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1 Abstract

1 Abstract

This thesis is concerned with the mathematical analysis of models for Micro-Electro-

Mechanical Systems (MEMS). These models arise in the form of coupled partial diffe-

rential equations with a moving boundary. Although MEMS devices are often operated

in non-isothermal environments, temperature is usually neglected in the mathematical

investigations. Therefore the focus of our modelling is to incorporate temperature and

the related material properties. We derive two models, both of which focus on different

aspects of the underlying physics. Afterwards we prove local well-posedness in time

and also global well-posedness under additional assumptions on the model’s parameters.

Lastly, we provide some numerical results which exemplify how temperature and the

model’s material constants change the qualitative behaviour of the system.

KEYWORDS: Micro-Electro-Mechanical Systems (MEMS), temperature, partial dif-

ferential equations
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3 Introduction

3 Introduction

The technology of MEMS is concerned with microscopic devices that function by com-

bining electrostatic with mechanical features. In his famous lecture from 1959 Richard

Feynman discussed how very small machines could be used to solve a high variety of

problems. However due to the difficult manufacturing a rapid development only started

in the 1980s which in turn revolutionized numerous branches of industry [EGG10].

We now give some examples for such devices, for more details we refer to [Kaa09].

Microsensors can be used to measure inertia, for example in airbags or to measure

pressure for medical applications. Microactuators create a displacement by converting an

electric signal into a mechanical output. Micropumps are used as a drug delivery system

in medicine [NAMT08] or for a controlled transfer of fluids in chemical engineering

[Abi12].

Several of these devices actually rely on thermal effects: For example a thermal ac-

tuator creates motion by a thermal expansion that is due to resistive heating [PB02].

Moreover a thermal-based microsensor can be used to monitor glucose and other meta-

bolites [WSXL08]. Although other devices do not explicitly rely on temperature, they

are nevertheless often operated in a non-isothermal environment. Possible examples are

turbines [TL01], rocket engines [Bro03] and satellites [KPK+14].

A key component (see Figure 1) of several MEMS devices consists of an elastic mem-

brane and a fixed ground plate. A voltage is applied to the system and the resulting

Coulomb force causes the membrane to deflect towards the ground plate. This change in

gap size again impacts the electrostatics and thus the two effects are connected to each

other. In order to design and optimize MEMS devices one has to gain a precise under-

standing of these underlying dynamics. It is therefore no surprise that several branches

of science have advanced in this direction. We now turn to the recent mathematical

investigations of MEMS.

A lot of mathematical research has been done focusing on the idealized MEMS-device

with an electrical actuated membrane. Apart from the fact that this model is important

for applications, there is also a purely mathematical reason for this interest. The device’s
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3 Introduction

u

Figure 1: Idealized MEMS device in 2d with membrane u.

mechanics can only be fully understood if the model takes into account the fact that the

device’s boundary changes over time. The arising partial differential equations will the-

refore take the form of a moving boundary problem. These kinds of problems are of high

interest in itself due to their inherently non-linear nature and their capability to describe

natural phenomena accurately. Examples outside the world of MEMS devices include

the Stefan problem, tumor growth models [BEL12] and the Muskat problem [EMW18].

The first mathematical analyses for MEMS devices use the additional assumption of a

small aspect ratio (see for instance [LW14a,Hui11,Guo08,GG08,FMPS07,EG+08]). In

the very recent contribution [GZZ19] the authors consider an additional pressure term

in the stationary case and examine positive solutions and singularties. Assuming a small

aspect ratio makes it possible to decouple the electro and mechanical effects and thus

consider a problem with a fixed boundary. The first results without this assumption

were obtained in [ELW14] and in [LW13] for the stationary case. Building on this bre-

akthrough several papers have been published that deal with different extensions of this

model. For additional details we also refer to the surveys [LW17b], [EL17] and the

references therein.

In [ELW15] the authors drop the usual assumption of small deformations and therefore

consider a quasilinear equation for the membrane’s deflection. The therein developed

techniques will help us to handle a quasi-linearity which arises due to the temperature

in our model.

The case of a general permittivity profile without assuming a small aspect ratio is

investigated in [Lie15, Lie16] for small deformations and in [EL16] for non-small defor-
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3 Introduction

mations.

Moreover in [LW14b,LW14c] bending effects are included into the model and in [LW16]

the domain of the ground plate is generalized from a simple interval to a convex and

smooth 2d domain. We will use the approach of the latter paper to prove well-posedness

for a 3d model. Lastly, in [LW17a] a constrained model is developed which allows further

insights into the touchdown phenomena.

Some mathematicians in PDEs have already worked on incorporating temperature

into models for MEMS. We want to emphasize that none of these authors considered

the just described, well-established, moving boundary problem. However due to the

proximity to our work we want to review this part of the literature as well. In [AKS17]

the authors consider the "V-shape" electro-thermal actuator. They show existence of

a weak solution for their system and then carry out a numerical analysis. In [KHT16]

the authors derive a model for the thermoelastic behaviour of a micro-beam resonator.

Furthermore they solve the resulting equation analytically and show a good agreement

to already available numerical data.

To the best of our knowledge no analytical work has been done that takes into account

temperature effects on the dynamics of the above described idealized MEMS device.

First steps in that direction were taken in [PB02, 4.4] and [PB02, 6.3.2]. However both

approaches made use of significant simplifications. In [PB02, 4.4] the Joule heating of a

cylinder is considered. The authors neglect a possible deflection of the cylinder’s top and

therefore only couple equations for electrostatic and thermal effects. In [PB02, 6.3.2] the

authors ignore electrostatics and instead focus on the thermal-elastic behaviour. Addi-

tionally space variations of the temperature and damping of the membrane is neglected.

Furthermore in both chapters the authors neither consider the question of well-posedness

nor perform a numerical analysis. Instead they consider certain limits of the resulting

equations and steady state solutions.

It is therefore our intention to fill this gap by incorporating temperature into the well-

established moving boundary problem for the idealized MEMS device. We now outline

the organisation of the thesis.

9



3 Introduction

In section 4 we derive the full model in which electrostatic, thermal and mechanical

effects are strongly coupled. The system will feature several parameters and general

functions that depend on temperature. We then rescale the equations and discuss more

concrete examples for the temperature dependence.

We start the analysis in section 5 by investigating the small aspect ratio limit. Then we

consider two less simplified cases in sections 6 and 7. Both sections are organized in the

same way: We first derive a simplification of the full model in 3d and in 2d respectively.

In the 3d case a higher focus is placed on how the temperature influences the electrostatic

effects directly. In the 2d case we instead focus on the temperature influence on the

membrane’s parameters. The resulting governing equation for the membrane will turn

out to be quasilinear. We end both sections by proving local and global well-posedness

of the derived problem under different assumptions.

Lastly, we complete this thesis with a numerical analysis of the 2d case in section

8. We show how the different parameters influence the deflection of the membrane and

in particular report significant differences between our model and the model M0 which

neglects temperature effects.

10



4 The full model

4 The full model

Our MEMS device is a cylinder with radius a and height h, filled with a fluid. The fixed

ground plate lies at z̃ = −h. We will use a tilde on several variables because we will

rescale our equations later for convenience. The elastic membrane is attached at z̃ = 0.

Denoting the membrane’s displacement with ũ, the volume of the cylinder is given by

VC = πa2h+

∫
Ẽ

ũ(x̃, ỹ) d(x̃, ỹ). (4.1)

The ground plate and the region of the cylinder are denoted by

Ẽ := {(x̃, ỹ)|
√
x̃2 + ỹ2 < a}

and

Ω̃(ũ(t̃)) := {(x̃, ỹ, z̃) ∈ Ẽ × (−h,∞) : −h < z̃ < u(x̃, ỹ, t̃)}

respectively.

a

h

Figure 2: Domain Ω̃(ũ(t̃)) for ũ = 0.

In the following we assume that

(x̃, ỹ, z̃) ∈ Ω̃(ũ(t̃)), t̃ ∈ [0,∞)

holds if x̃, ỹ, z̃ and t̃ are not specified otherwise.

11



4 The full model

4.1 The evolution of the membrane

We formulate the equations governing the membrane’s deflection which is modelled with

a function ũ : Ẽ × [0,∞)→ R [PB02, page 192, page 236]:

ρmd
∂2ũ

∂t̃2
(x̃, ỹ, t̃) + ad

∂ũ

∂t̃
(x̃, ỹ, t̃) (4.2)

− µ(T̃ (x̃, ỹ, ũ(x̃, ỹ, t̃)))∇̃2
⊥ũ(x̃, ỹ, t̃) +D(T̃ (x̃, ỹ, ũ(x̃, ỹ, t̃)))∇̃4

⊥ũ(x̃, ỹ, t̃)

= −ε1(T̃ )

2
|∇̃ψ̃(x̃, ỹ, ũ(x̃, ỹ, t̃))|2 + P (T̃ (x̃, ỹ, ũ(x̃, ỹ, t̃)), VC(ũ(x̃, ỹ, t̃))).

In the membrane equation the electrostatic potential ψ̃ and the temperature T̃ , which

will be discussed shortly, are always evaluated on the membrane, that is z̃ = ũ(x̃, ỹ, t̃).

Therefore we will shorten the notation and write

ρmd
∂2ũ

∂t̃2
+ ad

∂ũ

∂t̃
− µ(T̃ )∇̃2

⊥ũ+D(T̃ )∇̃4
⊥ũ = −ε1(T̃ )

2
|∇̃ψ̃|2 + P (T̃ , VC)

instead of (4.2) whenever it is convenient.

We use the notation ∇̃2
⊥ := ∂2

x̃ + ∂2
ỹ . Here d is the membrane’s thickness, ρm the

density of the membrane’s material, ad the damping constant, µ(T̃ ) the tension in the

membrane, D(T̃ ) its flexural rigidity and ε1(T̃ ) the permittivity. Furthermore P is the

pressure and T̃ the temperature. The right-hand side of the latter equation captures

the fact that the membrane’s movement is dependent on both the electrostatic potential

and the temperature within the device. The voltage difference pulls the membrane to

the ground plate whereas the pressure of the fluid, which increases with temperature,

pushes the membrane upwards.

At the edge of the cylinder the membrane is clamped and it is assumed to start in

position u0. Therefore we have the boundary and initial conditions

ũ(x̃, ỹ, t̃) = ∂rũ(x̃, ỹ, t̃) = 0, for (x̃, ỹ) ∈ ∂Ẽ, t̃ ∈ [0,∞) (4.3)

and

ũ(x̃, ỹ, 0) = u0(x̃, ỹ), ∂rũ(x̃, ỹ, 0) = u1(x̃, ỹ) for (x̃, ỹ) ∈ Ẽ (4.4)
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4 The full model

Figure 3: Domain Ω̃(ũ(t̃)) for a membrane with a negative and a positive deflection.

where u0 and u1 are given initial data.

4.2 The electrostatic potential

We state the governing equations for the electrostatic potential within the cylinder. A

tilde on differential operators denotes derivatives with respect to variables with a tilde.

σ(T̃ ) : R → R is the conductivity of the fluid in the cylinder which will depend on the

temperature. We model the electrostatic potential with the equation

∇̃ · (σ(T̃ )∇̃ψ̃)(x̃, ỹ, z̃) = 0. (4.5)

A derivation of the latter can be found in [PB02, page 104]. By defining σ(T̃ ) as a scalar

only depending on temperature and not as a tensor depending on the position inside

the cylinder we assumed that the fluid is homogeneous and isotropic. The fixed plate at

z̃ = −h is grounded and the potential in the amount of V is applied to the membrane.

Also we assume that there is no current through the lateral boundary of the cylinder.

Denoting the derivative in the outward radial direction by ∂r this imposes the boundary

conditions [PB02, page 104]:

ψ̃(x̃, ỹ,−h) = 0, ψ̃(x̃, ỹ, ũ(x̃, ỹ)) = V, ∂rψ̃ = 0

∣∣∣∣
r=a

. (4.6)
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4 The full model

4.3 The temperature

Now we turn to the thermal problem: We derive a diffusion advection equation for the

temperature T̃ similar to [Sin13, CA86]: Here ρf is the density of the fluid, c is the

specific heat capacity. We write ρf = m
VC

where m is the mass of the whole fluid. This

makes the density time-dependent because VC depends on the membrane’s position. We

do however assume that density variations in space are neglectable. Thermal energy

is then given by ρfcT̃ . The continuity equation in differential form which relates the

change of the thermal energy to the heat flux j and to the source term R is given by:

∂ρfcT̃

∂t̃
+∇ · j = R. (4.7)

Our source term captures two effects. Firstly the electric energy which is converted to

thermal energy [PB02, page 105] and secondly the pressure-volume work (or volume-

change work) [PB02, page 189]. Pressure-volume work is relevant in our case because if

the cylinders volume decreases, the heat energy inside the cylinder increases.1 Conse-

quently the source term is of the form

R = σ(T̃ )|∇̃ψ̃|2 − P (T̃ , VC)
dVC

dt̃
. (4.8)

Here we decided not to include the heat energy generated by elastic energy. This is

reasonable because this amount of heat is outweighed by Joule heating [PB02, page 38].

We consider two different types of flux: The diffusive flux jdiff which corresponds to heat

conduction in our setting can be approximated by Fourier’s first law:

jdiff = −k∇̃T̃ . (4.9)

The thermal conductivity k is assumed to be constant. The advective flux jadv gives the

bulk motion of our fluid in the cylinder in direction v:

jadv = vT̃ . (4.10)

1Here we used the in our case reasonable assumption that the described process is reversible. [PB02,
page 189] Also just like with density we assumed that space variations for the pressure-volume work
are neglectable.

14



4 The full model

Now we plug the flux (j = jadv + jdiff) and the source term into the continuity equation

and assume c to be constant in order to obtain

c
∂ρf T̃

∂t̃
= k4̃T̃ − ∇̃ · (vT̃ ) + σ(T̃ )|∇̃ψ̃|2 − P (T, VC)

dVC

dt̃
. (4.11)

The velocity v in the advection term −∇̃ · (vT̃ ) is hard to handle if the device is turned

or moved. This is why we want to ignore it. This means we consider the case in which

conduction dominates advection. Fortunately this approximation is very reasonable for

our case: Since we are dealing with a microsystem we can assume a small Reynolds

number Re [PB02] which in turn yields a small Rayleigh number2 [GL02]. Furthermore

for a laminar flow (again a reasonable assumption in the regime of a small Reynolds

number [PB02, page 307]) the length of the boundary layer is approximately r√
Re

[PB02,

page 305]. This makes the boundary layer’s thickness larger than our system which in

turn results in slow velocities. Also diffusion is relatively fast in small length scales [PB02,

page 83]. Therefore we reduce our initial equation to:

c
∂ρf T̃

∂t̃
= k4̃T̃ + σ(T̃ )|∇̃ψ̃|2 − P (T̃ , VC)

dVC

dt̃
. (4.12)

In our setting this can be rewritten as:

cm

VC

∂T̃

∂t̃
= k4̃T̃ + σ(T̃ )|∇̃ψ̃|2 − cT̃m∂(V −1

C )

∂t̃
− P (T̃ , VC)

dVC

dt̃
. (4.13)

We assume that the cylinder is at ambient temperature TA at time t̃ = 0 and that the

membrane is insulated. We allow for heat loss through the lateral sides of the cylinder’s

boundary. The heat loss is modelled by the Newton cooling condition with heat transfer

coefficient hnc. This gives us the boundary conditions:

T̃ (x̃, ỹ, z̃, 0) = T0,
∂T̃

∂n
= 0

∣∣∣∣
z̃=ũ(x̃,ỹ,z̃,t̃)

, k
∂T̃

∂r̃
= −hnc(T̃ − T0)

∣∣∣∣
r=a

. (4.14)

2This number gives the ratio between the gravitional and viscous forces.
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4 The full model

Here n denotes the unit normal at the membrane. We also assume that the cylinder is

heated from below. This is modelled by a given function Th : Ẽ × [0,∞):

T̃ (x̃, ỹ,−h, t̃) = T̃h(x̃, ỹ, t̃). (4.15)

4.4 Transformation of the system

Now we introduce dimensionless variables

x :=
x̃

a
, y :=

ỹ

a
, z :=

z̃

h
, t :=

t̃

ada2
,

u :=
ũ

h
, ψ :=

ψ̃

V
, T := T̃ , Th(x, y, t) := T̃h(x̃, ỹ, t̃).

We further define domains

E := {(x, y)|
√
x2 + y2 < 1}

and

Ω(u(t)) := {(x, y, z) ∈ E × (−1,∞) : −1 < z < u(x, y, t)}.

In the following we assume that

(x, y, z) ∈ Ω(u(t))

holds if not specified otherwise. We now use these variables and multiply the governing

equation (4.5) for the potential ψ by h2

V
, the governing equation (4.13) for the tempera-

ture T by h2

k
and the governing equation (4.2) for the membrane’s displacement by a2

h
.

Our equations in dimensionless form are

h2

a2
∇⊥ · (σ(T )∇⊥ψ) +

∂

∂z
(σ(T )

∂

∂z
ψ) = 0, (4.16)
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4 The full model

ch2m

adka2VC

∂T

∂t
= (

h2

a2
∇2
⊥T +

∂2

∂2z
T )

+ σ(T )
V 2

k
(
h2

a2
|∇⊥ψ|2 + (

∂ψ

∂z
)2)− ch2m

adka2
T
∂(V −1

C )

∂t
)− h2

kada2
P (T, VC)

dVC
dt

(4.17)

and

∂u

∂t
− µ(T )∇2

⊥u+
D

a2
∇4
⊥u = −ε1(T )V 2a2

2h3
(
h2

a2
|∇⊥ψ|2 + (

∂ψ

∂z
)2) +

a2

h
P (T, VC). (4.18)

We also simplified the equation for the membrane’s displacement further by assuming

that the thickness of the membrane d is small so we can drop the second time derivative.

This is a standard simplification which is used for example in [PB02,ELW14,GPW05,

EGG10]. This assumption is valid for micropumps and other MEMS devices that are

described in the mentioned references. The boundary and initial conditions now yield:

ψ(x, y,−1) = 0, ψ(x, y, u(x, y, t)) = 1,
∂ψ

∂r
= 0

∣∣∣∣
r=1

, (4.19)

T (x, y, z, 0) = T0,
∂T

∂n
= 0

∣∣∣∣
z=u(x,y,t)

,
k

a

∂T

∂r
= −hnc(T − T0)

∣∣∣∣
r=1

, (4.20)

T (x, y,−1, t) = Th(x, y, t), (4.21)

u(x, y, t) = 0, for (x, y) ∈ ∂E and u(x, y, 0) = u0 for (x, y) ∈ E, (4.22)

u(x, y, t) = ∂ru(x, y, t) = 0 (x, y) ∈ ∂E. (4.23)

With the definitions for the aspect ratio ε and the ’tuning parameters’ λi:

ε :=
h

a
, λ1 :=

V 2a2

2h3
, λ2 :=

a2

h
, λ3 :=

cm

adk
, λ4 =

V 2

k
, λ5 =

1

kad
, λ6 =

1

a2
.

We now state our governing equations one last time by also replacing the terms contai-

ning VC , which is given by (4.1), by terms containing u:

ε2(σ(T )∂2
xψ+σ(T )∂2

yψ+∂xσ(T )∂xψ+∂yσ(T )∂yψ) +σ(T )∂2
zψ+∂zσ(T )∂zψ = 0, (4.24)
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4 The full model

λ3ε
2

πa2h+
∫
E
u dxdy

∂tT = ε2∇2
⊥T + ∂2

zT + σ(T )λ4[ε2|∇⊥ψ|2 + (∂zψ)2]

+
λ3ε

2T
∫
E
∂tu dxdy

(πa2h+
∫
E
u dxdy)2

− ε2λ5P (T, u)

∫
E

∂tu dxdy, (4.25)

∂tu− µ(T )∇2
⊥u+D(T )λ6∇4

⊥u = −ε1(T )λ1[ε2|∇⊥ψ|2 + (∂zψ)2] + λ2P (T, u). (4.26)

4.5 Examples for the temperature dependence

A variety of different materials are used in MEMS. The specific form for the electric

conductivity σ(T ), permittivity of the membrane ε1(T ), pressure P (T, u) and shear mo-

dulus µ(T ) strongly depend on the situation3 and in particular the material in question.

Furthermore these properties have to be validated in experiments. Therefore we do not

chose specific forms for these four and instead let them be arbitrary functions satisfying

hypotheses appropriate for our mathematical analysis. Nevertheless we want to give

some examples how they could look like:

For Sylgard 1844 the shear modulus (second Lamé constant) µ depends linearly on

temperature:

µ(T ) = µ0T + µ1. (4.27)

The temperature dependence (for low temperatures) of the permittivity ε1(T ) of the

polymer PMMA can be approximated linearly as well [SKR+01].

For the pressure in a gas we can use the ideal gas law. N is the number of moles in

the gas and R is the ideal gas constant. The pressure P is then given by

P =
NRT

VC
. (4.28)

For liquids there are other equations of state (EOS), for example the Peng-Robinson

3By situation we mean for example the temperature regime or the size of the cylinder.
4This material is used for micropumps. Then we have µ0 = 0, 0032 and µ1 = 0, 373 [JMTT14, Table
4].
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4 The full model

EOS (which can also be used for gas):

P =
RT

Vm − b
− aα

V 2
m + 2bVm − b2

. (4.29)

For the interpretation of the real constants R, Vm, b, α and a we refer the interested

reader to [PR76].

The electric conductivity of a liquid can be approximated as an exponential function

(see e.g.: [BR98, Chapter 4 and 5], [VGP+06]):

σ(T ) = σ∞exp(
Eα
kBT

). (4.30)

Where σ∞ denotes the maximum electrical conductivity, kB the Boltzmann constant

and Ea the activation energy.

Gases however have neglectable electric conductivity.
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5 The small aspect ratio limit

5 The small aspect ratio limit

This section should be viewed as a prototype for sections 6 and 7 because we will briefly

go through the same steps but in a highly simplified setting. We consider the case

of a small aspect ratio. To be precise, we make the following simplifications: We let

ε → 0, the dimension is reduced to two, we impose Dirichlet boundary conditions for

both temperature and electrostatic potential and we let σ(T ) := σ be independent of

temperature.

5.1 The system

We define

I := (−1, 1)

and

Ω(u(t)) := {(x, z) ∈ I × (−1,∞) : −1 < z < u(x, t)}.

The electrostatic potential ψ is governed by

σ∂2
zψ(x, z) = 0, (x, z) ∈ Ω(u(t)), t > 0 (5.1)

together with the boundary conditions

ψ(t, x, z) =
1 + z

1 + u(t, x)
, (x, z) ∈ ∂Ω(u(t)), t > 0.

The temperature T is governed by

∂2
zT (x, z) = −σλ4(∂zψ)2 (x, z) ∈ Ω(u(t)), t > 0,

with the boundary conditions

T (t, x,−1) = T0, T (t, x, u(x, t)) = T1, t > 0, x ∈ I, (5.2)

20



5 The small aspect ratio limit

for T0 > T1 > 0. Let t > 0 and x ∈ I, the membrane’s deflection u is governed by

∂tu(t, x)− µ(T (x, u(t, x)))∂2
xu(t, x) = −λ1ε1(T (x, u(t, x)))

(1 + u(t, x))2
+ λ2P (T (x, u(t, x)), u(t, x))

(5.3)

with the boundary conditions

u(±1, t) = 0, t > 0 and u(x, 0) = u0(x) for x ∈ I. (5.4)

We can now solve explicitly for both the electrostatic potential and the temperature.

5.2 Solution to the thermal and electrostatic problems

The solution to the electrostatic problem may be written as

ψ(t, x, z) =
1 + z

1 + u(t, x)
, t > 0, (x, z) ∈ Ω(u(t)).

Inserting this expression in the temperature equation, it may be rewritten as

∂2
zT (t, x, z) = − σλ4

(1 + u(t, x))2
, t > 0, (x, z) ∈ Ω(u(t)).

Since the RHS of this equation is independent of z, we can solve it explicitly by integra-

ting. The solution to the temperature problem may be written as

T (t, x, z) = Az2 +Bz + C (5.5)

with

A := A(u(t, x)) := − σλ4

2(1 + u(t, x))2
,

B := B(u(t, x)) :=
T1 − T0

1 + u(t, x)
+
σλ4(u(t, x)− 1)

2(1 + u(t, x))2

and

C := C(u(t, x)) :=
T1 − T0

1 + u(t, x)
+ T0 +

σλ4u(t, x)

2(1 + u(t, x))2
.
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5 The small aspect ratio limit

5.3 Well-posedness of the deflection problem

For the reader’s convenience we present the the full system for this model again:

Tu(t, x, z) = A(u(t, x))z2 +B(u(t, x))z + C(u(t, x)), (5.6)

ψu(t, x, z) =
1 + z

1 + u(t, x)
,

ut − µ(T1)∂2
xu = −ε1(T1)λ1

(1 + u)2
+ λ2P (T1, u), (5.7)

u(±1, ·) = 0, and u(·, 0) = u0. (5.8)

Let p ∈ (1,∞). We define the spaces:

W 2α
p,B(I) =

 W 2α
p (I), 2α ∈ [0, 1/p),

{u ∈ W 2α
p (I); u(±1) = 0}, 2α ∈ (1/p, 2].

(5.9)

Since

T (t, x, u(x, t)) = T1, x ∈ I, t > 0

we can uncouple the temperature from the membrane’s deflection and write P (u, T ) =

P (u), ε(T ) = ε1, and µ(T ) = µ. Thus we can simplify the initial value problem for the

membrane’s equation:

ut − µ∂2
xu = g(u), t > 0, x ∈ I, (5.10)

u(0, x) = u0(x), x ∈ I,

u(t,±1) = 0, t > 0,

with

g(u) := − ε1λ1

(1 + u)2
+ λ2P (u).

We have the following result:

Theorem 5.1. Let p ∈ (1,∞) and u → P (u) be globally Lipschitz. For each u0 ∈
W 2
p,B(I) with u0 > −1 there is a positive existence time t1 > 0 and a unique solution
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5 The small aspect ratio limit

u(t, x) to (5.10) satisfying

u ∈ C([0, t1),W 2
p,B) ∩ C1((0, t1), Lp(I)).

This theorem is due to a standard argument which we outline here: The operator

Au := µ∂2
xu, u ∈ W 2

p,B

is uniformly strongly elliptic (see e.g. [Ama93, Example 4.3a]). Since we have simple

Dirichlet boundary conditions the boundary value problem (A,B) is normally elliptic

[Ama93, Remark 4.3c] and therefore

A ∈ H(W 2
p,B(I), Lp(I))

follows from [Ama93, Theorem 4.1]. Denote by S(t) the semigroup which is generated

by A. The exponential decay

||S(t)||L(Lp(I)) ≤Me−νt, M ≥ 1, ν > 0

can be proven by applying [Paz12, Chapter 4.4, Theorem 4.3]. Finally, the result follows

for example by [Ama93, Remark 12.2b].
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6 Analysis of a 3d model

6 Analysis of a 3d model

In this section we will propose and analyse a 3d version of the full model.

6.1 The model

Apart from staying in three dimensions we also keep the 4th order term in the equation

which governs the displacement of the membrane.

However we do make the following simplifications: Instead of letting the temperature

be modelled by a PDE we assume that a temperature profile T ∈ BUC1(Ω) is given.

Furthermore we let µ(T ) = µ > 0 and D(T ) = D > 0 be fixed. That means we

assume that temperature induced changes of the shear modulus and the flexural rigidity

are neglectable. Lastly we consider Dirichlet boundary conditions for φ as for example

in [LW16,ELW15,ELW14].

Before we state the resulting model, we first transform the moving boundary to a fixed

domain. We fix the time t and let q ≥ 2, u ∈ W 2
q (E) and T ∈ BUC1(Ω) be given. We

consider the problem for the electrostatic potential:

ε2(σ(T )∂2
xψu + σ(T )∂2

yψu + ∂xσ(T )∂xψu + ∂yσ(T )∂yψu)

+ σ(T )∂2
zψu + ∂zσ(T )∂zψu = 0 in Ω(u), (6.1)

ψu(x, y, z) =
1 + z

1 + u(x, y)
, (x, y, z) ∈ ∂Ω(u). (6.2)

The fixed domain is given by

Ω := E × (0, 1)

with

E := {(x, y)|
√
x2 + y2 < 1}.

We use the diffeomorphism Du : Ω(u)→ Ω, with

Du(x, y, z) :=

(
x, y,

1 + z

1 + u(x, y)

)
, (x, y, z) ∈ Ω(u).
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6 Analysis of a 3d model

The inverse is

D−1
u (x, y, η) :=

(
x, y, (1 + u(x, y))η − 1

)
, (x, y, η) ∈ Ω.

After the corresponding coordinate transformation we get the following operator:

L(u,T )w :=

σ(T )(ε2∂2
xw + ε2∂2

yw − 2ε2η
∂xu

1 + u
∂x∂ηw − 2ε2η

∂yu

1 + u
∂y∂ηw

+
1 + ε2η2|∇u|2

(1 + u)2
∂2
ηw) +

(
ε2η

(
σ(T )

[
2
|∇u|2

(1 + u)2
− ∆u

1 + u

]
+∂σ(T )

[
− ∂xu

1 + u
(∂xT

− η∂xu

1 + u
∂ηT )− ∂yu

1 + u
(∂yT −

η∂yu

1 + u
∂ηT )

])
+
∂σ(T )∂ηT

(1 + u)2

)
∂ηw

+ ε2∂σ(T )(∂xT − ∂ηT
η∂xu

1 + u
)∂xw + ε2∂σ(T )(∂yT − ∂ηT

η∂yu

1 + u
)∂yw.

For later purposes we split this operator as

L(u,T ) = σ(T )L1
(u,T ) + L2

(u,T )

with

L1
(u,T )w := ε2∂2

xw + ε2∂2
yw − 2ε2η

∂xu

1 + u
∂x∂ηw − 2ε2η

∂yu

1 + u
∂y∂ηw

+
1 + ε2η2|∇u|2

(1 + u)2
∂2
ηw + ε2η

[
2
|∇u|2

(1 + u)2
− ∆u

1 + u

]
∂ηw

and

L2
(u,T )w :=(
ε2η∂σ(T )

[
− ∂xu

1 + u
(∂xT −

η∂xu

1 + u
∂ηT )− ∂yu

1 + u
(∂yT −

η∂yu

1 + u
∂ηT )

]
+
∂σ(T )∂ηT

(1 + u)2

)
∂ηw

+ ε2∂σ(T )

(
∂xT − ∂ηT

η∂xu

1 + u

)
∂xw + ε2∂σ(T )

(
∂yT − ∂ηT

η∂yu

1 + u

)
∂yw.
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6 Analysis of a 3d model

This is convenient because L1
(u,T ) is exactly the operator used in [LW16, p. 398]. With

the definitions

φu := ψu ◦D−1
u

and

T := T ◦D−1
u

the electrostatic potential’s problem (6.1) and (6.2) can now be written as:

L(u,T )φu(x, y, η) = 0, (x, y, η) ∈ Ω, (6.3)

φu(x, y, η) = η, (x, y, η) ∈ ∂Ω. (6.4)

For q ≥ 3 we have T ∈ W 1
∞(Ω). The problem for the membrane’s displacement in the

new coordinates is

u(x, y, t) = ∂ru(x, y, t) = 0 (x, y) ∈ ∂E, (6.5)

∂tu− µ∇2
⊥u+Dλ6∇4

⊥u = g(u), (6.6)

with

g(v) := −ε1(T )λ1

(1 + ε2|∇v|2

(1 + v)2

)
|∂ηφv(·, ·, 1)|2 + λ2P (T, v).

In the upcoming analysis we follow the approach of [LW16]. We can use similar

arguments because the main difference between our operator for the electrostatics and

the operator used in [LW16] lies in the lower order terms. Before we start our analysis

by proving local well-posedness of the derived system equations (6.3)–(6.6), we have

to make sure that the temperature dependent parameters satisfy suitable hypotheses

needed for our analysis. However at first we need to introduce some notation:

Definition 6.1. Given p ∈ [2,∞], define

Wα
p,B(E) :=


{w ∈ Wα

p (E) : w = ∂rw = 0 on δE}, α ∈ (1 + 1/p,∞),

{w ∈ Wα
p (E) : w = 0 on δE}, α ∈ (1/p, 1 + 1/p),

Wα
p (E), α ∈ [0, 1/p)

(6.7)

26



6 Analysis of a 3d model

and for κ ∈ (0, 1) define

Sp(κ) := {w ∈ W 2
p,B(E) : ||w||W 2

p,B
< 1/κ and − 1 + κ < w(x, y) for (x, y) ∈ E}.

6.2 Assumptions on the temperature dependence

In the upcoming analysis we will always assume the following to be satisfied:

Definition 6.2. Let X ⊂ R2 and Y ⊂ R be open and bounded. We say that the

assumption C1 (3d) is satisfied if the following holds:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

||σ(T (·, ·, ·))||L∞(Ω) <∞,
||∂σ(·)||L∞(R) <∞,

σ(T (x, y, z)) ≥ c > 0, (x, y, z) ∈ Ω(u),

ε1 : R→ R, T → ε1(T )

is globally Lipschitz for T ∈ Y,
P : R2 → R, (u, T )→ P (u, T )

is globally Lipschitz for (u, T ) ∈ X

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(C1 (3d))

We will get better results if we make an additional assumption on the physical para-

meters which govern the behaviour of the RHS g in equation (6.6).

Definition 6.3. Let κ ∈ (0, 1) be given. We say the assumption C2 (3d) is satisfied

with b(κ) > 0, if ε1, λ1, λ2 and P are such that there exists a b(κ) with:∥∥∥∥∥∥ ||g(v)||L2(E) ≤ b(κ), for v ∈ S3(κ)

||g(v)− g(w)||L2(E) ≤ b(κ)||v − w||W 2
3 (E), for v, w ∈ S3(κ)

∥∥∥∥∥∥ (C2 (3d))

Remark 6.4. The interpretation of this assumption is that the thermal effects which

push the membrane upward and the electrostatic effects which pull the membrane do-

wnward are equally strong and therefore cancel out each other. In models without

temperature, global existence is usually proved under the assumption of a small voltage.

In Theorem 6.13 it will become evident that assumption C2 (3d) is a possible replace-

ment for that. For example C2 (3d) is satisfied if P is given by the ideal gas law and both
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6 Analysis of a 3d model

the amount of substance N and the voltage V are small. This is due to the Lipschitz

continuity of g which will be shown in Theorem 6.5.

In order to solve the full coupled system we first solve the problem for the electrostatic

potential under the assumption that the membrane’s deflection u is given.

6.3 Well-posedness of the electrostatic problem

We state the main result in this subsection:

Theorem 6.5. Suppose that assumption C1 (3d) is satisfied. Let κ ∈ (0, 1) and q ≥ 3

be given and pick v ∈ Sq(κ). For each F ∈ L2(Ω), there is a unique solution φv ∈ W 2
2 (Ω)

to the equations (6.3) and (6.4). Furthermore there is c1(κ) > 0 such that:

||φv1 − φv2||W 2
2 (Ω) ≤ c1(κ)||v1 − v2||W 2

q (E), v1, v2 ∈ Sq(κ) (6.8)

and the mapping

g : Sq(κ)→ L2(E), v → g(v) (6.9)

is globally Lipschitz continuous and bounded.

We want to prove Lemma 6.7 assuming only T ∈ W 2
2 . We cannot assume that

T ∈ W 1
∞ holds because for n = 3 the space W 2

2 is not embedded in W 1
∞. This however

leaves us with some unbounded coefficients in the operator L(u,T ). Similar arguments, for

example in [ELW15,LW16], usually make use of the abstract well-posedness result [GT01,

Theorem 8.3]. Due to this situation we need a result with less restrictive assumptions:

Lemma 6.6. Denote by Ω′ ⊂ Rn a bounded domain and by L a strictly elliptic operator

in divergence form:

Lu := Di(a
ij(x)Dju+ bi(x)u) + ci(x)Diu+ d(x)u, x ∈ Ω′.

Let the operator L satisfy the following conditions:

aij ∈ L∞(Ω′),

28



6 Analysis of a 3d model

(bi)2, (ci)2, d ∈ Lq/2(Ω′),

where q > n. Then for φ ∈ W 1
2 (Ω′) and g ∈ L2(Ω′) the Dirichlet problem

Lu = g in Ω′, u = φ on ∂Ω′

has a unique weak solution u ∈ W 1
2 (Ω′).

Proof. In order to apply the proof of [GT01, Theorem 8.3] here, we need to replace

[GT01, Lemma 8.4] with the following estimate for unbounded bi, ci, a which is related

to the coercivity of L, the to L associated bilinear form:

L(u, u) ≥ c1||∇u||2L2
− c2||u||2L2

.

This is done in [LU73, Chapter 3, Lemma 4.1] with the help of finer so-called multipli-

cative inequalities, that is inequalities of the type

||u||Lp ≤ c||∇u||aLq ||u||
b
Lr , u ∈ W

1
p

with a, b, p, q, r, c > 0.

Finally [Gri85, Theorem 3.2.1.2] will supply us with a strong solution for our con-

vex domain. However for that we will have to formulate the equation governing the

electrostatic potential with an operator that features Lipschitz coefficients and with

a right-hand side in L2. In order to prove Theorem 6.5 we need several preparatory

Lemmas:

Lemma 6.7. Let κ ∈ (0, 1) and q > 2 be given. For each v ∈ S̄q(κ) and F ∈ L2(Ω),

there is a unique solution φ ∈ W 1
2 (Ω) to the boundary value problem:

L(v,T )φ = F, in Ω, (6.10)

φ = 0, on ∂Ω. (6.11)
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6 Analysis of a 3d model

Proof. The definition of S̄q(κ) and Sobolev’s embedding theorem guarantee the existence

of some constant c0 > 0 such that for v ∈ S̄q(κ),

1 + v(x, y) ≥ κ, (x, y) ∈ E, ||v||C1(Ē) ≤
c0

κ
. (6.12)

First, we write our operator in divergence form,

L(v,T )w = ∂x(a11(v, T )∂xw + a13(v, T )∂ηw) + ∂y(a22(v, T )∂yw + a23(v, T )∂ηw)

+ ∂η(a31(v, T )∂xw + a32(v, T )∂yw + a33(v, T )∂ηw)

+ b1(v, T )∂xw + b2(v, T )∂yw + b3(v, T )∂ηw,

with

a11(v, T ) := ε2σ(T ), a13(v, T ) := a31(v, T ) := −ε2η ∂xv

1 + v
σ(T ),

a22(v, T ) := ε2σ(T ), a23(v, T ) := a32(v, T ) := −ε2η ∂yv

1 + v
σ(T ),

a33(v, T ) :=
1 + ε2η2|∇v|2

(1 + v)2
σ(T ),

b1(v, T ) := ε2∂σ(T )(∂xT − ∂ηT
η∂xv

1 + v
) + ε2

∂xv

1 + v
,

b2(v, T ) := ε2∂σ(T )(∂yT − ∂ηT
η∂yv

1 + v
) + ε2

∂yv

1 + v
,

b3(v, T ) := −ε2η |∇v|
2

(1 + v)2
.

The principle part of the operator is given by

L0
(v,T )w = ∂x(a11(v, T )∂xw + a13(v, T )∂ηw) + ∂y(a22(v, T )∂yw + a23(v, T )∂ηw)

+ ∂η(a31(v, T )∂xw + a32(v, T )∂yw + a33(v, T )∂ηw).

Since we assumed that σ(T ) ≥ c > 0 in C1 (3d) we can argue just like in [LW16, Lemma

2.2] that the operator L(u,T ) is elliptic with ellipticity constant µ(κ) > 0.5 Because of

assumption C1 (3d), (6.12) and T ∈ W 2
2 (Ω) the claim now follows from Lemma 6.6 since

5The principle part of our operator and the one in [LW16] only differ by the factor σ(T ).
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6 Analysis of a 3d model

the Sobolev embedding

W 1
2 (Ω) ↪→ L6(Ω)

holds true for n = 3.

The following results show that if we start with smoother functions for the deflection

we will get smoother solutions for the electrostatic potential as well.

Lemma 6.8. Let κ ∈ (0, 1) be given. For each v ∈ S̄∞(κ) and F ∈ L2(Ω), the unique

solution φ ∈ W 1
2 (Ω) to the boundary value problem in Lemma 6.7 belongs to W 2

2 (Ω).

Proof. The regularity of v, T and φ ensures that:

G := F + b1(v, T )∂xφ+ b2(v, T )∂yφ+ b3(v, T )∂ηφ ∈ L2(Ω).

Furthermore v ∈ S̄∞(κ) implies that aij(v, T ) ∈ W 1
∞ for 1 ≤ i, j ≤ 3. Therefore the

conditions in [Gri85, 3.1.3] are satisfied and we can apply [Gri85, Theorem 3.2.1.2] which

yields that the boundary value problem

L0
(v,T )φ̂ = G in Ω, φ̂ = 0 on ∂Ω (6.13)

has a unique solution φ̂ ∈ W 2
2 (Ω). Applying [GT01, Theorem 8.3] to (6.13) shows that

(6.13) has a weak solution in W 2
2 (Ω). Due to the definition of G, φ and φ̂ and Lemma

6.7 we have φ = φ̂ ∈ W 2
2 (Ω).

The next two Lemmas proofs can be found in [LW16] and will help us to prove Lemma

6.11:

Lemma 6.9. Let p ∈ [2, 4] be given. There exists c3(p) > 0 such that

||w(·, ·, 1)||pLp(E) ≤ c3(p)||w||(3p−4)/2

W 1
2 (Ω)

||w||(4−p)/2L2(Ω) , w ∈ W 1
2 (Ω). (6.14)

Lemma 6.10. If φ ∈ W 2
2 (Ω) and φ = 0 on ∂Ω, then∫

Ω

∂2
xφ∂

2
ηφ d(x, y, η) =

∫
Ω

|∂x∂ηφ|2 d(x, y, η)
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and ∫
Ω

∂2
yφ∂

2
ηφ d(x, y, η) =

∫
Ω

|∂y∂ηφ|2 d(x, y, η).

In the following we first derive an estimate for ||φ||W 1
2 (Ω). After that we can estimate

||φ||W 2
2 (Ω). The next Lemma will allow us to prove L2 regularity for some of the 2nd

order terms in our operator L(v,T ).

Lemma 6.11. Let κ ∈ (0, 1) and q > 2 be given. For each v ∈ S̄q(κ) and F ∈ L2(Ω),

the weak solution φ ∈ W 1
2 (Ω) to the boundary value problem (6.10), (6.11) belongs to the

space X(Ω) defined by

X(Ω) := {w ∈ W 1
2 (Ω) : ∂ηw ∈ W 1

2 (Ω)}.

Furthermore there is c4(κ) > 0 such that

||φ||W 1
2 (Ω) + ||∂ηφ||W 1

2 (Ω) ≤ c4(κ)||F ||L2(Ω). (6.15)

Proof. First we define

Px := ∂xφ− η
∂xv

1 + v
∂ηφ, Py := ∂yφ− η

∂yv

1 + v
∂ηφ, Pη :=

∂ηφ

1 + v
. (6.16)

Invoking (6.12) and using assumption C1 (3d) we find

||∇φ||2L2(Ω) ≤ c(κ)[ε2||Px||2L2(Ω) + ε2||Py||2L2(Ω) + ||Pη||2L2(Ω)]. (6.17)

Furthermore applying assumption C1 (3d), Hölder’s inequality,W 1
2 (Ω) ↪→ L6(Ω), Young’s

inequality and lastly [LU73, Chapt. 3.4 (4.19)] yields

∫
Ω

φL2
(u,T )φ

σ(T )
d(x, y, η)

≤ c||φ||L3||∂xT ||L6 ||∇φ||L2

≤ c
[ε1

2
||φ||2L3

+
1

2ε1
||∇φ||2L2

]
≤ c′

[ε1ε2
2
||∇φ||2L2

+
ε1c(ε2)

2
||φ||2L2

+
1

2ε1
||∇φ||2L2

]
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with constants c, c′, c(ε2) > 0. Choosing ε1 > 0 big enough and then ε2 > 0 small enough

we find that (6.17) implies:

∫
Ω

φL2
(u,T )φ

σ(T )
d(x, y, η) ≤ c′(κ)

(
||φ||2L2(Ω) +

ε2

4
(||Px||2L2(Ω) + ||Py||2L2(Ω) + ||Pη||2L2(Ω)

)
.

(6.18)

By using the splitting L(u,T ) = σ(T )L1
(u,T ) + L2

(u,T ) and then invoking (6.10) and the

Divergence Theorem for the term with L1
(u,T ) we find:

ε2||Px||2L2(Ω) + ε2||Py||2L2(Ω) + ||Pη||2L2(Ω)

=

∫
Ω

Fφ

σ(T )
d(x, y, η) + ε2

∫
Ω

[ ∂xv
1 + v

φPx +
∂yv

1 + v
φPy

]
d(x, y, η) +

∫
Ω

φL2
(u,T )φ

σ(T )
d(x, y, η).

We can now estimate the latter quantity:

∫
Ω

Fφ

σ(T )
d(x, y, η) + ε2

∫
Ω

[ ∂xv
1 + v

φPx +
∂yv

1 + v
φPy

]
d(x, y, η) +

∫
Ω

φL2
(u,T )φ

σ(T )
d(x, y, η)

≤ ε2

2
[||Px||2L2(Ω) + ||Py||2L2(Ω) + ||Pη||2L2(Ω)] + c′′(κ)

[
||F ||2L2(Ω) + ||φ||2L2(Ω)

]
.

To see that this holds true, we first observe that due to assumption C1 (3d) the estimate

for the first two terms is already done in [LW16, proof Lemma 2.5] by Cauchy-Schwarz’

and Young’s inequality. For the leftover term, which is due to our operator being different

from the one in [LW16], we can simply use (6.18). Now (6.17) yields

||φ||2W 1
2 (Ω) ≤ c′′′(κ)

[
||F ||2L2(Ω) + ||φ||2L2(Ω)

]
, (6.19)

which can be improved to

||φ||2W 1
2 (Ω) ≤ c′′′′(κ)||F ||2L2(Ω). (6.20)

The latter is due to a simple argument by contradiction. Details can be found in the

proof of [ELW14, Proposition 6, Eq(19)]. Now we turn to the estimate for ∂ηφ: We
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6 Analysis of a 3d model

assume that v also belongs to S̄∞(κ′) for some κ′ ∈ (0, 1). We define

cx := ∂x∂ηφ, cy := ∂y∂ηφ, cη := ∂2
ηφ.

It follows from Lemma 6.10 that∫
Ω

∂2
xφ∂

2
ηφ d(x, y, η) =

∫
Ω

|cx|2 d(x, y, η),

∫
Ω

∂2
yφ∂

2
ηφ d(x, y, η) =

∫
Ω

|cy|2 d(x, y, η).

(6.21)

With the definitions

Qx := cx − η
∂xv

1 + v
cη, Qy := cy − η

∂yv

1 + v
cη, Qη :=

1

1 + v
cη,

the estimate (6.12) and assumption C1 (3d) imply

||∇∂ηφ||2L2(Ω) ≤ c(κ)[||Qx||2L2(Ω) + ||Qy||2L2(Ω) + ||Qη||2L2(Ω)] (6.22)

and∫
Ω

∂2
ηφL

2
(u,T )φ

σ(T )
d(x, y, η) ≤ c′(κ)||∂ηφ||2L2(Ω) +

ε2

4
(||Qx||2L2(Ω) + ||Qy||2L2(Ω) + ε−2||Qη||2L2(Ω)).

(6.23)

To see this, one uses (6.12) and assumption C1 (3d) to get rid of the terms which

include v and T . Then one applies Cauchy Schwarz’ and Young’s inequality. Now we

can estimate:

ε2||Qx||2L2(Ω) + ε2||Qy||2L2(Ω) + ||Qη||2L2(Ω)

=

∫
Ω

F cη
σ(T )

d(x, y, η)− ε2

2

∫
Ω

(
2|∇v|2 − (1 + v)∆v

(1 + v)2
)|∂ηφ|2 d(x, y, η)

+
ε2

2

∫
E

(
2|∇v|2 − (1 + v)∆v

(1 + v)2
)|∂ηφ(x, y, 1)|2 d(x, y) +

∫
Ω

∂2
ηφL

2
(u,T )φ

σ(T )
d(x, y, η)

≤ ε2

2
[||Qx||2L2(Ω) + ||Qy||2L2(Ω) + ε−2||Qη||2L2(Ω)] + c′′(κ)[||F ||2L2(Ω) + ||∂ηφ||2L2(Ω)].

The identity in the first line is again due to the splitting L(u,T ) = σ(T )L1
(u,T ) + L2

(u,T ),

(6.10), (6.21) and ∂ηφ∂2
ηφ = ∂η(|∂ηφ|2)/2. For the estimate in the last line we first observe
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6 Analysis of a 3d model

that the estimate for the first three terms is already done in [LW16, proof Lemma 2.5]

and can be used without change because C1 (3d) is satisfied. For the leftover term we

can simply use (6.23). Combining this with (6.22) gives

||∂ηφ||2W 1
2 (Ω) ≤ c′′′(κ)[||F ||2L2(Ω) + ||∂ηφ||2L2(Ω)]. (6.24)

Since our estimate is independent of the regularity of v the claim for all v ∈ S̄q(κ) follows

by approximation.

Now we want to prove the W 2
2 regularity of our solution under the assumption of

slightly smoother functions v (see [LW16, Proposition 2.7]):

Lemma 6.12. Let κ ∈ (0, 1) and q ≥ 3 be given. For each v ∈ S̄q(κ) and F ∈ L2(Ω),

the weak solution φ ∈ W 1
2 (Ω) to the boundary value problem (6.10), (6.11) belongs to

W 2
2 (Ω) and there is c5(κ) > 0 such that

||φ||W 2
2 (Ω) ≤ c5(κ)||F ||L2(Ω).

Proof. First we define

J1 := 2ε2η
∂xu

1 + u
∂x∂ηφ+ 2ε2η

∂yu

1 + u
∂y∂ηφ

+
(

1− 1 + ε2η2|∇u|2

(1 + u)2

)
∂2
ηφ− ε2η

[
2
|∇u|2

(1 + u)2
− ∆u

1 + u

]
∂ηφ

and

J2 := −

(
ε2η∂σ(T )

[
− ∂xu

1 + u

(
∂xT −

η∂xu

1 + u
∂ηT

)
− ∂yu

1 + u

(
∂yT −

η∂yu

1 + u
∂ηT

)]
+
∂σ(T )∂ηT

(1 + u)2

)
∂ηφ

− ε2∂σ(T )
(
∂xT − ∂ηT

η∂xu

1 + u

)
∂xφ− ε2∂σ(T )

(
∂yT − ∂ηT

η∂yu

1 + u

)
∂yφ.

We introduce the following convenient splitting:

J := J1 + J2 σ(T )−1.
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6 Analysis of a 3d model

Again J1 denotes the same term as in [LW16] and J2 is what we get in addition to that

due to our different operator. Thus we can simply reorder the boundary value problem

for φ to get

ε2∂xφ+ ε2∂yφ+ ∂ηφ = J, φ = 0 on ∂Ω.

Now we apply Lemma 6.11 and the continuous embeddings of W 2
q (E) in W 1

∞(E) and

W 1
2 (Ω) in L6(Ω) (for the terms with second derivatives of v) to obtain

||J ||L2(Ω) ≤ c(κ)||F ||L2(Ω).

For the terms which include T we used assumption C1 (3d) and T ∈ W 2
3 (Ω). Now we

infer from [Gri85, Theorem 3.2.1.2] that φ ∈ W 2
2 (Ω). It remains to prove that

||φ||W 2
2 (Ω) ≤ c(κ)||J ||L2(Ω) (6.25)

holds true. Due to our preparation this last step can be found in [LW16, proof Pro-

position 2.7]: After invoking [Gri85, Theorem 3.1.3.1 & Lemma 3.2.1.1] we can use the

approximation in [Gri85, Theorem 3.2.1.2].

Now we are ready to proof the well-posedness result:

Proof of Theorem 6.5. We set

h := −L(v,T )η = ε2η
[
2
|∇u|2

(1 + u)2
− ∆u

1 + u

]
+

(
ε2η∂σ(T )

[
− ∂xu

1 + u

(
∂xT −

η∂xu

1 + u
∂ηT

)
− ∂yu

1 + u

(
∂yT −

η∂yu

1 + u
∂ηT

)]
+
∂σ(T )∂ηT

(1 + u)2

)
.

Since v ∈ Sq(κ) and C1 (3d) is satisfied, h belongs to L2(Ω) and therefore Lemma 6.12

ensures that there is a unique solution φv to

L(v,T )φv = h in Ω, φv = 0 on ∂Ω (6.26)

satisfying

||φv||W 2
2 (Ω) ≤ c5(κ)||f ||L2(Ω).
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Setting ψv := φv − η, the function ψv obviously solves (6.4) and satisfies

||ψv||W 2
2 (Ω) ≤ c7(κ).

Lastly, by assumption C1 (3d) the proof of the equations (6.8) and (6.9) is identical to

the proof in [LW16, Proposition 2.1].

6.4 Well-posedness of the deflection problem

Having proved the well-posedness of the electrostatic potential for a given deflection,

we can now prove well-posedness of the system by solving the underlying non-linear

equation for the evolution of the membrane.

Theorem 6.13.

Suppose that C1 (3d) is satisfied. Let ε > 0, T ∈ BUC1(Ω) and 4ξ ∈ (7/3, 4) be

given. For the membrane’s displacement consider an initial value u0 ∈ W 4ξ
2 (E) such

that u0 = ∂ru0 = 0 on ∂E and u0(x) > −1 for x ∈ E. Then the following holds true:

1. There is a unique solution (u, ψ) to the full system on the maximal interval of

existence [0, Tm) in the sense that

u ∈ C1((0, Tm), L2(E)) ∩ C([0, Tm),W 4ξ
2 (E)) (6.27)

satisfies equations (6.5) and (6.6), while ψ(t) ∈ W 2
2 (Ω(u(t)) also solves the corre-

sponding equation in Ω(u(t)) for each t ∈ [0, Tm).

2. Given κ ∈ (0, 1) there is r(κ) > 0 and b(κ) > 0 such that Tm = ∞, provided that

||u0||W 2
q (E) ≤ r(κ) and that C2 (3d) is satisfied with b(κ) > 0.

Proof. Observe that W 4ξ
2 is continuously embedded in W 2

3 . This implies that

||w||W 2
3 (E) ≤ c̄||w||W 4ξ

2 (E), w ∈ W 2
3 (E),

for c̄ > 1. Furthermore since u0 ∈ W 4ξ
2 we can chose κ ∈ (0, 1) such that u0 ∈ S3(2κ)
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6 Analysis of a 3d model

and ||u0||W 4ξ
2 (E) ≤ 1/(2κ). Now let

Aw := λ6D∇4
⊥w − µ∇2

⊥w, w ∈ W 4
2

and recall that −A generates an exponentially decaying analytic semigroup on L2(E)

with

||e−tA||L(W 4ξ
2,D(E)) + ||e−tA||L(W 1

2,D(E)) + tξ||e−tA||L(L2(E),W 4ξ
2,D(E)) ≤Me−νt, (6.28)

where ν > 0,M ≥ 1, t > 0.

We now invoke Theorem 6.5 to find that g is well defined on S3(κ) and that there is

C1(κ) > 0 such that

||g(v)||L2(E) ≤ C1(κ)||v||W 2
3 (E), v ∈ S̄3(κ) (6.29)

and

||g(v1)− g(v2)||L2(E) ≤ C1(κ)||v1 − v2||W 2
3 (E), v1, v2 ∈ S̄3(κ) (6.30)

holds true. Therefore we can rewrite the problem for the deflection of the membrane as

the semilinear Cauchy problem

∂tu+ Au = g(u), t > 0, u(0) = u0. (6.31)

For τ > 0 we define the space

Vτ (κ) := {v ∈ C([0, τ ], S̄3(κ))}.

We endow Vτ (κ) with the metric induced by C([0, τ ], S̄3(κ0)) where κ0 := κ/Mc̄. The

following approach is also used in [ELW14], [ELW15] and [LW16]: We show that

Γ(v)(t) := e−tAu0 +

∫ t

0

e−(t−s)g(v(s))ds, t ∈ [0, τ ], v ∈ Vτ (κ0)

defines a contraction from Vτ (κ) into itself. We now assume that τ is sufficiently small
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6 Analysis of a 3d model

and consider v1, v2 ∈ Vτ (κ) and t ∈ [0, τ ]. Using u0 ∈ S3(2κ), (6.29) and (6.28) yields

Γ(v1)(t) ≥ −1 + 2κ. (6.32)

Invoking (6.28) and (6.29) implies

||Γ(v1)(t)||W 2
3
≤ 1

2κ
. (6.33)

Lastly, by applying (6.28) and (6.30) we find

||Γ(v1)(t)− Γ(v2)(t)||W 2
3
≤ c(κ, τ)||v1 − v2||Vτ (κ) (6.34)

with 0 < c(κ, τ) < 1. Consequently Γ defines a contraction from Vτ (κ) into itself.

Therefore Γ(v) has a unique fixed point which is a solution to (6.31). For part 2 of

Theorem 6.13 we simply use assumption C2 (3d) instead of τ being sufficiently small.

Remark 6.14. One also ends up with global existence if instead of C2 (3d) one assumes

that z := a2

h
is sufficiently small. In that case z assumes the role of the parameter λ

in [ELW15]. This condition can be interpreted as the cylinder being sufficiently thin.
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7 Analysis of a 2d model

7 Analysis of a 2d model

In this section we propose and analyse an alternative simplification of the full model.

7.1 The model

In this model we do not assume that the temperature Tu is given and instead let it be

modelled by the respective PDE. Also we let the shear modulus µ(Tu) still depend on

temperature.

However we do make the following simplifications: We assume that tension dominates

rigidity, that means D
µ
� 1. Thus we can omit the 4th spatial derivative in the equation

for the membrane’s displacement. This is a standard simplification which is used for

example in [PB02,ELW14,GPW05,EGG10]. This assumption is valid for micropumps

and other MEMS devices that are described in the mentioned references. Also we as-

sume that there is no variation in the horizontal direction orthogonal to the x-direction.

Furthermore we discard the time-evolution for the temperature equation, that means

we consider a regime where damping or thermal conductivity is high. Also we assume

that the electric conductivity σ(Tu) = σ is independent of Tu, which is for example a

widely used assumption for gases. Lastly, we impose Dirichlet boundary conditions for

the temperature. We fix an ambient temperature T0 ∈ C∞(R2,R) and impose:

Tu(x, z) = T0(x, z), (x, z) ∈ ∂Ω(u(t)).

Just like in the 3d case of section 6 we transform the problem to a fixed domain. Since

we are in the 2d case we make the following changes to the definitions of the ground

plate and region:

E := (−1, 1),

Ω(u(t)) := {(x, z) ∈ E × (−1,∞) : −1 < z < u(x, t)}.

The volume is given by

VC = 2 +

∫ −1

1

u dx. (7.1)
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x = −1
z = −1

x = 1

z = 0
u(x)

Ω (u)

Figure 4: Domain Ω(u) in 2d.

The transformation map to the fixed domain Ω := E × (−1, 0) is given by

Du(x, z) :=
(
x,

1 + z

1 + u(x)

)
, (x, z) ∈ Ω(u)

with the inverse

D−1
u (x, η) :=

(
x, (1 + u(x))η − 1

)
, (x, η) ∈ Ω.

Just as in the 3d case we now restate the problem with

φu = ψu ◦D−1
u , Tu = Tu ◦D−1

u .

The deflection of the membrane u is governed by

∂tu− µ(Tu(·, 1))∂2
xu = −g(u, Tu(·, 1), φu(·, 1)), x ∈ E (7.2)

u(x, t) = 1, for x ∈ ∂E, t ∈ (0,∞) and u(x, 0) = u0 for x ∈ E, (7.3)

with

g(u, Tu, φu) := ε1(∂ηTu, Tu)λ1
1 + ε2|∂xu|2

(1 + u)2
|∂ηφu|2 − λ2P (∂ηTu, Tu, u). (7.4)

The problem for the electrostatic potential φu is:

Luφu(x, η) = 0, (x, η) ∈ Ω, (7.5)
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φu(x, η) = η, (x, η) ∈ ∂Ω, (7.6)

with

Luw := ε2∂2
xw − 2ε2η

∂xu

1 + u
∂x∂ηw

+
1 + ε2η2|∂xu|2

(1 + u)2
∂2
ηw + ε2η[2

|∂xu|2

(1 + u)2
− ∂2

xu

1 + u
]∂ηw.

Finally the temperature Tu is governed by

LuTu = −h(u,φu), (7.7)

Tu(x, η) = T0 ◦D−1
u (x, η) =: Tu,0(x, η), (x, η) ∈ ∂Ω, (7.8)

with

h(u,φu) := σλ4

(
ε2|∂xφu|2 +

1 + ε2η2|∂xu|2

(1 + u)2
(∂zφu)

2 − 2ε2η∂zφu
1 + u

∂xφu∂xu

)
.

Our approach in 2d is similar to the 3d case. However the definitions of the function

spaces need to be adapted.

Definition 7.1. Given κ ∈ (0, 1) we define

W 2α
q,D(E) :=

 W 2α
q (E), 2α ∈ [0, 1/q),

{u ∈ W 2α
q (E); u(±1) = 0}, 2α ∈ (1/q, 2]

(7.9)

and

Sq(κ) := {u ∈ W 2
q,D(E); ||u||W 2

q,D(E) < 1/κ, −1 + κ < u(x) for x ∈ I}.

7.2 Assumptions on the temperature dependence

As in the 3d case we will work with the following, slightly different, hypotheses on the

physical parameters:

Definition 7.2. Let X ⊂ R3 and Y ⊂ R2 be open and bounded. We say that the
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assumption C1 (2d) is satisfied if the following holds:∥∥∥∥∥∥∥∥∥∥∥∥∥∥

µ(T ) ≥ c > 0, T ∈ R, µ ∈ C1

ε1 : R2 → R, (T, dT )→ ε1(T, dT )

is globally Lipschitz for (T, dT ) ∈ Y,
P : R3 → R, (u, dT, T )→ P (u, dT, T )

is globally Lipschitz for (u, dT, T ) ∈ X

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(C1 (2d))

We will get better results if we make an additional assumption on the physical para-

meters which govern the behaviour of the RHS g of equation (7.2).

Definition 7.3. Let κ ∈ (0, 1), 2σ ∈ [0, 1/2), q ∈ (2,∞) and ξ ∈ [0, (q− 1)/q) be given.

Let g be the function defined in (7.4). We say the assumption C2 (2d) is satisfied with

b(κ) > 0, if ε1, λ1, λ2 and P are such that there exists b(κ) with:∥∥∥∥∥∥ ||g(v)||W 2σ
2,D(E) ≤ b(κ), for v ∈ Sq(κ)

||g(v)− g(w)||W 2σ
2,D(E) ≤ b(κ)||v − w||W 2−ξ

q,D (E), for v, w ∈ Sq(κ)

∥∥∥∥∥∥ (C2 (2d))

7.3 Well-posedness of the temperature problem

In order to prove the Lipschitz continuity of the RHS of the equation governing the

membrane’s deflection, we need the following, to [ELW15, Lemma 2.6] analogous, result:

Theorem 7.4. Let ξ ∈ [0, (q − 1)/q), κ ∈ (0, 1), v ∈ Sq(κ) and α ∈ (ξ, 1) be given.

There are unique solutions φv ∈ W 2
2 (Ω) and Tv ∈ W 2

2 (Ω) to the electro-thermal problem.

Furthermore there exists c(κ) > 0 such that:

||φv − φw||W 2−α
2,D (Ω) ≤ c(κ)||v − w||W 2−ξ

q (E), v, w ∈ Sq(κ), (7.10)

||Tv − Tw||W 2−α
q,D (Ω) ≤ c(κ)||v − w||W 2−ξ

q (E), v, w ∈ Sq(κ). (7.11)

The proof for the electrostatic potential can be found in [ELW14, Proposition 2.1].

For the temperature we follow a similar approach and have to prove:

Lemma 7.5. Let q ∈ (2,∞) and κ ∈ (0, 1) be given. For each v ∈ Sq(κ), T0 ∈ C∞(Ω)
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and φu ∈ W 2
2 (Ω) there is a unique solution Tv ∈ W 2

2 (Ω) to

LuTu(x, η) = −h(u,φu)(x, η), (x, η) ∈ Ω, (7.12)

Tu(x, η) = T0(x, η), (x, η) ∈ ∂Ω, (7.13)

such that (7.11) is satisfied.

We start by proving the existence of a weak solution for a slightly irregular RHS,

which will then allow us to prove a higher regularity for the operator Lu.

Lemma 7.6. For each v ∈ Sq(κ) and F ∈ W−1
2,D(Ω) there is a unique solution T ∈

W 1
2,D(Ω) to the boundary value problem

− LuT (x, η) = F, (x, η) ∈ Ω, (7.14)

T (x, η) = 0, (x, η) ∈ ∂Ω, (7.15)

and there is a constant c2(κ) > 0 such that

||T ||W 1
2,D(Ω) ≤ c2(κ)||F ||W−1

2,D(Ω).

Furthermore, if F ∈ L2(Ω), then T ∈ W 2
2,D(Ω) and

||T ||W 2
2,D
≤ c2(κ)||F ||L2 .

Proof. According to [Gri11, Def. 1.3.2.3, Eq. (1,3,2,3)], we may write any F ∈ W−1
2,D(Ω)

in the form F = f0 + ∂xf1 + ∂ηf2 with (f0, f1, f2) ∈ L2(Ω)3. Furthermore v ∈ Sq(κ)

and φv ∈ W 2
2,D(Ω) ensure that h(v,φv) ∈ L2(Ω). Therefore we can move h to the RHS

and thus [GT01, Theorem 8.3] ensures that the boundary value problem has a unique

solution T ∈ W 1
2,D(Ω). The two estimates now follow just as in [ELW15, Lemma 2.2].

For v ∈ Sq(κ) we define

fv(x, η) := LvTu,0 + h(v,φv) ∈ L2(Ω).
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Now Lemma 7.6 provides us with a unique solution Tv ∈ W 2
2,D(Ω) to

−LuTv(x, η) = fv, (x, η) ∈ Ω,

Tv(x, η) = 0, (x, η) ∈ ∂Ω.

Clearly Sv := Tv + Tu,0 is a unique solution to (7.12) and (7.13). To prove the Lipschitz

dependence of Sv on v ∈ Sq(κ), we introduce a bounded linear operator

A(v) ∈ L(W 1
2,D(Ω),W−1

2,D(Ω)) ∩ L(W 1
2,D(Ω), L2(Ω))

by setting

A(v)T := −LvT, T ∈ W 1
2,D.

Note that A(v) is invertible according to Lemma 7.6 and that Tv = A(v)−1fv. For the

inverse A(v)−1 we have:

Lemma 7.7. Given θ ∈ [0, 1] \ {1/2}, there is a constant c5(κ) > 0 such that

||A(v)−1||L(W θ−1
2,D (Ω),W θ+1

2,D (Ω)) ≤ c5(κ), v ∈ Sq(κ). (7.16)

The proof is based on the fact that A(v)−1 belongs to both L(W−1
2,D(Ω),W 1

2,D(Ω))

and L(L2(Ω),W 2
2,D(Ω)), which is due to Lemma 7.6. Subsequently it uses complex

interpolation. Details can be found in [ELW15, Lemma 2.3]. Next we note that A(v) is

Lipschitz continuous with respect to v:

Lemma 7.8. Given ξ ∈ [0, (q − 1)/q) and α ∈ (ξ, 1), there exists c6(κ) > 0 such that

||A(v)−A(w)||L(W 2
2,D(Ω),W−α2,D) ≤ c6(κ)||v − w||W 2−ξ

q (I), v, w ∈ Sq(κ). (7.17)

The proof to Lemma 7.8 is identical to the proof of [ELW15, Lemma 2.4] since we

consider the same operator.

Now we still need Lipschitz dependence of the RHS. A similar result for an easier case

can be found in [ELW15, Lemma 2.5].
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7 Analysis of a 2d model

Lemma 7.9. Given ξ ∈ [0, (q − 1)/q) and α ∈ (ξ, 1), there exists c7(κ) such that:

||fv − fw||W−α2,D
≤ c7(κ)||v − w||W 2−ξ

q
, v, w ∈ Sq(κ). (7.18)

Proof. Because we have a more complex RHS in our temperature equation we will need

different estimates than those which can be found in [ELW15, Lemma 2.5]. We use

W 1
2 ·W 2−α

2 ↪→ W
1/2
2

and observe that since v, w ∈ Sq(κ) and φw, φv ∈ W 2
2 there is a c′ > 0 and a c′′ > 0 such

that

||hv,φv − hw,φw ||W 1/2
2
≤ c′(||∂xφ2

v − ∂xφ2
w||W 1/2

2
+ ||∂zφ2

v − ∂zφ2
w||W 1/2

2

+ ||∂xφv(∂zφv − ∂zφw) + ∂zφw(∂xφv − ∂xφw)||
W

1/2
2

)

≤ 3c′(||φw||W 1
2

+ ||φv||W 1
2
)||φv − φw||W 2−α

2,D

≤ c′′||v − w||W 2−ξ
q
. (7.19)

Using T0 ∈ C∞ yields

|
∫

Ω

(fv − fw)k d(x, η)| ≤ c

∫
Ω

|hv,φv − hw,φw |k d(x, η)

≤ c||v − w||W 2−ξ
q (I)||k||Wα

2,D
.

In the second estimate we used v, w ∈ Sq(κ), L2 ↪→ W−α
2,D and W 2−ξ

2 ↪→ W 1
∞ for the first

terms. For the last term we used∫
Ω

(|hv,φv − hw,φw |)k d(x, η) ≤ c||hv,φv − hw,φw ||L2||k||Wα
2,D

≤ c||v − w||W 2−ξ
q (I)||k||Wα

2,D
,

where the estimate in the last line is due to (7.19).

We now invoke the Lemmas 7.7, 7.8 and 7.9 in order to obtain the Lipschitz continuity

of Sv with respect to v:
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7 Analysis of a 2d model

Lemma 7.10. Given ξ ∈ [0, (q − 1)/q) and α ∈ (ξ, 1), there exists c8(κ) such that:

||Sv − Sw||W 2−α
2,D
≤ c8(κ)||v − w||W 2−ξ

q
, v, w ∈ Sq(κ).

Proof. Let v, w ∈ Sq(κ) and recall that Sv = Tv + Tv,0 with Tv = A(v)−1fv ∈ W 2
2,D.

Then obviously Sv − Sw = Tv − Tw ∈ W 2−α
2,D and so we can split the LHS to obtain

||Sv − Sw||W 2−α
2,D
≤ ||A(v)−1||L(W−α2,D,W

2−α
2,D )||fv − fw||W−α2,D

+ ||A(v)−1||L(W−α2,D,W
2−α
2,D )||A(v)−A(w)||L(W 2

2,D,W
−α
2,D)

||A(w)−1||L(L2,W 2
2,D)||fw||L2

≤ c8(κ)||v − w||W 2−ξ
q
.

For the last estimate we applied the estimates (7.16), (7.17) and (7.18).

7.4 Well-posedness of the deflection problem

The first step for the proof of the well-posedness result is to analyse the RHS of the

equation. See also [ELW15, Prop. 2.1].

Theorem 7.11. Assume that C1 (2d) is satisfied. Let κ ∈ (0, 1) and q ∈ (2,∞) be given

and pick v ∈ Sq(κ). Then the mapping

g : Sq(κ)→ W 2σ
2,D(E), v → ε1(∂ηTv(·, 1), Tv(·, 1))λ1

(1 + ε2|∂xv|2

(1 + v)2

)
|∂ηφv(·, 1)|2

−λ2P (∂ηTv(·, 1), Tv(·, 1), v)

is globally Lipschitz continuous and bounded such that

||g(v)− g(w)||W ν
2,D(E) ≤ c1||v − w||W 2−ξ

q,D (E), for v, w ∈ Sq(κ), (7.20)

with 2σ ∈ [0, 1/2), ξ ∈ [0, 1/2), ν ∈ [0, (1− 2ξ)/2) and c1(κ) > 0.

Proof. In the following we have 2σ ∈ (ξ + ν, 1/2) and α ∈ (ξ, 2σ − ν). For equation
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7 Analysis of a 2d model

(7.20) we observe that by [ELW14, Eq. (39)] there is c(κ) such that

||∂ηφv(·, 1)||
W

1/2
2 (E)

+ || |∂ηφv(·, 1)|2||W 2σ
2 (E) ≤ c(κ). (7.21)

For m ∈ N and ai, bi ∈ R the following elementary result6 is evident by induction:

m∏
i=1

ai −
m∏
i=1

bi =
m∑
i=1

(ai − bi)
(i−1∏
j=1

bj

m∏
k=i+1

ak

)
. (7.22)

Applying this with m = 4 we can split the LHS of (7.20) in the following convenient

way:

||g(v)− g(w)||W ν
2,D(E)

≤ λ1||(ε1(∂ηTv(·, 1), Tv(·, 1))− ε1(∂ηTw(·, 1), Tw(·, 1)))(
1 + ε2|∂xv|2

(1 + v)2
)|∂ηφv(·, 1)|2||W ν

2,D(E)

+ λ1ε
2||(|∂xv|2 − |∂xw|2)ε1(∂ηTw(·, 1), Tw(·, 1))(

1 + ε2

(1 + v)2
)|∂ηφv(·, 1)|2||W ν

2,D(E)

+ λ1||(
1

(1 + v)2
− 1

(1 + w)2
)ε1(∂ηTw(·, 1), Tw(·, 1))(1 + ε2|∂xw|2)|∂ηφv(·, 1)|2||W ν

2,D(E)

+ λ1||(|∂ηφv(·, 1)|2 − |∂ηφw(·, 1)|2)ε1(∂ηTw(·, 1), Tw(·, 1))(
1 + ε2|∂xw|2

(1 + w)2
)||W ν

2,D(E)

+ λ2||P (∂ηTv(·, 1), Tv(·, 1), v)− P (∂ηTw(·, 1), Tw(·, 1), w)||W ν
2,D(E)

=: J1 + J2 + J3 + J4 + J5.

We just have to prove Ji ≤ c||v − w||W 2−ξ
q,D (E) for i ∈ {1, ..., 5}. For J5 this is simply due

to C1 (2d) and [Gri11, Theorem 1.5.1.1]. For J2 and J3 we use [ELW15, Theorem 7.1]

(continuity of pointwise multiplication)

W 1
q (E) ·W 1−ξ

q (E) ·W 1/2
2 (E) ·W 2

q (E) ·W 2σ
2 (E) ↪→ W ν

2 (E).

6We use the convention
∏k

i=j ai = 1 for j > k and ai ∈ R.
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7 Analysis of a 2d model

To be precise, we estimate:

J2 = λ1ε
2||(|∂xv|2 − |∂xw|2)ε1(∂ηTw(·, 1), Tw(·, 1))(

1 + ε2

(1 + v)2
)|∂ηφv(·, 1)|2||W ν

2,D(E)

≤ c′(κ)
(
||∂xv + ∂xw||W 1

q (E)||∂xv − ∂xw||W 1−ξ
q (E)||ε1(∂ηTw(·, 1), Tw(·, 1))||

W
1/2
2 (E)

||( 1 + ε2

(1 + v)2
)||W 2

q (E)|| |∂ηφv(·, 1)|2||W 2σ
2 (E)

)
for c′(κ) > 0. For J4 we use:

W
1/2
2 (E) ·W 1

q (E) ·W 1/2
2 (E) ·W 1/2−α

2 (E) ↪→ W ν
2 (E).

Having put all the terms in the correct spaces and using v, w ∈ Sq(κ), the estimates for

J2 and J3 follow from Theorem 7.4. Finally invoking the continuity

W 2
q (E) ·W 1

q (E) ·W 1/2
q (E) ·W 1/2

q (E) ·W 1/2−α
2 (E) ↪→ W ν

2 (E)

we estimate J1:

||(ε1(∂ηTv(·, 1), Tv(·, 1))− ε1(∂ηTw(·, 1), Tw(·, 1)))(
1 + ε2|∂xv|2

(1 + v)2
)|∂ηφv(·, 1)|2||W ν

2,D(E)

≤ c(κ)||ε1(∂ηTv(·, 1), Tv(·, 1)))− ε1(∂ηTw(·, 1), Tw(·, 1))||
W

1/2−α
2 (E)

≤ c(κ)||Tv − Tw||W 2−α
2 (Ω)

≤ c(κ)||v − w||W 2−ξ
q (E).

The last steps are due to properties of the trace [Gri11, Theorem 1.5.1.1], Theorem 7.4

and assumption C1 (2d).

The main result in this section is Theorem 7.12 (see also [ELW15, Theorem 1.1]).

Theorem 7.12.

Suppose that assumption C1 (2d) is satisfied. Let q ∈ (2,∞) be given. For the mem-

brane’s displacement consider an initial value u0 ∈ W 2
q,D(E) such that u0(x) > −1 for

x ∈ E. Then the following holds true:

1. There is a unique solution (u, ψ, T ) to the full system on the maximal interval of
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7 Analysis of a 2d model

existence [0, Tm) in the sense that

u ∈ C1([0, Tm), Lq(E)) ∩ C([0, Tm),W 2
q,D(E)) (7.23)

satisfies the equations (7.2) and (7.3), while ψ(t) ∈ W 2
2 (Ω(u(t)) and T (t) ∈

W 2
2 (Ω(u(t)) (the electro-thermal solutions) solve their corresponding equations in

Ω(u(t)) for each t ∈ [0, Tm).

2. Given κ ∈ (0, 1) there is r(κ) > 0 and b(κ) > 0 such that Tm = ∞, provided that

||u0||W 2
q (E) ≤ r(κ) and that C2 (2d) is satisfied with b(κ) > 0.

We follow the approach of [ELW15]. Let q ∈ (2,∞), κ ∈ (0, 1) and ξ ∈ (0, (q − 1)/q)

be given. Define

Zq(κ) := {w ∈ W 2−ξ
q (E); ||w||W 2−ξ

q (E) ≤ 1/κ}

and

A(w)v := −µ(Tw)∂2
xv = −µ(T0(·, w(·)))∂2

xv.

With this notation we can rewrite the equations governing the membrane’s deflection as

the quasilinear Cauchy problem

∂tu+ A(u)u = −g(u), t > 0, u(0) = u0. (7.24)

We start with some basic preparation. While the next Lemma holds true in a much

more general setting7 we still take the time to prove it for our specific case.

Lemma 7.13. Consider the linear boundary problem (A,B) in the sense of [Ama93, 4.].

Furthermore assume that n = 1, a11 > 0 and Bu = γ∂u (Dirichlet boundary).

The boundary operator B satisfies the parameter-dependent Lopatinskii-Shapiro con-

dition (normal complementing condition) with respect to A.

Proof. The principal symbol of the considered linear boundary problem is defined by

aπ(x, ξ) := a11(x)ξ2, (x, ξ) ∈ E × R,

7For details see for example [RR06, Remark 9.44].
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7 Analysis of a 2d model

and

bπ(y, ξ) := 1, (y, ξ) ∈ ∂E × R.

We denote the tangent bundle of ∂E by T (∂E). We have to prove that zero is, for each

(x, ξ) ∈ T (∂E) and λ ∈ [Rez ≥ 0] with (ξ, λ) 6= (0, 0) the only exponentially decaying

solution of the boundary value problem on the half-line:

bπ(x, ξ + ν(x)i∂t)u(0) = 0, (7.25)

[λ+ aπ(x, ξ + ν(x)i∂t)]u = 0, t > 0. (7.26)

Because we consider a one dimensional space with a Dirichlet boundary, the boundary

value problem translates to:

u(0) = 0, (7.27)

(λ+ a11(x)(ξ + ν(x)i∂t)
2)u = 0. (7.28)

Since ν(x) is the unit-normal this can be reduced to

− a11(x)∂2
t u+ (λ+ a11(x)ξ2)u = 0. (7.29)

The general solution of this ODE is

u(t) = c1e
t
√

λ
a11(x)

+ξ2
+ c2e

−t
√

λ
a11(x)

+ξ2
, (7.30)

with c1, c2 ∈ R. Due to (7.27) we get c2 = −c1. Now u(t)
t→∞−−−→ 0 and a11 > 0 imply

u(t) ≡ 0.

The following is a generalization of [LLMP04, Prop. 2.4.2]:

Lemma 7.14. Let 2 ≤ p < ∞, g ∈ L∞(Ω), λ ∈ C with Re λ ≥ 0 and u ∈ W 2
p (Ω) ∩

W 1
p,D(Ω) be given such that λu− g∆u = F ∈ Lp(Ω). Then

||u||Lp ≤
√

1 +
p2

4

1

c2

||F ||Lp
|λ|

(7.31)

holds true, provided that there is a c > 0 such that 1/c ≤ g(x) ≤ c for x ∈ Ω.
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Proof. For u = 0 the statement is obvious. Now for u 6= 0 multiplying (7.31) by |u|
p−2ū
g

and integrating yields

λ

∫
Ω

|u|p−2ūug−1 dx+

∫
Ω

n∑
k=1

∂xku∂xk(|u|p−2ū) dx =

∫
Ω

f |u|p−2ūg−1 dx.

Using the bounds on g and taking the real part we get

Re
(
λc||u||pLp +

∫
Ω

n∑
k=1

∂xku∂xk(|u|p−2ū) dx
)
≤ 1

c
Re
(∫

Ω

f |u|p−2ū dx
)
.

Now we are in the the same position as in the start of the proof of [LLMP04, Prop.

2.4.2] and the result follows by copying the steps that are taken there.

At first we will need some semigroup theory (see also [ELW15, Lemma 3.1]):

Lemma 7.15. Let q ∈ (2,∞), κ ∈ (0, 1) and ξ ∈ (0, (q − 1)/q) be given. There are

k := k(κ) ≥ 1 and ω := ω(κ) > 0 such that, for each w ∈ Zq(κ),

−2ω + A(w) ∈ H(W 2
q,D(E), Lq(E);κ, ω)

and A(w) is resolvent positive. Moreover, there is a constant l(k) > 0 such that

||A(w1)− A(w2)||L(W 2
q,D(E),Lq(E)) ≤ l(κ)||w1 − w2||W 2−ξ

q (E), w1, w2 ∈ Zq(κ). (7.32)

Proof. Note that due to the continuous embedding W 2
2 (Ω) ↪→ L∞, T0 ∈ C∞ and as-

sumption C1 (2d) there exists c(κ) > 0 such that

1/c(κ) < µ(Tw) < c(κ), w ∈ Zq(κ). (7.33)

Let w ∈ Zq(κ) be fixed. Since we have estimate (7.33), A(w) is normally elliptic and

due to Lemma 7.13 we can use [Ama93, Rem 4.2(c)] to show that −A(w) generates an

analytic semigroup on Lq(E). Now due to (7.33) we can argue as in [ELW15, Lemma

3.1]) to show that the equation

au− 2ωu− µ(Tw)∂2
xu = F (7.34)
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has a unique solution u ∈ W 2
q,D for F ∈ Lq(E), Re a > 0 and ω := π2c(κ)

23+q/2
. Now Lemma

7.14 yields the resolvent estimate

||(a− 2ω + A(w))−1||L(Lq(E)) ≤
c′(κ)

|a|
. (7.35)

Finally we can conclude the proof just as in [ELW15, Lemma 3.1]) by applying [Ama95, I.

Rem 1.2.1(a)].

Our operator generates a parabolic evolution operator (see also [ELW15, Proposition

3.2]):

Lemma 7.16. Let q ∈ (2,∞), κ ∈ (0, 1) and ξ ∈ (0, (q − 1)/q) be given. Let ω(κ) > 0

and l(κ) > 0 be as in Lemma 7.15. For ρ ∈ (0, 1) and N, τ > 0 given, define

Wτ (κ) := {w ∈ C([0, τ ],W 2−ξ
q,D (E)); ||w(t)− w(s)||W 2−ξ

q,D (E) ≤
N

l(κ)
|t− s|ρ

and w(t) ∈ Zq(κ) for 0 ≤ t, s ≤ τ}.

There is a constant c0(ρ) > 0 independent of N and τ such that the following holds

true: For each w ∈ Wτ (κ), there exists a unique parabolic evolution operator UA(w)(t, s),

0 ≤ s ≤ t ≤ τ , possessing W 2
q,D(E) as a regularity subspace, and

||UA(w)(t, s)||L(W 2α
q,D(E),W 2β

q,D(E)) ≤ c∗(κ)(t− s)α−βe−ν(t−s), 0 ≤ s < t ≤ τ, (7.36)

for 0 ≤ α ≤ β ≤ 1 with 2α, 2β 6= 1/q. Here c∗(κ) ≥ 1 depends on N,α and β but is

independent of τ and

− ν := −ν(κ, ρ,N) := c0(ρ)N1/ρ − ω(κ). (7.37)

Moreover, UA(w)(t, s) ∈ L(Lq(E)) is a positive operator for 0 ≤ s ≤ t ≤ τ .

The proof of Lemma 7.16, which uses Lemma 7.15 and general semigroup results

of [Ama95] but not the explicit form of A can be found in [ELW15, Proposition 3.2].

We are now ready to prove Theorem 7.12 by applying a fixed point argument in order

to find a solution to (7.24).
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Proof of Theorem 7.12. Let q ∈ (2,∞) be given. Let us consider an initial value u0 ∈
W 2
q,D(E) with u0(x) > −1 for x ∈ E. Clearly, there is κ ∈ (0, 1/2) with

u0 ∈ Sq(2κ), ||u0||W 2−ξ
q,D (E) ≤

1

2κ
, (7.38)

where we fix ξ and σ such that:

0 < ξ < 1/q, 0 <
1

2
− 1

q
< 2σ <

1

2
− ξ. (7.39)

Let 4ρ ∈ (0, ξ) be given. Let c0(ρ) > 0 be as in Lemma 7.16 and then choose N > 0

with the property that −ν := c0(ρ)N1/p − ω(κ) < 0. Since

W 2σ
2,D(E) ↪→ W

2σ− 1
2

+ 1
q

q,D (E) ↪→ Lq(E),

it follows from Lemma 7.16 that, for w ∈ Wτ (κ) fixed,

||UA(w)(t, s)||L(W 2
q,D(E)) +(t−s)−σ+1+ 1

2
( 1
2
− 1
q

)||UA(w)(t, s)||L(W 2σ
2,D(E),W 2

q,D(E)) ≤ c∗(κ)e−ν(t−s),

(7.40)

for 0 ≤ s ≤ t ≤ τ , where the constant c∗(κ) is independent of w and τ > 0. Now set

Vτ (κ) := {v ∈ Wτ (κ); ||v(t)||W 2
q,D(E) ≤ 1/κ0 and v(t) ≥ −1 + κ for 0 ≤ t, s ≤ τ}

with κ0 := κ/c∗(κ). By Lemma 7.11 there is c1(κ) > 0 s.t.:

||g(v)− g(w)||W 2σ
2,D(E) ≤ c1(κ)||v − w||W 2−ξ

q,D (E), v, w ∈ Sq(κ), (7.41)

||g(v)||W 2σ
2,D(E) ≤ c1(κ), v ∈ Sq(κ). (7.42)

We prove that the mapping

Γ(v)(t) := UA(v)(t, 0)u0 −
∫ t

0

UA(v)(t, s)g(v(s)) ds, t ∈ [0, τ ], v ∈ Vτ (κ),

defines a contraction from Vτ (κ) into itself. Since UA(v)(t, 0) is a positive operator and

u0 ≥ −1 + 2κ, we can apply the embedding W 2
q (E) ↪→ L∞(E) with constant 2 and then
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invoke (7.40) and (7.42) to estimate:

Γ(v)(t) ≥ −1 + 2κ− 2

∫ t

0

||UA(v)(t, s)g(v(s))||W 2
q,D(E) ds

≥ −1 + 2κ− 2c∗(κ)

∫ t

0

e−ν(t−s)(t− s)σ−1− 1
2

( 1
2
− 1
q

)||g(v(s))||W 2σ
2,D(E) ds

≥ −1 + 2κ− 2c∗(κ)c1(κ)

∫ τ

0

e−νssσ−1− 1
2

( 1
2
− 1
q

) ds. (7.43)

Furthermore, by the same arguments as in [ELW15, Proof Theorem 1.1] we obtain the

remaining four of the five essential estimates

||Γ(v)(t)||W 2
q,D(E) ≤

c∗(κ)

2κ
+ c∗(κ)c1(κ)

∫ τ

0

e−νssσ−1− 1
2

( 1
2
− 1
q

)ds, (7.44)

||Γ(v)(t)− Γ(w)(t)||W 2−ξ
q,D (E) ≤ c(κ)(( max

0≤r≤τ
r
ξ
2 e−νr)[||u0||W 2

q,D(E)

+ c1(κ)] + c1(κ)( max
0≤r≤τ

rξ/2+σ− 1
2

( 1
2
− 1
q

)))||v − w||Vτ (κ), (7.45)

with c(κ) > 0,

||Γ(v)(t)− Γ(v)(s)||W 2−ξ
q,D
≤ m∗(κ)( max

0≤r≤τ
rρe−νr)(||u0||W 2−ξ+4ρ

q,D (E) + c1(κ))(t− s)ρ, (7.46)

with m∗(κ) > 0 and

||Γ(v)(t)||W 2−ξ
q,D (E) ≤ m∗(κ)( max

0≤r≤τ
r2ρe−νr)(||u0||W 2−ξ+4ρ

q,D (E) + c1(κ)) +
1

2κ
. (7.47)

Gathering equations (7.43)–(7.47) we can see that one may choose τ := τ(κ) sufficiently

small such that the mapping Γ : Vτ (κ) → Vτ (κ) defines a contraction and thus has a

unique fixed point u ∈ Vτ . Therefore the proof of Theorem 7.12 can be concluded just

as in [ELW15, Proof Theorem 1.1].

For part two of Theorem 7.12 observe that if C2 (2d) is satisfied with b(κ) > 0, one can

replace c1(κ) with b(κ) in the five estimates. Therefore even for τ > 0 arbitrarily large

it suffices that ||u0||W 2
2,D
≤ r(κ) and b(κ) sufficiently small for Γ to define a contraction.
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8 Numerical analysis

In the previous chapters we derived and analysed a highly versatile model which de-

pends on a variety of constants and functions. After these theoretical results we are now

interested in the qualitative aspects of the solution. In particular we want to examine

the differences between the full model with temperature and the model with just elec-

trostatics. We will now investigate the system numerically, focusing on the membrane’s

deflection.

8.1 Numerical setting

We will stay in the 2d case and work on the system in section 7 while using the notation

therein. Our approach is based on the numerical analysis in [Lie16]: We use the finite-

element method and determine the membrane’s displacement via the Crank-Nicolson

method. We discretize the space Ω into the same simple rectangles and the time in

intervals. Therefore the variational formulation for the electrostatic problem is equal

to the one in [Lie16, 6.1]. For the temperature we change the boundary values and

add the right-hand side hu,ψ which now depends on the membrane’s deflection and the

electrostatic potential. The variational formulation for the deflection is

(∂tu(t), v)L2(E) + aT (u(t), v) = (g(u(t), ψ, T ), v)L2(E),

u(0) = u0

with the bilinear form

aT (u, v) :=

∫
E

µ(T ) ∂xu ∂xv − ∂xT ∂µ ∂xu v dx

now depending on the temperature. Due to this new situation we have to implement

some changes and in particular use a different numerical scheme: In our setting we

have to recalculate the stiffness matrix of the membrane’s displacement in every time

step because of the dependence on the temperature. Furthermore we obviously add the

computation of the temperature after the electrostatics and before the computation of

the membrane’s new right-hand side in every iteration.
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8.2 Results

The previous theoretical analysis is of course valid for all possible combinations which

satisfy the necessary conditions. However in order to show some solutions we will need

to fix a specific example. Afterwards we can examine the influences of the parameters.

We assume that the cylinder is filled with air at 20◦C and normal pressure of 105

pascal and take the silicone elastomer Sylgard 184 as material for the membrane. We

use the ideal gas law inside the cylinder and let ε1 be independent of temperature (just

for simplicity). This results in the following choices for the full set of parameters which

we will call M1:

Width a = 1mm,

Height h = 0.5mm,

Applied Voltage (Volt) V = 2,

Temperature on Boundary T0 = 293K,

Thermal conductivity k = 26 W
mmK

,

Electric conductivity σ = 10−9 S
mm

,

Gas Constant R = 8.3145 106kg mm2

s2molK
,

Amount of substance N = 1.6411 10−11 mol,

Shear modulus constants µ1 = 0.373, µ0 = 0.0032,

Permittivity ε1 = 11.68.

These choices result in the following values for the constants and functions used in

our PDEs:

µ(T ) = 0.373 + 0.0032T ,

λ1 = 16,

λ2 = 2,

λ4 = 0.104,
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ε = 0.5.

It remains to remark that these choices are not only consistent with our initial mo-

delling in section 4.5 but also with the theoretical analysis in section 7.

Remark 8.1. Given N,R > 0, q > 2 and κ ∈ (0, 1), let u ∈ Sq(κ). The ideal gas law

given by P : W 2−ξ
2,D (E)→ W ν

2,D(E) with

P (u) :=
NRTu(·, 1)

VC(u)
=

NRTu(·, 1)

2 +
∫ 1

−1
u dx

is Lipschitz continuous.

Proof. We have to prove that the pressure term is Lipschitz with respect to the mem-

brane’s displacement. Let q > 2, ξ ∈ [0, (q − 1)/q), κ ∈ (0, 1), u, v ∈ Sq(κ) and

ν ∈ [0, (1− 2ξ)/2) be given. There exists c > 0 such that:

||P (u)− P (v)||W ν
2,D(E) = || NRTu(·, 1)

2 +
∫ 1

−1
u dx

− NRTv(·, 1)

2 +
∫ 1

−1
v dx

||W ν
2,D(E)

≤ NR||
2Tu(·, 1) + Tu(·, 1)

∫ 1

−1
v dx− 2Tv(·, 1)− Tv(·, 1)

∫ 1

−1
u dx

4 + 2
∫ 1

−1
(u+ v) dx+ (

∫ 1

−1
u dx)(

∫ 1

−1
v dx)

||W ν
2,D(E)

≤ NR

κ2
||2Tu(·, 1) + Tu(·, 1)

∫ 1

−1

v dx− 2Tv(·, 1)− Tv(·, 1)

∫ 1

−1

u dx||W ν
2,D(E)

≤ 2NR

κ2
||Tu(·, 1)− Tv(·, 1)||W ν

2,D(E) +
NR

κ2
(||Tu(·, 1)

∫ 1

−1

(u− v) dx||W ν
2,D(E)

+ ||(
∫ 1

−1

u dx)(Tu(·, 1)− Tv(·, 1))||W ν
2,D(E))

≤ c||u− v||W 2−ξ
2,D (E).

In this estimate we used u, v ∈ Sq(κ), W 2−ξ
2,D (E) ↪→ W ν

2,D(E) and lastly Theorem 7.4.

For a numeric solution of the membrane’s deflection u we define

umin := min
x∈[−1,1]

u(x) and umax := max
x∈[−1,1]

u(x).
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The overall dynamics of the equation governing the membrane’s deflection are pretty

straightforward: Whether the membrane is moving up or down is decided by the sign

of the right-hand side and therefore depends on whether electrostatic effects pulling the

membrane downward or thermal effects pushing the membrane upwards dominate one

another. The right-hand side is

g(u, T, ψ) := ε1λ1
1 + ε2|∂xu|2

(1 + u)2
|∂ηψ(·, 1)|2︸ ︷︷ ︸

electrostatic

−λ2
NRT

2 +
∫ 1

−1
u︸ ︷︷ ︸

thermal

.

It is therefore no surprise that by computing this model we can’t observe strong tempera-

ture effects because in the above setting the electrostatic effect’s strength ε1λ1 = 186.68

is several orders of magnitude greater than the thermal effect’s strength λ2NR = 0.08.

This adds to the hypothesis that one can, at least in certain situations, disregard tem-

perature when modelling MEMS.

However M1 was only one of the possible combinations of the above parameters. For

example it is possible to increase the amount of substance in the cylinderN , that is to say

to start with a higher initial pressure like in a gas tank. One could also fill the cylinder

with a non ideal gas that has better adiabatic attributes and use the van der Waals law

for the pressure. Furthermore applying a lower voltage or taking a different material

with less permittivity for the membrane will decrease the strength of the electrostatic

effects. Lastly it is possible to change the aspect ratio of the cylinder in favour of height

because λ1 scales in that respect with 1/h3 and λ2 only with 1/h. Making one or several

of these modifications we can easily build a realistic scenario in which thermal effects

heavily dominate the electrostatic ones.

Instead of discussing several of these scenarios in detail, we follow the approach of

[Lie16] and simply fix the electrostatic factor to an explicit value of 1:

ε1λ1 = 1.

In order to get a regime in which neither effect heavily dominates the other one we also
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fix the thermal factor λ2NR = 0.005. We call this setting M2. In order to see that

this choice is reasonable one has to keep in mind that the temperature is measured in

Kelvin. Thus the thermal- and electrostatic effect’s strengths will be of the same order

of magnitude. This simplification makes it possible to discuss several interesting effects

that cannot be seen in the model which neglects temperature effects. Also this allows

us to show how each of the parameters affect the membrane’s movement.

8.3 Influences of the parameters

In the following we will vary a single parameter of M2 and show its effects on the

membrane’s displacement.

8.3.1 Temperature

We start by observing the effects of a change in temperature.

(a) T0 = 20◦C
umin = −0.0568

(b) T0 = 125◦C
umin = −0.001

(c) T0 = 200◦C
umax = 0.0331

Figure 5: M2 with varying temperature at t = 0.4.

In figure 5 we can see that while under room temperature the membrane still deflects

downward, there is a temperature under which electrostatic and thermal effects cancel

out each other, so that the membrane stays in place. This implies that by applying

a temperature we can prevent that the membrane touches the ground plate.8 Also

by further increasing the temperature the membrane can even deflect upwards. The

deflection at different times, that is t < 0.4 or t > 0.4, exhibits the same qualitative

behaviour.

8This can be interpreted as the numerical manifestation of the abstract global existence result in part
two of Theorem 7.12.
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8.3.2 Shear modulus

The shear modulus µ(T ) is a measure for the stiffness of the membrane. We show how

decreasing the shear modulus influences the membrane’s displacement.

(a) T0 = 20◦C
umin = −0.0568

(b) T0 = 200◦C
umax = 0.0331

Figure 6: M2 with µ1 = 0.373 at t = 0.4.

(a) T0 = 20◦C
umin = −0.0607

(b) T0 = 200◦C
umax = 0.0352

Figure 7: M2 with (decreased) µ1 = 0.01 at t = 0.4.

By comparing figure 6 with figure 7 we can see that by lowering the shear modulus

we make the membrane more bendable and therefore increase the absolute value of the

deflection.

8.3.3 No blowup

Since we can observe the new effect of the membrane being pushed upwards, we want

to examine whether a blowup is likely.
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(a) t = 100,
umax = 0.1397

(b) t = 150,
umax = 0.1402

(c) t = 200,
umax = 0.1405

(d) t = 250,
umax = 0.1406

Figure 8: M2 with T0 = 200◦C.

Figure 8 gives numerical evidence, that even when thermal effects dominate, the mem-

brane’s displacement does not increase indefinitely. Instead the movement stagnates at

a certain point dependent on the strength of the thermal effects. This is due to the fact,

that when the volume of the cylinder increases, the pressure drops. In the ideal gas law

this is evident through the term 1

2+
∫ 1
−1 u

which decreases the thermal effect’s strength

when the membrane’s upward deflection increases.

In summary our model captures several new effects that cannot be observed without

temperature. We also found that all of the tested parameters influenced the membrane’s

deflection in exactly the expected way.
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8.4 Comparison between our model and the one without

temperature effects

Lastly, we want to show a direct comparision between our model with temperature and

the model without temperature. The choice of parameters in [Lie16] is not physcially

motivated, instead all parameters are scaled to 1. We can fully recover the numerical

results of [Lie16] for the case of a constant permittivity profile in our model. In order to

do this we disable the temperature effects by simply fixing µ(T ) = 1 and λ2 = 0. Also

we fix λ1ε1 = 1. This setting is called M0.

8.4.1 M0 vs M2

The next figures show the time evolution of the membrane’s deflection for the model M0

and our model M2.

(a) t = 0.1,
umin = −0.0529

(b) t = 0.2,
umin = −0.1129

(c) t = 0.3,
umin = −0.1837

(d) t = 0.4,
umin = −0.2822

Figure 9: Membrane’s deflection (M0).
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(a) t = 0.1,
umin = −0.0138

(b) t = 0.2,
umin = −0.0282

(c) t = 0.3,
umin = −0.0426

(d) t = 0.4,
umin = −0.0568

Figure 10: Membrane’s deflection (M2) at 20◦C.

(a) t = 0.1,
umin = −0.0461

(b) t = 0.2,
umin = −0.0984

(c) t = 0.3,
umin = −0.1617

(d) t = 0.4,
umin = −0.2528

Figure 11: Membrane’s deflection (M2) at −220◦C.
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Comparing figure 9 with figure 10 we can see that incorporating temperature changes

the membrane’s deflection significantly if one assumes a temperature of 20◦C. At−220◦C

however, the two models behave in a much more similar way.

8.4.2 M0 vs M2’

One could argue the outcome of the above comparison is mainly due to the different

scaling of the two models. Therefore we will repeat the comparison but this time rescale

M2 in similar fashion: We fix the shear modulus constant µ1 = 0.063. This results in

the shear modulus µ(T ) = 0.063 + 0.0032T and in particular we get µ(293) = 1. Thus

the shear moduli of our two models are equal at room temperature (20◦C). We let the

scaling of the right-hand side of the membrane equation be motivated by our initial

physical set of parameters M1: Since M0 uses λ1ε1 = 1 instead of λ1ε1 = 186.68, we

rescale the right-hand side, by the factor 1
186.68

in order to get λ1ε1 = 1 as well. This

results in λ2NR = 0.0004 instead of λ2NR = 0.08. We call this setting M2’.

(a) t = 0.1, umin = −0.0529 (b) t = 0.2, umin = −0.1129

(c) t = 0.3, umin = −0.1837 (d) t = 0.4, umin = −0.2822

Figure 12: Membrane’s deflection (M0).
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(a) t = 0.1,
umin = −0.0497

(b) t = 0.2,
umin = −0.1058

(c) t = 0.3,
umin = −0.171

(d) t = 0.4,
umin = −0.2568

Figure 13: Membrane’s deflection (M2’) at 20◦C.

(a) t = 0.1,
umin = −0.0485

(b) t = 0.2,
umin = −0.1015

(c) t = 0.3,
umin = −0.1594

(d) t = 0.4,
umin = −0.2274

Figure 14: Membrane’s deflection (M2’) at 120◦C.
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Comparing figure 12 with figure 13 we can see that the models behave similar under

room temperature. Also, as already mentioned, temperature effects are not dominant in

the setting of M2’. Therefore even at 120◦C we only observe a slight change in behaviour

compared to 20◦C. Whereas in the previous comparison in subsection 8.4.1 this increase

of 100◦C changed the membrane’s deflection significantly.

We summarize these findings in the following chart which shows the evolution of the

deflection’s minimum umin for the different settings:

0 0.1 0.2 0.3 0.4
−0.3

−0.2

−0.1

0

t

u
m
in

M0
M2, 20◦C
M2, −220◦C
M2’, 20◦C
M2’, 120◦C
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