235 -3.054
0.081 19.694 0.063 5.486 0.081 18.387 0.063 5.071

IBM 0.431 0.433 0.491 0.147 0.149 0.517 VZ 0.304 0.383 0.417 0.192 0.224 0.437
0.083 21.038 0.080 20.065 0.084 0.625 0.081 1.129

INTC.O 0.351 0.360 2.649 0.196 0.198 0.508 WMT 0.364 0.373 3.257 0.161 0.171 -2.372
0.065 7.669 0.079 18.610 0.064 7.002 0.063 4.373

JNJ 0.464 0.466 0.526 0.213 0.224 -2.989 XOM 0.440 0.496 1.362 0.255 0.257 0.509
0.079 22.510 0.063 4.164 0.069 0.834 0.082 19.511

JPM 0.466 0.470 2.101 0.150 0.155 2.007
0.065 13.141 0.065 11.884

Table D.6: Estimation results for Zt = (V olt, RVt)′ with bandwidth δm = 0.55 and
γ = π d2−d1

2 . The small numbers below the estimates represent the deviation
in asymptotic 95% confidence intervals.
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